1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 #include <trace/events/sched.h> 26 27 /* 28 * Targeted preemption latency for CPU-bound tasks: 29 * 30 * NOTE: this latency value is not the same as the concept of 31 * 'timeslice length' - timeslices in CFS are of variable length 32 * and have no persistent notion like in traditional, time-slice 33 * based scheduling concepts. 34 * 35 * (to see the precise effective timeslice length of your workload, 36 * run vmstat and monitor the context-switches (cs) field) 37 * 38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 39 */ 40 unsigned int sysctl_sched_latency = 6000000ULL; 41 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 42 43 /* 44 * The initial- and re-scaling of tunables is configurable 45 * 46 * Options are: 47 * 48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 51 * 52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 53 */ 54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 55 56 /* 57 * Minimal preemption granularity for CPU-bound tasks: 58 * 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 60 */ 61 unsigned int sysctl_sched_min_granularity = 750000ULL; 62 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 63 64 /* 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 66 */ 67 static unsigned int sched_nr_latency = 8; 68 69 /* 70 * After fork, child runs first. If set to 0 (default) then 71 * parent will (try to) run first. 72 */ 73 unsigned int sysctl_sched_child_runs_first __read_mostly; 74 75 /* 76 * SCHED_OTHER wake-up granularity. 77 * 78 * This option delays the preemption effects of decoupled workloads 79 * and reduces their over-scheduling. Synchronous workloads will still 80 * have immediate wakeup/sleep latencies. 81 * 82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 83 */ 84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 85 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 #ifdef CONFIG_SMP 90 /* 91 * For asym packing, by default the lower numbered CPU has higher priority. 92 */ 93 int __weak arch_asym_cpu_priority(int cpu) 94 { 95 return -cpu; 96 } 97 98 /* 99 * The margin used when comparing utilization with CPU capacity: 100 * util * margin < capacity * 1024 101 * 102 * (default: ~20%) 103 */ 104 static unsigned int capacity_margin = 1280; 105 #endif 106 107 #ifdef CONFIG_CFS_BANDWIDTH 108 /* 109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 110 * each time a cfs_rq requests quota. 111 * 112 * Note: in the case that the slice exceeds the runtime remaining (either due 113 * to consumption or the quota being specified to be smaller than the slice) 114 * we will always only issue the remaining available time. 115 * 116 * (default: 5 msec, units: microseconds) 117 */ 118 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 119 #endif 120 121 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 122 { 123 lw->weight += inc; 124 lw->inv_weight = 0; 125 } 126 127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 128 { 129 lw->weight -= dec; 130 lw->inv_weight = 0; 131 } 132 133 static inline void update_load_set(struct load_weight *lw, unsigned long w) 134 { 135 lw->weight = w; 136 lw->inv_weight = 0; 137 } 138 139 /* 140 * Increase the granularity value when there are more CPUs, 141 * because with more CPUs the 'effective latency' as visible 142 * to users decreases. But the relationship is not linear, 143 * so pick a second-best guess by going with the log2 of the 144 * number of CPUs. 145 * 146 * This idea comes from the SD scheduler of Con Kolivas: 147 */ 148 static unsigned int get_update_sysctl_factor(void) 149 { 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 151 unsigned int factor; 152 153 switch (sysctl_sched_tunable_scaling) { 154 case SCHED_TUNABLESCALING_NONE: 155 factor = 1; 156 break; 157 case SCHED_TUNABLESCALING_LINEAR: 158 factor = cpus; 159 break; 160 case SCHED_TUNABLESCALING_LOG: 161 default: 162 factor = 1 + ilog2(cpus); 163 break; 164 } 165 166 return factor; 167 } 168 169 static void update_sysctl(void) 170 { 171 unsigned int factor = get_update_sysctl_factor(); 172 173 #define SET_SYSCTL(name) \ 174 (sysctl_##name = (factor) * normalized_sysctl_##name) 175 SET_SYSCTL(sched_min_granularity); 176 SET_SYSCTL(sched_latency); 177 SET_SYSCTL(sched_wakeup_granularity); 178 #undef SET_SYSCTL 179 } 180 181 void sched_init_granularity(void) 182 { 183 update_sysctl(); 184 } 185 186 #define WMULT_CONST (~0U) 187 #define WMULT_SHIFT 32 188 189 static void __update_inv_weight(struct load_weight *lw) 190 { 191 unsigned long w; 192 193 if (likely(lw->inv_weight)) 194 return; 195 196 w = scale_load_down(lw->weight); 197 198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 199 lw->inv_weight = 1; 200 else if (unlikely(!w)) 201 lw->inv_weight = WMULT_CONST; 202 else 203 lw->inv_weight = WMULT_CONST / w; 204 } 205 206 /* 207 * delta_exec * weight / lw.weight 208 * OR 209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 210 * 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 212 * we're guaranteed shift stays positive because inv_weight is guaranteed to 213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 214 * 215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 216 * weight/lw.weight <= 1, and therefore our shift will also be positive. 217 */ 218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 219 { 220 u64 fact = scale_load_down(weight); 221 int shift = WMULT_SHIFT; 222 223 __update_inv_weight(lw); 224 225 if (unlikely(fact >> 32)) { 226 while (fact >> 32) { 227 fact >>= 1; 228 shift--; 229 } 230 } 231 232 /* hint to use a 32x32->64 mul */ 233 fact = (u64)(u32)fact * lw->inv_weight; 234 235 while (fact >> 32) { 236 fact >>= 1; 237 shift--; 238 } 239 240 return mul_u64_u32_shr(delta_exec, fact, shift); 241 } 242 243 244 const struct sched_class fair_sched_class; 245 246 /************************************************************** 247 * CFS operations on generic schedulable entities: 248 */ 249 250 #ifdef CONFIG_FAIR_GROUP_SCHED 251 static inline struct task_struct *task_of(struct sched_entity *se) 252 { 253 SCHED_WARN_ON(!entity_is_task(se)); 254 return container_of(se, struct task_struct, se); 255 } 256 257 /* Walk up scheduling entities hierarchy */ 258 #define for_each_sched_entity(se) \ 259 for (; se; se = se->parent) 260 261 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 262 { 263 return p->se.cfs_rq; 264 } 265 266 /* runqueue on which this entity is (to be) queued */ 267 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 268 { 269 return se->cfs_rq; 270 } 271 272 /* runqueue "owned" by this group */ 273 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 274 { 275 return grp->my_q; 276 } 277 278 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 279 { 280 struct rq *rq = rq_of(cfs_rq); 281 int cpu = cpu_of(rq); 282 283 if (cfs_rq->on_list) 284 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 285 286 cfs_rq->on_list = 1; 287 288 /* 289 * Ensure we either appear before our parent (if already 290 * enqueued) or force our parent to appear after us when it is 291 * enqueued. The fact that we always enqueue bottom-up 292 * reduces this to two cases and a special case for the root 293 * cfs_rq. Furthermore, it also means that we will always reset 294 * tmp_alone_branch either when the branch is connected 295 * to a tree or when we reach the top of the tree 296 */ 297 if (cfs_rq->tg->parent && 298 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 299 /* 300 * If parent is already on the list, we add the child 301 * just before. Thanks to circular linked property of 302 * the list, this means to put the child at the tail 303 * of the list that starts by parent. 304 */ 305 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 306 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 307 /* 308 * The branch is now connected to its tree so we can 309 * reset tmp_alone_branch to the beginning of the 310 * list. 311 */ 312 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 313 return true; 314 } 315 316 if (!cfs_rq->tg->parent) { 317 /* 318 * cfs rq without parent should be put 319 * at the tail of the list. 320 */ 321 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 322 &rq->leaf_cfs_rq_list); 323 /* 324 * We have reach the top of a tree so we can reset 325 * tmp_alone_branch to the beginning of the list. 326 */ 327 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 328 return true; 329 } 330 331 /* 332 * The parent has not already been added so we want to 333 * make sure that it will be put after us. 334 * tmp_alone_branch points to the begin of the branch 335 * where we will add parent. 336 */ 337 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 338 /* 339 * update tmp_alone_branch to points to the new begin 340 * of the branch 341 */ 342 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 343 return false; 344 } 345 346 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 347 { 348 if (cfs_rq->on_list) { 349 struct rq *rq = rq_of(cfs_rq); 350 351 /* 352 * With cfs_rq being unthrottled/throttled during an enqueue, 353 * it can happen the tmp_alone_branch points the a leaf that 354 * we finally want to del. In this case, tmp_alone_branch moves 355 * to the prev element but it will point to rq->leaf_cfs_rq_list 356 * at the end of the enqueue. 357 */ 358 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 359 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 360 361 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 362 cfs_rq->on_list = 0; 363 } 364 } 365 366 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 367 { 368 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 369 } 370 371 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 372 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 373 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 374 leaf_cfs_rq_list) 375 376 /* Do the two (enqueued) entities belong to the same group ? */ 377 static inline struct cfs_rq * 378 is_same_group(struct sched_entity *se, struct sched_entity *pse) 379 { 380 if (se->cfs_rq == pse->cfs_rq) 381 return se->cfs_rq; 382 383 return NULL; 384 } 385 386 static inline struct sched_entity *parent_entity(struct sched_entity *se) 387 { 388 return se->parent; 389 } 390 391 static void 392 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 393 { 394 int se_depth, pse_depth; 395 396 /* 397 * preemption test can be made between sibling entities who are in the 398 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 399 * both tasks until we find their ancestors who are siblings of common 400 * parent. 401 */ 402 403 /* First walk up until both entities are at same depth */ 404 se_depth = (*se)->depth; 405 pse_depth = (*pse)->depth; 406 407 while (se_depth > pse_depth) { 408 se_depth--; 409 *se = parent_entity(*se); 410 } 411 412 while (pse_depth > se_depth) { 413 pse_depth--; 414 *pse = parent_entity(*pse); 415 } 416 417 while (!is_same_group(*se, *pse)) { 418 *se = parent_entity(*se); 419 *pse = parent_entity(*pse); 420 } 421 } 422 423 #else /* !CONFIG_FAIR_GROUP_SCHED */ 424 425 static inline struct task_struct *task_of(struct sched_entity *se) 426 { 427 return container_of(se, struct task_struct, se); 428 } 429 430 #define for_each_sched_entity(se) \ 431 for (; se; se = NULL) 432 433 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 434 { 435 return &task_rq(p)->cfs; 436 } 437 438 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 439 { 440 struct task_struct *p = task_of(se); 441 struct rq *rq = task_rq(p); 442 443 return &rq->cfs; 444 } 445 446 /* runqueue "owned" by this group */ 447 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 448 { 449 return NULL; 450 } 451 452 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 453 { 454 return true; 455 } 456 457 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 458 { 459 } 460 461 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 462 { 463 } 464 465 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 466 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 467 468 static inline struct sched_entity *parent_entity(struct sched_entity *se) 469 { 470 return NULL; 471 } 472 473 static inline void 474 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 475 { 476 } 477 478 #endif /* CONFIG_FAIR_GROUP_SCHED */ 479 480 static __always_inline 481 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 482 483 /************************************************************** 484 * Scheduling class tree data structure manipulation methods: 485 */ 486 487 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 488 { 489 s64 delta = (s64)(vruntime - max_vruntime); 490 if (delta > 0) 491 max_vruntime = vruntime; 492 493 return max_vruntime; 494 } 495 496 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 497 { 498 s64 delta = (s64)(vruntime - min_vruntime); 499 if (delta < 0) 500 min_vruntime = vruntime; 501 502 return min_vruntime; 503 } 504 505 static inline int entity_before(struct sched_entity *a, 506 struct sched_entity *b) 507 { 508 return (s64)(a->vruntime - b->vruntime) < 0; 509 } 510 511 static void update_min_vruntime(struct cfs_rq *cfs_rq) 512 { 513 struct sched_entity *curr = cfs_rq->curr; 514 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 515 516 u64 vruntime = cfs_rq->min_vruntime; 517 518 if (curr) { 519 if (curr->on_rq) 520 vruntime = curr->vruntime; 521 else 522 curr = NULL; 523 } 524 525 if (leftmost) { /* non-empty tree */ 526 struct sched_entity *se; 527 se = rb_entry(leftmost, struct sched_entity, run_node); 528 529 if (!curr) 530 vruntime = se->vruntime; 531 else 532 vruntime = min_vruntime(vruntime, se->vruntime); 533 } 534 535 /* ensure we never gain time by being placed backwards. */ 536 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 537 #ifndef CONFIG_64BIT 538 smp_wmb(); 539 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 540 #endif 541 } 542 543 /* 544 * Enqueue an entity into the rb-tree: 545 */ 546 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 547 { 548 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 549 struct rb_node *parent = NULL; 550 struct sched_entity *entry; 551 bool leftmost = true; 552 553 /* 554 * Find the right place in the rbtree: 555 */ 556 while (*link) { 557 parent = *link; 558 entry = rb_entry(parent, struct sched_entity, run_node); 559 /* 560 * We dont care about collisions. Nodes with 561 * the same key stay together. 562 */ 563 if (entity_before(se, entry)) { 564 link = &parent->rb_left; 565 } else { 566 link = &parent->rb_right; 567 leftmost = false; 568 } 569 } 570 571 rb_link_node(&se->run_node, parent, link); 572 rb_insert_color_cached(&se->run_node, 573 &cfs_rq->tasks_timeline, leftmost); 574 } 575 576 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 577 { 578 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 579 } 580 581 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 582 { 583 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 584 585 if (!left) 586 return NULL; 587 588 return rb_entry(left, struct sched_entity, run_node); 589 } 590 591 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 592 { 593 struct rb_node *next = rb_next(&se->run_node); 594 595 if (!next) 596 return NULL; 597 598 return rb_entry(next, struct sched_entity, run_node); 599 } 600 601 #ifdef CONFIG_SCHED_DEBUG 602 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 603 { 604 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 605 606 if (!last) 607 return NULL; 608 609 return rb_entry(last, struct sched_entity, run_node); 610 } 611 612 /************************************************************** 613 * Scheduling class statistics methods: 614 */ 615 616 int sched_proc_update_handler(struct ctl_table *table, int write, 617 void __user *buffer, size_t *lenp, 618 loff_t *ppos) 619 { 620 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 621 unsigned int factor = get_update_sysctl_factor(); 622 623 if (ret || !write) 624 return ret; 625 626 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 627 sysctl_sched_min_granularity); 628 629 #define WRT_SYSCTL(name) \ 630 (normalized_sysctl_##name = sysctl_##name / (factor)) 631 WRT_SYSCTL(sched_min_granularity); 632 WRT_SYSCTL(sched_latency); 633 WRT_SYSCTL(sched_wakeup_granularity); 634 #undef WRT_SYSCTL 635 636 return 0; 637 } 638 #endif 639 640 /* 641 * delta /= w 642 */ 643 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 644 { 645 if (unlikely(se->load.weight != NICE_0_LOAD)) 646 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 647 648 return delta; 649 } 650 651 /* 652 * The idea is to set a period in which each task runs once. 653 * 654 * When there are too many tasks (sched_nr_latency) we have to stretch 655 * this period because otherwise the slices get too small. 656 * 657 * p = (nr <= nl) ? l : l*nr/nl 658 */ 659 static u64 __sched_period(unsigned long nr_running) 660 { 661 if (unlikely(nr_running > sched_nr_latency)) 662 return nr_running * sysctl_sched_min_granularity; 663 else 664 return sysctl_sched_latency; 665 } 666 667 /* 668 * We calculate the wall-time slice from the period by taking a part 669 * proportional to the weight. 670 * 671 * s = p*P[w/rw] 672 */ 673 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 674 { 675 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 676 677 for_each_sched_entity(se) { 678 struct load_weight *load; 679 struct load_weight lw; 680 681 cfs_rq = cfs_rq_of(se); 682 load = &cfs_rq->load; 683 684 if (unlikely(!se->on_rq)) { 685 lw = cfs_rq->load; 686 687 update_load_add(&lw, se->load.weight); 688 load = &lw; 689 } 690 slice = __calc_delta(slice, se->load.weight, load); 691 } 692 return slice; 693 } 694 695 /* 696 * We calculate the vruntime slice of a to-be-inserted task. 697 * 698 * vs = s/w 699 */ 700 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 701 { 702 return calc_delta_fair(sched_slice(cfs_rq, se), se); 703 } 704 705 #include "pelt.h" 706 #ifdef CONFIG_SMP 707 708 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 709 static unsigned long task_h_load(struct task_struct *p); 710 static unsigned long capacity_of(int cpu); 711 712 /* Give new sched_entity start runnable values to heavy its load in infant time */ 713 void init_entity_runnable_average(struct sched_entity *se) 714 { 715 struct sched_avg *sa = &se->avg; 716 717 memset(sa, 0, sizeof(*sa)); 718 719 /* 720 * Tasks are initialized with full load to be seen as heavy tasks until 721 * they get a chance to stabilize to their real load level. 722 * Group entities are initialized with zero load to reflect the fact that 723 * nothing has been attached to the task group yet. 724 */ 725 if (entity_is_task(se)) 726 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight); 727 728 se->runnable_weight = se->load.weight; 729 730 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 731 } 732 733 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 734 static void attach_entity_cfs_rq(struct sched_entity *se); 735 736 /* 737 * With new tasks being created, their initial util_avgs are extrapolated 738 * based on the cfs_rq's current util_avg: 739 * 740 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 741 * 742 * However, in many cases, the above util_avg does not give a desired 743 * value. Moreover, the sum of the util_avgs may be divergent, such 744 * as when the series is a harmonic series. 745 * 746 * To solve this problem, we also cap the util_avg of successive tasks to 747 * only 1/2 of the left utilization budget: 748 * 749 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 750 * 751 * where n denotes the nth task and cpu_scale the CPU capacity. 752 * 753 * For example, for a CPU with 1024 of capacity, a simplest series from 754 * the beginning would be like: 755 * 756 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 757 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 758 * 759 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 760 * if util_avg > util_avg_cap. 761 */ 762 void post_init_entity_util_avg(struct task_struct *p) 763 { 764 struct sched_entity *se = &p->se; 765 struct cfs_rq *cfs_rq = cfs_rq_of(se); 766 struct sched_avg *sa = &se->avg; 767 long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq))); 768 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 769 770 if (cap > 0) { 771 if (cfs_rq->avg.util_avg != 0) { 772 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 773 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 774 775 if (sa->util_avg > cap) 776 sa->util_avg = cap; 777 } else { 778 sa->util_avg = cap; 779 } 780 } 781 782 if (p->sched_class != &fair_sched_class) { 783 /* 784 * For !fair tasks do: 785 * 786 update_cfs_rq_load_avg(now, cfs_rq); 787 attach_entity_load_avg(cfs_rq, se, 0); 788 switched_from_fair(rq, p); 789 * 790 * such that the next switched_to_fair() has the 791 * expected state. 792 */ 793 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 794 return; 795 } 796 797 attach_entity_cfs_rq(se); 798 } 799 800 #else /* !CONFIG_SMP */ 801 void init_entity_runnable_average(struct sched_entity *se) 802 { 803 } 804 void post_init_entity_util_avg(struct task_struct *p) 805 { 806 } 807 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 808 { 809 } 810 #endif /* CONFIG_SMP */ 811 812 /* 813 * Update the current task's runtime statistics. 814 */ 815 static void update_curr(struct cfs_rq *cfs_rq) 816 { 817 struct sched_entity *curr = cfs_rq->curr; 818 u64 now = rq_clock_task(rq_of(cfs_rq)); 819 u64 delta_exec; 820 821 if (unlikely(!curr)) 822 return; 823 824 delta_exec = now - curr->exec_start; 825 if (unlikely((s64)delta_exec <= 0)) 826 return; 827 828 curr->exec_start = now; 829 830 schedstat_set(curr->statistics.exec_max, 831 max(delta_exec, curr->statistics.exec_max)); 832 833 curr->sum_exec_runtime += delta_exec; 834 schedstat_add(cfs_rq->exec_clock, delta_exec); 835 836 curr->vruntime += calc_delta_fair(delta_exec, curr); 837 update_min_vruntime(cfs_rq); 838 839 if (entity_is_task(curr)) { 840 struct task_struct *curtask = task_of(curr); 841 842 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 843 cgroup_account_cputime(curtask, delta_exec); 844 account_group_exec_runtime(curtask, delta_exec); 845 } 846 847 account_cfs_rq_runtime(cfs_rq, delta_exec); 848 } 849 850 static void update_curr_fair(struct rq *rq) 851 { 852 update_curr(cfs_rq_of(&rq->curr->se)); 853 } 854 855 static inline void 856 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 857 { 858 u64 wait_start, prev_wait_start; 859 860 if (!schedstat_enabled()) 861 return; 862 863 wait_start = rq_clock(rq_of(cfs_rq)); 864 prev_wait_start = schedstat_val(se->statistics.wait_start); 865 866 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 867 likely(wait_start > prev_wait_start)) 868 wait_start -= prev_wait_start; 869 870 __schedstat_set(se->statistics.wait_start, wait_start); 871 } 872 873 static inline void 874 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 875 { 876 struct task_struct *p; 877 u64 delta; 878 879 if (!schedstat_enabled()) 880 return; 881 882 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 883 884 if (entity_is_task(se)) { 885 p = task_of(se); 886 if (task_on_rq_migrating(p)) { 887 /* 888 * Preserve migrating task's wait time so wait_start 889 * time stamp can be adjusted to accumulate wait time 890 * prior to migration. 891 */ 892 __schedstat_set(se->statistics.wait_start, delta); 893 return; 894 } 895 trace_sched_stat_wait(p, delta); 896 } 897 898 __schedstat_set(se->statistics.wait_max, 899 max(schedstat_val(se->statistics.wait_max), delta)); 900 __schedstat_inc(se->statistics.wait_count); 901 __schedstat_add(se->statistics.wait_sum, delta); 902 __schedstat_set(se->statistics.wait_start, 0); 903 } 904 905 static inline void 906 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 907 { 908 struct task_struct *tsk = NULL; 909 u64 sleep_start, block_start; 910 911 if (!schedstat_enabled()) 912 return; 913 914 sleep_start = schedstat_val(se->statistics.sleep_start); 915 block_start = schedstat_val(se->statistics.block_start); 916 917 if (entity_is_task(se)) 918 tsk = task_of(se); 919 920 if (sleep_start) { 921 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 922 923 if ((s64)delta < 0) 924 delta = 0; 925 926 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 927 __schedstat_set(se->statistics.sleep_max, delta); 928 929 __schedstat_set(se->statistics.sleep_start, 0); 930 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 931 932 if (tsk) { 933 account_scheduler_latency(tsk, delta >> 10, 1); 934 trace_sched_stat_sleep(tsk, delta); 935 } 936 } 937 if (block_start) { 938 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 939 940 if ((s64)delta < 0) 941 delta = 0; 942 943 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 944 __schedstat_set(se->statistics.block_max, delta); 945 946 __schedstat_set(se->statistics.block_start, 0); 947 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 948 949 if (tsk) { 950 if (tsk->in_iowait) { 951 __schedstat_add(se->statistics.iowait_sum, delta); 952 __schedstat_inc(se->statistics.iowait_count); 953 trace_sched_stat_iowait(tsk, delta); 954 } 955 956 trace_sched_stat_blocked(tsk, delta); 957 958 /* 959 * Blocking time is in units of nanosecs, so shift by 960 * 20 to get a milliseconds-range estimation of the 961 * amount of time that the task spent sleeping: 962 */ 963 if (unlikely(prof_on == SLEEP_PROFILING)) { 964 profile_hits(SLEEP_PROFILING, 965 (void *)get_wchan(tsk), 966 delta >> 20); 967 } 968 account_scheduler_latency(tsk, delta >> 10, 0); 969 } 970 } 971 } 972 973 /* 974 * Task is being enqueued - update stats: 975 */ 976 static inline void 977 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 978 { 979 if (!schedstat_enabled()) 980 return; 981 982 /* 983 * Are we enqueueing a waiting task? (for current tasks 984 * a dequeue/enqueue event is a NOP) 985 */ 986 if (se != cfs_rq->curr) 987 update_stats_wait_start(cfs_rq, se); 988 989 if (flags & ENQUEUE_WAKEUP) 990 update_stats_enqueue_sleeper(cfs_rq, se); 991 } 992 993 static inline void 994 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 995 { 996 997 if (!schedstat_enabled()) 998 return; 999 1000 /* 1001 * Mark the end of the wait period if dequeueing a 1002 * waiting task: 1003 */ 1004 if (se != cfs_rq->curr) 1005 update_stats_wait_end(cfs_rq, se); 1006 1007 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1008 struct task_struct *tsk = task_of(se); 1009 1010 if (tsk->state & TASK_INTERRUPTIBLE) 1011 __schedstat_set(se->statistics.sleep_start, 1012 rq_clock(rq_of(cfs_rq))); 1013 if (tsk->state & TASK_UNINTERRUPTIBLE) 1014 __schedstat_set(se->statistics.block_start, 1015 rq_clock(rq_of(cfs_rq))); 1016 } 1017 } 1018 1019 /* 1020 * We are picking a new current task - update its stats: 1021 */ 1022 static inline void 1023 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1024 { 1025 /* 1026 * We are starting a new run period: 1027 */ 1028 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1029 } 1030 1031 /************************************************** 1032 * Scheduling class queueing methods: 1033 */ 1034 1035 #ifdef CONFIG_NUMA_BALANCING 1036 /* 1037 * Approximate time to scan a full NUMA task in ms. The task scan period is 1038 * calculated based on the tasks virtual memory size and 1039 * numa_balancing_scan_size. 1040 */ 1041 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1042 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1043 1044 /* Portion of address space to scan in MB */ 1045 unsigned int sysctl_numa_balancing_scan_size = 256; 1046 1047 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1048 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1049 1050 struct numa_group { 1051 refcount_t refcount; 1052 1053 spinlock_t lock; /* nr_tasks, tasks */ 1054 int nr_tasks; 1055 pid_t gid; 1056 int active_nodes; 1057 1058 struct rcu_head rcu; 1059 unsigned long total_faults; 1060 unsigned long max_faults_cpu; 1061 /* 1062 * Faults_cpu is used to decide whether memory should move 1063 * towards the CPU. As a consequence, these stats are weighted 1064 * more by CPU use than by memory faults. 1065 */ 1066 unsigned long *faults_cpu; 1067 unsigned long faults[0]; 1068 }; 1069 1070 static inline unsigned long group_faults_priv(struct numa_group *ng); 1071 static inline unsigned long group_faults_shared(struct numa_group *ng); 1072 1073 static unsigned int task_nr_scan_windows(struct task_struct *p) 1074 { 1075 unsigned long rss = 0; 1076 unsigned long nr_scan_pages; 1077 1078 /* 1079 * Calculations based on RSS as non-present and empty pages are skipped 1080 * by the PTE scanner and NUMA hinting faults should be trapped based 1081 * on resident pages 1082 */ 1083 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1084 rss = get_mm_rss(p->mm); 1085 if (!rss) 1086 rss = nr_scan_pages; 1087 1088 rss = round_up(rss, nr_scan_pages); 1089 return rss / nr_scan_pages; 1090 } 1091 1092 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1093 #define MAX_SCAN_WINDOW 2560 1094 1095 static unsigned int task_scan_min(struct task_struct *p) 1096 { 1097 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1098 unsigned int scan, floor; 1099 unsigned int windows = 1; 1100 1101 if (scan_size < MAX_SCAN_WINDOW) 1102 windows = MAX_SCAN_WINDOW / scan_size; 1103 floor = 1000 / windows; 1104 1105 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1106 return max_t(unsigned int, floor, scan); 1107 } 1108 1109 static unsigned int task_scan_start(struct task_struct *p) 1110 { 1111 unsigned long smin = task_scan_min(p); 1112 unsigned long period = smin; 1113 1114 /* Scale the maximum scan period with the amount of shared memory. */ 1115 if (p->numa_group) { 1116 struct numa_group *ng = p->numa_group; 1117 unsigned long shared = group_faults_shared(ng); 1118 unsigned long private = group_faults_priv(ng); 1119 1120 period *= refcount_read(&ng->refcount); 1121 period *= shared + 1; 1122 period /= private + shared + 1; 1123 } 1124 1125 return max(smin, period); 1126 } 1127 1128 static unsigned int task_scan_max(struct task_struct *p) 1129 { 1130 unsigned long smin = task_scan_min(p); 1131 unsigned long smax; 1132 1133 /* Watch for min being lower than max due to floor calculations */ 1134 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1135 1136 /* Scale the maximum scan period with the amount of shared memory. */ 1137 if (p->numa_group) { 1138 struct numa_group *ng = p->numa_group; 1139 unsigned long shared = group_faults_shared(ng); 1140 unsigned long private = group_faults_priv(ng); 1141 unsigned long period = smax; 1142 1143 period *= refcount_read(&ng->refcount); 1144 period *= shared + 1; 1145 period /= private + shared + 1; 1146 1147 smax = max(smax, period); 1148 } 1149 1150 return max(smin, smax); 1151 } 1152 1153 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1154 { 1155 int mm_users = 0; 1156 struct mm_struct *mm = p->mm; 1157 1158 if (mm) { 1159 mm_users = atomic_read(&mm->mm_users); 1160 if (mm_users == 1) { 1161 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1162 mm->numa_scan_seq = 0; 1163 } 1164 } 1165 p->node_stamp = 0; 1166 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 1167 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1168 p->numa_work.next = &p->numa_work; 1169 p->numa_faults = NULL; 1170 p->numa_group = NULL; 1171 p->last_task_numa_placement = 0; 1172 p->last_sum_exec_runtime = 0; 1173 1174 /* New address space, reset the preferred nid */ 1175 if (!(clone_flags & CLONE_VM)) { 1176 p->numa_preferred_nid = NUMA_NO_NODE; 1177 return; 1178 } 1179 1180 /* 1181 * New thread, keep existing numa_preferred_nid which should be copied 1182 * already by arch_dup_task_struct but stagger when scans start. 1183 */ 1184 if (mm) { 1185 unsigned int delay; 1186 1187 delay = min_t(unsigned int, task_scan_max(current), 1188 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 1189 delay += 2 * TICK_NSEC; 1190 p->node_stamp = delay; 1191 } 1192 } 1193 1194 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1195 { 1196 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1197 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1198 } 1199 1200 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1201 { 1202 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1203 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1204 } 1205 1206 /* Shared or private faults. */ 1207 #define NR_NUMA_HINT_FAULT_TYPES 2 1208 1209 /* Memory and CPU locality */ 1210 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1211 1212 /* Averaged statistics, and temporary buffers. */ 1213 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1214 1215 pid_t task_numa_group_id(struct task_struct *p) 1216 { 1217 return p->numa_group ? p->numa_group->gid : 0; 1218 } 1219 1220 /* 1221 * The averaged statistics, shared & private, memory & CPU, 1222 * occupy the first half of the array. The second half of the 1223 * array is for current counters, which are averaged into the 1224 * first set by task_numa_placement. 1225 */ 1226 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1227 { 1228 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1229 } 1230 1231 static inline unsigned long task_faults(struct task_struct *p, int nid) 1232 { 1233 if (!p->numa_faults) 1234 return 0; 1235 1236 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1237 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1238 } 1239 1240 static inline unsigned long group_faults(struct task_struct *p, int nid) 1241 { 1242 if (!p->numa_group) 1243 return 0; 1244 1245 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1246 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1247 } 1248 1249 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1250 { 1251 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1252 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1253 } 1254 1255 static inline unsigned long group_faults_priv(struct numa_group *ng) 1256 { 1257 unsigned long faults = 0; 1258 int node; 1259 1260 for_each_online_node(node) { 1261 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1262 } 1263 1264 return faults; 1265 } 1266 1267 static inline unsigned long group_faults_shared(struct numa_group *ng) 1268 { 1269 unsigned long faults = 0; 1270 int node; 1271 1272 for_each_online_node(node) { 1273 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1274 } 1275 1276 return faults; 1277 } 1278 1279 /* 1280 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1281 * considered part of a numa group's pseudo-interleaving set. Migrations 1282 * between these nodes are slowed down, to allow things to settle down. 1283 */ 1284 #define ACTIVE_NODE_FRACTION 3 1285 1286 static bool numa_is_active_node(int nid, struct numa_group *ng) 1287 { 1288 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1289 } 1290 1291 /* Handle placement on systems where not all nodes are directly connected. */ 1292 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1293 int maxdist, bool task) 1294 { 1295 unsigned long score = 0; 1296 int node; 1297 1298 /* 1299 * All nodes are directly connected, and the same distance 1300 * from each other. No need for fancy placement algorithms. 1301 */ 1302 if (sched_numa_topology_type == NUMA_DIRECT) 1303 return 0; 1304 1305 /* 1306 * This code is called for each node, introducing N^2 complexity, 1307 * which should be ok given the number of nodes rarely exceeds 8. 1308 */ 1309 for_each_online_node(node) { 1310 unsigned long faults; 1311 int dist = node_distance(nid, node); 1312 1313 /* 1314 * The furthest away nodes in the system are not interesting 1315 * for placement; nid was already counted. 1316 */ 1317 if (dist == sched_max_numa_distance || node == nid) 1318 continue; 1319 1320 /* 1321 * On systems with a backplane NUMA topology, compare groups 1322 * of nodes, and move tasks towards the group with the most 1323 * memory accesses. When comparing two nodes at distance 1324 * "hoplimit", only nodes closer by than "hoplimit" are part 1325 * of each group. Skip other nodes. 1326 */ 1327 if (sched_numa_topology_type == NUMA_BACKPLANE && 1328 dist >= maxdist) 1329 continue; 1330 1331 /* Add up the faults from nearby nodes. */ 1332 if (task) 1333 faults = task_faults(p, node); 1334 else 1335 faults = group_faults(p, node); 1336 1337 /* 1338 * On systems with a glueless mesh NUMA topology, there are 1339 * no fixed "groups of nodes". Instead, nodes that are not 1340 * directly connected bounce traffic through intermediate 1341 * nodes; a numa_group can occupy any set of nodes. 1342 * The further away a node is, the less the faults count. 1343 * This seems to result in good task placement. 1344 */ 1345 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1346 faults *= (sched_max_numa_distance - dist); 1347 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1348 } 1349 1350 score += faults; 1351 } 1352 1353 return score; 1354 } 1355 1356 /* 1357 * These return the fraction of accesses done by a particular task, or 1358 * task group, on a particular numa node. The group weight is given a 1359 * larger multiplier, in order to group tasks together that are almost 1360 * evenly spread out between numa nodes. 1361 */ 1362 static inline unsigned long task_weight(struct task_struct *p, int nid, 1363 int dist) 1364 { 1365 unsigned long faults, total_faults; 1366 1367 if (!p->numa_faults) 1368 return 0; 1369 1370 total_faults = p->total_numa_faults; 1371 1372 if (!total_faults) 1373 return 0; 1374 1375 faults = task_faults(p, nid); 1376 faults += score_nearby_nodes(p, nid, dist, true); 1377 1378 return 1000 * faults / total_faults; 1379 } 1380 1381 static inline unsigned long group_weight(struct task_struct *p, int nid, 1382 int dist) 1383 { 1384 unsigned long faults, total_faults; 1385 1386 if (!p->numa_group) 1387 return 0; 1388 1389 total_faults = p->numa_group->total_faults; 1390 1391 if (!total_faults) 1392 return 0; 1393 1394 faults = group_faults(p, nid); 1395 faults += score_nearby_nodes(p, nid, dist, false); 1396 1397 return 1000 * faults / total_faults; 1398 } 1399 1400 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1401 int src_nid, int dst_cpu) 1402 { 1403 struct numa_group *ng = p->numa_group; 1404 int dst_nid = cpu_to_node(dst_cpu); 1405 int last_cpupid, this_cpupid; 1406 1407 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1408 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1409 1410 /* 1411 * Allow first faults or private faults to migrate immediately early in 1412 * the lifetime of a task. The magic number 4 is based on waiting for 1413 * two full passes of the "multi-stage node selection" test that is 1414 * executed below. 1415 */ 1416 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1417 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1418 return true; 1419 1420 /* 1421 * Multi-stage node selection is used in conjunction with a periodic 1422 * migration fault to build a temporal task<->page relation. By using 1423 * a two-stage filter we remove short/unlikely relations. 1424 * 1425 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1426 * a task's usage of a particular page (n_p) per total usage of this 1427 * page (n_t) (in a given time-span) to a probability. 1428 * 1429 * Our periodic faults will sample this probability and getting the 1430 * same result twice in a row, given these samples are fully 1431 * independent, is then given by P(n)^2, provided our sample period 1432 * is sufficiently short compared to the usage pattern. 1433 * 1434 * This quadric squishes small probabilities, making it less likely we 1435 * act on an unlikely task<->page relation. 