xref: /linux/kernel/sched/fair.c (revision 45d8b572fac3aa8b49d53c946b3685eaf78a2824)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51 
52 #include <asm/switch_to.h>
53 
54 #include "sched.h"
55 #include "stats.h"
56 #include "autogroup.h"
57 
58 /*
59  * The initial- and re-scaling of tunables is configurable
60  *
61  * Options are:
62  *
63  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
64  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
65  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66  *
67  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68  */
69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70 
71 /*
72  * Minimal preemption granularity for CPU-bound tasks:
73  *
74  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75  */
76 unsigned int sysctl_sched_base_slice			= 750000ULL;
77 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
78 
79 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
80 
81 int sched_thermal_decay_shift;
82 static int __init setup_sched_thermal_decay_shift(char *str)
83 {
84 	int _shift = 0;
85 
86 	if (kstrtoint(str, 0, &_shift))
87 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
88 
89 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
90 	return 1;
91 }
92 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
93 
94 #ifdef CONFIG_SMP
95 /*
96  * For asym packing, by default the lower numbered CPU has higher priority.
97  */
98 int __weak arch_asym_cpu_priority(int cpu)
99 {
100 	return -cpu;
101 }
102 
103 /*
104  * The margin used when comparing utilization with CPU capacity.
105  *
106  * (default: ~20%)
107  */
108 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
109 
110 /*
111  * The margin used when comparing CPU capacities.
112  * is 'cap1' noticeably greater than 'cap2'
113  *
114  * (default: ~5%)
115  */
116 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
117 #endif
118 
119 #ifdef CONFIG_CFS_BANDWIDTH
120 /*
121  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
122  * each time a cfs_rq requests quota.
123  *
124  * Note: in the case that the slice exceeds the runtime remaining (either due
125  * to consumption or the quota being specified to be smaller than the slice)
126  * we will always only issue the remaining available time.
127  *
128  * (default: 5 msec, units: microseconds)
129  */
130 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
131 #endif
132 
133 #ifdef CONFIG_NUMA_BALANCING
134 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
135 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
136 #endif
137 
138 #ifdef CONFIG_SYSCTL
139 static struct ctl_table sched_fair_sysctls[] = {
140 #ifdef CONFIG_CFS_BANDWIDTH
141 	{
142 		.procname       = "sched_cfs_bandwidth_slice_us",
143 		.data           = &sysctl_sched_cfs_bandwidth_slice,
144 		.maxlen         = sizeof(unsigned int),
145 		.mode           = 0644,
146 		.proc_handler   = proc_dointvec_minmax,
147 		.extra1         = SYSCTL_ONE,
148 	},
149 #endif
150 #ifdef CONFIG_NUMA_BALANCING
151 	{
152 		.procname	= "numa_balancing_promote_rate_limit_MBps",
153 		.data		= &sysctl_numa_balancing_promote_rate_limit,
154 		.maxlen		= sizeof(unsigned int),
155 		.mode		= 0644,
156 		.proc_handler	= proc_dointvec_minmax,
157 		.extra1		= SYSCTL_ZERO,
158 	},
159 #endif /* CONFIG_NUMA_BALANCING */
160 	{}
161 };
162 
163 static int __init sched_fair_sysctl_init(void)
164 {
165 	register_sysctl_init("kernel", sched_fair_sysctls);
166 	return 0;
167 }
168 late_initcall(sched_fair_sysctl_init);
169 #endif
170 
171 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
172 {
173 	lw->weight += inc;
174 	lw->inv_weight = 0;
175 }
176 
177 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
178 {
179 	lw->weight -= dec;
180 	lw->inv_weight = 0;
181 }
182 
183 static inline void update_load_set(struct load_weight *lw, unsigned long w)
184 {
185 	lw->weight = w;
186 	lw->inv_weight = 0;
187 }
188 
189 /*
190  * Increase the granularity value when there are more CPUs,
191  * because with more CPUs the 'effective latency' as visible
192  * to users decreases. But the relationship is not linear,
193  * so pick a second-best guess by going with the log2 of the
194  * number of CPUs.
195  *
196  * This idea comes from the SD scheduler of Con Kolivas:
197  */
198 static unsigned int get_update_sysctl_factor(void)
199 {
200 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
201 	unsigned int factor;
202 
203 	switch (sysctl_sched_tunable_scaling) {
204 	case SCHED_TUNABLESCALING_NONE:
205 		factor = 1;
206 		break;
207 	case SCHED_TUNABLESCALING_LINEAR:
208 		factor = cpus;
209 		break;
210 	case SCHED_TUNABLESCALING_LOG:
211 	default:
212 		factor = 1 + ilog2(cpus);
213 		break;
214 	}
215 
216 	return factor;
217 }
218 
219 static void update_sysctl(void)
220 {
221 	unsigned int factor = get_update_sysctl_factor();
222 
223 #define SET_SYSCTL(name) \
224 	(sysctl_##name = (factor) * normalized_sysctl_##name)
225 	SET_SYSCTL(sched_base_slice);
226 #undef SET_SYSCTL
227 }
228 
229 void __init sched_init_granularity(void)
230 {
231 	update_sysctl();
232 }
233 
234 #define WMULT_CONST	(~0U)
235 #define WMULT_SHIFT	32
236 
237 static void __update_inv_weight(struct load_weight *lw)
238 {
239 	unsigned long w;
240 
241 	if (likely(lw->inv_weight))
242 		return;
243 
244 	w = scale_load_down(lw->weight);
245 
246 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
247 		lw->inv_weight = 1;
248 	else if (unlikely(!w))
249 		lw->inv_weight = WMULT_CONST;
250 	else
251 		lw->inv_weight = WMULT_CONST / w;
252 }
253 
254 /*
255  * delta_exec * weight / lw.weight
256  *   OR
257  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
258  *
259  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
260  * we're guaranteed shift stays positive because inv_weight is guaranteed to
261  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
262  *
263  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
264  * weight/lw.weight <= 1, and therefore our shift will also be positive.
265  */
266 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
267 {
268 	u64 fact = scale_load_down(weight);
269 	u32 fact_hi = (u32)(fact >> 32);
270 	int shift = WMULT_SHIFT;
271 	int fs;
272 
273 	__update_inv_weight(lw);
274 
275 	if (unlikely(fact_hi)) {
276 		fs = fls(fact_hi);
277 		shift -= fs;
278 		fact >>= fs;
279 	}
280 
281 	fact = mul_u32_u32(fact, lw->inv_weight);
282 
283 	fact_hi = (u32)(fact >> 32);
284 	if (fact_hi) {
285 		fs = fls(fact_hi);
286 		shift -= fs;
287 		fact >>= fs;
288 	}
289 
290 	return mul_u64_u32_shr(delta_exec, fact, shift);
291 }
292 
293 /*
294  * delta /= w
295  */
296 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
297 {
298 	if (unlikely(se->load.weight != NICE_0_LOAD))
299 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
300 
301 	return delta;
302 }
303 
304 const struct sched_class fair_sched_class;
305 
306 /**************************************************************
307  * CFS operations on generic schedulable entities:
308  */
309 
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311 
312 /* Walk up scheduling entities hierarchy */
313 #define for_each_sched_entity(se) \
314 		for (; se; se = se->parent)
315 
316 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
317 {
318 	struct rq *rq = rq_of(cfs_rq);
319 	int cpu = cpu_of(rq);
320 
321 	if (cfs_rq->on_list)
322 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
323 
324 	cfs_rq->on_list = 1;
325 
326 	/*
327 	 * Ensure we either appear before our parent (if already
328 	 * enqueued) or force our parent to appear after us when it is
329 	 * enqueued. The fact that we always enqueue bottom-up
330 	 * reduces this to two cases and a special case for the root
331 	 * cfs_rq. Furthermore, it also means that we will always reset
332 	 * tmp_alone_branch either when the branch is connected
333 	 * to a tree or when we reach the top of the tree
334 	 */
335 	if (cfs_rq->tg->parent &&
336 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
337 		/*
338 		 * If parent is already on the list, we add the child
339 		 * just before. Thanks to circular linked property of
340 		 * the list, this means to put the child at the tail
341 		 * of the list that starts by parent.
342 		 */
343 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
344 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
345 		/*
346 		 * The branch is now connected to its tree so we can
347 		 * reset tmp_alone_branch to the beginning of the
348 		 * list.
349 		 */
350 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
351 		return true;
352 	}
353 
354 	if (!cfs_rq->tg->parent) {
355 		/*
356 		 * cfs rq without parent should be put
357 		 * at the tail of the list.
358 		 */
359 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
360 			&rq->leaf_cfs_rq_list);
361 		/*
362 		 * We have reach the top of a tree so we can reset
363 		 * tmp_alone_branch to the beginning of the list.
364 		 */
365 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
366 		return true;
367 	}
368 
369 	/*
370 	 * The parent has not already been added so we want to
371 	 * make sure that it will be put after us.
372 	 * tmp_alone_branch points to the begin of the branch
373 	 * where we will add parent.
374 	 */
375 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
376 	/*
377 	 * update tmp_alone_branch to points to the new begin
378 	 * of the branch
379 	 */
380 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
381 	return false;
382 }
383 
384 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
385 {
386 	if (cfs_rq->on_list) {
387 		struct rq *rq = rq_of(cfs_rq);
388 
389 		/*
390 		 * With cfs_rq being unthrottled/throttled during an enqueue,
391 		 * it can happen the tmp_alone_branch points the a leaf that
392 		 * we finally want to del. In this case, tmp_alone_branch moves
393 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
394 		 * at the end of the enqueue.
395 		 */
396 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
397 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
398 
399 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
400 		cfs_rq->on_list = 0;
401 	}
402 }
403 
404 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
405 {
406 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
407 }
408 
409 /* Iterate thr' all leaf cfs_rq's on a runqueue */
410 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
411 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
412 				 leaf_cfs_rq_list)
413 
414 /* Do the two (enqueued) entities belong to the same group ? */
415 static inline struct cfs_rq *
416 is_same_group(struct sched_entity *se, struct sched_entity *pse)
417 {
418 	if (se->cfs_rq == pse->cfs_rq)
419 		return se->cfs_rq;
420 
421 	return NULL;
422 }
423 
424 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
425 {
426 	return se->parent;
427 }
428 
429 static void
430 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
431 {
432 	int se_depth, pse_depth;
433 
434 	/*
435 	 * preemption test can be made between sibling entities who are in the
436 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
437 	 * both tasks until we find their ancestors who are siblings of common
438 	 * parent.
439 	 */
440 
441 	/* First walk up until both entities are at same depth */
442 	se_depth = (*se)->depth;
443 	pse_depth = (*pse)->depth;
444 
445 	while (se_depth > pse_depth) {
446 		se_depth--;
447 		*se = parent_entity(*se);
448 	}
449 
450 	while (pse_depth > se_depth) {
451 		pse_depth--;
452 		*pse = parent_entity(*pse);
453 	}
454 
455 	while (!is_same_group(*se, *pse)) {
456 		*se = parent_entity(*se);
457 		*pse = parent_entity(*pse);
458 	}
459 }
460 
461 static int tg_is_idle(struct task_group *tg)
462 {
463 	return tg->idle > 0;
464 }
465 
466 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
467 {
468 	return cfs_rq->idle > 0;
469 }
470 
471 static int se_is_idle(struct sched_entity *se)
472 {
473 	if (entity_is_task(se))
474 		return task_has_idle_policy(task_of(se));
475 	return cfs_rq_is_idle(group_cfs_rq(se));
476 }
477 
478 #else	/* !CONFIG_FAIR_GROUP_SCHED */
479 
480 #define for_each_sched_entity(se) \
481 		for (; se; se = NULL)
482 
483 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
484 {
485 	return true;
486 }
487 
488 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
489 {
490 }
491 
492 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
493 {
494 }
495 
496 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
497 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
498 
499 static inline struct sched_entity *parent_entity(struct sched_entity *se)
500 {
501 	return NULL;
502 }
503 
504 static inline void
505 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
506 {
507 }
508 
509 static inline int tg_is_idle(struct task_group *tg)
510 {
511 	return 0;
512 }
513 
514 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
515 {
516 	return 0;
517 }
518 
519 static int se_is_idle(struct sched_entity *se)
520 {
521 	return 0;
522 }
523 
524 #endif	/* CONFIG_FAIR_GROUP_SCHED */
525 
526 static __always_inline
527 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
528 
529 /**************************************************************
530  * Scheduling class tree data structure manipulation methods:
531  */
532 
533 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
534 {
535 	s64 delta = (s64)(vruntime - max_vruntime);
536 	if (delta > 0)
537 		max_vruntime = vruntime;
538 
539 	return max_vruntime;
540 }
541 
542 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
543 {
544 	s64 delta = (s64)(vruntime - min_vruntime);
545 	if (delta < 0)
546 		min_vruntime = vruntime;
547 
548 	return min_vruntime;
549 }
550 
551 static inline bool entity_before(const struct sched_entity *a,
552 				 const struct sched_entity *b)
553 {
554 	/*
555 	 * Tiebreak on vruntime seems unnecessary since it can
556 	 * hardly happen.
557 	 */
558 	return (s64)(a->deadline - b->deadline) < 0;
559 }
560 
561 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
562 {
563 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
564 }
565 
566 #define __node_2_se(node) \
567 	rb_entry((node), struct sched_entity, run_node)
568 
569 /*
570  * Compute virtual time from the per-task service numbers:
571  *
572  * Fair schedulers conserve lag:
573  *
574  *   \Sum lag_i = 0
575  *
576  * Where lag_i is given by:
577  *
578  *   lag_i = S - s_i = w_i * (V - v_i)
579  *
580  * Where S is the ideal service time and V is it's virtual time counterpart.
581  * Therefore:
582  *
583  *   \Sum lag_i = 0
584  *   \Sum w_i * (V - v_i) = 0
585  *   \Sum w_i * V - w_i * v_i = 0
586  *
587  * From which we can solve an expression for V in v_i (which we have in
588  * se->vruntime):
589  *
590  *       \Sum v_i * w_i   \Sum v_i * w_i
591  *   V = -------------- = --------------
592  *          \Sum w_i            W
593  *
594  * Specifically, this is the weighted average of all entity virtual runtimes.
595  *
596  * [[ NOTE: this is only equal to the ideal scheduler under the condition
597  *          that join/leave operations happen at lag_i = 0, otherwise the
598  *          virtual time has non-continguous motion equivalent to:
599  *
600  *	      V +-= lag_i / W
601  *
602  *	    Also see the comment in place_entity() that deals with this. ]]
603  *
604  * However, since v_i is u64, and the multiplcation could easily overflow
605  * transform it into a relative form that uses smaller quantities:
606  *
607  * Substitute: v_i == (v_i - v0) + v0
608  *
609  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
610  * V = ---------------------------- = --------------------- + v0
611  *                  W                            W
612  *
613  * Which we track using:
614  *
615  *                    v0 := cfs_rq->min_vruntime
616  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
617  *              \Sum w_i := cfs_rq->avg_load
618  *
619  * Since min_vruntime is a monotonic increasing variable that closely tracks
620  * the per-task service, these deltas: (v_i - v), will be in the order of the
621  * maximal (virtual) lag induced in the system due to quantisation.
622  *
623  * Also, we use scale_load_down() to reduce the size.
624  *
625  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
626  */
627 static void
628 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
629 {
630 	unsigned long weight = scale_load_down(se->load.weight);
631 	s64 key = entity_key(cfs_rq, se);
632 
633 	cfs_rq->avg_vruntime += key * weight;
634 	cfs_rq->avg_load += weight;
635 }
636 
637 static void
638 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
639 {
640 	unsigned long weight = scale_load_down(se->load.weight);
641 	s64 key = entity_key(cfs_rq, se);
642 
643 	cfs_rq->avg_vruntime -= key * weight;
644 	cfs_rq->avg_load -= weight;
645 }
646 
647 static inline
648 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
649 {
650 	/*
651 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
652 	 */
653 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
654 }
655 
656 /*
657  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
658  * For this to be so, the result of this function must have a left bias.
659  */
660 u64 avg_vruntime(struct cfs_rq *cfs_rq)
661 {
662 	struct sched_entity *curr = cfs_rq->curr;
663 	s64 avg = cfs_rq->avg_vruntime;
664 	long load = cfs_rq->avg_load;
665 
666 	if (curr && curr->on_rq) {
667 		unsigned long weight = scale_load_down(curr->load.weight);
668 
669 		avg += entity_key(cfs_rq, curr) * weight;
670 		load += weight;
671 	}
672 
673 	if (load) {
674 		/* sign flips effective floor / ceil */
675 		if (avg < 0)
676 			avg -= (load - 1);
677 		avg = div_s64(avg, load);
678 	}
679 
680 	return cfs_rq->min_vruntime + avg;
681 }
682 
683 /*
684  * lag_i = S - s_i = w_i * (V - v_i)
685  *
686  * However, since V is approximated by the weighted average of all entities it
687  * is possible -- by addition/removal/reweight to the tree -- to move V around
688  * and end up with a larger lag than we started with.
689  *
690  * Limit this to either double the slice length with a minimum of TICK_NSEC
691  * since that is the timing granularity.
692  *
693  * EEVDF gives the following limit for a steady state system:
694  *
695  *   -r_max < lag < max(r_max, q)
696  *
697  * XXX could add max_slice to the augmented data to track this.
698  */
699 static s64 entity_lag(u64 avruntime, struct sched_entity *se)
700 {
701 	s64 vlag, limit;
702 
703 	vlag = avruntime - se->vruntime;
704 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
705 
706 	return clamp(vlag, -limit, limit);
707 }
708 
709 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
710 {
711 	SCHED_WARN_ON(!se->on_rq);
712 
713 	se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
714 }
715 
716 /*
717  * Entity is eligible once it received less service than it ought to have,
718  * eg. lag >= 0.
719  *
720  * lag_i = S - s_i = w_i*(V - v_i)
721  *
722  * lag_i >= 0 -> V >= v_i
723  *
724  *     \Sum (v_i - v)*w_i
725  * V = ------------------ + v
726  *          \Sum w_i
727  *
728  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
729  *
730  * Note: using 'avg_vruntime() > se->vruntime' is inacurate due
731  *       to the loss in precision caused by the division.
732  */
733 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
734 {
735 	struct sched_entity *curr = cfs_rq->curr;
736 	s64 avg = cfs_rq->avg_vruntime;
737 	long load = cfs_rq->avg_load;
738 
739 	if (curr && curr->on_rq) {
740 		unsigned long weight = scale_load_down(curr->load.weight);
741 
742 		avg += entity_key(cfs_rq, curr) * weight;
743 		load += weight;
744 	}
745 
746 	return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
747 }
748 
749 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
750 {
751 	return vruntime_eligible(cfs_rq, se->vruntime);
752 }
753 
754 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
755 {
756 	u64 min_vruntime = cfs_rq->min_vruntime;
757 	/*
758 	 * open coded max_vruntime() to allow updating avg_vruntime
759 	 */
760 	s64 delta = (s64)(vruntime - min_vruntime);
761 	if (delta > 0) {
762 		avg_vruntime_update(cfs_rq, delta);
763 		min_vruntime = vruntime;
764 	}
765 	return min_vruntime;
766 }
767 
768 static void update_min_vruntime(struct cfs_rq *cfs_rq)
769 {
770 	struct sched_entity *se = __pick_root_entity(cfs_rq);
771 	struct sched_entity *curr = cfs_rq->curr;
772 	u64 vruntime = cfs_rq->min_vruntime;
773 
774 	if (curr) {
775 		if (curr->on_rq)
776 			vruntime = curr->vruntime;
777 		else
778 			curr = NULL;
779 	}
780 
781 	if (se) {
782 		if (!curr)
783 			vruntime = se->min_vruntime;
784 		else
785 			vruntime = min_vruntime(vruntime, se->min_vruntime);
786 	}
787 
788 	/* ensure we never gain time by being placed backwards. */
789 	u64_u32_store(cfs_rq->min_vruntime,
790 		      __update_min_vruntime(cfs_rq, vruntime));
791 }
792 
793 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
794 {
795 	return entity_before(__node_2_se(a), __node_2_se(b));
796 }
797 
798 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
799 
800 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
801 {
802 	if (node) {
803 		struct sched_entity *rse = __node_2_se(node);
804 		if (vruntime_gt(min_vruntime, se, rse))
805 			se->min_vruntime = rse->min_vruntime;
806 	}
807 }
808 
809 /*
810  * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
811  */
812 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
813 {
814 	u64 old_min_vruntime = se->min_vruntime;
815 	struct rb_node *node = &se->run_node;
816 
817 	se->min_vruntime = se->vruntime;
818 	__min_vruntime_update(se, node->rb_right);
819 	__min_vruntime_update(se, node->rb_left);
820 
821 	return se->min_vruntime == old_min_vruntime;
822 }
823 
824 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
825 		     run_node, min_vruntime, min_vruntime_update);
826 
827 /*
828  * Enqueue an entity into the rb-tree:
829  */
830 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
831 {
832 	avg_vruntime_add(cfs_rq, se);
833 	se->min_vruntime = se->vruntime;
834 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
835 				__entity_less, &min_vruntime_cb);
836 }
837 
838 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
839 {
840 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
841 				  &min_vruntime_cb);
842 	avg_vruntime_sub(cfs_rq, se);
843 }
844 
845 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
846 {
847 	struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
848 
849 	if (!root)
850 		return NULL;
851 
852 	return __node_2_se(root);
853 }
854 
855 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
856 {
857 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
858 
859 	if (!left)
860 		return NULL;
861 
862 	return __node_2_se(left);
863 }
864 
865 /*
866  * Earliest Eligible Virtual Deadline First
867  *
868  * In order to provide latency guarantees for different request sizes
869  * EEVDF selects the best runnable task from two criteria:
870  *
871  *  1) the task must be eligible (must be owed service)
872  *
873  *  2) from those tasks that meet 1), we select the one
874  *     with the earliest virtual deadline.
875  *
876  * We can do this in O(log n) time due to an augmented RB-tree. The
877  * tree keeps the entries sorted on deadline, but also functions as a
878  * heap based on the vruntime by keeping:
879  *
880  *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
881  *
882  * Which allows tree pruning through eligibility.
883  */
884 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
885 {
886 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
887 	struct sched_entity *se = __pick_first_entity(cfs_rq);
888 	struct sched_entity *curr = cfs_rq->curr;
889 	struct sched_entity *best = NULL;
890 
891 	/*
892 	 * We can safely skip eligibility check if there is only one entity
893 	 * in this cfs_rq, saving some cycles.
894 	 */
895 	if (cfs_rq->nr_running == 1)
896 		return curr && curr->on_rq ? curr : se;
897 
898 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
899 		curr = NULL;
900 
901 	/*
902 	 * Once selected, run a task until it either becomes non-eligible or
903 	 * until it gets a new slice. See the HACK in set_next_entity().
904 	 */
905 	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
906 		return curr;
907 
908 	/* Pick the leftmost entity if it's eligible */
909 	if (se && entity_eligible(cfs_rq, se)) {
910 		best = se;
911 		goto found;
912 	}
913 
914 	/* Heap search for the EEVD entity */
915 	while (node) {
916 		struct rb_node *left = node->rb_left;
917 
918 		/*
919 		 * Eligible entities in left subtree are always better
920 		 * choices, since they have earlier deadlines.
921 		 */
922 		if (left && vruntime_eligible(cfs_rq,
923 					__node_2_se(left)->min_vruntime)) {
924 			node = left;
925 			continue;
926 		}
927 
928 		se = __node_2_se(node);
929 
930 		/*
931 		 * The left subtree either is empty or has no eligible
932 		 * entity, so check the current node since it is the one
933 		 * with earliest deadline that might be eligible.
934 		 */
935 		if (entity_eligible(cfs_rq, se)) {
936 			best = se;
937 			break;
938 		}
939 
940 		node = node->rb_right;
941 	}
942 found:
943 	if (!best || (curr && entity_before(curr, best)))
944 		best = curr;
945 
946 	return best;
947 }
948 
949 #ifdef CONFIG_SCHED_DEBUG
950 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
951 {
952 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
953 
954 	if (!last)
955 		return NULL;
956 
957 	return __node_2_se(last);
958 }
959 
960 /**************************************************************
961  * Scheduling class statistics methods:
962  */
963 #ifdef CONFIG_SMP
964 int sched_update_scaling(void)
965 {
966 	unsigned int factor = get_update_sysctl_factor();
967 
968 #define WRT_SYSCTL(name) \
969 	(normalized_sysctl_##name = sysctl_##name / (factor))
970 	WRT_SYSCTL(sched_base_slice);
971 #undef WRT_SYSCTL
972 
973 	return 0;
974 }
975 #endif
976 #endif
977 
978 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
979 
980 /*
981  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
982  * this is probably good enough.
983  */
984 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
985 {
986 	if ((s64)(se->vruntime - se->deadline) < 0)
987 		return;
988 
989 	/*
990 	 * For EEVDF the virtual time slope is determined by w_i (iow.
991 	 * nice) while the request time r_i is determined by
992 	 * sysctl_sched_base_slice.
993 	 */
994 	se->slice = sysctl_sched_base_slice;
995 
996 	/*
997 	 * EEVDF: vd_i = ve_i + r_i / w_i
998 	 */
999 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1000 
1001 	/*
1002 	 * The task has consumed its request, reschedule.
1003 	 */
1004 	if (cfs_rq->nr_running > 1) {
1005 		resched_curr(rq_of(cfs_rq));
1006 		clear_buddies(cfs_rq, se);
1007 	}
1008 }
1009 
1010 #include "pelt.h"
1011 #ifdef CONFIG_SMP
1012 
1013 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1014 static unsigned long task_h_load(struct task_struct *p);
1015 static unsigned long capacity_of(int cpu);
1016 
1017 /* Give new sched_entity start runnable values to heavy its load in infant time */
1018 void init_entity_runnable_average(struct sched_entity *se)
1019 {
1020 	struct sched_avg *sa = &se->avg;
1021 
1022 	memset(sa, 0, sizeof(*sa));
1023 
1024 	/*
1025 	 * Tasks are initialized with full load to be seen as heavy tasks until
1026 	 * they get a chance to stabilize to their real load level.
1027 	 * Group entities are initialized with zero load to reflect the fact that
1028 	 * nothing has been attached to the task group yet.
1029 	 */
1030 	if (entity_is_task(se))
1031 		sa->load_avg = scale_load_down(se->load.weight);
1032 
1033 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
1034 }
1035 
1036 /*
1037  * With new tasks being created, their initial util_avgs are extrapolated
1038  * based on the cfs_rq's current util_avg:
1039  *
1040  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
1041  *
1042  * However, in many cases, the above util_avg does not give a desired
1043  * value. Moreover, the sum of the util_avgs may be divergent, such
1044  * as when the series is a harmonic series.
1045  *
1046  * To solve this problem, we also cap the util_avg of successive tasks to
1047  * only 1/2 of the left utilization budget:
1048  *
1049  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1050  *
1051  * where n denotes the nth task and cpu_scale the CPU capacity.
1052  *
1053  * For example, for a CPU with 1024 of capacity, a simplest series from
1054  * the beginning would be like:
1055  *
1056  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1057  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1058  *
1059  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1060  * if util_avg > util_avg_cap.
1061  */
1062 void post_init_entity_util_avg(struct task_struct *p)
1063 {
1064 	struct sched_entity *se = &p->se;
1065 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1066 	struct sched_avg *sa = &se->avg;
1067 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1068 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1069 
1070 	if (p->sched_class != &fair_sched_class) {
1071 		/*
1072 		 * For !fair tasks do:
1073 		 *
1074 		update_cfs_rq_load_avg(now, cfs_rq);
1075 		attach_entity_load_avg(cfs_rq, se);
1076 		switched_from_fair(rq, p);
1077 		 *
1078 		 * such that the next switched_to_fair() has the
1079 		 * expected state.
1080 		 */
1081 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1082 		return;
1083 	}
1084 
1085 	if (cap > 0) {
1086 		if (cfs_rq->avg.util_avg != 0) {
1087 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
1088 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1089 
1090 			if (sa->util_avg > cap)
1091 				sa->util_avg = cap;
1092 		} else {
1093 			sa->util_avg = cap;
1094 		}
1095 	}
1096 
1097 	sa->runnable_avg = sa->util_avg;
1098 }
1099 
1100 #else /* !CONFIG_SMP */
1101 void init_entity_runnable_average(struct sched_entity *se)
1102 {
1103 }
1104 void post_init_entity_util_avg(struct task_struct *p)
1105 {
1106 }
1107 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1108 {
1109 }
1110 #endif /* CONFIG_SMP */
1111 
1112 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1113 {
1114 	u64 now = rq_clock_task(rq);
1115 	s64 delta_exec;
1116 
1117 	delta_exec = now - curr->exec_start;
1118 	if (unlikely(delta_exec <= 0))
1119 		return delta_exec;
1120 
1121 	curr->exec_start = now;
1122 	curr->sum_exec_runtime += delta_exec;
1123 
1124 	if (schedstat_enabled()) {
1125 		struct sched_statistics *stats;
1126 
1127 		stats = __schedstats_from_se(curr);
1128 		__schedstat_set(stats->exec_max,
1129 				max(delta_exec, stats->exec_max));
1130 	}
1131 
1132 	return delta_exec;
1133 }
1134 
1135 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1136 {
1137 	trace_sched_stat_runtime(p, delta_exec);
1138 	account_group_exec_runtime(p, delta_exec);
1139 	cgroup_account_cputime(p, delta_exec);
1140 	if (p->dl_server)
1141 		dl_server_update(p->dl_server, delta_exec);
1142 }
1143 
1144 /*
1145  * Used by other classes to account runtime.
1146  */
1147 s64 update_curr_common(struct rq *rq)
1148 {
1149 	struct task_struct *curr = rq->curr;
1150 	s64 delta_exec;
1151 
1152 	delta_exec = update_curr_se(rq, &curr->se);
1153 	if (likely(delta_exec > 0))
1154 		update_curr_task(curr, delta_exec);
1155 
1156 	return delta_exec;
1157 }
1158 
1159 /*
1160  * Update the current task's runtime statistics.
1161  */
1162 static void update_curr(struct cfs_rq *cfs_rq)
1163 {
1164 	struct sched_entity *curr = cfs_rq->curr;
1165 	s64 delta_exec;
1166 
1167 	if (unlikely(!curr))
1168 		return;
1169 
1170 	delta_exec = update_curr_se(rq_of(cfs_rq), curr);
1171 	if (unlikely(delta_exec <= 0))
1172 		return;
1173 
1174 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1175 	update_deadline(cfs_rq, curr);
1176 	update_min_vruntime(cfs_rq);
1177 
1178 	if (entity_is_task(curr))
1179 		update_curr_task(task_of(curr), delta_exec);
1180 
1181 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1182 }
1183 
1184 static void update_curr_fair(struct rq *rq)
1185 {
1186 	update_curr(cfs_rq_of(&rq->curr->se));
1187 }
1188 
1189 static inline void
1190 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1191 {
1192 	struct sched_statistics *stats;
1193 	struct task_struct *p = NULL;
1194 
1195 	if (!schedstat_enabled())
1196 		return;
1197 
1198 	stats = __schedstats_from_se(se);
1199 
1200 	if (entity_is_task(se))
1201 		p = task_of(se);
1202 
1203 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1204 }
1205 
1206 static inline void
1207 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1208 {
1209 	struct sched_statistics *stats;
1210 	struct task_struct *p = NULL;
1211 
1212 	if (!schedstat_enabled())
1213 		return;
1214 
1215 	stats = __schedstats_from_se(se);
1216 
1217 	/*
1218 	 * When the sched_schedstat changes from 0 to 1, some sched se
1219 	 * maybe already in the runqueue, the se->statistics.wait_start
1220 	 * will be 0.So it will let the delta wrong. We need to avoid this
1221 	 * scenario.
1222 	 */
1223 	if (unlikely(!schedstat_val(stats->wait_start)))
1224 		return;
1225 
1226 	if (entity_is_task(se))
1227 		p = task_of(se);
1228 
1229 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1230 }
1231 
1232 static inline void
1233 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1234 {
1235 	struct sched_statistics *stats;
1236 	struct task_struct *tsk = NULL;
1237 
1238 	if (!schedstat_enabled())
1239 		return;
1240 
1241 	stats = __schedstats_from_se(se);
1242 
1243 	if (entity_is_task(se))
1244 		tsk = task_of(se);
1245 
1246 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1247 }
1248 
1249 /*
1250  * Task is being enqueued - update stats:
1251  */
1252 static inline void
1253 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1254 {
1255 	if (!schedstat_enabled())
1256 		return;
1257 
1258 	/*
1259 	 * Are we enqueueing a waiting task? (for current tasks
1260 	 * a dequeue/enqueue event is a NOP)
1261 	 */
1262 	if (se != cfs_rq->curr)
1263 		update_stats_wait_start_fair(cfs_rq, se);
1264 
1265 	if (flags & ENQUEUE_WAKEUP)
1266 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1267 }
1268 
1269 static inline void
1270 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1271 {
1272 
1273 	if (!schedstat_enabled())
1274 		return;
1275 
1276 	/*
1277 	 * Mark the end of the wait period if dequeueing a
1278 	 * waiting task:
1279 	 */
1280 	if (se != cfs_rq->curr)
1281 		update_stats_wait_end_fair(cfs_rq, se);
1282 
1283 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1284 		struct task_struct *tsk = task_of(se);
1285 		unsigned int state;
1286 
1287 		/* XXX racy against TTWU */
1288 		state = READ_ONCE(tsk->__state);
1289 		if (state & TASK_INTERRUPTIBLE)
1290 			__schedstat_set(tsk->stats.sleep_start,
1291 				      rq_clock(rq_of(cfs_rq)));
1292 		if (state & TASK_UNINTERRUPTIBLE)
1293 			__schedstat_set(tsk->stats.block_start,
1294 				      rq_clock(rq_of(cfs_rq)));
1295 	}
1296 }
1297 
1298 /*
1299  * We are picking a new current task - update its stats:
1300  */
1301 static inline void
1302 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1303 {
1304 	/*
1305 	 * We are starting a new run period:
1306 	 */
1307 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1308 }
1309 
1310 /**************************************************
1311  * Scheduling class queueing methods:
1312  */
1313 
1314 static inline bool is_core_idle(int cpu)
1315 {
1316 #ifdef CONFIG_SCHED_SMT
1317 	int sibling;
1318 
1319 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1320 		if (cpu == sibling)
1321 			continue;
1322 
1323 		if (!idle_cpu(sibling))
1324 			return false;
1325 	}
1326 #endif
1327 
1328 	return true;
1329 }
1330 
1331 #ifdef CONFIG_NUMA
1332 #define NUMA_IMBALANCE_MIN 2
1333 
1334 static inline long
1335 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1336 {
1337 	/*
1338 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1339 	 * threshold. Above this threshold, individual tasks may be contending
1340 	 * for both memory bandwidth and any shared HT resources.  This is an
1341 	 * approximation as the number of running tasks may not be related to
1342 	 * the number of busy CPUs due to sched_setaffinity.
1343 	 */
1344 	if (dst_running > imb_numa_nr)
1345 		return imbalance;
1346 
1347 	/*
1348 	 * Allow a small imbalance based on a simple pair of communicating
1349 	 * tasks that remain local when the destination is lightly loaded.
1350 	 */
1351 	if (imbalance <= NUMA_IMBALANCE_MIN)
1352 		return 0;
1353 
1354 	return imbalance;
1355 }
1356 #endif /* CONFIG_NUMA */
1357 
1358 #ifdef CONFIG_NUMA_BALANCING
1359 /*
1360  * Approximate time to scan a full NUMA task in ms. The task scan period is
1361  * calculated based on the tasks virtual memory size and
1362  * numa_balancing_scan_size.
1363  */
1364 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1365 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1366 
1367 /* Portion of address space to scan in MB */
1368 unsigned int sysctl_numa_balancing_scan_size = 256;
1369 
1370 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1371 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1372 
1373 /* The page with hint page fault latency < threshold in ms is considered hot */
1374 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1375 
1376 struct numa_group {
1377 	refcount_t refcount;
1378 
1379 	spinlock_t lock; /* nr_tasks, tasks */
1380 	int nr_tasks;
1381 	pid_t gid;
1382 	int active_nodes;
1383 
1384 	struct rcu_head rcu;
1385 	unsigned long total_faults;
1386 	unsigned long max_faults_cpu;
1387 	/*
1388 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1389 	 *
1390 	 * Faults_cpu is used to decide whether memory should move
1391 	 * towards the CPU. As a consequence, these stats are weighted
1392 	 * more by CPU use than by memory faults.
1393 	 */
1394 	unsigned long faults[];
1395 };
1396 
1397 /*
1398  * For functions that can be called in multiple contexts that permit reading
1399  * ->numa_group (see struct task_struct for locking rules).
1400  */
1401 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1402 {
1403 	return rcu_dereference_check(p->numa_group, p == current ||
1404 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1405 }
1406 
1407 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1408 {
1409 	return rcu_dereference_protected(p->numa_group, p == current);
1410 }
1411 
1412 static inline unsigned long group_faults_priv(struct numa_group *ng);
1413 static inline unsigned long group_faults_shared(struct numa_group *ng);
1414 
1415 static unsigned int task_nr_scan_windows(struct task_struct *p)
1416 {
1417 	unsigned long rss = 0;
1418 	unsigned long nr_scan_pages;
1419 
1420 	/*
1421 	 * Calculations based on RSS as non-present and empty pages are skipped
1422 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1423 	 * on resident pages
1424 	 */
1425 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1426 	rss = get_mm_rss(p->mm);
1427 	if (!rss)
1428 		rss = nr_scan_pages;
1429 
1430 	rss = round_up(rss, nr_scan_pages);
1431 	return rss / nr_scan_pages;
1432 }
1433 
1434 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1435 #define MAX_SCAN_WINDOW 2560
1436 
1437 static unsigned int task_scan_min(struct task_struct *p)
1438 {
1439 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1440 	unsigned int scan, floor;
1441 	unsigned int windows = 1;
1442 
1443 	if (scan_size < MAX_SCAN_WINDOW)
1444 		windows = MAX_SCAN_WINDOW / scan_size;
1445 	floor = 1000 / windows;
1446 
1447 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1448 	return max_t(unsigned int, floor, scan);
1449 }
1450 
1451 static unsigned int task_scan_start(struct task_struct *p)
1452 {
1453 	unsigned long smin = task_scan_min(p);
1454 	unsigned long period = smin;
1455 	struct numa_group *ng;
1456 
1457 	/* Scale the maximum scan period with the amount of shared memory. */
1458 	rcu_read_lock();
1459 	ng = rcu_dereference(p->numa_group);
1460 	if (ng) {
1461 		unsigned long shared = group_faults_shared(ng);
1462 		unsigned long private = group_faults_priv(ng);
1463 
1464 		period *= refcount_read(&ng->refcount);
1465 		period *= shared + 1;
1466 		period /= private + shared + 1;
1467 	}
1468 	rcu_read_unlock();
1469 
1470 	return max(smin, period);
1471 }
1472 
1473 static unsigned int task_scan_max(struct task_struct *p)
1474 {
1475 	unsigned long smin = task_scan_min(p);
1476 	unsigned long smax;
1477 	struct numa_group *ng;
1478 
1479 	/* Watch for min being lower than max due to floor calculations */
1480 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1481 
1482 	/* Scale the maximum scan period with the amount of shared memory. */
1483 	ng = deref_curr_numa_group(p);
1484 	if (ng) {
1485 		unsigned long shared = group_faults_shared(ng);
1486 		unsigned long private = group_faults_priv(ng);
1487 		unsigned long period = smax;
1488 
1489 		period *= refcount_read(&ng->refcount);
1490 		period *= shared + 1;
1491 		period /= private + shared + 1;
1492 
1493 		smax = max(smax, period);
1494 	}
1495 
1496 	return max(smin, smax);
1497 }
1498 
1499 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1500 {
1501 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1502 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1503 }
1504 
1505 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1506 {
1507 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1508 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1509 }
1510 
1511 /* Shared or private faults. */
1512 #define NR_NUMA_HINT_FAULT_TYPES 2
1513 
1514 /* Memory and CPU locality */
1515 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1516 
1517 /* Averaged statistics, and temporary buffers. */
1518 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1519 
1520 pid_t task_numa_group_id(struct task_struct *p)
1521 {
1522 	struct numa_group *ng;
1523 	pid_t gid = 0;
1524 
1525 	rcu_read_lock();
1526 	ng = rcu_dereference(p->numa_group);
1527 	if (ng)
1528 		gid = ng->gid;
1529 	rcu_read_unlock();
1530 
1531 	return gid;
1532 }
1533 
1534 /*
1535  * The averaged statistics, shared & private, memory & CPU,
1536  * occupy the first half of the array. The second half of the
1537  * array is for current counters, which are averaged into the
1538  * first set by task_numa_placement.
1539  */
1540 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1541 {
1542 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1543 }
1544 
1545 static inline unsigned long task_faults(struct task_struct *p, int nid)
1546 {
1547 	if (!p->numa_faults)
1548 		return 0;
1549 
1550 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1551 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1552 }
1553 
1554 static inline unsigned long group_faults(struct task_struct *p, int nid)
1555 {
1556 	struct numa_group *ng = deref_task_numa_group(p);
1557 
1558 	if (!ng)
1559 		return 0;
1560 
1561 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1562 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1563 }
1564 
1565 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1566 {
1567 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1568 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1569 }
1570 
1571 static inline unsigned long group_faults_priv(struct numa_group *ng)
1572 {
1573 	unsigned long faults = 0;
1574 	int node;
1575 
1576 	for_each_online_node(node) {
1577 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1578 	}
1579 
1580 	return faults;
1581 }
1582 
1583 static inline unsigned long group_faults_shared(struct numa_group *ng)
1584 {
1585 	unsigned long faults = 0;
1586 	int node;
1587 
1588 	for_each_online_node(node) {
1589 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1590 	}
1591 
1592 	return faults;
1593 }
1594 
1595 /*
1596  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1597  * considered part of a numa group's pseudo-interleaving set. Migrations
1598  * between these nodes are slowed down, to allow things to settle down.
1599  */
1600 #define ACTIVE_NODE_FRACTION 3
1601 
1602 static bool numa_is_active_node(int nid, struct numa_group *ng)
1603 {
1604 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1605 }
1606 
1607 /* Handle placement on systems where not all nodes are directly connected. */
1608 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1609 					int lim_dist, bool task)
1610 {
1611 	unsigned long score = 0;
1612 	int node, max_dist;
1613 
1614 	/*
1615 	 * All nodes are directly connected, and the same distance
1616 	 * from each other. No need for fancy placement algorithms.
1617 	 */
1618 	if (sched_numa_topology_type == NUMA_DIRECT)
1619 		return 0;
1620 
1621 	/* sched_max_numa_distance may be changed in parallel. */
1622 	max_dist = READ_ONCE(sched_max_numa_distance);
1623 	/*
1624 	 * This code is called for each node, introducing N^2 complexity,
1625 	 * which should be ok given the number of nodes rarely exceeds 8.
1626 	 */
1627 	for_each_online_node(node) {
1628 		unsigned long faults;
1629 		int dist = node_distance(nid, node);
1630 
1631 		/*
1632 		 * The furthest away nodes in the system are not interesting
1633 		 * for placement; nid was already counted.
1634 		 */
1635 		if (dist >= max_dist || node == nid)
1636 			continue;
1637 
1638 		/*
1639 		 * On systems with a backplane NUMA topology, compare groups
1640 		 * of nodes, and move tasks towards the group with the most
1641 		 * memory accesses. When comparing two nodes at distance
1642 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1643 		 * of each group. Skip other nodes.
1644 		 */
1645 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1646 			continue;
1647 
1648 		/* Add up the faults from nearby nodes. */
1649 		if (task)
1650 			faults = task_faults(p, node);
1651 		else
1652 			faults = group_faults(p, node);
1653 
1654 		/*
1655 		 * On systems with a glueless mesh NUMA topology, there are
1656 		 * no fixed "groups of nodes". Instead, nodes that are not
1657 		 * directly connected bounce traffic through intermediate
1658 		 * nodes; a numa_group can occupy any set of nodes.
1659 		 * The further away a node is, the less the faults count.
1660 		 * This seems to result in good task placement.
1661 		 */
1662 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1663 			faults *= (max_dist - dist);
1664 			faults /= (max_dist - LOCAL_DISTANCE);
1665 		}
1666 
1667 		score += faults;
1668 	}
1669 
1670 	return score;
1671 }
1672 
1673 /*
1674  * These return the fraction of accesses done by a particular task, or
1675  * task group, on a particular numa node.  The group weight is given a
1676  * larger multiplier, in order to group tasks together that are almost
1677  * evenly spread out between numa nodes.
1678  */
1679 static inline unsigned long task_weight(struct task_struct *p, int nid,
1680 					int dist)
1681 {
1682 	unsigned long faults, total_faults;
1683 
1684 	if (!p->numa_faults)
1685 		return 0;
1686 
1687 	total_faults = p->total_numa_faults;
1688 
1689 	if (!total_faults)
1690 		return 0;
1691 
1692 	faults = task_faults(p, nid);
1693 	faults += score_nearby_nodes(p, nid, dist, true);
1694 
1695 	return 1000 * faults / total_faults;
1696 }
1697 
1698 static inline unsigned long group_weight(struct task_struct *p, int nid,
1699 					 int dist)
1700 {
1701 	struct numa_group *ng = deref_task_numa_group(p);
1702 	unsigned long faults, total_faults;
1703 
1704 	if (!ng)
1705 		return 0;
1706 
1707 	total_faults = ng->total_faults;
1708 
1709 	if (!total_faults)
1710 		return 0;
1711 
1712 	faults = group_faults(p, nid);
1713 	faults += score_nearby_nodes(p, nid, dist, false);
1714 
1715 	return 1000 * faults / total_faults;
1716 }
1717 
1718 /*
1719  * If memory tiering mode is enabled, cpupid of slow memory page is
1720  * used to record scan time instead of CPU and PID.  When tiering mode
1721  * is disabled at run time, the scan time (in cpupid) will be
1722  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1723  * access out of array bound.
1724  */
1725 static inline bool cpupid_valid(int cpupid)
1726 {
1727 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1728 }
1729 
1730 /*
1731  * For memory tiering mode, if there are enough free pages (more than
1732  * enough watermark defined here) in fast memory node, to take full
1733  * advantage of fast memory capacity, all recently accessed slow
1734  * memory pages will be migrated to fast memory node without
1735  * considering hot threshold.
1736  */
1737 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1738 {
1739 	int z;
1740 	unsigned long enough_wmark;
1741 
1742 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1743 			   pgdat->node_present_pages >> 4);
1744 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1745 		struct zone *zone = pgdat->node_zones + z;
1746 
1747 		if (!populated_zone(zone))
1748 			continue;
1749 
1750 		if (zone_watermark_ok(zone, 0,
1751 				      wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1752 				      ZONE_MOVABLE, 0))
1753 			return true;
1754 	}
1755 	return false;
1756 }
1757 
1758 /*
1759  * For memory tiering mode, when page tables are scanned, the scan
1760  * time will be recorded in struct page in addition to make page
1761  * PROT_NONE for slow memory page.  So when the page is accessed, in
1762  * hint page fault handler, the hint page fault latency is calculated
1763  * via,
1764  *
1765  *	hint page fault latency = hint page fault time - scan time
1766  *
1767  * The smaller the hint page fault latency, the higher the possibility
1768  * for the page to be hot.
1769  */
1770 static int numa_hint_fault_latency(struct folio *folio)
1771 {
1772 	int last_time, time;
1773 
1774 	time = jiffies_to_msecs(jiffies);
1775 	last_time = folio_xchg_access_time(folio, time);
1776 
1777 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1778 }
1779 
1780 /*
1781  * For memory tiering mode, too high promotion/demotion throughput may
1782  * hurt application latency.  So we provide a mechanism to rate limit
1783  * the number of pages that are tried to be promoted.
1784  */
1785 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1786 				      unsigned long rate_limit, int nr)
1787 {
1788 	unsigned long nr_cand;
1789 	unsigned int now, start;
1790 
1791 	now = jiffies_to_msecs(jiffies);
1792 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1793 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1794 	start = pgdat->nbp_rl_start;
1795 	if (now - start > MSEC_PER_SEC &&
1796 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1797 		pgdat->nbp_rl_nr_cand = nr_cand;
1798 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1799 		return true;
1800 	return false;
1801 }
1802 
1803 #define NUMA_MIGRATION_ADJUST_STEPS	16
1804 
1805 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1806 					    unsigned long rate_limit,
1807 					    unsigned int ref_th)
1808 {
1809 	unsigned int now, start, th_period, unit_th, th;
1810 	unsigned long nr_cand, ref_cand, diff_cand;
1811 
1812 	now = jiffies_to_msecs(jiffies);
1813 	th_period = sysctl_numa_balancing_scan_period_max;
1814 	start = pgdat->nbp_th_start;
1815 	if (now - start > th_period &&
1816 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1817 		ref_cand = rate_limit *
1818 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1819 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1820 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1821 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1822 		th = pgdat->nbp_threshold ? : ref_th;
1823 		if (diff_cand > ref_cand * 11 / 10)
1824 			th = max(th - unit_th, unit_th);
1825 		else if (diff_cand < ref_cand * 9 / 10)
1826 			th = min(th + unit_th, ref_th * 2);
1827 		pgdat->nbp_th_nr_cand = nr_cand;
1828 		pgdat->nbp_threshold = th;
1829 	}
1830 }
1831 
1832 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1833 				int src_nid, int dst_cpu)
1834 {
1835 	struct numa_group *ng = deref_curr_numa_group(p);
1836 	int dst_nid = cpu_to_node(dst_cpu);
1837 	int last_cpupid, this_cpupid;
1838 
1839 	/*
1840 	 * Cannot migrate to memoryless nodes.
1841 	 */
1842 	if (!node_state(dst_nid, N_MEMORY))
1843 		return false;
1844 
1845 	/*
1846 	 * The pages in slow memory node should be migrated according
1847 	 * to hot/cold instead of private/shared.
