xref: /linux/kernel/sched/fair.c (revision 30fdd373f24cc50e250c71a6e2df89505e267804)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22 
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33 
34 #include <trace/events/sched.h>
35 
36 #include "sched.h"
37 
38 /*
39  * Targeted preemption latency for CPU-bound tasks:
40  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41  *
42  * NOTE: this latency value is not the same as the concept of
43  * 'timeslice length' - timeslices in CFS are of variable length
44  * and have no persistent notion like in traditional, time-slice
45  * based scheduling concepts.
46  *
47  * (to see the precise effective timeslice length of your workload,
48  *  run vmstat and monitor the context-switches (cs) field)
49  */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52 
53 /*
54  * The initial- and re-scaling of tunables is configurable
55  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56  *
57  * Options are:
58  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61  */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 	= SCHED_TUNABLESCALING_LOG;
64 
65 /*
66  * Minimal preemption granularity for CPU-bound tasks:
67  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68  */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 
72 /*
73  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74  */
75 static unsigned int sched_nr_latency = 8;
76 
77 /*
78  * After fork, child runs first. If set to 0 (default) then
79  * parent will (try to) run first.
80  */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82 
83 /*
84  * SCHED_OTHER wake-up granularity.
85  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86  *
87  * This option delays the preemption effects of decoupled workloads
88  * and reduces their over-scheduling. Synchronous workloads will still
89  * have immediate wakeup/sleep latencies.
90  */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95 
96 /*
97  * The exponential sliding  window over which load is averaged for shares
98  * distribution.
99  * (default: 10msec)
100  */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102 
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106  * each time a cfs_rq requests quota.
107  *
108  * Note: in the case that the slice exceeds the runtime remaining (either due
109  * to consumption or the quota being specified to be smaller than the slice)
110  * we will always only issue the remaining available time.
111  *
112  * default: 5 msec, units: microseconds
113   */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116 
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 	lw->weight += inc;
120 	lw->inv_weight = 0;
121 }
122 
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 	lw->weight -= dec;
126 	lw->inv_weight = 0;
127 }
128 
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 	lw->weight = w;
132 	lw->inv_weight = 0;
133 }
134 
135 /*
136  * Increase the granularity value when there are more CPUs,
137  * because with more CPUs the 'effective latency' as visible
138  * to users decreases. But the relationship is not linear,
139  * so pick a second-best guess by going with the log2 of the
140  * number of CPUs.
141  *
142  * This idea comes from the SD scheduler of Con Kolivas:
143  */
144 static int get_update_sysctl_factor(void)
145 {
146 	unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 	unsigned int factor;
148 
149 	switch (sysctl_sched_tunable_scaling) {
150 	case SCHED_TUNABLESCALING_NONE:
151 		factor = 1;
152 		break;
153 	case SCHED_TUNABLESCALING_LINEAR:
154 		factor = cpus;
155 		break;
156 	case SCHED_TUNABLESCALING_LOG:
157 	default:
158 		factor = 1 + ilog2(cpus);
159 		break;
160 	}
161 
162 	return factor;
163 }
164 
165 static void update_sysctl(void)
166 {
167 	unsigned int factor = get_update_sysctl_factor();
168 
169 #define SET_SYSCTL(name) \
170 	(sysctl_##name = (factor) * normalized_sysctl_##name)
171 	SET_SYSCTL(sched_min_granularity);
172 	SET_SYSCTL(sched_latency);
173 	SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176 
177 void sched_init_granularity(void)
178 {
179 	update_sysctl();
180 }
181 
182 #define WMULT_CONST	(~0U)
183 #define WMULT_SHIFT	32
184 
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 	unsigned long w;
188 
189 	if (likely(lw->inv_weight))
190 		return;
191 
192 	w = scale_load_down(lw->weight);
193 
194 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 		lw->inv_weight = 1;
196 	else if (unlikely(!w))
197 		lw->inv_weight = WMULT_CONST;
198 	else
199 		lw->inv_weight = WMULT_CONST / w;
200 }
201 
202 /*
203  * delta_exec * weight / lw.weight
204  *   OR
205  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206  *
207  * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208  * we're guaranteed shift stays positive because inv_weight is guaranteed to
209  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210  *
211  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212  * weight/lw.weight <= 1, and therefore our shift will also be positive.
213  */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 	u64 fact = scale_load_down(weight);
217 	int shift = WMULT_SHIFT;
218 
219 	__update_inv_weight(lw);
220 
221 	if (unlikely(fact >> 32)) {
222 		while (fact >> 32) {
223 			fact >>= 1;
224 			shift--;
225 		}
226 	}
227 
228 	/* hint to use a 32x32->64 mul */
229 	fact = (u64)(u32)fact * lw->inv_weight;
230 
231 	while (fact >> 32) {
232 		fact >>= 1;
233 		shift--;
234 	}
235 
236 	return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238 
239 
240 const struct sched_class fair_sched_class;
241 
242 /**************************************************************
243  * CFS operations on generic schedulable entities:
244  */
245 
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247 
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 	return cfs_rq->rq;
252 }
253 
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se)	(!se->my_q)
256 
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 	WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 	return container_of(se, struct task_struct, se);
263 }
264 
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 		for (; se; se = se->parent)
268 
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 	return p->se.cfs_rq;
272 }
273 
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 	return se->cfs_rq;
278 }
279 
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 	return grp->my_q;
284 }
285 
286 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 				       int force_update);
288 
289 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 {
291 	if (!cfs_rq->on_list) {
292 		/*
293 		 * Ensure we either appear before our parent (if already
294 		 * enqueued) or force our parent to appear after us when it is
295 		 * enqueued.  The fact that we always enqueue bottom-up
296 		 * reduces this to two cases.
297 		 */
298 		if (cfs_rq->tg->parent &&
299 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302 		} else {
303 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
305 		}
306 
307 		cfs_rq->on_list = 1;
308 		/* We should have no load, but we need to update last_decay. */
309 		update_cfs_rq_blocked_load(cfs_rq, 0);
310 	}
311 }
312 
313 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314 {
315 	if (cfs_rq->on_list) {
316 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 		cfs_rq->on_list = 0;
318 	}
319 }
320 
321 /* Iterate thr' all leaf cfs_rq's on a runqueue */
322 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324 
325 /* Do the two (enqueued) entities belong to the same group ? */
326 static inline struct cfs_rq *
327 is_same_group(struct sched_entity *se, struct sched_entity *pse)
328 {
329 	if (se->cfs_rq == pse->cfs_rq)
330 		return se->cfs_rq;
331 
332 	return NULL;
333 }
334 
335 static inline struct sched_entity *parent_entity(struct sched_entity *se)
336 {
337 	return se->parent;
338 }
339 
340 static void
341 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342 {
343 	int se_depth, pse_depth;
344 
345 	/*
346 	 * preemption test can be made between sibling entities who are in the
347 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 	 * both tasks until we find their ancestors who are siblings of common
349 	 * parent.
350 	 */
351 
352 	/* First walk up until both entities are at same depth */
353 	se_depth = (*se)->depth;
354 	pse_depth = (*pse)->depth;
355 
356 	while (se_depth > pse_depth) {
357 		se_depth--;
358 		*se = parent_entity(*se);
359 	}
360 
361 	while (pse_depth > se_depth) {
362 		pse_depth--;
363 		*pse = parent_entity(*pse);
364 	}
365 
366 	while (!is_same_group(*se, *pse)) {
367 		*se = parent_entity(*se);
368 		*pse = parent_entity(*pse);
369 	}
370 }
371 
372 #else	/* !CONFIG_FAIR_GROUP_SCHED */
373 
374 static inline struct task_struct *task_of(struct sched_entity *se)
375 {
376 	return container_of(se, struct task_struct, se);
377 }
378 
379 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380 {
381 	return container_of(cfs_rq, struct rq, cfs);
382 }
383 
384 #define entity_is_task(se)	1
385 
386 #define for_each_sched_entity(se) \
387 		for (; se; se = NULL)
388 
389 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
390 {
391 	return &task_rq(p)->cfs;
392 }
393 
394 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395 {
396 	struct task_struct *p = task_of(se);
397 	struct rq *rq = task_rq(p);
398 
399 	return &rq->cfs;
400 }
401 
402 /* runqueue "owned" by this group */
403 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404 {
405 	return NULL;
406 }
407 
408 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409 {
410 }
411 
412 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413 {
414 }
415 
416 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418 
419 static inline struct sched_entity *parent_entity(struct sched_entity *se)
420 {
421 	return NULL;
422 }
423 
424 static inline void
425 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426 {
427 }
428 
429 #endif	/* CONFIG_FAIR_GROUP_SCHED */
430 
431 static __always_inline
432 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
433 
434 /**************************************************************
435  * Scheduling class tree data structure manipulation methods:
436  */
437 
438 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
439 {
440 	s64 delta = (s64)(vruntime - max_vruntime);
441 	if (delta > 0)
442 		max_vruntime = vruntime;
443 
444 	return max_vruntime;
445 }
446 
447 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
448 {
449 	s64 delta = (s64)(vruntime - min_vruntime);
450 	if (delta < 0)
451 		min_vruntime = vruntime;
452 
453 	return min_vruntime;
454 }
455 
456 static inline int entity_before(struct sched_entity *a,
457 				struct sched_entity *b)
458 {
459 	return (s64)(a->vruntime - b->vruntime) < 0;
460 }
461 
462 static void update_min_vruntime(struct cfs_rq *cfs_rq)
463 {
464 	u64 vruntime = cfs_rq->min_vruntime;
465 
466 	if (cfs_rq->curr)
467 		vruntime = cfs_rq->curr->vruntime;
468 
469 	if (cfs_rq->rb_leftmost) {
470 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 						   struct sched_entity,
472 						   run_node);
473 
474 		if (!cfs_rq->curr)
475 			vruntime = se->vruntime;
476 		else
477 			vruntime = min_vruntime(vruntime, se->vruntime);
478 	}
479 
480 	/* ensure we never gain time by being placed backwards. */
481 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
482 #ifndef CONFIG_64BIT
483 	smp_wmb();
484 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485 #endif
486 }
487 
488 /*
489  * Enqueue an entity into the rb-tree:
490  */
491 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
492 {
493 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 	struct rb_node *parent = NULL;
495 	struct sched_entity *entry;
496 	int leftmost = 1;
497 
498 	/*
499 	 * Find the right place in the rbtree:
500 	 */
501 	while (*link) {
502 		parent = *link;
503 		entry = rb_entry(parent, struct sched_entity, run_node);
504 		/*
505 		 * We dont care about collisions. Nodes with
506 		 * the same key stay together.
507 		 */
508 		if (entity_before(se, entry)) {
509 			link = &parent->rb_left;
510 		} else {
511 			link = &parent->rb_right;
512 			leftmost = 0;
513 		}
514 	}
515 
516 	/*
517 	 * Maintain a cache of leftmost tree entries (it is frequently
518 	 * used):
519 	 */
520 	if (leftmost)
521 		cfs_rq->rb_leftmost = &se->run_node;
522 
523 	rb_link_node(&se->run_node, parent, link);
524 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
525 }
526 
527 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
528 {
529 	if (cfs_rq->rb_leftmost == &se->run_node) {
530 		struct rb_node *next_node;
531 
532 		next_node = rb_next(&se->run_node);
533 		cfs_rq->rb_leftmost = next_node;
534 	}
535 
536 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
537 }
538 
539 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
540 {
541 	struct rb_node *left = cfs_rq->rb_leftmost;
542 
543 	if (!left)
544 		return NULL;
545 
546 	return rb_entry(left, struct sched_entity, run_node);
547 }
548 
549 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550 {
551 	struct rb_node *next = rb_next(&se->run_node);
552 
553 	if (!next)
554 		return NULL;
555 
556 	return rb_entry(next, struct sched_entity, run_node);
557 }
558 
559 #ifdef CONFIG_SCHED_DEBUG
560 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
561 {
562 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
563 
564 	if (!last)
565 		return NULL;
566 
567 	return rb_entry(last, struct sched_entity, run_node);
568 }
569 
570 /**************************************************************
571  * Scheduling class statistics methods:
572  */
573 
574 int sched_proc_update_handler(struct ctl_table *table, int write,
575 		void __user *buffer, size_t *lenp,
576 		loff_t *ppos)
577 {
578 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579 	int factor = get_update_sysctl_factor();
580 
581 	if (ret || !write)
582 		return ret;
583 
584 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 					sysctl_sched_min_granularity);
586 
587 #define WRT_SYSCTL(name) \
588 	(normalized_sysctl_##name = sysctl_##name / (factor))
589 	WRT_SYSCTL(sched_min_granularity);
590 	WRT_SYSCTL(sched_latency);
591 	WRT_SYSCTL(sched_wakeup_granularity);
592 #undef WRT_SYSCTL
593 
594 	return 0;
595 }
596 #endif
597 
598 /*
599  * delta /= w
600  */
601 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
602 {
603 	if (unlikely(se->load.weight != NICE_0_LOAD))
604 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
605 
606 	return delta;
607 }
608 
609 /*
610  * The idea is to set a period in which each task runs once.
611  *
612  * When there are too many tasks (sched_nr_latency) we have to stretch
613  * this period because otherwise the slices get too small.
614  *
615  * p = (nr <= nl) ? l : l*nr/nl
616  */
617 static u64 __sched_period(unsigned long nr_running)
618 {
619 	u64 period = sysctl_sched_latency;
620 	unsigned long nr_latency = sched_nr_latency;
621 
622 	if (unlikely(nr_running > nr_latency)) {
623 		period = sysctl_sched_min_granularity;
624 		period *= nr_running;
625 	}
626 
627 	return period;
628 }
629 
630 /*
631  * We calculate the wall-time slice from the period by taking a part
632  * proportional to the weight.
633  *
634  * s = p*P[w/rw]
635  */
636 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637 {
638 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639 
640 	for_each_sched_entity(se) {
641 		struct load_weight *load;
642 		struct load_weight lw;
643 
644 		cfs_rq = cfs_rq_of(se);
645 		load = &cfs_rq->load;
646 
647 		if (unlikely(!se->on_rq)) {
648 			lw = cfs_rq->load;
649 
650 			update_load_add(&lw, se->load.weight);
651 			load = &lw;
652 		}
653 		slice = __calc_delta(slice, se->load.weight, load);
654 	}
655 	return slice;
656 }
657 
658 /*
659  * We calculate the vruntime slice of a to-be-inserted task.
660  *
661  * vs = s/w
662  */
663 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
664 {
665 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
666 }
667 
668 #ifdef CONFIG_SMP
669 static int select_idle_sibling(struct task_struct *p, int cpu);
670 static unsigned long task_h_load(struct task_struct *p);
671 
672 static inline void __update_task_entity_contrib(struct sched_entity *se);
673 
674 /* Give new task start runnable values to heavy its load in infant time */
675 void init_task_runnable_average(struct task_struct *p)
676 {
677 	u32 slice;
678 
679 	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
680 	p->se.avg.runnable_avg_sum = slice;
681 	p->se.avg.runnable_avg_period = slice;
682 	__update_task_entity_contrib(&p->se);
683 }
684 #else
685 void init_task_runnable_average(struct task_struct *p)
686 {
687 }
688 #endif
689 
690 /*
691  * Update the current task's runtime statistics.
692  */
693 static void update_curr(struct cfs_rq *cfs_rq)
694 {
695 	struct sched_entity *curr = cfs_rq->curr;
696 	u64 now = rq_clock_task(rq_of(cfs_rq));
697 	u64 delta_exec;
698 
699 	if (unlikely(!curr))
700 		return;
701 
702 	delta_exec = now - curr->exec_start;
703 	if (unlikely((s64)delta_exec <= 0))
704 		return;
705 
706 	curr->exec_start = now;
707 
708 	schedstat_set(curr->statistics.exec_max,
709 		      max(delta_exec, curr->statistics.exec_max));
710 
711 	curr->sum_exec_runtime += delta_exec;
712 	schedstat_add(cfs_rq, exec_clock, delta_exec);
713 
714 	curr->vruntime += calc_delta_fair(delta_exec, curr);
715 	update_min_vruntime(cfs_rq);
716 
717 	if (entity_is_task(curr)) {
718 		struct task_struct *curtask = task_of(curr);
719 
720 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
721 		cpuacct_charge(curtask, delta_exec);
722 		account_group_exec_runtime(curtask, delta_exec);
723 	}
724 
725 	account_cfs_rq_runtime(cfs_rq, delta_exec);
726 }
727 
728 static void update_curr_fair(struct rq *rq)
729 {
730 	update_curr(cfs_rq_of(&rq->curr->se));
731 }
732 
733 static inline void
734 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
735 {
736 	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
737 }
738 
739 /*
740  * Task is being enqueued - update stats:
741  */
742 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
743 {
744 	/*
745 	 * Are we enqueueing a waiting task? (for current tasks
746 	 * a dequeue/enqueue event is a NOP)
747 	 */
748 	if (se != cfs_rq->curr)
749 		update_stats_wait_start(cfs_rq, se);
750 }
751 
752 static void
753 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
754 {
755 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
756 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
757 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
758 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
759 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
760 #ifdef CONFIG_SCHEDSTATS
761 	if (entity_is_task(se)) {
762 		trace_sched_stat_wait(task_of(se),
763 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
764 	}
765 #endif
766 	schedstat_set(se->statistics.wait_start, 0);
767 }
768 
769 static inline void
770 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
771 {
772 	/*
773 	 * Mark the end of the wait period if dequeueing a
774 	 * waiting task:
775 	 */
776 	if (se != cfs_rq->curr)
777 		update_stats_wait_end(cfs_rq, se);
778 }
779 
780 /*
781  * We are picking a new current task - update its stats:
782  */
783 static inline void
784 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
785 {
786 	/*
787 	 * We are starting a new run period:
788 	 */
789 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
790 }
791 
792 /**************************************************
793  * Scheduling class queueing methods:
794  */
795 
796 #ifdef CONFIG_NUMA_BALANCING
797 /*
798  * Approximate time to scan a full NUMA task in ms. The task scan period is
799  * calculated based on the tasks virtual memory size and
800  * numa_balancing_scan_size.
801  */
802 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
803 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
804 
805 /* Portion of address space to scan in MB */
806 unsigned int sysctl_numa_balancing_scan_size = 256;
807 
808 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
809 unsigned int sysctl_numa_balancing_scan_delay = 1000;
810 
811 static unsigned int task_nr_scan_windows(struct task_struct *p)
812 {
813 	unsigned long rss = 0;
814 	unsigned long nr_scan_pages;
815 
816 	/*
817 	 * Calculations based on RSS as non-present and empty pages are skipped
818 	 * by the PTE scanner and NUMA hinting faults should be trapped based
819 	 * on resident pages
820 	 */
821 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
822 	rss = get_mm_rss(p->mm);
823 	if (!rss)
824 		rss = nr_scan_pages;
825 
826 	rss = round_up(rss, nr_scan_pages);
827 	return rss / nr_scan_pages;
828 }
829 
830 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
831 #define MAX_SCAN_WINDOW 2560
832 
833 static unsigned int task_scan_min(struct task_struct *p)
834 {
835 	unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
836 	unsigned int scan, floor;
837 	unsigned int windows = 1;
838 
839 	if (scan_size < MAX_SCAN_WINDOW)
840 		windows = MAX_SCAN_WINDOW / scan_size;
841 	floor = 1000 / windows;
842 
843 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
844 	return max_t(unsigned int, floor, scan);
845 }
846 
847 static unsigned int task_scan_max(struct task_struct *p)
848 {
849 	unsigned int smin = task_scan_min(p);
850 	unsigned int smax;
851 
852 	/* Watch for min being lower than max due to floor calculations */
853 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
854 	return max(smin, smax);
855 }
856 
857 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
858 {
859 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
860 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
861 }
862 
863 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
864 {
865 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
866 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
867 }
868 
869 struct numa_group {
870 	atomic_t refcount;
871 
872 	spinlock_t lock; /* nr_tasks, tasks */
873 	int nr_tasks;
874 	pid_t gid;
875 
876 	struct rcu_head rcu;
877 	nodemask_t active_nodes;
878 	unsigned long total_faults;
879 	/*
880 	 * Faults_cpu is used to decide whether memory should move
881 	 * towards the CPU. As a consequence, these stats are weighted
882 	 * more by CPU use than by memory faults.
883 	 */
884 	unsigned long *faults_cpu;
885 	unsigned long faults[0];
886 };
887 
888 /* Shared or private faults. */
889 #define NR_NUMA_HINT_FAULT_TYPES 2
890 
891 /* Memory and CPU locality */
892 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
893 
894 /* Averaged statistics, and temporary buffers. */
895 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
896 
897 pid_t task_numa_group_id(struct task_struct *p)
898 {
899 	return p->numa_group ? p->numa_group->gid : 0;
900 }
901 
902 /*
903  * The averaged statistics, shared & private, memory & cpu,
904  * occupy the first half of the array. The second half of the
905  * array is for current counters, which are averaged into the
906  * first set by task_numa_placement.
907  */
908 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
909 {
910 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
911 }
912 
913 static inline unsigned long task_faults(struct task_struct *p, int nid)
914 {
915 	if (!p->numa_faults)
916 		return 0;
917 
918 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
919 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
920 }
921 
922 static inline unsigned long group_faults(struct task_struct *p, int nid)
923 {
924 	if (!p->numa_group)
925 		return 0;
926 
927 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
928 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
929 }
930 
931 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
932 {
933 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
934 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
935 }
936 
937 /* Handle placement on systems where not all nodes are directly connected. */
938 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
939 					int maxdist, bool task)
940 {
941 	unsigned long score = 0;
942 	int node;
943 
944 	/*
945 	 * All nodes are directly connected, and the same distance
946 	 * from each other. No need for fancy placement algorithms.
947 	 */
948 	if (sched_numa_topology_type == NUMA_DIRECT)
949 		return 0;
950 
951 	/*
952 	 * This code is called for each node, introducing N^2 complexity,
953 	 * which should be ok given the number of nodes rarely exceeds 8.
954 	 */
955 	for_each_online_node(node) {
956 		unsigned long faults;
957 		int dist = node_distance(nid, node);
958 
959 		/*
960 		 * The furthest away nodes in the system are not interesting
961 		 * for placement; nid was already counted.
962 		 */
963 		if (dist == sched_max_numa_distance || node == nid)
964 			continue;
965 
966 		/*
967 		 * On systems with a backplane NUMA topology, compare groups
968 		 * of nodes, and move tasks towards the group with the most
969 		 * memory accesses. When comparing two nodes at distance
970 		 * "hoplimit", only nodes closer by than "hoplimit" are part
971 		 * of each group. Skip other nodes.
972 		 */
973 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
974 					dist > maxdist)
975 			continue;
976 
977 		/* Add up the faults from nearby nodes. */
978 		if (task)
979 			faults = task_faults(p, node);
980 		else
981 			faults = group_faults(p, node);
982 
983 		/*
984 		 * On systems with a glueless mesh NUMA topology, there are
985 		 * no fixed "groups of nodes". Instead, nodes that are not
986 		 * directly connected bounce traffic through intermediate
987 		 * nodes; a numa_group can occupy any set of nodes.
988 		 * The further away a node is, the less the faults count.
989 		 * This seems to result in good task placement.
990 		 */
991 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
992 			faults *= (sched_max_numa_distance - dist);
993 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
994 		}
995 
996 		score += faults;
997 	}
998 
999 	return score;
1000 }
1001 
1002 /*
1003  * These return the fraction of accesses done by a particular task, or
1004  * task group, on a particular numa node.  The group weight is given a
1005  * larger multiplier, in order to group tasks together that are almost
1006  * evenly spread out between numa nodes.
1007  */
1008 static inline unsigned long task_weight(struct task_struct *p, int nid,
1009 					int dist)
1010 {
1011 	unsigned long faults, total_faults;
1012 
1013 	if (!p->numa_faults)
1014 		return 0;
1015 
1016 	total_faults = p->total_numa_faults;
1017 
1018 	if (!total_faults)
1019 		return 0;
1020 
1021 	faults = task_faults(p, nid);
1022 	faults += score_nearby_nodes(p, nid, dist, true);
1023 
1024 	return 1000 * faults / total_faults;
1025 }
1026 
1027 static inline unsigned long group_weight(struct task_struct *p, int nid,
1028 					 int dist)
1029 {
1030 	unsigned long faults, total_faults;
1031 
1032 	if (!p->numa_group)
1033 		return 0;
1034 
1035 	total_faults = p->numa_group->total_faults;
1036 
1037 	if (!total_faults)
1038 		return 0;
1039 
1040 	faults = group_faults(p, nid);
1041 	faults += score_nearby_nodes(p, nid, dist, false);
1042 
1043 	return 1000 * faults / total_faults;
1044 }
1045 
1046 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1047 				int src_nid, int dst_cpu)
1048 {
1049 	struct numa_group *ng = p->numa_group;
1050 	int dst_nid = cpu_to_node(dst_cpu);
1051 	int last_cpupid, this_cpupid;
1052 
1053 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1054 
1055 	/*
1056 	 * Multi-stage node selection is used in conjunction with a periodic
1057 	 * migration fault to build a temporal task<->page relation. By using
1058 	 * a two-stage filter we remove short/unlikely relations.
1059 	 *
1060 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1061 	 * a task's usage of a particular page (n_p) per total usage of this
1062 	 * page (n_t) (in a given time-span) to a probability.
1063 	 *
1064 	 * Our periodic faults will sample this probability and getting the
1065 	 * same result twice in a row, given these samples are fully
1066 	 * independent, is then given by P(n)^2, provided our sample period
1067 	 * is sufficiently short compared to the usage pattern.
1068 	 *
1069 	 * This quadric squishes small probabilities, making it less likely we
1070 	 * act on an unlikely task<->page relation.
1071 	 */
1072 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1073 	if (!cpupid_pid_unset(last_cpupid) &&
1074 				cpupid_to_nid(last_cpupid) != dst_nid)
1075 		return false;
1076 
1077 	/* Always allow migrate on private faults */
1078 	if (cpupid_match_pid(p, last_cpupid))
1079 		return true;
1080 
1081 	/* A shared fault, but p->numa_group has not been set up yet. */
1082 	if (!ng)
1083 		return true;
1084 
1085 	/*
1086 	 * Do not migrate if the destination is not a node that
1087 	 * is actively used by this numa group.
1088 	 */
1089 	if (!node_isset(dst_nid, ng->active_nodes))
1090 		return false;
1091 
1092 	/*
1093 	 * Source is a node that is not actively used by this
1094 	 * numa group, while the destination is. Migrate.
1095 	 */
1096 	if (!node_isset(src_nid, ng->active_nodes))
1097 		return true;
1098 
1099 	/*
1100 	 * Both source and destination are nodes in active
1101 	 * use by this numa group. Maximize memory bandwidth
1102 	 * by migrating from more heavily used groups, to less
1103 	 * heavily used ones, spreading the load around.
1104 	 * Use a 1/4 hysteresis to avoid spurious page movement.
1105 	 */
1106 	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1107 }
1108 
1109 static unsigned long weighted_cpuload(const int cpu);
1110 static unsigned long source_load(int cpu, int type);
1111 static unsigned long target_load(int cpu, int type);
1112 static unsigned long capacity_of(int cpu);
1113 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1114 
1115 /* Cached statistics for all CPUs within a node */
1116 struct numa_stats {
1117 	unsigned long nr_running;
1118 	unsigned long load;
1119 
1120 	/* Total compute capacity of CPUs on a node */
1121 	unsigned long compute_capacity;
1122 
1123 	/* Approximate capacity in terms of runnable tasks on a node */
1124 	unsigned long task_capacity;
1125 	int has_free_capacity;
1126 };
1127 
1128 /*
1129  * XXX borrowed from update_sg_lb_stats
1130  */
1131 static void update_numa_stats(struct numa_stats *ns, int nid)
1132 {
1133 	int smt, cpu, cpus = 0;
1134 	unsigned long capacity;
1135 
1136 	memset(ns, 0, sizeof(*ns));
1137 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1138 		struct rq *rq = cpu_rq(cpu);
1139 
1140 		ns->nr_running += rq->nr_running;
1141 		ns->load += weighted_cpuload(cpu);
1142 		ns->compute_capacity += capacity_of(cpu);
1143 
1144 		cpus++;
1145 	}
1146 
1147 	/*
1148 	 * If we raced with hotplug and there are no CPUs left in our mask
1149 	 * the @ns structure is NULL'ed and task_numa_compare() will
1150 	 * not find this node attractive.
1151 	 *
1152 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1153 	 * imbalance and bail there.
1154 	 */
1155 	if (!cpus)
1156 		return;
1157 
1158 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1159 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1160 	capacity = cpus / smt; /* cores */
1161 
1162 	ns->task_capacity = min_t(unsigned, capacity,
1163 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1164 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1165 }
1166 
1167 struct task_numa_env {
1168 	struct task_struct *p;
1169 
1170 	int src_cpu, src_nid;
1171 	int dst_cpu, dst_nid;
1172 
1173 	struct numa_stats src_stats, dst_stats;
1174 
1175 	int imbalance_pct;
1176 	int dist;
1177 
1178 	struct task_struct *best_task;
1179 	long best_imp;
1180 	int best_cpu;
1181 };
1182 
1183 static void task_numa_assign(struct task_numa_env *env,
1184 			     struct task_struct *p, long imp)
1185 {
1186 	if (env->best_task)
1187 		put_task_struct(env->best_task);
1188 	if (p)
1189 		get_task_struct(p);
1190 
1191 	env->best_task = p;
1192 	env->best_imp = imp;
1193 	env->best_cpu = env->dst_cpu;
1194 }
1195 
1196 static bool load_too_imbalanced(long src_load, long dst_load,
1197 				struct task_numa_env *env)
1198 {
1199 	long imb, old_imb;
1200 	long orig_src_load, orig_dst_load;
1201 	long src_capacity, dst_capacity;
1202 
1203 	/*
1204 	 * The load is corrected for the CPU capacity available on each node.
1205 	 *
1206 	 * src_load        dst_load
1207 	 * ------------ vs ---------
1208 	 * src_capacity    dst_capacity
1209 	 */
1210 	src_capacity = env->src_stats.compute_capacity;
1211 	dst_capacity = env->dst_stats.compute_capacity;
1212 
1213 	/* We care about the slope of the imbalance, not the direction. */
1214 	if (dst_load < src_load)
1215 		swap(dst_load, src_load);
1216 
1217 	/* Is the difference below the threshold? */
1218 	imb = dst_load * src_capacity * 100 -
1219 	      src_load * dst_capacity * env->imbalance_pct;
1220 	if (imb <= 0)
1221 		return false;
1222 
1223 	/*
1224 	 * The imbalance is above the allowed threshold.
1225 	 * Compare it with the old imbalance.
