1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 #include <linux/rbtree_augmented.h> 51 52 #include <asm/switch_to.h> 53 54 #include "sched.h" 55 #include "stats.h" 56 #include "autogroup.h" 57 58 /* 59 * The initial- and re-scaling of tunables is configurable 60 * 61 * Options are: 62 * 63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 64 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 66 * 67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 68 */ 69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 70 71 /* 72 * Minimal preemption granularity for CPU-bound tasks: 73 * 74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 75 */ 76 unsigned int sysctl_sched_base_slice = 750000ULL; 77 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 78 79 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 80 81 static int __init setup_sched_thermal_decay_shift(char *str) 82 { 83 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 84 return 1; 85 } 86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 87 88 #ifdef CONFIG_SMP 89 /* 90 * For asym packing, by default the lower numbered CPU has higher priority. 91 */ 92 int __weak arch_asym_cpu_priority(int cpu) 93 { 94 return -cpu; 95 } 96 97 /* 98 * The margin used when comparing utilization with CPU capacity. 99 * 100 * (default: ~20%) 101 */ 102 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 103 104 /* 105 * The margin used when comparing CPU capacities. 106 * is 'cap1' noticeably greater than 'cap2' 107 * 108 * (default: ~5%) 109 */ 110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 111 #endif 112 113 #ifdef CONFIG_CFS_BANDWIDTH 114 /* 115 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 116 * each time a cfs_rq requests quota. 117 * 118 * Note: in the case that the slice exceeds the runtime remaining (either due 119 * to consumption or the quota being specified to be smaller than the slice) 120 * we will always only issue the remaining available time. 121 * 122 * (default: 5 msec, units: microseconds) 123 */ 124 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 125 #endif 126 127 #ifdef CONFIG_NUMA_BALANCING 128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 129 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 130 #endif 131 132 #ifdef CONFIG_SYSCTL 133 static struct ctl_table sched_fair_sysctls[] = { 134 #ifdef CONFIG_CFS_BANDWIDTH 135 { 136 .procname = "sched_cfs_bandwidth_slice_us", 137 .data = &sysctl_sched_cfs_bandwidth_slice, 138 .maxlen = sizeof(unsigned int), 139 .mode = 0644, 140 .proc_handler = proc_dointvec_minmax, 141 .extra1 = SYSCTL_ONE, 142 }, 143 #endif 144 #ifdef CONFIG_NUMA_BALANCING 145 { 146 .procname = "numa_balancing_promote_rate_limit_MBps", 147 .data = &sysctl_numa_balancing_promote_rate_limit, 148 .maxlen = sizeof(unsigned int), 149 .mode = 0644, 150 .proc_handler = proc_dointvec_minmax, 151 .extra1 = SYSCTL_ZERO, 152 }, 153 #endif /* CONFIG_NUMA_BALANCING */ 154 }; 155 156 static int __init sched_fair_sysctl_init(void) 157 { 158 register_sysctl_init("kernel", sched_fair_sysctls); 159 return 0; 160 } 161 late_initcall(sched_fair_sysctl_init); 162 #endif 163 164 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 165 { 166 lw->weight += inc; 167 lw->inv_weight = 0; 168 } 169 170 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 171 { 172 lw->weight -= dec; 173 lw->inv_weight = 0; 174 } 175 176 static inline void update_load_set(struct load_weight *lw, unsigned long w) 177 { 178 lw->weight = w; 179 lw->inv_weight = 0; 180 } 181 182 /* 183 * Increase the granularity value when there are more CPUs, 184 * because with more CPUs the 'effective latency' as visible 185 * to users decreases. But the relationship is not linear, 186 * so pick a second-best guess by going with the log2 of the 187 * number of CPUs. 188 * 189 * This idea comes from the SD scheduler of Con Kolivas: 190 */ 191 static unsigned int get_update_sysctl_factor(void) 192 { 193 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 194 unsigned int factor; 195 196 switch (sysctl_sched_tunable_scaling) { 197 case SCHED_TUNABLESCALING_NONE: 198 factor = 1; 199 break; 200 case SCHED_TUNABLESCALING_LINEAR: 201 factor = cpus; 202 break; 203 case SCHED_TUNABLESCALING_LOG: 204 default: 205 factor = 1 + ilog2(cpus); 206 break; 207 } 208 209 return factor; 210 } 211 212 static void update_sysctl(void) 213 { 214 unsigned int factor = get_update_sysctl_factor(); 215 216 #define SET_SYSCTL(name) \ 217 (sysctl_##name = (factor) * normalized_sysctl_##name) 218 SET_SYSCTL(sched_base_slice); 219 #undef SET_SYSCTL 220 } 221 222 void __init sched_init_granularity(void) 223 { 224 update_sysctl(); 225 } 226 227 #define WMULT_CONST (~0U) 228 #define WMULT_SHIFT 32 229 230 static void __update_inv_weight(struct load_weight *lw) 231 { 232 unsigned long w; 233 234 if (likely(lw->inv_weight)) 235 return; 236 237 w = scale_load_down(lw->weight); 238 239 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 240 lw->inv_weight = 1; 241 else if (unlikely(!w)) 242 lw->inv_weight = WMULT_CONST; 243 else 244 lw->inv_weight = WMULT_CONST / w; 245 } 246 247 /* 248 * delta_exec * weight / lw.weight 249 * OR 250 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 251 * 252 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 253 * we're guaranteed shift stays positive because inv_weight is guaranteed to 254 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 255 * 256 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 257 * weight/lw.weight <= 1, and therefore our shift will also be positive. 258 */ 259 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 260 { 261 u64 fact = scale_load_down(weight); 262 u32 fact_hi = (u32)(fact >> 32); 263 int shift = WMULT_SHIFT; 264 int fs; 265 266 __update_inv_weight(lw); 267 268 if (unlikely(fact_hi)) { 269 fs = fls(fact_hi); 270 shift -= fs; 271 fact >>= fs; 272 } 273 274 fact = mul_u32_u32(fact, lw->inv_weight); 275 276 fact_hi = (u32)(fact >> 32); 277 if (fact_hi) { 278 fs = fls(fact_hi); 279 shift -= fs; 280 fact >>= fs; 281 } 282 283 return mul_u64_u32_shr(delta_exec, fact, shift); 284 } 285 286 /* 287 * delta /= w 288 */ 289 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 290 { 291 if (unlikely(se->load.weight != NICE_0_LOAD)) 292 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 293 294 return delta; 295 } 296 297 const struct sched_class fair_sched_class; 298 299 /************************************************************** 300 * CFS operations on generic schedulable entities: 301 */ 302 303 #ifdef CONFIG_FAIR_GROUP_SCHED 304 305 /* Walk up scheduling entities hierarchy */ 306 #define for_each_sched_entity(se) \ 307 for (; se; se = se->parent) 308 309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 310 { 311 struct rq *rq = rq_of(cfs_rq); 312 int cpu = cpu_of(rq); 313 314 if (cfs_rq->on_list) 315 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 316 317 cfs_rq->on_list = 1; 318 319 /* 320 * Ensure we either appear before our parent (if already 321 * enqueued) or force our parent to appear after us when it is 322 * enqueued. The fact that we always enqueue bottom-up 323 * reduces this to two cases and a special case for the root 324 * cfs_rq. Furthermore, it also means that we will always reset 325 * tmp_alone_branch either when the branch is connected 326 * to a tree or when we reach the top of the tree 327 */ 328 if (cfs_rq->tg->parent && 329 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 330 /* 331 * If parent is already on the list, we add the child 332 * just before. Thanks to circular linked property of 333 * the list, this means to put the child at the tail 334 * of the list that starts by parent. 335 */ 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 337 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 338 /* 339 * The branch is now connected to its tree so we can 340 * reset tmp_alone_branch to the beginning of the 341 * list. 342 */ 343 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 344 return true; 345 } 346 347 if (!cfs_rq->tg->parent) { 348 /* 349 * cfs rq without parent should be put 350 * at the tail of the list. 351 */ 352 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 353 &rq->leaf_cfs_rq_list); 354 /* 355 * We have reach the top of a tree so we can reset 356 * tmp_alone_branch to the beginning of the list. 357 */ 358 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 359 return true; 360 } 361 362 /* 363 * The parent has not already been added so we want to 364 * make sure that it will be put after us. 365 * tmp_alone_branch points to the begin of the branch 366 * where we will add parent. 367 */ 368 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 369 /* 370 * update tmp_alone_branch to points to the new begin 371 * of the branch 372 */ 373 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 374 return false; 375 } 376 377 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 378 { 379 if (cfs_rq->on_list) { 380 struct rq *rq = rq_of(cfs_rq); 381 382 /* 383 * With cfs_rq being unthrottled/throttled during an enqueue, 384 * it can happen the tmp_alone_branch points to the leaf that 385 * we finally want to delete. In this case, tmp_alone_branch moves 386 * to the prev element but it will point to rq->leaf_cfs_rq_list 387 * at the end of the enqueue. 388 */ 389 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 390 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 391 392 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 393 cfs_rq->on_list = 0; 394 } 395 } 396 397 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 398 { 399 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 400 } 401 402 /* Iterate through all leaf cfs_rq's on a runqueue */ 403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 404 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 405 leaf_cfs_rq_list) 406 407 /* Do the two (enqueued) entities belong to the same group ? */ 408 static inline struct cfs_rq * 409 is_same_group(struct sched_entity *se, struct sched_entity *pse) 410 { 411 if (se->cfs_rq == pse->cfs_rq) 412 return se->cfs_rq; 413 414 return NULL; 415 } 416 417 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 418 { 419 return se->parent; 420 } 421 422 static void 423 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 424 { 425 int se_depth, pse_depth; 426 427 /* 428 * preemption test can be made between sibling entities who are in the 429 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 430 * both tasks until we find their ancestors who are siblings of common 431 * parent. 432 */ 433 434 /* First walk up until both entities are at same depth */ 435 se_depth = (*se)->depth; 436 pse_depth = (*pse)->depth; 437 438 while (se_depth > pse_depth) { 439 se_depth--; 440 *se = parent_entity(*se); 441 } 442 443 while (pse_depth > se_depth) { 444 pse_depth--; 445 *pse = parent_entity(*pse); 446 } 447 448 while (!is_same_group(*se, *pse)) { 449 *se = parent_entity(*se); 450 *pse = parent_entity(*pse); 451 } 452 } 453 454 static int tg_is_idle(struct task_group *tg) 455 { 456 return tg->idle > 0; 457 } 458 459 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 460 { 461 return cfs_rq->idle > 0; 462 } 463 464 static int se_is_idle(struct sched_entity *se) 465 { 466 if (entity_is_task(se)) 467 return task_has_idle_policy(task_of(se)); 468 return cfs_rq_is_idle(group_cfs_rq(se)); 469 } 470 471 #else /* !CONFIG_FAIR_GROUP_SCHED */ 472 473 #define for_each_sched_entity(se) \ 474 for (; se; se = NULL) 475 476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 477 { 478 return true; 479 } 480 481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 482 { 483 } 484 485 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 486 { 487 } 488 489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 490 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 491 492 static inline struct sched_entity *parent_entity(struct sched_entity *se) 493 { 494 return NULL; 495 } 496 497 static inline void 498 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 499 { 500 } 501 502 static inline int tg_is_idle(struct task_group *tg) 503 { 504 return 0; 505 } 506 507 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 508 { 509 return 0; 510 } 511 512 static int se_is_idle(struct sched_entity *se) 513 { 514 return 0; 515 } 516 517 #endif /* CONFIG_FAIR_GROUP_SCHED */ 518 519 static __always_inline 520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 521 522 /************************************************************** 523 * Scheduling class tree data structure manipulation methods: 524 */ 525 526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 527 { 528 s64 delta = (s64)(vruntime - max_vruntime); 529 if (delta > 0) 530 max_vruntime = vruntime; 531 532 return max_vruntime; 533 } 534 535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 536 { 537 s64 delta = (s64)(vruntime - min_vruntime); 538 if (delta < 0) 539 min_vruntime = vruntime; 540 541 return min_vruntime; 542 } 543 544 static inline bool entity_before(const struct sched_entity *a, 545 const struct sched_entity *b) 546 { 547 /* 548 * Tiebreak on vruntime seems unnecessary since it can 549 * hardly happen. 550 */ 551 return (s64)(a->deadline - b->deadline) < 0; 552 } 553 554 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 555 { 556 return (s64)(se->vruntime - cfs_rq->min_vruntime); 557 } 558 559 #define __node_2_se(node) \ 560 rb_entry((node), struct sched_entity, run_node) 561 562 /* 563 * Compute virtual time from the per-task service numbers: 564 * 565 * Fair schedulers conserve lag: 566 * 567 * \Sum lag_i = 0 568 * 569 * Where lag_i is given by: 570 * 571 * lag_i = S - s_i = w_i * (V - v_i) 572 * 573 * Where S is the ideal service time and V is it's virtual time counterpart. 574 * Therefore: 575 * 576 * \Sum lag_i = 0 577 * \Sum w_i * (V - v_i) = 0 578 * \Sum w_i * V - w_i * v_i = 0 579 * 580 * From which we can solve an expression for V in v_i (which we have in 581 * se->vruntime): 582 * 583 * \Sum v_i * w_i \Sum v_i * w_i 584 * V = -------------- = -------------- 585 * \Sum w_i W 586 * 587 * Specifically, this is the weighted average of all entity virtual runtimes. 588 * 589 * [[ NOTE: this is only equal to the ideal scheduler under the condition 590 * that join/leave operations happen at lag_i = 0, otherwise the 591 * virtual time has non-contiguous motion equivalent to: 592 * 593 * V +-= lag_i / W 594 * 595 * Also see the comment in place_entity() that deals with this. ]] 596 * 597 * However, since v_i is u64, and the multiplication could easily overflow 598 * transform it into a relative form that uses smaller quantities: 599 * 600 * Substitute: v_i == (v_i - v0) + v0 601 * 602 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 603 * V = ---------------------------- = --------------------- + v0 604 * W W 605 * 606 * Which we track using: 607 * 608 * v0 := cfs_rq->min_vruntime 609 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 610 * \Sum w_i := cfs_rq->avg_load 611 * 612 * Since min_vruntime is a monotonic increasing variable that closely tracks 613 * the per-task service, these deltas: (v_i - v), will be in the order of the 614 * maximal (virtual) lag induced in the system due to quantisation. 615 * 616 * Also, we use scale_load_down() to reduce the size. 617 * 618 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 619 */ 620 static void 621 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 622 { 623 unsigned long weight = scale_load_down(se->load.weight); 624 s64 key = entity_key(cfs_rq, se); 625 626 cfs_rq->avg_vruntime += key * weight; 627 cfs_rq->avg_load += weight; 628 } 629 630 static void 631 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 632 { 633 unsigned long weight = scale_load_down(se->load.weight); 634 s64 key = entity_key(cfs_rq, se); 635 636 cfs_rq->avg_vruntime -= key * weight; 637 cfs_rq->avg_load -= weight; 638 } 639 640 static inline 641 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 642 { 643 /* 644 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 645 */ 646 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 647 } 648 649 /* 650 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 651 * For this to be so, the result of this function must have a left bias. 652 */ 653 u64 avg_vruntime(struct cfs_rq *cfs_rq) 654 { 655 struct sched_entity *curr = cfs_rq->curr; 656 s64 avg = cfs_rq->avg_vruntime; 657 long load = cfs_rq->avg_load; 658 659 if (curr && curr->on_rq) { 660 unsigned long weight = scale_load_down(curr->load.weight); 661 662 avg += entity_key(cfs_rq, curr) * weight; 663 load += weight; 664 } 665 666 if (load) { 667 /* sign flips effective floor / ceiling */ 668 if (avg < 0) 669 avg -= (load - 1); 670 avg = div_s64(avg, load); 671 } 672 673 return cfs_rq->min_vruntime + avg; 674 } 675 676 /* 677 * lag_i = S - s_i = w_i * (V - v_i) 678 * 679 * However, since V is approximated by the weighted average of all entities it 680 * is possible -- by addition/removal/reweight to the tree -- to move V around 681 * and end up with a larger lag than we started with. 682 * 683 * Limit this to either double the slice length with a minimum of TICK_NSEC 684 * since that is the timing granularity. 685 * 686 * EEVDF gives the following limit for a steady state system: 687 * 688 * -r_max < lag < max(r_max, q) 689 * 690 * XXX could add max_slice to the augmented data to track this. 691 */ 692 static s64 entity_lag(u64 avruntime, struct sched_entity *se) 693 { 694 s64 vlag, limit; 695 696 vlag = avruntime - se->vruntime; 697 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 698 699 return clamp(vlag, -limit, limit); 700 } 701 702 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 703 { 704 SCHED_WARN_ON(!se->on_rq); 705 706 se->vlag = entity_lag(avg_vruntime(cfs_rq), se); 707 } 708 709 /* 710 * Entity is eligible once it received less service than it ought to have, 711 * eg. lag >= 0. 712 * 713 * lag_i = S - s_i = w_i*(V - v_i) 714 * 715 * lag_i >= 0 -> V >= v_i 716 * 717 * \Sum (v_i - v)*w_i 718 * V = ------------------ + v 719 * \Sum w_i 720 * 721 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 722 * 723 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 724 * to the loss in precision caused by the division. 725 */ 726 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 727 { 728 struct sched_entity *curr = cfs_rq->curr; 729 s64 avg = cfs_rq->avg_vruntime; 730 long load = cfs_rq->avg_load; 731 732 if (curr && curr->on_rq) { 733 unsigned long weight = scale_load_down(curr->load.weight); 734 735 avg += entity_key(cfs_rq, curr) * weight; 736 load += weight; 737 } 738 739 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 740 } 741 742 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 743 { 744 return vruntime_eligible(cfs_rq, se->vruntime); 745 } 746 747 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 748 { 749 u64 min_vruntime = cfs_rq->min_vruntime; 750 /* 751 * open coded max_vruntime() to allow updating avg_vruntime 752 */ 753 s64 delta = (s64)(vruntime - min_vruntime); 754 if (delta > 0) { 755 avg_vruntime_update(cfs_rq, delta); 756 min_vruntime = vruntime; 757 } 758 return min_vruntime; 759 } 760 761 static void update_min_vruntime(struct cfs_rq *cfs_rq) 762 { 763 struct sched_entity *se = __pick_root_entity(cfs_rq); 764 struct sched_entity *curr = cfs_rq->curr; 765 u64 vruntime = cfs_rq->min_vruntime; 766 767 if (curr) { 768 if (curr->on_rq) 769 vruntime = curr->vruntime; 770 else 771 curr = NULL; 772 } 773 774 if (se) { 775 if (!curr) 776 vruntime = se->min_vruntime; 777 else 778 vruntime = min_vruntime(vruntime, se->min_vruntime); 779 } 780 781 /* ensure we never gain time by being placed backwards. */ 782 u64_u32_store(cfs_rq->min_vruntime, 783 __update_min_vruntime(cfs_rq, vruntime)); 784 } 785 786 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 787 { 788 return entity_before(__node_2_se(a), __node_2_se(b)); 789 } 790 791 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 792 793 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 794 { 795 if (node) { 796 struct sched_entity *rse = __node_2_se(node); 797 if (vruntime_gt(min_vruntime, se, rse)) 798 se->min_vruntime = rse->min_vruntime; 799 } 800 } 801 802 /* 803 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 804 */ 805 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 806 { 807 u64 old_min_vruntime = se->min_vruntime; 808 struct rb_node *node = &se->run_node; 809 810 se->min_vruntime = se->vruntime; 811 __min_vruntime_update(se, node->rb_right); 812 __min_vruntime_update(se, node->rb_left); 813 814 return se->min_vruntime == old_min_vruntime; 815 } 816 817 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 818 run_node, min_vruntime, min_vruntime_update); 819 820 /* 821 * Enqueue an entity into the rb-tree: 822 */ 823 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 824 { 825 avg_vruntime_add(cfs_rq, se); 826 se->min_vruntime = se->vruntime; 827 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 828 __entity_less, &min_vruntime_cb); 829 } 830 831 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 832 { 833 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 834 &min_vruntime_cb); 835 avg_vruntime_sub(cfs_rq, se); 836 } 837 838 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 839 { 840 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 841 842 if (!root) 843 return NULL; 844 845 return __node_2_se(root); 846 } 847 848 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 849 { 850 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 851 852 if (!left) 853 return NULL; 854 855 return __node_2_se(left); 856 } 857 858 /* 859 * Earliest Eligible Virtual Deadline First 860 * 861 * In order to provide latency guarantees for different request sizes 862 * EEVDF selects the best runnable task from two criteria: 863 * 864 * 1) the task must be eligible (must be owed service) 865 * 866 * 2) from those tasks that meet 1), we select the one 867 * with the earliest virtual deadline. 868 * 869 * We can do this in O(log n) time due to an augmented RB-tree. The 870 * tree keeps the entries sorted on deadline, but also functions as a 871 * heap based on the vruntime by keeping: 872 * 873 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 874 * 875 * Which allows tree pruning through eligibility. 876 */ 877 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 878 { 879 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 880 struct sched_entity *se = __pick_first_entity(cfs_rq); 881 struct sched_entity *curr = cfs_rq->curr; 882 struct sched_entity *best = NULL; 883 884 /* 885 * We can safely skip eligibility check if there is only one entity 886 * in this cfs_rq, saving some cycles. 887 */ 888 if (cfs_rq->nr_running == 1) 889 return curr && curr->on_rq ? curr : se; 890 891 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 892 curr = NULL; 893 894 /* 895 * Once selected, run a task until it either becomes non-eligible or 896 * until it gets a new slice. See the HACK in set_next_entity(). 897 */ 898 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 899 return curr; 900 901 /* Pick the leftmost entity if it's eligible */ 902 if (se && entity_eligible(cfs_rq, se)) { 903 best = se; 904 goto found; 905 } 906 907 /* Heap search for the EEVD entity */ 908 while (node) { 909 struct rb_node *left = node->rb_left; 910 911 /* 912 * Eligible entities in left subtree are always better 913 * choices, since they have earlier deadlines. 914 */ 915 if (left && vruntime_eligible(cfs_rq, 916 __node_2_se(left)->min_vruntime)) { 917 node = left; 918 continue; 919 } 920 921 se = __node_2_se(node); 922 923 /* 924 * The left subtree either is empty or has no eligible 925 * entity, so check the current node since it is the one 926 * with earliest deadline that might be eligible. 927 */ 928 if (entity_eligible(cfs_rq, se)) { 929 best = se; 930 break; 931 } 932 933 node = node->rb_right; 934 } 935 found: 936 if (!best || (curr && entity_before(curr, best))) 937 best = curr; 938 939 return best; 940 } 941 942 #ifdef CONFIG_SCHED_DEBUG 943 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 944 { 945 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 946 947 if (!last) 948 return NULL; 949 950 return __node_2_se(last); 951 } 952 953 /************************************************************** 954 * Scheduling class statistics methods: 955 */ 956 #ifdef CONFIG_SMP 957 int sched_update_scaling(void) 958 { 959 unsigned int factor = get_update_sysctl_factor(); 960 961 #define WRT_SYSCTL(name) \ 962 (normalized_sysctl_##name = sysctl_##name / (factor)) 963 WRT_SYSCTL(sched_base_slice); 964 #undef WRT_SYSCTL 965 966 return 0; 967 } 968 #endif 969 #endif 970 971 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 972 973 /* 974 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 975 * this is probably good enough. 976 */ 977 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 978 { 979 if ((s64)(se->vruntime - se->deadline) < 0) 980 return; 981 982 /* 983 * For EEVDF the virtual time slope is determined by w_i (iow. 984 * nice) while the request time r_i is determined by 985 * sysctl_sched_base_slice. 986 */ 987 se->slice = sysctl_sched_base_slice; 988 989 /* 990 * EEVDF: vd_i = ve_i + r_i / w_i 991 */ 992 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 993 994 /* 995 * The task has consumed its request, reschedule. 996 */ 997 if (cfs_rq->nr_running > 1) { 998 resched_curr(rq_of(cfs_rq)); 999 clear_buddies(cfs_rq, se); 1000 } 1001 } 1002 1003 #include "pelt.h" 1004 #ifdef CONFIG_SMP 1005 1006 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1007 static unsigned long task_h_load(struct task_struct *p); 1008 static unsigned long capacity_of(int cpu); 1009 1010 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1011 void init_entity_runnable_average(struct sched_entity *se) 1012 { 1013 struct sched_avg *sa = &se->avg; 1014 1015 memset(sa, 0, sizeof(*sa)); 1016 1017 /* 1018 * Tasks are initialized with full load to be seen as heavy tasks until 1019 * they get a chance to stabilize to their real load level. 1020 * Group entities are initialized with zero load to reflect the fact that 1021 * nothing has been attached to the task group yet. 1022 */ 1023 if (entity_is_task(se)) 1024 sa->load_avg = scale_load_down(se->load.weight); 1025 1026 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1027 } 1028 1029 /* 1030 * With new tasks being created, their initial util_avgs are extrapolated 1031 * based on the cfs_rq's current util_avg: 1032 * 1033 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1034 * * se_weight(se) 1035 * 1036 * However, in many cases, the above util_avg does not give a desired 1037 * value. Moreover, the sum of the util_avgs may be divergent, such 1038 * as when the series is a harmonic series. 1039 * 1040 * To solve this problem, we also cap the util_avg of successive tasks to 1041 * only 1/2 of the left utilization budget: 1042 * 1043 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1044 * 1045 * where n denotes the nth task and cpu_scale the CPU capacity. 1046 * 1047 * For example, for a CPU with 1024 of capacity, a simplest series from 1048 * the beginning would be like: 1049 * 1050 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1051 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1052 * 1053 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1054 * if util_avg > util_avg_cap. 1055 */ 1056 void post_init_entity_util_avg(struct task_struct *p) 1057 { 1058 struct sched_entity *se = &p->se; 1059 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1060 struct sched_avg *sa = &se->avg; 1061 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1062 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1063 1064 if (p->sched_class != &fair_sched_class) { 1065 /* 1066 * For !fair tasks do: 1067 * 1068 update_cfs_rq_load_avg(now, cfs_rq); 1069 attach_entity_load_avg(cfs_rq, se); 1070 switched_from_fair(rq, p); 1071 * 1072 * such that the next switched_to_fair() has the 1073 * expected state. 1074 */ 1075 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1076 return; 1077 } 1078 1079 if (cap > 0) { 1080 if (cfs_rq->avg.util_avg != 0) { 1081 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1082 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1083 1084 if (sa->util_avg > cap) 1085 sa->util_avg = cap; 1086 } else { 1087 sa->util_avg = cap; 1088 } 1089 } 1090 1091 sa->runnable_avg = sa->util_avg; 1092 } 1093 1094 #else /* !CONFIG_SMP */ 1095 void init_entity_runnable_average(struct sched_entity *se) 1096 { 1097 } 1098 void post_init_entity_util_avg(struct task_struct *p) 1099 { 1100 } 1101 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1102 { 1103 } 1104 #endif /* CONFIG_SMP */ 1105 1106 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1107 { 1108 u64 now = rq_clock_task(rq); 1109 s64 delta_exec; 1110 1111 delta_exec = now - curr->exec_start; 1112 if (unlikely(delta_exec <= 0)) 1113 return delta_exec; 1114 1115 curr->exec_start = now; 1116 curr->sum_exec_runtime += delta_exec; 1117 1118 if (schedstat_enabled()) { 1119 struct sched_statistics *stats; 1120 1121 stats = __schedstats_from_se(curr); 1122 __schedstat_set(stats->exec_max, 1123 max(delta_exec, stats->exec_max)); 1124 } 1125 1126 return delta_exec; 1127 } 1128 1129 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1130 { 1131 trace_sched_stat_runtime(p, delta_exec); 1132 account_group_exec_runtime(p, delta_exec); 1133 cgroup_account_cputime(p, delta_exec); 1134 if (p->dl_server) 1135 dl_server_update(p->dl_server, delta_exec); 1136 } 1137 1138 /* 1139 * Used by other classes to account runtime. 1140 */ 1141 s64 update_curr_common(struct rq *rq) 1142 { 1143 struct task_struct *curr = rq->curr; 1144 s64 delta_exec; 1145 1146 delta_exec = update_curr_se(rq, &curr->se); 1147 if (likely(delta_exec > 0)) 1148 update_curr_task(curr, delta_exec); 1149 1150 return delta_exec; 1151 } 1152 1153 /* 1154 * Update the current task's runtime statistics. 1155 */ 1156 static void update_curr(struct cfs_rq *cfs_rq) 1157 { 1158 struct sched_entity *curr = cfs_rq->curr; 1159 s64 delta_exec; 1160 1161 if (unlikely(!curr)) 1162 return; 1163 1164 delta_exec = update_curr_se(rq_of(cfs_rq), curr); 1165 if (unlikely(delta_exec <= 0)) 1166 return; 1167 1168 curr->vruntime += calc_delta_fair(delta_exec, curr); 1169 update_deadline(cfs_rq, curr); 1170 update_min_vruntime(cfs_rq); 1171 1172 if (entity_is_task(curr)) 1173 update_curr_task(task_of(curr), delta_exec); 1174 1175 account_cfs_rq_runtime(cfs_rq, delta_exec); 1176 } 1177 1178 static void update_curr_fair(struct rq *rq) 1179 { 1180 update_curr(cfs_rq_of(&rq->curr->se)); 1181 } 1182 1183 static inline void 1184 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1185 { 1186 struct sched_statistics *stats; 1187 struct task_struct *p = NULL; 1188 1189 if (!schedstat_enabled()) 1190 return; 1191 1192 stats = __schedstats_from_se(se); 1193 1194 if (entity_is_task(se)) 1195 p = task_of(se); 1196 1197 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1198 } 1199 1200 static inline void 1201 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1202 { 1203 struct sched_statistics *stats; 1204 struct task_struct *p = NULL; 1205 1206 if (!schedstat_enabled()) 1207 return; 1208 1209 stats = __schedstats_from_se(se); 1210 1211 /* 1212 * When the sched_schedstat changes from 0 to 1, some sched se 1213 * maybe already in the runqueue, the se->statistics.wait_start 1214 * will be 0.So it will let the delta wrong. We need to avoid this 1215 * scenario. 1216 */ 1217 if (unlikely(!schedstat_val(stats->wait_start))) 1218 return; 1219 1220 if (entity_is_task(se)) 1221 p = task_of(se); 1222 1223 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1224 } 1225 1226 static inline void 1227 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1228 { 1229 struct sched_statistics *stats; 1230 struct task_struct *tsk = NULL; 1231 1232 if (!schedstat_enabled()) 1233 return; 1234 1235 stats = __schedstats_from_se(se); 1236 1237 if (entity_is_task(se)) 1238 tsk = task_of(se); 1239 1240 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1241 } 1242 1243 /* 1244 * Task is being enqueued - update stats: 1245 */ 1246 static inline void 1247 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1248 { 1249 if (!schedstat_enabled()) 1250 return; 1251 1252 /* 1253 * Are we enqueueing a waiting task? (for current tasks 1254 * a dequeue/enqueue event is a NOP) 1255 */ 1256 if (se != cfs_rq->curr) 1257 update_stats_wait_start_fair(cfs_rq, se); 1258 1259 if (flags & ENQUEUE_WAKEUP) 1260 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1261 } 1262 1263 static inline void 1264 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1265 { 1266 1267 if (!schedstat_enabled()) 1268 return; 1269 1270 /* 1271 * Mark the end of the wait period if dequeueing a 1272 * waiting task: 1273 */ 1274 if (se != cfs_rq->curr) 1275 update_stats_wait_end_fair(cfs_rq, se); 1276 1277 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1278 struct task_struct *tsk = task_of(se); 1279 unsigned int state; 1280 1281 /* XXX racy against TTWU */ 1282 state = READ_ONCE(tsk->__state); 1283 if (state & TASK_INTERRUPTIBLE) 1284 __schedstat_set(tsk->stats.sleep_start, 1285 rq_clock(rq_of(cfs_rq))); 1286 if (state & TASK_UNINTERRUPTIBLE) 1287 __schedstat_set(tsk->stats.block_start, 1288 rq_clock(rq_of(cfs_rq))); 1289 } 1290 } 1291 1292 /* 1293 * We are picking a new current task - update its stats: 1294 */ 1295 static inline void 1296 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1297 { 1298 /* 1299 * We are starting a new run period: 1300 */ 1301 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1302 } 1303 1304 /************************************************** 1305 * Scheduling class queueing methods: 1306 */ 1307 1308 static inline bool is_core_idle(int cpu) 1309 { 1310 #ifdef CONFIG_SCHED_SMT 1311 int sibling; 1312 1313 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1314 if (cpu == sibling) 1315 continue; 1316 1317 if (!idle_cpu(sibling)) 1318 return false; 1319 } 1320 #endif 1321 1322 return true; 1323 } 1324 1325 #ifdef CONFIG_NUMA 1326 #define NUMA_IMBALANCE_MIN 2 1327 1328 static inline long 1329 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1330 { 1331 /* 1332 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1333 * threshold. Above this threshold, individual tasks may be contending 1334 * for both memory bandwidth and any shared HT resources. This is an 1335 * approximation as the number of running tasks may not be related to 1336 * the number of busy CPUs due to sched_setaffinity. 1337 */ 1338 if (dst_running > imb_numa_nr) 1339 return imbalance; 1340 1341 /* 1342 * Allow a small imbalance based on a simple pair of communicating 1343 * tasks that remain local when the destination is lightly loaded. 1344 */ 1345 if (imbalance <= NUMA_IMBALANCE_MIN) 1346 return 0; 1347 1348 return imbalance; 1349 } 1350 #endif /* CONFIG_NUMA */ 1351 1352 #ifdef CONFIG_NUMA_BALANCING 1353 /* 1354 * Approximate time to scan a full NUMA task in ms. The task scan period is 1355 * calculated based on the tasks virtual memory size and 1356 * numa_balancing_scan_size. 1357 */ 1358 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1359 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1360 1361 /* Portion of address space to scan in MB */ 1362 unsigned int sysctl_numa_balancing_scan_size = 256; 1363 1364 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1365 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1366 1367 /* The page with hint page fault latency < threshold in ms is considered hot */ 1368 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1369 1370 struct numa_group { 1371 refcount_t refcount; 1372 1373 spinlock_t lock; /* nr_tasks, tasks */ 1374 int nr_tasks; 1375 pid_t gid; 1376 int active_nodes; 1377 1378 struct rcu_head rcu; 1379 unsigned long total_faults; 1380 unsigned long max_faults_cpu; 1381 /* 1382 * faults[] array is split into two regions: faults_mem and faults_cpu. 1383 * 1384 * Faults_cpu is used to decide whether memory should move 1385 * towards the CPU. As a consequence, these stats are weighted 1386 * more by CPU use than by memory faults. 1387 */ 1388 unsigned long faults[]; 1389 }; 1390 1391 /* 1392 * For functions that can be called in multiple contexts that permit reading 1393 * ->numa_group (see struct task_struct for locking rules). 1394 */ 1395 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1396 { 1397 return rcu_dereference_check(p->numa_group, p == current || 1398 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1399 } 1400 1401 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1402 { 1403 return rcu_dereference_protected(p->numa_group, p == current); 1404 } 1405 1406 static inline unsigned long group_faults_priv(struct numa_group *ng); 1407 static inline unsigned long group_faults_shared(struct numa_group *ng); 1408 1409 static unsigned int task_nr_scan_windows(struct task_struct *p) 1410 { 1411 unsigned long rss = 0; 1412 unsigned long nr_scan_pages; 1413 1414 /* 1415 * Calculations based on RSS as non-present and empty pages are skipped 1416 * by the PTE scanner and NUMA hinting faults should be trapped based 1417 * on resident pages 1418 */ 1419 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1420 rss = get_mm_rss(p->mm); 1421 if (!rss) 1422 rss = nr_scan_pages; 1423 1424 rss = round_up(rss, nr_scan_pages); 1425 return rss / nr_scan_pages; 1426 } 1427 1428 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1429 #define MAX_SCAN_WINDOW 2560 1430 1431 static unsigned int task_scan_min(struct task_struct *p) 1432 { 1433 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1434 unsigned int scan, floor; 1435 unsigned int windows = 1; 1436 1437 if (scan_size < MAX_SCAN_WINDOW) 1438 windows = MAX_SCAN_WINDOW / scan_size; 1439 floor = 1000 / windows; 1440 1441 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1442 return max_t(unsigned int, floor, scan); 1443 } 1444 1445 static unsigned int task_scan_start(struct task_struct *p) 1446 { 1447 unsigned long smin = task_scan_min(p); 1448 unsigned long period = smin; 1449 struct numa_group *ng; 1450 1451 /* Scale the maximum scan period with the amount of shared memory. */ 1452 rcu_read_lock(); 1453 ng = rcu_dereference(p->numa_group); 1454 if (ng) { 1455 unsigned long shared = group_faults_shared(ng); 1456 unsigned long private = group_faults_priv(ng); 1457 1458 period *= refcount_read(&ng->refcount); 1459 period *= shared + 1; 1460 period /= private + shared + 1; 1461 } 1462 rcu_read_unlock(); 1463 1464 return max(smin, period); 1465 } 1466 1467 static unsigned int task_scan_max(struct task_struct *p) 1468 { 1469 unsigned long smin = task_scan_min(p); 1470 unsigned long smax; 1471 struct numa_group *ng; 1472 1473 /* Watch for min being lower than max due to floor calculations */ 1474 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1475 1476 /* Scale the maximum scan period with the amount of shared memory. */ 1477 ng = deref_curr_numa_group(p); 1478 if (ng) { 1479 unsigned long shared = group_faults_shared(ng); 1480 unsigned long private = group_faults_priv(ng); 1481 unsigned long period = smax; 1482 1483 period *= refcount_read(&ng->refcount); 1484 period *= shared + 1; 1485 period /= private + shared + 1; 1486 1487 smax = max(smax, period); 1488 } 1489 1490 return max(smin, smax); 1491 } 1492 1493 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1494 { 1495 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1496 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1497 } 1498 1499 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1500 { 1501 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1502 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1503 } 1504 1505 /* Shared or private faults. */ 1506 #define NR_NUMA_HINT_FAULT_TYPES 2 1507 1508 /* Memory and CPU locality */ 1509 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1510 1511 /* Averaged statistics, and temporary buffers. */ 1512 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1513 1514 pid_t task_numa_group_id(struct task_struct *p) 1515 { 1516 struct numa_group *ng; 1517 pid_t gid = 0; 1518 1519 rcu_read_lock(); 1520 ng = rcu_dereference(p->numa_group); 1521 if (ng) 1522 gid = ng->gid; 1523 rcu_read_unlock(); 1524 1525 return gid; 1526 } 1527 1528 /* 1529 * The averaged statistics, shared & private, memory & CPU, 1530 * occupy the first half of the array. The second half of the 1531 * array is for current counters, which are averaged into the 1532 * first set by task_numa_placement. 1533 */ 1534 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1535 { 1536 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1537 } 1538 1539 static inline unsigned long task_faults(struct task_struct *p, int nid) 1540 { 1541 if (!p->numa_faults) 1542 return 0; 1543 1544 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1545 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1546 } 1547 1548 static inline unsigned long group_faults(struct task_struct *p, int nid) 1549 { 1550 struct numa_group *ng = deref_task_numa_group(p); 1551 1552 if (!ng) 1553 return 0; 1554 1555 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1556 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1557 } 1558 1559 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1560 { 1561 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1562 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1563 } 1564 1565 static inline unsigned long group_faults_priv(struct numa_group *ng) 1566 { 1567 unsigned long faults = 0; 1568 int node; 1569 1570 for_each_online_node(node) { 1571 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1572 } 1573 1574 return faults; 1575 } 1576 1577 static inline unsigned long group_faults_shared(struct numa_group *ng) 1578 { 1579 unsigned long faults = 0; 1580 int node; 1581 1582 for_each_online_node(node) { 1583 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1584 } 1585 1586 return faults; 1587 } 1588 1589 /* 1590 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1591 * considered part of a numa group's pseudo-interleaving set. Migrations 1592 * between these nodes are slowed down, to allow things to settle down. 1593 */ 1594 #define ACTIVE_NODE_FRACTION 3 1595 1596 static bool numa_is_active_node(int nid, struct numa_group *ng) 1597 { 1598 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1599 } 1600 1601 /* Handle placement on systems where not all nodes are directly connected. */ 1602 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1603 int lim_dist, bool task) 1604 { 1605 unsigned long score = 0; 1606 int node, max_dist; 1607 1608 /* 1609 * All nodes are directly connected, and the same distance 1610 * from each other. No need for fancy placement algorithms. 1611 */ 1612 if (sched_numa_topology_type == NUMA_DIRECT) 1613 return 0; 1614 1615 /* sched_max_numa_distance may be changed in parallel. */ 1616 max_dist = READ_ONCE(sched_max_numa_distance); 1617 /* 1618 * This code is called for each node, introducing N^2 complexity, 1619 * which should be OK given the number of nodes rarely exceeds 8. 1620 */ 1621 for_each_online_node(node) { 1622 unsigned long faults; 1623 int dist = node_distance(nid, node); 1624 1625 /* 1626 * The furthest away nodes in the system are not interesting 1627 * for placement; nid was already counted. 1628 */ 1629 if (dist >= max_dist || node == nid) 1630 continue; 1631 1632 /* 1633 * On systems with a backplane NUMA topology, compare groups 1634 * of nodes, and move tasks towards the group with the most 1635 * memory accesses. When comparing two nodes at distance 1636 * "hoplimit", only nodes closer by than "hoplimit" are part 1637 * of each group. Skip other nodes. 1638 */ 1639 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1640 continue; 1641 1642 /* Add up the faults from nearby nodes. */ 1643 if (task) 1644 faults = task_faults(p, node); 1645 else 1646 faults = group_faults(p, node); 1647 1648 /* 1649 * On systems with a glueless mesh NUMA topology, there are 1650 * no fixed "groups of nodes". Instead, nodes that are not 1651 * directly connected bounce traffic through intermediate 1652 * nodes; a numa_group can occupy any set of nodes. 1653 * The further away a node is, the less the faults count. 1654 * This seems to result in good task placement. 1655 */ 1656 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1657 faults *= (max_dist - dist); 1658 faults /= (max_dist - LOCAL_DISTANCE); 1659 } 1660 1661 score += faults; 1662 } 1663 1664 return score; 1665 } 1666 1667 /* 1668 * These return the fraction of accesses done by a particular task, or 1669 * task group, on a particular numa node. The group weight is given a 1670 * larger multiplier, in order to group tasks together that are almost 1671 * evenly spread out between numa nodes. 1672 */ 1673 static inline unsigned long task_weight(struct task_struct *p, int nid, 1674 int dist) 1675 { 1676 unsigned long faults, total_faults; 1677 1678 if (!p->numa_faults) 1679 return 0; 1680 1681 total_faults = p->total_numa_faults; 1682 1683 if (!total_faults) 1684 return 0; 1685 1686 faults = task_faults(p, nid); 1687 faults += score_nearby_nodes(p, nid, dist, true); 1688 1689 return 1000 * faults / total_faults; 1690 } 1691 1692 static inline unsigned long group_weight(struct task_struct *p, int nid, 1693 int dist) 1694 { 1695 struct numa_group *ng = deref_task_numa_group(p); 1696 unsigned long faults, total_faults; 1697 1698 if (!ng) 1699 return 0; 1700 1701 total_faults = ng->total_faults; 1702 1703 if (!total_faults) 1704 return 0; 1705 1706 faults = group_faults(p, nid); 1707 faults += score_nearby_nodes(p, nid, dist, false); 1708 1709 return 1000 * faults / total_faults; 1710 } 1711 1712 /* 1713 * If memory tiering mode is enabled, cpupid of slow memory page is 1714 * used to record scan time instead of CPU and PID. When tiering mode 1715 * is disabled at run time, the scan time (in cpupid) will be 1716 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1717 * access out of array bound. 1718 */ 1719 static inline bool cpupid_valid(int cpupid) 1720 { 1721 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1722 } 1723 1724 /* 1725 * For memory tiering mode, if there are enough free pages (more than 1726 * enough watermark defined here) in fast memory node, to take full 1727 * advantage of fast memory capacity, all recently accessed slow 1728 * memory pages will be migrated to fast memory node without 1729 * considering hot threshold. 1730 */ 1731 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1732 { 1733 int z; 1734 unsigned long enough_wmark; 1735 1736 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1737 pgdat->node_present_pages >> 4); 1738 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1739 struct zone *zone = pgdat->node_zones + z; 1740 1741 if (!populated_zone(zone)) 1742 continue; 1743 1744 if (zone_watermark_ok(zone, 0, 1745 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1746 ZONE_MOVABLE, 0)) 1747 return true; 1748 } 1749 return false; 1750 } 1751 1752 /* 1753 * For memory tiering mode, when page tables are scanned, the scan 1754 * time will be recorded in struct page in addition to make page 1755 * PROT_NONE for slow memory page. So when the page is accessed, in 1756 * hint page fault handler, the hint page fault latency is calculated 1757 * via, 1758 * 1759 * hint page fault latency = hint page fault time - scan time 1760 * 1761 * The smaller the hint page fault latency, the higher the possibility 1762 * for the page to be hot. 1763 */ 1764 static int numa_hint_fault_latency(struct folio *folio) 1765 { 1766 int last_time, time; 1767 1768 time = jiffies_to_msecs(jiffies); 1769 last_time = folio_xchg_access_time(folio, time); 1770 1771 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1772 } 1773 1774 /* 1775 * For memory tiering mode, too high promotion/demotion throughput may 1776 * hurt application latency. So we provide a mechanism to rate limit 1777 * the number of pages that are tried to be promoted. 1778 */ 1779 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1780 unsigned long rate_limit, int nr) 1781 { 1782 unsigned long nr_cand; 1783 unsigned int now, start; 1784 1785 now = jiffies_to_msecs(jiffies); 1786 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1787 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1788 start = pgdat->nbp_rl_start; 1789 if (now - start > MSEC_PER_SEC && 1790 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1791 pgdat->nbp_rl_nr_cand = nr_cand; 1792 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1793 return true; 1794 return false; 1795 } 1796 1797 #define NUMA_MIGRATION_ADJUST_STEPS 16 1798 1799 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1800 unsigned long rate_limit, 1801 unsigned int ref_th) 1802 { 1803 unsigned int now, start, th_period, unit_th, th; 1804 unsigned long nr_cand, ref_cand, diff_cand; 1805 1806 now = jiffies_to_msecs(jiffies); 1807 th_period = sysctl_numa_balancing_scan_period_max; 1808 start = pgdat->nbp_th_start; 1809 if (now - start > th_period && 1810 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1811 ref_cand = rate_limit * 1812 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1813 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1814 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1815 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1816 th = pgdat->nbp_threshold ? : ref_th; 1817 if (diff_cand > ref_cand * 11 / 10) 1818 th = max(th - unit_th, unit_th); 1819 else if (diff_cand < ref_cand * 9 / 10) 1820 th = min(th + unit_th, ref_th * 2); 1821 pgdat->nbp_th_nr_cand = nr_cand; 1822 pgdat->nbp_threshold = th; 1823 } 1824 } 1825 1826 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1827 int src_nid, int dst_cpu) 1828 { 1829 struct numa_group *ng = deref_curr_numa_group(p); 1830 int dst_nid = cpu_to_node(dst_cpu); 1831 int last_cpupid, this_cpupid; 1832 1833 /* 1834 * Cannot migrate to memoryless nodes. 