xref: /linux/kernel/sched/fair.c (revision 48dea9a700c8728cc31a1dd44588b97578de86ee)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 /*
26  * Targeted preemption latency for CPU-bound tasks:
27  *
28  * NOTE: this latency value is not the same as the concept of
29  * 'timeslice length' - timeslices in CFS are of variable length
30  * and have no persistent notion like in traditional, time-slice
31  * based scheduling concepts.
32  *
33  * (to see the precise effective timeslice length of your workload,
34  *  run vmstat and monitor the context-switches (cs) field)
35  *
36  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37  */
38 unsigned int sysctl_sched_latency			= 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
40 
41 /*
42  * The initial- and re-scaling of tunables is configurable
43  *
44  * Options are:
45  *
46  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
47  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49  *
50  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
51  */
52 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
53 
54 /*
55  * Minimal preemption granularity for CPU-bound tasks:
56  *
57  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58  */
59 unsigned int sysctl_sched_min_granularity			= 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
61 
62 /*
63  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
64  */
65 static unsigned int sched_nr_latency = 8;
66 
67 /*
68  * After fork, child runs first. If set to 0 (default) then
69  * parent will (try to) run first.
70  */
71 unsigned int sysctl_sched_child_runs_first __read_mostly;
72 
73 /*
74  * SCHED_OTHER wake-up granularity.
75  *
76  * This option delays the preemption effects of decoupled workloads
77  * and reduces their over-scheduling. Synchronous workloads will still
78  * have immediate wakeup/sleep latencies.
79  *
80  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
81  */
82 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
83 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
84 
85 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
86 
87 int sched_thermal_decay_shift;
88 static int __init setup_sched_thermal_decay_shift(char *str)
89 {
90 	int _shift = 0;
91 
92 	if (kstrtoint(str, 0, &_shift))
93 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94 
95 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 	return 1;
97 }
98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99 
100 #ifdef CONFIG_SMP
101 /*
102  * For asym packing, by default the lower numbered CPU has higher priority.
103  */
104 int __weak arch_asym_cpu_priority(int cpu)
105 {
106 	return -cpu;
107 }
108 
109 /*
110  * The margin used when comparing utilization with CPU capacity.
111  *
112  * (default: ~20%)
113  */
114 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
115 
116 #endif
117 
118 #ifdef CONFIG_CFS_BANDWIDTH
119 /*
120  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
121  * each time a cfs_rq requests quota.
122  *
123  * Note: in the case that the slice exceeds the runtime remaining (either due
124  * to consumption or the quota being specified to be smaller than the slice)
125  * we will always only issue the remaining available time.
126  *
127  * (default: 5 msec, units: microseconds)
128  */
129 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
130 #endif
131 
132 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
133 {
134 	lw->weight += inc;
135 	lw->inv_weight = 0;
136 }
137 
138 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
139 {
140 	lw->weight -= dec;
141 	lw->inv_weight = 0;
142 }
143 
144 static inline void update_load_set(struct load_weight *lw, unsigned long w)
145 {
146 	lw->weight = w;
147 	lw->inv_weight = 0;
148 }
149 
150 /*
151  * Increase the granularity value when there are more CPUs,
152  * because with more CPUs the 'effective latency' as visible
153  * to users decreases. But the relationship is not linear,
154  * so pick a second-best guess by going with the log2 of the
155  * number of CPUs.
156  *
157  * This idea comes from the SD scheduler of Con Kolivas:
158  */
159 static unsigned int get_update_sysctl_factor(void)
160 {
161 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
162 	unsigned int factor;
163 
164 	switch (sysctl_sched_tunable_scaling) {
165 	case SCHED_TUNABLESCALING_NONE:
166 		factor = 1;
167 		break;
168 	case SCHED_TUNABLESCALING_LINEAR:
169 		factor = cpus;
170 		break;
171 	case SCHED_TUNABLESCALING_LOG:
172 	default:
173 		factor = 1 + ilog2(cpus);
174 		break;
175 	}
176 
177 	return factor;
178 }
179 
180 static void update_sysctl(void)
181 {
182 	unsigned int factor = get_update_sysctl_factor();
183 
184 #define SET_SYSCTL(name) \
185 	(sysctl_##name = (factor) * normalized_sysctl_##name)
186 	SET_SYSCTL(sched_min_granularity);
187 	SET_SYSCTL(sched_latency);
188 	SET_SYSCTL(sched_wakeup_granularity);
189 #undef SET_SYSCTL
190 }
191 
192 void __init sched_init_granularity(void)
193 {
194 	update_sysctl();
195 }
196 
197 #define WMULT_CONST	(~0U)
198 #define WMULT_SHIFT	32
199 
200 static void __update_inv_weight(struct load_weight *lw)
201 {
202 	unsigned long w;
203 
204 	if (likely(lw->inv_weight))
205 		return;
206 
207 	w = scale_load_down(lw->weight);
208 
209 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
210 		lw->inv_weight = 1;
211 	else if (unlikely(!w))
212 		lw->inv_weight = WMULT_CONST;
213 	else
214 		lw->inv_weight = WMULT_CONST / w;
215 }
216 
217 /*
218  * delta_exec * weight / lw.weight
219  *   OR
220  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
221  *
222  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
223  * we're guaranteed shift stays positive because inv_weight is guaranteed to
224  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
225  *
226  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
227  * weight/lw.weight <= 1, and therefore our shift will also be positive.
228  */
229 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
230 {
231 	u64 fact = scale_load_down(weight);
232 	int shift = WMULT_SHIFT;
233 
234 	__update_inv_weight(lw);
235 
236 	if (unlikely(fact >> 32)) {
237 		while (fact >> 32) {
238 			fact >>= 1;
239 			shift--;
240 		}
241 	}
242 
243 	fact = mul_u32_u32(fact, lw->inv_weight);
244 
245 	while (fact >> 32) {
246 		fact >>= 1;
247 		shift--;
248 	}
249 
250 	return mul_u64_u32_shr(delta_exec, fact, shift);
251 }
252 
253 
254 const struct sched_class fair_sched_class;
255 
256 /**************************************************************
257  * CFS operations on generic schedulable entities:
258  */
259 
260 #ifdef CONFIG_FAIR_GROUP_SCHED
261 static inline struct task_struct *task_of(struct sched_entity *se)
262 {
263 	SCHED_WARN_ON(!entity_is_task(se));
264 	return container_of(se, struct task_struct, se);
265 }
266 
267 /* Walk up scheduling entities hierarchy */
268 #define for_each_sched_entity(se) \
269 		for (; se; se = se->parent)
270 
271 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
272 {
273 	return p->se.cfs_rq;
274 }
275 
276 /* runqueue on which this entity is (to be) queued */
277 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
278 {
279 	return se->cfs_rq;
280 }
281 
282 /* runqueue "owned" by this group */
283 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
284 {
285 	return grp->my_q;
286 }
287 
288 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
289 {
290 	if (!path)
291 		return;
292 
293 	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
294 		autogroup_path(cfs_rq->tg, path, len);
295 	else if (cfs_rq && cfs_rq->tg->css.cgroup)
296 		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
297 	else
298 		strlcpy(path, "(null)", len);
299 }
300 
301 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302 {
303 	struct rq *rq = rq_of(cfs_rq);
304 	int cpu = cpu_of(rq);
305 
306 	if (cfs_rq->on_list)
307 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
308 
309 	cfs_rq->on_list = 1;
310 
311 	/*
312 	 * Ensure we either appear before our parent (if already
313 	 * enqueued) or force our parent to appear after us when it is
314 	 * enqueued. The fact that we always enqueue bottom-up
315 	 * reduces this to two cases and a special case for the root
316 	 * cfs_rq. Furthermore, it also means that we will always reset
317 	 * tmp_alone_branch either when the branch is connected
318 	 * to a tree or when we reach the top of the tree
319 	 */
320 	if (cfs_rq->tg->parent &&
321 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
322 		/*
323 		 * If parent is already on the list, we add the child
324 		 * just before. Thanks to circular linked property of
325 		 * the list, this means to put the child at the tail
326 		 * of the list that starts by parent.
327 		 */
328 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
329 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
330 		/*
331 		 * The branch is now connected to its tree so we can
332 		 * reset tmp_alone_branch to the beginning of the
333 		 * list.
334 		 */
335 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
336 		return true;
337 	}
338 
339 	if (!cfs_rq->tg->parent) {
340 		/*
341 		 * cfs rq without parent should be put
342 		 * at the tail of the list.
343 		 */
344 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
345 			&rq->leaf_cfs_rq_list);
346 		/*
347 		 * We have reach the top of a tree so we can reset
348 		 * tmp_alone_branch to the beginning of the list.
349 		 */
350 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
351 		return true;
352 	}
353 
354 	/*
355 	 * The parent has not already been added so we want to
356 	 * make sure that it will be put after us.
357 	 * tmp_alone_branch points to the begin of the branch
358 	 * where we will add parent.
359 	 */
360 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
361 	/*
362 	 * update tmp_alone_branch to points to the new begin
363 	 * of the branch
364 	 */
365 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
366 	return false;
367 }
368 
369 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
370 {
371 	if (cfs_rq->on_list) {
372 		struct rq *rq = rq_of(cfs_rq);
373 
374 		/*
375 		 * With cfs_rq being unthrottled/throttled during an enqueue,
376 		 * it can happen the tmp_alone_branch points the a leaf that
377 		 * we finally want to del. In this case, tmp_alone_branch moves
378 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
379 		 * at the end of the enqueue.
380 		 */
381 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
382 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
383 
384 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
385 		cfs_rq->on_list = 0;
386 	}
387 }
388 
389 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
390 {
391 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
392 }
393 
394 /* Iterate thr' all leaf cfs_rq's on a runqueue */
395 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
396 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
397 				 leaf_cfs_rq_list)
398 
399 /* Do the two (enqueued) entities belong to the same group ? */
400 static inline struct cfs_rq *
401 is_same_group(struct sched_entity *se, struct sched_entity *pse)
402 {
403 	if (se->cfs_rq == pse->cfs_rq)
404 		return se->cfs_rq;
405 
406 	return NULL;
407 }
408 
409 static inline struct sched_entity *parent_entity(struct sched_entity *se)
410 {
411 	return se->parent;
412 }
413 
414 static void
415 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
416 {
417 	int se_depth, pse_depth;
418 
419 	/*
420 	 * preemption test can be made between sibling entities who are in the
421 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
422 	 * both tasks until we find their ancestors who are siblings of common
423 	 * parent.
424 	 */
425 
426 	/* First walk up until both entities are at same depth */
427 	se_depth = (*se)->depth;
428 	pse_depth = (*pse)->depth;
429 
430 	while (se_depth > pse_depth) {
431 		se_depth--;
432 		*se = parent_entity(*se);
433 	}
434 
435 	while (pse_depth > se_depth) {
436 		pse_depth--;
437 		*pse = parent_entity(*pse);
438 	}
439 
440 	while (!is_same_group(*se, *pse)) {
441 		*se = parent_entity(*se);
442 		*pse = parent_entity(*pse);
443 	}
444 }
445 
446 #else	/* !CONFIG_FAIR_GROUP_SCHED */
447 
448 static inline struct task_struct *task_of(struct sched_entity *se)
449 {
450 	return container_of(se, struct task_struct, se);
451 }
452 
453 #define for_each_sched_entity(se) \
454 		for (; se; se = NULL)
455 
456 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
457 {
458 	return &task_rq(p)->cfs;
459 }
460 
461 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
462 {
463 	struct task_struct *p = task_of(se);
464 	struct rq *rq = task_rq(p);
465 
466 	return &rq->cfs;
467 }
468 
469 /* runqueue "owned" by this group */
470 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
471 {
472 	return NULL;
473 }
474 
475 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
476 {
477 	if (path)
478 		strlcpy(path, "(null)", len);
479 }
480 
481 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
482 {
483 	return true;
484 }
485 
486 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
487 {
488 }
489 
490 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
491 {
492 }
493 
494 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
495 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
496 
497 static inline struct sched_entity *parent_entity(struct sched_entity *se)
498 {
499 	return NULL;
500 }
501 
502 static inline void
503 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
504 {
505 }
506 
507 #endif	/* CONFIG_FAIR_GROUP_SCHED */
508 
509 static __always_inline
510 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
511 
512 /**************************************************************
513  * Scheduling class tree data structure manipulation methods:
514  */
515 
516 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
517 {
518 	s64 delta = (s64)(vruntime - max_vruntime);
519 	if (delta > 0)
520 		max_vruntime = vruntime;
521 
522 	return max_vruntime;
523 }
524 
525 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
526 {
527 	s64 delta = (s64)(vruntime - min_vruntime);
528 	if (delta < 0)
529 		min_vruntime = vruntime;
530 
531 	return min_vruntime;
532 }
533 
534 static inline int entity_before(struct sched_entity *a,
535 				struct sched_entity *b)
536 {
537 	return (s64)(a->vruntime - b->vruntime) < 0;
538 }
539 
540 static void update_min_vruntime(struct cfs_rq *cfs_rq)
541 {
542 	struct sched_entity *curr = cfs_rq->curr;
543 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
544 
545 	u64 vruntime = cfs_rq->min_vruntime;
546 
547 	if (curr) {
548 		if (curr->on_rq)
549 			vruntime = curr->vruntime;
550 		else
551 			curr = NULL;
552 	}
553 
554 	if (leftmost) { /* non-empty tree */
555 		struct sched_entity *se;
556 		se = rb_entry(leftmost, struct sched_entity, run_node);
557 
558 		if (!curr)
559 			vruntime = se->vruntime;
560 		else
561 			vruntime = min_vruntime(vruntime, se->vruntime);
562 	}
563 
564 	/* ensure we never gain time by being placed backwards. */
565 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
566 #ifndef CONFIG_64BIT
567 	smp_wmb();
568 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
569 #endif
570 }
571 
572 /*
573  * Enqueue an entity into the rb-tree:
574  */
575 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
576 {
577 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
578 	struct rb_node *parent = NULL;
579 	struct sched_entity *entry;
580 	bool leftmost = true;
581 
582 	/*
583 	 * Find the right place in the rbtree:
584 	 */
585 	while (*link) {
586 		parent = *link;
587 		entry = rb_entry(parent, struct sched_entity, run_node);
588 		/*
589 		 * We dont care about collisions. Nodes with
590 		 * the same key stay together.
591 		 */
592 		if (entity_before(se, entry)) {
593 			link = &parent->rb_left;
594 		} else {
595 			link = &parent->rb_right;
596 			leftmost = false;
597 		}
598 	}
599 
600 	rb_link_node(&se->run_node, parent, link);
601 	rb_insert_color_cached(&se->run_node,
602 			       &cfs_rq->tasks_timeline, leftmost);
603 }
604 
605 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
606 {
607 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
608 }
609 
610 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
611 {
612 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
613 
614 	if (!left)
615 		return NULL;
616 
617 	return rb_entry(left, struct sched_entity, run_node);
618 }
619 
620 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
621 {
622 	struct rb_node *next = rb_next(&se->run_node);
623 
624 	if (!next)
625 		return NULL;
626 
627 	return rb_entry(next, struct sched_entity, run_node);
628 }
629 
630 #ifdef CONFIG_SCHED_DEBUG
631 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
632 {
633 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
634 
635 	if (!last)
636 		return NULL;
637 
638 	return rb_entry(last, struct sched_entity, run_node);
639 }
640 
641 /**************************************************************
642  * Scheduling class statistics methods:
643  */
644 
645 int sched_proc_update_handler(struct ctl_table *table, int write,
646 		void *buffer, size_t *lenp, loff_t *ppos)
647 {
648 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
649 	unsigned int factor = get_update_sysctl_factor();
650 
651 	if (ret || !write)
652 		return ret;
653 
654 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
655 					sysctl_sched_min_granularity);
656 
657 #define WRT_SYSCTL(name) \
658 	(normalized_sysctl_##name = sysctl_##name / (factor))
659 	WRT_SYSCTL(sched_min_granularity);
660 	WRT_SYSCTL(sched_latency);
661 	WRT_SYSCTL(sched_wakeup_granularity);
662 #undef WRT_SYSCTL
663 
664 	return 0;
665 }
666 #endif
667 
668 /*
669  * delta /= w
670  */
671 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
672 {
673 	if (unlikely(se->load.weight != NICE_0_LOAD))
674 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
675 
676 	return delta;
677 }
678 
679 /*
680  * The idea is to set a period in which each task runs once.
681  *
682  * When there are too many tasks (sched_nr_latency) we have to stretch
683  * this period because otherwise the slices get too small.
684  *
685  * p = (nr <= nl) ? l : l*nr/nl
686  */
687 static u64 __sched_period(unsigned long nr_running)
688 {
689 	if (unlikely(nr_running > sched_nr_latency))
690 		return nr_running * sysctl_sched_min_granularity;
691 	else
692 		return sysctl_sched_latency;
693 }
694 
695 /*
696  * We calculate the wall-time slice from the period by taking a part
697  * proportional to the weight.
698  *
699  * s = p*P[w/rw]
700  */
701 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
702 {
703 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
704 
705 	for_each_sched_entity(se) {
706 		struct load_weight *load;
707 		struct load_weight lw;
708 
709 		cfs_rq = cfs_rq_of(se);
710 		load = &cfs_rq->load;
711 
712 		if (unlikely(!se->on_rq)) {
713 			lw = cfs_rq->load;
714 
715 			update_load_add(&lw, se->load.weight);
716 			load = &lw;
717 		}
718 		slice = __calc_delta(slice, se->load.weight, load);
719 	}
720 	return slice;
721 }
722 
723 /*
724  * We calculate the vruntime slice of a to-be-inserted task.
725  *
726  * vs = s/w
727  */
728 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
729 {
730 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
731 }
732 
733 #include "pelt.h"
734 #ifdef CONFIG_SMP
735 
736 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
737 static unsigned long task_h_load(struct task_struct *p);
738 static unsigned long capacity_of(int cpu);
739 
740 /* Give new sched_entity start runnable values to heavy its load in infant time */
741 void init_entity_runnable_average(struct sched_entity *se)
742 {
743 	struct sched_avg *sa = &se->avg;
744 
745 	memset(sa, 0, sizeof(*sa));
746 
747 	/*
748 	 * Tasks are initialized with full load to be seen as heavy tasks until
749 	 * they get a chance to stabilize to their real load level.
750 	 * Group entities are initialized with zero load to reflect the fact that
751 	 * nothing has been attached to the task group yet.
752 	 */
753 	if (entity_is_task(se))
754 		sa->load_avg = scale_load_down(se->load.weight);
755 
756 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
757 }
758 
759 static void attach_entity_cfs_rq(struct sched_entity *se);
760 
761 /*
762  * With new tasks being created, their initial util_avgs are extrapolated
763  * based on the cfs_rq's current util_avg:
764  *
765  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
766  *
767  * However, in many cases, the above util_avg does not give a desired
768  * value. Moreover, the sum of the util_avgs may be divergent, such
769  * as when the series is a harmonic series.
770  *
771  * To solve this problem, we also cap the util_avg of successive tasks to
772  * only 1/2 of the left utilization budget:
773  *
774  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
775  *
776  * where n denotes the nth task and cpu_scale the CPU capacity.
777  *
778  * For example, for a CPU with 1024 of capacity, a simplest series from
779  * the beginning would be like:
780  *
781  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
782  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
783  *
784  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
785  * if util_avg > util_avg_cap.
786  */
787 void post_init_entity_util_avg(struct task_struct *p)
788 {
789 	struct sched_entity *se = &p->se;
790 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
791 	struct sched_avg *sa = &se->avg;
792 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
793 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
794 
795 	if (cap > 0) {
796 		if (cfs_rq->avg.util_avg != 0) {
797 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
798 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
799 
800 			if (sa->util_avg > cap)
801 				sa->util_avg = cap;
802 		} else {
803 			sa->util_avg = cap;
804 		}
805 	}
806 
807 	sa->runnable_avg = sa->util_avg;
808 
809 	if (p->sched_class != &fair_sched_class) {
810 		/*
811 		 * For !fair tasks do:
812 		 *
813 		update_cfs_rq_load_avg(now, cfs_rq);
814 		attach_entity_load_avg(cfs_rq, se);
815 		switched_from_fair(rq, p);
816 		 *
817 		 * such that the next switched_to_fair() has the
818 		 * expected state.
819 		 */
820 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
821 		return;
822 	}
823 
824 	attach_entity_cfs_rq(se);
825 }
826 
827 #else /* !CONFIG_SMP */
828 void init_entity_runnable_average(struct sched_entity *se)
829 {
830 }
831 void post_init_entity_util_avg(struct task_struct *p)
832 {
833 }
834 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
835 {
836 }
837 #endif /* CONFIG_SMP */
838 
839 /*
840  * Update the current task's runtime statistics.
841  */
842 static void update_curr(struct cfs_rq *cfs_rq)
843 {
844 	struct sched_entity *curr = cfs_rq->curr;
845 	u64 now = rq_clock_task(rq_of(cfs_rq));
846 	u64 delta_exec;
847 
848 	if (unlikely(!curr))
849 		return;
850 
851 	delta_exec = now - curr->exec_start;
852 	if (unlikely((s64)delta_exec <= 0))
853 		return;
854 
855 	curr->exec_start = now;
856 
857 	schedstat_set(curr->statistics.exec_max,
858 		      max(delta_exec, curr->statistics.exec_max));
859 
860 	curr->sum_exec_runtime += delta_exec;
861 	schedstat_add(cfs_rq->exec_clock, delta_exec);
862 
863 	curr->vruntime += calc_delta_fair(delta_exec, curr);
864 	update_min_vruntime(cfs_rq);
865 
866 	if (entity_is_task(curr)) {
867 		struct task_struct *curtask = task_of(curr);
868 
869 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
870 		cgroup_account_cputime(curtask, delta_exec);
871 		account_group_exec_runtime(curtask, delta_exec);
872 	}
873 
874 	account_cfs_rq_runtime(cfs_rq, delta_exec);
875 }
876 
877 static void update_curr_fair(struct rq *rq)
878 {
879 	update_curr(cfs_rq_of(&rq->curr->se));
880 }
881 
882 static inline void
883 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
884 {
885 	u64 wait_start, prev_wait_start;
886 
887 	if (!schedstat_enabled())
888 		return;
889 
890 	wait_start = rq_clock(rq_of(cfs_rq));
891 	prev_wait_start = schedstat_val(se->statistics.wait_start);
892 
893 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
894 	    likely(wait_start > prev_wait_start))
895 		wait_start -= prev_wait_start;
896 
897 	__schedstat_set(se->statistics.wait_start, wait_start);
898 }
899 
900 static inline void
901 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
902 {
903 	struct task_struct *p;
904 	u64 delta;
905 
906 	if (!schedstat_enabled())
907 		return;
908 
909 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
910 
911 	if (entity_is_task(se)) {
912 		p = task_of(se);
913 		if (task_on_rq_migrating(p)) {
914 			/*
915 			 * Preserve migrating task's wait time so wait_start
916 			 * time stamp can be adjusted to accumulate wait time
917 			 * prior to migration.
918 			 */
919 			__schedstat_set(se->statistics.wait_start, delta);
920 			return;
921 		}
922 		trace_sched_stat_wait(p, delta);
923 	}
924 
925 	__schedstat_set(se->statistics.wait_max,
926 		      max(schedstat_val(se->statistics.wait_max), delta));
927 	__schedstat_inc(se->statistics.wait_count);
928 	__schedstat_add(se->statistics.wait_sum, delta);
929 	__schedstat_set(se->statistics.wait_start, 0);
930 }
931 
932 static inline void
933 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
934 {
935 	struct task_struct *tsk = NULL;
936 	u64 sleep_start, block_start;
937 
938 	if (!schedstat_enabled())
939 		return;
940 
941 	sleep_start = schedstat_val(se->statistics.sleep_start);
942 	block_start = schedstat_val(se->statistics.block_start);
943 
944 	if (entity_is_task(se))
945 		tsk = task_of(se);
946 
947 	if (sleep_start) {
948 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
949 
950 		if ((s64)delta < 0)
951 			delta = 0;
952 
953 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
954 			__schedstat_set(se->statistics.sleep_max, delta);
955 
956 		__schedstat_set(se->statistics.sleep_start, 0);
957 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
958 
959 		if (tsk) {
960 			account_scheduler_latency(tsk, delta >> 10, 1);
961 			trace_sched_stat_sleep(tsk, delta);
962 		}
963 	}
964 	if (block_start) {
965 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
966 
967 		if ((s64)delta < 0)
968 			delta = 0;
969 
970 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
971 			__schedstat_set(se->statistics.block_max, delta);
972 
973 		__schedstat_set(se->statistics.block_start, 0);
974 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
975 
976 		if (tsk) {
977 			if (tsk->in_iowait) {
978 				__schedstat_add(se->statistics.iowait_sum, delta);
979 				__schedstat_inc(se->statistics.iowait_count);
980 				trace_sched_stat_iowait(tsk, delta);
981 			}
982 
983 			trace_sched_stat_blocked(tsk, delta);
984 
985 			/*
986 			 * Blocking time is in units of nanosecs, so shift by
987 			 * 20 to get a milliseconds-range estimation of the
988 			 * amount of time that the task spent sleeping:
989 			 */
990 			if (unlikely(prof_on == SLEEP_PROFILING)) {
991 				profile_hits(SLEEP_PROFILING,
992 						(void *)get_wchan(tsk),
993 						delta >> 20);
994 			}
995 			account_scheduler_latency(tsk, delta >> 10, 0);
996 		}
997 	}
998 }
999 
1000 /*
1001  * Task is being enqueued - update stats:
1002  */
1003 static inline void
1004 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1005 {
1006 	if (!schedstat_enabled())
1007 		return;
1008 
1009 	/*
1010 	 * Are we enqueueing a waiting task? (for current tasks
1011 	 * a dequeue/enqueue event is a NOP)
1012 	 */
1013 	if (se != cfs_rq->curr)
1014 		update_stats_wait_start(cfs_rq, se);
1015 
1016 	if (flags & ENQUEUE_WAKEUP)
1017 		update_stats_enqueue_sleeper(cfs_rq, se);
1018 }
1019 
1020 static inline void
1021 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1022 {
1023 
1024 	if (!schedstat_enabled())
1025 		return;
1026 
1027 	/*
1028 	 * Mark the end of the wait period if dequeueing a
1029 	 * waiting task:
1030 	 */
1031 	if (se != cfs_rq->curr)
1032 		update_stats_wait_end(cfs_rq, se);
1033 
1034 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1035 		struct task_struct *tsk = task_of(se);
1036 
1037 		if (tsk->state & TASK_INTERRUPTIBLE)
1038 			__schedstat_set(se->statistics.sleep_start,
1039 				      rq_clock(rq_of(cfs_rq)));
1040 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1041 			__schedstat_set(se->statistics.block_start,
1042 				      rq_clock(rq_of(cfs_rq)));
1043 	}
1044 }
1045 
1046 /*
1047  * We are picking a new current task - update its stats:
1048  */
1049 static inline void
1050 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1051 {
1052 	/*
1053 	 * We are starting a new run period:
1054 	 */
1055 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1056 }
1057 
1058 /**************************************************
1059  * Scheduling class queueing methods:
1060  */
1061 
1062 #ifdef CONFIG_NUMA_BALANCING
1063 /*
1064  * Approximate time to scan a full NUMA task in ms. The task scan period is
1065  * calculated based on the tasks virtual memory size and
1066  * numa_balancing_scan_size.
1067  */
1068 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1069 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1070 
1071 /* Portion of address space to scan in MB */
1072 unsigned int sysctl_numa_balancing_scan_size = 256;
1073 
1074 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1075 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1076 
1077 struct numa_group {
1078 	refcount_t refcount;
1079 
1080 	spinlock_t lock; /* nr_tasks, tasks */
1081 	int nr_tasks;
1082 	pid_t gid;
1083 	int active_nodes;
1084 
1085 	struct rcu_head rcu;
1086 	unsigned long total_faults;
1087 	unsigned long max_faults_cpu;
1088 	/*
1089 	 * Faults_cpu is used to decide whether memory should move
1090 	 * towards the CPU. As a consequence, these stats are weighted
1091 	 * more by CPU use than by memory faults.
1092 	 */
1093 	unsigned long *faults_cpu;
1094 	unsigned long faults[];
1095 };
1096 
1097 /*
1098  * For functions that can be called in multiple contexts that permit reading
1099  * ->numa_group (see struct task_struct for locking rules).
1100  */
1101 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1102 {
1103 	return rcu_dereference_check(p->numa_group, p == current ||
1104 		(lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1105 }
1106 
1107 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1108 {
1109 	return rcu_dereference_protected(p->numa_group, p == current);
1110 }
1111 
1112 static inline unsigned long group_faults_priv(struct numa_group *ng);
1113 static inline unsigned long group_faults_shared(struct numa_group *ng);
1114 
1115 static unsigned int task_nr_scan_windows(struct task_struct *p)
1116 {
1117 	unsigned long rss = 0;
1118 	unsigned long nr_scan_pages;
1119 
1120 	/*
1121 	 * Calculations based on RSS as non-present and empty pages are skipped
1122 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1123 	 * on resident pages
1124 	 */
1125 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1126 	rss = get_mm_rss(p->mm);
1127 	if (!rss)
1128 		rss = nr_scan_pages;
1129 
1130 	rss = round_up(rss, nr_scan_pages);
1131 	return rss / nr_scan_pages;
1132 }
1133 
1134 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1135 #define MAX_SCAN_WINDOW 2560
1136 
1137 static unsigned int task_scan_min(struct task_struct *p)
1138 {
1139 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1140 	unsigned int scan, floor;
1141 	unsigned int windows = 1;
1142 
1143 	if (scan_size < MAX_SCAN_WINDOW)
1144 		windows = MAX_SCAN_WINDOW / scan_size;
1145 	floor = 1000 / windows;
1146 
1147 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1148 	return max_t(unsigned int, floor, scan);
1149 }
1150 
1151 static unsigned int task_scan_start(struct task_struct *p)
1152 {
1153 	unsigned long smin = task_scan_min(p);
1154 	unsigned long period = smin;
1155 	struct numa_group *ng;
1156 
1157 	/* Scale the maximum scan period with the amount of shared memory. */
1158 	rcu_read_lock();
1159 	ng = rcu_dereference(p->numa_group);
1160 	if (ng) {
1161 		unsigned long shared = group_faults_shared(ng);
1162 		unsigned long private = group_faults_priv(ng);
1163 
1164 		period *= refcount_read(&ng->refcount);
1165 		period *= shared + 1;
1166 		period /= private + shared + 1;
1167 	}
1168 	rcu_read_unlock();
1169 
1170 	return max(smin, period);
1171 }
1172 
1173 static unsigned int task_scan_max(struct task_struct *p)
1174 {
1175 	unsigned long smin = task_scan_min(p);
1176 	unsigned long smax;
1177 	struct numa_group *ng;
1178 
1179 	/* Watch for min being lower than max due to floor calculations */
1180 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1181 
1182 	/* Scale the maximum scan period with the amount of shared memory. */
1183 	ng = deref_curr_numa_group(p);
1184 	if (ng) {
1185 		unsigned long shared = group_faults_shared(ng);
1186 		unsigned long private = group_faults_priv(ng);
1187 		unsigned long period = smax;
1188 
1189 		period *= refcount_read(&ng->refcount);
1190 		period *= shared + 1;
1191 		period /= private + shared + 1;
1192 
1193 		smax = max(smax, period);
1194 	}
1195 
1196 	return max(smin, smax);
1197 }
1198 
1199 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1200 {
1201 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1202 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1203 }
1204 
1205 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1206 {
1207 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1208 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1209 }
1210 
1211 /* Shared or private faults. */
1212 #define NR_NUMA_HINT_FAULT_TYPES 2
1213 
1214 /* Memory and CPU locality */
1215 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1216 
1217 /* Averaged statistics, and temporary buffers. */
1218 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1219 
1220 pid_t task_numa_group_id(struct task_struct *p)
1221 {
1222 	struct numa_group *ng;
1223 	pid_t gid = 0;
1224 
1225 	rcu_read_lock();
1226 	ng = rcu_dereference(p->numa_group);
1227 	if (ng)
1228 		gid = ng->gid;
1229 	rcu_read_unlock();
1230 
1231 	return gid;
1232 }
1233 
1234 /*
1235  * The averaged statistics, shared & private, memory & CPU,
1236  * occupy the first half of the array. The second half of the
1237  * array is for current counters, which are averaged into the
1238  * first set by task_numa_placement.
1239  */
1240 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1241 {
1242 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1243 }
1244 
1245 static inline unsigned long task_faults(struct task_struct *p, int nid)
1246 {
1247 	if (!p->numa_faults)
1248 		return 0;
1249 
1250 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1251 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1252 }
1253 
1254 static inline unsigned long group_faults(struct task_struct *p, int nid)
1255 {
1256 	struct numa_group *ng = deref_task_numa_group(p);
1257 
1258 	if (!ng)
1259 		return 0;
1260 
1261 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1262 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1263 }
1264 
1265 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1266 {
1267 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1268 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1269 }
1270 
1271 static inline unsigned long group_faults_priv(struct numa_group *ng)
1272 {
1273 	unsigned long faults = 0;
1274 	int node;
1275 
1276 	for_each_online_node(node) {
1277 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1278 	}
1279 
1280 	return faults;
1281 }
1282 
1283 static inline unsigned long group_faults_shared(struct numa_group *ng)
1284 {
1285 	unsigned long faults = 0;
1286 	int node;
1287 
1288 	for_each_online_node(node) {
1289 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1290 	}
1291 
1292 	return faults;
1293 }
1294 
1295 /*
1296  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1297  * considered part of a numa group's pseudo-interleaving set. Migrations
1298  * between these nodes are slowed down, to allow things to settle down.
1299  */
1300 #define ACTIVE_NODE_FRACTION 3
1301 
1302 static bool numa_is_active_node(int nid, struct numa_group *ng)
1303 {
1304 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1305 }
1306 
1307 /* Handle placement on systems where not all nodes are directly connected. */
1308 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1309 					int maxdist, bool task)
1310 {
1311 	unsigned long score = 0;
1312 	int node;
1313 
1314 	/*
1315 	 * All nodes are directly connected, and the same distance
1316 	 * from each other. No need for fancy placement algorithms.
1317 	 */
1318 	if (sched_numa_topology_type == NUMA_DIRECT)
1319 		return 0;
1320 
1321 	/*
1322 	 * This code is called for each node, introducing N^2 complexity,
1323 	 * which should be ok given the number of nodes rarely exceeds 8.
1324 	 */
1325 	for_each_online_node(node) {
1326 		unsigned long faults;
1327 		int dist = node_distance(nid, node);
1328 
1329 		/*
1330 		 * The furthest away nodes in the system are not interesting
1331 		 * for placement; nid was already counted.
1332 		 */
1333 		if (dist == sched_max_numa_distance || node == nid)
1334 			continue;
1335 
1336 		/*
1337 		 * On systems with a backplane NUMA topology, compare groups
1338 		 * of nodes, and move tasks towards the group with the most
1339 		 * memory accesses. When comparing two nodes at distance
1340 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1341 		 * of each group. Skip other nodes.
1342 		 */
1343 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1344 					dist >= maxdist)
1345 			continue;
1346 
1347 		/* Add up the faults from nearby nodes. */
1348 		if (task)
1349 			faults = task_faults(p, node);
1350 		else
1351 			faults = group_faults(p, node);
1352 
1353 		/*
1354 		 * On systems with a glueless mesh NUMA topology, there are
1355 		 * no fixed "groups of nodes". Instead, nodes that are not
1356 		 * directly connected bounce traffic through intermediate
1357 		 * nodes; a numa_group can occupy any set of nodes.
1358 		 * The further away a node is, the less the faults count.
1359 		 * This seems to result in good task placement.
1360 		 */
1361 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1362 			faults *= (sched_max_numa_distance - dist);
1363 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1364 		}
1365 
1366 		score += faults;
1367 	}
1368 
1369 	return score;
1370 }
1371 
1372 /*
1373  * These return the fraction of accesses done by a particular task, or
1374  * task group, on a particular numa node.  The group weight is given a
1375  * larger multiplier, in order to group tasks together that are almost
1376  * evenly spread out between numa nodes.
1377  */
1378 static inline unsigned long task_weight(struct task_struct *p, int nid,
1379 					int dist)
1380 {
1381 	unsigned long faults, total_faults;
1382 
1383 	if (!p->numa_faults)
1384 		return 0;
1385 
1386 	total_faults = p->total_numa_faults;
1387 
1388 	if (!total_faults)
1389 		return 0;
1390 
1391 	faults = task_faults(p, nid);
1392 	faults += score_nearby_nodes(p, nid, dist, true);
1393 
1394 	return 1000 * faults / total_faults;
1395 }
1396 
1397 static inline unsigned long group_weight(struct task_struct *p, int nid,
1398 					 int dist)
1399 {
1400 	struct numa_group *ng = deref_task_numa_group(p);
1401 	unsigned long faults, total_faults;
1402 
1403 	if (!ng)
1404 		return 0;
1405 
1406 	total_faults = ng->total_faults;
1407 
1408 	if (!total_faults)
1409 		return 0;
1410 
1411 	faults = group_faults(p, nid);
1412 	faults += score_nearby_nodes(p, nid, dist, false);
1413 
1414 	return 1000 * faults / total_faults;
1415 }
1416 
1417 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1418 				int src_nid, int dst_cpu)
1419 {
1420 	struct numa_group *ng = deref_curr_numa_group(p);
1421 	int dst_nid = cpu_to_node(dst_cpu);
1422 	int last_cpupid, this_cpupid;
1423 
1424 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1425 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1426 
1427 	/*
1428 	 * Allow first faults or private faults to migrate immediately early in
1429 	 * the lifetime of a task. The magic number 4 is based on waiting for
1430 	 * two full passes of the "multi-stage node selection" test that is
1431 	 * executed below.
1432 	 */
1433 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1434 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1435 		return true;
1436 
1437 	/*
1438 	 * Multi-stage node selection is used in conjunction with a periodic
1439 	 * migration fault to build a temporal task<->page relation. By using
1440 	 * a two-stage filter we remove short/unlikely relations.
1441 	 *
1442 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1443 	 * a task's usage of a particular page (n_p) per total usage of this
1444 	 * page (n_t) (in a given time-span) to a probability.
1445 	 *
1446 	 * Our periodic faults will sample this probability and getting the
1447 	 * same result twice in a row, given these samples are fully
1448 	 * independent, is then given by P(n)^2, provided our sample period
1449 	 * is sufficiently short compared to the usage pattern.
1450 	 *
1451 	 * This quadric squishes small probabilities, making it less likely we
1452 	 * act on an unlikely task<->page relation.
1453 	 */
1454 	if (!cpupid_pid_unset(last_cpupid) &&
1455 				cpupid_to_nid(last_cpupid) != dst_nid)
1456 		return false;
1457 
1458 	/* Always allow migrate on private faults */
1459 	if (cpupid_match_pid(p, last_cpupid))
1460 		return true;
1461 
1462 	/* A shared fault, but p->numa_group has not been set up yet. */
1463 	if (!ng)
1464 		return true;
1465 
1466 	/*
1467 	 * Destination node is much more heavily used than the source
1468 	 * node? Allow migration.
1469 	 */
1470 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1471 					ACTIVE_NODE_FRACTION)
1472 		return true;
1473 
1474 	/*
1475 	 * Distribute memory according to CPU & memory use on each node,
1476 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1477 	 *
1478 	 * faults_cpu(dst)   3   faults_cpu(src)
1479 	 * --------------- * - > ---------------
1480 	 * faults_mem(dst)   4   faults_mem(src)
1481 	 */
1482 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1483 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1484 }
1485 
1486 /*
1487  * 'numa_type' describes the node at the moment of load balancing.
1488  */
1489 enum numa_type {
1490 	/* The node has spare capacity that can be used to run more tasks.  */
1491 	node_has_spare = 0,
1492 	/*
1493 	 * The node is fully used and the tasks don't compete for more CPU
1494 	 * cycles. Nevertheless, some tasks might wait before running.
1495 	 */
1496 	node_fully_busy,
1497 	/*
1498 	 * The node is overloaded and can't provide expected CPU cycles to all
1499 	 * tasks.
1500 	 */
1501 	node_overloaded
1502 };
1503 
1504 /* Cached statistics for all CPUs within a node */
1505 struct numa_stats {
1506 	unsigned long load;
1507 	unsigned long util;
1508 	/* Total compute capacity of CPUs on a node */
1509 	unsigned long compute_capacity;
1510 	unsigned int nr_running;
1511 	unsigned int weight;
1512 	enum numa_type node_type;
1513 	int idle_cpu;
1514 };
1515 
1516 static inline bool is_core_idle(int cpu)
1517 {
1518 #ifdef CONFIG_SCHED_SMT
1519 	int sibling;
1520 
1521 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1522 		if (cpu == sibling)
1523 			continue;
1524 
1525 		if (!idle_cpu(cpu))
1526 			return false;
1527 	}
1528 #endif
1529 
1530 	return true;
1531 }
1532 
1533 struct task_numa_env {
1534 	struct task_struct *p;
1535 
1536 	int src_cpu, src_nid;
1537 	int dst_cpu, dst_nid;
1538 
1539 	struct numa_stats src_stats, dst_stats;
1540 
1541 	int imbalance_pct;
1542 	int dist;
1543 
1544 	struct task_struct *best_task;
1545 	long best_imp;
1546 	int best_cpu;
1547 };
1548 
1549 static unsigned long cpu_load(struct rq *rq);
1550 static unsigned long cpu_util(int cpu);
1551 static inline long adjust_numa_imbalance(int imbalance, int src_nr_running);
1552 
1553 static inline enum
1554 numa_type numa_classify(unsigned int imbalance_pct,
1555 			 struct numa_stats *ns)
1556 {
1557 	if ((ns->nr_running > ns->weight) &&
1558 	    ((ns->compute_capacity * 100) < (ns->util * imbalance_pct)))
1559 		return node_overloaded;
1560 
1561 	if ((ns->nr_running < ns->weight) ||
1562 	    ((ns->compute_capacity * 100) > (ns->util * imbalance_pct)))
1563 		return node_has_spare;
1564 
1565 	return node_fully_busy;
1566 }
1567 
1568 #ifdef CONFIG_SCHED_SMT
1569 /* Forward declarations of select_idle_sibling helpers */
1570 static inline bool test_idle_cores(int cpu, bool def);
1571 static inline int numa_idle_core(int idle_core, int cpu)
1572 {
1573 	if (!static_branch_likely(&sched_smt_present) ||
1574 	    idle_core >= 0 || !test_idle_cores(cpu, false))
1575 		return idle_core;
1576 
1577 	/*
1578 	 * Prefer cores instead of packing HT siblings
1579 	 * and triggering future load balancing.