1436 */ 1437 if (!cpupid_pid_unset(last_cpupid) && 1438 cpupid_to_nid(last_cpupid) != dst_nid) 1439 return false; 1440 1441 /* Always allow migrate on private faults */ 1442 if (cpupid_match_pid(p, last_cpupid)) 1443 return true; 1444 1445 /* A shared fault, but p->numa_group has not been set up yet. */ 1446 if (!ng) 1447 return true; 1448 1449 /* 1450 * Destination node is much more heavily used than the source 1451 * node? Allow migration. 1452 */ 1453 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1454 ACTIVE_NODE_FRACTION) 1455 return true; 1456 1457 /* 1458 * Distribute memory according to CPU & memory use on each node, 1459 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1460 * 1461 * faults_cpu(dst) 3 faults_cpu(src) 1462 * --------------- * - > --------------- 1463 * faults_mem(dst) 4 faults_mem(src) 1464 */ 1465 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1466 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1467 } 1468 1469 static unsigned long weighted_cpuload(struct rq *rq); 1470 static unsigned long source_load(int cpu, int type); 1471 static unsigned long target_load(int cpu, int type); 1472 1473 /* Cached statistics for all CPUs within a node */ 1474 struct numa_stats { 1475 unsigned long load; 1476 1477 /* Total compute capacity of CPUs on a node */ 1478 unsigned long compute_capacity; 1479 }; 1480 1481 /* 1482 * XXX borrowed from update_sg_lb_stats 1483 */ 1484 static void update_numa_stats(struct numa_stats *ns, int nid) 1485 { 1486 int cpu; 1487 1488 memset(ns, 0, sizeof(*ns)); 1489 for_each_cpu(cpu, cpumask_of_node(nid)) { 1490 struct rq *rq = cpu_rq(cpu); 1491 1492 ns->load += weighted_cpuload(rq); 1493 ns->compute_capacity += capacity_of(cpu); 1494 } 1495 1496 } 1497 1498 struct task_numa_env { 1499 struct task_struct *p; 1500 1501 int src_cpu, src_nid; 1502 int dst_cpu, dst_nid; 1503 1504 struct numa_stats src_stats, dst_stats; 1505 1506 int imbalance_pct; 1507 int dist; 1508 1509 struct task_struct *best_task; 1510 long best_imp; 1511 int best_cpu; 1512 }; 1513 1514 static void task_numa_assign(struct task_numa_env *env, 1515 struct task_struct *p, long imp) 1516 { 1517 struct rq *rq = cpu_rq(env->dst_cpu); 1518 1519 /* Bail out if run-queue part of active NUMA balance. */ 1520 if (xchg(&rq->numa_migrate_on, 1)) 1521 return; 1522 1523 /* 1524 * Clear previous best_cpu/rq numa-migrate flag, since task now 1525 * found a better CPU to move/swap. 1526 */ 1527 if (env->best_cpu != -1) { 1528 rq = cpu_rq(env->best_cpu); 1529 WRITE_ONCE(rq->numa_migrate_on, 0); 1530 } 1531 1532 if (env->best_task) 1533 put_task_struct(env->best_task); 1534 if (p) 1535 get_task_struct(p); 1536 1537 env->best_task = p; 1538 env->best_imp = imp; 1539 env->best_cpu = env->dst_cpu; 1540 } 1541 1542 static bool load_too_imbalanced(long src_load, long dst_load, 1543 struct task_numa_env *env) 1544 { 1545 long imb, old_imb; 1546 long orig_src_load, orig_dst_load; 1547 long src_capacity, dst_capacity; 1548 1549 /* 1550 * The load is corrected for the CPU capacity available on each node. 1551 * 1552 * src_load dst_load 1553 * ------------ vs --------- 1554 * src_capacity dst_capacity 1555 */ 1556 src_capacity = env->src_stats.compute_capacity; 1557 dst_capacity = env->dst_stats.compute_capacity; 1558 1559 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1560 1561 orig_src_load = env->src_stats.load; 1562 orig_dst_load = env->dst_stats.load; 1563 1564 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1565 1566 /* Would this change make things worse? */ 1567 return (imb > old_imb); 1568 } 1569 1570 /* 1571 * Maximum NUMA importance can be 1998 (2*999); 1572 * SMALLIMP @ 30 would be close to 1998/64. 1573 * Used to deter task migration. 1574 */ 1575 #define SMALLIMP 30 1576 1577 /* 1578 * This checks if the overall compute and NUMA accesses of the system would 1579 * be improved if the source tasks was migrated to the target dst_cpu taking 1580 * into account that it might be best if task running on the dst_cpu should 1581 * be exchanged with the source task 1582 */ 1583 static void task_numa_compare(struct task_numa_env *env, 1584 long taskimp, long groupimp, bool maymove) 1585 { 1586 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1587 struct task_struct *cur; 1588 long src_load, dst_load; 1589 long load; 1590 long imp = env->p->numa_group ? groupimp : taskimp; 1591 long moveimp = imp; 1592 int dist = env->dist; 1593 1594 if (READ_ONCE(dst_rq->numa_migrate_on)) 1595 return; 1596 1597 rcu_read_lock(); 1598 cur = task_rcu_dereference(&dst_rq->curr); 1599 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1600 cur = NULL; 1601 1602 /* 1603 * Because we have preemption enabled we can get migrated around and 1604 * end try selecting ourselves (current == env->p) as a swap candidate. 1605 */ 1606 if (cur == env->p) 1607 goto unlock; 1608 1609 if (!cur) { 1610 if (maymove && moveimp >= env->best_imp) 1611 goto assign; 1612 else 1613 goto unlock; 1614 } 1615 1616 /* 1617 * "imp" is the fault differential for the source task between the 1618 * source and destination node. Calculate the total differential for 1619 * the source task and potential destination task. The more negative 1620 * the value is, the more remote accesses that would be expected to 1621 * be incurred if the tasks were swapped. 1622 */ 1623 /* Skip this swap candidate if cannot move to the source cpu */ 1624 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed)) 1625 goto unlock; 1626 1627 /* 1628 * If dst and source tasks are in the same NUMA group, or not 1629 * in any group then look only at task weights. 1630 */ 1631 if (cur->numa_group == env->p->numa_group) { 1632 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1633 task_weight(cur, env->dst_nid, dist); 1634 /* 1635 * Add some hysteresis to prevent swapping the 1636 * tasks within a group over tiny differences. 1637 */ 1638 if (cur->numa_group) 1639 imp -= imp / 16; 1640 } else { 1641 /* 1642 * Compare the group weights. If a task is all by itself 1643 * (not part of a group), use the task weight instead. 1644 */ 1645 if (cur->numa_group && env->p->numa_group) 1646 imp += group_weight(cur, env->src_nid, dist) - 1647 group_weight(cur, env->dst_nid, dist); 1648 else 1649 imp += task_weight(cur, env->src_nid, dist) - 1650 task_weight(cur, env->dst_nid, dist); 1651 } 1652 1653 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1654 imp = moveimp; 1655 cur = NULL; 1656 goto assign; 1657 } 1658 1659 /* 1660 * If the NUMA importance is less than SMALLIMP, 1661 * task migration might only result in ping pong 1662 * of tasks and also hurt performance due to cache 1663 * misses. 1664 */ 1665 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1666 goto unlock; 1667 1668 /* 1669 * In the overloaded case, try and keep the load balanced. 1670 */ 1671 load = task_h_load(env->p) - task_h_load(cur); 1672 if (!load) 1673 goto assign; 1674 1675 dst_load = env->dst_stats.load + load; 1676 src_load = env->src_stats.load - load; 1677 1678 if (load_too_imbalanced(src_load, dst_load, env)) 1679 goto unlock; 1680 1681 assign: 1682 /* 1683 * One idle CPU per node is evaluated for a task numa move. 1684 * Call select_idle_sibling to maybe find a better one. 1685 */ 1686 if (!cur) { 1687 /* 1688 * select_idle_siblings() uses an per-CPU cpumask that 1689 * can be used from IRQ context. 1690 */ 1691 local_irq_disable(); 1692 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1693 env->dst_cpu); 1694 local_irq_enable(); 1695 } 1696 1697 task_numa_assign(env, cur, imp); 1698 unlock: 1699 rcu_read_unlock(); 1700 } 1701 1702 static void task_numa_find_cpu(struct task_numa_env *env, 1703 long taskimp, long groupimp) 1704 { 1705 long src_load, dst_load, load; 1706 bool maymove = false; 1707 int cpu; 1708 1709 load = task_h_load(env->p); 1710 dst_load = env->dst_stats.load + load; 1711 src_load = env->src_stats.load - load; 1712 1713 /* 1714 * If the improvement from just moving env->p direction is better 1715 * than swapping tasks around, check if a move is possible. 1716 */ 1717 maymove = !load_too_imbalanced(src_load, dst_load, env); 1718 1719 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1720 /* Skip this CPU if the source task cannot migrate */ 1721 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed)) 1722 continue; 1723 1724 env->dst_cpu = cpu; 1725 task_numa_compare(env, taskimp, groupimp, maymove); 1726 } 1727 } 1728 1729 static int task_numa_migrate(struct task_struct *p) 1730 { 1731 struct task_numa_env env = { 1732 .p = p, 1733 1734 .src_cpu = task_cpu(p), 1735 .src_nid = task_node(p), 1736 1737 .imbalance_pct = 112, 1738 1739 .best_task = NULL, 1740 .best_imp = 0, 1741 .best_cpu = -1, 1742 }; 1743 struct sched_domain *sd; 1744 struct rq *best_rq; 1745 unsigned long taskweight, groupweight; 1746 int nid, ret, dist; 1747 long taskimp, groupimp; 1748 1749 /* 1750 * Pick the lowest SD_NUMA domain, as that would have the smallest 1751 * imbalance and would be the first to start moving tasks about. 1752 * 1753 * And we want to avoid any moving of tasks about, as that would create 1754 * random movement of tasks -- counter the numa conditions we're trying 1755 * to satisfy here. 1756 */ 1757 rcu_read_lock(); 1758 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1759 if (sd) 1760 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1761 rcu_read_unlock(); 1762 1763 /* 1764 * Cpusets can break the scheduler domain tree into smaller 1765 * balance domains, some of which do not cross NUMA boundaries. 1766 * Tasks that are "trapped" in such domains cannot be migrated 1767 * elsewhere, so there is no point in (re)trying. 1768 */ 1769 if (unlikely(!sd)) { 1770 sched_setnuma(p, task_node(p)); 1771 return -EINVAL; 1772 } 1773 1774 env.dst_nid = p->numa_preferred_nid; 1775 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1776 taskweight = task_weight(p, env.src_nid, dist); 1777 groupweight = group_weight(p, env.src_nid, dist); 1778 update_numa_stats(&env.src_stats, env.src_nid); 1779 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1780 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1781 update_numa_stats(&env.dst_stats, env.dst_nid); 1782 1783 /* Try to find a spot on the preferred nid. */ 1784 task_numa_find_cpu(&env, taskimp, groupimp); 1785 1786 /* 1787 * Look at other nodes in these cases: 1788 * - there is no space available on the preferred_nid 1789 * - the task is part of a numa_group that is interleaved across 1790 * multiple NUMA nodes; in order to better consolidate the group, 1791 * we need to check other locations. 1792 */ 1793 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1794 for_each_online_node(nid) { 1795 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1796 continue; 1797 1798 dist = node_distance(env.src_nid, env.dst_nid); 1799 if (sched_numa_topology_type == NUMA_BACKPLANE && 1800 dist != env.dist) { 1801 taskweight = task_weight(p, env.src_nid, dist); 1802 groupweight = group_weight(p, env.src_nid, dist); 1803 } 1804 1805 /* Only consider nodes where both task and groups benefit */ 1806 taskimp = task_weight(p, nid, dist) - taskweight; 1807 groupimp = group_weight(p, nid, dist) - groupweight; 1808 if (taskimp < 0 && groupimp < 0) 1809 continue; 1810 1811 env.dist = dist; 1812 env.dst_nid = nid; 1813 update_numa_stats(&env.dst_stats, env.dst_nid); 1814 task_numa_find_cpu(&env, taskimp, groupimp); 1815 } 1816 } 1817 1818 /* 1819 * If the task is part of a workload that spans multiple NUMA nodes, 1820 * and is migrating into one of the workload's active nodes, remember 1821 * this node as the task's preferred numa node, so the workload can 1822 * settle down. 1823 * A task that migrated to a second choice node will be better off 1824 * trying for a better one later. Do not set the preferred node here. 1825 */ 1826 if (p->numa_group) { 1827 if (env.best_cpu == -1) 1828 nid = env.src_nid; 1829 else 1830 nid = cpu_to_node(env.best_cpu); 1831 1832 if (nid != p->numa_preferred_nid) 1833 sched_setnuma(p, nid); 1834 } 1835 1836 /* No better CPU than the current one was found. */ 1837 if (env.best_cpu == -1) 1838 return -EAGAIN; 1839 1840 best_rq = cpu_rq(env.best_cpu); 1841 if (env.best_task == NULL) { 1842 ret = migrate_task_to(p, env.best_cpu); 1843 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1844 if (ret != 0) 1845 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1846 return ret; 1847 } 1848 1849 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 1850 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1851 1852 if (ret != 0) 1853 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1854 put_task_struct(env.best_task); 1855 return ret; 1856 } 1857 1858 /* Attempt to migrate a task to a CPU on the preferred node. */ 1859 static void numa_migrate_preferred(struct task_struct *p) 1860 { 1861 unsigned long interval = HZ; 1862 1863 /* This task has no NUMA fault statistics yet */ 1864 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 1865 return; 1866 1867 /* Periodically retry migrating the task to the preferred node */ 1868 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1869 p->numa_migrate_retry = jiffies + interval; 1870 1871 /* Success if task is already running on preferred CPU */ 1872 if (task_node(p) == p->numa_preferred_nid) 1873 return; 1874 1875 /* Otherwise, try migrate to a CPU on the preferred node */ 1876 task_numa_migrate(p); 1877 } 1878 1879 /* 1880 * Find out how many nodes on the workload is actively running on. Do this by 1881 * tracking the nodes from which NUMA hinting faults are triggered. This can 1882 * be different from the set of nodes where the workload's memory is currently 1883 * located. 1884 */ 1885 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1886 { 1887 unsigned long faults, max_faults = 0; 1888 int nid, active_nodes = 0; 1889 1890 for_each_online_node(nid) { 1891 faults = group_faults_cpu(numa_group, nid); 1892 if (faults > max_faults) 1893 max_faults = faults; 1894 } 1895 1896 for_each_online_node(nid) { 1897 faults = group_faults_cpu(numa_group, nid); 1898 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1899 active_nodes++; 1900 } 1901 1902 numa_group->max_faults_cpu = max_faults; 1903 numa_group->active_nodes = active_nodes; 1904 } 1905 1906 /* 1907 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1908 * increments. The more local the fault statistics are, the higher the scan 1909 * period will be for the next scan window. If local/(local+remote) ratio is 1910 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1911 * the scan period will decrease. Aim for 70% local accesses. 1912 */ 1913 #define NUMA_PERIOD_SLOTS 10 1914 #define NUMA_PERIOD_THRESHOLD 7 1915 1916 /* 1917 * Increase the scan period (slow down scanning) if the majority of 1918 * our memory is already on our local node, or if the majority of 1919 * the page accesses are shared with other processes. 1920 * Otherwise, decrease the scan period. 1921 */ 1922 static void update_task_scan_period(struct task_struct *p, 1923 unsigned long shared, unsigned long private) 1924 { 1925 unsigned int period_slot; 1926 int lr_ratio, ps_ratio; 1927 int diff; 1928 1929 unsigned long remote = p->numa_faults_locality[0]; 1930 unsigned long local = p->numa_faults_locality[1]; 1931 1932 /* 1933 * If there were no record hinting faults then either the task is 1934 * completely idle or all activity is areas that are not of interest 1935 * to automatic numa balancing. Related to that, if there were failed 1936 * migration then it implies we are migrating too quickly or the local 1937 * node is overloaded. In either case, scan slower 1938 */ 1939 if (local + shared == 0 || p->numa_faults_locality[2]) { 1940 p->numa_scan_period = min(p->numa_scan_period_max, 1941 p->numa_scan_period << 1); 1942 1943 p->mm->numa_next_scan = jiffies + 1944 msecs_to_jiffies(p->numa_scan_period); 1945 1946 return; 1947 } 1948 1949 /* 1950 * Prepare to scale scan period relative to the current period. 1951 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1952 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1953 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1954 */ 1955 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1956 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1957 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 1958 1959 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 1960 /* 1961 * Most memory accesses are local. There is no need to 1962 * do fast NUMA scanning, since memory is already local. 1963 */ 1964 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 1965 if (!slot) 1966 slot = 1; 1967 diff = slot * period_slot; 1968 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 1969 /* 1970 * Most memory accesses are shared with other tasks. 1971 * There is no point in continuing fast NUMA scanning, 1972 * since other tasks may just move the memory elsewhere. 1973 */ 1974 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 1975 if (!slot) 1976 slot = 1; 1977 diff = slot * period_slot; 1978 } else { 1979 /* 1980 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 1981 * yet they are not on the local NUMA node. Speed up 1982 * NUMA scanning to get the memory moved over. 1983 */ 1984 int ratio = max(lr_ratio, ps_ratio); 1985 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1986 } 1987 1988 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1989 task_scan_min(p), task_scan_max(p)); 1990 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1991 } 1992 1993 /* 1994 * Get the fraction of time the task has been running since the last 1995 * NUMA placement cycle. The scheduler keeps similar statistics, but 1996 * decays those on a 32ms period, which is orders of magnitude off 1997 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1998 * stats only if the task is so new there are no NUMA statistics yet. 1999 */ 2000 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2001 { 2002 u64 runtime, delta, now; 2003 /* Use the start of this time slice to avoid calculations. */ 2004 now = p->se.exec_start; 2005 runtime = p->se.sum_exec_runtime; 2006 2007 if (p->last_task_numa_placement) { 2008 delta = runtime - p->last_sum_exec_runtime; 2009 *period = now - p->last_task_numa_placement; 2010 } else { 2011 delta = p->se.avg.load_sum; 2012 *period = LOAD_AVG_MAX; 2013 } 2014 2015 p->last_sum_exec_runtime = runtime; 2016 p->last_task_numa_placement = now; 2017 2018 return delta; 2019 } 2020 2021 /* 2022 * Determine the preferred nid for a task in a numa_group. This needs to 2023 * be done in a way that produces consistent results with group_weight, 2024 * otherwise workloads might not converge. 2025 */ 2026 static int preferred_group_nid(struct task_struct *p, int nid) 2027 { 2028 nodemask_t nodes; 2029 int dist; 2030 2031 /* Direct connections between all NUMA nodes. */ 2032 if (sched_numa_topology_type == NUMA_DIRECT) 2033 return nid; 2034 2035 /* 2036 * On a system with glueless mesh NUMA topology, group_weight 2037 * scores nodes according to the number of NUMA hinting faults on 2038 * both the node itself, and on nearby nodes. 2039 */ 2040 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2041 unsigned long score, max_score = 0; 2042 int node, max_node = nid; 2043 2044 dist = sched_max_numa_distance; 2045 2046 for_each_online_node(node) { 2047 score = group_weight(p, node, dist); 2048 if (score > max_score) { 2049 max_score = score; 2050 max_node = node; 2051 } 2052 } 2053 return max_node; 2054 } 2055 2056 /* 2057 * Finding the preferred nid in a system with NUMA backplane 2058 * interconnect topology is more involved. The goal is to locate 2059 * tasks from numa_groups near each other in the system, and 2060 * untangle workloads from different sides of the system. This requires 2061 * searching down the hierarchy of node groups, recursively searching 2062 * inside the highest scoring group of nodes. The nodemask tricks 2063 * keep the complexity of the search down. 2064 */ 2065 nodes = node_online_map; 2066 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2067 unsigned long max_faults = 0; 2068 nodemask_t max_group = NODE_MASK_NONE; 2069 int a, b; 2070 2071 /* Are there nodes at this distance from each other? */ 2072 if (!find_numa_distance(dist)) 2073 continue; 2074 2075 for_each_node_mask(a, nodes) { 2076 unsigned long faults = 0; 2077 nodemask_t this_group; 2078 nodes_clear(this_group); 2079 2080 /* Sum group's NUMA faults; includes a==b case. */ 2081 for_each_node_mask(b, nodes) { 2082 if (node_distance(a, b) < dist) { 2083 faults += group_faults(p, b); 2084 node_set(b, this_group); 2085 node_clear(b, nodes); 2086 } 2087 } 2088 2089 /* Remember the top group. */ 2090 if (faults > max_faults) { 2091 max_faults = faults; 2092 max_group = this_group; 2093 /* 2094 * subtle: at the smallest distance there is 2095 * just one node left in each "group", the 2096 * winner is the preferred nid. 2097 */ 2098 nid = a; 2099 } 2100 } 2101 /* Next round, evaluate the nodes within max_group. */ 2102 if (!max_faults) 2103 break; 2104 nodes = max_group; 2105 } 2106 return nid; 2107 } 2108 2109 static void task_numa_placement(struct task_struct *p) 2110 { 2111 int seq, nid, max_nid = NUMA_NO_NODE; 2112 unsigned long max_faults = 0; 2113 unsigned long fault_types[2] = { 0, 0 }; 2114 unsigned long total_faults; 2115 u64 runtime, period; 2116 spinlock_t *group_lock = NULL; 2117 2118 /* 2119 * The p->mm->numa_scan_seq field gets updated without 2120 * exclusive access. Use READ_ONCE() here to ensure 2121 * that the field is read in a single access: 2122 */ 2123 seq = READ_ONCE(p->mm->numa_scan_seq); 2124 if (p->numa_scan_seq == seq) 2125 return; 2126 p->numa_scan_seq = seq; 2127 p->numa_scan_period_max = task_scan_max(p); 2128 2129 total_faults = p->numa_faults_locality[0] + 2130 p->numa_faults_locality[1]; 2131 runtime = numa_get_avg_runtime(p, &period); 2132 2133 /* If the task is part of a group prevent parallel updates to group stats */ 2134 if (p->numa_group) { 2135 group_lock = &p->numa_group->lock; 2136 spin_lock_irq(group_lock); 2137 } 2138 2139 /* Find the node with the highest number of faults */ 2140 for_each_online_node(nid) { 2141 /* Keep track of the offsets in numa_faults array */ 2142 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2143 unsigned long faults = 0, group_faults = 0; 2144 int priv; 2145 2146 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2147 long diff, f_diff, f_weight; 2148 2149 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2150 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2151 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2152 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2153 2154 /* Decay existing window, copy faults since last scan */ 2155 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2156 fault_types[priv] += p->numa_faults[membuf_idx]; 2157 p->numa_faults[membuf_idx] = 0; 2158 2159 /* 2160 * Normalize the faults_from, so all tasks in a group 2161 * count according to CPU use, instead of by the raw 2162 * number of faults. Tasks with little runtime have 2163 * little over-all impact on throughput, and thus their 2164 * faults are less important. 2165 */ 2166 f_weight = div64_u64(runtime << 16, period + 1); 2167 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2168 (total_faults + 1); 2169 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2170 p->numa_faults[cpubuf_idx] = 0; 2171 2172 p->numa_faults[mem_idx] += diff; 2173 p->numa_faults[cpu_idx] += f_diff; 2174 faults += p->numa_faults[mem_idx]; 2175 p->total_numa_faults += diff; 2176 if (p->numa_group) { 2177 /* 2178 * safe because we can only change our own group 2179 * 2180 * mem_idx represents the offset for a given 2181 * nid and priv in a specific region because it 2182 * is at the beginning of the numa_faults array. 2183 */ 2184 p->numa_group->faults[mem_idx] += diff; 2185 p->numa_group->faults_cpu[mem_idx] += f_diff; 2186 p->numa_group->total_faults += diff; 2187 group_faults += p->numa_group->faults[mem_idx]; 2188 } 2189 } 2190 2191 if (!p->numa_group) { 2192 if (faults > max_faults) { 2193 max_faults = faults; 2194 max_nid = nid; 2195 } 2196 } else if (group_faults > max_faults) { 2197 max_faults = group_faults; 2198 max_nid = nid; 2199 } 2200 } 2201 2202 if (p->numa_group) { 2203 numa_group_count_active_nodes(p->numa_group); 2204 spin_unlock_irq(group_lock); 2205 max_nid = preferred_group_nid(p, max_nid); 2206 } 2207 2208 if (max_faults) { 2209 /* Set the new preferred node */ 2210 if (max_nid != p->numa_preferred_nid) 2211 sched_setnuma(p, max_nid); 2212 } 2213 2214 update_task_scan_period(p, fault_types[0], fault_types[1]); 2215 } 2216 2217 static inline int get_numa_group(struct numa_group *grp) 2218 { 2219 return refcount_inc_not_zero(&grp->refcount); 2220 } 2221 2222 static inline void put_numa_group(struct numa_group *grp) 2223 { 2224 if (refcount_dec_and_test(&grp->refcount)) 2225 kfree_rcu(grp, rcu); 2226 } 2227 2228 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2229 int *priv) 2230 { 2231 struct numa_group *grp, *my_grp; 2232 struct task_struct *tsk; 2233 bool join = false; 2234 int cpu = cpupid_to_cpu(cpupid); 2235 int i; 2236 2237 if (unlikely(!p->numa_group)) { 2238 unsigned int size = sizeof(struct numa_group) + 2239 4*nr_node_ids*sizeof(unsigned long); 2240 2241 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2242 if (!grp) 2243 return; 2244 2245 refcount_set(&grp->refcount, 1); 2246 grp->active_nodes = 1; 2247 grp->max_faults_cpu = 0; 2248 spin_lock_init(&grp->lock); 2249 grp->gid = p->pid; 2250 /* Second half of the array tracks nids where faults happen */ 2251 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2252 nr_node_ids; 2253 2254 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2255 grp->faults[i] = p->numa_faults[i]; 2256 2257 grp->total_faults = p->total_numa_faults; 2258 2259 grp->nr_tasks++; 2260 rcu_assign_pointer(p->numa_group, grp); 2261 } 2262 2263 rcu_read_lock(); 2264 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2265 2266 if (!cpupid_match_pid(tsk, cpupid)) 2267 goto no_join; 2268 2269 grp = rcu_dereference(tsk->numa_group); 2270 if (!grp) 2271 goto no_join; 2272 2273 my_grp = p->numa_group; 2274 if (grp == my_grp) 2275 goto no_join; 2276 2277 /* 2278 * Only join the other group if its bigger; if we're the bigger group, 2279 * the other task will join us. 2280 */ 2281 if (my_grp->nr_tasks > grp->nr_tasks) 2282 goto no_join; 2283 2284 /* 2285 * Tie-break on the grp address. 2286 */ 2287 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2288 goto no_join; 2289 2290 /* Always join threads in the same process. */ 2291 if (tsk->mm == current->mm) 2292 join = true; 2293 2294 /* Simple filter to avoid false positives due to PID collisions */ 2295 if (flags & TNF_SHARED) 2296 join = true; 2297 2298 /* Update priv based on whether false sharing was detected */ 2299 *priv = !join; 2300 2301 if (join && !get_numa_group(grp)) 2302 goto no_join; 2303 2304 rcu_read_unlock(); 2305 2306 if (!join) 2307 return; 2308 2309 BUG_ON(irqs_disabled()); 2310 double_lock_irq(&my_grp->lock, &grp->lock); 2311 2312 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2313 my_grp->faults[i] -= p->numa_faults[i]; 2314 grp->faults[i] += p->numa_faults[i]; 2315 } 2316 my_grp->total_faults -= p->total_numa_faults; 2317 grp->total_faults += p->total_numa_faults; 2318 2319 my_grp->nr_tasks--; 2320 grp->nr_tasks++; 2321 2322 spin_unlock(&my_grp->lock); 2323 spin_unlock_irq(&grp->lock); 2324 2325 rcu_assign_pointer(p->numa_group, grp); 2326 2327 put_numa_group(my_grp); 2328 return; 2329 2330 no_join: 2331 rcu_read_unlock(); 2332 return; 2333 } 2334 2335 void task_numa_free(struct task_struct *p) 2336 { 2337 struct numa_group *grp = p->numa_group; 2338 void *numa_faults = p->numa_faults; 2339 unsigned long flags; 2340 int i; 2341 2342 if (grp) { 2343 spin_lock_irqsave(&grp->lock, flags); 2344 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2345 grp->faults[i] -= p->numa_faults[i]; 2346 grp->total_faults -= p->total_numa_faults; 2347 2348 grp->nr_tasks--; 2349 spin_unlock_irqrestore(&grp->lock, flags); 2350 RCU_INIT_POINTER(p->numa_group, NULL); 2351 put_numa_group(grp); 2352 } 2353 2354 p->numa_faults = NULL; 2355 kfree(numa_faults); 2356 } 2357 2358 /* 2359 * Got a PROT_NONE fault for a page on @node. 2360 */ 2361 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2362 { 2363 struct task_struct *p = current; 2364 bool migrated = flags & TNF_MIGRATED; 2365 int cpu_node = task_node(current); 2366 int local = !!(flags & TNF_FAULT_LOCAL); 2367 struct numa_group *ng; 2368 int priv; 2369 2370 if (!static_branch_likely(&sched_numa_balancing)) 2371 return; 2372 2373 /* for example, ksmd faulting in a user's mm */ 2374 if (!p->mm) 2375 return; 2376 2377 /* Allocate buffer to track faults on a per-node basis */ 2378 if (unlikely(!p->numa_faults)) { 2379 int size = sizeof(*p->numa_faults) * 2380 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2381 2382 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2383 if (!p->numa_faults) 2384 return; 2385 2386 p->total_numa_faults = 0; 2387 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2388 } 2389 2390 /* 2391 * First accesses are treated as private, otherwise consider accesses 2392 * to be private if the accessing pid has not changed 2393 */ 2394 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2395 priv = 1; 2396 } else { 2397 priv = cpupid_match_pid(p, last_cpupid); 2398 if (!priv && !(flags & TNF_NO_GROUP)) 2399 task_numa_group(p, last_cpupid, flags, &priv); 2400 } 2401 2402 /* 2403 * If a workload spans multiple NUMA nodes, a shared fault that 2404 * occurs wholly within the set of nodes that the workload is 2405 * actively using should be counted as local. This allows the 2406 * scan rate to slow down when a workload has settled down. 2407 */ 2408 ng = p->numa_group; 2409 if (!priv && !local && ng && ng->active_nodes > 1 && 2410 numa_is_active_node(cpu_node, ng) && 2411 numa_is_active_node(mem_node, ng)) 2412 local = 1; 2413 2414 /* 2415 * Retry to migrate task to preferred node periodically, in case it 2416 * previously failed, or the scheduler moved us. 2417 */ 2418 if (time_after(jiffies, p->numa_migrate_retry)) { 2419 task_numa_placement(p); 2420 numa_migrate_preferred(p); 2421 } 2422 2423 if (migrated) 2424 p->numa_pages_migrated += pages; 2425 if (flags & TNF_MIGRATE_FAIL) 2426 p->numa_faults_locality[2] += pages; 2427 2428 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2429 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2430 p->numa_faults_locality[local] += pages; 2431 } 2432 2433 static void reset_ptenuma_scan(struct task_struct *p) 2434 { 2435 /* 2436 * We only did a read acquisition of the mmap sem, so 2437 * p->mm->numa_scan_seq is written to without exclusive access 2438 * and the update is not guaranteed to be atomic. That's not 2439 * much of an issue though, since this is just used for 2440 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2441 * expensive, to avoid any form of compiler optimizations: 2442 */ 2443 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2444 p->mm->numa_scan_offset = 0; 2445 } 2446 2447 /* 2448 * The expensive part of numa migration is done from task_work context. 2449 * Triggered from task_tick_numa(). 2450 */ 2451 void task_numa_work(struct callback_head *work) 2452 { 2453 unsigned long migrate, next_scan, now = jiffies; 2454 struct task_struct *p = current; 2455 struct mm_struct *mm = p->mm; 2456 u64 runtime = p->se.sum_exec_runtime; 2457 struct vm_area_struct *vma; 2458 unsigned long start, end; 2459 unsigned long nr_pte_updates = 0; 2460 long pages, virtpages; 2461 2462 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2463 2464 work->next = work; /* protect against double add */ 2465 /* 2466 * Who cares about NUMA placement when they're dying. 2467 * 2468 * NOTE: make sure not to dereference p->mm before this check, 2469 * exit_task_work() happens _after_ exit_mm() so we could be called 2470 * without p->mm even though we still had it when we enqueued this 2471 * work. 2472 */ 2473 if (p->flags & PF_EXITING) 2474 return; 2475 2476 if (!mm->numa_next_scan) { 2477 mm->numa_next_scan = now + 2478 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2479 } 2480 2481 /* 2482 * Enforce maximal scan/migration frequency.. 2483 */ 2484 migrate = mm->numa_next_scan; 2485 if (time_before(now, migrate)) 2486 return; 2487 2488 if (p->numa_scan_period == 0) { 2489 p->numa_scan_period_max = task_scan_max(p); 2490 p->numa_scan_period = task_scan_start(p); 2491 } 2492 2493 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2494 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2495 return; 2496 2497 /* 2498 * Delay this task enough that another task of this mm will likely win 2499 * the next time around. 2500 */ 2501 p->node_stamp += 2 * TICK_NSEC; 2502 2503 start = mm->numa_scan_offset; 2504 pages = sysctl_numa_balancing_scan_size; 2505 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2506 virtpages = pages * 8; /* Scan up to this much virtual space */ 2507 if (!pages) 2508 return; 2509 2510 2511 if (!down_read_trylock(&mm->mmap_sem)) 2512 return; 2513 vma = find_vma(mm, start); 2514 if (!vma) { 2515 reset_ptenuma_scan(p); 2516 start = 0; 2517 vma = mm->mmap; 2518 } 2519 for (; vma; vma = vma->vm_next) { 2520 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2521 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2522 continue; 2523 } 2524 2525 /* 2526 * Shared library pages mapped by multiple processes are not 2527 * migrated as it is expected they are cache replicated. Avoid 2528 * hinting faults in read-only file-backed mappings or the vdso 2529 * as migrating the pages will be of marginal benefit. 2530 */ 2531 if (!vma->vm_mm || 2532 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2533 continue; 2534 2535 /* 2536 * Skip inaccessible VMAs to avoid any confusion between 2537 * PROT_NONE and NUMA hinting ptes 2538 */ 2539 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2540 continue; 2541 2542 do { 2543 start = max(start, vma->vm_start); 2544 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2545 end = min(end, vma->vm_end); 2546 nr_pte_updates = change_prot_numa(vma, start, end); 2547 2548 /* 2549 * Try to scan sysctl_numa_balancing_size worth of 2550 * hpages that have at least one present PTE that 2551 * is not already pte-numa. If the VMA contains 2552 * areas that are unused or already full of prot_numa 2553 * PTEs, scan up to virtpages, to skip through those 2554 * areas faster. 2555 */ 2556 if (nr_pte_updates) 2557 pages -= (end - start) >> PAGE_SHIFT; 2558 virtpages -= (end - start) >> PAGE_SHIFT; 2559 2560 start = end; 2561 if (pages <= 0 || virtpages <= 0) 2562 goto out; 2563 2564 cond_resched(); 2565 } while (end != vma->vm_end); 2566 } 2567 2568 out: 2569 /* 2570 * It is possible to reach the end of the VMA list but the last few 2571 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2572 * would find the !migratable VMA on the next scan but not reset the 2573 * scanner to the start so check it now. 2574 */ 2575 if (vma) 2576 mm->numa_scan_offset = start; 2577 else 2578 reset_ptenuma_scan(p); 2579 up_read(&mm->mmap_sem); 2580 2581 /* 2582 * Make sure tasks use at least 32x as much time to run other code 2583 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2584 * Usually update_task_scan_period slows down scanning enough; on an 2585 * overloaded system we need to limit overhead on a per task basis. 2586 */ 2587 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2588 u64 diff = p->se.sum_exec_runtime - runtime; 2589 p->node_stamp += 32 * diff; 2590 } 2591 } 2592 2593 /* 2594 * Drive the periodic memory faults.. 2595 */ 2596 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2597 { 2598 struct callback_head *work = &curr->numa_work; 2599 u64 period, now; 2600 2601 /* 2602 * We don't care about NUMA placement if we don't have memory. 2603 */ 2604 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2605 return; 2606 2607 /* 2608 * Using runtime rather than walltime has the dual advantage that 2609 * we (mostly) drive the selection from busy threads and that the 2610 * task needs to have done some actual work before we bother with 2611 * NUMA placement. 2612 */ 2613 now = curr->se.sum_exec_runtime; 2614 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2615 2616 if (now > curr->node_stamp + period) { 2617 if (!curr->node_stamp) 2618 curr->numa_scan_period = task_scan_start(curr); 2619 curr->node_stamp += period; 2620 2621 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2622 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2623 task_work_add(curr, work, true); 2624 } 2625 } 2626 } 2627 2628 static void update_scan_period(struct task_struct *p, int new_cpu) 2629 { 2630 int src_nid = cpu_to_node(task_cpu(p)); 2631 int dst_nid = cpu_to_node(new_cpu); 2632 2633 if (!static_branch_likely(&sched_numa_balancing)) 2634 return; 2635 2636 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2637 return; 2638 2639 if (src_nid == dst_nid) 2640 return; 2641 2642 /* 2643 * Allow resets if faults have been trapped before one scan 2644 * has completed. This is most likely due to a new task that 2645 * is pulled cross-node due to wakeups or load balancing. 2646 */ 2647 if (p->numa_scan_seq) { 2648 /* 2649 * Avoid scan adjustments if moving to the preferred 2650 * node or if the task was not previously running on 2651 * the preferred node. 2652 */ 2653 if (dst_nid == p->numa_preferred_nid || 2654 (p->numa_preferred_nid != NUMA_NO_NODE && 2655 src_nid != p->numa_preferred_nid)) 2656 return; 2657 } 2658 2659 p->numa_scan_period = task_scan_start(p); 2660 } 2661 2662 #else 2663 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2664 { 2665 } 2666 2667 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2668 { 2669 } 2670 2671 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2672 { 2673 } 2674 2675 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2676 { 2677 } 2678 2679 #endif /* CONFIG_NUMA_BALANCING */ 2680 2681 static void 2682 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2683 { 2684 update_load_add(&cfs_rq->load, se->load.weight); 2685 if (!parent_entity(se)) 2686 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2687 #ifdef CONFIG_SMP 2688 if (entity_is_task(se)) { 2689 struct rq *rq = rq_of(cfs_rq); 2690 2691 account_numa_enqueue(rq, task_of(se)); 2692 list_add(&se->group_node, &rq->cfs_tasks); 2693 } 2694 #endif 2695 cfs_rq->nr_running++; 2696 } 2697 2698 static void 2699 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2700 { 2701 update_load_sub(&cfs_rq->load, se->load.weight); 2702 if (!parent_entity(se)) 2703 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2704 #ifdef CONFIG_SMP 2705 if (entity_is_task(se)) { 2706 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2707 list_del_init(&se->group_node); 2708 } 2709 #endif 2710 cfs_rq->nr_running--; 2711 } 2712 2713 /* 2714 * Signed add and clamp on underflow. 2715 * 2716 * Explicitly do a load-store to ensure the intermediate value never hits 2717 * memory. This allows lockless observations without ever seeing the negative 2718 * values. 2719 */ 2720 #define add_positive(_ptr, _val) do { \ 2721 typeof(_ptr) ptr = (_ptr); \ 2722 typeof(_val) val = (_val); \ 2723 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2724 \ 2725 res = var + val; \ 2726 \ 2727 if (val < 0 && res > var) \ 2728 res = 0; \ 2729 \ 2730 WRITE_ONCE(*ptr, res); \ 2731 } while (0) 2732 2733 /* 2734 * Unsigned subtract and clamp on underflow. 2735 * 2736 * Explicitly do a load-store to ensure the intermediate value never hits 2737 * memory. This allows lockless observations without ever seeing the negative 2738 * values. 