1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 #include <linux/rbtree_augmented.h> 51 52 #include <asm/switch_to.h> 53 54 #include "sched.h" 55 #include "stats.h" 56 #include "autogroup.h" 57 58 /* 59 * The initial- and re-scaling of tunables is configurable 60 * 61 * Options are: 62 * 63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 64 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 66 * 67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 68 */ 69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 70 71 /* 72 * Minimal preemption granularity for CPU-bound tasks: 73 * 74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 75 */ 76 unsigned int sysctl_sched_base_slice = 750000ULL; 77 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 78 79 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 80 81 int sched_thermal_decay_shift; 82 static int __init setup_sched_thermal_decay_shift(char *str) 83 { 84 int _shift = 0; 85 86 if (kstrtoint(str, 0, &_shift)) 87 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 88 89 sched_thermal_decay_shift = clamp(_shift, 0, 10); 90 return 1; 91 } 92 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 93 94 #ifdef CONFIG_SMP 95 /* 96 * For asym packing, by default the lower numbered CPU has higher priority. 97 */ 98 int __weak arch_asym_cpu_priority(int cpu) 99 { 100 return -cpu; 101 } 102 103 /* 104 * The margin used when comparing utilization with CPU capacity. 105 * 106 * (default: ~20%) 107 */ 108 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 109 110 /* 111 * The margin used when comparing CPU capacities. 112 * is 'cap1' noticeably greater than 'cap2' 113 * 114 * (default: ~5%) 115 */ 116 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 117 #endif 118 119 #ifdef CONFIG_CFS_BANDWIDTH 120 /* 121 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 122 * each time a cfs_rq requests quota. 123 * 124 * Note: in the case that the slice exceeds the runtime remaining (either due 125 * to consumption or the quota being specified to be smaller than the slice) 126 * we will always only issue the remaining available time. 127 * 128 * (default: 5 msec, units: microseconds) 129 */ 130 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 131 #endif 132 133 #ifdef CONFIG_NUMA_BALANCING 134 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 135 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 136 #endif 137 138 #ifdef CONFIG_SYSCTL 139 static struct ctl_table sched_fair_sysctls[] = { 140 #ifdef CONFIG_CFS_BANDWIDTH 141 { 142 .procname = "sched_cfs_bandwidth_slice_us", 143 .data = &sysctl_sched_cfs_bandwidth_slice, 144 .maxlen = sizeof(unsigned int), 145 .mode = 0644, 146 .proc_handler = proc_dointvec_minmax, 147 .extra1 = SYSCTL_ONE, 148 }, 149 #endif 150 #ifdef CONFIG_NUMA_BALANCING 151 { 152 .procname = "numa_balancing_promote_rate_limit_MBps", 153 .data = &sysctl_numa_balancing_promote_rate_limit, 154 .maxlen = sizeof(unsigned int), 155 .mode = 0644, 156 .proc_handler = proc_dointvec_minmax, 157 .extra1 = SYSCTL_ZERO, 158 }, 159 #endif /* CONFIG_NUMA_BALANCING */ 160 {} 161 }; 162 163 static int __init sched_fair_sysctl_init(void) 164 { 165 register_sysctl_init("kernel", sched_fair_sysctls); 166 return 0; 167 } 168 late_initcall(sched_fair_sysctl_init); 169 #endif 170 171 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 172 { 173 lw->weight += inc; 174 lw->inv_weight = 0; 175 } 176 177 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 178 { 179 lw->weight -= dec; 180 lw->inv_weight = 0; 181 } 182 183 static inline void update_load_set(struct load_weight *lw, unsigned long w) 184 { 185 lw->weight = w; 186 lw->inv_weight = 0; 187 } 188 189 /* 190 * Increase the granularity value when there are more CPUs, 191 * because with more CPUs the 'effective latency' as visible 192 * to users decreases. But the relationship is not linear, 193 * so pick a second-best guess by going with the log2 of the 194 * number of CPUs. 195 * 196 * This idea comes from the SD scheduler of Con Kolivas: 197 */ 198 static unsigned int get_update_sysctl_factor(void) 199 { 200 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 201 unsigned int factor; 202 203 switch (sysctl_sched_tunable_scaling) { 204 case SCHED_TUNABLESCALING_NONE: 205 factor = 1; 206 break; 207 case SCHED_TUNABLESCALING_LINEAR: 208 factor = cpus; 209 break; 210 case SCHED_TUNABLESCALING_LOG: 211 default: 212 factor = 1 + ilog2(cpus); 213 break; 214 } 215 216 return factor; 217 } 218 219 static void update_sysctl(void) 220 { 221 unsigned int factor = get_update_sysctl_factor(); 222 223 #define SET_SYSCTL(name) \ 224 (sysctl_##name = (factor) * normalized_sysctl_##name) 225 SET_SYSCTL(sched_base_slice); 226 #undef SET_SYSCTL 227 } 228 229 void __init sched_init_granularity(void) 230 { 231 update_sysctl(); 232 } 233 234 #define WMULT_CONST (~0U) 235 #define WMULT_SHIFT 32 236 237 static void __update_inv_weight(struct load_weight *lw) 238 { 239 unsigned long w; 240 241 if (likely(lw->inv_weight)) 242 return; 243 244 w = scale_load_down(lw->weight); 245 246 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 247 lw->inv_weight = 1; 248 else if (unlikely(!w)) 249 lw->inv_weight = WMULT_CONST; 250 else 251 lw->inv_weight = WMULT_CONST / w; 252 } 253 254 /* 255 * delta_exec * weight / lw.weight 256 * OR 257 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 258 * 259 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 260 * we're guaranteed shift stays positive because inv_weight is guaranteed to 261 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 262 * 263 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 264 * weight/lw.weight <= 1, and therefore our shift will also be positive. 265 */ 266 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 267 { 268 u64 fact = scale_load_down(weight); 269 u32 fact_hi = (u32)(fact >> 32); 270 int shift = WMULT_SHIFT; 271 int fs; 272 273 __update_inv_weight(lw); 274 275 if (unlikely(fact_hi)) { 276 fs = fls(fact_hi); 277 shift -= fs; 278 fact >>= fs; 279 } 280 281 fact = mul_u32_u32(fact, lw->inv_weight); 282 283 fact_hi = (u32)(fact >> 32); 284 if (fact_hi) { 285 fs = fls(fact_hi); 286 shift -= fs; 287 fact >>= fs; 288 } 289 290 return mul_u64_u32_shr(delta_exec, fact, shift); 291 } 292 293 /* 294 * delta /= w 295 */ 296 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 297 { 298 if (unlikely(se->load.weight != NICE_0_LOAD)) 299 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 300 301 return delta; 302 } 303 304 const struct sched_class fair_sched_class; 305 306 /************************************************************** 307 * CFS operations on generic schedulable entities: 308 */ 309 310 #ifdef CONFIG_FAIR_GROUP_SCHED 311 312 /* Walk up scheduling entities hierarchy */ 313 #define for_each_sched_entity(se) \ 314 for (; se; se = se->parent) 315 316 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 317 { 318 struct rq *rq = rq_of(cfs_rq); 319 int cpu = cpu_of(rq); 320 321 if (cfs_rq->on_list) 322 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 323 324 cfs_rq->on_list = 1; 325 326 /* 327 * Ensure we either appear before our parent (if already 328 * enqueued) or force our parent to appear after us when it is 329 * enqueued. The fact that we always enqueue bottom-up 330 * reduces this to two cases and a special case for the root 331 * cfs_rq. Furthermore, it also means that we will always reset 332 * tmp_alone_branch either when the branch is connected 333 * to a tree or when we reach the top of the tree 334 */ 335 if (cfs_rq->tg->parent && 336 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 337 /* 338 * If parent is already on the list, we add the child 339 * just before. Thanks to circular linked property of 340 * the list, this means to put the child at the tail 341 * of the list that starts by parent. 342 */ 343 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 344 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 345 /* 346 * The branch is now connected to its tree so we can 347 * reset tmp_alone_branch to the beginning of the 348 * list. 349 */ 350 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 351 return true; 352 } 353 354 if (!cfs_rq->tg->parent) { 355 /* 356 * cfs rq without parent should be put 357 * at the tail of the list. 358 */ 359 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 360 &rq->leaf_cfs_rq_list); 361 /* 362 * We have reach the top of a tree so we can reset 363 * tmp_alone_branch to the beginning of the list. 364 */ 365 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 366 return true; 367 } 368 369 /* 370 * The parent has not already been added so we want to 371 * make sure that it will be put after us. 372 * tmp_alone_branch points to the begin of the branch 373 * where we will add parent. 374 */ 375 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 376 /* 377 * update tmp_alone_branch to points to the new begin 378 * of the branch 379 */ 380 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 381 return false; 382 } 383 384 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 385 { 386 if (cfs_rq->on_list) { 387 struct rq *rq = rq_of(cfs_rq); 388 389 /* 390 * With cfs_rq being unthrottled/throttled during an enqueue, 391 * it can happen the tmp_alone_branch points the a leaf that 392 * we finally want to del. In this case, tmp_alone_branch moves 393 * to the prev element but it will point to rq->leaf_cfs_rq_list 394 * at the end of the enqueue. 395 */ 396 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 397 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 398 399 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 400 cfs_rq->on_list = 0; 401 } 402 } 403 404 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 405 { 406 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 407 } 408 409 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 410 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 411 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 412 leaf_cfs_rq_list) 413 414 /* Do the two (enqueued) entities belong to the same group ? */ 415 static inline struct cfs_rq * 416 is_same_group(struct sched_entity *se, struct sched_entity *pse) 417 { 418 if (se->cfs_rq == pse->cfs_rq) 419 return se->cfs_rq; 420 421 return NULL; 422 } 423 424 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 425 { 426 return se->parent; 427 } 428 429 static void 430 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 431 { 432 int se_depth, pse_depth; 433 434 /* 435 * preemption test can be made between sibling entities who are in the 436 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 437 * both tasks until we find their ancestors who are siblings of common 438 * parent. 439 */ 440 441 /* First walk up until both entities are at same depth */ 442 se_depth = (*se)->depth; 443 pse_depth = (*pse)->depth; 444 445 while (se_depth > pse_depth) { 446 se_depth--; 447 *se = parent_entity(*se); 448 } 449 450 while (pse_depth > se_depth) { 451 pse_depth--; 452 *pse = parent_entity(*pse); 453 } 454 455 while (!is_same_group(*se, *pse)) { 456 *se = parent_entity(*se); 457 *pse = parent_entity(*pse); 458 } 459 } 460 461 static int tg_is_idle(struct task_group *tg) 462 { 463 return tg->idle > 0; 464 } 465 466 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 467 { 468 return cfs_rq->idle > 0; 469 } 470 471 static int se_is_idle(struct sched_entity *se) 472 { 473 if (entity_is_task(se)) 474 return task_has_idle_policy(task_of(se)); 475 return cfs_rq_is_idle(group_cfs_rq(se)); 476 } 477 478 #else /* !CONFIG_FAIR_GROUP_SCHED */ 479 480 #define for_each_sched_entity(se) \ 481 for (; se; se = NULL) 482 483 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 484 { 485 return true; 486 } 487 488 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 489 { 490 } 491 492 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 493 { 494 } 495 496 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 497 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 498 499 static inline struct sched_entity *parent_entity(struct sched_entity *se) 500 { 501 return NULL; 502 } 503 504 static inline void 505 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 506 { 507 } 508 509 static inline int tg_is_idle(struct task_group *tg) 510 { 511 return 0; 512 } 513 514 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 515 { 516 return 0; 517 } 518 519 static int se_is_idle(struct sched_entity *se) 520 { 521 return 0; 522 } 523 524 #endif /* CONFIG_FAIR_GROUP_SCHED */ 525 526 static __always_inline 527 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 528 529 /************************************************************** 530 * Scheduling class tree data structure manipulation methods: 531 */ 532 533 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 534 { 535 s64 delta = (s64)(vruntime - max_vruntime); 536 if (delta > 0) 537 max_vruntime = vruntime; 538 539 return max_vruntime; 540 } 541 542 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 543 { 544 s64 delta = (s64)(vruntime - min_vruntime); 545 if (delta < 0) 546 min_vruntime = vruntime; 547 548 return min_vruntime; 549 } 550 551 static inline bool entity_before(const struct sched_entity *a, 552 const struct sched_entity *b) 553 { 554 /* 555 * Tiebreak on vruntime seems unnecessary since it can 556 * hardly happen. 557 */ 558 return (s64)(a->deadline - b->deadline) < 0; 559 } 560 561 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 562 { 563 return (s64)(se->vruntime - cfs_rq->min_vruntime); 564 } 565 566 #define __node_2_se(node) \ 567 rb_entry((node), struct sched_entity, run_node) 568 569 /* 570 * Compute virtual time from the per-task service numbers: 571 * 572 * Fair schedulers conserve lag: 573 * 574 * \Sum lag_i = 0 575 * 576 * Where lag_i is given by: 577 * 578 * lag_i = S - s_i = w_i * (V - v_i) 579 * 580 * Where S is the ideal service time and V is it's virtual time counterpart. 581 * Therefore: 582 * 583 * \Sum lag_i = 0 584 * \Sum w_i * (V - v_i) = 0 585 * \Sum w_i * V - w_i * v_i = 0 586 * 587 * From which we can solve an expression for V in v_i (which we have in 588 * se->vruntime): 589 * 590 * \Sum v_i * w_i \Sum v_i * w_i 591 * V = -------------- = -------------- 592 * \Sum w_i W 593 * 594 * Specifically, this is the weighted average of all entity virtual runtimes. 595 * 596 * [[ NOTE: this is only equal to the ideal scheduler under the condition 597 * that join/leave operations happen at lag_i = 0, otherwise the 598 * virtual time has non-continguous motion equivalent to: 599 * 600 * V +-= lag_i / W 601 * 602 * Also see the comment in place_entity() that deals with this. ]] 603 * 604 * However, since v_i is u64, and the multiplcation could easily overflow 605 * transform it into a relative form that uses smaller quantities: 606 * 607 * Substitute: v_i == (v_i - v0) + v0 608 * 609 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 610 * V = ---------------------------- = --------------------- + v0 611 * W W 612 * 613 * Which we track using: 614 * 615 * v0 := cfs_rq->min_vruntime 616 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 617 * \Sum w_i := cfs_rq->avg_load 618 * 619 * Since min_vruntime is a monotonic increasing variable that closely tracks 620 * the per-task service, these deltas: (v_i - v), will be in the order of the 621 * maximal (virtual) lag induced in the system due to quantisation. 622 * 623 * Also, we use scale_load_down() to reduce the size. 624 * 625 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 626 */ 627 static void 628 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 629 { 630 unsigned long weight = scale_load_down(se->load.weight); 631 s64 key = entity_key(cfs_rq, se); 632 633 cfs_rq->avg_vruntime += key * weight; 634 cfs_rq->avg_load += weight; 635 } 636 637 static void 638 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 639 { 640 unsigned long weight = scale_load_down(se->load.weight); 641 s64 key = entity_key(cfs_rq, se); 642 643 cfs_rq->avg_vruntime -= key * weight; 644 cfs_rq->avg_load -= weight; 645 } 646 647 static inline 648 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 649 { 650 /* 651 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 652 */ 653 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 654 } 655 656 /* 657 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 658 * For this to be so, the result of this function must have a left bias. 659 */ 660 u64 avg_vruntime(struct cfs_rq *cfs_rq) 661 { 662 struct sched_entity *curr = cfs_rq->curr; 663 s64 avg = cfs_rq->avg_vruntime; 664 long load = cfs_rq->avg_load; 665 666 if (curr && curr->on_rq) { 667 unsigned long weight = scale_load_down(curr->load.weight); 668 669 avg += entity_key(cfs_rq, curr) * weight; 670 load += weight; 671 } 672 673 if (load) { 674 /* sign flips effective floor / ceil */ 675 if (avg < 0) 676 avg -= (load - 1); 677 avg = div_s64(avg, load); 678 } 679 680 return cfs_rq->min_vruntime + avg; 681 } 682 683 /* 684 * lag_i = S - s_i = w_i * (V - v_i) 685 * 686 * However, since V is approximated by the weighted average of all entities it 687 * is possible -- by addition/removal/reweight to the tree -- to move V around 688 * and end up with a larger lag than we started with. 689 * 690 * Limit this to either double the slice length with a minimum of TICK_NSEC 691 * since that is the timing granularity. 692 * 693 * EEVDF gives the following limit for a steady state system: 694 * 695 * -r_max < lag < max(r_max, q) 696 * 697 * XXX could add max_slice to the augmented data to track this. 698 */ 699 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 700 { 701 s64 lag, limit; 702 703 SCHED_WARN_ON(!se->on_rq); 704 lag = avg_vruntime(cfs_rq) - se->vruntime; 705 706 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 707 se->vlag = clamp(lag, -limit, limit); 708 } 709 710 /* 711 * Entity is eligible once it received less service than it ought to have, 712 * eg. lag >= 0. 713 * 714 * lag_i = S - s_i = w_i*(V - v_i) 715 * 716 * lag_i >= 0 -> V >= v_i 717 * 718 * \Sum (v_i - v)*w_i 719 * V = ------------------ + v 720 * \Sum w_i 721 * 722 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 723 * 724 * Note: using 'avg_vruntime() > se->vruntime' is inacurate due 725 * to the loss in precision caused by the division. 726 */ 727 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 728 { 729 struct sched_entity *curr = cfs_rq->curr; 730 s64 avg = cfs_rq->avg_vruntime; 731 long load = cfs_rq->avg_load; 732 733 if (curr && curr->on_rq) { 734 unsigned long weight = scale_load_down(curr->load.weight); 735 736 avg += entity_key(cfs_rq, curr) * weight; 737 load += weight; 738 } 739 740 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 741 } 742 743 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 744 { 745 return vruntime_eligible(cfs_rq, se->vruntime); 746 } 747 748 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 749 { 750 u64 min_vruntime = cfs_rq->min_vruntime; 751 /* 752 * open coded max_vruntime() to allow updating avg_vruntime 753 */ 754 s64 delta = (s64)(vruntime - min_vruntime); 755 if (delta > 0) { 756 avg_vruntime_update(cfs_rq, delta); 757 min_vruntime = vruntime; 758 } 759 return min_vruntime; 760 } 761 762 static void update_min_vruntime(struct cfs_rq *cfs_rq) 763 { 764 struct sched_entity *se = __pick_root_entity(cfs_rq); 765 struct sched_entity *curr = cfs_rq->curr; 766 u64 vruntime = cfs_rq->min_vruntime; 767 768 if (curr) { 769 if (curr->on_rq) 770 vruntime = curr->vruntime; 771 else 772 curr = NULL; 773 } 774 775 if (se) { 776 if (!curr) 777 vruntime = se->min_vruntime; 778 else 779 vruntime = min_vruntime(vruntime, se->min_vruntime); 780 } 781 782 /* ensure we never gain time by being placed backwards. */ 783 u64_u32_store(cfs_rq->min_vruntime, 784 __update_min_vruntime(cfs_rq, vruntime)); 785 } 786 787 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 788 { 789 return entity_before(__node_2_se(a), __node_2_se(b)); 790 } 791 792 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 793 794 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 795 { 796 if (node) { 797 struct sched_entity *rse = __node_2_se(node); 798 if (vruntime_gt(min_vruntime, se, rse)) 799 se->min_vruntime = rse->min_vruntime; 800 } 801 } 802 803 /* 804 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 805 */ 806 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 807 { 808 u64 old_min_vruntime = se->min_vruntime; 809 struct rb_node *node = &se->run_node; 810 811 se->min_vruntime = se->vruntime; 812 __min_vruntime_update(se, node->rb_right); 813 __min_vruntime_update(se, node->rb_left); 814 815 return se->min_vruntime == old_min_vruntime; 816 } 817 818 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 819 run_node, min_vruntime, min_vruntime_update); 820 821 /* 822 * Enqueue an entity into the rb-tree: 823 */ 824 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 825 { 826 avg_vruntime_add(cfs_rq, se); 827 se->min_vruntime = se->vruntime; 828 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 829 __entity_less, &min_vruntime_cb); 830 } 831 832 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 833 { 834 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 835 &min_vruntime_cb); 836 avg_vruntime_sub(cfs_rq, se); 837 } 838 839 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 840 { 841 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 842 843 if (!root) 844 return NULL; 845 846 return __node_2_se(root); 847 } 848 849 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 850 { 851 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 852 853 if (!left) 854 return NULL; 855 856 return __node_2_se(left); 857 } 858 859 /* 860 * Earliest Eligible Virtual Deadline First 861 * 862 * In order to provide latency guarantees for different request sizes 863 * EEVDF selects the best runnable task from two criteria: 864 * 865 * 1) the task must be eligible (must be owed service) 866 * 867 * 2) from those tasks that meet 1), we select the one 868 * with the earliest virtual deadline. 869 * 870 * We can do this in O(log n) time due to an augmented RB-tree. The 871 * tree keeps the entries sorted on deadline, but also functions as a 872 * heap based on the vruntime by keeping: 873 * 874 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 875 * 876 * Which allows tree pruning through eligibility. 877 */ 878 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 879 { 880 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 881 struct sched_entity *se = __pick_first_entity(cfs_rq); 882 struct sched_entity *curr = cfs_rq->curr; 883 struct sched_entity *best = NULL; 884 885 /* 886 * We can safely skip eligibility check if there is only one entity 887 * in this cfs_rq, saving some cycles. 888 */ 889 if (cfs_rq->nr_running == 1) 890 return curr && curr->on_rq ? curr : se; 891 892 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 893 curr = NULL; 894 895 /* 896 * Once selected, run a task until it either becomes non-eligible or 897 * until it gets a new slice. See the HACK in set_next_entity(). 898 */ 899 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 900 return curr; 901 902 /* Pick the leftmost entity if it's eligible */ 903 if (se && entity_eligible(cfs_rq, se)) { 904 best = se; 905 goto found; 906 } 907 908 /* Heap search for the EEVD entity */ 909 while (node) { 910 struct rb_node *left = node->rb_left; 911 912 /* 913 * Eligible entities in left subtree are always better 914 * choices, since they have earlier deadlines. 915 */ 916 if (left && vruntime_eligible(cfs_rq, 917 __node_2_se(left)->min_vruntime)) { 918 node = left; 919 continue; 920 } 921 922 se = __node_2_se(node); 923 924 /* 925 * The left subtree either is empty or has no eligible 926 * entity, so check the current node since it is the one 927 * with earliest deadline that might be eligible. 928 */ 929 if (entity_eligible(cfs_rq, se)) { 930 best = se; 931 break; 932 } 933 934 node = node->rb_right; 935 } 936 found: 937 if (!best || (curr && entity_before(curr, best))) 938 best = curr; 939 940 return best; 941 } 942 943 #ifdef CONFIG_SCHED_DEBUG 944 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 945 { 946 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 947 948 if (!last) 949 return NULL; 950 951 return __node_2_se(last); 952 } 953 954 /************************************************************** 955 * Scheduling class statistics methods: 956 */ 957 #ifdef CONFIG_SMP 958 int sched_update_scaling(void) 959 { 960 unsigned int factor = get_update_sysctl_factor(); 961 962 #define WRT_SYSCTL(name) \ 963 (normalized_sysctl_##name = sysctl_##name / (factor)) 964 WRT_SYSCTL(sched_base_slice); 965 #undef WRT_SYSCTL 966 967 return 0; 968 } 969 #endif 970 #endif 971 972 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 973 974 /* 975 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 976 * this is probably good enough. 977 */ 978 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 979 { 980 if ((s64)(se->vruntime - se->deadline) < 0) 981 return; 982 983 /* 984 * For EEVDF the virtual time slope is determined by w_i (iow. 985 * nice) while the request time r_i is determined by 986 * sysctl_sched_base_slice. 987 */ 988 se->slice = sysctl_sched_base_slice; 989 990 /* 991 * EEVDF: vd_i = ve_i + r_i / w_i 992 */ 993 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 994 995 /* 996 * The task has consumed its request, reschedule. 997 */ 998 if (cfs_rq->nr_running > 1) { 999 resched_curr(rq_of(cfs_rq)); 1000 clear_buddies(cfs_rq, se); 1001 } 1002 } 1003 1004 #include "pelt.h" 1005 #ifdef CONFIG_SMP 1006 1007 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1008 static unsigned long task_h_load(struct task_struct *p); 1009 static unsigned long capacity_of(int cpu); 1010 1011 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1012 void init_entity_runnable_average(struct sched_entity *se) 1013 { 1014 struct sched_avg *sa = &se->avg; 1015 1016 memset(sa, 0, sizeof(*sa)); 1017 1018 /* 1019 * Tasks are initialized with full load to be seen as heavy tasks until 1020 * they get a chance to stabilize to their real load level. 1021 * Group entities are initialized with zero load to reflect the fact that 1022 * nothing has been attached to the task group yet. 1023 */ 1024 if (entity_is_task(se)) 1025 sa->load_avg = scale_load_down(se->load.weight); 1026 1027 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 1028 } 1029 1030 /* 1031 * With new tasks being created, their initial util_avgs are extrapolated 1032 * based on the cfs_rq's current util_avg: 1033 * 1034 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 1035 * 1036 * However, in many cases, the above util_avg does not give a desired 1037 * value. Moreover, the sum of the util_avgs may be divergent, such 1038 * as when the series is a harmonic series. 1039 * 1040 * To solve this problem, we also cap the util_avg of successive tasks to 1041 * only 1/2 of the left utilization budget: 1042 * 1043 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1044 * 1045 * where n denotes the nth task and cpu_scale the CPU capacity. 1046 * 1047 * For example, for a CPU with 1024 of capacity, a simplest series from 1048 * the beginning would be like: 1049 * 1050 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1051 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1052 * 1053 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1054 * if util_avg > util_avg_cap. 1055 */ 1056 void post_init_entity_util_avg(struct task_struct *p) 1057 { 1058 struct sched_entity *se = &p->se; 1059 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1060 struct sched_avg *sa = &se->avg; 1061 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1062 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1063 1064 if (p->sched_class != &fair_sched_class) { 1065 /* 1066 * For !fair tasks do: 1067 * 1068 update_cfs_rq_load_avg(now, cfs_rq); 1069 attach_entity_load_avg(cfs_rq, se); 1070 switched_from_fair(rq, p); 1071 * 1072 * such that the next switched_to_fair() has the 1073 * expected state. 1074 */ 1075 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1076 return; 1077 } 1078 1079 if (cap > 0) { 1080 if (cfs_rq->avg.util_avg != 0) { 1081 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 1082 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1083 1084 if (sa->util_avg > cap) 1085 sa->util_avg = cap; 1086 } else { 1087 sa->util_avg = cap; 1088 } 1089 } 1090 1091 sa->runnable_avg = sa->util_avg; 1092 } 1093 1094 #else /* !CONFIG_SMP */ 1095 void init_entity_runnable_average(struct sched_entity *se) 1096 { 1097 } 1098 void post_init_entity_util_avg(struct task_struct *p) 1099 { 1100 } 1101 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1102 { 1103 } 1104 #endif /* CONFIG_SMP */ 1105 1106 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1107 { 1108 u64 now = rq_clock_task(rq); 1109 s64 delta_exec; 1110 1111 delta_exec = now - curr->exec_start; 1112 if (unlikely(delta_exec <= 0)) 1113 return delta_exec; 1114 1115 curr->exec_start = now; 1116 curr->sum_exec_runtime += delta_exec; 1117 1118 if (schedstat_enabled()) { 1119 struct sched_statistics *stats; 1120 1121 stats = __schedstats_from_se(curr); 1122 __schedstat_set(stats->exec_max, 1123 max(delta_exec, stats->exec_max)); 1124 } 1125 1126 return delta_exec; 1127 } 1128 1129 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1130 { 1131 trace_sched_stat_runtime(p, delta_exec); 1132 account_group_exec_runtime(p, delta_exec); 1133 cgroup_account_cputime(p, delta_exec); 1134 if (p->dl_server) 1135 dl_server_update(p->dl_server, delta_exec); 1136 } 1137 1138 /* 1139 * Used by other classes to account runtime. 1140 */ 1141 s64 update_curr_common(struct rq *rq) 1142 { 1143 struct task_struct *curr = rq->curr; 1144 s64 delta_exec; 1145 1146 delta_exec = update_curr_se(rq, &curr->se); 1147 if (likely(delta_exec > 0)) 1148 update_curr_task(curr, delta_exec); 1149 1150 return delta_exec; 1151 } 1152 1153 /* 1154 * Update the current task's runtime statistics. 1155 */ 1156 static void update_curr(struct cfs_rq *cfs_rq) 1157 { 1158 struct sched_entity *curr = cfs_rq->curr; 1159 s64 delta_exec; 1160 1161 if (unlikely(!curr)) 1162 return; 1163 1164 delta_exec = update_curr_se(rq_of(cfs_rq), curr); 1165 if (unlikely(delta_exec <= 0)) 1166 return; 1167 1168 curr->vruntime += calc_delta_fair(delta_exec, curr); 1169 update_deadline(cfs_rq, curr); 1170 update_min_vruntime(cfs_rq); 1171 1172 if (entity_is_task(curr)) 1173 update_curr_task(task_of(curr), delta_exec); 1174 1175 account_cfs_rq_runtime(cfs_rq, delta_exec); 1176 } 1177 1178 static void update_curr_fair(struct rq *rq) 1179 { 1180 update_curr(cfs_rq_of(&rq->curr->se)); 1181 } 1182 1183 static inline void 1184 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1185 { 1186 struct sched_statistics *stats; 1187 struct task_struct *p = NULL; 1188 1189 if (!schedstat_enabled()) 1190 return; 1191 1192 stats = __schedstats_from_se(se); 1193 1194 if (entity_is_task(se)) 1195 p = task_of(se); 1196 1197 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1198 } 1199 1200 static inline void 1201 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1202 { 1203 struct sched_statistics *stats; 1204 struct task_struct *p = NULL; 1205 1206 if (!schedstat_enabled()) 1207 return; 1208 1209 stats = __schedstats_from_se(se); 1210 1211 /* 1212 * When the sched_schedstat changes from 0 to 1, some sched se 1213 * maybe already in the runqueue, the se->statistics.wait_start 1214 * will be 0.So it will let the delta wrong. We need to avoid this 1215 * scenario. 1216 */ 1217 if (unlikely(!schedstat_val(stats->wait_start))) 1218 return; 1219 1220 if (entity_is_task(se)) 1221 p = task_of(se); 1222 1223 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1224 } 1225 1226 static inline void 1227 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1228 { 1229 struct sched_statistics *stats; 1230 struct task_struct *tsk = NULL; 1231 1232 if (!schedstat_enabled()) 1233 return; 1234 1235 stats = __schedstats_from_se(se); 1236 1237 if (entity_is_task(se)) 1238 tsk = task_of(se); 1239 1240 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1241 } 1242 1243 /* 1244 * Task is being enqueued - update stats: 1245 */ 1246 static inline void 1247 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1248 { 1249 if (!schedstat_enabled()) 1250 return; 1251 1252 /* 1253 * Are we enqueueing a waiting task? (for current tasks 1254 * a dequeue/enqueue event is a NOP) 1255 */ 1256 if (se != cfs_rq->curr) 1257 update_stats_wait_start_fair(cfs_rq, se); 1258 1259 if (flags & ENQUEUE_WAKEUP) 1260 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1261 } 1262 1263 static inline void 1264 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1265 { 1266 1267 if (!schedstat_enabled()) 1268 return; 1269 1270 /* 1271 * Mark the end of the wait period if dequeueing a 1272 * waiting task: 1273 */ 1274 if (se != cfs_rq->curr) 1275 update_stats_wait_end_fair(cfs_rq, se); 1276 1277 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1278 struct task_struct *tsk = task_of(se); 1279 unsigned int state; 1280 1281 /* XXX racy against TTWU */ 1282 state = READ_ONCE(tsk->__state); 1283 if (state & TASK_INTERRUPTIBLE) 1284 __schedstat_set(tsk->stats.sleep_start, 1285 rq_clock(rq_of(cfs_rq))); 1286 if (state & TASK_UNINTERRUPTIBLE) 1287 __schedstat_set(tsk->stats.block_start, 1288 rq_clock(rq_of(cfs_rq))); 1289 } 1290 } 1291 1292 /* 1293 * We are picking a new current task - update its stats: 1294 */ 1295 static inline void 1296 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1297 { 1298 /* 1299 * We are starting a new run period: 1300 */ 1301 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1302 } 1303 1304 /************************************************** 1305 * Scheduling class queueing methods: 1306 */ 1307 1308 static inline bool is_core_idle(int cpu) 1309 { 1310 #ifdef CONFIG_SCHED_SMT 1311 int sibling; 1312 1313 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1314 if (cpu == sibling) 1315 continue; 1316 1317 if (!idle_cpu(sibling)) 1318 return false; 1319 } 1320 #endif 1321 1322 return true; 1323 } 1324 1325 #ifdef CONFIG_NUMA 1326 #define NUMA_IMBALANCE_MIN 2 1327 1328 static inline long 1329 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1330 { 1331 /* 1332 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1333 * threshold. Above this threshold, individual tasks may be contending 1334 * for both memory bandwidth and any shared HT resources. This is an 1335 * approximation as the number of running tasks may not be related to 1336 * the number of busy CPUs due to sched_setaffinity. 1337 */ 1338 if (dst_running > imb_numa_nr) 1339 return imbalance; 1340 1341 /* 1342 * Allow a small imbalance based on a simple pair of communicating 1343 * tasks that remain local when the destination is lightly loaded. 1344 */ 1345 if (imbalance <= NUMA_IMBALANCE_MIN) 1346 return 0; 1347 1348 return imbalance; 1349 } 1350 #endif /* CONFIG_NUMA */ 1351 1352 #ifdef CONFIG_NUMA_BALANCING 1353 /* 1354 * Approximate time to scan a full NUMA task in ms. The task scan period is 1355 * calculated based on the tasks virtual memory size and 1356 * numa_balancing_scan_size. 1357 */ 1358 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1359 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1360 1361 /* Portion of address space to scan in MB */ 1362 unsigned int sysctl_numa_balancing_scan_size = 256; 1363 1364 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1365 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1366 1367 /* The page with hint page fault latency < threshold in ms is considered hot */ 1368 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1369 1370 struct numa_group { 1371 refcount_t refcount; 1372 1373 spinlock_t lock; /* nr_tasks, tasks */ 1374 int nr_tasks; 1375 pid_t gid; 1376 int active_nodes; 1377 1378 struct rcu_head rcu; 1379 unsigned long total_faults; 1380 unsigned long max_faults_cpu; 1381 /* 1382 * faults[] array is split into two regions: faults_mem and faults_cpu. 1383 * 1384 * Faults_cpu is used to decide whether memory should move 1385 * towards the CPU. As a consequence, these stats are weighted 1386 * more by CPU use than by memory faults. 1387 */ 1388 unsigned long faults[]; 1389 }; 1390 1391 /* 1392 * For functions that can be called in multiple contexts that permit reading 1393 * ->numa_group (see struct task_struct for locking rules). 1394 */ 1395 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1396 { 1397 return rcu_dereference_check(p->numa_group, p == current || 1398 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1399 } 1400 1401 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1402 { 1403 return rcu_dereference_protected(p->numa_group, p == current); 1404 } 1405 1406 static inline unsigned long group_faults_priv(struct numa_group *ng); 1407 static inline unsigned long group_faults_shared(struct numa_group *ng); 1408 1409 static unsigned int task_nr_scan_windows(struct task_struct *p) 1410 { 1411 unsigned long rss = 0; 1412 unsigned long nr_scan_pages; 1413 1414 /* 1415 * Calculations based on RSS as non-present and empty pages are skipped 1416 * by the PTE scanner and NUMA hinting faults should be trapped based 1417 * on resident pages 1418 */ 1419 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1420 rss = get_mm_rss(p->mm); 1421 if (!rss) 1422 rss = nr_scan_pages; 1423 1424 rss = round_up(rss, nr_scan_pages); 1425 return rss / nr_scan_pages; 1426 } 1427 1428 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1429 #define MAX_SCAN_WINDOW 2560 1430 1431 static unsigned int task_scan_min(struct task_struct *p) 1432 { 1433 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1434 unsigned int scan, floor; 1435 unsigned int windows = 1; 1436 1437 if (scan_size < MAX_SCAN_WINDOW) 1438 windows = MAX_SCAN_WINDOW / scan_size; 1439 floor = 1000 / windows; 1440 1441 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1442 return max_t(unsigned int, floor, scan); 1443 } 1444 1445 static unsigned int task_scan_start(struct task_struct *p) 1446 { 1447 unsigned long smin = task_scan_min(p); 1448 unsigned long period = smin; 1449 struct numa_group *ng; 1450 1451 /* Scale the maximum scan period with the amount of shared memory. */ 1452 rcu_read_lock(); 1453 ng = rcu_dereference(p->numa_group); 1454 if (ng) { 1455 unsigned long shared = group_faults_shared(ng); 1456 unsigned long private = group_faults_priv(ng); 1457 1458 period *= refcount_read(&ng->refcount); 1459 period *= shared + 1; 1460 period /= private + shared + 1; 1461 } 1462 rcu_read_unlock(); 1463 1464 return max(smin, period); 1465 } 1466 1467 static unsigned int task_scan_max(struct task_struct *p) 1468 { 1469 unsigned long smin = task_scan_min(p); 1470 unsigned long smax; 1471 struct numa_group *ng; 1472 1473 /* Watch for min being lower than max due to floor calculations */ 1474 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1475 1476 /* Scale the maximum scan period with the amount of shared memory. */ 1477 ng = deref_curr_numa_group(p); 1478 if (ng) { 1479 unsigned long shared = group_faults_shared(ng); 1480 unsigned long private = group_faults_priv(ng); 1481 unsigned long period = smax; 1482 1483 period *= refcount_read(&ng->refcount); 1484 period *= shared + 1; 1485 period /= private + shared + 1; 1486 1487 smax = max(smax, period); 1488 } 1489 1490 return max(smin, smax); 1491 } 1492 1493 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1494 { 1495 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1496 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1497 } 1498 1499 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1500 { 1501 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1502 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1503 } 1504 1505 /* Shared or private faults. */ 1506 #define NR_NUMA_HINT_FAULT_TYPES 2 1507 1508 /* Memory and CPU locality */ 1509 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1510 1511 /* Averaged statistics, and temporary buffers. */ 1512 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1513 1514 pid_t task_numa_group_id(struct task_struct *p) 1515 { 1516 struct numa_group *ng; 1517 pid_t gid = 0; 1518 1519 rcu_read_lock(); 1520 ng = rcu_dereference(p->numa_group); 1521 if (ng) 1522 gid = ng->gid; 1523 rcu_read_unlock(); 1524 1525 return gid; 1526 } 1527 1528 /* 1529 * The averaged statistics, shared & private, memory & CPU, 1530 * occupy the first half of the array. The second half of the 1531 * array is for current counters, which are averaged into the 1532 * first set by task_numa_placement. 1533 */ 1534 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1535 { 1536 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1537 } 1538 1539 static inline unsigned long task_faults(struct task_struct *p, int nid) 1540 { 1541 if (!p->numa_faults) 1542 return 0; 1543 1544 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1545 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1546 } 1547 1548 static inline unsigned long group_faults(struct task_struct *p, int nid) 1549 { 1550 struct numa_group *ng = deref_task_numa_group(p); 1551 1552 if (!ng) 1553 return 0; 1554 1555 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1556 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1557 } 1558 1559 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1560 { 1561 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1562 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1563 } 1564 1565 static inline unsigned long group_faults_priv(struct numa_group *ng) 1566 { 1567 unsigned long faults = 0; 1568 int node; 1569 1570 for_each_online_node(node) { 1571 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1572 } 1573 1574 return faults; 1575 } 1576 1577 static inline unsigned long group_faults_shared(struct numa_group *ng) 1578 { 1579 unsigned long faults = 0; 1580 int node; 1581 1582 for_each_online_node(node) { 1583 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1584 } 1585 1586 return faults; 1587 } 1588 1589 /* 1590 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1591 * considered part of a numa group's pseudo-interleaving set. Migrations 1592 * between these nodes are slowed down, to allow things to settle down. 1593 */ 1594 #define ACTIVE_NODE_FRACTION 3 1595 1596 static bool numa_is_active_node(int nid, struct numa_group *ng) 1597 { 1598 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1599 } 1600 1601 /* Handle placement on systems where not all nodes are directly connected. */ 1602 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1603 int lim_dist, bool task) 1604 { 1605 unsigned long score = 0; 1606 int node, max_dist; 1607 1608 /* 1609 * All nodes are directly connected, and the same distance 1610 * from each other. No need for fancy placement algorithms. 1611 */ 1612 if (sched_numa_topology_type == NUMA_DIRECT) 1613 return 0; 1614 1615 /* sched_max_numa_distance may be changed in parallel. */ 1616 max_dist = READ_ONCE(sched_max_numa_distance); 1617 /* 1618 * This code is called for each node, introducing N^2 complexity, 1619 * which should be ok given the number of nodes rarely exceeds 8. 1620 */ 1621 for_each_online_node(node) { 1622 unsigned long faults; 1623 int dist = node_distance(nid, node); 1624 1625 /* 1626 * The furthest away nodes in the system are not interesting 1627 * for placement; nid was already counted. 1628 */ 1629 if (dist >= max_dist || node == nid) 1630 continue; 1631 1632 /* 1633 * On systems with a backplane NUMA topology, compare groups 1634 * of nodes, and move tasks towards the group with the most 1635 * memory accesses. When comparing two nodes at distance 1636 * "hoplimit", only nodes closer by than "hoplimit" are part 1637 * of each group. Skip other nodes. 1638 */ 1639 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1640 continue; 1641 1642 /* Add up the faults from nearby nodes. */ 1643 if (task) 1644 faults = task_faults(p, node); 1645 else 1646 faults = group_faults(p, node); 1647 1648 /* 1649 * On systems with a glueless mesh NUMA topology, there are 1650 * no fixed "groups of nodes". Instead, nodes that are not 1651 * directly connected bounce traffic through intermediate 1652 * nodes; a numa_group can occupy any set of nodes. 1653 * The further away a node is, the less the faults count. 1654 * This seems to result in good task placement. 1655 */ 1656 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1657 faults *= (max_dist - dist); 1658 faults /= (max_dist - LOCAL_DISTANCE); 1659 } 1660 1661 score += faults; 1662 } 1663 1664 return score; 1665 } 1666 1667 /* 1668 * These return the fraction of accesses done by a particular task, or 1669 * task group, on a particular numa node. The group weight is given a 1670 * larger multiplier, in order to group tasks together that are almost 1671 * evenly spread out between numa nodes. 1672 */ 1673 static inline unsigned long task_weight(struct task_struct *p, int nid, 1674 int dist) 1675 { 1676 unsigned long faults, total_faults; 1677 1678 if (!p->numa_faults) 1679 return 0; 1680 1681 total_faults = p->total_numa_faults; 1682 1683 if (!total_faults) 1684 return 0; 1685 1686 faults = task_faults(p, nid); 1687 faults += score_nearby_nodes(p, nid, dist, true); 1688 1689 return 1000 * faults / total_faults; 1690 } 1691 1692 static inline unsigned long group_weight(struct task_struct *p, int nid, 1693 int dist) 1694 { 1695 struct numa_group *ng = deref_task_numa_group(p); 1696 unsigned long faults, total_faults; 1697 1698 if (!ng) 1699 return 0; 1700 1701 total_faults = ng->total_faults; 1702 1703 if (!total_faults) 1704 return 0; 1705 1706 faults = group_faults(p, nid); 1707 faults += score_nearby_nodes(p, nid, dist, false); 1708 1709 return 1000 * faults / total_faults; 1710 } 1711 1712 /* 1713 * If memory tiering mode is enabled, cpupid of slow memory page is 1714 * used to record scan time instead of CPU and PID. When tiering mode 1715 * is disabled at run time, the scan time (in cpupid) will be 1716 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1717 * access out of array bound. 1718 */ 1719 static inline bool cpupid_valid(int cpupid) 1720 { 1721 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1722 } 1723 1724 /* 1725 * For memory tiering mode, if there are enough free pages (more than 1726 * enough watermark defined here) in fast memory node, to take full 1727 * advantage of fast memory capacity, all recently accessed slow 1728 * memory pages will be migrated to fast memory node without 1729 * considering hot threshold. 1730 */ 1731 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1732 { 1733 int z; 1734 unsigned long enough_wmark; 1735 1736 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1737 pgdat->node_present_pages >> 4); 1738 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1739 struct zone *zone = pgdat->node_zones + z; 1740 1741 if (!populated_zone(zone)) 1742 continue; 1743 1744 if (zone_watermark_ok(zone, 0, 1745 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1746 ZONE_MOVABLE, 0)) 1747 return true; 1748 } 1749 return false; 1750 } 1751 1752 /* 1753 * For memory tiering mode, when page tables are scanned, the scan 1754 * time will be recorded in struct page in addition to make page 1755 * PROT_NONE for slow memory page. So when the page is accessed, in 1756 * hint page fault handler, the hint page fault latency is calculated 1757 * via, 1758 * 1759 * hint page fault latency = hint page fault time - scan time 1760 * 1761 * The smaller the hint page fault latency, the higher the possibility 1762 * for the page to be hot. 1763 */ 1764 static int numa_hint_fault_latency(struct folio *folio) 1765 { 1766 int last_time, time; 1767 1768 time = jiffies_to_msecs(jiffies); 1769 last_time = folio_xchg_access_time(folio, time); 1770 1771 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1772 } 1773 1774 /* 1775 * For memory tiering mode, too high promotion/demotion throughput may 1776 * hurt application latency. So we provide a mechanism to rate limit 1777 * the number of pages that are tried to be promoted. 1778 */ 1779 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1780 unsigned long rate_limit, int nr) 1781 { 1782 unsigned long nr_cand; 1783 unsigned int now, start; 1784 1785 now = jiffies_to_msecs(jiffies); 1786 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1787 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1788 start = pgdat->nbp_rl_start; 1789 if (now - start > MSEC_PER_SEC && 1790 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1791 pgdat->nbp_rl_nr_cand = nr_cand; 1792 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1793 return true; 1794 return false; 1795 } 1796 1797 #define NUMA_MIGRATION_ADJUST_STEPS 16 1798 1799 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1800 unsigned long rate_limit, 1801 unsigned int ref_th) 1802 { 1803 unsigned int now, start, th_period, unit_th, th; 1804 unsigned long nr_cand, ref_cand, diff_cand; 1805 1806 now = jiffies_to_msecs(jiffies); 1807 th_period = sysctl_numa_balancing_scan_period_max; 1808 start = pgdat->nbp_th_start; 1809 if (now - start > th_period && 1810 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1811 ref_cand = rate_limit * 1812 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1813 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1814 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1815 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1816 th = pgdat->nbp_threshold ? : ref_th; 1817 if (diff_cand > ref_cand * 11 / 10) 1818 th = max(th - unit_th, unit_th); 1819 else if (diff_cand < ref_cand * 9 / 10) 1820 th = min(th + unit_th, ref_th * 2); 1821 pgdat->nbp_th_nr_cand = nr_cand; 1822 pgdat->nbp_threshold = th; 1823 } 1824 } 1825 1826 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1827 int src_nid, int dst_cpu) 1828 { 1829 struct numa_group *ng = deref_curr_numa_group(p); 1830 int dst_nid = cpu_to_node(dst_cpu); 1831 int last_cpupid, this_cpupid; 1832 1833 /* 1834 * Cannot migrate to memoryless nodes. 