1580 	 */
1581 	if (is_core_idle(cpu))
1582 		idle_core = cpu;
1583 
1584 	return idle_core;
1585 }
1586 #else
1587 static inline int numa_idle_core(int idle_core, int cpu)
1588 {
1589 	return idle_core;
1590 }
1591 #endif
1592 
1593 /*
1594  * Gather all necessary information to make NUMA balancing placement
1595  * decisions that are compatible with standard load balancer. This
1596  * borrows code and logic from update_sg_lb_stats but sharing a
1597  * common implementation is impractical.
1598  */
1599 static void update_numa_stats(struct task_numa_env *env,
1600 			      struct numa_stats *ns, int nid,
1601 			      bool find_idle)
1602 {
1603 	int cpu, idle_core = -1;
1604 
1605 	memset(ns, 0, sizeof(*ns));
1606 	ns->idle_cpu = -1;
1607 
1608 	rcu_read_lock();
1609 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1610 		struct rq *rq = cpu_rq(cpu);
1611 
1612 		ns->load += cpu_load(rq);
1613 		ns->util += cpu_util(cpu);
1614 		ns->nr_running += rq->cfs.h_nr_running;
1615 		ns->compute_capacity += capacity_of(cpu);
1616 
1617 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1618 			if (READ_ONCE(rq->numa_migrate_on) ||
1619 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1620 				continue;
1621 
1622 			if (ns->idle_cpu == -1)
1623 				ns->idle_cpu = cpu;
1624 
1625 			idle_core = numa_idle_core(idle_core, cpu);
1626 		}
1627 	}
1628 	rcu_read_unlock();
1629 
1630 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1631 
1632 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1633 
1634 	if (idle_core >= 0)
1635 		ns->idle_cpu = idle_core;
1636 }
1637 
1638 static void task_numa_assign(struct task_numa_env *env,
1639 			     struct task_struct *p, long imp)
1640 {
1641 	struct rq *rq = cpu_rq(env->dst_cpu);
1642 
1643 	/* Check if run-queue part of active NUMA balance. */
1644 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1645 		int cpu;
1646 		int start = env->dst_cpu;
1647 
1648 		/* Find alternative idle CPU. */
1649 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1650 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1651 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1652 				continue;
1653 			}
1654 
1655 			env->dst_cpu = cpu;
1656 			rq = cpu_rq(env->dst_cpu);
1657 			if (!xchg(&rq->numa_migrate_on, 1))
1658 				goto assign;
1659 		}
1660 
1661 		/* Failed to find an alternative idle CPU */
1662 		return;
1663 	}
1664 
1665 assign:
1666 	/*
1667 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1668 	 * found a better CPU to move/swap.
1669 	 */
1670 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1671 		rq = cpu_rq(env->best_cpu);
1672 		WRITE_ONCE(rq->numa_migrate_on, 0);
1673 	}
1674 
1675 	if (env->best_task)
1676 		put_task_struct(env->best_task);
1677 	if (p)
1678 		get_task_struct(p);
1679 
1680 	env->best_task = p;
1681 	env->best_imp = imp;
1682 	env->best_cpu = env->dst_cpu;
1683 }
1684 
1685 static bool load_too_imbalanced(long src_load, long dst_load,
1686 				struct task_numa_env *env)
1687 {
1688 	long imb, old_imb;
1689 	long orig_src_load, orig_dst_load;
1690 	long src_capacity, dst_capacity;
1691 
1692 	/*
1693 	 * The load is corrected for the CPU capacity available on each node.
1694 	 *
1695 	 * src_load        dst_load
1696 	 * ------------ vs ---------
1697 	 * src_capacity    dst_capacity
1698 	 */
1699 	src_capacity = env->src_stats.compute_capacity;
1700 	dst_capacity = env->dst_stats.compute_capacity;
1701 
1702 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1703 
1704 	orig_src_load = env->src_stats.load;
1705 	orig_dst_load = env->dst_stats.load;
1706 
1707 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1708 
1709 	/* Would this change make things worse? */
1710 	return (imb > old_imb);
1711 }
1712 
1713 /*
1714  * Maximum NUMA importance can be 1998 (2*999);
1715  * SMALLIMP @ 30 would be close to 1998/64.
1716  * Used to deter task migration.
1717  */
1718 #define SMALLIMP	30
1719 
1720 /*
1721  * This checks if the overall compute and NUMA accesses of the system would
1722  * be improved if the source tasks was migrated to the target dst_cpu taking
1723  * into account that it might be best if task running on the dst_cpu should
1724  * be exchanged with the source task
1725  */
1726 static bool task_numa_compare(struct task_numa_env *env,
1727 			      long taskimp, long groupimp, bool maymove)
1728 {
1729 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1730 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1731 	long imp = p_ng ? groupimp : taskimp;
1732 	struct task_struct *cur;
1733 	long src_load, dst_load;
1734 	int dist = env->dist;
1735 	long moveimp = imp;
1736 	long load;
1737 	bool stopsearch = false;
1738 
1739 	if (READ_ONCE(dst_rq->numa_migrate_on))
1740 		return false;
1741 
1742 	rcu_read_lock();
1743 	cur = rcu_dereference(dst_rq->curr);
1744 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1745 		cur = NULL;
1746 
1747 	/*
1748 	 * Because we have preemption enabled we can get migrated around and
1749 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1750 	 */
1751 	if (cur == env->p) {
1752 		stopsearch = true;
1753 		goto unlock;
1754 	}
1755 
1756 	if (!cur) {
1757 		if (maymove && moveimp >= env->best_imp)
1758 			goto assign;
1759 		else
1760 			goto unlock;
1761 	}
1762 
1763 	/* Skip this swap candidate if cannot move to the source cpu. */
1764 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1765 		goto unlock;
1766 
1767 	/*
1768 	 * Skip this swap candidate if it is not moving to its preferred
1769 	 * node and the best task is.
1770 	 */
1771 	if (env->best_task &&
1772 	    env->best_task->numa_preferred_nid == env->src_nid &&
1773 	    cur->numa_preferred_nid != env->src_nid) {
1774 		goto unlock;
1775 	}
1776 
1777 	/*
1778 	 * "imp" is the fault differential for the source task between the
1779 	 * source and destination node. Calculate the total differential for
1780 	 * the source task and potential destination task. The more negative
1781 	 * the value is, the more remote accesses that would be expected to
1782 	 * be incurred if the tasks were swapped.
1783 	 *
1784 	 * If dst and source tasks are in the same NUMA group, or not
1785 	 * in any group then look only at task weights.
1786 	 */
1787 	cur_ng = rcu_dereference(cur->numa_group);
1788 	if (cur_ng == p_ng) {
1789 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1790 		      task_weight(cur, env->dst_nid, dist);
1791 		/*
1792 		 * Add some hysteresis to prevent swapping the
1793 		 * tasks within a group over tiny differences.
1794 		 */
1795 		if (cur_ng)
1796 			imp -= imp / 16;
1797 	} else {
1798 		/*
1799 		 * Compare the group weights. If a task is all by itself
1800 		 * (not part of a group), use the task weight instead.
1801 		 */
1802 		if (cur_ng && p_ng)
1803 			imp += group_weight(cur, env->src_nid, dist) -
1804 			       group_weight(cur, env->dst_nid, dist);
1805 		else
1806 			imp += task_weight(cur, env->src_nid, dist) -
1807 			       task_weight(cur, env->dst_nid, dist);
1808 	}
1809 
1810 	/* Discourage picking a task already on its preferred node */
1811 	if (cur->numa_preferred_nid == env->dst_nid)
1812 		imp -= imp / 16;
1813 
1814 	/*
1815 	 * Encourage picking a task that moves to its preferred node.
1816 	 * This potentially makes imp larger than it's maximum of
1817 	 * 1998 (see SMALLIMP and task_weight for why) but in this
1818 	 * case, it does not matter.
1819 	 */
1820 	if (cur->numa_preferred_nid == env->src_nid)
1821 		imp += imp / 8;
1822 
1823 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1824 		imp = moveimp;
1825 		cur = NULL;
1826 		goto assign;
1827 	}
1828 
1829 	/*
1830 	 * Prefer swapping with a task moving to its preferred node over a
1831 	 * task that is not.
1832 	 */
1833 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1834 	    env->best_task->numa_preferred_nid != env->src_nid) {
1835 		goto assign;
1836 	}
1837 
1838 	/*
1839 	 * If the NUMA importance is less than SMALLIMP,
1840 	 * task migration might only result in ping pong
1841 	 * of tasks and also hurt performance due to cache
1842 	 * misses.
1843 	 */
1844 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1845 		goto unlock;
1846 
1847 	/*
1848 	 * In the overloaded case, try and keep the load balanced.
1849 	 */
1850 	load = task_h_load(env->p) - task_h_load(cur);
1851 	if (!load)
1852 		goto assign;
1853 
1854 	dst_load = env->dst_stats.load + load;
1855 	src_load = env->src_stats.load - load;
1856 
1857 	if (load_too_imbalanced(src_load, dst_load, env))
1858 		goto unlock;
1859 
1860 assign:
1861 	/* Evaluate an idle CPU for a task numa move. */
1862 	if (!cur) {
1863 		int cpu = env->dst_stats.idle_cpu;
1864 
1865 		/* Nothing cached so current CPU went idle since the search. */
1866 		if (cpu < 0)
1867 			cpu = env->dst_cpu;
1868 
1869 		/*
1870 		 * If the CPU is no longer truly idle and the previous best CPU
1871 		 * is, keep using it.
1872 		 */
1873 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1874 		    idle_cpu(env->best_cpu)) {
1875 			cpu = env->best_cpu;
1876 		}
1877 
1878 		env->dst_cpu = cpu;
1879 	}
1880 
1881 	task_numa_assign(env, cur, imp);
1882 
1883 	/*
1884 	 * If a move to idle is allowed because there is capacity or load
1885 	 * balance improves then stop the search. While a better swap
1886 	 * candidate may exist, a search is not free.
1887 	 */
1888 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1889 		stopsearch = true;
1890 
1891 	/*
1892 	 * If a swap candidate must be identified and the current best task
1893 	 * moves its preferred node then stop the search.
1894 	 */
1895 	if (!maymove && env->best_task &&
1896 	    env->best_task->numa_preferred_nid == env->src_nid) {
1897 		stopsearch = true;
1898 	}
1899 unlock:
1900 	rcu_read_unlock();
1901 
1902 	return stopsearch;
1903 }
1904 
1905 static void task_numa_find_cpu(struct task_numa_env *env,
1906 				long taskimp, long groupimp)
1907 {
1908 	bool maymove = false;
1909 	int cpu;
1910 
1911 	/*
1912 	 * If dst node has spare capacity, then check if there is an
1913 	 * imbalance that would be overruled by the load balancer.
1914 	 */
1915 	if (env->dst_stats.node_type == node_has_spare) {
1916 		unsigned int imbalance;
1917 		int src_running, dst_running;
1918 
1919 		/*
1920 		 * Would movement cause an imbalance? Note that if src has
1921 		 * more running tasks that the imbalance is ignored as the
1922 		 * move improves the imbalance from the perspective of the
1923 		 * CPU load balancer.
1924 		 * */
1925 		src_running = env->src_stats.nr_running - 1;
1926 		dst_running = env->dst_stats.nr_running + 1;
1927 		imbalance = max(0, dst_running - src_running);
1928 		imbalance = adjust_numa_imbalance(imbalance, src_running);
1929 
1930 		/* Use idle CPU if there is no imbalance */
1931 		if (!imbalance) {
1932 			maymove = true;
1933 			if (env->dst_stats.idle_cpu >= 0) {
1934 				env->dst_cpu = env->dst_stats.idle_cpu;
1935 				task_numa_assign(env, NULL, 0);
1936 				return;
1937 			}
1938 		}
1939 	} else {
1940 		long src_load, dst_load, load;
1941 		/*
1942 		 * If the improvement from just moving env->p direction is better
1943 		 * than swapping tasks around, check if a move is possible.
1944 		 */
1945 		load = task_h_load(env->p);
1946 		dst_load = env->dst_stats.load + load;
1947 		src_load = env->src_stats.load - load;
1948 		maymove = !load_too_imbalanced(src_load, dst_load, env);
1949 	}
1950 
1951 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1952 		/* Skip this CPU if the source task cannot migrate */
1953 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1954 			continue;
1955 
1956 		env->dst_cpu = cpu;
1957 		if (task_numa_compare(env, taskimp, groupimp, maymove))
1958 			break;
1959 	}
1960 }
1961 
1962 static int task_numa_migrate(struct task_struct *p)
1963 {
1964 	struct task_numa_env env = {
1965 		.p = p,
1966 
1967 		.src_cpu = task_cpu(p),
1968 		.src_nid = task_node(p),
1969 
1970 		.imbalance_pct = 112,
1971 
1972 		.best_task = NULL,
1973 		.best_imp = 0,
1974 		.best_cpu = -1,
1975 	};
1976 	unsigned long taskweight, groupweight;
1977 	struct sched_domain *sd;
1978 	long taskimp, groupimp;
1979 	struct numa_group *ng;
1980 	struct rq *best_rq;
1981 	int nid, ret, dist;
1982 
1983 	/*
1984 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1985 	 * imbalance and would be the first to start moving tasks about.
1986 	 *
1987 	 * And we want to avoid any moving of tasks about, as that would create
1988 	 * random movement of tasks -- counter the numa conditions we're trying
1989 	 * to satisfy here.
1990 	 */
1991 	rcu_read_lock();
1992 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1993 	if (sd)
1994 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1995 	rcu_read_unlock();
1996 
1997 	/*
1998 	 * Cpusets can break the scheduler domain tree into smaller
1999 	 * balance domains, some of which do not cross NUMA boundaries.
2000 	 * Tasks that are "trapped" in such domains cannot be migrated
2001 	 * elsewhere, so there is no point in (re)trying.
2002 	 */
2003 	if (unlikely(!sd)) {
2004 		sched_setnuma(p, task_node(p));
2005 		return -EINVAL;
2006 	}
2007 
2008 	env.dst_nid = p->numa_preferred_nid;
2009 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2010 	taskweight = task_weight(p, env.src_nid, dist);
2011 	groupweight = group_weight(p, env.src_nid, dist);
2012 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2013 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2014 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2015 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2016 
2017 	/* Try to find a spot on the preferred nid. */
2018 	task_numa_find_cpu(&env, taskimp, groupimp);
2019 
2020 	/*
2021 	 * Look at other nodes in these cases:
2022 	 * - there is no space available on the preferred_nid
2023 	 * - the task is part of a numa_group that is interleaved across
2024 	 *   multiple NUMA nodes; in order to better consolidate the group,
2025 	 *   we need to check other locations.
2026 	 */
2027 	ng = deref_curr_numa_group(p);
2028 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2029 		for_each_online_node(nid) {
2030 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2031 				continue;
2032 
2033 			dist = node_distance(env.src_nid, env.dst_nid);
2034 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2035 						dist != env.dist) {
2036 				taskweight = task_weight(p, env.src_nid, dist);
2037 				groupweight = group_weight(p, env.src_nid, dist);
2038 			}
2039 
2040 			/* Only consider nodes where both task and groups benefit */
2041 			taskimp = task_weight(p, nid, dist) - taskweight;
2042 			groupimp = group_weight(p, nid, dist) - groupweight;
2043 			if (taskimp < 0 && groupimp < 0)
2044 				continue;
2045 
2046 			env.dist = dist;
2047 			env.dst_nid = nid;
2048 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2049 			task_numa_find_cpu(&env, taskimp, groupimp);
2050 		}
2051 	}
2052 
2053 	/*
2054 	 * If the task is part of a workload that spans multiple NUMA nodes,
2055 	 * and is migrating into one of the workload's active nodes, remember
2056 	 * this node as the task's preferred numa node, so the workload can
2057 	 * settle down.
2058 	 * A task that migrated to a second choice node will be better off
2059 	 * trying for a better one later. Do not set the preferred node here.
2060 	 */
2061 	if (ng) {
2062 		if (env.best_cpu == -1)
2063 			nid = env.src_nid;
2064 		else
2065 			nid = cpu_to_node(env.best_cpu);
2066 
2067 		if (nid != p->numa_preferred_nid)
2068 			sched_setnuma(p, nid);
2069 	}
2070 
2071 	/* No better CPU than the current one was found. */
2072 	if (env.best_cpu == -1) {
2073 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2074 		return -EAGAIN;
2075 	}
2076 
2077 	best_rq = cpu_rq(env.best_cpu);
2078 	if (env.best_task == NULL) {
2079 		ret = migrate_task_to(p, env.best_cpu);
2080 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2081 		if (ret != 0)
2082 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2083 		return ret;
2084 	}
2085 
2086 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2087 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2088 
2089 	if (ret != 0)
2090 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2091 	put_task_struct(env.best_task);
2092 	return ret;
2093 }
2094 
2095 /* Attempt to migrate a task to a CPU on the preferred node. */
2096 static void numa_migrate_preferred(struct task_struct *p)
2097 {
2098 	unsigned long interval = HZ;
2099 
2100 	/* This task has no NUMA fault statistics yet */
2101 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2102 		return;
2103 
2104 	/* Periodically retry migrating the task to the preferred node */
2105 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2106 	p->numa_migrate_retry = jiffies + interval;
2107 
2108 	/* Success if task is already running on preferred CPU */
2109 	if (task_node(p) == p->numa_preferred_nid)
2110 		return;
2111 
2112 	/* Otherwise, try migrate to a CPU on the preferred node */
2113 	task_numa_migrate(p);
2114 }
2115 
2116 /*
2117  * Find out how many nodes on the workload is actively running on. Do this by
2118  * tracking the nodes from which NUMA hinting faults are triggered. This can
2119  * be different from the set of nodes where the workload's memory is currently
2120  * located.
2121  */
2122 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2123 {
2124 	unsigned long faults, max_faults = 0;
2125 	int nid, active_nodes = 0;
2126 
2127 	for_each_online_node(nid) {
2128 		faults = group_faults_cpu(numa_group, nid);
2129 		if (faults > max_faults)
2130 			max_faults = faults;
2131 	}
2132 
2133 	for_each_online_node(nid) {
2134 		faults = group_faults_cpu(numa_group, nid);
2135 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2136 			active_nodes++;
2137 	}
2138 
2139 	numa_group->max_faults_cpu = max_faults;
2140 	numa_group->active_nodes = active_nodes;
2141 }
2142 
2143 /*
2144  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2145  * increments. The more local the fault statistics are, the higher the scan
2146  * period will be for the next scan window. If local/(local+remote) ratio is
2147  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2148  * the scan period will decrease. Aim for 70% local accesses.
2149  */
2150 #define NUMA_PERIOD_SLOTS 10
2151 #define NUMA_PERIOD_THRESHOLD 7
2152 
2153 /*
2154  * Increase the scan period (slow down scanning) if the majority of
2155  * our memory is already on our local node, or if the majority of
2156  * the page accesses are shared with other processes.
2157  * Otherwise, decrease the scan period.
2158  */
2159 static void update_task_scan_period(struct task_struct *p,
2160 			unsigned long shared, unsigned long private)
2161 {
2162 	unsigned int period_slot;
2163 	int lr_ratio, ps_ratio;
2164 	int diff;
2165 
2166 	unsigned long remote = p->numa_faults_locality[0];
2167 	unsigned long local = p->numa_faults_locality[1];
2168 
2169 	/*
2170 	 * If there were no record hinting faults then either the task is
2171 	 * completely idle or all activity is areas that are not of interest
2172 	 * to automatic numa balancing. Related to that, if there were failed
2173 	 * migration then it implies we are migrating too quickly or the local
2174 	 * node is overloaded. In either case, scan slower
2175 	 */
2176 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2177 		p->numa_scan_period = min(p->numa_scan_period_max,
2178 			p->numa_scan_period << 1);
2179 
2180 		p->mm->numa_next_scan = jiffies +
2181 			msecs_to_jiffies(p->numa_scan_period);
2182 
2183 		return;
2184 	}
2185 
2186 	/*
2187 	 * Prepare to scale scan period relative to the current period.
2188 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2189 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2190 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2191 	 */
2192 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2193 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2194 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2195 
2196 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2197 		/*
2198 		 * Most memory accesses are local. There is no need to
2199 		 * do fast NUMA scanning, since memory is already local.
2200 		 */
2201 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2202 		if (!slot)
2203 			slot = 1;
2204 		diff = slot * period_slot;
2205 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2206 		/*
2207 		 * Most memory accesses are shared with other tasks.
2208 		 * There is no point in continuing fast NUMA scanning,
2209 		 * since other tasks may just move the memory elsewhere.
2210 		 */
2211 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2212 		if (!slot)
2213 			slot = 1;
2214 		diff = slot * period_slot;
2215 	} else {
2216 		/*
2217 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2218 		 * yet they are not on the local NUMA node. Speed up
2219 		 * NUMA scanning to get the memory moved over.
2220 		 */
2221 		int ratio = max(lr_ratio, ps_ratio);
2222 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2223 	}
2224 
2225 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2226 			task_scan_min(p), task_scan_max(p));
2227 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2228 }
2229 
2230 /*
2231  * Get the fraction of time the task has been running since the last
2232  * NUMA placement cycle. The scheduler keeps similar statistics, but
2233  * decays those on a 32ms period, which is orders of magnitude off
2234  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2235  * stats only if the task is so new there are no NUMA statistics yet.
2236  */
2237 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2238 {
2239 	u64 runtime, delta, now;
2240 	/* Use the start of this time slice to avoid calculations. */
2241 	now = p->se.exec_start;
2242 	runtime = p->se.sum_exec_runtime;
2243 
2244 	if (p->last_task_numa_placement) {
2245 		delta = runtime - p->last_sum_exec_runtime;
2246 		*period = now - p->last_task_numa_placement;
2247 
2248 		/* Avoid time going backwards, prevent potential divide error: */
2249 		if (unlikely((s64)*period < 0))
2250 			*period = 0;
2251 	} else {
2252 		delta = p->se.avg.load_sum;
2253 		*period = LOAD_AVG_MAX;
2254 	}
2255 
2256 	p->last_sum_exec_runtime = runtime;
2257 	p->last_task_numa_placement = now;
2258 
2259 	return delta;
2260 }
2261 
2262 /*
2263  * Determine the preferred nid for a task in a numa_group. This needs to
2264  * be done in a way that produces consistent results with group_weight,
2265  * otherwise workloads might not converge.
2266  */
2267 static int preferred_group_nid(struct task_struct *p, int nid)
2268 {
2269 	nodemask_t nodes;
2270 	int dist;
2271 
2272 	/* Direct connections between all NUMA nodes. */
2273 	if (sched_numa_topology_type == NUMA_DIRECT)
2274 		return nid;
2275 
2276 	/*
2277 	 * On a system with glueless mesh NUMA topology, group_weight
2278 	 * scores nodes according to the number of NUMA hinting faults on
2279 	 * both the node itself, and on nearby nodes.
2280 	 */
2281 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2282 		unsigned long score, max_score = 0;
2283 		int node, max_node = nid;
2284 
2285 		dist = sched_max_numa_distance;
2286 
2287 		for_each_online_node(node) {
2288 			score = group_weight(p, node, dist);
2289 			if (score > max_score) {
2290 				max_score = score;
2291 				max_node = node;
2292 			}
2293 		}
2294 		return max_node;
2295 	}
2296 
2297 	/*
2298 	 * Finding the preferred nid in a system with NUMA backplane
2299 	 * interconnect topology is more involved. The goal is to locate
2300 	 * tasks from numa_groups near each other in the system, and
2301 	 * untangle workloads from different sides of the system. This requires
2302 	 * searching down the hierarchy of node groups, recursively searching
2303 	 * inside the highest scoring group of nodes. The nodemask tricks
2304 	 * keep the complexity of the search down.
2305 	 */
2306 	nodes = node_online_map;
2307 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2308 		unsigned long max_faults = 0;
2309 		nodemask_t max_group = NODE_MASK_NONE;
2310 		int a, b;
2311 
2312 		/* Are there nodes at this distance from each other? */
2313 		if (!find_numa_distance(dist))
2314 			continue;
2315 
2316 		for_each_node_mask(a, nodes) {
2317 			unsigned long faults = 0;
2318 			nodemask_t this_group;
2319 			nodes_clear(this_group);
2320 
2321 			/* Sum group's NUMA faults; includes a==b case. */
2322 			for_each_node_mask(b, nodes) {
2323 				if (node_distance(a, b) < dist) {
2324 					faults += group_faults(p, b);
2325 					node_set(b, this_group);
2326 					node_clear(b, nodes);
2327 				}
2328 			}
2329 
2330 			/* Remember the top group. */
2331 			if (faults > max_faults) {
2332 				max_faults = faults;
2333 				max_group = this_group;
2334 				/*
2335 				 * subtle: at the smallest distance there is
2336 				 * just one node left in each "group", the
2337 				 * winner is the preferred nid.
2338 				 */
2339 				nid = a;
2340 			}
2341 		}
2342 		/* Next round, evaluate the nodes within max_group. */
2343 		if (!max_faults)
2344 			break;
2345 		nodes = max_group;
2346 	}
2347 	return nid;
2348 }
2349 
2350 static void task_numa_placement(struct task_struct *p)
2351 {
2352 	int seq, nid, max_nid = NUMA_NO_NODE;
2353 	unsigned long max_faults = 0;
2354 	unsigned long fault_types[2] = { 0, 0 };
2355 	unsigned long total_faults;
2356 	u64 runtime, period;
2357 	spinlock_t *group_lock = NULL;
2358 	struct numa_group *ng;
2359 
2360 	/*
2361 	 * The p->mm->numa_scan_seq field gets updated without
2362 	 * exclusive access. Use READ_ONCE() here to ensure
2363 	 * that the field is read in a single access:
2364 	 */
2365 	seq = READ_ONCE(p->mm->numa_scan_seq);
2366 	if (p->numa_scan_seq == seq)
2367 		return;
2368 	p->numa_scan_seq = seq;
2369 	p->numa_scan_period_max = task_scan_max(p);
2370 
2371 	total_faults = p->numa_faults_locality[0] +
2372 		       p->numa_faults_locality[1];
2373 	runtime = numa_get_avg_runtime(p, &period);
2374 
2375 	/* If the task is part of a group prevent parallel updates to group stats */
2376 	ng = deref_curr_numa_group(p);
2377 	if (ng) {
2378 		group_lock = &ng->lock;
2379 		spin_lock_irq(group_lock);
2380 	}
2381 
2382 	/* Find the node with the highest number of faults */
2383 	for_each_online_node(nid) {
2384 		/* Keep track of the offsets in numa_faults array */
2385 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2386 		unsigned long faults = 0, group_faults = 0;
2387 		int priv;
2388 
2389 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2390 			long diff, f_diff, f_weight;
2391 
2392 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2393 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2394 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2395 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2396 
2397 			/* Decay existing window, copy faults since last scan */
2398 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2399 			fault_types[priv] += p->numa_faults[membuf_idx];
2400 			p->numa_faults[membuf_idx] = 0;
2401 
2402 			/*
2403 			 * Normalize the faults_from, so all tasks in a group
2404 			 * count according to CPU use, instead of by the raw
2405 			 * number of faults. Tasks with little runtime have
2406 			 * little over-all impact on throughput, and thus their
2407 			 * faults are less important.
2408 			 */
2409 			f_weight = div64_u64(runtime << 16, period + 1);
2410 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2411 				   (total_faults + 1);
2412 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2413 			p->numa_faults[cpubuf_idx] = 0;
2414 
2415 			p->numa_faults[mem_idx] += diff;
2416 			p->numa_faults[cpu_idx] += f_diff;
2417 			faults += p->numa_faults[mem_idx];
2418 			p->total_numa_faults += diff;
2419 			if (ng) {
2420 				/*
2421 				 * safe because we can only change our own group
2422 				 *
2423 				 * mem_idx represents the offset for a given
2424 				 * nid and priv in a specific region because it
2425 				 * is at the beginning of the numa_faults array.
2426 				 */
2427 				ng->faults[mem_idx] += diff;
2428 				ng->faults_cpu[mem_idx] += f_diff;
2429 				ng->total_faults += diff;
2430 				group_faults += ng->faults[mem_idx];
2431 			}
2432 		}
2433 
2434 		if (!ng) {
2435 			if (faults > max_faults) {
2436 				max_faults = faults;
2437 				max_nid = nid;
2438 			}
2439 		} else if (group_faults > max_faults) {
2440 			max_faults = group_faults;
2441 			max_nid = nid;
2442 		}
2443 	}
2444 
2445 	if (ng) {
2446 		numa_group_count_active_nodes(ng);
2447 		spin_unlock_irq(group_lock);
2448 		max_nid = preferred_group_nid(p, max_nid);
2449 	}
2450 
2451 	if (max_faults) {
2452 		/* Set the new preferred node */
2453 		if (max_nid != p->numa_preferred_nid)
2454 			sched_setnuma(p, max_nid);
2455 	}
2456 
2457 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2458 }
2459 
2460 static inline int get_numa_group(struct numa_group *grp)
2461 {
2462 	return refcount_inc_not_zero(&grp->refcount);
2463 }
2464 
2465 static inline void put_numa_group(struct numa_group *grp)
2466 {
2467 	if (refcount_dec_and_test(&grp->refcount))
2468 		kfree_rcu(grp, rcu);
2469 }
2470 
2471 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2472 			int *priv)
2473 {
2474 	struct numa_group *grp, *my_grp;
2475 	struct task_struct *tsk;
2476 	bool join = false;
2477 	int cpu = cpupid_to_cpu(cpupid);
2478 	int i;
2479 
2480 	if (unlikely(!deref_curr_numa_group(p))) {
2481 		unsigned int size = sizeof(struct numa_group) +
2482 				    4*nr_node_ids*sizeof(unsigned long);
2483 
2484 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2485 		if (!grp)
2486 			return;
2487 
2488 		refcount_set(&grp->refcount, 1);
2489 		grp->active_nodes = 1;
2490 		grp->max_faults_cpu = 0;
2491 		spin_lock_init(&grp->lock);
2492 		grp->gid = p->pid;
2493 		/* Second half of the array tracks nids where faults happen */
2494 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2495 						nr_node_ids;
2496 
2497 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2498 			grp->faults[i] = p->numa_faults[i];
2499 
2500 		grp->total_faults = p->total_numa_faults;
2501 
2502 		grp->nr_tasks++;
2503 		rcu_assign_pointer(p->numa_group, grp);
2504 	}
2505 
2506 	rcu_read_lock();
2507 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2508 
2509 	if (!cpupid_match_pid(tsk, cpupid))
2510 		goto no_join;
2511 
2512 	grp = rcu_dereference(tsk->numa_group);
2513 	if (!grp)
2514 		goto no_join;
2515 
2516 	my_grp = deref_curr_numa_group(p);
2517 	if (grp == my_grp)
2518 		goto no_join;
2519 
2520 	/*
2521 	 * Only join the other group if its bigger; if we're the bigger group,
2522 	 * the other task will join us.
2523 	 */
2524 	if (my_grp->nr_tasks > grp->nr_tasks)
2525 		goto no_join;
2526 
2527 	/*
2528 	 * Tie-break on the grp address.
2529 	 */
2530 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2531 		goto no_join;
2532 
2533 	/* Always join threads in the same process. */
2534 	if (tsk->mm == current->mm)
2535 		join = true;
2536 
2537 	/* Simple filter to avoid false positives due to PID collisions */
2538 	if (flags & TNF_SHARED)
2539 		join = true;
2540 
2541 	/* Update priv based on whether false sharing was detected */
2542 	*priv = !join;
2543 
2544 	if (join && !get_numa_group(grp))
2545 		goto no_join;
2546 
2547 	rcu_read_unlock();
2548 
2549 	if (!join)
2550 		return;
2551 
2552 	BUG_ON(irqs_disabled());
2553 	double_lock_irq(&my_grp->lock, &grp->lock);
2554 
2555 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2556 		my_grp->faults[i] -= p->numa_faults[i];
2557 		grp->faults[i] += p->numa_faults[i];
2558 	}
2559 	my_grp->total_faults -= p->total_numa_faults;
2560 	grp->total_faults += p->total_numa_faults;
2561 
2562 	my_grp->nr_tasks--;
2563 	grp->nr_tasks++;
2564 
2565 	spin_unlock(&my_grp->lock);
2566 	spin_unlock_irq(&grp->lock);
2567 
2568 	rcu_assign_pointer(p->numa_group, grp);
2569 
2570 	put_numa_group(my_grp);
2571 	return;
2572 
2573 no_join:
2574 	rcu_read_unlock();
2575 	return;
2576 }
2577 
2578 /*
2579  * Get rid of NUMA staticstics associated with a task (either current or dead).
2580  * If @final is set, the task is dead and has reached refcount zero, so we can
2581  * safely free all relevant data structures. Otherwise, there might be
2582  * concurrent reads from places like load balancing and procfs, and we should
2583  * reset the data back to default state without freeing ->numa_faults.
2584  */
2585 void task_numa_free(struct task_struct *p, bool final)
2586 {
2587 	/* safe: p either is current or is being freed by current */
2588 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2589 	unsigned long *numa_faults = p->numa_faults;
2590 	unsigned long flags;
2591 	int i;
2592 
2593 	if (!numa_faults)
2594 		return;
2595 
2596 	if (grp) {
2597 		spin_lock_irqsave(&grp->lock, flags);
2598 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2599 			grp->faults[i] -= p->numa_faults[i];
2600 		grp->total_faults -= p->total_numa_faults;
2601 
2602 		grp->nr_tasks--;
2603 		spin_unlock_irqrestore(&grp->lock, flags);
2604 		RCU_INIT_POINTER(p->numa_group, NULL);
2605 		put_numa_group(grp);
2606 	}
2607 
2608 	if (final) {
2609 		p->numa_faults = NULL;
2610 		kfree(numa_faults);
2611 	} else {
2612 		p->total_numa_faults = 0;
2613 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2614 			numa_faults[i] = 0;
2615 	}
2616 }
2617 
2618 /*
2619  * Got a PROT_NONE fault for a page on @node.
2620  */
2621 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2622 {
2623 	struct task_struct *p = current;
2624 	bool migrated = flags & TNF_MIGRATED;
2625 	int cpu_node = task_node(current);
2626 	int local = !!(flags & TNF_FAULT_LOCAL);
2627 	struct numa_group *ng;
2628 	int priv;
2629 
2630 	if (!static_branch_likely(&sched_numa_balancing))
2631 		return;
2632 
2633 	/* for example, ksmd faulting in a user's mm */
2634 	if (!p->mm)
2635 		return;
2636 
2637 	/* Allocate buffer to track faults on a per-node basis */
2638 	if (unlikely(!p->numa_faults)) {
2639 		int size = sizeof(*p->numa_faults) *
2640 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2641 
2642 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2643 		if (!p->numa_faults)
2644 			return;
2645 
2646 		p->total_numa_faults = 0;
2647 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2648 	}
2649 
2650 	/*
2651 	 * First accesses are treated as private, otherwise consider accesses
2652 	 * to be private if the accessing pid has not changed
2653 	 */
2654 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2655 		priv = 1;
2656 	} else {
2657 		priv = cpupid_match_pid(p, last_cpupid);
2658 		if (!priv && !(flags & TNF_NO_GROUP))
2659 			task_numa_group(p, last_cpupid, flags, &priv);
2660 	}
2661 
2662 	/*
2663 	 * If a workload spans multiple NUMA nodes, a shared fault that
2664 	 * occurs wholly within the set of nodes that the workload is
2665 	 * actively using should be counted as local. This allows the
2666 	 * scan rate to slow down when a workload has settled down.
2667 	 */
2668 	ng = deref_curr_numa_group(p);
2669 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2670 				numa_is_active_node(cpu_node, ng) &&
2671 				numa_is_active_node(mem_node, ng))
2672 		local = 1;
2673 
2674 	/*
2675 	 * Retry to migrate task to preferred node periodically, in case it
2676 	 * previously failed, or the scheduler moved us.
2677 	 */
2678 	if (time_after(jiffies, p->numa_migrate_retry)) {
2679 		task_numa_placement(p);
2680 		numa_migrate_preferred(p);
2681 	}
2682 
2683 	if (migrated)
2684 		p->numa_pages_migrated += pages;
2685 	if (flags & TNF_MIGRATE_FAIL)
2686 		p->numa_faults_locality[2] += pages;
2687 
2688 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2689 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2690 	p->numa_faults_locality[local] += pages;
2691 }
2692 
2693 static void reset_ptenuma_scan(struct task_struct *p)
2694 {
2695 	/*
2696 	 * We only did a read acquisition of the mmap sem, so
2697 	 * p->mm->numa_scan_seq is written to without exclusive access
2698 	 * and the update is not guaranteed to be atomic. That's not
2699 	 * much of an issue though, since this is just used for
2700 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2701 	 * expensive, to avoid any form of compiler optimizations:
2702 	 */
2703 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2704 	p->mm->numa_scan_offset = 0;
2705 }
2706 
2707 /*
2708  * The expensive part of numa migration is done from task_work context.
2709  * Triggered from task_tick_numa().
2710  */
2711 static void task_numa_work(struct callback_head *work)
2712 {
2713 	unsigned long migrate, next_scan, now = jiffies;
2714 	struct task_struct *p = current;
2715 	struct mm_struct *mm = p->mm;
2716 	u64 runtime = p->se.sum_exec_runtime;
2717 	struct vm_area_struct *vma;
2718 	unsigned long start, end;
2719 	unsigned long nr_pte_updates = 0;
2720 	long pages, virtpages;
2721 
2722 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2723 
2724 	work->next = work;
2725 	/*
2726 	 * Who cares about NUMA placement when they're dying.
2727 	 *
2728 	 * NOTE: make sure not to dereference p->mm before this check,
2729 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2730 	 * without p->mm even though we still had it when we enqueued this
2731 	 * work.
2732 	 */
2733 	if (p->flags & PF_EXITING)
2734 		return;
2735 
2736 	if (!mm->numa_next_scan) {
2737 		mm->numa_next_scan = now +
2738 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2739 	}
2740 
2741 	/*
2742 	 * Enforce maximal scan/migration frequency..
2743 	 */
2744 	migrate = mm->numa_next_scan;
2745 	if (time_before(now, migrate))
2746 		return;
2747 
2748 	if (p->numa_scan_period == 0) {
2749 		p->numa_scan_period_max = task_scan_max(p);
2750 		p->numa_scan_period = task_scan_start(p);
2751 	}
2752 
2753 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2754 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2755 		return;
2756 
2757 	/*
2758 	 * Delay this task enough that another task of this mm will likely win
2759 	 * the next time around.
2760 	 */
2761 	p->node_stamp += 2 * TICK_NSEC;
2762 
2763 	start = mm->numa_scan_offset;
2764 	pages = sysctl_numa_balancing_scan_size;
2765 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2766 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2767 	if (!pages)
2768 		return;
2769 
2770 
2771 	if (!mmap_read_trylock(mm))
2772 		return;
2773 	vma = find_vma(mm, start);
2774 	if (!vma) {
2775 		reset_ptenuma_scan(p);
2776 		start = 0;
2777 		vma = mm->mmap;
2778 	}
2779 	for (; vma; vma = vma->vm_next) {
2780 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2781 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2782 			continue;
2783 		}
2784 
2785 		/*
2786 		 * Shared library pages mapped by multiple processes are not
2787 		 * migrated as it is expected they are cache replicated. Avoid
2788 		 * hinting faults in read-only file-backed mappings or the vdso
2789 		 * as migrating the pages will be of marginal benefit.
2790 		 */
2791 		if (!vma->vm_mm ||
2792 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2793 			continue;
2794 
2795 		/*
2796 		 * Skip inaccessible VMAs to avoid any confusion between
2797 		 * PROT_NONE and NUMA hinting ptes
2798 		 */
2799 		if (!vma_is_accessible(vma))
2800 			continue;
2801 
2802 		do {
2803 			start = max(start, vma->vm_start);
2804 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2805 			end = min(end, vma->vm_end);
2806 			nr_pte_updates = change_prot_numa(vma, start, end);
2807 
2808 			/*
2809 			 * Try to scan sysctl_numa_balancing_size worth of
2810 			 * hpages that have at least one present PTE that
2811 			 * is not already pte-numa. If the VMA contains
2812 			 * areas that are unused or already full of prot_numa
2813 			 * PTEs, scan up to virtpages, to skip through those
2814 			 * areas faster.
2815 			 */
2816 			if (nr_pte_updates)
2817 				pages -= (end - start) >> PAGE_SHIFT;
2818 			virtpages -= (end - start) >> PAGE_SHIFT;
2819 
2820 			start = end;
2821 			if (pages <= 0 || virtpages <= 0)
2822 				goto out;
2823 
2824 			cond_resched();
2825 		} while (end != vma->vm_end);
2826 	}
2827 
2828 out:
2829 	/*
2830 	 * It is possible to reach the end of the VMA list but the last few
2831 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2832 	 * would find the !migratable VMA on the next scan but not reset the
2833 	 * scanner to the start so check it now.
2834 	 */
2835 	if (vma)
2836 		mm->numa_scan_offset = start;
2837 	else
2838 		reset_ptenuma_scan(p);
2839 	mmap_read_unlock(mm);
2840 
2841 	/*
2842 	 * Make sure tasks use at least 32x as much time to run other code
2843 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2844 	 * Usually update_task_scan_period slows down scanning enough; on an
2845 	 * overloaded system we need to limit overhead on a per task basis.
2846 	 */
2847 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2848 		u64 diff = p->se.sum_exec_runtime - runtime;
2849 		p->node_stamp += 32 * diff;
2850 	}
2851 }
2852 
2853 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2854 {
2855 	int mm_users = 0;
2856 	struct mm_struct *mm = p->mm;
2857 
2858 	if (mm) {
2859 		mm_users = atomic_read(&mm->mm_users);
2860 		if (mm_users == 1) {
2861 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2862 			mm->numa_scan_seq = 0;
2863 		}
2864 	}
2865 	p->node_stamp			= 0;
2866 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2867 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2868 	/* Protect against double add, see task_tick_numa and task_numa_work */
2869 	p->numa_work.next		= &p->numa_work;
2870 	p->numa_faults			= NULL;
2871 	RCU_INIT_POINTER(p->numa_group, NULL);
2872 	p->last_task_numa_placement	= 0;
2873 	p->last_sum_exec_runtime	= 0;
2874 
2875 	init_task_work(&p->numa_work, task_numa_work);
2876 
2877 	/* New address space, reset the preferred nid */
2878 	if (!(clone_flags & CLONE_VM)) {
2879 		p->numa_preferred_nid = NUMA_NO_NODE;
2880 		return;
2881 	}
2882 
2883 	/*
2884 	 * New thread, keep existing numa_preferred_nid which should be copied
2885 	 * already by arch_dup_task_struct but stagger when scans start.
2886 	 */
2887 	if (mm) {
2888 		unsigned int delay;
2889 
2890 		delay = min_t(unsigned int, task_scan_max(current),
2891 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2892 		delay += 2 * TICK_NSEC;
2893 		p->node_stamp = delay;
2894 	}
2895 }
2896 
2897 /*
2898  * Drive the periodic memory faults..