2739 */ 2740 #define sub_positive(_ptr, _val) do { \ 2741 typeof(_ptr) ptr = (_ptr); \ 2742 typeof(*ptr) val = (_val); \ 2743 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2744 res = var - val; \ 2745 if (res > var) \ 2746 res = 0; \ 2747 WRITE_ONCE(*ptr, res); \ 2748 } while (0) 2749 2750 /* 2751 * Remove and clamp on negative, from a local variable. 2752 * 2753 * A variant of sub_positive(), which does not use explicit load-store 2754 * and is thus optimized for local variable updates. 2755 */ 2756 #define lsub_positive(_ptr, _val) do { \ 2757 typeof(_ptr) ptr = (_ptr); \ 2758 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 2759 } while (0) 2760 2761 #ifdef CONFIG_SMP 2762 static inline void 2763 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2764 { 2765 cfs_rq->runnable_weight += se->runnable_weight; 2766 2767 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg; 2768 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum; 2769 } 2770 2771 static inline void 2772 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2773 { 2774 cfs_rq->runnable_weight -= se->runnable_weight; 2775 2776 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg); 2777 sub_positive(&cfs_rq->avg.runnable_load_sum, 2778 se_runnable(se) * se->avg.runnable_load_sum); 2779 } 2780 2781 static inline void 2782 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2783 { 2784 cfs_rq->avg.load_avg += se->avg.load_avg; 2785 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 2786 } 2787 2788 static inline void 2789 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2790 { 2791 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 2792 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 2793 } 2794 #else 2795 static inline void 2796 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2797 static inline void 2798 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2799 static inline void 2800 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2801 static inline void 2802 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2803 #endif 2804 2805 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2806 unsigned long weight, unsigned long runnable) 2807 { 2808 if (se->on_rq) { 2809 /* commit outstanding execution time */ 2810 if (cfs_rq->curr == se) 2811 update_curr(cfs_rq); 2812 account_entity_dequeue(cfs_rq, se); 2813 dequeue_runnable_load_avg(cfs_rq, se); 2814 } 2815 dequeue_load_avg(cfs_rq, se); 2816 2817 se->runnable_weight = runnable; 2818 update_load_set(&se->load, weight); 2819 2820 #ifdef CONFIG_SMP 2821 do { 2822 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 2823 2824 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 2825 se->avg.runnable_load_avg = 2826 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider); 2827 } while (0); 2828 #endif 2829 2830 enqueue_load_avg(cfs_rq, se); 2831 if (se->on_rq) { 2832 account_entity_enqueue(cfs_rq, se); 2833 enqueue_runnable_load_avg(cfs_rq, se); 2834 } 2835 } 2836 2837 void reweight_task(struct task_struct *p, int prio) 2838 { 2839 struct sched_entity *se = &p->se; 2840 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2841 struct load_weight *load = &se->load; 2842 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 2843 2844 reweight_entity(cfs_rq, se, weight, weight); 2845 load->inv_weight = sched_prio_to_wmult[prio]; 2846 } 2847 2848 #ifdef CONFIG_FAIR_GROUP_SCHED 2849 #ifdef CONFIG_SMP 2850 /* 2851 * All this does is approximate the hierarchical proportion which includes that 2852 * global sum we all love to hate. 2853 * 2854 * That is, the weight of a group entity, is the proportional share of the 2855 * group weight based on the group runqueue weights. That is: 2856 * 2857 * tg->weight * grq->load.weight 2858 * ge->load.weight = ----------------------------- (1) 2859 * \Sum grq->load.weight 2860 * 2861 * Now, because computing that sum is prohibitively expensive to compute (been 2862 * there, done that) we approximate it with this average stuff. The average 2863 * moves slower and therefore the approximation is cheaper and more stable. 2864 * 2865 * So instead of the above, we substitute: 2866 * 2867 * grq->load.weight -> grq->avg.load_avg (2) 2868 * 2869 * which yields the following: 2870 * 2871 * tg->weight * grq->avg.load_avg 2872 * ge->load.weight = ------------------------------ (3) 2873 * tg->load_avg 2874 * 2875 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 2876 * 2877 * That is shares_avg, and it is right (given the approximation (2)). 2878 * 2879 * The problem with it is that because the average is slow -- it was designed 2880 * to be exactly that of course -- this leads to transients in boundary 2881 * conditions. In specific, the case where the group was idle and we start the 2882 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 2883 * yielding bad latency etc.. 2884 * 2885 * Now, in that special case (1) reduces to: 2886 * 2887 * tg->weight * grq->load.weight 2888 * ge->load.weight = ----------------------------- = tg->weight (4) 2889 * grp->load.weight 2890 * 2891 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 2892 * 2893 * So what we do is modify our approximation (3) to approach (4) in the (near) 2894 * UP case, like: 2895 * 2896 * ge->load.weight = 2897 * 2898 * tg->weight * grq->load.weight 2899 * --------------------------------------------------- (5) 2900 * tg->load_avg - grq->avg.load_avg + grq->load.weight 2901 * 2902 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 2903 * we need to use grq->avg.load_avg as its lower bound, which then gives: 2904 * 2905 * 2906 * tg->weight * grq->load.weight 2907 * ge->load.weight = ----------------------------- (6) 2908 * tg_load_avg' 2909 * 2910 * Where: 2911 * 2912 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 2913 * max(grq->load.weight, grq->avg.load_avg) 2914 * 2915 * And that is shares_weight and is icky. In the (near) UP case it approaches 2916 * (4) while in the normal case it approaches (3). It consistently 2917 * overestimates the ge->load.weight and therefore: 2918 * 2919 * \Sum ge->load.weight >= tg->weight 2920 * 2921 * hence icky! 2922 */ 2923 static long calc_group_shares(struct cfs_rq *cfs_rq) 2924 { 2925 long tg_weight, tg_shares, load, shares; 2926 struct task_group *tg = cfs_rq->tg; 2927 2928 tg_shares = READ_ONCE(tg->shares); 2929 2930 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 2931 2932 tg_weight = atomic_long_read(&tg->load_avg); 2933 2934 /* Ensure tg_weight >= load */ 2935 tg_weight -= cfs_rq->tg_load_avg_contrib; 2936 tg_weight += load; 2937 2938 shares = (tg_shares * load); 2939 if (tg_weight) 2940 shares /= tg_weight; 2941 2942 /* 2943 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 2944 * of a group with small tg->shares value. It is a floor value which is 2945 * assigned as a minimum load.weight to the sched_entity representing 2946 * the group on a CPU. 2947 * 2948 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 2949 * on an 8-core system with 8 tasks each runnable on one CPU shares has 2950 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 2951 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 2952 * instead of 0. 2953 */ 2954 return clamp_t(long, shares, MIN_SHARES, tg_shares); 2955 } 2956 2957 /* 2958 * This calculates the effective runnable weight for a group entity based on 2959 * the group entity weight calculated above. 2960 * 2961 * Because of the above approximation (2), our group entity weight is 2962 * an load_avg based ratio (3). This means that it includes blocked load and 2963 * does not represent the runnable weight. 2964 * 2965 * Approximate the group entity's runnable weight per ratio from the group 2966 * runqueue: 2967 * 2968 * grq->avg.runnable_load_avg 2969 * ge->runnable_weight = ge->load.weight * -------------------------- (7) 2970 * grq->avg.load_avg 2971 * 2972 * However, analogous to above, since the avg numbers are slow, this leads to 2973 * transients in the from-idle case. Instead we use: 2974 * 2975 * ge->runnable_weight = ge->load.weight * 2976 * 2977 * max(grq->avg.runnable_load_avg, grq->runnable_weight) 2978 * ----------------------------------------------------- (8) 2979 * max(grq->avg.load_avg, grq->load.weight) 2980 * 2981 * Where these max() serve both to use the 'instant' values to fix the slow 2982 * from-idle and avoid the /0 on to-idle, similar to (6). 2983 */ 2984 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares) 2985 { 2986 long runnable, load_avg; 2987 2988 load_avg = max(cfs_rq->avg.load_avg, 2989 scale_load_down(cfs_rq->load.weight)); 2990 2991 runnable = max(cfs_rq->avg.runnable_load_avg, 2992 scale_load_down(cfs_rq->runnable_weight)); 2993 2994 runnable *= shares; 2995 if (load_avg) 2996 runnable /= load_avg; 2997 2998 return clamp_t(long, runnable, MIN_SHARES, shares); 2999 } 3000 #endif /* CONFIG_SMP */ 3001 3002 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3003 3004 /* 3005 * Recomputes the group entity based on the current state of its group 3006 * runqueue. 3007 */ 3008 static void update_cfs_group(struct sched_entity *se) 3009 { 3010 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3011 long shares, runnable; 3012 3013 if (!gcfs_rq) 3014 return; 3015 3016 if (throttled_hierarchy(gcfs_rq)) 3017 return; 3018 3019 #ifndef CONFIG_SMP 3020 runnable = shares = READ_ONCE(gcfs_rq->tg->shares); 3021 3022 if (likely(se->load.weight == shares)) 3023 return; 3024 #else 3025 shares = calc_group_shares(gcfs_rq); 3026 runnable = calc_group_runnable(gcfs_rq, shares); 3027 #endif 3028 3029 reweight_entity(cfs_rq_of(se), se, shares, runnable); 3030 } 3031 3032 #else /* CONFIG_FAIR_GROUP_SCHED */ 3033 static inline void update_cfs_group(struct sched_entity *se) 3034 { 3035 } 3036 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3037 3038 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3039 { 3040 struct rq *rq = rq_of(cfs_rq); 3041 3042 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) { 3043 /* 3044 * There are a few boundary cases this might miss but it should 3045 * get called often enough that that should (hopefully) not be 3046 * a real problem. 3047 * 3048 * It will not get called when we go idle, because the idle 3049 * thread is a different class (!fair), nor will the utilization 3050 * number include things like RT tasks. 3051 * 3052 * As is, the util number is not freq-invariant (we'd have to 3053 * implement arch_scale_freq_capacity() for that). 3054 * 3055 * See cpu_util(). 3056 */ 3057 cpufreq_update_util(rq, flags); 3058 } 3059 } 3060 3061 #ifdef CONFIG_SMP 3062 #ifdef CONFIG_FAIR_GROUP_SCHED 3063 /** 3064 * update_tg_load_avg - update the tg's load avg 3065 * @cfs_rq: the cfs_rq whose avg changed 3066 * @force: update regardless of how small the difference 3067 * 3068 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3069 * However, because tg->load_avg is a global value there are performance 3070 * considerations. 3071 * 3072 * In order to avoid having to look at the other cfs_rq's, we use a 3073 * differential update where we store the last value we propagated. This in 3074 * turn allows skipping updates if the differential is 'small'. 3075 * 3076 * Updating tg's load_avg is necessary before update_cfs_share(). 3077 */ 3078 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3079 { 3080 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3081 3082 /* 3083 * No need to update load_avg for root_task_group as it is not used. 3084 */ 3085 if (cfs_rq->tg == &root_task_group) 3086 return; 3087 3088 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3089 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3090 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3091 } 3092 } 3093 3094 /* 3095 * Called within set_task_rq() right before setting a task's CPU. The 3096 * caller only guarantees p->pi_lock is held; no other assumptions, 3097 * including the state of rq->lock, should be made. 3098 */ 3099 void set_task_rq_fair(struct sched_entity *se, 3100 struct cfs_rq *prev, struct cfs_rq *next) 3101 { 3102 u64 p_last_update_time; 3103 u64 n_last_update_time; 3104 3105 if (!sched_feat(ATTACH_AGE_LOAD)) 3106 return; 3107 3108 /* 3109 * We are supposed to update the task to "current" time, then its up to 3110 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3111 * getting what current time is, so simply throw away the out-of-date 3112 * time. This will result in the wakee task is less decayed, but giving 3113 * the wakee more load sounds not bad. 3114 */ 3115 if (!(se->avg.last_update_time && prev)) 3116 return; 3117 3118 #ifndef CONFIG_64BIT 3119 { 3120 u64 p_last_update_time_copy; 3121 u64 n_last_update_time_copy; 3122 3123 do { 3124 p_last_update_time_copy = prev->load_last_update_time_copy; 3125 n_last_update_time_copy = next->load_last_update_time_copy; 3126 3127 smp_rmb(); 3128 3129 p_last_update_time = prev->avg.last_update_time; 3130 n_last_update_time = next->avg.last_update_time; 3131 3132 } while (p_last_update_time != p_last_update_time_copy || 3133 n_last_update_time != n_last_update_time_copy); 3134 } 3135 #else 3136 p_last_update_time = prev->avg.last_update_time; 3137 n_last_update_time = next->avg.last_update_time; 3138 #endif 3139 __update_load_avg_blocked_se(p_last_update_time, se); 3140 se->avg.last_update_time = n_last_update_time; 3141 } 3142 3143 3144 /* 3145 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3146 * propagate its contribution. The key to this propagation is the invariant 3147 * that for each group: 3148 * 3149 * ge->avg == grq->avg (1) 3150 * 3151 * _IFF_ we look at the pure running and runnable sums. Because they 3152 * represent the very same entity, just at different points in the hierarchy. 3153 * 3154 * Per the above update_tg_cfs_util() is trivial and simply copies the running 3155 * sum over (but still wrong, because the group entity and group rq do not have 3156 * their PELT windows aligned). 3157 * 3158 * However, update_tg_cfs_runnable() is more complex. So we have: 3159 * 3160 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3161 * 3162 * And since, like util, the runnable part should be directly transferable, 3163 * the following would _appear_ to be the straight forward approach: 3164 * 3165 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3166 * 3167 * And per (1) we have: 3168 * 3169 * ge->avg.runnable_avg == grq->avg.runnable_avg 3170 * 3171 * Which gives: 3172 * 3173 * ge->load.weight * grq->avg.load_avg 3174 * ge->avg.load_avg = ----------------------------------- (4) 3175 * grq->load.weight 3176 * 3177 * Except that is wrong! 3178 * 3179 * Because while for entities historical weight is not important and we 3180 * really only care about our future and therefore can consider a pure 3181 * runnable sum, runqueues can NOT do this. 3182 * 3183 * We specifically want runqueues to have a load_avg that includes 3184 * historical weights. Those represent the blocked load, the load we expect 3185 * to (shortly) return to us. This only works by keeping the weights as 3186 * integral part of the sum. We therefore cannot decompose as per (3). 3187 * 3188 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3189 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3190 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3191 * runnable section of these tasks overlap (or not). If they were to perfectly 3192 * align the rq as a whole would be runnable 2/3 of the time. If however we 3193 * always have at least 1 runnable task, the rq as a whole is always runnable. 3194 * 3195 * So we'll have to approximate.. :/ 3196 * 3197 * Given the constraint: 3198 * 3199 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3200 * 3201 * We can construct a rule that adds runnable to a rq by assuming minimal 3202 * overlap. 3203 * 3204 * On removal, we'll assume each task is equally runnable; which yields: 3205 * 3206 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3207 * 3208 * XXX: only do this for the part of runnable > running ? 3209 * 3210 */ 3211 3212 static inline void 3213 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3214 { 3215 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3216 3217 /* Nothing to update */ 3218 if (!delta) 3219 return; 3220 3221 /* 3222 * The relation between sum and avg is: 3223 * 3224 * LOAD_AVG_MAX - 1024 + sa->period_contrib 3225 * 3226 * however, the PELT windows are not aligned between grq and gse. 3227 */ 3228 3229 /* Set new sched_entity's utilization */ 3230 se->avg.util_avg = gcfs_rq->avg.util_avg; 3231 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3232 3233 /* Update parent cfs_rq utilization */ 3234 add_positive(&cfs_rq->avg.util_avg, delta); 3235 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3236 } 3237 3238 static inline void 3239 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3240 { 3241 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3242 unsigned long runnable_load_avg, load_avg; 3243 u64 runnable_load_sum, load_sum = 0; 3244 s64 delta_sum; 3245 3246 if (!runnable_sum) 3247 return; 3248 3249 gcfs_rq->prop_runnable_sum = 0; 3250 3251 if (runnable_sum >= 0) { 3252 /* 3253 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3254 * the CPU is saturated running == runnable. 3255 */ 3256 runnable_sum += se->avg.load_sum; 3257 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); 3258 } else { 3259 /* 3260 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3261 * assuming all tasks are equally runnable. 3262 */ 3263 if (scale_load_down(gcfs_rq->load.weight)) { 3264 load_sum = div_s64(gcfs_rq->avg.load_sum, 3265 scale_load_down(gcfs_rq->load.weight)); 3266 } 3267 3268 /* But make sure to not inflate se's runnable */ 3269 runnable_sum = min(se->avg.load_sum, load_sum); 3270 } 3271 3272 /* 3273 * runnable_sum can't be lower than running_sum 3274 * Rescale running sum to be in the same range as runnable sum 3275 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3276 * runnable_sum is in [0 : LOAD_AVG_MAX] 3277 */ 3278 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3279 runnable_sum = max(runnable_sum, running_sum); 3280 3281 load_sum = (s64)se_weight(se) * runnable_sum; 3282 load_avg = div_s64(load_sum, LOAD_AVG_MAX); 3283 3284 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3285 delta_avg = load_avg - se->avg.load_avg; 3286 3287 se->avg.load_sum = runnable_sum; 3288 se->avg.load_avg = load_avg; 3289 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3290 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3291 3292 runnable_load_sum = (s64)se_runnable(se) * runnable_sum; 3293 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX); 3294 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum; 3295 delta_avg = runnable_load_avg - se->avg.runnable_load_avg; 3296 3297 se->avg.runnable_load_sum = runnable_sum; 3298 se->avg.runnable_load_avg = runnable_load_avg; 3299 3300 if (se->on_rq) { 3301 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg); 3302 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum); 3303 } 3304 } 3305 3306 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3307 { 3308 cfs_rq->propagate = 1; 3309 cfs_rq->prop_runnable_sum += runnable_sum; 3310 } 3311 3312 /* Update task and its cfs_rq load average */ 3313 static inline int propagate_entity_load_avg(struct sched_entity *se) 3314 { 3315 struct cfs_rq *cfs_rq, *gcfs_rq; 3316 3317 if (entity_is_task(se)) 3318 return 0; 3319 3320 gcfs_rq = group_cfs_rq(se); 3321 if (!gcfs_rq->propagate) 3322 return 0; 3323 3324 gcfs_rq->propagate = 0; 3325 3326 cfs_rq = cfs_rq_of(se); 3327 3328 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3329 3330 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3331 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3332 3333 return 1; 3334 } 3335 3336 /* 3337 * Check if we need to update the load and the utilization of a blocked 3338 * group_entity: 3339 */ 3340 static inline bool skip_blocked_update(struct sched_entity *se) 3341 { 3342 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3343 3344 /* 3345 * If sched_entity still have not zero load or utilization, we have to 3346 * decay it: 3347 */ 3348 if (se->avg.load_avg || se->avg.util_avg) 3349 return false; 3350 3351 /* 3352 * If there is a pending propagation, we have to update the load and 3353 * the utilization of the sched_entity: 3354 */ 3355 if (gcfs_rq->propagate) 3356 return false; 3357 3358 /* 3359 * Otherwise, the load and the utilization of the sched_entity is 3360 * already zero and there is no pending propagation, so it will be a 3361 * waste of time to try to decay it: 3362 */ 3363 return true; 3364 } 3365 3366 #else /* CONFIG_FAIR_GROUP_SCHED */ 3367 3368 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3369 3370 static inline int propagate_entity_load_avg(struct sched_entity *se) 3371 { 3372 return 0; 3373 } 3374 3375 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3376 3377 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3378 3379 /** 3380 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3381 * @now: current time, as per cfs_rq_clock_pelt() 3382 * @cfs_rq: cfs_rq to update 3383 * 3384 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3385 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3386 * post_init_entity_util_avg(). 3387 * 3388 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3389 * 3390 * Returns true if the load decayed or we removed load. 3391 * 3392 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3393 * call update_tg_load_avg() when this function returns true. 3394 */ 3395 static inline int 3396 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3397 { 3398 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0; 3399 struct sched_avg *sa = &cfs_rq->avg; 3400 int decayed = 0; 3401 3402 if (cfs_rq->removed.nr) { 3403 unsigned long r; 3404 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3405 3406 raw_spin_lock(&cfs_rq->removed.lock); 3407 swap(cfs_rq->removed.util_avg, removed_util); 3408 swap(cfs_rq->removed.load_avg, removed_load); 3409 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum); 3410 cfs_rq->removed.nr = 0; 3411 raw_spin_unlock(&cfs_rq->removed.lock); 3412 3413 r = removed_load; 3414 sub_positive(&sa->load_avg, r); 3415 sub_positive(&sa->load_sum, r * divider); 3416 3417 r = removed_util; 3418 sub_positive(&sa->util_avg, r); 3419 sub_positive(&sa->util_sum, r * divider); 3420 3421 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum); 3422 3423 decayed = 1; 3424 } 3425 3426 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3427 3428 #ifndef CONFIG_64BIT 3429 smp_wmb(); 3430 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3431 #endif 3432 3433 if (decayed) 3434 cfs_rq_util_change(cfs_rq, 0); 3435 3436 return decayed; 3437 } 3438 3439 /** 3440 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3441 * @cfs_rq: cfs_rq to attach to 3442 * @se: sched_entity to attach 3443 * @flags: migration hints 3444 * 3445 * Must call update_cfs_rq_load_avg() before this, since we rely on 3446 * cfs_rq->avg.last_update_time being current. 3447 */ 3448 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3449 { 3450 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3451 3452 /* 3453 * When we attach the @se to the @cfs_rq, we must align the decay 3454 * window because without that, really weird and wonderful things can 3455 * happen. 3456 * 3457 * XXX illustrate 3458 */ 3459 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3460 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3461 3462 /* 3463 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3464 * period_contrib. This isn't strictly correct, but since we're 3465 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3466 * _sum a little. 3467 */ 3468 se->avg.util_sum = se->avg.util_avg * divider; 3469 3470 se->avg.load_sum = divider; 3471 if (se_weight(se)) { 3472 se->avg.load_sum = 3473 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3474 } 3475 3476 se->avg.runnable_load_sum = se->avg.load_sum; 3477 3478 enqueue_load_avg(cfs_rq, se); 3479 cfs_rq->avg.util_avg += se->avg.util_avg; 3480 cfs_rq->avg.util_sum += se->avg.util_sum; 3481 3482 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3483 3484 cfs_rq_util_change(cfs_rq, flags); 3485 } 3486 3487 /** 3488 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3489 * @cfs_rq: cfs_rq to detach from 3490 * @se: sched_entity to detach 3491 * 3492 * Must call update_cfs_rq_load_avg() before this, since we rely on 3493 * cfs_rq->avg.last_update_time being current. 3494 */ 3495 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3496 { 3497 dequeue_load_avg(cfs_rq, se); 3498 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3499 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3500 3501 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3502 3503 cfs_rq_util_change(cfs_rq, 0); 3504 } 3505 3506 /* 3507 * Optional action to be done while updating the load average 3508 */ 3509 #define UPDATE_TG 0x1 3510 #define SKIP_AGE_LOAD 0x2 3511 #define DO_ATTACH 0x4 3512 3513 /* Update task and its cfs_rq load average */ 3514 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3515 { 3516 u64 now = cfs_rq_clock_pelt(cfs_rq); 3517 int decayed; 3518 3519 /* 3520 * Track task load average for carrying it to new CPU after migrated, and 3521 * track group sched_entity load average for task_h_load calc in migration 3522 */ 3523 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3524 __update_load_avg_se(now, cfs_rq, se); 3525 3526 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3527 decayed |= propagate_entity_load_avg(se); 3528 3529 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3530 3531 /* 3532 * DO_ATTACH means we're here from enqueue_entity(). 3533 * !last_update_time means we've passed through 3534 * migrate_task_rq_fair() indicating we migrated. 3535 * 3536 * IOW we're enqueueing a task on a new CPU. 3537 */ 3538 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION); 3539 update_tg_load_avg(cfs_rq, 0); 3540 3541 } else if (decayed && (flags & UPDATE_TG)) 3542 update_tg_load_avg(cfs_rq, 0); 3543 } 3544 3545 #ifndef CONFIG_64BIT 3546 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3547 { 3548 u64 last_update_time_copy; 3549 u64 last_update_time; 3550 3551 do { 3552 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3553 smp_rmb(); 3554 last_update_time = cfs_rq->avg.last_update_time; 3555 } while (last_update_time != last_update_time_copy); 3556 3557 return last_update_time; 3558 } 3559 #else 3560 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3561 { 3562 return cfs_rq->avg.last_update_time; 3563 } 3564 #endif 3565 3566 /* 3567 * Synchronize entity load avg of dequeued entity without locking 3568 * the previous rq. 3569 */ 3570 void sync_entity_load_avg(struct sched_entity *se) 3571 { 3572 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3573 u64 last_update_time; 3574 3575 last_update_time = cfs_rq_last_update_time(cfs_rq); 3576 __update_load_avg_blocked_se(last_update_time, se); 3577 } 3578 3579 /* 3580 * Task first catches up with cfs_rq, and then subtract 3581 * itself from the cfs_rq (task must be off the queue now). 3582 */ 3583 void remove_entity_load_avg(struct sched_entity *se) 3584 { 3585 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3586 unsigned long flags; 3587 3588 /* 3589 * tasks cannot exit without having gone through wake_up_new_task() -> 3590 * post_init_entity_util_avg() which will have added things to the 3591 * cfs_rq, so we can remove unconditionally. 3592 */ 3593 3594 sync_entity_load_avg(se); 3595 3596 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3597 ++cfs_rq->removed.nr; 3598 cfs_rq->removed.util_avg += se->avg.util_avg; 3599 cfs_rq->removed.load_avg += se->avg.load_avg; 3600 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */ 3601 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3602 } 3603 3604 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3605 { 3606 return cfs_rq->avg.runnable_load_avg; 3607 } 3608 3609 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3610 { 3611 return cfs_rq->avg.load_avg; 3612 } 3613 3614 static int idle_balance(struct rq *this_rq, struct rq_flags *rf); 3615 3616 static inline unsigned long task_util(struct task_struct *p) 3617 { 3618 return READ_ONCE(p->se.avg.util_avg); 3619 } 3620 3621 static inline unsigned long _task_util_est(struct task_struct *p) 3622 { 3623 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3624 3625 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED); 3626 } 3627 3628 static inline unsigned long task_util_est(struct task_struct *p) 3629 { 3630 return max(task_util(p), _task_util_est(p)); 3631 } 3632 3633 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3634 struct task_struct *p) 3635 { 3636 unsigned int enqueued; 3637 3638 if (!sched_feat(UTIL_EST)) 3639 return; 3640 3641 /* Update root cfs_rq's estimated utilization */ 3642 enqueued = cfs_rq->avg.util_est.enqueued; 3643 enqueued += _task_util_est(p); 3644 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3645 } 3646 3647 /* 3648 * Check if a (signed) value is within a specified (unsigned) margin, 3649 * based on the observation that: 3650 * 3651 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3652 * 3653 * NOTE: this only works when value + maring < INT_MAX. 3654 */ 3655 static inline bool within_margin(int value, int margin) 3656 { 3657 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3658 } 3659 3660 static void 3661 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) 3662 { 3663 long last_ewma_diff; 3664 struct util_est ue; 3665 int cpu; 3666 3667 if (!sched_feat(UTIL_EST)) 3668 return; 3669 3670 /* Update root cfs_rq's estimated utilization */ 3671 ue.enqueued = cfs_rq->avg.util_est.enqueued; 3672 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p)); 3673 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); 3674 3675 /* 3676 * Skip update of task's estimated utilization when the task has not 3677 * yet completed an activation, e.g. being migrated. 3678 */ 3679 if (!task_sleep) 3680 return; 3681 3682 /* 3683 * If the PELT values haven't changed since enqueue time, 3684 * skip the util_est update. 3685 */ 3686 ue = p->se.avg.util_est; 3687 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3688 return; 3689 3690 /* 3691 * Skip update of task's estimated utilization when its EWMA is 3692 * already ~1% close to its last activation value. 3693 */ 3694 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 3695 last_ewma_diff = ue.enqueued - ue.ewma; 3696 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 3697 return; 3698 3699 /* 3700 * To avoid overestimation of actual task utilization, skip updates if 3701 * we cannot grant there is idle time in this CPU. 3702 */ 3703 cpu = cpu_of(rq_of(cfs_rq)); 3704 if (task_util(p) > capacity_orig_of(cpu)) 3705 return; 3706 3707 /* 3708 * Update Task's estimated utilization 3709 * 3710 * When *p completes an activation we can consolidate another sample 3711 * of the task size. This is done by storing the current PELT value 3712 * as ue.enqueued and by using this value to update the Exponential 3713 * Weighted Moving Average (EWMA): 3714 * 3715 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 3716 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 3717 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 3718 * = w * ( last_ewma_diff ) + ewma(t-1) 3719 * = w * (last_ewma_diff + ewma(t-1) / w) 3720 * 3721 * Where 'w' is the weight of new samples, which is configured to be 3722 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 3723 */ 3724 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 3725 ue.ewma += last_ewma_diff; 3726 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 3727 WRITE_ONCE(p->se.avg.util_est, ue); 3728 } 3729 3730 static inline int task_fits_capacity(struct task_struct *p, long capacity) 3731 { 3732 return capacity * 1024 > task_util_est(p) * capacity_margin; 3733 } 3734 3735 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 3736 { 3737 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 3738 return; 3739 3740 if (!p) { 3741 rq->misfit_task_load = 0; 3742 return; 3743 } 3744 3745 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 3746 rq->misfit_task_load = 0; 3747 return; 3748 } 3749 3750 rq->misfit_task_load = task_h_load(p); 3751 } 3752 3753 #else /* CONFIG_SMP */ 3754 3755 #define UPDATE_TG 0x0 3756 #define SKIP_AGE_LOAD 0x0 3757 #define DO_ATTACH 0x0 3758 3759 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 3760 { 3761 cfs_rq_util_change(cfs_rq, 0); 3762 } 3763 3764 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3765 3766 static inline void 3767 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {} 3768 static inline void 3769 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3770 3771 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 3772 { 3773 return 0; 3774 } 3775 3776 static inline void 3777 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 3778 3779 static inline void 3780 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, 3781 bool task_sleep) {} 3782 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 3783 3784 #endif /* CONFIG_SMP */ 3785 3786 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3787 { 3788 #ifdef CONFIG_SCHED_DEBUG 3789 s64 d = se->vruntime - cfs_rq->min_vruntime; 3790 3791 if (d < 0) 3792 d = -d; 3793 3794 if (d > 3*sysctl_sched_latency) 3795 schedstat_inc(cfs_rq->nr_spread_over); 3796 #endif 3797 } 3798 3799 static void 3800 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3801 { 3802 u64 vruntime = cfs_rq->min_vruntime; 3803 3804 /* 3805 * The 'current' period is already promised to the current tasks, 3806 * however the extra weight of the new task will slow them down a 3807 * little, place the new task so that it fits in the slot that 3808 * stays open at the end. 3809 */ 3810 if (initial && sched_feat(START_DEBIT)) 3811 vruntime += sched_vslice(cfs_rq, se); 3812 3813 /* sleeps up to a single latency don't count. */ 3814 if (!initial) { 3815 unsigned long thresh = sysctl_sched_latency; 3816 3817 /* 3818 * Halve their sleep time's effect, to allow 3819 * for a gentler effect of sleepers: 3820 */ 3821 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3822 thresh >>= 1; 3823 3824 vruntime -= thresh; 3825 } 3826 3827 /* ensure we never gain time by being placed backwards. */ 3828 se->vruntime = max_vruntime(se->vruntime, vruntime); 3829 } 3830 3831 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3832 3833 static inline void check_schedstat_required(void) 3834 { 3835 #ifdef CONFIG_SCHEDSTATS 3836 if (schedstat_enabled()) 3837 return; 3838 3839 /* Force schedstat enabled if a dependent tracepoint is active */ 3840 if (trace_sched_stat_wait_enabled() || 3841 trace_sched_stat_sleep_enabled() || 3842 trace_sched_stat_iowait_enabled() || 3843 trace_sched_stat_blocked_enabled() || 3844 trace_sched_stat_runtime_enabled()) { 3845 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3846 "stat_blocked and stat_runtime require the " 3847 "kernel parameter schedstats=enable or " 3848 "kernel.sched_schedstats=1\n"); 3849 } 3850 #endif 3851 } 3852 3853 3854 /* 3855 * MIGRATION 3856 * 3857 * dequeue 3858 * update_curr() 3859 * update_min_vruntime() 3860 * vruntime -= min_vruntime 3861 * 3862 * enqueue 3863 * update_curr() 3864 * update_min_vruntime() 3865 * vruntime += min_vruntime 3866 * 3867 * this way the vruntime transition between RQs is done when both 3868 * min_vruntime are up-to-date. 3869 * 3870 * WAKEUP (remote) 3871 * 3872 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3873 * vruntime -= min_vruntime 3874 * 3875 * enqueue 3876 * update_curr() 3877 * update_min_vruntime() 3878 * vruntime += min_vruntime 3879 * 3880 * this way we don't have the most up-to-date min_vruntime on the originating 3881 * CPU and an up-to-date min_vruntime on the destination CPU. 3882 */ 3883 3884 static void 3885 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3886 { 3887 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3888 bool curr = cfs_rq->curr == se; 3889 3890 /* 3891 * If we're the current task, we must renormalise before calling 3892 * update_curr(). 3893 */ 3894 if (renorm && curr) 3895 se->vruntime += cfs_rq->min_vruntime; 3896 3897 update_curr(cfs_rq); 3898 3899 /* 3900 * Otherwise, renormalise after, such that we're placed at the current 3901 * moment in time, instead of some random moment in the past. Being 3902 * placed in the past could significantly boost this task to the 3903 * fairness detriment of existing tasks. 3904 */ 3905 if (renorm && !curr) 3906 se->vruntime += cfs_rq->min_vruntime; 3907 3908 /* 3909 * When enqueuing a sched_entity, we must: 3910 * - Update loads to have both entity and cfs_rq synced with now. 3911 * - Add its load to cfs_rq->runnable_avg 3912 * - For group_entity, update its weight to reflect the new share of 3913 * its group cfs_rq 3914 * - Add its new weight to cfs_rq->load.weight 3915 */ 3916 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 3917 update_cfs_group(se); 3918 enqueue_runnable_load_avg(cfs_rq, se); 3919 account_entity_enqueue(cfs_rq, se); 3920 3921 if (flags & ENQUEUE_WAKEUP) 3922 place_entity(cfs_rq, se, 0); 3923 3924 check_schedstat_required(); 3925 update_stats_enqueue(cfs_rq, se, flags); 3926 check_spread(cfs_rq, se); 3927 if (!curr) 3928 __enqueue_entity(cfs_rq, se); 3929 se->on_rq = 1; 3930 3931 if (cfs_rq->nr_running == 1) { 3932 list_add_leaf_cfs_rq(cfs_rq); 3933 check_enqueue_throttle(cfs_rq); 3934 } 3935 } 3936 3937 static void __clear_buddies_last(struct sched_entity *se) 3938 { 3939 for_each_sched_entity(se) { 3940 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3941 if (cfs_rq->last != se) 3942 break; 3943 3944 cfs_rq->last = NULL; 3945 } 3946 } 3947 3948 static void __clear_buddies_next(struct sched_entity *se) 3949 { 3950 for_each_sched_entity(se) { 3951 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3952 if (cfs_rq->next != se) 3953 break; 3954 3955 cfs_rq->next = NULL; 3956 } 3957 } 3958 3959 static void __clear_buddies_skip(struct sched_entity *se) 3960 { 3961 for_each_sched_entity(se) { 3962 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3963 if (cfs_rq->skip != se) 3964 break; 3965 3966 cfs_rq->skip = NULL; 3967 } 3968 } 3969 3970 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3971 { 3972 if (cfs_rq->last == se) 3973 __clear_buddies_last(se); 3974 3975 if (cfs_rq->next == se) 3976 __clear_buddies_next(se); 3977 3978 if (cfs_rq->skip == se) 3979 __clear_buddies_skip(se); 3980 } 3981 3982 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3983 3984 static void 3985 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3986 { 3987 /* 3988 * Update run-time statistics of the 'current'. 3989 */ 3990 update_curr(cfs_rq); 3991 3992 /* 3993 * When dequeuing a sched_entity, we must: 3994 * - Update loads to have both entity and cfs_rq synced with now. 3995 * - Subtract its load from the cfs_rq->runnable_avg. 3996 * - Subtract its previous weight from cfs_rq->load.weight. 3997 * - For group entity, update its weight to reflect the new share 3998 * of its group cfs_rq. 3999 */ 4000 update_load_avg(cfs_rq, se, UPDATE_TG); 4001 dequeue_runnable_load_avg(cfs_rq, se); 4002 4003 update_stats_dequeue(cfs_rq, se, flags); 4004 4005 clear_buddies(cfs_rq, se); 4006 4007 if (se != cfs_rq->curr) 4008 __dequeue_entity(cfs_rq, se); 4009 se->on_rq = 0; 4010 account_entity_dequeue(cfs_rq, se); 4011 4012 /* 4013 * Normalize after update_curr(); which will also have moved 4014 * min_vruntime if @se is the one holding it back. But before doing 4015 * update_min_vruntime() again, which will discount @se's position and 4016 * can move min_vruntime forward still more. 4017 */ 4018 if (!