1226 	 */
1227 	orig_src_load = env->src_stats.load;
1228 	orig_dst_load = env->dst_stats.load;
1229 
1230 	if (orig_dst_load < orig_src_load)
1231 		swap(orig_dst_load, orig_src_load);
1232 
1233 	old_imb = orig_dst_load * src_capacity * 100 -
1234 		  orig_src_load * dst_capacity * env->imbalance_pct;
1235 
1236 	/* Would this change make things worse? */
1237 	return (imb > old_imb);
1238 }
1239 
1240 /*
1241  * This checks if the overall compute and NUMA accesses of the system would
1242  * be improved if the source tasks was migrated to the target dst_cpu taking
1243  * into account that it might be best if task running on the dst_cpu should
1244  * be exchanged with the source task
1245  */
1246 static void task_numa_compare(struct task_numa_env *env,
1247 			      long taskimp, long groupimp)
1248 {
1249 	struct rq *src_rq = cpu_rq(env->src_cpu);
1250 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1251 	struct task_struct *cur;
1252 	long src_load, dst_load;
1253 	long load;
1254 	long imp = env->p->numa_group ? groupimp : taskimp;
1255 	long moveimp = imp;
1256 	int dist = env->dist;
1257 
1258 	rcu_read_lock();
1259 
1260 	raw_spin_lock_irq(&dst_rq->lock);
1261 	cur = dst_rq->curr;
1262 	/*
1263 	 * No need to move the exiting task, and this ensures that ->curr
1264 	 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1265 	 * is safe under RCU read lock.
1266 	 * Note that rcu_read_lock() itself can't protect from the final
1267 	 * put_task_struct() after the last schedule().
1268 	 */
1269 	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1270 		cur = NULL;
1271 	raw_spin_unlock_irq(&dst_rq->lock);
1272 
1273 	/*
1274 	 * Because we have preemption enabled we can get migrated around and
1275 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1276 	 */
1277 	if (cur == env->p)
1278 		goto unlock;
1279 
1280 	/*
1281 	 * "imp" is the fault differential for the source task between the
1282 	 * source and destination node. Calculate the total differential for
1283 	 * the source task and potential destination task. The more negative
1284 	 * the value is, the more rmeote accesses that would be expected to
1285 	 * be incurred if the tasks were swapped.
1286 	 */
1287 	if (cur) {
1288 		/* Skip this swap candidate if cannot move to the source cpu */
1289 		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1290 			goto unlock;
1291 
1292 		/*
1293 		 * If dst and source tasks are in the same NUMA group, or not
1294 		 * in any group then look only at task weights.
1295 		 */
1296 		if (cur->numa_group == env->p->numa_group) {
1297 			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1298 			      task_weight(cur, env->dst_nid, dist);
1299 			/*
1300 			 * Add some hysteresis to prevent swapping the
1301 			 * tasks within a group over tiny differences.
1302 			 */
1303 			if (cur->numa_group)
1304 				imp -= imp/16;
1305 		} else {
1306 			/*
1307 			 * Compare the group weights. If a task is all by
1308 			 * itself (not part of a group), use the task weight
1309 			 * instead.
1310 			 */
1311 			if (cur->numa_group)
1312 				imp += group_weight(cur, env->src_nid, dist) -
1313 				       group_weight(cur, env->dst_nid, dist);
1314 			else
1315 				imp += task_weight(cur, env->src_nid, dist) -
1316 				       task_weight(cur, env->dst_nid, dist);
1317 		}
1318 	}
1319 
1320 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1321 		goto unlock;
1322 
1323 	if (!cur) {
1324 		/* Is there capacity at our destination? */
1325 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1326 		    !env->dst_stats.has_free_capacity)
1327 			goto unlock;
1328 
1329 		goto balance;
1330 	}
1331 
1332 	/* Balance doesn't matter much if we're running a task per cpu */
1333 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1334 			dst_rq->nr_running == 1)
1335 		goto assign;
1336 
1337 	/*
1338 	 * In the overloaded case, try and keep the load balanced.
1339 	 */
1340 balance:
1341 	load = task_h_load(env->p);
1342 	dst_load = env->dst_stats.load + load;
1343 	src_load = env->src_stats.load - load;
1344 
1345 	if (moveimp > imp && moveimp > env->best_imp) {
1346 		/*
1347 		 * If the improvement from just moving env->p direction is
1348 		 * better than swapping tasks around, check if a move is
1349 		 * possible. Store a slightly smaller score than moveimp,
1350 		 * so an actually idle CPU will win.
1351 		 */
1352 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1353 			imp = moveimp - 1;
1354 			cur = NULL;
1355 			goto assign;
1356 		}
1357 	}
1358 
1359 	if (imp <= env->best_imp)
1360 		goto unlock;
1361 
1362 	if (cur) {
1363 		load = task_h_load(cur);
1364 		dst_load -= load;
1365 		src_load += load;
1366 	}
1367 
1368 	if (load_too_imbalanced(src_load, dst_load, env))
1369 		goto unlock;
1370 
1371 	/*
1372 	 * One idle CPU per node is evaluated for a task numa move.
1373 	 * Call select_idle_sibling to maybe find a better one.
1374 	 */
1375 	if (!cur)
1376 		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1377 
1378 assign:
1379 	task_numa_assign(env, cur, imp);
1380 unlock:
1381 	rcu_read_unlock();
1382 }
1383 
1384 static void task_numa_find_cpu(struct task_numa_env *env,
1385 				long taskimp, long groupimp)
1386 {
1387 	int cpu;
1388 
1389 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1390 		/* Skip this CPU if the source task cannot migrate */
1391 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1392 			continue;
1393 
1394 		env->dst_cpu = cpu;
1395 		task_numa_compare(env, taskimp, groupimp);
1396 	}
1397 }
1398 
1399 static int task_numa_migrate(struct task_struct *p)
1400 {
1401 	struct task_numa_env env = {
1402 		.p = p,
1403 
1404 		.src_cpu = task_cpu(p),
1405 		.src_nid = task_node(p),
1406 
1407 		.imbalance_pct = 112,
1408 
1409 		.best_task = NULL,
1410 		.best_imp = 0,
1411 		.best_cpu = -1
1412 	};
1413 	struct sched_domain *sd;
1414 	unsigned long taskweight, groupweight;
1415 	int nid, ret, dist;
1416 	long taskimp, groupimp;
1417 
1418 	/*
1419 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1420 	 * imbalance and would be the first to start moving tasks about.
1421 	 *
1422 	 * And we want to avoid any moving of tasks about, as that would create
1423 	 * random movement of tasks -- counter the numa conditions we're trying
1424 	 * to satisfy here.
1425 	 */
1426 	rcu_read_lock();
1427 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1428 	if (sd)
1429 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1430 	rcu_read_unlock();
1431 
1432 	/*
1433 	 * Cpusets can break the scheduler domain tree into smaller
1434 	 * balance domains, some of which do not cross NUMA boundaries.
1435 	 * Tasks that are "trapped" in such domains cannot be migrated
1436 	 * elsewhere, so there is no point in (re)trying.
1437 	 */
1438 	if (unlikely(!sd)) {
1439 		p->numa_preferred_nid = task_node(p);
1440 		return -EINVAL;
1441 	}
1442 
1443 	env.dst_nid = p->numa_preferred_nid;
1444 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1445 	taskweight = task_weight(p, env.src_nid, dist);
1446 	groupweight = group_weight(p, env.src_nid, dist);
1447 	update_numa_stats(&env.src_stats, env.src_nid);
1448 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1449 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1450 	update_numa_stats(&env.dst_stats, env.dst_nid);
1451 
1452 	/* Try to find a spot on the preferred nid. */
1453 	task_numa_find_cpu(&env, taskimp, groupimp);
1454 
1455 	/*
1456 	 * Look at other nodes in these cases:
1457 	 * - there is no space available on the preferred_nid
1458 	 * - the task is part of a numa_group that is interleaved across
1459 	 *   multiple NUMA nodes; in order to better consolidate the group,
1460 	 *   we need to check other locations.
1461 	 */
1462 	if (env.best_cpu == -1 || (p->numa_group &&
1463 			nodes_weight(p->numa_group->active_nodes) > 1)) {
1464 		for_each_online_node(nid) {
1465 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1466 				continue;
1467 
1468 			dist = node_distance(env.src_nid, env.dst_nid);
1469 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1470 						dist != env.dist) {
1471 				taskweight = task_weight(p, env.src_nid, dist);
1472 				groupweight = group_weight(p, env.src_nid, dist);
1473 			}
1474 
1475 			/* Only consider nodes where both task and groups benefit */
1476 			taskimp = task_weight(p, nid, dist) - taskweight;
1477 			groupimp = group_weight(p, nid, dist) - groupweight;
1478 			if (taskimp < 0 && groupimp < 0)
1479 				continue;
1480 
1481 			env.dist = dist;
1482 			env.dst_nid = nid;
1483 			update_numa_stats(&env.dst_stats, env.dst_nid);
1484 			task_numa_find_cpu(&env, taskimp, groupimp);
1485 		}
1486 	}
1487 
1488 	/*
1489 	 * If the task is part of a workload that spans multiple NUMA nodes,
1490 	 * and is migrating into one of the workload's active nodes, remember
1491 	 * this node as the task's preferred numa node, so the workload can
1492 	 * settle down.
1493 	 * A task that migrated to a second choice node will be better off
1494 	 * trying for a better one later. Do not set the preferred node here.
1495 	 */
1496 	if (p->numa_group) {
1497 		if (env.best_cpu == -1)
1498 			nid = env.src_nid;
1499 		else
1500 			nid = env.dst_nid;
1501 
1502 		if (node_isset(nid, p->numa_group->active_nodes))
1503 			sched_setnuma(p, env.dst_nid);
1504 	}
1505 
1506 	/* No better CPU than the current one was found. */
1507 	if (env.best_cpu == -1)
1508 		return -EAGAIN;
1509 
1510 	/*
1511 	 * Reset the scan period if the task is being rescheduled on an
1512 	 * alternative node to recheck if the tasks is now properly placed.
1513 	 */
1514 	p->numa_scan_period = task_scan_min(p);
1515 
1516 	if (env.best_task == NULL) {
1517 		ret = migrate_task_to(p, env.best_cpu);
1518 		if (ret != 0)
1519 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1520 		return ret;
1521 	}
1522 
1523 	ret = migrate_swap(p, env.best_task);
1524 	if (ret != 0)
1525 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1526 	put_task_struct(env.best_task);
1527 	return ret;
1528 }
1529 
1530 /* Attempt to migrate a task to a CPU on the preferred node. */
1531 static void numa_migrate_preferred(struct task_struct *p)
1532 {
1533 	unsigned long interval = HZ;
1534 
1535 	/* This task has no NUMA fault statistics yet */
1536 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1537 		return;
1538 
1539 	/* Periodically retry migrating the task to the preferred node */
1540 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1541 	p->numa_migrate_retry = jiffies + interval;
1542 
1543 	/* Success if task is already running on preferred CPU */
1544 	if (task_node(p) == p->numa_preferred_nid)
1545 		return;
1546 
1547 	/* Otherwise, try migrate to a CPU on the preferred node */
1548 	task_numa_migrate(p);
1549 }
1550 
1551 /*
1552  * Find the nodes on which the workload is actively running. We do this by
1553  * tracking the nodes from which NUMA hinting faults are triggered. This can
1554  * be different from the set of nodes where the workload's memory is currently
1555  * located.
1556  *
1557  * The bitmask is used to make smarter decisions on when to do NUMA page
1558  * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1559  * are added when they cause over 6/16 of the maximum number of faults, but
1560  * only removed when they drop below 3/16.
1561  */
1562 static void update_numa_active_node_mask(struct numa_group *numa_group)
1563 {
1564 	unsigned long faults, max_faults = 0;
1565 	int nid;
1566 
1567 	for_each_online_node(nid) {
1568 		faults = group_faults_cpu(numa_group, nid);
1569 		if (faults > max_faults)
1570 			max_faults = faults;
1571 	}
1572 
1573 	for_each_online_node(nid) {
1574 		faults = group_faults_cpu(numa_group, nid);
1575 		if (!node_isset(nid, numa_group->active_nodes)) {
1576 			if (faults > max_faults * 6 / 16)
1577 				node_set(nid, numa_group->active_nodes);
1578 		} else if (faults < max_faults * 3 / 16)
1579 			node_clear(nid, numa_group->active_nodes);
1580 	}
1581 }
1582 
1583 /*
1584  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1585  * increments. The more local the fault statistics are, the higher the scan
1586  * period will be for the next scan window. If local/(local+remote) ratio is
1587  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1588  * the scan period will decrease. Aim for 70% local accesses.
1589  */
1590 #define NUMA_PERIOD_SLOTS 10
1591 #define NUMA_PERIOD_THRESHOLD 7
1592 
1593 /*
1594  * Increase the scan period (slow down scanning) if the majority of
1595  * our memory is already on our local node, or if the majority of
1596  * the page accesses are shared with other processes.
1597  * Otherwise, decrease the scan period.
1598  */
1599 static void update_task_scan_period(struct task_struct *p,
1600 			unsigned long shared, unsigned long private)
1601 {
1602 	unsigned int period_slot;
1603 	int ratio;
1604 	int diff;
1605 
1606 	unsigned long remote = p->numa_faults_locality[0];
1607 	unsigned long local = p->numa_faults_locality[1];
1608 
1609 	/*
1610 	 * If there were no record hinting faults then either the task is
1611 	 * completely idle or all activity is areas that are not of interest
1612 	 * to automatic numa balancing. Related to that, if there were failed
1613 	 * migration then it implies we are migrating too quickly or the local
1614 	 * node is overloaded. In either case, scan slower
1615 	 */
1616 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1617 		p->numa_scan_period = min(p->numa_scan_period_max,
1618 			p->numa_scan_period << 1);
1619 
1620 		p->mm->numa_next_scan = jiffies +
1621 			msecs_to_jiffies(p->numa_scan_period);
1622 
1623 		return;
1624 	}
1625 
1626 	/*
1627 	 * Prepare to scale scan period relative to the current period.
1628 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1629 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1630 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1631 	 */
1632 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1633 	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1634 	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1635 		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1636 		if (!slot)
1637 			slot = 1;
1638 		diff = slot * period_slot;
1639 	} else {
1640 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1641 
1642 		/*
1643 		 * Scale scan rate increases based on sharing. There is an
1644 		 * inverse relationship between the degree of sharing and
1645 		 * the adjustment made to the scanning period. Broadly
1646 		 * speaking the intent is that there is little point
1647 		 * scanning faster if shared accesses dominate as it may
1648 		 * simply bounce migrations uselessly
1649 		 */
1650 		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1651 		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1652 	}
1653 
1654 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1655 			task_scan_min(p), task_scan_max(p));
1656 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1657 }
1658 
1659 /*
1660  * Get the fraction of time the task has been running since the last
1661  * NUMA placement cycle. The scheduler keeps similar statistics, but
1662  * decays those on a 32ms period, which is orders of magnitude off
1663  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1664  * stats only if the task is so new there are no NUMA statistics yet.
1665  */
1666 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1667 {
1668 	u64 runtime, delta, now;
1669 	/* Use the start of this time slice to avoid calculations. */
1670 	now = p->se.exec_start;
1671 	runtime = p->se.sum_exec_runtime;
1672 
1673 	if (p->last_task_numa_placement) {
1674 		delta = runtime - p->last_sum_exec_runtime;
1675 		*period = now - p->last_task_numa_placement;
1676 	} else {
1677 		delta = p->se.avg.runnable_avg_sum;
1678 		*period = p->se.avg.runnable_avg_period;
1679 	}
1680 
1681 	p->last_sum_exec_runtime = runtime;
1682 	p->last_task_numa_placement = now;
1683 
1684 	return delta;
1685 }
1686 
1687 /*
1688  * Determine the preferred nid for a task in a numa_group. This needs to
1689  * be done in a way that produces consistent results with group_weight,
1690  * otherwise workloads might not converge.
1691  */
1692 static int preferred_group_nid(struct task_struct *p, int nid)
1693 {
1694 	nodemask_t nodes;
1695 	int dist;
1696 
1697 	/* Direct connections between all NUMA nodes. */
1698 	if (sched_numa_topology_type == NUMA_DIRECT)
1699 		return nid;
1700 
1701 	/*
1702 	 * On a system with glueless mesh NUMA topology, group_weight
1703 	 * scores nodes according to the number of NUMA hinting faults on
1704 	 * both the node itself, and on nearby nodes.
1705 	 */
1706 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1707 		unsigned long score, max_score = 0;
1708 		int node, max_node = nid;
1709 
1710 		dist = sched_max_numa_distance;
1711 
1712 		for_each_online_node(node) {
1713 			score = group_weight(p, node, dist);
1714 			if (score > max_score) {
1715 				max_score = score;
1716 				max_node = node;
1717 			}
1718 		}
1719 		return max_node;
1720 	}
1721 
1722 	/*
1723 	 * Finding the preferred nid in a system with NUMA backplane
1724 	 * interconnect topology is more involved. The goal is to locate
1725 	 * tasks from numa_groups near each other in the system, and
1726 	 * untangle workloads from different sides of the system. This requires
1727 	 * searching down the hierarchy of node groups, recursively searching
1728 	 * inside the highest scoring group of nodes. The nodemask tricks
1729 	 * keep the complexity of the search down.
1730 	 */
1731 	nodes = node_online_map;
1732 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1733 		unsigned long max_faults = 0;
1734 		nodemask_t max_group = NODE_MASK_NONE;
1735 		int a, b;
1736 
1737 		/* Are there nodes at this distance from each other? */
1738 		if (!find_numa_distance(dist))
1739 			continue;
1740 
1741 		for_each_node_mask(a, nodes) {
1742 			unsigned long faults = 0;
1743 			nodemask_t this_group;
1744 			nodes_clear(this_group);
1745 
1746 			/* Sum group's NUMA faults; includes a==b case. */
1747 			for_each_node_mask(b, nodes) {
1748 				if (node_distance(a, b) < dist) {
1749 					faults += group_faults(p, b);
1750 					node_set(b, this_group);
1751 					node_clear(b, nodes);
1752 				}
1753 			}
1754 
1755 			/* Remember the top group. */
1756 			if (faults > max_faults) {
1757 				max_faults = faults;
1758 				max_group = this_group;
1759 				/*
1760 				 * subtle: at the smallest distance there is
1761 				 * just one node left in each "group", the
1762 				 * winner is the preferred nid.
1763 				 */
1764 				nid = a;
1765 			}
1766 		}
1767 		/* Next round, evaluate the nodes within max_group. */
1768 		nodes = max_group;
1769 	}
1770 	return nid;
1771 }
1772 
1773 static void task_numa_placement(struct task_struct *p)
1774 {
1775 	int seq, nid, max_nid = -1, max_group_nid = -1;
1776 	unsigned long max_faults = 0, max_group_faults = 0;
1777 	unsigned long fault_types[2] = { 0, 0 };
1778 	unsigned long total_faults;
1779 	u64 runtime, period;
1780 	spinlock_t *group_lock = NULL;
1781 
1782 	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1783 	if (p->numa_scan_seq == seq)
1784 		return;
1785 	p->numa_scan_seq = seq;
1786 	p->numa_scan_period_max = task_scan_max(p);
1787 
1788 	total_faults = p->numa_faults_locality[0] +
1789 		       p->numa_faults_locality[1];
1790 	runtime = numa_get_avg_runtime(p, &period);
1791 
1792 	/* If the task is part of a group prevent parallel updates to group stats */
1793 	if (p->numa_group) {
1794 		group_lock = &p->numa_group->lock;
1795 		spin_lock_irq(group_lock);
1796 	}
1797 
1798 	/* Find the node with the highest number of faults */
1799 	for_each_online_node(nid) {
1800 		/* Keep track of the offsets in numa_faults array */
1801 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1802 		unsigned long faults = 0, group_faults = 0;
1803 		int priv;
1804 
1805 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1806 			long diff, f_diff, f_weight;
1807 
1808 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1809 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1810 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1811 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1812 
1813 			/* Decay existing window, copy faults since last scan */
1814 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1815 			fault_types[priv] += p->numa_faults[membuf_idx];
1816 			p->numa_faults[membuf_idx] = 0;
1817 
1818 			/*
1819 			 * Normalize the faults_from, so all tasks in a group
1820 			 * count according to CPU use, instead of by the raw
1821 			 * number of faults. Tasks with little runtime have
1822 			 * little over-all impact on throughput, and thus their
1823 			 * faults are less important.
1824 			 */
1825 			f_weight = div64_u64(runtime << 16, period + 1);
1826 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1827 				   (total_faults + 1);
1828 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1829 			p->numa_faults[cpubuf_idx] = 0;
1830 
1831 			p->numa_faults[mem_idx] += diff;
1832 			p->numa_faults[cpu_idx] += f_diff;
1833 			faults += p->numa_faults[mem_idx];
1834 			p->total_numa_faults += diff;
1835 			if (p->numa_group) {
1836 				/*
1837 				 * safe because we can only change our own group
1838 				 *
1839 				 * mem_idx represents the offset for a given
1840 				 * nid and priv in a specific region because it
1841 				 * is at the beginning of the numa_faults array.
1842 				 */
1843 				p->numa_group->faults[mem_idx] += diff;
1844 				p->numa_group->faults_cpu[mem_idx] += f_diff;
1845 				p->numa_group->total_faults += diff;
1846 				group_faults += p->numa_group->faults[mem_idx];
1847 			}
1848 		}
1849 
1850 		if (faults > max_faults) {
1851 			max_faults = faults;
1852 			max_nid = nid;
1853 		}
1854 
1855 		if (group_faults > max_group_faults) {
1856 			max_group_faults = group_faults;
1857 			max_group_nid = nid;
1858 		}
1859 	}
1860 
1861 	update_task_scan_period(p, fault_types[0], fault_types[1]);
1862 
1863 	if (p->numa_group) {
1864 		update_numa_active_node_mask(p->numa_group);
1865 		spin_unlock_irq(group_lock);
1866 		max_nid = preferred_group_nid(p, max_group_nid);
1867 	}
1868 
1869 	if (max_faults) {
1870 		/* Set the new preferred node */
1871 		if (max_nid != p->numa_preferred_nid)
1872 			sched_setnuma(p, max_nid);
1873 
1874 		if (task_node(p) != p->numa_preferred_nid)
1875 			numa_migrate_preferred(p);
1876 	}
1877 }
1878 
1879 static inline int get_numa_group(struct numa_group *grp)
1880 {
1881 	return atomic_inc_not_zero(&grp->refcount);
1882 }
1883 
1884 static inline void put_numa_group(struct numa_group *grp)
1885 {
1886 	if (atomic_dec_and_test(&grp->refcount))
1887 		kfree_rcu(grp, rcu);
1888 }
1889 
1890 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1891 			int *priv)
1892 {
1893 	struct numa_group *grp, *my_grp;
1894 	struct task_struct *tsk;
1895 	bool join = false;
1896 	int cpu = cpupid_to_cpu(cpupid);
1897 	int i;
1898 
1899 	if (unlikely(!p->numa_group)) {
1900 		unsigned int size = sizeof(struct numa_group) +
1901 				    4*nr_node_ids*sizeof(unsigned long);
1902 
1903 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1904 		if (!grp)
1905 			return;
1906 
1907 		atomic_set(&grp->refcount, 1);
1908 		spin_lock_init(&grp->lock);
1909 		grp->gid = p->pid;
1910 		/* Second half of the array tracks nids where faults happen */
1911 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1912 						nr_node_ids;
1913 
1914 		node_set(task_node(current), grp->active_nodes);
1915 
1916 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1917 			grp->faults[i] = p->numa_faults[i];
1918 
1919 		grp->total_faults = p->total_numa_faults;
1920 
1921 		grp->nr_tasks++;
1922 		rcu_assign_pointer(p->numa_group, grp);
1923 	}
1924 
1925 	rcu_read_lock();
1926 	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1927 
1928 	if (!cpupid_match_pid(tsk, cpupid))
1929 		goto no_join;
1930 
1931 	grp = rcu_dereference(tsk->numa_group);
1932 	if (!grp)
1933 		goto no_join;
1934 
1935 	my_grp = p->numa_group;
1936 	if (grp == my_grp)
1937 		goto no_join;
1938 
1939 	/*
1940 	 * Only join the other group if its bigger; if we're the bigger group,
1941 	 * the other task will join us.
1942 	 */
1943 	if (my_grp->nr_tasks > grp->nr_tasks)
1944 		goto no_join;
1945 
1946 	/*
1947 	 * Tie-break on the grp address.
1948 	 */
1949 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1950 		goto no_join;
1951 
1952 	/* Always join threads in the same process. */
1953 	if (tsk->mm == current->mm)
1954 		join = true;
1955 
1956 	/* Simple filter to avoid false positives due to PID collisions */
1957 	if (flags & TNF_SHARED)
1958 		join = true;
1959 
1960 	/* Update priv based on whether false sharing was detected */
1961 	*priv = !join;
1962 
1963 	if (join && !get_numa_group(grp))
1964 		goto no_join;
1965 
1966 	rcu_read_unlock();
1967 
1968 	if (!join)
1969 		return;
1970 
1971 	BUG_ON(irqs_disabled());
1972 	double_lock_irq(&my_grp->lock, &grp->lock);
1973 
1974 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1975 		my_grp->faults[i] -= p->numa_faults[i];
1976 		grp->faults[i] += p->numa_faults[i];
1977 	}
1978 	my_grp->total_faults -= p->total_numa_faults;
1979 	grp->total_faults += p->total_numa_faults;
1980 
1981 	my_grp->nr_tasks--;
1982 	grp->nr_tasks++;
1983 
1984 	spin_unlock(&my_grp->lock);
1985 	spin_unlock_irq(&grp->lock);
1986 
1987 	rcu_assign_pointer(p->numa_group, grp);
1988 
1989 	put_numa_group(my_grp);
1990 	return;
1991 
1992 no_join:
1993 	rcu_read_unlock();
1994 	return;
1995 }
1996 
1997 void task_numa_free(struct task_struct *p)
1998 {
1999 	struct numa_group *grp = p->numa_group;
2000 	void *numa_faults = p->numa_faults;
2001 	unsigned long flags;
2002 	int i;
2003 
2004 	if (grp) {
2005 		spin_lock_irqsave(&grp->lock, flags);
2006 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2007 			grp->faults[i] -= p->numa_faults[i];
2008 		grp->total_faults -= p->total_numa_faults;
2009 
2010 		grp->nr_tasks--;
2011 		spin_unlock_irqrestore(&grp->lock, flags);
2012 		RCU_INIT_POINTER(p->numa_group, NULL);
2013 		put_numa_group(grp);
2014 	}
2015 
2016 	p->numa_faults = NULL;
2017 	kfree(numa_faults);
2018 }
2019 
2020 /*
2021  * Got a PROT_NONE fault for a page on @node.
2022  */
2023 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2024 {
2025 	struct task_struct *p = current;
2026 	bool migrated = flags & TNF_MIGRATED;
2027 	int cpu_node = task_node(current);
2028 	int local = !!(flags & TNF_FAULT_LOCAL);
2029 	int priv;
2030 
2031 	if (!numabalancing_enabled)
2032 		return;
2033 
2034 	/* for example, ksmd faulting in a user's mm */
2035 	if (!p->mm)
2036 		return;
2037 
2038 	/* Allocate buffer to track faults on a per-node basis */
2039 	if (unlikely(!p->numa_faults)) {
2040 		int size = sizeof(*p->numa_faults) *
2041 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2042 
2043 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2044 		if (!p->numa_faults)
2045 			return;
2046 
2047 		p->total_numa_faults = 0;
2048 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2049 	}
2050 
2051 	/*
2052 	 * First accesses are treated as private, otherwise consider accesses
2053 	 * to be private if the accessing pid has not changed
2054 	 */
2055 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2056 		priv = 1;
2057 	} else {
2058 		priv = cpupid_match_pid(p, last_cpupid);
2059 		if (!priv && !(flags & TNF_NO_GROUP))
2060 			task_numa_group(p, last_cpupid, flags, &priv);
2061 	}
2062 
2063 	/*
2064 	 * If a workload spans multiple NUMA nodes, a shared fault that
2065 	 * occurs wholly within the set of nodes that the workload is
2066 	 * actively using should be counted as local. This allows the
2067 	 * scan rate to slow down when a workload has settled down.
2068 	 */
2069 	if (!priv && !local && p->numa_group &&
2070 			node_isset(cpu_node, p->numa_group->active_nodes) &&
2071 			node_isset(mem_node, p->numa_group->active_nodes))
2072 		local = 1;
2073 
2074 	task_numa_placement(p);
2075 
2076 	/*
2077 	 * Retry task to preferred node migration periodically, in case it
2078 	 * case it previously failed, or the scheduler moved us.
2079 	 */
2080 	if (time_after(jiffies, p->numa_migrate_retry))
2081 		numa_migrate_preferred(p);
2082 
2083 	if (migrated)
2084 		p->numa_pages_migrated += pages;
2085 	if (flags & TNF_MIGRATE_FAIL)
2086 		p->numa_faults_locality[2] += pages;
2087 
2088 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2089 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2090 	p->numa_faults_locality[local] += pages;
2091 }
2092 
2093 static void reset_ptenuma_scan(struct task_struct *p)
2094 {
2095 	ACCESS_ONCE(p->mm->numa_scan_seq)++;
2096 	p->mm->numa_scan_offset = 0;
2097 }
2098 
2099 /*
2100  * The expensive part of numa migration is done from task_work context.
2101  * Triggered from task_tick_numa().
2102  */
2103 void task_numa_work(struct callback_head *work)
2104 {
2105 	unsigned long migrate, next_scan, now = jiffies;
2106 	struct task_struct *p = current;
2107 	struct mm_struct *mm = p->mm;
2108 	struct vm_area_struct *vma;
2109 	unsigned long start, end;
2110 	unsigned long nr_pte_updates = 0;
2111 	long pages;
2112 
2113 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2114 
2115 	work->next = work; /* protect against double add */
2116 	/*
2117 	 * Who cares about NUMA placement when they're dying.
2118 	 *
2119 	 * NOTE: make sure not to dereference p->mm before this check,
2120 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2121 	 * without p->mm even though we still had it when we enqueued this
2122 	 * work.
2123 	 */
2124 	if (p->flags & PF_EXITING)
2125 		return;
2126 
2127 	if (!mm->numa_next_scan) {
2128 		mm->numa_next_scan = now +
2129 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2130 	}
2131 
2132 	/*
2133 	 * Enforce maximal scan/migration frequency..
2134 	 */
2135 	migrate = mm->numa_next_scan;
2136 	if (time_before(now, migrate))
2137 		return;
2138 
2139 	if (p->numa_scan_period == 0) {
2140 		p->numa_scan_period_max = task_scan_max(p);
2141 		p->numa_scan_period = task_scan_min(p);
2142 	}
2143 
2144 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2145 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2146 		return;
2147 
2148 	/*
2149 	 * Delay this task enough that another task of this mm will likely win
2150 	 * the next time around.
2151 	 */
2152 	p->node_stamp += 2 * TICK_NSEC;
2153 
2154 	start = mm->numa_scan_offset;
2155 	pages = sysctl_numa_balancing_scan_size;
2156 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2157 	if (!pages)
2158 		return;
2159 
2160 	down_read(&mm->mmap_sem);
2161 	vma = find_vma(mm, start);
2162 	if (!vma) {
2163 		reset_ptenuma_scan(p);
2164 		start = 0;
2165 		vma = mm->mmap;
2166 	}
2167 	for (; vma; vma = vma->vm_next) {
2168 		if (!vma_migratable(vma) || !vma_policy_mof(vma))
2169 			continue;
2170 
2171 		/*
2172 		 * Shared library pages mapped by multiple processes are not
2173 		 * migrated as it is expected they are cache replicated. Avoid
2174 		 * hinting faults in read-only file-backed mappings or the vdso
2175 		 * as migrating the pages will be of marginal benefit.
