1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 21 */ 22 23 #include <linux/latencytop.h> 24 #include <linux/sched.h> 25 #include <linux/cpumask.h> 26 #include <linux/cpuidle.h> 27 #include <linux/slab.h> 28 #include <linux/profile.h> 29 #include <linux/interrupt.h> 30 #include <linux/mempolicy.h> 31 #include <linux/migrate.h> 32 #include <linux/task_work.h> 33 34 #include <trace/events/sched.h> 35 36 #include "sched.h" 37 38 /* 39 * Targeted preemption latency for CPU-bound tasks: 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 41 * 42 * NOTE: this latency value is not the same as the concept of 43 * 'timeslice length' - timeslices in CFS are of variable length 44 * and have no persistent notion like in traditional, time-slice 45 * based scheduling concepts. 46 * 47 * (to see the precise effective timeslice length of your workload, 48 * run vmstat and monitor the context-switches (cs) field) 49 */ 50 unsigned int sysctl_sched_latency = 6000000ULL; 51 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 52 53 /* 54 * The initial- and re-scaling of tunables is configurable 55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 56 * 57 * Options are: 58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 61 */ 62 enum sched_tunable_scaling sysctl_sched_tunable_scaling 63 = SCHED_TUNABLESCALING_LOG; 64 65 /* 66 * Minimal preemption granularity for CPU-bound tasks: 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 68 */ 69 unsigned int sysctl_sched_min_granularity = 750000ULL; 70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 71 72 /* 73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 74 */ 75 static unsigned int sched_nr_latency = 8; 76 77 /* 78 * After fork, child runs first. If set to 0 (default) then 79 * parent will (try to) run first. 80 */ 81 unsigned int sysctl_sched_child_runs_first __read_mostly; 82 83 /* 84 * SCHED_OTHER wake-up granularity. 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 86 * 87 * This option delays the preemption effects of decoupled workloads 88 * and reduces their over-scheduling. Synchronous workloads will still 89 * have immediate wakeup/sleep latencies. 90 */ 91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 93 94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 95 96 /* 97 * The exponential sliding window over which load is averaged for shares 98 * distribution. 99 * (default: 10msec) 100 */ 101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 102 103 #ifdef CONFIG_CFS_BANDWIDTH 104 /* 105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 106 * each time a cfs_rq requests quota. 107 * 108 * Note: in the case that the slice exceeds the runtime remaining (either due 109 * to consumption or the quota being specified to be smaller than the slice) 110 * we will always only issue the remaining available time. 111 * 112 * default: 5 msec, units: microseconds 113 */ 114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 115 #endif 116 117 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 118 { 119 lw->weight += inc; 120 lw->inv_weight = 0; 121 } 122 123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 124 { 125 lw->weight -= dec; 126 lw->inv_weight = 0; 127 } 128 129 static inline void update_load_set(struct load_weight *lw, unsigned long w) 130 { 131 lw->weight = w; 132 lw->inv_weight = 0; 133 } 134 135 /* 136 * Increase the granularity value when there are more CPUs, 137 * because with more CPUs the 'effective latency' as visible 138 * to users decreases. But the relationship is not linear, 139 * so pick a second-best guess by going with the log2 of the 140 * number of CPUs. 141 * 142 * This idea comes from the SD scheduler of Con Kolivas: 143 */ 144 static int get_update_sysctl_factor(void) 145 { 146 unsigned int cpus = min_t(int, num_online_cpus(), 8); 147 unsigned int factor; 148 149 switch (sysctl_sched_tunable_scaling) { 150 case SCHED_TUNABLESCALING_NONE: 151 factor = 1; 152 break; 153 case SCHED_TUNABLESCALING_LINEAR: 154 factor = cpus; 155 break; 156 case SCHED_TUNABLESCALING_LOG: 157 default: 158 factor = 1 + ilog2(cpus); 159 break; 160 } 161 162 return factor; 163 } 164 165 static void update_sysctl(void) 166 { 167 unsigned int factor = get_update_sysctl_factor(); 168 169 #define SET_SYSCTL(name) \ 170 (sysctl_##name = (factor) * normalized_sysctl_##name) 171 SET_SYSCTL(sched_min_granularity); 172 SET_SYSCTL(sched_latency); 173 SET_SYSCTL(sched_wakeup_granularity); 174 #undef SET_SYSCTL 175 } 176 177 void sched_init_granularity(void) 178 { 179 update_sysctl(); 180 } 181 182 #define WMULT_CONST (~0U) 183 #define WMULT_SHIFT 32 184 185 static void __update_inv_weight(struct load_weight *lw) 186 { 187 unsigned long w; 188 189 if (likely(lw->inv_weight)) 190 return; 191 192 w = scale_load_down(lw->weight); 193 194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 195 lw->inv_weight = 1; 196 else if (unlikely(!w)) 197 lw->inv_weight = WMULT_CONST; 198 else 199 lw->inv_weight = WMULT_CONST / w; 200 } 201 202 /* 203 * delta_exec * weight / lw.weight 204 * OR 205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 206 * 207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case 208 * we're guaranteed shift stays positive because inv_weight is guaranteed to 209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 210 * 211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 212 * weight/lw.weight <= 1, and therefore our shift will also be positive. 213 */ 214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 215 { 216 u64 fact = scale_load_down(weight); 217 int shift = WMULT_SHIFT; 218 219 __update_inv_weight(lw); 220 221 if (unlikely(fact >> 32)) { 222 while (fact >> 32) { 223 fact >>= 1; 224 shift--; 225 } 226 } 227 228 /* hint to use a 32x32->64 mul */ 229 fact = (u64)(u32)fact * lw->inv_weight; 230 231 while (fact >> 32) { 232 fact >>= 1; 233 shift--; 234 } 235 236 return mul_u64_u32_shr(delta_exec, fact, shift); 237 } 238 239 240 const struct sched_class fair_sched_class; 241 242 /************************************************************** 243 * CFS operations on generic schedulable entities: 244 */ 245 246 #ifdef CONFIG_FAIR_GROUP_SCHED 247 248 /* cpu runqueue to which this cfs_rq is attached */ 249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 250 { 251 return cfs_rq->rq; 252 } 253 254 /* An entity is a task if it doesn't "own" a runqueue */ 255 #define entity_is_task(se) (!se->my_q) 256 257 static inline struct task_struct *task_of(struct sched_entity *se) 258 { 259 #ifdef CONFIG_SCHED_DEBUG 260 WARN_ON_ONCE(!entity_is_task(se)); 261 #endif 262 return container_of(se, struct task_struct, se); 263 } 264 265 /* Walk up scheduling entities hierarchy */ 266 #define for_each_sched_entity(se) \ 267 for (; se; se = se->parent) 268 269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 270 { 271 return p->se.cfs_rq; 272 } 273 274 /* runqueue on which this entity is (to be) queued */ 275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 276 { 277 return se->cfs_rq; 278 } 279 280 /* runqueue "owned" by this group */ 281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 282 { 283 return grp->my_q; 284 } 285 286 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 287 int force_update); 288 289 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 290 { 291 if (!cfs_rq->on_list) { 292 /* 293 * Ensure we either appear before our parent (if already 294 * enqueued) or force our parent to appear after us when it is 295 * enqueued. The fact that we always enqueue bottom-up 296 * reduces this to two cases. 297 */ 298 if (cfs_rq->tg->parent && 299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 301 &rq_of(cfs_rq)->leaf_cfs_rq_list); 302 } else { 303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 304 &rq_of(cfs_rq)->leaf_cfs_rq_list); 305 } 306 307 cfs_rq->on_list = 1; 308 /* We should have no load, but we need to update last_decay. */ 309 update_cfs_rq_blocked_load(cfs_rq, 0); 310 } 311 } 312 313 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 314 { 315 if (cfs_rq->on_list) { 316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 317 cfs_rq->on_list = 0; 318 } 319 } 320 321 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 322 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 324 325 /* Do the two (enqueued) entities belong to the same group ? */ 326 static inline struct cfs_rq * 327 is_same_group(struct sched_entity *se, struct sched_entity *pse) 328 { 329 if (se->cfs_rq == pse->cfs_rq) 330 return se->cfs_rq; 331 332 return NULL; 333 } 334 335 static inline struct sched_entity *parent_entity(struct sched_entity *se) 336 { 337 return se->parent; 338 } 339 340 static void 341 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 342 { 343 int se_depth, pse_depth; 344 345 /* 346 * preemption test can be made between sibling entities who are in the 347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 348 * both tasks until we find their ancestors who are siblings of common 349 * parent. 350 */ 351 352 /* First walk up until both entities are at same depth */ 353 se_depth = (*se)->depth; 354 pse_depth = (*pse)->depth; 355 356 while (se_depth > pse_depth) { 357 se_depth--; 358 *se = parent_entity(*se); 359 } 360 361 while (pse_depth > se_depth) { 362 pse_depth--; 363 *pse = parent_entity(*pse); 364 } 365 366 while (!is_same_group(*se, *pse)) { 367 *se = parent_entity(*se); 368 *pse = parent_entity(*pse); 369 } 370 } 371 372 #else /* !CONFIG_FAIR_GROUP_SCHED */ 373 374 static inline struct task_struct *task_of(struct sched_entity *se) 375 { 376 return container_of(se, struct task_struct, se); 377 } 378 379 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 380 { 381 return container_of(cfs_rq, struct rq, cfs); 382 } 383 384 #define entity_is_task(se) 1 385 386 #define for_each_sched_entity(se) \ 387 for (; se; se = NULL) 388 389 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 390 { 391 return &task_rq(p)->cfs; 392 } 393 394 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 395 { 396 struct task_struct *p = task_of(se); 397 struct rq *rq = task_rq(p); 398 399 return &rq->cfs; 400 } 401 402 /* runqueue "owned" by this group */ 403 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 404 { 405 return NULL; 406 } 407 408 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 409 { 410 } 411 412 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 413 { 414 } 415 416 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 418 419 static inline struct sched_entity *parent_entity(struct sched_entity *se) 420 { 421 return NULL; 422 } 423 424 static inline void 425 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 426 { 427 } 428 429 #endif /* CONFIG_FAIR_GROUP_SCHED */ 430 431 static __always_inline 432 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 433 434 /************************************************************** 435 * Scheduling class tree data structure manipulation methods: 436 */ 437 438 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 439 { 440 s64 delta = (s64)(vruntime - max_vruntime); 441 if (delta > 0) 442 max_vruntime = vruntime; 443 444 return max_vruntime; 445 } 446 447 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 448 { 449 s64 delta = (s64)(vruntime - min_vruntime); 450 if (delta < 0) 451 min_vruntime = vruntime; 452 453 return min_vruntime; 454 } 455 456 static inline int entity_before(struct sched_entity *a, 457 struct sched_entity *b) 458 { 459 return (s64)(a->vruntime - b->vruntime) < 0; 460 } 461 462 static void update_min_vruntime(struct cfs_rq *cfs_rq) 463 { 464 u64 vruntime = cfs_rq->min_vruntime; 465 466 if (cfs_rq->curr) 467 vruntime = cfs_rq->curr->vruntime; 468 469 if (cfs_rq->rb_leftmost) { 470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 471 struct sched_entity, 472 run_node); 473 474 if (!cfs_rq->curr) 475 vruntime = se->vruntime; 476 else 477 vruntime = min_vruntime(vruntime, se->vruntime); 478 } 479 480 /* ensure we never gain time by being placed backwards. */ 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 482 #ifndef CONFIG_64BIT 483 smp_wmb(); 484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 485 #endif 486 } 487 488 /* 489 * Enqueue an entity into the rb-tree: 490 */ 491 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 492 { 493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 494 struct rb_node *parent = NULL; 495 struct sched_entity *entry; 496 int leftmost = 1; 497 498 /* 499 * Find the right place in the rbtree: 500 */ 501 while (*link) { 502 parent = *link; 503 entry = rb_entry(parent, struct sched_entity, run_node); 504 /* 505 * We dont care about collisions. Nodes with 506 * the same key stay together. 507 */ 508 if (entity_before(se, entry)) { 509 link = &parent->rb_left; 510 } else { 511 link = &parent->rb_right; 512 leftmost = 0; 513 } 514 } 515 516 /* 517 * Maintain a cache of leftmost tree entries (it is frequently 518 * used): 519 */ 520 if (leftmost) 521 cfs_rq->rb_leftmost = &se->run_node; 522 523 rb_link_node(&se->run_node, parent, link); 524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 525 } 526 527 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 528 { 529 if (cfs_rq->rb_leftmost == &se->run_node) { 530 struct rb_node *next_node; 531 532 next_node = rb_next(&se->run_node); 533 cfs_rq->rb_leftmost = next_node; 534 } 535 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 537 } 538 539 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 540 { 541 struct rb_node *left = cfs_rq->rb_leftmost; 542 543 if (!left) 544 return NULL; 545 546 return rb_entry(left, struct sched_entity, run_node); 547 } 548 549 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 550 { 551 struct rb_node *next = rb_next(&se->run_node); 552 553 if (!next) 554 return NULL; 555 556 return rb_entry(next, struct sched_entity, run_node); 557 } 558 559 #ifdef CONFIG_SCHED_DEBUG 560 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 561 { 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 563 564 if (!last) 565 return NULL; 566 567 return rb_entry(last, struct sched_entity, run_node); 568 } 569 570 /************************************************************** 571 * Scheduling class statistics methods: 572 */ 573 574 int sched_proc_update_handler(struct ctl_table *table, int write, 575 void __user *buffer, size_t *lenp, 576 loff_t *ppos) 577 { 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 579 int factor = get_update_sysctl_factor(); 580 581 if (ret || !write) 582 return ret; 583 584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 585 sysctl_sched_min_granularity); 586 587 #define WRT_SYSCTL(name) \ 588 (normalized_sysctl_##name = sysctl_##name / (factor)) 589 WRT_SYSCTL(sched_min_granularity); 590 WRT_SYSCTL(sched_latency); 591 WRT_SYSCTL(sched_wakeup_granularity); 592 #undef WRT_SYSCTL 593 594 return 0; 595 } 596 #endif 597 598 /* 599 * delta /= w 600 */ 601 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 602 { 603 if (unlikely(se->load.weight != NICE_0_LOAD)) 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 605 606 return delta; 607 } 608 609 /* 610 * The idea is to set a period in which each task runs once. 611 * 612 * When there are too many tasks (sched_nr_latency) we have to stretch 613 * this period because otherwise the slices get too small. 614 * 615 * p = (nr <= nl) ? l : l*nr/nl 616 */ 617 static u64 __sched_period(unsigned long nr_running) 618 { 619 u64 period = sysctl_sched_latency; 620 unsigned long nr_latency = sched_nr_latency; 621 622 if (unlikely(nr_running > nr_latency)) { 623 period = sysctl_sched_min_granularity; 624 period *= nr_running; 625 } 626 627 return period; 628 } 629 630 /* 631 * We calculate the wall-time slice from the period by taking a part 632 * proportional to the weight. 633 * 634 * s = p*P[w/rw] 635 */ 636 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 637 { 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 639 640 for_each_sched_entity(se) { 641 struct load_weight *load; 642 struct load_weight lw; 643 644 cfs_rq = cfs_rq_of(se); 645 load = &cfs_rq->load; 646 647 if (unlikely(!se->on_rq)) { 648 lw = cfs_rq->load; 649 650 update_load_add(&lw, se->load.weight); 651 load = &lw; 652 } 653 slice = __calc_delta(slice, se->load.weight, load); 654 } 655 return slice; 656 } 657 658 /* 659 * We calculate the vruntime slice of a to-be-inserted task. 660 * 661 * vs = s/w 662 */ 663 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 664 { 665 return calc_delta_fair(sched_slice(cfs_rq, se), se); 666 } 667 668 #ifdef CONFIG_SMP 669 static int select_idle_sibling(struct task_struct *p, int cpu); 670 static unsigned long task_h_load(struct task_struct *p); 671 672 static inline void __update_task_entity_contrib(struct sched_entity *se); 673 674 /* Give new task start runnable values to heavy its load in infant time */ 675 void init_task_runnable_average(struct task_struct *p) 676 { 677 u32 slice; 678 679 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10; 680 p->se.avg.runnable_avg_sum = slice; 681 p->se.avg.runnable_avg_period = slice; 682 __update_task_entity_contrib(&p->se); 683 } 684 #else 685 void init_task_runnable_average(struct task_struct *p) 686 { 687 } 688 #endif 689 690 /* 691 * Update the current task's runtime statistics. 692 */ 693 static void update_curr(struct cfs_rq *cfs_rq) 694 { 695 struct sched_entity *curr = cfs_rq->curr; 696 u64 now = rq_clock_task(rq_of(cfs_rq)); 697 u64 delta_exec; 698 699 if (unlikely(!curr)) 700 return; 701 702 delta_exec = now - curr->exec_start; 703 if (unlikely((s64)delta_exec <= 0)) 704 return; 705 706 curr->exec_start = now; 707 708 schedstat_set(curr->statistics.exec_max, 709 max(delta_exec, curr->statistics.exec_max)); 710 711 curr->sum_exec_runtime += delta_exec; 712 schedstat_add(cfs_rq, exec_clock, delta_exec); 713 714 curr->vruntime += calc_delta_fair(delta_exec, curr); 715 update_min_vruntime(cfs_rq); 716 717 if (entity_is_task(curr)) { 718 struct task_struct *curtask = task_of(curr); 719 720 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 721 cpuacct_charge(curtask, delta_exec); 722 account_group_exec_runtime(curtask, delta_exec); 723 } 724 725 account_cfs_rq_runtime(cfs_rq, delta_exec); 726 } 727 728 static void update_curr_fair(struct rq *rq) 729 { 730 update_curr(cfs_rq_of(&rq->curr->se)); 731 } 732 733 static inline void 734 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 735 { 736 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq))); 737 } 738 739 /* 740 * Task is being enqueued - update stats: 741 */ 742 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 743 { 744 /* 745 * Are we enqueueing a waiting task? (for current tasks 746 * a dequeue/enqueue event is a NOP) 747 */ 748 if (se != cfs_rq->curr) 749 update_stats_wait_start(cfs_rq, se); 750 } 751 752 static void 753 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 754 { 755 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, 756 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start)); 757 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); 758 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + 759 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 760 #ifdef CONFIG_SCHEDSTATS 761 if (entity_is_task(se)) { 762 trace_sched_stat_wait(task_of(se), 763 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 764 } 765 #endif 766 schedstat_set(se->statistics.wait_start, 0); 767 } 768 769 static inline void 770 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 771 { 772 /* 773 * Mark the end of the wait period if dequeueing a 774 * waiting task: 775 */ 776 if (se != cfs_rq->curr) 777 update_stats_wait_end(cfs_rq, se); 778 } 779 780 /* 781 * We are picking a new current task - update its stats: 782 */ 783 static inline void 784 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 785 { 786 /* 787 * We are starting a new run period: 788 */ 789 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 790 } 791 792 /************************************************** 793 * Scheduling class queueing methods: 794 */ 795 796 #ifdef CONFIG_NUMA_BALANCING 797 /* 798 * Approximate time to scan a full NUMA task in ms. The task scan period is 799 * calculated based on the tasks virtual memory size and 800 * numa_balancing_scan_size. 801 */ 802 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 803 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 804 805 /* Portion of address space to scan in MB */ 806 unsigned int sysctl_numa_balancing_scan_size = 256; 807 808 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 809 unsigned int sysctl_numa_balancing_scan_delay = 1000; 810 811 static unsigned int task_nr_scan_windows(struct task_struct *p) 812 { 813 unsigned long rss = 0; 814 unsigned long nr_scan_pages; 815 816 /* 817 * Calculations based on RSS as non-present and empty pages are skipped 818 * by the PTE scanner and NUMA hinting faults should be trapped based 819 * on resident pages 820 */ 821 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 822 rss = get_mm_rss(p->mm); 823 if (!rss) 824 rss = nr_scan_pages; 825 826 rss = round_up(rss, nr_scan_pages); 827 return rss / nr_scan_pages; 828 } 829 830 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 831 #define MAX_SCAN_WINDOW 2560 832 833 static unsigned int task_scan_min(struct task_struct *p) 834 { 835 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size); 836 unsigned int scan, floor; 837 unsigned int windows = 1; 838 839 if (scan_size < MAX_SCAN_WINDOW) 840 windows = MAX_SCAN_WINDOW / scan_size; 841 floor = 1000 / windows; 842 843 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 844 return max_t(unsigned int, floor, scan); 845 } 846 847 static unsigned int task_scan_max(struct task_struct *p) 848 { 849 unsigned int smin = task_scan_min(p); 850 unsigned int smax; 851 852 /* Watch for min being lower than max due to floor calculations */ 853 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 854 return max(smin, smax); 855 } 856 857 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 858 { 859 rq->nr_numa_running += (p->numa_preferred_nid != -1); 860 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 861 } 862 863 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 864 { 865 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 866 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 867 } 868 869 struct numa_group { 870 atomic_t refcount; 871 872 spinlock_t lock; /* nr_tasks, tasks */ 873 int nr_tasks; 874 pid_t gid; 875 876 struct rcu_head rcu; 877 nodemask_t active_nodes; 878 unsigned long total_faults; 879 /* 880 * Faults_cpu is used to decide whether memory should move 881 * towards the CPU. As a consequence, these stats are weighted 882 * more by CPU use than by memory faults. 883 */ 884 unsigned long *faults_cpu; 885 unsigned long faults[0]; 886 }; 887 888 /* Shared or private faults. */ 889 #define NR_NUMA_HINT_FAULT_TYPES 2 890 891 /* Memory and CPU locality */ 892 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 893 894 /* Averaged statistics, and temporary buffers. */ 895 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 896 897 pid_t task_numa_group_id(struct task_struct *p) 898 { 899 return p->numa_group ? p->numa_group->gid : 0; 900 } 901 902 /* 903 * The averaged statistics, shared & private, memory & cpu, 904 * occupy the first half of the array. The second half of the 905 * array is for current counters, which are averaged into the 906 * first set by task_numa_placement. 907 */ 908 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 909 { 910 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 911 } 912 913 static inline unsigned long task_faults(struct task_struct *p, int nid) 914 { 915 if (!p->numa_faults) 916 return 0; 917 918 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 919 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 920 } 921 922 static inline unsigned long group_faults(struct task_struct *p, int nid) 923 { 924 if (!p->numa_group) 925 return 0; 926 927 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 928 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 929 } 930 931 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 932 { 933 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 934 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 935 } 936 937 /* Handle placement on systems where not all nodes are directly connected. */ 938 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 939 int maxdist, bool task) 940 { 941 unsigned long score = 0; 942 int node; 943 944 /* 945 * All nodes are directly connected, and the same distance 946 * from each other. No need for fancy placement algorithms. 947 */ 948 if (sched_numa_topology_type == NUMA_DIRECT) 949 return 0; 950 951 /* 952 * This code is called for each node, introducing N^2 complexity, 953 * which should be ok given the number of nodes rarely exceeds 8. 954 */ 955 for_each_online_node(node) { 956 unsigned long faults; 957 int dist = node_distance(nid, node); 958 959 /* 960 * The furthest away nodes in the system are not interesting 961 * for placement; nid was already counted. 962 */ 963 if (dist == sched_max_numa_distance || node == nid) 964 continue; 965 966 /* 967 * On systems with a backplane NUMA topology, compare groups 968 * of nodes, and move tasks towards the group with the most 969 * memory accesses. When comparing two nodes at distance 970 * "hoplimit", only nodes closer by than "hoplimit" are part 971 * of each group. Skip other nodes. 972 */ 973 if (sched_numa_topology_type == NUMA_BACKPLANE && 974 dist > maxdist) 975 continue; 976 977 /* Add up the faults from nearby nodes. */ 978 if (task) 979 faults = task_faults(p, node); 980 else 981 faults = group_faults(p, node); 982 983 /* 984 * On systems with a glueless mesh NUMA topology, there are 985 * no fixed "groups of nodes". Instead, nodes that are not 986 * directly connected bounce traffic through intermediate 987 * nodes; a numa_group can occupy any set of nodes. 988 * The further away a node is, the less the faults count. 989 * This seems to result in good task placement. 990 */ 991 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 992 faults *= (sched_max_numa_distance - dist); 993 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 994 } 995 996 score += faults; 997 } 998 999 return score; 1000 } 1001 1002 /* 1003 * These return the fraction of accesses done by a particular task, or 1004 * task group, on a particular numa node. The group weight is given a 1005 * larger multiplier, in order to group tasks together that are almost 1006 * evenly spread out between numa nodes. 1007 */ 1008 static inline unsigned long task_weight(struct task_struct *p, int nid, 1009 int dist) 1010 { 1011 unsigned long faults, total_faults; 1012 1013 if (!p->numa_faults) 1014 return 0; 1015 1016 total_faults = p->total_numa_faults; 1017 1018 if (!total_faults) 1019 return 0; 1020 1021 faults = task_faults(p, nid); 1022 faults += score_nearby_nodes(p, nid, dist, true); 1023 1024 return 1000 * faults / total_faults; 1025 } 1026 1027 static inline unsigned long group_weight(struct task_struct *p, int nid, 1028 int dist) 1029 { 1030 unsigned long faults, total_faults; 1031 1032 if (!p->numa_group) 1033 return 0; 1034 1035 total_faults = p->numa_group->total_faults; 1036 1037 if (!total_faults) 1038 return 0; 1039 1040 faults = group_faults(p, nid); 1041 faults += score_nearby_nodes(p, nid, dist, false); 1042 1043 return 1000 * faults / total_faults; 1044 } 1045 1046 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1047 int src_nid, int dst_cpu) 1048 { 1049 struct numa_group *ng = p->numa_group; 1050 int dst_nid = cpu_to_node(dst_cpu); 1051 int last_cpupid, this_cpupid; 1052 1053 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1054 1055 /* 1056 * Multi-stage node selection is used in conjunction with a periodic 1057 * migration fault to build a temporal task<->page relation. By using 1058 * a two-stage filter we remove short/unlikely relations. 1059 * 1060 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1061 * a task's usage of a particular page (n_p) per total usage of this 1062 * page (n_t) (in a given time-span) to a probability. 1063 * 1064 * Our periodic faults will sample this probability and getting the 1065 * same result twice in a row, given these samples are fully 1066 * independent, is then given by P(n)^2, provided our sample period 1067 * is sufficiently short compared to the usage pattern. 1068 * 1069 * This quadric squishes small probabilities, making it less likely we 1070 * act on an unlikely task<->page relation. 1071 */ 1072 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1073 if (!cpupid_pid_unset(last_cpupid) && 1074 cpupid_to_nid(last_cpupid) != dst_nid) 1075 return false; 1076 1077 /* Always allow migrate on private faults */ 1078 if (cpupid_match_pid(p, last_cpupid)) 1079 return true; 1080 1081 /* A shared fault, but p->numa_group has not been set up yet. */ 1082 if (!ng) 1083 return true; 1084 1085 /* 1086 * Do not migrate if the destination is not a node that 1087 * is actively used by this numa group. 1088 */ 1089 if (!node_isset(dst_nid, ng->active_nodes)) 1090 return false; 1091 1092 /* 1093 * Source is a node that is not actively used by this 1094 * numa group, while the destination is. Migrate. 1095 */ 1096 if (!node_isset(src_nid, ng->active_nodes)) 1097 return true; 1098 1099 /* 1100 * Both source and destination are nodes in active 1101 * use by this numa group. Maximize memory bandwidth 1102 * by migrating from more heavily used groups, to less 1103 * heavily used ones, spreading the load around. 1104 * Use a 1/4 hysteresis to avoid spurious page movement. 