1835 */ 1836 if (!node_state(dst_nid, N_MEMORY)) 1837 return false; 1838 1839 /* 1840 * The pages in slow memory node should be migrated according 1841 * to hot/cold instead of private/shared. 1842 */ 1843 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1844 !node_is_toptier(src_nid)) { 1845 struct pglist_data *pgdat; 1846 unsigned long rate_limit; 1847 unsigned int latency, th, def_th; 1848 1849 pgdat = NODE_DATA(dst_nid); 1850 if (pgdat_free_space_enough(pgdat)) { 1851 /* workload changed, reset hot threshold */ 1852 pgdat->nbp_threshold = 0; 1853 return true; 1854 } 1855 1856 def_th = sysctl_numa_balancing_hot_threshold; 1857 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1858 (20 - PAGE_SHIFT); 1859 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1860 1861 th = pgdat->nbp_threshold ? : def_th; 1862 latency = numa_hint_fault_latency(folio); 1863 if (latency >= th) 1864 return false; 1865 1866 return !numa_promotion_rate_limit(pgdat, rate_limit, 1867 folio_nr_pages(folio)); 1868 } 1869 1870 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1871 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1872 1873 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1874 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1875 return false; 1876 1877 /* 1878 * Allow first faults or private faults to migrate immediately early in 1879 * the lifetime of a task. The magic number 4 is based on waiting for 1880 * two full passes of the "multi-stage node selection" test that is 1881 * executed below. 1882 */ 1883 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1884 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1885 return true; 1886 1887 /* 1888 * Multi-stage node selection is used in conjunction with a periodic 1889 * migration fault to build a temporal task<->page relation. By using 1890 * a two-stage filter we remove short/unlikely relations. 1891 * 1892 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1893 * a task's usage of a particular page (n_p) per total usage of this 1894 * page (n_t) (in a given time-span) to a probability. 1895 * 1896 * Our periodic faults will sample this probability and getting the 1897 * same result twice in a row, given these samples are fully 1898 * independent, is then given by P(n)^2, provided our sample period 1899 * is sufficiently short compared to the usage pattern. 1900 * 1901 * This quadric squishes small probabilities, making it less likely we 1902 * act on an unlikely task<->page relation. 1903 */ 1904 if (!cpupid_pid_unset(last_cpupid) && 1905 cpupid_to_nid(last_cpupid) != dst_nid) 1906 return false; 1907 1908 /* Always allow migrate on private faults */ 1909 if (cpupid_match_pid(p, last_cpupid)) 1910 return true; 1911 1912 /* A shared fault, but p->numa_group has not been set up yet. */ 1913 if (!ng) 1914 return true; 1915 1916 /* 1917 * Destination node is much more heavily used than the source 1918 * node? Allow migration. 1919 */ 1920 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1921 ACTIVE_NODE_FRACTION) 1922 return true; 1923 1924 /* 1925 * Distribute memory according to CPU & memory use on each node, 1926 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1927 * 1928 * faults_cpu(dst) 3 faults_cpu(src) 1929 * --------------- * - > --------------- 1930 * faults_mem(dst) 4 faults_mem(src) 1931 */ 1932 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1933 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1934 } 1935 1936 /* 1937 * 'numa_type' describes the node at the moment of load balancing. 1938 */ 1939 enum numa_type { 1940 /* The node has spare capacity that can be used to run more tasks. */ 1941 node_has_spare = 0, 1942 /* 1943 * The node is fully used and the tasks don't compete for more CPU 1944 * cycles. Nevertheless, some tasks might wait before running. 1945 */ 1946 node_fully_busy, 1947 /* 1948 * The node is overloaded and can't provide expected CPU cycles to all 1949 * tasks. 1950 */ 1951 node_overloaded 1952 }; 1953 1954 /* Cached statistics for all CPUs within a node */ 1955 struct numa_stats { 1956 unsigned long load; 1957 unsigned long runnable; 1958 unsigned long util; 1959 /* Total compute capacity of CPUs on a node */ 1960 unsigned long compute_capacity; 1961 unsigned int nr_running; 1962 unsigned int weight; 1963 enum numa_type node_type; 1964 int idle_cpu; 1965 }; 1966 1967 struct task_numa_env { 1968 struct task_struct *p; 1969 1970 int src_cpu, src_nid; 1971 int dst_cpu, dst_nid; 1972 int imb_numa_nr; 1973 1974 struct numa_stats src_stats, dst_stats; 1975 1976 int imbalance_pct; 1977 int dist; 1978 1979 struct task_struct *best_task; 1980 long best_imp; 1981 int best_cpu; 1982 }; 1983 1984 static unsigned long cpu_load(struct rq *rq); 1985 static unsigned long cpu_runnable(struct rq *rq); 1986 1987 static inline enum 1988 numa_type numa_classify(unsigned int imbalance_pct, 1989 struct numa_stats *ns) 1990 { 1991 if ((ns->nr_running > ns->weight) && 1992 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1993 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1994 return node_overloaded; 1995 1996 if ((ns->nr_running < ns->weight) || 1997 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1998 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1999 return node_has_spare; 2000 2001 return node_fully_busy; 2002 } 2003 2004 #ifdef CONFIG_SCHED_SMT 2005 /* Forward declarations of select_idle_sibling helpers */ 2006 static inline bool test_idle_cores(int cpu); 2007 static inline int numa_idle_core(int idle_core, int cpu) 2008 { 2009 if (!static_branch_likely(&sched_smt_present) || 2010 idle_core >= 0 || !test_idle_cores(cpu)) 2011 return idle_core; 2012 2013 /* 2014 * Prefer cores instead of packing HT siblings 2015 * and triggering future load balancing. 2016 */ 2017 if (is_core_idle(cpu)) 2018 idle_core = cpu; 2019 2020 return idle_core; 2021 } 2022 #else 2023 static inline int numa_idle_core(int idle_core, int cpu) 2024 { 2025 return idle_core; 2026 } 2027 #endif 2028 2029 /* 2030 * Gather all necessary information to make NUMA balancing placement 2031 * decisions that are compatible with standard load balancer. This 2032 * borrows code and logic from update_sg_lb_stats but sharing a 2033 * common implementation is impractical. 2034 */ 2035 static void update_numa_stats(struct task_numa_env *env, 2036 struct numa_stats *ns, int nid, 2037 bool find_idle) 2038 { 2039 int cpu, idle_core = -1; 2040 2041 memset(ns, 0, sizeof(*ns)); 2042 ns->idle_cpu = -1; 2043 2044 rcu_read_lock(); 2045 for_each_cpu(cpu, cpumask_of_node(nid)) { 2046 struct rq *rq = cpu_rq(cpu); 2047 2048 ns->load += cpu_load(rq); 2049 ns->runnable += cpu_runnable(rq); 2050 ns->util += cpu_util_cfs(cpu); 2051 ns->nr_running += rq->cfs.h_nr_running; 2052 ns->compute_capacity += capacity_of(cpu); 2053 2054 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2055 if (READ_ONCE(rq->numa_migrate_on) || 2056 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2057 continue; 2058 2059 if (ns->idle_cpu == -1) 2060 ns->idle_cpu = cpu; 2061 2062 idle_core = numa_idle_core(idle_core, cpu); 2063 } 2064 } 2065 rcu_read_unlock(); 2066 2067 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2068 2069 ns->node_type = numa_classify(env->imbalance_pct, ns); 2070 2071 if (idle_core >= 0) 2072 ns->idle_cpu = idle_core; 2073 } 2074 2075 static void task_numa_assign(struct task_numa_env *env, 2076 struct task_struct *p, long imp) 2077 { 2078 struct rq *rq = cpu_rq(env->dst_cpu); 2079 2080 /* Check if run-queue part of active NUMA balance. */ 2081 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2082 int cpu; 2083 int start = env->dst_cpu; 2084 2085 /* Find alternative idle CPU. */ 2086 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2087 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2088 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2089 continue; 2090 } 2091 2092 env->dst_cpu = cpu; 2093 rq = cpu_rq(env->dst_cpu); 2094 if (!xchg(&rq->numa_migrate_on, 1)) 2095 goto assign; 2096 } 2097 2098 /* Failed to find an alternative idle CPU */ 2099 return; 2100 } 2101 2102 assign: 2103 /* 2104 * Clear previous best_cpu/rq numa-migrate flag, since task now 2105 * found a better CPU to move/swap. 2106 */ 2107 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2108 rq = cpu_rq(env->best_cpu); 2109 WRITE_ONCE(rq->numa_migrate_on, 0); 2110 } 2111 2112 if (env->best_task) 2113 put_task_struct(env->best_task); 2114 if (p) 2115 get_task_struct(p); 2116 2117 env->best_task = p; 2118 env->best_imp = imp; 2119 env->best_cpu = env->dst_cpu; 2120 } 2121 2122 static bool load_too_imbalanced(long src_load, long dst_load, 2123 struct task_numa_env *env) 2124 { 2125 long imb, old_imb; 2126 long orig_src_load, orig_dst_load; 2127 long src_capacity, dst_capacity; 2128 2129 /* 2130 * The load is corrected for the CPU capacity available on each node. 2131 * 2132 * src_load dst_load 2133 * ------------ vs --------- 2134 * src_capacity dst_capacity 2135 */ 2136 src_capacity = env->src_stats.compute_capacity; 2137 dst_capacity = env->dst_stats.compute_capacity; 2138 2139 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2140 2141 orig_src_load = env->src_stats.load; 2142 orig_dst_load = env->dst_stats.load; 2143 2144 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2145 2146 /* Would this change make things worse? */ 2147 return (imb > old_imb); 2148 } 2149 2150 /* 2151 * Maximum NUMA importance can be 1998 (2*999); 2152 * SMALLIMP @ 30 would be close to 1998/64. 2153 * Used to deter task migration. 2154 */ 2155 #define SMALLIMP 30 2156 2157 /* 2158 * This checks if the overall compute and NUMA accesses of the system would 2159 * be improved if the source tasks was migrated to the target dst_cpu taking 2160 * into account that it might be best if task running on the dst_cpu should 2161 * be exchanged with the source task 2162 */ 2163 static bool task_numa_compare(struct task_numa_env *env, 2164 long taskimp, long groupimp, bool maymove) 2165 { 2166 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2167 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2168 long imp = p_ng ? groupimp : taskimp; 2169 struct task_struct *cur; 2170 long src_load, dst_load; 2171 int dist = env->dist; 2172 long moveimp = imp; 2173 long load; 2174 bool stopsearch = false; 2175 2176 if (READ_ONCE(dst_rq->numa_migrate_on)) 2177 return false; 2178 2179 rcu_read_lock(); 2180 cur = rcu_dereference(dst_rq->curr); 2181 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2182 cur = NULL; 2183 2184 /* 2185 * Because we have preemption enabled we can get migrated around and 2186 * end try selecting ourselves (current == env->p) as a swap candidate. 2187 */ 2188 if (cur == env->p) { 2189 stopsearch = true; 2190 goto unlock; 2191 } 2192 2193 if (!cur) { 2194 if (maymove && moveimp >= env->best_imp) 2195 goto assign; 2196 else 2197 goto unlock; 2198 } 2199 2200 /* Skip this swap candidate if cannot move to the source cpu. */ 2201 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2202 goto unlock; 2203 2204 /* 2205 * Skip this swap candidate if it is not moving to its preferred 2206 * node and the best task is. 2207 */ 2208 if (env->best_task && 2209 env->best_task->numa_preferred_nid == env->src_nid && 2210 cur->numa_preferred_nid != env->src_nid) { 2211 goto unlock; 2212 } 2213 2214 /* 2215 * "imp" is the fault differential for the source task between the 2216 * source and destination node. Calculate the total differential for 2217 * the source task and potential destination task. The more negative 2218 * the value is, the more remote accesses that would be expected to 2219 * be incurred if the tasks were swapped. 2220 * 2221 * If dst and source tasks are in the same NUMA group, or not 2222 * in any group then look only at task weights. 2223 */ 2224 cur_ng = rcu_dereference(cur->numa_group); 2225 if (cur_ng == p_ng) { 2226 /* 2227 * Do not swap within a group or between tasks that have 2228 * no group if there is spare capacity. Swapping does 2229 * not address the load imbalance and helps one task at 2230 * the cost of punishing another. 2231 */ 2232 if (env->dst_stats.node_type == node_has_spare) 2233 goto unlock; 2234 2235 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2236 task_weight(cur, env->dst_nid, dist); 2237 /* 2238 * Add some hysteresis to prevent swapping the 2239 * tasks within a group over tiny differences. 2240 */ 2241 if (cur_ng) 2242 imp -= imp / 16; 2243 } else { 2244 /* 2245 * Compare the group weights. If a task is all by itself 2246 * (not part of a group), use the task weight instead. 2247 */ 2248 if (cur_ng && p_ng) 2249 imp += group_weight(cur, env->src_nid, dist) - 2250 group_weight(cur, env->dst_nid, dist); 2251 else 2252 imp += task_weight(cur, env->src_nid, dist) - 2253 task_weight(cur, env->dst_nid, dist); 2254 } 2255 2256 /* Discourage picking a task already on its preferred node */ 2257 if (cur->numa_preferred_nid == env->dst_nid) 2258 imp -= imp / 16; 2259 2260 /* 2261 * Encourage picking a task that moves to its preferred node. 2262 * This potentially makes imp larger than it's maximum of 2263 * 1998 (see SMALLIMP and task_weight for why) but in this 2264 * case, it does not matter. 2265 */ 2266 if (cur->numa_preferred_nid == env->src_nid) 2267 imp += imp / 8; 2268 2269 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2270 imp = moveimp; 2271 cur = NULL; 2272 goto assign; 2273 } 2274 2275 /* 2276 * Prefer swapping with a task moving to its preferred node over a 2277 * task that is not. 2278 */ 2279 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2280 env->best_task->numa_preferred_nid != env->src_nid) { 2281 goto assign; 2282 } 2283 2284 /* 2285 * If the NUMA importance is less than SMALLIMP, 2286 * task migration might only result in ping pong 2287 * of tasks and also hurt performance due to cache 2288 * misses. 2289 */ 2290 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2291 goto unlock; 2292 2293 /* 2294 * In the overloaded case, try and keep the load balanced. 2295 */ 2296 load = task_h_load(env->p) - task_h_load(cur); 2297 if (!load) 2298 goto assign; 2299 2300 dst_load = env->dst_stats.load + load; 2301 src_load = env->src_stats.load - load; 2302 2303 if (load_too_imbalanced(src_load, dst_load, env)) 2304 goto unlock; 2305 2306 assign: 2307 /* Evaluate an idle CPU for a task numa move. */ 2308 if (!cur) { 2309 int cpu = env->dst_stats.idle_cpu; 2310 2311 /* Nothing cached so current CPU went idle since the search. */ 2312 if (cpu < 0) 2313 cpu = env->dst_cpu; 2314 2315 /* 2316 * If the CPU is no longer truly idle and the previous best CPU 2317 * is, keep using it. 2318 */ 2319 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2320 idle_cpu(env->best_cpu)) { 2321 cpu = env->best_cpu; 2322 } 2323 2324 env->dst_cpu = cpu; 2325 } 2326 2327 task_numa_assign(env, cur, imp); 2328 2329 /* 2330 * If a move to idle is allowed because there is capacity or load 2331 * balance improves then stop the search. While a better swap 2332 * candidate may exist, a search is not free. 2333 */ 2334 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2335 stopsearch = true; 2336 2337 /* 2338 * If a swap candidate must be identified and the current best task 2339 * moves its preferred node then stop the search. 2340 */ 2341 if (!maymove && env->best_task && 2342 env->best_task->numa_preferred_nid == env->src_nid) { 2343 stopsearch = true; 2344 } 2345 unlock: 2346 rcu_read_unlock(); 2347 2348 return stopsearch; 2349 } 2350 2351 static void task_numa_find_cpu(struct task_numa_env *env, 2352 long taskimp, long groupimp) 2353 { 2354 bool maymove = false; 2355 int cpu; 2356 2357 /* 2358 * If dst node has spare capacity, then check if there is an 2359 * imbalance that would be overruled by the load balancer. 2360 */ 2361 if (env->dst_stats.node_type == node_has_spare) { 2362 unsigned int imbalance; 2363 int src_running, dst_running; 2364 2365 /* 2366 * Would movement cause an imbalance? Note that if src has 2367 * more running tasks that the imbalance is ignored as the 2368 * move improves the imbalance from the perspective of the 2369 * CPU load balancer. 2370 * */ 2371 src_running = env->src_stats.nr_running - 1; 2372 dst_running = env->dst_stats.nr_running + 1; 2373 imbalance = max(0, dst_running - src_running); 2374 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2375 env->imb_numa_nr); 2376 2377 /* Use idle CPU if there is no imbalance */ 2378 if (!imbalance) { 2379 maymove = true; 2380 if (env->dst_stats.idle_cpu >= 0) { 2381 env->dst_cpu = env->dst_stats.idle_cpu; 2382 task_numa_assign(env, NULL, 0); 2383 return; 2384 } 2385 } 2386 } else { 2387 long src_load, dst_load, load; 2388 /* 2389 * If the improvement from just moving env->p direction is better 2390 * than swapping tasks around, check if a move is possible. 2391 */ 2392 load = task_h_load(env->p); 2393 dst_load = env->dst_stats.load + load; 2394 src_load = env->src_stats.load - load; 2395 maymove = !load_too_imbalanced(src_load, dst_load, env); 2396 } 2397 2398 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2399 /* Skip this CPU if the source task cannot migrate */ 2400 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2401 continue; 2402 2403 env->dst_cpu = cpu; 2404 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2405 break; 2406 } 2407 } 2408 2409 static int task_numa_migrate(struct task_struct *p) 2410 { 2411 struct task_numa_env env = { 2412 .p = p, 2413 2414 .src_cpu = task_cpu(p), 2415 .src_nid = task_node(p), 2416 2417 .imbalance_pct = 112, 2418 2419 .best_task = NULL, 2420 .best_imp = 0, 2421 .best_cpu = -1, 2422 }; 2423 unsigned long taskweight, groupweight; 2424 struct sched_domain *sd; 2425 long taskimp, groupimp; 2426 struct numa_group *ng; 2427 struct rq *best_rq; 2428 int nid, ret, dist; 2429 2430 /* 2431 * Pick the lowest SD_NUMA domain, as that would have the smallest 2432 * imbalance and would be the first to start moving tasks about. 2433 * 2434 * And we want to avoid any moving of tasks about, as that would create 2435 * random movement of tasks -- counter the numa conditions we're trying 2436 * to satisfy here. 2437 */ 2438 rcu_read_lock(); 2439 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2440 if (sd) { 2441 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2442 env.imb_numa_nr = sd->imb_numa_nr; 2443 } 2444 rcu_read_unlock(); 2445 2446 /* 2447 * Cpusets can break the scheduler domain tree into smaller 2448 * balance domains, some of which do not cross NUMA boundaries. 2449 * Tasks that are "trapped" in such domains cannot be migrated 2450 * elsewhere, so there is no point in (re)trying. 2451 */ 2452 if (unlikely(!sd)) { 2453 sched_setnuma(p, task_node(p)); 2454 return -EINVAL; 2455 } 2456 2457 env.dst_nid = p->numa_preferred_nid; 2458 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2459 taskweight = task_weight(p, env.src_nid, dist); 2460 groupweight = group_weight(p, env.src_nid, dist); 2461 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2462 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2463 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2464 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2465 2466 /* Try to find a spot on the preferred nid. */ 2467 task_numa_find_cpu(&env, taskimp, groupimp); 2468 2469 /* 2470 * Look at other nodes in these cases: 2471 * - there is no space available on the preferred_nid 2472 * - the task is part of a numa_group that is interleaved across 2473 * multiple NUMA nodes; in order to better consolidate the group, 2474 * we need to check other locations. 2475 */ 2476 ng = deref_curr_numa_group(p); 2477 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2478 for_each_node_state(nid, N_CPU) { 2479 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2480 continue; 2481 2482 dist = node_distance(env.src_nid, env.dst_nid); 2483 if (sched_numa_topology_type == NUMA_BACKPLANE && 2484 dist != env.dist) { 2485 taskweight = task_weight(p, env.src_nid, dist); 2486 groupweight = group_weight(p, env.src_nid, dist); 2487 } 2488 2489 /* Only consider nodes where both task and groups benefit */ 2490 taskimp = task_weight(p, nid, dist) - taskweight; 2491 groupimp = group_weight(p, nid, dist) - groupweight; 2492 if (taskimp < 0 && groupimp < 0) 2493 continue; 2494 2495 env.dist = dist; 2496 env.dst_nid = nid; 2497 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2498 task_numa_find_cpu(&env, taskimp, groupimp); 2499 } 2500 } 2501 2502 /* 2503 * If the task is part of a workload that spans multiple NUMA nodes, 2504 * and is migrating into one of the workload's active nodes, remember 2505 * this node as the task's preferred numa node, so the workload can 2506 * settle down. 2507 * A task that migrated to a second choice node will be better off 2508 * trying for a better one later. Do not set the preferred node here. 2509 */ 2510 if (ng) { 2511 if (env.best_cpu == -1) 2512 nid = env.src_nid; 2513 else 2514 nid = cpu_to_node(env.best_cpu); 2515 2516 if (nid != p->numa_preferred_nid) 2517 sched_setnuma(p, nid); 2518 } 2519 2520 /* No better CPU than the current one was found. */ 2521 if (env.best_cpu == -1) { 2522 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2523 return -EAGAIN; 2524 } 2525 2526 best_rq = cpu_rq(env.best_cpu); 2527 if (env.best_task == NULL) { 2528 ret = migrate_task_to(p, env.best_cpu); 2529 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2530 if (ret != 0) 2531 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2532 return ret; 2533 } 2534 2535 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2536 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2537 2538 if (ret != 0) 2539 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2540 put_task_struct(env.best_task); 2541 return ret; 2542 } 2543 2544 /* Attempt to migrate a task to a CPU on the preferred node. */ 2545 static void numa_migrate_preferred(struct task_struct *p) 2546 { 2547 unsigned long interval = HZ; 2548 2549 /* This task has no NUMA fault statistics yet */ 2550 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2551 return; 2552 2553 /* Periodically retry migrating the task to the preferred node */ 2554 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2555 p->numa_migrate_retry = jiffies + interval; 2556 2557 /* Success if task is already running on preferred CPU */ 2558 if (task_node(p) == p->numa_preferred_nid) 2559 return; 2560 2561 /* Otherwise, try migrate to a CPU on the preferred node */ 2562 task_numa_migrate(p); 2563 } 2564 2565 /* 2566 * Find out how many nodes the workload is actively running on. Do this by 2567 * tracking the nodes from which NUMA hinting faults are triggered. This can 2568 * be different from the set of nodes where the workload's memory is currently 2569 * located. 2570 */ 2571 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2572 { 2573 unsigned long faults, max_faults = 0; 2574 int nid, active_nodes = 0; 2575 2576 for_each_node_state(nid, N_CPU) { 2577 faults = group_faults_cpu(numa_group, nid); 2578 if (faults > max_faults) 2579 max_faults = faults; 2580 } 2581 2582 for_each_node_state(nid, N_CPU) { 2583 faults = group_faults_cpu(numa_group, nid); 2584 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2585 active_nodes++; 2586 } 2587 2588 numa_group->max_faults_cpu = max_faults; 2589 numa_group->active_nodes = active_nodes; 2590 } 2591 2592 /* 2593 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2594 * increments. The more local the fault statistics are, the higher the scan 2595 * period will be for the next scan window. If local/(local+remote) ratio is 2596 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2597 * the scan period will decrease. Aim for 70% local accesses. 2598 */ 2599 #define NUMA_PERIOD_SLOTS 10 2600 #define NUMA_PERIOD_THRESHOLD 7 2601 2602 /* 2603 * Increase the scan period (slow down scanning) if the majority of 2604 * our memory is already on our local node, or if the majority of 2605 * the page accesses are shared with other processes. 2606 * Otherwise, decrease the scan period. 2607 */ 2608 static void update_task_scan_period(struct task_struct *p, 2609 unsigned long shared, unsigned long private) 2610 { 2611 unsigned int period_slot; 2612 int lr_ratio, ps_ratio; 2613 int diff; 2614 2615 unsigned long remote = p->numa_faults_locality[0]; 2616 unsigned long local = p->numa_faults_locality[1]; 2617 2618 /* 2619 * If there were no record hinting faults then either the task is 2620 * completely idle or all activity is in areas that are not of interest 2621 * to automatic numa balancing. Related to that, if there were failed 2622 * migration then it implies we are migrating too quickly or the local 2623 * node is overloaded. In either case, scan slower 2624 */ 2625 if (local + shared == 0 || p->numa_faults_locality[2]) { 2626 p->numa_scan_period = min(p->numa_scan_period_max, 2627 p->numa_scan_period << 1); 2628 2629 p->mm->numa_next_scan = jiffies + 2630 msecs_to_jiffies(p->numa_scan_period); 2631 2632 return; 2633 } 2634 2635 /* 2636 * Prepare to scale scan period relative to the current period. 2637 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2638 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2639 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2640 */ 2641 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2642 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2643 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2644 2645 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2646 /* 2647 * Most memory accesses are local. There is no need to 2648 * do fast NUMA scanning, since memory is already local. 2649 */ 2650 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2651 if (!slot) 2652 slot = 1; 2653 diff = slot * period_slot; 2654 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2655 /* 2656 * Most memory accesses are shared with other tasks. 2657 * There is no point in continuing fast NUMA scanning, 2658 * since other tasks may just move the memory elsewhere. 2659 */ 2660 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2661 if (!slot) 2662 slot = 1; 2663 diff = slot * period_slot; 2664 } else { 2665 /* 2666 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2667 * yet they are not on the local NUMA node. Speed up 2668 * NUMA scanning to get the memory moved over. 2669 */ 2670 int ratio = max(lr_ratio, ps_ratio); 2671 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2672 } 2673 2674 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2675 task_scan_min(p), task_scan_max(p)); 2676 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2677 } 2678 2679 /* 2680 * Get the fraction of time the task has been running since the last 2681 * NUMA placement cycle. The scheduler keeps similar statistics, but 2682 * decays those on a 32ms period, which is orders of magnitude off 2683 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2684 * stats only if the task is so new there are no NUMA statistics yet. 2685 */ 2686 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2687 { 2688 u64 runtime, delta, now; 2689 /* Use the start of this time slice to avoid calculations. */ 2690 now = p->se.exec_start; 2691 runtime = p->se.sum_exec_runtime; 2692 2693 if (p->last_task_numa_placement) { 2694 delta = runtime - p->last_sum_exec_runtime; 2695 *period = now - p->last_task_numa_placement; 2696 2697 /* Avoid time going backwards, prevent potential divide error: */ 2698 if (unlikely((s64)*period < 0)) 2699 *period = 0; 2700 } else { 2701 delta = p->se.avg.load_sum; 2702 *period = LOAD_AVG_MAX; 2703 } 2704 2705 p->last_sum_exec_runtime = runtime; 2706 p->last_task_numa_placement = now; 2707 2708 return delta; 2709 } 2710 2711 /* 2712 * Determine the preferred nid for a task in a numa_group. This needs to 2713 * be done in a way that produces consistent results with group_weight, 2714 * otherwise workloads might not converge. 2715 */ 2716 static int preferred_group_nid(struct task_struct *p, int nid) 2717 { 2718 nodemask_t nodes; 2719 int dist; 2720 2721 /* Direct connections between all NUMA nodes. */ 2722 if (sched_numa_topology_type == NUMA_DIRECT) 2723 return nid; 2724 2725 /* 2726 * On a system with glueless mesh NUMA topology, group_weight 2727 * scores nodes according to the number of NUMA hinting faults on 2728 * both the node itself, and on nearby nodes. 2729 */ 2730 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2731 unsigned long score, max_score = 0; 2732 int node, max_node = nid; 2733 2734 dist = sched_max_numa_distance; 2735 2736 for_each_node_state(node, N_CPU) { 2737 score = group_weight(p, node, dist); 2738 if (score > max_score) { 2739 max_score = score; 2740 max_node = node; 2741 } 2742 } 2743 return max_node; 2744 } 2745 2746 /* 2747 * Finding the preferred nid in a system with NUMA backplane 2748 * interconnect topology is more involved. The goal is to locate 2749 * tasks from numa_groups near each other in the system, and 2750 * untangle workloads from different sides of the system. This requires 2751 * searching down the hierarchy of node groups, recursively searching 2752 * inside the highest scoring group of nodes. The nodemask tricks 2753 * keep the complexity of the search down. 2754 */ 2755 nodes = node_states[N_CPU]; 2756 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2757 unsigned long max_faults = 0; 2758 nodemask_t max_group = NODE_MASK_NONE; 2759 int a, b; 2760 2761 /* Are there nodes at this distance from each other? */ 2762 if (!find_numa_distance(dist)) 2763 continue; 2764 2765 for_each_node_mask(a, nodes) { 2766 unsigned long faults = 0; 2767 nodemask_t this_group; 2768 nodes_clear(this_group); 2769 2770 /* Sum group's NUMA faults; includes a==b case. */ 2771 for_each_node_mask(b, nodes) { 2772 if (node_distance(a, b) < dist) { 2773 faults += group_faults(p, b); 2774 node_set(b, this_group); 2775 node_clear(b, nodes); 2776 } 2777 } 2778 2779 /* Remember the top group. */ 2780 if (faults > max_faults) { 2781 max_faults = faults; 2782 max_group = this_group; 2783 /* 2784 * subtle: at the smallest distance there is 2785 * just one node left in each "group", the 2786 * winner is the preferred nid. 2787 */ 2788 nid = a; 2789 } 2790 } 2791 /* Next round, evaluate the nodes within max_group. */ 2792 if (!max_faults) 2793 break; 2794 nodes = max_group; 2795 } 2796 return nid; 2797 } 2798 2799 static void task_numa_placement(struct task_struct *p) 2800 { 2801 int seq, nid, max_nid = NUMA_NO_NODE; 2802 unsigned long max_faults = 0; 2803 unsigned long fault_types[2] = { 0, 0 }; 2804 unsigned long total_faults; 2805 u64 runtime, period; 2806 spinlock_t *group_lock = NULL; 2807 struct numa_group *ng; 2808 2809 /* 2810 * The p->mm->numa_scan_seq field gets updated without 2811 * exclusive access. Use READ_ONCE() here to ensure 2812 * that the field is read in a single access: 2813 */ 2814 seq = READ_ONCE(p->mm->numa_scan_seq); 2815 if (p->numa_scan_seq == seq) 2816 return; 2817 p->numa_scan_seq = seq; 2818 p->numa_scan_period_max = task_scan_max(p); 2819 2820 total_faults = p->numa_faults_locality[0] + 2821 p->numa_faults_locality[1]; 2822 runtime = numa_get_avg_runtime(p, &period); 2823 2824 /* If the task is part of a group prevent parallel updates to group stats */ 2825 ng = deref_curr_numa_group(p); 2826 if (ng) { 2827 group_lock = &ng->lock; 2828 spin_lock_irq(group_lock); 2829 } 2830 2831 /* Find the node with the highest number of faults */ 2832 for_each_online_node(nid) { 2833 /* Keep track of the offsets in numa_faults array */ 2834 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2835 unsigned long faults = 0, group_faults = 0; 2836 int priv; 2837 2838 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2839 long diff, f_diff, f_weight; 2840 2841 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2842 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2843 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2844 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2845 2846 /* Decay existing window, copy faults since last scan */ 2847 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2848 fault_types[priv] += p->numa_faults[membuf_idx]; 2849 p->numa_faults[membuf_idx] = 0; 2850 2851 /* 2852 * Normalize the faults_from, so all tasks in a group 2853 * count according to CPU use, instead of by the raw 2854 * number of faults. Tasks with little runtime have 2855 * little over-all impact on throughput, and thus their 2856 * faults are less important. 2857 */ 2858 f_weight = div64_u64(runtime << 16, period + 1); 2859 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2860 (total_faults + 1); 2861 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2862 p->numa_faults[cpubuf_idx] = 0; 2863 2864 p->numa_faults[mem_idx] += diff; 2865 p->numa_faults[cpu_idx] += f_diff; 2866 faults += p->numa_faults[mem_idx]; 2867 p->total_numa_faults += diff; 2868 if (ng) { 2869 /* 2870 * safe because we can only change our own group 2871 * 2872 * mem_idx represents the offset for a given 2873 * nid and priv in a specific region because it 2874 * is at the beginning of the numa_faults array. 2875 */ 2876 ng->faults[mem_idx] += diff; 2877 ng->faults[cpu_idx] += f_diff; 2878 ng->total_faults += diff; 2879 group_faults += ng->faults[mem_idx]; 2880 } 2881 } 2882 2883 if (!ng) { 2884 if (faults > max_faults) { 2885 max_faults = faults; 2886 max_nid = nid; 2887 } 2888 } else if (group_faults > max_faults) { 2889 max_faults = group_faults; 2890 max_nid = nid; 2891 } 2892 } 2893 2894 /* Cannot migrate task to CPU-less node */ 2895 max_nid = numa_nearest_node(max_nid, N_CPU); 2896 2897 if (ng) { 2898 numa_group_count_active_nodes(ng); 2899 spin_unlock_irq(group_lock); 2900 max_nid = preferred_group_nid(p, max_nid); 2901 } 2902 2903 if (max_faults) { 2904 /* Set the new preferred node */ 2905 if (max_nid != p->numa_preferred_nid) 2906 sched_setnuma(p, max_nid); 2907 } 2908 2909 update_task_scan_period(p, fault_types[0], fault_types[1]); 2910 } 2911 2912 static inline int get_numa_group(struct numa_group *grp) 2913 { 2914 return refcount_inc_not_zero(&grp->refcount); 2915 } 2916 2917 static inline void put_numa_group(struct numa_group *grp) 2918 { 2919 if (refcount_dec_and_test(&grp->refcount)) 2920 kfree_rcu(grp, rcu); 2921 } 2922 2923 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2924 int *priv) 2925 { 2926 struct numa_group *grp, *my_grp; 2927 struct task_struct *tsk; 2928 bool join = false; 2929 int cpu = cpupid_to_cpu(cpupid); 2930 int i; 2931 2932 if (unlikely(!deref_curr_numa_group(p))) { 2933 unsigned int size = sizeof(struct numa_group) + 2934 NR_NUMA_HINT_FAULT_STATS * 2935 nr_node_ids * sizeof(unsigned long); 2936 2937 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2938 if (!grp) 2939 return; 2940 2941 refcount_set(&grp->refcount, 1); 2942 grp->active_nodes = 1; 2943 grp->max_faults_cpu = 0; 2944 spin_lock_init(&grp->lock); 2945 grp->gid = p->pid; 2946 2947 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2948 grp->faults[i] = p->numa_faults[i]; 2949 2950 grp->total_faults = p->total_numa_faults; 2951 2952 grp->nr_tasks++; 2953 rcu_assign_pointer(p->numa_group, grp); 2954 } 2955 2956 rcu_read_lock(); 2957 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2958 2959 if (!cpupid_match_pid(tsk, cpupid)) 2960 goto no_join; 2961 2962 grp = rcu_dereference(tsk->numa_group); 2963 if (!grp) 2964 goto no_join; 2965 2966 my_grp = deref_curr_numa_group(p); 2967 if (grp == my_grp) 2968 goto no_join; 2969 2970 /* 2971 * Only join the other group if its bigger; if we're the bigger group, 2972 * the other task will join us. 2973 */ 2974 if (my_grp->nr_tasks > grp->nr_tasks) 2975 goto no_join; 2976 2977 /* 2978 * Tie-break on the grp address. 2979 */ 2980 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2981 goto no_join; 2982 2983 /* Always join threads in the same process. */ 2984 if (tsk->mm == current->mm) 2985 join = true; 2986 2987 /* Simple filter to avoid false positives due to PID collisions */ 2988 if (flags & TNF_SHARED) 2989 join = true; 2990 2991 /* Update priv based on whether false sharing was detected */ 2992 *priv = !join; 2993 2994 if (join && !get_numa_group(grp)) 2995 goto no_join; 2996 2997 rcu_read_unlock(); 2998 2999 if (!join) 3000 return; 3001 3002 WARN_ON_ONCE(irqs_disabled()); 3003 double_lock_irq(&my_grp->lock, &grp->lock); 3004 3005 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3006 my_grp->faults[i] -= p->numa_faults[i]; 3007 grp->faults[i] += p->numa_faults[i]; 3008 } 3009 my_grp->total_faults -= p->total_numa_faults; 3010 grp->total_faults += p->total_numa_faults; 3011 3012 my_grp->nr_tasks--; 3013 grp->nr_tasks++; 3014 3015 spin_unlock(&my_grp->lock); 3016 spin_unlock_irq(&grp->lock); 3017 3018 rcu_assign_pointer(p->numa_group, grp); 3019 3020 put_numa_group(my_grp); 3021 return; 3022 3023 no_join: 3024 rcu_read_unlock(); 3025 return; 3026 } 3027 3028 /* 3029 * Get rid of NUMA statistics associated with a task (either current or dead). 3030 * If @final is set, the task is dead and has reached refcount zero, so we can 3031 * safely free all relevant data structures. Otherwise, there might be 3032 * concurrent reads from places like load balancing and procfs, and we should 3033 * reset the data back to default state without freeing ->numa_faults. 3034 */ 3035 void task_numa_free(struct task_struct *p, bool final) 3036 { 3037 /* safe: p either is current or is being freed by current */ 3038 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3039 unsigned long *numa_faults = p->numa_faults; 3040 unsigned long flags; 3041 int i; 3042 3043 if (!numa_faults) 3044 return; 3045 3046 if (grp) { 3047 spin_lock_irqsave(&grp->lock, flags); 3048 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3049 grp->faults[i] -= p->numa_faults[i]; 3050 grp->total_faults -= p->total_numa_faults; 3051 3052 grp->nr_tasks--; 3053 spin_unlock_irqrestore(&grp->lock, flags); 3054 RCU_INIT_POINTER(p->numa_group, NULL); 3055 put_numa_group(grp); 3056 } 3057 3058 if (final) { 3059 p->numa_faults = NULL; 3060 kfree(numa_faults); 3061 } else { 3062 p->total_numa_faults = 0; 3063 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3064 numa_faults[i] = 0; 3065 } 3066 } 3067 3068 /* 3069 * Got a PROT_NONE fault for a page on @node. 3070 */ 3071 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3072 { 3073 struct task_struct *p = current; 3074 bool migrated = flags & TNF_MIGRATED; 3075 int cpu_node = task_node(current); 3076 int local = !!(flags & TNF_FAULT_LOCAL); 3077 struct numa_group *ng; 3078 int priv; 3079 3080 if (!static_branch_likely(&sched_numa_balancing)) 3081 return; 3082 3083 /* for example, ksmd faulting in a user's mm */ 3084 if (!p->mm) 3085 return; 3086 3087 /* 3088 * NUMA faults statistics are unnecessary for the slow memory 3089 * node for memory tiering mode. 3090 */ 3091 if (!node_is_toptier(mem_node) && 3092 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3093 !cpupid_valid(last_cpupid))) 3094 return; 3095 3096 /* Allocate buffer to track faults on a per-node basis */ 3097 if (unlikely(!p->numa_faults)) { 3098 int size = sizeof(*p->numa_faults) * 3099 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3100 3101 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3102 if (!p->numa_faults) 3103 return; 3104 3105 p->total_numa_faults = 0; 3106 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3107 } 3108 3109 /* 3110 * First accesses are treated as private, otherwise consider accesses 3111 * to be private if the accessing pid has not changed 3112 */ 3113 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3114 priv = 1; 3115 } else { 3116 priv = cpupid_match_pid(p, last_cpupid); 3117 if (!priv && !(flags & TNF_NO_GROUP)) 3118 task_numa_group(p, last_cpupid, flags, &priv); 3119 } 3120 3121 /* 3122 * If a workload spans multiple NUMA nodes, a shared fault that 3123 * occurs wholly within the set of nodes that the workload is 3124 * actively using should be counted as local. This allows the 3125 * scan rate to slow down when a workload has settled down. 3126 */ 3127 ng = deref_curr_numa_group(p); 3128 if (!priv && !local && ng && ng->active_nodes > 1 && 3129 numa_is_active_node(cpu_node, ng) && 3130 numa_is_active_node(mem_node, ng)) 3131 local = 1; 3132 3133 /* 3134 * Retry to migrate task to preferred node periodically, in case it 3135 * previously failed, or the scheduler moved us. 3136 */ 3137 if (time_after(jiffies, p->numa_migrate_retry)) { 3138 task_numa_placement(p); 3139 numa_migrate_preferred(p); 3140 } 3141 3142 if (migrated) 3143 p->numa_pages_migrated += pages; 3144 if (flags & TNF_MIGRATE_FAIL) 3145 p->numa_faults_locality[2] += pages; 3146 3147 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3148 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3149 p->numa_faults_locality[local] += pages; 3150 } 3151 3152 static void reset_ptenuma_scan(struct task_struct *p) 3153 { 3154 /* 3155 * We only did a read acquisition of the mmap sem, so 3156 * p->mm->numa_scan_seq is written to without exclusive access 3157 * and the update is not guaranteed to be atomic. That's not 3158 * much of an issue though, since this is just used for 3159 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3160 * expensive, to avoid any form of compiler optimizations: 3161 */ 3162 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3163 p->mm->numa_scan_offset = 0; 3164 } 3165 3166 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3167 { 3168 unsigned long pids; 3169 /* 3170 * Allow unconditional access first two times, so that all the (pages) 3171 * of VMAs get prot_none fault introduced irrespective of accesses. 3172 * This is also done to avoid any side effect of task scanning 3173 * amplifying the unfairness of disjoint set of VMAs' access. 3174 */ 3175 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3176 return true; 3177 3178 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3179 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3180 return true; 3181 3182 /* 3183 * Complete a scan that has already started regardless of PID access, or 3184 * some VMAs may never be scanned in multi-threaded applications: 3185 */ 3186 if (mm->numa_scan_offset > vma->vm_start) { 3187 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3188 return true; 3189 } 3190 3191 return false; 3192 } 3193 3194 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3195 3196 /* 3197 * The expensive part of numa migration is done from task_work context. 3198 * Triggered from task_tick_numa(). 3199 */ 3200 static void task_numa_work(struct callback_head *work) 3201 { 3202 unsigned long migrate, next_scan, now = jiffies; 3203 struct task_struct *p = current; 3204 struct mm_struct *mm = p->mm; 3205 u64 runtime = p->se.sum_exec_runtime; 3206 struct vm_area_struct *vma; 3207 unsigned long start, end; 3208 unsigned long nr_pte_updates = 0; 3209 long pages, virtpages; 3210 struct vma_iterator vmi; 3211 bool vma_pids_skipped; 3212 bool vma_pids_forced = false; 3213 3214 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3215 3216 work->next = work; 3217 /* 3218 * Who cares about NUMA placement when they're dying. 3219 * 3220 * NOTE: make sure not to dereference p->mm before this check, 3221 * exit_task_work() happens _after_ exit_mm() so we could be called 3222 * without p->mm even though we still had it when we enqueued this 3223 * work. 3224 */ 3225 if (p->flags & PF_EXITING) 3226 return; 3227 3228 if (!mm->numa_next_scan) { 3229 mm->numa_next_scan = now + 3230 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3231 } 3232 3233 /* 3234 * Enforce maximal scan/migration frequency.. 3235 */ 3236 migrate = mm->numa_next_scan; 3237 if (time_before(now, migrate)) 3238 return; 3239 3240 if (p->numa_scan_period == 0) { 3241 p->numa_scan_period_max = task_scan_max(p); 3242 p->numa_scan_period = task_scan_start(p); 3243 } 3244 3245 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3246 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3247 return; 3248 3249 /* 3250 * Delay this task enough that another task of this mm will likely win 3251 * the next time around. 3252 */ 3253 p->node_stamp += 2 * TICK_NSEC; 3254 3255 pages = sysctl_numa_balancing_scan_size; 3256 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3257 virtpages = pages * 8; /* Scan up to this much virtual space */ 3258 if (!pages) 3259 return; 3260 3261 3262 if (!mmap_read_trylock(mm)) 3263 return; 3264 3265 /* 3266 * VMAs are skipped if the current PID has not trapped a fault within 3267 * the VMA recently. Allow scanning to be forced if there is no 3268 * suitable VMA remaining. 3269 */ 3270 vma_pids_skipped = false; 3271 3272 retry_pids: 3273 start = mm->numa_scan_offset; 3274 vma_iter_init(&vmi, mm, start); 3275 vma = vma_next(&vmi); 3276 if (!vma) { 3277 reset_ptenuma_scan(p); 3278 start = 0; 3279 vma_iter_set(&vmi, start); 3280 vma = vma_next(&vmi); 3281 } 3282 3283 do { 3284 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3285 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3286 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3287 continue; 3288 } 3289 3290 /* 3291 * Shared library pages mapped by multiple processes are not 3292 * migrated as it is expected they are cache replicated. Avoid 3293 * hinting faults in read-only file-backed mappings or the vdso 3294 * as migrating the pages will be of marginal benefit. 3295 */ 3296 if (!vma->vm_mm || 3297 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3298 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3299 continue; 3300 } 3301 3302 /* 3303 * Skip inaccessible VMAs to avoid any confusion between 3304 * PROT_NONE and NUMA hinting ptes 3305 */ 3306 if (!vma_is_accessible(vma)) { 3307 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3308 continue; 3309 } 3310 3311 /* Initialise new per-VMA NUMAB state. */ 3312 if (!vma->numab_state) { 3313 vma->numab_state = kzalloc(sizeof(struct vma_numab_state), 3314 GFP_KERNEL); 3315 if (!vma->numab_state) 3316 continue; 3317 3318 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3319 3320 vma->numab_state->next_scan = now + 3321 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3322 3323 /* Reset happens after 4 times scan delay of scan start */ 3324 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3325 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3326 3327 /* 3328 * Ensure prev_scan_seq does not match numa_scan_seq, 3329 * to prevent VMAs being skipped prematurely on the 3330 * first scan: 3331 */ 3332 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3333 } 3334 3335 /* 3336 * Scanning the VMA's of short lived tasks add more overhead. So 3337 * delay the scan for new VMAs. 3338 */ 3339 if (mm->numa_scan_seq && time_before(jiffies, 3340 vma->numab_state->next_scan)) { 3341 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3342 continue; 3343 } 3344 3345 /* RESET access PIDs regularly for old VMAs. */ 3346 if (mm->numa_scan_seq && 3347 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3348 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3349 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3350 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3351 vma->numab_state->pids_active[1] = 0; 3352 } 3353 3354 /* Do not rescan VMAs twice within the same sequence. */ 3355 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3356 mm->numa_scan_offset = vma->vm_end; 3357 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3358 continue; 3359 } 3360 3361 /* 3362 * Do not scan the VMA if task has not accessed it, unless no other 3363 * VMA candidate exists. 3364 */ 3365 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3366 vma_pids_skipped = true; 3367 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3368 continue; 3369 } 3370 3371 do { 3372 start = max(start, vma->vm_start); 3373 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3374 end = min(end, vma->vm_end); 3375 nr_pte_updates = change_prot_numa(vma, start, end); 3376 3377 /* 3378 * Try to scan sysctl_numa_balancing_size worth of 3379 * hpages that have at least one present PTE that 3380 * is not already pte-numa. If the VMA contains 3381 * areas that are unused or already full of prot_numa 3382 * PTEs, scan up to virtpages, to skip through those 3383 * areas faster. 