1848 	 */
1849 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1850 	    !node_is_toptier(src_nid)) {
1851 		struct pglist_data *pgdat;
1852 		unsigned long rate_limit;
1853 		unsigned int latency, th, def_th;
1854 
1855 		pgdat = NODE_DATA(dst_nid);
1856 		if (pgdat_free_space_enough(pgdat)) {
1857 			/* workload changed, reset hot threshold */
1858 			pgdat->nbp_threshold = 0;
1859 			return true;
1860 		}
1861 
1862 		def_th = sysctl_numa_balancing_hot_threshold;
1863 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1864 			(20 - PAGE_SHIFT);
1865 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1866 
1867 		th = pgdat->nbp_threshold ? : def_th;
1868 		latency = numa_hint_fault_latency(folio);
1869 		if (latency >= th)
1870 			return false;
1871 
1872 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1873 						  folio_nr_pages(folio));
1874 	}
1875 
1876 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1877 	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1878 
1879 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1880 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1881 		return false;
1882 
1883 	/*
1884 	 * Allow first faults or private faults to migrate immediately early in
1885 	 * the lifetime of a task. The magic number 4 is based on waiting for
1886 	 * two full passes of the "multi-stage node selection" test that is
1887 	 * executed below.
1888 	 */
1889 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1890 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1891 		return true;
1892 
1893 	/*
1894 	 * Multi-stage node selection is used in conjunction with a periodic
1895 	 * migration fault to build a temporal task<->page relation. By using
1896 	 * a two-stage filter we remove short/unlikely relations.
1897 	 *
1898 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1899 	 * a task's usage of a particular page (n_p) per total usage of this
1900 	 * page (n_t) (in a given time-span) to a probability.
1901 	 *
1902 	 * Our periodic faults will sample this probability and getting the
1903 	 * same result twice in a row, given these samples are fully
1904 	 * independent, is then given by P(n)^2, provided our sample period
1905 	 * is sufficiently short compared to the usage pattern.
1906 	 *
1907 	 * This quadric squishes small probabilities, making it less likely we
1908 	 * act on an unlikely task<->page relation.
1909 	 */
1910 	if (!cpupid_pid_unset(last_cpupid) &&
1911 				cpupid_to_nid(last_cpupid) != dst_nid)
1912 		return false;
1913 
1914 	/* Always allow migrate on private faults */
1915 	if (cpupid_match_pid(p, last_cpupid))
1916 		return true;
1917 
1918 	/* A shared fault, but p->numa_group has not been set up yet. */
1919 	if (!ng)
1920 		return true;
1921 
1922 	/*
1923 	 * Destination node is much more heavily used than the source
1924 	 * node? Allow migration.
1925 	 */
1926 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1927 					ACTIVE_NODE_FRACTION)
1928 		return true;
1929 
1930 	/*
1931 	 * Distribute memory according to CPU & memory use on each node,
1932 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1933 	 *
1934 	 * faults_cpu(dst)   3   faults_cpu(src)
1935 	 * --------------- * - > ---------------
1936 	 * faults_mem(dst)   4   faults_mem(src)
1937 	 */
1938 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1939 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1940 }
1941 
1942 /*
1943  * 'numa_type' describes the node at the moment of load balancing.
1944  */
1945 enum numa_type {
1946 	/* The node has spare capacity that can be used to run more tasks.  */
1947 	node_has_spare = 0,
1948 	/*
1949 	 * The node is fully used and the tasks don't compete for more CPU
1950 	 * cycles. Nevertheless, some tasks might wait before running.
1951 	 */
1952 	node_fully_busy,
1953 	/*
1954 	 * The node is overloaded and can't provide expected CPU cycles to all
1955 	 * tasks.
1956 	 */
1957 	node_overloaded
1958 };
1959 
1960 /* Cached statistics for all CPUs within a node */
1961 struct numa_stats {
1962 	unsigned long load;
1963 	unsigned long runnable;
1964 	unsigned long util;
1965 	/* Total compute capacity of CPUs on a node */
1966 	unsigned long compute_capacity;
1967 	unsigned int nr_running;
1968 	unsigned int weight;
1969 	enum numa_type node_type;
1970 	int idle_cpu;
1971 };
1972 
1973 struct task_numa_env {
1974 	struct task_struct *p;
1975 
1976 	int src_cpu, src_nid;
1977 	int dst_cpu, dst_nid;
1978 	int imb_numa_nr;
1979 
1980 	struct numa_stats src_stats, dst_stats;
1981 
1982 	int imbalance_pct;
1983 	int dist;
1984 
1985 	struct task_struct *best_task;
1986 	long best_imp;
1987 	int best_cpu;
1988 };
1989 
1990 static unsigned long cpu_load(struct rq *rq);
1991 static unsigned long cpu_runnable(struct rq *rq);
1992 
1993 static inline enum
1994 numa_type numa_classify(unsigned int imbalance_pct,
1995 			 struct numa_stats *ns)
1996 {
1997 	if ((ns->nr_running > ns->weight) &&
1998 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1999 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2000 		return node_overloaded;
2001 
2002 	if ((ns->nr_running < ns->weight) ||
2003 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2004 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2005 		return node_has_spare;
2006 
2007 	return node_fully_busy;
2008 }
2009 
2010 #ifdef CONFIG_SCHED_SMT
2011 /* Forward declarations of select_idle_sibling helpers */
2012 static inline bool test_idle_cores(int cpu);
2013 static inline int numa_idle_core(int idle_core, int cpu)
2014 {
2015 	if (!static_branch_likely(&sched_smt_present) ||
2016 	    idle_core >= 0 || !test_idle_cores(cpu))
2017 		return idle_core;
2018 
2019 	/*
2020 	 * Prefer cores instead of packing HT siblings
2021 	 * and triggering future load balancing.
2022 	 */
2023 	if (is_core_idle(cpu))
2024 		idle_core = cpu;
2025 
2026 	return idle_core;
2027 }
2028 #else
2029 static inline int numa_idle_core(int idle_core, int cpu)
2030 {
2031 	return idle_core;
2032 }
2033 #endif
2034 
2035 /*
2036  * Gather all necessary information to make NUMA balancing placement
2037  * decisions that are compatible with standard load balancer. This
2038  * borrows code and logic from update_sg_lb_stats but sharing a
2039  * common implementation is impractical.
2040  */
2041 static void update_numa_stats(struct task_numa_env *env,
2042 			      struct numa_stats *ns, int nid,
2043 			      bool find_idle)
2044 {
2045 	int cpu, idle_core = -1;
2046 
2047 	memset(ns, 0, sizeof(*ns));
2048 	ns->idle_cpu = -1;
2049 
2050 	rcu_read_lock();
2051 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2052 		struct rq *rq = cpu_rq(cpu);
2053 
2054 		ns->load += cpu_load(rq);
2055 		ns->runnable += cpu_runnable(rq);
2056 		ns->util += cpu_util_cfs(cpu);
2057 		ns->nr_running += rq->cfs.h_nr_running;
2058 		ns->compute_capacity += capacity_of(cpu);
2059 
2060 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2061 			if (READ_ONCE(rq->numa_migrate_on) ||
2062 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2063 				continue;
2064 
2065 			if (ns->idle_cpu == -1)
2066 				ns->idle_cpu = cpu;
2067 
2068 			idle_core = numa_idle_core(idle_core, cpu);
2069 		}
2070 	}
2071 	rcu_read_unlock();
2072 
2073 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2074 
2075 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2076 
2077 	if (idle_core >= 0)
2078 		ns->idle_cpu = idle_core;
2079 }
2080 
2081 static void task_numa_assign(struct task_numa_env *env,
2082 			     struct task_struct *p, long imp)
2083 {
2084 	struct rq *rq = cpu_rq(env->dst_cpu);
2085 
2086 	/* Check if run-queue part of active NUMA balance. */
2087 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2088 		int cpu;
2089 		int start = env->dst_cpu;
2090 
2091 		/* Find alternative idle CPU. */
2092 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2093 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2094 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2095 				continue;
2096 			}
2097 
2098 			env->dst_cpu = cpu;
2099 			rq = cpu_rq(env->dst_cpu);
2100 			if (!xchg(&rq->numa_migrate_on, 1))
2101 				goto assign;
2102 		}
2103 
2104 		/* Failed to find an alternative idle CPU */
2105 		return;
2106 	}
2107 
2108 assign:
2109 	/*
2110 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2111 	 * found a better CPU to move/swap.
2112 	 */
2113 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2114 		rq = cpu_rq(env->best_cpu);
2115 		WRITE_ONCE(rq->numa_migrate_on, 0);
2116 	}
2117 
2118 	if (env->best_task)
2119 		put_task_struct(env->best_task);
2120 	if (p)
2121 		get_task_struct(p);
2122 
2123 	env->best_task = p;
2124 	env->best_imp = imp;
2125 	env->best_cpu = env->dst_cpu;
2126 }
2127 
2128 static bool load_too_imbalanced(long src_load, long dst_load,
2129 				struct task_numa_env *env)
2130 {
2131 	long imb, old_imb;
2132 	long orig_src_load, orig_dst_load;
2133 	long src_capacity, dst_capacity;
2134 
2135 	/*
2136 	 * The load is corrected for the CPU capacity available on each node.
2137 	 *
2138 	 * src_load        dst_load
2139 	 * ------------ vs ---------
2140 	 * src_capacity    dst_capacity
2141 	 */
2142 	src_capacity = env->src_stats.compute_capacity;
2143 	dst_capacity = env->dst_stats.compute_capacity;
2144 
2145 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2146 
2147 	orig_src_load = env->src_stats.load;
2148 	orig_dst_load = env->dst_stats.load;
2149 
2150 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2151 
2152 	/* Would this change make things worse? */
2153 	return (imb > old_imb);
2154 }
2155 
2156 /*
2157  * Maximum NUMA importance can be 1998 (2*999);
2158  * SMALLIMP @ 30 would be close to 1998/64.
2159  * Used to deter task migration.
2160  */
2161 #define SMALLIMP	30
2162 
2163 /*
2164  * This checks if the overall compute and NUMA accesses of the system would
2165  * be improved if the source tasks was migrated to the target dst_cpu taking
2166  * into account that it might be best if task running on the dst_cpu should
2167  * be exchanged with the source task
2168  */
2169 static bool task_numa_compare(struct task_numa_env *env,
2170 			      long taskimp, long groupimp, bool maymove)
2171 {
2172 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2173 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2174 	long imp = p_ng ? groupimp : taskimp;
2175 	struct task_struct *cur;
2176 	long src_load, dst_load;
2177 	int dist = env->dist;
2178 	long moveimp = imp;
2179 	long load;
2180 	bool stopsearch = false;
2181 
2182 	if (READ_ONCE(dst_rq->numa_migrate_on))
2183 		return false;
2184 
2185 	rcu_read_lock();
2186 	cur = rcu_dereference(dst_rq->curr);
2187 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2188 		cur = NULL;
2189 
2190 	/*
2191 	 * Because we have preemption enabled we can get migrated around and
2192 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2193 	 */
2194 	if (cur == env->p) {
2195 		stopsearch = true;
2196 		goto unlock;
2197 	}
2198 
2199 	if (!cur) {
2200 		if (maymove && moveimp >= env->best_imp)
2201 			goto assign;
2202 		else
2203 			goto unlock;
2204 	}
2205 
2206 	/* Skip this swap candidate if cannot move to the source cpu. */
2207 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2208 		goto unlock;
2209 
2210 	/*
2211 	 * Skip this swap candidate if it is not moving to its preferred
2212 	 * node and the best task is.
2213 	 */
2214 	if (env->best_task &&
2215 	    env->best_task->numa_preferred_nid == env->src_nid &&
2216 	    cur->numa_preferred_nid != env->src_nid) {
2217 		goto unlock;
2218 	}
2219 
2220 	/*
2221 	 * "imp" is the fault differential for the source task between the
2222 	 * source and destination node. Calculate the total differential for
2223 	 * the source task and potential destination task. The more negative
2224 	 * the value is, the more remote accesses that would be expected to
2225 	 * be incurred if the tasks were swapped.
2226 	 *
2227 	 * If dst and source tasks are in the same NUMA group, or not
2228 	 * in any group then look only at task weights.
2229 	 */
2230 	cur_ng = rcu_dereference(cur->numa_group);
2231 	if (cur_ng == p_ng) {
2232 		/*
2233 		 * Do not swap within a group or between tasks that have
2234 		 * no group if there is spare capacity. Swapping does
2235 		 * not address the load imbalance and helps one task at
2236 		 * the cost of punishing another.
2237 		 */
2238 		if (env->dst_stats.node_type == node_has_spare)
2239 			goto unlock;
2240 
2241 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2242 		      task_weight(cur, env->dst_nid, dist);
2243 		/*
2244 		 * Add some hysteresis to prevent swapping the
2245 		 * tasks within a group over tiny differences.
2246 		 */
2247 		if (cur_ng)
2248 			imp -= imp / 16;
2249 	} else {
2250 		/*
2251 		 * Compare the group weights. If a task is all by itself
2252 		 * (not part of a group), use the task weight instead.
2253 		 */
2254 		if (cur_ng && p_ng)
2255 			imp += group_weight(cur, env->src_nid, dist) -
2256 			       group_weight(cur, env->dst_nid, dist);
2257 		else
2258 			imp += task_weight(cur, env->src_nid, dist) -
2259 			       task_weight(cur, env->dst_nid, dist);
2260 	}
2261 
2262 	/* Discourage picking a task already on its preferred node */
2263 	if (cur->numa_preferred_nid == env->dst_nid)
2264 		imp -= imp / 16;
2265 
2266 	/*
2267 	 * Encourage picking a task that moves to its preferred node.
2268 	 * This potentially makes imp larger than it's maximum of
2269 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2270 	 * case, it does not matter.
2271 	 */
2272 	if (cur->numa_preferred_nid == env->src_nid)
2273 		imp += imp / 8;
2274 
2275 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2276 		imp = moveimp;
2277 		cur = NULL;
2278 		goto assign;
2279 	}
2280 
2281 	/*
2282 	 * Prefer swapping with a task moving to its preferred node over a
2283 	 * task that is not.
2284 	 */
2285 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2286 	    env->best_task->numa_preferred_nid != env->src_nid) {
2287 		goto assign;
2288 	}
2289 
2290 	/*
2291 	 * If the NUMA importance is less than SMALLIMP,
2292 	 * task migration might only result in ping pong
2293 	 * of tasks and also hurt performance due to cache
2294 	 * misses.
2295 	 */
2296 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2297 		goto unlock;
2298 
2299 	/*
2300 	 * In the overloaded case, try and keep the load balanced.
2301 	 */
2302 	load = task_h_load(env->p) - task_h_load(cur);
2303 	if (!load)
2304 		goto assign;
2305 
2306 	dst_load = env->dst_stats.load + load;
2307 	src_load = env->src_stats.load - load;
2308 
2309 	if (load_too_imbalanced(src_load, dst_load, env))
2310 		goto unlock;
2311 
2312 assign:
2313 	/* Evaluate an idle CPU for a task numa move. */
2314 	if (!cur) {
2315 		int cpu = env->dst_stats.idle_cpu;
2316 
2317 		/* Nothing cached so current CPU went idle since the search. */
2318 		if (cpu < 0)
2319 			cpu = env->dst_cpu;
2320 
2321 		/*
2322 		 * If the CPU is no longer truly idle and the previous best CPU
2323 		 * is, keep using it.
2324 		 */
2325 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2326 		    idle_cpu(env->best_cpu)) {
2327 			cpu = env->best_cpu;
2328 		}
2329 
2330 		env->dst_cpu = cpu;
2331 	}
2332 
2333 	task_numa_assign(env, cur, imp);
2334 
2335 	/*
2336 	 * If a move to idle is allowed because there is capacity or load
2337 	 * balance improves then stop the search. While a better swap
2338 	 * candidate may exist, a search is not free.
2339 	 */
2340 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2341 		stopsearch = true;
2342 
2343 	/*
2344 	 * If a swap candidate must be identified and the current best task
2345 	 * moves its preferred node then stop the search.
2346 	 */
2347 	if (!maymove && env->best_task &&
2348 	    env->best_task->numa_preferred_nid == env->src_nid) {
2349 		stopsearch = true;
2350 	}
2351 unlock:
2352 	rcu_read_unlock();
2353 
2354 	return stopsearch;
2355 }
2356 
2357 static void task_numa_find_cpu(struct task_numa_env *env,
2358 				long taskimp, long groupimp)
2359 {
2360 	bool maymove = false;
2361 	int cpu;
2362 
2363 	/*
2364 	 * If dst node has spare capacity, then check if there is an
2365 	 * imbalance that would be overruled by the load balancer.
2366 	 */
2367 	if (env->dst_stats.node_type == node_has_spare) {
2368 		unsigned int imbalance;
2369 		int src_running, dst_running;
2370 
2371 		/*
2372 		 * Would movement cause an imbalance? Note that if src has
2373 		 * more running tasks that the imbalance is ignored as the
2374 		 * move improves the imbalance from the perspective of the
2375 		 * CPU load balancer.
2376 		 * */
2377 		src_running = env->src_stats.nr_running - 1;
2378 		dst_running = env->dst_stats.nr_running + 1;
2379 		imbalance = max(0, dst_running - src_running);
2380 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2381 						  env->imb_numa_nr);
2382 
2383 		/* Use idle CPU if there is no imbalance */
2384 		if (!imbalance) {
2385 			maymove = true;
2386 			if (env->dst_stats.idle_cpu >= 0) {
2387 				env->dst_cpu = env->dst_stats.idle_cpu;
2388 				task_numa_assign(env, NULL, 0);
2389 				return;
2390 			}
2391 		}
2392 	} else {
2393 		long src_load, dst_load, load;
2394 		/*
2395 		 * If the improvement from just moving env->p direction is better
2396 		 * than swapping tasks around, check if a move is possible.
2397 		 */
2398 		load = task_h_load(env->p);
2399 		dst_load = env->dst_stats.load + load;
2400 		src_load = env->src_stats.load - load;
2401 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2402 	}
2403 
2404 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2405 		/* Skip this CPU if the source task cannot migrate */
2406 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2407 			continue;
2408 
2409 		env->dst_cpu = cpu;
2410 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2411 			break;
2412 	}
2413 }
2414 
2415 static int task_numa_migrate(struct task_struct *p)
2416 {
2417 	struct task_numa_env env = {
2418 		.p = p,
2419 
2420 		.src_cpu = task_cpu(p),
2421 		.src_nid = task_node(p),
2422 
2423 		.imbalance_pct = 112,
2424 
2425 		.best_task = NULL,
2426 		.best_imp = 0,
2427 		.best_cpu = -1,
2428 	};
2429 	unsigned long taskweight, groupweight;
2430 	struct sched_domain *sd;
2431 	long taskimp, groupimp;
2432 	struct numa_group *ng;
2433 	struct rq *best_rq;
2434 	int nid, ret, dist;
2435 
2436 	/*
2437 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2438 	 * imbalance and would be the first to start moving tasks about.
2439 	 *
2440 	 * And we want to avoid any moving of tasks about, as that would create
2441 	 * random movement of tasks -- counter the numa conditions we're trying
2442 	 * to satisfy here.
2443 	 */
2444 	rcu_read_lock();
2445 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2446 	if (sd) {
2447 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2448 		env.imb_numa_nr = sd->imb_numa_nr;
2449 	}
2450 	rcu_read_unlock();
2451 
2452 	/*
2453 	 * Cpusets can break the scheduler domain tree into smaller
2454 	 * balance domains, some of which do not cross NUMA boundaries.
2455 	 * Tasks that are "trapped" in such domains cannot be migrated
2456 	 * elsewhere, so there is no point in (re)trying.
2457 	 */
2458 	if (unlikely(!sd)) {
2459 		sched_setnuma(p, task_node(p));
2460 		return -EINVAL;
2461 	}
2462 
2463 	env.dst_nid = p->numa_preferred_nid;
2464 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2465 	taskweight = task_weight(p, env.src_nid, dist);
2466 	groupweight = group_weight(p, env.src_nid, dist);
2467 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2468 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2469 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2470 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2471 
2472 	/* Try to find a spot on the preferred nid. */
2473 	task_numa_find_cpu(&env, taskimp, groupimp);
2474 
2475 	/*
2476 	 * Look at other nodes in these cases:
2477 	 * - there is no space available on the preferred_nid
2478 	 * - the task is part of a numa_group that is interleaved across
2479 	 *   multiple NUMA nodes; in order to better consolidate the group,
2480 	 *   we need to check other locations.
2481 	 */
2482 	ng = deref_curr_numa_group(p);
2483 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2484 		for_each_node_state(nid, N_CPU) {
2485 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2486 				continue;
2487 
2488 			dist = node_distance(env.src_nid, env.dst_nid);
2489 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2490 						dist != env.dist) {
2491 				taskweight = task_weight(p, env.src_nid, dist);
2492 				groupweight = group_weight(p, env.src_nid, dist);
2493 			}
2494 
2495 			/* Only consider nodes where both task and groups benefit */
2496 			taskimp = task_weight(p, nid, dist) - taskweight;
2497 			groupimp = group_weight(p, nid, dist) - groupweight;
2498 			if (taskimp < 0 && groupimp < 0)
2499 				continue;
2500 
2501 			env.dist = dist;
2502 			env.dst_nid = nid;
2503 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2504 			task_numa_find_cpu(&env, taskimp, groupimp);
2505 		}
2506 	}
2507 
2508 	/*
2509 	 * If the task is part of a workload that spans multiple NUMA nodes,
2510 	 * and is migrating into one of the workload's active nodes, remember
2511 	 * this node as the task's preferred numa node, so the workload can
2512 	 * settle down.
2513 	 * A task that migrated to a second choice node will be better off
2514 	 * trying for a better one later. Do not set the preferred node here.
2515 	 */
2516 	if (ng) {
2517 		if (env.best_cpu == -1)
2518 			nid = env.src_nid;
2519 		else
2520 			nid = cpu_to_node(env.best_cpu);
2521 
2522 		if (nid != p->numa_preferred_nid)
2523 			sched_setnuma(p, nid);
2524 	}
2525 
2526 	/* No better CPU than the current one was found. */
2527 	if (env.best_cpu == -1) {
2528 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2529 		return -EAGAIN;
2530 	}
2531 
2532 	best_rq = cpu_rq(env.best_cpu);
2533 	if (env.best_task == NULL) {
2534 		ret = migrate_task_to(p, env.best_cpu);
2535 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2536 		if (ret != 0)
2537 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2538 		return ret;
2539 	}
2540 
2541 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2542 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2543 
2544 	if (ret != 0)
2545 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2546 	put_task_struct(env.best_task);
2547 	return ret;
2548 }
2549 
2550 /* Attempt to migrate a task to a CPU on the preferred node. */
2551 static void numa_migrate_preferred(struct task_struct *p)
2552 {
2553 	unsigned long interval = HZ;
2554 
2555 	/* This task has no NUMA fault statistics yet */
2556 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2557 		return;
2558 
2559 	/* Periodically retry migrating the task to the preferred node */
2560 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2561 	p->numa_migrate_retry = jiffies + interval;
2562 
2563 	/* Success if task is already running on preferred CPU */
2564 	if (task_node(p) == p->numa_preferred_nid)
2565 		return;
2566 
2567 	/* Otherwise, try migrate to a CPU on the preferred node */
2568 	task_numa_migrate(p);
2569 }
2570 
2571 /*
2572  * Find out how many nodes the workload is actively running on. Do this by
2573  * tracking the nodes from which NUMA hinting faults are triggered. This can
2574  * be different from the set of nodes where the workload's memory is currently
2575  * located.
2576  */
2577 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2578 {
2579 	unsigned long faults, max_faults = 0;
2580 	int nid, active_nodes = 0;
2581 
2582 	for_each_node_state(nid, N_CPU) {
2583 		faults = group_faults_cpu(numa_group, nid);
2584 		if (faults > max_faults)
2585 			max_faults = faults;
2586 	}
2587 
2588 	for_each_node_state(nid, N_CPU) {
2589 		faults = group_faults_cpu(numa_group, nid);
2590 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2591 			active_nodes++;
2592 	}
2593 
2594 	numa_group->max_faults_cpu = max_faults;
2595 	numa_group->active_nodes = active_nodes;
2596 }
2597 
2598 /*
2599  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2600  * increments. The more local the fault statistics are, the higher the scan
2601  * period will be for the next scan window. If local/(local+remote) ratio is
2602  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2603  * the scan period will decrease. Aim for 70% local accesses.
2604  */
2605 #define NUMA_PERIOD_SLOTS 10
2606 #define NUMA_PERIOD_THRESHOLD 7
2607 
2608 /*
2609  * Increase the scan period (slow down scanning) if the majority of
2610  * our memory is already on our local node, or if the majority of
2611  * the page accesses are shared with other processes.
2612  * Otherwise, decrease the scan period.
2613  */
2614 static void update_task_scan_period(struct task_struct *p,
2615 			unsigned long shared, unsigned long private)
2616 {
2617 	unsigned int period_slot;
2618 	int lr_ratio, ps_ratio;
2619 	int diff;
2620 
2621 	unsigned long remote = p->numa_faults_locality[0];
2622 	unsigned long local = p->numa_faults_locality[1];
2623 
2624 	/*
2625 	 * If there were no record hinting faults then either the task is
2626 	 * completely idle or all activity is in areas that are not of interest
2627 	 * to automatic numa balancing. Related to that, if there were failed
2628 	 * migration then it implies we are migrating too quickly or the local
2629 	 * node is overloaded. In either case, scan slower
2630 	 */
2631 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2632 		p->numa_scan_period = min(p->numa_scan_period_max,
2633 			p->numa_scan_period << 1);
2634 
2635 		p->mm->numa_next_scan = jiffies +
2636 			msecs_to_jiffies(p->numa_scan_period);
2637 
2638 		return;
2639 	}
2640 
2641 	/*
2642 	 * Prepare to scale scan period relative to the current period.
2643 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2644 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2645 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2646 	 */
2647 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2648 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2649 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2650 
2651 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2652 		/*
2653 		 * Most memory accesses are local. There is no need to
2654 		 * do fast NUMA scanning, since memory is already local.
2655 		 */
2656 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2657 		if (!slot)
2658 			slot = 1;
2659 		diff = slot * period_slot;
2660 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2661 		/*
2662 		 * Most memory accesses are shared with other tasks.
2663 		 * There is no point in continuing fast NUMA scanning,
2664 		 * since other tasks may just move the memory elsewhere.
2665 		 */
2666 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2667 		if (!slot)
2668 			slot = 1;
2669 		diff = slot * period_slot;
2670 	} else {
2671 		/*
2672 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2673 		 * yet they are not on the local NUMA node. Speed up
2674 		 * NUMA scanning to get the memory moved over.
2675 		 */
2676 		int ratio = max(lr_ratio, ps_ratio);
2677 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2678 	}
2679 
2680 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2681 			task_scan_min(p), task_scan_max(p));
2682 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2683 }
2684 
2685 /*
2686  * Get the fraction of time the task has been running since the last
2687  * NUMA placement cycle. The scheduler keeps similar statistics, but
2688  * decays those on a 32ms period, which is orders of magnitude off
2689  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2690  * stats only if the task is so new there are no NUMA statistics yet.
2691  */
2692 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2693 {
2694 	u64 runtime, delta, now;
2695 	/* Use the start of this time slice to avoid calculations. */
2696 	now = p->se.exec_start;
2697 	runtime = p->se.sum_exec_runtime;
2698 
2699 	if (p->last_task_numa_placement) {
2700 		delta = runtime - p->last_sum_exec_runtime;
2701 		*period = now - p->last_task_numa_placement;
2702 
2703 		/* Avoid time going backwards, prevent potential divide error: */
2704 		if (unlikely((s64)*period < 0))
2705 			*period = 0;
2706 	} else {
2707 		delta = p->se.avg.load_sum;
2708 		*period = LOAD_AVG_MAX;
2709 	}
2710 
2711 	p->last_sum_exec_runtime = runtime;
2712 	p->last_task_numa_placement = now;
2713 
2714 	return delta;
2715 }
2716 
2717 /*
2718  * Determine the preferred nid for a task in a numa_group. This needs to
2719  * be done in a way that produces consistent results with group_weight,
2720  * otherwise workloads might not converge.
2721  */
2722 static int preferred_group_nid(struct task_struct *p, int nid)
2723 {
2724 	nodemask_t nodes;
2725 	int dist;
2726 
2727 	/* Direct connections between all NUMA nodes. */
2728 	if (sched_numa_topology_type == NUMA_DIRECT)
2729 		return nid;
2730 
2731 	/*
2732 	 * On a system with glueless mesh NUMA topology, group_weight
2733 	 * scores nodes according to the number of NUMA hinting faults on
2734 	 * both the node itself, and on nearby nodes.
2735 	 */
2736 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2737 		unsigned long score, max_score = 0;
2738 		int node, max_node = nid;
2739 
2740 		dist = sched_max_numa_distance;
2741 
2742 		for_each_node_state(node, N_CPU) {
2743 			score = group_weight(p, node, dist);
2744 			if (score > max_score) {
2745 				max_score = score;
2746 				max_node = node;
2747 			}
2748 		}
2749 		return max_node;
2750 	}
2751 
2752 	/*
2753 	 * Finding the preferred nid in a system with NUMA backplane
2754 	 * interconnect topology is more involved. The goal is to locate
2755 	 * tasks from numa_groups near each other in the system, and
2756 	 * untangle workloads from different sides of the system. This requires
2757 	 * searching down the hierarchy of node groups, recursively searching
2758 	 * inside the highest scoring group of nodes. The nodemask tricks
2759 	 * keep the complexity of the search down.
2760 	 */
2761 	nodes = node_states[N_CPU];
2762 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2763 		unsigned long max_faults = 0;
2764 		nodemask_t max_group = NODE_MASK_NONE;
2765 		int a, b;
2766 
2767 		/* Are there nodes at this distance from each other? */
2768 		if (!find_numa_distance(dist))
2769 			continue;
2770 
2771 		for_each_node_mask(a, nodes) {
2772 			unsigned long faults = 0;
2773 			nodemask_t this_group;
2774 			nodes_clear(this_group);
2775 
2776 			/* Sum group's NUMA faults; includes a==b case. */
2777 			for_each_node_mask(b, nodes) {
2778 				if (node_distance(a, b) < dist) {
2779 					faults += group_faults(p, b);
2780 					node_set(b, this_group);
2781 					node_clear(b, nodes);
2782 				}
2783 			}
2784 
2785 			/* Remember the top group. */
2786 			if (faults > max_faults) {
2787 				max_faults = faults;
2788 				max_group = this_group;
2789 				/*
2790 				 * subtle: at the smallest distance there is
2791 				 * just one node left in each "group", the
2792 				 * winner is the preferred nid.
2793 				 */
2794 				nid = a;
2795 			}
2796 		}
2797 		/* Next round, evaluate the nodes within max_group. */
2798 		if (!max_faults)
2799 			break;
2800 		nodes = max_group;
2801 	}
2802 	return nid;
2803 }
2804 
2805 static void task_numa_placement(struct task_struct *p)
2806 {
2807 	int seq, nid, max_nid = NUMA_NO_NODE;
2808 	unsigned long max_faults = 0;
2809 	unsigned long fault_types[2] = { 0, 0 };
2810 	unsigned long total_faults;
2811 	u64 runtime, period;
2812 	spinlock_t *group_lock = NULL;
2813 	struct numa_group *ng;
2814 
2815 	/*
2816 	 * The p->mm->numa_scan_seq field gets updated without
2817 	 * exclusive access. Use READ_ONCE() here to ensure
2818 	 * that the field is read in a single access:
2819 	 */
2820 	seq = READ_ONCE(p->mm->numa_scan_seq);
2821 	if (p->numa_scan_seq == seq)
2822 		return;
2823 	p->numa_scan_seq = seq;
2824 	p->numa_scan_period_max = task_scan_max(p);
2825 
2826 	total_faults = p->numa_faults_locality[0] +
2827 		       p->numa_faults_locality[1];
2828 	runtime = numa_get_avg_runtime(p, &period);
2829 
2830 	/* If the task is part of a group prevent parallel updates to group stats */
2831 	ng = deref_curr_numa_group(p);
2832 	if (ng) {
2833 		group_lock = &ng->lock;
2834 		spin_lock_irq(group_lock);
2835 	}
2836 
2837 	/* Find the node with the highest number of faults */
2838 	for_each_online_node(nid) {
2839 		/* Keep track of the offsets in numa_faults array */
2840 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2841 		unsigned long faults = 0, group_faults = 0;
2842 		int priv;
2843 
2844 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2845 			long diff, f_diff, f_weight;
2846 
2847 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2848 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2849 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2850 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2851 
2852 			/* Decay existing window, copy faults since last scan */
2853 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2854 			fault_types[priv] += p->numa_faults[membuf_idx];
2855 			p->numa_faults[membuf_idx] = 0;
2856 
2857 			/*
2858 			 * Normalize the faults_from, so all tasks in a group
2859 			 * count according to CPU use, instead of by the raw
2860 			 * number of faults. Tasks with little runtime have
2861 			 * little over-all impact on throughput, and thus their
2862 			 * faults are less important.
2863 			 */
2864 			f_weight = div64_u64(runtime << 16, period + 1);
2865 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2866 				   (total_faults + 1);
2867 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2868 			p->numa_faults[cpubuf_idx] = 0;
2869 
2870 			p->numa_faults[mem_idx] += diff;
2871 			p->numa_faults[cpu_idx] += f_diff;
2872 			faults += p->numa_faults[mem_idx];
2873 			p->total_numa_faults += diff;
2874 			if (ng) {
2875 				/*
2876 				 * safe because we can only change our own group
2877 				 *
2878 				 * mem_idx represents the offset for a given
2879 				 * nid and priv in a specific region because it
2880 				 * is at the beginning of the numa_faults array.
2881 				 */
2882 				ng->faults[mem_idx] += diff;
2883 				ng->faults[cpu_idx] += f_diff;
2884 				ng->total_faults += diff;
2885 				group_faults += ng->faults[mem_idx];
2886 			}
2887 		}
2888 
2889 		if (!ng) {
2890 			if (faults > max_faults) {
2891 				max_faults = faults;
2892 				max_nid = nid;
2893 			}
2894 		} else if (group_faults > max_faults) {
2895 			max_faults = group_faults;
2896 			max_nid = nid;
2897 		}
2898 	}
2899 
2900 	/* Cannot migrate task to CPU-less node */
2901 	max_nid = numa_nearest_node(max_nid, N_CPU);
2902 
2903 	if (ng) {
2904 		numa_group_count_active_nodes(ng);
2905 		spin_unlock_irq(group_lock);
2906 		max_nid = preferred_group_nid(p, max_nid);
2907 	}
2908 
2909 	if (max_faults) {
2910 		/* Set the new preferred node */
2911 		if (max_nid != p->numa_preferred_nid)
2912 			sched_setnuma(p, max_nid);
2913 	}
2914 
2915 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2916 }
2917 
2918 static inline int get_numa_group(struct numa_group *grp)
2919 {
2920 	return refcount_inc_not_zero(&grp->refcount);
2921 }
2922 
2923 static inline void put_numa_group(struct numa_group *grp)
2924 {
2925 	if (refcount_dec_and_test(&grp->refcount))
2926 		kfree_rcu(grp, rcu);
2927 }
2928 
2929 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2930 			int *priv)
2931 {
2932 	struct numa_group *grp, *my_grp;
2933 	struct task_struct *tsk;
2934 	bool join = false;
2935 	int cpu = cpupid_to_cpu(cpupid);
2936 	int i;
2937 
2938 	if (unlikely(!deref_curr_numa_group(p))) {
2939 		unsigned int size = sizeof(struct numa_group) +
2940 				    NR_NUMA_HINT_FAULT_STATS *
2941 				    nr_node_ids * sizeof(unsigned long);
2942 
2943 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2944 		if (!grp)
2945 			return;
2946 
2947 		refcount_set(&grp->refcount, 1);
2948 		grp->active_nodes = 1;
2949 		grp->max_faults_cpu = 0;
2950 		spin_lock_init(&grp->lock);
2951 		grp->gid = p->pid;
2952 
2953 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2954 			grp->faults[i] = p->numa_faults[i];
2955 
2956 		grp->total_faults = p->total_numa_faults;
2957 
2958 		grp->nr_tasks++;
2959 		rcu_assign_pointer(p->numa_group, grp);
2960 	}
2961 
2962 	rcu_read_lock();
2963 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2964 
2965 	if (!cpupid_match_pid(tsk, cpupid))
2966 		goto no_join;
2967 
2968 	grp = rcu_dereference(tsk->numa_group);
2969 	if (!grp)
2970 		goto no_join;
2971 
2972 	my_grp = deref_curr_numa_group(p);
2973 	if (grp == my_grp)
2974 		goto no_join;
2975 
2976 	/*
2977 	 * Only join the other group if its bigger; if we're the bigger group,
2978 	 * the other task will join us.
2979 	 */
2980 	if (my_grp->nr_tasks > grp->nr_tasks)
2981 		goto no_join;
2982 
2983 	/*
2984 	 * Tie-break on the grp address.
2985 	 */
2986 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2987 		goto no_join;
2988 
2989 	/* Always join threads in the same process. */
2990 	if (tsk->mm == current->mm)
2991 		join = true;
2992 
2993 	/* Simple filter to avoid false positives due to PID collisions */
2994 	if (flags & TNF_SHARED)
2995 		join = true;
2996 
2997 	/* Update priv based on whether false sharing was detected */
2998 	*priv = !join;
2999 
3000 	if (join && !get_numa_group(grp))
3001 		goto no_join;
3002 
3003 	rcu_read_unlock();
3004 
3005 	if (!join)
3006 		return;
3007 
3008 	WARN_ON_ONCE(irqs_disabled());
3009 	double_lock_irq(&my_grp->lock, &grp->lock);
3010 
3011 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3012 		my_grp->faults[i] -= p->numa_faults[i];
3013 		grp->faults[i] += p->numa_faults[i];
3014 	}
3015 	my_grp->total_faults -= p->total_numa_faults;
3016 	grp->total_faults += p->total_numa_faults;
3017 
3018 	my_grp->nr_tasks--;
3019 	grp->nr_tasks++;
3020 
3021 	spin_unlock(&my_grp->lock);
3022 	spin_unlock_irq(&grp->lock);
3023 
3024 	rcu_assign_pointer(p->numa_group, grp);
3025 
3026 	put_numa_group(my_grp);
3027 	return;
3028 
3029 no_join:
3030 	rcu_read_unlock();
3031 	return;
3032 }
3033 
3034 /*
3035  * Get rid of NUMA statistics associated with a task (either current or dead).
3036  * If @final is set, the task is dead and has reached refcount zero, so we can
3037  * safely free all relevant data structures. Otherwise, there might be
3038  * concurrent reads from places like load balancing and procfs, and we should
3039  * reset the data back to default state without freeing ->numa_faults.
3040  */
3041 void task_numa_free(struct task_struct *p, bool final)
3042 {
3043 	/* safe: p either is current or is being freed by current */
3044 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3045 	unsigned long *numa_faults = p->numa_faults;
3046 	unsigned long flags;
3047 	int i;
3048 
3049 	if (!numa_faults)
3050 		return;
3051 
3052 	if (grp) {
3053 		spin_lock_irqsave(&grp->lock, flags);
3054 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3055 			grp->faults[i] -= p->numa_faults[i];
3056 		grp->total_faults -= p->total_numa_faults;
3057 
3058 		grp->nr_tasks--;
3059 		spin_unlock_irqrestore(&grp->lock, flags);
3060 		RCU_INIT_POINTER(p->numa_group, NULL);
3061 		put_numa_group(grp);
3062 	}
3063 
3064 	if (final) {
3065 		p->numa_faults = NULL;
3066 		kfree(numa_faults);
3067 	} else {
3068 		p->total_numa_faults = 0;
3069 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3070 			numa_faults[i] = 0;
3071 	}
3072 }
3073 
3074 /*
3075  * Got a PROT_NONE fault for a page on @node.
3076  */
3077 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3078 {
3079 	struct task_struct *p = current;
3080 	bool migrated = flags & TNF_MIGRATED;
3081 	int cpu_node = task_node(current);
3082 	int local = !!(flags & TNF_FAULT_LOCAL);
3083 	struct numa_group *ng;
3084 	int priv;
3085 
3086 	if (!static_branch_likely(&sched_numa_balancing))
3087 		return;
3088 
3089 	/* for example, ksmd faulting in a user's mm */
3090 	if (!p->mm)
3091 		return;
3092 
3093 	/*
3094 	 * NUMA faults statistics are unnecessary for the slow memory
3095 	 * node for memory tiering mode.
3096 	 */
3097 	if (!node_is_toptier(mem_node) &&
3098 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3099 	     !cpupid_valid(last_cpupid)))
3100 		return;
3101 
3102 	/* Allocate buffer to track faults on a per-node basis */
3103 	if (unlikely(!p->numa_faults)) {
3104 		int size = sizeof(*p->numa_faults) *
3105 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3106 
3107 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3108 		if (!p->numa_faults)
3109 			return;
3110 
3111 		p->total_numa_faults = 0;
3112 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3113 	}
3114 
3115 	/*
3116 	 * First accesses are treated as private, otherwise consider accesses
3117 	 * to be private if the accessing pid has not changed
3118 	 */
3119 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3120 		priv = 1;
3121 	} else {
3122 		priv = cpupid_match_pid(p, last_cpupid);
3123 		if (!priv && !(flags & TNF_NO_GROUP))
3124 			task_numa_group(p, last_cpupid, flags, &priv);
3125 	}
3126 
3127 	/*
3128 	 * If a workload spans multiple NUMA nodes, a shared fault that
3129 	 * occurs wholly within the set of nodes that the workload is
3130 	 * actively using should be counted as local. This allows the
3131 	 * scan rate to slow down when a workload has settled down.
3132 	 */
3133 	ng = deref_curr_numa_group(p);
3134 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3135 				numa_is_active_node(cpu_node, ng) &&
3136 				numa_is_active_node(mem_node, ng))
3137 		local = 1;
3138 
3139 	/*
3140 	 * Retry to migrate task to preferred node periodically, in case it
3141 	 * previously failed, or the scheduler moved us.
3142 	 */
3143 	if (time_after(jiffies, p->numa_migrate_retry)) {
3144 		task_numa_placement(p);
3145 		numa_migrate_preferred(p);
3146 	}
3147 
3148 	if (migrated)
3149 		p->numa_pages_migrated += pages;
3150 	if (flags & TNF_MIGRATE_FAIL)
3151 		p->numa_faults_locality[2] += pages;
3152 
3153 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3154 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3155 	p->numa_faults_locality[local] += pages;
3156 }
3157 
3158 static void reset_ptenuma_scan(struct task_struct *p)
3159 {
3160 	/*
3161 	 * We only did a read acquisition of the mmap sem, so
3162 	 * p->mm->numa_scan_seq is written to without exclusive access
3163 	 * and the update is not guaranteed to be atomic. That's not
3164 	 * much of an issue though, since this is just used for
3165 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3166 	 * expensive, to avoid any form of compiler optimizations:
3167 	 */
3168 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3169 	p->mm->numa_scan_offset = 0;
3170 }
3171 
3172 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3173 {
3174 	unsigned long pids;
3175 	/*
3176 	 * Allow unconditional access first two times, so that all the (pages)
3177 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3178 	 * This is also done to avoid any side effect of task scanning
3179 	 * amplifying the unfairness of disjoint set of VMAs' access.
3180 	 */
3181 	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3182 		return true;
3183 
3184 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3185 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3186 		return true;
3187 
3188 	/*
3189 	 * Complete a scan that has already started regardless of PID access, or
3190 	 * some VMAs may never be scanned in multi-threaded applications:
3191 	 */
3192 	if (mm->numa_scan_offset > vma->vm_start) {
3193 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3194 		return true;
3195 	}
3196 
3197 	return false;
3198 }
3199 
3200 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3201 
3202 /*
3203  * The expensive part of numa migration is done from task_work context.
3204  * Triggered from task_tick_numa().
3205  */
3206 static void task_numa_work(struct callback_head *work)
3207 {
3208 	unsigned long migrate, next_scan, now = jiffies;
3209 	struct task_struct *p = current;
3210 	struct mm_struct *mm = p->mm;
3211 	u64 runtime = p->se.sum_exec_runtime;
3212 	struct vm_area_struct *vma;
3213 	unsigned long start, end;
3214 	unsigned long nr_pte_updates = 0;
3215 	long pages, virtpages;
3216 	struct vma_iterator vmi;
3217 	bool vma_pids_skipped;
3218 	bool vma_pids_forced = false;
3219 
3220 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3221 
3222 	work->next = work;
3223 	/*
3224 	 * Who cares about NUMA placement when they're dying.
3225 	 *
3226 	 * NOTE: make sure not to dereference p->mm before this check,
3227 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3228 	 * without p->mm even though we still had it when we enqueued this
3229 	 * work.
3230 	 */
3231 	if (p->flags & PF_EXITING)
3232 		return;
3233 
3234 	if (!mm->numa_next_scan) {
3235 		mm->numa_next_scan = now +
3236 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3237 	}
3238 
3239 	/*
3240 	 * Enforce maximal scan/migration frequency..
3241 	 */
3242 	migrate = mm->numa_next_scan;
3243 	if (time_before(now, migrate))
3244 		return;
3245 
3246 	if (p->numa_scan_period == 0) {
3247 		p->numa_scan_period_max = task_scan_max(p);
3248 		p->numa_scan_period = task_scan_start(p);
3249 	}
3250 
3251 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3252 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3253 		return;
3254 
3255 	/*
3256 	 * Delay this task enough that another task of this mm will likely win
3257 	 * the next time around.
3258 	 */
3259 	p->node_stamp += 2 * TICK_NSEC;
3260 
3261 	pages = sysctl_numa_balancing_scan_size;
3262 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3263 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3264 	if (!pages)
3265 		return;
3266 
3267 
3268 	if (!mmap_read_trylock(mm))
3269 		return;
3270 
3271 	/*
3272 	 * VMAs are skipped if the current PID has not trapped a fault within
3273 	 * the VMA recently. Allow scanning to be forced if there is no
3274 	 * suitable VMA remaining.
3275 	 */
3276 	vma_pids_skipped = false;
3277 
3278 retry_pids:
3279 	start = mm->numa_scan_offset;
3280 	vma_iter_init(&vmi, mm, start);
3281 	vma = vma_next(&vmi);
3282 	if (!vma) {
3283 		reset_ptenuma_scan(p);
3284 		start = 0;
3285 		vma_iter_set(&vmi, start);
3286 		vma = vma_next(&vmi);
3287 	}
3288 
3289 	do {
3290 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3291 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3292 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3293 			continue;
3294 		}
3295 
3296 		/*
3297 		 * Shared library pages mapped by multiple processes are not
3298 		 * migrated as it is expected they are cache replicated. Avoid
3299 		 * hinting faults in read-only file-backed mappings or the vdso
3300 		 * as migrating the pages will be of marginal benefit.
3301 		 */
3302 		if (!vma->vm_mm ||
3303 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3304 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3305 			continue;
3306 		}
3307 
3308 		/*
3309 		 * Skip inaccessible VMAs to avoid any confusion between
3310 		 * PROT_NONE and NUMA hinting ptes
3311 		 */
3312 		if (!vma_is_accessible(vma)) {
3313 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3314 			continue;
3315 		}
3316 
3317 		/* Initialise new per-VMA NUMAB state. */
3318 		if (!vma->numab_state) {
3319 			vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3320 				GFP_KERNEL);
3321 			if (!vma->numab_state)
3322 				continue;
3323 
3324 			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3325 
3326 			vma->numab_state->next_scan = now +
3327 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3328 
3329 			/* Reset happens after 4 times scan delay of scan start */
3330 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3331 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3332 
3333 			/*
3334 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3335 			 * to prevent VMAs being skipped prematurely on the
3336 			 * first scan:
3337 			 */
3338 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3339 		}
3340 
3341 		/*
3342 		 * Scanning the VMA's of short lived tasks add more overhead. So
3343 		 * delay the scan for new VMAs.
3344 		 */
3345 		if (mm->numa_scan_seq && time_before(jiffies,
3346 						vma->numab_state->next_scan)) {
3347 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3348 			continue;
3349 		}
3350 
3351 		/* RESET access PIDs regularly for old VMAs. */
3352 		if (mm->numa_scan_seq &&
3353 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3354 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3355 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3356 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3357 			vma->numab_state->pids_active[1] = 0;
3358 		}
3359 
3360 		/* Do not rescan VMAs twice within the same sequence. */
3361 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3362 			mm->numa_scan_offset = vma->vm_end;
3363 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3364 			continue;
3365 		}
3366 
3367 		/*
3368 		 * Do not scan the VMA if task has not accessed it, unless no other
3369 		 * VMA candidate exists.
3370 		 */
3371 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3372 			vma_pids_skipped = true;
3373 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3374 			continue;
3375 		}
3376 
3377 		do {
3378 			start = max(start, vma->vm_start);
3379 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3380 			end = min(end, vma->vm_end);
3381 			nr_pte_updates = change_prot_numa(vma, start, end);
3382 
3383 			/*
3384 			 * Try to scan sysctl_numa_balancing_size worth of
3385 			 * hpages that have at least one present PTE that
3386 			 * is not already pte-numa. If the VMA contains
3387 			 * areas that are unused or already full of prot_numa
3388 			 * PTEs, scan up to virtpages, to skip through those
3389 			 * areas faster.
3390 			 */
3391 			if (nr_pte_updates)
3392 				pages -= (end - start) >> PAGE_SHIFT;
3393 			virtpages -= (end - start) >> PAGE_SHIFT;
3394 
3395 			start = end;
3396 			if (pages <= 0 || virtpages <= 0)
3397 				goto out;
3398 
3399 			cond_resched();
3400 		} while (end != vma->vm_end);
3401 
3402 		/* VMA scan is complete, do not scan until next sequence. */
3403 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3404 
3405 		/*
3406 		 * Only force scan within one VMA at a time, to limit the
3407 		 * cost of scanning a potentially uninteresting VMA.
3408 		 */
3409 		if (vma_pids_forced)
3410 			break;
3411 	} for_each_vma(vmi, vma);
3412 
3413 	/*
3414 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3415 	 * not accessing the VMA previously, then force a scan to ensure
3416 	 * forward progress:
3417 	 */
3418 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3419 		vma_pids_forced = true;
3420 		goto retry_pids;
3421 	}
3422 
3423 out:
3424 	/*
3425 	 * It is possible to reach the end of the VMA list but the last few
3426 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3427 	 * would find the !migratable VMA on the next scan but not reset the
3428 	 * scanner to the start so check it now.