1835 */ 1836 if (!node_state(dst_nid, N_MEMORY)) 1837 return false; 1838 1839 /* 1840 * The pages in slow memory node should be migrated according 1841 * to hot/cold instead of private/shared. 1842 */ 1843 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1844 !node_is_toptier(src_nid)) { 1845 struct pglist_data *pgdat; 1846 unsigned long rate_limit; 1847 unsigned int latency, th, def_th; 1848 1849 pgdat = NODE_DATA(dst_nid); 1850 if (pgdat_free_space_enough(pgdat)) { 1851 /* workload changed, reset hot threshold */ 1852 pgdat->nbp_threshold = 0; 1853 return true; 1854 } 1855 1856 def_th = sysctl_numa_balancing_hot_threshold; 1857 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1858 (20 - PAGE_SHIFT); 1859 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1860 1861 th = pgdat->nbp_threshold ? : def_th; 1862 latency = numa_hint_fault_latency(folio); 1863 if (latency >= th) 1864 return false; 1865 1866 return !numa_promotion_rate_limit(pgdat, rate_limit, 1867 folio_nr_pages(folio)); 1868 } 1869 1870 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1871 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1872 1873 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1874 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1875 return false; 1876 1877 /* 1878 * Allow first faults or private faults to migrate immediately early in 1879 * the lifetime of a task. The magic number 4 is based on waiting for 1880 * two full passes of the "multi-stage node selection" test that is 1881 * executed below. 1882 */ 1883 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1884 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1885 return true; 1886 1887 /* 1888 * Multi-stage node selection is used in conjunction with a periodic 1889 * migration fault to build a temporal task<->page relation. By using 1890 * a two-stage filter we remove short/unlikely relations. 1891 * 1892 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1893 * a task's usage of a particular page (n_p) per total usage of this 1894 * page (n_t) (in a given time-span) to a probability. 1895 * 1896 * Our periodic faults will sample this probability and getting the 1897 * same result twice in a row, given these samples are fully 1898 * independent, is then given by P(n)^2, provided our sample period 1899 * is sufficiently short compared to the usage pattern. 1900 * 1901 * This quadric squishes small probabilities, making it less likely we 1902 * act on an unlikely task<->page relation. 1903 */ 1904 if (!cpupid_pid_unset(last_cpupid) && 1905 cpupid_to_nid(last_cpupid) != dst_nid) 1906 return false; 1907 1908 /* Always allow migrate on private faults */ 1909 if (cpupid_match_pid(p, last_cpupid)) 1910 return true; 1911 1912 /* A shared fault, but p->numa_group has not been set up yet. */ 1913 if (!ng) 1914 return true; 1915 1916 /* 1917 * Destination node is much more heavily used than the source 1918 * node? Allow migration. 1919 */ 1920 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1921 ACTIVE_NODE_FRACTION) 1922 return true; 1923 1924 /* 1925 * Distribute memory according to CPU & memory use on each node, 1926 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1927 * 1928 * faults_cpu(dst) 3 faults_cpu(src) 1929 * --------------- * - > --------------- 1930 * faults_mem(dst) 4 faults_mem(src) 1931 */ 1932 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1933 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1934 } 1935 1936 /* 1937 * 'numa_type' describes the node at the moment of load balancing. 1938 */ 1939 enum numa_type { 1940 /* The node has spare capacity that can be used to run more tasks. */ 1941 node_has_spare = 0, 1942 /* 1943 * The node is fully used and the tasks don't compete for more CPU 1944 * cycles. Nevertheless, some tasks might wait before running. 1945 */ 1946 node_fully_busy, 1947 /* 1948 * The node is overloaded and can't provide expected CPU cycles to all 1949 * tasks. 1950 */ 1951 node_overloaded 1952 }; 1953 1954 /* Cached statistics for all CPUs within a node */ 1955 struct numa_stats { 1956 unsigned long load; 1957 unsigned long runnable; 1958 unsigned long util; 1959 /* Total compute capacity of CPUs on a node */ 1960 unsigned long compute_capacity; 1961 unsigned int nr_running; 1962 unsigned int weight; 1963 enum numa_type node_type; 1964 int idle_cpu; 1965 }; 1966 1967 struct task_numa_env { 1968 struct task_struct *p; 1969 1970 int src_cpu, src_nid; 1971 int dst_cpu, dst_nid; 1972 int imb_numa_nr; 1973 1974 struct numa_stats src_stats, dst_stats; 1975 1976 int imbalance_pct; 1977 int dist; 1978 1979 struct task_struct *best_task; 1980 long best_imp; 1981 int best_cpu; 1982 }; 1983 1984 static unsigned long cpu_load(struct rq *rq); 1985 static unsigned long cpu_runnable(struct rq *rq); 1986 1987 static inline enum 1988 numa_type numa_classify(unsigned int imbalance_pct, 1989 struct numa_stats *ns) 1990 { 1991 if ((ns->nr_running > ns->weight) && 1992 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1993 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1994 return node_overloaded; 1995 1996 if ((ns->nr_running < ns->weight) || 1997 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1998 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1999 return node_has_spare; 2000 2001 return node_fully_busy; 2002 } 2003 2004 #ifdef CONFIG_SCHED_SMT 2005 /* Forward declarations of select_idle_sibling helpers */ 2006 static inline bool test_idle_cores(int cpu); 2007 static inline int numa_idle_core(int idle_core, int cpu) 2008 { 2009 if (!static_branch_likely(&sched_smt_present) || 2010 idle_core >= 0 || !test_idle_cores(cpu)) 2011 return idle_core; 2012 2013 /* 2014 * Prefer cores instead of packing HT siblings 2015 * and triggering future load balancing. 2016 */ 2017 if (is_core_idle(cpu)) 2018 idle_core = cpu; 2019 2020 return idle_core; 2021 } 2022 #else 2023 static inline int numa_idle_core(int idle_core, int cpu) 2024 { 2025 return idle_core; 2026 } 2027 #endif 2028 2029 /* 2030 * Gather all necessary information to make NUMA balancing placement 2031 * decisions that are compatible with standard load balancer. This 2032 * borrows code and logic from update_sg_lb_stats but sharing a 2033 * common implementation is impractical. 2034 */ 2035 static void update_numa_stats(struct task_numa_env *env, 2036 struct numa_stats *ns, int nid, 2037 bool find_idle) 2038 { 2039 int cpu, idle_core = -1; 2040 2041 memset(ns, 0, sizeof(*ns)); 2042 ns->idle_cpu = -1; 2043 2044 rcu_read_lock(); 2045 for_each_cpu(cpu, cpumask_of_node(nid)) { 2046 struct rq *rq = cpu_rq(cpu); 2047 2048 ns->load += cpu_load(rq); 2049 ns->runnable += cpu_runnable(rq); 2050 ns->util += cpu_util_cfs(cpu); 2051 ns->nr_running += rq->cfs.h_nr_running; 2052 ns->compute_capacity += capacity_of(cpu); 2053 2054 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2055 if (READ_ONCE(rq->numa_migrate_on) || 2056 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2057 continue; 2058 2059 if (ns->idle_cpu == -1) 2060 ns->idle_cpu = cpu; 2061 2062 idle_core = numa_idle_core(idle_core, cpu); 2063 } 2064 } 2065 rcu_read_unlock(); 2066 2067 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2068 2069 ns->node_type = numa_classify(env->imbalance_pct, ns); 2070 2071 if (idle_core >= 0) 2072 ns->idle_cpu = idle_core; 2073 } 2074 2075 static void task_numa_assign(struct task_numa_env *env, 2076 struct task_struct *p, long imp) 2077 { 2078 struct rq *rq = cpu_rq(env->dst_cpu); 2079 2080 /* Check if run-queue part of active NUMA balance. */ 2081 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2082 int cpu; 2083 int start = env->dst_cpu; 2084 2085 /* Find alternative idle CPU. */ 2086 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2087 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2088 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2089 continue; 2090 } 2091 2092 env->dst_cpu = cpu; 2093 rq = cpu_rq(env->dst_cpu); 2094 if (!xchg(&rq->numa_migrate_on, 1)) 2095 goto assign; 2096 } 2097 2098 /* Failed to find an alternative idle CPU */ 2099 return; 2100 } 2101 2102 assign: 2103 /* 2104 * Clear previous best_cpu/rq numa-migrate flag, since task now 2105 * found a better CPU to move/swap. 2106 */ 2107 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2108 rq = cpu_rq(env->best_cpu); 2109 WRITE_ONCE(rq->numa_migrate_on, 0); 2110 } 2111 2112 if (env->best_task) 2113 put_task_struct(env->best_task); 2114 if (p) 2115 get_task_struct(p); 2116 2117 env->best_task = p; 2118 env->best_imp = imp; 2119 env->best_cpu = env->dst_cpu; 2120 } 2121 2122 static bool load_too_imbalanced(long src_load, long dst_load, 2123 struct task_numa_env *env) 2124 { 2125 long imb, old_imb; 2126 long orig_src_load, orig_dst_load; 2127 long src_capacity, dst_capacity; 2128 2129 /* 2130 * The load is corrected for the CPU capacity available on each node. 2131 * 2132 * src_load dst_load 2133 * ------------ vs --------- 2134 * src_capacity dst_capacity 2135 */ 2136 src_capacity = env->src_stats.compute_capacity; 2137 dst_capacity = env->dst_stats.compute_capacity; 2138 2139 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2140 2141 orig_src_load = env->src_stats.load; 2142 orig_dst_load = env->dst_stats.load; 2143 2144 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2145 2146 /* Would this change make things worse? */ 2147 return (imb > old_imb); 2148 } 2149 2150 /* 2151 * Maximum NUMA importance can be 1998 (2*999); 2152 * SMALLIMP @ 30 would be close to 1998/64. 2153 * Used to deter task migration. 2154 */ 2155 #define SMALLIMP 30 2156 2157 /* 2158 * This checks if the overall compute and NUMA accesses of the system would 2159 * be improved if the source tasks was migrated to the target dst_cpu taking 2160 * into account that it might be best if task running on the dst_cpu should 2161 * be exchanged with the source task 2162 */ 2163 static bool task_numa_compare(struct task_numa_env *env, 2164 long taskimp, long groupimp, bool maymove) 2165 { 2166 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2167 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2168 long imp = p_ng ? groupimp : taskimp; 2169 struct task_struct *cur; 2170 long src_load, dst_load; 2171 int dist = env->dist; 2172 long moveimp = imp; 2173 long load; 2174 bool stopsearch = false; 2175 2176 if (READ_ONCE(dst_rq->numa_migrate_on)) 2177 return false; 2178 2179 rcu_read_lock(); 2180 cur = rcu_dereference(dst_rq->curr); 2181 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2182 cur = NULL; 2183 2184 /* 2185 * Because we have preemption enabled we can get migrated around and 2186 * end try selecting ourselves (current == env->p) as a swap candidate. 2187 */ 2188 if (cur == env->p) { 2189 stopsearch = true; 2190 goto unlock; 2191 } 2192 2193 if (!cur) { 2194 if (maymove && moveimp >= env->best_imp) 2195 goto assign; 2196 else 2197 goto unlock; 2198 } 2199 2200 /* Skip this swap candidate if cannot move to the source cpu. */ 2201 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2202 goto unlock; 2203 2204 /* 2205 * Skip this swap candidate if it is not moving to its preferred 2206 * node and the best task is. 2207 */ 2208 if (env->best_task && 2209 env->best_task->numa_preferred_nid == env->src_nid && 2210 cur->numa_preferred_nid != env->src_nid) { 2211 goto unlock; 2212 } 2213 2214 /* 2215 * "imp" is the fault differential for the source task between the 2216 * source and destination node. Calculate the total differential for 2217 * the source task and potential destination task. The more negative 2218 * the value is, the more remote accesses that would be expected to 2219 * be incurred if the tasks were swapped. 2220 * 2221 * If dst and source tasks are in the same NUMA group, or not 2222 * in any group then look only at task weights. 2223 */ 2224 cur_ng = rcu_dereference(cur->numa_group); 2225 if (cur_ng == p_ng) { 2226 /* 2227 * Do not swap within a group or between tasks that have 2228 * no group if there is spare capacity. Swapping does 2229 * not address the load imbalance and helps one task at 2230 * the cost of punishing another. 2231 */ 2232 if (env->dst_stats.node_type == node_has_spare) 2233 goto unlock; 2234 2235 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2236 task_weight(cur, env->dst_nid, dist); 2237 /* 2238 * Add some hysteresis to prevent swapping the 2239 * tasks within a group over tiny differences. 2240 */ 2241 if (cur_ng) 2242 imp -= imp / 16; 2243 } else { 2244 /* 2245 * Compare the group weights. If a task is all by itself 2246 * (not part of a group), use the task weight instead. 2247 */ 2248 if (cur_ng && p_ng) 2249 imp += group_weight(cur, env->src_nid, dist) - 2250 group_weight(cur, env->dst_nid, dist); 2251 else 2252 imp += task_weight(cur, env->src_nid, dist) - 2253 task_weight(cur, env->dst_nid, dist); 2254 } 2255 2256 /* Discourage picking a task already on its preferred node */ 2257 if (cur->numa_preferred_nid == env->dst_nid) 2258 imp -= imp / 16; 2259 2260 /* 2261 * Encourage picking a task that moves to its preferred node. 2262 * This potentially makes imp larger than it's maximum of 2263 * 1998 (see SMALLIMP and task_weight for why) but in this 2264 * case, it does not matter. 2265 */ 2266 if (cur->numa_preferred_nid == env->src_nid) 2267 imp += imp / 8; 2268 2269 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2270 imp = moveimp; 2271 cur = NULL; 2272 goto assign; 2273 } 2274 2275 /* 2276 * Prefer swapping with a task moving to its preferred node over a 2277 * task that is not. 2278 */ 2279 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2280 env->best_task->numa_preferred_nid != env->src_nid) { 2281 goto assign; 2282 } 2283 2284 /* 2285 * If the NUMA importance is less than SMALLIMP, 2286 * task migration might only result in ping pong 2287 * of tasks and also hurt performance due to cache 2288 * misses. 2289 */ 2290 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2291 goto unlock; 2292 2293 /* 2294 * In the overloaded case, try and keep the load balanced. 2295 */ 2296 load = task_h_load(env->p) - task_h_load(cur); 2297 if (!load) 2298 goto assign; 2299 2300 dst_load = env->dst_stats.load + load; 2301 src_load = env->src_stats.load - load; 2302 2303 if (load_too_imbalanced(src_load, dst_load, env)) 2304 goto unlock; 2305 2306 assign: 2307 /* Evaluate an idle CPU for a task numa move. */ 2308 if (!cur) { 2309 int cpu = env->dst_stats.idle_cpu; 2310 2311 /* Nothing cached so current CPU went idle since the search. */ 2312 if (cpu < 0) 2313 cpu = env->dst_cpu; 2314 2315 /* 2316 * If the CPU is no longer truly idle and the previous best CPU 2317 * is, keep using it. 2318 */ 2319 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2320 idle_cpu(env->best_cpu)) { 2321 cpu = env->best_cpu; 2322 } 2323 2324 env->dst_cpu = cpu; 2325 } 2326 2327 task_numa_assign(env, cur, imp); 2328 2329 /* 2330 * If a move to idle is allowed because there is capacity or load 2331 * balance improves then stop the search. While a better swap 2332 * candidate may exist, a search is not free. 2333 */ 2334 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2335 stopsearch = true; 2336 2337 /* 2338 * If a swap candidate must be identified and the current best task 2339 * moves its preferred node then stop the search. 2340 */ 2341 if (!maymove && env->best_task && 2342 env->best_task->numa_preferred_nid == env->src_nid) { 2343 stopsearch = true; 2344 } 2345 unlock: 2346 rcu_read_unlock(); 2347 2348 return stopsearch; 2349 } 2350 2351 static void task_numa_find_cpu(struct task_numa_env *env, 2352 long taskimp, long groupimp) 2353 { 2354 bool maymove = false; 2355 int cpu; 2356 2357 /* 2358 * If dst node has spare capacity, then check if there is an 2359 * imbalance that would be overruled by the load balancer. 2360 */ 2361 if (env->dst_stats.node_type == node_has_spare) { 2362 unsigned int imbalance; 2363 int src_running, dst_running; 2364 2365 /* 2366 * Would movement cause an imbalance? Note that if src has 2367 * more running tasks that the imbalance is ignored as the 2368 * move improves the imbalance from the perspective of the 2369 * CPU load balancer. 2370 * */ 2371 src_running = env->src_stats.nr_running - 1; 2372 dst_running = env->dst_stats.nr_running + 1; 2373 imbalance = max(0, dst_running - src_running); 2374 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2375 env->imb_numa_nr); 2376 2377 /* Use idle CPU if there is no imbalance */ 2378 if (!imbalance) { 2379 maymove = true; 2380 if (env->dst_stats.idle_cpu >= 0) { 2381 env->dst_cpu = env->dst_stats.idle_cpu; 2382 task_numa_assign(env, NULL, 0); 2383 return; 2384 } 2385 } 2386 } else { 2387 long src_load, dst_load, load; 2388 /* 2389 * If the improvement from just moving env->p direction is better 2390 * than swapping tasks around, check if a move is possible. 2391 */ 2392 load = task_h_load(env->p); 2393 dst_load = env->dst_stats.load + load; 2394 src_load = env->src_stats.load - load; 2395 maymove = !load_too_imbalanced(src_load, dst_load, env); 2396 } 2397 2398 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2399 /* Skip this CPU if the source task cannot migrate */ 2400 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2401 continue; 2402 2403 env->dst_cpu = cpu; 2404 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2405 break; 2406 } 2407 } 2408 2409 static int task_numa_migrate(struct task_struct *p) 2410 { 2411 struct task_numa_env env = { 2412 .p = p, 2413 2414 .src_cpu = task_cpu(p), 2415 .src_nid = task_node(p), 2416 2417 .imbalance_pct = 112, 2418 2419 .best_task = NULL, 2420 .best_imp = 0, 2421 .best_cpu = -1, 2422 }; 2423 unsigned long taskweight, groupweight; 2424 struct sched_domain *sd; 2425 long taskimp, groupimp; 2426 struct numa_group *ng; 2427 struct rq *best_rq; 2428 int nid, ret, dist; 2429 2430 /* 2431 * Pick the lowest SD_NUMA domain, as that would have the smallest 2432 * imbalance and would be the first to start moving tasks about. 2433 * 2434 * And we want to avoid any moving of tasks about, as that would create 2435 * random movement of tasks -- counter the numa conditions we're trying 2436 * to satisfy here. 2437 */ 2438 rcu_read_lock(); 2439 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2440 if (sd) { 2441 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2442 env.imb_numa_nr = sd->imb_numa_nr; 2443 } 2444 rcu_read_unlock(); 2445 2446 /* 2447 * Cpusets can break the scheduler domain tree into smaller 2448 * balance domains, some of which do not cross NUMA boundaries. 2449 * Tasks that are "trapped" in such domains cannot be migrated 2450 * elsewhere, so there is no point in (re)trying. 2451 */ 2452 if (unlikely(!sd)) { 2453 sched_setnuma(p, task_node(p)); 2454 return -EINVAL; 2455 } 2456 2457 env.dst_nid = p->numa_preferred_nid; 2458 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2459 taskweight = task_weight(p, env.src_nid, dist); 2460 groupweight = group_weight(p, env.src_nid, dist); 2461 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2462 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2463 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2464 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2465 2466 /* Try to find a spot on the preferred nid. */ 2467 task_numa_find_cpu(&env, taskimp, groupimp); 2468 2469 /* 2470 * Look at other nodes in these cases: 2471 * - there is no space available on the preferred_nid 2472 * - the task is part of a numa_group that is interleaved across 2473 * multiple NUMA nodes; in order to better consolidate the group, 2474 * we need to check other locations. 2475 */ 2476 ng = deref_curr_numa_group(p); 2477 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2478 for_each_node_state(nid, N_CPU) { 2479 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2480 continue; 2481 2482 dist = node_distance(env.src_nid, env.dst_nid); 2483 if (sched_numa_topology_type == NUMA_BACKPLANE && 2484 dist != env.dist) { 2485 taskweight = task_weight(p, env.src_nid, dist); 2486 groupweight = group_weight(p, env.src_nid, dist); 2487 } 2488 2489 /* Only consider nodes where both task and groups benefit */ 2490 taskimp = task_weight(p, nid, dist) - taskweight; 2491 groupimp = group_weight(p, nid, dist) - groupweight; 2492 if (taskimp < 0 && groupimp < 0) 2493 continue; 2494 2495 env.dist = dist; 2496 env.dst_nid = nid; 2497 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2498 task_numa_find_cpu(&env, taskimp, groupimp); 2499 } 2500 } 2501 2502 /* 2503 * If the task is part of a workload that spans multiple NUMA nodes, 2504 * and is migrating into one of the workload's active nodes, remember 2505 * this node as the task's preferred numa node, so the workload can 2506 * settle down. 2507 * A task that migrated to a second choice node will be better off 2508 * trying for a better one later. Do not set the preferred node here. 2509 */ 2510 if (ng) { 2511 if (env.best_cpu == -1) 2512 nid = env.src_nid; 2513 else 2514 nid = cpu_to_node(env.best_cpu); 2515 2516 if (nid != p->numa_preferred_nid) 2517 sched_setnuma(p, nid); 2518 } 2519 2520 /* No better CPU than the current one was found. */ 2521 if (env.best_cpu == -1) { 2522 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2523 return -EAGAIN; 2524 } 2525 2526 best_rq = cpu_rq(env.best_cpu); 2527 if (env.best_task == NULL) { 2528 ret = migrate_task_to(p, env.best_cpu); 2529 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2530 if (ret != 0) 2531 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2532 return ret; 2533 } 2534 2535 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2536 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2537 2538 if (ret != 0) 2539 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2540 put_task_struct(env.best_task); 2541 return ret; 2542 } 2543 2544 /* Attempt to migrate a task to a CPU on the preferred node. */ 2545 static void numa_migrate_preferred(struct task_struct *p) 2546 { 2547 unsigned long interval = HZ; 2548 2549 /* This task has no NUMA fault statistics yet */ 2550 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2551 return; 2552 2553 /* Periodically retry migrating the task to the preferred node */ 2554 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2555 p->numa_migrate_retry = jiffies + interval; 2556 2557 /* Success if task is already running on preferred CPU */ 2558 if (task_node(p) == p->numa_preferred_nid) 2559 return; 2560 2561 /* Otherwise, try migrate to a CPU on the preferred node */ 2562 task_numa_migrate(p); 2563 } 2564 2565 /* 2566 * Find out how many nodes the workload is actively running on. Do this by 2567 * tracking the nodes from which NUMA hinting faults are triggered. This can 2568 * be different from the set of nodes where the workload's memory is currently 2569 * located. 2570 */ 2571 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2572 { 2573 unsigned long faults, max_faults = 0; 2574 int nid, active_nodes = 0; 2575 2576 for_each_node_state(nid, N_CPU) { 2577 faults = group_faults_cpu(numa_group, nid); 2578 if (faults > max_faults) 2579 max_faults = faults; 2580 } 2581 2582 for_each_node_state(nid, N_CPU) { 2583 faults = group_faults_cpu(numa_group, nid); 2584 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2585 active_nodes++; 2586 } 2587 2588 numa_group->max_faults_cpu = max_faults; 2589 numa_group->active_nodes = active_nodes; 2590 } 2591 2592 /* 2593 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2594 * increments. The more local the fault statistics are, the higher the scan 2595 * period will be for the next scan window. If local/(local+remote) ratio is 2596 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2597 * the scan period will decrease. Aim for 70% local accesses. 2598 */ 2599 #define NUMA_PERIOD_SLOTS 10 2600 #define NUMA_PERIOD_THRESHOLD 7 2601 2602 /* 2603 * Increase the scan period (slow down scanning) if the majority of 2604 * our memory is already on our local node, or if the majority of 2605 * the page accesses are shared with other processes. 2606 * Otherwise, decrease the scan period. 2607 */ 2608 static void update_task_scan_period(struct task_struct *p, 2609 unsigned long shared, unsigned long private) 2610 { 2611 unsigned int period_slot; 2612 int lr_ratio, ps_ratio; 2613 int diff; 2614 2615 unsigned long remote = p->numa_faults_locality[0]; 2616 unsigned long local = p->numa_faults_locality[1]; 2617 2618 /* 2619 * If there were no record hinting faults then either the task is 2620 * completely idle or all activity is in areas that are not of interest 2621 * to automatic numa balancing. Related to that, if there were failed 2622 * migration then it implies we are migrating too quickly or the local 2623 * node is overloaded. In either case, scan slower 2624 */ 2625 if (local + shared == 0 || p->numa_faults_locality[2]) { 2626 p->numa_scan_period = min(p->numa_scan_period_max, 2627 p->numa_scan_period << 1); 2628 2629 p->mm->numa_next_scan = jiffies + 2630 msecs_to_jiffies(p->numa_scan_period); 2631 2632 return; 2633 } 2634 2635 /* 2636 * Prepare to scale scan period relative to the current period. 2637 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2638 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2639 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2640 */ 2641 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2642 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2643 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2644 2645 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2646 /* 2647 * Most memory accesses are local. There is no need to 2648 * do fast NUMA scanning, since memory is already local. 2649 */ 2650 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2651 if (!slot) 2652 slot = 1; 2653 diff = slot * period_slot; 2654 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2655 /* 2656 * Most memory accesses are shared with other tasks. 2657 * There is no point in continuing fast NUMA scanning, 2658 * since other tasks may just move the memory elsewhere. 2659 */ 2660 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2661 if (!slot) 2662 slot = 1; 2663 diff = slot * period_slot; 2664 } else { 2665 /* 2666 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2667 * yet they are not on the local NUMA node. Speed up 2668 * NUMA scanning to get the memory moved over. 2669 */ 2670 int ratio = max(lr_ratio, ps_ratio); 2671 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2672 } 2673 2674 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2675 task_scan_min(p), task_scan_max(p)); 2676 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2677 } 2678 2679 /* 2680 * Get the fraction of time the task has been running since the last 2681 * NUMA placement cycle. The scheduler keeps similar statistics, but 2682 * decays those on a 32ms period, which is orders of magnitude off 2683 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2684 * stats only if the task is so new there are no NUMA statistics yet. 2685 */ 2686 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2687 { 2688 u64 runtime, delta, now; 2689 /* Use the start of this time slice to avoid calculations. */ 2690 now = p->se.exec_start; 2691 runtime = p->se.sum_exec_runtime; 2692 2693 if (p->last_task_numa_placement) { 2694 delta = runtime - p->last_sum_exec_runtime; 2695 *period = now - p->last_task_numa_placement; 2696 2697 /* Avoid time going backwards, prevent potential divide error: */ 2698 if (unlikely((s64)*period < 0)) 2699 *period = 0; 2700 } else { 2701 delta = p->se.avg.load_sum; 2702 *period = LOAD_AVG_MAX; 2703 } 2704 2705 p->last_sum_exec_runtime = runtime; 2706 p->last_task_numa_placement = now; 2707 2708 return delta; 2709 } 2710 2711 /* 2712 * Determine the preferred nid for a task in a numa_group. This needs to 2713 * be done in a way that produces consistent results with group_weight, 2714 * otherwise workloads might not converge. 2715 */ 2716 static int preferred_group_nid(struct task_struct *p, int nid) 2717 { 2718 nodemask_t nodes; 2719 int dist; 2720 2721 /* Direct connections between all NUMA nodes. */ 2722 if (sched_numa_topology_type == NUMA_DIRECT) 2723 return nid; 2724 2725 /* 2726 * On a system with glueless mesh NUMA topology, group_weight 2727 * scores nodes according to the number of NUMA hinting faults on 2728 * both the node itself, and on nearby nodes. 2729 */ 2730 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2731 unsigned long score, max_score = 0; 2732 int node, max_node = nid; 2733 2734 dist = sched_max_numa_distance; 2735 2736 for_each_node_state(node, N_CPU) { 2737 score = group_weight(p, node, dist); 2738 if (score > max_score) { 2739 max_score = score; 2740 max_node = node; 2741 } 2742 } 2743 return max_node; 2744 } 2745 2746 /* 2747 * Finding the preferred nid in a system with NUMA backplane 2748 * interconnect topology is more involved. The goal is to locate 2749 * tasks from numa_groups near each other in the system, and 2750 * untangle workloads from different sides of the system. This requires 2751 * searching down the hierarchy of node groups, recursively searching 2752 * inside the highest scoring group of nodes. The nodemask tricks 2753 * keep the complexity of the search down. 2754 */ 2755 nodes = node_states[N_CPU]; 2756 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2757 unsigned long max_faults = 0; 2758 nodemask_t max_group = NODE_MASK_NONE; 2759 int a, b; 2760 2761 /* Are there nodes at this distance from each other? */ 2762 if (!find_numa_distance(dist)) 2763 continue; 2764 2765 for_each_node_mask(a, nodes) { 2766 unsigned long faults = 0; 2767 nodemask_t this_group; 2768 nodes_clear(this_group); 2769 2770 /* Sum group's NUMA faults; includes a==b case. */ 2771 for_each_node_mask(b, nodes) { 2772 if (node_distance(a, b) < dist) { 2773 faults += group_faults(p, b); 2774 node_set(b, this_group); 2775 node_clear(b, nodes); 2776 } 2777 } 2778 2779 /* Remember the top group. */ 2780 if (faults > max_faults) { 2781 max_faults = faults; 2782 max_group = this_group; 2783 /* 2784 * subtle: at the smallest distance there is 2785 * just one node left in each "group", the 2786 * winner is the preferred nid. 2787 */ 2788 nid = a; 2789 } 2790 } 2791 /* Next round, evaluate the nodes within max_group. */ 2792 if (!max_faults) 2793 break; 2794 nodes = max_group; 2795 } 2796 return nid; 2797 } 2798 2799 static void task_numa_placement(struct task_struct *p) 2800 { 2801 int seq, nid, max_nid = NUMA_NO_NODE; 2802 unsigned long max_faults = 0; 2803 unsigned long fault_types[2] = { 0, 0 }; 2804 unsigned long total_faults; 2805 u64 runtime, period; 2806 spinlock_t *group_lock = NULL; 2807 struct numa_group *ng; 2808 2809 /* 2810 * The p->mm->numa_scan_seq field gets updated without 2811 * exclusive access. Use READ_ONCE() here to ensure 2812 * that the field is read in a single access: 2813 */ 2814 seq = READ_ONCE(p->mm->numa_scan_seq); 2815 if (p->numa_scan_seq == seq) 2816 return; 2817 p->numa_scan_seq = seq; 2818 p->numa_scan_period_max = task_scan_max(p); 2819 2820 total_faults = p->numa_faults_locality[0] + 2821 p->numa_faults_locality[1]; 2822 runtime = numa_get_avg_runtime(p, &period); 2823 2824 /* If the task is part of a group prevent parallel updates to group stats */ 2825 ng = deref_curr_numa_group(p); 2826 if (ng) { 2827 group_lock = &ng->lock; 2828 spin_lock_irq(group_lock); 2829 } 2830 2831 /* Find the node with the highest number of faults */ 2832 for_each_online_node(nid) { 2833 /* Keep track of the offsets in numa_faults array */ 2834 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2835 unsigned long faults = 0, group_faults = 0; 2836 int priv; 2837 2838 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2839 long diff, f_diff, f_weight; 2840 2841 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2842 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2843 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2844 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2845 2846 /* Decay existing window, copy faults since last scan */ 2847 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2848 fault_types[priv] += p->numa_faults[membuf_idx]; 2849 p->numa_faults[membuf_idx] = 0; 2850 2851 /* 2852 * Normalize the faults_from, so all tasks in a group 2853 * count according to CPU use, instead of by the raw 2854 * number of faults. Tasks with little runtime have 2855 * little over-all impact on throughput, and thus their 2856 * faults are less important. 2857 */ 2858 f_weight = div64_u64(runtime << 16, period + 1); 2859 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2860 (total_faults + 1); 2861 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2862 p->numa_faults[cpubuf_idx] = 0; 2863 2864 p->numa_faults[mem_idx] += diff; 2865 p->numa_faults[cpu_idx] += f_diff; 2866 faults += p->numa_faults[mem_idx]; 2867 p->total_numa_faults += diff; 2868 if (ng) { 2869 /* 2870 * safe because we can only change our own group 2871 * 2872 * mem_idx represents the offset for a given 2873 * nid and priv in a specific region because it 2874 * is at the beginning of the numa_faults array. 2875 */ 2876 ng->faults[mem_idx] += diff; 2877 ng->faults[cpu_idx] += f_diff; 2878 ng->total_faults += diff; 2879 group_faults += ng->faults[mem_idx]; 2880 } 2881 } 2882 2883 if (!ng) { 2884 if (faults > max_faults) { 2885 max_faults = faults; 2886 max_nid = nid; 2887 } 2888 } else if (group_faults > max_faults) { 2889 max_faults = group_faults; 2890 max_nid = nid; 2891 } 2892 } 2893 2894 /* Cannot migrate task to CPU-less node */ 2895 max_nid = numa_nearest_node(max_nid, N_CPU); 2896 2897 if (ng) { 2898 numa_group_count_active_nodes(ng); 2899 spin_unlock_irq(group_lock); 2900 max_nid = preferred_group_nid(p, max_nid); 2901 } 2902 2903 if (max_faults) { 2904 /* Set the new preferred node */ 2905 if (max_nid != p->numa_preferred_nid) 2906 sched_setnuma(p, max_nid); 2907 } 2908 2909 update_task_scan_period(p, fault_types[0], fault_types[1]); 2910 } 2911 2912 static inline int get_numa_group(struct numa_group *grp) 2913 { 2914 return refcount_inc_not_zero(&grp->refcount); 2915 } 2916 2917 static inline void put_numa_group(struct numa_group *grp) 2918 { 2919 if (refcount_dec_and_test(&grp->refcount)) 2920 kfree_rcu(grp, rcu); 2921 } 2922 2923 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2924 int *priv) 2925 { 2926 struct numa_group *grp, *my_grp; 2927 struct task_struct *tsk; 2928 bool join = false; 2929 int cpu = cpupid_to_cpu(cpupid); 2930 int i; 2931 2932 if (unlikely(!deref_curr_numa_group(p))) { 2933 unsigned int size = sizeof(struct numa_group) + 2934 NR_NUMA_HINT_FAULT_STATS * 2935 nr_node_ids * sizeof(unsigned long); 2936 2937 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2938 if (!grp) 2939 return; 2940 2941 refcount_set(&grp->refcount, 1); 2942 grp->active_nodes = 1; 2943 grp->max_faults_cpu = 0; 2944 spin_lock_init(&grp->lock); 2945 grp->gid = p->pid; 2946 2947 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2948 grp->faults[i] = p->numa_faults[i]; 2949 2950 grp->total_faults = p->total_numa_faults; 2951 2952 grp->nr_tasks++; 2953 rcu_assign_pointer(p->numa_group, grp); 2954 } 2955 2956 rcu_read_lock(); 2957 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2958 2959 if (!cpupid_match_pid(tsk, cpupid)) 2960 goto no_join; 2961 2962 grp = rcu_dereference(tsk->numa_group); 2963 if (!grp) 2964 goto no_join; 2965 2966 my_grp = deref_curr_numa_group(p); 2967 if (grp == my_grp) 2968 goto no_join; 2969 2970 /* 2971 * Only join the other group if its bigger; if we're the bigger group, 2972 * the other task will join us. 2973 */ 2974 if (my_grp->nr_tasks > grp->nr_tasks) 2975 goto no_join; 2976 2977 /* 2978 * Tie-break on the grp address. 2979 */ 2980 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2981 goto no_join; 2982 2983 /* Always join threads in the same process. */ 2984 if (tsk->mm == current->mm) 2985 join = true; 2986 2987 /* Simple filter to avoid false positives due to PID collisions */ 2988 if (flags & TNF_SHARED) 2989 join = true; 2990 2991 /* Update priv based on whether false sharing was detected */ 2992 *priv = !join; 2993 2994 if (join && !get_numa_group(grp)) 2995 goto no_join; 2996 2997 rcu_read_unlock(); 2998 2999 if (!join) 3000 return; 3001 3002 WARN_ON_ONCE(irqs_disabled()); 3003 double_lock_irq(&my_grp->lock, &grp->lock); 3004 3005 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3006 my_grp->faults[i] -= p->numa_faults[i]; 3007 grp->faults[i] += p->numa_faults[i]; 3008 } 3009 my_grp->total_faults -= p->total_numa_faults; 3010 grp->total_faults += p->total_numa_faults; 3011 3012 my_grp->nr_tasks--; 3013 grp->nr_tasks++; 3014 3015 spin_unlock(&my_grp->lock); 3016 spin_unlock_irq(&grp->lock); 3017 3018 rcu_assign_pointer(p->numa_group, grp); 3019 3020 put_numa_group(my_grp); 3021 return; 3022 3023 no_join: 3024 rcu_read_unlock(); 3025 return; 3026 } 3027 3028 /* 3029 * Get rid of NUMA statistics associated with a task (either current or dead). 3030 * If @final is set, the task is dead and has reached refcount zero, so we can 3031 * safely free all relevant data structures. Otherwise, there might be 3032 * concurrent reads from places like load balancing and procfs, and we should 3033 * reset the data back to default state without freeing ->numa_faults. 3034 */ 3035 void task_numa_free(struct task_struct *p, bool final) 3036 { 3037 /* safe: p either is current or is being freed by current */ 3038 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3039 unsigned long *numa_faults = p->numa_faults; 3040 unsigned long flags; 3041 int i; 3042 3043 if (!numa_faults) 3044 return; 3045 3046 if (grp) { 3047 spin_lock_irqsave(&grp->lock, flags); 3048 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3049 grp->faults[i] -= p->numa_faults[i]; 3050 grp->total_faults -= p->total_numa_faults; 3051 3052 grp->nr_tasks--; 3053 spin_unlock_irqrestore(&grp->lock, flags); 3054 RCU_INIT_POINTER(p->numa_group, NULL); 3055 put_numa_group(grp); 3056 } 3057 3058 if (final) { 3059 p->numa_faults = NULL; 3060 kfree(numa_faults); 3061 } else { 3062 p->total_numa_faults = 0; 3063 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3064 numa_faults[i] = 0; 3065 } 3066 } 3067 3068 /* 3069 * Got a PROT_NONE fault for a page on @node. 3070 */ 3071 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3072 { 3073 struct task_struct *p = current; 3074 bool migrated = flags & TNF_MIGRATED; 3075 int cpu_node = task_node(current); 3076 int local = !!(flags & TNF_FAULT_LOCAL); 3077 struct numa_group *ng; 3078 int priv; 3079 3080 if (!static_branch_likely(&sched_numa_balancing)) 3081 return; 3082 3083 /* for example, ksmd faulting in a user's mm */ 3084 if (!p->mm) 3085 return; 3086 3087 /* 3088 * NUMA faults statistics are unnecessary for the slow memory 3089 * node for memory tiering mode. 3090 */ 3091 if (!node_is_toptier(mem_node) && 3092 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3093 !cpupid_valid(last_cpupid))) 3094 return; 3095 3096 /* Allocate buffer to track faults on a per-node basis */ 3097 if (unlikely(!p->numa_faults)) { 3098 int size = sizeof(*p->numa_faults) * 3099 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3100 3101 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3102 if (!p->numa_faults) 3103 return; 3104 3105 p->total_numa_faults = 0; 3106 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3107 } 3108 3109 /* 3110 * First accesses are treated as private, otherwise consider accesses 3111 * to be private if the accessing pid has not changed 3112 */ 3113 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3114 priv = 1; 3115 } else { 3116 priv = cpupid_match_pid(p, last_cpupid); 3117 if (!priv && !(flags & TNF_NO_GROUP)) 3118 task_numa_group(p, last_cpupid, flags, &priv); 3119 } 3120 3121 /* 3122 * If a workload spans multiple NUMA nodes, a shared fault that 3123 * occurs wholly within the set of nodes that the workload is 3124 * actively using should be counted as local. This allows the 3125 * scan rate to slow down when a workload has settled down. 3126 */ 3127 ng = deref_curr_numa_group(p); 3128 if (!priv && !local && ng && ng->active_nodes > 1 && 3129 numa_is_active_node(cpu_node, ng) && 3130 numa_is_active_node(mem_node, ng)) 3131 local = 1; 3132 3133 /* 3134 * Retry to migrate task to preferred node periodically, in case it 3135 * previously failed, or the scheduler moved us. 3136 */ 3137 if (time_after(jiffies, p->numa_migrate_retry)) { 3138 task_numa_placement(p); 3139 numa_migrate_preferred(p); 3140 } 3141 3142 if (migrated) 3143 p->numa_pages_migrated += pages; 3144 if (flags & TNF_MIGRATE_FAIL) 3145 p->numa_faults_locality[2] += pages; 3146 3147 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3148 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3149 p->numa_faults_locality[local] += pages; 3150 } 3151 3152 static void reset_ptenuma_scan(struct task_struct *p) 3153 { 3154 /* 3155 * We only did a read acquisition of the mmap sem, so 3156 * p->mm->numa_scan_seq is written to without exclusive access 3157 * and the update is not guaranteed to be atomic. That's not 3158 * much of an issue though, since this is just used for 3159 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3160 * expensive, to avoid any form of compiler optimizations: 3161 */ 3162 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3163 p->mm->numa_scan_offset = 0; 3164 } 3165 3166 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3167 { 3168 unsigned long pids; 3169 /* 3170 * Allow unconditional access first two times, so that all the (pages) 3171 * of VMAs get prot_none fault introduced irrespective of accesses. 3172 * This is also done to avoid any side effect of task scanning 3173 * amplifying the unfairness of disjoint set of VMAs' access. 3174 */ 3175 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3176 return true; 3177 3178 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3179 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3180 return true; 3181 3182 /* 3183 * Complete a scan that has already started regardless of PID access, or 3184 * some VMAs may never be scanned in multi-threaded applications: 3185 */ 3186 if (mm->numa_scan_offset > vma->vm_start) { 3187 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3188 return true; 3189 } 3190 3191 return false; 3192 } 3193 3194 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3195 3196 /* 3197 * The expensive part of numa migration is done from task_work context. 3198 * Triggered from task_tick_numa(). 3199 */ 3200 static void task_numa_work(struct callback_head *work) 3201 { 3202 unsigned long migrate, next_scan, now = jiffies; 3203 struct task_struct *p = current; 3204 struct mm_struct *mm = p->mm; 3205 u64 runtime = p->se.sum_exec_runtime; 3206 struct vm_area_struct *vma; 3207 unsigned long start, end; 3208 unsigned long nr_pte_updates = 0; 3209 long pages, virtpages; 3210 struct vma_iterator vmi; 3211 bool vma_pids_skipped; 3212 bool vma_pids_forced = false; 3213 3214 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3215 3216 work->next = work; 3217 /* 3218 * Who cares about NUMA placement when they're dying. 3219 * 3220 * NOTE: make sure not to dereference p->mm before this check, 3221 * exit_task_work() happens _after_ exit_mm() so we could be called 3222 * without p->mm even though we still had it when we enqueued this 3223 * work. 3224 */ 3225 if (p->flags & PF_EXITING) 3226 return; 3227 3228 if (!mm->numa_next_scan) { 3229 mm->numa_next_scan = now + 3230 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3231 } 3232 3233 /* 3234 * Enforce maximal scan/migration frequency.. 3235 */ 3236 migrate = mm->numa_next_scan; 3237 if (time_before(now, migrate)) 3238 return; 3239 3240 if (p->numa_scan_period == 0) { 3241 p->numa_scan_period_max = task_scan_max(p); 3242 p->numa_scan_period = task_scan_start(p); 3243 } 3244 3245 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3246 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3247 return; 3248 3249 /* 3250 * Delay this task enough that another task of this mm will likely win 3251 * the next time around. 3252 */ 3253 p->node_stamp += 2 * TICK_NSEC; 3254 3255 pages = sysctl_numa_balancing_scan_size; 3256 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3257 virtpages = pages * 8; /* Scan up to this much virtual space */ 3258 if (!pages) 3259 return; 3260 3261 3262 if (!mmap_read_trylock(mm)) 3263 return; 3264 3265 /* 3266 * VMAs are skipped if the current PID has not trapped a fault within 3267 * the VMA recently. Allow scanning to be forced if there is no 3268 * suitable VMA remaining. 3269 */ 3270 vma_pids_skipped = false; 3271 3272 retry_pids: 3273 start = mm->numa_scan_offset; 3274 vma_iter_init(&vmi, mm, start); 3275 vma = vma_next(&vmi); 3276 if (!vma) { 3277 reset_ptenuma_scan(p); 3278 start = 0; 3279 vma_iter_set(&vmi, start); 3280 vma = vma_next(&vmi); 3281 } 3282 3283 do { 3284 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3285 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3286 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3287 continue; 3288 } 3289 3290 /* 3291 * Shared library pages mapped by multiple processes are not 3292 * migrated as it is expected they are cache replicated. Avoid 3293 * hinting faults in read-only file-backed mappings or the vDSO 3294 * as migrating the pages will be of marginal benefit. 3295 */ 3296 if (!vma->vm_mm || 3297 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3298 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3299 continue; 3300 } 3301 3302 /* 3303 * Skip inaccessible VMAs to avoid any confusion between 3304 * PROT_NONE and NUMA hinting PTEs 3305 */ 3306 if (!vma_is_accessible(vma)) { 3307 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3308 continue; 3309 } 3310 3311 /* Initialise new per-VMA NUMAB state. */ 3312 if (!vma->numab_state) { 3313 vma->numab_state = kzalloc(sizeof(struct vma_numab_state), 3314 GFP_KERNEL); 3315 if (!vma->numab_state) 3316 continue; 3317 3318 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3319 3320 vma->numab_state->next_scan = now + 3321 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3322 3323 /* Reset happens after 4 times scan delay of scan start */ 3324 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3325 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3326 3327 /* 3328 * Ensure prev_scan_seq does not match numa_scan_seq, 3329 * to prevent VMAs being skipped prematurely on the 3330 * first scan: 3331 */ 3332 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3333 } 3334 3335 /* 3336 * Scanning the VMAs of short lived tasks add more overhead. So 3337 * delay the scan for new VMAs. 3338 */ 3339 if (mm->numa_scan_seq && time_before(jiffies, 3340 vma->numab_state->next_scan)) { 3341 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3342 continue; 3343 } 3344 3345 /* RESET access PIDs regularly for old VMAs. */ 3346 if (mm->numa_scan_seq && 3347 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3348 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3349 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3350 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3351 vma->numab_state->pids_active[1] = 0; 3352 } 3353 3354 /* Do not rescan VMAs twice within the same sequence. */ 3355 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3356 mm->numa_scan_offset = vma->vm_end; 3357 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3358 continue; 3359 } 3360 3361 /* 3362 * Do not scan the VMA if task has not accessed it, unless no other 3363 * VMA candidate exists. 3364 */ 3365 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3366 vma_pids_skipped = true; 3367 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3368 continue; 3369 } 3370 3371 do { 3372 start = max(start, vma->vm_start); 3373 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3374 end = min(end, vma->vm_end); 3375 nr_pte_updates = change_prot_numa(vma, start, end); 3376 3377 /* 3378 * Try to scan sysctl_numa_balancing_size worth of 3379 * hpages that have at least one present PTE that 3380 * is not already PTE-numa. If the VMA contains 3381 * areas that are unused or already full of prot_numa 3382 * PTEs, scan up to virtpages, to skip through those 3383 * areas faster. 