3384 */ 3385 if (nr_pte_updates) 3386 pages -= (end - start) >> PAGE_SHIFT; 3387 virtpages -= (end - start) >> PAGE_SHIFT; 3388 3389 start = end; 3390 if (pages <= 0 || virtpages <= 0) 3391 goto out; 3392 3393 cond_resched(); 3394 } while (end != vma->vm_end); 3395 3396 /* VMA scan is complete, do not scan until next sequence. */ 3397 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3398 3399 /* 3400 * Only force scan within one VMA at a time, to limit the 3401 * cost of scanning a potentially uninteresting VMA. 3402 */ 3403 if (vma_pids_forced) 3404 break; 3405 } for_each_vma(vmi, vma); 3406 3407 /* 3408 * If no VMAs are remaining and VMAs were skipped due to the PID 3409 * not accessing the VMA previously, then force a scan to ensure 3410 * forward progress: 3411 */ 3412 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3413 vma_pids_forced = true; 3414 goto retry_pids; 3415 } 3416 3417 out: 3418 /* 3419 * It is possible to reach the end of the VMA list but the last few 3420 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3421 * would find the !migratable VMA on the next scan but not reset the 3422 * scanner to the start so check it now. 3423 */ 3424 if (vma) 3425 mm->numa_scan_offset = start; 3426 else 3427 reset_ptenuma_scan(p); 3428 mmap_read_unlock(mm); 3429 3430 /* 3431 * Make sure tasks use at least 32x as much time to run other code 3432 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3433 * Usually update_task_scan_period slows down scanning enough; on an 3434 * overloaded system we need to limit overhead on a per task basis. 3435 */ 3436 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3437 u64 diff = p->se.sum_exec_runtime - runtime; 3438 p->node_stamp += 32 * diff; 3439 } 3440 } 3441 3442 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3443 { 3444 int mm_users = 0; 3445 struct mm_struct *mm = p->mm; 3446 3447 if (mm) { 3448 mm_users = atomic_read(&mm->mm_users); 3449 if (mm_users == 1) { 3450 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3451 mm->numa_scan_seq = 0; 3452 } 3453 } 3454 p->node_stamp = 0; 3455 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3456 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3457 p->numa_migrate_retry = 0; 3458 /* Protect against double add, see task_tick_numa and task_numa_work */ 3459 p->numa_work.next = &p->numa_work; 3460 p->numa_faults = NULL; 3461 p->numa_pages_migrated = 0; 3462 p->total_numa_faults = 0; 3463 RCU_INIT_POINTER(p->numa_group, NULL); 3464 p->last_task_numa_placement = 0; 3465 p->last_sum_exec_runtime = 0; 3466 3467 init_task_work(&p->numa_work, task_numa_work); 3468 3469 /* New address space, reset the preferred nid */ 3470 if (!(clone_flags & CLONE_VM)) { 3471 p->numa_preferred_nid = NUMA_NO_NODE; 3472 return; 3473 } 3474 3475 /* 3476 * New thread, keep existing numa_preferred_nid which should be copied 3477 * already by arch_dup_task_struct but stagger when scans start. 3478 */ 3479 if (mm) { 3480 unsigned int delay; 3481 3482 delay = min_t(unsigned int, task_scan_max(current), 3483 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3484 delay += 2 * TICK_NSEC; 3485 p->node_stamp = delay; 3486 } 3487 } 3488 3489 /* 3490 * Drive the periodic memory faults.. 3491 */ 3492 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3493 { 3494 struct callback_head *work = &curr->numa_work; 3495 u64 period, now; 3496 3497 /* 3498 * We don't care about NUMA placement if we don't have memory. 3499 */ 3500 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3501 return; 3502 3503 /* 3504 * Using runtime rather than walltime has the dual advantage that 3505 * we (mostly) drive the selection from busy threads and that the 3506 * task needs to have done some actual work before we bother with 3507 * NUMA placement. 3508 */ 3509 now = curr->se.sum_exec_runtime; 3510 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3511 3512 if (now > curr->node_stamp + period) { 3513 if (!curr->node_stamp) 3514 curr->numa_scan_period = task_scan_start(curr); 3515 curr->node_stamp += period; 3516 3517 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3518 task_work_add(curr, work, TWA_RESUME); 3519 } 3520 } 3521 3522 static void update_scan_period(struct task_struct *p, int new_cpu) 3523 { 3524 int src_nid = cpu_to_node(task_cpu(p)); 3525 int dst_nid = cpu_to_node(new_cpu); 3526 3527 if (!static_branch_likely(&sched_numa_balancing)) 3528 return; 3529 3530 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3531 return; 3532 3533 if (src_nid == dst_nid) 3534 return; 3535 3536 /* 3537 * Allow resets if faults have been trapped before one scan 3538 * has completed. This is most likely due to a new task that 3539 * is pulled cross-node due to wakeups or load balancing. 3540 */ 3541 if (p->numa_scan_seq) { 3542 /* 3543 * Avoid scan adjustments if moving to the preferred 3544 * node or if the task was not previously running on 3545 * the preferred node. 3546 */ 3547 if (dst_nid == p->numa_preferred_nid || 3548 (p->numa_preferred_nid != NUMA_NO_NODE && 3549 src_nid != p->numa_preferred_nid)) 3550 return; 3551 } 3552 3553 p->numa_scan_period = task_scan_start(p); 3554 } 3555 3556 #else 3557 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3558 { 3559 } 3560 3561 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3562 { 3563 } 3564 3565 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3566 { 3567 } 3568 3569 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3570 { 3571 } 3572 3573 #endif /* CONFIG_NUMA_BALANCING */ 3574 3575 static void 3576 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3577 { 3578 update_load_add(&cfs_rq->load, se->load.weight); 3579 #ifdef CONFIG_SMP 3580 if (entity_is_task(se)) { 3581 struct rq *rq = rq_of(cfs_rq); 3582 3583 account_numa_enqueue(rq, task_of(se)); 3584 list_add(&se->group_node, &rq->cfs_tasks); 3585 } 3586 #endif 3587 cfs_rq->nr_running++; 3588 if (se_is_idle(se)) 3589 cfs_rq->idle_nr_running++; 3590 } 3591 3592 static void 3593 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3594 { 3595 update_load_sub(&cfs_rq->load, se->load.weight); 3596 #ifdef CONFIG_SMP 3597 if (entity_is_task(se)) { 3598 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3599 list_del_init(&se->group_node); 3600 } 3601 #endif 3602 cfs_rq->nr_running--; 3603 if (se_is_idle(se)) 3604 cfs_rq->idle_nr_running--; 3605 } 3606 3607 /* 3608 * Signed add and clamp on underflow. 3609 * 3610 * Explicitly do a load-store to ensure the intermediate value never hits 3611 * memory. This allows lockless observations without ever seeing the negative 3612 * values. 3613 */ 3614 #define add_positive(_ptr, _val) do { \ 3615 typeof(_ptr) ptr = (_ptr); \ 3616 typeof(_val) val = (_val); \ 3617 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3618 \ 3619 res = var + val; \ 3620 \ 3621 if (val < 0 && res > var) \ 3622 res = 0; \ 3623 \ 3624 WRITE_ONCE(*ptr, res); \ 3625 } while (0) 3626 3627 /* 3628 * Unsigned subtract and clamp on underflow. 3629 * 3630 * Explicitly do a load-store to ensure the intermediate value never hits 3631 * memory. This allows lockless observations without ever seeing the negative 3632 * values. 3633 */ 3634 #define sub_positive(_ptr, _val) do { \ 3635 typeof(_ptr) ptr = (_ptr); \ 3636 typeof(*ptr) val = (_val); \ 3637 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3638 res = var - val; \ 3639 if (res > var) \ 3640 res = 0; \ 3641 WRITE_ONCE(*ptr, res); \ 3642 } while (0) 3643 3644 /* 3645 * Remove and clamp on negative, from a local variable. 3646 * 3647 * A variant of sub_positive(), which does not use explicit load-store 3648 * and is thus optimized for local variable updates. 3649 */ 3650 #define lsub_positive(_ptr, _val) do { \ 3651 typeof(_ptr) ptr = (_ptr); \ 3652 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3653 } while (0) 3654 3655 #ifdef CONFIG_SMP 3656 static inline void 3657 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3658 { 3659 cfs_rq->avg.load_avg += se->avg.load_avg; 3660 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3661 } 3662 3663 static inline void 3664 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3665 { 3666 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3667 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3668 /* See update_cfs_rq_load_avg() */ 3669 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3670 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3671 } 3672 #else 3673 static inline void 3674 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3675 static inline void 3676 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3677 #endif 3678 3679 static void reweight_eevdf(struct cfs_rq *cfs_rq, struct sched_entity *se, 3680 unsigned long weight) 3681 { 3682 unsigned long old_weight = se->load.weight; 3683 u64 avruntime = avg_vruntime(cfs_rq); 3684 s64 vlag, vslice; 3685 3686 /* 3687 * VRUNTIME 3688 * ======== 3689 * 3690 * COROLLARY #1: The virtual runtime of the entity needs to be 3691 * adjusted if re-weight at !0-lag point. 3692 * 3693 * Proof: For contradiction assume this is not true, so we can 3694 * re-weight without changing vruntime at !0-lag point. 3695 * 3696 * Weight VRuntime Avg-VRuntime 3697 * before w v V 3698 * after w' v' V' 3699 * 3700 * Since lag needs to be preserved through re-weight: 3701 * 3702 * lag = (V - v)*w = (V'- v')*w', where v = v' 3703 * ==> V' = (V - v)*w/w' + v (1) 3704 * 3705 * Let W be the total weight of the entities before reweight, 3706 * since V' is the new weighted average of entities: 3707 * 3708 * V' = (WV + w'v - wv) / (W + w' - w) (2) 3709 * 3710 * by using (1) & (2) we obtain: 3711 * 3712 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v 3713 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v 3714 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v 3715 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3) 3716 * 3717 * Since we are doing at !0-lag point which means V != v, we 3718 * can simplify (3): 3719 * 3720 * ==> W / (W + w' - w) = w / w' 3721 * ==> Ww' = Ww + ww' - ww 3722 * ==> W * (w' - w) = w * (w' - w) 3723 * ==> W = w (re-weight indicates w' != w) 3724 * 3725 * So the cfs_rq contains only one entity, hence vruntime of 3726 * the entity @v should always equal to the cfs_rq's weighted 3727 * average vruntime @V, which means we will always re-weight 3728 * at 0-lag point, thus breach assumption. Proof completed. 3729 * 3730 * 3731 * COROLLARY #2: Re-weight does NOT affect weighted average 3732 * vruntime of all the entities. 3733 * 3734 * Proof: According to corollary #1, Eq. (1) should be: 3735 * 3736 * (V - v)*w = (V' - v')*w' 3737 * ==> v' = V' - (V - v)*w/w' (4) 3738 * 3739 * According to the weighted average formula, we have: 3740 * 3741 * V' = (WV - wv + w'v') / (W - w + w') 3742 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w') 3743 * = (WV - wv + w'V' - Vw + wv) / (W - w + w') 3744 * = (WV + w'V' - Vw) / (W - w + w') 3745 * 3746 * ==> V'*(W - w + w') = WV + w'V' - Vw 3747 * ==> V' * (W - w) = (W - w) * V (5) 3748 * 3749 * If the entity is the only one in the cfs_rq, then reweight 3750 * always occurs at 0-lag point, so V won't change. Or else 3751 * there are other entities, hence W != w, then Eq. (5) turns 3752 * into V' = V. So V won't change in either case, proof done. 3753 * 3754 * 3755 * So according to corollary #1 & #2, the effect of re-weight 3756 * on vruntime should be: 3757 * 3758 * v' = V' - (V - v) * w / w' (4) 3759 * = V - (V - v) * w / w' 3760 * = V - vl * w / w' 3761 * = V - vl' 3762 */ 3763 if (avruntime != se->vruntime) { 3764 vlag = (s64)(avruntime - se->vruntime); 3765 vlag = div_s64(vlag * old_weight, weight); 3766 se->vruntime = avruntime - vlag; 3767 } 3768 3769 /* 3770 * DEADLINE 3771 * ======== 3772 * 3773 * When the weight changes, the virtual time slope changes and 3774 * we should adjust the relative virtual deadline accordingly. 3775 * 3776 * d' = v' + (d - v)*w/w' 3777 * = V' - (V - v)*w/w' + (d - v)*w/w' 3778 * = V - (V - v)*w/w' + (d - v)*w/w' 3779 * = V + (d - V)*w/w' 3780 */ 3781 vslice = (s64)(se->deadline - avruntime); 3782 vslice = div_s64(vslice * old_weight, weight); 3783 se->deadline = avruntime + vslice; 3784 } 3785 3786 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3787 unsigned long weight) 3788 { 3789 bool curr = cfs_rq->curr == se; 3790 3791 if (se->on_rq) { 3792 /* commit outstanding execution time */ 3793 if (curr) 3794 update_curr(cfs_rq); 3795 else 3796 __dequeue_entity(cfs_rq, se); 3797 update_load_sub(&cfs_rq->load, se->load.weight); 3798 } 3799 dequeue_load_avg(cfs_rq, se); 3800 3801 if (!se->on_rq) { 3802 /* 3803 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3804 * we need to scale se->vlag when w_i changes. 3805 */ 3806 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3807 } else { 3808 reweight_eevdf(cfs_rq, se, weight); 3809 } 3810 3811 update_load_set(&se->load, weight); 3812 3813 #ifdef CONFIG_SMP 3814 do { 3815 u32 divider = get_pelt_divider(&se->avg); 3816 3817 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3818 } while (0); 3819 #endif 3820 3821 enqueue_load_avg(cfs_rq, se); 3822 if (se->on_rq) { 3823 update_load_add(&cfs_rq->load, se->load.weight); 3824 if (!curr) 3825 __enqueue_entity(cfs_rq, se); 3826 3827 /* 3828 * The entity's vruntime has been adjusted, so let's check 3829 * whether the rq-wide min_vruntime needs updated too. Since 3830 * the calculations above require stable min_vruntime rather 3831 * than up-to-date one, we do the update at the end of the 3832 * reweight process. 3833 */ 3834 update_min_vruntime(cfs_rq); 3835 } 3836 } 3837 3838 void reweight_task(struct task_struct *p, int prio) 3839 { 3840 struct sched_entity *se = &p->se; 3841 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3842 struct load_weight *load = &se->load; 3843 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3844 3845 reweight_entity(cfs_rq, se, weight); 3846 load->inv_weight = sched_prio_to_wmult[prio]; 3847 } 3848 3849 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3850 3851 #ifdef CONFIG_FAIR_GROUP_SCHED 3852 #ifdef CONFIG_SMP 3853 /* 3854 * All this does is approximate the hierarchical proportion which includes that 3855 * global sum we all love to hate. 3856 * 3857 * That is, the weight of a group entity, is the proportional share of the 3858 * group weight based on the group runqueue weights. That is: 3859 * 3860 * tg->weight * grq->load.weight 3861 * ge->load.weight = ----------------------------- (1) 3862 * \Sum grq->load.weight 3863 * 3864 * Now, because computing that sum is prohibitively expensive to compute (been 3865 * there, done that) we approximate it with this average stuff. The average 3866 * moves slower and therefore the approximation is cheaper and more stable. 3867 * 3868 * So instead of the above, we substitute: 3869 * 3870 * grq->load.weight -> grq->avg.load_avg (2) 3871 * 3872 * which yields the following: 3873 * 3874 * tg->weight * grq->avg.load_avg 3875 * ge->load.weight = ------------------------------ (3) 3876 * tg->load_avg 3877 * 3878 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3879 * 3880 * That is shares_avg, and it is right (given the approximation (2)). 3881 * 3882 * The problem with it is that because the average is slow -- it was designed 3883 * to be exactly that of course -- this leads to transients in boundary 3884 * conditions. In specific, the case where the group was idle and we start the 3885 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3886 * yielding bad latency etc.. 3887 * 3888 * Now, in that special case (1) reduces to: 3889 * 3890 * tg->weight * grq->load.weight 3891 * ge->load.weight = ----------------------------- = tg->weight (4) 3892 * grp->load.weight 3893 * 3894 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3895 * 3896 * So what we do is modify our approximation (3) to approach (4) in the (near) 3897 * UP case, like: 3898 * 3899 * ge->load.weight = 3900 * 3901 * tg->weight * grq->load.weight 3902 * --------------------------------------------------- (5) 3903 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3904 * 3905 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3906 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3907 * 3908 * 3909 * tg->weight * grq->load.weight 3910 * ge->load.weight = ----------------------------- (6) 3911 * tg_load_avg' 3912 * 3913 * Where: 3914 * 3915 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3916 * max(grq->load.weight, grq->avg.load_avg) 3917 * 3918 * And that is shares_weight and is icky. In the (near) UP case it approaches 3919 * (4) while in the normal case it approaches (3). It consistently 3920 * overestimates the ge->load.weight and therefore: 3921 * 3922 * \Sum ge->load.weight >= tg->weight 3923 * 3924 * hence icky! 3925 */ 3926 static long calc_group_shares(struct cfs_rq *cfs_rq) 3927 { 3928 long tg_weight, tg_shares, load, shares; 3929 struct task_group *tg = cfs_rq->tg; 3930 3931 tg_shares = READ_ONCE(tg->shares); 3932 3933 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3934 3935 tg_weight = atomic_long_read(&tg->load_avg); 3936 3937 /* Ensure tg_weight >= load */ 3938 tg_weight -= cfs_rq->tg_load_avg_contrib; 3939 tg_weight += load; 3940 3941 shares = (tg_shares * load); 3942 if (tg_weight) 3943 shares /= tg_weight; 3944 3945 /* 3946 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3947 * of a group with small tg->shares value. It is a floor value which is 3948 * assigned as a minimum load.weight to the sched_entity representing 3949 * the group on a CPU. 3950 * 3951 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3952 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3953 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3954 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3955 * instead of 0. 3956 */ 3957 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3958 } 3959 #endif /* CONFIG_SMP */ 3960 3961 /* 3962 * Recomputes the group entity based on the current state of its group 3963 * runqueue. 3964 */ 3965 static void update_cfs_group(struct sched_entity *se) 3966 { 3967 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3968 long shares; 3969 3970 if (!gcfs_rq) 3971 return; 3972 3973 if (throttled_hierarchy(gcfs_rq)) 3974 return; 3975 3976 #ifndef CONFIG_SMP 3977 shares = READ_ONCE(gcfs_rq->tg->shares); 3978 #else 3979 shares = calc_group_shares(gcfs_rq); 3980 #endif 3981 if (unlikely(se->load.weight != shares)) 3982 reweight_entity(cfs_rq_of(se), se, shares); 3983 } 3984 3985 #else /* CONFIG_FAIR_GROUP_SCHED */ 3986 static inline void update_cfs_group(struct sched_entity *se) 3987 { 3988 } 3989 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3990 3991 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3992 { 3993 struct rq *rq = rq_of(cfs_rq); 3994 3995 if (&rq->cfs == cfs_rq) { 3996 /* 3997 * There are a few boundary cases this might miss but it should 3998 * get called often enough that that should (hopefully) not be 3999 * a real problem. 4000 * 4001 * It will not get called when we go idle, because the idle 4002 * thread is a different class (!fair), nor will the utilization 4003 * number include things like RT tasks. 4004 * 4005 * As is, the util number is not freq-invariant (we'd have to 4006 * implement arch_scale_freq_capacity() for that). 4007 * 4008 * See cpu_util_cfs(). 4009 */ 4010 cpufreq_update_util(rq, flags); 4011 } 4012 } 4013 4014 #ifdef CONFIG_SMP 4015 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4016 { 4017 if (sa->load_sum) 4018 return false; 4019 4020 if (sa->util_sum) 4021 return false; 4022 4023 if (sa->runnable_sum) 4024 return false; 4025 4026 /* 4027 * _avg must be null when _sum are null because _avg = _sum / divider 4028 * Make sure that rounding and/or propagation of PELT values never 4029 * break this. 4030 */ 4031 SCHED_WARN_ON(sa->load_avg || 4032 sa->util_avg || 4033 sa->runnable_avg); 4034 4035 return true; 4036 } 4037 4038 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4039 { 4040 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4041 cfs_rq->last_update_time_copy); 4042 } 4043 #ifdef CONFIG_FAIR_GROUP_SCHED 4044 /* 4045 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4046 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4047 * bottom-up, we only have to test whether the cfs_rq before us on the list 4048 * is our child. 4049 * If cfs_rq is not on the list, test whether a child needs its to be added to 4050 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4051 */ 4052 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4053 { 4054 struct cfs_rq *prev_cfs_rq; 4055 struct list_head *prev; 4056 4057 if (cfs_rq->on_list) { 4058 prev = cfs_rq->leaf_cfs_rq_list.prev; 4059 } else { 4060 struct rq *rq = rq_of(cfs_rq); 4061 4062 prev = rq->tmp_alone_branch; 4063 } 4064 4065 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4066 4067 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4068 } 4069 4070 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4071 { 4072 if (cfs_rq->load.weight) 4073 return false; 4074 4075 if (!load_avg_is_decayed(&cfs_rq->avg)) 4076 return false; 4077 4078 if (child_cfs_rq_on_list(cfs_rq)) 4079 return false; 4080 4081 return true; 4082 } 4083 4084 /** 4085 * update_tg_load_avg - update the tg's load avg 4086 * @cfs_rq: the cfs_rq whose avg changed 4087 * 4088 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4089 * However, because tg->load_avg is a global value there are performance 4090 * considerations. 4091 * 4092 * In order to avoid having to look at the other cfs_rq's, we use a 4093 * differential update where we store the last value we propagated. This in 4094 * turn allows skipping updates if the differential is 'small'. 4095 * 4096 * Updating tg's load_avg is necessary before update_cfs_share(). 4097 */ 4098 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4099 { 4100 long delta; 4101 u64 now; 4102 4103 /* 4104 * No need to update load_avg for root_task_group as it is not used. 4105 */ 4106 if (cfs_rq->tg == &root_task_group) 4107 return; 4108 4109 /* rq has been offline and doesn't contribute to the share anymore: */ 4110 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4111 return; 4112 4113 /* 4114 * For migration heavy workloads, access to tg->load_avg can be 4115 * unbound. Limit the update rate to at most once per ms. 4116 */ 4117 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4118 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4119 return; 4120 4121 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4122 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4123 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4124 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4125 cfs_rq->last_update_tg_load_avg = now; 4126 } 4127 } 4128 4129 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4130 { 4131 long delta; 4132 u64 now; 4133 4134 /* 4135 * No need to update load_avg for root_task_group, as it is not used. 4136 */ 4137 if (cfs_rq->tg == &root_task_group) 4138 return; 4139 4140 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4141 delta = 0 - cfs_rq->tg_load_avg_contrib; 4142 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4143 cfs_rq->tg_load_avg_contrib = 0; 4144 cfs_rq->last_update_tg_load_avg = now; 4145 } 4146 4147 /* CPU offline callback: */ 4148 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4149 { 4150 struct task_group *tg; 4151 4152 lockdep_assert_rq_held(rq); 4153 4154 /* 4155 * The rq clock has already been updated in 4156 * set_rq_offline(), so we should skip updating 4157 * the rq clock again in unthrottle_cfs_rq(). 4158 */ 4159 rq_clock_start_loop_update(rq); 4160 4161 rcu_read_lock(); 4162 list_for_each_entry_rcu(tg, &task_groups, list) { 4163 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4164 4165 clear_tg_load_avg(cfs_rq); 4166 } 4167 rcu_read_unlock(); 4168 4169 rq_clock_stop_loop_update(rq); 4170 } 4171 4172 /* 4173 * Called within set_task_rq() right before setting a task's CPU. The 4174 * caller only guarantees p->pi_lock is held; no other assumptions, 4175 * including the state of rq->lock, should be made. 4176 */ 4177 void set_task_rq_fair(struct sched_entity *se, 4178 struct cfs_rq *prev, struct cfs_rq *next) 4179 { 4180 u64 p_last_update_time; 4181 u64 n_last_update_time; 4182 4183 if (!sched_feat(ATTACH_AGE_LOAD)) 4184 return; 4185 4186 /* 4187 * We are supposed to update the task to "current" time, then its up to 4188 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4189 * getting what current time is, so simply throw away the out-of-date 4190 * time. This will result in the wakee task is less decayed, but giving 4191 * the wakee more load sounds not bad. 4192 */ 4193 if (!(se->avg.last_update_time && prev)) 4194 return; 4195 4196 p_last_update_time = cfs_rq_last_update_time(prev); 4197 n_last_update_time = cfs_rq_last_update_time(next); 4198 4199 __update_load_avg_blocked_se(p_last_update_time, se); 4200 se->avg.last_update_time = n_last_update_time; 4201 } 4202 4203 /* 4204 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4205 * propagate its contribution. The key to this propagation is the invariant 4206 * that for each group: 4207 * 4208 * ge->avg == grq->avg (1) 4209 * 4210 * _IFF_ we look at the pure running and runnable sums. Because they 4211 * represent the very same entity, just at different points in the hierarchy. 4212 * 4213 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4214 * and simply copies the running/runnable sum over (but still wrong, because 4215 * the group entity and group rq do not have their PELT windows aligned). 4216 * 4217 * However, update_tg_cfs_load() is more complex. So we have: 4218 * 4219 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4220 * 4221 * And since, like util, the runnable part should be directly transferable, 4222 * the following would _appear_ to be the straight forward approach: 4223 * 4224 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4225 * 4226 * And per (1) we have: 4227 * 4228 * ge->avg.runnable_avg == grq->avg.runnable_avg 4229 * 4230 * Which gives: 4231 * 4232 * ge->load.weight * grq->avg.load_avg 4233 * ge->avg.load_avg = ----------------------------------- (4) 4234 * grq->load.weight 4235 * 4236 * Except that is wrong! 4237 * 4238 * Because while for entities historical weight is not important and we 4239 * really only care about our future and therefore can consider a pure 4240 * runnable sum, runqueues can NOT do this. 4241 * 4242 * We specifically want runqueues to have a load_avg that includes 4243 * historical weights. Those represent the blocked load, the load we expect 4244 * to (shortly) return to us. This only works by keeping the weights as 4245 * integral part of the sum. We therefore cannot decompose as per (3). 4246 * 4247 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4248 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4249 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4250 * runnable section of these tasks overlap (or not). If they were to perfectly 4251 * align the rq as a whole would be runnable 2/3 of the time. If however we 4252 * always have at least 1 runnable task, the rq as a whole is always runnable. 4253 * 4254 * So we'll have to approximate.. :/ 4255 * 4256 * Given the constraint: 4257 * 4258 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4259 * 4260 * We can construct a rule that adds runnable to a rq by assuming minimal 4261 * overlap. 4262 * 4263 * On removal, we'll assume each task is equally runnable; which yields: 4264 * 4265 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4266 * 4267 * XXX: only do this for the part of runnable > running ? 4268 * 4269 */ 4270 static inline void 4271 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4272 { 4273 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4274 u32 new_sum, divider; 4275 4276 /* Nothing to update */ 4277 if (!delta_avg) 4278 return; 4279 4280 /* 4281 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4282 * See ___update_load_avg() for details. 4283 */ 4284 divider = get_pelt_divider(&cfs_rq->avg); 4285 4286 4287 /* Set new sched_entity's utilization */ 4288 se->avg.util_avg = gcfs_rq->avg.util_avg; 4289 new_sum = se->avg.util_avg * divider; 4290 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4291 se->avg.util_sum = new_sum; 4292 4293 /* Update parent cfs_rq utilization */ 4294 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4295 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4296 4297 /* See update_cfs_rq_load_avg() */ 4298 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4299 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4300 } 4301 4302 static inline void 4303 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4304 { 4305 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4306 u32 new_sum, divider; 4307 4308 /* Nothing to update */ 4309 if (!delta_avg) 4310 return; 4311 4312 /* 4313 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4314 * See ___update_load_avg() for details. 4315 */ 4316 divider = get_pelt_divider(&cfs_rq->avg); 4317 4318 /* Set new sched_entity's runnable */ 4319 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4320 new_sum = se->avg.runnable_avg * divider; 4321 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4322 se->avg.runnable_sum = new_sum; 4323 4324 /* Update parent cfs_rq runnable */ 4325 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4326 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4327 /* See update_cfs_rq_load_avg() */ 4328 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4329 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4330 } 4331 4332 static inline void 4333 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4334 { 4335 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4336 unsigned long load_avg; 4337 u64 load_sum = 0; 4338 s64 delta_sum; 4339 u32 divider; 4340 4341 if (!runnable_sum) 4342 return; 4343 4344 gcfs_rq->prop_runnable_sum = 0; 4345 4346 /* 4347 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4348 * See ___update_load_avg() for details. 4349 */ 4350 divider = get_pelt_divider(&cfs_rq->avg); 4351 4352 if (runnable_sum >= 0) { 4353 /* 4354 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4355 * the CPU is saturated running == runnable. 4356 */ 4357 runnable_sum += se->avg.load_sum; 4358 runnable_sum = min_t(long, runnable_sum, divider); 4359 } else { 4360 /* 4361 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4362 * assuming all tasks are equally runnable. 4363 */ 4364 if (scale_load_down(gcfs_rq->load.weight)) { 4365 load_sum = div_u64(gcfs_rq->avg.load_sum, 4366 scale_load_down(gcfs_rq->load.weight)); 4367 } 4368 4369 /* But make sure to not inflate se's runnable */ 4370 runnable_sum = min(se->avg.load_sum, load_sum); 4371 } 4372 4373 /* 4374 * runnable_sum can't be lower than running_sum 4375 * Rescale running sum to be in the same range as runnable sum 4376 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4377 * runnable_sum is in [0 : LOAD_AVG_MAX] 4378 */ 4379 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4380 runnable_sum = max(runnable_sum, running_sum); 4381 4382 load_sum = se_weight(se) * runnable_sum; 4383 load_avg = div_u64(load_sum, divider); 4384 4385 delta_avg = load_avg - se->avg.load_avg; 4386 if (!delta_avg) 4387 return; 4388 4389 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4390 4391 se->avg.load_sum = runnable_sum; 4392 se->avg.load_avg = load_avg; 4393 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4394 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4395 /* See update_cfs_rq_load_avg() */ 4396 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4397 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4398 } 4399 4400 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4401 { 4402 cfs_rq->propagate = 1; 4403 cfs_rq->prop_runnable_sum += runnable_sum; 4404 } 4405 4406 /* Update task and its cfs_rq load average */ 4407 static inline int propagate_entity_load_avg(struct sched_entity *se) 4408 { 4409 struct cfs_rq *cfs_rq, *gcfs_rq; 4410 4411 if (entity_is_task(se)) 4412 return 0; 4413 4414 gcfs_rq = group_cfs_rq(se); 4415 if (!gcfs_rq->propagate) 4416 return 0; 4417 4418 gcfs_rq->propagate = 0; 4419 4420 cfs_rq = cfs_rq_of(se); 4421 4422 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4423 4424 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4425 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4426 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4427 4428 trace_pelt_cfs_tp(cfs_rq); 4429 trace_pelt_se_tp(se); 4430 4431 return 1; 4432 } 4433 4434 /* 4435 * Check if we need to update the load and the utilization of a blocked 4436 * group_entity: 4437 */ 4438 static inline bool skip_blocked_update(struct sched_entity *se) 4439 { 4440 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4441 4442 /* 4443 * If sched_entity still have not zero load or utilization, we have to 4444 * decay it: 4445 */ 4446 if (se->avg.load_avg || se->avg.util_avg) 4447 return false; 4448 4449 /* 4450 * If there is a pending propagation, we have to update the load and 4451 * the utilization of the sched_entity: 4452 */ 4453 if (gcfs_rq->propagate) 4454 return false; 4455 4456 /* 4457 * Otherwise, the load and the utilization of the sched_entity is 4458 * already zero and there is no pending propagation, so it will be a 4459 * waste of time to try to decay it: 4460 */ 4461 return true; 4462 } 4463 4464 #else /* CONFIG_FAIR_GROUP_SCHED */ 4465 4466 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4467 4468 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4469 4470 static inline int propagate_entity_load_avg(struct sched_entity *se) 4471 { 4472 return 0; 4473 } 4474 4475 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4476 4477 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4478 4479 #ifdef CONFIG_NO_HZ_COMMON 4480 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4481 { 4482 u64 throttled = 0, now, lut; 4483 struct cfs_rq *cfs_rq; 4484 struct rq *rq; 4485 bool is_idle; 4486 4487 if (load_avg_is_decayed(&se->avg)) 4488 return; 4489 4490 cfs_rq = cfs_rq_of(se); 4491 rq = rq_of(cfs_rq); 4492 4493 rcu_read_lock(); 4494 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4495 rcu_read_unlock(); 4496 4497 /* 4498 * The lag estimation comes with a cost we don't want to pay all the 4499 * time. Hence, limiting to the case where the source CPU is idle and 4500 * we know we are at the greatest risk to have an outdated clock. 4501 */ 4502 if (!is_idle) 4503 return; 4504 4505 /* 4506 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4507 * 4508 * last_update_time (the cfs_rq's last_update_time) 4509 * = cfs_rq_clock_pelt()@cfs_rq_idle 4510 * = rq_clock_pelt()@cfs_rq_idle 4511 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4512 * 4513 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4514 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4515 * 4516 * rq_idle_lag (delta between now and rq's update) 4517 * = sched_clock_cpu() - rq_clock()@rq_idle 4518 * 4519 * We can then write: 4520 * 4521 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4522 * sched_clock_cpu() - rq_clock()@rq_idle 4523 * Where: 4524 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4525 * rq_clock()@rq_idle is rq->clock_idle 4526 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4527 * is cfs_rq->throttled_pelt_idle 4528 */ 4529 4530 #ifdef CONFIG_CFS_BANDWIDTH 4531 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4532 /* The clock has been stopped for throttling */ 4533 if (throttled == U64_MAX) 4534 return; 4535 #endif 4536 now = u64_u32_load(rq->clock_pelt_idle); 4537 /* 4538 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4539 * is observed the old clock_pelt_idle value and the new clock_idle, 4540 * which lead to an underestimation. The opposite would lead to an 4541 * overestimation. 4542 */ 4543 smp_rmb(); 4544 lut = cfs_rq_last_update_time(cfs_rq); 4545 4546 now -= throttled; 4547 if (now < lut) 4548 /* 4549 * cfs_rq->avg.last_update_time is more recent than our 4550 * estimation, let's use it. 4551 */ 4552 now = lut; 4553 else 4554 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4555 4556 __update_load_avg_blocked_se(now, se); 4557 } 4558 #else 4559 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4560 #endif 4561 4562 /** 4563 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4564 * @now: current time, as per cfs_rq_clock_pelt() 4565 * @cfs_rq: cfs_rq to update 4566 * 4567 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4568 * avg. The immediate corollary is that all (fair) tasks must be attached. 4569 * 4570 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4571 * 4572 * Return: true if the load decayed or we removed load. 4573 * 4574 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4575 * call update_tg_load_avg() when this function returns true. 4576 */ 4577 static inline int 4578 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4579 { 4580 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4581 struct sched_avg *sa = &cfs_rq->avg; 4582 int decayed = 0; 4583 4584 if (cfs_rq->removed.nr) { 4585 unsigned long r; 4586 u32 divider = get_pelt_divider(&cfs_rq->avg); 4587 4588 raw_spin_lock(&cfs_rq->removed.lock); 4589 swap(cfs_rq->removed.util_avg, removed_util); 4590 swap(cfs_rq->removed.load_avg, removed_load); 4591 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4592 cfs_rq->removed.nr = 0; 4593 raw_spin_unlock(&cfs_rq->removed.lock); 4594 4595 r = removed_load; 4596 sub_positive(&sa->load_avg, r); 4597 sub_positive(&sa->load_sum, r * divider); 4598 /* See sa->util_sum below */ 4599 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4600 4601 r = removed_util; 4602 sub_positive(&sa->util_avg, r); 4603 sub_positive(&sa->util_sum, r * divider); 4604 /* 4605 * Because of rounding, se->util_sum might ends up being +1 more than 4606 * cfs->util_sum. Although this is not a problem by itself, detaching 4607 * a lot of tasks with the rounding problem between 2 updates of 4608 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4609 * cfs_util_avg is not. 4610 * Check that util_sum is still above its lower bound for the new 4611 * util_avg. Given that period_contrib might have moved since the last 4612 * sync, we are only sure that util_sum must be above or equal to 4613 * util_avg * minimum possible divider 4614 */ 4615 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4616 4617 r = removed_runnable; 4618 sub_positive(&sa->runnable_avg, r); 4619 sub_positive(&sa->runnable_sum, r * divider); 4620 /* See sa->util_sum above */ 4621 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4622 sa->runnable_avg * PELT_MIN_DIVIDER); 4623 4624 /* 4625 * removed_runnable is the unweighted version of removed_load so we 4626 * can use it to estimate removed_load_sum. 4627 */ 4628 add_tg_cfs_propagate(cfs_rq, 4629 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4630 4631 decayed = 1; 4632 } 4633 4634 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4635 u64_u32_store_copy(sa->last_update_time, 4636 cfs_rq->last_update_time_copy, 4637 sa->last_update_time); 4638 return decayed; 4639 } 4640 4641 /** 4642 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4643 * @cfs_rq: cfs_rq to attach to 4644 * @se: sched_entity to attach 4645 * 4646 * Must call update_cfs_rq_load_avg() before this, since we rely on 4647 * cfs_rq->avg.last_update_time being current. 4648 */ 4649 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4650 { 4651 /* 4652 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4653 * See ___update_load_avg() for details. 4654 */ 4655 u32 divider = get_pelt_divider(&cfs_rq->avg); 4656 4657 /* 4658 * When we attach the @se to the @cfs_rq, we must align the decay 4659 * window because without that, really weird and wonderful things can 4660 * happen. 4661 * 4662 * XXX illustrate 4663 */ 4664 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4665 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4666 4667 /* 4668 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4669 * period_contrib. This isn't strictly correct, but since we're 4670 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4671 * _sum a little. 4672 */ 4673 se->avg.util_sum = se->avg.util_avg * divider; 4674 4675 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4676 4677 se->avg.load_sum = se->avg.load_avg * divider; 4678 if (se_weight(se) < se->avg.load_sum) 4679 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4680 else 4681 se->avg.load_sum = 1; 4682 4683 enqueue_load_avg(cfs_rq, se); 4684 cfs_rq->avg.util_avg += se->avg.util_avg; 4685 cfs_rq->avg.util_sum += se->avg.util_sum; 4686 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4687 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4688 4689 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4690 4691 cfs_rq_util_change(cfs_rq, 0); 4692 4693 trace_pelt_cfs_tp(cfs_rq); 4694 } 4695 4696 /** 4697 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4698 * @cfs_rq: cfs_rq to detach from 4699 * @se: sched_entity to detach 4700 * 4701 * Must call update_cfs_rq_load_avg() before this, since we rely on 4702 * cfs_rq->avg.last_update_time being current. 4703 */ 4704 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4705 { 4706 dequeue_load_avg(cfs_rq, se); 4707 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4708 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4709 /* See update_cfs_rq_load_avg() */ 4710 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4711 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4712 4713 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4714 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4715 /* See update_cfs_rq_load_avg() */ 4716 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4717 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4718 4719 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4720 4721 cfs_rq_util_change(cfs_rq, 0); 4722 4723 trace_pelt_cfs_tp(cfs_rq); 4724 } 4725 4726 /* 4727 * Optional action to be done while updating the load average 4728 */ 4729 #define UPDATE_TG 0x1 4730 #define SKIP_AGE_LOAD 0x2 4731 #define DO_ATTACH 0x4 4732 #define DO_DETACH 0x8 4733 4734 /* Update task and its cfs_rq load average */ 4735 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4736 { 4737 u64 now = cfs_rq_clock_pelt(cfs_rq); 4738 int decayed; 4739 4740 /* 4741 * Track task load average for carrying it to new CPU after migrated, and 4742 * track group sched_entity load average for task_h_load calc in migration 4743 */ 4744 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4745 __update_load_avg_se(now, cfs_rq, se); 4746 4747 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4748 decayed |= propagate_entity_load_avg(se); 4749 4750 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4751 4752 /* 4753 * DO_ATTACH means we're here from enqueue_entity(). 4754 * !last_update_time means we've passed through 4755 * migrate_task_rq_fair() indicating we migrated. 4756 * 4757 * IOW we're enqueueing a task on a new CPU. 4758 */ 4759 attach_entity_load_avg(cfs_rq, se); 4760 update_tg_load_avg(cfs_rq); 4761 4762 } else if (flags & DO_DETACH) { 4763 /* 4764 * DO_DETACH means we're here from dequeue_entity() 4765 * and we are migrating task out of the CPU. 4766 */ 4767 detach_entity_load_avg(cfs_rq, se); 4768 update_tg_load_avg(cfs_rq); 4769 } else if (decayed) { 4770 cfs_rq_util_change(cfs_rq, 0); 4771 4772 if (flags & UPDATE_TG) 4773 update_tg_load_avg(cfs_rq); 4774 } 4775 } 4776 4777 /* 4778 * Synchronize entity load avg of dequeued entity without locking 4779 * the previous rq. 4780 */ 4781 static void sync_entity_load_avg(struct sched_entity *se) 4782 { 4783 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4784 u64 last_update_time; 4785 4786 last_update_time = cfs_rq_last_update_time(cfs_rq); 4787 __update_load_avg_blocked_se(last_update_time, se); 4788 } 4789 4790 /* 4791 * Task first catches up with cfs_rq, and then subtract 4792 * itself from the cfs_rq (task must be off the queue now). 4793 */ 4794 static void remove_entity_load_avg(struct sched_entity *se) 4795 { 4796 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4797 unsigned long flags; 4798 4799 /* 4800 * tasks cannot exit without having gone through wake_up_new_task() -> 4801 * enqueue_task_fair() which will have added things to the cfs_rq, 4802 * so we can remove unconditionally. 4803 */ 4804 4805 sync_entity_load_avg(se); 4806 4807 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4808 ++cfs_rq->removed.nr; 4809 cfs_rq->removed.util_avg += se->avg.util_avg; 4810 cfs_rq->removed.load_avg += se->avg.load_avg; 4811 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4812 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4813 } 4814 4815 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4816 { 4817 return cfs_rq->avg.runnable_avg; 4818 } 4819 4820 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4821 { 4822 return cfs_rq->avg.load_avg; 4823 } 4824 4825 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 4826 4827 static inline unsigned long task_util(struct task_struct *p) 4828 { 4829 return READ_ONCE(p->se.avg.util_avg); 4830 } 4831 4832 static inline unsigned long task_runnable(struct task_struct *p) 4833 { 4834 return READ_ONCE(p->se.avg.runnable_avg); 4835 } 4836 4837 static inline unsigned long _task_util_est(struct task_struct *p) 4838 { 4839 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4840 } 4841 4842 static inline unsigned long task_util_est(struct task_struct *p) 4843 { 4844 return max(task_util(p), _task_util_est(p)); 4845 } 4846 4847 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4848 struct task_struct *p) 4849 { 4850 unsigned int enqueued; 4851 4852 if (!sched_feat(UTIL_EST)) 4853 return; 4854 4855 /* Update root cfs_rq's estimated utilization */ 4856 enqueued = cfs_rq->avg.util_est; 4857 enqueued += _task_util_est(p); 4858 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4859 4860 trace_sched_util_est_cfs_tp(cfs_rq); 4861 } 4862 4863 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4864 struct task_struct *p) 4865 { 4866 unsigned int enqueued; 4867 4868 if (!sched_feat(UTIL_EST)) 4869 return; 4870 4871 /* Update root cfs_rq's estimated utilization */ 4872 enqueued = cfs_rq->avg.util_est; 4873 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4874 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4875 4876 trace_sched_util_est_cfs_tp(cfs_rq); 4877 } 4878 4879 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4880 4881 static inline void util_est_update(struct cfs_rq *cfs_rq, 4882 struct task_struct *p, 4883 bool task_sleep) 4884 { 4885 unsigned int ewma, dequeued, last_ewma_diff; 4886 4887 if (!sched_feat(UTIL_EST)) 4888 return; 4889 4890 /* 4891 * Skip update of task's estimated utilization when the task has not 4892 * yet completed an activation, e.g. being migrated. 4893 */ 4894 if (!task_sleep) 4895 return; 4896 4897 /* Get current estimate of utilization */ 4898 ewma = READ_ONCE(p->se.avg.util_est); 4899 4900 /* 4901 * If the PELT values haven't changed since enqueue time, 4902 * skip the util_est update. 4903 */ 4904 if (ewma & UTIL_AVG_UNCHANGED) 4905 return; 4906 4907 /* Get utilization at dequeue */ 4908 dequeued = task_util(p); 4909 4910 /* 4911 * Reset EWMA on utilization increases, the moving average is used only 4912 * to smooth utilization decreases. 4913 */ 4914 if (ewma <= dequeued) { 4915 ewma = dequeued; 4916 goto done; 4917 } 4918 4919 /* 4920 * Skip update of task's estimated utilization when its members are 4921 * already ~1% close to its last activation value. 4922 */ 4923 last_ewma_diff = ewma - dequeued; 4924 if (last_ewma_diff < UTIL_EST_MARGIN) 4925 goto done; 4926 4927 /* 4928 * To avoid overestimation of actual task utilization, skip updates if 4929 * we cannot grant there is idle time in this CPU. 4930 */ 4931 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)))) 4932 return; 4933 4934 /* 4935 * To avoid underestimate of task utilization, skip updates of EWMA if 4936 * we cannot grant that thread got all CPU time it wanted. 4937 */ 4938 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 4939 goto done; 4940 4941 4942 /* 4943 * Update Task's estimated utilization 4944 * 4945 * When *p completes an activation we can consolidate another sample 4946 * of the task size. This is done by using this value to update the 4947 * Exponential Weighted Moving Average (EWMA): 4948 * 4949 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4950 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4951 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4952 * = w * ( -last_ewma_diff ) + ewma(t-1) 4953 * = w * (-last_ewma_diff + ewma(t-1) / w) 4954 * 4955 * Where 'w' is the weight of new samples, which is configured to be 4956 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4957 */ 4958 ewma <<= UTIL_EST_WEIGHT_SHIFT; 4959 ewma -= last_ewma_diff; 4960 ewma >>= UTIL_EST_WEIGHT_SHIFT; 4961 done: 4962 ewma |= UTIL_AVG_UNCHANGED; 4963 WRITE_ONCE(p->se.avg.util_est, ewma); 4964 4965 trace_sched_util_est_se_tp(&p->se); 4966 } 4967 4968 static inline int util_fits_cpu(unsigned long util, 4969 unsigned long uclamp_min, 4970 unsigned long uclamp_max, 4971 int cpu) 4972 { 4973 unsigned long capacity_orig, capacity_orig_thermal; 4974 unsigned long capacity = capacity_of(cpu); 4975 bool fits, uclamp_max_fits; 4976 4977 /* 4978 * Check if the real util fits without any uclamp boost/cap applied. 