1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/mempolicy.h> 44 #include <linux/mutex_api.h> 45 #include <linux/profile.h> 46 #include <linux/psi.h> 47 #include <linux/ratelimit.h> 48 #include <linux/task_work.h> 49 50 #include <asm/switch_to.h> 51 52 #include <linux/sched/cond_resched.h> 53 54 #include "sched.h" 55 #include "stats.h" 56 #include "autogroup.h" 57 58 /* 59 * Targeted preemption latency for CPU-bound tasks: 60 * 61 * NOTE: this latency value is not the same as the concept of 62 * 'timeslice length' - timeslices in CFS are of variable length 63 * and have no persistent notion like in traditional, time-slice 64 * based scheduling concepts. 65 * 66 * (to see the precise effective timeslice length of your workload, 67 * run vmstat and monitor the context-switches (cs) field) 68 * 69 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 70 */ 71 unsigned int sysctl_sched_latency = 6000000ULL; 72 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 73 74 /* 75 * The initial- and re-scaling of tunables is configurable 76 * 77 * Options are: 78 * 79 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 80 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 81 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 82 * 83 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 84 */ 85 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 86 87 /* 88 * Minimal preemption granularity for CPU-bound tasks: 89 * 90 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 91 */ 92 unsigned int sysctl_sched_min_granularity = 750000ULL; 93 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 94 95 /* 96 * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks. 97 * Applies only when SCHED_IDLE tasks compete with normal tasks. 98 * 99 * (default: 0.75 msec) 100 */ 101 unsigned int sysctl_sched_idle_min_granularity = 750000ULL; 102 103 /* 104 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 105 */ 106 static unsigned int sched_nr_latency = 8; 107 108 /* 109 * After fork, child runs first. If set to 0 (default) then 110 * parent will (try to) run first. 111 */ 112 unsigned int sysctl_sched_child_runs_first __read_mostly; 113 114 /* 115 * SCHED_OTHER wake-up granularity. 116 * 117 * This option delays the preemption effects of decoupled workloads 118 * and reduces their over-scheduling. Synchronous workloads will still 119 * have immediate wakeup/sleep latencies. 120 * 121 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 122 */ 123 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 124 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 125 126 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 127 128 int sched_thermal_decay_shift; 129 static int __init setup_sched_thermal_decay_shift(char *str) 130 { 131 int _shift = 0; 132 133 if (kstrtoint(str, 0, &_shift)) 134 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 135 136 sched_thermal_decay_shift = clamp(_shift, 0, 10); 137 return 1; 138 } 139 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 140 141 #ifdef CONFIG_SMP 142 /* 143 * For asym packing, by default the lower numbered CPU has higher priority. 144 */ 145 int __weak arch_asym_cpu_priority(int cpu) 146 { 147 return -cpu; 148 } 149 150 /* 151 * The margin used when comparing utilization with CPU capacity. 152 * 153 * (default: ~20%) 154 */ 155 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 156 157 /* 158 * The margin used when comparing CPU capacities. 159 * is 'cap1' noticeably greater than 'cap2' 160 * 161 * (default: ~5%) 162 */ 163 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 164 #endif 165 166 #ifdef CONFIG_CFS_BANDWIDTH 167 /* 168 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 169 * each time a cfs_rq requests quota. 170 * 171 * Note: in the case that the slice exceeds the runtime remaining (either due 172 * to consumption or the quota being specified to be smaller than the slice) 173 * we will always only issue the remaining available time. 174 * 175 * (default: 5 msec, units: microseconds) 176 */ 177 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 178 #endif 179 180 #ifdef CONFIG_SYSCTL 181 static struct ctl_table sched_fair_sysctls[] = { 182 { 183 .procname = "sched_child_runs_first", 184 .data = &sysctl_sched_child_runs_first, 185 .maxlen = sizeof(unsigned int), 186 .mode = 0644, 187 .proc_handler = proc_dointvec, 188 }, 189 #ifdef CONFIG_CFS_BANDWIDTH 190 { 191 .procname = "sched_cfs_bandwidth_slice_us", 192 .data = &sysctl_sched_cfs_bandwidth_slice, 193 .maxlen = sizeof(unsigned int), 194 .mode = 0644, 195 .proc_handler = proc_dointvec_minmax, 196 .extra1 = SYSCTL_ONE, 197 }, 198 #endif 199 {} 200 }; 201 202 static int __init sched_fair_sysctl_init(void) 203 { 204 register_sysctl_init("kernel", sched_fair_sysctls); 205 return 0; 206 } 207 late_initcall(sched_fair_sysctl_init); 208 #endif 209 210 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 211 { 212 lw->weight += inc; 213 lw->inv_weight = 0; 214 } 215 216 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 217 { 218 lw->weight -= dec; 219 lw->inv_weight = 0; 220 } 221 222 static inline void update_load_set(struct load_weight *lw, unsigned long w) 223 { 224 lw->weight = w; 225 lw->inv_weight = 0; 226 } 227 228 /* 229 * Increase the granularity value when there are more CPUs, 230 * because with more CPUs the 'effective latency' as visible 231 * to users decreases. But the relationship is not linear, 232 * so pick a second-best guess by going with the log2 of the 233 * number of CPUs. 234 * 235 * This idea comes from the SD scheduler of Con Kolivas: 236 */ 237 static unsigned int get_update_sysctl_factor(void) 238 { 239 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 240 unsigned int factor; 241 242 switch (sysctl_sched_tunable_scaling) { 243 case SCHED_TUNABLESCALING_NONE: 244 factor = 1; 245 break; 246 case SCHED_TUNABLESCALING_LINEAR: 247 factor = cpus; 248 break; 249 case SCHED_TUNABLESCALING_LOG: 250 default: 251 factor = 1 + ilog2(cpus); 252 break; 253 } 254 255 return factor; 256 } 257 258 static void update_sysctl(void) 259 { 260 unsigned int factor = get_update_sysctl_factor(); 261 262 #define SET_SYSCTL(name) \ 263 (sysctl_##name = (factor) * normalized_sysctl_##name) 264 SET_SYSCTL(sched_min_granularity); 265 SET_SYSCTL(sched_latency); 266 SET_SYSCTL(sched_wakeup_granularity); 267 #undef SET_SYSCTL 268 } 269 270 void __init sched_init_granularity(void) 271 { 272 update_sysctl(); 273 } 274 275 #define WMULT_CONST (~0U) 276 #define WMULT_SHIFT 32 277 278 static void __update_inv_weight(struct load_weight *lw) 279 { 280 unsigned long w; 281 282 if (likely(lw->inv_weight)) 283 return; 284 285 w = scale_load_down(lw->weight); 286 287 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 288 lw->inv_weight = 1; 289 else if (unlikely(!w)) 290 lw->inv_weight = WMULT_CONST; 291 else 292 lw->inv_weight = WMULT_CONST / w; 293 } 294 295 /* 296 * delta_exec * weight / lw.weight 297 * OR 298 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 299 * 300 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 301 * we're guaranteed shift stays positive because inv_weight is guaranteed to 302 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 303 * 304 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 305 * weight/lw.weight <= 1, and therefore our shift will also be positive. 306 */ 307 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 308 { 309 u64 fact = scale_load_down(weight); 310 u32 fact_hi = (u32)(fact >> 32); 311 int shift = WMULT_SHIFT; 312 int fs; 313 314 __update_inv_weight(lw); 315 316 if (unlikely(fact_hi)) { 317 fs = fls(fact_hi); 318 shift -= fs; 319 fact >>= fs; 320 } 321 322 fact = mul_u32_u32(fact, lw->inv_weight); 323 324 fact_hi = (u32)(fact >> 32); 325 if (fact_hi) { 326 fs = fls(fact_hi); 327 shift -= fs; 328 fact >>= fs; 329 } 330 331 return mul_u64_u32_shr(delta_exec, fact, shift); 332 } 333 334 335 const struct sched_class fair_sched_class; 336 337 /************************************************************** 338 * CFS operations on generic schedulable entities: 339 */ 340 341 #ifdef CONFIG_FAIR_GROUP_SCHED 342 343 /* Walk up scheduling entities hierarchy */ 344 #define for_each_sched_entity(se) \ 345 for (; se; se = se->parent) 346 347 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 348 { 349 struct rq *rq = rq_of(cfs_rq); 350 int cpu = cpu_of(rq); 351 352 if (cfs_rq->on_list) 353 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 354 355 cfs_rq->on_list = 1; 356 357 /* 358 * Ensure we either appear before our parent (if already 359 * enqueued) or force our parent to appear after us when it is 360 * enqueued. The fact that we always enqueue bottom-up 361 * reduces this to two cases and a special case for the root 362 * cfs_rq. Furthermore, it also means that we will always reset 363 * tmp_alone_branch either when the branch is connected 364 * to a tree or when we reach the top of the tree 365 */ 366 if (cfs_rq->tg->parent && 367 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 368 /* 369 * If parent is already on the list, we add the child 370 * just before. Thanks to circular linked property of 371 * the list, this means to put the child at the tail 372 * of the list that starts by parent. 373 */ 374 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 375 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 376 /* 377 * The branch is now connected to its tree so we can 378 * reset tmp_alone_branch to the beginning of the 379 * list. 380 */ 381 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 382 return true; 383 } 384 385 if (!cfs_rq->tg->parent) { 386 /* 387 * cfs rq without parent should be put 388 * at the tail of the list. 389 */ 390 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 391 &rq->leaf_cfs_rq_list); 392 /* 393 * We have reach the top of a tree so we can reset 394 * tmp_alone_branch to the beginning of the list. 395 */ 396 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 397 return true; 398 } 399 400 /* 401 * The parent has not already been added so we want to 402 * make sure that it will be put after us. 403 * tmp_alone_branch points to the begin of the branch 404 * where we will add parent. 405 */ 406 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 407 /* 408 * update tmp_alone_branch to points to the new begin 409 * of the branch 410 */ 411 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 412 return false; 413 } 414 415 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 416 { 417 if (cfs_rq->on_list) { 418 struct rq *rq = rq_of(cfs_rq); 419 420 /* 421 * With cfs_rq being unthrottled/throttled during an enqueue, 422 * it can happen the tmp_alone_branch points the a leaf that 423 * we finally want to del. In this case, tmp_alone_branch moves 424 * to the prev element but it will point to rq->leaf_cfs_rq_list 425 * at the end of the enqueue. 426 */ 427 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 428 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 429 430 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 431 cfs_rq->on_list = 0; 432 } 433 } 434 435 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 436 { 437 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 438 } 439 440 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 441 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 442 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 443 leaf_cfs_rq_list) 444 445 /* Do the two (enqueued) entities belong to the same group ? */ 446 static inline struct cfs_rq * 447 is_same_group(struct sched_entity *se, struct sched_entity *pse) 448 { 449 if (se->cfs_rq == pse->cfs_rq) 450 return se->cfs_rq; 451 452 return NULL; 453 } 454 455 static inline struct sched_entity *parent_entity(struct sched_entity *se) 456 { 457 return se->parent; 458 } 459 460 static void 461 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 462 { 463 int se_depth, pse_depth; 464 465 /* 466 * preemption test can be made between sibling entities who are in the 467 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 468 * both tasks until we find their ancestors who are siblings of common 469 * parent. 470 */ 471 472 /* First walk up until both entities are at same depth */ 473 se_depth = (*se)->depth; 474 pse_depth = (*pse)->depth; 475 476 while (se_depth > pse_depth) { 477 se_depth--; 478 *se = parent_entity(*se); 479 } 480 481 while (pse_depth > se_depth) { 482 pse_depth--; 483 *pse = parent_entity(*pse); 484 } 485 486 while (!is_same_group(*se, *pse)) { 487 *se = parent_entity(*se); 488 *pse = parent_entity(*pse); 489 } 490 } 491 492 static int tg_is_idle(struct task_group *tg) 493 { 494 return tg->idle > 0; 495 } 496 497 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 498 { 499 return cfs_rq->idle > 0; 500 } 501 502 static int se_is_idle(struct sched_entity *se) 503 { 504 if (entity_is_task(se)) 505 return task_has_idle_policy(task_of(se)); 506 return cfs_rq_is_idle(group_cfs_rq(se)); 507 } 508 509 #else /* !CONFIG_FAIR_GROUP_SCHED */ 510 511 #define for_each_sched_entity(se) \ 512 for (; se; se = NULL) 513 514 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 515 { 516 return true; 517 } 518 519 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 520 { 521 } 522 523 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 524 { 525 } 526 527 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 528 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 529 530 static inline struct sched_entity *parent_entity(struct sched_entity *se) 531 { 532 return NULL; 533 } 534 535 static inline void 536 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 537 { 538 } 539 540 static inline int tg_is_idle(struct task_group *tg) 541 { 542 return 0; 543 } 544 545 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 546 { 547 return 0; 548 } 549 550 static int se_is_idle(struct sched_entity *se) 551 { 552 return 0; 553 } 554 555 #endif /* CONFIG_FAIR_GROUP_SCHED */ 556 557 static __always_inline 558 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 559 560 /************************************************************** 561 * Scheduling class tree data structure manipulation methods: 562 */ 563 564 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 565 { 566 s64 delta = (s64)(vruntime - max_vruntime); 567 if (delta > 0) 568 max_vruntime = vruntime; 569 570 return max_vruntime; 571 } 572 573 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 574 { 575 s64 delta = (s64)(vruntime - min_vruntime); 576 if (delta < 0) 577 min_vruntime = vruntime; 578 579 return min_vruntime; 580 } 581 582 static inline bool entity_before(struct sched_entity *a, 583 struct sched_entity *b) 584 { 585 return (s64)(a->vruntime - b->vruntime) < 0; 586 } 587 588 #define __node_2_se(node) \ 589 rb_entry((node), struct sched_entity, run_node) 590 591 static void update_min_vruntime(struct cfs_rq *cfs_rq) 592 { 593 struct sched_entity *curr = cfs_rq->curr; 594 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 595 596 u64 vruntime = cfs_rq->min_vruntime; 597 598 if (curr) { 599 if (curr->on_rq) 600 vruntime = curr->vruntime; 601 else 602 curr = NULL; 603 } 604 605 if (leftmost) { /* non-empty tree */ 606 struct sched_entity *se = __node_2_se(leftmost); 607 608 if (!curr) 609 vruntime = se->vruntime; 610 else 611 vruntime = min_vruntime(vruntime, se->vruntime); 612 } 613 614 /* ensure we never gain time by being placed backwards. */ 615 u64_u32_store(cfs_rq->min_vruntime, 616 max_vruntime(cfs_rq->min_vruntime, vruntime)); 617 } 618 619 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 620 { 621 return entity_before(__node_2_se(a), __node_2_se(b)); 622 } 623 624 /* 625 * Enqueue an entity into the rb-tree: 626 */ 627 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 628 { 629 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less); 630 } 631 632 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 633 { 634 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 635 } 636 637 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 638 { 639 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 640 641 if (!left) 642 return NULL; 643 644 return __node_2_se(left); 645 } 646 647 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 648 { 649 struct rb_node *next = rb_next(&se->run_node); 650 651 if (!next) 652 return NULL; 653 654 return __node_2_se(next); 655 } 656 657 #ifdef CONFIG_SCHED_DEBUG 658 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 659 { 660 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 661 662 if (!last) 663 return NULL; 664 665 return __node_2_se(last); 666 } 667 668 /************************************************************** 669 * Scheduling class statistics methods: 670 */ 671 672 int sched_update_scaling(void) 673 { 674 unsigned int factor = get_update_sysctl_factor(); 675 676 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 677 sysctl_sched_min_granularity); 678 679 #define WRT_SYSCTL(name) \ 680 (normalized_sysctl_##name = sysctl_##name / (factor)) 681 WRT_SYSCTL(sched_min_granularity); 682 WRT_SYSCTL(sched_latency); 683 WRT_SYSCTL(sched_wakeup_granularity); 684 #undef WRT_SYSCTL 685 686 return 0; 687 } 688 #endif 689 690 /* 691 * delta /= w 692 */ 693 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 694 { 695 if (unlikely(se->load.weight != NICE_0_LOAD)) 696 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 697 698 return delta; 699 } 700 701 /* 702 * The idea is to set a period in which each task runs once. 703 * 704 * When there are too many tasks (sched_nr_latency) we have to stretch 705 * this period because otherwise the slices get too small. 706 * 707 * p = (nr <= nl) ? l : l*nr/nl 708 */ 709 static u64 __sched_period(unsigned long nr_running) 710 { 711 if (unlikely(nr_running > sched_nr_latency)) 712 return nr_running * sysctl_sched_min_granularity; 713 else 714 return sysctl_sched_latency; 715 } 716 717 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq); 718 719 /* 720 * We calculate the wall-time slice from the period by taking a part 721 * proportional to the weight. 722 * 723 * s = p*P[w/rw] 724 */ 725 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 726 { 727 unsigned int nr_running = cfs_rq->nr_running; 728 struct sched_entity *init_se = se; 729 unsigned int min_gran; 730 u64 slice; 731 732 if (sched_feat(ALT_PERIOD)) 733 nr_running = rq_of(cfs_rq)->cfs.h_nr_running; 734 735 slice = __sched_period(nr_running + !se->on_rq); 736 737 for_each_sched_entity(se) { 738 struct load_weight *load; 739 struct load_weight lw; 740 struct cfs_rq *qcfs_rq; 741 742 qcfs_rq = cfs_rq_of(se); 743 load = &qcfs_rq->load; 744 745 if (unlikely(!se->on_rq)) { 746 lw = qcfs_rq->load; 747 748 update_load_add(&lw, se->load.weight); 749 load = &lw; 750 } 751 slice = __calc_delta(slice, se->load.weight, load); 752 } 753 754 if (sched_feat(BASE_SLICE)) { 755 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq)) 756 min_gran = sysctl_sched_idle_min_granularity; 757 else 758 min_gran = sysctl_sched_min_granularity; 759 760 slice = max_t(u64, slice, min_gran); 761 } 762 763 return slice; 764 } 765 766 /* 767 * We calculate the vruntime slice of a to-be-inserted task. 768 * 769 * vs = s/w 770 */ 771 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 772 { 773 return calc_delta_fair(sched_slice(cfs_rq, se), se); 774 } 775 776 #include "pelt.h" 777 #ifdef CONFIG_SMP 778 779 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 780 static unsigned long task_h_load(struct task_struct *p); 781 static unsigned long capacity_of(int cpu); 782 783 /* Give new sched_entity start runnable values to heavy its load in infant time */ 784 void init_entity_runnable_average(struct sched_entity *se) 785 { 786 struct sched_avg *sa = &se->avg; 787 788 memset(sa, 0, sizeof(*sa)); 789 790 /* 791 * Tasks are initialized with full load to be seen as heavy tasks until 792 * they get a chance to stabilize to their real load level. 793 * Group entities are initialized with zero load to reflect the fact that 794 * nothing has been attached to the task group yet. 795 */ 796 if (entity_is_task(se)) 797 sa->load_avg = scale_load_down(se->load.weight); 798 799 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 800 } 801 802 static void attach_entity_cfs_rq(struct sched_entity *se); 803 804 /* 805 * With new tasks being created, their initial util_avgs are extrapolated 806 * based on the cfs_rq's current util_avg: 807 * 808 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 809 * 810 * However, in many cases, the above util_avg does not give a desired 811 * value. Moreover, the sum of the util_avgs may be divergent, such 812 * as when the series is a harmonic series. 813 * 814 * To solve this problem, we also cap the util_avg of successive tasks to 815 * only 1/2 of the left utilization budget: 816 * 817 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 818 * 819 * where n denotes the nth task and cpu_scale the CPU capacity. 820 * 821 * For example, for a CPU with 1024 of capacity, a simplest series from 822 * the beginning would be like: 823 * 824 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 825 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 826 * 827 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 828 * if util_avg > util_avg_cap. 829 */ 830 void post_init_entity_util_avg(struct task_struct *p) 831 { 832 struct sched_entity *se = &p->se; 833 struct cfs_rq *cfs_rq = cfs_rq_of(se); 834 struct sched_avg *sa = &se->avg; 835 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 836 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 837 838 if (cap > 0) { 839 if (cfs_rq->avg.util_avg != 0) { 840 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 841 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 842 843 if (sa->util_avg > cap) 844 sa->util_avg = cap; 845 } else { 846 sa->util_avg = cap; 847 } 848 } 849 850 sa->runnable_avg = sa->util_avg; 851 852 if (p->sched_class != &fair_sched_class) { 853 /* 854 * For !fair tasks do: 855 * 856 update_cfs_rq_load_avg(now, cfs_rq); 857 attach_entity_load_avg(cfs_rq, se); 858 switched_from_fair(rq, p); 859 * 860 * such that the next switched_to_fair() has the 861 * expected state. 862 */ 863 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 864 return; 865 } 866 867 attach_entity_cfs_rq(se); 868 } 869 870 #else /* !CONFIG_SMP */ 871 void init_entity_runnable_average(struct sched_entity *se) 872 { 873 } 874 void post_init_entity_util_avg(struct task_struct *p) 875 { 876 } 877 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 878 { 879 } 880 #endif /* CONFIG_SMP */ 881 882 /* 883 * Update the current task's runtime statistics. 884 */ 885 static void update_curr(struct cfs_rq *cfs_rq) 886 { 887 struct sched_entity *curr = cfs_rq->curr; 888 u64 now = rq_clock_task(rq_of(cfs_rq)); 889 u64 delta_exec; 890 891 if (unlikely(!curr)) 892 return; 893 894 delta_exec = now - curr->exec_start; 895 if (unlikely((s64)delta_exec <= 0)) 896 return; 897 898 curr->exec_start = now; 899 900 if (schedstat_enabled()) { 901 struct sched_statistics *stats; 902 903 stats = __schedstats_from_se(curr); 904 __schedstat_set(stats->exec_max, 905 max(delta_exec, stats->exec_max)); 906 } 907 908 curr->sum_exec_runtime += delta_exec; 909 schedstat_add(cfs_rq->exec_clock, delta_exec); 910 911 curr->vruntime += calc_delta_fair(delta_exec, curr); 912 update_min_vruntime(cfs_rq); 913 914 if (entity_is_task(curr)) { 915 struct task_struct *curtask = task_of(curr); 916 917 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 918 cgroup_account_cputime(curtask, delta_exec); 919 account_group_exec_runtime(curtask, delta_exec); 920 } 921 922 account_cfs_rq_runtime(cfs_rq, delta_exec); 923 } 924 925 static void update_curr_fair(struct rq *rq) 926 { 927 update_curr(cfs_rq_of(&rq->curr->se)); 928 } 929 930 static inline void 931 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 932 { 933 struct sched_statistics *stats; 934 struct task_struct *p = NULL; 935 936 if (!schedstat_enabled()) 937 return; 938 939 stats = __schedstats_from_se(se); 940 941 if (entity_is_task(se)) 942 p = task_of(se); 943 944 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 945 } 946 947 static inline void 948 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 949 { 950 struct sched_statistics *stats; 951 struct task_struct *p = NULL; 952 953 if (!schedstat_enabled()) 954 return; 955 956 stats = __schedstats_from_se(se); 957 958 /* 959 * When the sched_schedstat changes from 0 to 1, some sched se 960 * maybe already in the runqueue, the se->statistics.wait_start 961 * will be 0.So it will let the delta wrong. We need to avoid this 962 * scenario. 963 */ 964 if (unlikely(!schedstat_val(stats->wait_start))) 965 return; 966 967 if (entity_is_task(se)) 968 p = task_of(se); 969 970 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 971 } 972 973 static inline void 974 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 975 { 976 struct sched_statistics *stats; 977 struct task_struct *tsk = NULL; 978 979 if (!schedstat_enabled()) 980 return; 981 982 stats = __schedstats_from_se(se); 983 984 if (entity_is_task(se)) 985 tsk = task_of(se); 986 987 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 988 } 989 990 /* 991 * Task is being enqueued - update stats: 992 */ 993 static inline void 994 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 995 { 996 if (!schedstat_enabled()) 997 return; 998 999 /* 1000 * Are we enqueueing a waiting task? (for current tasks 1001 * a dequeue/enqueue event is a NOP) 1002 */ 1003 if (se != cfs_rq->curr) 1004 update_stats_wait_start_fair(cfs_rq, se); 1005 1006 if (flags & ENQUEUE_WAKEUP) 1007 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1008 } 1009 1010 static inline void 1011 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1012 { 1013 1014 if (!schedstat_enabled()) 1015 return; 1016 1017 /* 1018 * Mark the end of the wait period if dequeueing a 1019 * waiting task: 1020 */ 1021 if (se != cfs_rq->curr) 1022 update_stats_wait_end_fair(cfs_rq, se); 1023 1024 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1025 struct task_struct *tsk = task_of(se); 1026 unsigned int state; 1027 1028 /* XXX racy against TTWU */ 1029 state = READ_ONCE(tsk->__state); 1030 if (state & TASK_INTERRUPTIBLE) 1031 __schedstat_set(tsk->stats.sleep_start, 1032 rq_clock(rq_of(cfs_rq))); 1033 if (state & TASK_UNINTERRUPTIBLE) 1034 __schedstat_set(tsk->stats.block_start, 1035 rq_clock(rq_of(cfs_rq))); 1036 } 1037 } 1038 1039 /* 1040 * We are picking a new current task - update its stats: 1041 */ 1042 static inline void 1043 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1044 { 1045 /* 1046 * We are starting a new run period: 1047 */ 1048 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1049 } 1050 1051 /************************************************** 1052 * Scheduling class queueing methods: 1053 */ 1054 1055 #ifdef CONFIG_NUMA 1056 #define NUMA_IMBALANCE_MIN 2 1057 1058 static inline long 1059 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1060 { 1061 /* 1062 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1063 * threshold. Above this threshold, individual tasks may be contending 1064 * for both memory bandwidth and any shared HT resources. This is an 1065 * approximation as the number of running tasks may not be related to 1066 * the number of busy CPUs due to sched_setaffinity. 1067 */ 1068 if (dst_running > imb_numa_nr) 1069 return imbalance; 1070 1071 /* 1072 * Allow a small imbalance based on a simple pair of communicating 1073 * tasks that remain local when the destination is lightly loaded. 1074 */ 1075 if (imbalance <= NUMA_IMBALANCE_MIN) 1076 return 0; 1077 1078 return imbalance; 1079 } 1080 #endif /* CONFIG_NUMA */ 1081 1082 #ifdef CONFIG_NUMA_BALANCING 1083 /* 1084 * Approximate time to scan a full NUMA task in ms. The task scan period is 1085 * calculated based on the tasks virtual memory size and 1086 * numa_balancing_scan_size. 1087 */ 1088 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1089 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1090 1091 /* Portion of address space to scan in MB */ 1092 unsigned int sysctl_numa_balancing_scan_size = 256; 1093 1094 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1095 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1096 1097 struct numa_group { 1098 refcount_t refcount; 1099 1100 spinlock_t lock; /* nr_tasks, tasks */ 1101 int nr_tasks; 1102 pid_t gid; 1103 int active_nodes; 1104 1105 struct rcu_head rcu; 1106 unsigned long total_faults; 1107 unsigned long max_faults_cpu; 1108 /* 1109 * faults[] array is split into two regions: faults_mem and faults_cpu. 1110 * 1111 * Faults_cpu is used to decide whether memory should move 1112 * towards the CPU. As a consequence, these stats are weighted 1113 * more by CPU use than by memory faults. 1114 */ 1115 unsigned long faults[]; 1116 }; 1117 1118 /* 1119 * For functions that can be called in multiple contexts that permit reading 1120 * ->numa_group (see struct task_struct for locking rules). 1121 */ 1122 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1123 { 1124 return rcu_dereference_check(p->numa_group, p == current || 1125 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1126 } 1127 1128 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1129 { 1130 return rcu_dereference_protected(p->numa_group, p == current); 1131 } 1132 1133 static inline unsigned long group_faults_priv(struct numa_group *ng); 1134 static inline unsigned long group_faults_shared(struct numa_group *ng); 1135 1136 static unsigned int task_nr_scan_windows(struct task_struct *p) 1137 { 1138 unsigned long rss = 0; 1139 unsigned long nr_scan_pages; 1140 1141 /* 1142 * Calculations based on RSS as non-present and empty pages are skipped 1143 * by the PTE scanner and NUMA hinting faults should be trapped based 1144 * on resident pages 1145 */ 1146 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1147 rss = get_mm_rss(p->mm); 1148 if (!rss) 1149 rss = nr_scan_pages; 1150 1151 rss = round_up(rss, nr_scan_pages); 1152 return rss / nr_scan_pages; 1153 } 1154 1155 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1156 #define MAX_SCAN_WINDOW 2560 1157 1158 static unsigned int task_scan_min(struct task_struct *p) 1159 { 1160 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1161 unsigned int scan, floor; 1162 unsigned int windows = 1; 1163 1164 if (scan_size < MAX_SCAN_WINDOW) 1165 windows = MAX_SCAN_WINDOW / scan_size; 1166 floor = 1000 / windows; 1167 1168 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1169 return max_t(unsigned int, floor, scan); 1170 } 1171 1172 static unsigned int task_scan_start(struct task_struct *p) 1173 { 1174 unsigned long smin = task_scan_min(p); 1175 unsigned long period = smin; 1176 struct numa_group *ng; 1177 1178 /* Scale the maximum scan period with the amount of shared memory. */ 1179 rcu_read_lock(); 1180 ng = rcu_dereference(p->numa_group); 1181 if (ng) { 1182 unsigned long shared = group_faults_shared(ng); 1183 unsigned long private = group_faults_priv(ng); 1184 1185 period *= refcount_read(&ng->refcount); 1186 period *= shared + 1; 1187 period /= private + shared + 1; 1188 } 1189 rcu_read_unlock(); 1190 1191 return max(smin, period); 1192 } 1193 1194 static unsigned int task_scan_max(struct task_struct *p) 1195 { 1196 unsigned long smin = task_scan_min(p); 1197 unsigned long smax; 1198 struct numa_group *ng; 1199 1200 /* Watch for min being lower than max due to floor calculations */ 1201 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1202 1203 /* Scale the maximum scan period with the amount of shared memory. */ 1204 ng = deref_curr_numa_group(p); 1205 if (ng) { 1206 unsigned long shared = group_faults_shared(ng); 1207 unsigned long private = group_faults_priv(ng); 1208 unsigned long period = smax; 1209 1210 period *= refcount_read(&ng->refcount); 1211 period *= shared + 1; 1212 period /= private + shared + 1; 1213 1214 smax = max(smax, period); 1215 } 1216 1217 return max(smin, smax); 1218 } 1219 1220 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1221 { 1222 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1223 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1224 } 1225 1226 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1227 { 1228 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1229 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1230 } 1231 1232 /* Shared or private faults. */ 1233 #define NR_NUMA_HINT_FAULT_TYPES 2 1234 1235 /* Memory and CPU locality */ 1236 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1237 1238 /* Averaged statistics, and temporary buffers. */ 1239 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1240 1241 pid_t task_numa_group_id(struct task_struct *p) 1242 { 1243 struct numa_group *ng; 1244 pid_t gid = 0; 1245 1246 rcu_read_lock(); 1247 ng = rcu_dereference(p->numa_group); 1248 if (ng) 1249 gid = ng->gid; 1250 rcu_read_unlock(); 1251 1252 return gid; 1253 } 1254 1255 /* 1256 * The averaged statistics, shared & private, memory & CPU, 1257 * occupy the first half of the array. The second half of the 1258 * array is for current counters, which are averaged into the 1259 * first set by task_numa_placement. 1260 */ 1261 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1262 { 1263 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1264 } 1265 1266 static inline unsigned long task_faults(struct task_struct *p, int nid) 1267 { 1268 if (!p->numa_faults) 1269 return 0; 1270 1271 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1272 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1273 } 1274 1275 static inline unsigned long group_faults(struct task_struct *p, int nid) 1276 { 1277 struct numa_group *ng = deref_task_numa_group(p); 1278 1279 if (!ng) 1280 return 0; 1281 1282 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1283 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1284 } 1285 1286 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1287 { 1288 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1289 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1290 } 1291 1292 static inline unsigned long group_faults_priv(struct numa_group *ng) 1293 { 1294 unsigned long faults = 0; 1295 int node; 1296 1297 for_each_online_node(node) { 1298 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1299 } 1300 1301 return faults; 1302 } 1303 1304 static inline unsigned long group_faults_shared(struct numa_group *ng) 1305 { 1306 unsigned long faults = 0; 1307 int node; 1308 1309 for_each_online_node(node) { 1310 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1311 } 1312 1313 return faults; 1314 } 1315 1316 /* 1317 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1318 * considered part of a numa group's pseudo-interleaving set. Migrations 1319 * between these nodes are slowed down, to allow things to settle down. 1320 */ 1321 #define ACTIVE_NODE_FRACTION 3 1322 1323 static bool numa_is_active_node(int nid, struct numa_group *ng) 1324 { 1325 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1326 } 1327 1328 /* Handle placement on systems where not all nodes are directly connected. */ 1329 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1330 int lim_dist, bool task) 1331 { 1332 unsigned long score = 0; 1333 int node, max_dist; 1334 1335 /* 1336 * All nodes are directly connected, and the same distance 1337 * from each other. No need for fancy placement algorithms. 1338 */ 1339 if (sched_numa_topology_type == NUMA_DIRECT) 1340 return 0; 1341 1342 /* sched_max_numa_distance may be changed in parallel. */ 1343 max_dist = READ_ONCE(sched_max_numa_distance); 1344 /* 1345 * This code is called for each node, introducing N^2 complexity, 1346 * which should be ok given the number of nodes rarely exceeds 8. 1347 */ 1348 for_each_online_node(node) { 1349 unsigned long faults; 1350 int dist = node_distance(nid, node); 1351 1352 /* 1353 * The furthest away nodes in the system are not interesting 1354 * for placement; nid was already counted. 1355 */ 1356 if (dist >= max_dist || node == nid) 1357 continue; 1358 1359 /* 1360 * On systems with a backplane NUMA topology, compare groups 1361 * of nodes, and move tasks towards the group with the most 1362 * memory accesses. When comparing two nodes at distance 1363 * "hoplimit", only nodes closer by than "hoplimit" are part 1364 * of each group. Skip other nodes. 1365 */ 1366 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1367 continue; 1368 1369 /* Add up the faults from nearby nodes. */ 1370 if (task) 1371 faults = task_faults(p, node); 1372 else 1373 faults = group_faults(p, node); 1374 1375 /* 1376 * On systems with a glueless mesh NUMA topology, there are 1377 * no fixed "groups of nodes". Instead, nodes that are not 1378 * directly connected bounce traffic through intermediate 1379 * nodes; a numa_group can occupy any set of nodes. 1380 * The further away a node is, the less the faults count. 1381 * This seems to result in good task placement. 1382 */ 1383 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1384 faults *= (max_dist - dist); 1385 faults /= (max_dist - LOCAL_DISTANCE); 1386 } 1387 1388 score += faults; 1389 } 1390 1391 return score; 1392 } 1393 1394 /* 1395 * These return the fraction of accesses done by a particular task, or 1396 * task group, on a particular numa node. The group weight is given a 1397 * larger multiplier, in order to group tasks together that are almost 1398 * evenly spread out between numa nodes. 1399 */ 1400 static inline unsigned long task_weight(struct task_struct *p, int nid, 1401 int dist) 1402 { 1403 unsigned long faults, total_faults; 1404 1405 if (!p->numa_faults) 1406 return 0; 1407 1408 total_faults = p->total_numa_faults; 1409 1410 if (!total_faults) 1411 return 0; 1412 1413 faults = task_faults(p, nid); 1414 faults += score_nearby_nodes(p, nid, dist, true); 1415 1416 return 1000 * faults / total_faults; 1417 } 1418 1419 static inline unsigned long group_weight(struct task_struct *p, int nid, 1420 int dist) 1421 { 1422 struct numa_group *ng = deref_task_numa_group(p); 1423 unsigned long faults, total_faults; 1424 1425 if (!ng) 1426 return 0; 1427 1428 total_faults = ng->total_faults; 1429 1430 if (!total_faults) 1431 return 0; 1432 1433 faults = group_faults(p, nid); 1434 faults += score_nearby_nodes(p, nid, dist, false); 1435 1436 return 1000 * faults / total_faults; 1437 } 1438 1439 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1440 int src_nid, int dst_cpu) 1441 { 1442 struct numa_group *ng = deref_curr_numa_group(p); 1443 int dst_nid = cpu_to_node(dst_cpu); 1444 int last_cpupid, this_cpupid; 1445 1446 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1447 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1448 1449 /* 1450 * Allow first faults or private faults to migrate immediately early in 1451 * the lifetime of a task. The magic number 4 is based on waiting for 1452 * two full passes of the "multi-stage node selection" test that is 1453 * executed below. 1454 */ 1455 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1456 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1457 return true; 1458 1459 /* 1460 * Multi-stage node selection is used in conjunction with a periodic 1461 * migration fault to build a temporal task<->page relation. By using 1462 * a two-stage filter we remove short/unlikely relations. 1463 * 1464 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1465 * a task's usage of a particular page (n_p) per total usage of this 1466 * page (n_t) (in a given time-span) to a probability. 1467 * 1468 * Our periodic faults will sample this probability and getting the 1469 * same result twice in a row, given these samples are fully 1470 * independent, is then given by P(n)^2, provided our sample period 1471 * is sufficiently short compared to the usage pattern. 1472 * 1473 * This quadric squishes small probabilities, making it less likely we 1474 * act on an unlikely task<->page relation. 1475 */ 1476 if (!cpupid_pid_unset(last_cpupid) && 1477 cpupid_to_nid(last_cpupid) != dst_nid) 1478 return false; 1479 1480 /* Always allow migrate on private faults */ 1481 if (cpupid_match_pid(p, last_cpupid)) 1482 return true; 1483 1484 /* A shared fault, but p->numa_group has not been set up yet. */ 1485 if (!ng) 1486 return true; 1487 1488 /* 1489 * Destination node is much more heavily used than the source 1490 * node? Allow migration. 1491 */ 1492 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1493 ACTIVE_NODE_FRACTION) 1494 return true; 1495 1496 /* 1497 * Distribute memory according to CPU & memory use on each node, 1498 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1499 * 1500 * faults_cpu(dst) 3 faults_cpu(src) 1501 * --------------- * - > --------------- 1502 * faults_mem(dst) 4 faults_mem(src) 1503 */ 1504 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1505 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1506 } 1507 1508 /* 1509 * 'numa_type' describes the node at the moment of load balancing. 1510 */ 1511 enum numa_type { 1512 /* The node has spare capacity that can be used to run more tasks. */ 1513 node_has_spare = 0, 1514 /* 1515 * The node is fully used and the tasks don't compete for more CPU 1516 * cycles. Nevertheless, some tasks might wait before running. 1517 */ 1518 node_fully_busy, 1519 /* 1520 * The node is overloaded and can't provide expected CPU cycles to all 1521 * tasks. 1522 */ 1523 node_overloaded 1524 }; 1525 1526 /* Cached statistics for all CPUs within a node */ 1527 struct numa_stats { 1528 unsigned long load; 1529 unsigned long runnable; 1530 unsigned long util; 1531 /* Total compute capacity of CPUs on a node */ 1532 unsigned long compute_capacity; 1533 unsigned int nr_running; 1534 unsigned int weight; 1535 enum numa_type node_type; 1536 int idle_cpu; 1537 }; 1538 1539 static inline bool is_core_idle(int cpu) 1540 { 1541 #ifdef CONFIG_SCHED_SMT 1542 int sibling; 1543 1544 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1545 if (cpu == sibling) 1546 continue; 1547 1548 if (!idle_cpu(sibling)) 1549 return false; 1550 } 1551 #endif 1552 1553 return true; 1554 } 1555 1556 struct task_numa_env { 1557 struct task_struct *p; 1558 1559 int src_cpu, src_nid; 1560 int dst_cpu, dst_nid; 1561 int imb_numa_nr; 1562 1563 struct numa_stats src_stats, dst_stats; 1564 1565 int imbalance_pct; 1566 int dist; 1567 1568 struct task_struct *best_task; 1569 long best_imp; 1570 int best_cpu; 1571 }; 1572 1573 static unsigned long cpu_load(struct rq *rq); 1574 static unsigned long cpu_runnable(struct rq *rq); 1575 1576 static inline enum 1577 numa_type numa_classify(unsigned int imbalance_pct, 1578 struct numa_stats *ns) 1579 { 1580 if ((ns->nr_running > ns->weight) && 1581 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1582 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1583 return node_overloaded; 1584 1585 if ((ns->nr_running < ns->weight) || 1586 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1587 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1588 return node_has_spare; 1589 1590 return node_fully_busy; 1591 } 1592 1593 #ifdef CONFIG_SCHED_SMT 1594 /* Forward declarations of select_idle_sibling helpers */ 1595 static inline bool test_idle_cores(int cpu, bool def); 1596 static inline int numa_idle_core(int idle_core, int cpu) 1597 { 1598 if (!static_branch_likely(&sched_smt_present) || 1599 idle_core >= 0 || !test_idle_cores(cpu, false)) 1600 return idle_core; 1601 1602 /* 1603 * Prefer cores instead of packing HT siblings 1604 * and triggering future load balancing. 1605 */ 1606 if (is_core_idle(cpu)) 1607 idle_core = cpu; 1608 1609 return idle_core; 1610 } 1611 #else 1612 static inline int numa_idle_core(int idle_core, int cpu) 1613 { 1614 return idle_core; 1615 } 1616 #endif 1617 1618 /* 1619 * Gather all necessary information to make NUMA balancing placement 1620 * decisions that are compatible with standard load balancer. This 1621 * borrows code and logic from update_sg_lb_stats but sharing a 1622 * common implementation is impractical. 