1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 #include <trace/events/sched.h> 26 27 /* 28 * Targeted preemption latency for CPU-bound tasks: 29 * 30 * NOTE: this latency value is not the same as the concept of 31 * 'timeslice length' - timeslices in CFS are of variable length 32 * and have no persistent notion like in traditional, time-slice 33 * based scheduling concepts. 34 * 35 * (to see the precise effective timeslice length of your workload, 36 * run vmstat and monitor the context-switches (cs) field) 37 * 38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 39 */ 40 unsigned int sysctl_sched_latency = 6000000ULL; 41 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 42 43 /* 44 * The initial- and re-scaling of tunables is configurable 45 * 46 * Options are: 47 * 48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 51 * 52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 53 */ 54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 55 56 /* 57 * Minimal preemption granularity for CPU-bound tasks: 58 * 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 60 */ 61 unsigned int sysctl_sched_min_granularity = 750000ULL; 62 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 63 64 /* 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 66 */ 67 static unsigned int sched_nr_latency = 8; 68 69 /* 70 * After fork, child runs first. If set to 0 (default) then 71 * parent will (try to) run first. 72 */ 73 unsigned int sysctl_sched_child_runs_first __read_mostly; 74 75 /* 76 * SCHED_OTHER wake-up granularity. 77 * 78 * This option delays the preemption effects of decoupled workloads 79 * and reduces their over-scheduling. Synchronous workloads will still 80 * have immediate wakeup/sleep latencies. 81 * 82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 83 */ 84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 85 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 #ifdef CONFIG_SMP 90 /* 91 * For asym packing, by default the lower numbered CPU has higher priority. 92 */ 93 int __weak arch_asym_cpu_priority(int cpu) 94 { 95 return -cpu; 96 } 97 98 /* 99 * The margin used when comparing utilization with CPU capacity. 100 * 101 * (default: ~20%) 102 */ 103 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 104 105 #endif 106 107 #ifdef CONFIG_CFS_BANDWIDTH 108 /* 109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 110 * each time a cfs_rq requests quota. 111 * 112 * Note: in the case that the slice exceeds the runtime remaining (either due 113 * to consumption or the quota being specified to be smaller than the slice) 114 * we will always only issue the remaining available time. 115 * 116 * (default: 5 msec, units: microseconds) 117 */ 118 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 119 #endif 120 121 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 122 { 123 lw->weight += inc; 124 lw->inv_weight = 0; 125 } 126 127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 128 { 129 lw->weight -= dec; 130 lw->inv_weight = 0; 131 } 132 133 static inline void update_load_set(struct load_weight *lw, unsigned long w) 134 { 135 lw->weight = w; 136 lw->inv_weight = 0; 137 } 138 139 /* 140 * Increase the granularity value when there are more CPUs, 141 * because with more CPUs the 'effective latency' as visible 142 * to users decreases. But the relationship is not linear, 143 * so pick a second-best guess by going with the log2 of the 144 * number of CPUs. 145 * 146 * This idea comes from the SD scheduler of Con Kolivas: 147 */ 148 static unsigned int get_update_sysctl_factor(void) 149 { 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 151 unsigned int factor; 152 153 switch (sysctl_sched_tunable_scaling) { 154 case SCHED_TUNABLESCALING_NONE: 155 factor = 1; 156 break; 157 case SCHED_TUNABLESCALING_LINEAR: 158 factor = cpus; 159 break; 160 case SCHED_TUNABLESCALING_LOG: 161 default: 162 factor = 1 + ilog2(cpus); 163 break; 164 } 165 166 return factor; 167 } 168 169 static void update_sysctl(void) 170 { 171 unsigned int factor = get_update_sysctl_factor(); 172 173 #define SET_SYSCTL(name) \ 174 (sysctl_##name = (factor) * normalized_sysctl_##name) 175 SET_SYSCTL(sched_min_granularity); 176 SET_SYSCTL(sched_latency); 177 SET_SYSCTL(sched_wakeup_granularity); 178 #undef SET_SYSCTL 179 } 180 181 void sched_init_granularity(void) 182 { 183 update_sysctl(); 184 } 185 186 #define WMULT_CONST (~0U) 187 #define WMULT_SHIFT 32 188 189 static void __update_inv_weight(struct load_weight *lw) 190 { 191 unsigned long w; 192 193 if (likely(lw->inv_weight)) 194 return; 195 196 w = scale_load_down(lw->weight); 197 198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 199 lw->inv_weight = 1; 200 else if (unlikely(!w)) 201 lw->inv_weight = WMULT_CONST; 202 else 203 lw->inv_weight = WMULT_CONST / w; 204 } 205 206 /* 207 * delta_exec * weight / lw.weight 208 * OR 209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 210 * 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 212 * we're guaranteed shift stays positive because inv_weight is guaranteed to 213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 214 * 215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 216 * weight/lw.weight <= 1, and therefore our shift will also be positive. 217 */ 218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 219 { 220 u64 fact = scale_load_down(weight); 221 int shift = WMULT_SHIFT; 222 223 __update_inv_weight(lw); 224 225 if (unlikely(fact >> 32)) { 226 while (fact >> 32) { 227 fact >>= 1; 228 shift--; 229 } 230 } 231 232 fact = mul_u32_u32(fact, lw->inv_weight); 233 234 while (fact >> 32) { 235 fact >>= 1; 236 shift--; 237 } 238 239 return mul_u64_u32_shr(delta_exec, fact, shift); 240 } 241 242 243 const struct sched_class fair_sched_class; 244 245 /************************************************************** 246 * CFS operations on generic schedulable entities: 247 */ 248 249 #ifdef CONFIG_FAIR_GROUP_SCHED 250 static inline struct task_struct *task_of(struct sched_entity *se) 251 { 252 SCHED_WARN_ON(!entity_is_task(se)); 253 return container_of(se, struct task_struct, se); 254 } 255 256 /* Walk up scheduling entities hierarchy */ 257 #define for_each_sched_entity(se) \ 258 for (; se; se = se->parent) 259 260 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 261 { 262 return p->se.cfs_rq; 263 } 264 265 /* runqueue on which this entity is (to be) queued */ 266 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 267 { 268 return se->cfs_rq; 269 } 270 271 /* runqueue "owned" by this group */ 272 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 273 { 274 return grp->my_q; 275 } 276 277 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 278 { 279 if (!path) 280 return; 281 282 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) 283 autogroup_path(cfs_rq->tg, path, len); 284 else if (cfs_rq && cfs_rq->tg->css.cgroup) 285 cgroup_path(cfs_rq->tg->css.cgroup, path, len); 286 else 287 strlcpy(path, "(null)", len); 288 } 289 290 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 291 { 292 struct rq *rq = rq_of(cfs_rq); 293 int cpu = cpu_of(rq); 294 295 if (cfs_rq->on_list) 296 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 297 298 cfs_rq->on_list = 1; 299 300 /* 301 * Ensure we either appear before our parent (if already 302 * enqueued) or force our parent to appear after us when it is 303 * enqueued. The fact that we always enqueue bottom-up 304 * reduces this to two cases and a special case for the root 305 * cfs_rq. Furthermore, it also means that we will always reset 306 * tmp_alone_branch either when the branch is connected 307 * to a tree or when we reach the top of the tree 308 */ 309 if (cfs_rq->tg->parent && 310 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 311 /* 312 * If parent is already on the list, we add the child 313 * just before. Thanks to circular linked property of 314 * the list, this means to put the child at the tail 315 * of the list that starts by parent. 316 */ 317 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 318 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 319 /* 320 * The branch is now connected to its tree so we can 321 * reset tmp_alone_branch to the beginning of the 322 * list. 323 */ 324 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 325 return true; 326 } 327 328 if (!cfs_rq->tg->parent) { 329 /* 330 * cfs rq without parent should be put 331 * at the tail of the list. 332 */ 333 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 334 &rq->leaf_cfs_rq_list); 335 /* 336 * We have reach the top of a tree so we can reset 337 * tmp_alone_branch to the beginning of the list. 338 */ 339 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 340 return true; 341 } 342 343 /* 344 * The parent has not already been added so we want to 345 * make sure that it will be put after us. 346 * tmp_alone_branch points to the begin of the branch 347 * where we will add parent. 348 */ 349 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 350 /* 351 * update tmp_alone_branch to points to the new begin 352 * of the branch 353 */ 354 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 355 return false; 356 } 357 358 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 359 { 360 if (cfs_rq->on_list) { 361 struct rq *rq = rq_of(cfs_rq); 362 363 /* 364 * With cfs_rq being unthrottled/throttled during an enqueue, 365 * it can happen the tmp_alone_branch points the a leaf that 366 * we finally want to del. In this case, tmp_alone_branch moves 367 * to the prev element but it will point to rq->leaf_cfs_rq_list 368 * at the end of the enqueue. 369 */ 370 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 371 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 372 373 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 374 cfs_rq->on_list = 0; 375 } 376 } 377 378 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 379 { 380 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 381 } 382 383 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 384 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 385 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 386 leaf_cfs_rq_list) 387 388 /* Do the two (enqueued) entities belong to the same group ? */ 389 static inline struct cfs_rq * 390 is_same_group(struct sched_entity *se, struct sched_entity *pse) 391 { 392 if (se->cfs_rq == pse->cfs_rq) 393 return se->cfs_rq; 394 395 return NULL; 396 } 397 398 static inline struct sched_entity *parent_entity(struct sched_entity *se) 399 { 400 return se->parent; 401 } 402 403 static void 404 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 405 { 406 int se_depth, pse_depth; 407 408 /* 409 * preemption test can be made between sibling entities who are in the 410 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 411 * both tasks until we find their ancestors who are siblings of common 412 * parent. 413 */ 414 415 /* First walk up until both entities are at same depth */ 416 se_depth = (*se)->depth; 417 pse_depth = (*pse)->depth; 418 419 while (se_depth > pse_depth) { 420 se_depth--; 421 *se = parent_entity(*se); 422 } 423 424 while (pse_depth > se_depth) { 425 pse_depth--; 426 *pse = parent_entity(*pse); 427 } 428 429 while (!is_same_group(*se, *pse)) { 430 *se = parent_entity(*se); 431 *pse = parent_entity(*pse); 432 } 433 } 434 435 #else /* !CONFIG_FAIR_GROUP_SCHED */ 436 437 static inline struct task_struct *task_of(struct sched_entity *se) 438 { 439 return container_of(se, struct task_struct, se); 440 } 441 442 #define for_each_sched_entity(se) \ 443 for (; se; se = NULL) 444 445 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 446 { 447 return &task_rq(p)->cfs; 448 } 449 450 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 451 { 452 struct task_struct *p = task_of(se); 453 struct rq *rq = task_rq(p); 454 455 return &rq->cfs; 456 } 457 458 /* runqueue "owned" by this group */ 459 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 460 { 461 return NULL; 462 } 463 464 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 465 { 466 if (path) 467 strlcpy(path, "(null)", len); 468 } 469 470 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 471 { 472 return true; 473 } 474 475 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 476 { 477 } 478 479 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 480 { 481 } 482 483 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 484 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 485 486 static inline struct sched_entity *parent_entity(struct sched_entity *se) 487 { 488 return NULL; 489 } 490 491 static inline void 492 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 493 { 494 } 495 496 #endif /* CONFIG_FAIR_GROUP_SCHED */ 497 498 static __always_inline 499 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 500 501 /************************************************************** 502 * Scheduling class tree data structure manipulation methods: 503 */ 504 505 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 506 { 507 s64 delta = (s64)(vruntime - max_vruntime); 508 if (delta > 0) 509 max_vruntime = vruntime; 510 511 return max_vruntime; 512 } 513 514 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 515 { 516 s64 delta = (s64)(vruntime - min_vruntime); 517 if (delta < 0) 518 min_vruntime = vruntime; 519 520 return min_vruntime; 521 } 522 523 static inline int entity_before(struct sched_entity *a, 524 struct sched_entity *b) 525 { 526 return (s64)(a->vruntime - b->vruntime) < 0; 527 } 528 529 static void update_min_vruntime(struct cfs_rq *cfs_rq) 530 { 531 struct sched_entity *curr = cfs_rq->curr; 532 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 533 534 u64 vruntime = cfs_rq->min_vruntime; 535 536 if (curr) { 537 if (curr->on_rq) 538 vruntime = curr->vruntime; 539 else 540 curr = NULL; 541 } 542 543 if (leftmost) { /* non-empty tree */ 544 struct sched_entity *se; 545 se = rb_entry(leftmost, struct sched_entity, run_node); 546 547 if (!curr) 548 vruntime = se->vruntime; 549 else 550 vruntime = min_vruntime(vruntime, se->vruntime); 551 } 552 553 /* ensure we never gain time by being placed backwards. */ 554 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 555 #ifndef CONFIG_64BIT 556 smp_wmb(); 557 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 558 #endif 559 } 560 561 /* 562 * Enqueue an entity into the rb-tree: 563 */ 564 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 565 { 566 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 567 struct rb_node *parent = NULL; 568 struct sched_entity *entry; 569 bool leftmost = true; 570 571 /* 572 * Find the right place in the rbtree: 573 */ 574 while (*link) { 575 parent = *link; 576 entry = rb_entry(parent, struct sched_entity, run_node); 577 /* 578 * We dont care about collisions. Nodes with 579 * the same key stay together. 580 */ 581 if (entity_before(se, entry)) { 582 link = &parent->rb_left; 583 } else { 584 link = &parent->rb_right; 585 leftmost = false; 586 } 587 } 588 589 rb_link_node(&se->run_node, parent, link); 590 rb_insert_color_cached(&se->run_node, 591 &cfs_rq->tasks_timeline, leftmost); 592 } 593 594 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 595 { 596 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 597 } 598 599 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 600 { 601 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 602 603 if (!left) 604 return NULL; 605 606 return rb_entry(left, struct sched_entity, run_node); 607 } 608 609 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 610 { 611 struct rb_node *next = rb_next(&se->run_node); 612 613 if (!next) 614 return NULL; 615 616 return rb_entry(next, struct sched_entity, run_node); 617 } 618 619 #ifdef CONFIG_SCHED_DEBUG 620 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 621 { 622 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 623 624 if (!last) 625 return NULL; 626 627 return rb_entry(last, struct sched_entity, run_node); 628 } 629 630 /************************************************************** 631 * Scheduling class statistics methods: 632 */ 633 634 int sched_proc_update_handler(struct ctl_table *table, int write, 635 void __user *buffer, size_t *lenp, 636 loff_t *ppos) 637 { 638 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 639 unsigned int factor = get_update_sysctl_factor(); 640 641 if (ret || !write) 642 return ret; 643 644 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 645 sysctl_sched_min_granularity); 646 647 #define WRT_SYSCTL(name) \ 648 (normalized_sysctl_##name = sysctl_##name / (factor)) 649 WRT_SYSCTL(sched_min_granularity); 650 WRT_SYSCTL(sched_latency); 651 WRT_SYSCTL(sched_wakeup_granularity); 652 #undef WRT_SYSCTL 653 654 return 0; 655 } 656 #endif 657 658 /* 659 * delta /= w 660 */ 661 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 662 { 663 if (unlikely(se->load.weight != NICE_0_LOAD)) 664 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 665 666 return delta; 667 } 668 669 /* 670 * The idea is to set a period in which each task runs once. 671 * 672 * When there are too many tasks (sched_nr_latency) we have to stretch 673 * this period because otherwise the slices get too small. 674 * 675 * p = (nr <= nl) ? l : l*nr/nl 676 */ 677 static u64 __sched_period(unsigned long nr_running) 678 { 679 if (unlikely(nr_running > sched_nr_latency)) 680 return nr_running * sysctl_sched_min_granularity; 681 else 682 return sysctl_sched_latency; 683 } 684 685 /* 686 * We calculate the wall-time slice from the period by taking a part 687 * proportional to the weight. 688 * 689 * s = p*P[w/rw] 690 */ 691 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 692 { 693 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 694 695 for_each_sched_entity(se) { 696 struct load_weight *load; 697 struct load_weight lw; 698 699 cfs_rq = cfs_rq_of(se); 700 load = &cfs_rq->load; 701 702 if (unlikely(!se->on_rq)) { 703 lw = cfs_rq->load; 704 705 update_load_add(&lw, se->load.weight); 706 load = &lw; 707 } 708 slice = __calc_delta(slice, se->load.weight, load); 709 } 710 return slice; 711 } 712 713 /* 714 * We calculate the vruntime slice of a to-be-inserted task. 715 * 716 * vs = s/w 717 */ 718 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 719 { 720 return calc_delta_fair(sched_slice(cfs_rq, se), se); 721 } 722 723 #include "pelt.h" 724 #ifdef CONFIG_SMP 725 726 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 727 static unsigned long task_h_load(struct task_struct *p); 728 static unsigned long capacity_of(int cpu); 729 730 /* Give new sched_entity start runnable values to heavy its load in infant time */ 731 void init_entity_runnable_average(struct sched_entity *se) 732 { 733 struct sched_avg *sa = &se->avg; 734 735 memset(sa, 0, sizeof(*sa)); 736 737 /* 738 * Tasks are initialized with full load to be seen as heavy tasks until 739 * they get a chance to stabilize to their real load level. 740 * Group entities are initialized with zero load to reflect the fact that 741 * nothing has been attached to the task group yet. 742 */ 743 if (entity_is_task(se)) 744 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight); 745 746 se->runnable_weight = se->load.weight; 747 748 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 749 } 750 751 static void attach_entity_cfs_rq(struct sched_entity *se); 752 753 /* 754 * With new tasks being created, their initial util_avgs are extrapolated 755 * based on the cfs_rq's current util_avg: 756 * 757 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 758 * 759 * However, in many cases, the above util_avg does not give a desired 760 * value. Moreover, the sum of the util_avgs may be divergent, such 761 * as when the series is a harmonic series. 762 * 763 * To solve this problem, we also cap the util_avg of successive tasks to 764 * only 1/2 of the left utilization budget: 765 * 766 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 767 * 768 * where n denotes the nth task and cpu_scale the CPU capacity. 769 * 770 * For example, for a CPU with 1024 of capacity, a simplest series from 771 * the beginning would be like: 772 * 773 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 774 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 775 * 776 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 777 * if util_avg > util_avg_cap. 778 */ 779 void post_init_entity_util_avg(struct task_struct *p) 780 { 781 struct sched_entity *se = &p->se; 782 struct cfs_rq *cfs_rq = cfs_rq_of(se); 783 struct sched_avg *sa = &se->avg; 784 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 785 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 786 787 if (cap > 0) { 788 if (cfs_rq->avg.util_avg != 0) { 789 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 790 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 791 792 if (sa->util_avg > cap) 793 sa->util_avg = cap; 794 } else { 795 sa->util_avg = cap; 796 } 797 } 798 799 if (p->sched_class != &fair_sched_class) { 800 /* 801 * For !fair tasks do: 802 * 803 update_cfs_rq_load_avg(now, cfs_rq); 804 attach_entity_load_avg(cfs_rq, se, 0); 805 switched_from_fair(rq, p); 806 * 807 * such that the next switched_to_fair() has the 808 * expected state. 809 */ 810 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 811 return; 812 } 813 814 attach_entity_cfs_rq(se); 815 } 816 817 #else /* !CONFIG_SMP */ 818 void init_entity_runnable_average(struct sched_entity *se) 819 { 820 } 821 void post_init_entity_util_avg(struct task_struct *p) 822 { 823 } 824 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 825 { 826 } 827 #endif /* CONFIG_SMP */ 828 829 /* 830 * Update the current task's runtime statistics. 831 */ 832 static void update_curr(struct cfs_rq *cfs_rq) 833 { 834 struct sched_entity *curr = cfs_rq->curr; 835 u64 now = rq_clock_task(rq_of(cfs_rq)); 836 u64 delta_exec; 837 838 if (unlikely(!curr)) 839 return; 840 841 delta_exec = now - curr->exec_start; 842 if (unlikely((s64)delta_exec <= 0)) 843 return; 844 845 curr->exec_start = now; 846 847 schedstat_set(curr->statistics.exec_max, 848 max(delta_exec, curr->statistics.exec_max)); 849 850 curr->sum_exec_runtime += delta_exec; 851 schedstat_add(cfs_rq->exec_clock, delta_exec); 852 853 curr->vruntime += calc_delta_fair(delta_exec, curr); 854 update_min_vruntime(cfs_rq); 855 856 if (entity_is_task(curr)) { 857 struct task_struct *curtask = task_of(curr); 858 859 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 860 cgroup_account_cputime(curtask, delta_exec); 861 account_group_exec_runtime(curtask, delta_exec); 862 } 863 864 account_cfs_rq_runtime(cfs_rq, delta_exec); 865 } 866 867 static void update_curr_fair(struct rq *rq) 868 { 869 update_curr(cfs_rq_of(&rq->curr->se)); 870 } 871 872 static inline void 873 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 874 { 875 u64 wait_start, prev_wait_start; 876 877 if (!schedstat_enabled()) 878 return; 879 880 wait_start = rq_clock(rq_of(cfs_rq)); 881 prev_wait_start = schedstat_val(se->statistics.wait_start); 882 883 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 884 likely(wait_start > prev_wait_start)) 885 wait_start -= prev_wait_start; 886 887 __schedstat_set(se->statistics.wait_start, wait_start); 888 } 889 890 static inline void 891 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 892 { 893 struct task_struct *p; 894 u64 delta; 895 896 if (!schedstat_enabled()) 897 return; 898 899 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 900 901 if (entity_is_task(se)) { 902 p = task_of(se); 903 if (task_on_rq_migrating(p)) { 904 /* 905 * Preserve migrating task's wait time so wait_start 906 * time stamp can be adjusted to accumulate wait time 907 * prior to migration. 908 */ 909 __schedstat_set(se->statistics.wait_start, delta); 910 return; 911 } 912 trace_sched_stat_wait(p, delta); 913 } 914 915 __schedstat_set(se->statistics.wait_max, 916 max(schedstat_val(se->statistics.wait_max), delta)); 917 __schedstat_inc(se->statistics.wait_count); 918 __schedstat_add(se->statistics.wait_sum, delta); 919 __schedstat_set(se->statistics.wait_start, 0); 920 } 921 922 static inline void 923 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 924 { 925 struct task_struct *tsk = NULL; 926 u64 sleep_start, block_start; 927 928 if (!schedstat_enabled()) 929 return; 930 931 sleep_start = schedstat_val(se->statistics.sleep_start); 932 block_start = schedstat_val(se->statistics.block_start); 933 934 if (entity_is_task(se)) 935 tsk = task_of(se); 936 937 if (sleep_start) { 938 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 939 940 if ((s64)delta < 0) 941 delta = 0; 942 943 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 944 __schedstat_set(se->statistics.sleep_max, delta); 945 946 __schedstat_set(se->statistics.sleep_start, 0); 947 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 948 949 if (tsk) { 950 account_scheduler_latency(tsk, delta >> 10, 1); 951 trace_sched_stat_sleep(tsk, delta); 952 } 953 } 954 if (block_start) { 955 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 956 957 if ((s64)delta < 0) 958 delta = 0; 959 960 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 961 __schedstat_set(se->statistics.block_max, delta); 962 963 __schedstat_set(se->statistics.block_start, 0); 964 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 965 966 if (tsk) { 967 if (tsk->in_iowait) { 968 __schedstat_add(se->statistics.iowait_sum, delta); 969 __schedstat_inc(se->statistics.iowait_count); 970 trace_sched_stat_iowait(tsk, delta); 971 } 972 973 trace_sched_stat_blocked(tsk, delta); 974 975 /* 976 * Blocking time is in units of nanosecs, so shift by 977 * 20 to get a milliseconds-range estimation of the 978 * amount of time that the task spent sleeping: 979 */ 980 if (unlikely(prof_on == SLEEP_PROFILING)) { 981 profile_hits(SLEEP_PROFILING, 982 (void *)get_wchan(tsk), 983 delta >> 20); 984 } 985 account_scheduler_latency(tsk, delta >> 10, 0); 986 } 987 } 988 } 989 990 /* 991 * Task is being enqueued - update stats: 992 */ 993 static inline void 994 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 995 { 996 if (!schedstat_enabled()) 997 return; 998 999 /* 1000 * Are we enqueueing a waiting task? (for current tasks 1001 * a dequeue/enqueue event is a NOP) 1002 */ 1003 if (se != cfs_rq->curr) 1004 update_stats_wait_start(cfs_rq, se); 1005 1006 if (flags & ENQUEUE_WAKEUP) 1007 update_stats_enqueue_sleeper(cfs_rq, se); 1008 } 1009 1010 static inline void 1011 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1012 { 1013 1014 if (!schedstat_enabled()) 1015 return; 1016 1017 /* 1018 * Mark the end of the wait period if dequeueing a 1019 * waiting task: 1020 */ 1021 if (se != cfs_rq->curr) 1022 update_stats_wait_end(cfs_rq, se); 1023 1024 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1025 struct task_struct *tsk = task_of(se); 1026 1027 if (tsk->state & TASK_INTERRUPTIBLE) 1028 __schedstat_set(se->statistics.sleep_start, 1029 rq_clock(rq_of(cfs_rq))); 1030 if (tsk->state & TASK_UNINTERRUPTIBLE) 1031 __schedstat_set(se->statistics.block_start, 1032 rq_clock(rq_of(cfs_rq))); 1033 } 1034 } 1035 1036 /* 1037 * We are picking a new current task - update its stats: 1038 */ 1039 static inline void 1040 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1041 { 1042 /* 1043 * We are starting a new run period: 1044 */ 1045 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1046 } 1047 1048 /************************************************** 1049 * Scheduling class queueing methods: 1050 */ 1051 1052 #ifdef CONFIG_NUMA_BALANCING 1053 /* 1054 * Approximate time to scan a full NUMA task in ms. The task scan period is 1055 * calculated based on the tasks virtual memory size and 1056 * numa_balancing_scan_size. 1057 */ 1058 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1059 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1060 1061 /* Portion of address space to scan in MB */ 1062 unsigned int sysctl_numa_balancing_scan_size = 256; 1063 1064 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1065 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1066 1067 struct numa_group { 1068 refcount_t refcount; 1069 1070 spinlock_t lock; /* nr_tasks, tasks */ 1071 int nr_tasks; 1072 pid_t gid; 1073 int active_nodes; 1074 1075 struct rcu_head rcu; 1076 unsigned long total_faults; 1077 unsigned long max_faults_cpu; 1078 /* 1079 * Faults_cpu is used to decide whether memory should move 1080 * towards the CPU. As a consequence, these stats are weighted 1081 * more by CPU use than by memory faults. 1082 */ 1083 unsigned long *faults_cpu; 1084 unsigned long faults[0]; 1085 }; 1086 1087 /* 1088 * For functions that can be called in multiple contexts that permit reading 1089 * ->numa_group (see struct task_struct for locking rules). 1090 */ 1091 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1092 { 1093 return rcu_dereference_check(p->numa_group, p == current || 1094 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu))); 1095 } 1096 1097 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1098 { 1099 return rcu_dereference_protected(p->numa_group, p == current); 1100 } 1101 1102 static inline unsigned long group_faults_priv(struct numa_group *ng); 1103 static inline unsigned long group_faults_shared(struct numa_group *ng); 1104 1105 static unsigned int task_nr_scan_windows(struct task_struct *p) 1106 { 1107 unsigned long rss = 0; 1108 unsigned long nr_scan_pages; 1109 1110 /* 1111 * Calculations based on RSS as non-present and empty pages are skipped 1112 * by the PTE scanner and NUMA hinting faults should be trapped based 1113 * on resident pages 1114 */ 1115 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1116 rss = get_mm_rss(p->mm); 1117 if (!rss) 1118 rss = nr_scan_pages; 1119 1120 rss = round_up(rss, nr_scan_pages); 1121 return rss / nr_scan_pages; 1122 } 1123 1124 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1125 #define MAX_SCAN_WINDOW 2560 1126 1127 static unsigned int task_scan_min(struct task_struct *p) 1128 { 1129 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1130 unsigned int scan, floor; 1131 unsigned int windows = 1; 1132 1133 if (scan_size < MAX_SCAN_WINDOW) 1134 windows = MAX_SCAN_WINDOW / scan_size; 1135 floor = 1000 / windows; 1136 1137 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1138 return max_t(unsigned int, floor, scan); 1139 } 1140 1141 static unsigned int task_scan_start(struct task_struct *p) 1142 { 1143 unsigned long smin = task_scan_min(p); 1144 unsigned long period = smin; 1145 struct numa_group *ng; 1146 1147 /* Scale the maximum scan period with the amount of shared memory. */ 1148 rcu_read_lock(); 1149 ng = rcu_dereference(p->numa_group); 1150 if (ng) { 1151 unsigned long shared = group_faults_shared(ng); 1152 unsigned long private = group_faults_priv(ng); 1153 1154 period *= refcount_read(&ng->refcount); 1155 period *= shared + 1; 1156 period /= private + shared + 1; 1157 } 1158 rcu_read_unlock(); 1159 1160 return max(smin, period); 1161 } 1162 1163 static unsigned int task_scan_max(struct task_struct *p) 1164 { 1165 unsigned long smin = task_scan_min(p); 1166 unsigned long smax; 1167 struct numa_group *ng; 1168 1169 /* Watch for min being lower than max due to floor calculations */ 1170 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1171 1172 /* Scale the maximum scan period with the amount of shared memory. */ 1173 ng = deref_curr_numa_group(p); 1174 if (ng) { 1175 unsigned long shared = group_faults_shared(ng); 1176 unsigned long private = group_faults_priv(ng); 1177 unsigned long period = smax; 1178 1179 period *= refcount_read(&ng->refcount); 1180 period *= shared + 1; 1181 period /= private + shared + 1; 1182 1183 smax = max(smax, period); 1184 } 1185 1186 return max(smin, smax); 1187 } 1188 1189 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1190 { 1191 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1192 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1193 } 1194 1195 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1196 { 1197 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1198 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1199 } 1200 1201 /* Shared or private faults. */ 1202 #define NR_NUMA_HINT_FAULT_TYPES 2 1203 1204 /* Memory and CPU locality */ 1205 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1206 1207 /* Averaged statistics, and temporary buffers. */ 1208 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1209 1210 pid_t task_numa_group_id(struct task_struct *p) 1211 { 1212 struct numa_group *ng; 1213 pid_t gid = 0; 1214 1215 rcu_read_lock(); 1216 ng = rcu_dereference(p->numa_group); 1217 if (ng) 1218 gid = ng->gid; 1219 rcu_read_unlock(); 1220 1221 return gid; 1222 } 1223 1224 /* 1225 * The averaged statistics, shared & private, memory & CPU, 1226 * occupy the first half of the array. The second half of the 1227 * array is for current counters, which are averaged into the 1228 * first set by task_numa_placement. 1229 */ 1230 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1231 { 1232 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1233 } 1234 1235 static inline unsigned long task_faults(struct task_struct *p, int nid) 1236 { 1237 if (!p->numa_faults) 1238 return 0; 1239 1240 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1241 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1242 } 1243 1244 static inline unsigned long group_faults(struct task_struct *p, int nid) 1245 { 1246 struct numa_group *ng = deref_task_numa_group(p); 1247 1248 if (!ng) 1249 return 0; 1250 1251 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1252 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1253 } 1254 1255 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1256 { 1257 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1258 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1259 } 1260 1261 static inline unsigned long group_faults_priv(struct numa_group *ng) 1262 { 1263 unsigned long faults = 0; 1264 int node; 1265 1266 for_each_online_node(node) { 1267 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1268 } 1269 1270 return faults; 1271 } 1272 1273 static inline unsigned long group_faults_shared(struct numa_group *ng) 1274 { 1275 unsigned long faults = 0; 1276 int node; 1277 1278 for_each_online_node(node) { 1279 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1280 } 1281 1282 return faults; 1283 } 1284 1285 /* 1286 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1287 * considered part of a numa group's pseudo-interleaving set. Migrations 1288 * between these nodes are slowed down, to allow things to settle down. 1289 */ 1290 #define ACTIVE_NODE_FRACTION 3 1291 1292 static bool numa_is_active_node(int nid, struct numa_group *ng) 1293 { 1294 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1295 } 1296 1297 /* Handle placement on systems where not all nodes are directly connected. */ 1298 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1299 int maxdist, bool task) 1300 { 1301 unsigned long score = 0; 1302 int node; 1303 1304 /* 1305 * All nodes are directly connected, and the same distance 1306 * from each other. No need for fancy placement algorithms. 1307 */ 1308 if (sched_numa_topology_type == NUMA_DIRECT) 1309 return 0; 1310 1311 /* 1312 * This code is called for each node, introducing N^2 complexity, 1313 * which should be ok given the number of nodes rarely exceeds 8. 1314 */ 1315 for_each_online_node(node) { 1316 unsigned long faults; 1317 int dist = node_distance(nid, node); 1318 1319 /* 1320 * The furthest away nodes in the system are not interesting 1321 * for placement; nid was already counted. 1322 */ 1323 if (dist == sched_max_numa_distance || node == nid) 1324 continue; 1325 1326 /* 1327 * On systems with a backplane NUMA topology, compare groups 1328 * of nodes, and move tasks towards the group with the most 1329 * memory accesses. When comparing two nodes at distance 1330 * "hoplimit", only nodes closer by than "hoplimit" are part 1331 * of each group. Skip other nodes. 1332 */ 1333 if (sched_numa_topology_type == NUMA_BACKPLANE && 1334 dist >= maxdist) 1335 continue; 1336 1337 /* Add up the faults from nearby nodes. */ 1338 if (task) 1339 faults = task_faults(p, node); 1340 else 1341 faults = group_faults(p, node); 1342 1343 /* 1344 * On systems with a glueless mesh NUMA topology, there are 1345 * no fixed "groups of nodes". Instead, nodes that are not 1346 * directly connected bounce traffic through intermediate 1347 * nodes; a numa_group can occupy any set of nodes. 1348 * The further away a node is, the less the faults count. 1349 * This seems to result in good task placement. 1350 */ 1351 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1352 faults *= (sched_max_numa_distance - dist); 1353 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1354 } 1355 1356 score += faults; 1357 } 1358 1359 return score; 1360 } 1361 1362 /* 1363 * These return the fraction of accesses done by a particular task, or 1364 * task group, on a particular numa node. The group weight is given a 1365 * larger multiplier, in order to group tasks together that are almost 1366 * evenly spread out between numa nodes. 1367 */ 1368 static inline unsigned long task_weight(struct task_struct *p, int nid, 1369 int dist) 1370 { 1371 unsigned long faults, total_faults; 1372 1373 if (!p->numa_faults) 1374 return 0; 1375 1376 total_faults = p->total_numa_faults; 1377 1378 if (!total_faults) 1379 return 0; 1380 1381 faults = task_faults(p, nid); 1382 faults += score_nearby_nodes(p, nid, dist, true); 1383 1384 return 1000 * faults / total_faults; 1385 } 1386 1387 static inline unsigned long group_weight(struct task_struct *p, int nid, 1388 int dist) 1389 { 1390 struct numa_group *ng = deref_task_numa_group(p); 1391 unsigned long faults, total_faults; 1392 1393 if (!ng) 1394 return 0; 1395 1396 total_faults = ng->total_faults; 1397 1398 if (!total_faults) 1399 return 0; 1400 1401 faults = group_faults(p, nid); 1402 faults += score_nearby_nodes(p, nid, dist, false); 1403 1404 return 1000 * faults / total_faults; 1405 } 1406 1407 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1408 int src_nid, int dst_cpu) 1409 { 1410 struct numa_group *ng = deref_curr_numa_group(p); 1411 int dst_nid = cpu_to_node(dst_cpu); 1412 int last_cpupid, this_cpupid; 1413 1414 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1415 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1416 1417 /* 1418 * Allow first faults or private faults to migrate immediately early in 1419 * the lifetime of a task. The magic number 4 is based on waiting for 1420 * two full passes of the "multi-stage node selection" test that is 1421 * executed below. 1422 */ 1423 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1424 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1425 return true; 1426 1427 /* 1428 * Multi-stage node selection is used in conjunction with a periodic 1429 * migration fault to build a temporal task<->page relation. By using 1430 * a two-stage filter we remove short/unlikely relations. 1431 * 1432 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1433 * a task's usage of a particular page (n_p) per total usage of this 1434 * page (n_t) (in a given time-span) to a probability. 1435 * 1436 * Our periodic faults will sample this probability and getting the 1437 * same result twice in a row, given these samples are fully 1438 * independent, is then given by P(n)^2, provided our sample period 1439 * is sufficiently short compared to the usage pattern. 1440 * 1441 * This quadric squishes small probabilities, making it less likely we 1442 * act on an unlikely task<->page relation. 1443 */ 1444 if (!cpupid_pid_unset(last_cpupid) && 1445 cpupid_to_nid(last_cpupid) != dst_nid) 1446 return false; 1447 1448 /* Always allow migrate on private faults */ 1449 if (cpupid_match_pid(p, last_cpupid)) 1450 return true; 1451 1452 /* A shared fault, but p->numa_group has not been set up yet. */ 1453 if (!ng) 1454 return true; 1455 1456 /* 1457 * Destination node is much more heavily used than the source 1458 * node? Allow migration. 