2899  */
2900 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2901 {
2902 	struct callback_head *work = &curr->numa_work;
2903 	u64 period, now;
2904 
2905 	/*
2906 	 * We don't care about NUMA placement if we don't have memory.
2907 	 */
2908 	if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2909 		return;
2910 
2911 	/*
2912 	 * Using runtime rather than walltime has the dual advantage that
2913 	 * we (mostly) drive the selection from busy threads and that the
2914 	 * task needs to have done some actual work before we bother with
2915 	 * NUMA placement.
2916 	 */
2917 	now = curr->se.sum_exec_runtime;
2918 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2919 
2920 	if (now > curr->node_stamp + period) {
2921 		if (!curr->node_stamp)
2922 			curr->numa_scan_period = task_scan_start(curr);
2923 		curr->node_stamp += period;
2924 
2925 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2926 			task_work_add(curr, work, true);
2927 	}
2928 }
2929 
2930 static void update_scan_period(struct task_struct *p, int new_cpu)
2931 {
2932 	int src_nid = cpu_to_node(task_cpu(p));
2933 	int dst_nid = cpu_to_node(new_cpu);
2934 
2935 	if (!static_branch_likely(&sched_numa_balancing))
2936 		return;
2937 
2938 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2939 		return;
2940 
2941 	if (src_nid == dst_nid)
2942 		return;
2943 
2944 	/*
2945 	 * Allow resets if faults have been trapped before one scan
2946 	 * has completed. This is most likely due to a new task that
2947 	 * is pulled cross-node due to wakeups or load balancing.
2948 	 */
2949 	if (p->numa_scan_seq) {
2950 		/*
2951 		 * Avoid scan adjustments if moving to the preferred
2952 		 * node or if the task was not previously running on
2953 		 * the preferred node.
2954 		 */
2955 		if (dst_nid == p->numa_preferred_nid ||
2956 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2957 			src_nid != p->numa_preferred_nid))
2958 			return;
2959 	}
2960 
2961 	p->numa_scan_period = task_scan_start(p);
2962 }
2963 
2964 #else
2965 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2966 {
2967 }
2968 
2969 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2970 {
2971 }
2972 
2973 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2974 {
2975 }
2976 
2977 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2978 {
2979 }
2980 
2981 #endif /* CONFIG_NUMA_BALANCING */
2982 
2983 static void
2984 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2985 {
2986 	update_load_add(&cfs_rq->load, se->load.weight);
2987 #ifdef CONFIG_SMP
2988 	if (entity_is_task(se)) {
2989 		struct rq *rq = rq_of(cfs_rq);
2990 
2991 		account_numa_enqueue(rq, task_of(se));
2992 		list_add(&se->group_node, &rq->cfs_tasks);
2993 	}
2994 #endif
2995 	cfs_rq->nr_running++;
2996 }
2997 
2998 static void
2999 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3000 {
3001 	update_load_sub(&cfs_rq->load, se->load.weight);
3002 #ifdef CONFIG_SMP
3003 	if (entity_is_task(se)) {
3004 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3005 		list_del_init(&se->group_node);
3006 	}
3007 #endif
3008 	cfs_rq->nr_running--;
3009 }
3010 
3011 /*
3012  * Signed add and clamp on underflow.
3013  *
3014  * Explicitly do a load-store to ensure the intermediate value never hits
3015  * memory. This allows lockless observations without ever seeing the negative
3016  * values.
3017  */
3018 #define add_positive(_ptr, _val) do {                           \
3019 	typeof(_ptr) ptr = (_ptr);                              \
3020 	typeof(_val) val = (_val);                              \
3021 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3022 								\
3023 	res = var + val;                                        \
3024 								\
3025 	if (val < 0 && res > var)                               \
3026 		res = 0;                                        \
3027 								\
3028 	WRITE_ONCE(*ptr, res);                                  \
3029 } while (0)
3030 
3031 /*
3032  * Unsigned subtract and clamp on underflow.
3033  *
3034  * Explicitly do a load-store to ensure the intermediate value never hits
3035  * memory. This allows lockless observations without ever seeing the negative
3036  * values.
3037  */
3038 #define sub_positive(_ptr, _val) do {				\
3039 	typeof(_ptr) ptr = (_ptr);				\
3040 	typeof(*ptr) val = (_val);				\
3041 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3042 	res = var - val;					\
3043 	if (res > var)						\
3044 		res = 0;					\
3045 	WRITE_ONCE(*ptr, res);					\
3046 } while (0)
3047 
3048 /*
3049  * Remove and clamp on negative, from a local variable.
3050  *
3051  * A variant of sub_positive(), which does not use explicit load-store
3052  * and is thus optimized for local variable updates.
3053  */
3054 #define lsub_positive(_ptr, _val) do {				\
3055 	typeof(_ptr) ptr = (_ptr);				\
3056 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3057 } while (0)
3058 
3059 #ifdef CONFIG_SMP
3060 static inline void
3061 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3062 {
3063 	cfs_rq->avg.load_avg += se->avg.load_avg;
3064 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3065 }
3066 
3067 static inline void
3068 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3069 {
3070 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3071 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3072 }
3073 #else
3074 static inline void
3075 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3076 static inline void
3077 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3078 #endif
3079 
3080 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3081 			    unsigned long weight)
3082 {
3083 	if (se->on_rq) {
3084 		/* commit outstanding execution time */
3085 		if (cfs_rq->curr == se)
3086 			update_curr(cfs_rq);
3087 		account_entity_dequeue(cfs_rq, se);
3088 	}
3089 	dequeue_load_avg(cfs_rq, se);
3090 
3091 	update_load_set(&se->load, weight);
3092 
3093 #ifdef CONFIG_SMP
3094 	do {
3095 		u32 divider = get_pelt_divider(&se->avg);
3096 
3097 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3098 	} while (0);
3099 #endif
3100 
3101 	enqueue_load_avg(cfs_rq, se);
3102 	if (se->on_rq)
3103 		account_entity_enqueue(cfs_rq, se);
3104 
3105 }
3106 
3107 void reweight_task(struct task_struct *p, int prio)
3108 {
3109 	struct sched_entity *se = &p->se;
3110 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3111 	struct load_weight *load = &se->load;
3112 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3113 
3114 	reweight_entity(cfs_rq, se, weight);
3115 	load->inv_weight = sched_prio_to_wmult[prio];
3116 }
3117 
3118 #ifdef CONFIG_FAIR_GROUP_SCHED
3119 #ifdef CONFIG_SMP
3120 /*
3121  * All this does is approximate the hierarchical proportion which includes that
3122  * global sum we all love to hate.
3123  *
3124  * That is, the weight of a group entity, is the proportional share of the
3125  * group weight based on the group runqueue weights. That is:
3126  *
3127  *                     tg->weight * grq->load.weight
3128  *   ge->load.weight = -----------------------------               (1)
3129  *			  \Sum grq->load.weight
3130  *
3131  * Now, because computing that sum is prohibitively expensive to compute (been
3132  * there, done that) we approximate it with this average stuff. The average
3133  * moves slower and therefore the approximation is cheaper and more stable.
3134  *
3135  * So instead of the above, we substitute:
3136  *
3137  *   grq->load.weight -> grq->avg.load_avg                         (2)
3138  *
3139  * which yields the following:
3140  *
3141  *                     tg->weight * grq->avg.load_avg
3142  *   ge->load.weight = ------------------------------              (3)
3143  *				tg->load_avg
3144  *
3145  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3146  *
3147  * That is shares_avg, and it is right (given the approximation (2)).
3148  *
3149  * The problem with it is that because the average is slow -- it was designed
3150  * to be exactly that of course -- this leads to transients in boundary
3151  * conditions. In specific, the case where the group was idle and we start the
3152  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3153  * yielding bad latency etc..
3154  *
3155  * Now, in that special case (1) reduces to:
3156  *
3157  *                     tg->weight * grq->load.weight
3158  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3159  *			    grp->load.weight
3160  *
3161  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3162  *
3163  * So what we do is modify our approximation (3) to approach (4) in the (near)
3164  * UP case, like:
3165  *
3166  *   ge->load.weight =
3167  *
3168  *              tg->weight * grq->load.weight
3169  *     ---------------------------------------------------         (5)
3170  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3171  *
3172  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3173  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3174  *
3175  *
3176  *                     tg->weight * grq->load.weight
3177  *   ge->load.weight = -----------------------------		   (6)
3178  *				tg_load_avg'
3179  *
3180  * Where:
3181  *
3182  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3183  *                  max(grq->load.weight, grq->avg.load_avg)
3184  *
3185  * And that is shares_weight and is icky. In the (near) UP case it approaches
3186  * (4) while in the normal case it approaches (3). It consistently
3187  * overestimates the ge->load.weight and therefore:
3188  *
3189  *   \Sum ge->load.weight >= tg->weight
3190  *
3191  * hence icky!
3192  */
3193 static long calc_group_shares(struct cfs_rq *cfs_rq)
3194 {
3195 	long tg_weight, tg_shares, load, shares;
3196 	struct task_group *tg = cfs_rq->tg;
3197 
3198 	tg_shares = READ_ONCE(tg->shares);
3199 
3200 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3201 
3202 	tg_weight = atomic_long_read(&tg->load_avg);
3203 
3204 	/* Ensure tg_weight >= load */
3205 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3206 	tg_weight += load;
3207 
3208 	shares = (tg_shares * load);
3209 	if (tg_weight)
3210 		shares /= tg_weight;
3211 
3212 	/*
3213 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3214 	 * of a group with small tg->shares value. It is a floor value which is
3215 	 * assigned as a minimum load.weight to the sched_entity representing
3216 	 * the group on a CPU.
3217 	 *
3218 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3219 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3220 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3221 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3222 	 * instead of 0.
3223 	 */
3224 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3225 }
3226 #endif /* CONFIG_SMP */
3227 
3228 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3229 
3230 /*
3231  * Recomputes the group entity based on the current state of its group
3232  * runqueue.
3233  */
3234 static void update_cfs_group(struct sched_entity *se)
3235 {
3236 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3237 	long shares;
3238 
3239 	if (!gcfs_rq)
3240 		return;
3241 
3242 	if (throttled_hierarchy(gcfs_rq))
3243 		return;
3244 
3245 #ifndef CONFIG_SMP
3246 	shares = READ_ONCE(gcfs_rq->tg->shares);
3247 
3248 	if (likely(se->load.weight == shares))
3249 		return;
3250 #else
3251 	shares   = calc_group_shares(gcfs_rq);
3252 #endif
3253 
3254 	reweight_entity(cfs_rq_of(se), se, shares);
3255 }
3256 
3257 #else /* CONFIG_FAIR_GROUP_SCHED */
3258 static inline void update_cfs_group(struct sched_entity *se)
3259 {
3260 }
3261 #endif /* CONFIG_FAIR_GROUP_SCHED */
3262 
3263 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3264 {
3265 	struct rq *rq = rq_of(cfs_rq);
3266 
3267 	if (&rq->cfs == cfs_rq) {
3268 		/*
3269 		 * There are a few boundary cases this might miss but it should
3270 		 * get called often enough that that should (hopefully) not be
3271 		 * a real problem.
3272 		 *
3273 		 * It will not get called when we go idle, because the idle
3274 		 * thread is a different class (!fair), nor will the utilization
3275 		 * number include things like RT tasks.
3276 		 *
3277 		 * As is, the util number is not freq-invariant (we'd have to
3278 		 * implement arch_scale_freq_capacity() for that).
3279 		 *
3280 		 * See cpu_util().
3281 		 */
3282 		cpufreq_update_util(rq, flags);
3283 	}
3284 }
3285 
3286 #ifdef CONFIG_SMP
3287 #ifdef CONFIG_FAIR_GROUP_SCHED
3288 /**
3289  * update_tg_load_avg - update the tg's load avg
3290  * @cfs_rq: the cfs_rq whose avg changed
3291  * @force: update regardless of how small the difference
3292  *
3293  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3294  * However, because tg->load_avg is a global value there are performance
3295  * considerations.
3296  *
3297  * In order to avoid having to look at the other cfs_rq's, we use a
3298  * differential update where we store the last value we propagated. This in
3299  * turn allows skipping updates if the differential is 'small'.
3300  *
3301  * Updating tg's load_avg is necessary before update_cfs_share().
3302  */
3303 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3304 {
3305 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3306 
3307 	/*
3308 	 * No need to update load_avg for root_task_group as it is not used.
3309 	 */
3310 	if (cfs_rq->tg == &root_task_group)
3311 		return;
3312 
3313 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3314 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3315 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3316 	}
3317 }
3318 
3319 /*
3320  * Called within set_task_rq() right before setting a task's CPU. The
3321  * caller only guarantees p->pi_lock is held; no other assumptions,
3322  * including the state of rq->lock, should be made.
3323  */
3324 void set_task_rq_fair(struct sched_entity *se,
3325 		      struct cfs_rq *prev, struct cfs_rq *next)
3326 {
3327 	u64 p_last_update_time;
3328 	u64 n_last_update_time;
3329 
3330 	if (!sched_feat(ATTACH_AGE_LOAD))
3331 		return;
3332 
3333 	/*
3334 	 * We are supposed to update the task to "current" time, then its up to
3335 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3336 	 * getting what current time is, so simply throw away the out-of-date
3337 	 * time. This will result in the wakee task is less decayed, but giving
3338 	 * the wakee more load sounds not bad.
3339 	 */
3340 	if (!(se->avg.last_update_time && prev))
3341 		return;
3342 
3343 #ifndef CONFIG_64BIT
3344 	{
3345 		u64 p_last_update_time_copy;
3346 		u64 n_last_update_time_copy;
3347 
3348 		do {
3349 			p_last_update_time_copy = prev->load_last_update_time_copy;
3350 			n_last_update_time_copy = next->load_last_update_time_copy;
3351 
3352 			smp_rmb();
3353 
3354 			p_last_update_time = prev->avg.last_update_time;
3355 			n_last_update_time = next->avg.last_update_time;
3356 
3357 		} while (p_last_update_time != p_last_update_time_copy ||
3358 			 n_last_update_time != n_last_update_time_copy);
3359 	}
3360 #else
3361 	p_last_update_time = prev->avg.last_update_time;
3362 	n_last_update_time = next->avg.last_update_time;
3363 #endif
3364 	__update_load_avg_blocked_se(p_last_update_time, se);
3365 	se->avg.last_update_time = n_last_update_time;
3366 }
3367 
3368 
3369 /*
3370  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3371  * propagate its contribution. The key to this propagation is the invariant
3372  * that for each group:
3373  *
3374  *   ge->avg == grq->avg						(1)
3375  *
3376  * _IFF_ we look at the pure running and runnable sums. Because they
3377  * represent the very same entity, just at different points in the hierarchy.
3378  *
3379  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3380  * and simply copies the running/runnable sum over (but still wrong, because
3381  * the group entity and group rq do not have their PELT windows aligned).
3382  *
3383  * However, update_tg_cfs_load() is more complex. So we have:
3384  *
3385  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3386  *
3387  * And since, like util, the runnable part should be directly transferable,
3388  * the following would _appear_ to be the straight forward approach:
3389  *
3390  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3391  *
3392  * And per (1) we have:
3393  *
3394  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3395  *
3396  * Which gives:
3397  *
3398  *                      ge->load.weight * grq->avg.load_avg
3399  *   ge->avg.load_avg = -----------------------------------		(4)
3400  *                               grq->load.weight
3401  *
3402  * Except that is wrong!
3403  *
3404  * Because while for entities historical weight is not important and we
3405  * really only care about our future and therefore can consider a pure
3406  * runnable sum, runqueues can NOT do this.
3407  *
3408  * We specifically want runqueues to have a load_avg that includes
3409  * historical weights. Those represent the blocked load, the load we expect
3410  * to (shortly) return to us. This only works by keeping the weights as
3411  * integral part of the sum. We therefore cannot decompose as per (3).
3412  *
3413  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3414  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3415  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3416  * runnable section of these tasks overlap (or not). If they were to perfectly
3417  * align the rq as a whole would be runnable 2/3 of the time. If however we
3418  * always have at least 1 runnable task, the rq as a whole is always runnable.
3419  *
3420  * So we'll have to approximate.. :/
3421  *
3422  * Given the constraint:
3423  *
3424  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3425  *
3426  * We can construct a rule that adds runnable to a rq by assuming minimal
3427  * overlap.
3428  *
3429  * On removal, we'll assume each task is equally runnable; which yields:
3430  *
3431  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3432  *
3433  * XXX: only do this for the part of runnable > running ?
3434  *
3435  */
3436 
3437 static inline void
3438 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3439 {
3440 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3441 	u32 divider;
3442 
3443 	/* Nothing to update */
3444 	if (!delta)
3445 		return;
3446 
3447 	/*
3448 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3449 	 * See ___update_load_avg() for details.
3450 	 */
3451 	divider = get_pelt_divider(&cfs_rq->avg);
3452 
3453 	/* Set new sched_entity's utilization */
3454 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3455 	se->avg.util_sum = se->avg.util_avg * divider;
3456 
3457 	/* Update parent cfs_rq utilization */
3458 	add_positive(&cfs_rq->avg.util_avg, delta);
3459 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3460 }
3461 
3462 static inline void
3463 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3464 {
3465 	long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3466 	u32 divider;
3467 
3468 	/* Nothing to update */
3469 	if (!delta)
3470 		return;
3471 
3472 	/*
3473 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3474 	 * See ___update_load_avg() for details.
3475 	 */
3476 	divider = get_pelt_divider(&cfs_rq->avg);
3477 
3478 	/* Set new sched_entity's runnable */
3479 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3480 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3481 
3482 	/* Update parent cfs_rq runnable */
3483 	add_positive(&cfs_rq->avg.runnable_avg, delta);
3484 	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3485 }
3486 
3487 static inline void
3488 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3489 {
3490 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3491 	unsigned long load_avg;
3492 	u64 load_sum = 0;
3493 	s64 delta_sum;
3494 	u32 divider;
3495 
3496 	if (!runnable_sum)
3497 		return;
3498 
3499 	gcfs_rq->prop_runnable_sum = 0;
3500 
3501 	/*
3502 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3503 	 * See ___update_load_avg() for details.
3504 	 */
3505 	divider = get_pelt_divider(&cfs_rq->avg);
3506 
3507 	if (runnable_sum >= 0) {
3508 		/*
3509 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3510 		 * the CPU is saturated running == runnable.
3511 		 */
3512 		runnable_sum += se->avg.load_sum;
3513 		runnable_sum = min_t(long, runnable_sum, divider);
3514 	} else {
3515 		/*
3516 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3517 		 * assuming all tasks are equally runnable.
3518 		 */
3519 		if (scale_load_down(gcfs_rq->load.weight)) {
3520 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3521 				scale_load_down(gcfs_rq->load.weight));
3522 		}
3523 
3524 		/* But make sure to not inflate se's runnable */
3525 		runnable_sum = min(se->avg.load_sum, load_sum);
3526 	}
3527 
3528 	/*
3529 	 * runnable_sum can't be lower than running_sum
3530 	 * Rescale running sum to be in the same range as runnable sum
3531 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3532 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3533 	 */
3534 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3535 	runnable_sum = max(runnable_sum, running_sum);
3536 
3537 	load_sum = (s64)se_weight(se) * runnable_sum;
3538 	load_avg = div_s64(load_sum, divider);
3539 
3540 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3541 	delta_avg = load_avg - se->avg.load_avg;
3542 
3543 	se->avg.load_sum = runnable_sum;
3544 	se->avg.load_avg = load_avg;
3545 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3546 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3547 }
3548 
3549 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3550 {
3551 	cfs_rq->propagate = 1;
3552 	cfs_rq->prop_runnable_sum += runnable_sum;
3553 }
3554 
3555 /* Update task and its cfs_rq load average */
3556 static inline int propagate_entity_load_avg(struct sched_entity *se)
3557 {
3558 	struct cfs_rq *cfs_rq, *gcfs_rq;
3559 
3560 	if (entity_is_task(se))
3561 		return 0;
3562 
3563 	gcfs_rq = group_cfs_rq(se);
3564 	if (!gcfs_rq->propagate)
3565 		return 0;
3566 
3567 	gcfs_rq->propagate = 0;
3568 
3569 	cfs_rq = cfs_rq_of(se);
3570 
3571 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3572 
3573 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3574 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3575 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3576 
3577 	trace_pelt_cfs_tp(cfs_rq);
3578 	trace_pelt_se_tp(se);
3579 
3580 	return 1;
3581 }
3582 
3583 /*
3584  * Check if we need to update the load and the utilization of a blocked
3585  * group_entity:
3586  */
3587 static inline bool skip_blocked_update(struct sched_entity *se)
3588 {
3589 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3590 
3591 	/*
3592 	 * If sched_entity still have not zero load or utilization, we have to
3593 	 * decay it:
3594 	 */
3595 	if (se->avg.load_avg || se->avg.util_avg)
3596 		return false;
3597 
3598 	/*
3599 	 * If there is a pending propagation, we have to update the load and
3600 	 * the utilization of the sched_entity:
3601 	 */
3602 	if (gcfs_rq->propagate)
3603 		return false;
3604 
3605 	/*
3606 	 * Otherwise, the load and the utilization of the sched_entity is
3607 	 * already zero and there is no pending propagation, so it will be a
3608 	 * waste of time to try to decay it:
3609 	 */
3610 	return true;
3611 }
3612 
3613 #else /* CONFIG_FAIR_GROUP_SCHED */
3614 
3615 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3616 
3617 static inline int propagate_entity_load_avg(struct sched_entity *se)
3618 {
3619 	return 0;
3620 }
3621 
3622 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3623 
3624 #endif /* CONFIG_FAIR_GROUP_SCHED */
3625 
3626 /**
3627  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3628  * @now: current time, as per cfs_rq_clock_pelt()
3629  * @cfs_rq: cfs_rq to update
3630  *
3631  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3632  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3633  * post_init_entity_util_avg().
3634  *
3635  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3636  *
3637  * Returns true if the load decayed or we removed load.
3638  *
3639  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3640  * call update_tg_load_avg() when this function returns true.
3641  */
3642 static inline int
3643 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3644 {
3645 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3646 	struct sched_avg *sa = &cfs_rq->avg;
3647 	int decayed = 0;
3648 
3649 	if (cfs_rq->removed.nr) {
3650 		unsigned long r;
3651 		u32 divider = get_pelt_divider(&cfs_rq->avg);
3652 
3653 		raw_spin_lock(&cfs_rq->removed.lock);
3654 		swap(cfs_rq->removed.util_avg, removed_util);
3655 		swap(cfs_rq->removed.load_avg, removed_load);
3656 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
3657 		cfs_rq->removed.nr = 0;
3658 		raw_spin_unlock(&cfs_rq->removed.lock);
3659 
3660 		r = removed_load;
3661 		sub_positive(&sa->load_avg, r);
3662 		sub_positive(&sa->load_sum, r * divider);
3663 
3664 		r = removed_util;
3665 		sub_positive(&sa->util_avg, r);
3666 		sub_positive(&sa->util_sum, r * divider);
3667 
3668 		r = removed_runnable;
3669 		sub_positive(&sa->runnable_avg, r);
3670 		sub_positive(&sa->runnable_sum, r * divider);
3671 
3672 		/*
3673 		 * removed_runnable is the unweighted version of removed_load so we
3674 		 * can use it to estimate removed_load_sum.
3675 		 */
3676 		add_tg_cfs_propagate(cfs_rq,
3677 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3678 
3679 		decayed = 1;
3680 	}
3681 
3682 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3683 
3684 #ifndef CONFIG_64BIT
3685 	smp_wmb();
3686 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3687 #endif
3688 
3689 	return decayed;
3690 }
3691 
3692 /**
3693  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3694  * @cfs_rq: cfs_rq to attach to
3695  * @se: sched_entity to attach
3696  *
3697  * Must call update_cfs_rq_load_avg() before this, since we rely on
3698  * cfs_rq->avg.last_update_time being current.
3699  */
3700 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3701 {
3702 	/*
3703 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3704 	 * See ___update_load_avg() for details.
3705 	 */
3706 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3707 
3708 	/*
3709 	 * When we attach the @se to the @cfs_rq, we must align the decay
3710 	 * window because without that, really weird and wonderful things can
3711 	 * happen.
3712 	 *
3713 	 * XXX illustrate
3714 	 */
3715 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3716 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3717 
3718 	/*
3719 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3720 	 * period_contrib. This isn't strictly correct, but since we're
3721 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3722 	 * _sum a little.
3723 	 */
3724 	se->avg.util_sum = se->avg.util_avg * divider;
3725 
3726 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3727 
3728 	se->avg.load_sum = divider;
3729 	if (se_weight(se)) {
3730 		se->avg.load_sum =
3731 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3732 	}
3733 
3734 	enqueue_load_avg(cfs_rq, se);
3735 	cfs_rq->avg.util_avg += se->avg.util_avg;
3736 	cfs_rq->avg.util_sum += se->avg.util_sum;
3737 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3738 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3739 
3740 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3741 
3742 	cfs_rq_util_change(cfs_rq, 0);
3743 
3744 	trace_pelt_cfs_tp(cfs_rq);
3745 }
3746 
3747 /**
3748  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3749  * @cfs_rq: cfs_rq to detach from
3750  * @se: sched_entity to detach
3751  *
3752  * Must call update_cfs_rq_load_avg() before this, since we rely on
3753  * cfs_rq->avg.last_update_time being current.
3754  */
3755 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3756 {
3757 	dequeue_load_avg(cfs_rq, se);
3758 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3759 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3760 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3761 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3762 
3763 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3764 
3765 	cfs_rq_util_change(cfs_rq, 0);
3766 
3767 	trace_pelt_cfs_tp(cfs_rq);
3768 }
3769 
3770 /*
3771  * Optional action to be done while updating the load average
3772  */
3773 #define UPDATE_TG	0x1
3774 #define SKIP_AGE_LOAD	0x2
3775 #define DO_ATTACH	0x4
3776 
3777 /* Update task and its cfs_rq load average */
3778 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3779 {
3780 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3781 	int decayed;
3782 
3783 	/*
3784 	 * Track task load average for carrying it to new CPU after migrated, and
3785 	 * track group sched_entity load average for task_h_load calc in migration
3786 	 */
3787 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3788 		__update_load_avg_se(now, cfs_rq, se);
3789 
3790 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3791 	decayed |= propagate_entity_load_avg(se);
3792 
3793 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3794 
3795 		/*
3796 		 * DO_ATTACH means we're here from enqueue_entity().
3797 		 * !last_update_time means we've passed through
3798 		 * migrate_task_rq_fair() indicating we migrated.
3799 		 *
3800 		 * IOW we're enqueueing a task on a new CPU.
3801 		 */
3802 		attach_entity_load_avg(cfs_rq, se);
3803 		update_tg_load_avg(cfs_rq, 0);
3804 
3805 	} else if (decayed) {
3806 		cfs_rq_util_change(cfs_rq, 0);
3807 
3808 		if (flags & UPDATE_TG)
3809 			update_tg_load_avg(cfs_rq, 0);
3810 	}
3811 }
3812 
3813 #ifndef CONFIG_64BIT
3814 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3815 {
3816 	u64 last_update_time_copy;
3817 	u64 last_update_time;
3818 
3819 	do {
3820 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3821 		smp_rmb();
3822 		last_update_time = cfs_rq->avg.last_update_time;
3823 	} while (last_update_time != last_update_time_copy);
3824 
3825 	return last_update_time;
3826 }
3827 #else
3828 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3829 {
3830 	return cfs_rq->avg.last_update_time;
3831 }
3832 #endif
3833 
3834 /*
3835  * Synchronize entity load avg of dequeued entity without locking
3836  * the previous rq.
3837  */
3838 static void sync_entity_load_avg(struct sched_entity *se)
3839 {
3840 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3841 	u64 last_update_time;
3842 
3843 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3844 	__update_load_avg_blocked_se(last_update_time, se);
3845 }
3846 
3847 /*
3848  * Task first catches up with cfs_rq, and then subtract
3849  * itself from the cfs_rq (task must be off the queue now).
3850  */
3851 static void remove_entity_load_avg(struct sched_entity *se)
3852 {
3853 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3854 	unsigned long flags;
3855 
3856 	/*
3857 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3858 	 * post_init_entity_util_avg() which will have added things to the
3859 	 * cfs_rq, so we can remove unconditionally.
3860 	 */
3861 
3862 	sync_entity_load_avg(se);
3863 
3864 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3865 	++cfs_rq->removed.nr;
3866 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3867 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3868 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
3869 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3870 }
3871 
3872 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3873 {
3874 	return cfs_rq->avg.runnable_avg;
3875 }
3876 
3877 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3878 {
3879 	return cfs_rq->avg.load_avg;
3880 }
3881 
3882 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3883 
3884 static inline unsigned long task_util(struct task_struct *p)
3885 {
3886 	return READ_ONCE(p->se.avg.util_avg);
3887 }
3888 
3889 static inline unsigned long _task_util_est(struct task_struct *p)
3890 {
3891 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3892 
3893 	return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3894 }
3895 
3896 static inline unsigned long task_util_est(struct task_struct *p)
3897 {
3898 	return max(task_util(p), _task_util_est(p));
3899 }
3900 
3901 #ifdef CONFIG_UCLAMP_TASK
3902 static inline unsigned long uclamp_task_util(struct task_struct *p)
3903 {
3904 	return clamp(task_util_est(p),
3905 		     uclamp_eff_value(p, UCLAMP_MIN),
3906 		     uclamp_eff_value(p, UCLAMP_MAX));
3907 }
3908 #else
3909 static inline unsigned long uclamp_task_util(struct task_struct *p)
3910 {
3911 	return task_util_est(p);
3912 }
3913 #endif
3914 
3915 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3916 				    struct task_struct *p)
3917 {
3918 	unsigned int enqueued;
3919 
3920 	if (!sched_feat(UTIL_EST))
3921 		return;
3922 
3923 	/* Update root cfs_rq's estimated utilization */
3924 	enqueued  = cfs_rq->avg.util_est.enqueued;
3925 	enqueued += _task_util_est(p);
3926 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3927 
3928 	trace_sched_util_est_cfs_tp(cfs_rq);
3929 }
3930 
3931 /*
3932  * Check if a (signed) value is within a specified (unsigned) margin,
3933  * based on the observation that:
3934  *
3935  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3936  *
3937  * NOTE: this only works when value + maring < INT_MAX.
3938  */
3939 static inline bool within_margin(int value, int margin)
3940 {
3941 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3942 }
3943 
3944 static void
3945 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3946 {
3947 	long last_ewma_diff;
3948 	struct util_est ue;
3949 	int cpu;
3950 
3951 	if (!sched_feat(UTIL_EST))
3952 		return;
3953 
3954 	/* Update root cfs_rq's estimated utilization */
3955 	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3956 	ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3957 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3958 
3959 	trace_sched_util_est_cfs_tp(cfs_rq);
3960 
3961 	/*
3962 	 * Skip update of task's estimated utilization when the task has not
3963 	 * yet completed an activation, e.g. being migrated.
3964 	 */
3965 	if (!task_sleep)
3966 		return;
3967 
3968 	/*
3969 	 * If the PELT values haven't changed since enqueue time,
3970 	 * skip the util_est update.
3971 	 */
3972 	ue = p->se.avg.util_est;
3973 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3974 		return;
3975 
3976 	/*
3977 	 * Reset EWMA on utilization increases, the moving average is used only
3978 	 * to smooth utilization decreases.
3979 	 */
3980 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3981 	if (sched_feat(UTIL_EST_FASTUP)) {
3982 		if (ue.ewma < ue.enqueued) {
3983 			ue.ewma = ue.enqueued;
3984 			goto done;
3985 		}
3986 	}
3987 
3988 	/*
3989 	 * Skip update of task's estimated utilization when its EWMA is
3990 	 * already ~1% close to its last activation value.
3991 	 */
3992 	last_ewma_diff = ue.enqueued - ue.ewma;
3993 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3994 		return;
3995 
3996 	/*
3997 	 * To avoid overestimation of actual task utilization, skip updates if
3998 	 * we cannot grant there is idle time in this CPU.
3999 	 */
4000 	cpu = cpu_of(rq_of(cfs_rq));
4001 	if (task_util(p) > capacity_orig_of(cpu))
4002 		return;
4003 
4004 	/*
4005 	 * Update Task's estimated utilization
4006 	 *
4007 	 * When *p completes an activation we can consolidate another sample
4008 	 * of the task size. This is done by storing the current PELT value
4009 	 * as ue.enqueued and by using this value to update the Exponential
4010 	 * Weighted Moving Average (EWMA):
4011 	 *
4012 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4013 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4014 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4015 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4016 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4017 	 *
4018 	 * Where 'w' is the weight of new samples, which is configured to be
4019 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4020 	 */
4021 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4022 	ue.ewma  += last_ewma_diff;
4023 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4024 done:
4025 	WRITE_ONCE(p->se.avg.util_est, ue);
4026 
4027 	trace_sched_util_est_se_tp(&p->se);
4028 }
4029 
4030 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4031 {
4032 	return fits_capacity(uclamp_task_util(p), capacity);
4033 }
4034 
4035 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4036 {
4037 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
4038 		return;
4039 
4040 	if (!p) {
4041 		rq->misfit_task_load = 0;
4042 		return;
4043 	}
4044 
4045 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4046 		rq->misfit_task_load = 0;
4047 		return;
4048 	}
4049 
4050 	/*
4051 	 * Make sure that misfit_task_load will not be null even if
4052 	 * task_h_load() returns 0.
4053 	 */
4054 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4055 }
4056 
4057 #else /* CONFIG_SMP */
4058 
4059 #define UPDATE_TG	0x0
4060 #define SKIP_AGE_LOAD	0x0
4061 #define DO_ATTACH	0x0
4062 
4063 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4064 {
4065 	cfs_rq_util_change(cfs_rq, 0);
4066 }
4067 
4068 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4069 
4070 static inline void
4071 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4072 static inline void
4073 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4074 
4075 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4076 {
4077 	return 0;
4078 }
4079 
4080 static inline void
4081 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4082 
4083 static inline void
4084 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
4085 		 bool task_sleep) {}
4086 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4087 
4088 #endif /* CONFIG_SMP */
4089 
4090 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4091 {
4092 #ifdef CONFIG_SCHED_DEBUG
4093 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4094 
4095 	if (d < 0)
4096 		d = -d;
4097 
4098 	if (d > 3*sysctl_sched_latency)
4099 		schedstat_inc(cfs_rq->nr_spread_over);
4100 #endif
4101 }
4102 
4103 static void
4104 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4105 {
4106 	u64 vruntime = cfs_rq->min_vruntime;
4107 
4108 	/*
4109 	 * The 'current' period is already promised to the current tasks,
4110 	 * however the extra weight of the new task will slow them down a
4111 	 * little, place the new task so that it fits in the slot that
4112 	 * stays open at the end.
4113 	 */
4114 	if (initial && sched_feat(START_DEBIT))
4115 		vruntime += sched_vslice(cfs_rq, se);
4116 
4117 	/* sleeps up to a single latency don't count. */
4118 	if (!initial) {
4119 		unsigned long thresh = sysctl_sched_latency;
4120 
4121 		/*
4122 		 * Halve their sleep time's effect, to allow
4123 		 * for a gentler effect of sleepers:
4124 		 */
4125 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4126 			thresh >>= 1;
4127 
4128 		vruntime -= thresh;
4129 	}
4130 
4131 	/* ensure we never gain time by being placed backwards. */
4132 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4133 }
4134 
4135 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4136 
4137 static inline void check_schedstat_required(void)
4138 {
4139 #ifdef CONFIG_SCHEDSTATS
4140 	if (schedstat_enabled())
4141 		return;
4142 
4143 	/* Force schedstat enabled if a dependent tracepoint is active */
4144 	if (trace_sched_stat_wait_enabled()    ||
4145 			trace_sched_stat_sleep_enabled()   ||
4146 			trace_sched_stat_iowait_enabled()  ||
4147 			trace_sched_stat_blocked_enabled() ||
4148 			trace_sched_stat_runtime_enabled())  {
4149 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4150 			     "stat_blocked and stat_runtime require the "
4151 			     "kernel parameter schedstats=enable or "
4152 			     "kernel.sched_schedstats=1\n");
4153 	}
4154 #endif
4155 }
4156 
4157 static inline bool cfs_bandwidth_used(void);
4158 
4159 /*
4160  * MIGRATION
4161  *
4162  *	dequeue
4163  *	  update_curr()
4164  *	    update_min_vruntime()
4165  *	  vruntime -= min_vruntime
4166  *
4167  *	enqueue
4168  *	  update_curr()
4169  *	    update_min_vruntime()
4170  *	  vruntime += min_vruntime
4171  *
4172  * this way the vruntime transition between RQs is done when both
4173  * min_vruntime are up-to-date.
4174  *
4175  * WAKEUP (remote)
4176  *
4177  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4178  *	  vruntime -= min_vruntime
4179  *
4180  *	enqueue
4181  *	  update_curr()
4182  *	    update_min_vruntime()
4183  *	  vruntime += min_vruntime
4184  *
4185  * this way we don't have the most up-to-date min_vruntime on the originating
4186  * CPU and an up-to-date min_vruntime on the destination CPU.
4187  */
4188 
4189 static void
4190 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4191 {
4192 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4193 	bool curr = cfs_rq->curr == se;
4194 
4195 	/*
4196 	 * If we're the current task, we must renormalise before calling
4197 	 * update_curr().
4198 	 */
4199 	if (renorm && curr)
4200 		se->vruntime += cfs_rq->min_vruntime;
4201 
4202 	update_curr(cfs_rq);
4203 
4204 	/*
4205 	 * Otherwise, renormalise after, such that we're placed at the current
4206 	 * moment in time, instead of some random moment in the past. Being
4207 	 * placed in the past could significantly boost this task to the
4208 	 * fairness detriment of existing tasks.
4209 	 */
4210 	if (renorm && !curr)
4211 		se->vruntime += cfs_rq->min_vruntime;
4212 
4213 	/*
4214 	 * When enqueuing a sched_entity, we must:
4215 	 *   - Update loads to have both entity and cfs_rq synced with now.
4216 	 *   - Add its load to cfs_rq->runnable_avg
4217 	 *   - For group_entity, update its weight to reflect the new share of
4218 	 *     its group cfs_rq
4219 	 *   - Add its new weight to cfs_rq->load.weight
4220 	 */
4221 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4222 	se_update_runnable(se);
4223 	update_cfs_group(se);
4224 	account_entity_enqueue(cfs_rq, se);
4225 
4226 	if (flags & ENQUEUE_WAKEUP)
4227 		place_entity(cfs_rq, se, 0);
4228 
4229 	check_schedstat_required();
4230 	update_stats_enqueue(cfs_rq, se, flags);
4231 	check_spread(cfs_rq, se);
4232 	if (!curr)
4233 		__enqueue_entity(cfs_rq, se);
4234 	se->on_rq = 1;
4235 
4236 	/*
4237 	 * When bandwidth control is enabled, cfs might have been removed
4238 	 * because of a parent been throttled but cfs->nr_running > 1. Try to
4239 	 * add it unconditionnally.
4240 	 */
4241 	if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4242 		list_add_leaf_cfs_rq(cfs_rq);
4243 
4244 	if (cfs_rq->nr_running == 1)
4245 		check_enqueue_throttle(cfs_rq);
4246 }
4247 
4248 static void __clear_buddies_last(struct sched_entity *se)
4249 {
4250 	for_each_sched_entity(se) {
4251 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4252 		if (cfs_rq->last != se)
4253 			break;
4254 
4255 		cfs_rq->last = NULL;
4256 	}
4257 }
4258 
4259 static void __clear_buddies_next(struct sched_entity *se)
4260 {
4261 	for_each_sched_entity(se) {
4262 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4263 		if (cfs_rq->next != se)
4264 			break;
4265 
4266 		cfs_rq->next = NULL;
4267 	}
4268 }
4269 
4270 static void __clear_buddies_skip(struct sched_entity *se)
4271 {
4272 	for_each_sched_entity(se) {
4273 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4274 		if (cfs_rq->skip != se)
4275 			break;
4276 
4277 		cfs_rq->skip = NULL;
4278 	}
4279 }
4280 
4281 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4282 {
4283 	if (cfs_rq->last == se)
4284 		__clear_buddies_last(se);
4285 
4286 	if (cfs_rq->next == se)
4287 		__clear_buddies_next(se);
4288 
4289 	if (cfs_rq->skip == se)
4290 		__clear_buddies_skip(se);
4291 }
4292 
4293 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4294 
4295 static void
4296 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4297 {
4298 	/*
4299 	 * Update run-time statistics of the 'current'.
4300 	 */
4301 	update_curr(cfs_rq);
4302 
4303 	/*
4304 	 * When dequeuing a sched_entity, we must:
4305 	 *   - Update loads to have both entity and cfs_rq synced with now.
4306 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4307 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4308 	 *   - For group entity, update its weight to reflect the new share
4309 	 *     of its group cfs_rq.
4310 	 */
4311 	update_load_avg(cfs_rq, se, UPDATE_TG);
4312 	se_update_runnable(se);
4313 
4314 	update_stats_dequeue(cfs_rq, se, flags);
4315 
4316 	clear_buddies(cfs_rq, se);
4317 
4318 	if (se != cfs_rq->curr)
4319 		__dequeue_entity(cfs_rq, se);
4320 	se->on_rq = 0;
4321 	account_entity_dequeue(cfs_rq, se);
4322 
4323 	/*
4324 	 * Normalize after update_curr(); which will also have moved
4325 	 * min_vruntime if @se is the one holding it back. But before doing
4326 	 * update_min_vruntime() again, which will discount @se's position and
4327 	 * can move min_vruntime forward still more.
4328 	 */
4329 	if (!(flags & DEQUEUE_SLEEP))
4330 		se->vruntime -= cfs_rq->min_vruntime;
4331 
4332 	/* return excess runtime on last dequeue */
4333 	return_cfs_rq_runtime(cfs_rq);
4334 
4335 	update_cfs_group(se);
4336 
4337 	/*
4338 	 * Now advance min_vruntime if @se was the entity holding it back,
4339 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4340 	 * put back on, and if we advance min_vruntime, we'll be placed back
4341 	 * further than we started -- ie. we'll be penalized.
4342 	 */
4343 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4344 		update_min_vruntime(cfs_rq);
4345 }
4346 
4347 /*
4348  * Preempt the current task with a newly woken task if needed:
4349  */
4350 static void
4351 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4352 {
4353 	unsigned long ideal_runtime, delta_exec;
4354 	struct sched_entity *se;
4355 	s64 delta;
4356 
4357 	ideal_runtime = sched_slice(cfs_rq, curr);
4358 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4359 	if (delta_exec > ideal_runtime) {
4360 		resched_curr(rq_of(cfs_rq));
4361 		/*
4362 		 * The current task ran long enough, ensure it doesn't get
4363 		 * re-elected due to buddy favours.