4979 */ 4980 fits = fits_capacity(util, capacity); 4981 4982 if (!uclamp_is_used()) 4983 return fits; 4984 4985 /* 4986 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 4987 * uclamp_max. We only care about capacity pressure (by using 4988 * capacity_of()) for comparing against the real util. 4989 * 4990 * If a task is boosted to 1024 for example, we don't want a tiny 4991 * pressure to skew the check whether it fits a CPU or not. 4992 * 4993 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 4994 * should fit a little cpu even if there's some pressure. 4995 * 4996 * Only exception is for thermal pressure since it has a direct impact 4997 * on available OPP of the system. 4998 * 4999 * We honour it for uclamp_min only as a drop in performance level 5000 * could result in not getting the requested minimum performance level. 5001 * 5002 * For uclamp_max, we can tolerate a drop in performance level as the 5003 * goal is to cap the task. So it's okay if it's getting less. 5004 */ 5005 capacity_orig = arch_scale_cpu_capacity(cpu); 5006 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu); 5007 5008 /* 5009 * We want to force a task to fit a cpu as implied by uclamp_max. 5010 * But we do have some corner cases to cater for.. 5011 * 5012 * 5013 * C=z 5014 * | ___ 5015 * | C=y | | 5016 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5017 * | C=x | | | | 5018 * | ___ | | | | 5019 * | | | | | | | (util somewhere in this region) 5020 * | | | | | | | 5021 * | | | | | | | 5022 * +---------------------------------------- 5023 * cpu0 cpu1 cpu2 5024 * 5025 * In the above example if a task is capped to a specific performance 5026 * point, y, then when: 5027 * 5028 * * util = 80% of x then it does not fit on cpu0 and should migrate 5029 * to cpu1 5030 * * util = 80% of y then it is forced to fit on cpu1 to honour 5031 * uclamp_max request. 5032 * 5033 * which is what we're enforcing here. A task always fits if 5034 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5035 * the normal upmigration rules should withhold still. 5036 * 5037 * Only exception is when we are on max capacity, then we need to be 5038 * careful not to block overutilized state. This is so because: 5039 * 5040 * 1. There's no concept of capping at max_capacity! We can't go 5041 * beyond this performance level anyway. 5042 * 2. The system is being saturated when we're operating near 5043 * max capacity, it doesn't make sense to block overutilized. 5044 */ 5045 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5046 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5047 fits = fits || uclamp_max_fits; 5048 5049 /* 5050 * 5051 * C=z 5052 * | ___ (region a, capped, util >= uclamp_max) 5053 * | C=y | | 5054 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5055 * | C=x | | | | 5056 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5057 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5058 * | | | | | | | 5059 * | | | | | | | (region c, boosted, util < uclamp_min) 5060 * +---------------------------------------- 5061 * cpu0 cpu1 cpu2 5062 * 5063 * a) If util > uclamp_max, then we're capped, we don't care about 5064 * actual fitness value here. We only care if uclamp_max fits 5065 * capacity without taking margin/pressure into account. 5066 * See comment above. 5067 * 5068 * b) If uclamp_min <= util <= uclamp_max, then the normal 5069 * fits_capacity() rules apply. Except we need to ensure that we 5070 * enforce we remain within uclamp_max, see comment above. 5071 * 5072 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5073 * need to take into account the boosted value fits the CPU without 5074 * taking margin/pressure into account. 5075 * 5076 * Cases (a) and (b) are handled in the 'fits' variable already. We 5077 * just need to consider an extra check for case (c) after ensuring we 5078 * handle the case uclamp_min > uclamp_max. 5079 */ 5080 uclamp_min = min(uclamp_min, uclamp_max); 5081 if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal)) 5082 return -1; 5083 5084 return fits; 5085 } 5086 5087 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5088 { 5089 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5090 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5091 unsigned long util = task_util_est(p); 5092 /* 5093 * Return true only if the cpu fully fits the task requirements, which 5094 * include the utilization but also the performance hints. 5095 */ 5096 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5097 } 5098 5099 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5100 { 5101 if (!sched_asym_cpucap_active()) 5102 return; 5103 5104 if (!p || p->nr_cpus_allowed == 1) { 5105 rq->misfit_task_load = 0; 5106 return; 5107 } 5108 5109 if (task_fits_cpu(p, cpu_of(rq))) { 5110 rq->misfit_task_load = 0; 5111 return; 5112 } 5113 5114 /* 5115 * Make sure that misfit_task_load will not be null even if 5116 * task_h_load() returns 0. 5117 */ 5118 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5119 } 5120 5121 #else /* CONFIG_SMP */ 5122 5123 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5124 { 5125 return !cfs_rq->nr_running; 5126 } 5127 5128 #define UPDATE_TG 0x0 5129 #define SKIP_AGE_LOAD 0x0 5130 #define DO_ATTACH 0x0 5131 #define DO_DETACH 0x0 5132 5133 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5134 { 5135 cfs_rq_util_change(cfs_rq, 0); 5136 } 5137 5138 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5139 5140 static inline void 5141 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5142 static inline void 5143 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5144 5145 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 5146 { 5147 return 0; 5148 } 5149 5150 static inline void 5151 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5152 5153 static inline void 5154 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5155 5156 static inline void 5157 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5158 bool task_sleep) {} 5159 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5160 5161 #endif /* CONFIG_SMP */ 5162 5163 static void 5164 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5165 { 5166 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5167 s64 lag = 0; 5168 5169 se->slice = sysctl_sched_base_slice; 5170 vslice = calc_delta_fair(se->slice, se); 5171 5172 /* 5173 * Due to how V is constructed as the weighted average of entities, 5174 * adding tasks with positive lag, or removing tasks with negative lag 5175 * will move 'time' backwards, this can screw around with the lag of 5176 * other tasks. 5177 * 5178 * EEVDF: placement strategy #1 / #2 5179 */ 5180 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) { 5181 struct sched_entity *curr = cfs_rq->curr; 5182 unsigned long load; 5183 5184 lag = se->vlag; 5185 5186 /* 5187 * If we want to place a task and preserve lag, we have to 5188 * consider the effect of the new entity on the weighted 5189 * average and compensate for this, otherwise lag can quickly 5190 * evaporate. 5191 * 5192 * Lag is defined as: 5193 * 5194 * lag_i = S - s_i = w_i * (V - v_i) 5195 * 5196 * To avoid the 'w_i' term all over the place, we only track 5197 * the virtual lag: 5198 * 5199 * vl_i = V - v_i <=> v_i = V - vl_i 5200 * 5201 * And we take V to be the weighted average of all v: 5202 * 5203 * V = (\Sum w_j*v_j) / W 5204 * 5205 * Where W is: \Sum w_j 5206 * 5207 * Then, the weighted average after adding an entity with lag 5208 * vl_i is given by: 5209 * 5210 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5211 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5212 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5213 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5214 * = V - w_i*vl_i / (W + w_i) 5215 * 5216 * And the actual lag after adding an entity with vl_i is: 5217 * 5218 * vl'_i = V' - v_i 5219 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5220 * = vl_i - w_i*vl_i / (W + w_i) 5221 * 5222 * Which is strictly less than vl_i. So in order to preserve lag 5223 * we should inflate the lag before placement such that the 5224 * effective lag after placement comes out right. 5225 * 5226 * As such, invert the above relation for vl'_i to get the vl_i 5227 * we need to use such that the lag after placement is the lag 5228 * we computed before dequeue. 5229 * 5230 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5231 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5232 * 5233 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5234 * = W*vl_i 5235 * 5236 * vl_i = (W + w_i)*vl'_i / W 5237 */ 5238 load = cfs_rq->avg_load; 5239 if (curr && curr->on_rq) 5240 load += scale_load_down(curr->load.weight); 5241 5242 lag *= load + scale_load_down(se->load.weight); 5243 if (WARN_ON_ONCE(!load)) 5244 load = 1; 5245 lag = div_s64(lag, load); 5246 } 5247 5248 se->vruntime = vruntime - lag; 5249 5250 /* 5251 * When joining the competition; the exisiting tasks will be, 5252 * on average, halfway through their slice, as such start tasks 5253 * off with half a slice to ease into the competition. 5254 */ 5255 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5256 vslice /= 2; 5257 5258 /* 5259 * EEVDF: vd_i = ve_i + r_i/w_i 5260 */ 5261 se->deadline = se->vruntime + vslice; 5262 } 5263 5264 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5265 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5266 5267 static inline bool cfs_bandwidth_used(void); 5268 5269 static void 5270 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5271 { 5272 bool curr = cfs_rq->curr == se; 5273 5274 /* 5275 * If we're the current task, we must renormalise before calling 5276 * update_curr(). 5277 */ 5278 if (curr) 5279 place_entity(cfs_rq, se, flags); 5280 5281 update_curr(cfs_rq); 5282 5283 /* 5284 * When enqueuing a sched_entity, we must: 5285 * - Update loads to have both entity and cfs_rq synced with now. 5286 * - For group_entity, update its runnable_weight to reflect the new 5287 * h_nr_running of its group cfs_rq. 5288 * - For group_entity, update its weight to reflect the new share of 5289 * its group cfs_rq 5290 * - Add its new weight to cfs_rq->load.weight 5291 */ 5292 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5293 se_update_runnable(se); 5294 /* 5295 * XXX update_load_avg() above will have attached us to the pelt sum; 5296 * but update_cfs_group() here will re-adjust the weight and have to 5297 * undo/redo all that. Seems wasteful. 5298 */ 5299 update_cfs_group(se); 5300 5301 /* 5302 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5303 * we can place the entity. 5304 */ 5305 if (!curr) 5306 place_entity(cfs_rq, se, flags); 5307 5308 account_entity_enqueue(cfs_rq, se); 5309 5310 /* Entity has migrated, no longer consider this task hot */ 5311 if (flags & ENQUEUE_MIGRATED) 5312 se->exec_start = 0; 5313 5314 check_schedstat_required(); 5315 update_stats_enqueue_fair(cfs_rq, se, flags); 5316 if (!curr) 5317 __enqueue_entity(cfs_rq, se); 5318 se->on_rq = 1; 5319 5320 if (cfs_rq->nr_running == 1) { 5321 check_enqueue_throttle(cfs_rq); 5322 if (!throttled_hierarchy(cfs_rq)) { 5323 list_add_leaf_cfs_rq(cfs_rq); 5324 } else { 5325 #ifdef CONFIG_CFS_BANDWIDTH 5326 struct rq *rq = rq_of(cfs_rq); 5327 5328 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5329 cfs_rq->throttled_clock = rq_clock(rq); 5330 if (!cfs_rq->throttled_clock_self) 5331 cfs_rq->throttled_clock_self = rq_clock(rq); 5332 #endif 5333 } 5334 } 5335 } 5336 5337 static void __clear_buddies_next(struct sched_entity *se) 5338 { 5339 for_each_sched_entity(se) { 5340 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5341 if (cfs_rq->next != se) 5342 break; 5343 5344 cfs_rq->next = NULL; 5345 } 5346 } 5347 5348 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5349 { 5350 if (cfs_rq->next == se) 5351 __clear_buddies_next(se); 5352 } 5353 5354 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5355 5356 static void 5357 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5358 { 5359 int action = UPDATE_TG; 5360 5361 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5362 action |= DO_DETACH; 5363 5364 /* 5365 * Update run-time statistics of the 'current'. 5366 */ 5367 update_curr(cfs_rq); 5368 5369 /* 5370 * When dequeuing a sched_entity, we must: 5371 * - Update loads to have both entity and cfs_rq synced with now. 5372 * - For group_entity, update its runnable_weight to reflect the new 5373 * h_nr_running of its group cfs_rq. 5374 * - Subtract its previous weight from cfs_rq->load.weight. 5375 * - For group entity, update its weight to reflect the new share 5376 * of its group cfs_rq. 5377 */ 5378 update_load_avg(cfs_rq, se, action); 5379 se_update_runnable(se); 5380 5381 update_stats_dequeue_fair(cfs_rq, se, flags); 5382 5383 clear_buddies(cfs_rq, se); 5384 5385 update_entity_lag(cfs_rq, se); 5386 if (se != cfs_rq->curr) 5387 __dequeue_entity(cfs_rq, se); 5388 se->on_rq = 0; 5389 account_entity_dequeue(cfs_rq, se); 5390 5391 /* return excess runtime on last dequeue */ 5392 return_cfs_rq_runtime(cfs_rq); 5393 5394 update_cfs_group(se); 5395 5396 /* 5397 * Now advance min_vruntime if @se was the entity holding it back, 5398 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5399 * put back on, and if we advance min_vruntime, we'll be placed back 5400 * further than we started -- ie. we'll be penalized. 5401 */ 5402 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5403 update_min_vruntime(cfs_rq); 5404 5405 if (cfs_rq->nr_running == 0) 5406 update_idle_cfs_rq_clock_pelt(cfs_rq); 5407 } 5408 5409 static void 5410 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5411 { 5412 clear_buddies(cfs_rq, se); 5413 5414 /* 'current' is not kept within the tree. */ 5415 if (se->on_rq) { 5416 /* 5417 * Any task has to be enqueued before it get to execute on 5418 * a CPU. So account for the time it spent waiting on the 5419 * runqueue. 5420 */ 5421 update_stats_wait_end_fair(cfs_rq, se); 5422 __dequeue_entity(cfs_rq, se); 5423 update_load_avg(cfs_rq, se, UPDATE_TG); 5424 /* 5425 * HACK, stash a copy of deadline at the point of pick in vlag, 5426 * which isn't used until dequeue. 5427 */ 5428 se->vlag = se->deadline; 5429 } 5430 5431 update_stats_curr_start(cfs_rq, se); 5432 cfs_rq->curr = se; 5433 5434 /* 5435 * Track our maximum slice length, if the CPU's load is at 5436 * least twice that of our own weight (i.e. dont track it 5437 * when there are only lesser-weight tasks around): 5438 */ 5439 if (schedstat_enabled() && 5440 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5441 struct sched_statistics *stats; 5442 5443 stats = __schedstats_from_se(se); 5444 __schedstat_set(stats->slice_max, 5445 max((u64)stats->slice_max, 5446 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5447 } 5448 5449 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5450 } 5451 5452 /* 5453 * Pick the next process, keeping these things in mind, in this order: 5454 * 1) keep things fair between processes/task groups 5455 * 2) pick the "next" process, since someone really wants that to run 5456 * 3) pick the "last" process, for cache locality 5457 * 4) do not run the "skip" process, if something else is available 5458 */ 5459 static struct sched_entity * 5460 pick_next_entity(struct cfs_rq *cfs_rq) 5461 { 5462 /* 5463 * Enabling NEXT_BUDDY will affect latency but not fairness. 5464 */ 5465 if (sched_feat(NEXT_BUDDY) && 5466 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) 5467 return cfs_rq->next; 5468 5469 return pick_eevdf(cfs_rq); 5470 } 5471 5472 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5473 5474 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5475 { 5476 /* 5477 * If still on the runqueue then deactivate_task() 5478 * was not called and update_curr() has to be done: 5479 */ 5480 if (prev->on_rq) 5481 update_curr(cfs_rq); 5482 5483 /* throttle cfs_rqs exceeding runtime */ 5484 check_cfs_rq_runtime(cfs_rq); 5485 5486 if (prev->on_rq) { 5487 update_stats_wait_start_fair(cfs_rq, prev); 5488 /* Put 'current' back into the tree. */ 5489 __enqueue_entity(cfs_rq, prev); 5490 /* in !on_rq case, update occurred at dequeue */ 5491 update_load_avg(cfs_rq, prev, 0); 5492 } 5493 cfs_rq->curr = NULL; 5494 } 5495 5496 static void 5497 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5498 { 5499 /* 5500 * Update run-time statistics of the 'current'. 5501 */ 5502 update_curr(cfs_rq); 5503 5504 /* 5505 * Ensure that runnable average is periodically updated. 5506 */ 5507 update_load_avg(cfs_rq, curr, UPDATE_TG); 5508 update_cfs_group(curr); 5509 5510 #ifdef CONFIG_SCHED_HRTICK 5511 /* 5512 * queued ticks are scheduled to match the slice, so don't bother 5513 * validating it and just reschedule. 5514 */ 5515 if (queued) { 5516 resched_curr(rq_of(cfs_rq)); 5517 return; 5518 } 5519 /* 5520 * don't let the period tick interfere with the hrtick preemption 5521 */ 5522 if (!sched_feat(DOUBLE_TICK) && 5523 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5524 return; 5525 #endif 5526 } 5527 5528 5529 /************************************************** 5530 * CFS bandwidth control machinery 5531 */ 5532 5533 #ifdef CONFIG_CFS_BANDWIDTH 5534 5535 #ifdef CONFIG_JUMP_LABEL 5536 static struct static_key __cfs_bandwidth_used; 5537 5538 static inline bool cfs_bandwidth_used(void) 5539 { 5540 return static_key_false(&__cfs_bandwidth_used); 5541 } 5542 5543 void cfs_bandwidth_usage_inc(void) 5544 { 5545 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5546 } 5547 5548 void cfs_bandwidth_usage_dec(void) 5549 { 5550 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5551 } 5552 #else /* CONFIG_JUMP_LABEL */ 5553 static bool cfs_bandwidth_used(void) 5554 { 5555 return true; 5556 } 5557 5558 void cfs_bandwidth_usage_inc(void) {} 5559 void cfs_bandwidth_usage_dec(void) {} 5560 #endif /* CONFIG_JUMP_LABEL */ 5561 5562 /* 5563 * default period for cfs group bandwidth. 5564 * default: 0.1s, units: nanoseconds 5565 */ 5566 static inline u64 default_cfs_period(void) 5567 { 5568 return 100000000ULL; 5569 } 5570 5571 static inline u64 sched_cfs_bandwidth_slice(void) 5572 { 5573 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5574 } 5575 5576 /* 5577 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5578 * directly instead of rq->clock to avoid adding additional synchronization 5579 * around rq->lock. 5580 * 5581 * requires cfs_b->lock 5582 */ 5583 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5584 { 5585 s64 runtime; 5586 5587 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5588 return; 5589 5590 cfs_b->runtime += cfs_b->quota; 5591 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5592 if (runtime > 0) { 5593 cfs_b->burst_time += runtime; 5594 cfs_b->nr_burst++; 5595 } 5596 5597 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5598 cfs_b->runtime_snap = cfs_b->runtime; 5599 } 5600 5601 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5602 { 5603 return &tg->cfs_bandwidth; 5604 } 5605 5606 /* returns 0 on failure to allocate runtime */ 5607 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5608 struct cfs_rq *cfs_rq, u64 target_runtime) 5609 { 5610 u64 min_amount, amount = 0; 5611 5612 lockdep_assert_held(&cfs_b->lock); 5613 5614 /* note: this is a positive sum as runtime_remaining <= 0 */ 5615 min_amount = target_runtime - cfs_rq->runtime_remaining; 5616 5617 if (cfs_b->quota == RUNTIME_INF) 5618 amount = min_amount; 5619 else { 5620 start_cfs_bandwidth(cfs_b); 5621 5622 if (cfs_b->runtime > 0) { 5623 amount = min(cfs_b->runtime, min_amount); 5624 cfs_b->runtime -= amount; 5625 cfs_b->idle = 0; 5626 } 5627 } 5628 5629 cfs_rq->runtime_remaining += amount; 5630 5631 return cfs_rq->runtime_remaining > 0; 5632 } 5633 5634 /* returns 0 on failure to allocate runtime */ 5635 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5636 { 5637 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5638 int ret; 5639 5640 raw_spin_lock(&cfs_b->lock); 5641 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5642 raw_spin_unlock(&cfs_b->lock); 5643 5644 return ret; 5645 } 5646 5647 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5648 { 5649 /* dock delta_exec before expiring quota (as it could span periods) */ 5650 cfs_rq->runtime_remaining -= delta_exec; 5651 5652 if (likely(cfs_rq->runtime_remaining > 0)) 5653 return; 5654 5655 if (cfs_rq->throttled) 5656 return; 5657 /* 5658 * if we're unable to extend our runtime we resched so that the active 5659 * hierarchy can be throttled 5660 */ 5661 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5662 resched_curr(rq_of(cfs_rq)); 5663 } 5664 5665 static __always_inline 5666 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5667 { 5668 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5669 return; 5670 5671 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5672 } 5673 5674 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5675 { 5676 return cfs_bandwidth_used() && cfs_rq->throttled; 5677 } 5678 5679 /* check whether cfs_rq, or any parent, is throttled */ 5680 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5681 { 5682 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5683 } 5684 5685 /* 5686 * Ensure that neither of the group entities corresponding to src_cpu or 5687 * dest_cpu are members of a throttled hierarchy when performing group 5688 * load-balance operations. 5689 */ 5690 static inline int throttled_lb_pair(struct task_group *tg, 5691 int src_cpu, int dest_cpu) 5692 { 5693 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5694 5695 src_cfs_rq = tg->cfs_rq[src_cpu]; 5696 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5697 5698 return throttled_hierarchy(src_cfs_rq) || 5699 throttled_hierarchy(dest_cfs_rq); 5700 } 5701 5702 static int tg_unthrottle_up(struct task_group *tg, void *data) 5703 { 5704 struct rq *rq = data; 5705 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5706 5707 cfs_rq->throttle_count--; 5708 if (!cfs_rq->throttle_count) { 5709 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5710 cfs_rq->throttled_clock_pelt; 5711 5712 /* Add cfs_rq with load or one or more already running entities to the list */ 5713 if (!cfs_rq_is_decayed(cfs_rq)) 5714 list_add_leaf_cfs_rq(cfs_rq); 5715 5716 if (cfs_rq->throttled_clock_self) { 5717 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5718 5719 cfs_rq->throttled_clock_self = 0; 5720 5721 if (SCHED_WARN_ON((s64)delta < 0)) 5722 delta = 0; 5723 5724 cfs_rq->throttled_clock_self_time += delta; 5725 } 5726 } 5727 5728 return 0; 5729 } 5730 5731 static int tg_throttle_down(struct task_group *tg, void *data) 5732 { 5733 struct rq *rq = data; 5734 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5735 5736 /* group is entering throttled state, stop time */ 5737 if (!cfs_rq->throttle_count) { 5738 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5739 list_del_leaf_cfs_rq(cfs_rq); 5740 5741 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5742 if (cfs_rq->nr_running) 5743 cfs_rq->throttled_clock_self = rq_clock(rq); 5744 } 5745 cfs_rq->throttle_count++; 5746 5747 return 0; 5748 } 5749 5750 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5751 { 5752 struct rq *rq = rq_of(cfs_rq); 5753 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5754 struct sched_entity *se; 5755 long task_delta, idle_task_delta, dequeue = 1; 5756 5757 raw_spin_lock(&cfs_b->lock); 5758 /* This will start the period timer if necessary */ 5759 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5760 /* 5761 * We have raced with bandwidth becoming available, and if we 5762 * actually throttled the timer might not unthrottle us for an 5763 * entire period. We additionally needed to make sure that any 5764 * subsequent check_cfs_rq_runtime calls agree not to throttle 5765 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5766 * for 1ns of runtime rather than just check cfs_b. 5767 */ 5768 dequeue = 0; 5769 } else { 5770 list_add_tail_rcu(&cfs_rq->throttled_list, 5771 &cfs_b->throttled_cfs_rq); 5772 } 5773 raw_spin_unlock(&cfs_b->lock); 5774 5775 if (!dequeue) 5776 return false; /* Throttle no longer required. */ 5777 5778 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5779 5780 /* freeze hierarchy runnable averages while throttled */ 5781 rcu_read_lock(); 5782 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5783 rcu_read_unlock(); 5784 5785 task_delta = cfs_rq->h_nr_running; 5786 idle_task_delta = cfs_rq->idle_h_nr_running; 5787 for_each_sched_entity(se) { 5788 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5789 /* throttled entity or throttle-on-deactivate */ 5790 if (!se->on_rq) 5791 goto done; 5792 5793 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5794 5795 if (cfs_rq_is_idle(group_cfs_rq(se))) 5796 idle_task_delta = cfs_rq->h_nr_running; 5797 5798 qcfs_rq->h_nr_running -= task_delta; 5799 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5800 5801 if (qcfs_rq->load.weight) { 5802 /* Avoid re-evaluating load for this entity: */ 5803 se = parent_entity(se); 5804 break; 5805 } 5806 } 5807 5808 for_each_sched_entity(se) { 5809 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5810 /* throttled entity or throttle-on-deactivate */ 5811 if (!se->on_rq) 5812 goto done; 5813 5814 update_load_avg(qcfs_rq, se, 0); 5815 se_update_runnable(se); 5816 5817 if (cfs_rq_is_idle(group_cfs_rq(se))) 5818 idle_task_delta = cfs_rq->h_nr_running; 5819 5820 qcfs_rq->h_nr_running -= task_delta; 5821 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5822 } 5823 5824 /* At this point se is NULL and we are at root level*/ 5825 sub_nr_running(rq, task_delta); 5826 5827 done: 5828 /* 5829 * Note: distribution will already see us throttled via the 5830 * throttled-list. rq->lock protects completion. 5831 */ 5832 cfs_rq->throttled = 1; 5833 SCHED_WARN_ON(cfs_rq->throttled_clock); 5834 if (cfs_rq->nr_running) 5835 cfs_rq->throttled_clock = rq_clock(rq); 5836 return true; 5837 } 5838 5839 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5840 { 5841 struct rq *rq = rq_of(cfs_rq); 5842 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5843 struct sched_entity *se; 5844 long task_delta, idle_task_delta; 5845 5846 se = cfs_rq->tg->se[cpu_of(rq)]; 5847 5848 cfs_rq->throttled = 0; 5849 5850 update_rq_clock(rq); 5851 5852 raw_spin_lock(&cfs_b->lock); 5853 if (cfs_rq->throttled_clock) { 5854 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5855 cfs_rq->throttled_clock = 0; 5856 } 5857 list_del_rcu(&cfs_rq->throttled_list); 5858 raw_spin_unlock(&cfs_b->lock); 5859 5860 /* update hierarchical throttle state */ 5861 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5862 5863 if (!cfs_rq->load.weight) { 5864 if (!cfs_rq->on_list) 5865 return; 5866 /* 5867 * Nothing to run but something to decay (on_list)? 5868 * Complete the branch. 5869 */ 5870 for_each_sched_entity(se) { 5871 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5872 break; 5873 } 5874 goto unthrottle_throttle; 5875 } 5876 5877 task_delta = cfs_rq->h_nr_running; 5878 idle_task_delta = cfs_rq->idle_h_nr_running; 5879 for_each_sched_entity(se) { 5880 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5881 5882 if (se->on_rq) 5883 break; 5884 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5885 5886 if (cfs_rq_is_idle(group_cfs_rq(se))) 5887 idle_task_delta = cfs_rq->h_nr_running; 5888 5889 qcfs_rq->h_nr_running += task_delta; 5890 qcfs_rq->idle_h_nr_running += idle_task_delta; 5891 5892 /* end evaluation on encountering a throttled cfs_rq */ 5893 if (cfs_rq_throttled(qcfs_rq)) 5894 goto unthrottle_throttle; 5895 } 5896 5897 for_each_sched_entity(se) { 5898 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5899 5900 update_load_avg(qcfs_rq, se, UPDATE_TG); 5901 se_update_runnable(se); 5902 5903 if (cfs_rq_is_idle(group_cfs_rq(se))) 5904 idle_task_delta = cfs_rq->h_nr_running; 5905 5906 qcfs_rq->h_nr_running += task_delta; 5907 qcfs_rq->idle_h_nr_running += idle_task_delta; 5908 5909 /* end evaluation on encountering a throttled cfs_rq */ 5910 if (cfs_rq_throttled(qcfs_rq)) 5911 goto unthrottle_throttle; 5912 } 5913 5914 /* At this point se is NULL and we are at root level*/ 5915 add_nr_running(rq, task_delta); 5916 5917 unthrottle_throttle: 5918 assert_list_leaf_cfs_rq(rq); 5919 5920 /* Determine whether we need to wake up potentially idle CPU: */ 5921 if (rq->curr == rq->idle && rq->cfs.nr_running) 5922 resched_curr(rq); 5923 } 5924 5925 #ifdef CONFIG_SMP 5926 static void __cfsb_csd_unthrottle(void *arg) 5927 { 5928 struct cfs_rq *cursor, *tmp; 5929 struct rq *rq = arg; 5930 struct rq_flags rf; 5931 5932 rq_lock(rq, &rf); 5933 5934 /* 5935 * Iterating over the list can trigger several call to 5936 * update_rq_clock() in unthrottle_cfs_rq(). 5937 * Do it once and skip the potential next ones. 5938 */ 5939 update_rq_clock(rq); 5940 rq_clock_start_loop_update(rq); 5941 5942 /* 5943 * Since we hold rq lock we're safe from concurrent manipulation of 5944 * the CSD list. However, this RCU critical section annotates the 5945 * fact that we pair with sched_free_group_rcu(), so that we cannot 5946 * race with group being freed in the window between removing it 5947 * from the list and advancing to the next entry in the list. 5948 */ 5949 rcu_read_lock(); 5950 5951 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 5952 throttled_csd_list) { 5953 list_del_init(&cursor->throttled_csd_list); 5954 5955 if (cfs_rq_throttled(cursor)) 5956 unthrottle_cfs_rq(cursor); 5957 } 5958 5959 rcu_read_unlock(); 5960 5961 rq_clock_stop_loop_update(rq); 5962 rq_unlock(rq, &rf); 5963 } 5964 5965 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5966 { 5967 struct rq *rq = rq_of(cfs_rq); 5968 bool first; 5969 5970 if (rq == this_rq()) { 5971 unthrottle_cfs_rq(cfs_rq); 5972 return; 5973 } 5974 5975 /* Already enqueued */ 5976 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 5977 return; 5978 5979 first = list_empty(&rq->cfsb_csd_list); 5980 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 5981 if (first) 5982 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 5983 } 5984 #else 5985 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5986 { 5987 unthrottle_cfs_rq(cfs_rq); 5988 } 5989 #endif 5990 5991 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5992 { 5993 lockdep_assert_rq_held(rq_of(cfs_rq)); 5994 5995 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 5996 cfs_rq->runtime_remaining <= 0)) 5997 return; 5998 5999 __unthrottle_cfs_rq_async(cfs_rq); 6000 } 6001 6002 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6003 { 6004 int this_cpu = smp_processor_id(); 6005 u64 runtime, remaining = 1; 6006 bool throttled = false; 6007 struct cfs_rq *cfs_rq, *tmp; 6008 struct rq_flags rf; 6009 struct rq *rq; 6010 LIST_HEAD(local_unthrottle); 6011 6012 rcu_read_lock(); 6013 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6014 throttled_list) { 6015 rq = rq_of(cfs_rq); 6016 6017 if (!remaining) { 6018 throttled = true; 6019 break; 6020 } 6021 6022 rq_lock_irqsave(rq, &rf); 6023 if (!cfs_rq_throttled(cfs_rq)) 6024 goto next; 6025 6026 /* Already queued for async unthrottle */ 6027 if (!list_empty(&cfs_rq->throttled_csd_list)) 6028 goto next; 6029 6030 /* By the above checks, this should never be true */ 6031 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 6032 6033 raw_spin_lock(&cfs_b->lock); 6034 runtime = -cfs_rq->runtime_remaining + 1; 6035 if (runtime > cfs_b->runtime) 6036 runtime = cfs_b->runtime; 6037 cfs_b->runtime -= runtime; 6038 remaining = cfs_b->runtime; 6039 raw_spin_unlock(&cfs_b->lock); 6040 6041 cfs_rq->runtime_remaining += runtime; 6042 6043 /* we check whether we're throttled above */ 6044 if (cfs_rq->runtime_remaining > 0) { 6045 if (cpu_of(rq) != this_cpu) { 6046 unthrottle_cfs_rq_async(cfs_rq); 6047 } else { 6048 /* 6049 * We currently only expect to be unthrottling 6050 * a single cfs_rq locally. 6051 */ 6052 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6053 list_add_tail(&cfs_rq->throttled_csd_list, 6054 &local_unthrottle); 6055 } 6056 } else { 6057 throttled = true; 6058 } 6059 6060 next: 6061 rq_unlock_irqrestore(rq, &rf); 6062 } 6063 6064 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6065 throttled_csd_list) { 6066 struct rq *rq = rq_of(cfs_rq); 6067 6068 rq_lock_irqsave(rq, &rf); 6069 6070 list_del_init(&cfs_rq->throttled_csd_list); 6071 6072 if (cfs_rq_throttled(cfs_rq)) 6073 unthrottle_cfs_rq(cfs_rq); 6074 6075 rq_unlock_irqrestore(rq, &rf); 6076 } 6077 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6078 6079 rcu_read_unlock(); 6080 6081 return throttled; 6082 } 6083 6084 /* 6085 * Responsible for refilling a task_group's bandwidth and unthrottling its 6086 * cfs_rqs as appropriate. If there has been no activity within the last 6087 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6088 * used to track this state. 6089 */ 6090 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6091 { 6092 int throttled; 6093 6094 /* no need to continue the timer with no bandwidth constraint */ 6095 if (cfs_b->quota == RUNTIME_INF) 6096 goto out_deactivate; 6097 6098 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6099 cfs_b->nr_periods += overrun; 6100 6101 /* Refill extra burst quota even if cfs_b->idle */ 6102 __refill_cfs_bandwidth_runtime(cfs_b); 6103 6104 /* 6105 * idle depends on !throttled (for the case of a large deficit), and if 6106 * we're going inactive then everything else can be deferred 6107 */ 6108 if (cfs_b->idle && !throttled) 6109 goto out_deactivate; 6110 6111 if (!throttled) { 6112 /* mark as potentially idle for the upcoming period */ 6113 cfs_b->idle = 1; 6114 return 0; 6115 } 6116 6117 /* account preceding periods in which throttling occurred */ 6118 cfs_b->nr_throttled += overrun; 6119 6120 /* 6121 * This check is repeated as we release cfs_b->lock while we unthrottle. 6122 */ 6123 while (throttled && cfs_b->runtime > 0) { 6124 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6125 /* we can't nest cfs_b->lock while distributing bandwidth */ 6126 throttled = distribute_cfs_runtime(cfs_b); 6127 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6128 } 6129 6130 /* 6131 * While we are ensured activity in the period following an 6132 * unthrottle, this also covers the case in which the new bandwidth is 6133 * insufficient to cover the existing bandwidth deficit. (Forcing the 6134 * timer to remain active while there are any throttled entities.) 6135 */ 6136 cfs_b->idle = 0; 6137 6138 return 0; 6139 6140 out_deactivate: 6141 return 1; 6142 } 6143 6144 /* a cfs_rq won't donate quota below this amount */ 6145 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6146 /* minimum remaining period time to redistribute slack quota */ 6147 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6148 /* how long we wait to gather additional slack before distributing */ 6149 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6150 6151 /* 6152 * Are we near the end of the current quota period? 6153 * 6154 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6155 * hrtimer base being cleared by hrtimer_start. In the case of 6156 * migrate_hrtimers, base is never cleared, so we are fine. 6157 */ 6158 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6159 { 6160 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6161 s64 remaining; 6162 6163 /* if the call-back is running a quota refresh is already occurring */ 6164 if (hrtimer_callback_running(refresh_timer)) 6165 return 1; 6166 6167 /* is a quota refresh about to occur? */ 6168 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6169 if (remaining < (s64)min_expire) 6170 return 1; 6171 6172 return 0; 6173 } 6174 6175 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6176 { 6177 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6178 6179 /* if there's a quota refresh soon don't bother with slack */ 6180 if (runtime_refresh_within(cfs_b, min_left)) 6181 return; 6182 6183 /* don't push forwards an existing deferred unthrottle */ 6184 if (cfs_b->slack_started) 6185 return; 6186 cfs_b->slack_started = true; 6187 6188 hrtimer_start(&cfs_b->slack_timer, 6189 ns_to_ktime(cfs_bandwidth_slack_period), 6190 HRTIMER_MODE_REL); 6191 } 6192 6193 /* we know any runtime found here is valid as update_curr() precedes return */ 6194 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6195 { 6196 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6197 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6198 6199 if (slack_runtime <= 0) 6200 return; 6201 6202 raw_spin_lock(&cfs_b->lock); 6203 if (cfs_b->quota != RUNTIME_INF) { 6204 cfs_b->runtime += slack_runtime; 6205 6206 /* we are under rq->lock, defer unthrottling using a timer */ 6207 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6208 !list_empty(&cfs_b->throttled_cfs_rq)) 6209 start_cfs_slack_bandwidth(cfs_b); 6210 } 6211 raw_spin_unlock(&cfs_b->lock); 6212 6213 /* even if it's not valid for return we don't want to try again */ 6214 cfs_rq->runtime_remaining -= slack_runtime; 6215 } 6216 6217 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6218 { 6219 if (!cfs_bandwidth_used()) 6220 return; 6221 6222 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 6223 return; 6224 6225 __return_cfs_rq_runtime(cfs_rq); 6226 } 6227 6228 /* 6229 * This is done with a timer (instead of inline with bandwidth return) since 6230 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6231 */ 6232 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6233 { 6234 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6235 unsigned long flags; 6236 6237 /* confirm we're still not at a refresh boundary */ 6238 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6239 cfs_b->slack_started = false; 6240 6241 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6242 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6243 return; 6244 } 6245 6246 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6247 runtime = cfs_b->runtime; 6248 6249 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6250 6251 if (!runtime) 6252 return; 6253 6254 distribute_cfs_runtime(cfs_b); 6255 } 6256 6257 /* 6258 * When a group wakes up we want to make sure that its quota is not already 6259 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6260 * runtime as update_curr() throttling can not trigger until it's on-rq. 6261 */ 6262 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6263 { 6264 if (!cfs_bandwidth_used()) 6265 return; 6266 6267 /* an active group must be handled by the update_curr()->put() path */ 6268 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6269 return; 6270 6271 /* ensure the group is not already throttled */ 6272 if (cfs_rq_throttled(cfs_rq)) 6273 return; 6274 6275 /* update runtime allocation */ 6276 account_cfs_rq_runtime(cfs_rq, 0); 6277 if (cfs_rq->runtime_remaining <= 0) 6278 throttle_cfs_rq(cfs_rq); 6279 } 6280 6281 static void sync_throttle(struct task_group *tg, int cpu) 6282 { 6283 struct cfs_rq *pcfs_rq, *cfs_rq; 6284 6285 if (!cfs_bandwidth_used()) 6286 return; 6287 6288 if (!tg->parent) 6289 return; 6290 6291 cfs_rq = tg->cfs_rq[cpu]; 6292 pcfs_rq = tg->parent->cfs_rq[cpu]; 6293 6294 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6295 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6296 } 6297 6298 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6299 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6300 { 6301 if (!cfs_bandwidth_used()) 6302 return false; 6303 6304 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6305 return false; 6306 6307 /* 6308 * it's possible for a throttled entity to be forced into a running 6309 * state (e.g. set_curr_task), in this case we're finished. 6310 */ 6311 if (cfs_rq_throttled(cfs_rq)) 6312 return true; 6313 6314 return throttle_cfs_rq(cfs_rq); 6315 } 6316 6317 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6318 { 6319 struct cfs_bandwidth *cfs_b = 6320 container_of(timer, struct cfs_bandwidth, slack_timer); 6321 6322 do_sched_cfs_slack_timer(cfs_b); 6323 6324 return HRTIMER_NORESTART; 6325 } 6326 6327 extern const u64 max_cfs_quota_period; 6328 6329 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6330 { 6331 struct cfs_bandwidth *cfs_b = 6332 container_of(timer, struct cfs_bandwidth, period_timer); 6333 unsigned long flags; 6334 int overrun; 6335 int idle = 0; 6336 int count = 0; 6337 6338 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6339 for (;;) { 6340 overrun = hrtimer_forward_now(timer, cfs_b->period); 6341 if (!overrun) 6342 break; 6343 6344 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6345 6346 if (++count > 3) { 6347 u64 new, old = ktime_to_ns(cfs_b->period); 6348 6349 /* 6350 * Grow period by a factor of 2 to avoid losing precision. 6351 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6352 * to fail. 6353 */ 6354 new = old * 2; 6355 if (new < max_cfs_quota_period) { 6356 cfs_b->period = ns_to_ktime(new); 6357 cfs_b->quota *= 2; 6358 cfs_b->burst *= 2; 6359 6360 pr_warn_ratelimited( 6361 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6362 smp_processor_id(), 6363 div_u64(new, NSEC_PER_USEC), 6364 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6365 } else { 6366 pr_warn_ratelimited( 6367 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6368 smp_processor_id(), 6369 div_u64(old, NSEC_PER_USEC), 6370 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6371 } 6372 6373 /* reset count so we don't come right back in here */ 6374 count = 0; 6375 } 6376 } 6377 if (idle) 6378 cfs_b->period_active = 0; 6379 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6380 6381 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6382 } 6383 6384 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6385 { 6386 raw_spin_lock_init(&cfs_b->lock); 6387 cfs_b->runtime = 0; 6388 cfs_b->quota = RUNTIME_INF; 6389 cfs_b->period = ns_to_ktime(default_cfs_period()); 6390 cfs_b->burst = 0; 6391 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6392 6393 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6394 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6395 cfs_b->period_timer.function = sched_cfs_period_timer; 6396 6397 /* Add a random offset so that timers interleave */ 6398 hrtimer_set_expires(&cfs_b->period_timer, 6399 get_random_u32_below(cfs_b->period)); 6400 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6401 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6402 cfs_b->slack_started = false; 6403 } 6404 6405 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6406 { 6407 cfs_rq->runtime_enabled = 0; 6408 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6409 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6410 } 6411 6412 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6413 { 6414 lockdep_assert_held(&cfs_b->lock); 6415 6416 if (cfs_b->period_active) 6417 return; 6418 6419 cfs_b->period_active = 1; 6420 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6421 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6422 } 6423 6424 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6425 { 6426 int __maybe_unused i; 6427 6428 /* init_cfs_bandwidth() was not called */ 6429 if (!cfs_b->throttled_cfs_rq.next) 6430 return; 6431 6432 hrtimer_cancel(&cfs_b->period_timer); 6433 hrtimer_cancel(&cfs_b->slack_timer); 6434 6435 /* 6436 * It is possible that we still have some cfs_rq's pending on a CSD 6437 * list, though this race is very rare. In order for this to occur, we 6438 * must have raced with the last task leaving the group while there 6439 * exist throttled cfs_rq(s), and the period_timer must have queued the 6440 * CSD item but the remote cpu has not yet processed it. To handle this, 6441 * we can simply flush all pending CSD work inline here. We're 6442 * guaranteed at this point that no additional cfs_rq of this group can 6443 * join a CSD list. 6444 */ 6445 #ifdef CONFIG_SMP 6446 for_each_possible_cpu(i) { 6447 struct rq *rq = cpu_rq(i); 6448 unsigned long flags; 6449 6450 if (list_empty(&rq->cfsb_csd_list)) 6451 continue; 6452 6453 local_irq_save(flags); 6454 __cfsb_csd_unthrottle(rq); 6455 local_irq_restore(flags); 6456 } 6457 #endif 6458 } 6459 6460 /* 6461 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6462 * 6463 * The race is harmless, since modifying bandwidth settings of unhooked group 6464 * bits doesn't do much. 6465 */ 6466 6467 /* cpu online callback */ 6468 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6469 { 6470 struct task_group *tg; 6471 6472 lockdep_assert_rq_held(rq); 6473 6474 rcu_read_lock(); 6475 list_for_each_entry_rcu(tg, &task_groups, list) { 6476 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6477 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6478 6479 raw_spin_lock(&cfs_b->lock); 6480 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6481 raw_spin_unlock(&cfs_b->lock); 6482 } 6483 rcu_read_unlock(); 6484 } 6485 6486 /* cpu offline callback */ 6487 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6488 { 6489 struct task_group *tg; 6490 6491 lockdep_assert_rq_held(rq); 6492 6493 /* 6494 * The rq clock has already been updated in the 6495 * set_rq_offline(), so we should skip updating 6496 * the rq clock again in unthrottle_cfs_rq(). 6497 */ 6498 rq_clock_start_loop_update(rq); 6499 6500 rcu_read_lock(); 6501 list_for_each_entry_rcu(tg, &task_groups, list) { 6502 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6503 6504 if (!cfs_rq->runtime_enabled) 6505 continue; 6506 6507 /* 6508 * clock_task is not advancing so we just need to make sure 6509 * there's some valid quota amount 6510 */ 6511 cfs_rq->runtime_remaining = 1; 6512 /* 6513 * Offline rq is schedulable till CPU is completely disabled 6514 * in take_cpu_down(), so we prevent new cfs throttling here. 6515 */ 6516 cfs_rq->runtime_enabled = 0; 6517 6518 if (cfs_rq_throttled(cfs_rq)) 6519 unthrottle_cfs_rq(cfs_rq); 6520 } 6521 rcu_read_unlock(); 6522 6523 rq_clock_stop_loop_update(rq); 6524 } 6525 6526 bool cfs_task_bw_constrained(struct task_struct *p) 6527 { 6528 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6529 6530 if (!cfs_bandwidth_used()) 6531 return false; 6532 6533 if (cfs_rq->runtime_enabled || 6534 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6535 return true; 6536 6537 return false; 6538 } 6539 6540 #ifdef CONFIG_NO_HZ_FULL 6541 /* called from pick_next_task_fair() */ 6542 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6543 { 6544 int cpu = cpu_of(rq); 6545 6546 if (!sched_feat(HZ_BW) || !cfs_bandwidth_used()) 6547 return; 6548 6549 if (!tick_nohz_full_cpu(cpu)) 6550 return; 6551 6552 if (rq->nr_running != 1) 6553 return; 6554 6555 /* 6556 * We know there is only one task runnable and we've just picked it. The 6557 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6558 * be otherwise able to stop the tick. Just need to check if we are using 6559 * bandwidth control. 6560 */ 6561 if (cfs_task_bw_constrained(p)) 6562 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6563 } 6564 #endif 6565 6566 #else /* CONFIG_CFS_BANDWIDTH */ 6567 6568 static inline bool cfs_bandwidth_used(void) 6569 { 6570 return false; 6571 } 6572 6573 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6574 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6575 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6576 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6577 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6578 6579 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6580 { 6581 return 0; 6582 } 6583 6584 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6585 { 6586 return 0; 6587 } 6588 6589 static inline int throttled_lb_pair(struct task_group *tg, 6590 int src_cpu, int dest_cpu) 6591 { 6592 return 0; 6593 } 6594 6595 #ifdef CONFIG_FAIR_GROUP_SCHED 6596 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6597 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6598 #endif 6599 6600 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6601 { 6602 return NULL; 6603 } 6604 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6605 static inline void update_runtime_enabled(struct rq *rq) {} 6606 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6607 #ifdef CONFIG_CGROUP_SCHED 6608 bool cfs_task_bw_constrained(struct task_struct *p) 6609 { 6610 return false; 6611 } 6612 #endif 6613 #endif /* CONFIG_CFS_BANDWIDTH */ 6614 6615 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6616 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6617 #endif 6618 6619 /************************************************** 6620 * CFS operations on tasks: 6621 */ 6622 6623 #ifdef CONFIG_SCHED_HRTICK 6624 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6625 { 6626 struct sched_entity *se = &p->se; 6627 6628 SCHED_WARN_ON(task_rq(p) != rq); 6629 6630 if (rq->cfs.h_nr_running > 1) { 6631 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6632 u64 slice = se->slice; 6633 s64 delta = slice - ran; 6634 6635 if (delta < 0) { 6636 if (task_current(rq, p)) 6637 resched_curr(rq); 6638 return; 6639 } 6640 hrtick_start(rq, delta); 6641 } 6642 } 6643 6644 /* 6645 * called from enqueue/dequeue and updates the hrtick when the 6646 * current task is from our class and nr_running is low enough 6647 * to matter. 