3384 */ 3385 if (nr_pte_updates) 3386 pages -= (end - start) >> PAGE_SHIFT; 3387 virtpages -= (end - start) >> PAGE_SHIFT; 3388 3389 start = end; 3390 if (pages <= 0 || virtpages <= 0) 3391 goto out; 3392 3393 cond_resched(); 3394 } while (end != vma->vm_end); 3395 3396 /* VMA scan is complete, do not scan until next sequence. */ 3397 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3398 3399 /* 3400 * Only force scan within one VMA at a time, to limit the 3401 * cost of scanning a potentially uninteresting VMA. 3402 */ 3403 if (vma_pids_forced) 3404 break; 3405 } for_each_vma(vmi, vma); 3406 3407 /* 3408 * If no VMAs are remaining and VMAs were skipped due to the PID 3409 * not accessing the VMA previously, then force a scan to ensure 3410 * forward progress: 3411 */ 3412 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3413 vma_pids_forced = true; 3414 goto retry_pids; 3415 } 3416 3417 out: 3418 /* 3419 * It is possible to reach the end of the VMA list but the last few 3420 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3421 * would find the !migratable VMA on the next scan but not reset the 3422 * scanner to the start so check it now. 3423 */ 3424 if (vma) 3425 mm->numa_scan_offset = start; 3426 else 3427 reset_ptenuma_scan(p); 3428 mmap_read_unlock(mm); 3429 3430 /* 3431 * Make sure tasks use at least 32x as much time to run other code 3432 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3433 * Usually update_task_scan_period slows down scanning enough; on an 3434 * overloaded system we need to limit overhead on a per task basis. 3435 */ 3436 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3437 u64 diff = p->se.sum_exec_runtime - runtime; 3438 p->node_stamp += 32 * diff; 3439 } 3440 } 3441 3442 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3443 { 3444 int mm_users = 0; 3445 struct mm_struct *mm = p->mm; 3446 3447 if (mm) { 3448 mm_users = atomic_read(&mm->mm_users); 3449 if (mm_users == 1) { 3450 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3451 mm->numa_scan_seq = 0; 3452 } 3453 } 3454 p->node_stamp = 0; 3455 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3456 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3457 p->numa_migrate_retry = 0; 3458 /* Protect against double add, see task_tick_numa and task_numa_work */ 3459 p->numa_work.next = &p->numa_work; 3460 p->numa_faults = NULL; 3461 p->numa_pages_migrated = 0; 3462 p->total_numa_faults = 0; 3463 RCU_INIT_POINTER(p->numa_group, NULL); 3464 p->last_task_numa_placement = 0; 3465 p->last_sum_exec_runtime = 0; 3466 3467 init_task_work(&p->numa_work, task_numa_work); 3468 3469 /* New address space, reset the preferred nid */ 3470 if (!(clone_flags & CLONE_VM)) { 3471 p->numa_preferred_nid = NUMA_NO_NODE; 3472 return; 3473 } 3474 3475 /* 3476 * New thread, keep existing numa_preferred_nid which should be copied 3477 * already by arch_dup_task_struct but stagger when scans start. 3478 */ 3479 if (mm) { 3480 unsigned int delay; 3481 3482 delay = min_t(unsigned int, task_scan_max(current), 3483 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3484 delay += 2 * TICK_NSEC; 3485 p->node_stamp = delay; 3486 } 3487 } 3488 3489 /* 3490 * Drive the periodic memory faults.. 3491 */ 3492 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3493 { 3494 struct callback_head *work = &curr->numa_work; 3495 u64 period, now; 3496 3497 /* 3498 * We don't care about NUMA placement if we don't have memory. 3499 */ 3500 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3501 return; 3502 3503 /* 3504 * Using runtime rather than walltime has the dual advantage that 3505 * we (mostly) drive the selection from busy threads and that the 3506 * task needs to have done some actual work before we bother with 3507 * NUMA placement. 3508 */ 3509 now = curr->se.sum_exec_runtime; 3510 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3511 3512 if (now > curr->node_stamp + period) { 3513 if (!curr->node_stamp) 3514 curr->numa_scan_period = task_scan_start(curr); 3515 curr->node_stamp += period; 3516 3517 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3518 task_work_add(curr, work, TWA_RESUME); 3519 } 3520 } 3521 3522 static void update_scan_period(struct task_struct *p, int new_cpu) 3523 { 3524 int src_nid = cpu_to_node(task_cpu(p)); 3525 int dst_nid = cpu_to_node(new_cpu); 3526 3527 if (!static_branch_likely(&sched_numa_balancing)) 3528 return; 3529 3530 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3531 return; 3532 3533 if (src_nid == dst_nid) 3534 return; 3535 3536 /* 3537 * Allow resets if faults have been trapped before one scan 3538 * has completed. This is most likely due to a new task that 3539 * is pulled cross-node due to wakeups or load balancing. 3540 */ 3541 if (p->numa_scan_seq) { 3542 /* 3543 * Avoid scan adjustments if moving to the preferred 3544 * node or if the task was not previously running on 3545 * the preferred node. 3546 */ 3547 if (dst_nid == p->numa_preferred_nid || 3548 (p->numa_preferred_nid != NUMA_NO_NODE && 3549 src_nid != p->numa_preferred_nid)) 3550 return; 3551 } 3552 3553 p->numa_scan_period = task_scan_start(p); 3554 } 3555 3556 #else 3557 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3558 { 3559 } 3560 3561 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3562 { 3563 } 3564 3565 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3566 { 3567 } 3568 3569 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3570 { 3571 } 3572 3573 #endif /* CONFIG_NUMA_BALANCING */ 3574 3575 static void 3576 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3577 { 3578 update_load_add(&cfs_rq->load, se->load.weight); 3579 #ifdef CONFIG_SMP 3580 if (entity_is_task(se)) { 3581 struct rq *rq = rq_of(cfs_rq); 3582 3583 account_numa_enqueue(rq, task_of(se)); 3584 list_add(&se->group_node, &rq->cfs_tasks); 3585 } 3586 #endif 3587 cfs_rq->nr_running++; 3588 if (se_is_idle(se)) 3589 cfs_rq->idle_nr_running++; 3590 } 3591 3592 static void 3593 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3594 { 3595 update_load_sub(&cfs_rq->load, se->load.weight); 3596 #ifdef CONFIG_SMP 3597 if (entity_is_task(se)) { 3598 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3599 list_del_init(&se->group_node); 3600 } 3601 #endif 3602 cfs_rq->nr_running--; 3603 if (se_is_idle(se)) 3604 cfs_rq->idle_nr_running--; 3605 } 3606 3607 /* 3608 * Signed add and clamp on underflow. 3609 * 3610 * Explicitly do a load-store to ensure the intermediate value never hits 3611 * memory. This allows lockless observations without ever seeing the negative 3612 * values. 3613 */ 3614 #define add_positive(_ptr, _val) do { \ 3615 typeof(_ptr) ptr = (_ptr); \ 3616 typeof(_val) val = (_val); \ 3617 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3618 \ 3619 res = var + val; \ 3620 \ 3621 if (val < 0 && res > var) \ 3622 res = 0; \ 3623 \ 3624 WRITE_ONCE(*ptr, res); \ 3625 } while (0) 3626 3627 /* 3628 * Unsigned subtract and clamp on underflow. 3629 * 3630 * Explicitly do a load-store to ensure the intermediate value never hits 3631 * memory. This allows lockless observations without ever seeing the negative 3632 * values. 3633 */ 3634 #define sub_positive(_ptr, _val) do { \ 3635 typeof(_ptr) ptr = (_ptr); \ 3636 typeof(*ptr) val = (_val); \ 3637 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3638 res = var - val; \ 3639 if (res > var) \ 3640 res = 0; \ 3641 WRITE_ONCE(*ptr, res); \ 3642 } while (0) 3643 3644 /* 3645 * Remove and clamp on negative, from a local variable. 3646 * 3647 * A variant of sub_positive(), which does not use explicit load-store 3648 * and is thus optimized for local variable updates. 3649 */ 3650 #define lsub_positive(_ptr, _val) do { \ 3651 typeof(_ptr) ptr = (_ptr); \ 3652 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3653 } while (0) 3654 3655 #ifdef CONFIG_SMP 3656 static inline void 3657 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3658 { 3659 cfs_rq->avg.load_avg += se->avg.load_avg; 3660 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3661 } 3662 3663 static inline void 3664 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3665 { 3666 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3667 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3668 /* See update_cfs_rq_load_avg() */ 3669 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3670 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3671 } 3672 #else 3673 static inline void 3674 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3675 static inline void 3676 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3677 #endif 3678 3679 static void reweight_eevdf(struct sched_entity *se, u64 avruntime, 3680 unsigned long weight) 3681 { 3682 unsigned long old_weight = se->load.weight; 3683 s64 vlag, vslice; 3684 3685 /* 3686 * VRUNTIME 3687 * -------- 3688 * 3689 * COROLLARY #1: The virtual runtime of the entity needs to be 3690 * adjusted if re-weight at !0-lag point. 3691 * 3692 * Proof: For contradiction assume this is not true, so we can 3693 * re-weight without changing vruntime at !0-lag point. 3694 * 3695 * Weight VRuntime Avg-VRuntime 3696 * before w v V 3697 * after w' v' V' 3698 * 3699 * Since lag needs to be preserved through re-weight: 3700 * 3701 * lag = (V - v)*w = (V'- v')*w', where v = v' 3702 * ==> V' = (V - v)*w/w' + v (1) 3703 * 3704 * Let W be the total weight of the entities before reweight, 3705 * since V' is the new weighted average of entities: 3706 * 3707 * V' = (WV + w'v - wv) / (W + w' - w) (2) 3708 * 3709 * by using (1) & (2) we obtain: 3710 * 3711 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v 3712 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v 3713 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v 3714 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3) 3715 * 3716 * Since we are doing at !0-lag point which means V != v, we 3717 * can simplify (3): 3718 * 3719 * ==> W / (W + w' - w) = w / w' 3720 * ==> Ww' = Ww + ww' - ww 3721 * ==> W * (w' - w) = w * (w' - w) 3722 * ==> W = w (re-weight indicates w' != w) 3723 * 3724 * So the cfs_rq contains only one entity, hence vruntime of 3725 * the entity @v should always equal to the cfs_rq's weighted 3726 * average vruntime @V, which means we will always re-weight 3727 * at 0-lag point, thus breach assumption. Proof completed. 3728 * 3729 * 3730 * COROLLARY #2: Re-weight does NOT affect weighted average 3731 * vruntime of all the entities. 3732 * 3733 * Proof: According to corollary #1, Eq. (1) should be: 3734 * 3735 * (V - v)*w = (V' - v')*w' 3736 * ==> v' = V' - (V - v)*w/w' (4) 3737 * 3738 * According to the weighted average formula, we have: 3739 * 3740 * V' = (WV - wv + w'v') / (W - w + w') 3741 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w') 3742 * = (WV - wv + w'V' - Vw + wv) / (W - w + w') 3743 * = (WV + w'V' - Vw) / (W - w + w') 3744 * 3745 * ==> V'*(W - w + w') = WV + w'V' - Vw 3746 * ==> V' * (W - w) = (W - w) * V (5) 3747 * 3748 * If the entity is the only one in the cfs_rq, then reweight 3749 * always occurs at 0-lag point, so V won't change. Or else 3750 * there are other entities, hence W != w, then Eq. (5) turns 3751 * into V' = V. So V won't change in either case, proof done. 3752 * 3753 * 3754 * So according to corollary #1 & #2, the effect of re-weight 3755 * on vruntime should be: 3756 * 3757 * v' = V' - (V - v) * w / w' (4) 3758 * = V - (V - v) * w / w' 3759 * = V - vl * w / w' 3760 * = V - vl' 3761 */ 3762 if (avruntime != se->vruntime) { 3763 vlag = entity_lag(avruntime, se); 3764 vlag = div_s64(vlag * old_weight, weight); 3765 se->vruntime = avruntime - vlag; 3766 } 3767 3768 /* 3769 * DEADLINE 3770 * -------- 3771 * 3772 * When the weight changes, the virtual time slope changes and 3773 * we should adjust the relative virtual deadline accordingly. 3774 * 3775 * d' = v' + (d - v)*w/w' 3776 * = V' - (V - v)*w/w' + (d - v)*w/w' 3777 * = V - (V - v)*w/w' + (d - v)*w/w' 3778 * = V + (d - V)*w/w' 3779 */ 3780 vslice = (s64)(se->deadline - avruntime); 3781 vslice = div_s64(vslice * old_weight, weight); 3782 se->deadline = avruntime + vslice; 3783 } 3784 3785 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3786 unsigned long weight) 3787 { 3788 bool curr = cfs_rq->curr == se; 3789 u64 avruntime; 3790 3791 if (se->on_rq) { 3792 /* commit outstanding execution time */ 3793 update_curr(cfs_rq); 3794 avruntime = avg_vruntime(cfs_rq); 3795 if (!curr) 3796 __dequeue_entity(cfs_rq, se); 3797 update_load_sub(&cfs_rq->load, se->load.weight); 3798 } 3799 dequeue_load_avg(cfs_rq, se); 3800 3801 if (se->on_rq) { 3802 reweight_eevdf(se, avruntime, weight); 3803 } else { 3804 /* 3805 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3806 * we need to scale se->vlag when w_i changes. 3807 */ 3808 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3809 } 3810 3811 update_load_set(&se->load, weight); 3812 3813 #ifdef CONFIG_SMP 3814 do { 3815 u32 divider = get_pelt_divider(&se->avg); 3816 3817 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3818 } while (0); 3819 #endif 3820 3821 enqueue_load_avg(cfs_rq, se); 3822 if (se->on_rq) { 3823 update_load_add(&cfs_rq->load, se->load.weight); 3824 if (!curr) 3825 __enqueue_entity(cfs_rq, se); 3826 3827 /* 3828 * The entity's vruntime has been adjusted, so let's check 3829 * whether the rq-wide min_vruntime needs updated too. Since 3830 * the calculations above require stable min_vruntime rather 3831 * than up-to-date one, we do the update at the end of the 3832 * reweight process. 3833 */ 3834 update_min_vruntime(cfs_rq); 3835 } 3836 } 3837 3838 void reweight_task(struct task_struct *p, int prio) 3839 { 3840 struct sched_entity *se = &p->se; 3841 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3842 struct load_weight *load = &se->load; 3843 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3844 3845 reweight_entity(cfs_rq, se, weight); 3846 load->inv_weight = sched_prio_to_wmult[prio]; 3847 } 3848 3849 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3850 3851 #ifdef CONFIG_FAIR_GROUP_SCHED 3852 #ifdef CONFIG_SMP 3853 /* 3854 * All this does is approximate the hierarchical proportion which includes that 3855 * global sum we all love to hate. 3856 * 3857 * That is, the weight of a group entity, is the proportional share of the 3858 * group weight based on the group runqueue weights. That is: 3859 * 3860 * tg->weight * grq->load.weight 3861 * ge->load.weight = ----------------------------- (1) 3862 * \Sum grq->load.weight 3863 * 3864 * Now, because computing that sum is prohibitively expensive to compute (been 3865 * there, done that) we approximate it with this average stuff. The average 3866 * moves slower and therefore the approximation is cheaper and more stable. 3867 * 3868 * So instead of the above, we substitute: 3869 * 3870 * grq->load.weight -> grq->avg.load_avg (2) 3871 * 3872 * which yields the following: 3873 * 3874 * tg->weight * grq->avg.load_avg 3875 * ge->load.weight = ------------------------------ (3) 3876 * tg->load_avg 3877 * 3878 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3879 * 3880 * That is shares_avg, and it is right (given the approximation (2)). 3881 * 3882 * The problem with it is that because the average is slow -- it was designed 3883 * to be exactly that of course -- this leads to transients in boundary 3884 * conditions. In specific, the case where the group was idle and we start the 3885 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3886 * yielding bad latency etc.. 3887 * 3888 * Now, in that special case (1) reduces to: 3889 * 3890 * tg->weight * grq->load.weight 3891 * ge->load.weight = ----------------------------- = tg->weight (4) 3892 * grp->load.weight 3893 * 3894 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3895 * 3896 * So what we do is modify our approximation (3) to approach (4) in the (near) 3897 * UP case, like: 3898 * 3899 * ge->load.weight = 3900 * 3901 * tg->weight * grq->load.weight 3902 * --------------------------------------------------- (5) 3903 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3904 * 3905 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3906 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3907 * 3908 * 3909 * tg->weight * grq->load.weight 3910 * ge->load.weight = ----------------------------- (6) 3911 * tg_load_avg' 3912 * 3913 * Where: 3914 * 3915 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3916 * max(grq->load.weight, grq->avg.load_avg) 3917 * 3918 * And that is shares_weight and is icky. In the (near) UP case it approaches 3919 * (4) while in the normal case it approaches (3). It consistently 3920 * overestimates the ge->load.weight and therefore: 3921 * 3922 * \Sum ge->load.weight >= tg->weight 3923 * 3924 * hence icky! 3925 */ 3926 static long calc_group_shares(struct cfs_rq *cfs_rq) 3927 { 3928 long tg_weight, tg_shares, load, shares; 3929 struct task_group *tg = cfs_rq->tg; 3930 3931 tg_shares = READ_ONCE(tg->shares); 3932 3933 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3934 3935 tg_weight = atomic_long_read(&tg->load_avg); 3936 3937 /* Ensure tg_weight >= load */ 3938 tg_weight -= cfs_rq->tg_load_avg_contrib; 3939 tg_weight += load; 3940 3941 shares = (tg_shares * load); 3942 if (tg_weight) 3943 shares /= tg_weight; 3944 3945 /* 3946 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3947 * of a group with small tg->shares value. It is a floor value which is 3948 * assigned as a minimum load.weight to the sched_entity representing 3949 * the group on a CPU. 3950 * 3951 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3952 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3953 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3954 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3955 * instead of 0. 3956 */ 3957 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3958 } 3959 #endif /* CONFIG_SMP */ 3960 3961 /* 3962 * Recomputes the group entity based on the current state of its group 3963 * runqueue. 3964 */ 3965 static void update_cfs_group(struct sched_entity *se) 3966 { 3967 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3968 long shares; 3969 3970 if (!gcfs_rq) 3971 return; 3972 3973 if (throttled_hierarchy(gcfs_rq)) 3974 return; 3975 3976 #ifndef CONFIG_SMP 3977 shares = READ_ONCE(gcfs_rq->tg->shares); 3978 #else 3979 shares = calc_group_shares(gcfs_rq); 3980 #endif 3981 if (unlikely(se->load.weight != shares)) 3982 reweight_entity(cfs_rq_of(se), se, shares); 3983 } 3984 3985 #else /* CONFIG_FAIR_GROUP_SCHED */ 3986 static inline void update_cfs_group(struct sched_entity *se) 3987 { 3988 } 3989 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3990 3991 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3992 { 3993 struct rq *rq = rq_of(cfs_rq); 3994 3995 if (&rq->cfs == cfs_rq) { 3996 /* 3997 * There are a few boundary cases this might miss but it should 3998 * get called often enough that that should (hopefully) not be 3999 * a real problem. 4000 * 4001 * It will not get called when we go idle, because the idle 4002 * thread is a different class (!fair), nor will the utilization 4003 * number include things like RT tasks. 4004 * 4005 * As is, the util number is not freq-invariant (we'd have to 4006 * implement arch_scale_freq_capacity() for that). 4007 * 4008 * See cpu_util_cfs(). 4009 */ 4010 cpufreq_update_util(rq, flags); 4011 } 4012 } 4013 4014 #ifdef CONFIG_SMP 4015 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4016 { 4017 if (sa->load_sum) 4018 return false; 4019 4020 if (sa->util_sum) 4021 return false; 4022 4023 if (sa->runnable_sum) 4024 return false; 4025 4026 /* 4027 * _avg must be null when _sum are null because _avg = _sum / divider 4028 * Make sure that rounding and/or propagation of PELT values never 4029 * break this. 4030 */ 4031 SCHED_WARN_ON(sa->load_avg || 4032 sa->util_avg || 4033 sa->runnable_avg); 4034 4035 return true; 4036 } 4037 4038 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4039 { 4040 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4041 cfs_rq->last_update_time_copy); 4042 } 4043 #ifdef CONFIG_FAIR_GROUP_SCHED 4044 /* 4045 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4046 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4047 * bottom-up, we only have to test whether the cfs_rq before us on the list 4048 * is our child. 4049 * If cfs_rq is not on the list, test whether a child needs its to be added to 4050 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4051 */ 4052 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4053 { 4054 struct cfs_rq *prev_cfs_rq; 4055 struct list_head *prev; 4056 4057 if (cfs_rq->on_list) { 4058 prev = cfs_rq->leaf_cfs_rq_list.prev; 4059 } else { 4060 struct rq *rq = rq_of(cfs_rq); 4061 4062 prev = rq->tmp_alone_branch; 4063 } 4064 4065 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4066 4067 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4068 } 4069 4070 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4071 { 4072 if (cfs_rq->load.weight) 4073 return false; 4074 4075 if (!load_avg_is_decayed(&cfs_rq->avg)) 4076 return false; 4077 4078 if (child_cfs_rq_on_list(cfs_rq)) 4079 return false; 4080 4081 return true; 4082 } 4083 4084 /** 4085 * update_tg_load_avg - update the tg's load avg 4086 * @cfs_rq: the cfs_rq whose avg changed 4087 * 4088 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4089 * However, because tg->load_avg is a global value there are performance 4090 * considerations. 4091 * 4092 * In order to avoid having to look at the other cfs_rq's, we use a 4093 * differential update where we store the last value we propagated. This in 4094 * turn allows skipping updates if the differential is 'small'. 4095 * 4096 * Updating tg's load_avg is necessary before update_cfs_share(). 4097 */ 4098 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4099 { 4100 long delta; 4101 u64 now; 4102 4103 /* 4104 * No need to update load_avg for root_task_group as it is not used. 4105 */ 4106 if (cfs_rq->tg == &root_task_group) 4107 return; 4108 4109 /* rq has been offline and doesn't contribute to the share anymore: */ 4110 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4111 return; 4112 4113 /* 4114 * For migration heavy workloads, access to tg->load_avg can be 4115 * unbound. Limit the update rate to at most once per ms. 4116 */ 4117 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4118 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4119 return; 4120 4121 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4122 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4123 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4124 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4125 cfs_rq->last_update_tg_load_avg = now; 4126 } 4127 } 4128 4129 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4130 { 4131 long delta; 4132 u64 now; 4133 4134 /* 4135 * No need to update load_avg for root_task_group, as it is not used. 4136 */ 4137 if (cfs_rq->tg == &root_task_group) 4138 return; 4139 4140 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4141 delta = 0 - cfs_rq->tg_load_avg_contrib; 4142 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4143 cfs_rq->tg_load_avg_contrib = 0; 4144 cfs_rq->last_update_tg_load_avg = now; 4145 } 4146 4147 /* CPU offline callback: */ 4148 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4149 { 4150 struct task_group *tg; 4151 4152 lockdep_assert_rq_held(rq); 4153 4154 /* 4155 * The rq clock has already been updated in 4156 * set_rq_offline(), so we should skip updating 4157 * the rq clock again in unthrottle_cfs_rq(). 4158 */ 4159 rq_clock_start_loop_update(rq); 4160 4161 rcu_read_lock(); 4162 list_for_each_entry_rcu(tg, &task_groups, list) { 4163 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4164 4165 clear_tg_load_avg(cfs_rq); 4166 } 4167 rcu_read_unlock(); 4168 4169 rq_clock_stop_loop_update(rq); 4170 } 4171 4172 /* 4173 * Called within set_task_rq() right before setting a task's CPU. The 4174 * caller only guarantees p->pi_lock is held; no other assumptions, 4175 * including the state of rq->lock, should be made. 4176 */ 4177 void set_task_rq_fair(struct sched_entity *se, 4178 struct cfs_rq *prev, struct cfs_rq *next) 4179 { 4180 u64 p_last_update_time; 4181 u64 n_last_update_time; 4182 4183 if (!sched_feat(ATTACH_AGE_LOAD)) 4184 return; 4185 4186 /* 4187 * We are supposed to update the task to "current" time, then its up to 4188 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4189 * getting what current time is, so simply throw away the out-of-date 4190 * time. This will result in the wakee task is less decayed, but giving 4191 * the wakee more load sounds not bad. 4192 */ 4193 if (!(se->avg.last_update_time && prev)) 4194 return; 4195 4196 p_last_update_time = cfs_rq_last_update_time(prev); 4197 n_last_update_time = cfs_rq_last_update_time(next); 4198 4199 __update_load_avg_blocked_se(p_last_update_time, se); 4200 se->avg.last_update_time = n_last_update_time; 4201 } 4202 4203 /* 4204 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4205 * propagate its contribution. The key to this propagation is the invariant 4206 * that for each group: 4207 * 4208 * ge->avg == grq->avg (1) 4209 * 4210 * _IFF_ we look at the pure running and runnable sums. Because they 4211 * represent the very same entity, just at different points in the hierarchy. 4212 * 4213 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4214 * and simply copies the running/runnable sum over (but still wrong, because 4215 * the group entity and group rq do not have their PELT windows aligned). 4216 * 4217 * However, update_tg_cfs_load() is more complex. So we have: 4218 * 4219 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4220 * 4221 * And since, like util, the runnable part should be directly transferable, 4222 * the following would _appear_ to be the straight forward approach: 4223 * 4224 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4225 * 4226 * And per (1) we have: 4227 * 4228 * ge->avg.runnable_avg == grq->avg.runnable_avg 4229 * 4230 * Which gives: 4231 * 4232 * ge->load.weight * grq->avg.load_avg 4233 * ge->avg.load_avg = ----------------------------------- (4) 4234 * grq->load.weight 4235 * 4236 * Except that is wrong! 4237 * 4238 * Because while for entities historical weight is not important and we 4239 * really only care about our future and therefore can consider a pure 4240 * runnable sum, runqueues can NOT do this. 4241 * 4242 * We specifically want runqueues to have a load_avg that includes 4243 * historical weights. Those represent the blocked load, the load we expect 4244 * to (shortly) return to us. This only works by keeping the weights as 4245 * integral part of the sum. We therefore cannot decompose as per (3). 4246 * 4247 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4248 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4249 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4250 * runnable section of these tasks overlap (or not). If they were to perfectly 4251 * align the rq as a whole would be runnable 2/3 of the time. If however we 4252 * always have at least 1 runnable task, the rq as a whole is always runnable. 4253 * 4254 * So we'll have to approximate.. :/ 4255 * 4256 * Given the constraint: 4257 * 4258 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4259 * 4260 * We can construct a rule that adds runnable to a rq by assuming minimal 4261 * overlap. 4262 * 4263 * On removal, we'll assume each task is equally runnable; which yields: 4264 * 4265 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4266 * 4267 * XXX: only do this for the part of runnable > running ? 4268 * 4269 */ 4270 static inline void 4271 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4272 { 4273 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4274 u32 new_sum, divider; 4275 4276 /* Nothing to update */ 4277 if (!delta_avg) 4278 return; 4279 4280 /* 4281 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4282 * See ___update_load_avg() for details. 4283 */ 4284 divider = get_pelt_divider(&cfs_rq->avg); 4285 4286 4287 /* Set new sched_entity's utilization */ 4288 se->avg.util_avg = gcfs_rq->avg.util_avg; 4289 new_sum = se->avg.util_avg * divider; 4290 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4291 se->avg.util_sum = new_sum; 4292 4293 /* Update parent cfs_rq utilization */ 4294 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4295 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4296 4297 /* See update_cfs_rq_load_avg() */ 4298 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4299 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4300 } 4301 4302 static inline void 4303 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4304 { 4305 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4306 u32 new_sum, divider; 4307 4308 /* Nothing to update */ 4309 if (!delta_avg) 4310 return; 4311 4312 /* 4313 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4314 * See ___update_load_avg() for details. 4315 */ 4316 divider = get_pelt_divider(&cfs_rq->avg); 4317 4318 /* Set new sched_entity's runnable */ 4319 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4320 new_sum = se->avg.runnable_avg * divider; 4321 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4322 se->avg.runnable_sum = new_sum; 4323 4324 /* Update parent cfs_rq runnable */ 4325 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4326 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4327 /* See update_cfs_rq_load_avg() */ 4328 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4329 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4330 } 4331 4332 static inline void 4333 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4334 { 4335 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4336 unsigned long load_avg; 4337 u64 load_sum = 0; 4338 s64 delta_sum; 4339 u32 divider; 4340 4341 if (!runnable_sum) 4342 return; 4343 4344 gcfs_rq->prop_runnable_sum = 0; 4345 4346 /* 4347 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4348 * See ___update_load_avg() for details. 4349 */ 4350 divider = get_pelt_divider(&cfs_rq->avg); 4351 4352 if (runnable_sum >= 0) { 4353 /* 4354 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4355 * the CPU is saturated running == runnable. 4356 */ 4357 runnable_sum += se->avg.load_sum; 4358 runnable_sum = min_t(long, runnable_sum, divider); 4359 } else { 4360 /* 4361 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4362 * assuming all tasks are equally runnable. 4363 */ 4364 if (scale_load_down(gcfs_rq->load.weight)) { 4365 load_sum = div_u64(gcfs_rq->avg.load_sum, 4366 scale_load_down(gcfs_rq->load.weight)); 4367 } 4368 4369 /* But make sure to not inflate se's runnable */ 4370 runnable_sum = min(se->avg.load_sum, load_sum); 4371 } 4372 4373 /* 4374 * runnable_sum can't be lower than running_sum 4375 * Rescale running sum to be in the same range as runnable sum 4376 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4377 * runnable_sum is in [0 : LOAD_AVG_MAX] 4378 */ 4379 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4380 runnable_sum = max(runnable_sum, running_sum); 4381 4382 load_sum = se_weight(se) * runnable_sum; 4383 load_avg = div_u64(load_sum, divider); 4384 4385 delta_avg = load_avg - se->avg.load_avg; 4386 if (!delta_avg) 4387 return; 4388 4389 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4390 4391 se->avg.load_sum = runnable_sum; 4392 se->avg.load_avg = load_avg; 4393 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4394 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4395 /* See update_cfs_rq_load_avg() */ 4396 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4397 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4398 } 4399 4400 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4401 { 4402 cfs_rq->propagate = 1; 4403 cfs_rq->prop_runnable_sum += runnable_sum; 4404 } 4405 4406 /* Update task and its cfs_rq load average */ 4407 static inline int propagate_entity_load_avg(struct sched_entity *se) 4408 { 4409 struct cfs_rq *cfs_rq, *gcfs_rq; 4410 4411 if (entity_is_task(se)) 4412 return 0; 4413 4414 gcfs_rq = group_cfs_rq(se); 4415 if (!gcfs_rq->propagate) 4416 return 0; 4417 4418 gcfs_rq->propagate = 0; 4419 4420 cfs_rq = cfs_rq_of(se); 4421 4422 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4423 4424 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4425 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4426 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4427 4428 trace_pelt_cfs_tp(cfs_rq); 4429 trace_pelt_se_tp(se); 4430 4431 return 1; 4432 } 4433 4434 /* 4435 * Check if we need to update the load and the utilization of a blocked 4436 * group_entity: 4437 */ 4438 static inline bool skip_blocked_update(struct sched_entity *se) 4439 { 4440 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4441 4442 /* 4443 * If sched_entity still have not zero load or utilization, we have to 4444 * decay it: 4445 */ 4446 if (se->avg.load_avg || se->avg.util_avg) 4447 return false; 4448 4449 /* 4450 * If there is a pending propagation, we have to update the load and 4451 * the utilization of the sched_entity: 4452 */ 4453 if (gcfs_rq->propagate) 4454 return false; 4455 4456 /* 4457 * Otherwise, the load and the utilization of the sched_entity is 4458 * already zero and there is no pending propagation, so it will be a 4459 * waste of time to try to decay it: 4460 */ 4461 return true; 4462 } 4463 4464 #else /* CONFIG_FAIR_GROUP_SCHED */ 4465 4466 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4467 4468 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4469 4470 static inline int propagate_entity_load_avg(struct sched_entity *se) 4471 { 4472 return 0; 4473 } 4474 4475 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4476 4477 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4478 4479 #ifdef CONFIG_NO_HZ_COMMON 4480 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4481 { 4482 u64 throttled = 0, now, lut; 4483 struct cfs_rq *cfs_rq; 4484 struct rq *rq; 4485 bool is_idle; 4486 4487 if (load_avg_is_decayed(&se->avg)) 4488 return; 4489 4490 cfs_rq = cfs_rq_of(se); 4491 rq = rq_of(cfs_rq); 4492 4493 rcu_read_lock(); 4494 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4495 rcu_read_unlock(); 4496 4497 /* 4498 * The lag estimation comes with a cost we don't want to pay all the 4499 * time. Hence, limiting to the case where the source CPU is idle and 4500 * we know we are at the greatest risk to have an outdated clock. 4501 */ 4502 if (!is_idle) 4503 return; 4504 4505 /* 4506 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4507 * 4508 * last_update_time (the cfs_rq's last_update_time) 4509 * = cfs_rq_clock_pelt()@cfs_rq_idle 4510 * = rq_clock_pelt()@cfs_rq_idle 4511 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4512 * 4513 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4514 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4515 * 4516 * rq_idle_lag (delta between now and rq's update) 4517 * = sched_clock_cpu() - rq_clock()@rq_idle 4518 * 4519 * We can then write: 4520 * 4521 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4522 * sched_clock_cpu() - rq_clock()@rq_idle 4523 * Where: 4524 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4525 * rq_clock()@rq_idle is rq->clock_idle 4526 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4527 * is cfs_rq->throttled_pelt_idle 4528 */ 4529 4530 #ifdef CONFIG_CFS_BANDWIDTH 4531 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4532 /* The clock has been stopped for throttling */ 4533 if (throttled == U64_MAX) 4534 return; 4535 #endif 4536 now = u64_u32_load(rq->clock_pelt_idle); 4537 /* 4538 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4539 * is observed the old clock_pelt_idle value and the new clock_idle, 4540 * which lead to an underestimation. The opposite would lead to an 4541 * overestimation. 4542 */ 4543 smp_rmb(); 4544 lut = cfs_rq_last_update_time(cfs_rq); 4545 4546 now -= throttled; 4547 if (now < lut) 4548 /* 4549 * cfs_rq->avg.last_update_time is more recent than our 4550 * estimation, let's use it. 4551 */ 4552 now = lut; 4553 else 4554 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4555 4556 __update_load_avg_blocked_se(now, se); 4557 } 4558 #else 4559 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4560 #endif 4561 4562 /** 4563 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4564 * @now: current time, as per cfs_rq_clock_pelt() 4565 * @cfs_rq: cfs_rq to update 4566 * 4567 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4568 * avg. The immediate corollary is that all (fair) tasks must be attached. 4569 * 4570 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4571 * 4572 * Return: true if the load decayed or we removed load. 4573 * 4574 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4575 * call update_tg_load_avg() when this function returns true. 4576 */ 4577 static inline int 4578 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4579 { 4580 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4581 struct sched_avg *sa = &cfs_rq->avg; 4582 int decayed = 0; 4583 4584 if (cfs_rq->removed.nr) { 4585 unsigned long r; 4586 u32 divider = get_pelt_divider(&cfs_rq->avg); 4587 4588 raw_spin_lock(&cfs_rq->removed.lock); 4589 swap(cfs_rq->removed.util_avg, removed_util); 4590 swap(cfs_rq->removed.load_avg, removed_load); 4591 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4592 cfs_rq->removed.nr = 0; 4593 raw_spin_unlock(&cfs_rq->removed.lock); 4594 4595 r = removed_load; 4596 sub_positive(&sa->load_avg, r); 4597 sub_positive(&sa->load_sum, r * divider); 4598 /* See sa->util_sum below */ 4599 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4600 4601 r = removed_util; 4602 sub_positive(&sa->util_avg, r); 4603 sub_positive(&sa->util_sum, r * divider); 4604 /* 4605 * Because of rounding, se->util_sum might ends up being +1 more than 4606 * cfs->util_sum. Although this is not a problem by itself, detaching 4607 * a lot of tasks with the rounding problem between 2 updates of 4608 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4609 * cfs_util_avg is not. 4610 * Check that util_sum is still above its lower bound for the new 4611 * util_avg. Given that period_contrib might have moved since the last 4612 * sync, we are only sure that util_sum must be above or equal to 4613 * util_avg * minimum possible divider 4614 */ 4615 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4616 4617 r = removed_runnable; 4618 sub_positive(&sa->runnable_avg, r); 4619 sub_positive(&sa->runnable_sum, r * divider); 4620 /* See sa->util_sum above */ 4621 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4622 sa->runnable_avg * PELT_MIN_DIVIDER); 4623 4624 /* 4625 * removed_runnable is the unweighted version of removed_load so we 4626 * can use it to estimate removed_load_sum. 4627 */ 4628 add_tg_cfs_propagate(cfs_rq, 4629 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4630 4631 decayed = 1; 4632 } 4633 4634 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4635 u64_u32_store_copy(sa->last_update_time, 4636 cfs_rq->last_update_time_copy, 4637 sa->last_update_time); 4638 return decayed; 4639 } 4640 4641 /** 4642 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4643 * @cfs_rq: cfs_rq to attach to 4644 * @se: sched_entity to attach 4645 * 4646 * Must call update_cfs_rq_load_avg() before this, since we rely on 4647 * cfs_rq->avg.last_update_time being current. 4648 */ 4649 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4650 { 4651 /* 4652 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4653 * See ___update_load_avg() for details. 4654 */ 4655 u32 divider = get_pelt_divider(&cfs_rq->avg); 4656 4657 /* 4658 * When we attach the @se to the @cfs_rq, we must align the decay 4659 * window because without that, really weird and wonderful things can 4660 * happen. 4661 * 4662 * XXX illustrate 4663 */ 4664 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4665 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4666 4667 /* 4668 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4669 * period_contrib. This isn't strictly correct, but since we're 4670 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4671 * _sum a little. 4672 */ 4673 se->avg.util_sum = se->avg.util_avg * divider; 4674 4675 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4676 4677 se->avg.load_sum = se->avg.load_avg * divider; 4678 if (se_weight(se) < se->avg.load_sum) 4679 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4680 else 4681 se->avg.load_sum = 1; 4682 4683 enqueue_load_avg(cfs_rq, se); 4684 cfs_rq->avg.util_avg += se->avg.util_avg; 4685 cfs_rq->avg.util_sum += se->avg.util_sum; 4686 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4687 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4688 4689 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4690 4691 cfs_rq_util_change(cfs_rq, 0); 4692 4693 trace_pelt_cfs_tp(cfs_rq); 4694 } 4695 4696 /** 4697 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4698 * @cfs_rq: cfs_rq to detach from 4699 * @se: sched_entity to detach 4700 * 4701 * Must call update_cfs_rq_load_avg() before this, since we rely on 4702 * cfs_rq->avg.last_update_time being current. 4703 */ 4704 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4705 { 4706 dequeue_load_avg(cfs_rq, se); 4707 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4708 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4709 /* See update_cfs_rq_load_avg() */ 4710 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4711 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4712 4713 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4714 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4715 /* See update_cfs_rq_load_avg() */ 4716 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4717 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4718 4719 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4720 4721 cfs_rq_util_change(cfs_rq, 0); 4722 4723 trace_pelt_cfs_tp(cfs_rq); 4724 } 4725 4726 /* 4727 * Optional action to be done while updating the load average 4728 */ 4729 #define UPDATE_TG 0x1 4730 #define SKIP_AGE_LOAD 0x2 4731 #define DO_ATTACH 0x4 4732 #define DO_DETACH 0x8 4733 4734 /* Update task and its cfs_rq load average */ 4735 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4736 { 4737 u64 now = cfs_rq_clock_pelt(cfs_rq); 4738 int decayed; 4739 4740 /* 4741 * Track task load average for carrying it to new CPU after migrated, and 4742 * track group sched_entity load average for task_h_load calculation in migration 4743 */ 4744 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4745 __update_load_avg_se(now, cfs_rq, se); 4746 4747 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4748 decayed |= propagate_entity_load_avg(se); 4749 4750 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4751 4752 /* 4753 * DO_ATTACH means we're here from enqueue_entity(). 4754 * !last_update_time means we've passed through 4755 * migrate_task_rq_fair() indicating we migrated. 4756 * 4757 * IOW we're enqueueing a task on a new CPU. 4758 */ 4759 attach_entity_load_avg(cfs_rq, se); 4760 update_tg_load_avg(cfs_rq); 4761 4762 } else if (flags & DO_DETACH) { 4763 /* 4764 * DO_DETACH means we're here from dequeue_entity() 4765 * and we are migrating task out of the CPU. 4766 */ 4767 detach_entity_load_avg(cfs_rq, se); 4768 update_tg_load_avg(cfs_rq); 4769 } else if (decayed) { 4770 cfs_rq_util_change(cfs_rq, 0); 4771 4772 if (flags & UPDATE_TG) 4773 update_tg_load_avg(cfs_rq); 4774 } 4775 } 4776 4777 /* 4778 * Synchronize entity load avg of dequeued entity without locking 4779 * the previous rq. 4780 */ 4781 static void sync_entity_load_avg(struct sched_entity *se) 4782 { 4783 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4784 u64 last_update_time; 4785 4786 last_update_time = cfs_rq_last_update_time(cfs_rq); 4787 __update_load_avg_blocked_se(last_update_time, se); 4788 } 4789 4790 /* 4791 * Task first catches up with cfs_rq, and then subtract 4792 * itself from the cfs_rq (task must be off the queue now). 4793 */ 4794 static void remove_entity_load_avg(struct sched_entity *se) 4795 { 4796 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4797 unsigned long flags; 4798 4799 /* 4800 * tasks cannot exit without having gone through wake_up_new_task() -> 4801 * enqueue_task_fair() which will have added things to the cfs_rq, 4802 * so we can remove unconditionally. 4803 */ 4804 4805 sync_entity_load_avg(se); 4806 4807 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4808 ++cfs_rq->removed.nr; 4809 cfs_rq->removed.util_avg += se->avg.util_avg; 4810 cfs_rq->removed.load_avg += se->avg.load_avg; 4811 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4812 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4813 } 4814 4815 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4816 { 4817 return cfs_rq->avg.runnable_avg; 4818 } 4819 4820 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4821 { 4822 return cfs_rq->avg.load_avg; 4823 } 4824 4825 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4826 4827 static inline unsigned long task_util(struct task_struct *p) 4828 { 4829 return READ_ONCE(p->se.avg.util_avg); 4830 } 4831 4832 static inline unsigned long task_runnable(struct task_struct *p) 4833 { 4834 return READ_ONCE(p->se.avg.runnable_avg); 4835 } 4836 4837 static inline unsigned long _task_util_est(struct task_struct *p) 4838 { 4839 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4840 } 4841 4842 static inline unsigned long task_util_est(struct task_struct *p) 4843 { 4844 return max(task_util(p), _task_util_est(p)); 4845 } 4846 4847 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4848 struct task_struct *p) 4849 { 4850 unsigned int enqueued; 4851 4852 if (!sched_feat(UTIL_EST)) 4853 return; 4854 4855 /* Update root cfs_rq's estimated utilization */ 4856 enqueued = cfs_rq->avg.util_est; 4857 enqueued += _task_util_est(p); 4858 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4859 4860 trace_sched_util_est_cfs_tp(cfs_rq); 4861 } 4862 4863 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4864 struct task_struct *p) 4865 { 4866 unsigned int enqueued; 4867 4868 if (!sched_feat(UTIL_EST)) 4869 return; 4870 4871 /* Update root cfs_rq's estimated utilization */ 4872 enqueued = cfs_rq->avg.util_est; 4873 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4874 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4875 4876 trace_sched_util_est_cfs_tp(cfs_rq); 4877 } 4878 4879 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4880 4881 static inline void util_est_update(struct cfs_rq *cfs_rq, 4882 struct task_struct *p, 4883 bool task_sleep) 4884 { 4885 unsigned int ewma, dequeued, last_ewma_diff; 4886 4887 if (!sched_feat(UTIL_EST)) 4888 return; 4889 4890 /* 4891 * Skip update of task's estimated utilization when the task has not 4892 * yet completed an activation, e.g. being migrated. 4893 */ 4894 if (!task_sleep) 4895 return; 4896 4897 /* Get current estimate of utilization */ 4898 ewma = READ_ONCE(p->se.avg.util_est); 4899 4900 /* 4901 * If the PELT values haven't changed since enqueue time, 4902 * skip the util_est update. 4903 */ 4904 if (ewma & UTIL_AVG_UNCHANGED) 4905 return; 4906 4907 /* Get utilization at dequeue */ 4908 dequeued = task_util(p); 4909 4910 /* 4911 * Reset EWMA on utilization increases, the moving average is used only 4912 * to smooth utilization decreases. 4913 */ 4914 if (ewma <= dequeued) { 4915 ewma = dequeued; 4916 goto done; 4917 } 4918 4919 /* 4920 * Skip update of task's estimated utilization when its members are 4921 * already ~1% close to its last activation value. 4922 */ 4923 last_ewma_diff = ewma - dequeued; 4924 if (last_ewma_diff < UTIL_EST_MARGIN) 4925 goto done; 4926 4927 /* 4928 * To avoid overestimation of actual task utilization, skip updates if 4929 * we cannot grant there is idle time in this CPU. 4930 */ 4931 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)))) 4932 return; 4933 4934 /* 4935 * To avoid underestimate of task utilization, skip updates of EWMA if 4936 * we cannot grant that thread got all CPU time it wanted. 4937 */ 4938 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 4939 goto done; 4940 4941 4942 /* 4943 * Update Task's estimated utilization 4944 * 4945 * When *p completes an activation we can consolidate another sample 4946 * of the task size. This is done by using this value to update the 4947 * Exponential Weighted Moving Average (EWMA): 4948 * 4949 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4950 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4951 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4952 * = w * ( -last_ewma_diff ) + ewma(t-1) 4953 * = w * (-last_ewma_diff + ewma(t-1) / w) 4954 * 4955 * Where 'w' is the weight of new samples, which is configured to be 4956 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4957 */ 4958 ewma <<= UTIL_EST_WEIGHT_SHIFT; 4959 ewma -= last_ewma_diff; 4960 ewma >>= UTIL_EST_WEIGHT_SHIFT; 4961 done: 4962 ewma |= UTIL_AVG_UNCHANGED; 4963 WRITE_ONCE(p->se.avg.util_est, ewma); 4964 4965 trace_sched_util_est_se_tp(&p->se); 4966 } 4967 4968 static inline unsigned long get_actual_cpu_capacity(int cpu) 4969 { 4970 unsigned long capacity = arch_scale_cpu_capacity(cpu); 4971 4972 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 4973 4974 return capacity; 4975 } 4976 4977 static inline int util_fits_cpu(unsigned long util, 4978 unsigned long uclamp_min, 4979 unsigned long uclamp_max, 4980 int cpu) 4981 { 4982 unsigned long capacity = capacity_of(cpu); 4983 unsigned long capacity_orig; 4984 bool fits, uclamp_max_fits; 4985 4986 /* 4987 * Check if the real util fits without any uclamp boost/cap applied. 4988 */ 4989 fits = fits_capacity(util, capacity); 4990 4991 if (!uclamp_is_used()) 4992 return fits; 4993 4994 /* 4995 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 4996 * uclamp_max. We only care about capacity pressure (by using 4997 * capacity_of()) for comparing against the real util. 4998 * 4999 * If a task is boosted to 1024 for example, we don't want a tiny 5000 * pressure to skew the check whether it fits a CPU or not. 5001 * 5002 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 5003 * should fit a little cpu even if there's some pressure. 