1623 */ 1624 static void update_numa_stats(struct task_numa_env *env, 1625 struct numa_stats *ns, int nid, 1626 bool find_idle) 1627 { 1628 int cpu, idle_core = -1; 1629 1630 memset(ns, 0, sizeof(*ns)); 1631 ns->idle_cpu = -1; 1632 1633 rcu_read_lock(); 1634 for_each_cpu(cpu, cpumask_of_node(nid)) { 1635 struct rq *rq = cpu_rq(cpu); 1636 1637 ns->load += cpu_load(rq); 1638 ns->runnable += cpu_runnable(rq); 1639 ns->util += cpu_util_cfs(cpu); 1640 ns->nr_running += rq->cfs.h_nr_running; 1641 ns->compute_capacity += capacity_of(cpu); 1642 1643 if (find_idle && !rq->nr_running && idle_cpu(cpu)) { 1644 if (READ_ONCE(rq->numa_migrate_on) || 1645 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1646 continue; 1647 1648 if (ns->idle_cpu == -1) 1649 ns->idle_cpu = cpu; 1650 1651 idle_core = numa_idle_core(idle_core, cpu); 1652 } 1653 } 1654 rcu_read_unlock(); 1655 1656 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1657 1658 ns->node_type = numa_classify(env->imbalance_pct, ns); 1659 1660 if (idle_core >= 0) 1661 ns->idle_cpu = idle_core; 1662 } 1663 1664 static void task_numa_assign(struct task_numa_env *env, 1665 struct task_struct *p, long imp) 1666 { 1667 struct rq *rq = cpu_rq(env->dst_cpu); 1668 1669 /* Check if run-queue part of active NUMA balance. */ 1670 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1671 int cpu; 1672 int start = env->dst_cpu; 1673 1674 /* Find alternative idle CPU. */ 1675 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) { 1676 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1677 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1678 continue; 1679 } 1680 1681 env->dst_cpu = cpu; 1682 rq = cpu_rq(env->dst_cpu); 1683 if (!xchg(&rq->numa_migrate_on, 1)) 1684 goto assign; 1685 } 1686 1687 /* Failed to find an alternative idle CPU */ 1688 return; 1689 } 1690 1691 assign: 1692 /* 1693 * Clear previous best_cpu/rq numa-migrate flag, since task now 1694 * found a better CPU to move/swap. 1695 */ 1696 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1697 rq = cpu_rq(env->best_cpu); 1698 WRITE_ONCE(rq->numa_migrate_on, 0); 1699 } 1700 1701 if (env->best_task) 1702 put_task_struct(env->best_task); 1703 if (p) 1704 get_task_struct(p); 1705 1706 env->best_task = p; 1707 env->best_imp = imp; 1708 env->best_cpu = env->dst_cpu; 1709 } 1710 1711 static bool load_too_imbalanced(long src_load, long dst_load, 1712 struct task_numa_env *env) 1713 { 1714 long imb, old_imb; 1715 long orig_src_load, orig_dst_load; 1716 long src_capacity, dst_capacity; 1717 1718 /* 1719 * The load is corrected for the CPU capacity available on each node. 1720 * 1721 * src_load dst_load 1722 * ------------ vs --------- 1723 * src_capacity dst_capacity 1724 */ 1725 src_capacity = env->src_stats.compute_capacity; 1726 dst_capacity = env->dst_stats.compute_capacity; 1727 1728 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1729 1730 orig_src_load = env->src_stats.load; 1731 orig_dst_load = env->dst_stats.load; 1732 1733 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1734 1735 /* Would this change make things worse? */ 1736 return (imb > old_imb); 1737 } 1738 1739 /* 1740 * Maximum NUMA importance can be 1998 (2*999); 1741 * SMALLIMP @ 30 would be close to 1998/64. 1742 * Used to deter task migration. 1743 */ 1744 #define SMALLIMP 30 1745 1746 /* 1747 * This checks if the overall compute and NUMA accesses of the system would 1748 * be improved if the source tasks was migrated to the target dst_cpu taking 1749 * into account that it might be best if task running on the dst_cpu should 1750 * be exchanged with the source task 1751 */ 1752 static bool task_numa_compare(struct task_numa_env *env, 1753 long taskimp, long groupimp, bool maymove) 1754 { 1755 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1756 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1757 long imp = p_ng ? groupimp : taskimp; 1758 struct task_struct *cur; 1759 long src_load, dst_load; 1760 int dist = env->dist; 1761 long moveimp = imp; 1762 long load; 1763 bool stopsearch = false; 1764 1765 if (READ_ONCE(dst_rq->numa_migrate_on)) 1766 return false; 1767 1768 rcu_read_lock(); 1769 cur = rcu_dereference(dst_rq->curr); 1770 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1771 cur = NULL; 1772 1773 /* 1774 * Because we have preemption enabled we can get migrated around and 1775 * end try selecting ourselves (current == env->p) as a swap candidate. 1776 */ 1777 if (cur == env->p) { 1778 stopsearch = true; 1779 goto unlock; 1780 } 1781 1782 if (!cur) { 1783 if (maymove && moveimp >= env->best_imp) 1784 goto assign; 1785 else 1786 goto unlock; 1787 } 1788 1789 /* Skip this swap candidate if cannot move to the source cpu. */ 1790 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1791 goto unlock; 1792 1793 /* 1794 * Skip this swap candidate if it is not moving to its preferred 1795 * node and the best task is. 1796 */ 1797 if (env->best_task && 1798 env->best_task->numa_preferred_nid == env->src_nid && 1799 cur->numa_preferred_nid != env->src_nid) { 1800 goto unlock; 1801 } 1802 1803 /* 1804 * "imp" is the fault differential for the source task between the 1805 * source and destination node. Calculate the total differential for 1806 * the source task and potential destination task. The more negative 1807 * the value is, the more remote accesses that would be expected to 1808 * be incurred if the tasks were swapped. 1809 * 1810 * If dst and source tasks are in the same NUMA group, or not 1811 * in any group then look only at task weights. 1812 */ 1813 cur_ng = rcu_dereference(cur->numa_group); 1814 if (cur_ng == p_ng) { 1815 /* 1816 * Do not swap within a group or between tasks that have 1817 * no group if there is spare capacity. Swapping does 1818 * not address the load imbalance and helps one task at 1819 * the cost of punishing another. 1820 */ 1821 if (env->dst_stats.node_type == node_has_spare) 1822 goto unlock; 1823 1824 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1825 task_weight(cur, env->dst_nid, dist); 1826 /* 1827 * Add some hysteresis to prevent swapping the 1828 * tasks within a group over tiny differences. 1829 */ 1830 if (cur_ng) 1831 imp -= imp / 16; 1832 } else { 1833 /* 1834 * Compare the group weights. If a task is all by itself 1835 * (not part of a group), use the task weight instead. 1836 */ 1837 if (cur_ng && p_ng) 1838 imp += group_weight(cur, env->src_nid, dist) - 1839 group_weight(cur, env->dst_nid, dist); 1840 else 1841 imp += task_weight(cur, env->src_nid, dist) - 1842 task_weight(cur, env->dst_nid, dist); 1843 } 1844 1845 /* Discourage picking a task already on its preferred node */ 1846 if (cur->numa_preferred_nid == env->dst_nid) 1847 imp -= imp / 16; 1848 1849 /* 1850 * Encourage picking a task that moves to its preferred node. 1851 * This potentially makes imp larger than it's maximum of 1852 * 1998 (see SMALLIMP and task_weight for why) but in this 1853 * case, it does not matter. 1854 */ 1855 if (cur->numa_preferred_nid == env->src_nid) 1856 imp += imp / 8; 1857 1858 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1859 imp = moveimp; 1860 cur = NULL; 1861 goto assign; 1862 } 1863 1864 /* 1865 * Prefer swapping with a task moving to its preferred node over a 1866 * task that is not. 1867 */ 1868 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 1869 env->best_task->numa_preferred_nid != env->src_nid) { 1870 goto assign; 1871 } 1872 1873 /* 1874 * If the NUMA importance is less than SMALLIMP, 1875 * task migration might only result in ping pong 1876 * of tasks and also hurt performance due to cache 1877 * misses. 1878 */ 1879 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1880 goto unlock; 1881 1882 /* 1883 * In the overloaded case, try and keep the load balanced. 1884 */ 1885 load = task_h_load(env->p) - task_h_load(cur); 1886 if (!load) 1887 goto assign; 1888 1889 dst_load = env->dst_stats.load + load; 1890 src_load = env->src_stats.load - load; 1891 1892 if (load_too_imbalanced(src_load, dst_load, env)) 1893 goto unlock; 1894 1895 assign: 1896 /* Evaluate an idle CPU for a task numa move. */ 1897 if (!cur) { 1898 int cpu = env->dst_stats.idle_cpu; 1899 1900 /* Nothing cached so current CPU went idle since the search. */ 1901 if (cpu < 0) 1902 cpu = env->dst_cpu; 1903 1904 /* 1905 * If the CPU is no longer truly idle and the previous best CPU 1906 * is, keep using it. 1907 */ 1908 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 1909 idle_cpu(env->best_cpu)) { 1910 cpu = env->best_cpu; 1911 } 1912 1913 env->dst_cpu = cpu; 1914 } 1915 1916 task_numa_assign(env, cur, imp); 1917 1918 /* 1919 * If a move to idle is allowed because there is capacity or load 1920 * balance improves then stop the search. While a better swap 1921 * candidate may exist, a search is not free. 1922 */ 1923 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 1924 stopsearch = true; 1925 1926 /* 1927 * If a swap candidate must be identified and the current best task 1928 * moves its preferred node then stop the search. 1929 */ 1930 if (!maymove && env->best_task && 1931 env->best_task->numa_preferred_nid == env->src_nid) { 1932 stopsearch = true; 1933 } 1934 unlock: 1935 rcu_read_unlock(); 1936 1937 return stopsearch; 1938 } 1939 1940 static void task_numa_find_cpu(struct task_numa_env *env, 1941 long taskimp, long groupimp) 1942 { 1943 bool maymove = false; 1944 int cpu; 1945 1946 /* 1947 * If dst node has spare capacity, then check if there is an 1948 * imbalance that would be overruled by the load balancer. 1949 */ 1950 if (env->dst_stats.node_type == node_has_spare) { 1951 unsigned int imbalance; 1952 int src_running, dst_running; 1953 1954 /* 1955 * Would movement cause an imbalance? Note that if src has 1956 * more running tasks that the imbalance is ignored as the 1957 * move improves the imbalance from the perspective of the 1958 * CPU load balancer. 1959 * */ 1960 src_running = env->src_stats.nr_running - 1; 1961 dst_running = env->dst_stats.nr_running + 1; 1962 imbalance = max(0, dst_running - src_running); 1963 imbalance = adjust_numa_imbalance(imbalance, dst_running, 1964 env->imb_numa_nr); 1965 1966 /* Use idle CPU if there is no imbalance */ 1967 if (!imbalance) { 1968 maymove = true; 1969 if (env->dst_stats.idle_cpu >= 0) { 1970 env->dst_cpu = env->dst_stats.idle_cpu; 1971 task_numa_assign(env, NULL, 0); 1972 return; 1973 } 1974 } 1975 } else { 1976 long src_load, dst_load, load; 1977 /* 1978 * If the improvement from just moving env->p direction is better 1979 * than swapping tasks around, check if a move is possible. 1980 */ 1981 load = task_h_load(env->p); 1982 dst_load = env->dst_stats.load + load; 1983 src_load = env->src_stats.load - load; 1984 maymove = !load_too_imbalanced(src_load, dst_load, env); 1985 } 1986 1987 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1988 /* Skip this CPU if the source task cannot migrate */ 1989 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1990 continue; 1991 1992 env->dst_cpu = cpu; 1993 if (task_numa_compare(env, taskimp, groupimp, maymove)) 1994 break; 1995 } 1996 } 1997 1998 static int task_numa_migrate(struct task_struct *p) 1999 { 2000 struct task_numa_env env = { 2001 .p = p, 2002 2003 .src_cpu = task_cpu(p), 2004 .src_nid = task_node(p), 2005 2006 .imbalance_pct = 112, 2007 2008 .best_task = NULL, 2009 .best_imp = 0, 2010 .best_cpu = -1, 2011 }; 2012 unsigned long taskweight, groupweight; 2013 struct sched_domain *sd; 2014 long taskimp, groupimp; 2015 struct numa_group *ng; 2016 struct rq *best_rq; 2017 int nid, ret, dist; 2018 2019 /* 2020 * Pick the lowest SD_NUMA domain, as that would have the smallest 2021 * imbalance and would be the first to start moving tasks about. 2022 * 2023 * And we want to avoid any moving of tasks about, as that would create 2024 * random movement of tasks -- counter the numa conditions we're trying 2025 * to satisfy here. 2026 */ 2027 rcu_read_lock(); 2028 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2029 if (sd) { 2030 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2031 env.imb_numa_nr = sd->imb_numa_nr; 2032 } 2033 rcu_read_unlock(); 2034 2035 /* 2036 * Cpusets can break the scheduler domain tree into smaller 2037 * balance domains, some of which do not cross NUMA boundaries. 2038 * Tasks that are "trapped" in such domains cannot be migrated 2039 * elsewhere, so there is no point in (re)trying. 2040 */ 2041 if (unlikely(!sd)) { 2042 sched_setnuma(p, task_node(p)); 2043 return -EINVAL; 2044 } 2045 2046 env.dst_nid = p->numa_preferred_nid; 2047 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2048 taskweight = task_weight(p, env.src_nid, dist); 2049 groupweight = group_weight(p, env.src_nid, dist); 2050 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2051 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2052 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2053 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2054 2055 /* Try to find a spot on the preferred nid. */ 2056 task_numa_find_cpu(&env, taskimp, groupimp); 2057 2058 /* 2059 * Look at other nodes in these cases: 2060 * - there is no space available on the preferred_nid 2061 * - the task is part of a numa_group that is interleaved across 2062 * multiple NUMA nodes; in order to better consolidate the group, 2063 * we need to check other locations. 2064 */ 2065 ng = deref_curr_numa_group(p); 2066 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2067 for_each_node_state(nid, N_CPU) { 2068 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2069 continue; 2070 2071 dist = node_distance(env.src_nid, env.dst_nid); 2072 if (sched_numa_topology_type == NUMA_BACKPLANE && 2073 dist != env.dist) { 2074 taskweight = task_weight(p, env.src_nid, dist); 2075 groupweight = group_weight(p, env.src_nid, dist); 2076 } 2077 2078 /* Only consider nodes where both task and groups benefit */ 2079 taskimp = task_weight(p, nid, dist) - taskweight; 2080 groupimp = group_weight(p, nid, dist) - groupweight; 2081 if (taskimp < 0 && groupimp < 0) 2082 continue; 2083 2084 env.dist = dist; 2085 env.dst_nid = nid; 2086 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2087 task_numa_find_cpu(&env, taskimp, groupimp); 2088 } 2089 } 2090 2091 /* 2092 * If the task is part of a workload that spans multiple NUMA nodes, 2093 * and is migrating into one of the workload's active nodes, remember 2094 * this node as the task's preferred numa node, so the workload can 2095 * settle down. 2096 * A task that migrated to a second choice node will be better off 2097 * trying for a better one later. Do not set the preferred node here. 2098 */ 2099 if (ng) { 2100 if (env.best_cpu == -1) 2101 nid = env.src_nid; 2102 else 2103 nid = cpu_to_node(env.best_cpu); 2104 2105 if (nid != p->numa_preferred_nid) 2106 sched_setnuma(p, nid); 2107 } 2108 2109 /* No better CPU than the current one was found. */ 2110 if (env.best_cpu == -1) { 2111 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2112 return -EAGAIN; 2113 } 2114 2115 best_rq = cpu_rq(env.best_cpu); 2116 if (env.best_task == NULL) { 2117 ret = migrate_task_to(p, env.best_cpu); 2118 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2119 if (ret != 0) 2120 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2121 return ret; 2122 } 2123 2124 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2125 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2126 2127 if (ret != 0) 2128 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2129 put_task_struct(env.best_task); 2130 return ret; 2131 } 2132 2133 /* Attempt to migrate a task to a CPU on the preferred node. */ 2134 static void numa_migrate_preferred(struct task_struct *p) 2135 { 2136 unsigned long interval = HZ; 2137 2138 /* This task has no NUMA fault statistics yet */ 2139 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2140 return; 2141 2142 /* Periodically retry migrating the task to the preferred node */ 2143 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2144 p->numa_migrate_retry = jiffies + interval; 2145 2146 /* Success if task is already running on preferred CPU */ 2147 if (task_node(p) == p->numa_preferred_nid) 2148 return; 2149 2150 /* Otherwise, try migrate to a CPU on the preferred node */ 2151 task_numa_migrate(p); 2152 } 2153 2154 /* 2155 * Find out how many nodes the workload is actively running on. Do this by 2156 * tracking the nodes from which NUMA hinting faults are triggered. This can 2157 * be different from the set of nodes where the workload's memory is currently 2158 * located. 2159 */ 2160 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2161 { 2162 unsigned long faults, max_faults = 0; 2163 int nid, active_nodes = 0; 2164 2165 for_each_node_state(nid, N_CPU) { 2166 faults = group_faults_cpu(numa_group, nid); 2167 if (faults > max_faults) 2168 max_faults = faults; 2169 } 2170 2171 for_each_node_state(nid, N_CPU) { 2172 faults = group_faults_cpu(numa_group, nid); 2173 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2174 active_nodes++; 2175 } 2176 2177 numa_group->max_faults_cpu = max_faults; 2178 numa_group->active_nodes = active_nodes; 2179 } 2180 2181 /* 2182 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2183 * increments. The more local the fault statistics are, the higher the scan 2184 * period will be for the next scan window. If local/(local+remote) ratio is 2185 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2186 * the scan period will decrease. Aim for 70% local accesses. 2187 */ 2188 #define NUMA_PERIOD_SLOTS 10 2189 #define NUMA_PERIOD_THRESHOLD 7 2190 2191 /* 2192 * Increase the scan period (slow down scanning) if the majority of 2193 * our memory is already on our local node, or if the majority of 2194 * the page accesses are shared with other processes. 2195 * Otherwise, decrease the scan period. 2196 */ 2197 static void update_task_scan_period(struct task_struct *p, 2198 unsigned long shared, unsigned long private) 2199 { 2200 unsigned int period_slot; 2201 int lr_ratio, ps_ratio; 2202 int diff; 2203 2204 unsigned long remote = p->numa_faults_locality[0]; 2205 unsigned long local = p->numa_faults_locality[1]; 2206 2207 /* 2208 * If there were no record hinting faults then either the task is 2209 * completely idle or all activity is in areas that are not of interest 2210 * to automatic numa balancing. Related to that, if there were failed 2211 * migration then it implies we are migrating too quickly or the local 2212 * node is overloaded. In either case, scan slower 2213 */ 2214 if (local + shared == 0 || p->numa_faults_locality[2]) { 2215 p->numa_scan_period = min(p->numa_scan_period_max, 2216 p->numa_scan_period << 1); 2217 2218 p->mm->numa_next_scan = jiffies + 2219 msecs_to_jiffies(p->numa_scan_period); 2220 2221 return; 2222 } 2223 2224 /* 2225 * Prepare to scale scan period relative to the current period. 2226 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2227 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2228 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2229 */ 2230 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2231 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2232 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2233 2234 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2235 /* 2236 * Most memory accesses are local. There is no need to 2237 * do fast NUMA scanning, since memory is already local. 2238 */ 2239 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2240 if (!slot) 2241 slot = 1; 2242 diff = slot * period_slot; 2243 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2244 /* 2245 * Most memory accesses are shared with other tasks. 2246 * There is no point in continuing fast NUMA scanning, 2247 * since other tasks may just move the memory elsewhere. 2248 */ 2249 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2250 if (!slot) 2251 slot = 1; 2252 diff = slot * period_slot; 2253 } else { 2254 /* 2255 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2256 * yet they are not on the local NUMA node. Speed up 2257 * NUMA scanning to get the memory moved over. 2258 */ 2259 int ratio = max(lr_ratio, ps_ratio); 2260 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2261 } 2262 2263 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2264 task_scan_min(p), task_scan_max(p)); 2265 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2266 } 2267 2268 /* 2269 * Get the fraction of time the task has been running since the last 2270 * NUMA placement cycle. The scheduler keeps similar statistics, but 2271 * decays those on a 32ms period, which is orders of magnitude off 2272 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2273 * stats only if the task is so new there are no NUMA statistics yet. 2274 */ 2275 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2276 { 2277 u64 runtime, delta, now; 2278 /* Use the start of this time slice to avoid calculations. */ 2279 now = p->se.exec_start; 2280 runtime = p->se.sum_exec_runtime; 2281 2282 if (p->last_task_numa_placement) { 2283 delta = runtime - p->last_sum_exec_runtime; 2284 *period = now - p->last_task_numa_placement; 2285 2286 /* Avoid time going backwards, prevent potential divide error: */ 2287 if (unlikely((s64)*period < 0)) 2288 *period = 0; 2289 } else { 2290 delta = p->se.avg.load_sum; 2291 *period = LOAD_AVG_MAX; 2292 } 2293 2294 p->last_sum_exec_runtime = runtime; 2295 p->last_task_numa_placement = now; 2296 2297 return delta; 2298 } 2299 2300 /* 2301 * Determine the preferred nid for a task in a numa_group. This needs to 2302 * be done in a way that produces consistent results with group_weight, 2303 * otherwise workloads might not converge. 2304 */ 2305 static int preferred_group_nid(struct task_struct *p, int nid) 2306 { 2307 nodemask_t nodes; 2308 int dist; 2309 2310 /* Direct connections between all NUMA nodes. */ 2311 if (sched_numa_topology_type == NUMA_DIRECT) 2312 return nid; 2313 2314 /* 2315 * On a system with glueless mesh NUMA topology, group_weight 2316 * scores nodes according to the number of NUMA hinting faults on 2317 * both the node itself, and on nearby nodes. 2318 */ 2319 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2320 unsigned long score, max_score = 0; 2321 int node, max_node = nid; 2322 2323 dist = sched_max_numa_distance; 2324 2325 for_each_node_state(node, N_CPU) { 2326 score = group_weight(p, node, dist); 2327 if (score > max_score) { 2328 max_score = score; 2329 max_node = node; 2330 } 2331 } 2332 return max_node; 2333 } 2334 2335 /* 2336 * Finding the preferred nid in a system with NUMA backplane 2337 * interconnect topology is more involved. The goal is to locate 2338 * tasks from numa_groups near each other in the system, and 2339 * untangle workloads from different sides of the system. This requires 2340 * searching down the hierarchy of node groups, recursively searching 2341 * inside the highest scoring group of nodes. The nodemask tricks 2342 * keep the complexity of the search down. 2343 */ 2344 nodes = node_states[N_CPU]; 2345 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2346 unsigned long max_faults = 0; 2347 nodemask_t max_group = NODE_MASK_NONE; 2348 int a, b; 2349 2350 /* Are there nodes at this distance from each other? */ 2351 if (!find_numa_distance(dist)) 2352 continue; 2353 2354 for_each_node_mask(a, nodes) { 2355 unsigned long faults = 0; 2356 nodemask_t this_group; 2357 nodes_clear(this_group); 2358 2359 /* Sum group's NUMA faults; includes a==b case. */ 2360 for_each_node_mask(b, nodes) { 2361 if (node_distance(a, b) < dist) { 2362 faults += group_faults(p, b); 2363 node_set(b, this_group); 2364 node_clear(b, nodes); 2365 } 2366 } 2367 2368 /* Remember the top group. */ 2369 if (faults > max_faults) { 2370 max_faults = faults; 2371 max_group = this_group; 2372 /* 2373 * subtle: at the smallest distance there is 2374 * just one node left in each "group", the 2375 * winner is the preferred nid. 2376 */ 2377 nid = a; 2378 } 2379 } 2380 /* Next round, evaluate the nodes within max_group. */ 2381 if (!max_faults) 2382 break; 2383 nodes = max_group; 2384 } 2385 return nid; 2386 } 2387 2388 static void task_numa_placement(struct task_struct *p) 2389 { 2390 int seq, nid, max_nid = NUMA_NO_NODE; 2391 unsigned long max_faults = 0; 2392 unsigned long fault_types[2] = { 0, 0 }; 2393 unsigned long total_faults; 2394 u64 runtime, period; 2395 spinlock_t *group_lock = NULL; 2396 struct numa_group *ng; 2397 2398 /* 2399 * The p->mm->numa_scan_seq field gets updated without 2400 * exclusive access. Use READ_ONCE() here to ensure 2401 * that the field is read in a single access: 2402 */ 2403 seq = READ_ONCE(p->mm->numa_scan_seq); 2404 if (p->numa_scan_seq == seq) 2405 return; 2406 p->numa_scan_seq = seq; 2407 p->numa_scan_period_max = task_scan_max(p); 2408 2409 total_faults = p->numa_faults_locality[0] + 2410 p->numa_faults_locality[1]; 2411 runtime = numa_get_avg_runtime(p, &period); 2412 2413 /* If the task is part of a group prevent parallel updates to group stats */ 2414 ng = deref_curr_numa_group(p); 2415 if (ng) { 2416 group_lock = &ng->lock; 2417 spin_lock_irq(group_lock); 2418 } 2419 2420 /* Find the node with the highest number of faults */ 2421 for_each_online_node(nid) { 2422 /* Keep track of the offsets in numa_faults array */ 2423 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2424 unsigned long faults = 0, group_faults = 0; 2425 int priv; 2426 2427 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2428 long diff, f_diff, f_weight; 2429 2430 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2431 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2432 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2433 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2434 2435 /* Decay existing window, copy faults since last scan */ 2436 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2437 fault_types[priv] += p->numa_faults[membuf_idx]; 2438 p->numa_faults[membuf_idx] = 0; 2439 2440 /* 2441 * Normalize the faults_from, so all tasks in a group 2442 * count according to CPU use, instead of by the raw 2443 * number of faults. Tasks with little runtime have 2444 * little over-all impact on throughput, and thus their 2445 * faults are less important. 2446 */ 2447 f_weight = div64_u64(runtime << 16, period + 1); 2448 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2449 (total_faults + 1); 2450 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2451 p->numa_faults[cpubuf_idx] = 0; 2452 2453 p->numa_faults[mem_idx] += diff; 2454 p->numa_faults[cpu_idx] += f_diff; 2455 faults += p->numa_faults[mem_idx]; 2456 p->total_numa_faults += diff; 2457 if (ng) { 2458 /* 2459 * safe because we can only change our own group 2460 * 2461 * mem_idx represents the offset for a given 2462 * nid and priv in a specific region because it 2463 * is at the beginning of the numa_faults array. 2464 */ 2465 ng->faults[mem_idx] += diff; 2466 ng->faults[cpu_idx] += f_diff; 2467 ng->total_faults += diff; 2468 group_faults += ng->faults[mem_idx]; 2469 } 2470 } 2471 2472 if (!ng) { 2473 if (faults > max_faults) { 2474 max_faults = faults; 2475 max_nid = nid; 2476 } 2477 } else if (group_faults > max_faults) { 2478 max_faults = group_faults; 2479 max_nid = nid; 2480 } 2481 } 2482 2483 /* Cannot migrate task to CPU-less node */ 2484 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) { 2485 int near_nid = max_nid; 2486 int distance, near_distance = INT_MAX; 2487 2488 for_each_node_state(nid, N_CPU) { 2489 distance = node_distance(max_nid, nid); 2490 if (distance < near_distance) { 2491 near_nid = nid; 2492 near_distance = distance; 2493 } 2494 } 2495 max_nid = near_nid; 2496 } 2497 2498 if (ng) { 2499 numa_group_count_active_nodes(ng); 2500 spin_unlock_irq(group_lock); 2501 max_nid = preferred_group_nid(p, max_nid); 2502 } 2503 2504 if (max_faults) { 2505 /* Set the new preferred node */ 2506 if (max_nid != p->numa_preferred_nid) 2507 sched_setnuma(p, max_nid); 2508 } 2509 2510 update_task_scan_period(p, fault_types[0], fault_types[1]); 2511 } 2512 2513 static inline int get_numa_group(struct numa_group *grp) 2514 { 2515 return refcount_inc_not_zero(&grp->refcount); 2516 } 2517 2518 static inline void put_numa_group(struct numa_group *grp) 2519 { 2520 if (refcount_dec_and_test(&grp->refcount)) 2521 kfree_rcu(grp, rcu); 2522 } 2523 2524 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2525 int *priv) 2526 { 2527 struct numa_group *grp, *my_grp; 2528 struct task_struct *tsk; 2529 bool join = false; 2530 int cpu = cpupid_to_cpu(cpupid); 2531 int i; 2532 2533 if (unlikely(!deref_curr_numa_group(p))) { 2534 unsigned int size = sizeof(struct numa_group) + 2535 NR_NUMA_HINT_FAULT_STATS * 2536 nr_node_ids * sizeof(unsigned long); 2537 2538 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2539 if (!grp) 2540 return; 2541 2542 refcount_set(&grp->refcount, 1); 2543 grp->active_nodes = 1; 2544 grp->max_faults_cpu = 0; 2545 spin_lock_init(&grp->lock); 2546 grp->gid = p->pid; 2547 2548 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2549 grp->faults[i] = p->numa_faults[i]; 2550 2551 grp->total_faults = p->total_numa_faults; 2552 2553 grp->nr_tasks++; 2554 rcu_assign_pointer(p->numa_group, grp); 2555 } 2556 2557 rcu_read_lock(); 2558 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2559 2560 if (!cpupid_match_pid(tsk, cpupid)) 2561 goto no_join; 2562 2563 grp = rcu_dereference(tsk->numa_group); 2564 if (!grp) 2565 goto no_join; 2566 2567 my_grp = deref_curr_numa_group(p); 2568 if (grp == my_grp) 2569 goto no_join; 2570 2571 /* 2572 * Only join the other group if its bigger; if we're the bigger group, 2573 * the other task will join us. 2574 */ 2575 if (my_grp->nr_tasks > grp->nr_tasks) 2576 goto no_join; 2577 2578 /* 2579 * Tie-break on the grp address. 2580 */ 2581 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2582 goto no_join; 2583 2584 /* Always join threads in the same process. */ 2585 if (tsk->mm == current->mm) 2586 join = true; 2587 2588 /* Simple filter to avoid false positives due to PID collisions */ 2589 if (flags & TNF_SHARED) 2590 join = true; 2591 2592 /* Update priv based on whether false sharing was detected */ 2593 *priv = !join; 2594 2595 if (join && !get_numa_group(grp)) 2596 goto no_join; 2597 2598 rcu_read_unlock(); 2599 2600 if (!join) 2601 return; 2602 2603 BUG_ON(irqs_disabled()); 2604 double_lock_irq(&my_grp->lock, &grp->lock); 2605 2606 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2607 my_grp->faults[i] -= p->numa_faults[i]; 2608 grp->faults[i] += p->numa_faults[i]; 2609 } 2610 my_grp->total_faults -= p->total_numa_faults; 2611 grp->total_faults += p->total_numa_faults; 2612 2613 my_grp->nr_tasks--; 2614 grp->nr_tasks++; 2615 2616 spin_unlock(&my_grp->lock); 2617 spin_unlock_irq(&grp->lock); 2618 2619 rcu_assign_pointer(p->numa_group, grp); 2620 2621 put_numa_group(my_grp); 2622 return; 2623 2624 no_join: 2625 rcu_read_unlock(); 2626 return; 2627 } 2628 2629 /* 2630 * Get rid of NUMA statistics associated with a task (either current or dead). 2631 * If @final is set, the task is dead and has reached refcount zero, so we can 2632 * safely free all relevant data structures. Otherwise, there might be 2633 * concurrent reads from places like load balancing and procfs, and we should 2634 * reset the data back to default state without freeing ->numa_faults. 2635 */ 2636 void task_numa_free(struct task_struct *p, bool final) 2637 { 2638 /* safe: p either is current or is being freed by current */ 2639 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2640 unsigned long *numa_faults = p->numa_faults; 2641 unsigned long flags; 2642 int i; 2643 2644 if (!numa_faults) 2645 return; 2646 2647 if (grp) { 2648 spin_lock_irqsave(&grp->lock, flags); 2649 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2650 grp->faults[i] -= p->numa_faults[i]; 2651 grp->total_faults -= p->total_numa_faults; 2652 2653 grp->nr_tasks--; 2654 spin_unlock_irqrestore(&grp->lock, flags); 2655 RCU_INIT_POINTER(p->numa_group, NULL); 2656 put_numa_group(grp); 2657 } 2658 2659 if (final) { 2660 p->numa_faults = NULL; 2661 kfree(numa_faults); 2662 } else { 2663 p->total_numa_faults = 0; 2664 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2665 numa_faults[i] = 0; 2666 } 2667 } 2668 2669 /* 2670 * Got a PROT_NONE fault for a page on @node. 2671 */ 2672 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2673 { 2674 struct task_struct *p = current; 2675 bool migrated = flags & TNF_MIGRATED; 2676 int cpu_node = task_node(current); 2677 int local = !!(flags & TNF_FAULT_LOCAL); 2678 struct numa_group *ng; 2679 int priv; 2680 2681 if (!static_branch_likely(&sched_numa_balancing)) 2682 return; 2683 2684 /* for example, ksmd faulting in a user's mm */ 2685 if (!p->mm) 2686 return; 2687 2688 /* Allocate buffer to track faults on a per-node basis */ 2689 if (unlikely(!p->numa_faults)) { 2690 int size = sizeof(*p->numa_faults) * 2691 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2692 2693 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2694 if (!p->numa_faults) 2695 return; 2696 2697 p->total_numa_faults = 0; 2698 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2699 } 2700 2701 /* 2702 * First accesses are treated as private, otherwise consider accesses 2703 * to be private if the accessing pid has not changed 2704 */ 2705 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2706 priv = 1; 2707 } else { 2708 priv = cpupid_match_pid(p, last_cpupid); 2709 if (!priv && !(flags & TNF_NO_GROUP)) 2710 task_numa_group(p, last_cpupid, flags, &priv); 2711 } 2712 2713 /* 2714 * If a workload spans multiple NUMA nodes, a shared fault that 2715 * occurs wholly within the set of nodes that the workload is 2716 * actively using should be counted as local. This allows the 2717 * scan rate to slow down when a workload has settled down. 2718 */ 2719 ng = deref_curr_numa_group(p); 2720 if (!priv && !local && ng && ng->active_nodes > 1 && 2721 numa_is_active_node(cpu_node, ng) && 2722 numa_is_active_node(mem_node, ng)) 2723 local = 1; 2724 2725 /* 2726 * Retry to migrate task to preferred node periodically, in case it 2727 * previously failed, or the scheduler moved us. 2728 */ 2729 if (time_after(jiffies, p->numa_migrate_retry)) { 2730 task_numa_placement(p); 2731 numa_migrate_preferred(p); 2732 } 2733 2734 if (migrated) 2735 p->numa_pages_migrated += pages; 2736 if (flags & TNF_MIGRATE_FAIL) 2737 p->numa_faults_locality[2] += pages; 2738 2739 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2740 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2741 p->numa_faults_locality[local] += pages; 2742 } 2743 2744 static void reset_ptenuma_scan(struct task_struct *p) 2745 { 2746 /* 2747 * We only did a read acquisition of the mmap sem, so 2748 * p->mm->numa_scan_seq is written to without exclusive access 2749 * and the update is not guaranteed to be atomic. That's not 2750 * much of an issue though, since this is just used for 2751 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2752 * expensive, to avoid any form of compiler optimizations: 2753 */ 2754 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2755 p->mm->numa_scan_offset = 0; 2756 } 2757 2758 /* 2759 * The expensive part of numa migration is done from task_work context. 2760 * Triggered from task_tick_numa(). 2761 */ 2762 static void task_numa_work(struct callback_head *work) 2763 { 2764 unsigned long migrate, next_scan, now = jiffies; 2765 struct task_struct *p = current; 2766 struct mm_struct *mm = p->mm; 2767 u64 runtime = p->se.sum_exec_runtime; 2768 struct vm_area_struct *vma; 2769 unsigned long start, end; 2770 unsigned long nr_pte_updates = 0; 2771 long pages, virtpages; 2772 2773 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2774 2775 work->next = work; 2776 /* 2777 * Who cares about NUMA placement when they're dying. 2778 * 2779 * NOTE: make sure not to dereference p->mm before this check, 2780 * exit_task_work() happens _after_ exit_mm() so we could be called 2781 * without p->mm even though we still had it when we enqueued this 2782 * work. 2783 */ 2784 if (p->flags & PF_EXITING) 2785 return; 2786 2787 if (!mm->numa_next_scan) { 2788 mm->numa_next_scan = now + 2789 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2790 } 2791 2792 /* 2793 * Enforce maximal scan/migration frequency.. 2794 */ 2795 migrate = mm->numa_next_scan; 2796 if (time_before(now, migrate)) 2797 return; 2798 2799 if (p->numa_scan_period == 0) { 2800 p->numa_scan_period_max = task_scan_max(p); 2801 p->numa_scan_period = task_scan_start(p); 2802 } 2803 2804 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2805 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2806 return; 2807 2808 /* 2809 * Delay this task enough that another task of this mm will likely win 2810 * the next time around. 2811 */ 2812 p->node_stamp += 2 * TICK_NSEC; 2813 2814 start = mm->numa_scan_offset; 2815 pages = sysctl_numa_balancing_scan_size; 2816 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2817 virtpages = pages * 8; /* Scan up to this much virtual space */ 2818 if (!pages) 2819 return; 2820 2821 2822 if (!mmap_read_trylock(mm)) 2823 return; 2824 vma = find_vma(mm, start); 2825 if (!vma) { 2826 reset_ptenuma_scan(p); 2827 start = 0; 2828 vma = mm->mmap; 2829 } 2830 for (; vma; vma = vma->vm_next) { 2831 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2832 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2833 continue; 2834 } 2835 2836 /* 2837 * Shared library pages mapped by multiple processes are not 2838 * migrated as it is expected they are cache replicated. Avoid 2839 * hinting faults in read-only file-backed mappings or the vdso 2840 * as migrating the pages will be of marginal benefit. 2841 */ 2842 if (!vma->vm_mm || 2843 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2844 continue; 2845 2846 /* 2847 * Skip inaccessible VMAs to avoid any confusion between 2848 * PROT_NONE and NUMA hinting ptes 2849 */ 2850 if (!vma_is_accessible(vma)) 2851 continue; 2852 2853 do { 2854 start = max(start, vma->vm_start); 2855 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2856 end = min(end, vma->vm_end); 2857 nr_pte_updates = change_prot_numa(vma, start, end); 2858 2859 /* 2860 * Try to scan sysctl_numa_balancing_size worth of 2861 * hpages that have at least one present PTE that 2862 * is not already pte-numa. If the VMA contains 2863 * areas that are unused or already full of prot_numa 2864 * PTEs, scan up to virtpages, to skip through those 2865 * areas faster. 2866 */ 2867 if (nr_pte_updates) 2868 pages -= (end - start) >> PAGE_SHIFT; 2869 virtpages -= (end - start) >> PAGE_SHIFT; 2870 2871 start = end; 2872 if (pages <= 0 || virtpages <= 0) 2873 goto out; 2874 2875 cond_resched(); 2876 } while (end != vma->vm_end); 2877 } 2878 2879 out: 2880 /* 2881 * It is possible to reach the end of the VMA list but the last few 2882 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2883 * would find the !migratable VMA on the next scan but not reset the 2884 * scanner to the start so check it now. 2885 */ 2886 if (vma) 2887 mm->numa_scan_offset = start; 2888 else 2889 reset_ptenuma_scan(p); 2890 mmap_read_unlock(mm); 2891 2892 /* 2893 * Make sure tasks use at least 32x as much time to run other code 2894 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2895 * Usually update_task_scan_period slows down scanning enough; on an 2896 * overloaded system we need to limit overhead on a per task basis. 2897 */ 2898 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2899 u64 diff = p->se.sum_exec_runtime - runtime; 2900 p->node_stamp += 32 * diff; 2901 } 2902 } 2903 2904 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2905 { 2906 int mm_users = 0; 2907 struct mm_struct *mm = p->mm; 2908 2909 if (mm) { 2910 mm_users = atomic_read(&mm->mm_users); 2911 if (mm_users == 1) { 2912 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2913 mm->numa_scan_seq = 0; 2914 } 2915 } 2916 p->node_stamp = 0; 2917 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2918 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2919 p->numa_migrate_retry = 0; 2920 /* Protect against double add, see task_tick_numa and task_numa_work */ 2921 p->numa_work.next = &p->numa_work; 2922 p->numa_faults = NULL; 2923 p->numa_pages_migrated = 0; 2924 p->total_numa_faults = 0; 2925 RCU_INIT_POINTER(p->numa_group, NULL); 2926 p->last_task_numa_placement = 0; 2927 p->last_sum_exec_runtime = 0; 2928 2929 init_task_work(&p->numa_work, task_numa_work); 2930 2931 /* New address space, reset the preferred nid */ 2932 if (!(clone_flags & CLONE_VM)) { 2933 p->numa_preferred_nid = NUMA_NO_NODE; 2934 return; 2935 } 2936 2937 /* 2938 * New thread, keep existing numa_preferred_nid which should be copied 2939 * already by arch_dup_task_struct but stagger when scans start. 2940 */ 2941 if (mm) { 2942 unsigned int delay; 2943 2944 delay = min_t(unsigned int, task_scan_max(current), 2945 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2946 delay += 2 * TICK_NSEC; 2947 p->node_stamp = delay; 2948 } 2949 } 2950 2951 /* 2952 * Drive the periodic memory faults.. 2953 */ 2954 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2955 { 2956 struct callback_head *work = &curr->numa_work; 2957 u64 period, now; 2958 2959 /* 2960 * We don't care about NUMA placement if we don't have memory. 2961 */ 2962 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 2963 return; 2964 2965 /* 2966 * Using runtime rather than walltime has the dual advantage that 2967 * we (mostly) drive the selection from busy threads and that the 2968 * task needs to have done some actual work before we bother with 2969 * NUMA placement. 2970 */ 2971 now = curr->se.sum_exec_runtime; 2972 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2973 2974 if (now > curr->node_stamp + period) { 2975 if (!curr->node_stamp) 2976 curr->numa_scan_period = task_scan_start(curr); 2977 curr->node_stamp += period; 2978 2979 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2980 task_work_add(curr, work, TWA_RESUME); 2981 } 2982 } 2983 2984 static void update_scan_period(struct task_struct *p, int new_cpu) 2985 { 2986 int src_nid = cpu_to_node(task_cpu(p)); 2987 int dst_nid = cpu_to_node(new_cpu); 2988 2989 if (!static_branch_likely(&sched_numa_balancing)) 2990 return; 2991 2992 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2993 return; 2994 2995 if (src_nid == dst_nid) 2996 return; 2997 2998 /* 2999 * Allow resets if faults have been trapped before one scan 3000 * has completed. This is most likely due to a new task that 3001 * is pulled cross-node due to wakeups or load balancing. 3002 */ 3003 if (p->numa_scan_seq) { 3004 /* 3005 * Avoid scan adjustments if moving to the preferred 3006 * node or if the task was not previously running on 3007 * the preferred node. 3008 */ 3009 if (dst_nid == p->numa_preferred_nid || 3010 (p->numa_preferred_nid != NUMA_NO_NODE && 3011 src_nid != p->numa_preferred_nid)) 3012 return; 3013 } 3014 3015 p->numa_scan_period = task_scan_start(p); 3016 } 3017 3018 #else 3019 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3020 { 3021 } 3022 3023 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3024 { 3025 } 3026 3027 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3028 { 3029 } 3030 3031 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3032 { 3033 } 3034 3035 #endif /* CONFIG_NUMA_BALANCING */ 3036 3037 static void 3038 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3039 { 3040 update_load_add(&cfs_rq->load, se->load.weight); 3041 #ifdef CONFIG_SMP 3042 if (entity_is_task(se)) { 3043 struct rq *rq = rq_of(cfs_rq); 3044 3045 account_numa_enqueue(rq, task_of(se)); 3046 list_add(&se->group_node, &rq->cfs_tasks); 3047 } 3048 #endif 3049 cfs_rq->nr_running++; 3050 if (se_is_idle(se)) 3051 cfs_rq->idle_nr_running++; 3052 } 3053 3054 static void 3055 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3056 { 3057 update_load_sub(&cfs_rq->load, se->load.weight); 3058 #ifdef CONFIG_SMP 3059 if (entity_is_task(se)) { 3060 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3061 list_del_init(&se->group_node); 3062 } 3063 #endif 3064 cfs_rq->nr_running--; 3065 if (se_is_idle(se)) 3066 cfs_rq->idle_nr_running--; 3067 } 3068 3069 /* 3070 * Signed add and clamp on underflow. 3071 * 3072 * Explicitly do a load-store to ensure the intermediate value never hits 3073 * memory. This allows lockless observations without ever seeing the negative 3074 * values. 3075 */ 3076 #define add_positive(_ptr, _val) do { \ 3077 typeof(_ptr) ptr = (_ptr); \ 3078 typeof(_val) val = (_val); \ 3079 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3080 \ 3081 res = var + val; \ 3082 \ 3083 if (val < 0 && res > var) \ 3084 res = 0; \ 3085 \ 3086 WRITE_ONCE(*ptr, res); \ 3087 } while (0) 3088 3089 /* 3090 * Unsigned subtract and clamp on underflow. 