(flags & DEQUEUE_SLEEP)) 4019 se->vruntime -= cfs_rq->min_vruntime; 4020 4021 /* return excess runtime on last dequeue */ 4022 return_cfs_rq_runtime(cfs_rq); 4023 4024 update_cfs_group(se); 4025 4026 /* 4027 * Now advance min_vruntime if @se was the entity holding it back, 4028 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4029 * put back on, and if we advance min_vruntime, we'll be placed back 4030 * further than we started -- ie. we'll be penalized. 4031 */ 4032 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4033 update_min_vruntime(cfs_rq); 4034 } 4035 4036 /* 4037 * Preempt the current task with a newly woken task if needed: 4038 */ 4039 static void 4040 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4041 { 4042 unsigned long ideal_runtime, delta_exec; 4043 struct sched_entity *se; 4044 s64 delta; 4045 4046 ideal_runtime = sched_slice(cfs_rq, curr); 4047 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4048 if (delta_exec > ideal_runtime) { 4049 resched_curr(rq_of(cfs_rq)); 4050 /* 4051 * The current task ran long enough, ensure it doesn't get 4052 * re-elected due to buddy favours. 4053 */ 4054 clear_buddies(cfs_rq, curr); 4055 return; 4056 } 4057 4058 /* 4059 * Ensure that a task that missed wakeup preemption by a 4060 * narrow margin doesn't have to wait for a full slice. 4061 * This also mitigates buddy induced latencies under load. 4062 */ 4063 if (delta_exec < sysctl_sched_min_granularity) 4064 return; 4065 4066 se = __pick_first_entity(cfs_rq); 4067 delta = curr->vruntime - se->vruntime; 4068 4069 if (delta < 0) 4070 return; 4071 4072 if (delta > ideal_runtime) 4073 resched_curr(rq_of(cfs_rq)); 4074 } 4075 4076 static void 4077 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4078 { 4079 /* 'current' is not kept within the tree. */ 4080 if (se->on_rq) { 4081 /* 4082 * Any task has to be enqueued before it get to execute on 4083 * a CPU. So account for the time it spent waiting on the 4084 * runqueue. 4085 */ 4086 update_stats_wait_end(cfs_rq, se); 4087 __dequeue_entity(cfs_rq, se); 4088 update_load_avg(cfs_rq, se, UPDATE_TG); 4089 } 4090 4091 update_stats_curr_start(cfs_rq, se); 4092 cfs_rq->curr = se; 4093 4094 /* 4095 * Track our maximum slice length, if the CPU's load is at 4096 * least twice that of our own weight (i.e. dont track it 4097 * when there are only lesser-weight tasks around): 4098 */ 4099 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 4100 schedstat_set(se->statistics.slice_max, 4101 max((u64)schedstat_val(se->statistics.slice_max), 4102 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4103 } 4104 4105 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4106 } 4107 4108 static int 4109 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4110 4111 /* 4112 * Pick the next process, keeping these things in mind, in this order: 4113 * 1) keep things fair between processes/task groups 4114 * 2) pick the "next" process, since someone really wants that to run 4115 * 3) pick the "last" process, for cache locality 4116 * 4) do not run the "skip" process, if something else is available 4117 */ 4118 static struct sched_entity * 4119 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4120 { 4121 struct sched_entity *left = __pick_first_entity(cfs_rq); 4122 struct sched_entity *se; 4123 4124 /* 4125 * If curr is set we have to see if its left of the leftmost entity 4126 * still in the tree, provided there was anything in the tree at all. 4127 */ 4128 if (!left || (curr && entity_before(curr, left))) 4129 left = curr; 4130 4131 se = left; /* ideally we run the leftmost entity */ 4132 4133 /* 4134 * Avoid running the skip buddy, if running something else can 4135 * be done without getting too unfair. 4136 */ 4137 if (cfs_rq->skip == se) { 4138 struct sched_entity *second; 4139 4140 if (se == curr) { 4141 second = __pick_first_entity(cfs_rq); 4142 } else { 4143 second = __pick_next_entity(se); 4144 if (!second || (curr && entity_before(curr, second))) 4145 second = curr; 4146 } 4147 4148 if (second && wakeup_preempt_entity(second, left) < 1) 4149 se = second; 4150 } 4151 4152 /* 4153 * Prefer last buddy, try to return the CPU to a preempted task. 4154 */ 4155 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4156 se = cfs_rq->last; 4157 4158 /* 4159 * Someone really wants this to run. If it's not unfair, run it. 4160 */ 4161 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4162 se = cfs_rq->next; 4163 4164 clear_buddies(cfs_rq, se); 4165 4166 return se; 4167 } 4168 4169 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4170 4171 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4172 { 4173 /* 4174 * If still on the runqueue then deactivate_task() 4175 * was not called and update_curr() has to be done: 4176 */ 4177 if (prev->on_rq) 4178 update_curr(cfs_rq); 4179 4180 /* throttle cfs_rqs exceeding runtime */ 4181 check_cfs_rq_runtime(cfs_rq); 4182 4183 check_spread(cfs_rq, prev); 4184 4185 if (prev->on_rq) { 4186 update_stats_wait_start(cfs_rq, prev); 4187 /* Put 'current' back into the tree. */ 4188 __enqueue_entity(cfs_rq, prev); 4189 /* in !on_rq case, update occurred at dequeue */ 4190 update_load_avg(cfs_rq, prev, 0); 4191 } 4192 cfs_rq->curr = NULL; 4193 } 4194 4195 static void 4196 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4197 { 4198 /* 4199 * Update run-time statistics of the 'current'. 4200 */ 4201 update_curr(cfs_rq); 4202 4203 /* 4204 * Ensure that runnable average is periodically updated. 4205 */ 4206 update_load_avg(cfs_rq, curr, UPDATE_TG); 4207 update_cfs_group(curr); 4208 4209 #ifdef CONFIG_SCHED_HRTICK 4210 /* 4211 * queued ticks are scheduled to match the slice, so don't bother 4212 * validating it and just reschedule. 4213 */ 4214 if (queued) { 4215 resched_curr(rq_of(cfs_rq)); 4216 return; 4217 } 4218 /* 4219 * don't let the period tick interfere with the hrtick preemption 4220 */ 4221 if (!sched_feat(DOUBLE_TICK) && 4222 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4223 return; 4224 #endif 4225 4226 if (cfs_rq->nr_running > 1) 4227 check_preempt_tick(cfs_rq, curr); 4228 } 4229 4230 4231 /************************************************** 4232 * CFS bandwidth control machinery 4233 */ 4234 4235 #ifdef CONFIG_CFS_BANDWIDTH 4236 4237 #ifdef CONFIG_JUMP_LABEL 4238 static struct static_key __cfs_bandwidth_used; 4239 4240 static inline bool cfs_bandwidth_used(void) 4241 { 4242 return static_key_false(&__cfs_bandwidth_used); 4243 } 4244 4245 void cfs_bandwidth_usage_inc(void) 4246 { 4247 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4248 } 4249 4250 void cfs_bandwidth_usage_dec(void) 4251 { 4252 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4253 } 4254 #else /* CONFIG_JUMP_LABEL */ 4255 static bool cfs_bandwidth_used(void) 4256 { 4257 return true; 4258 } 4259 4260 void cfs_bandwidth_usage_inc(void) {} 4261 void cfs_bandwidth_usage_dec(void) {} 4262 #endif /* CONFIG_JUMP_LABEL */ 4263 4264 /* 4265 * default period for cfs group bandwidth. 4266 * default: 0.1s, units: nanoseconds 4267 */ 4268 static inline u64 default_cfs_period(void) 4269 { 4270 return 100000000ULL; 4271 } 4272 4273 static inline u64 sched_cfs_bandwidth_slice(void) 4274 { 4275 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4276 } 4277 4278 /* 4279 * Replenish runtime according to assigned quota and update expiration time. 4280 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 4281 * additional synchronization around rq->lock. 4282 * 4283 * requires cfs_b->lock 4284 */ 4285 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4286 { 4287 u64 now; 4288 4289 if (cfs_b->quota == RUNTIME_INF) 4290 return; 4291 4292 now = sched_clock_cpu(smp_processor_id()); 4293 cfs_b->runtime = cfs_b->quota; 4294 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 4295 cfs_b->expires_seq++; 4296 } 4297 4298 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4299 { 4300 return &tg->cfs_bandwidth; 4301 } 4302 4303 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 4304 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4305 { 4306 if (unlikely(cfs_rq->throttle_count)) 4307 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 4308 4309 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 4310 } 4311 4312 /* returns 0 on failure to allocate runtime */ 4313 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4314 { 4315 struct task_group *tg = cfs_rq->tg; 4316 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4317 u64 amount = 0, min_amount, expires; 4318 int expires_seq; 4319 4320 /* note: this is a positive sum as runtime_remaining <= 0 */ 4321 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4322 4323 raw_spin_lock(&cfs_b->lock); 4324 if (cfs_b->quota == RUNTIME_INF) 4325 amount = min_amount; 4326 else { 4327 start_cfs_bandwidth(cfs_b); 4328 4329 if (cfs_b->runtime > 0) { 4330 amount = min(cfs_b->runtime, min_amount); 4331 cfs_b->runtime -= amount; 4332 cfs_b->idle = 0; 4333 } 4334 } 4335 expires_seq = cfs_b->expires_seq; 4336 expires = cfs_b->runtime_expires; 4337 raw_spin_unlock(&cfs_b->lock); 4338 4339 cfs_rq->runtime_remaining += amount; 4340 /* 4341 * we may have advanced our local expiration to account for allowed 4342 * spread between our sched_clock and the one on which runtime was 4343 * issued. 4344 */ 4345 if (cfs_rq->expires_seq != expires_seq) { 4346 cfs_rq->expires_seq = expires_seq; 4347 cfs_rq->runtime_expires = expires; 4348 } 4349 4350 return cfs_rq->runtime_remaining > 0; 4351 } 4352 4353 /* 4354 * Note: This depends on the synchronization provided by sched_clock and the 4355 * fact that rq->clock snapshots this value. 4356 */ 4357 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4358 { 4359 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4360 4361 /* if the deadline is ahead of our clock, nothing to do */ 4362 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 4363 return; 4364 4365 if (cfs_rq->runtime_remaining < 0) 4366 return; 4367 4368 /* 4369 * If the local deadline has passed we have to consider the 4370 * possibility that our sched_clock is 'fast' and the global deadline 4371 * has not truly expired. 4372 * 4373 * Fortunately we can check determine whether this the case by checking 4374 * whether the global deadline(cfs_b->expires_seq) has advanced. 4375 */ 4376 if (cfs_rq->expires_seq == cfs_b->expires_seq) { 4377 /* extend local deadline, drift is bounded above by 2 ticks */ 4378 cfs_rq->runtime_expires += TICK_NSEC; 4379 } else { 4380 /* global deadline is ahead, expiration has passed */ 4381 cfs_rq->runtime_remaining = 0; 4382 } 4383 } 4384 4385 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4386 { 4387 /* dock delta_exec before expiring quota (as it could span periods) */ 4388 cfs_rq->runtime_remaining -= delta_exec; 4389 expire_cfs_rq_runtime(cfs_rq); 4390 4391 if (likely(cfs_rq->runtime_remaining > 0)) 4392 return; 4393 4394 /* 4395 * if we're unable to extend our runtime we resched so that the active 4396 * hierarchy can be throttled 4397 */ 4398 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4399 resched_curr(rq_of(cfs_rq)); 4400 } 4401 4402 static __always_inline 4403 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4404 { 4405 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4406 return; 4407 4408 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4409 } 4410 4411 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4412 { 4413 return cfs_bandwidth_used() && cfs_rq->throttled; 4414 } 4415 4416 /* check whether cfs_rq, or any parent, is throttled */ 4417 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4418 { 4419 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4420 } 4421 4422 /* 4423 * Ensure that neither of the group entities corresponding to src_cpu or 4424 * dest_cpu are members of a throttled hierarchy when performing group 4425 * load-balance operations. 4426 */ 4427 static inline int throttled_lb_pair(struct task_group *tg, 4428 int src_cpu, int dest_cpu) 4429 { 4430 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4431 4432 src_cfs_rq = tg->cfs_rq[src_cpu]; 4433 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4434 4435 return throttled_hierarchy(src_cfs_rq) || 4436 throttled_hierarchy(dest_cfs_rq); 4437 } 4438 4439 static int tg_unthrottle_up(struct task_group *tg, void *data) 4440 { 4441 struct rq *rq = data; 4442 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4443 4444 cfs_rq->throttle_count--; 4445 if (!cfs_rq->throttle_count) { 4446 /* adjust cfs_rq_clock_task() */ 4447 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4448 cfs_rq->throttled_clock_task; 4449 4450 /* Add cfs_rq with already running entity in the list */ 4451 if (cfs_rq->nr_running >= 1) 4452 list_add_leaf_cfs_rq(cfs_rq); 4453 } 4454 4455 return 0; 4456 } 4457 4458 static int tg_throttle_down(struct task_group *tg, void *data) 4459 { 4460 struct rq *rq = data; 4461 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4462 4463 /* group is entering throttled state, stop time */ 4464 if (!cfs_rq->throttle_count) { 4465 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4466 list_del_leaf_cfs_rq(cfs_rq); 4467 } 4468 cfs_rq->throttle_count++; 4469 4470 return 0; 4471 } 4472 4473 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4474 { 4475 struct rq *rq = rq_of(cfs_rq); 4476 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4477 struct sched_entity *se; 4478 long task_delta, dequeue = 1; 4479 bool empty; 4480 4481 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4482 4483 /* freeze hierarchy runnable averages while throttled */ 4484 rcu_read_lock(); 4485 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4486 rcu_read_unlock(); 4487 4488 task_delta = cfs_rq->h_nr_running; 4489 for_each_sched_entity(se) { 4490 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4491 /* throttled entity or throttle-on-deactivate */ 4492 if (!se->on_rq) 4493 break; 4494 4495 if (dequeue) 4496 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4497 qcfs_rq->h_nr_running -= task_delta; 4498 4499 if (qcfs_rq->load.weight) 4500 dequeue = 0; 4501 } 4502 4503 if (!se) 4504 sub_nr_running(rq, task_delta); 4505 4506 cfs_rq->throttled = 1; 4507 cfs_rq->throttled_clock = rq_clock(rq); 4508 raw_spin_lock(&cfs_b->lock); 4509 empty = list_empty(&cfs_b->throttled_cfs_rq); 4510 4511 /* 4512 * Add to the _head_ of the list, so that an already-started 4513 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is 4514 * not running add to the tail so that later runqueues don't get starved. 4515 */ 4516 if (cfs_b->distribute_running) 4517 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4518 else 4519 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4520 4521 /* 4522 * If we're the first throttled task, make sure the bandwidth 4523 * timer is running. 4524 */ 4525 if (empty) 4526 start_cfs_bandwidth(cfs_b); 4527 4528 raw_spin_unlock(&cfs_b->lock); 4529 } 4530 4531 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4532 { 4533 struct rq *rq = rq_of(cfs_rq); 4534 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4535 struct sched_entity *se; 4536 int enqueue = 1; 4537 long task_delta; 4538 4539 se = cfs_rq->tg->se[cpu_of(rq)]; 4540 4541 cfs_rq->throttled = 0; 4542 4543 update_rq_clock(rq); 4544 4545 raw_spin_lock(&cfs_b->lock); 4546 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4547 list_del_rcu(&cfs_rq->throttled_list); 4548 raw_spin_unlock(&cfs_b->lock); 4549 4550 /* update hierarchical throttle state */ 4551 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4552 4553 if (!cfs_rq->load.weight) 4554 return; 4555 4556 task_delta = cfs_rq->h_nr_running; 4557 for_each_sched_entity(se) { 4558 if (se->on_rq) 4559 enqueue = 0; 4560 4561 cfs_rq = cfs_rq_of(se); 4562 if (enqueue) 4563 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4564 cfs_rq->h_nr_running += task_delta; 4565 4566 if (cfs_rq_throttled(cfs_rq)) 4567 break; 4568 } 4569 4570 assert_list_leaf_cfs_rq(rq); 4571 4572 if (!se) 4573 add_nr_running(rq, task_delta); 4574 4575 /* Determine whether we need to wake up potentially idle CPU: */ 4576 if (rq->curr == rq->idle && rq->cfs.nr_running) 4577 resched_curr(rq); 4578 } 4579 4580 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 4581 u64 remaining, u64 expires) 4582 { 4583 struct cfs_rq *cfs_rq; 4584 u64 runtime; 4585 u64 starting_runtime = remaining; 4586 4587 rcu_read_lock(); 4588 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4589 throttled_list) { 4590 struct rq *rq = rq_of(cfs_rq); 4591 struct rq_flags rf; 4592 4593 rq_lock_irqsave(rq, &rf); 4594 if (!cfs_rq_throttled(cfs_rq)) 4595 goto next; 4596 4597 runtime = -cfs_rq->runtime_remaining + 1; 4598 if (runtime > remaining) 4599 runtime = remaining; 4600 remaining -= runtime; 4601 4602 cfs_rq->runtime_remaining += runtime; 4603 cfs_rq->runtime_expires = expires; 4604 4605 /* we check whether we're throttled above */ 4606 if (cfs_rq->runtime_remaining > 0) 4607 unthrottle_cfs_rq(cfs_rq); 4608 4609 next: 4610 rq_unlock_irqrestore(rq, &rf); 4611 4612 if (!remaining) 4613 break; 4614 } 4615 rcu_read_unlock(); 4616 4617 return starting_runtime - remaining; 4618 } 4619 4620 /* 4621 * Responsible for refilling a task_group's bandwidth and unthrottling its 4622 * cfs_rqs as appropriate. If there has been no activity within the last 4623 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4624 * used to track this state. 4625 */ 4626 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 4627 { 4628 u64 runtime, runtime_expires; 4629 int throttled; 4630 4631 /* no need to continue the timer with no bandwidth constraint */ 4632 if (cfs_b->quota == RUNTIME_INF) 4633 goto out_deactivate; 4634 4635 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4636 cfs_b->nr_periods += overrun; 4637 4638 /* 4639 * idle depends on !throttled (for the case of a large deficit), and if 4640 * we're going inactive then everything else can be deferred 4641 */ 4642 if (cfs_b->idle && !throttled) 4643 goto out_deactivate; 4644 4645 __refill_cfs_bandwidth_runtime(cfs_b); 4646 4647 if (!throttled) { 4648 /* mark as potentially idle for the upcoming period */ 4649 cfs_b->idle = 1; 4650 return 0; 4651 } 4652 4653 /* account preceding periods in which throttling occurred */ 4654 cfs_b->nr_throttled += overrun; 4655 4656 runtime_expires = cfs_b->runtime_expires; 4657 4658 /* 4659 * This check is repeated as we are holding onto the new bandwidth while 4660 * we unthrottle. This can potentially race with an unthrottled group 4661 * trying to acquire new bandwidth from the global pool. This can result 4662 * in us over-using our runtime if it is all used during this loop, but 4663 * only by limited amounts in that extreme case. 4664 */ 4665 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) { 4666 runtime = cfs_b->runtime; 4667 cfs_b->distribute_running = 1; 4668 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4669 /* we can't nest cfs_b->lock while distributing bandwidth */ 4670 runtime = distribute_cfs_runtime(cfs_b, runtime, 4671 runtime_expires); 4672 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4673 4674 cfs_b->distribute_running = 0; 4675 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4676 4677 lsub_positive(&cfs_b->runtime, runtime); 4678 } 4679 4680 /* 4681 * While we are ensured activity in the period following an 4682 * unthrottle, this also covers the case in which the new bandwidth is 4683 * insufficient to cover the existing bandwidth deficit. (Forcing the 4684 * timer to remain active while there are any throttled entities.) 4685 */ 4686 cfs_b->idle = 0; 4687 4688 return 0; 4689 4690 out_deactivate: 4691 return 1; 4692 } 4693 4694 /* a cfs_rq won't donate quota below this amount */ 4695 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4696 /* minimum remaining period time to redistribute slack quota */ 4697 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4698 /* how long we wait to gather additional slack before distributing */ 4699 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4700 4701 /* 4702 * Are we near the end of the current quota period? 4703 * 4704 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4705 * hrtimer base being cleared by hrtimer_start. In the case of 4706 * migrate_hrtimers, base is never cleared, so we are fine. 4707 */ 4708 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4709 { 4710 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4711 u64 remaining; 4712 4713 /* if the call-back is running a quota refresh is already occurring */ 4714 if (hrtimer_callback_running(refresh_timer)) 4715 return 1; 4716 4717 /* is a quota refresh about to occur? */ 4718 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4719 if (remaining < min_expire) 4720 return 1; 4721 4722 return 0; 4723 } 4724 4725 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4726 { 4727 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4728 4729 /* if there's a quota refresh soon don't bother with slack */ 4730 if (runtime_refresh_within(cfs_b, min_left)) 4731 return; 4732 4733 hrtimer_start(&cfs_b->slack_timer, 4734 ns_to_ktime(cfs_bandwidth_slack_period), 4735 HRTIMER_MODE_REL); 4736 } 4737 4738 /* we know any runtime found here is valid as update_curr() precedes return */ 4739 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4740 { 4741 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4742 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4743 4744 if (slack_runtime <= 0) 4745 return; 4746 4747 raw_spin_lock(&cfs_b->lock); 4748 if (cfs_b->quota != RUNTIME_INF && 4749 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4750 cfs_b->runtime += slack_runtime; 4751 4752 /* we are under rq->lock, defer unthrottling using a timer */ 4753 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4754 !list_empty(&cfs_b->throttled_cfs_rq)) 4755 start_cfs_slack_bandwidth(cfs_b); 4756 } 4757 raw_spin_unlock(&cfs_b->lock); 4758 4759 /* even if it's not valid for return we don't want to try again */ 4760 cfs_rq->runtime_remaining -= slack_runtime; 4761 } 4762 4763 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4764 { 4765 if (!cfs_bandwidth_used()) 4766 return; 4767 4768 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4769 return; 4770 4771 __return_cfs_rq_runtime(cfs_rq); 4772 } 4773 4774 /* 4775 * This is done with a timer (instead of inline with bandwidth return) since 4776 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4777 */ 4778 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4779 { 4780 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4781 unsigned long flags; 4782 u64 expires; 4783 4784 /* confirm we're still not at a refresh boundary */ 4785 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4786 if (cfs_b->distribute_running) { 4787 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4788 return; 4789 } 4790 4791 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4792 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4793 return; 4794 } 4795 4796 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4797 runtime = cfs_b->runtime; 4798 4799 expires = cfs_b->runtime_expires; 4800 if (runtime) 4801 cfs_b->distribute_running = 1; 4802 4803 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4804 4805 if (!runtime) 4806 return; 4807 4808 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4809 4810 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4811 if (expires == cfs_b->runtime_expires) 4812 lsub_positive(&cfs_b->runtime, runtime); 4813 cfs_b->distribute_running = 0; 4814 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4815 } 4816 4817 /* 4818 * When a group wakes up we want to make sure that its quota is not already 4819 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4820 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4821 */ 4822 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4823 { 4824 if (!cfs_bandwidth_used()) 4825 return; 4826 4827 /* an active group must be handled by the update_curr()->put() path */ 4828 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4829 return; 4830 4831 /* ensure the group is not already throttled */ 4832 if (cfs_rq_throttled(cfs_rq)) 4833 return; 4834 4835 /* update runtime allocation */ 4836 account_cfs_rq_runtime(cfs_rq, 0); 4837 if (cfs_rq->runtime_remaining <= 0) 4838 throttle_cfs_rq(cfs_rq); 4839 } 4840 4841 static void sync_throttle(struct task_group *tg, int cpu) 4842 { 4843 struct cfs_rq *pcfs_rq, *cfs_rq; 4844 4845 if (!cfs_bandwidth_used()) 4846 return; 4847 4848 if (!tg->parent) 4849 return; 4850 4851 cfs_rq = tg->cfs_rq[cpu]; 4852 pcfs_rq = tg->parent->cfs_rq[cpu]; 4853 4854 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4855 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4856 } 4857 4858 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4859 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4860 { 4861 if (!cfs_bandwidth_used()) 4862 return false; 4863 4864 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4865 return false; 4866 4867 /* 4868 * it's possible for a throttled entity to be forced into a running 4869 * state (e.g. set_curr_task), in this case we're finished. 4870 */ 4871 if (cfs_rq_throttled(cfs_rq)) 4872 return true; 4873 4874 throttle_cfs_rq(cfs_rq); 4875 return true; 4876 } 4877 4878 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4879 { 4880 struct cfs_bandwidth *cfs_b = 4881 container_of(timer, struct cfs_bandwidth, slack_timer); 4882 4883 do_sched_cfs_slack_timer(cfs_b); 4884 4885 return HRTIMER_NORESTART; 4886 } 4887 4888 extern const u64 max_cfs_quota_period; 4889 4890 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4891 { 4892 struct cfs_bandwidth *cfs_b = 4893 container_of(timer, struct cfs_bandwidth, period_timer); 4894 unsigned long flags; 4895 int overrun; 4896 int idle = 0; 4897 int count = 0; 4898 4899 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4900 for (;;) { 4901 overrun = hrtimer_forward_now(timer, cfs_b->period); 4902 if (!overrun) 4903 break; 4904 4905 if (++count > 3) { 4906 u64 new, old = ktime_to_ns(cfs_b->period); 4907 4908 new = (old * 147) / 128; /* ~115% */ 4909 new = min(new, max_cfs_quota_period); 4910 4911 cfs_b->period = ns_to_ktime(new); 4912 4913 /* since max is 1s, this is limited to 1e9^2, which fits in u64 */ 4914 cfs_b->quota *= new; 4915 cfs_b->quota = div64_u64(cfs_b->quota, old); 4916 4917 pr_warn_ratelimited( 4918 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us %lld, cfs_quota_us = %lld)\n", 4919 smp_processor_id(), 4920 div_u64(new, NSEC_PER_USEC), 4921 div_u64(cfs_b->quota, NSEC_PER_USEC)); 4922 4923 /* reset count so we don't come right back in here */ 4924 count = 0; 4925 } 4926 4927 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 4928 } 4929 if (idle) 4930 cfs_b->period_active = 0; 4931 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4932 4933 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4934 } 4935 4936 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4937 { 4938 raw_spin_lock_init(&cfs_b->lock); 4939 cfs_b->runtime = 0; 4940 cfs_b->quota = RUNTIME_INF; 4941 cfs_b->period = ns_to_ktime(default_cfs_period()); 4942 4943 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4944 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4945 cfs_b->period_timer.function = sched_cfs_period_timer; 4946 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4947 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4948 cfs_b->distribute_running = 0; 4949 } 4950 4951 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4952 { 4953 cfs_rq->runtime_enabled = 0; 4954 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4955 } 4956 4957 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4958 { 4959 u64 overrun; 4960 4961 lockdep_assert_held(&cfs_b->lock); 4962 4963 if (cfs_b->period_active) 4964 return; 4965 4966 cfs_b->period_active = 1; 4967 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 4968 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period); 4969 cfs_b->expires_seq++; 4970 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 4971 } 4972 4973 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4974 { 4975 /* init_cfs_bandwidth() was not called */ 4976 if (!cfs_b->throttled_cfs_rq.next) 4977 return; 4978 4979 hrtimer_cancel(&cfs_b->period_timer); 4980 hrtimer_cancel(&cfs_b->slack_timer); 4981 } 4982 4983 /* 4984 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 4985 * 4986 * The race is harmless, since modifying bandwidth settings of unhooked group 4987 * bits doesn't do much. 4988 */ 4989 4990 /* cpu online calback */ 4991 static void __maybe_unused update_runtime_enabled(struct rq *rq) 4992 { 4993 struct task_group *tg; 4994 4995 lockdep_assert_held(&rq->lock); 4996 4997 rcu_read_lock(); 4998 list_for_each_entry_rcu(tg, &task_groups, list) { 4999 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5000 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5001 5002 raw_spin_lock(&cfs_b->lock); 5003 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5004 raw_spin_unlock(&cfs_b->lock); 5005 } 5006 rcu_read_unlock(); 5007 } 5008 5009 /* cpu offline callback */ 5010 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5011 { 5012 struct task_group *tg; 5013 5014 lockdep_assert_held(&rq->lock); 5015 5016 rcu_read_lock(); 5017 list_for_each_entry_rcu(tg, &task_groups, list) { 5018 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5019 5020 if (!cfs_rq->runtime_enabled) 5021 continue; 5022 5023 /* 5024 * clock_task is not advancing so we just need to make sure 5025 * there's some valid quota amount 5026 */ 5027 cfs_rq->runtime_remaining = 1; 5028 /* 5029 * Offline rq is schedulable till CPU is completely disabled 5030 * in take_cpu_down(), so we prevent new cfs throttling here. 5031 */ 5032 cfs_rq->runtime_enabled = 0; 5033 5034 if (cfs_rq_throttled(cfs_rq)) 5035 unthrottle_cfs_rq(cfs_rq); 5036 } 5037 rcu_read_unlock(); 5038 } 5039 5040 #else /* CONFIG_CFS_BANDWIDTH */ 5041 5042 static inline bool cfs_bandwidth_used(void) 5043 { 5044 return false; 5045 } 5046 5047 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 5048 { 5049 return rq_clock_task(rq_of(cfs_rq)); 5050 } 5051 5052 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5053 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5054 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5055 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5056 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5057 5058 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5059 { 5060 return 0; 5061 } 5062 5063 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5064 { 5065 return 0; 5066 } 5067 5068 static inline int throttled_lb_pair(struct task_group *tg, 5069 int src_cpu, int dest_cpu) 5070 { 5071 return 0; 5072 } 5073 5074 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5075 5076 #ifdef CONFIG_FAIR_GROUP_SCHED 5077 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5078 #endif 5079 5080 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5081 { 5082 return NULL; 5083 } 5084 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5085 static inline void update_runtime_enabled(struct rq *rq) {} 5086 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5087 5088 #endif /* CONFIG_CFS_BANDWIDTH */ 5089 5090 /************************************************** 5091 * CFS operations on tasks: 5092 */ 5093 5094 #ifdef CONFIG_SCHED_HRTICK 5095 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5096 { 5097 struct sched_entity *se = &p->se; 5098 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5099 5100 SCHED_WARN_ON(task_rq(p) != rq); 5101 5102 if (rq->cfs.h_nr_running > 1) { 5103 u64 slice = sched_slice(cfs_rq, se); 5104 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5105 s64 delta = slice - ran; 5106 5107 if (delta < 0) { 5108 if (rq->curr == p) 5109 resched_curr(rq); 5110 return; 5111 } 5112 hrtick_start(rq, delta); 5113 } 5114 } 5115 5116 /* 5117 * called from enqueue/dequeue and updates the hrtick when the 5118 * current task is from our class and nr_running is low enough 5119 * to matter. 5120 */ 5121 static void hrtick_update(struct rq *rq) 5122 { 5123 struct task_struct *curr = rq->curr; 5124 5125 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5126 return; 5127 5128 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5129 hrtick_start_fair(rq, curr); 5130 } 5131 #else /* !CONFIG_SCHED_HRTICK */ 5132 static inline void 5133 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5134 { 5135 } 5136 5137 static inline void hrtick_update(struct rq *rq) 5138 { 5139 } 5140 #endif 5141 5142 #ifdef CONFIG_SMP 5143 static inline unsigned long cpu_util(int cpu); 5144 static unsigned long capacity_of(int cpu); 5145 5146 static inline bool cpu_overutilized(int cpu) 5147 { 5148 return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin); 5149 } 5150 5151 static inline void update_overutilized_status(struct rq *rq) 5152 { 5153 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) 5154 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5155 } 5156 #else 5157 static inline void update_overutilized_status(struct rq *rq) { } 5158 #endif 5159 5160 /* 5161 * The enqueue_task method is called before nr_running is 5162 * increased. Here we update the fair scheduling stats and 5163 * then put the task into the rbtree: 5164 */ 5165 static void 5166 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5167 { 5168 struct cfs_rq *cfs_rq; 5169 struct sched_entity *se = &p->se; 5170 5171 /* 5172 * The code below (indirectly) updates schedutil which looks at 5173 * the cfs_rq utilization to select a frequency. 5174 * Let's add the task's estimated utilization to the cfs_rq's 5175 * estimated utilization, before we update schedutil. 5176 */ 5177 util_est_enqueue(&rq->cfs, p); 5178 5179 /* 5180 * If in_iowait is set, the code below may not trigger any cpufreq 5181 * utilization updates, so do it here explicitly with the IOWAIT flag 5182 * passed. 5183 */ 5184 if (p->in_iowait) 5185 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5186 5187 for_each_sched_entity(se) { 5188 if (se->on_rq) 5189 break; 5190 cfs_rq = cfs_rq_of(se); 5191 enqueue_entity(cfs_rq, se, flags); 5192 5193 /* 5194 * end evaluation on encountering a throttled cfs_rq 5195 * 5196 * note: in the case of encountering a throttled cfs_rq we will 5197 * post the final h_nr_running increment below. 5198 */ 5199 if (cfs_rq_throttled(cfs_rq)) 5200 break; 5201 cfs_rq->h_nr_running++; 5202 5203 flags = ENQUEUE_WAKEUP; 5204 } 5205 5206 for_each_sched_entity(se) { 5207 cfs_rq = cfs_rq_of(se); 5208 cfs_rq->h_nr_running++; 5209 5210 if (cfs_rq_throttled(cfs_rq)) 5211 break; 5212 5213 update_load_avg(cfs_rq, se, UPDATE_TG); 5214 update_cfs_group(se); 5215 } 5216 5217 if (!se) { 5218 add_nr_running(rq, 1); 5219 /* 5220 * Since new tasks are assigned an initial util_avg equal to 5221 * half of the spare capacity of their CPU, tiny tasks have the 5222 * ability to cross the overutilized threshold, which will 5223 * result in the load balancer ruining all the task placement 5224 * done by EAS. As a way to mitigate that effect, do not account 5225 * for the first enqueue operation of new tasks during the 5226 * overutilized flag detection. 5227 * 5228 * A better way of solving this problem would be to wait for 5229 * the PELT signals of tasks to converge before taking them 5230 * into account, but that is not straightforward to implement, 5231 * and the following generally works well enough in practice. 5232 */ 5233 if (flags & ENQUEUE_WAKEUP) 5234 update_overutilized_status(rq); 5235 5236 } 5237 5238 if (cfs_bandwidth_used()) { 5239 /* 5240 * When bandwidth control is enabled; the cfs_rq_throttled() 5241 * breaks in the above iteration can result in incomplete 5242 * leaf list maintenance, resulting in triggering the assertion 5243 * below. 5244 */ 5245 for_each_sched_entity(se) { 5246 cfs_rq = cfs_rq_of(se); 5247 5248 if (list_add_leaf_cfs_rq(cfs_rq)) 5249 break; 5250 } 5251 } 5252 5253 assert_list_leaf_cfs_rq(rq); 5254 5255 hrtick_update(rq); 5256 } 5257 5258 static void set_next_buddy(struct sched_entity *se); 5259 5260 /* 5261 * The dequeue_task method is called before nr_running is 5262 * decreased. We remove the task from the rbtree and 5263 * update the fair scheduling stats: 5264 */ 5265 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5266 { 5267 struct cfs_rq *cfs_rq; 5268 struct sched_entity *se = &p->se; 5269 int task_sleep = flags & DEQUEUE_SLEEP; 5270 5271 for_each_sched_entity(se) { 5272 cfs_rq = cfs_rq_of(se); 5273 dequeue_entity(cfs_rq, se, flags); 5274 5275 /* 5276 * end evaluation on encountering a throttled cfs_rq 5277 * 5278 * note: in the case of encountering a throttled cfs_rq we will 5279 * post the final h_nr_running decrement below. 5280 */ 5281 if (cfs_rq_throttled(cfs_rq)) 5282 break; 5283 cfs_rq->h_nr_running--; 5284 5285 /* Don't dequeue parent if it has other entities besides us */ 5286 if (cfs_rq->load.weight) { 5287 /* Avoid re-evaluating load for this entity: */ 5288 se = parent_entity(se); 5289 /* 5290 * Bias pick_next to pick a task from this cfs_rq, as 5291 * p is sleeping when it is within its sched_slice. 5292 */ 5293 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5294 set_next_buddy(se); 5295 break; 5296 } 5297 flags |= DEQUEUE_SLEEP; 5298 } 5299 5300 for_each_sched_entity(se) { 5301 cfs_rq = cfs_rq_of(se); 5302 cfs_rq->h_nr_running--; 5303 5304 if (cfs_rq_throttled(cfs_rq)) 5305 break; 5306 5307 update_load_avg(cfs_rq, se, UPDATE_TG); 5308 update_cfs_group(se); 5309 } 5310 5311 if (!se) 5312 sub_nr_running(rq, 1); 5313 5314 util_est_dequeue(&rq->cfs, p, task_sleep); 5315 hrtick_update(rq); 5316 } 5317 5318 #ifdef CONFIG_SMP 5319 5320 /* Working cpumask for: load_balance, load_balance_newidle. */ 5321 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5322 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5323 5324 #ifdef CONFIG_NO_HZ_COMMON 5325 /* 5326 * per rq 'load' arrray crap; XXX kill this. 5327 */ 5328 5329 /* 5330 * The exact cpuload calculated at every tick would be: 5331 * 5332 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 5333 * 5334 * If a CPU misses updates for n ticks (as it was idle) and update gets 5335 * called on the n+1-th tick when CPU may be busy, then we have: 5336 * 5337 * load_n = (1 - 1/2^i)^n * load_0 5338 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 5339 * 5340 * decay_load_missed() below does efficient calculation of 5341 * 5342 * load' = (1 - 1/2^i)^n * load 5343 * 5344 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 5345 * This allows us to precompute the above in said factors, thereby allowing the 5346 * reduction of an arbitrary n in O(log_2 n) steps. (See also 5347 * fixed_power_int()) 5348 * 5349 * The calculation is approximated on a 128 point scale. 5350 */ 5351 #define DEGRADE_SHIFT 7 5352 5353 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 5354 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 5355 { 0, 0, 0, 0, 0, 0, 0, 0 }, 5356 { 64, 32, 8, 0, 0, 0, 0, 0 }, 5357 { 96, 72, 40, 12, 1, 0, 0, 0 }, 5358 { 112, 98, 75, 43, 15, 1, 0, 0 }, 5359 { 120, 112, 98, 76, 45, 16, 2, 0 } 5360 }; 5361 5362 /* 5363 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 5364 * would be when CPU is idle and so we just decay the old load without 5365 * adding any new load. 5366 */ 5367 static unsigned long 5368 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 5369 { 5370 int j = 0; 5371 5372 if (!missed_updates) 5373 return load; 5374 5375 if (missed_updates >= degrade_zero_ticks[idx]) 5376 return 0; 5377 5378 if (idx == 1) 5379 return load >> missed_updates; 5380 5381 while (missed_updates) { 5382 if (missed_updates % 2) 5383 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 5384 5385 missed_updates >>= 1; 5386 j++; 5387 } 5388 return load; 5389 } 5390 5391 static struct { 5392 cpumask_var_t idle_cpus_mask; 5393 atomic_t nr_cpus; 5394 int has_blocked; /* Idle CPUS has blocked load */ 5395 unsigned long next_balance; /* in jiffy units */ 5396 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5397 } nohz ____cacheline_aligned; 5398 5399 #endif /* CONFIG_NO_HZ_COMMON */ 5400 5401 /** 5402 * __cpu_load_update - update the rq->cpu_load[] statistics 5403 * @this_rq: The rq to update statistics for 5404 * @this_load: The current load 5405 * @pending_updates: The number of missed updates 5406 * 5407 * Update rq->cpu_load[] statistics. This function is usually called every 5408 * scheduler tick (TICK_NSEC). 