5004 * 5005 * Only exception is for HW or cpufreq pressure since it has a direct impact 5006 * on available OPP of the system. 5007 * 5008 * We honour it for uclamp_min only as a drop in performance level 5009 * could result in not getting the requested minimum performance level. 5010 * 5011 * For uclamp_max, we can tolerate a drop in performance level as the 5012 * goal is to cap the task. So it's okay if it's getting less. 5013 */ 5014 capacity_orig = arch_scale_cpu_capacity(cpu); 5015 5016 /* 5017 * We want to force a task to fit a cpu as implied by uclamp_max. 5018 * But we do have some corner cases to cater for.. 5019 * 5020 * 5021 * C=z 5022 * | ___ 5023 * | C=y | | 5024 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5025 * | C=x | | | | 5026 * | ___ | | | | 5027 * | | | | | | | (util somewhere in this region) 5028 * | | | | | | | 5029 * | | | | | | | 5030 * +---------------------------------------- 5031 * CPU0 CPU1 CPU2 5032 * 5033 * In the above example if a task is capped to a specific performance 5034 * point, y, then when: 5035 * 5036 * * util = 80% of x then it does not fit on CPU0 and should migrate 5037 * to CPU1 5038 * * util = 80% of y then it is forced to fit on CPU1 to honour 5039 * uclamp_max request. 5040 * 5041 * which is what we're enforcing here. A task always fits if 5042 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5043 * the normal upmigration rules should withhold still. 5044 * 5045 * Only exception is when we are on max capacity, then we need to be 5046 * careful not to block overutilized state. This is so because: 5047 * 5048 * 1. There's no concept of capping at max_capacity! We can't go 5049 * beyond this performance level anyway. 5050 * 2. The system is being saturated when we're operating near 5051 * max capacity, it doesn't make sense to block overutilized. 5052 */ 5053 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5054 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5055 fits = fits || uclamp_max_fits; 5056 5057 /* 5058 * 5059 * C=z 5060 * | ___ (region a, capped, util >= uclamp_max) 5061 * | C=y | | 5062 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5063 * | C=x | | | | 5064 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5065 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5066 * | | | | | | | 5067 * | | | | | | | (region c, boosted, util < uclamp_min) 5068 * +---------------------------------------- 5069 * CPU0 CPU1 CPU2 5070 * 5071 * a) If util > uclamp_max, then we're capped, we don't care about 5072 * actual fitness value here. We only care if uclamp_max fits 5073 * capacity without taking margin/pressure into account. 5074 * See comment above. 5075 * 5076 * b) If uclamp_min <= util <= uclamp_max, then the normal 5077 * fits_capacity() rules apply. Except we need to ensure that we 5078 * enforce we remain within uclamp_max, see comment above. 5079 * 5080 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5081 * need to take into account the boosted value fits the CPU without 5082 * taking margin/pressure into account. 5083 * 5084 * Cases (a) and (b) are handled in the 'fits' variable already. We 5085 * just need to consider an extra check for case (c) after ensuring we 5086 * handle the case uclamp_min > uclamp_max. 5087 */ 5088 uclamp_min = min(uclamp_min, uclamp_max); 5089 if (fits && (util < uclamp_min) && 5090 (uclamp_min > get_actual_cpu_capacity(cpu))) 5091 return -1; 5092 5093 return fits; 5094 } 5095 5096 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5097 { 5098 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5099 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5100 unsigned long util = task_util_est(p); 5101 /* 5102 * Return true only if the cpu fully fits the task requirements, which 5103 * include the utilization but also the performance hints. 5104 */ 5105 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5106 } 5107 5108 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5109 { 5110 int cpu = cpu_of(rq); 5111 5112 if (!sched_asym_cpucap_active()) 5113 return; 5114 5115 /* 5116 * Affinity allows us to go somewhere higher? Or are we on biggest 5117 * available CPU already? Or do we fit into this CPU ? 5118 */ 5119 if (!p || (p->nr_cpus_allowed == 1) || 5120 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5121 task_fits_cpu(p, cpu)) { 5122 5123 rq->misfit_task_load = 0; 5124 return; 5125 } 5126 5127 /* 5128 * Make sure that misfit_task_load will not be null even if 5129 * task_h_load() returns 0. 5130 */ 5131 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5132 } 5133 5134 #else /* CONFIG_SMP */ 5135 5136 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5137 { 5138 return !cfs_rq->nr_running; 5139 } 5140 5141 #define UPDATE_TG 0x0 5142 #define SKIP_AGE_LOAD 0x0 5143 #define DO_ATTACH 0x0 5144 #define DO_DETACH 0x0 5145 5146 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5147 { 5148 cfs_rq_util_change(cfs_rq, 0); 5149 } 5150 5151 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5152 5153 static inline void 5154 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5155 static inline void 5156 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5157 5158 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf) 5159 { 5160 return 0; 5161 } 5162 5163 static inline void 5164 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5165 5166 static inline void 5167 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5168 5169 static inline void 5170 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5171 bool task_sleep) {} 5172 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5173 5174 #endif /* CONFIG_SMP */ 5175 5176 static void 5177 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5178 { 5179 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5180 s64 lag = 0; 5181 5182 se->slice = sysctl_sched_base_slice; 5183 vslice = calc_delta_fair(se->slice, se); 5184 5185 /* 5186 * Due to how V is constructed as the weighted average of entities, 5187 * adding tasks with positive lag, or removing tasks with negative lag 5188 * will move 'time' backwards, this can screw around with the lag of 5189 * other tasks. 5190 * 5191 * EEVDF: placement strategy #1 / #2 5192 */ 5193 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) { 5194 struct sched_entity *curr = cfs_rq->curr; 5195 unsigned long load; 5196 5197 lag = se->vlag; 5198 5199 /* 5200 * If we want to place a task and preserve lag, we have to 5201 * consider the effect of the new entity on the weighted 5202 * average and compensate for this, otherwise lag can quickly 5203 * evaporate. 5204 * 5205 * Lag is defined as: 5206 * 5207 * lag_i = S - s_i = w_i * (V - v_i) 5208 * 5209 * To avoid the 'w_i' term all over the place, we only track 5210 * the virtual lag: 5211 * 5212 * vl_i = V - v_i <=> v_i = V - vl_i 5213 * 5214 * And we take V to be the weighted average of all v: 5215 * 5216 * V = (\Sum w_j*v_j) / W 5217 * 5218 * Where W is: \Sum w_j 5219 * 5220 * Then, the weighted average after adding an entity with lag 5221 * vl_i is given by: 5222 * 5223 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5224 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5225 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5226 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5227 * = V - w_i*vl_i / (W + w_i) 5228 * 5229 * And the actual lag after adding an entity with vl_i is: 5230 * 5231 * vl'_i = V' - v_i 5232 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5233 * = vl_i - w_i*vl_i / (W + w_i) 5234 * 5235 * Which is strictly less than vl_i. So in order to preserve lag 5236 * we should inflate the lag before placement such that the 5237 * effective lag after placement comes out right. 5238 * 5239 * As such, invert the above relation for vl'_i to get the vl_i 5240 * we need to use such that the lag after placement is the lag 5241 * we computed before dequeue. 5242 * 5243 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5244 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5245 * 5246 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5247 * = W*vl_i 5248 * 5249 * vl_i = (W + w_i)*vl'_i / W 5250 */ 5251 load = cfs_rq->avg_load; 5252 if (curr && curr->on_rq) 5253 load += scale_load_down(curr->load.weight); 5254 5255 lag *= load + scale_load_down(se->load.weight); 5256 if (WARN_ON_ONCE(!load)) 5257 load = 1; 5258 lag = div_s64(lag, load); 5259 } 5260 5261 se->vruntime = vruntime - lag; 5262 5263 /* 5264 * When joining the competition; the existing tasks will be, 5265 * on average, halfway through their slice, as such start tasks 5266 * off with half a slice to ease into the competition. 5267 */ 5268 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5269 vslice /= 2; 5270 5271 /* 5272 * EEVDF: vd_i = ve_i + r_i/w_i 5273 */ 5274 se->deadline = se->vruntime + vslice; 5275 } 5276 5277 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5278 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5279 5280 static inline bool cfs_bandwidth_used(void); 5281 5282 static void 5283 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5284 { 5285 bool curr = cfs_rq->curr == se; 5286 5287 /* 5288 * If we're the current task, we must renormalise before calling 5289 * update_curr(). 5290 */ 5291 if (curr) 5292 place_entity(cfs_rq, se, flags); 5293 5294 update_curr(cfs_rq); 5295 5296 /* 5297 * When enqueuing a sched_entity, we must: 5298 * - Update loads to have both entity and cfs_rq synced with now. 5299 * - For group_entity, update its runnable_weight to reflect the new 5300 * h_nr_running of its group cfs_rq. 5301 * - For group_entity, update its weight to reflect the new share of 5302 * its group cfs_rq 5303 * - Add its new weight to cfs_rq->load.weight 5304 */ 5305 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5306 se_update_runnable(se); 5307 /* 5308 * XXX update_load_avg() above will have attached us to the pelt sum; 5309 * but update_cfs_group() here will re-adjust the weight and have to 5310 * undo/redo all that. Seems wasteful. 5311 */ 5312 update_cfs_group(se); 5313 5314 /* 5315 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5316 * we can place the entity. 5317 */ 5318 if (!curr) 5319 place_entity(cfs_rq, se, flags); 5320 5321 account_entity_enqueue(cfs_rq, se); 5322 5323 /* Entity has migrated, no longer consider this task hot */ 5324 if (flags & ENQUEUE_MIGRATED) 5325 se->exec_start = 0; 5326 5327 check_schedstat_required(); 5328 update_stats_enqueue_fair(cfs_rq, se, flags); 5329 if (!curr) 5330 __enqueue_entity(cfs_rq, se); 5331 se->on_rq = 1; 5332 5333 if (cfs_rq->nr_running == 1) { 5334 check_enqueue_throttle(cfs_rq); 5335 if (!throttled_hierarchy(cfs_rq)) { 5336 list_add_leaf_cfs_rq(cfs_rq); 5337 } else { 5338 #ifdef CONFIG_CFS_BANDWIDTH 5339 struct rq *rq = rq_of(cfs_rq); 5340 5341 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5342 cfs_rq->throttled_clock = rq_clock(rq); 5343 if (!cfs_rq->throttled_clock_self) 5344 cfs_rq->throttled_clock_self = rq_clock(rq); 5345 #endif 5346 } 5347 } 5348 } 5349 5350 static void __clear_buddies_next(struct sched_entity *se) 5351 { 5352 for_each_sched_entity(se) { 5353 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5354 if (cfs_rq->next != se) 5355 break; 5356 5357 cfs_rq->next = NULL; 5358 } 5359 } 5360 5361 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5362 { 5363 if (cfs_rq->next == se) 5364 __clear_buddies_next(se); 5365 } 5366 5367 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5368 5369 static void 5370 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5371 { 5372 int action = UPDATE_TG; 5373 5374 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5375 action |= DO_DETACH; 5376 5377 /* 5378 * Update run-time statistics of the 'current'. 5379 */ 5380 update_curr(cfs_rq); 5381 5382 /* 5383 * When dequeuing a sched_entity, we must: 5384 * - Update loads to have both entity and cfs_rq synced with now. 5385 * - For group_entity, update its runnable_weight to reflect the new 5386 * h_nr_running of its group cfs_rq. 5387 * - Subtract its previous weight from cfs_rq->load.weight. 5388 * - For group entity, update its weight to reflect the new share 5389 * of its group cfs_rq. 5390 */ 5391 update_load_avg(cfs_rq, se, action); 5392 se_update_runnable(se); 5393 5394 update_stats_dequeue_fair(cfs_rq, se, flags); 5395 5396 clear_buddies(cfs_rq, se); 5397 5398 update_entity_lag(cfs_rq, se); 5399 if (se != cfs_rq->curr) 5400 __dequeue_entity(cfs_rq, se); 5401 se->on_rq = 0; 5402 account_entity_dequeue(cfs_rq, se); 5403 5404 /* return excess runtime on last dequeue */ 5405 return_cfs_rq_runtime(cfs_rq); 5406 5407 update_cfs_group(se); 5408 5409 /* 5410 * Now advance min_vruntime if @se was the entity holding it back, 5411 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5412 * put back on, and if we advance min_vruntime, we'll be placed back 5413 * further than we started -- i.e. we'll be penalized. 5414 */ 5415 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5416 update_min_vruntime(cfs_rq); 5417 5418 if (cfs_rq->nr_running == 0) 5419 update_idle_cfs_rq_clock_pelt(cfs_rq); 5420 } 5421 5422 static void 5423 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5424 { 5425 clear_buddies(cfs_rq, se); 5426 5427 /* 'current' is not kept within the tree. */ 5428 if (se->on_rq) { 5429 /* 5430 * Any task has to be enqueued before it get to execute on 5431 * a CPU. So account for the time it spent waiting on the 5432 * runqueue. 5433 */ 5434 update_stats_wait_end_fair(cfs_rq, se); 5435 __dequeue_entity(cfs_rq, se); 5436 update_load_avg(cfs_rq, se, UPDATE_TG); 5437 /* 5438 * HACK, stash a copy of deadline at the point of pick in vlag, 5439 * which isn't used until dequeue. 5440 */ 5441 se->vlag = se->deadline; 5442 } 5443 5444 update_stats_curr_start(cfs_rq, se); 5445 cfs_rq->curr = se; 5446 5447 /* 5448 * Track our maximum slice length, if the CPU's load is at 5449 * least twice that of our own weight (i.e. don't track it 5450 * when there are only lesser-weight tasks around): 5451 */ 5452 if (schedstat_enabled() && 5453 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5454 struct sched_statistics *stats; 5455 5456 stats = __schedstats_from_se(se); 5457 __schedstat_set(stats->slice_max, 5458 max((u64)stats->slice_max, 5459 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5460 } 5461 5462 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5463 } 5464 5465 /* 5466 * Pick the next process, keeping these things in mind, in this order: 5467 * 1) keep things fair between processes/task groups 5468 * 2) pick the "next" process, since someone really wants that to run 5469 * 3) pick the "last" process, for cache locality 5470 * 4) do not run the "skip" process, if something else is available 5471 */ 5472 static struct sched_entity * 5473 pick_next_entity(struct cfs_rq *cfs_rq) 5474 { 5475 /* 5476 * Enabling NEXT_BUDDY will affect latency but not fairness. 5477 */ 5478 if (sched_feat(NEXT_BUDDY) && 5479 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) 5480 return cfs_rq->next; 5481 5482 return pick_eevdf(cfs_rq); 5483 } 5484 5485 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5486 5487 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5488 { 5489 /* 5490 * If still on the runqueue then deactivate_task() 5491 * was not called and update_curr() has to be done: 5492 */ 5493 if (prev->on_rq) 5494 update_curr(cfs_rq); 5495 5496 /* throttle cfs_rqs exceeding runtime */ 5497 check_cfs_rq_runtime(cfs_rq); 5498 5499 if (prev->on_rq) { 5500 update_stats_wait_start_fair(cfs_rq, prev); 5501 /* Put 'current' back into the tree. */ 5502 __enqueue_entity(cfs_rq, prev); 5503 /* in !on_rq case, update occurred at dequeue */ 5504 update_load_avg(cfs_rq, prev, 0); 5505 } 5506 cfs_rq->curr = NULL; 5507 } 5508 5509 static void 5510 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5511 { 5512 /* 5513 * Update run-time statistics of the 'current'. 5514 */ 5515 update_curr(cfs_rq); 5516 5517 /* 5518 * Ensure that runnable average is periodically updated. 5519 */ 5520 update_load_avg(cfs_rq, curr, UPDATE_TG); 5521 update_cfs_group(curr); 5522 5523 #ifdef CONFIG_SCHED_HRTICK 5524 /* 5525 * queued ticks are scheduled to match the slice, so don't bother 5526 * validating it and just reschedule. 5527 */ 5528 if (queued) { 5529 resched_curr(rq_of(cfs_rq)); 5530 return; 5531 } 5532 /* 5533 * don't let the period tick interfere with the hrtick preemption 5534 */ 5535 if (!sched_feat(DOUBLE_TICK) && 5536 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5537 return; 5538 #endif 5539 } 5540 5541 5542 /************************************************** 5543 * CFS bandwidth control machinery 5544 */ 5545 5546 #ifdef CONFIG_CFS_BANDWIDTH 5547 5548 #ifdef CONFIG_JUMP_LABEL 5549 static struct static_key __cfs_bandwidth_used; 5550 5551 static inline bool cfs_bandwidth_used(void) 5552 { 5553 return static_key_false(&__cfs_bandwidth_used); 5554 } 5555 5556 void cfs_bandwidth_usage_inc(void) 5557 { 5558 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5559 } 5560 5561 void cfs_bandwidth_usage_dec(void) 5562 { 5563 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5564 } 5565 #else /* CONFIG_JUMP_LABEL */ 5566 static bool cfs_bandwidth_used(void) 5567 { 5568 return true; 5569 } 5570 5571 void cfs_bandwidth_usage_inc(void) {} 5572 void cfs_bandwidth_usage_dec(void) {} 5573 #endif /* CONFIG_JUMP_LABEL */ 5574 5575 /* 5576 * default period for cfs group bandwidth. 5577 * default: 0.1s, units: nanoseconds 5578 */ 5579 static inline u64 default_cfs_period(void) 5580 { 5581 return 100000000ULL; 5582 } 5583 5584 static inline u64 sched_cfs_bandwidth_slice(void) 5585 { 5586 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5587 } 5588 5589 /* 5590 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5591 * directly instead of rq->clock to avoid adding additional synchronization 5592 * around rq->lock. 5593 * 5594 * requires cfs_b->lock 5595 */ 5596 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5597 { 5598 s64 runtime; 5599 5600 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5601 return; 5602 5603 cfs_b->runtime += cfs_b->quota; 5604 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5605 if (runtime > 0) { 5606 cfs_b->burst_time += runtime; 5607 cfs_b->nr_burst++; 5608 } 5609 5610 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5611 cfs_b->runtime_snap = cfs_b->runtime; 5612 } 5613 5614 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5615 { 5616 return &tg->cfs_bandwidth; 5617 } 5618 5619 /* returns 0 on failure to allocate runtime */ 5620 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5621 struct cfs_rq *cfs_rq, u64 target_runtime) 5622 { 5623 u64 min_amount, amount = 0; 5624 5625 lockdep_assert_held(&cfs_b->lock); 5626 5627 /* note: this is a positive sum as runtime_remaining <= 0 */ 5628 min_amount = target_runtime - cfs_rq->runtime_remaining; 5629 5630 if (cfs_b->quota == RUNTIME_INF) 5631 amount = min_amount; 5632 else { 5633 start_cfs_bandwidth(cfs_b); 5634 5635 if (cfs_b->runtime > 0) { 5636 amount = min(cfs_b->runtime, min_amount); 5637 cfs_b->runtime -= amount; 5638 cfs_b->idle = 0; 5639 } 5640 } 5641 5642 cfs_rq->runtime_remaining += amount; 5643 5644 return cfs_rq->runtime_remaining > 0; 5645 } 5646 5647 /* returns 0 on failure to allocate runtime */ 5648 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5649 { 5650 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5651 int ret; 5652 5653 raw_spin_lock(&cfs_b->lock); 5654 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5655 raw_spin_unlock(&cfs_b->lock); 5656 5657 return ret; 5658 } 5659 5660 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5661 { 5662 /* dock delta_exec before expiring quota (as it could span periods) */ 5663 cfs_rq->runtime_remaining -= delta_exec; 5664 5665 if (likely(cfs_rq->runtime_remaining > 0)) 5666 return; 5667 5668 if (cfs_rq->throttled) 5669 return; 5670 /* 5671 * if we're unable to extend our runtime we resched so that the active 5672 * hierarchy can be throttled 5673 */ 5674 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5675 resched_curr(rq_of(cfs_rq)); 5676 } 5677 5678 static __always_inline 5679 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5680 { 5681 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5682 return; 5683 5684 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5685 } 5686 5687 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5688 { 5689 return cfs_bandwidth_used() && cfs_rq->throttled; 5690 } 5691 5692 /* check whether cfs_rq, or any parent, is throttled */ 5693 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5694 { 5695 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5696 } 5697 5698 /* 5699 * Ensure that neither of the group entities corresponding to src_cpu or 5700 * dest_cpu are members of a throttled hierarchy when performing group 5701 * load-balance operations. 5702 */ 5703 static inline int throttled_lb_pair(struct task_group *tg, 5704 int src_cpu, int dest_cpu) 5705 { 5706 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5707 5708 src_cfs_rq = tg->cfs_rq[src_cpu]; 5709 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5710 5711 return throttled_hierarchy(src_cfs_rq) || 5712 throttled_hierarchy(dest_cfs_rq); 5713 } 5714 5715 static int tg_unthrottle_up(struct task_group *tg, void *data) 5716 { 5717 struct rq *rq = data; 5718 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5719 5720 cfs_rq->throttle_count--; 5721 if (!cfs_rq->throttle_count) { 5722 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5723 cfs_rq->throttled_clock_pelt; 5724 5725 /* Add cfs_rq with load or one or more already running entities to the list */ 5726 if (!cfs_rq_is_decayed(cfs_rq)) 5727 list_add_leaf_cfs_rq(cfs_rq); 5728 5729 if (cfs_rq->throttled_clock_self) { 5730 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5731 5732 cfs_rq->throttled_clock_self = 0; 5733 5734 if (SCHED_WARN_ON((s64)delta < 0)) 5735 delta = 0; 5736 5737 cfs_rq->throttled_clock_self_time += delta; 5738 } 5739 } 5740 5741 return 0; 5742 } 5743 5744 static int tg_throttle_down(struct task_group *tg, void *data) 5745 { 5746 struct rq *rq = data; 5747 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5748 5749 /* group is entering throttled state, stop time */ 5750 if (!cfs_rq->throttle_count) { 5751 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5752 list_del_leaf_cfs_rq(cfs_rq); 5753 5754 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5755 if (cfs_rq->nr_running) 5756 cfs_rq->throttled_clock_self = rq_clock(rq); 5757 } 5758 cfs_rq->throttle_count++; 5759 5760 return 0; 5761 } 5762 5763 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5764 { 5765 struct rq *rq = rq_of(cfs_rq); 5766 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5767 struct sched_entity *se; 5768 long task_delta, idle_task_delta, dequeue = 1; 5769 5770 raw_spin_lock(&cfs_b->lock); 5771 /* This will start the period timer if necessary */ 5772 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5773 /* 5774 * We have raced with bandwidth becoming available, and if we 5775 * actually throttled the timer might not unthrottle us for an 5776 * entire period. We additionally needed to make sure that any 5777 * subsequent check_cfs_rq_runtime calls agree not to throttle 5778 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5779 * for 1ns of runtime rather than just check cfs_b. 5780 */ 5781 dequeue = 0; 5782 } else { 5783 list_add_tail_rcu(&cfs_rq->throttled_list, 5784 &cfs_b->throttled_cfs_rq); 5785 } 5786 raw_spin_unlock(&cfs_b->lock); 5787 5788 if (!dequeue) 5789 return false; /* Throttle no longer required. */ 5790 5791 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5792 5793 /* freeze hierarchy runnable averages while throttled */ 5794 rcu_read_lock(); 5795 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5796 rcu_read_unlock(); 5797 5798 task_delta = cfs_rq->h_nr_running; 5799 idle_task_delta = cfs_rq->idle_h_nr_running; 5800 for_each_sched_entity(se) { 5801 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5802 /* throttled entity or throttle-on-deactivate */ 5803 if (!se->on_rq) 5804 goto done; 5805 5806 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5807 5808 if (cfs_rq_is_idle(group_cfs_rq(se))) 5809 idle_task_delta = cfs_rq->h_nr_running; 5810 5811 qcfs_rq->h_nr_running -= task_delta; 5812 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5813 5814 if (qcfs_rq->load.weight) { 5815 /* Avoid re-evaluating load for this entity: */ 5816 se = parent_entity(se); 5817 break; 5818 } 5819 } 5820 5821 for_each_sched_entity(se) { 5822 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5823 /* throttled entity or throttle-on-deactivate */ 5824 if (!se->on_rq) 5825 goto done; 5826 5827 update_load_avg(qcfs_rq, se, 0); 5828 se_update_runnable(se); 5829 5830 if (cfs_rq_is_idle(group_cfs_rq(se))) 5831 idle_task_delta = cfs_rq->h_nr_running; 5832 5833 qcfs_rq->h_nr_running -= task_delta; 5834 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5835 } 5836 5837 /* At this point se is NULL and we are at root level*/ 5838 sub_nr_running(rq, task_delta); 5839 5840 done: 5841 /* 5842 * Note: distribution will already see us throttled via the 5843 * throttled-list. rq->lock protects completion. 5844 */ 5845 cfs_rq->throttled = 1; 5846 SCHED_WARN_ON(cfs_rq->throttled_clock); 5847 if (cfs_rq->nr_running) 5848 cfs_rq->throttled_clock = rq_clock(rq); 5849 return true; 5850 } 5851 5852 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5853 { 5854 struct rq *rq = rq_of(cfs_rq); 5855 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5856 struct sched_entity *se; 5857 long task_delta, idle_task_delta; 5858 5859 se = cfs_rq->tg->se[cpu_of(rq)]; 5860 5861 cfs_rq->throttled = 0; 5862 5863 update_rq_clock(rq); 5864 5865 raw_spin_lock(&cfs_b->lock); 5866 if (cfs_rq->throttled_clock) { 5867 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5868 cfs_rq->throttled_clock = 0; 5869 } 5870 list_del_rcu(&cfs_rq->throttled_list); 5871 raw_spin_unlock(&cfs_b->lock); 5872 5873 /* update hierarchical throttle state */ 5874 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5875 5876 if (!cfs_rq->load.weight) { 5877 if (!cfs_rq->on_list) 5878 return; 5879 /* 5880 * Nothing to run but something to decay (on_list)? 5881 * Complete the branch. 5882 */ 5883 for_each_sched_entity(se) { 5884 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5885 break; 5886 } 5887 goto unthrottle_throttle; 5888 } 5889 5890 task_delta = cfs_rq->h_nr_running; 5891 idle_task_delta = cfs_rq->idle_h_nr_running; 5892 for_each_sched_entity(se) { 5893 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5894 5895 if (se->on_rq) 5896 break; 5897 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5898 5899 if (cfs_rq_is_idle(group_cfs_rq(se))) 5900 idle_task_delta = cfs_rq->h_nr_running; 5901 5902 qcfs_rq->h_nr_running += task_delta; 5903 qcfs_rq->idle_h_nr_running += idle_task_delta; 5904 5905 /* end evaluation on encountering a throttled cfs_rq */ 5906 if (cfs_rq_throttled(qcfs_rq)) 5907 goto unthrottle_throttle; 5908 } 5909 5910 for_each_sched_entity(se) { 5911 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5912 5913 update_load_avg(qcfs_rq, se, UPDATE_TG); 5914 se_update_runnable(se); 5915 5916 if (cfs_rq_is_idle(group_cfs_rq(se))) 5917 idle_task_delta = cfs_rq->h_nr_running; 5918 5919 qcfs_rq->h_nr_running += task_delta; 5920 qcfs_rq->idle_h_nr_running += idle_task_delta; 5921 5922 /* end evaluation on encountering a throttled cfs_rq */ 5923 if (cfs_rq_throttled(qcfs_rq)) 5924 goto unthrottle_throttle; 5925 } 5926 5927 /* At this point se is NULL and we are at root level*/ 5928 add_nr_running(rq, task_delta); 5929 5930 unthrottle_throttle: 5931 assert_list_leaf_cfs_rq(rq); 5932 5933 /* Determine whether we need to wake up potentially idle CPU: */ 5934 if (rq->curr == rq->idle && rq->cfs.nr_running) 5935 resched_curr(rq); 5936 } 5937 5938 #ifdef CONFIG_SMP 5939 static void __cfsb_csd_unthrottle(void *arg) 5940 { 5941 struct cfs_rq *cursor, *tmp; 5942 struct rq *rq = arg; 5943 struct rq_flags rf; 5944 5945 rq_lock(rq, &rf); 5946 5947 /* 5948 * Iterating over the list can trigger several call to 5949 * update_rq_clock() in unthrottle_cfs_rq(). 5950 * Do it once and skip the potential next ones. 5951 */ 5952 update_rq_clock(rq); 5953 rq_clock_start_loop_update(rq); 5954 5955 /* 5956 * Since we hold rq lock we're safe from concurrent manipulation of 5957 * the CSD list. However, this RCU critical section annotates the 5958 * fact that we pair with sched_free_group_rcu(), so that we cannot 5959 * race with group being freed in the window between removing it 5960 * from the list and advancing to the next entry in the list. 5961 */ 5962 rcu_read_lock(); 5963 5964 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 5965 throttled_csd_list) { 5966 list_del_init(&cursor->throttled_csd_list); 5967 5968 if (cfs_rq_throttled(cursor)) 5969 unthrottle_cfs_rq(cursor); 5970 } 5971 5972 rcu_read_unlock(); 5973 5974 rq_clock_stop_loop_update(rq); 5975 rq_unlock(rq, &rf); 5976 } 5977 5978 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5979 { 5980 struct rq *rq = rq_of(cfs_rq); 5981 bool first; 5982 5983 if (rq == this_rq()) { 5984 unthrottle_cfs_rq(cfs_rq); 5985 return; 5986 } 5987 5988 /* Already enqueued */ 5989 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 5990 return; 5991 5992 first = list_empty(&rq->cfsb_csd_list); 5993 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 5994 if (first) 5995 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 5996 } 5997 #else 5998 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5999 { 6000 unthrottle_cfs_rq(cfs_rq); 6001 } 6002 #endif 6003 6004 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6005 { 6006 lockdep_assert_rq_held(rq_of(cfs_rq)); 6007 6008 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 6009 cfs_rq->runtime_remaining <= 0)) 6010 return; 6011 6012 __unthrottle_cfs_rq_async(cfs_rq); 6013 } 6014 6015 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6016 { 6017 int this_cpu = smp_processor_id(); 6018 u64 runtime, remaining = 1; 6019 bool throttled = false; 6020 struct cfs_rq *cfs_rq, *tmp; 6021 struct rq_flags rf; 6022 struct rq *rq; 6023 LIST_HEAD(local_unthrottle); 6024 6025 rcu_read_lock(); 6026 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6027 throttled_list) { 6028 rq = rq_of(cfs_rq); 6029 6030 if (!remaining) { 6031 throttled = true; 6032 break; 6033 } 6034 6035 rq_lock_irqsave(rq, &rf); 6036 if (!cfs_rq_throttled(cfs_rq)) 6037 goto next; 6038 6039 /* Already queued for async unthrottle */ 6040 if (!list_empty(&cfs_rq->throttled_csd_list)) 6041 goto next; 6042 6043 /* By the above checks, this should never be true */ 6044 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 6045 6046 raw_spin_lock(&cfs_b->lock); 6047 runtime = -cfs_rq->runtime_remaining + 1; 6048 if (runtime > cfs_b->runtime) 6049 runtime = cfs_b->runtime; 6050 cfs_b->runtime -= runtime; 6051 remaining = cfs_b->runtime; 6052 raw_spin_unlock(&cfs_b->lock); 6053 6054 cfs_rq->runtime_remaining += runtime; 6055 6056 /* we check whether we're throttled above */ 6057 if (cfs_rq->runtime_remaining > 0) { 6058 if (cpu_of(rq) != this_cpu) { 6059 unthrottle_cfs_rq_async(cfs_rq); 6060 } else { 6061 /* 6062 * We currently only expect to be unthrottling 6063 * a single cfs_rq locally. 6064 */ 6065 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6066 list_add_tail(&cfs_rq->throttled_csd_list, 6067 &local_unthrottle); 6068 } 6069 } else { 6070 throttled = true; 6071 } 6072 6073 next: 6074 rq_unlock_irqrestore(rq, &rf); 6075 } 6076 6077 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6078 throttled_csd_list) { 6079 struct rq *rq = rq_of(cfs_rq); 6080 6081 rq_lock_irqsave(rq, &rf); 6082 6083 list_del_init(&cfs_rq->throttled_csd_list); 6084 6085 if (cfs_rq_throttled(cfs_rq)) 6086 unthrottle_cfs_rq(cfs_rq); 6087 6088 rq_unlock_irqrestore(rq, &rf); 6089 } 6090 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6091 6092 rcu_read_unlock(); 6093 6094 return throttled; 6095 } 6096 6097 /* 6098 * Responsible for refilling a task_group's bandwidth and unthrottling its 6099 * cfs_rqs as appropriate. If there has been no activity within the last 6100 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6101 * used to track this state. 6102 */ 6103 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6104 { 6105 int throttled; 6106 6107 /* no need to continue the timer with no bandwidth constraint */ 6108 if (cfs_b->quota == RUNTIME_INF) 6109 goto out_deactivate; 6110 6111 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6112 cfs_b->nr_periods += overrun; 6113 6114 /* Refill extra burst quota even if cfs_b->idle */ 6115 __refill_cfs_bandwidth_runtime(cfs_b); 6116 6117 /* 6118 * idle depends on !throttled (for the case of a large deficit), and if 6119 * we're going inactive then everything else can be deferred 6120 */ 6121 if (cfs_b->idle && !throttled) 6122 goto out_deactivate; 6123 6124 if (!throttled) { 6125 /* mark as potentially idle for the upcoming period */ 6126 cfs_b->idle = 1; 6127 return 0; 6128 } 6129 6130 /* account preceding periods in which throttling occurred */ 6131 cfs_b->nr_throttled += overrun; 6132 6133 /* 6134 * This check is repeated as we release cfs_b->lock while we unthrottle. 6135 */ 6136 while (throttled && cfs_b->runtime > 0) { 6137 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6138 /* we can't nest cfs_b->lock while distributing bandwidth */ 6139 throttled = distribute_cfs_runtime(cfs_b); 6140 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6141 } 6142 6143 /* 6144 * While we are ensured activity in the period following an 6145 * unthrottle, this also covers the case in which the new bandwidth is 6146 * insufficient to cover the existing bandwidth deficit. (Forcing the 6147 * timer to remain active while there are any throttled entities.) 6148 */ 6149 cfs_b->idle = 0; 6150 6151 return 0; 6152 6153 out_deactivate: 6154 return 1; 6155 } 6156 6157 /* a cfs_rq won't donate quota below this amount */ 6158 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6159 /* minimum remaining period time to redistribute slack quota */ 6160 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6161 /* how long we wait to gather additional slack before distributing */ 6162 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6163 6164 /* 6165 * Are we near the end of the current quota period? 6166 * 6167 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6168 * hrtimer base being cleared by hrtimer_start. In the case of 6169 * migrate_hrtimers, base is never cleared, so we are fine. 6170 */ 6171 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6172 { 6173 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6174 s64 remaining; 6175 6176 /* if the call-back is running a quota refresh is already occurring */ 6177 if (hrtimer_callback_running(refresh_timer)) 6178 return 1; 6179 6180 /* is a quota refresh about to occur? */ 6181 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6182 if (remaining < (s64)min_expire) 6183 return 1; 6184 6185 return 0; 6186 } 6187 6188 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6189 { 6190 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6191 6192 /* if there's a quota refresh soon don't bother with slack */ 6193 if (runtime_refresh_within(cfs_b, min_left)) 6194 return; 6195 6196 /* don't push forwards an existing deferred unthrottle */ 6197 if (cfs_b->slack_started) 6198 return; 6199 cfs_b->slack_started = true; 6200 6201 hrtimer_start(&cfs_b->slack_timer, 6202 ns_to_ktime(cfs_bandwidth_slack_period), 6203 HRTIMER_MODE_REL); 6204 } 6205 6206 /* we know any runtime found here is valid as update_curr() precedes return */ 6207 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6208 { 6209 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6210 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6211 6212 if (slack_runtime <= 0) 6213 return; 6214 6215 raw_spin_lock(&cfs_b->lock); 6216 if (cfs_b->quota != RUNTIME_INF) { 6217 cfs_b->runtime += slack_runtime; 6218 6219 /* we are under rq->lock, defer unthrottling using a timer */ 6220 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6221 !list_empty(&cfs_b->throttled_cfs_rq)) 6222 start_cfs_slack_bandwidth(cfs_b); 6223 } 6224 raw_spin_unlock(&cfs_b->lock); 6225 6226 /* even if it's not valid for return we don't want to try again */ 6227 cfs_rq->runtime_remaining -= slack_runtime; 6228 } 6229 6230 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6231 { 6232 if (!cfs_bandwidth_used()) 6233 return; 6234 6235 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 6236 return; 6237 6238 __return_cfs_rq_runtime(cfs_rq); 6239 } 6240 6241 /* 6242 * This is done with a timer (instead of inline with bandwidth return) since 6243 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6244 */ 6245 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6246 { 6247 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6248 unsigned long flags; 6249 6250 /* confirm we're still not at a refresh boundary */ 6251 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6252 cfs_b->slack_started = false; 6253 6254 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6255 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6256 return; 6257 } 6258 6259 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6260 runtime = cfs_b->runtime; 6261 6262 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6263 6264 if (!runtime) 6265 return; 6266 6267 distribute_cfs_runtime(cfs_b); 6268 } 6269 6270 /* 6271 * When a group wakes up we want to make sure that its quota is not already 6272 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6273 * runtime as update_curr() throttling can not trigger until it's on-rq. 6274 */ 6275 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6276 { 6277 if (!cfs_bandwidth_used()) 6278 return; 6279 6280 /* an active group must be handled by the update_curr()->put() path */ 6281 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6282 return; 6283 6284 /* ensure the group is not already throttled */ 6285 if (cfs_rq_throttled(cfs_rq)) 6286 return; 6287 6288 /* update runtime allocation */ 6289 account_cfs_rq_runtime(cfs_rq, 0); 6290 if (cfs_rq->runtime_remaining <= 0) 6291 throttle_cfs_rq(cfs_rq); 6292 } 6293 6294 static void sync_throttle(struct task_group *tg, int cpu) 6295 { 6296 struct cfs_rq *pcfs_rq, *cfs_rq; 6297 6298 if (!cfs_bandwidth_used()) 6299 return; 6300 6301 if (!tg->parent) 6302 return; 6303 6304 cfs_rq = tg->cfs_rq[cpu]; 6305 pcfs_rq = tg->parent->cfs_rq[cpu]; 6306 6307 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6308 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6309 } 6310 6311 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6312 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6313 { 6314 if (!cfs_bandwidth_used()) 6315 return false; 6316 6317 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6318 return false; 6319 6320 /* 6321 * it's possible for a throttled entity to be forced into a running 6322 * state (e.g. set_curr_task), in this case we're finished. 6323 */ 6324 if (cfs_rq_throttled(cfs_rq)) 6325 return true; 6326 6327 return throttle_cfs_rq(cfs_rq); 6328 } 6329 6330 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6331 { 6332 struct cfs_bandwidth *cfs_b = 6333 container_of(timer, struct cfs_bandwidth, slack_timer); 6334 6335 do_sched_cfs_slack_timer(cfs_b); 6336 6337 return HRTIMER_NORESTART; 6338 } 6339 6340 extern const u64 max_cfs_quota_period; 6341 6342 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6343 { 6344 struct cfs_bandwidth *cfs_b = 6345 container_of(timer, struct cfs_bandwidth, period_timer); 6346 unsigned long flags; 6347 int overrun; 6348 int idle = 0; 6349 int count = 0; 6350 6351 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6352 for (;;) { 6353 overrun = hrtimer_forward_now(timer, cfs_b->period); 6354 if (!overrun) 6355 break; 6356 6357 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6358 6359 if (++count > 3) { 6360 u64 new, old = ktime_to_ns(cfs_b->period); 6361 6362 /* 6363 * Grow period by a factor of 2 to avoid losing precision. 6364 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6365 * to fail. 6366 */ 6367 new = old * 2; 6368 if (new < max_cfs_quota_period) { 6369 cfs_b->period = ns_to_ktime(new); 6370 cfs_b->quota *= 2; 6371 cfs_b->burst *= 2; 6372 6373 pr_warn_ratelimited( 6374 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6375 smp_processor_id(), 6376 div_u64(new, NSEC_PER_USEC), 6377 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6378 } else { 6379 pr_warn_ratelimited( 6380 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6381 smp_processor_id(), 6382 div_u64(old, NSEC_PER_USEC), 6383 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6384 } 6385 6386 /* reset count so we don't come right back in here */ 6387 count = 0; 6388 } 6389 } 6390 if (idle) 6391 cfs_b->period_active = 0; 6392 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6393 6394 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6395 } 6396 6397 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6398 { 6399 raw_spin_lock_init(&cfs_b->lock); 6400 cfs_b->runtime = 0; 6401 cfs_b->quota = RUNTIME_INF; 6402 cfs_b->period = ns_to_ktime(default_cfs_period()); 6403 cfs_b->burst = 0; 6404 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6405 6406 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6407 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6408 cfs_b->period_timer.function = sched_cfs_period_timer; 6409 6410 /* Add a random offset so that timers interleave */ 6411 hrtimer_set_expires(&cfs_b->period_timer, 6412 get_random_u32_below(cfs_b->period)); 6413 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6414 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6415 cfs_b->slack_started = false; 6416 } 6417 6418 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6419 { 6420 cfs_rq->runtime_enabled = 0; 6421 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6422 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6423 } 6424 6425 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6426 { 6427 lockdep_assert_held(&cfs_b->lock); 6428 6429 if (cfs_b->period_active) 6430 return; 6431 6432 cfs_b->period_active = 1; 6433 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6434 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6435 } 6436 6437 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6438 { 6439 int __maybe_unused i; 6440 6441 /* init_cfs_bandwidth() was not called */ 6442 if (!cfs_b->throttled_cfs_rq.next) 6443 return; 6444 6445 hrtimer_cancel(&cfs_b->period_timer); 6446 hrtimer_cancel(&cfs_b->slack_timer); 6447 6448 /* 6449 * It is possible that we still have some cfs_rq's pending on a CSD 6450 * list, though this race is very rare. In order for this to occur, we 6451 * must have raced with the last task leaving the group while there 6452 * exist throttled cfs_rq(s), and the period_timer must have queued the 6453 * CSD item but the remote cpu has not yet processed it. To handle this, 6454 * we can simply flush all pending CSD work inline here. We're 6455 * guaranteed at this point that no additional cfs_rq of this group can 6456 * join a CSD list. 6457 */ 6458 #ifdef CONFIG_SMP 6459 for_each_possible_cpu(i) { 6460 struct rq *rq = cpu_rq(i); 6461 unsigned long flags; 6462 6463 if (list_empty(&rq->cfsb_csd_list)) 6464 continue; 6465 6466 local_irq_save(flags); 6467 __cfsb_csd_unthrottle(rq); 6468 local_irq_restore(flags); 6469 } 6470 #endif 6471 } 6472 6473 /* 6474 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6475 * 6476 * The race is harmless, since modifying bandwidth settings of unhooked group 6477 * bits doesn't do much. 6478 */ 6479 6480 /* cpu online callback */ 6481 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6482 { 6483 struct task_group *tg; 6484 6485 lockdep_assert_rq_held(rq); 6486 6487 rcu_read_lock(); 6488 list_for_each_entry_rcu(tg, &task_groups, list) { 6489 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6490 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6491 6492 raw_spin_lock(&cfs_b->lock); 6493 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6494 raw_spin_unlock(&cfs_b->lock); 6495 } 6496 rcu_read_unlock(); 6497 } 6498 6499 /* cpu offline callback */ 6500 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6501 { 6502 struct task_group *tg; 6503 6504 lockdep_assert_rq_held(rq); 6505 6506 /* 6507 * The rq clock has already been updated in the 6508 * set_rq_offline(), so we should skip updating 6509 * the rq clock again in unthrottle_cfs_rq(). 6510 */ 6511 rq_clock_start_loop_update(rq); 6512 6513 rcu_read_lock(); 6514 list_for_each_entry_rcu(tg, &task_groups, list) { 6515 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6516 6517 if (!cfs_rq->runtime_enabled) 6518 continue; 6519 6520 /* 6521 * clock_task is not advancing so we just need to make sure 6522 * there's some valid quota amount 6523 */ 6524 cfs_rq->runtime_remaining = 1; 6525 /* 6526 * Offline rq is schedulable till CPU is completely disabled 6527 * in take_cpu_down(), so we prevent new cfs throttling here. 6528 */ 6529 cfs_rq->runtime_enabled = 0; 6530 6531 if (cfs_rq_throttled(cfs_rq)) 6532 unthrottle_cfs_rq(cfs_rq); 6533 } 6534 rcu_read_unlock(); 6535 6536 rq_clock_stop_loop_update(rq); 6537 } 6538 6539 bool cfs_task_bw_constrained(struct task_struct *p) 6540 { 6541 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6542 6543 if (!cfs_bandwidth_used()) 6544 return false; 6545 6546 if (cfs_rq->runtime_enabled || 6547 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6548 return true; 6549 6550 return false; 6551 } 6552 6553 #ifdef CONFIG_NO_HZ_FULL 6554 /* called from pick_next_task_fair() */ 6555 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6556 { 6557 int cpu = cpu_of(rq); 6558 6559 if (!sched_feat(HZ_BW) || !cfs_bandwidth_used()) 6560 return; 6561 6562 if (!tick_nohz_full_cpu(cpu)) 6563 return; 6564 6565 if (rq->nr_running != 1) 6566 return; 6567 6568 /* 6569 * We know there is only one task runnable and we've just picked it. The 6570 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6571 * be otherwise able to stop the tick. Just need to check if we are using 6572 * bandwidth control. 6573 */ 6574 if (cfs_task_bw_constrained(p)) 6575 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6576 } 6577 #endif 6578 6579 #else /* CONFIG_CFS_BANDWIDTH */ 6580 6581 static inline bool cfs_bandwidth_used(void) 6582 { 6583 return false; 6584 } 6585 6586 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6587 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6588 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6589 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6590 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6591 6592 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6593 { 6594 return 0; 6595 } 6596 6597 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6598 { 6599 return 0; 6600 } 6601 6602 static inline int throttled_lb_pair(struct task_group *tg, 6603 int src_cpu, int dest_cpu) 6604 { 6605 return 0; 6606 } 6607 6608 #ifdef CONFIG_FAIR_GROUP_SCHED 6609 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6610 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6611 #endif 6612 6613 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6614 { 6615 return NULL; 6616 } 6617 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6618 static inline void update_runtime_enabled(struct rq *rq) {} 6619 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6620 #ifdef CONFIG_CGROUP_SCHED 6621 bool cfs_task_bw_constrained(struct task_struct *p) 6622 { 6623 return false; 6624 } 6625 #endif 6626 #endif /* CONFIG_CFS_BANDWIDTH */ 6627 6628 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6629 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6630 #endif 6631 6632 /************************************************** 6633 * CFS operations on tasks: 6634 */ 6635 6636 #ifdef CONFIG_SCHED_HRTICK 6637 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6638 { 6639 struct sched_entity *se = &p->se; 6640 6641 SCHED_WARN_ON(task_rq(p) != rq); 6642 6643 if (rq->cfs.h_nr_running > 1) { 6644 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6645 u64 slice = se->slice; 6646 s64 delta = slice - ran; 6647 6648 if (delta < 0) { 6649 if (task_current(rq, p)) 6650 resched_curr(rq); 6651 return; 6652 } 6653 hrtick_start(rq, delta); 6654 } 6655 } 6656 6657 /* 6658 * called from enqueue/dequeue and updates the hrtick when the 6659 * current task is from our class and nr_running is low enough 6660 * to matter. 