1459 */ 1460 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1461 ACTIVE_NODE_FRACTION) 1462 return true; 1463 1464 /* 1465 * Distribute memory according to CPU & memory use on each node, 1466 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1467 * 1468 * faults_cpu(dst) 3 faults_cpu(src) 1469 * --------------- * - > --------------- 1470 * faults_mem(dst) 4 faults_mem(src) 1471 */ 1472 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1473 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1474 } 1475 1476 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq); 1477 1478 static unsigned long cpu_runnable_load(struct rq *rq) 1479 { 1480 return cfs_rq_runnable_load_avg(&rq->cfs); 1481 } 1482 1483 /* Cached statistics for all CPUs within a node */ 1484 struct numa_stats { 1485 unsigned long load; 1486 1487 /* Total compute capacity of CPUs on a node */ 1488 unsigned long compute_capacity; 1489 }; 1490 1491 /* 1492 * XXX borrowed from update_sg_lb_stats 1493 */ 1494 static void update_numa_stats(struct numa_stats *ns, int nid) 1495 { 1496 int cpu; 1497 1498 memset(ns, 0, sizeof(*ns)); 1499 for_each_cpu(cpu, cpumask_of_node(nid)) { 1500 struct rq *rq = cpu_rq(cpu); 1501 1502 ns->load += cpu_runnable_load(rq); 1503 ns->compute_capacity += capacity_of(cpu); 1504 } 1505 1506 } 1507 1508 struct task_numa_env { 1509 struct task_struct *p; 1510 1511 int src_cpu, src_nid; 1512 int dst_cpu, dst_nid; 1513 1514 struct numa_stats src_stats, dst_stats; 1515 1516 int imbalance_pct; 1517 int dist; 1518 1519 struct task_struct *best_task; 1520 long best_imp; 1521 int best_cpu; 1522 }; 1523 1524 static void task_numa_assign(struct task_numa_env *env, 1525 struct task_struct *p, long imp) 1526 { 1527 struct rq *rq = cpu_rq(env->dst_cpu); 1528 1529 /* Bail out if run-queue part of active NUMA balance. */ 1530 if (xchg(&rq->numa_migrate_on, 1)) 1531 return; 1532 1533 /* 1534 * Clear previous best_cpu/rq numa-migrate flag, since task now 1535 * found a better CPU to move/swap. 1536 */ 1537 if (env->best_cpu != -1) { 1538 rq = cpu_rq(env->best_cpu); 1539 WRITE_ONCE(rq->numa_migrate_on, 0); 1540 } 1541 1542 if (env->best_task) 1543 put_task_struct(env->best_task); 1544 if (p) 1545 get_task_struct(p); 1546 1547 env->best_task = p; 1548 env->best_imp = imp; 1549 env->best_cpu = env->dst_cpu; 1550 } 1551 1552 static bool load_too_imbalanced(long src_load, long dst_load, 1553 struct task_numa_env *env) 1554 { 1555 long imb, old_imb; 1556 long orig_src_load, orig_dst_load; 1557 long src_capacity, dst_capacity; 1558 1559 /* 1560 * The load is corrected for the CPU capacity available on each node. 1561 * 1562 * src_load dst_load 1563 * ------------ vs --------- 1564 * src_capacity dst_capacity 1565 */ 1566 src_capacity = env->src_stats.compute_capacity; 1567 dst_capacity = env->dst_stats.compute_capacity; 1568 1569 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1570 1571 orig_src_load = env->src_stats.load; 1572 orig_dst_load = env->dst_stats.load; 1573 1574 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1575 1576 /* Would this change make things worse? */ 1577 return (imb > old_imb); 1578 } 1579 1580 /* 1581 * Maximum NUMA importance can be 1998 (2*999); 1582 * SMALLIMP @ 30 would be close to 1998/64. 1583 * Used to deter task migration. 1584 */ 1585 #define SMALLIMP 30 1586 1587 /* 1588 * This checks if the overall compute and NUMA accesses of the system would 1589 * be improved if the source tasks was migrated to the target dst_cpu taking 1590 * into account that it might be best if task running on the dst_cpu should 1591 * be exchanged with the source task 1592 */ 1593 static void task_numa_compare(struct task_numa_env *env, 1594 long taskimp, long groupimp, bool maymove) 1595 { 1596 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1597 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1598 long imp = p_ng ? groupimp : taskimp; 1599 struct task_struct *cur; 1600 long src_load, dst_load; 1601 int dist = env->dist; 1602 long moveimp = imp; 1603 long load; 1604 1605 if (READ_ONCE(dst_rq->numa_migrate_on)) 1606 return; 1607 1608 rcu_read_lock(); 1609 cur = rcu_dereference(dst_rq->curr); 1610 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1611 cur = NULL; 1612 1613 /* 1614 * Because we have preemption enabled we can get migrated around and 1615 * end try selecting ourselves (current == env->p) as a swap candidate. 1616 */ 1617 if (cur == env->p) 1618 goto unlock; 1619 1620 if (!cur) { 1621 if (maymove && moveimp >= env->best_imp) 1622 goto assign; 1623 else 1624 goto unlock; 1625 } 1626 1627 /* 1628 * "imp" is the fault differential for the source task between the 1629 * source and destination node. Calculate the total differential for 1630 * the source task and potential destination task. The more negative 1631 * the value is, the more remote accesses that would be expected to 1632 * be incurred if the tasks were swapped. 1633 */ 1634 /* Skip this swap candidate if cannot move to the source cpu */ 1635 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1636 goto unlock; 1637 1638 /* 1639 * If dst and source tasks are in the same NUMA group, or not 1640 * in any group then look only at task weights. 1641 */ 1642 cur_ng = rcu_dereference(cur->numa_group); 1643 if (cur_ng == p_ng) { 1644 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1645 task_weight(cur, env->dst_nid, dist); 1646 /* 1647 * Add some hysteresis to prevent swapping the 1648 * tasks within a group over tiny differences. 1649 */ 1650 if (cur_ng) 1651 imp -= imp / 16; 1652 } else { 1653 /* 1654 * Compare the group weights. If a task is all by itself 1655 * (not part of a group), use the task weight instead. 1656 */ 1657 if (cur_ng && p_ng) 1658 imp += group_weight(cur, env->src_nid, dist) - 1659 group_weight(cur, env->dst_nid, dist); 1660 else 1661 imp += task_weight(cur, env->src_nid, dist) - 1662 task_weight(cur, env->dst_nid, dist); 1663 } 1664 1665 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1666 imp = moveimp; 1667 cur = NULL; 1668 goto assign; 1669 } 1670 1671 /* 1672 * If the NUMA importance is less than SMALLIMP, 1673 * task migration might only result in ping pong 1674 * of tasks and also hurt performance due to cache 1675 * misses. 1676 */ 1677 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1678 goto unlock; 1679 1680 /* 1681 * In the overloaded case, try and keep the load balanced. 1682 */ 1683 load = task_h_load(env->p) - task_h_load(cur); 1684 if (!load) 1685 goto assign; 1686 1687 dst_load = env->dst_stats.load + load; 1688 src_load = env->src_stats.load - load; 1689 1690 if (load_too_imbalanced(src_load, dst_load, env)) 1691 goto unlock; 1692 1693 assign: 1694 /* 1695 * One idle CPU per node is evaluated for a task numa move. 1696 * Call select_idle_sibling to maybe find a better one. 1697 */ 1698 if (!cur) { 1699 /* 1700 * select_idle_siblings() uses an per-CPU cpumask that 1701 * can be used from IRQ context. 1702 */ 1703 local_irq_disable(); 1704 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1705 env->dst_cpu); 1706 local_irq_enable(); 1707 } 1708 1709 task_numa_assign(env, cur, imp); 1710 unlock: 1711 rcu_read_unlock(); 1712 } 1713 1714 static void task_numa_find_cpu(struct task_numa_env *env, 1715 long taskimp, long groupimp) 1716 { 1717 long src_load, dst_load, load; 1718 bool maymove = false; 1719 int cpu; 1720 1721 load = task_h_load(env->p); 1722 dst_load = env->dst_stats.load + load; 1723 src_load = env->src_stats.load - load; 1724 1725 /* 1726 * If the improvement from just moving env->p direction is better 1727 * than swapping tasks around, check if a move is possible. 1728 */ 1729 maymove = !load_too_imbalanced(src_load, dst_load, env); 1730 1731 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1732 /* Skip this CPU if the source task cannot migrate */ 1733 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1734 continue; 1735 1736 env->dst_cpu = cpu; 1737 task_numa_compare(env, taskimp, groupimp, maymove); 1738 } 1739 } 1740 1741 static int task_numa_migrate(struct task_struct *p) 1742 { 1743 struct task_numa_env env = { 1744 .p = p, 1745 1746 .src_cpu = task_cpu(p), 1747 .src_nid = task_node(p), 1748 1749 .imbalance_pct = 112, 1750 1751 .best_task = NULL, 1752 .best_imp = 0, 1753 .best_cpu = -1, 1754 }; 1755 unsigned long taskweight, groupweight; 1756 struct sched_domain *sd; 1757 long taskimp, groupimp; 1758 struct numa_group *ng; 1759 struct rq *best_rq; 1760 int nid, ret, dist; 1761 1762 /* 1763 * Pick the lowest SD_NUMA domain, as that would have the smallest 1764 * imbalance and would be the first to start moving tasks about. 1765 * 1766 * And we want to avoid any moving of tasks about, as that would create 1767 * random movement of tasks -- counter the numa conditions we're trying 1768 * to satisfy here. 1769 */ 1770 rcu_read_lock(); 1771 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1772 if (sd) 1773 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1774 rcu_read_unlock(); 1775 1776 /* 1777 * Cpusets can break the scheduler domain tree into smaller 1778 * balance domains, some of which do not cross NUMA boundaries. 1779 * Tasks that are "trapped" in such domains cannot be migrated 1780 * elsewhere, so there is no point in (re)trying. 1781 */ 1782 if (unlikely(!sd)) { 1783 sched_setnuma(p, task_node(p)); 1784 return -EINVAL; 1785 } 1786 1787 env.dst_nid = p->numa_preferred_nid; 1788 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1789 taskweight = task_weight(p, env.src_nid, dist); 1790 groupweight = group_weight(p, env.src_nid, dist); 1791 update_numa_stats(&env.src_stats, env.src_nid); 1792 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1793 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1794 update_numa_stats(&env.dst_stats, env.dst_nid); 1795 1796 /* Try to find a spot on the preferred nid. */ 1797 task_numa_find_cpu(&env, taskimp, groupimp); 1798 1799 /* 1800 * Look at other nodes in these cases: 1801 * - there is no space available on the preferred_nid 1802 * - the task is part of a numa_group that is interleaved across 1803 * multiple NUMA nodes; in order to better consolidate the group, 1804 * we need to check other locations. 1805 */ 1806 ng = deref_curr_numa_group(p); 1807 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 1808 for_each_online_node(nid) { 1809 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1810 continue; 1811 1812 dist = node_distance(env.src_nid, env.dst_nid); 1813 if (sched_numa_topology_type == NUMA_BACKPLANE && 1814 dist != env.dist) { 1815 taskweight = task_weight(p, env.src_nid, dist); 1816 groupweight = group_weight(p, env.src_nid, dist); 1817 } 1818 1819 /* Only consider nodes where both task and groups benefit */ 1820 taskimp = task_weight(p, nid, dist) - taskweight; 1821 groupimp = group_weight(p, nid, dist) - groupweight; 1822 if (taskimp < 0 && groupimp < 0) 1823 continue; 1824 1825 env.dist = dist; 1826 env.dst_nid = nid; 1827 update_numa_stats(&env.dst_stats, env.dst_nid); 1828 task_numa_find_cpu(&env, taskimp, groupimp); 1829 } 1830 } 1831 1832 /* 1833 * If the task is part of a workload that spans multiple NUMA nodes, 1834 * and is migrating into one of the workload's active nodes, remember 1835 * this node as the task's preferred numa node, so the workload can 1836 * settle down. 1837 * A task that migrated to a second choice node will be better off 1838 * trying for a better one later. Do not set the preferred node here. 1839 */ 1840 if (ng) { 1841 if (env.best_cpu == -1) 1842 nid = env.src_nid; 1843 else 1844 nid = cpu_to_node(env.best_cpu); 1845 1846 if (nid != p->numa_preferred_nid) 1847 sched_setnuma(p, nid); 1848 } 1849 1850 /* No better CPU than the current one was found. */ 1851 if (env.best_cpu == -1) 1852 return -EAGAIN; 1853 1854 best_rq = cpu_rq(env.best_cpu); 1855 if (env.best_task == NULL) { 1856 ret = migrate_task_to(p, env.best_cpu); 1857 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1858 if (ret != 0) 1859 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1860 return ret; 1861 } 1862 1863 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 1864 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1865 1866 if (ret != 0) 1867 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1868 put_task_struct(env.best_task); 1869 return ret; 1870 } 1871 1872 /* Attempt to migrate a task to a CPU on the preferred node. */ 1873 static void numa_migrate_preferred(struct task_struct *p) 1874 { 1875 unsigned long interval = HZ; 1876 1877 /* This task has no NUMA fault statistics yet */ 1878 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 1879 return; 1880 1881 /* Periodically retry migrating the task to the preferred node */ 1882 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1883 p->numa_migrate_retry = jiffies + interval; 1884 1885 /* Success if task is already running on preferred CPU */ 1886 if (task_node(p) == p->numa_preferred_nid) 1887 return; 1888 1889 /* Otherwise, try migrate to a CPU on the preferred node */ 1890 task_numa_migrate(p); 1891 } 1892 1893 /* 1894 * Find out how many nodes on the workload is actively running on. Do this by 1895 * tracking the nodes from which NUMA hinting faults are triggered. This can 1896 * be different from the set of nodes where the workload's memory is currently 1897 * located. 1898 */ 1899 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1900 { 1901 unsigned long faults, max_faults = 0; 1902 int nid, active_nodes = 0; 1903 1904 for_each_online_node(nid) { 1905 faults = group_faults_cpu(numa_group, nid); 1906 if (faults > max_faults) 1907 max_faults = faults; 1908 } 1909 1910 for_each_online_node(nid) { 1911 faults = group_faults_cpu(numa_group, nid); 1912 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1913 active_nodes++; 1914 } 1915 1916 numa_group->max_faults_cpu = max_faults; 1917 numa_group->active_nodes = active_nodes; 1918 } 1919 1920 /* 1921 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1922 * increments. The more local the fault statistics are, the higher the scan 1923 * period will be for the next scan window. If local/(local+remote) ratio is 1924 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1925 * the scan period will decrease. Aim for 70% local accesses. 1926 */ 1927 #define NUMA_PERIOD_SLOTS 10 1928 #define NUMA_PERIOD_THRESHOLD 7 1929 1930 /* 1931 * Increase the scan period (slow down scanning) if the majority of 1932 * our memory is already on our local node, or if the majority of 1933 * the page accesses are shared with other processes. 1934 * Otherwise, decrease the scan period. 1935 */ 1936 static void update_task_scan_period(struct task_struct *p, 1937 unsigned long shared, unsigned long private) 1938 { 1939 unsigned int period_slot; 1940 int lr_ratio, ps_ratio; 1941 int diff; 1942 1943 unsigned long remote = p->numa_faults_locality[0]; 1944 unsigned long local = p->numa_faults_locality[1]; 1945 1946 /* 1947 * If there were no record hinting faults then either the task is 1948 * completely idle or all activity is areas that are not of interest 1949 * to automatic numa balancing. Related to that, if there were failed 1950 * migration then it implies we are migrating too quickly or the local 1951 * node is overloaded. In either case, scan slower 1952 */ 1953 if (local + shared == 0 || p->numa_faults_locality[2]) { 1954 p->numa_scan_period = min(p->numa_scan_period_max, 1955 p->numa_scan_period << 1); 1956 1957 p->mm->numa_next_scan = jiffies + 1958 msecs_to_jiffies(p->numa_scan_period); 1959 1960 return; 1961 } 1962 1963 /* 1964 * Prepare to scale scan period relative to the current period. 1965 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1966 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1967 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1968 */ 1969 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1970 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1971 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 1972 1973 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 1974 /* 1975 * Most memory accesses are local. There is no need to 1976 * do fast NUMA scanning, since memory is already local. 1977 */ 1978 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 1979 if (!slot) 1980 slot = 1; 1981 diff = slot * period_slot; 1982 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 1983 /* 1984 * Most memory accesses are shared with other tasks. 1985 * There is no point in continuing fast NUMA scanning, 1986 * since other tasks may just move the memory elsewhere. 1987 */ 1988 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 1989 if (!slot) 1990 slot = 1; 1991 diff = slot * period_slot; 1992 } else { 1993 /* 1994 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 1995 * yet they are not on the local NUMA node. Speed up 1996 * NUMA scanning to get the memory moved over. 1997 */ 1998 int ratio = max(lr_ratio, ps_ratio); 1999 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2000 } 2001 2002 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2003 task_scan_min(p), task_scan_max(p)); 2004 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2005 } 2006 2007 /* 2008 * Get the fraction of time the task has been running since the last 2009 * NUMA placement cycle. The scheduler keeps similar statistics, but 2010 * decays those on a 32ms period, which is orders of magnitude off 2011 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2012 * stats only if the task is so new there are no NUMA statistics yet. 2013 */ 2014 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2015 { 2016 u64 runtime, delta, now; 2017 /* Use the start of this time slice to avoid calculations. */ 2018 now = p->se.exec_start; 2019 runtime = p->se.sum_exec_runtime; 2020 2021 if (p->last_task_numa_placement) { 2022 delta = runtime - p->last_sum_exec_runtime; 2023 *period = now - p->last_task_numa_placement; 2024 2025 /* Avoid time going backwards, prevent potential divide error: */ 2026 if (unlikely((s64)*period < 0)) 2027 *period = 0; 2028 } else { 2029 delta = p->se.avg.load_sum; 2030 *period = LOAD_AVG_MAX; 2031 } 2032 2033 p->last_sum_exec_runtime = runtime; 2034 p->last_task_numa_placement = now; 2035 2036 return delta; 2037 } 2038 2039 /* 2040 * Determine the preferred nid for a task in a numa_group. This needs to 2041 * be done in a way that produces consistent results with group_weight, 2042 * otherwise workloads might not converge. 2043 */ 2044 static int preferred_group_nid(struct task_struct *p, int nid) 2045 { 2046 nodemask_t nodes; 2047 int dist; 2048 2049 /* Direct connections between all NUMA nodes. */ 2050 if (sched_numa_topology_type == NUMA_DIRECT) 2051 return nid; 2052 2053 /* 2054 * On a system with glueless mesh NUMA topology, group_weight 2055 * scores nodes according to the number of NUMA hinting faults on 2056 * both the node itself, and on nearby nodes. 2057 */ 2058 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2059 unsigned long score, max_score = 0; 2060 int node, max_node = nid; 2061 2062 dist = sched_max_numa_distance; 2063 2064 for_each_online_node(node) { 2065 score = group_weight(p, node, dist); 2066 if (score > max_score) { 2067 max_score = score; 2068 max_node = node; 2069 } 2070 } 2071 return max_node; 2072 } 2073 2074 /* 2075 * Finding the preferred nid in a system with NUMA backplane 2076 * interconnect topology is more involved. The goal is to locate 2077 * tasks from numa_groups near each other in the system, and 2078 * untangle workloads from different sides of the system. This requires 2079 * searching down the hierarchy of node groups, recursively searching 2080 * inside the highest scoring group of nodes. The nodemask tricks 2081 * keep the complexity of the search down. 2082 */ 2083 nodes = node_online_map; 2084 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2085 unsigned long max_faults = 0; 2086 nodemask_t max_group = NODE_MASK_NONE; 2087 int a, b; 2088 2089 /* Are there nodes at this distance from each other? */ 2090 if (!find_numa_distance(dist)) 2091 continue; 2092 2093 for_each_node_mask(a, nodes) { 2094 unsigned long faults = 0; 2095 nodemask_t this_group; 2096 nodes_clear(this_group); 2097 2098 /* Sum group's NUMA faults; includes a==b case. */ 2099 for_each_node_mask(b, nodes) { 2100 if (node_distance(a, b) < dist) { 2101 faults += group_faults(p, b); 2102 node_set(b, this_group); 2103 node_clear(b, nodes); 2104 } 2105 } 2106 2107 /* Remember the top group. */ 2108 if (faults > max_faults) { 2109 max_faults = faults; 2110 max_group = this_group; 2111 /* 2112 * subtle: at the smallest distance there is 2113 * just one node left in each "group", the 2114 * winner is the preferred nid. 2115 */ 2116 nid = a; 2117 } 2118 } 2119 /* Next round, evaluate the nodes within max_group. */ 2120 if (!max_faults) 2121 break; 2122 nodes = max_group; 2123 } 2124 return nid; 2125 } 2126 2127 static void task_numa_placement(struct task_struct *p) 2128 { 2129 int seq, nid, max_nid = NUMA_NO_NODE; 2130 unsigned long max_faults = 0; 2131 unsigned long fault_types[2] = { 0, 0 }; 2132 unsigned long total_faults; 2133 u64 runtime, period; 2134 spinlock_t *group_lock = NULL; 2135 struct numa_group *ng; 2136 2137 /* 2138 * The p->mm->numa_scan_seq field gets updated without 2139 * exclusive access. Use READ_ONCE() here to ensure 2140 * that the field is read in a single access: 2141 */ 2142 seq = READ_ONCE(p->mm->numa_scan_seq); 2143 if (p->numa_scan_seq == seq) 2144 return; 2145 p->numa_scan_seq = seq; 2146 p->numa_scan_period_max = task_scan_max(p); 2147 2148 total_faults = p->numa_faults_locality[0] + 2149 p->numa_faults_locality[1]; 2150 runtime = numa_get_avg_runtime(p, &period); 2151 2152 /* If the task is part of a group prevent parallel updates to group stats */ 2153 ng = deref_curr_numa_group(p); 2154 if (ng) { 2155 group_lock = &ng->lock; 2156 spin_lock_irq(group_lock); 2157 } 2158 2159 /* Find the node with the highest number of faults */ 2160 for_each_online_node(nid) { 2161 /* Keep track of the offsets in numa_faults array */ 2162 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2163 unsigned long faults = 0, group_faults = 0; 2164 int priv; 2165 2166 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2167 long diff, f_diff, f_weight; 2168 2169 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2170 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2171 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2172 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2173 2174 /* Decay existing window, copy faults since last scan */ 2175 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2176 fault_types[priv] += p->numa_faults[membuf_idx]; 2177 p->numa_faults[membuf_idx] = 0; 2178 2179 /* 2180 * Normalize the faults_from, so all tasks in a group 2181 * count according to CPU use, instead of by the raw 2182 * number of faults. Tasks with little runtime have 2183 * little over-all impact on throughput, and thus their 2184 * faults are less important. 2185 */ 2186 f_weight = div64_u64(runtime << 16, period + 1); 2187 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2188 (total_faults + 1); 2189 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2190 p->numa_faults[cpubuf_idx] = 0; 2191 2192 p->numa_faults[mem_idx] += diff; 2193 p->numa_faults[cpu_idx] += f_diff; 2194 faults += p->numa_faults[mem_idx]; 2195 p->total_numa_faults += diff; 2196 if (ng) { 2197 /* 2198 * safe because we can only change our own group 2199 * 2200 * mem_idx represents the offset for a given 2201 * nid and priv in a specific region because it 2202 * is at the beginning of the numa_faults array. 2203 */ 2204 ng->faults[mem_idx] += diff; 2205 ng->faults_cpu[mem_idx] += f_diff; 2206 ng->total_faults += diff; 2207 group_faults += ng->faults[mem_idx]; 2208 } 2209 } 2210 2211 if (!ng) { 2212 if (faults > max_faults) { 2213 max_faults = faults; 2214 max_nid = nid; 2215 } 2216 } else if (group_faults > max_faults) { 2217 max_faults = group_faults; 2218 max_nid = nid; 2219 } 2220 } 2221 2222 if (ng) { 2223 numa_group_count_active_nodes(ng); 2224 spin_unlock_irq(group_lock); 2225 max_nid = preferred_group_nid(p, max_nid); 2226 } 2227 2228 if (max_faults) { 2229 /* Set the new preferred node */ 2230 if (max_nid != p->numa_preferred_nid) 2231 sched_setnuma(p, max_nid); 2232 } 2233 2234 update_task_scan_period(p, fault_types[0], fault_types[1]); 2235 } 2236 2237 static inline int get_numa_group(struct numa_group *grp) 2238 { 2239 return refcount_inc_not_zero(&grp->refcount); 2240 } 2241 2242 static inline void put_numa_group(struct numa_group *grp) 2243 { 2244 if (refcount_dec_and_test(&grp->refcount)) 2245 kfree_rcu(grp, rcu); 2246 } 2247 2248 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2249 int *priv) 2250 { 2251 struct numa_group *grp, *my_grp; 2252 struct task_struct *tsk; 2253 bool join = false; 2254 int cpu = cpupid_to_cpu(cpupid); 2255 int i; 2256 2257 if (unlikely(!deref_curr_numa_group(p))) { 2258 unsigned int size = sizeof(struct numa_group) + 2259 4*nr_node_ids*sizeof(unsigned long); 2260 2261 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2262 if (!grp) 2263 return; 2264 2265 refcount_set(&grp->refcount, 1); 2266 grp->active_nodes = 1; 2267 grp->max_faults_cpu = 0; 2268 spin_lock_init(&grp->lock); 2269 grp->gid = p->pid; 2270 /* Second half of the array tracks nids where faults happen */ 2271 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2272 nr_node_ids; 2273 2274 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2275 grp->faults[i] = p->numa_faults[i]; 2276 2277 grp->total_faults = p->total_numa_faults; 2278 2279 grp->nr_tasks++; 2280 rcu_assign_pointer(p->numa_group, grp); 2281 } 2282 2283 rcu_read_lock(); 2284 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2285 2286 if (!cpupid_match_pid(tsk, cpupid)) 2287 goto no_join; 2288 2289 grp = rcu_dereference(tsk->numa_group); 2290 if (!grp) 2291 goto no_join; 2292 2293 my_grp = deref_curr_numa_group(p); 2294 if (grp == my_grp) 2295 goto no_join; 2296 2297 /* 2298 * Only join the other group if its bigger; if we're the bigger group, 2299 * the other task will join us. 2300 */ 2301 if (my_grp->nr_tasks > grp->nr_tasks) 2302 goto no_join; 2303 2304 /* 2305 * Tie-break on the grp address. 2306 */ 2307 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2308 goto no_join; 2309 2310 /* Always join threads in the same process. */ 2311 if (tsk->mm == current->mm) 2312 join = true; 2313 2314 /* Simple filter to avoid false positives due to PID collisions */ 2315 if (flags & TNF_SHARED) 2316 join = true; 2317 2318 /* Update priv based on whether false sharing was detected */ 2319 *priv = !join; 2320 2321 if (join && !get_numa_group(grp)) 2322 goto no_join; 2323 2324 rcu_read_unlock(); 2325 2326 if (!join) 2327 return; 2328 2329 BUG_ON(irqs_disabled()); 2330 double_lock_irq(&my_grp->lock, &grp->lock); 2331 2332 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2333 my_grp->faults[i] -= p->numa_faults[i]; 2334 grp->faults[i] += p->numa_faults[i]; 2335 } 2336 my_grp->total_faults -= p->total_numa_faults; 2337 grp->total_faults += p->total_numa_faults; 2338 2339 my_grp->nr_tasks--; 2340 grp->nr_tasks++; 2341 2342 spin_unlock(&my_grp->lock); 2343 spin_unlock_irq(&grp->lock); 2344 2345 rcu_assign_pointer(p->numa_group, grp); 2346 2347 put_numa_group(my_grp); 2348 return; 2349 2350 no_join: 2351 rcu_read_unlock(); 2352 return; 2353 } 2354 2355 /* 2356 * Get rid of NUMA staticstics associated with a task (either current or dead). 2357 * If @final is set, the task is dead and has reached refcount zero, so we can 2358 * safely free all relevant data structures. Otherwise, there might be 2359 * concurrent reads from places like load balancing and procfs, and we should 2360 * reset the data back to default state without freeing ->numa_faults. 2361 */ 2362 void task_numa_free(struct task_struct *p, bool final) 2363 { 2364 /* safe: p either is current or is being freed by current */ 2365 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2366 unsigned long *numa_faults = p->numa_faults; 2367 unsigned long flags; 2368 int i; 2369 2370 if (!numa_faults) 2371 return; 2372 2373 if (grp) { 2374 spin_lock_irqsave(&grp->lock, flags); 2375 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2376 grp->faults[i] -= p->numa_faults[i]; 2377 grp->total_faults -= p->total_numa_faults; 2378 2379 grp->nr_tasks--; 2380 spin_unlock_irqrestore(&grp->lock, flags); 2381 RCU_INIT_POINTER(p->numa_group, NULL); 2382 put_numa_group(grp); 2383 } 2384 2385 if (final) { 2386 p->numa_faults = NULL; 2387 kfree(numa_faults); 2388 } else { 2389 p->total_numa_faults = 0; 2390 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2391 numa_faults[i] = 0; 2392 } 2393 } 2394 2395 /* 2396 * Got a PROT_NONE fault for a page on @node. 2397 */ 2398 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2399 { 2400 struct task_struct *p = current; 2401 bool migrated = flags & TNF_MIGRATED; 2402 int cpu_node = task_node(current); 2403 int local = !!(flags & TNF_FAULT_LOCAL); 2404 struct numa_group *ng; 2405 int priv; 2406 2407 if (!static_branch_likely(&sched_numa_balancing)) 2408 return; 2409 2410 /* for example, ksmd faulting in a user's mm */ 2411 if (!p->mm) 2412 return; 2413 2414 /* Allocate buffer to track faults on a per-node basis */ 2415 if (unlikely(!p->numa_faults)) { 2416 int size = sizeof(*p->numa_faults) * 2417 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2418 2419 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2420 if (!p->numa_faults) 2421 return; 2422 2423 p->total_numa_faults = 0; 2424 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2425 } 2426 2427 /* 2428 * First accesses are treated as private, otherwise consider accesses 2429 * to be private if the accessing pid has not changed 2430 */ 2431 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2432 priv = 1; 2433 } else { 2434 priv = cpupid_match_pid(p, last_cpupid); 2435 if (!priv && !(flags & TNF_NO_GROUP)) 2436 task_numa_group(p, last_cpupid, flags, &priv); 2437 } 2438 2439 /* 2440 * If a workload spans multiple NUMA nodes, a shared fault that 2441 * occurs wholly within the set of nodes that the workload is 2442 * actively using should be counted as local. This allows the 2443 * scan rate to slow down when a workload has settled down. 2444 */ 2445 ng = deref_curr_numa_group(p); 2446 if (!priv && !local && ng && ng->active_nodes > 1 && 2447 numa_is_active_node(cpu_node, ng) && 2448 numa_is_active_node(mem_node, ng)) 2449 local = 1; 2450 2451 /* 2452 * Retry to migrate task to preferred node periodically, in case it 2453 * previously failed, or the scheduler moved us. 2454 */ 2455 if (time_after(jiffies, p->numa_migrate_retry)) { 2456 task_numa_placement(p); 2457 numa_migrate_preferred(p); 2458 } 2459 2460 if (migrated) 2461 p->numa_pages_migrated += pages; 2462 if (flags & TNF_MIGRATE_FAIL) 2463 p->numa_faults_locality[2] += pages; 2464 2465 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2466 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2467 p->numa_faults_locality[local] += pages; 2468 } 2469 2470 static void reset_ptenuma_scan(struct task_struct *p) 2471 { 2472 /* 2473 * We only did a read acquisition of the mmap sem, so 2474 * p->mm->numa_scan_seq is written to without exclusive access 2475 * and the update is not guaranteed to be atomic. That's not 2476 * much of an issue though, since this is just used for 2477 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2478 * expensive, to avoid any form of compiler optimizations: 2479 */ 2480 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2481 p->mm->numa_scan_offset = 0; 2482 } 2483 2484 /* 2485 * The expensive part of numa migration is done from task_work context. 2486 * Triggered from task_tick_numa(). 2487 */ 2488 static void task_numa_work(struct callback_head *work) 2489 { 2490 unsigned long migrate, next_scan, now = jiffies; 2491 struct task_struct *p = current; 2492 struct mm_struct *mm = p->mm; 2493 u64 runtime = p->se.sum_exec_runtime; 2494 struct vm_area_struct *vma; 2495 unsigned long start, end; 2496 unsigned long nr_pte_updates = 0; 2497 long pages, virtpages; 2498 2499 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2500 2501 work->next = work; 2502 /* 2503 * Who cares about NUMA placement when they're dying. 2504 * 2505 * NOTE: make sure not to dereference p->mm before this check, 2506 * exit_task_work() happens _after_ exit_mm() so we could be called 2507 * without p->mm even though we still had it when we enqueued this 2508 * work. 2509 */ 2510 if (p->flags & PF_EXITING) 2511 return; 2512 2513 if (!mm->numa_next_scan) { 2514 mm->numa_next_scan = now + 2515 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2516 } 2517 2518 /* 2519 * Enforce maximal scan/migration frequency.. 2520 */ 2521 migrate = mm->numa_next_scan; 2522 if (time_before(now, migrate)) 2523 return; 2524 2525 if (p->numa_scan_period == 0) { 2526 p->numa_scan_period_max = task_scan_max(p); 2527 p->numa_scan_period = task_scan_start(p); 2528 } 2529 2530 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2531 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2532 return; 2533 2534 /* 2535 * Delay this task enough that another task of this mm will likely win 2536 * the next time around. 2537 */ 2538 p->node_stamp += 2 * TICK_NSEC; 2539 2540 start = mm->numa_scan_offset; 2541 pages = sysctl_numa_balancing_scan_size; 2542 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2543 virtpages = pages * 8; /* Scan up to this much virtual space */ 2544 if (!pages) 2545 return; 2546 2547 2548 if (!down_read_trylock(&mm->mmap_sem)) 2549 return; 2550 vma = find_vma(mm, start); 2551 if (!vma) { 2552 reset_ptenuma_scan(p); 2553 start = 0; 2554 vma = mm->mmap; 2555 } 2556 for (; vma; vma = vma->vm_next) { 2557 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2558 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2559 continue; 2560 } 2561 2562 /* 2563 * Shared library pages mapped by multiple processes are not 2564 * migrated as it is expected they are cache replicated. Avoid 2565 * hinting faults in read-only file-backed mappings or the vdso 2566 * as migrating the pages will be of marginal benefit. 2567 */ 2568 if (!vma->vm_mm || 2569 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2570 continue; 2571 2572 /* 2573 * Skip inaccessible VMAs to avoid any confusion between 2574 * PROT_NONE and NUMA hinting ptes 2575 */ 2576 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2577 continue; 2578 2579 do { 2580 start = max(start, vma->vm_start); 2581 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2582 end = min(end, vma->vm_end); 2583 nr_pte_updates = change_prot_numa(vma, start, end); 2584 2585 /* 2586 * Try to scan sysctl_numa_balancing_size worth of 2587 * hpages that have at least one present PTE that 2588 * is not already pte-numa. If the VMA contains 2589 * areas that are unused or already full of prot_numa 2590 * PTEs, scan up to virtpages, to skip through those 2591 * areas faster. 2592 */ 2593 if (nr_pte_updates) 2594 pages -= (end - start) >> PAGE_SHIFT; 2595 virtpages -= (end - start) >> PAGE_SHIFT; 2596 2597 start = end; 2598 if (pages <= 0 || virtpages <= 0) 2599 goto out; 2600 2601 cond_resched(); 2602 } while (end != vma->vm_end); 2603 } 2604 2605 out: 2606 /* 2607 * It is possible to reach the end of the VMA list but the last few 2608 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2609 * would find the !migratable VMA on the next scan but not reset the 2610 * scanner to the start so check it now. 2611 */ 2612 if (vma) 2613 mm->numa_scan_offset = start; 2614 else 2615 reset_ptenuma_scan(p); 2616 up_read(&mm->mmap_sem); 2617 2618 /* 2619 * Make sure tasks use at least 32x as much time to run other code 2620 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2621 * Usually update_task_scan_period slows down scanning enough; on an 2622 * overloaded system we need to limit overhead on a per task basis. 2623 */ 2624 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2625 u64 diff = p->se.sum_exec_runtime - runtime; 2626 p->node_stamp += 32 * diff; 2627 } 2628 } 2629 2630 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2631 { 2632 int mm_users = 0; 2633 struct mm_struct *mm = p->mm; 2634 2635 if (mm) { 2636 mm_users = atomic_read(&mm->mm_users); 2637 if (mm_users == 1) { 2638 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2639 mm->numa_scan_seq = 0; 2640 } 2641 } 2642 p->node_stamp = 0; 2643 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2644 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2645 /* Protect against double add, see task_tick_numa and task_numa_work */ 2646 p->numa_work.next = &p->numa_work; 2647 p->numa_faults = NULL; 2648 RCU_INIT_POINTER(p->numa_group, NULL); 2649 p->last_task_numa_placement = 0; 2650 p->last_sum_exec_runtime = 0; 2651 2652 init_task_work(&p->numa_work, task_numa_work); 2653 2654 /* New address space, reset the preferred nid */ 2655 if (!(clone_flags & CLONE_VM)) { 2656 p->numa_preferred_nid = NUMA_NO_NODE; 2657 return; 2658 } 2659 2660 /* 2661 * New thread, keep existing numa_preferred_nid which should be copied 2662 * already by arch_dup_task_struct but stagger when scans start. 2663 */ 2664 if (mm) { 2665 unsigned int delay; 2666 2667 delay = min_t(unsigned int, task_scan_max(current), 2668 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2669 delay += 2 * TICK_NSEC; 2670 p->node_stamp = delay; 2671 } 2672 } 2673 2674 /* 2675 * Drive the periodic memory faults.. 2676 */ 2677 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2678 { 2679 struct callback_head *work = &curr->numa_work; 2680 u64 period, now; 2681 2682 /* 2683 * We don't care about NUMA placement if we don't have memory. 2684 */ 2685 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2686 return; 2687 2688 /* 2689 * Using runtime rather than walltime has the dual advantage that 2690 * we (mostly) drive the selection from busy threads and that the 2691 * task needs to have done some actual work before we bother with 2692 * NUMA placement. 2693 */ 2694 now = curr->se.sum_exec_runtime; 2695 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2696 2697 if (now > curr->node_stamp + period) { 2698 if (!curr->node_stamp) 2699 curr->numa_scan_period = task_scan_start(curr); 2700 curr->node_stamp += period; 2701 2702 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2703 task_work_add(curr, work, true); 2704 } 2705 } 2706 2707 static void update_scan_period(struct task_struct *p, int new_cpu) 2708 { 2709 int src_nid = cpu_to_node(task_cpu(p)); 2710 int dst_nid = cpu_to_node(new_cpu); 2711 2712 if (!static_branch_likely(&sched_numa_balancing)) 2713 return; 2714 2715 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2716 return; 2717 2718 if (src_nid == dst_nid) 2719 return; 2720 2721 /* 2722 * Allow resets if faults have been trapped before one scan 2723 * has completed. This is most likely due to a new task that 2724 * is pulled cross-node due to wakeups or load balancing. 2725 */ 2726 if (p->numa_scan_seq) { 2727 /* 2728 * Avoid scan adjustments if moving to the preferred 2729 * node or if the task was not previously running on 2730 * the preferred node. 2731 */ 2732 if (dst_nid == p->numa_preferred_nid || 2733 (p->numa_preferred_nid != NUMA_NO_NODE && 2734 src_nid != p->numa_preferred_nid)) 2735 return; 2736 } 2737 2738 p->numa_scan_period = task_scan_start(p); 2739 } 2740 2741 #else 2742 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2743 { 2744 } 2745 2746 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2747 { 2748 } 2749 2750 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2751 { 2752 } 2753 2754 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2755 { 2756 } 2757 2758 #endif /* CONFIG_NUMA_BALANCING */ 2759 2760 static void 2761 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2762 { 2763 update_load_add(&cfs_rq->load, se->load.weight); 2764 #ifdef CONFIG_SMP 2765 if (entity_is_task(se)) { 2766 struct rq *rq = rq_of(cfs_rq); 2767 2768 account_numa_enqueue(rq, task_of(se)); 2769 list_add(&se->group_node, &rq->cfs_tasks); 2770 } 2771 #endif 2772 cfs_rq->nr_running++; 2773 } 2774 2775 static void 2776 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2777 { 2778 update_load_sub(&cfs_rq->load, se->load.weight); 2779 #ifdef CONFIG_SMP 2780 if (entity_is_task(se)) { 2781 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2782 list_del_init(&se->group_node); 2783 } 2784 #endif 2785 cfs_rq->nr_running--; 2786 } 2787 2788 /* 2789 * Signed add and clamp on underflow. 