5409 * 5410 * This function computes a decaying average: 5411 * 5412 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 5413 * 5414 * Because of NOHZ it might not get called on every tick which gives need for 5415 * the @pending_updates argument. 5416 * 5417 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 5418 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 5419 * = A * (A * load[i]_n-2 + B) + B 5420 * = A * (A * (A * load[i]_n-3 + B) + B) + B 5421 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 5422 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 5423 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 5424 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 5425 * 5426 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 5427 * any change in load would have resulted in the tick being turned back on. 5428 * 5429 * For regular NOHZ, this reduces to: 5430 * 5431 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 5432 * 5433 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 5434 * term. 5435 */ 5436 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 5437 unsigned long pending_updates) 5438 { 5439 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 5440 int i, scale; 5441 5442 this_rq->nr_load_updates++; 5443 5444 /* Update our load: */ 5445 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 5446 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 5447 unsigned long old_load, new_load; 5448 5449 /* scale is effectively 1 << i now, and >> i divides by scale */ 5450 5451 old_load = this_rq->cpu_load[i]; 5452 #ifdef CONFIG_NO_HZ_COMMON 5453 old_load = decay_load_missed(old_load, pending_updates - 1, i); 5454 if (tickless_load) { 5455 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 5456 /* 5457 * old_load can never be a negative value because a 5458 * decayed tickless_load cannot be greater than the 5459 * original tickless_load. 5460 */ 5461 old_load += tickless_load; 5462 } 5463 #endif 5464 new_load = this_load; 5465 /* 5466 * Round up the averaging division if load is increasing. This 5467 * prevents us from getting stuck on 9 if the load is 10, for 5468 * example. 5469 */ 5470 if (new_load > old_load) 5471 new_load += scale - 1; 5472 5473 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 5474 } 5475 } 5476 5477 /* Used instead of source_load when we know the type == 0 */ 5478 static unsigned long weighted_cpuload(struct rq *rq) 5479 { 5480 return cfs_rq_runnable_load_avg(&rq->cfs); 5481 } 5482 5483 #ifdef CONFIG_NO_HZ_COMMON 5484 /* 5485 * There is no sane way to deal with nohz on smp when using jiffies because the 5486 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading 5487 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 5488 * 5489 * Therefore we need to avoid the delta approach from the regular tick when 5490 * possible since that would seriously skew the load calculation. This is why we 5491 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 5492 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 5493 * loop exit, nohz_idle_balance, nohz full exit...) 5494 * 5495 * This means we might still be one tick off for nohz periods. 5496 */ 5497 5498 static void cpu_load_update_nohz(struct rq *this_rq, 5499 unsigned long curr_jiffies, 5500 unsigned long load) 5501 { 5502 unsigned long pending_updates; 5503 5504 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 5505 if (pending_updates) { 5506 this_rq->last_load_update_tick = curr_jiffies; 5507 /* 5508 * In the regular NOHZ case, we were idle, this means load 0. 5509 * In the NOHZ_FULL case, we were non-idle, we should consider 5510 * its weighted load. 5511 */ 5512 cpu_load_update(this_rq, load, pending_updates); 5513 } 5514 } 5515 5516 /* 5517 * Called from nohz_idle_balance() to update the load ratings before doing the 5518 * idle balance. 5519 */ 5520 static void cpu_load_update_idle(struct rq *this_rq) 5521 { 5522 /* 5523 * bail if there's load or we're actually up-to-date. 5524 */ 5525 if (weighted_cpuload(this_rq)) 5526 return; 5527 5528 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 5529 } 5530 5531 /* 5532 * Record CPU load on nohz entry so we know the tickless load to account 5533 * on nohz exit. cpu_load[0] happens then to be updated more frequently 5534 * than other cpu_load[idx] but it should be fine as cpu_load readers 5535 * shouldn't rely into synchronized cpu_load[*] updates. 5536 */ 5537 void cpu_load_update_nohz_start(void) 5538 { 5539 struct rq *this_rq = this_rq(); 5540 5541 /* 5542 * This is all lockless but should be fine. If weighted_cpuload changes 5543 * concurrently we'll exit nohz. And cpu_load write can race with 5544 * cpu_load_update_idle() but both updater would be writing the same. 5545 */ 5546 this_rq->cpu_load[0] = weighted_cpuload(this_rq); 5547 } 5548 5549 /* 5550 * Account the tickless load in the end of a nohz frame. 5551 */ 5552 void cpu_load_update_nohz_stop(void) 5553 { 5554 unsigned long curr_jiffies = READ_ONCE(jiffies); 5555 struct rq *this_rq = this_rq(); 5556 unsigned long load; 5557 struct rq_flags rf; 5558 5559 if (curr_jiffies == this_rq->last_load_update_tick) 5560 return; 5561 5562 load = weighted_cpuload(this_rq); 5563 rq_lock(this_rq, &rf); 5564 update_rq_clock(this_rq); 5565 cpu_load_update_nohz(this_rq, curr_jiffies, load); 5566 rq_unlock(this_rq, &rf); 5567 } 5568 #else /* !CONFIG_NO_HZ_COMMON */ 5569 static inline void cpu_load_update_nohz(struct rq *this_rq, 5570 unsigned long curr_jiffies, 5571 unsigned long load) { } 5572 #endif /* CONFIG_NO_HZ_COMMON */ 5573 5574 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 5575 { 5576 #ifdef CONFIG_NO_HZ_COMMON 5577 /* See the mess around cpu_load_update_nohz(). */ 5578 this_rq->last_load_update_tick = READ_ONCE(jiffies); 5579 #endif 5580 cpu_load_update(this_rq, load, 1); 5581 } 5582 5583 /* 5584 * Called from scheduler_tick() 5585 */ 5586 void cpu_load_update_active(struct rq *this_rq) 5587 { 5588 unsigned long load = weighted_cpuload(this_rq); 5589 5590 if (tick_nohz_tick_stopped()) 5591 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 5592 else 5593 cpu_load_update_periodic(this_rq, load); 5594 } 5595 5596 /* 5597 * Return a low guess at the load of a migration-source CPU weighted 5598 * according to the scheduling class and "nice" value. 5599 * 5600 * We want to under-estimate the load of migration sources, to 5601 * balance conservatively. 5602 */ 5603 static unsigned long source_load(int cpu, int type) 5604 { 5605 struct rq *rq = cpu_rq(cpu); 5606 unsigned long total = weighted_cpuload(rq); 5607 5608 if (type == 0 || !sched_feat(LB_BIAS)) 5609 return total; 5610 5611 return min(rq->cpu_load[type-1], total); 5612 } 5613 5614 /* 5615 * Return a high guess at the load of a migration-target CPU weighted 5616 * according to the scheduling class and "nice" value. 5617 */ 5618 static unsigned long target_load(int cpu, int type) 5619 { 5620 struct rq *rq = cpu_rq(cpu); 5621 unsigned long total = weighted_cpuload(rq); 5622 5623 if (type == 0 || !sched_feat(LB_BIAS)) 5624 return total; 5625 5626 return max(rq->cpu_load[type-1], total); 5627 } 5628 5629 static unsigned long capacity_of(int cpu) 5630 { 5631 return cpu_rq(cpu)->cpu_capacity; 5632 } 5633 5634 static unsigned long cpu_avg_load_per_task(int cpu) 5635 { 5636 struct rq *rq = cpu_rq(cpu); 5637 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5638 unsigned long load_avg = weighted_cpuload(rq); 5639 5640 if (nr_running) 5641 return load_avg / nr_running; 5642 5643 return 0; 5644 } 5645 5646 static void record_wakee(struct task_struct *p) 5647 { 5648 /* 5649 * Only decay a single time; tasks that have less then 1 wakeup per 5650 * jiffy will not have built up many flips. 5651 */ 5652 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5653 current->wakee_flips >>= 1; 5654 current->wakee_flip_decay_ts = jiffies; 5655 } 5656 5657 if (current->last_wakee != p) { 5658 current->last_wakee = p; 5659 current->wakee_flips++; 5660 } 5661 } 5662 5663 /* 5664 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5665 * 5666 * A waker of many should wake a different task than the one last awakened 5667 * at a frequency roughly N times higher than one of its wakees. 5668 * 5669 * In order to determine whether we should let the load spread vs consolidating 5670 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5671 * partner, and a factor of lls_size higher frequency in the other. 5672 * 5673 * With both conditions met, we can be relatively sure that the relationship is 5674 * non-monogamous, with partner count exceeding socket size. 5675 * 5676 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5677 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5678 * socket size. 5679 */ 5680 static int wake_wide(struct task_struct *p) 5681 { 5682 unsigned int master = current->wakee_flips; 5683 unsigned int slave = p->wakee_flips; 5684 int factor = this_cpu_read(sd_llc_size); 5685 5686 if (master < slave) 5687 swap(master, slave); 5688 if (slave < factor || master < slave * factor) 5689 return 0; 5690 return 1; 5691 } 5692 5693 /* 5694 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5695 * soonest. For the purpose of speed we only consider the waking and previous 5696 * CPU. 5697 * 5698 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5699 * cache-affine and is (or will be) idle. 5700 * 5701 * wake_affine_weight() - considers the weight to reflect the average 5702 * scheduling latency of the CPUs. This seems to work 5703 * for the overloaded case. 5704 */ 5705 static int 5706 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5707 { 5708 /* 5709 * If this_cpu is idle, it implies the wakeup is from interrupt 5710 * context. Only allow the move if cache is shared. Otherwise an 5711 * interrupt intensive workload could force all tasks onto one 5712 * node depending on the IO topology or IRQ affinity settings. 5713 * 5714 * If the prev_cpu is idle and cache affine then avoid a migration. 5715 * There is no guarantee that the cache hot data from an interrupt 5716 * is more important than cache hot data on the prev_cpu and from 5717 * a cpufreq perspective, it's better to have higher utilisation 5718 * on one CPU. 5719 */ 5720 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5721 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5722 5723 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5724 return this_cpu; 5725 5726 return nr_cpumask_bits; 5727 } 5728 5729 static int 5730 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5731 int this_cpu, int prev_cpu, int sync) 5732 { 5733 s64 this_eff_load, prev_eff_load; 5734 unsigned long task_load; 5735 5736 this_eff_load = target_load(this_cpu, sd->wake_idx); 5737 5738 if (sync) { 5739 unsigned long current_load = task_h_load(current); 5740 5741 if (current_load > this_eff_load) 5742 return this_cpu; 5743 5744 this_eff_load -= current_load; 5745 } 5746 5747 task_load = task_h_load(p); 5748 5749 this_eff_load += task_load; 5750 if (sched_feat(WA_BIAS)) 5751 this_eff_load *= 100; 5752 this_eff_load *= capacity_of(prev_cpu); 5753 5754 prev_eff_load = source_load(prev_cpu, sd->wake_idx); 5755 prev_eff_load -= task_load; 5756 if (sched_feat(WA_BIAS)) 5757 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5758 prev_eff_load *= capacity_of(this_cpu); 5759 5760 /* 5761 * If sync, adjust the weight of prev_eff_load such that if 5762 * prev_eff == this_eff that select_idle_sibling() will consider 5763 * stacking the wakee on top of the waker if no other CPU is 5764 * idle. 5765 */ 5766 if (sync) 5767 prev_eff_load += 1; 5768 5769 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5770 } 5771 5772 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5773 int this_cpu, int prev_cpu, int sync) 5774 { 5775 int target = nr_cpumask_bits; 5776 5777 if (sched_feat(WA_IDLE)) 5778 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5779 5780 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5781 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5782 5783 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5784 if (target == nr_cpumask_bits) 5785 return prev_cpu; 5786 5787 schedstat_inc(sd->ttwu_move_affine); 5788 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5789 return target; 5790 } 5791 5792 static unsigned long cpu_util_without(int cpu, struct task_struct *p); 5793 5794 static unsigned long capacity_spare_without(int cpu, struct task_struct *p) 5795 { 5796 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0); 5797 } 5798 5799 /* 5800 * find_idlest_group finds and returns the least busy CPU group within the 5801 * domain. 5802 * 5803 * Assumes p is allowed on at least one CPU in sd. 5804 */ 5805 static struct sched_group * 5806 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5807 int this_cpu, int sd_flag) 5808 { 5809 struct sched_group *idlest = NULL, *group = sd->groups; 5810 struct sched_group *most_spare_sg = NULL; 5811 unsigned long min_runnable_load = ULONG_MAX; 5812 unsigned long this_runnable_load = ULONG_MAX; 5813 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX; 5814 unsigned long most_spare = 0, this_spare = 0; 5815 int load_idx = sd->forkexec_idx; 5816 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 5817 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 5818 (sd->imbalance_pct-100) / 100; 5819 5820 if (sd_flag & SD_BALANCE_WAKE) 5821 load_idx = sd->wake_idx; 5822 5823 do { 5824 unsigned long load, avg_load, runnable_load; 5825 unsigned long spare_cap, max_spare_cap; 5826 int local_group; 5827 int i; 5828 5829 /* Skip over this group if it has no CPUs allowed */ 5830 if (!cpumask_intersects(sched_group_span(group), 5831 &p->cpus_allowed)) 5832 continue; 5833 5834 local_group = cpumask_test_cpu(this_cpu, 5835 sched_group_span(group)); 5836 5837 /* 5838 * Tally up the load of all CPUs in the group and find 5839 * the group containing the CPU with most spare capacity. 5840 */ 5841 avg_load = 0; 5842 runnable_load = 0; 5843 max_spare_cap = 0; 5844 5845 for_each_cpu(i, sched_group_span(group)) { 5846 /* Bias balancing toward CPUs of our domain */ 5847 if (local_group) 5848 load = source_load(i, load_idx); 5849 else 5850 load = target_load(i, load_idx); 5851 5852 runnable_load += load; 5853 5854 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 5855 5856 spare_cap = capacity_spare_without(i, p); 5857 5858 if (spare_cap > max_spare_cap) 5859 max_spare_cap = spare_cap; 5860 } 5861 5862 /* Adjust by relative CPU capacity of the group */ 5863 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 5864 group->sgc->capacity; 5865 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 5866 group->sgc->capacity; 5867 5868 if (local_group) { 5869 this_runnable_load = runnable_load; 5870 this_avg_load = avg_load; 5871 this_spare = max_spare_cap; 5872 } else { 5873 if (min_runnable_load > (runnable_load + imbalance)) { 5874 /* 5875 * The runnable load is significantly smaller 5876 * so we can pick this new CPU: 5877 */ 5878 min_runnable_load = runnable_load; 5879 min_avg_load = avg_load; 5880 idlest = group; 5881 } else if ((runnable_load < (min_runnable_load + imbalance)) && 5882 (100*min_avg_load > imbalance_scale*avg_load)) { 5883 /* 5884 * The runnable loads are close so take the 5885 * blocked load into account through avg_load: 5886 */ 5887 min_avg_load = avg_load; 5888 idlest = group; 5889 } 5890 5891 if (most_spare < max_spare_cap) { 5892 most_spare = max_spare_cap; 5893 most_spare_sg = group; 5894 } 5895 } 5896 } while (group = group->next, group != sd->groups); 5897 5898 /* 5899 * The cross-over point between using spare capacity or least load 5900 * is too conservative for high utilization tasks on partially 5901 * utilized systems if we require spare_capacity > task_util(p), 5902 * so we allow for some task stuffing by using 5903 * spare_capacity > task_util(p)/2. 5904 * 5905 * Spare capacity can't be used for fork because the utilization has 5906 * not been set yet, we must first select a rq to compute the initial 5907 * utilization. 5908 */ 5909 if (sd_flag & SD_BALANCE_FORK) 5910 goto skip_spare; 5911 5912 if (this_spare > task_util(p) / 2 && 5913 imbalance_scale*this_spare > 100*most_spare) 5914 return NULL; 5915 5916 if (most_spare > task_util(p) / 2) 5917 return most_spare_sg; 5918 5919 skip_spare: 5920 if (!idlest) 5921 return NULL; 5922 5923 /* 5924 * When comparing groups across NUMA domains, it's possible for the 5925 * local domain to be very lightly loaded relative to the remote 5926 * domains but "imbalance" skews the comparison making remote CPUs 5927 * look much more favourable. When considering cross-domain, add 5928 * imbalance to the runnable load on the remote node and consider 5929 * staying local. 5930 */ 5931 if ((sd->flags & SD_NUMA) && 5932 min_runnable_load + imbalance >= this_runnable_load) 5933 return NULL; 5934 5935 if (min_runnable_load > (this_runnable_load + imbalance)) 5936 return NULL; 5937 5938 if ((this_runnable_load < (min_runnable_load + imbalance)) && 5939 (100*this_avg_load < imbalance_scale*min_avg_load)) 5940 return NULL; 5941 5942 return idlest; 5943 } 5944 5945 /* 5946 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5947 */ 5948 static int 5949 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5950 { 5951 unsigned long load, min_load = ULONG_MAX; 5952 unsigned int min_exit_latency = UINT_MAX; 5953 u64 latest_idle_timestamp = 0; 5954 int least_loaded_cpu = this_cpu; 5955 int shallowest_idle_cpu = -1; 5956 int i; 5957 5958 /* Check if we have any choice: */ 5959 if (group->group_weight == 1) 5960 return cpumask_first(sched_group_span(group)); 5961 5962 /* Traverse only the allowed CPUs */ 5963 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) { 5964 if (available_idle_cpu(i)) { 5965 struct rq *rq = cpu_rq(i); 5966 struct cpuidle_state *idle = idle_get_state(rq); 5967 if (idle && idle->exit_latency < min_exit_latency) { 5968 /* 5969 * We give priority to a CPU whose idle state 5970 * has the smallest exit latency irrespective 5971 * of any idle timestamp. 5972 */ 5973 min_exit_latency = idle->exit_latency; 5974 latest_idle_timestamp = rq->idle_stamp; 5975 shallowest_idle_cpu = i; 5976 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5977 rq->idle_stamp > latest_idle_timestamp) { 5978 /* 5979 * If equal or no active idle state, then 5980 * the most recently idled CPU might have 5981 * a warmer cache. 5982 */ 5983 latest_idle_timestamp = rq->idle_stamp; 5984 shallowest_idle_cpu = i; 5985 } 5986 } else if (shallowest_idle_cpu == -1) { 5987 load = weighted_cpuload(cpu_rq(i)); 5988 if (load < min_load) { 5989 min_load = load; 5990 least_loaded_cpu = i; 5991 } 5992 } 5993 } 5994 5995 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5996 } 5997 5998 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5999 int cpu, int prev_cpu, int sd_flag) 6000 { 6001 int new_cpu = cpu; 6002 6003 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed)) 6004 return prev_cpu; 6005 6006 /* 6007 * We need task's util for capacity_spare_without, sync it up to 6008 * prev_cpu's last_update_time. 6009 */ 6010 if (!(sd_flag & SD_BALANCE_FORK)) 6011 sync_entity_load_avg(&p->se); 6012 6013 while (sd) { 6014 struct sched_group *group; 6015 struct sched_domain *tmp; 6016 int weight; 6017 6018 if (!(sd->flags & sd_flag)) { 6019 sd = sd->child; 6020 continue; 6021 } 6022 6023 group = find_idlest_group(sd, p, cpu, sd_flag); 6024 if (!group) { 6025 sd = sd->child; 6026 continue; 6027 } 6028 6029 new_cpu = find_idlest_group_cpu(group, p, cpu); 6030 if (new_cpu == cpu) { 6031 /* Now try balancing at a lower domain level of 'cpu': */ 6032 sd = sd->child; 6033 continue; 6034 } 6035 6036 /* Now try balancing at a lower domain level of 'new_cpu': */ 6037 cpu = new_cpu; 6038 weight = sd->span_weight; 6039 sd = NULL; 6040 for_each_domain(cpu, tmp) { 6041 if (weight <= tmp->span_weight) 6042 break; 6043 if (tmp->flags & sd_flag) 6044 sd = tmp; 6045 } 6046 } 6047 6048 return new_cpu; 6049 } 6050 6051 #ifdef CONFIG_SCHED_SMT 6052 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6053 EXPORT_SYMBOL_GPL(sched_smt_present); 6054 6055 static inline void set_idle_cores(int cpu, int val) 6056 { 6057 struct sched_domain_shared *sds; 6058 6059 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6060 if (sds) 6061 WRITE_ONCE(sds->has_idle_cores, val); 6062 } 6063 6064 static inline bool test_idle_cores(int cpu, bool def) 6065 { 6066 struct sched_domain_shared *sds; 6067 6068 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6069 if (sds) 6070 return READ_ONCE(sds->has_idle_cores); 6071 6072 return def; 6073 } 6074 6075 /* 6076 * Scans the local SMT mask to see if the entire core is idle, and records this 6077 * information in sd_llc_shared->has_idle_cores. 6078 * 6079 * Since SMT siblings share all cache levels, inspecting this limited remote 6080 * state should be fairly cheap. 6081 */ 6082 void __update_idle_core(struct rq *rq) 6083 { 6084 int core = cpu_of(rq); 6085 int cpu; 6086 6087 rcu_read_lock(); 6088 if (test_idle_cores(core, true)) 6089 goto unlock; 6090 6091 for_each_cpu(cpu, cpu_smt_mask(core)) { 6092 if (cpu == core) 6093 continue; 6094 6095 if (!available_idle_cpu(cpu)) 6096 goto unlock; 6097 } 6098 6099 set_idle_cores(core, 1); 6100 unlock: 6101 rcu_read_unlock(); 6102 } 6103 6104 /* 6105 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6106 * there are no idle cores left in the system; tracked through 6107 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6108 */ 6109 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6110 { 6111 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6112 int core, cpu; 6113 6114 if (!static_branch_likely(&sched_smt_present)) 6115 return -1; 6116 6117 if (!test_idle_cores(target, false)) 6118 return -1; 6119 6120 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed); 6121 6122 for_each_cpu_wrap(core, cpus, target) { 6123 bool idle = true; 6124 6125 for_each_cpu(cpu, cpu_smt_mask(core)) { 6126 __cpumask_clear_cpu(cpu, cpus); 6127 if (!available_idle_cpu(cpu)) 6128 idle = false; 6129 } 6130 6131 if (idle) 6132 return core; 6133 } 6134 6135 /* 6136 * Failed to find an idle core; stop looking for one. 6137 */ 6138 set_idle_cores(target, 0); 6139 6140 return -1; 6141 } 6142 6143 /* 6144 * Scan the local SMT mask for idle CPUs. 6145 */ 6146 static int select_idle_smt(struct task_struct *p, int target) 6147 { 6148 int cpu; 6149 6150 if (!static_branch_likely(&sched_smt_present)) 6151 return -1; 6152 6153 for_each_cpu(cpu, cpu_smt_mask(target)) { 6154 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6155 continue; 6156 if (available_idle_cpu(cpu)) 6157 return cpu; 6158 } 6159 6160 return -1; 6161 } 6162 6163 #else /* CONFIG_SCHED_SMT */ 6164 6165 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6166 { 6167 return -1; 6168 } 6169 6170 static inline int select_idle_smt(struct task_struct *p, int target) 6171 { 6172 return -1; 6173 } 6174 6175 #endif /* CONFIG_SCHED_SMT */ 6176 6177 /* 6178 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6179 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6180 * average idle time for this rq (as found in rq->avg_idle). 6181 */ 6182 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 6183 { 6184 struct sched_domain *this_sd; 6185 u64 avg_cost, avg_idle; 6186 u64 time, cost; 6187 s64 delta; 6188 int cpu, nr = INT_MAX; 6189 6190 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6191 if (!this_sd) 6192 return -1; 6193 6194 /* 6195 * Due to large variance we need a large fuzz factor; hackbench in 6196 * particularly is sensitive here. 6197 */ 6198 avg_idle = this_rq()->avg_idle / 512; 6199 avg_cost = this_sd->avg_scan_cost + 1; 6200 6201 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 6202 return -1; 6203 6204 if (sched_feat(SIS_PROP)) { 6205 u64 span_avg = sd->span_weight * avg_idle; 6206 if (span_avg > 4*avg_cost) 6207 nr = div_u64(span_avg, avg_cost); 6208 else 6209 nr = 4; 6210 } 6211 6212 time = local_clock(); 6213 6214 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { 6215 if (!--nr) 6216 return -1; 6217 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6218 continue; 6219 if (available_idle_cpu(cpu)) 6220 break; 6221 } 6222 6223 time = local_clock() - time; 6224 cost = this_sd->avg_scan_cost; 6225 delta = (s64)(time - cost) / 8; 6226 this_sd->avg_scan_cost += delta; 6227 6228 return cpu; 6229 } 6230 6231 /* 6232 * Try and locate an idle core/thread in the LLC cache domain. 6233 */ 6234 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6235 { 6236 struct sched_domain *sd; 6237 int i, recent_used_cpu; 6238 6239 if (available_idle_cpu(target)) 6240 return target; 6241 6242 /* 6243 * If the previous CPU is cache affine and idle, don't be stupid: 6244 */ 6245 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev)) 6246 return prev; 6247 6248 /* Check a recently used CPU as a potential idle candidate: */ 6249 recent_used_cpu = p->recent_used_cpu; 6250 if (recent_used_cpu != prev && 6251 recent_used_cpu != target && 6252 cpus_share_cache(recent_used_cpu, target) && 6253 available_idle_cpu(recent_used_cpu) && 6254 cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) { 6255 /* 6256 * Replace recent_used_cpu with prev as it is a potential 6257 * candidate for the next wake: 6258 */ 6259 p->recent_used_cpu = prev; 6260 return recent_used_cpu; 6261 } 6262 6263 sd = rcu_dereference(per_cpu(sd_llc, target)); 6264 if (!sd) 6265 return target; 6266 6267 i = select_idle_core(p, sd, target); 6268 if ((unsigned)i < nr_cpumask_bits) 6269 return i; 6270 6271 i = select_idle_cpu(p, sd, target); 6272 if ((unsigned)i < nr_cpumask_bits) 6273 return i; 6274 6275 i = select_idle_smt(p, target); 6276 if ((unsigned)i < nr_cpumask_bits) 6277 return i; 6278 6279 return target; 6280 } 6281 6282 /** 6283 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks 6284 * @cpu: the CPU to get the utilization of 6285 * 6286 * The unit of the return value must be the one of capacity so we can compare 6287 * the utilization with the capacity of the CPU that is available for CFS task 6288 * (ie cpu_capacity). 6289 * 6290 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6291 * recent utilization of currently non-runnable tasks on a CPU. It represents 6292 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6293 * capacity_orig is the cpu_capacity available at the highest frequency 6294 * (arch_scale_freq_capacity()). 6295 * The utilization of a CPU converges towards a sum equal to or less than the 6296 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6297 * the running time on this CPU scaled by capacity_curr. 6298 * 6299 * The estimated utilization of a CPU is defined to be the maximum between its 6300 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6301 * currently RUNNABLE on that CPU. 6302 * This allows to properly represent the expected utilization of a CPU which 6303 * has just got a big task running since a long sleep period. At the same time 6304 * however it preserves the benefits of the "blocked utilization" in 6305 * describing the potential for other tasks waking up on the same CPU. 6306 * 6307 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6308 * higher than capacity_orig because of unfortunate rounding in 6309 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6310 * the average stabilizes with the new running time. We need to check that the 6311 * utilization stays within the range of [0..capacity_orig] and cap it if 6312 * necessary. Without utilization capping, a group could be seen as overloaded 6313 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6314 * available capacity. We allow utilization to overshoot capacity_curr (but not 6315 * capacity_orig) as it useful for predicting the capacity required after task 6316 * migrations (scheduler-driven DVFS). 6317 * 6318 * Return: the (estimated) utilization for the specified CPU 6319 */ 6320 static inline unsigned long cpu_util(int cpu) 6321 { 6322 struct cfs_rq *cfs_rq; 6323 unsigned int util; 6324 6325 cfs_rq = &cpu_rq(cpu)->cfs; 6326 util = READ_ONCE(cfs_rq->avg.util_avg); 6327 6328 if (sched_feat(UTIL_EST)) 6329 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6330 6331 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6332 } 6333 6334 /* 6335 * cpu_util_without: compute cpu utilization without any contributions from *p 6336 * @cpu: the CPU which utilization is requested 6337 * @p: the task which utilization should be discounted 6338 * 6339 * The utilization of a CPU is defined by the utilization of tasks currently 6340 * enqueued on that CPU as well as tasks which are currently sleeping after an 6341 * execution on that CPU. 6342 * 6343 * This method returns the utilization of the specified CPU by discounting the 6344 * utilization of the specified task, whenever the task is currently 6345 * contributing to the CPU utilization. 6346 */ 6347 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6348 { 6349 struct cfs_rq *cfs_rq; 6350 unsigned int util; 6351 6352 /* Task has no contribution or is new */ 6353 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6354 return cpu_util(cpu); 6355 6356 cfs_rq = &cpu_rq(cpu)->cfs; 6357 util = READ_ONCE(cfs_rq->avg.util_avg); 6358 6359 /* Discount task's util from CPU's util */ 6360 lsub_positive(&util, task_util(p)); 6361 6362 /* 6363 * Covered cases: 6364 * 6365 * a) if *p is the only task sleeping on this CPU, then: 6366 * cpu_util (== task_util) > util_est (== 0) 6367 * and thus we return: 6368 * cpu_util_without = (cpu_util - task_util) = 0 6369 * 6370 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6371 * IDLE, then: 6372 * cpu_util >= task_util 6373 * cpu_util > util_est (== 0) 6374 * and thus we discount *p's blocked utilization to return: 6375 * cpu_util_without = (cpu_util - task_util) >= 0 6376 * 6377 * c) if other tasks are RUNNABLE on that CPU and 6378 * util_est > cpu_util 6379 * then we use util_est since it returns a more restrictive 6380 * estimation of the spare capacity on that CPU, by just 6381 * considering the expected utilization of tasks already 6382 * runnable on that CPU. 6383 * 6384 * Cases a) and b) are covered by the above code, while case c) is 6385 * covered by the following code when estimated utilization is 6386 * enabled. 6387 */ 6388 if (sched_feat(UTIL_EST)) { 6389 unsigned int estimated = 6390 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6391 6392 /* 6393 * Despite the following checks we still have a small window 6394 * for a possible race, when an execl's select_task_rq_fair() 6395 * races with LB's detach_task(): 6396 * 6397 * detach_task() 6398 * p->on_rq = TASK_ON_RQ_MIGRATING; 6399 * ---------------------------------- A 6400 * deactivate_task() \ 6401 * dequeue_task() + RaceTime 6402 * util_est_dequeue() / 6403 * ---------------------------------- B 6404 * 6405 * The additional check on "current == p" it's required to 6406 * properly fix the execl regression and it helps in further 6407 * reducing the chances for the above race. 6408 */ 6409 if (unlikely(task_on_rq_queued(p) || current == p)) 6410 lsub_positive(&estimated, _task_util_est(p)); 6411 6412 util = max(util, estimated); 6413 } 6414 6415 /* 6416 * Utilization (estimated) can exceed the CPU capacity, thus let's 6417 * clamp to the maximum CPU capacity to ensure consistency with 6418 * the cpu_util call. 6419 */ 6420 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6421 } 6422 6423 /* 6424 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 6425 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 6426 * 6427 * In that case WAKE_AFFINE doesn't make sense and we'll let 6428 * BALANCE_WAKE sort things out. 6429 */ 6430 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 6431 { 6432 long min_cap, max_cap; 6433 6434 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 6435 return 0; 6436 6437 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 6438 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 6439 6440 /* Minimum capacity is close to max, no need to abort wake_affine */ 6441 if (max_cap - min_cap < max_cap >> 3) 6442 return 0; 6443 6444 /* Bring task utilization in sync with prev_cpu */ 6445 sync_entity_load_avg(&p->se); 6446 6447 return !task_fits_capacity(p, min_cap); 6448 } 6449 6450 /* 6451 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6452 * to @dst_cpu. 6453 */ 6454 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6455 { 6456 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6457 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6458 6459 /* 6460 * If @p migrates from @cpu to another, remove its contribution. Or, 6461 * if @p migrates from another CPU to @cpu, add its contribution. In 6462 * the other cases, @cpu is not impacted by the migration, so the 6463 * util_avg should already be correct. 6464 */ 6465 if (task_cpu(p) == cpu && dst_cpu != cpu) 6466 sub_positive(&util, task_util(p)); 6467 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6468 util += task_util(p); 6469 6470 if (sched_feat(UTIL_EST)) { 6471 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6472 6473 /* 6474 * During wake-up, the task isn't enqueued yet and doesn't 6475 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6476 * so just add it (if needed) to "simulate" what will be 6477 * cpu_util() after the task has been enqueued. 6478 */ 6479 if (dst_cpu == cpu) 6480 util_est += _task_util_est(p); 6481 6482 util = max(util, util_est); 6483 } 6484 6485 return min(util, capacity_orig_of(cpu)); 6486 } 6487 6488 /* 6489 * compute_energy(): Estimates the energy that would be consumed if @p was 6490 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6491 * landscape of the * CPUs after the task migration, and uses the Energy Model 6492 * to compute what would be the energy if we decided to actually migrate that 6493 * task. 6494 */ 6495 static long 6496 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6497 { 6498 long util, max_util, sum_util, energy = 0; 6499 int cpu; 6500 6501 for (; pd; pd = pd->next) { 6502 max_util = sum_util = 0; 6503 /* 6504 * The capacity state of CPUs of the current rd can be driven by 6505 * CPUs of another rd if they belong to the same performance 6506 * domain. So, account for the utilization of these CPUs too 6507 * by masking pd with cpu_online_mask instead of the rd span. 6508 * 6509 * If an entire performance domain is outside of the current rd, 6510 * it will not appear in its pd list and will not be accounted 6511 * by compute_energy(). 6512 */ 6513 for_each_cpu_and(cpu, perf_domain_span(pd), cpu_online_mask) { 6514 util = cpu_util_next(cpu, p, dst_cpu); 6515 util = schedutil_energy_util(cpu, util); 6516 max_util = max(util, max_util); 6517 sum_util += util; 6518 } 6519 6520 energy += em_pd_energy(pd->em_pd, max_util, sum_util); 6521 } 6522 6523 return energy; 6524 } 6525 6526 /* 6527 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6528 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6529 * spare capacity in each performance domain and uses it as a potential 6530 * candidate to execute the task. Then, it uses the Energy Model to figure 6531 * out which of the CPU candidates is the most energy-efficient. 6532 * 6533 * The rationale for this heuristic is as follows. In a performance domain, 6534 * all the most energy efficient CPU candidates (according to the Energy 6535 * Model) are those for which we'll request a low frequency. When there are 6536 * several CPUs for which the frequency request will be the same, we don't 6537 * have enough data to break the tie between them, because the Energy Model 6538 * only includes active power costs. With this model, if we assume that 6539 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6540 * the maximum spare capacity in a performance domain is guaranteed to be among 6541 * the best candidates of the performance domain. 6542 * 6543 * In practice, it could be preferable from an energy standpoint to pack 6544 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6545 * but that could also hurt our chances to go cluster idle, and we have no 6546 * ways to tell with the current Energy Model if this is actually a good 6547 * idea or not. So, find_energy_efficient_cpu() basically favors 6548 * cluster-packing, and spreading inside a cluster. That should at least be 6549 * a good thing for latency, and this is consistent with the idea that most 6550 * of the energy savings of EAS come from the asymmetry of the system, and 6551 * not so much from breaking the tie between identical CPUs. That's also the 6552 * reason why EAS is enabled in the topology code only for systems where 6553 * SD_ASYM_CPUCAPACITY is set. 6554 * 6555 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6556 * they don't have any useful utilization data yet and it's not possible to 6557 * forecast their impact on energy consumption. Consequently, they will be 6558 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6559 * to be energy-inefficient in some use-cases. The alternative would be to 6560 * bias new tasks towards specific types of CPUs first, or to try to infer 6561 * their util_avg from the parent task, but those heuristics could hurt 6562 * other use-cases too. So, until someone finds a better way to solve this, 6563 * let's keep things simple by re-using the existing slow path. 6564 */ 6565 6566 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6567 { 6568 unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX; 6569 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6570 int cpu, best_energy_cpu = prev_cpu; 6571 struct perf_domain *head, *pd; 6572 unsigned long cpu_cap, util; 6573 struct sched_domain *sd; 6574 6575 rcu_read_lock(); 6576 pd = rcu_dereference(rd->pd); 6577 if (!pd || READ_ONCE(rd->overutilized)) 6578 goto fail; 6579 head = pd; 6580 6581 /* 6582 * Energy-aware wake-up happens on the lowest sched_domain starting 6583 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6584 */ 6585 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6586 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6587 sd = sd->parent; 6588 if (!sd) 6589 goto fail; 6590 6591 sync_entity_load_avg(&p->se); 6592 if (!task_util_est(p)) 6593 goto unlock; 6594 6595 for (; pd; pd = pd->next) { 6596 unsigned long cur_energy, spare_cap, max_spare_cap = 0; 6597 int max_spare_cap_cpu = -1; 6598 6599 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6600 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6601 continue; 6602 6603 /* Skip CPUs that will be overutilized. */ 6604 util = cpu_util_next(cpu, p, cpu); 6605 cpu_cap = capacity_of(cpu); 6606 if (cpu_cap * 1024 < util * capacity_margin) 6607 continue; 6608 6609 /* Always use prev_cpu as a candidate. */ 6610 if (cpu == prev_cpu) { 6611 prev_energy = compute_energy(p, prev_cpu, head); 6612 best_energy = min(best_energy, prev_energy); 6613 continue; 6614 } 6615 6616 /* 6617 * Find the CPU with the maximum spare capacity in 6618 * the performance domain 6619 */ 6620 spare_cap = cpu_cap - util; 6621 if (spare_cap > max_spare_cap) { 6622 max_spare_cap = spare_cap; 6623 max_spare_cap_cpu = cpu; 6624 } 6625 } 6626 6627 /* Evaluate the energy impact of using this CPU. */ 6628 if (max_spare_cap_cpu >= 0) { 6629 cur_energy = compute_energy(p, max_spare_cap_cpu, head); 6630 if (cur_energy < best_energy) { 6631 best_energy = cur_energy; 6632 best_energy_cpu = max_spare_cap_cpu; 6633 } 6634 } 6635 } 6636 unlock: 6637 rcu_read_unlock(); 6638 6639 /* 6640 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6641 * least 6% of the energy used by prev_cpu. 6642 */ 6643 if (prev_energy == ULONG_MAX) 6644 return best_energy_cpu; 6645 6646 if ((prev_energy - best_energy) > (prev_energy >> 4)) 6647 return best_energy_cpu; 6648 6649 return prev_cpu; 6650 6651 fail: 6652 rcu_read_unlock(); 6653 6654 return -1; 6655 } 6656 6657 /* 6658 * select_task_rq_fair: Select target runqueue for the waking task in domains 6659 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6660 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6661 * 6662 * Balances load by selecting the idlest CPU in the idlest group, or under 6663 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6664 * 6665 * Returns the target CPU number. 