6648 */ 6649 static void hrtick_update(struct rq *rq) 6650 { 6651 struct task_struct *curr = rq->curr; 6652 6653 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6654 return; 6655 6656 hrtick_start_fair(rq, curr); 6657 } 6658 #else /* !CONFIG_SCHED_HRTICK */ 6659 static inline void 6660 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6661 { 6662 } 6663 6664 static inline void hrtick_update(struct rq *rq) 6665 { 6666 } 6667 #endif 6668 6669 #ifdef CONFIG_SMP 6670 static inline bool cpu_overutilized(int cpu) 6671 { 6672 unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6673 unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6674 6675 /* Return true only if the utilization doesn't fit CPU's capacity */ 6676 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6677 } 6678 6679 static inline void update_overutilized_status(struct rq *rq) 6680 { 6681 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 6682 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 6683 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 6684 } 6685 } 6686 #else 6687 static inline void update_overutilized_status(struct rq *rq) { } 6688 #endif 6689 6690 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6691 static int sched_idle_rq(struct rq *rq) 6692 { 6693 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6694 rq->nr_running); 6695 } 6696 6697 #ifdef CONFIG_SMP 6698 static int sched_idle_cpu(int cpu) 6699 { 6700 return sched_idle_rq(cpu_rq(cpu)); 6701 } 6702 #endif 6703 6704 /* 6705 * The enqueue_task method is called before nr_running is 6706 * increased. Here we update the fair scheduling stats and 6707 * then put the task into the rbtree: 6708 */ 6709 static void 6710 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6711 { 6712 struct cfs_rq *cfs_rq; 6713 struct sched_entity *se = &p->se; 6714 int idle_h_nr_running = task_has_idle_policy(p); 6715 int task_new = !(flags & ENQUEUE_WAKEUP); 6716 6717 /* 6718 * The code below (indirectly) updates schedutil which looks at 6719 * the cfs_rq utilization to select a frequency. 6720 * Let's add the task's estimated utilization to the cfs_rq's 6721 * estimated utilization, before we update schedutil. 6722 */ 6723 util_est_enqueue(&rq->cfs, p); 6724 6725 /* 6726 * If in_iowait is set, the code below may not trigger any cpufreq 6727 * utilization updates, so do it here explicitly with the IOWAIT flag 6728 * passed. 6729 */ 6730 if (p->in_iowait) 6731 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6732 6733 for_each_sched_entity(se) { 6734 if (se->on_rq) 6735 break; 6736 cfs_rq = cfs_rq_of(se); 6737 enqueue_entity(cfs_rq, se, flags); 6738 6739 cfs_rq->h_nr_running++; 6740 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6741 6742 if (cfs_rq_is_idle(cfs_rq)) 6743 idle_h_nr_running = 1; 6744 6745 /* end evaluation on encountering a throttled cfs_rq */ 6746 if (cfs_rq_throttled(cfs_rq)) 6747 goto enqueue_throttle; 6748 6749 flags = ENQUEUE_WAKEUP; 6750 } 6751 6752 for_each_sched_entity(se) { 6753 cfs_rq = cfs_rq_of(se); 6754 6755 update_load_avg(cfs_rq, se, UPDATE_TG); 6756 se_update_runnable(se); 6757 update_cfs_group(se); 6758 6759 cfs_rq->h_nr_running++; 6760 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6761 6762 if (cfs_rq_is_idle(cfs_rq)) 6763 idle_h_nr_running = 1; 6764 6765 /* end evaluation on encountering a throttled cfs_rq */ 6766 if (cfs_rq_throttled(cfs_rq)) 6767 goto enqueue_throttle; 6768 } 6769 6770 /* At this point se is NULL and we are at root level*/ 6771 add_nr_running(rq, 1); 6772 6773 /* 6774 * Since new tasks are assigned an initial util_avg equal to 6775 * half of the spare capacity of their CPU, tiny tasks have the 6776 * ability to cross the overutilized threshold, which will 6777 * result in the load balancer ruining all the task placement 6778 * done by EAS. As a way to mitigate that effect, do not account 6779 * for the first enqueue operation of new tasks during the 6780 * overutilized flag detection. 6781 * 6782 * A better way of solving this problem would be to wait for 6783 * the PELT signals of tasks to converge before taking them 6784 * into account, but that is not straightforward to implement, 6785 * and the following generally works well enough in practice. 6786 */ 6787 if (!task_new) 6788 update_overutilized_status(rq); 6789 6790 enqueue_throttle: 6791 assert_list_leaf_cfs_rq(rq); 6792 6793 hrtick_update(rq); 6794 } 6795 6796 static void set_next_buddy(struct sched_entity *se); 6797 6798 /* 6799 * The dequeue_task method is called before nr_running is 6800 * decreased. We remove the task from the rbtree and 6801 * update the fair scheduling stats: 6802 */ 6803 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6804 { 6805 struct cfs_rq *cfs_rq; 6806 struct sched_entity *se = &p->se; 6807 int task_sleep = flags & DEQUEUE_SLEEP; 6808 int idle_h_nr_running = task_has_idle_policy(p); 6809 bool was_sched_idle = sched_idle_rq(rq); 6810 6811 util_est_dequeue(&rq->cfs, p); 6812 6813 for_each_sched_entity(se) { 6814 cfs_rq = cfs_rq_of(se); 6815 dequeue_entity(cfs_rq, se, flags); 6816 6817 cfs_rq->h_nr_running--; 6818 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6819 6820 if (cfs_rq_is_idle(cfs_rq)) 6821 idle_h_nr_running = 1; 6822 6823 /* end evaluation on encountering a throttled cfs_rq */ 6824 if (cfs_rq_throttled(cfs_rq)) 6825 goto dequeue_throttle; 6826 6827 /* Don't dequeue parent if it has other entities besides us */ 6828 if (cfs_rq->load.weight) { 6829 /* Avoid re-evaluating load for this entity: */ 6830 se = parent_entity(se); 6831 /* 6832 * Bias pick_next to pick a task from this cfs_rq, as 6833 * p is sleeping when it is within its sched_slice. 6834 */ 6835 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 6836 set_next_buddy(se); 6837 break; 6838 } 6839 flags |= DEQUEUE_SLEEP; 6840 } 6841 6842 for_each_sched_entity(se) { 6843 cfs_rq = cfs_rq_of(se); 6844 6845 update_load_avg(cfs_rq, se, UPDATE_TG); 6846 se_update_runnable(se); 6847 update_cfs_group(se); 6848 6849 cfs_rq->h_nr_running--; 6850 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6851 6852 if (cfs_rq_is_idle(cfs_rq)) 6853 idle_h_nr_running = 1; 6854 6855 /* end evaluation on encountering a throttled cfs_rq */ 6856 if (cfs_rq_throttled(cfs_rq)) 6857 goto dequeue_throttle; 6858 6859 } 6860 6861 /* At this point se is NULL and we are at root level*/ 6862 sub_nr_running(rq, 1); 6863 6864 /* balance early to pull high priority tasks */ 6865 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 6866 rq->next_balance = jiffies; 6867 6868 dequeue_throttle: 6869 util_est_update(&rq->cfs, p, task_sleep); 6870 hrtick_update(rq); 6871 } 6872 6873 #ifdef CONFIG_SMP 6874 6875 /* Working cpumask for: load_balance, load_balance_newidle. */ 6876 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6877 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 6878 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 6879 6880 #ifdef CONFIG_NO_HZ_COMMON 6881 6882 static struct { 6883 cpumask_var_t idle_cpus_mask; 6884 atomic_t nr_cpus; 6885 int has_blocked; /* Idle CPUS has blocked load */ 6886 int needs_update; /* Newly idle CPUs need their next_balance collated */ 6887 unsigned long next_balance; /* in jiffy units */ 6888 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 6889 } nohz ____cacheline_aligned; 6890 6891 #endif /* CONFIG_NO_HZ_COMMON */ 6892 6893 static unsigned long cpu_load(struct rq *rq) 6894 { 6895 return cfs_rq_load_avg(&rq->cfs); 6896 } 6897 6898 /* 6899 * cpu_load_without - compute CPU load without any contributions from *p 6900 * @cpu: the CPU which load is requested 6901 * @p: the task which load should be discounted 6902 * 6903 * The load of a CPU is defined by the load of tasks currently enqueued on that 6904 * CPU as well as tasks which are currently sleeping after an execution on that 6905 * CPU. 6906 * 6907 * This method returns the load of the specified CPU by discounting the load of 6908 * the specified task, whenever the task is currently contributing to the CPU 6909 * load. 6910 */ 6911 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 6912 { 6913 struct cfs_rq *cfs_rq; 6914 unsigned int load; 6915 6916 /* Task has no contribution or is new */ 6917 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6918 return cpu_load(rq); 6919 6920 cfs_rq = &rq->cfs; 6921 load = READ_ONCE(cfs_rq->avg.load_avg); 6922 6923 /* Discount task's util from CPU's util */ 6924 lsub_positive(&load, task_h_load(p)); 6925 6926 return load; 6927 } 6928 6929 static unsigned long cpu_runnable(struct rq *rq) 6930 { 6931 return cfs_rq_runnable_avg(&rq->cfs); 6932 } 6933 6934 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 6935 { 6936 struct cfs_rq *cfs_rq; 6937 unsigned int runnable; 6938 6939 /* Task has no contribution or is new */ 6940 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6941 return cpu_runnable(rq); 6942 6943 cfs_rq = &rq->cfs; 6944 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 6945 6946 /* Discount task's runnable from CPU's runnable */ 6947 lsub_positive(&runnable, p->se.avg.runnable_avg); 6948 6949 return runnable; 6950 } 6951 6952 static unsigned long capacity_of(int cpu) 6953 { 6954 return cpu_rq(cpu)->cpu_capacity; 6955 } 6956 6957 static void record_wakee(struct task_struct *p) 6958 { 6959 /* 6960 * Only decay a single time; tasks that have less then 1 wakeup per 6961 * jiffy will not have built up many flips. 6962 */ 6963 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 6964 current->wakee_flips >>= 1; 6965 current->wakee_flip_decay_ts = jiffies; 6966 } 6967 6968 if (current->last_wakee != p) { 6969 current->last_wakee = p; 6970 current->wakee_flips++; 6971 } 6972 } 6973 6974 /* 6975 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 6976 * 6977 * A waker of many should wake a different task than the one last awakened 6978 * at a frequency roughly N times higher than one of its wakees. 6979 * 6980 * In order to determine whether we should let the load spread vs consolidating 6981 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 6982 * partner, and a factor of lls_size higher frequency in the other. 6983 * 6984 * With both conditions met, we can be relatively sure that the relationship is 6985 * non-monogamous, with partner count exceeding socket size. 6986 * 6987 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 6988 * whatever is irrelevant, spread criteria is apparent partner count exceeds 6989 * socket size. 6990 */ 6991 static int wake_wide(struct task_struct *p) 6992 { 6993 unsigned int master = current->wakee_flips; 6994 unsigned int slave = p->wakee_flips; 6995 int factor = __this_cpu_read(sd_llc_size); 6996 6997 if (master < slave) 6998 swap(master, slave); 6999 if (slave < factor || master < slave * factor) 7000 return 0; 7001 return 1; 7002 } 7003 7004 /* 7005 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7006 * soonest. For the purpose of speed we only consider the waking and previous 7007 * CPU. 7008 * 7009 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7010 * cache-affine and is (or will be) idle. 7011 * 7012 * wake_affine_weight() - considers the weight to reflect the average 7013 * scheduling latency of the CPUs. This seems to work 7014 * for the overloaded case. 7015 */ 7016 static int 7017 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7018 { 7019 /* 7020 * If this_cpu is idle, it implies the wakeup is from interrupt 7021 * context. Only allow the move if cache is shared. Otherwise an 7022 * interrupt intensive workload could force all tasks onto one 7023 * node depending on the IO topology or IRQ affinity settings. 7024 * 7025 * If the prev_cpu is idle and cache affine then avoid a migration. 7026 * There is no guarantee that the cache hot data from an interrupt 7027 * is more important than cache hot data on the prev_cpu and from 7028 * a cpufreq perspective, it's better to have higher utilisation 7029 * on one CPU. 7030 */ 7031 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7032 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7033 7034 if (sync && cpu_rq(this_cpu)->nr_running == 1) 7035 return this_cpu; 7036 7037 if (available_idle_cpu(prev_cpu)) 7038 return prev_cpu; 7039 7040 return nr_cpumask_bits; 7041 } 7042 7043 static int 7044 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7045 int this_cpu, int prev_cpu, int sync) 7046 { 7047 s64 this_eff_load, prev_eff_load; 7048 unsigned long task_load; 7049 7050 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7051 7052 if (sync) { 7053 unsigned long current_load = task_h_load(current); 7054 7055 if (current_load > this_eff_load) 7056 return this_cpu; 7057 7058 this_eff_load -= current_load; 7059 } 7060 7061 task_load = task_h_load(p); 7062 7063 this_eff_load += task_load; 7064 if (sched_feat(WA_BIAS)) 7065 this_eff_load *= 100; 7066 this_eff_load *= capacity_of(prev_cpu); 7067 7068 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7069 prev_eff_load -= task_load; 7070 if (sched_feat(WA_BIAS)) 7071 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7072 prev_eff_load *= capacity_of(this_cpu); 7073 7074 /* 7075 * If sync, adjust the weight of prev_eff_load such that if 7076 * prev_eff == this_eff that select_idle_sibling() will consider 7077 * stacking the wakee on top of the waker if no other CPU is 7078 * idle. 7079 */ 7080 if (sync) 7081 prev_eff_load += 1; 7082 7083 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7084 } 7085 7086 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7087 int this_cpu, int prev_cpu, int sync) 7088 { 7089 int target = nr_cpumask_bits; 7090 7091 if (sched_feat(WA_IDLE)) 7092 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7093 7094 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7095 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7096 7097 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7098 if (target != this_cpu) 7099 return prev_cpu; 7100 7101 schedstat_inc(sd->ttwu_move_affine); 7102 schedstat_inc(p->stats.nr_wakeups_affine); 7103 return target; 7104 } 7105 7106 static struct sched_group * 7107 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7108 7109 /* 7110 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 7111 */ 7112 static int 7113 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7114 { 7115 unsigned long load, min_load = ULONG_MAX; 7116 unsigned int min_exit_latency = UINT_MAX; 7117 u64 latest_idle_timestamp = 0; 7118 int least_loaded_cpu = this_cpu; 7119 int shallowest_idle_cpu = -1; 7120 int i; 7121 7122 /* Check if we have any choice: */ 7123 if (group->group_weight == 1) 7124 return cpumask_first(sched_group_span(group)); 7125 7126 /* Traverse only the allowed CPUs */ 7127 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7128 struct rq *rq = cpu_rq(i); 7129 7130 if (!sched_core_cookie_match(rq, p)) 7131 continue; 7132 7133 if (sched_idle_cpu(i)) 7134 return i; 7135 7136 if (available_idle_cpu(i)) { 7137 struct cpuidle_state *idle = idle_get_state(rq); 7138 if (idle && idle->exit_latency < min_exit_latency) { 7139 /* 7140 * We give priority to a CPU whose idle state 7141 * has the smallest exit latency irrespective 7142 * of any idle timestamp. 7143 */ 7144 min_exit_latency = idle->exit_latency; 7145 latest_idle_timestamp = rq->idle_stamp; 7146 shallowest_idle_cpu = i; 7147 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7148 rq->idle_stamp > latest_idle_timestamp) { 7149 /* 7150 * If equal or no active idle state, then 7151 * the most recently idled CPU might have 7152 * a warmer cache. 7153 */ 7154 latest_idle_timestamp = rq->idle_stamp; 7155 shallowest_idle_cpu = i; 7156 } 7157 } else if (shallowest_idle_cpu == -1) { 7158 load = cpu_load(cpu_rq(i)); 7159 if (load < min_load) { 7160 min_load = load; 7161 least_loaded_cpu = i; 7162 } 7163 } 7164 } 7165 7166 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7167 } 7168 7169 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 7170 int cpu, int prev_cpu, int sd_flag) 7171 { 7172 int new_cpu = cpu; 7173 7174 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7175 return prev_cpu; 7176 7177 /* 7178 * We need task's util for cpu_util_without, sync it up to 7179 * prev_cpu's last_update_time. 7180 */ 7181 if (!(sd_flag & SD_BALANCE_FORK)) 7182 sync_entity_load_avg(&p->se); 7183 7184 while (sd) { 7185 struct sched_group *group; 7186 struct sched_domain *tmp; 7187 int weight; 7188 7189 if (!(sd->flags & sd_flag)) { 7190 sd = sd->child; 7191 continue; 7192 } 7193 7194 group = find_idlest_group(sd, p, cpu); 7195 if (!group) { 7196 sd = sd->child; 7197 continue; 7198 } 7199 7200 new_cpu = find_idlest_group_cpu(group, p, cpu); 7201 if (new_cpu == cpu) { 7202 /* Now try balancing at a lower domain level of 'cpu': */ 7203 sd = sd->child; 7204 continue; 7205 } 7206 7207 /* Now try balancing at a lower domain level of 'new_cpu': */ 7208 cpu = new_cpu; 7209 weight = sd->span_weight; 7210 sd = NULL; 7211 for_each_domain(cpu, tmp) { 7212 if (weight <= tmp->span_weight) 7213 break; 7214 if (tmp->flags & sd_flag) 7215 sd = tmp; 7216 } 7217 } 7218 7219 return new_cpu; 7220 } 7221 7222 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7223 { 7224 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7225 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7226 return cpu; 7227 7228 return -1; 7229 } 7230 7231 #ifdef CONFIG_SCHED_SMT 7232 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7233 EXPORT_SYMBOL_GPL(sched_smt_present); 7234 7235 static inline void set_idle_cores(int cpu, int val) 7236 { 7237 struct sched_domain_shared *sds; 7238 7239 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7240 if (sds) 7241 WRITE_ONCE(sds->has_idle_cores, val); 7242 } 7243 7244 static inline bool test_idle_cores(int cpu) 7245 { 7246 struct sched_domain_shared *sds; 7247 7248 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7249 if (sds) 7250 return READ_ONCE(sds->has_idle_cores); 7251 7252 return false; 7253 } 7254 7255 /* 7256 * Scans the local SMT mask to see if the entire core is idle, and records this 7257 * information in sd_llc_shared->has_idle_cores. 7258 * 7259 * Since SMT siblings share all cache levels, inspecting this limited remote 7260 * state should be fairly cheap. 7261 */ 7262 void __update_idle_core(struct rq *rq) 7263 { 7264 int core = cpu_of(rq); 7265 int cpu; 7266 7267 rcu_read_lock(); 7268 if (test_idle_cores(core)) 7269 goto unlock; 7270 7271 for_each_cpu(cpu, cpu_smt_mask(core)) { 7272 if (cpu == core) 7273 continue; 7274 7275 if (!available_idle_cpu(cpu)) 7276 goto unlock; 7277 } 7278 7279 set_idle_cores(core, 1); 7280 unlock: 7281 rcu_read_unlock(); 7282 } 7283 7284 /* 7285 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7286 * there are no idle cores left in the system; tracked through 7287 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7288 */ 7289 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7290 { 7291 bool idle = true; 7292 int cpu; 7293 7294 for_each_cpu(cpu, cpu_smt_mask(core)) { 7295 if (!available_idle_cpu(cpu)) { 7296 idle = false; 7297 if (*idle_cpu == -1) { 7298 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7299 *idle_cpu = cpu; 7300 break; 7301 } 7302 continue; 7303 } 7304 break; 7305 } 7306 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7307 *idle_cpu = cpu; 7308 } 7309 7310 if (idle) 7311 return core; 7312 7313 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7314 return -1; 7315 } 7316 7317 /* 7318 * Scan the local SMT mask for idle CPUs. 7319 */ 7320 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7321 { 7322 int cpu; 7323 7324 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7325 if (cpu == target) 7326 continue; 7327 /* 7328 * Check if the CPU is in the LLC scheduling domain of @target. 7329 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7330 */ 7331 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7332 continue; 7333 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7334 return cpu; 7335 } 7336 7337 return -1; 7338 } 7339 7340 #else /* CONFIG_SCHED_SMT */ 7341 7342 static inline void set_idle_cores(int cpu, int val) 7343 { 7344 } 7345 7346 static inline bool test_idle_cores(int cpu) 7347 { 7348 return false; 7349 } 7350 7351 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7352 { 7353 return __select_idle_cpu(core, p); 7354 } 7355 7356 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7357 { 7358 return -1; 7359 } 7360 7361 #endif /* CONFIG_SCHED_SMT */ 7362 7363 /* 7364 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7365 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7366 * average idle time for this rq (as found in rq->avg_idle). 7367 */ 7368 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7369 { 7370 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7371 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7372 struct sched_domain_shared *sd_share; 7373 7374 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7375 7376 if (sched_feat(SIS_UTIL)) { 7377 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7378 if (sd_share) { 7379 /* because !--nr is the condition to stop scan */ 7380 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7381 /* overloaded LLC is unlikely to have idle cpu/core */ 7382 if (nr == 1) 7383 return -1; 7384 } 7385 } 7386 7387 if (static_branch_unlikely(&sched_cluster_active)) { 7388 struct sched_group *sg = sd->groups; 7389 7390 if (sg->flags & SD_CLUSTER) { 7391 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7392 if (!cpumask_test_cpu(cpu, cpus)) 7393 continue; 7394 7395 if (has_idle_core) { 7396 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7397 if ((unsigned int)i < nr_cpumask_bits) 7398 return i; 7399 } else { 7400 if (--nr <= 0) 7401 return -1; 7402 idle_cpu = __select_idle_cpu(cpu, p); 7403 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7404 return idle_cpu; 7405 } 7406 } 7407 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7408 } 7409 } 7410 7411 for_each_cpu_wrap(cpu, cpus, target + 1) { 7412 if (has_idle_core) { 7413 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7414 if ((unsigned int)i < nr_cpumask_bits) 7415 return i; 7416 7417 } else { 7418 if (--nr <= 0) 7419 return -1; 7420 idle_cpu = __select_idle_cpu(cpu, p); 7421 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7422 break; 7423 } 7424 } 7425 7426 if (has_idle_core) 7427 set_idle_cores(target, false); 7428 7429 return idle_cpu; 7430 } 7431 7432 /* 7433 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7434 * the task fits. If no CPU is big enough, but there are idle ones, try to 7435 * maximize capacity. 7436 */ 7437 static int 7438 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7439 { 7440 unsigned long task_util, util_min, util_max, best_cap = 0; 7441 int fits, best_fits = 0; 7442 int cpu, best_cpu = -1; 7443 struct cpumask *cpus; 7444 7445 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7446 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7447 7448 task_util = task_util_est(p); 7449 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7450 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7451 7452 for_each_cpu_wrap(cpu, cpus, target) { 7453 unsigned long cpu_cap = capacity_of(cpu); 7454 7455 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7456 continue; 7457 7458 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7459 7460 /* This CPU fits with all requirements */ 7461 if (fits > 0) 7462 return cpu; 7463 /* 7464 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7465 * Look for the CPU with best capacity. 7466 */ 7467 else if (fits < 0) 7468 cpu_cap = arch_scale_cpu_capacity(cpu) - thermal_load_avg(cpu_rq(cpu)); 7469 7470 /* 7471 * First, select CPU which fits better (-1 being better than 0). 7472 * Then, select the one with best capacity at same level. 7473 */ 7474 if ((fits < best_fits) || 7475 ((fits == best_fits) && (cpu_cap > best_cap))) { 7476 best_cap = cpu_cap; 7477 best_cpu = cpu; 7478 best_fits = fits; 7479 } 7480 } 7481 7482 return best_cpu; 7483 } 7484 7485 static inline bool asym_fits_cpu(unsigned long util, 7486 unsigned long util_min, 7487 unsigned long util_max, 7488 int cpu) 7489 { 7490 if (sched_asym_cpucap_active()) 7491 /* 7492 * Return true only if the cpu fully fits the task requirements 7493 * which include the utilization and the performance hints. 7494 */ 7495 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7496 7497 return true; 7498 } 7499 7500 /* 7501 * Try and locate an idle core/thread in the LLC cache domain. 7502 */ 7503 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7504 { 7505 bool has_idle_core = false; 7506 struct sched_domain *sd; 7507 unsigned long task_util, util_min, util_max; 7508 int i, recent_used_cpu, prev_aff = -1; 7509 7510 /* 7511 * On asymmetric system, update task utilization because we will check 7512 * that the task fits with cpu's capacity. 7513 */ 7514 if (sched_asym_cpucap_active()) { 7515 sync_entity_load_avg(&p->se); 7516 task_util = task_util_est(p); 7517 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7518 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7519 } 7520 7521 /* 7522 * per-cpu select_rq_mask usage 7523 */ 7524 lockdep_assert_irqs_disabled(); 7525 7526 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7527 asym_fits_cpu(task_util, util_min, util_max, target)) 7528 return target; 7529 7530 /* 7531 * If the previous CPU is cache affine and idle, don't be stupid: 7532 */ 7533 if (prev != target && cpus_share_cache(prev, target) && 7534 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7535 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7536 7537 if (!static_branch_unlikely(&sched_cluster_active) || 7538 cpus_share_resources(prev, target)) 7539 return prev; 7540 7541 prev_aff = prev; 7542 } 7543 7544 /* 7545 * Allow a per-cpu kthread to stack with the wakee if the 7546 * kworker thread and the tasks previous CPUs are the same. 7547 * The assumption is that the wakee queued work for the 7548 * per-cpu kthread that is now complete and the wakeup is 7549 * essentially a sync wakeup. An obvious example of this 7550 * pattern is IO completions. 7551 */ 7552 if (is_per_cpu_kthread(current) && 7553 in_task() && 7554 prev == smp_processor_id() && 7555 this_rq()->nr_running <= 1 && 7556 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7557 return prev; 7558 } 7559 7560 /* Check a recently used CPU as a potential idle candidate: */ 7561 recent_used_cpu = p->recent_used_cpu; 7562 p->recent_used_cpu = prev; 7563 if (recent_used_cpu != prev && 7564 recent_used_cpu != target && 7565 cpus_share_cache(recent_used_cpu, target) && 7566 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7567 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7568 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7569 7570 if (!static_branch_unlikely(&sched_cluster_active) || 7571 cpus_share_resources(recent_used_cpu, target)) 7572 return recent_used_cpu; 7573 7574 } else { 7575 recent_used_cpu = -1; 7576 } 7577 7578 /* 7579 * For asymmetric CPU capacity systems, our domain of interest is 7580 * sd_asym_cpucapacity rather than sd_llc. 7581 */ 7582 if (sched_asym_cpucap_active()) { 7583 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7584 /* 7585 * On an asymmetric CPU capacity system where an exclusive 7586 * cpuset defines a symmetric island (i.e. one unique 7587 * capacity_orig value through the cpuset), the key will be set 7588 * but the CPUs within that cpuset will not have a domain with 7589 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7590 * capacity path. 7591 */ 7592 if (sd) { 7593 i = select_idle_capacity(p, sd, target); 7594 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7595 } 7596 } 7597 7598 sd = rcu_dereference(per_cpu(sd_llc, target)); 7599 if (!sd) 7600 return target; 7601 7602 if (sched_smt_active()) { 7603 has_idle_core = test_idle_cores(target); 7604 7605 if (!has_idle_core && cpus_share_cache(prev, target)) { 7606 i = select_idle_smt(p, sd, prev); 7607 if ((unsigned int)i < nr_cpumask_bits) 7608 return i; 7609 } 7610 } 7611 7612 i = select_idle_cpu(p, sd, has_idle_core, target); 7613 if ((unsigned)i < nr_cpumask_bits) 7614 return i; 7615 7616 /* 7617 * For cluster machines which have lower sharing cache like L2 or 7618 * LLC Tag, we tend to find an idle CPU in the target's cluster 7619 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7620 * use them if possible when no idle CPU found in select_idle_cpu(). 7621 */ 7622 if ((unsigned int)prev_aff < nr_cpumask_bits) 7623 return prev_aff; 7624 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7625 return recent_used_cpu; 7626 7627 return target; 7628 } 7629 7630 /** 7631 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7632 * @cpu: the CPU to get the utilization for 7633 * @p: task for which the CPU utilization should be predicted or NULL 7634 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7635 * @boost: 1 to enable boosting, otherwise 0 7636 * 7637 * The unit of the return value must be the same as the one of CPU capacity 7638 * so that CPU utilization can be compared with CPU capacity. 7639 * 7640 * CPU utilization is the sum of running time of runnable tasks plus the 7641 * recent utilization of currently non-runnable tasks on that CPU. 7642 * It represents the amount of CPU capacity currently used by CFS tasks in 7643 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7644 * capacity at f_max. 7645 * 7646 * The estimated CPU utilization is defined as the maximum between CPU 7647 * utilization and sum of the estimated utilization of the currently 7648 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7649 * previously-executed tasks, which helps better deduce how busy a CPU will 7650 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7651 * of such a task would be significantly decayed at this point of time. 7652 * 7653 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7654 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7655 * utilization. Boosting is implemented in cpu_util() so that internal 7656 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7657 * latter via cpu_util_cfs_boost(). 7658 * 7659 * CPU utilization can be higher than the current CPU capacity 7660 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7661 * of rounding errors as well as task migrations or wakeups of new tasks. 7662 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7663 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7664 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7665 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7666 * though since this is useful for predicting the CPU capacity required 7667 * after task migrations (scheduler-driven DVFS). 7668 * 7669 * Return: (Boosted) (estimated) utilization for the specified CPU. 7670 */ 7671 static unsigned long 7672 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7673 { 7674 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7675 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7676 unsigned long runnable; 7677 7678 if (boost) { 7679 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7680 util = max(util, runnable); 7681 } 7682 7683 /* 7684 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7685 * contribution. If @p migrates from another CPU to @cpu add its 7686 * contribution. In all the other cases @cpu is not impacted by the 7687 * migration so its util_avg is already correct. 7688 */ 7689 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 7690 lsub_positive(&util, task_util(p)); 7691 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 7692 util += task_util(p); 7693 7694 if (sched_feat(UTIL_EST)) { 7695 unsigned long util_est; 7696 7697 util_est = READ_ONCE(cfs_rq->avg.util_est); 7698 7699 /* 7700 * During wake-up @p isn't enqueued yet and doesn't contribute 7701 * to any cpu_rq(cpu)->cfs.avg.util_est. 7702 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7703 * has been enqueued. 7704 * 7705 * During exec (@dst_cpu = -1) @p is enqueued and does 7706 * contribute to cpu_rq(cpu)->cfs.util_est. 7707 * Remove it to "simulate" cpu_util without @p's contribution. 7708 * 7709 * Despite the task_on_rq_queued(@p) check there is still a 7710 * small window for a possible race when an exec 7711 * select_task_rq_fair() races with LB's detach_task(). 7712 * 7713 * detach_task() 7714 * deactivate_task() 7715 * p->on_rq = TASK_ON_RQ_MIGRATING; 7716 * -------------------------------- A 7717 * dequeue_task() \ 7718 * dequeue_task_fair() + Race Time 7719 * util_est_dequeue() / 7720 * -------------------------------- B 7721 * 7722 * The additional check "current == p" is required to further 7723 * reduce the race window. 7724 */ 7725 if (dst_cpu == cpu) 7726 util_est += _task_util_est(p); 7727 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 7728 lsub_positive(&util_est, _task_util_est(p)); 7729 7730 util = max(util, util_est); 7731 } 7732 7733 return min(util, arch_scale_cpu_capacity(cpu)); 7734 } 7735 7736 unsigned long cpu_util_cfs(int cpu) 7737 { 7738 return cpu_util(cpu, NULL, -1, 0); 7739 } 7740 7741 unsigned long cpu_util_cfs_boost(int cpu) 7742 { 7743 return cpu_util(cpu, NULL, -1, 1); 7744 } 7745 7746 /* 7747 * cpu_util_without: compute cpu utilization without any contributions from *p 7748 * @cpu: the CPU which utilization is requested 7749 * @p: the task which utilization should be discounted 7750 * 7751 * The utilization of a CPU is defined by the utilization of tasks currently 7752 * enqueued on that CPU as well as tasks which are currently sleeping after an 7753 * execution on that CPU. 7754 * 7755 * This method returns the utilization of the specified CPU by discounting the 7756 * utilization of the specified task, whenever the task is currently 7757 * contributing to the CPU utilization. 7758 */ 7759 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7760 { 7761 /* Task has no contribution or is new */ 7762 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7763 p = NULL; 7764 7765 return cpu_util(cpu, p, -1, 0); 7766 } 7767 7768 /* 7769 * energy_env - Utilization landscape for energy estimation. 7770 * @task_busy_time: Utilization contribution by the task for which we test the 7771 * placement. Given by eenv_task_busy_time(). 7772 * @pd_busy_time: Utilization of the whole perf domain without the task 7773 * contribution. Given by eenv_pd_busy_time(). 7774 * @cpu_cap: Maximum CPU capacity for the perf domain. 7775 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 7776 */ 7777 struct energy_env { 7778 unsigned long task_busy_time; 7779 unsigned long pd_busy_time; 7780 unsigned long cpu_cap; 7781 unsigned long pd_cap; 7782 }; 7783 7784 /* 7785 * Compute the task busy time for compute_energy(). This time cannot be 7786 * injected directly into effective_cpu_util() because of the IRQ scaling. 7787 * The latter only makes sense with the most recent CPUs where the task has 7788 * run. 7789 */ 7790 static inline void eenv_task_busy_time(struct energy_env *eenv, 7791 struct task_struct *p, int prev_cpu) 7792 { 7793 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 7794 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 7795 7796 if (unlikely(irq >= max_cap)) 7797 busy_time = max_cap; 7798 else 7799 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 7800 7801 eenv->task_busy_time = busy_time; 7802 } 7803 7804 /* 7805 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 7806 * utilization for each @pd_cpus, it however doesn't take into account 7807 * clamping since the ratio (utilization / cpu_capacity) is already enough to 7808 * scale the EM reported power consumption at the (eventually clamped) 7809 * cpu_capacity. 7810 * 7811 * The contribution of the task @p for which we want to estimate the 7812 * energy cost is removed (by cpu_util()) and must be calculated 7813 * separately (see eenv_task_busy_time). This ensures: 7814 * 7815 * - A stable PD utilization, no matter which CPU of that PD we want to place 7816 * the task on. 7817 * 7818 * - A fair comparison between CPUs as the task contribution (task_util()) 7819 * will always be the same no matter which CPU utilization we rely on 7820 * (util_avg or util_est). 7821 * 7822 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 7823 * exceed @eenv->pd_cap. 7824 */ 7825 static inline void eenv_pd_busy_time(struct energy_env *eenv, 7826 struct cpumask *pd_cpus, 7827 struct task_struct *p) 7828 { 7829 unsigned long busy_time = 0; 7830 int cpu; 7831 7832 for_each_cpu(cpu, pd_cpus) { 7833 unsigned long util = cpu_util(cpu, p, -1, 0); 7834 7835 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 7836 } 7837 7838 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 7839 } 7840 7841 /* 7842 * Compute the maximum utilization for compute_energy() when the task @p 7843 * is placed on the cpu @dst_cpu. 7844 * 7845 * Returns the maximum utilization among @eenv->cpus. This utilization can't 7846 * exceed @eenv->cpu_cap. 7847 */ 7848 static inline unsigned long 7849 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 7850 struct task_struct *p, int dst_cpu) 7851 { 7852 unsigned long max_util = 0; 7853 int cpu; 7854 7855 for_each_cpu(cpu, pd_cpus) { 7856 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 7857 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 7858 unsigned long eff_util, min, max; 7859 7860 /* 7861 * Performance domain frequency: utilization clamping 7862 * must be considered since it affects the selection 7863 * of the performance domain frequency. 7864 * NOTE: in case RT tasks are running, by default the 7865 * FREQUENCY_UTIL's utilization can be max OPP. 7866 */ 7867 eff_util = effective_cpu_util(cpu, util, &min, &max); 7868 7869 /* Task's uclamp can modify min and max value */ 7870 if (tsk && uclamp_is_used()) { 7871 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 7872 7873 /* 7874 * If there is no active max uclamp constraint, 7875 * directly use task's one, otherwise keep max. 7876 */ 7877 if (uclamp_rq_is_idle(cpu_rq(cpu))) 7878 max = uclamp_eff_value(p, UCLAMP_MAX); 7879 else 7880 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 7881 } 7882 7883 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 7884 max_util = max(max_util, eff_util); 7885 } 7886 7887 return min(max_util, eenv->cpu_cap); 7888 } 7889 7890 /* 7891 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 7892 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 7893 * contribution is ignored. 7894 */ 7895 static inline unsigned long 7896 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 7897 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 7898 { 7899 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 7900 unsigned long busy_time = eenv->pd_busy_time; 7901 unsigned long energy; 7902 7903 if (dst_cpu >= 0) 7904 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 7905 7906 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 7907 7908 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 7909 7910 return energy; 7911 } 7912 7913 /* 7914 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 7915 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 7916 * spare capacity in each performance domain and uses it as a potential 7917 * candidate to execute the task. Then, it uses the Energy Model to figure 7918 * out which of the CPU candidates is the most energy-efficient. 7919 * 7920 * The rationale for this heuristic is as follows. In a performance domain, 7921 * all the most energy efficient CPU candidates (according to the Energy 7922 * Model) are those for which we'll request a low frequency. When there are 7923 * several CPUs for which the frequency request will be the same, we don't 7924 * have enough data to break the tie between them, because the Energy Model 7925 * only includes active power costs. With this model, if we assume that 7926 * frequency requests follow utilization (e.g. using schedutil), the CPU with 7927 * the maximum spare capacity in a performance domain is guaranteed to be among 7928 * the best candidates of the performance domain. 7929 * 7930 * In practice, it could be preferable from an energy standpoint to pack 7931 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 7932 * but that could also hurt our chances to go cluster idle, and we have no 7933 * ways to tell with the current Energy Model if this is actually a good 7934 * idea or not. So, find_energy_efficient_cpu() basically favors 7935 * cluster-packing, and spreading inside a cluster. That should at least be 7936 * a good thing for latency, and this is consistent with the idea that most 7937 * of the energy savings of EAS come from the asymmetry of the system, and 7938 * not so much from breaking the tie between identical CPUs. That's also the 7939 * reason why EAS is enabled in the topology code only for systems where 7940 * SD_ASYM_CPUCAPACITY is set. 7941 * 7942 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 7943 * they don't have any useful utilization data yet and it's not possible to 7944 * forecast their impact on energy consumption. Consequently, they will be 7945 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 7946 * to be energy-inefficient in some use-cases. The alternative would be to 7947 * bias new tasks towards specific types of CPUs first, or to try to infer 7948 * their util_avg from the parent task, but those heuristics could hurt 7949 * other use-cases too. So, until someone finds a better way to solve this, 7950 * let's keep things simple by re-using the existing slow path. 7951 */ 7952 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 7953 { 7954 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7955 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 7956 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 7957 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 7958 struct root_domain *rd = this_rq()->rd; 7959 int cpu, best_energy_cpu, target = -1; 7960 int prev_fits = -1, best_fits = -1; 7961 unsigned long best_thermal_cap = 0; 7962 unsigned long prev_thermal_cap = 0; 7963 struct sched_domain *sd; 7964 struct perf_domain *pd; 7965 struct energy_env eenv; 7966 7967 rcu_read_lock(); 7968 pd = rcu_dereference(rd->pd); 7969 if (!pd || READ_ONCE(rd->overutilized)) 7970 goto unlock; 7971 7972 /* 7973 * Energy-aware wake-up happens on the lowest sched_domain starting 7974 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 7975 */ 7976 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 7977 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 7978 sd = sd->parent; 7979 if (!sd) 7980 goto unlock; 7981 7982 target = prev_cpu; 7983 7984 sync_entity_load_avg(&p->se); 7985 if (!task_util_est(p) && p_util_min == 0) 7986 goto unlock; 7987 7988 eenv_task_busy_time(&eenv, p, prev_cpu); 7989 7990 for (; pd; pd = pd->next) { 7991 unsigned long util_min = p_util_min, util_max = p_util_max; 7992 unsigned long cpu_cap, cpu_thermal_cap, util; 7993 long prev_spare_cap = -1, max_spare_cap = -1; 7994 unsigned long rq_util_min, rq_util_max; 7995 unsigned long cur_delta, base_energy; 7996 int max_spare_cap_cpu = -1; 7997 int fits, max_fits = -1; 7998 7999 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8000 8001 if (cpumask_empty(cpus)) 8002 continue; 8003 8004 /* Account thermal pressure for the energy estimation */ 8005 cpu = cpumask_first(cpus); 8006 cpu_thermal_cap = arch_scale_cpu_capacity(cpu); 8007 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu); 8008 8009 eenv.cpu_cap = cpu_thermal_cap; 8010 eenv.pd_cap = 0; 8011 8012 for_each_cpu(cpu, cpus) { 8013 struct rq *rq = cpu_rq(cpu); 8014 8015 eenv.pd_cap += cpu_thermal_cap; 8016 8017 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8018 continue; 8019 8020 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8021 continue; 8022 8023 util = cpu_util(cpu, p, cpu, 0); 8024 cpu_cap = capacity_of(cpu); 8025 8026 /* 8027 * Skip CPUs that cannot satisfy the capacity request. 8028 * IOW, placing the task there would make the CPU 8029 * overutilized. Take uclamp into account to see how 8030 * much capacity we can get out of the CPU; this is 8031 * aligned with sched_cpu_util(). 8032 */ 8033 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8034 /* 8035 * Open code uclamp_rq_util_with() except for 8036 * the clamp() part. Ie: apply max aggregation 8037 * only. util_fits_cpu() logic requires to 8038 * operate on non clamped util but must use the 8039 * max-aggregated uclamp_{min, max}. 8040 */ 8041 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8042 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8043 8044 util_min = max(rq_util_min, p_util_min); 8045 util_max = max(rq_util_max, p_util_max); 8046 } 8047 8048 fits = util_fits_cpu(util, util_min, util_max, cpu); 8049 if (!fits) 8050 continue; 8051 8052 lsub_positive(&cpu_cap, util); 8053 8054 if (cpu == prev_cpu) { 8055 /* Always use prev_cpu as a candidate. */ 8056 prev_spare_cap = cpu_cap; 8057 prev_fits = fits; 8058 } else if ((fits > max_fits) || 8059 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8060 /* 8061 * Find the CPU with the maximum spare capacity 8062 * among the remaining CPUs in the performance 8063 * domain. 8064 */ 8065 max_spare_cap = cpu_cap; 8066 max_spare_cap_cpu = cpu; 8067 max_fits = fits; 8068 } 8069 } 8070 8071 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8072 continue; 8073 8074 eenv_pd_busy_time(&eenv, cpus, p); 8075 /* Compute the 'base' energy of the pd, without @p */ 8076 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8077 8078 /* Evaluate the energy impact of using prev_cpu. */ 8079 if (prev_spare_cap > -1) { 8080 prev_delta = compute_energy(&eenv, pd, cpus, p, 8081 prev_cpu); 8082 /* CPU utilization has changed */ 8083 if (prev_delta < base_energy) 8084 goto unlock; 8085 prev_delta -= base_energy; 8086 prev_thermal_cap = cpu_thermal_cap; 8087 best_delta = min(best_delta, prev_delta); 8088 } 8089 8090 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8091 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8092 /* Current best energy cpu fits better */ 8093 if (max_fits < best_fits) 8094 continue; 8095 8096 /* 8097 * Both don't fit performance hint (i.e. uclamp_min) 8098 * but best energy cpu has better capacity. 8099 */ 8100 if ((max_fits < 0) && 8101 (cpu_thermal_cap <= best_thermal_cap)) 8102 continue; 8103 8104 cur_delta = compute_energy(&eenv, pd, cpus, p, 8105 max_spare_cap_cpu); 8106 /* CPU utilization has changed */ 8107 if (cur_delta < base_energy) 8108 goto unlock; 8109 cur_delta -= base_energy; 8110 8111 /* 8112 * Both fit for the task but best energy cpu has lower 8113 * energy impact. 8114 */ 8115 if ((max_fits > 0) && (best_fits > 0) && 8116 (cur_delta >= best_delta)) 8117 continue; 8118 8119 best_delta = cur_delta; 8120 best_energy_cpu = max_spare_cap_cpu; 8121 best_fits = max_fits; 8122 best_thermal_cap = cpu_thermal_cap; 8123 } 8124 } 8125 rcu_read_unlock(); 8126 8127 if ((best_fits > prev_fits) || 8128 ((best_fits > 0) && (best_delta < prev_delta)) || 8129 ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap))) 8130 target = best_energy_cpu; 8131 8132 return target; 8133 8134 unlock: 8135 rcu_read_unlock(); 8136 8137 return target; 8138 } 8139 8140 /* 8141 * select_task_rq_fair: Select target runqueue for the waking task in domains 8142 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8143 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8144 * 8145 * Balances load by selecting the idlest CPU in the idlest group, or under 8146 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8147 * 8148 * Returns the target CPU number. 8149 */ 8150 static int 8151 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8152 { 8153 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8154 struct sched_domain *tmp, *sd = NULL; 8155 int cpu = smp_processor_id(); 8156 int new_cpu = prev_cpu; 8157 int want_affine = 0; 8158 /* SD_flags and WF_flags share the first nibble */ 8159 int sd_flag = wake_flags & 0xF; 8160 8161 /* 8162 * required for stable ->cpus_allowed 8163 */ 8164 lockdep_assert_held(&p->pi_lock); 8165 if (wake_flags & WF_TTWU) { 8166 record_wakee(p); 8167 8168 if ((wake_flags & WF_CURRENT_CPU) && 8169 cpumask_test_cpu(cpu, p->cpus_ptr)) 8170 return cpu; 8171 8172 if (sched_energy_enabled()) { 8173 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8174 if (new_cpu >= 0) 8175 return new_cpu; 8176 new_cpu = prev_cpu; 8177 } 8178 8179 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8180 } 8181 8182 rcu_read_lock(); 8183 for_each_domain(cpu, tmp) { 8184 /* 8185 * If both 'cpu' and 'prev_cpu' are part of this domain, 8186 * cpu is a valid SD_WAKE_AFFINE target. 