1105 */ 1106 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4); 1107 } 1108 1109 static unsigned long weighted_cpuload(const int cpu); 1110 static unsigned long source_load(int cpu, int type); 1111 static unsigned long target_load(int cpu, int type); 1112 static unsigned long capacity_of(int cpu); 1113 static long effective_load(struct task_group *tg, int cpu, long wl, long wg); 1114 1115 /* Cached statistics for all CPUs within a node */ 1116 struct numa_stats { 1117 unsigned long nr_running; 1118 unsigned long load; 1119 1120 /* Total compute capacity of CPUs on a node */ 1121 unsigned long compute_capacity; 1122 1123 /* Approximate capacity in terms of runnable tasks on a node */ 1124 unsigned long task_capacity; 1125 int has_free_capacity; 1126 }; 1127 1128 /* 1129 * XXX borrowed from update_sg_lb_stats 1130 */ 1131 static void update_numa_stats(struct numa_stats *ns, int nid) 1132 { 1133 int smt, cpu, cpus = 0; 1134 unsigned long capacity; 1135 1136 memset(ns, 0, sizeof(*ns)); 1137 for_each_cpu(cpu, cpumask_of_node(nid)) { 1138 struct rq *rq = cpu_rq(cpu); 1139 1140 ns->nr_running += rq->nr_running; 1141 ns->load += weighted_cpuload(cpu); 1142 ns->compute_capacity += capacity_of(cpu); 1143 1144 cpus++; 1145 } 1146 1147 /* 1148 * If we raced with hotplug and there are no CPUs left in our mask 1149 * the @ns structure is NULL'ed and task_numa_compare() will 1150 * not find this node attractive. 1151 * 1152 * We'll either bail at !has_free_capacity, or we'll detect a huge 1153 * imbalance and bail there. 1154 */ 1155 if (!cpus) 1156 return; 1157 1158 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1159 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1160 capacity = cpus / smt; /* cores */ 1161 1162 ns->task_capacity = min_t(unsigned, capacity, 1163 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1164 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1165 } 1166 1167 struct task_numa_env { 1168 struct task_struct *p; 1169 1170 int src_cpu, src_nid; 1171 int dst_cpu, dst_nid; 1172 1173 struct numa_stats src_stats, dst_stats; 1174 1175 int imbalance_pct; 1176 int dist; 1177 1178 struct task_struct *best_task; 1179 long best_imp; 1180 int best_cpu; 1181 }; 1182 1183 static void task_numa_assign(struct task_numa_env *env, 1184 struct task_struct *p, long imp) 1185 { 1186 if (env->best_task) 1187 put_task_struct(env->best_task); 1188 if (p) 1189 get_task_struct(p); 1190 1191 env->best_task = p; 1192 env->best_imp = imp; 1193 env->best_cpu = env->dst_cpu; 1194 } 1195 1196 static bool load_too_imbalanced(long src_load, long dst_load, 1197 struct task_numa_env *env) 1198 { 1199 long imb, old_imb; 1200 long orig_src_load, orig_dst_load; 1201 long src_capacity, dst_capacity; 1202 1203 /* 1204 * The load is corrected for the CPU capacity available on each node. 1205 * 1206 * src_load dst_load 1207 * ------------ vs --------- 1208 * src_capacity dst_capacity 1209 */ 1210 src_capacity = env->src_stats.compute_capacity; 1211 dst_capacity = env->dst_stats.compute_capacity; 1212 1213 /* We care about the slope of the imbalance, not the direction. */ 1214 if (dst_load < src_load) 1215 swap(dst_load, src_load); 1216 1217 /* Is the difference below the threshold? */ 1218 imb = dst_load * src_capacity * 100 - 1219 src_load * dst_capacity * env->imbalance_pct; 1220 if (imb <= 0) 1221 return false; 1222 1223 /* 1224 * The imbalance is above the allowed threshold. 1225 * Compare it with the old imbalance. 1226 */ 1227 orig_src_load = env->src_stats.load; 1228 orig_dst_load = env->dst_stats.load; 1229 1230 if (orig_dst_load < orig_src_load) 1231 swap(orig_dst_load, orig_src_load); 1232 1233 old_imb = orig_dst_load * src_capacity * 100 - 1234 orig_src_load * dst_capacity * env->imbalance_pct; 1235 1236 /* Would this change make things worse? */ 1237 return (imb > old_imb); 1238 } 1239 1240 /* 1241 * This checks if the overall compute and NUMA accesses of the system would 1242 * be improved if the source tasks was migrated to the target dst_cpu taking 1243 * into account that it might be best if task running on the dst_cpu should 1244 * be exchanged with the source task 1245 */ 1246 static void task_numa_compare(struct task_numa_env *env, 1247 long taskimp, long groupimp) 1248 { 1249 struct rq *src_rq = cpu_rq(env->src_cpu); 1250 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1251 struct task_struct *cur; 1252 long src_load, dst_load; 1253 long load; 1254 long imp = env->p->numa_group ? groupimp : taskimp; 1255 long moveimp = imp; 1256 int dist = env->dist; 1257 1258 rcu_read_lock(); 1259 1260 raw_spin_lock_irq(&dst_rq->lock); 1261 cur = dst_rq->curr; 1262 /* 1263 * No need to move the exiting task, and this ensures that ->curr 1264 * wasn't reaped and thus get_task_struct() in task_numa_assign() 1265 * is safe under RCU read lock. 1266 * Note that rcu_read_lock() itself can't protect from the final 1267 * put_task_struct() after the last schedule(). 1268 */ 1269 if ((cur->flags & PF_EXITING) || is_idle_task(cur)) 1270 cur = NULL; 1271 raw_spin_unlock_irq(&dst_rq->lock); 1272 1273 /* 1274 * Because we have preemption enabled we can get migrated around and 1275 * end try selecting ourselves (current == env->p) as a swap candidate. 1276 */ 1277 if (cur == env->p) 1278 goto unlock; 1279 1280 /* 1281 * "imp" is the fault differential for the source task between the 1282 * source and destination node. Calculate the total differential for 1283 * the source task and potential destination task. The more negative 1284 * the value is, the more rmeote accesses that would be expected to 1285 * be incurred if the tasks were swapped. 1286 */ 1287 if (cur) { 1288 /* Skip this swap candidate if cannot move to the source cpu */ 1289 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) 1290 goto unlock; 1291 1292 /* 1293 * If dst and source tasks are in the same NUMA group, or not 1294 * in any group then look only at task weights. 1295 */ 1296 if (cur->numa_group == env->p->numa_group) { 1297 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1298 task_weight(cur, env->dst_nid, dist); 1299 /* 1300 * Add some hysteresis to prevent swapping the 1301 * tasks within a group over tiny differences. 1302 */ 1303 if (cur->numa_group) 1304 imp -= imp/16; 1305 } else { 1306 /* 1307 * Compare the group weights. If a task is all by 1308 * itself (not part of a group), use the task weight 1309 * instead. 1310 */ 1311 if (cur->numa_group) 1312 imp += group_weight(cur, env->src_nid, dist) - 1313 group_weight(cur, env->dst_nid, dist); 1314 else 1315 imp += task_weight(cur, env->src_nid, dist) - 1316 task_weight(cur, env->dst_nid, dist); 1317 } 1318 } 1319 1320 if (imp <= env->best_imp && moveimp <= env->best_imp) 1321 goto unlock; 1322 1323 if (!cur) { 1324 /* Is there capacity at our destination? */ 1325 if (env->src_stats.nr_running <= env->src_stats.task_capacity && 1326 !env->dst_stats.has_free_capacity) 1327 goto unlock; 1328 1329 goto balance; 1330 } 1331 1332 /* Balance doesn't matter much if we're running a task per cpu */ 1333 if (imp > env->best_imp && src_rq->nr_running == 1 && 1334 dst_rq->nr_running == 1) 1335 goto assign; 1336 1337 /* 1338 * In the overloaded case, try and keep the load balanced. 1339 */ 1340 balance: 1341 load = task_h_load(env->p); 1342 dst_load = env->dst_stats.load + load; 1343 src_load = env->src_stats.load - load; 1344 1345 if (moveimp > imp && moveimp > env->best_imp) { 1346 /* 1347 * If the improvement from just moving env->p direction is 1348 * better than swapping tasks around, check if a move is 1349 * possible. Store a slightly smaller score than moveimp, 1350 * so an actually idle CPU will win. 1351 */ 1352 if (!load_too_imbalanced(src_load, dst_load, env)) { 1353 imp = moveimp - 1; 1354 cur = NULL; 1355 goto assign; 1356 } 1357 } 1358 1359 if (imp <= env->best_imp) 1360 goto unlock; 1361 1362 if (cur) { 1363 load = task_h_load(cur); 1364 dst_load -= load; 1365 src_load += load; 1366 } 1367 1368 if (load_too_imbalanced(src_load, dst_load, env)) 1369 goto unlock; 1370 1371 /* 1372 * One idle CPU per node is evaluated for a task numa move. 1373 * Call select_idle_sibling to maybe find a better one. 1374 */ 1375 if (!cur) 1376 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu); 1377 1378 assign: 1379 task_numa_assign(env, cur, imp); 1380 unlock: 1381 rcu_read_unlock(); 1382 } 1383 1384 static void task_numa_find_cpu(struct task_numa_env *env, 1385 long taskimp, long groupimp) 1386 { 1387 int cpu; 1388 1389 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1390 /* Skip this CPU if the source task cannot migrate */ 1391 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) 1392 continue; 1393 1394 env->dst_cpu = cpu; 1395 task_numa_compare(env, taskimp, groupimp); 1396 } 1397 } 1398 1399 static int task_numa_migrate(struct task_struct *p) 1400 { 1401 struct task_numa_env env = { 1402 .p = p, 1403 1404 .src_cpu = task_cpu(p), 1405 .src_nid = task_node(p), 1406 1407 .imbalance_pct = 112, 1408 1409 .best_task = NULL, 1410 .best_imp = 0, 1411 .best_cpu = -1 1412 }; 1413 struct sched_domain *sd; 1414 unsigned long taskweight, groupweight; 1415 int nid, ret, dist; 1416 long taskimp, groupimp; 1417 1418 /* 1419 * Pick the lowest SD_NUMA domain, as that would have the smallest 1420 * imbalance and would be the first to start moving tasks about. 1421 * 1422 * And we want to avoid any moving of tasks about, as that would create 1423 * random movement of tasks -- counter the numa conditions we're trying 1424 * to satisfy here. 1425 */ 1426 rcu_read_lock(); 1427 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1428 if (sd) 1429 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1430 rcu_read_unlock(); 1431 1432 /* 1433 * Cpusets can break the scheduler domain tree into smaller 1434 * balance domains, some of which do not cross NUMA boundaries. 1435 * Tasks that are "trapped" in such domains cannot be migrated 1436 * elsewhere, so there is no point in (re)trying. 1437 */ 1438 if (unlikely(!sd)) { 1439 p->numa_preferred_nid = task_node(p); 1440 return -EINVAL; 1441 } 1442 1443 env.dst_nid = p->numa_preferred_nid; 1444 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1445 taskweight = task_weight(p, env.src_nid, dist); 1446 groupweight = group_weight(p, env.src_nid, dist); 1447 update_numa_stats(&env.src_stats, env.src_nid); 1448 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1449 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1450 update_numa_stats(&env.dst_stats, env.dst_nid); 1451 1452 /* Try to find a spot on the preferred nid. */ 1453 task_numa_find_cpu(&env, taskimp, groupimp); 1454 1455 /* 1456 * Look at other nodes in these cases: 1457 * - there is no space available on the preferred_nid 1458 * - the task is part of a numa_group that is interleaved across 1459 * multiple NUMA nodes; in order to better consolidate the group, 1460 * we need to check other locations. 1461 */ 1462 if (env.best_cpu == -1 || (p->numa_group && 1463 nodes_weight(p->numa_group->active_nodes) > 1)) { 1464 for_each_online_node(nid) { 1465 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1466 continue; 1467 1468 dist = node_distance(env.src_nid, env.dst_nid); 1469 if (sched_numa_topology_type == NUMA_BACKPLANE && 1470 dist != env.dist) { 1471 taskweight = task_weight(p, env.src_nid, dist); 1472 groupweight = group_weight(p, env.src_nid, dist); 1473 } 1474 1475 /* Only consider nodes where both task and groups benefit */ 1476 taskimp = task_weight(p, nid, dist) - taskweight; 1477 groupimp = group_weight(p, nid, dist) - groupweight; 1478 if (taskimp < 0 && groupimp < 0) 1479 continue; 1480 1481 env.dist = dist; 1482 env.dst_nid = nid; 1483 update_numa_stats(&env.dst_stats, env.dst_nid); 1484 task_numa_find_cpu(&env, taskimp, groupimp); 1485 } 1486 } 1487 1488 /* 1489 * If the task is part of a workload that spans multiple NUMA nodes, 1490 * and is migrating into one of the workload's active nodes, remember 1491 * this node as the task's preferred numa node, so the workload can 1492 * settle down. 1493 * A task that migrated to a second choice node will be better off 1494 * trying for a better one later. Do not set the preferred node here. 1495 */ 1496 if (p->numa_group) { 1497 if (env.best_cpu == -1) 1498 nid = env.src_nid; 1499 else 1500 nid = env.dst_nid; 1501 1502 if (node_isset(nid, p->numa_group->active_nodes)) 1503 sched_setnuma(p, env.dst_nid); 1504 } 1505 1506 /* No better CPU than the current one was found. */ 1507 if (env.best_cpu == -1) 1508 return -EAGAIN; 1509 1510 /* 1511 * Reset the scan period if the task is being rescheduled on an 1512 * alternative node to recheck if the tasks is now properly placed. 1513 */ 1514 p->numa_scan_period = task_scan_min(p); 1515 1516 if (env.best_task == NULL) { 1517 ret = migrate_task_to(p, env.best_cpu); 1518 if (ret != 0) 1519 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1520 return ret; 1521 } 1522 1523 ret = migrate_swap(p, env.best_task); 1524 if (ret != 0) 1525 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1526 put_task_struct(env.best_task); 1527 return ret; 1528 } 1529 1530 /* Attempt to migrate a task to a CPU on the preferred node. */ 1531 static void numa_migrate_preferred(struct task_struct *p) 1532 { 1533 unsigned long interval = HZ; 1534 1535 /* This task has no NUMA fault statistics yet */ 1536 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1537 return; 1538 1539 /* Periodically retry migrating the task to the preferred node */ 1540 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1541 p->numa_migrate_retry = jiffies + interval; 1542 1543 /* Success if task is already running on preferred CPU */ 1544 if (task_node(p) == p->numa_preferred_nid) 1545 return; 1546 1547 /* Otherwise, try migrate to a CPU on the preferred node */ 1548 task_numa_migrate(p); 1549 } 1550 1551 /* 1552 * Find the nodes on which the workload is actively running. We do this by 1553 * tracking the nodes from which NUMA hinting faults are triggered. This can 1554 * be different from the set of nodes where the workload's memory is currently 1555 * located. 1556 * 1557 * The bitmask is used to make smarter decisions on when to do NUMA page 1558 * migrations, To prevent flip-flopping, and excessive page migrations, nodes 1559 * are added when they cause over 6/16 of the maximum number of faults, but 1560 * only removed when they drop below 3/16. 1561 */ 1562 static void update_numa_active_node_mask(struct numa_group *numa_group) 1563 { 1564 unsigned long faults, max_faults = 0; 1565 int nid; 1566 1567 for_each_online_node(nid) { 1568 faults = group_faults_cpu(numa_group, nid); 1569 if (faults > max_faults) 1570 max_faults = faults; 1571 } 1572 1573 for_each_online_node(nid) { 1574 faults = group_faults_cpu(numa_group, nid); 1575 if (!node_isset(nid, numa_group->active_nodes)) { 1576 if (faults > max_faults * 6 / 16) 1577 node_set(nid, numa_group->active_nodes); 1578 } else if (faults < max_faults * 3 / 16) 1579 node_clear(nid, numa_group->active_nodes); 1580 } 1581 } 1582 1583 /* 1584 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1585 * increments. The more local the fault statistics are, the higher the scan 1586 * period will be for the next scan window. If local/(local+remote) ratio is 1587 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1588 * the scan period will decrease. Aim for 70% local accesses. 1589 */ 1590 #define NUMA_PERIOD_SLOTS 10 1591 #define NUMA_PERIOD_THRESHOLD 7 1592 1593 /* 1594 * Increase the scan period (slow down scanning) if the majority of 1595 * our memory is already on our local node, or if the majority of 1596 * the page accesses are shared with other processes. 1597 * Otherwise, decrease the scan period. 1598 */ 1599 static void update_task_scan_period(struct task_struct *p, 1600 unsigned long shared, unsigned long private) 1601 { 1602 unsigned int period_slot; 1603 int ratio; 1604 int diff; 1605 1606 unsigned long remote = p->numa_faults_locality[0]; 1607 unsigned long local = p->numa_faults_locality[1]; 1608 1609 /* 1610 * If there were no record hinting faults then either the task is 1611 * completely idle or all activity is areas that are not of interest 1612 * to automatic numa balancing. Related to that, if there were failed 1613 * migration then it implies we are migrating too quickly or the local 1614 * node is overloaded. In either case, scan slower 1615 */ 1616 if (local + shared == 0 || p->numa_faults_locality[2]) { 1617 p->numa_scan_period = min(p->numa_scan_period_max, 1618 p->numa_scan_period << 1); 1619 1620 p->mm->numa_next_scan = jiffies + 1621 msecs_to_jiffies(p->numa_scan_period); 1622 1623 return; 1624 } 1625 1626 /* 1627 * Prepare to scale scan period relative to the current period. 1628 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1629 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1630 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1631 */ 1632 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1633 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1634 if (ratio >= NUMA_PERIOD_THRESHOLD) { 1635 int slot = ratio - NUMA_PERIOD_THRESHOLD; 1636 if (!slot) 1637 slot = 1; 1638 diff = slot * period_slot; 1639 } else { 1640 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1641 1642 /* 1643 * Scale scan rate increases based on sharing. There is an 1644 * inverse relationship between the degree of sharing and 1645 * the adjustment made to the scanning period. Broadly 1646 * speaking the intent is that there is little point 1647 * scanning faster if shared accesses dominate as it may 1648 * simply bounce migrations uselessly 1649 */ 1650 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1)); 1651 diff = (diff * ratio) / NUMA_PERIOD_SLOTS; 1652 } 1653 1654 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1655 task_scan_min(p), task_scan_max(p)); 1656 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1657 } 1658 1659 /* 1660 * Get the fraction of time the task has been running since the last 1661 * NUMA placement cycle. The scheduler keeps similar statistics, but 1662 * decays those on a 32ms period, which is orders of magnitude off 1663 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1664 * stats only if the task is so new there are no NUMA statistics yet. 1665 */ 1666 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 1667 { 1668 u64 runtime, delta, now; 1669 /* Use the start of this time slice to avoid calculations. */ 1670 now = p->se.exec_start; 1671 runtime = p->se.sum_exec_runtime; 1672 1673 if (p->last_task_numa_placement) { 1674 delta = runtime - p->last_sum_exec_runtime; 1675 *period = now - p->last_task_numa_placement; 1676 } else { 1677 delta = p->se.avg.runnable_avg_sum; 1678 *period = p->se.avg.runnable_avg_period; 1679 } 1680 1681 p->last_sum_exec_runtime = runtime; 1682 p->last_task_numa_placement = now; 1683 1684 return delta; 1685 } 1686 1687 /* 1688 * Determine the preferred nid for a task in a numa_group. This needs to 1689 * be done in a way that produces consistent results with group_weight, 1690 * otherwise workloads might not converge. 1691 */ 1692 static int preferred_group_nid(struct task_struct *p, int nid) 1693 { 1694 nodemask_t nodes; 1695 int dist; 1696 1697 /* Direct connections between all NUMA nodes. */ 1698 if (sched_numa_topology_type == NUMA_DIRECT) 1699 return nid; 1700 1701 /* 1702 * On a system with glueless mesh NUMA topology, group_weight 1703 * scores nodes according to the number of NUMA hinting faults on 1704 * both the node itself, and on nearby nodes. 1705 */ 1706 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1707 unsigned long score, max_score = 0; 1708 int node, max_node = nid; 1709 1710 dist = sched_max_numa_distance; 1711 1712 for_each_online_node(node) { 1713 score = group_weight(p, node, dist); 1714 if (score > max_score) { 1715 max_score = score; 1716 max_node = node; 1717 } 1718 } 1719 return max_node; 1720 } 1721 1722 /* 1723 * Finding the preferred nid in a system with NUMA backplane 1724 * interconnect topology is more involved. The goal is to locate 1725 * tasks from numa_groups near each other in the system, and 1726 * untangle workloads from different sides of the system. This requires 1727 * searching down the hierarchy of node groups, recursively searching 1728 * inside the highest scoring group of nodes. The nodemask tricks 1729 * keep the complexity of the search down. 1730 */ 1731 nodes = node_online_map; 1732 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 1733 unsigned long max_faults = 0; 1734 nodemask_t max_group = NODE_MASK_NONE; 1735 int a, b; 1736 1737 /* Are there nodes at this distance from each other? */ 1738 if (!find_numa_distance(dist)) 1739 continue; 1740 1741 for_each_node_mask(a, nodes) { 1742 unsigned long faults = 0; 1743 nodemask_t this_group; 1744 nodes_clear(this_group); 1745 1746 /* Sum group's NUMA faults; includes a==b case. */ 1747 for_each_node_mask(b, nodes) { 1748 if (node_distance(a, b) < dist) { 1749 faults += group_faults(p, b); 1750 node_set(b, this_group); 1751 node_clear(b, nodes); 1752 } 1753 } 1754 1755 /* Remember the top group. */ 1756 if (faults > max_faults) { 1757 max_faults = faults; 1758 max_group = this_group; 1759 /* 1760 * subtle: at the smallest distance there is 1761 * just one node left in each "group", the 1762 * winner is the preferred nid. 1763 */ 1764 nid = a; 1765 } 1766 } 1767 /* Next round, evaluate the nodes within max_group. */ 1768 nodes = max_group; 1769 } 1770 return nid; 1771 } 1772 1773 static void task_numa_placement(struct task_struct *p) 1774 { 1775 int seq, nid, max_nid = -1, max_group_nid = -1; 1776 unsigned long max_faults = 0, max_group_faults = 0; 1777 unsigned long fault_types[2] = { 0, 0 }; 1778 unsigned long total_faults; 1779 u64 runtime, period; 1780 spinlock_t *group_lock = NULL; 1781 1782 seq = ACCESS_ONCE(p->mm->numa_scan_seq); 1783 if (p->numa_scan_seq == seq) 1784 return; 1785 p->numa_scan_seq = seq; 1786 p->numa_scan_period_max = task_scan_max(p); 1787 1788 total_faults = p->numa_faults_locality[0] + 1789 p->numa_faults_locality[1]; 1790 runtime = numa_get_avg_runtime(p, &period); 1791 1792 /* If the task is part of a group prevent parallel updates to group stats */ 1793 if (p->numa_group) { 1794 group_lock = &p->numa_group->lock; 1795 spin_lock_irq(group_lock); 1796 } 1797 1798 /* Find the node with the highest number of faults */ 1799 for_each_online_node(nid) { 1800 /* Keep track of the offsets in numa_faults array */ 1801 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 1802 unsigned long faults = 0, group_faults = 0; 1803 int priv; 1804 1805 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 1806 long diff, f_diff, f_weight; 1807 1808 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 1809 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 1810 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 1811 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 1812 1813 /* Decay existing window, copy faults since last scan */ 1814 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 1815 fault_types[priv] += p->numa_faults[membuf_idx]; 1816 p->numa_faults[membuf_idx] = 0; 1817 1818 /* 1819 * Normalize the faults_from, so all tasks in a group 1820 * count according to CPU use, instead of by the raw 1821 * number of faults. Tasks with little runtime have 1822 * little over-all impact on throughput, and thus their 1823 * faults are less important. 1824 */ 1825 f_weight = div64_u64(runtime << 16, period + 1); 1826 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 1827 (total_faults + 1); 1828 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 1829 p->numa_faults[cpubuf_idx] = 0; 1830 1831 p->numa_faults[mem_idx] += diff; 1832 p->numa_faults[cpu_idx] += f_diff; 1833 faults += p->numa_faults[mem_idx]; 1834 p->total_numa_faults += diff; 1835 if (p->numa_group) { 1836 /* 1837 * safe because we can only change our own group 1838 * 1839 * mem_idx represents the offset for a given 1840 * nid and priv in a specific region because it 1841 * is at the beginning of the numa_faults array. 1842 */ 1843 p->numa_group->faults[mem_idx] += diff; 1844 p->numa_group->faults_cpu[mem_idx] += f_diff; 1845 p->numa_group->total_faults += diff; 1846 group_faults += p->numa_group->faults[mem_idx]; 1847 } 1848 } 1849 1850 if (faults > max_faults) { 1851 max_faults = faults; 1852 max_nid = nid; 1853 } 1854 1855 if (group_faults > max_group_faults) { 1856 max_group_faults = group_faults; 1857 max_group_nid = nid; 1858 } 1859 } 1860 1861 update_task_scan_period(p, fault_types[0], fault_types[1]); 1862 1863 if (p->numa_group) { 1864 update_numa_active_node_mask(p->numa_group); 1865 spin_unlock_irq(group_lock); 1866 max_nid = preferred_group_nid(p, max_group_nid); 1867 } 1868 1869 if (max_faults) { 1870 /* Set the new preferred node */ 1871 if (max_nid != p->numa_preferred_nid) 1872 sched_setnuma(p, max_nid); 1873 1874 if (task_node(p) != p->numa_preferred_nid) 1875 numa_migrate_preferred(p); 1876 } 1877 } 1878 1879 static inline int get_numa_group(struct numa_group *grp) 1880 { 1881 return atomic_inc_not_zero(&grp->refcount); 1882 } 1883 1884 static inline void put_numa_group(struct numa_group *grp) 1885 { 1886 if (atomic_dec_and_test(&grp->refcount)) 1887 kfree_rcu(grp, rcu); 1888 } 1889 1890 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 1891 int *priv) 1892 { 1893 struct numa_group *grp, *my_grp; 1894 struct task_struct *tsk; 1895 bool join = false; 1896 int cpu = cpupid_to_cpu(cpupid); 1897 int i; 1898 1899 if (unlikely(!p->numa_group)) { 1900 unsigned int size = sizeof(struct numa_group) + 1901 4*nr_node_ids*sizeof(unsigned long); 1902 1903 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 1904 if (!grp) 1905 return; 1906 1907 atomic_set(&grp->refcount, 1); 1908 spin_lock_init(&grp->lock); 1909 grp->gid = p->pid; 1910 /* Second half of the array tracks nids where faults happen */ 1911 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 1912 nr_node_ids; 1913 1914 node_set(task_node(current), grp->active_nodes); 1915 1916 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 1917 grp->faults[i] = p->numa_faults[i]; 1918 1919 grp->total_faults = p->total_numa_faults; 1920 1921 grp->nr_tasks++; 1922 rcu_assign_pointer(p->numa_group, grp); 1923 } 1924 1925 rcu_read_lock(); 1926 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr); 1927 1928 if (!cpupid_match_pid(tsk, cpupid)) 1929 goto no_join; 1930 1931 grp = rcu_dereference(tsk->numa_group); 1932 if (!grp) 1933 goto no_join; 1934 1935 my_grp = p->numa_group; 1936 if (grp == my_grp) 1937 goto no_join; 1938 1939 /* 1940 * Only join the other group if its bigger; if we're the bigger group, 1941 * the other task will join us. 1942 */ 1943 if (my_grp->nr_tasks > grp->nr_tasks) 1944 goto no_join; 1945 1946 /* 1947 * Tie-break on the grp address. 1948 */ 1949 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 1950 goto no_join; 1951 1952 /* Always join threads in the same process. */ 1953 if (tsk->mm == current->mm) 1954 join = true; 1955 1956 /* Simple filter to avoid false positives due to PID collisions */ 1957 if (flags & TNF_SHARED) 1958 join = true; 1959 1960 /* Update priv based on whether false sharing was detected */ 1961 *priv = !join; 1962 1963 if (join && !get_numa_group(grp)) 1964 goto no_join; 1965 1966 rcu_read_unlock(); 1967 1968 if (!join) 1969 return; 1970 1971 BUG_ON(irqs_disabled()); 1972 double_lock_irq(&my_grp->lock, &grp->lock); 1973 1974 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 1975 my_grp->faults[i] -= p->numa_faults[i]; 1976 grp->faults[i] += p->numa_faults[i]; 1977 } 1978 my_grp->total_faults -= p->total_numa_faults; 1979 grp->total_faults += p->total_numa_faults; 1980 1981 my_grp->nr_tasks--; 1982 grp->nr_tasks++; 1983 1984 spin_unlock(&my_grp->lock); 1985 spin_unlock_irq(&grp->lock); 1986 1987 rcu_assign_pointer(p->numa_group, grp); 1988 1989 put_numa_group(my_grp); 1990 return; 1991 1992 no_join: 1993 rcu_read_unlock(); 1994 return; 1995 } 1996 1997 void task_numa_free(struct task_struct *p) 1998 { 1999 struct numa_group *grp = p->numa_group; 2000 void *numa_faults = p->numa_faults; 2001 unsigned long flags; 2002 int i; 2003 2004 if (grp) { 2005 spin_lock_irqsave(&grp->lock, flags); 2006 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2007 grp->faults[i] -= p->numa_faults[i]; 2008 grp->total_faults -= p->total_numa_faults; 2009 2010 grp->nr_tasks--; 2011 spin_unlock_irqrestore(&grp->lock, flags); 2012 RCU_INIT_POINTER(p->numa_group, NULL); 2013 put_numa_group(grp); 2014 } 2015 2016 p->numa_faults = NULL; 2017 kfree(numa_faults); 2018 } 2019 2020 /* 2021 * Got a PROT_NONE fault for a page on @node. 2022 */ 2023 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2024 { 2025 struct task_struct *p = current; 2026 bool migrated = flags & TNF_MIGRATED; 2027 int cpu_node = task_node(current); 2028 int local = !!(flags & TNF_FAULT_LOCAL); 2029 int priv; 2030 2031 if (!numabalancing_enabled) 2032 return; 2033 2034 /* for example, ksmd faulting in a user's mm */ 2035 if (!p->mm) 2036 return; 2037 2038 /* Allocate buffer to track faults on a per-node basis */ 2039 if (unlikely(!p->numa_faults)) { 2040 int size = sizeof(*p->numa_faults) * 2041 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2042 2043 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2044 if (!p->numa_faults) 2045 return; 2046 2047 p->total_numa_faults = 0; 2048 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2049 } 2050 2051 /* 2052 * First accesses are treated as private, otherwise consider accesses 2053 * to be private if the accessing pid has not changed 2054 */ 2055 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2056 priv = 1; 2057 } else { 2058 priv = cpupid_match_pid(p, last_cpupid); 2059 if (!priv && !