6666 * 6667 * preempt must be disabled. 6668 */ 6669 static int 6670 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6671 { 6672 struct sched_domain *tmp, *sd = NULL; 6673 int cpu = smp_processor_id(); 6674 int new_cpu = prev_cpu; 6675 int want_affine = 0; 6676 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6677 6678 if (sd_flag & SD_BALANCE_WAKE) { 6679 record_wakee(p); 6680 6681 if (sched_energy_enabled()) { 6682 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6683 if (new_cpu >= 0) 6684 return new_cpu; 6685 new_cpu = prev_cpu; 6686 } 6687 6688 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) && 6689 cpumask_test_cpu(cpu, &p->cpus_allowed); 6690 } 6691 6692 rcu_read_lock(); 6693 for_each_domain(cpu, tmp) { 6694 if (!(tmp->flags & SD_LOAD_BALANCE)) 6695 break; 6696 6697 /* 6698 * If both 'cpu' and 'prev_cpu' are part of this domain, 6699 * cpu is a valid SD_WAKE_AFFINE target. 6700 */ 6701 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6702 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6703 if (cpu != prev_cpu) 6704 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6705 6706 sd = NULL; /* Prefer wake_affine over balance flags */ 6707 break; 6708 } 6709 6710 if (tmp->flags & sd_flag) 6711 sd = tmp; 6712 else if (!want_affine) 6713 break; 6714 } 6715 6716 if (unlikely(sd)) { 6717 /* Slow path */ 6718 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6719 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ 6720 /* Fast path */ 6721 6722 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6723 6724 if (want_affine) 6725 current->recent_used_cpu = cpu; 6726 } 6727 rcu_read_unlock(); 6728 6729 return new_cpu; 6730 } 6731 6732 static void detach_entity_cfs_rq(struct sched_entity *se); 6733 6734 /* 6735 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6736 * cfs_rq_of(p) references at time of call are still valid and identify the 6737 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6738 */ 6739 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6740 { 6741 /* 6742 * As blocked tasks retain absolute vruntime the migration needs to 6743 * deal with this by subtracting the old and adding the new 6744 * min_vruntime -- the latter is done by enqueue_entity() when placing 6745 * the task on the new runqueue. 6746 */ 6747 if (p->state == TASK_WAKING) { 6748 struct sched_entity *se = &p->se; 6749 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6750 u64 min_vruntime; 6751 6752 #ifndef CONFIG_64BIT 6753 u64 min_vruntime_copy; 6754 6755 do { 6756 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6757 smp_rmb(); 6758 min_vruntime = cfs_rq->min_vruntime; 6759 } while (min_vruntime != min_vruntime_copy); 6760 #else 6761 min_vruntime = cfs_rq->min_vruntime; 6762 #endif 6763 6764 se->vruntime -= min_vruntime; 6765 } 6766 6767 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6768 /* 6769 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6770 * rq->lock and can modify state directly. 6771 */ 6772 lockdep_assert_held(&task_rq(p)->lock); 6773 detach_entity_cfs_rq(&p->se); 6774 6775 } else { 6776 /* 6777 * We are supposed to update the task to "current" time, then 6778 * its up to date and ready to go to new CPU/cfs_rq. But we 6779 * have difficulty in getting what current time is, so simply 6780 * throw away the out-of-date time. This will result in the 6781 * wakee task is less decayed, but giving the wakee more load 6782 * sounds not bad. 6783 */ 6784 remove_entity_load_avg(&p->se); 6785 } 6786 6787 /* Tell new CPU we are migrated */ 6788 p->se.avg.last_update_time = 0; 6789 6790 /* We have migrated, no longer consider this task hot */ 6791 p->se.exec_start = 0; 6792 6793 update_scan_period(p, new_cpu); 6794 } 6795 6796 static void task_dead_fair(struct task_struct *p) 6797 { 6798 remove_entity_load_avg(&p->se); 6799 } 6800 #endif /* CONFIG_SMP */ 6801 6802 static unsigned long wakeup_gran(struct sched_entity *se) 6803 { 6804 unsigned long gran = sysctl_sched_wakeup_granularity; 6805 6806 /* 6807 * Since its curr running now, convert the gran from real-time 6808 * to virtual-time in his units. 6809 * 6810 * By using 'se' instead of 'curr' we penalize light tasks, so 6811 * they get preempted easier. That is, if 'se' < 'curr' then 6812 * the resulting gran will be larger, therefore penalizing the 6813 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6814 * be smaller, again penalizing the lighter task. 6815 * 6816 * This is especially important for buddies when the leftmost 6817 * task is higher priority than the buddy. 6818 */ 6819 return calc_delta_fair(gran, se); 6820 } 6821 6822 /* 6823 * Should 'se' preempt 'curr'. 6824 * 6825 * |s1 6826 * |s2 6827 * |s3 6828 * g 6829 * |<--->|c 6830 * 6831 * w(c, s1) = -1 6832 * w(c, s2) = 0 6833 * w(c, s3) = 1 6834 * 6835 */ 6836 static int 6837 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6838 { 6839 s64 gran, vdiff = curr->vruntime - se->vruntime; 6840 6841 if (vdiff <= 0) 6842 return -1; 6843 6844 gran = wakeup_gran(se); 6845 if (vdiff > gran) 6846 return 1; 6847 6848 return 0; 6849 } 6850 6851 static void set_last_buddy(struct sched_entity *se) 6852 { 6853 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6854 return; 6855 6856 for_each_sched_entity(se) { 6857 if (SCHED_WARN_ON(!se->on_rq)) 6858 return; 6859 cfs_rq_of(se)->last = se; 6860 } 6861 } 6862 6863 static void set_next_buddy(struct sched_entity *se) 6864 { 6865 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6866 return; 6867 6868 for_each_sched_entity(se) { 6869 if (SCHED_WARN_ON(!se->on_rq)) 6870 return; 6871 cfs_rq_of(se)->next = se; 6872 } 6873 } 6874 6875 static void set_skip_buddy(struct sched_entity *se) 6876 { 6877 for_each_sched_entity(se) 6878 cfs_rq_of(se)->skip = se; 6879 } 6880 6881 /* 6882 * Preempt the current task with a newly woken task if needed: 6883 */ 6884 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6885 { 6886 struct task_struct *curr = rq->curr; 6887 struct sched_entity *se = &curr->se, *pse = &p->se; 6888 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6889 int scale = cfs_rq->nr_running >= sched_nr_latency; 6890 int next_buddy_marked = 0; 6891 6892 if (unlikely(se == pse)) 6893 return; 6894 6895 /* 6896 * This is possible from callers such as attach_tasks(), in which we 6897 * unconditionally check_prempt_curr() after an enqueue (which may have 6898 * lead to a throttle). This both saves work and prevents false 6899 * next-buddy nomination below. 6900 */ 6901 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6902 return; 6903 6904 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6905 set_next_buddy(pse); 6906 next_buddy_marked = 1; 6907 } 6908 6909 /* 6910 * We can come here with TIF_NEED_RESCHED already set from new task 6911 * wake up path. 6912 * 6913 * Note: this also catches the edge-case of curr being in a throttled 6914 * group (e.g. via set_curr_task), since update_curr() (in the 6915 * enqueue of curr) will have resulted in resched being set. This 6916 * prevents us from potentially nominating it as a false LAST_BUDDY 6917 * below. 6918 */ 6919 if (test_tsk_need_resched(curr)) 6920 return; 6921 6922 /* Idle tasks are by definition preempted by non-idle tasks. */ 6923 if (unlikely(task_has_idle_policy(curr)) && 6924 likely(!task_has_idle_policy(p))) 6925 goto preempt; 6926 6927 /* 6928 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6929 * is driven by the tick): 6930 */ 6931 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6932 return; 6933 6934 find_matching_se(&se, &pse); 6935 update_curr(cfs_rq_of(se)); 6936 BUG_ON(!pse); 6937 if (wakeup_preempt_entity(se, pse) == 1) { 6938 /* 6939 * Bias pick_next to pick the sched entity that is 6940 * triggering this preemption. 6941 */ 6942 if (!next_buddy_marked) 6943 set_next_buddy(pse); 6944 goto preempt; 6945 } 6946 6947 return; 6948 6949 preempt: 6950 resched_curr(rq); 6951 /* 6952 * Only set the backward buddy when the current task is still 6953 * on the rq. This can happen when a wakeup gets interleaved 6954 * with schedule on the ->pre_schedule() or idle_balance() 6955 * point, either of which can * drop the rq lock. 6956 * 6957 * Also, during early boot the idle thread is in the fair class, 6958 * for obvious reasons its a bad idea to schedule back to it. 6959 */ 6960 if (unlikely(!se->on_rq || curr == rq->idle)) 6961 return; 6962 6963 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6964 set_last_buddy(se); 6965 } 6966 6967 static struct task_struct * 6968 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6969 { 6970 struct cfs_rq *cfs_rq = &rq->cfs; 6971 struct sched_entity *se; 6972 struct task_struct *p; 6973 int new_tasks; 6974 6975 again: 6976 if (!cfs_rq->nr_running) 6977 goto idle; 6978 6979 #ifdef CONFIG_FAIR_GROUP_SCHED 6980 if (prev->sched_class != &fair_sched_class) 6981 goto simple; 6982 6983 /* 6984 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6985 * likely that a next task is from the same cgroup as the current. 6986 * 6987 * Therefore attempt to avoid putting and setting the entire cgroup 6988 * hierarchy, only change the part that actually changes. 6989 */ 6990 6991 do { 6992 struct sched_entity *curr = cfs_rq->curr; 6993 6994 /* 6995 * Since we got here without doing put_prev_entity() we also 6996 * have to consider cfs_rq->curr. If it is still a runnable 6997 * entity, update_curr() will update its vruntime, otherwise 6998 * forget we've ever seen it. 6999 */ 7000 if (curr) { 7001 if (curr->on_rq) 7002 update_curr(cfs_rq); 7003 else 7004 curr = NULL; 7005 7006 /* 7007 * This call to check_cfs_rq_runtime() will do the 7008 * throttle and dequeue its entity in the parent(s). 7009 * Therefore the nr_running test will indeed 7010 * be correct. 7011 */ 7012 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7013 cfs_rq = &rq->cfs; 7014 7015 if (!cfs_rq->nr_running) 7016 goto idle; 7017 7018 goto simple; 7019 } 7020 } 7021 7022 se = pick_next_entity(cfs_rq, curr); 7023 cfs_rq = group_cfs_rq(se); 7024 } while (cfs_rq); 7025 7026 p = task_of(se); 7027 7028 /* 7029 * Since we haven't yet done put_prev_entity and if the selected task 7030 * is a different task than we started out with, try and touch the 7031 * least amount of cfs_rqs. 7032 */ 7033 if (prev != p) { 7034 struct sched_entity *pse = &prev->se; 7035 7036 while (!(cfs_rq = is_same_group(se, pse))) { 7037 int se_depth = se->depth; 7038 int pse_depth = pse->depth; 7039 7040 if (se_depth <= pse_depth) { 7041 put_prev_entity(cfs_rq_of(pse), pse); 7042 pse = parent_entity(pse); 7043 } 7044 if (se_depth >= pse_depth) { 7045 set_next_entity(cfs_rq_of(se), se); 7046 se = parent_entity(se); 7047 } 7048 } 7049 7050 put_prev_entity(cfs_rq, pse); 7051 set_next_entity(cfs_rq, se); 7052 } 7053 7054 goto done; 7055 simple: 7056 #endif 7057 7058 put_prev_task(rq, prev); 7059 7060 do { 7061 se = pick_next_entity(cfs_rq, NULL); 7062 set_next_entity(cfs_rq, se); 7063 cfs_rq = group_cfs_rq(se); 7064 } while (cfs_rq); 7065 7066 p = task_of(se); 7067 7068 done: __maybe_unused; 7069 #ifdef CONFIG_SMP 7070 /* 7071 * Move the next running task to the front of 7072 * the list, so our cfs_tasks list becomes MRU 7073 * one. 7074 */ 7075 list_move(&p->se.group_node, &rq->cfs_tasks); 7076 #endif 7077 7078 if (hrtick_enabled(rq)) 7079 hrtick_start_fair(rq, p); 7080 7081 update_misfit_status(p, rq); 7082 7083 return p; 7084 7085 idle: 7086 update_misfit_status(NULL, rq); 7087 new_tasks = idle_balance(rq, rf); 7088 7089 /* 7090 * Because idle_balance() releases (and re-acquires) rq->lock, it is 7091 * possible for any higher priority task to appear. In that case we 7092 * must re-start the pick_next_entity() loop. 7093 */ 7094 if (new_tasks < 0) 7095 return RETRY_TASK; 7096 7097 if (new_tasks > 0) 7098 goto again; 7099 7100 /* 7101 * rq is about to be idle, check if we need to update the 7102 * lost_idle_time of clock_pelt 7103 */ 7104 update_idle_rq_clock_pelt(rq); 7105 7106 return NULL; 7107 } 7108 7109 /* 7110 * Account for a descheduled task: 7111 */ 7112 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7113 { 7114 struct sched_entity *se = &prev->se; 7115 struct cfs_rq *cfs_rq; 7116 7117 for_each_sched_entity(se) { 7118 cfs_rq = cfs_rq_of(se); 7119 put_prev_entity(cfs_rq, se); 7120 } 7121 } 7122 7123 /* 7124 * sched_yield() is very simple 7125 * 7126 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7127 */ 7128 static void yield_task_fair(struct rq *rq) 7129 { 7130 struct task_struct *curr = rq->curr; 7131 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7132 struct sched_entity *se = &curr->se; 7133 7134 /* 7135 * Are we the only task in the tree? 7136 */ 7137 if (unlikely(rq->nr_running == 1)) 7138 return; 7139 7140 clear_buddies(cfs_rq, se); 7141 7142 if (curr->policy != SCHED_BATCH) { 7143 update_rq_clock(rq); 7144 /* 7145 * Update run-time statistics of the 'current'. 7146 */ 7147 update_curr(cfs_rq); 7148 /* 7149 * Tell update_rq_clock() that we've just updated, 7150 * so we don't do microscopic update in schedule() 7151 * and double the fastpath cost. 7152 */ 7153 rq_clock_skip_update(rq); 7154 } 7155 7156 set_skip_buddy(se); 7157 } 7158 7159 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 7160 { 7161 struct sched_entity *se = &p->se; 7162 7163 /* throttled hierarchies are not runnable */ 7164 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7165 return false; 7166 7167 /* Tell the scheduler that we'd really like pse to run next. */ 7168 set_next_buddy(se); 7169 7170 yield_task_fair(rq); 7171 7172 return true; 7173 } 7174 7175 #ifdef CONFIG_SMP 7176 /************************************************** 7177 * Fair scheduling class load-balancing methods. 7178 * 7179 * BASICS 7180 * 7181 * The purpose of load-balancing is to achieve the same basic fairness the 7182 * per-CPU scheduler provides, namely provide a proportional amount of compute 7183 * time to each task. This is expressed in the following equation: 7184 * 7185 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7186 * 7187 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7188 * W_i,0 is defined as: 7189 * 7190 * W_i,0 = \Sum_j w_i,j (2) 7191 * 7192 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7193 * is derived from the nice value as per sched_prio_to_weight[]. 7194 * 7195 * The weight average is an exponential decay average of the instantaneous 7196 * weight: 7197 * 7198 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7199 * 7200 * C_i is the compute capacity of CPU i, typically it is the 7201 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7202 * can also include other factors [XXX]. 7203 * 7204 * To achieve this balance we define a measure of imbalance which follows 7205 * directly from (1): 7206 * 7207 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7208 * 7209 * We them move tasks around to minimize the imbalance. In the continuous 7210 * function space it is obvious this converges, in the discrete case we get 7211 * a few fun cases generally called infeasible weight scenarios. 7212 * 7213 * [XXX expand on: 7214 * - infeasible weights; 7215 * - local vs global optima in the discrete case. ] 7216 * 7217 * 7218 * SCHED DOMAINS 7219 * 7220 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7221 * for all i,j solution, we create a tree of CPUs that follows the hardware 7222 * topology where each level pairs two lower groups (or better). This results 7223 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7224 * tree to only the first of the previous level and we decrease the frequency 7225 * of load-balance at each level inv. proportional to the number of CPUs in 7226 * the groups. 7227 * 7228 * This yields: 7229 * 7230 * log_2 n 1 n 7231 * \Sum { --- * --- * 2^i } = O(n) (5) 7232 * i = 0 2^i 2^i 7233 * `- size of each group 7234 * | | `- number of CPUs doing load-balance 7235 * | `- freq 7236 * `- sum over all levels 7237 * 7238 * Coupled with a limit on how many tasks we can migrate every balance pass, 7239 * this makes (5) the runtime complexity of the balancer. 7240 * 7241 * An important property here is that each CPU is still (indirectly) connected 7242 * to every other CPU in at most O(log n) steps: 7243 * 7244 * The adjacency matrix of the resulting graph is given by: 7245 * 7246 * log_2 n 7247 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7248 * k = 0 7249 * 7250 * And you'll find that: 7251 * 7252 * A^(log_2 n)_i,j != 0 for all i,j (7) 7253 * 7254 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7255 * The task movement gives a factor of O(m), giving a convergence complexity 7256 * of: 7257 * 7258 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7259 * 7260 * 7261 * WORK CONSERVING 7262 * 7263 * In order to avoid CPUs going idle while there's still work to do, new idle 7264 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7265 * tree itself instead of relying on other CPUs to bring it work. 7266 * 7267 * This adds some complexity to both (5) and (8) but it reduces the total idle 7268 * time. 7269 * 7270 * [XXX more?] 7271 * 7272 * 7273 * CGROUPS 7274 * 7275 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7276 * 7277 * s_k,i 7278 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7279 * S_k 7280 * 7281 * Where 7282 * 7283 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7284 * 7285 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7286 * 7287 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7288 * property. 7289 * 7290 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7291 * rewrite all of this once again.] 7292 */ 7293 7294 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7295 7296 enum fbq_type { regular, remote, all }; 7297 7298 enum group_type { 7299 group_other = 0, 7300 group_misfit_task, 7301 group_imbalanced, 7302 group_overloaded, 7303 }; 7304 7305 #define LBF_ALL_PINNED 0x01 7306 #define LBF_NEED_BREAK 0x02 7307 #define LBF_DST_PINNED 0x04 7308 #define LBF_SOME_PINNED 0x08 7309 #define LBF_NOHZ_STATS 0x10 7310 #define LBF_NOHZ_AGAIN 0x20 7311 7312 struct lb_env { 7313 struct sched_domain *sd; 7314 7315 struct rq *src_rq; 7316 int src_cpu; 7317 7318 int dst_cpu; 7319 struct rq *dst_rq; 7320 7321 struct cpumask *dst_grpmask; 7322 int new_dst_cpu; 7323 enum cpu_idle_type idle; 7324 long imbalance; 7325 /* The set of CPUs under consideration for load-balancing */ 7326 struct cpumask *cpus; 7327 7328 unsigned int flags; 7329 7330 unsigned int loop; 7331 unsigned int loop_break; 7332 unsigned int loop_max; 7333 7334 enum fbq_type fbq_type; 7335 enum group_type src_grp_type; 7336 struct list_head tasks; 7337 }; 7338 7339 /* 7340 * Is this task likely cache-hot: 7341 */ 7342 static int task_hot(struct task_struct *p, struct lb_env *env) 7343 { 7344 s64 delta; 7345 7346 lockdep_assert_held(&env->src_rq->lock); 7347 7348 if (p->sched_class != &fair_sched_class) 7349 return 0; 7350 7351 if (unlikely(task_has_idle_policy(p))) 7352 return 0; 7353 7354 /* 7355 * Buddy candidates are cache hot: 7356 */ 7357 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7358 (&p->se == cfs_rq_of(&p->se)->next || 7359 &p->se == cfs_rq_of(&p->se)->last)) 7360 return 1; 7361 7362 if (sysctl_sched_migration_cost == -1) 7363 return 1; 7364 if (sysctl_sched_migration_cost == 0) 7365 return 0; 7366 7367 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7368 7369 return delta < (s64)sysctl_sched_migration_cost; 7370 } 7371 7372 #ifdef CONFIG_NUMA_BALANCING 7373 /* 7374 * Returns 1, if task migration degrades locality 7375 * Returns 0, if task migration improves locality i.e migration preferred. 7376 * Returns -1, if task migration is not affected by locality. 7377 */ 7378 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7379 { 7380 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7381 unsigned long src_weight, dst_weight; 7382 int src_nid, dst_nid, dist; 7383 7384 if (!static_branch_likely(&sched_numa_balancing)) 7385 return -1; 7386 7387 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7388 return -1; 7389 7390 src_nid = cpu_to_node(env->src_cpu); 7391 dst_nid = cpu_to_node(env->dst_cpu); 7392 7393 if (src_nid == dst_nid) 7394 return -1; 7395 7396 /* Migrating away from the preferred node is always bad. */ 7397 if (src_nid == p->numa_preferred_nid) { 7398 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7399 return 1; 7400 else 7401 return -1; 7402 } 7403 7404 /* Encourage migration to the preferred node. */ 7405 if (dst_nid == p->numa_preferred_nid) 7406 return 0; 7407 7408 /* Leaving a core idle is often worse than degrading locality. */ 7409 if (env->idle == CPU_IDLE) 7410 return -1; 7411 7412 dist = node_distance(src_nid, dst_nid); 7413 if (numa_group) { 7414 src_weight = group_weight(p, src_nid, dist); 7415 dst_weight = group_weight(p, dst_nid, dist); 7416 } else { 7417 src_weight = task_weight(p, src_nid, dist); 7418 dst_weight = task_weight(p, dst_nid, dist); 7419 } 7420 7421 return dst_weight < src_weight; 7422 } 7423 7424 #else 7425 static inline int migrate_degrades_locality(struct task_struct *p, 7426 struct lb_env *env) 7427 { 7428 return -1; 7429 } 7430 #endif 7431 7432 /* 7433 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7434 */ 7435 static 7436 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7437 { 7438 int tsk_cache_hot; 7439 7440 lockdep_assert_held(&env->src_rq->lock); 7441 7442 /* 7443 * We do not migrate tasks that are: 7444 * 1) throttled_lb_pair, or 7445 * 2) cannot be migrated to this CPU due to cpus_allowed, or 7446 * 3) running (obviously), or 7447 * 4) are cache-hot on their current CPU. 7448 */ 7449 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7450 return 0; 7451 7452 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) { 7453 int cpu; 7454 7455 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7456 7457 env->flags |= LBF_SOME_PINNED; 7458 7459 /* 7460 * Remember if this task can be migrated to any other CPU in 7461 * our sched_group. We may want to revisit it if we couldn't 7462 * meet load balance goals by pulling other tasks on src_cpu. 7463 * 7464 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7465 * already computed one in current iteration. 7466 */ 7467 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7468 return 0; 7469 7470 /* Prevent to re-select dst_cpu via env's CPUs: */ 7471 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7472 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) { 7473 env->flags |= LBF_DST_PINNED; 7474 env->new_dst_cpu = cpu; 7475 break; 7476 } 7477 } 7478 7479 return 0; 7480 } 7481 7482 /* Record that we found atleast one task that could run on dst_cpu */ 7483 env->flags &= ~LBF_ALL_PINNED; 7484 7485 if (task_running(env->src_rq, p)) { 7486 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7487 return 0; 7488 } 7489 7490 /* 7491 * Aggressive migration if: 7492 * 1) destination numa is preferred 7493 * 2) task is cache cold, or 7494 * 3) too many balance attempts have failed. 7495 */ 7496 tsk_cache_hot = migrate_degrades_locality(p, env); 7497 if (tsk_cache_hot == -1) 7498 tsk_cache_hot = task_hot(p, env); 7499 7500 if (tsk_cache_hot <= 0 || 7501 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7502 if (tsk_cache_hot == 1) { 7503 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7504 schedstat_inc(p->se.statistics.nr_forced_migrations); 7505 } 7506 return 1; 7507 } 7508 7509 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7510 return 0; 7511 } 7512 7513 /* 7514 * detach_task() -- detach the task for the migration specified in env 7515 */ 7516 static void detach_task(struct task_struct *p, struct lb_env *env) 7517 { 7518 lockdep_assert_held(&env->src_rq->lock); 7519 7520 p->on_rq = TASK_ON_RQ_MIGRATING; 7521 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7522 set_task_cpu(p, env->dst_cpu); 7523 } 7524 7525 /* 7526 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7527 * part of active balancing operations within "domain". 7528 * 7529 * Returns a task if successful and NULL otherwise. 7530 */ 7531 static struct task_struct *detach_one_task(struct lb_env *env) 7532 { 7533 struct task_struct *p; 7534 7535 lockdep_assert_held(&env->src_rq->lock); 7536 7537 list_for_each_entry_reverse(p, 7538 &env->src_rq->cfs_tasks, se.group_node) { 7539 if (!can_migrate_task(p, env)) 7540 continue; 7541 7542 detach_task(p, env); 7543 7544 /* 7545 * Right now, this is only the second place where 7546 * lb_gained[env->idle] is updated (other is detach_tasks) 7547 * so we can safely collect stats here rather than 7548 * inside detach_tasks(). 7549 */ 7550 schedstat_inc(env->sd->lb_gained[env->idle]); 7551 return p; 7552 } 7553 return NULL; 7554 } 7555 7556 static const unsigned int sched_nr_migrate_break = 32; 7557 7558 /* 7559 * detach_tasks() -- tries to detach up to imbalance weighted load from 7560 * busiest_rq, as part of a balancing operation within domain "sd". 7561 * 7562 * Returns number of detached tasks if successful and 0 otherwise. 7563 */ 7564 static int detach_tasks(struct lb_env *env) 7565 { 7566 struct list_head *tasks = &env->src_rq->cfs_tasks; 7567 struct task_struct *p; 7568 unsigned long load; 7569 int detached = 0; 7570 7571 lockdep_assert_held(&env->src_rq->lock); 7572 7573 if (env->imbalance <= 0) 7574 return 0; 7575 7576 while (!list_empty(tasks)) { 7577 /* 7578 * We don't want to steal all, otherwise we may be treated likewise, 7579 * which could at worst lead to a livelock crash. 7580 */ 7581 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7582 break; 7583 7584 p = list_last_entry(tasks, struct task_struct, se.group_node); 7585 7586 env->loop++; 7587 /* We've more or less seen every task there is, call it quits */ 7588 if (env->loop > env->loop_max) 7589 break; 7590 7591 /* take a breather every nr_migrate tasks */ 7592 if (env->loop > env->loop_break) { 7593 env->loop_break += sched_nr_migrate_break; 7594 env->flags |= LBF_NEED_BREAK; 7595 break; 7596 } 7597 7598 if (!can_migrate_task(p, env)) 7599 goto next; 7600 7601 load = task_h_load(p); 7602 7603 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 7604 goto next; 7605 7606 if ((load / 2) > env->imbalance) 7607 goto next; 7608 7609 detach_task(p, env); 7610 list_add(&p->se.group_node, &env->tasks); 7611 7612 detached++; 7613 env->imbalance -= load; 7614 7615 #ifdef CONFIG_PREEMPT 7616 /* 7617 * NEWIDLE balancing is a source of latency, so preemptible 7618 * kernels will stop after the first task is detached to minimize 7619 * the critical section. 7620 */ 7621 if (env->idle == CPU_NEWLY_IDLE) 7622 break; 7623 #endif 7624 7625 /* 7626 * We only want to steal up to the prescribed amount of 7627 * weighted load. 7628 */ 7629 if (env->imbalance <= 0) 7630 break; 7631 7632 continue; 7633 next: 7634 list_move(&p->se.group_node, tasks); 7635 } 7636 7637 /* 7638 * Right now, this is one of only two places we collect this stat 7639 * so we can safely collect detach_one_task() stats here rather 7640 * than inside detach_one_task(). 7641 */ 7642 schedstat_add(env->sd->lb_gained[env->idle], detached); 7643 7644 return detached; 7645 } 7646 7647 /* 7648 * attach_task() -- attach the task detached by detach_task() to its new rq. 7649 */ 7650 static void attach_task(struct rq *rq, struct task_struct *p) 7651 { 7652 lockdep_assert_held(&rq->lock); 7653 7654 BUG_ON(task_rq(p) != rq); 7655 activate_task(rq, p, ENQUEUE_NOCLOCK); 7656 p->on_rq = TASK_ON_RQ_QUEUED; 7657 check_preempt_curr(rq, p, 0); 7658 } 7659 7660 /* 7661 * attach_one_task() -- attaches the task returned from detach_one_task() to 7662 * its new rq. 7663 */ 7664 static void attach_one_task(struct rq *rq, struct task_struct *p) 7665 { 7666 struct rq_flags rf; 7667 7668 rq_lock(rq, &rf); 7669 update_rq_clock(rq); 7670 attach_task(rq, p); 7671 rq_unlock(rq, &rf); 7672 } 7673 7674 /* 7675 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7676 * new rq. 7677 */ 7678 static void attach_tasks(struct lb_env *env) 7679 { 7680 struct list_head *tasks = &env->tasks; 7681 struct task_struct *p; 7682 struct rq_flags rf; 7683 7684 rq_lock(env->dst_rq, &rf); 7685 update_rq_clock(env->dst_rq); 7686 7687 while (!list_empty(tasks)) { 7688 p = list_first_entry(tasks, struct task_struct, se.group_node); 7689 list_del_init(&p->se.group_node); 7690 7691 attach_task(env->dst_rq, p); 7692 } 7693 7694 rq_unlock(env->dst_rq, &rf); 7695 } 7696 7697 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7698 { 7699 if (cfs_rq->avg.load_avg) 7700 return true; 7701 7702 if (cfs_rq->avg.util_avg) 7703 return true; 7704 7705 return false; 7706 } 7707 7708 static inline bool others_have_blocked(struct rq *rq) 7709 { 7710 if (READ_ONCE(rq->avg_rt.util_avg)) 7711 return true; 7712 7713 if (READ_ONCE(rq->avg_dl.util_avg)) 7714 return true; 7715 7716 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 7717 if (READ_ONCE(rq->avg_irq.util_avg)) 7718 return true; 7719 #endif 7720 7721 return false; 7722 } 7723 7724 #ifdef CONFIG_FAIR_GROUP_SCHED 7725 7726 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7727 { 7728 if (cfs_rq->load.weight) 7729 return false; 7730 7731 if (cfs_rq->avg.load_sum) 7732 return false; 7733 7734 if (cfs_rq->avg.util_sum) 7735 return false; 7736 7737 if (cfs_rq->avg.runnable_load_sum) 7738 return false; 7739 7740 return true; 7741 } 7742 7743 static void update_blocked_averages(int cpu) 7744 { 7745 struct rq *rq = cpu_rq(cpu); 7746 struct cfs_rq *cfs_rq, *pos; 7747 const struct sched_class *curr_class; 7748 struct rq_flags rf; 7749 bool done = true; 7750 7751 rq_lock_irqsave(rq, &rf); 7752 update_rq_clock(rq); 7753 7754 /* 7755 * Iterates the task_group tree in a bottom up fashion, see 7756 * list_add_leaf_cfs_rq() for details. 7757 */ 7758 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7759 struct sched_entity *se; 7760 7761 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) 7762 update_tg_load_avg(cfs_rq, 0); 7763 7764 /* Propagate pending load changes to the parent, if any: */ 7765 se = cfs_rq->tg->se[cpu]; 7766 if (se && !skip_blocked_update(se)) 7767 update_load_avg(cfs_rq_of(se), se, 0); 7768 7769 /* 7770 * There can be a lot of idle CPU cgroups. Don't let fully 7771 * decayed cfs_rqs linger on the list. 7772 */ 7773 if (cfs_rq_is_decayed(cfs_rq)) 7774 list_del_leaf_cfs_rq(cfs_rq); 7775 7776 /* Don't need periodic decay once load/util_avg are null */ 7777 if (cfs_rq_has_blocked(cfs_rq)) 7778 done = false; 7779 } 7780 7781 curr_class = rq->curr->sched_class; 7782 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class); 7783 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class); 7784 update_irq_load_avg(rq, 0); 7785 /* Don't need periodic decay once load/util_avg are null */ 7786 if (others_have_blocked(rq)) 7787 done = false; 7788 7789 #ifdef CONFIG_NO_HZ_COMMON 7790 rq->last_blocked_load_update_tick = jiffies; 7791 if (done) 7792 rq->has_blocked_load = 0; 7793 #endif 7794 rq_unlock_irqrestore(rq, &rf); 7795 } 7796 7797 /* 7798 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7799 * This needs to be done in a top-down fashion because the load of a child 7800 * group is a fraction of its parents load. 7801 */ 7802 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7803 { 7804 struct rq *rq = rq_of(cfs_rq); 7805 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7806 unsigned long now = jiffies; 7807 unsigned long load; 7808 7809 if (cfs_rq->last_h_load_update == now) 7810 return; 7811 7812 WRITE_ONCE(cfs_rq->h_load_next, NULL); 7813 for_each_sched_entity(se) { 7814 cfs_rq = cfs_rq_of(se); 7815 WRITE_ONCE(cfs_rq->h_load_next, se); 7816 if (cfs_rq->last_h_load_update == now) 7817 break; 7818 } 7819 7820 if (!se) { 7821 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7822 cfs_rq->last_h_load_update = now; 7823 } 7824 7825 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 7826 load = cfs_rq->h_load; 7827 load = div64_ul(load * se->avg.load_avg, 7828 cfs_rq_load_avg(cfs_rq) + 1); 7829 cfs_rq = group_cfs_rq(se); 7830 cfs_rq->h_load = load; 7831 cfs_rq->last_h_load_update = now; 7832 } 7833 } 7834 7835 static unsigned long task_h_load(struct task_struct *p) 7836 { 7837 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7838 7839 update_cfs_rq_h_load(cfs_rq); 7840 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7841 cfs_rq_load_avg(cfs_rq) + 1); 7842 } 7843 #else 7844 static inline void update_blocked_averages(int cpu) 7845 { 7846 struct rq *rq = cpu_rq(cpu); 7847 struct cfs_rq *cfs_rq = &rq->cfs; 7848 const struct sched_class *curr_class; 7849 struct rq_flags rf; 7850 7851 rq_lock_irqsave(rq, &rf); 7852 update_rq_clock(rq); 7853 update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 7854 7855 curr_class = rq->curr->sched_class; 7856 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class); 7857 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class); 7858 update_irq_load_avg(rq, 0); 7859 #ifdef CONFIG_NO_HZ_COMMON 7860 rq->last_blocked_load_update_tick = jiffies; 7861 if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq)) 7862 rq->has_blocked_load = 0; 7863 #endif 7864 rq_unlock_irqrestore(rq, &rf); 7865 } 7866 7867 static unsigned long task_h_load(struct task_struct *p) 7868 { 7869 return p->se.avg.load_avg; 7870 } 7871 #endif 7872 7873 /********** Helpers for find_busiest_group ************************/ 7874 7875 /* 7876 * sg_lb_stats - stats of a sched_group required for load_balancing 7877 */ 7878 struct sg_lb_stats { 7879 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7880 unsigned long group_load; /* Total load over the CPUs of the group */ 7881 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 7882 unsigned long load_per_task; 7883 unsigned long group_capacity; 7884 unsigned long group_util; /* Total utilization of the group */ 7885 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7886 unsigned int idle_cpus; 7887 unsigned int group_weight; 7888 enum group_type group_type; 7889 int group_no_capacity; 7890 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 7891 #ifdef CONFIG_NUMA_BALANCING 7892 unsigned int nr_numa_running; 7893 unsigned int nr_preferred_running; 7894 #endif 7895 }; 7896 7897 /* 7898 * sd_lb_stats - Structure to store the statistics of a sched_domain 7899 * during load balancing. 7900 */ 7901 struct sd_lb_stats { 7902 struct sched_group *busiest; /* Busiest group in this sd */ 7903 struct sched_group *local; /* Local group in this sd */ 7904 unsigned long total_running; 7905 unsigned long total_load; /* Total load of all groups in sd */ 7906 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7907 unsigned long avg_load; /* Average load across all groups in sd */ 7908 7909 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7910 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7911 }; 7912 7913 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7914 { 7915 /* 7916 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7917 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7918 * We must however clear busiest_stat::avg_load because 7919 * update_sd_pick_busiest() reads this before assignment. 7920 */ 7921 *sds = (struct sd_lb_stats){ 7922 .busiest = NULL, 7923 .local = NULL, 7924 .total_running = 0UL, 7925 .total_load = 0UL, 7926 .total_capacity = 0UL, 7927 .busiest_stat = { 7928 .avg_load = 0UL, 7929 .sum_nr_running = 0, 7930 .group_type = group_other, 7931 }, 7932 }; 7933 } 7934 7935 /** 7936 * get_sd_load_idx - Obtain the load index for a given sched domain. 7937 * @sd: The sched_domain whose load_idx is to be obtained. 7938 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 7939 * 7940 * Return: The load index. 7941 */ 7942 static inline int get_sd_load_idx(struct sched_domain *sd, 7943 enum cpu_idle_type idle) 7944 { 7945 int load_idx; 7946 7947 switch (idle) { 7948 case CPU_NOT_IDLE: 7949 load_idx = sd->busy_idx; 7950 break; 7951 7952 case CPU_NEWLY_IDLE: 7953 load_idx = sd->newidle_idx; 7954 break; 7955 default: 7956 load_idx = sd->idle_idx; 7957 break; 7958 } 7959 7960 return load_idx; 7961 } 7962 7963 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu) 7964 { 7965 struct rq *rq = cpu_rq(cpu); 7966 unsigned long max = arch_scale_cpu_capacity(sd, cpu); 7967 unsigned long used, free; 7968 unsigned long irq; 7969 7970 irq = cpu_util_irq(rq); 7971 7972 if (unlikely(irq >= max)) 7973 return 1; 7974 7975 used = READ_ONCE(rq->avg_rt.util_avg); 7976 used += READ_ONCE(rq->avg_dl.util_avg); 7977 7978 if (unlikely(used >= max)) 7979 return 1; 7980 7981 free = max - used; 7982 7983 return scale_irq_capacity(free, irq, max); 7984 } 7985 7986 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7987 { 7988 unsigned long capacity = scale_rt_capacity(sd, cpu); 7989 struct sched_group *sdg = sd->groups; 7990 7991 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu); 7992 7993 if (!capacity) 7994 capacity = 1; 7995 7996 cpu_rq(cpu)->cpu_capacity = capacity; 7997 sdg->sgc->capacity = capacity; 7998 sdg->sgc->min_capacity = capacity; 7999 sdg->sgc->max_capacity = capacity; 8000 } 8001 8002 void update_group_capacity(struct sched_domain *sd, int cpu) 8003 { 8004 struct sched_domain *child = sd->child; 8005 struct sched_group *group, *sdg = sd->groups; 8006 unsigned long capacity, min_capacity, max_capacity; 8007 unsigned long interval; 8008 8009 interval = msecs_to_jiffies(sd->balance_interval); 8010 interval = clamp(interval, 1UL, max_load_balance_interval); 8011 sdg->sgc->next_update = jiffies + interval; 8012 8013 if (!child) { 8014 update_cpu_capacity(sd, cpu); 8015 return; 8016 } 8017 8018 capacity = 0; 8019 min_capacity = ULONG_MAX; 8020 max_capacity = 0; 8021 8022 if (child->flags & SD_OVERLAP) { 8023 /* 8024 * SD_OVERLAP domains cannot assume that child groups 8025 * span the current group. 8026 */ 8027 8028 for_each_cpu(cpu, sched_group_span(sdg)) { 8029 struct sched_group_capacity *sgc; 8030 struct rq *rq = cpu_rq(cpu); 8031 8032 /* 8033 * build_sched_domains() -> init_sched_groups_capacity() 8034 * gets here before we've attached the domains to the 8035 * runqueues. 8036 * 8037 * Use capacity_of(), which is set irrespective of domains 8038 * in update_cpu_capacity(). 8039 * 8040 * This avoids capacity from being 0 and 8041 * causing divide-by-zero issues on boot. 8042 */ 8043 if (unlikely(!rq->sd)) { 8044 capacity += capacity_of(cpu); 8045 } else { 8046 sgc = rq->sd->groups->sgc; 8047 capacity += sgc->capacity; 8048 } 8049 8050 min_capacity = min(capacity, min_capacity); 8051 max_capacity = max(capacity, max_capacity); 8052 } 8053 } else { 8054 /* 8055 * !SD_OVERLAP domains can assume that child groups 8056 * span the current group. 