2790 * 2791 * Explicitly do a load-store to ensure the intermediate value never hits 2792 * memory. This allows lockless observations without ever seeing the negative 2793 * values. 2794 */ 2795 #define add_positive(_ptr, _val) do { \ 2796 typeof(_ptr) ptr = (_ptr); \ 2797 typeof(_val) val = (_val); \ 2798 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2799 \ 2800 res = var + val; \ 2801 \ 2802 if (val < 0 && res > var) \ 2803 res = 0; \ 2804 \ 2805 WRITE_ONCE(*ptr, res); \ 2806 } while (0) 2807 2808 /* 2809 * Unsigned subtract and clamp on underflow. 2810 * 2811 * Explicitly do a load-store to ensure the intermediate value never hits 2812 * memory. This allows lockless observations without ever seeing the negative 2813 * values. 2814 */ 2815 #define sub_positive(_ptr, _val) do { \ 2816 typeof(_ptr) ptr = (_ptr); \ 2817 typeof(*ptr) val = (_val); \ 2818 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2819 res = var - val; \ 2820 if (res > var) \ 2821 res = 0; \ 2822 WRITE_ONCE(*ptr, res); \ 2823 } while (0) 2824 2825 /* 2826 * Remove and clamp on negative, from a local variable. 2827 * 2828 * A variant of sub_positive(), which does not use explicit load-store 2829 * and is thus optimized for local variable updates. 2830 */ 2831 #define lsub_positive(_ptr, _val) do { \ 2832 typeof(_ptr) ptr = (_ptr); \ 2833 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 2834 } while (0) 2835 2836 #ifdef CONFIG_SMP 2837 static inline void 2838 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2839 { 2840 cfs_rq->runnable_weight += se->runnable_weight; 2841 2842 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg; 2843 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum; 2844 } 2845 2846 static inline void 2847 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2848 { 2849 cfs_rq->runnable_weight -= se->runnable_weight; 2850 2851 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg); 2852 sub_positive(&cfs_rq->avg.runnable_load_sum, 2853 se_runnable(se) * se->avg.runnable_load_sum); 2854 } 2855 2856 static inline void 2857 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2858 { 2859 cfs_rq->avg.load_avg += se->avg.load_avg; 2860 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 2861 } 2862 2863 static inline void 2864 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2865 { 2866 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 2867 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 2868 } 2869 #else 2870 static inline void 2871 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2872 static inline void 2873 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2874 static inline void 2875 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2876 static inline void 2877 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2878 #endif 2879 2880 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2881 unsigned long weight, unsigned long runnable) 2882 { 2883 if (se->on_rq) { 2884 /* commit outstanding execution time */ 2885 if (cfs_rq->curr == se) 2886 update_curr(cfs_rq); 2887 account_entity_dequeue(cfs_rq, se); 2888 dequeue_runnable_load_avg(cfs_rq, se); 2889 } 2890 dequeue_load_avg(cfs_rq, se); 2891 2892 se->runnable_weight = runnable; 2893 update_load_set(&se->load, weight); 2894 2895 #ifdef CONFIG_SMP 2896 do { 2897 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 2898 2899 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 2900 se->avg.runnable_load_avg = 2901 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider); 2902 } while (0); 2903 #endif 2904 2905 enqueue_load_avg(cfs_rq, se); 2906 if (se->on_rq) { 2907 account_entity_enqueue(cfs_rq, se); 2908 enqueue_runnable_load_avg(cfs_rq, se); 2909 } 2910 } 2911 2912 void reweight_task(struct task_struct *p, int prio) 2913 { 2914 struct sched_entity *se = &p->se; 2915 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2916 struct load_weight *load = &se->load; 2917 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 2918 2919 reweight_entity(cfs_rq, se, weight, weight); 2920 load->inv_weight = sched_prio_to_wmult[prio]; 2921 } 2922 2923 #ifdef CONFIG_FAIR_GROUP_SCHED 2924 #ifdef CONFIG_SMP 2925 /* 2926 * All this does is approximate the hierarchical proportion which includes that 2927 * global sum we all love to hate. 2928 * 2929 * That is, the weight of a group entity, is the proportional share of the 2930 * group weight based on the group runqueue weights. That is: 2931 * 2932 * tg->weight * grq->load.weight 2933 * ge->load.weight = ----------------------------- (1) 2934 * \Sum grq->load.weight 2935 * 2936 * Now, because computing that sum is prohibitively expensive to compute (been 2937 * there, done that) we approximate it with this average stuff. The average 2938 * moves slower and therefore the approximation is cheaper and more stable. 2939 * 2940 * So instead of the above, we substitute: 2941 * 2942 * grq->load.weight -> grq->avg.load_avg (2) 2943 * 2944 * which yields the following: 2945 * 2946 * tg->weight * grq->avg.load_avg 2947 * ge->load.weight = ------------------------------ (3) 2948 * tg->load_avg 2949 * 2950 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 2951 * 2952 * That is shares_avg, and it is right (given the approximation (2)). 2953 * 2954 * The problem with it is that because the average is slow -- it was designed 2955 * to be exactly that of course -- this leads to transients in boundary 2956 * conditions. In specific, the case where the group was idle and we start the 2957 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 2958 * yielding bad latency etc.. 2959 * 2960 * Now, in that special case (1) reduces to: 2961 * 2962 * tg->weight * grq->load.weight 2963 * ge->load.weight = ----------------------------- = tg->weight (4) 2964 * grp->load.weight 2965 * 2966 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 2967 * 2968 * So what we do is modify our approximation (3) to approach (4) in the (near) 2969 * UP case, like: 2970 * 2971 * ge->load.weight = 2972 * 2973 * tg->weight * grq->load.weight 2974 * --------------------------------------------------- (5) 2975 * tg->load_avg - grq->avg.load_avg + grq->load.weight 2976 * 2977 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 2978 * we need to use grq->avg.load_avg as its lower bound, which then gives: 2979 * 2980 * 2981 * tg->weight * grq->load.weight 2982 * ge->load.weight = ----------------------------- (6) 2983 * tg_load_avg' 2984 * 2985 * Where: 2986 * 2987 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 2988 * max(grq->load.weight, grq->avg.load_avg) 2989 * 2990 * And that is shares_weight and is icky. In the (near) UP case it approaches 2991 * (4) while in the normal case it approaches (3). It consistently 2992 * overestimates the ge->load.weight and therefore: 2993 * 2994 * \Sum ge->load.weight >= tg->weight 2995 * 2996 * hence icky! 2997 */ 2998 static long calc_group_shares(struct cfs_rq *cfs_rq) 2999 { 3000 long tg_weight, tg_shares, load, shares; 3001 struct task_group *tg = cfs_rq->tg; 3002 3003 tg_shares = READ_ONCE(tg->shares); 3004 3005 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3006 3007 tg_weight = atomic_long_read(&tg->load_avg); 3008 3009 /* Ensure tg_weight >= load */ 3010 tg_weight -= cfs_rq->tg_load_avg_contrib; 3011 tg_weight += load; 3012 3013 shares = (tg_shares * load); 3014 if (tg_weight) 3015 shares /= tg_weight; 3016 3017 /* 3018 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3019 * of a group with small tg->shares value. It is a floor value which is 3020 * assigned as a minimum load.weight to the sched_entity representing 3021 * the group on a CPU. 3022 * 3023 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3024 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3025 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3026 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3027 * instead of 0. 3028 */ 3029 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3030 } 3031 3032 /* 3033 * This calculates the effective runnable weight for a group entity based on 3034 * the group entity weight calculated above. 3035 * 3036 * Because of the above approximation (2), our group entity weight is 3037 * an load_avg based ratio (3). This means that it includes blocked load and 3038 * does not represent the runnable weight. 3039 * 3040 * Approximate the group entity's runnable weight per ratio from the group 3041 * runqueue: 3042 * 3043 * grq->avg.runnable_load_avg 3044 * ge->runnable_weight = ge->load.weight * -------------------------- (7) 3045 * grq->avg.load_avg 3046 * 3047 * However, analogous to above, since the avg numbers are slow, this leads to 3048 * transients in the from-idle case. Instead we use: 3049 * 3050 * ge->runnable_weight = ge->load.weight * 3051 * 3052 * max(grq->avg.runnable_load_avg, grq->runnable_weight) 3053 * ----------------------------------------------------- (8) 3054 * max(grq->avg.load_avg, grq->load.weight) 3055 * 3056 * Where these max() serve both to use the 'instant' values to fix the slow 3057 * from-idle and avoid the /0 on to-idle, similar to (6). 3058 */ 3059 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares) 3060 { 3061 long runnable, load_avg; 3062 3063 load_avg = max(cfs_rq->avg.load_avg, 3064 scale_load_down(cfs_rq->load.weight)); 3065 3066 runnable = max(cfs_rq->avg.runnable_load_avg, 3067 scale_load_down(cfs_rq->runnable_weight)); 3068 3069 runnable *= shares; 3070 if (load_avg) 3071 runnable /= load_avg; 3072 3073 return clamp_t(long, runnable, MIN_SHARES, shares); 3074 } 3075 #endif /* CONFIG_SMP */ 3076 3077 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3078 3079 /* 3080 * Recomputes the group entity based on the current state of its group 3081 * runqueue. 3082 */ 3083 static void update_cfs_group(struct sched_entity *se) 3084 { 3085 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3086 long shares, runnable; 3087 3088 if (!gcfs_rq) 3089 return; 3090 3091 if (throttled_hierarchy(gcfs_rq)) 3092 return; 3093 3094 #ifndef CONFIG_SMP 3095 runnable = shares = READ_ONCE(gcfs_rq->tg->shares); 3096 3097 if (likely(se->load.weight == shares)) 3098 return; 3099 #else 3100 shares = calc_group_shares(gcfs_rq); 3101 runnable = calc_group_runnable(gcfs_rq, shares); 3102 #endif 3103 3104 reweight_entity(cfs_rq_of(se), se, shares, runnable); 3105 } 3106 3107 #else /* CONFIG_FAIR_GROUP_SCHED */ 3108 static inline void update_cfs_group(struct sched_entity *se) 3109 { 3110 } 3111 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3112 3113 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3114 { 3115 struct rq *rq = rq_of(cfs_rq); 3116 3117 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) { 3118 /* 3119 * There are a few boundary cases this might miss but it should 3120 * get called often enough that that should (hopefully) not be 3121 * a real problem. 3122 * 3123 * It will not get called when we go idle, because the idle 3124 * thread is a different class (!fair), nor will the utilization 3125 * number include things like RT tasks. 3126 * 3127 * As is, the util number is not freq-invariant (we'd have to 3128 * implement arch_scale_freq_capacity() for that). 3129 * 3130 * See cpu_util(). 3131 */ 3132 cpufreq_update_util(rq, flags); 3133 } 3134 } 3135 3136 #ifdef CONFIG_SMP 3137 #ifdef CONFIG_FAIR_GROUP_SCHED 3138 /** 3139 * update_tg_load_avg - update the tg's load avg 3140 * @cfs_rq: the cfs_rq whose avg changed 3141 * @force: update regardless of how small the difference 3142 * 3143 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3144 * However, because tg->load_avg is a global value there are performance 3145 * considerations. 3146 * 3147 * In order to avoid having to look at the other cfs_rq's, we use a 3148 * differential update where we store the last value we propagated. This in 3149 * turn allows skipping updates if the differential is 'small'. 3150 * 3151 * Updating tg's load_avg is necessary before update_cfs_share(). 3152 */ 3153 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3154 { 3155 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3156 3157 /* 3158 * No need to update load_avg for root_task_group as it is not used. 3159 */ 3160 if (cfs_rq->tg == &root_task_group) 3161 return; 3162 3163 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3164 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3165 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3166 } 3167 } 3168 3169 /* 3170 * Called within set_task_rq() right before setting a task's CPU. The 3171 * caller only guarantees p->pi_lock is held; no other assumptions, 3172 * including the state of rq->lock, should be made. 3173 */ 3174 void set_task_rq_fair(struct sched_entity *se, 3175 struct cfs_rq *prev, struct cfs_rq *next) 3176 { 3177 u64 p_last_update_time; 3178 u64 n_last_update_time; 3179 3180 if (!sched_feat(ATTACH_AGE_LOAD)) 3181 return; 3182 3183 /* 3184 * We are supposed to update the task to "current" time, then its up to 3185 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3186 * getting what current time is, so simply throw away the out-of-date 3187 * time. This will result in the wakee task is less decayed, but giving 3188 * the wakee more load sounds not bad. 3189 */ 3190 if (!(se->avg.last_update_time && prev)) 3191 return; 3192 3193 #ifndef CONFIG_64BIT 3194 { 3195 u64 p_last_update_time_copy; 3196 u64 n_last_update_time_copy; 3197 3198 do { 3199 p_last_update_time_copy = prev->load_last_update_time_copy; 3200 n_last_update_time_copy = next->load_last_update_time_copy; 3201 3202 smp_rmb(); 3203 3204 p_last_update_time = prev->avg.last_update_time; 3205 n_last_update_time = next->avg.last_update_time; 3206 3207 } while (p_last_update_time != p_last_update_time_copy || 3208 n_last_update_time != n_last_update_time_copy); 3209 } 3210 #else 3211 p_last_update_time = prev->avg.last_update_time; 3212 n_last_update_time = next->avg.last_update_time; 3213 #endif 3214 __update_load_avg_blocked_se(p_last_update_time, se); 3215 se->avg.last_update_time = n_last_update_time; 3216 } 3217 3218 3219 /* 3220 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3221 * propagate its contribution. The key to this propagation is the invariant 3222 * that for each group: 3223 * 3224 * ge->avg == grq->avg (1) 3225 * 3226 * _IFF_ we look at the pure running and runnable sums. Because they 3227 * represent the very same entity, just at different points in the hierarchy. 3228 * 3229 * Per the above update_tg_cfs_util() is trivial and simply copies the running 3230 * sum over (but still wrong, because the group entity and group rq do not have 3231 * their PELT windows aligned). 3232 * 3233 * However, update_tg_cfs_runnable() is more complex. So we have: 3234 * 3235 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3236 * 3237 * And since, like util, the runnable part should be directly transferable, 3238 * the following would _appear_ to be the straight forward approach: 3239 * 3240 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3241 * 3242 * And per (1) we have: 3243 * 3244 * ge->avg.runnable_avg == grq->avg.runnable_avg 3245 * 3246 * Which gives: 3247 * 3248 * ge->load.weight * grq->avg.load_avg 3249 * ge->avg.load_avg = ----------------------------------- (4) 3250 * grq->load.weight 3251 * 3252 * Except that is wrong! 3253 * 3254 * Because while for entities historical weight is not important and we 3255 * really only care about our future and therefore can consider a pure 3256 * runnable sum, runqueues can NOT do this. 3257 * 3258 * We specifically want runqueues to have a load_avg that includes 3259 * historical weights. Those represent the blocked load, the load we expect 3260 * to (shortly) return to us. This only works by keeping the weights as 3261 * integral part of the sum. We therefore cannot decompose as per (3). 3262 * 3263 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3264 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3265 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3266 * runnable section of these tasks overlap (or not). If they were to perfectly 3267 * align the rq as a whole would be runnable 2/3 of the time. If however we 3268 * always have at least 1 runnable task, the rq as a whole is always runnable. 3269 * 3270 * So we'll have to approximate.. :/ 3271 * 3272 * Given the constraint: 3273 * 3274 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3275 * 3276 * We can construct a rule that adds runnable to a rq by assuming minimal 3277 * overlap. 3278 * 3279 * On removal, we'll assume each task is equally runnable; which yields: 3280 * 3281 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3282 * 3283 * XXX: only do this for the part of runnable > running ? 3284 * 3285 */ 3286 3287 static inline void 3288 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3289 { 3290 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3291 3292 /* Nothing to update */ 3293 if (!delta) 3294 return; 3295 3296 /* 3297 * The relation between sum and avg is: 3298 * 3299 * LOAD_AVG_MAX - 1024 + sa->period_contrib 3300 * 3301 * however, the PELT windows are not aligned between grq and gse. 3302 */ 3303 3304 /* Set new sched_entity's utilization */ 3305 se->avg.util_avg = gcfs_rq->avg.util_avg; 3306 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3307 3308 /* Update parent cfs_rq utilization */ 3309 add_positive(&cfs_rq->avg.util_avg, delta); 3310 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3311 } 3312 3313 static inline void 3314 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3315 { 3316 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3317 unsigned long runnable_load_avg, load_avg; 3318 u64 runnable_load_sum, load_sum = 0; 3319 s64 delta_sum; 3320 3321 if (!runnable_sum) 3322 return; 3323 3324 gcfs_rq->prop_runnable_sum = 0; 3325 3326 if (runnable_sum >= 0) { 3327 /* 3328 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3329 * the CPU is saturated running == runnable. 3330 */ 3331 runnable_sum += se->avg.load_sum; 3332 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); 3333 } else { 3334 /* 3335 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3336 * assuming all tasks are equally runnable. 3337 */ 3338 if (scale_load_down(gcfs_rq->load.weight)) { 3339 load_sum = div_s64(gcfs_rq->avg.load_sum, 3340 scale_load_down(gcfs_rq->load.weight)); 3341 } 3342 3343 /* But make sure to not inflate se's runnable */ 3344 runnable_sum = min(se->avg.load_sum, load_sum); 3345 } 3346 3347 /* 3348 * runnable_sum can't be lower than running_sum 3349 * Rescale running sum to be in the same range as runnable sum 3350 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3351 * runnable_sum is in [0 : LOAD_AVG_MAX] 3352 */ 3353 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3354 runnable_sum = max(runnable_sum, running_sum); 3355 3356 load_sum = (s64)se_weight(se) * runnable_sum; 3357 load_avg = div_s64(load_sum, LOAD_AVG_MAX); 3358 3359 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3360 delta_avg = load_avg - se->avg.load_avg; 3361 3362 se->avg.load_sum = runnable_sum; 3363 se->avg.load_avg = load_avg; 3364 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3365 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3366 3367 runnable_load_sum = (s64)se_runnable(se) * runnable_sum; 3368 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX); 3369 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum; 3370 delta_avg = runnable_load_avg - se->avg.runnable_load_avg; 3371 3372 se->avg.runnable_load_sum = runnable_sum; 3373 se->avg.runnable_load_avg = runnable_load_avg; 3374 3375 if (se->on_rq) { 3376 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg); 3377 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum); 3378 } 3379 } 3380 3381 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3382 { 3383 cfs_rq->propagate = 1; 3384 cfs_rq->prop_runnable_sum += runnable_sum; 3385 } 3386 3387 /* Update task and its cfs_rq load average */ 3388 static inline int propagate_entity_load_avg(struct sched_entity *se) 3389 { 3390 struct cfs_rq *cfs_rq, *gcfs_rq; 3391 3392 if (entity_is_task(se)) 3393 return 0; 3394 3395 gcfs_rq = group_cfs_rq(se); 3396 if (!gcfs_rq->propagate) 3397 return 0; 3398 3399 gcfs_rq->propagate = 0; 3400 3401 cfs_rq = cfs_rq_of(se); 3402 3403 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3404 3405 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3406 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3407 3408 trace_pelt_cfs_tp(cfs_rq); 3409 trace_pelt_se_tp(se); 3410 3411 return 1; 3412 } 3413 3414 /* 3415 * Check if we need to update the load and the utilization of a blocked 3416 * group_entity: 3417 */ 3418 static inline bool skip_blocked_update(struct sched_entity *se) 3419 { 3420 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3421 3422 /* 3423 * If sched_entity still have not zero load or utilization, we have to 3424 * decay it: 3425 */ 3426 if (se->avg.load_avg || se->avg.util_avg) 3427 return false; 3428 3429 /* 3430 * If there is a pending propagation, we have to update the load and 3431 * the utilization of the sched_entity: 3432 */ 3433 if (gcfs_rq->propagate) 3434 return false; 3435 3436 /* 3437 * Otherwise, the load and the utilization of the sched_entity is 3438 * already zero and there is no pending propagation, so it will be a 3439 * waste of time to try to decay it: 3440 */ 3441 return true; 3442 } 3443 3444 #else /* CONFIG_FAIR_GROUP_SCHED */ 3445 3446 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3447 3448 static inline int propagate_entity_load_avg(struct sched_entity *se) 3449 { 3450 return 0; 3451 } 3452 3453 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3454 3455 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3456 3457 /** 3458 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3459 * @now: current time, as per cfs_rq_clock_pelt() 3460 * @cfs_rq: cfs_rq to update 3461 * 3462 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3463 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3464 * post_init_entity_util_avg(). 3465 * 3466 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3467 * 3468 * Returns true if the load decayed or we removed load. 3469 * 3470 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3471 * call update_tg_load_avg() when this function returns true. 3472 */ 3473 static inline int 3474 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3475 { 3476 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0; 3477 struct sched_avg *sa = &cfs_rq->avg; 3478 int decayed = 0; 3479 3480 if (cfs_rq->removed.nr) { 3481 unsigned long r; 3482 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3483 3484 raw_spin_lock(&cfs_rq->removed.lock); 3485 swap(cfs_rq->removed.util_avg, removed_util); 3486 swap(cfs_rq->removed.load_avg, removed_load); 3487 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum); 3488 cfs_rq->removed.nr = 0; 3489 raw_spin_unlock(&cfs_rq->removed.lock); 3490 3491 r = removed_load; 3492 sub_positive(&sa->load_avg, r); 3493 sub_positive(&sa->load_sum, r * divider); 3494 3495 r = removed_util; 3496 sub_positive(&sa->util_avg, r); 3497 sub_positive(&sa->util_sum, r * divider); 3498 3499 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum); 3500 3501 decayed = 1; 3502 } 3503 3504 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3505 3506 #ifndef CONFIG_64BIT 3507 smp_wmb(); 3508 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3509 #endif 3510 3511 return decayed; 3512 } 3513 3514 /** 3515 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3516 * @cfs_rq: cfs_rq to attach to 3517 * @se: sched_entity to attach 3518 * @flags: migration hints 3519 * 3520 * Must call update_cfs_rq_load_avg() before this, since we rely on 3521 * cfs_rq->avg.last_update_time being current. 3522 */ 3523 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3524 { 3525 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3526 3527 /* 3528 * When we attach the @se to the @cfs_rq, we must align the decay 3529 * window because without that, really weird and wonderful things can 3530 * happen. 3531 * 3532 * XXX illustrate 3533 */ 3534 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3535 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3536 3537 /* 3538 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3539 * period_contrib. This isn't strictly correct, but since we're 3540 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3541 * _sum a little. 3542 */ 3543 se->avg.util_sum = se->avg.util_avg * divider; 3544 3545 se->avg.load_sum = divider; 3546 if (se_weight(se)) { 3547 se->avg.load_sum = 3548 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3549 } 3550 3551 se->avg.runnable_load_sum = se->avg.load_sum; 3552 3553 enqueue_load_avg(cfs_rq, se); 3554 cfs_rq->avg.util_avg += se->avg.util_avg; 3555 cfs_rq->avg.util_sum += se->avg.util_sum; 3556 3557 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3558 3559 cfs_rq_util_change(cfs_rq, flags); 3560 3561 trace_pelt_cfs_tp(cfs_rq); 3562 } 3563 3564 /** 3565 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3566 * @cfs_rq: cfs_rq to detach from 3567 * @se: sched_entity to detach 3568 * 3569 * Must call update_cfs_rq_load_avg() before this, since we rely on 3570 * cfs_rq->avg.last_update_time being current. 3571 */ 3572 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3573 { 3574 dequeue_load_avg(cfs_rq, se); 3575 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3576 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3577 3578 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3579 3580 cfs_rq_util_change(cfs_rq, 0); 3581 3582 trace_pelt_cfs_tp(cfs_rq); 3583 } 3584 3585 /* 3586 * Optional action to be done while updating the load average 3587 */ 3588 #define UPDATE_TG 0x1 3589 #define SKIP_AGE_LOAD 0x2 3590 #define DO_ATTACH 0x4 3591 3592 /* Update task and its cfs_rq load average */ 3593 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3594 { 3595 u64 now = cfs_rq_clock_pelt(cfs_rq); 3596 int decayed; 3597 3598 /* 3599 * Track task load average for carrying it to new CPU after migrated, and 3600 * track group sched_entity load average for task_h_load calc in migration 3601 */ 3602 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3603 __update_load_avg_se(now, cfs_rq, se); 3604 3605 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3606 decayed |= propagate_entity_load_avg(se); 3607 3608 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3609 3610 /* 3611 * DO_ATTACH means we're here from enqueue_entity(). 3612 * !last_update_time means we've passed through 3613 * migrate_task_rq_fair() indicating we migrated. 3614 * 3615 * IOW we're enqueueing a task on a new CPU. 3616 */ 3617 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION); 3618 update_tg_load_avg(cfs_rq, 0); 3619 3620 } else if (decayed) { 3621 cfs_rq_util_change(cfs_rq, 0); 3622 3623 if (flags & UPDATE_TG) 3624 update_tg_load_avg(cfs_rq, 0); 3625 } 3626 } 3627 3628 #ifndef CONFIG_64BIT 3629 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3630 { 3631 u64 last_update_time_copy; 3632 u64 last_update_time; 3633 3634 do { 3635 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3636 smp_rmb(); 3637 last_update_time = cfs_rq->avg.last_update_time; 3638 } while (last_update_time != last_update_time_copy); 3639 3640 return last_update_time; 3641 } 3642 #else 3643 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3644 { 3645 return cfs_rq->avg.last_update_time; 3646 } 3647 #endif 3648 3649 /* 3650 * Synchronize entity load avg of dequeued entity without locking 3651 * the previous rq. 3652 */ 3653 static void sync_entity_load_avg(struct sched_entity *se) 3654 { 3655 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3656 u64 last_update_time; 3657 3658 last_update_time = cfs_rq_last_update_time(cfs_rq); 3659 __update_load_avg_blocked_se(last_update_time, se); 3660 } 3661 3662 /* 3663 * Task first catches up with cfs_rq, and then subtract 3664 * itself from the cfs_rq (task must be off the queue now). 3665 */ 3666 static void remove_entity_load_avg(struct sched_entity *se) 3667 { 3668 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3669 unsigned long flags; 3670 3671 /* 3672 * tasks cannot exit without having gone through wake_up_new_task() -> 3673 * post_init_entity_util_avg() which will have added things to the 3674 * cfs_rq, so we can remove unconditionally. 3675 */ 3676 3677 sync_entity_load_avg(se); 3678 3679 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3680 ++cfs_rq->removed.nr; 3681 cfs_rq->removed.util_avg += se->avg.util_avg; 3682 cfs_rq->removed.load_avg += se->avg.load_avg; 3683 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */ 3684 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3685 } 3686 3687 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3688 { 3689 return cfs_rq->avg.runnable_load_avg; 3690 } 3691 3692 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3693 { 3694 return cfs_rq->avg.load_avg; 3695 } 3696 3697 static inline unsigned long task_util(struct task_struct *p) 3698 { 3699 return READ_ONCE(p->se.avg.util_avg); 3700 } 3701 3702 static inline unsigned long _task_util_est(struct task_struct *p) 3703 { 3704 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3705 3706 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED); 3707 } 3708 3709 static inline unsigned long task_util_est(struct task_struct *p) 3710 { 3711 return max(task_util(p), _task_util_est(p)); 3712 } 3713 3714 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3715 struct task_struct *p) 3716 { 3717 unsigned int enqueued; 3718 3719 if (!sched_feat(UTIL_EST)) 3720 return; 3721 3722 /* Update root cfs_rq's estimated utilization */ 3723 enqueued = cfs_rq->avg.util_est.enqueued; 3724 enqueued += _task_util_est(p); 3725 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3726 } 3727 3728 /* 3729 * Check if a (signed) value is within a specified (unsigned) margin, 3730 * based on the observation that: 3731 * 3732 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3733 * 3734 * NOTE: this only works when value + maring < INT_MAX. 3735 */ 3736 static inline bool within_margin(int value, int margin) 3737 { 3738 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3739 } 3740 3741 static void 3742 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) 3743 { 3744 long last_ewma_diff; 3745 struct util_est ue; 3746 int cpu; 3747 3748 if (!sched_feat(UTIL_EST)) 3749 return; 3750 3751 /* Update root cfs_rq's estimated utilization */ 3752 ue.enqueued = cfs_rq->avg.util_est.enqueued; 3753 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p)); 3754 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); 3755 3756 /* 3757 * Skip update of task's estimated utilization when the task has not 3758 * yet completed an activation, e.g. being migrated. 3759 */ 3760 if (!task_sleep) 3761 return; 3762 3763 /* 3764 * If the PELT values haven't changed since enqueue time, 3765 * skip the util_est update. 3766 */ 3767 ue = p->se.avg.util_est; 3768 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3769 return; 3770 3771 /* 3772 * Reset EWMA on utilization increases, the moving average is used only 3773 * to smooth utilization decreases. 3774 */ 3775 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 3776 if (sched_feat(UTIL_EST_FASTUP)) { 3777 if (ue.ewma < ue.enqueued) { 3778 ue.ewma = ue.enqueued; 3779 goto done; 3780 } 3781 } 3782 3783 /* 3784 * Skip update of task's estimated utilization when its EWMA is 3785 * already ~1% close to its last activation value. 3786 */ 3787 last_ewma_diff = ue.enqueued - ue.ewma; 3788 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 3789 return; 3790 3791 /* 3792 * To avoid overestimation of actual task utilization, skip updates if 3793 * we cannot grant there is idle time in this CPU. 3794 */ 3795 cpu = cpu_of(rq_of(cfs_rq)); 3796 if (task_util(p) > capacity_orig_of(cpu)) 3797 return; 3798 3799 /* 3800 * Update Task's estimated utilization 3801 * 3802 * When *p completes an activation we can consolidate another sample 3803 * of the task size. This is done by storing the current PELT value 3804 * as ue.enqueued and by using this value to update the Exponential 3805 * Weighted Moving Average (EWMA): 3806 * 3807 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 3808 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 3809 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 3810 * = w * ( last_ewma_diff ) + ewma(t-1) 3811 * = w * (last_ewma_diff + ewma(t-1) / w) 3812 * 3813 * Where 'w' is the weight of new samples, which is configured to be 3814 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 3815 */ 3816 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 3817 ue.ewma += last_ewma_diff; 3818 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 3819 done: 3820 WRITE_ONCE(p->se.avg.util_est, ue); 3821 } 3822 3823 static inline int task_fits_capacity(struct task_struct *p, long capacity) 3824 { 3825 return fits_capacity(task_util_est(p), capacity); 3826 } 3827 3828 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 3829 { 3830 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 3831 return; 3832 3833 if (!p) { 3834 rq->misfit_task_load = 0; 3835 return; 3836 } 3837 3838 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 3839 rq->misfit_task_load = 0; 3840 return; 3841 } 3842 3843 rq->misfit_task_load = task_h_load(p); 3844 } 3845 3846 #else /* CONFIG_SMP */ 3847 3848 #define UPDATE_TG 0x0 3849 #define SKIP_AGE_LOAD 0x0 3850 #define DO_ATTACH 0x0 3851 3852 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 3853 { 3854 cfs_rq_util_change(cfs_rq, 0); 3855 } 3856 3857 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3858 3859 static inline void 3860 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {} 3861 static inline void 3862 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3863 3864 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 3865 { 3866 return 0; 3867 } 3868 3869 static inline void 3870 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 3871 3872 static inline void 3873 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, 3874 bool task_sleep) {} 3875 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 3876 3877 #endif /* CONFIG_SMP */ 3878 3879 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3880 { 3881 #ifdef CONFIG_SCHED_DEBUG 3882 s64 d = se->vruntime - cfs_rq->min_vruntime; 3883 3884 if (d < 0) 3885 d = -d; 3886 3887 if (d > 3*sysctl_sched_latency) 3888 schedstat_inc(cfs_rq->nr_spread_over); 3889 #endif 3890 } 3891 3892 static void 3893 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3894 { 3895 u64 vruntime = cfs_rq->min_vruntime; 3896 3897 /* 3898 * The 'current' period is already promised to the current tasks, 3899 * however the extra weight of the new task will slow them down a 3900 * little, place the new task so that it fits in the slot that 3901 * stays open at the end. 3902 */ 3903 if (initial && sched_feat(START_DEBIT)) 3904 vruntime += sched_vslice(cfs_rq, se); 3905 3906 /* sleeps up to a single latency don't count. */ 3907 if (!initial) { 3908 unsigned long thresh = sysctl_sched_latency; 3909 3910 /* 3911 * Halve their sleep time's effect, to allow 3912 * for a gentler effect of sleepers: 3913 */ 3914 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3915 thresh >>= 1; 3916 3917 vruntime -= thresh; 3918 } 3919 3920 /* ensure we never gain time by being placed backwards. */ 3921 se->vruntime = max_vruntime(se->vruntime, vruntime); 3922 } 3923 3924 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3925 3926 static inline void check_schedstat_required(void) 3927 { 3928 #ifdef CONFIG_SCHEDSTATS 3929 if (schedstat_enabled()) 3930 return; 3931 3932 /* Force schedstat enabled if a dependent tracepoint is active */ 3933 if (trace_sched_stat_wait_enabled() || 3934 trace_sched_stat_sleep_enabled() || 3935 trace_sched_stat_iowait_enabled() || 3936 trace_sched_stat_blocked_enabled() || 3937 trace_sched_stat_runtime_enabled()) { 3938 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3939 "stat_blocked and stat_runtime require the " 3940 "kernel parameter schedstats=enable or " 3941 "kernel.sched_schedstats=1\n"); 3942 } 3943 #endif 3944 } 3945 3946 3947 /* 3948 * MIGRATION 3949 * 3950 * dequeue 3951 * update_curr() 3952 * update_min_vruntime() 3953 * vruntime -= min_vruntime 3954 * 3955 * enqueue 3956 * update_curr() 3957 * update_min_vruntime() 3958 * vruntime += min_vruntime 3959 * 3960 * this way the vruntime transition between RQs is done when both 3961 * min_vruntime are up-to-date. 3962 * 3963 * WAKEUP (remote) 3964 * 3965 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3966 * vruntime -= min_vruntime 3967 * 3968 * enqueue 3969 * update_curr() 3970 * update_min_vruntime() 3971 * vruntime += min_vruntime 3972 * 3973 * this way we don't have the most up-to-date min_vruntime on the originating 3974 * CPU and an up-to-date min_vruntime on the destination CPU. 3975 */ 3976 3977 static void 3978 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3979 { 3980 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3981 bool curr = cfs_rq->curr == se; 3982 3983 /* 3984 * If we're the current task, we must renormalise before calling 3985 * update_curr(). 3986 */ 3987 if (renorm && curr) 3988 se->vruntime += cfs_rq->min_vruntime; 3989 3990 update_curr(cfs_rq); 3991 3992 /* 3993 * Otherwise, renormalise after, such that we're placed at the current 3994 * moment in time, instead of some random moment in the past. Being 3995 * placed in the past could significantly boost this task to the 3996 * fairness detriment of existing tasks. 3997 */ 3998 if (renorm && !curr) 3999 se->vruntime += cfs_rq->min_vruntime; 4000 4001 /* 4002 * When enqueuing a sched_entity, we must: 4003 * - Update loads to have both entity and cfs_rq synced with now. 4004 * - Add its load to cfs_rq->runnable_avg 4005 * - For group_entity, update its weight to reflect the new share of 4006 * its group cfs_rq 4007 * - Add its new weight to cfs_rq->load.weight 4008 */ 4009 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4010 update_cfs_group(se); 4011 enqueue_runnable_load_avg(cfs_rq, se); 4012 account_entity_enqueue(cfs_rq, se); 4013 4014 if (flags & ENQUEUE_WAKEUP) 4015 place_entity(cfs_rq, se, 0); 4016 4017 check_schedstat_required(); 4018 update_stats_enqueue(cfs_rq, se, flags); 4019 check_spread(cfs_rq, se); 4020 if (!curr) 4021 __enqueue_entity(cfs_rq, se); 4022 se->on_rq = 1; 4023 4024 if (cfs_rq->nr_running == 1) { 4025 list_add_leaf_cfs_rq(cfs_rq); 4026 check_enqueue_throttle(cfs_rq); 4027 } 4028 } 4029 4030 static void __clear_buddies_last(struct sched_entity *se) 4031 { 4032 for_each_sched_entity(se) { 4033 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4034 if (cfs_rq->last != se) 4035 break; 4036 4037 cfs_rq->last = NULL; 4038 } 4039 } 4040 4041 static void __clear_buddies_next(struct sched_entity *se) 4042 { 4043 for_each_sched_entity(se) { 4044 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4045 if (cfs_rq->next != se) 4046 break; 4047 4048 cfs_rq->next = NULL; 4049 } 4050 } 4051 4052 static void __clear_buddies_skip(struct sched_entity *se) 4053 { 4054 for_each_sched_entity(se) { 4055 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4056 if (cfs_rq->skip != se) 4057 break; 4058 4059 cfs_rq->skip = NULL; 4060 } 4061 } 4062 4063 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4064 { 4065 if (cfs_rq->last == se) 4066 __clear_buddies_last(se); 4067 4068 if (cfs_rq->next == se) 4069 __clear_buddies_next(se); 4070 4071 if (cfs_rq->skip == se) 4072 __clear_buddies_skip(se); 4073 } 4074 4075 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4076 4077 static void 4078 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4079 { 4080 /* 4081 * Update run-time statistics of the 'current'. 