3091 * 3092 * Explicitly do a load-store to ensure the intermediate value never hits 3093 * memory. This allows lockless observations without ever seeing the negative 3094 * values. 3095 */ 3096 #define sub_positive(_ptr, _val) do { \ 3097 typeof(_ptr) ptr = (_ptr); \ 3098 typeof(*ptr) val = (_val); \ 3099 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3100 res = var - val; \ 3101 if (res > var) \ 3102 res = 0; \ 3103 WRITE_ONCE(*ptr, res); \ 3104 } while (0) 3105 3106 /* 3107 * Remove and clamp on negative, from a local variable. 3108 * 3109 * A variant of sub_positive(), which does not use explicit load-store 3110 * and is thus optimized for local variable updates. 3111 */ 3112 #define lsub_positive(_ptr, _val) do { \ 3113 typeof(_ptr) ptr = (_ptr); \ 3114 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3115 } while (0) 3116 3117 #ifdef CONFIG_SMP 3118 static inline void 3119 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3120 { 3121 cfs_rq->avg.load_avg += se->avg.load_avg; 3122 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3123 } 3124 3125 static inline void 3126 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3127 { 3128 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3129 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3130 /* See update_cfs_rq_load_avg() */ 3131 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3132 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3133 } 3134 #else 3135 static inline void 3136 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3137 static inline void 3138 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3139 #endif 3140 3141 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3142 unsigned long weight) 3143 { 3144 if (se->on_rq) { 3145 /* commit outstanding execution time */ 3146 if (cfs_rq->curr == se) 3147 update_curr(cfs_rq); 3148 update_load_sub(&cfs_rq->load, se->load.weight); 3149 } 3150 dequeue_load_avg(cfs_rq, se); 3151 3152 update_load_set(&se->load, weight); 3153 3154 #ifdef CONFIG_SMP 3155 do { 3156 u32 divider = get_pelt_divider(&se->avg); 3157 3158 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3159 } while (0); 3160 #endif 3161 3162 enqueue_load_avg(cfs_rq, se); 3163 if (se->on_rq) 3164 update_load_add(&cfs_rq->load, se->load.weight); 3165 3166 } 3167 3168 void reweight_task(struct task_struct *p, int prio) 3169 { 3170 struct sched_entity *se = &p->se; 3171 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3172 struct load_weight *load = &se->load; 3173 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3174 3175 reweight_entity(cfs_rq, se, weight); 3176 load->inv_weight = sched_prio_to_wmult[prio]; 3177 } 3178 3179 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3180 3181 #ifdef CONFIG_FAIR_GROUP_SCHED 3182 #ifdef CONFIG_SMP 3183 /* 3184 * All this does is approximate the hierarchical proportion which includes that 3185 * global sum we all love to hate. 3186 * 3187 * That is, the weight of a group entity, is the proportional share of the 3188 * group weight based on the group runqueue weights. That is: 3189 * 3190 * tg->weight * grq->load.weight 3191 * ge->load.weight = ----------------------------- (1) 3192 * \Sum grq->load.weight 3193 * 3194 * Now, because computing that sum is prohibitively expensive to compute (been 3195 * there, done that) we approximate it with this average stuff. The average 3196 * moves slower and therefore the approximation is cheaper and more stable. 3197 * 3198 * So instead of the above, we substitute: 3199 * 3200 * grq->load.weight -> grq->avg.load_avg (2) 3201 * 3202 * which yields the following: 3203 * 3204 * tg->weight * grq->avg.load_avg 3205 * ge->load.weight = ------------------------------ (3) 3206 * tg->load_avg 3207 * 3208 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3209 * 3210 * That is shares_avg, and it is right (given the approximation (2)). 3211 * 3212 * The problem with it is that because the average is slow -- it was designed 3213 * to be exactly that of course -- this leads to transients in boundary 3214 * conditions. In specific, the case where the group was idle and we start the 3215 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3216 * yielding bad latency etc.. 3217 * 3218 * Now, in that special case (1) reduces to: 3219 * 3220 * tg->weight * grq->load.weight 3221 * ge->load.weight = ----------------------------- = tg->weight (4) 3222 * grp->load.weight 3223 * 3224 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3225 * 3226 * So what we do is modify our approximation (3) to approach (4) in the (near) 3227 * UP case, like: 3228 * 3229 * ge->load.weight = 3230 * 3231 * tg->weight * grq->load.weight 3232 * --------------------------------------------------- (5) 3233 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3234 * 3235 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3236 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3237 * 3238 * 3239 * tg->weight * grq->load.weight 3240 * ge->load.weight = ----------------------------- (6) 3241 * tg_load_avg' 3242 * 3243 * Where: 3244 * 3245 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3246 * max(grq->load.weight, grq->avg.load_avg) 3247 * 3248 * And that is shares_weight and is icky. In the (near) UP case it approaches 3249 * (4) while in the normal case it approaches (3). It consistently 3250 * overestimates the ge->load.weight and therefore: 3251 * 3252 * \Sum ge->load.weight >= tg->weight 3253 * 3254 * hence icky! 3255 */ 3256 static long calc_group_shares(struct cfs_rq *cfs_rq) 3257 { 3258 long tg_weight, tg_shares, load, shares; 3259 struct task_group *tg = cfs_rq->tg; 3260 3261 tg_shares = READ_ONCE(tg->shares); 3262 3263 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3264 3265 tg_weight = atomic_long_read(&tg->load_avg); 3266 3267 /* Ensure tg_weight >= load */ 3268 tg_weight -= cfs_rq->tg_load_avg_contrib; 3269 tg_weight += load; 3270 3271 shares = (tg_shares * load); 3272 if (tg_weight) 3273 shares /= tg_weight; 3274 3275 /* 3276 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3277 * of a group with small tg->shares value. It is a floor value which is 3278 * assigned as a minimum load.weight to the sched_entity representing 3279 * the group on a CPU. 3280 * 3281 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3282 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3283 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3284 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3285 * instead of 0. 3286 */ 3287 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3288 } 3289 #endif /* CONFIG_SMP */ 3290 3291 /* 3292 * Recomputes the group entity based on the current state of its group 3293 * runqueue. 3294 */ 3295 static void update_cfs_group(struct sched_entity *se) 3296 { 3297 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3298 long shares; 3299 3300 if (!gcfs_rq) 3301 return; 3302 3303 if (throttled_hierarchy(gcfs_rq)) 3304 return; 3305 3306 #ifndef CONFIG_SMP 3307 shares = READ_ONCE(gcfs_rq->tg->shares); 3308 3309 if (likely(se->load.weight == shares)) 3310 return; 3311 #else 3312 shares = calc_group_shares(gcfs_rq); 3313 #endif 3314 3315 reweight_entity(cfs_rq_of(se), se, shares); 3316 } 3317 3318 #else /* CONFIG_FAIR_GROUP_SCHED */ 3319 static inline void update_cfs_group(struct sched_entity *se) 3320 { 3321 } 3322 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3323 3324 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3325 { 3326 struct rq *rq = rq_of(cfs_rq); 3327 3328 if (&rq->cfs == cfs_rq) { 3329 /* 3330 * There are a few boundary cases this might miss but it should 3331 * get called often enough that that should (hopefully) not be 3332 * a real problem. 3333 * 3334 * It will not get called when we go idle, because the idle 3335 * thread is a different class (!fair), nor will the utilization 3336 * number include things like RT tasks. 3337 * 3338 * As is, the util number is not freq-invariant (we'd have to 3339 * implement arch_scale_freq_capacity() for that). 3340 * 3341 * See cpu_util_cfs(). 3342 */ 3343 cpufreq_update_util(rq, flags); 3344 } 3345 } 3346 3347 #ifdef CONFIG_SMP 3348 static inline bool load_avg_is_decayed(struct sched_avg *sa) 3349 { 3350 if (sa->load_sum) 3351 return false; 3352 3353 if (sa->util_sum) 3354 return false; 3355 3356 if (sa->runnable_sum) 3357 return false; 3358 3359 /* 3360 * _avg must be null when _sum are null because _avg = _sum / divider 3361 * Make sure that rounding and/or propagation of PELT values never 3362 * break this. 3363 */ 3364 SCHED_WARN_ON(sa->load_avg || 3365 sa->util_avg || 3366 sa->runnable_avg); 3367 3368 return true; 3369 } 3370 3371 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3372 { 3373 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 3374 cfs_rq->last_update_time_copy); 3375 } 3376 #ifdef CONFIG_FAIR_GROUP_SCHED 3377 /* 3378 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 3379 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 3380 * bottom-up, we only have to test whether the cfs_rq before us on the list 3381 * is our child. 3382 * If cfs_rq is not on the list, test whether a child needs its to be added to 3383 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 3384 */ 3385 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 3386 { 3387 struct cfs_rq *prev_cfs_rq; 3388 struct list_head *prev; 3389 3390 if (cfs_rq->on_list) { 3391 prev = cfs_rq->leaf_cfs_rq_list.prev; 3392 } else { 3393 struct rq *rq = rq_of(cfs_rq); 3394 3395 prev = rq->tmp_alone_branch; 3396 } 3397 3398 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 3399 3400 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 3401 } 3402 3403 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 3404 { 3405 if (cfs_rq->load.weight) 3406 return false; 3407 3408 if (!load_avg_is_decayed(&cfs_rq->avg)) 3409 return false; 3410 3411 if (child_cfs_rq_on_list(cfs_rq)) 3412 return false; 3413 3414 return true; 3415 } 3416 3417 /** 3418 * update_tg_load_avg - update the tg's load avg 3419 * @cfs_rq: the cfs_rq whose avg changed 3420 * 3421 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3422 * However, because tg->load_avg is a global value there are performance 3423 * considerations. 3424 * 3425 * In order to avoid having to look at the other cfs_rq's, we use a 3426 * differential update where we store the last value we propagated. This in 3427 * turn allows skipping updates if the differential is 'small'. 3428 * 3429 * Updating tg's load_avg is necessary before update_cfs_share(). 3430 */ 3431 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3432 { 3433 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3434 3435 /* 3436 * No need to update load_avg for root_task_group as it is not used. 3437 */ 3438 if (cfs_rq->tg == &root_task_group) 3439 return; 3440 3441 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3442 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3443 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3444 } 3445 } 3446 3447 /* 3448 * Called within set_task_rq() right before setting a task's CPU. The 3449 * caller only guarantees p->pi_lock is held; no other assumptions, 3450 * including the state of rq->lock, should be made. 3451 */ 3452 void set_task_rq_fair(struct sched_entity *se, 3453 struct cfs_rq *prev, struct cfs_rq *next) 3454 { 3455 u64 p_last_update_time; 3456 u64 n_last_update_time; 3457 3458 if (!sched_feat(ATTACH_AGE_LOAD)) 3459 return; 3460 3461 /* 3462 * We are supposed to update the task to "current" time, then its up to 3463 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3464 * getting what current time is, so simply throw away the out-of-date 3465 * time. This will result in the wakee task is less decayed, but giving 3466 * the wakee more load sounds not bad. 3467 */ 3468 if (!(se->avg.last_update_time && prev)) 3469 return; 3470 3471 p_last_update_time = cfs_rq_last_update_time(prev); 3472 n_last_update_time = cfs_rq_last_update_time(next); 3473 3474 __update_load_avg_blocked_se(p_last_update_time, se); 3475 se->avg.last_update_time = n_last_update_time; 3476 } 3477 3478 /* 3479 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3480 * propagate its contribution. The key to this propagation is the invariant 3481 * that for each group: 3482 * 3483 * ge->avg == grq->avg (1) 3484 * 3485 * _IFF_ we look at the pure running and runnable sums. Because they 3486 * represent the very same entity, just at different points in the hierarchy. 3487 * 3488 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3489 * and simply copies the running/runnable sum over (but still wrong, because 3490 * the group entity and group rq do not have their PELT windows aligned). 3491 * 3492 * However, update_tg_cfs_load() is more complex. So we have: 3493 * 3494 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3495 * 3496 * And since, like util, the runnable part should be directly transferable, 3497 * the following would _appear_ to be the straight forward approach: 3498 * 3499 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3500 * 3501 * And per (1) we have: 3502 * 3503 * ge->avg.runnable_avg == grq->avg.runnable_avg 3504 * 3505 * Which gives: 3506 * 3507 * ge->load.weight * grq->avg.load_avg 3508 * ge->avg.load_avg = ----------------------------------- (4) 3509 * grq->load.weight 3510 * 3511 * Except that is wrong! 3512 * 3513 * Because while for entities historical weight is not important and we 3514 * really only care about our future and therefore can consider a pure 3515 * runnable sum, runqueues can NOT do this. 3516 * 3517 * We specifically want runqueues to have a load_avg that includes 3518 * historical weights. Those represent the blocked load, the load we expect 3519 * to (shortly) return to us. This only works by keeping the weights as 3520 * integral part of the sum. We therefore cannot decompose as per (3). 3521 * 3522 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3523 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3524 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3525 * runnable section of these tasks overlap (or not). If they were to perfectly 3526 * align the rq as a whole would be runnable 2/3 of the time. If however we 3527 * always have at least 1 runnable task, the rq as a whole is always runnable. 3528 * 3529 * So we'll have to approximate.. :/ 3530 * 3531 * Given the constraint: 3532 * 3533 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3534 * 3535 * We can construct a rule that adds runnable to a rq by assuming minimal 3536 * overlap. 3537 * 3538 * On removal, we'll assume each task is equally runnable; which yields: 3539 * 3540 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3541 * 3542 * XXX: only do this for the part of runnable > running ? 3543 * 3544 */ 3545 static inline void 3546 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3547 { 3548 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 3549 u32 new_sum, divider; 3550 3551 /* Nothing to update */ 3552 if (!delta_avg) 3553 return; 3554 3555 /* 3556 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3557 * See ___update_load_avg() for details. 3558 */ 3559 divider = get_pelt_divider(&cfs_rq->avg); 3560 3561 3562 /* Set new sched_entity's utilization */ 3563 se->avg.util_avg = gcfs_rq->avg.util_avg; 3564 new_sum = se->avg.util_avg * divider; 3565 delta_sum = (long)new_sum - (long)se->avg.util_sum; 3566 se->avg.util_sum = new_sum; 3567 3568 /* Update parent cfs_rq utilization */ 3569 add_positive(&cfs_rq->avg.util_avg, delta_avg); 3570 add_positive(&cfs_rq->avg.util_sum, delta_sum); 3571 3572 /* See update_cfs_rq_load_avg() */ 3573 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 3574 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 3575 } 3576 3577 static inline void 3578 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3579 { 3580 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3581 u32 new_sum, divider; 3582 3583 /* Nothing to update */ 3584 if (!delta_avg) 3585 return; 3586 3587 /* 3588 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3589 * See ___update_load_avg() for details. 3590 */ 3591 divider = get_pelt_divider(&cfs_rq->avg); 3592 3593 /* Set new sched_entity's runnable */ 3594 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3595 new_sum = se->avg.runnable_avg * divider; 3596 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 3597 se->avg.runnable_sum = new_sum; 3598 3599 /* Update parent cfs_rq runnable */ 3600 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 3601 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 3602 /* See update_cfs_rq_load_avg() */ 3603 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 3604 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 3605 } 3606 3607 static inline void 3608 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3609 { 3610 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3611 unsigned long load_avg; 3612 u64 load_sum = 0; 3613 s64 delta_sum; 3614 u32 divider; 3615 3616 if (!runnable_sum) 3617 return; 3618 3619 gcfs_rq->prop_runnable_sum = 0; 3620 3621 /* 3622 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3623 * See ___update_load_avg() for details. 3624 */ 3625 divider = get_pelt_divider(&cfs_rq->avg); 3626 3627 if (runnable_sum >= 0) { 3628 /* 3629 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3630 * the CPU is saturated running == runnable. 3631 */ 3632 runnable_sum += se->avg.load_sum; 3633 runnable_sum = min_t(long, runnable_sum, divider); 3634 } else { 3635 /* 3636 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3637 * assuming all tasks are equally runnable. 3638 */ 3639 if (scale_load_down(gcfs_rq->load.weight)) { 3640 load_sum = div_u64(gcfs_rq->avg.load_sum, 3641 scale_load_down(gcfs_rq->load.weight)); 3642 } 3643 3644 /* But make sure to not inflate se's runnable */ 3645 runnable_sum = min(se->avg.load_sum, load_sum); 3646 } 3647 3648 /* 3649 * runnable_sum can't be lower than running_sum 3650 * Rescale running sum to be in the same range as runnable sum 3651 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3652 * runnable_sum is in [0 : LOAD_AVG_MAX] 3653 */ 3654 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3655 runnable_sum = max(runnable_sum, running_sum); 3656 3657 load_sum = se_weight(se) * runnable_sum; 3658 load_avg = div_u64(load_sum, divider); 3659 3660 delta_avg = load_avg - se->avg.load_avg; 3661 if (!delta_avg) 3662 return; 3663 3664 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3665 3666 se->avg.load_sum = runnable_sum; 3667 se->avg.load_avg = load_avg; 3668 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3669 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3670 /* See update_cfs_rq_load_avg() */ 3671 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3672 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3673 } 3674 3675 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3676 { 3677 cfs_rq->propagate = 1; 3678 cfs_rq->prop_runnable_sum += runnable_sum; 3679 } 3680 3681 /* Update task and its cfs_rq load average */ 3682 static inline int propagate_entity_load_avg(struct sched_entity *se) 3683 { 3684 struct cfs_rq *cfs_rq, *gcfs_rq; 3685 3686 if (entity_is_task(se)) 3687 return 0; 3688 3689 gcfs_rq = group_cfs_rq(se); 3690 if (!gcfs_rq->propagate) 3691 return 0; 3692 3693 gcfs_rq->propagate = 0; 3694 3695 cfs_rq = cfs_rq_of(se); 3696 3697 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3698 3699 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3700 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3701 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3702 3703 trace_pelt_cfs_tp(cfs_rq); 3704 trace_pelt_se_tp(se); 3705 3706 return 1; 3707 } 3708 3709 /* 3710 * Check if we need to update the load and the utilization of a blocked 3711 * group_entity: 3712 */ 3713 static inline bool skip_blocked_update(struct sched_entity *se) 3714 { 3715 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3716 3717 /* 3718 * If sched_entity still have not zero load or utilization, we have to 3719 * decay it: 3720 */ 3721 if (se->avg.load_avg || se->avg.util_avg) 3722 return false; 3723 3724 /* 3725 * If there is a pending propagation, we have to update the load and 3726 * the utilization of the sched_entity: 3727 */ 3728 if (gcfs_rq->propagate) 3729 return false; 3730 3731 /* 3732 * Otherwise, the load and the utilization of the sched_entity is 3733 * already zero and there is no pending propagation, so it will be a 3734 * waste of time to try to decay it: 3735 */ 3736 return true; 3737 } 3738 3739 #else /* CONFIG_FAIR_GROUP_SCHED */ 3740 3741 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 3742 3743 static inline int propagate_entity_load_avg(struct sched_entity *se) 3744 { 3745 return 0; 3746 } 3747 3748 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3749 3750 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3751 3752 #ifdef CONFIG_NO_HZ_COMMON 3753 static inline void migrate_se_pelt_lag(struct sched_entity *se) 3754 { 3755 u64 throttled = 0, now, lut; 3756 struct cfs_rq *cfs_rq; 3757 struct rq *rq; 3758 bool is_idle; 3759 3760 if (load_avg_is_decayed(&se->avg)) 3761 return; 3762 3763 cfs_rq = cfs_rq_of(se); 3764 rq = rq_of(cfs_rq); 3765 3766 rcu_read_lock(); 3767 is_idle = is_idle_task(rcu_dereference(rq->curr)); 3768 rcu_read_unlock(); 3769 3770 /* 3771 * The lag estimation comes with a cost we don't want to pay all the 3772 * time. Hence, limiting to the case where the source CPU is idle and 3773 * we know we are at the greatest risk to have an outdated clock. 3774 */ 3775 if (!is_idle) 3776 return; 3777 3778 /* 3779 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 3780 * 3781 * last_update_time (the cfs_rq's last_update_time) 3782 * = cfs_rq_clock_pelt()@cfs_rq_idle 3783 * = rq_clock_pelt()@cfs_rq_idle 3784 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 3785 * 3786 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 3787 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 3788 * 3789 * rq_idle_lag (delta between now and rq's update) 3790 * = sched_clock_cpu() - rq_clock()@rq_idle 3791 * 3792 * We can then write: 3793 * 3794 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 3795 * sched_clock_cpu() - rq_clock()@rq_idle 3796 * Where: 3797 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 3798 * rq_clock()@rq_idle is rq->clock_idle 3799 * cfs->throttled_clock_pelt_time@cfs_rq_idle 3800 * is cfs_rq->throttled_pelt_idle 3801 */ 3802 3803 #ifdef CONFIG_CFS_BANDWIDTH 3804 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 3805 /* The clock has been stopped for throttling */ 3806 if (throttled == U64_MAX) 3807 return; 3808 #endif 3809 now = u64_u32_load(rq->clock_pelt_idle); 3810 /* 3811 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 3812 * is observed the old clock_pelt_idle value and the new clock_idle, 3813 * which lead to an underestimation. The opposite would lead to an 3814 * overestimation. 3815 */ 3816 smp_rmb(); 3817 lut = cfs_rq_last_update_time(cfs_rq); 3818 3819 now -= throttled; 3820 if (now < lut) 3821 /* 3822 * cfs_rq->avg.last_update_time is more recent than our 3823 * estimation, let's use it. 3824 */ 3825 now = lut; 3826 else 3827 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 3828 3829 __update_load_avg_blocked_se(now, se); 3830 } 3831 #else 3832 static void migrate_se_pelt_lag(struct sched_entity *se) {} 3833 #endif 3834 3835 /** 3836 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3837 * @now: current time, as per cfs_rq_clock_pelt() 3838 * @cfs_rq: cfs_rq to update 3839 * 3840 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3841 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3842 * post_init_entity_util_avg(). 3843 * 3844 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3845 * 3846 * Return: true if the load decayed or we removed load. 3847 * 3848 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3849 * call update_tg_load_avg() when this function returns true. 3850 */ 3851 static inline int 3852 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3853 { 3854 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 3855 struct sched_avg *sa = &cfs_rq->avg; 3856 int decayed = 0; 3857 3858 if (cfs_rq->removed.nr) { 3859 unsigned long r; 3860 u32 divider = get_pelt_divider(&cfs_rq->avg); 3861 3862 raw_spin_lock(&cfs_rq->removed.lock); 3863 swap(cfs_rq->removed.util_avg, removed_util); 3864 swap(cfs_rq->removed.load_avg, removed_load); 3865 swap(cfs_rq->removed.runnable_avg, removed_runnable); 3866 cfs_rq->removed.nr = 0; 3867 raw_spin_unlock(&cfs_rq->removed.lock); 3868 3869 r = removed_load; 3870 sub_positive(&sa->load_avg, r); 3871 sub_positive(&sa->load_sum, r * divider); 3872 /* See sa->util_sum below */ 3873 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 3874 3875 r = removed_util; 3876 sub_positive(&sa->util_avg, r); 3877 sub_positive(&sa->util_sum, r * divider); 3878 /* 3879 * Because of rounding, se->util_sum might ends up being +1 more than 3880 * cfs->util_sum. Although this is not a problem by itself, detaching 3881 * a lot of tasks with the rounding problem between 2 updates of 3882 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 3883 * cfs_util_avg is not. 3884 * Check that util_sum is still above its lower bound for the new 3885 * util_avg. Given that period_contrib might have moved since the last 3886 * sync, we are only sure that util_sum must be above or equal to 3887 * util_avg * minimum possible divider 3888 */ 3889 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 3890 3891 r = removed_runnable; 3892 sub_positive(&sa->runnable_avg, r); 3893 sub_positive(&sa->runnable_sum, r * divider); 3894 /* See sa->util_sum above */ 3895 sa->runnable_sum = max_t(u32, sa->runnable_sum, 3896 sa->runnable_avg * PELT_MIN_DIVIDER); 3897 3898 /* 3899 * removed_runnable is the unweighted version of removed_load so we 3900 * can use it to estimate removed_load_sum. 3901 */ 3902 add_tg_cfs_propagate(cfs_rq, 3903 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 3904 3905 decayed = 1; 3906 } 3907 3908 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3909 u64_u32_store_copy(sa->last_update_time, 3910 cfs_rq->last_update_time_copy, 3911 sa->last_update_time); 3912 return decayed; 3913 } 3914 3915 /** 3916 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3917 * @cfs_rq: cfs_rq to attach to 3918 * @se: sched_entity to attach 3919 * 3920 * Must call update_cfs_rq_load_avg() before this, since we rely on 3921 * cfs_rq->avg.last_update_time being current. 3922 */ 3923 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3924 { 3925 /* 3926 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3927 * See ___update_load_avg() for details. 3928 */ 3929 u32 divider = get_pelt_divider(&cfs_rq->avg); 3930 3931 /* 3932 * When we attach the @se to the @cfs_rq, we must align the decay 3933 * window because without that, really weird and wonderful things can 3934 * happen. 3935 * 3936 * XXX illustrate 3937 */ 3938 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3939 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3940 3941 /* 3942 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3943 * period_contrib. This isn't strictly correct, but since we're 3944 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3945 * _sum a little. 3946 */ 3947 se->avg.util_sum = se->avg.util_avg * divider; 3948 3949 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3950 3951 se->avg.load_sum = se->avg.load_avg * divider; 3952 if (se_weight(se) < se->avg.load_sum) 3953 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 3954 else 3955 se->avg.load_sum = 1; 3956 3957 enqueue_load_avg(cfs_rq, se); 3958 cfs_rq->avg.util_avg += se->avg.util_avg; 3959 cfs_rq->avg.util_sum += se->avg.util_sum; 3960 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 3961 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 3962 3963 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3964 3965 cfs_rq_util_change(cfs_rq, 0); 3966 3967 trace_pelt_cfs_tp(cfs_rq); 3968 } 3969 3970 /** 3971 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3972 * @cfs_rq: cfs_rq to detach from 3973 * @se: sched_entity to detach 3974 * 3975 * Must call update_cfs_rq_load_avg() before this, since we rely on 3976 * cfs_rq->avg.last_update_time being current. 3977 */ 3978 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3979 { 3980 dequeue_load_avg(cfs_rq, se); 3981 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3982 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3983 /* See update_cfs_rq_load_avg() */ 3984 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 3985 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 3986 3987 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 3988 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 3989 /* See update_cfs_rq_load_avg() */ 3990 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 3991 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 3992 3993 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3994 3995 cfs_rq_util_change(cfs_rq, 0); 3996 3997 trace_pelt_cfs_tp(cfs_rq); 3998 } 3999 4000 /* 4001 * Optional action to be done while updating the load average 4002 */ 4003 #define UPDATE_TG 0x1 4004 #define SKIP_AGE_LOAD 0x2 4005 #define DO_ATTACH 0x4 4006 4007 /* Update task and its cfs_rq load average */ 4008 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4009 { 4010 u64 now = cfs_rq_clock_pelt(cfs_rq); 4011 int decayed; 4012 4013 /* 4014 * Track task load average for carrying it to new CPU after migrated, and 4015 * track group sched_entity load average for task_h_load calc in migration 4016 */ 4017 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4018 __update_load_avg_se(now, cfs_rq, se); 4019 4020 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4021 decayed |= propagate_entity_load_avg(se); 4022 4023 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4024 4025 /* 4026 * DO_ATTACH means we're here from enqueue_entity(). 4027 * !last_update_time means we've passed through 4028 * migrate_task_rq_fair() indicating we migrated. 4029 * 4030 * IOW we're enqueueing a task on a new CPU. 4031 */ 4032 attach_entity_load_avg(cfs_rq, se); 4033 update_tg_load_avg(cfs_rq); 4034 4035 } else if (decayed) { 4036 cfs_rq_util_change(cfs_rq, 0); 4037 4038 if (flags & UPDATE_TG) 4039 update_tg_load_avg(cfs_rq); 4040 } 4041 } 4042 4043 /* 4044 * Synchronize entity load avg of dequeued entity without locking 4045 * the previous rq. 4046 */ 4047 static void sync_entity_load_avg(struct sched_entity *se) 4048 { 4049 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4050 u64 last_update_time; 4051 4052 last_update_time = cfs_rq_last_update_time(cfs_rq); 4053 __update_load_avg_blocked_se(last_update_time, se); 4054 } 4055 4056 /* 4057 * Task first catches up with cfs_rq, and then subtract 4058 * itself from the cfs_rq (task must be off the queue now). 4059 */ 4060 static void remove_entity_load_avg(struct sched_entity *se) 4061 { 4062 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4063 unsigned long flags; 4064 4065 /* 4066 * tasks cannot exit without having gone through wake_up_new_task() -> 4067 * post_init_entity_util_avg() which will have added things to the 4068 * cfs_rq, so we can remove unconditionally. 4069 */ 4070 4071 sync_entity_load_avg(se); 4072 4073 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4074 ++cfs_rq->removed.nr; 4075 cfs_rq->removed.util_avg += se->avg.util_avg; 4076 cfs_rq->removed.load_avg += se->avg.load_avg; 4077 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4078 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4079 } 4080 4081 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4082 { 4083 return cfs_rq->avg.runnable_avg; 4084 } 4085 4086 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4087 { 4088 return cfs_rq->avg.load_avg; 4089 } 4090 4091 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 4092 4093 static inline unsigned long task_util(struct task_struct *p) 4094 { 4095 return READ_ONCE(p->se.avg.util_avg); 4096 } 4097 4098 static inline unsigned long _task_util_est(struct task_struct *p) 4099 { 4100 struct util_est ue = READ_ONCE(p->se.avg.util_est); 4101 4102 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 4103 } 4104 4105 static inline unsigned long task_util_est(struct task_struct *p) 4106 { 4107 return max(task_util(p), _task_util_est(p)); 4108 } 4109 4110 #ifdef CONFIG_UCLAMP_TASK 4111 static inline unsigned long uclamp_task_util(struct task_struct *p) 4112 { 4113 return clamp(task_util_est(p), 4114 uclamp_eff_value(p, UCLAMP_MIN), 4115 uclamp_eff_value(p, UCLAMP_MAX)); 4116 } 4117 #else 4118 static inline unsigned long uclamp_task_util(struct task_struct *p) 4119 { 4120 return task_util_est(p); 4121 } 4122 #endif 4123 4124 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4125 struct task_struct *p) 4126 { 4127 unsigned int enqueued; 4128 4129 if (!sched_feat(UTIL_EST)) 4130 return; 4131 4132 /* Update root cfs_rq's estimated utilization */ 4133 enqueued = cfs_rq->avg.util_est.enqueued; 4134 enqueued += _task_util_est(p); 4135 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4136 4137 trace_sched_util_est_cfs_tp(cfs_rq); 4138 } 4139 4140 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4141 struct task_struct *p) 4142 { 4143 unsigned int enqueued; 4144 4145 if (!sched_feat(UTIL_EST)) 4146 return; 4147 4148 /* Update root cfs_rq's estimated utilization */ 4149 enqueued = cfs_rq->avg.util_est.enqueued; 4150 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4151 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4152 4153 trace_sched_util_est_cfs_tp(cfs_rq); 4154 } 4155 4156 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4157 4158 /* 4159 * Check if a (signed) value is within a specified (unsigned) margin, 4160 * based on the observation that: 4161 * 4162 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4163 * 4164 * NOTE: this only works when value + margin < INT_MAX. 4165 */ 4166 static inline bool within_margin(int value, int margin) 4167 { 4168 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4169 } 4170 4171 static inline void util_est_update(struct cfs_rq *cfs_rq, 4172 struct task_struct *p, 4173 bool task_sleep) 4174 { 4175 long last_ewma_diff, last_enqueued_diff; 4176 struct util_est ue; 4177 4178 if (!sched_feat(UTIL_EST)) 4179 return; 4180 4181 /* 4182 * Skip update of task's estimated utilization when the task has not 4183 * yet completed an activation, e.g. being migrated. 4184 */ 4185 if (!task_sleep) 4186 return; 4187 4188 /* 4189 * If the PELT values haven't changed since enqueue time, 4190 * skip the util_est update. 4191 */ 4192 ue = p->se.avg.util_est; 4193 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4194 return; 4195 4196 last_enqueued_diff = ue.enqueued; 4197 4198 /* 4199 * Reset EWMA on utilization increases, the moving average is used only 4200 * to smooth utilization decreases. 4201 */ 4202 ue.enqueued = task_util(p); 4203 if (sched_feat(UTIL_EST_FASTUP)) { 4204 if (ue.ewma < ue.enqueued) { 4205 ue.ewma = ue.enqueued; 4206 goto done; 4207 } 4208 } 4209 4210 /* 4211 * Skip update of task's estimated utilization when its members are 4212 * already ~1% close to its last activation value. 4213 */ 4214 last_ewma_diff = ue.enqueued - ue.ewma; 4215 last_enqueued_diff -= ue.enqueued; 4216 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4217 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4218 goto done; 4219 4220 return; 4221 } 4222 4223 /* 4224 * To avoid overestimation of actual task utilization, skip updates if 4225 * we cannot grant there is idle time in this CPU. 4226 */ 4227 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4228 return; 4229 4230 /* 4231 * Update Task's estimated utilization 4232 * 4233 * When *p completes an activation we can consolidate another sample 4234 * of the task size. This is done by storing the current PELT value 4235 * as ue.enqueued and by using this value to update the Exponential 4236 * Weighted Moving Average (EWMA): 4237 * 4238 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4239 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4240 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4241 * = w * ( last_ewma_diff ) + ewma(t-1) 4242 * = w * (last_ewma_diff + ewma(t-1) / w) 4243 * 4244 * Where 'w' is the weight of new samples, which is configured to be 4245 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4246 */ 4247 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4248 ue.ewma += last_ewma_diff; 4249 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4250 done: 4251 ue.enqueued |= UTIL_AVG_UNCHANGED; 4252 WRITE_ONCE(p->se.avg.util_est, ue); 4253 4254 trace_sched_util_est_se_tp(&p->se); 4255 } 4256 4257 static inline int task_fits_capacity(struct task_struct *p, 4258 unsigned long capacity) 4259 { 4260 return fits_capacity(uclamp_task_util(p), capacity); 4261 } 4262 4263 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4264 { 4265 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 4266 return; 4267 4268 if (!p || p->nr_cpus_allowed == 1) { 4269 rq->misfit_task_load = 0; 4270 return; 4271 } 4272 4273 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 4274 rq->misfit_task_load = 0; 4275 return; 4276 } 4277 4278 /* 4279 * Make sure that misfit_task_load will not be null even if 4280 * task_h_load() returns 0. 4281 */ 4282 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4283 } 4284 4285 #else /* CONFIG_SMP */ 4286 4287 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4288 { 4289 return true; 4290 } 4291 4292 #define UPDATE_TG 0x0 4293 #define SKIP_AGE_LOAD 0x0 4294 #define DO_ATTACH 0x0 4295 4296 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4297 { 4298 cfs_rq_util_change(cfs_rq, 0); 4299 } 4300 4301 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4302 4303 static inline void 4304 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4305 static inline void 4306 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4307 4308 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4309 { 4310 return 0; 4311 } 4312 4313 static inline void 4314 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4315 4316 static inline void 4317 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4318 4319 static inline void 4320 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4321 bool task_sleep) {} 4322 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4323 4324 #endif /* CONFIG_SMP */ 4325 4326 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4327 { 4328 #ifdef CONFIG_SCHED_DEBUG 4329 s64 d = se->vruntime - cfs_rq->min_vruntime; 4330 4331 if (d < 0) 4332 d = -d; 4333 4334 if (d > 3*sysctl_sched_latency) 4335 schedstat_inc(cfs_rq->nr_spread_over); 4336 #endif 4337 } 4338 4339 static void 4340 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4341 { 4342 u64 vruntime = cfs_rq->min_vruntime; 4343 4344 /* 4345 * The 'current' period is already promised to the current tasks, 4346 * however the extra weight of the new task will slow them down a 4347 * little, place the new task so that it fits in the slot that 4348 * stays open at the end. 4349 */ 4350 if (initial && sched_feat(START_DEBIT)) 4351 vruntime += sched_vslice(cfs_rq, se); 4352 4353 /* sleeps up to a single latency don't count. */ 4354 if (!initial) { 4355 unsigned long thresh; 4356 4357 if (se_is_idle(se)) 4358 thresh = sysctl_sched_min_granularity; 4359 else 4360 thresh = sysctl_sched_latency; 4361 4362 /* 4363 * Halve their sleep time's effect, to allow 4364 * for a gentler effect of sleepers: 4365 */ 4366 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4367 thresh >>= 1; 4368 4369 vruntime -= thresh; 4370 } 4371 4372 /* ensure we never gain time by being placed backwards. */ 4373 se->vruntime = max_vruntime(se->vruntime, vruntime); 4374 } 4375 4376 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4377 4378 static inline bool cfs_bandwidth_used(void); 4379 4380 /* 4381 * MIGRATION 4382 * 4383 * dequeue 4384 * update_curr() 4385 * update_min_vruntime() 4386 * vruntime -= min_vruntime 4387 * 4388 * enqueue 4389 * update_curr() 4390 * update_min_vruntime() 4391 * vruntime += min_vruntime 4392 * 4393 * this way the vruntime transition between RQs is done when both 4394 * min_vruntime are up-to-date. 4395 * 4396 * WAKEUP (remote) 4397 * 4398 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4399 * vruntime -= min_vruntime 4400 * 4401 * enqueue 4402 * update_curr() 4403 * update_min_vruntime() 4404 * vruntime += min_vruntime 4405 * 4406 * this way we don't have the most up-to-date min_vruntime on the originating 4407 * CPU and an up-to-date min_vruntime on the destination CPU. 4408 */ 4409 4410 static void 4411 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4412 { 4413 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4414 bool curr = cfs_rq->curr == se; 4415 4416 /* 4417 * If we're the current task, we must renormalise before calling 4418 * update_curr(). 4419 */ 4420 if (renorm && curr) 4421 se->vruntime += cfs_rq->min_vruntime; 4422 4423 update_curr(cfs_rq); 4424 4425 /* 4426 * Otherwise, renormalise after, such that we're placed at the current 4427 * moment in time, instead of some random moment in the past. Being 4428 * placed in the past could significantly boost this task to the 4429 * fairness detriment of existing tasks. 4430 */ 4431 if (renorm && !curr) 4432 se->vruntime += cfs_rq->min_vruntime; 4433 4434 /* 4435 * When enqueuing a sched_entity, we must: 4436 * - Update loads to have both entity and cfs_rq synced with now. 4437 * - Add its load to cfs_rq->runnable_avg 4438 * - For group_entity, update its weight to reflect the new share of 4439 * its group cfs_rq 4440 * - Add its new weight to cfs_rq->load.weight 4441 */ 4442 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4443 se_update_runnable(se); 4444 update_cfs_group(se); 4445 account_entity_enqueue(cfs_rq, se); 4446 4447 if (flags & ENQUEUE_WAKEUP) 4448 place_entity(cfs_rq, se, 0); 4449 4450 check_schedstat_required(); 4451 update_stats_enqueue_fair(cfs_rq, se, flags); 4452 check_spread(cfs_rq, se); 4453 if (!curr) 4454 __enqueue_entity(cfs_rq, se); 4455 se->on_rq = 1; 4456 4457 if (cfs_rq->nr_running == 1) { 4458 check_enqueue_throttle(cfs_rq); 4459 if (!throttled_hierarchy(cfs_rq)) 4460 list_add_leaf_cfs_rq(cfs_rq); 4461 } 4462 } 4463 4464 static void __clear_buddies_last(struct sched_entity *se) 4465 { 4466 for_each_sched_entity(se) { 4467 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4468 if (cfs_rq->last != se) 4469 break; 4470 4471 cfs_rq->last = NULL; 4472 } 4473 } 4474 4475 static void __clear_buddies_next(struct sched_entity *se) 4476 { 4477 for_each_sched_entity(se) { 4478 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4479 if (cfs_rq->next != se) 4480 break; 4481 4482 cfs_rq->next = NULL; 4483 } 4484 } 4485 4486 static void __clear_buddies_skip(struct sched_entity *se) 4487 { 4488 for_each_sched_entity(se) { 4489 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4490 if (cfs_rq->skip != se) 4491 break; 4492 4493 cfs_rq->skip = NULL; 4494 } 4495 } 4496 4497 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4498 { 4499 if (cfs_rq->last == se) 4500 __clear_buddies_last(se); 4501 4502 if (cfs_rq->next == se) 4503 __clear_buddies_next(se); 4504 4505 if (cfs_rq->skip == se) 4506 __clear_buddies_skip(se); 4507 } 4508 4509 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4510 4511 static void 4512 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4513 { 4514 /* 4515 * Update run-time statistics of the 'current'. 4516 */ 4517 update_curr(cfs_rq); 4518 4519 /* 4520 * When dequeuing a sched_entity, we must: 4521 * - Update loads to have both entity and cfs_rq synced with now. 4522 * - Subtract its load from the cfs_rq->runnable_avg. 4523 * - Subtract its previous weight from cfs_rq->load.weight. 4524 * - For group entity, update its weight to reflect the new share 4525 * of its group cfs_rq. 4526 */ 4527 update_load_avg(cfs_rq, se, UPDATE_TG); 4528 se_update_runnable(se); 4529 4530 update_stats_dequeue_fair(cfs_rq, se, flags); 4531 4532 clear_buddies(cfs_rq, se); 4533 4534 if (se != cfs_rq->curr) 4535 __dequeue_entity(cfs_rq, se); 4536 se->on_rq = 0; 4537 account_entity_dequeue(cfs_rq, se); 4538 4539 /* 4540 * Normalize after update_curr(); which will also have moved 4541 * min_vruntime if @se is the one holding it back. But before doing 4542 * update_min_vruntime() again, which will discount @se's position and 4543 * can move min_vruntime forward still more. 4544 */ 4545 if (!