3429 	 */
3430 	if (vma)
3431 		mm->numa_scan_offset = start;
3432 	else
3433 		reset_ptenuma_scan(p);
3434 	mmap_read_unlock(mm);
3435 
3436 	/*
3437 	 * Make sure tasks use at least 32x as much time to run other code
3438 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3439 	 * Usually update_task_scan_period slows down scanning enough; on an
3440 	 * overloaded system we need to limit overhead on a per task basis.
3441 	 */
3442 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3443 		u64 diff = p->se.sum_exec_runtime - runtime;
3444 		p->node_stamp += 32 * diff;
3445 	}
3446 }
3447 
3448 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3449 {
3450 	int mm_users = 0;
3451 	struct mm_struct *mm = p->mm;
3452 
3453 	if (mm) {
3454 		mm_users = atomic_read(&mm->mm_users);
3455 		if (mm_users == 1) {
3456 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3457 			mm->numa_scan_seq = 0;
3458 		}
3459 	}
3460 	p->node_stamp			= 0;
3461 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3462 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3463 	p->numa_migrate_retry		= 0;
3464 	/* Protect against double add, see task_tick_numa and task_numa_work */
3465 	p->numa_work.next		= &p->numa_work;
3466 	p->numa_faults			= NULL;
3467 	p->numa_pages_migrated		= 0;
3468 	p->total_numa_faults		= 0;
3469 	RCU_INIT_POINTER(p->numa_group, NULL);
3470 	p->last_task_numa_placement	= 0;
3471 	p->last_sum_exec_runtime	= 0;
3472 
3473 	init_task_work(&p->numa_work, task_numa_work);
3474 
3475 	/* New address space, reset the preferred nid */
3476 	if (!(clone_flags & CLONE_VM)) {
3477 		p->numa_preferred_nid = NUMA_NO_NODE;
3478 		return;
3479 	}
3480 
3481 	/*
3482 	 * New thread, keep existing numa_preferred_nid which should be copied
3483 	 * already by arch_dup_task_struct but stagger when scans start.
3484 	 */
3485 	if (mm) {
3486 		unsigned int delay;
3487 
3488 		delay = min_t(unsigned int, task_scan_max(current),
3489 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3490 		delay += 2 * TICK_NSEC;
3491 		p->node_stamp = delay;
3492 	}
3493 }
3494 
3495 /*
3496  * Drive the periodic memory faults..
3497  */
3498 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3499 {
3500 	struct callback_head *work = &curr->numa_work;
3501 	u64 period, now;
3502 
3503 	/*
3504 	 * We don't care about NUMA placement if we don't have memory.
3505 	 */
3506 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3507 		return;
3508 
3509 	/*
3510 	 * Using runtime rather than walltime has the dual advantage that
3511 	 * we (mostly) drive the selection from busy threads and that the
3512 	 * task needs to have done some actual work before we bother with
3513 	 * NUMA placement.
3514 	 */
3515 	now = curr->se.sum_exec_runtime;
3516 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3517 
3518 	if (now > curr->node_stamp + period) {
3519 		if (!curr->node_stamp)
3520 			curr->numa_scan_period = task_scan_start(curr);
3521 		curr->node_stamp += period;
3522 
3523 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3524 			task_work_add(curr, work, TWA_RESUME);
3525 	}
3526 }
3527 
3528 static void update_scan_period(struct task_struct *p, int new_cpu)
3529 {
3530 	int src_nid = cpu_to_node(task_cpu(p));
3531 	int dst_nid = cpu_to_node(new_cpu);
3532 
3533 	if (!static_branch_likely(&sched_numa_balancing))
3534 		return;
3535 
3536 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3537 		return;
3538 
3539 	if (src_nid == dst_nid)
3540 		return;
3541 
3542 	/*
3543 	 * Allow resets if faults have been trapped before one scan
3544 	 * has completed. This is most likely due to a new task that
3545 	 * is pulled cross-node due to wakeups or load balancing.
3546 	 */
3547 	if (p->numa_scan_seq) {
3548 		/*
3549 		 * Avoid scan adjustments if moving to the preferred
3550 		 * node or if the task was not previously running on
3551 		 * the preferred node.
3552 		 */
3553 		if (dst_nid == p->numa_preferred_nid ||
3554 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3555 			src_nid != p->numa_preferred_nid))
3556 			return;
3557 	}
3558 
3559 	p->numa_scan_period = task_scan_start(p);
3560 }
3561 
3562 #else
3563 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3564 {
3565 }
3566 
3567 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3568 {
3569 }
3570 
3571 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3572 {
3573 }
3574 
3575 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3576 {
3577 }
3578 
3579 #endif /* CONFIG_NUMA_BALANCING */
3580 
3581 static void
3582 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3583 {
3584 	update_load_add(&cfs_rq->load, se->load.weight);
3585 #ifdef CONFIG_SMP
3586 	if (entity_is_task(se)) {
3587 		struct rq *rq = rq_of(cfs_rq);
3588 
3589 		account_numa_enqueue(rq, task_of(se));
3590 		list_add(&se->group_node, &rq->cfs_tasks);
3591 	}
3592 #endif
3593 	cfs_rq->nr_running++;
3594 	if (se_is_idle(se))
3595 		cfs_rq->idle_nr_running++;
3596 }
3597 
3598 static void
3599 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3600 {
3601 	update_load_sub(&cfs_rq->load, se->load.weight);
3602 #ifdef CONFIG_SMP
3603 	if (entity_is_task(se)) {
3604 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3605 		list_del_init(&se->group_node);
3606 	}
3607 #endif
3608 	cfs_rq->nr_running--;
3609 	if (se_is_idle(se))
3610 		cfs_rq->idle_nr_running--;
3611 }
3612 
3613 /*
3614  * Signed add and clamp on underflow.
3615  *
3616  * Explicitly do a load-store to ensure the intermediate value never hits
3617  * memory. This allows lockless observations without ever seeing the negative
3618  * values.
3619  */
3620 #define add_positive(_ptr, _val) do {                           \
3621 	typeof(_ptr) ptr = (_ptr);                              \
3622 	typeof(_val) val = (_val);                              \
3623 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3624 								\
3625 	res = var + val;                                        \
3626 								\
3627 	if (val < 0 && res > var)                               \
3628 		res = 0;                                        \
3629 								\
3630 	WRITE_ONCE(*ptr, res);                                  \
3631 } while (0)
3632 
3633 /*
3634  * Unsigned subtract and clamp on underflow.
3635  *
3636  * Explicitly do a load-store to ensure the intermediate value never hits
3637  * memory. This allows lockless observations without ever seeing the negative
3638  * values.
3639  */
3640 #define sub_positive(_ptr, _val) do {				\
3641 	typeof(_ptr) ptr = (_ptr);				\
3642 	typeof(*ptr) val = (_val);				\
3643 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3644 	res = var - val;					\
3645 	if (res > var)						\
3646 		res = 0;					\
3647 	WRITE_ONCE(*ptr, res);					\
3648 } while (0)
3649 
3650 /*
3651  * Remove and clamp on negative, from a local variable.
3652  *
3653  * A variant of sub_positive(), which does not use explicit load-store
3654  * and is thus optimized for local variable updates.
3655  */
3656 #define lsub_positive(_ptr, _val) do {				\
3657 	typeof(_ptr) ptr = (_ptr);				\
3658 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3659 } while (0)
3660 
3661 #ifdef CONFIG_SMP
3662 static inline void
3663 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3664 {
3665 	cfs_rq->avg.load_avg += se->avg.load_avg;
3666 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3667 }
3668 
3669 static inline void
3670 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3671 {
3672 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3673 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3674 	/* See update_cfs_rq_load_avg() */
3675 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3676 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3677 }
3678 #else
3679 static inline void
3680 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3681 static inline void
3682 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3683 #endif
3684 
3685 static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
3686 			   unsigned long weight)
3687 {
3688 	unsigned long old_weight = se->load.weight;
3689 	s64 vlag, vslice;
3690 
3691 	/*
3692 	 * VRUNTIME
3693 	 * ========
3694 	 *
3695 	 * COROLLARY #1: The virtual runtime of the entity needs to be
3696 	 * adjusted if re-weight at !0-lag point.
3697 	 *
3698 	 * Proof: For contradiction assume this is not true, so we can
3699 	 * re-weight without changing vruntime at !0-lag point.
3700 	 *
3701 	 *             Weight	VRuntime   Avg-VRuntime
3702 	 *     before    w          v            V
3703 	 *      after    w'         v'           V'
3704 	 *
3705 	 * Since lag needs to be preserved through re-weight:
3706 	 *
3707 	 *	lag = (V - v)*w = (V'- v')*w', where v = v'
3708 	 *	==>	V' = (V - v)*w/w' + v		(1)
3709 	 *
3710 	 * Let W be the total weight of the entities before reweight,
3711 	 * since V' is the new weighted average of entities:
3712 	 *
3713 	 *	V' = (WV + w'v - wv) / (W + w' - w)	(2)
3714 	 *
3715 	 * by using (1) & (2) we obtain:
3716 	 *
3717 	 *	(WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3718 	 *	==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3719 	 *	==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3720 	 *	==>	(V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3721 	 *
3722 	 * Since we are doing at !0-lag point which means V != v, we
3723 	 * can simplify (3):
3724 	 *
3725 	 *	==>	W / (W + w' - w) = w / w'
3726 	 *	==>	Ww' = Ww + ww' - ww
3727 	 *	==>	W * (w' - w) = w * (w' - w)
3728 	 *	==>	W = w	(re-weight indicates w' != w)
3729 	 *
3730 	 * So the cfs_rq contains only one entity, hence vruntime of
3731 	 * the entity @v should always equal to the cfs_rq's weighted
3732 	 * average vruntime @V, which means we will always re-weight
3733 	 * at 0-lag point, thus breach assumption. Proof completed.
3734 	 *
3735 	 *
3736 	 * COROLLARY #2: Re-weight does NOT affect weighted average
3737 	 * vruntime of all the entities.
3738 	 *
3739 	 * Proof: According to corollary #1, Eq. (1) should be:
3740 	 *
3741 	 *	(V - v)*w = (V' - v')*w'
3742 	 *	==>    v' = V' - (V - v)*w/w'		(4)
3743 	 *
3744 	 * According to the weighted average formula, we have:
3745 	 *
3746 	 *	V' = (WV - wv + w'v') / (W - w + w')
3747 	 *	   = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3748 	 *	   = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3749 	 *	   = (WV + w'V' - Vw) / (W - w + w')
3750 	 *
3751 	 *	==>  V'*(W - w + w') = WV + w'V' - Vw
3752 	 *	==>	V' * (W - w) = (W - w) * V	(5)
3753 	 *
3754 	 * If the entity is the only one in the cfs_rq, then reweight
3755 	 * always occurs at 0-lag point, so V won't change. Or else
3756 	 * there are other entities, hence W != w, then Eq. (5) turns
3757 	 * into V' = V. So V won't change in either case, proof done.
3758 	 *
3759 	 *
3760 	 * So according to corollary #1 & #2, the effect of re-weight
3761 	 * on vruntime should be:
3762 	 *
3763 	 *	v' = V' - (V - v) * w / w'		(4)
3764 	 *	   = V  - (V - v) * w / w'
3765 	 *	   = V  - vl * w / w'
3766 	 *	   = V  - vl'
3767 	 */
3768 	if (avruntime != se->vruntime) {
3769 		vlag = entity_lag(avruntime, se);
3770 		vlag = div_s64(vlag * old_weight, weight);
3771 		se->vruntime = avruntime - vlag;
3772 	}
3773 
3774 	/*
3775 	 * DEADLINE
3776 	 * ========
3777 	 *
3778 	 * When the weight changes, the virtual time slope changes and
3779 	 * we should adjust the relative virtual deadline accordingly.
3780 	 *
3781 	 *	d' = v' + (d - v)*w/w'
3782 	 *	   = V' - (V - v)*w/w' + (d - v)*w/w'
3783 	 *	   = V  - (V - v)*w/w' + (d - v)*w/w'
3784 	 *	   = V  + (d - V)*w/w'
3785 	 */
3786 	vslice = (s64)(se->deadline - avruntime);
3787 	vslice = div_s64(vslice * old_weight, weight);
3788 	se->deadline = avruntime + vslice;
3789 }
3790 
3791 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3792 			    unsigned long weight)
3793 {
3794 	bool curr = cfs_rq->curr == se;
3795 	u64 avruntime;
3796 
3797 	if (se->on_rq) {
3798 		/* commit outstanding execution time */
3799 		update_curr(cfs_rq);
3800 		avruntime = avg_vruntime(cfs_rq);
3801 		if (!curr)
3802 			__dequeue_entity(cfs_rq, se);
3803 		update_load_sub(&cfs_rq->load, se->load.weight);
3804 	}
3805 	dequeue_load_avg(cfs_rq, se);
3806 
3807 	if (se->on_rq) {
3808 		reweight_eevdf(se, avruntime, weight);
3809 	} else {
3810 		/*
3811 		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3812 		 * we need to scale se->vlag when w_i changes.
3813 		 */
3814 		se->vlag = div_s64(se->vlag * se->load.weight, weight);
3815 	}
3816 
3817 	update_load_set(&se->load, weight);
3818 
3819 #ifdef CONFIG_SMP
3820 	do {
3821 		u32 divider = get_pelt_divider(&se->avg);
3822 
3823 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3824 	} while (0);
3825 #endif
3826 
3827 	enqueue_load_avg(cfs_rq, se);
3828 	if (se->on_rq) {
3829 		update_load_add(&cfs_rq->load, se->load.weight);
3830 		if (!curr)
3831 			__enqueue_entity(cfs_rq, se);
3832 
3833 		/*
3834 		 * The entity's vruntime has been adjusted, so let's check
3835 		 * whether the rq-wide min_vruntime needs updated too. Since
3836 		 * the calculations above require stable min_vruntime rather
3837 		 * than up-to-date one, we do the update at the end of the
3838 		 * reweight process.
3839 		 */
3840 		update_min_vruntime(cfs_rq);
3841 	}
3842 }
3843 
3844 void reweight_task(struct task_struct *p, int prio)
3845 {
3846 	struct sched_entity *se = &p->se;
3847 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3848 	struct load_weight *load = &se->load;
3849 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3850 
3851 	reweight_entity(cfs_rq, se, weight);
3852 	load->inv_weight = sched_prio_to_wmult[prio];
3853 }
3854 
3855 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3856 
3857 #ifdef CONFIG_FAIR_GROUP_SCHED
3858 #ifdef CONFIG_SMP
3859 /*
3860  * All this does is approximate the hierarchical proportion which includes that
3861  * global sum we all love to hate.
3862  *
3863  * That is, the weight of a group entity, is the proportional share of the
3864  * group weight based on the group runqueue weights. That is:
3865  *
3866  *                     tg->weight * grq->load.weight
3867  *   ge->load.weight = -----------------------------               (1)
3868  *                       \Sum grq->load.weight
3869  *
3870  * Now, because computing that sum is prohibitively expensive to compute (been
3871  * there, done that) we approximate it with this average stuff. The average
3872  * moves slower and therefore the approximation is cheaper and more stable.
3873  *
3874  * So instead of the above, we substitute:
3875  *
3876  *   grq->load.weight -> grq->avg.load_avg                         (2)
3877  *
3878  * which yields the following:
3879  *
3880  *                     tg->weight * grq->avg.load_avg
3881  *   ge->load.weight = ------------------------------              (3)
3882  *                             tg->load_avg
3883  *
3884  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3885  *
3886  * That is shares_avg, and it is right (given the approximation (2)).
3887  *
3888  * The problem with it is that because the average is slow -- it was designed
3889  * to be exactly that of course -- this leads to transients in boundary
3890  * conditions. In specific, the case where the group was idle and we start the
3891  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3892  * yielding bad latency etc..
3893  *
3894  * Now, in that special case (1) reduces to:
3895  *
3896  *                     tg->weight * grq->load.weight
3897  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3898  *                         grp->load.weight
3899  *
3900  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3901  *
3902  * So what we do is modify our approximation (3) to approach (4) in the (near)
3903  * UP case, like:
3904  *
3905  *   ge->load.weight =
3906  *
3907  *              tg->weight * grq->load.weight
3908  *     ---------------------------------------------------         (5)
3909  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3910  *
3911  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3912  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3913  *
3914  *
3915  *                     tg->weight * grq->load.weight
3916  *   ge->load.weight = -----------------------------		   (6)
3917  *                             tg_load_avg'
3918  *
3919  * Where:
3920  *
3921  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3922  *                  max(grq->load.weight, grq->avg.load_avg)
3923  *
3924  * And that is shares_weight and is icky. In the (near) UP case it approaches
3925  * (4) while in the normal case it approaches (3). It consistently
3926  * overestimates the ge->load.weight and therefore:
3927  *
3928  *   \Sum ge->load.weight >= tg->weight
3929  *
3930  * hence icky!
3931  */
3932 static long calc_group_shares(struct cfs_rq *cfs_rq)
3933 {
3934 	long tg_weight, tg_shares, load, shares;
3935 	struct task_group *tg = cfs_rq->tg;
3936 
3937 	tg_shares = READ_ONCE(tg->shares);
3938 
3939 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3940 
3941 	tg_weight = atomic_long_read(&tg->load_avg);
3942 
3943 	/* Ensure tg_weight >= load */
3944 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3945 	tg_weight += load;
3946 
3947 	shares = (tg_shares * load);
3948 	if (tg_weight)
3949 		shares /= tg_weight;
3950 
3951 	/*
3952 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3953 	 * of a group with small tg->shares value. It is a floor value which is
3954 	 * assigned as a minimum load.weight to the sched_entity representing
3955 	 * the group on a CPU.
3956 	 *
3957 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3958 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3959 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3960 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3961 	 * instead of 0.
3962 	 */
3963 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3964 }
3965 #endif /* CONFIG_SMP */
3966 
3967 /*
3968  * Recomputes the group entity based on the current state of its group
3969  * runqueue.
3970  */
3971 static void update_cfs_group(struct sched_entity *se)
3972 {
3973 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3974 	long shares;
3975 
3976 	if (!gcfs_rq)
3977 		return;
3978 
3979 	if (throttled_hierarchy(gcfs_rq))
3980 		return;
3981 
3982 #ifndef CONFIG_SMP
3983 	shares = READ_ONCE(gcfs_rq->tg->shares);
3984 #else
3985 	shares = calc_group_shares(gcfs_rq);
3986 #endif
3987 	if (unlikely(se->load.weight != shares))
3988 		reweight_entity(cfs_rq_of(se), se, shares);
3989 }
3990 
3991 #else /* CONFIG_FAIR_GROUP_SCHED */
3992 static inline void update_cfs_group(struct sched_entity *se)
3993 {
3994 }
3995 #endif /* CONFIG_FAIR_GROUP_SCHED */
3996 
3997 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3998 {
3999 	struct rq *rq = rq_of(cfs_rq);
4000 
4001 	if (&rq->cfs == cfs_rq) {
4002 		/*
4003 		 * There are a few boundary cases this might miss but it should
4004 		 * get called often enough that that should (hopefully) not be
4005 		 * a real problem.
4006 		 *
4007 		 * It will not get called when we go idle, because the idle
4008 		 * thread is a different class (!fair), nor will the utilization
4009 		 * number include things like RT tasks.
4010 		 *
4011 		 * As is, the util number is not freq-invariant (we'd have to
4012 		 * implement arch_scale_freq_capacity() for that).
4013 		 *
4014 		 * See cpu_util_cfs().
4015 		 */
4016 		cpufreq_update_util(rq, flags);
4017 	}
4018 }
4019 
4020 #ifdef CONFIG_SMP
4021 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4022 {
4023 	if (sa->load_sum)
4024 		return false;
4025 
4026 	if (sa->util_sum)
4027 		return false;
4028 
4029 	if (sa->runnable_sum)
4030 		return false;
4031 
4032 	/*
4033 	 * _avg must be null when _sum are null because _avg = _sum / divider
4034 	 * Make sure that rounding and/or propagation of PELT values never
4035 	 * break this.
4036 	 */
4037 	SCHED_WARN_ON(sa->load_avg ||
4038 		      sa->util_avg ||
4039 		      sa->runnable_avg);
4040 
4041 	return true;
4042 }
4043 
4044 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4045 {
4046 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4047 				 cfs_rq->last_update_time_copy);
4048 }
4049 #ifdef CONFIG_FAIR_GROUP_SCHED
4050 /*
4051  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4052  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4053  * bottom-up, we only have to test whether the cfs_rq before us on the list
4054  * is our child.
4055  * If cfs_rq is not on the list, test whether a child needs its to be added to
4056  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4057  */
4058 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4059 {
4060 	struct cfs_rq *prev_cfs_rq;
4061 	struct list_head *prev;
4062 
4063 	if (cfs_rq->on_list) {
4064 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4065 	} else {
4066 		struct rq *rq = rq_of(cfs_rq);
4067 
4068 		prev = rq->tmp_alone_branch;
4069 	}
4070 
4071 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4072 
4073 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4074 }
4075 
4076 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4077 {
4078 	if (cfs_rq->load.weight)
4079 		return false;
4080 
4081 	if (!load_avg_is_decayed(&cfs_rq->avg))
4082 		return false;
4083 
4084 	if (child_cfs_rq_on_list(cfs_rq))
4085 		return false;
4086 
4087 	return true;
4088 }
4089 
4090 /**
4091  * update_tg_load_avg - update the tg's load avg
4092  * @cfs_rq: the cfs_rq whose avg changed
4093  *
4094  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4095  * However, because tg->load_avg is a global value there are performance
4096  * considerations.
4097  *
4098  * In order to avoid having to look at the other cfs_rq's, we use a
4099  * differential update where we store the last value we propagated. This in
4100  * turn allows skipping updates if the differential is 'small'.
4101  *
4102  * Updating tg's load_avg is necessary before update_cfs_share().
4103  */
4104 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4105 {
4106 	long delta;
4107 	u64 now;
4108 
4109 	/*
4110 	 * No need to update load_avg for root_task_group as it is not used.
4111 	 */
4112 	if (cfs_rq->tg == &root_task_group)
4113 		return;
4114 
4115 	/* rq has been offline and doesn't contribute to the share anymore: */
4116 	if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4117 		return;
4118 
4119 	/*
4120 	 * For migration heavy workloads, access to tg->load_avg can be
4121 	 * unbound. Limit the update rate to at most once per ms.
4122 	 */
4123 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4124 	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4125 		return;
4126 
4127 	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4128 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4129 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4130 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4131 		cfs_rq->last_update_tg_load_avg = now;
4132 	}
4133 }
4134 
4135 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4136 {
4137 	long delta;
4138 	u64 now;
4139 
4140 	/*
4141 	 * No need to update load_avg for root_task_group, as it is not used.
4142 	 */
4143 	if (cfs_rq->tg == &root_task_group)
4144 		return;
4145 
4146 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4147 	delta = 0 - cfs_rq->tg_load_avg_contrib;
4148 	atomic_long_add(delta, &cfs_rq->tg->load_avg);
4149 	cfs_rq->tg_load_avg_contrib = 0;
4150 	cfs_rq->last_update_tg_load_avg = now;
4151 }
4152 
4153 /* CPU offline callback: */
4154 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4155 {
4156 	struct task_group *tg;
4157 
4158 	lockdep_assert_rq_held(rq);
4159 
4160 	/*
4161 	 * The rq clock has already been updated in
4162 	 * set_rq_offline(), so we should skip updating
4163 	 * the rq clock again in unthrottle_cfs_rq().
4164 	 */
4165 	rq_clock_start_loop_update(rq);
4166 
4167 	rcu_read_lock();
4168 	list_for_each_entry_rcu(tg, &task_groups, list) {
4169 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4170 
4171 		clear_tg_load_avg(cfs_rq);
4172 	}
4173 	rcu_read_unlock();
4174 
4175 	rq_clock_stop_loop_update(rq);
4176 }
4177 
4178 /*
4179  * Called within set_task_rq() right before setting a task's CPU. The
4180  * caller only guarantees p->pi_lock is held; no other assumptions,
4181  * including the state of rq->lock, should be made.
4182  */
4183 void set_task_rq_fair(struct sched_entity *se,
4184 		      struct cfs_rq *prev, struct cfs_rq *next)
4185 {
4186 	u64 p_last_update_time;
4187 	u64 n_last_update_time;
4188 
4189 	if (!sched_feat(ATTACH_AGE_LOAD))
4190 		return;
4191 
4192 	/*
4193 	 * We are supposed to update the task to "current" time, then its up to
4194 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4195 	 * getting what current time is, so simply throw away the out-of-date
4196 	 * time. This will result in the wakee task is less decayed, but giving
4197 	 * the wakee more load sounds not bad.
4198 	 */
4199 	if (!(se->avg.last_update_time && prev))
4200 		return;
4201 
4202 	p_last_update_time = cfs_rq_last_update_time(prev);
4203 	n_last_update_time = cfs_rq_last_update_time(next);
4204 
4205 	__update_load_avg_blocked_se(p_last_update_time, se);
4206 	se->avg.last_update_time = n_last_update_time;
4207 }
4208 
4209 /*
4210  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4211  * propagate its contribution. The key to this propagation is the invariant
4212  * that for each group:
4213  *
4214  *   ge->avg == grq->avg						(1)
4215  *
4216  * _IFF_ we look at the pure running and runnable sums. Because they
4217  * represent the very same entity, just at different points in the hierarchy.
4218  *
4219  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4220  * and simply copies the running/runnable sum over (but still wrong, because
4221  * the group entity and group rq do not have their PELT windows aligned).
4222  *
4223  * However, update_tg_cfs_load() is more complex. So we have:
4224  *
4225  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4226  *
4227  * And since, like util, the runnable part should be directly transferable,
4228  * the following would _appear_ to be the straight forward approach:
4229  *
4230  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4231  *
4232  * And per (1) we have:
4233  *
4234  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4235  *
4236  * Which gives:
4237  *
4238  *                      ge->load.weight * grq->avg.load_avg
4239  *   ge->avg.load_avg = -----------------------------------		(4)
4240  *                               grq->load.weight
4241  *
4242  * Except that is wrong!
4243  *
4244  * Because while for entities historical weight is not important and we
4245  * really only care about our future and therefore can consider a pure
4246  * runnable sum, runqueues can NOT do this.
4247  *
4248  * We specifically want runqueues to have a load_avg that includes
4249  * historical weights. Those represent the blocked load, the load we expect
4250  * to (shortly) return to us. This only works by keeping the weights as
4251  * integral part of the sum. We therefore cannot decompose as per (3).
4252  *
4253  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4254  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4255  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4256  * runnable section of these tasks overlap (or not). If they were to perfectly
4257  * align the rq as a whole would be runnable 2/3 of the time. If however we
4258  * always have at least 1 runnable task, the rq as a whole is always runnable.
4259  *
4260  * So we'll have to approximate.. :/
4261  *
4262  * Given the constraint:
4263  *
4264  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4265  *
4266  * We can construct a rule that adds runnable to a rq by assuming minimal
4267  * overlap.
4268  *
4269  * On removal, we'll assume each task is equally runnable; which yields:
4270  *
4271  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4272  *
4273  * XXX: only do this for the part of runnable > running ?
4274  *
4275  */
4276 static inline void
4277 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4278 {
4279 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4280 	u32 new_sum, divider;
4281 
4282 	/* Nothing to update */
4283 	if (!delta_avg)
4284 		return;
4285 
4286 	/*
4287 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4288 	 * See ___update_load_avg() for details.
4289 	 */
4290 	divider = get_pelt_divider(&cfs_rq->avg);
4291 
4292 
4293 	/* Set new sched_entity's utilization */
4294 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4295 	new_sum = se->avg.util_avg * divider;
4296 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4297 	se->avg.util_sum = new_sum;
4298 
4299 	/* Update parent cfs_rq utilization */
4300 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4301 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4302 
4303 	/* See update_cfs_rq_load_avg() */
4304 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4305 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4306 }
4307 
4308 static inline void
4309 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4310 {
4311 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4312 	u32 new_sum, divider;
4313 
4314 	/* Nothing to update */
4315 	if (!delta_avg)
4316 		return;
4317 
4318 	/*
4319 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4320 	 * See ___update_load_avg() for details.
4321 	 */
4322 	divider = get_pelt_divider(&cfs_rq->avg);
4323 
4324 	/* Set new sched_entity's runnable */
4325 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4326 	new_sum = se->avg.runnable_avg * divider;
4327 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4328 	se->avg.runnable_sum = new_sum;
4329 
4330 	/* Update parent cfs_rq runnable */
4331 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4332 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4333 	/* See update_cfs_rq_load_avg() */
4334 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4335 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4336 }
4337 
4338 static inline void
4339 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4340 {
4341 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4342 	unsigned long load_avg;
4343 	u64 load_sum = 0;
4344 	s64 delta_sum;
4345 	u32 divider;
4346 
4347 	if (!runnable_sum)
4348 		return;
4349 
4350 	gcfs_rq->prop_runnable_sum = 0;
4351 
4352 	/*
4353 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4354 	 * See ___update_load_avg() for details.
4355 	 */
4356 	divider = get_pelt_divider(&cfs_rq->avg);
4357 
4358 	if (runnable_sum >= 0) {
4359 		/*
4360 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4361 		 * the CPU is saturated running == runnable.
4362 		 */
4363 		runnable_sum += se->avg.load_sum;
4364 		runnable_sum = min_t(long, runnable_sum, divider);
4365 	} else {
4366 		/*
4367 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4368 		 * assuming all tasks are equally runnable.
4369 		 */
4370 		if (scale_load_down(gcfs_rq->load.weight)) {
4371 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4372 				scale_load_down(gcfs_rq->load.weight));
4373 		}
4374 
4375 		/* But make sure to not inflate se's runnable */
4376 		runnable_sum = min(se->avg.load_sum, load_sum);
4377 	}
4378 
4379 	/*
4380 	 * runnable_sum can't be lower than running_sum
4381 	 * Rescale running sum to be in the same range as runnable sum
4382 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4383 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4384 	 */
4385 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4386 	runnable_sum = max(runnable_sum, running_sum);
4387 
4388 	load_sum = se_weight(se) * runnable_sum;
4389 	load_avg = div_u64(load_sum, divider);
4390 
4391 	delta_avg = load_avg - se->avg.load_avg;
4392 	if (!delta_avg)
4393 		return;
4394 
4395 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4396 
4397 	se->avg.load_sum = runnable_sum;
4398 	se->avg.load_avg = load_avg;
4399 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4400 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4401 	/* See update_cfs_rq_load_avg() */
4402 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4403 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4404 }
4405 
4406 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4407 {
4408 	cfs_rq->propagate = 1;
4409 	cfs_rq->prop_runnable_sum += runnable_sum;
4410 }
4411 
4412 /* Update task and its cfs_rq load average */
4413 static inline int propagate_entity_load_avg(struct sched_entity *se)
4414 {
4415 	struct cfs_rq *cfs_rq, *gcfs_rq;
4416 
4417 	if (entity_is_task(se))
4418 		return 0;
4419 
4420 	gcfs_rq = group_cfs_rq(se);
4421 	if (!gcfs_rq->propagate)
4422 		return 0;
4423 
4424 	gcfs_rq->propagate = 0;
4425 
4426 	cfs_rq = cfs_rq_of(se);
4427 
4428 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4429 
4430 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4431 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4432 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4433 
4434 	trace_pelt_cfs_tp(cfs_rq);
4435 	trace_pelt_se_tp(se);
4436 
4437 	return 1;
4438 }
4439 
4440 /*
4441  * Check if we need to update the load and the utilization of a blocked
4442  * group_entity:
4443  */
4444 static inline bool skip_blocked_update(struct sched_entity *se)
4445 {
4446 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4447 
4448 	/*
4449 	 * If sched_entity still have not zero load or utilization, we have to
4450 	 * decay it:
4451 	 */
4452 	if (se->avg.load_avg || se->avg.util_avg)
4453 		return false;
4454 
4455 	/*
4456 	 * If there is a pending propagation, we have to update the load and
4457 	 * the utilization of the sched_entity:
4458 	 */
4459 	if (gcfs_rq->propagate)
4460 		return false;
4461 
4462 	/*
4463 	 * Otherwise, the load and the utilization of the sched_entity is
4464 	 * already zero and there is no pending propagation, so it will be a
4465 	 * waste of time to try to decay it:
4466 	 */
4467 	return true;
4468 }
4469 
4470 #else /* CONFIG_FAIR_GROUP_SCHED */
4471 
4472 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4473 
4474 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4475 
4476 static inline int propagate_entity_load_avg(struct sched_entity *se)
4477 {
4478 	return 0;
4479 }
4480 
4481 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4482 
4483 #endif /* CONFIG_FAIR_GROUP_SCHED */
4484 
4485 #ifdef CONFIG_NO_HZ_COMMON
4486 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4487 {
4488 	u64 throttled = 0, now, lut;
4489 	struct cfs_rq *cfs_rq;
4490 	struct rq *rq;
4491 	bool is_idle;
4492 
4493 	if (load_avg_is_decayed(&se->avg))
4494 		return;
4495 
4496 	cfs_rq = cfs_rq_of(se);
4497 	rq = rq_of(cfs_rq);
4498 
4499 	rcu_read_lock();
4500 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4501 	rcu_read_unlock();
4502 
4503 	/*
4504 	 * The lag estimation comes with a cost we don't want to pay all the
4505 	 * time. Hence, limiting to the case where the source CPU is idle and
4506 	 * we know we are at the greatest risk to have an outdated clock.
4507 	 */
4508 	if (!is_idle)
4509 		return;
4510 
4511 	/*
4512 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4513 	 *
4514 	 *   last_update_time (the cfs_rq's last_update_time)
4515 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4516 	 *      = rq_clock_pelt()@cfs_rq_idle
4517 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4518 	 *
4519 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4520 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4521 	 *
4522 	 *   rq_idle_lag (delta between now and rq's update)
4523 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4524 	 *
4525 	 * We can then write:
4526 	 *
4527 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4528 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4529 	 * Where:
4530 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4531 	 *      rq_clock()@rq_idle      is rq->clock_idle
4532 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4533 	 *                              is cfs_rq->throttled_pelt_idle
4534 	 */
4535 
4536 #ifdef CONFIG_CFS_BANDWIDTH
4537 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4538 	/* The clock has been stopped for throttling */
4539 	if (throttled == U64_MAX)
4540 		return;
4541 #endif
4542 	now = u64_u32_load(rq->clock_pelt_idle);
4543 	/*
4544 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4545 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4546 	 * which lead to an underestimation. The opposite would lead to an
4547 	 * overestimation.
4548 	 */
4549 	smp_rmb();
4550 	lut = cfs_rq_last_update_time(cfs_rq);
4551 
4552 	now -= throttled;
4553 	if (now < lut)
4554 		/*
4555 		 * cfs_rq->avg.last_update_time is more recent than our
4556 		 * estimation, let's use it.
4557 		 */
4558 		now = lut;
4559 	else
4560 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4561 
4562 	__update_load_avg_blocked_se(now, se);
4563 }
4564 #else
4565 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4566 #endif
4567 
4568 /**
4569  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4570  * @now: current time, as per cfs_rq_clock_pelt()
4571  * @cfs_rq: cfs_rq to update
4572  *
4573  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4574  * avg. The immediate corollary is that all (fair) tasks must be attached.
4575  *
4576  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4577  *
4578  * Return: true if the load decayed or we removed load.
4579  *
4580  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4581  * call update_tg_load_avg() when this function returns true.
4582  */
4583 static inline int
4584 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4585 {
4586 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4587 	struct sched_avg *sa = &cfs_rq->avg;
4588 	int decayed = 0;
4589 
4590 	if (cfs_rq->removed.nr) {
4591 		unsigned long r;
4592 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4593 
4594 		raw_spin_lock(&cfs_rq->removed.lock);
4595 		swap(cfs_rq->removed.util_avg, removed_util);
4596 		swap(cfs_rq->removed.load_avg, removed_load);
4597 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4598 		cfs_rq->removed.nr = 0;
4599 		raw_spin_unlock(&cfs_rq->removed.lock);
4600 
4601 		r = removed_load;
4602 		sub_positive(&sa->load_avg, r);
4603 		sub_positive(&sa->load_sum, r * divider);
4604 		/* See sa->util_sum below */
4605 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4606 
4607 		r = removed_util;
4608 		sub_positive(&sa->util_avg, r);
4609 		sub_positive(&sa->util_sum, r * divider);
4610 		/*
4611 		 * Because of rounding, se->util_sum might ends up being +1 more than
4612 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4613 		 * a lot of tasks with the rounding problem between 2 updates of
4614 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4615 		 * cfs_util_avg is not.
4616 		 * Check that util_sum is still above its lower bound for the new
4617 		 * util_avg. Given that period_contrib might have moved since the last
4618 		 * sync, we are only sure that util_sum must be above or equal to
4619 		 *    util_avg * minimum possible divider
4620 		 */
4621 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4622 
4623 		r = removed_runnable;
4624 		sub_positive(&sa->runnable_avg, r);
4625 		sub_positive(&sa->runnable_sum, r * divider);
4626 		/* See sa->util_sum above */
4627 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4628 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4629 
4630 		/*
4631 		 * removed_runnable is the unweighted version of removed_load so we
4632 		 * can use it to estimate removed_load_sum.
4633 		 */
4634 		add_tg_cfs_propagate(cfs_rq,
4635 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4636 
4637 		decayed = 1;
4638 	}
4639 
4640 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4641 	u64_u32_store_copy(sa->last_update_time,
4642 			   cfs_rq->last_update_time_copy,
4643 			   sa->last_update_time);
4644 	return decayed;
4645 }
4646 
4647 /**
4648  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4649  * @cfs_rq: cfs_rq to attach to
4650  * @se: sched_entity to attach
4651  *
4652  * Must call update_cfs_rq_load_avg() before this, since we rely on
4653  * cfs_rq->avg.last_update_time being current.
4654  */
4655 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4656 {
4657 	/*
4658 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4659 	 * See ___update_load_avg() for details.
4660 	 */
4661 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4662 
4663 	/*
4664 	 * When we attach the @se to the @cfs_rq, we must align the decay
4665 	 * window because without that, really weird and wonderful things can
4666 	 * happen.
4667 	 *
4668 	 * XXX illustrate
4669 	 */
4670 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4671 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4672 
4673 	/*
4674 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4675 	 * period_contrib. This isn't strictly correct, but since we're
4676 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4677 	 * _sum a little.
4678 	 */
4679 	se->avg.util_sum = se->avg.util_avg * divider;
4680 
4681 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4682 
4683 	se->avg.load_sum = se->avg.load_avg * divider;
4684 	if (se_weight(se) < se->avg.load_sum)
4685 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4686 	else
4687 		se->avg.load_sum = 1;
4688 
4689 	enqueue_load_avg(cfs_rq, se);
4690 	cfs_rq->avg.util_avg += se->avg.util_avg;
4691 	cfs_rq->avg.util_sum += se->avg.util_sum;
4692 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4693 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4694 
4695 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4696 
4697 	cfs_rq_util_change(cfs_rq, 0);
4698 
4699 	trace_pelt_cfs_tp(cfs_rq);
4700 }
4701 
4702 /**
4703  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4704  * @cfs_rq: cfs_rq to detach from
4705  * @se: sched_entity to detach
4706  *
4707  * Must call update_cfs_rq_load_avg() before this, since we rely on
4708  * cfs_rq->avg.last_update_time being current.
4709  */
4710 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4711 {
4712 	dequeue_load_avg(cfs_rq, se);
4713 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4714 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4715 	/* See update_cfs_rq_load_avg() */
4716 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4717 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4718 
4719 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4720 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4721 	/* See update_cfs_rq_load_avg() */
4722 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4723 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4724 
4725 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4726 
4727 	cfs_rq_util_change(cfs_rq, 0);
4728 
4729 	trace_pelt_cfs_tp(cfs_rq);
4730 }
4731 
4732 /*
4733  * Optional action to be done while updating the load average
4734  */
4735 #define UPDATE_TG	0x1
4736 #define SKIP_AGE_LOAD	0x2
4737 #define DO_ATTACH	0x4
4738 #define DO_DETACH	0x8
4739 
4740 /* Update task and its cfs_rq load average */
4741 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4742 {
4743 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4744 	int decayed;
4745 
4746 	/*
4747 	 * Track task load average for carrying it to new CPU after migrated, and
4748 	 * track group sched_entity load average for task_h_load calc in migration
4749 	 */
4750 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4751 		__update_load_avg_se(now, cfs_rq, se);
4752 
4753 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4754 	decayed |= propagate_entity_load_avg(se);
4755 
4756 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4757 
4758 		/*
4759 		 * DO_ATTACH means we're here from enqueue_entity().
4760 		 * !last_update_time means we've passed through
4761 		 * migrate_task_rq_fair() indicating we migrated.
4762 		 *
4763 		 * IOW we're enqueueing a task on a new CPU.
4764 		 */
4765 		attach_entity_load_avg(cfs_rq, se);
4766 		update_tg_load_avg(cfs_rq);
4767 
4768 	} else if (flags & DO_DETACH) {
4769 		/*
4770 		 * DO_DETACH means we're here from dequeue_entity()
4771 		 * and we are migrating task out of the CPU.
4772 		 */
4773 		detach_entity_load_avg(cfs_rq, se);
4774 		update_tg_load_avg(cfs_rq);
4775 	} else if (decayed) {
4776 		cfs_rq_util_change(cfs_rq, 0);
4777 
4778 		if (flags & UPDATE_TG)
4779 			update_tg_load_avg(cfs_rq);
4780 	}
4781 }
4782 
4783 /*
4784  * Synchronize entity load avg of dequeued entity without locking
4785  * the previous rq.
4786  */
4787 static void sync_entity_load_avg(struct sched_entity *se)
4788 {
4789 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4790 	u64 last_update_time;
4791 
4792 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4793 	__update_load_avg_blocked_se(last_update_time, se);
4794 }
4795 
4796 /*
4797  * Task first catches up with cfs_rq, and then subtract
4798  * itself from the cfs_rq (task must be off the queue now).
4799  */
4800 static void remove_entity_load_avg(struct sched_entity *se)
4801 {
4802 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4803 	unsigned long flags;
4804 
4805 	/*
4806 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4807 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4808 	 * so we can remove unconditionally.
4809 	 */
4810 
4811 	sync_entity_load_avg(se);
4812 
4813 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4814 	++cfs_rq->removed.nr;
4815 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4816 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4817 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4818 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4819 }
4820 
4821 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4822 {
4823 	return cfs_rq->avg.runnable_avg;
4824 }
4825 
4826 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4827 {
4828 	return cfs_rq->avg.load_avg;
4829 }
4830 
4831 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4832 
4833 static inline unsigned long task_util(struct task_struct *p)
4834 {
4835 	return READ_ONCE(p->se.avg.util_avg);
4836 }
4837 
4838 static inline unsigned long task_runnable(struct task_struct *p)
4839 {
4840 	return READ_ONCE(p->se.avg.runnable_avg);
4841 }
4842 
4843 static inline unsigned long _task_util_est(struct task_struct *p)
4844 {
4845 	return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4846 }
4847 
4848 static inline unsigned long task_util_est(struct task_struct *p)
4849 {
4850 	return max(task_util(p), _task_util_est(p));
4851 }
4852 
4853 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4854 				    struct task_struct *p)
4855 {
4856 	unsigned int enqueued;
4857 
4858 	if (!sched_feat(UTIL_EST))
4859 		return;
4860 
4861 	/* Update root cfs_rq's estimated utilization */
4862 	enqueued  = cfs_rq->avg.util_est;
4863 	enqueued += _task_util_est(p);
4864 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4865 
4866 	trace_sched_util_est_cfs_tp(cfs_rq);
4867 }
4868 
4869 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4870 				    struct task_struct *p)
4871 {
4872 	unsigned int enqueued;
4873 
4874 	if (!sched_feat(UTIL_EST))
4875 		return;
4876 
4877 	/* Update root cfs_rq's estimated utilization */
4878 	enqueued  = cfs_rq->avg.util_est;
4879 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4880 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4881 
4882 	trace_sched_util_est_cfs_tp(cfs_rq);
4883 }
4884 
4885 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4886 
4887 static inline void util_est_update(struct cfs_rq *cfs_rq,
4888 				   struct task_struct *p,
4889 				   bool task_sleep)
4890 {
4891 	unsigned int ewma, dequeued, last_ewma_diff;
4892 
4893 	if (!sched_feat(UTIL_EST))
4894 		return;
4895 
4896 	/*
4897 	 * Skip update of task's estimated utilization when the task has not
4898 	 * yet completed an activation, e.g. being migrated.
4899 	 */
4900 	if (!task_sleep)
4901 		return;
4902 
4903 	/* Get current estimate of utilization */
4904 	ewma = READ_ONCE(p->se.avg.util_est);
4905 
4906 	/*
4907 	 * If the PELT values haven't changed since enqueue time,
4908 	 * skip the util_est update.
4909 	 */
4910 	if (ewma & UTIL_AVG_UNCHANGED)
4911 		return;
4912 
4913 	/* Get utilization at dequeue */
4914 	dequeued = task_util(p);
4915 
4916 	/*
4917 	 * Reset EWMA on utilization increases, the moving average is used only
4918 	 * to smooth utilization decreases.
4919 	 */
4920 	if (ewma <= dequeued) {
4921 		ewma = dequeued;
4922 		goto done;
4923 	}
4924 
4925 	/*
4926 	 * Skip update of task's estimated utilization when its members are
4927 	 * already ~1% close to its last activation value.
4928 	 */
4929 	last_ewma_diff = ewma - dequeued;
4930 	if (last_ewma_diff < UTIL_EST_MARGIN)
4931 		goto done;
4932 
4933 	/*
4934 	 * To avoid overestimation of actual task utilization, skip updates if
4935 	 * we cannot grant there is idle time in this CPU.
4936 	 */
4937 	if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
4938 		return;
4939 
4940 	/*
4941 	 * To avoid underestimate of task utilization, skip updates of EWMA if
4942 	 * we cannot grant that thread got all CPU time it wanted.
4943 	 */
4944 	if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
4945 		goto done;
4946 
4947 
4948 	/*
4949 	 * Update Task's estimated utilization
4950 	 *
4951 	 * When *p completes an activation we can consolidate another sample
4952 	 * of the task size. This is done by using this value to update the
4953 	 * Exponential Weighted Moving Average (EWMA):
4954 	 *
4955 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4956 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4957 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4958 	 *          = w * (      -last_ewma_diff           ) +     ewma(t-1)
4959 	 *          = w * (-last_ewma_diff +  ewma(t-1) / w)
4960 	 *
4961 	 * Where 'w' is the weight of new samples, which is configured to be
4962 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4963 	 */
4964 	ewma <<= UTIL_EST_WEIGHT_SHIFT;
4965 	ewma  -= last_ewma_diff;
4966 	ewma >>= UTIL_EST_WEIGHT_SHIFT;
4967 done:
4968 	ewma |= UTIL_AVG_UNCHANGED;
4969 	WRITE_ONCE(p->se.avg.util_est, ewma);
4970 
4971 	trace_sched_util_est_se_tp(&p->se);
4972 }
4973 
4974 static inline int util_fits_cpu(unsigned long util,
4975 				unsigned long uclamp_min,
4976 				unsigned long uclamp_max,
4977 				int cpu)
4978 {
4979 	unsigned long capacity_orig, capacity_orig_thermal;
4980 	unsigned long capacity = capacity_of(cpu);
4981 	bool fits, uclamp_max_fits;
4982 
4983 	/*
4984 	 * Check if the real util fits without any uclamp boost/cap applied.
4985 	 */
4986 	fits = fits_capacity(util, capacity);
4987 
4988 	if (!uclamp_is_used())
4989 		return fits;
4990 
4991 	/*
4992 	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
4993 	 * uclamp_max. We only care about capacity pressure (by using
4994 	 * capacity_of()) for comparing against the real util.
4995 	 *
4996 	 * If a task is boosted to 1024 for example, we don't want a tiny
4997 	 * pressure to skew the check whether it fits a CPU or not.
4998 	 *
4999 	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
5000 	 * should fit a little cpu even if there's some pressure.
5001 	 *
5002 	 * Only exception is for thermal pressure since it has a direct impact
5003 	 * on available OPP of the system.
5004 	 *
5005 	 * We honour it for uclamp_min only as a drop in performance level
5006 	 * could result in not getting the requested minimum performance level.
5007 	 *
5008 	 * For uclamp_max, we can tolerate a drop in performance level as the
5009 	 * goal is to cap the task. So it's okay if it's getting less.
5010 	 */
5011 	capacity_orig = arch_scale_cpu_capacity(cpu);
5012 	capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
5013 
5014 	/*
5015 	 * We want to force a task to fit a cpu as implied by uclamp_max.
5016 	 * But we do have some corner cases to cater for..
5017 	 *
5018 	 *
5019 	 *                                 C=z
5020 	 *   |                             ___
5021 	 *   |                  C=y       |   |
5022 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
5023 	 *   |      C=x        |   |      |   |
5024 	 *   |      ___        |   |      |   |
5025 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5026 	 *   |     |   |       |   |      |   |
5027 	 *   |     |   |       |   |      |   |
5028 	 *   +----------------------------------------
5029 	 *         cpu0        cpu1       cpu2
5030 	 *
5031 	 *   In the above example if a task is capped to a specific performance
5032 	 *   point, y, then when:
5033 	 *
5034 	 *   * util = 80% of x then it does not fit on cpu0 and should migrate
5035 	 *     to cpu1
5036 	 *   * util = 80% of y then it is forced to fit on cpu1 to honour
5037 	 *     uclamp_max request.
5038 	 *
5039 	 *   which is what we're enforcing here. A task always fits if
5040 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5041 	 *   the normal upmigration rules should withhold still.
5042 	 *
5043 	 *   Only exception is when we are on max capacity, then we need to be
5044 	 *   careful not to block overutilized state. This is so because:
5045 	 *
5046 	 *     1. There's no concept of capping at max_capacity! We can't go
5047 	 *        beyond this performance level anyway.
5048 	 *     2. The system is being saturated when we're operating near
5049 	 *        max capacity, it doesn't make sense to block overutilized.