2176 		 */
2177 		if (!vma->vm_mm ||
2178 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2179 			continue;
2180 
2181 		/*
2182 		 * Skip inaccessible VMAs to avoid any confusion between
2183 		 * PROT_NONE and NUMA hinting ptes
2184 		 */
2185 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2186 			continue;
2187 
2188 		do {
2189 			start = max(start, vma->vm_start);
2190 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2191 			end = min(end, vma->vm_end);
2192 			nr_pte_updates += change_prot_numa(vma, start, end);
2193 
2194 			/*
2195 			 * Scan sysctl_numa_balancing_scan_size but ensure that
2196 			 * at least one PTE is updated so that unused virtual
2197 			 * address space is quickly skipped.
2198 			 */
2199 			if (nr_pte_updates)
2200 				pages -= (end - start) >> PAGE_SHIFT;
2201 
2202 			start = end;
2203 			if (pages <= 0)
2204 				goto out;
2205 
2206 			cond_resched();
2207 		} while (end != vma->vm_end);
2208 	}
2209 
2210 out:
2211 	/*
2212 	 * It is possible to reach the end of the VMA list but the last few
2213 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2214 	 * would find the !migratable VMA on the next scan but not reset the
2215 	 * scanner to the start so check it now.
2216 	 */
2217 	if (vma)
2218 		mm->numa_scan_offset = start;
2219 	else
2220 		reset_ptenuma_scan(p);
2221 	up_read(&mm->mmap_sem);
2222 }
2223 
2224 /*
2225  * Drive the periodic memory faults..
2226  */
2227 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2228 {
2229 	struct callback_head *work = &curr->numa_work;
2230 	u64 period, now;
2231 
2232 	/*
2233 	 * We don't care about NUMA placement if we don't have memory.
2234 	 */
2235 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2236 		return;
2237 
2238 	/*
2239 	 * Using runtime rather than walltime has the dual advantage that
2240 	 * we (mostly) drive the selection from busy threads and that the
2241 	 * task needs to have done some actual work before we bother with
2242 	 * NUMA placement.
2243 	 */
2244 	now = curr->se.sum_exec_runtime;
2245 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2246 
2247 	if (now - curr->node_stamp > period) {
2248 		if (!curr->node_stamp)
2249 			curr->numa_scan_period = task_scan_min(curr);
2250 		curr->node_stamp += period;
2251 
2252 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2253 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2254 			task_work_add(curr, work, true);
2255 		}
2256 	}
2257 }
2258 #else
2259 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2260 {
2261 }
2262 
2263 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2264 {
2265 }
2266 
2267 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2268 {
2269 }
2270 #endif /* CONFIG_NUMA_BALANCING */
2271 
2272 static void
2273 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2274 {
2275 	update_load_add(&cfs_rq->load, se->load.weight);
2276 	if (!parent_entity(se))
2277 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2278 #ifdef CONFIG_SMP
2279 	if (entity_is_task(se)) {
2280 		struct rq *rq = rq_of(cfs_rq);
2281 
2282 		account_numa_enqueue(rq, task_of(se));
2283 		list_add(&se->group_node, &rq->cfs_tasks);
2284 	}
2285 #endif
2286 	cfs_rq->nr_running++;
2287 }
2288 
2289 static void
2290 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2291 {
2292 	update_load_sub(&cfs_rq->load, se->load.weight);
2293 	if (!parent_entity(se))
2294 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2295 	if (entity_is_task(se)) {
2296 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2297 		list_del_init(&se->group_node);
2298 	}
2299 	cfs_rq->nr_running--;
2300 }
2301 
2302 #ifdef CONFIG_FAIR_GROUP_SCHED
2303 # ifdef CONFIG_SMP
2304 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2305 {
2306 	long tg_weight;
2307 
2308 	/*
2309 	 * Use this CPU's actual weight instead of the last load_contribution
2310 	 * to gain a more accurate current total weight. See
2311 	 * update_cfs_rq_load_contribution().
2312 	 */
2313 	tg_weight = atomic_long_read(&tg->load_avg);
2314 	tg_weight -= cfs_rq->tg_load_contrib;
2315 	tg_weight += cfs_rq->load.weight;
2316 
2317 	return tg_weight;
2318 }
2319 
2320 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2321 {
2322 	long tg_weight, load, shares;
2323 
2324 	tg_weight = calc_tg_weight(tg, cfs_rq);
2325 	load = cfs_rq->load.weight;
2326 
2327 	shares = (tg->shares * load);
2328 	if (tg_weight)
2329 		shares /= tg_weight;
2330 
2331 	if (shares < MIN_SHARES)
2332 		shares = MIN_SHARES;
2333 	if (shares > tg->shares)
2334 		shares = tg->shares;
2335 
2336 	return shares;
2337 }
2338 # else /* CONFIG_SMP */
2339 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2340 {
2341 	return tg->shares;
2342 }
2343 # endif /* CONFIG_SMP */
2344 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2345 			    unsigned long weight)
2346 {
2347 	if (se->on_rq) {
2348 		/* commit outstanding execution time */
2349 		if (cfs_rq->curr == se)
2350 			update_curr(cfs_rq);
2351 		account_entity_dequeue(cfs_rq, se);
2352 	}
2353 
2354 	update_load_set(&se->load, weight);
2355 
2356 	if (se->on_rq)
2357 		account_entity_enqueue(cfs_rq, se);
2358 }
2359 
2360 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2361 
2362 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2363 {
2364 	struct task_group *tg;
2365 	struct sched_entity *se;
2366 	long shares;
2367 
2368 	tg = cfs_rq->tg;
2369 	se = tg->se[cpu_of(rq_of(cfs_rq))];
2370 	if (!se || throttled_hierarchy(cfs_rq))
2371 		return;
2372 #ifndef CONFIG_SMP
2373 	if (likely(se->load.weight == tg->shares))
2374 		return;
2375 #endif
2376 	shares = calc_cfs_shares(cfs_rq, tg);
2377 
2378 	reweight_entity(cfs_rq_of(se), se, shares);
2379 }
2380 #else /* CONFIG_FAIR_GROUP_SCHED */
2381 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2382 {
2383 }
2384 #endif /* CONFIG_FAIR_GROUP_SCHED */
2385 
2386 #ifdef CONFIG_SMP
2387 /*
2388  * We choose a half-life close to 1 scheduling period.
2389  * Note: The tables below are dependent on this value.
2390  */
2391 #define LOAD_AVG_PERIOD 32
2392 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2393 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2394 
2395 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2396 static const u32 runnable_avg_yN_inv[] = {
2397 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2398 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2399 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2400 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2401 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2402 	0x85aac367, 0x82cd8698,
2403 };
2404 
2405 /*
2406  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2407  * over-estimates when re-combining.
2408  */
2409 static const u32 runnable_avg_yN_sum[] = {
2410 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2411 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2412 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2413 };
2414 
2415 /*
2416  * Approximate:
2417  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2418  */
2419 static __always_inline u64 decay_load(u64 val, u64 n)
2420 {
2421 	unsigned int local_n;
2422 
2423 	if (!n)
2424 		return val;
2425 	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2426 		return 0;
2427 
2428 	/* after bounds checking we can collapse to 32-bit */
2429 	local_n = n;
2430 
2431 	/*
2432 	 * As y^PERIOD = 1/2, we can combine
2433 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2434 	 * With a look-up table which covers y^n (n<PERIOD)
2435 	 *
2436 	 * To achieve constant time decay_load.
2437 	 */
2438 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2439 		val >>= local_n / LOAD_AVG_PERIOD;
2440 		local_n %= LOAD_AVG_PERIOD;
2441 	}
2442 
2443 	val *= runnable_avg_yN_inv[local_n];
2444 	/* We don't use SRR here since we always want to round down. */
2445 	return val >> 32;
2446 }
2447 
2448 /*
2449  * For updates fully spanning n periods, the contribution to runnable
2450  * average will be: \Sum 1024*y^n
2451  *
2452  * We can compute this reasonably efficiently by combining:
2453  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2454  */
2455 static u32 __compute_runnable_contrib(u64 n)
2456 {
2457 	u32 contrib = 0;
2458 
2459 	if (likely(n <= LOAD_AVG_PERIOD))
2460 		return runnable_avg_yN_sum[n];
2461 	else if (unlikely(n >= LOAD_AVG_MAX_N))
2462 		return LOAD_AVG_MAX;
2463 
2464 	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2465 	do {
2466 		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2467 		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2468 
2469 		n -= LOAD_AVG_PERIOD;
2470 	} while (n > LOAD_AVG_PERIOD);
2471 
2472 	contrib = decay_load(contrib, n);
2473 	return contrib + runnable_avg_yN_sum[n];
2474 }
2475 
2476 /*
2477  * We can represent the historical contribution to runnable average as the
2478  * coefficients of a geometric series.  To do this we sub-divide our runnable
2479  * history into segments of approximately 1ms (1024us); label the segment that
2480  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2481  *
2482  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2483  *      p0            p1           p2
2484  *     (now)       (~1ms ago)  (~2ms ago)
2485  *
2486  * Let u_i denote the fraction of p_i that the entity was runnable.
2487  *
2488  * We then designate the fractions u_i as our co-efficients, yielding the
2489  * following representation of historical load:
2490  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2491  *
2492  * We choose y based on the with of a reasonably scheduling period, fixing:
2493  *   y^32 = 0.5
2494  *
2495  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2496  * approximately half as much as the contribution to load within the last ms
2497  * (u_0).
2498  *
2499  * When a period "rolls over" and we have new u_0`, multiplying the previous
2500  * sum again by y is sufficient to update:
2501  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2502  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2503  */
2504 static __always_inline int __update_entity_runnable_avg(u64 now,
2505 							struct sched_avg *sa,
2506 							int runnable)
2507 {
2508 	u64 delta, periods;
2509 	u32 runnable_contrib;
2510 	int delta_w, decayed = 0;
2511 
2512 	delta = now - sa->last_runnable_update;
2513 	/*
2514 	 * This should only happen when time goes backwards, which it
2515 	 * unfortunately does during sched clock init when we swap over to TSC.
2516 	 */
2517 	if ((s64)delta < 0) {
2518 		sa->last_runnable_update = now;
2519 		return 0;
2520 	}
2521 
2522 	/*
2523 	 * Use 1024ns as the unit of measurement since it's a reasonable
2524 	 * approximation of 1us and fast to compute.
2525 	 */
2526 	delta >>= 10;
2527 	if (!delta)
2528 		return 0;
2529 	sa->last_runnable_update = now;
2530 
2531 	/* delta_w is the amount already accumulated against our next period */
2532 	delta_w = sa->runnable_avg_period % 1024;
2533 	if (delta + delta_w >= 1024) {
2534 		/* period roll-over */
2535 		decayed = 1;
2536 
2537 		/*
2538 		 * Now that we know we're crossing a period boundary, figure
2539 		 * out how much from delta we need to complete the current
2540 		 * period and accrue it.
2541 		 */
2542 		delta_w = 1024 - delta_w;
2543 		if (runnable)
2544 			sa->runnable_avg_sum += delta_w;
2545 		sa->runnable_avg_period += delta_w;
2546 
2547 		delta -= delta_w;
2548 
2549 		/* Figure out how many additional periods this update spans */
2550 		periods = delta / 1024;
2551 		delta %= 1024;
2552 
2553 		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2554 						  periods + 1);
2555 		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2556 						     periods + 1);
2557 
2558 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2559 		runnable_contrib = __compute_runnable_contrib(periods);
2560 		if (runnable)
2561 			sa->runnable_avg_sum += runnable_contrib;
2562 		sa->runnable_avg_period += runnable_contrib;
2563 	}
2564 
2565 	/* Remainder of delta accrued against u_0` */
2566 	if (runnable)
2567 		sa->runnable_avg_sum += delta;
2568 	sa->runnable_avg_period += delta;
2569 
2570 	return decayed;
2571 }
2572 
2573 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2574 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2575 {
2576 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2577 	u64 decays = atomic64_read(&cfs_rq->decay_counter);
2578 
2579 	decays -= se->avg.decay_count;
2580 	se->avg.decay_count = 0;
2581 	if (!decays)
2582 		return 0;
2583 
2584 	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2585 
2586 	return decays;
2587 }
2588 
2589 #ifdef CONFIG_FAIR_GROUP_SCHED
2590 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2591 						 int force_update)
2592 {
2593 	struct task_group *tg = cfs_rq->tg;
2594 	long tg_contrib;
2595 
2596 	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2597 	tg_contrib -= cfs_rq->tg_load_contrib;
2598 
2599 	if (!tg_contrib)
2600 		return;
2601 
2602 	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2603 		atomic_long_add(tg_contrib, &tg->load_avg);
2604 		cfs_rq->tg_load_contrib += tg_contrib;
2605 	}
2606 }
2607 
2608 /*
2609  * Aggregate cfs_rq runnable averages into an equivalent task_group
2610  * representation for computing load contributions.
2611  */
2612 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2613 						  struct cfs_rq *cfs_rq)
2614 {
2615 	struct task_group *tg = cfs_rq->tg;
2616 	long contrib;
2617 
2618 	/* The fraction of a cpu used by this cfs_rq */
2619 	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2620 			  sa->runnable_avg_period + 1);
2621 	contrib -= cfs_rq->tg_runnable_contrib;
2622 
2623 	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2624 		atomic_add(contrib, &tg->runnable_avg);
2625 		cfs_rq->tg_runnable_contrib += contrib;
2626 	}
2627 }
2628 
2629 static inline void __update_group_entity_contrib(struct sched_entity *se)
2630 {
2631 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2632 	struct task_group *tg = cfs_rq->tg;
2633 	int runnable_avg;
2634 
2635 	u64 contrib;
2636 
2637 	contrib = cfs_rq->tg_load_contrib * tg->shares;
2638 	se->avg.load_avg_contrib = div_u64(contrib,
2639 				     atomic_long_read(&tg->load_avg) + 1);
2640 
2641 	/*
2642 	 * For group entities we need to compute a correction term in the case
2643 	 * that they are consuming <1 cpu so that we would contribute the same
2644 	 * load as a task of equal weight.
2645 	 *
2646 	 * Explicitly co-ordinating this measurement would be expensive, but
2647 	 * fortunately the sum of each cpus contribution forms a usable
2648 	 * lower-bound on the true value.
2649 	 *
2650 	 * Consider the aggregate of 2 contributions.  Either they are disjoint
2651 	 * (and the sum represents true value) or they are disjoint and we are
2652 	 * understating by the aggregate of their overlap.
2653 	 *
2654 	 * Extending this to N cpus, for a given overlap, the maximum amount we
2655 	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2656 	 * cpus that overlap for this interval and w_i is the interval width.
2657 	 *
2658 	 * On a small machine; the first term is well-bounded which bounds the
2659 	 * total error since w_i is a subset of the period.  Whereas on a
2660 	 * larger machine, while this first term can be larger, if w_i is the
2661 	 * of consequential size guaranteed to see n_i*w_i quickly converge to
2662 	 * our upper bound of 1-cpu.
2663 	 */
2664 	runnable_avg = atomic_read(&tg->runnable_avg);
2665 	if (runnable_avg < NICE_0_LOAD) {
2666 		se->avg.load_avg_contrib *= runnable_avg;
2667 		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2668 	}
2669 }
2670 
2671 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2672 {
2673 	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2674 	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
2675 }
2676 #else /* CONFIG_FAIR_GROUP_SCHED */
2677 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2678 						 int force_update) {}
2679 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2680 						  struct cfs_rq *cfs_rq) {}
2681 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2682 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2683 #endif /* CONFIG_FAIR_GROUP_SCHED */
2684 
2685 static inline void __update_task_entity_contrib(struct sched_entity *se)
2686 {
2687 	u32 contrib;
2688 
2689 	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2690 	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2691 	contrib /= (se->avg.runnable_avg_period + 1);
2692 	se->avg.load_avg_contrib = scale_load(contrib);
2693 }
2694 
2695 /* Compute the current contribution to load_avg by se, return any delta */
2696 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2697 {
2698 	long old_contrib = se->avg.load_avg_contrib;
2699 
2700 	if (entity_is_task(se)) {
2701 		__update_task_entity_contrib(se);
2702 	} else {
2703 		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2704 		__update_group_entity_contrib(se);
2705 	}
2706 
2707 	return se->avg.load_avg_contrib - old_contrib;
2708 }
2709 
2710 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2711 						 long load_contrib)
2712 {
2713 	if (likely(load_contrib < cfs_rq->blocked_load_avg))
2714 		cfs_rq->blocked_load_avg -= load_contrib;
2715 	else
2716 		cfs_rq->blocked_load_avg = 0;
2717 }
2718 
2719 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2720 
2721 /* Update a sched_entity's runnable average */
2722 static inline void update_entity_load_avg(struct sched_entity *se,
2723 					  int update_cfs_rq)
2724 {
2725 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2726 	long contrib_delta;
2727 	u64 now;
2728 
2729 	/*
2730 	 * For a group entity we need to use their owned cfs_rq_clock_task() in
2731 	 * case they are the parent of a throttled hierarchy.
2732 	 */
2733 	if (entity_is_task(se))
2734 		now = cfs_rq_clock_task(cfs_rq);
2735 	else
2736 		now = cfs_rq_clock_task(group_cfs_rq(se));
2737 
2738 	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2739 		return;
2740 
2741 	contrib_delta = __update_entity_load_avg_contrib(se);
2742 
2743 	if (!update_cfs_rq)
2744 		return;
2745 
2746 	if (se->on_rq)
2747 		cfs_rq->runnable_load_avg += contrib_delta;
2748 	else
2749 		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2750 }
2751 
2752 /*
2753  * Decay the load contributed by all blocked children and account this so that
2754  * their contribution may appropriately discounted when they wake up.
2755  */
2756 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2757 {
2758 	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2759 	u64 decays;
2760 
2761 	decays = now - cfs_rq->last_decay;
2762 	if (!decays && !force_update)
2763 		return;
2764 
2765 	if (atomic_long_read(&cfs_rq->removed_load)) {
2766 		unsigned long removed_load;
2767 		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2768 		subtract_blocked_load_contrib(cfs_rq, removed_load);
2769 	}
2770 
2771 	if (decays) {
2772 		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2773 						      decays);
2774 		atomic64_add(decays, &cfs_rq->decay_counter);
2775 		cfs_rq->last_decay = now;
2776 	}
2777 
2778 	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2779 }
2780 
2781 /* Add the load generated by se into cfs_rq's child load-average */
2782 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2783 						  struct sched_entity *se,
2784 						  int wakeup)
2785 {
2786 	/*
2787 	 * We track migrations using entity decay_count <= 0, on a wake-up
2788 	 * migration we use a negative decay count to track the remote decays
2789 	 * accumulated while sleeping.
2790 	 *
2791 	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2792 	 * are seen by enqueue_entity_load_avg() as a migration with an already
2793 	 * constructed load_avg_contrib.
2794 	 */
2795 	if (unlikely(se->avg.decay_count <= 0)) {
2796 		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2797 		if (se->avg.decay_count) {
2798 			/*
2799 			 * In a wake-up migration we have to approximate the
2800 			 * time sleeping.  This is because we can't synchronize
2801 			 * clock_task between the two cpus, and it is not
2802 			 * guaranteed to be read-safe.  Instead, we can
2803 			 * approximate this using our carried decays, which are
2804 			 * explicitly atomically readable.
2805 			 */
2806 			se->avg.last_runnable_update -= (-se->avg.decay_count)
2807 							<< 20;
2808 			update_entity_load_avg(se, 0);
2809 			/* Indicate that we're now synchronized and on-rq */
2810 			se->avg.decay_count = 0;
2811 		}
2812 		wakeup = 0;
2813 	} else {
2814 		__synchronize_entity_decay(se);
2815 	}
2816 
2817 	/* migrated tasks did not contribute to our blocked load */
2818 	if (wakeup) {
2819 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2820 		update_entity_load_avg(se, 0);
2821 	}
2822 
2823 	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2824 	/* we force update consideration on load-balancer moves */
2825 	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2826 }
2827 
2828 /*
2829  * Remove se's load from this cfs_rq child load-average, if the entity is
2830  * transitioning to a blocked state we track its projected decay using
2831  * blocked_load_avg.
2832  */
2833 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2834 						  struct sched_entity *se,
2835 						  int sleep)
2836 {
2837 	update_entity_load_avg(se, 1);
2838 	/* we force update consideration on load-balancer moves */
2839 	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2840 
2841 	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2842 	if (sleep) {
2843 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2844 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2845 	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2846 }
2847 
2848 /*
2849  * Update the rq's load with the elapsed running time before entering
2850  * idle. if the last scheduled task is not a CFS task, idle_enter will
2851  * be the only way to update the runnable statistic.
2852  */
2853 void idle_enter_fair(struct rq *this_rq)
2854 {
2855 	update_rq_runnable_avg(this_rq, 1);
2856 }
2857 
2858 /*
2859  * Update the rq's load with the elapsed idle time before a task is
2860  * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2861  * be the only way to update the runnable statistic.
2862  */
2863 void idle_exit_fair(struct rq *this_rq)
2864 {
2865 	update_rq_runnable_avg(this_rq, 0);
2866 }
2867 
2868 static int idle_balance(struct rq *this_rq);
2869 
2870 #else /* CONFIG_SMP */
2871 
2872 static inline void update_entity_load_avg(struct sched_entity *se,
2873 					  int update_cfs_rq) {}
2874 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2875 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2876 					   struct sched_entity *se,
2877 					   int wakeup) {}
2878 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2879 					   struct sched_entity *se,
2880 					   int sleep) {}
2881 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2882 					      int force_update) {}
2883 
2884 static inline int idle_balance(struct rq *rq)
2885 {
2886 	return 0;
2887 }
2888 
2889 #endif /* CONFIG_SMP */
2890 
2891 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2892 {
2893 #ifdef CONFIG_SCHEDSTATS
2894 	struct task_struct *tsk = NULL;
2895 
2896 	if (entity_is_task(se))
2897 		tsk = task_of(se);
2898 
2899 	if (se->statistics.sleep_start) {
2900 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2901 
2902 		if ((s64)delta < 0)
2903 			delta = 0;
2904 
2905 		if (unlikely(delta > se->statistics.sleep_max))
2906 			se->statistics.sleep_max = delta;
2907 
2908 		se->statistics.sleep_start = 0;
2909 		se->statistics.sum_sleep_runtime += delta;
2910 
2911 		if (tsk) {
2912 			account_scheduler_latency(tsk, delta >> 10, 1);
2913 			trace_sched_stat_sleep(tsk, delta);
2914 		}
2915 	}
2916 	if (se->statistics.block_start) {
2917 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2918 
2919 		if ((s64)delta < 0)
2920 			delta = 0;
2921 
2922 		if (unlikely(delta > se->statistics.block_max))
2923 			se->statistics.block_max = delta;
2924 
2925 		se->statistics.block_start = 0;
2926 		se->statistics.sum_sleep_runtime += delta;
2927 
2928 		if (tsk) {
2929 			if (tsk->in_iowait) {
2930 				se->statistics.iowait_sum += delta;
2931 				se->statistics.iowait_count++;
2932 				trace_sched_stat_iowait(tsk, delta);
2933 			}
2934 
2935 			trace_sched_stat_blocked(tsk, delta);
2936 
2937 			/*
2938 			 * Blocking time is in units of nanosecs, so shift by
2939 			 * 20 to get a milliseconds-range estimation of the
2940 			 * amount of time that the task spent sleeping:
2941 			 */
2942 			if (unlikely(prof_on == SLEEP_PROFILING)) {
2943 				profile_hits(SLEEP_PROFILING,
2944 						(void *)get_wchan(tsk),
2945 						delta >> 20);
2946 			}
2947 			account_scheduler_latency(tsk, delta >> 10, 0);
2948 		}
2949 	}
2950 #endif
2951 }
2952 
2953 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2954 {
2955 #ifdef CONFIG_SCHED_DEBUG
2956 	s64 d = se->vruntime - cfs_rq->min_vruntime;
2957 
2958 	if (d < 0)
2959 		d = -d;
2960 
2961 	if (d > 3*sysctl_sched_latency)
2962 		schedstat_inc(cfs_rq, nr_spread_over);
2963 #endif
2964 }
2965 
2966 static void
2967 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2968 {
2969 	u64 vruntime = cfs_rq->min_vruntime;
2970 
2971 	/*
2972 	 * The 'current' period is already promised to the current tasks,
2973 	 * however the extra weight of the new task will slow them down a
2974 	 * little, place the new task so that it fits in the slot that
2975 	 * stays open at the end.
2976 	 */
2977 	if (initial && sched_feat(START_DEBIT))
2978 		vruntime += sched_vslice(cfs_rq, se);
2979 
2980 	/* sleeps up to a single latency don't count. */
2981 	if (!initial) {
2982 		unsigned long thresh = sysctl_sched_latency;
2983 
2984 		/*
2985 		 * Halve their sleep time's effect, to allow
2986 		 * for a gentler effect of sleepers:
2987 		 */
2988 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
2989 			thresh >>= 1;
2990 
2991 		vruntime -= thresh;
2992 	}
2993 
2994 	/* ensure we never gain time by being placed backwards. */
2995 	se->vruntime = max_vruntime(se->vruntime, vruntime);
2996 }
2997 
2998 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2999 
3000 static void
3001 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3002 {
3003 	/*
3004 	 * Update the normalized vruntime before updating min_vruntime
3005 	 * through calling update_curr().
3006 	 */
3007 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3008 		se->vruntime += cfs_rq->min_vruntime;
3009 
3010 	/*
3011 	 * Update run-time statistics of the 'current'.
3012 	 */
3013 	update_curr(cfs_rq);
3014 	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
3015 	account_entity_enqueue(cfs_rq, se);
3016 	update_cfs_shares(cfs_rq);
3017 
3018 	if (flags & ENQUEUE_WAKEUP) {
3019 		place_entity(cfs_rq, se, 0);
3020 		enqueue_sleeper(cfs_rq, se);
3021 	}
3022 
3023 	update_stats_enqueue(cfs_rq, se);
3024 	check_spread(cfs_rq, se);
3025 	if (se != cfs_rq->curr)
3026 		__enqueue_entity(cfs_rq, se);
3027 	se->on_rq = 1;
3028 
3029 	if (cfs_rq->nr_running == 1) {
3030 		list_add_leaf_cfs_rq(cfs_rq);
3031 		check_enqueue_throttle(cfs_rq);
3032 	}
3033 }
3034 
3035 static void __clear_buddies_last(struct sched_entity *se)
3036 {
3037 	for_each_sched_entity(se) {
3038 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3039 		if (cfs_rq->last != se)
3040 			break;
3041 
3042 		cfs_rq->last = NULL;
3043 	}
3044 }
3045 
3046 static void __clear_buddies_next(struct sched_entity *se)
3047 {
3048 	for_each_sched_entity(se) {
3049 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3050 		if (cfs_rq->next != se)
3051 			break;
3052 
3053 		cfs_rq->next = NULL;
3054 	}
3055 }
3056 
3057 static void __clear_buddies_skip(struct sched_entity *se)
3058 {
3059 	for_each_sched_entity(se) {
3060 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3061 		if (cfs_rq->skip != se)
3062 			break;
3063 
3064 		cfs_rq->skip = NULL;
3065 	}
3066 }
3067 
3068 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3069 {
3070 	if (cfs_rq->last == se)
3071 		__clear_buddies_last(se);
3072 
3073 	if (cfs_rq->next == se)
3074 		__clear_buddies_next(se);
3075 
3076 	if (cfs_rq->skip == se)
3077 		__clear_buddies_skip(se);
3078 }
3079 
3080 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3081 
3082 static void
3083 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3084 {
3085 	/*
3086 	 * Update run-time statistics of the 'current'.
3087 	 */
3088 	update_curr(cfs_rq);
3089 	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
3090 
3091 	update_stats_dequeue(cfs_rq, se);
3092 	if (flags & DEQUEUE_SLEEP) {
3093 #ifdef CONFIG_SCHEDSTATS
3094 		if (entity_is_task(se)) {
3095 			struct task_struct *tsk = task_of(se);
3096 
3097 			if (tsk->state & TASK_INTERRUPTIBLE)
3098 				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3099 			if (tsk->state & TASK_UNINTERRUPTIBLE)
3100 				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3101 		}
3102 #endif
3103 	}
3104 
3105 	clear_buddies(cfs_rq, se);
3106 
3107 	if (se != cfs_rq->curr)
3108 		__dequeue_entity(cfs_rq, se);
3109 	se->on_rq = 0;
3110 	account_entity_dequeue(cfs_rq, se);
3111 
3112 	/*
3113 	 * Normalize the entity after updating the min_vruntime because the
3114 	 * update can refer to the ->curr item and we need to reflect this
3115 	 * movement in our normalized position.
3116 	 */
3117 	if (!(flags & DEQUEUE_SLEEP))
3118 		se->vruntime -= cfs_rq->min_vruntime;
3119 
3120 	/* return excess runtime on last dequeue */
3121 	return_cfs_rq_runtime(cfs_rq);
3122 
3123 	update_min_vruntime(cfs_rq);
3124 	update_cfs_shares(cfs_rq);
3125 }
3126 
3127 /*
3128  * Preempt the current task with a newly woken task if needed:
3129  */
3130 static void
3131 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3132 {
3133 	unsigned long ideal_runtime, delta_exec;
3134 	struct sched_entity *se;
3135 	s64 delta;
3136 
3137 	ideal_runtime = sched_slice(cfs_rq, curr);
3138 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3139 	if (delta_exec > ideal_runtime) {
3140 		resched_curr(rq_of(cfs_rq));
3141 		/*
3142 		 * The current task ran long enough, ensure it doesn't get
3143 		 * re-elected due to buddy favours.
3144 		 */
3145 		clear_buddies(cfs_rq, curr);
3146 		return;
3147 	}
3148 
3149 	/*
3150 	 * Ensure that a task that missed wakeup preemption by a
3151 	 * narrow margin doesn't have to wait for a full slice.
3152 	 * This also mitigates buddy induced latencies under load.
3153 	 */
3154 	if (delta_exec < sysctl_sched_min_granularity)
3155 		return;
3156 
3157 	se = __pick_first_entity(cfs_rq);
3158 	delta = curr->vruntime - se->vruntime;
3159 
3160 	if (delta < 0)
3161 		return;
3162 
3163 	if (delta > ideal_runtime)
3164 		resched_curr(rq_of(cfs_rq));
3165 }
3166 
3167 static void
3168 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3169 {
3170 	/* 'current' is not kept within the tree. */
3171 	if (se->on_rq) {
3172 		/*
3173 		 * Any task has to be enqueued before it get to execute on
3174 		 * a CPU. So account for the time it spent waiting on the
3175 		 * runqueue.