(flags & DEQUEUE_SLEEP)) 4546 se->vruntime -= cfs_rq->min_vruntime; 4547 4548 /* return excess runtime on last dequeue */ 4549 return_cfs_rq_runtime(cfs_rq); 4550 4551 update_cfs_group(se); 4552 4553 /* 4554 * Now advance min_vruntime if @se was the entity holding it back, 4555 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4556 * put back on, and if we advance min_vruntime, we'll be placed back 4557 * further than we started -- ie. we'll be penalized. 4558 */ 4559 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4560 update_min_vruntime(cfs_rq); 4561 4562 if (cfs_rq->nr_running == 0) 4563 update_idle_cfs_rq_clock_pelt(cfs_rq); 4564 } 4565 4566 /* 4567 * Preempt the current task with a newly woken task if needed: 4568 */ 4569 static void 4570 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4571 { 4572 unsigned long ideal_runtime, delta_exec; 4573 struct sched_entity *se; 4574 s64 delta; 4575 4576 ideal_runtime = sched_slice(cfs_rq, curr); 4577 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4578 if (delta_exec > ideal_runtime) { 4579 resched_curr(rq_of(cfs_rq)); 4580 /* 4581 * The current task ran long enough, ensure it doesn't get 4582 * re-elected due to buddy favours. 4583 */ 4584 clear_buddies(cfs_rq, curr); 4585 return; 4586 } 4587 4588 /* 4589 * Ensure that a task that missed wakeup preemption by a 4590 * narrow margin doesn't have to wait for a full slice. 4591 * This also mitigates buddy induced latencies under load. 4592 */ 4593 if (delta_exec < sysctl_sched_min_granularity) 4594 return; 4595 4596 se = __pick_first_entity(cfs_rq); 4597 delta = curr->vruntime - se->vruntime; 4598 4599 if (delta < 0) 4600 return; 4601 4602 if (delta > ideal_runtime) 4603 resched_curr(rq_of(cfs_rq)); 4604 } 4605 4606 static void 4607 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4608 { 4609 clear_buddies(cfs_rq, se); 4610 4611 /* 'current' is not kept within the tree. */ 4612 if (se->on_rq) { 4613 /* 4614 * Any task has to be enqueued before it get to execute on 4615 * a CPU. So account for the time it spent waiting on the 4616 * runqueue. 4617 */ 4618 update_stats_wait_end_fair(cfs_rq, se); 4619 __dequeue_entity(cfs_rq, se); 4620 update_load_avg(cfs_rq, se, UPDATE_TG); 4621 } 4622 4623 update_stats_curr_start(cfs_rq, se); 4624 cfs_rq->curr = se; 4625 4626 /* 4627 * Track our maximum slice length, if the CPU's load is at 4628 * least twice that of our own weight (i.e. dont track it 4629 * when there are only lesser-weight tasks around): 4630 */ 4631 if (schedstat_enabled() && 4632 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4633 struct sched_statistics *stats; 4634 4635 stats = __schedstats_from_se(se); 4636 __schedstat_set(stats->slice_max, 4637 max((u64)stats->slice_max, 4638 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4639 } 4640 4641 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4642 } 4643 4644 static int 4645 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4646 4647 /* 4648 * Pick the next process, keeping these things in mind, in this order: 4649 * 1) keep things fair between processes/task groups 4650 * 2) pick the "next" process, since someone really wants that to run 4651 * 3) pick the "last" process, for cache locality 4652 * 4) do not run the "skip" process, if something else is available 4653 */ 4654 static struct sched_entity * 4655 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4656 { 4657 struct sched_entity *left = __pick_first_entity(cfs_rq); 4658 struct sched_entity *se; 4659 4660 /* 4661 * If curr is set we have to see if its left of the leftmost entity 4662 * still in the tree, provided there was anything in the tree at all. 4663 */ 4664 if (!left || (curr && entity_before(curr, left))) 4665 left = curr; 4666 4667 se = left; /* ideally we run the leftmost entity */ 4668 4669 /* 4670 * Avoid running the skip buddy, if running something else can 4671 * be done without getting too unfair. 4672 */ 4673 if (cfs_rq->skip && cfs_rq->skip == se) { 4674 struct sched_entity *second; 4675 4676 if (se == curr) { 4677 second = __pick_first_entity(cfs_rq); 4678 } else { 4679 second = __pick_next_entity(se); 4680 if (!second || (curr && entity_before(curr, second))) 4681 second = curr; 4682 } 4683 4684 if (second && wakeup_preempt_entity(second, left) < 1) 4685 se = second; 4686 } 4687 4688 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { 4689 /* 4690 * Someone really wants this to run. If it's not unfair, run it. 4691 */ 4692 se = cfs_rq->next; 4693 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { 4694 /* 4695 * Prefer last buddy, try to return the CPU to a preempted task. 4696 */ 4697 se = cfs_rq->last; 4698 } 4699 4700 return se; 4701 } 4702 4703 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4704 4705 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4706 { 4707 /* 4708 * If still on the runqueue then deactivate_task() 4709 * was not called and update_curr() has to be done: 4710 */ 4711 if (prev->on_rq) 4712 update_curr(cfs_rq); 4713 4714 /* throttle cfs_rqs exceeding runtime */ 4715 check_cfs_rq_runtime(cfs_rq); 4716 4717 check_spread(cfs_rq, prev); 4718 4719 if (prev->on_rq) { 4720 update_stats_wait_start_fair(cfs_rq, prev); 4721 /* Put 'current' back into the tree. */ 4722 __enqueue_entity(cfs_rq, prev); 4723 /* in !on_rq case, update occurred at dequeue */ 4724 update_load_avg(cfs_rq, prev, 0); 4725 } 4726 cfs_rq->curr = NULL; 4727 } 4728 4729 static void 4730 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4731 { 4732 /* 4733 * Update run-time statistics of the 'current'. 4734 */ 4735 update_curr(cfs_rq); 4736 4737 /* 4738 * Ensure that runnable average is periodically updated. 4739 */ 4740 update_load_avg(cfs_rq, curr, UPDATE_TG); 4741 update_cfs_group(curr); 4742 4743 #ifdef CONFIG_SCHED_HRTICK 4744 /* 4745 * queued ticks are scheduled to match the slice, so don't bother 4746 * validating it and just reschedule. 4747 */ 4748 if (queued) { 4749 resched_curr(rq_of(cfs_rq)); 4750 return; 4751 } 4752 /* 4753 * don't let the period tick interfere with the hrtick preemption 4754 */ 4755 if (!sched_feat(DOUBLE_TICK) && 4756 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4757 return; 4758 #endif 4759 4760 if (cfs_rq->nr_running > 1) 4761 check_preempt_tick(cfs_rq, curr); 4762 } 4763 4764 4765 /************************************************** 4766 * CFS bandwidth control machinery 4767 */ 4768 4769 #ifdef CONFIG_CFS_BANDWIDTH 4770 4771 #ifdef CONFIG_JUMP_LABEL 4772 static struct static_key __cfs_bandwidth_used; 4773 4774 static inline bool cfs_bandwidth_used(void) 4775 { 4776 return static_key_false(&__cfs_bandwidth_used); 4777 } 4778 4779 void cfs_bandwidth_usage_inc(void) 4780 { 4781 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4782 } 4783 4784 void cfs_bandwidth_usage_dec(void) 4785 { 4786 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4787 } 4788 #else /* CONFIG_JUMP_LABEL */ 4789 static bool cfs_bandwidth_used(void) 4790 { 4791 return true; 4792 } 4793 4794 void cfs_bandwidth_usage_inc(void) {} 4795 void cfs_bandwidth_usage_dec(void) {} 4796 #endif /* CONFIG_JUMP_LABEL */ 4797 4798 /* 4799 * default period for cfs group bandwidth. 4800 * default: 0.1s, units: nanoseconds 4801 */ 4802 static inline u64 default_cfs_period(void) 4803 { 4804 return 100000000ULL; 4805 } 4806 4807 static inline u64 sched_cfs_bandwidth_slice(void) 4808 { 4809 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4810 } 4811 4812 /* 4813 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4814 * directly instead of rq->clock to avoid adding additional synchronization 4815 * around rq->lock. 4816 * 4817 * requires cfs_b->lock 4818 */ 4819 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4820 { 4821 s64 runtime; 4822 4823 if (unlikely(cfs_b->quota == RUNTIME_INF)) 4824 return; 4825 4826 cfs_b->runtime += cfs_b->quota; 4827 runtime = cfs_b->runtime_snap - cfs_b->runtime; 4828 if (runtime > 0) { 4829 cfs_b->burst_time += runtime; 4830 cfs_b->nr_burst++; 4831 } 4832 4833 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 4834 cfs_b->runtime_snap = cfs_b->runtime; 4835 } 4836 4837 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4838 { 4839 return &tg->cfs_bandwidth; 4840 } 4841 4842 /* returns 0 on failure to allocate runtime */ 4843 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 4844 struct cfs_rq *cfs_rq, u64 target_runtime) 4845 { 4846 u64 min_amount, amount = 0; 4847 4848 lockdep_assert_held(&cfs_b->lock); 4849 4850 /* note: this is a positive sum as runtime_remaining <= 0 */ 4851 min_amount = target_runtime - cfs_rq->runtime_remaining; 4852 4853 if (cfs_b->quota == RUNTIME_INF) 4854 amount = min_amount; 4855 else { 4856 start_cfs_bandwidth(cfs_b); 4857 4858 if (cfs_b->runtime > 0) { 4859 amount = min(cfs_b->runtime, min_amount); 4860 cfs_b->runtime -= amount; 4861 cfs_b->idle = 0; 4862 } 4863 } 4864 4865 cfs_rq->runtime_remaining += amount; 4866 4867 return cfs_rq->runtime_remaining > 0; 4868 } 4869 4870 /* returns 0 on failure to allocate runtime */ 4871 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4872 { 4873 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4874 int ret; 4875 4876 raw_spin_lock(&cfs_b->lock); 4877 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 4878 raw_spin_unlock(&cfs_b->lock); 4879 4880 return ret; 4881 } 4882 4883 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4884 { 4885 /* dock delta_exec before expiring quota (as it could span periods) */ 4886 cfs_rq->runtime_remaining -= delta_exec; 4887 4888 if (likely(cfs_rq->runtime_remaining > 0)) 4889 return; 4890 4891 if (cfs_rq->throttled) 4892 return; 4893 /* 4894 * if we're unable to extend our runtime we resched so that the active 4895 * hierarchy can be throttled 4896 */ 4897 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4898 resched_curr(rq_of(cfs_rq)); 4899 } 4900 4901 static __always_inline 4902 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4903 { 4904 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4905 return; 4906 4907 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4908 } 4909 4910 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4911 { 4912 return cfs_bandwidth_used() && cfs_rq->throttled; 4913 } 4914 4915 /* check whether cfs_rq, or any parent, is throttled */ 4916 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4917 { 4918 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4919 } 4920 4921 /* 4922 * Ensure that neither of the group entities corresponding to src_cpu or 4923 * dest_cpu are members of a throttled hierarchy when performing group 4924 * load-balance operations. 4925 */ 4926 static inline int throttled_lb_pair(struct task_group *tg, 4927 int src_cpu, int dest_cpu) 4928 { 4929 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4930 4931 src_cfs_rq = tg->cfs_rq[src_cpu]; 4932 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4933 4934 return throttled_hierarchy(src_cfs_rq) || 4935 throttled_hierarchy(dest_cfs_rq); 4936 } 4937 4938 static int tg_unthrottle_up(struct task_group *tg, void *data) 4939 { 4940 struct rq *rq = data; 4941 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4942 4943 cfs_rq->throttle_count--; 4944 if (!cfs_rq->throttle_count) { 4945 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 4946 cfs_rq->throttled_clock_pelt; 4947 4948 /* Add cfs_rq with load or one or more already running entities to the list */ 4949 if (!cfs_rq_is_decayed(cfs_rq)) 4950 list_add_leaf_cfs_rq(cfs_rq); 4951 } 4952 4953 return 0; 4954 } 4955 4956 static int tg_throttle_down(struct task_group *tg, void *data) 4957 { 4958 struct rq *rq = data; 4959 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4960 4961 /* group is entering throttled state, stop time */ 4962 if (!cfs_rq->throttle_count) { 4963 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 4964 list_del_leaf_cfs_rq(cfs_rq); 4965 } 4966 cfs_rq->throttle_count++; 4967 4968 return 0; 4969 } 4970 4971 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 4972 { 4973 struct rq *rq = rq_of(cfs_rq); 4974 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4975 struct sched_entity *se; 4976 long task_delta, idle_task_delta, dequeue = 1; 4977 4978 raw_spin_lock(&cfs_b->lock); 4979 /* This will start the period timer if necessary */ 4980 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 4981 /* 4982 * We have raced with bandwidth becoming available, and if we 4983 * actually throttled the timer might not unthrottle us for an 4984 * entire period. We additionally needed to make sure that any 4985 * subsequent check_cfs_rq_runtime calls agree not to throttle 4986 * us, as we may commit to do cfs put_prev+pick_next, so we ask 4987 * for 1ns of runtime rather than just check cfs_b. 4988 */ 4989 dequeue = 0; 4990 } else { 4991 list_add_tail_rcu(&cfs_rq->throttled_list, 4992 &cfs_b->throttled_cfs_rq); 4993 } 4994 raw_spin_unlock(&cfs_b->lock); 4995 4996 if (!dequeue) 4997 return false; /* Throttle no longer required. */ 4998 4999 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5000 5001 /* freeze hierarchy runnable averages while throttled */ 5002 rcu_read_lock(); 5003 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5004 rcu_read_unlock(); 5005 5006 task_delta = cfs_rq->h_nr_running; 5007 idle_task_delta = cfs_rq->idle_h_nr_running; 5008 for_each_sched_entity(se) { 5009 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5010 /* throttled entity or throttle-on-deactivate */ 5011 if (!se->on_rq) 5012 goto done; 5013 5014 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5015 5016 if (cfs_rq_is_idle(group_cfs_rq(se))) 5017 idle_task_delta = cfs_rq->h_nr_running; 5018 5019 qcfs_rq->h_nr_running -= task_delta; 5020 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5021 5022 if (qcfs_rq->load.weight) { 5023 /* Avoid re-evaluating load for this entity: */ 5024 se = parent_entity(se); 5025 break; 5026 } 5027 } 5028 5029 for_each_sched_entity(se) { 5030 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5031 /* throttled entity or throttle-on-deactivate */ 5032 if (!se->on_rq) 5033 goto done; 5034 5035 update_load_avg(qcfs_rq, se, 0); 5036 se_update_runnable(se); 5037 5038 if (cfs_rq_is_idle(group_cfs_rq(se))) 5039 idle_task_delta = cfs_rq->h_nr_running; 5040 5041 qcfs_rq->h_nr_running -= task_delta; 5042 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5043 } 5044 5045 /* At this point se is NULL and we are at root level*/ 5046 sub_nr_running(rq, task_delta); 5047 5048 done: 5049 /* 5050 * Note: distribution will already see us throttled via the 5051 * throttled-list. rq->lock protects completion. 5052 */ 5053 cfs_rq->throttled = 1; 5054 cfs_rq->throttled_clock = rq_clock(rq); 5055 return true; 5056 } 5057 5058 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5059 { 5060 struct rq *rq = rq_of(cfs_rq); 5061 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5062 struct sched_entity *se; 5063 long task_delta, idle_task_delta; 5064 5065 se = cfs_rq->tg->se[cpu_of(rq)]; 5066 5067 cfs_rq->throttled = 0; 5068 5069 update_rq_clock(rq); 5070 5071 raw_spin_lock(&cfs_b->lock); 5072 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5073 list_del_rcu(&cfs_rq->throttled_list); 5074 raw_spin_unlock(&cfs_b->lock); 5075 5076 /* update hierarchical throttle state */ 5077 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5078 5079 if (!cfs_rq->load.weight) { 5080 if (!cfs_rq->on_list) 5081 return; 5082 /* 5083 * Nothing to run but something to decay (on_list)? 5084 * Complete the branch. 5085 */ 5086 for_each_sched_entity(se) { 5087 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5088 break; 5089 } 5090 goto unthrottle_throttle; 5091 } 5092 5093 task_delta = cfs_rq->h_nr_running; 5094 idle_task_delta = cfs_rq->idle_h_nr_running; 5095 for_each_sched_entity(se) { 5096 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5097 5098 if (se->on_rq) 5099 break; 5100 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5101 5102 if (cfs_rq_is_idle(group_cfs_rq(se))) 5103 idle_task_delta = cfs_rq->h_nr_running; 5104 5105 qcfs_rq->h_nr_running += task_delta; 5106 qcfs_rq->idle_h_nr_running += idle_task_delta; 5107 5108 /* end evaluation on encountering a throttled cfs_rq */ 5109 if (cfs_rq_throttled(qcfs_rq)) 5110 goto unthrottle_throttle; 5111 } 5112 5113 for_each_sched_entity(se) { 5114 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5115 5116 update_load_avg(qcfs_rq, se, UPDATE_TG); 5117 se_update_runnable(se); 5118 5119 if (cfs_rq_is_idle(group_cfs_rq(se))) 5120 idle_task_delta = cfs_rq->h_nr_running; 5121 5122 qcfs_rq->h_nr_running += task_delta; 5123 qcfs_rq->idle_h_nr_running += idle_task_delta; 5124 5125 /* end evaluation on encountering a throttled cfs_rq */ 5126 if (cfs_rq_throttled(qcfs_rq)) 5127 goto unthrottle_throttle; 5128 } 5129 5130 /* At this point se is NULL and we are at root level*/ 5131 add_nr_running(rq, task_delta); 5132 5133 unthrottle_throttle: 5134 assert_list_leaf_cfs_rq(rq); 5135 5136 /* Determine whether we need to wake up potentially idle CPU: */ 5137 if (rq->curr == rq->idle && rq->cfs.nr_running) 5138 resched_curr(rq); 5139 } 5140 5141 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5142 { 5143 struct cfs_rq *cfs_rq; 5144 u64 runtime, remaining = 1; 5145 5146 rcu_read_lock(); 5147 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5148 throttled_list) { 5149 struct rq *rq = rq_of(cfs_rq); 5150 struct rq_flags rf; 5151 5152 rq_lock_irqsave(rq, &rf); 5153 if (!cfs_rq_throttled(cfs_rq)) 5154 goto next; 5155 5156 /* By the above check, this should never be true */ 5157 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5158 5159 raw_spin_lock(&cfs_b->lock); 5160 runtime = -cfs_rq->runtime_remaining + 1; 5161 if (runtime > cfs_b->runtime) 5162 runtime = cfs_b->runtime; 5163 cfs_b->runtime -= runtime; 5164 remaining = cfs_b->runtime; 5165 raw_spin_unlock(&cfs_b->lock); 5166 5167 cfs_rq->runtime_remaining += runtime; 5168 5169 /* we check whether we're throttled above */ 5170 if (cfs_rq->runtime_remaining > 0) 5171 unthrottle_cfs_rq(cfs_rq); 5172 5173 next: 5174 rq_unlock_irqrestore(rq, &rf); 5175 5176 if (!remaining) 5177 break; 5178 } 5179 rcu_read_unlock(); 5180 } 5181 5182 /* 5183 * Responsible for refilling a task_group's bandwidth and unthrottling its 5184 * cfs_rqs as appropriate. If there has been no activity within the last 5185 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5186 * used to track this state. 5187 */ 5188 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5189 { 5190 int throttled; 5191 5192 /* no need to continue the timer with no bandwidth constraint */ 5193 if (cfs_b->quota == RUNTIME_INF) 5194 goto out_deactivate; 5195 5196 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5197 cfs_b->nr_periods += overrun; 5198 5199 /* Refill extra burst quota even if cfs_b->idle */ 5200 __refill_cfs_bandwidth_runtime(cfs_b); 5201 5202 /* 5203 * idle depends on !throttled (for the case of a large deficit), and if 5204 * we're going inactive then everything else can be deferred 5205 */ 5206 if (cfs_b->idle && !throttled) 5207 goto out_deactivate; 5208 5209 if (!throttled) { 5210 /* mark as potentially idle for the upcoming period */ 5211 cfs_b->idle = 1; 5212 return 0; 5213 } 5214 5215 /* account preceding periods in which throttling occurred */ 5216 cfs_b->nr_throttled += overrun; 5217 5218 /* 5219 * This check is repeated as we release cfs_b->lock while we unthrottle. 5220 */ 5221 while (throttled && cfs_b->runtime > 0) { 5222 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5223 /* we can't nest cfs_b->lock while distributing bandwidth */ 5224 distribute_cfs_runtime(cfs_b); 5225 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5226 5227 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5228 } 5229 5230 /* 5231 * While we are ensured activity in the period following an 5232 * unthrottle, this also covers the case in which the new bandwidth is 5233 * insufficient to cover the existing bandwidth deficit. (Forcing the 5234 * timer to remain active while there are any throttled entities.) 5235 */ 5236 cfs_b->idle = 0; 5237 5238 return 0; 5239 5240 out_deactivate: 5241 return 1; 5242 } 5243 5244 /* a cfs_rq won't donate quota below this amount */ 5245 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5246 /* minimum remaining period time to redistribute slack quota */ 5247 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5248 /* how long we wait to gather additional slack before distributing */ 5249 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5250 5251 /* 5252 * Are we near the end of the current quota period? 5253 * 5254 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5255 * hrtimer base being cleared by hrtimer_start. In the case of 5256 * migrate_hrtimers, base is never cleared, so we are fine. 5257 */ 5258 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5259 { 5260 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5261 s64 remaining; 5262 5263 /* if the call-back is running a quota refresh is already occurring */ 5264 if (hrtimer_callback_running(refresh_timer)) 5265 return 1; 5266 5267 /* is a quota refresh about to occur? */ 5268 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5269 if (remaining < (s64)min_expire) 5270 return 1; 5271 5272 return 0; 5273 } 5274 5275 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5276 { 5277 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5278 5279 /* if there's a quota refresh soon don't bother with slack */ 5280 if (runtime_refresh_within(cfs_b, min_left)) 5281 return; 5282 5283 /* don't push forwards an existing deferred unthrottle */ 5284 if (cfs_b->slack_started) 5285 return; 5286 cfs_b->slack_started = true; 5287 5288 hrtimer_start(&cfs_b->slack_timer, 5289 ns_to_ktime(cfs_bandwidth_slack_period), 5290 HRTIMER_MODE_REL); 5291 } 5292 5293 /* we know any runtime found here is valid as update_curr() precedes return */ 5294 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5295 { 5296 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5297 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5298 5299 if (slack_runtime <= 0) 5300 return; 5301 5302 raw_spin_lock(&cfs_b->lock); 5303 if (cfs_b->quota != RUNTIME_INF) { 5304 cfs_b->runtime += slack_runtime; 5305 5306 /* we are under rq->lock, defer unthrottling using a timer */ 5307 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5308 !list_empty(&cfs_b->throttled_cfs_rq)) 5309 start_cfs_slack_bandwidth(cfs_b); 5310 } 5311 raw_spin_unlock(&cfs_b->lock); 5312 5313 /* even if it's not valid for return we don't want to try again */ 5314 cfs_rq->runtime_remaining -= slack_runtime; 5315 } 5316 5317 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5318 { 5319 if (!cfs_bandwidth_used()) 5320 return; 5321 5322 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5323 return; 5324 5325 __return_cfs_rq_runtime(cfs_rq); 5326 } 5327 5328 /* 5329 * This is done with a timer (instead of inline with bandwidth return) since 5330 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5331 */ 5332 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5333 { 5334 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5335 unsigned long flags; 5336 5337 /* confirm we're still not at a refresh boundary */ 5338 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5339 cfs_b->slack_started = false; 5340 5341 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5342 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5343 return; 5344 } 5345 5346 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5347 runtime = cfs_b->runtime; 5348 5349 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5350 5351 if (!runtime) 5352 return; 5353 5354 distribute_cfs_runtime(cfs_b); 5355 } 5356 5357 /* 5358 * When a group wakes up we want to make sure that its quota is not already 5359 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5360 * runtime as update_curr() throttling can not trigger until it's on-rq. 5361 */ 5362 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5363 { 5364 if (!cfs_bandwidth_used()) 5365 return; 5366 5367 /* an active group must be handled by the update_curr()->put() path */ 5368 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5369 return; 5370 5371 /* ensure the group is not already throttled */ 5372 if (cfs_rq_throttled(cfs_rq)) 5373 return; 5374 5375 /* update runtime allocation */ 5376 account_cfs_rq_runtime(cfs_rq, 0); 5377 if (cfs_rq->runtime_remaining <= 0) 5378 throttle_cfs_rq(cfs_rq); 5379 } 5380 5381 static void sync_throttle(struct task_group *tg, int cpu) 5382 { 5383 struct cfs_rq *pcfs_rq, *cfs_rq; 5384 5385 if (!cfs_bandwidth_used()) 5386 return; 5387 5388 if (!tg->parent) 5389 return; 5390 5391 cfs_rq = tg->cfs_rq[cpu]; 5392 pcfs_rq = tg->parent->cfs_rq[cpu]; 5393 5394 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5395 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 5396 } 5397 5398 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5399 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5400 { 5401 if (!cfs_bandwidth_used()) 5402 return false; 5403 5404 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5405 return false; 5406 5407 /* 5408 * it's possible for a throttled entity to be forced into a running 5409 * state (e.g. set_curr_task), in this case we're finished. 5410 */ 5411 if (cfs_rq_throttled(cfs_rq)) 5412 return true; 5413 5414 return throttle_cfs_rq(cfs_rq); 5415 } 5416 5417 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5418 { 5419 struct cfs_bandwidth *cfs_b = 5420 container_of(timer, struct cfs_bandwidth, slack_timer); 5421 5422 do_sched_cfs_slack_timer(cfs_b); 5423 5424 return HRTIMER_NORESTART; 5425 } 5426 5427 extern const u64 max_cfs_quota_period; 5428 5429 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5430 { 5431 struct cfs_bandwidth *cfs_b = 5432 container_of(timer, struct cfs_bandwidth, period_timer); 5433 unsigned long flags; 5434 int overrun; 5435 int idle = 0; 5436 int count = 0; 5437 5438 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5439 for (;;) { 5440 overrun = hrtimer_forward_now(timer, cfs_b->period); 5441 if (!overrun) 5442 break; 5443 5444 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5445 5446 if (++count > 3) { 5447 u64 new, old = ktime_to_ns(cfs_b->period); 5448 5449 /* 5450 * Grow period by a factor of 2 to avoid losing precision. 5451 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5452 * to fail. 5453 */ 5454 new = old * 2; 5455 if (new < max_cfs_quota_period) { 5456 cfs_b->period = ns_to_ktime(new); 5457 cfs_b->quota *= 2; 5458 cfs_b->burst *= 2; 5459 5460 pr_warn_ratelimited( 5461 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5462 smp_processor_id(), 5463 div_u64(new, NSEC_PER_USEC), 5464 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5465 } else { 5466 pr_warn_ratelimited( 5467 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5468 smp_processor_id(), 5469 div_u64(old, NSEC_PER_USEC), 5470 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5471 } 5472 5473 /* reset count so we don't come right back in here */ 5474 count = 0; 5475 } 5476 } 5477 if (idle) 5478 cfs_b->period_active = 0; 5479 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5480 5481 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5482 } 5483 5484 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5485 { 5486 raw_spin_lock_init(&cfs_b->lock); 5487 cfs_b->runtime = 0; 5488 cfs_b->quota = RUNTIME_INF; 5489 cfs_b->period = ns_to_ktime(default_cfs_period()); 5490 cfs_b->burst = 0; 5491 5492 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5493 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5494 cfs_b->period_timer.function = sched_cfs_period_timer; 5495 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5496 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5497 cfs_b->slack_started = false; 5498 } 5499 5500 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5501 { 5502 cfs_rq->runtime_enabled = 0; 5503 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5504 } 5505 5506 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5507 { 5508 lockdep_assert_held(&cfs_b->lock); 5509 5510 if (cfs_b->period_active) 5511 return; 5512 5513 cfs_b->period_active = 1; 5514 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5515 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5516 } 5517 5518 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5519 { 5520 /* init_cfs_bandwidth() was not called */ 5521 if (!cfs_b->throttled_cfs_rq.next) 5522 return; 5523 5524 hrtimer_cancel(&cfs_b->period_timer); 5525 hrtimer_cancel(&cfs_b->slack_timer); 5526 } 5527 5528 /* 5529 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5530 * 5531 * The race is harmless, since modifying bandwidth settings of unhooked group 5532 * bits doesn't do much. 5533 */ 5534 5535 /* cpu online callback */ 5536 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5537 { 5538 struct task_group *tg; 5539 5540 lockdep_assert_rq_held(rq); 5541 5542 rcu_read_lock(); 5543 list_for_each_entry_rcu(tg, &task_groups, list) { 5544 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5545 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5546 5547 raw_spin_lock(&cfs_b->lock); 5548 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5549 raw_spin_unlock(&cfs_b->lock); 5550 } 5551 rcu_read_unlock(); 5552 } 5553 5554 /* cpu offline callback */ 5555 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5556 { 5557 struct task_group *tg; 5558 5559 lockdep_assert_rq_held(rq); 5560 5561 rcu_read_lock(); 5562 list_for_each_entry_rcu(tg, &task_groups, list) { 5563 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5564 5565 if (!cfs_rq->runtime_enabled) 5566 continue; 5567 5568 /* 5569 * clock_task is not advancing so we just need to make sure 5570 * there's some valid quota amount 5571 */ 5572 cfs_rq->runtime_remaining = 1; 5573 /* 5574 * Offline rq is schedulable till CPU is completely disabled 5575 * in take_cpu_down(), so we prevent new cfs throttling here. 5576 */ 5577 cfs_rq->runtime_enabled = 0; 5578 5579 if (cfs_rq_throttled(cfs_rq)) 5580 unthrottle_cfs_rq(cfs_rq); 5581 } 5582 rcu_read_unlock(); 5583 } 5584 5585 #else /* CONFIG_CFS_BANDWIDTH */ 5586 5587 static inline bool cfs_bandwidth_used(void) 5588 { 5589 return false; 5590 } 5591 5592 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5593 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5594 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5595 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5596 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5597 5598 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5599 { 5600 return 0; 5601 } 5602 5603 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5604 { 5605 return 0; 5606 } 5607 5608 static inline int throttled_lb_pair(struct task_group *tg, 5609 int src_cpu, int dest_cpu) 5610 { 5611 return 0; 5612 } 5613 5614 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5615 5616 #ifdef CONFIG_FAIR_GROUP_SCHED 5617 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5618 #endif 5619 5620 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5621 { 5622 return NULL; 5623 } 5624 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5625 static inline void update_runtime_enabled(struct rq *rq) {} 5626 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5627 5628 #endif /* CONFIG_CFS_BANDWIDTH */ 5629 5630 /************************************************** 5631 * CFS operations on tasks: 5632 */ 5633 5634 #ifdef CONFIG_SCHED_HRTICK 5635 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5636 { 5637 struct sched_entity *se = &p->se; 5638 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5639 5640 SCHED_WARN_ON(task_rq(p) != rq); 5641 5642 if (rq->cfs.h_nr_running > 1) { 5643 u64 slice = sched_slice(cfs_rq, se); 5644 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5645 s64 delta = slice - ran; 5646 5647 if (delta < 0) { 5648 if (task_current(rq, p)) 5649 resched_curr(rq); 5650 return; 5651 } 5652 hrtick_start(rq, delta); 5653 } 5654 } 5655 5656 /* 5657 * called from enqueue/dequeue and updates the hrtick when the 5658 * current task is from our class and nr_running is low enough 5659 * to matter. 5660 */ 5661 static void hrtick_update(struct rq *rq) 5662 { 5663 struct task_struct *curr = rq->curr; 5664 5665 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 5666 return; 5667 5668 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5669 hrtick_start_fair(rq, curr); 5670 } 5671 #else /* !CONFIG_SCHED_HRTICK */ 5672 static inline void 5673 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5674 { 5675 } 5676 5677 static inline void hrtick_update(struct rq *rq) 5678 { 5679 } 5680 #endif 5681 5682 #ifdef CONFIG_SMP 5683 static inline bool cpu_overutilized(int cpu) 5684 { 5685 return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu)); 5686 } 5687 5688 static inline void update_overutilized_status(struct rq *rq) 5689 { 5690 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5691 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5692 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5693 } 5694 } 5695 #else 5696 static inline void update_overutilized_status(struct rq *rq) { } 5697 #endif 5698 5699 /* Runqueue only has SCHED_IDLE tasks enqueued */ 5700 static int sched_idle_rq(struct rq *rq) 5701 { 5702 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5703 rq->nr_running); 5704 } 5705 5706 /* 5707 * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use 5708 * of idle_nr_running, which does not consider idle descendants of normal 5709 * entities. 5710 */ 5711 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq) 5712 { 5713 return cfs_rq->nr_running && 5714 cfs_rq->nr_running == cfs_rq->idle_nr_running; 5715 } 5716 5717 #ifdef CONFIG_SMP 5718 static int sched_idle_cpu(int cpu) 5719 { 5720 return sched_idle_rq(cpu_rq(cpu)); 5721 } 5722 #endif 5723 5724 /* 5725 * The enqueue_task method is called before nr_running is 5726 * increased. Here we update the fair scheduling stats and 5727 * then put the task into the rbtree: 5728 */ 5729 static void 5730 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5731 { 5732 struct cfs_rq *cfs_rq; 5733 struct sched_entity *se = &p->se; 5734 int idle_h_nr_running = task_has_idle_policy(p); 5735 int task_new = !(flags & ENQUEUE_WAKEUP); 5736 5737 /* 5738 * The code below (indirectly) updates schedutil which looks at 5739 * the cfs_rq utilization to select a frequency. 5740 * Let's add the task's estimated utilization to the cfs_rq's 5741 * estimated utilization, before we update schedutil. 5742 */ 5743 util_est_enqueue(&rq->cfs, p); 5744 5745 /* 5746 * If in_iowait is set, the code below may not trigger any cpufreq 5747 * utilization updates, so do it here explicitly with the IOWAIT flag 5748 * passed. 5749 */ 5750 if (p->in_iowait) 5751 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5752 5753 for_each_sched_entity(se) { 5754 if (se->on_rq) 5755 break; 5756 cfs_rq = cfs_rq_of(se); 5757 enqueue_entity(cfs_rq, se, flags); 5758 5759 cfs_rq->h_nr_running++; 5760 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5761 5762 if (cfs_rq_is_idle(cfs_rq)) 5763 idle_h_nr_running = 1; 5764 5765 /* end evaluation on encountering a throttled cfs_rq */ 5766 if (cfs_rq_throttled(cfs_rq)) 5767 goto enqueue_throttle; 5768 5769 flags = ENQUEUE_WAKEUP; 5770 } 5771 5772 for_each_sched_entity(se) { 5773 cfs_rq = cfs_rq_of(se); 5774 5775 update_load_avg(cfs_rq, se, UPDATE_TG); 5776 se_update_runnable(se); 5777 update_cfs_group(se); 5778 5779 cfs_rq->h_nr_running++; 5780 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5781 5782 if (cfs_rq_is_idle(cfs_rq)) 5783 idle_h_nr_running = 1; 5784 5785 /* end evaluation on encountering a throttled cfs_rq */ 5786 if (cfs_rq_throttled(cfs_rq)) 5787 goto enqueue_throttle; 5788 } 5789 5790 /* At this point se is NULL and we are at root level*/ 5791 add_nr_running(rq, 1); 5792 5793 /* 5794 * Since new tasks are assigned an initial util_avg equal to 5795 * half of the spare capacity of their CPU, tiny tasks have the 5796 * ability to cross the overutilized threshold, which will 5797 * result in the load balancer ruining all the task placement 5798 * done by EAS. As a way to mitigate that effect, do not account 5799 * for the first enqueue operation of new tasks during the 5800 * overutilized flag detection. 5801 * 5802 * A better way of solving this problem would be to wait for 5803 * the PELT signals of tasks to converge before taking them 5804 * into account, but that is not straightforward to implement, 5805 * and the following generally works well enough in practice. 5806 */ 5807 if (!task_new) 5808 update_overutilized_status(rq); 5809 5810 enqueue_throttle: 5811 assert_list_leaf_cfs_rq(rq); 5812 5813 hrtick_update(rq); 5814 } 5815 5816 static void set_next_buddy(struct sched_entity *se); 5817 5818 /* 5819 * The dequeue_task method is called before nr_running is 5820 * decreased. We remove the task from the rbtree and 5821 * update the fair scheduling stats: 5822 */ 5823 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5824 { 5825 struct cfs_rq *cfs_rq; 5826 struct sched_entity *se = &p->se; 5827 int task_sleep = flags & DEQUEUE_SLEEP; 5828 int idle_h_nr_running = task_has_idle_policy(p); 5829 bool was_sched_idle = sched_idle_rq(rq); 5830 5831 util_est_dequeue(&rq->cfs, p); 5832 5833 for_each_sched_entity(se) { 5834 cfs_rq = cfs_rq_of(se); 5835 dequeue_entity(cfs_rq, se, flags); 5836 5837 cfs_rq->h_nr_running--; 5838 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5839 5840 if (cfs_rq_is_idle(cfs_rq)) 5841 idle_h_nr_running = 1; 5842 5843 /* end evaluation on encountering a throttled cfs_rq */ 5844 if (cfs_rq_throttled(cfs_rq)) 5845 goto dequeue_throttle; 5846 5847 /* Don't dequeue parent if it has other entities besides us */ 5848 if (cfs_rq->load.weight) { 5849 /* Avoid re-evaluating load for this entity: */ 5850 se = parent_entity(se); 5851 /* 5852 * Bias pick_next to pick a task from this cfs_rq, as 5853 * p is sleeping when it is within its sched_slice. 5854 */ 5855 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5856 set_next_buddy(se); 5857 break; 5858 } 5859 flags |= DEQUEUE_SLEEP; 5860 } 5861 5862 for_each_sched_entity(se) { 5863 cfs_rq = cfs_rq_of(se); 5864 5865 update_load_avg(cfs_rq, se, UPDATE_TG); 5866 se_update_runnable(se); 5867 update_cfs_group(se); 5868 5869 cfs_rq->h_nr_running--; 5870 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5871 5872 if (cfs_rq_is_idle(cfs_rq)) 5873 idle_h_nr_running = 1; 5874 5875 /* end evaluation on encountering a throttled cfs_rq */ 5876 if (cfs_rq_throttled(cfs_rq)) 5877 goto dequeue_throttle; 5878 5879 } 5880 5881 /* At this point se is NULL and we are at root level*/ 5882 sub_nr_running(rq, 1); 5883 5884 /* balance early to pull high priority tasks */ 5885 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 5886 rq->next_balance = jiffies; 5887 5888 dequeue_throttle: 5889 util_est_update(&rq->cfs, p, task_sleep); 5890 hrtick_update(rq); 5891 } 5892 5893 #ifdef CONFIG_SMP 5894 5895 /* Working cpumask for: load_balance, load_balance_newidle. */ 5896 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5897 DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 5898 5899 #ifdef CONFIG_NO_HZ_COMMON 5900 5901 static struct { 5902 cpumask_var_t idle_cpus_mask; 5903 atomic_t nr_cpus; 5904 int has_blocked; /* Idle CPUS has blocked load */ 5905 int needs_update; /* Newly idle CPUs need their next_balance collated */ 5906 unsigned long next_balance; /* in jiffy units */ 5907 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5908 } nohz ____cacheline_aligned; 5909 5910 #endif /* CONFIG_NO_HZ_COMMON */ 5911 5912 static unsigned long cpu_load(struct rq *rq) 5913 { 5914 return cfs_rq_load_avg(&rq->cfs); 5915 } 5916 5917 /* 5918 * cpu_load_without - compute CPU load without any contributions from *p 5919 * @cpu: the CPU which load is requested 5920 * @p: the task which load should be discounted 5921 * 5922 * The load of a CPU is defined by the load of tasks currently enqueued on that 5923 * CPU as well as tasks which are currently sleeping after an execution on that 5924 * CPU. 5925 * 5926 * This method returns the load of the specified CPU by discounting the load of 5927 * the specified task, whenever the task is currently contributing to the CPU 5928 * load. 5929 */ 5930 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 5931 { 5932 struct cfs_rq *cfs_rq; 5933 unsigned int load; 5934 5935 /* Task has no contribution or is new */ 5936 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5937 return cpu_load(rq); 5938 5939 cfs_rq = &rq->cfs; 5940 load = READ_ONCE(cfs_rq->avg.load_avg); 5941 5942 /* Discount task's util from CPU's util */ 5943 lsub_positive(&load, task_h_load(p)); 5944 5945 return load; 5946 } 5947 5948 static unsigned long cpu_runnable(struct rq *rq) 5949 { 5950 return cfs_rq_runnable_avg(&rq->cfs); 5951 } 5952 5953 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 5954 { 5955 struct cfs_rq *cfs_rq; 5956 unsigned int runnable; 5957 5958 /* Task has no contribution or is new */ 5959 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5960 return cpu_runnable(rq); 5961 5962 cfs_rq = &rq->cfs; 5963 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 5964 5965 /* Discount task's runnable from CPU's runnable */ 5966 lsub_positive(&runnable, p->se.avg.runnable_avg); 5967 5968 return runnable; 5969 } 5970 5971 static unsigned long capacity_of(int cpu) 5972 { 5973 return cpu_rq(cpu)->cpu_capacity; 5974 } 5975 5976 static void record_wakee(struct task_struct *p) 5977 { 5978 /* 5979 * Only decay a single time; tasks that have less then 1 wakeup per 5980 * jiffy will not have built up many flips. 5981 */ 5982 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5983 current->wakee_flips >>= 1; 5984 current->wakee_flip_decay_ts = jiffies; 5985 } 5986 5987 if (current->last_wakee != p) { 5988 current->last_wakee = p; 5989 current->wakee_flips++; 5990 } 5991 } 5992 5993 /* 5994 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5995 * 5996 * A waker of many should wake a different task than the one last awakened 5997 * at a frequency roughly N times higher than one of its wakees. 5998 * 5999 * In order to determine whether we should let the load spread vs consolidating 6000 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 6001 * partner, and a factor of lls_size higher frequency in the other. 6002 * 6003 * With both conditions met, we can be relatively sure that the relationship is 6004 * non-monogamous, with partner count exceeding socket size. 6005 * 6006 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 6007 * whatever is irrelevant, spread criteria is apparent partner count exceeds 6008 * socket size. 6009 */ 6010 static int wake_wide(struct task_struct *p) 6011 { 6012 unsigned int master = current->wakee_flips; 6013 unsigned int slave = p->wakee_flips; 6014 int factor = __this_cpu_read(sd_llc_size); 6015 6016 if (master < slave) 6017 swap(master, slave); 6018 if (slave < factor || master < slave * factor) 6019 return 0; 6020 return 1; 6021 } 6022 6023 /* 6024 * The purpose of wake_affine() is to quickly determine on which CPU we can run 6025 * soonest. For the purpose of speed we only consider the waking and previous 6026 * CPU. 6027 * 6028 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 6029 * cache-affine and is (or will be) idle. 6030 * 6031 * wake_affine_weight() - considers the weight to reflect the average 6032 * scheduling latency of the CPUs. This seems to work 6033 * for the overloaded case. 6034 */ 6035 static int 6036 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 6037 { 6038 /* 6039 * If this_cpu is idle, it implies the wakeup is from interrupt 6040 * context. Only allow the move if cache is shared. Otherwise an 6041 * interrupt intensive workload could force all tasks onto one 6042 * node depending on the IO topology or IRQ affinity settings. 6043 * 6044 * If the prev_cpu is idle and cache affine then avoid a migration. 