(flags & TNF_NO_GROUP)) 2060 task_numa_group(p, last_cpupid, flags, &priv); 2061 } 2062 2063 /* 2064 * If a workload spans multiple NUMA nodes, a shared fault that 2065 * occurs wholly within the set of nodes that the workload is 2066 * actively using should be counted as local. This allows the 2067 * scan rate to slow down when a workload has settled down. 2068 */ 2069 if (!priv && !local && p->numa_group && 2070 node_isset(cpu_node, p->numa_group->active_nodes) && 2071 node_isset(mem_node, p->numa_group->active_nodes)) 2072 local = 1; 2073 2074 task_numa_placement(p); 2075 2076 /* 2077 * Retry task to preferred node migration periodically, in case it 2078 * case it previously failed, or the scheduler moved us. 2079 */ 2080 if (time_after(jiffies, p->numa_migrate_retry)) 2081 numa_migrate_preferred(p); 2082 2083 if (migrated) 2084 p->numa_pages_migrated += pages; 2085 if (flags & TNF_MIGRATE_FAIL) 2086 p->numa_faults_locality[2] += pages; 2087 2088 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2089 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2090 p->numa_faults_locality[local] += pages; 2091 } 2092 2093 static void reset_ptenuma_scan(struct task_struct *p) 2094 { 2095 ACCESS_ONCE(p->mm->numa_scan_seq)++; 2096 p->mm->numa_scan_offset = 0; 2097 } 2098 2099 /* 2100 * The expensive part of numa migration is done from task_work context. 2101 * Triggered from task_tick_numa(). 2102 */ 2103 void task_numa_work(struct callback_head *work) 2104 { 2105 unsigned long migrate, next_scan, now = jiffies; 2106 struct task_struct *p = current; 2107 struct mm_struct *mm = p->mm; 2108 struct vm_area_struct *vma; 2109 unsigned long start, end; 2110 unsigned long nr_pte_updates = 0; 2111 long pages; 2112 2113 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 2114 2115 work->next = work; /* protect against double add */ 2116 /* 2117 * Who cares about NUMA placement when they're dying. 2118 * 2119 * NOTE: make sure not to dereference p->mm before this check, 2120 * exit_task_work() happens _after_ exit_mm() so we could be called 2121 * without p->mm even though we still had it when we enqueued this 2122 * work. 2123 */ 2124 if (p->flags & PF_EXITING) 2125 return; 2126 2127 if (!mm->numa_next_scan) { 2128 mm->numa_next_scan = now + 2129 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2130 } 2131 2132 /* 2133 * Enforce maximal scan/migration frequency.. 2134 */ 2135 migrate = mm->numa_next_scan; 2136 if (time_before(now, migrate)) 2137 return; 2138 2139 if (p->numa_scan_period == 0) { 2140 p->numa_scan_period_max = task_scan_max(p); 2141 p->numa_scan_period = task_scan_min(p); 2142 } 2143 2144 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2145 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2146 return; 2147 2148 /* 2149 * Delay this task enough that another task of this mm will likely win 2150 * the next time around. 2151 */ 2152 p->node_stamp += 2 * TICK_NSEC; 2153 2154 start = mm->numa_scan_offset; 2155 pages = sysctl_numa_balancing_scan_size; 2156 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2157 if (!pages) 2158 return; 2159 2160 down_read(&mm->mmap_sem); 2161 vma = find_vma(mm, start); 2162 if (!vma) { 2163 reset_ptenuma_scan(p); 2164 start = 0; 2165 vma = mm->mmap; 2166 } 2167 for (; vma; vma = vma->vm_next) { 2168 if (!vma_migratable(vma) || !vma_policy_mof(vma)) 2169 continue; 2170 2171 /* 2172 * Shared library pages mapped by multiple processes are not 2173 * migrated as it is expected they are cache replicated. Avoid 2174 * hinting faults in read-only file-backed mappings or the vdso 2175 * as migrating the pages will be of marginal benefit. 2176 */ 2177 if (!vma->vm_mm || 2178 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2179 continue; 2180 2181 /* 2182 * Skip inaccessible VMAs to avoid any confusion between 2183 * PROT_NONE and NUMA hinting ptes 2184 */ 2185 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2186 continue; 2187 2188 do { 2189 start = max(start, vma->vm_start); 2190 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2191 end = min(end, vma->vm_end); 2192 nr_pte_updates += change_prot_numa(vma, start, end); 2193 2194 /* 2195 * Scan sysctl_numa_balancing_scan_size but ensure that 2196 * at least one PTE is updated so that unused virtual 2197 * address space is quickly skipped. 2198 */ 2199 if (nr_pte_updates) 2200 pages -= (end - start) >> PAGE_SHIFT; 2201 2202 start = end; 2203 if (pages <= 0) 2204 goto out; 2205 2206 cond_resched(); 2207 } while (end != vma->vm_end); 2208 } 2209 2210 out: 2211 /* 2212 * It is possible to reach the end of the VMA list but the last few 2213 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2214 * would find the !migratable VMA on the next scan but not reset the 2215 * scanner to the start so check it now. 2216 */ 2217 if (vma) 2218 mm->numa_scan_offset = start; 2219 else 2220 reset_ptenuma_scan(p); 2221 up_read(&mm->mmap_sem); 2222 } 2223 2224 /* 2225 * Drive the periodic memory faults.. 2226 */ 2227 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2228 { 2229 struct callback_head *work = &curr->numa_work; 2230 u64 period, now; 2231 2232 /* 2233 * We don't care about NUMA placement if we don't have memory. 2234 */ 2235 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2236 return; 2237 2238 /* 2239 * Using runtime rather than walltime has the dual advantage that 2240 * we (mostly) drive the selection from busy threads and that the 2241 * task needs to have done some actual work before we bother with 2242 * NUMA placement. 2243 */ 2244 now = curr->se.sum_exec_runtime; 2245 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2246 2247 if (now - curr->node_stamp > period) { 2248 if (!curr->node_stamp) 2249 curr->numa_scan_period = task_scan_min(curr); 2250 curr->node_stamp += period; 2251 2252 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2253 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2254 task_work_add(curr, work, true); 2255 } 2256 } 2257 } 2258 #else 2259 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2260 { 2261 } 2262 2263 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2264 { 2265 } 2266 2267 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2268 { 2269 } 2270 #endif /* CONFIG_NUMA_BALANCING */ 2271 2272 static void 2273 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2274 { 2275 update_load_add(&cfs_rq->load, se->load.weight); 2276 if (!parent_entity(se)) 2277 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2278 #ifdef CONFIG_SMP 2279 if (entity_is_task(se)) { 2280 struct rq *rq = rq_of(cfs_rq); 2281 2282 account_numa_enqueue(rq, task_of(se)); 2283 list_add(&se->group_node, &rq->cfs_tasks); 2284 } 2285 #endif 2286 cfs_rq->nr_running++; 2287 } 2288 2289 static void 2290 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2291 { 2292 update_load_sub(&cfs_rq->load, se->load.weight); 2293 if (!parent_entity(se)) 2294 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2295 if (entity_is_task(se)) { 2296 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2297 list_del_init(&se->group_node); 2298 } 2299 cfs_rq->nr_running--; 2300 } 2301 2302 #ifdef CONFIG_FAIR_GROUP_SCHED 2303 # ifdef CONFIG_SMP 2304 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) 2305 { 2306 long tg_weight; 2307 2308 /* 2309 * Use this CPU's actual weight instead of the last load_contribution 2310 * to gain a more accurate current total weight. See 2311 * update_cfs_rq_load_contribution(). 2312 */ 2313 tg_weight = atomic_long_read(&tg->load_avg); 2314 tg_weight -= cfs_rq->tg_load_contrib; 2315 tg_weight += cfs_rq->load.weight; 2316 2317 return tg_weight; 2318 } 2319 2320 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2321 { 2322 long tg_weight, load, shares; 2323 2324 tg_weight = calc_tg_weight(tg, cfs_rq); 2325 load = cfs_rq->load.weight; 2326 2327 shares = (tg->shares * load); 2328 if (tg_weight) 2329 shares /= tg_weight; 2330 2331 if (shares < MIN_SHARES) 2332 shares = MIN_SHARES; 2333 if (shares > tg->shares) 2334 shares = tg->shares; 2335 2336 return shares; 2337 } 2338 # else /* CONFIG_SMP */ 2339 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2340 { 2341 return tg->shares; 2342 } 2343 # endif /* CONFIG_SMP */ 2344 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2345 unsigned long weight) 2346 { 2347 if (se->on_rq) { 2348 /* commit outstanding execution time */ 2349 if (cfs_rq->curr == se) 2350 update_curr(cfs_rq); 2351 account_entity_dequeue(cfs_rq, se); 2352 } 2353 2354 update_load_set(&se->load, weight); 2355 2356 if (se->on_rq) 2357 account_entity_enqueue(cfs_rq, se); 2358 } 2359 2360 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2361 2362 static void update_cfs_shares(struct cfs_rq *cfs_rq) 2363 { 2364 struct task_group *tg; 2365 struct sched_entity *se; 2366 long shares; 2367 2368 tg = cfs_rq->tg; 2369 se = tg->se[cpu_of(rq_of(cfs_rq))]; 2370 if (!se || throttled_hierarchy(cfs_rq)) 2371 return; 2372 #ifndef CONFIG_SMP 2373 if (likely(se->load.weight == tg->shares)) 2374 return; 2375 #endif 2376 shares = calc_cfs_shares(cfs_rq, tg); 2377 2378 reweight_entity(cfs_rq_of(se), se, shares); 2379 } 2380 #else /* CONFIG_FAIR_GROUP_SCHED */ 2381 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 2382 { 2383 } 2384 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2385 2386 #ifdef CONFIG_SMP 2387 /* 2388 * We choose a half-life close to 1 scheduling period. 2389 * Note: The tables below are dependent on this value. 2390 */ 2391 #define LOAD_AVG_PERIOD 32 2392 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 2393 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */ 2394 2395 /* Precomputed fixed inverse multiplies for multiplication by y^n */ 2396 static const u32 runnable_avg_yN_inv[] = { 2397 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 2398 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 2399 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 2400 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 2401 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 2402 0x85aac367, 0x82cd8698, 2403 }; 2404 2405 /* 2406 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 2407 * over-estimates when re-combining. 2408 */ 2409 static const u32 runnable_avg_yN_sum[] = { 2410 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 2411 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 2412 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 2413 }; 2414 2415 /* 2416 * Approximate: 2417 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 2418 */ 2419 static __always_inline u64 decay_load(u64 val, u64 n) 2420 { 2421 unsigned int local_n; 2422 2423 if (!n) 2424 return val; 2425 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 2426 return 0; 2427 2428 /* after bounds checking we can collapse to 32-bit */ 2429 local_n = n; 2430 2431 /* 2432 * As y^PERIOD = 1/2, we can combine 2433 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 2434 * With a look-up table which covers y^n (n<PERIOD) 2435 * 2436 * To achieve constant time decay_load. 2437 */ 2438 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 2439 val >>= local_n / LOAD_AVG_PERIOD; 2440 local_n %= LOAD_AVG_PERIOD; 2441 } 2442 2443 val *= runnable_avg_yN_inv[local_n]; 2444 /* We don't use SRR here since we always want to round down. */ 2445 return val >> 32; 2446 } 2447 2448 /* 2449 * For updates fully spanning n periods, the contribution to runnable 2450 * average will be: \Sum 1024*y^n 2451 * 2452 * We can compute this reasonably efficiently by combining: 2453 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 2454 */ 2455 static u32 __compute_runnable_contrib(u64 n) 2456 { 2457 u32 contrib = 0; 2458 2459 if (likely(n <= LOAD_AVG_PERIOD)) 2460 return runnable_avg_yN_sum[n]; 2461 else if (unlikely(n >= LOAD_AVG_MAX_N)) 2462 return LOAD_AVG_MAX; 2463 2464 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ 2465 do { 2466 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ 2467 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; 2468 2469 n -= LOAD_AVG_PERIOD; 2470 } while (n > LOAD_AVG_PERIOD); 2471 2472 contrib = decay_load(contrib, n); 2473 return contrib + runnable_avg_yN_sum[n]; 2474 } 2475 2476 /* 2477 * We can represent the historical contribution to runnable average as the 2478 * coefficients of a geometric series. To do this we sub-divide our runnable 2479 * history into segments of approximately 1ms (1024us); label the segment that 2480 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 2481 * 2482 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 2483 * p0 p1 p2 2484 * (now) (~1ms ago) (~2ms ago) 2485 * 2486 * Let u_i denote the fraction of p_i that the entity was runnable. 2487 * 2488 * We then designate the fractions u_i as our co-efficients, yielding the 2489 * following representation of historical load: 2490 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 2491 * 2492 * We choose y based on the with of a reasonably scheduling period, fixing: 2493 * y^32 = 0.5 2494 * 2495 * This means that the contribution to load ~32ms ago (u_32) will be weighted 2496 * approximately half as much as the contribution to load within the last ms 2497 * (u_0). 2498 * 2499 * When a period "rolls over" and we have new u_0`, multiplying the previous 2500 * sum again by y is sufficient to update: 2501 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 2502 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 2503 */ 2504 static __always_inline int __update_entity_runnable_avg(u64 now, 2505 struct sched_avg *sa, 2506 int runnable) 2507 { 2508 u64 delta, periods; 2509 u32 runnable_contrib; 2510 int delta_w, decayed = 0; 2511 2512 delta = now - sa->last_runnable_update; 2513 /* 2514 * This should only happen when time goes backwards, which it 2515 * unfortunately does during sched clock init when we swap over to TSC. 2516 */ 2517 if ((s64)delta < 0) { 2518 sa->last_runnable_update = now; 2519 return 0; 2520 } 2521 2522 /* 2523 * Use 1024ns as the unit of measurement since it's a reasonable 2524 * approximation of 1us and fast to compute. 2525 */ 2526 delta >>= 10; 2527 if (!delta) 2528 return 0; 2529 sa->last_runnable_update = now; 2530 2531 /* delta_w is the amount already accumulated against our next period */ 2532 delta_w = sa->runnable_avg_period % 1024; 2533 if (delta + delta_w >= 1024) { 2534 /* period roll-over */ 2535 decayed = 1; 2536 2537 /* 2538 * Now that we know we're crossing a period boundary, figure 2539 * out how much from delta we need to complete the current 2540 * period and accrue it. 2541 */ 2542 delta_w = 1024 - delta_w; 2543 if (runnable) 2544 sa->runnable_avg_sum += delta_w; 2545 sa->runnable_avg_period += delta_w; 2546 2547 delta -= delta_w; 2548 2549 /* Figure out how many additional periods this update spans */ 2550 periods = delta / 1024; 2551 delta %= 1024; 2552 2553 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum, 2554 periods + 1); 2555 sa->runnable_avg_period = decay_load(sa->runnable_avg_period, 2556 periods + 1); 2557 2558 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 2559 runnable_contrib = __compute_runnable_contrib(periods); 2560 if (runnable) 2561 sa->runnable_avg_sum += runnable_contrib; 2562 sa->runnable_avg_period += runnable_contrib; 2563 } 2564 2565 /* Remainder of delta accrued against u_0` */ 2566 if (runnable) 2567 sa->runnable_avg_sum += delta; 2568 sa->runnable_avg_period += delta; 2569 2570 return decayed; 2571 } 2572 2573 /* Synchronize an entity's decay with its parenting cfs_rq.*/ 2574 static inline u64 __synchronize_entity_decay(struct sched_entity *se) 2575 { 2576 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2577 u64 decays = atomic64_read(&cfs_rq->decay_counter); 2578 2579 decays -= se->avg.decay_count; 2580 se->avg.decay_count = 0; 2581 if (!decays) 2582 return 0; 2583 2584 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays); 2585 2586 return decays; 2587 } 2588 2589 #ifdef CONFIG_FAIR_GROUP_SCHED 2590 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 2591 int force_update) 2592 { 2593 struct task_group *tg = cfs_rq->tg; 2594 long tg_contrib; 2595 2596 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg; 2597 tg_contrib -= cfs_rq->tg_load_contrib; 2598 2599 if (!tg_contrib) 2600 return; 2601 2602 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) { 2603 atomic_long_add(tg_contrib, &tg->load_avg); 2604 cfs_rq->tg_load_contrib += tg_contrib; 2605 } 2606 } 2607 2608 /* 2609 * Aggregate cfs_rq runnable averages into an equivalent task_group 2610 * representation for computing load contributions. 2611 */ 2612 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 2613 struct cfs_rq *cfs_rq) 2614 { 2615 struct task_group *tg = cfs_rq->tg; 2616 long contrib; 2617 2618 /* The fraction of a cpu used by this cfs_rq */ 2619 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT, 2620 sa->runnable_avg_period + 1); 2621 contrib -= cfs_rq->tg_runnable_contrib; 2622 2623 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) { 2624 atomic_add(contrib, &tg->runnable_avg); 2625 cfs_rq->tg_runnable_contrib += contrib; 2626 } 2627 } 2628 2629 static inline void __update_group_entity_contrib(struct sched_entity *se) 2630 { 2631 struct cfs_rq *cfs_rq = group_cfs_rq(se); 2632 struct task_group *tg = cfs_rq->tg; 2633 int runnable_avg; 2634 2635 u64 contrib; 2636 2637 contrib = cfs_rq->tg_load_contrib * tg->shares; 2638 se->avg.load_avg_contrib = div_u64(contrib, 2639 atomic_long_read(&tg->load_avg) + 1); 2640 2641 /* 2642 * For group entities we need to compute a correction term in the case 2643 * that they are consuming <1 cpu so that we would contribute the same 2644 * load as a task of equal weight. 2645 * 2646 * Explicitly co-ordinating this measurement would be expensive, but 2647 * fortunately the sum of each cpus contribution forms a usable 2648 * lower-bound on the true value. 2649 * 2650 * Consider the aggregate of 2 contributions. Either they are disjoint 2651 * (and the sum represents true value) or they are disjoint and we are 2652 * understating by the aggregate of their overlap. 2653 * 2654 * Extending this to N cpus, for a given overlap, the maximum amount we 2655 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of 2656 * cpus that overlap for this interval and w_i is the interval width. 2657 * 2658 * On a small machine; the first term is well-bounded which bounds the 2659 * total error since w_i is a subset of the period. Whereas on a 2660 * larger machine, while this first term can be larger, if w_i is the 2661 * of consequential size guaranteed to see n_i*w_i quickly converge to 2662 * our upper bound of 1-cpu. 2663 */ 2664 runnable_avg = atomic_read(&tg->runnable_avg); 2665 if (runnable_avg < NICE_0_LOAD) { 2666 se->avg.load_avg_contrib *= runnable_avg; 2667 se->avg.load_avg_contrib >>= NICE_0_SHIFT; 2668 } 2669 } 2670 2671 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) 2672 { 2673 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable); 2674 __update_tg_runnable_avg(&rq->avg, &rq->cfs); 2675 } 2676 #else /* CONFIG_FAIR_GROUP_SCHED */ 2677 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 2678 int force_update) {} 2679 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 2680 struct cfs_rq *cfs_rq) {} 2681 static inline void __update_group_entity_contrib(struct sched_entity *se) {} 2682 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} 2683 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2684 2685 static inline void __update_task_entity_contrib(struct sched_entity *se) 2686 { 2687 u32 contrib; 2688 2689 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */ 2690 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight); 2691 contrib /= (se->avg.runnable_avg_period + 1); 2692 se->avg.load_avg_contrib = scale_load(contrib); 2693 } 2694 2695 /* Compute the current contribution to load_avg by se, return any delta */ 2696 static long __update_entity_load_avg_contrib(struct sched_entity *se) 2697 { 2698 long old_contrib = se->avg.load_avg_contrib; 2699 2700 if (entity_is_task(se)) { 2701 __update_task_entity_contrib(se); 2702 } else { 2703 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se)); 2704 __update_group_entity_contrib(se); 2705 } 2706 2707 return se->avg.load_avg_contrib - old_contrib; 2708 } 2709 2710 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq, 2711 long load_contrib) 2712 { 2713 if (likely(load_contrib < cfs_rq->blocked_load_avg)) 2714 cfs_rq->blocked_load_avg -= load_contrib; 2715 else 2716 cfs_rq->blocked_load_avg = 0; 2717 } 2718 2719 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 2720 2721 /* Update a sched_entity's runnable average */ 2722 static inline void update_entity_load_avg(struct sched_entity *se, 2723 int update_cfs_rq) 2724 { 2725 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2726 long contrib_delta; 2727 u64 now; 2728 2729 /* 2730 * For a group entity we need to use their owned cfs_rq_clock_task() in 2731 * case they are the parent of a throttled hierarchy. 2732 */ 2733 if (entity_is_task(se)) 2734 now = cfs_rq_clock_task(cfs_rq); 2735 else 2736 now = cfs_rq_clock_task(group_cfs_rq(se)); 2737 2738 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq)) 2739 return; 2740 2741 contrib_delta = __update_entity_load_avg_contrib(se); 2742 2743 if (!update_cfs_rq) 2744 return; 2745 2746 if (se->on_rq) 2747 cfs_rq->runnable_load_avg += contrib_delta; 2748 else 2749 subtract_blocked_load_contrib(cfs_rq, -contrib_delta); 2750 } 2751 2752 /* 2753 * Decay the load contributed by all blocked children and account this so that 2754 * their contribution may appropriately discounted when they wake up. 2755 */ 2756 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update) 2757 { 2758 u64 now = cfs_rq_clock_task(cfs_rq) >> 20; 2759 u64 decays; 2760 2761 decays = now - cfs_rq->last_decay; 2762 if (!decays && !force_update) 2763 return; 2764 2765 if (atomic_long_read(&cfs_rq->removed_load)) { 2766 unsigned long removed_load; 2767 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0); 2768 subtract_blocked_load_contrib(cfs_rq, removed_load); 2769 } 2770 2771 if (decays) { 2772 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg, 2773 decays); 2774 atomic64_add(decays, &cfs_rq->decay_counter); 2775 cfs_rq->last_decay = now; 2776 } 2777 2778 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update); 2779 } 2780 2781 /* Add the load generated by se into cfs_rq's child load-average */ 2782 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 2783 struct sched_entity *se, 2784 int wakeup) 2785 { 2786 /* 2787 * We track migrations using entity decay_count <= 0, on a wake-up 2788 * migration we use a negative decay count to track the remote decays 2789 * accumulated while sleeping. 2790 * 2791 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they 2792 * are seen by enqueue_entity_load_avg() as a migration with an already 2793 * constructed load_avg_contrib. 2794 */ 2795 if (unlikely(se->avg.decay_count <= 0)) { 2796 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq)); 2797 if (se->avg.decay_count) { 2798 /* 2799 * In a wake-up migration we have to approximate the 2800 * time sleeping. This is because we can't synchronize 2801 * clock_task between the two cpus, and it is not 2802 * guaranteed to be read-safe. Instead, we can 2803 * approximate this using our carried decays, which are 2804 * explicitly atomically readable. 2805 */ 2806 se->avg.last_runnable_update -= (-se->avg.decay_count) 2807 << 20; 2808 update_entity_load_avg(se, 0); 2809 /* Indicate that we're now synchronized and on-rq */ 2810 se->avg.decay_count = 0; 2811 } 2812 wakeup = 0; 2813 } else { 2814 __synchronize_entity_decay(se); 2815 } 2816 2817 /* migrated tasks did not contribute to our blocked load */ 2818 if (wakeup) { 2819 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 2820 update_entity_load_avg(se, 0); 2821 } 2822 2823 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib; 2824 /* we force update consideration on load-balancer moves */ 2825 update_cfs_rq_blocked_load(cfs_rq, !wakeup); 2826 } 2827 2828 /* 2829 * Remove se's load from this cfs_rq child load-average, if the entity is 2830 * transitioning to a blocked state we track its projected decay using 2831 * blocked_load_avg. 2832 */ 2833 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 2834 struct sched_entity *se, 2835 int sleep) 2836 { 2837 update_entity_load_avg(se, 1); 2838 /* we force update consideration on load-balancer moves */ 2839 update_cfs_rq_blocked_load(cfs_rq, !sleep); 2840 2841 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib; 2842 if (sleep) { 2843 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; 2844 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 2845 } /* migrations, e.g. sleep=0 leave decay_count == 0 */ 2846 } 2847 2848 /* 2849 * Update the rq's load with the elapsed running time before entering 2850 * idle. if the last scheduled task is not a CFS task, idle_enter will 2851 * be the only way to update the runnable statistic. 2852 */ 2853 void idle_enter_fair(struct rq *this_rq) 2854 { 2855 update_rq_runnable_avg(this_rq, 1); 2856 } 2857 2858 /* 2859 * Update the rq's load with the elapsed idle time before a task is 2860 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will 2861 * be the only way to update the runnable statistic. 2862 */ 2863 void idle_exit_fair(struct rq *this_rq) 2864 { 2865 update_rq_runnable_avg(this_rq, 0); 2866 } 2867 2868 static int idle_balance(struct rq *this_rq); 2869 2870 #else /* CONFIG_SMP */ 2871 2872 static inline void update_entity_load_avg(struct sched_entity *se, 2873 int update_cfs_rq) {} 2874 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} 2875 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 2876 struct sched_entity *se, 2877 int wakeup) {} 2878 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 2879 struct sched_entity *se, 2880 int sleep) {} 2881 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 2882 int force_update) {} 2883 2884 static inline int idle_balance(struct rq *rq) 2885 { 2886 return 0; 2887 } 2888 2889 #endif /* CONFIG_SMP */ 2890 2891 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 2892 { 2893 #ifdef CONFIG_SCHEDSTATS 2894 struct task_struct *tsk = NULL; 2895 2896 if (entity_is_task(se)) 2897 tsk = task_of(se); 2898 2899 if (se->statistics.sleep_start) { 2900 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; 2901 2902 if ((s64)delta < 0) 2903 delta = 0; 2904 2905 if (unlikely(delta > se->statistics.sleep_max)) 2906 se->statistics.sleep_max = delta; 2907 2908 se->statistics.sleep_start = 0; 2909 se->statistics.sum_sleep_runtime += delta; 2910 2911 if (tsk) { 2912 account_scheduler_latency(tsk, delta >> 10, 1); 2913 trace_sched_stat_sleep(tsk, delta); 2914 } 2915 } 2916 if (se->statistics.block_start) { 2917 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; 2918 2919 if ((s64)delta < 0) 2920 delta = 0; 2921 2922 if (unlikely(delta > se->statistics.block_max)) 2923 se->statistics.block_max = delta; 2924 2925 se->statistics.block_start = 0; 2926 se->statistics.sum_sleep_runtime += delta; 2927 2928 if (tsk) { 2929 if (tsk->in_iowait) { 2930 se->statistics.iowait_sum += delta; 2931 se->statistics.iowait_count++; 2932 trace_sched_stat_iowait(tsk, delta); 2933 } 2934 2935 trace_sched_stat_blocked(tsk, delta); 2936 2937 /* 2938 * Blocking time is in units of nanosecs, so shift by 2939 * 20 to get a milliseconds-range estimation of the 2940 * amount of time that the task spent sleeping: 2941 */ 2942 if (unlikely(prof_on == SLEEP_PROFILING)) { 2943 profile_hits(SLEEP_PROFILING, 2944 (void *)get_wchan(tsk), 2945 delta >> 20); 2946 } 2947 account_scheduler_latency(tsk, delta >> 10, 0); 2948 } 2949 } 2950 #endif 2951 } 2952 2953 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 2954 { 2955 #ifdef CONFIG_SCHED_DEBUG 2956 s64 d = se->vruntime - cfs_rq->min_vruntime; 2957 2958 if (d < 0) 2959 d = -d; 2960 2961 if (d > 3*sysctl_sched_latency) 2962 schedstat_inc(cfs_rq, nr_spread_over); 2963 #endif 2964 } 2965 2966 static void 2967 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 2968 { 2969 u64 vruntime = cfs_rq->min_vruntime; 2970 2971 /* 2972 * The 'current' period is already promised to the current tasks, 2973 * however the extra weight of the new task will slow them down a 2974 * little, place the new task so that it fits in the slot that 2975 * stays open at the end. 2976 */ 2977 if (initial && sched_feat(START_DEBIT)) 2978 vruntime += sched_vslice(cfs_rq, se); 2979 2980 /* sleeps up to a single latency don't count. */ 2981 if (!initial) { 2982 unsigned long thresh = sysctl_sched_latency; 2983 2984 /* 2985 * Halve their sleep time's effect, to allow 2986 * for a gentler effect of sleepers: 2987 */ 2988 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 2989 thresh >>= 1; 2990 2991 vruntime -= thresh; 2992 } 2993 2994 /* ensure we never gain time by being placed backwards. */ 2995 se->vruntime = max_vruntime(se->vruntime, vruntime); 2996 } 2997 2998 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 2999 3000 static void 3001 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3002 { 3003 /* 3004 * Update the normalized vruntime before updating min_vruntime 3005 * through calling update_curr(). 3006 */ 3007 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) 3008 se->vruntime += cfs_rq->min_vruntime; 3009 3010 /* 3011 * Update run-time statistics of the 'current'. 