5050 	 */
5051 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5052 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5053 	fits = fits || uclamp_max_fits;
5054 
5055 	/*
5056 	 *
5057 	 *                                 C=z
5058 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5059 	 *   |                  C=y       |   |
5060 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5061 	 *   |      C=x        |   |      |   |
5062 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5063 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5064 	 *   |     |   |       |   |      |   |
5065 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5066 	 *   +----------------------------------------
5067 	 *         cpu0        cpu1       cpu2
5068 	 *
5069 	 * a) If util > uclamp_max, then we're capped, we don't care about
5070 	 *    actual fitness value here. We only care if uclamp_max fits
5071 	 *    capacity without taking margin/pressure into account.
5072 	 *    See comment above.
5073 	 *
5074 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5075 	 *    fits_capacity() rules apply. Except we need to ensure that we
5076 	 *    enforce we remain within uclamp_max, see comment above.
5077 	 *
5078 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5079 	 *    need to take into account the boosted value fits the CPU without
5080 	 *    taking margin/pressure into account.
5081 	 *
5082 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5083 	 * just need to consider an extra check for case (c) after ensuring we
5084 	 * handle the case uclamp_min > uclamp_max.
5085 	 */
5086 	uclamp_min = min(uclamp_min, uclamp_max);
5087 	if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
5088 		return -1;
5089 
5090 	return fits;
5091 }
5092 
5093 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5094 {
5095 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5096 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5097 	unsigned long util = task_util_est(p);
5098 	/*
5099 	 * Return true only if the cpu fully fits the task requirements, which
5100 	 * include the utilization but also the performance hints.
5101 	 */
5102 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5103 }
5104 
5105 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5106 {
5107 	if (!sched_asym_cpucap_active())
5108 		return;
5109 
5110 	if (!p || p->nr_cpus_allowed == 1) {
5111 		rq->misfit_task_load = 0;
5112 		return;
5113 	}
5114 
5115 	if (task_fits_cpu(p, cpu_of(rq))) {
5116 		rq->misfit_task_load = 0;
5117 		return;
5118 	}
5119 
5120 	/*
5121 	 * Make sure that misfit_task_load will not be null even if
5122 	 * task_h_load() returns 0.
5123 	 */
5124 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5125 }
5126 
5127 #else /* CONFIG_SMP */
5128 
5129 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5130 {
5131 	return !cfs_rq->nr_running;
5132 }
5133 
5134 #define UPDATE_TG	0x0
5135 #define SKIP_AGE_LOAD	0x0
5136 #define DO_ATTACH	0x0
5137 #define DO_DETACH	0x0
5138 
5139 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5140 {
5141 	cfs_rq_util_change(cfs_rq, 0);
5142 }
5143 
5144 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5145 
5146 static inline void
5147 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5148 static inline void
5149 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5150 
5151 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
5152 {
5153 	return 0;
5154 }
5155 
5156 static inline void
5157 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5158 
5159 static inline void
5160 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5161 
5162 static inline void
5163 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5164 		bool task_sleep) {}
5165 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5166 
5167 #endif /* CONFIG_SMP */
5168 
5169 static void
5170 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5171 {
5172 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5173 	s64 lag = 0;
5174 
5175 	se->slice = sysctl_sched_base_slice;
5176 	vslice = calc_delta_fair(se->slice, se);
5177 
5178 	/*
5179 	 * Due to how V is constructed as the weighted average of entities,
5180 	 * adding tasks with positive lag, or removing tasks with negative lag
5181 	 * will move 'time' backwards, this can screw around with the lag of
5182 	 * other tasks.
5183 	 *
5184 	 * EEVDF: placement strategy #1 / #2
5185 	 */
5186 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5187 		struct sched_entity *curr = cfs_rq->curr;
5188 		unsigned long load;
5189 
5190 		lag = se->vlag;
5191 
5192 		/*
5193 		 * If we want to place a task and preserve lag, we have to
5194 		 * consider the effect of the new entity on the weighted
5195 		 * average and compensate for this, otherwise lag can quickly
5196 		 * evaporate.
5197 		 *
5198 		 * Lag is defined as:
5199 		 *
5200 		 *   lag_i = S - s_i = w_i * (V - v_i)
5201 		 *
5202 		 * To avoid the 'w_i' term all over the place, we only track
5203 		 * the virtual lag:
5204 		 *
5205 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5206 		 *
5207 		 * And we take V to be the weighted average of all v:
5208 		 *
5209 		 *   V = (\Sum w_j*v_j) / W
5210 		 *
5211 		 * Where W is: \Sum w_j
5212 		 *
5213 		 * Then, the weighted average after adding an entity with lag
5214 		 * vl_i is given by:
5215 		 *
5216 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5217 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5218 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5219 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5220 		 *      = V - w_i*vl_i / (W + w_i)
5221 		 *
5222 		 * And the actual lag after adding an entity with vl_i is:
5223 		 *
5224 		 *   vl'_i = V' - v_i
5225 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5226 		 *         = vl_i - w_i*vl_i / (W + w_i)
5227 		 *
5228 		 * Which is strictly less than vl_i. So in order to preserve lag
5229 		 * we should inflate the lag before placement such that the
5230 		 * effective lag after placement comes out right.
5231 		 *
5232 		 * As such, invert the above relation for vl'_i to get the vl_i
5233 		 * we need to use such that the lag after placement is the lag
5234 		 * we computed before dequeue.
5235 		 *
5236 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5237 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5238 		 *
5239 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5240 		 *                   = W*vl_i
5241 		 *
5242 		 *   vl_i = (W + w_i)*vl'_i / W
5243 		 */
5244 		load = cfs_rq->avg_load;
5245 		if (curr && curr->on_rq)
5246 			load += scale_load_down(curr->load.weight);
5247 
5248 		lag *= load + scale_load_down(se->load.weight);
5249 		if (WARN_ON_ONCE(!load))
5250 			load = 1;
5251 		lag = div_s64(lag, load);
5252 	}
5253 
5254 	se->vruntime = vruntime - lag;
5255 
5256 	/*
5257 	 * When joining the competition; the exisiting tasks will be,
5258 	 * on average, halfway through their slice, as such start tasks
5259 	 * off with half a slice to ease into the competition.
5260 	 */
5261 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5262 		vslice /= 2;
5263 
5264 	/*
5265 	 * EEVDF: vd_i = ve_i + r_i/w_i
5266 	 */
5267 	se->deadline = se->vruntime + vslice;
5268 }
5269 
5270 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5271 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5272 
5273 static inline bool cfs_bandwidth_used(void);
5274 
5275 static void
5276 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5277 {
5278 	bool curr = cfs_rq->curr == se;
5279 
5280 	/*
5281 	 * If we're the current task, we must renormalise before calling
5282 	 * update_curr().
5283 	 */
5284 	if (curr)
5285 		place_entity(cfs_rq, se, flags);
5286 
5287 	update_curr(cfs_rq);
5288 
5289 	/*
5290 	 * When enqueuing a sched_entity, we must:
5291 	 *   - Update loads to have both entity and cfs_rq synced with now.
5292 	 *   - For group_entity, update its runnable_weight to reflect the new
5293 	 *     h_nr_running of its group cfs_rq.
5294 	 *   - For group_entity, update its weight to reflect the new share of
5295 	 *     its group cfs_rq
5296 	 *   - Add its new weight to cfs_rq->load.weight
5297 	 */
5298 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5299 	se_update_runnable(se);
5300 	/*
5301 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5302 	 * but update_cfs_group() here will re-adjust the weight and have to
5303 	 * undo/redo all that. Seems wasteful.
5304 	 */
5305 	update_cfs_group(se);
5306 
5307 	/*
5308 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5309 	 * we can place the entity.
5310 	 */
5311 	if (!curr)
5312 		place_entity(cfs_rq, se, flags);
5313 
5314 	account_entity_enqueue(cfs_rq, se);
5315 
5316 	/* Entity has migrated, no longer consider this task hot */
5317 	if (flags & ENQUEUE_MIGRATED)
5318 		se->exec_start = 0;
5319 
5320 	check_schedstat_required();
5321 	update_stats_enqueue_fair(cfs_rq, se, flags);
5322 	if (!curr)
5323 		__enqueue_entity(cfs_rq, se);
5324 	se->on_rq = 1;
5325 
5326 	if (cfs_rq->nr_running == 1) {
5327 		check_enqueue_throttle(cfs_rq);
5328 		if (!throttled_hierarchy(cfs_rq)) {
5329 			list_add_leaf_cfs_rq(cfs_rq);
5330 		} else {
5331 #ifdef CONFIG_CFS_BANDWIDTH
5332 			struct rq *rq = rq_of(cfs_rq);
5333 
5334 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5335 				cfs_rq->throttled_clock = rq_clock(rq);
5336 			if (!cfs_rq->throttled_clock_self)
5337 				cfs_rq->throttled_clock_self = rq_clock(rq);
5338 #endif
5339 		}
5340 	}
5341 }
5342 
5343 static void __clear_buddies_next(struct sched_entity *se)
5344 {
5345 	for_each_sched_entity(se) {
5346 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5347 		if (cfs_rq->next != se)
5348 			break;
5349 
5350 		cfs_rq->next = NULL;
5351 	}
5352 }
5353 
5354 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5355 {
5356 	if (cfs_rq->next == se)
5357 		__clear_buddies_next(se);
5358 }
5359 
5360 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5361 
5362 static void
5363 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5364 {
5365 	int action = UPDATE_TG;
5366 
5367 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5368 		action |= DO_DETACH;
5369 
5370 	/*
5371 	 * Update run-time statistics of the 'current'.
5372 	 */
5373 	update_curr(cfs_rq);
5374 
5375 	/*
5376 	 * When dequeuing a sched_entity, we must:
5377 	 *   - Update loads to have both entity and cfs_rq synced with now.
5378 	 *   - For group_entity, update its runnable_weight to reflect the new
5379 	 *     h_nr_running of its group cfs_rq.
5380 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5381 	 *   - For group entity, update its weight to reflect the new share
5382 	 *     of its group cfs_rq.
5383 	 */
5384 	update_load_avg(cfs_rq, se, action);
5385 	se_update_runnable(se);
5386 
5387 	update_stats_dequeue_fair(cfs_rq, se, flags);
5388 
5389 	clear_buddies(cfs_rq, se);
5390 
5391 	update_entity_lag(cfs_rq, se);
5392 	if (se != cfs_rq->curr)
5393 		__dequeue_entity(cfs_rq, se);
5394 	se->on_rq = 0;
5395 	account_entity_dequeue(cfs_rq, se);
5396 
5397 	/* return excess runtime on last dequeue */
5398 	return_cfs_rq_runtime(cfs_rq);
5399 
5400 	update_cfs_group(se);
5401 
5402 	/*
5403 	 * Now advance min_vruntime if @se was the entity holding it back,
5404 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5405 	 * put back on, and if we advance min_vruntime, we'll be placed back
5406 	 * further than we started -- ie. we'll be penalized.
5407 	 */
5408 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5409 		update_min_vruntime(cfs_rq);
5410 
5411 	if (cfs_rq->nr_running == 0)
5412 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5413 }
5414 
5415 static void
5416 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5417 {
5418 	clear_buddies(cfs_rq, se);
5419 
5420 	/* 'current' is not kept within the tree. */
5421 	if (se->on_rq) {
5422 		/*
5423 		 * Any task has to be enqueued before it get to execute on
5424 		 * a CPU. So account for the time it spent waiting on the
5425 		 * runqueue.
5426 		 */
5427 		update_stats_wait_end_fair(cfs_rq, se);
5428 		__dequeue_entity(cfs_rq, se);
5429 		update_load_avg(cfs_rq, se, UPDATE_TG);
5430 		/*
5431 		 * HACK, stash a copy of deadline at the point of pick in vlag,
5432 		 * which isn't used until dequeue.
5433 		 */
5434 		se->vlag = se->deadline;
5435 	}
5436 
5437 	update_stats_curr_start(cfs_rq, se);
5438 	cfs_rq->curr = se;
5439 
5440 	/*
5441 	 * Track our maximum slice length, if the CPU's load is at
5442 	 * least twice that of our own weight (i.e. dont track it
5443 	 * when there are only lesser-weight tasks around):
5444 	 */
5445 	if (schedstat_enabled() &&
5446 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5447 		struct sched_statistics *stats;
5448 
5449 		stats = __schedstats_from_se(se);
5450 		__schedstat_set(stats->slice_max,
5451 				max((u64)stats->slice_max,
5452 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5453 	}
5454 
5455 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5456 }
5457 
5458 /*
5459  * Pick the next process, keeping these things in mind, in this order:
5460  * 1) keep things fair between processes/task groups
5461  * 2) pick the "next" process, since someone really wants that to run
5462  * 3) pick the "last" process, for cache locality
5463  * 4) do not run the "skip" process, if something else is available
5464  */
5465 static struct sched_entity *
5466 pick_next_entity(struct cfs_rq *cfs_rq)
5467 {
5468 	/*
5469 	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5470 	 */
5471 	if (sched_feat(NEXT_BUDDY) &&
5472 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5473 		return cfs_rq->next;
5474 
5475 	return pick_eevdf(cfs_rq);
5476 }
5477 
5478 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5479 
5480 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5481 {
5482 	/*
5483 	 * If still on the runqueue then deactivate_task()
5484 	 * was not called and update_curr() has to be done:
5485 	 */
5486 	if (prev->on_rq)
5487 		update_curr(cfs_rq);
5488 
5489 	/* throttle cfs_rqs exceeding runtime */
5490 	check_cfs_rq_runtime(cfs_rq);
5491 
5492 	if (prev->on_rq) {
5493 		update_stats_wait_start_fair(cfs_rq, prev);
5494 		/* Put 'current' back into the tree. */
5495 		__enqueue_entity(cfs_rq, prev);
5496 		/* in !on_rq case, update occurred at dequeue */
5497 		update_load_avg(cfs_rq, prev, 0);
5498 	}
5499 	cfs_rq->curr = NULL;
5500 }
5501 
5502 static void
5503 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5504 {
5505 	/*
5506 	 * Update run-time statistics of the 'current'.
5507 	 */
5508 	update_curr(cfs_rq);
5509 
5510 	/*
5511 	 * Ensure that runnable average is periodically updated.
5512 	 */
5513 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5514 	update_cfs_group(curr);
5515 
5516 #ifdef CONFIG_SCHED_HRTICK
5517 	/*
5518 	 * queued ticks are scheduled to match the slice, so don't bother
5519 	 * validating it and just reschedule.
5520 	 */
5521 	if (queued) {
5522 		resched_curr(rq_of(cfs_rq));
5523 		return;
5524 	}
5525 	/*
5526 	 * don't let the period tick interfere with the hrtick preemption
5527 	 */
5528 	if (!sched_feat(DOUBLE_TICK) &&
5529 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5530 		return;
5531 #endif
5532 }
5533 
5534 
5535 /**************************************************
5536  * CFS bandwidth control machinery
5537  */
5538 
5539 #ifdef CONFIG_CFS_BANDWIDTH
5540 
5541 #ifdef CONFIG_JUMP_LABEL
5542 static struct static_key __cfs_bandwidth_used;
5543 
5544 static inline bool cfs_bandwidth_used(void)
5545 {
5546 	return static_key_false(&__cfs_bandwidth_used);
5547 }
5548 
5549 void cfs_bandwidth_usage_inc(void)
5550 {
5551 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5552 }
5553 
5554 void cfs_bandwidth_usage_dec(void)
5555 {
5556 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5557 }
5558 #else /* CONFIG_JUMP_LABEL */
5559 static bool cfs_bandwidth_used(void)
5560 {
5561 	return true;
5562 }
5563 
5564 void cfs_bandwidth_usage_inc(void) {}
5565 void cfs_bandwidth_usage_dec(void) {}
5566 #endif /* CONFIG_JUMP_LABEL */
5567 
5568 /*
5569  * default period for cfs group bandwidth.
5570  * default: 0.1s, units: nanoseconds
5571  */
5572 static inline u64 default_cfs_period(void)
5573 {
5574 	return 100000000ULL;
5575 }
5576 
5577 static inline u64 sched_cfs_bandwidth_slice(void)
5578 {
5579 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5580 }
5581 
5582 /*
5583  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5584  * directly instead of rq->clock to avoid adding additional synchronization
5585  * around rq->lock.
5586  *
5587  * requires cfs_b->lock
5588  */
5589 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5590 {
5591 	s64 runtime;
5592 
5593 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5594 		return;
5595 
5596 	cfs_b->runtime += cfs_b->quota;
5597 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5598 	if (runtime > 0) {
5599 		cfs_b->burst_time += runtime;
5600 		cfs_b->nr_burst++;
5601 	}
5602 
5603 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5604 	cfs_b->runtime_snap = cfs_b->runtime;
5605 }
5606 
5607 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5608 {
5609 	return &tg->cfs_bandwidth;
5610 }
5611 
5612 /* returns 0 on failure to allocate runtime */
5613 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5614 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5615 {
5616 	u64 min_amount, amount = 0;
5617 
5618 	lockdep_assert_held(&cfs_b->lock);
5619 
5620 	/* note: this is a positive sum as runtime_remaining <= 0 */
5621 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5622 
5623 	if (cfs_b->quota == RUNTIME_INF)
5624 		amount = min_amount;
5625 	else {
5626 		start_cfs_bandwidth(cfs_b);
5627 
5628 		if (cfs_b->runtime > 0) {
5629 			amount = min(cfs_b->runtime, min_amount);
5630 			cfs_b->runtime -= amount;
5631 			cfs_b->idle = 0;
5632 		}
5633 	}
5634 
5635 	cfs_rq->runtime_remaining += amount;
5636 
5637 	return cfs_rq->runtime_remaining > 0;
5638 }
5639 
5640 /* returns 0 on failure to allocate runtime */
5641 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5642 {
5643 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5644 	int ret;
5645 
5646 	raw_spin_lock(&cfs_b->lock);
5647 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5648 	raw_spin_unlock(&cfs_b->lock);
5649 
5650 	return ret;
5651 }
5652 
5653 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5654 {
5655 	/* dock delta_exec before expiring quota (as it could span periods) */
5656 	cfs_rq->runtime_remaining -= delta_exec;
5657 
5658 	if (likely(cfs_rq->runtime_remaining > 0))
5659 		return;
5660 
5661 	if (cfs_rq->throttled)
5662 		return;
5663 	/*
5664 	 * if we're unable to extend our runtime we resched so that the active
5665 	 * hierarchy can be throttled
5666 	 */
5667 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5668 		resched_curr(rq_of(cfs_rq));
5669 }
5670 
5671 static __always_inline
5672 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5673 {
5674 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5675 		return;
5676 
5677 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5678 }
5679 
5680 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5681 {
5682 	return cfs_bandwidth_used() && cfs_rq->throttled;
5683 }
5684 
5685 /* check whether cfs_rq, or any parent, is throttled */
5686 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5687 {
5688 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5689 }
5690 
5691 /*
5692  * Ensure that neither of the group entities corresponding to src_cpu or
5693  * dest_cpu are members of a throttled hierarchy when performing group
5694  * load-balance operations.
5695  */
5696 static inline int throttled_lb_pair(struct task_group *tg,
5697 				    int src_cpu, int dest_cpu)
5698 {
5699 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5700 
5701 	src_cfs_rq = tg->cfs_rq[src_cpu];
5702 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5703 
5704 	return throttled_hierarchy(src_cfs_rq) ||
5705 	       throttled_hierarchy(dest_cfs_rq);
5706 }
5707 
5708 static int tg_unthrottle_up(struct task_group *tg, void *data)
5709 {
5710 	struct rq *rq = data;
5711 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5712 
5713 	cfs_rq->throttle_count--;
5714 	if (!cfs_rq->throttle_count) {
5715 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5716 					     cfs_rq->throttled_clock_pelt;
5717 
5718 		/* Add cfs_rq with load or one or more already running entities to the list */
5719 		if (!cfs_rq_is_decayed(cfs_rq))
5720 			list_add_leaf_cfs_rq(cfs_rq);
5721 
5722 		if (cfs_rq->throttled_clock_self) {
5723 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5724 
5725 			cfs_rq->throttled_clock_self = 0;
5726 
5727 			if (SCHED_WARN_ON((s64)delta < 0))
5728 				delta = 0;
5729 
5730 			cfs_rq->throttled_clock_self_time += delta;
5731 		}
5732 	}
5733 
5734 	return 0;
5735 }
5736 
5737 static int tg_throttle_down(struct task_group *tg, void *data)
5738 {
5739 	struct rq *rq = data;
5740 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5741 
5742 	/* group is entering throttled state, stop time */
5743 	if (!cfs_rq->throttle_count) {
5744 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5745 		list_del_leaf_cfs_rq(cfs_rq);
5746 
5747 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5748 		if (cfs_rq->nr_running)
5749 			cfs_rq->throttled_clock_self = rq_clock(rq);
5750 	}
5751 	cfs_rq->throttle_count++;
5752 
5753 	return 0;
5754 }
5755 
5756 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5757 {
5758 	struct rq *rq = rq_of(cfs_rq);
5759 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5760 	struct sched_entity *se;
5761 	long task_delta, idle_task_delta, dequeue = 1;
5762 
5763 	raw_spin_lock(&cfs_b->lock);
5764 	/* This will start the period timer if necessary */
5765 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5766 		/*
5767 		 * We have raced with bandwidth becoming available, and if we
5768 		 * actually throttled the timer might not unthrottle us for an
5769 		 * entire period. We additionally needed to make sure that any
5770 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5771 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5772 		 * for 1ns of runtime rather than just check cfs_b.
5773 		 */
5774 		dequeue = 0;
5775 	} else {
5776 		list_add_tail_rcu(&cfs_rq->throttled_list,
5777 				  &cfs_b->throttled_cfs_rq);
5778 	}
5779 	raw_spin_unlock(&cfs_b->lock);
5780 
5781 	if (!dequeue)
5782 		return false;  /* Throttle no longer required. */
5783 
5784 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5785 
5786 	/* freeze hierarchy runnable averages while throttled */
5787 	rcu_read_lock();
5788 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5789 	rcu_read_unlock();
5790 
5791 	task_delta = cfs_rq->h_nr_running;
5792 	idle_task_delta = cfs_rq->idle_h_nr_running;
5793 	for_each_sched_entity(se) {
5794 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5795 		/* throttled entity or throttle-on-deactivate */
5796 		if (!se->on_rq)
5797 			goto done;
5798 
5799 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5800 
5801 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5802 			idle_task_delta = cfs_rq->h_nr_running;
5803 
5804 		qcfs_rq->h_nr_running -= task_delta;
5805 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5806 
5807 		if (qcfs_rq->load.weight) {
5808 			/* Avoid re-evaluating load for this entity: */
5809 			se = parent_entity(se);
5810 			break;
5811 		}
5812 	}
5813 
5814 	for_each_sched_entity(se) {
5815 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5816 		/* throttled entity or throttle-on-deactivate */
5817 		if (!se->on_rq)
5818 			goto done;
5819 
5820 		update_load_avg(qcfs_rq, se, 0);
5821 		se_update_runnable(se);
5822 
5823 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5824 			idle_task_delta = cfs_rq->h_nr_running;
5825 
5826 		qcfs_rq->h_nr_running -= task_delta;
5827 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5828 	}
5829 
5830 	/* At this point se is NULL and we are at root level*/
5831 	sub_nr_running(rq, task_delta);
5832 
5833 done:
5834 	/*
5835 	 * Note: distribution will already see us throttled via the
5836 	 * throttled-list.  rq->lock protects completion.
5837 	 */
5838 	cfs_rq->throttled = 1;
5839 	SCHED_WARN_ON(cfs_rq->throttled_clock);
5840 	if (cfs_rq->nr_running)
5841 		cfs_rq->throttled_clock = rq_clock(rq);
5842 	return true;
5843 }
5844 
5845 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5846 {
5847 	struct rq *rq = rq_of(cfs_rq);
5848 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5849 	struct sched_entity *se;
5850 	long task_delta, idle_task_delta;
5851 
5852 	se = cfs_rq->tg->se[cpu_of(rq)];
5853 
5854 	cfs_rq->throttled = 0;
5855 
5856 	update_rq_clock(rq);
5857 
5858 	raw_spin_lock(&cfs_b->lock);
5859 	if (cfs_rq->throttled_clock) {
5860 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5861 		cfs_rq->throttled_clock = 0;
5862 	}
5863 	list_del_rcu(&cfs_rq->throttled_list);
5864 	raw_spin_unlock(&cfs_b->lock);
5865 
5866 	/* update hierarchical throttle state */
5867 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5868 
5869 	if (!cfs_rq->load.weight) {
5870 		if (!cfs_rq->on_list)
5871 			return;
5872 		/*
5873 		 * Nothing to run but something to decay (on_list)?
5874 		 * Complete the branch.
5875 		 */
5876 		for_each_sched_entity(se) {
5877 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5878 				break;
5879 		}
5880 		goto unthrottle_throttle;
5881 	}
5882 
5883 	task_delta = cfs_rq->h_nr_running;
5884 	idle_task_delta = cfs_rq->idle_h_nr_running;
5885 	for_each_sched_entity(se) {
5886 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5887 
5888 		if (se->on_rq)
5889 			break;
5890 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5891 
5892 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5893 			idle_task_delta = cfs_rq->h_nr_running;
5894 
5895 		qcfs_rq->h_nr_running += task_delta;
5896 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5897 
5898 		/* end evaluation on encountering a throttled cfs_rq */
5899 		if (cfs_rq_throttled(qcfs_rq))
5900 			goto unthrottle_throttle;
5901 	}
5902 
5903 	for_each_sched_entity(se) {
5904 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5905 
5906 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5907 		se_update_runnable(se);
5908 
5909 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5910 			idle_task_delta = cfs_rq->h_nr_running;
5911 
5912 		qcfs_rq->h_nr_running += task_delta;
5913 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5914 
5915 		/* end evaluation on encountering a throttled cfs_rq */
5916 		if (cfs_rq_throttled(qcfs_rq))
5917 			goto unthrottle_throttle;
5918 	}
5919 
5920 	/* At this point se is NULL and we are at root level*/
5921 	add_nr_running(rq, task_delta);
5922 
5923 unthrottle_throttle:
5924 	assert_list_leaf_cfs_rq(rq);
5925 
5926 	/* Determine whether we need to wake up potentially idle CPU: */
5927 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5928 		resched_curr(rq);
5929 }
5930 
5931 #ifdef CONFIG_SMP
5932 static void __cfsb_csd_unthrottle(void *arg)
5933 {
5934 	struct cfs_rq *cursor, *tmp;
5935 	struct rq *rq = arg;
5936 	struct rq_flags rf;
5937 
5938 	rq_lock(rq, &rf);
5939 
5940 	/*
5941 	 * Iterating over the list can trigger several call to
5942 	 * update_rq_clock() in unthrottle_cfs_rq().
5943 	 * Do it once and skip the potential next ones.
5944 	 */
5945 	update_rq_clock(rq);
5946 	rq_clock_start_loop_update(rq);
5947 
5948 	/*
5949 	 * Since we hold rq lock we're safe from concurrent manipulation of
5950 	 * the CSD list. However, this RCU critical section annotates the
5951 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
5952 	 * race with group being freed in the window between removing it
5953 	 * from the list and advancing to the next entry in the list.
5954 	 */
5955 	rcu_read_lock();
5956 
5957 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5958 				 throttled_csd_list) {
5959 		list_del_init(&cursor->throttled_csd_list);
5960 
5961 		if (cfs_rq_throttled(cursor))
5962 			unthrottle_cfs_rq(cursor);
5963 	}
5964 
5965 	rcu_read_unlock();
5966 
5967 	rq_clock_stop_loop_update(rq);
5968 	rq_unlock(rq, &rf);
5969 }
5970 
5971 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5972 {
5973 	struct rq *rq = rq_of(cfs_rq);
5974 	bool first;
5975 
5976 	if (rq == this_rq()) {
5977 		unthrottle_cfs_rq(cfs_rq);
5978 		return;
5979 	}
5980 
5981 	/* Already enqueued */
5982 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5983 		return;
5984 
5985 	first = list_empty(&rq->cfsb_csd_list);
5986 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5987 	if (first)
5988 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5989 }
5990 #else
5991 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5992 {
5993 	unthrottle_cfs_rq(cfs_rq);
5994 }
5995 #endif
5996 
5997 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5998 {
5999 	lockdep_assert_rq_held(rq_of(cfs_rq));
6000 
6001 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
6002 	    cfs_rq->runtime_remaining <= 0))
6003 		return;
6004 
6005 	__unthrottle_cfs_rq_async(cfs_rq);
6006 }
6007 
6008 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6009 {
6010 	int this_cpu = smp_processor_id();
6011 	u64 runtime, remaining = 1;
6012 	bool throttled = false;
6013 	struct cfs_rq *cfs_rq, *tmp;
6014 	struct rq_flags rf;
6015 	struct rq *rq;
6016 	LIST_HEAD(local_unthrottle);
6017 
6018 	rcu_read_lock();
6019 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6020 				throttled_list) {
6021 		rq = rq_of(cfs_rq);
6022 
6023 		if (!remaining) {
6024 			throttled = true;
6025 			break;
6026 		}
6027 
6028 		rq_lock_irqsave(rq, &rf);
6029 		if (!cfs_rq_throttled(cfs_rq))
6030 			goto next;
6031 
6032 		/* Already queued for async unthrottle */
6033 		if (!list_empty(&cfs_rq->throttled_csd_list))
6034 			goto next;
6035 
6036 		/* By the above checks, this should never be true */
6037 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6038 
6039 		raw_spin_lock(&cfs_b->lock);
6040 		runtime = -cfs_rq->runtime_remaining + 1;
6041 		if (runtime > cfs_b->runtime)
6042 			runtime = cfs_b->runtime;
6043 		cfs_b->runtime -= runtime;
6044 		remaining = cfs_b->runtime;
6045 		raw_spin_unlock(&cfs_b->lock);
6046 
6047 		cfs_rq->runtime_remaining += runtime;
6048 
6049 		/* we check whether we're throttled above */
6050 		if (cfs_rq->runtime_remaining > 0) {
6051 			if (cpu_of(rq) != this_cpu) {
6052 				unthrottle_cfs_rq_async(cfs_rq);
6053 			} else {
6054 				/*
6055 				 * We currently only expect to be unthrottling
6056 				 * a single cfs_rq locally.
6057 				 */
6058 				SCHED_WARN_ON(!list_empty(&local_unthrottle));
6059 				list_add_tail(&cfs_rq->throttled_csd_list,
6060 					      &local_unthrottle);
6061 			}
6062 		} else {
6063 			throttled = true;
6064 		}
6065 
6066 next:
6067 		rq_unlock_irqrestore(rq, &rf);
6068 	}
6069 
6070 	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6071 				 throttled_csd_list) {
6072 		struct rq *rq = rq_of(cfs_rq);
6073 
6074 		rq_lock_irqsave(rq, &rf);
6075 
6076 		list_del_init(&cfs_rq->throttled_csd_list);
6077 
6078 		if (cfs_rq_throttled(cfs_rq))
6079 			unthrottle_cfs_rq(cfs_rq);
6080 
6081 		rq_unlock_irqrestore(rq, &rf);
6082 	}
6083 	SCHED_WARN_ON(!list_empty(&local_unthrottle));
6084 
6085 	rcu_read_unlock();
6086 
6087 	return throttled;
6088 }
6089 
6090 /*
6091  * Responsible for refilling a task_group's bandwidth and unthrottling its
6092  * cfs_rqs as appropriate. If there has been no activity within the last
6093  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6094  * used to track this state.
6095  */
6096 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6097 {
6098 	int throttled;
6099 
6100 	/* no need to continue the timer with no bandwidth constraint */
6101 	if (cfs_b->quota == RUNTIME_INF)
6102 		goto out_deactivate;
6103 
6104 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6105 	cfs_b->nr_periods += overrun;
6106 
6107 	/* Refill extra burst quota even if cfs_b->idle */
6108 	__refill_cfs_bandwidth_runtime(cfs_b);
6109 
6110 	/*
6111 	 * idle depends on !throttled (for the case of a large deficit), and if
6112 	 * we're going inactive then everything else can be deferred
6113 	 */
6114 	if (cfs_b->idle && !throttled)
6115 		goto out_deactivate;
6116 
6117 	if (!throttled) {
6118 		/* mark as potentially idle for the upcoming period */
6119 		cfs_b->idle = 1;
6120 		return 0;
6121 	}
6122 
6123 	/* account preceding periods in which throttling occurred */
6124 	cfs_b->nr_throttled += overrun;
6125 
6126 	/*
6127 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6128 	 */
6129 	while (throttled && cfs_b->runtime > 0) {
6130 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6131 		/* we can't nest cfs_b->lock while distributing bandwidth */
6132 		throttled = distribute_cfs_runtime(cfs_b);
6133 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6134 	}
6135 
6136 	/*
6137 	 * While we are ensured activity in the period following an
6138 	 * unthrottle, this also covers the case in which the new bandwidth is
6139 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6140 	 * timer to remain active while there are any throttled entities.)
6141 	 */
6142 	cfs_b->idle = 0;
6143 
6144 	return 0;
6145 
6146 out_deactivate:
6147 	return 1;
6148 }
6149 
6150 /* a cfs_rq won't donate quota below this amount */
6151 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6152 /* minimum remaining period time to redistribute slack quota */
6153 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6154 /* how long we wait to gather additional slack before distributing */
6155 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6156 
6157 /*
6158  * Are we near the end of the current quota period?
6159  *
6160  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6161  * hrtimer base being cleared by hrtimer_start. In the case of
6162  * migrate_hrtimers, base is never cleared, so we are fine.
6163  */
6164 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6165 {
6166 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6167 	s64 remaining;
6168 
6169 	/* if the call-back is running a quota refresh is already occurring */
6170 	if (hrtimer_callback_running(refresh_timer))
6171 		return 1;
6172 
6173 	/* is a quota refresh about to occur? */
6174 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6175 	if (remaining < (s64)min_expire)
6176 		return 1;
6177 
6178 	return 0;
6179 }
6180 
6181 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6182 {
6183 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6184 
6185 	/* if there's a quota refresh soon don't bother with slack */
6186 	if (runtime_refresh_within(cfs_b, min_left))
6187 		return;
6188 
6189 	/* don't push forwards an existing deferred unthrottle */
6190 	if (cfs_b->slack_started)
6191 		return;
6192 	cfs_b->slack_started = true;
6193 
6194 	hrtimer_start(&cfs_b->slack_timer,
6195 			ns_to_ktime(cfs_bandwidth_slack_period),
6196 			HRTIMER_MODE_REL);
6197 }
6198 
6199 /* we know any runtime found here is valid as update_curr() precedes return */
6200 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6201 {
6202 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6203 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6204 
6205 	if (slack_runtime <= 0)
6206 		return;
6207 
6208 	raw_spin_lock(&cfs_b->lock);
6209 	if (cfs_b->quota != RUNTIME_INF) {
6210 		cfs_b->runtime += slack_runtime;
6211 
6212 		/* we are under rq->lock, defer unthrottling using a timer */
6213 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6214 		    !list_empty(&cfs_b->throttled_cfs_rq))
6215 			start_cfs_slack_bandwidth(cfs_b);
6216 	}
6217 	raw_spin_unlock(&cfs_b->lock);
6218 
6219 	/* even if it's not valid for return we don't want to try again */
6220 	cfs_rq->runtime_remaining -= slack_runtime;
6221 }
6222 
6223 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6224 {
6225 	if (!cfs_bandwidth_used())
6226 		return;
6227 
6228 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6229 		return;
6230 
6231 	__return_cfs_rq_runtime(cfs_rq);
6232 }
6233 
6234 /*
6235  * This is done with a timer (instead of inline with bandwidth return) since
6236  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6237  */
6238 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6239 {
6240 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6241 	unsigned long flags;
6242 
6243 	/* confirm we're still not at a refresh boundary */
6244 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6245 	cfs_b->slack_started = false;
6246 
6247 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6248 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6249 		return;
6250 	}
6251 
6252 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6253 		runtime = cfs_b->runtime;
6254 
6255 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6256 
6257 	if (!runtime)
6258 		return;
6259 
6260 	distribute_cfs_runtime(cfs_b);
6261 }
6262 
6263 /*
6264  * When a group wakes up we want to make sure that its quota is not already
6265  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6266  * runtime as update_curr() throttling can not trigger until it's on-rq.
6267  */
6268 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6269 {
6270 	if (!cfs_bandwidth_used())
6271 		return;
6272 
6273 	/* an active group must be handled by the update_curr()->put() path */
6274 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6275 		return;
6276 
6277 	/* ensure the group is not already throttled */
6278 	if (cfs_rq_throttled(cfs_rq))
6279 		return;
6280 
6281 	/* update runtime allocation */
6282 	account_cfs_rq_runtime(cfs_rq, 0);
6283 	if (cfs_rq->runtime_remaining <= 0)
6284 		throttle_cfs_rq(cfs_rq);
6285 }
6286 
6287 static void sync_throttle(struct task_group *tg, int cpu)
6288 {
6289 	struct cfs_rq *pcfs_rq, *cfs_rq;
6290 
6291 	if (!cfs_bandwidth_used())
6292 		return;
6293 
6294 	if (!tg->parent)
6295 		return;
6296 
6297 	cfs_rq = tg->cfs_rq[cpu];
6298 	pcfs_rq = tg->parent->cfs_rq[cpu];
6299 
6300 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6301 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6302 }
6303 
6304 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6305 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6306 {
6307 	if (!cfs_bandwidth_used())
6308 		return false;
6309 
6310 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6311 		return false;
6312 
6313 	/*
6314 	 * it's possible for a throttled entity to be forced into a running
6315 	 * state (e.g. set_curr_task), in this case we're finished.
6316 	 */
6317 	if (cfs_rq_throttled(cfs_rq))
6318 		return true;
6319 
6320 	return throttle_cfs_rq(cfs_rq);
6321 }
6322 
6323 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6324 {
6325 	struct cfs_bandwidth *cfs_b =
6326 		container_of(timer, struct cfs_bandwidth, slack_timer);
6327 
6328 	do_sched_cfs_slack_timer(cfs_b);
6329 
6330 	return HRTIMER_NORESTART;
6331 }
6332 
6333 extern const u64 max_cfs_quota_period;
6334 
6335 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6336 {
6337 	struct cfs_bandwidth *cfs_b =
6338 		container_of(timer, struct cfs_bandwidth, period_timer);
6339 	unsigned long flags;
6340 	int overrun;
6341 	int idle = 0;
6342 	int count = 0;
6343 
6344 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6345 	for (;;) {
6346 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6347 		if (!overrun)
6348 			break;
6349 
6350 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6351 
6352 		if (++count > 3) {
6353 			u64 new, old = ktime_to_ns(cfs_b->period);
6354 
6355 			/*
6356 			 * Grow period by a factor of 2 to avoid losing precision.
6357 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6358 			 * to fail.
6359 			 */
6360 			new = old * 2;
6361 			if (new < max_cfs_quota_period) {
6362 				cfs_b->period = ns_to_ktime(new);
6363 				cfs_b->quota *= 2;
6364 				cfs_b->burst *= 2;
6365 
6366 				pr_warn_ratelimited(
6367 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6368 					smp_processor_id(),
6369 					div_u64(new, NSEC_PER_USEC),
6370 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6371 			} else {
6372 				pr_warn_ratelimited(
6373 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6374 					smp_processor_id(),
6375 					div_u64(old, NSEC_PER_USEC),
6376 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6377 			}
6378 
6379 			/* reset count so we don't come right back in here */
6380 			count = 0;
6381 		}
6382 	}
6383 	if (idle)
6384 		cfs_b->period_active = 0;
6385 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6386 
6387 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6388 }
6389 
6390 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6391 {
6392 	raw_spin_lock_init(&cfs_b->lock);
6393 	cfs_b->runtime = 0;
6394 	cfs_b->quota = RUNTIME_INF;
6395 	cfs_b->period = ns_to_ktime(default_cfs_period());
6396 	cfs_b->burst = 0;
6397 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6398 
6399 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6400 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6401 	cfs_b->period_timer.function = sched_cfs_period_timer;
6402 
6403 	/* Add a random offset so that timers interleave */
6404 	hrtimer_set_expires(&cfs_b->period_timer,
6405 			    get_random_u32_below(cfs_b->period));
6406 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6407 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6408 	cfs_b->slack_started = false;
6409 }
6410 
6411 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6412 {
6413 	cfs_rq->runtime_enabled = 0;
6414 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6415 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6416 }
6417 
6418 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6419 {
6420 	lockdep_assert_held(&cfs_b->lock);
6421 
6422 	if (cfs_b->period_active)
6423 		return;
6424 
6425 	cfs_b->period_active = 1;
6426 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6427 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6428 }
6429 
6430 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6431 {
6432 	int __maybe_unused i;
6433 
6434 	/* init_cfs_bandwidth() was not called */
6435 	if (!cfs_b->throttled_cfs_rq.next)
6436 		return;
6437 
6438 	hrtimer_cancel(&cfs_b->period_timer);
6439 	hrtimer_cancel(&cfs_b->slack_timer);
6440 
6441 	/*
6442 	 * It is possible that we still have some cfs_rq's pending on a CSD
6443 	 * list, though this race is very rare. In order for this to occur, we
6444 	 * must have raced with the last task leaving the group while there
6445 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6446 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6447 	 * we can simply flush all pending CSD work inline here. We're
6448 	 * guaranteed at this point that no additional cfs_rq of this group can
6449 	 * join a CSD list.
6450 	 */
6451 #ifdef CONFIG_SMP
6452 	for_each_possible_cpu(i) {
6453 		struct rq *rq = cpu_rq(i);
6454 		unsigned long flags;
6455 
6456 		if (list_empty(&rq->cfsb_csd_list))
6457 			continue;
6458 
6459 		local_irq_save(flags);
6460 		__cfsb_csd_unthrottle(rq);
6461 		local_irq_restore(flags);
6462 	}
6463 #endif
6464 }
6465 
6466 /*
6467  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6468  *
6469  * The race is harmless, since modifying bandwidth settings of unhooked group
6470  * bits doesn't do much.
6471  */
6472 
6473 /* cpu online callback */
6474 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6475 {
6476 	struct task_group *tg;
6477 
6478 	lockdep_assert_rq_held(rq);
6479 
6480 	rcu_read_lock();
6481 	list_for_each_entry_rcu(tg, &task_groups, list) {
6482 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6483 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6484 
6485 		raw_spin_lock(&cfs_b->lock);
6486 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6487 		raw_spin_unlock(&cfs_b->lock);
6488 	}
6489 	rcu_read_unlock();
6490 }
6491 
6492 /* cpu offline callback */
6493 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6494 {
6495 	struct task_group *tg;
6496 
6497 	lockdep_assert_rq_held(rq);
6498 
6499 	/*
6500 	 * The rq clock has already been updated in the
6501 	 * set_rq_offline(), so we should skip updating
6502 	 * the rq clock again in unthrottle_cfs_rq().
6503 	 */
6504 	rq_clock_start_loop_update(rq);
6505 
6506 	rcu_read_lock();
6507 	list_for_each_entry_rcu(tg, &task_groups, list) {
6508 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6509 
6510 		if (!cfs_rq->runtime_enabled)
6511 			continue;
6512 
6513 		/*
6514 		 * clock_task is not advancing so we just need to make sure
6515 		 * there's some valid quota amount
6516 		 */
6517 		cfs_rq->runtime_remaining = 1;
6518 		/*
6519 		 * Offline rq is schedulable till CPU is completely disabled
6520 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6521 		 */
6522 		cfs_rq->runtime_enabled = 0;
6523 
6524 		if (cfs_rq_throttled(cfs_rq))
6525 			unthrottle_cfs_rq(cfs_rq);
6526 	}
6527 	rcu_read_unlock();
6528 
6529 	rq_clock_stop_loop_update(rq);
6530 }
6531 
6532 bool cfs_task_bw_constrained(struct task_struct *p)
6533 {
6534 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6535 
6536 	if (!cfs_bandwidth_used())
6537 		return false;
6538 
6539 	if (cfs_rq->runtime_enabled ||
6540 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6541 		return true;
6542 
6543 	return false;
6544 }
6545 
6546 #ifdef CONFIG_NO_HZ_FULL
6547 /* called from pick_next_task_fair() */
6548 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6549 {
6550 	int cpu = cpu_of(rq);
6551 
6552 	if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6553 		return;
6554 
6555 	if (!tick_nohz_full_cpu(cpu))
6556 		return;
6557 
6558 	if (rq->nr_running != 1)
6559 		return;
6560 
6561 	/*
6562 	 *  We know there is only one task runnable and we've just picked it. The
6563 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6564 	 *  be otherwise able to stop the tick. Just need to check if we are using
6565 	 *  bandwidth control.
6566 	 */
6567 	if (cfs_task_bw_constrained(p))
6568 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6569 }
6570 #endif
6571 
6572 #else /* CONFIG_CFS_BANDWIDTH */
6573 
6574 static inline bool cfs_bandwidth_used(void)
6575 {
6576 	return false;
6577 }
6578 
6579 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6580 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6581 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6582 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6583 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6584 
6585 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6586 {
6587 	return 0;
6588 }
6589 
6590 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6591 {
6592 	return 0;
6593 }
6594 
6595 static inline int throttled_lb_pair(struct task_group *tg,
6596 				    int src_cpu, int dest_cpu)
6597 {
6598 	return 0;
6599 }
6600 
6601 #ifdef CONFIG_FAIR_GROUP_SCHED
6602 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6603 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6604 #endif
6605 
6606 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6607 {
6608 	return NULL;
6609 }
6610 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6611 static inline void update_runtime_enabled(struct rq *rq) {}
6612 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6613 #ifdef CONFIG_CGROUP_SCHED
6614 bool cfs_task_bw_constrained(struct task_struct *p)
6615 {
6616 	return false;
6617 }
6618 #endif
6619 #endif /* CONFIG_CFS_BANDWIDTH */
6620 
6621 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6622 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6623 #endif
6624 
6625 /**************************************************
6626  * CFS operations on tasks:
6627  */
6628 
6629 #ifdef CONFIG_SCHED_HRTICK
6630 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6631 {
6632 	struct sched_entity *se = &p->se;
6633 
6634 	SCHED_WARN_ON(task_rq(p) != rq);
6635 
6636 	if (rq->cfs.h_nr_running > 1) {
6637 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6638 		u64 slice = se->slice;
6639 		s64 delta = slice - ran;
6640 
6641 		if (delta < 0) {
6642 			if (task_current(rq, p))
6643 				resched_curr(rq);
6644 			return;
6645 		}
6646 		hrtick_start(rq, delta);
6647 	}
6648 }
6649 
6650 /*
6651  * called from enqueue/dequeue and updates the hrtick when the
6652  * current task is from our class and nr_running is low enough
6653  * to matter.
6654  */
6655 static void hrtick_update(struct rq *rq)
6656 {
6657 	struct task_struct *curr = rq->curr;
6658 
6659 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6660 		return;
6661 
6662 	hrtick_start_fair(rq, curr);
6663 }
6664 #else /* !CONFIG_SCHED_HRTICK */
6665 static inline void
6666 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6667 {
6668 }
6669 
6670 static inline void hrtick_update(struct rq *rq)
6671 {
6672 }
6673 #endif
6674 
6675 #ifdef CONFIG_SMP
6676 static inline bool cpu_overutilized(int cpu)
6677 {
6678 	unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6679 	unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6680 
6681 	/* Return true only if the utilization doesn't fit CPU's capacity */
6682 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6683 }
6684 
6685 static inline void update_overutilized_status(struct rq *rq)
6686 {
6687 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
6688 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
6689 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
6690 	}
6691 }
6692 #else
6693 static inline void update_overutilized_status(struct rq *rq) { }
6694 #endif
6695 
6696 /* Runqueue only has SCHED_IDLE tasks enqueued */
6697 static int sched_idle_rq(struct rq *rq)
6698 {
6699 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6700 			rq->nr_running);
6701 }
6702 
6703 #ifdef CONFIG_SMP
6704 static int sched_idle_cpu(int cpu)
6705 {
6706 	return sched_idle_rq(cpu_rq(cpu));
6707 }
6708 #endif
6709 
6710 /*
6711  * The enqueue_task method is called before nr_running is
6712  * increased. Here we update the fair scheduling stats and
6713  * then put the task into the rbtree:
6714  */
6715 static void
6716 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6717 {
6718 	struct cfs_rq *cfs_rq;
6719 	struct sched_entity *se = &p->se;
6720 	int idle_h_nr_running = task_has_idle_policy(p);
6721 	int task_new = !(flags & ENQUEUE_WAKEUP);
6722 
6723 	/*
6724 	 * The code below (indirectly) updates schedutil which looks at
6725 	 * the cfs_rq utilization to select a frequency.
6726 	 * Let's add the task's estimated utilization to the cfs_rq's
6727 	 * estimated utilization, before we update schedutil.
6728 	 */
6729 	util_est_enqueue(&rq->cfs, p);
6730 
6731 	/*
6732 	 * If in_iowait is set, the code below may not trigger any cpufreq
6733 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6734 	 * passed.
6735 	 */
6736 	if (p->in_iowait)
6737 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6738 
6739 	for_each_sched_entity(se) {
6740 		if (se->on_rq)
6741 			break;
6742 		cfs_rq = cfs_rq_of(se);
6743 		enqueue_entity(cfs_rq, se, flags);
6744 
6745 		cfs_rq->h_nr_running++;
6746 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6747 
6748 		if (cfs_rq_is_idle(cfs_rq))
6749 			idle_h_nr_running = 1;
6750 
6751 		/* end evaluation on encountering a throttled cfs_rq */
6752 		if (cfs_rq_throttled(cfs_rq))
6753 			goto enqueue_throttle;
6754 
6755 		flags = ENQUEUE_WAKEUP;
6756 	}
6757 
6758 	for_each_sched_entity(se) {
6759 		cfs_rq = cfs_rq_of(se);
6760 
6761 		update_load_avg(cfs_rq, se, UPDATE_TG);
6762 		se_update_runnable(se);
6763 		update_cfs_group(se);
6764 
6765 		cfs_rq->h_nr_running++;
6766 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6767 
6768 		if (cfs_rq_is_idle(cfs_rq))
6769 			idle_h_nr_running = 1;
6770 
6771 		/* end evaluation on encountering a throttled cfs_rq */
6772 		if (cfs_rq_throttled(cfs_rq))
6773 			goto enqueue_throttle;
6774 	}
6775 
6776 	/* At this point se is NULL and we are at root level*/
6777 	add_nr_running(rq, 1);
6778 
6779 	/*
6780 	 * Since new tasks are assigned an initial util_avg equal to
6781 	 * half of the spare capacity of their CPU, tiny tasks have the
6782 	 * ability to cross the overutilized threshold, which will
6783 	 * result in the load balancer ruining all the task placement
6784 	 * done by EAS. As a way to mitigate that effect, do not account
6785 	 * for the first enqueue operation of new tasks during the
6786 	 * overutilized flag detection.