6045 * There is no guarantee that the cache hot data from an interrupt 6046 * is more important than cache hot data on the prev_cpu and from 6047 * a cpufreq perspective, it's better to have higher utilisation 6048 * on one CPU. 6049 */ 6050 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 6051 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 6052 6053 if (sync && cpu_rq(this_cpu)->nr_running == 1) 6054 return this_cpu; 6055 6056 if (available_idle_cpu(prev_cpu)) 6057 return prev_cpu; 6058 6059 return nr_cpumask_bits; 6060 } 6061 6062 static int 6063 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 6064 int this_cpu, int prev_cpu, int sync) 6065 { 6066 s64 this_eff_load, prev_eff_load; 6067 unsigned long task_load; 6068 6069 this_eff_load = cpu_load(cpu_rq(this_cpu)); 6070 6071 if (sync) { 6072 unsigned long current_load = task_h_load(current); 6073 6074 if (current_load > this_eff_load) 6075 return this_cpu; 6076 6077 this_eff_load -= current_load; 6078 } 6079 6080 task_load = task_h_load(p); 6081 6082 this_eff_load += task_load; 6083 if (sched_feat(WA_BIAS)) 6084 this_eff_load *= 100; 6085 this_eff_load *= capacity_of(prev_cpu); 6086 6087 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 6088 prev_eff_load -= task_load; 6089 if (sched_feat(WA_BIAS)) 6090 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 6091 prev_eff_load *= capacity_of(this_cpu); 6092 6093 /* 6094 * If sync, adjust the weight of prev_eff_load such that if 6095 * prev_eff == this_eff that select_idle_sibling() will consider 6096 * stacking the wakee on top of the waker if no other CPU is 6097 * idle. 6098 */ 6099 if (sync) 6100 prev_eff_load += 1; 6101 6102 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 6103 } 6104 6105 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 6106 int this_cpu, int prev_cpu, int sync) 6107 { 6108 int target = nr_cpumask_bits; 6109 6110 if (sched_feat(WA_IDLE)) 6111 target = wake_affine_idle(this_cpu, prev_cpu, sync); 6112 6113 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 6114 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 6115 6116 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 6117 if (target == nr_cpumask_bits) 6118 return prev_cpu; 6119 6120 schedstat_inc(sd->ttwu_move_affine); 6121 schedstat_inc(p->stats.nr_wakeups_affine); 6122 return target; 6123 } 6124 6125 static struct sched_group * 6126 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 6127 6128 /* 6129 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 6130 */ 6131 static int 6132 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 6133 { 6134 unsigned long load, min_load = ULONG_MAX; 6135 unsigned int min_exit_latency = UINT_MAX; 6136 u64 latest_idle_timestamp = 0; 6137 int least_loaded_cpu = this_cpu; 6138 int shallowest_idle_cpu = -1; 6139 int i; 6140 6141 /* Check if we have any choice: */ 6142 if (group->group_weight == 1) 6143 return cpumask_first(sched_group_span(group)); 6144 6145 /* Traverse only the allowed CPUs */ 6146 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 6147 struct rq *rq = cpu_rq(i); 6148 6149 if (!sched_core_cookie_match(rq, p)) 6150 continue; 6151 6152 if (sched_idle_cpu(i)) 6153 return i; 6154 6155 if (available_idle_cpu(i)) { 6156 struct cpuidle_state *idle = idle_get_state(rq); 6157 if (idle && idle->exit_latency < min_exit_latency) { 6158 /* 6159 * We give priority to a CPU whose idle state 6160 * has the smallest exit latency irrespective 6161 * of any idle timestamp. 6162 */ 6163 min_exit_latency = idle->exit_latency; 6164 latest_idle_timestamp = rq->idle_stamp; 6165 shallowest_idle_cpu = i; 6166 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6167 rq->idle_stamp > latest_idle_timestamp) { 6168 /* 6169 * If equal or no active idle state, then 6170 * the most recently idled CPU might have 6171 * a warmer cache. 6172 */ 6173 latest_idle_timestamp = rq->idle_stamp; 6174 shallowest_idle_cpu = i; 6175 } 6176 } else if (shallowest_idle_cpu == -1) { 6177 load = cpu_load(cpu_rq(i)); 6178 if (load < min_load) { 6179 min_load = load; 6180 least_loaded_cpu = i; 6181 } 6182 } 6183 } 6184 6185 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6186 } 6187 6188 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6189 int cpu, int prev_cpu, int sd_flag) 6190 { 6191 int new_cpu = cpu; 6192 6193 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 6194 return prev_cpu; 6195 6196 /* 6197 * We need task's util for cpu_util_without, sync it up to 6198 * prev_cpu's last_update_time. 6199 */ 6200 if (!(sd_flag & SD_BALANCE_FORK)) 6201 sync_entity_load_avg(&p->se); 6202 6203 while (sd) { 6204 struct sched_group *group; 6205 struct sched_domain *tmp; 6206 int weight; 6207 6208 if (!(sd->flags & sd_flag)) { 6209 sd = sd->child; 6210 continue; 6211 } 6212 6213 group = find_idlest_group(sd, p, cpu); 6214 if (!group) { 6215 sd = sd->child; 6216 continue; 6217 } 6218 6219 new_cpu = find_idlest_group_cpu(group, p, cpu); 6220 if (new_cpu == cpu) { 6221 /* Now try balancing at a lower domain level of 'cpu': */ 6222 sd = sd->child; 6223 continue; 6224 } 6225 6226 /* Now try balancing at a lower domain level of 'new_cpu': */ 6227 cpu = new_cpu; 6228 weight = sd->span_weight; 6229 sd = NULL; 6230 for_each_domain(cpu, tmp) { 6231 if (weight <= tmp->span_weight) 6232 break; 6233 if (tmp->flags & sd_flag) 6234 sd = tmp; 6235 } 6236 } 6237 6238 return new_cpu; 6239 } 6240 6241 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 6242 { 6243 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 6244 sched_cpu_cookie_match(cpu_rq(cpu), p)) 6245 return cpu; 6246 6247 return -1; 6248 } 6249 6250 #ifdef CONFIG_SCHED_SMT 6251 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6252 EXPORT_SYMBOL_GPL(sched_smt_present); 6253 6254 static inline void set_idle_cores(int cpu, int val) 6255 { 6256 struct sched_domain_shared *sds; 6257 6258 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6259 if (sds) 6260 WRITE_ONCE(sds->has_idle_cores, val); 6261 } 6262 6263 static inline bool test_idle_cores(int cpu, bool def) 6264 { 6265 struct sched_domain_shared *sds; 6266 6267 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6268 if (sds) 6269 return READ_ONCE(sds->has_idle_cores); 6270 6271 return def; 6272 } 6273 6274 /* 6275 * Scans the local SMT mask to see if the entire core is idle, and records this 6276 * information in sd_llc_shared->has_idle_cores. 6277 * 6278 * Since SMT siblings share all cache levels, inspecting this limited remote 6279 * state should be fairly cheap. 6280 */ 6281 void __update_idle_core(struct rq *rq) 6282 { 6283 int core = cpu_of(rq); 6284 int cpu; 6285 6286 rcu_read_lock(); 6287 if (test_idle_cores(core, true)) 6288 goto unlock; 6289 6290 for_each_cpu(cpu, cpu_smt_mask(core)) { 6291 if (cpu == core) 6292 continue; 6293 6294 if (!available_idle_cpu(cpu)) 6295 goto unlock; 6296 } 6297 6298 set_idle_cores(core, 1); 6299 unlock: 6300 rcu_read_unlock(); 6301 } 6302 6303 /* 6304 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6305 * there are no idle cores left in the system; tracked through 6306 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6307 */ 6308 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6309 { 6310 bool idle = true; 6311 int cpu; 6312 6313 if (!static_branch_likely(&sched_smt_present)) 6314 return __select_idle_cpu(core, p); 6315 6316 for_each_cpu(cpu, cpu_smt_mask(core)) { 6317 if (!available_idle_cpu(cpu)) { 6318 idle = false; 6319 if (*idle_cpu == -1) { 6320 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 6321 *idle_cpu = cpu; 6322 break; 6323 } 6324 continue; 6325 } 6326 break; 6327 } 6328 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 6329 *idle_cpu = cpu; 6330 } 6331 6332 if (idle) 6333 return core; 6334 6335 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6336 return -1; 6337 } 6338 6339 /* 6340 * Scan the local SMT mask for idle CPUs. 6341 */ 6342 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6343 { 6344 int cpu; 6345 6346 for_each_cpu(cpu, cpu_smt_mask(target)) { 6347 if (!cpumask_test_cpu(cpu, p->cpus_ptr) || 6348 !cpumask_test_cpu(cpu, sched_domain_span(sd))) 6349 continue; 6350 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6351 return cpu; 6352 } 6353 6354 return -1; 6355 } 6356 6357 #else /* CONFIG_SCHED_SMT */ 6358 6359 static inline void set_idle_cores(int cpu, int val) 6360 { 6361 } 6362 6363 static inline bool test_idle_cores(int cpu, bool def) 6364 { 6365 return def; 6366 } 6367 6368 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6369 { 6370 return __select_idle_cpu(core, p); 6371 } 6372 6373 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6374 { 6375 return -1; 6376 } 6377 6378 #endif /* CONFIG_SCHED_SMT */ 6379 6380 /* 6381 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6382 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6383 * average idle time for this rq (as found in rq->avg_idle). 6384 */ 6385 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 6386 { 6387 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 6388 int i, cpu, idle_cpu = -1, nr = INT_MAX; 6389 struct sched_domain_shared *sd_share; 6390 struct rq *this_rq = this_rq(); 6391 int this = smp_processor_id(); 6392 struct sched_domain *this_sd; 6393 u64 time = 0; 6394 6395 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6396 if (!this_sd) 6397 return -1; 6398 6399 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6400 6401 if (sched_feat(SIS_PROP) && !has_idle_core) { 6402 u64 avg_cost, avg_idle, span_avg; 6403 unsigned long now = jiffies; 6404 6405 /* 6406 * If we're busy, the assumption that the last idle period 6407 * predicts the future is flawed; age away the remaining 6408 * predicted idle time. 6409 */ 6410 if (unlikely(this_rq->wake_stamp < now)) { 6411 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 6412 this_rq->wake_stamp++; 6413 this_rq->wake_avg_idle >>= 1; 6414 } 6415 } 6416 6417 avg_idle = this_rq->wake_avg_idle; 6418 avg_cost = this_sd->avg_scan_cost + 1; 6419 6420 span_avg = sd->span_weight * avg_idle; 6421 if (span_avg > 4*avg_cost) 6422 nr = div_u64(span_avg, avg_cost); 6423 else 6424 nr = 4; 6425 6426 time = cpu_clock(this); 6427 } 6428 6429 if (sched_feat(SIS_UTIL)) { 6430 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 6431 if (sd_share) { 6432 /* because !--nr is the condition to stop scan */ 6433 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 6434 /* overloaded LLC is unlikely to have idle cpu/core */ 6435 if (nr == 1) 6436 return -1; 6437 } 6438 } 6439 6440 for_each_cpu_wrap(cpu, cpus, target + 1) { 6441 if (has_idle_core) { 6442 i = select_idle_core(p, cpu, cpus, &idle_cpu); 6443 if ((unsigned int)i < nr_cpumask_bits) 6444 return i; 6445 6446 } else { 6447 if (!--nr) 6448 return -1; 6449 idle_cpu = __select_idle_cpu(cpu, p); 6450 if ((unsigned int)idle_cpu < nr_cpumask_bits) 6451 break; 6452 } 6453 } 6454 6455 if (has_idle_core) 6456 set_idle_cores(target, false); 6457 6458 if (sched_feat(SIS_PROP) && !has_idle_core) { 6459 time = cpu_clock(this) - time; 6460 6461 /* 6462 * Account for the scan cost of wakeups against the average 6463 * idle time. 6464 */ 6465 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 6466 6467 update_avg(&this_sd->avg_scan_cost, time); 6468 } 6469 6470 return idle_cpu; 6471 } 6472 6473 /* 6474 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6475 * the task fits. If no CPU is big enough, but there are idle ones, try to 6476 * maximize capacity. 6477 */ 6478 static int 6479 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6480 { 6481 unsigned long task_util, best_cap = 0; 6482 int cpu, best_cpu = -1; 6483 struct cpumask *cpus; 6484 6485 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 6486 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6487 6488 task_util = uclamp_task_util(p); 6489 6490 for_each_cpu_wrap(cpu, cpus, target) { 6491 unsigned long cpu_cap = capacity_of(cpu); 6492 6493 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6494 continue; 6495 if (fits_capacity(task_util, cpu_cap)) 6496 return cpu; 6497 6498 if (cpu_cap > best_cap) { 6499 best_cap = cpu_cap; 6500 best_cpu = cpu; 6501 } 6502 } 6503 6504 return best_cpu; 6505 } 6506 6507 static inline bool asym_fits_capacity(unsigned long task_util, int cpu) 6508 { 6509 if (static_branch_unlikely(&sched_asym_cpucapacity)) 6510 return fits_capacity(task_util, capacity_of(cpu)); 6511 6512 return true; 6513 } 6514 6515 /* 6516 * Try and locate an idle core/thread in the LLC cache domain. 6517 */ 6518 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6519 { 6520 bool has_idle_core = false; 6521 struct sched_domain *sd; 6522 unsigned long task_util; 6523 int i, recent_used_cpu; 6524 6525 /* 6526 * On asymmetric system, update task utilization because we will check 6527 * that the task fits with cpu's capacity. 6528 */ 6529 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6530 sync_entity_load_avg(&p->se); 6531 task_util = uclamp_task_util(p); 6532 } 6533 6534 /* 6535 * per-cpu select_rq_mask usage 6536 */ 6537 lockdep_assert_irqs_disabled(); 6538 6539 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 6540 asym_fits_capacity(task_util, target)) 6541 return target; 6542 6543 /* 6544 * If the previous CPU is cache affine and idle, don't be stupid: 6545 */ 6546 if (prev != target && cpus_share_cache(prev, target) && 6547 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 6548 asym_fits_capacity(task_util, prev)) 6549 return prev; 6550 6551 /* 6552 * Allow a per-cpu kthread to stack with the wakee if the 6553 * kworker thread and the tasks previous CPUs are the same. 6554 * The assumption is that the wakee queued work for the 6555 * per-cpu kthread that is now complete and the wakeup is 6556 * essentially a sync wakeup. An obvious example of this 6557 * pattern is IO completions. 6558 */ 6559 if (is_per_cpu_kthread(current) && 6560 in_task() && 6561 prev == smp_processor_id() && 6562 this_rq()->nr_running <= 1 && 6563 asym_fits_capacity(task_util, prev)) { 6564 return prev; 6565 } 6566 6567 /* Check a recently used CPU as a potential idle candidate: */ 6568 recent_used_cpu = p->recent_used_cpu; 6569 p->recent_used_cpu = prev; 6570 if (recent_used_cpu != prev && 6571 recent_used_cpu != target && 6572 cpus_share_cache(recent_used_cpu, target) && 6573 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6574 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && 6575 asym_fits_capacity(task_util, recent_used_cpu)) { 6576 return recent_used_cpu; 6577 } 6578 6579 /* 6580 * For asymmetric CPU capacity systems, our domain of interest is 6581 * sd_asym_cpucapacity rather than sd_llc. 6582 */ 6583 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6584 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 6585 /* 6586 * On an asymmetric CPU capacity system where an exclusive 6587 * cpuset defines a symmetric island (i.e. one unique 6588 * capacity_orig value through the cpuset), the key will be set 6589 * but the CPUs within that cpuset will not have a domain with 6590 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 6591 * capacity path. 6592 */ 6593 if (sd) { 6594 i = select_idle_capacity(p, sd, target); 6595 return ((unsigned)i < nr_cpumask_bits) ? i : target; 6596 } 6597 } 6598 6599 sd = rcu_dereference(per_cpu(sd_llc, target)); 6600 if (!sd) 6601 return target; 6602 6603 if (sched_smt_active()) { 6604 has_idle_core = test_idle_cores(target, false); 6605 6606 if (!has_idle_core && cpus_share_cache(prev, target)) { 6607 i = select_idle_smt(p, sd, prev); 6608 if ((unsigned int)i < nr_cpumask_bits) 6609 return i; 6610 } 6611 } 6612 6613 i = select_idle_cpu(p, sd, has_idle_core, target); 6614 if ((unsigned)i < nr_cpumask_bits) 6615 return i; 6616 6617 return target; 6618 } 6619 6620 /* 6621 * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu 6622 * (@dst_cpu = -1) or migrated to @dst_cpu. 6623 */ 6624 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6625 { 6626 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6627 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 6628 6629 /* 6630 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 6631 * contribution. If @p migrates from another CPU to @cpu add its 6632 * contribution. In all the other cases @cpu is not impacted by the 6633 * migration so its util_avg is already correct. 6634 */ 6635 if (task_cpu(p) == cpu && dst_cpu != cpu) 6636 lsub_positive(&util, task_util(p)); 6637 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6638 util += task_util(p); 6639 6640 if (sched_feat(UTIL_EST)) { 6641 unsigned long util_est; 6642 6643 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6644 6645 /* 6646 * During wake-up @p isn't enqueued yet and doesn't contribute 6647 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued. 6648 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 6649 * has been enqueued. 6650 * 6651 * During exec (@dst_cpu = -1) @p is enqueued and does 6652 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued. 6653 * Remove it to "simulate" cpu_util without @p's contribution. 6654 * 6655 * Despite the task_on_rq_queued(@p) check there is still a 6656 * small window for a possible race when an exec 6657 * select_task_rq_fair() races with LB's detach_task(). 6658 * 6659 * detach_task() 6660 * deactivate_task() 6661 * p->on_rq = TASK_ON_RQ_MIGRATING; 6662 * -------------------------------- A 6663 * dequeue_task() \ 6664 * dequeue_task_fair() + Race Time 6665 * util_est_dequeue() / 6666 * -------------------------------- B 6667 * 6668 * The additional check "current == p" is required to further 6669 * reduce the race window. 6670 */ 6671 if (dst_cpu == cpu) 6672 util_est += _task_util_est(p); 6673 else if (unlikely(task_on_rq_queued(p) || current == p)) 6674 lsub_positive(&util_est, _task_util_est(p)); 6675 6676 util = max(util, util_est); 6677 } 6678 6679 return min(util, capacity_orig_of(cpu)); 6680 } 6681 6682 /* 6683 * cpu_util_without: compute cpu utilization without any contributions from *p 6684 * @cpu: the CPU which utilization is requested 6685 * @p: the task which utilization should be discounted 6686 * 6687 * The utilization of a CPU is defined by the utilization of tasks currently 6688 * enqueued on that CPU as well as tasks which are currently sleeping after an 6689 * execution on that CPU. 6690 * 6691 * This method returns the utilization of the specified CPU by discounting the 6692 * utilization of the specified task, whenever the task is currently 6693 * contributing to the CPU utilization. 6694 */ 6695 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6696 { 6697 /* Task has no contribution or is new */ 6698 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6699 return cpu_util_cfs(cpu); 6700 6701 return cpu_util_next(cpu, p, -1); 6702 } 6703 6704 /* 6705 * energy_env - Utilization landscape for energy estimation. 6706 * @task_busy_time: Utilization contribution by the task for which we test the 6707 * placement. Given by eenv_task_busy_time(). 6708 * @pd_busy_time: Utilization of the whole perf domain without the task 6709 * contribution. Given by eenv_pd_busy_time(). 6710 * @cpu_cap: Maximum CPU capacity for the perf domain. 6711 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 6712 */ 6713 struct energy_env { 6714 unsigned long task_busy_time; 6715 unsigned long pd_busy_time; 6716 unsigned long cpu_cap; 6717 unsigned long pd_cap; 6718 }; 6719 6720 /* 6721 * Compute the task busy time for compute_energy(). This time cannot be 6722 * injected directly into effective_cpu_util() because of the IRQ scaling. 6723 * The latter only makes sense with the most recent CPUs where the task has 6724 * run. 6725 */ 6726 static inline void eenv_task_busy_time(struct energy_env *eenv, 6727 struct task_struct *p, int prev_cpu) 6728 { 6729 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 6730 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 6731 6732 if (unlikely(irq >= max_cap)) 6733 busy_time = max_cap; 6734 else 6735 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 6736 6737 eenv->task_busy_time = busy_time; 6738 } 6739 6740 /* 6741 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 6742 * utilization for each @pd_cpus, it however doesn't take into account 6743 * clamping since the ratio (utilization / cpu_capacity) is already enough to 6744 * scale the EM reported power consumption at the (eventually clamped) 6745 * cpu_capacity. 6746 * 6747 * The contribution of the task @p for which we want to estimate the 6748 * energy cost is removed (by cpu_util_next()) and must be calculated 6749 * separately (see eenv_task_busy_time). This ensures: 6750 * 6751 * - A stable PD utilization, no matter which CPU of that PD we want to place 6752 * the task on. 6753 * 6754 * - A fair comparison between CPUs as the task contribution (task_util()) 6755 * will always be the same no matter which CPU utilization we rely on 6756 * (util_avg or util_est). 6757 * 6758 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 6759 * exceed @eenv->pd_cap. 6760 */ 6761 static inline void eenv_pd_busy_time(struct energy_env *eenv, 6762 struct cpumask *pd_cpus, 6763 struct task_struct *p) 6764 { 6765 unsigned long busy_time = 0; 6766 int cpu; 6767 6768 for_each_cpu(cpu, pd_cpus) { 6769 unsigned long util = cpu_util_next(cpu, p, -1); 6770 6771 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL); 6772 } 6773 6774 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 6775 } 6776 6777 /* 6778 * Compute the maximum utilization for compute_energy() when the task @p 6779 * is placed on the cpu @dst_cpu. 6780 * 6781 * Returns the maximum utilization among @eenv->cpus. This utilization can't 6782 * exceed @eenv->cpu_cap. 6783 */ 6784 static inline unsigned long 6785 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 6786 struct task_struct *p, int dst_cpu) 6787 { 6788 unsigned long max_util = 0; 6789 int cpu; 6790 6791 for_each_cpu(cpu, pd_cpus) { 6792 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 6793 unsigned long util = cpu_util_next(cpu, p, dst_cpu); 6794 unsigned long cpu_util; 6795 6796 /* 6797 * Performance domain frequency: utilization clamping 6798 * must be considered since it affects the selection 6799 * of the performance domain frequency. 6800 * NOTE: in case RT tasks are running, by default the 6801 * FREQUENCY_UTIL's utilization can be max OPP. 6802 */ 6803 cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk); 6804 max_util = max(max_util, cpu_util); 6805 } 6806 6807 return min(max_util, eenv->cpu_cap); 6808 } 6809 6810 /* 6811 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 6812 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 6813 * contribution is ignored. 6814 */ 6815 static inline unsigned long 6816 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 6817 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 6818 { 6819 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 6820 unsigned long busy_time = eenv->pd_busy_time; 6821 6822 if (dst_cpu >= 0) 6823 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 6824 6825 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 6826 } 6827 6828 /* 6829 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6830 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6831 * spare capacity in each performance domain and uses it as a potential 6832 * candidate to execute the task. Then, it uses the Energy Model to figure 6833 * out which of the CPU candidates is the most energy-efficient. 6834 * 6835 * The rationale for this heuristic is as follows. In a performance domain, 6836 * all the most energy efficient CPU candidates (according to the Energy 6837 * Model) are those for which we'll request a low frequency. When there are 6838 * several CPUs for which the frequency request will be the same, we don't 6839 * have enough data to break the tie between them, because the Energy Model 6840 * only includes active power costs. With this model, if we assume that 6841 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6842 * the maximum spare capacity in a performance domain is guaranteed to be among 6843 * the best candidates of the performance domain. 6844 * 6845 * In practice, it could be preferable from an energy standpoint to pack 6846 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6847 * but that could also hurt our chances to go cluster idle, and we have no 6848 * ways to tell with the current Energy Model if this is actually a good 6849 * idea or not. So, find_energy_efficient_cpu() basically favors 6850 * cluster-packing, and spreading inside a cluster. That should at least be 6851 * a good thing for latency, and this is consistent with the idea that most 6852 * of the energy savings of EAS come from the asymmetry of the system, and 6853 * not so much from breaking the tie between identical CPUs. That's also the 6854 * reason why EAS is enabled in the topology code only for systems where 6855 * SD_ASYM_CPUCAPACITY is set. 6856 * 6857 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6858 * they don't have any useful utilization data yet and it's not possible to 6859 * forecast their impact on energy consumption. Consequently, they will be 6860 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6861 * to be energy-inefficient in some use-cases. The alternative would be to 6862 * bias new tasks towards specific types of CPUs first, or to try to infer 6863 * their util_avg from the parent task, but those heuristics could hurt 6864 * other use-cases too. So, until someone finds a better way to solve this, 6865 * let's keep things simple by re-using the existing slow path. 6866 */ 6867 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6868 { 6869 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 6870 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6871 struct root_domain *rd = this_rq()->rd; 6872 int cpu, best_energy_cpu, target = -1; 6873 struct sched_domain *sd; 6874 struct perf_domain *pd; 6875 struct energy_env eenv; 6876 6877 rcu_read_lock(); 6878 pd = rcu_dereference(rd->pd); 6879 if (!pd || READ_ONCE(rd->overutilized)) 6880 goto unlock; 6881 6882 /* 6883 * Energy-aware wake-up happens on the lowest sched_domain starting 6884 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6885 */ 6886 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6887 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6888 sd = sd->parent; 6889 if (!sd) 6890 goto unlock; 6891 6892 target = prev_cpu; 6893 6894 sync_entity_load_avg(&p->se); 6895 if (!task_util_est(p)) 6896 goto unlock; 6897 6898 eenv_task_busy_time(&eenv, p, prev_cpu); 6899 6900 for (; pd; pd = pd->next) { 6901 unsigned long cpu_cap, cpu_thermal_cap, util; 6902 unsigned long cur_delta, max_spare_cap = 0; 6903 bool compute_prev_delta = false; 6904 int max_spare_cap_cpu = -1; 6905 unsigned long base_energy; 6906 6907 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 6908 6909 if (cpumask_empty(cpus)) 6910 continue; 6911 6912 /* Account thermal pressure for the energy estimation */ 6913 cpu = cpumask_first(cpus); 6914 cpu_thermal_cap = arch_scale_cpu_capacity(cpu); 6915 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu); 6916 6917 eenv.cpu_cap = cpu_thermal_cap; 6918 eenv.pd_cap = 0; 6919 6920 for_each_cpu(cpu, cpus) { 6921 eenv.pd_cap += cpu_thermal_cap; 6922 6923 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 6924 continue; 6925 6926 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6927 continue; 6928 6929 util = cpu_util_next(cpu, p, cpu); 6930 cpu_cap = capacity_of(cpu); 6931 6932 /* 6933 * Skip CPUs that cannot satisfy the capacity request. 6934 * IOW, placing the task there would make the CPU 6935 * overutilized. Take uclamp into account to see how 6936 * much capacity we can get out of the CPU; this is 6937 * aligned with sched_cpu_util(). 6938 */ 6939 util = uclamp_rq_util_with(cpu_rq(cpu), util, p); 6940 if (!fits_capacity(util, cpu_cap)) 6941 continue; 6942 6943 lsub_positive(&cpu_cap, util); 6944 6945 if (cpu == prev_cpu) { 6946 /* Always use prev_cpu as a candidate. */ 6947 compute_prev_delta = true; 6948 } else if (cpu_cap > max_spare_cap) { 6949 /* 6950 * Find the CPU with the maximum spare capacity 6951 * in the performance domain. 6952 */ 6953 max_spare_cap = cpu_cap; 6954 max_spare_cap_cpu = cpu; 6955 } 6956 } 6957 6958 if (max_spare_cap_cpu < 0 && !compute_prev_delta) 6959 continue; 6960 6961 eenv_pd_busy_time(&eenv, cpus, p); 6962 /* Compute the 'base' energy of the pd, without @p */ 6963 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 6964 6965 /* Evaluate the energy impact of using prev_cpu. */ 6966 if (compute_prev_delta) { 6967 prev_delta = compute_energy(&eenv, pd, cpus, p, 6968 prev_cpu); 6969 /* CPU utilization has changed */ 6970 if (prev_delta < base_energy) 6971 goto unlock; 6972 prev_delta -= base_energy; 6973 best_delta = min(best_delta, prev_delta); 6974 } 6975 6976 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 6977 if (max_spare_cap_cpu >= 0) { 6978 cur_delta = compute_energy(&eenv, pd, cpus, p, 6979 max_spare_cap_cpu); 6980 /* CPU utilization has changed */ 6981 if (cur_delta < base_energy) 6982 goto unlock; 6983 cur_delta -= base_energy; 6984 if (cur_delta < best_delta) { 6985 best_delta = cur_delta; 6986 best_energy_cpu = max_spare_cap_cpu; 6987 } 6988 } 6989 } 6990 rcu_read_unlock(); 6991 6992 if (best_delta < prev_delta) 6993 target = best_energy_cpu; 6994 6995 return target; 6996 6997 unlock: 6998 rcu_read_unlock(); 6999 7000 return target; 7001 } 7002 7003 /* 7004 * select_task_rq_fair: Select target runqueue for the waking task in domains 7005 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 7006 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 7007 * 7008 * Balances load by selecting the idlest CPU in the idlest group, or under 7009 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 7010 * 7011 * Returns the target CPU number. 7012 */ 7013 static int 7014 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 7015 { 7016 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 7017 struct sched_domain *tmp, *sd = NULL; 7018 int cpu = smp_processor_id(); 7019 int new_cpu = prev_cpu; 7020 int want_affine = 0; 7021 /* SD_flags and WF_flags share the first nibble */ 7022 int sd_flag = wake_flags & 0xF; 7023 7024 /* 7025 * required for stable ->cpus_allowed 7026 */ 7027 lockdep_assert_held(&p->pi_lock); 7028 if (wake_flags & WF_TTWU) { 7029 record_wakee(p); 7030 7031 if (sched_energy_enabled()) { 7032 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 7033 if (new_cpu >= 0) 7034 return new_cpu; 7035 new_cpu = prev_cpu; 7036 } 7037 7038 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 7039 } 7040 7041 rcu_read_lock(); 7042 for_each_domain(cpu, tmp) { 7043 /* 7044 * If both 'cpu' and 'prev_cpu' are part of this domain, 7045 * cpu is a valid SD_WAKE_AFFINE target. 7046 */ 7047 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 7048 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 7049 if (cpu != prev_cpu) 7050 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 7051 7052 sd = NULL; /* Prefer wake_affine over balance flags */ 7053 break; 7054 } 7055 7056 /* 7057 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 7058 * usually do not have SD_BALANCE_WAKE set. That means wakeup 7059 * will usually go to the fast path. 7060 */ 7061 if (tmp->flags & sd_flag) 7062 sd = tmp; 7063 else if (!want_affine) 7064 break; 7065 } 7066 7067 if (unlikely(sd)) { 7068 /* Slow path */ 7069 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 7070 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 7071 /* Fast path */ 7072 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 7073 } 7074 rcu_read_unlock(); 7075 7076 return new_cpu; 7077 } 7078 7079 static void detach_entity_cfs_rq(struct sched_entity *se); 7080 7081 /* 7082 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 7083 * cfs_rq_of(p) references at time of call are still valid and identify the 7084 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 7085 */ 7086 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 7087 { 7088 struct sched_entity *se = &p->se; 7089 7090 /* 7091 * As blocked tasks retain absolute vruntime the migration needs to 7092 * deal with this by subtracting the old and adding the new 7093 * min_vruntime -- the latter is done by enqueue_entity() when placing 7094 * the task on the new runqueue. 7095 */ 7096 if (READ_ONCE(p->__state) == TASK_WAKING) { 7097 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7098 7099 se->vruntime -= u64_u32_load(cfs_rq->min_vruntime); 7100 } 7101 7102 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 7103 /* 7104 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 7105 * rq->lock and can modify state directly. 7106 */ 7107 lockdep_assert_rq_held(task_rq(p)); 7108 detach_entity_cfs_rq(se); 7109 7110 } else { 7111 remove_entity_load_avg(se); 7112 7113 /* 7114 * Here, the task's PELT values have been updated according to 7115 * the current rq's clock. But if that clock hasn't been 7116 * updated in a while, a substantial idle time will be missed, 7117 * leading to an inflation after wake-up on the new rq. 7118 * 7119 * Estimate the missing time from the cfs_rq last_update_time 7120 * and update sched_avg to improve the PELT continuity after 7121 * migration. 7122 */ 7123 migrate_se_pelt_lag(se); 7124 } 7125 7126 /* Tell new CPU we are migrated */ 7127 se->avg.last_update_time = 0; 7128 7129 /* We have migrated, no longer consider this task hot */ 7130 se->exec_start = 0; 7131 7132 update_scan_period(p, new_cpu); 7133 } 7134 7135 static void task_dead_fair(struct task_struct *p) 7136 { 7137 remove_entity_load_avg(&p->se); 7138 } 7139 7140 static int 7141 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7142 { 7143 if (rq->nr_running) 7144 return 1; 7145 7146 return newidle_balance(rq, rf) != 0; 7147 } 7148 #endif /* CONFIG_SMP */ 7149 7150 static unsigned long wakeup_gran(struct sched_entity *se) 7151 { 7152 unsigned long gran = sysctl_sched_wakeup_granularity; 7153 7154 /* 7155 * Since its curr running now, convert the gran from real-time 7156 * to virtual-time in his units. 7157 * 7158 * By using 'se' instead of 'curr' we penalize light tasks, so 7159 * they get preempted easier. That is, if 'se' < 'curr' then 7160 * the resulting gran will be larger, therefore penalizing the 7161 * lighter, if otoh 'se' > 'curr' then the resulting gran will 7162 * be smaller, again penalizing the lighter task. 7163 * 7164 * This is especially important for buddies when the leftmost 7165 * task is higher priority than the buddy. 7166 */ 7167 return calc_delta_fair(gran, se); 7168 } 7169 7170 /* 7171 * Should 'se' preempt 'curr'. 7172 * 7173 * |s1 7174 * |s2 7175 * |s3 7176 * g 7177 * |<--->|c 7178 * 7179 * w(c, s1) = -1 7180 * w(c, s2) = 0 7181 * w(c, s3) = 1 7182 * 7183 */ 7184 static int 7185 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 7186 { 7187 s64 gran, vdiff = curr->vruntime - se->vruntime; 7188 7189 if (vdiff <= 0) 7190 return -1; 7191 7192 gran = wakeup_gran(se); 7193 if (vdiff > gran) 7194 return 1; 7195 7196 return 0; 7197 } 7198 7199 static void set_last_buddy(struct sched_entity *se) 7200 { 7201 for_each_sched_entity(se) { 7202 if (SCHED_WARN_ON(!se->on_rq)) 7203 return; 7204 if (se_is_idle(se)) 7205 return; 7206 cfs_rq_of(se)->last = se; 7207 } 7208 } 7209 7210 static void set_next_buddy(struct sched_entity *se) 7211 { 7212 for_each_sched_entity(se) { 7213 if (SCHED_WARN_ON(!se->on_rq)) 7214 return; 7215 if (se_is_idle(se)) 7216 return; 7217 cfs_rq_of(se)->next = se; 7218 } 7219 } 7220 7221 static void set_skip_buddy(struct sched_entity *se) 7222 { 7223 for_each_sched_entity(se) 7224 cfs_rq_of(se)->skip = se; 7225 } 7226 7227 /* 7228 * Preempt the current task with a newly woken task if needed: 7229 */ 7230 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 7231 { 7232 struct task_struct *curr = rq->curr; 7233 struct sched_entity *se = &curr->se, *pse = &p->se; 7234 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7235 int scale = cfs_rq->nr_running >= sched_nr_latency; 7236 int next_buddy_marked = 0; 7237 int cse_is_idle, pse_is_idle; 7238 7239 if (unlikely(se == pse)) 7240 return; 7241 7242 /* 7243 * This is possible from callers such as attach_tasks(), in which we 7244 * unconditionally check_preempt_curr() after an enqueue (which may have 7245 * lead to a throttle). This both saves work and prevents false 7246 * next-buddy nomination below. 7247 */ 7248 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 7249 return; 7250 7251 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 7252 set_next_buddy(pse); 7253 next_buddy_marked = 1; 7254 } 7255 7256 /* 7257 * We can come here with TIF_NEED_RESCHED already set from new task 7258 * wake up path. 7259 * 7260 * Note: this also catches the edge-case of curr being in a throttled 7261 * group (e.g. via set_curr_task), since update_curr() (in the 7262 * enqueue of curr) will have resulted in resched being set. This 7263 * prevents us from potentially nominating it as a false LAST_BUDDY 7264 * below. 7265 */ 7266 if (test_tsk_need_resched(curr)) 7267 return; 7268 7269 /* Idle tasks are by definition preempted by non-idle tasks. */ 7270 if (unlikely(task_has_idle_policy(curr)) && 7271 likely(!task_has_idle_policy(p))) 7272 goto preempt; 7273 7274 /* 7275 * Batch and idle tasks do not preempt non-idle tasks (their preemption 7276 * is driven by the tick): 7277 */ 7278 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 7279 return; 7280 7281 find_matching_se(&se, &pse); 7282 BUG_ON(!pse); 7283 7284 cse_is_idle = se_is_idle(se); 7285 pse_is_idle = se_is_idle(pse); 7286 7287 /* 7288 * Preempt an idle group in favor of a non-idle group (and don't preempt 7289 * in the inverse case). 7290 */ 7291 if (cse_is_idle && !pse_is_idle) 7292 goto preempt; 7293 if (cse_is_idle != pse_is_idle) 7294 return; 7295 7296 update_curr(cfs_rq_of(se)); 7297 if (wakeup_preempt_entity(se, pse) == 1) { 7298 /* 7299 * Bias pick_next to pick the sched entity that is 7300 * triggering this preemption. 7301 */ 7302 if (!next_buddy_marked) 7303 set_next_buddy(pse); 7304 goto preempt; 7305 } 7306 7307 return; 7308 7309 preempt: 7310 resched_curr(rq); 7311 /* 7312 * Only set the backward buddy when the current task is still 7313 * on the rq. This can happen when a wakeup gets interleaved 7314 * with schedule on the ->pre_schedule() or idle_balance() 7315 * point, either of which can * drop the rq lock. 7316 * 7317 * Also, during early boot the idle thread is in the fair class, 7318 * for obvious reasons its a bad idea to schedule back to it. 7319 */ 7320 if (unlikely(!se->on_rq || curr == rq->idle)) 7321 return; 7322 7323 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 7324 set_last_buddy(se); 7325 } 7326 7327 #ifdef CONFIG_SMP 7328 static struct task_struct *pick_task_fair(struct rq *rq) 7329 { 7330 struct sched_entity *se; 7331 struct cfs_rq *cfs_rq; 7332 7333 again: 7334 cfs_rq = &rq->cfs; 7335 if (!cfs_rq->nr_running) 7336 return NULL; 7337 7338 do { 7339 struct sched_entity *curr = cfs_rq->curr; 7340 7341 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 7342 if (curr) { 7343 if (curr->on_rq) 7344 update_curr(cfs_rq); 7345 else 7346 curr = NULL; 7347 7348 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 7349 goto again; 7350 } 7351 7352 se = pick_next_entity(cfs_rq, curr); 7353 cfs_rq = group_cfs_rq(se); 7354 } while (cfs_rq); 7355 7356 return task_of(se); 7357 } 7358 #endif 7359 7360 struct task_struct * 7361 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7362 { 7363 struct cfs_rq *cfs_rq = &rq->cfs; 7364 struct sched_entity *se; 7365 struct task_struct *p; 7366 int new_tasks; 7367 7368 again: 7369 if (!sched_fair_runnable(rq)) 7370 goto idle; 7371 7372 #ifdef CONFIG_FAIR_GROUP_SCHED 7373 if (!prev || prev->sched_class != &fair_sched_class) 7374 goto simple; 7375 7376 /* 7377 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 7378 * likely that a next task is from the same cgroup as the current. 7379 * 7380 * Therefore attempt to avoid putting and setting the entire cgroup 7381 * hierarchy, only change the part that actually changes. 7382 */ 7383 7384 do { 7385 struct sched_entity *curr = cfs_rq->curr; 7386 7387 /* 7388 * Since we got here without doing put_prev_entity() we also 7389 * have to consider cfs_rq->curr. If it is still a runnable 7390 * entity, update_curr() will update its vruntime, otherwise 7391 * forget we've ever seen it. 7392 */ 7393 if (curr) { 7394 if (curr->on_rq) 7395 update_curr(cfs_rq); 7396 else 7397 curr = NULL; 7398 7399 /* 7400 * This call to check_cfs_rq_runtime() will do the 7401 * throttle and dequeue its entity in the parent(s). 7402 * Therefore the nr_running test will indeed 7403 * be correct. 7404 */ 7405 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7406 cfs_rq = &rq->cfs; 7407 7408 if (!cfs_rq->nr_running) 7409 goto idle; 7410 7411 goto simple; 7412 } 7413 } 7414 7415 se = pick_next_entity(cfs_rq, curr); 7416 cfs_rq = group_cfs_rq(se); 7417 } while (cfs_rq); 7418 7419 p = task_of(se); 7420 7421 /* 7422 * Since we haven't yet done put_prev_entity and if the selected task 7423 * is a different task than we started out with, try and touch the 7424 * least amount of cfs_rqs. 7425 */ 7426 if (prev != p) { 7427 struct sched_entity *pse = &prev->se; 7428 7429 while (!(cfs_rq = is_same_group(se, pse))) { 7430 int se_depth = se->depth; 7431 int pse_depth = pse->depth; 7432 7433 if (se_depth <= pse_depth) { 7434 put_prev_entity(cfs_rq_of(pse), pse); 7435 pse = parent_entity(pse); 7436 } 7437 if (se_depth >= pse_depth) { 7438 set_next_entity(cfs_rq_of(se), se); 7439 se = parent_entity(se); 7440 } 7441 } 7442 7443 put_prev_entity(cfs_rq, pse); 7444 set_next_entity(cfs_rq, se); 7445 } 7446 7447 goto done; 7448 simple: 7449 #endif 7450 if (prev) 7451 put_prev_task(rq, prev); 7452 7453 do { 7454 se = pick_next_entity(cfs_rq, NULL); 7455 set_next_entity(cfs_rq, se); 7456 cfs_rq = group_cfs_rq(se); 7457 } while (cfs_rq); 7458 7459 p = task_of(se); 7460 7461 done: __maybe_unused; 7462 #ifdef CONFIG_SMP 7463 /* 7464 * Move the next running task to the front of 7465 * the list, so our cfs_tasks list becomes MRU 7466 * one. 7467 */ 7468 list_move(&p->se.group_node, &rq->cfs_tasks); 7469 #endif 7470 7471 if (hrtick_enabled_fair(rq)) 7472 hrtick_start_fair(rq, p); 7473 7474 update_misfit_status(p, rq); 7475 7476 return p; 7477 7478 idle: 7479 if (!rf) 7480 return NULL; 7481 7482 new_tasks = newidle_balance(rq, rf); 7483 7484 /* 7485 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 7486 * possible for any higher priority task to appear. In that case we 7487 * must re-start the pick_next_entity() loop. 7488 */ 7489 if (new_tasks < 0) 7490 return RETRY_TASK; 7491 7492 if (new_tasks > 0) 7493 goto again; 7494 7495 /* 7496 * rq is about to be idle, check if we need to update the 7497 * lost_idle_time of clock_pelt 7498 */ 7499 update_idle_rq_clock_pelt(rq); 7500 7501 return NULL; 7502 } 7503 7504 static struct task_struct *__pick_next_task_fair(struct rq *rq) 7505 { 7506 return pick_next_task_fair(rq, NULL, NULL); 7507 } 7508 7509 /* 7510 * Account for a descheduled task: 7511 */ 7512 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7513 { 7514 struct sched_entity *se = &prev->se; 7515 struct cfs_rq *cfs_rq; 7516 7517 for_each_sched_entity(se) { 7518 cfs_rq = cfs_rq_of(se); 7519 put_prev_entity(cfs_rq, se); 7520 } 7521 } 7522 7523 /* 7524 * sched_yield() is very simple 7525 * 7526 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7527 */ 7528 static void yield_task_fair(struct rq *rq) 7529 { 7530 struct task_struct *curr = rq->curr; 7531 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7532 struct sched_entity *se = &curr->se; 7533 7534 /* 7535 * Are we the only task in the tree? 7536 */ 7537 if (unlikely(rq->nr_running == 1)) 7538 return; 7539 7540 clear_buddies(cfs_rq, se); 7541 7542 if (curr->policy != SCHED_BATCH) { 7543 update_rq_clock(rq); 7544 /* 7545 * Update run-time statistics of the 'current'. 7546 */ 7547 update_curr(cfs_rq); 7548 /* 7549 * Tell update_rq_clock() that we've just updated, 7550 * so we don't do microscopic update in schedule() 7551 * and double the fastpath cost. 7552 */ 7553 rq_clock_skip_update(rq); 7554 } 7555 7556 set_skip_buddy(se); 7557 } 7558 7559 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 7560 { 7561 struct sched_entity *se = &p->se; 7562 7563 /* throttled hierarchies are not runnable */ 7564 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7565 return false; 7566 7567 /* Tell the scheduler that we'd really like pse to run next. */ 7568 set_next_buddy(se); 7569 7570 yield_task_fair(rq); 7571 7572 return true; 7573 } 7574 7575 #ifdef CONFIG_SMP 7576 /************************************************** 7577 * Fair scheduling class load-balancing methods. 