3012 */ 3013 update_curr(cfs_rq); 3014 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP); 3015 account_entity_enqueue(cfs_rq, se); 3016 update_cfs_shares(cfs_rq); 3017 3018 if (flags & ENQUEUE_WAKEUP) { 3019 place_entity(cfs_rq, se, 0); 3020 enqueue_sleeper(cfs_rq, se); 3021 } 3022 3023 update_stats_enqueue(cfs_rq, se); 3024 check_spread(cfs_rq, se); 3025 if (se != cfs_rq->curr) 3026 __enqueue_entity(cfs_rq, se); 3027 se->on_rq = 1; 3028 3029 if (cfs_rq->nr_running == 1) { 3030 list_add_leaf_cfs_rq(cfs_rq); 3031 check_enqueue_throttle(cfs_rq); 3032 } 3033 } 3034 3035 static void __clear_buddies_last(struct sched_entity *se) 3036 { 3037 for_each_sched_entity(se) { 3038 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3039 if (cfs_rq->last != se) 3040 break; 3041 3042 cfs_rq->last = NULL; 3043 } 3044 } 3045 3046 static void __clear_buddies_next(struct sched_entity *se) 3047 { 3048 for_each_sched_entity(se) { 3049 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3050 if (cfs_rq->next != se) 3051 break; 3052 3053 cfs_rq->next = NULL; 3054 } 3055 } 3056 3057 static void __clear_buddies_skip(struct sched_entity *se) 3058 { 3059 for_each_sched_entity(se) { 3060 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3061 if (cfs_rq->skip != se) 3062 break; 3063 3064 cfs_rq->skip = NULL; 3065 } 3066 } 3067 3068 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3069 { 3070 if (cfs_rq->last == se) 3071 __clear_buddies_last(se); 3072 3073 if (cfs_rq->next == se) 3074 __clear_buddies_next(se); 3075 3076 if (cfs_rq->skip == se) 3077 __clear_buddies_skip(se); 3078 } 3079 3080 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3081 3082 static void 3083 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3084 { 3085 /* 3086 * Update run-time statistics of the 'current'. 3087 */ 3088 update_curr(cfs_rq); 3089 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP); 3090 3091 update_stats_dequeue(cfs_rq, se); 3092 if (flags & DEQUEUE_SLEEP) { 3093 #ifdef CONFIG_SCHEDSTATS 3094 if (entity_is_task(se)) { 3095 struct task_struct *tsk = task_of(se); 3096 3097 if (tsk->state & TASK_INTERRUPTIBLE) 3098 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); 3099 if (tsk->state & TASK_UNINTERRUPTIBLE) 3100 se->statistics.block_start = rq_clock(rq_of(cfs_rq)); 3101 } 3102 #endif 3103 } 3104 3105 clear_buddies(cfs_rq, se); 3106 3107 if (se != cfs_rq->curr) 3108 __dequeue_entity(cfs_rq, se); 3109 se->on_rq = 0; 3110 account_entity_dequeue(cfs_rq, se); 3111 3112 /* 3113 * Normalize the entity after updating the min_vruntime because the 3114 * update can refer to the ->curr item and we need to reflect this 3115 * movement in our normalized position. 3116 */ 3117 if (!(flags & DEQUEUE_SLEEP)) 3118 se->vruntime -= cfs_rq->min_vruntime; 3119 3120 /* return excess runtime on last dequeue */ 3121 return_cfs_rq_runtime(cfs_rq); 3122 3123 update_min_vruntime(cfs_rq); 3124 update_cfs_shares(cfs_rq); 3125 } 3126 3127 /* 3128 * Preempt the current task with a newly woken task if needed: 3129 */ 3130 static void 3131 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3132 { 3133 unsigned long ideal_runtime, delta_exec; 3134 struct sched_entity *se; 3135 s64 delta; 3136 3137 ideal_runtime = sched_slice(cfs_rq, curr); 3138 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 3139 if (delta_exec > ideal_runtime) { 3140 resched_curr(rq_of(cfs_rq)); 3141 /* 3142 * The current task ran long enough, ensure it doesn't get 3143 * re-elected due to buddy favours. 3144 */ 3145 clear_buddies(cfs_rq, curr); 3146 return; 3147 } 3148 3149 /* 3150 * Ensure that a task that missed wakeup preemption by a 3151 * narrow margin doesn't have to wait for a full slice. 3152 * This also mitigates buddy induced latencies under load. 3153 */ 3154 if (delta_exec < sysctl_sched_min_granularity) 3155 return; 3156 3157 se = __pick_first_entity(cfs_rq); 3158 delta = curr->vruntime - se->vruntime; 3159 3160 if (delta < 0) 3161 return; 3162 3163 if (delta > ideal_runtime) 3164 resched_curr(rq_of(cfs_rq)); 3165 } 3166 3167 static void 3168 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 3169 { 3170 /* 'current' is not kept within the tree. */ 3171 if (se->on_rq) { 3172 /* 3173 * Any task has to be enqueued before it get to execute on 3174 * a CPU. So account for the time it spent waiting on the 3175 * runqueue. 3176 */ 3177 update_stats_wait_end(cfs_rq, se); 3178 __dequeue_entity(cfs_rq, se); 3179 } 3180 3181 update_stats_curr_start(cfs_rq, se); 3182 cfs_rq->curr = se; 3183 #ifdef CONFIG_SCHEDSTATS 3184 /* 3185 * Track our maximum slice length, if the CPU's load is at 3186 * least twice that of our own weight (i.e. dont track it 3187 * when there are only lesser-weight tasks around): 3188 */ 3189 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 3190 se->statistics.slice_max = max(se->statistics.slice_max, 3191 se->sum_exec_runtime - se->prev_sum_exec_runtime); 3192 } 3193 #endif 3194 se->prev_sum_exec_runtime = se->sum_exec_runtime; 3195 } 3196 3197 static int 3198 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 3199 3200 /* 3201 * Pick the next process, keeping these things in mind, in this order: 3202 * 1) keep things fair between processes/task groups 3203 * 2) pick the "next" process, since someone really wants that to run 3204 * 3) pick the "last" process, for cache locality 3205 * 4) do not run the "skip" process, if something else is available 3206 */ 3207 static struct sched_entity * 3208 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3209 { 3210 struct sched_entity *left = __pick_first_entity(cfs_rq); 3211 struct sched_entity *se; 3212 3213 /* 3214 * If curr is set we have to see if its left of the leftmost entity 3215 * still in the tree, provided there was anything in the tree at all. 3216 */ 3217 if (!left || (curr && entity_before(curr, left))) 3218 left = curr; 3219 3220 se = left; /* ideally we run the leftmost entity */ 3221 3222 /* 3223 * Avoid running the skip buddy, if running something else can 3224 * be done without getting too unfair. 3225 */ 3226 if (cfs_rq->skip == se) { 3227 struct sched_entity *second; 3228 3229 if (se == curr) { 3230 second = __pick_first_entity(cfs_rq); 3231 } else { 3232 second = __pick_next_entity(se); 3233 if (!second || (curr && entity_before(curr, second))) 3234 second = curr; 3235 } 3236 3237 if (second && wakeup_preempt_entity(second, left) < 1) 3238 se = second; 3239 } 3240 3241 /* 3242 * Prefer last buddy, try to return the CPU to a preempted task. 3243 */ 3244 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 3245 se = cfs_rq->last; 3246 3247 /* 3248 * Someone really wants this to run. If it's not unfair, run it. 3249 */ 3250 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 3251 se = cfs_rq->next; 3252 3253 clear_buddies(cfs_rq, se); 3254 3255 return se; 3256 } 3257 3258 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3259 3260 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 3261 { 3262 /* 3263 * If still on the runqueue then deactivate_task() 3264 * was not called and update_curr() has to be done: 3265 */ 3266 if (prev->on_rq) 3267 update_curr(cfs_rq); 3268 3269 /* throttle cfs_rqs exceeding runtime */ 3270 check_cfs_rq_runtime(cfs_rq); 3271 3272 check_spread(cfs_rq, prev); 3273 if (prev->on_rq) { 3274 update_stats_wait_start(cfs_rq, prev); 3275 /* Put 'current' back into the tree. */ 3276 __enqueue_entity(cfs_rq, prev); 3277 /* in !on_rq case, update occurred at dequeue */ 3278 update_entity_load_avg(prev, 1); 3279 } 3280 cfs_rq->curr = NULL; 3281 } 3282 3283 static void 3284 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 3285 { 3286 /* 3287 * Update run-time statistics of the 'current'. 3288 */ 3289 update_curr(cfs_rq); 3290 3291 /* 3292 * Ensure that runnable average is periodically updated. 3293 */ 3294 update_entity_load_avg(curr, 1); 3295 update_cfs_rq_blocked_load(cfs_rq, 1); 3296 update_cfs_shares(cfs_rq); 3297 3298 #ifdef CONFIG_SCHED_HRTICK 3299 /* 3300 * queued ticks are scheduled to match the slice, so don't bother 3301 * validating it and just reschedule. 3302 */ 3303 if (queued) { 3304 resched_curr(rq_of(cfs_rq)); 3305 return; 3306 } 3307 /* 3308 * don't let the period tick interfere with the hrtick preemption 3309 */ 3310 if (!sched_feat(DOUBLE_TICK) && 3311 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 3312 return; 3313 #endif 3314 3315 if (cfs_rq->nr_running > 1) 3316 check_preempt_tick(cfs_rq, curr); 3317 } 3318 3319 3320 /************************************************** 3321 * CFS bandwidth control machinery 3322 */ 3323 3324 #ifdef CONFIG_CFS_BANDWIDTH 3325 3326 #ifdef HAVE_JUMP_LABEL 3327 static struct static_key __cfs_bandwidth_used; 3328 3329 static inline bool cfs_bandwidth_used(void) 3330 { 3331 return static_key_false(&__cfs_bandwidth_used); 3332 } 3333 3334 void cfs_bandwidth_usage_inc(void) 3335 { 3336 static_key_slow_inc(&__cfs_bandwidth_used); 3337 } 3338 3339 void cfs_bandwidth_usage_dec(void) 3340 { 3341 static_key_slow_dec(&__cfs_bandwidth_used); 3342 } 3343 #else /* HAVE_JUMP_LABEL */ 3344 static bool cfs_bandwidth_used(void) 3345 { 3346 return true; 3347 } 3348 3349 void cfs_bandwidth_usage_inc(void) {} 3350 void cfs_bandwidth_usage_dec(void) {} 3351 #endif /* HAVE_JUMP_LABEL */ 3352 3353 /* 3354 * default period for cfs group bandwidth. 3355 * default: 0.1s, units: nanoseconds 3356 */ 3357 static inline u64 default_cfs_period(void) 3358 { 3359 return 100000000ULL; 3360 } 3361 3362 static inline u64 sched_cfs_bandwidth_slice(void) 3363 { 3364 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 3365 } 3366 3367 /* 3368 * Replenish runtime according to assigned quota and update expiration time. 3369 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 3370 * additional synchronization around rq->lock. 3371 * 3372 * requires cfs_b->lock 3373 */ 3374 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 3375 { 3376 u64 now; 3377 3378 if (cfs_b->quota == RUNTIME_INF) 3379 return; 3380 3381 now = sched_clock_cpu(smp_processor_id()); 3382 cfs_b->runtime = cfs_b->quota; 3383 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 3384 } 3385 3386 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3387 { 3388 return &tg->cfs_bandwidth; 3389 } 3390 3391 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 3392 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3393 { 3394 if (unlikely(cfs_rq->throttle_count)) 3395 return cfs_rq->throttled_clock_task; 3396 3397 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 3398 } 3399 3400 /* returns 0 on failure to allocate runtime */ 3401 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3402 { 3403 struct task_group *tg = cfs_rq->tg; 3404 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 3405 u64 amount = 0, min_amount, expires; 3406 3407 /* note: this is a positive sum as runtime_remaining <= 0 */ 3408 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 3409 3410 raw_spin_lock(&cfs_b->lock); 3411 if (cfs_b->quota == RUNTIME_INF) 3412 amount = min_amount; 3413 else { 3414 /* 3415 * If the bandwidth pool has become inactive, then at least one 3416 * period must have elapsed since the last consumption. 3417 * Refresh the global state and ensure bandwidth timer becomes 3418 * active. 3419 */ 3420 if (!cfs_b->timer_active) { 3421 __refill_cfs_bandwidth_runtime(cfs_b); 3422 __start_cfs_bandwidth(cfs_b, false); 3423 } 3424 3425 if (cfs_b->runtime > 0) { 3426 amount = min(cfs_b->runtime, min_amount); 3427 cfs_b->runtime -= amount; 3428 cfs_b->idle = 0; 3429 } 3430 } 3431 expires = cfs_b->runtime_expires; 3432 raw_spin_unlock(&cfs_b->lock); 3433 3434 cfs_rq->runtime_remaining += amount; 3435 /* 3436 * we may have advanced our local expiration to account for allowed 3437 * spread between our sched_clock and the one on which runtime was 3438 * issued. 3439 */ 3440 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 3441 cfs_rq->runtime_expires = expires; 3442 3443 return cfs_rq->runtime_remaining > 0; 3444 } 3445 3446 /* 3447 * Note: This depends on the synchronization provided by sched_clock and the 3448 * fact that rq->clock snapshots this value. 3449 */ 3450 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3451 { 3452 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3453 3454 /* if the deadline is ahead of our clock, nothing to do */ 3455 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 3456 return; 3457 3458 if (cfs_rq->runtime_remaining < 0) 3459 return; 3460 3461 /* 3462 * If the local deadline has passed we have to consider the 3463 * possibility that our sched_clock is 'fast' and the global deadline 3464 * has not truly expired. 3465 * 3466 * Fortunately we can check determine whether this the case by checking 3467 * whether the global deadline has advanced. It is valid to compare 3468 * cfs_b->runtime_expires without any locks since we only care about 3469 * exact equality, so a partial write will still work. 3470 */ 3471 3472 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { 3473 /* extend local deadline, drift is bounded above by 2 ticks */ 3474 cfs_rq->runtime_expires += TICK_NSEC; 3475 } else { 3476 /* global deadline is ahead, expiration has passed */ 3477 cfs_rq->runtime_remaining = 0; 3478 } 3479 } 3480 3481 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3482 { 3483 /* dock delta_exec before expiring quota (as it could span periods) */ 3484 cfs_rq->runtime_remaining -= delta_exec; 3485 expire_cfs_rq_runtime(cfs_rq); 3486 3487 if (likely(cfs_rq->runtime_remaining > 0)) 3488 return; 3489 3490 /* 3491 * if we're unable to extend our runtime we resched so that the active 3492 * hierarchy can be throttled 3493 */ 3494 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 3495 resched_curr(rq_of(cfs_rq)); 3496 } 3497 3498 static __always_inline 3499 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3500 { 3501 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 3502 return; 3503 3504 __account_cfs_rq_runtime(cfs_rq, delta_exec); 3505 } 3506 3507 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3508 { 3509 return cfs_bandwidth_used() && cfs_rq->throttled; 3510 } 3511 3512 /* check whether cfs_rq, or any parent, is throttled */ 3513 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3514 { 3515 return cfs_bandwidth_used() && cfs_rq->throttle_count; 3516 } 3517 3518 /* 3519 * Ensure that neither of the group entities corresponding to src_cpu or 3520 * dest_cpu are members of a throttled hierarchy when performing group 3521 * load-balance operations. 3522 */ 3523 static inline int throttled_lb_pair(struct task_group *tg, 3524 int src_cpu, int dest_cpu) 3525 { 3526 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 3527 3528 src_cfs_rq = tg->cfs_rq[src_cpu]; 3529 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 3530 3531 return throttled_hierarchy(src_cfs_rq) || 3532 throttled_hierarchy(dest_cfs_rq); 3533 } 3534 3535 /* updated child weight may affect parent so we have to do this bottom up */ 3536 static int tg_unthrottle_up(struct task_group *tg, void *data) 3537 { 3538 struct rq *rq = data; 3539 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3540 3541 cfs_rq->throttle_count--; 3542 #ifdef CONFIG_SMP 3543 if (!cfs_rq->throttle_count) { 3544 /* adjust cfs_rq_clock_task() */ 3545 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 3546 cfs_rq->throttled_clock_task; 3547 } 3548 #endif 3549 3550 return 0; 3551 } 3552 3553 static int tg_throttle_down(struct task_group *tg, void *data) 3554 { 3555 struct rq *rq = data; 3556 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3557 3558 /* group is entering throttled state, stop time */ 3559 if (!cfs_rq->throttle_count) 3560 cfs_rq->throttled_clock_task = rq_clock_task(rq); 3561 cfs_rq->throttle_count++; 3562 3563 return 0; 3564 } 3565 3566 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 3567 { 3568 struct rq *rq = rq_of(cfs_rq); 3569 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3570 struct sched_entity *se; 3571 long task_delta, dequeue = 1; 3572 3573 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 3574 3575 /* freeze hierarchy runnable averages while throttled */ 3576 rcu_read_lock(); 3577 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 3578 rcu_read_unlock(); 3579 3580 task_delta = cfs_rq->h_nr_running; 3581 for_each_sched_entity(se) { 3582 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 3583 /* throttled entity or throttle-on-deactivate */ 3584 if (!se->on_rq) 3585 break; 3586 3587 if (dequeue) 3588 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 3589 qcfs_rq->h_nr_running -= task_delta; 3590 3591 if (qcfs_rq->load.weight) 3592 dequeue = 0; 3593 } 3594 3595 if (!se) 3596 sub_nr_running(rq, task_delta); 3597 3598 cfs_rq->throttled = 1; 3599 cfs_rq->throttled_clock = rq_clock(rq); 3600 raw_spin_lock(&cfs_b->lock); 3601 /* 3602 * Add to the _head_ of the list, so that an already-started 3603 * distribute_cfs_runtime will not see us 3604 */ 3605 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 3606 if (!cfs_b->timer_active) 3607 __start_cfs_bandwidth(cfs_b, false); 3608 raw_spin_unlock(&cfs_b->lock); 3609 } 3610 3611 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 3612 { 3613 struct rq *rq = rq_of(cfs_rq); 3614 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3615 struct sched_entity *se; 3616 int enqueue = 1; 3617 long task_delta; 3618 3619 se = cfs_rq->tg->se[cpu_of(rq)]; 3620 3621 cfs_rq->throttled = 0; 3622 3623 update_rq_clock(rq); 3624 3625 raw_spin_lock(&cfs_b->lock); 3626 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 3627 list_del_rcu(&cfs_rq->throttled_list); 3628 raw_spin_unlock(&cfs_b->lock); 3629 3630 /* update hierarchical throttle state */ 3631 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 3632 3633 if (!cfs_rq->load.weight) 3634 return; 3635 3636 task_delta = cfs_rq->h_nr_running; 3637 for_each_sched_entity(se) { 3638 if (se->on_rq) 3639 enqueue = 0; 3640 3641 cfs_rq = cfs_rq_of(se); 3642 if (enqueue) 3643 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 3644 cfs_rq->h_nr_running += task_delta; 3645 3646 if (cfs_rq_throttled(cfs_rq)) 3647 break; 3648 } 3649 3650 if (!se) 3651 add_nr_running(rq, task_delta); 3652 3653 /* determine whether we need to wake up potentially idle cpu */ 3654 if (rq->curr == rq->idle && rq->cfs.nr_running) 3655 resched_curr(rq); 3656 } 3657 3658 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 3659 u64 remaining, u64 expires) 3660 { 3661 struct cfs_rq *cfs_rq; 3662 u64 runtime; 3663 u64 starting_runtime = remaining; 3664 3665 rcu_read_lock(); 3666 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 3667 throttled_list) { 3668 struct rq *rq = rq_of(cfs_rq); 3669 3670 raw_spin_lock(&rq->lock); 3671 if (!cfs_rq_throttled(cfs_rq)) 3672 goto next; 3673 3674 runtime = -cfs_rq->runtime_remaining + 1; 3675 if (runtime > remaining) 3676 runtime = remaining; 3677 remaining -= runtime; 3678 3679 cfs_rq->runtime_remaining += runtime; 3680 cfs_rq->runtime_expires = expires; 3681 3682 /* we check whether we're throttled above */ 3683 if (cfs_rq->runtime_remaining > 0) 3684 unthrottle_cfs_rq(cfs_rq); 3685 3686 next: 3687 raw_spin_unlock(&rq->lock); 3688 3689 if (!remaining) 3690 break; 3691 } 3692 rcu_read_unlock(); 3693 3694 return starting_runtime - remaining; 3695 } 3696 3697 /* 3698 * Responsible for refilling a task_group's bandwidth and unthrottling its 3699 * cfs_rqs as appropriate. If there has been no activity within the last 3700 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 3701 * used to track this state. 3702 */ 3703 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 3704 { 3705 u64 runtime, runtime_expires; 3706 int throttled; 3707 3708 /* no need to continue the timer with no bandwidth constraint */ 3709 if (cfs_b->quota == RUNTIME_INF) 3710 goto out_deactivate; 3711 3712 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3713 cfs_b->nr_periods += overrun; 3714 3715 /* 3716 * idle depends on !throttled (for the case of a large deficit), and if 3717 * we're going inactive then everything else can be deferred 3718 */ 3719 if (cfs_b->idle && !throttled) 3720 goto out_deactivate; 3721 3722 /* 3723 * if we have relooped after returning idle once, we need to update our 3724 * status as actually running, so that other cpus doing 3725 * __start_cfs_bandwidth will stop trying to cancel us. 3726 */ 3727 cfs_b->timer_active = 1; 3728 3729 __refill_cfs_bandwidth_runtime(cfs_b); 3730 3731 if (!throttled) { 3732 /* mark as potentially idle for the upcoming period */ 3733 cfs_b->idle = 1; 3734 return 0; 3735 } 3736 3737 /* account preceding periods in which throttling occurred */ 3738 cfs_b->nr_throttled += overrun; 3739 3740 runtime_expires = cfs_b->runtime_expires; 3741 3742 /* 3743 * This check is repeated as we are holding onto the new bandwidth while 3744 * we unthrottle. This can potentially race with an unthrottled group 3745 * trying to acquire new bandwidth from the global pool. This can result 3746 * in us over-using our runtime if it is all used during this loop, but 3747 * only by limited amounts in that extreme case. 3748 */ 3749 while (throttled && cfs_b->runtime > 0) { 3750 runtime = cfs_b->runtime; 3751 raw_spin_unlock(&cfs_b->lock); 3752 /* we can't nest cfs_b->lock while distributing bandwidth */ 3753 runtime = distribute_cfs_runtime(cfs_b, runtime, 3754 runtime_expires); 3755 raw_spin_lock(&cfs_b->lock); 3756 3757 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3758 3759 cfs_b->runtime -= min(runtime, cfs_b->runtime); 3760 } 3761 3762 /* 3763 * While we are ensured activity in the period following an 3764 * unthrottle, this also covers the case in which the new bandwidth is 3765 * insufficient to cover the existing bandwidth deficit. (Forcing the 3766 * timer to remain active while there are any throttled entities.) 3767 */ 3768 cfs_b->idle = 0; 3769 3770 return 0; 3771 3772 out_deactivate: 3773 cfs_b->timer_active = 0; 3774 return 1; 3775 } 3776 3777 /* a cfs_rq won't donate quota below this amount */ 3778 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 3779 /* minimum remaining period time to redistribute slack quota */ 3780 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 3781 /* how long we wait to gather additional slack before distributing */ 3782 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 3783 3784 /* 3785 * Are we near the end of the current quota period? 3786 * 3787 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 3788 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of 3789 * migrate_hrtimers, base is never cleared, so we are fine. 3790 */ 3791 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 3792 { 3793 struct hrtimer *refresh_timer = &cfs_b->period_timer; 3794 u64 remaining; 3795 3796 /* if the call-back is running a quota refresh is already occurring */ 3797 if (hrtimer_callback_running(refresh_timer)) 3798 return 1; 3799 3800 /* is a quota refresh about to occur? */ 3801 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 3802 if (remaining < min_expire) 3803 return 1; 3804 3805 return 0; 3806 } 3807 3808 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 3809 { 3810 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 3811 3812 /* if there's a quota refresh soon don't bother with slack */ 3813 if (runtime_refresh_within(cfs_b, min_left)) 3814 return; 3815 3816 start_bandwidth_timer(&cfs_b->slack_timer, 3817 ns_to_ktime(cfs_bandwidth_slack_period)); 3818 } 3819 3820 /* we know any runtime found here is valid as update_curr() precedes return */ 3821 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3822 { 3823 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3824 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 3825 3826 if (slack_runtime <= 0) 3827 return; 3828 3829 raw_spin_lock(&cfs_b->lock); 3830 if (cfs_b->quota != RUNTIME_INF && 3831 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 3832 cfs_b->runtime += slack_runtime; 3833 3834 /* we are under rq->lock, defer unthrottling using a timer */ 3835 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 3836 !list_empty(&cfs_b->throttled_cfs_rq)) 3837 start_cfs_slack_bandwidth(cfs_b); 3838 } 3839 raw_spin_unlock(&cfs_b->lock); 3840 3841 /* even if it's not valid for return we don't want to try again */ 3842 cfs_rq->runtime_remaining -= slack_runtime; 3843 } 3844 3845 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3846 { 3847 if (!cfs_bandwidth_used()) 3848 return; 3849 3850 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 3851 return; 3852 3853 __return_cfs_rq_runtime(cfs_rq); 3854 } 3855 3856 /* 3857 * This is done with a timer (instead of inline with bandwidth return) since 3858 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 3859 */ 3860 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 3861 { 3862 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 3863 u64 expires; 3864 3865 /* confirm we're still not at a refresh boundary */ 3866 raw_spin_lock(&cfs_b->lock); 3867 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 3868 raw_spin_unlock(&cfs_b->lock); 3869 return; 3870 } 3871 3872 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 3873 runtime = cfs_b->runtime; 3874 3875 expires = cfs_b->runtime_expires; 3876 raw_spin_unlock(&cfs_b->lock); 3877 3878 if (!runtime) 3879 return; 3880 3881 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 3882 3883 raw_spin_lock(&cfs_b->lock); 3884 if (expires == cfs_b->runtime_expires) 3885 cfs_b->runtime -= min(runtime, cfs_b->runtime); 3886 raw_spin_unlock(&cfs_b->lock); 3887 } 3888 3889 /* 3890 * When a group wakes up we want to make sure that its quota is not already 3891 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 3892 * runtime as update_curr() throttling can not not trigger until it's on-rq. 3893 */ 3894 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 3895 { 3896 if (!cfs_bandwidth_used()) 3897 return; 3898 3899 /* an active group must be handled by the update_curr()->put() path */ 3900 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 3901 return; 3902 3903 /* ensure the group is not already throttled */ 3904 if (cfs_rq_throttled(cfs_rq)) 3905 return; 3906 3907 /* update runtime allocation */ 3908 account_cfs_rq_runtime(cfs_rq, 0); 3909 if (cfs_rq->runtime_remaining <= 0) 3910 throttle_cfs_rq(cfs_rq); 3911 } 3912 3913 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 3914 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3915 { 3916 if (!cfs_bandwidth_used()) 3917 return false; 3918 3919 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 3920 return false; 3921 3922 /* 3923 * it's possible for a throttled entity to be forced into a running 3924 * state (e.g. set_curr_task), in this case we're finished. 3925 */ 3926 if (cfs_rq_throttled(cfs_rq)) 3927 return true; 3928 3929 throttle_cfs_rq(cfs_rq); 3930 return true; 3931 } 3932 3933 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 3934 { 3935 struct cfs_bandwidth *cfs_b = 3936 container_of(timer, struct cfs_bandwidth, slack_timer); 3937 do_sched_cfs_slack_timer(cfs_b); 3938 3939 return HRTIMER_NORESTART; 3940 } 3941 3942 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 3943 { 3944 struct cfs_bandwidth *cfs_b = 3945 container_of(timer, struct cfs_bandwidth, period_timer); 3946 ktime_t now; 3947 int overrun; 3948 int idle = 0; 3949 3950 raw_spin_lock(&cfs_b->lock); 3951 for (;;) { 3952 now = hrtimer_cb_get_time(timer); 3953 overrun = hrtimer_forward(timer, now, cfs_b->period); 3954 3955 if (!overrun) 3956 break; 3957 3958 idle = do_sched_cfs_period_timer(cfs_b, overrun); 3959 } 3960 raw_spin_unlock(&cfs_b->lock); 3961 3962 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 3963 } 3964 3965 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3966 { 3967 raw_spin_lock_init(&cfs_b->lock); 3968 cfs_b->runtime = 0; 3969 cfs_b->quota = RUNTIME_INF; 3970 cfs_b->period = ns_to_ktime(default_cfs_period()); 3971 3972 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 3973 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3974 cfs_b->period_timer.function = sched_cfs_period_timer; 3975 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3976 cfs_b->slack_timer.function = sched_cfs_slack_timer; 3977 } 3978 3979 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3980 { 3981 cfs_rq->runtime_enabled = 0; 3982 INIT_LIST_HEAD(&cfs_rq->throttled_list); 3983 } 3984 3985 /* requires cfs_b->lock, may release to reprogram timer */ 3986 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force) 3987 { 3988 /* 3989 * The timer may be active because we're trying to set a new bandwidth 3990 * period or because we're racing with the tear-down path 3991 * (timer_active==0 becomes visible before the hrtimer call-back 3992 * terminates). In either case we ensure that it's re-programmed 3993 */ 3994 while (unlikely(hrtimer_active(&cfs_b->period_timer)) && 3995 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) { 3996 /* bounce the lock to allow do_sched_cfs_period_timer to run */ 3997 raw_spin_unlock(&cfs_b->lock); 3998 cpu_relax(); 3999 raw_spin_lock(&cfs_b->lock); 4000 /* if someone else restarted the timer then we're done */ 4001 if (!force && cfs_b->timer_active) 4002 return; 4003 } 4004 4005 cfs_b->timer_active = 1; 4006 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); 4007 } 4008 4009 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4010 { 4011 /* init_cfs_bandwidth() was not called */ 4012 if (!cfs_b->throttled_cfs_rq.next) 4013 return; 4014 4015 hrtimer_cancel(&cfs_b->period_timer); 4016 hrtimer_cancel(&cfs_b->slack_timer); 4017 } 4018 4019 static void __maybe_unused update_runtime_enabled(struct rq *rq) 4020 { 4021 struct cfs_rq *cfs_rq; 4022 4023 for_each_leaf_cfs_rq(rq, cfs_rq) { 4024 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth; 4025 4026 raw_spin_lock(&cfs_b->lock); 4027 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 4028 raw_spin_unlock(&cfs_b->lock); 4029 } 4030 } 4031 4032 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 4033 { 4034 struct cfs_rq *cfs_rq; 4035 4036 for_each_leaf_cfs_rq(rq, cfs_rq) { 4037 if (!cfs_rq->runtime_enabled) 4038 continue; 4039 4040 /* 4041 * clock_task is not advancing so we just need to make sure 4042 * there's some valid quota amount 4043 */ 4044 cfs_rq->runtime_remaining = 1; 4045 /* 4046 * Offline rq is schedulable till cpu is completely disabled 4047 * in take_cpu_down(), so we prevent new cfs throttling here. 4048 */ 4049 cfs_rq->runtime_enabled = 0; 4050 4051 if (cfs_rq_throttled(cfs_rq)) 4052 unthrottle_cfs_rq(cfs_rq); 4053 } 4054 } 4055 4056 #else /* CONFIG_CFS_BANDWIDTH */ 4057 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4058 { 4059 return rq_clock_task(rq_of(cfs_rq)); 4060 } 4061 4062 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 4063 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 4064 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 4065 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4066 4067 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4068 { 4069 return 0; 4070 } 4071 4072 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4073 { 4074 return 0; 4075 } 4076 4077 static inline int throttled_lb_pair(struct task_group *tg, 4078 int src_cpu, int dest_cpu) 4079 { 4080 return 0; 4081 } 4082 4083 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4084 4085 #ifdef CONFIG_FAIR_GROUP_SCHED 4086 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4087 #endif 4088 4089 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4090 { 4091 return NULL; 4092 } 4093 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4094 static inline void update_runtime_enabled(struct rq *rq) {} 4095 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 4096 4097 #endif /* CONFIG_CFS_BANDWIDTH */ 4098 4099 /************************************************** 4100 * CFS operations on tasks: 4101 */ 4102 4103 #ifdef CONFIG_SCHED_HRTICK 4104 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 4105 { 4106 struct sched_entity *se = &p->se; 4107 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4108 4109 WARN_ON(task_rq(p) != rq); 4110 4111 if (cfs_rq->nr_running > 1) { 4112 u64 slice = sched_slice(cfs_rq, se); 4113 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 4114 s64 delta = slice - ran; 4115 4116 if (delta < 0) { 4117 if (rq->curr == p) 4118 resched_curr(rq); 4119 return; 4120 } 4121 hrtick_start(rq, delta); 4122 } 4123 } 4124 4125 /* 4126 * called from enqueue/dequeue and updates the hrtick when the 4127 * current task is from our class and nr_running is low enough 4128 * to matter. 