3176 		 */
3177 		update_stats_wait_end(cfs_rq, se);
3178 		__dequeue_entity(cfs_rq, se);
3179 	}
3180 
3181 	update_stats_curr_start(cfs_rq, se);
3182 	cfs_rq->curr = se;
3183 #ifdef CONFIG_SCHEDSTATS
3184 	/*
3185 	 * Track our maximum slice length, if the CPU's load is at
3186 	 * least twice that of our own weight (i.e. dont track it
3187 	 * when there are only lesser-weight tasks around):
3188 	 */
3189 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3190 		se->statistics.slice_max = max(se->statistics.slice_max,
3191 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
3192 	}
3193 #endif
3194 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3195 }
3196 
3197 static int
3198 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3199 
3200 /*
3201  * Pick the next process, keeping these things in mind, in this order:
3202  * 1) keep things fair between processes/task groups
3203  * 2) pick the "next" process, since someone really wants that to run
3204  * 3) pick the "last" process, for cache locality
3205  * 4) do not run the "skip" process, if something else is available
3206  */
3207 static struct sched_entity *
3208 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3209 {
3210 	struct sched_entity *left = __pick_first_entity(cfs_rq);
3211 	struct sched_entity *se;
3212 
3213 	/*
3214 	 * If curr is set we have to see if its left of the leftmost entity
3215 	 * still in the tree, provided there was anything in the tree at all.
3216 	 */
3217 	if (!left || (curr && entity_before(curr, left)))
3218 		left = curr;
3219 
3220 	se = left; /* ideally we run the leftmost entity */
3221 
3222 	/*
3223 	 * Avoid running the skip buddy, if running something else can
3224 	 * be done without getting too unfair.
3225 	 */
3226 	if (cfs_rq->skip == se) {
3227 		struct sched_entity *second;
3228 
3229 		if (se == curr) {
3230 			second = __pick_first_entity(cfs_rq);
3231 		} else {
3232 			second = __pick_next_entity(se);
3233 			if (!second || (curr && entity_before(curr, second)))
3234 				second = curr;
3235 		}
3236 
3237 		if (second && wakeup_preempt_entity(second, left) < 1)
3238 			se = second;
3239 	}
3240 
3241 	/*
3242 	 * Prefer last buddy, try to return the CPU to a preempted task.
3243 	 */
3244 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3245 		se = cfs_rq->last;
3246 
3247 	/*
3248 	 * Someone really wants this to run. If it's not unfair, run it.
3249 	 */
3250 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3251 		se = cfs_rq->next;
3252 
3253 	clear_buddies(cfs_rq, se);
3254 
3255 	return se;
3256 }
3257 
3258 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3259 
3260 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3261 {
3262 	/*
3263 	 * If still on the runqueue then deactivate_task()
3264 	 * was not called and update_curr() has to be done:
3265 	 */
3266 	if (prev->on_rq)
3267 		update_curr(cfs_rq);
3268 
3269 	/* throttle cfs_rqs exceeding runtime */
3270 	check_cfs_rq_runtime(cfs_rq);
3271 
3272 	check_spread(cfs_rq, prev);
3273 	if (prev->on_rq) {
3274 		update_stats_wait_start(cfs_rq, prev);
3275 		/* Put 'current' back into the tree. */
3276 		__enqueue_entity(cfs_rq, prev);
3277 		/* in !on_rq case, update occurred at dequeue */
3278 		update_entity_load_avg(prev, 1);
3279 	}
3280 	cfs_rq->curr = NULL;
3281 }
3282 
3283 static void
3284 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3285 {
3286 	/*
3287 	 * Update run-time statistics of the 'current'.
3288 	 */
3289 	update_curr(cfs_rq);
3290 
3291 	/*
3292 	 * Ensure that runnable average is periodically updated.
3293 	 */
3294 	update_entity_load_avg(curr, 1);
3295 	update_cfs_rq_blocked_load(cfs_rq, 1);
3296 	update_cfs_shares(cfs_rq);
3297 
3298 #ifdef CONFIG_SCHED_HRTICK
3299 	/*
3300 	 * queued ticks are scheduled to match the slice, so don't bother
3301 	 * validating it and just reschedule.
3302 	 */
3303 	if (queued) {
3304 		resched_curr(rq_of(cfs_rq));
3305 		return;
3306 	}
3307 	/*
3308 	 * don't let the period tick interfere with the hrtick preemption
3309 	 */
3310 	if (!sched_feat(DOUBLE_TICK) &&
3311 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3312 		return;
3313 #endif
3314 
3315 	if (cfs_rq->nr_running > 1)
3316 		check_preempt_tick(cfs_rq, curr);
3317 }
3318 
3319 
3320 /**************************************************
3321  * CFS bandwidth control machinery
3322  */
3323 
3324 #ifdef CONFIG_CFS_BANDWIDTH
3325 
3326 #ifdef HAVE_JUMP_LABEL
3327 static struct static_key __cfs_bandwidth_used;
3328 
3329 static inline bool cfs_bandwidth_used(void)
3330 {
3331 	return static_key_false(&__cfs_bandwidth_used);
3332 }
3333 
3334 void cfs_bandwidth_usage_inc(void)
3335 {
3336 	static_key_slow_inc(&__cfs_bandwidth_used);
3337 }
3338 
3339 void cfs_bandwidth_usage_dec(void)
3340 {
3341 	static_key_slow_dec(&__cfs_bandwidth_used);
3342 }
3343 #else /* HAVE_JUMP_LABEL */
3344 static bool cfs_bandwidth_used(void)
3345 {
3346 	return true;
3347 }
3348 
3349 void cfs_bandwidth_usage_inc(void) {}
3350 void cfs_bandwidth_usage_dec(void) {}
3351 #endif /* HAVE_JUMP_LABEL */
3352 
3353 /*
3354  * default period for cfs group bandwidth.
3355  * default: 0.1s, units: nanoseconds
3356  */
3357 static inline u64 default_cfs_period(void)
3358 {
3359 	return 100000000ULL;
3360 }
3361 
3362 static inline u64 sched_cfs_bandwidth_slice(void)
3363 {
3364 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3365 }
3366 
3367 /*
3368  * Replenish runtime according to assigned quota and update expiration time.
3369  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3370  * additional synchronization around rq->lock.
3371  *
3372  * requires cfs_b->lock
3373  */
3374 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3375 {
3376 	u64 now;
3377 
3378 	if (cfs_b->quota == RUNTIME_INF)
3379 		return;
3380 
3381 	now = sched_clock_cpu(smp_processor_id());
3382 	cfs_b->runtime = cfs_b->quota;
3383 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3384 }
3385 
3386 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3387 {
3388 	return &tg->cfs_bandwidth;
3389 }
3390 
3391 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3392 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3393 {
3394 	if (unlikely(cfs_rq->throttle_count))
3395 		return cfs_rq->throttled_clock_task;
3396 
3397 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3398 }
3399 
3400 /* returns 0 on failure to allocate runtime */
3401 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3402 {
3403 	struct task_group *tg = cfs_rq->tg;
3404 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3405 	u64 amount = 0, min_amount, expires;
3406 
3407 	/* note: this is a positive sum as runtime_remaining <= 0 */
3408 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3409 
3410 	raw_spin_lock(&cfs_b->lock);
3411 	if (cfs_b->quota == RUNTIME_INF)
3412 		amount = min_amount;
3413 	else {
3414 		/*
3415 		 * If the bandwidth pool has become inactive, then at least one
3416 		 * period must have elapsed since the last consumption.
3417 		 * Refresh the global state and ensure bandwidth timer becomes
3418 		 * active.
3419 		 */
3420 		if (!cfs_b->timer_active) {
3421 			__refill_cfs_bandwidth_runtime(cfs_b);
3422 			__start_cfs_bandwidth(cfs_b, false);
3423 		}
3424 
3425 		if (cfs_b->runtime > 0) {
3426 			amount = min(cfs_b->runtime, min_amount);
3427 			cfs_b->runtime -= amount;
3428 			cfs_b->idle = 0;
3429 		}
3430 	}
3431 	expires = cfs_b->runtime_expires;
3432 	raw_spin_unlock(&cfs_b->lock);
3433 
3434 	cfs_rq->runtime_remaining += amount;
3435 	/*
3436 	 * we may have advanced our local expiration to account for allowed
3437 	 * spread between our sched_clock and the one on which runtime was
3438 	 * issued.
3439 	 */
3440 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3441 		cfs_rq->runtime_expires = expires;
3442 
3443 	return cfs_rq->runtime_remaining > 0;
3444 }
3445 
3446 /*
3447  * Note: This depends on the synchronization provided by sched_clock and the
3448  * fact that rq->clock snapshots this value.
3449  */
3450 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3451 {
3452 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3453 
3454 	/* if the deadline is ahead of our clock, nothing to do */
3455 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3456 		return;
3457 
3458 	if (cfs_rq->runtime_remaining < 0)
3459 		return;
3460 
3461 	/*
3462 	 * If the local deadline has passed we have to consider the
3463 	 * possibility that our sched_clock is 'fast' and the global deadline
3464 	 * has not truly expired.
3465 	 *
3466 	 * Fortunately we can check determine whether this the case by checking
3467 	 * whether the global deadline has advanced. It is valid to compare
3468 	 * cfs_b->runtime_expires without any locks since we only care about
3469 	 * exact equality, so a partial write will still work.
3470 	 */
3471 
3472 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3473 		/* extend local deadline, drift is bounded above by 2 ticks */
3474 		cfs_rq->runtime_expires += TICK_NSEC;
3475 	} else {
3476 		/* global deadline is ahead, expiration has passed */
3477 		cfs_rq->runtime_remaining = 0;
3478 	}
3479 }
3480 
3481 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3482 {
3483 	/* dock delta_exec before expiring quota (as it could span periods) */
3484 	cfs_rq->runtime_remaining -= delta_exec;
3485 	expire_cfs_rq_runtime(cfs_rq);
3486 
3487 	if (likely(cfs_rq->runtime_remaining > 0))
3488 		return;
3489 
3490 	/*
3491 	 * if we're unable to extend our runtime we resched so that the active
3492 	 * hierarchy can be throttled
3493 	 */
3494 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3495 		resched_curr(rq_of(cfs_rq));
3496 }
3497 
3498 static __always_inline
3499 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3500 {
3501 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3502 		return;
3503 
3504 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
3505 }
3506 
3507 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3508 {
3509 	return cfs_bandwidth_used() && cfs_rq->throttled;
3510 }
3511 
3512 /* check whether cfs_rq, or any parent, is throttled */
3513 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3514 {
3515 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3516 }
3517 
3518 /*
3519  * Ensure that neither of the group entities corresponding to src_cpu or
3520  * dest_cpu are members of a throttled hierarchy when performing group
3521  * load-balance operations.
3522  */
3523 static inline int throttled_lb_pair(struct task_group *tg,
3524 				    int src_cpu, int dest_cpu)
3525 {
3526 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3527 
3528 	src_cfs_rq = tg->cfs_rq[src_cpu];
3529 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
3530 
3531 	return throttled_hierarchy(src_cfs_rq) ||
3532 	       throttled_hierarchy(dest_cfs_rq);
3533 }
3534 
3535 /* updated child weight may affect parent so we have to do this bottom up */
3536 static int tg_unthrottle_up(struct task_group *tg, void *data)
3537 {
3538 	struct rq *rq = data;
3539 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3540 
3541 	cfs_rq->throttle_count--;
3542 #ifdef CONFIG_SMP
3543 	if (!cfs_rq->throttle_count) {
3544 		/* adjust cfs_rq_clock_task() */
3545 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3546 					     cfs_rq->throttled_clock_task;
3547 	}
3548 #endif
3549 
3550 	return 0;
3551 }
3552 
3553 static int tg_throttle_down(struct task_group *tg, void *data)
3554 {
3555 	struct rq *rq = data;
3556 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3557 
3558 	/* group is entering throttled state, stop time */
3559 	if (!cfs_rq->throttle_count)
3560 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3561 	cfs_rq->throttle_count++;
3562 
3563 	return 0;
3564 }
3565 
3566 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3567 {
3568 	struct rq *rq = rq_of(cfs_rq);
3569 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3570 	struct sched_entity *se;
3571 	long task_delta, dequeue = 1;
3572 
3573 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3574 
3575 	/* freeze hierarchy runnable averages while throttled */
3576 	rcu_read_lock();
3577 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3578 	rcu_read_unlock();
3579 
3580 	task_delta = cfs_rq->h_nr_running;
3581 	for_each_sched_entity(se) {
3582 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3583 		/* throttled entity or throttle-on-deactivate */
3584 		if (!se->on_rq)
3585 			break;
3586 
3587 		if (dequeue)
3588 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3589 		qcfs_rq->h_nr_running -= task_delta;
3590 
3591 		if (qcfs_rq->load.weight)
3592 			dequeue = 0;
3593 	}
3594 
3595 	if (!se)
3596 		sub_nr_running(rq, task_delta);
3597 
3598 	cfs_rq->throttled = 1;
3599 	cfs_rq->throttled_clock = rq_clock(rq);
3600 	raw_spin_lock(&cfs_b->lock);
3601 	/*
3602 	 * Add to the _head_ of the list, so that an already-started
3603 	 * distribute_cfs_runtime will not see us
3604 	 */
3605 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3606 	if (!cfs_b->timer_active)
3607 		__start_cfs_bandwidth(cfs_b, false);
3608 	raw_spin_unlock(&cfs_b->lock);
3609 }
3610 
3611 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3612 {
3613 	struct rq *rq = rq_of(cfs_rq);
3614 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3615 	struct sched_entity *se;
3616 	int enqueue = 1;
3617 	long task_delta;
3618 
3619 	se = cfs_rq->tg->se[cpu_of(rq)];
3620 
3621 	cfs_rq->throttled = 0;
3622 
3623 	update_rq_clock(rq);
3624 
3625 	raw_spin_lock(&cfs_b->lock);
3626 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3627 	list_del_rcu(&cfs_rq->throttled_list);
3628 	raw_spin_unlock(&cfs_b->lock);
3629 
3630 	/* update hierarchical throttle state */
3631 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3632 
3633 	if (!cfs_rq->load.weight)
3634 		return;
3635 
3636 	task_delta = cfs_rq->h_nr_running;
3637 	for_each_sched_entity(se) {
3638 		if (se->on_rq)
3639 			enqueue = 0;
3640 
3641 		cfs_rq = cfs_rq_of(se);
3642 		if (enqueue)
3643 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3644 		cfs_rq->h_nr_running += task_delta;
3645 
3646 		if (cfs_rq_throttled(cfs_rq))
3647 			break;
3648 	}
3649 
3650 	if (!se)
3651 		add_nr_running(rq, task_delta);
3652 
3653 	/* determine whether we need to wake up potentially idle cpu */
3654 	if (rq->curr == rq->idle && rq->cfs.nr_running)
3655 		resched_curr(rq);
3656 }
3657 
3658 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3659 		u64 remaining, u64 expires)
3660 {
3661 	struct cfs_rq *cfs_rq;
3662 	u64 runtime;
3663 	u64 starting_runtime = remaining;
3664 
3665 	rcu_read_lock();
3666 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3667 				throttled_list) {
3668 		struct rq *rq = rq_of(cfs_rq);
3669 
3670 		raw_spin_lock(&rq->lock);
3671 		if (!cfs_rq_throttled(cfs_rq))
3672 			goto next;
3673 
3674 		runtime = -cfs_rq->runtime_remaining + 1;
3675 		if (runtime > remaining)
3676 			runtime = remaining;
3677 		remaining -= runtime;
3678 
3679 		cfs_rq->runtime_remaining += runtime;
3680 		cfs_rq->runtime_expires = expires;
3681 
3682 		/* we check whether we're throttled above */
3683 		if (cfs_rq->runtime_remaining > 0)
3684 			unthrottle_cfs_rq(cfs_rq);
3685 
3686 next:
3687 		raw_spin_unlock(&rq->lock);
3688 
3689 		if (!remaining)
3690 			break;
3691 	}
3692 	rcu_read_unlock();
3693 
3694 	return starting_runtime - remaining;
3695 }
3696 
3697 /*
3698  * Responsible for refilling a task_group's bandwidth and unthrottling its
3699  * cfs_rqs as appropriate. If there has been no activity within the last
3700  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3701  * used to track this state.
3702  */
3703 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3704 {
3705 	u64 runtime, runtime_expires;
3706 	int throttled;
3707 
3708 	/* no need to continue the timer with no bandwidth constraint */
3709 	if (cfs_b->quota == RUNTIME_INF)
3710 		goto out_deactivate;
3711 
3712 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3713 	cfs_b->nr_periods += overrun;
3714 
3715 	/*
3716 	 * idle depends on !throttled (for the case of a large deficit), and if
3717 	 * we're going inactive then everything else can be deferred
3718 	 */
3719 	if (cfs_b->idle && !throttled)
3720 		goto out_deactivate;
3721 
3722 	/*
3723 	 * if we have relooped after returning idle once, we need to update our
3724 	 * status as actually running, so that other cpus doing
3725 	 * __start_cfs_bandwidth will stop trying to cancel us.
3726 	 */
3727 	cfs_b->timer_active = 1;
3728 
3729 	__refill_cfs_bandwidth_runtime(cfs_b);
3730 
3731 	if (!throttled) {
3732 		/* mark as potentially idle for the upcoming period */
3733 		cfs_b->idle = 1;
3734 		return 0;
3735 	}
3736 
3737 	/* account preceding periods in which throttling occurred */
3738 	cfs_b->nr_throttled += overrun;
3739 
3740 	runtime_expires = cfs_b->runtime_expires;
3741 
3742 	/*
3743 	 * This check is repeated as we are holding onto the new bandwidth while
3744 	 * we unthrottle. This can potentially race with an unthrottled group
3745 	 * trying to acquire new bandwidth from the global pool. This can result
3746 	 * in us over-using our runtime if it is all used during this loop, but
3747 	 * only by limited amounts in that extreme case.
3748 	 */
3749 	while (throttled && cfs_b->runtime > 0) {
3750 		runtime = cfs_b->runtime;
3751 		raw_spin_unlock(&cfs_b->lock);
3752 		/* we can't nest cfs_b->lock while distributing bandwidth */
3753 		runtime = distribute_cfs_runtime(cfs_b, runtime,
3754 						 runtime_expires);
3755 		raw_spin_lock(&cfs_b->lock);
3756 
3757 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3758 
3759 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3760 	}
3761 
3762 	/*
3763 	 * While we are ensured activity in the period following an
3764 	 * unthrottle, this also covers the case in which the new bandwidth is
3765 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
3766 	 * timer to remain active while there are any throttled entities.)
3767 	 */
3768 	cfs_b->idle = 0;
3769 
3770 	return 0;
3771 
3772 out_deactivate:
3773 	cfs_b->timer_active = 0;
3774 	return 1;
3775 }
3776 
3777 /* a cfs_rq won't donate quota below this amount */
3778 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3779 /* minimum remaining period time to redistribute slack quota */
3780 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3781 /* how long we wait to gather additional slack before distributing */
3782 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3783 
3784 /*
3785  * Are we near the end of the current quota period?
3786  *
3787  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3788  * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3789  * migrate_hrtimers, base is never cleared, so we are fine.
3790  */
3791 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3792 {
3793 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
3794 	u64 remaining;
3795 
3796 	/* if the call-back is running a quota refresh is already occurring */
3797 	if (hrtimer_callback_running(refresh_timer))
3798 		return 1;
3799 
3800 	/* is a quota refresh about to occur? */
3801 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3802 	if (remaining < min_expire)
3803 		return 1;
3804 
3805 	return 0;
3806 }
3807 
3808 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3809 {
3810 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3811 
3812 	/* if there's a quota refresh soon don't bother with slack */
3813 	if (runtime_refresh_within(cfs_b, min_left))
3814 		return;
3815 
3816 	start_bandwidth_timer(&cfs_b->slack_timer,
3817 				ns_to_ktime(cfs_bandwidth_slack_period));
3818 }
3819 
3820 /* we know any runtime found here is valid as update_curr() precedes return */
3821 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3822 {
3823 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3824 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3825 
3826 	if (slack_runtime <= 0)
3827 		return;
3828 
3829 	raw_spin_lock(&cfs_b->lock);
3830 	if (cfs_b->quota != RUNTIME_INF &&
3831 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3832 		cfs_b->runtime += slack_runtime;
3833 
3834 		/* we are under rq->lock, defer unthrottling using a timer */
3835 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3836 		    !list_empty(&cfs_b->throttled_cfs_rq))
3837 			start_cfs_slack_bandwidth(cfs_b);
3838 	}
3839 	raw_spin_unlock(&cfs_b->lock);
3840 
3841 	/* even if it's not valid for return we don't want to try again */
3842 	cfs_rq->runtime_remaining -= slack_runtime;
3843 }
3844 
3845 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3846 {
3847 	if (!cfs_bandwidth_used())
3848 		return;
3849 
3850 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3851 		return;
3852 
3853 	__return_cfs_rq_runtime(cfs_rq);
3854 }
3855 
3856 /*
3857  * This is done with a timer (instead of inline with bandwidth return) since
3858  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3859  */
3860 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3861 {
3862 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3863 	u64 expires;
3864 
3865 	/* confirm we're still not at a refresh boundary */
3866 	raw_spin_lock(&cfs_b->lock);
3867 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3868 		raw_spin_unlock(&cfs_b->lock);
3869 		return;
3870 	}
3871 
3872 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3873 		runtime = cfs_b->runtime;
3874 
3875 	expires = cfs_b->runtime_expires;
3876 	raw_spin_unlock(&cfs_b->lock);
3877 
3878 	if (!runtime)
3879 		return;
3880 
3881 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3882 
3883 	raw_spin_lock(&cfs_b->lock);
3884 	if (expires == cfs_b->runtime_expires)
3885 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3886 	raw_spin_unlock(&cfs_b->lock);
3887 }
3888 
3889 /*
3890  * When a group wakes up we want to make sure that its quota is not already
3891  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3892  * runtime as update_curr() throttling can not not trigger until it's on-rq.
3893  */
3894 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3895 {
3896 	if (!cfs_bandwidth_used())
3897 		return;
3898 
3899 	/* an active group must be handled by the update_curr()->put() path */
3900 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3901 		return;
3902 
3903 	/* ensure the group is not already throttled */
3904 	if (cfs_rq_throttled(cfs_rq))
3905 		return;
3906 
3907 	/* update runtime allocation */
3908 	account_cfs_rq_runtime(cfs_rq, 0);
3909 	if (cfs_rq->runtime_remaining <= 0)
3910 		throttle_cfs_rq(cfs_rq);
3911 }
3912 
3913 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3914 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3915 {
3916 	if (!cfs_bandwidth_used())
3917 		return false;
3918 
3919 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3920 		return false;
3921 
3922 	/*
3923 	 * it's possible for a throttled entity to be forced into a running
3924 	 * state (e.g. set_curr_task), in this case we're finished.
3925 	 */
3926 	if (cfs_rq_throttled(cfs_rq))
3927 		return true;
3928 
3929 	throttle_cfs_rq(cfs_rq);
3930 	return true;
3931 }
3932 
3933 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3934 {
3935 	struct cfs_bandwidth *cfs_b =
3936 		container_of(timer, struct cfs_bandwidth, slack_timer);
3937 	do_sched_cfs_slack_timer(cfs_b);
3938 
3939 	return HRTIMER_NORESTART;
3940 }
3941 
3942 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3943 {
3944 	struct cfs_bandwidth *cfs_b =
3945 		container_of(timer, struct cfs_bandwidth, period_timer);
3946 	ktime_t now;
3947 	int overrun;
3948 	int idle = 0;
3949 
3950 	raw_spin_lock(&cfs_b->lock);
3951 	for (;;) {
3952 		now = hrtimer_cb_get_time(timer);
3953 		overrun = hrtimer_forward(timer, now, cfs_b->period);
3954 
3955 		if (!overrun)
3956 			break;
3957 
3958 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
3959 	}
3960 	raw_spin_unlock(&cfs_b->lock);
3961 
3962 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3963 }
3964 
3965 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3966 {
3967 	raw_spin_lock_init(&cfs_b->lock);
3968 	cfs_b->runtime = 0;
3969 	cfs_b->quota = RUNTIME_INF;
3970 	cfs_b->period = ns_to_ktime(default_cfs_period());
3971 
3972 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3973 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3974 	cfs_b->period_timer.function = sched_cfs_period_timer;
3975 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3976 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
3977 }
3978 
3979 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3980 {
3981 	cfs_rq->runtime_enabled = 0;
3982 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
3983 }
3984 
3985 /* requires cfs_b->lock, may release to reprogram timer */
3986 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3987 {
3988 	/*
3989 	 * The timer may be active because we're trying to set a new bandwidth
3990 	 * period or because we're racing with the tear-down path
3991 	 * (timer_active==0 becomes visible before the hrtimer call-back
3992 	 * terminates).  In either case we ensure that it's re-programmed
3993 	 */
3994 	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3995 	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3996 		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3997 		raw_spin_unlock(&cfs_b->lock);
3998 		cpu_relax();
3999 		raw_spin_lock(&cfs_b->lock);
4000 		/* if someone else restarted the timer then we're done */
4001 		if (!force && cfs_b->timer_active)
4002 			return;
4003 	}
4004 
4005 	cfs_b->timer_active = 1;
4006 	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4007 }
4008 
4009 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4010 {
4011 	/* init_cfs_bandwidth() was not called */
4012 	if (!cfs_b->throttled_cfs_rq.next)
4013 		return;
4014 
4015 	hrtimer_cancel(&cfs_b->period_timer);
4016 	hrtimer_cancel(&cfs_b->slack_timer);
4017 }
4018 
4019 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4020 {
4021 	struct cfs_rq *cfs_rq;
4022 
4023 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4024 		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4025 
4026 		raw_spin_lock(&cfs_b->lock);
4027 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4028 		raw_spin_unlock(&cfs_b->lock);
4029 	}
4030 }
4031 
4032 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4033 {
4034 	struct cfs_rq *cfs_rq;
4035 
4036 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4037 		if (!cfs_rq->runtime_enabled)
4038 			continue;
4039 
4040 		/*
4041 		 * clock_task is not advancing so we just need to make sure
4042 		 * there's some valid quota amount
4043 		 */
4044 		cfs_rq->runtime_remaining = 1;
4045 		/*
4046 		 * Offline rq is schedulable till cpu is completely disabled
4047 		 * in take_cpu_down(), so we prevent new cfs throttling here.
4048 		 */
4049 		cfs_rq->runtime_enabled = 0;
4050 
4051 		if (cfs_rq_throttled(cfs_rq))
4052 			unthrottle_cfs_rq(cfs_rq);
4053 	}
4054 }
4055 
4056 #else /* CONFIG_CFS_BANDWIDTH */
4057 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4058 {
4059 	return rq_clock_task(rq_of(cfs_rq));
4060 }
4061 
4062 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4063 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4064 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4065 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4066 
4067 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4068 {
4069 	return 0;
4070 }
4071 
4072 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4073 {
4074 	return 0;
4075 }
4076 
4077 static inline int throttled_lb_pair(struct task_group *tg,
4078 				    int src_cpu, int dest_cpu)
4079 {
4080 	return 0;
4081 }
4082 
4083 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4084 
4085 #ifdef CONFIG_FAIR_GROUP_SCHED
4086 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4087 #endif
4088 
4089 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4090 {
4091 	return NULL;
4092 }
4093 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4094 static inline void update_runtime_enabled(struct rq *rq) {}
4095 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4096 
4097 #endif /* CONFIG_CFS_BANDWIDTH */
4098 
4099 /**************************************************
4100  * CFS operations on tasks:
4101  */
4102 
4103 #ifdef CONFIG_SCHED_HRTICK
4104 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4105 {
4106 	struct sched_entity *se = &p->se;
4107 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4108 
4109 	WARN_ON(task_rq(p) != rq);
4110 
4111 	if (cfs_rq->nr_running > 1) {
4112 		u64 slice = sched_slice(cfs_rq, se);
4113 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4114 		s64 delta = slice - ran;
4115 
4116 		if (delta < 0) {
4117 			if (rq->curr == p)
4118 				resched_curr(rq);
4119 			return;
4120 		}
4121 		hrtick_start(rq, delta);
4122 	}
4123 }
4124 
4125 /*
4126  * called from enqueue/dequeue and updates the hrtick when the
4127  * current task is from our class and nr_running is low enough
4128  * to matter.
4129  */
4130 static void hrtick_update(struct rq *rq)
4131 {
4132 	struct task_struct *curr = rq->curr;
4133 
4134 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4135 		return;
4136 
4137 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4138 		hrtick_start_fair(rq, curr);
4139 }
4140 #else /* !CONFIG_SCHED_HRTICK */
4141 static inline void
4142 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4143 {
4144 }
4145 
4146 static inline void hrtick_update(struct rq *rq)
4147 {
4148 }
4149 #endif
4150 
4151 /*
4152  * The enqueue_task method is called before nr_running is
4153  * increased. Here we update the fair scheduling stats and
4154  * then put the task into the rbtree:
4155  */
4156 static void
4157 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4158 {
4159 	struct cfs_rq *cfs_rq;
4160 	struct sched_entity *se = &p->se;
4161 
4162 	for_each_sched_entity(se) {
4163 		if (se->on_rq)
4164 			break;
4165 		cfs_rq = cfs_rq_of(se);
4166 		enqueue_entity(cfs_rq, se, flags);
4167 
4168 		/*
4169 		 * end evaluation on encountering a throttled cfs_rq
4170 		 *
4171 		 * note: in the case of encountering a throttled cfs_rq we will
4172 		 * post the final h_nr_running increment below.
4173 		*/
4174 		if (cfs_rq_throttled(cfs_rq))
4175 			break;
4176 		cfs_rq->h_nr_running++;
4177 
4178 		flags = ENQUEUE_WAKEUP;
4179 	}
4180 
4181 	for_each_sched_entity(se) {
4182 		cfs_rq = cfs_rq_of(se);
4183 		cfs_rq->h_nr_running++;
4184 
4185 		if (cfs_rq_throttled(cfs_rq))
4186 			break;
4187 
4188 		update_cfs_shares(cfs_rq);
4189 		update_entity_load_avg(se, 1);
4190 	}
4191 
4192 	if (!se) {
4193 		update_rq_runnable_avg(rq, rq->nr_running);
4194 		add_nr_running(rq, 1);
4195 	}
4196 	hrtick_update(rq);
4197 }
4198 
4199 static void set_next_buddy(struct sched_entity *se);
4200 
4201 /*
4202  * The dequeue_task method is called before nr_running is
4203  * decreased. We remove the task from the rbtree and
4204  * update the fair scheduling stats:
4205  */
4206 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4207 {
4208 	struct cfs_rq *cfs_rq;
4209 	struct sched_entity *se = &p->se;
4210 	int task_sleep = flags & DEQUEUE_SLEEP;
4211 
4212 	for_each_sched_entity(se) {
4213 		cfs_rq = cfs_rq_of(se);
4214 		dequeue_entity(cfs_rq, se, flags);
4215 
4216 		/*
4217 		 * end evaluation on encountering a throttled cfs_rq
4218 		 *
4219 		 * note: in the case of encountering a throttled cfs_rq we will
4220 		 * post the final h_nr_running decrement below.