7578 * 7579 * BASICS 7580 * 7581 * The purpose of load-balancing is to achieve the same basic fairness the 7582 * per-CPU scheduler provides, namely provide a proportional amount of compute 7583 * time to each task. This is expressed in the following equation: 7584 * 7585 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7586 * 7587 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7588 * W_i,0 is defined as: 7589 * 7590 * W_i,0 = \Sum_j w_i,j (2) 7591 * 7592 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7593 * is derived from the nice value as per sched_prio_to_weight[]. 7594 * 7595 * The weight average is an exponential decay average of the instantaneous 7596 * weight: 7597 * 7598 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7599 * 7600 * C_i is the compute capacity of CPU i, typically it is the 7601 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7602 * can also include other factors [XXX]. 7603 * 7604 * To achieve this balance we define a measure of imbalance which follows 7605 * directly from (1): 7606 * 7607 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7608 * 7609 * We them move tasks around to minimize the imbalance. In the continuous 7610 * function space it is obvious this converges, in the discrete case we get 7611 * a few fun cases generally called infeasible weight scenarios. 7612 * 7613 * [XXX expand on: 7614 * - infeasible weights; 7615 * - local vs global optima in the discrete case. ] 7616 * 7617 * 7618 * SCHED DOMAINS 7619 * 7620 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7621 * for all i,j solution, we create a tree of CPUs that follows the hardware 7622 * topology where each level pairs two lower groups (or better). This results 7623 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7624 * tree to only the first of the previous level and we decrease the frequency 7625 * of load-balance at each level inv. proportional to the number of CPUs in 7626 * the groups. 7627 * 7628 * This yields: 7629 * 7630 * log_2 n 1 n 7631 * \Sum { --- * --- * 2^i } = O(n) (5) 7632 * i = 0 2^i 2^i 7633 * `- size of each group 7634 * | | `- number of CPUs doing load-balance 7635 * | `- freq 7636 * `- sum over all levels 7637 * 7638 * Coupled with a limit on how many tasks we can migrate every balance pass, 7639 * this makes (5) the runtime complexity of the balancer. 7640 * 7641 * An important property here is that each CPU is still (indirectly) connected 7642 * to every other CPU in at most O(log n) steps: 7643 * 7644 * The adjacency matrix of the resulting graph is given by: 7645 * 7646 * log_2 n 7647 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7648 * k = 0 7649 * 7650 * And you'll find that: 7651 * 7652 * A^(log_2 n)_i,j != 0 for all i,j (7) 7653 * 7654 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7655 * The task movement gives a factor of O(m), giving a convergence complexity 7656 * of: 7657 * 7658 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7659 * 7660 * 7661 * WORK CONSERVING 7662 * 7663 * In order to avoid CPUs going idle while there's still work to do, new idle 7664 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7665 * tree itself instead of relying on other CPUs to bring it work. 7666 * 7667 * This adds some complexity to both (5) and (8) but it reduces the total idle 7668 * time. 7669 * 7670 * [XXX more?] 7671 * 7672 * 7673 * CGROUPS 7674 * 7675 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7676 * 7677 * s_k,i 7678 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7679 * S_k 7680 * 7681 * Where 7682 * 7683 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7684 * 7685 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7686 * 7687 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7688 * property. 7689 * 7690 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7691 * rewrite all of this once again.] 7692 */ 7693 7694 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7695 7696 enum fbq_type { regular, remote, all }; 7697 7698 /* 7699 * 'group_type' describes the group of CPUs at the moment of load balancing. 7700 * 7701 * The enum is ordered by pulling priority, with the group with lowest priority 7702 * first so the group_type can simply be compared when selecting the busiest 7703 * group. See update_sd_pick_busiest(). 7704 */ 7705 enum group_type { 7706 /* The group has spare capacity that can be used to run more tasks. */ 7707 group_has_spare = 0, 7708 /* 7709 * The group is fully used and the tasks don't compete for more CPU 7710 * cycles. Nevertheless, some tasks might wait before running. 7711 */ 7712 group_fully_busy, 7713 /* 7714 * One task doesn't fit with CPU's capacity and must be migrated to a 7715 * more powerful CPU. 7716 */ 7717 group_misfit_task, 7718 /* 7719 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 7720 * and the task should be migrated to it instead of running on the 7721 * current CPU. 7722 */ 7723 group_asym_packing, 7724 /* 7725 * The tasks' affinity constraints previously prevented the scheduler 7726 * from balancing the load across the system. 7727 */ 7728 group_imbalanced, 7729 /* 7730 * The CPU is overloaded and can't provide expected CPU cycles to all 7731 * tasks. 7732 */ 7733 group_overloaded 7734 }; 7735 7736 enum migration_type { 7737 migrate_load = 0, 7738 migrate_util, 7739 migrate_task, 7740 migrate_misfit 7741 }; 7742 7743 #define LBF_ALL_PINNED 0x01 7744 #define LBF_NEED_BREAK 0x02 7745 #define LBF_DST_PINNED 0x04 7746 #define LBF_SOME_PINNED 0x08 7747 #define LBF_ACTIVE_LB 0x10 7748 7749 struct lb_env { 7750 struct sched_domain *sd; 7751 7752 struct rq *src_rq; 7753 int src_cpu; 7754 7755 int dst_cpu; 7756 struct rq *dst_rq; 7757 7758 struct cpumask *dst_grpmask; 7759 int new_dst_cpu; 7760 enum cpu_idle_type idle; 7761 long imbalance; 7762 /* The set of CPUs under consideration for load-balancing */ 7763 struct cpumask *cpus; 7764 7765 unsigned int flags; 7766 7767 unsigned int loop; 7768 unsigned int loop_break; 7769 unsigned int loop_max; 7770 7771 enum fbq_type fbq_type; 7772 enum migration_type migration_type; 7773 struct list_head tasks; 7774 }; 7775 7776 /* 7777 * Is this task likely cache-hot: 7778 */ 7779 static int task_hot(struct task_struct *p, struct lb_env *env) 7780 { 7781 s64 delta; 7782 7783 lockdep_assert_rq_held(env->src_rq); 7784 7785 if (p->sched_class != &fair_sched_class) 7786 return 0; 7787 7788 if (unlikely(task_has_idle_policy(p))) 7789 return 0; 7790 7791 /* SMT siblings share cache */ 7792 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 7793 return 0; 7794 7795 /* 7796 * Buddy candidates are cache hot: 7797 */ 7798 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7799 (&p->se == cfs_rq_of(&p->se)->next || 7800 &p->se == cfs_rq_of(&p->se)->last)) 7801 return 1; 7802 7803 if (sysctl_sched_migration_cost == -1) 7804 return 1; 7805 7806 /* 7807 * Don't migrate task if the task's cookie does not match 7808 * with the destination CPU's core cookie. 7809 */ 7810 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 7811 return 1; 7812 7813 if (sysctl_sched_migration_cost == 0) 7814 return 0; 7815 7816 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7817 7818 return delta < (s64)sysctl_sched_migration_cost; 7819 } 7820 7821 #ifdef CONFIG_NUMA_BALANCING 7822 /* 7823 * Returns 1, if task migration degrades locality 7824 * Returns 0, if task migration improves locality i.e migration preferred. 7825 * Returns -1, if task migration is not affected by locality. 7826 */ 7827 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7828 { 7829 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7830 unsigned long src_weight, dst_weight; 7831 int src_nid, dst_nid, dist; 7832 7833 if (!static_branch_likely(&sched_numa_balancing)) 7834 return -1; 7835 7836 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7837 return -1; 7838 7839 src_nid = cpu_to_node(env->src_cpu); 7840 dst_nid = cpu_to_node(env->dst_cpu); 7841 7842 if (src_nid == dst_nid) 7843 return -1; 7844 7845 /* Migrating away from the preferred node is always bad. */ 7846 if (src_nid == p->numa_preferred_nid) { 7847 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7848 return 1; 7849 else 7850 return -1; 7851 } 7852 7853 /* Encourage migration to the preferred node. */ 7854 if (dst_nid == p->numa_preferred_nid) 7855 return 0; 7856 7857 /* Leaving a core idle is often worse than degrading locality. */ 7858 if (env->idle == CPU_IDLE) 7859 return -1; 7860 7861 dist = node_distance(src_nid, dst_nid); 7862 if (numa_group) { 7863 src_weight = group_weight(p, src_nid, dist); 7864 dst_weight = group_weight(p, dst_nid, dist); 7865 } else { 7866 src_weight = task_weight(p, src_nid, dist); 7867 dst_weight = task_weight(p, dst_nid, dist); 7868 } 7869 7870 return dst_weight < src_weight; 7871 } 7872 7873 #else 7874 static inline int migrate_degrades_locality(struct task_struct *p, 7875 struct lb_env *env) 7876 { 7877 return -1; 7878 } 7879 #endif 7880 7881 /* 7882 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7883 */ 7884 static 7885 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7886 { 7887 int tsk_cache_hot; 7888 7889 lockdep_assert_rq_held(env->src_rq); 7890 7891 /* 7892 * We do not migrate tasks that are: 7893 * 1) throttled_lb_pair, or 7894 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7895 * 3) running (obviously), or 7896 * 4) are cache-hot on their current CPU. 7897 */ 7898 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7899 return 0; 7900 7901 /* Disregard pcpu kthreads; they are where they need to be. */ 7902 if (kthread_is_per_cpu(p)) 7903 return 0; 7904 7905 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7906 int cpu; 7907 7908 schedstat_inc(p->stats.nr_failed_migrations_affine); 7909 7910 env->flags |= LBF_SOME_PINNED; 7911 7912 /* 7913 * Remember if this task can be migrated to any other CPU in 7914 * our sched_group. We may want to revisit it if we couldn't 7915 * meet load balance goals by pulling other tasks on src_cpu. 7916 * 7917 * Avoid computing new_dst_cpu 7918 * - for NEWLY_IDLE 7919 * - if we have already computed one in current iteration 7920 * - if it's an active balance 7921 */ 7922 if (env->idle == CPU_NEWLY_IDLE || 7923 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 7924 return 0; 7925 7926 /* Prevent to re-select dst_cpu via env's CPUs: */ 7927 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7928 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7929 env->flags |= LBF_DST_PINNED; 7930 env->new_dst_cpu = cpu; 7931 break; 7932 } 7933 } 7934 7935 return 0; 7936 } 7937 7938 /* Record that we found at least one task that could run on dst_cpu */ 7939 env->flags &= ~LBF_ALL_PINNED; 7940 7941 if (task_running(env->src_rq, p)) { 7942 schedstat_inc(p->stats.nr_failed_migrations_running); 7943 return 0; 7944 } 7945 7946 /* 7947 * Aggressive migration if: 7948 * 1) active balance 7949 * 2) destination numa is preferred 7950 * 3) task is cache cold, or 7951 * 4) too many balance attempts have failed. 7952 */ 7953 if (env->flags & LBF_ACTIVE_LB) 7954 return 1; 7955 7956 tsk_cache_hot = migrate_degrades_locality(p, env); 7957 if (tsk_cache_hot == -1) 7958 tsk_cache_hot = task_hot(p, env); 7959 7960 if (tsk_cache_hot <= 0 || 7961 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7962 if (tsk_cache_hot == 1) { 7963 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7964 schedstat_inc(p->stats.nr_forced_migrations); 7965 } 7966 return 1; 7967 } 7968 7969 schedstat_inc(p->stats.nr_failed_migrations_hot); 7970 return 0; 7971 } 7972 7973 /* 7974 * detach_task() -- detach the task for the migration specified in env 7975 */ 7976 static void detach_task(struct task_struct *p, struct lb_env *env) 7977 { 7978 lockdep_assert_rq_held(env->src_rq); 7979 7980 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7981 set_task_cpu(p, env->dst_cpu); 7982 } 7983 7984 /* 7985 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7986 * part of active balancing operations within "domain". 7987 * 7988 * Returns a task if successful and NULL otherwise. 7989 */ 7990 static struct task_struct *detach_one_task(struct lb_env *env) 7991 { 7992 struct task_struct *p; 7993 7994 lockdep_assert_rq_held(env->src_rq); 7995 7996 list_for_each_entry_reverse(p, 7997 &env->src_rq->cfs_tasks, se.group_node) { 7998 if (!can_migrate_task(p, env)) 7999 continue; 8000 8001 detach_task(p, env); 8002 8003 /* 8004 * Right now, this is only the second place where 8005 * lb_gained[env->idle] is updated (other is detach_tasks) 8006 * so we can safely collect stats here rather than 8007 * inside detach_tasks(). 8008 */ 8009 schedstat_inc(env->sd->lb_gained[env->idle]); 8010 return p; 8011 } 8012 return NULL; 8013 } 8014 8015 static const unsigned int sched_nr_migrate_break = 32; 8016 8017 /* 8018 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 8019 * busiest_rq, as part of a balancing operation within domain "sd". 8020 * 8021 * Returns number of detached tasks if successful and 0 otherwise. 8022 */ 8023 static int detach_tasks(struct lb_env *env) 8024 { 8025 struct list_head *tasks = &env->src_rq->cfs_tasks; 8026 unsigned long util, load; 8027 struct task_struct *p; 8028 int detached = 0; 8029 8030 lockdep_assert_rq_held(env->src_rq); 8031 8032 /* 8033 * Source run queue has been emptied by another CPU, clear 8034 * LBF_ALL_PINNED flag as we will not test any task. 8035 */ 8036 if (env->src_rq->nr_running <= 1) { 8037 env->flags &= ~LBF_ALL_PINNED; 8038 return 0; 8039 } 8040 8041 if (env->imbalance <= 0) 8042 return 0; 8043 8044 while (!list_empty(tasks)) { 8045 /* 8046 * We don't want to steal all, otherwise we may be treated likewise, 8047 * which could at worst lead to a livelock crash. 8048 */ 8049 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 8050 break; 8051 8052 p = list_last_entry(tasks, struct task_struct, se.group_node); 8053 8054 env->loop++; 8055 /* We've more or less seen every task there is, call it quits */ 8056 if (env->loop > env->loop_max) 8057 break; 8058 8059 /* take a breather every nr_migrate tasks */ 8060 if (env->loop > env->loop_break) { 8061 env->loop_break += sched_nr_migrate_break; 8062 env->flags |= LBF_NEED_BREAK; 8063 break; 8064 } 8065 8066 if (!can_migrate_task(p, env)) 8067 goto next; 8068 8069 switch (env->migration_type) { 8070 case migrate_load: 8071 /* 8072 * Depending of the number of CPUs and tasks and the 8073 * cgroup hierarchy, task_h_load() can return a null 8074 * value. Make sure that env->imbalance decreases 8075 * otherwise detach_tasks() will stop only after 8076 * detaching up to loop_max tasks. 8077 */ 8078 load = max_t(unsigned long, task_h_load(p), 1); 8079 8080 if (sched_feat(LB_MIN) && 8081 load < 16 && !env->sd->nr_balance_failed) 8082 goto next; 8083 8084 /* 8085 * Make sure that we don't migrate too much load. 8086 * Nevertheless, let relax the constraint if 8087 * scheduler fails to find a good waiting task to 8088 * migrate. 8089 */ 8090 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 8091 goto next; 8092 8093 env->imbalance -= load; 8094 break; 8095 8096 case migrate_util: 8097 util = task_util_est(p); 8098 8099 if (util > env->imbalance) 8100 goto next; 8101 8102 env->imbalance -= util; 8103 break; 8104 8105 case migrate_task: 8106 env->imbalance--; 8107 break; 8108 8109 case migrate_misfit: 8110 /* This is not a misfit task */ 8111 if (task_fits_capacity(p, capacity_of(env->src_cpu))) 8112 goto next; 8113 8114 env->imbalance = 0; 8115 break; 8116 } 8117 8118 detach_task(p, env); 8119 list_add(&p->se.group_node, &env->tasks); 8120 8121 detached++; 8122 8123 #ifdef CONFIG_PREEMPTION 8124 /* 8125 * NEWIDLE balancing is a source of latency, so preemptible 8126 * kernels will stop after the first task is detached to minimize 8127 * the critical section. 8128 */ 8129 if (env->idle == CPU_NEWLY_IDLE) 8130 break; 8131 #endif 8132 8133 /* 8134 * We only want to steal up to the prescribed amount of 8135 * load/util/tasks. 8136 */ 8137 if (env->imbalance <= 0) 8138 break; 8139 8140 continue; 8141 next: 8142 list_move(&p->se.group_node, tasks); 8143 } 8144 8145 /* 8146 * Right now, this is one of only two places we collect this stat 8147 * so we can safely collect detach_one_task() stats here rather 8148 * than inside detach_one_task(). 8149 */ 8150 schedstat_add(env->sd->lb_gained[env->idle], detached); 8151 8152 return detached; 8153 } 8154 8155 /* 8156 * attach_task() -- attach the task detached by detach_task() to its new rq. 8157 */ 8158 static void attach_task(struct rq *rq, struct task_struct *p) 8159 { 8160 lockdep_assert_rq_held(rq); 8161 8162 BUG_ON(task_rq(p) != rq); 8163 activate_task(rq, p, ENQUEUE_NOCLOCK); 8164 check_preempt_curr(rq, p, 0); 8165 } 8166 8167 /* 8168 * attach_one_task() -- attaches the task returned from detach_one_task() to 8169 * its new rq. 8170 */ 8171 static void attach_one_task(struct rq *rq, struct task_struct *p) 8172 { 8173 struct rq_flags rf; 8174 8175 rq_lock(rq, &rf); 8176 update_rq_clock(rq); 8177 attach_task(rq, p); 8178 rq_unlock(rq, &rf); 8179 } 8180 8181 /* 8182 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 8183 * new rq. 8184 */ 8185 static void attach_tasks(struct lb_env *env) 8186 { 8187 struct list_head *tasks = &env->tasks; 8188 struct task_struct *p; 8189 struct rq_flags rf; 8190 8191 rq_lock(env->dst_rq, &rf); 8192 update_rq_clock(env->dst_rq); 8193 8194 while (!list_empty(tasks)) { 8195 p = list_first_entry(tasks, struct task_struct, se.group_node); 8196 list_del_init(&p->se.group_node); 8197 8198 attach_task(env->dst_rq, p); 8199 } 8200 8201 rq_unlock(env->dst_rq, &rf); 8202 } 8203 8204 #ifdef CONFIG_NO_HZ_COMMON 8205 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 8206 { 8207 if (cfs_rq->avg.load_avg) 8208 return true; 8209 8210 if (cfs_rq->avg.util_avg) 8211 return true; 8212 8213 return false; 8214 } 8215 8216 static inline bool others_have_blocked(struct rq *rq) 8217 { 8218 if (READ_ONCE(rq->avg_rt.util_avg)) 8219 return true; 8220 8221 if (READ_ONCE(rq->avg_dl.util_avg)) 8222 return true; 8223 8224 if (thermal_load_avg(rq)) 8225 return true; 8226 8227 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 8228 if (READ_ONCE(rq->avg_irq.util_avg)) 8229 return true; 8230 #endif 8231 8232 return false; 8233 } 8234 8235 static inline void update_blocked_load_tick(struct rq *rq) 8236 { 8237 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 8238 } 8239 8240 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 8241 { 8242 if (!has_blocked) 8243 rq->has_blocked_load = 0; 8244 } 8245 #else 8246 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 8247 static inline bool others_have_blocked(struct rq *rq) { return false; } 8248 static inline void update_blocked_load_tick(struct rq *rq) {} 8249 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 8250 #endif 8251 8252 static bool __update_blocked_others(struct rq *rq, bool *done) 8253 { 8254 const struct sched_class *curr_class; 8255 u64 now = rq_clock_pelt(rq); 8256 unsigned long thermal_pressure; 8257 bool decayed; 8258 8259 /* 8260 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 8261 * DL and IRQ signals have been updated before updating CFS. 8262 */ 8263 curr_class = rq->curr->sched_class; 8264 8265 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 8266 8267 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 8268 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 8269 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 8270 update_irq_load_avg(rq, 0); 8271 8272 if (others_have_blocked(rq)) 8273 *done = false; 8274 8275 return decayed; 8276 } 8277 8278 #ifdef CONFIG_FAIR_GROUP_SCHED 8279 8280 static bool __update_blocked_fair(struct rq *rq, bool *done) 8281 { 8282 struct cfs_rq *cfs_rq, *pos; 8283 bool decayed = false; 8284 int cpu = cpu_of(rq); 8285 8286 /* 8287 * Iterates the task_group tree in a bottom up fashion, see 8288 * list_add_leaf_cfs_rq() for details. 8289 */ 8290 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 8291 struct sched_entity *se; 8292 8293 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 8294 update_tg_load_avg(cfs_rq); 8295 8296 if (cfs_rq->nr_running == 0) 8297 update_idle_cfs_rq_clock_pelt(cfs_rq); 8298 8299 if (cfs_rq == &rq->cfs) 8300 decayed = true; 8301 } 8302 8303 /* Propagate pending load changes to the parent, if any: */ 8304 se = cfs_rq->tg->se[cpu]; 8305 if (se && !skip_blocked_update(se)) 8306 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 8307 8308 /* 8309 * There can be a lot of idle CPU cgroups. Don't let fully 8310 * decayed cfs_rqs linger on the list. 8311 */ 8312 if (cfs_rq_is_decayed(cfs_rq)) 8313 list_del_leaf_cfs_rq(cfs_rq); 8314 8315 /* Don't need periodic decay once load/util_avg are null */ 8316 if (cfs_rq_has_blocked(cfs_rq)) 8317 *done = false; 8318 } 8319 8320 return decayed; 8321 } 8322 8323 /* 8324 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 8325 * This needs to be done in a top-down fashion because the load of a child 8326 * group is a fraction of its parents load. 8327 */ 8328 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 8329 { 8330 struct rq *rq = rq_of(cfs_rq); 8331 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 8332 unsigned long now = jiffies; 8333 unsigned long load; 8334 8335 if (cfs_rq->last_h_load_update == now) 8336 return; 8337 8338 WRITE_ONCE(cfs_rq->h_load_next, NULL); 8339 for_each_sched_entity(se) { 8340 cfs_rq = cfs_rq_of(se); 8341 WRITE_ONCE(cfs_rq->h_load_next, se); 8342 if (cfs_rq->last_h_load_update == now) 8343 break; 8344 } 8345 8346 if (!se) { 8347 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 8348 cfs_rq->last_h_load_update = now; 8349 } 8350 8351 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 8352 load = cfs_rq->h_load; 8353 load = div64_ul(load * se->avg.load_avg, 8354 cfs_rq_load_avg(cfs_rq) + 1); 8355 cfs_rq = group_cfs_rq(se); 8356 cfs_rq->h_load = load; 8357 cfs_rq->last_h_load_update = now; 8358 } 8359 } 8360 8361 static unsigned long task_h_load(struct task_struct *p) 8362 { 8363 struct cfs_rq *cfs_rq = task_cfs_rq(p); 8364 8365 update_cfs_rq_h_load(cfs_rq); 8366 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 8367 cfs_rq_load_avg(cfs_rq) + 1); 8368 } 8369 #else 8370 static bool __update_blocked_fair(struct rq *rq, bool *done) 8371 { 8372 struct cfs_rq *cfs_rq = &rq->cfs; 8373 bool decayed; 8374 8375 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 8376 if (cfs_rq_has_blocked(cfs_rq)) 8377 *done = false; 8378 8379 return decayed; 8380 } 8381 8382 static unsigned long task_h_load(struct task_struct *p) 8383 { 8384 return p->se.avg.load_avg; 8385 } 8386 #endif 8387 8388 static void update_blocked_averages(int cpu) 8389 { 8390 bool decayed = false, done = true; 8391 struct rq *rq = cpu_rq(cpu); 8392 struct rq_flags rf; 8393 8394 rq_lock_irqsave(rq, &rf); 8395 update_blocked_load_tick(rq); 8396 update_rq_clock(rq); 8397 8398 decayed |= __update_blocked_others(rq, &done); 8399 decayed |= __update_blocked_fair(rq, &done); 8400 8401 update_blocked_load_status(rq, !done); 8402 if (decayed) 8403 cpufreq_update_util(rq, 0); 8404 rq_unlock_irqrestore(rq, &rf); 8405 } 8406 8407 /********** Helpers for find_busiest_group ************************/ 8408 8409 /* 8410 * sg_lb_stats - stats of a sched_group required for load_balancing 8411 */ 8412 struct sg_lb_stats { 8413 unsigned long avg_load; /*Avg load across the CPUs of the group */ 8414 unsigned long group_load; /* Total load over the CPUs of the group */ 8415 unsigned long group_capacity; 8416 unsigned long group_util; /* Total utilization over the CPUs of the group */ 8417 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 8418 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 8419 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 8420 unsigned int idle_cpus; 8421 unsigned int group_weight; 8422 enum group_type group_type; 8423 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 8424 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 8425 #ifdef CONFIG_NUMA_BALANCING 8426 unsigned int nr_numa_running; 8427 unsigned int nr_preferred_running; 8428 #endif 8429 }; 8430 8431 /* 8432 * sd_lb_stats - Structure to store the statistics of a sched_domain 8433 * during load balancing. 8434 */ 8435 struct sd_lb_stats { 8436 struct sched_group *busiest; /* Busiest group in this sd */ 8437 struct sched_group *local; /* Local group in this sd */ 8438 unsigned long total_load; /* Total load of all groups in sd */ 8439 unsigned long total_capacity; /* Total capacity of all groups in sd */ 8440 unsigned long avg_load; /* Average load across all groups in sd */ 8441 unsigned int prefer_sibling; /* tasks should go to sibling first */ 8442 8443 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 8444 struct sg_lb_stats local_stat; /* Statistics of the local group */ 8445 }; 8446 8447 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 8448 { 8449 /* 8450 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 8451 * local_stat because update_sg_lb_stats() does a full clear/assignment. 8452 * We must however set busiest_stat::group_type and 8453 * busiest_stat::idle_cpus to the worst busiest group because 8454 * update_sd_pick_busiest() reads these before assignment. 8455 */ 8456 *sds = (struct sd_lb_stats){ 8457 .busiest = NULL, 8458 .local = NULL, 8459 .total_load = 0UL, 8460 .total_capacity = 0UL, 8461 .busiest_stat = { 8462 .idle_cpus = UINT_MAX, 8463 .group_type = group_has_spare, 8464 }, 8465 }; 8466 } 8467 8468 static unsigned long scale_rt_capacity(int cpu) 8469 { 8470 struct rq *rq = cpu_rq(cpu); 8471 unsigned long max = arch_scale_cpu_capacity(cpu); 8472 unsigned long used, free; 8473 unsigned long irq; 8474 8475 irq = cpu_util_irq(rq); 8476 8477 if (unlikely(irq >= max)) 8478 return 1; 8479 8480 /* 8481 * avg_rt.util_avg and avg_dl.util_avg track binary signals 8482 * (running and not running) with weights 0 and 1024 respectively. 8483 * avg_thermal.load_avg tracks thermal pressure and the weighted 8484 * average uses the actual delta max capacity(load). 8485 */ 8486 used = READ_ONCE(rq->avg_rt.util_avg); 8487 used += READ_ONCE(rq->avg_dl.util_avg); 8488 used += thermal_load_avg(rq); 8489 8490 if (unlikely(used >= max)) 8491 return 1; 8492 8493 free = max - used; 8494 8495 return scale_irq_capacity(free, irq, max); 8496 } 8497 8498 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 8499 { 8500 unsigned long capacity = scale_rt_capacity(cpu); 8501 struct sched_group *sdg = sd->groups; 8502 8503 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 8504 8505 if (!capacity) 8506 capacity = 1; 8507 8508 cpu_rq(cpu)->cpu_capacity = capacity; 8509 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 8510 8511 sdg->sgc->capacity = capacity; 8512 sdg->sgc->min_capacity = capacity; 8513 sdg->sgc->max_capacity = capacity; 8514 } 8515 8516 void update_group_capacity(struct sched_domain *sd, int cpu) 8517 { 8518 struct sched_domain *child = sd->child; 8519 struct sched_group *group, *sdg = sd->groups; 8520 unsigned long capacity, min_capacity, max_capacity; 8521 unsigned long interval; 8522 8523 interval = msecs_to_jiffies(sd->balance_interval); 8524 interval = clamp(interval, 1UL, max_load_balance_interval); 8525 sdg->sgc->next_update = jiffies + interval; 8526 8527 if (!child) { 8528 update_cpu_capacity(sd, cpu); 8529 return; 8530 } 8531 8532 capacity = 0; 8533 min_capacity = ULONG_MAX; 8534 max_capacity = 0; 8535 8536 if (child->flags & SD_OVERLAP) { 8537 /* 8538 * SD_OVERLAP domains cannot assume that child groups 8539 * span the current group. 8540 */ 8541 8542 for_each_cpu(cpu, sched_group_span(sdg)) { 8543 unsigned long cpu_cap = capacity_of(cpu); 8544 8545 capacity += cpu_cap; 8546 min_capacity = min(cpu_cap, min_capacity); 8547 max_capacity = max(cpu_cap, max_capacity); 8548 } 8549 } else { 8550 /* 8551 * !SD_OVERLAP domains can assume that child groups 8552 * span the current group. 8553 */ 8554 8555 group = child->groups; 8556 do { 8557 struct sched_group_capacity *sgc = group->sgc; 8558 8559 capacity += sgc->capacity; 8560 min_capacity = min(sgc->min_capacity, min_capacity); 8561 max_capacity = max(sgc->max_capacity, max_capacity); 8562 group = group->next; 8563 } while (group != child->groups); 8564 } 8565 8566 sdg->sgc->capacity = capacity; 8567 sdg->sgc->min_capacity = min_capacity; 8568 sdg->sgc->max_capacity = max_capacity; 8569 } 8570 8571 /* 8572 * Check whether the capacity of the rq has been noticeably reduced by side 8573 * activity. The imbalance_pct is used for the threshold. 8574 * Return true is the capacity is reduced 8575 */ 8576 static inline int 8577 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8578 { 8579 return ((rq->cpu_capacity * sd->imbalance_pct) < 8580 (rq->cpu_capacity_orig * 100)); 8581 } 8582 8583 /* 8584 * Check whether a rq has a misfit task and if it looks like we can actually 8585 * help that task: we can migrate the task to a CPU of higher capacity, or 8586 * the task's current CPU is heavily pressured. 8587 */ 8588 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8589 { 8590 return rq->misfit_task_load && 8591 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8592 check_cpu_capacity(rq, sd)); 8593 } 8594 8595 /* 8596 * Group imbalance indicates (and tries to solve) the problem where balancing 8597 * groups is inadequate due to ->cpus_ptr constraints. 8598 * 8599 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8600 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8601 * Something like: 8602 * 8603 * { 0 1 2 3 } { 4 5 6 7 } 8604 * * * * * 8605 * 8606 * If we were to balance group-wise we'd place two tasks in the first group and 8607 * two tasks in the second group. Clearly this is undesired as it will overload 8608 * cpu 3 and leave one of the CPUs in the second group unused. 8609 * 8610 * The current solution to this issue is detecting the skew in the first group 8611 * by noticing the lower domain failed to reach balance and had difficulty 8612 * moving tasks due to affinity constraints. 8613 * 8614 * When this is so detected; this group becomes a candidate for busiest; see 8615 * update_sd_pick_busiest(). And calculate_imbalance() and 8616 * find_busiest_group() avoid some of the usual balance conditions to allow it 8617 * to create an effective group imbalance. 8618 * 8619 * This is a somewhat tricky proposition since the next run might not find the 8620 * group imbalance and decide the groups need to be balanced again. A most 8621 * subtle and fragile situation. 8622 */ 8623 8624 static inline int sg_imbalanced(struct sched_group *group) 8625 { 8626 return group->sgc->imbalance; 8627 } 8628 8629 /* 8630 * group_has_capacity returns true if the group has spare capacity that could 8631 * be used by some tasks. 8632 * We consider that a group has spare capacity if the number of task is 8633 * smaller than the number of CPUs or if the utilization is lower than the 8634 * available capacity for CFS tasks. 8635 * For the latter, we use a threshold to stabilize the state, to take into 8636 * account the variance of the tasks' load and to return true if the available 8637 * capacity in meaningful for the load balancer. 8638 * As an example, an available capacity of 1% can appear but it doesn't make 8639 * any benefit for the load balance. 8640 */ 8641 static inline bool 8642 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8643 { 8644 if (sgs->sum_nr_running < sgs->group_weight) 8645 return true; 8646 8647 if ((sgs->group_capacity * imbalance_pct) < 8648 (sgs->group_runnable * 100)) 8649 return false; 8650 8651 if ((sgs->group_capacity * 100) > 8652 (sgs->group_util * imbalance_pct)) 8653 return true; 8654 8655 return false; 8656 } 8657 8658 /* 8659 * group_is_overloaded returns true if the group has more tasks than it can 8660 * handle. 8661 * group_is_overloaded is not equals to !group_has_capacity because a group 8662 * with the exact right number of tasks, has no more spare capacity but is not 8663 * overloaded so both group_has_capacity and group_is_overloaded return 8664 * false. 8665 */ 8666 static inline bool 8667 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8668 { 8669 if (sgs->sum_nr_running <= sgs->group_weight) 8670 return false; 8671 8672 if ((sgs->group_capacity * 100) < 8673 (sgs->group_util * imbalance_pct)) 8674 return true; 8675 8676 if ((sgs->group_capacity * imbalance_pct) < 8677 (sgs->group_runnable * 100)) 8678 return true; 8679 8680 return false; 8681 } 8682 8683 static inline enum 8684 group_type group_classify(unsigned int imbalance_pct, 8685 struct sched_group *group, 8686 struct sg_lb_stats *sgs) 8687 { 8688 if (group_is_overloaded(imbalance_pct, sgs)) 8689 return group_overloaded; 8690 8691 if (sg_imbalanced(group)) 8692 return group_imbalanced; 8693 8694 if (sgs->group_asym_packing) 8695 return group_asym_packing; 8696 8697 if (sgs->group_misfit_task_load) 8698 return group_misfit_task; 8699 8700 if (!group_has_capacity(imbalance_pct, sgs)) 8701 return group_fully_busy; 8702 8703 return group_has_spare; 8704 } 8705 8706 /** 8707 * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks 8708 * @dst_cpu: Destination CPU of the load balancing 8709 * @sds: Load-balancing data with statistics of the local group 8710 * @sgs: Load-balancing statistics of the candidate busiest group 8711 * @sg: The candidate busiest group 8712 * 8713 * Check the state of the SMT siblings of both @sds::local and @sg and decide 8714 * if @dst_cpu can pull tasks. 8715 * 8716 * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of 8717 * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks 8718 * only if @dst_cpu has higher priority. 8719 * 8720 * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more 8721 * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority. 8722 * Bigger imbalances in the number of busy CPUs will be dealt with in 8723 * update_sd_pick_busiest(). 8724 * 8725 * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings 8726 * of @dst_cpu are idle and @sg has lower priority. 8727 * 8728 * Return: true if @dst_cpu can pull tasks, false otherwise. 8729 */ 8730 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds, 8731 struct sg_lb_stats *sgs, 8732 struct sched_group *sg) 8733 { 8734 #ifdef CONFIG_SCHED_SMT 8735 bool local_is_smt, sg_is_smt; 8736 int sg_busy_cpus; 8737 8738 local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY; 8739 sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY; 8740 8741 sg_busy_cpus = sgs->group_weight - sgs->idle_cpus; 8742 8743 if (!local_is_smt) { 8744 /* 8745 * If we are here, @dst_cpu is idle and does not have SMT 8746 * siblings. Pull tasks if candidate group has two or more 8747 * busy CPUs. 8748 */ 8749 if (sg_busy_cpus >= 2) /* implies sg_is_smt */ 8750 return true; 8751 8752 /* 8753 * @dst_cpu does not have SMT siblings. @sg may have SMT 8754 * siblings and only one is busy. In such case, @dst_cpu 8755 * can help if it has higher priority and is idle (i.e., 8756 * it has no running tasks). 8757 */ 8758 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8759 } 8760 8761 /* @dst_cpu has SMT siblings. */ 8762 8763 if (sg_is_smt) { 8764 int local_busy_cpus = sds->local->group_weight - 8765 sds->local_stat.idle_cpus; 8766 int busy_cpus_delta = sg_busy_cpus - local_busy_cpus; 8767 8768 if (busy_cpus_delta == 1) 8769 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8770 8771 return false; 8772 } 8773 8774 /* 8775 * @sg does not have SMT siblings. Ensure that @sds::local does not end 8776 * up with more than one busy SMT sibling and only pull tasks if there 8777 * are not busy CPUs (i.e., no CPU has running tasks). 8778 */ 8779 if (!sds->local_stat.sum_nr_running) 8780 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8781 8782 return false; 8783 #else 8784 /* Always return false so that callers deal with non-SMT cases. */ 8785 return false; 8786 #endif 8787 } 8788 8789 static inline bool 8790 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 8791 struct sched_group *group) 8792 { 8793 /* Only do SMT checks if either local or candidate have SMT siblings */ 8794 if ((sds->local->flags & SD_SHARE_CPUCAPACITY) || 8795 (group->flags & SD_SHARE_CPUCAPACITY)) 8796 return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group); 8797 8798 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 8799 } 8800 8801 static inline bool 8802 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 8803 { 8804 /* 8805 * When there is more than 1 task, the group_overloaded case already 8806 * takes care of cpu with reduced capacity 8807 */ 8808 if (rq->cfs.h_nr_running != 1) 8809 return false; 8810 8811 return check_cpu_capacity(rq, sd); 8812 } 8813 8814 /** 8815 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8816 * @env: The load balancing environment. 8817 * @sds: Load-balancing data with statistics of the local group. 8818 * @group: sched_group whose statistics are to be updated. 8819 * @sgs: variable to hold the statistics for this group. 8820 * @sg_status: Holds flag indicating the status of the sched_group 8821 */ 8822 static inline void update_sg_lb_stats(struct lb_env *env, 8823 struct sd_lb_stats *sds, 8824 struct sched_group *group, 8825 struct sg_lb_stats *sgs, 8826 int *sg_status) 8827 { 8828 int i, nr_running, local_group; 8829 8830 memset(sgs, 0, sizeof(*sgs)); 8831 8832 local_group = group == sds->local; 8833 8834 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8835 struct rq *rq = cpu_rq(i); 8836 unsigned long load = cpu_load(rq); 8837 8838 sgs->group_load += load; 8839 sgs->group_util += cpu_util_cfs(i); 8840 sgs->group_runnable += cpu_runnable(rq); 8841 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 8842 8843 nr_running = rq->nr_running; 8844 sgs->sum_nr_running += nr_running; 8845 8846 if (nr_running > 1) 8847 *sg_status |= SG_OVERLOAD; 8848 8849 if (cpu_overutilized(i)) 8850 *sg_status |= SG_OVERUTILIZED; 8851 8852 #ifdef CONFIG_NUMA_BALANCING 8853 sgs->nr_numa_running += rq->nr_numa_running; 8854 sgs->nr_preferred_running += rq->nr_preferred_running; 8855 #endif 8856 /* 8857 * No need to call idle_cpu() if nr_running is not 0 8858 */ 8859 if (!nr_running && idle_cpu(i)) { 8860 sgs->idle_cpus++; 8861 /* Idle cpu can't have misfit task */ 8862 continue; 8863 } 8864 8865 if (local_group) 8866 continue; 8867 8868 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 8869 /* Check for a misfit task on the cpu */ 8870 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 8871 sgs->group_misfit_task_load = rq->misfit_task_load; 8872 *sg_status |= SG_OVERLOAD; 8873 } 8874 } else if ((env->idle != CPU_NOT_IDLE) && 8875 sched_reduced_capacity(rq, env->sd)) { 8876 /* Check for a task running on a CPU with reduced capacity */ 8877 if (sgs->group_misfit_task_load < load) 8878 sgs->group_misfit_task_load = load; 8879 } 8880 } 8881 8882 sgs->group_capacity = group->sgc->capacity; 8883 8884 sgs->group_weight = group->group_weight; 8885 8886 /* Check if dst CPU is idle and preferred to this group */ 8887 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 8888 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 8889 sched_asym(env, sds, sgs, group)) { 8890 sgs->group_asym_packing = 1; 8891 } 8892 8893 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 8894 8895 /* Computing avg_load makes sense only when group is overloaded */ 8896 if (sgs->group_type == group_overloaded) 8897 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8898 sgs->group_capacity; 8899 } 8900 8901 /** 8902 * update_sd_pick_busiest - return 1 on busiest group 8903 * @env: The load balancing environment. 8904 * @sds: sched_domain statistics 8905 * @sg: sched_group candidate to be checked for being the busiest 8906 * @sgs: sched_group statistics 8907 * 8908 * Determine if @sg is a busier group than the previously selected 8909 * busiest group. 8910 * 8911 * Return: %true if @sg is a busier group than the previously selected 8912 * busiest group. %false otherwise. 8913 */ 8914 static bool update_sd_pick_busiest(struct lb_env *env, 8915 struct sd_lb_stats *sds, 8916 struct sched_group *sg, 8917 struct sg_lb_stats *sgs) 8918 { 8919 struct sg_lb_stats *busiest = &sds->busiest_stat; 8920 8921 /* Make sure that there is at least one task to pull */ 8922 if (!sgs->sum_h_nr_running) 8923 return false; 8924 8925 /* 8926 * Don't try to pull misfit tasks we can't help. 8927 * We can use max_capacity here as reduction in capacity on some 8928 * CPUs in the group should either be possible to resolve 8929 * internally or be covered by avg_load imbalance (eventually). 8930 */ 8931 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 8932 (sgs->group_type == group_misfit_task) && 8933 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 8934 sds->local_stat.group_type != group_has_spare)) 8935 return false; 8936 8937 if (sgs->group_type > busiest->group_type) 8938 return true; 8939 8940 if (sgs->group_type < busiest->group_type) 8941 return false; 8942 8943 /* 8944 * The candidate and the current busiest group are the same type of 8945 * group. Let check which one is the busiest according to the type. 8946 */ 8947 8948 switch (sgs->group_type) { 8949 case group_overloaded: 8950 /* Select the overloaded group with highest avg_load. */ 8951 if (sgs->avg_load <= busiest->avg_load) 8952 return false; 8953 break; 8954 8955 case group_imbalanced: 8956 /* 8957 * Select the 1st imbalanced group as we don't have any way to 8958 * choose one more than another. 8959 */ 8960 return false; 8961 8962 case group_asym_packing: 8963 /* Prefer to move from lowest priority CPU's work */ 8964 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 8965 return false; 8966 break; 8967 8968 case group_misfit_task: 8969 /* 8970 * If we have more than one misfit sg go with the biggest 8971 * misfit. 8972 */ 8973 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8974 return false; 8975 break; 8976 8977 case group_fully_busy: 8978 /* 8979 * Select the fully busy group with highest avg_load. In 8980 * theory, there is no need to pull task from such kind of 8981 * group because tasks have all compute capacity that they need 8982 * but we can still improve the overall throughput by reducing 8983 * contention when accessing shared HW resources. 8984 * 8985 * XXX for now avg_load is not computed and always 0 so we 8986 * select the 1st one. 8987 */ 8988 if (sgs->avg_load <= busiest->avg_load) 8989 return false; 8990 break; 8991 8992 case group_has_spare: 8993 /* 8994 * Select not overloaded group with lowest number of idle cpus 8995 * and highest number of running tasks. We could also compare 8996 * the spare capacity which is more stable but it can end up 8997 * that the group has less spare capacity but finally more idle 8998 * CPUs which means less opportunity to pull tasks. 8999 */ 9000 if (sgs->idle_cpus > busiest->idle_cpus) 9001 return false; 9002 else if ((sgs->idle_cpus == busiest->idle_cpus) && 9003 (sgs->sum_nr_running <= busiest->sum_nr_running)) 9004 return false; 9005 9006 break; 9007 } 9008 9009 /* 9010 * Candidate sg has no more than one task per CPU and has higher 9011 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 9012 * throughput. Maximize throughput, power/energy consequences are not 9013 * considered. 9014 */ 9015 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9016 (sgs->group_type <= group_fully_busy) && 9017 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 9018 return false; 9019 9020 return true; 9021 } 9022 9023 #ifdef CONFIG_NUMA_BALANCING 9024 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9025 { 9026 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 9027 return regular; 9028 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 9029 return remote; 9030 return all; 9031 } 9032 9033 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9034 { 9035 if (rq->nr_running > rq->nr_numa_running) 9036 return regular; 9037 if (rq->nr_running > rq->nr_preferred_running) 9038 return remote; 9039 return all; 9040 } 9041 #else 9042 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9043 { 9044 return all; 9045 } 9046 9047 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9048 { 9049 return regular; 9050 } 9051 #endif /* CONFIG_NUMA_BALANCING */ 9052 9053 9054 struct sg_lb_stats; 9055 9056 /* 9057 * task_running_on_cpu - return 1 if @p is running on @cpu. 9058 */ 9059 9060 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 9061 { 9062 /* Task has no contribution or is new */ 9063 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 9064 return 0; 9065 9066 if (task_on_rq_queued(p)) 9067 return 1; 9068 9069 return 0; 9070 } 9071 9072 /** 9073 * idle_cpu_without - would a given CPU be idle without p ? 