8057 */ 8058 8059 group = child->groups; 8060 do { 8061 struct sched_group_capacity *sgc = group->sgc; 8062 8063 capacity += sgc->capacity; 8064 min_capacity = min(sgc->min_capacity, min_capacity); 8065 max_capacity = max(sgc->max_capacity, max_capacity); 8066 group = group->next; 8067 } while (group != child->groups); 8068 } 8069 8070 sdg->sgc->capacity = capacity; 8071 sdg->sgc->min_capacity = min_capacity; 8072 sdg->sgc->max_capacity = max_capacity; 8073 } 8074 8075 /* 8076 * Check whether the capacity of the rq has been noticeably reduced by side 8077 * activity. The imbalance_pct is used for the threshold. 8078 * Return true is the capacity is reduced 8079 */ 8080 static inline int 8081 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8082 { 8083 return ((rq->cpu_capacity * sd->imbalance_pct) < 8084 (rq->cpu_capacity_orig * 100)); 8085 } 8086 8087 /* 8088 * Check whether a rq has a misfit task and if it looks like we can actually 8089 * help that task: we can migrate the task to a CPU of higher capacity, or 8090 * the task's current CPU is heavily pressured. 8091 */ 8092 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8093 { 8094 return rq->misfit_task_load && 8095 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8096 check_cpu_capacity(rq, sd)); 8097 } 8098 8099 /* 8100 * Group imbalance indicates (and tries to solve) the problem where balancing 8101 * groups is inadequate due to ->cpus_allowed constraints. 8102 * 8103 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8104 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8105 * Something like: 8106 * 8107 * { 0 1 2 3 } { 4 5 6 7 } 8108 * * * * * 8109 * 8110 * If we were to balance group-wise we'd place two tasks in the first group and 8111 * two tasks in the second group. Clearly this is undesired as it will overload 8112 * cpu 3 and leave one of the CPUs in the second group unused. 8113 * 8114 * The current solution to this issue is detecting the skew in the first group 8115 * by noticing the lower domain failed to reach balance and had difficulty 8116 * moving tasks due to affinity constraints. 8117 * 8118 * When this is so detected; this group becomes a candidate for busiest; see 8119 * update_sd_pick_busiest(). And calculate_imbalance() and 8120 * find_busiest_group() avoid some of the usual balance conditions to allow it 8121 * to create an effective group imbalance. 8122 * 8123 * This is a somewhat tricky proposition since the next run might not find the 8124 * group imbalance and decide the groups need to be balanced again. A most 8125 * subtle and fragile situation. 8126 */ 8127 8128 static inline int sg_imbalanced(struct sched_group *group) 8129 { 8130 return group->sgc->imbalance; 8131 } 8132 8133 /* 8134 * group_has_capacity returns true if the group has spare capacity that could 8135 * be used by some tasks. 8136 * We consider that a group has spare capacity if the * number of task is 8137 * smaller than the number of CPUs or if the utilization is lower than the 8138 * available capacity for CFS tasks. 8139 * For the latter, we use a threshold to stabilize the state, to take into 8140 * account the variance of the tasks' load and to return true if the available 8141 * capacity in meaningful for the load balancer. 8142 * As an example, an available capacity of 1% can appear but it doesn't make 8143 * any benefit for the load balance. 8144 */ 8145 static inline bool 8146 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 8147 { 8148 if (sgs->sum_nr_running < sgs->group_weight) 8149 return true; 8150 8151 if ((sgs->group_capacity * 100) > 8152 (sgs->group_util * env->sd->imbalance_pct)) 8153 return true; 8154 8155 return false; 8156 } 8157 8158 /* 8159 * group_is_overloaded returns true if the group has more tasks than it can 8160 * handle. 8161 * group_is_overloaded is not equals to !group_has_capacity because a group 8162 * with the exact right number of tasks, has no more spare capacity but is not 8163 * overloaded so both group_has_capacity and group_is_overloaded return 8164 * false. 8165 */ 8166 static inline bool 8167 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 8168 { 8169 if (sgs->sum_nr_running <= sgs->group_weight) 8170 return false; 8171 8172 if ((sgs->group_capacity * 100) < 8173 (sgs->group_util * env->sd->imbalance_pct)) 8174 return true; 8175 8176 return false; 8177 } 8178 8179 /* 8180 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller 8181 * per-CPU capacity than sched_group ref. 8182 */ 8183 static inline bool 8184 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 8185 { 8186 return sg->sgc->min_capacity * capacity_margin < 8187 ref->sgc->min_capacity * 1024; 8188 } 8189 8190 /* 8191 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller 8192 * per-CPU capacity_orig than sched_group ref. 8193 */ 8194 static inline bool 8195 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 8196 { 8197 return sg->sgc->max_capacity * capacity_margin < 8198 ref->sgc->max_capacity * 1024; 8199 } 8200 8201 static inline enum 8202 group_type group_classify(struct sched_group *group, 8203 struct sg_lb_stats *sgs) 8204 { 8205 if (sgs->group_no_capacity) 8206 return group_overloaded; 8207 8208 if (sg_imbalanced(group)) 8209 return group_imbalanced; 8210 8211 if (sgs->group_misfit_task_load) 8212 return group_misfit_task; 8213 8214 return group_other; 8215 } 8216 8217 static bool update_nohz_stats(struct rq *rq, bool force) 8218 { 8219 #ifdef CONFIG_NO_HZ_COMMON 8220 unsigned int cpu = rq->cpu; 8221 8222 if (!rq->has_blocked_load) 8223 return false; 8224 8225 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 8226 return false; 8227 8228 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 8229 return true; 8230 8231 update_blocked_averages(cpu); 8232 8233 return rq->has_blocked_load; 8234 #else 8235 return false; 8236 #endif 8237 } 8238 8239 /** 8240 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8241 * @env: The load balancing environment. 8242 * @group: sched_group whose statistics are to be updated. 8243 * @sgs: variable to hold the statistics for this group. 8244 * @sg_status: Holds flag indicating the status of the sched_group 8245 */ 8246 static inline void update_sg_lb_stats(struct lb_env *env, 8247 struct sched_group *group, 8248 struct sg_lb_stats *sgs, 8249 int *sg_status) 8250 { 8251 int local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group)); 8252 int load_idx = get_sd_load_idx(env->sd, env->idle); 8253 unsigned long load; 8254 int i, nr_running; 8255 8256 memset(sgs, 0, sizeof(*sgs)); 8257 8258 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8259 struct rq *rq = cpu_rq(i); 8260 8261 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 8262 env->flags |= LBF_NOHZ_AGAIN; 8263 8264 /* Bias balancing toward CPUs of our domain: */ 8265 if (local_group) 8266 load = target_load(i, load_idx); 8267 else 8268 load = source_load(i, load_idx); 8269 8270 sgs->group_load += load; 8271 sgs->group_util += cpu_util(i); 8272 sgs->sum_nr_running += rq->cfs.h_nr_running; 8273 8274 nr_running = rq->nr_running; 8275 if (nr_running > 1) 8276 *sg_status |= SG_OVERLOAD; 8277 8278 if (cpu_overutilized(i)) 8279 *sg_status |= SG_OVERUTILIZED; 8280 8281 #ifdef CONFIG_NUMA_BALANCING 8282 sgs->nr_numa_running += rq->nr_numa_running; 8283 sgs->nr_preferred_running += rq->nr_preferred_running; 8284 #endif 8285 sgs->sum_weighted_load += weighted_cpuload(rq); 8286 /* 8287 * No need to call idle_cpu() if nr_running is not 0 8288 */ 8289 if (!nr_running && idle_cpu(i)) 8290 sgs->idle_cpus++; 8291 8292 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8293 sgs->group_misfit_task_load < rq->misfit_task_load) { 8294 sgs->group_misfit_task_load = rq->misfit_task_load; 8295 *sg_status |= SG_OVERLOAD; 8296 } 8297 } 8298 8299 /* Adjust by relative CPU capacity of the group */ 8300 sgs->group_capacity = group->sgc->capacity; 8301 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 8302 8303 if (sgs->sum_nr_running) 8304 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 8305 8306 sgs->group_weight = group->group_weight; 8307 8308 sgs->group_no_capacity = group_is_overloaded(env, sgs); 8309 sgs->group_type = group_classify(group, sgs); 8310 } 8311 8312 /** 8313 * update_sd_pick_busiest - return 1 on busiest group 8314 * @env: The load balancing environment. 8315 * @sds: sched_domain statistics 8316 * @sg: sched_group candidate to be checked for being the busiest 8317 * @sgs: sched_group statistics 8318 * 8319 * Determine if @sg is a busier group than the previously selected 8320 * busiest group. 8321 * 8322 * Return: %true if @sg is a busier group than the previously selected 8323 * busiest group. %false otherwise. 8324 */ 8325 static bool update_sd_pick_busiest(struct lb_env *env, 8326 struct sd_lb_stats *sds, 8327 struct sched_group *sg, 8328 struct sg_lb_stats *sgs) 8329 { 8330 struct sg_lb_stats *busiest = &sds->busiest_stat; 8331 8332 /* 8333 * Don't try to pull misfit tasks we can't help. 8334 * We can use max_capacity here as reduction in capacity on some 8335 * CPUs in the group should either be possible to resolve 8336 * internally or be covered by avg_load imbalance (eventually). 8337 */ 8338 if (sgs->group_type == group_misfit_task && 8339 (!group_smaller_max_cpu_capacity(sg, sds->local) || 8340 !group_has_capacity(env, &sds->local_stat))) 8341 return false; 8342 8343 if (sgs->group_type > busiest->group_type) 8344 return true; 8345 8346 if (sgs->group_type < busiest->group_type) 8347 return false; 8348 8349 if (sgs->avg_load <= busiest->avg_load) 8350 return false; 8351 8352 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 8353 goto asym_packing; 8354 8355 /* 8356 * Candidate sg has no more than one task per CPU and 8357 * has higher per-CPU capacity. Migrating tasks to less 8358 * capable CPUs may harm throughput. Maximize throughput, 8359 * power/energy consequences are not considered. 8360 */ 8361 if (sgs->sum_nr_running <= sgs->group_weight && 8362 group_smaller_min_cpu_capacity(sds->local, sg)) 8363 return false; 8364 8365 /* 8366 * If we have more than one misfit sg go with the biggest misfit. 8367 */ 8368 if (sgs->group_type == group_misfit_task && 8369 sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8370 return false; 8371 8372 asym_packing: 8373 /* This is the busiest node in its class. */ 8374 if (!(env->sd->flags & SD_ASYM_PACKING)) 8375 return true; 8376 8377 /* No ASYM_PACKING if target CPU is already busy */ 8378 if (env->idle == CPU_NOT_IDLE) 8379 return true; 8380 /* 8381 * ASYM_PACKING needs to move all the work to the highest 8382 * prority CPUs in the group, therefore mark all groups 8383 * of lower priority than ourself as busy. 8384 */ 8385 if (sgs->sum_nr_running && 8386 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 8387 if (!sds->busiest) 8388 return true; 8389 8390 /* Prefer to move from lowest priority CPU's work */ 8391 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 8392 sg->asym_prefer_cpu)) 8393 return true; 8394 } 8395 8396 return false; 8397 } 8398 8399 #ifdef CONFIG_NUMA_BALANCING 8400 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8401 { 8402 if (sgs->sum_nr_running > sgs->nr_numa_running) 8403 return regular; 8404 if (sgs->sum_nr_running > sgs->nr_preferred_running) 8405 return remote; 8406 return all; 8407 } 8408 8409 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8410 { 8411 if (rq->nr_running > rq->nr_numa_running) 8412 return regular; 8413 if (rq->nr_running > rq->nr_preferred_running) 8414 return remote; 8415 return all; 8416 } 8417 #else 8418 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8419 { 8420 return all; 8421 } 8422 8423 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8424 { 8425 return regular; 8426 } 8427 #endif /* CONFIG_NUMA_BALANCING */ 8428 8429 /** 8430 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 8431 * @env: The load balancing environment. 8432 * @sds: variable to hold the statistics for this sched_domain. 8433 */ 8434 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 8435 { 8436 struct sched_domain *child = env->sd->child; 8437 struct sched_group *sg = env->sd->groups; 8438 struct sg_lb_stats *local = &sds->local_stat; 8439 struct sg_lb_stats tmp_sgs; 8440 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 8441 int sg_status = 0; 8442 8443 #ifdef CONFIG_NO_HZ_COMMON 8444 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 8445 env->flags |= LBF_NOHZ_STATS; 8446 #endif 8447 8448 do { 8449 struct sg_lb_stats *sgs = &tmp_sgs; 8450 int local_group; 8451 8452 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 8453 if (local_group) { 8454 sds->local = sg; 8455 sgs = local; 8456 8457 if (env->idle != CPU_NEWLY_IDLE || 8458 time_after_eq(jiffies, sg->sgc->next_update)) 8459 update_group_capacity(env->sd, env->dst_cpu); 8460 } 8461 8462 update_sg_lb_stats(env, sg, sgs, &sg_status); 8463 8464 if (local_group) 8465 goto next_group; 8466 8467 /* 8468 * In case the child domain prefers tasks go to siblings 8469 * first, lower the sg capacity so that we'll try 8470 * and move all the excess tasks away. We lower the capacity 8471 * of a group only if the local group has the capacity to fit 8472 * these excess tasks. The extra check prevents the case where 8473 * you always pull from the heaviest group when it is already 8474 * under-utilized (possible with a large weight task outweighs 8475 * the tasks on the system). 8476 */ 8477 if (prefer_sibling && sds->local && 8478 group_has_capacity(env, local) && 8479 (sgs->sum_nr_running > local->sum_nr_running + 1)) { 8480 sgs->group_no_capacity = 1; 8481 sgs->group_type = group_classify(sg, sgs); 8482 } 8483 8484 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 8485 sds->busiest = sg; 8486 sds->busiest_stat = *sgs; 8487 } 8488 8489 next_group: 8490 /* Now, start updating sd_lb_stats */ 8491 sds->total_running += sgs->sum_nr_running; 8492 sds->total_load += sgs->group_load; 8493 sds->total_capacity += sgs->group_capacity; 8494 8495 sg = sg->next; 8496 } while (sg != env->sd->groups); 8497 8498 #ifdef CONFIG_NO_HZ_COMMON 8499 if ((env->flags & LBF_NOHZ_AGAIN) && 8500 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 8501 8502 WRITE_ONCE(nohz.next_blocked, 8503 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 8504 } 8505 #endif 8506 8507 if (env->sd->flags & SD_NUMA) 8508 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8509 8510 if (!env->sd->parent) { 8511 struct root_domain *rd = env->dst_rq->rd; 8512 8513 /* update overload indicator if we are at root domain */ 8514 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 8515 8516 /* Update over-utilization (tipping point, U >= 0) indicator */ 8517 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 8518 } else if (sg_status & SG_OVERUTILIZED) { 8519 WRITE_ONCE(env->dst_rq->rd->overutilized, SG_OVERUTILIZED); 8520 } 8521 } 8522 8523 /** 8524 * check_asym_packing - Check to see if the group is packed into the 8525 * sched domain. 8526 * 8527 * This is primarily intended to used at the sibling level. Some 8528 * cores like POWER7 prefer to use lower numbered SMT threads. In the 8529 * case of POWER7, it can move to lower SMT modes only when higher 8530 * threads are idle. When in lower SMT modes, the threads will 8531 * perform better since they share less core resources. Hence when we 8532 * have idle threads, we want them to be the higher ones. 8533 * 8534 * This packing function is run on idle threads. It checks to see if 8535 * the busiest CPU in this domain (core in the P7 case) has a higher 8536 * CPU number than the packing function is being run on. Here we are 8537 * assuming lower CPU number will be equivalent to lower a SMT thread 8538 * number. 8539 * 8540 * Return: 1 when packing is required and a task should be moved to 8541 * this CPU. The amount of the imbalance is returned in env->imbalance. 8542 * 8543 * @env: The load balancing environment. 8544 * @sds: Statistics of the sched_domain which is to be packed 8545 */ 8546 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 8547 { 8548 int busiest_cpu; 8549 8550 if (!(env->sd->flags & SD_ASYM_PACKING)) 8551 return 0; 8552 8553 if (env->idle == CPU_NOT_IDLE) 8554 return 0; 8555 8556 if (!sds->busiest) 8557 return 0; 8558 8559 busiest_cpu = sds->busiest->asym_prefer_cpu; 8560 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 8561 return 0; 8562 8563 env->imbalance = sds->busiest_stat.group_load; 8564 8565 return 1; 8566 } 8567 8568 /** 8569 * fix_small_imbalance - Calculate the minor imbalance that exists 8570 * amongst the groups of a sched_domain, during 8571 * load balancing. 8572 * @env: The load balancing environment. 8573 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 8574 */ 8575 static inline 8576 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8577 { 8578 unsigned long tmp, capa_now = 0, capa_move = 0; 8579 unsigned int imbn = 2; 8580 unsigned long scaled_busy_load_per_task; 8581 struct sg_lb_stats *local, *busiest; 8582 8583 local = &sds->local_stat; 8584 busiest = &sds->busiest_stat; 8585 8586 if (!local->sum_nr_running) 8587 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 8588 else if (busiest->load_per_task > local->load_per_task) 8589 imbn = 1; 8590 8591 scaled_busy_load_per_task = 8592 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8593 busiest->group_capacity; 8594 8595 if (busiest->avg_load + scaled_busy_load_per_task >= 8596 local->avg_load + (scaled_busy_load_per_task * imbn)) { 8597 env->imbalance = busiest->load_per_task; 8598 return; 8599 } 8600 8601 /* 8602 * OK, we don't have enough imbalance to justify moving tasks, 8603 * however we may be able to increase total CPU capacity used by 8604 * moving them. 8605 */ 8606 8607 capa_now += busiest->group_capacity * 8608 min(busiest->load_per_task, busiest->avg_load); 8609 capa_now += local->group_capacity * 8610 min(local->load_per_task, local->avg_load); 8611 capa_now /= SCHED_CAPACITY_SCALE; 8612 8613 /* Amount of load we'd subtract */ 8614 if (busiest->avg_load > scaled_busy_load_per_task) { 8615 capa_move += busiest->group_capacity * 8616 min(busiest->load_per_task, 8617 busiest->avg_load - scaled_busy_load_per_task); 8618 } 8619 8620 /* Amount of load we'd add */ 8621 if (busiest->avg_load * busiest->group_capacity < 8622 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 8623 tmp = (busiest->avg_load * busiest->group_capacity) / 8624 local->group_capacity; 8625 } else { 8626 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8627 local->group_capacity; 8628 } 8629 capa_move += local->group_capacity * 8630 min(local->load_per_task, local->avg_load + tmp); 8631 capa_move /= SCHED_CAPACITY_SCALE; 8632 8633 /* Move if we gain throughput */ 8634 if (capa_move > capa_now) 8635 env->imbalance = busiest->load_per_task; 8636 } 8637 8638 /** 8639 * calculate_imbalance - Calculate the amount of imbalance present within the 8640 * groups of a given sched_domain during load balance. 8641 * @env: load balance environment 8642 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8643 */ 8644 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8645 { 8646 unsigned long max_pull, load_above_capacity = ~0UL; 8647 struct sg_lb_stats *local, *busiest; 8648 8649 local = &sds->local_stat; 8650 busiest = &sds->busiest_stat; 8651 8652 if (busiest->group_type == group_imbalanced) { 8653 /* 8654 * In the group_imb case we cannot rely on group-wide averages 8655 * to ensure CPU-load equilibrium, look at wider averages. XXX 8656 */ 8657 busiest->load_per_task = 8658 min(busiest->load_per_task, sds->avg_load); 8659 } 8660 8661 /* 8662 * Avg load of busiest sg can be less and avg load of local sg can 8663 * be greater than avg load across all sgs of sd because avg load 8664 * factors in sg capacity and sgs with smaller group_type are 8665 * skipped when updating the busiest sg: 8666 */ 8667 if (busiest->group_type != group_misfit_task && 8668 (busiest->avg_load <= sds->avg_load || 8669 local->avg_load >= sds->avg_load)) { 8670 env->imbalance = 0; 8671 return fix_small_imbalance(env, sds); 8672 } 8673 8674 /* 8675 * If there aren't any idle CPUs, avoid creating some. 8676 */ 8677 if (busiest->group_type == group_overloaded && 8678 local->group_type == group_overloaded) { 8679 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 8680 if (load_above_capacity > busiest->group_capacity) { 8681 load_above_capacity -= busiest->group_capacity; 8682 load_above_capacity *= scale_load_down(NICE_0_LOAD); 8683 load_above_capacity /= busiest->group_capacity; 8684 } else 8685 load_above_capacity = ~0UL; 8686 } 8687 8688 /* 8689 * We're trying to get all the CPUs to the average_load, so we don't 8690 * want to push ourselves above the average load, nor do we wish to 8691 * reduce the max loaded CPU below the average load. At the same time, 8692 * we also don't want to reduce the group load below the group 8693 * capacity. Thus we look for the minimum possible imbalance. 8694 */ 8695 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 8696 8697 /* How much load to actually move to equalise the imbalance */ 8698 env->imbalance = min( 8699 max_pull * busiest->group_capacity, 8700 (sds->avg_load - local->avg_load) * local->group_capacity 8701 ) / SCHED_CAPACITY_SCALE; 8702 8703 /* Boost imbalance to allow misfit task to be balanced. */ 8704 if (busiest->group_type == group_misfit_task) { 8705 env->imbalance = max_t(long, env->imbalance, 8706 busiest->group_misfit_task_load); 8707 } 8708 8709 /* 8710 * if *imbalance is less than the average load per runnable task 8711 * there is no guarantee that any tasks will be moved so we'll have 8712 * a think about bumping its value to force at least one task to be 8713 * moved 8714 */ 8715 if (env->imbalance < busiest->load_per_task) 8716 return fix_small_imbalance(env, sds); 8717 } 8718 8719 /******* find_busiest_group() helpers end here *********************/ 8720 8721 /** 8722 * find_busiest_group - Returns the busiest group within the sched_domain 8723 * if there is an imbalance. 8724 * 8725 * Also calculates the amount of weighted load which should be moved 8726 * to restore balance. 8727 * 8728 * @env: The load balancing environment. 8729 * 8730 * Return: - The busiest group if imbalance exists. 8731 */ 8732 static struct sched_group *find_busiest_group(struct lb_env *env) 8733 { 8734 struct sg_lb_stats *local, *busiest; 8735 struct sd_lb_stats sds; 8736 8737 init_sd_lb_stats(&sds); 8738 8739 /* 8740 * Compute the various statistics relavent for load balancing at 8741 * this level. 8742 */ 8743 update_sd_lb_stats(env, &sds); 8744 8745 if (sched_energy_enabled()) { 8746 struct root_domain *rd = env->dst_rq->rd; 8747 8748 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 8749 goto out_balanced; 8750 } 8751 8752 local = &sds.local_stat; 8753 busiest = &sds.busiest_stat; 8754 8755 /* ASYM feature bypasses nice load balance check */ 8756 if (check_asym_packing(env, &sds)) 8757 return sds.busiest; 8758 8759 /* There is no busy sibling group to pull tasks from */ 8760 if (!sds.busiest || busiest->sum_nr_running == 0) 8761 goto out_balanced; 8762 8763 /* XXX broken for overlapping NUMA groups */ 8764 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 8765 / sds.total_capacity; 8766 8767 /* 8768 * If the busiest group is imbalanced the below checks don't 8769 * work because they assume all things are equal, which typically 8770 * isn't true due to cpus_allowed constraints and the like. 8771 */ 8772 if (busiest->group_type == group_imbalanced) 8773 goto force_balance; 8774 8775 /* 8776 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group 8777 * capacities from resulting in underutilization due to avg_load. 8778 */ 8779 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) && 8780 busiest->group_no_capacity) 8781 goto force_balance; 8782 8783 /* Misfit tasks should be dealt with regardless of the avg load */ 8784 if (busiest->group_type == group_misfit_task) 8785 goto force_balance; 8786 8787 /* 8788 * If the local group is busier than the selected busiest group 8789 * don't try and pull any tasks. 8790 */ 8791 if (local->avg_load >= busiest->avg_load) 8792 goto out_balanced; 8793 8794 /* 8795 * Don't pull any tasks if this group is already above the domain 8796 * average load. 8797 */ 8798 if (local->avg_load >= sds.avg_load) 8799 goto out_balanced; 8800 8801 if (env->idle == CPU_IDLE) { 8802 /* 8803 * This CPU is idle. If the busiest group is not overloaded 8804 * and there is no imbalance between this and busiest group 8805 * wrt idle CPUs, it is balanced. The imbalance becomes 8806 * significant if the diff is greater than 1 otherwise we 8807 * might end up to just move the imbalance on another group 8808 */ 8809 if ((busiest->group_type != group_overloaded) && 8810 (local->idle_cpus <= (busiest->idle_cpus + 1))) 8811 goto out_balanced; 8812 } else { 8813 /* 8814 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 8815 * imbalance_pct to be conservative. 8816 */ 8817 if (100 * busiest->avg_load <= 8818 env->sd->imbalance_pct * local->avg_load) 8819 goto out_balanced; 8820 } 8821 8822 force_balance: 8823 /* Looks like there is an imbalance. Compute it */ 8824 env->src_grp_type = busiest->group_type; 8825 calculate_imbalance(env, &sds); 8826 return env->imbalance ? sds.busiest : NULL; 8827 8828 out_balanced: 8829 env->imbalance = 0; 8830 return NULL; 8831 } 8832 8833 /* 8834 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 8835 */ 8836 static struct rq *find_busiest_queue(struct lb_env *env, 8837 struct sched_group *group) 8838 { 8839 struct rq *busiest = NULL, *rq; 8840 unsigned long busiest_load = 0, busiest_capacity = 1; 8841 int i; 8842 8843 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8844 unsigned long capacity, wl; 8845 enum fbq_type rt; 8846 8847 rq = cpu_rq(i); 8848 rt = fbq_classify_rq(rq); 8849 8850 /* 8851 * We classify groups/runqueues into three groups: 8852 * - regular: there are !numa tasks 8853 * - remote: there are numa tasks that run on the 'wrong' node 8854 * - all: there is no distinction 8855 * 8856 * In order to avoid migrating ideally placed numa tasks, 8857 * ignore those when there's better options. 8858 * 8859 * If we ignore the actual busiest queue to migrate another 8860 * task, the next balance pass can still reduce the busiest 8861 * queue by moving tasks around inside the node. 8862 * 8863 * If we cannot move enough load due to this classification 8864 * the next pass will adjust the group classification and 8865 * allow migration of more tasks. 8866 * 8867 * Both cases only affect the total convergence complexity. 8868 */ 8869 if (rt > env->fbq_type) 8870 continue; 8871 8872 /* 8873 * For ASYM_CPUCAPACITY domains with misfit tasks we simply 8874 * seek the "biggest" misfit task. 8875 */ 8876 if (env->src_grp_type == group_misfit_task) { 8877 if (rq->misfit_task_load > busiest_load) { 8878 busiest_load = rq->misfit_task_load; 8879 busiest = rq; 8880 } 8881 8882 continue; 8883 } 8884 8885 capacity = capacity_of(i); 8886 8887 /* 8888 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 8889 * eventually lead to active_balancing high->low capacity. 8890 * Higher per-CPU capacity is considered better than balancing 8891 * average load. 8892 */ 8893 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8894 capacity_of(env->dst_cpu) < capacity && 8895 rq->nr_running == 1) 8896 continue; 8897 8898 wl = weighted_cpuload(rq); 8899 8900 /* 8901 * When comparing with imbalance, use weighted_cpuload() 8902 * which is not scaled with the CPU capacity. 8903 */ 8904 8905 if (rq->nr_running == 1 && wl > env->imbalance && 8906 !check_cpu_capacity(rq, env->sd)) 8907 continue; 8908 8909 /* 8910 * For the load comparisons with the other CPU's, consider 8911 * the weighted_cpuload() scaled with the CPU capacity, so 8912 * that the load can be moved away from the CPU that is 8913 * potentially running at a lower capacity. 8914 * 8915 * Thus we're looking for max(wl_i / capacity_i), crosswise 8916 * multiplication to rid ourselves of the division works out 8917 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 8918 * our previous maximum. 8919 */ 8920 if (wl * busiest_capacity > busiest_load * capacity) { 8921 busiest_load = wl; 8922 busiest_capacity = capacity; 8923 busiest = rq; 8924 } 8925 } 8926 8927 return busiest; 8928 } 8929 8930 /* 8931 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 8932 * so long as it is large enough. 8933 */ 8934 #define MAX_PINNED_INTERVAL 512 8935 8936 static inline bool 8937 asym_active_balance(struct lb_env *env) 8938 { 8939 /* 8940 * ASYM_PACKING needs to force migrate tasks from busy but 8941 * lower priority CPUs in order to pack all tasks in the 8942 * highest priority CPUs. 8943 */ 8944 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 8945 sched_asym_prefer(env->dst_cpu, env->src_cpu); 8946 } 8947 8948 static inline bool 8949 voluntary_active_balance(struct lb_env *env) 8950 { 8951 struct sched_domain *sd = env->sd; 8952 8953 if (asym_active_balance(env)) 8954 return 1; 8955 8956 /* 8957 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 8958 * It's worth migrating the task if the src_cpu's capacity is reduced 8959 * because of other sched_class or IRQs if more capacity stays 8960 * available on dst_cpu. 8961 */ 8962 if ((env->idle != CPU_NOT_IDLE) && 8963 (env->src_rq->cfs.h_nr_running == 1)) { 8964 if ((check_cpu_capacity(env->src_rq, sd)) && 8965 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 8966 return 1; 8967 } 8968 8969 if (env->src_grp_type == group_misfit_task) 8970 return 1; 8971 8972 return 0; 8973 } 8974 8975 static int need_active_balance(struct lb_env *env) 8976 { 8977 struct sched_domain *sd = env->sd; 8978 8979 if (voluntary_active_balance(env)) 8980 return 1; 8981 8982 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 8983 } 8984 8985 static int active_load_balance_cpu_stop(void *data); 8986 8987 static int should_we_balance(struct lb_env *env) 8988 { 8989 struct sched_group *sg = env->sd->groups; 8990 int cpu, balance_cpu = -1; 8991 8992 /* 8993 * Ensure the balancing environment is consistent; can happen 8994 * when the softirq triggers 'during' hotplug. 8995 */ 8996 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 8997 return 0; 8998 8999 /* 9000 * In the newly idle case, we will allow all the CPUs 9001 * to do the newly idle load balance. 9002 */ 9003 if (env->idle == CPU_NEWLY_IDLE) 9004 return 1; 9005 9006 /* Try to find first idle CPU */ 9007 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 9008 if (!idle_cpu(cpu)) 9009 continue; 9010 9011 balance_cpu = cpu; 9012 break; 9013 } 9014 9015 if (balance_cpu == -1) 9016 balance_cpu = group_balance_cpu(sg); 9017 9018 /* 9019 * First idle CPU or the first CPU(busiest) in this sched group 9020 * is eligible for doing load balancing at this and above domains. 9021 */ 9022 return balance_cpu == env->dst_cpu; 9023 } 9024 9025 /* 9026 * Check this_cpu to ensure it is balanced within domain. Attempt to move 9027 * tasks if there is an imbalance. 9028 */ 9029 static int load_balance(int this_cpu, struct rq *this_rq, 9030 struct sched_domain *sd, enum cpu_idle_type idle, 9031 int *continue_balancing) 9032 { 9033 int ld_moved, cur_ld_moved, active_balance = 0; 9034 struct sched_domain *sd_parent = sd->parent; 9035 struct sched_group *group; 9036 struct rq *busiest; 9037 struct rq_flags rf; 9038 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 9039 9040 struct lb_env env = { 9041 .sd = sd, 9042 .dst_cpu = this_cpu, 9043 .dst_rq = this_rq, 9044 .dst_grpmask = sched_group_span(sd->groups), 9045 .idle = idle, 9046 .loop_break = sched_nr_migrate_break, 9047 .cpus = cpus, 9048 .fbq_type = all, 9049 .tasks = LIST_HEAD_INIT(env.tasks), 9050 }; 9051 9052 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 9053 9054 schedstat_inc(sd->lb_count[idle]); 9055 9056 redo: 9057 if (!should_we_balance(&env)) { 9058 *continue_balancing = 0; 9059 goto out_balanced; 9060 } 9061 9062 group = find_busiest_group(&env); 9063 if (!group) { 9064 schedstat_inc(sd->lb_nobusyg[idle]); 9065 goto out_balanced; 9066 } 9067 9068 busiest = find_busiest_queue(&env, group); 9069 if (!busiest) { 9070 schedstat_inc(sd->lb_nobusyq[idle]); 9071 goto out_balanced; 9072 } 9073 9074 BUG_ON(busiest == env.dst_rq); 9075 9076 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 9077 9078 env.src_cpu = busiest->cpu; 9079 env.src_rq = busiest; 9080 9081 ld_moved = 0; 9082 if (busiest->nr_running > 1) { 9083 /* 9084 * Attempt to move tasks. If find_busiest_group has found 9085 * an imbalance but busiest->nr_running <= 1, the group is 9086 * still unbalanced. ld_moved simply stays zero, so it is 9087 * correctly treated as an imbalance. 9088 */ 9089 env.flags |= LBF_ALL_PINNED; 9090 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 9091 9092 more_balance: 9093 rq_lock_irqsave(busiest, &rf); 9094 update_rq_clock(busiest); 9095 9096 /* 9097 * cur_ld_moved - load moved in current iteration 9098 * ld_moved - cumulative load moved across iterations 9099 */ 9100 cur_ld_moved = detach_tasks(&env); 9101 9102 /* 9103 * We've detached some tasks from busiest_rq. Every 9104 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 9105 * unlock busiest->lock, and we are able to be sure 9106 * that nobody can manipulate the tasks in parallel. 9107 * See task_rq_lock() family for the details. 9108 */ 9109 9110 rq_unlock(busiest, &rf); 9111 9112 if (cur_ld_moved) { 9113 attach_tasks(&env); 9114 ld_moved += cur_ld_moved; 9115 } 9116 9117 local_irq_restore(rf.flags); 9118 9119 if (env.flags & LBF_NEED_BREAK) { 9120 env.flags &= ~LBF_NEED_BREAK; 9121 goto more_balance; 9122 } 9123 9124 /* 9125 * Revisit (affine) tasks on src_cpu that couldn't be moved to 9126 * us and move them to an alternate dst_cpu in our sched_group 9127 * where they can run. The upper limit on how many times we 9128 * iterate on same src_cpu is dependent on number of CPUs in our 9129 * sched_group. 9130 * 9131 * This changes load balance semantics a bit on who can move 9132 * load to a given_cpu. In addition to the given_cpu itself 9133 * (or a ilb_cpu acting on its behalf where given_cpu is 9134 * nohz-idle), we now have balance_cpu in a position to move 9135 * load to given_cpu. In rare situations, this may cause 9136 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 9137 * _independently_ and at _same_ time to move some load to 9138 * given_cpu) causing exceess load to be moved to given_cpu. 9139 * This however should not happen so much in practice and 9140 * moreover subsequent load balance cycles should correct the 9141 * excess load moved. 9142 */ 9143 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 9144 9145 /* Prevent to re-select dst_cpu via env's CPUs */ 9146 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 9147 9148 env.dst_rq = cpu_rq(env.new_dst_cpu); 9149 env.dst_cpu = env.new_dst_cpu; 9150 env.flags &= ~LBF_DST_PINNED; 9151 env.loop = 0; 9152 env.loop_break = sched_nr_migrate_break; 9153 9154 /* 9155 * Go back to "more_balance" rather than "redo" since we 9156 * need to continue with same src_cpu. 9157 */ 9158 goto more_balance; 9159 } 9160 9161 /* 9162 * We failed to reach balance because of affinity. 9163 */ 9164 if (sd_parent) { 9165 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9166 9167 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 9168 *group_imbalance = 1; 9169 } 9170 9171 /* All tasks on this runqueue were pinned by CPU affinity */ 9172 if (unlikely(env.flags & LBF_ALL_PINNED)) { 9173 __cpumask_clear_cpu(cpu_of(busiest), cpus); 9174 /* 9175 * Attempting to continue load balancing at the current 9176 * sched_domain level only makes sense if there are 9177 * active CPUs remaining as possible busiest CPUs to 9178 * pull load from which are not contained within the 9179 * destination group that is receiving any migrated 9180 * load. 9181 */ 9182 if (!cpumask_subset(cpus, env.dst_grpmask)) { 9183 env.loop = 0; 9184 env.loop_break = sched_nr_migrate_break; 9185 goto redo; 9186 } 9187 goto out_all_pinned; 9188 } 9189 } 9190 9191 if (!ld_moved) { 9192 schedstat_inc(sd->lb_failed[idle]); 9193 /* 9194 * Increment the failure counter only on periodic balance. 9195 * We do not want newidle balance, which can be very 9196 * frequent, pollute the failure counter causing 9197 * excessive cache_hot migrations and active balances. 9198 */ 9199 if (idle != CPU_NEWLY_IDLE) 9200 sd->nr_balance_failed++; 9201 9202 if (need_active_balance(&env)) { 9203 unsigned long flags; 9204 9205 raw_spin_lock_irqsave(&busiest->lock, flags); 9206 9207 /* 9208 * Don't kick the active_load_balance_cpu_stop, 9209 * if the curr task on busiest CPU can't be 9210 * moved to this_cpu: 9211 */ 9212 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { 9213 raw_spin_unlock_irqrestore(&busiest->lock, 9214 flags); 9215 env.flags |= LBF_ALL_PINNED; 9216 goto out_one_pinned; 9217 } 9218 9219 /* 9220 * ->active_balance synchronizes accesses to 9221 * ->active_balance_work. Once set, it's cleared 9222 * only after active load balance is finished. 9223 */ 9224 if (!busiest->active_balance) { 9225 busiest->active_balance = 1; 9226 busiest->push_cpu = this_cpu; 9227 active_balance = 1; 9228 } 9229 raw_spin_unlock_irqrestore(&busiest->lock, flags); 9230 9231 if (active_balance) { 9232 stop_one_cpu_nowait(cpu_of(busiest), 9233 active_load_balance_cpu_stop, busiest, 9234 &busiest->active_balance_work); 9235 } 9236 9237 /* We've kicked active balancing, force task migration. */ 9238 sd->nr_balance_failed = sd->cache_nice_tries+1; 9239 } 9240 } else 9241 sd->nr_balance_failed = 0; 9242 9243 if (likely(!active_balance) || voluntary_active_balance(&env)) { 9244 /* We were unbalanced, so reset the balancing interval */ 9245 sd->balance_interval = sd->min_interval; 9246 } else { 9247 /* 9248 * If we've begun active balancing, start to back off. This 9249 * case may not be covered by the all_pinned logic if there 9250 * is only 1 task on the busy runqueue (because we don't call 9251 * detach_tasks). 9252 */ 9253 if (sd->balance_interval < sd->max_interval) 9254 sd->balance_interval *= 2; 9255 } 9256 9257 goto out; 9258 9259 out_balanced: 9260 /* 9261 * We reach balance although we may have faced some affinity 9262 * constraints. Clear the imbalance flag if it was set. 9263 */ 9264 if (sd_parent) { 9265 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9266 9267 if (*group_imbalance) 9268 *group_imbalance = 0; 9269 } 9270 9271 out_all_pinned: 9272 /* 9273 * We reach balance because all tasks are pinned at this level so 9274 * we can't migrate them. Let the imbalance flag set so parent level 9275 * can try to migrate them. 9276 */ 9277 schedstat_inc(sd->lb_balanced[idle]); 9278 9279 sd->nr_balance_failed = 0; 9280 9281 out_one_pinned: 9282 ld_moved = 0; 9283 9284 /* 9285 * idle_balance() disregards balance intervals, so we could repeatedly 9286 * reach this code, which would lead to balance_interval skyrocketting 9287 * in a short amount of time. Skip the balance_interval increase logic 9288 * to avoid that. 9289 */ 9290 if (env.idle == CPU_NEWLY_IDLE) 9291 goto out; 9292 9293 /* tune up the balancing interval */ 9294 if ((env.flags & LBF_ALL_PINNED && 9295 sd->balance_interval < MAX_PINNED_INTERVAL) || 9296 sd->balance_interval < sd->max_interval) 9297 sd->balance_interval *= 2; 9298 out: 9299 return ld_moved; 9300 } 9301 9302 static inline unsigned long 9303 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9304 { 9305 unsigned long interval = sd->balance_interval; 9306 9307 if (cpu_busy) 9308 interval *= sd->busy_factor; 9309 9310 /* scale ms to jiffies */ 9311 interval = msecs_to_jiffies(interval); 9312 interval = clamp(interval, 1UL, max_load_balance_interval); 9313 9314 return interval; 9315 } 9316 9317 static inline void 9318 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 9319 { 9320 unsigned long interval, next; 9321 9322 /* used by idle balance, so cpu_busy = 0 */ 9323 interval = get_sd_balance_interval(sd, 0); 9324 next = sd->last_balance + interval; 9325 9326 if (time_after(*next_balance, next)) 9327 *next_balance = next; 9328 } 9329 9330 /* 9331 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 9332 * running tasks off the busiest CPU onto idle CPUs. It requires at 9333 * least 1 task to be running on each physical CPU where possible, and 9334 * avoids physical / logical imbalances. 