4221 		*/
4222 		if (cfs_rq_throttled(cfs_rq))
4223 			break;
4224 		cfs_rq->h_nr_running--;
4225 
4226 		/* Don't dequeue parent if it has other entities besides us */
4227 		if (cfs_rq->load.weight) {
4228 			/*
4229 			 * Bias pick_next to pick a task from this cfs_rq, as
4230 			 * p is sleeping when it is within its sched_slice.
4231 			 */
4232 			if (task_sleep && parent_entity(se))
4233 				set_next_buddy(parent_entity(se));
4234 
4235 			/* avoid re-evaluating load for this entity */
4236 			se = parent_entity(se);
4237 			break;
4238 		}
4239 		flags |= DEQUEUE_SLEEP;
4240 	}
4241 
4242 	for_each_sched_entity(se) {
4243 		cfs_rq = cfs_rq_of(se);
4244 		cfs_rq->h_nr_running--;
4245 
4246 		if (cfs_rq_throttled(cfs_rq))
4247 			break;
4248 
4249 		update_cfs_shares(cfs_rq);
4250 		update_entity_load_avg(se, 1);
4251 	}
4252 
4253 	if (!se) {
4254 		sub_nr_running(rq, 1);
4255 		update_rq_runnable_avg(rq, 1);
4256 	}
4257 	hrtick_update(rq);
4258 }
4259 
4260 #ifdef CONFIG_SMP
4261 /* Used instead of source_load when we know the type == 0 */
4262 static unsigned long weighted_cpuload(const int cpu)
4263 {
4264 	return cpu_rq(cpu)->cfs.runnable_load_avg;
4265 }
4266 
4267 /*
4268  * Return a low guess at the load of a migration-source cpu weighted
4269  * according to the scheduling class and "nice" value.
4270  *
4271  * We want to under-estimate the load of migration sources, to
4272  * balance conservatively.
4273  */
4274 static unsigned long source_load(int cpu, int type)
4275 {
4276 	struct rq *rq = cpu_rq(cpu);
4277 	unsigned long total = weighted_cpuload(cpu);
4278 
4279 	if (type == 0 || !sched_feat(LB_BIAS))
4280 		return total;
4281 
4282 	return min(rq->cpu_load[type-1], total);
4283 }
4284 
4285 /*
4286  * Return a high guess at the load of a migration-target cpu weighted
4287  * according to the scheduling class and "nice" value.
4288  */
4289 static unsigned long target_load(int cpu, int type)
4290 {
4291 	struct rq *rq = cpu_rq(cpu);
4292 	unsigned long total = weighted_cpuload(cpu);
4293 
4294 	if (type == 0 || !sched_feat(LB_BIAS))
4295 		return total;
4296 
4297 	return max(rq->cpu_load[type-1], total);
4298 }
4299 
4300 static unsigned long capacity_of(int cpu)
4301 {
4302 	return cpu_rq(cpu)->cpu_capacity;
4303 }
4304 
4305 static unsigned long cpu_avg_load_per_task(int cpu)
4306 {
4307 	struct rq *rq = cpu_rq(cpu);
4308 	unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
4309 	unsigned long load_avg = rq->cfs.runnable_load_avg;
4310 
4311 	if (nr_running)
4312 		return load_avg / nr_running;
4313 
4314 	return 0;
4315 }
4316 
4317 static void record_wakee(struct task_struct *p)
4318 {
4319 	/*
4320 	 * Rough decay (wiping) for cost saving, don't worry
4321 	 * about the boundary, really active task won't care
4322 	 * about the loss.
4323 	 */
4324 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4325 		current->wakee_flips >>= 1;
4326 		current->wakee_flip_decay_ts = jiffies;
4327 	}
4328 
4329 	if (current->last_wakee != p) {
4330 		current->last_wakee = p;
4331 		current->wakee_flips++;
4332 	}
4333 }
4334 
4335 static void task_waking_fair(struct task_struct *p)
4336 {
4337 	struct sched_entity *se = &p->se;
4338 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4339 	u64 min_vruntime;
4340 
4341 #ifndef CONFIG_64BIT
4342 	u64 min_vruntime_copy;
4343 
4344 	do {
4345 		min_vruntime_copy = cfs_rq->min_vruntime_copy;
4346 		smp_rmb();
4347 		min_vruntime = cfs_rq->min_vruntime;
4348 	} while (min_vruntime != min_vruntime_copy);
4349 #else
4350 	min_vruntime = cfs_rq->min_vruntime;
4351 #endif
4352 
4353 	se->vruntime -= min_vruntime;
4354 	record_wakee(p);
4355 }
4356 
4357 #ifdef CONFIG_FAIR_GROUP_SCHED
4358 /*
4359  * effective_load() calculates the load change as seen from the root_task_group
4360  *
4361  * Adding load to a group doesn't make a group heavier, but can cause movement
4362  * of group shares between cpus. Assuming the shares were perfectly aligned one
4363  * can calculate the shift in shares.
4364  *
4365  * Calculate the effective load difference if @wl is added (subtracted) to @tg
4366  * on this @cpu and results in a total addition (subtraction) of @wg to the
4367  * total group weight.
4368  *
4369  * Given a runqueue weight distribution (rw_i) we can compute a shares
4370  * distribution (s_i) using:
4371  *
4372  *   s_i = rw_i / \Sum rw_j						(1)
4373  *
4374  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4375  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4376  * shares distribution (s_i):
4377  *
4378  *   rw_i = {   2,   4,   1,   0 }
4379  *   s_i  = { 2/7, 4/7, 1/7,   0 }
4380  *
4381  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4382  * task used to run on and the CPU the waker is running on), we need to
4383  * compute the effect of waking a task on either CPU and, in case of a sync
4384  * wakeup, compute the effect of the current task going to sleep.
4385  *
4386  * So for a change of @wl to the local @cpu with an overall group weight change
4387  * of @wl we can compute the new shares distribution (s'_i) using:
4388  *
4389  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
4390  *
4391  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4392  * differences in waking a task to CPU 0. The additional task changes the
4393  * weight and shares distributions like:
4394  *
4395  *   rw'_i = {   3,   4,   1,   0 }
4396  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4397  *
4398  * We can then compute the difference in effective weight by using:
4399  *
4400  *   dw_i = S * (s'_i - s_i)						(3)
4401  *
4402  * Where 'S' is the group weight as seen by its parent.
4403  *
4404  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4405  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4406  * 4/7) times the weight of the group.
4407  */
4408 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4409 {
4410 	struct sched_entity *se = tg->se[cpu];
4411 
4412 	if (!tg->parent)	/* the trivial, non-cgroup case */
4413 		return wl;
4414 
4415 	for_each_sched_entity(se) {
4416 		long w, W;
4417 
4418 		tg = se->my_q->tg;
4419 
4420 		/*
4421 		 * W = @wg + \Sum rw_j
4422 		 */
4423 		W = wg + calc_tg_weight(tg, se->my_q);
4424 
4425 		/*
4426 		 * w = rw_i + @wl
4427 		 */
4428 		w = se->my_q->load.weight + wl;
4429 
4430 		/*
4431 		 * wl = S * s'_i; see (2)
4432 		 */
4433 		if (W > 0 && w < W)
4434 			wl = (w * (long)tg->shares) / W;
4435 		else
4436 			wl = tg->shares;
4437 
4438 		/*
4439 		 * Per the above, wl is the new se->load.weight value; since
4440 		 * those are clipped to [MIN_SHARES, ...) do so now. See
4441 		 * calc_cfs_shares().
4442 		 */
4443 		if (wl < MIN_SHARES)
4444 			wl = MIN_SHARES;
4445 
4446 		/*
4447 		 * wl = dw_i = S * (s'_i - s_i); see (3)
4448 		 */
4449 		wl -= se->load.weight;
4450 
4451 		/*
4452 		 * Recursively apply this logic to all parent groups to compute
4453 		 * the final effective load change on the root group. Since
4454 		 * only the @tg group gets extra weight, all parent groups can
4455 		 * only redistribute existing shares. @wl is the shift in shares
4456 		 * resulting from this level per the above.
4457 		 */
4458 		wg = 0;
4459 	}
4460 
4461 	return wl;
4462 }
4463 #else
4464 
4465 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4466 {
4467 	return wl;
4468 }
4469 
4470 #endif
4471 
4472 static int wake_wide(struct task_struct *p)
4473 {
4474 	int factor = this_cpu_read(sd_llc_size);
4475 
4476 	/*
4477 	 * Yeah, it's the switching-frequency, could means many wakee or
4478 	 * rapidly switch, use factor here will just help to automatically
4479 	 * adjust the loose-degree, so bigger node will lead to more pull.
4480 	 */
4481 	if (p->wakee_flips > factor) {
4482 		/*
4483 		 * wakee is somewhat hot, it needs certain amount of cpu
4484 		 * resource, so if waker is far more hot, prefer to leave
4485 		 * it alone.
4486 		 */
4487 		if (current->wakee_flips > (factor * p->wakee_flips))
4488 			return 1;
4489 	}
4490 
4491 	return 0;
4492 }
4493 
4494 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4495 {
4496 	s64 this_load, load;
4497 	s64 this_eff_load, prev_eff_load;
4498 	int idx, this_cpu, prev_cpu;
4499 	struct task_group *tg;
4500 	unsigned long weight;
4501 	int balanced;
4502 
4503 	/*
4504 	 * If we wake multiple tasks be careful to not bounce
4505 	 * ourselves around too much.
4506 	 */
4507 	if (wake_wide(p))
4508 		return 0;
4509 
4510 	idx	  = sd->wake_idx;
4511 	this_cpu  = smp_processor_id();
4512 	prev_cpu  = task_cpu(p);
4513 	load	  = source_load(prev_cpu, idx);
4514 	this_load = target_load(this_cpu, idx);
4515 
4516 	/*
4517 	 * If sync wakeup then subtract the (maximum possible)
4518 	 * effect of the currently running task from the load
4519 	 * of the current CPU:
4520 	 */
4521 	if (sync) {
4522 		tg = task_group(current);
4523 		weight = current->se.load.weight;
4524 
4525 		this_load += effective_load(tg, this_cpu, -weight, -weight);
4526 		load += effective_load(tg, prev_cpu, 0, -weight);
4527 	}
4528 
4529 	tg = task_group(p);
4530 	weight = p->se.load.weight;
4531 
4532 	/*
4533 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4534 	 * due to the sync cause above having dropped this_load to 0, we'll
4535 	 * always have an imbalance, but there's really nothing you can do
4536 	 * about that, so that's good too.
4537 	 *
4538 	 * Otherwise check if either cpus are near enough in load to allow this
4539 	 * task to be woken on this_cpu.
4540 	 */
4541 	this_eff_load = 100;
4542 	this_eff_load *= capacity_of(prev_cpu);
4543 
4544 	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4545 	prev_eff_load *= capacity_of(this_cpu);
4546 
4547 	if (this_load > 0) {
4548 		this_eff_load *= this_load +
4549 			effective_load(tg, this_cpu, weight, weight);
4550 
4551 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4552 	}
4553 
4554 	balanced = this_eff_load <= prev_eff_load;
4555 
4556 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4557 
4558 	if (!balanced)
4559 		return 0;
4560 
4561 	schedstat_inc(sd, ttwu_move_affine);
4562 	schedstat_inc(p, se.statistics.nr_wakeups_affine);
4563 
4564 	return 1;
4565 }
4566 
4567 /*
4568  * find_idlest_group finds and returns the least busy CPU group within the
4569  * domain.
4570  */
4571 static struct sched_group *
4572 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4573 		  int this_cpu, int sd_flag)
4574 {
4575 	struct sched_group *idlest = NULL, *group = sd->groups;
4576 	unsigned long min_load = ULONG_MAX, this_load = 0;
4577 	int load_idx = sd->forkexec_idx;
4578 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4579 
4580 	if (sd_flag & SD_BALANCE_WAKE)
4581 		load_idx = sd->wake_idx;
4582 
4583 	do {
4584 		unsigned long load, avg_load;
4585 		int local_group;
4586 		int i;
4587 
4588 		/* Skip over this group if it has no CPUs allowed */
4589 		if (!cpumask_intersects(sched_group_cpus(group),
4590 					tsk_cpus_allowed(p)))
4591 			continue;
4592 
4593 		local_group = cpumask_test_cpu(this_cpu,
4594 					       sched_group_cpus(group));
4595 
4596 		/* Tally up the load of all CPUs in the group */
4597 		avg_load = 0;
4598 
4599 		for_each_cpu(i, sched_group_cpus(group)) {
4600 			/* Bias balancing toward cpus of our domain */
4601 			if (local_group)
4602 				load = source_load(i, load_idx);
4603 			else
4604 				load = target_load(i, load_idx);
4605 
4606 			avg_load += load;
4607 		}
4608 
4609 		/* Adjust by relative CPU capacity of the group */
4610 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4611 
4612 		if (local_group) {
4613 			this_load = avg_load;
4614 		} else if (avg_load < min_load) {
4615 			min_load = avg_load;
4616 			idlest = group;
4617 		}
4618 	} while (group = group->next, group != sd->groups);
4619 
4620 	if (!idlest || 100*this_load < imbalance*min_load)
4621 		return NULL;
4622 	return idlest;
4623 }
4624 
4625 /*
4626  * find_idlest_cpu - find the idlest cpu among the cpus in group.
4627  */
4628 static int
4629 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4630 {
4631 	unsigned long load, min_load = ULONG_MAX;
4632 	unsigned int min_exit_latency = UINT_MAX;
4633 	u64 latest_idle_timestamp = 0;
4634 	int least_loaded_cpu = this_cpu;
4635 	int shallowest_idle_cpu = -1;
4636 	int i;
4637 
4638 	/* Traverse only the allowed CPUs */
4639 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4640 		if (idle_cpu(i)) {
4641 			struct rq *rq = cpu_rq(i);
4642 			struct cpuidle_state *idle = idle_get_state(rq);
4643 			if (idle && idle->exit_latency < min_exit_latency) {
4644 				/*
4645 				 * We give priority to a CPU whose idle state
4646 				 * has the smallest exit latency irrespective
4647 				 * of any idle timestamp.
4648 				 */
4649 				min_exit_latency = idle->exit_latency;
4650 				latest_idle_timestamp = rq->idle_stamp;
4651 				shallowest_idle_cpu = i;
4652 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
4653 				   rq->idle_stamp > latest_idle_timestamp) {
4654 				/*
4655 				 * If equal or no active idle state, then
4656 				 * the most recently idled CPU might have
4657 				 * a warmer cache.
4658 				 */
4659 				latest_idle_timestamp = rq->idle_stamp;
4660 				shallowest_idle_cpu = i;
4661 			}
4662 		} else if (shallowest_idle_cpu == -1) {
4663 			load = weighted_cpuload(i);
4664 			if (load < min_load || (load == min_load && i == this_cpu)) {
4665 				min_load = load;
4666 				least_loaded_cpu = i;
4667 			}
4668 		}
4669 	}
4670 
4671 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4672 }
4673 
4674 /*
4675  * Try and locate an idle CPU in the sched_domain.
4676  */
4677 static int select_idle_sibling(struct task_struct *p, int target)
4678 {
4679 	struct sched_domain *sd;
4680 	struct sched_group *sg;
4681 	int i = task_cpu(p);
4682 
4683 	if (idle_cpu(target))
4684 		return target;
4685 
4686 	/*
4687 	 * If the prevous cpu is cache affine and idle, don't be stupid.
4688 	 */
4689 	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4690 		return i;
4691 
4692 	/*
4693 	 * Otherwise, iterate the domains and find an elegible idle cpu.
4694 	 */
4695 	sd = rcu_dereference(per_cpu(sd_llc, target));
4696 	for_each_lower_domain(sd) {
4697 		sg = sd->groups;
4698 		do {
4699 			if (!cpumask_intersects(sched_group_cpus(sg),
4700 						tsk_cpus_allowed(p)))
4701 				goto next;
4702 
4703 			for_each_cpu(i, sched_group_cpus(sg)) {
4704 				if (i == target || !idle_cpu(i))
4705 					goto next;
4706 			}
4707 
4708 			target = cpumask_first_and(sched_group_cpus(sg),
4709 					tsk_cpus_allowed(p));
4710 			goto done;
4711 next:
4712 			sg = sg->next;
4713 		} while (sg != sd->groups);
4714 	}
4715 done:
4716 	return target;
4717 }
4718 
4719 /*
4720  * select_task_rq_fair: Select target runqueue for the waking task in domains
4721  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4722  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4723  *
4724  * Balances load by selecting the idlest cpu in the idlest group, or under
4725  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4726  *
4727  * Returns the target cpu number.
4728  *
4729  * preempt must be disabled.
4730  */
4731 static int
4732 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4733 {
4734 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4735 	int cpu = smp_processor_id();
4736 	int new_cpu = cpu;
4737 	int want_affine = 0;
4738 	int sync = wake_flags & WF_SYNC;
4739 
4740 	if (sd_flag & SD_BALANCE_WAKE)
4741 		want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4742 
4743 	rcu_read_lock();
4744 	for_each_domain(cpu, tmp) {
4745 		if (!(tmp->flags & SD_LOAD_BALANCE))
4746 			continue;
4747 
4748 		/*
4749 		 * If both cpu and prev_cpu are part of this domain,
4750 		 * cpu is a valid SD_WAKE_AFFINE target.
4751 		 */
4752 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4753 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4754 			affine_sd = tmp;
4755 			break;
4756 		}
4757 
4758 		if (tmp->flags & sd_flag)
4759 			sd = tmp;
4760 	}
4761 
4762 	if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4763 		prev_cpu = cpu;
4764 
4765 	if (sd_flag & SD_BALANCE_WAKE) {
4766 		new_cpu = select_idle_sibling(p, prev_cpu);
4767 		goto unlock;
4768 	}
4769 
4770 	while (sd) {
4771 		struct sched_group *group;
4772 		int weight;
4773 
4774 		if (!(sd->flags & sd_flag)) {
4775 			sd = sd->child;
4776 			continue;
4777 		}
4778 
4779 		group = find_idlest_group(sd, p, cpu, sd_flag);
4780 		if (!group) {
4781 			sd = sd->child;
4782 			continue;
4783 		}
4784 
4785 		new_cpu = find_idlest_cpu(group, p, cpu);
4786 		if (new_cpu == -1 || new_cpu == cpu) {
4787 			/* Now try balancing at a lower domain level of cpu */
4788 			sd = sd->child;
4789 			continue;
4790 		}
4791 
4792 		/* Now try balancing at a lower domain level of new_cpu */
4793 		cpu = new_cpu;
4794 		weight = sd->span_weight;
4795 		sd = NULL;
4796 		for_each_domain(cpu, tmp) {
4797 			if (weight <= tmp->span_weight)
4798 				break;
4799 			if (tmp->flags & sd_flag)
4800 				sd = tmp;
4801 		}
4802 		/* while loop will break here if sd == NULL */
4803 	}
4804 unlock:
4805 	rcu_read_unlock();
4806 
4807 	return new_cpu;
4808 }
4809 
4810 /*
4811  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4812  * cfs_rq_of(p) references at time of call are still valid and identify the
4813  * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
4814  * other assumptions, including the state of rq->lock, should be made.
4815  */
4816 static void
4817 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4818 {
4819 	struct sched_entity *se = &p->se;
4820 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4821 
4822 	/*
4823 	 * Load tracking: accumulate removed load so that it can be processed
4824 	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
4825 	 * to blocked load iff they have a positive decay-count.  It can never
4826 	 * be negative here since on-rq tasks have decay-count == 0.
4827 	 */
4828 	if (se->avg.decay_count) {
4829 		se->avg.decay_count = -__synchronize_entity_decay(se);
4830 		atomic_long_add(se->avg.load_avg_contrib,
4831 						&cfs_rq->removed_load);
4832 	}
4833 
4834 	/* We have migrated, no longer consider this task hot */
4835 	se->exec_start = 0;
4836 }
4837 #endif /* CONFIG_SMP */
4838 
4839 static unsigned long
4840 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4841 {
4842 	unsigned long gran = sysctl_sched_wakeup_granularity;
4843 
4844 	/*
4845 	 * Since its curr running now, convert the gran from real-time
4846 	 * to virtual-time in his units.
4847 	 *
4848 	 * By using 'se' instead of 'curr' we penalize light tasks, so
4849 	 * they get preempted easier. That is, if 'se' < 'curr' then
4850 	 * the resulting gran will be larger, therefore penalizing the
4851 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4852 	 * be smaller, again penalizing the lighter task.
4853 	 *
4854 	 * This is especially important for buddies when the leftmost
4855 	 * task is higher priority than the buddy.
4856 	 */
4857 	return calc_delta_fair(gran, se);
4858 }
4859 
4860 /*
4861  * Should 'se' preempt 'curr'.
4862  *
4863  *             |s1
4864  *        |s2
4865  *   |s3
4866  *         g
4867  *      |<--->|c
4868  *
4869  *  w(c, s1) = -1
4870  *  w(c, s2) =  0
4871  *  w(c, s3) =  1
4872  *
4873  */
4874 static int
4875 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4876 {
4877 	s64 gran, vdiff = curr->vruntime - se->vruntime;
4878 
4879 	if (vdiff <= 0)
4880 		return -1;
4881 
4882 	gran = wakeup_gran(curr, se);
4883 	if (vdiff > gran)
4884 		return 1;
4885 
4886 	return 0;
4887 }
4888 
4889 static void set_last_buddy(struct sched_entity *se)
4890 {
4891 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4892 		return;
4893 
4894 	for_each_sched_entity(se)
4895 		cfs_rq_of(se)->last = se;
4896 }
4897 
4898 static void set_next_buddy(struct sched_entity *se)
4899 {
4900 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4901 		return;
4902 
4903 	for_each_sched_entity(se)
4904 		cfs_rq_of(se)->next = se;
4905 }
4906 
4907 static void set_skip_buddy(struct sched_entity *se)
4908 {
4909 	for_each_sched_entity(se)
4910 		cfs_rq_of(se)->skip = se;
4911 }
4912 
4913 /*
4914  * Preempt the current task with a newly woken task if needed:
4915  */
4916 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4917 {
4918 	struct task_struct *curr = rq->curr;
4919 	struct sched_entity *se = &curr->se, *pse = &p->se;
4920 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4921 	int scale = cfs_rq->nr_running >= sched_nr_latency;
4922 	int next_buddy_marked = 0;
4923 
4924 	if (unlikely(se == pse))
4925 		return;
4926 
4927 	/*
4928 	 * This is possible from callers such as attach_tasks(), in which we
4929 	 * unconditionally check_prempt_curr() after an enqueue (which may have
4930 	 * lead to a throttle).  This both saves work and prevents false
4931 	 * next-buddy nomination below.
4932 	 */
4933 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4934 		return;
4935 
4936 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4937 		set_next_buddy(pse);
4938 		next_buddy_marked = 1;
4939 	}
4940 
4941 	/*
4942 	 * We can come here with TIF_NEED_RESCHED already set from new task
4943 	 * wake up path.
4944 	 *
4945 	 * Note: this also catches the edge-case of curr being in a throttled
4946 	 * group (e.g. via set_curr_task), since update_curr() (in the
4947 	 * enqueue of curr) will have resulted in resched being set.  This
4948 	 * prevents us from potentially nominating it as a false LAST_BUDDY
4949 	 * below.
4950 	 */
4951 	if (test_tsk_need_resched(curr))
4952 		return;
4953 
4954 	/* Idle tasks are by definition preempted by non-idle tasks. */
4955 	if (unlikely(curr->policy == SCHED_IDLE) &&
4956 	    likely(p->policy != SCHED_IDLE))
4957 		goto preempt;
4958 
4959 	/*
4960 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4961 	 * is driven by the tick):
4962 	 */
4963 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4964 		return;
4965 
4966 	find_matching_se(&se, &pse);
4967 	update_curr(cfs_rq_of(se));
4968 	BUG_ON(!pse);
4969 	if (wakeup_preempt_entity(se, pse) == 1) {
4970 		/*
4971 		 * Bias pick_next to pick the sched entity that is
4972 		 * triggering this preemption.
4973 		 */
4974 		if (!next_buddy_marked)
4975 			set_next_buddy(pse);
4976 		goto preempt;
4977 	}
4978 
4979 	return;
4980 
4981 preempt:
4982 	resched_curr(rq);
4983 	/*
4984 	 * Only set the backward buddy when the current task is still
4985 	 * on the rq. This can happen when a wakeup gets interleaved
4986 	 * with schedule on the ->pre_schedule() or idle_balance()
4987 	 * point, either of which can * drop the rq lock.
4988 	 *
4989 	 * Also, during early boot the idle thread is in the fair class,
4990 	 * for obvious reasons its a bad idea to schedule back to it.
4991 	 */
4992 	if (unlikely(!se->on_rq || curr == rq->idle))
4993 		return;
4994 
4995 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4996 		set_last_buddy(se);
4997 }
4998 
4999 static struct task_struct *
5000 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5001 {
5002 	struct cfs_rq *cfs_rq = &rq->cfs;
5003 	struct sched_entity *se;
5004 	struct task_struct *p;
5005 	int new_tasks;
5006 
5007 again:
5008 #ifdef CONFIG_FAIR_GROUP_SCHED
5009 	if (!cfs_rq->nr_running)
5010 		goto idle;
5011 
5012 	if (prev->sched_class != &fair_sched_class)
5013 		goto simple;
5014 
5015 	/*
5016 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5017 	 * likely that a next task is from the same cgroup as the current.
5018 	 *
5019 	 * Therefore attempt to avoid putting and setting the entire cgroup
5020 	 * hierarchy, only change the part that actually changes.
5021 	 */
5022 
5023 	do {
5024 		struct sched_entity *curr = cfs_rq->curr;
5025 
5026 		/*
5027 		 * Since we got here without doing put_prev_entity() we also
5028 		 * have to consider cfs_rq->curr. If it is still a runnable
5029 		 * entity, update_curr() will update its vruntime, otherwise
5030 		 * forget we've ever seen it.
5031 		 */
5032 		if (curr && curr->on_rq)
5033 			update_curr(cfs_rq);
5034 		else
5035 			curr = NULL;
5036 
5037 		/*
5038 		 * This call to check_cfs_rq_runtime() will do the throttle and
5039 		 * dequeue its entity in the parent(s). Therefore the 'simple'
5040 		 * nr_running test will indeed be correct.
5041 		 */
5042 		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5043 			goto simple;
5044 
5045 		se = pick_next_entity(cfs_rq, curr);
5046 		cfs_rq = group_cfs_rq(se);
5047 	} while (cfs_rq);
5048 
5049 	p = task_of(se);
5050 
5051 	/*
5052 	 * Since we haven't yet done put_prev_entity and if the selected task
5053 	 * is a different task than we started out with, try and touch the
5054 	 * least amount of cfs_rqs.
5055 	 */
5056 	if (prev != p) {
5057 		struct sched_entity *pse = &prev->se;
5058 
5059 		while (!(cfs_rq = is_same_group(se, pse))) {
5060 			int se_depth = se->depth;
5061 			int pse_depth = pse->depth;
5062 
5063 			if (se_depth <= pse_depth) {
5064 				put_prev_entity(cfs_rq_of(pse), pse);
5065 				pse = parent_entity(pse);
5066 			}
5067 			if (se_depth >= pse_depth) {
5068 				set_next_entity(cfs_rq_of(se), se);
5069 				se = parent_entity(se);
5070 			}
5071 		}
5072 
5073 		put_prev_entity(cfs_rq, pse);
5074 		set_next_entity(cfs_rq, se);
5075 	}
5076 
5077 	if (hrtick_enabled(rq))
5078 		hrtick_start_fair(rq, p);
5079 
5080 	return p;
5081 simple:
5082 	cfs_rq = &rq->cfs;
5083 #endif
5084 
5085 	if (!cfs_rq->nr_running)
5086 		goto idle;
5087 
5088 	put_prev_task(rq, prev);
5089 
5090 	do {
5091 		se = pick_next_entity(cfs_rq, NULL);
5092 		set_next_entity(cfs_rq, se);
5093 		cfs_rq = group_cfs_rq(se);
5094 	} while (cfs_rq);
5095 
5096 	p = task_of(se);
5097 
5098 	if (hrtick_enabled(rq))
5099 		hrtick_start_fair(rq, p);
5100 
5101 	return p;
5102 
5103 idle:
5104 	new_tasks = idle_balance(rq);
5105 	/*
5106 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5107 	 * possible for any higher priority task to appear. In that case we
5108 	 * must re-start the pick_next_entity() loop.
5109 	 */
5110 	if (new_tasks < 0)
5111 		return RETRY_TASK;
5112 
5113 	if (new_tasks > 0)
5114 		goto again;
5115 
5116 	return NULL;
5117 }
5118 
5119 /*
5120  * Account for a descheduled task:
5121  */
5122 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5123 {
5124 	struct sched_entity *se = &prev->se;
5125 	struct cfs_rq *cfs_rq;
5126 
5127 	for_each_sched_entity(se) {
5128 		cfs_rq = cfs_rq_of(se);
5129 		put_prev_entity(cfs_rq, se);
5130 	}
5131 }
5132 
5133 /*
5134  * sched_yield() is very simple
5135  *
5136  * The magic of dealing with the ->skip buddy is in pick_next_entity.
5137  */
5138 static void yield_task_fair(struct rq *rq)
5139 {
5140 	struct task_struct *curr = rq->curr;
5141 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5142 	struct sched_entity *se = &curr->se;
5143 
5144 	/*
5145 	 * Are we the only task in the tree?
5146 	 */
5147 	if (unlikely(rq->nr_running == 1))
5148 		return;
5149 
5150 	clear_buddies(cfs_rq, se);
5151 
5152 	if (curr->policy != SCHED_BATCH) {
5153 		update_rq_clock(rq);
5154 		/*
5155 		 * Update run-time statistics of the 'current'.
5156 		 */
5157 		update_curr(cfs_rq);
5158 		/*
5159 		 * Tell update_rq_clock() that we've just updated,
5160 		 * so we don't do microscopic update in schedule()
5161 		 * and double the fastpath cost.
5162 		 */
5163 		rq_clock_skip_update(rq, true);
5164 	}
5165 
5166 	set_skip_buddy(se);
5167 }
5168 
5169 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5170 {
5171 	struct sched_entity *se = &p->se;
5172 
5173 	/* throttled hierarchies are not runnable */
5174 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5175 		return false;
5176 
5177 	/* Tell the scheduler that we'd really like pse to run next. */
5178 	set_next_buddy(se);
5179 
5180 	yield_task_fair(rq);
5181 
5182 	return true;
5183 }
5184 
5185 #ifdef CONFIG_SMP
5186 /**************************************************
5187  * Fair scheduling class load-balancing methods.
5188  *
5189  * BASICS
5190  *
5191  * The purpose of load-balancing is to achieve the same basic fairness the
5192  * per-cpu scheduler provides, namely provide a proportional amount of compute
5193  * time to each task. This is expressed in the following equation:
5194  *
5195  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
5196  *
5197  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5198  * W_i,0 is defined as:
5199  *
5200  *   W_i,0 = \Sum_j w_i,j                                             (2)
5201  *
5202  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5203  * is derived from the nice value as per prio_to_weight[].
5204  *
5205  * The weight average is an exponential decay average of the instantaneous
5206  * weight:
5207  *
5208  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
5209  *
5210  * C_i is the compute capacity of cpu i, typically it is the
5211  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5212  * can also include other factors [XXX].