4082 */ 4083 update_curr(cfs_rq); 4084 4085 /* 4086 * When dequeuing a sched_entity, we must: 4087 * - Update loads to have both entity and cfs_rq synced with now. 4088 * - Subtract its load from the cfs_rq->runnable_avg. 4089 * - Subtract its previous weight from cfs_rq->load.weight. 4090 * - For group entity, update its weight to reflect the new share 4091 * of its group cfs_rq. 4092 */ 4093 update_load_avg(cfs_rq, se, UPDATE_TG); 4094 dequeue_runnable_load_avg(cfs_rq, se); 4095 4096 update_stats_dequeue(cfs_rq, se, flags); 4097 4098 clear_buddies(cfs_rq, se); 4099 4100 if (se != cfs_rq->curr) 4101 __dequeue_entity(cfs_rq, se); 4102 se->on_rq = 0; 4103 account_entity_dequeue(cfs_rq, se); 4104 4105 /* 4106 * Normalize after update_curr(); which will also have moved 4107 * min_vruntime if @se is the one holding it back. But before doing 4108 * update_min_vruntime() again, which will discount @se's position and 4109 * can move min_vruntime forward still more. 4110 */ 4111 if (!(flags & DEQUEUE_SLEEP)) 4112 se->vruntime -= cfs_rq->min_vruntime; 4113 4114 /* return excess runtime on last dequeue */ 4115 return_cfs_rq_runtime(cfs_rq); 4116 4117 update_cfs_group(se); 4118 4119 /* 4120 * Now advance min_vruntime if @se was the entity holding it back, 4121 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4122 * put back on, and if we advance min_vruntime, we'll be placed back 4123 * further than we started -- ie. we'll be penalized. 4124 */ 4125 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4126 update_min_vruntime(cfs_rq); 4127 } 4128 4129 /* 4130 * Preempt the current task with a newly woken task if needed: 4131 */ 4132 static void 4133 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4134 { 4135 unsigned long ideal_runtime, delta_exec; 4136 struct sched_entity *se; 4137 s64 delta; 4138 4139 ideal_runtime = sched_slice(cfs_rq, curr); 4140 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4141 if (delta_exec > ideal_runtime) { 4142 resched_curr(rq_of(cfs_rq)); 4143 /* 4144 * The current task ran long enough, ensure it doesn't get 4145 * re-elected due to buddy favours. 4146 */ 4147 clear_buddies(cfs_rq, curr); 4148 return; 4149 } 4150 4151 /* 4152 * Ensure that a task that missed wakeup preemption by a 4153 * narrow margin doesn't have to wait for a full slice. 4154 * This also mitigates buddy induced latencies under load. 4155 */ 4156 if (delta_exec < sysctl_sched_min_granularity) 4157 return; 4158 4159 se = __pick_first_entity(cfs_rq); 4160 delta = curr->vruntime - se->vruntime; 4161 4162 if (delta < 0) 4163 return; 4164 4165 if (delta > ideal_runtime) 4166 resched_curr(rq_of(cfs_rq)); 4167 } 4168 4169 static void 4170 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4171 { 4172 /* 'current' is not kept within the tree. */ 4173 if (se->on_rq) { 4174 /* 4175 * Any task has to be enqueued before it get to execute on 4176 * a CPU. So account for the time it spent waiting on the 4177 * runqueue. 4178 */ 4179 update_stats_wait_end(cfs_rq, se); 4180 __dequeue_entity(cfs_rq, se); 4181 update_load_avg(cfs_rq, se, UPDATE_TG); 4182 } 4183 4184 update_stats_curr_start(cfs_rq, se); 4185 cfs_rq->curr = se; 4186 4187 /* 4188 * Track our maximum slice length, if the CPU's load is at 4189 * least twice that of our own weight (i.e. dont track it 4190 * when there are only lesser-weight tasks around): 4191 */ 4192 if (schedstat_enabled() && 4193 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4194 schedstat_set(se->statistics.slice_max, 4195 max((u64)schedstat_val(se->statistics.slice_max), 4196 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4197 } 4198 4199 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4200 } 4201 4202 static int 4203 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4204 4205 /* 4206 * Pick the next process, keeping these things in mind, in this order: 4207 * 1) keep things fair between processes/task groups 4208 * 2) pick the "next" process, since someone really wants that to run 4209 * 3) pick the "last" process, for cache locality 4210 * 4) do not run the "skip" process, if something else is available 4211 */ 4212 static struct sched_entity * 4213 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4214 { 4215 struct sched_entity *left = __pick_first_entity(cfs_rq); 4216 struct sched_entity *se; 4217 4218 /* 4219 * If curr is set we have to see if its left of the leftmost entity 4220 * still in the tree, provided there was anything in the tree at all. 4221 */ 4222 if (!left || (curr && entity_before(curr, left))) 4223 left = curr; 4224 4225 se = left; /* ideally we run the leftmost entity */ 4226 4227 /* 4228 * Avoid running the skip buddy, if running something else can 4229 * be done without getting too unfair. 4230 */ 4231 if (cfs_rq->skip == se) { 4232 struct sched_entity *second; 4233 4234 if (se == curr) { 4235 second = __pick_first_entity(cfs_rq); 4236 } else { 4237 second = __pick_next_entity(se); 4238 if (!second || (curr && entity_before(curr, second))) 4239 second = curr; 4240 } 4241 4242 if (second && wakeup_preempt_entity(second, left) < 1) 4243 se = second; 4244 } 4245 4246 /* 4247 * Prefer last buddy, try to return the CPU to a preempted task. 4248 */ 4249 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4250 se = cfs_rq->last; 4251 4252 /* 4253 * Someone really wants this to run. If it's not unfair, run it. 4254 */ 4255 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4256 se = cfs_rq->next; 4257 4258 clear_buddies(cfs_rq, se); 4259 4260 return se; 4261 } 4262 4263 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4264 4265 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4266 { 4267 /* 4268 * If still on the runqueue then deactivate_task() 4269 * was not called and update_curr() has to be done: 4270 */ 4271 if (prev->on_rq) 4272 update_curr(cfs_rq); 4273 4274 /* throttle cfs_rqs exceeding runtime */ 4275 check_cfs_rq_runtime(cfs_rq); 4276 4277 check_spread(cfs_rq, prev); 4278 4279 if (prev->on_rq) { 4280 update_stats_wait_start(cfs_rq, prev); 4281 /* Put 'current' back into the tree. */ 4282 __enqueue_entity(cfs_rq, prev); 4283 /* in !on_rq case, update occurred at dequeue */ 4284 update_load_avg(cfs_rq, prev, 0); 4285 } 4286 cfs_rq->curr = NULL; 4287 } 4288 4289 static void 4290 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4291 { 4292 /* 4293 * Update run-time statistics of the 'current'. 4294 */ 4295 update_curr(cfs_rq); 4296 4297 /* 4298 * Ensure that runnable average is periodically updated. 4299 */ 4300 update_load_avg(cfs_rq, curr, UPDATE_TG); 4301 update_cfs_group(curr); 4302 4303 #ifdef CONFIG_SCHED_HRTICK 4304 /* 4305 * queued ticks are scheduled to match the slice, so don't bother 4306 * validating it and just reschedule. 4307 */ 4308 if (queued) { 4309 resched_curr(rq_of(cfs_rq)); 4310 return; 4311 } 4312 /* 4313 * don't let the period tick interfere with the hrtick preemption 4314 */ 4315 if (!sched_feat(DOUBLE_TICK) && 4316 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4317 return; 4318 #endif 4319 4320 if (cfs_rq->nr_running > 1) 4321 check_preempt_tick(cfs_rq, curr); 4322 } 4323 4324 4325 /************************************************** 4326 * CFS bandwidth control machinery 4327 */ 4328 4329 #ifdef CONFIG_CFS_BANDWIDTH 4330 4331 #ifdef CONFIG_JUMP_LABEL 4332 static struct static_key __cfs_bandwidth_used; 4333 4334 static inline bool cfs_bandwidth_used(void) 4335 { 4336 return static_key_false(&__cfs_bandwidth_used); 4337 } 4338 4339 void cfs_bandwidth_usage_inc(void) 4340 { 4341 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4342 } 4343 4344 void cfs_bandwidth_usage_dec(void) 4345 { 4346 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4347 } 4348 #else /* CONFIG_JUMP_LABEL */ 4349 static bool cfs_bandwidth_used(void) 4350 { 4351 return true; 4352 } 4353 4354 void cfs_bandwidth_usage_inc(void) {} 4355 void cfs_bandwidth_usage_dec(void) {} 4356 #endif /* CONFIG_JUMP_LABEL */ 4357 4358 /* 4359 * default period for cfs group bandwidth. 4360 * default: 0.1s, units: nanoseconds 4361 */ 4362 static inline u64 default_cfs_period(void) 4363 { 4364 return 100000000ULL; 4365 } 4366 4367 static inline u64 sched_cfs_bandwidth_slice(void) 4368 { 4369 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4370 } 4371 4372 /* 4373 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4374 * directly instead of rq->clock to avoid adding additional synchronization 4375 * around rq->lock. 4376 * 4377 * requires cfs_b->lock 4378 */ 4379 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4380 { 4381 if (cfs_b->quota != RUNTIME_INF) 4382 cfs_b->runtime = cfs_b->quota; 4383 } 4384 4385 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4386 { 4387 return &tg->cfs_bandwidth; 4388 } 4389 4390 /* returns 0 on failure to allocate runtime */ 4391 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4392 { 4393 struct task_group *tg = cfs_rq->tg; 4394 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4395 u64 amount = 0, min_amount; 4396 4397 /* note: this is a positive sum as runtime_remaining <= 0 */ 4398 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4399 4400 raw_spin_lock(&cfs_b->lock); 4401 if (cfs_b->quota == RUNTIME_INF) 4402 amount = min_amount; 4403 else { 4404 start_cfs_bandwidth(cfs_b); 4405 4406 if (cfs_b->runtime > 0) { 4407 amount = min(cfs_b->runtime, min_amount); 4408 cfs_b->runtime -= amount; 4409 cfs_b->idle = 0; 4410 } 4411 } 4412 raw_spin_unlock(&cfs_b->lock); 4413 4414 cfs_rq->runtime_remaining += amount; 4415 4416 return cfs_rq->runtime_remaining > 0; 4417 } 4418 4419 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4420 { 4421 /* dock delta_exec before expiring quota (as it could span periods) */ 4422 cfs_rq->runtime_remaining -= delta_exec; 4423 4424 if (likely(cfs_rq->runtime_remaining > 0)) 4425 return; 4426 4427 if (cfs_rq->throttled) 4428 return; 4429 /* 4430 * if we're unable to extend our runtime we resched so that the active 4431 * hierarchy can be throttled 4432 */ 4433 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4434 resched_curr(rq_of(cfs_rq)); 4435 } 4436 4437 static __always_inline 4438 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4439 { 4440 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4441 return; 4442 4443 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4444 } 4445 4446 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4447 { 4448 return cfs_bandwidth_used() && cfs_rq->throttled; 4449 } 4450 4451 /* check whether cfs_rq, or any parent, is throttled */ 4452 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4453 { 4454 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4455 } 4456 4457 /* 4458 * Ensure that neither of the group entities corresponding to src_cpu or 4459 * dest_cpu are members of a throttled hierarchy when performing group 4460 * load-balance operations. 4461 */ 4462 static inline int throttled_lb_pair(struct task_group *tg, 4463 int src_cpu, int dest_cpu) 4464 { 4465 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4466 4467 src_cfs_rq = tg->cfs_rq[src_cpu]; 4468 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4469 4470 return throttled_hierarchy(src_cfs_rq) || 4471 throttled_hierarchy(dest_cfs_rq); 4472 } 4473 4474 static int tg_unthrottle_up(struct task_group *tg, void *data) 4475 { 4476 struct rq *rq = data; 4477 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4478 4479 cfs_rq->throttle_count--; 4480 if (!cfs_rq->throttle_count) { 4481 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4482 cfs_rq->throttled_clock_task; 4483 4484 /* Add cfs_rq with already running entity in the list */ 4485 if (cfs_rq->nr_running >= 1) 4486 list_add_leaf_cfs_rq(cfs_rq); 4487 } 4488 4489 return 0; 4490 } 4491 4492 static int tg_throttle_down(struct task_group *tg, void *data) 4493 { 4494 struct rq *rq = data; 4495 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4496 4497 /* group is entering throttled state, stop time */ 4498 if (!cfs_rq->throttle_count) { 4499 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4500 list_del_leaf_cfs_rq(cfs_rq); 4501 } 4502 cfs_rq->throttle_count++; 4503 4504 return 0; 4505 } 4506 4507 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4508 { 4509 struct rq *rq = rq_of(cfs_rq); 4510 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4511 struct sched_entity *se; 4512 long task_delta, idle_task_delta, dequeue = 1; 4513 bool empty; 4514 4515 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4516 4517 /* freeze hierarchy runnable averages while throttled */ 4518 rcu_read_lock(); 4519 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4520 rcu_read_unlock(); 4521 4522 task_delta = cfs_rq->h_nr_running; 4523 idle_task_delta = cfs_rq->idle_h_nr_running; 4524 for_each_sched_entity(se) { 4525 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4526 /* throttled entity or throttle-on-deactivate */ 4527 if (!se->on_rq) 4528 break; 4529 4530 if (dequeue) 4531 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4532 qcfs_rq->h_nr_running -= task_delta; 4533 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4534 4535 if (qcfs_rq->load.weight) 4536 dequeue = 0; 4537 } 4538 4539 if (!se) 4540 sub_nr_running(rq, task_delta); 4541 4542 cfs_rq->throttled = 1; 4543 cfs_rq->throttled_clock = rq_clock(rq); 4544 raw_spin_lock(&cfs_b->lock); 4545 empty = list_empty(&cfs_b->throttled_cfs_rq); 4546 4547 /* 4548 * Add to the _head_ of the list, so that an already-started 4549 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is 4550 * not running add to the tail so that later runqueues don't get starved. 4551 */ 4552 if (cfs_b->distribute_running) 4553 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4554 else 4555 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4556 4557 /* 4558 * If we're the first throttled task, make sure the bandwidth 4559 * timer is running. 4560 */ 4561 if (empty) 4562 start_cfs_bandwidth(cfs_b); 4563 4564 raw_spin_unlock(&cfs_b->lock); 4565 } 4566 4567 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4568 { 4569 struct rq *rq = rq_of(cfs_rq); 4570 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4571 struct sched_entity *se; 4572 int enqueue = 1; 4573 long task_delta, idle_task_delta; 4574 4575 se = cfs_rq->tg->se[cpu_of(rq)]; 4576 4577 cfs_rq->throttled = 0; 4578 4579 update_rq_clock(rq); 4580 4581 raw_spin_lock(&cfs_b->lock); 4582 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4583 list_del_rcu(&cfs_rq->throttled_list); 4584 raw_spin_unlock(&cfs_b->lock); 4585 4586 /* update hierarchical throttle state */ 4587 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4588 4589 if (!cfs_rq->load.weight) 4590 return; 4591 4592 task_delta = cfs_rq->h_nr_running; 4593 idle_task_delta = cfs_rq->idle_h_nr_running; 4594 for_each_sched_entity(se) { 4595 if (se->on_rq) 4596 enqueue = 0; 4597 4598 cfs_rq = cfs_rq_of(se); 4599 if (enqueue) 4600 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4601 cfs_rq->h_nr_running += task_delta; 4602 cfs_rq->idle_h_nr_running += idle_task_delta; 4603 4604 if (cfs_rq_throttled(cfs_rq)) 4605 break; 4606 } 4607 4608 assert_list_leaf_cfs_rq(rq); 4609 4610 if (!se) 4611 add_nr_running(rq, task_delta); 4612 4613 /* Determine whether we need to wake up potentially idle CPU: */ 4614 if (rq->curr == rq->idle && rq->cfs.nr_running) 4615 resched_curr(rq); 4616 } 4617 4618 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining) 4619 { 4620 struct cfs_rq *cfs_rq; 4621 u64 runtime; 4622 u64 starting_runtime = remaining; 4623 4624 rcu_read_lock(); 4625 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4626 throttled_list) { 4627 struct rq *rq = rq_of(cfs_rq); 4628 struct rq_flags rf; 4629 4630 rq_lock_irqsave(rq, &rf); 4631 if (!cfs_rq_throttled(cfs_rq)) 4632 goto next; 4633 4634 /* By the above check, this should never be true */ 4635 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 4636 4637 runtime = -cfs_rq->runtime_remaining + 1; 4638 if (runtime > remaining) 4639 runtime = remaining; 4640 remaining -= runtime; 4641 4642 cfs_rq->runtime_remaining += runtime; 4643 4644 /* we check whether we're throttled above */ 4645 if (cfs_rq->runtime_remaining > 0) 4646 unthrottle_cfs_rq(cfs_rq); 4647 4648 next: 4649 rq_unlock_irqrestore(rq, &rf); 4650 4651 if (!remaining) 4652 break; 4653 } 4654 rcu_read_unlock(); 4655 4656 return starting_runtime - remaining; 4657 } 4658 4659 /* 4660 * Responsible for refilling a task_group's bandwidth and unthrottling its 4661 * cfs_rqs as appropriate. If there has been no activity within the last 4662 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4663 * used to track this state. 4664 */ 4665 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 4666 { 4667 u64 runtime; 4668 int throttled; 4669 4670 /* no need to continue the timer with no bandwidth constraint */ 4671 if (cfs_b->quota == RUNTIME_INF) 4672 goto out_deactivate; 4673 4674 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4675 cfs_b->nr_periods += overrun; 4676 4677 /* 4678 * idle depends on !throttled (for the case of a large deficit), and if 4679 * we're going inactive then everything else can be deferred 4680 */ 4681 if (cfs_b->idle && !throttled) 4682 goto out_deactivate; 4683 4684 __refill_cfs_bandwidth_runtime(cfs_b); 4685 4686 if (!throttled) { 4687 /* mark as potentially idle for the upcoming period */ 4688 cfs_b->idle = 1; 4689 return 0; 4690 } 4691 4692 /* account preceding periods in which throttling occurred */ 4693 cfs_b->nr_throttled += overrun; 4694 4695 /* 4696 * This check is repeated as we are holding onto the new bandwidth while 4697 * we unthrottle. This can potentially race with an unthrottled group 4698 * trying to acquire new bandwidth from the global pool. This can result 4699 * in us over-using our runtime if it is all used during this loop, but 4700 * only by limited amounts in that extreme case. 4701 */ 4702 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) { 4703 runtime = cfs_b->runtime; 4704 cfs_b->distribute_running = 1; 4705 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4706 /* we can't nest cfs_b->lock while distributing bandwidth */ 4707 runtime = distribute_cfs_runtime(cfs_b, runtime); 4708 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4709 4710 cfs_b->distribute_running = 0; 4711 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4712 4713 lsub_positive(&cfs_b->runtime, runtime); 4714 } 4715 4716 /* 4717 * While we are ensured activity in the period following an 4718 * unthrottle, this also covers the case in which the new bandwidth is 4719 * insufficient to cover the existing bandwidth deficit. (Forcing the 4720 * timer to remain active while there are any throttled entities.) 4721 */ 4722 cfs_b->idle = 0; 4723 4724 return 0; 4725 4726 out_deactivate: 4727 return 1; 4728 } 4729 4730 /* a cfs_rq won't donate quota below this amount */ 4731 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4732 /* minimum remaining period time to redistribute slack quota */ 4733 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4734 /* how long we wait to gather additional slack before distributing */ 4735 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4736 4737 /* 4738 * Are we near the end of the current quota period? 4739 * 4740 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4741 * hrtimer base being cleared by hrtimer_start. In the case of 4742 * migrate_hrtimers, base is never cleared, so we are fine. 4743 */ 4744 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4745 { 4746 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4747 u64 remaining; 4748 4749 /* if the call-back is running a quota refresh is already occurring */ 4750 if (hrtimer_callback_running(refresh_timer)) 4751 return 1; 4752 4753 /* is a quota refresh about to occur? */ 4754 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4755 if (remaining < min_expire) 4756 return 1; 4757 4758 return 0; 4759 } 4760 4761 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4762 { 4763 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4764 4765 /* if there's a quota refresh soon don't bother with slack */ 4766 if (runtime_refresh_within(cfs_b, min_left)) 4767 return; 4768 4769 /* don't push forwards an existing deferred unthrottle */ 4770 if (cfs_b->slack_started) 4771 return; 4772 cfs_b->slack_started = true; 4773 4774 hrtimer_start(&cfs_b->slack_timer, 4775 ns_to_ktime(cfs_bandwidth_slack_period), 4776 HRTIMER_MODE_REL); 4777 } 4778 4779 /* we know any runtime found here is valid as update_curr() precedes return */ 4780 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4781 { 4782 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4783 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4784 4785 if (slack_runtime <= 0) 4786 return; 4787 4788 raw_spin_lock(&cfs_b->lock); 4789 if (cfs_b->quota != RUNTIME_INF) { 4790 cfs_b->runtime += slack_runtime; 4791 4792 /* we are under rq->lock, defer unthrottling using a timer */ 4793 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4794 !list_empty(&cfs_b->throttled_cfs_rq)) 4795 start_cfs_slack_bandwidth(cfs_b); 4796 } 4797 raw_spin_unlock(&cfs_b->lock); 4798 4799 /* even if it's not valid for return we don't want to try again */ 4800 cfs_rq->runtime_remaining -= slack_runtime; 4801 } 4802 4803 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4804 { 4805 if (!cfs_bandwidth_used()) 4806 return; 4807 4808 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4809 return; 4810 4811 __return_cfs_rq_runtime(cfs_rq); 4812 } 4813 4814 /* 4815 * This is done with a timer (instead of inline with bandwidth return) since 4816 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4817 */ 4818 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4819 { 4820 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4821 unsigned long flags; 4822 4823 /* confirm we're still not at a refresh boundary */ 4824 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4825 cfs_b->slack_started = false; 4826 if (cfs_b->distribute_running) { 4827 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4828 return; 4829 } 4830 4831 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4832 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4833 return; 4834 } 4835 4836 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4837 runtime = cfs_b->runtime; 4838 4839 if (runtime) 4840 cfs_b->distribute_running = 1; 4841 4842 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4843 4844 if (!runtime) 4845 return; 4846 4847 runtime = distribute_cfs_runtime(cfs_b, runtime); 4848 4849 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4850 lsub_positive(&cfs_b->runtime, runtime); 4851 cfs_b->distribute_running = 0; 4852 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4853 } 4854 4855 /* 4856 * When a group wakes up we want to make sure that its quota is not already 4857 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4858 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4859 */ 4860 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4861 { 4862 if (!cfs_bandwidth_used()) 4863 return; 4864 4865 /* an active group must be handled by the update_curr()->put() path */ 4866 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4867 return; 4868 4869 /* ensure the group is not already throttled */ 4870 if (cfs_rq_throttled(cfs_rq)) 4871 return; 4872 4873 /* update runtime allocation */ 4874 account_cfs_rq_runtime(cfs_rq, 0); 4875 if (cfs_rq->runtime_remaining <= 0) 4876 throttle_cfs_rq(cfs_rq); 4877 } 4878 4879 static void sync_throttle(struct task_group *tg, int cpu) 4880 { 4881 struct cfs_rq *pcfs_rq, *cfs_rq; 4882 4883 if (!cfs_bandwidth_used()) 4884 return; 4885 4886 if (!tg->parent) 4887 return; 4888 4889 cfs_rq = tg->cfs_rq[cpu]; 4890 pcfs_rq = tg->parent->cfs_rq[cpu]; 4891 4892 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4893 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4894 } 4895 4896 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4897 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4898 { 4899 if (!cfs_bandwidth_used()) 4900 return false; 4901 4902 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4903 return false; 4904 4905 /* 4906 * it's possible for a throttled entity to be forced into a running 4907 * state (e.g. set_curr_task), in this case we're finished. 4908 */ 4909 if (cfs_rq_throttled(cfs_rq)) 4910 return true; 4911 4912 throttle_cfs_rq(cfs_rq); 4913 return true; 4914 } 4915 4916 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4917 { 4918 struct cfs_bandwidth *cfs_b = 4919 container_of(timer, struct cfs_bandwidth, slack_timer); 4920 4921 do_sched_cfs_slack_timer(cfs_b); 4922 4923 return HRTIMER_NORESTART; 4924 } 4925 4926 extern const u64 max_cfs_quota_period; 4927 4928 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4929 { 4930 struct cfs_bandwidth *cfs_b = 4931 container_of(timer, struct cfs_bandwidth, period_timer); 4932 unsigned long flags; 4933 int overrun; 4934 int idle = 0; 4935 int count = 0; 4936 4937 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4938 for (;;) { 4939 overrun = hrtimer_forward_now(timer, cfs_b->period); 4940 if (!overrun) 4941 break; 4942 4943 if (++count > 3) { 4944 u64 new, old = ktime_to_ns(cfs_b->period); 4945 4946 /* 4947 * Grow period by a factor of 2 to avoid losing precision. 4948 * Precision loss in the quota/period ratio can cause __cfs_schedulable 4949 * to fail. 4950 */ 4951 new = old * 2; 4952 if (new < max_cfs_quota_period) { 4953 cfs_b->period = ns_to_ktime(new); 4954 cfs_b->quota *= 2; 4955 4956 pr_warn_ratelimited( 4957 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 4958 smp_processor_id(), 4959 div_u64(new, NSEC_PER_USEC), 4960 div_u64(cfs_b->quota, NSEC_PER_USEC)); 4961 } else { 4962 pr_warn_ratelimited( 4963 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 4964 smp_processor_id(), 4965 div_u64(old, NSEC_PER_USEC), 4966 div_u64(cfs_b->quota, NSEC_PER_USEC)); 4967 } 4968 4969 /* reset count so we don't come right back in here */ 4970 count = 0; 4971 } 4972 4973 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 4974 } 4975 if (idle) 4976 cfs_b->period_active = 0; 4977 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4978 4979 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4980 } 4981 4982 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4983 { 4984 raw_spin_lock_init(&cfs_b->lock); 4985 cfs_b->runtime = 0; 4986 cfs_b->quota = RUNTIME_INF; 4987 cfs_b->period = ns_to_ktime(default_cfs_period()); 4988 4989 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4990 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4991 cfs_b->period_timer.function = sched_cfs_period_timer; 4992 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4993 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4994 cfs_b->distribute_running = 0; 4995 cfs_b->slack_started = false; 4996 } 4997 4998 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4999 { 5000 cfs_rq->runtime_enabled = 0; 5001 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5002 } 5003 5004 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5005 { 5006 lockdep_assert_held(&cfs_b->lock); 5007 5008 if (cfs_b->period_active) 5009 return; 5010 5011 cfs_b->period_active = 1; 5012 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5013 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5014 } 5015 5016 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5017 { 5018 /* init_cfs_bandwidth() was not called */ 5019 if (!cfs_b->throttled_cfs_rq.next) 5020 return; 5021 5022 hrtimer_cancel(&cfs_b->period_timer); 5023 hrtimer_cancel(&cfs_b->slack_timer); 5024 } 5025 5026 /* 5027 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5028 * 5029 * The race is harmless, since modifying bandwidth settings of unhooked group 5030 * bits doesn't do much. 5031 */ 5032 5033 /* cpu online calback */ 5034 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5035 { 5036 struct task_group *tg; 5037 5038 lockdep_assert_held(&rq->lock); 5039 5040 rcu_read_lock(); 5041 list_for_each_entry_rcu(tg, &task_groups, list) { 5042 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5043 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5044 5045 raw_spin_lock(&cfs_b->lock); 5046 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5047 raw_spin_unlock(&cfs_b->lock); 5048 } 5049 rcu_read_unlock(); 5050 } 5051 5052 /* cpu offline callback */ 5053 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5054 { 5055 struct task_group *tg; 5056 5057 lockdep_assert_held(&rq->lock); 5058 5059 rcu_read_lock(); 5060 list_for_each_entry_rcu(tg, &task_groups, list) { 5061 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5062 5063 if (!cfs_rq->runtime_enabled) 5064 continue; 5065 5066 /* 5067 * clock_task is not advancing so we just need to make sure 5068 * there's some valid quota amount 5069 */ 5070 cfs_rq->runtime_remaining = 1; 5071 /* 5072 * Offline rq is schedulable till CPU is completely disabled 5073 * in take_cpu_down(), so we prevent new cfs throttling here. 5074 */ 5075 cfs_rq->runtime_enabled = 0; 5076 5077 if (cfs_rq_throttled(cfs_rq)) 5078 unthrottle_cfs_rq(cfs_rq); 5079 } 5080 rcu_read_unlock(); 5081 } 5082 5083 #else /* CONFIG_CFS_BANDWIDTH */ 5084 5085 static inline bool cfs_bandwidth_used(void) 5086 { 5087 return false; 5088 } 5089 5090 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5091 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5092 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5093 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5094 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5095 5096 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5097 { 5098 return 0; 5099 } 5100 5101 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5102 { 5103 return 0; 5104 } 5105 5106 static inline int throttled_lb_pair(struct task_group *tg, 5107 int src_cpu, int dest_cpu) 5108 { 5109 return 0; 5110 } 5111 5112 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5113 5114 #ifdef CONFIG_FAIR_GROUP_SCHED 5115 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5116 #endif 5117 5118 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5119 { 5120 return NULL; 5121 } 5122 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5123 static inline void update_runtime_enabled(struct rq *rq) {} 5124 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5125 5126 #endif /* CONFIG_CFS_BANDWIDTH */ 5127 5128 /************************************************** 5129 * CFS operations on tasks: 5130 */ 5131 5132 #ifdef CONFIG_SCHED_HRTICK 5133 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5134 { 5135 struct sched_entity *se = &p->se; 5136 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5137 5138 SCHED_WARN_ON(task_rq(p) != rq); 5139 5140 if (rq->cfs.h_nr_running > 1) { 5141 u64 slice = sched_slice(cfs_rq, se); 5142 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5143 s64 delta = slice - ran; 5144 5145 if (delta < 0) { 5146 if (rq->curr == p) 5147 resched_curr(rq); 5148 return; 5149 } 5150 hrtick_start(rq, delta); 5151 } 5152 } 5153 5154 /* 5155 * called from enqueue/dequeue and updates the hrtick when the 5156 * current task is from our class and nr_running is low enough 5157 * to matter. 5158 */ 5159 static void hrtick_update(struct rq *rq) 5160 { 5161 struct task_struct *curr = rq->curr; 5162 5163 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5164 return; 5165 5166 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5167 hrtick_start_fair(rq, curr); 5168 } 5169 #else /* !CONFIG_SCHED_HRTICK */ 5170 static inline void 5171 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5172 { 5173 } 5174 5175 static inline void hrtick_update(struct rq *rq) 5176 { 5177 } 5178 #endif 5179 5180 #ifdef CONFIG_SMP 5181 static inline unsigned long cpu_util(int cpu); 5182 5183 static inline bool cpu_overutilized(int cpu) 5184 { 5185 return !fits_capacity(cpu_util(cpu), capacity_of(cpu)); 5186 } 5187 5188 static inline void update_overutilized_status(struct rq *rq) 5189 { 5190 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5191 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5192 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5193 } 5194 } 5195 #else 5196 static inline void update_overutilized_status(struct rq *rq) { } 5197 #endif 5198 5199 /* 5200 * The enqueue_task method is called before nr_running is 5201 * increased. Here we update the fair scheduling stats and 5202 * then put the task into the rbtree: 5203 */ 5204 static void 5205 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5206 { 5207 struct cfs_rq *cfs_rq; 5208 struct sched_entity *se = &p->se; 5209 int idle_h_nr_running = task_has_idle_policy(p); 5210 5211 /* 5212 * The code below (indirectly) updates schedutil which looks at 5213 * the cfs_rq utilization to select a frequency. 5214 * Let's add the task's estimated utilization to the cfs_rq's 5215 * estimated utilization, before we update schedutil. 5216 */ 5217 util_est_enqueue(&rq->cfs, p); 5218 5219 /* 5220 * If in_iowait is set, the code below may not trigger any cpufreq 5221 * utilization updates, so do it here explicitly with the IOWAIT flag 5222 * passed. 5223 */ 5224 if (p->in_iowait) 5225 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5226 5227 for_each_sched_entity(se) { 5228 if (se->on_rq) 5229 break; 5230 cfs_rq = cfs_rq_of(se); 5231 enqueue_entity(cfs_rq, se, flags); 5232 5233 /* 5234 * end evaluation on encountering a throttled cfs_rq 5235 * 5236 * note: in the case of encountering a throttled cfs_rq we will 5237 * post the final h_nr_running increment below. 5238 */ 5239 if (cfs_rq_throttled(cfs_rq)) 5240 break; 5241 cfs_rq->h_nr_running++; 5242 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5243 5244 flags = ENQUEUE_WAKEUP; 5245 } 5246 5247 for_each_sched_entity(se) { 5248 cfs_rq = cfs_rq_of(se); 5249 cfs_rq->h_nr_running++; 5250 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5251 5252 if (cfs_rq_throttled(cfs_rq)) 5253 break; 5254 5255 update_load_avg(cfs_rq, se, UPDATE_TG); 5256 update_cfs_group(se); 5257 } 5258 5259 if (!se) { 5260 add_nr_running(rq, 1); 5261 /* 5262 * Since new tasks are assigned an initial util_avg equal to 5263 * half of the spare capacity of their CPU, tiny tasks have the 5264 * ability to cross the overutilized threshold, which will 5265 * result in the load balancer ruining all the task placement 5266 * done by EAS. As a way to mitigate that effect, do not account 5267 * for the first enqueue operation of new tasks during the 5268 * overutilized flag detection. 5269 * 5270 * A better way of solving this problem would be to wait for 5271 * the PELT signals of tasks to converge before taking them 5272 * into account, but that is not straightforward to implement, 5273 * and the following generally works well enough in practice. 5274 */ 5275 if (flags & ENQUEUE_WAKEUP) 5276 update_overutilized_status(rq); 5277 5278 } 5279 5280 if (cfs_bandwidth_used()) { 5281 /* 5282 * When bandwidth control is enabled; the cfs_rq_throttled() 5283 * breaks in the above iteration can result in incomplete 5284 * leaf list maintenance, resulting in triggering the assertion 5285 * below. 5286 */ 5287 for_each_sched_entity(se) { 5288 cfs_rq = cfs_rq_of(se); 5289 5290 if (list_add_leaf_cfs_rq(cfs_rq)) 5291 break; 5292 } 5293 } 5294 5295 assert_list_leaf_cfs_rq(rq); 5296 5297 hrtick_update(rq); 5298 } 5299 5300 static void set_next_buddy(struct sched_entity *se); 5301 5302 /* 5303 * The dequeue_task method is called before nr_running is 5304 * decreased. We remove the task from the rbtree and 5305 * update the fair scheduling stats: 5306 */ 5307 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5308 { 5309 struct cfs_rq *cfs_rq; 5310 struct sched_entity *se = &p->se; 5311 int task_sleep = flags & DEQUEUE_SLEEP; 5312 int idle_h_nr_running = task_has_idle_policy(p); 5313 5314 for_each_sched_entity(se) { 5315 cfs_rq = cfs_rq_of(se); 5316 dequeue_entity(cfs_rq, se, flags); 5317 5318 /* 5319 * end evaluation on encountering a throttled cfs_rq 5320 * 5321 * note: in the case of encountering a throttled cfs_rq we will 5322 * post the final h_nr_running decrement below. 5323 */ 5324 if (cfs_rq_throttled(cfs_rq)) 5325 break; 5326 cfs_rq->h_nr_running--; 5327 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5328 5329 /* Don't dequeue parent if it has other entities besides us */ 5330 if (cfs_rq->load.weight) { 5331 /* Avoid re-evaluating load for this entity: */ 5332 se = parent_entity(se); 5333 /* 5334 * Bias pick_next to pick a task from this cfs_rq, as 5335 * p is sleeping when it is within its sched_slice. 5336 */ 5337 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5338 set_next_buddy(se); 5339 break; 5340 } 5341 flags |= DEQUEUE_SLEEP; 5342 } 5343 5344 for_each_sched_entity(se) { 5345 cfs_rq = cfs_rq_of(se); 5346 cfs_rq->h_nr_running--; 5347 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5348 5349 if (cfs_rq_throttled(cfs_rq)) 5350 break; 5351 5352 update_load_avg(cfs_rq, se, UPDATE_TG); 5353 update_cfs_group(se); 5354 } 5355 5356 if (!se) 5357 sub_nr_running(rq, 1); 5358 5359 util_est_dequeue(&rq->cfs, p, task_sleep); 5360 hrtick_update(rq); 5361 } 5362 5363 #ifdef CONFIG_SMP 5364 5365 /* Working cpumask for: load_balance, load_balance_newidle. */ 5366 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5367 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5368 5369 #ifdef CONFIG_NO_HZ_COMMON 5370 5371 static struct { 5372 cpumask_var_t idle_cpus_mask; 5373 atomic_t nr_cpus; 5374 int has_blocked; /* Idle CPUS has blocked load */ 5375 unsigned long next_balance; /* in jiffy units */ 5376 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5377 } nohz ____cacheline_aligned; 5378 5379 #endif /* CONFIG_NO_HZ_COMMON */ 5380 5381 /* CPU only has SCHED_IDLE tasks enqueued */ 5382 static int sched_idle_cpu(int cpu) 5383 { 5384 struct rq *rq = cpu_rq(cpu); 5385 5386 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5387 rq->nr_running); 5388 } 5389 5390 static unsigned long cpu_load(struct rq *rq) 5391 { 5392 return cfs_rq_load_avg(&rq->cfs); 5393 } 5394 5395 /* 5396 * cpu_load_without - compute CPU load without any contributions from *p 5397 * @cpu: the CPU which load is requested 5398 * @p: the task which load should be discounted 5399 * 5400 * The load of a CPU is defined by the load of tasks currently enqueued on that 5401 * CPU as well as tasks which are currently sleeping after an execution on that 5402 * CPU. 5403 * 5404 * This method returns the load of the specified CPU by discounting the load of 5405 * the specified task, whenever the task is currently contributing to the CPU 5406 * load. 5407 */ 5408 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 5409 { 5410 struct cfs_rq *cfs_rq; 5411 unsigned int load; 5412 5413 /* Task has no contribution or is new */ 5414 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5415 return cpu_load(rq); 5416 5417 cfs_rq = &rq->cfs; 5418 load = READ_ONCE(cfs_rq->avg.load_avg); 5419 5420 /* Discount task's util from CPU's util */ 5421 lsub_positive(&load, task_h_load(p)); 5422 5423 return load; 5424 } 5425 5426 static unsigned long capacity_of(int cpu) 5427 { 5428 return cpu_rq(cpu)->cpu_capacity; 5429 } 5430 5431 static void record_wakee(struct task_struct *p) 5432 { 5433 /* 5434 * Only decay a single time; tasks that have less then 1 wakeup per 5435 * jiffy will not have built up many flips. 5436 */ 5437 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5438 current->wakee_flips >>= 1; 5439 current->wakee_flip_decay_ts = jiffies; 5440 } 5441 5442 if (current->last_wakee != p) { 5443 current->last_wakee = p; 5444 current->wakee_flips++; 5445 } 5446 } 5447 5448 /* 5449 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5450 * 5451 * A waker of many should wake a different task than the one last awakened 5452 * at a frequency roughly N times higher than one of its wakees. 