9335 */ 9336 static int active_load_balance_cpu_stop(void *data) 9337 { 9338 struct rq *busiest_rq = data; 9339 int busiest_cpu = cpu_of(busiest_rq); 9340 int target_cpu = busiest_rq->push_cpu; 9341 struct rq *target_rq = cpu_rq(target_cpu); 9342 struct sched_domain *sd; 9343 struct task_struct *p = NULL; 9344 struct rq_flags rf; 9345 9346 rq_lock_irq(busiest_rq, &rf); 9347 /* 9348 * Between queueing the stop-work and running it is a hole in which 9349 * CPUs can become inactive. We should not move tasks from or to 9350 * inactive CPUs. 9351 */ 9352 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 9353 goto out_unlock; 9354 9355 /* Make sure the requested CPU hasn't gone down in the meantime: */ 9356 if (unlikely(busiest_cpu != smp_processor_id() || 9357 !busiest_rq->active_balance)) 9358 goto out_unlock; 9359 9360 /* Is there any task to move? */ 9361 if (busiest_rq->nr_running <= 1) 9362 goto out_unlock; 9363 9364 /* 9365 * This condition is "impossible", if it occurs 9366 * we need to fix it. Originally reported by 9367 * Bjorn Helgaas on a 128-CPU setup. 9368 */ 9369 BUG_ON(busiest_rq == target_rq); 9370 9371 /* Search for an sd spanning us and the target CPU. */ 9372 rcu_read_lock(); 9373 for_each_domain(target_cpu, sd) { 9374 if ((sd->flags & SD_LOAD_BALANCE) && 9375 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 9376 break; 9377 } 9378 9379 if (likely(sd)) { 9380 struct lb_env env = { 9381 .sd = sd, 9382 .dst_cpu = target_cpu, 9383 .dst_rq = target_rq, 9384 .src_cpu = busiest_rq->cpu, 9385 .src_rq = busiest_rq, 9386 .idle = CPU_IDLE, 9387 /* 9388 * can_migrate_task() doesn't need to compute new_dst_cpu 9389 * for active balancing. Since we have CPU_IDLE, but no 9390 * @dst_grpmask we need to make that test go away with lying 9391 * about DST_PINNED. 9392 */ 9393 .flags = LBF_DST_PINNED, 9394 }; 9395 9396 schedstat_inc(sd->alb_count); 9397 update_rq_clock(busiest_rq); 9398 9399 p = detach_one_task(&env); 9400 if (p) { 9401 schedstat_inc(sd->alb_pushed); 9402 /* Active balancing done, reset the failure counter. */ 9403 sd->nr_balance_failed = 0; 9404 } else { 9405 schedstat_inc(sd->alb_failed); 9406 } 9407 } 9408 rcu_read_unlock(); 9409 out_unlock: 9410 busiest_rq->active_balance = 0; 9411 rq_unlock(busiest_rq, &rf); 9412 9413 if (p) 9414 attach_one_task(target_rq, p); 9415 9416 local_irq_enable(); 9417 9418 return 0; 9419 } 9420 9421 static DEFINE_SPINLOCK(balancing); 9422 9423 /* 9424 * Scale the max load_balance interval with the number of CPUs in the system. 9425 * This trades load-balance latency on larger machines for less cross talk. 9426 */ 9427 void update_max_interval(void) 9428 { 9429 max_load_balance_interval = HZ*num_online_cpus()/10; 9430 } 9431 9432 /* 9433 * It checks each scheduling domain to see if it is due to be balanced, 9434 * and initiates a balancing operation if so. 9435 * 9436 * Balancing parameters are set up in init_sched_domains. 9437 */ 9438 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9439 { 9440 int continue_balancing = 1; 9441 int cpu = rq->cpu; 9442 unsigned long interval; 9443 struct sched_domain *sd; 9444 /* Earliest time when we have to do rebalance again */ 9445 unsigned long next_balance = jiffies + 60*HZ; 9446 int update_next_balance = 0; 9447 int need_serialize, need_decay = 0; 9448 u64 max_cost = 0; 9449 9450 rcu_read_lock(); 9451 for_each_domain(cpu, sd) { 9452 /* 9453 * Decay the newidle max times here because this is a regular 9454 * visit to all the domains. Decay ~1% per second. 9455 */ 9456 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 9457 sd->max_newidle_lb_cost = 9458 (sd->max_newidle_lb_cost * 253) / 256; 9459 sd->next_decay_max_lb_cost = jiffies + HZ; 9460 need_decay = 1; 9461 } 9462 max_cost += sd->max_newidle_lb_cost; 9463 9464 if (!(sd->flags & SD_LOAD_BALANCE)) 9465 continue; 9466 9467 /* 9468 * Stop the load balance at this level. There is another 9469 * CPU in our sched group which is doing load balancing more 9470 * actively. 9471 */ 9472 if (!continue_balancing) { 9473 if (need_decay) 9474 continue; 9475 break; 9476 } 9477 9478 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9479 9480 need_serialize = sd->flags & SD_SERIALIZE; 9481 if (need_serialize) { 9482 if (!spin_trylock(&balancing)) 9483 goto out; 9484 } 9485 9486 if (time_after_eq(jiffies, sd->last_balance + interval)) { 9487 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 9488 /* 9489 * The LBF_DST_PINNED logic could have changed 9490 * env->dst_cpu, so we can't know our idle 9491 * state even if we migrated tasks. Update it. 9492 */ 9493 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 9494 } 9495 sd->last_balance = jiffies; 9496 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9497 } 9498 if (need_serialize) 9499 spin_unlock(&balancing); 9500 out: 9501 if (time_after(next_balance, sd->last_balance + interval)) { 9502 next_balance = sd->last_balance + interval; 9503 update_next_balance = 1; 9504 } 9505 } 9506 if (need_decay) { 9507 /* 9508 * Ensure the rq-wide value also decays but keep it at a 9509 * reasonable floor to avoid funnies with rq->avg_idle. 9510 */ 9511 rq->max_idle_balance_cost = 9512 max((u64)sysctl_sched_migration_cost, max_cost); 9513 } 9514 rcu_read_unlock(); 9515 9516 /* 9517 * next_balance will be updated only when there is a need. 9518 * When the cpu is attached to null domain for ex, it will not be 9519 * updated. 9520 */ 9521 if (likely(update_next_balance)) { 9522 rq->next_balance = next_balance; 9523 9524 #ifdef CONFIG_NO_HZ_COMMON 9525 /* 9526 * If this CPU has been elected to perform the nohz idle 9527 * balance. Other idle CPUs have already rebalanced with 9528 * nohz_idle_balance() and nohz.next_balance has been 9529 * updated accordingly. This CPU is now running the idle load 9530 * balance for itself and we need to update the 9531 * nohz.next_balance accordingly. 9532 */ 9533 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 9534 nohz.next_balance = rq->next_balance; 9535 #endif 9536 } 9537 } 9538 9539 static inline int on_null_domain(struct rq *rq) 9540 { 9541 return unlikely(!rcu_dereference_sched(rq->sd)); 9542 } 9543 9544 #ifdef CONFIG_NO_HZ_COMMON 9545 /* 9546 * idle load balancing details 9547 * - When one of the busy CPUs notice that there may be an idle rebalancing 9548 * needed, they will kick the idle load balancer, which then does idle 9549 * load balancing for all the idle CPUs. 9550 */ 9551 9552 static inline int find_new_ilb(void) 9553 { 9554 int ilb = cpumask_first(nohz.idle_cpus_mask); 9555 9556 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 9557 return ilb; 9558 9559 return nr_cpu_ids; 9560 } 9561 9562 /* 9563 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 9564 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 9565 * CPU (if there is one). 9566 */ 9567 static void kick_ilb(unsigned int flags) 9568 { 9569 int ilb_cpu; 9570 9571 nohz.next_balance++; 9572 9573 ilb_cpu = find_new_ilb(); 9574 9575 if (ilb_cpu >= nr_cpu_ids) 9576 return; 9577 9578 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 9579 if (flags & NOHZ_KICK_MASK) 9580 return; 9581 9582 /* 9583 * Use smp_send_reschedule() instead of resched_cpu(). 9584 * This way we generate a sched IPI on the target CPU which 9585 * is idle. And the softirq performing nohz idle load balance 9586 * will be run before returning from the IPI. 9587 */ 9588 smp_send_reschedule(ilb_cpu); 9589 } 9590 9591 /* 9592 * Current decision point for kicking the idle load balancer in the presence 9593 * of idle CPUs in the system. 9594 */ 9595 static void nohz_balancer_kick(struct rq *rq) 9596 { 9597 unsigned long now = jiffies; 9598 struct sched_domain_shared *sds; 9599 struct sched_domain *sd; 9600 int nr_busy, i, cpu = rq->cpu; 9601 unsigned int flags = 0; 9602 9603 if (unlikely(rq->idle_balance)) 9604 return; 9605 9606 /* 9607 * We may be recently in ticked or tickless idle mode. At the first 9608 * busy tick after returning from idle, we will update the busy stats. 9609 */ 9610 nohz_balance_exit_idle(rq); 9611 9612 /* 9613 * None are in tickless mode and hence no need for NOHZ idle load 9614 * balancing. 9615 */ 9616 if (likely(!atomic_read(&nohz.nr_cpus))) 9617 return; 9618 9619 if (READ_ONCE(nohz.has_blocked) && 9620 time_after(now, READ_ONCE(nohz.next_blocked))) 9621 flags = NOHZ_STATS_KICK; 9622 9623 if (time_before(now, nohz.next_balance)) 9624 goto out; 9625 9626 if (rq->nr_running >= 2) { 9627 flags = NOHZ_KICK_MASK; 9628 goto out; 9629 } 9630 9631 rcu_read_lock(); 9632 9633 sd = rcu_dereference(rq->sd); 9634 if (sd) { 9635 /* 9636 * If there's a CFS task and the current CPU has reduced 9637 * capacity; kick the ILB to see if there's a better CPU to run 9638 * on. 9639 */ 9640 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 9641 flags = NOHZ_KICK_MASK; 9642 goto unlock; 9643 } 9644 } 9645 9646 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 9647 if (sd) { 9648 /* 9649 * When ASYM_PACKING; see if there's a more preferred CPU 9650 * currently idle; in which case, kick the ILB to move tasks 9651 * around. 9652 */ 9653 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 9654 if (sched_asym_prefer(i, cpu)) { 9655 flags = NOHZ_KICK_MASK; 9656 goto unlock; 9657 } 9658 } 9659 } 9660 9661 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 9662 if (sd) { 9663 /* 9664 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 9665 * to run the misfit task on. 9666 */ 9667 if (check_misfit_status(rq, sd)) { 9668 flags = NOHZ_KICK_MASK; 9669 goto unlock; 9670 } 9671 9672 /* 9673 * For asymmetric systems, we do not want to nicely balance 9674 * cache use, instead we want to embrace asymmetry and only 9675 * ensure tasks have enough CPU capacity. 9676 * 9677 * Skip the LLC logic because it's not relevant in that case. 9678 */ 9679 goto unlock; 9680 } 9681 9682 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 9683 if (sds) { 9684 /* 9685 * If there is an imbalance between LLC domains (IOW we could 9686 * increase the overall cache use), we need some less-loaded LLC 9687 * domain to pull some load. Likewise, we may need to spread 9688 * load within the current LLC domain (e.g. packed SMT cores but 9689 * other CPUs are idle). We can't really know from here how busy 9690 * the others are - so just get a nohz balance going if it looks 9691 * like this LLC domain has tasks we could move. 9692 */ 9693 nr_busy = atomic_read(&sds->nr_busy_cpus); 9694 if (nr_busy > 1) { 9695 flags = NOHZ_KICK_MASK; 9696 goto unlock; 9697 } 9698 } 9699 unlock: 9700 rcu_read_unlock(); 9701 out: 9702 if (flags) 9703 kick_ilb(flags); 9704 } 9705 9706 static void set_cpu_sd_state_busy(int cpu) 9707 { 9708 struct sched_domain *sd; 9709 9710 rcu_read_lock(); 9711 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9712 9713 if (!sd || !sd->nohz_idle) 9714 goto unlock; 9715 sd->nohz_idle = 0; 9716 9717 atomic_inc(&sd->shared->nr_busy_cpus); 9718 unlock: 9719 rcu_read_unlock(); 9720 } 9721 9722 void nohz_balance_exit_idle(struct rq *rq) 9723 { 9724 SCHED_WARN_ON(rq != this_rq()); 9725 9726 if (likely(!rq->nohz_tick_stopped)) 9727 return; 9728 9729 rq->nohz_tick_stopped = 0; 9730 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 9731 atomic_dec(&nohz.nr_cpus); 9732 9733 set_cpu_sd_state_busy(rq->cpu); 9734 } 9735 9736 static void set_cpu_sd_state_idle(int cpu) 9737 { 9738 struct sched_domain *sd; 9739 9740 rcu_read_lock(); 9741 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9742 9743 if (!sd || sd->nohz_idle) 9744 goto unlock; 9745 sd->nohz_idle = 1; 9746 9747 atomic_dec(&sd->shared->nr_busy_cpus); 9748 unlock: 9749 rcu_read_unlock(); 9750 } 9751 9752 /* 9753 * This routine will record that the CPU is going idle with tick stopped. 9754 * This info will be used in performing idle load balancing in the future. 9755 */ 9756 void nohz_balance_enter_idle(int cpu) 9757 { 9758 struct rq *rq = cpu_rq(cpu); 9759 9760 SCHED_WARN_ON(cpu != smp_processor_id()); 9761 9762 /* If this CPU is going down, then nothing needs to be done: */ 9763 if (!cpu_active(cpu)) 9764 return; 9765 9766 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 9767 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 9768 return; 9769 9770 /* 9771 * Can be set safely without rq->lock held 9772 * If a clear happens, it will have evaluated last additions because 9773 * rq->lock is held during the check and the clear 9774 */ 9775 rq->has_blocked_load = 1; 9776 9777 /* 9778 * The tick is still stopped but load could have been added in the 9779 * meantime. We set the nohz.has_blocked flag to trig a check of the 9780 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 9781 * of nohz.has_blocked can only happen after checking the new load 9782 */ 9783 if (rq->nohz_tick_stopped) 9784 goto out; 9785 9786 /* If we're a completely isolated CPU, we don't play: */ 9787 if (on_null_domain(rq)) 9788 return; 9789 9790 rq->nohz_tick_stopped = 1; 9791 9792 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 9793 atomic_inc(&nohz.nr_cpus); 9794 9795 /* 9796 * Ensures that if nohz_idle_balance() fails to observe our 9797 * @idle_cpus_mask store, it must observe the @has_blocked 9798 * store. 9799 */ 9800 smp_mb__after_atomic(); 9801 9802 set_cpu_sd_state_idle(cpu); 9803 9804 out: 9805 /* 9806 * Each time a cpu enter idle, we assume that it has blocked load and 9807 * enable the periodic update of the load of idle cpus 9808 */ 9809 WRITE_ONCE(nohz.has_blocked, 1); 9810 } 9811 9812 /* 9813 * Internal function that runs load balance for all idle cpus. The load balance 9814 * can be a simple update of blocked load or a complete load balance with 9815 * tasks movement depending of flags. 9816 * The function returns false if the loop has stopped before running 9817 * through all idle CPUs. 9818 */ 9819 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 9820 enum cpu_idle_type idle) 9821 { 9822 /* Earliest time when we have to do rebalance again */ 9823 unsigned long now = jiffies; 9824 unsigned long next_balance = now + 60*HZ; 9825 bool has_blocked_load = false; 9826 int update_next_balance = 0; 9827 int this_cpu = this_rq->cpu; 9828 int balance_cpu; 9829 int ret = false; 9830 struct rq *rq; 9831 9832 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 9833 9834 /* 9835 * We assume there will be no idle load after this update and clear 9836 * the has_blocked flag. If a cpu enters idle in the mean time, it will 9837 * set the has_blocked flag and trig another update of idle load. 9838 * Because a cpu that becomes idle, is added to idle_cpus_mask before 9839 * setting the flag, we are sure to not clear the state and not 9840 * check the load of an idle cpu. 9841 */ 9842 WRITE_ONCE(nohz.has_blocked, 0); 9843 9844 /* 9845 * Ensures that if we miss the CPU, we must see the has_blocked 9846 * store from nohz_balance_enter_idle(). 9847 */ 9848 smp_mb(); 9849 9850 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 9851 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 9852 continue; 9853 9854 /* 9855 * If this CPU gets work to do, stop the load balancing 9856 * work being done for other CPUs. Next load 9857 * balancing owner will pick it up. 9858 */ 9859 if (need_resched()) { 9860 has_blocked_load = true; 9861 goto abort; 9862 } 9863 9864 rq = cpu_rq(balance_cpu); 9865 9866 has_blocked_load |= update_nohz_stats(rq, true); 9867 9868 /* 9869 * If time for next balance is due, 9870 * do the balance. 9871 */ 9872 if (time_after_eq(jiffies, rq->next_balance)) { 9873 struct rq_flags rf; 9874 9875 rq_lock_irqsave(rq, &rf); 9876 update_rq_clock(rq); 9877 cpu_load_update_idle(rq); 9878 rq_unlock_irqrestore(rq, &rf); 9879 9880 if (flags & NOHZ_BALANCE_KICK) 9881 rebalance_domains(rq, CPU_IDLE); 9882 } 9883 9884 if (time_after(next_balance, rq->next_balance)) { 9885 next_balance = rq->next_balance; 9886 update_next_balance = 1; 9887 } 9888 } 9889 9890 /* Newly idle CPU doesn't need an update */ 9891 if (idle != CPU_NEWLY_IDLE) { 9892 update_blocked_averages(this_cpu); 9893 has_blocked_load |= this_rq->has_blocked_load; 9894 } 9895 9896 if (flags & NOHZ_BALANCE_KICK) 9897 rebalance_domains(this_rq, CPU_IDLE); 9898 9899 WRITE_ONCE(nohz.next_blocked, 9900 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 9901 9902 /* The full idle balance loop has been done */ 9903 ret = true; 9904 9905 abort: 9906 /* There is still blocked load, enable periodic update */ 9907 if (has_blocked_load) 9908 WRITE_ONCE(nohz.has_blocked, 1); 9909 9910 /* 9911 * next_balance will be updated only when there is a need. 9912 * When the CPU is attached to null domain for ex, it will not be 9913 * updated. 9914 */ 9915 if (likely(update_next_balance)) 9916 nohz.next_balance = next_balance; 9917 9918 return ret; 9919 } 9920 9921 /* 9922 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 9923 * rebalancing for all the cpus for whom scheduler ticks are stopped. 9924 */ 9925 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9926 { 9927 int this_cpu = this_rq->cpu; 9928 unsigned int flags; 9929 9930 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK)) 9931 return false; 9932 9933 if (idle != CPU_IDLE) { 9934 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9935 return false; 9936 } 9937 9938 /* could be _relaxed() */ 9939 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9940 if (!(flags & NOHZ_KICK_MASK)) 9941 return false; 9942 9943 _nohz_idle_balance(this_rq, flags, idle); 9944 9945 return true; 9946 } 9947 9948 static void nohz_newidle_balance(struct rq *this_rq) 9949 { 9950 int this_cpu = this_rq->cpu; 9951 9952 /* 9953 * This CPU doesn't want to be disturbed by scheduler 9954 * housekeeping 9955 */ 9956 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 9957 return; 9958 9959 /* Will wake up very soon. No time for doing anything else*/ 9960 if (this_rq->avg_idle < sysctl_sched_migration_cost) 9961 return; 9962 9963 /* Don't need to update blocked load of idle CPUs*/ 9964 if (!READ_ONCE(nohz.has_blocked) || 9965 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 9966 return; 9967 9968 raw_spin_unlock(&this_rq->lock); 9969 /* 9970 * This CPU is going to be idle and blocked load of idle CPUs 9971 * need to be updated. Run the ilb locally as it is a good 9972 * candidate for ilb instead of waking up another idle CPU. 9973 * Kick an normal ilb if we failed to do the update. 9974 */ 9975 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 9976 kick_ilb(NOHZ_STATS_KICK); 9977 raw_spin_lock(&this_rq->lock); 9978 } 9979 9980 #else /* !CONFIG_NO_HZ_COMMON */ 9981 static inline void nohz_balancer_kick(struct rq *rq) { } 9982 9983 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9984 { 9985 return false; 9986 } 9987 9988 static inline void nohz_newidle_balance(struct rq *this_rq) { } 9989 #endif /* CONFIG_NO_HZ_COMMON */ 9990 9991 /* 9992 * idle_balance is called by schedule() if this_cpu is about to become 9993 * idle. Attempts to pull tasks from other CPUs. 9994 */ 9995 static int idle_balance(struct rq *this_rq, struct rq_flags *rf) 9996 { 9997 unsigned long next_balance = jiffies + HZ; 9998 int this_cpu = this_rq->cpu; 9999 struct sched_domain *sd; 10000 int pulled_task = 0; 10001 u64 curr_cost = 0; 10002 10003 /* 10004 * We must set idle_stamp _before_ calling idle_balance(), such that we 10005 * measure the duration of idle_balance() as idle time. 10006 */ 10007 this_rq->idle_stamp = rq_clock(this_rq); 10008 10009 /* 10010 * Do not pull tasks towards !active CPUs... 10011 */ 10012 if (!cpu_active(this_cpu)) 10013 return 0; 10014 10015 /* 10016 * This is OK, because current is on_cpu, which avoids it being picked 10017 * for load-balance and preemption/IRQs are still disabled avoiding 10018 * further scheduler activity on it and we're being very careful to 10019 * re-start the picking loop. 10020 */ 10021 rq_unpin_lock(this_rq, rf); 10022 10023 if (this_rq->avg_idle < sysctl_sched_migration_cost || 10024 !READ_ONCE(this_rq->rd->overload)) { 10025 10026 rcu_read_lock(); 10027 sd = rcu_dereference_check_sched_domain(this_rq->sd); 10028 if (sd) 10029 update_next_balance(sd, &next_balance); 10030 rcu_read_unlock(); 10031 10032 nohz_newidle_balance(this_rq); 10033 10034 goto out; 10035 } 10036 10037 raw_spin_unlock(&this_rq->lock); 10038 10039 update_blocked_averages(this_cpu); 10040 rcu_read_lock(); 10041 for_each_domain(this_cpu, sd) { 10042 int continue_balancing = 1; 10043 u64 t0, domain_cost; 10044 10045 if (!(sd->flags & SD_LOAD_BALANCE)) 10046 continue; 10047 10048 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 10049 update_next_balance(sd, &next_balance); 10050 break; 10051 } 10052 10053 if (sd->flags & SD_BALANCE_NEWIDLE) { 10054 t0 = sched_clock_cpu(this_cpu); 10055 10056 pulled_task = load_balance(this_cpu, this_rq, 10057 sd, CPU_NEWLY_IDLE, 10058 &continue_balancing); 10059 10060 domain_cost = sched_clock_cpu(this_cpu) - t0; 10061 if (domain_cost > sd->max_newidle_lb_cost) 10062 sd->max_newidle_lb_cost = domain_cost; 10063 10064 curr_cost += domain_cost; 10065 } 10066 10067 update_next_balance(sd, &next_balance); 10068 10069 /* 10070 * Stop searching for tasks to pull if there are 10071 * now runnable tasks on this rq. 10072 */ 10073 if (pulled_task || this_rq->nr_running > 0) 10074 break; 10075 } 10076 rcu_read_unlock(); 10077 10078 raw_spin_lock(&this_rq->lock); 10079 10080 if (curr_cost > this_rq->max_idle_balance_cost) 10081 this_rq->max_idle_balance_cost = curr_cost; 10082 10083 out: 10084 /* 10085 * While browsing the domains, we released the rq lock, a task could 10086 * have been enqueued in the meantime. Since we're not going idle, 10087 * pretend we pulled a task. 10088 */ 10089 if (this_rq->cfs.h_nr_running && !pulled_task) 10090 pulled_task = 1; 10091 10092 /* Move the next balance forward */ 10093 if (time_after(this_rq->next_balance, next_balance)) 10094 this_rq->next_balance = next_balance; 10095 10096 /* Is there a task of a high priority class? */ 10097 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 10098 pulled_task = -1; 10099 10100 if (pulled_task) 10101 this_rq->idle_stamp = 0; 10102 10103 rq_repin_lock(this_rq, rf); 10104 10105 return pulled_task; 10106 } 10107 10108 /* 10109 * run_rebalance_domains is triggered when needed from the scheduler tick. 10110 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 10111 */ 10112 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 10113 { 10114 struct rq *this_rq = this_rq(); 10115 enum cpu_idle_type idle = this_rq->idle_balance ? 10116 CPU_IDLE : CPU_NOT_IDLE; 10117 10118 /* 10119 * If this CPU has a pending nohz_balance_kick, then do the 10120 * balancing on behalf of the other idle CPUs whose ticks are 10121 * stopped. Do nohz_idle_balance *before* rebalance_domains to 10122 * give the idle CPUs a chance to load balance. Else we may 10123 * load balance only within the local sched_domain hierarchy 10124 * and abort nohz_idle_balance altogether if we pull some load. 10125 */ 10126 if (nohz_idle_balance(this_rq, idle)) 10127 return; 10128 10129 /* normal load balance */ 10130 update_blocked_averages(this_rq->cpu); 10131 rebalance_domains(this_rq, idle); 10132 } 10133 10134 /* 10135 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 10136 */ 10137 void trigger_load_balance(struct rq *rq) 10138 { 10139 /* Don't need to rebalance while attached to NULL domain */ 10140 if (unlikely(on_null_domain(rq))) 10141 return; 10142 10143 if (time_after_eq(jiffies, rq->next_balance)) 10144 raise_softirq(SCHED_SOFTIRQ); 10145 10146 nohz_balancer_kick(rq); 10147 } 10148 10149 static void rq_online_fair(struct rq *rq) 10150 { 10151 update_sysctl(); 10152 10153 update_runtime_enabled(rq); 10154 } 10155 10156 static void rq_offline_fair(struct rq *rq) 10157 { 10158 update_sysctl(); 10159 10160 /* Ensure any throttled groups are reachable by pick_next_task */ 10161 unthrottle_offline_cfs_rqs(rq); 10162 } 10163 10164 #endif /* CONFIG_SMP */ 10165 10166 /* 10167 * scheduler tick hitting a task of our scheduling class. 10168 * 10169 * NOTE: This function can be called remotely by the tick offload that 10170 * goes along full dynticks. Therefore no local assumption can be made 10171 * and everything must be accessed through the @rq and @curr passed in 10172 * parameters. 10173 */ 10174 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 10175 { 10176 struct cfs_rq *cfs_rq; 10177 struct sched_entity *se = &curr->se; 10178 10179 for_each_sched_entity(se) { 10180 cfs_rq = cfs_rq_of(se); 10181 entity_tick(cfs_rq, se, queued); 10182 } 10183 10184 if (static_branch_unlikely(&sched_numa_balancing)) 10185 task_tick_numa(rq, curr); 10186 10187 update_misfit_status(curr, rq); 10188 update_overutilized_status(task_rq(curr)); 10189 } 10190 10191 /* 10192 * called on fork with the child task as argument from the parent's context 10193 * - child not yet on the tasklist 10194 * - preemption disabled 10195 */ 10196 static void task_fork_fair(struct task_struct *p) 10197 { 10198 struct cfs_rq *cfs_rq; 10199 struct sched_entity *se = &p->se, *curr; 10200 struct rq *rq = this_rq(); 10201 struct rq_flags rf; 10202 10203 rq_lock(rq, &rf); 10204 update_rq_clock(rq); 10205 10206 cfs_rq = task_cfs_rq(current); 10207 curr = cfs_rq->curr; 10208 if (curr) { 10209 update_curr(cfs_rq); 10210 se->vruntime = curr->vruntime; 10211 } 10212 place_entity(cfs_rq, se, 1); 10213 10214 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 10215 /* 10216 * Upon rescheduling, sched_class::put_prev_task() will place 10217 * 'current' within the tree based on its new key value. 10218 */ 10219 swap(curr->vruntime, se->vruntime); 10220 resched_curr(rq); 10221 } 10222 10223 se->vruntime -= cfs_rq->min_vruntime; 10224 rq_unlock(rq, &rf); 10225 } 10226 10227 /* 10228 * Priority of the task has changed. Check to see if we preempt 10229 * the current task. 10230 */ 10231 static void 10232 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 10233 { 10234 if (!task_on_rq_queued(p)) 10235 return; 10236 10237 /* 10238 * Reschedule if we are currently running on this runqueue and 10239 * our priority decreased, or if we are not currently running on 10240 * this runqueue and our priority is higher than the current's 10241 */ 10242 if (rq->curr == p) { 10243 if (p->prio > oldprio) 10244 resched_curr(rq); 10245 } else 10246 check_preempt_curr(rq, p, 0); 10247 } 10248 10249 static inline bool vruntime_normalized(struct task_struct *p) 10250 { 10251 struct sched_entity *se = &p->se; 10252 10253 /* 10254 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 10255 * the dequeue_entity(.flags=0) will already have normalized the 10256 * vruntime. 10257 */ 10258 if (p->on_rq) 10259 return true; 10260 10261 /* 10262 * When !on_rq, vruntime of the task has usually NOT been normalized. 10263 * But there are some cases where it has already been normalized: 10264 * 10265 * - A forked child which is waiting for being woken up by 10266 * wake_up_new_task(). 10267 * - A task which has been woken up by try_to_wake_up() and 10268 * waiting for actually being woken up by sched_ttwu_pending(). 10269 */ 10270 if (!se->sum_exec_runtime || 10271 (p->state == TASK_WAKING && p->sched_remote_wakeup)) 10272 return true; 10273 10274 return false; 10275 } 10276 10277 #ifdef CONFIG_FAIR_GROUP_SCHED 10278 /* 10279 * Propagate the changes of the sched_entity across the tg tree to make it 10280 * visible to the root 10281 */ 10282 static void propagate_entity_cfs_rq(struct sched_entity *se) 10283 { 10284 struct cfs_rq *cfs_rq; 10285 10286 /* Start to propagate at parent */ 10287 se = se->parent; 10288 10289 for_each_sched_entity(se) { 10290 cfs_rq = cfs_rq_of(se); 10291 10292 if (cfs_rq_throttled(cfs_rq)) 10293 break; 10294 10295 update_load_avg(cfs_rq, se, UPDATE_TG); 10296 } 10297 } 10298 #else 10299 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 10300 #endif 10301 10302 static void detach_entity_cfs_rq(struct sched_entity *se) 10303 { 10304 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10305 10306 /* Catch up with the cfs_rq and remove our load when we leave */ 10307 update_load_avg(cfs_rq, se, 0); 10308 detach_entity_load_avg(cfs_rq, se); 10309 update_tg_load_avg(cfs_rq, false); 10310 propagate_entity_cfs_rq(se); 10311 } 10312 10313 static void attach_entity_cfs_rq(struct sched_entity *se) 10314 { 10315 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10316 10317 #ifdef CONFIG_FAIR_GROUP_SCHED 10318 /* 10319 * Since the real-depth could have been changed (only FAIR 10320 * class maintain depth value), reset depth properly. 10321 */ 10322 se->depth = se->parent ? se->parent->depth + 1 : 0; 10323 #endif 10324 10325 /* Synchronize entity with its cfs_rq */ 10326 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 10327 attach_entity_load_avg(cfs_rq, se, 0); 10328 update_tg_load_avg(cfs_rq, false); 10329 propagate_entity_cfs_rq(se); 10330 } 10331 10332 static void detach_task_cfs_rq(struct task_struct *p) 10333 { 10334 struct sched_entity *se = &p->se; 10335 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10336 10337 if (!vruntime_normalized(p)) { 10338 /* 10339 * Fix up our vruntime so that the current sleep doesn't 10340 * cause 'unlimited' sleep bonus. 10341 */ 10342 place_entity(cfs_rq, se, 0); 10343 se->vruntime -= cfs_rq->min_vruntime; 10344 } 10345 10346 detach_entity_cfs_rq(se); 10347 } 10348 10349 static void attach_task_cfs_rq(struct task_struct *p) 10350 { 10351 struct sched_entity *se = &p->se; 10352 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10353 10354 attach_entity_cfs_rq(se); 10355 10356 if (!vruntime_normalized(p)) 10357 se->vruntime += cfs_rq->min_vruntime; 10358 } 10359 10360 static void switched_from_fair(struct rq *rq, struct task_struct *p) 10361 { 10362 detach_task_cfs_rq(p); 10363 } 10364 10365 static void switched_to_fair(struct rq *rq, struct task_struct *p) 10366 { 10367 attach_task_cfs_rq(p); 10368 10369 if (task_on_rq_queued(p)) { 10370 /* 10371 * We were most likely switched from sched_rt, so 10372 * kick off the schedule if running, otherwise just see 10373 * if we can still preempt the current task. 10374 */ 10375 if (rq->curr == p) 10376 resched_curr(rq); 10377 else 10378 check_preempt_curr(rq, p, 0); 10379 } 10380 } 10381 10382 /* Account for a task changing its policy or group. 10383 * 10384 * This routine is mostly called to set cfs_rq->curr field when a task 10385 * migrates between groups/classes. 10386 */ 10387 static void set_curr_task_fair(struct rq *rq) 10388 { 10389 struct sched_entity *se = &rq->curr->se; 10390 10391 for_each_sched_entity(se) { 10392 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10393 10394 set_next_entity(cfs_rq, se); 10395 /* ensure bandwidth has been allocated on our new cfs_rq */ 10396 account_cfs_rq_runtime(cfs_rq, 0); 10397 } 10398 } 10399 10400 void init_cfs_rq(struct cfs_rq *cfs_rq) 10401 { 10402 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 10403 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 10404 #ifndef CONFIG_64BIT 10405 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 10406 #endif 10407 #ifdef CONFIG_SMP 10408 raw_spin_lock_init(&cfs_rq->removed.lock); 10409 #endif 10410 } 10411 10412 #ifdef CONFIG_FAIR_GROUP_SCHED 10413 static void task_set_group_fair(struct task_struct *p) 10414 { 10415 struct sched_entity *se = &p->se; 10416 10417 set_task_rq(p, task_cpu(p)); 10418 se->depth = se->parent ? se->parent->depth + 1 : 0; 10419 } 10420 10421 static void task_move_group_fair(struct task_struct *p) 10422 { 10423 detach_task_cfs_rq(p); 10424 set_task_rq(p, task_cpu(p)); 10425 10426 #ifdef CONFIG_SMP 10427 /* Tell se's cfs_rq has been changed -- migrated */ 10428 p->se.avg.last_update_time = 0; 10429 #endif 10430 attach_task_cfs_rq(p); 10431 } 10432 10433 static void task_change_group_fair(struct task_struct *p, int type) 10434 { 10435 switch (type) { 10436 case TASK_SET_GROUP: 10437 task_set_group_fair(p); 10438 break; 10439 10440 case TASK_MOVE_GROUP: 10441 task_move_group_fair(p); 10442 break; 10443 } 10444 } 10445 10446 void free_fair_sched_group(struct task_group *tg) 10447 { 10448 int i; 10449 10450 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10451 10452 for_each_possible_cpu(i) { 10453 if (tg->cfs_rq) 10454 kfree(tg->cfs_rq[i]); 10455 if (tg->se) 10456 kfree(tg->se[i]); 10457 } 10458 10459 kfree(tg->cfs_rq); 10460 kfree(tg->se); 10461 } 10462 10463 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10464 { 10465 struct sched_entity *se; 10466 struct cfs_rq *cfs_rq; 10467 int i; 10468 10469 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 10470 if (!tg->cfs_rq) 10471 goto err; 10472 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 10473 if (!tg->se) 10474 goto err; 10475 10476 tg->shares = NICE_0_LOAD; 10477 10478 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10479 10480 for_each_possible_cpu(i) { 10481 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 10482 GFP_KERNEL, cpu_to_node(i)); 10483 if (!cfs_rq) 10484 goto err; 10485 10486 se = kzalloc_node(sizeof(struct sched_entity), 10487 GFP_KERNEL, cpu_to_node(i)); 10488 if (!se) 10489 goto err_free_rq; 10490 10491 init_cfs_rq(cfs_rq); 10492 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 10493 init_entity_runnable_average(se); 10494 } 10495 10496 return 1; 10497 10498 err_free_rq: 10499 kfree(cfs_rq); 10500 err: 10501 return 0; 10502 } 10503 10504 void online_fair_sched_group(struct task_group *tg) 10505 { 10506 struct sched_entity *se; 10507 struct rq *rq; 10508 int i; 10509 10510 for_each_possible_cpu(i) { 10511 rq = cpu_rq(i); 10512 se = tg->se[i]; 10513 10514 raw_spin_lock_irq(&rq->lock); 10515 update_rq_clock(rq); 10516 attach_entity_cfs_rq(se); 10517 sync_throttle(tg, i); 10518 raw_spin_unlock_irq(&rq->lock); 10519 } 10520 } 10521 10522 void unregister_fair_sched_group(struct task_group *tg) 10523 { 10524 unsigned long flags; 10525 struct rq *rq; 10526 int cpu; 10527 10528 for_each_possible_cpu(cpu) { 10529 if (tg->se[cpu]) 10530 remove_entity_load_avg(tg->se[cpu]); 10531 10532 /* 10533 * Only empty task groups can be destroyed; so we can speculatively 10534 * check on_list without danger of it being re-added. 10535 */ 10536 if (!tg->cfs_rq[cpu]->on_list) 10537 continue; 10538 10539 rq = cpu_rq(cpu); 10540 10541 raw_spin_lock_irqsave(&rq->lock, flags); 10542 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 10543 raw_spin_unlock_irqrestore(&rq->lock, flags); 10544 } 10545 } 10546 10547 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 10548 struct sched_entity *se, int cpu, 10549 struct sched_entity *parent) 10550 { 10551 struct rq *rq = cpu_rq(cpu); 10552 10553 cfs_rq->tg = tg; 10554 cfs_rq->rq = rq; 10555 init_cfs_rq_runtime(cfs_rq); 10556 10557 tg->cfs_rq[cpu] = cfs_rq; 10558 tg->se[cpu] = se; 10559 10560 /* se could be NULL for root_task_group */ 10561 if (!se) 10562 return; 10563 10564 if (!parent) { 10565 se->cfs_rq = &rq->cfs; 10566 se->depth = 0; 10567 } else { 10568 se->cfs_rq = parent->my_q; 10569 se->depth = parent->depth + 1; 10570 } 10571 10572 se->my_q = cfs_rq; 10573 /* guarantee group entities always have weight */ 10574 update_load_set(&se->load, NICE_0_LOAD); 10575 se->parent = parent; 10576 } 10577 10578 static DEFINE_MUTEX(shares_mutex); 10579 10580 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 10581 { 10582 int i; 10583 10584 /* 10585 * We can't change the weight of the root cgroup. 10586 */ 10587 if (!tg->se[0]) 10588 return -EINVAL; 10589 10590 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 10591 10592 mutex_lock(&shares_mutex); 10593 if (tg->shares == shares) 10594 goto done; 10595 10596 tg->shares = shares; 10597 for_each_possible_cpu(i) { 10598 struct rq *rq = cpu_rq(i); 10599 struct sched_entity *se = tg->se[i]; 10600 struct rq_flags rf; 10601 10602 /* Propagate contribution to hierarchy */ 10603 rq_lock_irqsave(rq, &rf); 10604 update_rq_clock(rq); 10605 for_each_sched_entity(se) { 10606 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 10607 update_cfs_group(se); 10608 } 10609 rq_unlock_irqrestore(rq, &rf); 10610 } 10611 10612 done: 10613 mutex_unlock(&shares_mutex); 10614 return 0; 10615 } 10616 #else /* CONFIG_FAIR_GROUP_SCHED */ 10617 10618 void free_fair_sched_group(struct task_group *tg) { } 10619 10620 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10621 { 10622 return 1; 10623 } 10624 10625 void online_fair_sched_group(struct task_group *tg) { } 10626 10627 void unregister_fair_sched_group(struct task_group *tg) { } 10628 10629 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10630 10631 10632 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 10633 { 10634 struct sched_entity *se = &task->se; 10635 unsigned int rr_interval = 0; 10636 10637 /* 10638 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 10639 * idle runqueue: 10640 */ 10641 if (rq->cfs.load.weight) 10642 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 10643 10644 return rr_interval; 10645 } 10646 10647 /* 10648 * All the scheduling class methods: 10649 */ 10650 const struct sched_class fair_sched_class = { 10651 .next = &idle_sched_class, 10652 .enqueue_task = enqueue_task_fair, 10653 .dequeue_task = dequeue_task_fair, 10654 .yield_task = yield_task_fair, 10655 .yield_to_task = yield_to_task_fair, 10656 10657 .check_preempt_curr = check_preempt_wakeup, 10658 10659 .pick_next_task = pick_next_task_fair, 10660 .put_prev_task = put_prev_task_fair, 10661 10662 #ifdef CONFIG_SMP 10663 .select_task_rq = select_task_rq_fair, 10664 .migrate_task_rq = migrate_task_rq_fair, 10665 10666 .rq_online = rq_online_fair, 10667 .rq_offline = rq_offline_fair, 10668 10669 .task_dead = task_dead_fair, 10670 .set_cpus_allowed = set_cpus_allowed_common, 10671 #endif 10672 10673 .set_curr_task = set_curr_task_fair, 10674 .task_tick = task_tick_fair, 10675 .task_fork = task_fork_fair, 10676 10677 .prio_changed = prio_changed_fair, 10678 .switched_from = switched_from_fair, 10679 .switched_to = switched_to_fair, 10680 10681 .get_rr_interval = get_rr_interval_fair, 10682 10683 .update_curr = update_curr_fair, 10684 10685 #ifdef CONFIG_FAIR_GROUP_SCHED 10686 .task_change_group = task_change_group_fair, 10687 #endif 10688 }; 10689 10690 #ifdef CONFIG_SCHED_DEBUG 10691 void print_cfs_stats(struct seq_file *m, int cpu) 10692 { 10693 struct cfs_rq *cfs_rq, *pos; 10694 10695 rcu_read_lock(); 10696 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 10697 print_cfs_rq(m, cpu, cfs_rq); 10698 rcu_read_unlock(); 10699 } 10700 10701 #ifdef CONFIG_NUMA_BALANCING 10702 void show_numa_stats(struct task_struct *p, struct seq_file *m) 10703 { 10704 int node; 10705 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 10706 10707 for_each_online_node(node) { 10708 if (p->numa_faults) { 10709 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 10710 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 10711 } 10712 if (p->numa_group) { 10713 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 10714 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 10715 } 10716 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 10717 } 10718 } 10719 #endif /* CONFIG_NUMA_BALANCING */ 10720 #endif /* CONFIG_SCHED_DEBUG */ 10721 10722 __init void init_sched_fair_class(void) 10723 { 10724 #ifdef CONFIG_SMP 10725 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 10726 10727 #ifdef CONFIG_NO_HZ_COMMON 10728 nohz.next_balance = jiffies; 10729 nohz.next_blocked = jiffies; 10730 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 10731 #endif 10732 #endif /* SMP */ 10733 10734 } 10735