6661 */ 6662 static void hrtick_update(struct rq *rq) 6663 { 6664 struct task_struct *curr = rq->curr; 6665 6666 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6667 return; 6668 6669 hrtick_start_fair(rq, curr); 6670 } 6671 #else /* !CONFIG_SCHED_HRTICK */ 6672 static inline void 6673 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6674 { 6675 } 6676 6677 static inline void hrtick_update(struct rq *rq) 6678 { 6679 } 6680 #endif 6681 6682 #ifdef CONFIG_SMP 6683 static inline bool cpu_overutilized(int cpu) 6684 { 6685 unsigned long rq_util_min, rq_util_max; 6686 6687 if (!sched_energy_enabled()) 6688 return false; 6689 6690 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6691 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6692 6693 /* Return true only if the utilization doesn't fit CPU's capacity */ 6694 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6695 } 6696 6697 /* 6698 * overutilized value make sense only if EAS is enabled 6699 */ 6700 static inline bool is_rd_overutilized(struct root_domain *rd) 6701 { 6702 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6703 } 6704 6705 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6706 { 6707 if (!sched_energy_enabled()) 6708 return; 6709 6710 WRITE_ONCE(rd->overutilized, flag); 6711 trace_sched_overutilized_tp(rd, flag); 6712 } 6713 6714 static inline void check_update_overutilized_status(struct rq *rq) 6715 { 6716 /* 6717 * overutilized field is used for load balancing decisions only 6718 * if energy aware scheduler is being used 6719 */ 6720 6721 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6722 set_rd_overutilized(rq->rd, 1); 6723 } 6724 #else 6725 static inline void check_update_overutilized_status(struct rq *rq) { } 6726 #endif 6727 6728 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6729 static int sched_idle_rq(struct rq *rq) 6730 { 6731 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6732 rq->nr_running); 6733 } 6734 6735 #ifdef CONFIG_SMP 6736 static int sched_idle_cpu(int cpu) 6737 { 6738 return sched_idle_rq(cpu_rq(cpu)); 6739 } 6740 #endif 6741 6742 /* 6743 * The enqueue_task method is called before nr_running is 6744 * increased. Here we update the fair scheduling stats and 6745 * then put the task into the rbtree: 6746 */ 6747 static void 6748 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6749 { 6750 struct cfs_rq *cfs_rq; 6751 struct sched_entity *se = &p->se; 6752 int idle_h_nr_running = task_has_idle_policy(p); 6753 int task_new = !(flags & ENQUEUE_WAKEUP); 6754 6755 /* 6756 * The code below (indirectly) updates schedutil which looks at 6757 * the cfs_rq utilization to select a frequency. 6758 * Let's add the task's estimated utilization to the cfs_rq's 6759 * estimated utilization, before we update schedutil. 6760 */ 6761 util_est_enqueue(&rq->cfs, p); 6762 6763 /* 6764 * If in_iowait is set, the code below may not trigger any cpufreq 6765 * utilization updates, so do it here explicitly with the IOWAIT flag 6766 * passed. 6767 */ 6768 if (p->in_iowait) 6769 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6770 6771 for_each_sched_entity(se) { 6772 if (se->on_rq) 6773 break; 6774 cfs_rq = cfs_rq_of(se); 6775 enqueue_entity(cfs_rq, se, flags); 6776 6777 cfs_rq->h_nr_running++; 6778 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6779 6780 if (cfs_rq_is_idle(cfs_rq)) 6781 idle_h_nr_running = 1; 6782 6783 /* end evaluation on encountering a throttled cfs_rq */ 6784 if (cfs_rq_throttled(cfs_rq)) 6785 goto enqueue_throttle; 6786 6787 flags = ENQUEUE_WAKEUP; 6788 } 6789 6790 for_each_sched_entity(se) { 6791 cfs_rq = cfs_rq_of(se); 6792 6793 update_load_avg(cfs_rq, se, UPDATE_TG); 6794 se_update_runnable(se); 6795 update_cfs_group(se); 6796 6797 cfs_rq->h_nr_running++; 6798 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6799 6800 if (cfs_rq_is_idle(cfs_rq)) 6801 idle_h_nr_running = 1; 6802 6803 /* end evaluation on encountering a throttled cfs_rq */ 6804 if (cfs_rq_throttled(cfs_rq)) 6805 goto enqueue_throttle; 6806 } 6807 6808 /* At this point se is NULL and we are at root level*/ 6809 add_nr_running(rq, 1); 6810 6811 /* 6812 * Since new tasks are assigned an initial util_avg equal to 6813 * half of the spare capacity of their CPU, tiny tasks have the 6814 * ability to cross the overutilized threshold, which will 6815 * result in the load balancer ruining all the task placement 6816 * done by EAS. As a way to mitigate that effect, do not account 6817 * for the first enqueue operation of new tasks during the 6818 * overutilized flag detection. 6819 * 6820 * A better way of solving this problem would be to wait for 6821 * the PELT signals of tasks to converge before taking them 6822 * into account, but that is not straightforward to implement, 6823 * and the following generally works well enough in practice. 6824 */ 6825 if (!task_new) 6826 check_update_overutilized_status(rq); 6827 6828 enqueue_throttle: 6829 assert_list_leaf_cfs_rq(rq); 6830 6831 hrtick_update(rq); 6832 } 6833 6834 static void set_next_buddy(struct sched_entity *se); 6835 6836 /* 6837 * The dequeue_task method is called before nr_running is 6838 * decreased. We remove the task from the rbtree and 6839 * update the fair scheduling stats: 6840 */ 6841 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6842 { 6843 struct cfs_rq *cfs_rq; 6844 struct sched_entity *se = &p->se; 6845 int task_sleep = flags & DEQUEUE_SLEEP; 6846 int idle_h_nr_running = task_has_idle_policy(p); 6847 bool was_sched_idle = sched_idle_rq(rq); 6848 6849 util_est_dequeue(&rq->cfs, p); 6850 6851 for_each_sched_entity(se) { 6852 cfs_rq = cfs_rq_of(se); 6853 dequeue_entity(cfs_rq, se, flags); 6854 6855 cfs_rq->h_nr_running--; 6856 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6857 6858 if (cfs_rq_is_idle(cfs_rq)) 6859 idle_h_nr_running = 1; 6860 6861 /* end evaluation on encountering a throttled cfs_rq */ 6862 if (cfs_rq_throttled(cfs_rq)) 6863 goto dequeue_throttle; 6864 6865 /* Don't dequeue parent if it has other entities besides us */ 6866 if (cfs_rq->load.weight) { 6867 /* Avoid re-evaluating load for this entity: */ 6868 se = parent_entity(se); 6869 /* 6870 * Bias pick_next to pick a task from this cfs_rq, as 6871 * p is sleeping when it is within its sched_slice. 6872 */ 6873 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 6874 set_next_buddy(se); 6875 break; 6876 } 6877 flags |= DEQUEUE_SLEEP; 6878 } 6879 6880 for_each_sched_entity(se) { 6881 cfs_rq = cfs_rq_of(se); 6882 6883 update_load_avg(cfs_rq, se, UPDATE_TG); 6884 se_update_runnable(se); 6885 update_cfs_group(se); 6886 6887 cfs_rq->h_nr_running--; 6888 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6889 6890 if (cfs_rq_is_idle(cfs_rq)) 6891 idle_h_nr_running = 1; 6892 6893 /* end evaluation on encountering a throttled cfs_rq */ 6894 if (cfs_rq_throttled(cfs_rq)) 6895 goto dequeue_throttle; 6896 6897 } 6898 6899 /* At this point se is NULL and we are at root level*/ 6900 sub_nr_running(rq, 1); 6901 6902 /* balance early to pull high priority tasks */ 6903 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 6904 rq->next_balance = jiffies; 6905 6906 dequeue_throttle: 6907 util_est_update(&rq->cfs, p, task_sleep); 6908 hrtick_update(rq); 6909 } 6910 6911 #ifdef CONFIG_SMP 6912 6913 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 6914 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6915 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 6916 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 6917 6918 #ifdef CONFIG_NO_HZ_COMMON 6919 6920 static struct { 6921 cpumask_var_t idle_cpus_mask; 6922 atomic_t nr_cpus; 6923 int has_blocked; /* Idle CPUS has blocked load */ 6924 int needs_update; /* Newly idle CPUs need their next_balance collated */ 6925 unsigned long next_balance; /* in jiffy units */ 6926 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 6927 } nohz ____cacheline_aligned; 6928 6929 #endif /* CONFIG_NO_HZ_COMMON */ 6930 6931 static unsigned long cpu_load(struct rq *rq) 6932 { 6933 return cfs_rq_load_avg(&rq->cfs); 6934 } 6935 6936 /* 6937 * cpu_load_without - compute CPU load without any contributions from *p 6938 * @cpu: the CPU which load is requested 6939 * @p: the task which load should be discounted 6940 * 6941 * The load of a CPU is defined by the load of tasks currently enqueued on that 6942 * CPU as well as tasks which are currently sleeping after an execution on that 6943 * CPU. 6944 * 6945 * This method returns the load of the specified CPU by discounting the load of 6946 * the specified task, whenever the task is currently contributing to the CPU 6947 * load. 6948 */ 6949 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 6950 { 6951 struct cfs_rq *cfs_rq; 6952 unsigned int load; 6953 6954 /* Task has no contribution or is new */ 6955 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6956 return cpu_load(rq); 6957 6958 cfs_rq = &rq->cfs; 6959 load = READ_ONCE(cfs_rq->avg.load_avg); 6960 6961 /* Discount task's util from CPU's util */ 6962 lsub_positive(&load, task_h_load(p)); 6963 6964 return load; 6965 } 6966 6967 static unsigned long cpu_runnable(struct rq *rq) 6968 { 6969 return cfs_rq_runnable_avg(&rq->cfs); 6970 } 6971 6972 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 6973 { 6974 struct cfs_rq *cfs_rq; 6975 unsigned int runnable; 6976 6977 /* Task has no contribution or is new */ 6978 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6979 return cpu_runnable(rq); 6980 6981 cfs_rq = &rq->cfs; 6982 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 6983 6984 /* Discount task's runnable from CPU's runnable */ 6985 lsub_positive(&runnable, p->se.avg.runnable_avg); 6986 6987 return runnable; 6988 } 6989 6990 static unsigned long capacity_of(int cpu) 6991 { 6992 return cpu_rq(cpu)->cpu_capacity; 6993 } 6994 6995 static void record_wakee(struct task_struct *p) 6996 { 6997 /* 6998 * Only decay a single time; tasks that have less then 1 wakeup per 6999 * jiffy will not have built up many flips. 7000 */ 7001 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7002 current->wakee_flips >>= 1; 7003 current->wakee_flip_decay_ts = jiffies; 7004 } 7005 7006 if (current->last_wakee != p) { 7007 current->last_wakee = p; 7008 current->wakee_flips++; 7009 } 7010 } 7011 7012 /* 7013 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7014 * 7015 * A waker of many should wake a different task than the one last awakened 7016 * at a frequency roughly N times higher than one of its wakees. 7017 * 7018 * In order to determine whether we should let the load spread vs consolidating 7019 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7020 * partner, and a factor of lls_size higher frequency in the other. 7021 * 7022 * With both conditions met, we can be relatively sure that the relationship is 7023 * non-monogamous, with partner count exceeding socket size. 7024 * 7025 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7026 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7027 * socket size. 7028 */ 7029 static int wake_wide(struct task_struct *p) 7030 { 7031 unsigned int master = current->wakee_flips; 7032 unsigned int slave = p->wakee_flips; 7033 int factor = __this_cpu_read(sd_llc_size); 7034 7035 if (master < slave) 7036 swap(master, slave); 7037 if (slave < factor || master < slave * factor) 7038 return 0; 7039 return 1; 7040 } 7041 7042 /* 7043 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7044 * soonest. For the purpose of speed we only consider the waking and previous 7045 * CPU. 7046 * 7047 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7048 * cache-affine and is (or will be) idle. 7049 * 7050 * wake_affine_weight() - considers the weight to reflect the average 7051 * scheduling latency of the CPUs. This seems to work 7052 * for the overloaded case. 7053 */ 7054 static int 7055 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7056 { 7057 /* 7058 * If this_cpu is idle, it implies the wakeup is from interrupt 7059 * context. Only allow the move if cache is shared. Otherwise an 7060 * interrupt intensive workload could force all tasks onto one 7061 * node depending on the IO topology or IRQ affinity settings. 7062 * 7063 * If the prev_cpu is idle and cache affine then avoid a migration. 7064 * There is no guarantee that the cache hot data from an interrupt 7065 * is more important than cache hot data on the prev_cpu and from 7066 * a cpufreq perspective, it's better to have higher utilisation 7067 * on one CPU. 7068 */ 7069 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7070 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7071 7072 if (sync && cpu_rq(this_cpu)->nr_running == 1) 7073 return this_cpu; 7074 7075 if (available_idle_cpu(prev_cpu)) 7076 return prev_cpu; 7077 7078 return nr_cpumask_bits; 7079 } 7080 7081 static int 7082 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7083 int this_cpu, int prev_cpu, int sync) 7084 { 7085 s64 this_eff_load, prev_eff_load; 7086 unsigned long task_load; 7087 7088 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7089 7090 if (sync) { 7091 unsigned long current_load = task_h_load(current); 7092 7093 if (current_load > this_eff_load) 7094 return this_cpu; 7095 7096 this_eff_load -= current_load; 7097 } 7098 7099 task_load = task_h_load(p); 7100 7101 this_eff_load += task_load; 7102 if (sched_feat(WA_BIAS)) 7103 this_eff_load *= 100; 7104 this_eff_load *= capacity_of(prev_cpu); 7105 7106 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7107 prev_eff_load -= task_load; 7108 if (sched_feat(WA_BIAS)) 7109 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7110 prev_eff_load *= capacity_of(this_cpu); 7111 7112 /* 7113 * If sync, adjust the weight of prev_eff_load such that if 7114 * prev_eff == this_eff that select_idle_sibling() will consider 7115 * stacking the wakee on top of the waker if no other CPU is 7116 * idle. 7117 */ 7118 if (sync) 7119 prev_eff_load += 1; 7120 7121 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7122 } 7123 7124 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7125 int this_cpu, int prev_cpu, int sync) 7126 { 7127 int target = nr_cpumask_bits; 7128 7129 if (sched_feat(WA_IDLE)) 7130 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7131 7132 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7133 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7134 7135 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7136 if (target != this_cpu) 7137 return prev_cpu; 7138 7139 schedstat_inc(sd->ttwu_move_affine); 7140 schedstat_inc(p->stats.nr_wakeups_affine); 7141 return target; 7142 } 7143 7144 static struct sched_group * 7145 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7146 7147 /* 7148 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7149 */ 7150 static int 7151 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7152 { 7153 unsigned long load, min_load = ULONG_MAX; 7154 unsigned int min_exit_latency = UINT_MAX; 7155 u64 latest_idle_timestamp = 0; 7156 int least_loaded_cpu = this_cpu; 7157 int shallowest_idle_cpu = -1; 7158 int i; 7159 7160 /* Check if we have any choice: */ 7161 if (group->group_weight == 1) 7162 return cpumask_first(sched_group_span(group)); 7163 7164 /* Traverse only the allowed CPUs */ 7165 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7166 struct rq *rq = cpu_rq(i); 7167 7168 if (!sched_core_cookie_match(rq, p)) 7169 continue; 7170 7171 if (sched_idle_cpu(i)) 7172 return i; 7173 7174 if (available_idle_cpu(i)) { 7175 struct cpuidle_state *idle = idle_get_state(rq); 7176 if (idle && idle->exit_latency < min_exit_latency) { 7177 /* 7178 * We give priority to a CPU whose idle state 7179 * has the smallest exit latency irrespective 7180 * of any idle timestamp. 7181 */ 7182 min_exit_latency = idle->exit_latency; 7183 latest_idle_timestamp = rq->idle_stamp; 7184 shallowest_idle_cpu = i; 7185 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7186 rq->idle_stamp > latest_idle_timestamp) { 7187 /* 7188 * If equal or no active idle state, then 7189 * the most recently idled CPU might have 7190 * a warmer cache. 7191 */ 7192 latest_idle_timestamp = rq->idle_stamp; 7193 shallowest_idle_cpu = i; 7194 } 7195 } else if (shallowest_idle_cpu == -1) { 7196 load = cpu_load(cpu_rq(i)); 7197 if (load < min_load) { 7198 min_load = load; 7199 least_loaded_cpu = i; 7200 } 7201 } 7202 } 7203 7204 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7205 } 7206 7207 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7208 int cpu, int prev_cpu, int sd_flag) 7209 { 7210 int new_cpu = cpu; 7211 7212 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7213 return prev_cpu; 7214 7215 /* 7216 * We need task's util for cpu_util_without, sync it up to 7217 * prev_cpu's last_update_time. 7218 */ 7219 if (!(sd_flag & SD_BALANCE_FORK)) 7220 sync_entity_load_avg(&p->se); 7221 7222 while (sd) { 7223 struct sched_group *group; 7224 struct sched_domain *tmp; 7225 int weight; 7226 7227 if (!(sd->flags & sd_flag)) { 7228 sd = sd->child; 7229 continue; 7230 } 7231 7232 group = sched_balance_find_dst_group(sd, p, cpu); 7233 if (!group) { 7234 sd = sd->child; 7235 continue; 7236 } 7237 7238 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7239 if (new_cpu == cpu) { 7240 /* Now try balancing at a lower domain level of 'cpu': */ 7241 sd = sd->child; 7242 continue; 7243 } 7244 7245 /* Now try balancing at a lower domain level of 'new_cpu': */ 7246 cpu = new_cpu; 7247 weight = sd->span_weight; 7248 sd = NULL; 7249 for_each_domain(cpu, tmp) { 7250 if (weight <= tmp->span_weight) 7251 break; 7252 if (tmp->flags & sd_flag) 7253 sd = tmp; 7254 } 7255 } 7256 7257 return new_cpu; 7258 } 7259 7260 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7261 { 7262 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7263 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7264 return cpu; 7265 7266 return -1; 7267 } 7268 7269 #ifdef CONFIG_SCHED_SMT 7270 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7271 EXPORT_SYMBOL_GPL(sched_smt_present); 7272 7273 static inline void set_idle_cores(int cpu, int val) 7274 { 7275 struct sched_domain_shared *sds; 7276 7277 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7278 if (sds) 7279 WRITE_ONCE(sds->has_idle_cores, val); 7280 } 7281 7282 static inline bool test_idle_cores(int cpu) 7283 { 7284 struct sched_domain_shared *sds; 7285 7286 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7287 if (sds) 7288 return READ_ONCE(sds->has_idle_cores); 7289 7290 return false; 7291 } 7292 7293 /* 7294 * Scans the local SMT mask to see if the entire core is idle, and records this 7295 * information in sd_llc_shared->has_idle_cores. 7296 * 7297 * Since SMT siblings share all cache levels, inspecting this limited remote 7298 * state should be fairly cheap. 7299 */ 7300 void __update_idle_core(struct rq *rq) 7301 { 7302 int core = cpu_of(rq); 7303 int cpu; 7304 7305 rcu_read_lock(); 7306 if (test_idle_cores(core)) 7307 goto unlock; 7308 7309 for_each_cpu(cpu, cpu_smt_mask(core)) { 7310 if (cpu == core) 7311 continue; 7312 7313 if (!available_idle_cpu(cpu)) 7314 goto unlock; 7315 } 7316 7317 set_idle_cores(core, 1); 7318 unlock: 7319 rcu_read_unlock(); 7320 } 7321 7322 /* 7323 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7324 * there are no idle cores left in the system; tracked through 7325 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7326 */ 7327 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7328 { 7329 bool idle = true; 7330 int cpu; 7331 7332 for_each_cpu(cpu, cpu_smt_mask(core)) { 7333 if (!available_idle_cpu(cpu)) { 7334 idle = false; 7335 if (*idle_cpu == -1) { 7336 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7337 *idle_cpu = cpu; 7338 break; 7339 } 7340 continue; 7341 } 7342 break; 7343 } 7344 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7345 *idle_cpu = cpu; 7346 } 7347 7348 if (idle) 7349 return core; 7350 7351 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7352 return -1; 7353 } 7354 7355 /* 7356 * Scan the local SMT mask for idle CPUs. 7357 */ 7358 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7359 { 7360 int cpu; 7361 7362 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7363 if (cpu == target) 7364 continue; 7365 /* 7366 * Check if the CPU is in the LLC scheduling domain of @target. 7367 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7368 */ 7369 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7370 continue; 7371 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7372 return cpu; 7373 } 7374 7375 return -1; 7376 } 7377 7378 #else /* CONFIG_SCHED_SMT */ 7379 7380 static inline void set_idle_cores(int cpu, int val) 7381 { 7382 } 7383 7384 static inline bool test_idle_cores(int cpu) 7385 { 7386 return false; 7387 } 7388 7389 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7390 { 7391 return __select_idle_cpu(core, p); 7392 } 7393 7394 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7395 { 7396 return -1; 7397 } 7398 7399 #endif /* CONFIG_SCHED_SMT */ 7400 7401 /* 7402 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7403 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7404 * average idle time for this rq (as found in rq->avg_idle). 7405 */ 7406 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7407 { 7408 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7409 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7410 struct sched_domain_shared *sd_share; 7411 7412 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7413 7414 if (sched_feat(SIS_UTIL)) { 7415 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7416 if (sd_share) { 7417 /* because !--nr is the condition to stop scan */ 7418 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7419 /* overloaded LLC is unlikely to have idle cpu/core */ 7420 if (nr == 1) 7421 return -1; 7422 } 7423 } 7424 7425 if (static_branch_unlikely(&sched_cluster_active)) { 7426 struct sched_group *sg = sd->groups; 7427 7428 if (sg->flags & SD_CLUSTER) { 7429 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7430 if (!cpumask_test_cpu(cpu, cpus)) 7431 continue; 7432 7433 if (has_idle_core) { 7434 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7435 if ((unsigned int)i < nr_cpumask_bits) 7436 return i; 7437 } else { 7438 if (--nr <= 0) 7439 return -1; 7440 idle_cpu = __select_idle_cpu(cpu, p); 7441 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7442 return idle_cpu; 7443 } 7444 } 7445 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7446 } 7447 } 7448 7449 for_each_cpu_wrap(cpu, cpus, target + 1) { 7450 if (has_idle_core) { 7451 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7452 if ((unsigned int)i < nr_cpumask_bits) 7453 return i; 7454 7455 } else { 7456 if (--nr <= 0) 7457 return -1; 7458 idle_cpu = __select_idle_cpu(cpu, p); 7459 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7460 break; 7461 } 7462 } 7463 7464 if (has_idle_core) 7465 set_idle_cores(target, false); 7466 7467 return idle_cpu; 7468 } 7469 7470 /* 7471 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7472 * the task fits. If no CPU is big enough, but there are idle ones, try to 7473 * maximize capacity. 7474 */ 7475 static int 7476 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7477 { 7478 unsigned long task_util, util_min, util_max, best_cap = 0; 7479 int fits, best_fits = 0; 7480 int cpu, best_cpu = -1; 7481 struct cpumask *cpus; 7482 7483 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7484 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7485 7486 task_util = task_util_est(p); 7487 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7488 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7489 7490 for_each_cpu_wrap(cpu, cpus, target) { 7491 unsigned long cpu_cap = capacity_of(cpu); 7492 7493 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7494 continue; 7495 7496 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7497 7498 /* This CPU fits with all requirements */ 7499 if (fits > 0) 7500 return cpu; 7501 /* 7502 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7503 * Look for the CPU with best capacity. 7504 */ 7505 else if (fits < 0) 7506 cpu_cap = get_actual_cpu_capacity(cpu); 7507 7508 /* 7509 * First, select CPU which fits better (-1 being better than 0). 7510 * Then, select the one with best capacity at same level. 7511 */ 7512 if ((fits < best_fits) || 7513 ((fits == best_fits) && (cpu_cap > best_cap))) { 7514 best_cap = cpu_cap; 7515 best_cpu = cpu; 7516 best_fits = fits; 7517 } 7518 } 7519 7520 return best_cpu; 7521 } 7522 7523 static inline bool asym_fits_cpu(unsigned long util, 7524 unsigned long util_min, 7525 unsigned long util_max, 7526 int cpu) 7527 { 7528 if (sched_asym_cpucap_active()) 7529 /* 7530 * Return true only if the cpu fully fits the task requirements 7531 * which include the utilization and the performance hints. 7532 */ 7533 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7534 7535 return true; 7536 } 7537 7538 /* 7539 * Try and locate an idle core/thread in the LLC cache domain. 7540 */ 7541 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7542 { 7543 bool has_idle_core = false; 7544 struct sched_domain *sd; 7545 unsigned long task_util, util_min, util_max; 7546 int i, recent_used_cpu, prev_aff = -1; 7547 7548 /* 7549 * On asymmetric system, update task utilization because we will check 7550 * that the task fits with CPU's capacity. 7551 */ 7552 if (sched_asym_cpucap_active()) { 7553 sync_entity_load_avg(&p->se); 7554 task_util = task_util_est(p); 7555 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7556 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7557 } 7558 7559 /* 7560 * per-cpu select_rq_mask usage 7561 */ 7562 lockdep_assert_irqs_disabled(); 7563 7564 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7565 asym_fits_cpu(task_util, util_min, util_max, target)) 7566 return target; 7567 7568 /* 7569 * If the previous CPU is cache affine and idle, don't be stupid: 7570 */ 7571 if (prev != target && cpus_share_cache(prev, target) && 7572 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7573 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7574 7575 if (!static_branch_unlikely(&sched_cluster_active) || 7576 cpus_share_resources(prev, target)) 7577 return prev; 7578 7579 prev_aff = prev; 7580 } 7581 7582 /* 7583 * Allow a per-cpu kthread to stack with the wakee if the 7584 * kworker thread and the tasks previous CPUs are the same. 7585 * The assumption is that the wakee queued work for the 7586 * per-cpu kthread that is now complete and the wakeup is 7587 * essentially a sync wakeup. An obvious example of this 7588 * pattern is IO completions. 7589 */ 7590 if (is_per_cpu_kthread(current) && 7591 in_task() && 7592 prev == smp_processor_id() && 7593 this_rq()->nr_running <= 1 && 7594 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7595 return prev; 7596 } 7597 7598 /* Check a recently used CPU as a potential idle candidate: */ 7599 recent_used_cpu = p->recent_used_cpu; 7600 p->recent_used_cpu = prev; 7601 if (recent_used_cpu != prev && 7602 recent_used_cpu != target && 7603 cpus_share_cache(recent_used_cpu, target) && 7604 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7605 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7606 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7607 7608 if (!static_branch_unlikely(&sched_cluster_active) || 7609 cpus_share_resources(recent_used_cpu, target)) 7610 return recent_used_cpu; 7611 7612 } else { 7613 recent_used_cpu = -1; 7614 } 7615 7616 /* 7617 * For asymmetric CPU capacity systems, our domain of interest is 7618 * sd_asym_cpucapacity rather than sd_llc. 7619 */ 7620 if (sched_asym_cpucap_active()) { 7621 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7622 /* 7623 * On an asymmetric CPU capacity system where an exclusive 7624 * cpuset defines a symmetric island (i.e. one unique 7625 * capacity_orig value through the cpuset), the key will be set 7626 * but the CPUs within that cpuset will not have a domain with 7627 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7628 * capacity path. 7629 */ 7630 if (sd) { 7631 i = select_idle_capacity(p, sd, target); 7632 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7633 } 7634 } 7635 7636 sd = rcu_dereference(per_cpu(sd_llc, target)); 7637 if (!sd) 7638 return target; 7639 7640 if (sched_smt_active()) { 7641 has_idle_core = test_idle_cores(target); 7642 7643 if (!has_idle_core && cpus_share_cache(prev, target)) { 7644 i = select_idle_smt(p, sd, prev); 7645 if ((unsigned int)i < nr_cpumask_bits) 7646 return i; 7647 } 7648 } 7649 7650 i = select_idle_cpu(p, sd, has_idle_core, target); 7651 if ((unsigned)i < nr_cpumask_bits) 7652 return i; 7653 7654 /* 7655 * For cluster machines which have lower sharing cache like L2 or 7656 * LLC Tag, we tend to find an idle CPU in the target's cluster 7657 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7658 * use them if possible when no idle CPU found in select_idle_cpu(). 7659 */ 7660 if ((unsigned int)prev_aff < nr_cpumask_bits) 7661 return prev_aff; 7662 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7663 return recent_used_cpu; 7664 7665 return target; 7666 } 7667 7668 /** 7669 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7670 * @cpu: the CPU to get the utilization for 7671 * @p: task for which the CPU utilization should be predicted or NULL 7672 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7673 * @boost: 1 to enable boosting, otherwise 0 7674 * 7675 * The unit of the return value must be the same as the one of CPU capacity 7676 * so that CPU utilization can be compared with CPU capacity. 7677 * 7678 * CPU utilization is the sum of running time of runnable tasks plus the 7679 * recent utilization of currently non-runnable tasks on that CPU. 7680 * It represents the amount of CPU capacity currently used by CFS tasks in 7681 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7682 * capacity at f_max. 7683 * 7684 * The estimated CPU utilization is defined as the maximum between CPU 7685 * utilization and sum of the estimated utilization of the currently 7686 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7687 * previously-executed tasks, which helps better deduce how busy a CPU will 7688 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7689 * of such a task would be significantly decayed at this point of time. 7690 * 7691 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7692 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7693 * utilization. Boosting is implemented in cpu_util() so that internal 7694 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7695 * latter via cpu_util_cfs_boost(). 7696 * 7697 * CPU utilization can be higher than the current CPU capacity 7698 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7699 * of rounding errors as well as task migrations or wakeups of new tasks. 7700 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7701 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7702 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7703 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7704 * though since this is useful for predicting the CPU capacity required 7705 * after task migrations (scheduler-driven DVFS). 7706 * 7707 * Return: (Boosted) (estimated) utilization for the specified CPU. 7708 */ 7709 static unsigned long 7710 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7711 { 7712 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7713 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7714 unsigned long runnable; 7715 7716 if (boost) { 7717 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7718 util = max(util, runnable); 7719 } 7720 7721 /* 7722 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7723 * contribution. If @p migrates from another CPU to @cpu add its 7724 * contribution. In all the other cases @cpu is not impacted by the 7725 * migration so its util_avg is already correct. 7726 */ 7727 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 7728 lsub_positive(&util, task_util(p)); 7729 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 7730 util += task_util(p); 7731 7732 if (sched_feat(UTIL_EST)) { 7733 unsigned long util_est; 7734 7735 util_est = READ_ONCE(cfs_rq->avg.util_est); 7736 7737 /* 7738 * During wake-up @p isn't enqueued yet and doesn't contribute 7739 * to any cpu_rq(cpu)->cfs.avg.util_est. 7740 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7741 * has been enqueued. 7742 * 7743 * During exec (@dst_cpu = -1) @p is enqueued and does 7744 * contribute to cpu_rq(cpu)->cfs.util_est. 7745 * Remove it to "simulate" cpu_util without @p's contribution. 7746 * 7747 * Despite the task_on_rq_queued(@p) check there is still a 7748 * small window for a possible race when an exec 7749 * select_task_rq_fair() races with LB's detach_task(). 7750 * 7751 * detach_task() 7752 * deactivate_task() 7753 * p->on_rq = TASK_ON_RQ_MIGRATING; 7754 * -------------------------------- A 7755 * dequeue_task() \ 7756 * dequeue_task_fair() + Race Time 7757 * util_est_dequeue() / 7758 * -------------------------------- B 7759 * 7760 * The additional check "current == p" is required to further 7761 * reduce the race window. 7762 */ 7763 if (dst_cpu == cpu) 7764 util_est += _task_util_est(p); 7765 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 7766 lsub_positive(&util_est, _task_util_est(p)); 7767 7768 util = max(util, util_est); 7769 } 7770 7771 return min(util, arch_scale_cpu_capacity(cpu)); 7772 } 7773 7774 unsigned long cpu_util_cfs(int cpu) 7775 { 7776 return cpu_util(cpu, NULL, -1, 0); 7777 } 7778 7779 unsigned long cpu_util_cfs_boost(int cpu) 7780 { 7781 return cpu_util(cpu, NULL, -1, 1); 7782 } 7783 7784 /* 7785 * cpu_util_without: compute cpu utilization without any contributions from *p 7786 * @cpu: the CPU which utilization is requested 7787 * @p: the task which utilization should be discounted 7788 * 7789 * The utilization of a CPU is defined by the utilization of tasks currently 7790 * enqueued on that CPU as well as tasks which are currently sleeping after an 7791 * execution on that CPU. 7792 * 7793 * This method returns the utilization of the specified CPU by discounting the 7794 * utilization of the specified task, whenever the task is currently 7795 * contributing to the CPU utilization. 7796 */ 7797 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7798 { 7799 /* Task has no contribution or is new */ 7800 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7801 p = NULL; 7802 7803 return cpu_util(cpu, p, -1, 0); 7804 } 7805 7806 /* 7807 * energy_env - Utilization landscape for energy estimation. 7808 * @task_busy_time: Utilization contribution by the task for which we test the 7809 * placement. Given by eenv_task_busy_time(). 7810 * @pd_busy_time: Utilization of the whole perf domain without the task 7811 * contribution. Given by eenv_pd_busy_time(). 7812 * @cpu_cap: Maximum CPU capacity for the perf domain. 7813 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 7814 */ 7815 struct energy_env { 7816 unsigned long task_busy_time; 7817 unsigned long pd_busy_time; 7818 unsigned long cpu_cap; 7819 unsigned long pd_cap; 7820 }; 7821 7822 /* 7823 * Compute the task busy time for compute_energy(). This time cannot be 7824 * injected directly into effective_cpu_util() because of the IRQ scaling. 7825 * The latter only makes sense with the most recent CPUs where the task has 7826 * run. 7827 */ 7828 static inline void eenv_task_busy_time(struct energy_env *eenv, 7829 struct task_struct *p, int prev_cpu) 7830 { 7831 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 7832 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 7833 7834 if (unlikely(irq >= max_cap)) 7835 busy_time = max_cap; 7836 else 7837 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 7838 7839 eenv->task_busy_time = busy_time; 7840 } 7841 7842 /* 7843 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 7844 * utilization for each @pd_cpus, it however doesn't take into account 7845 * clamping since the ratio (utilization / cpu_capacity) is already enough to 7846 * scale the EM reported power consumption at the (eventually clamped) 7847 * cpu_capacity. 7848 * 7849 * The contribution of the task @p for which we want to estimate the 7850 * energy cost is removed (by cpu_util()) and must be calculated 7851 * separately (see eenv_task_busy_time). This ensures: 7852 * 7853 * - A stable PD utilization, no matter which CPU of that PD we want to place 7854 * the task on. 7855 * 7856 * - A fair comparison between CPUs as the task contribution (task_util()) 7857 * will always be the same no matter which CPU utilization we rely on 7858 * (util_avg or util_est). 7859 * 7860 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 7861 * exceed @eenv->pd_cap. 7862 */ 7863 static inline void eenv_pd_busy_time(struct energy_env *eenv, 7864 struct cpumask *pd_cpus, 7865 struct task_struct *p) 7866 { 7867 unsigned long busy_time = 0; 7868 int cpu; 7869 7870 for_each_cpu(cpu, pd_cpus) { 7871 unsigned long util = cpu_util(cpu, p, -1, 0); 7872 7873 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 7874 } 7875 7876 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 7877 } 7878 7879 /* 7880 * Compute the maximum utilization for compute_energy() when the task @p 7881 * is placed on the cpu @dst_cpu. 7882 * 7883 * Returns the maximum utilization among @eenv->cpus. This utilization can't 7884 * exceed @eenv->cpu_cap. 7885 */ 7886 static inline unsigned long 7887 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 7888 struct task_struct *p, int dst_cpu) 7889 { 7890 unsigned long max_util = 0; 7891 int cpu; 7892 7893 for_each_cpu(cpu, pd_cpus) { 7894 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 7895 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 7896 unsigned long eff_util, min, max; 7897 7898 /* 7899 * Performance domain frequency: utilization clamping 7900 * must be considered since it affects the selection 7901 * of the performance domain frequency. 7902 * NOTE: in case RT tasks are running, by default the min 7903 * utilization can be max OPP. 7904 */ 7905 eff_util = effective_cpu_util(cpu, util, &min, &max); 7906 7907 /* Task's uclamp can modify min and max value */ 7908 if (tsk && uclamp_is_used()) { 7909 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 7910 7911 /* 7912 * If there is no active max uclamp constraint, 7913 * directly use task's one, otherwise keep max. 7914 */ 7915 if (uclamp_rq_is_idle(cpu_rq(cpu))) 7916 max = uclamp_eff_value(p, UCLAMP_MAX); 7917 else 7918 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 7919 } 7920 7921 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 7922 max_util = max(max_util, eff_util); 7923 } 7924 7925 return min(max_util, eenv->cpu_cap); 7926 } 7927 7928 /* 7929 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 7930 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 7931 * contribution is ignored. 7932 */ 7933 static inline unsigned long 7934 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 7935 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 7936 { 7937 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 7938 unsigned long busy_time = eenv->pd_busy_time; 7939 unsigned long energy; 7940 7941 if (dst_cpu >= 0) 7942 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 7943 7944 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 7945 7946 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 7947 7948 return energy; 7949 } 7950 7951 /* 7952 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 7953 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 7954 * spare capacity in each performance domain and uses it as a potential 7955 * candidate to execute the task. Then, it uses the Energy Model to figure 7956 * out which of the CPU candidates is the most energy-efficient. 7957 * 7958 * The rationale for this heuristic is as follows. In a performance domain, 7959 * all the most energy efficient CPU candidates (according to the Energy 7960 * Model) are those for which we'll request a low frequency. When there are 7961 * several CPUs for which the frequency request will be the same, we don't 7962 * have enough data to break the tie between them, because the Energy Model 7963 * only includes active power costs. With this model, if we assume that 7964 * frequency requests follow utilization (e.g. using schedutil), the CPU with 7965 * the maximum spare capacity in a performance domain is guaranteed to be among 7966 * the best candidates of the performance domain. 7967 * 7968 * In practice, it could be preferable from an energy standpoint to pack 7969 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 7970 * but that could also hurt our chances to go cluster idle, and we have no 7971 * ways to tell with the current Energy Model if this is actually a good 7972 * idea or not. So, find_energy_efficient_cpu() basically favors 7973 * cluster-packing, and spreading inside a cluster. That should at least be 7974 * a good thing for latency, and this is consistent with the idea that most 7975 * of the energy savings of EAS come from the asymmetry of the system, and 7976 * not so much from breaking the tie between identical CPUs. That's also the 7977 * reason why EAS is enabled in the topology code only for systems where 7978 * SD_ASYM_CPUCAPACITY is set. 7979 * 7980 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 7981 * they don't have any useful utilization data yet and it's not possible to 7982 * forecast their impact on energy consumption. Consequently, they will be 7983 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 7984 * to be energy-inefficient in some use-cases. The alternative would be to 7985 * bias new tasks towards specific types of CPUs first, or to try to infer 7986 * their util_avg from the parent task, but those heuristics could hurt 7987 * other use-cases too. So, until someone finds a better way to solve this, 7988 * let's keep things simple by re-using the existing slow path. 7989 */ 7990 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 7991 { 7992 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7993 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 7994 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 7995 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 7996 struct root_domain *rd = this_rq()->rd; 7997 int cpu, best_energy_cpu, target = -1; 7998 int prev_fits = -1, best_fits = -1; 7999 unsigned long best_actual_cap = 0; 8000 unsigned long prev_actual_cap = 0; 8001 struct sched_domain *sd; 8002 struct perf_domain *pd; 8003 struct energy_env eenv; 8004 8005 rcu_read_lock(); 8006 pd = rcu_dereference(rd->pd); 8007 if (!pd) 8008 goto unlock; 8009 8010 /* 8011 * Energy-aware wake-up happens on the lowest sched_domain starting 8012 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8013 */ 8014 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 8015 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8016 sd = sd->parent; 8017 if (!sd) 8018 goto unlock; 8019 8020 target = prev_cpu; 8021 8022 sync_entity_load_avg(&p->se); 8023 if (!task_util_est(p) && p_util_min == 0) 8024 goto unlock; 8025 8026 eenv_task_busy_time(&eenv, p, prev_cpu); 8027 8028 for (; pd; pd = pd->next) { 8029 unsigned long util_min = p_util_min, util_max = p_util_max; 8030 unsigned long cpu_cap, cpu_actual_cap, util; 8031 long prev_spare_cap = -1, max_spare_cap = -1; 8032 unsigned long rq_util_min, rq_util_max; 8033 unsigned long cur_delta, base_energy; 8034 int max_spare_cap_cpu = -1; 8035 int fits, max_fits = -1; 8036 8037 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8038 8039 if (cpumask_empty(cpus)) 8040 continue; 8041 8042 /* Account external pressure for the energy estimation */ 8043 cpu = cpumask_first(cpus); 8044 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8045 8046 eenv.cpu_cap = cpu_actual_cap; 8047 eenv.pd_cap = 0; 8048 8049 for_each_cpu(cpu, cpus) { 8050 struct rq *rq = cpu_rq(cpu); 8051 8052 eenv.pd_cap += cpu_actual_cap; 8053 8054 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8055 continue; 8056 8057 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8058 continue; 8059 8060 util = cpu_util(cpu, p, cpu, 0); 8061 cpu_cap = capacity_of(cpu); 8062 8063 /* 8064 * Skip CPUs that cannot satisfy the capacity request. 8065 * IOW, placing the task there would make the CPU 8066 * overutilized. Take uclamp into account to see how 8067 * much capacity we can get out of the CPU; this is 8068 * aligned with sched_cpu_util(). 8069 */ 8070 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8071 /* 8072 * Open code uclamp_rq_util_with() except for 8073 * the clamp() part. I.e.: apply max aggregation 8074 * only. util_fits_cpu() logic requires to 8075 * operate on non clamped util but must use the 8076 * max-aggregated uclamp_{min, max}. 8077 */ 8078 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8079 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8080 8081 util_min = max(rq_util_min, p_util_min); 8082 util_max = max(rq_util_max, p_util_max); 8083 } 8084 8085 fits = util_fits_cpu(util, util_min, util_max, cpu); 8086 if (!fits) 8087 continue; 8088 8089 lsub_positive(&cpu_cap, util); 8090 8091 if (cpu == prev_cpu) { 8092 /* Always use prev_cpu as a candidate. */ 8093 prev_spare_cap = cpu_cap; 8094 prev_fits = fits; 8095 } else if ((fits > max_fits) || 8096 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8097 /* 8098 * Find the CPU with the maximum spare capacity 8099 * among the remaining CPUs in the performance 8100 * domain. 8101 */ 8102 max_spare_cap = cpu_cap; 8103 max_spare_cap_cpu = cpu; 8104 max_fits = fits; 8105 } 8106 } 8107 8108 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8109 continue; 8110 8111 eenv_pd_busy_time(&eenv, cpus, p); 8112 /* Compute the 'base' energy of the pd, without @p */ 8113 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8114 8115 /* Evaluate the energy impact of using prev_cpu. */ 8116 if (prev_spare_cap > -1) { 8117 prev_delta = compute_energy(&eenv, pd, cpus, p, 8118 prev_cpu); 8119 /* CPU utilization has changed */ 8120 if (prev_delta < base_energy) 8121 goto unlock; 8122 prev_delta -= base_energy; 8123 prev_actual_cap = cpu_actual_cap; 8124 best_delta = min(best_delta, prev_delta); 8125 } 8126 8127 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8128 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8129 /* Current best energy cpu fits better */ 8130 if (max_fits < best_fits) 8131 continue; 8132 8133 /* 8134 * Both don't fit performance hint (i.e. uclamp_min) 8135 * but best energy cpu has better capacity. 8136 */ 8137 if ((max_fits < 0) && 8138 (cpu_actual_cap <= best_actual_cap)) 8139 continue; 8140 8141 cur_delta = compute_energy(&eenv, pd, cpus, p, 8142 max_spare_cap_cpu); 8143 /* CPU utilization has changed */ 8144 if (cur_delta < base_energy) 8145 goto unlock; 8146 cur_delta -= base_energy; 8147 8148 /* 8149 * Both fit for the task but best energy cpu has lower 8150 * energy impact. 8151 */ 8152 if ((max_fits > 0) && (best_fits > 0) && 8153 (cur_delta >= best_delta)) 8154 continue; 8155 8156 best_delta = cur_delta; 8157 best_energy_cpu = max_spare_cap_cpu; 8158 best_fits = max_fits; 8159 best_actual_cap = cpu_actual_cap; 8160 } 8161 } 8162 rcu_read_unlock(); 8163 8164 if ((best_fits > prev_fits) || 8165 ((best_fits > 0) && (best_delta < prev_delta)) || 8166 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8167 target = best_energy_cpu; 8168 8169 return target; 8170 8171 unlock: 8172 rcu_read_unlock(); 8173 8174 return target; 8175 } 8176 8177 /* 8178 * select_task_rq_fair: Select target runqueue for the waking task in domains 8179 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8180 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8181 * 8182 * Balances load by selecting the idlest CPU in the idlest group, or under 8183 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8184 * 8185 * Returns the target CPU number. 8186 */ 8187 static int 8188 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8189 { 8190 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8191 struct sched_domain *tmp, *sd = NULL; 8192 int cpu = smp_processor_id(); 8193 int new_cpu = prev_cpu; 8194 int want_affine = 0; 8195 /* SD_flags and WF_flags share the first nibble */ 8196 int sd_flag = wake_flags & 0xF; 8197 8198 /* 8199 * required for stable ->cpus_allowed 8200 */ 8201 lockdep_assert_held(&p->pi_lock); 8202 if (wake_flags & WF_TTWU) { 8203 record_wakee(p); 8204 8205 if ((wake_flags & WF_CURRENT_CPU) && 8206 cpumask_test_cpu(cpu, p->cpus_ptr)) 8207 return cpu; 8208 8209 if (!is_rd_overutilized(this_rq()->rd)) { 8210 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8211 if (new_cpu >= 0) 8212 return new_cpu; 8213 new_cpu = prev_cpu; 8214 } 8215 8216 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8217 } 8218 8219 rcu_read_lock(); 8220 for_each_domain(cpu, tmp) { 8221 /* 8222 * If both 'cpu' and 'prev_cpu' are part of this domain, 8223 * cpu is a valid SD_WAKE_AFFINE target. 8224 */ 8225 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8226 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8227 if (cpu != prev_cpu) 8228 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8229 8230 sd = NULL; /* Prefer wake_affine over balance flags */ 8231 break; 8232 } 8233 8234 /* 8235 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8236 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8237 * will usually go to the fast path. 8238 */ 8239 if (tmp->flags & sd_flag) 8240 sd = tmp; 8241 else if (!want_affine) 8242 break; 8243 } 8244 8245 if (unlikely(sd)) { 8246 /* Slow path */ 8247 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8248 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8249 /* Fast path */ 8250 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8251 } 8252 rcu_read_unlock(); 8253 8254 return new_cpu; 8255 } 8256 8257 /* 8258 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8259 * cfs_rq_of(p) references at time of call are still valid and identify the 8260 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8261 */ 8262 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8263 { 8264 struct sched_entity *se = &p->se; 8265 8266 if (!task_on_rq_migrating(p)) { 8267 remove_entity_load_avg(se); 8268 8269 /* 8270 * Here, the task's PELT values have been updated according to 8271 * the current rq's clock. But if that clock hasn't been 8272 * updated in a while, a substantial idle time will be missed, 8273 * leading to an inflation after wake-up on the new rq. 8274 * 8275 * Estimate the missing time from the cfs_rq last_update_time 8276 * and update sched_avg to improve the PELT continuity after 8277 * migration. 