8187 */ 8188 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8189 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8190 if (cpu != prev_cpu) 8191 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8192 8193 sd = NULL; /* Prefer wake_affine over balance flags */ 8194 break; 8195 } 8196 8197 /* 8198 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8199 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8200 * will usually go to the fast path. 8201 */ 8202 if (tmp->flags & sd_flag) 8203 sd = tmp; 8204 else if (!want_affine) 8205 break; 8206 } 8207 8208 if (unlikely(sd)) { 8209 /* Slow path */ 8210 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 8211 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8212 /* Fast path */ 8213 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8214 } 8215 rcu_read_unlock(); 8216 8217 return new_cpu; 8218 } 8219 8220 /* 8221 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8222 * cfs_rq_of(p) references at time of call are still valid and identify the 8223 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8224 */ 8225 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8226 { 8227 struct sched_entity *se = &p->se; 8228 8229 if (!task_on_rq_migrating(p)) { 8230 remove_entity_load_avg(se); 8231 8232 /* 8233 * Here, the task's PELT values have been updated according to 8234 * the current rq's clock. But if that clock hasn't been 8235 * updated in a while, a substantial idle time will be missed, 8236 * leading to an inflation after wake-up on the new rq. 8237 * 8238 * Estimate the missing time from the cfs_rq last_update_time 8239 * and update sched_avg to improve the PELT continuity after 8240 * migration. 8241 */ 8242 migrate_se_pelt_lag(se); 8243 } 8244 8245 /* Tell new CPU we are migrated */ 8246 se->avg.last_update_time = 0; 8247 8248 update_scan_period(p, new_cpu); 8249 } 8250 8251 static void task_dead_fair(struct task_struct *p) 8252 { 8253 remove_entity_load_avg(&p->se); 8254 } 8255 8256 static int 8257 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8258 { 8259 if (rq->nr_running) 8260 return 1; 8261 8262 return newidle_balance(rq, rf) != 0; 8263 } 8264 #endif /* CONFIG_SMP */ 8265 8266 static void set_next_buddy(struct sched_entity *se) 8267 { 8268 for_each_sched_entity(se) { 8269 if (SCHED_WARN_ON(!se->on_rq)) 8270 return; 8271 if (se_is_idle(se)) 8272 return; 8273 cfs_rq_of(se)->next = se; 8274 } 8275 } 8276 8277 /* 8278 * Preempt the current task with a newly woken task if needed: 8279 */ 8280 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8281 { 8282 struct task_struct *curr = rq->curr; 8283 struct sched_entity *se = &curr->se, *pse = &p->se; 8284 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8285 int cse_is_idle, pse_is_idle; 8286 8287 if (unlikely(se == pse)) 8288 return; 8289 8290 /* 8291 * This is possible from callers such as attach_tasks(), in which we 8292 * unconditionally wakeup_preempt() after an enqueue (which may have 8293 * lead to a throttle). This both saves work and prevents false 8294 * next-buddy nomination below. 8295 */ 8296 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8297 return; 8298 8299 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { 8300 set_next_buddy(pse); 8301 } 8302 8303 /* 8304 * We can come here with TIF_NEED_RESCHED already set from new task 8305 * wake up path. 8306 * 8307 * Note: this also catches the edge-case of curr being in a throttled 8308 * group (e.g. via set_curr_task), since update_curr() (in the 8309 * enqueue of curr) will have resulted in resched being set. This 8310 * prevents us from potentially nominating it as a false LAST_BUDDY 8311 * below. 8312 */ 8313 if (test_tsk_need_resched(curr)) 8314 return; 8315 8316 /* Idle tasks are by definition preempted by non-idle tasks. */ 8317 if (unlikely(task_has_idle_policy(curr)) && 8318 likely(!task_has_idle_policy(p))) 8319 goto preempt; 8320 8321 /* 8322 * Batch and idle tasks do not preempt non-idle tasks (their preemption 8323 * is driven by the tick): 8324 */ 8325 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 8326 return; 8327 8328 find_matching_se(&se, &pse); 8329 WARN_ON_ONCE(!pse); 8330 8331 cse_is_idle = se_is_idle(se); 8332 pse_is_idle = se_is_idle(pse); 8333 8334 /* 8335 * Preempt an idle group in favor of a non-idle group (and don't preempt 8336 * in the inverse case). 8337 */ 8338 if (cse_is_idle && !pse_is_idle) 8339 goto preempt; 8340 if (cse_is_idle != pse_is_idle) 8341 return; 8342 8343 cfs_rq = cfs_rq_of(se); 8344 update_curr(cfs_rq); 8345 8346 /* 8347 * XXX pick_eevdf(cfs_rq) != se ? 8348 */ 8349 if (pick_eevdf(cfs_rq) == pse) 8350 goto preempt; 8351 8352 return; 8353 8354 preempt: 8355 resched_curr(rq); 8356 } 8357 8358 #ifdef CONFIG_SMP 8359 static struct task_struct *pick_task_fair(struct rq *rq) 8360 { 8361 struct sched_entity *se; 8362 struct cfs_rq *cfs_rq; 8363 8364 again: 8365 cfs_rq = &rq->cfs; 8366 if (!cfs_rq->nr_running) 8367 return NULL; 8368 8369 do { 8370 struct sched_entity *curr = cfs_rq->curr; 8371 8372 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 8373 if (curr) { 8374 if (curr->on_rq) 8375 update_curr(cfs_rq); 8376 else 8377 curr = NULL; 8378 8379 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8380 goto again; 8381 } 8382 8383 se = pick_next_entity(cfs_rq); 8384 cfs_rq = group_cfs_rq(se); 8385 } while (cfs_rq); 8386 8387 return task_of(se); 8388 } 8389 #endif 8390 8391 struct task_struct * 8392 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8393 { 8394 struct cfs_rq *cfs_rq = &rq->cfs; 8395 struct sched_entity *se; 8396 struct task_struct *p; 8397 int new_tasks; 8398 8399 again: 8400 if (!sched_fair_runnable(rq)) 8401 goto idle; 8402 8403 #ifdef CONFIG_FAIR_GROUP_SCHED 8404 if (!prev || prev->sched_class != &fair_sched_class) 8405 goto simple; 8406 8407 /* 8408 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8409 * likely that a next task is from the same cgroup as the current. 8410 * 8411 * Therefore attempt to avoid putting and setting the entire cgroup 8412 * hierarchy, only change the part that actually changes. 8413 */ 8414 8415 do { 8416 struct sched_entity *curr = cfs_rq->curr; 8417 8418 /* 8419 * Since we got here without doing put_prev_entity() we also 8420 * have to consider cfs_rq->curr. If it is still a runnable 8421 * entity, update_curr() will update its vruntime, otherwise 8422 * forget we've ever seen it. 8423 */ 8424 if (curr) { 8425 if (curr->on_rq) 8426 update_curr(cfs_rq); 8427 else 8428 curr = NULL; 8429 8430 /* 8431 * This call to check_cfs_rq_runtime() will do the 8432 * throttle and dequeue its entity in the parent(s). 8433 * Therefore the nr_running test will indeed 8434 * be correct. 8435 */ 8436 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 8437 cfs_rq = &rq->cfs; 8438 8439 if (!cfs_rq->nr_running) 8440 goto idle; 8441 8442 goto simple; 8443 } 8444 } 8445 8446 se = pick_next_entity(cfs_rq); 8447 cfs_rq = group_cfs_rq(se); 8448 } while (cfs_rq); 8449 8450 p = task_of(se); 8451 8452 /* 8453 * Since we haven't yet done put_prev_entity and if the selected task 8454 * is a different task than we started out with, try and touch the 8455 * least amount of cfs_rqs. 8456 */ 8457 if (prev != p) { 8458 struct sched_entity *pse = &prev->se; 8459 8460 while (!(cfs_rq = is_same_group(se, pse))) { 8461 int se_depth = se->depth; 8462 int pse_depth = pse->depth; 8463 8464 if (se_depth <= pse_depth) { 8465 put_prev_entity(cfs_rq_of(pse), pse); 8466 pse = parent_entity(pse); 8467 } 8468 if (se_depth >= pse_depth) { 8469 set_next_entity(cfs_rq_of(se), se); 8470 se = parent_entity(se); 8471 } 8472 } 8473 8474 put_prev_entity(cfs_rq, pse); 8475 set_next_entity(cfs_rq, se); 8476 } 8477 8478 goto done; 8479 simple: 8480 #endif 8481 if (prev) 8482 put_prev_task(rq, prev); 8483 8484 do { 8485 se = pick_next_entity(cfs_rq); 8486 set_next_entity(cfs_rq, se); 8487 cfs_rq = group_cfs_rq(se); 8488 } while (cfs_rq); 8489 8490 p = task_of(se); 8491 8492 done: __maybe_unused; 8493 #ifdef CONFIG_SMP 8494 /* 8495 * Move the next running task to the front of 8496 * the list, so our cfs_tasks list becomes MRU 8497 * one. 8498 */ 8499 list_move(&p->se.group_node, &rq->cfs_tasks); 8500 #endif 8501 8502 if (hrtick_enabled_fair(rq)) 8503 hrtick_start_fair(rq, p); 8504 8505 update_misfit_status(p, rq); 8506 sched_fair_update_stop_tick(rq, p); 8507 8508 return p; 8509 8510 idle: 8511 if (!rf) 8512 return NULL; 8513 8514 new_tasks = newidle_balance(rq, rf); 8515 8516 /* 8517 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 8518 * possible for any higher priority task to appear. In that case we 8519 * must re-start the pick_next_entity() loop. 8520 */ 8521 if (new_tasks < 0) 8522 return RETRY_TASK; 8523 8524 if (new_tasks > 0) 8525 goto again; 8526 8527 /* 8528 * rq is about to be idle, check if we need to update the 8529 * lost_idle_time of clock_pelt 8530 */ 8531 update_idle_rq_clock_pelt(rq); 8532 8533 return NULL; 8534 } 8535 8536 static struct task_struct *__pick_next_task_fair(struct rq *rq) 8537 { 8538 return pick_next_task_fair(rq, NULL, NULL); 8539 } 8540 8541 /* 8542 * Account for a descheduled task: 8543 */ 8544 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 8545 { 8546 struct sched_entity *se = &prev->se; 8547 struct cfs_rq *cfs_rq; 8548 8549 for_each_sched_entity(se) { 8550 cfs_rq = cfs_rq_of(se); 8551 put_prev_entity(cfs_rq, se); 8552 } 8553 } 8554 8555 /* 8556 * sched_yield() is very simple 8557 */ 8558 static void yield_task_fair(struct rq *rq) 8559 { 8560 struct task_struct *curr = rq->curr; 8561 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8562 struct sched_entity *se = &curr->se; 8563 8564 /* 8565 * Are we the only task in the tree? 8566 */ 8567 if (unlikely(rq->nr_running == 1)) 8568 return; 8569 8570 clear_buddies(cfs_rq, se); 8571 8572 update_rq_clock(rq); 8573 /* 8574 * Update run-time statistics of the 'current'. 8575 */ 8576 update_curr(cfs_rq); 8577 /* 8578 * Tell update_rq_clock() that we've just updated, 8579 * so we don't do microscopic update in schedule() 8580 * and double the fastpath cost. 8581 */ 8582 rq_clock_skip_update(rq); 8583 8584 se->deadline += calc_delta_fair(se->slice, se); 8585 } 8586 8587 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8588 { 8589 struct sched_entity *se = &p->se; 8590 8591 /* throttled hierarchies are not runnable */ 8592 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8593 return false; 8594 8595 /* Tell the scheduler that we'd really like pse to run next. */ 8596 set_next_buddy(se); 8597 8598 yield_task_fair(rq); 8599 8600 return true; 8601 } 8602 8603 #ifdef CONFIG_SMP 8604 /************************************************** 8605 * Fair scheduling class load-balancing methods. 8606 * 8607 * BASICS 8608 * 8609 * The purpose of load-balancing is to achieve the same basic fairness the 8610 * per-CPU scheduler provides, namely provide a proportional amount of compute 8611 * time to each task. This is expressed in the following equation: 8612 * 8613 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 8614 * 8615 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 8616 * W_i,0 is defined as: 8617 * 8618 * W_i,0 = \Sum_j w_i,j (2) 8619 * 8620 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 8621 * is derived from the nice value as per sched_prio_to_weight[]. 8622 * 8623 * The weight average is an exponential decay average of the instantaneous 8624 * weight: 8625 * 8626 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 8627 * 8628 * C_i is the compute capacity of CPU i, typically it is the 8629 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 8630 * can also include other factors [XXX]. 8631 * 8632 * To achieve this balance we define a measure of imbalance which follows 8633 * directly from (1): 8634 * 8635 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 8636 * 8637 * We them move tasks around to minimize the imbalance. In the continuous 8638 * function space it is obvious this converges, in the discrete case we get 8639 * a few fun cases generally called infeasible weight scenarios. 8640 * 8641 * [XXX expand on: 8642 * - infeasible weights; 8643 * - local vs global optima in the discrete case. ] 8644 * 8645 * 8646 * SCHED DOMAINS 8647 * 8648 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 8649 * for all i,j solution, we create a tree of CPUs that follows the hardware 8650 * topology where each level pairs two lower groups (or better). This results 8651 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 8652 * tree to only the first of the previous level and we decrease the frequency 8653 * of load-balance at each level inv. proportional to the number of CPUs in 8654 * the groups. 8655 * 8656 * This yields: 8657 * 8658 * log_2 n 1 n 8659 * \Sum { --- * --- * 2^i } = O(n) (5) 8660 * i = 0 2^i 2^i 8661 * `- size of each group 8662 * | | `- number of CPUs doing load-balance 8663 * | `- freq 8664 * `- sum over all levels 8665 * 8666 * Coupled with a limit on how many tasks we can migrate every balance pass, 8667 * this makes (5) the runtime complexity of the balancer. 8668 * 8669 * An important property here is that each CPU is still (indirectly) connected 8670 * to every other CPU in at most O(log n) steps: 8671 * 8672 * The adjacency matrix of the resulting graph is given by: 8673 * 8674 * log_2 n 8675 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 8676 * k = 0 8677 * 8678 * And you'll find that: 8679 * 8680 * A^(log_2 n)_i,j != 0 for all i,j (7) 8681 * 8682 * Showing there's indeed a path between every CPU in at most O(log n) steps. 8683 * The task movement gives a factor of O(m), giving a convergence complexity 8684 * of: 8685 * 8686 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 8687 * 8688 * 8689 * WORK CONSERVING 8690 * 8691 * In order to avoid CPUs going idle while there's still work to do, new idle 8692 * balancing is more aggressive and has the newly idle CPU iterate up the domain 8693 * tree itself instead of relying on other CPUs to bring it work. 8694 * 8695 * This adds some complexity to both (5) and (8) but it reduces the total idle 8696 * time. 8697 * 8698 * [XXX more?] 8699 * 8700 * 8701 * CGROUPS 8702 * 8703 * Cgroups make a horror show out of (2), instead of a simple sum we get: 8704 * 8705 * s_k,i 8706 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 8707 * S_k 8708 * 8709 * Where 8710 * 8711 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 8712 * 8713 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 8714 * 8715 * The big problem is S_k, its a global sum needed to compute a local (W_i) 8716 * property. 8717 * 8718 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 8719 * rewrite all of this once again.] 8720 */ 8721 8722 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 8723 8724 enum fbq_type { regular, remote, all }; 8725 8726 /* 8727 * 'group_type' describes the group of CPUs at the moment of load balancing. 8728 * 8729 * The enum is ordered by pulling priority, with the group with lowest priority 8730 * first so the group_type can simply be compared when selecting the busiest 8731 * group. See update_sd_pick_busiest(). 8732 */ 8733 enum group_type { 8734 /* The group has spare capacity that can be used to run more tasks. */ 8735 group_has_spare = 0, 8736 /* 8737 * The group is fully used and the tasks don't compete for more CPU 8738 * cycles. Nevertheless, some tasks might wait before running. 8739 */ 8740 group_fully_busy, 8741 /* 8742 * One task doesn't fit with CPU's capacity and must be migrated to a 8743 * more powerful CPU. 8744 */ 8745 group_misfit_task, 8746 /* 8747 * Balance SMT group that's fully busy. Can benefit from migration 8748 * a task on SMT with busy sibling to another CPU on idle core. 8749 */ 8750 group_smt_balance, 8751 /* 8752 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 8753 * and the task should be migrated to it instead of running on the 8754 * current CPU. 8755 */ 8756 group_asym_packing, 8757 /* 8758 * The tasks' affinity constraints previously prevented the scheduler 8759 * from balancing the load across the system. 8760 */ 8761 group_imbalanced, 8762 /* 8763 * The CPU is overloaded and can't provide expected CPU cycles to all 8764 * tasks. 8765 */ 8766 group_overloaded 8767 }; 8768 8769 enum migration_type { 8770 migrate_load = 0, 8771 migrate_util, 8772 migrate_task, 8773 migrate_misfit 8774 }; 8775 8776 #define LBF_ALL_PINNED 0x01 8777 #define LBF_NEED_BREAK 0x02 8778 #define LBF_DST_PINNED 0x04 8779 #define LBF_SOME_PINNED 0x08 8780 #define LBF_ACTIVE_LB 0x10 8781 8782 struct lb_env { 8783 struct sched_domain *sd; 8784 8785 struct rq *src_rq; 8786 int src_cpu; 8787 8788 int dst_cpu; 8789 struct rq *dst_rq; 8790 8791 struct cpumask *dst_grpmask; 8792 int new_dst_cpu; 8793 enum cpu_idle_type idle; 8794 long imbalance; 8795 /* The set of CPUs under consideration for load-balancing */ 8796 struct cpumask *cpus; 8797 8798 unsigned int flags; 8799 8800 unsigned int loop; 8801 unsigned int loop_break; 8802 unsigned int loop_max; 8803 8804 enum fbq_type fbq_type; 8805 enum migration_type migration_type; 8806 struct list_head tasks; 8807 }; 8808 8809 /* 8810 * Is this task likely cache-hot: 8811 */ 8812 static int task_hot(struct task_struct *p, struct lb_env *env) 8813 { 8814 s64 delta; 8815 8816 lockdep_assert_rq_held(env->src_rq); 8817 8818 if (p->sched_class != &fair_sched_class) 8819 return 0; 8820 8821 if (unlikely(task_has_idle_policy(p))) 8822 return 0; 8823 8824 /* SMT siblings share cache */ 8825 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 8826 return 0; 8827 8828 /* 8829 * Buddy candidates are cache hot: 8830 */ 8831 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 8832 (&p->se == cfs_rq_of(&p->se)->next)) 8833 return 1; 8834 8835 if (sysctl_sched_migration_cost == -1) 8836 return 1; 8837 8838 /* 8839 * Don't migrate task if the task's cookie does not match 8840 * with the destination CPU's core cookie. 8841 */ 8842 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 8843 return 1; 8844 8845 if (sysctl_sched_migration_cost == 0) 8846 return 0; 8847 8848 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 8849 8850 return delta < (s64)sysctl_sched_migration_cost; 8851 } 8852 8853 #ifdef CONFIG_NUMA_BALANCING 8854 /* 8855 * Returns 1, if task migration degrades locality 8856 * Returns 0, if task migration improves locality i.e migration preferred. 8857 * Returns -1, if task migration is not affected by locality. 8858 */ 8859 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 8860 { 8861 struct numa_group *numa_group = rcu_dereference(p->numa_group); 8862 unsigned long src_weight, dst_weight; 8863 int src_nid, dst_nid, dist; 8864 8865 if (!static_branch_likely(&sched_numa_balancing)) 8866 return -1; 8867 8868 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 8869 return -1; 8870 8871 src_nid = cpu_to_node(env->src_cpu); 8872 dst_nid = cpu_to_node(env->dst_cpu); 8873 8874 if (src_nid == dst_nid) 8875 return -1; 8876 8877 /* Migrating away from the preferred node is always bad. */ 8878 if (src_nid == p->numa_preferred_nid) { 8879 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 8880 return 1; 8881 else 8882 return -1; 8883 } 8884 8885 /* Encourage migration to the preferred node. */ 8886 if (dst_nid == p->numa_preferred_nid) 8887 return 0; 8888 8889 /* Leaving a core idle is often worse than degrading locality. */ 8890 if (env->idle == CPU_IDLE) 8891 return -1; 8892 8893 dist = node_distance(src_nid, dst_nid); 8894 if (numa_group) { 8895 src_weight = group_weight(p, src_nid, dist); 8896 dst_weight = group_weight(p, dst_nid, dist); 8897 } else { 8898 src_weight = task_weight(p, src_nid, dist); 8899 dst_weight = task_weight(p, dst_nid, dist); 8900 } 8901 8902 return dst_weight < src_weight; 8903 } 8904 8905 #else 8906 static inline int migrate_degrades_locality(struct task_struct *p, 8907 struct lb_env *env) 8908 { 8909 return -1; 8910 } 8911 #endif 8912 8913 /* 8914 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 8915 */ 8916 static 8917 int can_migrate_task(struct task_struct *p, struct lb_env *env) 8918 { 8919 int tsk_cache_hot; 8920 8921 lockdep_assert_rq_held(env->src_rq); 8922 8923 /* 8924 * We do not migrate tasks that are: 8925 * 1) throttled_lb_pair, or 8926 * 2) cannot be migrated to this CPU due to cpus_ptr, or 8927 * 3) running (obviously), or 8928 * 4) are cache-hot on their current CPU. 8929 */ 8930 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 8931 return 0; 8932 8933 /* Disregard pcpu kthreads; they are where they need to be. */ 8934 if (kthread_is_per_cpu(p)) 8935 return 0; 8936 8937 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 8938 int cpu; 8939 8940 schedstat_inc(p->stats.nr_failed_migrations_affine); 8941 8942 env->flags |= LBF_SOME_PINNED; 8943 8944 /* 8945 * Remember if this task can be migrated to any other CPU in 8946 * our sched_group. We may want to revisit it if we couldn't 8947 * meet load balance goals by pulling other tasks on src_cpu. 8948 * 8949 * Avoid computing new_dst_cpu 8950 * - for NEWLY_IDLE 8951 * - if we have already computed one in current iteration 8952 * - if it's an active balance 8953 */ 8954 if (env->idle == CPU_NEWLY_IDLE || 8955 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 8956 return 0; 8957 8958 /* Prevent to re-select dst_cpu via env's CPUs: */ 8959 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 8960 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 8961 env->flags |= LBF_DST_PINNED; 8962 env->new_dst_cpu = cpu; 8963 break; 8964 } 8965 } 8966 8967 return 0; 8968 } 8969 8970 /* Record that we found at least one task that could run on dst_cpu */ 8971 env->flags &= ~LBF_ALL_PINNED; 8972 8973 if (task_on_cpu(env->src_rq, p)) { 8974 schedstat_inc(p->stats.nr_failed_migrations_running); 8975 return 0; 8976 } 8977 8978 /* 8979 * Aggressive migration if: 8980 * 1) active balance 8981 * 2) destination numa is preferred 8982 * 3) task is cache cold, or 8983 * 4) too many balance attempts have failed. 8984 */ 8985 if (env->flags & LBF_ACTIVE_LB) 8986 return 1; 8987 8988 tsk_cache_hot = migrate_degrades_locality(p, env); 8989 if (tsk_cache_hot == -1) 8990 tsk_cache_hot = task_hot(p, env); 8991 8992 if (tsk_cache_hot <= 0 || 8993 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 8994 if (tsk_cache_hot == 1) { 8995 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 8996 schedstat_inc(p->stats.nr_forced_migrations); 8997 } 8998 return 1; 8999 } 9000 9001 schedstat_inc(p->stats.nr_failed_migrations_hot); 9002 return 0; 9003 } 9004 9005 /* 9006 * detach_task() -- detach the task for the migration specified in env 9007 */ 9008 static void detach_task(struct task_struct *p, struct lb_env *env) 9009 { 9010 lockdep_assert_rq_held(env->src_rq); 9011 9012 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9013 set_task_cpu(p, env->dst_cpu); 9014 } 9015 9016 /* 9017 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9018 * part of active balancing operations within "domain". 9019 * 9020 * Returns a task if successful and NULL otherwise. 9021 */ 9022 static struct task_struct *detach_one_task(struct lb_env *env) 9023 { 9024 struct task_struct *p; 9025 9026 lockdep_assert_rq_held(env->src_rq); 9027 9028 list_for_each_entry_reverse(p, 9029 &env->src_rq->cfs_tasks, se.group_node) { 9030 if (!can_migrate_task(p, env)) 9031 continue; 9032 9033 detach_task(p, env); 9034 9035 /* 9036 * Right now, this is only the second place where 9037 * lb_gained[env->idle] is updated (other is detach_tasks) 9038 * so we can safely collect stats here rather than 9039 * inside detach_tasks(). 9040 */ 9041 schedstat_inc(env->sd->lb_gained[env->idle]); 9042 return p; 9043 } 9044 return NULL; 9045 } 9046 9047 /* 9048 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9049 * busiest_rq, as part of a balancing operation within domain "sd". 9050 * 9051 * Returns number of detached tasks if successful and 0 otherwise. 9052 */ 9053 static int detach_tasks(struct lb_env *env) 9054 { 9055 struct list_head *tasks = &env->src_rq->cfs_tasks; 9056 unsigned long util, load; 9057 struct task_struct *p; 9058 int detached = 0; 9059 9060 lockdep_assert_rq_held(env->src_rq); 9061 9062 /* 9063 * Source run queue has been emptied by another CPU, clear 9064 * LBF_ALL_PINNED flag as we will not test any task. 9065 */ 9066 if (env->src_rq->nr_running <= 1) { 9067 env->flags &= ~LBF_ALL_PINNED; 9068 return 0; 9069 } 9070 9071 if (env->imbalance <= 0) 9072 return 0; 9073 9074 while (!list_empty(tasks)) { 9075 /* 9076 * We don't want to steal all, otherwise we may be treated likewise, 9077 * which could at worst lead to a livelock crash. 9078 */ 9079 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 9080 break; 9081 9082 env->loop++; 9083 /* 9084 * We've more or less seen every task there is, call it quits 9085 * unless we haven't found any movable task yet. 9086 */ 9087 if (env->loop > env->loop_max && 9088 !(env->flags & LBF_ALL_PINNED)) 9089 break; 9090 9091 /* take a breather every nr_migrate tasks */ 9092 if (env->loop > env->loop_break) { 9093 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9094 env->flags |= LBF_NEED_BREAK; 9095 break; 9096 } 9097 9098 p = list_last_entry(tasks, struct task_struct, se.group_node); 9099 9100 if (!can_migrate_task(p, env)) 9101 goto next; 9102 9103 switch (env->migration_type) { 9104 case migrate_load: 9105 /* 9106 * Depending of the number of CPUs and tasks and the 9107 * cgroup hierarchy, task_h_load() can return a null 9108 * value. Make sure that env->imbalance decreases 9109 * otherwise detach_tasks() will stop only after 9110 * detaching up to loop_max tasks. 9111 */ 9112 load = max_t(unsigned long, task_h_load(p), 1); 9113 9114 if (sched_feat(LB_MIN) && 9115 load < 16 && !env->sd->nr_balance_failed) 9116 goto next; 9117 9118 /* 9119 * Make sure that we don't migrate too much load. 9120 * Nevertheless, let relax the constraint if 9121 * scheduler fails to find a good waiting task to 9122 * migrate. 9123 */ 9124 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9125 goto next; 9126 9127 env->imbalance -= load; 9128 break; 9129 9130 case migrate_util: 9131 util = task_util_est(p); 9132 9133 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9134 goto next; 9135 9136 env->imbalance -= util; 9137 break; 9138 9139 case migrate_task: 9140 env->imbalance--; 9141 break; 9142 9143 case migrate_misfit: 9144 /* This is not a misfit task */ 9145 if (task_fits_cpu(p, env->src_cpu)) 9146 goto next; 9147 9148 env->imbalance = 0; 9149 break; 9150 } 9151 9152 detach_task(p, env); 9153 list_add(&p->se.group_node, &env->tasks); 9154 9155 detached++; 9156 9157 #ifdef CONFIG_PREEMPTION 9158 /* 9159 * NEWIDLE balancing is a source of latency, so preemptible 9160 * kernels will stop after the first task is detached to minimize 9161 * the critical section. 9162 */ 9163 if (env->idle == CPU_NEWLY_IDLE) 9164 break; 9165 #endif 9166 9167 /* 9168 * We only want to steal up to the prescribed amount of 9169 * load/util/tasks. 9170 */ 9171 if (env->imbalance <= 0) 9172 break; 9173 9174 continue; 9175 next: 9176 list_move(&p->se.group_node, tasks); 9177 } 9178 9179 /* 9180 * Right now, this is one of only two places we collect this stat 9181 * so we can safely collect detach_one_task() stats here rather 9182 * than inside detach_one_task(). 9183 */ 9184 schedstat_add(env->sd->lb_gained[env->idle], detached); 9185 9186 return detached; 9187 } 9188 9189 /* 9190 * attach_task() -- attach the task detached by detach_task() to its new rq. 9191 */ 9192 static void attach_task(struct rq *rq, struct task_struct *p) 9193 { 9194 lockdep_assert_rq_held(rq); 9195 9196 WARN_ON_ONCE(task_rq(p) != rq); 9197 activate_task(rq, p, ENQUEUE_NOCLOCK); 9198 wakeup_preempt(rq, p, 0); 9199 } 9200 9201 /* 9202 * attach_one_task() -- attaches the task returned from detach_one_task() to 9203 * its new rq. 9204 */ 9205 static void attach_one_task(struct rq *rq, struct task_struct *p) 9206 { 9207 struct rq_flags rf; 9208 9209 rq_lock(rq, &rf); 9210 update_rq_clock(rq); 9211 attach_task(rq, p); 9212 rq_unlock(rq, &rf); 9213 } 9214 9215 /* 9216 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9217 * new rq. 9218 */ 9219 static void attach_tasks(struct lb_env *env) 9220 { 9221 struct list_head *tasks = &env->tasks; 9222 struct task_struct *p; 9223 struct rq_flags rf; 9224 9225 rq_lock(env->dst_rq, &rf); 9226 update_rq_clock(env->dst_rq); 9227 9228 while (!list_empty(tasks)) { 9229 p = list_first_entry(tasks, struct task_struct, se.group_node); 9230 list_del_init(&p->se.group_node); 9231 9232 attach_task(env->dst_rq, p); 9233 } 9234 9235 rq_unlock(env->dst_rq, &rf); 9236 } 9237 9238 #ifdef CONFIG_NO_HZ_COMMON 9239 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9240 { 9241 if (cfs_rq->avg.load_avg) 9242 return true; 9243 9244 if (cfs_rq->avg.util_avg) 9245 return true; 9246 9247 return false; 9248 } 9249 9250 static inline bool others_have_blocked(struct rq *rq) 9251 { 9252 if (cpu_util_rt(rq)) 9253 return true; 9254 9255 if (cpu_util_dl(rq)) 9256 return true; 9257 9258 if (thermal_load_avg(rq)) 9259 return true; 9260 9261 if (cpu_util_irq(rq)) 9262 return true; 9263 9264 return false; 9265 } 9266 9267 static inline void update_blocked_load_tick(struct rq *rq) 9268 { 9269 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9270 } 9271 9272 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9273 { 9274 if (!has_blocked) 9275 rq->has_blocked_load = 0; 9276 } 9277 #else 9278 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9279 static inline bool others_have_blocked(struct rq *rq) { return false; } 9280 static inline void update_blocked_load_tick(struct rq *rq) {} 9281 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9282 #endif 9283 9284 static bool __update_blocked_others(struct rq *rq, bool *done) 9285 { 9286 const struct sched_class *curr_class; 9287 u64 now = rq_clock_pelt(rq); 9288 unsigned long thermal_pressure; 9289 bool decayed; 9290 9291 /* 9292 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9293 * DL and IRQ signals have been updated before updating CFS. 9294 */ 9295 curr_class = rq->curr->sched_class; 9296 9297 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 9298 9299 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 9300 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 9301 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 9302 update_irq_load_avg(rq, 0); 9303 9304 if (others_have_blocked(rq)) 9305 *done = false; 9306 9307 return decayed; 9308 } 9309 9310 #ifdef CONFIG_FAIR_GROUP_SCHED 9311 9312 static bool __update_blocked_fair(struct rq *rq, bool *done) 9313 { 9314 struct cfs_rq *cfs_rq, *pos; 9315 bool decayed = false; 9316 int cpu = cpu_of(rq); 9317 9318 /* 9319 * Iterates the task_group tree in a bottom up fashion, see 9320 * list_add_leaf_cfs_rq() for details. 9321 */ 9322 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9323 struct sched_entity *se; 9324 9325 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9326 update_tg_load_avg(cfs_rq); 9327 9328 if (cfs_rq->nr_running == 0) 9329 update_idle_cfs_rq_clock_pelt(cfs_rq); 9330 9331 if (cfs_rq == &rq->cfs) 9332 decayed = true; 9333 } 9334 9335 /* Propagate pending load changes to the parent, if any: */ 9336 se = cfs_rq->tg->se[cpu]; 9337 if (se && !skip_blocked_update(se)) 9338 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9339 9340 /* 9341 * There can be a lot of idle CPU cgroups. Don't let fully 9342 * decayed cfs_rqs linger on the list. 9343 */ 9344 if (cfs_rq_is_decayed(cfs_rq)) 9345 list_del_leaf_cfs_rq(cfs_rq); 9346 9347 /* Don't need periodic decay once load/util_avg are null */ 9348 if (cfs_rq_has_blocked(cfs_rq)) 9349 *done = false; 9350 } 9351 9352 return decayed; 9353 } 9354 9355 /* 9356 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9357 * This needs to be done in a top-down fashion because the load of a child 9358 * group is a fraction of its parents load. 9359 */ 9360 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9361 { 9362 struct rq *rq = rq_of(cfs_rq); 9363 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9364 unsigned long now = jiffies; 9365 unsigned long load; 9366 9367 if (cfs_rq->last_h_load_update == now) 9368 return; 9369 9370 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9371 for_each_sched_entity(se) { 9372 cfs_rq = cfs_rq_of(se); 9373 WRITE_ONCE(cfs_rq->h_load_next, se); 9374 if (cfs_rq->last_h_load_update == now) 9375 break; 9376 } 9377 9378 if (!se) { 9379 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9380 cfs_rq->last_h_load_update = now; 9381 } 9382 9383 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9384 load = cfs_rq->h_load; 9385 load = div64_ul(load * se->avg.load_avg, 9386 cfs_rq_load_avg(cfs_rq) + 1); 9387 cfs_rq = group_cfs_rq(se); 9388 cfs_rq->h_load = load; 9389 cfs_rq->last_h_load_update = now; 9390 } 9391 } 9392 9393 static unsigned long task_h_load(struct task_struct *p) 9394 { 9395 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9396 9397 update_cfs_rq_h_load(cfs_rq); 9398 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9399 cfs_rq_load_avg(cfs_rq) + 1); 9400 } 9401 #else 9402 static bool __update_blocked_fair(struct rq *rq, bool *done) 9403 { 9404 struct cfs_rq *cfs_rq = &rq->cfs; 9405 bool decayed; 9406 9407 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9408 if (cfs_rq_has_blocked(cfs_rq)) 9409 *done = false; 9410 9411 return decayed; 9412 } 9413 9414 static unsigned long task_h_load(struct task_struct *p) 9415 { 9416 return p->se.avg.load_avg; 9417 } 9418 #endif 9419 9420 static void update_blocked_averages(int cpu) 9421 { 9422 bool decayed = false, done = true; 9423 struct rq *rq = cpu_rq(cpu); 9424 struct rq_flags rf; 9425 9426 rq_lock_irqsave(rq, &rf); 9427 update_blocked_load_tick(rq); 9428 update_rq_clock(rq); 9429 9430 decayed |= __update_blocked_others(rq, &done); 9431 decayed |= __update_blocked_fair(rq, &done); 9432 9433 update_blocked_load_status(rq, !done); 9434 if (decayed) 9435 cpufreq_update_util(rq, 0); 9436 rq_unlock_irqrestore(rq, &rf); 9437 } 9438 9439 /********** Helpers for find_busiest_group ************************/ 9440 9441 /* 9442 * sg_lb_stats - stats of a sched_group required for load_balancing 9443 */ 9444 struct sg_lb_stats { 9445 unsigned long avg_load; /*Avg load across the CPUs of the group */ 9446 unsigned long group_load; /* Total load over the CPUs of the group */ 9447 unsigned long group_capacity; 9448 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9449 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9450 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 9451 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9452 unsigned int idle_cpus; 9453 unsigned int group_weight; 9454 enum group_type group_type; 9455 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9456 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9457 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9458 #ifdef CONFIG_NUMA_BALANCING 9459 unsigned int nr_numa_running; 9460 unsigned int nr_preferred_running; 9461 #endif 9462 }; 9463 9464 /* 9465 * sd_lb_stats - Structure to store the statistics of a sched_domain 9466 * during load balancing. 9467 */ 9468 struct sd_lb_stats { 9469 struct sched_group *busiest; /* Busiest group in this sd */ 9470 struct sched_group *local; /* Local group in this sd */ 9471 unsigned long total_load; /* Total load of all groups in sd */ 9472 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9473 unsigned long avg_load; /* Average load across all groups in sd */ 9474 unsigned int prefer_sibling; /* tasks should go to sibling first */ 9475 9476 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 9477 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9478 }; 9479 9480 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9481 { 9482 /* 9483 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9484 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9485 * We must however set busiest_stat::group_type and 9486 * busiest_stat::idle_cpus to the worst busiest group because 9487 * update_sd_pick_busiest() reads these before assignment. 9488 */ 9489 *sds = (struct sd_lb_stats){ 9490 .busiest = NULL, 9491 .local = NULL, 9492 .total_load = 0UL, 9493 .total_capacity = 0UL, 9494 .busiest_stat = { 9495 .idle_cpus = UINT_MAX, 9496 .group_type = group_has_spare, 9497 }, 9498 }; 9499 } 9500 9501 static unsigned long scale_rt_capacity(int cpu) 9502 { 9503 struct rq *rq = cpu_rq(cpu); 9504 unsigned long max = arch_scale_cpu_capacity(cpu); 9505 unsigned long used, free; 9506 unsigned long irq; 9507 9508 irq = cpu_util_irq(rq); 9509 9510 if (unlikely(irq >= max)) 9511 return 1; 9512 9513 /* 9514 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9515 * (running and not running) with weights 0 and 1024 respectively. 9516 * avg_thermal.load_avg tracks thermal pressure and the weighted 9517 * average uses the actual delta max capacity(load). 9518 */ 9519 used = cpu_util_rt(rq); 9520 used += cpu_util_dl(rq); 9521 used += thermal_load_avg(rq); 9522 9523 if (unlikely(used >= max)) 9524 return 1; 9525 9526 free = max - used; 9527 9528 return scale_irq_capacity(free, irq, max); 9529 } 9530 9531 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9532 { 9533 unsigned long capacity = scale_rt_capacity(cpu); 9534 struct sched_group *sdg = sd->groups; 9535 9536 if (!capacity) 9537 capacity = 1; 9538 9539 cpu_rq(cpu)->cpu_capacity = capacity; 9540 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9541 9542 sdg->sgc->capacity = capacity; 9543 sdg->sgc->min_capacity = capacity; 9544 sdg->sgc->max_capacity = capacity; 9545 } 9546 9547 void update_group_capacity(struct sched_domain *sd, int cpu) 9548 { 9549 struct sched_domain *child = sd->child; 9550 struct sched_group *group, *sdg = sd->groups; 9551 unsigned long capacity, min_capacity, max_capacity; 9552 unsigned long interval; 9553 9554 interval = msecs_to_jiffies(sd->balance_interval); 9555 interval = clamp(interval, 1UL, max_load_balance_interval); 9556 sdg->sgc->next_update = jiffies + interval; 9557 9558 if (!child) { 9559 update_cpu_capacity(sd, cpu); 9560 return; 9561 } 9562 9563 capacity = 0; 9564 min_capacity = ULONG_MAX; 9565 max_capacity = 0; 9566 9567 if (child->flags & SD_OVERLAP) { 9568 /* 9569 * SD_OVERLAP domains cannot assume that child groups 9570 * span the current group. 9571 */ 9572 9573 for_each_cpu(cpu, sched_group_span(sdg)) { 9574 unsigned long cpu_cap = capacity_of(cpu); 9575 9576 capacity += cpu_cap; 9577 min_capacity = min(cpu_cap, min_capacity); 9578 max_capacity = max(cpu_cap, max_capacity); 9579 } 9580 } else { 9581 /* 9582 * !SD_OVERLAP domains can assume that child groups 9583 * span the current group. 9584 */ 9585 9586 group = child->groups; 9587 do { 9588 struct sched_group_capacity *sgc = group->sgc; 9589 9590 capacity += sgc->capacity; 9591 min_capacity = min(sgc->min_capacity, min_capacity); 9592 max_capacity = max(sgc->max_capacity, max_capacity); 9593 group = group->next; 9594 } while (group != child->groups); 9595 } 9596 9597 sdg->sgc->capacity = capacity; 9598 sdg->sgc->min_capacity = min_capacity; 9599 sdg->sgc->max_capacity = max_capacity; 9600 } 9601 9602 /* 9603 * Check whether the capacity of the rq has been noticeably reduced by side 9604 * activity. The imbalance_pct is used for the threshold. 9605 * Return true is the capacity is reduced 9606 */ 9607 static inline int 9608 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 9609 { 9610 return ((rq->cpu_capacity * sd->imbalance_pct) < 9611 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 9612 } 9613 9614 /* 9615 * Check whether a rq has a misfit task and if it looks like we can actually 9616 * help that task: we can migrate the task to a CPU of higher capacity, or 9617 * the task's current CPU is heavily pressured. 9618 */ 9619 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 9620 { 9621 return rq->misfit_task_load && 9622 (arch_scale_cpu_capacity(rq->cpu) < rq->rd->max_cpu_capacity || 9623 check_cpu_capacity(rq, sd)); 9624 } 9625 9626 /* 9627 * Group imbalance indicates (and tries to solve) the problem where balancing 9628 * groups is inadequate due to ->cpus_ptr constraints. 9629 * 9630 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9631 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 9632 * Something like: 9633 * 9634 * { 0 1 2 3 } { 4 5 6 7 } 9635 * * * * * 9636 * 9637 * If we were to balance group-wise we'd place two tasks in the first group and 9638 * two tasks in the second group. Clearly this is undesired as it will overload 9639 * cpu 3 and leave one of the CPUs in the second group unused. 9640 * 9641 * The current solution to this issue is detecting the skew in the first group 9642 * by noticing the lower domain failed to reach balance and had difficulty 9643 * moving tasks due to affinity constraints. 9644 * 9645 * When this is so detected; this group becomes a candidate for busiest; see 9646 * update_sd_pick_busiest(). And calculate_imbalance() and 9647 * find_busiest_group() avoid some of the usual balance conditions to allow it 9648 * to create an effective group imbalance. 9649 * 9650 * This is a somewhat tricky proposition since the next run might not find the 9651 * group imbalance and decide the groups need to be balanced again. A most 9652 * subtle and fragile situation. 9653 */ 9654 9655 static inline int sg_imbalanced(struct sched_group *group) 9656 { 9657 return group->sgc->imbalance; 9658 } 9659 9660 /* 9661 * group_has_capacity returns true if the group has spare capacity that could 9662 * be used by some tasks. 9663 * We consider that a group has spare capacity if the number of task is 9664 * smaller than the number of CPUs or if the utilization is lower than the 9665 * available capacity for CFS tasks. 9666 * For the latter, we use a threshold to stabilize the state, to take into 9667 * account the variance of the tasks' load and to return true if the available 9668 * capacity in meaningful for the load balancer. 9669 * As an example, an available capacity of 1% can appear but it doesn't make 9670 * any benefit for the load balance. 9671 */ 9672 static inline bool 9673 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9674 { 9675 if (sgs->sum_nr_running < sgs->group_weight) 9676 return true; 9677 9678 if ((sgs->group_capacity * imbalance_pct) < 9679 (sgs->group_runnable * 100)) 9680 return false; 9681 9682 if ((sgs->group_capacity * 100) > 9683 (sgs->group_util * imbalance_pct)) 9684 return true; 9685 9686 return false; 9687 } 9688 9689 /* 9690 * group_is_overloaded returns true if the group has more tasks than it can 9691 * handle. 9692 * group_is_overloaded is not equals to !group_has_capacity because a group 9693 * with the exact right number of tasks, has no more spare capacity but is not 9694 * overloaded so both group_has_capacity and group_is_overloaded return 9695 * false. 9696 */ 9697 static inline bool 9698 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9699 { 9700 if (sgs->sum_nr_running <= sgs->group_weight) 9701 return false; 9702 9703 if ((sgs->group_capacity * 100) < 9704 (sgs->group_util * imbalance_pct)) 9705 return true; 9706 9707 if ((sgs->group_capacity * imbalance_pct) < 9708 (sgs->group_runnable * 100)) 9709 return true; 9710 9711 return false; 9712 } 9713 9714 static inline enum 9715 group_type group_classify(unsigned int imbalance_pct, 9716 struct sched_group *group, 9717 struct sg_lb_stats *sgs) 9718 { 9719 if (group_is_overloaded(imbalance_pct, sgs)) 9720 return group_overloaded; 9721 9722 if (sg_imbalanced(group)) 9723 return group_imbalanced; 9724 9725 if (sgs->group_asym_packing) 9726 return group_asym_packing; 9727 9728 if (sgs->group_smt_balance) 9729 return group_smt_balance; 9730 9731 if (sgs->group_misfit_task_load) 9732 return group_misfit_task; 9733 9734 if (!group_has_capacity(imbalance_pct, sgs)) 9735 return group_fully_busy; 9736 9737 return group_has_spare; 9738 } 9739 9740 /** 9741 * sched_use_asym_prio - Check whether asym_packing priority must be used 9742 * @sd: The scheduling domain of the load balancing 9743 * @cpu: A CPU 9744 * 9745 * Always use CPU priority when balancing load between SMT siblings. When 9746 * balancing load between cores, it is not sufficient that @cpu is idle. Only 9747 * use CPU priority if the whole core is idle. 9748 * 9749 * Returns: True if the priority of @cpu must be followed. False otherwise. 9750 */ 9751 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 9752 { 9753 if (!(sd->flags & SD_ASYM_PACKING)) 9754 return false; 9755 9756 if (!sched_smt_active()) 9757 return true; 9758 9759 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 9760 } 9761 9762 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 9763 { 9764 /* 9765 * First check if @dst_cpu can do asym_packing load balance. Only do it 9766 * if it has higher priority than @src_cpu. 9767 */ 9768 return sched_use_asym_prio(sd, dst_cpu) && 9769 sched_asym_prefer(dst_cpu, src_cpu); 9770 } 9771 9772 /** 9773 * sched_group_asym - Check if the destination CPU can do asym_packing balance 9774 * @env: The load balancing environment 9775 * @sgs: Load-balancing statistics of the candidate busiest group 9776 * @group: The candidate busiest group 9777 * 9778 * @env::dst_cpu can do asym_packing if it has higher priority than the 9779 * preferred CPU of @group. 9780 * 9781 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 9782 * otherwise. 9783 */ 9784 static inline bool 9785 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 9786 { 9787 /* 9788 * CPU priorities do not make sense for SMT cores with more than one 9789 * busy sibling. 9790 */ 9791 if ((group->flags & SD_SHARE_CPUCAPACITY) && 9792 (sgs->group_weight - sgs->idle_cpus != 1)) 9793 return false; 9794 9795 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu); 9796 } 9797 9798 /* One group has more than one SMT CPU while the other group does not */ 9799 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 9800 struct sched_group *sg2) 9801 { 9802 if (!sg1 || !sg2) 9803 return false; 9804 9805 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 9806 (sg2->flags & SD_SHARE_CPUCAPACITY); 9807 } 9808 9809 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 9810 struct sched_group *group) 9811 { 9812 if (env->idle == CPU_NOT_IDLE) 9813 return false; 9814 9815 /* 9816 * For SMT source group, it is better to move a task 9817 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 9818 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 9819 * will not be on. 9820 */ 9821 if (group->flags & SD_SHARE_CPUCAPACITY && 9822 sgs->sum_h_nr_running > 1) 9823 return true; 9824 9825 return false; 9826 } 9827 9828 static inline long sibling_imbalance(struct lb_env *env, 9829 struct sd_lb_stats *sds, 9830 struct sg_lb_stats *busiest, 9831 struct sg_lb_stats *local) 9832 { 9833 int ncores_busiest, ncores_local; 9834 long imbalance; 9835 9836 if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running) 9837 return 0; 9838 9839 ncores_busiest = sds->busiest->cores; 9840 ncores_local = sds->local->cores; 9841 9842 if (ncores_busiest == ncores_local) { 9843 imbalance = busiest->sum_nr_running; 9844 lsub_positive(&imbalance, local->sum_nr_running); 9845 return imbalance; 9846 } 9847 9848 /* Balance such that nr_running/ncores ratio are same on both groups */ 9849 imbalance = ncores_local * busiest->sum_nr_running; 9850 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 9851 /* Normalize imbalance and do rounding on normalization */ 9852 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 9853 imbalance /= ncores_local + ncores_busiest; 9854 9855 /* Take advantage of resource in an empty sched group */ 9856 if (imbalance <= 1 && local->sum_nr_running == 0 && 9857 busiest->sum_nr_running > 1) 9858 imbalance = 2; 9859 9860 return imbalance; 9861 } 9862 9863 static inline bool 9864 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 9865 { 9866 /* 9867 * When there is more than 1 task, the group_overloaded case already 9868 * takes care of cpu with reduced capacity 9869 */ 9870 if (rq->cfs.h_nr_running != 1) 9871 return false; 9872 9873 return check_cpu_capacity(rq, sd); 9874 } 9875 9876 /** 9877 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 9878 * @env: The load balancing environment. 9879 * @sds: Load-balancing data with statistics of the local group. 9880 * @group: sched_group whose statistics are to be updated. 9881 * @sgs: variable to hold the statistics for this group. 9882 * @sg_status: Holds flag indicating the status of the sched_group 9883 */ 9884 static inline void update_sg_lb_stats(struct lb_env *env, 9885 struct sd_lb_stats *sds, 9886 struct sched_group *group, 9887 struct sg_lb_stats *sgs, 9888 int *sg_status) 9889 { 9890 int i, nr_running, local_group; 9891 9892 memset(sgs, 0, sizeof(*sgs)); 9893 9894 local_group = group == sds->local; 9895 9896 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9897 struct rq *rq = cpu_rq(i); 9898 unsigned long load = cpu_load(rq); 9899 9900 sgs->group_load += load; 9901 sgs->group_util += cpu_util_cfs(i); 9902 sgs->group_runnable += cpu_runnable(rq); 9903 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 9904 9905 nr_running = rq->nr_running; 9906 sgs->sum_nr_running += nr_running; 9907 9908 if (nr_running > 1) 9909 *sg_status |= SG_OVERLOAD; 9910 9911 if (cpu_overutilized(i)) 9912 *sg_status |= SG_OVERUTILIZED; 9913 9914 #ifdef CONFIG_NUMA_BALANCING 9915 sgs->nr_numa_running += rq->nr_numa_running; 9916 sgs->nr_preferred_running += rq->nr_preferred_running; 9917 #endif 9918 /* 9919 * No need to call idle_cpu() if nr_running is not 0 9920 */ 9921 if (!nr_running && idle_cpu(i)) { 9922 sgs->idle_cpus++; 9923 /* Idle cpu can't have misfit task */ 9924 continue; 9925 } 9926 9927 if (local_group) 9928 continue; 9929 9930 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9931 /* Check for a misfit task on the cpu */ 9932 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 9933 sgs->group_misfit_task_load = rq->misfit_task_load; 9934 *sg_status |= SG_OVERLOAD; 9935 } 9936 } else if ((env->idle != CPU_NOT_IDLE) && 9937 sched_reduced_capacity(rq, env->sd)) { 9938 /* Check for a task running on a CPU with reduced capacity */ 9939 if (sgs->group_misfit_task_load < load) 9940 sgs->group_misfit_task_load = load; 9941 } 9942 } 9943 9944 sgs->group_capacity = group->sgc->capacity; 9945 9946 sgs->group_weight = group->group_weight; 9947 9948 /* Check if dst CPU is idle and preferred to this group */ 9949 if (!local_group && env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 9950 sched_group_asym(env, sgs, group)) 9951 sgs->group_asym_packing = 1; 9952 9953 /* Check for loaded SMT group to be balanced to dst CPU */ 9954 if (!local_group && smt_balance(env, sgs, group)) 9955 sgs->group_smt_balance = 1; 9956 9957 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 9958 9959 /* Computing avg_load makes sense only when group is overloaded */ 9960 if (sgs->group_type == group_overloaded) 9961 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9962 sgs->group_capacity; 9963 } 9964 9965 /** 9966 * update_sd_pick_busiest - return 1 on busiest group 9967 * @env: The load balancing environment. 