4364 		 */
4365 		clear_buddies(cfs_rq, curr);
4366 		return;
4367 	}
4368 
4369 	/*
4370 	 * Ensure that a task that missed wakeup preemption by a
4371 	 * narrow margin doesn't have to wait for a full slice.
4372 	 * This also mitigates buddy induced latencies under load.
4373 	 */
4374 	if (delta_exec < sysctl_sched_min_granularity)
4375 		return;
4376 
4377 	se = __pick_first_entity(cfs_rq);
4378 	delta = curr->vruntime - se->vruntime;
4379 
4380 	if (delta < 0)
4381 		return;
4382 
4383 	if (delta > ideal_runtime)
4384 		resched_curr(rq_of(cfs_rq));
4385 }
4386 
4387 static void
4388 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4389 {
4390 	/* 'current' is not kept within the tree. */
4391 	if (se->on_rq) {
4392 		/*
4393 		 * Any task has to be enqueued before it get to execute on
4394 		 * a CPU. So account for the time it spent waiting on the
4395 		 * runqueue.
4396 		 */
4397 		update_stats_wait_end(cfs_rq, se);
4398 		__dequeue_entity(cfs_rq, se);
4399 		update_load_avg(cfs_rq, se, UPDATE_TG);
4400 	}
4401 
4402 	update_stats_curr_start(cfs_rq, se);
4403 	cfs_rq->curr = se;
4404 
4405 	/*
4406 	 * Track our maximum slice length, if the CPU's load is at
4407 	 * least twice that of our own weight (i.e. dont track it
4408 	 * when there are only lesser-weight tasks around):
4409 	 */
4410 	if (schedstat_enabled() &&
4411 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4412 		schedstat_set(se->statistics.slice_max,
4413 			max((u64)schedstat_val(se->statistics.slice_max),
4414 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4415 	}
4416 
4417 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4418 }
4419 
4420 static int
4421 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4422 
4423 /*
4424  * Pick the next process, keeping these things in mind, in this order:
4425  * 1) keep things fair between processes/task groups
4426  * 2) pick the "next" process, since someone really wants that to run
4427  * 3) pick the "last" process, for cache locality
4428  * 4) do not run the "skip" process, if something else is available
4429  */
4430 static struct sched_entity *
4431 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4432 {
4433 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4434 	struct sched_entity *se;
4435 
4436 	/*
4437 	 * If curr is set we have to see if its left of the leftmost entity
4438 	 * still in the tree, provided there was anything in the tree at all.
4439 	 */
4440 	if (!left || (curr && entity_before(curr, left)))
4441 		left = curr;
4442 
4443 	se = left; /* ideally we run the leftmost entity */
4444 
4445 	/*
4446 	 * Avoid running the skip buddy, if running something else can
4447 	 * be done without getting too unfair.
4448 	 */
4449 	if (cfs_rq->skip == se) {
4450 		struct sched_entity *second;
4451 
4452 		if (se == curr) {
4453 			second = __pick_first_entity(cfs_rq);
4454 		} else {
4455 			second = __pick_next_entity(se);
4456 			if (!second || (curr && entity_before(curr, second)))
4457 				second = curr;
4458 		}
4459 
4460 		if (second && wakeup_preempt_entity(second, left) < 1)
4461 			se = second;
4462 	}
4463 
4464 	/*
4465 	 * Prefer last buddy, try to return the CPU to a preempted task.
4466 	 */
4467 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4468 		se = cfs_rq->last;
4469 
4470 	/*
4471 	 * Someone really wants this to run. If it's not unfair, run it.
4472 	 */
4473 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4474 		se = cfs_rq->next;
4475 
4476 	clear_buddies(cfs_rq, se);
4477 
4478 	return se;
4479 }
4480 
4481 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4482 
4483 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4484 {
4485 	/*
4486 	 * If still on the runqueue then deactivate_task()
4487 	 * was not called and update_curr() has to be done:
4488 	 */
4489 	if (prev->on_rq)
4490 		update_curr(cfs_rq);
4491 
4492 	/* throttle cfs_rqs exceeding runtime */
4493 	check_cfs_rq_runtime(cfs_rq);
4494 
4495 	check_spread(cfs_rq, prev);
4496 
4497 	if (prev->on_rq) {
4498 		update_stats_wait_start(cfs_rq, prev);
4499 		/* Put 'current' back into the tree. */
4500 		__enqueue_entity(cfs_rq, prev);
4501 		/* in !on_rq case, update occurred at dequeue */
4502 		update_load_avg(cfs_rq, prev, 0);
4503 	}
4504 	cfs_rq->curr = NULL;
4505 }
4506 
4507 static void
4508 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4509 {
4510 	/*
4511 	 * Update run-time statistics of the 'current'.
4512 	 */
4513 	update_curr(cfs_rq);
4514 
4515 	/*
4516 	 * Ensure that runnable average is periodically updated.
4517 	 */
4518 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4519 	update_cfs_group(curr);
4520 
4521 #ifdef CONFIG_SCHED_HRTICK
4522 	/*
4523 	 * queued ticks are scheduled to match the slice, so don't bother
4524 	 * validating it and just reschedule.
4525 	 */
4526 	if (queued) {
4527 		resched_curr(rq_of(cfs_rq));
4528 		return;
4529 	}
4530 	/*
4531 	 * don't let the period tick interfere with the hrtick preemption
4532 	 */
4533 	if (!sched_feat(DOUBLE_TICK) &&
4534 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4535 		return;
4536 #endif
4537 
4538 	if (cfs_rq->nr_running > 1)
4539 		check_preempt_tick(cfs_rq, curr);
4540 }
4541 
4542 
4543 /**************************************************
4544  * CFS bandwidth control machinery
4545  */
4546 
4547 #ifdef CONFIG_CFS_BANDWIDTH
4548 
4549 #ifdef CONFIG_JUMP_LABEL
4550 static struct static_key __cfs_bandwidth_used;
4551 
4552 static inline bool cfs_bandwidth_used(void)
4553 {
4554 	return static_key_false(&__cfs_bandwidth_used);
4555 }
4556 
4557 void cfs_bandwidth_usage_inc(void)
4558 {
4559 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4560 }
4561 
4562 void cfs_bandwidth_usage_dec(void)
4563 {
4564 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4565 }
4566 #else /* CONFIG_JUMP_LABEL */
4567 static bool cfs_bandwidth_used(void)
4568 {
4569 	return true;
4570 }
4571 
4572 void cfs_bandwidth_usage_inc(void) {}
4573 void cfs_bandwidth_usage_dec(void) {}
4574 #endif /* CONFIG_JUMP_LABEL */
4575 
4576 /*
4577  * default period for cfs group bandwidth.
4578  * default: 0.1s, units: nanoseconds
4579  */
4580 static inline u64 default_cfs_period(void)
4581 {
4582 	return 100000000ULL;
4583 }
4584 
4585 static inline u64 sched_cfs_bandwidth_slice(void)
4586 {
4587 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4588 }
4589 
4590 /*
4591  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4592  * directly instead of rq->clock to avoid adding additional synchronization
4593  * around rq->lock.
4594  *
4595  * requires cfs_b->lock
4596  */
4597 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4598 {
4599 	if (cfs_b->quota != RUNTIME_INF)
4600 		cfs_b->runtime = cfs_b->quota;
4601 }
4602 
4603 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4604 {
4605 	return &tg->cfs_bandwidth;
4606 }
4607 
4608 /* returns 0 on failure to allocate runtime */
4609 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4610 				   struct cfs_rq *cfs_rq, u64 target_runtime)
4611 {
4612 	u64 min_amount, amount = 0;
4613 
4614 	lockdep_assert_held(&cfs_b->lock);
4615 
4616 	/* note: this is a positive sum as runtime_remaining <= 0 */
4617 	min_amount = target_runtime - cfs_rq->runtime_remaining;
4618 
4619 	if (cfs_b->quota == RUNTIME_INF)
4620 		amount = min_amount;
4621 	else {
4622 		start_cfs_bandwidth(cfs_b);
4623 
4624 		if (cfs_b->runtime > 0) {
4625 			amount = min(cfs_b->runtime, min_amount);
4626 			cfs_b->runtime -= amount;
4627 			cfs_b->idle = 0;
4628 		}
4629 	}
4630 
4631 	cfs_rq->runtime_remaining += amount;
4632 
4633 	return cfs_rq->runtime_remaining > 0;
4634 }
4635 
4636 /* returns 0 on failure to allocate runtime */
4637 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4638 {
4639 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4640 	int ret;
4641 
4642 	raw_spin_lock(&cfs_b->lock);
4643 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4644 	raw_spin_unlock(&cfs_b->lock);
4645 
4646 	return ret;
4647 }
4648 
4649 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4650 {
4651 	/* dock delta_exec before expiring quota (as it could span periods) */
4652 	cfs_rq->runtime_remaining -= delta_exec;
4653 
4654 	if (likely(cfs_rq->runtime_remaining > 0))
4655 		return;
4656 
4657 	if (cfs_rq->throttled)
4658 		return;
4659 	/*
4660 	 * if we're unable to extend our runtime we resched so that the active
4661 	 * hierarchy can be throttled
4662 	 */
4663 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4664 		resched_curr(rq_of(cfs_rq));
4665 }
4666 
4667 static __always_inline
4668 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4669 {
4670 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4671 		return;
4672 
4673 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4674 }
4675 
4676 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4677 {
4678 	return cfs_bandwidth_used() && cfs_rq->throttled;
4679 }
4680 
4681 /* check whether cfs_rq, or any parent, is throttled */
4682 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4683 {
4684 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4685 }
4686 
4687 /*
4688  * Ensure that neither of the group entities corresponding to src_cpu or
4689  * dest_cpu are members of a throttled hierarchy when performing group
4690  * load-balance operations.
4691  */
4692 static inline int throttled_lb_pair(struct task_group *tg,
4693 				    int src_cpu, int dest_cpu)
4694 {
4695 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4696 
4697 	src_cfs_rq = tg->cfs_rq[src_cpu];
4698 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4699 
4700 	return throttled_hierarchy(src_cfs_rq) ||
4701 	       throttled_hierarchy(dest_cfs_rq);
4702 }
4703 
4704 static int tg_unthrottle_up(struct task_group *tg, void *data)
4705 {
4706 	struct rq *rq = data;
4707 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4708 
4709 	cfs_rq->throttle_count--;
4710 	if (!cfs_rq->throttle_count) {
4711 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4712 					     cfs_rq->throttled_clock_task;
4713 
4714 		/* Add cfs_rq with already running entity in the list */
4715 		if (cfs_rq->nr_running >= 1)
4716 			list_add_leaf_cfs_rq(cfs_rq);
4717 	}
4718 
4719 	return 0;
4720 }
4721 
4722 static int tg_throttle_down(struct task_group *tg, void *data)
4723 {
4724 	struct rq *rq = data;
4725 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4726 
4727 	/* group is entering throttled state, stop time */
4728 	if (!cfs_rq->throttle_count) {
4729 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4730 		list_del_leaf_cfs_rq(cfs_rq);
4731 	}
4732 	cfs_rq->throttle_count++;
4733 
4734 	return 0;
4735 }
4736 
4737 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4738 {
4739 	struct rq *rq = rq_of(cfs_rq);
4740 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4741 	struct sched_entity *se;
4742 	long task_delta, idle_task_delta, dequeue = 1;
4743 
4744 	raw_spin_lock(&cfs_b->lock);
4745 	/* This will start the period timer if necessary */
4746 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4747 		/*
4748 		 * We have raced with bandwidth becoming available, and if we
4749 		 * actually throttled the timer might not unthrottle us for an
4750 		 * entire period. We additionally needed to make sure that any
4751 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
4752 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4753 		 * for 1ns of runtime rather than just check cfs_b.
4754 		 */
4755 		dequeue = 0;
4756 	} else {
4757 		list_add_tail_rcu(&cfs_rq->throttled_list,
4758 				  &cfs_b->throttled_cfs_rq);
4759 	}
4760 	raw_spin_unlock(&cfs_b->lock);
4761 
4762 	if (!dequeue)
4763 		return false;  /* Throttle no longer required. */
4764 
4765 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4766 
4767 	/* freeze hierarchy runnable averages while throttled */
4768 	rcu_read_lock();
4769 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4770 	rcu_read_unlock();
4771 
4772 	task_delta = cfs_rq->h_nr_running;
4773 	idle_task_delta = cfs_rq->idle_h_nr_running;
4774 	for_each_sched_entity(se) {
4775 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4776 		/* throttled entity or throttle-on-deactivate */
4777 		if (!se->on_rq)
4778 			break;
4779 
4780 		if (dequeue) {
4781 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4782 		} else {
4783 			update_load_avg(qcfs_rq, se, 0);
4784 			se_update_runnable(se);
4785 		}
4786 
4787 		qcfs_rq->h_nr_running -= task_delta;
4788 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4789 
4790 		if (qcfs_rq->load.weight)
4791 			dequeue = 0;
4792 	}
4793 
4794 	if (!se)
4795 		sub_nr_running(rq, task_delta);
4796 
4797 	/*
4798 	 * Note: distribution will already see us throttled via the
4799 	 * throttled-list.  rq->lock protects completion.
4800 	 */
4801 	cfs_rq->throttled = 1;
4802 	cfs_rq->throttled_clock = rq_clock(rq);
4803 	return true;
4804 }
4805 
4806 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4807 {
4808 	struct rq *rq = rq_of(cfs_rq);
4809 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4810 	struct sched_entity *se;
4811 	long task_delta, idle_task_delta;
4812 
4813 	se = cfs_rq->tg->se[cpu_of(rq)];
4814 
4815 	cfs_rq->throttled = 0;
4816 
4817 	update_rq_clock(rq);
4818 
4819 	raw_spin_lock(&cfs_b->lock);
4820 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4821 	list_del_rcu(&cfs_rq->throttled_list);
4822 	raw_spin_unlock(&cfs_b->lock);
4823 
4824 	/* update hierarchical throttle state */
4825 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4826 
4827 	if (!cfs_rq->load.weight)
4828 		return;
4829 
4830 	task_delta = cfs_rq->h_nr_running;
4831 	idle_task_delta = cfs_rq->idle_h_nr_running;
4832 	for_each_sched_entity(se) {
4833 		if (se->on_rq)
4834 			break;
4835 		cfs_rq = cfs_rq_of(se);
4836 		enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4837 
4838 		cfs_rq->h_nr_running += task_delta;
4839 		cfs_rq->idle_h_nr_running += idle_task_delta;
4840 
4841 		/* end evaluation on encountering a throttled cfs_rq */
4842 		if (cfs_rq_throttled(cfs_rq))
4843 			goto unthrottle_throttle;
4844 	}
4845 
4846 	for_each_sched_entity(se) {
4847 		cfs_rq = cfs_rq_of(se);
4848 
4849 		update_load_avg(cfs_rq, se, UPDATE_TG);
4850 		se_update_runnable(se);
4851 
4852 		cfs_rq->h_nr_running += task_delta;
4853 		cfs_rq->idle_h_nr_running += idle_task_delta;
4854 
4855 
4856 		/* end evaluation on encountering a throttled cfs_rq */
4857 		if (cfs_rq_throttled(cfs_rq))
4858 			goto unthrottle_throttle;
4859 
4860 		/*
4861 		 * One parent has been throttled and cfs_rq removed from the
4862 		 * list. Add it back to not break the leaf list.
4863 		 */
4864 		if (throttled_hierarchy(cfs_rq))
4865 			list_add_leaf_cfs_rq(cfs_rq);
4866 	}
4867 
4868 	/* At this point se is NULL and we are at root level*/
4869 	add_nr_running(rq, task_delta);
4870 
4871 unthrottle_throttle:
4872 	/*
4873 	 * The cfs_rq_throttled() breaks in the above iteration can result in
4874 	 * incomplete leaf list maintenance, resulting in triggering the
4875 	 * assertion below.
4876 	 */
4877 	for_each_sched_entity(se) {
4878 		cfs_rq = cfs_rq_of(se);
4879 
4880 		if (list_add_leaf_cfs_rq(cfs_rq))
4881 			break;
4882 	}
4883 
4884 	assert_list_leaf_cfs_rq(rq);
4885 
4886 	/* Determine whether we need to wake up potentially idle CPU: */
4887 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4888 		resched_curr(rq);
4889 }
4890 
4891 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4892 {
4893 	struct cfs_rq *cfs_rq;
4894 	u64 runtime, remaining = 1;
4895 
4896 	rcu_read_lock();
4897 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4898 				throttled_list) {
4899 		struct rq *rq = rq_of(cfs_rq);
4900 		struct rq_flags rf;
4901 
4902 		rq_lock_irqsave(rq, &rf);
4903 		if (!cfs_rq_throttled(cfs_rq))
4904 			goto next;
4905 
4906 		/* By the above check, this should never be true */
4907 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4908 
4909 		raw_spin_lock(&cfs_b->lock);
4910 		runtime = -cfs_rq->runtime_remaining + 1;
4911 		if (runtime > cfs_b->runtime)
4912 			runtime = cfs_b->runtime;
4913 		cfs_b->runtime -= runtime;
4914 		remaining = cfs_b->runtime;
4915 		raw_spin_unlock(&cfs_b->lock);
4916 
4917 		cfs_rq->runtime_remaining += runtime;
4918 
4919 		/* we check whether we're throttled above */
4920 		if (cfs_rq->runtime_remaining > 0)
4921 			unthrottle_cfs_rq(cfs_rq);
4922 
4923 next:
4924 		rq_unlock_irqrestore(rq, &rf);
4925 
4926 		if (!remaining)
4927 			break;
4928 	}
4929 	rcu_read_unlock();
4930 }
4931 
4932 /*
4933  * Responsible for refilling a task_group's bandwidth and unthrottling its
4934  * cfs_rqs as appropriate. If there has been no activity within the last
4935  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4936  * used to track this state.
4937  */
4938 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4939 {
4940 	int throttled;
4941 
4942 	/* no need to continue the timer with no bandwidth constraint */
4943 	if (cfs_b->quota == RUNTIME_INF)
4944 		goto out_deactivate;
4945 
4946 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4947 	cfs_b->nr_periods += overrun;
4948 
4949 	/*
4950 	 * idle depends on !throttled (for the case of a large deficit), and if
4951 	 * we're going inactive then everything else can be deferred
4952 	 */
4953 	if (cfs_b->idle && !throttled)
4954 		goto out_deactivate;
4955 
4956 	__refill_cfs_bandwidth_runtime(cfs_b);
4957 
4958 	if (!throttled) {
4959 		/* mark as potentially idle for the upcoming period */
4960 		cfs_b->idle = 1;
4961 		return 0;
4962 	}
4963 
4964 	/* account preceding periods in which throttling occurred */
4965 	cfs_b->nr_throttled += overrun;
4966 
4967 	/*
4968 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
4969 	 */
4970 	while (throttled && cfs_b->runtime > 0) {
4971 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4972 		/* we can't nest cfs_b->lock while distributing bandwidth */
4973 		distribute_cfs_runtime(cfs_b);
4974 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
4975 
4976 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4977 	}
4978 
4979 	/*
4980 	 * While we are ensured activity in the period following an
4981 	 * unthrottle, this also covers the case in which the new bandwidth is
4982 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4983 	 * timer to remain active while there are any throttled entities.)
4984 	 */
4985 	cfs_b->idle = 0;
4986 
4987 	return 0;
4988 
4989 out_deactivate:
4990 	return 1;
4991 }
4992 
4993 /* a cfs_rq won't donate quota below this amount */
4994 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4995 /* minimum remaining period time to redistribute slack quota */
4996 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4997 /* how long we wait to gather additional slack before distributing */
4998 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4999 
5000 /*
5001  * Are we near the end of the current quota period?
5002  *
5003  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5004  * hrtimer base being cleared by hrtimer_start. In the case of
5005  * migrate_hrtimers, base is never cleared, so we are fine.
5006  */
5007 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5008 {
5009 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5010 	u64 remaining;
5011 
5012 	/* if the call-back is running a quota refresh is already occurring */
5013 	if (hrtimer_callback_running(refresh_timer))
5014 		return 1;
5015 
5016 	/* is a quota refresh about to occur? */
5017 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5018 	if (remaining < min_expire)
5019 		return 1;
5020 
5021 	return 0;
5022 }
5023 
5024 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5025 {
5026 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5027 
5028 	/* if there's a quota refresh soon don't bother with slack */
5029 	if (runtime_refresh_within(cfs_b, min_left))
5030 		return;
5031 
5032 	/* don't push forwards an existing deferred unthrottle */
5033 	if (cfs_b->slack_started)
5034 		return;
5035 	cfs_b->slack_started = true;
5036 
5037 	hrtimer_start(&cfs_b->slack_timer,
5038 			ns_to_ktime(cfs_bandwidth_slack_period),
5039 			HRTIMER_MODE_REL);
5040 }
5041 
5042 /* we know any runtime found here is valid as update_curr() precedes return */
5043 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5044 {
5045 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5046 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5047 
5048 	if (slack_runtime <= 0)
5049 		return;
5050 
5051 	raw_spin_lock(&cfs_b->lock);
5052 	if (cfs_b->quota != RUNTIME_INF) {
5053 		cfs_b->runtime += slack_runtime;
5054 
5055 		/* we are under rq->lock, defer unthrottling using a timer */
5056 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5057 		    !list_empty(&cfs_b->throttled_cfs_rq))
5058 			start_cfs_slack_bandwidth(cfs_b);
5059 	}
5060 	raw_spin_unlock(&cfs_b->lock);
5061 
5062 	/* even if it's not valid for return we don't want to try again */
5063 	cfs_rq->runtime_remaining -= slack_runtime;
5064 }
5065 
5066 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5067 {
5068 	if (!cfs_bandwidth_used())
5069 		return;
5070 
5071 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5072 		return;
5073 
5074 	__return_cfs_rq_runtime(cfs_rq);
5075 }
5076 
5077 /*
5078  * This is done with a timer (instead of inline with bandwidth return) since
5079  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5080  */
5081 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5082 {
5083 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5084 	unsigned long flags;
5085 
5086 	/* confirm we're still not at a refresh boundary */
5087 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5088 	cfs_b->slack_started = false;
5089 
5090 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5091 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5092 		return;
5093 	}
5094 
5095 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5096 		runtime = cfs_b->runtime;
5097 
5098 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5099 
5100 	if (!runtime)
5101 		return;
5102 
5103 	distribute_cfs_runtime(cfs_b);
5104 
5105 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5106 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5107 }
5108 
5109 /*
5110  * When a group wakes up we want to make sure that its quota is not already
5111  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5112  * runtime as update_curr() throttling can not not trigger until it's on-rq.
5113  */
5114 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5115 {
5116 	if (!cfs_bandwidth_used())
5117 		return;
5118 
5119 	/* an active group must be handled by the update_curr()->put() path */
5120 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5121 		return;
5122 
5123 	/* ensure the group is not already throttled */
5124 	if (cfs_rq_throttled(cfs_rq))
5125 		return;
5126 
5127 	/* update runtime allocation */
5128 	account_cfs_rq_runtime(cfs_rq, 0);
5129 	if (cfs_rq->runtime_remaining <= 0)
5130 		throttle_cfs_rq(cfs_rq);
5131 }
5132 
5133 static void sync_throttle(struct task_group *tg, int cpu)
5134 {
5135 	struct cfs_rq *pcfs_rq, *cfs_rq;
5136 
5137 	if (!cfs_bandwidth_used())
5138 		return;
5139 
5140 	if (!tg->parent)
5141 		return;
5142 
5143 	cfs_rq = tg->cfs_rq[cpu];
5144 	pcfs_rq = tg->parent->cfs_rq[cpu];
5145 
5146 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5147 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5148 }
5149 
5150 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5151 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5152 {
5153 	if (!cfs_bandwidth_used())
5154 		return false;
5155 
5156 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5157 		return false;
5158 
5159 	/*
5160 	 * it's possible for a throttled entity to be forced into a running
5161 	 * state (e.g. set_curr_task), in this case we're finished.
5162 	 */
5163 	if (cfs_rq_throttled(cfs_rq))
5164 		return true;
5165 
5166 	return throttle_cfs_rq(cfs_rq);
5167 }
5168 
5169 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5170 {
5171 	struct cfs_bandwidth *cfs_b =
5172 		container_of(timer, struct cfs_bandwidth, slack_timer);
5173 
5174 	do_sched_cfs_slack_timer(cfs_b);
5175 
5176 	return HRTIMER_NORESTART;
5177 }
5178 
5179 extern const u64 max_cfs_quota_period;
5180 
5181 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5182 {
5183 	struct cfs_bandwidth *cfs_b =
5184 		container_of(timer, struct cfs_bandwidth, period_timer);
5185 	unsigned long flags;
5186 	int overrun;
5187 	int idle = 0;
5188 	int count = 0;
5189 
5190 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5191 	for (;;) {
5192 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5193 		if (!overrun)
5194 			break;
5195 
5196 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5197 
5198 		if (++count > 3) {
5199 			u64 new, old = ktime_to_ns(cfs_b->period);
5200 
5201 			/*
5202 			 * Grow period by a factor of 2 to avoid losing precision.
5203 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5204 			 * to fail.
5205 			 */
5206 			new = old * 2;
5207 			if (new < max_cfs_quota_period) {
5208 				cfs_b->period = ns_to_ktime(new);
5209 				cfs_b->quota *= 2;
5210 
5211 				pr_warn_ratelimited(
5212 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5213 					smp_processor_id(),
5214 					div_u64(new, NSEC_PER_USEC),
5215 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5216 			} else {
5217 				pr_warn_ratelimited(
5218 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5219 					smp_processor_id(),
5220 					div_u64(old, NSEC_PER_USEC),
5221 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5222 			}
5223 
5224 			/* reset count so we don't come right back in here */
5225 			count = 0;
5226 		}
5227 	}
5228 	if (idle)
5229 		cfs_b->period_active = 0;
5230 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5231 
5232 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5233 }
5234 
5235 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5236 {
5237 	raw_spin_lock_init(&cfs_b->lock);
5238 	cfs_b->runtime = 0;
5239 	cfs_b->quota = RUNTIME_INF;
5240 	cfs_b->period = ns_to_ktime(default_cfs_period());
5241 
5242 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5243 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5244 	cfs_b->period_timer.function = sched_cfs_period_timer;
5245 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5246 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5247 	cfs_b->slack_started = false;
5248 }
5249 
5250 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5251 {
5252 	cfs_rq->runtime_enabled = 0;
5253 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5254 }
5255 
5256 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5257 {
5258 	lockdep_assert_held(&cfs_b->lock);
5259 
5260 	if (cfs_b->period_active)
5261 		return;
5262 
5263 	cfs_b->period_active = 1;
5264 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5265 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5266 }
5267 
5268 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5269 {
5270 	/* init_cfs_bandwidth() was not called */
5271 	if (!cfs_b->throttled_cfs_rq.next)
5272 		return;
5273 
5274 	hrtimer_cancel(&cfs_b->period_timer);
5275 	hrtimer_cancel(&cfs_b->slack_timer);
5276 }
5277 
5278 /*
5279  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5280  *
5281  * The race is harmless, since modifying bandwidth settings of unhooked group
5282  * bits doesn't do much.
5283  */
5284 
5285 /* cpu online calback */
5286 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5287 {
5288 	struct task_group *tg;
5289 
5290 	lockdep_assert_held(&rq->lock);
5291 
5292 	rcu_read_lock();
5293 	list_for_each_entry_rcu(tg, &task_groups, list) {
5294 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5295 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5296 
5297 		raw_spin_lock(&cfs_b->lock);
5298 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5299 		raw_spin_unlock(&cfs_b->lock);
5300 	}
5301 	rcu_read_unlock();
5302 }
5303 
5304 /* cpu offline callback */
5305 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5306 {
5307 	struct task_group *tg;
5308 
5309 	lockdep_assert_held(&rq->lock);
5310 
5311 	rcu_read_lock();
5312 	list_for_each_entry_rcu(tg, &task_groups, list) {
5313 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5314 
5315 		if (!cfs_rq->runtime_enabled)
5316 			continue;
5317 
5318 		/*
5319 		 * clock_task is not advancing so we just need to make sure
5320 		 * there's some valid quota amount
5321 		 */
5322 		cfs_rq->runtime_remaining = 1;
5323 		/*
5324 		 * Offline rq is schedulable till CPU is completely disabled
5325 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5326 		 */
5327 		cfs_rq->runtime_enabled = 0;
5328 
5329 		if (cfs_rq_throttled(cfs_rq))
5330 			unthrottle_cfs_rq(cfs_rq);
5331 	}
5332 	rcu_read_unlock();
5333 }
5334 
5335 #else /* CONFIG_CFS_BANDWIDTH */
5336 
5337 static inline bool cfs_bandwidth_used(void)
5338 {
5339 	return false;
5340 }
5341 
5342 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5343 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5344 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5345 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5346 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5347 
5348 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5349 {
5350 	return 0;
5351 }
5352 
5353 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5354 {
5355 	return 0;
5356 }
5357 
5358 static inline int throttled_lb_pair(struct task_group *tg,
5359 				    int src_cpu, int dest_cpu)
5360 {
5361 	return 0;
5362 }
5363 
5364 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5365 
5366 #ifdef CONFIG_FAIR_GROUP_SCHED
5367 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5368 #endif
5369 
5370 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5371 {
5372 	return NULL;
5373 }
5374 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5375 static inline void update_runtime_enabled(struct rq *rq) {}
5376 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5377 
5378 #endif /* CONFIG_CFS_BANDWIDTH */
5379 
5380 /**************************************************
5381  * CFS operations on tasks:
5382  */
5383 
5384 #ifdef CONFIG_SCHED_HRTICK
5385 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5386 {
5387 	struct sched_entity *se = &p->se;
5388 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5389 
5390 	SCHED_WARN_ON(task_rq(p) != rq);
5391 
5392 	if (rq->cfs.h_nr_running > 1) {
5393 		u64 slice = sched_slice(cfs_rq, se);
5394 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5395 		s64 delta = slice - ran;
5396 
5397 		if (delta < 0) {
5398 			if (rq->curr == p)
5399 				resched_curr(rq);
5400 			return;
5401 		}
5402 		hrtick_start(rq, delta);
5403 	}
5404 }
5405 
5406 /*
5407  * called from enqueue/dequeue and updates the hrtick when the
5408  * current task is from our class and nr_running is low enough
5409  * to matter.
5410  */
5411 static void hrtick_update(struct rq *rq)
5412 {
5413 	struct task_struct *curr = rq->curr;
5414 
5415 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5416 		return;
5417 
5418 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5419 		hrtick_start_fair(rq, curr);
5420 }
5421 #else /* !CONFIG_SCHED_HRTICK */
5422 static inline void
5423 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5424 {
5425 }
5426 
5427 static inline void hrtick_update(struct rq *rq)
5428 {
5429 }
5430 #endif
5431 
5432 #ifdef CONFIG_SMP
5433 static inline unsigned long cpu_util(int cpu);
5434 
5435 static inline bool cpu_overutilized(int cpu)
5436 {
5437 	return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5438 }
5439 
5440 static inline void update_overutilized_status(struct rq *rq)
5441 {
5442 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5443 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5444 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5445 	}
5446 }
5447 #else
5448 static inline void update_overutilized_status(struct rq *rq) { }
5449 #endif
5450 
5451 /* Runqueue only has SCHED_IDLE tasks enqueued */
5452 static int sched_idle_rq(struct rq *rq)
5453 {
5454 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5455 			rq->nr_running);
5456 }
5457 
5458 #ifdef CONFIG_SMP
5459 static int sched_idle_cpu(int cpu)
5460 {
5461 	return sched_idle_rq(cpu_rq(cpu));
5462 }
5463 #endif
5464 
5465 /*
5466  * The enqueue_task method is called before nr_running is
5467  * increased. Here we update the fair scheduling stats and
5468  * then put the task into the rbtree:
5469  */
5470 static void
5471 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5472 {
5473 	struct cfs_rq *cfs_rq;
5474 	struct sched_entity *se = &p->se;
5475 	int idle_h_nr_running = task_has_idle_policy(p);
5476 
5477 	/*
5478 	 * The code below (indirectly) updates schedutil which looks at
5479 	 * the cfs_rq utilization to select a frequency.
5480 	 * Let's add the task's estimated utilization to the cfs_rq's
5481 	 * estimated utilization, before we update schedutil.
5482 	 */
5483 	util_est_enqueue(&rq->cfs, p);
5484 
5485 	/*
5486 	 * If in_iowait is set, the code below may not trigger any cpufreq
5487 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5488 	 * passed.
5489 	 */
5490 	if (p->in_iowait)
5491 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5492 
5493 	for_each_sched_entity(se) {
5494 		if (se->on_rq)
5495 			break;
5496 		cfs_rq = cfs_rq_of(se);
5497 		enqueue_entity(cfs_rq, se, flags);
5498 
5499 		cfs_rq->h_nr_running++;
5500 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5501 
5502 		/* end evaluation on encountering a throttled cfs_rq */
5503 		if (cfs_rq_throttled(cfs_rq))
5504 			goto enqueue_throttle;
5505 
5506 		flags = ENQUEUE_WAKEUP;
5507 	}
5508 
5509 	for_each_sched_entity(se) {
5510 		cfs_rq = cfs_rq_of(se);
5511 
5512 		update_load_avg(cfs_rq, se, UPDATE_TG);
5513 		se_update_runnable(se);
5514 		update_cfs_group(se);
5515 
5516 		cfs_rq->h_nr_running++;
5517 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5518 
5519 		/* end evaluation on encountering a throttled cfs_rq */
5520 		if (cfs_rq_throttled(cfs_rq))
5521 			goto enqueue_throttle;
5522 
5523                /*
5524                 * One parent has been throttled and cfs_rq removed from the
5525                 * list. Add it back to not break the leaf list.
5526                 */
5527                if (throttled_hierarchy(cfs_rq))
5528                        list_add_leaf_cfs_rq(cfs_rq);
5529 	}
5530 
5531 	/* At this point se is NULL and we are at root level*/
5532 	add_nr_running(rq, 1);
5533 
5534 	/*
5535 	 * Since new tasks are assigned an initial util_avg equal to
5536 	 * half of the spare capacity of their CPU, tiny tasks have the
5537 	 * ability to cross the overutilized threshold, which will
5538 	 * result in the load balancer ruining all the task placement
5539 	 * done by EAS. As a way to mitigate that effect, do not account
5540 	 * for the first enqueue operation of new tasks during the
5541 	 * overutilized flag detection.
5542 	 *
5543 	 * A better way of solving this problem would be to wait for
5544 	 * the PELT signals of tasks to converge before taking them
5545 	 * into account, but that is not straightforward to implement,
5546 	 * and the following generally works well enough in practice.
5547 	 */
5548 	if (flags & ENQUEUE_WAKEUP)
5549 		update_overutilized_status(rq);
5550 
5551 enqueue_throttle:
5552 	if (cfs_bandwidth_used()) {
5553 		/*
5554 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5555 		 * breaks in the above iteration can result in incomplete
5556 		 * leaf list maintenance, resulting in triggering the assertion
5557 		 * below.
5558 		 */
5559 		for_each_sched_entity(se) {
5560 			cfs_rq = cfs_rq_of(se);
5561 
5562 			if (list_add_leaf_cfs_rq(cfs_rq))
5563 				break;
5564 		}
5565 	}
5566 
5567 	assert_list_leaf_cfs_rq(rq);
5568 
5569 	hrtick_update(rq);
5570 }
5571 
5572 static void set_next_buddy(struct sched_entity *se);
5573 
5574 /*
5575  * The dequeue_task method is called before nr_running is
5576  * decreased. We remove the task from the rbtree and
5577  * update the fair scheduling stats:
5578  */
5579 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5580 {
5581 	struct cfs_rq *cfs_rq;
5582 	struct sched_entity *se = &p->se;
5583 	int task_sleep = flags & DEQUEUE_SLEEP;
5584 	int idle_h_nr_running = task_has_idle_policy(p);
5585 	bool was_sched_idle = sched_idle_rq(rq);
5586 
5587 	for_each_sched_entity(se) {
5588 		cfs_rq = cfs_rq_of(se);
5589 		dequeue_entity(cfs_rq, se, flags);
5590 
5591 		cfs_rq->h_nr_running--;
5592 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5593 
5594 		/* end evaluation on encountering a throttled cfs_rq */
5595 		if (cfs_rq_throttled(cfs_rq))
5596 			goto dequeue_throttle;
5597 
5598 		/* Don't dequeue parent if it has other entities besides us */
5599 		if (cfs_rq->load.weight) {
5600 			/* Avoid re-evaluating load for this entity: */
5601 			se = parent_entity(se);
5602 			/*
5603 			 * Bias pick_next to pick a task from this cfs_rq, as
5604 			 * p is sleeping when it is within its sched_slice.
5605 			 */
5606 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5607 				set_next_buddy(se);
5608 			break;
5609 		}
5610 		flags |= DEQUEUE_SLEEP;
5611 	}
5612 
5613 	for_each_sched_entity(se) {
5614 		cfs_rq = cfs_rq_of(se);
5615 
5616 		update_load_avg(cfs_rq, se, UPDATE_TG);
5617 		se_update_runnable(se);
5618 		update_cfs_group(se);
5619 
5620 		cfs_rq->h_nr_running--;
5621 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5622 
5623 		/* end evaluation on encountering a throttled cfs_rq */
5624 		if (cfs_rq_throttled(cfs_rq))
5625 			goto dequeue_throttle;
5626 
5627 	}
5628 
5629 	/* At this point se is NULL and we are at root level*/
5630 	sub_nr_running(rq, 1);
5631 
5632 	/* balance early to pull high priority tasks */
5633 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5634 		rq->next_balance = jiffies;
5635 
5636 dequeue_throttle:
5637 	util_est_dequeue(&rq->cfs, p, task_sleep);
5638 	hrtick_update(rq);
5639 }
5640 
5641 #ifdef CONFIG_SMP
5642 
5643 /* Working cpumask for: load_balance, load_balance_newidle. */
5644 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5645 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5646 
5647 #ifdef CONFIG_NO_HZ_COMMON
5648 
5649 static struct {
5650 	cpumask_var_t idle_cpus_mask;
5651 	atomic_t nr_cpus;
5652 	int has_blocked;		/* Idle CPUS has blocked load */
5653 	unsigned long next_balance;     /* in jiffy units */
5654 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5655 } nohz ____cacheline_aligned;
5656 
5657 #endif /* CONFIG_NO_HZ_COMMON */
5658 
5659 static unsigned long cpu_load(struct rq *rq)
5660 {
5661 	return cfs_rq_load_avg(&rq->cfs);
5662 }
5663 
5664 /*
5665  * cpu_load_without - compute CPU load without any contributions from *p
5666  * @cpu: the CPU which load is requested
5667  * @p: the task which load should be discounted
5668  *
5669  * The load of a CPU is defined by the load of tasks currently enqueued on that
5670  * CPU as well as tasks which are currently sleeping after an execution on that
5671  * CPU.
5672  *
5673  * This method returns the load of the specified CPU by discounting the load of
5674  * the specified task, whenever the task is currently contributing to the CPU
5675  * load.
5676  */
5677 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5678 {
5679 	struct cfs_rq *cfs_rq;
5680 	unsigned int load;
5681 
5682 	/* Task has no contribution or is new */
5683 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5684 		return cpu_load(rq);
5685 
5686 	cfs_rq = &rq->cfs;
5687 	load = READ_ONCE(cfs_rq->avg.load_avg);
5688 
5689 	/* Discount task's util from CPU's util */
5690 	lsub_positive(&load, task_h_load(p));
5691 
5692 	return load;
5693 }
5694 
5695 static unsigned long cpu_runnable(struct rq *rq)
5696 {
5697 	return cfs_rq_runnable_avg(&rq->cfs);
5698 }
5699 
5700 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5701 {
5702 	struct cfs_rq *cfs_rq;
5703 	unsigned int runnable;
5704 
5705 	/* Task has no contribution or is new */
5706 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5707 		return cpu_runnable(rq);
5708 
5709 	cfs_rq = &rq->cfs;
5710 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5711 
5712 	/* Discount task's runnable from CPU's runnable */
5713 	lsub_positive(&runnable, p->se.avg.runnable_avg);
5714 
5715 	return runnable;
5716 }
5717 
5718 static unsigned long capacity_of(int cpu)
5719 {
5720 	return cpu_rq(cpu)->cpu_capacity;
5721 }
5722 
5723 static void record_wakee(struct task_struct *p)
5724 {
5725 	/*
5726 	 * Only decay a single time; tasks that have less then 1 wakeup per
5727 	 * jiffy will not have built up many flips.
5728 	 */
5729 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5730 		current->wakee_flips >>= 1;
5731 		current->wakee_flip_decay_ts = jiffies;
5732 	}
5733 
5734 	if (current->last_wakee != p) {
5735 		current->last_wakee = p;
5736 		current->wakee_flips++;
5737 	}
5738 }
5739 
5740 /*
5741  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5742  *
5743  * A waker of many should wake a different task than the one last awakened
5744  * at a frequency roughly N times higher than one of its wakees.
5745  *
5746  * In order to determine whether we should let the load spread vs consolidating
5747  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5748  * partner, and a factor of lls_size higher frequency in the other.
5749  *
5750  * With both conditions met, we can be relatively sure that the relationship is
5751  * non-monogamous, with partner count exceeding socket size.
5752  *
5753  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5754  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5755  * socket size.
5756  */
5757 static int wake_wide(struct task_struct *p)
5758 {
5759 	unsigned int master = current->wakee_flips;
5760 	unsigned int slave = p->wakee_flips;
5761 	int factor = __this_cpu_read(sd_llc_size);
5762 
5763 	if (master < slave)
5764 		swap(master, slave);
5765 	if (slave < factor || master < slave * factor)
5766 		return 0;
5767 	return 1;
5768 }
5769 
5770 /*
5771  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5772  * soonest. For the purpose of speed we only consider the waking and previous
5773  * CPU.
5774  *
5775  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5776  *			cache-affine and is (or	will be) idle.
5777  *
5778  * wake_affine_weight() - considers the weight to reflect the average
5779  *			  scheduling latency of the CPUs. This seems to work
5780  *			  for the overloaded case.
5781  */
5782 static int
5783 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5784 {
5785 	/*
5786 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5787 	 * context. Only allow the move if cache is shared. Otherwise an
5788 	 * interrupt intensive workload could force all tasks onto one
5789 	 * node depending on the IO topology or IRQ affinity settings.
5790 	 *
5791 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5792 	 * There is no guarantee that the cache hot data from an interrupt
5793 	 * is more important than cache hot data on the prev_cpu and from
5794 	 * a cpufreq perspective, it's better to have higher utilisation
5795 	 * on one CPU.