5453 * 5454 * In order to determine whether we should let the load spread vs consolidating 5455 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5456 * partner, and a factor of lls_size higher frequency in the other. 5457 * 5458 * With both conditions met, we can be relatively sure that the relationship is 5459 * non-monogamous, with partner count exceeding socket size. 5460 * 5461 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5462 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5463 * socket size. 5464 */ 5465 static int wake_wide(struct task_struct *p) 5466 { 5467 unsigned int master = current->wakee_flips; 5468 unsigned int slave = p->wakee_flips; 5469 int factor = this_cpu_read(sd_llc_size); 5470 5471 if (master < slave) 5472 swap(master, slave); 5473 if (slave < factor || master < slave * factor) 5474 return 0; 5475 return 1; 5476 } 5477 5478 /* 5479 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5480 * soonest. For the purpose of speed we only consider the waking and previous 5481 * CPU. 5482 * 5483 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5484 * cache-affine and is (or will be) idle. 5485 * 5486 * wake_affine_weight() - considers the weight to reflect the average 5487 * scheduling latency of the CPUs. This seems to work 5488 * for the overloaded case. 5489 */ 5490 static int 5491 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5492 { 5493 /* 5494 * If this_cpu is idle, it implies the wakeup is from interrupt 5495 * context. Only allow the move if cache is shared. Otherwise an 5496 * interrupt intensive workload could force all tasks onto one 5497 * node depending on the IO topology or IRQ affinity settings. 5498 * 5499 * If the prev_cpu is idle and cache affine then avoid a migration. 5500 * There is no guarantee that the cache hot data from an interrupt 5501 * is more important than cache hot data on the prev_cpu and from 5502 * a cpufreq perspective, it's better to have higher utilisation 5503 * on one CPU. 5504 */ 5505 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5506 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5507 5508 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5509 return this_cpu; 5510 5511 return nr_cpumask_bits; 5512 } 5513 5514 static int 5515 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5516 int this_cpu, int prev_cpu, int sync) 5517 { 5518 s64 this_eff_load, prev_eff_load; 5519 unsigned long task_load; 5520 5521 this_eff_load = cpu_load(cpu_rq(this_cpu)); 5522 5523 if (sync) { 5524 unsigned long current_load = task_h_load(current); 5525 5526 if (current_load > this_eff_load) 5527 return this_cpu; 5528 5529 this_eff_load -= current_load; 5530 } 5531 5532 task_load = task_h_load(p); 5533 5534 this_eff_load += task_load; 5535 if (sched_feat(WA_BIAS)) 5536 this_eff_load *= 100; 5537 this_eff_load *= capacity_of(prev_cpu); 5538 5539 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 5540 prev_eff_load -= task_load; 5541 if (sched_feat(WA_BIAS)) 5542 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5543 prev_eff_load *= capacity_of(this_cpu); 5544 5545 /* 5546 * If sync, adjust the weight of prev_eff_load such that if 5547 * prev_eff == this_eff that select_idle_sibling() will consider 5548 * stacking the wakee on top of the waker if no other CPU is 5549 * idle. 5550 */ 5551 if (sync) 5552 prev_eff_load += 1; 5553 5554 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5555 } 5556 5557 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5558 int this_cpu, int prev_cpu, int sync) 5559 { 5560 int target = nr_cpumask_bits; 5561 5562 if (sched_feat(WA_IDLE)) 5563 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5564 5565 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5566 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5567 5568 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5569 if (target == nr_cpumask_bits) 5570 return prev_cpu; 5571 5572 schedstat_inc(sd->ttwu_move_affine); 5573 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5574 return target; 5575 } 5576 5577 static struct sched_group * 5578 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5579 int this_cpu, int sd_flag); 5580 5581 /* 5582 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5583 */ 5584 static int 5585 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5586 { 5587 unsigned long load, min_load = ULONG_MAX; 5588 unsigned int min_exit_latency = UINT_MAX; 5589 u64 latest_idle_timestamp = 0; 5590 int least_loaded_cpu = this_cpu; 5591 int shallowest_idle_cpu = -1, si_cpu = -1; 5592 int i; 5593 5594 /* Check if we have any choice: */ 5595 if (group->group_weight == 1) 5596 return cpumask_first(sched_group_span(group)); 5597 5598 /* Traverse only the allowed CPUs */ 5599 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 5600 if (available_idle_cpu(i)) { 5601 struct rq *rq = cpu_rq(i); 5602 struct cpuidle_state *idle = idle_get_state(rq); 5603 if (idle && idle->exit_latency < min_exit_latency) { 5604 /* 5605 * We give priority to a CPU whose idle state 5606 * has the smallest exit latency irrespective 5607 * of any idle timestamp. 5608 */ 5609 min_exit_latency = idle->exit_latency; 5610 latest_idle_timestamp = rq->idle_stamp; 5611 shallowest_idle_cpu = i; 5612 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5613 rq->idle_stamp > latest_idle_timestamp) { 5614 /* 5615 * If equal or no active idle state, then 5616 * the most recently idled CPU might have 5617 * a warmer cache. 5618 */ 5619 latest_idle_timestamp = rq->idle_stamp; 5620 shallowest_idle_cpu = i; 5621 } 5622 } else if (shallowest_idle_cpu == -1 && si_cpu == -1) { 5623 if (sched_idle_cpu(i)) { 5624 si_cpu = i; 5625 continue; 5626 } 5627 5628 load = cpu_load(cpu_rq(i)); 5629 if (load < min_load) { 5630 min_load = load; 5631 least_loaded_cpu = i; 5632 } 5633 } 5634 } 5635 5636 if (shallowest_idle_cpu != -1) 5637 return shallowest_idle_cpu; 5638 if (si_cpu != -1) 5639 return si_cpu; 5640 return least_loaded_cpu; 5641 } 5642 5643 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5644 int cpu, int prev_cpu, int sd_flag) 5645 { 5646 int new_cpu = cpu; 5647 5648 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 5649 return prev_cpu; 5650 5651 /* 5652 * We need task's util for cpu_util_without, sync it up to 5653 * prev_cpu's last_update_time. 5654 */ 5655 if (!(sd_flag & SD_BALANCE_FORK)) 5656 sync_entity_load_avg(&p->se); 5657 5658 while (sd) { 5659 struct sched_group *group; 5660 struct sched_domain *tmp; 5661 int weight; 5662 5663 if (!(sd->flags & sd_flag)) { 5664 sd = sd->child; 5665 continue; 5666 } 5667 5668 group = find_idlest_group(sd, p, cpu, sd_flag); 5669 if (!group) { 5670 sd = sd->child; 5671 continue; 5672 } 5673 5674 new_cpu = find_idlest_group_cpu(group, p, cpu); 5675 if (new_cpu == cpu) { 5676 /* Now try balancing at a lower domain level of 'cpu': */ 5677 sd = sd->child; 5678 continue; 5679 } 5680 5681 /* Now try balancing at a lower domain level of 'new_cpu': */ 5682 cpu = new_cpu; 5683 weight = sd->span_weight; 5684 sd = NULL; 5685 for_each_domain(cpu, tmp) { 5686 if (weight <= tmp->span_weight) 5687 break; 5688 if (tmp->flags & sd_flag) 5689 sd = tmp; 5690 } 5691 } 5692 5693 return new_cpu; 5694 } 5695 5696 #ifdef CONFIG_SCHED_SMT 5697 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5698 EXPORT_SYMBOL_GPL(sched_smt_present); 5699 5700 static inline void set_idle_cores(int cpu, int val) 5701 { 5702 struct sched_domain_shared *sds; 5703 5704 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5705 if (sds) 5706 WRITE_ONCE(sds->has_idle_cores, val); 5707 } 5708 5709 static inline bool test_idle_cores(int cpu, bool def) 5710 { 5711 struct sched_domain_shared *sds; 5712 5713 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5714 if (sds) 5715 return READ_ONCE(sds->has_idle_cores); 5716 5717 return def; 5718 } 5719 5720 /* 5721 * Scans the local SMT mask to see if the entire core is idle, and records this 5722 * information in sd_llc_shared->has_idle_cores. 5723 * 5724 * Since SMT siblings share all cache levels, inspecting this limited remote 5725 * state should be fairly cheap. 5726 */ 5727 void __update_idle_core(struct rq *rq) 5728 { 5729 int core = cpu_of(rq); 5730 int cpu; 5731 5732 rcu_read_lock(); 5733 if (test_idle_cores(core, true)) 5734 goto unlock; 5735 5736 for_each_cpu(cpu, cpu_smt_mask(core)) { 5737 if (cpu == core) 5738 continue; 5739 5740 if (!available_idle_cpu(cpu)) 5741 goto unlock; 5742 } 5743 5744 set_idle_cores(core, 1); 5745 unlock: 5746 rcu_read_unlock(); 5747 } 5748 5749 /* 5750 * Scan the entire LLC domain for idle cores; this dynamically switches off if 5751 * there are no idle cores left in the system; tracked through 5752 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 5753 */ 5754 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5755 { 5756 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 5757 int core, cpu; 5758 5759 if (!static_branch_likely(&sched_smt_present)) 5760 return -1; 5761 5762 if (!test_idle_cores(target, false)) 5763 return -1; 5764 5765 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 5766 5767 for_each_cpu_wrap(core, cpus, target) { 5768 bool idle = true; 5769 5770 for_each_cpu(cpu, cpu_smt_mask(core)) { 5771 __cpumask_clear_cpu(cpu, cpus); 5772 if (!available_idle_cpu(cpu)) 5773 idle = false; 5774 } 5775 5776 if (idle) 5777 return core; 5778 } 5779 5780 /* 5781 * Failed to find an idle core; stop looking for one. 5782 */ 5783 set_idle_cores(target, 0); 5784 5785 return -1; 5786 } 5787 5788 /* 5789 * Scan the local SMT mask for idle CPUs. 5790 */ 5791 static int select_idle_smt(struct task_struct *p, int target) 5792 { 5793 int cpu, si_cpu = -1; 5794 5795 if (!static_branch_likely(&sched_smt_present)) 5796 return -1; 5797 5798 for_each_cpu(cpu, cpu_smt_mask(target)) { 5799 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 5800 continue; 5801 if (available_idle_cpu(cpu)) 5802 return cpu; 5803 if (si_cpu == -1 && sched_idle_cpu(cpu)) 5804 si_cpu = cpu; 5805 } 5806 5807 return si_cpu; 5808 } 5809 5810 #else /* CONFIG_SCHED_SMT */ 5811 5812 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5813 { 5814 return -1; 5815 } 5816 5817 static inline int select_idle_smt(struct task_struct *p, int target) 5818 { 5819 return -1; 5820 } 5821 5822 #endif /* CONFIG_SCHED_SMT */ 5823 5824 /* 5825 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 5826 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 5827 * average idle time for this rq (as found in rq->avg_idle). 5828 */ 5829 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 5830 { 5831 struct sched_domain *this_sd; 5832 u64 avg_cost, avg_idle; 5833 u64 time, cost; 5834 s64 delta; 5835 int this = smp_processor_id(); 5836 int cpu, nr = INT_MAX, si_cpu = -1; 5837 5838 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 5839 if (!this_sd) 5840 return -1; 5841 5842 /* 5843 * Due to large variance we need a large fuzz factor; hackbench in 5844 * particularly is sensitive here. 5845 */ 5846 avg_idle = this_rq()->avg_idle / 512; 5847 avg_cost = this_sd->avg_scan_cost + 1; 5848 5849 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 5850 return -1; 5851 5852 if (sched_feat(SIS_PROP)) { 5853 u64 span_avg = sd->span_weight * avg_idle; 5854 if (span_avg > 4*avg_cost) 5855 nr = div_u64(span_avg, avg_cost); 5856 else 5857 nr = 4; 5858 } 5859 5860 time = cpu_clock(this); 5861 5862 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { 5863 if (!--nr) 5864 return si_cpu; 5865 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 5866 continue; 5867 if (available_idle_cpu(cpu)) 5868 break; 5869 if (si_cpu == -1 && sched_idle_cpu(cpu)) 5870 si_cpu = cpu; 5871 } 5872 5873 time = cpu_clock(this) - time; 5874 cost = this_sd->avg_scan_cost; 5875 delta = (s64)(time - cost) / 8; 5876 this_sd->avg_scan_cost += delta; 5877 5878 return cpu; 5879 } 5880 5881 /* 5882 * Try and locate an idle core/thread in the LLC cache domain. 5883 */ 5884 static int select_idle_sibling(struct task_struct *p, int prev, int target) 5885 { 5886 struct sched_domain *sd; 5887 int i, recent_used_cpu; 5888 5889 if (available_idle_cpu(target) || sched_idle_cpu(target)) 5890 return target; 5891 5892 /* 5893 * If the previous CPU is cache affine and idle, don't be stupid: 5894 */ 5895 if (prev != target && cpus_share_cache(prev, target) && 5896 (available_idle_cpu(prev) || sched_idle_cpu(prev))) 5897 return prev; 5898 5899 /* Check a recently used CPU as a potential idle candidate: */ 5900 recent_used_cpu = p->recent_used_cpu; 5901 if (recent_used_cpu != prev && 5902 recent_used_cpu != target && 5903 cpus_share_cache(recent_used_cpu, target) && 5904 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 5905 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) { 5906 /* 5907 * Replace recent_used_cpu with prev as it is a potential 5908 * candidate for the next wake: 5909 */ 5910 p->recent_used_cpu = prev; 5911 return recent_used_cpu; 5912 } 5913 5914 sd = rcu_dereference(per_cpu(sd_llc, target)); 5915 if (!sd) 5916 return target; 5917 5918 i = select_idle_core(p, sd, target); 5919 if ((unsigned)i < nr_cpumask_bits) 5920 return i; 5921 5922 i = select_idle_cpu(p, sd, target); 5923 if ((unsigned)i < nr_cpumask_bits) 5924 return i; 5925 5926 i = select_idle_smt(p, target); 5927 if ((unsigned)i < nr_cpumask_bits) 5928 return i; 5929 5930 return target; 5931 } 5932 5933 /** 5934 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks 5935 * @cpu: the CPU to get the utilization of 5936 * 5937 * The unit of the return value must be the one of capacity so we can compare 5938 * the utilization with the capacity of the CPU that is available for CFS task 5939 * (ie cpu_capacity). 5940 * 5941 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 5942 * recent utilization of currently non-runnable tasks on a CPU. It represents 5943 * the amount of utilization of a CPU in the range [0..capacity_orig] where 5944 * capacity_orig is the cpu_capacity available at the highest frequency 5945 * (arch_scale_freq_capacity()). 5946 * The utilization of a CPU converges towards a sum equal to or less than the 5947 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 5948 * the running time on this CPU scaled by capacity_curr. 5949 * 5950 * The estimated utilization of a CPU is defined to be the maximum between its 5951 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 5952 * currently RUNNABLE on that CPU. 5953 * This allows to properly represent the expected utilization of a CPU which 5954 * has just got a big task running since a long sleep period. At the same time 5955 * however it preserves the benefits of the "blocked utilization" in 5956 * describing the potential for other tasks waking up on the same CPU. 5957 * 5958 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 5959 * higher than capacity_orig because of unfortunate rounding in 5960 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 5961 * the average stabilizes with the new running time. We need to check that the 5962 * utilization stays within the range of [0..capacity_orig] and cap it if 5963 * necessary. Without utilization capping, a group could be seen as overloaded 5964 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 5965 * available capacity. We allow utilization to overshoot capacity_curr (but not 5966 * capacity_orig) as it useful for predicting the capacity required after task 5967 * migrations (scheduler-driven DVFS). 5968 * 5969 * Return: the (estimated) utilization for the specified CPU 5970 */ 5971 static inline unsigned long cpu_util(int cpu) 5972 { 5973 struct cfs_rq *cfs_rq; 5974 unsigned int util; 5975 5976 cfs_rq = &cpu_rq(cpu)->cfs; 5977 util = READ_ONCE(cfs_rq->avg.util_avg); 5978 5979 if (sched_feat(UTIL_EST)) 5980 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 5981 5982 return min_t(unsigned long, util, capacity_orig_of(cpu)); 5983 } 5984 5985 /* 5986 * cpu_util_without: compute cpu utilization without any contributions from *p 5987 * @cpu: the CPU which utilization is requested 5988 * @p: the task which utilization should be discounted 5989 * 5990 * The utilization of a CPU is defined by the utilization of tasks currently 5991 * enqueued on that CPU as well as tasks which are currently sleeping after an 5992 * execution on that CPU. 5993 * 5994 * This method returns the utilization of the specified CPU by discounting the 5995 * utilization of the specified task, whenever the task is currently 5996 * contributing to the CPU utilization. 5997 */ 5998 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 5999 { 6000 struct cfs_rq *cfs_rq; 6001 unsigned int util; 6002 6003 /* Task has no contribution or is new */ 6004 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6005 return cpu_util(cpu); 6006 6007 cfs_rq = &cpu_rq(cpu)->cfs; 6008 util = READ_ONCE(cfs_rq->avg.util_avg); 6009 6010 /* Discount task's util from CPU's util */ 6011 lsub_positive(&util, task_util(p)); 6012 6013 /* 6014 * Covered cases: 6015 * 6016 * a) if *p is the only task sleeping on this CPU, then: 6017 * cpu_util (== task_util) > util_est (== 0) 6018 * and thus we return: 6019 * cpu_util_without = (cpu_util - task_util) = 0 6020 * 6021 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6022 * IDLE, then: 6023 * cpu_util >= task_util 6024 * cpu_util > util_est (== 0) 6025 * and thus we discount *p's blocked utilization to return: 6026 * cpu_util_without = (cpu_util - task_util) >= 0 6027 * 6028 * c) if other tasks are RUNNABLE on that CPU and 6029 * util_est > cpu_util 6030 * then we use util_est since it returns a more restrictive 6031 * estimation of the spare capacity on that CPU, by just 6032 * considering the expected utilization of tasks already 6033 * runnable on that CPU. 6034 * 6035 * Cases a) and b) are covered by the above code, while case c) is 6036 * covered by the following code when estimated utilization is 6037 * enabled. 6038 */ 6039 if (sched_feat(UTIL_EST)) { 6040 unsigned int estimated = 6041 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6042 6043 /* 6044 * Despite the following checks we still have a small window 6045 * for a possible race, when an execl's select_task_rq_fair() 6046 * races with LB's detach_task(): 6047 * 6048 * detach_task() 6049 * p->on_rq = TASK_ON_RQ_MIGRATING; 6050 * ---------------------------------- A 6051 * deactivate_task() \ 6052 * dequeue_task() + RaceTime 6053 * util_est_dequeue() / 6054 * ---------------------------------- B 6055 * 6056 * The additional check on "current == p" it's required to 6057 * properly fix the execl regression and it helps in further 6058 * reducing the chances for the above race. 6059 */ 6060 if (unlikely(task_on_rq_queued(p) || current == p)) 6061 lsub_positive(&estimated, _task_util_est(p)); 6062 6063 util = max(util, estimated); 6064 } 6065 6066 /* 6067 * Utilization (estimated) can exceed the CPU capacity, thus let's 6068 * clamp to the maximum CPU capacity to ensure consistency with 6069 * the cpu_util call. 6070 */ 6071 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6072 } 6073 6074 /* 6075 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 6076 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 6077 * 6078 * In that case WAKE_AFFINE doesn't make sense and we'll let 6079 * BALANCE_WAKE sort things out. 6080 */ 6081 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 6082 { 6083 long min_cap, max_cap; 6084 6085 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 6086 return 0; 6087 6088 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 6089 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 6090 6091 /* Minimum capacity is close to max, no need to abort wake_affine */ 6092 if (max_cap - min_cap < max_cap >> 3) 6093 return 0; 6094 6095 /* Bring task utilization in sync with prev_cpu */ 6096 sync_entity_load_avg(&p->se); 6097 6098 return !task_fits_capacity(p, min_cap); 6099 } 6100 6101 /* 6102 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6103 * to @dst_cpu. 6104 */ 6105 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6106 { 6107 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6108 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6109 6110 /* 6111 * If @p migrates from @cpu to another, remove its contribution. Or, 6112 * if @p migrates from another CPU to @cpu, add its contribution. In 6113 * the other cases, @cpu is not impacted by the migration, so the 6114 * util_avg should already be correct. 6115 */ 6116 if (task_cpu(p) == cpu && dst_cpu != cpu) 6117 sub_positive(&util, task_util(p)); 6118 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6119 util += task_util(p); 6120 6121 if (sched_feat(UTIL_EST)) { 6122 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6123 6124 /* 6125 * During wake-up, the task isn't enqueued yet and doesn't 6126 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6127 * so just add it (if needed) to "simulate" what will be 6128 * cpu_util() after the task has been enqueued. 6129 */ 6130 if (dst_cpu == cpu) 6131 util_est += _task_util_est(p); 6132 6133 util = max(util, util_est); 6134 } 6135 6136 return min(util, capacity_orig_of(cpu)); 6137 } 6138 6139 /* 6140 * compute_energy(): Estimates the energy that @pd would consume if @p was 6141 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6142 * landscape of @pd's CPUs after the task migration, and uses the Energy Model 6143 * to compute what would be the energy if we decided to actually migrate that 6144 * task. 6145 */ 6146 static long 6147 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6148 { 6149 struct cpumask *pd_mask = perf_domain_span(pd); 6150 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6151 unsigned long max_util = 0, sum_util = 0; 6152 int cpu; 6153 6154 /* 6155 * The capacity state of CPUs of the current rd can be driven by CPUs 6156 * of another rd if they belong to the same pd. So, account for the 6157 * utilization of these CPUs too by masking pd with cpu_online_mask 6158 * instead of the rd span. 6159 * 6160 * If an entire pd is outside of the current rd, it will not appear in 6161 * its pd list and will not be accounted by compute_energy(). 6162 */ 6163 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6164 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu); 6165 struct task_struct *tsk = cpu == dst_cpu ? p : NULL; 6166 6167 /* 6168 * Busy time computation: utilization clamping is not 6169 * required since the ratio (sum_util / cpu_capacity) 6170 * is already enough to scale the EM reported power 6171 * consumption at the (eventually clamped) cpu_capacity. 6172 */ 6173 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6174 ENERGY_UTIL, NULL); 6175 6176 /* 6177 * Performance domain frequency: utilization clamping 6178 * must be considered since it affects the selection 6179 * of the performance domain frequency. 6180 * NOTE: in case RT tasks are running, by default the 6181 * FREQUENCY_UTIL's utilization can be max OPP. 6182 */ 6183 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6184 FREQUENCY_UTIL, tsk); 6185 max_util = max(max_util, cpu_util); 6186 } 6187 6188 return em_pd_energy(pd->em_pd, max_util, sum_util); 6189 } 6190 6191 /* 6192 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6193 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6194 * spare capacity in each performance domain and uses it as a potential 6195 * candidate to execute the task. Then, it uses the Energy Model to figure 6196 * out which of the CPU candidates is the most energy-efficient. 6197 * 6198 * The rationale for this heuristic is as follows. In a performance domain, 6199 * all the most energy efficient CPU candidates (according to the Energy 6200 * Model) are those for which we'll request a low frequency. When there are 6201 * several CPUs for which the frequency request will be the same, we don't 6202 * have enough data to break the tie between them, because the Energy Model 6203 * only includes active power costs. With this model, if we assume that 6204 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6205 * the maximum spare capacity in a performance domain is guaranteed to be among 6206 * the best candidates of the performance domain. 6207 * 6208 * In practice, it could be preferable from an energy standpoint to pack 6209 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6210 * but that could also hurt our chances to go cluster idle, and we have no 6211 * ways to tell with the current Energy Model if this is actually a good 6212 * idea or not. So, find_energy_efficient_cpu() basically favors 6213 * cluster-packing, and spreading inside a cluster. That should at least be 6214 * a good thing for latency, and this is consistent with the idea that most 6215 * of the energy savings of EAS come from the asymmetry of the system, and 6216 * not so much from breaking the tie between identical CPUs. That's also the 6217 * reason why EAS is enabled in the topology code only for systems where 6218 * SD_ASYM_CPUCAPACITY is set. 6219 * 6220 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6221 * they don't have any useful utilization data yet and it's not possible to 6222 * forecast their impact on energy consumption. Consequently, they will be 6223 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6224 * to be energy-inefficient in some use-cases. The alternative would be to 6225 * bias new tasks towards specific types of CPUs first, or to try to infer 6226 * their util_avg from the parent task, but those heuristics could hurt 6227 * other use-cases too. So, until someone finds a better way to solve this, 6228 * let's keep things simple by re-using the existing slow path. 6229 */ 6230 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6231 { 6232 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6233 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6234 unsigned long cpu_cap, util, base_energy = 0; 6235 int cpu, best_energy_cpu = prev_cpu; 6236 struct sched_domain *sd; 6237 struct perf_domain *pd; 6238 6239 rcu_read_lock(); 6240 pd = rcu_dereference(rd->pd); 6241 if (!pd || READ_ONCE(rd->overutilized)) 6242 goto fail; 6243 6244 /* 6245 * Energy-aware wake-up happens on the lowest sched_domain starting 6246 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6247 */ 6248 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6249 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6250 sd = sd->parent; 6251 if (!sd) 6252 goto fail; 6253 6254 sync_entity_load_avg(&p->se); 6255 if (!task_util_est(p)) 6256 goto unlock; 6257 6258 for (; pd; pd = pd->next) { 6259 unsigned long cur_delta, spare_cap, max_spare_cap = 0; 6260 unsigned long base_energy_pd; 6261 int max_spare_cap_cpu = -1; 6262 6263 /* Compute the 'base' energy of the pd, without @p */ 6264 base_energy_pd = compute_energy(p, -1, pd); 6265 base_energy += base_energy_pd; 6266 6267 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6268 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6269 continue; 6270 6271 /* Skip CPUs that will be overutilized. */ 6272 util = cpu_util_next(cpu, p, cpu); 6273 cpu_cap = capacity_of(cpu); 6274 if (!fits_capacity(util, cpu_cap)) 6275 continue; 6276 6277 /* Always use prev_cpu as a candidate. */ 6278 if (cpu == prev_cpu) { 6279 prev_delta = compute_energy(p, prev_cpu, pd); 6280 prev_delta -= base_energy_pd; 6281 best_delta = min(best_delta, prev_delta); 6282 } 6283 6284 /* 6285 * Find the CPU with the maximum spare capacity in 6286 * the performance domain 6287 */ 6288 spare_cap = cpu_cap - util; 6289 if (spare_cap > max_spare_cap) { 6290 max_spare_cap = spare_cap; 6291 max_spare_cap_cpu = cpu; 6292 } 6293 } 6294 6295 /* Evaluate the energy impact of using this CPU. */ 6296 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) { 6297 cur_delta = compute_energy(p, max_spare_cap_cpu, pd); 6298 cur_delta -= base_energy_pd; 6299 if (cur_delta < best_delta) { 6300 best_delta = cur_delta; 6301 best_energy_cpu = max_spare_cap_cpu; 6302 } 6303 } 6304 } 6305 unlock: 6306 rcu_read_unlock(); 6307 6308 /* 6309 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6310 * least 6% of the energy used by prev_cpu. 6311 */ 6312 if (prev_delta == ULONG_MAX) 6313 return best_energy_cpu; 6314 6315 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) 6316 return best_energy_cpu; 6317 6318 return prev_cpu; 6319 6320 fail: 6321 rcu_read_unlock(); 6322 6323 return -1; 6324 } 6325 6326 /* 6327 * select_task_rq_fair: Select target runqueue for the waking task in domains 6328 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6329 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6330 * 6331 * Balances load by selecting the idlest CPU in the idlest group, or under 6332 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6333 * 6334 * Returns the target CPU number. 6335 * 6336 * preempt must be disabled. 6337 */ 6338 static int 6339 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6340 { 6341 struct sched_domain *tmp, *sd = NULL; 6342 int cpu = smp_processor_id(); 6343 int new_cpu = prev_cpu; 6344 int want_affine = 0; 6345 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6346 6347 if (sd_flag & SD_BALANCE_WAKE) { 6348 record_wakee(p); 6349 6350 if (sched_energy_enabled()) { 6351 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6352 if (new_cpu >= 0) 6353 return new_cpu; 6354 new_cpu = prev_cpu; 6355 } 6356 6357 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) && 6358 cpumask_test_cpu(cpu, p->cpus_ptr); 6359 } 6360 6361 rcu_read_lock(); 6362 for_each_domain(cpu, tmp) { 6363 if (!(tmp->flags & SD_LOAD_BALANCE)) 6364 break; 6365 6366 /* 6367 * If both 'cpu' and 'prev_cpu' are part of this domain, 6368 * cpu is a valid SD_WAKE_AFFINE target. 6369 */ 6370 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6371 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6372 if (cpu != prev_cpu) 6373 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6374 6375 sd = NULL; /* Prefer wake_affine over balance flags */ 6376 break; 6377 } 6378 6379 if (tmp->flags & sd_flag) 6380 sd = tmp; 6381 else if (!want_affine) 6382 break; 6383 } 6384 6385 if (unlikely(sd)) { 6386 /* Slow path */ 6387 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6388 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ 6389 /* Fast path */ 6390 6391 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6392 6393 if (want_affine) 6394 current->recent_used_cpu = cpu; 6395 } 6396 rcu_read_unlock(); 6397 6398 return new_cpu; 6399 } 6400 6401 static void detach_entity_cfs_rq(struct sched_entity *se); 6402 6403 /* 6404 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6405 * cfs_rq_of(p) references at time of call are still valid and identify the 6406 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6407 */ 6408 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6409 { 6410 /* 6411 * As blocked tasks retain absolute vruntime the migration needs to 6412 * deal with this by subtracting the old and adding the new 6413 * min_vruntime -- the latter is done by enqueue_entity() when placing 6414 * the task on the new runqueue. 6415 */ 6416 if (p->state == TASK_WAKING) { 6417 struct sched_entity *se = &p->se; 6418 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6419 u64 min_vruntime; 6420 6421 #ifndef CONFIG_64BIT 6422 u64 min_vruntime_copy; 6423 6424 do { 6425 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6426 smp_rmb(); 6427 min_vruntime = cfs_rq->min_vruntime; 6428 } while (min_vruntime != min_vruntime_copy); 6429 #else 6430 min_vruntime = cfs_rq->min_vruntime; 6431 #endif 6432 6433 se->vruntime -= min_vruntime; 6434 } 6435 6436 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6437 /* 6438 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6439 * rq->lock and can modify state directly. 6440 */ 6441 lockdep_assert_held(&task_rq(p)->lock); 6442 detach_entity_cfs_rq(&p->se); 6443 6444 } else { 6445 /* 6446 * We are supposed to update the task to "current" time, then 6447 * its up to date and ready to go to new CPU/cfs_rq. But we 6448 * have difficulty in getting what current time is, so simply 6449 * throw away the out-of-date time. This will result in the 6450 * wakee task is less decayed, but giving the wakee more load 6451 * sounds not bad. 6452 */ 6453 remove_entity_load_avg(&p->se); 6454 } 6455 6456 /* Tell new CPU we are migrated */ 6457 p->se.avg.last_update_time = 0; 6458 6459 /* We have migrated, no longer consider this task hot */ 6460 p->se.exec_start = 0; 6461 6462 update_scan_period(p, new_cpu); 6463 } 6464 6465 static void task_dead_fair(struct task_struct *p) 6466 { 6467 remove_entity_load_avg(&p->se); 6468 } 6469 6470 static int 6471 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6472 { 6473 if (rq->nr_running) 6474 return 1; 6475 6476 return newidle_balance(rq, rf) != 0; 6477 } 6478 #endif /* CONFIG_SMP */ 6479 6480 static unsigned long wakeup_gran(struct sched_entity *se) 6481 { 6482 unsigned long gran = sysctl_sched_wakeup_granularity; 6483 6484 /* 6485 * Since its curr running now, convert the gran from real-time 6486 * to virtual-time in his units. 6487 * 6488 * By using 'se' instead of 'curr' we penalize light tasks, so 6489 * they get preempted easier. That is, if 'se' < 'curr' then 6490 * the resulting gran will be larger, therefore penalizing the 6491 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6492 * be smaller, again penalizing the lighter task. 6493 * 6494 * This is especially important for buddies when the leftmost 6495 * task is higher priority than the buddy. 6496 */ 6497 return calc_delta_fair(gran, se); 6498 } 6499 6500 /* 6501 * Should 'se' preempt 'curr'. 6502 * 6503 * |s1 6504 * |s2 6505 * |s3 6506 * g 6507 * |<--->|c 6508 * 6509 * w(c, s1) = -1 6510 * w(c, s2) = 0 6511 * w(c, s3) = 1 6512 * 6513 */ 6514 static int 6515 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6516 { 6517 s64 gran, vdiff = curr->vruntime - se->vruntime; 6518 6519 if (vdiff <= 0) 6520 return -1; 6521 6522 gran = wakeup_gran(se); 6523 if (vdiff > gran) 6524 return 1; 6525 6526 return 0; 6527 } 6528 6529 static void set_last_buddy(struct sched_entity *se) 6530 { 6531 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6532 return; 6533 6534 for_each_sched_entity(se) { 6535 if (SCHED_WARN_ON(!se->on_rq)) 6536 return; 6537 cfs_rq_of(se)->last = se; 6538 } 6539 } 6540 6541 static void set_next_buddy(struct sched_entity *se) 6542 { 6543 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6544 return; 6545 6546 for_each_sched_entity(se) { 6547 if (SCHED_WARN_ON(!se->on_rq)) 6548 return; 6549 cfs_rq_of(se)->next = se; 6550 } 6551 } 6552 6553 static void set_skip_buddy(struct sched_entity *se) 6554 { 6555 for_each_sched_entity(se) 6556 cfs_rq_of(se)->skip = se; 6557 } 6558 6559 /* 6560 * Preempt the current task with a newly woken task if needed: 6561 */ 6562 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6563 { 6564 struct task_struct *curr = rq->curr; 6565 struct sched_entity *se = &curr->se, *pse = &p->se; 6566 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6567 int scale = cfs_rq->nr_running >= sched_nr_latency; 6568 int next_buddy_marked = 0; 6569 6570 if (unlikely(se == pse)) 6571 return; 6572 6573 /* 6574 * This is possible from callers such as attach_tasks(), in which we 6575 * unconditionally check_prempt_curr() after an enqueue (which may have 6576 * lead to a throttle). This both saves work and prevents false 6577 * next-buddy nomination below. 6578 */ 6579 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6580 return; 6581 6582 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6583 set_next_buddy(pse); 6584 next_buddy_marked = 1; 6585 } 6586 6587 /* 6588 * We can come here with TIF_NEED_RESCHED already set from new task 6589 * wake up path. 6590 * 6591 * Note: this also catches the edge-case of curr being in a throttled 6592 * group (e.g. via set_curr_task), since update_curr() (in the 6593 * enqueue of curr) will have resulted in resched being set. This 6594 * prevents us from potentially nominating it as a false LAST_BUDDY 6595 * below. 6596 */ 6597 if (test_tsk_need_resched(curr)) 6598 return; 6599 6600 /* Idle tasks are by definition preempted by non-idle tasks. */ 6601 if (unlikely(task_has_idle_policy(curr)) && 6602 likely(!task_has_idle_policy(p))) 6603 goto preempt; 6604 6605 /* 6606 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6607 * is driven by the tick): 6608 */ 6609 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6610 return; 6611 6612 find_matching_se(&se, &pse); 6613 update_curr(cfs_rq_of(se)); 6614 BUG_ON(!pse); 6615 if (wakeup_preempt_entity(se, pse) == 1) { 6616 /* 6617 * Bias pick_next to pick the sched entity that is 6618 * triggering this preemption. 6619 */ 6620 if (!next_buddy_marked) 6621 set_next_buddy(pse); 6622 goto preempt; 6623 } 6624 6625 return; 6626 6627 preempt: 6628 resched_curr(rq); 6629 /* 6630 * Only set the backward buddy when the current task is still 6631 * on the rq. This can happen when a wakeup gets interleaved 6632 * with schedule on the ->pre_schedule() or idle_balance() 6633 * point, either of which can * drop the rq lock. 6634 * 6635 * Also, during early boot the idle thread is in the fair class, 6636 * for obvious reasons its a bad idea to schedule back to it. 6637 */ 6638 if (unlikely(!se->on_rq || curr == rq->idle)) 6639 return; 6640 6641 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6642 set_last_buddy(se); 6643 } 6644 6645 struct task_struct * 6646 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6647 { 6648 struct cfs_rq *cfs_rq = &rq->cfs; 6649 struct sched_entity *se; 6650 struct task_struct *p; 6651 int new_tasks; 6652 6653 again: 6654 if (!sched_fair_runnable(rq)) 6655 goto idle; 6656 6657 #ifdef CONFIG_FAIR_GROUP_SCHED 6658 if (!prev || prev->sched_class != &fair_sched_class) 6659 goto simple; 6660 6661 /* 6662 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6663 * likely that a next task is from the same cgroup as the current. 6664 * 6665 * Therefore attempt to avoid putting and setting the entire cgroup 6666 * hierarchy, only change the part that actually changes. 6667 */ 6668 6669 do { 6670 struct sched_entity *curr = cfs_rq->curr; 6671 6672 /* 6673 * Since we got here without doing put_prev_entity() we also 6674 * have to consider cfs_rq->curr. If it is still a runnable 6675 * entity, update_curr() will update its vruntime, otherwise 6676 * forget we've ever seen it. 6677 */ 6678 if (curr) { 6679 if (curr->on_rq) 6680 update_curr(cfs_rq); 6681 else 6682 curr = NULL; 6683 6684 /* 6685 * This call to check_cfs_rq_runtime() will do the 6686 * throttle and dequeue its entity in the parent(s). 6687 * Therefore the nr_running test will indeed 6688 * be correct. 6689 */ 6690 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 6691 cfs_rq = &rq->cfs; 6692 6693 if (!cfs_rq->nr_running) 6694 goto idle; 6695 6696 goto simple; 6697 } 6698 } 6699 6700 se = pick_next_entity(cfs_rq, curr); 6701 cfs_rq = group_cfs_rq(se); 6702 } while (cfs_rq); 6703 6704 p = task_of(se); 6705 6706 /* 6707 * Since we haven't yet done put_prev_entity and if the selected task 6708 * is a different task than we started out with, try and touch the 6709 * least amount of cfs_rqs. 6710 */ 6711 if (prev != p) { 6712 struct sched_entity *pse = &prev->se; 6713 6714 while (!