8278 */ 8279 migrate_se_pelt_lag(se); 8280 } 8281 8282 /* Tell new CPU we are migrated */ 8283 se->avg.last_update_time = 0; 8284 8285 update_scan_period(p, new_cpu); 8286 } 8287 8288 static void task_dead_fair(struct task_struct *p) 8289 { 8290 remove_entity_load_avg(&p->se); 8291 } 8292 8293 /* 8294 * Set the max capacity the task is allowed to run at for misfit detection. 8295 */ 8296 static void set_task_max_allowed_capacity(struct task_struct *p) 8297 { 8298 struct asym_cap_data *entry; 8299 8300 if (!sched_asym_cpucap_active()) 8301 return; 8302 8303 rcu_read_lock(); 8304 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8305 cpumask_t *cpumask; 8306 8307 cpumask = cpu_capacity_span(entry); 8308 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8309 continue; 8310 8311 p->max_allowed_capacity = entry->capacity; 8312 break; 8313 } 8314 rcu_read_unlock(); 8315 } 8316 8317 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8318 { 8319 set_cpus_allowed_common(p, ctx); 8320 set_task_max_allowed_capacity(p); 8321 } 8322 8323 static int 8324 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8325 { 8326 if (rq->nr_running) 8327 return 1; 8328 8329 return sched_balance_newidle(rq, rf) != 0; 8330 } 8331 #else 8332 static inline void set_task_max_allowed_capacity(struct task_struct *p) {} 8333 #endif /* CONFIG_SMP */ 8334 8335 static void set_next_buddy(struct sched_entity *se) 8336 { 8337 for_each_sched_entity(se) { 8338 if (SCHED_WARN_ON(!se->on_rq)) 8339 return; 8340 if (se_is_idle(se)) 8341 return; 8342 cfs_rq_of(se)->next = se; 8343 } 8344 } 8345 8346 /* 8347 * Preempt the current task with a newly woken task if needed: 8348 */ 8349 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8350 { 8351 struct task_struct *curr = rq->curr; 8352 struct sched_entity *se = &curr->se, *pse = &p->se; 8353 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8354 int cse_is_idle, pse_is_idle; 8355 8356 if (unlikely(se == pse)) 8357 return; 8358 8359 /* 8360 * This is possible from callers such as attach_tasks(), in which we 8361 * unconditionally wakeup_preempt() after an enqueue (which may have 8362 * lead to a throttle). This both saves work and prevents false 8363 * next-buddy nomination below. 8364 */ 8365 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8366 return; 8367 8368 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { 8369 set_next_buddy(pse); 8370 } 8371 8372 /* 8373 * We can come here with TIF_NEED_RESCHED already set from new task 8374 * wake up path. 8375 * 8376 * Note: this also catches the edge-case of curr being in a throttled 8377 * group (e.g. via set_curr_task), since update_curr() (in the 8378 * enqueue of curr) will have resulted in resched being set. This 8379 * prevents us from potentially nominating it as a false LAST_BUDDY 8380 * below. 8381 */ 8382 if (test_tsk_need_resched(curr)) 8383 return; 8384 8385 /* Idle tasks are by definition preempted by non-idle tasks. */ 8386 if (unlikely(task_has_idle_policy(curr)) && 8387 likely(!task_has_idle_policy(p))) 8388 goto preempt; 8389 8390 /* 8391 * Batch and idle tasks do not preempt non-idle tasks (their preemption 8392 * is driven by the tick): 8393 */ 8394 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 8395 return; 8396 8397 find_matching_se(&se, &pse); 8398 WARN_ON_ONCE(!pse); 8399 8400 cse_is_idle = se_is_idle(se); 8401 pse_is_idle = se_is_idle(pse); 8402 8403 /* 8404 * Preempt an idle group in favor of a non-idle group (and don't preempt 8405 * in the inverse case). 8406 */ 8407 if (cse_is_idle && !pse_is_idle) 8408 goto preempt; 8409 if (cse_is_idle != pse_is_idle) 8410 return; 8411 8412 cfs_rq = cfs_rq_of(se); 8413 update_curr(cfs_rq); 8414 8415 /* 8416 * XXX pick_eevdf(cfs_rq) != se ? 8417 */ 8418 if (pick_eevdf(cfs_rq) == pse) 8419 goto preempt; 8420 8421 return; 8422 8423 preempt: 8424 resched_curr(rq); 8425 } 8426 8427 #ifdef CONFIG_SMP 8428 static struct task_struct *pick_task_fair(struct rq *rq) 8429 { 8430 struct sched_entity *se; 8431 struct cfs_rq *cfs_rq; 8432 8433 again: 8434 cfs_rq = &rq->cfs; 8435 if (!cfs_rq->nr_running) 8436 return NULL; 8437 8438 do { 8439 struct sched_entity *curr = cfs_rq->curr; 8440 8441 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 8442 if (curr) { 8443 if (curr->on_rq) 8444 update_curr(cfs_rq); 8445 else 8446 curr = NULL; 8447 8448 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8449 goto again; 8450 } 8451 8452 se = pick_next_entity(cfs_rq); 8453 cfs_rq = group_cfs_rq(se); 8454 } while (cfs_rq); 8455 8456 return task_of(se); 8457 } 8458 #endif 8459 8460 struct task_struct * 8461 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8462 { 8463 struct cfs_rq *cfs_rq = &rq->cfs; 8464 struct sched_entity *se; 8465 struct task_struct *p; 8466 int new_tasks; 8467 8468 again: 8469 if (!sched_fair_runnable(rq)) 8470 goto idle; 8471 8472 #ifdef CONFIG_FAIR_GROUP_SCHED 8473 if (!prev || prev->sched_class != &fair_sched_class) 8474 goto simple; 8475 8476 /* 8477 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8478 * likely that a next task is from the same cgroup as the current. 8479 * 8480 * Therefore attempt to avoid putting and setting the entire cgroup 8481 * hierarchy, only change the part that actually changes. 8482 */ 8483 8484 do { 8485 struct sched_entity *curr = cfs_rq->curr; 8486 8487 /* 8488 * Since we got here without doing put_prev_entity() we also 8489 * have to consider cfs_rq->curr. If it is still a runnable 8490 * entity, update_curr() will update its vruntime, otherwise 8491 * forget we've ever seen it. 8492 */ 8493 if (curr) { 8494 if (curr->on_rq) 8495 update_curr(cfs_rq); 8496 else 8497 curr = NULL; 8498 8499 /* 8500 * This call to check_cfs_rq_runtime() will do the 8501 * throttle and dequeue its entity in the parent(s). 8502 * Therefore the nr_running test will indeed 8503 * be correct. 8504 */ 8505 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 8506 cfs_rq = &rq->cfs; 8507 8508 if (!cfs_rq->nr_running) 8509 goto idle; 8510 8511 goto simple; 8512 } 8513 } 8514 8515 se = pick_next_entity(cfs_rq); 8516 cfs_rq = group_cfs_rq(se); 8517 } while (cfs_rq); 8518 8519 p = task_of(se); 8520 8521 /* 8522 * Since we haven't yet done put_prev_entity and if the selected task 8523 * is a different task than we started out with, try and touch the 8524 * least amount of cfs_rqs. 8525 */ 8526 if (prev != p) { 8527 struct sched_entity *pse = &prev->se; 8528 8529 while (!(cfs_rq = is_same_group(se, pse))) { 8530 int se_depth = se->depth; 8531 int pse_depth = pse->depth; 8532 8533 if (se_depth <= pse_depth) { 8534 put_prev_entity(cfs_rq_of(pse), pse); 8535 pse = parent_entity(pse); 8536 } 8537 if (se_depth >= pse_depth) { 8538 set_next_entity(cfs_rq_of(se), se); 8539 se = parent_entity(se); 8540 } 8541 } 8542 8543 put_prev_entity(cfs_rq, pse); 8544 set_next_entity(cfs_rq, se); 8545 } 8546 8547 goto done; 8548 simple: 8549 #endif 8550 if (prev) 8551 put_prev_task(rq, prev); 8552 8553 do { 8554 se = pick_next_entity(cfs_rq); 8555 set_next_entity(cfs_rq, se); 8556 cfs_rq = group_cfs_rq(se); 8557 } while (cfs_rq); 8558 8559 p = task_of(se); 8560 8561 done: __maybe_unused; 8562 #ifdef CONFIG_SMP 8563 /* 8564 * Move the next running task to the front of 8565 * the list, so our cfs_tasks list becomes MRU 8566 * one. 8567 */ 8568 list_move(&p->se.group_node, &rq->cfs_tasks); 8569 #endif 8570 8571 if (hrtick_enabled_fair(rq)) 8572 hrtick_start_fair(rq, p); 8573 8574 update_misfit_status(p, rq); 8575 sched_fair_update_stop_tick(rq, p); 8576 8577 return p; 8578 8579 idle: 8580 if (!rf) 8581 return NULL; 8582 8583 new_tasks = sched_balance_newidle(rq, rf); 8584 8585 /* 8586 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is 8587 * possible for any higher priority task to appear. In that case we 8588 * must re-start the pick_next_entity() loop. 8589 */ 8590 if (new_tasks < 0) 8591 return RETRY_TASK; 8592 8593 if (new_tasks > 0) 8594 goto again; 8595 8596 /* 8597 * rq is about to be idle, check if we need to update the 8598 * lost_idle_time of clock_pelt 8599 */ 8600 update_idle_rq_clock_pelt(rq); 8601 8602 return NULL; 8603 } 8604 8605 static struct task_struct *__pick_next_task_fair(struct rq *rq) 8606 { 8607 return pick_next_task_fair(rq, NULL, NULL); 8608 } 8609 8610 /* 8611 * Account for a descheduled task: 8612 */ 8613 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 8614 { 8615 struct sched_entity *se = &prev->se; 8616 struct cfs_rq *cfs_rq; 8617 8618 for_each_sched_entity(se) { 8619 cfs_rq = cfs_rq_of(se); 8620 put_prev_entity(cfs_rq, se); 8621 } 8622 } 8623 8624 /* 8625 * sched_yield() is very simple 8626 */ 8627 static void yield_task_fair(struct rq *rq) 8628 { 8629 struct task_struct *curr = rq->curr; 8630 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8631 struct sched_entity *se = &curr->se; 8632 8633 /* 8634 * Are we the only task in the tree? 8635 */ 8636 if (unlikely(rq->nr_running == 1)) 8637 return; 8638 8639 clear_buddies(cfs_rq, se); 8640 8641 update_rq_clock(rq); 8642 /* 8643 * Update run-time statistics of the 'current'. 8644 */ 8645 update_curr(cfs_rq); 8646 /* 8647 * Tell update_rq_clock() that we've just updated, 8648 * so we don't do microscopic update in schedule() 8649 * and double the fastpath cost. 8650 */ 8651 rq_clock_skip_update(rq); 8652 8653 se->deadline += calc_delta_fair(se->slice, se); 8654 } 8655 8656 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8657 { 8658 struct sched_entity *se = &p->se; 8659 8660 /* throttled hierarchies are not runnable */ 8661 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8662 return false; 8663 8664 /* Tell the scheduler that we'd really like se to run next. */ 8665 set_next_buddy(se); 8666 8667 yield_task_fair(rq); 8668 8669 return true; 8670 } 8671 8672 #ifdef CONFIG_SMP 8673 /************************************************** 8674 * Fair scheduling class load-balancing methods. 8675 * 8676 * BASICS 8677 * 8678 * The purpose of load-balancing is to achieve the same basic fairness the 8679 * per-CPU scheduler provides, namely provide a proportional amount of compute 8680 * time to each task. This is expressed in the following equation: 8681 * 8682 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 8683 * 8684 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 8685 * W_i,0 is defined as: 8686 * 8687 * W_i,0 = \Sum_j w_i,j (2) 8688 * 8689 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 8690 * is derived from the nice value as per sched_prio_to_weight[]. 8691 * 8692 * The weight average is an exponential decay average of the instantaneous 8693 * weight: 8694 * 8695 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 8696 * 8697 * C_i is the compute capacity of CPU i, typically it is the 8698 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 8699 * can also include other factors [XXX]. 8700 * 8701 * To achieve this balance we define a measure of imbalance which follows 8702 * directly from (1): 8703 * 8704 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 8705 * 8706 * We them move tasks around to minimize the imbalance. In the continuous 8707 * function space it is obvious this converges, in the discrete case we get 8708 * a few fun cases generally called infeasible weight scenarios. 8709 * 8710 * [XXX expand on: 8711 * - infeasible weights; 8712 * - local vs global optima in the discrete case. ] 8713 * 8714 * 8715 * SCHED DOMAINS 8716 * 8717 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 8718 * for all i,j solution, we create a tree of CPUs that follows the hardware 8719 * topology where each level pairs two lower groups (or better). This results 8720 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 8721 * tree to only the first of the previous level and we decrease the frequency 8722 * of load-balance at each level inv. proportional to the number of CPUs in 8723 * the groups. 8724 * 8725 * This yields: 8726 * 8727 * log_2 n 1 n 8728 * \Sum { --- * --- * 2^i } = O(n) (5) 8729 * i = 0 2^i 2^i 8730 * `- size of each group 8731 * | | `- number of CPUs doing load-balance 8732 * | `- freq 8733 * `- sum over all levels 8734 * 8735 * Coupled with a limit on how many tasks we can migrate every balance pass, 8736 * this makes (5) the runtime complexity of the balancer. 8737 * 8738 * An important property here is that each CPU is still (indirectly) connected 8739 * to every other CPU in at most O(log n) steps: 8740 * 8741 * The adjacency matrix of the resulting graph is given by: 8742 * 8743 * log_2 n 8744 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 8745 * k = 0 8746 * 8747 * And you'll find that: 8748 * 8749 * A^(log_2 n)_i,j != 0 for all i,j (7) 8750 * 8751 * Showing there's indeed a path between every CPU in at most O(log n) steps. 8752 * The task movement gives a factor of O(m), giving a convergence complexity 8753 * of: 8754 * 8755 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 8756 * 8757 * 8758 * WORK CONSERVING 8759 * 8760 * In order to avoid CPUs going idle while there's still work to do, new idle 8761 * balancing is more aggressive and has the newly idle CPU iterate up the domain 8762 * tree itself instead of relying on other CPUs to bring it work. 8763 * 8764 * This adds some complexity to both (5) and (8) but it reduces the total idle 8765 * time. 8766 * 8767 * [XXX more?] 8768 * 8769 * 8770 * CGROUPS 8771 * 8772 * Cgroups make a horror show out of (2), instead of a simple sum we get: 8773 * 8774 * s_k,i 8775 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 8776 * S_k 8777 * 8778 * Where 8779 * 8780 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 8781 * 8782 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 8783 * 8784 * The big problem is S_k, its a global sum needed to compute a local (W_i) 8785 * property. 8786 * 8787 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 8788 * rewrite all of this once again.] 8789 */ 8790 8791 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 8792 8793 enum fbq_type { regular, remote, all }; 8794 8795 /* 8796 * 'group_type' describes the group of CPUs at the moment of load balancing. 8797 * 8798 * The enum is ordered by pulling priority, with the group with lowest priority 8799 * first so the group_type can simply be compared when selecting the busiest 8800 * group. See update_sd_pick_busiest(). 8801 */ 8802 enum group_type { 8803 /* The group has spare capacity that can be used to run more tasks. */ 8804 group_has_spare = 0, 8805 /* 8806 * The group is fully used and the tasks don't compete for more CPU 8807 * cycles. Nevertheless, some tasks might wait before running. 8808 */ 8809 group_fully_busy, 8810 /* 8811 * One task doesn't fit with CPU's capacity and must be migrated to a 8812 * more powerful CPU. 8813 */ 8814 group_misfit_task, 8815 /* 8816 * Balance SMT group that's fully busy. Can benefit from migration 8817 * a task on SMT with busy sibling to another CPU on idle core. 8818 */ 8819 group_smt_balance, 8820 /* 8821 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 8822 * and the task should be migrated to it instead of running on the 8823 * current CPU. 8824 */ 8825 group_asym_packing, 8826 /* 8827 * The tasks' affinity constraints previously prevented the scheduler 8828 * from balancing the load across the system. 8829 */ 8830 group_imbalanced, 8831 /* 8832 * The CPU is overloaded and can't provide expected CPU cycles to all 8833 * tasks. 8834 */ 8835 group_overloaded 8836 }; 8837 8838 enum migration_type { 8839 migrate_load = 0, 8840 migrate_util, 8841 migrate_task, 8842 migrate_misfit 8843 }; 8844 8845 #define LBF_ALL_PINNED 0x01 8846 #define LBF_NEED_BREAK 0x02 8847 #define LBF_DST_PINNED 0x04 8848 #define LBF_SOME_PINNED 0x08 8849 #define LBF_ACTIVE_LB 0x10 8850 8851 struct lb_env { 8852 struct sched_domain *sd; 8853 8854 struct rq *src_rq; 8855 int src_cpu; 8856 8857 int dst_cpu; 8858 struct rq *dst_rq; 8859 8860 struct cpumask *dst_grpmask; 8861 int new_dst_cpu; 8862 enum cpu_idle_type idle; 8863 long imbalance; 8864 /* The set of CPUs under consideration for load-balancing */ 8865 struct cpumask *cpus; 8866 8867 unsigned int flags; 8868 8869 unsigned int loop; 8870 unsigned int loop_break; 8871 unsigned int loop_max; 8872 8873 enum fbq_type fbq_type; 8874 enum migration_type migration_type; 8875 struct list_head tasks; 8876 }; 8877 8878 /* 8879 * Is this task likely cache-hot: 8880 */ 8881 static int task_hot(struct task_struct *p, struct lb_env *env) 8882 { 8883 s64 delta; 8884 8885 lockdep_assert_rq_held(env->src_rq); 8886 8887 if (p->sched_class != &fair_sched_class) 8888 return 0; 8889 8890 if (unlikely(task_has_idle_policy(p))) 8891 return 0; 8892 8893 /* SMT siblings share cache */ 8894 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 8895 return 0; 8896 8897 /* 8898 * Buddy candidates are cache hot: 8899 */ 8900 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 8901 (&p->se == cfs_rq_of(&p->se)->next)) 8902 return 1; 8903 8904 if (sysctl_sched_migration_cost == -1) 8905 return 1; 8906 8907 /* 8908 * Don't migrate task if the task's cookie does not match 8909 * with the destination CPU's core cookie. 8910 */ 8911 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 8912 return 1; 8913 8914 if (sysctl_sched_migration_cost == 0) 8915 return 0; 8916 8917 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 8918 8919 return delta < (s64)sysctl_sched_migration_cost; 8920 } 8921 8922 #ifdef CONFIG_NUMA_BALANCING 8923 /* 8924 * Returns 1, if task migration degrades locality 8925 * Returns 0, if task migration improves locality i.e migration preferred. 8926 * Returns -1, if task migration is not affected by locality. 8927 */ 8928 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 8929 { 8930 struct numa_group *numa_group = rcu_dereference(p->numa_group); 8931 unsigned long src_weight, dst_weight; 8932 int src_nid, dst_nid, dist; 8933 8934 if (!static_branch_likely(&sched_numa_balancing)) 8935 return -1; 8936 8937 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 8938 return -1; 8939 8940 src_nid = cpu_to_node(env->src_cpu); 8941 dst_nid = cpu_to_node(env->dst_cpu); 8942 8943 if (src_nid == dst_nid) 8944 return -1; 8945 8946 /* Migrating away from the preferred node is always bad. */ 8947 if (src_nid == p->numa_preferred_nid) { 8948 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 8949 return 1; 8950 else 8951 return -1; 8952 } 8953 8954 /* Encourage migration to the preferred node. */ 8955 if (dst_nid == p->numa_preferred_nid) 8956 return 0; 8957 8958 /* Leaving a core idle is often worse than degrading locality. */ 8959 if (env->idle == CPU_IDLE) 8960 return -1; 8961 8962 dist = node_distance(src_nid, dst_nid); 8963 if (numa_group) { 8964 src_weight = group_weight(p, src_nid, dist); 8965 dst_weight = group_weight(p, dst_nid, dist); 8966 } else { 8967 src_weight = task_weight(p, src_nid, dist); 8968 dst_weight = task_weight(p, dst_nid, dist); 8969 } 8970 8971 return dst_weight < src_weight; 8972 } 8973 8974 #else 8975 static inline int migrate_degrades_locality(struct task_struct *p, 8976 struct lb_env *env) 8977 { 8978 return -1; 8979 } 8980 #endif 8981 8982 /* 8983 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 8984 */ 8985 static 8986 int can_migrate_task(struct task_struct *p, struct lb_env *env) 8987 { 8988 int tsk_cache_hot; 8989 8990 lockdep_assert_rq_held(env->src_rq); 8991 8992 /* 8993 * We do not migrate tasks that are: 8994 * 1) throttled_lb_pair, or 8995 * 2) cannot be migrated to this CPU due to cpus_ptr, or 8996 * 3) running (obviously), or 8997 * 4) are cache-hot on their current CPU. 8998 */ 8999 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 9000 return 0; 9001 9002 /* Disregard percpu kthreads; they are where they need to be. */ 9003 if (kthread_is_per_cpu(p)) 9004 return 0; 9005 9006 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9007 int cpu; 9008 9009 schedstat_inc(p->stats.nr_failed_migrations_affine); 9010 9011 env->flags |= LBF_SOME_PINNED; 9012 9013 /* 9014 * Remember if this task can be migrated to any other CPU in 9015 * our sched_group. We may want to revisit it if we couldn't 9016 * meet load balance goals by pulling other tasks on src_cpu. 9017 * 9018 * Avoid computing new_dst_cpu 9019 * - for NEWLY_IDLE 9020 * - if we have already computed one in current iteration 9021 * - if it's an active balance 9022 */ 9023 if (env->idle == CPU_NEWLY_IDLE || 9024 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9025 return 0; 9026 9027 /* Prevent to re-select dst_cpu via env's CPUs: */ 9028 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 9029 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 9030 env->flags |= LBF_DST_PINNED; 9031 env->new_dst_cpu = cpu; 9032 break; 9033 } 9034 } 9035 9036 return 0; 9037 } 9038 9039 /* Record that we found at least one task that could run on dst_cpu */ 9040 env->flags &= ~LBF_ALL_PINNED; 9041 9042 if (task_on_cpu(env->src_rq, p)) { 9043 schedstat_inc(p->stats.nr_failed_migrations_running); 9044 return 0; 9045 } 9046 9047 /* 9048 * Aggressive migration if: 9049 * 1) active balance 9050 * 2) destination numa is preferred 9051 * 3) task is cache cold, or 9052 * 4) too many balance attempts have failed. 9053 */ 9054 if (env->flags & LBF_ACTIVE_LB) 9055 return 1; 9056 9057 tsk_cache_hot = migrate_degrades_locality(p, env); 9058 if (tsk_cache_hot == -1) 9059 tsk_cache_hot = task_hot(p, env); 9060 9061 if (tsk_cache_hot <= 0 || 9062 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9063 if (tsk_cache_hot == 1) { 9064 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9065 schedstat_inc(p->stats.nr_forced_migrations); 9066 } 9067 return 1; 9068 } 9069 9070 schedstat_inc(p->stats.nr_failed_migrations_hot); 9071 return 0; 9072 } 9073 9074 /* 9075 * detach_task() -- detach the task for the migration specified in env 9076 */ 9077 static void detach_task(struct task_struct *p, struct lb_env *env) 9078 { 9079 lockdep_assert_rq_held(env->src_rq); 9080 9081 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9082 set_task_cpu(p, env->dst_cpu); 9083 } 9084 9085 /* 9086 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9087 * part of active balancing operations within "domain". 9088 * 9089 * Returns a task if successful and NULL otherwise. 9090 */ 9091 static struct task_struct *detach_one_task(struct lb_env *env) 9092 { 9093 struct task_struct *p; 9094 9095 lockdep_assert_rq_held(env->src_rq); 9096 9097 list_for_each_entry_reverse(p, 9098 &env->src_rq->cfs_tasks, se.group_node) { 9099 if (!can_migrate_task(p, env)) 9100 continue; 9101 9102 detach_task(p, env); 9103 9104 /* 9105 * Right now, this is only the second place where 9106 * lb_gained[env->idle] is updated (other is detach_tasks) 9107 * so we can safely collect stats here rather than 9108 * inside detach_tasks(). 9109 */ 9110 schedstat_inc(env->sd->lb_gained[env->idle]); 9111 return p; 9112 } 9113 return NULL; 9114 } 9115 9116 /* 9117 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9118 * busiest_rq, as part of a balancing operation within domain "sd". 9119 * 9120 * Returns number of detached tasks if successful and 0 otherwise. 9121 */ 9122 static int detach_tasks(struct lb_env *env) 9123 { 9124 struct list_head *tasks = &env->src_rq->cfs_tasks; 9125 unsigned long util, load; 9126 struct task_struct *p; 9127 int detached = 0; 9128 9129 lockdep_assert_rq_held(env->src_rq); 9130 9131 /* 9132 * Source run queue has been emptied by another CPU, clear 9133 * LBF_ALL_PINNED flag as we will not test any task. 9134 */ 9135 if (env->src_rq->nr_running <= 1) { 9136 env->flags &= ~LBF_ALL_PINNED; 9137 return 0; 9138 } 9139 9140 if (env->imbalance <= 0) 9141 return 0; 9142 9143 while (!list_empty(tasks)) { 9144 /* 9145 * We don't want to steal all, otherwise we may be treated likewise, 9146 * which could at worst lead to a livelock crash. 9147 */ 9148 if (env->idle && env->src_rq->nr_running <= 1) 9149 break; 9150 9151 env->loop++; 9152 /* 9153 * We've more or less seen every task there is, call it quits 9154 * unless we haven't found any movable task yet. 9155 */ 9156 if (env->loop > env->loop_max && 9157 !(env->flags & LBF_ALL_PINNED)) 9158 break; 9159 9160 /* take a breather every nr_migrate tasks */ 9161 if (env->loop > env->loop_break) { 9162 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9163 env->flags |= LBF_NEED_BREAK; 9164 break; 9165 } 9166 9167 p = list_last_entry(tasks, struct task_struct, se.group_node); 9168 9169 if (!can_migrate_task(p, env)) 9170 goto next; 9171 9172 switch (env->migration_type) { 9173 case migrate_load: 9174 /* 9175 * Depending of the number of CPUs and tasks and the 9176 * cgroup hierarchy, task_h_load() can return a null 9177 * value. Make sure that env->imbalance decreases 9178 * otherwise detach_tasks() will stop only after 9179 * detaching up to loop_max tasks. 9180 */ 9181 load = max_t(unsigned long, task_h_load(p), 1); 9182 9183 if (sched_feat(LB_MIN) && 9184 load < 16 && !env->sd->nr_balance_failed) 9185 goto next; 9186 9187 /* 9188 * Make sure that we don't migrate too much load. 9189 * Nevertheless, let relax the constraint if 9190 * scheduler fails to find a good waiting task to 9191 * migrate. 9192 */ 9193 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9194 goto next; 9195 9196 env->imbalance -= load; 9197 break; 9198 9199 case migrate_util: 9200 util = task_util_est(p); 9201 9202 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9203 goto next; 9204 9205 env->imbalance -= util; 9206 break; 9207 9208 case migrate_task: 9209 env->imbalance--; 9210 break; 9211 9212 case migrate_misfit: 9213 /* This is not a misfit task */ 9214 if (task_fits_cpu(p, env->src_cpu)) 9215 goto next; 9216 9217 env->imbalance = 0; 9218 break; 9219 } 9220 9221 detach_task(p, env); 9222 list_add(&p->se.group_node, &env->tasks); 9223 9224 detached++; 9225 9226 #ifdef CONFIG_PREEMPTION 9227 /* 9228 * NEWIDLE balancing is a source of latency, so preemptible 9229 * kernels will stop after the first task is detached to minimize 9230 * the critical section. 9231 */ 9232 if (env->idle == CPU_NEWLY_IDLE) 9233 break; 9234 #endif 9235 9236 /* 9237 * We only want to steal up to the prescribed amount of 9238 * load/util/tasks. 9239 */ 9240 if (env->imbalance <= 0) 9241 break; 9242 9243 continue; 9244 next: 9245 list_move(&p->se.group_node, tasks); 9246 } 9247 9248 /* 9249 * Right now, this is one of only two places we collect this stat 9250 * so we can safely collect detach_one_task() stats here rather 9251 * than inside detach_one_task(). 9252 */ 9253 schedstat_add(env->sd->lb_gained[env->idle], detached); 9254 9255 return detached; 9256 } 9257 9258 /* 9259 * attach_task() -- attach the task detached by detach_task() to its new rq. 9260 */ 9261 static void attach_task(struct rq *rq, struct task_struct *p) 9262 { 9263 lockdep_assert_rq_held(rq); 9264 9265 WARN_ON_ONCE(task_rq(p) != rq); 9266 activate_task(rq, p, ENQUEUE_NOCLOCK); 9267 wakeup_preempt(rq, p, 0); 9268 } 9269 9270 /* 9271 * attach_one_task() -- attaches the task returned from detach_one_task() to 9272 * its new rq. 9273 */ 9274 static void attach_one_task(struct rq *rq, struct task_struct *p) 9275 { 9276 struct rq_flags rf; 9277 9278 rq_lock(rq, &rf); 9279 update_rq_clock(rq); 9280 attach_task(rq, p); 9281 rq_unlock(rq, &rf); 9282 } 9283 9284 /* 9285 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9286 * new rq. 9287 */ 9288 static void attach_tasks(struct lb_env *env) 9289 { 9290 struct list_head *tasks = &env->tasks; 9291 struct task_struct *p; 9292 struct rq_flags rf; 9293 9294 rq_lock(env->dst_rq, &rf); 9295 update_rq_clock(env->dst_rq); 9296 9297 while (!list_empty(tasks)) { 9298 p = list_first_entry(tasks, struct task_struct, se.group_node); 9299 list_del_init(&p->se.group_node); 9300 9301 attach_task(env->dst_rq, p); 9302 } 9303 9304 rq_unlock(env->dst_rq, &rf); 9305 } 9306 9307 #ifdef CONFIG_NO_HZ_COMMON 9308 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9309 { 9310 if (cfs_rq->avg.load_avg) 9311 return true; 9312 9313 if (cfs_rq->avg.util_avg) 9314 return true; 9315 9316 return false; 9317 } 9318 9319 static inline bool others_have_blocked(struct rq *rq) 9320 { 9321 if (cpu_util_rt(rq)) 9322 return true; 9323 9324 if (cpu_util_dl(rq)) 9325 return true; 9326 9327 if (hw_load_avg(rq)) 9328 return true; 9329 9330 if (cpu_util_irq(rq)) 9331 return true; 9332 9333 return false; 9334 } 9335 9336 static inline void update_blocked_load_tick(struct rq *rq) 9337 { 9338 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9339 } 9340 9341 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9342 { 9343 if (!has_blocked) 9344 rq->has_blocked_load = 0; 9345 } 9346 #else 9347 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9348 static inline bool others_have_blocked(struct rq *rq) { return false; } 9349 static inline void update_blocked_load_tick(struct rq *rq) {} 9350 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9351 #endif 9352 9353 static bool __update_blocked_others(struct rq *rq, bool *done) 9354 { 9355 const struct sched_class *curr_class; 9356 u64 now = rq_clock_pelt(rq); 9357 unsigned long hw_pressure; 9358 bool decayed; 9359 9360 /* 9361 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9362 * DL and IRQ signals have been updated before updating CFS. 9363 */ 9364 curr_class = rq->curr->sched_class; 9365 9366 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 9367 9368 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 9369 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 9370 update_hw_load_avg(now, rq, hw_pressure) | 9371 update_irq_load_avg(rq, 0); 9372 9373 if (others_have_blocked(rq)) 9374 *done = false; 9375 9376 return decayed; 9377 } 9378 9379 #ifdef CONFIG_FAIR_GROUP_SCHED 9380 9381 static bool __update_blocked_fair(struct rq *rq, bool *done) 9382 { 9383 struct cfs_rq *cfs_rq, *pos; 9384 bool decayed = false; 9385 int cpu = cpu_of(rq); 9386 9387 /* 9388 * Iterates the task_group tree in a bottom up fashion, see 9389 * list_add_leaf_cfs_rq() for details. 9390 */ 9391 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9392 struct sched_entity *se; 9393 9394 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9395 update_tg_load_avg(cfs_rq); 9396 9397 if (cfs_rq->nr_running == 0) 9398 update_idle_cfs_rq_clock_pelt(cfs_rq); 9399 9400 if (cfs_rq == &rq->cfs) 9401 decayed = true; 9402 } 9403 9404 /* Propagate pending load changes to the parent, if any: */ 9405 se = cfs_rq->tg->se[cpu]; 9406 if (se && !skip_blocked_update(se)) 9407 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9408 9409 /* 9410 * There can be a lot of idle CPU cgroups. Don't let fully 9411 * decayed cfs_rqs linger on the list. 9412 */ 9413 if (cfs_rq_is_decayed(cfs_rq)) 9414 list_del_leaf_cfs_rq(cfs_rq); 9415 9416 /* Don't need periodic decay once load/util_avg are null */ 9417 if (cfs_rq_has_blocked(cfs_rq)) 9418 *done = false; 9419 } 9420 9421 return decayed; 9422 } 9423 9424 /* 9425 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9426 * This needs to be done in a top-down fashion because the load of a child 9427 * group is a fraction of its parents load. 9428 */ 9429 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9430 { 9431 struct rq *rq = rq_of(cfs_rq); 9432 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9433 unsigned long now = jiffies; 9434 unsigned long load; 9435 9436 if (cfs_rq->last_h_load_update == now) 9437 return; 9438 9439 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9440 for_each_sched_entity(se) { 9441 cfs_rq = cfs_rq_of(se); 9442 WRITE_ONCE(cfs_rq->h_load_next, se); 9443 if (cfs_rq->last_h_load_update == now) 9444 break; 9445 } 9446 9447 if (!se) { 9448 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9449 cfs_rq->last_h_load_update = now; 9450 } 9451 9452 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9453 load = cfs_rq->h_load; 9454 load = div64_ul(load * se->avg.load_avg, 9455 cfs_rq_load_avg(cfs_rq) + 1); 9456 cfs_rq = group_cfs_rq(se); 9457 cfs_rq->h_load = load; 9458 cfs_rq->last_h_load_update = now; 9459 } 9460 } 9461 9462 static unsigned long task_h_load(struct task_struct *p) 9463 { 9464 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9465 9466 update_cfs_rq_h_load(cfs_rq); 9467 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9468 cfs_rq_load_avg(cfs_rq) + 1); 9469 } 9470 #else 9471 static bool __update_blocked_fair(struct rq *rq, bool *done) 9472 { 9473 struct cfs_rq *cfs_rq = &rq->cfs; 9474 bool decayed; 9475 9476 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9477 if (cfs_rq_has_blocked(cfs_rq)) 9478 *done = false; 9479 9480 return decayed; 9481 } 9482 9483 static unsigned long task_h_load(struct task_struct *p) 9484 { 9485 return p->se.avg.load_avg; 9486 } 9487 #endif 9488 9489 static void sched_balance_update_blocked_averages(int cpu) 9490 { 9491 bool decayed = false, done = true; 9492 struct rq *rq = cpu_rq(cpu); 9493 struct rq_flags rf; 9494 9495 rq_lock_irqsave(rq, &rf); 9496 update_blocked_load_tick(rq); 9497 update_rq_clock(rq); 9498 9499 decayed |= __update_blocked_others(rq, &done); 9500 decayed |= __update_blocked_fair(rq, &done); 9501 9502 update_blocked_load_status(rq, !done); 9503 if (decayed) 9504 cpufreq_update_util(rq, 0); 9505 rq_unlock_irqrestore(rq, &rf); 9506 } 9507 9508 /********** Helpers for sched_balance_find_src_group ************************/ 9509 9510 /* 9511 * sg_lb_stats - stats of a sched_group required for load-balancing: 9512 */ 9513 struct sg_lb_stats { 9514 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9515 unsigned long group_load; /* Total load over the CPUs of the group */ 9516 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9517 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9518 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9519 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9520 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9521 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9522 unsigned int group_weight; 9523 enum group_type group_type; 9524 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9525 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9526 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9527 #ifdef CONFIG_NUMA_BALANCING 9528 unsigned int nr_numa_running; 9529 unsigned int nr_preferred_running; 9530 #endif 9531 }; 9532 9533 /* 9534 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9535 */ 9536 struct sd_lb_stats { 9537 struct sched_group *busiest; /* Busiest group in this sd */ 9538 struct sched_group *local; /* Local group in this sd */ 9539 unsigned long total_load; /* Total load of all groups in sd */ 9540 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9541 unsigned long avg_load; /* Average load across all groups in sd */ 9542 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 9543 9544 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 9545 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9546 }; 9547 9548 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9549 { 9550 /* 9551 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9552 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9553 * We must however set busiest_stat::group_type and 9554 * busiest_stat::idle_cpus to the worst busiest group because 9555 * update_sd_pick_busiest() reads these before assignment. 9556 */ 9557 *sds = (struct sd_lb_stats){ 9558 .busiest = NULL, 9559 .local = NULL, 9560 .total_load = 0UL, 9561 .total_capacity = 0UL, 9562 .busiest_stat = { 9563 .idle_cpus = UINT_MAX, 9564 .group_type = group_has_spare, 9565 }, 9566 }; 9567 } 9568 9569 static unsigned long scale_rt_capacity(int cpu) 9570 { 9571 unsigned long max = get_actual_cpu_capacity(cpu); 9572 struct rq *rq = cpu_rq(cpu); 9573 unsigned long used, free; 9574 unsigned long irq; 9575 9576 irq = cpu_util_irq(rq); 9577 9578 if (unlikely(irq >= max)) 9579 return 1; 9580 9581 /* 9582 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9583 * (running and not running) with weights 0 and 1024 respectively. 9584 */ 9585 used = cpu_util_rt(rq); 9586 used += cpu_util_dl(rq); 9587 9588 if (unlikely(used >= max)) 9589 return 1; 9590 9591 free = max - used; 9592 9593 return scale_irq_capacity(free, irq, max); 9594 } 9595 9596 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9597 { 9598 unsigned long capacity = scale_rt_capacity(cpu); 9599 struct sched_group *sdg = sd->groups; 9600 9601 if (!capacity) 9602 capacity = 1; 9603 9604 cpu_rq(cpu)->cpu_capacity = capacity; 9605 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9606 9607 sdg->sgc->capacity = capacity; 9608 sdg->sgc->min_capacity = capacity; 9609 sdg->sgc->max_capacity = capacity; 9610 } 9611 9612 void update_group_capacity(struct sched_domain *sd, int cpu) 9613 { 9614 struct sched_domain *child = sd->child; 9615 struct sched_group *group, *sdg = sd->groups; 9616 unsigned long capacity, min_capacity, max_capacity; 9617 unsigned long interval; 9618 9619 interval = msecs_to_jiffies(sd->balance_interval); 9620 interval = clamp(interval, 1UL, max_load_balance_interval); 9621 sdg->sgc->next_update = jiffies + interval; 9622 9623 if (!child) { 9624 update_cpu_capacity(sd, cpu); 9625 return; 9626 } 9627 9628 capacity = 0; 9629 min_capacity = ULONG_MAX; 9630 max_capacity = 0; 9631 9632 if (child->flags & SD_OVERLAP) { 9633 /* 9634 * SD_OVERLAP domains cannot assume that child groups 9635 * span the current group. 9636 */ 9637 9638 for_each_cpu(cpu, sched_group_span(sdg)) { 9639 unsigned long cpu_cap = capacity_of(cpu); 9640 9641 capacity += cpu_cap; 9642 min_capacity = min(cpu_cap, min_capacity); 9643 max_capacity = max(cpu_cap, max_capacity); 9644 } 9645 } else { 9646 /* 9647 * !SD_OVERLAP domains can assume that child groups 9648 * span the current group. 9649 */ 9650 9651 group = child->groups; 9652 do { 9653 struct sched_group_capacity *sgc = group->sgc; 9654 9655 capacity += sgc->capacity; 9656 min_capacity = min(sgc->min_capacity, min_capacity); 9657 max_capacity = max(sgc->max_capacity, max_capacity); 9658 group = group->next; 9659 } while (group != child->groups); 9660 } 9661 9662 sdg->sgc->capacity = capacity; 9663 sdg->sgc->min_capacity = min_capacity; 9664 sdg->sgc->max_capacity = max_capacity; 9665 } 9666 9667 /* 9668 * Check whether the capacity of the rq has been noticeably reduced by side 9669 * activity. The imbalance_pct is used for the threshold. 9670 * Return true is the capacity is reduced 9671 */ 9672 static inline int 9673 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 9674 { 9675 return ((rq->cpu_capacity * sd->imbalance_pct) < 9676 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 9677 } 9678 9679 /* Check if the rq has a misfit task */ 9680 static inline bool check_misfit_status(struct rq *rq) 9681 { 9682 return rq->misfit_task_load; 9683 } 9684 9685 /* 9686 * Group imbalance indicates (and tries to solve) the problem where balancing 9687 * groups is inadequate due to ->cpus_ptr constraints. 9688 * 9689 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9690 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 9691 * Something like: 9692 * 9693 * { 0 1 2 3 } { 4 5 6 7 } 9694 * * * * * 9695 * 9696 * If we were to balance group-wise we'd place two tasks in the first group and 9697 * two tasks in the second group. Clearly this is undesired as it will overload 9698 * cpu 3 and leave one of the CPUs in the second group unused. 9699 * 9700 * The current solution to this issue is detecting the skew in the first group 9701 * by noticing the lower domain failed to reach balance and had difficulty 9702 * moving tasks due to affinity constraints. 9703 * 9704 * When this is so detected; this group becomes a candidate for busiest; see 9705 * update_sd_pick_busiest(). And calculate_imbalance() and 9706 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 9707 * to create an effective group imbalance. 9708 * 9709 * This is a somewhat tricky proposition since the next run might not find the 9710 * group imbalance and decide the groups need to be balanced again. A most 9711 * subtle and fragile situation. 9712 */ 9713 9714 static inline int sg_imbalanced(struct sched_group *group) 9715 { 9716 return group->sgc->imbalance; 9717 } 9718 9719 /* 9720 * group_has_capacity returns true if the group has spare capacity that could 9721 * be used by some tasks. 9722 * We consider that a group has spare capacity if the number of task is 9723 * smaller than the number of CPUs or if the utilization is lower than the 9724 * available capacity for CFS tasks. 9725 * For the latter, we use a threshold to stabilize the state, to take into 9726 * account the variance of the tasks' load and to return true if the available 9727 * capacity in meaningful for the load balancer. 9728 * As an example, an available capacity of 1% can appear but it doesn't make 9729 * any benefit for the load balance. 9730 */ 9731 static inline bool 9732 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9733 { 9734 if (sgs->sum_nr_running < sgs->group_weight) 9735 return true; 9736 9737 if ((sgs->group_capacity * imbalance_pct) < 9738 (sgs->group_runnable * 100)) 9739 return false; 9740 9741 if ((sgs->group_capacity * 100) > 9742 (sgs->group_util * imbalance_pct)) 9743 return true; 9744 9745 return false; 9746 } 9747 9748 /* 9749 * group_is_overloaded returns true if the group has more tasks than it can 9750 * handle. 9751 * group_is_overloaded is not equals to !group_has_capacity because a group 9752 * with the exact right number of tasks, has no more spare capacity but is not 9753 * overloaded so both group_has_capacity and group_is_overloaded return 9754 * false. 9755 */ 9756 static inline bool 9757 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9758 { 9759 if (sgs->sum_nr_running <= sgs->group_weight) 9760 return false; 9761 9762 if ((sgs->group_capacity * 100) < 9763 (sgs->group_util * imbalance_pct)) 9764 return true; 9765 9766 if ((sgs->group_capacity * imbalance_pct) < 9767 (sgs->group_runnable * 100)) 9768 return true; 9769 9770 return false; 9771 } 9772 9773 static inline enum 9774 group_type group_classify(unsigned int imbalance_pct, 9775 struct sched_group *group, 9776 struct sg_lb_stats *sgs) 9777 { 9778 if (group_is_overloaded(imbalance_pct, sgs)) 9779 return group_overloaded; 9780 9781 if (sg_imbalanced(group)) 9782 return group_imbalanced; 9783 9784 if (sgs->group_asym_packing) 9785 return group_asym_packing; 9786 9787 if (sgs->group_smt_balance) 9788 return group_smt_balance; 9789 9790 if (sgs->group_misfit_task_load) 9791 return group_misfit_task; 9792 9793 if (!group_has_capacity(imbalance_pct, sgs)) 9794 return group_fully_busy; 9795 9796 return group_has_spare; 9797 } 9798 9799 /** 9800 * sched_use_asym_prio - Check whether asym_packing priority must be used 9801 * @sd: The scheduling domain of the load balancing 9802 * @cpu: A CPU 9803 * 9804 * Always use CPU priority when balancing load between SMT siblings. When 9805 * balancing load between cores, it is not sufficient that @cpu is idle. Only 9806 * use CPU priority if the whole core is idle. 9807 * 9808 * Returns: True if the priority of @cpu must be followed. False otherwise. 9809 */ 9810 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 9811 { 9812 if (!(sd->flags & SD_ASYM_PACKING)) 9813 return false; 9814 9815 if (!sched_smt_active()) 9816 return true; 9817 9818 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 9819 } 9820 9821 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 9822 { 9823 /* 9824 * First check if @dst_cpu can do asym_packing load balance. Only do it 9825 * if it has higher priority than @src_cpu. 9826 */ 9827 return sched_use_asym_prio(sd, dst_cpu) && 9828 sched_asym_prefer(dst_cpu, src_cpu); 9829 } 9830 9831 /** 9832 * sched_group_asym - Check if the destination CPU can do asym_packing balance 9833 * @env: The load balancing environment 9834 * @sgs: Load-balancing statistics of the candidate busiest group 9835 * @group: The candidate busiest group 9836 * 9837 * @env::dst_cpu can do asym_packing if it has higher priority than the 9838 * preferred CPU of @group. 9839 * 9840 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 9841 * otherwise. 9842 */ 9843 static inline bool 9844 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 9845 { 9846 /* 9847 * CPU priorities do not make sense for SMT cores with more than one 9848 * busy sibling. 9849 */ 9850 if ((group->flags & SD_SHARE_CPUCAPACITY) && 9851 (sgs->group_weight - sgs->idle_cpus != 1)) 9852 return false; 9853 9854 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu); 9855 } 9856 9857 /* One group has more than one SMT CPU while the other group does not */ 9858 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 9859 struct sched_group *sg2) 9860 { 9861 if (!sg1 || !sg2) 9862 return false; 9863 9864 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 9865 (sg2->flags & SD_SHARE_CPUCAPACITY); 9866 } 9867 9868 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 9869 struct sched_group *group) 9870 { 9871 if (!env->idle) 9872 return false; 9873 9874 /* 9875 * For SMT source group, it is better to move a task 9876 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 9877 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 9878 * will not be on. 9879 */ 9880 if (group->flags & SD_SHARE_CPUCAPACITY && 9881 sgs->sum_h_nr_running > 1) 9882 return true; 9883 9884 return false; 9885 } 9886 9887 static inline long sibling_imbalance(struct lb_env *env, 9888 struct sd_lb_stats *sds, 9889 struct sg_lb_stats *busiest, 9890 struct sg_lb_stats *local) 9891 { 9892 int ncores_busiest, ncores_local; 9893 long imbalance; 9894 9895 if (!env->idle || !busiest->sum_nr_running) 9896 return 0; 9897 9898 ncores_busiest = sds->busiest->cores; 9899 ncores_local = sds->local->cores; 9900 9901 if (ncores_busiest == ncores_local) { 9902 imbalance = busiest->sum_nr_running; 9903 lsub_positive(&imbalance, local->sum_nr_running); 9904 return imbalance; 9905 } 9906 9907 /* Balance such that nr_running/ncores ratio are same on both groups */ 9908 imbalance = ncores_local * busiest->sum_nr_running; 9909 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 9910 /* Normalize imbalance and do rounding on normalization */ 9911 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 9912 imbalance /= ncores_local + ncores_busiest; 9913 9914 /* Take advantage of resource in an empty sched group */ 9915 if (imbalance <= 1 && local->sum_nr_running == 0 && 9916 busiest->sum_nr_running > 1) 9917 imbalance = 2; 9918 9919 return imbalance; 9920 } 9921 9922 static inline bool 9923 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 9924 { 9925 /* 9926 * When there is more than 1 task, the group_overloaded case already 9927 * takes care of cpu with reduced capacity 9928 */ 9929 if (rq->cfs.h_nr_running != 1) 9930 return false; 9931 9932 return check_cpu_capacity(rq, sd); 9933 } 9934 9935 /** 9936 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 9937 * @env: The load balancing environment. 9938 * @sds: Load-balancing data with statistics of the local group. 9939 * @group: sched_group whose statistics are to be updated. 9940 * @sgs: variable to hold the statistics for this group. 9941 * @sg_overloaded: sched_group is overloaded 9942 * @sg_overutilized: sched_group is overutilized 9943 */ 9944 static inline void update_sg_lb_stats(struct lb_env *env, 9945 struct sd_lb_stats *sds, 9946 struct sched_group *group, 9947 struct sg_lb_stats *sgs, 9948 bool *sg_overloaded, 9949 bool *sg_overutilized) 9950 { 9951 int i, nr_running, local_group; 9952 9953 memset(sgs, 0, sizeof(*sgs)); 9954 9955 local_group = group == sds->local; 9956 9957 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9958 struct rq *rq = cpu_rq(i); 9959 unsigned long load = cpu_load(rq); 9960 9961 sgs->group_load += load; 9962 sgs->group_util += cpu_util_cfs(i); 9963 sgs->group_runnable += cpu_runnable(rq); 9964 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 9965 9966 nr_running = rq->nr_running; 9967 sgs->sum_nr_running += nr_running; 9968 9969 if (nr_running > 1) 9970 *sg_overloaded = 1; 9971 9972 if (cpu_overutilized(i)) 9973 *sg_overutilized = 1; 9974 9975 #ifdef CONFIG_NUMA_BALANCING 9976 sgs->nr_numa_running += rq->nr_numa_running; 9977 sgs->nr_preferred_running += rq->nr_preferred_running; 9978 #endif 9979 /* 9980 * No need to call idle_cpu() if nr_running is not 0 9981 */ 9982 if (!nr_running && idle_cpu(i)) { 9983 sgs->idle_cpus++; 9984 /* Idle cpu can't have misfit task */ 9985 continue; 9986 } 9987 9988 if (local_group) 9989 continue; 9990 9991 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9992 /* Check for a misfit task on the cpu */ 9993 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 9994 sgs->group_misfit_task_load = rq->misfit_task_load; 9995 *sg_overloaded = 1; 9996 } 9997 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 9998 /* Check for a task running on a CPU with reduced capacity */ 9999 if (sgs->group_misfit_task_load < load) 10000 sgs->group_misfit_task_load = load; 10001 } 10002 } 10003 10004 sgs->group_capacity = group->sgc->capacity; 10005 10006 sgs->group_weight = group->group_weight; 10007 10008 /* Check if dst CPU is idle and preferred to this group */ 10009 if (!local_group && env->idle && sgs->sum_h_nr_running && 10010 sched_group_asym(env, sgs, group)) 10011 sgs->group_asym_packing = 1; 10012 10013 /* Check for loaded SMT group to be balanced to dst CPU */ 10014 if (!local_group && smt_balance(env, sgs, group)) 10015 sgs->group_smt_balance = 1; 10016 10017 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10018 10019 /* Computing avg_load makes sense only when group is overloaded */ 10020 if (sgs->group_type == group_overloaded) 10021 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10022 sgs->group_capacity; 10023 } 10024 10025 /** 10026 * update_sd_pick_busiest - return 1 on busiest group 10027 * @env: The load balancing environment. 