9074 * @cpu: the processor on which idleness is tested. 9075 * @p: task which should be ignored. 9076 * 9077 * Return: 1 if the CPU would be idle. 0 otherwise. 9078 */ 9079 static int idle_cpu_without(int cpu, struct task_struct *p) 9080 { 9081 struct rq *rq = cpu_rq(cpu); 9082 9083 if (rq->curr != rq->idle && rq->curr != p) 9084 return 0; 9085 9086 /* 9087 * rq->nr_running can't be used but an updated version without the 9088 * impact of p on cpu must be used instead. The updated nr_running 9089 * be computed and tested before calling idle_cpu_without(). 9090 */ 9091 9092 #ifdef CONFIG_SMP 9093 if (rq->ttwu_pending) 9094 return 0; 9095 #endif 9096 9097 return 1; 9098 } 9099 9100 /* 9101 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 9102 * @sd: The sched_domain level to look for idlest group. 9103 * @group: sched_group whose statistics are to be updated. 9104 * @sgs: variable to hold the statistics for this group. 9105 * @p: The task for which we look for the idlest group/CPU. 9106 */ 9107 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 9108 struct sched_group *group, 9109 struct sg_lb_stats *sgs, 9110 struct task_struct *p) 9111 { 9112 int i, nr_running; 9113 9114 memset(sgs, 0, sizeof(*sgs)); 9115 9116 for_each_cpu(i, sched_group_span(group)) { 9117 struct rq *rq = cpu_rq(i); 9118 unsigned int local; 9119 9120 sgs->group_load += cpu_load_without(rq, p); 9121 sgs->group_util += cpu_util_without(i, p); 9122 sgs->group_runnable += cpu_runnable_without(rq, p); 9123 local = task_running_on_cpu(i, p); 9124 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 9125 9126 nr_running = rq->nr_running - local; 9127 sgs->sum_nr_running += nr_running; 9128 9129 /* 9130 * No need to call idle_cpu_without() if nr_running is not 0 9131 */ 9132 if (!nr_running && idle_cpu_without(i, p)) 9133 sgs->idle_cpus++; 9134 9135 } 9136 9137 /* Check if task fits in the group */ 9138 if (sd->flags & SD_ASYM_CPUCAPACITY && 9139 !task_fits_capacity(p, group->sgc->max_capacity)) { 9140 sgs->group_misfit_task_load = 1; 9141 } 9142 9143 sgs->group_capacity = group->sgc->capacity; 9144 9145 sgs->group_weight = group->group_weight; 9146 9147 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 9148 9149 /* 9150 * Computing avg_load makes sense only when group is fully busy or 9151 * overloaded 9152 */ 9153 if (sgs->group_type == group_fully_busy || 9154 sgs->group_type == group_overloaded) 9155 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9156 sgs->group_capacity; 9157 } 9158 9159 static bool update_pick_idlest(struct sched_group *idlest, 9160 struct sg_lb_stats *idlest_sgs, 9161 struct sched_group *group, 9162 struct sg_lb_stats *sgs) 9163 { 9164 if (sgs->group_type < idlest_sgs->group_type) 9165 return true; 9166 9167 if (sgs->group_type > idlest_sgs->group_type) 9168 return false; 9169 9170 /* 9171 * The candidate and the current idlest group are the same type of 9172 * group. Let check which one is the idlest according to the type. 9173 */ 9174 9175 switch (sgs->group_type) { 9176 case group_overloaded: 9177 case group_fully_busy: 9178 /* Select the group with lowest avg_load. */ 9179 if (idlest_sgs->avg_load <= sgs->avg_load) 9180 return false; 9181 break; 9182 9183 case group_imbalanced: 9184 case group_asym_packing: 9185 /* Those types are not used in the slow wakeup path */ 9186 return false; 9187 9188 case group_misfit_task: 9189 /* Select group with the highest max capacity */ 9190 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 9191 return false; 9192 break; 9193 9194 case group_has_spare: 9195 /* Select group with most idle CPUs */ 9196 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 9197 return false; 9198 9199 /* Select group with lowest group_util */ 9200 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 9201 idlest_sgs->group_util <= sgs->group_util) 9202 return false; 9203 9204 break; 9205 } 9206 9207 return true; 9208 } 9209 9210 /* 9211 * find_idlest_group() finds and returns the least busy CPU group within the 9212 * domain. 9213 * 9214 * Assumes p is allowed on at least one CPU in sd. 9215 */ 9216 static struct sched_group * 9217 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 9218 { 9219 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 9220 struct sg_lb_stats local_sgs, tmp_sgs; 9221 struct sg_lb_stats *sgs; 9222 unsigned long imbalance; 9223 struct sg_lb_stats idlest_sgs = { 9224 .avg_load = UINT_MAX, 9225 .group_type = group_overloaded, 9226 }; 9227 9228 do { 9229 int local_group; 9230 9231 /* Skip over this group if it has no CPUs allowed */ 9232 if (!cpumask_intersects(sched_group_span(group), 9233 p->cpus_ptr)) 9234 continue; 9235 9236 /* Skip over this group if no cookie matched */ 9237 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 9238 continue; 9239 9240 local_group = cpumask_test_cpu(this_cpu, 9241 sched_group_span(group)); 9242 9243 if (local_group) { 9244 sgs = &local_sgs; 9245 local = group; 9246 } else { 9247 sgs = &tmp_sgs; 9248 } 9249 9250 update_sg_wakeup_stats(sd, group, sgs, p); 9251 9252 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 9253 idlest = group; 9254 idlest_sgs = *sgs; 9255 } 9256 9257 } while (group = group->next, group != sd->groups); 9258 9259 9260 /* There is no idlest group to push tasks to */ 9261 if (!idlest) 9262 return NULL; 9263 9264 /* The local group has been skipped because of CPU affinity */ 9265 if (!local) 9266 return idlest; 9267 9268 /* 9269 * If the local group is idler than the selected idlest group 9270 * don't try and push the task. 9271 */ 9272 if (local_sgs.group_type < idlest_sgs.group_type) 9273 return NULL; 9274 9275 /* 9276 * If the local group is busier than the selected idlest group 9277 * try and push the task. 9278 */ 9279 if (local_sgs.group_type > idlest_sgs.group_type) 9280 return idlest; 9281 9282 switch (local_sgs.group_type) { 9283 case group_overloaded: 9284 case group_fully_busy: 9285 9286 /* Calculate allowed imbalance based on load */ 9287 imbalance = scale_load_down(NICE_0_LOAD) * 9288 (sd->imbalance_pct-100) / 100; 9289 9290 /* 9291 * When comparing groups across NUMA domains, it's possible for 9292 * the local domain to be very lightly loaded relative to the 9293 * remote domains but "imbalance" skews the comparison making 9294 * remote CPUs look much more favourable. When considering 9295 * cross-domain, add imbalance to the load on the remote node 9296 * and consider staying local. 9297 */ 9298 9299 if ((sd->flags & SD_NUMA) && 9300 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 9301 return NULL; 9302 9303 /* 9304 * If the local group is less loaded than the selected 9305 * idlest group don't try and push any tasks. 9306 */ 9307 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 9308 return NULL; 9309 9310 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 9311 return NULL; 9312 break; 9313 9314 case group_imbalanced: 9315 case group_asym_packing: 9316 /* Those type are not used in the slow wakeup path */ 9317 return NULL; 9318 9319 case group_misfit_task: 9320 /* Select group with the highest max capacity */ 9321 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 9322 return NULL; 9323 break; 9324 9325 case group_has_spare: 9326 #ifdef CONFIG_NUMA 9327 if (sd->flags & SD_NUMA) { 9328 int imb_numa_nr = sd->imb_numa_nr; 9329 #ifdef CONFIG_NUMA_BALANCING 9330 int idlest_cpu; 9331 /* 9332 * If there is spare capacity at NUMA, try to select 9333 * the preferred node 9334 */ 9335 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 9336 return NULL; 9337 9338 idlest_cpu = cpumask_first(sched_group_span(idlest)); 9339 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 9340 return idlest; 9341 #endif /* CONFIG_NUMA_BALANCING */ 9342 /* 9343 * Otherwise, keep the task close to the wakeup source 9344 * and improve locality if the number of running tasks 9345 * would remain below threshold where an imbalance is 9346 * allowed while accounting for the possibility the 9347 * task is pinned to a subset of CPUs. If there is a 9348 * real need of migration, periodic load balance will 9349 * take care of it. 9350 */ 9351 if (p->nr_cpus_allowed != NR_CPUS) { 9352 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 9353 9354 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 9355 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 9356 } 9357 9358 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 9359 if (!adjust_numa_imbalance(imbalance, 9360 local_sgs.sum_nr_running + 1, 9361 imb_numa_nr)) { 9362 return NULL; 9363 } 9364 } 9365 #endif /* CONFIG_NUMA */ 9366 9367 /* 9368 * Select group with highest number of idle CPUs. We could also 9369 * compare the utilization which is more stable but it can end 9370 * up that the group has less spare capacity but finally more 9371 * idle CPUs which means more opportunity to run task. 9372 */ 9373 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 9374 return NULL; 9375 break; 9376 } 9377 9378 return idlest; 9379 } 9380 9381 static void update_idle_cpu_scan(struct lb_env *env, 9382 unsigned long sum_util) 9383 { 9384 struct sched_domain_shared *sd_share; 9385 int llc_weight, pct; 9386 u64 x, y, tmp; 9387 /* 9388 * Update the number of CPUs to scan in LLC domain, which could 9389 * be used as a hint in select_idle_cpu(). The update of sd_share 9390 * could be expensive because it is within a shared cache line. 9391 * So the write of this hint only occurs during periodic load 9392 * balancing, rather than CPU_NEWLY_IDLE, because the latter 9393 * can fire way more frequently than the former. 9394 */ 9395 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 9396 return; 9397 9398 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 9399 if (env->sd->span_weight != llc_weight) 9400 return; 9401 9402 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 9403 if (!sd_share) 9404 return; 9405 9406 /* 9407 * The number of CPUs to search drops as sum_util increases, when 9408 * sum_util hits 85% or above, the scan stops. 9409 * The reason to choose 85% as the threshold is because this is the 9410 * imbalance_pct(117) when a LLC sched group is overloaded. 9411 * 9412 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 9413 * and y'= y / SCHED_CAPACITY_SCALE 9414 * 9415 * x is the ratio of sum_util compared to the CPU capacity: 9416 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 9417 * y' is the ratio of CPUs to be scanned in the LLC domain, 9418 * and the number of CPUs to scan is calculated by: 9419 * 9420 * nr_scan = llc_weight * y' [2] 9421 * 9422 * When x hits the threshold of overloaded, AKA, when 9423 * x = 100 / pct, y drops to 0. According to [1], 9424 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 9425 * 9426 * Scale x by SCHED_CAPACITY_SCALE: 9427 * x' = sum_util / llc_weight; [3] 9428 * 9429 * and finally [1] becomes: 9430 * y = SCHED_CAPACITY_SCALE - 9431 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 9432 * 9433 */ 9434 /* equation [3] */ 9435 x = sum_util; 9436 do_div(x, llc_weight); 9437 9438 /* equation [4] */ 9439 pct = env->sd->imbalance_pct; 9440 tmp = x * x * pct * pct; 9441 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 9442 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 9443 y = SCHED_CAPACITY_SCALE - tmp; 9444 9445 /* equation [2] */ 9446 y *= llc_weight; 9447 do_div(y, SCHED_CAPACITY_SCALE); 9448 if ((int)y != sd_share->nr_idle_scan) 9449 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 9450 } 9451 9452 /** 9453 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 9454 * @env: The load balancing environment. 9455 * @sds: variable to hold the statistics for this sched_domain. 9456 */ 9457 9458 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 9459 { 9460 struct sched_domain *child = env->sd->child; 9461 struct sched_group *sg = env->sd->groups; 9462 struct sg_lb_stats *local = &sds->local_stat; 9463 struct sg_lb_stats tmp_sgs; 9464 unsigned long sum_util = 0; 9465 int sg_status = 0; 9466 9467 do { 9468 struct sg_lb_stats *sgs = &tmp_sgs; 9469 int local_group; 9470 9471 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 9472 if (local_group) { 9473 sds->local = sg; 9474 sgs = local; 9475 9476 if (env->idle != CPU_NEWLY_IDLE || 9477 time_after_eq(jiffies, sg->sgc->next_update)) 9478 update_group_capacity(env->sd, env->dst_cpu); 9479 } 9480 9481 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 9482 9483 if (local_group) 9484 goto next_group; 9485 9486 9487 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 9488 sds->busiest = sg; 9489 sds->busiest_stat = *sgs; 9490 } 9491 9492 next_group: 9493 /* Now, start updating sd_lb_stats */ 9494 sds->total_load += sgs->group_load; 9495 sds->total_capacity += sgs->group_capacity; 9496 9497 sum_util += sgs->group_util; 9498 sg = sg->next; 9499 } while (sg != env->sd->groups); 9500 9501 /* Tag domain that child domain prefers tasks go to siblings first */ 9502 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 9503 9504 9505 if (env->sd->flags & SD_NUMA) 9506 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 9507 9508 if (!env->sd->parent) { 9509 struct root_domain *rd = env->dst_rq->rd; 9510 9511 /* update overload indicator if we are at root domain */ 9512 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 9513 9514 /* Update over-utilization (tipping point, U >= 0) indicator */ 9515 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 9516 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 9517 } else if (sg_status & SG_OVERUTILIZED) { 9518 struct root_domain *rd = env->dst_rq->rd; 9519 9520 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 9521 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 9522 } 9523 9524 update_idle_cpu_scan(env, sum_util); 9525 } 9526 9527 /** 9528 * calculate_imbalance - Calculate the amount of imbalance present within the 9529 * groups of a given sched_domain during load balance. 9530 * @env: load balance environment 9531 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 9532 */ 9533 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 9534 { 9535 struct sg_lb_stats *local, *busiest; 9536 9537 local = &sds->local_stat; 9538 busiest = &sds->busiest_stat; 9539 9540 if (busiest->group_type == group_misfit_task) { 9541 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9542 /* Set imbalance to allow misfit tasks to be balanced. */ 9543 env->migration_type = migrate_misfit; 9544 env->imbalance = 1; 9545 } else { 9546 /* 9547 * Set load imbalance to allow moving task from cpu 9548 * with reduced capacity. 9549 */ 9550 env->migration_type = migrate_load; 9551 env->imbalance = busiest->group_misfit_task_load; 9552 } 9553 return; 9554 } 9555 9556 if (busiest->group_type == group_asym_packing) { 9557 /* 9558 * In case of asym capacity, we will try to migrate all load to 9559 * the preferred CPU. 9560 */ 9561 env->migration_type = migrate_task; 9562 env->imbalance = busiest->sum_h_nr_running; 9563 return; 9564 } 9565 9566 if (busiest->group_type == group_imbalanced) { 9567 /* 9568 * In the group_imb case we cannot rely on group-wide averages 9569 * to ensure CPU-load equilibrium, try to move any task to fix 9570 * the imbalance. The next load balance will take care of 9571 * balancing back the system. 9572 */ 9573 env->migration_type = migrate_task; 9574 env->imbalance = 1; 9575 return; 9576 } 9577 9578 /* 9579 * Try to use spare capacity of local group without overloading it or 9580 * emptying busiest. 9581 */ 9582 if (local->group_type == group_has_spare) { 9583 if ((busiest->group_type > group_fully_busy) && 9584 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 9585 /* 9586 * If busiest is overloaded, try to fill spare 9587 * capacity. This might end up creating spare capacity 9588 * in busiest or busiest still being overloaded but 9589 * there is no simple way to directly compute the 9590 * amount of load to migrate in order to balance the 9591 * system. 9592 */ 9593 env->migration_type = migrate_util; 9594 env->imbalance = max(local->group_capacity, local->group_util) - 9595 local->group_util; 9596 9597 /* 9598 * In some cases, the group's utilization is max or even 9599 * higher than capacity because of migrations but the 9600 * local CPU is (newly) idle. There is at least one 9601 * waiting task in this overloaded busiest group. Let's 9602 * try to pull it. 9603 */ 9604 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 9605 env->migration_type = migrate_task; 9606 env->imbalance = 1; 9607 } 9608 9609 return; 9610 } 9611 9612 if (busiest->group_weight == 1 || sds->prefer_sibling) { 9613 unsigned int nr_diff = busiest->sum_nr_running; 9614 /* 9615 * When prefer sibling, evenly spread running tasks on 9616 * groups. 9617 */ 9618 env->migration_type = migrate_task; 9619 lsub_positive(&nr_diff, local->sum_nr_running); 9620 env->imbalance = nr_diff; 9621 } else { 9622 9623 /* 9624 * If there is no overload, we just want to even the number of 9625 * idle cpus. 9626 */ 9627 env->migration_type = migrate_task; 9628 env->imbalance = max_t(long, 0, 9629 (local->idle_cpus - busiest->idle_cpus)); 9630 } 9631 9632 #ifdef CONFIG_NUMA 9633 /* Consider allowing a small imbalance between NUMA groups */ 9634 if (env->sd->flags & SD_NUMA) { 9635 env->imbalance = adjust_numa_imbalance(env->imbalance, 9636 local->sum_nr_running + 1, 9637 env->sd->imb_numa_nr); 9638 } 9639 #endif 9640 9641 /* Number of tasks to move to restore balance */ 9642 env->imbalance >>= 1; 9643 9644 return; 9645 } 9646 9647 /* 9648 * Local is fully busy but has to take more load to relieve the 9649 * busiest group 9650 */ 9651 if (local->group_type < group_overloaded) { 9652 /* 9653 * Local will become overloaded so the avg_load metrics are 9654 * finally needed. 9655 */ 9656 9657 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 9658 local->group_capacity; 9659 9660 /* 9661 * If the local group is more loaded than the selected 9662 * busiest group don't try to pull any tasks. 9663 */ 9664 if (local->avg_load >= busiest->avg_load) { 9665 env->imbalance = 0; 9666 return; 9667 } 9668 9669 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 9670 sds->total_capacity; 9671 } 9672 9673 /* 9674 * Both group are or will become overloaded and we're trying to get all 9675 * the CPUs to the average_load, so we don't want to push ourselves 9676 * above the average load, nor do we wish to reduce the max loaded CPU 9677 * below the average load. At the same time, we also don't want to 9678 * reduce the group load below the group capacity. Thus we look for 9679 * the minimum possible imbalance. 9680 */ 9681 env->migration_type = migrate_load; 9682 env->imbalance = min( 9683 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 9684 (sds->avg_load - local->avg_load) * local->group_capacity 9685 ) / SCHED_CAPACITY_SCALE; 9686 } 9687 9688 /******* find_busiest_group() helpers end here *********************/ 9689 9690 /* 9691 * Decision matrix according to the local and busiest group type: 9692 * 9693 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 9694 * has_spare nr_idle balanced N/A N/A balanced balanced 9695 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 9696 * misfit_task force N/A N/A N/A N/A N/A 9697 * asym_packing force force N/A N/A force force 9698 * imbalanced force force N/A N/A force force 9699 * overloaded force force N/A N/A force avg_load 9700 * 9701 * N/A : Not Applicable because already filtered while updating 9702 * statistics. 9703 * balanced : The system is balanced for these 2 groups. 9704 * force : Calculate the imbalance as load migration is probably needed. 9705 * avg_load : Only if imbalance is significant enough. 9706 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 9707 * different in groups. 9708 */ 9709 9710 /** 9711 * find_busiest_group - Returns the busiest group within the sched_domain 9712 * if there is an imbalance. 9713 * @env: The load balancing environment. 9714 * 9715 * Also calculates the amount of runnable load which should be moved 9716 * to restore balance. 9717 * 9718 * Return: - The busiest group if imbalance exists. 9719 */ 9720 static struct sched_group *find_busiest_group(struct lb_env *env) 9721 { 9722 struct sg_lb_stats *local, *busiest; 9723 struct sd_lb_stats sds; 9724 9725 init_sd_lb_stats(&sds); 9726 9727 /* 9728 * Compute the various statistics relevant for load balancing at 9729 * this level. 9730 */ 9731 update_sd_lb_stats(env, &sds); 9732 9733 if (sched_energy_enabled()) { 9734 struct root_domain *rd = env->dst_rq->rd; 9735 9736 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 9737 goto out_balanced; 9738 } 9739 9740 local = &sds.local_stat; 9741 busiest = &sds.busiest_stat; 9742 9743 /* There is no busy sibling group to pull tasks from */ 9744 if (!sds.busiest) 9745 goto out_balanced; 9746 9747 /* Misfit tasks should be dealt with regardless of the avg load */ 9748 if (busiest->group_type == group_misfit_task) 9749 goto force_balance; 9750 9751 /* ASYM feature bypasses nice load balance check */ 9752 if (busiest->group_type == group_asym_packing) 9753 goto force_balance; 9754 9755 /* 9756 * If the busiest group is imbalanced the below checks don't 9757 * work because they assume all things are equal, which typically 9758 * isn't true due to cpus_ptr constraints and the like. 9759 */ 9760 if (busiest->group_type == group_imbalanced) 9761 goto force_balance; 9762 9763 /* 9764 * If the local group is busier than the selected busiest group 9765 * don't try and pull any tasks. 9766 */ 9767 if (local->group_type > busiest->group_type) 9768 goto out_balanced; 9769 9770 /* 9771 * When groups are overloaded, use the avg_load to ensure fairness 9772 * between tasks. 9773 */ 9774 if (local->group_type == group_overloaded) { 9775 /* 9776 * If the local group is more loaded than the selected 9777 * busiest group don't try to pull any tasks. 9778 */ 9779 if (local->avg_load >= busiest->avg_load) 9780 goto out_balanced; 9781 9782 /* XXX broken for overlapping NUMA groups */ 9783 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 9784 sds.total_capacity; 9785 9786 /* 9787 * Don't pull any tasks if this group is already above the 9788 * domain average load. 9789 */ 9790 if (local->avg_load >= sds.avg_load) 9791 goto out_balanced; 9792 9793 /* 9794 * If the busiest group is more loaded, use imbalance_pct to be 9795 * conservative. 9796 */ 9797 if (100 * busiest->avg_load <= 9798 env->sd->imbalance_pct * local->avg_load) 9799 goto out_balanced; 9800 } 9801 9802 /* Try to move all excess tasks to child's sibling domain */ 9803 if (sds.prefer_sibling && local->group_type == group_has_spare && 9804 busiest->sum_nr_running > local->sum_nr_running + 1) 9805 goto force_balance; 9806 9807 if (busiest->group_type != group_overloaded) { 9808 if (env->idle == CPU_NOT_IDLE) 9809 /* 9810 * If the busiest group is not overloaded (and as a 9811 * result the local one too) but this CPU is already 9812 * busy, let another idle CPU try to pull task. 9813 */ 9814 goto out_balanced; 9815 9816 if (busiest->group_weight > 1 && 9817 local->idle_cpus <= (busiest->idle_cpus + 1)) 9818 /* 9819 * If the busiest group is not overloaded 9820 * and there is no imbalance between this and busiest 9821 * group wrt idle CPUs, it is balanced. The imbalance 9822 * becomes significant if the diff is greater than 1 9823 * otherwise we might end up to just move the imbalance 9824 * on another group. Of course this applies only if 9825 * there is more than 1 CPU per group. 9826 */ 9827 goto out_balanced; 9828 9829 if (busiest->sum_h_nr_running == 1) 9830 /* 9831 * busiest doesn't have any tasks waiting to run 9832 */ 9833 goto out_balanced; 9834 } 9835 9836 force_balance: 9837 /* Looks like there is an imbalance. Compute it */ 9838 calculate_imbalance(env, &sds); 9839 return env->imbalance ? sds.busiest : NULL; 9840 9841 out_balanced: 9842 env->imbalance = 0; 9843 return NULL; 9844 } 9845 9846 /* 9847 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 9848 */ 9849 static struct rq *find_busiest_queue(struct lb_env *env, 9850 struct sched_group *group) 9851 { 9852 struct rq *busiest = NULL, *rq; 9853 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 9854 unsigned int busiest_nr = 0; 9855 int i; 9856 9857 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9858 unsigned long capacity, load, util; 9859 unsigned int nr_running; 9860 enum fbq_type rt; 9861 9862 rq = cpu_rq(i); 9863 rt = fbq_classify_rq(rq); 9864 9865 /* 9866 * We classify groups/runqueues into three groups: 9867 * - regular: there are !numa tasks 9868 * - remote: there are numa tasks that run on the 'wrong' node 9869 * - all: there is no distinction 9870 * 9871 * In order to avoid migrating ideally placed numa tasks, 9872 * ignore those when there's better options. 9873 * 9874 * If we ignore the actual busiest queue to migrate another 9875 * task, the next balance pass can still reduce the busiest 9876 * queue by moving tasks around inside the node. 9877 * 9878 * If we cannot move enough load due to this classification 9879 * the next pass will adjust the group classification and 9880 * allow migration of more tasks. 9881 * 9882 * Both cases only affect the total convergence complexity. 9883 */ 9884 if (rt > env->fbq_type) 9885 continue; 9886 9887 nr_running = rq->cfs.h_nr_running; 9888 if (!nr_running) 9889 continue; 9890 9891 capacity = capacity_of(i); 9892 9893 /* 9894 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 9895 * eventually lead to active_balancing high->low capacity. 9896 * Higher per-CPU capacity is considered better than balancing 9897 * average load. 9898 */ 9899 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 9900 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 9901 nr_running == 1) 9902 continue; 9903 9904 /* Make sure we only pull tasks from a CPU of lower priority */ 9905 if ((env->sd->flags & SD_ASYM_PACKING) && 9906 sched_asym_prefer(i, env->dst_cpu) && 9907 nr_running == 1) 9908 continue; 9909 9910 switch (env->migration_type) { 9911 case migrate_load: 9912 /* 9913 * When comparing with load imbalance, use cpu_load() 9914 * which is not scaled with the CPU capacity. 9915 */ 9916 load = cpu_load(rq); 9917 9918 if (nr_running == 1 && load > env->imbalance && 9919 !check_cpu_capacity(rq, env->sd)) 9920 break; 9921 9922 /* 9923 * For the load comparisons with the other CPUs, 9924 * consider the cpu_load() scaled with the CPU 9925 * capacity, so that the load can be moved away 9926 * from the CPU that is potentially running at a 9927 * lower capacity. 9928 * 9929 * Thus we're looking for max(load_i / capacity_i), 9930 * crosswise multiplication to rid ourselves of the 9931 * division works out to: 9932 * load_i * capacity_j > load_j * capacity_i; 9933 * where j is our previous maximum. 9934 */ 9935 if (load * busiest_capacity > busiest_load * capacity) { 9936 busiest_load = load; 9937 busiest_capacity = capacity; 9938 busiest = rq; 9939 } 9940 break; 9941 9942 case migrate_util: 9943 util = cpu_util_cfs(i); 9944 9945 /* 9946 * Don't try to pull utilization from a CPU with one 9947 * running task. Whatever its utilization, we will fail 9948 * detach the task. 9949 */ 9950 if (nr_running <= 1) 9951 continue; 9952 9953 if (busiest_util < util) { 9954 busiest_util = util; 9955 busiest = rq; 9956 } 9957 break; 9958 9959 case migrate_task: 9960 if (busiest_nr < nr_running) { 9961 busiest_nr = nr_running; 9962 busiest = rq; 9963 } 9964 break; 9965 9966 case migrate_misfit: 9967 /* 9968 * For ASYM_CPUCAPACITY domains with misfit tasks we 9969 * simply seek the "biggest" misfit task. 9970 */ 9971 if (rq->misfit_task_load > busiest_load) { 9972 busiest_load = rq->misfit_task_load; 9973 busiest = rq; 9974 } 9975 9976 break; 9977 9978 } 9979 } 9980 9981 return busiest; 9982 } 9983 9984 /* 9985 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 9986 * so long as it is large enough. 9987 */ 9988 #define MAX_PINNED_INTERVAL 512 9989 9990 static inline bool 9991 asym_active_balance(struct lb_env *env) 9992 { 9993 /* 9994 * ASYM_PACKING needs to force migrate tasks from busy but 9995 * lower priority CPUs in order to pack all tasks in the 9996 * highest priority CPUs. 9997 */ 9998 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 9999 sched_asym_prefer(env->dst_cpu, env->src_cpu); 10000 } 10001 10002 static inline bool 10003 imbalanced_active_balance(struct lb_env *env) 10004 { 10005 struct sched_domain *sd = env->sd; 10006 10007 /* 10008 * The imbalanced case includes the case of pinned tasks preventing a fair 10009 * distribution of the load on the system but also the even distribution of the 10010 * threads on a system with spare capacity 10011 */ 10012 if ((env->migration_type == migrate_task) && 10013 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 10014 return 1; 10015 10016 return 0; 10017 } 10018 10019 static int need_active_balance(struct lb_env *env) 10020 { 10021 struct sched_domain *sd = env->sd; 10022 10023 if (asym_active_balance(env)) 10024 return 1; 10025 10026 if (imbalanced_active_balance(env)) 10027 return 1; 10028 10029 /* 10030 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 10031 * It's worth migrating the task if the src_cpu's capacity is reduced 10032 * because of other sched_class or IRQs if more capacity stays 10033 * available on dst_cpu. 10034 */ 10035 if ((env->idle != CPU_NOT_IDLE) && 10036 (env->src_rq->cfs.h_nr_running == 1)) { 10037 if ((check_cpu_capacity(env->src_rq, sd)) && 10038 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 10039 return 1; 10040 } 10041 10042 if (env->migration_type == migrate_misfit) 10043 return 1; 10044 10045 return 0; 10046 } 10047 10048 static int active_load_balance_cpu_stop(void *data); 10049 10050 static int should_we_balance(struct lb_env *env) 10051 { 10052 struct sched_group *sg = env->sd->groups; 10053 int cpu; 10054 10055 /* 10056 * Ensure the balancing environment is consistent; can happen 10057 * when the softirq triggers 'during' hotplug. 10058 */ 10059 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 10060 return 0; 10061 10062 /* 10063 * In the newly idle case, we will allow all the CPUs 10064 * to do the newly idle load balance. 10065 * 10066 * However, we bail out if we already have tasks or a wakeup pending, 10067 * to optimize wakeup latency. 10068 */ 10069 if (env->idle == CPU_NEWLY_IDLE) { 10070 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 10071 return 0; 10072 return 1; 10073 } 10074 10075 /* Try to find first idle CPU */ 10076 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 10077 if (!idle_cpu(cpu)) 10078 continue; 10079 10080 /* Are we the first idle CPU? */ 10081 return cpu == env->dst_cpu; 10082 } 10083 10084 /* Are we the first CPU of this group ? */ 10085 return group_balance_cpu(sg) == env->dst_cpu; 10086 } 10087 10088 /* 10089 * Check this_cpu to ensure it is balanced within domain. Attempt to move 10090 * tasks if there is an imbalance. 10091 */ 10092 static int load_balance(int this_cpu, struct rq *this_rq, 10093 struct sched_domain *sd, enum cpu_idle_type idle, 10094 int *continue_balancing) 10095 { 10096 int ld_moved, cur_ld_moved, active_balance = 0; 10097 struct sched_domain *sd_parent = sd->parent; 10098 struct sched_group *group; 10099 struct rq *busiest; 10100 struct rq_flags rf; 10101 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 10102 10103 struct lb_env env = { 10104 .sd = sd, 10105 .dst_cpu = this_cpu, 10106 .dst_rq = this_rq, 10107 .dst_grpmask = sched_group_span(sd->groups), 10108 .idle = idle, 10109 .loop_break = sched_nr_migrate_break, 10110 .cpus = cpus, 10111 .fbq_type = all, 10112 .tasks = LIST_HEAD_INIT(env.tasks), 10113 }; 10114 10115 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 10116 10117 schedstat_inc(sd->lb_count[idle]); 10118 10119 redo: 10120 if (!should_we_balance(&env)) { 10121 *continue_balancing = 0; 10122 goto out_balanced; 10123 } 10124 10125 group = find_busiest_group(&env); 10126 if (!group) { 10127 schedstat_inc(sd->lb_nobusyg[idle]); 10128 goto out_balanced; 10129 } 10130 10131 busiest = find_busiest_queue(&env, group); 10132 if (!busiest) { 10133 schedstat_inc(sd->lb_nobusyq[idle]); 10134 goto out_balanced; 10135 } 10136 10137 BUG_ON(busiest == env.dst_rq); 10138 10139 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 10140 10141 env.src_cpu = busiest->cpu; 10142 env.src_rq = busiest; 10143 10144 ld_moved = 0; 10145 /* Clear this flag as soon as we find a pullable task */ 10146 env.flags |= LBF_ALL_PINNED; 10147 if (busiest->nr_running > 1) { 10148 /* 10149 * Attempt to move tasks. If find_busiest_group has found 10150 * an imbalance but busiest->nr_running <= 1, the group is 10151 * still unbalanced. ld_moved simply stays zero, so it is 10152 * correctly treated as an imbalance. 10153 */ 10154 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 10155 10156 more_balance: 10157 rq_lock_irqsave(busiest, &rf); 10158 update_rq_clock(busiest); 10159 10160 /* 10161 * cur_ld_moved - load moved in current iteration 10162 * ld_moved - cumulative load moved across iterations 10163 */ 10164 cur_ld_moved = detach_tasks(&env); 10165 10166 /* 10167 * We've detached some tasks from busiest_rq. Every 10168 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 10169 * unlock busiest->lock, and we are able to be sure 10170 * that nobody can manipulate the tasks in parallel. 10171 * See task_rq_lock() family for the details. 10172 */ 10173 10174 rq_unlock(busiest, &rf); 10175 10176 if (cur_ld_moved) { 10177 attach_tasks(&env); 10178 ld_moved += cur_ld_moved; 10179 } 10180 10181 local_irq_restore(rf.flags); 10182 10183 if (env.flags & LBF_NEED_BREAK) { 10184 env.flags &= ~LBF_NEED_BREAK; 10185 goto more_balance; 10186 } 10187 10188 /* 10189 * Revisit (affine) tasks on src_cpu that couldn't be moved to 10190 * us and move them to an alternate dst_cpu in our sched_group 10191 * where they can run. The upper limit on how many times we 10192 * iterate on same src_cpu is dependent on number of CPUs in our 10193 * sched_group. 10194 * 10195 * This changes load balance semantics a bit on who can move 10196 * load to a given_cpu. In addition to the given_cpu itself 10197 * (or a ilb_cpu acting on its behalf where given_cpu is 10198 * nohz-idle), we now have balance_cpu in a position to move 10199 * load to given_cpu. In rare situations, this may cause 10200 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 10201 * _independently_ and at _same_ time to move some load to 10202 * given_cpu) causing excess load to be moved to given_cpu. 10203 * This however should not happen so much in practice and 10204 * moreover subsequent load balance cycles should correct the 10205 * excess load moved. 10206 */ 10207 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 10208 10209 /* Prevent to re-select dst_cpu via env's CPUs */ 10210 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 10211 10212 env.dst_rq = cpu_rq(env.new_dst_cpu); 10213 env.dst_cpu = env.new_dst_cpu; 10214 env.flags &= ~LBF_DST_PINNED; 10215 env.loop = 0; 10216 env.loop_break = sched_nr_migrate_break; 10217 10218 /* 10219 * Go back to "more_balance" rather than "redo" since we 10220 * need to continue with same src_cpu. 10221 */ 10222 goto more_balance; 10223 } 10224 10225 /* 10226 * We failed to reach balance because of affinity. 10227 */ 10228 if (sd_parent) { 10229 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10230 10231 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 10232 *group_imbalance = 1; 10233 } 10234 10235 /* All tasks on this runqueue were pinned by CPU affinity */ 10236 if (unlikely(env.flags & LBF_ALL_PINNED)) { 10237 __cpumask_clear_cpu(cpu_of(busiest), cpus); 10238 /* 10239 * Attempting to continue load balancing at the current 10240 * sched_domain level only makes sense if there are 10241 * active CPUs remaining as possible busiest CPUs to 10242 * pull load from which are not contained within the 10243 * destination group that is receiving any migrated 10244 * load. 10245 */ 10246 if (!cpumask_subset(cpus, env.dst_grpmask)) { 10247 env.loop = 0; 10248 env.loop_break = sched_nr_migrate_break; 10249 goto redo; 10250 } 10251 goto out_all_pinned; 10252 } 10253 } 10254 10255 if (!ld_moved) { 10256 schedstat_inc(sd->lb_failed[idle]); 10257 /* 10258 * Increment the failure counter only on periodic balance. 10259 * We do not want newidle balance, which can be very 10260 * frequent, pollute the failure counter causing 10261 * excessive cache_hot migrations and active balances. 10262 */ 10263 if (idle != CPU_NEWLY_IDLE) 10264 sd->nr_balance_failed++; 10265 10266 if (need_active_balance(&env)) { 10267 unsigned long flags; 10268 10269 raw_spin_rq_lock_irqsave(busiest, flags); 10270 10271 /* 10272 * Don't kick the active_load_balance_cpu_stop, 10273 * if the curr task on busiest CPU can't be 10274 * moved to this_cpu: 10275 */ 10276 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 10277 raw_spin_rq_unlock_irqrestore(busiest, flags); 10278 goto out_one_pinned; 10279 } 10280 10281 /* Record that we found at least one task that could run on this_cpu */ 10282 env.flags &= ~LBF_ALL_PINNED; 10283 10284 /* 10285 * ->active_balance synchronizes accesses to 10286 * ->active_balance_work. Once set, it's cleared 10287 * only after active load balance is finished. 10288 */ 10289 if (!busiest->active_balance) { 10290 busiest->active_balance = 1; 10291 busiest->push_cpu = this_cpu; 10292 active_balance = 1; 10293 } 10294 raw_spin_rq_unlock_irqrestore(busiest, flags); 10295 10296 if (active_balance) { 10297 stop_one_cpu_nowait(cpu_of(busiest), 10298 active_load_balance_cpu_stop, busiest, 10299 &busiest->active_balance_work); 10300 } 10301 } 10302 } else { 10303 sd->nr_balance_failed = 0; 10304 } 10305 10306 if (likely(!active_balance) || need_active_balance(&env)) { 10307 /* We were unbalanced, so reset the balancing interval */ 10308 sd->balance_interval = sd->min_interval; 10309 } 10310 10311 goto out; 10312 10313 out_balanced: 10314 /* 10315 * We reach balance although we may have faced some affinity 10316 * constraints. Clear the imbalance flag only if other tasks got 10317 * a chance to move and fix the imbalance. 10318 */ 10319 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 10320 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10321 10322 if (*group_imbalance) 10323 *group_imbalance = 0; 10324 } 10325 10326 out_all_pinned: 10327 /* 10328 * We reach balance because all tasks are pinned at this level so 10329 * we can't migrate them. Let the imbalance flag set so parent level 10330 * can try to migrate them. 10331 */ 10332 schedstat_inc(sd->lb_balanced[idle]); 10333 10334 sd->nr_balance_failed = 0; 10335 10336 out_one_pinned: 10337 ld_moved = 0; 10338 10339 /* 10340 * newidle_balance() disregards balance intervals, so we could 10341 * repeatedly reach this code, which would lead to balance_interval 10342 * skyrocketing in a short amount of time. Skip the balance_interval 10343 * increase logic to avoid that. 10344 */ 10345 if (env.idle == CPU_NEWLY_IDLE) 10346 goto out; 10347 10348 /* tune up the balancing interval */ 10349 if ((env.flags & LBF_ALL_PINNED && 10350 sd->balance_interval < MAX_PINNED_INTERVAL) || 10351 sd->balance_interval < sd->max_interval) 10352 sd->balance_interval *= 2; 10353 out: 10354 return ld_moved; 10355 } 10356 10357 static inline unsigned long 10358 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 10359 { 10360 unsigned long interval = sd->balance_interval; 10361 10362 if (cpu_busy) 10363 interval *= sd->busy_factor; 10364 10365 /* scale ms to jiffies */ 10366 interval = msecs_to_jiffies(interval); 10367 10368 /* 10369 * Reduce likelihood of busy balancing at higher domains racing with 10370 * balancing at lower domains by preventing their balancing periods 10371 * from being multiples of each other. 10372 */ 10373 if (cpu_busy) 10374 interval -= 1; 10375 10376 interval = clamp(interval, 1UL, max_load_balance_interval); 10377 10378 return interval; 10379 } 10380 10381 static inline void 10382 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 10383 { 10384 unsigned long interval, next; 10385 10386 /* used by idle balance, so cpu_busy = 0 */ 10387 interval = get_sd_balance_interval(sd, 0); 10388 next = sd->last_balance + interval; 10389 10390 if (time_after(*next_balance, next)) 10391 *next_balance = next; 10392 } 10393 10394 /* 10395 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 10396 * running tasks off the busiest CPU onto idle CPUs. It requires at 10397 * least 1 task to be running on each physical CPU where possible, and 10398 * avoids physical / logical imbalances. 10399 */ 10400 static int active_load_balance_cpu_stop(void *data) 10401 { 10402 struct rq *busiest_rq = data; 10403 int busiest_cpu = cpu_of(busiest_rq); 10404 int target_cpu = busiest_rq->push_cpu; 10405 struct rq *target_rq = cpu_rq(target_cpu); 10406 struct sched_domain *sd; 10407 struct task_struct *p = NULL; 10408 struct rq_flags rf; 10409 10410 rq_lock_irq(busiest_rq, &rf); 10411 /* 10412 * Between queueing the stop-work and running it is a hole in which 10413 * CPUs can become inactive. We should not move tasks from or to 10414 * inactive CPUs. 10415 */ 10416 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 10417 goto out_unlock; 10418 10419 /* Make sure the requested CPU hasn't gone down in the meantime: */ 10420 if (unlikely(busiest_cpu != smp_processor_id() || 10421 !busiest_rq->active_balance)) 10422 goto out_unlock; 10423 10424 /* Is there any task to move? */ 10425 if (busiest_rq->nr_running <= 1) 10426 goto out_unlock; 10427 10428 /* 10429 * This condition is "impossible", if it occurs 10430 * we need to fix it. Originally reported by 10431 * Bjorn Helgaas on a 128-CPU setup. 10432 */ 10433 BUG_ON(busiest_rq == target_rq); 10434 10435 /* Search for an sd spanning us and the target CPU. */ 10436 rcu_read_lock(); 10437 for_each_domain(target_cpu, sd) { 10438 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 10439 break; 10440 } 10441 10442 if (likely(sd)) { 10443 struct lb_env env = { 10444 .sd = sd, 10445 .dst_cpu = target_cpu, 10446 .dst_rq = target_rq, 10447 .src_cpu = busiest_rq->cpu, 10448 .src_rq = busiest_rq, 10449 .idle = CPU_IDLE, 10450 .flags = LBF_ACTIVE_LB, 10451 }; 10452 10453 schedstat_inc(sd->alb_count); 10454 update_rq_clock(busiest_rq); 10455 10456 p = detach_one_task(&env); 10457 if (p) { 10458 schedstat_inc(sd->alb_pushed); 10459 /* Active balancing done, reset the failure counter. */ 10460 sd->nr_balance_failed = 0; 10461 } else { 10462 schedstat_inc(sd->alb_failed); 10463 } 10464 } 10465 rcu_read_unlock(); 10466 out_unlock: 10467 busiest_rq->active_balance = 0; 10468 rq_unlock(busiest_rq, &rf); 10469 10470 if (p) 10471 attach_one_task(target_rq, p); 10472 10473 local_irq_enable(); 10474 10475 return 0; 10476 } 10477 10478 static DEFINE_SPINLOCK(balancing); 10479 10480 /* 10481 * Scale the max load_balance interval with the number of CPUs in the system. 10482 * This trades load-balance latency on larger machines for less cross talk. 10483 */ 10484 void update_max_interval(void) 10485 { 10486 max_load_balance_interval = HZ*num_online_cpus()/10; 10487 } 10488 10489 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 10490 { 10491 if (cost > sd->max_newidle_lb_cost) { 10492 /* 10493 * Track max cost of a domain to make sure to not delay the 10494 * next wakeup on the CPU. 10495 */ 10496 sd->max_newidle_lb_cost = cost; 10497 sd->last_decay_max_lb_cost = jiffies; 10498 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 10499 /* 10500 * Decay the newidle max times by ~1% per second to ensure that 10501 * it is not outdated and the current max cost is actually 10502 * shorter. 10503 */ 10504 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 10505 sd->last_decay_max_lb_cost = jiffies; 10506 10507 return true; 10508 } 10509 10510 return false; 10511 } 10512 10513 /* 10514 * It checks each scheduling domain to see if it is due to be balanced, 10515 * and initiates a balancing operation if so. 10516 * 10517 * Balancing parameters are set up in init_sched_domains. 