4129 */ 4130 static void hrtick_update(struct rq *rq) 4131 { 4132 struct task_struct *curr = rq->curr; 4133 4134 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 4135 return; 4136 4137 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 4138 hrtick_start_fair(rq, curr); 4139 } 4140 #else /* !CONFIG_SCHED_HRTICK */ 4141 static inline void 4142 hrtick_start_fair(struct rq *rq, struct task_struct *p) 4143 { 4144 } 4145 4146 static inline void hrtick_update(struct rq *rq) 4147 { 4148 } 4149 #endif 4150 4151 /* 4152 * The enqueue_task method is called before nr_running is 4153 * increased. Here we update the fair scheduling stats and 4154 * then put the task into the rbtree: 4155 */ 4156 static void 4157 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4158 { 4159 struct cfs_rq *cfs_rq; 4160 struct sched_entity *se = &p->se; 4161 4162 for_each_sched_entity(se) { 4163 if (se->on_rq) 4164 break; 4165 cfs_rq = cfs_rq_of(se); 4166 enqueue_entity(cfs_rq, se, flags); 4167 4168 /* 4169 * end evaluation on encountering a throttled cfs_rq 4170 * 4171 * note: in the case of encountering a throttled cfs_rq we will 4172 * post the final h_nr_running increment below. 4173 */ 4174 if (cfs_rq_throttled(cfs_rq)) 4175 break; 4176 cfs_rq->h_nr_running++; 4177 4178 flags = ENQUEUE_WAKEUP; 4179 } 4180 4181 for_each_sched_entity(se) { 4182 cfs_rq = cfs_rq_of(se); 4183 cfs_rq->h_nr_running++; 4184 4185 if (cfs_rq_throttled(cfs_rq)) 4186 break; 4187 4188 update_cfs_shares(cfs_rq); 4189 update_entity_load_avg(se, 1); 4190 } 4191 4192 if (!se) { 4193 update_rq_runnable_avg(rq, rq->nr_running); 4194 add_nr_running(rq, 1); 4195 } 4196 hrtick_update(rq); 4197 } 4198 4199 static void set_next_buddy(struct sched_entity *se); 4200 4201 /* 4202 * The dequeue_task method is called before nr_running is 4203 * decreased. We remove the task from the rbtree and 4204 * update the fair scheduling stats: 4205 */ 4206 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4207 { 4208 struct cfs_rq *cfs_rq; 4209 struct sched_entity *se = &p->se; 4210 int task_sleep = flags & DEQUEUE_SLEEP; 4211 4212 for_each_sched_entity(se) { 4213 cfs_rq = cfs_rq_of(se); 4214 dequeue_entity(cfs_rq, se, flags); 4215 4216 /* 4217 * end evaluation on encountering a throttled cfs_rq 4218 * 4219 * note: in the case of encountering a throttled cfs_rq we will 4220 * post the final h_nr_running decrement below. 4221 */ 4222 if (cfs_rq_throttled(cfs_rq)) 4223 break; 4224 cfs_rq->h_nr_running--; 4225 4226 /* Don't dequeue parent if it has other entities besides us */ 4227 if (cfs_rq->load.weight) { 4228 /* 4229 * Bias pick_next to pick a task from this cfs_rq, as 4230 * p is sleeping when it is within its sched_slice. 4231 */ 4232 if (task_sleep && parent_entity(se)) 4233 set_next_buddy(parent_entity(se)); 4234 4235 /* avoid re-evaluating load for this entity */ 4236 se = parent_entity(se); 4237 break; 4238 } 4239 flags |= DEQUEUE_SLEEP; 4240 } 4241 4242 for_each_sched_entity(se) { 4243 cfs_rq = cfs_rq_of(se); 4244 cfs_rq->h_nr_running--; 4245 4246 if (cfs_rq_throttled(cfs_rq)) 4247 break; 4248 4249 update_cfs_shares(cfs_rq); 4250 update_entity_load_avg(se, 1); 4251 } 4252 4253 if (!se) { 4254 sub_nr_running(rq, 1); 4255 update_rq_runnable_avg(rq, 1); 4256 } 4257 hrtick_update(rq); 4258 } 4259 4260 #ifdef CONFIG_SMP 4261 /* Used instead of source_load when we know the type == 0 */ 4262 static unsigned long weighted_cpuload(const int cpu) 4263 { 4264 return cpu_rq(cpu)->cfs.runnable_load_avg; 4265 } 4266 4267 /* 4268 * Return a low guess at the load of a migration-source cpu weighted 4269 * according to the scheduling class and "nice" value. 4270 * 4271 * We want to under-estimate the load of migration sources, to 4272 * balance conservatively. 4273 */ 4274 static unsigned long source_load(int cpu, int type) 4275 { 4276 struct rq *rq = cpu_rq(cpu); 4277 unsigned long total = weighted_cpuload(cpu); 4278 4279 if (type == 0 || !sched_feat(LB_BIAS)) 4280 return total; 4281 4282 return min(rq->cpu_load[type-1], total); 4283 } 4284 4285 /* 4286 * Return a high guess at the load of a migration-target cpu weighted 4287 * according to the scheduling class and "nice" value. 4288 */ 4289 static unsigned long target_load(int cpu, int type) 4290 { 4291 struct rq *rq = cpu_rq(cpu); 4292 unsigned long total = weighted_cpuload(cpu); 4293 4294 if (type == 0 || !sched_feat(LB_BIAS)) 4295 return total; 4296 4297 return max(rq->cpu_load[type-1], total); 4298 } 4299 4300 static unsigned long capacity_of(int cpu) 4301 { 4302 return cpu_rq(cpu)->cpu_capacity; 4303 } 4304 4305 static unsigned long cpu_avg_load_per_task(int cpu) 4306 { 4307 struct rq *rq = cpu_rq(cpu); 4308 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running); 4309 unsigned long load_avg = rq->cfs.runnable_load_avg; 4310 4311 if (nr_running) 4312 return load_avg / nr_running; 4313 4314 return 0; 4315 } 4316 4317 static void record_wakee(struct task_struct *p) 4318 { 4319 /* 4320 * Rough decay (wiping) for cost saving, don't worry 4321 * about the boundary, really active task won't care 4322 * about the loss. 4323 */ 4324 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 4325 current->wakee_flips >>= 1; 4326 current->wakee_flip_decay_ts = jiffies; 4327 } 4328 4329 if (current->last_wakee != p) { 4330 current->last_wakee = p; 4331 current->wakee_flips++; 4332 } 4333 } 4334 4335 static void task_waking_fair(struct task_struct *p) 4336 { 4337 struct sched_entity *se = &p->se; 4338 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4339 u64 min_vruntime; 4340 4341 #ifndef CONFIG_64BIT 4342 u64 min_vruntime_copy; 4343 4344 do { 4345 min_vruntime_copy = cfs_rq->min_vruntime_copy; 4346 smp_rmb(); 4347 min_vruntime = cfs_rq->min_vruntime; 4348 } while (min_vruntime != min_vruntime_copy); 4349 #else 4350 min_vruntime = cfs_rq->min_vruntime; 4351 #endif 4352 4353 se->vruntime -= min_vruntime; 4354 record_wakee(p); 4355 } 4356 4357 #ifdef CONFIG_FAIR_GROUP_SCHED 4358 /* 4359 * effective_load() calculates the load change as seen from the root_task_group 4360 * 4361 * Adding load to a group doesn't make a group heavier, but can cause movement 4362 * of group shares between cpus. Assuming the shares were perfectly aligned one 4363 * can calculate the shift in shares. 4364 * 4365 * Calculate the effective load difference if @wl is added (subtracted) to @tg 4366 * on this @cpu and results in a total addition (subtraction) of @wg to the 4367 * total group weight. 4368 * 4369 * Given a runqueue weight distribution (rw_i) we can compute a shares 4370 * distribution (s_i) using: 4371 * 4372 * s_i = rw_i / \Sum rw_j (1) 4373 * 4374 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 4375 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 4376 * shares distribution (s_i): 4377 * 4378 * rw_i = { 2, 4, 1, 0 } 4379 * s_i = { 2/7, 4/7, 1/7, 0 } 4380 * 4381 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 4382 * task used to run on and the CPU the waker is running on), we need to 4383 * compute the effect of waking a task on either CPU and, in case of a sync 4384 * wakeup, compute the effect of the current task going to sleep. 4385 * 4386 * So for a change of @wl to the local @cpu with an overall group weight change 4387 * of @wl we can compute the new shares distribution (s'_i) using: 4388 * 4389 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 4390 * 4391 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 4392 * differences in waking a task to CPU 0. The additional task changes the 4393 * weight and shares distributions like: 4394 * 4395 * rw'_i = { 3, 4, 1, 0 } 4396 * s'_i = { 3/8, 4/8, 1/8, 0 } 4397 * 4398 * We can then compute the difference in effective weight by using: 4399 * 4400 * dw_i = S * (s'_i - s_i) (3) 4401 * 4402 * Where 'S' is the group weight as seen by its parent. 4403 * 4404 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 4405 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 4406 * 4/7) times the weight of the group. 4407 */ 4408 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4409 { 4410 struct sched_entity *se = tg->se[cpu]; 4411 4412 if (!tg->parent) /* the trivial, non-cgroup case */ 4413 return wl; 4414 4415 for_each_sched_entity(se) { 4416 long w, W; 4417 4418 tg = se->my_q->tg; 4419 4420 /* 4421 * W = @wg + \Sum rw_j 4422 */ 4423 W = wg + calc_tg_weight(tg, se->my_q); 4424 4425 /* 4426 * w = rw_i + @wl 4427 */ 4428 w = se->my_q->load.weight + wl; 4429 4430 /* 4431 * wl = S * s'_i; see (2) 4432 */ 4433 if (W > 0 && w < W) 4434 wl = (w * (long)tg->shares) / W; 4435 else 4436 wl = tg->shares; 4437 4438 /* 4439 * Per the above, wl is the new se->load.weight value; since 4440 * those are clipped to [MIN_SHARES, ...) do so now. See 4441 * calc_cfs_shares(). 4442 */ 4443 if (wl < MIN_SHARES) 4444 wl = MIN_SHARES; 4445 4446 /* 4447 * wl = dw_i = S * (s'_i - s_i); see (3) 4448 */ 4449 wl -= se->load.weight; 4450 4451 /* 4452 * Recursively apply this logic to all parent groups to compute 4453 * the final effective load change on the root group. Since 4454 * only the @tg group gets extra weight, all parent groups can 4455 * only redistribute existing shares. @wl is the shift in shares 4456 * resulting from this level per the above. 4457 */ 4458 wg = 0; 4459 } 4460 4461 return wl; 4462 } 4463 #else 4464 4465 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4466 { 4467 return wl; 4468 } 4469 4470 #endif 4471 4472 static int wake_wide(struct task_struct *p) 4473 { 4474 int factor = this_cpu_read(sd_llc_size); 4475 4476 /* 4477 * Yeah, it's the switching-frequency, could means many wakee or 4478 * rapidly switch, use factor here will just help to automatically 4479 * adjust the loose-degree, so bigger node will lead to more pull. 4480 */ 4481 if (p->wakee_flips > factor) { 4482 /* 4483 * wakee is somewhat hot, it needs certain amount of cpu 4484 * resource, so if waker is far more hot, prefer to leave 4485 * it alone. 4486 */ 4487 if (current->wakee_flips > (factor * p->wakee_flips)) 4488 return 1; 4489 } 4490 4491 return 0; 4492 } 4493 4494 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 4495 { 4496 s64 this_load, load; 4497 s64 this_eff_load, prev_eff_load; 4498 int idx, this_cpu, prev_cpu; 4499 struct task_group *tg; 4500 unsigned long weight; 4501 int balanced; 4502 4503 /* 4504 * If we wake multiple tasks be careful to not bounce 4505 * ourselves around too much. 4506 */ 4507 if (wake_wide(p)) 4508 return 0; 4509 4510 idx = sd->wake_idx; 4511 this_cpu = smp_processor_id(); 4512 prev_cpu = task_cpu(p); 4513 load = source_load(prev_cpu, idx); 4514 this_load = target_load(this_cpu, idx); 4515 4516 /* 4517 * If sync wakeup then subtract the (maximum possible) 4518 * effect of the currently running task from the load 4519 * of the current CPU: 4520 */ 4521 if (sync) { 4522 tg = task_group(current); 4523 weight = current->se.load.weight; 4524 4525 this_load += effective_load(tg, this_cpu, -weight, -weight); 4526 load += effective_load(tg, prev_cpu, 0, -weight); 4527 } 4528 4529 tg = task_group(p); 4530 weight = p->se.load.weight; 4531 4532 /* 4533 * In low-load situations, where prev_cpu is idle and this_cpu is idle 4534 * due to the sync cause above having dropped this_load to 0, we'll 4535 * always have an imbalance, but there's really nothing you can do 4536 * about that, so that's good too. 4537 * 4538 * Otherwise check if either cpus are near enough in load to allow this 4539 * task to be woken on this_cpu. 4540 */ 4541 this_eff_load = 100; 4542 this_eff_load *= capacity_of(prev_cpu); 4543 4544 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 4545 prev_eff_load *= capacity_of(this_cpu); 4546 4547 if (this_load > 0) { 4548 this_eff_load *= this_load + 4549 effective_load(tg, this_cpu, weight, weight); 4550 4551 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 4552 } 4553 4554 balanced = this_eff_load <= prev_eff_load; 4555 4556 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 4557 4558 if (!balanced) 4559 return 0; 4560 4561 schedstat_inc(sd, ttwu_move_affine); 4562 schedstat_inc(p, se.statistics.nr_wakeups_affine); 4563 4564 return 1; 4565 } 4566 4567 /* 4568 * find_idlest_group finds and returns the least busy CPU group within the 4569 * domain. 4570 */ 4571 static struct sched_group * 4572 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 4573 int this_cpu, int sd_flag) 4574 { 4575 struct sched_group *idlest = NULL, *group = sd->groups; 4576 unsigned long min_load = ULONG_MAX, this_load = 0; 4577 int load_idx = sd->forkexec_idx; 4578 int imbalance = 100 + (sd->imbalance_pct-100)/2; 4579 4580 if (sd_flag & SD_BALANCE_WAKE) 4581 load_idx = sd->wake_idx; 4582 4583 do { 4584 unsigned long load, avg_load; 4585 int local_group; 4586 int i; 4587 4588 /* Skip over this group if it has no CPUs allowed */ 4589 if (!cpumask_intersects(sched_group_cpus(group), 4590 tsk_cpus_allowed(p))) 4591 continue; 4592 4593 local_group = cpumask_test_cpu(this_cpu, 4594 sched_group_cpus(group)); 4595 4596 /* Tally up the load of all CPUs in the group */ 4597 avg_load = 0; 4598 4599 for_each_cpu(i, sched_group_cpus(group)) { 4600 /* Bias balancing toward cpus of our domain */ 4601 if (local_group) 4602 load = source_load(i, load_idx); 4603 else 4604 load = target_load(i, load_idx); 4605 4606 avg_load += load; 4607 } 4608 4609 /* Adjust by relative CPU capacity of the group */ 4610 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity; 4611 4612 if (local_group) { 4613 this_load = avg_load; 4614 } else if (avg_load < min_load) { 4615 min_load = avg_load; 4616 idlest = group; 4617 } 4618 } while (group = group->next, group != sd->groups); 4619 4620 if (!idlest || 100*this_load < imbalance*min_load) 4621 return NULL; 4622 return idlest; 4623 } 4624 4625 /* 4626 * find_idlest_cpu - find the idlest cpu among the cpus in group. 4627 */ 4628 static int 4629 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 4630 { 4631 unsigned long load, min_load = ULONG_MAX; 4632 unsigned int min_exit_latency = UINT_MAX; 4633 u64 latest_idle_timestamp = 0; 4634 int least_loaded_cpu = this_cpu; 4635 int shallowest_idle_cpu = -1; 4636 int i; 4637 4638 /* Traverse only the allowed CPUs */ 4639 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 4640 if (idle_cpu(i)) { 4641 struct rq *rq = cpu_rq(i); 4642 struct cpuidle_state *idle = idle_get_state(rq); 4643 if (idle && idle->exit_latency < min_exit_latency) { 4644 /* 4645 * We give priority to a CPU whose idle state 4646 * has the smallest exit latency irrespective 4647 * of any idle timestamp. 4648 */ 4649 min_exit_latency = idle->exit_latency; 4650 latest_idle_timestamp = rq->idle_stamp; 4651 shallowest_idle_cpu = i; 4652 } else if ((!idle || idle->exit_latency == min_exit_latency) && 4653 rq->idle_stamp > latest_idle_timestamp) { 4654 /* 4655 * If equal or no active idle state, then 4656 * the most recently idled CPU might have 4657 * a warmer cache. 4658 */ 4659 latest_idle_timestamp = rq->idle_stamp; 4660 shallowest_idle_cpu = i; 4661 } 4662 } else if (shallowest_idle_cpu == -1) { 4663 load = weighted_cpuload(i); 4664 if (load < min_load || (load == min_load && i == this_cpu)) { 4665 min_load = load; 4666 least_loaded_cpu = i; 4667 } 4668 } 4669 } 4670 4671 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 4672 } 4673 4674 /* 4675 * Try and locate an idle CPU in the sched_domain. 4676 */ 4677 static int select_idle_sibling(struct task_struct *p, int target) 4678 { 4679 struct sched_domain *sd; 4680 struct sched_group *sg; 4681 int i = task_cpu(p); 4682 4683 if (idle_cpu(target)) 4684 return target; 4685 4686 /* 4687 * If the prevous cpu is cache affine and idle, don't be stupid. 4688 */ 4689 if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) 4690 return i; 4691 4692 /* 4693 * Otherwise, iterate the domains and find an elegible idle cpu. 4694 */ 4695 sd = rcu_dereference(per_cpu(sd_llc, target)); 4696 for_each_lower_domain(sd) { 4697 sg = sd->groups; 4698 do { 4699 if (!cpumask_intersects(sched_group_cpus(sg), 4700 tsk_cpus_allowed(p))) 4701 goto next; 4702 4703 for_each_cpu(i, sched_group_cpus(sg)) { 4704 if (i == target || !idle_cpu(i)) 4705 goto next; 4706 } 4707 4708 target = cpumask_first_and(sched_group_cpus(sg), 4709 tsk_cpus_allowed(p)); 4710 goto done; 4711 next: 4712 sg = sg->next; 4713 } while (sg != sd->groups); 4714 } 4715 done: 4716 return target; 4717 } 4718 4719 /* 4720 * select_task_rq_fair: Select target runqueue for the waking task in domains 4721 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 4722 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 4723 * 4724 * Balances load by selecting the idlest cpu in the idlest group, or under 4725 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. 4726 * 4727 * Returns the target cpu number. 4728 * 4729 * preempt must be disabled. 4730 */ 4731 static int 4732 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 4733 { 4734 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 4735 int cpu = smp_processor_id(); 4736 int new_cpu = cpu; 4737 int want_affine = 0; 4738 int sync = wake_flags & WF_SYNC; 4739 4740 if (sd_flag & SD_BALANCE_WAKE) 4741 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p)); 4742 4743 rcu_read_lock(); 4744 for_each_domain(cpu, tmp) { 4745 if (!(tmp->flags & SD_LOAD_BALANCE)) 4746 continue; 4747 4748 /* 4749 * If both cpu and prev_cpu are part of this domain, 4750 * cpu is a valid SD_WAKE_AFFINE target. 4751 */ 4752 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 4753 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 4754 affine_sd = tmp; 4755 break; 4756 } 4757 4758 if (tmp->flags & sd_flag) 4759 sd = tmp; 4760 } 4761 4762 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync)) 4763 prev_cpu = cpu; 4764 4765 if (sd_flag & SD_BALANCE_WAKE) { 4766 new_cpu = select_idle_sibling(p, prev_cpu); 4767 goto unlock; 4768 } 4769 4770 while (sd) { 4771 struct sched_group *group; 4772 int weight; 4773 4774 if (!(sd->flags & sd_flag)) { 4775 sd = sd->child; 4776 continue; 4777 } 4778 4779 group = find_idlest_group(sd, p, cpu, sd_flag); 4780 if (!group) { 4781 sd = sd->child; 4782 continue; 4783 } 4784 4785 new_cpu = find_idlest_cpu(group, p, cpu); 4786 if (new_cpu == -1 || new_cpu == cpu) { 4787 /* Now try balancing at a lower domain level of cpu */ 4788 sd = sd->child; 4789 continue; 4790 } 4791 4792 /* Now try balancing at a lower domain level of new_cpu */ 4793 cpu = new_cpu; 4794 weight = sd->span_weight; 4795 sd = NULL; 4796 for_each_domain(cpu, tmp) { 4797 if (weight <= tmp->span_weight) 4798 break; 4799 if (tmp->flags & sd_flag) 4800 sd = tmp; 4801 } 4802 /* while loop will break here if sd == NULL */ 4803 } 4804 unlock: 4805 rcu_read_unlock(); 4806 4807 return new_cpu; 4808 } 4809 4810 /* 4811 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 4812 * cfs_rq_of(p) references at time of call are still valid and identify the 4813 * previous cpu. However, the caller only guarantees p->pi_lock is held; no 4814 * other assumptions, including the state of rq->lock, should be made. 4815 */ 4816 static void 4817 migrate_task_rq_fair(struct task_struct *p, int next_cpu) 4818 { 4819 struct sched_entity *se = &p->se; 4820 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4821 4822 /* 4823 * Load tracking: accumulate removed load so that it can be processed 4824 * when we next update owning cfs_rq under rq->lock. Tasks contribute 4825 * to blocked load iff they have a positive decay-count. It can never 4826 * be negative here since on-rq tasks have decay-count == 0. 4827 */ 4828 if (se->avg.decay_count) { 4829 se->avg.decay_count = -__synchronize_entity_decay(se); 4830 atomic_long_add(se->avg.load_avg_contrib, 4831 &cfs_rq->removed_load); 4832 } 4833 4834 /* We have migrated, no longer consider this task hot */ 4835 se->exec_start = 0; 4836 } 4837 #endif /* CONFIG_SMP */ 4838 4839 static unsigned long 4840 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 4841 { 4842 unsigned long gran = sysctl_sched_wakeup_granularity; 4843 4844 /* 4845 * Since its curr running now, convert the gran from real-time 4846 * to virtual-time in his units. 4847 * 4848 * By using 'se' instead of 'curr' we penalize light tasks, so 4849 * they get preempted easier. That is, if 'se' < 'curr' then 4850 * the resulting gran will be larger, therefore penalizing the 4851 * lighter, if otoh 'se' > 'curr' then the resulting gran will 4852 * be smaller, again penalizing the lighter task. 4853 * 4854 * This is especially important for buddies when the leftmost 4855 * task is higher priority than the buddy. 4856 */ 4857 return calc_delta_fair(gran, se); 4858 } 4859 4860 /* 4861 * Should 'se' preempt 'curr'. 4862 * 4863 * |s1 4864 * |s2 4865 * |s3 4866 * g 4867 * |<--->|c 4868 * 4869 * w(c, s1) = -1 4870 * w(c, s2) = 0 4871 * w(c, s3) = 1 4872 * 4873 */ 4874 static int 4875 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 4876 { 4877 s64 gran, vdiff = curr->vruntime - se->vruntime; 4878 4879 if (vdiff <= 0) 4880 return -1; 4881 4882 gran = wakeup_gran(curr, se); 4883 if (vdiff > gran) 4884 return 1; 4885 4886 return 0; 4887 } 4888 4889 static void set_last_buddy(struct sched_entity *se) 4890 { 4891 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 4892 return; 4893 4894 for_each_sched_entity(se) 4895 cfs_rq_of(se)->last = se; 4896 } 4897 4898 static void set_next_buddy(struct sched_entity *se) 4899 { 4900 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 4901 return; 4902 4903 for_each_sched_entity(se) 4904 cfs_rq_of(se)->next = se; 4905 } 4906 4907 static void set_skip_buddy(struct sched_entity *se) 4908 { 4909 for_each_sched_entity(se) 4910 cfs_rq_of(se)->skip = se; 4911 } 4912 4913 /* 4914 * Preempt the current task with a newly woken task if needed: 4915 */ 4916 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 4917 { 4918 struct task_struct *curr = rq->curr; 4919 struct sched_entity *se = &curr->se, *pse = &p->se; 4920 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 4921 int scale = cfs_rq->nr_running >= sched_nr_latency; 4922 int next_buddy_marked = 0; 4923 4924 if (unlikely(se == pse)) 4925 return; 4926 4927 /* 4928 * This is possible from callers such as attach_tasks(), in which we 4929 * unconditionally check_prempt_curr() after an enqueue (which may have 4930 * lead to a throttle). This both saves work and prevents false 4931 * next-buddy nomination below. 4932 */ 4933 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 4934 return; 4935 4936 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 4937 set_next_buddy(pse); 4938 next_buddy_marked = 1; 4939 } 4940 4941 /* 4942 * We can come here with TIF_NEED_RESCHED already set from new task 4943 * wake up path. 4944 * 4945 * Note: this also catches the edge-case of curr being in a throttled 4946 * group (e.g. via set_curr_task), since update_curr() (in the 4947 * enqueue of curr) will have resulted in resched being set. This 4948 * prevents us from potentially nominating it as a false LAST_BUDDY 4949 * below. 4950 */ 4951 if (test_tsk_need_resched(curr)) 4952 return; 4953 4954 /* Idle tasks are by definition preempted by non-idle tasks. */ 4955 if (unlikely(curr->policy == SCHED_IDLE) && 4956 likely(p->policy != SCHED_IDLE)) 4957 goto preempt; 4958 4959 /* 4960 * Batch and idle tasks do not preempt non-idle tasks (their preemption 4961 * is driven by the tick): 4962 */ 4963 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 4964 return; 4965 4966 find_matching_se(&se, &pse); 4967 update_curr(cfs_rq_of(se)); 4968 BUG_ON(!pse); 4969 if (wakeup_preempt_entity(se, pse) == 1) { 4970 /* 4971 * Bias pick_next to pick the sched entity that is 4972 * triggering this preemption. 4973 */ 4974 if (!next_buddy_marked) 4975 set_next_buddy(pse); 4976 goto preempt; 4977 } 4978 4979 return; 4980 4981 preempt: 4982 resched_curr(rq); 4983 /* 4984 * Only set the backward buddy when the current task is still 4985 * on the rq. This can happen when a wakeup gets interleaved 4986 * with schedule on the ->pre_schedule() or idle_balance() 4987 * point, either of which can * drop the rq lock. 4988 * 4989 * Also, during early boot the idle thread is in the fair class, 4990 * for obvious reasons its a bad idea to schedule back to it. 4991 */ 4992 if (unlikely(!se->on_rq || curr == rq->idle)) 4993 return; 4994 4995 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 4996 set_last_buddy(se); 4997 } 4998 4999 static struct task_struct * 5000 pick_next_task_fair(struct rq *rq, struct task_struct *prev) 5001 { 5002 struct cfs_rq *cfs_rq = &rq->cfs; 5003 struct sched_entity *se; 5004 struct task_struct *p; 5005 int new_tasks; 5006 5007 again: 5008 #ifdef CONFIG_FAIR_GROUP_SCHED 5009 if (!cfs_rq->nr_running) 5010 goto idle; 5011 5012 if (prev->sched_class != &fair_sched_class) 5013 goto simple; 5014 5015 /* 5016 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 5017 * likely that a next task is from the same cgroup as the current. 5018 * 5019 * Therefore attempt to avoid putting and setting the entire cgroup 5020 * hierarchy, only change the part that actually changes. 5021 */ 5022 5023 do { 5024 struct sched_entity *curr = cfs_rq->curr; 5025 5026 /* 5027 * Since we got here without doing put_prev_entity() we also 5028 * have to consider cfs_rq->curr. If it is still a runnable 5029 * entity, update_curr() will update its vruntime, otherwise 5030 * forget we've ever seen it. 5031 */ 5032 if (curr && curr->on_rq) 5033 update_curr(cfs_rq); 5034 else 5035 curr = NULL; 5036 5037 /* 5038 * This call to check_cfs_rq_runtime() will do the throttle and 5039 * dequeue its entity in the parent(s). Therefore the 'simple' 5040 * nr_running test will indeed be correct. 5041 */ 5042 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 5043 goto simple; 5044 5045 se = pick_next_entity(cfs_rq, curr); 5046 cfs_rq = group_cfs_rq(se); 5047 } while (cfs_rq); 5048 5049 p = task_of(se); 5050 5051 /* 5052 * Since we haven't yet done put_prev_entity and if the selected task 5053 * is a different task than we started out with, try and touch the 5054 * least amount of cfs_rqs. 5055 */ 5056 if (prev != p) { 5057 struct sched_entity *pse = &prev->se; 5058 5059 while (!(cfs_rq = is_same_group(se, pse))) { 5060 int se_depth = se->depth; 5061 int pse_depth = pse->depth; 5062 5063 if (se_depth <= pse_depth) { 5064 put_prev_entity(cfs_rq_of(pse), pse); 5065 pse = parent_entity(pse); 5066 } 5067 if (se_depth >= pse_depth) { 5068 set_next_entity(cfs_rq_of(se), se); 5069 se = parent_entity(se); 5070 } 5071 } 5072 5073 put_prev_entity(cfs_rq, pse); 5074 set_next_entity(cfs_rq, se); 5075 } 5076 5077 if (hrtick_enabled(rq)) 5078 hrtick_start_fair(rq, p); 5079 5080 return p; 5081 simple: 5082 cfs_rq = &rq->cfs; 5083 #endif 5084 5085 if (!cfs_rq->nr_running) 5086 goto idle; 5087 5088 put_prev_task(rq, prev); 5089 5090 do { 5091 se = pick_next_entity(cfs_rq, NULL); 5092 set_next_entity(cfs_rq, se); 5093 cfs_rq = group_cfs_rq(se); 5094 } while (cfs_rq); 5095 5096 p = task_of(se); 5097 5098 if (hrtick_enabled(rq)) 5099 hrtick_start_fair(rq, p); 5100 5101 return p; 5102 5103 idle: 5104 new_tasks = idle_balance(rq); 5105 /* 5106 * Because idle_balance() releases (and re-acquires) rq->lock, it is 5107 * possible for any higher priority task to appear. In that case we 5108 * must re-start the pick_next_entity() loop. 5109 */ 5110 if (new_tasks < 0) 5111 return RETRY_TASK; 5112 5113 if (new_tasks > 0) 5114 goto again; 5115 5116 return NULL; 5117 } 5118 5119 /* 5120 * Account for a descheduled task: 5121 */ 5122 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 5123 { 5124 struct sched_entity *se = &prev->se; 5125 struct cfs_rq *cfs_rq; 5126 5127 for_each_sched_entity(se) { 5128 cfs_rq = cfs_rq_of(se); 5129 put_prev_entity(cfs_rq, se); 5130 } 5131 } 5132 5133 /* 5134 * sched_yield() is very simple 5135 * 5136 * The magic of dealing with the ->skip buddy is in pick_next_entity. 