5796 	 */
5797 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5798 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5799 
5800 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5801 		return this_cpu;
5802 
5803 	return nr_cpumask_bits;
5804 }
5805 
5806 static int
5807 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5808 		   int this_cpu, int prev_cpu, int sync)
5809 {
5810 	s64 this_eff_load, prev_eff_load;
5811 	unsigned long task_load;
5812 
5813 	this_eff_load = cpu_load(cpu_rq(this_cpu));
5814 
5815 	if (sync) {
5816 		unsigned long current_load = task_h_load(current);
5817 
5818 		if (current_load > this_eff_load)
5819 			return this_cpu;
5820 
5821 		this_eff_load -= current_load;
5822 	}
5823 
5824 	task_load = task_h_load(p);
5825 
5826 	this_eff_load += task_load;
5827 	if (sched_feat(WA_BIAS))
5828 		this_eff_load *= 100;
5829 	this_eff_load *= capacity_of(prev_cpu);
5830 
5831 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5832 	prev_eff_load -= task_load;
5833 	if (sched_feat(WA_BIAS))
5834 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5835 	prev_eff_load *= capacity_of(this_cpu);
5836 
5837 	/*
5838 	 * If sync, adjust the weight of prev_eff_load such that if
5839 	 * prev_eff == this_eff that select_idle_sibling() will consider
5840 	 * stacking the wakee on top of the waker if no other CPU is
5841 	 * idle.
5842 	 */
5843 	if (sync)
5844 		prev_eff_load += 1;
5845 
5846 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5847 }
5848 
5849 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5850 		       int this_cpu, int prev_cpu, int sync)
5851 {
5852 	int target = nr_cpumask_bits;
5853 
5854 	if (sched_feat(WA_IDLE))
5855 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5856 
5857 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5858 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5859 
5860 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5861 	if (target == nr_cpumask_bits)
5862 		return prev_cpu;
5863 
5864 	schedstat_inc(sd->ttwu_move_affine);
5865 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5866 	return target;
5867 }
5868 
5869 static struct sched_group *
5870 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5871 
5872 /*
5873  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5874  */
5875 static int
5876 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5877 {
5878 	unsigned long load, min_load = ULONG_MAX;
5879 	unsigned int min_exit_latency = UINT_MAX;
5880 	u64 latest_idle_timestamp = 0;
5881 	int least_loaded_cpu = this_cpu;
5882 	int shallowest_idle_cpu = -1;
5883 	int i;
5884 
5885 	/* Check if we have any choice: */
5886 	if (group->group_weight == 1)
5887 		return cpumask_first(sched_group_span(group));
5888 
5889 	/* Traverse only the allowed CPUs */
5890 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5891 		if (sched_idle_cpu(i))
5892 			return i;
5893 
5894 		if (available_idle_cpu(i)) {
5895 			struct rq *rq = cpu_rq(i);
5896 			struct cpuidle_state *idle = idle_get_state(rq);
5897 			if (idle && idle->exit_latency < min_exit_latency) {
5898 				/*
5899 				 * We give priority to a CPU whose idle state
5900 				 * has the smallest exit latency irrespective
5901 				 * of any idle timestamp.
5902 				 */
5903 				min_exit_latency = idle->exit_latency;
5904 				latest_idle_timestamp = rq->idle_stamp;
5905 				shallowest_idle_cpu = i;
5906 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5907 				   rq->idle_stamp > latest_idle_timestamp) {
5908 				/*
5909 				 * If equal or no active idle state, then
5910 				 * the most recently idled CPU might have
5911 				 * a warmer cache.
5912 				 */
5913 				latest_idle_timestamp = rq->idle_stamp;
5914 				shallowest_idle_cpu = i;
5915 			}
5916 		} else if (shallowest_idle_cpu == -1) {
5917 			load = cpu_load(cpu_rq(i));
5918 			if (load < min_load) {
5919 				min_load = load;
5920 				least_loaded_cpu = i;
5921 			}
5922 		}
5923 	}
5924 
5925 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5926 }
5927 
5928 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5929 				  int cpu, int prev_cpu, int sd_flag)
5930 {
5931 	int new_cpu = cpu;
5932 
5933 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5934 		return prev_cpu;
5935 
5936 	/*
5937 	 * We need task's util for cpu_util_without, sync it up to
5938 	 * prev_cpu's last_update_time.
5939 	 */
5940 	if (!(sd_flag & SD_BALANCE_FORK))
5941 		sync_entity_load_avg(&p->se);
5942 
5943 	while (sd) {
5944 		struct sched_group *group;
5945 		struct sched_domain *tmp;
5946 		int weight;
5947 
5948 		if (!(sd->flags & sd_flag)) {
5949 			sd = sd->child;
5950 			continue;
5951 		}
5952 
5953 		group = find_idlest_group(sd, p, cpu);
5954 		if (!group) {
5955 			sd = sd->child;
5956 			continue;
5957 		}
5958 
5959 		new_cpu = find_idlest_group_cpu(group, p, cpu);
5960 		if (new_cpu == cpu) {
5961 			/* Now try balancing at a lower domain level of 'cpu': */
5962 			sd = sd->child;
5963 			continue;
5964 		}
5965 
5966 		/* Now try balancing at a lower domain level of 'new_cpu': */
5967 		cpu = new_cpu;
5968 		weight = sd->span_weight;
5969 		sd = NULL;
5970 		for_each_domain(cpu, tmp) {
5971 			if (weight <= tmp->span_weight)
5972 				break;
5973 			if (tmp->flags & sd_flag)
5974 				sd = tmp;
5975 		}
5976 	}
5977 
5978 	return new_cpu;
5979 }
5980 
5981 #ifdef CONFIG_SCHED_SMT
5982 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5983 EXPORT_SYMBOL_GPL(sched_smt_present);
5984 
5985 static inline void set_idle_cores(int cpu, int val)
5986 {
5987 	struct sched_domain_shared *sds;
5988 
5989 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5990 	if (sds)
5991 		WRITE_ONCE(sds->has_idle_cores, val);
5992 }
5993 
5994 static inline bool test_idle_cores(int cpu, bool def)
5995 {
5996 	struct sched_domain_shared *sds;
5997 
5998 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5999 	if (sds)
6000 		return READ_ONCE(sds->has_idle_cores);
6001 
6002 	return def;
6003 }
6004 
6005 /*
6006  * Scans the local SMT mask to see if the entire core is idle, and records this
6007  * information in sd_llc_shared->has_idle_cores.
6008  *
6009  * Since SMT siblings share all cache levels, inspecting this limited remote
6010  * state should be fairly cheap.
6011  */
6012 void __update_idle_core(struct rq *rq)
6013 {
6014 	int core = cpu_of(rq);
6015 	int cpu;
6016 
6017 	rcu_read_lock();
6018 	if (test_idle_cores(core, true))
6019 		goto unlock;
6020 
6021 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6022 		if (cpu == core)
6023 			continue;
6024 
6025 		if (!available_idle_cpu(cpu))
6026 			goto unlock;
6027 	}
6028 
6029 	set_idle_cores(core, 1);
6030 unlock:
6031 	rcu_read_unlock();
6032 }
6033 
6034 /*
6035  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6036  * there are no idle cores left in the system; tracked through
6037  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6038  */
6039 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6040 {
6041 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6042 	int core, cpu;
6043 
6044 	if (!static_branch_likely(&sched_smt_present))
6045 		return -1;
6046 
6047 	if (!test_idle_cores(target, false))
6048 		return -1;
6049 
6050 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6051 
6052 	for_each_cpu_wrap(core, cpus, target) {
6053 		bool idle = true;
6054 
6055 		for_each_cpu(cpu, cpu_smt_mask(core)) {
6056 			if (!available_idle_cpu(cpu)) {
6057 				idle = false;
6058 				break;
6059 			}
6060 		}
6061 		cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6062 
6063 		if (idle)
6064 			return core;
6065 	}
6066 
6067 	/*
6068 	 * Failed to find an idle core; stop looking for one.
6069 	 */
6070 	set_idle_cores(target, 0);
6071 
6072 	return -1;
6073 }
6074 
6075 /*
6076  * Scan the local SMT mask for idle CPUs.
6077  */
6078 static int select_idle_smt(struct task_struct *p, int target)
6079 {
6080 	int cpu;
6081 
6082 	if (!static_branch_likely(&sched_smt_present))
6083 		return -1;
6084 
6085 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6086 		if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6087 			continue;
6088 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6089 			return cpu;
6090 	}
6091 
6092 	return -1;
6093 }
6094 
6095 #else /* CONFIG_SCHED_SMT */
6096 
6097 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6098 {
6099 	return -1;
6100 }
6101 
6102 static inline int select_idle_smt(struct task_struct *p, int target)
6103 {
6104 	return -1;
6105 }
6106 
6107 #endif /* CONFIG_SCHED_SMT */
6108 
6109 /*
6110  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6111  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6112  * average idle time for this rq (as found in rq->avg_idle).
6113  */
6114 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6115 {
6116 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6117 	struct sched_domain *this_sd;
6118 	u64 avg_cost, avg_idle;
6119 	u64 time;
6120 	int this = smp_processor_id();
6121 	int cpu, nr = INT_MAX;
6122 
6123 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6124 	if (!this_sd)
6125 		return -1;
6126 
6127 	/*
6128 	 * Due to large variance we need a large fuzz factor; hackbench in
6129 	 * particularly is sensitive here.
6130 	 */
6131 	avg_idle = this_rq()->avg_idle / 512;
6132 	avg_cost = this_sd->avg_scan_cost + 1;
6133 
6134 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6135 		return -1;
6136 
6137 	if (sched_feat(SIS_PROP)) {
6138 		u64 span_avg = sd->span_weight * avg_idle;
6139 		if (span_avg > 4*avg_cost)
6140 			nr = div_u64(span_avg, avg_cost);
6141 		else
6142 			nr = 4;
6143 	}
6144 
6145 	time = cpu_clock(this);
6146 
6147 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6148 
6149 	for_each_cpu_wrap(cpu, cpus, target) {
6150 		if (!--nr)
6151 			return -1;
6152 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6153 			break;
6154 	}
6155 
6156 	time = cpu_clock(this) - time;
6157 	update_avg(&this_sd->avg_scan_cost, time);
6158 
6159 	return cpu;
6160 }
6161 
6162 /*
6163  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6164  * the task fits. If no CPU is big enough, but there are idle ones, try to
6165  * maximize capacity.
6166  */
6167 static int
6168 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6169 {
6170 	unsigned long best_cap = 0;
6171 	int cpu, best_cpu = -1;
6172 	struct cpumask *cpus;
6173 
6174 	sync_entity_load_avg(&p->se);
6175 
6176 	cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6177 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6178 
6179 	for_each_cpu_wrap(cpu, cpus, target) {
6180 		unsigned long cpu_cap = capacity_of(cpu);
6181 
6182 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6183 			continue;
6184 		if (task_fits_capacity(p, cpu_cap))
6185 			return cpu;
6186 
6187 		if (cpu_cap > best_cap) {
6188 			best_cap = cpu_cap;
6189 			best_cpu = cpu;
6190 		}
6191 	}
6192 
6193 	return best_cpu;
6194 }
6195 
6196 /*
6197  * Try and locate an idle core/thread in the LLC cache domain.
6198  */
6199 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6200 {
6201 	struct sched_domain *sd;
6202 	int i, recent_used_cpu;
6203 
6204 	/*
6205 	 * For asymmetric CPU capacity systems, our domain of interest is
6206 	 * sd_asym_cpucapacity rather than sd_llc.
6207 	 */
6208 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6209 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6210 		/*
6211 		 * On an asymmetric CPU capacity system where an exclusive
6212 		 * cpuset defines a symmetric island (i.e. one unique
6213 		 * capacity_orig value through the cpuset), the key will be set
6214 		 * but the CPUs within that cpuset will not have a domain with
6215 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6216 		 * capacity path.
6217 		 */
6218 		if (!sd)
6219 			goto symmetric;
6220 
6221 		i = select_idle_capacity(p, sd, target);
6222 		return ((unsigned)i < nr_cpumask_bits) ? i : target;
6223 	}
6224 
6225 symmetric:
6226 	if (available_idle_cpu(target) || sched_idle_cpu(target))
6227 		return target;
6228 
6229 	/*
6230 	 * If the previous CPU is cache affine and idle, don't be stupid:
6231 	 */
6232 	if (prev != target && cpus_share_cache(prev, target) &&
6233 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)))
6234 		return prev;
6235 
6236 	/*
6237 	 * Allow a per-cpu kthread to stack with the wakee if the
6238 	 * kworker thread and the tasks previous CPUs are the same.
6239 	 * The assumption is that the wakee queued work for the
6240 	 * per-cpu kthread that is now complete and the wakeup is
6241 	 * essentially a sync wakeup. An obvious example of this
6242 	 * pattern is IO completions.
6243 	 */
6244 	if (is_per_cpu_kthread(current) &&
6245 	    prev == smp_processor_id() &&
6246 	    this_rq()->nr_running <= 1) {
6247 		return prev;
6248 	}
6249 
6250 	/* Check a recently used CPU as a potential idle candidate: */
6251 	recent_used_cpu = p->recent_used_cpu;
6252 	if (recent_used_cpu != prev &&
6253 	    recent_used_cpu != target &&
6254 	    cpus_share_cache(recent_used_cpu, target) &&
6255 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6256 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
6257 		/*
6258 		 * Replace recent_used_cpu with prev as it is a potential
6259 		 * candidate for the next wake:
6260 		 */
6261 		p->recent_used_cpu = prev;
6262 		return recent_used_cpu;
6263 	}
6264 
6265 	sd = rcu_dereference(per_cpu(sd_llc, target));
6266 	if (!sd)
6267 		return target;
6268 
6269 	i = select_idle_core(p, sd, target);
6270 	if ((unsigned)i < nr_cpumask_bits)
6271 		return i;
6272 
6273 	i = select_idle_cpu(p, sd, target);
6274 	if ((unsigned)i < nr_cpumask_bits)
6275 		return i;
6276 
6277 	i = select_idle_smt(p, target);
6278 	if ((unsigned)i < nr_cpumask_bits)
6279 		return i;
6280 
6281 	return target;
6282 }
6283 
6284 /**
6285  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6286  * @cpu: the CPU to get the utilization of
6287  *
6288  * The unit of the return value must be the one of capacity so we can compare
6289  * the utilization with the capacity of the CPU that is available for CFS task
6290  * (ie cpu_capacity).
6291  *
6292  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6293  * recent utilization of currently non-runnable tasks on a CPU. It represents
6294  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6295  * capacity_orig is the cpu_capacity available at the highest frequency
6296  * (arch_scale_freq_capacity()).
6297  * The utilization of a CPU converges towards a sum equal to or less than the
6298  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6299  * the running time on this CPU scaled by capacity_curr.
6300  *
6301  * The estimated utilization of a CPU is defined to be the maximum between its
6302  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6303  * currently RUNNABLE on that CPU.
6304  * This allows to properly represent the expected utilization of a CPU which
6305  * has just got a big task running since a long sleep period. At the same time
6306  * however it preserves the benefits of the "blocked utilization" in
6307  * describing the potential for other tasks waking up on the same CPU.
6308  *
6309  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6310  * higher than capacity_orig because of unfortunate rounding in
6311  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6312  * the average stabilizes with the new running time. We need to check that the
6313  * utilization stays within the range of [0..capacity_orig] and cap it if
6314  * necessary. Without utilization capping, a group could be seen as overloaded
6315  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6316  * available capacity. We allow utilization to overshoot capacity_curr (but not
6317  * capacity_orig) as it useful for predicting the capacity required after task
6318  * migrations (scheduler-driven DVFS).
6319  *
6320  * Return: the (estimated) utilization for the specified CPU
6321  */
6322 static inline unsigned long cpu_util(int cpu)
6323 {
6324 	struct cfs_rq *cfs_rq;
6325 	unsigned int util;
6326 
6327 	cfs_rq = &cpu_rq(cpu)->cfs;
6328 	util = READ_ONCE(cfs_rq->avg.util_avg);
6329 
6330 	if (sched_feat(UTIL_EST))
6331 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6332 
6333 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6334 }
6335 
6336 /*
6337  * cpu_util_without: compute cpu utilization without any contributions from *p
6338  * @cpu: the CPU which utilization is requested
6339  * @p: the task which utilization should be discounted
6340  *
6341  * The utilization of a CPU is defined by the utilization of tasks currently
6342  * enqueued on that CPU as well as tasks which are currently sleeping after an
6343  * execution on that CPU.
6344  *
6345  * This method returns the utilization of the specified CPU by discounting the
6346  * utilization of the specified task, whenever the task is currently
6347  * contributing to the CPU utilization.
6348  */
6349 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6350 {
6351 	struct cfs_rq *cfs_rq;
6352 	unsigned int util;
6353 
6354 	/* Task has no contribution or is new */
6355 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6356 		return cpu_util(cpu);
6357 
6358 	cfs_rq = &cpu_rq(cpu)->cfs;
6359 	util = READ_ONCE(cfs_rq->avg.util_avg);
6360 
6361 	/* Discount task's util from CPU's util */
6362 	lsub_positive(&util, task_util(p));
6363 
6364 	/*
6365 	 * Covered cases:
6366 	 *
6367 	 * a) if *p is the only task sleeping on this CPU, then:
6368 	 *      cpu_util (== task_util) > util_est (== 0)
6369 	 *    and thus we return:
6370 	 *      cpu_util_without = (cpu_util - task_util) = 0
6371 	 *
6372 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6373 	 *    IDLE, then:
6374 	 *      cpu_util >= task_util
6375 	 *      cpu_util > util_est (== 0)
6376 	 *    and thus we discount *p's blocked utilization to return:
6377 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6378 	 *
6379 	 * c) if other tasks are RUNNABLE on that CPU and
6380 	 *      util_est > cpu_util
6381 	 *    then we use util_est since it returns a more restrictive
6382 	 *    estimation of the spare capacity on that CPU, by just
6383 	 *    considering the expected utilization of tasks already
6384 	 *    runnable on that CPU.
6385 	 *
6386 	 * Cases a) and b) are covered by the above code, while case c) is
6387 	 * covered by the following code when estimated utilization is
6388 	 * enabled.
6389 	 */
6390 	if (sched_feat(UTIL_EST)) {
6391 		unsigned int estimated =
6392 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6393 
6394 		/*
6395 		 * Despite the following checks we still have a small window
6396 		 * for a possible race, when an execl's select_task_rq_fair()
6397 		 * races with LB's detach_task():
6398 		 *
6399 		 *   detach_task()
6400 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6401 		 *     ---------------------------------- A
6402 		 *     deactivate_task()                   \
6403 		 *       dequeue_task()                     + RaceTime
6404 		 *         util_est_dequeue()              /
6405 		 *     ---------------------------------- B
6406 		 *
6407 		 * The additional check on "current == p" it's required to
6408 		 * properly fix the execl regression and it helps in further
6409 		 * reducing the chances for the above race.
6410 		 */
6411 		if (unlikely(task_on_rq_queued(p) || current == p))
6412 			lsub_positive(&estimated, _task_util_est(p));
6413 
6414 		util = max(util, estimated);
6415 	}
6416 
6417 	/*
6418 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6419 	 * clamp to the maximum CPU capacity to ensure consistency with
6420 	 * the cpu_util call.
6421 	 */
6422 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6423 }
6424 
6425 /*
6426  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6427  * to @dst_cpu.
6428  */
6429 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6430 {
6431 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6432 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6433 
6434 	/*
6435 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6436 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6437 	 * the other cases, @cpu is not impacted by the migration, so the
6438 	 * util_avg should already be correct.
6439 	 */
6440 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6441 		sub_positive(&util, task_util(p));
6442 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6443 		util += task_util(p);
6444 
6445 	if (sched_feat(UTIL_EST)) {
6446 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6447 
6448 		/*
6449 		 * During wake-up, the task isn't enqueued yet and doesn't
6450 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6451 		 * so just add it (if needed) to "simulate" what will be
6452 		 * cpu_util() after the task has been enqueued.
6453 		 */
6454 		if (dst_cpu == cpu)
6455 			util_est += _task_util_est(p);
6456 
6457 		util = max(util, util_est);
6458 	}
6459 
6460 	return min(util, capacity_orig_of(cpu));
6461 }
6462 
6463 /*
6464  * compute_energy(): Estimates the energy that @pd would consume if @p was
6465  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6466  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6467  * to compute what would be the energy if we decided to actually migrate that
6468  * task.
6469  */
6470 static long
6471 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6472 {
6473 	struct cpumask *pd_mask = perf_domain_span(pd);
6474 	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6475 	unsigned long max_util = 0, sum_util = 0;
6476 	int cpu;
6477 
6478 	/*
6479 	 * The capacity state of CPUs of the current rd can be driven by CPUs
6480 	 * of another rd if they belong to the same pd. So, account for the
6481 	 * utilization of these CPUs too by masking pd with cpu_online_mask
6482 	 * instead of the rd span.
6483 	 *
6484 	 * If an entire pd is outside of the current rd, it will not appear in
6485 	 * its pd list and will not be accounted by compute_energy().
6486 	 */
6487 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6488 		unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6489 		struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6490 
6491 		/*
6492 		 * Busy time computation: utilization clamping is not
6493 		 * required since the ratio (sum_util / cpu_capacity)
6494 		 * is already enough to scale the EM reported power
6495 		 * consumption at the (eventually clamped) cpu_capacity.
6496 		 */
6497 		sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6498 					       ENERGY_UTIL, NULL);
6499 
6500 		/*
6501 		 * Performance domain frequency: utilization clamping
6502 		 * must be considered since it affects the selection
6503 		 * of the performance domain frequency.
6504 		 * NOTE: in case RT tasks are running, by default the
6505 		 * FREQUENCY_UTIL's utilization can be max OPP.
6506 		 */
6507 		cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6508 					      FREQUENCY_UTIL, tsk);
6509 		max_util = max(max_util, cpu_util);
6510 	}
6511 
6512 	return em_cpu_energy(pd->em_pd, max_util, sum_util);
6513 }
6514 
6515 /*
6516  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6517  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6518  * spare capacity in each performance domain and uses it as a potential
6519  * candidate to execute the task. Then, it uses the Energy Model to figure
6520  * out which of the CPU candidates is the most energy-efficient.
6521  *
6522  * The rationale for this heuristic is as follows. In a performance domain,
6523  * all the most energy efficient CPU candidates (according to the Energy
6524  * Model) are those for which we'll request a low frequency. When there are
6525  * several CPUs for which the frequency request will be the same, we don't
6526  * have enough data to break the tie between them, because the Energy Model
6527  * only includes active power costs. With this model, if we assume that
6528  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6529  * the maximum spare capacity in a performance domain is guaranteed to be among
6530  * the best candidates of the performance domain.
6531  *
6532  * In practice, it could be preferable from an energy standpoint to pack
6533  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6534  * but that could also hurt our chances to go cluster idle, and we have no
6535  * ways to tell with the current Energy Model if this is actually a good
6536  * idea or not. So, find_energy_efficient_cpu() basically favors
6537  * cluster-packing, and spreading inside a cluster. That should at least be
6538  * a good thing for latency, and this is consistent with the idea that most
6539  * of the energy savings of EAS come from the asymmetry of the system, and
6540  * not so much from breaking the tie between identical CPUs. That's also the
6541  * reason why EAS is enabled in the topology code only for systems where
6542  * SD_ASYM_CPUCAPACITY is set.
6543  *
6544  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6545  * they don't have any useful utilization data yet and it's not possible to
6546  * forecast their impact on energy consumption. Consequently, they will be
6547  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6548  * to be energy-inefficient in some use-cases. The alternative would be to
6549  * bias new tasks towards specific types of CPUs first, or to try to infer
6550  * their util_avg from the parent task, but those heuristics could hurt
6551  * other use-cases too. So, until someone finds a better way to solve this,
6552  * let's keep things simple by re-using the existing slow path.
6553  */
6554 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6555 {
6556 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6557 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6558 	unsigned long cpu_cap, util, base_energy = 0;
6559 	int cpu, best_energy_cpu = prev_cpu;
6560 	struct sched_domain *sd;
6561 	struct perf_domain *pd;
6562 
6563 	rcu_read_lock();
6564 	pd = rcu_dereference(rd->pd);
6565 	if (!pd || READ_ONCE(rd->overutilized))
6566 		goto fail;
6567 
6568 	/*
6569 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6570 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6571 	 */
6572 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6573 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6574 		sd = sd->parent;
6575 	if (!sd)
6576 		goto fail;
6577 
6578 	sync_entity_load_avg(&p->se);
6579 	if (!task_util_est(p))
6580 		goto unlock;
6581 
6582 	for (; pd; pd = pd->next) {
6583 		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6584 		unsigned long base_energy_pd;
6585 		int max_spare_cap_cpu = -1;
6586 
6587 		/* Compute the 'base' energy of the pd, without @p */
6588 		base_energy_pd = compute_energy(p, -1, pd);
6589 		base_energy += base_energy_pd;
6590 
6591 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6592 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6593 				continue;
6594 
6595 			util = cpu_util_next(cpu, p, cpu);
6596 			cpu_cap = capacity_of(cpu);
6597 			spare_cap = cpu_cap - util;
6598 
6599 			/*
6600 			 * Skip CPUs that cannot satisfy the capacity request.
6601 			 * IOW, placing the task there would make the CPU
6602 			 * overutilized. Take uclamp into account to see how
6603 			 * much capacity we can get out of the CPU; this is
6604 			 * aligned with schedutil_cpu_util().
6605 			 */
6606 			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6607 			if (!fits_capacity(util, cpu_cap))
6608 				continue;
6609 
6610 			/* Always use prev_cpu as a candidate. */
6611 			if (cpu == prev_cpu) {
6612 				prev_delta = compute_energy(p, prev_cpu, pd);
6613 				prev_delta -= base_energy_pd;
6614 				best_delta = min(best_delta, prev_delta);
6615 			}
6616 
6617 			/*
6618 			 * Find the CPU with the maximum spare capacity in
6619 			 * the performance domain
6620 			 */
6621 			if (spare_cap > max_spare_cap) {
6622 				max_spare_cap = spare_cap;
6623 				max_spare_cap_cpu = cpu;
6624 			}
6625 		}
6626 
6627 		/* Evaluate the energy impact of using this CPU. */
6628 		if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6629 			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6630 			cur_delta -= base_energy_pd;
6631 			if (cur_delta < best_delta) {
6632 				best_delta = cur_delta;
6633 				best_energy_cpu = max_spare_cap_cpu;
6634 			}
6635 		}
6636 	}
6637 unlock:
6638 	rcu_read_unlock();
6639 
6640 	/*
6641 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6642 	 * least 6% of the energy used by prev_cpu.
6643 	 */
6644 	if (prev_delta == ULONG_MAX)
6645 		return best_energy_cpu;
6646 
6647 	if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6648 		return best_energy_cpu;
6649 
6650 	return prev_cpu;
6651 
6652 fail:
6653 	rcu_read_unlock();
6654 
6655 	return -1;
6656 }
6657 
6658 /*
6659  * select_task_rq_fair: Select target runqueue for the waking task in domains
6660  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6661  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6662  *
6663  * Balances load by selecting the idlest CPU in the idlest group, or under
6664  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6665  *
6666  * Returns the target CPU number.
6667  *
6668  * preempt must be disabled.
6669  */
6670 static int
6671 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6672 {
6673 	struct sched_domain *tmp, *sd = NULL;
6674 	int cpu = smp_processor_id();
6675 	int new_cpu = prev_cpu;
6676 	int want_affine = 0;
6677 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6678 
6679 	if (sd_flag & SD_BALANCE_WAKE) {
6680 		record_wakee(p);
6681 
6682 		if (sched_energy_enabled()) {
6683 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6684 			if (new_cpu >= 0)
6685 				return new_cpu;
6686 			new_cpu = prev_cpu;
6687 		}
6688 
6689 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6690 	}
6691 
6692 	rcu_read_lock();
6693 	for_each_domain(cpu, tmp) {
6694 		/*
6695 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6696 		 * cpu is a valid SD_WAKE_AFFINE target.
6697 		 */
6698 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6699 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6700 			if (cpu != prev_cpu)
6701 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6702 
6703 			sd = NULL; /* Prefer wake_affine over balance flags */
6704 			break;
6705 		}
6706 
6707 		if (tmp->flags & sd_flag)
6708 			sd = tmp;
6709 		else if (!want_affine)
6710 			break;
6711 	}
6712 
6713 	if (unlikely(sd)) {
6714 		/* Slow path */
6715 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6716 	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6717 		/* Fast path */
6718 
6719 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6720 
6721 		if (want_affine)
6722 			current->recent_used_cpu = cpu;
6723 	}
6724 	rcu_read_unlock();
6725 
6726 	return new_cpu;
6727 }
6728 
6729 static void detach_entity_cfs_rq(struct sched_entity *se);
6730 
6731 /*
6732  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6733  * cfs_rq_of(p) references at time of call are still valid and identify the
6734  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6735  */
6736 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6737 {
6738 	/*
6739 	 * As blocked tasks retain absolute vruntime the migration needs to
6740 	 * deal with this by subtracting the old and adding the new
6741 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6742 	 * the task on the new runqueue.
6743 	 */
6744 	if (p->state == TASK_WAKING) {
6745 		struct sched_entity *se = &p->se;
6746 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6747 		u64 min_vruntime;
6748 
6749 #ifndef CONFIG_64BIT
6750 		u64 min_vruntime_copy;
6751 
6752 		do {
6753 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6754 			smp_rmb();
6755 			min_vruntime = cfs_rq->min_vruntime;
6756 		} while (min_vruntime != min_vruntime_copy);
6757 #else
6758 		min_vruntime = cfs_rq->min_vruntime;
6759 #endif
6760 
6761 		se->vruntime -= min_vruntime;
6762 	}
6763 
6764 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6765 		/*
6766 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6767 		 * rq->lock and can modify state directly.
6768 		 */
6769 		lockdep_assert_held(&task_rq(p)->lock);
6770 		detach_entity_cfs_rq(&p->se);
6771 
6772 	} else {
6773 		/*
6774 		 * We are supposed to update the task to "current" time, then
6775 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6776 		 * have difficulty in getting what current time is, so simply
6777 		 * throw away the out-of-date time. This will result in the
6778 		 * wakee task is less decayed, but giving the wakee more load
6779 		 * sounds not bad.
6780 		 */
6781 		remove_entity_load_avg(&p->se);
6782 	}
6783 
6784 	/* Tell new CPU we are migrated */
6785 	p->se.avg.last_update_time = 0;
6786 
6787 	/* We have migrated, no longer consider this task hot */
6788 	p->se.exec_start = 0;
6789 
6790 	update_scan_period(p, new_cpu);
6791 }
6792 
6793 static void task_dead_fair(struct task_struct *p)
6794 {
6795 	remove_entity_load_avg(&p->se);
6796 }
6797 
6798 static int
6799 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6800 {
6801 	if (rq->nr_running)
6802 		return 1;
6803 
6804 	return newidle_balance(rq, rf) != 0;
6805 }
6806 #endif /* CONFIG_SMP */
6807 
6808 static unsigned long wakeup_gran(struct sched_entity *se)
6809 {
6810 	unsigned long gran = sysctl_sched_wakeup_granularity;
6811 
6812 	/*
6813 	 * Since its curr running now, convert the gran from real-time
6814 	 * to virtual-time in his units.
6815 	 *
6816 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6817 	 * they get preempted easier. That is, if 'se' < 'curr' then
6818 	 * the resulting gran will be larger, therefore penalizing the
6819 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6820 	 * be smaller, again penalizing the lighter task.
6821 	 *
6822 	 * This is especially important for buddies when the leftmost
6823 	 * task is higher priority than the buddy.
6824 	 */
6825 	return calc_delta_fair(gran, se);
6826 }
6827 
6828 /*
6829  * Should 'se' preempt 'curr'.
6830  *
6831  *             |s1
6832  *        |s2
6833  *   |s3
6834  *         g
6835  *      |<--->|c
6836  *
6837  *  w(c, s1) = -1
6838  *  w(c, s2) =  0
6839  *  w(c, s3) =  1
6840  *
6841  */
6842 static int
6843 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6844 {
6845 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6846 
6847 	if (vdiff <= 0)
6848 		return -1;
6849 
6850 	gran = wakeup_gran(se);
6851 	if (vdiff > gran)
6852 		return 1;
6853 
6854 	return 0;
6855 }
6856 
6857 static void set_last_buddy(struct sched_entity *se)
6858 {
6859 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6860 		return;
6861 
6862 	for_each_sched_entity(se) {
6863 		if (SCHED_WARN_ON(!se->on_rq))
6864 			return;
6865 		cfs_rq_of(se)->last = se;
6866 	}
6867 }
6868 
6869 static void set_next_buddy(struct sched_entity *se)
6870 {
6871 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6872 		return;
6873 
6874 	for_each_sched_entity(se) {
6875 		if (SCHED_WARN_ON(!se->on_rq))
6876 			return;
6877 		cfs_rq_of(se)->next = se;
6878 	}
6879 }
6880 
6881 static void set_skip_buddy(struct sched_entity *se)
6882 {
6883 	for_each_sched_entity(se)
6884 		cfs_rq_of(se)->skip = se;
6885 }
6886 
6887 /*
6888  * Preempt the current task with a newly woken task if needed:
6889  */
6890 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6891 {
6892 	struct task_struct *curr = rq->curr;
6893 	struct sched_entity *se = &curr->se, *pse = &p->se;
6894 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6895 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6896 	int next_buddy_marked = 0;
6897 
6898 	if (unlikely(se == pse))
6899 		return;
6900 
6901 	/*
6902 	 * This is possible from callers such as attach_tasks(), in which we
6903 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6904 	 * lead to a throttle).  This both saves work and prevents false
6905 	 * next-buddy nomination below.
6906 	 */
6907 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6908 		return;
6909 
6910 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6911 		set_next_buddy(pse);
6912 		next_buddy_marked = 1;
6913 	}
6914 
6915 	/*
6916 	 * We can come here with TIF_NEED_RESCHED already set from new task
6917 	 * wake up path.
6918 	 *
6919 	 * Note: this also catches the edge-case of curr being in a throttled
6920 	 * group (e.g. via set_curr_task), since update_curr() (in the
6921 	 * enqueue of curr) will have resulted in resched being set.  This
6922 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6923 	 * below.
6924 	 */
6925 	if (test_tsk_need_resched(curr))
6926 		return;
6927 
6928 	/* Idle tasks are by definition preempted by non-idle tasks. */
6929 	if (unlikely(task_has_idle_policy(curr)) &&
6930 	    likely(!task_has_idle_policy(p)))
6931 		goto preempt;
6932 
6933 	/*
6934 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6935 	 * is driven by the tick):
6936 	 */
6937 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6938 		return;
6939 
6940 	find_matching_se(&se, &pse);
6941 	update_curr(cfs_rq_of(se));
6942 	BUG_ON(!pse);
6943 	if (wakeup_preempt_entity(se, pse) == 1) {
6944 		/*
6945 		 * Bias pick_next to pick the sched entity that is
6946 		 * triggering this preemption.
6947 		 */
6948 		if (!next_buddy_marked)
6949 			set_next_buddy(pse);
6950 		goto preempt;
6951 	}
6952 
6953 	return;
6954 
6955 preempt:
6956 	resched_curr(rq);
6957 	/*
6958 	 * Only set the backward buddy when the current task is still
6959 	 * on the rq. This can happen when a wakeup gets interleaved
6960 	 * with schedule on the ->pre_schedule() or idle_balance()
6961 	 * point, either of which can * drop the rq lock.
6962 	 *
6963 	 * Also, during early boot the idle thread is in the fair class,
6964 	 * for obvious reasons its a bad idea to schedule back to it.
6965 	 */
6966 	if (unlikely(!se->on_rq || curr == rq->idle))
6967 		return;
6968 
6969 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6970 		set_last_buddy(se);
6971 }
6972 
6973 struct task_struct *
6974 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6975 {
6976 	struct cfs_rq *cfs_rq = &rq->cfs;
6977 	struct sched_entity *se;
6978 	struct task_struct *p;
6979 	int new_tasks;
6980 
6981 again:
6982 	if (!sched_fair_runnable(rq))
6983 		goto idle;
6984 
6985 #ifdef CONFIG_FAIR_GROUP_SCHED
6986 	if (!prev || prev->sched_class != &fair_sched_class)
6987 		goto simple;
6988 
6989 	/*
6990 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6991 	 * likely that a next task is from the same cgroup as the current.
6992 	 *
6993 	 * Therefore attempt to avoid putting and setting the entire cgroup
6994 	 * hierarchy, only change the part that actually changes.
6995 	 */
6996 
6997 	do {
6998 		struct sched_entity *curr = cfs_rq->curr;
6999 
7000 		/*
7001 		 * Since we got here without doing put_prev_entity() we also
7002 		 * have to consider cfs_rq->curr. If it is still a runnable
7003 		 * entity, update_curr() will update its vruntime, otherwise
7004 		 * forget we've ever seen it.
7005 		 */
7006 		if (curr) {
7007 			if (curr->on_rq)
7008 				update_curr(cfs_rq);
7009 			else
7010 				curr = NULL;
7011 
7012 			/*
7013 			 * This call to check_cfs_rq_runtime() will do the
7014 			 * throttle and dequeue its entity in the parent(s).
7015 			 * Therefore the nr_running test will indeed
7016 			 * be correct.
7017 			 */
7018 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7019 				cfs_rq = &rq->cfs;
7020 
7021 				if (!cfs_rq->nr_running)
7022 					goto idle;
7023 
7024 				goto simple;
7025 			}
7026 		}
7027 
7028 		se = pick_next_entity(cfs_rq, curr);
7029 		cfs_rq = group_cfs_rq(se);
7030 	} while (cfs_rq);
7031 
7032 	p = task_of(se);
7033 
7034 	/*
7035 	 * Since we haven't yet done put_prev_entity and if the selected task
7036 	 * is a different task than we started out with, try and touch the
7037 	 * least amount of cfs_rqs.
7038 	 */
7039 	if (prev != p) {
7040 		struct sched_entity *pse = &prev->se;
7041 
7042 		while (!(cfs_rq = is_same_group(se, pse))) {
7043 			int se_depth = se->depth;
7044 			int pse_depth = pse->depth;
7045 
7046 			if (se_depth <= pse_depth) {
7047 				put_prev_entity(cfs_rq_of(pse), pse);
7048 				pse = parent_entity(pse);
7049 			}
7050 			if (se_depth >= pse_depth) {
7051 				set_next_entity(cfs_rq_of(se), se);
7052 				se = parent_entity(se);
7053 			}
7054 		}
7055 
7056 		put_prev_entity(cfs_rq, pse);
7057 		set_next_entity(cfs_rq, se);
7058 	}
7059 
7060 	goto done;
7061 simple:
7062 #endif
7063 	if (prev)
7064 		put_prev_task(rq, prev);
7065 
7066 	do {
7067 		se = pick_next_entity(cfs_rq, NULL);
7068 		set_next_entity(cfs_rq, se);
7069 		cfs_rq = group_cfs_rq(se);
7070 	} while (cfs_rq);
7071 
7072 	p = task_of(se);
7073 
7074 done: __maybe_unused;
7075 #ifdef CONFIG_SMP
7076 	/*
7077 	 * Move the next running task to the front of
7078 	 * the list, so our cfs_tasks list becomes MRU
7079 	 * one.
7080 	 */
7081 	list_move(&p->se.group_node, &rq->cfs_tasks);
7082 #endif
7083 
7084 	if (hrtick_enabled(rq))
7085 		hrtick_start_fair(rq, p);
7086 
7087 	update_misfit_status(p, rq);
7088 
7089 	return p;
7090 
7091 idle:
7092 	if (!rf)
7093 		return NULL;
7094 
7095 	new_tasks = newidle_balance(rq, rf);
7096 
7097 	/*
7098 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7099 	 * possible for any higher priority task to appear. In that case we
7100 	 * must re-start the pick_next_entity() loop.
7101 	 */
7102 	if (new_tasks < 0)
7103 		return RETRY_TASK;
7104 
7105 	if (new_tasks > 0)
7106 		goto again;
7107 
7108 	/*
7109 	 * rq is about to be idle, check if we need to update the
7110 	 * lost_idle_time of clock_pelt
7111 	 */
7112 	update_idle_rq_clock_pelt(rq);
7113 
7114 	return NULL;
7115 }
7116 
7117 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7118 {
7119 	return pick_next_task_fair(rq, NULL, NULL);
7120 }
7121 
7122 /*
7123  * Account for a descheduled task:
7124  */
7125 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7126 {
7127 	struct sched_entity *se = &prev->se;
7128 	struct cfs_rq *cfs_rq;
7129 
7130 	for_each_sched_entity(se) {
7131 		cfs_rq = cfs_rq_of(se);
7132 		put_prev_entity(cfs_rq, se);
7133 	}
7134 }
7135 
7136 /*
7137  * sched_yield() is very simple
7138  *
7139  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7140  */
7141 static void yield_task_fair(struct rq *rq)
7142 {
7143 	struct task_struct *curr = rq->curr;
7144 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7145 	struct sched_entity *se = &curr->se;
7146 
7147 	/*
7148 	 * Are we the only task in the tree?
7149 	 */
7150 	if (unlikely(rq->nr_running == 1))
7151 		return;
7152 
7153 	clear_buddies(cfs_rq, se);
7154 
7155 	if (curr->policy != SCHED_BATCH) {
7156 		update_rq_clock(rq);
7157 		/*
7158 		 * Update run-time statistics of the 'current'.
7159 		 */
7160 		update_curr(cfs_rq);
7161 		/*
7162 		 * Tell update_rq_clock() that we've just updated,
7163 		 * so we don't do microscopic update in schedule()
7164 		 * and double the fastpath cost.
7165 		 */
7166 		rq_clock_skip_update(rq);
7167 	}
7168 
7169 	set_skip_buddy(se);
7170 }
7171 
7172 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7173 {
7174 	struct sched_entity *se = &p->se;
7175 
7176 	/* throttled hierarchies are not runnable */
7177 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7178 		return false;
7179 
7180 	/* Tell the scheduler that we'd really like pse to run next. */
7181 	set_next_buddy(se);
7182 
7183 	yield_task_fair(rq);
7184 
7185 	return true;
7186 }
7187 
7188 #ifdef CONFIG_SMP
7189 /**************************************************
7190  * Fair scheduling class load-balancing methods.
7191  *
7192  * BASICS
7193  *
7194  * The purpose of load-balancing is to achieve the same basic fairness the
7195  * per-CPU scheduler provides, namely provide a proportional amount of compute
7196  * time to each task. This is expressed in the following equation:
7197  *
7198  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7199  *
7200  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7201  * W_i,0 is defined as:
7202  *
7203  *   W_i,0 = \Sum_j w_i,j                                             (2)
7204  *
7205  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7206  * is derived from the nice value as per sched_prio_to_weight[].