6787 	 *
6788 	 * A better way of solving this problem would be to wait for
6789 	 * the PELT signals of tasks to converge before taking them
6790 	 * into account, but that is not straightforward to implement,
6791 	 * and the following generally works well enough in practice.
6792 	 */
6793 	if (!task_new)
6794 		update_overutilized_status(rq);
6795 
6796 enqueue_throttle:
6797 	assert_list_leaf_cfs_rq(rq);
6798 
6799 	hrtick_update(rq);
6800 }
6801 
6802 static void set_next_buddy(struct sched_entity *se);
6803 
6804 /*
6805  * The dequeue_task method is called before nr_running is
6806  * decreased. We remove the task from the rbtree and
6807  * update the fair scheduling stats:
6808  */
6809 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6810 {
6811 	struct cfs_rq *cfs_rq;
6812 	struct sched_entity *se = &p->se;
6813 	int task_sleep = flags & DEQUEUE_SLEEP;
6814 	int idle_h_nr_running = task_has_idle_policy(p);
6815 	bool was_sched_idle = sched_idle_rq(rq);
6816 
6817 	util_est_dequeue(&rq->cfs, p);
6818 
6819 	for_each_sched_entity(se) {
6820 		cfs_rq = cfs_rq_of(se);
6821 		dequeue_entity(cfs_rq, se, flags);
6822 
6823 		cfs_rq->h_nr_running--;
6824 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6825 
6826 		if (cfs_rq_is_idle(cfs_rq))
6827 			idle_h_nr_running = 1;
6828 
6829 		/* end evaluation on encountering a throttled cfs_rq */
6830 		if (cfs_rq_throttled(cfs_rq))
6831 			goto dequeue_throttle;
6832 
6833 		/* Don't dequeue parent if it has other entities besides us */
6834 		if (cfs_rq->load.weight) {
6835 			/* Avoid re-evaluating load for this entity: */
6836 			se = parent_entity(se);
6837 			/*
6838 			 * Bias pick_next to pick a task from this cfs_rq, as
6839 			 * p is sleeping when it is within its sched_slice.
6840 			 */
6841 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6842 				set_next_buddy(se);
6843 			break;
6844 		}
6845 		flags |= DEQUEUE_SLEEP;
6846 	}
6847 
6848 	for_each_sched_entity(se) {
6849 		cfs_rq = cfs_rq_of(se);
6850 
6851 		update_load_avg(cfs_rq, se, UPDATE_TG);
6852 		se_update_runnable(se);
6853 		update_cfs_group(se);
6854 
6855 		cfs_rq->h_nr_running--;
6856 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6857 
6858 		if (cfs_rq_is_idle(cfs_rq))
6859 			idle_h_nr_running = 1;
6860 
6861 		/* end evaluation on encountering a throttled cfs_rq */
6862 		if (cfs_rq_throttled(cfs_rq))
6863 			goto dequeue_throttle;
6864 
6865 	}
6866 
6867 	/* At this point se is NULL and we are at root level*/
6868 	sub_nr_running(rq, 1);
6869 
6870 	/* balance early to pull high priority tasks */
6871 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6872 		rq->next_balance = jiffies;
6873 
6874 dequeue_throttle:
6875 	util_est_update(&rq->cfs, p, task_sleep);
6876 	hrtick_update(rq);
6877 }
6878 
6879 #ifdef CONFIG_SMP
6880 
6881 /* Working cpumask for: load_balance, load_balance_newidle. */
6882 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6883 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6884 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
6885 
6886 #ifdef CONFIG_NO_HZ_COMMON
6887 
6888 static struct {
6889 	cpumask_var_t idle_cpus_mask;
6890 	atomic_t nr_cpus;
6891 	int has_blocked;		/* Idle CPUS has blocked load */
6892 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
6893 	unsigned long next_balance;     /* in jiffy units */
6894 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6895 } nohz ____cacheline_aligned;
6896 
6897 #endif /* CONFIG_NO_HZ_COMMON */
6898 
6899 static unsigned long cpu_load(struct rq *rq)
6900 {
6901 	return cfs_rq_load_avg(&rq->cfs);
6902 }
6903 
6904 /*
6905  * cpu_load_without - compute CPU load without any contributions from *p
6906  * @cpu: the CPU which load is requested
6907  * @p: the task which load should be discounted
6908  *
6909  * The load of a CPU is defined by the load of tasks currently enqueued on that
6910  * CPU as well as tasks which are currently sleeping after an execution on that
6911  * CPU.
6912  *
6913  * This method returns the load of the specified CPU by discounting the load of
6914  * the specified task, whenever the task is currently contributing to the CPU
6915  * load.
6916  */
6917 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6918 {
6919 	struct cfs_rq *cfs_rq;
6920 	unsigned int load;
6921 
6922 	/* Task has no contribution or is new */
6923 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6924 		return cpu_load(rq);
6925 
6926 	cfs_rq = &rq->cfs;
6927 	load = READ_ONCE(cfs_rq->avg.load_avg);
6928 
6929 	/* Discount task's util from CPU's util */
6930 	lsub_positive(&load, task_h_load(p));
6931 
6932 	return load;
6933 }
6934 
6935 static unsigned long cpu_runnable(struct rq *rq)
6936 {
6937 	return cfs_rq_runnable_avg(&rq->cfs);
6938 }
6939 
6940 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6941 {
6942 	struct cfs_rq *cfs_rq;
6943 	unsigned int runnable;
6944 
6945 	/* Task has no contribution or is new */
6946 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6947 		return cpu_runnable(rq);
6948 
6949 	cfs_rq = &rq->cfs;
6950 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6951 
6952 	/* Discount task's runnable from CPU's runnable */
6953 	lsub_positive(&runnable, p->se.avg.runnable_avg);
6954 
6955 	return runnable;
6956 }
6957 
6958 static unsigned long capacity_of(int cpu)
6959 {
6960 	return cpu_rq(cpu)->cpu_capacity;
6961 }
6962 
6963 static void record_wakee(struct task_struct *p)
6964 {
6965 	/*
6966 	 * Only decay a single time; tasks that have less then 1 wakeup per
6967 	 * jiffy will not have built up many flips.
6968 	 */
6969 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6970 		current->wakee_flips >>= 1;
6971 		current->wakee_flip_decay_ts = jiffies;
6972 	}
6973 
6974 	if (current->last_wakee != p) {
6975 		current->last_wakee = p;
6976 		current->wakee_flips++;
6977 	}
6978 }
6979 
6980 /*
6981  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6982  *
6983  * A waker of many should wake a different task than the one last awakened
6984  * at a frequency roughly N times higher than one of its wakees.
6985  *
6986  * In order to determine whether we should let the load spread vs consolidating
6987  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6988  * partner, and a factor of lls_size higher frequency in the other.
6989  *
6990  * With both conditions met, we can be relatively sure that the relationship is
6991  * non-monogamous, with partner count exceeding socket size.
6992  *
6993  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6994  * whatever is irrelevant, spread criteria is apparent partner count exceeds
6995  * socket size.
6996  */
6997 static int wake_wide(struct task_struct *p)
6998 {
6999 	unsigned int master = current->wakee_flips;
7000 	unsigned int slave = p->wakee_flips;
7001 	int factor = __this_cpu_read(sd_llc_size);
7002 
7003 	if (master < slave)
7004 		swap(master, slave);
7005 	if (slave < factor || master < slave * factor)
7006 		return 0;
7007 	return 1;
7008 }
7009 
7010 /*
7011  * The purpose of wake_affine() is to quickly determine on which CPU we can run
7012  * soonest. For the purpose of speed we only consider the waking and previous
7013  * CPU.
7014  *
7015  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7016  *			cache-affine and is (or	will be) idle.
7017  *
7018  * wake_affine_weight() - considers the weight to reflect the average
7019  *			  scheduling latency of the CPUs. This seems to work
7020  *			  for the overloaded case.
7021  */
7022 static int
7023 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7024 {
7025 	/*
7026 	 * If this_cpu is idle, it implies the wakeup is from interrupt
7027 	 * context. Only allow the move if cache is shared. Otherwise an
7028 	 * interrupt intensive workload could force all tasks onto one
7029 	 * node depending on the IO topology or IRQ affinity settings.
7030 	 *
7031 	 * If the prev_cpu is idle and cache affine then avoid a migration.
7032 	 * There is no guarantee that the cache hot data from an interrupt
7033 	 * is more important than cache hot data on the prev_cpu and from
7034 	 * a cpufreq perspective, it's better to have higher utilisation
7035 	 * on one CPU.
7036 	 */
7037 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7038 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7039 
7040 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
7041 		return this_cpu;
7042 
7043 	if (available_idle_cpu(prev_cpu))
7044 		return prev_cpu;
7045 
7046 	return nr_cpumask_bits;
7047 }
7048 
7049 static int
7050 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7051 		   int this_cpu, int prev_cpu, int sync)
7052 {
7053 	s64 this_eff_load, prev_eff_load;
7054 	unsigned long task_load;
7055 
7056 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7057 
7058 	if (sync) {
7059 		unsigned long current_load = task_h_load(current);
7060 
7061 		if (current_load > this_eff_load)
7062 			return this_cpu;
7063 
7064 		this_eff_load -= current_load;
7065 	}
7066 
7067 	task_load = task_h_load(p);
7068 
7069 	this_eff_load += task_load;
7070 	if (sched_feat(WA_BIAS))
7071 		this_eff_load *= 100;
7072 	this_eff_load *= capacity_of(prev_cpu);
7073 
7074 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7075 	prev_eff_load -= task_load;
7076 	if (sched_feat(WA_BIAS))
7077 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7078 	prev_eff_load *= capacity_of(this_cpu);
7079 
7080 	/*
7081 	 * If sync, adjust the weight of prev_eff_load such that if
7082 	 * prev_eff == this_eff that select_idle_sibling() will consider
7083 	 * stacking the wakee on top of the waker if no other CPU is
7084 	 * idle.
7085 	 */
7086 	if (sync)
7087 		prev_eff_load += 1;
7088 
7089 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7090 }
7091 
7092 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7093 		       int this_cpu, int prev_cpu, int sync)
7094 {
7095 	int target = nr_cpumask_bits;
7096 
7097 	if (sched_feat(WA_IDLE))
7098 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7099 
7100 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7101 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7102 
7103 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7104 	if (target != this_cpu)
7105 		return prev_cpu;
7106 
7107 	schedstat_inc(sd->ttwu_move_affine);
7108 	schedstat_inc(p->stats.nr_wakeups_affine);
7109 	return target;
7110 }
7111 
7112 static struct sched_group *
7113 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7114 
7115 /*
7116  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
7117  */
7118 static int
7119 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7120 {
7121 	unsigned long load, min_load = ULONG_MAX;
7122 	unsigned int min_exit_latency = UINT_MAX;
7123 	u64 latest_idle_timestamp = 0;
7124 	int least_loaded_cpu = this_cpu;
7125 	int shallowest_idle_cpu = -1;
7126 	int i;
7127 
7128 	/* Check if we have any choice: */
7129 	if (group->group_weight == 1)
7130 		return cpumask_first(sched_group_span(group));
7131 
7132 	/* Traverse only the allowed CPUs */
7133 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7134 		struct rq *rq = cpu_rq(i);
7135 
7136 		if (!sched_core_cookie_match(rq, p))
7137 			continue;
7138 
7139 		if (sched_idle_cpu(i))
7140 			return i;
7141 
7142 		if (available_idle_cpu(i)) {
7143 			struct cpuidle_state *idle = idle_get_state(rq);
7144 			if (idle && idle->exit_latency < min_exit_latency) {
7145 				/*
7146 				 * We give priority to a CPU whose idle state
7147 				 * has the smallest exit latency irrespective
7148 				 * of any idle timestamp.
7149 				 */
7150 				min_exit_latency = idle->exit_latency;
7151 				latest_idle_timestamp = rq->idle_stamp;
7152 				shallowest_idle_cpu = i;
7153 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7154 				   rq->idle_stamp > latest_idle_timestamp) {
7155 				/*
7156 				 * If equal or no active idle state, then
7157 				 * the most recently idled CPU might have
7158 				 * a warmer cache.
7159 				 */
7160 				latest_idle_timestamp = rq->idle_stamp;
7161 				shallowest_idle_cpu = i;
7162 			}
7163 		} else if (shallowest_idle_cpu == -1) {
7164 			load = cpu_load(cpu_rq(i));
7165 			if (load < min_load) {
7166 				min_load = load;
7167 				least_loaded_cpu = i;
7168 			}
7169 		}
7170 	}
7171 
7172 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7173 }
7174 
7175 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
7176 				  int cpu, int prev_cpu, int sd_flag)
7177 {
7178 	int new_cpu = cpu;
7179 
7180 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7181 		return prev_cpu;
7182 
7183 	/*
7184 	 * We need task's util for cpu_util_without, sync it up to
7185 	 * prev_cpu's last_update_time.
7186 	 */
7187 	if (!(sd_flag & SD_BALANCE_FORK))
7188 		sync_entity_load_avg(&p->se);
7189 
7190 	while (sd) {
7191 		struct sched_group *group;
7192 		struct sched_domain *tmp;
7193 		int weight;
7194 
7195 		if (!(sd->flags & sd_flag)) {
7196 			sd = sd->child;
7197 			continue;
7198 		}
7199 
7200 		group = find_idlest_group(sd, p, cpu);
7201 		if (!group) {
7202 			sd = sd->child;
7203 			continue;
7204 		}
7205 
7206 		new_cpu = find_idlest_group_cpu(group, p, cpu);
7207 		if (new_cpu == cpu) {
7208 			/* Now try balancing at a lower domain level of 'cpu': */
7209 			sd = sd->child;
7210 			continue;
7211 		}
7212 
7213 		/* Now try balancing at a lower domain level of 'new_cpu': */
7214 		cpu = new_cpu;
7215 		weight = sd->span_weight;
7216 		sd = NULL;
7217 		for_each_domain(cpu, tmp) {
7218 			if (weight <= tmp->span_weight)
7219 				break;
7220 			if (tmp->flags & sd_flag)
7221 				sd = tmp;
7222 		}
7223 	}
7224 
7225 	return new_cpu;
7226 }
7227 
7228 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7229 {
7230 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7231 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7232 		return cpu;
7233 
7234 	return -1;
7235 }
7236 
7237 #ifdef CONFIG_SCHED_SMT
7238 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7239 EXPORT_SYMBOL_GPL(sched_smt_present);
7240 
7241 static inline void set_idle_cores(int cpu, int val)
7242 {
7243 	struct sched_domain_shared *sds;
7244 
7245 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7246 	if (sds)
7247 		WRITE_ONCE(sds->has_idle_cores, val);
7248 }
7249 
7250 static inline bool test_idle_cores(int cpu)
7251 {
7252 	struct sched_domain_shared *sds;
7253 
7254 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7255 	if (sds)
7256 		return READ_ONCE(sds->has_idle_cores);
7257 
7258 	return false;
7259 }
7260 
7261 /*
7262  * Scans the local SMT mask to see if the entire core is idle, and records this
7263  * information in sd_llc_shared->has_idle_cores.
7264  *
7265  * Since SMT siblings share all cache levels, inspecting this limited remote
7266  * state should be fairly cheap.
7267  */
7268 void __update_idle_core(struct rq *rq)
7269 {
7270 	int core = cpu_of(rq);
7271 	int cpu;
7272 
7273 	rcu_read_lock();
7274 	if (test_idle_cores(core))
7275 		goto unlock;
7276 
7277 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7278 		if (cpu == core)
7279 			continue;
7280 
7281 		if (!available_idle_cpu(cpu))
7282 			goto unlock;
7283 	}
7284 
7285 	set_idle_cores(core, 1);
7286 unlock:
7287 	rcu_read_unlock();
7288 }
7289 
7290 /*
7291  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7292  * there are no idle cores left in the system; tracked through
7293  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7294  */
7295 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7296 {
7297 	bool idle = true;
7298 	int cpu;
7299 
7300 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7301 		if (!available_idle_cpu(cpu)) {
7302 			idle = false;
7303 			if (*idle_cpu == -1) {
7304 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7305 					*idle_cpu = cpu;
7306 					break;
7307 				}
7308 				continue;
7309 			}
7310 			break;
7311 		}
7312 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7313 			*idle_cpu = cpu;
7314 	}
7315 
7316 	if (idle)
7317 		return core;
7318 
7319 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7320 	return -1;
7321 }
7322 
7323 /*
7324  * Scan the local SMT mask for idle CPUs.
7325  */
7326 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7327 {
7328 	int cpu;
7329 
7330 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7331 		if (cpu == target)
7332 			continue;
7333 		/*
7334 		 * Check if the CPU is in the LLC scheduling domain of @target.
7335 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7336 		 */
7337 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7338 			continue;
7339 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7340 			return cpu;
7341 	}
7342 
7343 	return -1;
7344 }
7345 
7346 #else /* CONFIG_SCHED_SMT */
7347 
7348 static inline void set_idle_cores(int cpu, int val)
7349 {
7350 }
7351 
7352 static inline bool test_idle_cores(int cpu)
7353 {
7354 	return false;
7355 }
7356 
7357 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7358 {
7359 	return __select_idle_cpu(core, p);
7360 }
7361 
7362 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7363 {
7364 	return -1;
7365 }
7366 
7367 #endif /* CONFIG_SCHED_SMT */
7368 
7369 /*
7370  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7371  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7372  * average idle time for this rq (as found in rq->avg_idle).
7373  */
7374 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7375 {
7376 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7377 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7378 	struct sched_domain_shared *sd_share;
7379 
7380 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7381 
7382 	if (sched_feat(SIS_UTIL)) {
7383 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7384 		if (sd_share) {
7385 			/* because !--nr is the condition to stop scan */
7386 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7387 			/* overloaded LLC is unlikely to have idle cpu/core */
7388 			if (nr == 1)
7389 				return -1;
7390 		}
7391 	}
7392 
7393 	if (static_branch_unlikely(&sched_cluster_active)) {
7394 		struct sched_group *sg = sd->groups;
7395 
7396 		if (sg->flags & SD_CLUSTER) {
7397 			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7398 				if (!cpumask_test_cpu(cpu, cpus))
7399 					continue;
7400 
7401 				if (has_idle_core) {
7402 					i = select_idle_core(p, cpu, cpus, &idle_cpu);
7403 					if ((unsigned int)i < nr_cpumask_bits)
7404 						return i;
7405 				} else {
7406 					if (--nr <= 0)
7407 						return -1;
7408 					idle_cpu = __select_idle_cpu(cpu, p);
7409 					if ((unsigned int)idle_cpu < nr_cpumask_bits)
7410 						return idle_cpu;
7411 				}
7412 			}
7413 			cpumask_andnot(cpus, cpus, sched_group_span(sg));
7414 		}
7415 	}
7416 
7417 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7418 		if (has_idle_core) {
7419 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7420 			if ((unsigned int)i < nr_cpumask_bits)
7421 				return i;
7422 
7423 		} else {
7424 			if (--nr <= 0)
7425 				return -1;
7426 			idle_cpu = __select_idle_cpu(cpu, p);
7427 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7428 				break;
7429 		}
7430 	}
7431 
7432 	if (has_idle_core)
7433 		set_idle_cores(target, false);
7434 
7435 	return idle_cpu;
7436 }
7437 
7438 /*
7439  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7440  * the task fits. If no CPU is big enough, but there are idle ones, try to
7441  * maximize capacity.
7442  */
7443 static int
7444 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7445 {
7446 	unsigned long task_util, util_min, util_max, best_cap = 0;
7447 	int fits, best_fits = 0;
7448 	int cpu, best_cpu = -1;
7449 	struct cpumask *cpus;
7450 
7451 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7452 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7453 
7454 	task_util = task_util_est(p);
7455 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7456 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7457 
7458 	for_each_cpu_wrap(cpu, cpus, target) {
7459 		unsigned long cpu_cap = capacity_of(cpu);
7460 
7461 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7462 			continue;
7463 
7464 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7465 
7466 		/* This CPU fits with all requirements */
7467 		if (fits > 0)
7468 			return cpu;
7469 		/*
7470 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7471 		 * Look for the CPU with best capacity.
7472 		 */
7473 		else if (fits < 0)
7474 			cpu_cap = arch_scale_cpu_capacity(cpu) - thermal_load_avg(cpu_rq(cpu));
7475 
7476 		/*
7477 		 * First, select CPU which fits better (-1 being better than 0).
7478 		 * Then, select the one with best capacity at same level.
7479 		 */
7480 		if ((fits < best_fits) ||
7481 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7482 			best_cap = cpu_cap;
7483 			best_cpu = cpu;
7484 			best_fits = fits;
7485 		}
7486 	}
7487 
7488 	return best_cpu;
7489 }
7490 
7491 static inline bool asym_fits_cpu(unsigned long util,
7492 				 unsigned long util_min,
7493 				 unsigned long util_max,
7494 				 int cpu)
7495 {
7496 	if (sched_asym_cpucap_active())
7497 		/*
7498 		 * Return true only if the cpu fully fits the task requirements
7499 		 * which include the utilization and the performance hints.
7500 		 */
7501 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7502 
7503 	return true;
7504 }
7505 
7506 /*
7507  * Try and locate an idle core/thread in the LLC cache domain.
7508  */
7509 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7510 {
7511 	bool has_idle_core = false;
7512 	struct sched_domain *sd;
7513 	unsigned long task_util, util_min, util_max;
7514 	int i, recent_used_cpu, prev_aff = -1;
7515 
7516 	/*
7517 	 * On asymmetric system, update task utilization because we will check
7518 	 * that the task fits with cpu's capacity.
7519 	 */
7520 	if (sched_asym_cpucap_active()) {
7521 		sync_entity_load_avg(&p->se);
7522 		task_util = task_util_est(p);
7523 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7524 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7525 	}
7526 
7527 	/*
7528 	 * per-cpu select_rq_mask usage
7529 	 */
7530 	lockdep_assert_irqs_disabled();
7531 
7532 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7533 	    asym_fits_cpu(task_util, util_min, util_max, target))
7534 		return target;
7535 
7536 	/*
7537 	 * If the previous CPU is cache affine and idle, don't be stupid:
7538 	 */
7539 	if (prev != target && cpus_share_cache(prev, target) &&
7540 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7541 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7542 
7543 		if (!static_branch_unlikely(&sched_cluster_active) ||
7544 		    cpus_share_resources(prev, target))
7545 			return prev;
7546 
7547 		prev_aff = prev;
7548 	}
7549 
7550 	/*
7551 	 * Allow a per-cpu kthread to stack with the wakee if the
7552 	 * kworker thread and the tasks previous CPUs are the same.
7553 	 * The assumption is that the wakee queued work for the
7554 	 * per-cpu kthread that is now complete and the wakeup is
7555 	 * essentially a sync wakeup. An obvious example of this
7556 	 * pattern is IO completions.
7557 	 */
7558 	if (is_per_cpu_kthread(current) &&
7559 	    in_task() &&
7560 	    prev == smp_processor_id() &&
7561 	    this_rq()->nr_running <= 1 &&
7562 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7563 		return prev;
7564 	}
7565 
7566 	/* Check a recently used CPU as a potential idle candidate: */
7567 	recent_used_cpu = p->recent_used_cpu;
7568 	p->recent_used_cpu = prev;
7569 	if (recent_used_cpu != prev &&
7570 	    recent_used_cpu != target &&
7571 	    cpus_share_cache(recent_used_cpu, target) &&
7572 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7573 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7574 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7575 
7576 		if (!static_branch_unlikely(&sched_cluster_active) ||
7577 		    cpus_share_resources(recent_used_cpu, target))
7578 			return recent_used_cpu;
7579 
7580 	} else {
7581 		recent_used_cpu = -1;
7582 	}
7583 
7584 	/*
7585 	 * For asymmetric CPU capacity systems, our domain of interest is
7586 	 * sd_asym_cpucapacity rather than sd_llc.
7587 	 */
7588 	if (sched_asym_cpucap_active()) {
7589 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7590 		/*
7591 		 * On an asymmetric CPU capacity system where an exclusive
7592 		 * cpuset defines a symmetric island (i.e. one unique
7593 		 * capacity_orig value through the cpuset), the key will be set
7594 		 * but the CPUs within that cpuset will not have a domain with
7595 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7596 		 * capacity path.
7597 		 */
7598 		if (sd) {
7599 			i = select_idle_capacity(p, sd, target);
7600 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7601 		}
7602 	}
7603 
7604 	sd = rcu_dereference(per_cpu(sd_llc, target));
7605 	if (!sd)
7606 		return target;
7607 
7608 	if (sched_smt_active()) {
7609 		has_idle_core = test_idle_cores(target);
7610 
7611 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7612 			i = select_idle_smt(p, sd, prev);
7613 			if ((unsigned int)i < nr_cpumask_bits)
7614 				return i;
7615 		}
7616 	}
7617 
7618 	i = select_idle_cpu(p, sd, has_idle_core, target);
7619 	if ((unsigned)i < nr_cpumask_bits)
7620 		return i;
7621 
7622 	/*
7623 	 * For cluster machines which have lower sharing cache like L2 or
7624 	 * LLC Tag, we tend to find an idle CPU in the target's cluster
7625 	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7626 	 * use them if possible when no idle CPU found in select_idle_cpu().
7627 	 */
7628 	if ((unsigned int)prev_aff < nr_cpumask_bits)
7629 		return prev_aff;
7630 	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7631 		return recent_used_cpu;
7632 
7633 	return target;
7634 }
7635 
7636 /**
7637  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7638  * @cpu: the CPU to get the utilization for
7639  * @p: task for which the CPU utilization should be predicted or NULL
7640  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7641  * @boost: 1 to enable boosting, otherwise 0
7642  *
7643  * The unit of the return value must be the same as the one of CPU capacity
7644  * so that CPU utilization can be compared with CPU capacity.
7645  *
7646  * CPU utilization is the sum of running time of runnable tasks plus the
7647  * recent utilization of currently non-runnable tasks on that CPU.
7648  * It represents the amount of CPU capacity currently used by CFS tasks in
7649  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7650  * capacity at f_max.
7651  *
7652  * The estimated CPU utilization is defined as the maximum between CPU
7653  * utilization and sum of the estimated utilization of the currently
7654  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7655  * previously-executed tasks, which helps better deduce how busy a CPU will
7656  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7657  * of such a task would be significantly decayed at this point of time.
7658  *
7659  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7660  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7661  * utilization. Boosting is implemented in cpu_util() so that internal
7662  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7663  * latter via cpu_util_cfs_boost().
7664  *
7665  * CPU utilization can be higher than the current CPU capacity
7666  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7667  * of rounding errors as well as task migrations or wakeups of new tasks.
7668  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7669  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7670  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7671  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7672  * though since this is useful for predicting the CPU capacity required
7673  * after task migrations (scheduler-driven DVFS).
7674  *
7675  * Return: (Boosted) (estimated) utilization for the specified CPU.
7676  */
7677 static unsigned long
7678 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7679 {
7680 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7681 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7682 	unsigned long runnable;
7683 
7684 	if (boost) {
7685 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7686 		util = max(util, runnable);
7687 	}
7688 
7689 	/*
7690 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7691 	 * contribution. If @p migrates from another CPU to @cpu add its
7692 	 * contribution. In all the other cases @cpu is not impacted by the
7693 	 * migration so its util_avg is already correct.
7694 	 */
7695 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7696 		lsub_positive(&util, task_util(p));
7697 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7698 		util += task_util(p);
7699 
7700 	if (sched_feat(UTIL_EST)) {
7701 		unsigned long util_est;
7702 
7703 		util_est = READ_ONCE(cfs_rq->avg.util_est);
7704 
7705 		/*
7706 		 * During wake-up @p isn't enqueued yet and doesn't contribute
7707 		 * to any cpu_rq(cpu)->cfs.avg.util_est.
7708 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7709 		 * has been enqueued.
7710 		 *
7711 		 * During exec (@dst_cpu = -1) @p is enqueued and does
7712 		 * contribute to cpu_rq(cpu)->cfs.util_est.
7713 		 * Remove it to "simulate" cpu_util without @p's contribution.
7714 		 *
7715 		 * Despite the task_on_rq_queued(@p) check there is still a
7716 		 * small window for a possible race when an exec
7717 		 * select_task_rq_fair() races with LB's detach_task().
7718 		 *
7719 		 *   detach_task()
7720 		 *     deactivate_task()
7721 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7722 		 *       -------------------------------- A
7723 		 *       dequeue_task()                    \
7724 		 *         dequeue_task_fair()              + Race Time
7725 		 *           util_est_dequeue()            /
7726 		 *       -------------------------------- B
7727 		 *
7728 		 * The additional check "current == p" is required to further
7729 		 * reduce the race window.
7730 		 */
7731 		if (dst_cpu == cpu)
7732 			util_est += _task_util_est(p);
7733 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
7734 			lsub_positive(&util_est, _task_util_est(p));
7735 
7736 		util = max(util, util_est);
7737 	}
7738 
7739 	return min(util, arch_scale_cpu_capacity(cpu));
7740 }
7741 
7742 unsigned long cpu_util_cfs(int cpu)
7743 {
7744 	return cpu_util(cpu, NULL, -1, 0);
7745 }
7746 
7747 unsigned long cpu_util_cfs_boost(int cpu)
7748 {
7749 	return cpu_util(cpu, NULL, -1, 1);
7750 }
7751 
7752 /*
7753  * cpu_util_without: compute cpu utilization without any contributions from *p
7754  * @cpu: the CPU which utilization is requested
7755  * @p: the task which utilization should be discounted
7756  *
7757  * The utilization of a CPU is defined by the utilization of tasks currently
7758  * enqueued on that CPU as well as tasks which are currently sleeping after an
7759  * execution on that CPU.
7760  *
7761  * This method returns the utilization of the specified CPU by discounting the
7762  * utilization of the specified task, whenever the task is currently
7763  * contributing to the CPU utilization.
7764  */
7765 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7766 {
7767 	/* Task has no contribution or is new */
7768 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7769 		p = NULL;
7770 
7771 	return cpu_util(cpu, p, -1, 0);
7772 }
7773 
7774 /*
7775  * energy_env - Utilization landscape for energy estimation.
7776  * @task_busy_time: Utilization contribution by the task for which we test the
7777  *                  placement. Given by eenv_task_busy_time().
7778  * @pd_busy_time:   Utilization of the whole perf domain without the task
7779  *                  contribution. Given by eenv_pd_busy_time().
7780  * @cpu_cap:        Maximum CPU capacity for the perf domain.
7781  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7782  */
7783 struct energy_env {
7784 	unsigned long task_busy_time;
7785 	unsigned long pd_busy_time;
7786 	unsigned long cpu_cap;
7787 	unsigned long pd_cap;
7788 };
7789 
7790 /*
7791  * Compute the task busy time for compute_energy(). This time cannot be
7792  * injected directly into effective_cpu_util() because of the IRQ scaling.
7793  * The latter only makes sense with the most recent CPUs where the task has
7794  * run.
7795  */
7796 static inline void eenv_task_busy_time(struct energy_env *eenv,
7797 				       struct task_struct *p, int prev_cpu)
7798 {
7799 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7800 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7801 
7802 	if (unlikely(irq >= max_cap))
7803 		busy_time = max_cap;
7804 	else
7805 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7806 
7807 	eenv->task_busy_time = busy_time;
7808 }
7809 
7810 /*
7811  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7812  * utilization for each @pd_cpus, it however doesn't take into account
7813  * clamping since the ratio (utilization / cpu_capacity) is already enough to
7814  * scale the EM reported power consumption at the (eventually clamped)
7815  * cpu_capacity.
7816  *
7817  * The contribution of the task @p for which we want to estimate the
7818  * energy cost is removed (by cpu_util()) and must be calculated
7819  * separately (see eenv_task_busy_time). This ensures:
7820  *
7821  *   - A stable PD utilization, no matter which CPU of that PD we want to place
7822  *     the task on.
7823  *
7824  *   - A fair comparison between CPUs as the task contribution (task_util())
7825  *     will always be the same no matter which CPU utilization we rely on
7826  *     (util_avg or util_est).
7827  *
7828  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7829  * exceed @eenv->pd_cap.
7830  */
7831 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7832 				     struct cpumask *pd_cpus,
7833 				     struct task_struct *p)
7834 {
7835 	unsigned long busy_time = 0;
7836 	int cpu;
7837 
7838 	for_each_cpu(cpu, pd_cpus) {
7839 		unsigned long util = cpu_util(cpu, p, -1, 0);
7840 
7841 		busy_time += effective_cpu_util(cpu, util, NULL, NULL);
7842 	}
7843 
7844 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7845 }
7846 
7847 /*
7848  * Compute the maximum utilization for compute_energy() when the task @p
7849  * is placed on the cpu @dst_cpu.
7850  *
7851  * Returns the maximum utilization among @eenv->cpus. This utilization can't
7852  * exceed @eenv->cpu_cap.
7853  */
7854 static inline unsigned long
7855 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7856 		 struct task_struct *p, int dst_cpu)
7857 {
7858 	unsigned long max_util = 0;
7859 	int cpu;
7860 
7861 	for_each_cpu(cpu, pd_cpus) {
7862 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7863 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
7864 		unsigned long eff_util, min, max;
7865 
7866 		/*
7867 		 * Performance domain frequency: utilization clamping
7868 		 * must be considered since it affects the selection
7869 		 * of the performance domain frequency.
7870 		 * NOTE: in case RT tasks are running, by default the
7871 		 * FREQUENCY_UTIL's utilization can be max OPP.
7872 		 */
7873 		eff_util = effective_cpu_util(cpu, util, &min, &max);
7874 
7875 		/* Task's uclamp can modify min and max value */
7876 		if (tsk && uclamp_is_used()) {
7877 			min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
7878 
7879 			/*
7880 			 * If there is no active max uclamp constraint,
7881 			 * directly use task's one, otherwise keep max.
7882 			 */
7883 			if (uclamp_rq_is_idle(cpu_rq(cpu)))
7884 				max = uclamp_eff_value(p, UCLAMP_MAX);
7885 			else
7886 				max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
7887 		}
7888 
7889 		eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
7890 		max_util = max(max_util, eff_util);
7891 	}
7892 
7893 	return min(max_util, eenv->cpu_cap);
7894 }
7895 
7896 /*
7897  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7898  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7899  * contribution is ignored.
7900  */
7901 static inline unsigned long
7902 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7903 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7904 {
7905 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7906 	unsigned long busy_time = eenv->pd_busy_time;
7907 	unsigned long energy;
7908 
7909 	if (dst_cpu >= 0)
7910 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7911 
7912 	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7913 
7914 	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
7915 
7916 	return energy;
7917 }
7918 
7919 /*
7920  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7921  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7922  * spare capacity in each performance domain and uses it as a potential
7923  * candidate to execute the task. Then, it uses the Energy Model to figure
7924  * out which of the CPU candidates is the most energy-efficient.
7925  *
7926  * The rationale for this heuristic is as follows. In a performance domain,
7927  * all the most energy efficient CPU candidates (according to the Energy
7928  * Model) are those for which we'll request a low frequency. When there are
7929  * several CPUs for which the frequency request will be the same, we don't
7930  * have enough data to break the tie between them, because the Energy Model
7931  * only includes active power costs. With this model, if we assume that
7932  * frequency requests follow utilization (e.g. using schedutil), the CPU with
7933  * the maximum spare capacity in a performance domain is guaranteed to be among
7934  * the best candidates of the performance domain.
7935  *
7936  * In practice, it could be preferable from an energy standpoint to pack
7937  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7938  * but that could also hurt our chances to go cluster idle, and we have no
7939  * ways to tell with the current Energy Model if this is actually a good
7940  * idea or not. So, find_energy_efficient_cpu() basically favors
7941  * cluster-packing, and spreading inside a cluster. That should at least be
7942  * a good thing for latency, and this is consistent with the idea that most
7943  * of the energy savings of EAS come from the asymmetry of the system, and
7944  * not so much from breaking the tie between identical CPUs. That's also the
7945  * reason why EAS is enabled in the topology code only for systems where
7946  * SD_ASYM_CPUCAPACITY is set.
7947  *
7948  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7949  * they don't have any useful utilization data yet and it's not possible to
7950  * forecast their impact on energy consumption. Consequently, they will be
7951  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7952  * to be energy-inefficient in some use-cases. The alternative would be to
7953  * bias new tasks towards specific types of CPUs first, or to try to infer
7954  * their util_avg from the parent task, but those heuristics could hurt
7955  * other use-cases too. So, until someone finds a better way to solve this,
7956  * let's keep things simple by re-using the existing slow path.
7957  */
7958 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7959 {
7960 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7961 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7962 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7963 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7964 	struct root_domain *rd = this_rq()->rd;
7965 	int cpu, best_energy_cpu, target = -1;
7966 	int prev_fits = -1, best_fits = -1;
7967 	unsigned long best_thermal_cap = 0;
7968 	unsigned long prev_thermal_cap = 0;
7969 	struct sched_domain *sd;
7970 	struct perf_domain *pd;
7971 	struct energy_env eenv;
7972 
7973 	rcu_read_lock();
7974 	pd = rcu_dereference(rd->pd);
7975 	if (!pd || READ_ONCE(rd->overutilized))
7976 		goto unlock;
7977 
7978 	/*
7979 	 * Energy-aware wake-up happens on the lowest sched_domain starting
7980 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7981 	 */
7982 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7983 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7984 		sd = sd->parent;
7985 	if (!sd)
7986 		goto unlock;
7987 
7988 	target = prev_cpu;
7989 
7990 	sync_entity_load_avg(&p->se);
7991 	if (!task_util_est(p) && p_util_min == 0)
7992 		goto unlock;
7993 
7994 	eenv_task_busy_time(&eenv, p, prev_cpu);
7995 
7996 	for (; pd; pd = pd->next) {
7997 		unsigned long util_min = p_util_min, util_max = p_util_max;
7998 		unsigned long cpu_cap, cpu_thermal_cap, util;
7999 		long prev_spare_cap = -1, max_spare_cap = -1;
8000 		unsigned long rq_util_min, rq_util_max;
8001 		unsigned long cur_delta, base_energy;
8002 		int max_spare_cap_cpu = -1;
8003 		int fits, max_fits = -1;
8004 
8005 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8006 
8007 		if (cpumask_empty(cpus))
8008 			continue;
8009 
8010 		/* Account thermal pressure for the energy estimation */
8011 		cpu = cpumask_first(cpus);
8012 		cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
8013 		cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
8014 
8015 		eenv.cpu_cap = cpu_thermal_cap;
8016 		eenv.pd_cap = 0;
8017 
8018 		for_each_cpu(cpu, cpus) {
8019 			struct rq *rq = cpu_rq(cpu);
8020 
8021 			eenv.pd_cap += cpu_thermal_cap;
8022 
8023 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8024 				continue;
8025 
8026 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8027 				continue;
8028 
8029 			util = cpu_util(cpu, p, cpu, 0);
8030 			cpu_cap = capacity_of(cpu);
8031 
8032 			/*
8033 			 * Skip CPUs that cannot satisfy the capacity request.
8034 			 * IOW, placing the task there would make the CPU
8035 			 * overutilized. Take uclamp into account to see how
8036 			 * much capacity we can get out of the CPU; this is
8037 			 * aligned with sched_cpu_util().
8038 			 */
8039 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8040 				/*
8041 				 * Open code uclamp_rq_util_with() except for
8042 				 * the clamp() part. Ie: apply max aggregation
8043 				 * only. util_fits_cpu() logic requires to
8044 				 * operate on non clamped util but must use the
8045 				 * max-aggregated uclamp_{min, max}.
8046 				 */
8047 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8048 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8049 
8050 				util_min = max(rq_util_min, p_util_min);
8051 				util_max = max(rq_util_max, p_util_max);
8052 			}
8053 
8054 			fits = util_fits_cpu(util, util_min, util_max, cpu);
8055 			if (!fits)
8056 				continue;
8057 
8058 			lsub_positive(&cpu_cap, util);
8059 
8060 			if (cpu == prev_cpu) {
8061 				/* Always use prev_cpu as a candidate. */
8062 				prev_spare_cap = cpu_cap;
8063 				prev_fits = fits;
8064 			} else if ((fits > max_fits) ||
8065 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8066 				/*
8067 				 * Find the CPU with the maximum spare capacity
8068 				 * among the remaining CPUs in the performance
8069 				 * domain.
8070 				 */
8071 				max_spare_cap = cpu_cap;
8072 				max_spare_cap_cpu = cpu;
8073 				max_fits = fits;
8074 			}
8075 		}
8076 
8077 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8078 			continue;
8079 
8080 		eenv_pd_busy_time(&eenv, cpus, p);
8081 		/* Compute the 'base' energy of the pd, without @p */
8082 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8083 
8084 		/* Evaluate the energy impact of using prev_cpu. */
8085 		if (prev_spare_cap > -1) {
8086 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8087 						    prev_cpu);
8088 			/* CPU utilization has changed */
8089 			if (prev_delta < base_energy)
8090 				goto unlock;
8091 			prev_delta -= base_energy;
8092 			prev_thermal_cap = cpu_thermal_cap;
8093 			best_delta = min(best_delta, prev_delta);
8094 		}
8095 
8096 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8097 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8098 			/* Current best energy cpu fits better */
8099 			if (max_fits < best_fits)
8100 				continue;
8101 
8102 			/*
8103 			 * Both don't fit performance hint (i.e. uclamp_min)
8104 			 * but best energy cpu has better capacity.
8105 			 */
8106 			if ((max_fits < 0) &&
8107 			    (cpu_thermal_cap <= best_thermal_cap))
8108 				continue;
8109 
8110 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8111 						   max_spare_cap_cpu);
8112 			/* CPU utilization has changed */
8113 			if (cur_delta < base_energy)
8114 				goto unlock;
8115 			cur_delta -= base_energy;
8116 
8117 			/*
8118 			 * Both fit for the task but best energy cpu has lower
8119 			 * energy impact.
8120 			 */
8121 			if ((max_fits > 0) && (best_fits > 0) &&
8122 			    (cur_delta >= best_delta))
8123 				continue;
8124 
8125 			best_delta = cur_delta;
8126 			best_energy_cpu = max_spare_cap_cpu;
8127 			best_fits = max_fits;
8128 			best_thermal_cap = cpu_thermal_cap;
8129 		}
8130 	}
8131 	rcu_read_unlock();
8132 
8133 	if ((best_fits > prev_fits) ||
8134 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8135 	    ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
8136 		target = best_energy_cpu;
8137 
8138 	return target;
8139 
8140 unlock:
8141 	rcu_read_unlock();
8142 
8143 	return target;
8144 }
8145 
8146 /*
8147  * select_task_rq_fair: Select target runqueue for the waking task in domains
8148  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8149  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8150  *
8151  * Balances load by selecting the idlest CPU in the idlest group, or under
8152  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8153  *
8154  * Returns the target CPU number.
8155  */
8156 static int
8157 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8158 {
8159 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8160 	struct sched_domain *tmp, *sd = NULL;
8161 	int cpu = smp_processor_id();
8162 	int new_cpu = prev_cpu;
8163 	int want_affine = 0;
8164 	/* SD_flags and WF_flags share the first nibble */
8165 	int sd_flag = wake_flags & 0xF;
8166 
8167 	/*
8168 	 * required for stable ->cpus_allowed
8169 	 */
8170 	lockdep_assert_held(&p->pi_lock);
8171 	if (wake_flags & WF_TTWU) {
8172 		record_wakee(p);
8173 
8174 		if ((wake_flags & WF_CURRENT_CPU) &&
8175 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8176 			return cpu;
8177 
8178 		if (sched_energy_enabled()) {
8179 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8180 			if (new_cpu >= 0)
8181 				return new_cpu;
8182 			new_cpu = prev_cpu;
8183 		}
8184 
8185 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8186 	}
8187 
8188 	rcu_read_lock();
8189 	for_each_domain(cpu, tmp) {
8190 		/*
8191 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8192 		 * cpu is a valid SD_WAKE_AFFINE target.
8193 		 */
8194 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8195 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8196 			if (cpu != prev_cpu)
8197 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8198 
8199 			sd = NULL; /* Prefer wake_affine over balance flags */
8200 			break;
8201 		}
8202 
8203 		/*
8204 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8205 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8206 		 * will usually go to the fast path.
8207 		 */
8208 		if (tmp->flags & sd_flag)
8209 			sd = tmp;
8210 		else if (!want_affine)
8211 			break;
8212 	}
8213 
8214 	if (unlikely(sd)) {
8215 		/* Slow path */
8216 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
8217 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8218 		/* Fast path */
8219 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8220 	}
8221 	rcu_read_unlock();
8222 
8223 	return new_cpu;
8224 }
8225 
8226 /*
8227  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8228  * cfs_rq_of(p) references at time of call are still valid and identify the
8229  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8230  */
8231 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8232 {
8233 	struct sched_entity *se = &p->se;
8234 
8235 	if (!task_on_rq_migrating(p)) {
8236 		remove_entity_load_avg(se);
8237 
8238 		/*
8239 		 * Here, the task's PELT values have been updated according to
8240 		 * the current rq's clock. But if that clock hasn't been
8241 		 * updated in a while, a substantial idle time will be missed,
8242 		 * leading to an inflation after wake-up on the new rq.
8243 		 *
8244 		 * Estimate the missing time from the cfs_rq last_update_time
8245 		 * and update sched_avg to improve the PELT continuity after
8246 		 * migration.
8247 		 */
8248 		migrate_se_pelt_lag(se);
8249 	}
8250 
8251 	/* Tell new CPU we are migrated */
8252 	se->avg.last_update_time = 0;
8253 
8254 	update_scan_period(p, new_cpu);
8255 }
8256 
8257 static void task_dead_fair(struct task_struct *p)
8258 {
8259 	remove_entity_load_avg(&p->se);
8260 }
8261 
8262 static int
8263 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8264 {
8265 	if (rq->nr_running)
8266 		return 1;
8267 
8268 	return newidle_balance(rq, rf) != 0;
8269 }
8270 #endif /* CONFIG_SMP */
8271 
8272 static void set_next_buddy(struct sched_entity *se)
8273 {
8274 	for_each_sched_entity(se) {
8275 		if (SCHED_WARN_ON(!se->on_rq))
8276 			return;
8277 		if (se_is_idle(se))
8278 			return;
8279 		cfs_rq_of(se)->next = se;
8280 	}
8281 }
8282 
8283 /*
8284  * Preempt the current task with a newly woken task if needed:
8285  */
8286 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8287 {
8288 	struct task_struct *curr = rq->curr;
8289 	struct sched_entity *se = &curr->se, *pse = &p->se;
8290 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8291 	int cse_is_idle, pse_is_idle;
8292 
8293 	if (unlikely(se == pse))
8294 		return;
8295 
8296 	/*
8297 	 * This is possible from callers such as attach_tasks(), in which we
8298 	 * unconditionally wakeup_preempt() after an enqueue (which may have
8299 	 * lead to a throttle).  This both saves work and prevents false
8300 	 * next-buddy nomination below.
8301 	 */
8302 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8303 		return;
8304 
8305 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8306 		set_next_buddy(pse);
8307 	}
8308 
8309 	/*
8310 	 * We can come here with TIF_NEED_RESCHED already set from new task
8311 	 * wake up path.
8312 	 *
8313 	 * Note: this also catches the edge-case of curr being in a throttled
8314 	 * group (e.g. via set_curr_task), since update_curr() (in the
8315 	 * enqueue of curr) will have resulted in resched being set.  This
8316 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8317 	 * below.
8318 	 */
8319 	if (test_tsk_need_resched(curr))
8320 		return;
8321 
8322 	/* Idle tasks are by definition preempted by non-idle tasks. */
8323 	if (unlikely(task_has_idle_policy(curr)) &&
8324 	    likely(!task_has_idle_policy(p)))
8325 		goto preempt;
8326 
8327 	/*
8328 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
8329 	 * is driven by the tick):
8330 	 */
8331 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
8332 		return;
8333 
8334 	find_matching_se(&se, &pse);
8335 	WARN_ON_ONCE(!pse);
8336 
8337 	cse_is_idle = se_is_idle(se);
8338 	pse_is_idle = se_is_idle(pse);
8339 
8340 	/*
8341 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
8342 	 * in the inverse case).
8343 	 */
8344 	if (cse_is_idle && !pse_is_idle)
8345 		goto preempt;
8346 	if (cse_is_idle != pse_is_idle)
8347 		return;
8348 
8349 	cfs_rq = cfs_rq_of(se);
8350 	update_curr(cfs_rq);
8351 
8352 	/*
8353 	 * XXX pick_eevdf(cfs_rq) != se ?
8354 	 */
8355 	if (pick_eevdf(cfs_rq) == pse)
8356 		goto preempt;
8357 
8358 	return;
8359 
8360 preempt:
8361 	resched_curr(rq);
8362 }
8363 
8364 #ifdef CONFIG_SMP
8365 static struct task_struct *pick_task_fair(struct rq *rq)
8366 {
8367 	struct sched_entity *se;
8368 	struct cfs_rq *cfs_rq;
8369 
8370 again:
8371 	cfs_rq = &rq->cfs;
8372 	if (!cfs_rq->nr_running)
8373 		return NULL;
8374 
8375 	do {
8376 		struct sched_entity *curr = cfs_rq->curr;
8377 
8378 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8379 		if (curr) {
8380 			if (curr->on_rq)
8381 				update_curr(cfs_rq);
8382 			else
8383 				curr = NULL;
8384 
8385 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8386 				goto again;
8387 		}
8388 
8389 		se = pick_next_entity(cfs_rq);
8390 		cfs_rq = group_cfs_rq(se);
8391 	} while (cfs_rq);
8392 
8393 	return task_of(se);
8394 }
8395 #endif
8396 
8397 struct task_struct *
8398 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8399 {
8400 	struct cfs_rq *cfs_rq = &rq->cfs;
8401 	struct sched_entity *se;
8402 	struct task_struct *p;
8403 	int new_tasks;
8404 
8405 again:
8406 	if (!sched_fair_runnable(rq))
8407 		goto idle;
8408 
8409 #ifdef CONFIG_FAIR_GROUP_SCHED
8410 	if (!prev || prev->sched_class != &fair_sched_class)
8411 		goto simple;
8412 
8413 	/*
8414 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8415 	 * likely that a next task is from the same cgroup as the current.