5137 */ 5138 static void yield_task_fair(struct rq *rq) 5139 { 5140 struct task_struct *curr = rq->curr; 5141 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 5142 struct sched_entity *se = &curr->se; 5143 5144 /* 5145 * Are we the only task in the tree? 5146 */ 5147 if (unlikely(rq->nr_running == 1)) 5148 return; 5149 5150 clear_buddies(cfs_rq, se); 5151 5152 if (curr->policy != SCHED_BATCH) { 5153 update_rq_clock(rq); 5154 /* 5155 * Update run-time statistics of the 'current'. 5156 */ 5157 update_curr(cfs_rq); 5158 /* 5159 * Tell update_rq_clock() that we've just updated, 5160 * so we don't do microscopic update in schedule() 5161 * and double the fastpath cost. 5162 */ 5163 rq_clock_skip_update(rq, true); 5164 } 5165 5166 set_skip_buddy(se); 5167 } 5168 5169 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 5170 { 5171 struct sched_entity *se = &p->se; 5172 5173 /* throttled hierarchies are not runnable */ 5174 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 5175 return false; 5176 5177 /* Tell the scheduler that we'd really like pse to run next. */ 5178 set_next_buddy(se); 5179 5180 yield_task_fair(rq); 5181 5182 return true; 5183 } 5184 5185 #ifdef CONFIG_SMP 5186 /************************************************** 5187 * Fair scheduling class load-balancing methods. 5188 * 5189 * BASICS 5190 * 5191 * The purpose of load-balancing is to achieve the same basic fairness the 5192 * per-cpu scheduler provides, namely provide a proportional amount of compute 5193 * time to each task. This is expressed in the following equation: 5194 * 5195 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 5196 * 5197 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 5198 * W_i,0 is defined as: 5199 * 5200 * W_i,0 = \Sum_j w_i,j (2) 5201 * 5202 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 5203 * is derived from the nice value as per prio_to_weight[]. 5204 * 5205 * The weight average is an exponential decay average of the instantaneous 5206 * weight: 5207 * 5208 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 5209 * 5210 * C_i is the compute capacity of cpu i, typically it is the 5211 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 5212 * can also include other factors [XXX]. 5213 * 5214 * To achieve this balance we define a measure of imbalance which follows 5215 * directly from (1): 5216 * 5217 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 5218 * 5219 * We them move tasks around to minimize the imbalance. In the continuous 5220 * function space it is obvious this converges, in the discrete case we get 5221 * a few fun cases generally called infeasible weight scenarios. 5222 * 5223 * [XXX expand on: 5224 * - infeasible weights; 5225 * - local vs global optima in the discrete case. ] 5226 * 5227 * 5228 * SCHED DOMAINS 5229 * 5230 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 5231 * for all i,j solution, we create a tree of cpus that follows the hardware 5232 * topology where each level pairs two lower groups (or better). This results 5233 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 5234 * tree to only the first of the previous level and we decrease the frequency 5235 * of load-balance at each level inv. proportional to the number of cpus in 5236 * the groups. 5237 * 5238 * This yields: 5239 * 5240 * log_2 n 1 n 5241 * \Sum { --- * --- * 2^i } = O(n) (5) 5242 * i = 0 2^i 2^i 5243 * `- size of each group 5244 * | | `- number of cpus doing load-balance 5245 * | `- freq 5246 * `- sum over all levels 5247 * 5248 * Coupled with a limit on how many tasks we can migrate every balance pass, 5249 * this makes (5) the runtime complexity of the balancer. 5250 * 5251 * An important property here is that each CPU is still (indirectly) connected 5252 * to every other cpu in at most O(log n) steps: 5253 * 5254 * The adjacency matrix of the resulting graph is given by: 5255 * 5256 * log_2 n 5257 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 5258 * k = 0 5259 * 5260 * And you'll find that: 5261 * 5262 * A^(log_2 n)_i,j != 0 for all i,j (7) 5263 * 5264 * Showing there's indeed a path between every cpu in at most O(log n) steps. 5265 * The task movement gives a factor of O(m), giving a convergence complexity 5266 * of: 5267 * 5268 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 5269 * 5270 * 5271 * WORK CONSERVING 5272 * 5273 * In order to avoid CPUs going idle while there's still work to do, new idle 5274 * balancing is more aggressive and has the newly idle cpu iterate up the domain 5275 * tree itself instead of relying on other CPUs to bring it work. 5276 * 5277 * This adds some complexity to both (5) and (8) but it reduces the total idle 5278 * time. 5279 * 5280 * [XXX more?] 5281 * 5282 * 5283 * CGROUPS 5284 * 5285 * Cgroups make a horror show out of (2), instead of a simple sum we get: 5286 * 5287 * s_k,i 5288 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 5289 * S_k 5290 * 5291 * Where 5292 * 5293 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 5294 * 5295 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 5296 * 5297 * The big problem is S_k, its a global sum needed to compute a local (W_i) 5298 * property. 5299 * 5300 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 5301 * rewrite all of this once again.] 5302 */ 5303 5304 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 5305 5306 enum fbq_type { regular, remote, all }; 5307 5308 #define LBF_ALL_PINNED 0x01 5309 #define LBF_NEED_BREAK 0x02 5310 #define LBF_DST_PINNED 0x04 5311 #define LBF_SOME_PINNED 0x08 5312 5313 struct lb_env { 5314 struct sched_domain *sd; 5315 5316 struct rq *src_rq; 5317 int src_cpu; 5318 5319 int dst_cpu; 5320 struct rq *dst_rq; 5321 5322 struct cpumask *dst_grpmask; 5323 int new_dst_cpu; 5324 enum cpu_idle_type idle; 5325 long imbalance; 5326 /* The set of CPUs under consideration for load-balancing */ 5327 struct cpumask *cpus; 5328 5329 unsigned int flags; 5330 5331 unsigned int loop; 5332 unsigned int loop_break; 5333 unsigned int loop_max; 5334 5335 enum fbq_type fbq_type; 5336 struct list_head tasks; 5337 }; 5338 5339 /* 5340 * Is this task likely cache-hot: 5341 */ 5342 static int task_hot(struct task_struct *p, struct lb_env *env) 5343 { 5344 s64 delta; 5345 5346 lockdep_assert_held(&env->src_rq->lock); 5347 5348 if (p->sched_class != &fair_sched_class) 5349 return 0; 5350 5351 if (unlikely(p->policy == SCHED_IDLE)) 5352 return 0; 5353 5354 /* 5355 * Buddy candidates are cache hot: 5356 */ 5357 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 5358 (&p->se == cfs_rq_of(&p->se)->next || 5359 &p->se == cfs_rq_of(&p->se)->last)) 5360 return 1; 5361 5362 if (sysctl_sched_migration_cost == -1) 5363 return 1; 5364 if (sysctl_sched_migration_cost == 0) 5365 return 0; 5366 5367 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 5368 5369 return delta < (s64)sysctl_sched_migration_cost; 5370 } 5371 5372 #ifdef CONFIG_NUMA_BALANCING 5373 /* Returns true if the destination node has incurred more faults */ 5374 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env) 5375 { 5376 struct numa_group *numa_group = rcu_dereference(p->numa_group); 5377 int src_nid, dst_nid; 5378 5379 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults || 5380 !(env->sd->flags & SD_NUMA)) { 5381 return false; 5382 } 5383 5384 src_nid = cpu_to_node(env->src_cpu); 5385 dst_nid = cpu_to_node(env->dst_cpu); 5386 5387 if (src_nid == dst_nid) 5388 return false; 5389 5390 if (numa_group) { 5391 /* Task is already in the group's interleave set. */ 5392 if (node_isset(src_nid, numa_group->active_nodes)) 5393 return false; 5394 5395 /* Task is moving into the group's interleave set. */ 5396 if (node_isset(dst_nid, numa_group->active_nodes)) 5397 return true; 5398 5399 return group_faults(p, dst_nid) > group_faults(p, src_nid); 5400 } 5401 5402 /* Encourage migration to the preferred node. */ 5403 if (dst_nid == p->numa_preferred_nid) 5404 return true; 5405 5406 return task_faults(p, dst_nid) > task_faults(p, src_nid); 5407 } 5408 5409 5410 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 5411 { 5412 struct numa_group *numa_group = rcu_dereference(p->numa_group); 5413 int src_nid, dst_nid; 5414 5415 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER)) 5416 return false; 5417 5418 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 5419 return false; 5420 5421 src_nid = cpu_to_node(env->src_cpu); 5422 dst_nid = cpu_to_node(env->dst_cpu); 5423 5424 if (src_nid == dst_nid) 5425 return false; 5426 5427 if (numa_group) { 5428 /* Task is moving within/into the group's interleave set. */ 5429 if (node_isset(dst_nid, numa_group->active_nodes)) 5430 return false; 5431 5432 /* Task is moving out of the group's interleave set. */ 5433 if (node_isset(src_nid, numa_group->active_nodes)) 5434 return true; 5435 5436 return group_faults(p, dst_nid) < group_faults(p, src_nid); 5437 } 5438 5439 /* Migrating away from the preferred node is always bad. */ 5440 if (src_nid == p->numa_preferred_nid) 5441 return true; 5442 5443 return task_faults(p, dst_nid) < task_faults(p, src_nid); 5444 } 5445 5446 #else 5447 static inline bool migrate_improves_locality(struct task_struct *p, 5448 struct lb_env *env) 5449 { 5450 return false; 5451 } 5452 5453 static inline bool migrate_degrades_locality(struct task_struct *p, 5454 struct lb_env *env) 5455 { 5456 return false; 5457 } 5458 #endif 5459 5460 /* 5461 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 5462 */ 5463 static 5464 int can_migrate_task(struct task_struct *p, struct lb_env *env) 5465 { 5466 int tsk_cache_hot = 0; 5467 5468 lockdep_assert_held(&env->src_rq->lock); 5469 5470 /* 5471 * We do not migrate tasks that are: 5472 * 1) throttled_lb_pair, or 5473 * 2) cannot be migrated to this CPU due to cpus_allowed, or 5474 * 3) running (obviously), or 5475 * 4) are cache-hot on their current CPU. 5476 */ 5477 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 5478 return 0; 5479 5480 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 5481 int cpu; 5482 5483 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 5484 5485 env->flags |= LBF_SOME_PINNED; 5486 5487 /* 5488 * Remember if this task can be migrated to any other cpu in 5489 * our sched_group. We may want to revisit it if we couldn't 5490 * meet load balance goals by pulling other tasks on src_cpu. 5491 * 5492 * Also avoid computing new_dst_cpu if we have already computed 5493 * one in current iteration. 5494 */ 5495 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) 5496 return 0; 5497 5498 /* Prevent to re-select dst_cpu via env's cpus */ 5499 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 5500 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { 5501 env->flags |= LBF_DST_PINNED; 5502 env->new_dst_cpu = cpu; 5503 break; 5504 } 5505 } 5506 5507 return 0; 5508 } 5509 5510 /* Record that we found atleast one task that could run on dst_cpu */ 5511 env->flags &= ~LBF_ALL_PINNED; 5512 5513 if (task_running(env->src_rq, p)) { 5514 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 5515 return 0; 5516 } 5517 5518 /* 5519 * Aggressive migration if: 5520 * 1) destination numa is preferred 5521 * 2) task is cache cold, or 5522 * 3) too many balance attempts have failed. 5523 */ 5524 tsk_cache_hot = task_hot(p, env); 5525 if (!tsk_cache_hot) 5526 tsk_cache_hot = migrate_degrades_locality(p, env); 5527 5528 if (migrate_improves_locality(p, env) || !tsk_cache_hot || 5529 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 5530 if (tsk_cache_hot) { 5531 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 5532 schedstat_inc(p, se.statistics.nr_forced_migrations); 5533 } 5534 return 1; 5535 } 5536 5537 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 5538 return 0; 5539 } 5540 5541 /* 5542 * detach_task() -- detach the task for the migration specified in env 5543 */ 5544 static void detach_task(struct task_struct *p, struct lb_env *env) 5545 { 5546 lockdep_assert_held(&env->src_rq->lock); 5547 5548 deactivate_task(env->src_rq, p, 0); 5549 p->on_rq = TASK_ON_RQ_MIGRATING; 5550 set_task_cpu(p, env->dst_cpu); 5551 } 5552 5553 /* 5554 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 5555 * part of active balancing operations within "domain". 5556 * 5557 * Returns a task if successful and NULL otherwise. 5558 */ 5559 static struct task_struct *detach_one_task(struct lb_env *env) 5560 { 5561 struct task_struct *p, *n; 5562 5563 lockdep_assert_held(&env->src_rq->lock); 5564 5565 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 5566 if (!can_migrate_task(p, env)) 5567 continue; 5568 5569 detach_task(p, env); 5570 5571 /* 5572 * Right now, this is only the second place where 5573 * lb_gained[env->idle] is updated (other is detach_tasks) 5574 * so we can safely collect stats here rather than 5575 * inside detach_tasks(). 5576 */ 5577 schedstat_inc(env->sd, lb_gained[env->idle]); 5578 return p; 5579 } 5580 return NULL; 5581 } 5582 5583 static const unsigned int sched_nr_migrate_break = 32; 5584 5585 /* 5586 * detach_tasks() -- tries to detach up to imbalance weighted load from 5587 * busiest_rq, as part of a balancing operation within domain "sd". 5588 * 5589 * Returns number of detached tasks if successful and 0 otherwise. 5590 */ 5591 static int detach_tasks(struct lb_env *env) 5592 { 5593 struct list_head *tasks = &env->src_rq->cfs_tasks; 5594 struct task_struct *p; 5595 unsigned long load; 5596 int detached = 0; 5597 5598 lockdep_assert_held(&env->src_rq->lock); 5599 5600 if (env->imbalance <= 0) 5601 return 0; 5602 5603 while (!list_empty(tasks)) { 5604 p = list_first_entry(tasks, struct task_struct, se.group_node); 5605 5606 env->loop++; 5607 /* We've more or less seen every task there is, call it quits */ 5608 if (env->loop > env->loop_max) 5609 break; 5610 5611 /* take a breather every nr_migrate tasks */ 5612 if (env->loop > env->loop_break) { 5613 env->loop_break += sched_nr_migrate_break; 5614 env->flags |= LBF_NEED_BREAK; 5615 break; 5616 } 5617 5618 if (!can_migrate_task(p, env)) 5619 goto next; 5620 5621 load = task_h_load(p); 5622 5623 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 5624 goto next; 5625 5626 if ((load / 2) > env->imbalance) 5627 goto next; 5628 5629 detach_task(p, env); 5630 list_add(&p->se.group_node, &env->tasks); 5631 5632 detached++; 5633 env->imbalance -= load; 5634 5635 #ifdef CONFIG_PREEMPT 5636 /* 5637 * NEWIDLE balancing is a source of latency, so preemptible 5638 * kernels will stop after the first task is detached to minimize 5639 * the critical section. 5640 */ 5641 if (env->idle == CPU_NEWLY_IDLE) 5642 break; 5643 #endif 5644 5645 /* 5646 * We only want to steal up to the prescribed amount of 5647 * weighted load. 5648 */ 5649 if (env->imbalance <= 0) 5650 break; 5651 5652 continue; 5653 next: 5654 list_move_tail(&p->se.group_node, tasks); 5655 } 5656 5657 /* 5658 * Right now, this is one of only two places we collect this stat 5659 * so we can safely collect detach_one_task() stats here rather 5660 * than inside detach_one_task(). 5661 */ 5662 schedstat_add(env->sd, lb_gained[env->idle], detached); 5663 5664 return detached; 5665 } 5666 5667 /* 5668 * attach_task() -- attach the task detached by detach_task() to its new rq. 5669 */ 5670 static void attach_task(struct rq *rq, struct task_struct *p) 5671 { 5672 lockdep_assert_held(&rq->lock); 5673 5674 BUG_ON(task_rq(p) != rq); 5675 p->on_rq = TASK_ON_RQ_QUEUED; 5676 activate_task(rq, p, 0); 5677 check_preempt_curr(rq, p, 0); 5678 } 5679 5680 /* 5681 * attach_one_task() -- attaches the task returned from detach_one_task() to 5682 * its new rq. 5683 */ 5684 static void attach_one_task(struct rq *rq, struct task_struct *p) 5685 { 5686 raw_spin_lock(&rq->lock); 5687 attach_task(rq, p); 5688 raw_spin_unlock(&rq->lock); 5689 } 5690 5691 /* 5692 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 5693 * new rq. 5694 */ 5695 static void attach_tasks(struct lb_env *env) 5696 { 5697 struct list_head *tasks = &env->tasks; 5698 struct task_struct *p; 5699 5700 raw_spin_lock(&env->dst_rq->lock); 5701 5702 while (!list_empty(tasks)) { 5703 p = list_first_entry(tasks, struct task_struct, se.group_node); 5704 list_del_init(&p->se.group_node); 5705 5706 attach_task(env->dst_rq, p); 5707 } 5708 5709 raw_spin_unlock(&env->dst_rq->lock); 5710 } 5711 5712 #ifdef CONFIG_FAIR_GROUP_SCHED 5713 /* 5714 * update tg->load_weight by folding this cpu's load_avg 5715 */ 5716 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu) 5717 { 5718 struct sched_entity *se = tg->se[cpu]; 5719 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 5720 5721 /* throttled entities do not contribute to load */ 5722 if (throttled_hierarchy(cfs_rq)) 5723 return; 5724 5725 update_cfs_rq_blocked_load(cfs_rq, 1); 5726 5727 if (se) { 5728 update_entity_load_avg(se, 1); 5729 /* 5730 * We pivot on our runnable average having decayed to zero for 5731 * list removal. This generally implies that all our children 5732 * have also been removed (modulo rounding error or bandwidth 5733 * control); however, such cases are rare and we can fix these 5734 * at enqueue. 5735 * 5736 * TODO: fix up out-of-order children on enqueue. 5737 */ 5738 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running) 5739 list_del_leaf_cfs_rq(cfs_rq); 5740 } else { 5741 struct rq *rq = rq_of(cfs_rq); 5742 update_rq_runnable_avg(rq, rq->nr_running); 5743 } 5744 } 5745 5746 static void update_blocked_averages(int cpu) 5747 { 5748 struct rq *rq = cpu_rq(cpu); 5749 struct cfs_rq *cfs_rq; 5750 unsigned long flags; 5751 5752 raw_spin_lock_irqsave(&rq->lock, flags); 5753 update_rq_clock(rq); 5754 /* 5755 * Iterates the task_group tree in a bottom up fashion, see 5756 * list_add_leaf_cfs_rq() for details. 5757 */ 5758 for_each_leaf_cfs_rq(rq, cfs_rq) { 5759 /* 5760 * Note: We may want to consider periodically releasing 5761 * rq->lock about these updates so that creating many task 5762 * groups does not result in continually extending hold time. 5763 */ 5764 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu); 5765 } 5766 5767 raw_spin_unlock_irqrestore(&rq->lock, flags); 5768 } 5769 5770 /* 5771 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 5772 * This needs to be done in a top-down fashion because the load of a child 5773 * group is a fraction of its parents load. 5774 */ 5775 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 5776 { 5777 struct rq *rq = rq_of(cfs_rq); 5778 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 5779 unsigned long now = jiffies; 5780 unsigned long load; 5781 5782 if (cfs_rq->last_h_load_update == now) 5783 return; 5784 5785 cfs_rq->h_load_next = NULL; 5786 for_each_sched_entity(se) { 5787 cfs_rq = cfs_rq_of(se); 5788 cfs_rq->h_load_next = se; 5789 if (cfs_rq->last_h_load_update == now) 5790 break; 5791 } 5792 5793 if (!se) { 5794 cfs_rq->h_load = cfs_rq->runnable_load_avg; 5795 cfs_rq->last_h_load_update = now; 5796 } 5797 5798 while ((se = cfs_rq->h_load_next) != NULL) { 5799 load = cfs_rq->h_load; 5800 load = div64_ul(load * se->avg.load_avg_contrib, 5801 cfs_rq->runnable_load_avg + 1); 5802 cfs_rq = group_cfs_rq(se); 5803 cfs_rq->h_load = load; 5804 cfs_rq->last_h_load_update = now; 5805 } 5806 } 5807 5808 static unsigned long task_h_load(struct task_struct *p) 5809 { 5810 struct cfs_rq *cfs_rq = task_cfs_rq(p); 5811 5812 update_cfs_rq_h_load(cfs_rq); 5813 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load, 5814 cfs_rq->runnable_load_avg + 1); 5815 } 5816 #else 5817 static inline void update_blocked_averages(int cpu) 5818 { 5819 } 5820 5821 static unsigned long task_h_load(struct task_struct *p) 5822 { 5823 return p->se.avg.load_avg_contrib; 5824 } 5825 #endif 5826 5827 /********** Helpers for find_busiest_group ************************/ 5828 5829 enum group_type { 5830 group_other = 0, 5831 group_imbalanced, 5832 group_overloaded, 5833 }; 5834 5835 /* 5836 * sg_lb_stats - stats of a sched_group required for load_balancing 5837 */ 5838 struct sg_lb_stats { 5839 unsigned long avg_load; /*Avg load across the CPUs of the group */ 5840 unsigned long group_load; /* Total load over the CPUs of the group */ 5841 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 5842 unsigned long load_per_task; 5843 unsigned long group_capacity; 5844 unsigned int sum_nr_running; /* Nr tasks running in the group */ 5845 unsigned int group_capacity_factor; 5846 unsigned int idle_cpus; 5847 unsigned int group_weight; 5848 enum group_type group_type; 5849 int group_has_free_capacity; 5850 #ifdef CONFIG_NUMA_BALANCING 5851 unsigned int nr_numa_running; 5852 unsigned int nr_preferred_running; 5853 #endif 5854 }; 5855 5856 /* 5857 * sd_lb_stats - Structure to store the statistics of a sched_domain 5858 * during load balancing. 5859 */ 5860 struct sd_lb_stats { 5861 struct sched_group *busiest; /* Busiest group in this sd */ 5862 struct sched_group *local; /* Local group in this sd */ 5863 unsigned long total_load; /* Total load of all groups in sd */ 5864 unsigned long total_capacity; /* Total capacity of all groups in sd */ 5865 unsigned long avg_load; /* Average load across all groups in sd */ 5866 5867 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 5868 struct sg_lb_stats local_stat; /* Statistics of the local group */ 5869 }; 5870 5871 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 5872 { 5873 /* 5874 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 5875 * local_stat because update_sg_lb_stats() does a full clear/assignment. 5876 * We must however clear busiest_stat::avg_load because 5877 * update_sd_pick_busiest() reads this before assignment. 5878 */ 5879 *sds = (struct sd_lb_stats){ 5880 .busiest = NULL, 5881 .local = NULL, 5882 .total_load = 0UL, 5883 .total_capacity = 0UL, 5884 .busiest_stat = { 5885 .avg_load = 0UL, 5886 .sum_nr_running = 0, 5887 .group_type = group_other, 5888 }, 5889 }; 5890 } 5891 5892 /** 5893 * get_sd_load_idx - Obtain the load index for a given sched domain. 5894 * @sd: The sched_domain whose load_idx is to be obtained. 5895 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 5896 * 5897 * Return: The load index. 5898 */ 5899 static inline int get_sd_load_idx(struct sched_domain *sd, 5900 enum cpu_idle_type idle) 5901 { 5902 int load_idx; 5903 5904 switch (idle) { 5905 case CPU_NOT_IDLE: 5906 load_idx = sd->busy_idx; 5907 break; 5908 5909 case CPU_NEWLY_IDLE: 5910 load_idx = sd->newidle_idx; 5911 break; 5912 default: 5913 load_idx = sd->idle_idx; 5914 break; 5915 } 5916 5917 return load_idx; 5918 } 5919 5920 static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu) 5921 { 5922 return SCHED_CAPACITY_SCALE; 5923 } 5924 5925 unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu) 5926 { 5927 return default_scale_capacity(sd, cpu); 5928 } 5929 5930 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu) 5931 { 5932 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1)) 5933 return sd->smt_gain / sd->span_weight; 5934 5935 return SCHED_CAPACITY_SCALE; 5936 } 5937 5938 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu) 5939 { 5940 return default_scale_cpu_capacity(sd, cpu); 5941 } 5942 5943 static unsigned long scale_rt_capacity(int cpu) 5944 { 5945 struct rq *rq = cpu_rq(cpu); 5946 u64 total, available, age_stamp, avg; 5947 s64 delta; 5948 5949 /* 5950 * Since we're reading these variables without serialization make sure 5951 * we read them once before doing sanity checks on them. 5952 */ 5953 age_stamp = ACCESS_ONCE(rq->age_stamp); 5954 avg = ACCESS_ONCE(rq->rt_avg); 5955 delta = __rq_clock_broken(rq) - age_stamp; 5956 5957 if (unlikely(delta < 0)) 5958 delta = 0; 5959 5960 total = sched_avg_period() + delta; 5961 5962 if (unlikely(total < avg)) { 5963 /* Ensures that capacity won't end up being negative */ 5964 available = 0; 5965 } else { 5966 available = total - avg; 5967 } 5968 5969 if (unlikely((s64)total < SCHED_CAPACITY_SCALE)) 5970 total = SCHED_CAPACITY_SCALE; 5971 5972 total >>= SCHED_CAPACITY_SHIFT; 5973 5974 return div_u64(available, total); 5975 } 5976 5977 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 5978 { 5979 unsigned long capacity = SCHED_CAPACITY_SCALE; 5980 struct sched_group *sdg = sd->groups; 5981 5982 if (sched_feat(ARCH_CAPACITY)) 5983 capacity *= arch_scale_cpu_capacity(sd, cpu); 5984 else 5985 capacity *= default_scale_cpu_capacity(sd, cpu); 5986 5987 capacity >>= SCHED_CAPACITY_SHIFT; 5988 5989 sdg->sgc->capacity_orig = capacity; 5990 5991 if (sched_feat(ARCH_CAPACITY)) 5992 capacity *= arch_scale_freq_capacity(sd, cpu); 5993 else 5994 capacity *= default_scale_capacity(sd, cpu); 5995 5996 capacity >>= SCHED_CAPACITY_SHIFT; 5997 5998 capacity *= scale_rt_capacity(cpu); 5999 capacity >>= SCHED_CAPACITY_SHIFT; 6000 6001 if (!capacity) 6002 capacity = 1; 6003 6004 cpu_rq(cpu)->cpu_capacity = capacity; 6005 sdg->sgc->capacity = capacity; 6006 } 6007 6008 void update_group_capacity(struct sched_domain *sd, int cpu) 6009 { 6010 struct sched_domain *child = sd->child; 6011 struct sched_group *group, *sdg = sd->groups; 6012 unsigned long capacity, capacity_orig; 6013 unsigned long interval; 6014 6015 interval = msecs_to_jiffies(sd->balance_interval); 6016 interval = clamp(interval, 1UL, max_load_balance_interval); 6017 sdg->sgc->next_update = jiffies + interval; 6018 6019 if (!child) { 6020 update_cpu_capacity(sd, cpu); 6021 return; 6022 } 6023 6024 capacity_orig = capacity = 0; 6025 6026 if (child->flags & SD_OVERLAP) { 6027 /* 6028 * SD_OVERLAP domains cannot assume that child groups 6029 * span the current group. 6030 */ 6031 6032 for_each_cpu(cpu, sched_group_cpus(sdg)) { 6033 struct sched_group_capacity *sgc; 6034 struct rq *rq = cpu_rq(cpu); 6035 6036 /* 6037 * build_sched_domains() -> init_sched_groups_capacity() 6038 * gets here before we've attached the domains to the 6039 * runqueues. 6040 * 6041 * Use capacity_of(), which is set irrespective of domains 6042 * in update_cpu_capacity(). 6043 * 6044 * This avoids capacity/capacity_orig from being 0 and 6045 * causing divide-by-zero issues on boot. 6046 * 6047 * Runtime updates will correct capacity_orig. 6048 */ 6049 if (unlikely(!rq->sd)) { 6050 capacity_orig += capacity_of(cpu); 6051 capacity += capacity_of(cpu); 6052 continue; 6053 } 6054 6055 sgc = rq->sd->groups->sgc; 6056 capacity_orig += sgc->capacity_orig; 6057 capacity += sgc->capacity; 6058 } 6059 } else { 6060 /* 6061 * !SD_OVERLAP domains can assume that child groups 6062 * span the current group. 6063 */ 6064 6065 group = child->groups; 6066 do { 6067 capacity_orig += group->sgc->capacity_orig; 6068 capacity += group->sgc->capacity; 6069 group = group->next; 6070 } while (group != child->groups); 6071 } 6072 6073 sdg->sgc->capacity_orig = capacity_orig; 6074 sdg->sgc->capacity = capacity; 6075 } 6076 6077 /* 6078 * Try and fix up capacity for tiny siblings, this is needed when 6079 * things like SD_ASYM_PACKING need f_b_g to select another sibling 6080 * which on its own isn't powerful enough. 6081 * 6082 * See update_sd_pick_busiest() and check_asym_packing(). 6083 */ 6084 static inline int 6085 fix_small_capacity(struct sched_domain *sd, struct sched_group *group) 6086 { 6087 /* 6088 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE 6089 */ 6090 if (!(sd->flags & SD_SHARE_CPUCAPACITY)) 6091 return 0; 6092 6093 /* 6094 * If ~90% of the cpu_capacity is still there, we're good. 6095 */ 6096 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29) 6097 return 1; 6098 6099 return 0; 6100 } 6101 6102 /* 6103 * Group imbalance indicates (and tries to solve) the problem where balancing 6104 * groups is inadequate due to tsk_cpus_allowed() constraints. 6105 * 6106 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 6107 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 6108 * Something like: 6109 * 6110 * { 0 1 2 3 } { 4 5 6 7 } 6111 * * * * * 6112 * 6113 * If we were to balance group-wise we'd place two tasks in the first group and 6114 * two tasks in the second group. Clearly this is undesired as it will overload 6115 * cpu 3 and leave one of the cpus in the second group unused. 6116 * 6117 * The current solution to this issue is detecting the skew in the first group 6118 * by noticing the lower domain failed to reach balance and had difficulty 6119 * moving tasks due to affinity constraints. 6120 * 6121 * When this is so detected; this group becomes a candidate for busiest; see 6122 * update_sd_pick_busiest(). And calculate_imbalance() and 6123 * find_busiest_group() avoid some of the usual balance conditions to allow it 6124 * to create an effective group imbalance. 6125 * 6126 * This is a somewhat tricky proposition since the next run might not find the 6127 * group imbalance and decide the groups need to be balanced again. A most 6128 * subtle and fragile situation. 6129 */ 6130 6131 static inline int sg_imbalanced(struct sched_group *group) 6132 { 6133 return group->sgc->imbalance; 6134 } 6135 6136 /* 6137 * Compute the group capacity factor. 