(cfs_rq = is_same_group(se, pse))) { 6715 int se_depth = se->depth; 6716 int pse_depth = pse->depth; 6717 6718 if (se_depth <= pse_depth) { 6719 put_prev_entity(cfs_rq_of(pse), pse); 6720 pse = parent_entity(pse); 6721 } 6722 if (se_depth >= pse_depth) { 6723 set_next_entity(cfs_rq_of(se), se); 6724 se = parent_entity(se); 6725 } 6726 } 6727 6728 put_prev_entity(cfs_rq, pse); 6729 set_next_entity(cfs_rq, se); 6730 } 6731 6732 goto done; 6733 simple: 6734 #endif 6735 if (prev) 6736 put_prev_task(rq, prev); 6737 6738 do { 6739 se = pick_next_entity(cfs_rq, NULL); 6740 set_next_entity(cfs_rq, se); 6741 cfs_rq = group_cfs_rq(se); 6742 } while (cfs_rq); 6743 6744 p = task_of(se); 6745 6746 done: __maybe_unused; 6747 #ifdef CONFIG_SMP 6748 /* 6749 * Move the next running task to the front of 6750 * the list, so our cfs_tasks list becomes MRU 6751 * one. 6752 */ 6753 list_move(&p->se.group_node, &rq->cfs_tasks); 6754 #endif 6755 6756 if (hrtick_enabled(rq)) 6757 hrtick_start_fair(rq, p); 6758 6759 update_misfit_status(p, rq); 6760 6761 return p; 6762 6763 idle: 6764 if (!rf) 6765 return NULL; 6766 6767 new_tasks = newidle_balance(rq, rf); 6768 6769 /* 6770 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 6771 * possible for any higher priority task to appear. In that case we 6772 * must re-start the pick_next_entity() loop. 6773 */ 6774 if (new_tasks < 0) 6775 return RETRY_TASK; 6776 6777 if (new_tasks > 0) 6778 goto again; 6779 6780 /* 6781 * rq is about to be idle, check if we need to update the 6782 * lost_idle_time of clock_pelt 6783 */ 6784 update_idle_rq_clock_pelt(rq); 6785 6786 return NULL; 6787 } 6788 6789 static struct task_struct *__pick_next_task_fair(struct rq *rq) 6790 { 6791 return pick_next_task_fair(rq, NULL, NULL); 6792 } 6793 6794 /* 6795 * Account for a descheduled task: 6796 */ 6797 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 6798 { 6799 struct sched_entity *se = &prev->se; 6800 struct cfs_rq *cfs_rq; 6801 6802 for_each_sched_entity(se) { 6803 cfs_rq = cfs_rq_of(se); 6804 put_prev_entity(cfs_rq, se); 6805 } 6806 } 6807 6808 /* 6809 * sched_yield() is very simple 6810 * 6811 * The magic of dealing with the ->skip buddy is in pick_next_entity. 6812 */ 6813 static void yield_task_fair(struct rq *rq) 6814 { 6815 struct task_struct *curr = rq->curr; 6816 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6817 struct sched_entity *se = &curr->se; 6818 6819 /* 6820 * Are we the only task in the tree? 6821 */ 6822 if (unlikely(rq->nr_running == 1)) 6823 return; 6824 6825 clear_buddies(cfs_rq, se); 6826 6827 if (curr->policy != SCHED_BATCH) { 6828 update_rq_clock(rq); 6829 /* 6830 * Update run-time statistics of the 'current'. 6831 */ 6832 update_curr(cfs_rq); 6833 /* 6834 * Tell update_rq_clock() that we've just updated, 6835 * so we don't do microscopic update in schedule() 6836 * and double the fastpath cost. 6837 */ 6838 rq_clock_skip_update(rq); 6839 } 6840 6841 set_skip_buddy(se); 6842 } 6843 6844 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 6845 { 6846 struct sched_entity *se = &p->se; 6847 6848 /* throttled hierarchies are not runnable */ 6849 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 6850 return false; 6851 6852 /* Tell the scheduler that we'd really like pse to run next. */ 6853 set_next_buddy(se); 6854 6855 yield_task_fair(rq); 6856 6857 return true; 6858 } 6859 6860 #ifdef CONFIG_SMP 6861 /************************************************** 6862 * Fair scheduling class load-balancing methods. 6863 * 6864 * BASICS 6865 * 6866 * The purpose of load-balancing is to achieve the same basic fairness the 6867 * per-CPU scheduler provides, namely provide a proportional amount of compute 6868 * time to each task. This is expressed in the following equation: 6869 * 6870 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 6871 * 6872 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 6873 * W_i,0 is defined as: 6874 * 6875 * W_i,0 = \Sum_j w_i,j (2) 6876 * 6877 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 6878 * is derived from the nice value as per sched_prio_to_weight[]. 6879 * 6880 * The weight average is an exponential decay average of the instantaneous 6881 * weight: 6882 * 6883 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 6884 * 6885 * C_i is the compute capacity of CPU i, typically it is the 6886 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 6887 * can also include other factors [XXX]. 6888 * 6889 * To achieve this balance we define a measure of imbalance which follows 6890 * directly from (1): 6891 * 6892 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 6893 * 6894 * We them move tasks around to minimize the imbalance. In the continuous 6895 * function space it is obvious this converges, in the discrete case we get 6896 * a few fun cases generally called infeasible weight scenarios. 6897 * 6898 * [XXX expand on: 6899 * - infeasible weights; 6900 * - local vs global optima in the discrete case. ] 6901 * 6902 * 6903 * SCHED DOMAINS 6904 * 6905 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 6906 * for all i,j solution, we create a tree of CPUs that follows the hardware 6907 * topology where each level pairs two lower groups (or better). This results 6908 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 6909 * tree to only the first of the previous level and we decrease the frequency 6910 * of load-balance at each level inv. proportional to the number of CPUs in 6911 * the groups. 6912 * 6913 * This yields: 6914 * 6915 * log_2 n 1 n 6916 * \Sum { --- * --- * 2^i } = O(n) (5) 6917 * i = 0 2^i 2^i 6918 * `- size of each group 6919 * | | `- number of CPUs doing load-balance 6920 * | `- freq 6921 * `- sum over all levels 6922 * 6923 * Coupled with a limit on how many tasks we can migrate every balance pass, 6924 * this makes (5) the runtime complexity of the balancer. 6925 * 6926 * An important property here is that each CPU is still (indirectly) connected 6927 * to every other CPU in at most O(log n) steps: 6928 * 6929 * The adjacency matrix of the resulting graph is given by: 6930 * 6931 * log_2 n 6932 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 6933 * k = 0 6934 * 6935 * And you'll find that: 6936 * 6937 * A^(log_2 n)_i,j != 0 for all i,j (7) 6938 * 6939 * Showing there's indeed a path between every CPU in at most O(log n) steps. 6940 * The task movement gives a factor of O(m), giving a convergence complexity 6941 * of: 6942 * 6943 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 6944 * 6945 * 6946 * WORK CONSERVING 6947 * 6948 * In order to avoid CPUs going idle while there's still work to do, new idle 6949 * balancing is more aggressive and has the newly idle CPU iterate up the domain 6950 * tree itself instead of relying on other CPUs to bring it work. 6951 * 6952 * This adds some complexity to both (5) and (8) but it reduces the total idle 6953 * time. 6954 * 6955 * [XXX more?] 6956 * 6957 * 6958 * CGROUPS 6959 * 6960 * Cgroups make a horror show out of (2), instead of a simple sum we get: 6961 * 6962 * s_k,i 6963 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 6964 * S_k 6965 * 6966 * Where 6967 * 6968 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 6969 * 6970 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 6971 * 6972 * The big problem is S_k, its a global sum needed to compute a local (W_i) 6973 * property. 6974 * 6975 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 6976 * rewrite all of this once again.] 6977 */ 6978 6979 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 6980 6981 enum fbq_type { regular, remote, all }; 6982 6983 /* 6984 * 'group_type' describes the group of CPUs at the moment of load balancing. 6985 * 6986 * The enum is ordered by pulling priority, with the group with lowest priority 6987 * first so the group_type can simply be compared when selecting the busiest 6988 * group. See update_sd_pick_busiest(). 6989 */ 6990 enum group_type { 6991 /* The group has spare capacity that can be used to run more tasks. */ 6992 group_has_spare = 0, 6993 /* 6994 * The group is fully used and the tasks don't compete for more CPU 6995 * cycles. Nevertheless, some tasks might wait before running. 6996 */ 6997 group_fully_busy, 6998 /* 6999 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity 7000 * and must be migrated to a more powerful CPU. 7001 */ 7002 group_misfit_task, 7003 /* 7004 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 7005 * and the task should be migrated to it instead of running on the 7006 * current CPU. 7007 */ 7008 group_asym_packing, 7009 /* 7010 * The tasks' affinity constraints previously prevented the scheduler 7011 * from balancing the load across the system. 7012 */ 7013 group_imbalanced, 7014 /* 7015 * The CPU is overloaded and can't provide expected CPU cycles to all 7016 * tasks. 7017 */ 7018 group_overloaded 7019 }; 7020 7021 enum migration_type { 7022 migrate_load = 0, 7023 migrate_util, 7024 migrate_task, 7025 migrate_misfit 7026 }; 7027 7028 #define LBF_ALL_PINNED 0x01 7029 #define LBF_NEED_BREAK 0x02 7030 #define LBF_DST_PINNED 0x04 7031 #define LBF_SOME_PINNED 0x08 7032 #define LBF_NOHZ_STATS 0x10 7033 #define LBF_NOHZ_AGAIN 0x20 7034 7035 struct lb_env { 7036 struct sched_domain *sd; 7037 7038 struct rq *src_rq; 7039 int src_cpu; 7040 7041 int dst_cpu; 7042 struct rq *dst_rq; 7043 7044 struct cpumask *dst_grpmask; 7045 int new_dst_cpu; 7046 enum cpu_idle_type idle; 7047 long imbalance; 7048 /* The set of CPUs under consideration for load-balancing */ 7049 struct cpumask *cpus; 7050 7051 unsigned int flags; 7052 7053 unsigned int loop; 7054 unsigned int loop_break; 7055 unsigned int loop_max; 7056 7057 enum fbq_type fbq_type; 7058 enum migration_type migration_type; 7059 struct list_head tasks; 7060 }; 7061 7062 /* 7063 * Is this task likely cache-hot: 7064 */ 7065 static int task_hot(struct task_struct *p, struct lb_env *env) 7066 { 7067 s64 delta; 7068 7069 lockdep_assert_held(&env->src_rq->lock); 7070 7071 if (p->sched_class != &fair_sched_class) 7072 return 0; 7073 7074 if (unlikely(task_has_idle_policy(p))) 7075 return 0; 7076 7077 /* 7078 * Buddy candidates are cache hot: 7079 */ 7080 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7081 (&p->se == cfs_rq_of(&p->se)->next || 7082 &p->se == cfs_rq_of(&p->se)->last)) 7083 return 1; 7084 7085 if (sysctl_sched_migration_cost == -1) 7086 return 1; 7087 if (sysctl_sched_migration_cost == 0) 7088 return 0; 7089 7090 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7091 7092 return delta < (s64)sysctl_sched_migration_cost; 7093 } 7094 7095 #ifdef CONFIG_NUMA_BALANCING 7096 /* 7097 * Returns 1, if task migration degrades locality 7098 * Returns 0, if task migration improves locality i.e migration preferred. 7099 * Returns -1, if task migration is not affected by locality. 7100 */ 7101 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7102 { 7103 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7104 unsigned long src_weight, dst_weight; 7105 int src_nid, dst_nid, dist; 7106 7107 if (!static_branch_likely(&sched_numa_balancing)) 7108 return -1; 7109 7110 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7111 return -1; 7112 7113 src_nid = cpu_to_node(env->src_cpu); 7114 dst_nid = cpu_to_node(env->dst_cpu); 7115 7116 if (src_nid == dst_nid) 7117 return -1; 7118 7119 /* Migrating away from the preferred node is always bad. */ 7120 if (src_nid == p->numa_preferred_nid) { 7121 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7122 return 1; 7123 else 7124 return -1; 7125 } 7126 7127 /* Encourage migration to the preferred node. */ 7128 if (dst_nid == p->numa_preferred_nid) 7129 return 0; 7130 7131 /* Leaving a core idle is often worse than degrading locality. */ 7132 if (env->idle == CPU_IDLE) 7133 return -1; 7134 7135 dist = node_distance(src_nid, dst_nid); 7136 if (numa_group) { 7137 src_weight = group_weight(p, src_nid, dist); 7138 dst_weight = group_weight(p, dst_nid, dist); 7139 } else { 7140 src_weight = task_weight(p, src_nid, dist); 7141 dst_weight = task_weight(p, dst_nid, dist); 7142 } 7143 7144 return dst_weight < src_weight; 7145 } 7146 7147 #else 7148 static inline int migrate_degrades_locality(struct task_struct *p, 7149 struct lb_env *env) 7150 { 7151 return -1; 7152 } 7153 #endif 7154 7155 /* 7156 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7157 */ 7158 static 7159 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7160 { 7161 int tsk_cache_hot; 7162 7163 lockdep_assert_held(&env->src_rq->lock); 7164 7165 /* 7166 * We do not migrate tasks that are: 7167 * 1) throttled_lb_pair, or 7168 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7169 * 3) running (obviously), or 7170 * 4) are cache-hot on their current CPU. 7171 */ 7172 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7173 return 0; 7174 7175 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7176 int cpu; 7177 7178 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7179 7180 env->flags |= LBF_SOME_PINNED; 7181 7182 /* 7183 * Remember if this task can be migrated to any other CPU in 7184 * our sched_group. We may want to revisit it if we couldn't 7185 * meet load balance goals by pulling other tasks on src_cpu. 7186 * 7187 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7188 * already computed one in current iteration. 7189 */ 7190 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7191 return 0; 7192 7193 /* Prevent to re-select dst_cpu via env's CPUs: */ 7194 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7195 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7196 env->flags |= LBF_DST_PINNED; 7197 env->new_dst_cpu = cpu; 7198 break; 7199 } 7200 } 7201 7202 return 0; 7203 } 7204 7205 /* Record that we found atleast one task that could run on dst_cpu */ 7206 env->flags &= ~LBF_ALL_PINNED; 7207 7208 if (task_running(env->src_rq, p)) { 7209 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7210 return 0; 7211 } 7212 7213 /* 7214 * Aggressive migration if: 7215 * 1) destination numa is preferred 7216 * 2) task is cache cold, or 7217 * 3) too many balance attempts have failed. 7218 */ 7219 tsk_cache_hot = migrate_degrades_locality(p, env); 7220 if (tsk_cache_hot == -1) 7221 tsk_cache_hot = task_hot(p, env); 7222 7223 if (tsk_cache_hot <= 0 || 7224 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7225 if (tsk_cache_hot == 1) { 7226 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7227 schedstat_inc(p->se.statistics.nr_forced_migrations); 7228 } 7229 return 1; 7230 } 7231 7232 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7233 return 0; 7234 } 7235 7236 /* 7237 * detach_task() -- detach the task for the migration specified in env 7238 */ 7239 static void detach_task(struct task_struct *p, struct lb_env *env) 7240 { 7241 lockdep_assert_held(&env->src_rq->lock); 7242 7243 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7244 set_task_cpu(p, env->dst_cpu); 7245 } 7246 7247 /* 7248 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7249 * part of active balancing operations within "domain". 7250 * 7251 * Returns a task if successful and NULL otherwise. 7252 */ 7253 static struct task_struct *detach_one_task(struct lb_env *env) 7254 { 7255 struct task_struct *p; 7256 7257 lockdep_assert_held(&env->src_rq->lock); 7258 7259 list_for_each_entry_reverse(p, 7260 &env->src_rq->cfs_tasks, se.group_node) { 7261 if (!can_migrate_task(p, env)) 7262 continue; 7263 7264 detach_task(p, env); 7265 7266 /* 7267 * Right now, this is only the second place where 7268 * lb_gained[env->idle] is updated (other is detach_tasks) 7269 * so we can safely collect stats here rather than 7270 * inside detach_tasks(). 7271 */ 7272 schedstat_inc(env->sd->lb_gained[env->idle]); 7273 return p; 7274 } 7275 return NULL; 7276 } 7277 7278 static const unsigned int sched_nr_migrate_break = 32; 7279 7280 /* 7281 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 7282 * busiest_rq, as part of a balancing operation within domain "sd". 7283 * 7284 * Returns number of detached tasks if successful and 0 otherwise. 7285 */ 7286 static int detach_tasks(struct lb_env *env) 7287 { 7288 struct list_head *tasks = &env->src_rq->cfs_tasks; 7289 unsigned long util, load; 7290 struct task_struct *p; 7291 int detached = 0; 7292 7293 lockdep_assert_held(&env->src_rq->lock); 7294 7295 if (env->imbalance <= 0) 7296 return 0; 7297 7298 while (!list_empty(tasks)) { 7299 /* 7300 * We don't want to steal all, otherwise we may be treated likewise, 7301 * which could at worst lead to a livelock crash. 7302 */ 7303 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7304 break; 7305 7306 p = list_last_entry(tasks, struct task_struct, se.group_node); 7307 7308 env->loop++; 7309 /* We've more or less seen every task there is, call it quits */ 7310 if (env->loop > env->loop_max) 7311 break; 7312 7313 /* take a breather every nr_migrate tasks */ 7314 if (env->loop > env->loop_break) { 7315 env->loop_break += sched_nr_migrate_break; 7316 env->flags |= LBF_NEED_BREAK; 7317 break; 7318 } 7319 7320 if (!can_migrate_task(p, env)) 7321 goto next; 7322 7323 switch (env->migration_type) { 7324 case migrate_load: 7325 load = task_h_load(p); 7326 7327 if (sched_feat(LB_MIN) && 7328 load < 16 && !env->sd->nr_balance_failed) 7329 goto next; 7330 7331 if (load/2 > env->imbalance) 7332 goto next; 7333 7334 env->imbalance -= load; 7335 break; 7336 7337 case migrate_util: 7338 util = task_util_est(p); 7339 7340 if (util > env->imbalance) 7341 goto next; 7342 7343 env->imbalance -= util; 7344 break; 7345 7346 case migrate_task: 7347 env->imbalance--; 7348 break; 7349 7350 case migrate_misfit: 7351 /* This is not a misfit task */ 7352 if (task_fits_capacity(p, capacity_of(env->src_cpu))) 7353 goto next; 7354 7355 env->imbalance = 0; 7356 break; 7357 } 7358 7359 detach_task(p, env); 7360 list_add(&p->se.group_node, &env->tasks); 7361 7362 detached++; 7363 7364 #ifdef CONFIG_PREEMPTION 7365 /* 7366 * NEWIDLE balancing is a source of latency, so preemptible 7367 * kernels will stop after the first task is detached to minimize 7368 * the critical section. 7369 */ 7370 if (env->idle == CPU_NEWLY_IDLE) 7371 break; 7372 #endif 7373 7374 /* 7375 * We only want to steal up to the prescribed amount of 7376 * load/util/tasks. 7377 */ 7378 if (env->imbalance <= 0) 7379 break; 7380 7381 continue; 7382 next: 7383 list_move(&p->se.group_node, tasks); 7384 } 7385 7386 /* 7387 * Right now, this is one of only two places we collect this stat 7388 * so we can safely collect detach_one_task() stats here rather 7389 * than inside detach_one_task(). 7390 */ 7391 schedstat_add(env->sd->lb_gained[env->idle], detached); 7392 7393 return detached; 7394 } 7395 7396 /* 7397 * attach_task() -- attach the task detached by detach_task() to its new rq. 7398 */ 7399 static void attach_task(struct rq *rq, struct task_struct *p) 7400 { 7401 lockdep_assert_held(&rq->lock); 7402 7403 BUG_ON(task_rq(p) != rq); 7404 activate_task(rq, p, ENQUEUE_NOCLOCK); 7405 check_preempt_curr(rq, p, 0); 7406 } 7407 7408 /* 7409 * attach_one_task() -- attaches the task returned from detach_one_task() to 7410 * its new rq. 7411 */ 7412 static void attach_one_task(struct rq *rq, struct task_struct *p) 7413 { 7414 struct rq_flags rf; 7415 7416 rq_lock(rq, &rf); 7417 update_rq_clock(rq); 7418 attach_task(rq, p); 7419 rq_unlock(rq, &rf); 7420 } 7421 7422 /* 7423 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7424 * new rq. 7425 */ 7426 static void attach_tasks(struct lb_env *env) 7427 { 7428 struct list_head *tasks = &env->tasks; 7429 struct task_struct *p; 7430 struct rq_flags rf; 7431 7432 rq_lock(env->dst_rq, &rf); 7433 update_rq_clock(env->dst_rq); 7434 7435 while (!list_empty(tasks)) { 7436 p = list_first_entry(tasks, struct task_struct, se.group_node); 7437 list_del_init(&p->se.group_node); 7438 7439 attach_task(env->dst_rq, p); 7440 } 7441 7442 rq_unlock(env->dst_rq, &rf); 7443 } 7444 7445 #ifdef CONFIG_NO_HZ_COMMON 7446 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7447 { 7448 if (cfs_rq->avg.load_avg) 7449 return true; 7450 7451 if (cfs_rq->avg.util_avg) 7452 return true; 7453 7454 return false; 7455 } 7456 7457 static inline bool others_have_blocked(struct rq *rq) 7458 { 7459 if (READ_ONCE(rq->avg_rt.util_avg)) 7460 return true; 7461 7462 if (READ_ONCE(rq->avg_dl.util_avg)) 7463 return true; 7464 7465 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 7466 if (READ_ONCE(rq->avg_irq.util_avg)) 7467 return true; 7468 #endif 7469 7470 return false; 7471 } 7472 7473 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 7474 { 7475 rq->last_blocked_load_update_tick = jiffies; 7476 7477 if (!has_blocked) 7478 rq->has_blocked_load = 0; 7479 } 7480 #else 7481 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 7482 static inline bool others_have_blocked(struct rq *rq) { return false; } 7483 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 7484 #endif 7485 7486 static bool __update_blocked_others(struct rq *rq, bool *done) 7487 { 7488 const struct sched_class *curr_class; 7489 u64 now = rq_clock_pelt(rq); 7490 bool decayed; 7491 7492 /* 7493 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 7494 * DL and IRQ signals have been updated before updating CFS. 7495 */ 7496 curr_class = rq->curr->sched_class; 7497 7498 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 7499 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 7500 update_irq_load_avg(rq, 0); 7501 7502 if (others_have_blocked(rq)) 7503 *done = false; 7504 7505 return decayed; 7506 } 7507 7508 #ifdef CONFIG_FAIR_GROUP_SCHED 7509 7510 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7511 { 7512 if (cfs_rq->load.weight) 7513 return false; 7514 7515 if (cfs_rq->avg.load_sum) 7516 return false; 7517 7518 if (cfs_rq->avg.util_sum) 7519 return false; 7520 7521 if (cfs_rq->avg.runnable_load_sum) 7522 return false; 7523 7524 return true; 7525 } 7526 7527 static bool __update_blocked_fair(struct rq *rq, bool *done) 7528 { 7529 struct cfs_rq *cfs_rq, *pos; 7530 bool decayed = false; 7531 int cpu = cpu_of(rq); 7532 7533 /* 7534 * Iterates the task_group tree in a bottom up fashion, see 7535 * list_add_leaf_cfs_rq() for details. 7536 */ 7537 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7538 struct sched_entity *se; 7539 7540 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 7541 update_tg_load_avg(cfs_rq, 0); 7542 7543 if (cfs_rq == &rq->cfs) 7544 decayed = true; 7545 } 7546 7547 /* Propagate pending load changes to the parent, if any: */ 7548 se = cfs_rq->tg->se[cpu]; 7549 if (se && !skip_blocked_update(se)) 7550 update_load_avg(cfs_rq_of(se), se, 0); 7551 7552 /* 7553 * There can be a lot of idle CPU cgroups. Don't let fully 7554 * decayed cfs_rqs linger on the list. 7555 */ 7556 if (cfs_rq_is_decayed(cfs_rq)) 7557 list_del_leaf_cfs_rq(cfs_rq); 7558 7559 /* Don't need periodic decay once load/util_avg are null */ 7560 if (cfs_rq_has_blocked(cfs_rq)) 7561 *done = false; 7562 } 7563 7564 return decayed; 7565 } 7566 7567 /* 7568 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7569 * This needs to be done in a top-down fashion because the load of a child 7570 * group is a fraction of its parents load. 7571 */ 7572 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7573 { 7574 struct rq *rq = rq_of(cfs_rq); 7575 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7576 unsigned long now = jiffies; 7577 unsigned long load; 7578 7579 if (cfs_rq->last_h_load_update == now) 7580 return; 7581 7582 WRITE_ONCE(cfs_rq->h_load_next, NULL); 7583 for_each_sched_entity(se) { 7584 cfs_rq = cfs_rq_of(se); 7585 WRITE_ONCE(cfs_rq->h_load_next, se); 7586 if (cfs_rq->last_h_load_update == now) 7587 break; 7588 } 7589 7590 if (!se) { 7591 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7592 cfs_rq->last_h_load_update = now; 7593 } 7594 7595 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 7596 load = cfs_rq->h_load; 7597 load = div64_ul(load * se->avg.load_avg, 7598 cfs_rq_load_avg(cfs_rq) + 1); 7599 cfs_rq = group_cfs_rq(se); 7600 cfs_rq->h_load = load; 7601 cfs_rq->last_h_load_update = now; 7602 } 7603 } 7604 7605 static unsigned long task_h_load(struct task_struct *p) 7606 { 7607 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7608 7609 update_cfs_rq_h_load(cfs_rq); 7610 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7611 cfs_rq_load_avg(cfs_rq) + 1); 7612 } 7613 #else 7614 static bool __update_blocked_fair(struct rq *rq, bool *done) 7615 { 7616 struct cfs_rq *cfs_rq = &rq->cfs; 7617 bool decayed; 7618 7619 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 7620 if (cfs_rq_has_blocked(cfs_rq)) 7621 *done = false; 7622 7623 return decayed; 7624 } 7625 7626 static unsigned long task_h_load(struct task_struct *p) 7627 { 7628 return p->se.avg.load_avg; 7629 } 7630 #endif 7631 7632 static void update_blocked_averages(int cpu) 7633 { 7634 bool decayed = false, done = true; 7635 struct rq *rq = cpu_rq(cpu); 7636 struct rq_flags rf; 7637 7638 rq_lock_irqsave(rq, &rf); 7639 update_rq_clock(rq); 7640 7641 decayed |= __update_blocked_others(rq, &done); 7642 decayed |= __update_blocked_fair(rq, &done); 7643 7644 update_blocked_load_status(rq, !done); 7645 if (decayed) 7646 cpufreq_update_util(rq, 0); 7647 rq_unlock_irqrestore(rq, &rf); 7648 } 7649 7650 /********** Helpers for find_busiest_group ************************/ 7651 7652 /* 7653 * sg_lb_stats - stats of a sched_group required for load_balancing 7654 */ 7655 struct sg_lb_stats { 7656 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7657 unsigned long group_load; /* Total load over the CPUs of the group */ 7658 unsigned long group_capacity; 7659 unsigned long group_util; /* Total utilization of the group */ 7660 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 7661 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 7662 unsigned int idle_cpus; 7663 unsigned int group_weight; 7664 enum group_type group_type; 7665 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 7666 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 7667 #ifdef CONFIG_NUMA_BALANCING 7668 unsigned int nr_numa_running; 7669 unsigned int nr_preferred_running; 7670 #endif 7671 }; 7672 7673 /* 7674 * sd_lb_stats - Structure to store the statistics of a sched_domain 7675 * during load balancing. 7676 */ 7677 struct sd_lb_stats { 7678 struct sched_group *busiest; /* Busiest group in this sd */ 7679 struct sched_group *local; /* Local group in this sd */ 7680 unsigned long total_load; /* Total load of all groups in sd */ 7681 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7682 unsigned long avg_load; /* Average load across all groups in sd */ 7683 unsigned int prefer_sibling; /* tasks should go to sibling first */ 7684 7685 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7686 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7687 }; 7688 7689 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7690 { 7691 /* 7692 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7693 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7694 * We must however set busiest_stat::group_type and 7695 * busiest_stat::idle_cpus to the worst busiest group because 7696 * update_sd_pick_busiest() reads these before assignment. 7697 */ 7698 *sds = (struct sd_lb_stats){ 7699 .busiest = NULL, 7700 .local = NULL, 7701 .total_load = 0UL, 7702 .total_capacity = 0UL, 7703 .busiest_stat = { 7704 .idle_cpus = UINT_MAX, 7705 .group_type = group_has_spare, 7706 }, 7707 }; 7708 } 7709 7710 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu) 7711 { 7712 struct rq *rq = cpu_rq(cpu); 7713 unsigned long max = arch_scale_cpu_capacity(cpu); 7714 unsigned long used, free; 7715 unsigned long irq; 7716 7717 irq = cpu_util_irq(rq); 7718 7719 if (unlikely(irq >= max)) 7720 return 1; 7721 7722 used = READ_ONCE(rq->avg_rt.util_avg); 7723 used += READ_ONCE(rq->avg_dl.util_avg); 7724 7725 if (unlikely(used >= max)) 7726 return 1; 7727 7728 free = max - used; 7729 7730 return scale_irq_capacity(free, irq, max); 7731 } 7732 7733 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7734 { 7735 unsigned long capacity = scale_rt_capacity(sd, cpu); 7736 struct sched_group *sdg = sd->groups; 7737 7738 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 7739 7740 if (!capacity) 7741 capacity = 1; 7742 7743 cpu_rq(cpu)->cpu_capacity = capacity; 7744 sdg->sgc->capacity = capacity; 7745 sdg->sgc->min_capacity = capacity; 7746 sdg->sgc->max_capacity = capacity; 7747 } 7748 7749 void update_group_capacity(struct sched_domain *sd, int cpu) 7750 { 7751 struct sched_domain *child = sd->child; 7752 struct sched_group *group, *sdg = sd->groups; 7753 unsigned long capacity, min_capacity, max_capacity; 7754 unsigned long interval; 7755 7756 interval = msecs_to_jiffies(sd->balance_interval); 7757 interval = clamp(interval, 1UL, max_load_balance_interval); 7758 sdg->sgc->next_update = jiffies + interval; 7759 7760 if (!child) { 7761 update_cpu_capacity(sd, cpu); 7762 return; 7763 } 7764 7765 capacity = 0; 7766 min_capacity = ULONG_MAX; 7767 max_capacity = 0; 7768 7769 if (child->flags & SD_OVERLAP) { 7770 /* 7771 * SD_OVERLAP domains cannot assume that child groups 7772 * span the current group. 7773 */ 7774 7775 for_each_cpu(cpu, sched_group_span(sdg)) { 7776 struct sched_group_capacity *sgc; 7777 struct rq *rq = cpu_rq(cpu); 7778 7779 /* 7780 * build_sched_domains() -> init_sched_groups_capacity() 7781 * gets here before we've attached the domains to the 7782 * runqueues. 7783 * 7784 * Use capacity_of(), which is set irrespective of domains 7785 * in update_cpu_capacity(). 7786 * 7787 * This avoids capacity from being 0 and 7788 * causing divide-by-zero issues on boot. 7789 */ 7790 if (unlikely(!rq->sd)) { 7791 capacity += capacity_of(cpu); 7792 } else { 7793 sgc = rq->sd->groups->sgc; 7794 capacity += sgc->capacity; 7795 } 7796 7797 min_capacity = min(capacity, min_capacity); 7798 max_capacity = max(capacity, max_capacity); 7799 } 7800 } else { 7801 /* 7802 * !SD_OVERLAP domains can assume that child groups 7803 * span the current group. 7804 */ 7805 7806 group = child->groups; 7807 do { 7808 struct sched_group_capacity *sgc = group->sgc; 7809 7810 capacity += sgc->capacity; 7811 min_capacity = min(sgc->min_capacity, min_capacity); 7812 max_capacity = max(sgc->max_capacity, max_capacity); 7813 group = group->next; 7814 } while (group != child->groups); 7815 } 7816 7817 sdg->sgc->capacity = capacity; 7818 sdg->sgc->min_capacity = min_capacity; 7819 sdg->sgc->max_capacity = max_capacity; 7820 } 7821 7822 /* 7823 * Check whether the capacity of the rq has been noticeably reduced by side 7824 * activity. The imbalance_pct is used for the threshold. 7825 * Return true is the capacity is reduced 7826 */ 7827 static inline int 7828 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 7829 { 7830 return ((rq->cpu_capacity * sd->imbalance_pct) < 7831 (rq->cpu_capacity_orig * 100)); 7832 } 7833 7834 /* 7835 * Check whether a rq has a misfit task and if it looks like we can actually 7836 * help that task: we can migrate the task to a CPU of higher capacity, or 7837 * the task's current CPU is heavily pressured. 7838 */ 7839 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 7840 { 7841 return rq->misfit_task_load && 7842 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 7843 check_cpu_capacity(rq, sd)); 7844 } 7845 7846 /* 7847 * Group imbalance indicates (and tries to solve) the problem where balancing 7848 * groups is inadequate due to ->cpus_ptr constraints. 7849 * 7850 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 7851 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 7852 * Something like: 7853 * 7854 * { 0 1 2 3 } { 4 5 6 7 } 7855 * * * * * 7856 * 7857 * If we were to balance group-wise we'd place two tasks in the first group and 7858 * two tasks in the second group. Clearly this is undesired as it will overload 7859 * cpu 3 and leave one of the CPUs in the second group unused. 7860 * 7861 * The current solution to this issue is detecting the skew in the first group 7862 * by noticing the lower domain failed to reach balance and had difficulty 7863 * moving tasks due to affinity constraints. 7864 * 7865 * When this is so detected; this group becomes a candidate for busiest; see 7866 * update_sd_pick_busiest(). And calculate_imbalance() and 7867 * find_busiest_group() avoid some of the usual balance conditions to allow it 7868 * to create an effective group imbalance. 7869 * 7870 * This is a somewhat tricky proposition since the next run might not find the 7871 * group imbalance and decide the groups need to be balanced again. A most 7872 * subtle and fragile situation. 7873 */ 7874 7875 static inline int sg_imbalanced(struct sched_group *group) 7876 { 7877 return group->sgc->imbalance; 7878 } 7879 7880 /* 7881 * group_has_capacity returns true if the group has spare capacity that could 7882 * be used by some tasks. 7883 * We consider that a group has spare capacity if the * number of task is 7884 * smaller than the number of CPUs or if the utilization is lower than the 7885 * available capacity for CFS tasks. 7886 * For the latter, we use a threshold to stabilize the state, to take into 7887 * account the variance of the tasks' load and to return true if the available 7888 * capacity in meaningful for the load balancer. 7889 * As an example, an available capacity of 1% can appear but it doesn't make 7890 * any benefit for the load balance. 7891 */ 7892 static inline bool 7893 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 7894 { 7895 if (sgs->sum_nr_running < sgs->group_weight) 7896 return true; 7897 7898 if ((sgs->group_capacity * 100) > 7899 (sgs->group_util * imbalance_pct)) 7900 return true; 7901 7902 return false; 7903 } 7904 7905 /* 7906 * group_is_overloaded returns true if the group has more tasks than it can 7907 * handle. 7908 * group_is_overloaded is not equals to !group_has_capacity because a group 7909 * with the exact right number of tasks, has no more spare capacity but is not 7910 * overloaded so both group_has_capacity and group_is_overloaded return 7911 * false. 7912 */ 7913 static inline bool 7914 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 7915 { 7916 if (sgs->sum_nr_running <= sgs->group_weight) 7917 return false; 7918 7919 if ((sgs->group_capacity * 100) < 7920 (sgs->group_util * imbalance_pct)) 7921 return true; 7922 7923 return false; 7924 } 7925 7926 /* 7927 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller 7928 * per-CPU capacity than sched_group ref. 7929 */ 7930 static inline bool 7931 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7932 { 7933 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity); 7934 } 7935 7936 /* 7937 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller 7938 * per-CPU capacity_orig than sched_group ref. 7939 */ 7940 static inline bool 7941 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7942 { 7943 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity); 7944 } 7945 7946 static inline enum 7947 group_type group_classify(unsigned int imbalance_pct, 7948 struct sched_group *group, 7949 struct sg_lb_stats *sgs) 7950 { 7951 if (group_is_overloaded(imbalance_pct, sgs)) 7952 return group_overloaded; 7953 7954 if (sg_imbalanced(group)) 7955 return group_imbalanced; 7956 7957 if (sgs->group_asym_packing) 7958 return group_asym_packing; 7959 7960 if (sgs->group_misfit_task_load) 7961 return group_misfit_task; 7962 7963 if (!group_has_capacity(imbalance_pct, sgs)) 7964 return group_fully_busy; 7965 7966 return group_has_spare; 7967 } 7968 7969 static bool update_nohz_stats(struct rq *rq, bool force) 7970 { 7971 #ifdef CONFIG_NO_HZ_COMMON 7972 unsigned int cpu = rq->cpu; 7973 7974 if (!rq->has_blocked_load) 7975 return false; 7976 7977 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 7978 return false; 7979 7980 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 7981 return true; 7982 7983 update_blocked_averages(cpu); 7984 7985 return rq->has_blocked_load; 7986 #else 7987 return false; 7988 #endif 7989 } 7990 7991 /** 7992 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 7993 * @env: The load balancing environment. 7994 * @group: sched_group whose statistics are to be updated. 7995 * @sgs: variable to hold the statistics for this group. 7996 * @sg_status: Holds flag indicating the status of the sched_group 7997 */ 7998 static inline void update_sg_lb_stats(struct lb_env *env, 7999 struct sched_group *group, 8000 struct sg_lb_stats *sgs, 8001 int *sg_status) 8002 { 8003 int i, nr_running, local_group; 8004 8005 memset(sgs, 0, sizeof(*sgs)); 8006 8007 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group)); 8008 8009 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8010 struct rq *rq = cpu_rq(i); 8011 8012 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 8013 env->flags |= LBF_NOHZ_AGAIN; 8014 8015 sgs->group_load += cpu_load(rq); 8016 sgs->group_util += cpu_util(i); 8017 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 8018 8019 nr_running = rq->nr_running; 8020 sgs->sum_nr_running += nr_running; 8021 8022 if (nr_running > 1) 8023 *sg_status |= SG_OVERLOAD; 8024 8025 if (cpu_overutilized(i)) 8026 *sg_status |= SG_OVERUTILIZED; 8027 8028 #ifdef CONFIG_NUMA_BALANCING 8029 sgs->nr_numa_running += rq->nr_numa_running; 8030 sgs->nr_preferred_running += rq->nr_preferred_running; 8031 #endif 8032 /* 8033 * No need to call idle_cpu() if nr_running is not 0 8034 */ 8035 if (!nr_running && idle_cpu(i)) { 8036 sgs->idle_cpus++; 8037 /* Idle cpu can't have misfit task */ 8038 continue; 8039 } 8040 8041 if (local_group) 8042 continue; 8043 8044 /* Check for a misfit task on the cpu */ 8045 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8046 sgs->group_misfit_task_load < rq->misfit_task_load) { 8047 sgs->group_misfit_task_load = rq->misfit_task_load; 8048 *sg_status |= SG_OVERLOAD; 8049 } 8050 } 8051 8052 /* Check if dst CPU is idle and preferred to this group */ 8053 if (env->sd->flags & SD_ASYM_PACKING && 8054 env->idle != CPU_NOT_IDLE && 8055 sgs->sum_h_nr_running && 8056 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) { 8057 sgs->group_asym_packing = 1; 8058 } 8059 8060 sgs->group_capacity = group->sgc->capacity; 8061 8062 sgs->group_weight = group->group_weight; 8063 8064 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 8065 8066 /* Computing avg_load makes sense only when group is overloaded */ 8067 if (sgs->group_type == group_overloaded) 8068 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8069 sgs->group_capacity; 8070 } 8071 8072 /** 8073 * update_sd_pick_busiest - return 1 on busiest group 8074 * @env: The load balancing environment. 8075 * @sds: sched_domain statistics 8076 * @sg: sched_group candidate to be checked for being the busiest 8077 * @sgs: sched_group statistics 8078 * 8079 * Determine if @sg is a busier group than the previously selected 8080 * busiest group. 8081 * 8082 * Return: %true if @sg is a busier group than the previously selected 8083 * busiest group. %false otherwise. 8084 */ 8085 static bool update_sd_pick_busiest(struct lb_env *env, 8086 struct sd_lb_stats *sds, 8087 struct sched_group *sg, 8088 struct sg_lb_stats *sgs) 8089 { 8090 struct sg_lb_stats *busiest = &sds->busiest_stat; 8091 8092 /* Make sure that there is at least one task to pull */ 8093 if (!sgs->sum_h_nr_running) 8094 return false; 8095 8096 /* 8097 * Don't try to pull misfit tasks we can't help. 8098 * We can use max_capacity here as reduction in capacity on some 8099 * CPUs in the group should either be possible to resolve 8100 * internally or be covered by avg_load imbalance (eventually). 8101 */ 8102 if (sgs->group_type == group_misfit_task && 8103 (!group_smaller_max_cpu_capacity(sg, sds->local) || 8104 sds->local_stat.group_type != group_has_spare)) 8105 return false; 8106 8107 if (sgs->group_type > busiest->group_type) 8108 return true; 8109 8110 if (sgs->group_type < busiest->group_type) 8111 return false; 8112 8113 /* 8114 * The candidate and the current busiest group are the same type of 8115 * group. Let check which one is the busiest according to the type. 8116 */ 8117 8118 switch (sgs->group_type) { 8119 case group_overloaded: 8120 /* Select the overloaded group with highest avg_load. */ 8121 if (sgs->avg_load <= busiest->avg_load) 8122 return false; 8123 break; 8124 8125 case group_imbalanced: 8126 /* 8127 * Select the 1st imbalanced group as we don't have any way to 8128 * choose one more than another. 8129 */ 8130 return false; 8131 8132 case group_asym_packing: 8133 /* Prefer to move from lowest priority CPU's work */ 8134 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 8135 return false; 8136 break; 8137 8138 case group_misfit_task: 8139 /* 8140 * If we have more than one misfit sg go with the biggest 8141 * misfit. 