5213  *
5214  * To achieve this balance we define a measure of imbalance which follows
5215  * directly from (1):
5216  *
5217  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
5218  *
5219  * We them move tasks around to minimize the imbalance. In the continuous
5220  * function space it is obvious this converges, in the discrete case we get
5221  * a few fun cases generally called infeasible weight scenarios.
5222  *
5223  * [XXX expand on:
5224  *     - infeasible weights;
5225  *     - local vs global optima in the discrete case. ]
5226  *
5227  *
5228  * SCHED DOMAINS
5229  *
5230  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5231  * for all i,j solution, we create a tree of cpus that follows the hardware
5232  * topology where each level pairs two lower groups (or better). This results
5233  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5234  * tree to only the first of the previous level and we decrease the frequency
5235  * of load-balance at each level inv. proportional to the number of cpus in
5236  * the groups.
5237  *
5238  * This yields:
5239  *
5240  *     log_2 n     1     n
5241  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
5242  *     i = 0      2^i   2^i
5243  *                               `- size of each group
5244  *         |         |     `- number of cpus doing load-balance
5245  *         |         `- freq
5246  *         `- sum over all levels
5247  *
5248  * Coupled with a limit on how many tasks we can migrate every balance pass,
5249  * this makes (5) the runtime complexity of the balancer.
5250  *
5251  * An important property here is that each CPU is still (indirectly) connected
5252  * to every other cpu in at most O(log n) steps:
5253  *
5254  * The adjacency matrix of the resulting graph is given by:
5255  *
5256  *             log_2 n
5257  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
5258  *             k = 0
5259  *
5260  * And you'll find that:
5261  *
5262  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
5263  *
5264  * Showing there's indeed a path between every cpu in at most O(log n) steps.
5265  * The task movement gives a factor of O(m), giving a convergence complexity
5266  * of:
5267  *
5268  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
5269  *
5270  *
5271  * WORK CONSERVING
5272  *
5273  * In order to avoid CPUs going idle while there's still work to do, new idle
5274  * balancing is more aggressive and has the newly idle cpu iterate up the domain
5275  * tree itself instead of relying on other CPUs to bring it work.
5276  *
5277  * This adds some complexity to both (5) and (8) but it reduces the total idle
5278  * time.
5279  *
5280  * [XXX more?]
5281  *
5282  *
5283  * CGROUPS
5284  *
5285  * Cgroups make a horror show out of (2), instead of a simple sum we get:
5286  *
5287  *                                s_k,i
5288  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
5289  *                                 S_k
5290  *
5291  * Where
5292  *
5293  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
5294  *
5295  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5296  *
5297  * The big problem is S_k, its a global sum needed to compute a local (W_i)
5298  * property.
5299  *
5300  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5301  *      rewrite all of this once again.]
5302  */
5303 
5304 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5305 
5306 enum fbq_type { regular, remote, all };
5307 
5308 #define LBF_ALL_PINNED	0x01
5309 #define LBF_NEED_BREAK	0x02
5310 #define LBF_DST_PINNED  0x04
5311 #define LBF_SOME_PINNED	0x08
5312 
5313 struct lb_env {
5314 	struct sched_domain	*sd;
5315 
5316 	struct rq		*src_rq;
5317 	int			src_cpu;
5318 
5319 	int			dst_cpu;
5320 	struct rq		*dst_rq;
5321 
5322 	struct cpumask		*dst_grpmask;
5323 	int			new_dst_cpu;
5324 	enum cpu_idle_type	idle;
5325 	long			imbalance;
5326 	/* The set of CPUs under consideration for load-balancing */
5327 	struct cpumask		*cpus;
5328 
5329 	unsigned int		flags;
5330 
5331 	unsigned int		loop;
5332 	unsigned int		loop_break;
5333 	unsigned int		loop_max;
5334 
5335 	enum fbq_type		fbq_type;
5336 	struct list_head	tasks;
5337 };
5338 
5339 /*
5340  * Is this task likely cache-hot:
5341  */
5342 static int task_hot(struct task_struct *p, struct lb_env *env)
5343 {
5344 	s64 delta;
5345 
5346 	lockdep_assert_held(&env->src_rq->lock);
5347 
5348 	if (p->sched_class != &fair_sched_class)
5349 		return 0;
5350 
5351 	if (unlikely(p->policy == SCHED_IDLE))
5352 		return 0;
5353 
5354 	/*
5355 	 * Buddy candidates are cache hot:
5356 	 */
5357 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5358 			(&p->se == cfs_rq_of(&p->se)->next ||
5359 			 &p->se == cfs_rq_of(&p->se)->last))
5360 		return 1;
5361 
5362 	if (sysctl_sched_migration_cost == -1)
5363 		return 1;
5364 	if (sysctl_sched_migration_cost == 0)
5365 		return 0;
5366 
5367 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5368 
5369 	return delta < (s64)sysctl_sched_migration_cost;
5370 }
5371 
5372 #ifdef CONFIG_NUMA_BALANCING
5373 /* Returns true if the destination node has incurred more faults */
5374 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5375 {
5376 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5377 	int src_nid, dst_nid;
5378 
5379 	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
5380 	    !(env->sd->flags & SD_NUMA)) {
5381 		return false;
5382 	}
5383 
5384 	src_nid = cpu_to_node(env->src_cpu);
5385 	dst_nid = cpu_to_node(env->dst_cpu);
5386 
5387 	if (src_nid == dst_nid)
5388 		return false;
5389 
5390 	if (numa_group) {
5391 		/* Task is already in the group's interleave set. */
5392 		if (node_isset(src_nid, numa_group->active_nodes))
5393 			return false;
5394 
5395 		/* Task is moving into the group's interleave set. */
5396 		if (node_isset(dst_nid, numa_group->active_nodes))
5397 			return true;
5398 
5399 		return group_faults(p, dst_nid) > group_faults(p, src_nid);
5400 	}
5401 
5402 	/* Encourage migration to the preferred node. */
5403 	if (dst_nid == p->numa_preferred_nid)
5404 		return true;
5405 
5406 	return task_faults(p, dst_nid) > task_faults(p, src_nid);
5407 }
5408 
5409 
5410 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5411 {
5412 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5413 	int src_nid, dst_nid;
5414 
5415 	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5416 		return false;
5417 
5418 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5419 		return false;
5420 
5421 	src_nid = cpu_to_node(env->src_cpu);
5422 	dst_nid = cpu_to_node(env->dst_cpu);
5423 
5424 	if (src_nid == dst_nid)
5425 		return false;
5426 
5427 	if (numa_group) {
5428 		/* Task is moving within/into the group's interleave set. */
5429 		if (node_isset(dst_nid, numa_group->active_nodes))
5430 			return false;
5431 
5432 		/* Task is moving out of the group's interleave set. */
5433 		if (node_isset(src_nid, numa_group->active_nodes))
5434 			return true;
5435 
5436 		return group_faults(p, dst_nid) < group_faults(p, src_nid);
5437 	}
5438 
5439 	/* Migrating away from the preferred node is always bad. */
5440 	if (src_nid == p->numa_preferred_nid)
5441 		return true;
5442 
5443 	return task_faults(p, dst_nid) < task_faults(p, src_nid);
5444 }
5445 
5446 #else
5447 static inline bool migrate_improves_locality(struct task_struct *p,
5448 					     struct lb_env *env)
5449 {
5450 	return false;
5451 }
5452 
5453 static inline bool migrate_degrades_locality(struct task_struct *p,
5454 					     struct lb_env *env)
5455 {
5456 	return false;
5457 }
5458 #endif
5459 
5460 /*
5461  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5462  */
5463 static
5464 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5465 {
5466 	int tsk_cache_hot = 0;
5467 
5468 	lockdep_assert_held(&env->src_rq->lock);
5469 
5470 	/*
5471 	 * We do not migrate tasks that are:
5472 	 * 1) throttled_lb_pair, or
5473 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5474 	 * 3) running (obviously), or
5475 	 * 4) are cache-hot on their current CPU.
5476 	 */
5477 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5478 		return 0;
5479 
5480 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5481 		int cpu;
5482 
5483 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5484 
5485 		env->flags |= LBF_SOME_PINNED;
5486 
5487 		/*
5488 		 * Remember if this task can be migrated to any other cpu in
5489 		 * our sched_group. We may want to revisit it if we couldn't
5490 		 * meet load balance goals by pulling other tasks on src_cpu.
5491 		 *
5492 		 * Also avoid computing new_dst_cpu if we have already computed
5493 		 * one in current iteration.
5494 		 */
5495 		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5496 			return 0;
5497 
5498 		/* Prevent to re-select dst_cpu via env's cpus */
5499 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5500 			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5501 				env->flags |= LBF_DST_PINNED;
5502 				env->new_dst_cpu = cpu;
5503 				break;
5504 			}
5505 		}
5506 
5507 		return 0;
5508 	}
5509 
5510 	/* Record that we found atleast one task that could run on dst_cpu */
5511 	env->flags &= ~LBF_ALL_PINNED;
5512 
5513 	if (task_running(env->src_rq, p)) {
5514 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5515 		return 0;
5516 	}
5517 
5518 	/*
5519 	 * Aggressive migration if:
5520 	 * 1) destination numa is preferred
5521 	 * 2) task is cache cold, or
5522 	 * 3) too many balance attempts have failed.
5523 	 */
5524 	tsk_cache_hot = task_hot(p, env);
5525 	if (!tsk_cache_hot)
5526 		tsk_cache_hot = migrate_degrades_locality(p, env);
5527 
5528 	if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5529 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5530 		if (tsk_cache_hot) {
5531 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5532 			schedstat_inc(p, se.statistics.nr_forced_migrations);
5533 		}
5534 		return 1;
5535 	}
5536 
5537 	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5538 	return 0;
5539 }
5540 
5541 /*
5542  * detach_task() -- detach the task for the migration specified in env
5543  */
5544 static void detach_task(struct task_struct *p, struct lb_env *env)
5545 {
5546 	lockdep_assert_held(&env->src_rq->lock);
5547 
5548 	deactivate_task(env->src_rq, p, 0);
5549 	p->on_rq = TASK_ON_RQ_MIGRATING;
5550 	set_task_cpu(p, env->dst_cpu);
5551 }
5552 
5553 /*
5554  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5555  * part of active balancing operations within "domain".
5556  *
5557  * Returns a task if successful and NULL otherwise.
5558  */
5559 static struct task_struct *detach_one_task(struct lb_env *env)
5560 {
5561 	struct task_struct *p, *n;
5562 
5563 	lockdep_assert_held(&env->src_rq->lock);
5564 
5565 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5566 		if (!can_migrate_task(p, env))
5567 			continue;
5568 
5569 		detach_task(p, env);
5570 
5571 		/*
5572 		 * Right now, this is only the second place where
5573 		 * lb_gained[env->idle] is updated (other is detach_tasks)
5574 		 * so we can safely collect stats here rather than
5575 		 * inside detach_tasks().
5576 		 */
5577 		schedstat_inc(env->sd, lb_gained[env->idle]);
5578 		return p;
5579 	}
5580 	return NULL;
5581 }
5582 
5583 static const unsigned int sched_nr_migrate_break = 32;
5584 
5585 /*
5586  * detach_tasks() -- tries to detach up to imbalance weighted load from
5587  * busiest_rq, as part of a balancing operation within domain "sd".
5588  *
5589  * Returns number of detached tasks if successful and 0 otherwise.
5590  */
5591 static int detach_tasks(struct lb_env *env)
5592 {
5593 	struct list_head *tasks = &env->src_rq->cfs_tasks;
5594 	struct task_struct *p;
5595 	unsigned long load;
5596 	int detached = 0;
5597 
5598 	lockdep_assert_held(&env->src_rq->lock);
5599 
5600 	if (env->imbalance <= 0)
5601 		return 0;
5602 
5603 	while (!list_empty(tasks)) {
5604 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5605 
5606 		env->loop++;
5607 		/* We've more or less seen every task there is, call it quits */
5608 		if (env->loop > env->loop_max)
5609 			break;
5610 
5611 		/* take a breather every nr_migrate tasks */
5612 		if (env->loop > env->loop_break) {
5613 			env->loop_break += sched_nr_migrate_break;
5614 			env->flags |= LBF_NEED_BREAK;
5615 			break;
5616 		}
5617 
5618 		if (!can_migrate_task(p, env))
5619 			goto next;
5620 
5621 		load = task_h_load(p);
5622 
5623 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5624 			goto next;
5625 
5626 		if ((load / 2) > env->imbalance)
5627 			goto next;
5628 
5629 		detach_task(p, env);
5630 		list_add(&p->se.group_node, &env->tasks);
5631 
5632 		detached++;
5633 		env->imbalance -= load;
5634 
5635 #ifdef CONFIG_PREEMPT
5636 		/*
5637 		 * NEWIDLE balancing is a source of latency, so preemptible
5638 		 * kernels will stop after the first task is detached to minimize
5639 		 * the critical section.
5640 		 */
5641 		if (env->idle == CPU_NEWLY_IDLE)
5642 			break;
5643 #endif
5644 
5645 		/*
5646 		 * We only want to steal up to the prescribed amount of
5647 		 * weighted load.
5648 		 */
5649 		if (env->imbalance <= 0)
5650 			break;
5651 
5652 		continue;
5653 next:
5654 		list_move_tail(&p->se.group_node, tasks);
5655 	}
5656 
5657 	/*
5658 	 * Right now, this is one of only two places we collect this stat
5659 	 * so we can safely collect detach_one_task() stats here rather
5660 	 * than inside detach_one_task().
5661 	 */
5662 	schedstat_add(env->sd, lb_gained[env->idle], detached);
5663 
5664 	return detached;
5665 }
5666 
5667 /*
5668  * attach_task() -- attach the task detached by detach_task() to its new rq.
5669  */
5670 static void attach_task(struct rq *rq, struct task_struct *p)
5671 {
5672 	lockdep_assert_held(&rq->lock);
5673 
5674 	BUG_ON(task_rq(p) != rq);
5675 	p->on_rq = TASK_ON_RQ_QUEUED;
5676 	activate_task(rq, p, 0);
5677 	check_preempt_curr(rq, p, 0);
5678 }
5679 
5680 /*
5681  * attach_one_task() -- attaches the task returned from detach_one_task() to
5682  * its new rq.
5683  */
5684 static void attach_one_task(struct rq *rq, struct task_struct *p)
5685 {
5686 	raw_spin_lock(&rq->lock);
5687 	attach_task(rq, p);
5688 	raw_spin_unlock(&rq->lock);
5689 }
5690 
5691 /*
5692  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5693  * new rq.
5694  */
5695 static void attach_tasks(struct lb_env *env)
5696 {
5697 	struct list_head *tasks = &env->tasks;
5698 	struct task_struct *p;
5699 
5700 	raw_spin_lock(&env->dst_rq->lock);
5701 
5702 	while (!list_empty(tasks)) {
5703 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5704 		list_del_init(&p->se.group_node);
5705 
5706 		attach_task(env->dst_rq, p);
5707 	}
5708 
5709 	raw_spin_unlock(&env->dst_rq->lock);
5710 }
5711 
5712 #ifdef CONFIG_FAIR_GROUP_SCHED
5713 /*
5714  * update tg->load_weight by folding this cpu's load_avg
5715  */
5716 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5717 {
5718 	struct sched_entity *se = tg->se[cpu];
5719 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5720 
5721 	/* throttled entities do not contribute to load */
5722 	if (throttled_hierarchy(cfs_rq))
5723 		return;
5724 
5725 	update_cfs_rq_blocked_load(cfs_rq, 1);
5726 
5727 	if (se) {
5728 		update_entity_load_avg(se, 1);
5729 		/*
5730 		 * We pivot on our runnable average having decayed to zero for
5731 		 * list removal.  This generally implies that all our children
5732 		 * have also been removed (modulo rounding error or bandwidth
5733 		 * control); however, such cases are rare and we can fix these
5734 		 * at enqueue.
5735 		 *
5736 		 * TODO: fix up out-of-order children on enqueue.
5737 		 */
5738 		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5739 			list_del_leaf_cfs_rq(cfs_rq);
5740 	} else {
5741 		struct rq *rq = rq_of(cfs_rq);
5742 		update_rq_runnable_avg(rq, rq->nr_running);
5743 	}
5744 }
5745 
5746 static void update_blocked_averages(int cpu)
5747 {
5748 	struct rq *rq = cpu_rq(cpu);
5749 	struct cfs_rq *cfs_rq;
5750 	unsigned long flags;
5751 
5752 	raw_spin_lock_irqsave(&rq->lock, flags);
5753 	update_rq_clock(rq);
5754 	/*
5755 	 * Iterates the task_group tree in a bottom up fashion, see
5756 	 * list_add_leaf_cfs_rq() for details.
5757 	 */
5758 	for_each_leaf_cfs_rq(rq, cfs_rq) {
5759 		/*
5760 		 * Note: We may want to consider periodically releasing
5761 		 * rq->lock about these updates so that creating many task
5762 		 * groups does not result in continually extending hold time.
5763 		 */
5764 		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5765 	}
5766 
5767 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5768 }
5769 
5770 /*
5771  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5772  * This needs to be done in a top-down fashion because the load of a child
5773  * group is a fraction of its parents load.
5774  */
5775 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5776 {
5777 	struct rq *rq = rq_of(cfs_rq);
5778 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5779 	unsigned long now = jiffies;
5780 	unsigned long load;
5781 
5782 	if (cfs_rq->last_h_load_update == now)
5783 		return;
5784 
5785 	cfs_rq->h_load_next = NULL;
5786 	for_each_sched_entity(se) {
5787 		cfs_rq = cfs_rq_of(se);
5788 		cfs_rq->h_load_next = se;
5789 		if (cfs_rq->last_h_load_update == now)
5790 			break;
5791 	}
5792 
5793 	if (!se) {
5794 		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5795 		cfs_rq->last_h_load_update = now;
5796 	}
5797 
5798 	while ((se = cfs_rq->h_load_next) != NULL) {
5799 		load = cfs_rq->h_load;
5800 		load = div64_ul(load * se->avg.load_avg_contrib,
5801 				cfs_rq->runnable_load_avg + 1);
5802 		cfs_rq = group_cfs_rq(se);
5803 		cfs_rq->h_load = load;
5804 		cfs_rq->last_h_load_update = now;
5805 	}
5806 }
5807 
5808 static unsigned long task_h_load(struct task_struct *p)
5809 {
5810 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
5811 
5812 	update_cfs_rq_h_load(cfs_rq);
5813 	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5814 			cfs_rq->runnable_load_avg + 1);
5815 }
5816 #else
5817 static inline void update_blocked_averages(int cpu)
5818 {
5819 }
5820 
5821 static unsigned long task_h_load(struct task_struct *p)
5822 {
5823 	return p->se.avg.load_avg_contrib;
5824 }
5825 #endif
5826 
5827 /********** Helpers for find_busiest_group ************************/
5828 
5829 enum group_type {
5830 	group_other = 0,
5831 	group_imbalanced,
5832 	group_overloaded,
5833 };
5834 
5835 /*
5836  * sg_lb_stats - stats of a sched_group required for load_balancing
5837  */
5838 struct sg_lb_stats {
5839 	unsigned long avg_load; /*Avg load across the CPUs of the group */
5840 	unsigned long group_load; /* Total load over the CPUs of the group */
5841 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5842 	unsigned long load_per_task;
5843 	unsigned long group_capacity;
5844 	unsigned int sum_nr_running; /* Nr tasks running in the group */
5845 	unsigned int group_capacity_factor;
5846 	unsigned int idle_cpus;
5847 	unsigned int group_weight;
5848 	enum group_type group_type;
5849 	int group_has_free_capacity;
5850 #ifdef CONFIG_NUMA_BALANCING
5851 	unsigned int nr_numa_running;
5852 	unsigned int nr_preferred_running;
5853 #endif
5854 };
5855 
5856 /*
5857  * sd_lb_stats - Structure to store the statistics of a sched_domain
5858  *		 during load balancing.
5859  */
5860 struct sd_lb_stats {
5861 	struct sched_group *busiest;	/* Busiest group in this sd */
5862 	struct sched_group *local;	/* Local group in this sd */
5863 	unsigned long total_load;	/* Total load of all groups in sd */
5864 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
5865 	unsigned long avg_load;	/* Average load across all groups in sd */
5866 
5867 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5868 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
5869 };
5870 
5871 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5872 {
5873 	/*
5874 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5875 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5876 	 * We must however clear busiest_stat::avg_load because
5877 	 * update_sd_pick_busiest() reads this before assignment.
5878 	 */
5879 	*sds = (struct sd_lb_stats){
5880 		.busiest = NULL,
5881 		.local = NULL,
5882 		.total_load = 0UL,
5883 		.total_capacity = 0UL,
5884 		.busiest_stat = {
5885 			.avg_load = 0UL,
5886 			.sum_nr_running = 0,
5887 			.group_type = group_other,
5888 		},
5889 	};
5890 }
5891 
5892 /**
5893  * get_sd_load_idx - Obtain the load index for a given sched domain.
5894  * @sd: The sched_domain whose load_idx is to be obtained.
5895  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5896  *
5897  * Return: The load index.
5898  */
5899 static inline int get_sd_load_idx(struct sched_domain *sd,
5900 					enum cpu_idle_type idle)
5901 {
5902 	int load_idx;
5903 
5904 	switch (idle) {
5905 	case CPU_NOT_IDLE:
5906 		load_idx = sd->busy_idx;
5907 		break;
5908 
5909 	case CPU_NEWLY_IDLE:
5910 		load_idx = sd->newidle_idx;
5911 		break;
5912 	default:
5913 		load_idx = sd->idle_idx;
5914 		break;
5915 	}
5916 
5917 	return load_idx;
5918 }
5919 
5920 static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5921 {
5922 	return SCHED_CAPACITY_SCALE;
5923 }
5924 
5925 unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5926 {
5927 	return default_scale_capacity(sd, cpu);
5928 }
5929 
5930 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5931 {
5932 	if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5933 		return sd->smt_gain / sd->span_weight;
5934 
5935 	return SCHED_CAPACITY_SCALE;
5936 }
5937 
5938 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5939 {
5940 	return default_scale_cpu_capacity(sd, cpu);
5941 }
5942 
5943 static unsigned long scale_rt_capacity(int cpu)
5944 {
5945 	struct rq *rq = cpu_rq(cpu);
5946 	u64 total, available, age_stamp, avg;
5947 	s64 delta;
5948 
5949 	/*
5950 	 * Since we're reading these variables without serialization make sure
5951 	 * we read them once before doing sanity checks on them.
5952 	 */
5953 	age_stamp = ACCESS_ONCE(rq->age_stamp);
5954 	avg = ACCESS_ONCE(rq->rt_avg);
5955 	delta = __rq_clock_broken(rq) - age_stamp;
5956 
5957 	if (unlikely(delta < 0))
5958 		delta = 0;
5959 
5960 	total = sched_avg_period() + delta;
5961 
5962 	if (unlikely(total < avg)) {
5963 		/* Ensures that capacity won't end up being negative */
5964 		available = 0;
5965 	} else {
5966 		available = total - avg;
5967 	}
5968 
5969 	if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5970 		total = SCHED_CAPACITY_SCALE;
5971 
5972 	total >>= SCHED_CAPACITY_SHIFT;
5973 
5974 	return div_u64(available, total);
5975 }
5976 
5977 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5978 {
5979 	unsigned long capacity = SCHED_CAPACITY_SCALE;
5980 	struct sched_group *sdg = sd->groups;
5981 
5982 	if (sched_feat(ARCH_CAPACITY))
5983 		capacity *= arch_scale_cpu_capacity(sd, cpu);
5984 	else
5985 		capacity *= default_scale_cpu_capacity(sd, cpu);
5986 
5987 	capacity >>= SCHED_CAPACITY_SHIFT;
5988 
5989 	sdg->sgc->capacity_orig = capacity;
5990 
5991 	if (sched_feat(ARCH_CAPACITY))
5992 		capacity *= arch_scale_freq_capacity(sd, cpu);
5993 	else
5994 		capacity *= default_scale_capacity(sd, cpu);
5995 
5996 	capacity >>= SCHED_CAPACITY_SHIFT;
5997 
5998 	capacity *= scale_rt_capacity(cpu);
5999 	capacity >>= SCHED_CAPACITY_SHIFT;
6000 
6001 	if (!capacity)
6002 		capacity = 1;
6003 
6004 	cpu_rq(cpu)->cpu_capacity = capacity;
6005 	sdg->sgc->capacity = capacity;
6006 }
6007 
6008 void update_group_capacity(struct sched_domain *sd, int cpu)
6009 {
6010 	struct sched_domain *child = sd->child;
6011 	struct sched_group *group, *sdg = sd->groups;
6012 	unsigned long capacity, capacity_orig;
6013 	unsigned long interval;
6014 
6015 	interval = msecs_to_jiffies(sd->balance_interval);
6016 	interval = clamp(interval, 1UL, max_load_balance_interval);
6017 	sdg->sgc->next_update = jiffies + interval;
6018 
6019 	if (!child) {
6020 		update_cpu_capacity(sd, cpu);
6021 		return;
6022 	}
6023 
6024 	capacity_orig = capacity = 0;
6025 
6026 	if (child->flags & SD_OVERLAP) {
6027 		/*
6028 		 * SD_OVERLAP domains cannot assume that child groups
6029 		 * span the current group.
6030 		 */
6031 
6032 		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6033 			struct sched_group_capacity *sgc;
6034 			struct rq *rq = cpu_rq(cpu);
6035 
6036 			/*
6037 			 * build_sched_domains() -> init_sched_groups_capacity()
6038 			 * gets here before we've attached the domains to the
6039 			 * runqueues.
6040 			 *
6041 			 * Use capacity_of(), which is set irrespective of domains
6042 			 * in update_cpu_capacity().
6043 			 *
6044 			 * This avoids capacity/capacity_orig from being 0 and
6045 			 * causing divide-by-zero issues on boot.
6046 			 *
6047 			 * Runtime updates will correct capacity_orig.
6048 			 */
6049 			if (unlikely(!rq->sd)) {
6050 				capacity_orig += capacity_of(cpu);
6051 				capacity += capacity_of(cpu);
6052 				continue;
6053 			}
6054 
6055 			sgc = rq->sd->groups->sgc;
6056 			capacity_orig += sgc->capacity_orig;
6057 			capacity += sgc->capacity;
6058 		}
6059 	} else  {
6060 		/*
6061 		 * !SD_OVERLAP domains can assume that child groups
6062 		 * span the current group.
6063 		 */
6064 
6065 		group = child->groups;
6066 		do {
6067 			capacity_orig += group->sgc->capacity_orig;
6068 			capacity += group->sgc->capacity;
6069 			group = group->next;
6070 		} while (group != child->groups);
6071 	}
6072 
6073 	sdg->sgc->capacity_orig = capacity_orig;
6074 	sdg->sgc->capacity = capacity;
6075 }
6076 
6077 /*
6078  * Try and fix up capacity for tiny siblings, this is needed when
6079  * things like SD_ASYM_PACKING need f_b_g to select another sibling
6080  * which on its own isn't powerful enough.
6081  *
6082  * See update_sd_pick_busiest() and check_asym_packing().
6083  */
6084 static inline int
6085 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
6086 {
6087 	/*
6088 	 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
6089 	 */
6090 	if (!(sd->flags & SD_SHARE_CPUCAPACITY))
6091 		return 0;
6092 
6093 	/*
6094 	 * If ~90% of the cpu_capacity is still there, we're good.
6095 	 */
6096 	if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
6097 		return 1;
6098 
6099 	return 0;
6100 }
6101 
6102 /*
6103  * Group imbalance indicates (and tries to solve) the problem where balancing
6104  * groups is inadequate due to tsk_cpus_allowed() constraints.
6105  *
6106  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6107  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6108  * Something like:
6109  *
6110  * 	{ 0 1 2 3 } { 4 5 6 7 }
6111  * 	        *     * * *
6112  *
6113  * If we were to balance group-wise we'd place two tasks in the first group and
6114  * two tasks in the second group. Clearly this is undesired as it will overload
6115  * cpu 3 and leave one of the cpus in the second group unused.
6116  *
6117  * The current solution to this issue is detecting the skew in the first group
6118  * by noticing the lower domain failed to reach balance and had difficulty
6119  * moving tasks due to affinity constraints.
6120  *
6121  * When this is so detected; this group becomes a candidate for busiest; see
6122  * update_sd_pick_busiest(). And calculate_imbalance() and
6123  * find_busiest_group() avoid some of the usual balance conditions to allow it
6124  * to create an effective group imbalance.
6125  *
6126  * This is a somewhat tricky proposition since the next run might not find the
6127  * group imbalance and decide the groups need to be balanced again. A most
6128  * subtle and fragile situation.
6129  */
6130 
6131 static inline int sg_imbalanced(struct sched_group *group)
6132 {
6133 	return group->sgc->imbalance;
6134 }
6135 
6136 /*
6137  * Compute the group capacity factor.
6138  *
6139  * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
6140  * first dividing out the smt factor and computing the actual number of cores
6141  * and limit unit capacity with that.
6142  */
6143 static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
6144 {
6145 	unsigned int capacity_factor, smt, cpus;
6146 	unsigned int capacity, capacity_orig;
6147 
6148 	capacity = group->sgc->capacity;
6149 	capacity_orig = group->sgc->capacity_orig;
6150 	cpus = group->group_weight;
6151 
6152 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
6153 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
6154 	capacity_factor = cpus / smt; /* cores */
6155 
6156 	capacity_factor = min_t(unsigned,
6157 		capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
6158 	if (!capacity_factor)
6159 		capacity_factor = fix_small_capacity(env->sd, group);
6160 
6161 	return capacity_factor;
6162 }
6163 
6164 static enum group_type
6165 group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
6166 {
6167 	if (sgs->sum_nr_running > sgs->group_capacity_factor)
6168 		return group_overloaded;
6169 
6170 	if (sg_imbalanced(group))
6171 		return group_imbalanced;
6172 
6173 	return group_other;
6174 }
6175 
6176 /**
6177  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6178  * @env: The load balancing environment.
6179  * @group: sched_group whose statistics are to be updated.
6180  * @load_idx: Load index of sched_domain of this_cpu for load calc.
6181  * @local_group: Does group contain this_cpu.
6182  * @sgs: variable to hold the statistics for this group.
6183  * @overload: Indicate more than one runnable task for any CPU.