8416 	 *
8417 	 * Therefore attempt to avoid putting and setting the entire cgroup
8418 	 * hierarchy, only change the part that actually changes.
8419 	 */
8420 
8421 	do {
8422 		struct sched_entity *curr = cfs_rq->curr;
8423 
8424 		/*
8425 		 * Since we got here without doing put_prev_entity() we also
8426 		 * have to consider cfs_rq->curr. If it is still a runnable
8427 		 * entity, update_curr() will update its vruntime, otherwise
8428 		 * forget we've ever seen it.
8429 		 */
8430 		if (curr) {
8431 			if (curr->on_rq)
8432 				update_curr(cfs_rq);
8433 			else
8434 				curr = NULL;
8435 
8436 			/*
8437 			 * This call to check_cfs_rq_runtime() will do the
8438 			 * throttle and dequeue its entity in the parent(s).
8439 			 * Therefore the nr_running test will indeed
8440 			 * be correct.
8441 			 */
8442 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8443 				cfs_rq = &rq->cfs;
8444 
8445 				if (!cfs_rq->nr_running)
8446 					goto idle;
8447 
8448 				goto simple;
8449 			}
8450 		}
8451 
8452 		se = pick_next_entity(cfs_rq);
8453 		cfs_rq = group_cfs_rq(se);
8454 	} while (cfs_rq);
8455 
8456 	p = task_of(se);
8457 
8458 	/*
8459 	 * Since we haven't yet done put_prev_entity and if the selected task
8460 	 * is a different task than we started out with, try and touch the
8461 	 * least amount of cfs_rqs.
8462 	 */
8463 	if (prev != p) {
8464 		struct sched_entity *pse = &prev->se;
8465 
8466 		while (!(cfs_rq = is_same_group(se, pse))) {
8467 			int se_depth = se->depth;
8468 			int pse_depth = pse->depth;
8469 
8470 			if (se_depth <= pse_depth) {
8471 				put_prev_entity(cfs_rq_of(pse), pse);
8472 				pse = parent_entity(pse);
8473 			}
8474 			if (se_depth >= pse_depth) {
8475 				set_next_entity(cfs_rq_of(se), se);
8476 				se = parent_entity(se);
8477 			}
8478 		}
8479 
8480 		put_prev_entity(cfs_rq, pse);
8481 		set_next_entity(cfs_rq, se);
8482 	}
8483 
8484 	goto done;
8485 simple:
8486 #endif
8487 	if (prev)
8488 		put_prev_task(rq, prev);
8489 
8490 	do {
8491 		se = pick_next_entity(cfs_rq);
8492 		set_next_entity(cfs_rq, se);
8493 		cfs_rq = group_cfs_rq(se);
8494 	} while (cfs_rq);
8495 
8496 	p = task_of(se);
8497 
8498 done: __maybe_unused;
8499 #ifdef CONFIG_SMP
8500 	/*
8501 	 * Move the next running task to the front of
8502 	 * the list, so our cfs_tasks list becomes MRU
8503 	 * one.
8504 	 */
8505 	list_move(&p->se.group_node, &rq->cfs_tasks);
8506 #endif
8507 
8508 	if (hrtick_enabled_fair(rq))
8509 		hrtick_start_fair(rq, p);
8510 
8511 	update_misfit_status(p, rq);
8512 	sched_fair_update_stop_tick(rq, p);
8513 
8514 	return p;
8515 
8516 idle:
8517 	if (!rf)
8518 		return NULL;
8519 
8520 	new_tasks = newidle_balance(rq, rf);
8521 
8522 	/*
8523 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
8524 	 * possible for any higher priority task to appear. In that case we
8525 	 * must re-start the pick_next_entity() loop.
8526 	 */
8527 	if (new_tasks < 0)
8528 		return RETRY_TASK;
8529 
8530 	if (new_tasks > 0)
8531 		goto again;
8532 
8533 	/*
8534 	 * rq is about to be idle, check if we need to update the
8535 	 * lost_idle_time of clock_pelt
8536 	 */
8537 	update_idle_rq_clock_pelt(rq);
8538 
8539 	return NULL;
8540 }
8541 
8542 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8543 {
8544 	return pick_next_task_fair(rq, NULL, NULL);
8545 }
8546 
8547 /*
8548  * Account for a descheduled task:
8549  */
8550 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8551 {
8552 	struct sched_entity *se = &prev->se;
8553 	struct cfs_rq *cfs_rq;
8554 
8555 	for_each_sched_entity(se) {
8556 		cfs_rq = cfs_rq_of(se);
8557 		put_prev_entity(cfs_rq, se);
8558 	}
8559 }
8560 
8561 /*
8562  * sched_yield() is very simple
8563  */
8564 static void yield_task_fair(struct rq *rq)
8565 {
8566 	struct task_struct *curr = rq->curr;
8567 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8568 	struct sched_entity *se = &curr->se;
8569 
8570 	/*
8571 	 * Are we the only task in the tree?
8572 	 */
8573 	if (unlikely(rq->nr_running == 1))
8574 		return;
8575 
8576 	clear_buddies(cfs_rq, se);
8577 
8578 	update_rq_clock(rq);
8579 	/*
8580 	 * Update run-time statistics of the 'current'.
8581 	 */
8582 	update_curr(cfs_rq);
8583 	/*
8584 	 * Tell update_rq_clock() that we've just updated,
8585 	 * so we don't do microscopic update in schedule()
8586 	 * and double the fastpath cost.
8587 	 */
8588 	rq_clock_skip_update(rq);
8589 
8590 	se->deadline += calc_delta_fair(se->slice, se);
8591 }
8592 
8593 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8594 {
8595 	struct sched_entity *se = &p->se;
8596 
8597 	/* throttled hierarchies are not runnable */
8598 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8599 		return false;
8600 
8601 	/* Tell the scheduler that we'd really like pse to run next. */
8602 	set_next_buddy(se);
8603 
8604 	yield_task_fair(rq);
8605 
8606 	return true;
8607 }
8608 
8609 #ifdef CONFIG_SMP
8610 /**************************************************
8611  * Fair scheduling class load-balancing methods.
8612  *
8613  * BASICS
8614  *
8615  * The purpose of load-balancing is to achieve the same basic fairness the
8616  * per-CPU scheduler provides, namely provide a proportional amount of compute
8617  * time to each task. This is expressed in the following equation:
8618  *
8619  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8620  *
8621  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8622  * W_i,0 is defined as:
8623  *
8624  *   W_i,0 = \Sum_j w_i,j                                             (2)
8625  *
8626  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8627  * is derived from the nice value as per sched_prio_to_weight[].
8628  *
8629  * The weight average is an exponential decay average of the instantaneous
8630  * weight:
8631  *
8632  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
8633  *
8634  * C_i is the compute capacity of CPU i, typically it is the
8635  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8636  * can also include other factors [XXX].
8637  *
8638  * To achieve this balance we define a measure of imbalance which follows
8639  * directly from (1):
8640  *
8641  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
8642  *
8643  * We them move tasks around to minimize the imbalance. In the continuous
8644  * function space it is obvious this converges, in the discrete case we get
8645  * a few fun cases generally called infeasible weight scenarios.
8646  *
8647  * [XXX expand on:
8648  *     - infeasible weights;
8649  *     - local vs global optima in the discrete case. ]
8650  *
8651  *
8652  * SCHED DOMAINS
8653  *
8654  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8655  * for all i,j solution, we create a tree of CPUs that follows the hardware
8656  * topology where each level pairs two lower groups (or better). This results
8657  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8658  * tree to only the first of the previous level and we decrease the frequency
8659  * of load-balance at each level inv. proportional to the number of CPUs in
8660  * the groups.
8661  *
8662  * This yields:
8663  *
8664  *     log_2 n     1     n
8665  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
8666  *     i = 0      2^i   2^i
8667  *                               `- size of each group
8668  *         |         |     `- number of CPUs doing load-balance
8669  *         |         `- freq
8670  *         `- sum over all levels
8671  *
8672  * Coupled with a limit on how many tasks we can migrate every balance pass,
8673  * this makes (5) the runtime complexity of the balancer.
8674  *
8675  * An important property here is that each CPU is still (indirectly) connected
8676  * to every other CPU in at most O(log n) steps:
8677  *
8678  * The adjacency matrix of the resulting graph is given by:
8679  *
8680  *             log_2 n
8681  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
8682  *             k = 0
8683  *
8684  * And you'll find that:
8685  *
8686  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
8687  *
8688  * Showing there's indeed a path between every CPU in at most O(log n) steps.
8689  * The task movement gives a factor of O(m), giving a convergence complexity
8690  * of:
8691  *
8692  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
8693  *
8694  *
8695  * WORK CONSERVING
8696  *
8697  * In order to avoid CPUs going idle while there's still work to do, new idle
8698  * balancing is more aggressive and has the newly idle CPU iterate up the domain
8699  * tree itself instead of relying on other CPUs to bring it work.
8700  *
8701  * This adds some complexity to both (5) and (8) but it reduces the total idle
8702  * time.
8703  *
8704  * [XXX more?]
8705  *
8706  *
8707  * CGROUPS
8708  *
8709  * Cgroups make a horror show out of (2), instead of a simple sum we get:
8710  *
8711  *                                s_k,i
8712  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
8713  *                                 S_k
8714  *
8715  * Where
8716  *
8717  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
8718  *
8719  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8720  *
8721  * The big problem is S_k, its a global sum needed to compute a local (W_i)
8722  * property.
8723  *
8724  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8725  *      rewrite all of this once again.]
8726  */
8727 
8728 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8729 
8730 enum fbq_type { regular, remote, all };
8731 
8732 /*
8733  * 'group_type' describes the group of CPUs at the moment of load balancing.
8734  *
8735  * The enum is ordered by pulling priority, with the group with lowest priority
8736  * first so the group_type can simply be compared when selecting the busiest
8737  * group. See update_sd_pick_busiest().
8738  */
8739 enum group_type {
8740 	/* The group has spare capacity that can be used to run more tasks.  */
8741 	group_has_spare = 0,
8742 	/*
8743 	 * The group is fully used and the tasks don't compete for more CPU
8744 	 * cycles. Nevertheless, some tasks might wait before running.
8745 	 */
8746 	group_fully_busy,
8747 	/*
8748 	 * One task doesn't fit with CPU's capacity and must be migrated to a
8749 	 * more powerful CPU.
8750 	 */
8751 	group_misfit_task,
8752 	/*
8753 	 * Balance SMT group that's fully busy. Can benefit from migration
8754 	 * a task on SMT with busy sibling to another CPU on idle core.
8755 	 */
8756 	group_smt_balance,
8757 	/*
8758 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8759 	 * and the task should be migrated to it instead of running on the
8760 	 * current CPU.
8761 	 */
8762 	group_asym_packing,
8763 	/*
8764 	 * The tasks' affinity constraints previously prevented the scheduler
8765 	 * from balancing the load across the system.
8766 	 */
8767 	group_imbalanced,
8768 	/*
8769 	 * The CPU is overloaded and can't provide expected CPU cycles to all
8770 	 * tasks.
8771 	 */
8772 	group_overloaded
8773 };
8774 
8775 enum migration_type {
8776 	migrate_load = 0,
8777 	migrate_util,
8778 	migrate_task,
8779 	migrate_misfit
8780 };
8781 
8782 #define LBF_ALL_PINNED	0x01
8783 #define LBF_NEED_BREAK	0x02
8784 #define LBF_DST_PINNED  0x04
8785 #define LBF_SOME_PINNED	0x08
8786 #define LBF_ACTIVE_LB	0x10
8787 
8788 struct lb_env {
8789 	struct sched_domain	*sd;
8790 
8791 	struct rq		*src_rq;
8792 	int			src_cpu;
8793 
8794 	int			dst_cpu;
8795 	struct rq		*dst_rq;
8796 
8797 	struct cpumask		*dst_grpmask;
8798 	int			new_dst_cpu;
8799 	enum cpu_idle_type	idle;
8800 	long			imbalance;
8801 	/* The set of CPUs under consideration for load-balancing */
8802 	struct cpumask		*cpus;
8803 
8804 	unsigned int		flags;
8805 
8806 	unsigned int		loop;
8807 	unsigned int		loop_break;
8808 	unsigned int		loop_max;
8809 
8810 	enum fbq_type		fbq_type;
8811 	enum migration_type	migration_type;
8812 	struct list_head	tasks;
8813 };
8814 
8815 /*
8816  * Is this task likely cache-hot:
8817  */
8818 static int task_hot(struct task_struct *p, struct lb_env *env)
8819 {
8820 	s64 delta;
8821 
8822 	lockdep_assert_rq_held(env->src_rq);
8823 
8824 	if (p->sched_class != &fair_sched_class)
8825 		return 0;
8826 
8827 	if (unlikely(task_has_idle_policy(p)))
8828 		return 0;
8829 
8830 	/* SMT siblings share cache */
8831 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8832 		return 0;
8833 
8834 	/*
8835 	 * Buddy candidates are cache hot:
8836 	 */
8837 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8838 	    (&p->se == cfs_rq_of(&p->se)->next))
8839 		return 1;
8840 
8841 	if (sysctl_sched_migration_cost == -1)
8842 		return 1;
8843 
8844 	/*
8845 	 * Don't migrate task if the task's cookie does not match
8846 	 * with the destination CPU's core cookie.
8847 	 */
8848 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8849 		return 1;
8850 
8851 	if (sysctl_sched_migration_cost == 0)
8852 		return 0;
8853 
8854 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8855 
8856 	return delta < (s64)sysctl_sched_migration_cost;
8857 }
8858 
8859 #ifdef CONFIG_NUMA_BALANCING
8860 /*
8861  * Returns 1, if task migration degrades locality
8862  * Returns 0, if task migration improves locality i.e migration preferred.
8863  * Returns -1, if task migration is not affected by locality.
8864  */
8865 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8866 {
8867 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
8868 	unsigned long src_weight, dst_weight;
8869 	int src_nid, dst_nid, dist;
8870 
8871 	if (!static_branch_likely(&sched_numa_balancing))
8872 		return -1;
8873 
8874 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8875 		return -1;
8876 
8877 	src_nid = cpu_to_node(env->src_cpu);
8878 	dst_nid = cpu_to_node(env->dst_cpu);
8879 
8880 	if (src_nid == dst_nid)
8881 		return -1;
8882 
8883 	/* Migrating away from the preferred node is always bad. */
8884 	if (src_nid == p->numa_preferred_nid) {
8885 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8886 			return 1;
8887 		else
8888 			return -1;
8889 	}
8890 
8891 	/* Encourage migration to the preferred node. */
8892 	if (dst_nid == p->numa_preferred_nid)
8893 		return 0;
8894 
8895 	/* Leaving a core idle is often worse than degrading locality. */
8896 	if (env->idle == CPU_IDLE)
8897 		return -1;
8898 
8899 	dist = node_distance(src_nid, dst_nid);
8900 	if (numa_group) {
8901 		src_weight = group_weight(p, src_nid, dist);
8902 		dst_weight = group_weight(p, dst_nid, dist);
8903 	} else {
8904 		src_weight = task_weight(p, src_nid, dist);
8905 		dst_weight = task_weight(p, dst_nid, dist);
8906 	}
8907 
8908 	return dst_weight < src_weight;
8909 }
8910 
8911 #else
8912 static inline int migrate_degrades_locality(struct task_struct *p,
8913 					     struct lb_env *env)
8914 {
8915 	return -1;
8916 }
8917 #endif
8918 
8919 /*
8920  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8921  */
8922 static
8923 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8924 {
8925 	int tsk_cache_hot;
8926 
8927 	lockdep_assert_rq_held(env->src_rq);
8928 
8929 	/*
8930 	 * We do not migrate tasks that are:
8931 	 * 1) throttled_lb_pair, or
8932 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8933 	 * 3) running (obviously), or
8934 	 * 4) are cache-hot on their current CPU.
8935 	 */
8936 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8937 		return 0;
8938 
8939 	/* Disregard pcpu kthreads; they are where they need to be. */
8940 	if (kthread_is_per_cpu(p))
8941 		return 0;
8942 
8943 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8944 		int cpu;
8945 
8946 		schedstat_inc(p->stats.nr_failed_migrations_affine);
8947 
8948 		env->flags |= LBF_SOME_PINNED;
8949 
8950 		/*
8951 		 * Remember if this task can be migrated to any other CPU in
8952 		 * our sched_group. We may want to revisit it if we couldn't
8953 		 * meet load balance goals by pulling other tasks on src_cpu.
8954 		 *
8955 		 * Avoid computing new_dst_cpu
8956 		 * - for NEWLY_IDLE
8957 		 * - if we have already computed one in current iteration
8958 		 * - if it's an active balance
8959 		 */
8960 		if (env->idle == CPU_NEWLY_IDLE ||
8961 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8962 			return 0;
8963 
8964 		/* Prevent to re-select dst_cpu via env's CPUs: */
8965 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8966 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8967 				env->flags |= LBF_DST_PINNED;
8968 				env->new_dst_cpu = cpu;
8969 				break;
8970 			}
8971 		}
8972 
8973 		return 0;
8974 	}
8975 
8976 	/* Record that we found at least one task that could run on dst_cpu */
8977 	env->flags &= ~LBF_ALL_PINNED;
8978 
8979 	if (task_on_cpu(env->src_rq, p)) {
8980 		schedstat_inc(p->stats.nr_failed_migrations_running);
8981 		return 0;
8982 	}
8983 
8984 	/*
8985 	 * Aggressive migration if:
8986 	 * 1) active balance
8987 	 * 2) destination numa is preferred
8988 	 * 3) task is cache cold, or
8989 	 * 4) too many balance attempts have failed.
8990 	 */
8991 	if (env->flags & LBF_ACTIVE_LB)
8992 		return 1;
8993 
8994 	tsk_cache_hot = migrate_degrades_locality(p, env);
8995 	if (tsk_cache_hot == -1)
8996 		tsk_cache_hot = task_hot(p, env);
8997 
8998 	if (tsk_cache_hot <= 0 ||
8999 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9000 		if (tsk_cache_hot == 1) {
9001 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9002 			schedstat_inc(p->stats.nr_forced_migrations);
9003 		}
9004 		return 1;
9005 	}
9006 
9007 	schedstat_inc(p->stats.nr_failed_migrations_hot);
9008 	return 0;
9009 }
9010 
9011 /*
9012  * detach_task() -- detach the task for the migration specified in env
9013  */
9014 static void detach_task(struct task_struct *p, struct lb_env *env)
9015 {
9016 	lockdep_assert_rq_held(env->src_rq);
9017 
9018 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9019 	set_task_cpu(p, env->dst_cpu);
9020 }
9021 
9022 /*
9023  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9024  * part of active balancing operations within "domain".
9025  *
9026  * Returns a task if successful and NULL otherwise.
9027  */
9028 static struct task_struct *detach_one_task(struct lb_env *env)
9029 {
9030 	struct task_struct *p;
9031 
9032 	lockdep_assert_rq_held(env->src_rq);
9033 
9034 	list_for_each_entry_reverse(p,
9035 			&env->src_rq->cfs_tasks, se.group_node) {
9036 		if (!can_migrate_task(p, env))
9037 			continue;
9038 
9039 		detach_task(p, env);
9040 
9041 		/*
9042 		 * Right now, this is only the second place where
9043 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9044 		 * so we can safely collect stats here rather than
9045 		 * inside detach_tasks().
9046 		 */
9047 		schedstat_inc(env->sd->lb_gained[env->idle]);
9048 		return p;
9049 	}
9050 	return NULL;
9051 }
9052 
9053 /*
9054  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9055  * busiest_rq, as part of a balancing operation within domain "sd".
9056  *
9057  * Returns number of detached tasks if successful and 0 otherwise.
9058  */
9059 static int detach_tasks(struct lb_env *env)
9060 {
9061 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9062 	unsigned long util, load;
9063 	struct task_struct *p;
9064 	int detached = 0;
9065 
9066 	lockdep_assert_rq_held(env->src_rq);
9067 
9068 	/*
9069 	 * Source run queue has been emptied by another CPU, clear
9070 	 * LBF_ALL_PINNED flag as we will not test any task.
9071 	 */
9072 	if (env->src_rq->nr_running <= 1) {
9073 		env->flags &= ~LBF_ALL_PINNED;
9074 		return 0;
9075 	}
9076 
9077 	if (env->imbalance <= 0)
9078 		return 0;
9079 
9080 	while (!list_empty(tasks)) {
9081 		/*
9082 		 * We don't want to steal all, otherwise we may be treated likewise,
9083 		 * which could at worst lead to a livelock crash.
9084 		 */
9085 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
9086 			break;
9087 
9088 		env->loop++;
9089 		/*
9090 		 * We've more or less seen every task there is, call it quits
9091 		 * unless we haven't found any movable task yet.
9092 		 */
9093 		if (env->loop > env->loop_max &&
9094 		    !(env->flags & LBF_ALL_PINNED))
9095 			break;
9096 
9097 		/* take a breather every nr_migrate tasks */
9098 		if (env->loop > env->loop_break) {
9099 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9100 			env->flags |= LBF_NEED_BREAK;
9101 			break;
9102 		}
9103 
9104 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9105 
9106 		if (!can_migrate_task(p, env))
9107 			goto next;
9108 
9109 		switch (env->migration_type) {
9110 		case migrate_load:
9111 			/*
9112 			 * Depending of the number of CPUs and tasks and the
9113 			 * cgroup hierarchy, task_h_load() can return a null
9114 			 * value. Make sure that env->imbalance decreases
9115 			 * otherwise detach_tasks() will stop only after
9116 			 * detaching up to loop_max tasks.
9117 			 */
9118 			load = max_t(unsigned long, task_h_load(p), 1);
9119 
9120 			if (sched_feat(LB_MIN) &&
9121 			    load < 16 && !env->sd->nr_balance_failed)
9122 				goto next;
9123 
9124 			/*
9125 			 * Make sure that we don't migrate too much load.
9126 			 * Nevertheless, let relax the constraint if
9127 			 * scheduler fails to find a good waiting task to
9128 			 * migrate.
9129 			 */
9130 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9131 				goto next;
9132 
9133 			env->imbalance -= load;
9134 			break;
9135 
9136 		case migrate_util:
9137 			util = task_util_est(p);
9138 
9139 			if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9140 				goto next;
9141 
9142 			env->imbalance -= util;
9143 			break;
9144 
9145 		case migrate_task:
9146 			env->imbalance--;
9147 			break;
9148 
9149 		case migrate_misfit:
9150 			/* This is not a misfit task */
9151 			if (task_fits_cpu(p, env->src_cpu))
9152 				goto next;
9153 
9154 			env->imbalance = 0;
9155 			break;
9156 		}
9157 
9158 		detach_task(p, env);
9159 		list_add(&p->se.group_node, &env->tasks);
9160 
9161 		detached++;
9162 
9163 #ifdef CONFIG_PREEMPTION
9164 		/*
9165 		 * NEWIDLE balancing is a source of latency, so preemptible
9166 		 * kernels will stop after the first task is detached to minimize
9167 		 * the critical section.
9168 		 */
9169 		if (env->idle == CPU_NEWLY_IDLE)
9170 			break;
9171 #endif
9172 
9173 		/*
9174 		 * We only want to steal up to the prescribed amount of
9175 		 * load/util/tasks.
9176 		 */
9177 		if (env->imbalance <= 0)
9178 			break;
9179 
9180 		continue;
9181 next:
9182 		list_move(&p->se.group_node, tasks);
9183 	}
9184 
9185 	/*
9186 	 * Right now, this is one of only two places we collect this stat
9187 	 * so we can safely collect detach_one_task() stats here rather
9188 	 * than inside detach_one_task().
9189 	 */
9190 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9191 
9192 	return detached;
9193 }
9194 
9195 /*
9196  * attach_task() -- attach the task detached by detach_task() to its new rq.
9197  */
9198 static void attach_task(struct rq *rq, struct task_struct *p)
9199 {
9200 	lockdep_assert_rq_held(rq);
9201 
9202 	WARN_ON_ONCE(task_rq(p) != rq);
9203 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9204 	wakeup_preempt(rq, p, 0);
9205 }
9206 
9207 /*
9208  * attach_one_task() -- attaches the task returned from detach_one_task() to
9209  * its new rq.
9210  */
9211 static void attach_one_task(struct rq *rq, struct task_struct *p)
9212 {
9213 	struct rq_flags rf;
9214 
9215 	rq_lock(rq, &rf);
9216 	update_rq_clock(rq);
9217 	attach_task(rq, p);
9218 	rq_unlock(rq, &rf);
9219 }
9220 
9221 /*
9222  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9223  * new rq.
9224  */
9225 static void attach_tasks(struct lb_env *env)
9226 {
9227 	struct list_head *tasks = &env->tasks;
9228 	struct task_struct *p;
9229 	struct rq_flags rf;
9230 
9231 	rq_lock(env->dst_rq, &rf);
9232 	update_rq_clock(env->dst_rq);
9233 
9234 	while (!list_empty(tasks)) {
9235 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9236 		list_del_init(&p->se.group_node);
9237 
9238 		attach_task(env->dst_rq, p);
9239 	}
9240 
9241 	rq_unlock(env->dst_rq, &rf);
9242 }
9243 
9244 #ifdef CONFIG_NO_HZ_COMMON
9245 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9246 {
9247 	if (cfs_rq->avg.load_avg)
9248 		return true;
9249 
9250 	if (cfs_rq->avg.util_avg)
9251 		return true;
9252 
9253 	return false;
9254 }
9255 
9256 static inline bool others_have_blocked(struct rq *rq)
9257 {
9258 	if (cpu_util_rt(rq))
9259 		return true;
9260 
9261 	if (cpu_util_dl(rq))
9262 		return true;
9263 
9264 	if (thermal_load_avg(rq))
9265 		return true;
9266 
9267 	if (cpu_util_irq(rq))
9268 		return true;
9269 
9270 	return false;
9271 }
9272 
9273 static inline void update_blocked_load_tick(struct rq *rq)
9274 {
9275 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9276 }
9277 
9278 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9279 {
9280 	if (!has_blocked)
9281 		rq->has_blocked_load = 0;
9282 }
9283 #else
9284 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9285 static inline bool others_have_blocked(struct rq *rq) { return false; }
9286 static inline void update_blocked_load_tick(struct rq *rq) {}
9287 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9288 #endif
9289 
9290 static bool __update_blocked_others(struct rq *rq, bool *done)
9291 {
9292 	const struct sched_class *curr_class;
9293 	u64 now = rq_clock_pelt(rq);
9294 	unsigned long thermal_pressure;
9295 	bool decayed;
9296 
9297 	/*
9298 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9299 	 * DL and IRQ signals have been updated before updating CFS.
9300 	 */
9301 	curr_class = rq->curr->sched_class;
9302 
9303 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
9304 
9305 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9306 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
9307 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
9308 		  update_irq_load_avg(rq, 0);
9309 
9310 	if (others_have_blocked(rq))
9311 		*done = false;
9312 
9313 	return decayed;
9314 }
9315 
9316 #ifdef CONFIG_FAIR_GROUP_SCHED
9317 
9318 static bool __update_blocked_fair(struct rq *rq, bool *done)
9319 {
9320 	struct cfs_rq *cfs_rq, *pos;
9321 	bool decayed = false;
9322 	int cpu = cpu_of(rq);
9323 
9324 	/*
9325 	 * Iterates the task_group tree in a bottom up fashion, see
9326 	 * list_add_leaf_cfs_rq() for details.
9327 	 */
9328 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9329 		struct sched_entity *se;
9330 
9331 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9332 			update_tg_load_avg(cfs_rq);
9333 
9334 			if (cfs_rq->nr_running == 0)
9335 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9336 
9337 			if (cfs_rq == &rq->cfs)
9338 				decayed = true;
9339 		}
9340 
9341 		/* Propagate pending load changes to the parent, if any: */
9342 		se = cfs_rq->tg->se[cpu];
9343 		if (se && !skip_blocked_update(se))
9344 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9345 
9346 		/*
9347 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9348 		 * decayed cfs_rqs linger on the list.
9349 		 */
9350 		if (cfs_rq_is_decayed(cfs_rq))
9351 			list_del_leaf_cfs_rq(cfs_rq);
9352 
9353 		/* Don't need periodic decay once load/util_avg are null */
9354 		if (cfs_rq_has_blocked(cfs_rq))
9355 			*done = false;
9356 	}
9357 
9358 	return decayed;
9359 }
9360 
9361 /*
9362  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9363  * This needs to be done in a top-down fashion because the load of a child
9364  * group is a fraction of its parents load.
9365  */
9366 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9367 {
9368 	struct rq *rq = rq_of(cfs_rq);
9369 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9370 	unsigned long now = jiffies;
9371 	unsigned long load;
9372 
9373 	if (cfs_rq->last_h_load_update == now)
9374 		return;
9375 
9376 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9377 	for_each_sched_entity(se) {
9378 		cfs_rq = cfs_rq_of(se);
9379 		WRITE_ONCE(cfs_rq->h_load_next, se);
9380 		if (cfs_rq->last_h_load_update == now)
9381 			break;
9382 	}
9383 
9384 	if (!se) {
9385 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9386 		cfs_rq->last_h_load_update = now;
9387 	}
9388 
9389 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9390 		load = cfs_rq->h_load;
9391 		load = div64_ul(load * se->avg.load_avg,
9392 			cfs_rq_load_avg(cfs_rq) + 1);
9393 		cfs_rq = group_cfs_rq(se);
9394 		cfs_rq->h_load = load;
9395 		cfs_rq->last_h_load_update = now;
9396 	}
9397 }
9398 
9399 static unsigned long task_h_load(struct task_struct *p)
9400 {
9401 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9402 
9403 	update_cfs_rq_h_load(cfs_rq);
9404 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9405 			cfs_rq_load_avg(cfs_rq) + 1);
9406 }
9407 #else
9408 static bool __update_blocked_fair(struct rq *rq, bool *done)
9409 {
9410 	struct cfs_rq *cfs_rq = &rq->cfs;
9411 	bool decayed;
9412 
9413 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9414 	if (cfs_rq_has_blocked(cfs_rq))
9415 		*done = false;
9416 
9417 	return decayed;
9418 }
9419 
9420 static unsigned long task_h_load(struct task_struct *p)
9421 {
9422 	return p->se.avg.load_avg;
9423 }
9424 #endif
9425 
9426 static void update_blocked_averages(int cpu)
9427 {
9428 	bool decayed = false, done = true;
9429 	struct rq *rq = cpu_rq(cpu);
9430 	struct rq_flags rf;
9431 
9432 	rq_lock_irqsave(rq, &rf);
9433 	update_blocked_load_tick(rq);
9434 	update_rq_clock(rq);
9435 
9436 	decayed |= __update_blocked_others(rq, &done);
9437 	decayed |= __update_blocked_fair(rq, &done);
9438 
9439 	update_blocked_load_status(rq, !done);
9440 	if (decayed)
9441 		cpufreq_update_util(rq, 0);
9442 	rq_unlock_irqrestore(rq, &rf);
9443 }
9444 
9445 /********** Helpers for find_busiest_group ************************/
9446 
9447 /*
9448  * sg_lb_stats - stats of a sched_group required for load_balancing
9449  */
9450 struct sg_lb_stats {
9451 	unsigned long avg_load; /*Avg load across the CPUs of the group */
9452 	unsigned long group_load; /* Total load over the CPUs of the group */
9453 	unsigned long group_capacity;
9454 	unsigned long group_util; /* Total utilization over the CPUs of the group */
9455 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9456 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
9457 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9458 	unsigned int idle_cpus;
9459 	unsigned int group_weight;
9460 	enum group_type group_type;
9461 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9462 	unsigned int group_smt_balance;  /* Task on busy SMT be moved */
9463 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9464 #ifdef CONFIG_NUMA_BALANCING
9465 	unsigned int nr_numa_running;
9466 	unsigned int nr_preferred_running;
9467 #endif
9468 };
9469 
9470 /*
9471  * sd_lb_stats - Structure to store the statistics of a sched_domain
9472  *		 during load balancing.
9473  */
9474 struct sd_lb_stats {
9475 	struct sched_group *busiest;	/* Busiest group in this sd */
9476 	struct sched_group *local;	/* Local group in this sd */
9477 	unsigned long total_load;	/* Total load of all groups in sd */
9478 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
9479 	unsigned long avg_load;	/* Average load across all groups in sd */
9480 	unsigned int prefer_sibling; /* tasks should go to sibling first */
9481 
9482 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
9483 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
9484 };
9485 
9486 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9487 {
9488 	/*
9489 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9490 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9491 	 * We must however set busiest_stat::group_type and
9492 	 * busiest_stat::idle_cpus to the worst busiest group because
9493 	 * update_sd_pick_busiest() reads these before assignment.
9494 	 */
9495 	*sds = (struct sd_lb_stats){
9496 		.busiest = NULL,
9497 		.local = NULL,
9498 		.total_load = 0UL,
9499 		.total_capacity = 0UL,
9500 		.busiest_stat = {
9501 			.idle_cpus = UINT_MAX,
9502 			.group_type = group_has_spare,
9503 		},
9504 	};
9505 }
9506 
9507 static unsigned long scale_rt_capacity(int cpu)
9508 {
9509 	struct rq *rq = cpu_rq(cpu);
9510 	unsigned long max = arch_scale_cpu_capacity(cpu);
9511 	unsigned long used, free;
9512 	unsigned long irq;
9513 
9514 	irq = cpu_util_irq(rq);
9515 
9516 	if (unlikely(irq >= max))
9517 		return 1;
9518 
9519 	/*
9520 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9521 	 * (running and not running) with weights 0 and 1024 respectively.
9522 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
9523 	 * average uses the actual delta max capacity(load).
9524 	 */
9525 	used = cpu_util_rt(rq);
9526 	used += cpu_util_dl(rq);
9527 	used += thermal_load_avg(rq);
9528 
9529 	if (unlikely(used >= max))
9530 		return 1;
9531 
9532 	free = max - used;
9533 
9534 	return scale_irq_capacity(free, irq, max);
9535 }
9536 
9537 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9538 {
9539 	unsigned long capacity = scale_rt_capacity(cpu);
9540 	struct sched_group *sdg = sd->groups;
9541 
9542 	if (!capacity)
9543 		capacity = 1;
9544 
9545 	cpu_rq(cpu)->cpu_capacity = capacity;
9546 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9547 
9548 	sdg->sgc->capacity = capacity;
9549 	sdg->sgc->min_capacity = capacity;
9550 	sdg->sgc->max_capacity = capacity;
9551 }
9552 
9553 void update_group_capacity(struct sched_domain *sd, int cpu)
9554 {
9555 	struct sched_domain *child = sd->child;
9556 	struct sched_group *group, *sdg = sd->groups;
9557 	unsigned long capacity, min_capacity, max_capacity;
9558 	unsigned long interval;
9559 
9560 	interval = msecs_to_jiffies(sd->balance_interval);
9561 	interval = clamp(interval, 1UL, max_load_balance_interval);
9562 	sdg->sgc->next_update = jiffies + interval;
9563 
9564 	if (!child) {
9565 		update_cpu_capacity(sd, cpu);
9566 		return;
9567 	}
9568 
9569 	capacity = 0;
9570 	min_capacity = ULONG_MAX;
9571 	max_capacity = 0;
9572 
9573 	if (child->flags & SD_OVERLAP) {
9574 		/*
9575 		 * SD_OVERLAP domains cannot assume that child groups
9576 		 * span the current group.
9577 		 */
9578 
9579 		for_each_cpu(cpu, sched_group_span(sdg)) {
9580 			unsigned long cpu_cap = capacity_of(cpu);
9581 
9582 			capacity += cpu_cap;
9583 			min_capacity = min(cpu_cap, min_capacity);
9584 			max_capacity = max(cpu_cap, max_capacity);
9585 		}
9586 	} else  {
9587 		/*
9588 		 * !SD_OVERLAP domains can assume that child groups
9589 		 * span the current group.
9590 		 */
9591 
9592 		group = child->groups;
9593 		do {
9594 			struct sched_group_capacity *sgc = group->sgc;
9595 
9596 			capacity += sgc->capacity;
9597 			min_capacity = min(sgc->min_capacity, min_capacity);
9598 			max_capacity = max(sgc->max_capacity, max_capacity);
9599 			group = group->next;
9600 		} while (group != child->groups);
9601 	}
9602 
9603 	sdg->sgc->capacity = capacity;
9604 	sdg->sgc->min_capacity = min_capacity;
9605 	sdg->sgc->max_capacity = max_capacity;
9606 }
9607 
9608 /*
9609  * Check whether the capacity of the rq has been noticeably reduced by side
9610  * activity. The imbalance_pct is used for the threshold.
9611  * Return true is the capacity is reduced
9612  */
9613 static inline int
9614 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9615 {
9616 	return ((rq->cpu_capacity * sd->imbalance_pct) <
9617 				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
9618 }
9619 
9620 /*
9621  * Check whether a rq has a misfit task and if it looks like we can actually
9622  * help that task: we can migrate the task to a CPU of higher capacity, or
9623  * the task's current CPU is heavily pressured.
9624  */
9625 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9626 {
9627 	return rq->misfit_task_load &&
9628 		(arch_scale_cpu_capacity(rq->cpu) < rq->rd->max_cpu_capacity ||
9629 		 check_cpu_capacity(rq, sd));
9630 }
9631 
9632 /*
9633  * Group imbalance indicates (and tries to solve) the problem where balancing
9634  * groups is inadequate due to ->cpus_ptr constraints.
9635  *
9636  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9637  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9638  * Something like:
9639  *
9640  *	{ 0 1 2 3 } { 4 5 6 7 }
9641  *	        *     * * *
9642  *
9643  * If we were to balance group-wise we'd place two tasks in the first group and
9644  * two tasks in the second group. Clearly this is undesired as it will overload
9645  * cpu 3 and leave one of the CPUs in the second group unused.
9646  *
9647  * The current solution to this issue is detecting the skew in the first group
9648  * by noticing the lower domain failed to reach balance and had difficulty
9649  * moving tasks due to affinity constraints.
9650  *
9651  * When this is so detected; this group becomes a candidate for busiest; see
9652  * update_sd_pick_busiest(). And calculate_imbalance() and
9653  * find_busiest_group() avoid some of the usual balance conditions to allow it
9654  * to create an effective group imbalance.
9655  *
9656  * This is a somewhat tricky proposition since the next run might not find the
9657  * group imbalance and decide the groups need to be balanced again. A most
9658  * subtle and fragile situation.
9659  */
9660 
9661 static inline int sg_imbalanced(struct sched_group *group)
9662 {
9663 	return group->sgc->imbalance;
9664 }
9665 
9666 /*
9667  * group_has_capacity returns true if the group has spare capacity that could
9668  * be used by some tasks.
9669  * We consider that a group has spare capacity if the number of task is
9670  * smaller than the number of CPUs or if the utilization is lower than the
9671  * available capacity for CFS tasks.
9672  * For the latter, we use a threshold to stabilize the state, to take into
9673  * account the variance of the tasks' load and to return true if the available
9674  * capacity in meaningful for the load balancer.
9675  * As an example, an available capacity of 1% can appear but it doesn't make
9676  * any benefit for the load balance.
9677  */
9678 static inline bool
9679 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9680 {
9681 	if (sgs->sum_nr_running < sgs->group_weight)
9682 		return true;
9683 
9684 	if ((sgs->group_capacity * imbalance_pct) <
9685 			(sgs->group_runnable * 100))
9686 		return false;
9687 
9688 	if ((sgs->group_capacity * 100) >
9689 			(sgs->group_util * imbalance_pct))
9690 		return true;
9691 
9692 	return false;
9693 }
9694 
9695 /*
9696  *  group_is_overloaded returns true if the group has more tasks than it can
9697  *  handle.
9698  *  group_is_overloaded is not equals to !group_has_capacity because a group
9699  *  with the exact right number of tasks, has no more spare capacity but is not
9700  *  overloaded so both group_has_capacity and group_is_overloaded return
9701  *  false.
9702  */
9703 static inline bool
9704 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9705 {
9706 	if (sgs->sum_nr_running <= sgs->group_weight)
9707 		return false;
9708 
9709 	if ((sgs->group_capacity * 100) <
9710 			(sgs->group_util * imbalance_pct))
9711 		return true;
9712 
9713 	if ((sgs->group_capacity * imbalance_pct) <
9714 			(sgs->group_runnable * 100))
9715 		return true;
9716 
9717 	return false;
9718 }
9719 
9720 static inline enum
9721 group_type group_classify(unsigned int imbalance_pct,
9722 			  struct sched_group *group,
9723 			  struct sg_lb_stats *sgs)
9724 {
9725 	if (group_is_overloaded(imbalance_pct, sgs))
9726 		return group_overloaded;
9727 
9728 	if (sg_imbalanced(group))
9729 		return group_imbalanced;
9730 
9731 	if (sgs->group_asym_packing)
9732 		return group_asym_packing;
9733 
9734 	if (sgs->group_smt_balance)
9735 		return group_smt_balance;
9736 
9737 	if (sgs->group_misfit_task_load)
9738 		return group_misfit_task;
9739 
9740 	if (!group_has_capacity(imbalance_pct, sgs))
9741 		return group_fully_busy;
9742 
9743 	return group_has_spare;
9744 }
9745 
9746 /**
9747  * sched_use_asym_prio - Check whether asym_packing priority must be used
9748  * @sd:		The scheduling domain of the load balancing
9749  * @cpu:	A CPU
9750  *
9751  * Always use CPU priority when balancing load between SMT siblings. When
9752  * balancing load between cores, it is not sufficient that @cpu is idle. Only
9753  * use CPU priority if the whole core is idle.
9754  *
9755  * Returns: True if the priority of @cpu must be followed. False otherwise.
9756  */
9757 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9758 {
9759 	if (!(sd->flags & SD_ASYM_PACKING))
9760 		return false;
9761 
9762 	if (!sched_smt_active())
9763 		return true;
9764 
9765 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9766 }
9767 
9768 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
9769 {
9770 	/*
9771 	 * First check if @dst_cpu can do asym_packing load balance. Only do it
9772 	 * if it has higher priority than @src_cpu.
9773 	 */
9774 	return sched_use_asym_prio(sd, dst_cpu) &&
9775 		sched_asym_prefer(dst_cpu, src_cpu);
9776 }
9777 
9778 /**
9779  * sched_group_asym - Check if the destination CPU can do asym_packing balance
9780  * @env:	The load balancing environment
9781  * @sgs:	Load-balancing statistics of the candidate busiest group
9782  * @group:	The candidate busiest group
9783  *
9784  * @env::dst_cpu can do asym_packing if it has higher priority than the
9785  * preferred CPU of @group.
9786  *
9787  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9788  * otherwise.
9789  */
9790 static inline bool
9791 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
9792 {
9793 	/*
9794 	 * CPU priorities do not make sense for SMT cores with more than one
9795 	 * busy sibling.
9796 	 */
9797 	if ((group->flags & SD_SHARE_CPUCAPACITY) &&
9798 	    (sgs->group_weight - sgs->idle_cpus != 1))
9799 		return false;
9800 
9801 	return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
9802 }
9803 
9804 /* One group has more than one SMT CPU while the other group does not */
9805 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
9806 				    struct sched_group *sg2)
9807 {
9808 	if (!sg1 || !sg2)
9809 		return false;
9810 
9811 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
9812 		(sg2->flags & SD_SHARE_CPUCAPACITY);
9813 }
9814 
9815 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
9816 			       struct sched_group *group)
9817 {
9818 	if (env->idle == CPU_NOT_IDLE)
9819 		return false;
9820 
9821 	/*
9822 	 * For SMT source group, it is better to move a task
9823 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
9824 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
9825 	 * will not be on.
9826 	 */
9827 	if (group->flags & SD_SHARE_CPUCAPACITY &&
9828 	    sgs->sum_h_nr_running > 1)
9829 		return true;
9830 
9831 	return false;
9832 }
9833 
9834 static inline long sibling_imbalance(struct lb_env *env,
9835 				    struct sd_lb_stats *sds,
9836 				    struct sg_lb_stats *busiest,
9837 				    struct sg_lb_stats *local)
9838 {
9839 	int ncores_busiest, ncores_local;
9840 	long imbalance;
9841 
9842 	if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
9843 		return 0;
9844 
9845 	ncores_busiest = sds->busiest->cores;
9846 	ncores_local = sds->local->cores;
9847 
9848 	if (ncores_busiest == ncores_local) {
9849 		imbalance = busiest->sum_nr_running;
9850 		lsub_positive(&imbalance, local->sum_nr_running);
9851 		return imbalance;
9852 	}
9853 
9854 	/* Balance such that nr_running/ncores ratio are same on both groups */
9855 	imbalance = ncores_local * busiest->sum_nr_running;
9856 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
9857 	/* Normalize imbalance and do rounding on normalization */
9858 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
9859 	imbalance /= ncores_local + ncores_busiest;
9860 
9861 	/* Take advantage of resource in an empty sched group */
9862 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
9863 	    busiest->sum_nr_running > 1)
9864 		imbalance = 2;
9865 
9866 	return imbalance;
9867 }
9868 
9869 static inline bool
9870 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9871 {
9872 	/*
9873 	 * When there is more than 1 task, the group_overloaded case already
9874 	 * takes care of cpu with reduced capacity
9875 	 */
9876 	if (rq->cfs.h_nr_running != 1)
9877 		return false;
9878 
9879 	return check_cpu_capacity(rq, sd);
9880 }
9881 
9882 /**
9883  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9884  * @env: The load balancing environment.
9885  * @sds: Load-balancing data with statistics of the local group.
9886  * @group: sched_group whose statistics are to be updated.
9887  * @sgs: variable to hold the statistics for this group.
9888  * @sg_status: Holds flag indicating the status of the sched_group
9889  */
9890 static inline void update_sg_lb_stats(struct lb_env *env,
9891 				      struct sd_lb_stats *sds,
9892 				      struct sched_group *group,
9893 				      struct sg_lb_stats *sgs,
9894 				      int *sg_status)
9895 {
9896 	int i, nr_running, local_group;
9897 
9898 	memset(sgs, 0, sizeof(*sgs));
9899 
9900 	local_group = group == sds->local;
9901 
9902 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9903 		struct rq *rq = cpu_rq(i);
9904 		unsigned long load = cpu_load(rq);
9905 
9906 		sgs->group_load += load;
9907 		sgs->group_util += cpu_util_cfs(i);
9908 		sgs->group_runnable += cpu_runnable(rq);
9909 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9910 
9911 		nr_running = rq->nr_running;
9912 		sgs->sum_nr_running += nr_running;
9913 
9914 		if (nr_running > 1)
9915 			*sg_status |= SG_OVERLOAD;
9916 
9917 		if (cpu_overutilized(i))
9918 			*sg_status |= SG_OVERUTILIZED;
9919 
9920 #ifdef CONFIG_NUMA_BALANCING
9921 		sgs->nr_numa_running += rq->nr_numa_running;
9922 		sgs->nr_preferred_running += rq->nr_preferred_running;
9923 #endif
9924 		/*
9925 		 * No need to call idle_cpu() if nr_running is not 0
9926 		 */
9927 		if (!nr_running && idle_cpu(i)) {
9928 			sgs->idle_cpus++;
9929 			/* Idle cpu can't have misfit task */
9930 			continue;
9931 		}
9932 
9933 		if (local_group)
9934 			continue;
9935 
9936 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9937 			/* Check for a misfit task on the cpu */
9938 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9939 				sgs->group_misfit_task_load = rq->misfit_task_load;
9940 				*sg_status |= SG_OVERLOAD;
9941 			}
9942 		} else if ((env->idle != CPU_NOT_IDLE) &&
9943 			   sched_reduced_capacity(rq, env->sd)) {
9944 			/* Check for a task running on a CPU with reduced capacity */
9945 			if (sgs->group_misfit_task_load < load)
9946 				sgs->group_misfit_task_load = load;
9947 		}
9948 	}
9949 
9950 	sgs->group_capacity = group->sgc->capacity;
9951 
9952 	sgs->group_weight = group->group_weight;
9953 
9954 	/* Check if dst CPU is idle and preferred to this group */
9955 	if (!local_group && env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9956 	    sched_group_asym(env, sgs, group))
9957 		sgs->group_asym_packing = 1;
9958 
9959 	/* Check for loaded SMT group to be balanced to dst CPU */
9960 	if (!local_group && smt_balance(env, sgs, group))
9961 		sgs->group_smt_balance = 1;
9962 
9963 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9964 
9965 	/* Computing avg_load makes sense only when group is overloaded */
9966 	if (sgs->group_type == group_overloaded)
9967 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9968 				sgs->group_capacity;
9969 }
9970 
9971 /**
9972  * update_sd_pick_busiest - return 1 on busiest group
9973  * @env: The load balancing environment.
9974  * @sds: sched_domain statistics
9975  * @sg: sched_group candidate to be checked for being the busiest
9976  * @sgs: sched_group statistics
9977  *
9978  * Determine if @sg is a busier group than the previously selected
9979  * busiest group.
9980  *
9981  * Return: %true if @sg is a busier group than the previously selected
9982  * busiest group. %false otherwise.
9983  */
9984 static bool update_sd_pick_busiest(struct lb_env *env,
9985 				   struct sd_lb_stats *sds,
9986 				   struct sched_group *sg,
9987 				   struct sg_lb_stats *sgs)
9988 {
9989 	struct sg_lb_stats *busiest = &sds->busiest_stat;
9990 
9991 	/* Make sure that there is at least one task to pull */
9992 	if (!sgs->sum_h_nr_running)
9993 		return false;
9994 
9995 	/*
9996 	 * Don't try to pull misfit tasks we can't help.
9997 	 * We can use max_capacity here as reduction in capacity on some
9998 	 * CPUs in the group should either be possible to resolve
9999 	 * internally or be covered by avg_load imbalance (eventually).