7207  *
7208  * The weight average is an exponential decay average of the instantaneous
7209  * weight:
7210  *
7211  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7212  *
7213  * C_i is the compute capacity of CPU i, typically it is the
7214  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7215  * can also include other factors [XXX].
7216  *
7217  * To achieve this balance we define a measure of imbalance which follows
7218  * directly from (1):
7219  *
7220  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7221  *
7222  * We them move tasks around to minimize the imbalance. In the continuous
7223  * function space it is obvious this converges, in the discrete case we get
7224  * a few fun cases generally called infeasible weight scenarios.
7225  *
7226  * [XXX expand on:
7227  *     - infeasible weights;
7228  *     - local vs global optima in the discrete case. ]
7229  *
7230  *
7231  * SCHED DOMAINS
7232  *
7233  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7234  * for all i,j solution, we create a tree of CPUs that follows the hardware
7235  * topology where each level pairs two lower groups (or better). This results
7236  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7237  * tree to only the first of the previous level and we decrease the frequency
7238  * of load-balance at each level inv. proportional to the number of CPUs in
7239  * the groups.
7240  *
7241  * This yields:
7242  *
7243  *     log_2 n     1     n
7244  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7245  *     i = 0      2^i   2^i
7246  *                               `- size of each group
7247  *         |         |     `- number of CPUs doing load-balance
7248  *         |         `- freq
7249  *         `- sum over all levels
7250  *
7251  * Coupled with a limit on how many tasks we can migrate every balance pass,
7252  * this makes (5) the runtime complexity of the balancer.
7253  *
7254  * An important property here is that each CPU is still (indirectly) connected
7255  * to every other CPU in at most O(log n) steps:
7256  *
7257  * The adjacency matrix of the resulting graph is given by:
7258  *
7259  *             log_2 n
7260  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7261  *             k = 0
7262  *
7263  * And you'll find that:
7264  *
7265  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7266  *
7267  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7268  * The task movement gives a factor of O(m), giving a convergence complexity
7269  * of:
7270  *
7271  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7272  *
7273  *
7274  * WORK CONSERVING
7275  *
7276  * In order to avoid CPUs going idle while there's still work to do, new idle
7277  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7278  * tree itself instead of relying on other CPUs to bring it work.
7279  *
7280  * This adds some complexity to both (5) and (8) but it reduces the total idle
7281  * time.
7282  *
7283  * [XXX more?]
7284  *
7285  *
7286  * CGROUPS
7287  *
7288  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7289  *
7290  *                                s_k,i
7291  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7292  *                                 S_k
7293  *
7294  * Where
7295  *
7296  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7297  *
7298  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7299  *
7300  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7301  * property.
7302  *
7303  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7304  *      rewrite all of this once again.]
7305  */
7306 
7307 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7308 
7309 enum fbq_type { regular, remote, all };
7310 
7311 /*
7312  * 'group_type' describes the group of CPUs at the moment of load balancing.
7313  *
7314  * The enum is ordered by pulling priority, with the group with lowest priority
7315  * first so the group_type can simply be compared when selecting the busiest
7316  * group. See update_sd_pick_busiest().
7317  */
7318 enum group_type {
7319 	/* The group has spare capacity that can be used to run more tasks.  */
7320 	group_has_spare = 0,
7321 	/*
7322 	 * The group is fully used and the tasks don't compete for more CPU
7323 	 * cycles. Nevertheless, some tasks might wait before running.
7324 	 */
7325 	group_fully_busy,
7326 	/*
7327 	 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7328 	 * and must be migrated to a more powerful CPU.
7329 	 */
7330 	group_misfit_task,
7331 	/*
7332 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7333 	 * and the task should be migrated to it instead of running on the
7334 	 * current CPU.
7335 	 */
7336 	group_asym_packing,
7337 	/*
7338 	 * The tasks' affinity constraints previously prevented the scheduler
7339 	 * from balancing the load across the system.
7340 	 */
7341 	group_imbalanced,
7342 	/*
7343 	 * The CPU is overloaded and can't provide expected CPU cycles to all
7344 	 * tasks.
7345 	 */
7346 	group_overloaded
7347 };
7348 
7349 enum migration_type {
7350 	migrate_load = 0,
7351 	migrate_util,
7352 	migrate_task,
7353 	migrate_misfit
7354 };
7355 
7356 #define LBF_ALL_PINNED	0x01
7357 #define LBF_NEED_BREAK	0x02
7358 #define LBF_DST_PINNED  0x04
7359 #define LBF_SOME_PINNED	0x08
7360 #define LBF_NOHZ_STATS	0x10
7361 #define LBF_NOHZ_AGAIN	0x20
7362 
7363 struct lb_env {
7364 	struct sched_domain	*sd;
7365 
7366 	struct rq		*src_rq;
7367 	int			src_cpu;
7368 
7369 	int			dst_cpu;
7370 	struct rq		*dst_rq;
7371 
7372 	struct cpumask		*dst_grpmask;
7373 	int			new_dst_cpu;
7374 	enum cpu_idle_type	idle;
7375 	long			imbalance;
7376 	/* The set of CPUs under consideration for load-balancing */
7377 	struct cpumask		*cpus;
7378 
7379 	unsigned int		flags;
7380 
7381 	unsigned int		loop;
7382 	unsigned int		loop_break;
7383 	unsigned int		loop_max;
7384 
7385 	enum fbq_type		fbq_type;
7386 	enum migration_type	migration_type;
7387 	struct list_head	tasks;
7388 };
7389 
7390 /*
7391  * Is this task likely cache-hot:
7392  */
7393 static int task_hot(struct task_struct *p, struct lb_env *env)
7394 {
7395 	s64 delta;
7396 
7397 	lockdep_assert_held(&env->src_rq->lock);
7398 
7399 	if (p->sched_class != &fair_sched_class)
7400 		return 0;
7401 
7402 	if (unlikely(task_has_idle_policy(p)))
7403 		return 0;
7404 
7405 	/*
7406 	 * Buddy candidates are cache hot:
7407 	 */
7408 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7409 			(&p->se == cfs_rq_of(&p->se)->next ||
7410 			 &p->se == cfs_rq_of(&p->se)->last))
7411 		return 1;
7412 
7413 	if (sysctl_sched_migration_cost == -1)
7414 		return 1;
7415 	if (sysctl_sched_migration_cost == 0)
7416 		return 0;
7417 
7418 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7419 
7420 	return delta < (s64)sysctl_sched_migration_cost;
7421 }
7422 
7423 #ifdef CONFIG_NUMA_BALANCING
7424 /*
7425  * Returns 1, if task migration degrades locality
7426  * Returns 0, if task migration improves locality i.e migration preferred.
7427  * Returns -1, if task migration is not affected by locality.
7428  */
7429 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7430 {
7431 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7432 	unsigned long src_weight, dst_weight;
7433 	int src_nid, dst_nid, dist;
7434 
7435 	if (!static_branch_likely(&sched_numa_balancing))
7436 		return -1;
7437 
7438 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7439 		return -1;
7440 
7441 	src_nid = cpu_to_node(env->src_cpu);
7442 	dst_nid = cpu_to_node(env->dst_cpu);
7443 
7444 	if (src_nid == dst_nid)
7445 		return -1;
7446 
7447 	/* Migrating away from the preferred node is always bad. */
7448 	if (src_nid == p->numa_preferred_nid) {
7449 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7450 			return 1;
7451 		else
7452 			return -1;
7453 	}
7454 
7455 	/* Encourage migration to the preferred node. */
7456 	if (dst_nid == p->numa_preferred_nid)
7457 		return 0;
7458 
7459 	/* Leaving a core idle is often worse than degrading locality. */
7460 	if (env->idle == CPU_IDLE)
7461 		return -1;
7462 
7463 	dist = node_distance(src_nid, dst_nid);
7464 	if (numa_group) {
7465 		src_weight = group_weight(p, src_nid, dist);
7466 		dst_weight = group_weight(p, dst_nid, dist);
7467 	} else {
7468 		src_weight = task_weight(p, src_nid, dist);
7469 		dst_weight = task_weight(p, dst_nid, dist);
7470 	}
7471 
7472 	return dst_weight < src_weight;
7473 }
7474 
7475 #else
7476 static inline int migrate_degrades_locality(struct task_struct *p,
7477 					     struct lb_env *env)
7478 {
7479 	return -1;
7480 }
7481 #endif
7482 
7483 /*
7484  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7485  */
7486 static
7487 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7488 {
7489 	int tsk_cache_hot;
7490 
7491 	lockdep_assert_held(&env->src_rq->lock);
7492 
7493 	/*
7494 	 * We do not migrate tasks that are:
7495 	 * 1) throttled_lb_pair, or
7496 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7497 	 * 3) running (obviously), or
7498 	 * 4) are cache-hot on their current CPU.
7499 	 */
7500 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7501 		return 0;
7502 
7503 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7504 		int cpu;
7505 
7506 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7507 
7508 		env->flags |= LBF_SOME_PINNED;
7509 
7510 		/*
7511 		 * Remember if this task can be migrated to any other CPU in
7512 		 * our sched_group. We may want to revisit it if we couldn't
7513 		 * meet load balance goals by pulling other tasks on src_cpu.
7514 		 *
7515 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7516 		 * already computed one in current iteration.
7517 		 */
7518 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7519 			return 0;
7520 
7521 		/* Prevent to re-select dst_cpu via env's CPUs: */
7522 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7523 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7524 				env->flags |= LBF_DST_PINNED;
7525 				env->new_dst_cpu = cpu;
7526 				break;
7527 			}
7528 		}
7529 
7530 		return 0;
7531 	}
7532 
7533 	/* Record that we found atleast one task that could run on dst_cpu */
7534 	env->flags &= ~LBF_ALL_PINNED;
7535 
7536 	if (task_running(env->src_rq, p)) {
7537 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7538 		return 0;
7539 	}
7540 
7541 	/*
7542 	 * Aggressive migration if:
7543 	 * 1) destination numa is preferred
7544 	 * 2) task is cache cold, or
7545 	 * 3) too many balance attempts have failed.
7546 	 */
7547 	tsk_cache_hot = migrate_degrades_locality(p, env);
7548 	if (tsk_cache_hot == -1)
7549 		tsk_cache_hot = task_hot(p, env);
7550 
7551 	if (tsk_cache_hot <= 0 ||
7552 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7553 		if (tsk_cache_hot == 1) {
7554 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7555 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7556 		}
7557 		return 1;
7558 	}
7559 
7560 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7561 	return 0;
7562 }
7563 
7564 /*
7565  * detach_task() -- detach the task for the migration specified in env
7566  */
7567 static void detach_task(struct task_struct *p, struct lb_env *env)
7568 {
7569 	lockdep_assert_held(&env->src_rq->lock);
7570 
7571 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7572 	set_task_cpu(p, env->dst_cpu);
7573 }
7574 
7575 /*
7576  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7577  * part of active balancing operations within "domain".
7578  *
7579  * Returns a task if successful and NULL otherwise.
7580  */
7581 static struct task_struct *detach_one_task(struct lb_env *env)
7582 {
7583 	struct task_struct *p;
7584 
7585 	lockdep_assert_held(&env->src_rq->lock);
7586 
7587 	list_for_each_entry_reverse(p,
7588 			&env->src_rq->cfs_tasks, se.group_node) {
7589 		if (!can_migrate_task(p, env))
7590 			continue;
7591 
7592 		detach_task(p, env);
7593 
7594 		/*
7595 		 * Right now, this is only the second place where
7596 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7597 		 * so we can safely collect stats here rather than
7598 		 * inside detach_tasks().
7599 		 */
7600 		schedstat_inc(env->sd->lb_gained[env->idle]);
7601 		return p;
7602 	}
7603 	return NULL;
7604 }
7605 
7606 static const unsigned int sched_nr_migrate_break = 32;
7607 
7608 /*
7609  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7610  * busiest_rq, as part of a balancing operation within domain "sd".
7611  *
7612  * Returns number of detached tasks if successful and 0 otherwise.
7613  */
7614 static int detach_tasks(struct lb_env *env)
7615 {
7616 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7617 	unsigned long util, load;
7618 	struct task_struct *p;
7619 	int detached = 0;
7620 
7621 	lockdep_assert_held(&env->src_rq->lock);
7622 
7623 	if (env->imbalance <= 0)
7624 		return 0;
7625 
7626 	while (!list_empty(tasks)) {
7627 		/*
7628 		 * We don't want to steal all, otherwise we may be treated likewise,
7629 		 * which could at worst lead to a livelock crash.
7630 		 */
7631 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7632 			break;
7633 
7634 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7635 
7636 		env->loop++;
7637 		/* We've more or less seen every task there is, call it quits */
7638 		if (env->loop > env->loop_max)
7639 			break;
7640 
7641 		/* take a breather every nr_migrate tasks */
7642 		if (env->loop > env->loop_break) {
7643 			env->loop_break += sched_nr_migrate_break;
7644 			env->flags |= LBF_NEED_BREAK;
7645 			break;
7646 		}
7647 
7648 		if (!can_migrate_task(p, env))
7649 			goto next;
7650 
7651 		switch (env->migration_type) {
7652 		case migrate_load:
7653 			/*
7654 			 * Depending of the number of CPUs and tasks and the
7655 			 * cgroup hierarchy, task_h_load() can return a null
7656 			 * value. Make sure that env->imbalance decreases
7657 			 * otherwise detach_tasks() will stop only after
7658 			 * detaching up to loop_max tasks.
7659 			 */
7660 			load = max_t(unsigned long, task_h_load(p), 1);
7661 
7662 			if (sched_feat(LB_MIN) &&
7663 			    load < 16 && !env->sd->nr_balance_failed)
7664 				goto next;
7665 
7666 			/*
7667 			 * Make sure that we don't migrate too much load.
7668 			 * Nevertheless, let relax the constraint if
7669 			 * scheduler fails to find a good waiting task to
7670 			 * migrate.
7671 			 */
7672 			if (load/2 > env->imbalance &&
7673 			    env->sd->nr_balance_failed <= env->sd->cache_nice_tries)
7674 				goto next;
7675 
7676 			env->imbalance -= load;
7677 			break;
7678 
7679 		case migrate_util:
7680 			util = task_util_est(p);
7681 
7682 			if (util > env->imbalance)
7683 				goto next;
7684 
7685 			env->imbalance -= util;
7686 			break;
7687 
7688 		case migrate_task:
7689 			env->imbalance--;
7690 			break;
7691 
7692 		case migrate_misfit:
7693 			/* This is not a misfit task */
7694 			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7695 				goto next;
7696 
7697 			env->imbalance = 0;
7698 			break;
7699 		}
7700 
7701 		detach_task(p, env);
7702 		list_add(&p->se.group_node, &env->tasks);
7703 
7704 		detached++;
7705 
7706 #ifdef CONFIG_PREEMPTION
7707 		/*
7708 		 * NEWIDLE balancing is a source of latency, so preemptible
7709 		 * kernels will stop after the first task is detached to minimize
7710 		 * the critical section.
7711 		 */
7712 		if (env->idle == CPU_NEWLY_IDLE)
7713 			break;
7714 #endif
7715 
7716 		/*
7717 		 * We only want to steal up to the prescribed amount of
7718 		 * load/util/tasks.
7719 		 */
7720 		if (env->imbalance <= 0)
7721 			break;
7722 
7723 		continue;
7724 next:
7725 		list_move(&p->se.group_node, tasks);
7726 	}
7727 
7728 	/*
7729 	 * Right now, this is one of only two places we collect this stat
7730 	 * so we can safely collect detach_one_task() stats here rather
7731 	 * than inside detach_one_task().
7732 	 */
7733 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7734 
7735 	return detached;
7736 }
7737 
7738 /*
7739  * attach_task() -- attach the task detached by detach_task() to its new rq.
7740  */
7741 static void attach_task(struct rq *rq, struct task_struct *p)
7742 {
7743 	lockdep_assert_held(&rq->lock);
7744 
7745 	BUG_ON(task_rq(p) != rq);
7746 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7747 	check_preempt_curr(rq, p, 0);
7748 }
7749 
7750 /*
7751  * attach_one_task() -- attaches the task returned from detach_one_task() to
7752  * its new rq.
7753  */
7754 static void attach_one_task(struct rq *rq, struct task_struct *p)
7755 {
7756 	struct rq_flags rf;
7757 
7758 	rq_lock(rq, &rf);
7759 	update_rq_clock(rq);
7760 	attach_task(rq, p);
7761 	rq_unlock(rq, &rf);
7762 }
7763 
7764 /*
7765  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7766  * new rq.
7767  */
7768 static void attach_tasks(struct lb_env *env)
7769 {
7770 	struct list_head *tasks = &env->tasks;
7771 	struct task_struct *p;
7772 	struct rq_flags rf;
7773 
7774 	rq_lock(env->dst_rq, &rf);
7775 	update_rq_clock(env->dst_rq);
7776 
7777 	while (!list_empty(tasks)) {
7778 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7779 		list_del_init(&p->se.group_node);
7780 
7781 		attach_task(env->dst_rq, p);
7782 	}
7783 
7784 	rq_unlock(env->dst_rq, &rf);
7785 }
7786 
7787 #ifdef CONFIG_NO_HZ_COMMON
7788 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7789 {
7790 	if (cfs_rq->avg.load_avg)
7791 		return true;
7792 
7793 	if (cfs_rq->avg.util_avg)
7794 		return true;
7795 
7796 	return false;
7797 }
7798 
7799 static inline bool others_have_blocked(struct rq *rq)
7800 {
7801 	if (READ_ONCE(rq->avg_rt.util_avg))
7802 		return true;
7803 
7804 	if (READ_ONCE(rq->avg_dl.util_avg))
7805 		return true;
7806 
7807 	if (thermal_load_avg(rq))
7808 		return true;
7809 
7810 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7811 	if (READ_ONCE(rq->avg_irq.util_avg))
7812 		return true;
7813 #endif
7814 
7815 	return false;
7816 }
7817 
7818 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7819 {
7820 	rq->last_blocked_load_update_tick = jiffies;
7821 
7822 	if (!has_blocked)
7823 		rq->has_blocked_load = 0;
7824 }
7825 #else
7826 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7827 static inline bool others_have_blocked(struct rq *rq) { return false; }
7828 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7829 #endif
7830 
7831 static bool __update_blocked_others(struct rq *rq, bool *done)
7832 {
7833 	const struct sched_class *curr_class;
7834 	u64 now = rq_clock_pelt(rq);
7835 	unsigned long thermal_pressure;
7836 	bool decayed;
7837 
7838 	/*
7839 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7840 	 * DL and IRQ signals have been updated before updating CFS.
7841 	 */
7842 	curr_class = rq->curr->sched_class;
7843 
7844 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7845 
7846 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7847 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7848 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
7849 		  update_irq_load_avg(rq, 0);
7850 
7851 	if (others_have_blocked(rq))
7852 		*done = false;
7853 
7854 	return decayed;
7855 }
7856 
7857 #ifdef CONFIG_FAIR_GROUP_SCHED
7858 
7859 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7860 {
7861 	if (cfs_rq->load.weight)
7862 		return false;
7863 
7864 	if (cfs_rq->avg.load_sum)
7865 		return false;
7866 
7867 	if (cfs_rq->avg.util_sum)
7868 		return false;
7869 
7870 	if (cfs_rq->avg.runnable_sum)
7871 		return false;
7872 
7873 	return true;
7874 }
7875 
7876 static bool __update_blocked_fair(struct rq *rq, bool *done)
7877 {
7878 	struct cfs_rq *cfs_rq, *pos;
7879 	bool decayed = false;
7880 	int cpu = cpu_of(rq);
7881 
7882 	/*
7883 	 * Iterates the task_group tree in a bottom up fashion, see
7884 	 * list_add_leaf_cfs_rq() for details.
7885 	 */
7886 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7887 		struct sched_entity *se;
7888 
7889 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
7890 			update_tg_load_avg(cfs_rq, 0);
7891 
7892 			if (cfs_rq == &rq->cfs)
7893 				decayed = true;
7894 		}
7895 
7896 		/* Propagate pending load changes to the parent, if any: */
7897 		se = cfs_rq->tg->se[cpu];
7898 		if (se && !skip_blocked_update(se))
7899 			update_load_avg(cfs_rq_of(se), se, 0);
7900 
7901 		/*
7902 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7903 		 * decayed cfs_rqs linger on the list.
7904 		 */
7905 		if (cfs_rq_is_decayed(cfs_rq))
7906 			list_del_leaf_cfs_rq(cfs_rq);
7907 
7908 		/* Don't need periodic decay once load/util_avg are null */
7909 		if (cfs_rq_has_blocked(cfs_rq))
7910 			*done = false;
7911 	}
7912 
7913 	return decayed;
7914 }
7915 
7916 /*
7917  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7918  * This needs to be done in a top-down fashion because the load of a child
7919  * group is a fraction of its parents load.
7920  */
7921 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7922 {
7923 	struct rq *rq = rq_of(cfs_rq);
7924 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7925 	unsigned long now = jiffies;
7926 	unsigned long load;
7927 
7928 	if (cfs_rq->last_h_load_update == now)
7929 		return;
7930 
7931 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
7932 	for_each_sched_entity(se) {
7933 		cfs_rq = cfs_rq_of(se);
7934 		WRITE_ONCE(cfs_rq->h_load_next, se);
7935 		if (cfs_rq->last_h_load_update == now)
7936 			break;
7937 	}
7938 
7939 	if (!se) {
7940 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7941 		cfs_rq->last_h_load_update = now;
7942 	}
7943 
7944 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7945 		load = cfs_rq->h_load;
7946 		load = div64_ul(load * se->avg.load_avg,
7947 			cfs_rq_load_avg(cfs_rq) + 1);
7948 		cfs_rq = group_cfs_rq(se);
7949 		cfs_rq->h_load = load;
7950 		cfs_rq->last_h_load_update = now;
7951 	}
7952 }
7953 
7954 static unsigned long task_h_load(struct task_struct *p)
7955 {
7956 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7957 
7958 	update_cfs_rq_h_load(cfs_rq);
7959 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7960 			cfs_rq_load_avg(cfs_rq) + 1);
7961 }
7962 #else
7963 static bool __update_blocked_fair(struct rq *rq, bool *done)
7964 {
7965 	struct cfs_rq *cfs_rq = &rq->cfs;
7966 	bool decayed;
7967 
7968 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7969 	if (cfs_rq_has_blocked(cfs_rq))
7970 		*done = false;
7971 
7972 	return decayed;
7973 }
7974 
7975 static unsigned long task_h_load(struct task_struct *p)
7976 {
7977 	return p->se.avg.load_avg;
7978 }
7979 #endif
7980 
7981 static void update_blocked_averages(int cpu)
7982 {
7983 	bool decayed = false, done = true;
7984 	struct rq *rq = cpu_rq(cpu);
7985 	struct rq_flags rf;
7986 
7987 	rq_lock_irqsave(rq, &rf);
7988 	update_rq_clock(rq);
7989 
7990 	decayed |= __update_blocked_others(rq, &done);
7991 	decayed |= __update_blocked_fair(rq, &done);
7992 
7993 	update_blocked_load_status(rq, !done);
7994 	if (decayed)
7995 		cpufreq_update_util(rq, 0);
7996 	rq_unlock_irqrestore(rq, &rf);
7997 }
7998 
7999 /********** Helpers for find_busiest_group ************************/
8000 
8001 /*
8002  * sg_lb_stats - stats of a sched_group required for load_balancing
8003  */
8004 struct sg_lb_stats {
8005 	unsigned long avg_load; /*Avg load across the CPUs of the group */
8006 	unsigned long group_load; /* Total load over the CPUs of the group */
8007 	unsigned long group_capacity;
8008 	unsigned long group_util; /* Total utilization over the CPUs of the group */
8009 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8010 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
8011 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8012 	unsigned int idle_cpus;
8013 	unsigned int group_weight;
8014 	enum group_type group_type;
8015 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8016 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8017 #ifdef CONFIG_NUMA_BALANCING
8018 	unsigned int nr_numa_running;
8019 	unsigned int nr_preferred_running;
8020 #endif
8021 };
8022 
8023 /*
8024  * sd_lb_stats - Structure to store the statistics of a sched_domain
8025  *		 during load balancing.
8026  */
8027 struct sd_lb_stats {
8028 	struct sched_group *busiest;	/* Busiest group in this sd */
8029 	struct sched_group *local;	/* Local group in this sd */
8030 	unsigned long total_load;	/* Total load of all groups in sd */
8031 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
8032 	unsigned long avg_load;	/* Average load across all groups in sd */
8033 	unsigned int prefer_sibling; /* tasks should go to sibling first */
8034 
8035 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8036 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
8037 };
8038 
8039 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8040 {
8041 	/*
8042 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8043 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8044 	 * We must however set busiest_stat::group_type and
8045 	 * busiest_stat::idle_cpus to the worst busiest group because
8046 	 * update_sd_pick_busiest() reads these before assignment.
8047 	 */
8048 	*sds = (struct sd_lb_stats){
8049 		.busiest = NULL,
8050 		.local = NULL,
8051 		.total_load = 0UL,
8052 		.total_capacity = 0UL,
8053 		.busiest_stat = {
8054 			.idle_cpus = UINT_MAX,
8055 			.group_type = group_has_spare,
8056 		},
8057 	};
8058 }
8059 
8060 static unsigned long scale_rt_capacity(int cpu)
8061 {
8062 	struct rq *rq = cpu_rq(cpu);
8063 	unsigned long max = arch_scale_cpu_capacity(cpu);
8064 	unsigned long used, free;
8065 	unsigned long irq;
8066 
8067 	irq = cpu_util_irq(rq);
8068 
8069 	if (unlikely(irq >= max))
8070 		return 1;
8071 
8072 	/*
8073 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8074 	 * (running and not running) with weights 0 and 1024 respectively.
8075 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
8076 	 * average uses the actual delta max capacity(load).
8077 	 */
8078 	used = READ_ONCE(rq->avg_rt.util_avg);
8079 	used += READ_ONCE(rq->avg_dl.util_avg);
8080 	used += thermal_load_avg(rq);
8081 
8082 	if (unlikely(used >= max))
8083 		return 1;
8084 
8085 	free = max - used;
8086 
8087 	return scale_irq_capacity(free, irq, max);
8088 }
8089 
8090 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8091 {
8092 	unsigned long capacity = scale_rt_capacity(cpu);
8093 	struct sched_group *sdg = sd->groups;
8094 
8095 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8096 
8097 	if (!capacity)
8098 		capacity = 1;
8099 
8100 	cpu_rq(cpu)->cpu_capacity = capacity;
8101 	sdg->sgc->capacity = capacity;
8102 	sdg->sgc->min_capacity = capacity;
8103 	sdg->sgc->max_capacity = capacity;
8104 }
8105 
8106 void update_group_capacity(struct sched_domain *sd, int cpu)
8107 {
8108 	struct sched_domain *child = sd->child;
8109 	struct sched_group *group, *sdg = sd->groups;
8110 	unsigned long capacity, min_capacity, max_capacity;
8111 	unsigned long interval;
8112 
8113 	interval = msecs_to_jiffies(sd->balance_interval);
8114 	interval = clamp(interval, 1UL, max_load_balance_interval);
8115 	sdg->sgc->next_update = jiffies + interval;
8116 
8117 	if (!child) {
8118 		update_cpu_capacity(sd, cpu);
8119 		return;
8120 	}
8121 
8122 	capacity = 0;
8123 	min_capacity = ULONG_MAX;
8124 	max_capacity = 0;
8125 
8126 	if (child->flags & SD_OVERLAP) {
8127 		/*
8128 		 * SD_OVERLAP domains cannot assume that child groups
8129 		 * span the current group.
8130 		 */
8131 
8132 		for_each_cpu(cpu, sched_group_span(sdg)) {
8133 			unsigned long cpu_cap = capacity_of(cpu);
8134 
8135 			capacity += cpu_cap;
8136 			min_capacity = min(cpu_cap, min_capacity);
8137 			max_capacity = max(cpu_cap, max_capacity);
8138 		}
8139 	} else  {
8140 		/*
8141 		 * !SD_OVERLAP domains can assume that child groups
8142 		 * span the current group.
8143 		 */
8144 
8145 		group = child->groups;
8146 		do {
8147 			struct sched_group_capacity *sgc = group->sgc;
8148 
8149 			capacity += sgc->capacity;
8150 			min_capacity = min(sgc->min_capacity, min_capacity);
8151 			max_capacity = max(sgc->max_capacity, max_capacity);
8152 			group = group->next;
8153 		} while (group != child->groups);
8154 	}
8155 
8156 	sdg->sgc->capacity = capacity;
8157 	sdg->sgc->min_capacity = min_capacity;
8158 	sdg->sgc->max_capacity = max_capacity;
8159 }
8160 
8161 /*
8162  * Check whether the capacity of the rq has been noticeably reduced by side
8163  * activity. The imbalance_pct is used for the threshold.
8164  * Return true is the capacity is reduced
8165  */
8166 static inline int
8167 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8168 {
8169 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8170 				(rq->cpu_capacity_orig * 100));
8171 }
8172 
8173 /*
8174  * Check whether a rq has a misfit task and if it looks like we can actually
8175  * help that task: we can migrate the task to a CPU of higher capacity, or
8176  * the task's current CPU is heavily pressured.
8177  */
8178 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8179 {
8180 	return rq->misfit_task_load &&
8181 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8182 		 check_cpu_capacity(rq, sd));
8183 }
8184 
8185 /*
8186  * Group imbalance indicates (and tries to solve) the problem where balancing
8187  * groups is inadequate due to ->cpus_ptr constraints.
8188  *
8189  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8190  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8191  * Something like:
8192  *
8193  *	{ 0 1 2 3 } { 4 5 6 7 }
8194  *	        *     * * *
8195  *
8196  * If we were to balance group-wise we'd place two tasks in the first group and
8197  * two tasks in the second group. Clearly this is undesired as it will overload
8198  * cpu 3 and leave one of the CPUs in the second group unused.
8199  *
8200  * The current solution to this issue is detecting the skew in the first group
8201  * by noticing the lower domain failed to reach balance and had difficulty
8202  * moving tasks due to affinity constraints.
8203  *
8204  * When this is so detected; this group becomes a candidate for busiest; see
8205  * update_sd_pick_busiest(). And calculate_imbalance() and
8206  * find_busiest_group() avoid some of the usual balance conditions to allow it
8207  * to create an effective group imbalance.
8208  *
8209  * This is a somewhat tricky proposition since the next run might not find the
8210  * group imbalance and decide the groups need to be balanced again. A most
8211  * subtle and fragile situation.
8212  */
8213 
8214 static inline int sg_imbalanced(struct sched_group *group)
8215 {
8216 	return group->sgc->imbalance;
8217 }
8218 
8219 /*
8220  * group_has_capacity returns true if the group has spare capacity that could
8221  * be used by some tasks.
8222  * We consider that a group has spare capacity if the  * number of task is
8223  * smaller than the number of CPUs or if the utilization is lower than the
8224  * available capacity for CFS tasks.
8225  * For the latter, we use a threshold to stabilize the state, to take into
8226  * account the variance of the tasks' load and to return true if the available
8227  * capacity in meaningful for the load balancer.
8228  * As an example, an available capacity of 1% can appear but it doesn't make
8229  * any benefit for the load balance.
8230  */
8231 static inline bool
8232 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8233 {
8234 	if (sgs->sum_nr_running < sgs->group_weight)
8235 		return true;
8236 
8237 	if ((sgs->group_capacity * imbalance_pct) <
8238 			(sgs->group_runnable * 100))
8239 		return false;
8240 
8241 	if ((sgs->group_capacity * 100) >
8242 			(sgs->group_util * imbalance_pct))
8243 		return true;
8244 
8245 	return false;
8246 }
8247 
8248 /*
8249  *  group_is_overloaded returns true if the group has more tasks than it can
8250  *  handle.
8251  *  group_is_overloaded is not equals to !group_has_capacity because a group
8252  *  with the exact right number of tasks, has no more spare capacity but is not
8253  *  overloaded so both group_has_capacity and group_is_overloaded return
8254  *  false.
8255  */
8256 static inline bool
8257 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8258 {
8259 	if (sgs->sum_nr_running <= sgs->group_weight)
8260 		return false;
8261 
8262 	if ((sgs->group_capacity * 100) <
8263 			(sgs->group_util * imbalance_pct))
8264 		return true;
8265 
8266 	if ((sgs->group_capacity * imbalance_pct) <
8267 			(sgs->group_runnable * 100))
8268 		return true;
8269 
8270 	return false;
8271 }
8272 
8273 /*
8274  * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8275  * per-CPU capacity than sched_group ref.
8276  */
8277 static inline bool
8278 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8279 {
8280 	return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
8281 }
8282 
8283 /*
8284  * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8285  * per-CPU capacity_orig than sched_group ref.
8286  */
8287 static inline bool
8288 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8289 {
8290 	return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
8291 }
8292 
8293 static inline enum
8294 group_type group_classify(unsigned int imbalance_pct,
8295 			  struct sched_group *group,
8296 			  struct sg_lb_stats *sgs)
8297 {
8298 	if (group_is_overloaded(imbalance_pct, sgs))
8299 		return group_overloaded;
8300 
8301 	if (sg_imbalanced(group))
8302 		return group_imbalanced;
8303 
8304 	if (sgs->group_asym_packing)
8305 		return group_asym_packing;
8306 
8307 	if (sgs->group_misfit_task_load)
8308 		return group_misfit_task;
8309 
8310 	if (!group_has_capacity(imbalance_pct, sgs))
8311 		return group_fully_busy;
8312 
8313 	return group_has_spare;
8314 }
8315 
8316 static bool update_nohz_stats(struct rq *rq, bool force)
8317 {
8318 #ifdef CONFIG_NO_HZ_COMMON
8319 	unsigned int cpu = rq->cpu;
8320 
8321 	if (!rq->has_blocked_load)
8322 		return false;
8323 
8324 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8325 		return false;
8326 
8327 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8328 		return true;
8329 
8330 	update_blocked_averages(cpu);
8331 
8332 	return rq->has_blocked_load;
8333 #else
8334 	return false;
8335 #endif
8336 }
8337 
8338 /**
8339  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8340  * @env: The load balancing environment.
8341  * @group: sched_group whose statistics are to be updated.
8342  * @sgs: variable to hold the statistics for this group.
8343  * @sg_status: Holds flag indicating the status of the sched_group
8344  */
8345 static inline void update_sg_lb_stats(struct lb_env *env,
8346 				      struct sched_group *group,
8347 				      struct sg_lb_stats *sgs,
8348 				      int *sg_status)
8349 {
8350 	int i, nr_running, local_group;
8351 
8352 	memset(sgs, 0, sizeof(*sgs));
8353 
8354 	local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8355 
8356 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8357 		struct rq *rq = cpu_rq(i);
8358 
8359 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8360 			env->flags |= LBF_NOHZ_AGAIN;
8361 
8362 		sgs->group_load += cpu_load(rq);
8363 		sgs->group_util += cpu_util(i);
8364 		sgs->group_runnable += cpu_runnable(rq);
8365 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8366 
8367 		nr_running = rq->nr_running;
8368 		sgs->sum_nr_running += nr_running;
8369 
8370 		if (nr_running > 1)
8371 			*sg_status |= SG_OVERLOAD;
8372 
8373 		if (cpu_overutilized(i))
8374 			*sg_status |= SG_OVERUTILIZED;
8375 
8376 #ifdef CONFIG_NUMA_BALANCING
8377 		sgs->nr_numa_running += rq->nr_numa_running;
8378 		sgs->nr_preferred_running += rq->nr_preferred_running;
8379 #endif
8380 		/*
8381 		 * No need to call idle_cpu() if nr_running is not 0
8382 		 */
8383 		if (!nr_running && idle_cpu(i)) {
8384 			sgs->idle_cpus++;
8385 			/* Idle cpu can't have misfit task */
8386 			continue;
8387 		}
8388 
8389 		if (local_group)
8390 			continue;
8391 
8392 		/* Check for a misfit task on the cpu */
8393 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8394 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8395 			sgs->group_misfit_task_load = rq->misfit_task_load;
8396 			*sg_status |= SG_OVERLOAD;
8397 		}
8398 	}
8399 
8400 	/* Check if dst CPU is idle and preferred to this group */
8401 	if (env->sd->flags & SD_ASYM_PACKING &&
8402 	    env->idle != CPU_NOT_IDLE &&
8403 	    sgs->sum_h_nr_running &&
8404 	    sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8405 		sgs->group_asym_packing = 1;
8406 	}
8407 
8408 	sgs->group_capacity = group->sgc->capacity;
8409 
8410 	sgs->group_weight = group->group_weight;
8411 
8412 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8413 
8414 	/* Computing avg_load makes sense only when group is overloaded */
8415 	if (sgs->group_type == group_overloaded)
8416 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8417 				sgs->group_capacity;
8418 }
8419 
8420 /**
8421  * update_sd_pick_busiest - return 1 on busiest group
8422  * @env: The load balancing environment.
8423  * @sds: sched_domain statistics
8424  * @sg: sched_group candidate to be checked for being the busiest
8425  * @sgs: sched_group statistics
8426  *
8427  * Determine if @sg is a busier group than the previously selected
8428  * busiest group.
8429  *
8430  * Return: %true if @sg is a busier group than the previously selected
8431  * busiest group. %false otherwise.
8432  */
8433 static bool update_sd_pick_busiest(struct lb_env *env,
8434 				   struct sd_lb_stats *sds,
8435 				   struct sched_group *sg,
8436 				   struct sg_lb_stats *sgs)
8437 {
8438 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8439 
8440 	/* Make sure that there is at least one task to pull */
8441 	if (!sgs->sum_h_nr_running)
8442 		return false;
8443 
8444 	/*
8445 	 * Don't try to pull misfit tasks we can't help.
8446 	 * We can use max_capacity here as reduction in capacity on some
8447 	 * CPUs in the group should either be possible to resolve
8448 	 * internally or be covered by avg_load imbalance (eventually).
8449 	 */
8450 	if (sgs->group_type == group_misfit_task &&
8451 	    (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8452 	     sds->local_stat.group_type != group_has_spare))
8453 		return false;
8454 
8455 	if (sgs->group_type > busiest->group_type)
8456 		return true;
8457 
8458 	if (sgs->group_type < busiest->group_type)
8459 		return false;
8460 
8461 	/*
8462 	 * The candidate and the current busiest group are the same type of
8463 	 * group. Let check which one is the busiest according to the type.
8464 	 */
8465 
8466 	switch (sgs->group_type) {
8467 	case group_overloaded:
8468 		/* Select the overloaded group with highest avg_load. */
8469 		if (sgs->avg_load <= busiest->avg_load)
8470 			return false;
8471 		break;
8472 
8473 	case group_imbalanced:
8474 		/*
8475 		 * Select the 1st imbalanced group as we don't have any way to
8476 		 * choose one more than another.
8477 		 */
8478 		return false;
8479 
8480 	case group_asym_packing:
8481 		/* Prefer to move from lowest priority CPU's work */
8482 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8483 			return false;
8484 		break;
8485 
8486 	case group_misfit_task:
8487 		/*
8488 		 * If we have more than one misfit sg go with the biggest
8489 		 * misfit.
8490 		 */
8491 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8492 			return false;
8493 		break;
8494 
8495 	case group_fully_busy:
8496 		/*
8497 		 * Select the fully busy group with highest avg_load. In
8498 		 * theory, there is no need to pull task from such kind of
8499 		 * group because tasks have all compute capacity that they need
8500 		 * but we can still improve the overall throughput by reducing
8501 		 * contention when accessing shared HW resources.
8502 		 *
8503 		 * XXX for now avg_load is not computed and always 0 so we
8504 		 * select the 1st one.
8505 		 */
8506 		if (sgs->avg_load <= busiest->avg_load)
8507 			return false;
8508 		break;
8509 
8510 	case group_has_spare:
8511 		/*
8512 		 * Select not overloaded group with lowest number of idle cpus
8513 		 * and highest number of running tasks. We could also compare
8514 		 * the spare capacity which is more stable but it can end up
8515 		 * that the group has less spare capacity but finally more idle
8516 		 * CPUs which means less opportunity to pull tasks.
8517 		 */
8518 		if (sgs->idle_cpus > busiest->idle_cpus)
8519 			return false;
8520 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8521 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
8522 			return false;
8523 
8524 		break;
8525 	}
8526 
8527 	/*
8528 	 * Candidate sg has no more than one task per CPU and has higher
8529 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8530 	 * throughput. Maximize throughput, power/energy consequences are not
8531 	 * considered.
8532 	 */
8533 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8534 	    (sgs->group_type <= group_fully_busy) &&
8535 	    (group_smaller_min_cpu_capacity(sds->local, sg)))
8536 		return false;
8537 
8538 	return true;
8539 }
8540 
8541 #ifdef CONFIG_NUMA_BALANCING
8542 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8543 {
8544 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8545 		return regular;
8546 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8547 		return remote;
8548 	return all;
8549 }
8550 
8551 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8552 {
8553 	if (rq->nr_running > rq->nr_numa_running)
8554 		return regular;
8555 	if (rq->nr_running > rq->nr_preferred_running)
8556 		return remote;
8557 	return all;
8558 }
8559 #else
8560 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8561 {
8562 	return all;
8563 }
8564 
8565 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8566 {
8567 	return regular;
8568 }
8569 #endif /* CONFIG_NUMA_BALANCING */
8570 
8571 
8572 struct sg_lb_stats;
8573 
8574 /*
8575  * task_running_on_cpu - return 1 if @p is running on @cpu.
8576  */
8577 
8578 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8579 {
8580 	/* Task has no contribution or is new */
8581 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8582 		return 0;
8583 
8584 	if (task_on_rq_queued(p))
8585 		return 1;
8586 
8587 	return 0;
8588 }
8589 
8590 /**
8591  * idle_cpu_without - would a given CPU be idle without p ?
8592  * @cpu: the processor on which idleness is tested.
8593  * @p: task which should be ignored.
8594  *
8595  * Return: 1 if the CPU would be idle. 0 otherwise.
8596  */
8597 static int idle_cpu_without(int cpu, struct task_struct *p)
8598 {
8599 	struct rq *rq = cpu_rq(cpu);
8600 
8601 	if (rq->curr != rq->idle && rq->curr != p)
8602 		return 0;
8603 
8604 	/*
8605 	 * rq->nr_running can't be used but an updated version without the
8606 	 * impact of p on cpu must be used instead. The updated nr_running
8607 	 * be computed and tested before calling idle_cpu_without().
8608 	 */
8609 
8610 #ifdef CONFIG_SMP
8611 	if (rq->ttwu_pending)
8612 		return 0;
8613 #endif
8614 
8615 	return 1;
8616 }
8617 
8618 /*
8619  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8620  * @sd: The sched_domain level to look for idlest group.
8621  * @group: sched_group whose statistics are to be updated.
8622  * @sgs: variable to hold the statistics for this group.