9968 * @sds: sched_domain statistics 9969 * @sg: sched_group candidate to be checked for being the busiest 9970 * @sgs: sched_group statistics 9971 * 9972 * Determine if @sg is a busier group than the previously selected 9973 * busiest group. 9974 * 9975 * Return: %true if @sg is a busier group than the previously selected 9976 * busiest group. %false otherwise. 9977 */ 9978 static bool update_sd_pick_busiest(struct lb_env *env, 9979 struct sd_lb_stats *sds, 9980 struct sched_group *sg, 9981 struct sg_lb_stats *sgs) 9982 { 9983 struct sg_lb_stats *busiest = &sds->busiest_stat; 9984 9985 /* Make sure that there is at least one task to pull */ 9986 if (!sgs->sum_h_nr_running) 9987 return false; 9988 9989 /* 9990 * Don't try to pull misfit tasks we can't help. 9991 * We can use max_capacity here as reduction in capacity on some 9992 * CPUs in the group should either be possible to resolve 9993 * internally or be covered by avg_load imbalance (eventually). 9994 */ 9995 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9996 (sgs->group_type == group_misfit_task) && 9997 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 9998 sds->local_stat.group_type != group_has_spare)) 9999 return false; 10000 10001 if (sgs->group_type > busiest->group_type) 10002 return true; 10003 10004 if (sgs->group_type < busiest->group_type) 10005 return false; 10006 10007 /* 10008 * The candidate and the current busiest group are the same type of 10009 * group. Let check which one is the busiest according to the type. 10010 */ 10011 10012 switch (sgs->group_type) { 10013 case group_overloaded: 10014 /* Select the overloaded group with highest avg_load. */ 10015 return sgs->avg_load > busiest->avg_load; 10016 10017 case group_imbalanced: 10018 /* 10019 * Select the 1st imbalanced group as we don't have any way to 10020 * choose one more than another. 10021 */ 10022 return false; 10023 10024 case group_asym_packing: 10025 /* Prefer to move from lowest priority CPU's work */ 10026 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu); 10027 10028 case group_misfit_task: 10029 /* 10030 * If we have more than one misfit sg go with the biggest 10031 * misfit. 10032 */ 10033 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10034 10035 case group_smt_balance: 10036 /* 10037 * Check if we have spare CPUs on either SMT group to 10038 * choose has spare or fully busy handling. 10039 */ 10040 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10041 goto has_spare; 10042 10043 fallthrough; 10044 10045 case group_fully_busy: 10046 /* 10047 * Select the fully busy group with highest avg_load. In 10048 * theory, there is no need to pull task from such kind of 10049 * group because tasks have all compute capacity that they need 10050 * but we can still improve the overall throughput by reducing 10051 * contention when accessing shared HW resources. 10052 * 10053 * XXX for now avg_load is not computed and always 0 so we 10054 * select the 1st one, except if @sg is composed of SMT 10055 * siblings. 10056 */ 10057 10058 if (sgs->avg_load < busiest->avg_load) 10059 return false; 10060 10061 if (sgs->avg_load == busiest->avg_load) { 10062 /* 10063 * SMT sched groups need more help than non-SMT groups. 10064 * If @sg happens to also be SMT, either choice is good. 10065 */ 10066 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10067 return false; 10068 } 10069 10070 break; 10071 10072 case group_has_spare: 10073 /* 10074 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10075 * as we do not want to pull task off SMT core with one task 10076 * and make the core idle. 10077 */ 10078 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10079 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10080 return false; 10081 else 10082 return true; 10083 } 10084 has_spare: 10085 10086 /* 10087 * Select not overloaded group with lowest number of idle cpus 10088 * and highest number of running tasks. We could also compare 10089 * the spare capacity which is more stable but it can end up 10090 * that the group has less spare capacity but finally more idle 10091 * CPUs which means less opportunity to pull tasks. 10092 */ 10093 if (sgs->idle_cpus > busiest->idle_cpus) 10094 return false; 10095 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10096 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10097 return false; 10098 10099 break; 10100 } 10101 10102 /* 10103 * Candidate sg has no more than one task per CPU and has higher 10104 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10105 * throughput. Maximize throughput, power/energy consequences are not 10106 * considered. 10107 */ 10108 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10109 (sgs->group_type <= group_fully_busy) && 10110 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10111 return false; 10112 10113 return true; 10114 } 10115 10116 #ifdef CONFIG_NUMA_BALANCING 10117 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10118 { 10119 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10120 return regular; 10121 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10122 return remote; 10123 return all; 10124 } 10125 10126 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10127 { 10128 if (rq->nr_running > rq->nr_numa_running) 10129 return regular; 10130 if (rq->nr_running > rq->nr_preferred_running) 10131 return remote; 10132 return all; 10133 } 10134 #else 10135 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10136 { 10137 return all; 10138 } 10139 10140 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10141 { 10142 return regular; 10143 } 10144 #endif /* CONFIG_NUMA_BALANCING */ 10145 10146 10147 struct sg_lb_stats; 10148 10149 /* 10150 * task_running_on_cpu - return 1 if @p is running on @cpu. 10151 */ 10152 10153 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10154 { 10155 /* Task has no contribution or is new */ 10156 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10157 return 0; 10158 10159 if (task_on_rq_queued(p)) 10160 return 1; 10161 10162 return 0; 10163 } 10164 10165 /** 10166 * idle_cpu_without - would a given CPU be idle without p ? 10167 * @cpu: the processor on which idleness is tested. 10168 * @p: task which should be ignored. 10169 * 10170 * Return: 1 if the CPU would be idle. 0 otherwise. 10171 */ 10172 static int idle_cpu_without(int cpu, struct task_struct *p) 10173 { 10174 struct rq *rq = cpu_rq(cpu); 10175 10176 if (rq->curr != rq->idle && rq->curr != p) 10177 return 0; 10178 10179 /* 10180 * rq->nr_running can't be used but an updated version without the 10181 * impact of p on cpu must be used instead. The updated nr_running 10182 * be computed and tested before calling idle_cpu_without(). 10183 */ 10184 10185 if (rq->ttwu_pending) 10186 return 0; 10187 10188 return 1; 10189 } 10190 10191 /* 10192 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10193 * @sd: The sched_domain level to look for idlest group. 10194 * @group: sched_group whose statistics are to be updated. 10195 * @sgs: variable to hold the statistics for this group. 10196 * @p: The task for which we look for the idlest group/CPU. 10197 */ 10198 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10199 struct sched_group *group, 10200 struct sg_lb_stats *sgs, 10201 struct task_struct *p) 10202 { 10203 int i, nr_running; 10204 10205 memset(sgs, 0, sizeof(*sgs)); 10206 10207 /* Assume that task can't fit any CPU of the group */ 10208 if (sd->flags & SD_ASYM_CPUCAPACITY) 10209 sgs->group_misfit_task_load = 1; 10210 10211 for_each_cpu(i, sched_group_span(group)) { 10212 struct rq *rq = cpu_rq(i); 10213 unsigned int local; 10214 10215 sgs->group_load += cpu_load_without(rq, p); 10216 sgs->group_util += cpu_util_without(i, p); 10217 sgs->group_runnable += cpu_runnable_without(rq, p); 10218 local = task_running_on_cpu(i, p); 10219 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 10220 10221 nr_running = rq->nr_running - local; 10222 sgs->sum_nr_running += nr_running; 10223 10224 /* 10225 * No need to call idle_cpu_without() if nr_running is not 0 10226 */ 10227 if (!nr_running && idle_cpu_without(i, p)) 10228 sgs->idle_cpus++; 10229 10230 /* Check if task fits in the CPU */ 10231 if (sd->flags & SD_ASYM_CPUCAPACITY && 10232 sgs->group_misfit_task_load && 10233 task_fits_cpu(p, i)) 10234 sgs->group_misfit_task_load = 0; 10235 10236 } 10237 10238 sgs->group_capacity = group->sgc->capacity; 10239 10240 sgs->group_weight = group->group_weight; 10241 10242 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10243 10244 /* 10245 * Computing avg_load makes sense only when group is fully busy or 10246 * overloaded 10247 */ 10248 if (sgs->group_type == group_fully_busy || 10249 sgs->group_type == group_overloaded) 10250 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10251 sgs->group_capacity; 10252 } 10253 10254 static bool update_pick_idlest(struct sched_group *idlest, 10255 struct sg_lb_stats *idlest_sgs, 10256 struct sched_group *group, 10257 struct sg_lb_stats *sgs) 10258 { 10259 if (sgs->group_type < idlest_sgs->group_type) 10260 return true; 10261 10262 if (sgs->group_type > idlest_sgs->group_type) 10263 return false; 10264 10265 /* 10266 * The candidate and the current idlest group are the same type of 10267 * group. Let check which one is the idlest according to the type. 10268 */ 10269 10270 switch (sgs->group_type) { 10271 case group_overloaded: 10272 case group_fully_busy: 10273 /* Select the group with lowest avg_load. */ 10274 if (idlest_sgs->avg_load <= sgs->avg_load) 10275 return false; 10276 break; 10277 10278 case group_imbalanced: 10279 case group_asym_packing: 10280 case group_smt_balance: 10281 /* Those types are not used in the slow wakeup path */ 10282 return false; 10283 10284 case group_misfit_task: 10285 /* Select group with the highest max capacity */ 10286 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10287 return false; 10288 break; 10289 10290 case group_has_spare: 10291 /* Select group with most idle CPUs */ 10292 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10293 return false; 10294 10295 /* Select group with lowest group_util */ 10296 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10297 idlest_sgs->group_util <= sgs->group_util) 10298 return false; 10299 10300 break; 10301 } 10302 10303 return true; 10304 } 10305 10306 /* 10307 * find_idlest_group() finds and returns the least busy CPU group within the 10308 * domain. 10309 * 10310 * Assumes p is allowed on at least one CPU in sd. 10311 */ 10312 static struct sched_group * 10313 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10314 { 10315 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10316 struct sg_lb_stats local_sgs, tmp_sgs; 10317 struct sg_lb_stats *sgs; 10318 unsigned long imbalance; 10319 struct sg_lb_stats idlest_sgs = { 10320 .avg_load = UINT_MAX, 10321 .group_type = group_overloaded, 10322 }; 10323 10324 do { 10325 int local_group; 10326 10327 /* Skip over this group if it has no CPUs allowed */ 10328 if (!cpumask_intersects(sched_group_span(group), 10329 p->cpus_ptr)) 10330 continue; 10331 10332 /* Skip over this group if no cookie matched */ 10333 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10334 continue; 10335 10336 local_group = cpumask_test_cpu(this_cpu, 10337 sched_group_span(group)); 10338 10339 if (local_group) { 10340 sgs = &local_sgs; 10341 local = group; 10342 } else { 10343 sgs = &tmp_sgs; 10344 } 10345 10346 update_sg_wakeup_stats(sd, group, sgs, p); 10347 10348 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10349 idlest = group; 10350 idlest_sgs = *sgs; 10351 } 10352 10353 } while (group = group->next, group != sd->groups); 10354 10355 10356 /* There is no idlest group to push tasks to */ 10357 if (!idlest) 10358 return NULL; 10359 10360 /* The local group has been skipped because of CPU affinity */ 10361 if (!local) 10362 return idlest; 10363 10364 /* 10365 * If the local group is idler than the selected idlest group 10366 * don't try and push the task. 10367 */ 10368 if (local_sgs.group_type < idlest_sgs.group_type) 10369 return NULL; 10370 10371 /* 10372 * If the local group is busier than the selected idlest group 10373 * try and push the task. 10374 */ 10375 if (local_sgs.group_type > idlest_sgs.group_type) 10376 return idlest; 10377 10378 switch (local_sgs.group_type) { 10379 case group_overloaded: 10380 case group_fully_busy: 10381 10382 /* Calculate allowed imbalance based on load */ 10383 imbalance = scale_load_down(NICE_0_LOAD) * 10384 (sd->imbalance_pct-100) / 100; 10385 10386 /* 10387 * When comparing groups across NUMA domains, it's possible for 10388 * the local domain to be very lightly loaded relative to the 10389 * remote domains but "imbalance" skews the comparison making 10390 * remote CPUs look much more favourable. When considering 10391 * cross-domain, add imbalance to the load on the remote node 10392 * and consider staying local. 10393 */ 10394 10395 if ((sd->flags & SD_NUMA) && 10396 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10397 return NULL; 10398 10399 /* 10400 * If the local group is less loaded than the selected 10401 * idlest group don't try and push any tasks. 10402 */ 10403 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10404 return NULL; 10405 10406 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10407 return NULL; 10408 break; 10409 10410 case group_imbalanced: 10411 case group_asym_packing: 10412 case group_smt_balance: 10413 /* Those type are not used in the slow wakeup path */ 10414 return NULL; 10415 10416 case group_misfit_task: 10417 /* Select group with the highest max capacity */ 10418 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10419 return NULL; 10420 break; 10421 10422 case group_has_spare: 10423 #ifdef CONFIG_NUMA 10424 if (sd->flags & SD_NUMA) { 10425 int imb_numa_nr = sd->imb_numa_nr; 10426 #ifdef CONFIG_NUMA_BALANCING 10427 int idlest_cpu; 10428 /* 10429 * If there is spare capacity at NUMA, try to select 10430 * the preferred node 10431 */ 10432 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10433 return NULL; 10434 10435 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10436 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10437 return idlest; 10438 #endif /* CONFIG_NUMA_BALANCING */ 10439 /* 10440 * Otherwise, keep the task close to the wakeup source 10441 * and improve locality if the number of running tasks 10442 * would remain below threshold where an imbalance is 10443 * allowed while accounting for the possibility the 10444 * task is pinned to a subset of CPUs. If there is a 10445 * real need of migration, periodic load balance will 10446 * take care of it. 10447 */ 10448 if (p->nr_cpus_allowed != NR_CPUS) { 10449 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10450 10451 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10452 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10453 } 10454 10455 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10456 if (!adjust_numa_imbalance(imbalance, 10457 local_sgs.sum_nr_running + 1, 10458 imb_numa_nr)) { 10459 return NULL; 10460 } 10461 } 10462 #endif /* CONFIG_NUMA */ 10463 10464 /* 10465 * Select group with highest number of idle CPUs. We could also 10466 * compare the utilization which is more stable but it can end 10467 * up that the group has less spare capacity but finally more 10468 * idle CPUs which means more opportunity to run task. 10469 */ 10470 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10471 return NULL; 10472 break; 10473 } 10474 10475 return idlest; 10476 } 10477 10478 static void update_idle_cpu_scan(struct lb_env *env, 10479 unsigned long sum_util) 10480 { 10481 struct sched_domain_shared *sd_share; 10482 int llc_weight, pct; 10483 u64 x, y, tmp; 10484 /* 10485 * Update the number of CPUs to scan in LLC domain, which could 10486 * be used as a hint in select_idle_cpu(). The update of sd_share 10487 * could be expensive because it is within a shared cache line. 10488 * So the write of this hint only occurs during periodic load 10489 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10490 * can fire way more frequently than the former. 10491 */ 10492 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10493 return; 10494 10495 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10496 if (env->sd->span_weight != llc_weight) 10497 return; 10498 10499 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10500 if (!sd_share) 10501 return; 10502 10503 /* 10504 * The number of CPUs to search drops as sum_util increases, when 10505 * sum_util hits 85% or above, the scan stops. 10506 * The reason to choose 85% as the threshold is because this is the 10507 * imbalance_pct(117) when a LLC sched group is overloaded. 10508 * 10509 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10510 * and y'= y / SCHED_CAPACITY_SCALE 10511 * 10512 * x is the ratio of sum_util compared to the CPU capacity: 10513 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10514 * y' is the ratio of CPUs to be scanned in the LLC domain, 10515 * and the number of CPUs to scan is calculated by: 10516 * 10517 * nr_scan = llc_weight * y' [2] 10518 * 10519 * When x hits the threshold of overloaded, AKA, when 10520 * x = 100 / pct, y drops to 0. According to [1], 10521 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10522 * 10523 * Scale x by SCHED_CAPACITY_SCALE: 10524 * x' = sum_util / llc_weight; [3] 10525 * 10526 * and finally [1] becomes: 10527 * y = SCHED_CAPACITY_SCALE - 10528 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10529 * 10530 */ 10531 /* equation [3] */ 10532 x = sum_util; 10533 do_div(x, llc_weight); 10534 10535 /* equation [4] */ 10536 pct = env->sd->imbalance_pct; 10537 tmp = x * x * pct * pct; 10538 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10539 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10540 y = SCHED_CAPACITY_SCALE - tmp; 10541 10542 /* equation [2] */ 10543 y *= llc_weight; 10544 do_div(y, SCHED_CAPACITY_SCALE); 10545 if ((int)y != sd_share->nr_idle_scan) 10546 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10547 } 10548 10549 /** 10550 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10551 * @env: The load balancing environment. 10552 * @sds: variable to hold the statistics for this sched_domain. 10553 */ 10554 10555 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10556 { 10557 struct sched_group *sg = env->sd->groups; 10558 struct sg_lb_stats *local = &sds->local_stat; 10559 struct sg_lb_stats tmp_sgs; 10560 unsigned long sum_util = 0; 10561 int sg_status = 0; 10562 10563 do { 10564 struct sg_lb_stats *sgs = &tmp_sgs; 10565 int local_group; 10566 10567 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10568 if (local_group) { 10569 sds->local = sg; 10570 sgs = local; 10571 10572 if (env->idle != CPU_NEWLY_IDLE || 10573 time_after_eq(jiffies, sg->sgc->next_update)) 10574 update_group_capacity(env->sd, env->dst_cpu); 10575 } 10576 10577 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 10578 10579 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 10580 sds->busiest = sg; 10581 sds->busiest_stat = *sgs; 10582 } 10583 10584 /* Now, start updating sd_lb_stats */ 10585 sds->total_load += sgs->group_load; 10586 sds->total_capacity += sgs->group_capacity; 10587 10588 sum_util += sgs->group_util; 10589 sg = sg->next; 10590 } while (sg != env->sd->groups); 10591 10592 /* 10593 * Indicate that the child domain of the busiest group prefers tasks 10594 * go to a child's sibling domains first. NB the flags of a sched group 10595 * are those of the child domain. 10596 */ 10597 if (sds->busiest) 10598 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 10599 10600 10601 if (env->sd->flags & SD_NUMA) 10602 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 10603 10604 if (!env->sd->parent) { 10605 struct root_domain *rd = env->dst_rq->rd; 10606 10607 /* update overload indicator if we are at root domain */ 10608 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 10609 10610 /* Update over-utilization (tipping point, U >= 0) indicator */ 10611 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 10612 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 10613 } else if (sg_status & SG_OVERUTILIZED) { 10614 struct root_domain *rd = env->dst_rq->rd; 10615 10616 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 10617 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 10618 } 10619 10620 update_idle_cpu_scan(env, sum_util); 10621 } 10622 10623 /** 10624 * calculate_imbalance - Calculate the amount of imbalance present within the 10625 * groups of a given sched_domain during load balance. 10626 * @env: load balance environment 10627 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 10628 */ 10629 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 10630 { 10631 struct sg_lb_stats *local, *busiest; 10632 10633 local = &sds->local_stat; 10634 busiest = &sds->busiest_stat; 10635 10636 if (busiest->group_type == group_misfit_task) { 10637 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10638 /* Set imbalance to allow misfit tasks to be balanced. */ 10639 env->migration_type = migrate_misfit; 10640 env->imbalance = 1; 10641 } else { 10642 /* 10643 * Set load imbalance to allow moving task from cpu 10644 * with reduced capacity. 10645 */ 10646 env->migration_type = migrate_load; 10647 env->imbalance = busiest->group_misfit_task_load; 10648 } 10649 return; 10650 } 10651 10652 if (busiest->group_type == group_asym_packing) { 10653 /* 10654 * In case of asym capacity, we will try to migrate all load to 10655 * the preferred CPU. 10656 */ 10657 env->migration_type = migrate_task; 10658 env->imbalance = busiest->sum_h_nr_running; 10659 return; 10660 } 10661 10662 if (busiest->group_type == group_smt_balance) { 10663 /* Reduce number of tasks sharing CPU capacity */ 10664 env->migration_type = migrate_task; 10665 env->imbalance = 1; 10666 return; 10667 } 10668 10669 if (busiest->group_type == group_imbalanced) { 10670 /* 10671 * In the group_imb case we cannot rely on group-wide averages 10672 * to ensure CPU-load equilibrium, try to move any task to fix 10673 * the imbalance. The next load balance will take care of 10674 * balancing back the system. 10675 */ 10676 env->migration_type = migrate_task; 10677 env->imbalance = 1; 10678 return; 10679 } 10680 10681 /* 10682 * Try to use spare capacity of local group without overloading it or 10683 * emptying busiest. 10684 */ 10685 if (local->group_type == group_has_spare) { 10686 if ((busiest->group_type > group_fully_busy) && 10687 !(env->sd->flags & SD_SHARE_LLC)) { 10688 /* 10689 * If busiest is overloaded, try to fill spare 10690 * capacity. This might end up creating spare capacity 10691 * in busiest or busiest still being overloaded but 10692 * there is no simple way to directly compute the 10693 * amount of load to migrate in order to balance the 10694 * system. 10695 */ 10696 env->migration_type = migrate_util; 10697 env->imbalance = max(local->group_capacity, local->group_util) - 10698 local->group_util; 10699 10700 /* 10701 * In some cases, the group's utilization is max or even 10702 * higher than capacity because of migrations but the 10703 * local CPU is (newly) idle. There is at least one 10704 * waiting task in this overloaded busiest group. Let's 10705 * try to pull it. 10706 */ 10707 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 10708 env->migration_type = migrate_task; 10709 env->imbalance = 1; 10710 } 10711 10712 return; 10713 } 10714 10715 if (busiest->group_weight == 1 || sds->prefer_sibling) { 10716 /* 10717 * When prefer sibling, evenly spread running tasks on 10718 * groups. 10719 */ 10720 env->migration_type = migrate_task; 10721 env->imbalance = sibling_imbalance(env, sds, busiest, local); 10722 } else { 10723 10724 /* 10725 * If there is no overload, we just want to even the number of 10726 * idle cpus. 10727 */ 10728 env->migration_type = migrate_task; 10729 env->imbalance = max_t(long, 0, 10730 (local->idle_cpus - busiest->idle_cpus)); 10731 } 10732 10733 #ifdef CONFIG_NUMA 10734 /* Consider allowing a small imbalance between NUMA groups */ 10735 if (env->sd->flags & SD_NUMA) { 10736 env->imbalance = adjust_numa_imbalance(env->imbalance, 10737 local->sum_nr_running + 1, 10738 env->sd->imb_numa_nr); 10739 } 10740 #endif 10741 10742 /* Number of tasks to move to restore balance */ 10743 env->imbalance >>= 1; 10744 10745 return; 10746 } 10747 10748 /* 10749 * Local is fully busy but has to take more load to relieve the 10750 * busiest group 10751 */ 10752 if (local->group_type < group_overloaded) { 10753 /* 10754 * Local will become overloaded so the avg_load metrics are 10755 * finally needed. 10756 */ 10757 10758 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 10759 local->group_capacity; 10760 10761 /* 10762 * If the local group is more loaded than the selected 10763 * busiest group don't try to pull any tasks. 10764 */ 10765 if (local->avg_load >= busiest->avg_load) { 10766 env->imbalance = 0; 10767 return; 10768 } 10769 10770 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 10771 sds->total_capacity; 10772 10773 /* 10774 * If the local group is more loaded than the average system 10775 * load, don't try to pull any tasks. 10776 */ 10777 if (local->avg_load >= sds->avg_load) { 10778 env->imbalance = 0; 10779 return; 10780 } 10781 10782 } 10783 10784 /* 10785 * Both group are or will become overloaded and we're trying to get all 10786 * the CPUs to the average_load, so we don't want to push ourselves 10787 * above the average load, nor do we wish to reduce the max loaded CPU 10788 * below the average load. At the same time, we also don't want to 10789 * reduce the group load below the group capacity. Thus we look for 10790 * the minimum possible imbalance. 10791 */ 10792 env->migration_type = migrate_load; 10793 env->imbalance = min( 10794 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 10795 (sds->avg_load - local->avg_load) * local->group_capacity 10796 ) / SCHED_CAPACITY_SCALE; 10797 } 10798 10799 /******* find_busiest_group() helpers end here *********************/ 10800 10801 /* 10802 * Decision matrix according to the local and busiest group type: 10803 * 10804 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 10805 * has_spare nr_idle balanced N/A N/A balanced balanced 10806 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 10807 * misfit_task force N/A N/A N/A N/A N/A 10808 * asym_packing force force N/A N/A force force 10809 * imbalanced force force N/A N/A force force 10810 * overloaded force force N/A N/A force avg_load 10811 * 10812 * N/A : Not Applicable because already filtered while updating 10813 * statistics. 10814 * balanced : The system is balanced for these 2 groups. 10815 * force : Calculate the imbalance as load migration is probably needed. 10816 * avg_load : Only if imbalance is significant enough. 10817 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 10818 * different in groups. 10819 */ 10820 10821 /** 10822 * find_busiest_group - Returns the busiest group within the sched_domain 10823 * if there is an imbalance. 10824 * @env: The load balancing environment. 10825 * 10826 * Also calculates the amount of runnable load which should be moved 10827 * to restore balance. 10828 * 10829 * Return: - The busiest group if imbalance exists. 10830 */ 10831 static struct sched_group *find_busiest_group(struct lb_env *env) 10832 { 10833 struct sg_lb_stats *local, *busiest; 10834 struct sd_lb_stats sds; 10835 10836 init_sd_lb_stats(&sds); 10837 10838 /* 10839 * Compute the various statistics relevant for load balancing at 10840 * this level. 10841 */ 10842 update_sd_lb_stats(env, &sds); 10843 10844 /* There is no busy sibling group to pull tasks from */ 10845 if (!sds.busiest) 10846 goto out_balanced; 10847 10848 busiest = &sds.busiest_stat; 10849 10850 /* Misfit tasks should be dealt with regardless of the avg load */ 10851 if (busiest->group_type == group_misfit_task) 10852 goto force_balance; 10853 10854 if (sched_energy_enabled()) { 10855 struct root_domain *rd = env->dst_rq->rd; 10856 10857 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 10858 goto out_balanced; 10859 } 10860 10861 /* ASYM feature bypasses nice load balance check */ 10862 if (busiest->group_type == group_asym_packing) 10863 goto force_balance; 10864 10865 /* 10866 * If the busiest group is imbalanced the below checks don't 10867 * work because they assume all things are equal, which typically 10868 * isn't true due to cpus_ptr constraints and the like. 10869 */ 10870 if (busiest->group_type == group_imbalanced) 10871 goto force_balance; 10872 10873 local = &sds.local_stat; 10874 /* 10875 * If the local group is busier than the selected busiest group 10876 * don't try and pull any tasks. 10877 */ 10878 if (local->group_type > busiest->group_type) 10879 goto out_balanced; 10880 10881 /* 10882 * When groups are overloaded, use the avg_load to ensure fairness 10883 * between tasks. 10884 */ 10885 if (local->group_type == group_overloaded) { 10886 /* 10887 * If the local group is more loaded than the selected 10888 * busiest group don't try to pull any tasks. 10889 */ 10890 if (local->avg_load >= busiest->avg_load) 10891 goto out_balanced; 10892 10893 /* XXX broken for overlapping NUMA groups */ 10894 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 10895 sds.total_capacity; 10896 10897 /* 10898 * Don't pull any tasks if this group is already above the 10899 * domain average load. 10900 */ 10901 if (local->avg_load >= sds.avg_load) 10902 goto out_balanced; 10903 10904 /* 10905 * If the busiest group is more loaded, use imbalance_pct to be 10906 * conservative. 10907 */ 10908 if (100 * busiest->avg_load <= 10909 env->sd->imbalance_pct * local->avg_load) 10910 goto out_balanced; 10911 } 10912 10913 /* 10914 * Try to move all excess tasks to a sibling domain of the busiest 10915 * group's child domain. 10916 */ 10917 if (sds.prefer_sibling && local->group_type == group_has_spare && 10918 sibling_imbalance(env, &sds, busiest, local) > 1) 10919 goto force_balance; 10920 10921 if (busiest->group_type != group_overloaded) { 10922 if (env->idle == CPU_NOT_IDLE) { 10923 /* 10924 * If the busiest group is not overloaded (and as a 10925 * result the local one too) but this CPU is already 10926 * busy, let another idle CPU try to pull task. 10927 */ 10928 goto out_balanced; 10929 } 10930 10931 if (busiest->group_type == group_smt_balance && 10932 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 10933 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 10934 goto force_balance; 10935 } 10936 10937 if (busiest->group_weight > 1 && 10938 local->idle_cpus <= (busiest->idle_cpus + 1)) { 10939 /* 10940 * If the busiest group is not overloaded 10941 * and there is no imbalance between this and busiest 10942 * group wrt idle CPUs, it is balanced. The imbalance 10943 * becomes significant if the diff is greater than 1 10944 * otherwise we might end up to just move the imbalance 10945 * on another group. Of course this applies only if 10946 * there is more than 1 CPU per group. 10947 */ 10948 goto out_balanced; 10949 } 10950 10951 if (busiest->sum_h_nr_running == 1) { 10952 /* 10953 * busiest doesn't have any tasks waiting to run 10954 */ 10955 goto out_balanced; 10956 } 10957 } 10958 10959 force_balance: 10960 /* Looks like there is an imbalance. Compute it */ 10961 calculate_imbalance(env, &sds); 10962 return env->imbalance ? sds.busiest : NULL; 10963 10964 out_balanced: 10965 env->imbalance = 0; 10966 return NULL; 10967 } 10968 10969 /* 10970 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 10971 */ 10972 static struct rq *find_busiest_queue(struct lb_env *env, 10973 struct sched_group *group) 10974 { 10975 struct rq *busiest = NULL, *rq; 10976 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 10977 unsigned int busiest_nr = 0; 10978 int i; 10979 10980 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10981 unsigned long capacity, load, util; 10982 unsigned int nr_running; 10983 enum fbq_type rt; 10984 10985 rq = cpu_rq(i); 10986 rt = fbq_classify_rq(rq); 10987 10988 /* 10989 * We classify groups/runqueues into three groups: 10990 * - regular: there are !numa tasks 10991 * - remote: there are numa tasks that run on the 'wrong' node 10992 * - all: there is no distinction 10993 * 10994 * In order to avoid migrating ideally placed numa tasks, 10995 * ignore those when there's better options. 10996 * 10997 * If we ignore the actual busiest queue to migrate another 10998 * task, the next balance pass can still reduce the busiest 10999 * queue by moving tasks around inside the node. 11000 * 11001 * If we cannot move enough load due to this classification 11002 * the next pass will adjust the group classification and 11003 * allow migration of more tasks. 11004 * 11005 * Both cases only affect the total convergence complexity. 11006 */ 11007 if (rt > env->fbq_type) 11008 continue; 11009 11010 nr_running = rq->cfs.h_nr_running; 11011 if (!nr_running) 11012 continue; 11013 11014 capacity = capacity_of(i); 11015 11016 /* 11017 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11018 * eventually lead to active_balancing high->low capacity. 11019 * Higher per-CPU capacity is considered better than balancing 11020 * average load. 11021 */ 11022 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11023 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11024 nr_running == 1) 11025 continue; 11026 11027 /* 11028 * Make sure we only pull tasks from a CPU of lower priority 11029 * when balancing between SMT siblings. 11030 * 11031 * If balancing between cores, let lower priority CPUs help 11032 * SMT cores with more than one busy sibling. 11033 */ 11034 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11035 continue; 11036 11037 switch (env->migration_type) { 11038 case migrate_load: 11039 /* 11040 * When comparing with load imbalance, use cpu_load() 11041 * which is not scaled with the CPU capacity. 11042 */ 11043 load = cpu_load(rq); 11044 11045 if (nr_running == 1 && load > env->imbalance && 11046 !check_cpu_capacity(rq, env->sd)) 11047 break; 11048 11049 /* 11050 * For the load comparisons with the other CPUs, 11051 * consider the cpu_load() scaled with the CPU 11052 * capacity, so that the load can be moved away 11053 * from the CPU that is potentially running at a 11054 * lower capacity. 11055 * 11056 * Thus we're looking for max(load_i / capacity_i), 11057 * crosswise multiplication to rid ourselves of the 11058 * division works out to: 11059 * load_i * capacity_j > load_j * capacity_i; 11060 * where j is our previous maximum. 11061 */ 11062 if (load * busiest_capacity > busiest_load * capacity) { 11063 busiest_load = load; 11064 busiest_capacity = capacity; 11065 busiest = rq; 11066 } 11067 break; 11068 11069 case migrate_util: 11070 util = cpu_util_cfs_boost(i); 11071 11072 /* 11073 * Don't try to pull utilization from a CPU with one 11074 * running task. Whatever its utilization, we will fail 11075 * detach the task. 11076 */ 11077 if (nr_running <= 1) 11078 continue; 11079 11080 if (busiest_util < util) { 11081 busiest_util = util; 11082 busiest = rq; 11083 } 11084 break; 11085 11086 case migrate_task: 11087 if (busiest_nr < nr_running) { 11088 busiest_nr = nr_running; 11089 busiest = rq; 11090 } 11091 break; 11092 11093 case migrate_misfit: 11094 /* 11095 * For ASYM_CPUCAPACITY domains with misfit tasks we 11096 * simply seek the "biggest" misfit task. 11097 */ 11098 if (rq->misfit_task_load > busiest_load) { 11099 busiest_load = rq->misfit_task_load; 11100 busiest = rq; 11101 } 11102 11103 break; 11104 11105 } 11106 } 11107 11108 return busiest; 11109 } 11110 11111 /* 11112 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11113 * so long as it is large enough. 11114 */ 11115 #define MAX_PINNED_INTERVAL 512 11116 11117 static inline bool 11118 asym_active_balance(struct lb_env *env) 11119 { 11120 /* 11121 * ASYM_PACKING needs to force migrate tasks from busy but lower 11122 * priority CPUs in order to pack all tasks in the highest priority 11123 * CPUs. When done between cores, do it only if the whole core if the 11124 * whole core is idle. 11125 * 11126 * If @env::src_cpu is an SMT core with busy siblings, let 11127 * the lower priority @env::dst_cpu help it. Do not follow 11128 * CPU priority. 11129 */ 11130 return env->idle != CPU_NOT_IDLE && sched_use_asym_prio(env->sd, env->dst_cpu) && 11131 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11132 !sched_use_asym_prio(env->sd, env->src_cpu)); 11133 } 11134 11135 static inline bool 11136 imbalanced_active_balance(struct lb_env *env) 11137 { 11138 struct sched_domain *sd = env->sd; 11139 11140 /* 11141 * The imbalanced case includes the case of pinned tasks preventing a fair 11142 * distribution of the load on the system but also the even distribution of the 11143 * threads on a system with spare capacity 11144 */ 11145 if ((env->migration_type == migrate_task) && 11146 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11147 return 1; 11148 11149 return 0; 11150 } 11151 11152 static int need_active_balance(struct lb_env *env) 11153 { 11154 struct sched_domain *sd = env->sd; 11155 11156 if (asym_active_balance(env)) 11157 return 1; 11158 11159 if (imbalanced_active_balance(env)) 11160 return 1; 11161 11162 /* 11163 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11164 * It's worth migrating the task if the src_cpu's capacity is reduced 11165 * because of other sched_class or IRQs if more capacity stays 11166 * available on dst_cpu. 11167 */ 11168 if ((env->idle != CPU_NOT_IDLE) && 11169 (env->src_rq->cfs.h_nr_running == 1)) { 11170 if ((check_cpu_capacity(env->src_rq, sd)) && 11171 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11172 return 1; 11173 } 11174 11175 if (env->migration_type == migrate_misfit) 11176 return 1; 11177 11178 return 0; 11179 } 11180 11181 static int active_load_balance_cpu_stop(void *data); 11182 11183 static int should_we_balance(struct lb_env *env) 11184 { 11185 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11186 struct sched_group *sg = env->sd->groups; 11187 int cpu, idle_smt = -1; 11188 11189 /* 11190 * Ensure the balancing environment is consistent; can happen 11191 * when the softirq triggers 'during' hotplug. 11192 */ 11193 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11194 return 0; 11195 11196 /* 11197 * In the newly idle case, we will allow all the CPUs 11198 * to do the newly idle load balance. 11199 * 11200 * However, we bail out if we already have tasks or a wakeup pending, 11201 * to optimize wakeup latency. 11202 */ 11203 if (env->idle == CPU_NEWLY_IDLE) { 11204 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11205 return 0; 11206 return 1; 11207 } 11208 11209 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11210 /* Try to find first idle CPU */ 11211 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11212 if (!idle_cpu(cpu)) 11213 continue; 11214 11215 /* 11216 * Don't balance to idle SMT in busy core right away when 11217 * balancing cores, but remember the first idle SMT CPU for 11218 * later consideration. Find CPU on an idle core first. 11219 */ 11220 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11221 if (idle_smt == -1) 11222 idle_smt = cpu; 11223 /* 11224 * If the core is not idle, and first SMT sibling which is 11225 * idle has been found, then its not needed to check other 11226 * SMT siblings for idleness: 11227 */ 11228 #ifdef CONFIG_SCHED_SMT 11229 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11230 #endif 11231 continue; 11232 } 11233 11234 /* 11235 * Are we the first idle core in a non-SMT domain or higher, 11236 * or the first idle CPU in a SMT domain? 11237 */ 11238 return cpu == env->dst_cpu; 11239 } 11240 11241 /* Are we the first idle CPU with busy siblings? */ 11242 if (idle_smt != -1) 11243 return idle_smt == env->dst_cpu; 11244 11245 /* Are we the first CPU of this group ? */ 11246 return group_balance_cpu(sg) == env->dst_cpu; 11247 } 11248 11249 /* 11250 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11251 * tasks if there is an imbalance. 11252 */ 11253 static int load_balance(int this_cpu, struct rq *this_rq, 11254 struct sched_domain *sd, enum cpu_idle_type idle, 11255 int *continue_balancing) 11256 { 11257 int ld_moved, cur_ld_moved, active_balance = 0; 11258 struct sched_domain *sd_parent = sd->parent; 11259 struct sched_group *group; 11260 struct rq *busiest; 11261 struct rq_flags rf; 11262 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11263 struct lb_env env = { 11264 .sd = sd, 11265 .dst_cpu = this_cpu, 11266 .dst_rq = this_rq, 11267 .dst_grpmask = group_balance_mask(sd->groups), 11268 .idle = idle, 11269 .loop_break = SCHED_NR_MIGRATE_BREAK, 11270 .cpus = cpus, 11271 .fbq_type = all, 11272 .tasks = LIST_HEAD_INIT(env.tasks), 11273 }; 11274 11275 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11276 11277 schedstat_inc(sd->lb_count[idle]); 11278 11279 redo: 11280 if (!should_we_balance(&env)) { 11281 *continue_balancing = 0; 11282 goto out_balanced; 11283 } 11284 11285 group = find_busiest_group(&env); 11286 if (!group) { 11287 schedstat_inc(sd->lb_nobusyg[idle]); 11288 goto out_balanced; 11289 } 11290 11291 busiest = find_busiest_queue(&env, group); 11292 if (!busiest) { 11293 schedstat_inc(sd->lb_nobusyq[idle]); 11294 goto out_balanced; 11295 } 11296 11297 WARN_ON_ONCE(busiest == env.dst_rq); 11298 11299 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 11300 11301 env.src_cpu = busiest->cpu; 11302 env.src_rq = busiest; 11303 11304 ld_moved = 0; 11305 /* Clear this flag as soon as we find a pullable task */ 11306 env.flags |= LBF_ALL_PINNED; 11307 if (busiest->nr_running > 1) { 11308 /* 11309 * Attempt to move tasks. If find_busiest_group has found 11310 * an imbalance but busiest->nr_running <= 1, the group is 11311 * still unbalanced. ld_moved simply stays zero, so it is 11312 * correctly treated as an imbalance. 11313 */ 11314 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11315 11316 more_balance: 11317 rq_lock_irqsave(busiest, &rf); 11318 update_rq_clock(busiest); 11319 11320 /* 11321 * cur_ld_moved - load moved in current iteration 11322 * ld_moved - cumulative load moved across iterations 11323 */ 11324 cur_ld_moved = detach_tasks(&env); 11325 11326 /* 11327 * We've detached some tasks from busiest_rq. Every 11328 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11329 * unlock busiest->lock, and we are able to be sure 11330 * that nobody can manipulate the tasks in parallel. 11331 * See task_rq_lock() family for the details. 11332 */ 11333 11334 rq_unlock(busiest, &rf); 11335 11336 if (cur_ld_moved) { 11337 attach_tasks(&env); 11338 ld_moved += cur_ld_moved; 11339 } 11340 11341 local_irq_restore(rf.flags); 11342 11343 if (env.flags & LBF_NEED_BREAK) { 11344 env.flags &= ~LBF_NEED_BREAK; 11345 /* Stop if we tried all running tasks */ 11346 if (env.loop < busiest->nr_running) 11347 goto more_balance; 11348 } 11349 11350 /* 11351 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11352 * us and move them to an alternate dst_cpu in our sched_group 11353 * where they can run. The upper limit on how many times we 11354 * iterate on same src_cpu is dependent on number of CPUs in our 11355 * sched_group. 11356 * 11357 * This changes load balance semantics a bit on who can move 11358 * load to a given_cpu. In addition to the given_cpu itself 11359 * (or a ilb_cpu acting on its behalf where given_cpu is 11360 * nohz-idle), we now have balance_cpu in a position to move 11361 * load to given_cpu. In rare situations, this may cause 11362 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11363 * _independently_ and at _same_ time to move some load to 11364 * given_cpu) causing excess load to be moved to given_cpu. 11365 * This however should not happen so much in practice and 11366 * moreover subsequent load balance cycles should correct the 11367 * excess load moved. 11368 */ 11369 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11370 11371 /* Prevent to re-select dst_cpu via env's CPUs */ 11372 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11373 11374 env.dst_rq = cpu_rq(env.new_dst_cpu); 11375 env.dst_cpu = env.new_dst_cpu; 11376 env.flags &= ~LBF_DST_PINNED; 11377 env.loop = 0; 11378 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11379 11380 /* 11381 * Go back to "more_balance" rather than "redo" since we 11382 * need to continue with same src_cpu. 11383 */ 11384 goto more_balance; 11385 } 11386 11387 /* 11388 * We failed to reach balance because of affinity. 11389 */ 11390 if (sd_parent) { 11391 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11392 11393 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11394 *group_imbalance = 1; 11395 } 11396 11397 /* All tasks on this runqueue were pinned by CPU affinity */ 11398 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11399 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11400 /* 11401 * Attempting to continue load balancing at the current 11402 * sched_domain level only makes sense if there are 11403 * active CPUs remaining as possible busiest CPUs to 11404 * pull load from which are not contained within the 11405 * destination group that is receiving any migrated 11406 * load. 11407 */ 11408 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11409 env.loop = 0; 11410 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11411 goto redo; 11412 } 11413 goto out_all_pinned; 11414 } 11415 } 11416 11417 if (!ld_moved) { 11418 schedstat_inc(sd->lb_failed[idle]); 11419 /* 11420 * Increment the failure counter only on periodic balance. 11421 * We do not want newidle balance, which can be very 11422 * frequent, pollute the failure counter causing 11423 * excessive cache_hot migrations and active balances. 11424 */ 11425 if (idle != CPU_NEWLY_IDLE) 11426 sd->nr_balance_failed++; 11427 11428 if (need_active_balance(&env)) { 11429 unsigned long flags; 11430 11431 raw_spin_rq_lock_irqsave(busiest, flags); 11432 11433 /* 11434 * Don't kick the active_load_balance_cpu_stop, 11435 * if the curr task on busiest CPU can't be 11436 * moved to this_cpu: 11437 */ 11438 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11439 raw_spin_rq_unlock_irqrestore(busiest, flags); 11440 goto out_one_pinned; 11441 } 11442 11443 /* Record that we found at least one task that could run on this_cpu */ 11444 env.flags &= ~LBF_ALL_PINNED; 11445 11446 /* 11447 * ->active_balance synchronizes accesses to 11448 * ->active_balance_work. Once set, it's cleared 11449 * only after active load balance is finished. 11450 */ 11451 if (!busiest->active_balance) { 11452 busiest->active_balance = 1; 11453 busiest->push_cpu = this_cpu; 11454 active_balance = 1; 11455 } 11456 11457 preempt_disable(); 11458 raw_spin_rq_unlock_irqrestore(busiest, flags); 11459 if (active_balance) { 11460 stop_one_cpu_nowait(cpu_of(busiest), 11461 active_load_balance_cpu_stop, busiest, 11462 &busiest->active_balance_work); 11463 } 11464 preempt_enable(); 11465 } 11466 } else { 11467 sd->nr_balance_failed = 0; 11468 } 11469 11470 if (likely(!active_balance) || need_active_balance(&env)) { 11471 /* We were unbalanced, so reset the balancing interval */ 11472 sd->balance_interval = sd->min_interval; 11473 } 11474 11475 goto out; 11476 11477 out_balanced: 11478 /* 11479 * We reach balance although we may have faced some affinity 11480 * constraints. Clear the imbalance flag only if other tasks got 11481 * a chance to move and fix the imbalance. 