6184  */
6185 static inline void update_sg_lb_stats(struct lb_env *env,
6186 			struct sched_group *group, int load_idx,
6187 			int local_group, struct sg_lb_stats *sgs,
6188 			bool *overload)
6189 {
6190 	unsigned long load;
6191 	int i;
6192 
6193 	memset(sgs, 0, sizeof(*sgs));
6194 
6195 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6196 		struct rq *rq = cpu_rq(i);
6197 
6198 		/* Bias balancing toward cpus of our domain */
6199 		if (local_group)
6200 			load = target_load(i, load_idx);
6201 		else
6202 			load = source_load(i, load_idx);
6203 
6204 		sgs->group_load += load;
6205 		sgs->sum_nr_running += rq->cfs.h_nr_running;
6206 
6207 		if (rq->nr_running > 1)
6208 			*overload = true;
6209 
6210 #ifdef CONFIG_NUMA_BALANCING
6211 		sgs->nr_numa_running += rq->nr_numa_running;
6212 		sgs->nr_preferred_running += rq->nr_preferred_running;
6213 #endif
6214 		sgs->sum_weighted_load += weighted_cpuload(i);
6215 		if (idle_cpu(i))
6216 			sgs->idle_cpus++;
6217 	}
6218 
6219 	/* Adjust by relative CPU capacity of the group */
6220 	sgs->group_capacity = group->sgc->capacity;
6221 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6222 
6223 	if (sgs->sum_nr_running)
6224 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6225 
6226 	sgs->group_weight = group->group_weight;
6227 	sgs->group_capacity_factor = sg_capacity_factor(env, group);
6228 	sgs->group_type = group_classify(group, sgs);
6229 
6230 	if (sgs->group_capacity_factor > sgs->sum_nr_running)
6231 		sgs->group_has_free_capacity = 1;
6232 }
6233 
6234 /**
6235  * update_sd_pick_busiest - return 1 on busiest group
6236  * @env: The load balancing environment.
6237  * @sds: sched_domain statistics
6238  * @sg: sched_group candidate to be checked for being the busiest
6239  * @sgs: sched_group statistics
6240  *
6241  * Determine if @sg is a busier group than the previously selected
6242  * busiest group.
6243  *
6244  * Return: %true if @sg is a busier group than the previously selected
6245  * busiest group. %false otherwise.
6246  */
6247 static bool update_sd_pick_busiest(struct lb_env *env,
6248 				   struct sd_lb_stats *sds,
6249 				   struct sched_group *sg,
6250 				   struct sg_lb_stats *sgs)
6251 {
6252 	struct sg_lb_stats *busiest = &sds->busiest_stat;
6253 
6254 	if (sgs->group_type > busiest->group_type)
6255 		return true;
6256 
6257 	if (sgs->group_type < busiest->group_type)
6258 		return false;
6259 
6260 	if (sgs->avg_load <= busiest->avg_load)
6261 		return false;
6262 
6263 	/* This is the busiest node in its class. */
6264 	if (!(env->sd->flags & SD_ASYM_PACKING))
6265 		return true;
6266 
6267 	/*
6268 	 * ASYM_PACKING needs to move all the work to the lowest
6269 	 * numbered CPUs in the group, therefore mark all groups
6270 	 * higher than ourself as busy.
6271 	 */
6272 	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6273 		if (!sds->busiest)
6274 			return true;
6275 
6276 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6277 			return true;
6278 	}
6279 
6280 	return false;
6281 }
6282 
6283 #ifdef CONFIG_NUMA_BALANCING
6284 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6285 {
6286 	if (sgs->sum_nr_running > sgs->nr_numa_running)
6287 		return regular;
6288 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
6289 		return remote;
6290 	return all;
6291 }
6292 
6293 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6294 {
6295 	if (rq->nr_running > rq->nr_numa_running)
6296 		return regular;
6297 	if (rq->nr_running > rq->nr_preferred_running)
6298 		return remote;
6299 	return all;
6300 }
6301 #else
6302 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6303 {
6304 	return all;
6305 }
6306 
6307 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6308 {
6309 	return regular;
6310 }
6311 #endif /* CONFIG_NUMA_BALANCING */
6312 
6313 /**
6314  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6315  * @env: The load balancing environment.
6316  * @sds: variable to hold the statistics for this sched_domain.
6317  */
6318 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6319 {
6320 	struct sched_domain *child = env->sd->child;
6321 	struct sched_group *sg = env->sd->groups;
6322 	struct sg_lb_stats tmp_sgs;
6323 	int load_idx, prefer_sibling = 0;
6324 	bool overload = false;
6325 
6326 	if (child && child->flags & SD_PREFER_SIBLING)
6327 		prefer_sibling = 1;
6328 
6329 	load_idx = get_sd_load_idx(env->sd, env->idle);
6330 
6331 	do {
6332 		struct sg_lb_stats *sgs = &tmp_sgs;
6333 		int local_group;
6334 
6335 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6336 		if (local_group) {
6337 			sds->local = sg;
6338 			sgs = &sds->local_stat;
6339 
6340 			if (env->idle != CPU_NEWLY_IDLE ||
6341 			    time_after_eq(jiffies, sg->sgc->next_update))
6342 				update_group_capacity(env->sd, env->dst_cpu);
6343 		}
6344 
6345 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6346 						&overload);
6347 
6348 		if (local_group)
6349 			goto next_group;
6350 
6351 		/*
6352 		 * In case the child domain prefers tasks go to siblings
6353 		 * first, lower the sg capacity factor to one so that we'll try
6354 		 * and move all the excess tasks away. We lower the capacity
6355 		 * of a group only if the local group has the capacity to fit
6356 		 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6357 		 * extra check prevents the case where you always pull from the
6358 		 * heaviest group when it is already under-utilized (possible
6359 		 * with a large weight task outweighs the tasks on the system).
6360 		 */
6361 		if (prefer_sibling && sds->local &&
6362 		    sds->local_stat.group_has_free_capacity) {
6363 			sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6364 			sgs->group_type = group_classify(sg, sgs);
6365 		}
6366 
6367 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6368 			sds->busiest = sg;
6369 			sds->busiest_stat = *sgs;
6370 		}
6371 
6372 next_group:
6373 		/* Now, start updating sd_lb_stats */
6374 		sds->total_load += sgs->group_load;
6375 		sds->total_capacity += sgs->group_capacity;
6376 
6377 		sg = sg->next;
6378 	} while (sg != env->sd->groups);
6379 
6380 	if (env->sd->flags & SD_NUMA)
6381 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6382 
6383 	if (!env->sd->parent) {
6384 		/* update overload indicator if we are at root domain */
6385 		if (env->dst_rq->rd->overload != overload)
6386 			env->dst_rq->rd->overload = overload;
6387 	}
6388 
6389 }
6390 
6391 /**
6392  * check_asym_packing - Check to see if the group is packed into the
6393  *			sched doman.
6394  *
6395  * This is primarily intended to used at the sibling level.  Some
6396  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
6397  * case of POWER7, it can move to lower SMT modes only when higher
6398  * threads are idle.  When in lower SMT modes, the threads will
6399  * perform better since they share less core resources.  Hence when we
6400  * have idle threads, we want them to be the higher ones.
6401  *
6402  * This packing function is run on idle threads.  It checks to see if
6403  * the busiest CPU in this domain (core in the P7 case) has a higher
6404  * CPU number than the packing function is being run on.  Here we are
6405  * assuming lower CPU number will be equivalent to lower a SMT thread
6406  * number.
6407  *
6408  * Return: 1 when packing is required and a task should be moved to
6409  * this CPU.  The amount of the imbalance is returned in *imbalance.
6410  *
6411  * @env: The load balancing environment.
6412  * @sds: Statistics of the sched_domain which is to be packed
6413  */
6414 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6415 {
6416 	int busiest_cpu;
6417 
6418 	if (!(env->sd->flags & SD_ASYM_PACKING))
6419 		return 0;
6420 
6421 	if (!sds->busiest)
6422 		return 0;
6423 
6424 	busiest_cpu = group_first_cpu(sds->busiest);
6425 	if (env->dst_cpu > busiest_cpu)
6426 		return 0;
6427 
6428 	env->imbalance = DIV_ROUND_CLOSEST(
6429 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6430 		SCHED_CAPACITY_SCALE);
6431 
6432 	return 1;
6433 }
6434 
6435 /**
6436  * fix_small_imbalance - Calculate the minor imbalance that exists
6437  *			amongst the groups of a sched_domain, during
6438  *			load balancing.
6439  * @env: The load balancing environment.
6440  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6441  */
6442 static inline
6443 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6444 {
6445 	unsigned long tmp, capa_now = 0, capa_move = 0;
6446 	unsigned int imbn = 2;
6447 	unsigned long scaled_busy_load_per_task;
6448 	struct sg_lb_stats *local, *busiest;
6449 
6450 	local = &sds->local_stat;
6451 	busiest = &sds->busiest_stat;
6452 
6453 	if (!local->sum_nr_running)
6454 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6455 	else if (busiest->load_per_task > local->load_per_task)
6456 		imbn = 1;
6457 
6458 	scaled_busy_load_per_task =
6459 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6460 		busiest->group_capacity;
6461 
6462 	if (busiest->avg_load + scaled_busy_load_per_task >=
6463 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
6464 		env->imbalance = busiest->load_per_task;
6465 		return;
6466 	}
6467 
6468 	/*
6469 	 * OK, we don't have enough imbalance to justify moving tasks,
6470 	 * however we may be able to increase total CPU capacity used by
6471 	 * moving them.
6472 	 */
6473 
6474 	capa_now += busiest->group_capacity *
6475 			min(busiest->load_per_task, busiest->avg_load);
6476 	capa_now += local->group_capacity *
6477 			min(local->load_per_task, local->avg_load);
6478 	capa_now /= SCHED_CAPACITY_SCALE;
6479 
6480 	/* Amount of load we'd subtract */
6481 	if (busiest->avg_load > scaled_busy_load_per_task) {
6482 		capa_move += busiest->group_capacity *
6483 			    min(busiest->load_per_task,
6484 				busiest->avg_load - scaled_busy_load_per_task);
6485 	}
6486 
6487 	/* Amount of load we'd add */
6488 	if (busiest->avg_load * busiest->group_capacity <
6489 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6490 		tmp = (busiest->avg_load * busiest->group_capacity) /
6491 		      local->group_capacity;
6492 	} else {
6493 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6494 		      local->group_capacity;
6495 	}
6496 	capa_move += local->group_capacity *
6497 		    min(local->load_per_task, local->avg_load + tmp);
6498 	capa_move /= SCHED_CAPACITY_SCALE;
6499 
6500 	/* Move if we gain throughput */
6501 	if (capa_move > capa_now)
6502 		env->imbalance = busiest->load_per_task;
6503 }
6504 
6505 /**
6506  * calculate_imbalance - Calculate the amount of imbalance present within the
6507  *			 groups of a given sched_domain during load balance.
6508  * @env: load balance environment
6509  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6510  */
6511 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6512 {
6513 	unsigned long max_pull, load_above_capacity = ~0UL;
6514 	struct sg_lb_stats *local, *busiest;
6515 
6516 	local = &sds->local_stat;
6517 	busiest = &sds->busiest_stat;
6518 
6519 	if (busiest->group_type == group_imbalanced) {
6520 		/*
6521 		 * In the group_imb case we cannot rely on group-wide averages
6522 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
6523 		 */
6524 		busiest->load_per_task =
6525 			min(busiest->load_per_task, sds->avg_load);
6526 	}
6527 
6528 	/*
6529 	 * In the presence of smp nice balancing, certain scenarios can have
6530 	 * max load less than avg load(as we skip the groups at or below
6531 	 * its cpu_capacity, while calculating max_load..)
6532 	 */
6533 	if (busiest->avg_load <= sds->avg_load ||
6534 	    local->avg_load >= sds->avg_load) {
6535 		env->imbalance = 0;
6536 		return fix_small_imbalance(env, sds);
6537 	}
6538 
6539 	/*
6540 	 * If there aren't any idle cpus, avoid creating some.
6541 	 */
6542 	if (busiest->group_type == group_overloaded &&
6543 	    local->group_type   == group_overloaded) {
6544 		load_above_capacity =
6545 			(busiest->sum_nr_running - busiest->group_capacity_factor);
6546 
6547 		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6548 		load_above_capacity /= busiest->group_capacity;
6549 	}
6550 
6551 	/*
6552 	 * We're trying to get all the cpus to the average_load, so we don't
6553 	 * want to push ourselves above the average load, nor do we wish to
6554 	 * reduce the max loaded cpu below the average load. At the same time,
6555 	 * we also don't want to reduce the group load below the group capacity
6556 	 * (so that we can implement power-savings policies etc). Thus we look
6557 	 * for the minimum possible imbalance.
6558 	 */
6559 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6560 
6561 	/* How much load to actually move to equalise the imbalance */
6562 	env->imbalance = min(
6563 		max_pull * busiest->group_capacity,
6564 		(sds->avg_load - local->avg_load) * local->group_capacity
6565 	) / SCHED_CAPACITY_SCALE;
6566 
6567 	/*
6568 	 * if *imbalance is less than the average load per runnable task
6569 	 * there is no guarantee that any tasks will be moved so we'll have
6570 	 * a think about bumping its value to force at least one task to be
6571 	 * moved
6572 	 */
6573 	if (env->imbalance < busiest->load_per_task)
6574 		return fix_small_imbalance(env, sds);
6575 }
6576 
6577 /******* find_busiest_group() helpers end here *********************/
6578 
6579 /**
6580  * find_busiest_group - Returns the busiest group within the sched_domain
6581  * if there is an imbalance. If there isn't an imbalance, and
6582  * the user has opted for power-savings, it returns a group whose
6583  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6584  * such a group exists.
6585  *
6586  * Also calculates the amount of weighted load which should be moved
6587  * to restore balance.
6588  *
6589  * @env: The load balancing environment.
6590  *
6591  * Return:	- The busiest group if imbalance exists.
6592  *		- If no imbalance and user has opted for power-savings balance,
6593  *		   return the least loaded group whose CPUs can be
6594  *		   put to idle by rebalancing its tasks onto our group.
6595  */
6596 static struct sched_group *find_busiest_group(struct lb_env *env)
6597 {
6598 	struct sg_lb_stats *local, *busiest;
6599 	struct sd_lb_stats sds;
6600 
6601 	init_sd_lb_stats(&sds);
6602 
6603 	/*
6604 	 * Compute the various statistics relavent for load balancing at
6605 	 * this level.
6606 	 */
6607 	update_sd_lb_stats(env, &sds);
6608 	local = &sds.local_stat;
6609 	busiest = &sds.busiest_stat;
6610 
6611 	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6612 	    check_asym_packing(env, &sds))
6613 		return sds.busiest;
6614 
6615 	/* There is no busy sibling group to pull tasks from */
6616 	if (!sds.busiest || busiest->sum_nr_running == 0)
6617 		goto out_balanced;
6618 
6619 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6620 						/ sds.total_capacity;
6621 
6622 	/*
6623 	 * If the busiest group is imbalanced the below checks don't
6624 	 * work because they assume all things are equal, which typically
6625 	 * isn't true due to cpus_allowed constraints and the like.
6626 	 */
6627 	if (busiest->group_type == group_imbalanced)
6628 		goto force_balance;
6629 
6630 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6631 	if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6632 	    !busiest->group_has_free_capacity)
6633 		goto force_balance;
6634 
6635 	/*
6636 	 * If the local group is busier than the selected busiest group
6637 	 * don't try and pull any tasks.
6638 	 */
6639 	if (local->avg_load >= busiest->avg_load)
6640 		goto out_balanced;
6641 
6642 	/*
6643 	 * Don't pull any tasks if this group is already above the domain
6644 	 * average load.
6645 	 */
6646 	if (local->avg_load >= sds.avg_load)
6647 		goto out_balanced;
6648 
6649 	if (env->idle == CPU_IDLE) {
6650 		/*
6651 		 * This cpu is idle. If the busiest group is not overloaded
6652 		 * and there is no imbalance between this and busiest group
6653 		 * wrt idle cpus, it is balanced. The imbalance becomes
6654 		 * significant if the diff is greater than 1 otherwise we
6655 		 * might end up to just move the imbalance on another group
6656 		 */
6657 		if ((busiest->group_type != group_overloaded) &&
6658 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
6659 			goto out_balanced;
6660 	} else {
6661 		/*
6662 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6663 		 * imbalance_pct to be conservative.
6664 		 */
6665 		if (100 * busiest->avg_load <=
6666 				env->sd->imbalance_pct * local->avg_load)
6667 			goto out_balanced;
6668 	}
6669 
6670 force_balance:
6671 	/* Looks like there is an imbalance. Compute it */
6672 	calculate_imbalance(env, &sds);
6673 	return sds.busiest;
6674 
6675 out_balanced:
6676 	env->imbalance = 0;
6677 	return NULL;
6678 }
6679 
6680 /*
6681  * find_busiest_queue - find the busiest runqueue among the cpus in group.
6682  */
6683 static struct rq *find_busiest_queue(struct lb_env *env,
6684 				     struct sched_group *group)
6685 {
6686 	struct rq *busiest = NULL, *rq;
6687 	unsigned long busiest_load = 0, busiest_capacity = 1;
6688 	int i;
6689 
6690 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6691 		unsigned long capacity, capacity_factor, wl;
6692 		enum fbq_type rt;
6693 
6694 		rq = cpu_rq(i);
6695 		rt = fbq_classify_rq(rq);
6696 
6697 		/*
6698 		 * We classify groups/runqueues into three groups:
6699 		 *  - regular: there are !numa tasks
6700 		 *  - remote:  there are numa tasks that run on the 'wrong' node
6701 		 *  - all:     there is no distinction
6702 		 *
6703 		 * In order to avoid migrating ideally placed numa tasks,
6704 		 * ignore those when there's better options.
6705 		 *
6706 		 * If we ignore the actual busiest queue to migrate another
6707 		 * task, the next balance pass can still reduce the busiest
6708 		 * queue by moving tasks around inside the node.
6709 		 *
6710 		 * If we cannot move enough load due to this classification
6711 		 * the next pass will adjust the group classification and
6712 		 * allow migration of more tasks.
6713 		 *
6714 		 * Both cases only affect the total convergence complexity.
6715 		 */
6716 		if (rt > env->fbq_type)
6717 			continue;
6718 
6719 		capacity = capacity_of(i);
6720 		capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6721 		if (!capacity_factor)
6722 			capacity_factor = fix_small_capacity(env->sd, group);
6723 
6724 		wl = weighted_cpuload(i);
6725 
6726 		/*
6727 		 * When comparing with imbalance, use weighted_cpuload()
6728 		 * which is not scaled with the cpu capacity.
6729 		 */
6730 		if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6731 			continue;
6732 
6733 		/*
6734 		 * For the load comparisons with the other cpu's, consider
6735 		 * the weighted_cpuload() scaled with the cpu capacity, so
6736 		 * that the load can be moved away from the cpu that is
6737 		 * potentially running at a lower capacity.
6738 		 *
6739 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6740 		 * multiplication to rid ourselves of the division works out
6741 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
6742 		 * our previous maximum.
6743 		 */
6744 		if (wl * busiest_capacity > busiest_load * capacity) {
6745 			busiest_load = wl;
6746 			busiest_capacity = capacity;
6747 			busiest = rq;
6748 		}
6749 	}
6750 
6751 	return busiest;
6752 }
6753 
6754 /*
6755  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6756  * so long as it is large enough.
6757  */
6758 #define MAX_PINNED_INTERVAL	512
6759 
6760 /* Working cpumask for load_balance and load_balance_newidle. */
6761 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6762 
6763 static int need_active_balance(struct lb_env *env)
6764 {
6765 	struct sched_domain *sd = env->sd;
6766 
6767 	if (env->idle == CPU_NEWLY_IDLE) {
6768 
6769 		/*
6770 		 * ASYM_PACKING needs to force migrate tasks from busy but
6771 		 * higher numbered CPUs in order to pack all tasks in the
6772 		 * lowest numbered CPUs.
6773 		 */
6774 		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6775 			return 1;
6776 	}
6777 
6778 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6779 }
6780 
6781 static int active_load_balance_cpu_stop(void *data);
6782 
6783 static int should_we_balance(struct lb_env *env)
6784 {
6785 	struct sched_group *sg = env->sd->groups;
6786 	struct cpumask *sg_cpus, *sg_mask;
6787 	int cpu, balance_cpu = -1;
6788 
6789 	/*
6790 	 * In the newly idle case, we will allow all the cpu's
6791 	 * to do the newly idle load balance.
6792 	 */
6793 	if (env->idle == CPU_NEWLY_IDLE)
6794 		return 1;
6795 
6796 	sg_cpus = sched_group_cpus(sg);
6797 	sg_mask = sched_group_mask(sg);
6798 	/* Try to find first idle cpu */
6799 	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6800 		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6801 			continue;
6802 
6803 		balance_cpu = cpu;
6804 		break;
6805 	}
6806 
6807 	if (balance_cpu == -1)
6808 		balance_cpu = group_balance_cpu(sg);
6809 
6810 	/*
6811 	 * First idle cpu or the first cpu(busiest) in this sched group
6812 	 * is eligible for doing load balancing at this and above domains.
6813 	 */
6814 	return balance_cpu == env->dst_cpu;
6815 }
6816 
6817 /*
6818  * Check this_cpu to ensure it is balanced within domain. Attempt to move
6819  * tasks if there is an imbalance.
6820  */
6821 static int load_balance(int this_cpu, struct rq *this_rq,
6822 			struct sched_domain *sd, enum cpu_idle_type idle,
6823 			int *continue_balancing)
6824 {
6825 	int ld_moved, cur_ld_moved, active_balance = 0;
6826 	struct sched_domain *sd_parent = sd->parent;
6827 	struct sched_group *group;
6828 	struct rq *busiest;
6829 	unsigned long flags;
6830 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6831 
6832 	struct lb_env env = {
6833 		.sd		= sd,
6834 		.dst_cpu	= this_cpu,
6835 		.dst_rq		= this_rq,
6836 		.dst_grpmask    = sched_group_cpus(sd->groups),
6837 		.idle		= idle,
6838 		.loop_break	= sched_nr_migrate_break,
6839 		.cpus		= cpus,
6840 		.fbq_type	= all,
6841 		.tasks		= LIST_HEAD_INIT(env.tasks),
6842 	};
6843 
6844 	/*
6845 	 * For NEWLY_IDLE load_balancing, we don't need to consider
6846 	 * other cpus in our group
6847 	 */
6848 	if (idle == CPU_NEWLY_IDLE)
6849 		env.dst_grpmask = NULL;
6850 
6851 	cpumask_copy(cpus, cpu_active_mask);
6852 
6853 	schedstat_inc(sd, lb_count[idle]);
6854 
6855 redo:
6856 	if (!should_we_balance(&env)) {
6857 		*continue_balancing = 0;
6858 		goto out_balanced;
6859 	}
6860 
6861 	group = find_busiest_group(&env);
6862 	if (!group) {
6863 		schedstat_inc(sd, lb_nobusyg[idle]);
6864 		goto out_balanced;
6865 	}
6866 
6867 	busiest = find_busiest_queue(&env, group);
6868 	if (!busiest) {
6869 		schedstat_inc(sd, lb_nobusyq[idle]);
6870 		goto out_balanced;
6871 	}
6872 
6873 	BUG_ON(busiest == env.dst_rq);
6874 
6875 	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6876 
6877 	ld_moved = 0;
6878 	if (busiest->nr_running > 1) {
6879 		/*
6880 		 * Attempt to move tasks. If find_busiest_group has found
6881 		 * an imbalance but busiest->nr_running <= 1, the group is
6882 		 * still unbalanced. ld_moved simply stays zero, so it is
6883 		 * correctly treated as an imbalance.
6884 		 */
6885 		env.flags |= LBF_ALL_PINNED;
6886 		env.src_cpu   = busiest->cpu;
6887 		env.src_rq    = busiest;
6888 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6889 
6890 more_balance:
6891 		raw_spin_lock_irqsave(&busiest->lock, flags);
6892 
6893 		/*
6894 		 * cur_ld_moved - load moved in current iteration
6895 		 * ld_moved     - cumulative load moved across iterations
6896 		 */
6897 		cur_ld_moved = detach_tasks(&env);
6898 
6899 		/*
6900 		 * We've detached some tasks from busiest_rq. Every
6901 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6902 		 * unlock busiest->lock, and we are able to be sure
6903 		 * that nobody can manipulate the tasks in parallel.
6904 		 * See task_rq_lock() family for the details.
6905 		 */
6906 
6907 		raw_spin_unlock(&busiest->lock);
6908 
6909 		if (cur_ld_moved) {
6910 			attach_tasks(&env);
6911 			ld_moved += cur_ld_moved;
6912 		}
6913 
6914 		local_irq_restore(flags);
6915 
6916 		if (env.flags & LBF_NEED_BREAK) {
6917 			env.flags &= ~LBF_NEED_BREAK;
6918 			goto more_balance;
6919 		}
6920 
6921 		/*
6922 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6923 		 * us and move them to an alternate dst_cpu in our sched_group
6924 		 * where they can run. The upper limit on how many times we
6925 		 * iterate on same src_cpu is dependent on number of cpus in our
6926 		 * sched_group.
6927 		 *
6928 		 * This changes load balance semantics a bit on who can move
6929 		 * load to a given_cpu. In addition to the given_cpu itself
6930 		 * (or a ilb_cpu acting on its behalf where given_cpu is
6931 		 * nohz-idle), we now have balance_cpu in a position to move
6932 		 * load to given_cpu. In rare situations, this may cause
6933 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6934 		 * _independently_ and at _same_ time to move some load to
6935 		 * given_cpu) causing exceess load to be moved to given_cpu.
6936 		 * This however should not happen so much in practice and
6937 		 * moreover subsequent load balance cycles should correct the
6938 		 * excess load moved.
6939 		 */
6940 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6941 
6942 			/* Prevent to re-select dst_cpu via env's cpus */
6943 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
6944 
6945 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6946 			env.dst_cpu	 = env.new_dst_cpu;
6947 			env.flags	&= ~LBF_DST_PINNED;
6948 			env.loop	 = 0;
6949 			env.loop_break	 = sched_nr_migrate_break;
6950 
6951 			/*
6952 			 * Go back to "more_balance" rather than "redo" since we
6953 			 * need to continue with same src_cpu.
6954 			 */
6955 			goto more_balance;
6956 		}
6957 
6958 		/*
6959 		 * We failed to reach balance because of affinity.
6960 		 */
6961 		if (sd_parent) {
6962 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6963 
6964 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6965 				*group_imbalance = 1;
6966 		}
6967 
6968 		/* All tasks on this runqueue were pinned by CPU affinity */
6969 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6970 			cpumask_clear_cpu(cpu_of(busiest), cpus);
6971 			if (!cpumask_empty(cpus)) {
6972 				env.loop = 0;
6973 				env.loop_break = sched_nr_migrate_break;
6974 				goto redo;
6975 			}
6976 			goto out_all_pinned;
6977 		}
6978 	}
6979 
6980 	if (!ld_moved) {
6981 		schedstat_inc(sd, lb_failed[idle]);
6982 		/*
6983 		 * Increment the failure counter only on periodic balance.
6984 		 * We do not want newidle balance, which can be very
6985 		 * frequent, pollute the failure counter causing
6986 		 * excessive cache_hot migrations and active balances.
6987 		 */
6988 		if (idle != CPU_NEWLY_IDLE)
6989 			sd->nr_balance_failed++;
6990 
6991 		if (need_active_balance(&env)) {
6992 			raw_spin_lock_irqsave(&busiest->lock, flags);
6993 
6994 			/* don't kick the active_load_balance_cpu_stop,
6995 			 * if the curr task on busiest cpu can't be
6996 			 * moved to this_cpu
6997 			 */
6998 			if (!cpumask_test_cpu(this_cpu,
6999 					tsk_cpus_allowed(busiest->curr))) {
7000 				raw_spin_unlock_irqrestore(&busiest->lock,
7001 							    flags);
7002 				env.flags |= LBF_ALL_PINNED;
7003 				goto out_one_pinned;
7004 			}
7005 
7006 			/*
7007 			 * ->active_balance synchronizes accesses to
7008 			 * ->active_balance_work.  Once set, it's cleared
7009 			 * only after active load balance is finished.
7010 			 */
7011 			if (!busiest->active_balance) {
7012 				busiest->active_balance = 1;
7013 				busiest->push_cpu = this_cpu;
7014 				active_balance = 1;
7015 			}
7016 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7017 
7018 			if (active_balance) {
7019 				stop_one_cpu_nowait(cpu_of(busiest),
7020 					active_load_balance_cpu_stop, busiest,
7021 					&busiest->active_balance_work);
7022 			}
7023 
7024 			/*
7025 			 * We've kicked active balancing, reset the failure
7026 			 * counter.
7027 			 */
7028 			sd->nr_balance_failed = sd->cache_nice_tries+1;
7029 		}
7030 	} else
7031 		sd->nr_balance_failed = 0;
7032 
7033 	if (likely(!active_balance)) {
7034 		/* We were unbalanced, so reset the balancing interval */
7035 		sd->balance_interval = sd->min_interval;
7036 	} else {
7037 		/*
7038 		 * If we've begun active balancing, start to back off. This
7039 		 * case may not be covered by the all_pinned logic if there
7040 		 * is only 1 task on the busy runqueue (because we don't call
7041 		 * detach_tasks).
7042 		 */
7043 		if (sd->balance_interval < sd->max_interval)
7044 			sd->balance_interval *= 2;
7045 	}
7046 
7047 	goto out;
7048 
7049 out_balanced:
7050 	/*
7051 	 * We reach balance although we may have faced some affinity
7052 	 * constraints. Clear the imbalance flag if it was set.
7053 	 */
7054 	if (sd_parent) {
7055 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7056 
7057 		if (*group_imbalance)
7058 			*group_imbalance = 0;
7059 	}
7060 
7061 out_all_pinned:
7062 	/*
7063 	 * We reach balance because all tasks are pinned at this level so
7064 	 * we can't migrate them. Let the imbalance flag set so parent level
7065 	 * can try to migrate them.
7066 	 */
7067 	schedstat_inc(sd, lb_balanced[idle]);
7068 
7069 	sd->nr_balance_failed = 0;
7070 
7071 out_one_pinned:
7072 	/* tune up the balancing interval */
7073 	if (((env.flags & LBF_ALL_PINNED) &&
7074 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7075 			(sd->balance_interval < sd->max_interval))
7076 		sd->balance_interval *= 2;
7077 
7078 	ld_moved = 0;
7079 out:
7080 	return ld_moved;
7081 }
7082 
7083 static inline unsigned long
7084 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7085 {
7086 	unsigned long interval = sd->balance_interval;
7087 
7088 	if (cpu_busy)
7089 		interval *= sd->busy_factor;
7090 
7091 	/* scale ms to jiffies */
7092 	interval = msecs_to_jiffies(interval);
7093 	interval = clamp(interval, 1UL, max_load_balance_interval);
7094 
7095 	return interval;
7096 }
7097 
7098 static inline void
7099 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7100 {
7101 	unsigned long interval, next;
7102 
7103 	interval = get_sd_balance_interval(sd, cpu_busy);
7104 	next = sd->last_balance + interval;
7105 
7106 	if (time_after(*next_balance, next))
7107 		*next_balance = next;
7108 }
7109 
7110 /*
7111  * idle_balance is called by schedule() if this_cpu is about to become
7112  * idle. Attempts to pull tasks from other CPUs.
7113  */
7114 static int idle_balance(struct rq *this_rq)
7115 {
7116 	unsigned long next_balance = jiffies + HZ;
7117 	int this_cpu = this_rq->cpu;
7118 	struct sched_domain *sd;
7119 	int pulled_task = 0;
7120 	u64 curr_cost = 0;
7121 
7122 	idle_enter_fair(this_rq);
7123 
7124 	/*
7125 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
7126 	 * measure the duration of idle_balance() as idle time.