10518 */ 10519 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 10520 { 10521 int continue_balancing = 1; 10522 int cpu = rq->cpu; 10523 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10524 unsigned long interval; 10525 struct sched_domain *sd; 10526 /* Earliest time when we have to do rebalance again */ 10527 unsigned long next_balance = jiffies + 60*HZ; 10528 int update_next_balance = 0; 10529 int need_serialize, need_decay = 0; 10530 u64 max_cost = 0; 10531 10532 rcu_read_lock(); 10533 for_each_domain(cpu, sd) { 10534 /* 10535 * Decay the newidle max times here because this is a regular 10536 * visit to all the domains. 10537 */ 10538 need_decay = update_newidle_cost(sd, 0); 10539 max_cost += sd->max_newidle_lb_cost; 10540 10541 /* 10542 * Stop the load balance at this level. There is another 10543 * CPU in our sched group which is doing load balancing more 10544 * actively. 10545 */ 10546 if (!continue_balancing) { 10547 if (need_decay) 10548 continue; 10549 break; 10550 } 10551 10552 interval = get_sd_balance_interval(sd, busy); 10553 10554 need_serialize = sd->flags & SD_SERIALIZE; 10555 if (need_serialize) { 10556 if (!spin_trylock(&balancing)) 10557 goto out; 10558 } 10559 10560 if (time_after_eq(jiffies, sd->last_balance + interval)) { 10561 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 10562 /* 10563 * The LBF_DST_PINNED logic could have changed 10564 * env->dst_cpu, so we can't know our idle 10565 * state even if we migrated tasks. Update it. 10566 */ 10567 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 10568 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10569 } 10570 sd->last_balance = jiffies; 10571 interval = get_sd_balance_interval(sd, busy); 10572 } 10573 if (need_serialize) 10574 spin_unlock(&balancing); 10575 out: 10576 if (time_after(next_balance, sd->last_balance + interval)) { 10577 next_balance = sd->last_balance + interval; 10578 update_next_balance = 1; 10579 } 10580 } 10581 if (need_decay) { 10582 /* 10583 * Ensure the rq-wide value also decays but keep it at a 10584 * reasonable floor to avoid funnies with rq->avg_idle. 10585 */ 10586 rq->max_idle_balance_cost = 10587 max((u64)sysctl_sched_migration_cost, max_cost); 10588 } 10589 rcu_read_unlock(); 10590 10591 /* 10592 * next_balance will be updated only when there is a need. 10593 * When the cpu is attached to null domain for ex, it will not be 10594 * updated. 10595 */ 10596 if (likely(update_next_balance)) 10597 rq->next_balance = next_balance; 10598 10599 } 10600 10601 static inline int on_null_domain(struct rq *rq) 10602 { 10603 return unlikely(!rcu_dereference_sched(rq->sd)); 10604 } 10605 10606 #ifdef CONFIG_NO_HZ_COMMON 10607 /* 10608 * idle load balancing details 10609 * - When one of the busy CPUs notice that there may be an idle rebalancing 10610 * needed, they will kick the idle load balancer, which then does idle 10611 * load balancing for all the idle CPUs. 10612 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set 10613 * anywhere yet. 10614 */ 10615 10616 static inline int find_new_ilb(void) 10617 { 10618 int ilb; 10619 const struct cpumask *hk_mask; 10620 10621 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 10622 10623 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) { 10624 10625 if (ilb == smp_processor_id()) 10626 continue; 10627 10628 if (idle_cpu(ilb)) 10629 return ilb; 10630 } 10631 10632 return nr_cpu_ids; 10633 } 10634 10635 /* 10636 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 10637 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 10638 */ 10639 static void kick_ilb(unsigned int flags) 10640 { 10641 int ilb_cpu; 10642 10643 /* 10644 * Increase nohz.next_balance only when if full ilb is triggered but 10645 * not if we only update stats. 10646 */ 10647 if (flags & NOHZ_BALANCE_KICK) 10648 nohz.next_balance = jiffies+1; 10649 10650 ilb_cpu = find_new_ilb(); 10651 10652 if (ilb_cpu >= nr_cpu_ids) 10653 return; 10654 10655 /* 10656 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 10657 * the first flag owns it; cleared by nohz_csd_func(). 10658 */ 10659 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 10660 if (flags & NOHZ_KICK_MASK) 10661 return; 10662 10663 /* 10664 * This way we generate an IPI on the target CPU which 10665 * is idle. And the softirq performing nohz idle load balance 10666 * will be run before returning from the IPI. 10667 */ 10668 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 10669 } 10670 10671 /* 10672 * Current decision point for kicking the idle load balancer in the presence 10673 * of idle CPUs in the system. 10674 */ 10675 static void nohz_balancer_kick(struct rq *rq) 10676 { 10677 unsigned long now = jiffies; 10678 struct sched_domain_shared *sds; 10679 struct sched_domain *sd; 10680 int nr_busy, i, cpu = rq->cpu; 10681 unsigned int flags = 0; 10682 10683 if (unlikely(rq->idle_balance)) 10684 return; 10685 10686 /* 10687 * We may be recently in ticked or tickless idle mode. At the first 10688 * busy tick after returning from idle, we will update the busy stats. 10689 */ 10690 nohz_balance_exit_idle(rq); 10691 10692 /* 10693 * None are in tickless mode and hence no need for NOHZ idle load 10694 * balancing. 10695 */ 10696 if (likely(!atomic_read(&nohz.nr_cpus))) 10697 return; 10698 10699 if (READ_ONCE(nohz.has_blocked) && 10700 time_after(now, READ_ONCE(nohz.next_blocked))) 10701 flags = NOHZ_STATS_KICK; 10702 10703 if (time_before(now, nohz.next_balance)) 10704 goto out; 10705 10706 if (rq->nr_running >= 2) { 10707 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10708 goto out; 10709 } 10710 10711 rcu_read_lock(); 10712 10713 sd = rcu_dereference(rq->sd); 10714 if (sd) { 10715 /* 10716 * If there's a CFS task and the current CPU has reduced 10717 * capacity; kick the ILB to see if there's a better CPU to run 10718 * on. 10719 */ 10720 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 10721 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10722 goto unlock; 10723 } 10724 } 10725 10726 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 10727 if (sd) { 10728 /* 10729 * When ASYM_PACKING; see if there's a more preferred CPU 10730 * currently idle; in which case, kick the ILB to move tasks 10731 * around. 10732 */ 10733 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 10734 if (sched_asym_prefer(i, cpu)) { 10735 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10736 goto unlock; 10737 } 10738 } 10739 } 10740 10741 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 10742 if (sd) { 10743 /* 10744 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 10745 * to run the misfit task on. 10746 */ 10747 if (check_misfit_status(rq, sd)) { 10748 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10749 goto unlock; 10750 } 10751 10752 /* 10753 * For asymmetric systems, we do not want to nicely balance 10754 * cache use, instead we want to embrace asymmetry and only 10755 * ensure tasks have enough CPU capacity. 10756 * 10757 * Skip the LLC logic because it's not relevant in that case. 10758 */ 10759 goto unlock; 10760 } 10761 10762 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 10763 if (sds) { 10764 /* 10765 * If there is an imbalance between LLC domains (IOW we could 10766 * increase the overall cache use), we need some less-loaded LLC 10767 * domain to pull some load. Likewise, we may need to spread 10768 * load within the current LLC domain (e.g. packed SMT cores but 10769 * other CPUs are idle). We can't really know from here how busy 10770 * the others are - so just get a nohz balance going if it looks 10771 * like this LLC domain has tasks we could move. 10772 */ 10773 nr_busy = atomic_read(&sds->nr_busy_cpus); 10774 if (nr_busy > 1) { 10775 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10776 goto unlock; 10777 } 10778 } 10779 unlock: 10780 rcu_read_unlock(); 10781 out: 10782 if (READ_ONCE(nohz.needs_update)) 10783 flags |= NOHZ_NEXT_KICK; 10784 10785 if (flags) 10786 kick_ilb(flags); 10787 } 10788 10789 static void set_cpu_sd_state_busy(int cpu) 10790 { 10791 struct sched_domain *sd; 10792 10793 rcu_read_lock(); 10794 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10795 10796 if (!sd || !sd->nohz_idle) 10797 goto unlock; 10798 sd->nohz_idle = 0; 10799 10800 atomic_inc(&sd->shared->nr_busy_cpus); 10801 unlock: 10802 rcu_read_unlock(); 10803 } 10804 10805 void nohz_balance_exit_idle(struct rq *rq) 10806 { 10807 SCHED_WARN_ON(rq != this_rq()); 10808 10809 if (likely(!rq->nohz_tick_stopped)) 10810 return; 10811 10812 rq->nohz_tick_stopped = 0; 10813 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 10814 atomic_dec(&nohz.nr_cpus); 10815 10816 set_cpu_sd_state_busy(rq->cpu); 10817 } 10818 10819 static void set_cpu_sd_state_idle(int cpu) 10820 { 10821 struct sched_domain *sd; 10822 10823 rcu_read_lock(); 10824 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10825 10826 if (!sd || sd->nohz_idle) 10827 goto unlock; 10828 sd->nohz_idle = 1; 10829 10830 atomic_dec(&sd->shared->nr_busy_cpus); 10831 unlock: 10832 rcu_read_unlock(); 10833 } 10834 10835 /* 10836 * This routine will record that the CPU is going idle with tick stopped. 10837 * This info will be used in performing idle load balancing in the future. 10838 */ 10839 void nohz_balance_enter_idle(int cpu) 10840 { 10841 struct rq *rq = cpu_rq(cpu); 10842 10843 SCHED_WARN_ON(cpu != smp_processor_id()); 10844 10845 /* If this CPU is going down, then nothing needs to be done: */ 10846 if (!cpu_active(cpu)) 10847 return; 10848 10849 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 10850 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 10851 return; 10852 10853 /* 10854 * Can be set safely without rq->lock held 10855 * If a clear happens, it will have evaluated last additions because 10856 * rq->lock is held during the check and the clear 10857 */ 10858 rq->has_blocked_load = 1; 10859 10860 /* 10861 * The tick is still stopped but load could have been added in the 10862 * meantime. We set the nohz.has_blocked flag to trig a check of the 10863 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 10864 * of nohz.has_blocked can only happen after checking the new load 10865 */ 10866 if (rq->nohz_tick_stopped) 10867 goto out; 10868 10869 /* If we're a completely isolated CPU, we don't play: */ 10870 if (on_null_domain(rq)) 10871 return; 10872 10873 rq->nohz_tick_stopped = 1; 10874 10875 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 10876 atomic_inc(&nohz.nr_cpus); 10877 10878 /* 10879 * Ensures that if nohz_idle_balance() fails to observe our 10880 * @idle_cpus_mask store, it must observe the @has_blocked 10881 * and @needs_update stores. 10882 */ 10883 smp_mb__after_atomic(); 10884 10885 set_cpu_sd_state_idle(cpu); 10886 10887 WRITE_ONCE(nohz.needs_update, 1); 10888 out: 10889 /* 10890 * Each time a cpu enter idle, we assume that it has blocked load and 10891 * enable the periodic update of the load of idle cpus 10892 */ 10893 WRITE_ONCE(nohz.has_blocked, 1); 10894 } 10895 10896 static bool update_nohz_stats(struct rq *rq) 10897 { 10898 unsigned int cpu = rq->cpu; 10899 10900 if (!rq->has_blocked_load) 10901 return false; 10902 10903 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 10904 return false; 10905 10906 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 10907 return true; 10908 10909 update_blocked_averages(cpu); 10910 10911 return rq->has_blocked_load; 10912 } 10913 10914 /* 10915 * Internal function that runs load balance for all idle cpus. The load balance 10916 * can be a simple update of blocked load or a complete load balance with 10917 * tasks movement depending of flags. 10918 */ 10919 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 10920 enum cpu_idle_type idle) 10921 { 10922 /* Earliest time when we have to do rebalance again */ 10923 unsigned long now = jiffies; 10924 unsigned long next_balance = now + 60*HZ; 10925 bool has_blocked_load = false; 10926 int update_next_balance = 0; 10927 int this_cpu = this_rq->cpu; 10928 int balance_cpu; 10929 struct rq *rq; 10930 10931 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 10932 10933 /* 10934 * We assume there will be no idle load after this update and clear 10935 * the has_blocked flag. If a cpu enters idle in the mean time, it will 10936 * set the has_blocked flag and trigger another update of idle load. 10937 * Because a cpu that becomes idle, is added to idle_cpus_mask before 10938 * setting the flag, we are sure to not clear the state and not 10939 * check the load of an idle cpu. 10940 * 10941 * Same applies to idle_cpus_mask vs needs_update. 10942 */ 10943 if (flags & NOHZ_STATS_KICK) 10944 WRITE_ONCE(nohz.has_blocked, 0); 10945 if (flags & NOHZ_NEXT_KICK) 10946 WRITE_ONCE(nohz.needs_update, 0); 10947 10948 /* 10949 * Ensures that if we miss the CPU, we must see the has_blocked 10950 * store from nohz_balance_enter_idle(). 10951 */ 10952 smp_mb(); 10953 10954 /* 10955 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 10956 * chance for other idle cpu to pull load. 10957 */ 10958 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 10959 if (!idle_cpu(balance_cpu)) 10960 continue; 10961 10962 /* 10963 * If this CPU gets work to do, stop the load balancing 10964 * work being done for other CPUs. Next load 10965 * balancing owner will pick it up. 10966 */ 10967 if (need_resched()) { 10968 if (flags & NOHZ_STATS_KICK) 10969 has_blocked_load = true; 10970 if (flags & NOHZ_NEXT_KICK) 10971 WRITE_ONCE(nohz.needs_update, 1); 10972 goto abort; 10973 } 10974 10975 rq = cpu_rq(balance_cpu); 10976 10977 if (flags & NOHZ_STATS_KICK) 10978 has_blocked_load |= update_nohz_stats(rq); 10979 10980 /* 10981 * If time for next balance is due, 10982 * do the balance. 10983 */ 10984 if (time_after_eq(jiffies, rq->next_balance)) { 10985 struct rq_flags rf; 10986 10987 rq_lock_irqsave(rq, &rf); 10988 update_rq_clock(rq); 10989 rq_unlock_irqrestore(rq, &rf); 10990 10991 if (flags & NOHZ_BALANCE_KICK) 10992 rebalance_domains(rq, CPU_IDLE); 10993 } 10994 10995 if (time_after(next_balance, rq->next_balance)) { 10996 next_balance = rq->next_balance; 10997 update_next_balance = 1; 10998 } 10999 } 11000 11001 /* 11002 * next_balance will be updated only when there is a need. 11003 * When the CPU is attached to null domain for ex, it will not be 11004 * updated. 11005 */ 11006 if (likely(update_next_balance)) 11007 nohz.next_balance = next_balance; 11008 11009 if (flags & NOHZ_STATS_KICK) 11010 WRITE_ONCE(nohz.next_blocked, 11011 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 11012 11013 abort: 11014 /* There is still blocked load, enable periodic update */ 11015 if (has_blocked_load) 11016 WRITE_ONCE(nohz.has_blocked, 1); 11017 } 11018 11019 /* 11020 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 11021 * rebalancing for all the cpus for whom scheduler ticks are stopped. 11022 */ 11023 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 11024 { 11025 unsigned int flags = this_rq->nohz_idle_balance; 11026 11027 if (!flags) 11028 return false; 11029 11030 this_rq->nohz_idle_balance = 0; 11031 11032 if (idle != CPU_IDLE) 11033 return false; 11034 11035 _nohz_idle_balance(this_rq, flags, idle); 11036 11037 return true; 11038 } 11039 11040 /* 11041 * Check if we need to run the ILB for updating blocked load before entering 11042 * idle state. 11043 */ 11044 void nohz_run_idle_balance(int cpu) 11045 { 11046 unsigned int flags; 11047 11048 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 11049 11050 /* 11051 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 11052 * (ie NOHZ_STATS_KICK set) and will do the same. 11053 */ 11054 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 11055 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE); 11056 } 11057 11058 static void nohz_newidle_balance(struct rq *this_rq) 11059 { 11060 int this_cpu = this_rq->cpu; 11061 11062 /* 11063 * This CPU doesn't want to be disturbed by scheduler 11064 * housekeeping 11065 */ 11066 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 11067 return; 11068 11069 /* Will wake up very soon. No time for doing anything else*/ 11070 if (this_rq->avg_idle < sysctl_sched_migration_cost) 11071 return; 11072 11073 /* Don't need to update blocked load of idle CPUs*/ 11074 if (!READ_ONCE(nohz.has_blocked) || 11075 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 11076 return; 11077 11078 /* 11079 * Set the need to trigger ILB in order to update blocked load 11080 * before entering idle state. 11081 */ 11082 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 11083 } 11084 11085 #else /* !CONFIG_NO_HZ_COMMON */ 11086 static inline void nohz_balancer_kick(struct rq *rq) { } 11087 11088 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 11089 { 11090 return false; 11091 } 11092 11093 static inline void nohz_newidle_balance(struct rq *this_rq) { } 11094 #endif /* CONFIG_NO_HZ_COMMON */ 11095 11096 /* 11097 * newidle_balance is called by schedule() if this_cpu is about to become 11098 * idle. Attempts to pull tasks from other CPUs. 11099 * 11100 * Returns: 11101 * < 0 - we released the lock and there are !fair tasks present 11102 * 0 - failed, no new tasks 11103 * > 0 - success, new (fair) tasks present 11104 */ 11105 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 11106 { 11107 unsigned long next_balance = jiffies + HZ; 11108 int this_cpu = this_rq->cpu; 11109 u64 t0, t1, curr_cost = 0; 11110 struct sched_domain *sd; 11111 int pulled_task = 0; 11112 11113 update_misfit_status(NULL, this_rq); 11114 11115 /* 11116 * There is a task waiting to run. No need to search for one. 11117 * Return 0; the task will be enqueued when switching to idle. 11118 */ 11119 if (this_rq->ttwu_pending) 11120 return 0; 11121 11122 /* 11123 * We must set idle_stamp _before_ calling idle_balance(), such that we 11124 * measure the duration of idle_balance() as idle time. 11125 */ 11126 this_rq->idle_stamp = rq_clock(this_rq); 11127 11128 /* 11129 * Do not pull tasks towards !active CPUs... 11130 */ 11131 if (!cpu_active(this_cpu)) 11132 return 0; 11133 11134 /* 11135 * This is OK, because current is on_cpu, which avoids it being picked 11136 * for load-balance and preemption/IRQs are still disabled avoiding 11137 * further scheduler activity on it and we're being very careful to 11138 * re-start the picking loop. 11139 */ 11140 rq_unpin_lock(this_rq, rf); 11141 11142 rcu_read_lock(); 11143 sd = rcu_dereference_check_sched_domain(this_rq->sd); 11144 11145 if (!READ_ONCE(this_rq->rd->overload) || 11146 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 11147 11148 if (sd) 11149 update_next_balance(sd, &next_balance); 11150 rcu_read_unlock(); 11151 11152 goto out; 11153 } 11154 rcu_read_unlock(); 11155 11156 raw_spin_rq_unlock(this_rq); 11157 11158 t0 = sched_clock_cpu(this_cpu); 11159 update_blocked_averages(this_cpu); 11160 11161 rcu_read_lock(); 11162 for_each_domain(this_cpu, sd) { 11163 int continue_balancing = 1; 11164 u64 domain_cost; 11165 11166 update_next_balance(sd, &next_balance); 11167 11168 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 11169 break; 11170 11171 if (sd->flags & SD_BALANCE_NEWIDLE) { 11172 11173 pulled_task = load_balance(this_cpu, this_rq, 11174 sd, CPU_NEWLY_IDLE, 11175 &continue_balancing); 11176 11177 t1 = sched_clock_cpu(this_cpu); 11178 domain_cost = t1 - t0; 11179 update_newidle_cost(sd, domain_cost); 11180 11181 curr_cost += domain_cost; 11182 t0 = t1; 11183 } 11184 11185 /* 11186 * Stop searching for tasks to pull if there are 11187 * now runnable tasks on this rq. 11188 */ 11189 if (pulled_task || this_rq->nr_running > 0 || 11190 this_rq->ttwu_pending) 11191 break; 11192 } 11193 rcu_read_unlock(); 11194 11195 raw_spin_rq_lock(this_rq); 11196 11197 if (curr_cost > this_rq->max_idle_balance_cost) 11198 this_rq->max_idle_balance_cost = curr_cost; 11199 11200 /* 11201 * While browsing the domains, we released the rq lock, a task could 11202 * have been enqueued in the meantime. Since we're not going idle, 11203 * pretend we pulled a task. 11204 */ 11205 if (this_rq->cfs.h_nr_running && !pulled_task) 11206 pulled_task = 1; 11207 11208 /* Is there a task of a high priority class? */ 11209 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 11210 pulled_task = -1; 11211 11212 out: 11213 /* Move the next balance forward */ 11214 if (time_after(this_rq->next_balance, next_balance)) 11215 this_rq->next_balance = next_balance; 11216 11217 if (pulled_task) 11218 this_rq->idle_stamp = 0; 11219 else 11220 nohz_newidle_balance(this_rq); 11221 11222 rq_repin_lock(this_rq, rf); 11223 11224 return pulled_task; 11225 } 11226 11227 /* 11228 * run_rebalance_domains is triggered when needed from the scheduler tick. 11229 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 11230 */ 11231 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 11232 { 11233 struct rq *this_rq = this_rq(); 11234 enum cpu_idle_type idle = this_rq->idle_balance ? 11235 CPU_IDLE : CPU_NOT_IDLE; 11236 11237 /* 11238 * If this CPU has a pending nohz_balance_kick, then do the 11239 * balancing on behalf of the other idle CPUs whose ticks are 11240 * stopped. Do nohz_idle_balance *before* rebalance_domains to 11241 * give the idle CPUs a chance to load balance. Else we may 11242 * load balance only within the local sched_domain hierarchy 11243 * and abort nohz_idle_balance altogether if we pull some load. 11244 */ 11245 if (nohz_idle_balance(this_rq, idle)) 11246 return; 11247 11248 /* normal load balance */ 11249 update_blocked_averages(this_rq->cpu); 11250 rebalance_domains(this_rq, idle); 11251 } 11252 11253 /* 11254 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 11255 */ 11256 void trigger_load_balance(struct rq *rq) 11257 { 11258 /* 11259 * Don't need to rebalance while attached to NULL domain or 11260 * runqueue CPU is not active 11261 */ 11262 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 11263 return; 11264 11265 if (time_after_eq(jiffies, rq->next_balance)) 11266 raise_softirq(SCHED_SOFTIRQ); 11267 11268 nohz_balancer_kick(rq); 11269 } 11270 11271 static void rq_online_fair(struct rq *rq) 11272 { 11273 update_sysctl(); 11274 11275 update_runtime_enabled(rq); 11276 } 11277 11278 static void rq_offline_fair(struct rq *rq) 11279 { 11280 update_sysctl(); 11281 11282 /* Ensure any throttled groups are reachable by pick_next_task */ 11283 unthrottle_offline_cfs_rqs(rq); 11284 } 11285 11286 #endif /* CONFIG_SMP */ 11287 11288 #ifdef CONFIG_SCHED_CORE 11289 static inline bool 11290 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 11291 { 11292 u64 slice = sched_slice(cfs_rq_of(se), se); 11293 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 11294 11295 return (rtime * min_nr_tasks > slice); 11296 } 11297 11298 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 11299 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 11300 { 11301 if (!sched_core_enabled(rq)) 11302 return; 11303 11304 /* 11305 * If runqueue has only one task which used up its slice and 11306 * if the sibling is forced idle, then trigger schedule to 11307 * give forced idle task a chance. 11308 * 11309 * sched_slice() considers only this active rq and it gets the 11310 * whole slice. But during force idle, we have siblings acting 11311 * like a single runqueue and hence we need to consider runnable 11312 * tasks on this CPU and the forced idle CPU. Ideally, we should 11313 * go through the forced idle rq, but that would be a perf hit. 11314 * We can assume that the forced idle CPU has at least 11315 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 11316 * if we need to give up the CPU. 11317 */ 11318 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 11319 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 11320 resched_curr(rq); 11321 } 11322 11323 /* 11324 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 11325 */ 11326 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle) 11327 { 11328 for_each_sched_entity(se) { 11329 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11330 11331 if (forceidle) { 11332 if (cfs_rq->forceidle_seq == fi_seq) 11333 break; 11334 cfs_rq->forceidle_seq = fi_seq; 11335 } 11336 11337 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 11338 } 11339 } 11340 11341 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 11342 { 11343 struct sched_entity *se = &p->se; 11344 11345 if (p->sched_class != &fair_sched_class) 11346 return; 11347 11348 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 11349 } 11350 11351 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 11352 { 11353 struct rq *rq = task_rq(a); 11354 struct sched_entity *sea = &a->se; 11355 struct sched_entity *seb = &b->se; 11356 struct cfs_rq *cfs_rqa; 11357 struct cfs_rq *cfs_rqb; 11358 s64 delta; 11359 11360 SCHED_WARN_ON(task_rq(b)->core != rq->core); 11361 11362 #ifdef CONFIG_FAIR_GROUP_SCHED 11363 /* 11364 * Find an se in the hierarchy for tasks a and b, such that the se's 11365 * are immediate siblings. 11366 */ 11367 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 11368 int sea_depth = sea->depth; 11369 int seb_depth = seb->depth; 11370 11371 if (sea_depth >= seb_depth) 11372 sea = parent_entity(sea); 11373 if (sea_depth <= seb_depth) 11374 seb = parent_entity(seb); 11375 } 11376 11377 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 11378 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 11379 11380 cfs_rqa = sea->cfs_rq; 11381 cfs_rqb = seb->cfs_rq; 11382 #else 11383 cfs_rqa = &task_rq(a)->cfs; 11384 cfs_rqb = &task_rq(b)->cfs; 11385 #endif 11386 11387 /* 11388 * Find delta after normalizing se's vruntime with its cfs_rq's 11389 * min_vruntime_fi, which would have been updated in prior calls 11390 * to se_fi_update(). 11391 */ 11392 delta = (s64)(sea->vruntime - seb->vruntime) + 11393 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 11394 11395 return delta > 0; 11396 } 11397 #else 11398 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 11399 #endif 11400 11401 /* 11402 * scheduler tick hitting a task of our scheduling class. 11403 * 11404 * NOTE: This function can be called remotely by the tick offload that 11405 * goes along full dynticks. Therefore no local assumption can be made 11406 * and everything must be accessed through the @rq and @curr passed in 11407 * parameters. 11408 */ 11409 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 11410 { 11411 struct cfs_rq *cfs_rq; 11412 struct sched_entity *se = &curr->se; 11413 11414 for_each_sched_entity(se) { 11415 cfs_rq = cfs_rq_of(se); 11416 entity_tick(cfs_rq, se, queued); 11417 } 11418 11419 if (static_branch_unlikely(&sched_numa_balancing)) 11420 task_tick_numa(rq, curr); 11421 11422 update_misfit_status(curr, rq); 11423 update_overutilized_status(task_rq(curr)); 11424 11425 task_tick_core(rq, curr); 11426 } 11427 11428 /* 11429 * called on fork with the child task as argument from the parent's context 11430 * - child not yet on the tasklist 11431 * - preemption disabled 11432 */ 11433 static void task_fork_fair(struct task_struct *p) 11434 { 11435 struct cfs_rq *cfs_rq; 11436 struct sched_entity *se = &p->se, *curr; 11437 struct rq *rq = this_rq(); 11438 struct rq_flags rf; 11439 11440 rq_lock(rq, &rf); 11441 update_rq_clock(rq); 11442 11443 cfs_rq = task_cfs_rq(current); 11444 curr = cfs_rq->curr; 11445 if (curr) { 11446 update_curr(cfs_rq); 11447 se->vruntime = curr->vruntime; 11448 } 11449 place_entity(cfs_rq, se, 1); 11450 11451 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 11452 /* 11453 * Upon rescheduling, sched_class::put_prev_task() will place 11454 * 'current' within the tree based on its new key value. 11455 */ 11456 swap(curr->vruntime, se->vruntime); 11457 resched_curr(rq); 11458 } 11459 11460 se->vruntime -= cfs_rq->min_vruntime; 11461 rq_unlock(rq, &rf); 11462 } 11463 11464 /* 11465 * Priority of the task has changed. Check to see if we preempt 11466 * the current task. 11467 */ 11468 static void 11469 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 11470 { 11471 if (!task_on_rq_queued(p)) 11472 return; 11473 11474 if (rq->cfs.nr_running == 1) 11475 return; 11476 11477 /* 11478 * Reschedule if we are currently running on this runqueue and 11479 * our priority decreased, or if we are not currently running on 11480 * this runqueue and our priority is higher than the current's 11481 */ 11482 if (task_current(rq, p)) { 11483 if (p->prio > oldprio) 11484 resched_curr(rq); 11485 } else 11486 check_preempt_curr(rq, p, 0); 11487 } 11488 11489 static inline bool vruntime_normalized(struct task_struct *p) 11490 { 11491 struct sched_entity *se = &p->se; 11492 11493 /* 11494 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 11495 * the dequeue_entity(.flags=0) will already have normalized the 11496 * vruntime. 11497 */ 11498 if (p->on_rq) 11499 return true; 11500 11501 /* 11502 * When !on_rq, vruntime of the task has usually NOT been normalized. 11503 * But there are some cases where it has already been normalized: 11504 * 11505 * - A forked child which is waiting for being woken up by 11506 * wake_up_new_task(). 11507 * - A task which has been woken up by try_to_wake_up() and 11508 * waiting for actually being woken up by sched_ttwu_pending(). 11509 */ 11510 if (!se->sum_exec_runtime || 11511 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup)) 11512 return true; 11513 11514 return false; 11515 } 11516 11517 #ifdef CONFIG_FAIR_GROUP_SCHED 11518 /* 11519 * Propagate the changes of the sched_entity across the tg tree to make it 11520 * visible to the root 11521 */ 11522 static void propagate_entity_cfs_rq(struct sched_entity *se) 11523 { 11524 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11525 11526 if (cfs_rq_throttled(cfs_rq)) 11527 return; 11528 11529 if (!throttled_hierarchy(cfs_rq)) 11530 list_add_leaf_cfs_rq(cfs_rq); 11531 11532 /* Start to propagate at parent */ 11533 se = se->parent; 11534 11535 for_each_sched_entity(se) { 11536 cfs_rq = cfs_rq_of(se); 11537 11538 update_load_avg(cfs_rq, se, UPDATE_TG); 11539 11540 if (cfs_rq_throttled(cfs_rq)) 11541 break; 11542 11543 if (!throttled_hierarchy(cfs_rq)) 11544 list_add_leaf_cfs_rq(cfs_rq); 11545 } 11546 } 11547 #else 11548 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 11549 #endif 11550 11551 static void detach_entity_cfs_rq(struct sched_entity *se) 11552 { 11553 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11554 11555 /* Catch up with the cfs_rq and remove our load when we leave */ 11556 update_load_avg(cfs_rq, se, 0); 11557 detach_entity_load_avg(cfs_rq, se); 11558 update_tg_load_avg(cfs_rq); 11559 propagate_entity_cfs_rq(se); 11560 } 11561 11562 static void attach_entity_cfs_rq(struct sched_entity *se) 11563 { 11564 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11565 11566 #ifdef CONFIG_FAIR_GROUP_SCHED 11567 /* 11568 * Since the real-depth could have been changed (only FAIR 11569 * class maintain depth value), reset depth properly. 11570 */ 11571 se->depth = se->parent ? se->parent->depth + 1 : 0; 11572 #endif 11573 11574 /* Synchronize entity with its cfs_rq */ 11575 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 11576 attach_entity_load_avg(cfs_rq, se); 11577 update_tg_load_avg(cfs_rq); 11578 propagate_entity_cfs_rq(se); 11579 } 11580 11581 static void detach_task_cfs_rq(struct task_struct *p) 11582 { 11583 struct sched_entity *se = &p->se; 11584 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11585 11586 if (!vruntime_normalized(p)) { 11587 /* 11588 * Fix up our vruntime so that the current sleep doesn't 11589 * cause 'unlimited' sleep bonus. 11590 */ 11591 place_entity(cfs_rq, se, 0); 11592 se->vruntime -= cfs_rq->min_vruntime; 11593 } 11594 11595 detach_entity_cfs_rq(se); 11596 } 11597 11598 static void attach_task_cfs_rq(struct task_struct *p) 11599 { 11600 struct sched_entity *se = &p->se; 11601 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11602 11603 attach_entity_cfs_rq(se); 11604 11605 if (!vruntime_normalized(p)) 11606 se->vruntime += cfs_rq->min_vruntime; 11607 } 11608 11609 static void switched_from_fair(struct rq *rq, struct task_struct *p) 11610 { 11611 detach_task_cfs_rq(p); 11612 } 11613 11614 static void switched_to_fair(struct rq *rq, struct task_struct *p) 11615 { 11616 attach_task_cfs_rq(p); 11617 11618 if (task_on_rq_queued(p)) { 11619 /* 11620 * We were most likely switched from sched_rt, so 11621 * kick off the schedule if running, otherwise just see 11622 * if we can still preempt the current task. 11623 */ 11624 if (task_current(rq, p)) 11625 resched_curr(rq); 11626 else 11627 check_preempt_curr(rq, p, 0); 11628 } 11629 } 11630 11631 /* Account for a task changing its policy or group. 11632 * 11633 * This routine is mostly called to set cfs_rq->curr field when a task 11634 * migrates between groups/classes. 11635 */ 11636 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 11637 { 11638 struct sched_entity *se = &p->se; 11639 11640 #ifdef CONFIG_SMP 11641 if (task_on_rq_queued(p)) { 11642 /* 11643 * Move the next running task to the front of the list, so our 11644 * cfs_tasks list becomes MRU one. 11645 */ 11646 list_move(&se->group_node, &rq->cfs_tasks); 11647 } 11648 #endif 11649 11650 for_each_sched_entity(se) { 11651 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11652 11653 set_next_entity(cfs_rq, se); 11654 /* ensure bandwidth has been allocated on our new cfs_rq */ 11655 account_cfs_rq_runtime(cfs_rq, 0); 11656 } 11657 } 11658 11659 void init_cfs_rq(struct cfs_rq *cfs_rq) 11660 { 11661 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 11662 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 11663 #ifdef CONFIG_SMP 11664 raw_spin_lock_init(&cfs_rq->removed.lock); 11665 #endif 11666 } 11667 11668 #ifdef CONFIG_FAIR_GROUP_SCHED 11669 static void task_set_group_fair(struct task_struct *p) 11670 { 11671 struct sched_entity *se = &p->se; 11672 11673 set_task_rq(p, task_cpu(p)); 11674 se->depth = se->parent ? se->parent->depth + 1 : 0; 11675 } 11676 11677 static void task_move_group_fair(struct task_struct *p) 11678 { 11679 detach_task_cfs_rq(p); 11680 set_task_rq(p, task_cpu(p)); 11681 11682 #ifdef CONFIG_SMP 11683 /* Tell se's cfs_rq has been changed -- migrated */ 11684 p->se.avg.last_update_time = 0; 11685 #endif 11686 attach_task_cfs_rq(p); 11687 } 11688 11689 static void task_change_group_fair(struct task_struct *p, int type) 11690 { 11691 switch (type) { 11692 case TASK_SET_GROUP: 11693 task_set_group_fair(p); 11694 break; 11695 11696 case TASK_MOVE_GROUP: 11697 task_move_group_fair(p); 11698 break; 11699 } 11700 } 11701 11702 void free_fair_sched_group(struct task_group *tg) 11703 { 11704 int i; 11705 11706 for_each_possible_cpu(i) { 11707 if (tg->cfs_rq) 11708 kfree(tg->cfs_rq[i]); 11709 if (tg->se) 11710 kfree(tg->se[i]); 11711 } 11712 11713 kfree(tg->cfs_rq); 11714 kfree(tg->se); 11715 } 11716 11717 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11718 { 11719 struct sched_entity *se; 11720 struct cfs_rq *cfs_rq; 11721 int i; 11722 11723 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 11724 if (!tg->cfs_rq) 11725 goto err; 11726 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 11727 if (!tg->se) 11728 goto err; 11729 11730 tg->shares = NICE_0_LOAD; 11731 11732 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11733 11734 for_each_possible_cpu(i) { 11735 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 11736 GFP_KERNEL, cpu_to_node(i)); 11737 if (!cfs_rq) 11738 goto err; 11739 11740 se = kzalloc_node(sizeof(struct sched_entity_stats), 11741 GFP_KERNEL, cpu_to_node(i)); 11742 if (!se) 11743 goto err_free_rq; 11744 11745 init_cfs_rq(cfs_rq); 11746 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 11747 init_entity_runnable_average(se); 11748 } 11749 11750 return 1; 11751 11752 err_free_rq: 11753 kfree(cfs_rq); 11754 err: 11755 return 0; 11756 } 11757 11758 void online_fair_sched_group(struct task_group *tg) 11759 { 11760 struct sched_entity *se; 11761 struct rq_flags rf; 11762 struct rq *rq; 11763 int i; 11764 11765 for_each_possible_cpu(i) { 11766 rq = cpu_rq(i); 11767 se = tg->se[i]; 11768 rq_lock_irq(rq, &rf); 11769 update_rq_clock(rq); 11770 attach_entity_cfs_rq(se); 11771 sync_throttle(tg, i); 11772 rq_unlock_irq(rq, &rf); 11773 } 11774 } 11775 11776 void unregister_fair_sched_group(struct task_group *tg) 11777 { 11778 unsigned long flags; 11779 struct rq *rq; 11780 int cpu; 11781 11782 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11783 11784 for_each_possible_cpu(cpu) { 11785 if (tg->se[cpu]) 11786 remove_entity_load_avg(tg->se[cpu]); 11787 11788 /* 11789 * Only empty task groups can be destroyed; so we can speculatively 11790 * check on_list without danger of it being re-added. 11791 */ 11792 if (!tg->cfs_rq[cpu]->on_list) 11793 continue; 11794 11795 rq = cpu_rq(cpu); 11796 11797 raw_spin_rq_lock_irqsave(rq, flags); 11798 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 11799 raw_spin_rq_unlock_irqrestore(rq, flags); 11800 } 11801 } 11802 11803 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 11804 struct sched_entity *se, int cpu, 11805 struct sched_entity *parent) 11806 { 11807 struct rq *rq = cpu_rq(cpu); 11808 11809 cfs_rq->tg = tg; 11810 cfs_rq->rq = rq; 11811 init_cfs_rq_runtime(cfs_rq); 11812 11813 tg->cfs_rq[cpu] = cfs_rq; 11814 tg->se[cpu] = se; 11815 11816 /* se could be NULL for root_task_group */ 11817 if (!se) 11818 return; 11819 11820 if (!parent) { 11821 se->cfs_rq = &rq->cfs; 11822 se->depth = 0; 11823 } else { 11824 se->cfs_rq = parent->my_q; 11825 se->depth = parent->depth + 1; 11826 } 11827 11828 se->my_q = cfs_rq; 11829 /* guarantee group entities always have weight */ 11830 update_load_set(&se->load, NICE_0_LOAD); 11831 se->parent = parent; 11832 } 11833 11834 static DEFINE_MUTEX(shares_mutex); 11835 11836 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 11837 { 11838 int i; 11839 11840 lockdep_assert_held(&shares_mutex); 11841 11842 /* 11843 * We can't change the weight of the root cgroup. 11844 */ 11845 if (!tg->se[0]) 11846 return -EINVAL; 11847 11848 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 11849 11850 if (tg->shares == shares) 11851 return 0; 11852 11853 tg->shares = shares; 11854 for_each_possible_cpu(i) { 11855 struct rq *rq = cpu_rq(i); 11856 struct sched_entity *se = tg->se[i]; 11857 struct rq_flags rf; 11858 11859 /* Propagate contribution to hierarchy */ 11860 rq_lock_irqsave(rq, &rf); 11861 update_rq_clock(rq); 11862 for_each_sched_entity(se) { 11863 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 11864 update_cfs_group(se); 11865 } 11866 rq_unlock_irqrestore(rq, &rf); 11867 } 11868 11869 return 0; 11870 } 11871 11872 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 11873 { 11874 int ret; 11875 11876 mutex_lock(&shares_mutex); 11877 if (tg_is_idle(tg)) 11878 ret = -EINVAL; 11879 else 11880 ret = __sched_group_set_shares(tg, shares); 11881 mutex_unlock(&shares_mutex); 11882 11883 return ret; 11884 } 11885 11886 int sched_group_set_idle(struct task_group *tg, long idle) 11887 { 11888 int i; 11889 11890 if (tg == &root_task_group) 11891 return -EINVAL; 11892 11893 if (idle < 0 || idle > 1) 11894 return -EINVAL; 11895 11896 mutex_lock(&shares_mutex); 11897 11898 if (tg->idle == idle) { 11899 mutex_unlock(&shares_mutex); 11900 return 0; 11901 } 11902 11903 tg->idle = idle; 11904 11905 for_each_possible_cpu(i) { 11906 struct rq *rq = cpu_rq(i); 11907 struct sched_entity *se = tg->se[i]; 11908 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 11909 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 11910 long idle_task_delta; 11911 struct rq_flags rf; 11912 11913 rq_lock_irqsave(rq, &rf); 11914 11915 grp_cfs_rq->idle = idle; 11916 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 11917 goto next_cpu; 11918 11919 if (se->on_rq) { 11920 parent_cfs_rq = cfs_rq_of(se); 11921 if (cfs_rq_is_idle(grp_cfs_rq)) 11922 parent_cfs_rq->idle_nr_running++; 11923 else 11924 parent_cfs_rq->idle_nr_running--; 11925 } 11926 11927 idle_task_delta = grp_cfs_rq->h_nr_running - 11928 grp_cfs_rq->idle_h_nr_running; 11929 if (!cfs_rq_is_idle(grp_cfs_rq)) 11930 idle_task_delta *= -1; 11931 11932 for_each_sched_entity(se) { 11933 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11934 11935 if (!se->on_rq) 11936 break; 11937 11938 cfs_rq->idle_h_nr_running += idle_task_delta; 11939 11940 /* Already accounted at parent level and above. */ 11941 if (cfs_rq_is_idle(cfs_rq)) 11942 break; 11943 } 11944 11945 next_cpu: 11946 rq_unlock_irqrestore(rq, &rf); 11947 } 11948 11949 /* Idle groups have minimum weight. */ 11950 if (tg_is_idle(tg)) 11951 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 11952 else 11953 __sched_group_set_shares(tg, NICE_0_LOAD); 11954 11955 mutex_unlock(&shares_mutex); 11956 return 0; 11957 } 11958 11959 #else /* CONFIG_FAIR_GROUP_SCHED */ 11960 11961 void free_fair_sched_group(struct task_group *tg) { } 11962 11963 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11964 { 11965 return 1; 11966 } 11967 11968 void online_fair_sched_group(struct task_group *tg) { } 11969 11970 void unregister_fair_sched_group(struct task_group *tg) { } 11971 11972 #endif /* CONFIG_FAIR_GROUP_SCHED */ 11973 11974 11975 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 11976 { 11977 struct sched_entity *se = &task->se; 11978 unsigned int rr_interval = 0; 11979 11980 /* 11981 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 11982 * idle runqueue: 11983 */ 11984 if (rq->cfs.load.weight) 11985 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 11986 11987 return rr_interval; 11988 } 11989 11990 /* 11991 * All the scheduling class methods: 11992 */ 11993 DEFINE_SCHED_CLASS(fair) = { 11994 11995 .enqueue_task = enqueue_task_fair, 11996 .dequeue_task = dequeue_task_fair, 11997 .yield_task = yield_task_fair, 11998 .yield_to_task = yield_to_task_fair, 11999 12000 .check_preempt_curr = check_preempt_wakeup, 12001 12002 .pick_next_task = __pick_next_task_fair, 12003 .put_prev_task = put_prev_task_fair, 12004 .set_next_task = set_next_task_fair, 12005 12006 #ifdef CONFIG_SMP 12007 .balance = balance_fair, 12008 .pick_task = pick_task_fair, 12009 .select_task_rq = select_task_rq_fair, 12010 .migrate_task_rq = migrate_task_rq_fair, 12011 12012 .rq_online = rq_online_fair, 12013 .rq_offline = rq_offline_fair, 12014 12015 .task_dead = task_dead_fair, 12016 .set_cpus_allowed = set_cpus_allowed_common, 12017 #endif 12018 12019 .task_tick = task_tick_fair, 12020 .task_fork = task_fork_fair, 12021 12022 .prio_changed = prio_changed_fair, 12023 .switched_from = switched_from_fair, 12024 .switched_to = switched_to_fair, 12025 12026 .get_rr_interval = get_rr_interval_fair, 12027 12028 .update_curr = update_curr_fair, 12029 12030 #ifdef CONFIG_FAIR_GROUP_SCHED 12031 .task_change_group = task_change_group_fair, 12032 #endif 12033 12034 #ifdef CONFIG_UCLAMP_TASK 12035 .uclamp_enabled = 1, 12036 #endif 12037 }; 12038 12039 #ifdef CONFIG_SCHED_DEBUG 12040 void print_cfs_stats(struct seq_file *m, int cpu) 12041 { 12042 struct cfs_rq *cfs_rq, *pos; 12043 12044 rcu_read_lock(); 12045 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 12046 print_cfs_rq(m, cpu, cfs_rq); 12047 rcu_read_unlock(); 12048 } 12049 12050 #ifdef CONFIG_NUMA_BALANCING 12051 void show_numa_stats(struct task_struct *p, struct seq_file *m) 12052 { 12053 int node; 12054 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 12055 struct numa_group *ng; 12056 12057 rcu_read_lock(); 12058 ng = rcu_dereference(p->numa_group); 12059 for_each_online_node(node) { 12060 if (p->numa_faults) { 12061 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 12062 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 12063 } 12064 if (ng) { 12065 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 12066 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 12067 } 12068 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 12069 } 12070 rcu_read_unlock(); 12071 } 12072 #endif /* CONFIG_NUMA_BALANCING */ 12073 #endif /* CONFIG_SCHED_DEBUG */ 12074 12075 __init void init_sched_fair_class(void) 12076 { 12077 #ifdef CONFIG_SMP 12078 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 12079 12080 #ifdef CONFIG_NO_HZ_COMMON 12081 nohz.next_balance = jiffies; 12082 nohz.next_blocked = jiffies; 12083 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 12084 #endif 12085 #endif /* SMP */ 12086 12087 } 12088