8142 */ 8143 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8144 return false; 8145 break; 8146 8147 case group_fully_busy: 8148 /* 8149 * Select the fully busy group with highest avg_load. In 8150 * theory, there is no need to pull task from such kind of 8151 * group because tasks have all compute capacity that they need 8152 * but we can still improve the overall throughput by reducing 8153 * contention when accessing shared HW resources. 8154 * 8155 * XXX for now avg_load is not computed and always 0 so we 8156 * select the 1st one. 8157 */ 8158 if (sgs->avg_load <= busiest->avg_load) 8159 return false; 8160 break; 8161 8162 case group_has_spare: 8163 /* 8164 * Select not overloaded group with lowest number of 8165 * idle cpus. We could also compare the spare capacity 8166 * which is more stable but it can end up that the 8167 * group has less spare capacity but finally more idle 8168 * CPUs which means less opportunity to pull tasks. 8169 */ 8170 if (sgs->idle_cpus >= busiest->idle_cpus) 8171 return false; 8172 break; 8173 } 8174 8175 /* 8176 * Candidate sg has no more than one task per CPU and has higher 8177 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 8178 * throughput. Maximize throughput, power/energy consequences are not 8179 * considered. 8180 */ 8181 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 8182 (sgs->group_type <= group_fully_busy) && 8183 (group_smaller_min_cpu_capacity(sds->local, sg))) 8184 return false; 8185 8186 return true; 8187 } 8188 8189 #ifdef CONFIG_NUMA_BALANCING 8190 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8191 { 8192 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 8193 return regular; 8194 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 8195 return remote; 8196 return all; 8197 } 8198 8199 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8200 { 8201 if (rq->nr_running > rq->nr_numa_running) 8202 return regular; 8203 if (rq->nr_running > rq->nr_preferred_running) 8204 return remote; 8205 return all; 8206 } 8207 #else 8208 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8209 { 8210 return all; 8211 } 8212 8213 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8214 { 8215 return regular; 8216 } 8217 #endif /* CONFIG_NUMA_BALANCING */ 8218 8219 8220 struct sg_lb_stats; 8221 8222 /* 8223 * task_running_on_cpu - return 1 if @p is running on @cpu. 8224 */ 8225 8226 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 8227 { 8228 /* Task has no contribution or is new */ 8229 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8230 return 0; 8231 8232 if (task_on_rq_queued(p)) 8233 return 1; 8234 8235 return 0; 8236 } 8237 8238 /** 8239 * idle_cpu_without - would a given CPU be idle without p ? 8240 * @cpu: the processor on which idleness is tested. 8241 * @p: task which should be ignored. 8242 * 8243 * Return: 1 if the CPU would be idle. 0 otherwise. 8244 */ 8245 static int idle_cpu_without(int cpu, struct task_struct *p) 8246 { 8247 struct rq *rq = cpu_rq(cpu); 8248 8249 if (rq->curr != rq->idle && rq->curr != p) 8250 return 0; 8251 8252 /* 8253 * rq->nr_running can't be used but an updated version without the 8254 * impact of p on cpu must be used instead. The updated nr_running 8255 * be computed and tested before calling idle_cpu_without(). 8256 */ 8257 8258 #ifdef CONFIG_SMP 8259 if (!llist_empty(&rq->wake_list)) 8260 return 0; 8261 #endif 8262 8263 return 1; 8264 } 8265 8266 /* 8267 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 8268 * @sd: The sched_domain level to look for idlest group. 8269 * @group: sched_group whose statistics are to be updated. 8270 * @sgs: variable to hold the statistics for this group. 8271 * @p: The task for which we look for the idlest group/CPU. 8272 */ 8273 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 8274 struct sched_group *group, 8275 struct sg_lb_stats *sgs, 8276 struct task_struct *p) 8277 { 8278 int i, nr_running; 8279 8280 memset(sgs, 0, sizeof(*sgs)); 8281 8282 for_each_cpu(i, sched_group_span(group)) { 8283 struct rq *rq = cpu_rq(i); 8284 unsigned int local; 8285 8286 sgs->group_load += cpu_load_without(rq, p); 8287 sgs->group_util += cpu_util_without(i, p); 8288 local = task_running_on_cpu(i, p); 8289 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 8290 8291 nr_running = rq->nr_running - local; 8292 sgs->sum_nr_running += nr_running; 8293 8294 /* 8295 * No need to call idle_cpu_without() if nr_running is not 0 8296 */ 8297 if (!nr_running && idle_cpu_without(i, p)) 8298 sgs->idle_cpus++; 8299 8300 } 8301 8302 /* Check if task fits in the group */ 8303 if (sd->flags & SD_ASYM_CPUCAPACITY && 8304 !task_fits_capacity(p, group->sgc->max_capacity)) { 8305 sgs->group_misfit_task_load = 1; 8306 } 8307 8308 sgs->group_capacity = group->sgc->capacity; 8309 8310 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 8311 8312 /* 8313 * Computing avg_load makes sense only when group is fully busy or 8314 * overloaded 8315 */ 8316 if (sgs->group_type < group_fully_busy) 8317 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8318 sgs->group_capacity; 8319 } 8320 8321 static bool update_pick_idlest(struct sched_group *idlest, 8322 struct sg_lb_stats *idlest_sgs, 8323 struct sched_group *group, 8324 struct sg_lb_stats *sgs) 8325 { 8326 if (sgs->group_type < idlest_sgs->group_type) 8327 return true; 8328 8329 if (sgs->group_type > idlest_sgs->group_type) 8330 return false; 8331 8332 /* 8333 * The candidate and the current idlest group are the same type of 8334 * group. Let check which one is the idlest according to the type. 8335 */ 8336 8337 switch (sgs->group_type) { 8338 case group_overloaded: 8339 case group_fully_busy: 8340 /* Select the group with lowest avg_load. */ 8341 if (idlest_sgs->avg_load <= sgs->avg_load) 8342 return false; 8343 break; 8344 8345 case group_imbalanced: 8346 case group_asym_packing: 8347 /* Those types are not used in the slow wakeup path */ 8348 return false; 8349 8350 case group_misfit_task: 8351 /* Select group with the highest max capacity */ 8352 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 8353 return false; 8354 break; 8355 8356 case group_has_spare: 8357 /* Select group with most idle CPUs */ 8358 if (idlest_sgs->idle_cpus >= sgs->idle_cpus) 8359 return false; 8360 break; 8361 } 8362 8363 return true; 8364 } 8365 8366 /* 8367 * find_idlest_group() finds and returns the least busy CPU group within the 8368 * domain. 8369 * 8370 * Assumes p is allowed on at least one CPU in sd. 8371 */ 8372 static struct sched_group * 8373 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 8374 int this_cpu, int sd_flag) 8375 { 8376 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 8377 struct sg_lb_stats local_sgs, tmp_sgs; 8378 struct sg_lb_stats *sgs; 8379 unsigned long imbalance; 8380 struct sg_lb_stats idlest_sgs = { 8381 .avg_load = UINT_MAX, 8382 .group_type = group_overloaded, 8383 }; 8384 8385 imbalance = scale_load_down(NICE_0_LOAD) * 8386 (sd->imbalance_pct-100) / 100; 8387 8388 do { 8389 int local_group; 8390 8391 /* Skip over this group if it has no CPUs allowed */ 8392 if (!cpumask_intersects(sched_group_span(group), 8393 p->cpus_ptr)) 8394 continue; 8395 8396 local_group = cpumask_test_cpu(this_cpu, 8397 sched_group_span(group)); 8398 8399 if (local_group) { 8400 sgs = &local_sgs; 8401 local = group; 8402 } else { 8403 sgs = &tmp_sgs; 8404 } 8405 8406 update_sg_wakeup_stats(sd, group, sgs, p); 8407 8408 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 8409 idlest = group; 8410 idlest_sgs = *sgs; 8411 } 8412 8413 } while (group = group->next, group != sd->groups); 8414 8415 8416 /* There is no idlest group to push tasks to */ 8417 if (!idlest) 8418 return NULL; 8419 8420 /* 8421 * If the local group is idler than the selected idlest group 8422 * don't try and push the task. 8423 */ 8424 if (local_sgs.group_type < idlest_sgs.group_type) 8425 return NULL; 8426 8427 /* 8428 * If the local group is busier than the selected idlest group 8429 * try and push the task. 8430 */ 8431 if (local_sgs.group_type > idlest_sgs.group_type) 8432 return idlest; 8433 8434 switch (local_sgs.group_type) { 8435 case group_overloaded: 8436 case group_fully_busy: 8437 /* 8438 * When comparing groups across NUMA domains, it's possible for 8439 * the local domain to be very lightly loaded relative to the 8440 * remote domains but "imbalance" skews the comparison making 8441 * remote CPUs look much more favourable. When considering 8442 * cross-domain, add imbalance to the load on the remote node 8443 * and consider staying local. 8444 */ 8445 8446 if ((sd->flags & SD_NUMA) && 8447 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 8448 return NULL; 8449 8450 /* 8451 * If the local group is less loaded than the selected 8452 * idlest group don't try and push any tasks. 8453 */ 8454 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 8455 return NULL; 8456 8457 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 8458 return NULL; 8459 break; 8460 8461 case group_imbalanced: 8462 case group_asym_packing: 8463 /* Those type are not used in the slow wakeup path */ 8464 return NULL; 8465 8466 case group_misfit_task: 8467 /* Select group with the highest max capacity */ 8468 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 8469 return NULL; 8470 break; 8471 8472 case group_has_spare: 8473 if (sd->flags & SD_NUMA) { 8474 #ifdef CONFIG_NUMA_BALANCING 8475 int idlest_cpu; 8476 /* 8477 * If there is spare capacity at NUMA, try to select 8478 * the preferred node 8479 */ 8480 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 8481 return NULL; 8482 8483 idlest_cpu = cpumask_first(sched_group_span(idlest)); 8484 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 8485 return idlest; 8486 #endif 8487 /* 8488 * Otherwise, keep the task on this node to stay close 8489 * its wakeup source and improve locality. If there is 8490 * a real need of migration, periodic load balance will 8491 * take care of it. 8492 */ 8493 if (local_sgs.idle_cpus) 8494 return NULL; 8495 } 8496 8497 /* 8498 * Select group with highest number of idle CPUs. We could also 8499 * compare the utilization which is more stable but it can end 8500 * up that the group has less spare capacity but finally more 8501 * idle CPUs which means more opportunity to run task. 8502 */ 8503 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 8504 return NULL; 8505 break; 8506 } 8507 8508 return idlest; 8509 } 8510 8511 /** 8512 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 8513 * @env: The load balancing environment. 8514 * @sds: variable to hold the statistics for this sched_domain. 8515 */ 8516 8517 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 8518 { 8519 struct sched_domain *child = env->sd->child; 8520 struct sched_group *sg = env->sd->groups; 8521 struct sg_lb_stats *local = &sds->local_stat; 8522 struct sg_lb_stats tmp_sgs; 8523 int sg_status = 0; 8524 8525 #ifdef CONFIG_NO_HZ_COMMON 8526 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 8527 env->flags |= LBF_NOHZ_STATS; 8528 #endif 8529 8530 do { 8531 struct sg_lb_stats *sgs = &tmp_sgs; 8532 int local_group; 8533 8534 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 8535 if (local_group) { 8536 sds->local = sg; 8537 sgs = local; 8538 8539 if (env->idle != CPU_NEWLY_IDLE || 8540 time_after_eq(jiffies, sg->sgc->next_update)) 8541 update_group_capacity(env->sd, env->dst_cpu); 8542 } 8543 8544 update_sg_lb_stats(env, sg, sgs, &sg_status); 8545 8546 if (local_group) 8547 goto next_group; 8548 8549 8550 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 8551 sds->busiest = sg; 8552 sds->busiest_stat = *sgs; 8553 } 8554 8555 next_group: 8556 /* Now, start updating sd_lb_stats */ 8557 sds->total_load += sgs->group_load; 8558 sds->total_capacity += sgs->group_capacity; 8559 8560 sg = sg->next; 8561 } while (sg != env->sd->groups); 8562 8563 /* Tag domain that child domain prefers tasks go to siblings first */ 8564 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 8565 8566 #ifdef CONFIG_NO_HZ_COMMON 8567 if ((env->flags & LBF_NOHZ_AGAIN) && 8568 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 8569 8570 WRITE_ONCE(nohz.next_blocked, 8571 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 8572 } 8573 #endif 8574 8575 if (env->sd->flags & SD_NUMA) 8576 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8577 8578 if (!env->sd->parent) { 8579 struct root_domain *rd = env->dst_rq->rd; 8580 8581 /* update overload indicator if we are at root domain */ 8582 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 8583 8584 /* Update over-utilization (tipping point, U >= 0) indicator */ 8585 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 8586 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 8587 } else if (sg_status & SG_OVERUTILIZED) { 8588 struct root_domain *rd = env->dst_rq->rd; 8589 8590 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 8591 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 8592 } 8593 } 8594 8595 /** 8596 * calculate_imbalance - Calculate the amount of imbalance present within the 8597 * groups of a given sched_domain during load balance. 8598 * @env: load balance environment 8599 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8600 */ 8601 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8602 { 8603 struct sg_lb_stats *local, *busiest; 8604 8605 local = &sds->local_stat; 8606 busiest = &sds->busiest_stat; 8607 8608 if (busiest->group_type == group_misfit_task) { 8609 /* Set imbalance to allow misfit tasks to be balanced. */ 8610 env->migration_type = migrate_misfit; 8611 env->imbalance = 1; 8612 return; 8613 } 8614 8615 if (busiest->group_type == group_asym_packing) { 8616 /* 8617 * In case of asym capacity, we will try to migrate all load to 8618 * the preferred CPU. 8619 */ 8620 env->migration_type = migrate_task; 8621 env->imbalance = busiest->sum_h_nr_running; 8622 return; 8623 } 8624 8625 if (busiest->group_type == group_imbalanced) { 8626 /* 8627 * In the group_imb case we cannot rely on group-wide averages 8628 * to ensure CPU-load equilibrium, try to move any task to fix 8629 * the imbalance. The next load balance will take care of 8630 * balancing back the system. 8631 */ 8632 env->migration_type = migrate_task; 8633 env->imbalance = 1; 8634 return; 8635 } 8636 8637 /* 8638 * Try to use spare capacity of local group without overloading it or 8639 * emptying busiest. 8640 * XXX Spreading tasks across NUMA nodes is not always the best policy 8641 * and special care should be taken for SD_NUMA domain level before 8642 * spreading the tasks. For now, load_balance() fully relies on 8643 * NUMA_BALANCING and fbq_classify_group/rq to override the decision. 8644 */ 8645 if (local->group_type == group_has_spare) { 8646 if (busiest->group_type > group_fully_busy) { 8647 /* 8648 * If busiest is overloaded, try to fill spare 8649 * capacity. This might end up creating spare capacity 8650 * in busiest or busiest still being overloaded but 8651 * there is no simple way to directly compute the 8652 * amount of load to migrate in order to balance the 8653 * system. 8654 */ 8655 env->migration_type = migrate_util; 8656 env->imbalance = max(local->group_capacity, local->group_util) - 8657 local->group_util; 8658 8659 /* 8660 * In some cases, the group's utilization is max or even 8661 * higher than capacity because of migrations but the 8662 * local CPU is (newly) idle. There is at least one 8663 * waiting task in this overloaded busiest group. Let's 8664 * try to pull it. 8665 */ 8666 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 8667 env->migration_type = migrate_task; 8668 env->imbalance = 1; 8669 } 8670 8671 return; 8672 } 8673 8674 if (busiest->group_weight == 1 || sds->prefer_sibling) { 8675 unsigned int nr_diff = busiest->sum_nr_running; 8676 /* 8677 * When prefer sibling, evenly spread running tasks on 8678 * groups. 8679 */ 8680 env->migration_type = migrate_task; 8681 lsub_positive(&nr_diff, local->sum_nr_running); 8682 env->imbalance = nr_diff >> 1; 8683 return; 8684 } 8685 8686 /* 8687 * If there is no overload, we just want to even the number of 8688 * idle cpus. 8689 */ 8690 env->migration_type = migrate_task; 8691 env->imbalance = max_t(long, 0, (local->idle_cpus - 8692 busiest->idle_cpus) >> 1); 8693 return; 8694 } 8695 8696 /* 8697 * Local is fully busy but has to take more load to relieve the 8698 * busiest group 8699 */ 8700 if (local->group_type < group_overloaded) { 8701 /* 8702 * Local will become overloaded so the avg_load metrics are 8703 * finally needed. 8704 */ 8705 8706 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 8707 local->group_capacity; 8708 8709 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 8710 sds->total_capacity; 8711 } 8712 8713 /* 8714 * Both group are or will become overloaded and we're trying to get all 8715 * the CPUs to the average_load, so we don't want to push ourselves 8716 * above the average load, nor do we wish to reduce the max loaded CPU 8717 * below the average load. At the same time, we also don't want to 8718 * reduce the group load below the group capacity. Thus we look for 8719 * the minimum possible imbalance. 8720 */ 8721 env->migration_type = migrate_load; 8722 env->imbalance = min( 8723 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 8724 (sds->avg_load - local->avg_load) * local->group_capacity 8725 ) / SCHED_CAPACITY_SCALE; 8726 } 8727 8728 /******* find_busiest_group() helpers end here *********************/ 8729 8730 /* 8731 * Decision matrix according to the local and busiest group type: 8732 * 8733 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 8734 * has_spare nr_idle balanced N/A N/A balanced balanced 8735 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 8736 * misfit_task force N/A N/A N/A force force 8737 * asym_packing force force N/A N/A force force 8738 * imbalanced force force N/A N/A force force 8739 * overloaded force force N/A N/A force avg_load 8740 * 8741 * N/A : Not Applicable because already filtered while updating 8742 * statistics. 8743 * balanced : The system is balanced for these 2 groups. 8744 * force : Calculate the imbalance as load migration is probably needed. 8745 * avg_load : Only if imbalance is significant enough. 8746 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 8747 * different in groups. 8748 */ 8749 8750 /** 8751 * find_busiest_group - Returns the busiest group within the sched_domain 8752 * if there is an imbalance. 8753 * 8754 * Also calculates the amount of runnable load which should be moved 8755 * to restore balance. 8756 * 8757 * @env: The load balancing environment. 8758 * 8759 * Return: - The busiest group if imbalance exists. 8760 */ 8761 static struct sched_group *find_busiest_group(struct lb_env *env) 8762 { 8763 struct sg_lb_stats *local, *busiest; 8764 struct sd_lb_stats sds; 8765 8766 init_sd_lb_stats(&sds); 8767 8768 /* 8769 * Compute the various statistics relevant for load balancing at 8770 * this level. 8771 */ 8772 update_sd_lb_stats(env, &sds); 8773 8774 if (sched_energy_enabled()) { 8775 struct root_domain *rd = env->dst_rq->rd; 8776 8777 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 8778 goto out_balanced; 8779 } 8780 8781 local = &sds.local_stat; 8782 busiest = &sds.busiest_stat; 8783 8784 /* There is no busy sibling group to pull tasks from */ 8785 if (!sds.busiest) 8786 goto out_balanced; 8787 8788 /* Misfit tasks should be dealt with regardless of the avg load */ 8789 if (busiest->group_type == group_misfit_task) 8790 goto force_balance; 8791 8792 /* ASYM feature bypasses nice load balance check */ 8793 if (busiest->group_type == group_asym_packing) 8794 goto force_balance; 8795 8796 /* 8797 * If the busiest group is imbalanced the below checks don't 8798 * work because they assume all things are equal, which typically 8799 * isn't true due to cpus_ptr constraints and the like. 8800 */ 8801 if (busiest->group_type == group_imbalanced) 8802 goto force_balance; 8803 8804 /* 8805 * If the local group is busier than the selected busiest group 8806 * don't try and pull any tasks. 8807 */ 8808 if (local->group_type > busiest->group_type) 8809 goto out_balanced; 8810 8811 /* 8812 * When groups are overloaded, use the avg_load to ensure fairness 8813 * between tasks. 8814 */ 8815 if (local->group_type == group_overloaded) { 8816 /* 8817 * If the local group is more loaded than the selected 8818 * busiest group don't try to pull any tasks. 8819 */ 8820 if (local->avg_load >= busiest->avg_load) 8821 goto out_balanced; 8822 8823 /* XXX broken for overlapping NUMA groups */ 8824 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 8825 sds.total_capacity; 8826 8827 /* 8828 * Don't pull any tasks if this group is already above the 8829 * domain average load. 8830 */ 8831 if (local->avg_load >= sds.avg_load) 8832 goto out_balanced; 8833 8834 /* 8835 * If the busiest group is more loaded, use imbalance_pct to be 8836 * conservative. 8837 */ 8838 if (100 * busiest->avg_load <= 8839 env->sd->imbalance_pct * local->avg_load) 8840 goto out_balanced; 8841 } 8842 8843 /* Try to move all excess tasks to child's sibling domain */ 8844 if (sds.prefer_sibling && local->group_type == group_has_spare && 8845 busiest->sum_nr_running > local->sum_nr_running + 1) 8846 goto force_balance; 8847 8848 if (busiest->group_type != group_overloaded) { 8849 if (env->idle == CPU_NOT_IDLE) 8850 /* 8851 * If the busiest group is not overloaded (and as a 8852 * result the local one too) but this CPU is already 8853 * busy, let another idle CPU try to pull task. 8854 */ 8855 goto out_balanced; 8856 8857 if (busiest->group_weight > 1 && 8858 local->idle_cpus <= (busiest->idle_cpus + 1)) 8859 /* 8860 * If the busiest group is not overloaded 8861 * and there is no imbalance between this and busiest 8862 * group wrt idle CPUs, it is balanced. The imbalance 8863 * becomes significant if the diff is greater than 1 8864 * otherwise we might end up to just move the imbalance 8865 * on another group. Of course this applies only if 8866 * there is more than 1 CPU per group. 8867 */ 8868 goto out_balanced; 8869 8870 if (busiest->sum_h_nr_running == 1) 8871 /* 8872 * busiest doesn't have any tasks waiting to run 8873 */ 8874 goto out_balanced; 8875 } 8876 8877 force_balance: 8878 /* Looks like there is an imbalance. Compute it */ 8879 calculate_imbalance(env, &sds); 8880 return env->imbalance ? sds.busiest : NULL; 8881 8882 out_balanced: 8883 env->imbalance = 0; 8884 return NULL; 8885 } 8886 8887 /* 8888 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 8889 */ 8890 static struct rq *find_busiest_queue(struct lb_env *env, 8891 struct sched_group *group) 8892 { 8893 struct rq *busiest = NULL, *rq; 8894 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 8895 unsigned int busiest_nr = 0; 8896 int i; 8897 8898 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8899 unsigned long capacity, load, util; 8900 unsigned int nr_running; 8901 enum fbq_type rt; 8902 8903 rq = cpu_rq(i); 8904 rt = fbq_classify_rq(rq); 8905 8906 /* 8907 * We classify groups/runqueues into three groups: 8908 * - regular: there are !numa tasks 8909 * - remote: there are numa tasks that run on the 'wrong' node 8910 * - all: there is no distinction 8911 * 8912 * In order to avoid migrating ideally placed numa tasks, 8913 * ignore those when there's better options. 8914 * 8915 * If we ignore the actual busiest queue to migrate another 8916 * task, the next balance pass can still reduce the busiest 8917 * queue by moving tasks around inside the node. 8918 * 8919 * If we cannot move enough load due to this classification 8920 * the next pass will adjust the group classification and 8921 * allow migration of more tasks. 8922 * 8923 * Both cases only affect the total convergence complexity. 8924 */ 8925 if (rt > env->fbq_type) 8926 continue; 8927 8928 capacity = capacity_of(i); 8929 nr_running = rq->cfs.h_nr_running; 8930 8931 /* 8932 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 8933 * eventually lead to active_balancing high->low capacity. 8934 * Higher per-CPU capacity is considered better than balancing 8935 * average load. 8936 */ 8937 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8938 capacity_of(env->dst_cpu) < capacity && 8939 nr_running == 1) 8940 continue; 8941 8942 switch (env->migration_type) { 8943 case migrate_load: 8944 /* 8945 * When comparing with load imbalance, use cpu_load() 8946 * which is not scaled with the CPU capacity. 8947 */ 8948 load = cpu_load(rq); 8949 8950 if (nr_running == 1 && load > env->imbalance && 8951 !check_cpu_capacity(rq, env->sd)) 8952 break; 8953 8954 /* 8955 * For the load comparisons with the other CPUs, 8956 * consider the cpu_load() scaled with the CPU 8957 * capacity, so that the load can be moved away 8958 * from the CPU that is potentially running at a 8959 * lower capacity. 8960 * 8961 * Thus we're looking for max(load_i / capacity_i), 8962 * crosswise multiplication to rid ourselves of the 8963 * division works out to: 8964 * load_i * capacity_j > load_j * capacity_i; 8965 * where j is our previous maximum. 8966 */ 8967 if (load * busiest_capacity > busiest_load * capacity) { 8968 busiest_load = load; 8969 busiest_capacity = capacity; 8970 busiest = rq; 8971 } 8972 break; 8973 8974 case migrate_util: 8975 util = cpu_util(cpu_of(rq)); 8976 8977 if (busiest_util < util) { 8978 busiest_util = util; 8979 busiest = rq; 8980 } 8981 break; 8982 8983 case migrate_task: 8984 if (busiest_nr < nr_running) { 8985 busiest_nr = nr_running; 8986 busiest = rq; 8987 } 8988 break; 8989 8990 case migrate_misfit: 8991 /* 8992 * For ASYM_CPUCAPACITY domains with misfit tasks we 8993 * simply seek the "biggest" misfit task. 8994 */ 8995 if (rq->misfit_task_load > busiest_load) { 8996 busiest_load = rq->misfit_task_load; 8997 busiest = rq; 8998 } 8999 9000 break; 9001 9002 } 9003 } 9004 9005 return busiest; 9006 } 9007 9008 /* 9009 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 9010 * so long as it is large enough. 9011 */ 9012 #define MAX_PINNED_INTERVAL 512 9013 9014 static inline bool 9015 asym_active_balance(struct lb_env *env) 9016 { 9017 /* 9018 * ASYM_PACKING needs to force migrate tasks from busy but 9019 * lower priority CPUs in order to pack all tasks in the 9020 * highest priority CPUs. 9021 */ 9022 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 9023 sched_asym_prefer(env->dst_cpu, env->src_cpu); 9024 } 9025 9026 static inline bool 9027 voluntary_active_balance(struct lb_env *env) 9028 { 9029 struct sched_domain *sd = env->sd; 9030 9031 if (asym_active_balance(env)) 9032 return 1; 9033 9034 /* 9035 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 9036 * It's worth migrating the task if the src_cpu's capacity is reduced 9037 * because of other sched_class or IRQs if more capacity stays 9038 * available on dst_cpu. 9039 */ 9040 if ((env->idle != CPU_NOT_IDLE) && 9041 (env->src_rq->cfs.h_nr_running == 1)) { 9042 if ((check_cpu_capacity(env->src_rq, sd)) && 9043 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 9044 return 1; 9045 } 9046 9047 if (env->migration_type == migrate_misfit) 9048 return 1; 9049 9050 return 0; 9051 } 9052 9053 static int need_active_balance(struct lb_env *env) 9054 { 9055 struct sched_domain *sd = env->sd; 9056 9057 if (voluntary_active_balance(env)) 9058 return 1; 9059 9060 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 9061 } 9062 9063 static int active_load_balance_cpu_stop(void *data); 9064 9065 static int should_we_balance(struct lb_env *env) 9066 { 9067 struct sched_group *sg = env->sd->groups; 9068 int cpu, balance_cpu = -1; 9069 9070 /* 9071 * Ensure the balancing environment is consistent; can happen 9072 * when the softirq triggers 'during' hotplug. 9073 */ 9074 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 9075 return 0; 9076 9077 /* 9078 * In the newly idle case, we will allow all the CPUs 9079 * to do the newly idle load balance. 9080 */ 9081 if (env->idle == CPU_NEWLY_IDLE) 9082 return 1; 9083 9084 /* Try to find first idle CPU */ 9085 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 9086 if (!idle_cpu(cpu)) 9087 continue; 9088 9089 balance_cpu = cpu; 9090 break; 9091 } 9092 9093 if (balance_cpu == -1) 9094 balance_cpu = group_balance_cpu(sg); 9095 9096 /* 9097 * First idle CPU or the first CPU(busiest) in this sched group 9098 * is eligible for doing load balancing at this and above domains. 9099 */ 9100 return balance_cpu == env->dst_cpu; 9101 } 9102 9103 /* 9104 * Check this_cpu to ensure it is balanced within domain. Attempt to move 9105 * tasks if there is an imbalance. 9106 */ 9107 static int load_balance(int this_cpu, struct rq *this_rq, 9108 struct sched_domain *sd, enum cpu_idle_type idle, 9109 int *continue_balancing) 9110 { 9111 int ld_moved, cur_ld_moved, active_balance = 0; 9112 struct sched_domain *sd_parent = sd->parent; 9113 struct sched_group *group; 9114 struct rq *busiest; 9115 struct rq_flags rf; 9116 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 9117 9118 struct lb_env env = { 9119 .sd = sd, 9120 .dst_cpu = this_cpu, 9121 .dst_rq = this_rq, 9122 .dst_grpmask = sched_group_span(sd->groups), 9123 .idle = idle, 9124 .loop_break = sched_nr_migrate_break, 9125 .cpus = cpus, 9126 .fbq_type = all, 9127 .tasks = LIST_HEAD_INIT(env.tasks), 9128 }; 9129 9130 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 9131 9132 schedstat_inc(sd->lb_count[idle]); 9133 9134 redo: 9135 if (!should_we_balance(&env)) { 9136 *continue_balancing = 0; 9137 goto out_balanced; 9138 } 9139 9140 group = find_busiest_group(&env); 9141 if (!group) { 9142 schedstat_inc(sd->lb_nobusyg[idle]); 9143 goto out_balanced; 9144 } 9145 9146 busiest = find_busiest_queue(&env, group); 9147 if (!busiest) { 9148 schedstat_inc(sd->lb_nobusyq[idle]); 9149 goto out_balanced; 9150 } 9151 9152 BUG_ON(busiest == env.dst_rq); 9153 9154 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 9155 9156 env.src_cpu = busiest->cpu; 9157 env.src_rq = busiest; 9158 9159 ld_moved = 0; 9160 if (busiest->nr_running > 1) { 9161 /* 9162 * Attempt to move tasks. If find_busiest_group has found 9163 * an imbalance but busiest->nr_running <= 1, the group is 9164 * still unbalanced. ld_moved simply stays zero, so it is 9165 * correctly treated as an imbalance. 9166 */ 9167 env.flags |= LBF_ALL_PINNED; 9168 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 9169 9170 more_balance: 9171 rq_lock_irqsave(busiest, &rf); 9172 update_rq_clock(busiest); 9173 9174 /* 9175 * cur_ld_moved - load moved in current iteration 9176 * ld_moved - cumulative load moved across iterations 9177 */ 9178 cur_ld_moved = detach_tasks(&env); 9179 9180 /* 9181 * We've detached some tasks from busiest_rq. Every 9182 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 9183 * unlock busiest->lock, and we are able to be sure 9184 * that nobody can manipulate the tasks in parallel. 9185 * See task_rq_lock() family for the details. 9186 */ 9187 9188 rq_unlock(busiest, &rf); 9189 9190 if (cur_ld_moved) { 9191 attach_tasks(&env); 9192 ld_moved += cur_ld_moved; 9193 } 9194 9195 local_irq_restore(rf.flags); 9196 9197 if (env.flags & LBF_NEED_BREAK) { 9198 env.flags &= ~LBF_NEED_BREAK; 9199 goto more_balance; 9200 } 9201 9202 /* 9203 * Revisit (affine) tasks on src_cpu that couldn't be moved to 9204 * us and move them to an alternate dst_cpu in our sched_group 9205 * where they can run. The upper limit on how many times we 9206 * iterate on same src_cpu is dependent on number of CPUs in our 9207 * sched_group. 9208 * 9209 * This changes load balance semantics a bit on who can move 9210 * load to a given_cpu. In addition to the given_cpu itself 9211 * (or a ilb_cpu acting on its behalf where given_cpu is 9212 * nohz-idle), we now have balance_cpu in a position to move 9213 * load to given_cpu. In rare situations, this may cause 9214 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 9215 * _independently_ and at _same_ time to move some load to 9216 * given_cpu) causing exceess load to be moved to given_cpu. 9217 * This however should not happen so much in practice and 9218 * moreover subsequent load balance cycles should correct the 9219 * excess load moved. 9220 */ 9221 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 9222 9223 /* Prevent to re-select dst_cpu via env's CPUs */ 9224 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 9225 9226 env.dst_rq = cpu_rq(env.new_dst_cpu); 9227 env.dst_cpu = env.new_dst_cpu; 9228 env.flags &= ~LBF_DST_PINNED; 9229 env.loop = 0; 9230 env.loop_break = sched_nr_migrate_break; 9231 9232 /* 9233 * Go back to "more_balance" rather than "redo" since we 9234 * need to continue with same src_cpu. 9235 */ 9236 goto more_balance; 9237 } 9238 9239 /* 9240 * We failed to reach balance because of affinity. 9241 */ 9242 if (sd_parent) { 9243 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9244 9245 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 9246 *group_imbalance = 1; 9247 } 9248 9249 /* All tasks on this runqueue were pinned by CPU affinity */ 9250 if (unlikely(env.flags & LBF_ALL_PINNED)) { 9251 __cpumask_clear_cpu(cpu_of(busiest), cpus); 9252 /* 9253 * Attempting to continue load balancing at the current 9254 * sched_domain level only makes sense if there are 9255 * active CPUs remaining as possible busiest CPUs to 9256 * pull load from which are not contained within the 9257 * destination group that is receiving any migrated 9258 * load. 9259 */ 9260 if (!cpumask_subset(cpus, env.dst_grpmask)) { 9261 env.loop = 0; 9262 env.loop_break = sched_nr_migrate_break; 9263 goto redo; 9264 } 9265 goto out_all_pinned; 9266 } 9267 } 9268 9269 if (!ld_moved) { 9270 schedstat_inc(sd->lb_failed[idle]); 9271 /* 9272 * Increment the failure counter only on periodic balance. 9273 * We do not want newidle balance, which can be very 9274 * frequent, pollute the failure counter causing 9275 * excessive cache_hot migrations and active balances. 9276 */ 9277 if (idle != CPU_NEWLY_IDLE) 9278 sd->nr_balance_failed++; 9279 9280 if (need_active_balance(&env)) { 9281 unsigned long flags; 9282 9283 raw_spin_lock_irqsave(&busiest->lock, flags); 9284 9285 /* 9286 * Don't kick the active_load_balance_cpu_stop, 9287 * if the curr task on busiest CPU can't be 9288 * moved to this_cpu: 9289 */ 9290 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 9291 raw_spin_unlock_irqrestore(&busiest->lock, 9292 flags); 9293 env.flags |= LBF_ALL_PINNED; 9294 goto out_one_pinned; 9295 } 9296 9297 /* 9298 * ->active_balance synchronizes accesses to 9299 * ->active_balance_work. Once set, it's cleared 9300 * only after active load balance is finished. 9301 */ 9302 if (!busiest->active_balance) { 9303 busiest->active_balance = 1; 9304 busiest->push_cpu = this_cpu; 9305 active_balance = 1; 9306 } 9307 raw_spin_unlock_irqrestore(&busiest->lock, flags); 9308 9309 if (active_balance) { 9310 stop_one_cpu_nowait(cpu_of(busiest), 9311 active_load_balance_cpu_stop, busiest, 9312 &busiest->active_balance_work); 9313 } 9314 9315 /* We've kicked active balancing, force task migration. */ 9316 sd->nr_balance_failed = sd->cache_nice_tries+1; 9317 } 9318 } else 9319 sd->nr_balance_failed = 0; 9320 9321 if (likely(!active_balance) || voluntary_active_balance(&env)) { 9322 /* We were unbalanced, so reset the balancing interval */ 9323 sd->balance_interval = sd->min_interval; 9324 } else { 9325 /* 9326 * If we've begun active balancing, start to back off. This 9327 * case may not be covered by the all_pinned logic if there 9328 * is only 1 task on the busy runqueue (because we don't call 9329 * detach_tasks). 9330 */ 9331 if (sd->balance_interval < sd->max_interval) 9332 sd->balance_interval *= 2; 9333 } 9334 9335 goto out; 9336 9337 out_balanced: 9338 /* 9339 * We reach balance although we may have faced some affinity 9340 * constraints. Clear the imbalance flag only if other tasks got 9341 * a chance to move and fix the imbalance. 9342 */ 9343 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 9344 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9345 9346 if (*group_imbalance) 9347 *group_imbalance = 0; 9348 } 9349 9350 out_all_pinned: 9351 /* 9352 * We reach balance because all tasks are pinned at this level so 9353 * we can't migrate them. Let the imbalance flag set so parent level 9354 * can try to migrate them. 9355 */ 9356 schedstat_inc(sd->lb_balanced[idle]); 9357 9358 sd->nr_balance_failed = 0; 9359 9360 out_one_pinned: 9361 ld_moved = 0; 9362 9363 /* 9364 * newidle_balance() disregards balance intervals, so we could 9365 * repeatedly reach this code, which would lead to balance_interval 9366 * skyrocketting in a short amount of time. Skip the balance_interval 9367 * increase logic to avoid that. 9368 */ 9369 if (env.idle == CPU_NEWLY_IDLE) 9370 goto out; 9371 9372 /* tune up the balancing interval */ 9373 if ((env.flags & LBF_ALL_PINNED && 9374 sd->balance_interval < MAX_PINNED_INTERVAL) || 9375 sd->balance_interval < sd->max_interval) 9376 sd->balance_interval *= 2; 9377 out: 9378 return ld_moved; 9379 } 9380 9381 static inline unsigned long 9382 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9383 { 9384 unsigned long interval = sd->balance_interval; 9385 9386 if (cpu_busy) 9387 interval *= sd->busy_factor; 9388 9389 /* scale ms to jiffies */ 9390 interval = msecs_to_jiffies(interval); 9391 interval = clamp(interval, 1UL, max_load_balance_interval); 9392 9393 return interval; 9394 } 9395 9396 static inline void 9397 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 9398 { 9399 unsigned long interval, next; 9400 9401 /* used by idle balance, so cpu_busy = 0 */ 9402 interval = get_sd_balance_interval(sd, 0); 9403 next = sd->last_balance + interval; 9404 9405 if (time_after(*next_balance, next)) 9406 *next_balance = next; 9407 } 9408 9409 /* 9410 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 9411 * running tasks off the busiest CPU onto idle CPUs. It requires at 9412 * least 1 task to be running on each physical CPU where possible, and 9413 * avoids physical / logical imbalances. 9414 */ 9415 static int active_load_balance_cpu_stop(void *data) 9416 { 9417 struct rq *busiest_rq = data; 9418 int busiest_cpu = cpu_of(busiest_rq); 9419 int target_cpu = busiest_rq->push_cpu; 9420 struct rq *target_rq = cpu_rq(target_cpu); 9421 struct sched_domain *sd; 9422 struct task_struct *p = NULL; 9423 struct rq_flags rf; 9424 9425 rq_lock_irq(busiest_rq, &rf); 9426 /* 9427 * Between queueing the stop-work and running it is a hole in which 9428 * CPUs can become inactive. We should not move tasks from or to 9429 * inactive CPUs. 9430 */ 9431 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 9432 goto out_unlock; 9433 9434 /* Make sure the requested CPU hasn't gone down in the meantime: */ 9435 if (unlikely(busiest_cpu != smp_processor_id() || 9436 !busiest_rq->active_balance)) 9437 goto out_unlock; 9438 9439 /* Is there any task to move? */ 9440 if (busiest_rq->nr_running <= 1) 9441 goto out_unlock; 9442 9443 /* 9444 * This condition is "impossible", if it occurs 9445 * we need to fix it. Originally reported by 9446 * Bjorn Helgaas on a 128-CPU setup. 9447 */ 9448 BUG_ON(busiest_rq == target_rq); 9449 9450 /* Search for an sd spanning us and the target CPU. */ 9451 rcu_read_lock(); 9452 for_each_domain(target_cpu, sd) { 9453 if ((sd->flags & SD_LOAD_BALANCE) && 9454 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 9455 break; 9456 } 9457 9458 if (likely(sd)) { 9459 struct lb_env env = { 9460 .sd = sd, 9461 .dst_cpu = target_cpu, 9462 .dst_rq = target_rq, 9463 .src_cpu = busiest_rq->cpu, 9464 .src_rq = busiest_rq, 9465 .idle = CPU_IDLE, 9466 /* 9467 * can_migrate_task() doesn't need to compute new_dst_cpu 9468 * for active balancing. Since we have CPU_IDLE, but no 9469 * @dst_grpmask we need to make that test go away with lying 9470 * about DST_PINNED. 9471 */ 9472 .flags = LBF_DST_PINNED, 9473 }; 9474 9475 schedstat_inc(sd->alb_count); 9476 update_rq_clock(busiest_rq); 9477 9478 p = detach_one_task(&env); 9479 if (p) { 9480 schedstat_inc(sd->alb_pushed); 9481 /* Active balancing done, reset the failure counter. */ 9482 sd->nr_balance_failed = 0; 9483 } else { 9484 schedstat_inc(sd->alb_failed); 9485 } 9486 } 9487 rcu_read_unlock(); 9488 out_unlock: 9489 busiest_rq->active_balance = 0; 9490 rq_unlock(busiest_rq, &rf); 9491 9492 if (p) 9493 attach_one_task(target_rq, p); 9494 9495 local_irq_enable(); 9496 9497 return 0; 9498 } 9499 9500 static DEFINE_SPINLOCK(balancing); 9501 9502 /* 9503 * Scale the max load_balance interval with the number of CPUs in the system. 