6138 * 6139 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by 6140 * first dividing out the smt factor and computing the actual number of cores 6141 * and limit unit capacity with that. 6142 */ 6143 static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group) 6144 { 6145 unsigned int capacity_factor, smt, cpus; 6146 unsigned int capacity, capacity_orig; 6147 6148 capacity = group->sgc->capacity; 6149 capacity_orig = group->sgc->capacity_orig; 6150 cpus = group->group_weight; 6151 6152 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */ 6153 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig); 6154 capacity_factor = cpus / smt; /* cores */ 6155 6156 capacity_factor = min_t(unsigned, 6157 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE)); 6158 if (!capacity_factor) 6159 capacity_factor = fix_small_capacity(env->sd, group); 6160 6161 return capacity_factor; 6162 } 6163 6164 static enum group_type 6165 group_classify(struct sched_group *group, struct sg_lb_stats *sgs) 6166 { 6167 if (sgs->sum_nr_running > sgs->group_capacity_factor) 6168 return group_overloaded; 6169 6170 if (sg_imbalanced(group)) 6171 return group_imbalanced; 6172 6173 return group_other; 6174 } 6175 6176 /** 6177 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 6178 * @env: The load balancing environment. 6179 * @group: sched_group whose statistics are to be updated. 6180 * @load_idx: Load index of sched_domain of this_cpu for load calc. 6181 * @local_group: Does group contain this_cpu. 6182 * @sgs: variable to hold the statistics for this group. 6183 * @overload: Indicate more than one runnable task for any CPU. 6184 */ 6185 static inline void update_sg_lb_stats(struct lb_env *env, 6186 struct sched_group *group, int load_idx, 6187 int local_group, struct sg_lb_stats *sgs, 6188 bool *overload) 6189 { 6190 unsigned long load; 6191 int i; 6192 6193 memset(sgs, 0, sizeof(*sgs)); 6194 6195 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 6196 struct rq *rq = cpu_rq(i); 6197 6198 /* Bias balancing toward cpus of our domain */ 6199 if (local_group) 6200 load = target_load(i, load_idx); 6201 else 6202 load = source_load(i, load_idx); 6203 6204 sgs->group_load += load; 6205 sgs->sum_nr_running += rq->cfs.h_nr_running; 6206 6207 if (rq->nr_running > 1) 6208 *overload = true; 6209 6210 #ifdef CONFIG_NUMA_BALANCING 6211 sgs->nr_numa_running += rq->nr_numa_running; 6212 sgs->nr_preferred_running += rq->nr_preferred_running; 6213 #endif 6214 sgs->sum_weighted_load += weighted_cpuload(i); 6215 if (idle_cpu(i)) 6216 sgs->idle_cpus++; 6217 } 6218 6219 /* Adjust by relative CPU capacity of the group */ 6220 sgs->group_capacity = group->sgc->capacity; 6221 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 6222 6223 if (sgs->sum_nr_running) 6224 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 6225 6226 sgs->group_weight = group->group_weight; 6227 sgs->group_capacity_factor = sg_capacity_factor(env, group); 6228 sgs->group_type = group_classify(group, sgs); 6229 6230 if (sgs->group_capacity_factor > sgs->sum_nr_running) 6231 sgs->group_has_free_capacity = 1; 6232 } 6233 6234 /** 6235 * update_sd_pick_busiest - return 1 on busiest group 6236 * @env: The load balancing environment. 6237 * @sds: sched_domain statistics 6238 * @sg: sched_group candidate to be checked for being the busiest 6239 * @sgs: sched_group statistics 6240 * 6241 * Determine if @sg is a busier group than the previously selected 6242 * busiest group. 6243 * 6244 * Return: %true if @sg is a busier group than the previously selected 6245 * busiest group. %false otherwise. 6246 */ 6247 static bool update_sd_pick_busiest(struct lb_env *env, 6248 struct sd_lb_stats *sds, 6249 struct sched_group *sg, 6250 struct sg_lb_stats *sgs) 6251 { 6252 struct sg_lb_stats *busiest = &sds->busiest_stat; 6253 6254 if (sgs->group_type > busiest->group_type) 6255 return true; 6256 6257 if (sgs->group_type < busiest->group_type) 6258 return false; 6259 6260 if (sgs->avg_load <= busiest->avg_load) 6261 return false; 6262 6263 /* This is the busiest node in its class. */ 6264 if (!(env->sd->flags & SD_ASYM_PACKING)) 6265 return true; 6266 6267 /* 6268 * ASYM_PACKING needs to move all the work to the lowest 6269 * numbered CPUs in the group, therefore mark all groups 6270 * higher than ourself as busy. 6271 */ 6272 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) { 6273 if (!sds->busiest) 6274 return true; 6275 6276 if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) 6277 return true; 6278 } 6279 6280 return false; 6281 } 6282 6283 #ifdef CONFIG_NUMA_BALANCING 6284 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 6285 { 6286 if (sgs->sum_nr_running > sgs->nr_numa_running) 6287 return regular; 6288 if (sgs->sum_nr_running > sgs->nr_preferred_running) 6289 return remote; 6290 return all; 6291 } 6292 6293 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6294 { 6295 if (rq->nr_running > rq->nr_numa_running) 6296 return regular; 6297 if (rq->nr_running > rq->nr_preferred_running) 6298 return remote; 6299 return all; 6300 } 6301 #else 6302 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 6303 { 6304 return all; 6305 } 6306 6307 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6308 { 6309 return regular; 6310 } 6311 #endif /* CONFIG_NUMA_BALANCING */ 6312 6313 /** 6314 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 6315 * @env: The load balancing environment. 6316 * @sds: variable to hold the statistics for this sched_domain. 6317 */ 6318 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 6319 { 6320 struct sched_domain *child = env->sd->child; 6321 struct sched_group *sg = env->sd->groups; 6322 struct sg_lb_stats tmp_sgs; 6323 int load_idx, prefer_sibling = 0; 6324 bool overload = false; 6325 6326 if (child && child->flags & SD_PREFER_SIBLING) 6327 prefer_sibling = 1; 6328 6329 load_idx = get_sd_load_idx(env->sd, env->idle); 6330 6331 do { 6332 struct sg_lb_stats *sgs = &tmp_sgs; 6333 int local_group; 6334 6335 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 6336 if (local_group) { 6337 sds->local = sg; 6338 sgs = &sds->local_stat; 6339 6340 if (env->idle != CPU_NEWLY_IDLE || 6341 time_after_eq(jiffies, sg->sgc->next_update)) 6342 update_group_capacity(env->sd, env->dst_cpu); 6343 } 6344 6345 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 6346 &overload); 6347 6348 if (local_group) 6349 goto next_group; 6350 6351 /* 6352 * In case the child domain prefers tasks go to siblings 6353 * first, lower the sg capacity factor to one so that we'll try 6354 * and move all the excess tasks away. We lower the capacity 6355 * of a group only if the local group has the capacity to fit 6356 * these excess tasks, i.e. nr_running < group_capacity_factor. The 6357 * extra check prevents the case where you always pull from the 6358 * heaviest group when it is already under-utilized (possible 6359 * with a large weight task outweighs the tasks on the system). 6360 */ 6361 if (prefer_sibling && sds->local && 6362 sds->local_stat.group_has_free_capacity) { 6363 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U); 6364 sgs->group_type = group_classify(sg, sgs); 6365 } 6366 6367 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 6368 sds->busiest = sg; 6369 sds->busiest_stat = *sgs; 6370 } 6371 6372 next_group: 6373 /* Now, start updating sd_lb_stats */ 6374 sds->total_load += sgs->group_load; 6375 sds->total_capacity += sgs->group_capacity; 6376 6377 sg = sg->next; 6378 } while (sg != env->sd->groups); 6379 6380 if (env->sd->flags & SD_NUMA) 6381 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 6382 6383 if (!env->sd->parent) { 6384 /* update overload indicator if we are at root domain */ 6385 if (env->dst_rq->rd->overload != overload) 6386 env->dst_rq->rd->overload = overload; 6387 } 6388 6389 } 6390 6391 /** 6392 * check_asym_packing - Check to see if the group is packed into the 6393 * sched doman. 6394 * 6395 * This is primarily intended to used at the sibling level. Some 6396 * cores like POWER7 prefer to use lower numbered SMT threads. In the 6397 * case of POWER7, it can move to lower SMT modes only when higher 6398 * threads are idle. When in lower SMT modes, the threads will 6399 * perform better since they share less core resources. Hence when we 6400 * have idle threads, we want them to be the higher ones. 6401 * 6402 * This packing function is run on idle threads. It checks to see if 6403 * the busiest CPU in this domain (core in the P7 case) has a higher 6404 * CPU number than the packing function is being run on. Here we are 6405 * assuming lower CPU number will be equivalent to lower a SMT thread 6406 * number. 6407 * 6408 * Return: 1 when packing is required and a task should be moved to 6409 * this CPU. The amount of the imbalance is returned in *imbalance. 6410 * 6411 * @env: The load balancing environment. 6412 * @sds: Statistics of the sched_domain which is to be packed 6413 */ 6414 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 6415 { 6416 int busiest_cpu; 6417 6418 if (!(env->sd->flags & SD_ASYM_PACKING)) 6419 return 0; 6420 6421 if (!sds->busiest) 6422 return 0; 6423 6424 busiest_cpu = group_first_cpu(sds->busiest); 6425 if (env->dst_cpu > busiest_cpu) 6426 return 0; 6427 6428 env->imbalance = DIV_ROUND_CLOSEST( 6429 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 6430 SCHED_CAPACITY_SCALE); 6431 6432 return 1; 6433 } 6434 6435 /** 6436 * fix_small_imbalance - Calculate the minor imbalance that exists 6437 * amongst the groups of a sched_domain, during 6438 * load balancing. 6439 * @env: The load balancing environment. 6440 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 6441 */ 6442 static inline 6443 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 6444 { 6445 unsigned long tmp, capa_now = 0, capa_move = 0; 6446 unsigned int imbn = 2; 6447 unsigned long scaled_busy_load_per_task; 6448 struct sg_lb_stats *local, *busiest; 6449 6450 local = &sds->local_stat; 6451 busiest = &sds->busiest_stat; 6452 6453 if (!local->sum_nr_running) 6454 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 6455 else if (busiest->load_per_task > local->load_per_task) 6456 imbn = 1; 6457 6458 scaled_busy_load_per_task = 6459 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 6460 busiest->group_capacity; 6461 6462 if (busiest->avg_load + scaled_busy_load_per_task >= 6463 local->avg_load + (scaled_busy_load_per_task * imbn)) { 6464 env->imbalance = busiest->load_per_task; 6465 return; 6466 } 6467 6468 /* 6469 * OK, we don't have enough imbalance to justify moving tasks, 6470 * however we may be able to increase total CPU capacity used by 6471 * moving them. 6472 */ 6473 6474 capa_now += busiest->group_capacity * 6475 min(busiest->load_per_task, busiest->avg_load); 6476 capa_now += local->group_capacity * 6477 min(local->load_per_task, local->avg_load); 6478 capa_now /= SCHED_CAPACITY_SCALE; 6479 6480 /* Amount of load we'd subtract */ 6481 if (busiest->avg_load > scaled_busy_load_per_task) { 6482 capa_move += busiest->group_capacity * 6483 min(busiest->load_per_task, 6484 busiest->avg_load - scaled_busy_load_per_task); 6485 } 6486 6487 /* Amount of load we'd add */ 6488 if (busiest->avg_load * busiest->group_capacity < 6489 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 6490 tmp = (busiest->avg_load * busiest->group_capacity) / 6491 local->group_capacity; 6492 } else { 6493 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 6494 local->group_capacity; 6495 } 6496 capa_move += local->group_capacity * 6497 min(local->load_per_task, local->avg_load + tmp); 6498 capa_move /= SCHED_CAPACITY_SCALE; 6499 6500 /* Move if we gain throughput */ 6501 if (capa_move > capa_now) 6502 env->imbalance = busiest->load_per_task; 6503 } 6504 6505 /** 6506 * calculate_imbalance - Calculate the amount of imbalance present within the 6507 * groups of a given sched_domain during load balance. 6508 * @env: load balance environment 6509 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 6510 */ 6511 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 6512 { 6513 unsigned long max_pull, load_above_capacity = ~0UL; 6514 struct sg_lb_stats *local, *busiest; 6515 6516 local = &sds->local_stat; 6517 busiest = &sds->busiest_stat; 6518 6519 if (busiest->group_type == group_imbalanced) { 6520 /* 6521 * In the group_imb case we cannot rely on group-wide averages 6522 * to ensure cpu-load equilibrium, look at wider averages. XXX 6523 */ 6524 busiest->load_per_task = 6525 min(busiest->load_per_task, sds->avg_load); 6526 } 6527 6528 /* 6529 * In the presence of smp nice balancing, certain scenarios can have 6530 * max load less than avg load(as we skip the groups at or below 6531 * its cpu_capacity, while calculating max_load..) 6532 */ 6533 if (busiest->avg_load <= sds->avg_load || 6534 local->avg_load >= sds->avg_load) { 6535 env->imbalance = 0; 6536 return fix_small_imbalance(env, sds); 6537 } 6538 6539 /* 6540 * If there aren't any idle cpus, avoid creating some. 6541 */ 6542 if (busiest->group_type == group_overloaded && 6543 local->group_type == group_overloaded) { 6544 load_above_capacity = 6545 (busiest->sum_nr_running - busiest->group_capacity_factor); 6546 6547 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE); 6548 load_above_capacity /= busiest->group_capacity; 6549 } 6550 6551 /* 6552 * We're trying to get all the cpus to the average_load, so we don't 6553 * want to push ourselves above the average load, nor do we wish to 6554 * reduce the max loaded cpu below the average load. At the same time, 6555 * we also don't want to reduce the group load below the group capacity 6556 * (so that we can implement power-savings policies etc). Thus we look 6557 * for the minimum possible imbalance. 6558 */ 6559 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 6560 6561 /* How much load to actually move to equalise the imbalance */ 6562 env->imbalance = min( 6563 max_pull * busiest->group_capacity, 6564 (sds->avg_load - local->avg_load) * local->group_capacity 6565 ) / SCHED_CAPACITY_SCALE; 6566 6567 /* 6568 * if *imbalance is less than the average load per runnable task 6569 * there is no guarantee that any tasks will be moved so we'll have 6570 * a think about bumping its value to force at least one task to be 6571 * moved 6572 */ 6573 if (env->imbalance < busiest->load_per_task) 6574 return fix_small_imbalance(env, sds); 6575 } 6576 6577 /******* find_busiest_group() helpers end here *********************/ 6578 6579 /** 6580 * find_busiest_group - Returns the busiest group within the sched_domain 6581 * if there is an imbalance. If there isn't an imbalance, and 6582 * the user has opted for power-savings, it returns a group whose 6583 * CPUs can be put to idle by rebalancing those tasks elsewhere, if 6584 * such a group exists. 6585 * 6586 * Also calculates the amount of weighted load which should be moved 6587 * to restore balance. 6588 * 6589 * @env: The load balancing environment. 6590 * 6591 * Return: - The busiest group if imbalance exists. 6592 * - If no imbalance and user has opted for power-savings balance, 6593 * return the least loaded group whose CPUs can be 6594 * put to idle by rebalancing its tasks onto our group. 6595 */ 6596 static struct sched_group *find_busiest_group(struct lb_env *env) 6597 { 6598 struct sg_lb_stats *local, *busiest; 6599 struct sd_lb_stats sds; 6600 6601 init_sd_lb_stats(&sds); 6602 6603 /* 6604 * Compute the various statistics relavent for load balancing at 6605 * this level. 6606 */ 6607 update_sd_lb_stats(env, &sds); 6608 local = &sds.local_stat; 6609 busiest = &sds.busiest_stat; 6610 6611 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && 6612 check_asym_packing(env, &sds)) 6613 return sds.busiest; 6614 6615 /* There is no busy sibling group to pull tasks from */ 6616 if (!sds.busiest || busiest->sum_nr_running == 0) 6617 goto out_balanced; 6618 6619 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 6620 / sds.total_capacity; 6621 6622 /* 6623 * If the busiest group is imbalanced the below checks don't 6624 * work because they assume all things are equal, which typically 6625 * isn't true due to cpus_allowed constraints and the like. 6626 */ 6627 if (busiest->group_type == group_imbalanced) 6628 goto force_balance; 6629 6630 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 6631 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity && 6632 !busiest->group_has_free_capacity) 6633 goto force_balance; 6634 6635 /* 6636 * If the local group is busier than the selected busiest group 6637 * don't try and pull any tasks. 6638 */ 6639 if (local->avg_load >= busiest->avg_load) 6640 goto out_balanced; 6641 6642 /* 6643 * Don't pull any tasks if this group is already above the domain 6644 * average load. 6645 */ 6646 if (local->avg_load >= sds.avg_load) 6647 goto out_balanced; 6648 6649 if (env->idle == CPU_IDLE) { 6650 /* 6651 * This cpu is idle. If the busiest group is not overloaded 6652 * and there is no imbalance between this and busiest group 6653 * wrt idle cpus, it is balanced. The imbalance becomes 6654 * significant if the diff is greater than 1 otherwise we 6655 * might end up to just move the imbalance on another group 6656 */ 6657 if ((busiest->group_type != group_overloaded) && 6658 (local->idle_cpus <= (busiest->idle_cpus + 1))) 6659 goto out_balanced; 6660 } else { 6661 /* 6662 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 6663 * imbalance_pct to be conservative. 6664 */ 6665 if (100 * busiest->avg_load <= 6666 env->sd->imbalance_pct * local->avg_load) 6667 goto out_balanced; 6668 } 6669 6670 force_balance: 6671 /* Looks like there is an imbalance. Compute it */ 6672 calculate_imbalance(env, &sds); 6673 return sds.busiest; 6674 6675 out_balanced: 6676 env->imbalance = 0; 6677 return NULL; 6678 } 6679 6680 /* 6681 * find_busiest_queue - find the busiest runqueue among the cpus in group. 6682 */ 6683 static struct rq *find_busiest_queue(struct lb_env *env, 6684 struct sched_group *group) 6685 { 6686 struct rq *busiest = NULL, *rq; 6687 unsigned long busiest_load = 0, busiest_capacity = 1; 6688 int i; 6689 6690 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 6691 unsigned long capacity, capacity_factor, wl; 6692 enum fbq_type rt; 6693 6694 rq = cpu_rq(i); 6695 rt = fbq_classify_rq(rq); 6696 6697 /* 6698 * We classify groups/runqueues into three groups: 6699 * - regular: there are !numa tasks 6700 * - remote: there are numa tasks that run on the 'wrong' node 6701 * - all: there is no distinction 6702 * 6703 * In order to avoid migrating ideally placed numa tasks, 6704 * ignore those when there's better options. 6705 * 6706 * If we ignore the actual busiest queue to migrate another 6707 * task, the next balance pass can still reduce the busiest 6708 * queue by moving tasks around inside the node. 6709 * 6710 * If we cannot move enough load due to this classification 6711 * the next pass will adjust the group classification and 6712 * allow migration of more tasks. 6713 * 6714 * Both cases only affect the total convergence complexity. 6715 */ 6716 if (rt > env->fbq_type) 6717 continue; 6718 6719 capacity = capacity_of(i); 6720 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE); 6721 if (!capacity_factor) 6722 capacity_factor = fix_small_capacity(env->sd, group); 6723 6724 wl = weighted_cpuload(i); 6725 6726 /* 6727 * When comparing with imbalance, use weighted_cpuload() 6728 * which is not scaled with the cpu capacity. 6729 */ 6730 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance) 6731 continue; 6732 6733 /* 6734 * For the load comparisons with the other cpu's, consider 6735 * the weighted_cpuload() scaled with the cpu capacity, so 6736 * that the load can be moved away from the cpu that is 6737 * potentially running at a lower capacity. 6738 * 6739 * Thus we're looking for max(wl_i / capacity_i), crosswise 6740 * multiplication to rid ourselves of the division works out 6741 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 6742 * our previous maximum. 6743 */ 6744 if (wl * busiest_capacity > busiest_load * capacity) { 6745 busiest_load = wl; 6746 busiest_capacity = capacity; 6747 busiest = rq; 6748 } 6749 } 6750 6751 return busiest; 6752 } 6753 6754 /* 6755 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 6756 * so long as it is large enough. 6757 */ 6758 #define MAX_PINNED_INTERVAL 512 6759 6760 /* Working cpumask for load_balance and load_balance_newidle. */ 6761 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6762 6763 static int need_active_balance(struct lb_env *env) 6764 { 6765 struct sched_domain *sd = env->sd; 6766 6767 if (env->idle == CPU_NEWLY_IDLE) { 6768 6769 /* 6770 * ASYM_PACKING needs to force migrate tasks from busy but 6771 * higher numbered CPUs in order to pack all tasks in the 6772 * lowest numbered CPUs. 6773 */ 6774 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 6775 return 1; 6776 } 6777 6778 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 6779 } 6780 6781 static int active_load_balance_cpu_stop(void *data); 6782 6783 static int should_we_balance(struct lb_env *env) 6784 { 6785 struct sched_group *sg = env->sd->groups; 6786 struct cpumask *sg_cpus, *sg_mask; 6787 int cpu, balance_cpu = -1; 6788 6789 /* 6790 * In the newly idle case, we will allow all the cpu's 6791 * to do the newly idle load balance. 6792 */ 6793 if (env->idle == CPU_NEWLY_IDLE) 6794 return 1; 6795 6796 sg_cpus = sched_group_cpus(sg); 6797 sg_mask = sched_group_mask(sg); 6798 /* Try to find first idle cpu */ 6799 for_each_cpu_and(cpu, sg_cpus, env->cpus) { 6800 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) 6801 continue; 6802 6803 balance_cpu = cpu; 6804 break; 6805 } 6806 6807 if (balance_cpu == -1) 6808 balance_cpu = group_balance_cpu(sg); 6809 6810 /* 6811 * First idle cpu or the first cpu(busiest) in this sched group 6812 * is eligible for doing load balancing at this and above domains. 6813 */ 6814 return balance_cpu == env->dst_cpu; 6815 } 6816 6817 /* 6818 * Check this_cpu to ensure it is balanced within domain. Attempt to move 6819 * tasks if there is an imbalance. 6820 */ 6821 static int load_balance(int this_cpu, struct rq *this_rq, 6822 struct sched_domain *sd, enum cpu_idle_type idle, 6823 int *continue_balancing) 6824 { 6825 int ld_moved, cur_ld_moved, active_balance = 0; 6826 struct sched_domain *sd_parent = sd->parent; 6827 struct sched_group *group; 6828 struct rq *busiest; 6829 unsigned long flags; 6830 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 6831 6832 struct lb_env env = { 6833 .sd = sd, 6834 .dst_cpu = this_cpu, 6835 .dst_rq = this_rq, 6836 .dst_grpmask = sched_group_cpus(sd->groups), 6837 .idle = idle, 6838 .loop_break = sched_nr_migrate_break, 6839 .cpus = cpus, 6840 .fbq_type = all, 6841 .tasks = LIST_HEAD_INIT(env.tasks), 6842 }; 6843 6844 /* 6845 * For NEWLY_IDLE load_balancing, we don't need to consider 6846 * other cpus in our group 6847 */ 6848 if (idle == CPU_NEWLY_IDLE) 6849 env.dst_grpmask = NULL; 6850 6851 cpumask_copy(cpus, cpu_active_mask); 6852 6853 schedstat_inc(sd, lb_count[idle]); 6854 6855 redo: 6856 if (!should_we_balance(&env)) { 6857 *continue_balancing = 0; 6858 goto out_balanced; 6859 } 6860 6861 group = find_busiest_group(&env); 6862 if (!group) { 6863 schedstat_inc(sd, lb_nobusyg[idle]); 6864 goto out_balanced; 6865 } 6866 6867 busiest = find_busiest_queue(&env, group); 6868 if (!busiest) { 6869 schedstat_inc(sd, lb_nobusyq[idle]); 6870 goto out_balanced; 6871 } 6872 6873 BUG_ON(busiest == env.dst_rq); 6874 6875 schedstat_add(sd, lb_imbalance[idle], env.imbalance); 6876 6877 ld_moved = 0; 6878 if (busiest->nr_running > 1) { 6879 /* 6880 * Attempt to move tasks. If find_busiest_group has found 6881 * an imbalance but busiest->nr_running <= 1, the group is 6882 * still unbalanced. ld_moved simply stays zero, so it is 6883 * correctly treated as an imbalance. 6884 */ 6885 env.flags |= LBF_ALL_PINNED; 6886 env.src_cpu = busiest->cpu; 6887 env.src_rq = busiest; 6888 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 6889 6890 more_balance: 6891 raw_spin_lock_irqsave(&busiest->lock, flags); 6892 6893 /* 6894 * cur_ld_moved - load moved in current iteration 6895 * ld_moved - cumulative load moved across iterations 6896 */ 6897 cur_ld_moved = detach_tasks(&env); 6898 6899 /* 6900 * We've detached some tasks from busiest_rq. Every 6901 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 6902 * unlock busiest->lock, and we are able to be sure 6903 * that nobody can manipulate the tasks in parallel. 6904 * See task_rq_lock() family for the details. 6905 */ 6906 6907 raw_spin_unlock(&busiest->lock); 6908 6909 if (cur_ld_moved) { 6910 attach_tasks(&env); 6911 ld_moved += cur_ld_moved; 6912 } 6913 6914 local_irq_restore(flags); 6915 6916 if (env.flags & LBF_NEED_BREAK) { 6917 env.flags &= ~LBF_NEED_BREAK; 6918 goto more_balance; 6919 } 6920 6921 /* 6922 * Revisit (affine) tasks on src_cpu that couldn't be moved to 6923 * us and move them to an alternate dst_cpu in our sched_group 6924 * where they can run. The upper limit on how many times we 6925 * iterate on same src_cpu is dependent on number of cpus in our 6926 * sched_group. 6927 * 6928 * This changes load balance semantics a bit on who can move 6929 * load to a given_cpu. In addition to the given_cpu itself 6930 * (or a ilb_cpu acting on its behalf where given_cpu is 6931 * nohz-idle), we now have balance_cpu in a position to move 6932 * load to given_cpu. In rare situations, this may cause 6933 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 6934 * _independently_ and at _same_ time to move some load to 6935 * given_cpu) causing exceess load to be moved to given_cpu. 6936 * This however should not happen so much in practice and 6937 * moreover subsequent load balance cycles should correct the 6938 * excess load moved. 6939 */ 6940 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 6941 6942 /* Prevent to re-select dst_cpu via env's cpus */ 6943 cpumask_clear_cpu(env.dst_cpu, env.cpus); 6944 6945 env.dst_rq = cpu_rq(env.new_dst_cpu); 6946 env.dst_cpu = env.new_dst_cpu; 6947 env.flags &= ~LBF_DST_PINNED; 6948 env.loop = 0; 6949 env.loop_break = sched_nr_migrate_break; 6950 6951 /* 6952 * Go back to "more_balance" rather than "redo" since we 6953 * need to continue with same src_cpu. 6954 */ 6955 goto more_balance; 6956 } 6957 6958 /* 6959 * We failed to reach balance because of affinity. 6960 */ 6961 if (sd_parent) { 6962 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 6963 6964 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 6965 *group_imbalance = 1; 6966 } 6967 6968 /* All tasks on this runqueue were pinned by CPU affinity */ 6969 if (unlikely(env.flags & LBF_ALL_PINNED)) { 6970 cpumask_clear_cpu(cpu_of(busiest), cpus); 6971 if (!cpumask_empty(cpus)) { 6972 env.loop = 0; 6973 env.loop_break = sched_nr_migrate_break; 6974 goto redo; 6975 } 6976 goto out_all_pinned; 6977 } 6978 } 6979 6980 if (!ld_moved) { 6981 schedstat_inc(sd, lb_failed[idle]); 6982 /* 6983 * Increment the failure counter only on periodic balance. 6984 * We do not want newidle balance, which can be very 6985 * frequent, pollute the failure counter causing 6986 * excessive cache_hot migrations and active balances. 6987 */ 6988 if (idle != CPU_NEWLY_IDLE) 6989 sd->nr_balance_failed++; 6990 6991 if (need_active_balance(&env)) { 6992 raw_spin_lock_irqsave(&busiest->lock, flags); 6993 6994 /* don't kick the active_load_balance_cpu_stop, 6995 * if the curr task on busiest cpu can't be 6996 * moved to this_cpu 6997 */ 6998 if (!cpumask_test_cpu(this_cpu, 6999 tsk_cpus_allowed(busiest->curr))) { 7000 raw_spin_unlock_irqrestore(&busiest->lock, 7001 flags); 7002 env.flags |= LBF_ALL_PINNED; 7003 goto out_one_pinned; 7004 } 7005 7006 /* 7007 * ->active_balance synchronizes accesses to 7008 * ->active_balance_work. Once set, it's cleared 7009 * only after active load balance is finished. 7010 */ 7011 if (!busiest->active_balance) { 7012 busiest->active_balance = 1; 7013 busiest->push_cpu = this_cpu; 7014 active_balance = 1; 7015 } 7016 raw_spin_unlock_irqrestore(&busiest->lock, flags); 7017 7018 if (active_balance) { 7019 stop_one_cpu_nowait(cpu_of(busiest), 7020 active_load_balance_cpu_stop, busiest, 7021 &busiest->active_balance_work); 7022 } 7023 7024 /* 7025 * We've kicked active balancing, reset the failure 7026 * counter. 7027 */ 7028 sd->nr_balance_failed = sd->cache_nice_tries+1; 7029 } 7030 } else 7031 sd->nr_balance_failed = 0; 7032 7033 if (likely(!active_balance)) { 7034 /* We were unbalanced, so reset the balancing interval */ 7035 sd->balance_interval = sd->min_interval; 7036 } else { 7037 /* 7038 * If we've begun active balancing, start to back off. This 7039 * case may not be covered by the all_pinned logic if there 7040 * is only 1 task on the busy runqueue (because we don't call 7041 * detach_tasks). 7042 */ 7043 if (sd->balance_interval < sd->max_interval) 7044 sd->balance_interval *= 2; 7045 } 7046 7047 goto out; 7048 7049 out_balanced: 7050 /* 7051 * We reach balance although we may have faced some affinity 7052 * constraints. Clear the imbalance flag if it was set. 7053 */ 7054 if (sd_parent) { 7055 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 7056 7057 if (*group_imbalance) 7058 *group_imbalance = 0; 7059 } 7060 7061 out_all_pinned: 7062 /* 7063 * We reach balance because all tasks are pinned at this level so 7064 * we can't migrate them. Let the imbalance flag set so parent level 7065 * can try to migrate them. 7066 */ 7067 schedstat_inc(sd, lb_balanced[idle]); 7068 7069 sd->nr_balance_failed = 0; 7070 7071 out_one_pinned: 7072 /* tune up the balancing interval */ 7073 if (((env.flags & LBF_ALL_PINNED) && 7074 sd->balance_interval < MAX_PINNED_INTERVAL) || 7075 (sd->balance_interval < sd->max_interval)) 7076 sd->balance_interval *= 2; 7077 7078 ld_moved = 0; 7079 out: 7080 return ld_moved; 7081 } 7082 7083 static inline unsigned long 7084 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 7085 { 7086 unsigned long interval = sd->balance_interval; 7087 7088 if (cpu_busy) 7089 interval *= sd->busy_factor; 7090 7091 /* scale ms to jiffies */ 7092 interval = msecs_to_jiffies(interval); 7093 interval = clamp(interval, 1UL, max_load_balance_interval); 7094 7095 return interval; 7096 } 7097 7098 static inline void 7099 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance) 7100 { 7101 unsigned long interval, next; 7102 7103 interval = get_sd_balance_interval(sd, cpu_busy); 7104 next = sd->last_balance + interval; 7105 7106 if (time_after(*next_balance, next)) 7107 *next_balance = next; 7108 } 7109 7110 /* 7111 * idle_balance is called by schedule() if this_cpu is about to become 7112 * idle. Attempts to pull tasks from other CPUs. 7113 */ 7114 static int idle_balance(struct rq *this_rq) 7115 { 7116 unsigned long next_balance = jiffies + HZ; 7117 int this_cpu = this_rq->cpu; 7118 struct sched_domain *sd; 7119 int pulled_task = 0; 7120 u64 curr_cost = 0; 7121 7122 idle_enter_fair(this_rq); 7123 7124 /* 7125 * We must set idle_stamp _before_ calling idle_balance(), such that we 7126 * measure the duration of idle_balance() as idle time. 7127 */ 7128 this_rq->idle_stamp = rq_clock(this_rq); 7129 7130 if (this_rq->avg_idle < sysctl_sched_migration_cost || 7131 !this_rq->rd->overload) { 7132 rcu_read_lock(); 7133 sd = rcu_dereference_check_sched_domain(this_rq->sd); 7134 if (sd) 7135 update_next_balance(sd, 0, &next_balance); 7136 rcu_read_unlock(); 7137 7138 goto out; 7139 } 7140 7141 /* 7142 * Drop the rq->lock, but keep IRQ/preempt disabled. 