10028 * @sds: sched_domain statistics 10029 * @sg: sched_group candidate to be checked for being the busiest 10030 * @sgs: sched_group statistics 10031 * 10032 * Determine if @sg is a busier group than the previously selected 10033 * busiest group. 10034 * 10035 * Return: %true if @sg is a busier group than the previously selected 10036 * busiest group. %false otherwise. 10037 */ 10038 static bool update_sd_pick_busiest(struct lb_env *env, 10039 struct sd_lb_stats *sds, 10040 struct sched_group *sg, 10041 struct sg_lb_stats *sgs) 10042 { 10043 struct sg_lb_stats *busiest = &sds->busiest_stat; 10044 10045 /* Make sure that there is at least one task to pull */ 10046 if (!sgs->sum_h_nr_running) 10047 return false; 10048 10049 /* 10050 * Don't try to pull misfit tasks we can't help. 10051 * We can use max_capacity here as reduction in capacity on some 10052 * CPUs in the group should either be possible to resolve 10053 * internally or be covered by avg_load imbalance (eventually). 10054 */ 10055 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10056 (sgs->group_type == group_misfit_task) && 10057 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10058 sds->local_stat.group_type != group_has_spare)) 10059 return false; 10060 10061 if (sgs->group_type > busiest->group_type) 10062 return true; 10063 10064 if (sgs->group_type < busiest->group_type) 10065 return false; 10066 10067 /* 10068 * The candidate and the current busiest group are the same type of 10069 * group. Let check which one is the busiest according to the type. 10070 */ 10071 10072 switch (sgs->group_type) { 10073 case group_overloaded: 10074 /* Select the overloaded group with highest avg_load. */ 10075 return sgs->avg_load > busiest->avg_load; 10076 10077 case group_imbalanced: 10078 /* 10079 * Select the 1st imbalanced group as we don't have any way to 10080 * choose one more than another. 10081 */ 10082 return false; 10083 10084 case group_asym_packing: 10085 /* Prefer to move from lowest priority CPU's work */ 10086 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu); 10087 10088 case group_misfit_task: 10089 /* 10090 * If we have more than one misfit sg go with the biggest 10091 * misfit. 10092 */ 10093 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10094 10095 case group_smt_balance: 10096 /* 10097 * Check if we have spare CPUs on either SMT group to 10098 * choose has spare or fully busy handling. 10099 */ 10100 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10101 goto has_spare; 10102 10103 fallthrough; 10104 10105 case group_fully_busy: 10106 /* 10107 * Select the fully busy group with highest avg_load. In 10108 * theory, there is no need to pull task from such kind of 10109 * group because tasks have all compute capacity that they need 10110 * but we can still improve the overall throughput by reducing 10111 * contention when accessing shared HW resources. 10112 * 10113 * XXX for now avg_load is not computed and always 0 so we 10114 * select the 1st one, except if @sg is composed of SMT 10115 * siblings. 10116 */ 10117 10118 if (sgs->avg_load < busiest->avg_load) 10119 return false; 10120 10121 if (sgs->avg_load == busiest->avg_load) { 10122 /* 10123 * SMT sched groups need more help than non-SMT groups. 10124 * If @sg happens to also be SMT, either choice is good. 10125 */ 10126 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10127 return false; 10128 } 10129 10130 break; 10131 10132 case group_has_spare: 10133 /* 10134 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10135 * as we do not want to pull task off SMT core with one task 10136 * and make the core idle. 10137 */ 10138 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10139 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10140 return false; 10141 else 10142 return true; 10143 } 10144 has_spare: 10145 10146 /* 10147 * Select not overloaded group with lowest number of idle CPUs 10148 * and highest number of running tasks. We could also compare 10149 * the spare capacity which is more stable but it can end up 10150 * that the group has less spare capacity but finally more idle 10151 * CPUs which means less opportunity to pull tasks. 10152 */ 10153 if (sgs->idle_cpus > busiest->idle_cpus) 10154 return false; 10155 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10156 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10157 return false; 10158 10159 break; 10160 } 10161 10162 /* 10163 * Candidate sg has no more than one task per CPU and has higher 10164 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10165 * throughput. Maximize throughput, power/energy consequences are not 10166 * considered. 10167 */ 10168 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10169 (sgs->group_type <= group_fully_busy) && 10170 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10171 return false; 10172 10173 return true; 10174 } 10175 10176 #ifdef CONFIG_NUMA_BALANCING 10177 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10178 { 10179 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10180 return regular; 10181 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10182 return remote; 10183 return all; 10184 } 10185 10186 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10187 { 10188 if (rq->nr_running > rq->nr_numa_running) 10189 return regular; 10190 if (rq->nr_running > rq->nr_preferred_running) 10191 return remote; 10192 return all; 10193 } 10194 #else 10195 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10196 { 10197 return all; 10198 } 10199 10200 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10201 { 10202 return regular; 10203 } 10204 #endif /* CONFIG_NUMA_BALANCING */ 10205 10206 10207 struct sg_lb_stats; 10208 10209 /* 10210 * task_running_on_cpu - return 1 if @p is running on @cpu. 10211 */ 10212 10213 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10214 { 10215 /* Task has no contribution or is new */ 10216 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10217 return 0; 10218 10219 if (task_on_rq_queued(p)) 10220 return 1; 10221 10222 return 0; 10223 } 10224 10225 /** 10226 * idle_cpu_without - would a given CPU be idle without p ? 10227 * @cpu: the processor on which idleness is tested. 10228 * @p: task which should be ignored. 10229 * 10230 * Return: 1 if the CPU would be idle. 0 otherwise. 10231 */ 10232 static int idle_cpu_without(int cpu, struct task_struct *p) 10233 { 10234 struct rq *rq = cpu_rq(cpu); 10235 10236 if (rq->curr != rq->idle && rq->curr != p) 10237 return 0; 10238 10239 /* 10240 * rq->nr_running can't be used but an updated version without the 10241 * impact of p on cpu must be used instead. The updated nr_running 10242 * be computed and tested before calling idle_cpu_without(). 10243 */ 10244 10245 if (rq->ttwu_pending) 10246 return 0; 10247 10248 return 1; 10249 } 10250 10251 /* 10252 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10253 * @sd: The sched_domain level to look for idlest group. 10254 * @group: sched_group whose statistics are to be updated. 10255 * @sgs: variable to hold the statistics for this group. 10256 * @p: The task for which we look for the idlest group/CPU. 10257 */ 10258 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10259 struct sched_group *group, 10260 struct sg_lb_stats *sgs, 10261 struct task_struct *p) 10262 { 10263 int i, nr_running; 10264 10265 memset(sgs, 0, sizeof(*sgs)); 10266 10267 /* Assume that task can't fit any CPU of the group */ 10268 if (sd->flags & SD_ASYM_CPUCAPACITY) 10269 sgs->group_misfit_task_load = 1; 10270 10271 for_each_cpu(i, sched_group_span(group)) { 10272 struct rq *rq = cpu_rq(i); 10273 unsigned int local; 10274 10275 sgs->group_load += cpu_load_without(rq, p); 10276 sgs->group_util += cpu_util_without(i, p); 10277 sgs->group_runnable += cpu_runnable_without(rq, p); 10278 local = task_running_on_cpu(i, p); 10279 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 10280 10281 nr_running = rq->nr_running - local; 10282 sgs->sum_nr_running += nr_running; 10283 10284 /* 10285 * No need to call idle_cpu_without() if nr_running is not 0 10286 */ 10287 if (!nr_running && idle_cpu_without(i, p)) 10288 sgs->idle_cpus++; 10289 10290 /* Check if task fits in the CPU */ 10291 if (sd->flags & SD_ASYM_CPUCAPACITY && 10292 sgs->group_misfit_task_load && 10293 task_fits_cpu(p, i)) 10294 sgs->group_misfit_task_load = 0; 10295 10296 } 10297 10298 sgs->group_capacity = group->sgc->capacity; 10299 10300 sgs->group_weight = group->group_weight; 10301 10302 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10303 10304 /* 10305 * Computing avg_load makes sense only when group is fully busy or 10306 * overloaded 10307 */ 10308 if (sgs->group_type == group_fully_busy || 10309 sgs->group_type == group_overloaded) 10310 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10311 sgs->group_capacity; 10312 } 10313 10314 static bool update_pick_idlest(struct sched_group *idlest, 10315 struct sg_lb_stats *idlest_sgs, 10316 struct sched_group *group, 10317 struct sg_lb_stats *sgs) 10318 { 10319 if (sgs->group_type < idlest_sgs->group_type) 10320 return true; 10321 10322 if (sgs->group_type > idlest_sgs->group_type) 10323 return false; 10324 10325 /* 10326 * The candidate and the current idlest group are the same type of 10327 * group. Let check which one is the idlest according to the type. 10328 */ 10329 10330 switch (sgs->group_type) { 10331 case group_overloaded: 10332 case group_fully_busy: 10333 /* Select the group with lowest avg_load. */ 10334 if (idlest_sgs->avg_load <= sgs->avg_load) 10335 return false; 10336 break; 10337 10338 case group_imbalanced: 10339 case group_asym_packing: 10340 case group_smt_balance: 10341 /* Those types are not used in the slow wakeup path */ 10342 return false; 10343 10344 case group_misfit_task: 10345 /* Select group with the highest max capacity */ 10346 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10347 return false; 10348 break; 10349 10350 case group_has_spare: 10351 /* Select group with most idle CPUs */ 10352 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10353 return false; 10354 10355 /* Select group with lowest group_util */ 10356 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10357 idlest_sgs->group_util <= sgs->group_util) 10358 return false; 10359 10360 break; 10361 } 10362 10363 return true; 10364 } 10365 10366 /* 10367 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10368 * domain. 10369 * 10370 * Assumes p is allowed on at least one CPU in sd. 10371 */ 10372 static struct sched_group * 10373 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10374 { 10375 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10376 struct sg_lb_stats local_sgs, tmp_sgs; 10377 struct sg_lb_stats *sgs; 10378 unsigned long imbalance; 10379 struct sg_lb_stats idlest_sgs = { 10380 .avg_load = UINT_MAX, 10381 .group_type = group_overloaded, 10382 }; 10383 10384 do { 10385 int local_group; 10386 10387 /* Skip over this group if it has no CPUs allowed */ 10388 if (!cpumask_intersects(sched_group_span(group), 10389 p->cpus_ptr)) 10390 continue; 10391 10392 /* Skip over this group if no cookie matched */ 10393 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10394 continue; 10395 10396 local_group = cpumask_test_cpu(this_cpu, 10397 sched_group_span(group)); 10398 10399 if (local_group) { 10400 sgs = &local_sgs; 10401 local = group; 10402 } else { 10403 sgs = &tmp_sgs; 10404 } 10405 10406 update_sg_wakeup_stats(sd, group, sgs, p); 10407 10408 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10409 idlest = group; 10410 idlest_sgs = *sgs; 10411 } 10412 10413 } while (group = group->next, group != sd->groups); 10414 10415 10416 /* There is no idlest group to push tasks to */ 10417 if (!idlest) 10418 return NULL; 10419 10420 /* The local group has been skipped because of CPU affinity */ 10421 if (!local) 10422 return idlest; 10423 10424 /* 10425 * If the local group is idler than the selected idlest group 10426 * don't try and push the task. 10427 */ 10428 if (local_sgs.group_type < idlest_sgs.group_type) 10429 return NULL; 10430 10431 /* 10432 * If the local group is busier than the selected idlest group 10433 * try and push the task. 10434 */ 10435 if (local_sgs.group_type > idlest_sgs.group_type) 10436 return idlest; 10437 10438 switch (local_sgs.group_type) { 10439 case group_overloaded: 10440 case group_fully_busy: 10441 10442 /* Calculate allowed imbalance based on load */ 10443 imbalance = scale_load_down(NICE_0_LOAD) * 10444 (sd->imbalance_pct-100) / 100; 10445 10446 /* 10447 * When comparing groups across NUMA domains, it's possible for 10448 * the local domain to be very lightly loaded relative to the 10449 * remote domains but "imbalance" skews the comparison making 10450 * remote CPUs look much more favourable. When considering 10451 * cross-domain, add imbalance to the load on the remote node 10452 * and consider staying local. 10453 */ 10454 10455 if ((sd->flags & SD_NUMA) && 10456 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10457 return NULL; 10458 10459 /* 10460 * If the local group is less loaded than the selected 10461 * idlest group don't try and push any tasks. 10462 */ 10463 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10464 return NULL; 10465 10466 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10467 return NULL; 10468 break; 10469 10470 case group_imbalanced: 10471 case group_asym_packing: 10472 case group_smt_balance: 10473 /* Those type are not used in the slow wakeup path */ 10474 return NULL; 10475 10476 case group_misfit_task: 10477 /* Select group with the highest max capacity */ 10478 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10479 return NULL; 10480 break; 10481 10482 case group_has_spare: 10483 #ifdef CONFIG_NUMA 10484 if (sd->flags & SD_NUMA) { 10485 int imb_numa_nr = sd->imb_numa_nr; 10486 #ifdef CONFIG_NUMA_BALANCING 10487 int idlest_cpu; 10488 /* 10489 * If there is spare capacity at NUMA, try to select 10490 * the preferred node 10491 */ 10492 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10493 return NULL; 10494 10495 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10496 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10497 return idlest; 10498 #endif /* CONFIG_NUMA_BALANCING */ 10499 /* 10500 * Otherwise, keep the task close to the wakeup source 10501 * and improve locality if the number of running tasks 10502 * would remain below threshold where an imbalance is 10503 * allowed while accounting for the possibility the 10504 * task is pinned to a subset of CPUs. If there is a 10505 * real need of migration, periodic load balance will 10506 * take care of it. 10507 */ 10508 if (p->nr_cpus_allowed != NR_CPUS) { 10509 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10510 10511 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10512 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10513 } 10514 10515 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10516 if (!adjust_numa_imbalance(imbalance, 10517 local_sgs.sum_nr_running + 1, 10518 imb_numa_nr)) { 10519 return NULL; 10520 } 10521 } 10522 #endif /* CONFIG_NUMA */ 10523 10524 /* 10525 * Select group with highest number of idle CPUs. We could also 10526 * compare the utilization which is more stable but it can end 10527 * up that the group has less spare capacity but finally more 10528 * idle CPUs which means more opportunity to run task. 10529 */ 10530 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10531 return NULL; 10532 break; 10533 } 10534 10535 return idlest; 10536 } 10537 10538 static void update_idle_cpu_scan(struct lb_env *env, 10539 unsigned long sum_util) 10540 { 10541 struct sched_domain_shared *sd_share; 10542 int llc_weight, pct; 10543 u64 x, y, tmp; 10544 /* 10545 * Update the number of CPUs to scan in LLC domain, which could 10546 * be used as a hint in select_idle_cpu(). The update of sd_share 10547 * could be expensive because it is within a shared cache line. 10548 * So the write of this hint only occurs during periodic load 10549 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10550 * can fire way more frequently than the former. 10551 */ 10552 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10553 return; 10554 10555 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10556 if (env->sd->span_weight != llc_weight) 10557 return; 10558 10559 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10560 if (!sd_share) 10561 return; 10562 10563 /* 10564 * The number of CPUs to search drops as sum_util increases, when 10565 * sum_util hits 85% or above, the scan stops. 10566 * The reason to choose 85% as the threshold is because this is the 10567 * imbalance_pct(117) when a LLC sched group is overloaded. 10568 * 10569 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10570 * and y'= y / SCHED_CAPACITY_SCALE 10571 * 10572 * x is the ratio of sum_util compared to the CPU capacity: 10573 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10574 * y' is the ratio of CPUs to be scanned in the LLC domain, 10575 * and the number of CPUs to scan is calculated by: 10576 * 10577 * nr_scan = llc_weight * y' [2] 10578 * 10579 * When x hits the threshold of overloaded, AKA, when 10580 * x = 100 / pct, y drops to 0. According to [1], 10581 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10582 * 10583 * Scale x by SCHED_CAPACITY_SCALE: 10584 * x' = sum_util / llc_weight; [3] 10585 * 10586 * and finally [1] becomes: 10587 * y = SCHED_CAPACITY_SCALE - 10588 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10589 * 10590 */ 10591 /* equation [3] */ 10592 x = sum_util; 10593 do_div(x, llc_weight); 10594 10595 /* equation [4] */ 10596 pct = env->sd->imbalance_pct; 10597 tmp = x * x * pct * pct; 10598 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10599 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10600 y = SCHED_CAPACITY_SCALE - tmp; 10601 10602 /* equation [2] */ 10603 y *= llc_weight; 10604 do_div(y, SCHED_CAPACITY_SCALE); 10605 if ((int)y != sd_share->nr_idle_scan) 10606 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10607 } 10608 10609 /** 10610 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10611 * @env: The load balancing environment. 10612 * @sds: variable to hold the statistics for this sched_domain. 10613 */ 10614 10615 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10616 { 10617 struct sched_group *sg = env->sd->groups; 10618 struct sg_lb_stats *local = &sds->local_stat; 10619 struct sg_lb_stats tmp_sgs; 10620 unsigned long sum_util = 0; 10621 bool sg_overloaded = 0, sg_overutilized = 0; 10622 10623 do { 10624 struct sg_lb_stats *sgs = &tmp_sgs; 10625 int local_group; 10626 10627 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10628 if (local_group) { 10629 sds->local = sg; 10630 sgs = local; 10631 10632 if (env->idle != CPU_NEWLY_IDLE || 10633 time_after_eq(jiffies, sg->sgc->next_update)) 10634 update_group_capacity(env->sd, env->dst_cpu); 10635 } 10636 10637 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 10638 10639 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 10640 sds->busiest = sg; 10641 sds->busiest_stat = *sgs; 10642 } 10643 10644 /* Now, start updating sd_lb_stats */ 10645 sds->total_load += sgs->group_load; 10646 sds->total_capacity += sgs->group_capacity; 10647 10648 sum_util += sgs->group_util; 10649 sg = sg->next; 10650 } while (sg != env->sd->groups); 10651 10652 /* 10653 * Indicate that the child domain of the busiest group prefers tasks 10654 * go to a child's sibling domains first. NB the flags of a sched group 10655 * are those of the child domain. 10656 */ 10657 if (sds->busiest) 10658 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 10659 10660 10661 if (env->sd->flags & SD_NUMA) 10662 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 10663 10664 if (!env->sd->parent) { 10665 /* update overload indicator if we are at root domain */ 10666 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 10667 10668 /* Update over-utilization (tipping point, U >= 0) indicator */ 10669 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 10670 } else if (sg_overutilized) { 10671 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 10672 } 10673 10674 update_idle_cpu_scan(env, sum_util); 10675 } 10676 10677 /** 10678 * calculate_imbalance - Calculate the amount of imbalance present within the 10679 * groups of a given sched_domain during load balance. 10680 * @env: load balance environment 10681 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 10682 */ 10683 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 10684 { 10685 struct sg_lb_stats *local, *busiest; 10686 10687 local = &sds->local_stat; 10688 busiest = &sds->busiest_stat; 10689 10690 if (busiest->group_type == group_misfit_task) { 10691 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10692 /* Set imbalance to allow misfit tasks to be balanced. */ 10693 env->migration_type = migrate_misfit; 10694 env->imbalance = 1; 10695 } else { 10696 /* 10697 * Set load imbalance to allow moving task from cpu 10698 * with reduced capacity. 10699 */ 10700 env->migration_type = migrate_load; 10701 env->imbalance = busiest->group_misfit_task_load; 10702 } 10703 return; 10704 } 10705 10706 if (busiest->group_type == group_asym_packing) { 10707 /* 10708 * In case of asym capacity, we will try to migrate all load to 10709 * the preferred CPU. 10710 */ 10711 env->migration_type = migrate_task; 10712 env->imbalance = busiest->sum_h_nr_running; 10713 return; 10714 } 10715 10716 if (busiest->group_type == group_smt_balance) { 10717 /* Reduce number of tasks sharing CPU capacity */ 10718 env->migration_type = migrate_task; 10719 env->imbalance = 1; 10720 return; 10721 } 10722 10723 if (busiest->group_type == group_imbalanced) { 10724 /* 10725 * In the group_imb case we cannot rely on group-wide averages 10726 * to ensure CPU-load equilibrium, try to move any task to fix 10727 * the imbalance. The next load balance will take care of 10728 * balancing back the system. 10729 */ 10730 env->migration_type = migrate_task; 10731 env->imbalance = 1; 10732 return; 10733 } 10734 10735 /* 10736 * Try to use spare capacity of local group without overloading it or 10737 * emptying busiest. 10738 */ 10739 if (local->group_type == group_has_spare) { 10740 if ((busiest->group_type > group_fully_busy) && 10741 !(env->sd->flags & SD_SHARE_LLC)) { 10742 /* 10743 * If busiest is overloaded, try to fill spare 10744 * capacity. This might end up creating spare capacity 10745 * in busiest or busiest still being overloaded but 10746 * there is no simple way to directly compute the 10747 * amount of load to migrate in order to balance the 10748 * system. 10749 */ 10750 env->migration_type = migrate_util; 10751 env->imbalance = max(local->group_capacity, local->group_util) - 10752 local->group_util; 10753 10754 /* 10755 * In some cases, the group's utilization is max or even 10756 * higher than capacity because of migrations but the 10757 * local CPU is (newly) idle. There is at least one 10758 * waiting task in this overloaded busiest group. Let's 10759 * try to pull it. 10760 */ 10761 if (env->idle && env->imbalance == 0) { 10762 env->migration_type = migrate_task; 10763 env->imbalance = 1; 10764 } 10765 10766 return; 10767 } 10768 10769 if (busiest->group_weight == 1 || sds->prefer_sibling) { 10770 /* 10771 * When prefer sibling, evenly spread running tasks on 10772 * groups. 10773 */ 10774 env->migration_type = migrate_task; 10775 env->imbalance = sibling_imbalance(env, sds, busiest, local); 10776 } else { 10777 10778 /* 10779 * If there is no overload, we just want to even the number of 10780 * idle CPUs. 10781 */ 10782 env->migration_type = migrate_task; 10783 env->imbalance = max_t(long, 0, 10784 (local->idle_cpus - busiest->idle_cpus)); 10785 } 10786 10787 #ifdef CONFIG_NUMA 10788 /* Consider allowing a small imbalance between NUMA groups */ 10789 if (env->sd->flags & SD_NUMA) { 10790 env->imbalance = adjust_numa_imbalance(env->imbalance, 10791 local->sum_nr_running + 1, 10792 env->sd->imb_numa_nr); 10793 } 10794 #endif 10795 10796 /* Number of tasks to move to restore balance */ 10797 env->imbalance >>= 1; 10798 10799 return; 10800 } 10801 10802 /* 10803 * Local is fully busy but has to take more load to relieve the 10804 * busiest group 10805 */ 10806 if (local->group_type < group_overloaded) { 10807 /* 10808 * Local will become overloaded so the avg_load metrics are 10809 * finally needed. 10810 */ 10811 10812 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 10813 local->group_capacity; 10814 10815 /* 10816 * If the local group is more loaded than the selected 10817 * busiest group don't try to pull any tasks. 10818 */ 10819 if (local->avg_load >= busiest->avg_load) { 10820 env->imbalance = 0; 10821 return; 10822 } 10823 10824 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 10825 sds->total_capacity; 10826 10827 /* 10828 * If the local group is more loaded than the average system 10829 * load, don't try to pull any tasks. 10830 */ 10831 if (local->avg_load >= sds->avg_load) { 10832 env->imbalance = 0; 10833 return; 10834 } 10835 10836 } 10837 10838 /* 10839 * Both group are or will become overloaded and we're trying to get all 10840 * the CPUs to the average_load, so we don't want to push ourselves 10841 * above the average load, nor do we wish to reduce the max loaded CPU 10842 * below the average load. At the same time, we also don't want to 10843 * reduce the group load below the group capacity. Thus we look for 10844 * the minimum possible imbalance. 10845 */ 10846 env->migration_type = migrate_load; 10847 env->imbalance = min( 10848 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 10849 (sds->avg_load - local->avg_load) * local->group_capacity 10850 ) / SCHED_CAPACITY_SCALE; 10851 } 10852 10853 /******* sched_balance_find_src_group() helpers end here *********************/ 10854 10855 /* 10856 * Decision matrix according to the local and busiest group type: 10857 * 10858 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 10859 * has_spare nr_idle balanced N/A N/A balanced balanced 10860 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 10861 * misfit_task force N/A N/A N/A N/A N/A 10862 * asym_packing force force N/A N/A force force 10863 * imbalanced force force N/A N/A force force 10864 * overloaded force force N/A N/A force avg_load 10865 * 10866 * N/A : Not Applicable because already filtered while updating 10867 * statistics. 10868 * balanced : The system is balanced for these 2 groups. 10869 * force : Calculate the imbalance as load migration is probably needed. 10870 * avg_load : Only if imbalance is significant enough. 10871 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 10872 * different in groups. 10873 */ 10874 10875 /** 10876 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 10877 * if there is an imbalance. 10878 * @env: The load balancing environment. 10879 * 10880 * Also calculates the amount of runnable load which should be moved 10881 * to restore balance. 10882 * 10883 * Return: - The busiest group if imbalance exists. 10884 */ 10885 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 10886 { 10887 struct sg_lb_stats *local, *busiest; 10888 struct sd_lb_stats sds; 10889 10890 init_sd_lb_stats(&sds); 10891 10892 /* 10893 * Compute the various statistics relevant for load balancing at 10894 * this level. 10895 */ 10896 update_sd_lb_stats(env, &sds); 10897 10898 /* There is no busy sibling group to pull tasks from */ 10899 if (!sds.busiest) 10900 goto out_balanced; 10901 10902 busiest = &sds.busiest_stat; 10903 10904 /* Misfit tasks should be dealt with regardless of the avg load */ 10905 if (busiest->group_type == group_misfit_task) 10906 goto force_balance; 10907 10908 if (!is_rd_overutilized(env->dst_rq->rd) && 10909 rcu_dereference(env->dst_rq->rd->pd)) 10910 goto out_balanced; 10911 10912 /* ASYM feature bypasses nice load balance check */ 10913 if (busiest->group_type == group_asym_packing) 10914 goto force_balance; 10915 10916 /* 10917 * If the busiest group is imbalanced the below checks don't 10918 * work because they assume all things are equal, which typically 10919 * isn't true due to cpus_ptr constraints and the like. 10920 */ 10921 if (busiest->group_type == group_imbalanced) 10922 goto force_balance; 10923 10924 local = &sds.local_stat; 10925 /* 10926 * If the local group is busier than the selected busiest group 10927 * don't try and pull any tasks. 10928 */ 10929 if (local->group_type > busiest->group_type) 10930 goto out_balanced; 10931 10932 /* 10933 * When groups are overloaded, use the avg_load to ensure fairness 10934 * between tasks. 10935 */ 10936 if (local->group_type == group_overloaded) { 10937 /* 10938 * If the local group is more loaded than the selected 10939 * busiest group don't try to pull any tasks. 10940 */ 10941 if (local->avg_load >= busiest->avg_load) 10942 goto out_balanced; 10943 10944 /* XXX broken for overlapping NUMA groups */ 10945 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 10946 sds.total_capacity; 10947 10948 /* 10949 * Don't pull any tasks if this group is already above the 10950 * domain average load. 10951 */ 10952 if (local->avg_load >= sds.avg_load) 10953 goto out_balanced; 10954 10955 /* 10956 * If the busiest group is more loaded, use imbalance_pct to be 10957 * conservative. 10958 */ 10959 if (100 * busiest->avg_load <= 10960 env->sd->imbalance_pct * local->avg_load) 10961 goto out_balanced; 10962 } 10963 10964 /* 10965 * Try to move all excess tasks to a sibling domain of the busiest 10966 * group's child domain. 10967 */ 10968 if (sds.prefer_sibling && local->group_type == group_has_spare && 10969 sibling_imbalance(env, &sds, busiest, local) > 1) 10970 goto force_balance; 10971 10972 if (busiest->group_type != group_overloaded) { 10973 if (!env->idle) { 10974 /* 10975 * If the busiest group is not overloaded (and as a 10976 * result the local one too) but this CPU is already 10977 * busy, let another idle CPU try to pull task. 10978 */ 10979 goto out_balanced; 10980 } 10981 10982 if (busiest->group_type == group_smt_balance && 10983 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 10984 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 10985 goto force_balance; 10986 } 10987 10988 if (busiest->group_weight > 1 && 10989 local->idle_cpus <= (busiest->idle_cpus + 1)) { 10990 /* 10991 * If the busiest group is not overloaded 10992 * and there is no imbalance between this and busiest 10993 * group wrt idle CPUs, it is balanced. The imbalance 10994 * becomes significant if the diff is greater than 1 10995 * otherwise we might end up to just move the imbalance 10996 * on another group. Of course this applies only if 10997 * there is more than 1 CPU per group. 10998 */ 10999 goto out_balanced; 11000 } 11001 11002 if (busiest->sum_h_nr_running == 1) { 11003 /* 11004 * busiest doesn't have any tasks waiting to run 11005 */ 11006 goto out_balanced; 11007 } 11008 } 11009 11010 force_balance: 11011 /* Looks like there is an imbalance. Compute it */ 11012 calculate_imbalance(env, &sds); 11013 return env->imbalance ? sds.busiest : NULL; 11014 11015 out_balanced: 11016 env->imbalance = 0; 11017 return NULL; 11018 } 11019 11020 /* 11021 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11022 */ 11023 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11024 struct sched_group *group) 11025 { 11026 struct rq *busiest = NULL, *rq; 11027 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11028 unsigned int busiest_nr = 0; 11029 int i; 11030 11031 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11032 unsigned long capacity, load, util; 11033 unsigned int nr_running; 11034 enum fbq_type rt; 11035 11036 rq = cpu_rq(i); 11037 rt = fbq_classify_rq(rq); 11038 11039 /* 11040 * We classify groups/runqueues into three groups: 11041 * - regular: there are !numa tasks 11042 * - remote: there are numa tasks that run on the 'wrong' node 11043 * - all: there is no distinction 11044 * 11045 * In order to avoid migrating ideally placed numa tasks, 11046 * ignore those when there's better options. 11047 * 11048 * If we ignore the actual busiest queue to migrate another 11049 * task, the next balance pass can still reduce the busiest 11050 * queue by moving tasks around inside the node. 11051 * 11052 * If we cannot move enough load due to this classification 11053 * the next pass will adjust the group classification and 11054 * allow migration of more tasks. 11055 * 11056 * Both cases only affect the total convergence complexity. 11057 */ 11058 if (rt > env->fbq_type) 11059 continue; 11060 11061 nr_running = rq->cfs.h_nr_running; 11062 if (!nr_running) 11063 continue; 11064 11065 capacity = capacity_of(i); 11066 11067 /* 11068 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11069 * eventually lead to active_balancing high->low capacity. 11070 * Higher per-CPU capacity is considered better than balancing 11071 * average load. 11072 */ 11073 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11074 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11075 nr_running == 1) 11076 continue; 11077 11078 /* 11079 * Make sure we only pull tasks from a CPU of lower priority 11080 * when balancing between SMT siblings. 11081 * 11082 * If balancing between cores, let lower priority CPUs help 11083 * SMT cores with more than one busy sibling. 11084 */ 11085 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11086 continue; 11087 11088 switch (env->migration_type) { 11089 case migrate_load: 11090 /* 11091 * When comparing with load imbalance, use cpu_load() 11092 * which is not scaled with the CPU capacity. 11093 */ 11094 load = cpu_load(rq); 11095 11096 if (nr_running == 1 && load > env->imbalance && 11097 !check_cpu_capacity(rq, env->sd)) 11098 break; 11099 11100 /* 11101 * For the load comparisons with the other CPUs, 11102 * consider the cpu_load() scaled with the CPU 11103 * capacity, so that the load can be moved away 11104 * from the CPU that is potentially running at a 11105 * lower capacity. 11106 * 11107 * Thus we're looking for max(load_i / capacity_i), 11108 * crosswise multiplication to rid ourselves of the 11109 * division works out to: 11110 * load_i * capacity_j > load_j * capacity_i; 11111 * where j is our previous maximum. 11112 */ 11113 if (load * busiest_capacity > busiest_load * capacity) { 11114 busiest_load = load; 11115 busiest_capacity = capacity; 11116 busiest = rq; 11117 } 11118 break; 11119 11120 case migrate_util: 11121 util = cpu_util_cfs_boost(i); 11122 11123 /* 11124 * Don't try to pull utilization from a CPU with one 11125 * running task. Whatever its utilization, we will fail 11126 * detach the task. 11127 */ 11128 if (nr_running <= 1) 11129 continue; 11130 11131 if (busiest_util < util) { 11132 busiest_util = util; 11133 busiest = rq; 11134 } 11135 break; 11136 11137 case migrate_task: 11138 if (busiest_nr < nr_running) { 11139 busiest_nr = nr_running; 11140 busiest = rq; 11141 } 11142 break; 11143 11144 case migrate_misfit: 11145 /* 11146 * For ASYM_CPUCAPACITY domains with misfit tasks we 11147 * simply seek the "biggest" misfit task. 11148 */ 11149 if (rq->misfit_task_load > busiest_load) { 11150 busiest_load = rq->misfit_task_load; 11151 busiest = rq; 11152 } 11153 11154 break; 11155 11156 } 11157 } 11158 11159 return busiest; 11160 } 11161 11162 /* 11163 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11164 * so long as it is large enough. 11165 */ 11166 #define MAX_PINNED_INTERVAL 512 11167 11168 static inline bool 11169 asym_active_balance(struct lb_env *env) 11170 { 11171 /* 11172 * ASYM_PACKING needs to force migrate tasks from busy but lower 11173 * priority CPUs in order to pack all tasks in the highest priority 11174 * CPUs. When done between cores, do it only if the whole core if the 11175 * whole core is idle. 11176 * 11177 * If @env::src_cpu is an SMT core with busy siblings, let 11178 * the lower priority @env::dst_cpu help it. Do not follow 11179 * CPU priority. 11180 */ 11181 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11182 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11183 !sched_use_asym_prio(env->sd, env->src_cpu)); 11184 } 11185 11186 static inline bool 11187 imbalanced_active_balance(struct lb_env *env) 11188 { 11189 struct sched_domain *sd = env->sd; 11190 11191 /* 11192 * The imbalanced case includes the case of pinned tasks preventing a fair 11193 * distribution of the load on the system but also the even distribution of the 11194 * threads on a system with spare capacity 11195 */ 11196 if ((env->migration_type == migrate_task) && 11197 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11198 return 1; 11199 11200 return 0; 11201 } 11202 11203 static int need_active_balance(struct lb_env *env) 11204 { 11205 struct sched_domain *sd = env->sd; 11206 11207 if (asym_active_balance(env)) 11208 return 1; 11209 11210 if (imbalanced_active_balance(env)) 11211 return 1; 11212 11213 /* 11214 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11215 * It's worth migrating the task if the src_cpu's capacity is reduced 11216 * because of other sched_class or IRQs if more capacity stays 11217 * available on dst_cpu. 11218 */ 11219 if (env->idle && 11220 (env->src_rq->cfs.h_nr_running == 1)) { 11221 if ((check_cpu_capacity(env->src_rq, sd)) && 11222 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11223 return 1; 11224 } 11225 11226 if (env->migration_type == migrate_misfit) 11227 return 1; 11228 11229 return 0; 11230 } 11231 11232 static int active_load_balance_cpu_stop(void *data); 11233 11234 static int should_we_balance(struct lb_env *env) 11235 { 11236 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11237 struct sched_group *sg = env->sd->groups; 11238 int cpu, idle_smt = -1; 11239 11240 /* 11241 * Ensure the balancing environment is consistent; can happen 11242 * when the softirq triggers 'during' hotplug. 11243 */ 11244 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11245 return 0; 11246 11247 /* 11248 * In the newly idle case, we will allow all the CPUs 11249 * to do the newly idle load balance. 11250 * 11251 * However, we bail out if we already have tasks or a wakeup pending, 11252 * to optimize wakeup latency. 11253 */ 11254 if (env->idle == CPU_NEWLY_IDLE) { 11255 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11256 return 0; 11257 return 1; 11258 } 11259 11260 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11261 /* Try to find first idle CPU */ 11262 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11263 if (!idle_cpu(cpu)) 11264 continue; 11265 11266 /* 11267 * Don't balance to idle SMT in busy core right away when 11268 * balancing cores, but remember the first idle SMT CPU for 11269 * later consideration. Find CPU on an idle core first. 11270 */ 11271 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11272 if (idle_smt == -1) 11273 idle_smt = cpu; 11274 /* 11275 * If the core is not idle, and first SMT sibling which is 11276 * idle has been found, then its not needed to check other 11277 * SMT siblings for idleness: 11278 */ 11279 #ifdef CONFIG_SCHED_SMT 11280 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11281 #endif 11282 continue; 11283 } 11284 11285 /* 11286 * Are we the first idle core in a non-SMT domain or higher, 11287 * or the first idle CPU in a SMT domain? 11288 */ 11289 return cpu == env->dst_cpu; 11290 } 11291 11292 /* Are we the first idle CPU with busy siblings? */ 11293 if (idle_smt != -1) 11294 return idle_smt == env->dst_cpu; 11295 11296 /* Are we the first CPU of this group ? */ 11297 return group_balance_cpu(sg) == env->dst_cpu; 11298 } 11299 11300 /* 11301 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11302 * tasks if there is an imbalance. 11303 */ 11304 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11305 struct sched_domain *sd, enum cpu_idle_type idle, 11306 int *continue_balancing) 11307 { 11308 int ld_moved, cur_ld_moved, active_balance = 0; 11309 struct sched_domain *sd_parent = sd->parent; 11310 struct sched_group *group; 11311 struct rq *busiest; 11312 struct rq_flags rf; 11313 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11314 struct lb_env env = { 11315 .sd = sd, 11316 .dst_cpu = this_cpu, 11317 .dst_rq = this_rq, 11318 .dst_grpmask = group_balance_mask(sd->groups), 11319 .idle = idle, 11320 .loop_break = SCHED_NR_MIGRATE_BREAK, 11321 .cpus = cpus, 11322 .fbq_type = all, 11323 .tasks = LIST_HEAD_INIT(env.tasks), 11324 }; 11325 11326 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11327 11328 schedstat_inc(sd->lb_count[idle]); 11329 11330 redo: 11331 if (!should_we_balance(&env)) { 11332 *continue_balancing = 0; 11333 goto out_balanced; 11334 } 11335 11336 group = sched_balance_find_src_group(&env); 11337 if (!group) { 11338 schedstat_inc(sd->lb_nobusyg[idle]); 11339 goto out_balanced; 11340 } 11341 11342 busiest = sched_balance_find_src_rq(&env, group); 11343 if (!busiest) { 11344 schedstat_inc(sd->lb_nobusyq[idle]); 11345 goto out_balanced; 11346 } 11347 11348 WARN_ON_ONCE(busiest == env.dst_rq); 11349 11350 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 11351 11352 env.src_cpu = busiest->cpu; 11353 env.src_rq = busiest; 11354 11355 ld_moved = 0; 11356 /* Clear this flag as soon as we find a pullable task */ 11357 env.flags |= LBF_ALL_PINNED; 11358 if (busiest->nr_running > 1) { 11359 /* 11360 * Attempt to move tasks. If sched_balance_find_src_group has found 11361 * an imbalance but busiest->nr_running <= 1, the group is 11362 * still unbalanced. ld_moved simply stays zero, so it is 11363 * correctly treated as an imbalance. 11364 */ 11365 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11366 11367 more_balance: 11368 rq_lock_irqsave(busiest, &rf); 11369 update_rq_clock(busiest); 11370 11371 /* 11372 * cur_ld_moved - load moved in current iteration 11373 * ld_moved - cumulative load moved across iterations 11374 */ 11375 cur_ld_moved = detach_tasks(&env); 11376 11377 /* 11378 * We've detached some tasks from busiest_rq. Every 11379 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11380 * unlock busiest->lock, and we are able to be sure 11381 * that nobody can manipulate the tasks in parallel. 11382 * See task_rq_lock() family for the details. 11383 */ 11384 11385 rq_unlock(busiest, &rf); 11386 11387 if (cur_ld_moved) { 11388 attach_tasks(&env); 11389 ld_moved += cur_ld_moved; 11390 } 11391 11392 local_irq_restore(rf.flags); 11393 11394 if (env.flags & LBF_NEED_BREAK) { 11395 env.flags &= ~LBF_NEED_BREAK; 11396 /* Stop if we tried all running tasks */ 11397 if (env.loop < busiest->nr_running) 11398 goto more_balance; 11399 } 11400 11401 /* 11402 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11403 * us and move them to an alternate dst_cpu in our sched_group 11404 * where they can run. The upper limit on how many times we 11405 * iterate on same src_cpu is dependent on number of CPUs in our 11406 * sched_group. 11407 * 11408 * This changes load balance semantics a bit on who can move 11409 * load to a given_cpu. In addition to the given_cpu itself 11410 * (or a ilb_cpu acting on its behalf where given_cpu is 11411 * nohz-idle), we now have balance_cpu in a position to move 11412 * load to given_cpu. In rare situations, this may cause 11413 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11414 * _independently_ and at _same_ time to move some load to 11415 * given_cpu) causing excess load to be moved to given_cpu. 11416 * This however should not happen so much in practice and 11417 * moreover subsequent load balance cycles should correct the 11418 * excess load moved. 11419 */ 11420 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11421 11422 /* Prevent to re-select dst_cpu via env's CPUs */ 11423 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11424 11425 env.dst_rq = cpu_rq(env.new_dst_cpu); 11426 env.dst_cpu = env.new_dst_cpu; 11427 env.flags &= ~LBF_DST_PINNED; 11428 env.loop = 0; 11429 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11430 11431 /* 11432 * Go back to "more_balance" rather than "redo" since we 11433 * need to continue with same src_cpu. 11434 */ 11435 goto more_balance; 11436 } 11437 11438 /* 11439 * We failed to reach balance because of affinity. 11440 */ 11441 if (sd_parent) { 11442 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11443 11444 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11445 *group_imbalance = 1; 11446 } 11447 11448 /* All tasks on this runqueue were pinned by CPU affinity */ 11449 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11450 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11451 /* 11452 * Attempting to continue load balancing at the current 11453 * sched_domain level only makes sense if there are 11454 * active CPUs remaining as possible busiest CPUs to 11455 * pull load from which are not contained within the 11456 * destination group that is receiving any migrated 11457 * load. 11458 */ 11459 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11460 env.loop = 0; 11461 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11462 goto redo; 11463 } 11464 goto out_all_pinned; 11465 } 11466 } 11467 11468 if (!ld_moved) { 11469 schedstat_inc(sd->lb_failed[idle]); 11470 /* 11471 * Increment the failure counter only on periodic balance. 11472 * We do not want newidle balance, which can be very 11473 * frequent, pollute the failure counter causing 11474 * excessive cache_hot migrations and active balances. 11475 * 11476 * Similarly for migration_misfit which is not related to 11477 * load/util migration, don't pollute nr_balance_failed. 11478 */ 11479 if (idle != CPU_NEWLY_IDLE && 11480 env.migration_type != migrate_misfit) 11481 sd->nr_balance_failed++; 11482 11483 if (need_active_balance(&env)) { 11484 unsigned long flags; 11485 11486 raw_spin_rq_lock_irqsave(busiest, flags); 11487 11488 /* 11489 * Don't kick the active_load_balance_cpu_stop, 11490 * if the curr task on busiest CPU can't be 11491 * moved to this_cpu: 11492 */ 11493 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11494 raw_spin_rq_unlock_irqrestore(busiest, flags); 11495 goto out_one_pinned; 11496 } 11497 11498 /* Record that we found at least one task that could run on this_cpu */ 11499 env.flags &= ~LBF_ALL_PINNED; 11500 11501 /* 11502 * ->active_balance synchronizes accesses to 11503 * ->active_balance_work. Once set, it's cleared 11504 * only after active load balance is finished. 11505 */ 11506 if (!busiest->active_balance) { 11507 busiest->active_balance = 1; 11508 busiest->push_cpu = this_cpu; 11509 active_balance = 1; 11510 } 11511 11512 preempt_disable(); 11513 raw_spin_rq_unlock_irqrestore(busiest, flags); 11514 if (active_balance) { 11515 stop_one_cpu_nowait(cpu_of(busiest), 11516 active_load_balance_cpu_stop, busiest, 11517 &busiest->active_balance_work); 11518 } 11519 preempt_enable(); 11520 } 11521 } else { 11522 sd->nr_balance_failed = 0; 11523 } 11524 11525 if (likely(!active_balance) || need_active_balance(&env)) { 11526 /* We were unbalanced, so reset the balancing interval */ 11527 sd->balance_interval = sd->min_interval; 11528 } 11529 11530 goto out; 11531 11532 out_balanced: 11533 /* 11534 * We reach balance although we may have faced some affinity 11535 * constraints. Clear the imbalance flag only if other tasks got 11536 * a chance to move and fix the imbalance. 11537 */ 11538 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11539 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11540 11541 if (*group_imbalance) 11542 *group_imbalance = 0; 11543 } 11544 11545 out_all_pinned: 11546 /* 11547 * We reach balance because all tasks are pinned at this level so 11548 * we can't migrate them. Let the imbalance flag set so parent level 11549 * can try to migrate them. 11550 */ 11551 schedstat_inc(sd->lb_balanced[idle]); 11552 11553 sd->nr_balance_failed = 0; 11554 11555 out_one_pinned: 11556 ld_moved = 0; 11557 11558 /* 11559 * sched_balance_newidle() disregards balance intervals, so we could 11560 * repeatedly reach this code, which would lead to balance_interval 11561 * skyrocketing in a short amount of time. Skip the balance_interval 11562 * increase logic to avoid that. 11563 * 11564 * Similarly misfit migration which is not necessarily an indication of 11565 * the system being busy and requires lb to backoff to let it settle 11566 * down. 11567 */ 11568 if (env.idle == CPU_NEWLY_IDLE || 11569 env.migration_type == migrate_misfit) 11570 goto out; 11571 11572 /* tune up the balancing interval */ 11573 if ((env.flags & LBF_ALL_PINNED && 11574 sd->balance_interval < MAX_PINNED_INTERVAL) || 11575 sd->balance_interval < sd->max_interval) 11576 sd->balance_interval *= 2; 11577 out: 11578 return ld_moved; 11579 } 11580 11581 static inline unsigned long 11582 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11583 { 11584 unsigned long interval = sd->balance_interval; 11585 11586 if (cpu_busy) 11587 interval *= sd->busy_factor; 11588 11589 /* scale ms to jiffies */ 11590 interval = msecs_to_jiffies(interval); 11591 11592 /* 11593 * Reduce likelihood of busy balancing at higher domains racing with 11594 * balancing at lower domains by preventing their balancing periods 11595 * from being multiples of each other. 