8623  * @p: The task for which we look for the idlest group/CPU.
8624  */
8625 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8626 					  struct sched_group *group,
8627 					  struct sg_lb_stats *sgs,
8628 					  struct task_struct *p)
8629 {
8630 	int i, nr_running;
8631 
8632 	memset(sgs, 0, sizeof(*sgs));
8633 
8634 	for_each_cpu(i, sched_group_span(group)) {
8635 		struct rq *rq = cpu_rq(i);
8636 		unsigned int local;
8637 
8638 		sgs->group_load += cpu_load_without(rq, p);
8639 		sgs->group_util += cpu_util_without(i, p);
8640 		sgs->group_runnable += cpu_runnable_without(rq, p);
8641 		local = task_running_on_cpu(i, p);
8642 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8643 
8644 		nr_running = rq->nr_running - local;
8645 		sgs->sum_nr_running += nr_running;
8646 
8647 		/*
8648 		 * No need to call idle_cpu_without() if nr_running is not 0
8649 		 */
8650 		if (!nr_running && idle_cpu_without(i, p))
8651 			sgs->idle_cpus++;
8652 
8653 	}
8654 
8655 	/* Check if task fits in the group */
8656 	if (sd->flags & SD_ASYM_CPUCAPACITY &&
8657 	    !task_fits_capacity(p, group->sgc->max_capacity)) {
8658 		sgs->group_misfit_task_load = 1;
8659 	}
8660 
8661 	sgs->group_capacity = group->sgc->capacity;
8662 
8663 	sgs->group_weight = group->group_weight;
8664 
8665 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8666 
8667 	/*
8668 	 * Computing avg_load makes sense only when group is fully busy or
8669 	 * overloaded
8670 	 */
8671 	if (sgs->group_type == group_fully_busy ||
8672 		sgs->group_type == group_overloaded)
8673 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8674 				sgs->group_capacity;
8675 }
8676 
8677 static bool update_pick_idlest(struct sched_group *idlest,
8678 			       struct sg_lb_stats *idlest_sgs,
8679 			       struct sched_group *group,
8680 			       struct sg_lb_stats *sgs)
8681 {
8682 	if (sgs->group_type < idlest_sgs->group_type)
8683 		return true;
8684 
8685 	if (sgs->group_type > idlest_sgs->group_type)
8686 		return false;
8687 
8688 	/*
8689 	 * The candidate and the current idlest group are the same type of
8690 	 * group. Let check which one is the idlest according to the type.
8691 	 */
8692 
8693 	switch (sgs->group_type) {
8694 	case group_overloaded:
8695 	case group_fully_busy:
8696 		/* Select the group with lowest avg_load. */
8697 		if (idlest_sgs->avg_load <= sgs->avg_load)
8698 			return false;
8699 		break;
8700 
8701 	case group_imbalanced:
8702 	case group_asym_packing:
8703 		/* Those types are not used in the slow wakeup path */
8704 		return false;
8705 
8706 	case group_misfit_task:
8707 		/* Select group with the highest max capacity */
8708 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8709 			return false;
8710 		break;
8711 
8712 	case group_has_spare:
8713 		/* Select group with most idle CPUs */
8714 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8715 			return false;
8716 
8717 		/* Select group with lowest group_util */
8718 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8719 			idlest_sgs->group_util <= sgs->group_util)
8720 			return false;
8721 
8722 		break;
8723 	}
8724 
8725 	return true;
8726 }
8727 
8728 /*
8729  * find_idlest_group() finds and returns the least busy CPU group within the
8730  * domain.
8731  *
8732  * Assumes p is allowed on at least one CPU in sd.
8733  */
8734 static struct sched_group *
8735 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
8736 {
8737 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8738 	struct sg_lb_stats local_sgs, tmp_sgs;
8739 	struct sg_lb_stats *sgs;
8740 	unsigned long imbalance;
8741 	struct sg_lb_stats idlest_sgs = {
8742 			.avg_load = UINT_MAX,
8743 			.group_type = group_overloaded,
8744 	};
8745 
8746 	imbalance = scale_load_down(NICE_0_LOAD) *
8747 				(sd->imbalance_pct-100) / 100;
8748 
8749 	do {
8750 		int local_group;
8751 
8752 		/* Skip over this group if it has no CPUs allowed */
8753 		if (!cpumask_intersects(sched_group_span(group),
8754 					p->cpus_ptr))
8755 			continue;
8756 
8757 		local_group = cpumask_test_cpu(this_cpu,
8758 					       sched_group_span(group));
8759 
8760 		if (local_group) {
8761 			sgs = &local_sgs;
8762 			local = group;
8763 		} else {
8764 			sgs = &tmp_sgs;
8765 		}
8766 
8767 		update_sg_wakeup_stats(sd, group, sgs, p);
8768 
8769 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8770 			idlest = group;
8771 			idlest_sgs = *sgs;
8772 		}
8773 
8774 	} while (group = group->next, group != sd->groups);
8775 
8776 
8777 	/* There is no idlest group to push tasks to */
8778 	if (!idlest)
8779 		return NULL;
8780 
8781 	/* The local group has been skipped because of CPU affinity */
8782 	if (!local)
8783 		return idlest;
8784 
8785 	/*
8786 	 * If the local group is idler than the selected idlest group
8787 	 * don't try and push the task.
8788 	 */
8789 	if (local_sgs.group_type < idlest_sgs.group_type)
8790 		return NULL;
8791 
8792 	/*
8793 	 * If the local group is busier than the selected idlest group
8794 	 * try and push the task.
8795 	 */
8796 	if (local_sgs.group_type > idlest_sgs.group_type)
8797 		return idlest;
8798 
8799 	switch (local_sgs.group_type) {
8800 	case group_overloaded:
8801 	case group_fully_busy:
8802 		/*
8803 		 * When comparing groups across NUMA domains, it's possible for
8804 		 * the local domain to be very lightly loaded relative to the
8805 		 * remote domains but "imbalance" skews the comparison making
8806 		 * remote CPUs look much more favourable. When considering
8807 		 * cross-domain, add imbalance to the load on the remote node
8808 		 * and consider staying local.
8809 		 */
8810 
8811 		if ((sd->flags & SD_NUMA) &&
8812 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8813 			return NULL;
8814 
8815 		/*
8816 		 * If the local group is less loaded than the selected
8817 		 * idlest group don't try and push any tasks.
8818 		 */
8819 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8820 			return NULL;
8821 
8822 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8823 			return NULL;
8824 		break;
8825 
8826 	case group_imbalanced:
8827 	case group_asym_packing:
8828 		/* Those type are not used in the slow wakeup path */
8829 		return NULL;
8830 
8831 	case group_misfit_task:
8832 		/* Select group with the highest max capacity */
8833 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8834 			return NULL;
8835 		break;
8836 
8837 	case group_has_spare:
8838 		if (sd->flags & SD_NUMA) {
8839 #ifdef CONFIG_NUMA_BALANCING
8840 			int idlest_cpu;
8841 			/*
8842 			 * If there is spare capacity at NUMA, try to select
8843 			 * the preferred node
8844 			 */
8845 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8846 				return NULL;
8847 
8848 			idlest_cpu = cpumask_first(sched_group_span(idlest));
8849 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8850 				return idlest;
8851 #endif
8852 			/*
8853 			 * Otherwise, keep the task on this node to stay close
8854 			 * its wakeup source and improve locality. If there is
8855 			 * a real need of migration, periodic load balance will
8856 			 * take care of it.
8857 			 */
8858 			if (local_sgs.idle_cpus)
8859 				return NULL;
8860 		}
8861 
8862 		/*
8863 		 * Select group with highest number of idle CPUs. We could also
8864 		 * compare the utilization which is more stable but it can end
8865 		 * up that the group has less spare capacity but finally more
8866 		 * idle CPUs which means more opportunity to run task.
8867 		 */
8868 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8869 			return NULL;
8870 		break;
8871 	}
8872 
8873 	return idlest;
8874 }
8875 
8876 /**
8877  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8878  * @env: The load balancing environment.
8879  * @sds: variable to hold the statistics for this sched_domain.
8880  */
8881 
8882 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8883 {
8884 	struct sched_domain *child = env->sd->child;
8885 	struct sched_group *sg = env->sd->groups;
8886 	struct sg_lb_stats *local = &sds->local_stat;
8887 	struct sg_lb_stats tmp_sgs;
8888 	int sg_status = 0;
8889 
8890 #ifdef CONFIG_NO_HZ_COMMON
8891 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8892 		env->flags |= LBF_NOHZ_STATS;
8893 #endif
8894 
8895 	do {
8896 		struct sg_lb_stats *sgs = &tmp_sgs;
8897 		int local_group;
8898 
8899 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8900 		if (local_group) {
8901 			sds->local = sg;
8902 			sgs = local;
8903 
8904 			if (env->idle != CPU_NEWLY_IDLE ||
8905 			    time_after_eq(jiffies, sg->sgc->next_update))
8906 				update_group_capacity(env->sd, env->dst_cpu);
8907 		}
8908 
8909 		update_sg_lb_stats(env, sg, sgs, &sg_status);
8910 
8911 		if (local_group)
8912 			goto next_group;
8913 
8914 
8915 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8916 			sds->busiest = sg;
8917 			sds->busiest_stat = *sgs;
8918 		}
8919 
8920 next_group:
8921 		/* Now, start updating sd_lb_stats */
8922 		sds->total_load += sgs->group_load;
8923 		sds->total_capacity += sgs->group_capacity;
8924 
8925 		sg = sg->next;
8926 	} while (sg != env->sd->groups);
8927 
8928 	/* Tag domain that child domain prefers tasks go to siblings first */
8929 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8930 
8931 #ifdef CONFIG_NO_HZ_COMMON
8932 	if ((env->flags & LBF_NOHZ_AGAIN) &&
8933 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8934 
8935 		WRITE_ONCE(nohz.next_blocked,
8936 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8937 	}
8938 #endif
8939 
8940 	if (env->sd->flags & SD_NUMA)
8941 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8942 
8943 	if (!env->sd->parent) {
8944 		struct root_domain *rd = env->dst_rq->rd;
8945 
8946 		/* update overload indicator if we are at root domain */
8947 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8948 
8949 		/* Update over-utilization (tipping point, U >= 0) indicator */
8950 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8951 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
8952 	} else if (sg_status & SG_OVERUTILIZED) {
8953 		struct root_domain *rd = env->dst_rq->rd;
8954 
8955 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8956 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
8957 	}
8958 }
8959 
8960 static inline long adjust_numa_imbalance(int imbalance, int src_nr_running)
8961 {
8962 	unsigned int imbalance_min;
8963 
8964 	/*
8965 	 * Allow a small imbalance based on a simple pair of communicating
8966 	 * tasks that remain local when the source domain is almost idle.
8967 	 */
8968 	imbalance_min = 2;
8969 	if (src_nr_running <= imbalance_min)
8970 		return 0;
8971 
8972 	return imbalance;
8973 }
8974 
8975 /**
8976  * calculate_imbalance - Calculate the amount of imbalance present within the
8977  *			 groups of a given sched_domain during load balance.
8978  * @env: load balance environment
8979  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8980  */
8981 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8982 {
8983 	struct sg_lb_stats *local, *busiest;
8984 
8985 	local = &sds->local_stat;
8986 	busiest = &sds->busiest_stat;
8987 
8988 	if (busiest->group_type == group_misfit_task) {
8989 		/* Set imbalance to allow misfit tasks to be balanced. */
8990 		env->migration_type = migrate_misfit;
8991 		env->imbalance = 1;
8992 		return;
8993 	}
8994 
8995 	if (busiest->group_type == group_asym_packing) {
8996 		/*
8997 		 * In case of asym capacity, we will try to migrate all load to
8998 		 * the preferred CPU.
8999 		 */
9000 		env->migration_type = migrate_task;
9001 		env->imbalance = busiest->sum_h_nr_running;
9002 		return;
9003 	}
9004 
9005 	if (busiest->group_type == group_imbalanced) {
9006 		/*
9007 		 * In the group_imb case we cannot rely on group-wide averages
9008 		 * to ensure CPU-load equilibrium, try to move any task to fix
9009 		 * the imbalance. The next load balance will take care of
9010 		 * balancing back the system.
9011 		 */
9012 		env->migration_type = migrate_task;
9013 		env->imbalance = 1;
9014 		return;
9015 	}
9016 
9017 	/*
9018 	 * Try to use spare capacity of local group without overloading it or
9019 	 * emptying busiest.
9020 	 */
9021 	if (local->group_type == group_has_spare) {
9022 		if (busiest->group_type > group_fully_busy) {
9023 			/*
9024 			 * If busiest is overloaded, try to fill spare
9025 			 * capacity. This might end up creating spare capacity
9026 			 * in busiest or busiest still being overloaded but
9027 			 * there is no simple way to directly compute the
9028 			 * amount of load to migrate in order to balance the
9029 			 * system.
9030 			 */
9031 			env->migration_type = migrate_util;
9032 			env->imbalance = max(local->group_capacity, local->group_util) -
9033 					 local->group_util;
9034 
9035 			/*
9036 			 * In some cases, the group's utilization is max or even
9037 			 * higher than capacity because of migrations but the
9038 			 * local CPU is (newly) idle. There is at least one
9039 			 * waiting task in this overloaded busiest group. Let's
9040 			 * try to pull it.
9041 			 */
9042 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9043 				env->migration_type = migrate_task;
9044 				env->imbalance = 1;
9045 			}
9046 
9047 			return;
9048 		}
9049 
9050 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
9051 			unsigned int nr_diff = busiest->sum_nr_running;
9052 			/*
9053 			 * When prefer sibling, evenly spread running tasks on
9054 			 * groups.
9055 			 */
9056 			env->migration_type = migrate_task;
9057 			lsub_positive(&nr_diff, local->sum_nr_running);
9058 			env->imbalance = nr_diff >> 1;
9059 		} else {
9060 
9061 			/*
9062 			 * If there is no overload, we just want to even the number of
9063 			 * idle cpus.
9064 			 */
9065 			env->migration_type = migrate_task;
9066 			env->imbalance = max_t(long, 0, (local->idle_cpus -
9067 						 busiest->idle_cpus) >> 1);
9068 		}
9069 
9070 		/* Consider allowing a small imbalance between NUMA groups */
9071 		if (env->sd->flags & SD_NUMA)
9072 			env->imbalance = adjust_numa_imbalance(env->imbalance,
9073 						busiest->sum_nr_running);
9074 
9075 		return;
9076 	}
9077 
9078 	/*
9079 	 * Local is fully busy but has to take more load to relieve the
9080 	 * busiest group
9081 	 */
9082 	if (local->group_type < group_overloaded) {
9083 		/*
9084 		 * Local will become overloaded so the avg_load metrics are
9085 		 * finally needed.
9086 		 */
9087 
9088 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9089 				  local->group_capacity;
9090 
9091 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9092 				sds->total_capacity;
9093 		/*
9094 		 * If the local group is more loaded than the selected
9095 		 * busiest group don't try to pull any tasks.
9096 		 */
9097 		if (local->avg_load >= busiest->avg_load) {
9098 			env->imbalance = 0;
9099 			return;
9100 		}
9101 	}
9102 
9103 	/*
9104 	 * Both group are or will become overloaded and we're trying to get all
9105 	 * the CPUs to the average_load, so we don't want to push ourselves
9106 	 * above the average load, nor do we wish to reduce the max loaded CPU
9107 	 * below the average load. At the same time, we also don't want to
9108 	 * reduce the group load below the group capacity. Thus we look for
9109 	 * the minimum possible imbalance.
9110 	 */
9111 	env->migration_type = migrate_load;
9112 	env->imbalance = min(
9113 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9114 		(sds->avg_load - local->avg_load) * local->group_capacity
9115 	) / SCHED_CAPACITY_SCALE;
9116 }
9117 
9118 /******* find_busiest_group() helpers end here *********************/
9119 
9120 /*
9121  * Decision matrix according to the local and busiest group type:
9122  *
9123  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9124  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9125  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9126  * misfit_task      force     N/A        N/A    N/A  force      force
9127  * asym_packing     force     force      N/A    N/A  force      force
9128  * imbalanced       force     force      N/A    N/A  force      force
9129  * overloaded       force     force      N/A    N/A  force      avg_load
9130  *
9131  * N/A :      Not Applicable because already filtered while updating
9132  *            statistics.
9133  * balanced : The system is balanced for these 2 groups.
9134  * force :    Calculate the imbalance as load migration is probably needed.
9135  * avg_load : Only if imbalance is significant enough.
9136  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9137  *            different in groups.
9138  */
9139 
9140 /**
9141  * find_busiest_group - Returns the busiest group within the sched_domain
9142  * if there is an imbalance.
9143  *
9144  * Also calculates the amount of runnable load which should be moved
9145  * to restore balance.
9146  *
9147  * @env: The load balancing environment.
9148  *
9149  * Return:	- The busiest group if imbalance exists.
9150  */
9151 static struct sched_group *find_busiest_group(struct lb_env *env)
9152 {
9153 	struct sg_lb_stats *local, *busiest;
9154 	struct sd_lb_stats sds;
9155 
9156 	init_sd_lb_stats(&sds);
9157 
9158 	/*
9159 	 * Compute the various statistics relevant for load balancing at
9160 	 * this level.
9161 	 */
9162 	update_sd_lb_stats(env, &sds);
9163 
9164 	if (sched_energy_enabled()) {
9165 		struct root_domain *rd = env->dst_rq->rd;
9166 
9167 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9168 			goto out_balanced;
9169 	}
9170 
9171 	local = &sds.local_stat;
9172 	busiest = &sds.busiest_stat;
9173 
9174 	/* There is no busy sibling group to pull tasks from */
9175 	if (!sds.busiest)
9176 		goto out_balanced;
9177 
9178 	/* Misfit tasks should be dealt with regardless of the avg load */
9179 	if (busiest->group_type == group_misfit_task)
9180 		goto force_balance;
9181 
9182 	/* ASYM feature bypasses nice load balance check */
9183 	if (busiest->group_type == group_asym_packing)
9184 		goto force_balance;
9185 
9186 	/*
9187 	 * If the busiest group is imbalanced the below checks don't
9188 	 * work because they assume all things are equal, which typically
9189 	 * isn't true due to cpus_ptr constraints and the like.
9190 	 */
9191 	if (busiest->group_type == group_imbalanced)
9192 		goto force_balance;
9193 
9194 	/*
9195 	 * If the local group is busier than the selected busiest group
9196 	 * don't try and pull any tasks.
9197 	 */
9198 	if (local->group_type > busiest->group_type)
9199 		goto out_balanced;
9200 
9201 	/*
9202 	 * When groups are overloaded, use the avg_load to ensure fairness
9203 	 * between tasks.
9204 	 */
9205 	if (local->group_type == group_overloaded) {
9206 		/*
9207 		 * If the local group is more loaded than the selected
9208 		 * busiest group don't try to pull any tasks.
9209 		 */
9210 		if (local->avg_load >= busiest->avg_load)
9211 			goto out_balanced;
9212 
9213 		/* XXX broken for overlapping NUMA groups */
9214 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9215 				sds.total_capacity;
9216 
9217 		/*
9218 		 * Don't pull any tasks if this group is already above the
9219 		 * domain average load.
9220 		 */
9221 		if (local->avg_load >= sds.avg_load)
9222 			goto out_balanced;
9223 
9224 		/*
9225 		 * If the busiest group is more loaded, use imbalance_pct to be
9226 		 * conservative.
9227 		 */
9228 		if (100 * busiest->avg_load <=
9229 				env->sd->imbalance_pct * local->avg_load)
9230 			goto out_balanced;
9231 	}
9232 
9233 	/* Try to move all excess tasks to child's sibling domain */
9234 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
9235 	    busiest->sum_nr_running > local->sum_nr_running + 1)
9236 		goto force_balance;
9237 
9238 	if (busiest->group_type != group_overloaded) {
9239 		if (env->idle == CPU_NOT_IDLE)
9240 			/*
9241 			 * If the busiest group is not overloaded (and as a
9242 			 * result the local one too) but this CPU is already
9243 			 * busy, let another idle CPU try to pull task.
9244 			 */
9245 			goto out_balanced;
9246 
9247 		if (busiest->group_weight > 1 &&
9248 		    local->idle_cpus <= (busiest->idle_cpus + 1))
9249 			/*
9250 			 * If the busiest group is not overloaded
9251 			 * and there is no imbalance between this and busiest
9252 			 * group wrt idle CPUs, it is balanced. The imbalance
9253 			 * becomes significant if the diff is greater than 1
9254 			 * otherwise we might end up to just move the imbalance
9255 			 * on another group. Of course this applies only if
9256 			 * there is more than 1 CPU per group.
9257 			 */
9258 			goto out_balanced;
9259 
9260 		if (busiest->sum_h_nr_running == 1)
9261 			/*
9262 			 * busiest doesn't have any tasks waiting to run
9263 			 */
9264 			goto out_balanced;
9265 	}
9266 
9267 force_balance:
9268 	/* Looks like there is an imbalance. Compute it */
9269 	calculate_imbalance(env, &sds);
9270 	return env->imbalance ? sds.busiest : NULL;
9271 
9272 out_balanced:
9273 	env->imbalance = 0;
9274 	return NULL;
9275 }
9276 
9277 /*
9278  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9279  */
9280 static struct rq *find_busiest_queue(struct lb_env *env,
9281 				     struct sched_group *group)
9282 {
9283 	struct rq *busiest = NULL, *rq;
9284 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9285 	unsigned int busiest_nr = 0;
9286 	int i;
9287 
9288 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9289 		unsigned long capacity, load, util;
9290 		unsigned int nr_running;
9291 		enum fbq_type rt;
9292 
9293 		rq = cpu_rq(i);
9294 		rt = fbq_classify_rq(rq);
9295 
9296 		/*
9297 		 * We classify groups/runqueues into three groups:
9298 		 *  - regular: there are !numa tasks
9299 		 *  - remote:  there are numa tasks that run on the 'wrong' node
9300 		 *  - all:     there is no distinction
9301 		 *
9302 		 * In order to avoid migrating ideally placed numa tasks,
9303 		 * ignore those when there's better options.
9304 		 *
9305 		 * If we ignore the actual busiest queue to migrate another
9306 		 * task, the next balance pass can still reduce the busiest
9307 		 * queue by moving tasks around inside the node.
9308 		 *
9309 		 * If we cannot move enough load due to this classification
9310 		 * the next pass will adjust the group classification and
9311 		 * allow migration of more tasks.
9312 		 *
9313 		 * Both cases only affect the total convergence complexity.
9314 		 */
9315 		if (rt > env->fbq_type)
9316 			continue;
9317 
9318 		capacity = capacity_of(i);
9319 		nr_running = rq->cfs.h_nr_running;
9320 
9321 		/*
9322 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9323 		 * eventually lead to active_balancing high->low capacity.
9324 		 * Higher per-CPU capacity is considered better than balancing
9325 		 * average load.
9326 		 */
9327 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9328 		    capacity_of(env->dst_cpu) < capacity &&
9329 		    nr_running == 1)
9330 			continue;
9331 
9332 		switch (env->migration_type) {
9333 		case migrate_load:
9334 			/*
9335 			 * When comparing with load imbalance, use cpu_load()
9336 			 * which is not scaled with the CPU capacity.
9337 			 */
9338 			load = cpu_load(rq);
9339 
9340 			if (nr_running == 1 && load > env->imbalance &&
9341 			    !check_cpu_capacity(rq, env->sd))
9342 				break;
9343 
9344 			/*
9345 			 * For the load comparisons with the other CPUs,
9346 			 * consider the cpu_load() scaled with the CPU
9347 			 * capacity, so that the load can be moved away
9348 			 * from the CPU that is potentially running at a
9349 			 * lower capacity.
9350 			 *
9351 			 * Thus we're looking for max(load_i / capacity_i),
9352 			 * crosswise multiplication to rid ourselves of the
9353 			 * division works out to:
9354 			 * load_i * capacity_j > load_j * capacity_i;
9355 			 * where j is our previous maximum.
9356 			 */
9357 			if (load * busiest_capacity > busiest_load * capacity) {
9358 				busiest_load = load;
9359 				busiest_capacity = capacity;
9360 				busiest = rq;
9361 			}
9362 			break;
9363 
9364 		case migrate_util:
9365 			util = cpu_util(cpu_of(rq));
9366 
9367 			/*
9368 			 * Don't try to pull utilization from a CPU with one
9369 			 * running task. Whatever its utilization, we will fail
9370 			 * detach the task.
9371 			 */
9372 			if (nr_running <= 1)
9373 				continue;
9374 
9375 			if (busiest_util < util) {
9376 				busiest_util = util;
9377 				busiest = rq;
9378 			}
9379 			break;
9380 
9381 		case migrate_task:
9382 			if (busiest_nr < nr_running) {
9383 				busiest_nr = nr_running;
9384 				busiest = rq;
9385 			}
9386 			break;
9387 
9388 		case migrate_misfit:
9389 			/*
9390 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
9391 			 * simply seek the "biggest" misfit task.
9392 			 */
9393 			if (rq->misfit_task_load > busiest_load) {
9394 				busiest_load = rq->misfit_task_load;
9395 				busiest = rq;
9396 			}
9397 
9398 			break;
9399 
9400 		}
9401 	}
9402 
9403 	return busiest;
9404 }
9405 
9406 /*
9407  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9408  * so long as it is large enough.
9409  */
9410 #define MAX_PINNED_INTERVAL	512
9411 
9412 static inline bool
9413 asym_active_balance(struct lb_env *env)
9414 {
9415 	/*
9416 	 * ASYM_PACKING needs to force migrate tasks from busy but
9417 	 * lower priority CPUs in order to pack all tasks in the
9418 	 * highest priority CPUs.
9419 	 */
9420 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9421 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
9422 }
9423 
9424 static inline bool
9425 voluntary_active_balance(struct lb_env *env)
9426 {
9427 	struct sched_domain *sd = env->sd;
9428 
9429 	if (asym_active_balance(env))
9430 		return 1;
9431 
9432 	/*
9433 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9434 	 * It's worth migrating the task if the src_cpu's capacity is reduced
9435 	 * because of other sched_class or IRQs if more capacity stays
9436 	 * available on dst_cpu.
9437 	 */
9438 	if ((env->idle != CPU_NOT_IDLE) &&
9439 	    (env->src_rq->cfs.h_nr_running == 1)) {
9440 		if ((check_cpu_capacity(env->src_rq, sd)) &&
9441 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9442 			return 1;
9443 	}
9444 
9445 	if (env->migration_type == migrate_misfit)
9446 		return 1;
9447 
9448 	return 0;
9449 }
9450 
9451 static int need_active_balance(struct lb_env *env)
9452 {
9453 	struct sched_domain *sd = env->sd;
9454 
9455 	if (voluntary_active_balance(env))
9456 		return 1;
9457 
9458 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9459 }
9460 
9461 static int active_load_balance_cpu_stop(void *data);
9462 
9463 static int should_we_balance(struct lb_env *env)
9464 {
9465 	struct sched_group *sg = env->sd->groups;
9466 	int cpu;
9467 
9468 	/*
9469 	 * Ensure the balancing environment is consistent; can happen
9470 	 * when the softirq triggers 'during' hotplug.
9471 	 */
9472 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9473 		return 0;
9474 
9475 	/*
9476 	 * In the newly idle case, we will allow all the CPUs
9477 	 * to do the newly idle load balance.
9478 	 */
9479 	if (env->idle == CPU_NEWLY_IDLE)
9480 		return 1;
9481 
9482 	/* Try to find first idle CPU */
9483 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9484 		if (!idle_cpu(cpu))
9485 			continue;
9486 
9487 		/* Are we the first idle CPU? */
9488 		return cpu == env->dst_cpu;
9489 	}
9490 
9491 	/* Are we the first CPU of this group ? */
9492 	return group_balance_cpu(sg) == env->dst_cpu;
9493 }
9494 
9495 /*
9496  * Check this_cpu to ensure it is balanced within domain. Attempt to move
9497  * tasks if there is an imbalance.
9498  */
9499 static int load_balance(int this_cpu, struct rq *this_rq,
9500 			struct sched_domain *sd, enum cpu_idle_type idle,
9501 			int *continue_balancing)
9502 {
9503 	int ld_moved, cur_ld_moved, active_balance = 0;
9504 	struct sched_domain *sd_parent = sd->parent;
9505 	struct sched_group *group;
9506 	struct rq *busiest;
9507 	struct rq_flags rf;
9508 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9509 
9510 	struct lb_env env = {
9511 		.sd		= sd,
9512 		.dst_cpu	= this_cpu,
9513 		.dst_rq		= this_rq,
9514 		.dst_grpmask    = sched_group_span(sd->groups),
9515 		.idle		= idle,
9516 		.loop_break	= sched_nr_migrate_break,
9517 		.cpus		= cpus,
9518 		.fbq_type	= all,
9519 		.tasks		= LIST_HEAD_INIT(env.tasks),
9520 	};
9521 
9522 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9523 
9524 	schedstat_inc(sd->lb_count[idle]);
9525 
9526 redo:
9527 	if (!should_we_balance(&env)) {
9528 		*continue_balancing = 0;
9529 		goto out_balanced;
9530 	}
9531 
9532 	group = find_busiest_group(&env);
9533 	if (!group) {
9534 		schedstat_inc(sd->lb_nobusyg[idle]);
9535 		goto out_balanced;
9536 	}
9537 
9538 	busiest = find_busiest_queue(&env, group);
9539 	if (!busiest) {
9540 		schedstat_inc(sd->lb_nobusyq[idle]);
9541 		goto out_balanced;
9542 	}
9543 
9544 	BUG_ON(busiest == env.dst_rq);
9545 
9546 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9547 
9548 	env.src_cpu = busiest->cpu;
9549 	env.src_rq = busiest;
9550 
9551 	ld_moved = 0;
9552 	if (busiest->nr_running > 1) {
9553 		/*
9554 		 * Attempt to move tasks. If find_busiest_group has found
9555 		 * an imbalance but busiest->nr_running <= 1, the group is
9556 		 * still unbalanced. ld_moved simply stays zero, so it is
9557 		 * correctly treated as an imbalance.
9558 		 */
9559 		env.flags |= LBF_ALL_PINNED;
9560 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9561 
9562 more_balance:
9563 		rq_lock_irqsave(busiest, &rf);
9564 		update_rq_clock(busiest);
9565 
9566 		/*
9567 		 * cur_ld_moved - load moved in current iteration
9568 		 * ld_moved     - cumulative load moved across iterations
9569 		 */
9570 		cur_ld_moved = detach_tasks(&env);
9571 
9572 		/*
9573 		 * We've detached some tasks from busiest_rq. Every
9574 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9575 		 * unlock busiest->lock, and we are able to be sure
9576 		 * that nobody can manipulate the tasks in parallel.
9577 		 * See task_rq_lock() family for the details.
9578 		 */
9579 
9580 		rq_unlock(busiest, &rf);
9581 
9582 		if (cur_ld_moved) {
9583 			attach_tasks(&env);
9584 			ld_moved += cur_ld_moved;
9585 		}
9586 
9587 		local_irq_restore(rf.flags);
9588 
9589 		if (env.flags & LBF_NEED_BREAK) {
9590 			env.flags &= ~LBF_NEED_BREAK;
9591 			goto more_balance;
9592 		}
9593 
9594 		/*
9595 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9596 		 * us and move them to an alternate dst_cpu in our sched_group
9597 		 * where they can run. The upper limit on how many times we
9598 		 * iterate on same src_cpu is dependent on number of CPUs in our
9599 		 * sched_group.
9600 		 *
9601 		 * This changes load balance semantics a bit on who can move
9602 		 * load to a given_cpu. In addition to the given_cpu itself
9603 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9604 		 * nohz-idle), we now have balance_cpu in a position to move
9605 		 * load to given_cpu. In rare situations, this may cause
9606 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9607 		 * _independently_ and at _same_ time to move some load to
9608 		 * given_cpu) causing exceess load to be moved to given_cpu.
9609 		 * This however should not happen so much in practice and
9610 		 * moreover subsequent load balance cycles should correct the
9611 		 * excess load moved.
9612 		 */
9613 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9614 
9615 			/* Prevent to re-select dst_cpu via env's CPUs */
9616 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
9617 
9618 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
9619 			env.dst_cpu	 = env.new_dst_cpu;
9620 			env.flags	&= ~LBF_DST_PINNED;
9621 			env.loop	 = 0;
9622 			env.loop_break	 = sched_nr_migrate_break;
9623 
9624 			/*
9625 			 * Go back to "more_balance" rather than "redo" since we
9626 			 * need to continue with same src_cpu.
9627 			 */
9628 			goto more_balance;
9629 		}
9630 
9631 		/*
9632 		 * We failed to reach balance because of affinity.
9633 		 */
9634 		if (sd_parent) {
9635 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9636 
9637 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9638 				*group_imbalance = 1;
9639 		}
9640 
9641 		/* All tasks on this runqueue were pinned by CPU affinity */
9642 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
9643 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
9644 			/*
9645 			 * Attempting to continue load balancing at the current
9646 			 * sched_domain level only makes sense if there are
9647 			 * active CPUs remaining as possible busiest CPUs to
9648 			 * pull load from which are not contained within the
9649 			 * destination group that is receiving any migrated
9650 			 * load.
9651 			 */
9652 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
9653 				env.loop = 0;
9654 				env.loop_break = sched_nr_migrate_break;
9655 				goto redo;
9656 			}
9657 			goto out_all_pinned;
9658 		}
9659 	}
9660 
9661 	if (!ld_moved) {
9662 		schedstat_inc(sd->lb_failed[idle]);
9663 		/*
9664 		 * Increment the failure counter only on periodic balance.
9665 		 * We do not want newidle balance, which can be very
9666 		 * frequent, pollute the failure counter causing
9667 		 * excessive cache_hot migrations and active balances.
9668 		 */
9669 		if (idle != CPU_NEWLY_IDLE)
9670 			sd->nr_balance_failed++;
9671 
9672 		if (need_active_balance(&env)) {
9673 			unsigned long flags;
9674 
9675 			raw_spin_lock_irqsave(&busiest->lock, flags);
9676 
9677 			/*
9678 			 * Don't kick the active_load_balance_cpu_stop,
9679 			 * if the curr task on busiest CPU can't be
9680 			 * moved to this_cpu:
9681 			 */
9682 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9683 				raw_spin_unlock_irqrestore(&busiest->lock,
9684 							    flags);
9685 				env.flags |= LBF_ALL_PINNED;
9686 				goto out_one_pinned;
9687 			}
9688 
9689 			/*
9690 			 * ->active_balance synchronizes accesses to
9691 			 * ->active_balance_work.  Once set, it's cleared
9692 			 * only after active load balance is finished.
9693 			 */
9694 			if (!busiest->active_balance) {
9695 				busiest->active_balance = 1;
9696 				busiest->push_cpu = this_cpu;
9697 				active_balance = 1;
9698 			}
9699 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
9700 
9701 			if (active_balance) {
9702 				stop_one_cpu_nowait(cpu_of(busiest),
9703 					active_load_balance_cpu_stop, busiest,
9704 					&busiest->active_balance_work);
9705 			}
9706 
9707 			/* We've kicked active balancing, force task migration. */
9708 			sd->nr_balance_failed = sd->cache_nice_tries+1;
9709 		}
9710 	} else
9711 		sd->nr_balance_failed = 0;
9712 
9713 	if (likely(!active_balance) || voluntary_active_balance(&env)) {
9714 		/* We were unbalanced, so reset the balancing interval */
9715 		sd->balance_interval = sd->min_interval;
9716 	} else {
9717 		/*
9718 		 * If we've begun active balancing, start to back off. This
9719 		 * case may not be covered by the all_pinned logic if there
9720 		 * is only 1 task on the busy runqueue (because we don't call
9721 		 * detach_tasks).
9722 		 */
9723 		if (sd->balance_interval < sd->max_interval)
9724 			sd->balance_interval *= 2;
9725 	}
9726 
9727 	goto out;
9728 
9729 out_balanced:
9730 	/*
9731 	 * We reach balance although we may have faced some affinity
9732 	 * constraints. Clear the imbalance flag only if other tasks got
9733 	 * a chance to move and fix the imbalance.
9734 	 */
9735 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9736 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9737 
9738 		if (*group_imbalance)
9739 			*group_imbalance = 0;
9740 	}
9741 
9742 out_all_pinned:
9743 	/*
9744 	 * We reach balance because all tasks are pinned at this level so
9745 	 * we can't migrate them. Let the imbalance flag set so parent level
9746 	 * can try to migrate them.
9747 	 */
9748 	schedstat_inc(sd->lb_balanced[idle]);
9749 
9750 	sd->nr_balance_failed = 0;
9751 
9752 out_one_pinned:
9753 	ld_moved = 0;
9754 
9755 	/*
9756 	 * newidle_balance() disregards balance intervals, so we could
9757 	 * repeatedly reach this code, which would lead to balance_interval
9758 	 * skyrocketting in a short amount of time. Skip the balance_interval
9759 	 * increase logic to avoid that.
9760 	 */
9761 	if (env.idle == CPU_NEWLY_IDLE)
9762 		goto out;
9763 
9764 	/* tune up the balancing interval */
9765 	if ((env.flags & LBF_ALL_PINNED &&
9766 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
9767 	    sd->balance_interval < sd->max_interval)
9768 		sd->balance_interval *= 2;
9769 out:
9770 	return ld_moved;
9771 }
9772 
9773 static inline unsigned long
9774 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9775 {
9776 	unsigned long interval = sd->balance_interval;
9777 
9778 	if (cpu_busy)
9779 		interval *= sd->busy_factor;
9780 
9781 	/* scale ms to jiffies */
9782 	interval = msecs_to_jiffies(interval);
9783 	interval = clamp(interval, 1UL, max_load_balance_interval);
9784 
9785 	return interval;
9786 }
9787 
9788 static inline void
9789 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9790 {
9791 	unsigned long interval, next;
9792 
9793 	/* used by idle balance, so cpu_busy = 0 */
9794 	interval = get_sd_balance_interval(sd, 0);
9795 	next = sd->last_balance + interval;
9796 
9797 	if (time_after(*next_balance, next))
9798 		*next_balance = next;
9799 }
9800 
9801 /*
9802  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9803  * running tasks off the busiest CPU onto idle CPUs. It requires at
9804  * least 1 task to be running on each physical CPU where possible, and
9805  * avoids physical / logical imbalances.
9806  */
9807 static int active_load_balance_cpu_stop(void *data)
9808 {
9809 	struct rq *busiest_rq = data;
9810 	int busiest_cpu = cpu_of(busiest_rq);
9811 	int target_cpu = busiest_rq->push_cpu;
9812 	struct rq *target_rq = cpu_rq(target_cpu);
9813 	struct sched_domain *sd;
9814 	struct task_struct *p = NULL;
9815 	struct rq_flags rf;
9816 
9817 	rq_lock_irq(busiest_rq, &rf);
9818 	/*
9819 	 * Between queueing the stop-work and running it is a hole in which
9820 	 * CPUs can become inactive. We should not move tasks from or to
9821 	 * inactive CPUs.
9822 	 */
9823 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9824 		goto out_unlock;
9825 
9826 	/* Make sure the requested CPU hasn't gone down in the meantime: */
9827 	if (unlikely(busiest_cpu != smp_processor_id() ||
9828 		     !busiest_rq->active_balance))
9829 		goto out_unlock;
9830 
9831 	/* Is there any task to move? */
9832 	if (busiest_rq->nr_running <= 1)
9833 		goto out_unlock;
9834 
9835 	/*
9836 	 * This condition is "impossible", if it occurs
9837 	 * we need to fix it. Originally reported by
9838 	 * Bjorn Helgaas on a 128-CPU setup.
9839 	 */
9840 	BUG_ON(busiest_rq == target_rq);
9841 
9842 	/* Search for an sd spanning us and the target CPU. */
9843 	rcu_read_lock();
9844 	for_each_domain(target_cpu, sd) {
9845 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9846 			break;
9847 	}
9848 
9849 	if (likely(sd)) {
9850 		struct lb_env env = {
9851 			.sd		= sd,
9852 			.dst_cpu	= target_cpu,
9853 			.dst_rq		= target_rq,
9854 			.src_cpu	= busiest_rq->cpu,
9855 			.src_rq		= busiest_rq,
9856 			.idle		= CPU_IDLE,
9857 			/*
9858 			 * can_migrate_task() doesn't need to compute new_dst_cpu
9859 			 * for active balancing. Since we have CPU_IDLE, but no
9860 			 * @dst_grpmask we need to make that test go away with lying
9861 			 * about DST_PINNED.
9862 			 */
9863 			.flags		= LBF_DST_PINNED,
9864 		};
9865 
9866 		schedstat_inc(sd->alb_count);
9867 		update_rq_clock(busiest_rq);
9868 
9869 		p = detach_one_task(&env);
9870 		if (p) {
9871 			schedstat_inc(sd->alb_pushed);
9872 			/* Active balancing done, reset the failure counter. */
9873 			sd->nr_balance_failed = 0;
9874 		} else {
9875 			schedstat_inc(sd->alb_failed);
9876 		}
9877 	}
9878 	rcu_read_unlock();
9879 out_unlock:
9880 	busiest_rq->active_balance = 0;
9881 	rq_unlock(busiest_rq, &rf);
9882 
9883 	if (p)
9884 		attach_one_task(target_rq, p);
9885 
9886 	local_irq_enable();
9887 
9888 	return 0;
9889 }
9890 
9891 static DEFINE_SPINLOCK(balancing);
9892 
9893 /*
9894  * Scale the max load_balance interval with the number of CPUs in the system.
9895  * This trades load-balance latency on larger machines for less cross talk.
9896  */
9897 void update_max_interval(void)
9898 {
9899 	max_load_balance_interval = HZ*num_online_cpus()/10;
9900 }
9901 
9902 /*
9903  * It checks each scheduling domain to see if it is due to be balanced,
9904  * and initiates a balancing operation if so.
9905  *
9906  * Balancing parameters are set up in init_sched_domains.
9907  */
9908 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9909 {
9910 	int continue_balancing = 1;
9911 	int cpu = rq->cpu;
9912 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
9913 	unsigned long interval;
9914 	struct sched_domain *sd;
9915 	/* Earliest time when we have to do rebalance again */
9916 	unsigned long next_balance = jiffies + 60*HZ;
9917 	int update_next_balance = 0;
9918 	int need_serialize, need_decay = 0;
9919 	u64 max_cost = 0;
9920 
9921 	rcu_read_lock();
9922 	for_each_domain(cpu, sd) {
9923 		/*
9924 		 * Decay the newidle max times here because this is a regular
9925 		 * visit to all the domains. Decay ~1% per second.