7143 */ 7144 raw_spin_unlock(&this_rq->lock); 7145 7146 update_blocked_averages(this_cpu); 7147 rcu_read_lock(); 7148 for_each_domain(this_cpu, sd) { 7149 int continue_balancing = 1; 7150 u64 t0, domain_cost; 7151 7152 if (!(sd->flags & SD_LOAD_BALANCE)) 7153 continue; 7154 7155 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 7156 update_next_balance(sd, 0, &next_balance); 7157 break; 7158 } 7159 7160 if (sd->flags & SD_BALANCE_NEWIDLE) { 7161 t0 = sched_clock_cpu(this_cpu); 7162 7163 pulled_task = load_balance(this_cpu, this_rq, 7164 sd, CPU_NEWLY_IDLE, 7165 &continue_balancing); 7166 7167 domain_cost = sched_clock_cpu(this_cpu) - t0; 7168 if (domain_cost > sd->max_newidle_lb_cost) 7169 sd->max_newidle_lb_cost = domain_cost; 7170 7171 curr_cost += domain_cost; 7172 } 7173 7174 update_next_balance(sd, 0, &next_balance); 7175 7176 /* 7177 * Stop searching for tasks to pull if there are 7178 * now runnable tasks on this rq. 7179 */ 7180 if (pulled_task || this_rq->nr_running > 0) 7181 break; 7182 } 7183 rcu_read_unlock(); 7184 7185 raw_spin_lock(&this_rq->lock); 7186 7187 if (curr_cost > this_rq->max_idle_balance_cost) 7188 this_rq->max_idle_balance_cost = curr_cost; 7189 7190 /* 7191 * While browsing the domains, we released the rq lock, a task could 7192 * have been enqueued in the meantime. Since we're not going idle, 7193 * pretend we pulled a task. 7194 */ 7195 if (this_rq->cfs.h_nr_running && !pulled_task) 7196 pulled_task = 1; 7197 7198 out: 7199 /* Move the next balance forward */ 7200 if (time_after(this_rq->next_balance, next_balance)) 7201 this_rq->next_balance = next_balance; 7202 7203 /* Is there a task of a high priority class? */ 7204 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 7205 pulled_task = -1; 7206 7207 if (pulled_task) { 7208 idle_exit_fair(this_rq); 7209 this_rq->idle_stamp = 0; 7210 } 7211 7212 return pulled_task; 7213 } 7214 7215 /* 7216 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 7217 * running tasks off the busiest CPU onto idle CPUs. It requires at 7218 * least 1 task to be running on each physical CPU where possible, and 7219 * avoids physical / logical imbalances. 7220 */ 7221 static int active_load_balance_cpu_stop(void *data) 7222 { 7223 struct rq *busiest_rq = data; 7224 int busiest_cpu = cpu_of(busiest_rq); 7225 int target_cpu = busiest_rq->push_cpu; 7226 struct rq *target_rq = cpu_rq(target_cpu); 7227 struct sched_domain *sd; 7228 struct task_struct *p = NULL; 7229 7230 raw_spin_lock_irq(&busiest_rq->lock); 7231 7232 /* make sure the requested cpu hasn't gone down in the meantime */ 7233 if (unlikely(busiest_cpu != smp_processor_id() || 7234 !busiest_rq->active_balance)) 7235 goto out_unlock; 7236 7237 /* Is there any task to move? */ 7238 if (busiest_rq->nr_running <= 1) 7239 goto out_unlock; 7240 7241 /* 7242 * This condition is "impossible", if it occurs 7243 * we need to fix it. Originally reported by 7244 * Bjorn Helgaas on a 128-cpu setup. 7245 */ 7246 BUG_ON(busiest_rq == target_rq); 7247 7248 /* Search for an sd spanning us and the target CPU. */ 7249 rcu_read_lock(); 7250 for_each_domain(target_cpu, sd) { 7251 if ((sd->flags & SD_LOAD_BALANCE) && 7252 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 7253 break; 7254 } 7255 7256 if (likely(sd)) { 7257 struct lb_env env = { 7258 .sd = sd, 7259 .dst_cpu = target_cpu, 7260 .dst_rq = target_rq, 7261 .src_cpu = busiest_rq->cpu, 7262 .src_rq = busiest_rq, 7263 .idle = CPU_IDLE, 7264 }; 7265 7266 schedstat_inc(sd, alb_count); 7267 7268 p = detach_one_task(&env); 7269 if (p) 7270 schedstat_inc(sd, alb_pushed); 7271 else 7272 schedstat_inc(sd, alb_failed); 7273 } 7274 rcu_read_unlock(); 7275 out_unlock: 7276 busiest_rq->active_balance = 0; 7277 raw_spin_unlock(&busiest_rq->lock); 7278 7279 if (p) 7280 attach_one_task(target_rq, p); 7281 7282 local_irq_enable(); 7283 7284 return 0; 7285 } 7286 7287 static inline int on_null_domain(struct rq *rq) 7288 { 7289 return unlikely(!rcu_dereference_sched(rq->sd)); 7290 } 7291 7292 #ifdef CONFIG_NO_HZ_COMMON 7293 /* 7294 * idle load balancing details 7295 * - When one of the busy CPUs notice that there may be an idle rebalancing 7296 * needed, they will kick the idle load balancer, which then does idle 7297 * load balancing for all the idle CPUs. 7298 */ 7299 static struct { 7300 cpumask_var_t idle_cpus_mask; 7301 atomic_t nr_cpus; 7302 unsigned long next_balance; /* in jiffy units */ 7303 } nohz ____cacheline_aligned; 7304 7305 static inline int find_new_ilb(void) 7306 { 7307 int ilb = cpumask_first(nohz.idle_cpus_mask); 7308 7309 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 7310 return ilb; 7311 7312 return nr_cpu_ids; 7313 } 7314 7315 /* 7316 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 7317 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 7318 * CPU (if there is one). 7319 */ 7320 static void nohz_balancer_kick(void) 7321 { 7322 int ilb_cpu; 7323 7324 nohz.next_balance++; 7325 7326 ilb_cpu = find_new_ilb(); 7327 7328 if (ilb_cpu >= nr_cpu_ids) 7329 return; 7330 7331 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 7332 return; 7333 /* 7334 * Use smp_send_reschedule() instead of resched_cpu(). 7335 * This way we generate a sched IPI on the target cpu which 7336 * is idle. And the softirq performing nohz idle load balance 7337 * will be run before returning from the IPI. 7338 */ 7339 smp_send_reschedule(ilb_cpu); 7340 return; 7341 } 7342 7343 static inline void nohz_balance_exit_idle(int cpu) 7344 { 7345 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 7346 /* 7347 * Completely isolated CPUs don't ever set, so we must test. 7348 */ 7349 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { 7350 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 7351 atomic_dec(&nohz.nr_cpus); 7352 } 7353 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7354 } 7355 } 7356 7357 static inline void set_cpu_sd_state_busy(void) 7358 { 7359 struct sched_domain *sd; 7360 int cpu = smp_processor_id(); 7361 7362 rcu_read_lock(); 7363 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7364 7365 if (!sd || !sd->nohz_idle) 7366 goto unlock; 7367 sd->nohz_idle = 0; 7368 7369 atomic_inc(&sd->groups->sgc->nr_busy_cpus); 7370 unlock: 7371 rcu_read_unlock(); 7372 } 7373 7374 void set_cpu_sd_state_idle(void) 7375 { 7376 struct sched_domain *sd; 7377 int cpu = smp_processor_id(); 7378 7379 rcu_read_lock(); 7380 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7381 7382 if (!sd || sd->nohz_idle) 7383 goto unlock; 7384 sd->nohz_idle = 1; 7385 7386 atomic_dec(&sd->groups->sgc->nr_busy_cpus); 7387 unlock: 7388 rcu_read_unlock(); 7389 } 7390 7391 /* 7392 * This routine will record that the cpu is going idle with tick stopped. 7393 * This info will be used in performing idle load balancing in the future. 7394 */ 7395 void nohz_balance_enter_idle(int cpu) 7396 { 7397 /* 7398 * If this cpu is going down, then nothing needs to be done. 7399 */ 7400 if (!cpu_active(cpu)) 7401 return; 7402 7403 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 7404 return; 7405 7406 /* 7407 * If we're a completely isolated CPU, we don't play. 7408 */ 7409 if (on_null_domain(cpu_rq(cpu))) 7410 return; 7411 7412 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 7413 atomic_inc(&nohz.nr_cpus); 7414 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7415 } 7416 7417 static int sched_ilb_notifier(struct notifier_block *nfb, 7418 unsigned long action, void *hcpu) 7419 { 7420 switch (action & ~CPU_TASKS_FROZEN) { 7421 case CPU_DYING: 7422 nohz_balance_exit_idle(smp_processor_id()); 7423 return NOTIFY_OK; 7424 default: 7425 return NOTIFY_DONE; 7426 } 7427 } 7428 #endif 7429 7430 static DEFINE_SPINLOCK(balancing); 7431 7432 /* 7433 * Scale the max load_balance interval with the number of CPUs in the system. 7434 * This trades load-balance latency on larger machines for less cross talk. 7435 */ 7436 void update_max_interval(void) 7437 { 7438 max_load_balance_interval = HZ*num_online_cpus()/10; 7439 } 7440 7441 /* 7442 * It checks each scheduling domain to see if it is due to be balanced, 7443 * and initiates a balancing operation if so. 7444 * 7445 * Balancing parameters are set up in init_sched_domains. 7446 */ 7447 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 7448 { 7449 int continue_balancing = 1; 7450 int cpu = rq->cpu; 7451 unsigned long interval; 7452 struct sched_domain *sd; 7453 /* Earliest time when we have to do rebalance again */ 7454 unsigned long next_balance = jiffies + 60*HZ; 7455 int update_next_balance = 0; 7456 int need_serialize, need_decay = 0; 7457 u64 max_cost = 0; 7458 7459 update_blocked_averages(cpu); 7460 7461 rcu_read_lock(); 7462 for_each_domain(cpu, sd) { 7463 /* 7464 * Decay the newidle max times here because this is a regular 7465 * visit to all the domains. Decay ~1% per second. 7466 */ 7467 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 7468 sd->max_newidle_lb_cost = 7469 (sd->max_newidle_lb_cost * 253) / 256; 7470 sd->next_decay_max_lb_cost = jiffies + HZ; 7471 need_decay = 1; 7472 } 7473 max_cost += sd->max_newidle_lb_cost; 7474 7475 if (!(sd->flags & SD_LOAD_BALANCE)) 7476 continue; 7477 7478 /* 7479 * Stop the load balance at this level. There is another 7480 * CPU in our sched group which is doing load balancing more 7481 * actively. 7482 */ 7483 if (!continue_balancing) { 7484 if (need_decay) 7485 continue; 7486 break; 7487 } 7488 7489 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 7490 7491 need_serialize = sd->flags & SD_SERIALIZE; 7492 if (need_serialize) { 7493 if (!spin_trylock(&balancing)) 7494 goto out; 7495 } 7496 7497 if (time_after_eq(jiffies, sd->last_balance + interval)) { 7498 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 7499 /* 7500 * The LBF_DST_PINNED logic could have changed 7501 * env->dst_cpu, so we can't know our idle 7502 * state even if we migrated tasks. Update it. 7503 */ 7504 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 7505 } 7506 sd->last_balance = jiffies; 7507 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 7508 } 7509 if (need_serialize) 7510 spin_unlock(&balancing); 7511 out: 7512 if (time_after(next_balance, sd->last_balance + interval)) { 7513 next_balance = sd->last_balance + interval; 7514 update_next_balance = 1; 7515 } 7516 } 7517 if (need_decay) { 7518 /* 7519 * Ensure the rq-wide value also decays but keep it at a 7520 * reasonable floor to avoid funnies with rq->avg_idle. 7521 */ 7522 rq->max_idle_balance_cost = 7523 max((u64)sysctl_sched_migration_cost, max_cost); 7524 } 7525 rcu_read_unlock(); 7526 7527 /* 7528 * next_balance will be updated only when there is a need. 7529 * When the cpu is attached to null domain for ex, it will not be 7530 * updated. 7531 */ 7532 if (likely(update_next_balance)) 7533 rq->next_balance = next_balance; 7534 } 7535 7536 #ifdef CONFIG_NO_HZ_COMMON 7537 /* 7538 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 7539 * rebalancing for all the cpus for whom scheduler ticks are stopped. 7540 */ 7541 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 7542 { 7543 int this_cpu = this_rq->cpu; 7544 struct rq *rq; 7545 int balance_cpu; 7546 7547 if (idle != CPU_IDLE || 7548 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 7549 goto end; 7550 7551 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 7552 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 7553 continue; 7554 7555 /* 7556 * If this cpu gets work to do, stop the load balancing 7557 * work being done for other cpus. Next load 7558 * balancing owner will pick it up. 7559 */ 7560 if (need_resched()) 7561 break; 7562 7563 rq = cpu_rq(balance_cpu); 7564 7565 /* 7566 * If time for next balance is due, 7567 * do the balance. 7568 */ 7569 if (time_after_eq(jiffies, rq->next_balance)) { 7570 raw_spin_lock_irq(&rq->lock); 7571 update_rq_clock(rq); 7572 update_idle_cpu_load(rq); 7573 raw_spin_unlock_irq(&rq->lock); 7574 rebalance_domains(rq, CPU_IDLE); 7575 } 7576 7577 if (time_after(this_rq->next_balance, rq->next_balance)) 7578 this_rq->next_balance = rq->next_balance; 7579 } 7580 nohz.next_balance = this_rq->next_balance; 7581 end: 7582 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 7583 } 7584 7585 /* 7586 * Current heuristic for kicking the idle load balancer in the presence 7587 * of an idle cpu is the system. 7588 * - This rq has more than one task. 7589 * - At any scheduler domain level, this cpu's scheduler group has multiple 7590 * busy cpu's exceeding the group's capacity. 7591 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 7592 * domain span are idle. 7593 */ 7594 static inline int nohz_kick_needed(struct rq *rq) 7595 { 7596 unsigned long now = jiffies; 7597 struct sched_domain *sd; 7598 struct sched_group_capacity *sgc; 7599 int nr_busy, cpu = rq->cpu; 7600 7601 if (unlikely(rq->idle_balance)) 7602 return 0; 7603 7604 /* 7605 * We may be recently in ticked or tickless idle mode. At the first 7606 * busy tick after returning from idle, we will update the busy stats. 7607 */ 7608 set_cpu_sd_state_busy(); 7609 nohz_balance_exit_idle(cpu); 7610 7611 /* 7612 * None are in tickless mode and hence no need for NOHZ idle load 7613 * balancing. 7614 */ 7615 if (likely(!atomic_read(&nohz.nr_cpus))) 7616 return 0; 7617 7618 if (time_before(now, nohz.next_balance)) 7619 return 0; 7620 7621 if (rq->nr_running >= 2) 7622 goto need_kick; 7623 7624 rcu_read_lock(); 7625 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7626 7627 if (sd) { 7628 sgc = sd->groups->sgc; 7629 nr_busy = atomic_read(&sgc->nr_busy_cpus); 7630 7631 if (nr_busy > 1) 7632 goto need_kick_unlock; 7633 } 7634 7635 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 7636 7637 if (sd && (cpumask_first_and(nohz.idle_cpus_mask, 7638 sched_domain_span(sd)) < cpu)) 7639 goto need_kick_unlock; 7640 7641 rcu_read_unlock(); 7642 return 0; 7643 7644 need_kick_unlock: 7645 rcu_read_unlock(); 7646 need_kick: 7647 return 1; 7648 } 7649 #else 7650 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 7651 #endif 7652 7653 /* 7654 * run_rebalance_domains is triggered when needed from the scheduler tick. 7655 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 7656 */ 7657 static void run_rebalance_domains(struct softirq_action *h) 7658 { 7659 struct rq *this_rq = this_rq(); 7660 enum cpu_idle_type idle = this_rq->idle_balance ? 7661 CPU_IDLE : CPU_NOT_IDLE; 7662 7663 rebalance_domains(this_rq, idle); 7664 7665 /* 7666 * If this cpu has a pending nohz_balance_kick, then do the 7667 * balancing on behalf of the other idle cpus whose ticks are 7668 * stopped. 7669 */ 7670 nohz_idle_balance(this_rq, idle); 7671 } 7672 7673 /* 7674 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 7675 */ 7676 void trigger_load_balance(struct rq *rq) 7677 { 7678 /* Don't need to rebalance while attached to NULL domain */ 7679 if (unlikely(on_null_domain(rq))) 7680 return; 7681 7682 if (time_after_eq(jiffies, rq->next_balance)) 7683 raise_softirq(SCHED_SOFTIRQ); 7684 #ifdef CONFIG_NO_HZ_COMMON 7685 if (nohz_kick_needed(rq)) 7686 nohz_balancer_kick(); 7687 #endif 7688 } 7689 7690 static void rq_online_fair(struct rq *rq) 7691 { 7692 update_sysctl(); 7693 7694 update_runtime_enabled(rq); 7695 } 7696 7697 static void rq_offline_fair(struct rq *rq) 7698 { 7699 update_sysctl(); 7700 7701 /* Ensure any throttled groups are reachable by pick_next_task */ 7702 unthrottle_offline_cfs_rqs(rq); 7703 } 7704 7705 #endif /* CONFIG_SMP */ 7706 7707 /* 7708 * scheduler tick hitting a task of our scheduling class: 7709 */ 7710 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 7711 { 7712 struct cfs_rq *cfs_rq; 7713 struct sched_entity *se = &curr->se; 7714 7715 for_each_sched_entity(se) { 7716 cfs_rq = cfs_rq_of(se); 7717 entity_tick(cfs_rq, se, queued); 7718 } 7719 7720 if (numabalancing_enabled) 7721 task_tick_numa(rq, curr); 7722 7723 update_rq_runnable_avg(rq, 1); 7724 } 7725 7726 /* 7727 * called on fork with the child task as argument from the parent's context 7728 * - child not yet on the tasklist 7729 * - preemption disabled 7730 */ 7731 static void task_fork_fair(struct task_struct *p) 7732 { 7733 struct cfs_rq *cfs_rq; 7734 struct sched_entity *se = &p->se, *curr; 7735 int this_cpu = smp_processor_id(); 7736 struct rq *rq = this_rq(); 7737 unsigned long flags; 7738 7739 raw_spin_lock_irqsave(&rq->lock, flags); 7740 7741 update_rq_clock(rq); 7742 7743 cfs_rq = task_cfs_rq(current); 7744 curr = cfs_rq->curr; 7745 7746 /* 7747 * Not only the cpu but also the task_group of the parent might have 7748 * been changed after parent->se.parent,cfs_rq were copied to 7749 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those 7750 * of child point to valid ones. 7751 */ 7752 rcu_read_lock(); 7753 __set_task_cpu(p, this_cpu); 7754 rcu_read_unlock(); 7755 7756 update_curr(cfs_rq); 7757 7758 if (curr) 7759 se->vruntime = curr->vruntime; 7760 place_entity(cfs_rq, se, 1); 7761 7762 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 7763 /* 7764 * Upon rescheduling, sched_class::put_prev_task() will place 7765 * 'current' within the tree based on its new key value. 7766 */ 7767 swap(curr->vruntime, se->vruntime); 7768 resched_curr(rq); 7769 } 7770 7771 se->vruntime -= cfs_rq->min_vruntime; 7772 7773 raw_spin_unlock_irqrestore(&rq->lock, flags); 7774 } 7775 7776 /* 7777 * Priority of the task has changed. Check to see if we preempt 7778 * the current task. 7779 */ 7780 static void 7781 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 7782 { 7783 if (!task_on_rq_queued(p)) 7784 return; 7785 7786 /* 7787 * Reschedule if we are currently running on this runqueue and 7788 * our priority decreased, or if we are not currently running on 7789 * this runqueue and our priority is higher than the current's 7790 */ 7791 if (rq->curr == p) { 7792 if (p->prio > oldprio) 7793 resched_curr(rq); 7794 } else 7795 check_preempt_curr(rq, p, 0); 7796 } 7797 7798 static void switched_from_fair(struct rq *rq, struct task_struct *p) 7799 { 7800 struct sched_entity *se = &p->se; 7801 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7802 7803 /* 7804 * Ensure the task's vruntime is normalized, so that when it's 7805 * switched back to the fair class the enqueue_entity(.flags=0) will 7806 * do the right thing. 7807 * 7808 * If it's queued, then the dequeue_entity(.flags=0) will already 7809 * have normalized the vruntime, if it's !queued, then only when 7810 * the task is sleeping will it still have non-normalized vruntime. 7811 */ 7812 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) { 7813 /* 7814 * Fix up our vruntime so that the current sleep doesn't 7815 * cause 'unlimited' sleep bonus. 7816 */ 7817 place_entity(cfs_rq, se, 0); 7818 se->vruntime -= cfs_rq->min_vruntime; 7819 } 7820 7821 #ifdef CONFIG_SMP 7822 /* 7823 * Remove our load from contribution when we leave sched_fair 7824 * and ensure we don't carry in an old decay_count if we 7825 * switch back. 7826 */ 7827 if (se->avg.decay_count) { 7828 __synchronize_entity_decay(se); 7829 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 7830 } 7831 #endif 7832 } 7833 7834 /* 7835 * We switched to the sched_fair class. 7836 */ 7837 static void switched_to_fair(struct rq *rq, struct task_struct *p) 7838 { 7839 #ifdef CONFIG_FAIR_GROUP_SCHED 7840 struct sched_entity *se = &p->se; 7841 /* 7842 * Since the real-depth could have been changed (only FAIR 7843 * class maintain depth value), reset depth properly. 7844 */ 7845 se->depth = se->parent ? se->parent->depth + 1 : 0; 7846 #endif 7847 if (!task_on_rq_queued(p)) 7848 return; 7849 7850 /* 7851 * We were most likely switched from sched_rt, so 7852 * kick off the schedule if running, otherwise just see 7853 * if we can still preempt the current task. 7854 */ 7855 if (rq->curr == p) 7856 resched_curr(rq); 7857 else 7858 check_preempt_curr(rq, p, 0); 7859 } 7860 7861 /* Account for a task changing its policy or group. 7862 * 7863 * This routine is mostly called to set cfs_rq->curr field when a task 7864 * migrates between groups/classes. 7865 */ 7866 static void set_curr_task_fair(struct rq *rq) 7867 { 7868 struct sched_entity *se = &rq->curr->se; 7869 7870 for_each_sched_entity(se) { 7871 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7872 7873 set_next_entity(cfs_rq, se); 7874 /* ensure bandwidth has been allocated on our new cfs_rq */ 7875 account_cfs_rq_runtime(cfs_rq, 0); 7876 } 7877 } 7878 7879 void init_cfs_rq(struct cfs_rq *cfs_rq) 7880 { 7881 cfs_rq->tasks_timeline = RB_ROOT; 7882 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 7883 #ifndef CONFIG_64BIT 7884 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 7885 #endif 7886 #ifdef CONFIG_SMP 7887 atomic64_set(&cfs_rq->decay_counter, 1); 7888 atomic_long_set(&cfs_rq->removed_load, 0); 7889 #endif 7890 } 7891 7892 #ifdef CONFIG_FAIR_GROUP_SCHED 7893 static void task_move_group_fair(struct task_struct *p, int queued) 7894 { 7895 struct sched_entity *se = &p->se; 7896 struct cfs_rq *cfs_rq; 7897 7898 /* 7899 * If the task was not on the rq at the time of this cgroup movement 7900 * it must have been asleep, sleeping tasks keep their ->vruntime 7901 * absolute on their old rq until wakeup (needed for the fair sleeper 7902 * bonus in place_entity()). 7903 * 7904 * If it was on the rq, we've just 'preempted' it, which does convert 7905 * ->vruntime to a relative base. 7906 * 7907 * Make sure both cases convert their relative position when migrating 7908 * to another cgroup's rq. This does somewhat interfere with the 7909 * fair sleeper stuff for the first placement, but who cares. 7910 */ 7911 /* 7912 * When !queued, vruntime of the task has usually NOT been normalized. 7913 * But there are some cases where it has already been normalized: 7914 * 7915 * - Moving a forked child which is waiting for being woken up by 7916 * wake_up_new_task(). 7917 * - Moving a task which has been woken up by try_to_wake_up() and 7918 * waiting for actually being woken up by sched_ttwu_pending(). 7919 * 7920 * To prevent boost or penalty in the new cfs_rq caused by delta 7921 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. 7922 */ 7923 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING)) 7924 queued = 1; 7925 7926 if (!queued) 7927 se->vruntime -= cfs_rq_of(se)->min_vruntime; 7928 set_task_rq(p, task_cpu(p)); 7929 se->depth = se->parent ? se->parent->depth + 1 : 0; 7930 if (!queued) { 7931 cfs_rq = cfs_rq_of(se); 7932 se->vruntime += cfs_rq->min_vruntime; 7933 #ifdef CONFIG_SMP 7934 /* 7935 * migrate_task_rq_fair() will have removed our previous 7936 * contribution, but we must synchronize for ongoing future 7937 * decay. 7938 */ 7939 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 7940 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; 7941 #endif 7942 } 7943 } 7944 7945 void free_fair_sched_group(struct task_group *tg) 7946 { 7947 int i; 7948 7949 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 7950 7951 for_each_possible_cpu(i) { 7952 if (tg->cfs_rq) 7953 kfree(tg->cfs_rq[i]); 7954 if (tg->se) 7955 kfree(tg->se[i]); 7956 } 7957 7958 kfree(tg->cfs_rq); 7959 kfree(tg->se); 7960 } 7961 7962 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 7963 { 7964 struct cfs_rq *cfs_rq; 7965 struct sched_entity *se; 7966 int i; 7967 7968 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 7969 if (!tg->cfs_rq) 7970 goto err; 7971 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 7972 if (!tg->se) 7973 goto err; 7974 7975 tg->shares = NICE_0_LOAD; 7976 7977 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 7978 7979 for_each_possible_cpu(i) { 7980 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 7981 GFP_KERNEL, cpu_to_node(i)); 7982 if (!cfs_rq) 7983 goto err; 7984 7985 se = kzalloc_node(sizeof(struct sched_entity), 7986 GFP_KERNEL, cpu_to_node(i)); 7987 if (!se) 7988 goto err_free_rq; 7989 7990 init_cfs_rq(cfs_rq); 7991 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 7992 } 7993 7994 return 1; 7995 7996 err_free_rq: 7997 kfree(cfs_rq); 7998 err: 7999 return 0; 8000 } 8001 8002 void unregister_fair_sched_group(struct task_group *tg, int cpu) 8003 { 8004 struct rq *rq = cpu_rq(cpu); 8005 unsigned long flags; 8006 8007 /* 8008 * Only empty task groups can be destroyed; so we can speculatively 8009 * check on_list without danger of it being re-added. 8010 */ 8011 if (!tg->cfs_rq[cpu]->on_list) 8012 return; 8013 8014 raw_spin_lock_irqsave(&rq->lock, flags); 8015 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 8016 raw_spin_unlock_irqrestore(&rq->lock, flags); 8017 } 8018 8019 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 8020 struct sched_entity *se, int cpu, 8021 struct sched_entity *parent) 8022 { 8023 struct rq *rq = cpu_rq(cpu); 8024 8025 cfs_rq->tg = tg; 8026 cfs_rq->rq = rq; 8027 init_cfs_rq_runtime(cfs_rq); 8028 8029 tg->cfs_rq[cpu] = cfs_rq; 8030 tg->se[cpu] = se; 8031 8032 /* se could be NULL for root_task_group */ 8033 if (!se) 8034 return; 8035 8036 if (!parent) { 8037 se->cfs_rq = &rq->cfs; 8038 se->depth = 0; 8039 } else { 8040 se->cfs_rq = parent->my_q; 8041 se->depth = parent->depth + 1; 8042 } 8043 8044 se->my_q = cfs_rq; 8045 /* guarantee group entities always have weight */ 8046 update_load_set(&se->load, NICE_0_LOAD); 8047 se->parent = parent; 8048 } 8049 8050 static DEFINE_MUTEX(shares_mutex); 8051 8052 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 8053 { 8054 int i; 8055 unsigned long flags; 8056 8057 /* 8058 * We can't change the weight of the root cgroup. 8059 */ 8060 if (!tg->se[0]) 8061 return -EINVAL; 8062 8063 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 8064 8065 mutex_lock(&shares_mutex); 8066 if (tg->shares == shares) 8067 goto done; 8068 8069 tg->shares = shares; 8070 for_each_possible_cpu(i) { 8071 struct rq *rq = cpu_rq(i); 8072 struct sched_entity *se; 8073 8074 se = tg->se[i]; 8075 /* Propagate contribution to hierarchy */ 8076 raw_spin_lock_irqsave(&rq->lock, flags); 8077 8078 /* Possible calls to update_curr() need rq clock */ 8079 update_rq_clock(rq); 8080 for_each_sched_entity(se) 8081 update_cfs_shares(group_cfs_rq(se)); 8082 raw_spin_unlock_irqrestore(&rq->lock, flags); 8083 } 8084 8085 done: 8086 mutex_unlock(&shares_mutex); 8087 return 0; 8088 } 8089 #else /* CONFIG_FAIR_GROUP_SCHED */ 8090 8091 void free_fair_sched_group(struct task_group *tg) { } 8092 8093 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8094 { 8095 return 1; 8096 } 8097 8098 void unregister_fair_sched_group(struct task_group *tg, int cpu) { } 8099 8100 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8101 8102 8103 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 8104 { 8105 struct sched_entity *se = &task->se; 8106 unsigned int rr_interval = 0; 8107 8108 /* 8109 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 8110 * idle runqueue: 8111 */ 8112 if (rq->cfs.load.weight) 8113 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 8114 8115 return rr_interval; 8116 } 8117 8118 /* 8119 * All the scheduling class methods: 8120 */ 8121 const struct sched_class fair_sched_class = { 8122 .next = &idle_sched_class, 8123 .enqueue_task = enqueue_task_fair, 8124 .dequeue_task = dequeue_task_fair, 8125 .yield_task = yield_task_fair, 8126 .yield_to_task = yield_to_task_fair, 8127 8128 .check_preempt_curr = check_preempt_wakeup, 8129 8130 .pick_next_task = pick_next_task_fair, 8131 .put_prev_task = put_prev_task_fair, 8132 8133 #ifdef CONFIG_SMP 8134 .select_task_rq = select_task_rq_fair, 8135 .migrate_task_rq = migrate_task_rq_fair, 8136 8137 .rq_online = rq_online_fair, 8138 .rq_offline = rq_offline_fair, 8139 8140 .task_waking = task_waking_fair, 8141 #endif 8142 8143 .set_curr_task = set_curr_task_fair, 8144 .task_tick = task_tick_fair, 8145 .task_fork = task_fork_fair, 8146 8147 .prio_changed = prio_changed_fair, 8148 .switched_from = switched_from_fair, 8149 .switched_to = switched_to_fair, 8150 8151 .get_rr_interval = get_rr_interval_fair, 8152 8153 .update_curr = update_curr_fair, 8154 8155 #ifdef CONFIG_FAIR_GROUP_SCHED 8156 .task_move_group = task_move_group_fair, 8157 #endif 8158 }; 8159 8160 #ifdef CONFIG_SCHED_DEBUG 8161 void print_cfs_stats(struct seq_file *m, int cpu) 8162 { 8163 struct cfs_rq *cfs_rq; 8164 8165 rcu_read_lock(); 8166 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 8167 print_cfs_rq(m, cpu, cfs_rq); 8168 rcu_read_unlock(); 8169 } 8170 #endif 8171 8172 __init void init_sched_fair_class(void) 8173 { 8174 #ifdef CONFIG_SMP 8175 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 8176 8177 #ifdef CONFIG_NO_HZ_COMMON 8178 nohz.next_balance = jiffies; 8179 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 8180 cpu_notifier(sched_ilb_notifier, 0); 8181 #endif 8182 #endif /* SMP */ 8183 8184 } 8185