11596 */ 11597 if (cpu_busy) 11598 interval -= 1; 11599 11600 interval = clamp(interval, 1UL, max_load_balance_interval); 11601 11602 return interval; 11603 } 11604 11605 static inline void 11606 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11607 { 11608 unsigned long interval, next; 11609 11610 /* used by idle balance, so cpu_busy = 0 */ 11611 interval = get_sd_balance_interval(sd, 0); 11612 next = sd->last_balance + interval; 11613 11614 if (time_after(*next_balance, next)) 11615 *next_balance = next; 11616 } 11617 11618 /* 11619 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11620 * running tasks off the busiest CPU onto idle CPUs. It requires at 11621 * least 1 task to be running on each physical CPU where possible, and 11622 * avoids physical / logical imbalances. 11623 */ 11624 static int active_load_balance_cpu_stop(void *data) 11625 { 11626 struct rq *busiest_rq = data; 11627 int busiest_cpu = cpu_of(busiest_rq); 11628 int target_cpu = busiest_rq->push_cpu; 11629 struct rq *target_rq = cpu_rq(target_cpu); 11630 struct sched_domain *sd; 11631 struct task_struct *p = NULL; 11632 struct rq_flags rf; 11633 11634 rq_lock_irq(busiest_rq, &rf); 11635 /* 11636 * Between queueing the stop-work and running it is a hole in which 11637 * CPUs can become inactive. We should not move tasks from or to 11638 * inactive CPUs. 11639 */ 11640 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 11641 goto out_unlock; 11642 11643 /* Make sure the requested CPU hasn't gone down in the meantime: */ 11644 if (unlikely(busiest_cpu != smp_processor_id() || 11645 !busiest_rq->active_balance)) 11646 goto out_unlock; 11647 11648 /* Is there any task to move? */ 11649 if (busiest_rq->nr_running <= 1) 11650 goto out_unlock; 11651 11652 /* 11653 * This condition is "impossible", if it occurs 11654 * we need to fix it. Originally reported by 11655 * Bjorn Helgaas on a 128-CPU setup. 11656 */ 11657 WARN_ON_ONCE(busiest_rq == target_rq); 11658 11659 /* Search for an sd spanning us and the target CPU. */ 11660 rcu_read_lock(); 11661 for_each_domain(target_cpu, sd) { 11662 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 11663 break; 11664 } 11665 11666 if (likely(sd)) { 11667 struct lb_env env = { 11668 .sd = sd, 11669 .dst_cpu = target_cpu, 11670 .dst_rq = target_rq, 11671 .src_cpu = busiest_rq->cpu, 11672 .src_rq = busiest_rq, 11673 .idle = CPU_IDLE, 11674 .flags = LBF_ACTIVE_LB, 11675 }; 11676 11677 schedstat_inc(sd->alb_count); 11678 update_rq_clock(busiest_rq); 11679 11680 p = detach_one_task(&env); 11681 if (p) { 11682 schedstat_inc(sd->alb_pushed); 11683 /* Active balancing done, reset the failure counter. */ 11684 sd->nr_balance_failed = 0; 11685 } else { 11686 schedstat_inc(sd->alb_failed); 11687 } 11688 } 11689 rcu_read_unlock(); 11690 out_unlock: 11691 busiest_rq->active_balance = 0; 11692 rq_unlock(busiest_rq, &rf); 11693 11694 if (p) 11695 attach_one_task(target_rq, p); 11696 11697 local_irq_enable(); 11698 11699 return 0; 11700 } 11701 11702 /* 11703 * This flag serializes load-balancing passes over large domains 11704 * (above the NODE topology level) - only one load-balancing instance 11705 * may run at a time, to reduce overhead on very large systems with 11706 * lots of CPUs and large NUMA distances. 11707 * 11708 * - Note that load-balancing passes triggered while another one 11709 * is executing are skipped and not re-tried. 11710 * 11711 * - Also note that this does not serialize rebalance_domains() 11712 * execution, as non-SD_SERIALIZE domains will still be 11713 * load-balanced in parallel. 11714 */ 11715 static atomic_t sched_balance_running = ATOMIC_INIT(0); 11716 11717 /* 11718 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 11719 * This trades load-balance latency on larger machines for less cross talk. 11720 */ 11721 void update_max_interval(void) 11722 { 11723 max_load_balance_interval = HZ*num_online_cpus()/10; 11724 } 11725 11726 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 11727 { 11728 if (cost > sd->max_newidle_lb_cost) { 11729 /* 11730 * Track max cost of a domain to make sure to not delay the 11731 * next wakeup on the CPU. 11732 */ 11733 sd->max_newidle_lb_cost = cost; 11734 sd->last_decay_max_lb_cost = jiffies; 11735 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 11736 /* 11737 * Decay the newidle max times by ~1% per second to ensure that 11738 * it is not outdated and the current max cost is actually 11739 * shorter. 11740 */ 11741 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 11742 sd->last_decay_max_lb_cost = jiffies; 11743 11744 return true; 11745 } 11746 11747 return false; 11748 } 11749 11750 /* 11751 * It checks each scheduling domain to see if it is due to be balanced, 11752 * and initiates a balancing operation if so. 11753 * 11754 * Balancing parameters are set up in init_sched_domains. 11755 */ 11756 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 11757 { 11758 int continue_balancing = 1; 11759 int cpu = rq->cpu; 11760 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11761 unsigned long interval; 11762 struct sched_domain *sd; 11763 /* Earliest time when we have to do rebalance again */ 11764 unsigned long next_balance = jiffies + 60*HZ; 11765 int update_next_balance = 0; 11766 int need_serialize, need_decay = 0; 11767 u64 max_cost = 0; 11768 11769 rcu_read_lock(); 11770 for_each_domain(cpu, sd) { 11771 /* 11772 * Decay the newidle max times here because this is a regular 11773 * visit to all the domains. 11774 */ 11775 need_decay = update_newidle_cost(sd, 0); 11776 max_cost += sd->max_newidle_lb_cost; 11777 11778 /* 11779 * Stop the load balance at this level. There is another 11780 * CPU in our sched group which is doing load balancing more 11781 * actively. 11782 */ 11783 if (!continue_balancing) { 11784 if (need_decay) 11785 continue; 11786 break; 11787 } 11788 11789 interval = get_sd_balance_interval(sd, busy); 11790 11791 need_serialize = sd->flags & SD_SERIALIZE; 11792 if (need_serialize) { 11793 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) 11794 goto out; 11795 } 11796 11797 if (time_after_eq(jiffies, sd->last_balance + interval)) { 11798 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 11799 /* 11800 * The LBF_DST_PINNED logic could have changed 11801 * env->dst_cpu, so we can't know our idle 11802 * state even if we migrated tasks. Update it. 11803 */ 11804 idle = idle_cpu(cpu); 11805 busy = !idle && !sched_idle_cpu(cpu); 11806 } 11807 sd->last_balance = jiffies; 11808 interval = get_sd_balance_interval(sd, busy); 11809 } 11810 if (need_serialize) 11811 atomic_set_release(&sched_balance_running, 0); 11812 out: 11813 if (time_after(next_balance, sd->last_balance + interval)) { 11814 next_balance = sd->last_balance + interval; 11815 update_next_balance = 1; 11816 } 11817 } 11818 if (need_decay) { 11819 /* 11820 * Ensure the rq-wide value also decays but keep it at a 11821 * reasonable floor to avoid funnies with rq->avg_idle. 11822 */ 11823 rq->max_idle_balance_cost = 11824 max((u64)sysctl_sched_migration_cost, max_cost); 11825 } 11826 rcu_read_unlock(); 11827 11828 /* 11829 * next_balance will be updated only when there is a need. 11830 * When the cpu is attached to null domain for ex, it will not be 11831 * updated. 11832 */ 11833 if (likely(update_next_balance)) 11834 rq->next_balance = next_balance; 11835 11836 } 11837 11838 static inline int on_null_domain(struct rq *rq) 11839 { 11840 return unlikely(!rcu_dereference_sched(rq->sd)); 11841 } 11842 11843 #ifdef CONFIG_NO_HZ_COMMON 11844 /* 11845 * NOHZ idle load balancing (ILB) details: 11846 * 11847 * - When one of the busy CPUs notices that there may be an idle rebalancing 11848 * needed, they will kick the idle load balancer, which then does idle 11849 * load balancing for all the idle CPUs. 11850 * 11851 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set 11852 * anywhere yet. 11853 */ 11854 static inline int find_new_ilb(void) 11855 { 11856 const struct cpumask *hk_mask; 11857 int ilb_cpu; 11858 11859 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 11860 11861 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 11862 11863 if (ilb_cpu == smp_processor_id()) 11864 continue; 11865 11866 if (idle_cpu(ilb_cpu)) 11867 return ilb_cpu; 11868 } 11869 11870 return -1; 11871 } 11872 11873 /* 11874 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 11875 * SMP function call (IPI). 11876 * 11877 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 11878 */ 11879 static void kick_ilb(unsigned int flags) 11880 { 11881 int ilb_cpu; 11882 11883 /* 11884 * Increase nohz.next_balance only when if full ilb is triggered but 11885 * not if we only update stats. 11886 */ 11887 if (flags & NOHZ_BALANCE_KICK) 11888 nohz.next_balance = jiffies+1; 11889 11890 ilb_cpu = find_new_ilb(); 11891 if (ilb_cpu < 0) 11892 return; 11893 11894 /* 11895 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 11896 * the first flag owns it; cleared by nohz_csd_func(). 11897 */ 11898 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 11899 if (flags & NOHZ_KICK_MASK) 11900 return; 11901 11902 /* 11903 * This way we generate an IPI on the target CPU which 11904 * is idle, and the softirq performing NOHZ idle load balancing 11905 * will be run before returning from the IPI. 11906 */ 11907 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 11908 } 11909 11910 /* 11911 * Current decision point for kicking the idle load balancer in the presence 11912 * of idle CPUs in the system. 11913 */ 11914 static void nohz_balancer_kick(struct rq *rq) 11915 { 11916 unsigned long now = jiffies; 11917 struct sched_domain_shared *sds; 11918 struct sched_domain *sd; 11919 int nr_busy, i, cpu = rq->cpu; 11920 unsigned int flags = 0; 11921 11922 if (unlikely(rq->idle_balance)) 11923 return; 11924 11925 /* 11926 * We may be recently in ticked or tickless idle mode. At the first 11927 * busy tick after returning from idle, we will update the busy stats. 11928 */ 11929 nohz_balance_exit_idle(rq); 11930 11931 /* 11932 * None are in tickless mode and hence no need for NOHZ idle load 11933 * balancing: 11934 */ 11935 if (likely(!atomic_read(&nohz.nr_cpus))) 11936 return; 11937 11938 if (READ_ONCE(nohz.has_blocked) && 11939 time_after(now, READ_ONCE(nohz.next_blocked))) 11940 flags = NOHZ_STATS_KICK; 11941 11942 if (time_before(now, nohz.next_balance)) 11943 goto out; 11944 11945 if (rq->nr_running >= 2) { 11946 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11947 goto out; 11948 } 11949 11950 rcu_read_lock(); 11951 11952 sd = rcu_dereference(rq->sd); 11953 if (sd) { 11954 /* 11955 * If there's a runnable CFS task and the current CPU has reduced 11956 * capacity, kick the ILB to see if there's a better CPU to run on: 11957 */ 11958 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 11959 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11960 goto unlock; 11961 } 11962 } 11963 11964 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 11965 if (sd) { 11966 /* 11967 * When ASYM_PACKING; see if there's a more preferred CPU 11968 * currently idle; in which case, kick the ILB to move tasks 11969 * around. 11970 * 11971 * When balancing between cores, all the SMT siblings of the 11972 * preferred CPU must be idle. 11973 */ 11974 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 11975 if (sched_asym(sd, i, cpu)) { 11976 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11977 goto unlock; 11978 } 11979 } 11980 } 11981 11982 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 11983 if (sd) { 11984 /* 11985 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 11986 * to run the misfit task on. 11987 */ 11988 if (check_misfit_status(rq)) { 11989 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11990 goto unlock; 11991 } 11992 11993 /* 11994 * For asymmetric systems, we do not want to nicely balance 11995 * cache use, instead we want to embrace asymmetry and only 11996 * ensure tasks have enough CPU capacity. 11997 * 11998 * Skip the LLC logic because it's not relevant in that case. 11999 */ 12000 goto unlock; 12001 } 12002 12003 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 12004 if (sds) { 12005 /* 12006 * If there is an imbalance between LLC domains (IOW we could 12007 * increase the overall cache utilization), we need a less-loaded LLC 12008 * domain to pull some load from. Likewise, we may need to spread 12009 * load within the current LLC domain (e.g. packed SMT cores but 12010 * other CPUs are idle). We can't really know from here how busy 12011 * the others are - so just get a NOHZ balance going if it looks 12012 * like this LLC domain has tasks we could move. 12013 */ 12014 nr_busy = atomic_read(&sds->nr_busy_cpus); 12015 if (nr_busy > 1) { 12016 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12017 goto unlock; 12018 } 12019 } 12020 unlock: 12021 rcu_read_unlock(); 12022 out: 12023 if (READ_ONCE(nohz.needs_update)) 12024 flags |= NOHZ_NEXT_KICK; 12025 12026 if (flags) 12027 kick_ilb(flags); 12028 } 12029 12030 static void set_cpu_sd_state_busy(int cpu) 12031 { 12032 struct sched_domain *sd; 12033 12034 rcu_read_lock(); 12035 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12036 12037 if (!sd || !sd->nohz_idle) 12038 goto unlock; 12039 sd->nohz_idle = 0; 12040 12041 atomic_inc(&sd->shared->nr_busy_cpus); 12042 unlock: 12043 rcu_read_unlock(); 12044 } 12045 12046 void nohz_balance_exit_idle(struct rq *rq) 12047 { 12048 SCHED_WARN_ON(rq != this_rq()); 12049 12050 if (likely(!rq->nohz_tick_stopped)) 12051 return; 12052 12053 rq->nohz_tick_stopped = 0; 12054 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12055 atomic_dec(&nohz.nr_cpus); 12056 12057 set_cpu_sd_state_busy(rq->cpu); 12058 } 12059 12060 static void set_cpu_sd_state_idle(int cpu) 12061 { 12062 struct sched_domain *sd; 12063 12064 rcu_read_lock(); 12065 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12066 12067 if (!sd || sd->nohz_idle) 12068 goto unlock; 12069 sd->nohz_idle = 1; 12070 12071 atomic_dec(&sd->shared->nr_busy_cpus); 12072 unlock: 12073 rcu_read_unlock(); 12074 } 12075 12076 /* 12077 * This routine will record that the CPU is going idle with tick stopped. 12078 * This info will be used in performing idle load balancing in the future. 12079 */ 12080 void nohz_balance_enter_idle(int cpu) 12081 { 12082 struct rq *rq = cpu_rq(cpu); 12083 12084 SCHED_WARN_ON(cpu != smp_processor_id()); 12085 12086 /* If this CPU is going down, then nothing needs to be done: */ 12087 if (!cpu_active(cpu)) 12088 return; 12089 12090 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 12091 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 12092 return; 12093 12094 /* 12095 * Can be set safely without rq->lock held 12096 * If a clear happens, it will have evaluated last additions because 12097 * rq->lock is held during the check and the clear 12098 */ 12099 rq->has_blocked_load = 1; 12100 12101 /* 12102 * The tick is still stopped but load could have been added in the 12103 * meantime. We set the nohz.has_blocked flag to trig a check of the 12104 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12105 * of nohz.has_blocked can only happen after checking the new load 12106 */ 12107 if (rq->nohz_tick_stopped) 12108 goto out; 12109 12110 /* If we're a completely isolated CPU, we don't play: */ 12111 if (on_null_domain(rq)) 12112 return; 12113 12114 rq->nohz_tick_stopped = 1; 12115 12116 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12117 atomic_inc(&nohz.nr_cpus); 12118 12119 /* 12120 * Ensures that if nohz_idle_balance() fails to observe our 12121 * @idle_cpus_mask store, it must observe the @has_blocked 12122 * and @needs_update stores. 12123 */ 12124 smp_mb__after_atomic(); 12125 12126 set_cpu_sd_state_idle(cpu); 12127 12128 WRITE_ONCE(nohz.needs_update, 1); 12129 out: 12130 /* 12131 * Each time a cpu enter idle, we assume that it has blocked load and 12132 * enable the periodic update of the load of idle CPUs 12133 */ 12134 WRITE_ONCE(nohz.has_blocked, 1); 12135 } 12136 12137 static bool update_nohz_stats(struct rq *rq) 12138 { 12139 unsigned int cpu = rq->cpu; 12140 12141 if (!rq->has_blocked_load) 12142 return false; 12143 12144 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12145 return false; 12146 12147 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12148 return true; 12149 12150 sched_balance_update_blocked_averages(cpu); 12151 12152 return rq->has_blocked_load; 12153 } 12154 12155 /* 12156 * Internal function that runs load balance for all idle CPUs. The load balance 12157 * can be a simple update of blocked load or a complete load balance with 12158 * tasks movement depending of flags. 12159 */ 12160 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12161 { 12162 /* Earliest time when we have to do rebalance again */ 12163 unsigned long now = jiffies; 12164 unsigned long next_balance = now + 60*HZ; 12165 bool has_blocked_load = false; 12166 int update_next_balance = 0; 12167 int this_cpu = this_rq->cpu; 12168 int balance_cpu; 12169 struct rq *rq; 12170 12171 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12172 12173 /* 12174 * We assume there will be no idle load after this update and clear 12175 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12176 * set the has_blocked flag and trigger another update of idle load. 12177 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12178 * setting the flag, we are sure to not clear the state and not 12179 * check the load of an idle cpu. 12180 * 12181 * Same applies to idle_cpus_mask vs needs_update. 12182 */ 12183 if (flags & NOHZ_STATS_KICK) 12184 WRITE_ONCE(nohz.has_blocked, 0); 12185 if (flags & NOHZ_NEXT_KICK) 12186 WRITE_ONCE(nohz.needs_update, 0); 12187 12188 /* 12189 * Ensures that if we miss the CPU, we must see the has_blocked 12190 * store from nohz_balance_enter_idle(). 12191 */ 12192 smp_mb(); 12193 12194 /* 12195 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12196 * chance for other idle cpu to pull load. 12197 */ 12198 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12199 if (!idle_cpu(balance_cpu)) 12200 continue; 12201 12202 /* 12203 * If this CPU gets work to do, stop the load balancing 12204 * work being done for other CPUs. Next load 12205 * balancing owner will pick it up. 12206 */ 12207 if (need_resched()) { 12208 if (flags & NOHZ_STATS_KICK) 12209 has_blocked_load = true; 12210 if (flags & NOHZ_NEXT_KICK) 12211 WRITE_ONCE(nohz.needs_update, 1); 12212 goto abort; 12213 } 12214 12215 rq = cpu_rq(balance_cpu); 12216 12217 if (flags & NOHZ_STATS_KICK) 12218 has_blocked_load |= update_nohz_stats(rq); 12219 12220 /* 12221 * If time for next balance is due, 12222 * do the balance. 12223 */ 12224 if (time_after_eq(jiffies, rq->next_balance)) { 12225 struct rq_flags rf; 12226 12227 rq_lock_irqsave(rq, &rf); 12228 update_rq_clock(rq); 12229 rq_unlock_irqrestore(rq, &rf); 12230 12231 if (flags & NOHZ_BALANCE_KICK) 12232 sched_balance_domains(rq, CPU_IDLE); 12233 } 12234 12235 if (time_after(next_balance, rq->next_balance)) { 12236 next_balance = rq->next_balance; 12237 update_next_balance = 1; 12238 } 12239 } 12240 12241 /* 12242 * next_balance will be updated only when there is a need. 12243 * When the CPU is attached to null domain for ex, it will not be 12244 * updated. 12245 */ 12246 if (likely(update_next_balance)) 12247 nohz.next_balance = next_balance; 12248 12249 if (flags & NOHZ_STATS_KICK) 12250 WRITE_ONCE(nohz.next_blocked, 12251 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12252 12253 abort: 12254 /* There is still blocked load, enable periodic update */ 12255 if (has_blocked_load) 12256 WRITE_ONCE(nohz.has_blocked, 1); 12257 } 12258 12259 /* 12260 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12261 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12262 */ 12263 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12264 { 12265 unsigned int flags = this_rq->nohz_idle_balance; 12266 12267 if (!flags) 12268 return false; 12269 12270 this_rq->nohz_idle_balance = 0; 12271 12272 if (idle != CPU_IDLE) 12273 return false; 12274 12275 _nohz_idle_balance(this_rq, flags); 12276 12277 return true; 12278 } 12279 12280 /* 12281 * Check if we need to directly run the ILB for updating blocked load before 12282 * entering idle state. Here we run ILB directly without issuing IPIs. 12283 * 12284 * Note that when this function is called, the tick may not yet be stopped on 12285 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12286 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12287 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12288 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12289 * called from this function on (this) CPU that's not yet in the mask. That's 12290 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12291 * updating the blocked load of already idle CPUs without waking up one of 12292 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12293 * cpu about to enter idle, because it can take a long time. 12294 */ 12295 void nohz_run_idle_balance(int cpu) 12296 { 12297 unsigned int flags; 12298 12299 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12300 12301 /* 12302 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12303 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12304 */ 12305 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12306 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12307 } 12308 12309 static void nohz_newidle_balance(struct rq *this_rq) 12310 { 12311 int this_cpu = this_rq->cpu; 12312 12313 /* 12314 * This CPU doesn't want to be disturbed by scheduler 12315 * housekeeping 12316 */ 12317 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 12318 return; 12319 12320 /* Will wake up very soon. No time for doing anything else*/ 12321 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12322 return; 12323 12324 /* Don't need to update blocked load of idle CPUs*/ 12325 if (!READ_ONCE(nohz.has_blocked) || 12326 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12327 return; 12328 12329 /* 12330 * Set the need to trigger ILB in order to update blocked load 12331 * before entering idle state. 12332 */ 12333 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12334 } 12335 12336 #else /* !CONFIG_NO_HZ_COMMON */ 12337 static inline void nohz_balancer_kick(struct rq *rq) { } 12338 12339 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12340 { 12341 return false; 12342 } 12343 12344 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12345 #endif /* CONFIG_NO_HZ_COMMON */ 12346 12347 /* 12348 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12349 * idle. Attempts to pull tasks from other CPUs. 12350 * 12351 * Returns: 12352 * < 0 - we released the lock and there are !fair tasks present 12353 * 0 - failed, no new tasks 12354 * > 0 - success, new (fair) tasks present 12355 */ 12356 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12357 { 12358 unsigned long next_balance = jiffies + HZ; 12359 int this_cpu = this_rq->cpu; 12360 int continue_balancing = 1; 12361 u64 t0, t1, curr_cost = 0; 12362 struct sched_domain *sd; 12363 int pulled_task = 0; 12364 12365 update_misfit_status(NULL, this_rq); 12366 12367 /* 12368 * There is a task waiting to run. No need to search for one. 12369 * Return 0; the task will be enqueued when switching to idle. 12370 */ 12371 if (this_rq->ttwu_pending) 12372 return 0; 12373 12374 /* 12375 * We must set idle_stamp _before_ calling sched_balance_rq() 12376 * for CPU_NEWLY_IDLE, such that we measure the this duration 12377 * as idle time. 12378 */ 12379 this_rq->idle_stamp = rq_clock(this_rq); 12380 12381 /* 12382 * Do not pull tasks towards !active CPUs... 12383 */ 12384 if (!cpu_active(this_cpu)) 12385 return 0; 12386 12387 /* 12388 * This is OK, because current is on_cpu, which avoids it being picked 12389 * for load-balance and preemption/IRQs are still disabled avoiding 12390 * further scheduler activity on it and we're being very careful to 12391 * re-start the picking loop. 12392 */ 12393 rq_unpin_lock(this_rq, rf); 12394 12395 rcu_read_lock(); 12396 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12397 12398 if (!get_rd_overloaded(this_rq->rd) || 12399 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12400 12401 if (sd) 12402 update_next_balance(sd, &next_balance); 12403 rcu_read_unlock(); 12404 12405 goto out; 12406 } 12407 rcu_read_unlock(); 12408 12409 raw_spin_rq_unlock(this_rq); 12410 12411 t0 = sched_clock_cpu(this_cpu); 12412 sched_balance_update_blocked_averages(this_cpu); 12413 12414 rcu_read_lock(); 12415 for_each_domain(this_cpu, sd) { 12416 u64 domain_cost; 12417 12418 update_next_balance(sd, &next_balance); 12419 12420 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12421 break; 12422 12423 if (sd->flags & SD_BALANCE_NEWIDLE) { 12424 12425 pulled_task = sched_balance_rq(this_cpu, this_rq, 12426 sd, CPU_NEWLY_IDLE, 12427 &continue_balancing); 12428 12429 t1 = sched_clock_cpu(this_cpu); 12430 domain_cost = t1 - t0; 12431 update_newidle_cost(sd, domain_cost); 12432 12433 curr_cost += domain_cost; 12434 t0 = t1; 12435 } 12436 12437 /* 12438 * Stop searching for tasks to pull if there are 12439 * now runnable tasks on this rq. 12440 */ 12441 if (pulled_task || !continue_balancing) 12442 break; 12443 } 12444 rcu_read_unlock(); 12445 12446 raw_spin_rq_lock(this_rq); 12447 12448 if (curr_cost > this_rq->max_idle_balance_cost) 12449 this_rq->max_idle_balance_cost = curr_cost; 12450 12451 /* 12452 * While browsing the domains, we released the rq lock, a task could 12453 * have been enqueued in the meantime. Since we're not going idle, 12454 * pretend we pulled a task. 12455 */ 12456 if (this_rq->cfs.h_nr_running && !pulled_task) 12457 pulled_task = 1; 12458 12459 /* Is there a task of a high priority class? */ 12460 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 12461 pulled_task = -1; 12462 12463 out: 12464 /* Move the next balance forward */ 12465 if (time_after(this_rq->next_balance, next_balance)) 12466 this_rq->next_balance = next_balance; 12467 12468 if (pulled_task) 12469 this_rq->idle_stamp = 0; 12470 else 12471 nohz_newidle_balance(this_rq); 12472 12473 rq_repin_lock(this_rq, rf); 12474 12475 return pulled_task; 12476 } 12477 12478 /* 12479 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 12480 * 12481 * - directly from the local scheduler_tick() for periodic load balancing 12482 * 12483 * - indirectly from a remote scheduler_tick() for NOHZ idle balancing 12484 * through the SMP cross-call nohz_csd_func() 12485 */ 12486 static __latent_entropy void sched_balance_softirq(struct softirq_action *h) 12487 { 12488 struct rq *this_rq = this_rq(); 12489 enum cpu_idle_type idle = this_rq->idle_balance; 12490 /* 12491 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 12492 * balancing on behalf of the other idle CPUs whose ticks are 12493 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 12494 * give the idle CPUs a chance to load balance. Else we may 12495 * load balance only within the local sched_domain hierarchy 12496 * and abort nohz_idle_balance altogether if we pull some load. 12497 */ 12498 if (nohz_idle_balance(this_rq, idle)) 12499 return; 12500 12501 /* normal load balance */ 12502 sched_balance_update_blocked_averages(this_rq->cpu); 12503 sched_balance_domains(this_rq, idle); 12504 } 12505 12506 /* 12507 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12508 */ 12509 void sched_balance_trigger(struct rq *rq) 12510 { 12511 /* 12512 * Don't need to rebalance while attached to NULL domain or 12513 * runqueue CPU is not active 12514 */ 12515 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12516 return; 12517 12518 if (time_after_eq(jiffies, rq->next_balance)) 12519 raise_softirq(SCHED_SOFTIRQ); 12520 12521 nohz_balancer_kick(rq); 12522 } 12523 12524 static void rq_online_fair(struct rq *rq) 12525 { 12526 update_sysctl(); 12527 12528 update_runtime_enabled(rq); 12529 } 12530 12531 static void rq_offline_fair(struct rq *rq) 12532 { 12533 update_sysctl(); 12534 12535 /* Ensure any throttled groups are reachable by pick_next_task */ 12536 unthrottle_offline_cfs_rqs(rq); 12537 12538 /* Ensure that we remove rq contribution to group share: */ 12539 clear_tg_offline_cfs_rqs(rq); 12540 } 12541 12542 #endif /* CONFIG_SMP */ 12543 12544 #ifdef CONFIG_SCHED_CORE 12545 static inline bool 12546 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12547 { 12548 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12549 u64 slice = se->slice; 12550 12551 return (rtime * min_nr_tasks > slice); 12552 } 12553 12554 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12555 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12556 { 12557 if (!sched_core_enabled(rq)) 12558 return; 12559 12560 /* 12561 * If runqueue has only one task which used up its slice and 12562 * if the sibling is forced idle, then trigger schedule to 12563 * give forced idle task a chance. 12564 * 12565 * sched_slice() considers only this active rq and it gets the 12566 * whole slice. But during force idle, we have siblings acting 12567 * like a single runqueue and hence we need to consider runnable 12568 * tasks on this CPU and the forced idle CPU. Ideally, we should 12569 * go through the forced idle rq, but that would be a perf hit. 12570 * We can assume that the forced idle CPU has at least 12571 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12572 * if we need to give up the CPU. 12573 */ 12574 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 12575 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12576 resched_curr(rq); 12577 } 12578 12579 /* 12580 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12581 */ 12582 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12583 bool forceidle) 12584 { 12585 for_each_sched_entity(se) { 12586 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12587 12588 if (forceidle) { 12589 if (cfs_rq->forceidle_seq == fi_seq) 12590 break; 12591 cfs_rq->forceidle_seq = fi_seq; 12592 } 12593 12594 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12595 } 12596 } 12597 12598 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12599 { 12600 struct sched_entity *se = &p->se; 12601 12602 if (p->sched_class != &fair_sched_class) 12603 return; 12604 12605 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12606 } 12607 12608 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12609 bool in_fi) 12610 { 12611 struct rq *rq = task_rq(a); 12612 const struct sched_entity *sea = &a->se; 12613 const struct sched_entity *seb = &b->se; 12614 struct cfs_rq *cfs_rqa; 12615 struct cfs_rq *cfs_rqb; 12616 s64 delta; 12617 12618 SCHED_WARN_ON(task_rq(b)->core != rq->core); 12619 12620 #ifdef CONFIG_FAIR_GROUP_SCHED 12621 /* 12622 * Find an se in the hierarchy for tasks a and b, such that the se's 12623 * are immediate siblings. 12624 */ 12625 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12626 int sea_depth = sea->depth; 12627 int seb_depth = seb->depth; 12628 12629 if (sea_depth >= seb_depth) 12630 sea = parent_entity(sea); 12631 if (sea_depth <= seb_depth) 12632 seb = parent_entity(seb); 12633 } 12634 12635 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 12636 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 12637 12638 cfs_rqa = sea->cfs_rq; 12639 cfs_rqb = seb->cfs_rq; 12640 #else 12641 cfs_rqa = &task_rq(a)->cfs; 12642 cfs_rqb = &task_rq(b)->cfs; 12643 #endif 12644 12645 /* 12646 * Find delta after normalizing se's vruntime with its cfs_rq's 12647 * min_vruntime_fi, which would have been updated in prior calls 12648 * to se_fi_update(). 12649 */ 12650 delta = (s64)(sea->vruntime - seb->vruntime) + 12651 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 12652 12653 return delta > 0; 12654 } 12655 12656 static int task_is_throttled_fair(struct task_struct *p, int cpu) 12657 { 12658 struct cfs_rq *cfs_rq; 12659 12660 #ifdef CONFIG_FAIR_GROUP_SCHED 12661 cfs_rq = task_group(p)->cfs_rq[cpu]; 12662 #else 12663 cfs_rq = &cpu_rq(cpu)->cfs; 12664 #endif 12665 return throttled_hierarchy(cfs_rq); 12666 } 12667 #else 12668 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 12669 #endif 12670 12671 /* 12672 * scheduler tick hitting a task of our scheduling class. 12673 * 12674 * NOTE: This function can be called remotely by the tick offload that 12675 * goes along full dynticks. Therefore no local assumption can be made 12676 * and everything must be accessed through the @rq and @curr passed in 12677 * parameters. 12678 */ 12679 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 12680 { 12681 struct cfs_rq *cfs_rq; 12682 struct sched_entity *se = &curr->se; 12683 12684 for_each_sched_entity(se) { 12685 cfs_rq = cfs_rq_of(se); 12686 entity_tick(cfs_rq, se, queued); 12687 } 12688 12689 if (static_branch_unlikely(&sched_numa_balancing)) 12690 task_tick_numa(rq, curr); 12691 12692 update_misfit_status(curr, rq); 12693 check_update_overutilized_status(task_rq(curr)); 12694 12695 task_tick_core(rq, curr); 12696 } 12697 12698 /* 12699 * called on fork with the child task as argument from the parent's context 12700 * - child not yet on the tasklist 12701 * - preemption disabled 12702 */ 12703 static void task_fork_fair(struct task_struct *p) 12704 { 12705 struct sched_entity *se = &p->se, *curr; 12706 struct cfs_rq *cfs_rq; 12707 struct rq *rq = this_rq(); 12708 struct rq_flags rf; 12709 12710 rq_lock(rq, &rf); 12711 update_rq_clock(rq); 12712 12713 set_task_max_allowed_capacity(p); 12714 12715 cfs_rq = task_cfs_rq(current); 12716 curr = cfs_rq->curr; 12717 if (curr) 12718 update_curr(cfs_rq); 12719 place_entity(cfs_rq, se, ENQUEUE_INITIAL); 12720 rq_unlock(rq, &rf); 12721 } 12722 12723 /* 12724 * Priority of the task has changed. Check to see if we preempt 12725 * the current task. 12726 */ 12727 static void 12728 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 12729 { 12730 if (!task_on_rq_queued(p)) 12731 return; 12732 12733 if (rq->cfs.nr_running == 1) 12734 return; 12735 12736 /* 12737 * Reschedule if we are currently running on this runqueue and 12738 * our priority decreased, or if we are not currently running on 12739 * this runqueue and our priority is higher than the current's 12740 */ 12741 if (task_current(rq, p)) { 12742 if (p->prio > oldprio) 12743 resched_curr(rq); 12744 } else 12745 wakeup_preempt(rq, p, 0); 12746 } 12747 12748 #ifdef CONFIG_FAIR_GROUP_SCHED 12749 /* 12750 * Propagate the changes of the sched_entity across the tg tree to make it 12751 * visible to the root 12752 */ 12753 static void propagate_entity_cfs_rq(struct sched_entity *se) 12754 { 12755 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12756 12757 if (cfs_rq_throttled(cfs_rq)) 12758 return; 12759 12760 if (!throttled_hierarchy(cfs_rq)) 12761 list_add_leaf_cfs_rq(cfs_rq); 12762 12763 /* Start to propagate at parent */ 12764 se = se->parent; 12765 12766 for_each_sched_entity(se) { 12767 cfs_rq = cfs_rq_of(se); 12768 12769 update_load_avg(cfs_rq, se, UPDATE_TG); 12770 12771 if (cfs_rq_throttled(cfs_rq)) 12772 break; 12773 12774 if (!throttled_hierarchy(cfs_rq)) 12775 list_add_leaf_cfs_rq(cfs_rq); 12776 } 12777 } 12778 #else 12779 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 12780 #endif 12781 12782 static void detach_entity_cfs_rq(struct sched_entity *se) 12783 { 12784 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12785 12786 #ifdef CONFIG_SMP 12787 /* 12788 * In case the task sched_avg hasn't been attached: 12789 * - A forked task which hasn't been woken up by wake_up_new_task(). 12790 * - A task which has been woken up by try_to_wake_up() but is 12791 * waiting for actually being woken up by sched_ttwu_pending(). 12792 */ 12793 if (!se->avg.last_update_time) 12794 return; 12795 #endif 12796 12797 /* Catch up with the cfs_rq and remove our load when we leave */ 12798 update_load_avg(cfs_rq, se, 0); 12799 detach_entity_load_avg(cfs_rq, se); 12800 update_tg_load_avg(cfs_rq); 12801 propagate_entity_cfs_rq(se); 12802 } 12803 12804 static void attach_entity_cfs_rq(struct sched_entity *se) 12805 { 12806 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12807 12808 /* Synchronize entity with its cfs_rq */ 12809 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 12810 attach_entity_load_avg(cfs_rq, se); 12811 update_tg_load_avg(cfs_rq); 12812 propagate_entity_cfs_rq(se); 12813 } 12814 12815 static void detach_task_cfs_rq(struct task_struct *p) 12816 { 12817 struct sched_entity *se = &p->se; 12818 12819 detach_entity_cfs_rq(se); 12820 } 12821 12822 static void attach_task_cfs_rq(struct task_struct *p) 12823 { 12824 struct sched_entity *se = &p->se; 12825 12826 attach_entity_cfs_rq(se); 12827 } 12828 12829 static void switched_from_fair(struct rq *rq, struct task_struct *p) 12830 { 12831 detach_task_cfs_rq(p); 12832 } 12833 12834 static void switched_to_fair(struct rq *rq, struct task_struct *p) 12835 { 12836 attach_task_cfs_rq(p); 12837 12838 set_task_max_allowed_capacity(p); 12839 12840 if (task_on_rq_queued(p)) { 12841 /* 12842 * We were most likely switched from sched_rt, so 12843 * kick off the schedule if running, otherwise just see 12844 * if we can still preempt the current task. 12845 */ 12846 if (task_current(rq, p)) 12847 resched_curr(rq); 12848 else 12849 wakeup_preempt(rq, p, 0); 12850 } 12851 } 12852 12853 /* Account for a task changing its policy or group. 12854 * 12855 * This routine is mostly called to set cfs_rq->curr field when a task 12856 * migrates between groups/classes. 12857 */ 12858 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 12859 { 12860 struct sched_entity *se = &p->se; 12861 12862 #ifdef CONFIG_SMP 12863 if (task_on_rq_queued(p)) { 12864 /* 12865 * Move the next running task to the front of the list, so our 12866 * cfs_tasks list becomes MRU one. 12867 */ 12868 list_move(&se->group_node, &rq->cfs_tasks); 12869 } 12870 #endif 12871 12872 for_each_sched_entity(se) { 12873 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12874 12875 set_next_entity(cfs_rq, se); 12876 /* ensure bandwidth has been allocated on our new cfs_rq */ 12877 account_cfs_rq_runtime(cfs_rq, 0); 12878 } 12879 } 12880 12881 void init_cfs_rq(struct cfs_rq *cfs_rq) 12882 { 12883 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 12884 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 12885 #ifdef CONFIG_SMP 12886 raw_spin_lock_init(&cfs_rq->removed.lock); 12887 #endif 12888 } 12889 12890 #ifdef CONFIG_FAIR_GROUP_SCHED 12891 static void task_change_group_fair(struct task_struct *p) 12892 { 12893 /* 12894 * We couldn't detach or attach a forked task which 12895 * hasn't been woken up by wake_up_new_task(). 12896 */ 12897 if (READ_ONCE(p->__state) == TASK_NEW) 12898 return; 12899 12900 detach_task_cfs_rq(p); 12901 12902 #ifdef CONFIG_SMP 12903 /* Tell se's cfs_rq has been changed -- migrated */ 12904 p->se.avg.last_update_time = 0; 12905 #endif 12906 set_task_rq(p, task_cpu(p)); 12907 attach_task_cfs_rq(p); 12908 } 12909 12910 void free_fair_sched_group(struct task_group *tg) 12911 { 12912 int i; 12913 12914 for_each_possible_cpu(i) { 12915 if (tg->cfs_rq) 12916 kfree(tg->cfs_rq[i]); 12917 if (tg->se) 12918 kfree(tg->se[i]); 12919 } 12920 12921 kfree(tg->cfs_rq); 12922 kfree(tg->se); 12923 } 12924 12925 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12926 { 12927 struct sched_entity *se; 12928 struct cfs_rq *cfs_rq; 12929 int i; 12930 12931 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 12932 if (!tg->cfs_rq) 12933 goto err; 12934 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 12935 if (!tg->se) 12936 goto err; 12937 12938 tg->shares = NICE_0_LOAD; 12939 12940 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 12941 12942 for_each_possible_cpu(i) { 12943 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 12944 GFP_KERNEL, cpu_to_node(i)); 12945 if (!cfs_rq) 12946 goto err; 12947 12948 se = kzalloc_node(sizeof(struct sched_entity_stats), 12949 GFP_KERNEL, cpu_to_node(i)); 12950 if (!se) 12951 goto err_free_rq; 12952 12953 init_cfs_rq(cfs_rq); 12954 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 12955 init_entity_runnable_average(se); 12956 } 12957 12958 return 1; 12959 12960 err_free_rq: 12961 kfree(cfs_rq); 12962 err: 12963 return 0; 12964 } 12965 12966 void online_fair_sched_group(struct task_group *tg) 12967 { 12968 struct sched_entity *se; 12969 struct rq_flags rf; 12970 struct rq *rq; 12971 int i; 12972 12973 for_each_possible_cpu(i) { 12974 rq = cpu_rq(i); 12975 se = tg->se[i]; 12976 rq_lock_irq(rq, &rf); 12977 update_rq_clock(rq); 12978 attach_entity_cfs_rq(se); 12979 sync_throttle(tg, i); 12980 rq_unlock_irq(rq, &rf); 12981 } 12982 } 12983 12984 void unregister_fair_sched_group(struct task_group *tg) 12985 { 12986 unsigned long flags; 12987 struct rq *rq; 12988 int cpu; 12989 12990 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12991 12992 for_each_possible_cpu(cpu) { 12993 if (tg->se[cpu]) 12994 remove_entity_load_avg(tg->se[cpu]); 12995 12996 /* 12997 * Only empty task groups can be destroyed; so we can speculatively 12998 * check on_list without danger of it being re-added. 12999 */ 13000 if (!tg->cfs_rq[cpu]->on_list) 13001 continue; 13002 13003 rq = cpu_rq(cpu); 13004 13005 raw_spin_rq_lock_irqsave(rq, flags); 13006 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 13007 raw_spin_rq_unlock_irqrestore(rq, flags); 13008 } 13009 } 13010 13011 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13012 struct sched_entity *se, int cpu, 13013 struct sched_entity *parent) 13014 { 13015 struct rq *rq = cpu_rq(cpu); 13016 13017 cfs_rq->tg = tg; 13018 cfs_rq->rq = rq; 13019 init_cfs_rq_runtime(cfs_rq); 13020 13021 tg->cfs_rq[cpu] = cfs_rq; 13022 tg->se[cpu] = se; 13023 13024 /* se could be NULL for root_task_group */ 13025 if (!se) 13026 return; 13027 13028 if (!parent) { 13029 se->cfs_rq = &rq->cfs; 13030 se->depth = 0; 13031 } else { 13032 se->cfs_rq = parent->my_q; 13033 se->depth = parent->depth + 1; 13034 } 13035 13036 se->my_q = cfs_rq; 13037 /* guarantee group entities always have weight */ 13038 update_load_set(&se->load, NICE_0_LOAD); 13039 se->parent = parent; 13040 } 13041 13042 static DEFINE_MUTEX(shares_mutex); 13043 13044 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13045 { 13046 int i; 13047 13048 lockdep_assert_held(&shares_mutex); 13049 13050 /* 13051 * We can't change the weight of the root cgroup. 13052 */ 13053 if (!tg->se[0]) 13054 return -EINVAL; 13055 13056 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13057 13058 if (tg->shares == shares) 13059 return 0; 13060 13061 tg->shares = shares; 13062 for_each_possible_cpu(i) { 13063 struct rq *rq = cpu_rq(i); 13064 struct sched_entity *se = tg->se[i]; 13065 struct rq_flags rf; 13066 13067 /* Propagate contribution to hierarchy */ 13068 rq_lock_irqsave(rq, &rf); 13069 update_rq_clock(rq); 13070 for_each_sched_entity(se) { 13071 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13072 update_cfs_group(se); 13073 } 13074 rq_unlock_irqrestore(rq, &rf); 13075 } 13076 13077 return 0; 13078 } 13079 13080 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13081 { 13082 int ret; 13083 13084 mutex_lock(&shares_mutex); 13085 if (tg_is_idle(tg)) 13086 ret = -EINVAL; 13087 else 13088 ret = __sched_group_set_shares(tg, shares); 13089 mutex_unlock(&shares_mutex); 13090 13091 return ret; 13092 } 13093 13094 int sched_group_set_idle(struct task_group *tg, long idle) 13095 { 13096 int i; 13097 13098 if (tg == &root_task_group) 13099 return -EINVAL; 13100 13101 if (idle < 0 || idle > 1) 13102 return -EINVAL; 13103 13104 mutex_lock(&shares_mutex); 13105 13106 if (tg->idle == idle) { 13107 mutex_unlock(&shares_mutex); 13108 return 0; 13109 } 13110 13111 tg->idle = idle; 13112 13113 for_each_possible_cpu(i) { 13114 struct rq *rq = cpu_rq(i); 13115 struct sched_entity *se = tg->se[i]; 13116 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 13117 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13118 long idle_task_delta; 13119 struct rq_flags rf; 13120 13121 rq_lock_irqsave(rq, &rf); 13122 13123 grp_cfs_rq->idle = idle; 13124 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13125 goto next_cpu; 13126 13127 if (se->on_rq) { 13128 parent_cfs_rq = cfs_rq_of(se); 13129 if (cfs_rq_is_idle(grp_cfs_rq)) 13130 parent_cfs_rq->idle_nr_running++; 13131 else 13132 parent_cfs_rq->idle_nr_running--; 13133 } 13134 13135 idle_task_delta = grp_cfs_rq->h_nr_running - 13136 grp_cfs_rq->idle_h_nr_running; 13137 if (!cfs_rq_is_idle(grp_cfs_rq)) 13138 idle_task_delta *= -1; 13139 13140 for_each_sched_entity(se) { 13141 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13142 13143 if (!se->on_rq) 13144 break; 13145 13146 cfs_rq->idle_h_nr_running += idle_task_delta; 13147 13148 /* Already accounted at parent level and above. */ 13149 if (cfs_rq_is_idle(cfs_rq)) 13150 break; 13151 } 13152 13153 next_cpu: 13154 rq_unlock_irqrestore(rq, &rf); 13155 } 13156 13157 /* Idle groups have minimum weight. */ 13158 if (tg_is_idle(tg)) 13159 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13160 else 13161 __sched_group_set_shares(tg, NICE_0_LOAD); 13162 13163 mutex_unlock(&shares_mutex); 13164 return 0; 13165 } 13166 13167 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13168 13169 13170 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13171 { 13172 struct sched_entity *se = &task->se; 13173 unsigned int rr_interval = 0; 13174 13175 /* 13176 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13177 * idle runqueue: 13178 */ 13179 if (rq->cfs.load.weight) 13180 rr_interval = NS_TO_JIFFIES(se->slice); 13181 13182 return rr_interval; 13183 } 13184 13185 /* 13186 * All the scheduling class methods: 13187 */ 13188 DEFINE_SCHED_CLASS(fair) = { 13189 13190 .enqueue_task = enqueue_task_fair, 13191 .dequeue_task = dequeue_task_fair, 13192 .yield_task = yield_task_fair, 13193 .yield_to_task = yield_to_task_fair, 13194 13195 .wakeup_preempt = check_preempt_wakeup_fair, 13196 13197 .pick_next_task = __pick_next_task_fair, 13198 .put_prev_task = put_prev_task_fair, 13199 .set_next_task = set_next_task_fair, 13200 13201 #ifdef CONFIG_SMP 13202 .balance = balance_fair, 13203 .pick_task = pick_task_fair, 13204 .select_task_rq = select_task_rq_fair, 13205 .migrate_task_rq = migrate_task_rq_fair, 13206 13207 .rq_online = rq_online_fair, 13208 .rq_offline = rq_offline_fair, 13209 13210 .task_dead = task_dead_fair, 13211 .set_cpus_allowed = set_cpus_allowed_fair, 13212 #endif 13213 13214 .task_tick = task_tick_fair, 13215 .task_fork = task_fork_fair, 13216 13217 .prio_changed = prio_changed_fair, 13218 .switched_from = switched_from_fair, 13219 .switched_to = switched_to_fair, 13220 13221 .get_rr_interval = get_rr_interval_fair, 13222 13223 .update_curr = update_curr_fair, 13224 13225 #ifdef CONFIG_FAIR_GROUP_SCHED 13226 .task_change_group = task_change_group_fair, 13227 #endif 13228 13229 #ifdef CONFIG_SCHED_CORE 13230 .task_is_throttled = task_is_throttled_fair, 13231 #endif 13232 13233 #ifdef CONFIG_UCLAMP_TASK 13234 .uclamp_enabled = 1, 13235 #endif 13236 }; 13237 13238 #ifdef CONFIG_SCHED_DEBUG 13239 void print_cfs_stats(struct seq_file *m, int cpu) 13240 { 13241 struct cfs_rq *cfs_rq, *pos; 13242 13243 rcu_read_lock(); 13244 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13245 print_cfs_rq(m, cpu, cfs_rq); 13246 rcu_read_unlock(); 13247 } 13248 13249 #ifdef CONFIG_NUMA_BALANCING 13250 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13251 { 13252 int node; 13253 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13254 struct numa_group *ng; 13255 13256 rcu_read_lock(); 13257 ng = rcu_dereference(p->numa_group); 13258 for_each_online_node(node) { 13259 if (p->numa_faults) { 13260 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13261 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13262 } 13263 if (ng) { 13264 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13265 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13266 } 13267 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13268 } 13269 rcu_read_unlock(); 13270 } 13271 #endif /* CONFIG_NUMA_BALANCING */ 13272 #endif /* CONFIG_SCHED_DEBUG */ 13273 13274 __init void init_sched_fair_class(void) 13275 { 13276 #ifdef CONFIG_SMP 13277 int i; 13278 13279 for_each_possible_cpu(i) { 13280 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13281 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13282 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13283 GFP_KERNEL, cpu_to_node(i)); 13284 13285 #ifdef CONFIG_CFS_BANDWIDTH 13286 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13287 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13288 #endif 13289 } 13290 13291 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13292 13293 #ifdef CONFIG_NO_HZ_COMMON 13294 nohz.next_balance = jiffies; 13295 nohz.next_blocked = jiffies; 13296 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13297 #endif 13298 #endif /* SMP */ 13299 13300 } 13301