10000 	 */
10001 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10002 	    (sgs->group_type == group_misfit_task) &&
10003 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10004 	     sds->local_stat.group_type != group_has_spare))
10005 		return false;
10006 
10007 	if (sgs->group_type > busiest->group_type)
10008 		return true;
10009 
10010 	if (sgs->group_type < busiest->group_type)
10011 		return false;
10012 
10013 	/*
10014 	 * The candidate and the current busiest group are the same type of
10015 	 * group. Let check which one is the busiest according to the type.
10016 	 */
10017 
10018 	switch (sgs->group_type) {
10019 	case group_overloaded:
10020 		/* Select the overloaded group with highest avg_load. */
10021 		return sgs->avg_load > busiest->avg_load;
10022 
10023 	case group_imbalanced:
10024 		/*
10025 		 * Select the 1st imbalanced group as we don't have any way to
10026 		 * choose one more than another.
10027 		 */
10028 		return false;
10029 
10030 	case group_asym_packing:
10031 		/* Prefer to move from lowest priority CPU's work */
10032 		return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
10033 
10034 	case group_misfit_task:
10035 		/*
10036 		 * If we have more than one misfit sg go with the biggest
10037 		 * misfit.
10038 		 */
10039 		return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10040 
10041 	case group_smt_balance:
10042 		/*
10043 		 * Check if we have spare CPUs on either SMT group to
10044 		 * choose has spare or fully busy handling.
10045 		 */
10046 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10047 			goto has_spare;
10048 
10049 		fallthrough;
10050 
10051 	case group_fully_busy:
10052 		/*
10053 		 * Select the fully busy group with highest avg_load. In
10054 		 * theory, there is no need to pull task from such kind of
10055 		 * group because tasks have all compute capacity that they need
10056 		 * but we can still improve the overall throughput by reducing
10057 		 * contention when accessing shared HW resources.
10058 		 *
10059 		 * XXX for now avg_load is not computed and always 0 so we
10060 		 * select the 1st one, except if @sg is composed of SMT
10061 		 * siblings.
10062 		 */
10063 
10064 		if (sgs->avg_load < busiest->avg_load)
10065 			return false;
10066 
10067 		if (sgs->avg_load == busiest->avg_load) {
10068 			/*
10069 			 * SMT sched groups need more help than non-SMT groups.
10070 			 * If @sg happens to also be SMT, either choice is good.
10071 			 */
10072 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10073 				return false;
10074 		}
10075 
10076 		break;
10077 
10078 	case group_has_spare:
10079 		/*
10080 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10081 		 * as we do not want to pull task off SMT core with one task
10082 		 * and make the core idle.
10083 		 */
10084 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10085 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10086 				return false;
10087 			else
10088 				return true;
10089 		}
10090 has_spare:
10091 
10092 		/*
10093 		 * Select not overloaded group with lowest number of idle cpus
10094 		 * and highest number of running tasks. We could also compare
10095 		 * the spare capacity which is more stable but it can end up
10096 		 * that the group has less spare capacity but finally more idle
10097 		 * CPUs which means less opportunity to pull tasks.
10098 		 */
10099 		if (sgs->idle_cpus > busiest->idle_cpus)
10100 			return false;
10101 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10102 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10103 			return false;
10104 
10105 		break;
10106 	}
10107 
10108 	/*
10109 	 * Candidate sg has no more than one task per CPU and has higher
10110 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10111 	 * throughput. Maximize throughput, power/energy consequences are not
10112 	 * considered.
10113 	 */
10114 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10115 	    (sgs->group_type <= group_fully_busy) &&
10116 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10117 		return false;
10118 
10119 	return true;
10120 }
10121 
10122 #ifdef CONFIG_NUMA_BALANCING
10123 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10124 {
10125 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10126 		return regular;
10127 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10128 		return remote;
10129 	return all;
10130 }
10131 
10132 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10133 {
10134 	if (rq->nr_running > rq->nr_numa_running)
10135 		return regular;
10136 	if (rq->nr_running > rq->nr_preferred_running)
10137 		return remote;
10138 	return all;
10139 }
10140 #else
10141 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10142 {
10143 	return all;
10144 }
10145 
10146 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10147 {
10148 	return regular;
10149 }
10150 #endif /* CONFIG_NUMA_BALANCING */
10151 
10152 
10153 struct sg_lb_stats;
10154 
10155 /*
10156  * task_running_on_cpu - return 1 if @p is running on @cpu.
10157  */
10158 
10159 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10160 {
10161 	/* Task has no contribution or is new */
10162 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10163 		return 0;
10164 
10165 	if (task_on_rq_queued(p))
10166 		return 1;
10167 
10168 	return 0;
10169 }
10170 
10171 /**
10172  * idle_cpu_without - would a given CPU be idle without p ?
10173  * @cpu: the processor on which idleness is tested.
10174  * @p: task which should be ignored.
10175  *
10176  * Return: 1 if the CPU would be idle. 0 otherwise.
10177  */
10178 static int idle_cpu_without(int cpu, struct task_struct *p)
10179 {
10180 	struct rq *rq = cpu_rq(cpu);
10181 
10182 	if (rq->curr != rq->idle && rq->curr != p)
10183 		return 0;
10184 
10185 	/*
10186 	 * rq->nr_running can't be used but an updated version without the
10187 	 * impact of p on cpu must be used instead. The updated nr_running
10188 	 * be computed and tested before calling idle_cpu_without().
10189 	 */
10190 
10191 	if (rq->ttwu_pending)
10192 		return 0;
10193 
10194 	return 1;
10195 }
10196 
10197 /*
10198  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10199  * @sd: The sched_domain level to look for idlest group.
10200  * @group: sched_group whose statistics are to be updated.
10201  * @sgs: variable to hold the statistics for this group.
10202  * @p: The task for which we look for the idlest group/CPU.
10203  */
10204 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10205 					  struct sched_group *group,
10206 					  struct sg_lb_stats *sgs,
10207 					  struct task_struct *p)
10208 {
10209 	int i, nr_running;
10210 
10211 	memset(sgs, 0, sizeof(*sgs));
10212 
10213 	/* Assume that task can't fit any CPU of the group */
10214 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10215 		sgs->group_misfit_task_load = 1;
10216 
10217 	for_each_cpu(i, sched_group_span(group)) {
10218 		struct rq *rq = cpu_rq(i);
10219 		unsigned int local;
10220 
10221 		sgs->group_load += cpu_load_without(rq, p);
10222 		sgs->group_util += cpu_util_without(i, p);
10223 		sgs->group_runnable += cpu_runnable_without(rq, p);
10224 		local = task_running_on_cpu(i, p);
10225 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10226 
10227 		nr_running = rq->nr_running - local;
10228 		sgs->sum_nr_running += nr_running;
10229 
10230 		/*
10231 		 * No need to call idle_cpu_without() if nr_running is not 0
10232 		 */
10233 		if (!nr_running && idle_cpu_without(i, p))
10234 			sgs->idle_cpus++;
10235 
10236 		/* Check if task fits in the CPU */
10237 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10238 		    sgs->group_misfit_task_load &&
10239 		    task_fits_cpu(p, i))
10240 			sgs->group_misfit_task_load = 0;
10241 
10242 	}
10243 
10244 	sgs->group_capacity = group->sgc->capacity;
10245 
10246 	sgs->group_weight = group->group_weight;
10247 
10248 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10249 
10250 	/*
10251 	 * Computing avg_load makes sense only when group is fully busy or
10252 	 * overloaded
10253 	 */
10254 	if (sgs->group_type == group_fully_busy ||
10255 		sgs->group_type == group_overloaded)
10256 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10257 				sgs->group_capacity;
10258 }
10259 
10260 static bool update_pick_idlest(struct sched_group *idlest,
10261 			       struct sg_lb_stats *idlest_sgs,
10262 			       struct sched_group *group,
10263 			       struct sg_lb_stats *sgs)
10264 {
10265 	if (sgs->group_type < idlest_sgs->group_type)
10266 		return true;
10267 
10268 	if (sgs->group_type > idlest_sgs->group_type)
10269 		return false;
10270 
10271 	/*
10272 	 * The candidate and the current idlest group are the same type of
10273 	 * group. Let check which one is the idlest according to the type.
10274 	 */
10275 
10276 	switch (sgs->group_type) {
10277 	case group_overloaded:
10278 	case group_fully_busy:
10279 		/* Select the group with lowest avg_load. */
10280 		if (idlest_sgs->avg_load <= sgs->avg_load)
10281 			return false;
10282 		break;
10283 
10284 	case group_imbalanced:
10285 	case group_asym_packing:
10286 	case group_smt_balance:
10287 		/* Those types are not used in the slow wakeup path */
10288 		return false;
10289 
10290 	case group_misfit_task:
10291 		/* Select group with the highest max capacity */
10292 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10293 			return false;
10294 		break;
10295 
10296 	case group_has_spare:
10297 		/* Select group with most idle CPUs */
10298 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10299 			return false;
10300 
10301 		/* Select group with lowest group_util */
10302 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10303 			idlest_sgs->group_util <= sgs->group_util)
10304 			return false;
10305 
10306 		break;
10307 	}
10308 
10309 	return true;
10310 }
10311 
10312 /*
10313  * find_idlest_group() finds and returns the least busy CPU group within the
10314  * domain.
10315  *
10316  * Assumes p is allowed on at least one CPU in sd.
10317  */
10318 static struct sched_group *
10319 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10320 {
10321 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10322 	struct sg_lb_stats local_sgs, tmp_sgs;
10323 	struct sg_lb_stats *sgs;
10324 	unsigned long imbalance;
10325 	struct sg_lb_stats idlest_sgs = {
10326 			.avg_load = UINT_MAX,
10327 			.group_type = group_overloaded,
10328 	};
10329 
10330 	do {
10331 		int local_group;
10332 
10333 		/* Skip over this group if it has no CPUs allowed */
10334 		if (!cpumask_intersects(sched_group_span(group),
10335 					p->cpus_ptr))
10336 			continue;
10337 
10338 		/* Skip over this group if no cookie matched */
10339 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10340 			continue;
10341 
10342 		local_group = cpumask_test_cpu(this_cpu,
10343 					       sched_group_span(group));
10344 
10345 		if (local_group) {
10346 			sgs = &local_sgs;
10347 			local = group;
10348 		} else {
10349 			sgs = &tmp_sgs;
10350 		}
10351 
10352 		update_sg_wakeup_stats(sd, group, sgs, p);
10353 
10354 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10355 			idlest = group;
10356 			idlest_sgs = *sgs;
10357 		}
10358 
10359 	} while (group = group->next, group != sd->groups);
10360 
10361 
10362 	/* There is no idlest group to push tasks to */
10363 	if (!idlest)
10364 		return NULL;
10365 
10366 	/* The local group has been skipped because of CPU affinity */
10367 	if (!local)
10368 		return idlest;
10369 
10370 	/*
10371 	 * If the local group is idler than the selected idlest group
10372 	 * don't try and push the task.
10373 	 */
10374 	if (local_sgs.group_type < idlest_sgs.group_type)
10375 		return NULL;
10376 
10377 	/*
10378 	 * If the local group is busier than the selected idlest group
10379 	 * try and push the task.
10380 	 */
10381 	if (local_sgs.group_type > idlest_sgs.group_type)
10382 		return idlest;
10383 
10384 	switch (local_sgs.group_type) {
10385 	case group_overloaded:
10386 	case group_fully_busy:
10387 
10388 		/* Calculate allowed imbalance based on load */
10389 		imbalance = scale_load_down(NICE_0_LOAD) *
10390 				(sd->imbalance_pct-100) / 100;
10391 
10392 		/*
10393 		 * When comparing groups across NUMA domains, it's possible for
10394 		 * the local domain to be very lightly loaded relative to the
10395 		 * remote domains but "imbalance" skews the comparison making
10396 		 * remote CPUs look much more favourable. When considering
10397 		 * cross-domain, add imbalance to the load on the remote node
10398 		 * and consider staying local.
10399 		 */
10400 
10401 		if ((sd->flags & SD_NUMA) &&
10402 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10403 			return NULL;
10404 
10405 		/*
10406 		 * If the local group is less loaded than the selected
10407 		 * idlest group don't try and push any tasks.
10408 		 */
10409 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10410 			return NULL;
10411 
10412 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10413 			return NULL;
10414 		break;
10415 
10416 	case group_imbalanced:
10417 	case group_asym_packing:
10418 	case group_smt_balance:
10419 		/* Those type are not used in the slow wakeup path */
10420 		return NULL;
10421 
10422 	case group_misfit_task:
10423 		/* Select group with the highest max capacity */
10424 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10425 			return NULL;
10426 		break;
10427 
10428 	case group_has_spare:
10429 #ifdef CONFIG_NUMA
10430 		if (sd->flags & SD_NUMA) {
10431 			int imb_numa_nr = sd->imb_numa_nr;
10432 #ifdef CONFIG_NUMA_BALANCING
10433 			int idlest_cpu;
10434 			/*
10435 			 * If there is spare capacity at NUMA, try to select
10436 			 * the preferred node
10437 			 */
10438 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10439 				return NULL;
10440 
10441 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10442 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10443 				return idlest;
10444 #endif /* CONFIG_NUMA_BALANCING */
10445 			/*
10446 			 * Otherwise, keep the task close to the wakeup source
10447 			 * and improve locality if the number of running tasks
10448 			 * would remain below threshold where an imbalance is
10449 			 * allowed while accounting for the possibility the
10450 			 * task is pinned to a subset of CPUs. If there is a
10451 			 * real need of migration, periodic load balance will
10452 			 * take care of it.
10453 			 */
10454 			if (p->nr_cpus_allowed != NR_CPUS) {
10455 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10456 
10457 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10458 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10459 			}
10460 
10461 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10462 			if (!adjust_numa_imbalance(imbalance,
10463 						   local_sgs.sum_nr_running + 1,
10464 						   imb_numa_nr)) {
10465 				return NULL;
10466 			}
10467 		}
10468 #endif /* CONFIG_NUMA */
10469 
10470 		/*
10471 		 * Select group with highest number of idle CPUs. We could also
10472 		 * compare the utilization which is more stable but it can end
10473 		 * up that the group has less spare capacity but finally more
10474 		 * idle CPUs which means more opportunity to run task.
10475 		 */
10476 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10477 			return NULL;
10478 		break;
10479 	}
10480 
10481 	return idlest;
10482 }
10483 
10484 static void update_idle_cpu_scan(struct lb_env *env,
10485 				 unsigned long sum_util)
10486 {
10487 	struct sched_domain_shared *sd_share;
10488 	int llc_weight, pct;
10489 	u64 x, y, tmp;
10490 	/*
10491 	 * Update the number of CPUs to scan in LLC domain, which could
10492 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10493 	 * could be expensive because it is within a shared cache line.
10494 	 * So the write of this hint only occurs during periodic load
10495 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10496 	 * can fire way more frequently than the former.
10497 	 */
10498 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10499 		return;
10500 
10501 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10502 	if (env->sd->span_weight != llc_weight)
10503 		return;
10504 
10505 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10506 	if (!sd_share)
10507 		return;
10508 
10509 	/*
10510 	 * The number of CPUs to search drops as sum_util increases, when
10511 	 * sum_util hits 85% or above, the scan stops.
10512 	 * The reason to choose 85% as the threshold is because this is the
10513 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10514 	 *
10515 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10516 	 * and y'= y / SCHED_CAPACITY_SCALE
10517 	 *
10518 	 * x is the ratio of sum_util compared to the CPU capacity:
10519 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10520 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10521 	 * and the number of CPUs to scan is calculated by:
10522 	 *
10523 	 * nr_scan = llc_weight * y'                                    [2]
10524 	 *
10525 	 * When x hits the threshold of overloaded, AKA, when
10526 	 * x = 100 / pct, y drops to 0. According to [1],
10527 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10528 	 *
10529 	 * Scale x by SCHED_CAPACITY_SCALE:
10530 	 * x' = sum_util / llc_weight;                                  [3]
10531 	 *
10532 	 * and finally [1] becomes:
10533 	 * y = SCHED_CAPACITY_SCALE -
10534 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10535 	 *
10536 	 */
10537 	/* equation [3] */
10538 	x = sum_util;
10539 	do_div(x, llc_weight);
10540 
10541 	/* equation [4] */
10542 	pct = env->sd->imbalance_pct;
10543 	tmp = x * x * pct * pct;
10544 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10545 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10546 	y = SCHED_CAPACITY_SCALE - tmp;
10547 
10548 	/* equation [2] */
10549 	y *= llc_weight;
10550 	do_div(y, SCHED_CAPACITY_SCALE);
10551 	if ((int)y != sd_share->nr_idle_scan)
10552 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10553 }
10554 
10555 /**
10556  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10557  * @env: The load balancing environment.
10558  * @sds: variable to hold the statistics for this sched_domain.
10559  */
10560 
10561 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10562 {
10563 	struct sched_group *sg = env->sd->groups;
10564 	struct sg_lb_stats *local = &sds->local_stat;
10565 	struct sg_lb_stats tmp_sgs;
10566 	unsigned long sum_util = 0;
10567 	int sg_status = 0;
10568 
10569 	do {
10570 		struct sg_lb_stats *sgs = &tmp_sgs;
10571 		int local_group;
10572 
10573 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10574 		if (local_group) {
10575 			sds->local = sg;
10576 			sgs = local;
10577 
10578 			if (env->idle != CPU_NEWLY_IDLE ||
10579 			    time_after_eq(jiffies, sg->sgc->next_update))
10580 				update_group_capacity(env->sd, env->dst_cpu);
10581 		}
10582 
10583 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
10584 
10585 		if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
10586 			sds->busiest = sg;
10587 			sds->busiest_stat = *sgs;
10588 		}
10589 
10590 		/* Now, start updating sd_lb_stats */
10591 		sds->total_load += sgs->group_load;
10592 		sds->total_capacity += sgs->group_capacity;
10593 
10594 		sum_util += sgs->group_util;
10595 		sg = sg->next;
10596 	} while (sg != env->sd->groups);
10597 
10598 	/*
10599 	 * Indicate that the child domain of the busiest group prefers tasks
10600 	 * go to a child's sibling domains first. NB the flags of a sched group
10601 	 * are those of the child domain.
10602 	 */
10603 	if (sds->busiest)
10604 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10605 
10606 
10607 	if (env->sd->flags & SD_NUMA)
10608 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10609 
10610 	if (!env->sd->parent) {
10611 		struct root_domain *rd = env->dst_rq->rd;
10612 
10613 		/* update overload indicator if we are at root domain */
10614 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
10615 
10616 		/* Update over-utilization (tipping point, U >= 0) indicator */
10617 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
10618 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
10619 	} else if (sg_status & SG_OVERUTILIZED) {
10620 		struct root_domain *rd = env->dst_rq->rd;
10621 
10622 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
10623 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
10624 	}
10625 
10626 	update_idle_cpu_scan(env, sum_util);
10627 }
10628 
10629 /**
10630  * calculate_imbalance - Calculate the amount of imbalance present within the
10631  *			 groups of a given sched_domain during load balance.
10632  * @env: load balance environment
10633  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10634  */
10635 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10636 {
10637 	struct sg_lb_stats *local, *busiest;
10638 
10639 	local = &sds->local_stat;
10640 	busiest = &sds->busiest_stat;
10641 
10642 	if (busiest->group_type == group_misfit_task) {
10643 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10644 			/* Set imbalance to allow misfit tasks to be balanced. */
10645 			env->migration_type = migrate_misfit;
10646 			env->imbalance = 1;
10647 		} else {
10648 			/*
10649 			 * Set load imbalance to allow moving task from cpu
10650 			 * with reduced capacity.
10651 			 */
10652 			env->migration_type = migrate_load;
10653 			env->imbalance = busiest->group_misfit_task_load;
10654 		}
10655 		return;
10656 	}
10657 
10658 	if (busiest->group_type == group_asym_packing) {
10659 		/*
10660 		 * In case of asym capacity, we will try to migrate all load to
10661 		 * the preferred CPU.
10662 		 */
10663 		env->migration_type = migrate_task;
10664 		env->imbalance = busiest->sum_h_nr_running;
10665 		return;
10666 	}
10667 
10668 	if (busiest->group_type == group_smt_balance) {
10669 		/* Reduce number of tasks sharing CPU capacity */
10670 		env->migration_type = migrate_task;
10671 		env->imbalance = 1;
10672 		return;
10673 	}
10674 
10675 	if (busiest->group_type == group_imbalanced) {
10676 		/*
10677 		 * In the group_imb case we cannot rely on group-wide averages
10678 		 * to ensure CPU-load equilibrium, try to move any task to fix
10679 		 * the imbalance. The next load balance will take care of
10680 		 * balancing back the system.
10681 		 */
10682 		env->migration_type = migrate_task;
10683 		env->imbalance = 1;
10684 		return;
10685 	}
10686 
10687 	/*
10688 	 * Try to use spare capacity of local group without overloading it or
10689 	 * emptying busiest.
10690 	 */
10691 	if (local->group_type == group_has_spare) {
10692 		if ((busiest->group_type > group_fully_busy) &&
10693 		    !(env->sd->flags & SD_SHARE_LLC)) {
10694 			/*
10695 			 * If busiest is overloaded, try to fill spare
10696 			 * capacity. This might end up creating spare capacity
10697 			 * in busiest or busiest still being overloaded but
10698 			 * there is no simple way to directly compute the
10699 			 * amount of load to migrate in order to balance the
10700 			 * system.
10701 			 */
10702 			env->migration_type = migrate_util;
10703 			env->imbalance = max(local->group_capacity, local->group_util) -
10704 					 local->group_util;
10705 
10706 			/*
10707 			 * In some cases, the group's utilization is max or even
10708 			 * higher than capacity because of migrations but the
10709 			 * local CPU is (newly) idle. There is at least one
10710 			 * waiting task in this overloaded busiest group. Let's
10711 			 * try to pull it.
10712 			 */
10713 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
10714 				env->migration_type = migrate_task;
10715 				env->imbalance = 1;
10716 			}
10717 
10718 			return;
10719 		}
10720 
10721 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
10722 			/*
10723 			 * When prefer sibling, evenly spread running tasks on
10724 			 * groups.
10725 			 */
10726 			env->migration_type = migrate_task;
10727 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
10728 		} else {
10729 
10730 			/*
10731 			 * If there is no overload, we just want to even the number of
10732 			 * idle cpus.
10733 			 */
10734 			env->migration_type = migrate_task;
10735 			env->imbalance = max_t(long, 0,
10736 					       (local->idle_cpus - busiest->idle_cpus));
10737 		}
10738 
10739 #ifdef CONFIG_NUMA
10740 		/* Consider allowing a small imbalance between NUMA groups */
10741 		if (env->sd->flags & SD_NUMA) {
10742 			env->imbalance = adjust_numa_imbalance(env->imbalance,
10743 							       local->sum_nr_running + 1,
10744 							       env->sd->imb_numa_nr);
10745 		}
10746 #endif
10747 
10748 		/* Number of tasks to move to restore balance */
10749 		env->imbalance >>= 1;
10750 
10751 		return;
10752 	}
10753 
10754 	/*
10755 	 * Local is fully busy but has to take more load to relieve the
10756 	 * busiest group
10757 	 */
10758 	if (local->group_type < group_overloaded) {
10759 		/*
10760 		 * Local will become overloaded so the avg_load metrics are
10761 		 * finally needed.
10762 		 */
10763 
10764 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10765 				  local->group_capacity;
10766 
10767 		/*
10768 		 * If the local group is more loaded than the selected
10769 		 * busiest group don't try to pull any tasks.
10770 		 */
10771 		if (local->avg_load >= busiest->avg_load) {
10772 			env->imbalance = 0;
10773 			return;
10774 		}
10775 
10776 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10777 				sds->total_capacity;
10778 
10779 		/*
10780 		 * If the local group is more loaded than the average system
10781 		 * load, don't try to pull any tasks.
10782 		 */
10783 		if (local->avg_load >= sds->avg_load) {
10784 			env->imbalance = 0;
10785 			return;
10786 		}
10787 
10788 	}
10789 
10790 	/*
10791 	 * Both group are or will become overloaded and we're trying to get all
10792 	 * the CPUs to the average_load, so we don't want to push ourselves
10793 	 * above the average load, nor do we wish to reduce the max loaded CPU
10794 	 * below the average load. At the same time, we also don't want to
10795 	 * reduce the group load below the group capacity. Thus we look for
10796 	 * the minimum possible imbalance.
10797 	 */
10798 	env->migration_type = migrate_load;
10799 	env->imbalance = min(
10800 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10801 		(sds->avg_load - local->avg_load) * local->group_capacity
10802 	) / SCHED_CAPACITY_SCALE;
10803 }
10804 
10805 /******* find_busiest_group() helpers end here *********************/
10806 
10807 /*
10808  * Decision matrix according to the local and busiest group type:
10809  *
10810  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10811  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
10812  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
10813  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
10814  * asym_packing     force     force      N/A    N/A  force      force
10815  * imbalanced       force     force      N/A    N/A  force      force
10816  * overloaded       force     force      N/A    N/A  force      avg_load
10817  *
10818  * N/A :      Not Applicable because already filtered while updating
10819  *            statistics.
10820  * balanced : The system is balanced for these 2 groups.
10821  * force :    Calculate the imbalance as load migration is probably needed.
10822  * avg_load : Only if imbalance is significant enough.
10823  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
10824  *            different in groups.
10825  */
10826 
10827 /**
10828  * find_busiest_group - Returns the busiest group within the sched_domain
10829  * if there is an imbalance.
10830  * @env: The load balancing environment.
10831  *
10832  * Also calculates the amount of runnable load which should be moved
10833  * to restore balance.
10834  *
10835  * Return:	- The busiest group if imbalance exists.
10836  */
10837 static struct sched_group *find_busiest_group(struct lb_env *env)
10838 {
10839 	struct sg_lb_stats *local, *busiest;
10840 	struct sd_lb_stats sds;
10841 
10842 	init_sd_lb_stats(&sds);
10843 
10844 	/*
10845 	 * Compute the various statistics relevant for load balancing at
10846 	 * this level.
10847 	 */
10848 	update_sd_lb_stats(env, &sds);
10849 
10850 	/* There is no busy sibling group to pull tasks from */
10851 	if (!sds.busiest)
10852 		goto out_balanced;
10853 
10854 	busiest = &sds.busiest_stat;
10855 
10856 	/* Misfit tasks should be dealt with regardless of the avg load */
10857 	if (busiest->group_type == group_misfit_task)
10858 		goto force_balance;
10859 
10860 	if (sched_energy_enabled()) {
10861 		struct root_domain *rd = env->dst_rq->rd;
10862 
10863 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10864 			goto out_balanced;
10865 	}
10866 
10867 	/* ASYM feature bypasses nice load balance check */
10868 	if (busiest->group_type == group_asym_packing)
10869 		goto force_balance;
10870 
10871 	/*
10872 	 * If the busiest group is imbalanced the below checks don't
10873 	 * work because they assume all things are equal, which typically
10874 	 * isn't true due to cpus_ptr constraints and the like.
10875 	 */
10876 	if (busiest->group_type == group_imbalanced)
10877 		goto force_balance;
10878 
10879 	local = &sds.local_stat;
10880 	/*
10881 	 * If the local group is busier than the selected busiest group
10882 	 * don't try and pull any tasks.
10883 	 */
10884 	if (local->group_type > busiest->group_type)
10885 		goto out_balanced;
10886 
10887 	/*
10888 	 * When groups are overloaded, use the avg_load to ensure fairness
10889 	 * between tasks.
10890 	 */
10891 	if (local->group_type == group_overloaded) {
10892 		/*
10893 		 * If the local group is more loaded than the selected
10894 		 * busiest group don't try to pull any tasks.
10895 		 */
10896 		if (local->avg_load >= busiest->avg_load)
10897 			goto out_balanced;
10898 
10899 		/* XXX broken for overlapping NUMA groups */
10900 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10901 				sds.total_capacity;
10902 
10903 		/*
10904 		 * Don't pull any tasks if this group is already above the
10905 		 * domain average load.
10906 		 */
10907 		if (local->avg_load >= sds.avg_load)
10908 			goto out_balanced;
10909 
10910 		/*
10911 		 * If the busiest group is more loaded, use imbalance_pct to be
10912 		 * conservative.
10913 		 */
10914 		if (100 * busiest->avg_load <=
10915 				env->sd->imbalance_pct * local->avg_load)
10916 			goto out_balanced;
10917 	}
10918 
10919 	/*
10920 	 * Try to move all excess tasks to a sibling domain of the busiest
10921 	 * group's child domain.
10922 	 */
10923 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
10924 	    sibling_imbalance(env, &sds, busiest, local) > 1)
10925 		goto force_balance;
10926 
10927 	if (busiest->group_type != group_overloaded) {
10928 		if (env->idle == CPU_NOT_IDLE) {
10929 			/*
10930 			 * If the busiest group is not overloaded (and as a
10931 			 * result the local one too) but this CPU is already
10932 			 * busy, let another idle CPU try to pull task.
10933 			 */
10934 			goto out_balanced;
10935 		}
10936 
10937 		if (busiest->group_type == group_smt_balance &&
10938 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
10939 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
10940 			goto force_balance;
10941 		}
10942 
10943 		if (busiest->group_weight > 1 &&
10944 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
10945 			/*
10946 			 * If the busiest group is not overloaded
10947 			 * and there is no imbalance between this and busiest
10948 			 * group wrt idle CPUs, it is balanced. The imbalance
10949 			 * becomes significant if the diff is greater than 1
10950 			 * otherwise we might end up to just move the imbalance
10951 			 * on another group. Of course this applies only if
10952 			 * there is more than 1 CPU per group.
10953 			 */
10954 			goto out_balanced;
10955 		}
10956 
10957 		if (busiest->sum_h_nr_running == 1) {
10958 			/*
10959 			 * busiest doesn't have any tasks waiting to run
10960 			 */
10961 			goto out_balanced;
10962 		}
10963 	}
10964 
10965 force_balance:
10966 	/* Looks like there is an imbalance. Compute it */
10967 	calculate_imbalance(env, &sds);
10968 	return env->imbalance ? sds.busiest : NULL;
10969 
10970 out_balanced:
10971 	env->imbalance = 0;
10972 	return NULL;
10973 }
10974 
10975 /*
10976  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10977  */
10978 static struct rq *find_busiest_queue(struct lb_env *env,
10979 				     struct sched_group *group)
10980 {
10981 	struct rq *busiest = NULL, *rq;
10982 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10983 	unsigned int busiest_nr = 0;
10984 	int i;
10985 
10986 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10987 		unsigned long capacity, load, util;
10988 		unsigned int nr_running;
10989 		enum fbq_type rt;
10990 
10991 		rq = cpu_rq(i);
10992 		rt = fbq_classify_rq(rq);
10993 
10994 		/*
10995 		 * We classify groups/runqueues into three groups:
10996 		 *  - regular: there are !numa tasks
10997 		 *  - remote:  there are numa tasks that run on the 'wrong' node
10998 		 *  - all:     there is no distinction
10999 		 *
11000 		 * In order to avoid migrating ideally placed numa tasks,
11001 		 * ignore those when there's better options.
11002 		 *
11003 		 * If we ignore the actual busiest queue to migrate another
11004 		 * task, the next balance pass can still reduce the busiest
11005 		 * queue by moving tasks around inside the node.
11006 		 *
11007 		 * If we cannot move enough load due to this classification
11008 		 * the next pass will adjust the group classification and
11009 		 * allow migration of more tasks.
11010 		 *
11011 		 * Both cases only affect the total convergence complexity.
11012 		 */
11013 		if (rt > env->fbq_type)
11014 			continue;
11015 
11016 		nr_running = rq->cfs.h_nr_running;
11017 		if (!nr_running)
11018 			continue;
11019 
11020 		capacity = capacity_of(i);
11021 
11022 		/*
11023 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11024 		 * eventually lead to active_balancing high->low capacity.
11025 		 * Higher per-CPU capacity is considered better than balancing
11026 		 * average load.
11027 		 */
11028 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11029 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11030 		    nr_running == 1)
11031 			continue;
11032 
11033 		/*
11034 		 * Make sure we only pull tasks from a CPU of lower priority
11035 		 * when balancing between SMT siblings.
11036 		 *
11037 		 * If balancing between cores, let lower priority CPUs help
11038 		 * SMT cores with more than one busy sibling.
11039 		 */
11040 		if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11041 			continue;
11042 
11043 		switch (env->migration_type) {
11044 		case migrate_load:
11045 			/*
11046 			 * When comparing with load imbalance, use cpu_load()
11047 			 * which is not scaled with the CPU capacity.
11048 			 */
11049 			load = cpu_load(rq);
11050 
11051 			if (nr_running == 1 && load > env->imbalance &&
11052 			    !check_cpu_capacity(rq, env->sd))
11053 				break;
11054 
11055 			/*
11056 			 * For the load comparisons with the other CPUs,
11057 			 * consider the cpu_load() scaled with the CPU
11058 			 * capacity, so that the load can be moved away
11059 			 * from the CPU that is potentially running at a
11060 			 * lower capacity.
11061 			 *
11062 			 * Thus we're looking for max(load_i / capacity_i),
11063 			 * crosswise multiplication to rid ourselves of the
11064 			 * division works out to:
11065 			 * load_i * capacity_j > load_j * capacity_i;
11066 			 * where j is our previous maximum.
11067 			 */
11068 			if (load * busiest_capacity > busiest_load * capacity) {
11069 				busiest_load = load;
11070 				busiest_capacity = capacity;
11071 				busiest = rq;
11072 			}
11073 			break;
11074 
11075 		case migrate_util:
11076 			util = cpu_util_cfs_boost(i);
11077 
11078 			/*
11079 			 * Don't try to pull utilization from a CPU with one
11080 			 * running task. Whatever its utilization, we will fail
11081 			 * detach the task.
11082 			 */
11083 			if (nr_running <= 1)
11084 				continue;
11085 
11086 			if (busiest_util < util) {
11087 				busiest_util = util;
11088 				busiest = rq;
11089 			}
11090 			break;
11091 
11092 		case migrate_task:
11093 			if (busiest_nr < nr_running) {
11094 				busiest_nr = nr_running;
11095 				busiest = rq;
11096 			}
11097 			break;
11098 
11099 		case migrate_misfit:
11100 			/*
11101 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11102 			 * simply seek the "biggest" misfit task.
11103 			 */
11104 			if (rq->misfit_task_load > busiest_load) {
11105 				busiest_load = rq->misfit_task_load;
11106 				busiest = rq;
11107 			}
11108 
11109 			break;
11110 
11111 		}
11112 	}
11113 
11114 	return busiest;
11115 }
11116 
11117 /*
11118  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11119  * so long as it is large enough.
11120  */
11121 #define MAX_PINNED_INTERVAL	512
11122 
11123 static inline bool
11124 asym_active_balance(struct lb_env *env)
11125 {
11126 	/*
11127 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11128 	 * priority CPUs in order to pack all tasks in the highest priority
11129 	 * CPUs. When done between cores, do it only if the whole core if the
11130 	 * whole core is idle.
11131 	 *
11132 	 * If @env::src_cpu is an SMT core with busy siblings, let
11133 	 * the lower priority @env::dst_cpu help it. Do not follow
11134 	 * CPU priority.
11135 	 */
11136 	return env->idle != CPU_NOT_IDLE && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11137 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11138 		!sched_use_asym_prio(env->sd, env->src_cpu));
11139 }
11140 
11141 static inline bool
11142 imbalanced_active_balance(struct lb_env *env)
11143 {
11144 	struct sched_domain *sd = env->sd;
11145 
11146 	/*
11147 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11148 	 * distribution of the load on the system but also the even distribution of the
11149 	 * threads on a system with spare capacity
11150 	 */
11151 	if ((env->migration_type == migrate_task) &&
11152 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11153 		return 1;
11154 
11155 	return 0;
11156 }
11157 
11158 static int need_active_balance(struct lb_env *env)
11159 {
11160 	struct sched_domain *sd = env->sd;
11161 
11162 	if (asym_active_balance(env))
11163 		return 1;
11164 
11165 	if (imbalanced_active_balance(env))
11166 		return 1;
11167 
11168 	/*
11169 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11170 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11171 	 * because of other sched_class or IRQs if more capacity stays
11172 	 * available on dst_cpu.
11173 	 */
11174 	if ((env->idle != CPU_NOT_IDLE) &&
11175 	    (env->src_rq->cfs.h_nr_running == 1)) {
11176 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11177 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11178 			return 1;
11179 	}
11180 
11181 	if (env->migration_type == migrate_misfit)
11182 		return 1;
11183 
11184 	return 0;
11185 }
11186 
11187 static int active_load_balance_cpu_stop(void *data);
11188 
11189 static int should_we_balance(struct lb_env *env)
11190 {
11191 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11192 	struct sched_group *sg = env->sd->groups;
11193 	int cpu, idle_smt = -1;
11194 
11195 	/*
11196 	 * Ensure the balancing environment is consistent; can happen
11197 	 * when the softirq triggers 'during' hotplug.
11198 	 */
11199 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11200 		return 0;
11201 
11202 	/*
11203 	 * In the newly idle case, we will allow all the CPUs
11204 	 * to do the newly idle load balance.
11205 	 *
11206 	 * However, we bail out if we already have tasks or a wakeup pending,
11207 	 * to optimize wakeup latency.
11208 	 */
11209 	if (env->idle == CPU_NEWLY_IDLE) {
11210 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11211 			return 0;
11212 		return 1;
11213 	}
11214 
11215 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11216 	/* Try to find first idle CPU */
11217 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11218 		if (!idle_cpu(cpu))
11219 			continue;
11220 
11221 		/*
11222 		 * Don't balance to idle SMT in busy core right away when
11223 		 * balancing cores, but remember the first idle SMT CPU for
11224 		 * later consideration.  Find CPU on an idle core first.
11225 		 */
11226 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11227 			if (idle_smt == -1)
11228 				idle_smt = cpu;
11229 			/*
11230 			 * If the core is not idle, and first SMT sibling which is
11231 			 * idle has been found, then its not needed to check other
11232 			 * SMT siblings for idleness:
11233 			 */
11234 #ifdef CONFIG_SCHED_SMT
11235 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11236 #endif
11237 			continue;
11238 		}
11239 
11240 		/*
11241 		 * Are we the first idle core in a non-SMT domain or higher,
11242 		 * or the first idle CPU in a SMT domain?
11243 		 */
11244 		return cpu == env->dst_cpu;
11245 	}
11246 
11247 	/* Are we the first idle CPU with busy siblings? */
11248 	if (idle_smt != -1)
11249 		return idle_smt == env->dst_cpu;
11250 
11251 	/* Are we the first CPU of this group ? */
11252 	return group_balance_cpu(sg) == env->dst_cpu;
11253 }
11254 
11255 /*
11256  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11257  * tasks if there is an imbalance.
11258  */
11259 static int load_balance(int this_cpu, struct rq *this_rq,
11260 			struct sched_domain *sd, enum cpu_idle_type idle,
11261 			int *continue_balancing)
11262 {
11263 	int ld_moved, cur_ld_moved, active_balance = 0;
11264 	struct sched_domain *sd_parent = sd->parent;
11265 	struct sched_group *group;
11266 	struct rq *busiest;
11267 	struct rq_flags rf;
11268 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11269 	struct lb_env env = {
11270 		.sd		= sd,
11271 		.dst_cpu	= this_cpu,
11272 		.dst_rq		= this_rq,
11273 		.dst_grpmask    = group_balance_mask(sd->groups),
11274 		.idle		= idle,
11275 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11276 		.cpus		= cpus,
11277 		.fbq_type	= all,
11278 		.tasks		= LIST_HEAD_INIT(env.tasks),
11279 	};
11280 
11281 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11282 
11283 	schedstat_inc(sd->lb_count[idle]);
11284 
11285 redo:
11286 	if (!should_we_balance(&env)) {
11287 		*continue_balancing = 0;
11288 		goto out_balanced;
11289 	}
11290 
11291 	group = find_busiest_group(&env);
11292 	if (!group) {
11293 		schedstat_inc(sd->lb_nobusyg[idle]);
11294 		goto out_balanced;
11295 	}
11296 
11297 	busiest = find_busiest_queue(&env, group);
11298 	if (!busiest) {
11299 		schedstat_inc(sd->lb_nobusyq[idle]);
11300 		goto out_balanced;
11301 	}
11302 
11303 	WARN_ON_ONCE(busiest == env.dst_rq);
11304 
11305 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11306 
11307 	env.src_cpu = busiest->cpu;
11308 	env.src_rq = busiest;
11309 
11310 	ld_moved = 0;
11311 	/* Clear this flag as soon as we find a pullable task */
11312 	env.flags |= LBF_ALL_PINNED;
11313 	if (busiest->nr_running > 1) {
11314 		/*
11315 		 * Attempt to move tasks. If find_busiest_group has found
11316 		 * an imbalance but busiest->nr_running <= 1, the group is
11317 		 * still unbalanced. ld_moved simply stays zero, so it is
11318 		 * correctly treated as an imbalance.
11319 		 */
11320 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11321 
11322 more_balance:
11323 		rq_lock_irqsave(busiest, &rf);
11324 		update_rq_clock(busiest);
11325 
11326 		/*
11327 		 * cur_ld_moved - load moved in current iteration
11328 		 * ld_moved     - cumulative load moved across iterations
11329 		 */
11330 		cur_ld_moved = detach_tasks(&env);
11331 
11332 		/*
11333 		 * We've detached some tasks from busiest_rq. Every
11334 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11335 		 * unlock busiest->lock, and we are able to be sure
11336 		 * that nobody can manipulate the tasks in parallel.
11337 		 * See task_rq_lock() family for the details.
11338 		 */
11339 
11340 		rq_unlock(busiest, &rf);
11341 
11342 		if (cur_ld_moved) {
11343 			attach_tasks(&env);
11344 			ld_moved += cur_ld_moved;
11345 		}
11346 
11347 		local_irq_restore(rf.flags);
11348 
11349 		if (env.flags & LBF_NEED_BREAK) {
11350 			env.flags &= ~LBF_NEED_BREAK;
11351 			/* Stop if we tried all running tasks */
11352 			if (env.loop < busiest->nr_running)
11353 				goto more_balance;
11354 		}
11355 
11356 		/*
11357 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11358 		 * us and move them to an alternate dst_cpu in our sched_group
11359 		 * where they can run. The upper limit on how many times we
11360 		 * iterate on same src_cpu is dependent on number of CPUs in our
11361 		 * sched_group.
11362 		 *
11363 		 * This changes load balance semantics a bit on who can move
11364 		 * load to a given_cpu. In addition to the given_cpu itself
11365 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11366 		 * nohz-idle), we now have balance_cpu in a position to move
11367 		 * load to given_cpu. In rare situations, this may cause
11368 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11369 		 * _independently_ and at _same_ time to move some load to
11370 		 * given_cpu) causing excess load to be moved to given_cpu.
11371 		 * This however should not happen so much in practice and
11372 		 * moreover subsequent load balance cycles should correct the
11373 		 * excess load moved.
11374 		 */
11375 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11376 
11377 			/* Prevent to re-select dst_cpu via env's CPUs */
11378 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11379 
11380 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11381 			env.dst_cpu	 = env.new_dst_cpu;
11382 			env.flags	&= ~LBF_DST_PINNED;
11383 			env.loop	 = 0;
11384 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11385 
11386 			/*
11387 			 * Go back to "more_balance" rather than "redo" since we
11388 			 * need to continue with same src_cpu.
11389 			 */
11390 			goto more_balance;
11391 		}
11392 
11393 		/*
11394 		 * We failed to reach balance because of affinity.
11395 		 */
11396 		if (sd_parent) {
11397 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11398 
11399 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11400 				*group_imbalance = 1;
11401 		}
11402 
11403 		/* All tasks on this runqueue were pinned by CPU affinity */
11404 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11405 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11406 			/*
11407 			 * Attempting to continue load balancing at the current
11408 			 * sched_domain level only makes sense if there are
11409 			 * active CPUs remaining as possible busiest CPUs to
11410 			 * pull load from which are not contained within the
11411 			 * destination group that is receiving any migrated
11412 			 * load.
11413 			 */
11414 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11415 				env.loop = 0;
11416 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11417 				goto redo;
11418 			}
11419 			goto out_all_pinned;
11420 		}
11421 	}
11422 
11423 	if (!ld_moved) {
11424 		schedstat_inc(sd->lb_failed[idle]);
11425 		/*
11426 		 * Increment the failure counter only on periodic balance.
11427 		 * We do not want newidle balance, which can be very
11428 		 * frequent, pollute the failure counter causing
11429 		 * excessive cache_hot migrations and active balances.
11430 		 */
11431 		if (idle != CPU_NEWLY_IDLE)
11432 			sd->nr_balance_failed++;
11433 
11434 		if (need_active_balance(&env)) {
11435 			unsigned long flags;
11436 
11437 			raw_spin_rq_lock_irqsave(busiest, flags);
11438 
11439 			/*
11440 			 * Don't kick the active_load_balance_cpu_stop,
11441 			 * if the curr task on busiest CPU can't be
11442 			 * moved to this_cpu:
11443 			 */
11444 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11445 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11446 				goto out_one_pinned;
11447 			}
11448 
11449 			/* Record that we found at least one task that could run on this_cpu */
11450 			env.flags &= ~LBF_ALL_PINNED;
11451 
11452 			/*
11453 			 * ->active_balance synchronizes accesses to
11454 			 * ->active_balance_work.  Once set, it's cleared
11455 			 * only after active load balance is finished.
11456 			 */
11457 			if (!busiest->active_balance) {
11458 				busiest->active_balance = 1;
11459 				busiest->push_cpu = this_cpu;
11460 				active_balance = 1;
11461 			}
11462 
11463 			preempt_disable();
11464 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11465 			if (active_balance) {
11466 				stop_one_cpu_nowait(cpu_of(busiest),
11467 					active_load_balance_cpu_stop, busiest,
11468 					&busiest->active_balance_work);
11469 			}
11470 			preempt_enable();
11471 		}
11472 	} else {
11473 		sd->nr_balance_failed = 0;
11474 	}
11475 
11476 	if (likely(!active_balance) || need_active_balance(&env)) {
11477 		/* We were unbalanced, so reset the balancing interval */
11478 		sd->balance_interval = sd->min_interval;
11479 	}
11480 
11481 	goto out;
11482 
11483 out_balanced:
11484 	/*
11485 	 * We reach balance although we may have faced some affinity
11486 	 * constraints. Clear the imbalance flag only if other tasks got
11487 	 * a chance to move and fix the imbalance.
11488 	 */
11489 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11490 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11491 
11492 		if (*group_imbalance)
11493 			*group_imbalance = 0;
11494 	}
11495 
11496 out_all_pinned:
11497 	/*
11498 	 * We reach balance because all tasks are pinned at this level so
11499 	 * we can't migrate them. Let the imbalance flag set so parent level
11500 	 * can try to migrate them.
11501 	 */
11502 	schedstat_inc(sd->lb_balanced[idle]);
11503 
11504 	sd->nr_balance_failed = 0;
11505 
11506 out_one_pinned:
11507 	ld_moved = 0;
11508 
11509 	/*
11510 	 * newidle_balance() disregards balance intervals, so we could
11511 	 * repeatedly reach this code, which would lead to balance_interval
11512 	 * skyrocketing in a short amount of time. Skip the balance_interval
11513 	 * increase logic to avoid that.
11514 	 */
11515 	if (env.idle == CPU_NEWLY_IDLE)
11516 		goto out;
11517 
11518 	/* tune up the balancing interval */
11519 	if ((env.flags & LBF_ALL_PINNED &&
11520 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11521 	    sd->balance_interval < sd->max_interval)
11522 		sd->balance_interval *= 2;
11523 out:
11524 	return ld_moved;
11525 }
11526 
11527 static inline unsigned long
11528 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11529 {
11530 	unsigned long interval = sd->balance_interval;
11531 
11532 	if (cpu_busy)
11533 		interval *= sd->busy_factor;
11534 
11535 	/* scale ms to jiffies */
11536 	interval = msecs_to_jiffies(interval);
11537 
11538 	/*
11539 	 * Reduce likelihood of busy balancing at higher domains racing with
11540 	 * balancing at lower domains by preventing their balancing periods
11541 	 * from being multiples of each other.
11542 	 */
11543 	if (cpu_busy)
11544 		interval -= 1;
11545 
11546 	interval = clamp(interval, 1UL, max_load_balance_interval);
11547 
11548 	return interval;
11549 }
11550 
11551 static inline void
11552 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11553 {
11554 	unsigned long interval, next;
11555 
11556 	/* used by idle balance, so cpu_busy = 0 */
11557 	interval = get_sd_balance_interval(sd, 0);
11558 	next = sd->last_balance + interval;
11559 
11560 	if (time_after(*next_balance, next))
11561 		*next_balance = next;
11562 }
11563 
11564 /*
11565  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11566  * running tasks off the busiest CPU onto idle CPUs. It requires at
11567  * least 1 task to be running on each physical CPU where possible, and
11568  * avoids physical / logical imbalances.
11569  */
11570 static int active_load_balance_cpu_stop(void *data)
11571 {
11572 	struct rq *busiest_rq = data;
11573 	int busiest_cpu = cpu_of(busiest_rq);
11574 	int target_cpu = busiest_rq->push_cpu;
11575 	struct rq *target_rq = cpu_rq(target_cpu);
11576 	struct sched_domain *sd;
11577 	struct task_struct *p = NULL;
11578 	struct rq_flags rf;
11579 
11580 	rq_lock_irq(busiest_rq, &rf);
11581 	/*
11582 	 * Between queueing the stop-work and running it is a hole in which
11583 	 * CPUs can become inactive. We should not move tasks from or to
11584 	 * inactive CPUs.
11585 	 */
11586 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11587 		goto out_unlock;
11588 
11589 	/* Make sure the requested CPU hasn't gone down in the meantime: */
11590 	if (unlikely(busiest_cpu != smp_processor_id() ||
11591 		     !busiest_rq->active_balance))
11592 		goto out_unlock;
11593 
11594 	/* Is there any task to move? */
11595 	if (busiest_rq->nr_running <= 1)
11596 		goto out_unlock;
11597 
11598 	/*
11599 	 * This condition is "impossible", if it occurs
11600 	 * we need to fix it. Originally reported by
11601 	 * Bjorn Helgaas on a 128-CPU setup.