9926 		 */
9927 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9928 			sd->max_newidle_lb_cost =
9929 				(sd->max_newidle_lb_cost * 253) / 256;
9930 			sd->next_decay_max_lb_cost = jiffies + HZ;
9931 			need_decay = 1;
9932 		}
9933 		max_cost += sd->max_newidle_lb_cost;
9934 
9935 		/*
9936 		 * Stop the load balance at this level. There is another
9937 		 * CPU in our sched group which is doing load balancing more
9938 		 * actively.
9939 		 */
9940 		if (!continue_balancing) {
9941 			if (need_decay)
9942 				continue;
9943 			break;
9944 		}
9945 
9946 		interval = get_sd_balance_interval(sd, busy);
9947 
9948 		need_serialize = sd->flags & SD_SERIALIZE;
9949 		if (need_serialize) {
9950 			if (!spin_trylock(&balancing))
9951 				goto out;
9952 		}
9953 
9954 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9955 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9956 				/*
9957 				 * The LBF_DST_PINNED logic could have changed
9958 				 * env->dst_cpu, so we can't know our idle
9959 				 * state even if we migrated tasks. Update it.
9960 				 */
9961 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9962 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
9963 			}
9964 			sd->last_balance = jiffies;
9965 			interval = get_sd_balance_interval(sd, busy);
9966 		}
9967 		if (need_serialize)
9968 			spin_unlock(&balancing);
9969 out:
9970 		if (time_after(next_balance, sd->last_balance + interval)) {
9971 			next_balance = sd->last_balance + interval;
9972 			update_next_balance = 1;
9973 		}
9974 	}
9975 	if (need_decay) {
9976 		/*
9977 		 * Ensure the rq-wide value also decays but keep it at a
9978 		 * reasonable floor to avoid funnies with rq->avg_idle.
9979 		 */
9980 		rq->max_idle_balance_cost =
9981 			max((u64)sysctl_sched_migration_cost, max_cost);
9982 	}
9983 	rcu_read_unlock();
9984 
9985 	/*
9986 	 * next_balance will be updated only when there is a need.
9987 	 * When the cpu is attached to null domain for ex, it will not be
9988 	 * updated.
9989 	 */
9990 	if (likely(update_next_balance)) {
9991 		rq->next_balance = next_balance;
9992 
9993 #ifdef CONFIG_NO_HZ_COMMON
9994 		/*
9995 		 * If this CPU has been elected to perform the nohz idle
9996 		 * balance. Other idle CPUs have already rebalanced with
9997 		 * nohz_idle_balance() and nohz.next_balance has been
9998 		 * updated accordingly. This CPU is now running the idle load
9999 		 * balance for itself and we need to update the
10000 		 * nohz.next_balance accordingly.
10001 		 */
10002 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
10003 			nohz.next_balance = rq->next_balance;
10004 #endif
10005 	}
10006 }
10007 
10008 static inline int on_null_domain(struct rq *rq)
10009 {
10010 	return unlikely(!rcu_dereference_sched(rq->sd));
10011 }
10012 
10013 #ifdef CONFIG_NO_HZ_COMMON
10014 /*
10015  * idle load balancing details
10016  * - When one of the busy CPUs notice that there may be an idle rebalancing
10017  *   needed, they will kick the idle load balancer, which then does idle
10018  *   load balancing for all the idle CPUs.
10019  * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10020  *   anywhere yet.
10021  */
10022 
10023 static inline int find_new_ilb(void)
10024 {
10025 	int ilb;
10026 
10027 	for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10028 			      housekeeping_cpumask(HK_FLAG_MISC)) {
10029 		if (idle_cpu(ilb))
10030 			return ilb;
10031 	}
10032 
10033 	return nr_cpu_ids;
10034 }
10035 
10036 /*
10037  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10038  * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10039  */
10040 static void kick_ilb(unsigned int flags)
10041 {
10042 	int ilb_cpu;
10043 
10044 	/*
10045 	 * Increase nohz.next_balance only when if full ilb is triggered but
10046 	 * not if we only update stats.
10047 	 */
10048 	if (flags & NOHZ_BALANCE_KICK)
10049 		nohz.next_balance = jiffies+1;
10050 
10051 	ilb_cpu = find_new_ilb();
10052 
10053 	if (ilb_cpu >= nr_cpu_ids)
10054 		return;
10055 
10056 	/*
10057 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10058 	 * the first flag owns it; cleared by nohz_csd_func().
10059 	 */
10060 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10061 	if (flags & NOHZ_KICK_MASK)
10062 		return;
10063 
10064 	/*
10065 	 * This way we generate an IPI on the target CPU which
10066 	 * is idle. And the softirq performing nohz idle load balance
10067 	 * will be run before returning from the IPI.
10068 	 */
10069 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10070 }
10071 
10072 /*
10073  * Current decision point for kicking the idle load balancer in the presence
10074  * of idle CPUs in the system.
10075  */
10076 static void nohz_balancer_kick(struct rq *rq)
10077 {
10078 	unsigned long now = jiffies;
10079 	struct sched_domain_shared *sds;
10080 	struct sched_domain *sd;
10081 	int nr_busy, i, cpu = rq->cpu;
10082 	unsigned int flags = 0;
10083 
10084 	if (unlikely(rq->idle_balance))
10085 		return;
10086 
10087 	/*
10088 	 * We may be recently in ticked or tickless idle mode. At the first
10089 	 * busy tick after returning from idle, we will update the busy stats.
10090 	 */
10091 	nohz_balance_exit_idle(rq);
10092 
10093 	/*
10094 	 * None are in tickless mode and hence no need for NOHZ idle load
10095 	 * balancing.
10096 	 */
10097 	if (likely(!atomic_read(&nohz.nr_cpus)))
10098 		return;
10099 
10100 	if (READ_ONCE(nohz.has_blocked) &&
10101 	    time_after(now, READ_ONCE(nohz.next_blocked)))
10102 		flags = NOHZ_STATS_KICK;
10103 
10104 	if (time_before(now, nohz.next_balance))
10105 		goto out;
10106 
10107 	if (rq->nr_running >= 2) {
10108 		flags = NOHZ_KICK_MASK;
10109 		goto out;
10110 	}
10111 
10112 	rcu_read_lock();
10113 
10114 	sd = rcu_dereference(rq->sd);
10115 	if (sd) {
10116 		/*
10117 		 * If there's a CFS task and the current CPU has reduced
10118 		 * capacity; kick the ILB to see if there's a better CPU to run
10119 		 * on.
10120 		 */
10121 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10122 			flags = NOHZ_KICK_MASK;
10123 			goto unlock;
10124 		}
10125 	}
10126 
10127 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10128 	if (sd) {
10129 		/*
10130 		 * When ASYM_PACKING; see if there's a more preferred CPU
10131 		 * currently idle; in which case, kick the ILB to move tasks
10132 		 * around.
10133 		 */
10134 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10135 			if (sched_asym_prefer(i, cpu)) {
10136 				flags = NOHZ_KICK_MASK;
10137 				goto unlock;
10138 			}
10139 		}
10140 	}
10141 
10142 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10143 	if (sd) {
10144 		/*
10145 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10146 		 * to run the misfit task on.
10147 		 */
10148 		if (check_misfit_status(rq, sd)) {
10149 			flags = NOHZ_KICK_MASK;
10150 			goto unlock;
10151 		}
10152 
10153 		/*
10154 		 * For asymmetric systems, we do not want to nicely balance
10155 		 * cache use, instead we want to embrace asymmetry and only
10156 		 * ensure tasks have enough CPU capacity.
10157 		 *
10158 		 * Skip the LLC logic because it's not relevant in that case.
10159 		 */
10160 		goto unlock;
10161 	}
10162 
10163 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10164 	if (sds) {
10165 		/*
10166 		 * If there is an imbalance between LLC domains (IOW we could
10167 		 * increase the overall cache use), we need some less-loaded LLC
10168 		 * domain to pull some load. Likewise, we may need to spread
10169 		 * load within the current LLC domain (e.g. packed SMT cores but
10170 		 * other CPUs are idle). We can't really know from here how busy
10171 		 * the others are - so just get a nohz balance going if it looks
10172 		 * like this LLC domain has tasks we could move.
10173 		 */
10174 		nr_busy = atomic_read(&sds->nr_busy_cpus);
10175 		if (nr_busy > 1) {
10176 			flags = NOHZ_KICK_MASK;
10177 			goto unlock;
10178 		}
10179 	}
10180 unlock:
10181 	rcu_read_unlock();
10182 out:
10183 	if (flags)
10184 		kick_ilb(flags);
10185 }
10186 
10187 static void set_cpu_sd_state_busy(int cpu)
10188 {
10189 	struct sched_domain *sd;
10190 
10191 	rcu_read_lock();
10192 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10193 
10194 	if (!sd || !sd->nohz_idle)
10195 		goto unlock;
10196 	sd->nohz_idle = 0;
10197 
10198 	atomic_inc(&sd->shared->nr_busy_cpus);
10199 unlock:
10200 	rcu_read_unlock();
10201 }
10202 
10203 void nohz_balance_exit_idle(struct rq *rq)
10204 {
10205 	SCHED_WARN_ON(rq != this_rq());
10206 
10207 	if (likely(!rq->nohz_tick_stopped))
10208 		return;
10209 
10210 	rq->nohz_tick_stopped = 0;
10211 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10212 	atomic_dec(&nohz.nr_cpus);
10213 
10214 	set_cpu_sd_state_busy(rq->cpu);
10215 }
10216 
10217 static void set_cpu_sd_state_idle(int cpu)
10218 {
10219 	struct sched_domain *sd;
10220 
10221 	rcu_read_lock();
10222 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10223 
10224 	if (!sd || sd->nohz_idle)
10225 		goto unlock;
10226 	sd->nohz_idle = 1;
10227 
10228 	atomic_dec(&sd->shared->nr_busy_cpus);
10229 unlock:
10230 	rcu_read_unlock();
10231 }
10232 
10233 /*
10234  * This routine will record that the CPU is going idle with tick stopped.
10235  * This info will be used in performing idle load balancing in the future.
10236  */
10237 void nohz_balance_enter_idle(int cpu)
10238 {
10239 	struct rq *rq = cpu_rq(cpu);
10240 
10241 	SCHED_WARN_ON(cpu != smp_processor_id());
10242 
10243 	/* If this CPU is going down, then nothing needs to be done: */
10244 	if (!cpu_active(cpu))
10245 		return;
10246 
10247 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
10248 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10249 		return;
10250 
10251 	/*
10252 	 * Can be set safely without rq->lock held
10253 	 * If a clear happens, it will have evaluated last additions because
10254 	 * rq->lock is held during the check and the clear
10255 	 */
10256 	rq->has_blocked_load = 1;
10257 
10258 	/*
10259 	 * The tick is still stopped but load could have been added in the
10260 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
10261 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10262 	 * of nohz.has_blocked can only happen after checking the new load
10263 	 */
10264 	if (rq->nohz_tick_stopped)
10265 		goto out;
10266 
10267 	/* If we're a completely isolated CPU, we don't play: */
10268 	if (on_null_domain(rq))
10269 		return;
10270 
10271 	rq->nohz_tick_stopped = 1;
10272 
10273 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10274 	atomic_inc(&nohz.nr_cpus);
10275 
10276 	/*
10277 	 * Ensures that if nohz_idle_balance() fails to observe our
10278 	 * @idle_cpus_mask store, it must observe the @has_blocked
10279 	 * store.
10280 	 */
10281 	smp_mb__after_atomic();
10282 
10283 	set_cpu_sd_state_idle(cpu);
10284 
10285 out:
10286 	/*
10287 	 * Each time a cpu enter idle, we assume that it has blocked load and
10288 	 * enable the periodic update of the load of idle cpus
10289 	 */
10290 	WRITE_ONCE(nohz.has_blocked, 1);
10291 }
10292 
10293 /*
10294  * Internal function that runs load balance for all idle cpus. The load balance
10295  * can be a simple update of blocked load or a complete load balance with
10296  * tasks movement depending of flags.
10297  * The function returns false if the loop has stopped before running
10298  * through all idle CPUs.
10299  */
10300 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10301 			       enum cpu_idle_type idle)
10302 {
10303 	/* Earliest time when we have to do rebalance again */
10304 	unsigned long now = jiffies;
10305 	unsigned long next_balance = now + 60*HZ;
10306 	bool has_blocked_load = false;
10307 	int update_next_balance = 0;
10308 	int this_cpu = this_rq->cpu;
10309 	int balance_cpu;
10310 	int ret = false;
10311 	struct rq *rq;
10312 
10313 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10314 
10315 	/*
10316 	 * We assume there will be no idle load after this update and clear
10317 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10318 	 * set the has_blocked flag and trig another update of idle load.
10319 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10320 	 * setting the flag, we are sure to not clear the state and not
10321 	 * check the load of an idle cpu.
10322 	 */
10323 	WRITE_ONCE(nohz.has_blocked, 0);
10324 
10325 	/*
10326 	 * Ensures that if we miss the CPU, we must see the has_blocked
10327 	 * store from nohz_balance_enter_idle().
10328 	 */
10329 	smp_mb();
10330 
10331 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
10332 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
10333 			continue;
10334 
10335 		/*
10336 		 * If this CPU gets work to do, stop the load balancing
10337 		 * work being done for other CPUs. Next load
10338 		 * balancing owner will pick it up.
10339 		 */
10340 		if (need_resched()) {
10341 			has_blocked_load = true;
10342 			goto abort;
10343 		}
10344 
10345 		rq = cpu_rq(balance_cpu);
10346 
10347 		has_blocked_load |= update_nohz_stats(rq, true);
10348 
10349 		/*
10350 		 * If time for next balance is due,
10351 		 * do the balance.
10352 		 */
10353 		if (time_after_eq(jiffies, rq->next_balance)) {
10354 			struct rq_flags rf;
10355 
10356 			rq_lock_irqsave(rq, &rf);
10357 			update_rq_clock(rq);
10358 			rq_unlock_irqrestore(rq, &rf);
10359 
10360 			if (flags & NOHZ_BALANCE_KICK)
10361 				rebalance_domains(rq, CPU_IDLE);
10362 		}
10363 
10364 		if (time_after(next_balance, rq->next_balance)) {
10365 			next_balance = rq->next_balance;
10366 			update_next_balance = 1;
10367 		}
10368 	}
10369 
10370 	/*
10371 	 * next_balance will be updated only when there is a need.
10372 	 * When the CPU is attached to null domain for ex, it will not be
10373 	 * updated.
10374 	 */
10375 	if (likely(update_next_balance))
10376 		nohz.next_balance = next_balance;
10377 
10378 	/* Newly idle CPU doesn't need an update */
10379 	if (idle != CPU_NEWLY_IDLE) {
10380 		update_blocked_averages(this_cpu);
10381 		has_blocked_load |= this_rq->has_blocked_load;
10382 	}
10383 
10384 	if (flags & NOHZ_BALANCE_KICK)
10385 		rebalance_domains(this_rq, CPU_IDLE);
10386 
10387 	WRITE_ONCE(nohz.next_blocked,
10388 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10389 
10390 	/* The full idle balance loop has been done */
10391 	ret = true;
10392 
10393 abort:
10394 	/* There is still blocked load, enable periodic update */
10395 	if (has_blocked_load)
10396 		WRITE_ONCE(nohz.has_blocked, 1);
10397 
10398 	return ret;
10399 }
10400 
10401 /*
10402  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10403  * rebalancing for all the cpus for whom scheduler ticks are stopped.
10404  */
10405 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10406 {
10407 	unsigned int flags = this_rq->nohz_idle_balance;
10408 
10409 	if (!flags)
10410 		return false;
10411 
10412 	this_rq->nohz_idle_balance = 0;
10413 
10414 	if (idle != CPU_IDLE)
10415 		return false;
10416 
10417 	_nohz_idle_balance(this_rq, flags, idle);
10418 
10419 	return true;
10420 }
10421 
10422 static void nohz_newidle_balance(struct rq *this_rq)
10423 {
10424 	int this_cpu = this_rq->cpu;
10425 
10426 	/*
10427 	 * This CPU doesn't want to be disturbed by scheduler
10428 	 * housekeeping
10429 	 */
10430 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10431 		return;
10432 
10433 	/* Will wake up very soon. No time for doing anything else*/
10434 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
10435 		return;
10436 
10437 	/* Don't need to update blocked load of idle CPUs*/
10438 	if (!READ_ONCE(nohz.has_blocked) ||
10439 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10440 		return;
10441 
10442 	raw_spin_unlock(&this_rq->lock);
10443 	/*
10444 	 * This CPU is going to be idle and blocked load of idle CPUs
10445 	 * need to be updated. Run the ilb locally as it is a good
10446 	 * candidate for ilb instead of waking up another idle CPU.
10447 	 * Kick an normal ilb if we failed to do the update.
10448 	 */
10449 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10450 		kick_ilb(NOHZ_STATS_KICK);
10451 	raw_spin_lock(&this_rq->lock);
10452 }
10453 
10454 #else /* !CONFIG_NO_HZ_COMMON */
10455 static inline void nohz_balancer_kick(struct rq *rq) { }
10456 
10457 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10458 {
10459 	return false;
10460 }
10461 
10462 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10463 #endif /* CONFIG_NO_HZ_COMMON */
10464 
10465 /*
10466  * idle_balance is called by schedule() if this_cpu is about to become
10467  * idle. Attempts to pull tasks from other CPUs.
10468  *
10469  * Returns:
10470  *   < 0 - we released the lock and there are !fair tasks present
10471  *     0 - failed, no new tasks
10472  *   > 0 - success, new (fair) tasks present
10473  */
10474 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10475 {
10476 	unsigned long next_balance = jiffies + HZ;
10477 	int this_cpu = this_rq->cpu;
10478 	struct sched_domain *sd;
10479 	int pulled_task = 0;
10480 	u64 curr_cost = 0;
10481 
10482 	update_misfit_status(NULL, this_rq);
10483 	/*
10484 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
10485 	 * measure the duration of idle_balance() as idle time.
10486 	 */
10487 	this_rq->idle_stamp = rq_clock(this_rq);
10488 
10489 	/*
10490 	 * Do not pull tasks towards !active CPUs...
10491 	 */
10492 	if (!cpu_active(this_cpu))
10493 		return 0;
10494 
10495 	/*
10496 	 * This is OK, because current is on_cpu, which avoids it being picked
10497 	 * for load-balance and preemption/IRQs are still disabled avoiding
10498 	 * further scheduler activity on it and we're being very careful to
10499 	 * re-start the picking loop.
10500 	 */
10501 	rq_unpin_lock(this_rq, rf);
10502 
10503 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10504 	    !READ_ONCE(this_rq->rd->overload)) {
10505 
10506 		rcu_read_lock();
10507 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
10508 		if (sd)
10509 			update_next_balance(sd, &next_balance);
10510 		rcu_read_unlock();
10511 
10512 		nohz_newidle_balance(this_rq);
10513 
10514 		goto out;
10515 	}
10516 
10517 	raw_spin_unlock(&this_rq->lock);
10518 
10519 	update_blocked_averages(this_cpu);
10520 	rcu_read_lock();
10521 	for_each_domain(this_cpu, sd) {
10522 		int continue_balancing = 1;
10523 		u64 t0, domain_cost;
10524 
10525 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10526 			update_next_balance(sd, &next_balance);
10527 			break;
10528 		}
10529 
10530 		if (sd->flags & SD_BALANCE_NEWIDLE) {
10531 			t0 = sched_clock_cpu(this_cpu);
10532 
10533 			pulled_task = load_balance(this_cpu, this_rq,
10534 						   sd, CPU_NEWLY_IDLE,
10535 						   &continue_balancing);
10536 
10537 			domain_cost = sched_clock_cpu(this_cpu) - t0;
10538 			if (domain_cost > sd->max_newidle_lb_cost)
10539 				sd->max_newidle_lb_cost = domain_cost;
10540 
10541 			curr_cost += domain_cost;
10542 		}
10543 
10544 		update_next_balance(sd, &next_balance);
10545 
10546 		/*
10547 		 * Stop searching for tasks to pull if there are
10548 		 * now runnable tasks on this rq.
10549 		 */
10550 		if (pulled_task || this_rq->nr_running > 0)
10551 			break;
10552 	}
10553 	rcu_read_unlock();
10554 
10555 	raw_spin_lock(&this_rq->lock);
10556 
10557 	if (curr_cost > this_rq->max_idle_balance_cost)
10558 		this_rq->max_idle_balance_cost = curr_cost;
10559 
10560 out:
10561 	/*
10562 	 * While browsing the domains, we released the rq lock, a task could
10563 	 * have been enqueued in the meantime. Since we're not going idle,
10564 	 * pretend we pulled a task.
10565 	 */
10566 	if (this_rq->cfs.h_nr_running && !pulled_task)
10567 		pulled_task = 1;
10568 
10569 	/* Move the next balance forward */
10570 	if (time_after(this_rq->next_balance, next_balance))
10571 		this_rq->next_balance = next_balance;
10572 
10573 	/* Is there a task of a high priority class? */
10574 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10575 		pulled_task = -1;
10576 
10577 	if (pulled_task)
10578 		this_rq->idle_stamp = 0;
10579 
10580 	rq_repin_lock(this_rq, rf);
10581 
10582 	return pulled_task;
10583 }
10584 
10585 /*
10586  * run_rebalance_domains is triggered when needed from the scheduler tick.
10587  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10588  */
10589 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10590 {
10591 	struct rq *this_rq = this_rq();
10592 	enum cpu_idle_type idle = this_rq->idle_balance ?
10593 						CPU_IDLE : CPU_NOT_IDLE;
10594 
10595 	/*
10596 	 * If this CPU has a pending nohz_balance_kick, then do the
10597 	 * balancing on behalf of the other idle CPUs whose ticks are
10598 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10599 	 * give the idle CPUs a chance to load balance. Else we may
10600 	 * load balance only within the local sched_domain hierarchy
10601 	 * and abort nohz_idle_balance altogether if we pull some load.
10602 	 */
10603 	if (nohz_idle_balance(this_rq, idle))
10604 		return;
10605 
10606 	/* normal load balance */
10607 	update_blocked_averages(this_rq->cpu);
10608 	rebalance_domains(this_rq, idle);
10609 }
10610 
10611 /*
10612  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10613  */
10614 void trigger_load_balance(struct rq *rq)
10615 {
10616 	/* Don't need to rebalance while attached to NULL domain */
10617 	if (unlikely(on_null_domain(rq)))
10618 		return;
10619 
10620 	if (time_after_eq(jiffies, rq->next_balance))
10621 		raise_softirq(SCHED_SOFTIRQ);
10622 
10623 	nohz_balancer_kick(rq);
10624 }
10625 
10626 static void rq_online_fair(struct rq *rq)
10627 {
10628 	update_sysctl();
10629 
10630 	update_runtime_enabled(rq);
10631 }
10632 
10633 static void rq_offline_fair(struct rq *rq)
10634 {
10635 	update_sysctl();
10636 
10637 	/* Ensure any throttled groups are reachable by pick_next_task */
10638 	unthrottle_offline_cfs_rqs(rq);
10639 }
10640 
10641 #endif /* CONFIG_SMP */
10642 
10643 /*
10644  * scheduler tick hitting a task of our scheduling class.
10645  *
10646  * NOTE: This function can be called remotely by the tick offload that
10647  * goes along full dynticks. Therefore no local assumption can be made
10648  * and everything must be accessed through the @rq and @curr passed in
10649  * parameters.
10650  */
10651 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10652 {
10653 	struct cfs_rq *cfs_rq;
10654 	struct sched_entity *se = &curr->se;
10655 
10656 	for_each_sched_entity(se) {
10657 		cfs_rq = cfs_rq_of(se);
10658 		entity_tick(cfs_rq, se, queued);
10659 	}
10660 
10661 	if (static_branch_unlikely(&sched_numa_balancing))
10662 		task_tick_numa(rq, curr);
10663 
10664 	update_misfit_status(curr, rq);
10665 	update_overutilized_status(task_rq(curr));
10666 }
10667 
10668 /*
10669  * called on fork with the child task as argument from the parent's context
10670  *  - child not yet on the tasklist
10671  *  - preemption disabled
10672  */
10673 static void task_fork_fair(struct task_struct *p)
10674 {
10675 	struct cfs_rq *cfs_rq;
10676 	struct sched_entity *se = &p->se, *curr;
10677 	struct rq *rq = this_rq();
10678 	struct rq_flags rf;
10679 
10680 	rq_lock(rq, &rf);
10681 	update_rq_clock(rq);
10682 
10683 	cfs_rq = task_cfs_rq(current);
10684 	curr = cfs_rq->curr;
10685 	if (curr) {
10686 		update_curr(cfs_rq);
10687 		se->vruntime = curr->vruntime;
10688 	}
10689 	place_entity(cfs_rq, se, 1);
10690 
10691 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10692 		/*
10693 		 * Upon rescheduling, sched_class::put_prev_task() will place
10694 		 * 'current' within the tree based on its new key value.
10695 		 */
10696 		swap(curr->vruntime, se->vruntime);
10697 		resched_curr(rq);
10698 	}
10699 
10700 	se->vruntime -= cfs_rq->min_vruntime;
10701 	rq_unlock(rq, &rf);
10702 }
10703 
10704 /*
10705  * Priority of the task has changed. Check to see if we preempt
10706  * the current task.
10707  */
10708 static void
10709 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10710 {
10711 	if (!task_on_rq_queued(p))
10712 		return;
10713 
10714 	if (rq->cfs.nr_running == 1)
10715 		return;
10716 
10717 	/*
10718 	 * Reschedule if we are currently running on this runqueue and
10719 	 * our priority decreased, or if we are not currently running on
10720 	 * this runqueue and our priority is higher than the current's
10721 	 */
10722 	if (rq->curr == p) {
10723 		if (p->prio > oldprio)
10724 			resched_curr(rq);
10725 	} else
10726 		check_preempt_curr(rq, p, 0);
10727 }
10728 
10729 static inline bool vruntime_normalized(struct task_struct *p)
10730 {
10731 	struct sched_entity *se = &p->se;
10732 
10733 	/*
10734 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10735 	 * the dequeue_entity(.flags=0) will already have normalized the
10736 	 * vruntime.
10737 	 */
10738 	if (p->on_rq)
10739 		return true;
10740 
10741 	/*
10742 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
10743 	 * But there are some cases where it has already been normalized:
10744 	 *
10745 	 * - A forked child which is waiting for being woken up by
10746 	 *   wake_up_new_task().
10747 	 * - A task which has been woken up by try_to_wake_up() and
10748 	 *   waiting for actually being woken up by sched_ttwu_pending().
10749 	 */
10750 	if (!se->sum_exec_runtime ||
10751 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
10752 		return true;
10753 
10754 	return false;
10755 }
10756 
10757 #ifdef CONFIG_FAIR_GROUP_SCHED
10758 /*
10759  * Propagate the changes of the sched_entity across the tg tree to make it
10760  * visible to the root
10761  */
10762 static void propagate_entity_cfs_rq(struct sched_entity *se)
10763 {
10764 	struct cfs_rq *cfs_rq;
10765 
10766 	/* Start to propagate at parent */
10767 	se = se->parent;
10768 
10769 	for_each_sched_entity(se) {
10770 		cfs_rq = cfs_rq_of(se);
10771 
10772 		if (cfs_rq_throttled(cfs_rq))
10773 			break;
10774 
10775 		update_load_avg(cfs_rq, se, UPDATE_TG);
10776 	}
10777 }
10778 #else
10779 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10780 #endif
10781 
10782 static void detach_entity_cfs_rq(struct sched_entity *se)
10783 {
10784 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10785 
10786 	/* Catch up with the cfs_rq and remove our load when we leave */
10787 	update_load_avg(cfs_rq, se, 0);
10788 	detach_entity_load_avg(cfs_rq, se);
10789 	update_tg_load_avg(cfs_rq, false);
10790 	propagate_entity_cfs_rq(se);
10791 }
10792 
10793 static void attach_entity_cfs_rq(struct sched_entity *se)
10794 {
10795 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10796 
10797 #ifdef CONFIG_FAIR_GROUP_SCHED
10798 	/*
10799 	 * Since the real-depth could have been changed (only FAIR
10800 	 * class maintain depth value), reset depth properly.
10801 	 */
10802 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10803 #endif
10804 
10805 	/* Synchronize entity with its cfs_rq */
10806 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10807 	attach_entity_load_avg(cfs_rq, se);
10808 	update_tg_load_avg(cfs_rq, false);
10809 	propagate_entity_cfs_rq(se);
10810 }
10811 
10812 static void detach_task_cfs_rq(struct task_struct *p)
10813 {
10814 	struct sched_entity *se = &p->se;
10815 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10816 
10817 	if (!vruntime_normalized(p)) {
10818 		/*
10819 		 * Fix up our vruntime so that the current sleep doesn't
10820 		 * cause 'unlimited' sleep bonus.
10821 		 */
10822 		place_entity(cfs_rq, se, 0);
10823 		se->vruntime -= cfs_rq->min_vruntime;
10824 	}
10825 
10826 	detach_entity_cfs_rq(se);
10827 }
10828 
10829 static void attach_task_cfs_rq(struct task_struct *p)
10830 {
10831 	struct sched_entity *se = &p->se;
10832 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10833 
10834 	attach_entity_cfs_rq(se);
10835 
10836 	if (!vruntime_normalized(p))
10837 		se->vruntime += cfs_rq->min_vruntime;
10838 }
10839 
10840 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10841 {
10842 	detach_task_cfs_rq(p);
10843 }
10844 
10845 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10846 {
10847 	attach_task_cfs_rq(p);
10848 
10849 	if (task_on_rq_queued(p)) {
10850 		/*
10851 		 * We were most likely switched from sched_rt, so
10852 		 * kick off the schedule if running, otherwise just see
10853 		 * if we can still preempt the current task.
10854 		 */
10855 		if (rq->curr == p)
10856 			resched_curr(rq);
10857 		else
10858 			check_preempt_curr(rq, p, 0);
10859 	}
10860 }
10861 
10862 /* Account for a task changing its policy or group.
10863  *
10864  * This routine is mostly called to set cfs_rq->curr field when a task
10865  * migrates between groups/classes.
10866  */
10867 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
10868 {
10869 	struct sched_entity *se = &p->se;
10870 
10871 #ifdef CONFIG_SMP
10872 	if (task_on_rq_queued(p)) {
10873 		/*
10874 		 * Move the next running task to the front of the list, so our
10875 		 * cfs_tasks list becomes MRU one.
10876 		 */
10877 		list_move(&se->group_node, &rq->cfs_tasks);
10878 	}
10879 #endif
10880 
10881 	for_each_sched_entity(se) {
10882 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10883 
10884 		set_next_entity(cfs_rq, se);
10885 		/* ensure bandwidth has been allocated on our new cfs_rq */
10886 		account_cfs_rq_runtime(cfs_rq, 0);
10887 	}
10888 }
10889 
10890 void init_cfs_rq(struct cfs_rq *cfs_rq)
10891 {
10892 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10893 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10894 #ifndef CONFIG_64BIT
10895 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10896 #endif
10897 #ifdef CONFIG_SMP
10898 	raw_spin_lock_init(&cfs_rq->removed.lock);
10899 #endif
10900 }
10901 
10902 #ifdef CONFIG_FAIR_GROUP_SCHED
10903 static void task_set_group_fair(struct task_struct *p)
10904 {
10905 	struct sched_entity *se = &p->se;
10906 
10907 	set_task_rq(p, task_cpu(p));
10908 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10909 }
10910 
10911 static void task_move_group_fair(struct task_struct *p)
10912 {
10913 	detach_task_cfs_rq(p);
10914 	set_task_rq(p, task_cpu(p));
10915 
10916 #ifdef CONFIG_SMP
10917 	/* Tell se's cfs_rq has been changed -- migrated */
10918 	p->se.avg.last_update_time = 0;
10919 #endif
10920 	attach_task_cfs_rq(p);
10921 }
10922 
10923 static void task_change_group_fair(struct task_struct *p, int type)
10924 {
10925 	switch (type) {
10926 	case TASK_SET_GROUP:
10927 		task_set_group_fair(p);
10928 		break;
10929 
10930 	case TASK_MOVE_GROUP:
10931 		task_move_group_fair(p);
10932 		break;
10933 	}
10934 }
10935 
10936 void free_fair_sched_group(struct task_group *tg)
10937 {
10938 	int i;
10939 
10940 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10941 
10942 	for_each_possible_cpu(i) {
10943 		if (tg->cfs_rq)
10944 			kfree(tg->cfs_rq[i]);
10945 		if (tg->se)
10946 			kfree(tg->se[i]);
10947 	}
10948 
10949 	kfree(tg->cfs_rq);
10950 	kfree(tg->se);
10951 }
10952 
10953 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10954 {
10955 	struct sched_entity *se;
10956 	struct cfs_rq *cfs_rq;
10957 	int i;
10958 
10959 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10960 	if (!tg->cfs_rq)
10961 		goto err;
10962 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10963 	if (!tg->se)
10964 		goto err;
10965 
10966 	tg->shares = NICE_0_LOAD;
10967 
10968 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10969 
10970 	for_each_possible_cpu(i) {
10971 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10972 				      GFP_KERNEL, cpu_to_node(i));
10973 		if (!cfs_rq)
10974 			goto err;
10975 
10976 		se = kzalloc_node(sizeof(struct sched_entity),
10977 				  GFP_KERNEL, cpu_to_node(i));
10978 		if (!se)
10979 			goto err_free_rq;
10980 
10981 		init_cfs_rq(cfs_rq);
10982 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10983 		init_entity_runnable_average(se);
10984 	}
10985 
10986 	return 1;
10987 
10988 err_free_rq:
10989 	kfree(cfs_rq);
10990 err:
10991 	return 0;
10992 }
10993 
10994 void online_fair_sched_group(struct task_group *tg)
10995 {
10996 	struct sched_entity *se;
10997 	struct rq_flags rf;
10998 	struct rq *rq;
10999 	int i;
11000 
11001 	for_each_possible_cpu(i) {
11002 		rq = cpu_rq(i);
11003 		se = tg->se[i];
11004 		rq_lock_irq(rq, &rf);
11005 		update_rq_clock(rq);
11006 		attach_entity_cfs_rq(se);
11007 		sync_throttle(tg, i);
11008 		rq_unlock_irq(rq, &rf);
11009 	}
11010 }
11011 
11012 void unregister_fair_sched_group(struct task_group *tg)
11013 {
11014 	unsigned long flags;
11015 	struct rq *rq;
11016 	int cpu;
11017 
11018 	for_each_possible_cpu(cpu) {
11019 		if (tg->se[cpu])
11020 			remove_entity_load_avg(tg->se[cpu]);
11021 
11022 		/*
11023 		 * Only empty task groups can be destroyed; so we can speculatively
11024 		 * check on_list without danger of it being re-added.
11025 		 */
11026 		if (!tg->cfs_rq[cpu]->on_list)
11027 			continue;
11028 
11029 		rq = cpu_rq(cpu);
11030 
11031 		raw_spin_lock_irqsave(&rq->lock, flags);
11032 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11033 		raw_spin_unlock_irqrestore(&rq->lock, flags);
11034 	}
11035 }
11036 
11037 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11038 			struct sched_entity *se, int cpu,
11039 			struct sched_entity *parent)
11040 {
11041 	struct rq *rq = cpu_rq(cpu);
11042 
11043 	cfs_rq->tg = tg;
11044 	cfs_rq->rq = rq;
11045 	init_cfs_rq_runtime(cfs_rq);
11046 
11047 	tg->cfs_rq[cpu] = cfs_rq;
11048 	tg->se[cpu] = se;
11049 
11050 	/* se could be NULL for root_task_group */
11051 	if (!se)
11052 		return;
11053 
11054 	if (!parent) {
11055 		se->cfs_rq = &rq->cfs;
11056 		se->depth = 0;
11057 	} else {
11058 		se->cfs_rq = parent->my_q;
11059 		se->depth = parent->depth + 1;
11060 	}
11061 
11062 	se->my_q = cfs_rq;
11063 	/* guarantee group entities always have weight */
11064 	update_load_set(&se->load, NICE_0_LOAD);
11065 	se->parent = parent;
11066 }
11067 
11068 static DEFINE_MUTEX(shares_mutex);
11069 
11070 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11071 {
11072 	int i;
11073 
11074 	/*
11075 	 * We can't change the weight of the root cgroup.
11076 	 */
11077 	if (!tg->se[0])
11078 		return -EINVAL;
11079 
11080 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11081 
11082 	mutex_lock(&shares_mutex);
11083 	if (tg->shares == shares)
11084 		goto done;
11085 
11086 	tg->shares = shares;
11087 	for_each_possible_cpu(i) {
11088 		struct rq *rq = cpu_rq(i);
11089 		struct sched_entity *se = tg->se[i];
11090 		struct rq_flags rf;
11091 
11092 		/* Propagate contribution to hierarchy */
11093 		rq_lock_irqsave(rq, &rf);
11094 		update_rq_clock(rq);
11095 		for_each_sched_entity(se) {
11096 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11097 			update_cfs_group(se);
11098 		}
11099 		rq_unlock_irqrestore(rq, &rf);
11100 	}
11101 
11102 done:
11103 	mutex_unlock(&shares_mutex);
11104 	return 0;
11105 }
11106 #else /* CONFIG_FAIR_GROUP_SCHED */
11107 
11108 void free_fair_sched_group(struct task_group *tg) { }
11109 
11110 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11111 {
11112 	return 1;
11113 }
11114 
11115 void online_fair_sched_group(struct task_group *tg) { }
11116 
11117 void unregister_fair_sched_group(struct task_group *tg) { }
11118 
11119 #endif /* CONFIG_FAIR_GROUP_SCHED */
11120 
11121 
11122 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11123 {
11124 	struct sched_entity *se = &task->se;
11125 	unsigned int rr_interval = 0;
11126 
11127 	/*
11128 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11129 	 * idle runqueue:
11130 	 */
11131 	if (rq->cfs.load.weight)
11132 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11133 
11134 	return rr_interval;
11135 }
11136 
11137 /*
11138  * All the scheduling class methods:
11139  */
11140 const struct sched_class fair_sched_class
11141 	__attribute__((section("__fair_sched_class"))) = {
11142 	.enqueue_task		= enqueue_task_fair,
11143 	.dequeue_task		= dequeue_task_fair,
11144 	.yield_task		= yield_task_fair,
11145 	.yield_to_task		= yield_to_task_fair,
11146 
11147 	.check_preempt_curr	= check_preempt_wakeup,
11148 
11149 	.pick_next_task		= __pick_next_task_fair,
11150 	.put_prev_task		= put_prev_task_fair,
11151 	.set_next_task          = set_next_task_fair,
11152 
11153 #ifdef CONFIG_SMP
11154 	.balance		= balance_fair,
11155 	.select_task_rq		= select_task_rq_fair,
11156 	.migrate_task_rq	= migrate_task_rq_fair,
11157 
11158 	.rq_online		= rq_online_fair,
11159 	.rq_offline		= rq_offline_fair,
11160 
11161 	.task_dead		= task_dead_fair,
11162 	.set_cpus_allowed	= set_cpus_allowed_common,
11163 #endif
11164 
11165 	.task_tick		= task_tick_fair,
11166 	.task_fork		= task_fork_fair,
11167 
11168 	.prio_changed		= prio_changed_fair,
11169 	.switched_from		= switched_from_fair,
11170 	.switched_to		= switched_to_fair,
11171 
11172 	.get_rr_interval	= get_rr_interval_fair,
11173 
11174 	.update_curr		= update_curr_fair,
11175 
11176 #ifdef CONFIG_FAIR_GROUP_SCHED
11177 	.task_change_group	= task_change_group_fair,
11178 #endif
11179 
11180 #ifdef CONFIG_UCLAMP_TASK
11181 	.uclamp_enabled		= 1,
11182 #endif
11183 };
11184 
11185 #ifdef CONFIG_SCHED_DEBUG
11186 void print_cfs_stats(struct seq_file *m, int cpu)
11187 {
11188 	struct cfs_rq *cfs_rq, *pos;
11189 
11190 	rcu_read_lock();
11191 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11192 		print_cfs_rq(m, cpu, cfs_rq);
11193 	rcu_read_unlock();
11194 }
11195 
11196 #ifdef CONFIG_NUMA_BALANCING
11197 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11198 {
11199 	int node;
11200 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11201 	struct numa_group *ng;
11202 
11203 	rcu_read_lock();
11204 	ng = rcu_dereference(p->numa_group);
11205 	for_each_online_node(node) {
11206 		if (p->numa_faults) {
11207 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11208 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11209 		}
11210 		if (ng) {
11211 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11212 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11213 		}
11214 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11215 	}
11216 	rcu_read_unlock();
11217 }
11218 #endif /* CONFIG_NUMA_BALANCING */
11219 #endif /* CONFIG_SCHED_DEBUG */
11220 
11221 __init void init_sched_fair_class(void)
11222 {
11223 #ifdef CONFIG_SMP
11224 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11225 
11226 #ifdef CONFIG_NO_HZ_COMMON
11227 	nohz.next_balance = jiffies;
11228 	nohz.next_blocked = jiffies;
11229 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11230 #endif
11231 #endif /* SMP */
11232 
11233 }
11234 
11235 /*
11236  * Helper functions to facilitate extracting info from tracepoints.
11237  */
11238 
11239 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11240 {
11241 #ifdef CONFIG_SMP
11242 	return cfs_rq ? &cfs_rq->avg : NULL;
11243 #else
11244 	return NULL;
11245 #endif
11246 }
11247 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11248 
11249 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11250 {
11251 	if (!cfs_rq) {
11252 		if (str)
11253 			strlcpy(str, "(null)", len);
11254 		else
11255 			return NULL;
11256 	}
11257 
11258 	cfs_rq_tg_path(cfs_rq, str, len);
11259 	return str;
11260 }
11261 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11262 
11263 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11264 {
11265 	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11266 }
11267 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11268 
11269 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11270 {
11271 #ifdef CONFIG_SMP
11272 	return rq ? &rq->avg_rt : NULL;
11273 #else
11274 	return NULL;
11275 #endif
11276 }
11277 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11278 
11279 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11280 {
11281 #ifdef CONFIG_SMP
11282 	return rq ? &rq->avg_dl : NULL;
11283 #else
11284 	return NULL;
11285 #endif
11286 }
11287 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11288 
11289 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11290 {
11291 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11292 	return rq ? &rq->avg_irq : NULL;
11293 #else
11294 	return NULL;
11295 #endif
11296 }
11297 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11298 
11299 int sched_trace_rq_cpu(struct rq *rq)
11300 {
11301 	return rq ? cpu_of(rq) : -1;
11302 }
11303 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11304 
11305 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11306 {
11307 #ifdef CONFIG_SMP
11308 	return rd ? rd->span : NULL;
11309 #else
11310 	return NULL;
11311 #endif
11312 }
11313 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11314 
11315 int sched_trace_rq_nr_running(struct rq *rq)
11316 {
11317         return rq ? rq->nr_running : -1;
11318 }
11319 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);
11320