11482 */ 11483 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11484 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11485 11486 if (*group_imbalance) 11487 *group_imbalance = 0; 11488 } 11489 11490 out_all_pinned: 11491 /* 11492 * We reach balance because all tasks are pinned at this level so 11493 * we can't migrate them. Let the imbalance flag set so parent level 11494 * can try to migrate them. 11495 */ 11496 schedstat_inc(sd->lb_balanced[idle]); 11497 11498 sd->nr_balance_failed = 0; 11499 11500 out_one_pinned: 11501 ld_moved = 0; 11502 11503 /* 11504 * newidle_balance() disregards balance intervals, so we could 11505 * repeatedly reach this code, which would lead to balance_interval 11506 * skyrocketing in a short amount of time. Skip the balance_interval 11507 * increase logic to avoid that. 11508 */ 11509 if (env.idle == CPU_NEWLY_IDLE) 11510 goto out; 11511 11512 /* tune up the balancing interval */ 11513 if ((env.flags & LBF_ALL_PINNED && 11514 sd->balance_interval < MAX_PINNED_INTERVAL) || 11515 sd->balance_interval < sd->max_interval) 11516 sd->balance_interval *= 2; 11517 out: 11518 return ld_moved; 11519 } 11520 11521 static inline unsigned long 11522 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11523 { 11524 unsigned long interval = sd->balance_interval; 11525 11526 if (cpu_busy) 11527 interval *= sd->busy_factor; 11528 11529 /* scale ms to jiffies */ 11530 interval = msecs_to_jiffies(interval); 11531 11532 /* 11533 * Reduce likelihood of busy balancing at higher domains racing with 11534 * balancing at lower domains by preventing their balancing periods 11535 * from being multiples of each other. 11536 */ 11537 if (cpu_busy) 11538 interval -= 1; 11539 11540 interval = clamp(interval, 1UL, max_load_balance_interval); 11541 11542 return interval; 11543 } 11544 11545 static inline void 11546 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11547 { 11548 unsigned long interval, next; 11549 11550 /* used by idle balance, so cpu_busy = 0 */ 11551 interval = get_sd_balance_interval(sd, 0); 11552 next = sd->last_balance + interval; 11553 11554 if (time_after(*next_balance, next)) 11555 *next_balance = next; 11556 } 11557 11558 /* 11559 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11560 * running tasks off the busiest CPU onto idle CPUs. It requires at 11561 * least 1 task to be running on each physical CPU where possible, and 11562 * avoids physical / logical imbalances. 11563 */ 11564 static int active_load_balance_cpu_stop(void *data) 11565 { 11566 struct rq *busiest_rq = data; 11567 int busiest_cpu = cpu_of(busiest_rq); 11568 int target_cpu = busiest_rq->push_cpu; 11569 struct rq *target_rq = cpu_rq(target_cpu); 11570 struct sched_domain *sd; 11571 struct task_struct *p = NULL; 11572 struct rq_flags rf; 11573 11574 rq_lock_irq(busiest_rq, &rf); 11575 /* 11576 * Between queueing the stop-work and running it is a hole in which 11577 * CPUs can become inactive. We should not move tasks from or to 11578 * inactive CPUs. 11579 */ 11580 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 11581 goto out_unlock; 11582 11583 /* Make sure the requested CPU hasn't gone down in the meantime: */ 11584 if (unlikely(busiest_cpu != smp_processor_id() || 11585 !busiest_rq->active_balance)) 11586 goto out_unlock; 11587 11588 /* Is there any task to move? */ 11589 if (busiest_rq->nr_running <= 1) 11590 goto out_unlock; 11591 11592 /* 11593 * This condition is "impossible", if it occurs 11594 * we need to fix it. Originally reported by 11595 * Bjorn Helgaas on a 128-CPU setup. 11596 */ 11597 WARN_ON_ONCE(busiest_rq == target_rq); 11598 11599 /* Search for an sd spanning us and the target CPU. */ 11600 rcu_read_lock(); 11601 for_each_domain(target_cpu, sd) { 11602 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 11603 break; 11604 } 11605 11606 if (likely(sd)) { 11607 struct lb_env env = { 11608 .sd = sd, 11609 .dst_cpu = target_cpu, 11610 .dst_rq = target_rq, 11611 .src_cpu = busiest_rq->cpu, 11612 .src_rq = busiest_rq, 11613 .idle = CPU_IDLE, 11614 .flags = LBF_ACTIVE_LB, 11615 }; 11616 11617 schedstat_inc(sd->alb_count); 11618 update_rq_clock(busiest_rq); 11619 11620 p = detach_one_task(&env); 11621 if (p) { 11622 schedstat_inc(sd->alb_pushed); 11623 /* Active balancing done, reset the failure counter. */ 11624 sd->nr_balance_failed = 0; 11625 } else { 11626 schedstat_inc(sd->alb_failed); 11627 } 11628 } 11629 rcu_read_unlock(); 11630 out_unlock: 11631 busiest_rq->active_balance = 0; 11632 rq_unlock(busiest_rq, &rf); 11633 11634 if (p) 11635 attach_one_task(target_rq, p); 11636 11637 local_irq_enable(); 11638 11639 return 0; 11640 } 11641 11642 static DEFINE_SPINLOCK(balancing); 11643 11644 /* 11645 * Scale the max load_balance interval with the number of CPUs in the system. 11646 * This trades load-balance latency on larger machines for less cross talk. 11647 */ 11648 void update_max_interval(void) 11649 { 11650 max_load_balance_interval = HZ*num_online_cpus()/10; 11651 } 11652 11653 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 11654 { 11655 if (cost > sd->max_newidle_lb_cost) { 11656 /* 11657 * Track max cost of a domain to make sure to not delay the 11658 * next wakeup on the CPU. 11659 */ 11660 sd->max_newidle_lb_cost = cost; 11661 sd->last_decay_max_lb_cost = jiffies; 11662 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 11663 /* 11664 * Decay the newidle max times by ~1% per second to ensure that 11665 * it is not outdated and the current max cost is actually 11666 * shorter. 11667 */ 11668 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 11669 sd->last_decay_max_lb_cost = jiffies; 11670 11671 return true; 11672 } 11673 11674 return false; 11675 } 11676 11677 /* 11678 * It checks each scheduling domain to see if it is due to be balanced, 11679 * and initiates a balancing operation if so. 11680 * 11681 * Balancing parameters are set up in init_sched_domains. 11682 */ 11683 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 11684 { 11685 int continue_balancing = 1; 11686 int cpu = rq->cpu; 11687 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11688 unsigned long interval; 11689 struct sched_domain *sd; 11690 /* Earliest time when we have to do rebalance again */ 11691 unsigned long next_balance = jiffies + 60*HZ; 11692 int update_next_balance = 0; 11693 int need_serialize, need_decay = 0; 11694 u64 max_cost = 0; 11695 11696 rcu_read_lock(); 11697 for_each_domain(cpu, sd) { 11698 /* 11699 * Decay the newidle max times here because this is a regular 11700 * visit to all the domains. 11701 */ 11702 need_decay = update_newidle_cost(sd, 0); 11703 max_cost += sd->max_newidle_lb_cost; 11704 11705 /* 11706 * Stop the load balance at this level. There is another 11707 * CPU in our sched group which is doing load balancing more 11708 * actively. 11709 */ 11710 if (!continue_balancing) { 11711 if (need_decay) 11712 continue; 11713 break; 11714 } 11715 11716 interval = get_sd_balance_interval(sd, busy); 11717 11718 need_serialize = sd->flags & SD_SERIALIZE; 11719 if (need_serialize) { 11720 if (!spin_trylock(&balancing)) 11721 goto out; 11722 } 11723 11724 if (time_after_eq(jiffies, sd->last_balance + interval)) { 11725 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 11726 /* 11727 * The LBF_DST_PINNED logic could have changed 11728 * env->dst_cpu, so we can't know our idle 11729 * state even if we migrated tasks. Update it. 11730 */ 11731 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 11732 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11733 } 11734 sd->last_balance = jiffies; 11735 interval = get_sd_balance_interval(sd, busy); 11736 } 11737 if (need_serialize) 11738 spin_unlock(&balancing); 11739 out: 11740 if (time_after(next_balance, sd->last_balance + interval)) { 11741 next_balance = sd->last_balance + interval; 11742 update_next_balance = 1; 11743 } 11744 } 11745 if (need_decay) { 11746 /* 11747 * Ensure the rq-wide value also decays but keep it at a 11748 * reasonable floor to avoid funnies with rq->avg_idle. 11749 */ 11750 rq->max_idle_balance_cost = 11751 max((u64)sysctl_sched_migration_cost, max_cost); 11752 } 11753 rcu_read_unlock(); 11754 11755 /* 11756 * next_balance will be updated only when there is a need. 11757 * When the cpu is attached to null domain for ex, it will not be 11758 * updated. 11759 */ 11760 if (likely(update_next_balance)) 11761 rq->next_balance = next_balance; 11762 11763 } 11764 11765 static inline int on_null_domain(struct rq *rq) 11766 { 11767 return unlikely(!rcu_dereference_sched(rq->sd)); 11768 } 11769 11770 #ifdef CONFIG_NO_HZ_COMMON 11771 /* 11772 * NOHZ idle load balancing (ILB) details: 11773 * 11774 * - When one of the busy CPUs notices that there may be an idle rebalancing 11775 * needed, they will kick the idle load balancer, which then does idle 11776 * load balancing for all the idle CPUs. 11777 * 11778 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set 11779 * anywhere yet. 11780 */ 11781 static inline int find_new_ilb(void) 11782 { 11783 const struct cpumask *hk_mask; 11784 int ilb_cpu; 11785 11786 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 11787 11788 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 11789 11790 if (ilb_cpu == smp_processor_id()) 11791 continue; 11792 11793 if (idle_cpu(ilb_cpu)) 11794 return ilb_cpu; 11795 } 11796 11797 return -1; 11798 } 11799 11800 /* 11801 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 11802 * SMP function call (IPI). 11803 * 11804 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 11805 */ 11806 static void kick_ilb(unsigned int flags) 11807 { 11808 int ilb_cpu; 11809 11810 /* 11811 * Increase nohz.next_balance only when if full ilb is triggered but 11812 * not if we only update stats. 11813 */ 11814 if (flags & NOHZ_BALANCE_KICK) 11815 nohz.next_balance = jiffies+1; 11816 11817 ilb_cpu = find_new_ilb(); 11818 if (ilb_cpu < 0) 11819 return; 11820 11821 /* 11822 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 11823 * the first flag owns it; cleared by nohz_csd_func(). 11824 */ 11825 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 11826 if (flags & NOHZ_KICK_MASK) 11827 return; 11828 11829 /* 11830 * This way we generate an IPI on the target CPU which 11831 * is idle, and the softirq performing NOHZ idle load balancing 11832 * will be run before returning from the IPI. 11833 */ 11834 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 11835 } 11836 11837 /* 11838 * Current decision point for kicking the idle load balancer in the presence 11839 * of idle CPUs in the system. 11840 */ 11841 static void nohz_balancer_kick(struct rq *rq) 11842 { 11843 unsigned long now = jiffies; 11844 struct sched_domain_shared *sds; 11845 struct sched_domain *sd; 11846 int nr_busy, i, cpu = rq->cpu; 11847 unsigned int flags = 0; 11848 11849 if (unlikely(rq->idle_balance)) 11850 return; 11851 11852 /* 11853 * We may be recently in ticked or tickless idle mode. At the first 11854 * busy tick after returning from idle, we will update the busy stats. 11855 */ 11856 nohz_balance_exit_idle(rq); 11857 11858 /* 11859 * None are in tickless mode and hence no need for NOHZ idle load 11860 * balancing: 11861 */ 11862 if (likely(!atomic_read(&nohz.nr_cpus))) 11863 return; 11864 11865 if (READ_ONCE(nohz.has_blocked) && 11866 time_after(now, READ_ONCE(nohz.next_blocked))) 11867 flags = NOHZ_STATS_KICK; 11868 11869 if (time_before(now, nohz.next_balance)) 11870 goto out; 11871 11872 if (rq->nr_running >= 2) { 11873 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11874 goto out; 11875 } 11876 11877 rcu_read_lock(); 11878 11879 sd = rcu_dereference(rq->sd); 11880 if (sd) { 11881 /* 11882 * If there's a runnable CFS task and the current CPU has reduced 11883 * capacity, kick the ILB to see if there's a better CPU to run on: 11884 */ 11885 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 11886 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11887 goto unlock; 11888 } 11889 } 11890 11891 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 11892 if (sd) { 11893 /* 11894 * When ASYM_PACKING; see if there's a more preferred CPU 11895 * currently idle; in which case, kick the ILB to move tasks 11896 * around. 11897 * 11898 * When balancing betwen cores, all the SMT siblings of the 11899 * preferred CPU must be idle. 11900 */ 11901 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 11902 if (sched_asym(sd, i, cpu)) { 11903 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11904 goto unlock; 11905 } 11906 } 11907 } 11908 11909 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 11910 if (sd) { 11911 /* 11912 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 11913 * to run the misfit task on. 11914 */ 11915 if (check_misfit_status(rq, sd)) { 11916 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11917 goto unlock; 11918 } 11919 11920 /* 11921 * For asymmetric systems, we do not want to nicely balance 11922 * cache use, instead we want to embrace asymmetry and only 11923 * ensure tasks have enough CPU capacity. 11924 * 11925 * Skip the LLC logic because it's not relevant in that case. 11926 */ 11927 goto unlock; 11928 } 11929 11930 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 11931 if (sds) { 11932 /* 11933 * If there is an imbalance between LLC domains (IOW we could 11934 * increase the overall cache utilization), we need a less-loaded LLC 11935 * domain to pull some load from. Likewise, we may need to spread 11936 * load within the current LLC domain (e.g. packed SMT cores but 11937 * other CPUs are idle). We can't really know from here how busy 11938 * the others are - so just get a NOHZ balance going if it looks 11939 * like this LLC domain has tasks we could move. 11940 */ 11941 nr_busy = atomic_read(&sds->nr_busy_cpus); 11942 if (nr_busy > 1) { 11943 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11944 goto unlock; 11945 } 11946 } 11947 unlock: 11948 rcu_read_unlock(); 11949 out: 11950 if (READ_ONCE(nohz.needs_update)) 11951 flags |= NOHZ_NEXT_KICK; 11952 11953 if (flags) 11954 kick_ilb(flags); 11955 } 11956 11957 static void set_cpu_sd_state_busy(int cpu) 11958 { 11959 struct sched_domain *sd; 11960 11961 rcu_read_lock(); 11962 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11963 11964 if (!sd || !sd->nohz_idle) 11965 goto unlock; 11966 sd->nohz_idle = 0; 11967 11968 atomic_inc(&sd->shared->nr_busy_cpus); 11969 unlock: 11970 rcu_read_unlock(); 11971 } 11972 11973 void nohz_balance_exit_idle(struct rq *rq) 11974 { 11975 SCHED_WARN_ON(rq != this_rq()); 11976 11977 if (likely(!rq->nohz_tick_stopped)) 11978 return; 11979 11980 rq->nohz_tick_stopped = 0; 11981 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 11982 atomic_dec(&nohz.nr_cpus); 11983 11984 set_cpu_sd_state_busy(rq->cpu); 11985 } 11986 11987 static void set_cpu_sd_state_idle(int cpu) 11988 { 11989 struct sched_domain *sd; 11990 11991 rcu_read_lock(); 11992 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11993 11994 if (!sd || sd->nohz_idle) 11995 goto unlock; 11996 sd->nohz_idle = 1; 11997 11998 atomic_dec(&sd->shared->nr_busy_cpus); 11999 unlock: 12000 rcu_read_unlock(); 12001 } 12002 12003 /* 12004 * This routine will record that the CPU is going idle with tick stopped. 12005 * This info will be used in performing idle load balancing in the future. 12006 */ 12007 void nohz_balance_enter_idle(int cpu) 12008 { 12009 struct rq *rq = cpu_rq(cpu); 12010 12011 SCHED_WARN_ON(cpu != smp_processor_id()); 12012 12013 /* If this CPU is going down, then nothing needs to be done: */ 12014 if (!cpu_active(cpu)) 12015 return; 12016 12017 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 12018 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 12019 return; 12020 12021 /* 12022 * Can be set safely without rq->lock held 12023 * If a clear happens, it will have evaluated last additions because 12024 * rq->lock is held during the check and the clear 12025 */ 12026 rq->has_blocked_load = 1; 12027 12028 /* 12029 * The tick is still stopped but load could have been added in the 12030 * meantime. We set the nohz.has_blocked flag to trig a check of the 12031 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12032 * of nohz.has_blocked can only happen after checking the new load 12033 */ 12034 if (rq->nohz_tick_stopped) 12035 goto out; 12036 12037 /* If we're a completely isolated CPU, we don't play: */ 12038 if (on_null_domain(rq)) 12039 return; 12040 12041 rq->nohz_tick_stopped = 1; 12042 12043 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12044 atomic_inc(&nohz.nr_cpus); 12045 12046 /* 12047 * Ensures that if nohz_idle_balance() fails to observe our 12048 * @idle_cpus_mask store, it must observe the @has_blocked 12049 * and @needs_update stores. 12050 */ 12051 smp_mb__after_atomic(); 12052 12053 set_cpu_sd_state_idle(cpu); 12054 12055 WRITE_ONCE(nohz.needs_update, 1); 12056 out: 12057 /* 12058 * Each time a cpu enter idle, we assume that it has blocked load and 12059 * enable the periodic update of the load of idle cpus 12060 */ 12061 WRITE_ONCE(nohz.has_blocked, 1); 12062 } 12063 12064 static bool update_nohz_stats(struct rq *rq) 12065 { 12066 unsigned int cpu = rq->cpu; 12067 12068 if (!rq->has_blocked_load) 12069 return false; 12070 12071 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12072 return false; 12073 12074 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12075 return true; 12076 12077 update_blocked_averages(cpu); 12078 12079 return rq->has_blocked_load; 12080 } 12081 12082 /* 12083 * Internal function that runs load balance for all idle cpus. The load balance 12084 * can be a simple update of blocked load or a complete load balance with 12085 * tasks movement depending of flags. 12086 */ 12087 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12088 { 12089 /* Earliest time when we have to do rebalance again */ 12090 unsigned long now = jiffies; 12091 unsigned long next_balance = now + 60*HZ; 12092 bool has_blocked_load = false; 12093 int update_next_balance = 0; 12094 int this_cpu = this_rq->cpu; 12095 int balance_cpu; 12096 struct rq *rq; 12097 12098 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12099 12100 /* 12101 * We assume there will be no idle load after this update and clear 12102 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12103 * set the has_blocked flag and trigger another update of idle load. 12104 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12105 * setting the flag, we are sure to not clear the state and not 12106 * check the load of an idle cpu. 12107 * 12108 * Same applies to idle_cpus_mask vs needs_update. 12109 */ 12110 if (flags & NOHZ_STATS_KICK) 12111 WRITE_ONCE(nohz.has_blocked, 0); 12112 if (flags & NOHZ_NEXT_KICK) 12113 WRITE_ONCE(nohz.needs_update, 0); 12114 12115 /* 12116 * Ensures that if we miss the CPU, we must see the has_blocked 12117 * store from nohz_balance_enter_idle(). 12118 */ 12119 smp_mb(); 12120 12121 /* 12122 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12123 * chance for other idle cpu to pull load. 12124 */ 12125 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12126 if (!idle_cpu(balance_cpu)) 12127 continue; 12128 12129 /* 12130 * If this CPU gets work to do, stop the load balancing 12131 * work being done for other CPUs. Next load 12132 * balancing owner will pick it up. 12133 */ 12134 if (need_resched()) { 12135 if (flags & NOHZ_STATS_KICK) 12136 has_blocked_load = true; 12137 if (flags & NOHZ_NEXT_KICK) 12138 WRITE_ONCE(nohz.needs_update, 1); 12139 goto abort; 12140 } 12141 12142 rq = cpu_rq(balance_cpu); 12143 12144 if (flags & NOHZ_STATS_KICK) 12145 has_blocked_load |= update_nohz_stats(rq); 12146 12147 /* 12148 * If time for next balance is due, 12149 * do the balance. 12150 */ 12151 if (time_after_eq(jiffies, rq->next_balance)) { 12152 struct rq_flags rf; 12153 12154 rq_lock_irqsave(rq, &rf); 12155 update_rq_clock(rq); 12156 rq_unlock_irqrestore(rq, &rf); 12157 12158 if (flags & NOHZ_BALANCE_KICK) 12159 rebalance_domains(rq, CPU_IDLE); 12160 } 12161 12162 if (time_after(next_balance, rq->next_balance)) { 12163 next_balance = rq->next_balance; 12164 update_next_balance = 1; 12165 } 12166 } 12167 12168 /* 12169 * next_balance will be updated only when there is a need. 12170 * When the CPU is attached to null domain for ex, it will not be 12171 * updated. 12172 */ 12173 if (likely(update_next_balance)) 12174 nohz.next_balance = next_balance; 12175 12176 if (flags & NOHZ_STATS_KICK) 12177 WRITE_ONCE(nohz.next_blocked, 12178 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12179 12180 abort: 12181 /* There is still blocked load, enable periodic update */ 12182 if (has_blocked_load) 12183 WRITE_ONCE(nohz.has_blocked, 1); 12184 } 12185 12186 /* 12187 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12188 * rebalancing for all the cpus for whom scheduler ticks are stopped. 12189 */ 12190 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12191 { 12192 unsigned int flags = this_rq->nohz_idle_balance; 12193 12194 if (!flags) 12195 return false; 12196 12197 this_rq->nohz_idle_balance = 0; 12198 12199 if (idle != CPU_IDLE) 12200 return false; 12201 12202 _nohz_idle_balance(this_rq, flags); 12203 12204 return true; 12205 } 12206 12207 /* 12208 * Check if we need to directly run the ILB for updating blocked load before 12209 * entering idle state. Here we run ILB directly without issuing IPIs. 12210 * 12211 * Note that when this function is called, the tick may not yet be stopped on 12212 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12213 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12214 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12215 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12216 * called from this function on (this) CPU that's not yet in the mask. That's 12217 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12218 * updating the blocked load of already idle CPUs without waking up one of 12219 * those idle CPUs and outside the preempt disable / irq off phase of the local 12220 * cpu about to enter idle, because it can take a long time. 12221 */ 12222 void nohz_run_idle_balance(int cpu) 12223 { 12224 unsigned int flags; 12225 12226 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12227 12228 /* 12229 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12230 * (ie NOHZ_STATS_KICK set) and will do the same. 12231 */ 12232 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12233 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12234 } 12235 12236 static void nohz_newidle_balance(struct rq *this_rq) 12237 { 12238 int this_cpu = this_rq->cpu; 12239 12240 /* 12241 * This CPU doesn't want to be disturbed by scheduler 12242 * housekeeping 12243 */ 12244 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 12245 return; 12246 12247 /* Will wake up very soon. No time for doing anything else*/ 12248 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12249 return; 12250 12251 /* Don't need to update blocked load of idle CPUs*/ 12252 if (!READ_ONCE(nohz.has_blocked) || 12253 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12254 return; 12255 12256 /* 12257 * Set the need to trigger ILB in order to update blocked load 12258 * before entering idle state. 12259 */ 12260 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12261 } 12262 12263 #else /* !CONFIG_NO_HZ_COMMON */ 12264 static inline void nohz_balancer_kick(struct rq *rq) { } 12265 12266 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12267 { 12268 return false; 12269 } 12270 12271 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12272 #endif /* CONFIG_NO_HZ_COMMON */ 12273 12274 /* 12275 * newidle_balance is called by schedule() if this_cpu is about to become 12276 * idle. Attempts to pull tasks from other CPUs. 12277 * 12278 * Returns: 12279 * < 0 - we released the lock and there are !fair tasks present 12280 * 0 - failed, no new tasks 12281 * > 0 - success, new (fair) tasks present 12282 */ 12283 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 12284 { 12285 unsigned long next_balance = jiffies + HZ; 12286 int this_cpu = this_rq->cpu; 12287 u64 t0, t1, curr_cost = 0; 12288 struct sched_domain *sd; 12289 int pulled_task = 0; 12290 12291 update_misfit_status(NULL, this_rq); 12292 12293 /* 12294 * There is a task waiting to run. No need to search for one. 12295 * Return 0; the task will be enqueued when switching to idle. 12296 */ 12297 if (this_rq->ttwu_pending) 12298 return 0; 12299 12300 /* 12301 * We must set idle_stamp _before_ calling idle_balance(), such that we 12302 * measure the duration of idle_balance() as idle time. 12303 */ 12304 this_rq->idle_stamp = rq_clock(this_rq); 12305 12306 /* 12307 * Do not pull tasks towards !active CPUs... 12308 */ 12309 if (!cpu_active(this_cpu)) 12310 return 0; 12311 12312 /* 12313 * This is OK, because current is on_cpu, which avoids it being picked 12314 * for load-balance and preemption/IRQs are still disabled avoiding 12315 * further scheduler activity on it and we're being very careful to 12316 * re-start the picking loop. 12317 */ 12318 rq_unpin_lock(this_rq, rf); 12319 12320 rcu_read_lock(); 12321 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12322 12323 if (!READ_ONCE(this_rq->rd->overload) || 12324 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12325 12326 if (sd) 12327 update_next_balance(sd, &next_balance); 12328 rcu_read_unlock(); 12329 12330 goto out; 12331 } 12332 rcu_read_unlock(); 12333 12334 raw_spin_rq_unlock(this_rq); 12335 12336 t0 = sched_clock_cpu(this_cpu); 12337 update_blocked_averages(this_cpu); 12338 12339 rcu_read_lock(); 12340 for_each_domain(this_cpu, sd) { 12341 int continue_balancing = 1; 12342 u64 domain_cost; 12343 12344 update_next_balance(sd, &next_balance); 12345 12346 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12347 break; 12348 12349 if (sd->flags & SD_BALANCE_NEWIDLE) { 12350 12351 pulled_task = load_balance(this_cpu, this_rq, 12352 sd, CPU_NEWLY_IDLE, 12353 &continue_balancing); 12354 12355 t1 = sched_clock_cpu(this_cpu); 12356 domain_cost = t1 - t0; 12357 update_newidle_cost(sd, domain_cost); 12358 12359 curr_cost += domain_cost; 12360 t0 = t1; 12361 } 12362 12363 /* 12364 * Stop searching for tasks to pull if there are 12365 * now runnable tasks on this rq. 12366 */ 12367 if (pulled_task || this_rq->nr_running > 0 || 12368 this_rq->ttwu_pending) 12369 break; 12370 } 12371 rcu_read_unlock(); 12372 12373 raw_spin_rq_lock(this_rq); 12374 12375 if (curr_cost > this_rq->max_idle_balance_cost) 12376 this_rq->max_idle_balance_cost = curr_cost; 12377 12378 /* 12379 * While browsing the domains, we released the rq lock, a task could 12380 * have been enqueued in the meantime. Since we're not going idle, 12381 * pretend we pulled a task. 12382 */ 12383 if (this_rq->cfs.h_nr_running && !pulled_task) 12384 pulled_task = 1; 12385 12386 /* Is there a task of a high priority class? */ 12387 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 12388 pulled_task = -1; 12389 12390 out: 12391 /* Move the next balance forward */ 12392 if (time_after(this_rq->next_balance, next_balance)) 12393 this_rq->next_balance = next_balance; 12394 12395 if (pulled_task) 12396 this_rq->idle_stamp = 0; 12397 else 12398 nohz_newidle_balance(this_rq); 12399 12400 rq_repin_lock(this_rq, rf); 12401 12402 return pulled_task; 12403 } 12404 12405 /* 12406 * run_rebalance_domains is triggered when needed from the scheduler tick. 12407 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 12408 */ 12409 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 12410 { 12411 struct rq *this_rq = this_rq(); 12412 enum cpu_idle_type idle = this_rq->idle_balance ? 12413 CPU_IDLE : CPU_NOT_IDLE; 12414 12415 /* 12416 * If this CPU has a pending nohz_balance_kick, then do the 12417 * balancing on behalf of the other idle CPUs whose ticks are 12418 * stopped. Do nohz_idle_balance *before* rebalance_domains to 12419 * give the idle CPUs a chance to load balance. Else we may 12420 * load balance only within the local sched_domain hierarchy 12421 * and abort nohz_idle_balance altogether if we pull some load. 12422 */ 12423 if (nohz_idle_balance(this_rq, idle)) 12424 return; 12425 12426 /* normal load balance */ 12427 update_blocked_averages(this_rq->cpu); 12428 rebalance_domains(this_rq, idle); 12429 } 12430 12431 /* 12432 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12433 */ 12434 void trigger_load_balance(struct rq *rq) 12435 { 12436 /* 12437 * Don't need to rebalance while attached to NULL domain or 12438 * runqueue CPU is not active 12439 */ 12440 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12441 return; 12442 12443 if (time_after_eq(jiffies, rq->next_balance)) 12444 raise_softirq(SCHED_SOFTIRQ); 12445 12446 nohz_balancer_kick(rq); 12447 } 12448 12449 static void rq_online_fair(struct rq *rq) 12450 { 12451 update_sysctl(); 12452 12453 update_runtime_enabled(rq); 12454 } 12455 12456 static void rq_offline_fair(struct rq *rq) 12457 { 12458 update_sysctl(); 12459 12460 /* Ensure any throttled groups are reachable by pick_next_task */ 12461 unthrottle_offline_cfs_rqs(rq); 12462 12463 /* Ensure that we remove rq contribution to group share: */ 12464 clear_tg_offline_cfs_rqs(rq); 12465 } 12466 12467 #endif /* CONFIG_SMP */ 12468 12469 #ifdef CONFIG_SCHED_CORE 12470 static inline bool 12471 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12472 { 12473 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12474 u64 slice = se->slice; 12475 12476 return (rtime * min_nr_tasks > slice); 12477 } 12478 12479 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12480 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12481 { 12482 if (!sched_core_enabled(rq)) 12483 return; 12484 12485 /* 12486 * If runqueue has only one task which used up its slice and 12487 * if the sibling is forced idle, then trigger schedule to 12488 * give forced idle task a chance. 12489 * 12490 * sched_slice() considers only this active rq and it gets the 12491 * whole slice. But during force idle, we have siblings acting 12492 * like a single runqueue and hence we need to consider runnable 12493 * tasks on this CPU and the forced idle CPU. Ideally, we should 12494 * go through the forced idle rq, but that would be a perf hit. 12495 * We can assume that the forced idle CPU has at least 12496 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12497 * if we need to give up the CPU. 12498 */ 12499 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 12500 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12501 resched_curr(rq); 12502 } 12503 12504 /* 12505 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12506 */ 12507 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12508 bool forceidle) 12509 { 12510 for_each_sched_entity(se) { 12511 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12512 12513 if (forceidle) { 12514 if (cfs_rq->forceidle_seq == fi_seq) 12515 break; 12516 cfs_rq->forceidle_seq = fi_seq; 12517 } 12518 12519 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12520 } 12521 } 12522 12523 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12524 { 12525 struct sched_entity *se = &p->se; 12526 12527 if (p->sched_class != &fair_sched_class) 12528 return; 12529 12530 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12531 } 12532 12533 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12534 bool in_fi) 12535 { 12536 struct rq *rq = task_rq(a); 12537 const struct sched_entity *sea = &a->se; 12538 const struct sched_entity *seb = &b->se; 12539 struct cfs_rq *cfs_rqa; 12540 struct cfs_rq *cfs_rqb; 12541 s64 delta; 12542 12543 SCHED_WARN_ON(task_rq(b)->core != rq->core); 12544 12545 #ifdef CONFIG_FAIR_GROUP_SCHED 12546 /* 12547 * Find an se in the hierarchy for tasks a and b, such that the se's 12548 * are immediate siblings. 12549 */ 12550 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12551 int sea_depth = sea->depth; 12552 int seb_depth = seb->depth; 12553 12554 if (sea_depth >= seb_depth) 12555 sea = parent_entity(sea); 12556 if (sea_depth <= seb_depth) 12557 seb = parent_entity(seb); 12558 } 12559 12560 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 12561 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 12562 12563 cfs_rqa = sea->cfs_rq; 12564 cfs_rqb = seb->cfs_rq; 12565 #else 12566 cfs_rqa = &task_rq(a)->cfs; 12567 cfs_rqb = &task_rq(b)->cfs; 12568 #endif 12569 12570 /* 12571 * Find delta after normalizing se's vruntime with its cfs_rq's 12572 * min_vruntime_fi, which would have been updated in prior calls 12573 * to se_fi_update(). 12574 */ 12575 delta = (s64)(sea->vruntime - seb->vruntime) + 12576 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 12577 12578 return delta > 0; 12579 } 12580 12581 static int task_is_throttled_fair(struct task_struct *p, int cpu) 12582 { 12583 struct cfs_rq *cfs_rq; 12584 12585 #ifdef CONFIG_FAIR_GROUP_SCHED 12586 cfs_rq = task_group(p)->cfs_rq[cpu]; 12587 #else 12588 cfs_rq = &cpu_rq(cpu)->cfs; 12589 #endif 12590 return throttled_hierarchy(cfs_rq); 12591 } 12592 #else 12593 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 12594 #endif 12595 12596 /* 12597 * scheduler tick hitting a task of our scheduling class. 12598 * 12599 * NOTE: This function can be called remotely by the tick offload that 12600 * goes along full dynticks. Therefore no local assumption can be made 12601 * and everything must be accessed through the @rq and @curr passed in 12602 * parameters. 12603 */ 12604 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 12605 { 12606 struct cfs_rq *cfs_rq; 12607 struct sched_entity *se = &curr->se; 12608 12609 for_each_sched_entity(se) { 12610 cfs_rq = cfs_rq_of(se); 12611 entity_tick(cfs_rq, se, queued); 12612 } 12613 12614 if (static_branch_unlikely(&sched_numa_balancing)) 12615 task_tick_numa(rq, curr); 12616 12617 update_misfit_status(curr, rq); 12618 update_overutilized_status(task_rq(curr)); 12619 12620 task_tick_core(rq, curr); 12621 } 12622 12623 /* 12624 * called on fork with the child task as argument from the parent's context 12625 * - child not yet on the tasklist 12626 * - preemption disabled 12627 */ 12628 static void task_fork_fair(struct task_struct *p) 12629 { 12630 struct sched_entity *se = &p->se, *curr; 12631 struct cfs_rq *cfs_rq; 12632 struct rq *rq = this_rq(); 12633 struct rq_flags rf; 12634 12635 rq_lock(rq, &rf); 12636 update_rq_clock(rq); 12637 12638 cfs_rq = task_cfs_rq(current); 12639 curr = cfs_rq->curr; 12640 if (curr) 12641 update_curr(cfs_rq); 12642 place_entity(cfs_rq, se, ENQUEUE_INITIAL); 12643 rq_unlock(rq, &rf); 12644 } 12645 12646 /* 12647 * Priority of the task has changed. Check to see if we preempt 12648 * the current task. 12649 */ 12650 static void 12651 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 12652 { 12653 if (!task_on_rq_queued(p)) 12654 return; 12655 12656 if (rq->cfs.nr_running == 1) 12657 return; 12658 12659 /* 12660 * Reschedule if we are currently running on this runqueue and 12661 * our priority decreased, or if we are not currently running on 12662 * this runqueue and our priority is higher than the current's 12663 */ 12664 if (task_current(rq, p)) { 12665 if (p->prio > oldprio) 12666 resched_curr(rq); 12667 } else 12668 wakeup_preempt(rq, p, 0); 12669 } 12670 12671 #ifdef CONFIG_FAIR_GROUP_SCHED 12672 /* 12673 * Propagate the changes of the sched_entity across the tg tree to make it 12674 * visible to the root 12675 */ 12676 static void propagate_entity_cfs_rq(struct sched_entity *se) 12677 { 12678 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12679 12680 if (cfs_rq_throttled(cfs_rq)) 12681 return; 12682 12683 if (!throttled_hierarchy(cfs_rq)) 12684 list_add_leaf_cfs_rq(cfs_rq); 12685 12686 /* Start to propagate at parent */ 12687 se = se->parent; 12688 12689 for_each_sched_entity(se) { 12690 cfs_rq = cfs_rq_of(se); 12691 12692 update_load_avg(cfs_rq, se, UPDATE_TG); 12693 12694 if (cfs_rq_throttled(cfs_rq)) 12695 break; 12696 12697 if (!throttled_hierarchy(cfs_rq)) 12698 list_add_leaf_cfs_rq(cfs_rq); 12699 } 12700 } 12701 #else 12702 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 12703 #endif 12704 12705 static void detach_entity_cfs_rq(struct sched_entity *se) 12706 { 12707 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12708 12709 #ifdef CONFIG_SMP 12710 /* 12711 * In case the task sched_avg hasn't been attached: 12712 * - A forked task which hasn't been woken up by wake_up_new_task(). 12713 * - A task which has been woken up by try_to_wake_up() but is 12714 * waiting for actually being woken up by sched_ttwu_pending(). 12715 */ 12716 if (!se->avg.last_update_time) 12717 return; 12718 #endif 12719 12720 /* Catch up with the cfs_rq and remove our load when we leave */ 12721 update_load_avg(cfs_rq, se, 0); 12722 detach_entity_load_avg(cfs_rq, se); 12723 update_tg_load_avg(cfs_rq); 12724 propagate_entity_cfs_rq(se); 12725 } 12726 12727 static void attach_entity_cfs_rq(struct sched_entity *se) 12728 { 12729 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12730 12731 /* Synchronize entity with its cfs_rq */ 12732 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 12733 attach_entity_load_avg(cfs_rq, se); 12734 update_tg_load_avg(cfs_rq); 12735 propagate_entity_cfs_rq(se); 12736 } 12737 12738 static void detach_task_cfs_rq(struct task_struct *p) 12739 { 12740 struct sched_entity *se = &p->se; 12741 12742 detach_entity_cfs_rq(se); 12743 } 12744 12745 static void attach_task_cfs_rq(struct task_struct *p) 12746 { 12747 struct sched_entity *se = &p->se; 12748 12749 attach_entity_cfs_rq(se); 12750 } 12751 12752 static void switched_from_fair(struct rq *rq, struct task_struct *p) 12753 { 12754 detach_task_cfs_rq(p); 12755 } 12756 12757 static void switched_to_fair(struct rq *rq, struct task_struct *p) 12758 { 12759 attach_task_cfs_rq(p); 12760 12761 if (task_on_rq_queued(p)) { 12762 /* 12763 * We were most likely switched from sched_rt, so 12764 * kick off the schedule if running, otherwise just see 12765 * if we can still preempt the current task. 12766 */ 12767 if (task_current(rq, p)) 12768 resched_curr(rq); 12769 else 12770 wakeup_preempt(rq, p, 0); 12771 } 12772 } 12773 12774 /* Account for a task changing its policy or group. 12775 * 12776 * This routine is mostly called to set cfs_rq->curr field when a task 12777 * migrates between groups/classes. 12778 */ 12779 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 12780 { 12781 struct sched_entity *se = &p->se; 12782 12783 #ifdef CONFIG_SMP 12784 if (task_on_rq_queued(p)) { 12785 /* 12786 * Move the next running task to the front of the list, so our 12787 * cfs_tasks list becomes MRU one. 12788 */ 12789 list_move(&se->group_node, &rq->cfs_tasks); 12790 } 12791 #endif 12792 12793 for_each_sched_entity(se) { 12794 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12795 12796 set_next_entity(cfs_rq, se); 12797 /* ensure bandwidth has been allocated on our new cfs_rq */ 12798 account_cfs_rq_runtime(cfs_rq, 0); 12799 } 12800 } 12801 12802 void init_cfs_rq(struct cfs_rq *cfs_rq) 12803 { 12804 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 12805 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 12806 #ifdef CONFIG_SMP 12807 raw_spin_lock_init(&cfs_rq->removed.lock); 12808 #endif 12809 } 12810 12811 #ifdef CONFIG_FAIR_GROUP_SCHED 12812 static void task_change_group_fair(struct task_struct *p) 12813 { 12814 /* 12815 * We couldn't detach or attach a forked task which 12816 * hasn't been woken up by wake_up_new_task(). 12817 */ 12818 if (READ_ONCE(p->__state) == TASK_NEW) 12819 return; 12820 12821 detach_task_cfs_rq(p); 12822 12823 #ifdef CONFIG_SMP 12824 /* Tell se's cfs_rq has been changed -- migrated */ 12825 p->se.avg.last_update_time = 0; 12826 #endif 12827 set_task_rq(p, task_cpu(p)); 12828 attach_task_cfs_rq(p); 12829 } 12830 12831 void free_fair_sched_group(struct task_group *tg) 12832 { 12833 int i; 12834 12835 for_each_possible_cpu(i) { 12836 if (tg->cfs_rq) 12837 kfree(tg->cfs_rq[i]); 12838 if (tg->se) 12839 kfree(tg->se[i]); 12840 } 12841 12842 kfree(tg->cfs_rq); 12843 kfree(tg->se); 12844 } 12845 12846 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12847 { 12848 struct sched_entity *se; 12849 struct cfs_rq *cfs_rq; 12850 int i; 12851 12852 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 12853 if (!tg->cfs_rq) 12854 goto err; 12855 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 12856 if (!tg->se) 12857 goto err; 12858 12859 tg->shares = NICE_0_LOAD; 12860 12861 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 12862 12863 for_each_possible_cpu(i) { 12864 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 12865 GFP_KERNEL, cpu_to_node(i)); 12866 if (!cfs_rq) 12867 goto err; 12868 12869 se = kzalloc_node(sizeof(struct sched_entity_stats), 12870 GFP_KERNEL, cpu_to_node(i)); 12871 if (!se) 12872 goto err_free_rq; 12873 12874 init_cfs_rq(cfs_rq); 12875 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 12876 init_entity_runnable_average(se); 12877 } 12878 12879 return 1; 12880 12881 err_free_rq: 12882 kfree(cfs_rq); 12883 err: 12884 return 0; 12885 } 12886 12887 void online_fair_sched_group(struct task_group *tg) 12888 { 12889 struct sched_entity *se; 12890 struct rq_flags rf; 12891 struct rq *rq; 12892 int i; 12893 12894 for_each_possible_cpu(i) { 12895 rq = cpu_rq(i); 12896 se = tg->se[i]; 12897 rq_lock_irq(rq, &rf); 12898 update_rq_clock(rq); 12899 attach_entity_cfs_rq(se); 12900 sync_throttle(tg, i); 12901 rq_unlock_irq(rq, &rf); 12902 } 12903 } 12904 12905 void unregister_fair_sched_group(struct task_group *tg) 12906 { 12907 unsigned long flags; 12908 struct rq *rq; 12909 int cpu; 12910 12911 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12912 12913 for_each_possible_cpu(cpu) { 12914 if (tg->se[cpu]) 12915 remove_entity_load_avg(tg->se[cpu]); 12916 12917 /* 12918 * Only empty task groups can be destroyed; so we can speculatively 12919 * check on_list without danger of it being re-added. 12920 */ 12921 if (!tg->cfs_rq[cpu]->on_list) 12922 continue; 12923 12924 rq = cpu_rq(cpu); 12925 12926 raw_spin_rq_lock_irqsave(rq, flags); 12927 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 12928 raw_spin_rq_unlock_irqrestore(rq, flags); 12929 } 12930 } 12931 12932 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 12933 struct sched_entity *se, int cpu, 12934 struct sched_entity *parent) 12935 { 12936 struct rq *rq = cpu_rq(cpu); 12937 12938 cfs_rq->tg = tg; 12939 cfs_rq->rq = rq; 12940 init_cfs_rq_runtime(cfs_rq); 12941 12942 tg->cfs_rq[cpu] = cfs_rq; 12943 tg->se[cpu] = se; 12944 12945 /* se could be NULL for root_task_group */ 12946 if (!se) 12947 return; 12948 12949 if (!parent) { 12950 se->cfs_rq = &rq->cfs; 12951 se->depth = 0; 12952 } else { 12953 se->cfs_rq = parent->my_q; 12954 se->depth = parent->depth + 1; 12955 } 12956 12957 se->my_q = cfs_rq; 12958 /* guarantee group entities always have weight */ 12959 update_load_set(&se->load, NICE_0_LOAD); 12960 se->parent = parent; 12961 } 12962 12963 static DEFINE_MUTEX(shares_mutex); 12964 12965 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 12966 { 12967 int i; 12968 12969 lockdep_assert_held(&shares_mutex); 12970 12971 /* 12972 * We can't change the weight of the root cgroup. 12973 */ 12974 if (!tg->se[0]) 12975 return -EINVAL; 12976 12977 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 12978 12979 if (tg->shares == shares) 12980 return 0; 12981 12982 tg->shares = shares; 12983 for_each_possible_cpu(i) { 12984 struct rq *rq = cpu_rq(i); 12985 struct sched_entity *se = tg->se[i]; 12986 struct rq_flags rf; 12987 12988 /* Propagate contribution to hierarchy */ 12989 rq_lock_irqsave(rq, &rf); 12990 update_rq_clock(rq); 12991 for_each_sched_entity(se) { 12992 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 12993 update_cfs_group(se); 12994 } 12995 rq_unlock_irqrestore(rq, &rf); 12996 } 12997 12998 return 0; 12999 } 13000 13001 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13002 { 13003 int ret; 13004 13005 mutex_lock(&shares_mutex); 13006 if (tg_is_idle(tg)) 13007 ret = -EINVAL; 13008 else 13009 ret = __sched_group_set_shares(tg, shares); 13010 mutex_unlock(&shares_mutex); 13011 13012 return ret; 13013 } 13014 13015 int sched_group_set_idle(struct task_group *tg, long idle) 13016 { 13017 int i; 13018 13019 if (tg == &root_task_group) 13020 return -EINVAL; 13021 13022 if (idle < 0 || idle > 1) 13023 return -EINVAL; 13024 13025 mutex_lock(&shares_mutex); 13026 13027 if (tg->idle == idle) { 13028 mutex_unlock(&shares_mutex); 13029 return 0; 13030 } 13031 13032 tg->idle = idle; 13033 13034 for_each_possible_cpu(i) { 13035 struct rq *rq = cpu_rq(i); 13036 struct sched_entity *se = tg->se[i]; 13037 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 13038 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13039 long idle_task_delta; 13040 struct rq_flags rf; 13041 13042 rq_lock_irqsave(rq, &rf); 13043 13044 grp_cfs_rq->idle = idle; 13045 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13046 goto next_cpu; 13047 13048 if (se->on_rq) { 13049 parent_cfs_rq = cfs_rq_of(se); 13050 if (cfs_rq_is_idle(grp_cfs_rq)) 13051 parent_cfs_rq->idle_nr_running++; 13052 else 13053 parent_cfs_rq->idle_nr_running--; 13054 } 13055 13056 idle_task_delta = grp_cfs_rq->h_nr_running - 13057 grp_cfs_rq->idle_h_nr_running; 13058 if (!cfs_rq_is_idle(grp_cfs_rq)) 13059 idle_task_delta *= -1; 13060 13061 for_each_sched_entity(se) { 13062 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13063 13064 if (!se->on_rq) 13065 break; 13066 13067 cfs_rq->idle_h_nr_running += idle_task_delta; 13068 13069 /* Already accounted at parent level and above. */ 13070 if (cfs_rq_is_idle(cfs_rq)) 13071 break; 13072 } 13073 13074 next_cpu: 13075 rq_unlock_irqrestore(rq, &rf); 13076 } 13077 13078 /* Idle groups have minimum weight. */ 13079 if (tg_is_idle(tg)) 13080 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13081 else 13082 __sched_group_set_shares(tg, NICE_0_LOAD); 13083 13084 mutex_unlock(&shares_mutex); 13085 return 0; 13086 } 13087 13088 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13089 13090 13091 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13092 { 13093 struct sched_entity *se = &task->se; 13094 unsigned int rr_interval = 0; 13095 13096 /* 13097 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13098 * idle runqueue: 13099 */ 13100 if (rq->cfs.load.weight) 13101 rr_interval = NS_TO_JIFFIES(se->slice); 13102 13103 return rr_interval; 13104 } 13105 13106 /* 13107 * All the scheduling class methods: 13108 */ 13109 DEFINE_SCHED_CLASS(fair) = { 13110 13111 .enqueue_task = enqueue_task_fair, 13112 .dequeue_task = dequeue_task_fair, 13113 .yield_task = yield_task_fair, 13114 .yield_to_task = yield_to_task_fair, 13115 13116 .wakeup_preempt = check_preempt_wakeup_fair, 13117 13118 .pick_next_task = __pick_next_task_fair, 13119 .put_prev_task = put_prev_task_fair, 13120 .set_next_task = set_next_task_fair, 13121 13122 #ifdef CONFIG_SMP 13123 .balance = balance_fair, 13124 .pick_task = pick_task_fair, 13125 .select_task_rq = select_task_rq_fair, 13126 .migrate_task_rq = migrate_task_rq_fair, 13127 13128 .rq_online = rq_online_fair, 13129 .rq_offline = rq_offline_fair, 13130 13131 .task_dead = task_dead_fair, 13132 .set_cpus_allowed = set_cpus_allowed_common, 13133 #endif 13134 13135 .task_tick = task_tick_fair, 13136 .task_fork = task_fork_fair, 13137 13138 .prio_changed = prio_changed_fair, 13139 .switched_from = switched_from_fair, 13140 .switched_to = switched_to_fair, 13141 13142 .get_rr_interval = get_rr_interval_fair, 13143 13144 .update_curr = update_curr_fair, 13145 13146 #ifdef CONFIG_FAIR_GROUP_SCHED 13147 .task_change_group = task_change_group_fair, 13148 #endif 13149 13150 #ifdef CONFIG_SCHED_CORE 13151 .task_is_throttled = task_is_throttled_fair, 13152 #endif 13153 13154 #ifdef CONFIG_UCLAMP_TASK 13155 .uclamp_enabled = 1, 13156 #endif 13157 }; 13158 13159 #ifdef CONFIG_SCHED_DEBUG 13160 void print_cfs_stats(struct seq_file *m, int cpu) 13161 { 13162 struct cfs_rq *cfs_rq, *pos; 13163 13164 rcu_read_lock(); 13165 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13166 print_cfs_rq(m, cpu, cfs_rq); 13167 rcu_read_unlock(); 13168 } 13169 13170 #ifdef CONFIG_NUMA_BALANCING 13171 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13172 { 13173 int node; 13174 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13175 struct numa_group *ng; 13176 13177 rcu_read_lock(); 13178 ng = rcu_dereference(p->numa_group); 13179 for_each_online_node(node) { 13180 if (p->numa_faults) { 13181 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13182 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13183 } 13184 if (ng) { 13185 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13186 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13187 } 13188 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13189 } 13190 rcu_read_unlock(); 13191 } 13192 #endif /* CONFIG_NUMA_BALANCING */ 13193 #endif /* CONFIG_SCHED_DEBUG */ 13194 13195 __init void init_sched_fair_class(void) 13196 { 13197 #ifdef CONFIG_SMP 13198 int i; 13199 13200 for_each_possible_cpu(i) { 13201 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13202 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13203 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13204 GFP_KERNEL, cpu_to_node(i)); 13205 13206 #ifdef CONFIG_CFS_BANDWIDTH 13207 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13208 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13209 #endif 13210 } 13211 13212 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 13213 13214 #ifdef CONFIG_NO_HZ_COMMON 13215 nohz.next_balance = jiffies; 13216 nohz.next_blocked = jiffies; 13217 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13218 #endif 13219 #endif /* SMP */ 13220 13221 } 13222