9504 * This trades load-balance latency on larger machines for less cross talk. 9505 */ 9506 void update_max_interval(void) 9507 { 9508 max_load_balance_interval = HZ*num_online_cpus()/10; 9509 } 9510 9511 /* 9512 * It checks each scheduling domain to see if it is due to be balanced, 9513 * and initiates a balancing operation if so. 9514 * 9515 * Balancing parameters are set up in init_sched_domains. 9516 */ 9517 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9518 { 9519 int continue_balancing = 1; 9520 int cpu = rq->cpu; 9521 unsigned long interval; 9522 struct sched_domain *sd; 9523 /* Earliest time when we have to do rebalance again */ 9524 unsigned long next_balance = jiffies + 60*HZ; 9525 int update_next_balance = 0; 9526 int need_serialize, need_decay = 0; 9527 u64 max_cost = 0; 9528 9529 rcu_read_lock(); 9530 for_each_domain(cpu, sd) { 9531 /* 9532 * Decay the newidle max times here because this is a regular 9533 * visit to all the domains. Decay ~1% per second. 9534 */ 9535 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 9536 sd->max_newidle_lb_cost = 9537 (sd->max_newidle_lb_cost * 253) / 256; 9538 sd->next_decay_max_lb_cost = jiffies + HZ; 9539 need_decay = 1; 9540 } 9541 max_cost += sd->max_newidle_lb_cost; 9542 9543 if (!(sd->flags & SD_LOAD_BALANCE)) 9544 continue; 9545 9546 /* 9547 * Stop the load balance at this level. There is another 9548 * CPU in our sched group which is doing load balancing more 9549 * actively. 9550 */ 9551 if (!continue_balancing) { 9552 if (need_decay) 9553 continue; 9554 break; 9555 } 9556 9557 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9558 9559 need_serialize = sd->flags & SD_SERIALIZE; 9560 if (need_serialize) { 9561 if (!spin_trylock(&balancing)) 9562 goto out; 9563 } 9564 9565 if (time_after_eq(jiffies, sd->last_balance + interval)) { 9566 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 9567 /* 9568 * The LBF_DST_PINNED logic could have changed 9569 * env->dst_cpu, so we can't know our idle 9570 * state even if we migrated tasks. Update it. 9571 */ 9572 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 9573 } 9574 sd->last_balance = jiffies; 9575 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9576 } 9577 if (need_serialize) 9578 spin_unlock(&balancing); 9579 out: 9580 if (time_after(next_balance, sd->last_balance + interval)) { 9581 next_balance = sd->last_balance + interval; 9582 update_next_balance = 1; 9583 } 9584 } 9585 if (need_decay) { 9586 /* 9587 * Ensure the rq-wide value also decays but keep it at a 9588 * reasonable floor to avoid funnies with rq->avg_idle. 9589 */ 9590 rq->max_idle_balance_cost = 9591 max((u64)sysctl_sched_migration_cost, max_cost); 9592 } 9593 rcu_read_unlock(); 9594 9595 /* 9596 * next_balance will be updated only when there is a need. 9597 * When the cpu is attached to null domain for ex, it will not be 9598 * updated. 9599 */ 9600 if (likely(update_next_balance)) { 9601 rq->next_balance = next_balance; 9602 9603 #ifdef CONFIG_NO_HZ_COMMON 9604 /* 9605 * If this CPU has been elected to perform the nohz idle 9606 * balance. Other idle CPUs have already rebalanced with 9607 * nohz_idle_balance() and nohz.next_balance has been 9608 * updated accordingly. This CPU is now running the idle load 9609 * balance for itself and we need to update the 9610 * nohz.next_balance accordingly. 9611 */ 9612 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 9613 nohz.next_balance = rq->next_balance; 9614 #endif 9615 } 9616 } 9617 9618 static inline int on_null_domain(struct rq *rq) 9619 { 9620 return unlikely(!rcu_dereference_sched(rq->sd)); 9621 } 9622 9623 #ifdef CONFIG_NO_HZ_COMMON 9624 /* 9625 * idle load balancing details 9626 * - When one of the busy CPUs notice that there may be an idle rebalancing 9627 * needed, they will kick the idle load balancer, which then does idle 9628 * load balancing for all the idle CPUs. 9629 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set 9630 * anywhere yet. 9631 */ 9632 9633 static inline int find_new_ilb(void) 9634 { 9635 int ilb; 9636 9637 for_each_cpu_and(ilb, nohz.idle_cpus_mask, 9638 housekeeping_cpumask(HK_FLAG_MISC)) { 9639 if (idle_cpu(ilb)) 9640 return ilb; 9641 } 9642 9643 return nr_cpu_ids; 9644 } 9645 9646 /* 9647 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 9648 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one). 9649 */ 9650 static void kick_ilb(unsigned int flags) 9651 { 9652 int ilb_cpu; 9653 9654 nohz.next_balance++; 9655 9656 ilb_cpu = find_new_ilb(); 9657 9658 if (ilb_cpu >= nr_cpu_ids) 9659 return; 9660 9661 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 9662 if (flags & NOHZ_KICK_MASK) 9663 return; 9664 9665 /* 9666 * Use smp_send_reschedule() instead of resched_cpu(). 9667 * This way we generate a sched IPI on the target CPU which 9668 * is idle. And the softirq performing nohz idle load balance 9669 * will be run before returning from the IPI. 9670 */ 9671 smp_send_reschedule(ilb_cpu); 9672 } 9673 9674 /* 9675 * Current decision point for kicking the idle load balancer in the presence 9676 * of idle CPUs in the system. 9677 */ 9678 static void nohz_balancer_kick(struct rq *rq) 9679 { 9680 unsigned long now = jiffies; 9681 struct sched_domain_shared *sds; 9682 struct sched_domain *sd; 9683 int nr_busy, i, cpu = rq->cpu; 9684 unsigned int flags = 0; 9685 9686 if (unlikely(rq->idle_balance)) 9687 return; 9688 9689 /* 9690 * We may be recently in ticked or tickless idle mode. At the first 9691 * busy tick after returning from idle, we will update the busy stats. 9692 */ 9693 nohz_balance_exit_idle(rq); 9694 9695 /* 9696 * None are in tickless mode and hence no need for NOHZ idle load 9697 * balancing. 9698 */ 9699 if (likely(!atomic_read(&nohz.nr_cpus))) 9700 return; 9701 9702 if (READ_ONCE(nohz.has_blocked) && 9703 time_after(now, READ_ONCE(nohz.next_blocked))) 9704 flags = NOHZ_STATS_KICK; 9705 9706 if (time_before(now, nohz.next_balance)) 9707 goto out; 9708 9709 if (rq->nr_running >= 2) { 9710 flags = NOHZ_KICK_MASK; 9711 goto out; 9712 } 9713 9714 rcu_read_lock(); 9715 9716 sd = rcu_dereference(rq->sd); 9717 if (sd) { 9718 /* 9719 * If there's a CFS task and the current CPU has reduced 9720 * capacity; kick the ILB to see if there's a better CPU to run 9721 * on. 9722 */ 9723 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 9724 flags = NOHZ_KICK_MASK; 9725 goto unlock; 9726 } 9727 } 9728 9729 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 9730 if (sd) { 9731 /* 9732 * When ASYM_PACKING; see if there's a more preferred CPU 9733 * currently idle; in which case, kick the ILB to move tasks 9734 * around. 9735 */ 9736 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 9737 if (sched_asym_prefer(i, cpu)) { 9738 flags = NOHZ_KICK_MASK; 9739 goto unlock; 9740 } 9741 } 9742 } 9743 9744 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 9745 if (sd) { 9746 /* 9747 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 9748 * to run the misfit task on. 9749 */ 9750 if (check_misfit_status(rq, sd)) { 9751 flags = NOHZ_KICK_MASK; 9752 goto unlock; 9753 } 9754 9755 /* 9756 * For asymmetric systems, we do not want to nicely balance 9757 * cache use, instead we want to embrace asymmetry and only 9758 * ensure tasks have enough CPU capacity. 9759 * 9760 * Skip the LLC logic because it's not relevant in that case. 9761 */ 9762 goto unlock; 9763 } 9764 9765 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 9766 if (sds) { 9767 /* 9768 * If there is an imbalance between LLC domains (IOW we could 9769 * increase the overall cache use), we need some less-loaded LLC 9770 * domain to pull some load. Likewise, we may need to spread 9771 * load within the current LLC domain (e.g. packed SMT cores but 9772 * other CPUs are idle). We can't really know from here how busy 9773 * the others are - so just get a nohz balance going if it looks 9774 * like this LLC domain has tasks we could move. 9775 */ 9776 nr_busy = atomic_read(&sds->nr_busy_cpus); 9777 if (nr_busy > 1) { 9778 flags = NOHZ_KICK_MASK; 9779 goto unlock; 9780 } 9781 } 9782 unlock: 9783 rcu_read_unlock(); 9784 out: 9785 if (flags) 9786 kick_ilb(flags); 9787 } 9788 9789 static void set_cpu_sd_state_busy(int cpu) 9790 { 9791 struct sched_domain *sd; 9792 9793 rcu_read_lock(); 9794 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9795 9796 if (!sd || !sd->nohz_idle) 9797 goto unlock; 9798 sd->nohz_idle = 0; 9799 9800 atomic_inc(&sd->shared->nr_busy_cpus); 9801 unlock: 9802 rcu_read_unlock(); 9803 } 9804 9805 void nohz_balance_exit_idle(struct rq *rq) 9806 { 9807 SCHED_WARN_ON(rq != this_rq()); 9808 9809 if (likely(!rq->nohz_tick_stopped)) 9810 return; 9811 9812 rq->nohz_tick_stopped = 0; 9813 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 9814 atomic_dec(&nohz.nr_cpus); 9815 9816 set_cpu_sd_state_busy(rq->cpu); 9817 } 9818 9819 static void set_cpu_sd_state_idle(int cpu) 9820 { 9821 struct sched_domain *sd; 9822 9823 rcu_read_lock(); 9824 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9825 9826 if (!sd || sd->nohz_idle) 9827 goto unlock; 9828 sd->nohz_idle = 1; 9829 9830 atomic_dec(&sd->shared->nr_busy_cpus); 9831 unlock: 9832 rcu_read_unlock(); 9833 } 9834 9835 /* 9836 * This routine will record that the CPU is going idle with tick stopped. 9837 * This info will be used in performing idle load balancing in the future. 9838 */ 9839 void nohz_balance_enter_idle(int cpu) 9840 { 9841 struct rq *rq = cpu_rq(cpu); 9842 9843 SCHED_WARN_ON(cpu != smp_processor_id()); 9844 9845 /* If this CPU is going down, then nothing needs to be done: */ 9846 if (!cpu_active(cpu)) 9847 return; 9848 9849 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 9850 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 9851 return; 9852 9853 /* 9854 * Can be set safely without rq->lock held 9855 * If a clear happens, it will have evaluated last additions because 9856 * rq->lock is held during the check and the clear 9857 */ 9858 rq->has_blocked_load = 1; 9859 9860 /* 9861 * The tick is still stopped but load could have been added in the 9862 * meantime. We set the nohz.has_blocked flag to trig a check of the 9863 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 9864 * of nohz.has_blocked can only happen after checking the new load 9865 */ 9866 if (rq->nohz_tick_stopped) 9867 goto out; 9868 9869 /* If we're a completely isolated CPU, we don't play: */ 9870 if (on_null_domain(rq)) 9871 return; 9872 9873 rq->nohz_tick_stopped = 1; 9874 9875 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 9876 atomic_inc(&nohz.nr_cpus); 9877 9878 /* 9879 * Ensures that if nohz_idle_balance() fails to observe our 9880 * @idle_cpus_mask store, it must observe the @has_blocked 9881 * store. 9882 */ 9883 smp_mb__after_atomic(); 9884 9885 set_cpu_sd_state_idle(cpu); 9886 9887 out: 9888 /* 9889 * Each time a cpu enter idle, we assume that it has blocked load and 9890 * enable the periodic update of the load of idle cpus 9891 */ 9892 WRITE_ONCE(nohz.has_blocked, 1); 9893 } 9894 9895 /* 9896 * Internal function that runs load balance for all idle cpus. The load balance 9897 * can be a simple update of blocked load or a complete load balance with 9898 * tasks movement depending of flags. 9899 * The function returns false if the loop has stopped before running 9900 * through all idle CPUs. 9901 */ 9902 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 9903 enum cpu_idle_type idle) 9904 { 9905 /* Earliest time when we have to do rebalance again */ 9906 unsigned long now = jiffies; 9907 unsigned long next_balance = now + 60*HZ; 9908 bool has_blocked_load = false; 9909 int update_next_balance = 0; 9910 int this_cpu = this_rq->cpu; 9911 int balance_cpu; 9912 int ret = false; 9913 struct rq *rq; 9914 9915 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 9916 9917 /* 9918 * We assume there will be no idle load after this update and clear 9919 * the has_blocked flag. If a cpu enters idle in the mean time, it will 9920 * set the has_blocked flag and trig another update of idle load. 9921 * Because a cpu that becomes idle, is added to idle_cpus_mask before 9922 * setting the flag, we are sure to not clear the state and not 9923 * check the load of an idle cpu. 9924 */ 9925 WRITE_ONCE(nohz.has_blocked, 0); 9926 9927 /* 9928 * Ensures that if we miss the CPU, we must see the has_blocked 9929 * store from nohz_balance_enter_idle(). 9930 */ 9931 smp_mb(); 9932 9933 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 9934 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 9935 continue; 9936 9937 /* 9938 * If this CPU gets work to do, stop the load balancing 9939 * work being done for other CPUs. Next load 9940 * balancing owner will pick it up. 9941 */ 9942 if (need_resched()) { 9943 has_blocked_load = true; 9944 goto abort; 9945 } 9946 9947 rq = cpu_rq(balance_cpu); 9948 9949 has_blocked_load |= update_nohz_stats(rq, true); 9950 9951 /* 9952 * If time for next balance is due, 9953 * do the balance. 9954 */ 9955 if (time_after_eq(jiffies, rq->next_balance)) { 9956 struct rq_flags rf; 9957 9958 rq_lock_irqsave(rq, &rf); 9959 update_rq_clock(rq); 9960 rq_unlock_irqrestore(rq, &rf); 9961 9962 if (flags & NOHZ_BALANCE_KICK) 9963 rebalance_domains(rq, CPU_IDLE); 9964 } 9965 9966 if (time_after(next_balance, rq->next_balance)) { 9967 next_balance = rq->next_balance; 9968 update_next_balance = 1; 9969 } 9970 } 9971 9972 /* Newly idle CPU doesn't need an update */ 9973 if (idle != CPU_NEWLY_IDLE) { 9974 update_blocked_averages(this_cpu); 9975 has_blocked_load |= this_rq->has_blocked_load; 9976 } 9977 9978 if (flags & NOHZ_BALANCE_KICK) 9979 rebalance_domains(this_rq, CPU_IDLE); 9980 9981 WRITE_ONCE(nohz.next_blocked, 9982 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 9983 9984 /* The full idle balance loop has been done */ 9985 ret = true; 9986 9987 abort: 9988 /* There is still blocked load, enable periodic update */ 9989 if (has_blocked_load) 9990 WRITE_ONCE(nohz.has_blocked, 1); 9991 9992 /* 9993 * next_balance will be updated only when there is a need. 9994 * When the CPU is attached to null domain for ex, it will not be 9995 * updated. 9996 */ 9997 if (likely(update_next_balance)) 9998 nohz.next_balance = next_balance; 9999 10000 return ret; 10001 } 10002 10003 /* 10004 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 10005 * rebalancing for all the cpus for whom scheduler ticks are stopped. 10006 */ 10007 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10008 { 10009 int this_cpu = this_rq->cpu; 10010 unsigned int flags; 10011 10012 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK)) 10013 return false; 10014 10015 if (idle != CPU_IDLE) { 10016 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 10017 return false; 10018 } 10019 10020 /* could be _relaxed() */ 10021 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 10022 if (!(flags & NOHZ_KICK_MASK)) 10023 return false; 10024 10025 _nohz_idle_balance(this_rq, flags, idle); 10026 10027 return true; 10028 } 10029 10030 static void nohz_newidle_balance(struct rq *this_rq) 10031 { 10032 int this_cpu = this_rq->cpu; 10033 10034 /* 10035 * This CPU doesn't want to be disturbed by scheduler 10036 * housekeeping 10037 */ 10038 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 10039 return; 10040 10041 /* Will wake up very soon. No time for doing anything else*/ 10042 if (this_rq->avg_idle < sysctl_sched_migration_cost) 10043 return; 10044 10045 /* Don't need to update blocked load of idle CPUs*/ 10046 if (!READ_ONCE(nohz.has_blocked) || 10047 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 10048 return; 10049 10050 raw_spin_unlock(&this_rq->lock); 10051 /* 10052 * This CPU is going to be idle and blocked load of idle CPUs 10053 * need to be updated. Run the ilb locally as it is a good 10054 * candidate for ilb instead of waking up another idle CPU. 10055 * Kick an normal ilb if we failed to do the update. 10056 */ 10057 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 10058 kick_ilb(NOHZ_STATS_KICK); 10059 raw_spin_lock(&this_rq->lock); 10060 } 10061 10062 #else /* !CONFIG_NO_HZ_COMMON */ 10063 static inline void nohz_balancer_kick(struct rq *rq) { } 10064 10065 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10066 { 10067 return false; 10068 } 10069 10070 static inline void nohz_newidle_balance(struct rq *this_rq) { } 10071 #endif /* CONFIG_NO_HZ_COMMON */ 10072 10073 /* 10074 * idle_balance is called by schedule() if this_cpu is about to become 10075 * idle. Attempts to pull tasks from other CPUs. 10076 * 10077 * Returns: 10078 * < 0 - we released the lock and there are !fair tasks present 10079 * 0 - failed, no new tasks 10080 * > 0 - success, new (fair) tasks present 10081 */ 10082 int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 10083 { 10084 unsigned long next_balance = jiffies + HZ; 10085 int this_cpu = this_rq->cpu; 10086 struct sched_domain *sd; 10087 int pulled_task = 0; 10088 u64 curr_cost = 0; 10089 10090 update_misfit_status(NULL, this_rq); 10091 /* 10092 * We must set idle_stamp _before_ calling idle_balance(), such that we 10093 * measure the duration of idle_balance() as idle time. 10094 */ 10095 this_rq->idle_stamp = rq_clock(this_rq); 10096 10097 /* 10098 * Do not pull tasks towards !active CPUs... 10099 */ 10100 if (!cpu_active(this_cpu)) 10101 return 0; 10102 10103 /* 10104 * This is OK, because current is on_cpu, which avoids it being picked 10105 * for load-balance and preemption/IRQs are still disabled avoiding 10106 * further scheduler activity on it and we're being very careful to 10107 * re-start the picking loop. 10108 */ 10109 rq_unpin_lock(this_rq, rf); 10110 10111 if (this_rq->avg_idle < sysctl_sched_migration_cost || 10112 !READ_ONCE(this_rq->rd->overload)) { 10113 10114 rcu_read_lock(); 10115 sd = rcu_dereference_check_sched_domain(this_rq->sd); 10116 if (sd) 10117 update_next_balance(sd, &next_balance); 10118 rcu_read_unlock(); 10119 10120 nohz_newidle_balance(this_rq); 10121 10122 goto out; 10123 } 10124 10125 raw_spin_unlock(&this_rq->lock); 10126 10127 update_blocked_averages(this_cpu); 10128 rcu_read_lock(); 10129 for_each_domain(this_cpu, sd) { 10130 int continue_balancing = 1; 10131 u64 t0, domain_cost; 10132 10133 if (!(sd->flags & SD_LOAD_BALANCE)) 10134 continue; 10135 10136 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 10137 update_next_balance(sd, &next_balance); 10138 break; 10139 } 10140 10141 if (sd->flags & SD_BALANCE_NEWIDLE) { 10142 t0 = sched_clock_cpu(this_cpu); 10143 10144 pulled_task = load_balance(this_cpu, this_rq, 10145 sd, CPU_NEWLY_IDLE, 10146 &continue_balancing); 10147 10148 domain_cost = sched_clock_cpu(this_cpu) - t0; 10149 if (domain_cost > sd->max_newidle_lb_cost) 10150 sd->max_newidle_lb_cost = domain_cost; 10151 10152 curr_cost += domain_cost; 10153 } 10154 10155 update_next_balance(sd, &next_balance); 10156 10157 /* 10158 * Stop searching for tasks to pull if there are 10159 * now runnable tasks on this rq. 10160 */ 10161 if (pulled_task || this_rq->nr_running > 0) 10162 break; 10163 } 10164 rcu_read_unlock(); 10165 10166 raw_spin_lock(&this_rq->lock); 10167 10168 if (curr_cost > this_rq->max_idle_balance_cost) 10169 this_rq->max_idle_balance_cost = curr_cost; 10170 10171 out: 10172 /* 10173 * While browsing the domains, we released the rq lock, a task could 10174 * have been enqueued in the meantime. Since we're not going idle, 10175 * pretend we pulled a task. 10176 */ 10177 if (this_rq->cfs.h_nr_running && !pulled_task) 10178 pulled_task = 1; 10179 10180 /* Move the next balance forward */ 10181 if (time_after(this_rq->next_balance, next_balance)) 10182 this_rq->next_balance = next_balance; 10183 10184 /* Is there a task of a high priority class? */ 10185 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 10186 pulled_task = -1; 10187 10188 if (pulled_task) 10189 this_rq->idle_stamp = 0; 10190 10191 rq_repin_lock(this_rq, rf); 10192 10193 return pulled_task; 10194 } 10195 10196 /* 10197 * run_rebalance_domains is triggered when needed from the scheduler tick. 10198 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 10199 */ 10200 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 10201 { 10202 struct rq *this_rq = this_rq(); 10203 enum cpu_idle_type idle = this_rq->idle_balance ? 10204 CPU_IDLE : CPU_NOT_IDLE; 10205 10206 /* 10207 * If this CPU has a pending nohz_balance_kick, then do the 10208 * balancing on behalf of the other idle CPUs whose ticks are 10209 * stopped. Do nohz_idle_balance *before* rebalance_domains to 10210 * give the idle CPUs a chance to load balance. Else we may 10211 * load balance only within the local sched_domain hierarchy 10212 * and abort nohz_idle_balance altogether if we pull some load. 10213 */ 10214 if (nohz_idle_balance(this_rq, idle)) 10215 return; 10216 10217 /* normal load balance */ 10218 update_blocked_averages(this_rq->cpu); 10219 rebalance_domains(this_rq, idle); 10220 } 10221 10222 /* 10223 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 10224 */ 10225 void trigger_load_balance(struct rq *rq) 10226 { 10227 /* Don't need to rebalance while attached to NULL domain */ 10228 if (unlikely(on_null_domain(rq))) 10229 return; 10230 10231 if (time_after_eq(jiffies, rq->next_balance)) 10232 raise_softirq(SCHED_SOFTIRQ); 10233 10234 nohz_balancer_kick(rq); 10235 } 10236 10237 static void rq_online_fair(struct rq *rq) 10238 { 10239 update_sysctl(); 10240 10241 update_runtime_enabled(rq); 10242 } 10243 10244 static void rq_offline_fair(struct rq *rq) 10245 { 10246 update_sysctl(); 10247 10248 /* Ensure any throttled groups are reachable by pick_next_task */ 10249 unthrottle_offline_cfs_rqs(rq); 10250 } 10251 10252 #endif /* CONFIG_SMP */ 10253 10254 /* 10255 * scheduler tick hitting a task of our scheduling class. 10256 * 10257 * NOTE: This function can be called remotely by the tick offload that 10258 * goes along full dynticks. Therefore no local assumption can be made 10259 * and everything must be accessed through the @rq and @curr passed in 10260 * parameters. 10261 */ 10262 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 10263 { 10264 struct cfs_rq *cfs_rq; 10265 struct sched_entity *se = &curr->se; 10266 10267 for_each_sched_entity(se) { 10268 cfs_rq = cfs_rq_of(se); 10269 entity_tick(cfs_rq, se, queued); 10270 } 10271 10272 if (static_branch_unlikely(&sched_numa_balancing)) 10273 task_tick_numa(rq, curr); 10274 10275 update_misfit_status(curr, rq); 10276 update_overutilized_status(task_rq(curr)); 10277 } 10278 10279 /* 10280 * called on fork with the child task as argument from the parent's context 10281 * - child not yet on the tasklist 10282 * - preemption disabled 10283 */ 10284 static void task_fork_fair(struct task_struct *p) 10285 { 10286 struct cfs_rq *cfs_rq; 10287 struct sched_entity *se = &p->se, *curr; 10288 struct rq *rq = this_rq(); 10289 struct rq_flags rf; 10290 10291 rq_lock(rq, &rf); 10292 update_rq_clock(rq); 10293 10294 cfs_rq = task_cfs_rq(current); 10295 curr = cfs_rq->curr; 10296 if (curr) { 10297 update_curr(cfs_rq); 10298 se->vruntime = curr->vruntime; 10299 } 10300 place_entity(cfs_rq, se, 1); 10301 10302 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 10303 /* 10304 * Upon rescheduling, sched_class::put_prev_task() will place 10305 * 'current' within the tree based on its new key value. 10306 */ 10307 swap(curr->vruntime, se->vruntime); 10308 resched_curr(rq); 10309 } 10310 10311 se->vruntime -= cfs_rq->min_vruntime; 10312 rq_unlock(rq, &rf); 10313 } 10314 10315 /* 10316 * Priority of the task has changed. Check to see if we preempt 10317 * the current task. 10318 */ 10319 static void 10320 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 10321 { 10322 if (!task_on_rq_queued(p)) 10323 return; 10324 10325 /* 10326 * Reschedule if we are currently running on this runqueue and 10327 * our priority decreased, or if we are not currently running on 10328 * this runqueue and our priority is higher than the current's 10329 */ 10330 if (rq->curr == p) { 10331 if (p->prio > oldprio) 10332 resched_curr(rq); 10333 } else 10334 check_preempt_curr(rq, p, 0); 10335 } 10336 10337 static inline bool vruntime_normalized(struct task_struct *p) 10338 { 10339 struct sched_entity *se = &p->se; 10340 10341 /* 10342 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 10343 * the dequeue_entity(.flags=0) will already have normalized the 10344 * vruntime. 10345 */ 10346 if (p->on_rq) 10347 return true; 10348 10349 /* 10350 * When !on_rq, vruntime of the task has usually NOT been normalized. 10351 * But there are some cases where it has already been normalized: 10352 * 10353 * - A forked child which is waiting for being woken up by 10354 * wake_up_new_task(). 10355 * - A task which has been woken up by try_to_wake_up() and 10356 * waiting for actually being woken up by sched_ttwu_pending(). 10357 */ 10358 if (!se->sum_exec_runtime || 10359 (p->state == TASK_WAKING && p->sched_remote_wakeup)) 10360 return true; 10361 10362 return false; 10363 } 10364 10365 #ifdef CONFIG_FAIR_GROUP_SCHED 10366 /* 10367 * Propagate the changes of the sched_entity across the tg tree to make it 10368 * visible to the root 10369 */ 10370 static void propagate_entity_cfs_rq(struct sched_entity *se) 10371 { 10372 struct cfs_rq *cfs_rq; 10373 10374 /* Start to propagate at parent */ 10375 se = se->parent; 10376 10377 for_each_sched_entity(se) { 10378 cfs_rq = cfs_rq_of(se); 10379 10380 if (cfs_rq_throttled(cfs_rq)) 10381 break; 10382 10383 update_load_avg(cfs_rq, se, UPDATE_TG); 10384 } 10385 } 10386 #else 10387 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 10388 #endif 10389 10390 static void detach_entity_cfs_rq(struct sched_entity *se) 10391 { 10392 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10393 10394 /* Catch up with the cfs_rq and remove our load when we leave */ 10395 update_load_avg(cfs_rq, se, 0); 10396 detach_entity_load_avg(cfs_rq, se); 10397 update_tg_load_avg(cfs_rq, false); 10398 propagate_entity_cfs_rq(se); 10399 } 10400 10401 static void attach_entity_cfs_rq(struct sched_entity *se) 10402 { 10403 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10404 10405 #ifdef CONFIG_FAIR_GROUP_SCHED 10406 /* 10407 * Since the real-depth could have been changed (only FAIR 10408 * class maintain depth value), reset depth properly. 10409 */ 10410 se->depth = se->parent ? se->parent->depth + 1 : 0; 10411 #endif 10412 10413 /* Synchronize entity with its cfs_rq */ 10414 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 10415 attach_entity_load_avg(cfs_rq, se, 0); 10416 update_tg_load_avg(cfs_rq, false); 10417 propagate_entity_cfs_rq(se); 10418 } 10419 10420 static void detach_task_cfs_rq(struct task_struct *p) 10421 { 10422 struct sched_entity *se = &p->se; 10423 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10424 10425 if (!vruntime_normalized(p)) { 10426 /* 10427 * Fix up our vruntime so that the current sleep doesn't 10428 * cause 'unlimited' sleep bonus. 10429 */ 10430 place_entity(cfs_rq, se, 0); 10431 se->vruntime -= cfs_rq->min_vruntime; 10432 } 10433 10434 detach_entity_cfs_rq(se); 10435 } 10436 10437 static void attach_task_cfs_rq(struct task_struct *p) 10438 { 10439 struct sched_entity *se = &p->se; 10440 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10441 10442 attach_entity_cfs_rq(se); 10443 10444 if (!vruntime_normalized(p)) 10445 se->vruntime += cfs_rq->min_vruntime; 10446 } 10447 10448 static void switched_from_fair(struct rq *rq, struct task_struct *p) 10449 { 10450 detach_task_cfs_rq(p); 10451 } 10452 10453 static void switched_to_fair(struct rq *rq, struct task_struct *p) 10454 { 10455 attach_task_cfs_rq(p); 10456 10457 if (task_on_rq_queued(p)) { 10458 /* 10459 * We were most likely switched from sched_rt, so 10460 * kick off the schedule if running, otherwise just see 10461 * if we can still preempt the current task. 10462 */ 10463 if (rq->curr == p) 10464 resched_curr(rq); 10465 else 10466 check_preempt_curr(rq, p, 0); 10467 } 10468 } 10469 10470 /* Account for a task changing its policy or group. 10471 * 10472 * This routine is mostly called to set cfs_rq->curr field when a task 10473 * migrates between groups/classes. 10474 */ 10475 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 10476 { 10477 struct sched_entity *se = &p->se; 10478 10479 #ifdef CONFIG_SMP 10480 if (task_on_rq_queued(p)) { 10481 /* 10482 * Move the next running task to the front of the list, so our 10483 * cfs_tasks list becomes MRU one. 10484 */ 10485 list_move(&se->group_node, &rq->cfs_tasks); 10486 } 10487 #endif 10488 10489 for_each_sched_entity(se) { 10490 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10491 10492 set_next_entity(cfs_rq, se); 10493 /* ensure bandwidth has been allocated on our new cfs_rq */ 10494 account_cfs_rq_runtime(cfs_rq, 0); 10495 } 10496 } 10497 10498 void init_cfs_rq(struct cfs_rq *cfs_rq) 10499 { 10500 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 10501 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 10502 #ifndef CONFIG_64BIT 10503 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 10504 #endif 10505 #ifdef CONFIG_SMP 10506 raw_spin_lock_init(&cfs_rq->removed.lock); 10507 #endif 10508 } 10509 10510 #ifdef CONFIG_FAIR_GROUP_SCHED 10511 static void task_set_group_fair(struct task_struct *p) 10512 { 10513 struct sched_entity *se = &p->se; 10514 10515 set_task_rq(p, task_cpu(p)); 10516 se->depth = se->parent ? se->parent->depth + 1 : 0; 10517 } 10518 10519 static void task_move_group_fair(struct task_struct *p) 10520 { 10521 detach_task_cfs_rq(p); 10522 set_task_rq(p, task_cpu(p)); 10523 10524 #ifdef CONFIG_SMP 10525 /* Tell se's cfs_rq has been changed -- migrated */ 10526 p->se.avg.last_update_time = 0; 10527 #endif 10528 attach_task_cfs_rq(p); 10529 } 10530 10531 static void task_change_group_fair(struct task_struct *p, int type) 10532 { 10533 switch (type) { 10534 case TASK_SET_GROUP: 10535 task_set_group_fair(p); 10536 break; 10537 10538 case TASK_MOVE_GROUP: 10539 task_move_group_fair(p); 10540 break; 10541 } 10542 } 10543 10544 void free_fair_sched_group(struct task_group *tg) 10545 { 10546 int i; 10547 10548 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10549 10550 for_each_possible_cpu(i) { 10551 if (tg->cfs_rq) 10552 kfree(tg->cfs_rq[i]); 10553 if (tg->se) 10554 kfree(tg->se[i]); 10555 } 10556 10557 kfree(tg->cfs_rq); 10558 kfree(tg->se); 10559 } 10560 10561 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10562 { 10563 struct sched_entity *se; 10564 struct cfs_rq *cfs_rq; 10565 int i; 10566 10567 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 10568 if (!tg->cfs_rq) 10569 goto err; 10570 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 10571 if (!tg->se) 10572 goto err; 10573 10574 tg->shares = NICE_0_LOAD; 10575 10576 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10577 10578 for_each_possible_cpu(i) { 10579 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 10580 GFP_KERNEL, cpu_to_node(i)); 10581 if (!cfs_rq) 10582 goto err; 10583 10584 se = kzalloc_node(sizeof(struct sched_entity), 10585 GFP_KERNEL, cpu_to_node(i)); 10586 if (!se) 10587 goto err_free_rq; 10588 10589 init_cfs_rq(cfs_rq); 10590 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 10591 init_entity_runnable_average(se); 10592 } 10593 10594 return 1; 10595 10596 err_free_rq: 10597 kfree(cfs_rq); 10598 err: 10599 return 0; 10600 } 10601 10602 void online_fair_sched_group(struct task_group *tg) 10603 { 10604 struct sched_entity *se; 10605 struct rq_flags rf; 10606 struct rq *rq; 10607 int i; 10608 10609 for_each_possible_cpu(i) { 10610 rq = cpu_rq(i); 10611 se = tg->se[i]; 10612 rq_lock_irq(rq, &rf); 10613 update_rq_clock(rq); 10614 attach_entity_cfs_rq(se); 10615 sync_throttle(tg, i); 10616 rq_unlock_irq(rq, &rf); 10617 } 10618 } 10619 10620 void unregister_fair_sched_group(struct task_group *tg) 10621 { 10622 unsigned long flags; 10623 struct rq *rq; 10624 int cpu; 10625 10626 for_each_possible_cpu(cpu) { 10627 if (tg->se[cpu]) 10628 remove_entity_load_avg(tg->se[cpu]); 10629 10630 /* 10631 * Only empty task groups can be destroyed; so we can speculatively 10632 * check on_list without danger of it being re-added. 10633 */ 10634 if (!tg->cfs_rq[cpu]->on_list) 10635 continue; 10636 10637 rq = cpu_rq(cpu); 10638 10639 raw_spin_lock_irqsave(&rq->lock, flags); 10640 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 10641 raw_spin_unlock_irqrestore(&rq->lock, flags); 10642 } 10643 } 10644 10645 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 10646 struct sched_entity *se, int cpu, 10647 struct sched_entity *parent) 10648 { 10649 struct rq *rq = cpu_rq(cpu); 10650 10651 cfs_rq->tg = tg; 10652 cfs_rq->rq = rq; 10653 init_cfs_rq_runtime(cfs_rq); 10654 10655 tg->cfs_rq[cpu] = cfs_rq; 10656 tg->se[cpu] = se; 10657 10658 /* se could be NULL for root_task_group */ 10659 if (!se) 10660 return; 10661 10662 if (!parent) { 10663 se->cfs_rq = &rq->cfs; 10664 se->depth = 0; 10665 } else { 10666 se->cfs_rq = parent->my_q; 10667 se->depth = parent->depth + 1; 10668 } 10669 10670 se->my_q = cfs_rq; 10671 /* guarantee group entities always have weight */ 10672 update_load_set(&se->load, NICE_0_LOAD); 10673 se->parent = parent; 10674 } 10675 10676 static DEFINE_MUTEX(shares_mutex); 10677 10678 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 10679 { 10680 int i; 10681 10682 /* 10683 * We can't change the weight of the root cgroup. 10684 */ 10685 if (!tg->se[0]) 10686 return -EINVAL; 10687 10688 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 10689 10690 mutex_lock(&shares_mutex); 10691 if (tg->shares == shares) 10692 goto done; 10693 10694 tg->shares = shares; 10695 for_each_possible_cpu(i) { 10696 struct rq *rq = cpu_rq(i); 10697 struct sched_entity *se = tg->se[i]; 10698 struct rq_flags rf; 10699 10700 /* Propagate contribution to hierarchy */ 10701 rq_lock_irqsave(rq, &rf); 10702 update_rq_clock(rq); 10703 for_each_sched_entity(se) { 10704 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 10705 update_cfs_group(se); 10706 } 10707 rq_unlock_irqrestore(rq, &rf); 10708 } 10709 10710 done: 10711 mutex_unlock(&shares_mutex); 10712 return 0; 10713 } 10714 #else /* CONFIG_FAIR_GROUP_SCHED */ 10715 10716 void free_fair_sched_group(struct task_group *tg) { } 10717 10718 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10719 { 10720 return 1; 10721 } 10722 10723 void online_fair_sched_group(struct task_group *tg) { } 10724 10725 void unregister_fair_sched_group(struct task_group *tg) { } 10726 10727 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10728 10729 10730 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 10731 { 10732 struct sched_entity *se = &task->se; 10733 unsigned int rr_interval = 0; 10734 10735 /* 10736 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 10737 * idle runqueue: 10738 */ 10739 if (rq->cfs.load.weight) 10740 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 10741 10742 return rr_interval; 10743 } 10744 10745 /* 10746 * All the scheduling class methods: 10747 */ 10748 const struct sched_class fair_sched_class = { 10749 .next = &idle_sched_class, 10750 .enqueue_task = enqueue_task_fair, 10751 .dequeue_task = dequeue_task_fair, 10752 .yield_task = yield_task_fair, 10753 .yield_to_task = yield_to_task_fair, 10754 10755 .check_preempt_curr = check_preempt_wakeup, 10756 10757 .pick_next_task = __pick_next_task_fair, 10758 .put_prev_task = put_prev_task_fair, 10759 .set_next_task = set_next_task_fair, 10760 10761 #ifdef CONFIG_SMP 10762 .balance = balance_fair, 10763 .select_task_rq = select_task_rq_fair, 10764 .migrate_task_rq = migrate_task_rq_fair, 10765 10766 .rq_online = rq_online_fair, 10767 .rq_offline = rq_offline_fair, 10768 10769 .task_dead = task_dead_fair, 10770 .set_cpus_allowed = set_cpus_allowed_common, 10771 #endif 10772 10773 .task_tick = task_tick_fair, 10774 .task_fork = task_fork_fair, 10775 10776 .prio_changed = prio_changed_fair, 10777 .switched_from = switched_from_fair, 10778 .switched_to = switched_to_fair, 10779 10780 .get_rr_interval = get_rr_interval_fair, 10781 10782 .update_curr = update_curr_fair, 10783 10784 #ifdef CONFIG_FAIR_GROUP_SCHED 10785 .task_change_group = task_change_group_fair, 10786 #endif 10787 10788 #ifdef CONFIG_UCLAMP_TASK 10789 .uclamp_enabled = 1, 10790 #endif 10791 }; 10792 10793 #ifdef CONFIG_SCHED_DEBUG 10794 void print_cfs_stats(struct seq_file *m, int cpu) 10795 { 10796 struct cfs_rq *cfs_rq, *pos; 10797 10798 rcu_read_lock(); 10799 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 10800 print_cfs_rq(m, cpu, cfs_rq); 10801 rcu_read_unlock(); 10802 } 10803 10804 #ifdef CONFIG_NUMA_BALANCING 10805 void show_numa_stats(struct task_struct *p, struct seq_file *m) 10806 { 10807 int node; 10808 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 10809 struct numa_group *ng; 10810 10811 rcu_read_lock(); 10812 ng = rcu_dereference(p->numa_group); 10813 for_each_online_node(node) { 10814 if (p->numa_faults) { 10815 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 10816 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 10817 } 10818 if (ng) { 10819 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 10820 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 10821 } 10822 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 10823 } 10824 rcu_read_unlock(); 10825 } 10826 #endif /* CONFIG_NUMA_BALANCING */ 10827 #endif /* CONFIG_SCHED_DEBUG */ 10828 10829 __init void init_sched_fair_class(void) 10830 { 10831 #ifdef CONFIG_SMP 10832 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 10833 10834 #ifdef CONFIG_NO_HZ_COMMON 10835 nohz.next_balance = jiffies; 10836 nohz.next_blocked = jiffies; 10837 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 10838 #endif 10839 #endif /* SMP */ 10840 10841 } 10842 10843 /* 10844 * Helper functions to facilitate extracting info from tracepoints. 10845 */ 10846 10847 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) 10848 { 10849 #ifdef CONFIG_SMP 10850 return cfs_rq ? &cfs_rq->avg : NULL; 10851 #else 10852 return NULL; 10853 #endif 10854 } 10855 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); 10856 10857 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) 10858 { 10859 if (!cfs_rq) { 10860 if (str) 10861 strlcpy(str, "(null)", len); 10862 else 10863 return NULL; 10864 } 10865 10866 cfs_rq_tg_path(cfs_rq, str, len); 10867 return str; 10868 } 10869 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); 10870 10871 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) 10872 { 10873 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; 10874 } 10875 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); 10876 10877 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) 10878 { 10879 #ifdef CONFIG_SMP 10880 return rq ? &rq->avg_rt : NULL; 10881 #else 10882 return NULL; 10883 #endif 10884 } 10885 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); 10886 10887 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) 10888 { 10889 #ifdef CONFIG_SMP 10890 return rq ? &rq->avg_dl : NULL; 10891 #else 10892 return NULL; 10893 #endif 10894 } 10895 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); 10896 10897 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) 10898 { 10899 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) 10900 return rq ? &rq->avg_irq : NULL; 10901 #else 10902 return NULL; 10903 #endif 10904 } 10905 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); 10906 10907 int sched_trace_rq_cpu(struct rq *rq) 10908 { 10909 return rq ? cpu_of(rq) : -1; 10910 } 10911 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); 10912 10913 const struct cpumask *sched_trace_rd_span(struct root_domain *rd) 10914 { 10915 #ifdef CONFIG_SMP 10916 return rd ? rd->span : NULL; 10917 #else 10918 return NULL; 10919 #endif 10920 } 10921 EXPORT_SYMBOL_GPL(sched_trace_rd_span); 10922