11602 	 */
11603 	WARN_ON_ONCE(busiest_rq == target_rq);
11604 
11605 	/* Search for an sd spanning us and the target CPU. */
11606 	rcu_read_lock();
11607 	for_each_domain(target_cpu, sd) {
11608 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11609 			break;
11610 	}
11611 
11612 	if (likely(sd)) {
11613 		struct lb_env env = {
11614 			.sd		= sd,
11615 			.dst_cpu	= target_cpu,
11616 			.dst_rq		= target_rq,
11617 			.src_cpu	= busiest_rq->cpu,
11618 			.src_rq		= busiest_rq,
11619 			.idle		= CPU_IDLE,
11620 			.flags		= LBF_ACTIVE_LB,
11621 		};
11622 
11623 		schedstat_inc(sd->alb_count);
11624 		update_rq_clock(busiest_rq);
11625 
11626 		p = detach_one_task(&env);
11627 		if (p) {
11628 			schedstat_inc(sd->alb_pushed);
11629 			/* Active balancing done, reset the failure counter. */
11630 			sd->nr_balance_failed = 0;
11631 		} else {
11632 			schedstat_inc(sd->alb_failed);
11633 		}
11634 	}
11635 	rcu_read_unlock();
11636 out_unlock:
11637 	busiest_rq->active_balance = 0;
11638 	rq_unlock(busiest_rq, &rf);
11639 
11640 	if (p)
11641 		attach_one_task(target_rq, p);
11642 
11643 	local_irq_enable();
11644 
11645 	return 0;
11646 }
11647 
11648 static DEFINE_SPINLOCK(balancing);
11649 
11650 /*
11651  * Scale the max load_balance interval with the number of CPUs in the system.
11652  * This trades load-balance latency on larger machines for less cross talk.
11653  */
11654 void update_max_interval(void)
11655 {
11656 	max_load_balance_interval = HZ*num_online_cpus()/10;
11657 }
11658 
11659 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11660 {
11661 	if (cost > sd->max_newidle_lb_cost) {
11662 		/*
11663 		 * Track max cost of a domain to make sure to not delay the
11664 		 * next wakeup on the CPU.
11665 		 */
11666 		sd->max_newidle_lb_cost = cost;
11667 		sd->last_decay_max_lb_cost = jiffies;
11668 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11669 		/*
11670 		 * Decay the newidle max times by ~1% per second to ensure that
11671 		 * it is not outdated and the current max cost is actually
11672 		 * shorter.
11673 		 */
11674 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11675 		sd->last_decay_max_lb_cost = jiffies;
11676 
11677 		return true;
11678 	}
11679 
11680 	return false;
11681 }
11682 
11683 /*
11684  * It checks each scheduling domain to see if it is due to be balanced,
11685  * and initiates a balancing operation if so.
11686  *
11687  * Balancing parameters are set up in init_sched_domains.
11688  */
11689 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11690 {
11691 	int continue_balancing = 1;
11692 	int cpu = rq->cpu;
11693 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11694 	unsigned long interval;
11695 	struct sched_domain *sd;
11696 	/* Earliest time when we have to do rebalance again */
11697 	unsigned long next_balance = jiffies + 60*HZ;
11698 	int update_next_balance = 0;
11699 	int need_serialize, need_decay = 0;
11700 	u64 max_cost = 0;
11701 
11702 	rcu_read_lock();
11703 	for_each_domain(cpu, sd) {
11704 		/*
11705 		 * Decay the newidle max times here because this is a regular
11706 		 * visit to all the domains.
11707 		 */
11708 		need_decay = update_newidle_cost(sd, 0);
11709 		max_cost += sd->max_newidle_lb_cost;
11710 
11711 		/*
11712 		 * Stop the load balance at this level. There is another
11713 		 * CPU in our sched group which is doing load balancing more
11714 		 * actively.
11715 		 */
11716 		if (!continue_balancing) {
11717 			if (need_decay)
11718 				continue;
11719 			break;
11720 		}
11721 
11722 		interval = get_sd_balance_interval(sd, busy);
11723 
11724 		need_serialize = sd->flags & SD_SERIALIZE;
11725 		if (need_serialize) {
11726 			if (!spin_trylock(&balancing))
11727 				goto out;
11728 		}
11729 
11730 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
11731 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11732 				/*
11733 				 * The LBF_DST_PINNED logic could have changed
11734 				 * env->dst_cpu, so we can't know our idle
11735 				 * state even if we migrated tasks. Update it.
11736 				 */
11737 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11738 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11739 			}
11740 			sd->last_balance = jiffies;
11741 			interval = get_sd_balance_interval(sd, busy);
11742 		}
11743 		if (need_serialize)
11744 			spin_unlock(&balancing);
11745 out:
11746 		if (time_after(next_balance, sd->last_balance + interval)) {
11747 			next_balance = sd->last_balance + interval;
11748 			update_next_balance = 1;
11749 		}
11750 	}
11751 	if (need_decay) {
11752 		/*
11753 		 * Ensure the rq-wide value also decays but keep it at a
11754 		 * reasonable floor to avoid funnies with rq->avg_idle.
11755 		 */
11756 		rq->max_idle_balance_cost =
11757 			max((u64)sysctl_sched_migration_cost, max_cost);
11758 	}
11759 	rcu_read_unlock();
11760 
11761 	/*
11762 	 * next_balance will be updated only when there is a need.
11763 	 * When the cpu is attached to null domain for ex, it will not be
11764 	 * updated.
11765 	 */
11766 	if (likely(update_next_balance))
11767 		rq->next_balance = next_balance;
11768 
11769 }
11770 
11771 static inline int on_null_domain(struct rq *rq)
11772 {
11773 	return unlikely(!rcu_dereference_sched(rq->sd));
11774 }
11775 
11776 #ifdef CONFIG_NO_HZ_COMMON
11777 /*
11778  * NOHZ idle load balancing (ILB) details:
11779  *
11780  * - When one of the busy CPUs notices that there may be an idle rebalancing
11781  *   needed, they will kick the idle load balancer, which then does idle
11782  *   load balancing for all the idle CPUs.
11783  *
11784  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
11785  *   anywhere yet.
11786  */
11787 static inline int find_new_ilb(void)
11788 {
11789 	const struct cpumask *hk_mask;
11790 	int ilb_cpu;
11791 
11792 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11793 
11794 	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
11795 
11796 		if (ilb_cpu == smp_processor_id())
11797 			continue;
11798 
11799 		if (idle_cpu(ilb_cpu))
11800 			return ilb_cpu;
11801 	}
11802 
11803 	return -1;
11804 }
11805 
11806 /*
11807  * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
11808  * SMP function call (IPI).
11809  *
11810  * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11811  */
11812 static void kick_ilb(unsigned int flags)
11813 {
11814 	int ilb_cpu;
11815 
11816 	/*
11817 	 * Increase nohz.next_balance only when if full ilb is triggered but
11818 	 * not if we only update stats.
11819 	 */
11820 	if (flags & NOHZ_BALANCE_KICK)
11821 		nohz.next_balance = jiffies+1;
11822 
11823 	ilb_cpu = find_new_ilb();
11824 	if (ilb_cpu < 0)
11825 		return;
11826 
11827 	/*
11828 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11829 	 * the first flag owns it; cleared by nohz_csd_func().
11830 	 */
11831 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11832 	if (flags & NOHZ_KICK_MASK)
11833 		return;
11834 
11835 	/*
11836 	 * This way we generate an IPI on the target CPU which
11837 	 * is idle, and the softirq performing NOHZ idle load balancing
11838 	 * will be run before returning from the IPI.
11839 	 */
11840 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11841 }
11842 
11843 /*
11844  * Current decision point for kicking the idle load balancer in the presence
11845  * of idle CPUs in the system.
11846  */
11847 static void nohz_balancer_kick(struct rq *rq)
11848 {
11849 	unsigned long now = jiffies;
11850 	struct sched_domain_shared *sds;
11851 	struct sched_domain *sd;
11852 	int nr_busy, i, cpu = rq->cpu;
11853 	unsigned int flags = 0;
11854 
11855 	if (unlikely(rq->idle_balance))
11856 		return;
11857 
11858 	/*
11859 	 * We may be recently in ticked or tickless idle mode. At the first
11860 	 * busy tick after returning from idle, we will update the busy stats.
11861 	 */
11862 	nohz_balance_exit_idle(rq);
11863 
11864 	/*
11865 	 * None are in tickless mode and hence no need for NOHZ idle load
11866 	 * balancing:
11867 	 */
11868 	if (likely(!atomic_read(&nohz.nr_cpus)))
11869 		return;
11870 
11871 	if (READ_ONCE(nohz.has_blocked) &&
11872 	    time_after(now, READ_ONCE(nohz.next_blocked)))
11873 		flags = NOHZ_STATS_KICK;
11874 
11875 	if (time_before(now, nohz.next_balance))
11876 		goto out;
11877 
11878 	if (rq->nr_running >= 2) {
11879 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11880 		goto out;
11881 	}
11882 
11883 	rcu_read_lock();
11884 
11885 	sd = rcu_dereference(rq->sd);
11886 	if (sd) {
11887 		/*
11888 		 * If there's a runnable CFS task and the current CPU has reduced
11889 		 * capacity, kick the ILB to see if there's a better CPU to run on:
11890 		 */
11891 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11892 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11893 			goto unlock;
11894 		}
11895 	}
11896 
11897 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11898 	if (sd) {
11899 		/*
11900 		 * When ASYM_PACKING; see if there's a more preferred CPU
11901 		 * currently idle; in which case, kick the ILB to move tasks
11902 		 * around.
11903 		 *
11904 		 * When balancing betwen cores, all the SMT siblings of the
11905 		 * preferred CPU must be idle.
11906 		 */
11907 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11908 			if (sched_asym(sd, i, cpu)) {
11909 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11910 				goto unlock;
11911 			}
11912 		}
11913 	}
11914 
11915 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11916 	if (sd) {
11917 		/*
11918 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11919 		 * to run the misfit task on.
11920 		 */
11921 		if (check_misfit_status(rq, sd)) {
11922 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11923 			goto unlock;
11924 		}
11925 
11926 		/*
11927 		 * For asymmetric systems, we do not want to nicely balance
11928 		 * cache use, instead we want to embrace asymmetry and only
11929 		 * ensure tasks have enough CPU capacity.
11930 		 *
11931 		 * Skip the LLC logic because it's not relevant in that case.
11932 		 */
11933 		goto unlock;
11934 	}
11935 
11936 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11937 	if (sds) {
11938 		/*
11939 		 * If there is an imbalance between LLC domains (IOW we could
11940 		 * increase the overall cache utilization), we need a less-loaded LLC
11941 		 * domain to pull some load from. Likewise, we may need to spread
11942 		 * load within the current LLC domain (e.g. packed SMT cores but
11943 		 * other CPUs are idle). We can't really know from here how busy
11944 		 * the others are - so just get a NOHZ balance going if it looks
11945 		 * like this LLC domain has tasks we could move.
11946 		 */
11947 		nr_busy = atomic_read(&sds->nr_busy_cpus);
11948 		if (nr_busy > 1) {
11949 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11950 			goto unlock;
11951 		}
11952 	}
11953 unlock:
11954 	rcu_read_unlock();
11955 out:
11956 	if (READ_ONCE(nohz.needs_update))
11957 		flags |= NOHZ_NEXT_KICK;
11958 
11959 	if (flags)
11960 		kick_ilb(flags);
11961 }
11962 
11963 static void set_cpu_sd_state_busy(int cpu)
11964 {
11965 	struct sched_domain *sd;
11966 
11967 	rcu_read_lock();
11968 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11969 
11970 	if (!sd || !sd->nohz_idle)
11971 		goto unlock;
11972 	sd->nohz_idle = 0;
11973 
11974 	atomic_inc(&sd->shared->nr_busy_cpus);
11975 unlock:
11976 	rcu_read_unlock();
11977 }
11978 
11979 void nohz_balance_exit_idle(struct rq *rq)
11980 {
11981 	SCHED_WARN_ON(rq != this_rq());
11982 
11983 	if (likely(!rq->nohz_tick_stopped))
11984 		return;
11985 
11986 	rq->nohz_tick_stopped = 0;
11987 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11988 	atomic_dec(&nohz.nr_cpus);
11989 
11990 	set_cpu_sd_state_busy(rq->cpu);
11991 }
11992 
11993 static void set_cpu_sd_state_idle(int cpu)
11994 {
11995 	struct sched_domain *sd;
11996 
11997 	rcu_read_lock();
11998 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11999 
12000 	if (!sd || sd->nohz_idle)
12001 		goto unlock;
12002 	sd->nohz_idle = 1;
12003 
12004 	atomic_dec(&sd->shared->nr_busy_cpus);
12005 unlock:
12006 	rcu_read_unlock();
12007 }
12008 
12009 /*
12010  * This routine will record that the CPU is going idle with tick stopped.
12011  * This info will be used in performing idle load balancing in the future.
12012  */
12013 void nohz_balance_enter_idle(int cpu)
12014 {
12015 	struct rq *rq = cpu_rq(cpu);
12016 
12017 	SCHED_WARN_ON(cpu != smp_processor_id());
12018 
12019 	/* If this CPU is going down, then nothing needs to be done: */
12020 	if (!cpu_active(cpu))
12021 		return;
12022 
12023 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
12024 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12025 		return;
12026 
12027 	/*
12028 	 * Can be set safely without rq->lock held
12029 	 * If a clear happens, it will have evaluated last additions because
12030 	 * rq->lock is held during the check and the clear
12031 	 */
12032 	rq->has_blocked_load = 1;
12033 
12034 	/*
12035 	 * The tick is still stopped but load could have been added in the
12036 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12037 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12038 	 * of nohz.has_blocked can only happen after checking the new load
12039 	 */
12040 	if (rq->nohz_tick_stopped)
12041 		goto out;
12042 
12043 	/* If we're a completely isolated CPU, we don't play: */
12044 	if (on_null_domain(rq))
12045 		return;
12046 
12047 	rq->nohz_tick_stopped = 1;
12048 
12049 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12050 	atomic_inc(&nohz.nr_cpus);
12051 
12052 	/*
12053 	 * Ensures that if nohz_idle_balance() fails to observe our
12054 	 * @idle_cpus_mask store, it must observe the @has_blocked
12055 	 * and @needs_update stores.
12056 	 */
12057 	smp_mb__after_atomic();
12058 
12059 	set_cpu_sd_state_idle(cpu);
12060 
12061 	WRITE_ONCE(nohz.needs_update, 1);
12062 out:
12063 	/*
12064 	 * Each time a cpu enter idle, we assume that it has blocked load and
12065 	 * enable the periodic update of the load of idle cpus
12066 	 */
12067 	WRITE_ONCE(nohz.has_blocked, 1);
12068 }
12069 
12070 static bool update_nohz_stats(struct rq *rq)
12071 {
12072 	unsigned int cpu = rq->cpu;
12073 
12074 	if (!rq->has_blocked_load)
12075 		return false;
12076 
12077 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12078 		return false;
12079 
12080 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12081 		return true;
12082 
12083 	update_blocked_averages(cpu);
12084 
12085 	return rq->has_blocked_load;
12086 }
12087 
12088 /*
12089  * Internal function that runs load balance for all idle cpus. The load balance
12090  * can be a simple update of blocked load or a complete load balance with
12091  * tasks movement depending of flags.
12092  */
12093 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12094 {
12095 	/* Earliest time when we have to do rebalance again */
12096 	unsigned long now = jiffies;
12097 	unsigned long next_balance = now + 60*HZ;
12098 	bool has_blocked_load = false;
12099 	int update_next_balance = 0;
12100 	int this_cpu = this_rq->cpu;
12101 	int balance_cpu;
12102 	struct rq *rq;
12103 
12104 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12105 
12106 	/*
12107 	 * We assume there will be no idle load after this update and clear
12108 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12109 	 * set the has_blocked flag and trigger another update of idle load.
12110 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12111 	 * setting the flag, we are sure to not clear the state and not
12112 	 * check the load of an idle cpu.
12113 	 *
12114 	 * Same applies to idle_cpus_mask vs needs_update.
12115 	 */
12116 	if (flags & NOHZ_STATS_KICK)
12117 		WRITE_ONCE(nohz.has_blocked, 0);
12118 	if (flags & NOHZ_NEXT_KICK)
12119 		WRITE_ONCE(nohz.needs_update, 0);
12120 
12121 	/*
12122 	 * Ensures that if we miss the CPU, we must see the has_blocked
12123 	 * store from nohz_balance_enter_idle().
12124 	 */
12125 	smp_mb();
12126 
12127 	/*
12128 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12129 	 * chance for other idle cpu to pull load.
12130 	 */
12131 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12132 		if (!idle_cpu(balance_cpu))
12133 			continue;
12134 
12135 		/*
12136 		 * If this CPU gets work to do, stop the load balancing
12137 		 * work being done for other CPUs. Next load
12138 		 * balancing owner will pick it up.
12139 		 */
12140 		if (need_resched()) {
12141 			if (flags & NOHZ_STATS_KICK)
12142 				has_blocked_load = true;
12143 			if (flags & NOHZ_NEXT_KICK)
12144 				WRITE_ONCE(nohz.needs_update, 1);
12145 			goto abort;
12146 		}
12147 
12148 		rq = cpu_rq(balance_cpu);
12149 
12150 		if (flags & NOHZ_STATS_KICK)
12151 			has_blocked_load |= update_nohz_stats(rq);
12152 
12153 		/*
12154 		 * If time for next balance is due,
12155 		 * do the balance.
12156 		 */
12157 		if (time_after_eq(jiffies, rq->next_balance)) {
12158 			struct rq_flags rf;
12159 
12160 			rq_lock_irqsave(rq, &rf);
12161 			update_rq_clock(rq);
12162 			rq_unlock_irqrestore(rq, &rf);
12163 
12164 			if (flags & NOHZ_BALANCE_KICK)
12165 				rebalance_domains(rq, CPU_IDLE);
12166 		}
12167 
12168 		if (time_after(next_balance, rq->next_balance)) {
12169 			next_balance = rq->next_balance;
12170 			update_next_balance = 1;
12171 		}
12172 	}
12173 
12174 	/*
12175 	 * next_balance will be updated only when there is a need.
12176 	 * When the CPU is attached to null domain for ex, it will not be
12177 	 * updated.
12178 	 */
12179 	if (likely(update_next_balance))
12180 		nohz.next_balance = next_balance;
12181 
12182 	if (flags & NOHZ_STATS_KICK)
12183 		WRITE_ONCE(nohz.next_blocked,
12184 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12185 
12186 abort:
12187 	/* There is still blocked load, enable periodic update */
12188 	if (has_blocked_load)
12189 		WRITE_ONCE(nohz.has_blocked, 1);
12190 }
12191 
12192 /*
12193  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12194  * rebalancing for all the cpus for whom scheduler ticks are stopped.
12195  */
12196 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12197 {
12198 	unsigned int flags = this_rq->nohz_idle_balance;
12199 
12200 	if (!flags)
12201 		return false;
12202 
12203 	this_rq->nohz_idle_balance = 0;
12204 
12205 	if (idle != CPU_IDLE)
12206 		return false;
12207 
12208 	_nohz_idle_balance(this_rq, flags);
12209 
12210 	return true;
12211 }
12212 
12213 /*
12214  * Check if we need to directly run the ILB for updating blocked load before
12215  * entering idle state. Here we run ILB directly without issuing IPIs.
12216  *
12217  * Note that when this function is called, the tick may not yet be stopped on
12218  * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12219  * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12220  * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12221  * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12222  * called from this function on (this) CPU that's not yet in the mask. That's
12223  * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12224  * updating the blocked load of already idle CPUs without waking up one of
12225  * those idle CPUs and outside the preempt disable / irq off phase of the local
12226  * cpu about to enter idle, because it can take a long time.
12227  */
12228 void nohz_run_idle_balance(int cpu)
12229 {
12230 	unsigned int flags;
12231 
12232 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12233 
12234 	/*
12235 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12236 	 * (ie NOHZ_STATS_KICK set) and will do the same.
12237 	 */
12238 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12239 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12240 }
12241 
12242 static void nohz_newidle_balance(struct rq *this_rq)
12243 {
12244 	int this_cpu = this_rq->cpu;
12245 
12246 	/*
12247 	 * This CPU doesn't want to be disturbed by scheduler
12248 	 * housekeeping
12249 	 */
12250 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12251 		return;
12252 
12253 	/* Will wake up very soon. No time for doing anything else*/
12254 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12255 		return;
12256 
12257 	/* Don't need to update blocked load of idle CPUs*/
12258 	if (!READ_ONCE(nohz.has_blocked) ||
12259 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12260 		return;
12261 
12262 	/*
12263 	 * Set the need to trigger ILB in order to update blocked load
12264 	 * before entering idle state.
12265 	 */
12266 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12267 }
12268 
12269 #else /* !CONFIG_NO_HZ_COMMON */
12270 static inline void nohz_balancer_kick(struct rq *rq) { }
12271 
12272 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12273 {
12274 	return false;
12275 }
12276 
12277 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12278 #endif /* CONFIG_NO_HZ_COMMON */
12279 
12280 /*
12281  * newidle_balance is called by schedule() if this_cpu is about to become
12282  * idle. Attempts to pull tasks from other CPUs.
12283  *
12284  * Returns:
12285  *   < 0 - we released the lock and there are !fair tasks present
12286  *     0 - failed, no new tasks
12287  *   > 0 - success, new (fair) tasks present
12288  */
12289 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
12290 {
12291 	unsigned long next_balance = jiffies + HZ;
12292 	int this_cpu = this_rq->cpu;
12293 	u64 t0, t1, curr_cost = 0;
12294 	struct sched_domain *sd;
12295 	int pulled_task = 0;
12296 
12297 	update_misfit_status(NULL, this_rq);
12298 
12299 	/*
12300 	 * There is a task waiting to run. No need to search for one.
12301 	 * Return 0; the task will be enqueued when switching to idle.
12302 	 */
12303 	if (this_rq->ttwu_pending)
12304 		return 0;
12305 
12306 	/*
12307 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
12308 	 * measure the duration of idle_balance() as idle time.
12309 	 */
12310 	this_rq->idle_stamp = rq_clock(this_rq);
12311 
12312 	/*
12313 	 * Do not pull tasks towards !active CPUs...
12314 	 */
12315 	if (!cpu_active(this_cpu))
12316 		return 0;
12317 
12318 	/*
12319 	 * This is OK, because current is on_cpu, which avoids it being picked
12320 	 * for load-balance and preemption/IRQs are still disabled avoiding
12321 	 * further scheduler activity on it and we're being very careful to
12322 	 * re-start the picking loop.
12323 	 */
12324 	rq_unpin_lock(this_rq, rf);
12325 
12326 	rcu_read_lock();
12327 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12328 
12329 	if (!READ_ONCE(this_rq->rd->overload) ||
12330 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12331 
12332 		if (sd)
12333 			update_next_balance(sd, &next_balance);
12334 		rcu_read_unlock();
12335 
12336 		goto out;
12337 	}
12338 	rcu_read_unlock();
12339 
12340 	raw_spin_rq_unlock(this_rq);
12341 
12342 	t0 = sched_clock_cpu(this_cpu);
12343 	update_blocked_averages(this_cpu);
12344 
12345 	rcu_read_lock();
12346 	for_each_domain(this_cpu, sd) {
12347 		int continue_balancing = 1;
12348 		u64 domain_cost;
12349 
12350 		update_next_balance(sd, &next_balance);
12351 
12352 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12353 			break;
12354 
12355 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12356 
12357 			pulled_task = load_balance(this_cpu, this_rq,
12358 						   sd, CPU_NEWLY_IDLE,
12359 						   &continue_balancing);
12360 
12361 			t1 = sched_clock_cpu(this_cpu);
12362 			domain_cost = t1 - t0;
12363 			update_newidle_cost(sd, domain_cost);
12364 
12365 			curr_cost += domain_cost;
12366 			t0 = t1;
12367 		}
12368 
12369 		/*
12370 		 * Stop searching for tasks to pull if there are
12371 		 * now runnable tasks on this rq.
12372 		 */
12373 		if (pulled_task || this_rq->nr_running > 0 ||
12374 		    this_rq->ttwu_pending)
12375 			break;
12376 	}
12377 	rcu_read_unlock();
12378 
12379 	raw_spin_rq_lock(this_rq);
12380 
12381 	if (curr_cost > this_rq->max_idle_balance_cost)
12382 		this_rq->max_idle_balance_cost = curr_cost;
12383 
12384 	/*
12385 	 * While browsing the domains, we released the rq lock, a task could
12386 	 * have been enqueued in the meantime. Since we're not going idle,
12387 	 * pretend we pulled a task.
12388 	 */
12389 	if (this_rq->cfs.h_nr_running && !pulled_task)
12390 		pulled_task = 1;
12391 
12392 	/* Is there a task of a high priority class? */
12393 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12394 		pulled_task = -1;
12395 
12396 out:
12397 	/* Move the next balance forward */
12398 	if (time_after(this_rq->next_balance, next_balance))
12399 		this_rq->next_balance = next_balance;
12400 
12401 	if (pulled_task)
12402 		this_rq->idle_stamp = 0;
12403 	else
12404 		nohz_newidle_balance(this_rq);
12405 
12406 	rq_repin_lock(this_rq, rf);
12407 
12408 	return pulled_task;
12409 }
12410 
12411 /*
12412  * run_rebalance_domains is triggered when needed from the scheduler tick.
12413  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
12414  */
12415 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
12416 {
12417 	struct rq *this_rq = this_rq();
12418 	enum cpu_idle_type idle = this_rq->idle_balance ?
12419 						CPU_IDLE : CPU_NOT_IDLE;
12420 
12421 	/*
12422 	 * If this CPU has a pending nohz_balance_kick, then do the
12423 	 * balancing on behalf of the other idle CPUs whose ticks are
12424 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
12425 	 * give the idle CPUs a chance to load balance. Else we may
12426 	 * load balance only within the local sched_domain hierarchy
12427 	 * and abort nohz_idle_balance altogether if we pull some load.
12428 	 */
12429 	if (nohz_idle_balance(this_rq, idle))
12430 		return;
12431 
12432 	/* normal load balance */
12433 	update_blocked_averages(this_rq->cpu);
12434 	rebalance_domains(this_rq, idle);
12435 }
12436 
12437 /*
12438  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12439  */
12440 void trigger_load_balance(struct rq *rq)
12441 {
12442 	/*
12443 	 * Don't need to rebalance while attached to NULL domain or
12444 	 * runqueue CPU is not active
12445 	 */
12446 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12447 		return;
12448 
12449 	if (time_after_eq(jiffies, rq->next_balance))
12450 		raise_softirq(SCHED_SOFTIRQ);
12451 
12452 	nohz_balancer_kick(rq);
12453 }
12454 
12455 static void rq_online_fair(struct rq *rq)
12456 {
12457 	update_sysctl();
12458 
12459 	update_runtime_enabled(rq);
12460 }
12461 
12462 static void rq_offline_fair(struct rq *rq)
12463 {
12464 	update_sysctl();
12465 
12466 	/* Ensure any throttled groups are reachable by pick_next_task */
12467 	unthrottle_offline_cfs_rqs(rq);
12468 
12469 	/* Ensure that we remove rq contribution to group share: */
12470 	clear_tg_offline_cfs_rqs(rq);
12471 }
12472 
12473 #endif /* CONFIG_SMP */
12474 
12475 #ifdef CONFIG_SCHED_CORE
12476 static inline bool
12477 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12478 {
12479 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12480 	u64 slice = se->slice;
12481 
12482 	return (rtime * min_nr_tasks > slice);
12483 }
12484 
12485 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
12486 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12487 {
12488 	if (!sched_core_enabled(rq))
12489 		return;
12490 
12491 	/*
12492 	 * If runqueue has only one task which used up its slice and
12493 	 * if the sibling is forced idle, then trigger schedule to
12494 	 * give forced idle task a chance.
12495 	 *
12496 	 * sched_slice() considers only this active rq and it gets the
12497 	 * whole slice. But during force idle, we have siblings acting
12498 	 * like a single runqueue and hence we need to consider runnable
12499 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12500 	 * go through the forced idle rq, but that would be a perf hit.
12501 	 * We can assume that the forced idle CPU has at least
12502 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12503 	 * if we need to give up the CPU.
12504 	 */
12505 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12506 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12507 		resched_curr(rq);
12508 }
12509 
12510 /*
12511  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12512  */
12513 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12514 			 bool forceidle)
12515 {
12516 	for_each_sched_entity(se) {
12517 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12518 
12519 		if (forceidle) {
12520 			if (cfs_rq->forceidle_seq == fi_seq)
12521 				break;
12522 			cfs_rq->forceidle_seq = fi_seq;
12523 		}
12524 
12525 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12526 	}
12527 }
12528 
12529 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12530 {
12531 	struct sched_entity *se = &p->se;
12532 
12533 	if (p->sched_class != &fair_sched_class)
12534 		return;
12535 
12536 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12537 }
12538 
12539 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12540 			bool in_fi)
12541 {
12542 	struct rq *rq = task_rq(a);
12543 	const struct sched_entity *sea = &a->se;
12544 	const struct sched_entity *seb = &b->se;
12545 	struct cfs_rq *cfs_rqa;
12546 	struct cfs_rq *cfs_rqb;
12547 	s64 delta;
12548 
12549 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12550 
12551 #ifdef CONFIG_FAIR_GROUP_SCHED
12552 	/*
12553 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12554 	 * are immediate siblings.
12555 	 */
12556 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12557 		int sea_depth = sea->depth;
12558 		int seb_depth = seb->depth;
12559 
12560 		if (sea_depth >= seb_depth)
12561 			sea = parent_entity(sea);
12562 		if (sea_depth <= seb_depth)
12563 			seb = parent_entity(seb);
12564 	}
12565 
12566 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12567 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12568 
12569 	cfs_rqa = sea->cfs_rq;
12570 	cfs_rqb = seb->cfs_rq;
12571 #else
12572 	cfs_rqa = &task_rq(a)->cfs;
12573 	cfs_rqb = &task_rq(b)->cfs;
12574 #endif
12575 
12576 	/*
12577 	 * Find delta after normalizing se's vruntime with its cfs_rq's
12578 	 * min_vruntime_fi, which would have been updated in prior calls
12579 	 * to se_fi_update().
12580 	 */
12581 	delta = (s64)(sea->vruntime - seb->vruntime) +
12582 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12583 
12584 	return delta > 0;
12585 }
12586 
12587 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12588 {
12589 	struct cfs_rq *cfs_rq;
12590 
12591 #ifdef CONFIG_FAIR_GROUP_SCHED
12592 	cfs_rq = task_group(p)->cfs_rq[cpu];
12593 #else
12594 	cfs_rq = &cpu_rq(cpu)->cfs;
12595 #endif
12596 	return throttled_hierarchy(cfs_rq);
12597 }
12598 #else
12599 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12600 #endif
12601 
12602 /*
12603  * scheduler tick hitting a task of our scheduling class.
12604  *
12605  * NOTE: This function can be called remotely by the tick offload that
12606  * goes along full dynticks. Therefore no local assumption can be made
12607  * and everything must be accessed through the @rq and @curr passed in
12608  * parameters.
12609  */
12610 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12611 {
12612 	struct cfs_rq *cfs_rq;
12613 	struct sched_entity *se = &curr->se;
12614 
12615 	for_each_sched_entity(se) {
12616 		cfs_rq = cfs_rq_of(se);
12617 		entity_tick(cfs_rq, se, queued);
12618 	}
12619 
12620 	if (static_branch_unlikely(&sched_numa_balancing))
12621 		task_tick_numa(rq, curr);
12622 
12623 	update_misfit_status(curr, rq);
12624 	update_overutilized_status(task_rq(curr));
12625 
12626 	task_tick_core(rq, curr);
12627 }
12628 
12629 /*
12630  * called on fork with the child task as argument from the parent's context
12631  *  - child not yet on the tasklist
12632  *  - preemption disabled
12633  */
12634 static void task_fork_fair(struct task_struct *p)
12635 {
12636 	struct sched_entity *se = &p->se, *curr;
12637 	struct cfs_rq *cfs_rq;
12638 	struct rq *rq = this_rq();
12639 	struct rq_flags rf;
12640 
12641 	rq_lock(rq, &rf);
12642 	update_rq_clock(rq);
12643 
12644 	cfs_rq = task_cfs_rq(current);
12645 	curr = cfs_rq->curr;
12646 	if (curr)
12647 		update_curr(cfs_rq);
12648 	place_entity(cfs_rq, se, ENQUEUE_INITIAL);
12649 	rq_unlock(rq, &rf);
12650 }
12651 
12652 /*
12653  * Priority of the task has changed. Check to see if we preempt
12654  * the current task.
12655  */
12656 static void
12657 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12658 {
12659 	if (!task_on_rq_queued(p))
12660 		return;
12661 
12662 	if (rq->cfs.nr_running == 1)
12663 		return;
12664 
12665 	/*
12666 	 * Reschedule if we are currently running on this runqueue and
12667 	 * our priority decreased, or if we are not currently running on
12668 	 * this runqueue and our priority is higher than the current's
12669 	 */
12670 	if (task_current(rq, p)) {
12671 		if (p->prio > oldprio)
12672 			resched_curr(rq);
12673 	} else
12674 		wakeup_preempt(rq, p, 0);
12675 }
12676 
12677 #ifdef CONFIG_FAIR_GROUP_SCHED
12678 /*
12679  * Propagate the changes of the sched_entity across the tg tree to make it
12680  * visible to the root
12681  */
12682 static void propagate_entity_cfs_rq(struct sched_entity *se)
12683 {
12684 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12685 
12686 	if (cfs_rq_throttled(cfs_rq))
12687 		return;
12688 
12689 	if (!throttled_hierarchy(cfs_rq))
12690 		list_add_leaf_cfs_rq(cfs_rq);
12691 
12692 	/* Start to propagate at parent */
12693 	se = se->parent;
12694 
12695 	for_each_sched_entity(se) {
12696 		cfs_rq = cfs_rq_of(se);
12697 
12698 		update_load_avg(cfs_rq, se, UPDATE_TG);
12699 
12700 		if (cfs_rq_throttled(cfs_rq))
12701 			break;
12702 
12703 		if (!throttled_hierarchy(cfs_rq))
12704 			list_add_leaf_cfs_rq(cfs_rq);
12705 	}
12706 }
12707 #else
12708 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12709 #endif
12710 
12711 static void detach_entity_cfs_rq(struct sched_entity *se)
12712 {
12713 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12714 
12715 #ifdef CONFIG_SMP
12716 	/*
12717 	 * In case the task sched_avg hasn't been attached:
12718 	 * - A forked task which hasn't been woken up by wake_up_new_task().
12719 	 * - A task which has been woken up by try_to_wake_up() but is
12720 	 *   waiting for actually being woken up by sched_ttwu_pending().
12721 	 */
12722 	if (!se->avg.last_update_time)
12723 		return;
12724 #endif
12725 
12726 	/* Catch up with the cfs_rq and remove our load when we leave */
12727 	update_load_avg(cfs_rq, se, 0);
12728 	detach_entity_load_avg(cfs_rq, se);
12729 	update_tg_load_avg(cfs_rq);
12730 	propagate_entity_cfs_rq(se);
12731 }
12732 
12733 static void attach_entity_cfs_rq(struct sched_entity *se)
12734 {
12735 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12736 
12737 	/* Synchronize entity with its cfs_rq */
12738 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12739 	attach_entity_load_avg(cfs_rq, se);
12740 	update_tg_load_avg(cfs_rq);
12741 	propagate_entity_cfs_rq(se);
12742 }
12743 
12744 static void detach_task_cfs_rq(struct task_struct *p)
12745 {
12746 	struct sched_entity *se = &p->se;
12747 
12748 	detach_entity_cfs_rq(se);
12749 }
12750 
12751 static void attach_task_cfs_rq(struct task_struct *p)
12752 {
12753 	struct sched_entity *se = &p->se;
12754 
12755 	attach_entity_cfs_rq(se);
12756 }
12757 
12758 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12759 {
12760 	detach_task_cfs_rq(p);
12761 }
12762 
12763 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12764 {
12765 	attach_task_cfs_rq(p);
12766 
12767 	if (task_on_rq_queued(p)) {
12768 		/*
12769 		 * We were most likely switched from sched_rt, so
12770 		 * kick off the schedule if running, otherwise just see
12771 		 * if we can still preempt the current task.
12772 		 */
12773 		if (task_current(rq, p))
12774 			resched_curr(rq);
12775 		else
12776 			wakeup_preempt(rq, p, 0);
12777 	}
12778 }
12779 
12780 /* Account for a task changing its policy or group.
12781  *
12782  * This routine is mostly called to set cfs_rq->curr field when a task
12783  * migrates between groups/classes.
12784  */
12785 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12786 {
12787 	struct sched_entity *se = &p->se;
12788 
12789 #ifdef CONFIG_SMP
12790 	if (task_on_rq_queued(p)) {
12791 		/*
12792 		 * Move the next running task to the front of the list, so our
12793 		 * cfs_tasks list becomes MRU one.
12794 		 */
12795 		list_move(&se->group_node, &rq->cfs_tasks);
12796 	}
12797 #endif
12798 
12799 	for_each_sched_entity(se) {
12800 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12801 
12802 		set_next_entity(cfs_rq, se);
12803 		/* ensure bandwidth has been allocated on our new cfs_rq */
12804 		account_cfs_rq_runtime(cfs_rq, 0);
12805 	}
12806 }
12807 
12808 void init_cfs_rq(struct cfs_rq *cfs_rq)
12809 {
12810 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12811 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12812 #ifdef CONFIG_SMP
12813 	raw_spin_lock_init(&cfs_rq->removed.lock);
12814 #endif
12815 }
12816 
12817 #ifdef CONFIG_FAIR_GROUP_SCHED
12818 static void task_change_group_fair(struct task_struct *p)
12819 {
12820 	/*
12821 	 * We couldn't detach or attach a forked task which
12822 	 * hasn't been woken up by wake_up_new_task().
12823 	 */
12824 	if (READ_ONCE(p->__state) == TASK_NEW)
12825 		return;
12826 
12827 	detach_task_cfs_rq(p);
12828 
12829 #ifdef CONFIG_SMP
12830 	/* Tell se's cfs_rq has been changed -- migrated */
12831 	p->se.avg.last_update_time = 0;
12832 #endif
12833 	set_task_rq(p, task_cpu(p));
12834 	attach_task_cfs_rq(p);
12835 }
12836 
12837 void free_fair_sched_group(struct task_group *tg)
12838 {
12839 	int i;
12840 
12841 	for_each_possible_cpu(i) {
12842 		if (tg->cfs_rq)
12843 			kfree(tg->cfs_rq[i]);
12844 		if (tg->se)
12845 			kfree(tg->se[i]);
12846 	}
12847 
12848 	kfree(tg->cfs_rq);
12849 	kfree(tg->se);
12850 }
12851 
12852 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12853 {
12854 	struct sched_entity *se;
12855 	struct cfs_rq *cfs_rq;
12856 	int i;
12857 
12858 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12859 	if (!tg->cfs_rq)
12860 		goto err;
12861 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12862 	if (!tg->se)
12863 		goto err;
12864 
12865 	tg->shares = NICE_0_LOAD;
12866 
12867 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
12868 
12869 	for_each_possible_cpu(i) {
12870 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12871 				      GFP_KERNEL, cpu_to_node(i));
12872 		if (!cfs_rq)
12873 			goto err;
12874 
12875 		se = kzalloc_node(sizeof(struct sched_entity_stats),
12876 				  GFP_KERNEL, cpu_to_node(i));
12877 		if (!se)
12878 			goto err_free_rq;
12879 
12880 		init_cfs_rq(cfs_rq);
12881 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12882 		init_entity_runnable_average(se);
12883 	}
12884 
12885 	return 1;
12886 
12887 err_free_rq:
12888 	kfree(cfs_rq);
12889 err:
12890 	return 0;
12891 }
12892 
12893 void online_fair_sched_group(struct task_group *tg)
12894 {
12895 	struct sched_entity *se;
12896 	struct rq_flags rf;
12897 	struct rq *rq;
12898 	int i;
12899 
12900 	for_each_possible_cpu(i) {
12901 		rq = cpu_rq(i);
12902 		se = tg->se[i];
12903 		rq_lock_irq(rq, &rf);
12904 		update_rq_clock(rq);
12905 		attach_entity_cfs_rq(se);
12906 		sync_throttle(tg, i);
12907 		rq_unlock_irq(rq, &rf);
12908 	}
12909 }
12910 
12911 void unregister_fair_sched_group(struct task_group *tg)
12912 {
12913 	unsigned long flags;
12914 	struct rq *rq;
12915 	int cpu;
12916 
12917 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12918 
12919 	for_each_possible_cpu(cpu) {
12920 		if (tg->se[cpu])
12921 			remove_entity_load_avg(tg->se[cpu]);
12922 
12923 		/*
12924 		 * Only empty task groups can be destroyed; so we can speculatively
12925 		 * check on_list without danger of it being re-added.
12926 		 */
12927 		if (!tg->cfs_rq[cpu]->on_list)
12928 			continue;
12929 
12930 		rq = cpu_rq(cpu);
12931 
12932 		raw_spin_rq_lock_irqsave(rq, flags);
12933 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12934 		raw_spin_rq_unlock_irqrestore(rq, flags);
12935 	}
12936 }
12937 
12938 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12939 			struct sched_entity *se, int cpu,
12940 			struct sched_entity *parent)
12941 {
12942 	struct rq *rq = cpu_rq(cpu);
12943 
12944 	cfs_rq->tg = tg;
12945 	cfs_rq->rq = rq;
12946 	init_cfs_rq_runtime(cfs_rq);
12947 
12948 	tg->cfs_rq[cpu] = cfs_rq;
12949 	tg->se[cpu] = se;
12950 
12951 	/* se could be NULL for root_task_group */
12952 	if (!se)
12953 		return;
12954 
12955 	if (!parent) {
12956 		se->cfs_rq = &rq->cfs;
12957 		se->depth = 0;
12958 	} else {
12959 		se->cfs_rq = parent->my_q;
12960 		se->depth = parent->depth + 1;
12961 	}
12962 
12963 	se->my_q = cfs_rq;
12964 	/* guarantee group entities always have weight */
12965 	update_load_set(&se->load, NICE_0_LOAD);
12966 	se->parent = parent;
12967 }
12968 
12969 static DEFINE_MUTEX(shares_mutex);
12970 
12971 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12972 {
12973 	int i;
12974 
12975 	lockdep_assert_held(&shares_mutex);
12976 
12977 	/*
12978 	 * We can't change the weight of the root cgroup.
12979 	 */
12980 	if (!tg->se[0])
12981 		return -EINVAL;
12982 
12983 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12984 
12985 	if (tg->shares == shares)
12986 		return 0;
12987 
12988 	tg->shares = shares;
12989 	for_each_possible_cpu(i) {
12990 		struct rq *rq = cpu_rq(i);
12991 		struct sched_entity *se = tg->se[i];
12992 		struct rq_flags rf;
12993 
12994 		/* Propagate contribution to hierarchy */
12995 		rq_lock_irqsave(rq, &rf);
12996 		update_rq_clock(rq);
12997 		for_each_sched_entity(se) {
12998 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12999 			update_cfs_group(se);
13000 		}
13001 		rq_unlock_irqrestore(rq, &rf);
13002 	}
13003 
13004 	return 0;
13005 }
13006 
13007 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13008 {
13009 	int ret;
13010 
13011 	mutex_lock(&shares_mutex);
13012 	if (tg_is_idle(tg))
13013 		ret = -EINVAL;
13014 	else
13015 		ret = __sched_group_set_shares(tg, shares);
13016 	mutex_unlock(&shares_mutex);
13017 
13018 	return ret;
13019 }
13020 
13021 int sched_group_set_idle(struct task_group *tg, long idle)
13022 {
13023 	int i;
13024 
13025 	if (tg == &root_task_group)
13026 		return -EINVAL;
13027 
13028 	if (idle < 0 || idle > 1)
13029 		return -EINVAL;
13030 
13031 	mutex_lock(&shares_mutex);
13032 
13033 	if (tg->idle == idle) {
13034 		mutex_unlock(&shares_mutex);
13035 		return 0;
13036 	}
13037 
13038 	tg->idle = idle;
13039 
13040 	for_each_possible_cpu(i) {
13041 		struct rq *rq = cpu_rq(i);
13042 		struct sched_entity *se = tg->se[i];
13043 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13044 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13045 		long idle_task_delta;
13046 		struct rq_flags rf;
13047 
13048 		rq_lock_irqsave(rq, &rf);
13049 
13050 		grp_cfs_rq->idle = idle;
13051 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13052 			goto next_cpu;
13053 
13054 		if (se->on_rq) {
13055 			parent_cfs_rq = cfs_rq_of(se);
13056 			if (cfs_rq_is_idle(grp_cfs_rq))
13057 				parent_cfs_rq->idle_nr_running++;
13058 			else
13059 				parent_cfs_rq->idle_nr_running--;
13060 		}
13061 
13062 		idle_task_delta = grp_cfs_rq->h_nr_running -
13063 				  grp_cfs_rq->idle_h_nr_running;
13064 		if (!cfs_rq_is_idle(grp_cfs_rq))
13065 			idle_task_delta *= -1;
13066 
13067 		for_each_sched_entity(se) {
13068 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13069 
13070 			if (!se->on_rq)
13071 				break;
13072 
13073 			cfs_rq->idle_h_nr_running += idle_task_delta;
13074 
13075 			/* Already accounted at parent level and above. */
13076 			if (cfs_rq_is_idle(cfs_rq))
13077 				break;
13078 		}
13079 
13080 next_cpu:
13081 		rq_unlock_irqrestore(rq, &rf);
13082 	}
13083 
13084 	/* Idle groups have minimum weight. */
13085 	if (tg_is_idle(tg))
13086 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13087 	else
13088 		__sched_group_set_shares(tg, NICE_0_LOAD);
13089 
13090 	mutex_unlock(&shares_mutex);
13091 	return 0;
13092 }
13093 
13094 #endif /* CONFIG_FAIR_GROUP_SCHED */
13095 
13096 
13097 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13098 {
13099 	struct sched_entity *se = &task->se;
13100 	unsigned int rr_interval = 0;
13101 
13102 	/*
13103 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13104 	 * idle runqueue:
13105 	 */
13106 	if (rq->cfs.load.weight)
13107 		rr_interval = NS_TO_JIFFIES(se->slice);
13108 
13109 	return rr_interval;
13110 }
13111 
13112 /*
13113  * All the scheduling class methods:
13114  */
13115 DEFINE_SCHED_CLASS(fair) = {
13116 
13117 	.enqueue_task		= enqueue_task_fair,
13118 	.dequeue_task		= dequeue_task_fair,
13119 	.yield_task		= yield_task_fair,
13120 	.yield_to_task		= yield_to_task_fair,
13121 
13122 	.wakeup_preempt		= check_preempt_wakeup_fair,
13123 
13124 	.pick_next_task		= __pick_next_task_fair,
13125 	.put_prev_task		= put_prev_task_fair,
13126 	.set_next_task          = set_next_task_fair,
13127 
13128 #ifdef CONFIG_SMP
13129 	.balance		= balance_fair,
13130 	.pick_task		= pick_task_fair,
13131 	.select_task_rq		= select_task_rq_fair,
13132 	.migrate_task_rq	= migrate_task_rq_fair,
13133 
13134 	.rq_online		= rq_online_fair,
13135 	.rq_offline		= rq_offline_fair,
13136 
13137 	.task_dead		= task_dead_fair,
13138 	.set_cpus_allowed	= set_cpus_allowed_common,
13139 #endif
13140 
13141 	.task_tick		= task_tick_fair,
13142 	.task_fork		= task_fork_fair,
13143 
13144 	.prio_changed		= prio_changed_fair,
13145 	.switched_from		= switched_from_fair,
13146 	.switched_to		= switched_to_fair,
13147 
13148 	.get_rr_interval	= get_rr_interval_fair,
13149 
13150 	.update_curr		= update_curr_fair,
13151 
13152 #ifdef CONFIG_FAIR_GROUP_SCHED
13153 	.task_change_group	= task_change_group_fair,
13154 #endif
13155 
13156 #ifdef CONFIG_SCHED_CORE
13157 	.task_is_throttled	= task_is_throttled_fair,
13158 #endif
13159 
13160 #ifdef CONFIG_UCLAMP_TASK
13161 	.uclamp_enabled		= 1,
13162 #endif
13163 };
13164 
13165 #ifdef CONFIG_SCHED_DEBUG
13166 void print_cfs_stats(struct seq_file *m, int cpu)
13167 {
13168 	struct cfs_rq *cfs_rq, *pos;
13169 
13170 	rcu_read_lock();
13171 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13172 		print_cfs_rq(m, cpu, cfs_rq);
13173 	rcu_read_unlock();
13174 }
13175 
13176 #ifdef CONFIG_NUMA_BALANCING
13177 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13178 {
13179 	int node;
13180 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13181 	struct numa_group *ng;
13182 
13183 	rcu_read_lock();
13184 	ng = rcu_dereference(p->numa_group);
13185 	for_each_online_node(node) {
13186 		if (p->numa_faults) {
13187 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13188 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13189 		}
13190 		if (ng) {
13191 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13192 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13193 		}
13194 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13195 	}
13196 	rcu_read_unlock();
13197 }
13198 #endif /* CONFIG_NUMA_BALANCING */
13199 #endif /* CONFIG_SCHED_DEBUG */
13200 
13201 __init void init_sched_fair_class(void)
13202 {
13203 #ifdef CONFIG_SMP
13204 	int i;
13205 
13206 	for_each_possible_cpu(i) {
13207 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13208 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13209 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13210 					GFP_KERNEL, cpu_to_node(i));
13211 
13212 #ifdef CONFIG_CFS_BANDWIDTH
13213 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13214 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13215 #endif
13216 	}
13217 
13218 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
13219 
13220 #ifdef CONFIG_NO_HZ_COMMON
13221 	nohz.next_balance = jiffies;
13222 	nohz.next_blocked = jiffies;
13223 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13224 #endif
13225 #endif /* SMP */
13226 
13227 }
13228