7127 	 */
7128 	this_rq->idle_stamp = rq_clock(this_rq);
7129 
7130 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7131 	    !this_rq->rd->overload) {
7132 		rcu_read_lock();
7133 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
7134 		if (sd)
7135 			update_next_balance(sd, 0, &next_balance);
7136 		rcu_read_unlock();
7137 
7138 		goto out;
7139 	}
7140 
7141 	/*
7142 	 * Drop the rq->lock, but keep IRQ/preempt disabled.
7143 	 */
7144 	raw_spin_unlock(&this_rq->lock);
7145 
7146 	update_blocked_averages(this_cpu);
7147 	rcu_read_lock();
7148 	for_each_domain(this_cpu, sd) {
7149 		int continue_balancing = 1;
7150 		u64 t0, domain_cost;
7151 
7152 		if (!(sd->flags & SD_LOAD_BALANCE))
7153 			continue;
7154 
7155 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7156 			update_next_balance(sd, 0, &next_balance);
7157 			break;
7158 		}
7159 
7160 		if (sd->flags & SD_BALANCE_NEWIDLE) {
7161 			t0 = sched_clock_cpu(this_cpu);
7162 
7163 			pulled_task = load_balance(this_cpu, this_rq,
7164 						   sd, CPU_NEWLY_IDLE,
7165 						   &continue_balancing);
7166 
7167 			domain_cost = sched_clock_cpu(this_cpu) - t0;
7168 			if (domain_cost > sd->max_newidle_lb_cost)
7169 				sd->max_newidle_lb_cost = domain_cost;
7170 
7171 			curr_cost += domain_cost;
7172 		}
7173 
7174 		update_next_balance(sd, 0, &next_balance);
7175 
7176 		/*
7177 		 * Stop searching for tasks to pull if there are
7178 		 * now runnable tasks on this rq.
7179 		 */
7180 		if (pulled_task || this_rq->nr_running > 0)
7181 			break;
7182 	}
7183 	rcu_read_unlock();
7184 
7185 	raw_spin_lock(&this_rq->lock);
7186 
7187 	if (curr_cost > this_rq->max_idle_balance_cost)
7188 		this_rq->max_idle_balance_cost = curr_cost;
7189 
7190 	/*
7191 	 * While browsing the domains, we released the rq lock, a task could
7192 	 * have been enqueued in the meantime. Since we're not going idle,
7193 	 * pretend we pulled a task.
7194 	 */
7195 	if (this_rq->cfs.h_nr_running && !pulled_task)
7196 		pulled_task = 1;
7197 
7198 out:
7199 	/* Move the next balance forward */
7200 	if (time_after(this_rq->next_balance, next_balance))
7201 		this_rq->next_balance = next_balance;
7202 
7203 	/* Is there a task of a high priority class? */
7204 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7205 		pulled_task = -1;
7206 
7207 	if (pulled_task) {
7208 		idle_exit_fair(this_rq);
7209 		this_rq->idle_stamp = 0;
7210 	}
7211 
7212 	return pulled_task;
7213 }
7214 
7215 /*
7216  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7217  * running tasks off the busiest CPU onto idle CPUs. It requires at
7218  * least 1 task to be running on each physical CPU where possible, and
7219  * avoids physical / logical imbalances.
7220  */
7221 static int active_load_balance_cpu_stop(void *data)
7222 {
7223 	struct rq *busiest_rq = data;
7224 	int busiest_cpu = cpu_of(busiest_rq);
7225 	int target_cpu = busiest_rq->push_cpu;
7226 	struct rq *target_rq = cpu_rq(target_cpu);
7227 	struct sched_domain *sd;
7228 	struct task_struct *p = NULL;
7229 
7230 	raw_spin_lock_irq(&busiest_rq->lock);
7231 
7232 	/* make sure the requested cpu hasn't gone down in the meantime */
7233 	if (unlikely(busiest_cpu != smp_processor_id() ||
7234 		     !busiest_rq->active_balance))
7235 		goto out_unlock;
7236 
7237 	/* Is there any task to move? */
7238 	if (busiest_rq->nr_running <= 1)
7239 		goto out_unlock;
7240 
7241 	/*
7242 	 * This condition is "impossible", if it occurs
7243 	 * we need to fix it. Originally reported by
7244 	 * Bjorn Helgaas on a 128-cpu setup.
7245 	 */
7246 	BUG_ON(busiest_rq == target_rq);
7247 
7248 	/* Search for an sd spanning us and the target CPU. */
7249 	rcu_read_lock();
7250 	for_each_domain(target_cpu, sd) {
7251 		if ((sd->flags & SD_LOAD_BALANCE) &&
7252 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7253 				break;
7254 	}
7255 
7256 	if (likely(sd)) {
7257 		struct lb_env env = {
7258 			.sd		= sd,
7259 			.dst_cpu	= target_cpu,
7260 			.dst_rq		= target_rq,
7261 			.src_cpu	= busiest_rq->cpu,
7262 			.src_rq		= busiest_rq,
7263 			.idle		= CPU_IDLE,
7264 		};
7265 
7266 		schedstat_inc(sd, alb_count);
7267 
7268 		p = detach_one_task(&env);
7269 		if (p)
7270 			schedstat_inc(sd, alb_pushed);
7271 		else
7272 			schedstat_inc(sd, alb_failed);
7273 	}
7274 	rcu_read_unlock();
7275 out_unlock:
7276 	busiest_rq->active_balance = 0;
7277 	raw_spin_unlock(&busiest_rq->lock);
7278 
7279 	if (p)
7280 		attach_one_task(target_rq, p);
7281 
7282 	local_irq_enable();
7283 
7284 	return 0;
7285 }
7286 
7287 static inline int on_null_domain(struct rq *rq)
7288 {
7289 	return unlikely(!rcu_dereference_sched(rq->sd));
7290 }
7291 
7292 #ifdef CONFIG_NO_HZ_COMMON
7293 /*
7294  * idle load balancing details
7295  * - When one of the busy CPUs notice that there may be an idle rebalancing
7296  *   needed, they will kick the idle load balancer, which then does idle
7297  *   load balancing for all the idle CPUs.
7298  */
7299 static struct {
7300 	cpumask_var_t idle_cpus_mask;
7301 	atomic_t nr_cpus;
7302 	unsigned long next_balance;     /* in jiffy units */
7303 } nohz ____cacheline_aligned;
7304 
7305 static inline int find_new_ilb(void)
7306 {
7307 	int ilb = cpumask_first(nohz.idle_cpus_mask);
7308 
7309 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
7310 		return ilb;
7311 
7312 	return nr_cpu_ids;
7313 }
7314 
7315 /*
7316  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7317  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7318  * CPU (if there is one).
7319  */
7320 static void nohz_balancer_kick(void)
7321 {
7322 	int ilb_cpu;
7323 
7324 	nohz.next_balance++;
7325 
7326 	ilb_cpu = find_new_ilb();
7327 
7328 	if (ilb_cpu >= nr_cpu_ids)
7329 		return;
7330 
7331 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7332 		return;
7333 	/*
7334 	 * Use smp_send_reschedule() instead of resched_cpu().
7335 	 * This way we generate a sched IPI on the target cpu which
7336 	 * is idle. And the softirq performing nohz idle load balance
7337 	 * will be run before returning from the IPI.
7338 	 */
7339 	smp_send_reschedule(ilb_cpu);
7340 	return;
7341 }
7342 
7343 static inline void nohz_balance_exit_idle(int cpu)
7344 {
7345 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7346 		/*
7347 		 * Completely isolated CPUs don't ever set, so we must test.
7348 		 */
7349 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7350 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7351 			atomic_dec(&nohz.nr_cpus);
7352 		}
7353 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7354 	}
7355 }
7356 
7357 static inline void set_cpu_sd_state_busy(void)
7358 {
7359 	struct sched_domain *sd;
7360 	int cpu = smp_processor_id();
7361 
7362 	rcu_read_lock();
7363 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7364 
7365 	if (!sd || !sd->nohz_idle)
7366 		goto unlock;
7367 	sd->nohz_idle = 0;
7368 
7369 	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7370 unlock:
7371 	rcu_read_unlock();
7372 }
7373 
7374 void set_cpu_sd_state_idle(void)
7375 {
7376 	struct sched_domain *sd;
7377 	int cpu = smp_processor_id();
7378 
7379 	rcu_read_lock();
7380 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7381 
7382 	if (!sd || sd->nohz_idle)
7383 		goto unlock;
7384 	sd->nohz_idle = 1;
7385 
7386 	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7387 unlock:
7388 	rcu_read_unlock();
7389 }
7390 
7391 /*
7392  * This routine will record that the cpu is going idle with tick stopped.
7393  * This info will be used in performing idle load balancing in the future.
7394  */
7395 void nohz_balance_enter_idle(int cpu)
7396 {
7397 	/*
7398 	 * If this cpu is going down, then nothing needs to be done.
7399 	 */
7400 	if (!cpu_active(cpu))
7401 		return;
7402 
7403 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7404 		return;
7405 
7406 	/*
7407 	 * If we're a completely isolated CPU, we don't play.
7408 	 */
7409 	if (on_null_domain(cpu_rq(cpu)))
7410 		return;
7411 
7412 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7413 	atomic_inc(&nohz.nr_cpus);
7414 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7415 }
7416 
7417 static int sched_ilb_notifier(struct notifier_block *nfb,
7418 					unsigned long action, void *hcpu)
7419 {
7420 	switch (action & ~CPU_TASKS_FROZEN) {
7421 	case CPU_DYING:
7422 		nohz_balance_exit_idle(smp_processor_id());
7423 		return NOTIFY_OK;
7424 	default:
7425 		return NOTIFY_DONE;
7426 	}
7427 }
7428 #endif
7429 
7430 static DEFINE_SPINLOCK(balancing);
7431 
7432 /*
7433  * Scale the max load_balance interval with the number of CPUs in the system.
7434  * This trades load-balance latency on larger machines for less cross talk.
7435  */
7436 void update_max_interval(void)
7437 {
7438 	max_load_balance_interval = HZ*num_online_cpus()/10;
7439 }
7440 
7441 /*
7442  * It checks each scheduling domain to see if it is due to be balanced,
7443  * and initiates a balancing operation if so.
7444  *
7445  * Balancing parameters are set up in init_sched_domains.
7446  */
7447 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7448 {
7449 	int continue_balancing = 1;
7450 	int cpu = rq->cpu;
7451 	unsigned long interval;
7452 	struct sched_domain *sd;
7453 	/* Earliest time when we have to do rebalance again */
7454 	unsigned long next_balance = jiffies + 60*HZ;
7455 	int update_next_balance = 0;
7456 	int need_serialize, need_decay = 0;
7457 	u64 max_cost = 0;
7458 
7459 	update_blocked_averages(cpu);
7460 
7461 	rcu_read_lock();
7462 	for_each_domain(cpu, sd) {
7463 		/*
7464 		 * Decay the newidle max times here because this is a regular
7465 		 * visit to all the domains. Decay ~1% per second.
7466 		 */
7467 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7468 			sd->max_newidle_lb_cost =
7469 				(sd->max_newidle_lb_cost * 253) / 256;
7470 			sd->next_decay_max_lb_cost = jiffies + HZ;
7471 			need_decay = 1;
7472 		}
7473 		max_cost += sd->max_newidle_lb_cost;
7474 
7475 		if (!(sd->flags & SD_LOAD_BALANCE))
7476 			continue;
7477 
7478 		/*
7479 		 * Stop the load balance at this level. There is another
7480 		 * CPU in our sched group which is doing load balancing more
7481 		 * actively.
7482 		 */
7483 		if (!continue_balancing) {
7484 			if (need_decay)
7485 				continue;
7486 			break;
7487 		}
7488 
7489 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7490 
7491 		need_serialize = sd->flags & SD_SERIALIZE;
7492 		if (need_serialize) {
7493 			if (!spin_trylock(&balancing))
7494 				goto out;
7495 		}
7496 
7497 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7498 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7499 				/*
7500 				 * The LBF_DST_PINNED logic could have changed
7501 				 * env->dst_cpu, so we can't know our idle
7502 				 * state even if we migrated tasks. Update it.
7503 				 */
7504 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7505 			}
7506 			sd->last_balance = jiffies;
7507 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7508 		}
7509 		if (need_serialize)
7510 			spin_unlock(&balancing);
7511 out:
7512 		if (time_after(next_balance, sd->last_balance + interval)) {
7513 			next_balance = sd->last_balance + interval;
7514 			update_next_balance = 1;
7515 		}
7516 	}
7517 	if (need_decay) {
7518 		/*
7519 		 * Ensure the rq-wide value also decays but keep it at a
7520 		 * reasonable floor to avoid funnies with rq->avg_idle.
7521 		 */
7522 		rq->max_idle_balance_cost =
7523 			max((u64)sysctl_sched_migration_cost, max_cost);
7524 	}
7525 	rcu_read_unlock();
7526 
7527 	/*
7528 	 * next_balance will be updated only when there is a need.
7529 	 * When the cpu is attached to null domain for ex, it will not be
7530 	 * updated.
7531 	 */
7532 	if (likely(update_next_balance))
7533 		rq->next_balance = next_balance;
7534 }
7535 
7536 #ifdef CONFIG_NO_HZ_COMMON
7537 /*
7538  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7539  * rebalancing for all the cpus for whom scheduler ticks are stopped.
7540  */
7541 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7542 {
7543 	int this_cpu = this_rq->cpu;
7544 	struct rq *rq;
7545 	int balance_cpu;
7546 
7547 	if (idle != CPU_IDLE ||
7548 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7549 		goto end;
7550 
7551 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7552 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7553 			continue;
7554 
7555 		/*
7556 		 * If this cpu gets work to do, stop the load balancing
7557 		 * work being done for other cpus. Next load
7558 		 * balancing owner will pick it up.
7559 		 */
7560 		if (need_resched())
7561 			break;
7562 
7563 		rq = cpu_rq(balance_cpu);
7564 
7565 		/*
7566 		 * If time for next balance is due,
7567 		 * do the balance.
7568 		 */
7569 		if (time_after_eq(jiffies, rq->next_balance)) {
7570 			raw_spin_lock_irq(&rq->lock);
7571 			update_rq_clock(rq);
7572 			update_idle_cpu_load(rq);
7573 			raw_spin_unlock_irq(&rq->lock);
7574 			rebalance_domains(rq, CPU_IDLE);
7575 		}
7576 
7577 		if (time_after(this_rq->next_balance, rq->next_balance))
7578 			this_rq->next_balance = rq->next_balance;
7579 	}
7580 	nohz.next_balance = this_rq->next_balance;
7581 end:
7582 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7583 }
7584 
7585 /*
7586  * Current heuristic for kicking the idle load balancer in the presence
7587  * of an idle cpu is the system.
7588  *   - This rq has more than one task.
7589  *   - At any scheduler domain level, this cpu's scheduler group has multiple
7590  *     busy cpu's exceeding the group's capacity.
7591  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7592  *     domain span are idle.
7593  */
7594 static inline int nohz_kick_needed(struct rq *rq)
7595 {
7596 	unsigned long now = jiffies;
7597 	struct sched_domain *sd;
7598 	struct sched_group_capacity *sgc;
7599 	int nr_busy, cpu = rq->cpu;
7600 
7601 	if (unlikely(rq->idle_balance))
7602 		return 0;
7603 
7604        /*
7605 	* We may be recently in ticked or tickless idle mode. At the first
7606 	* busy tick after returning from idle, we will update the busy stats.
7607 	*/
7608 	set_cpu_sd_state_busy();
7609 	nohz_balance_exit_idle(cpu);
7610 
7611 	/*
7612 	 * None are in tickless mode and hence no need for NOHZ idle load
7613 	 * balancing.
7614 	 */
7615 	if (likely(!atomic_read(&nohz.nr_cpus)))
7616 		return 0;
7617 
7618 	if (time_before(now, nohz.next_balance))
7619 		return 0;
7620 
7621 	if (rq->nr_running >= 2)
7622 		goto need_kick;
7623 
7624 	rcu_read_lock();
7625 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7626 
7627 	if (sd) {
7628 		sgc = sd->groups->sgc;
7629 		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7630 
7631 		if (nr_busy > 1)
7632 			goto need_kick_unlock;
7633 	}
7634 
7635 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
7636 
7637 	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7638 				  sched_domain_span(sd)) < cpu))
7639 		goto need_kick_unlock;
7640 
7641 	rcu_read_unlock();
7642 	return 0;
7643 
7644 need_kick_unlock:
7645 	rcu_read_unlock();
7646 need_kick:
7647 	return 1;
7648 }
7649 #else
7650 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7651 #endif
7652 
7653 /*
7654  * run_rebalance_domains is triggered when needed from the scheduler tick.
7655  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7656  */
7657 static void run_rebalance_domains(struct softirq_action *h)
7658 {
7659 	struct rq *this_rq = this_rq();
7660 	enum cpu_idle_type idle = this_rq->idle_balance ?
7661 						CPU_IDLE : CPU_NOT_IDLE;
7662 
7663 	rebalance_domains(this_rq, idle);
7664 
7665 	/*
7666 	 * If this cpu has a pending nohz_balance_kick, then do the
7667 	 * balancing on behalf of the other idle cpus whose ticks are
7668 	 * stopped.
7669 	 */
7670 	nohz_idle_balance(this_rq, idle);
7671 }
7672 
7673 /*
7674  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7675  */
7676 void trigger_load_balance(struct rq *rq)
7677 {
7678 	/* Don't need to rebalance while attached to NULL domain */
7679 	if (unlikely(on_null_domain(rq)))
7680 		return;
7681 
7682 	if (time_after_eq(jiffies, rq->next_balance))
7683 		raise_softirq(SCHED_SOFTIRQ);
7684 #ifdef CONFIG_NO_HZ_COMMON
7685 	if (nohz_kick_needed(rq))
7686 		nohz_balancer_kick();
7687 #endif
7688 }
7689 
7690 static void rq_online_fair(struct rq *rq)
7691 {
7692 	update_sysctl();
7693 
7694 	update_runtime_enabled(rq);
7695 }
7696 
7697 static void rq_offline_fair(struct rq *rq)
7698 {
7699 	update_sysctl();
7700 
7701 	/* Ensure any throttled groups are reachable by pick_next_task */
7702 	unthrottle_offline_cfs_rqs(rq);
7703 }
7704 
7705 #endif /* CONFIG_SMP */
7706 
7707 /*
7708  * scheduler tick hitting a task of our scheduling class:
7709  */
7710 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7711 {
7712 	struct cfs_rq *cfs_rq;
7713 	struct sched_entity *se = &curr->se;
7714 
7715 	for_each_sched_entity(se) {
7716 		cfs_rq = cfs_rq_of(se);
7717 		entity_tick(cfs_rq, se, queued);
7718 	}
7719 
7720 	if (numabalancing_enabled)
7721 		task_tick_numa(rq, curr);
7722 
7723 	update_rq_runnable_avg(rq, 1);
7724 }
7725 
7726 /*
7727  * called on fork with the child task as argument from the parent's context
7728  *  - child not yet on the tasklist
7729  *  - preemption disabled
7730  */
7731 static void task_fork_fair(struct task_struct *p)
7732 {
7733 	struct cfs_rq *cfs_rq;
7734 	struct sched_entity *se = &p->se, *curr;
7735 	int this_cpu = smp_processor_id();
7736 	struct rq *rq = this_rq();
7737 	unsigned long flags;
7738 
7739 	raw_spin_lock_irqsave(&rq->lock, flags);
7740 
7741 	update_rq_clock(rq);
7742 
7743 	cfs_rq = task_cfs_rq(current);
7744 	curr = cfs_rq->curr;
7745 
7746 	/*
7747 	 * Not only the cpu but also the task_group of the parent might have
7748 	 * been changed after parent->se.parent,cfs_rq were copied to
7749 	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7750 	 * of child point to valid ones.
7751 	 */
7752 	rcu_read_lock();
7753 	__set_task_cpu(p, this_cpu);
7754 	rcu_read_unlock();
7755 
7756 	update_curr(cfs_rq);
7757 
7758 	if (curr)
7759 		se->vruntime = curr->vruntime;
7760 	place_entity(cfs_rq, se, 1);
7761 
7762 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7763 		/*
7764 		 * Upon rescheduling, sched_class::put_prev_task() will place
7765 		 * 'current' within the tree based on its new key value.
7766 		 */
7767 		swap(curr->vruntime, se->vruntime);
7768 		resched_curr(rq);
7769 	}
7770 
7771 	se->vruntime -= cfs_rq->min_vruntime;
7772 
7773 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7774 }
7775 
7776 /*
7777  * Priority of the task has changed. Check to see if we preempt
7778  * the current task.
7779  */
7780 static void
7781 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7782 {
7783 	if (!task_on_rq_queued(p))
7784 		return;
7785 
7786 	/*
7787 	 * Reschedule if we are currently running on this runqueue and
7788 	 * our priority decreased, or if we are not currently running on
7789 	 * this runqueue and our priority is higher than the current's
7790 	 */
7791 	if (rq->curr == p) {
7792 		if (p->prio > oldprio)
7793 			resched_curr(rq);
7794 	} else
7795 		check_preempt_curr(rq, p, 0);
7796 }
7797 
7798 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7799 {
7800 	struct sched_entity *se = &p->se;
7801 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
7802 
7803 	/*
7804 	 * Ensure the task's vruntime is normalized, so that when it's
7805 	 * switched back to the fair class the enqueue_entity(.flags=0) will
7806 	 * do the right thing.
7807 	 *
7808 	 * If it's queued, then the dequeue_entity(.flags=0) will already
7809 	 * have normalized the vruntime, if it's !queued, then only when
7810 	 * the task is sleeping will it still have non-normalized vruntime.
7811 	 */
7812 	if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7813 		/*
7814 		 * Fix up our vruntime so that the current sleep doesn't
7815 		 * cause 'unlimited' sleep bonus.
7816 		 */
7817 		place_entity(cfs_rq, se, 0);
7818 		se->vruntime -= cfs_rq->min_vruntime;
7819 	}
7820 
7821 #ifdef CONFIG_SMP
7822 	/*
7823 	* Remove our load from contribution when we leave sched_fair
7824 	* and ensure we don't carry in an old decay_count if we
7825 	* switch back.
7826 	*/
7827 	if (se->avg.decay_count) {
7828 		__synchronize_entity_decay(se);
7829 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7830 	}
7831 #endif
7832 }
7833 
7834 /*
7835  * We switched to the sched_fair class.
7836  */
7837 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7838 {
7839 #ifdef CONFIG_FAIR_GROUP_SCHED
7840 	struct sched_entity *se = &p->se;
7841 	/*
7842 	 * Since the real-depth could have been changed (only FAIR
7843 	 * class maintain depth value), reset depth properly.
7844 	 */
7845 	se->depth = se->parent ? se->parent->depth + 1 : 0;
7846 #endif
7847 	if (!task_on_rq_queued(p))
7848 		return;
7849 
7850 	/*
7851 	 * We were most likely switched from sched_rt, so
7852 	 * kick off the schedule if running, otherwise just see
7853 	 * if we can still preempt the current task.
7854 	 */
7855 	if (rq->curr == p)
7856 		resched_curr(rq);
7857 	else
7858 		check_preempt_curr(rq, p, 0);
7859 }
7860 
7861 /* Account for a task changing its policy or group.
7862  *
7863  * This routine is mostly called to set cfs_rq->curr field when a task
7864  * migrates between groups/classes.
7865  */
7866 static void set_curr_task_fair(struct rq *rq)
7867 {
7868 	struct sched_entity *se = &rq->curr->se;
7869 
7870 	for_each_sched_entity(se) {
7871 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7872 
7873 		set_next_entity(cfs_rq, se);
7874 		/* ensure bandwidth has been allocated on our new cfs_rq */
7875 		account_cfs_rq_runtime(cfs_rq, 0);
7876 	}
7877 }
7878 
7879 void init_cfs_rq(struct cfs_rq *cfs_rq)
7880 {
7881 	cfs_rq->tasks_timeline = RB_ROOT;
7882 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7883 #ifndef CONFIG_64BIT
7884 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7885 #endif
7886 #ifdef CONFIG_SMP
7887 	atomic64_set(&cfs_rq->decay_counter, 1);
7888 	atomic_long_set(&cfs_rq->removed_load, 0);
7889 #endif
7890 }
7891 
7892 #ifdef CONFIG_FAIR_GROUP_SCHED
7893 static void task_move_group_fair(struct task_struct *p, int queued)
7894 {
7895 	struct sched_entity *se = &p->se;
7896 	struct cfs_rq *cfs_rq;
7897 
7898 	/*
7899 	 * If the task was not on the rq at the time of this cgroup movement
7900 	 * it must have been asleep, sleeping tasks keep their ->vruntime
7901 	 * absolute on their old rq until wakeup (needed for the fair sleeper
7902 	 * bonus in place_entity()).
7903 	 *
7904 	 * If it was on the rq, we've just 'preempted' it, which does convert
7905 	 * ->vruntime to a relative base.
7906 	 *
7907 	 * Make sure both cases convert their relative position when migrating
7908 	 * to another cgroup's rq. This does somewhat interfere with the
7909 	 * fair sleeper stuff for the first placement, but who cares.
7910 	 */
7911 	/*
7912 	 * When !queued, vruntime of the task has usually NOT been normalized.
7913 	 * But there are some cases where it has already been normalized:
7914 	 *
7915 	 * - Moving a forked child which is waiting for being woken up by
7916 	 *   wake_up_new_task().
7917 	 * - Moving a task which has been woken up by try_to_wake_up() and
7918 	 *   waiting for actually being woken up by sched_ttwu_pending().
7919 	 *
7920 	 * To prevent boost or penalty in the new cfs_rq caused by delta
7921 	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7922 	 */
7923 	if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7924 		queued = 1;
7925 
7926 	if (!queued)
7927 		se->vruntime -= cfs_rq_of(se)->min_vruntime;
7928 	set_task_rq(p, task_cpu(p));
7929 	se->depth = se->parent ? se->parent->depth + 1 : 0;
7930 	if (!queued) {
7931 		cfs_rq = cfs_rq_of(se);
7932 		se->vruntime += cfs_rq->min_vruntime;
7933 #ifdef CONFIG_SMP
7934 		/*
7935 		 * migrate_task_rq_fair() will have removed our previous
7936 		 * contribution, but we must synchronize for ongoing future
7937 		 * decay.
7938 		 */
7939 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7940 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7941 #endif
7942 	}
7943 }
7944 
7945 void free_fair_sched_group(struct task_group *tg)
7946 {
7947 	int i;
7948 
7949 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7950 
7951 	for_each_possible_cpu(i) {
7952 		if (tg->cfs_rq)
7953 			kfree(tg->cfs_rq[i]);
7954 		if (tg->se)
7955 			kfree(tg->se[i]);
7956 	}
7957 
7958 	kfree(tg->cfs_rq);
7959 	kfree(tg->se);
7960 }
7961 
7962 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7963 {
7964 	struct cfs_rq *cfs_rq;
7965 	struct sched_entity *se;
7966 	int i;
7967 
7968 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7969 	if (!tg->cfs_rq)
7970 		goto err;
7971 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7972 	if (!tg->se)
7973 		goto err;
7974 
7975 	tg->shares = NICE_0_LOAD;
7976 
7977 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7978 
7979 	for_each_possible_cpu(i) {
7980 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7981 				      GFP_KERNEL, cpu_to_node(i));
7982 		if (!cfs_rq)
7983 			goto err;
7984 
7985 		se = kzalloc_node(sizeof(struct sched_entity),
7986 				  GFP_KERNEL, cpu_to_node(i));
7987 		if (!se)
7988 			goto err_free_rq;
7989 
7990 		init_cfs_rq(cfs_rq);
7991 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7992 	}
7993 
7994 	return 1;
7995 
7996 err_free_rq:
7997 	kfree(cfs_rq);
7998 err:
7999 	return 0;
8000 }
8001 
8002 void unregister_fair_sched_group(struct task_group *tg, int cpu)
8003 {
8004 	struct rq *rq = cpu_rq(cpu);
8005 	unsigned long flags;
8006 
8007 	/*
8008 	* Only empty task groups can be destroyed; so we can speculatively
8009 	* check on_list without danger of it being re-added.
8010 	*/
8011 	if (!tg->cfs_rq[cpu]->on_list)
8012 		return;
8013 
8014 	raw_spin_lock_irqsave(&rq->lock, flags);
8015 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8016 	raw_spin_unlock_irqrestore(&rq->lock, flags);
8017 }
8018 
8019 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8020 			struct sched_entity *se, int cpu,
8021 			struct sched_entity *parent)
8022 {
8023 	struct rq *rq = cpu_rq(cpu);
8024 
8025 	cfs_rq->tg = tg;
8026 	cfs_rq->rq = rq;
8027 	init_cfs_rq_runtime(cfs_rq);
8028 
8029 	tg->cfs_rq[cpu] = cfs_rq;
8030 	tg->se[cpu] = se;
8031 
8032 	/* se could be NULL for root_task_group */
8033 	if (!se)
8034 		return;
8035 
8036 	if (!parent) {
8037 		se->cfs_rq = &rq->cfs;
8038 		se->depth = 0;
8039 	} else {
8040 		se->cfs_rq = parent->my_q;
8041 		se->depth = parent->depth + 1;
8042 	}
8043 
8044 	se->my_q = cfs_rq;
8045 	/* guarantee group entities always have weight */
8046 	update_load_set(&se->load, NICE_0_LOAD);
8047 	se->parent = parent;
8048 }
8049 
8050 static DEFINE_MUTEX(shares_mutex);
8051 
8052 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8053 {
8054 	int i;
8055 	unsigned long flags;
8056 
8057 	/*
8058 	 * We can't change the weight of the root cgroup.
8059 	 */
8060 	if (!tg->se[0])
8061 		return -EINVAL;
8062 
8063 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8064 
8065 	mutex_lock(&shares_mutex);
8066 	if (tg->shares == shares)
8067 		goto done;
8068 
8069 	tg->shares = shares;
8070 	for_each_possible_cpu(i) {
8071 		struct rq *rq = cpu_rq(i);
8072 		struct sched_entity *se;
8073 
8074 		se = tg->se[i];
8075 		/* Propagate contribution to hierarchy */
8076 		raw_spin_lock_irqsave(&rq->lock, flags);
8077 
8078 		/* Possible calls to update_curr() need rq clock */
8079 		update_rq_clock(rq);
8080 		for_each_sched_entity(se)
8081 			update_cfs_shares(group_cfs_rq(se));
8082 		raw_spin_unlock_irqrestore(&rq->lock, flags);
8083 	}
8084 
8085 done:
8086 	mutex_unlock(&shares_mutex);
8087 	return 0;
8088 }
8089 #else /* CONFIG_FAIR_GROUP_SCHED */
8090 
8091 void free_fair_sched_group(struct task_group *tg) { }
8092 
8093 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8094 {
8095 	return 1;
8096 }
8097 
8098 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8099 
8100 #endif /* CONFIG_FAIR_GROUP_SCHED */
8101 
8102 
8103 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8104 {
8105 	struct sched_entity *se = &task->se;
8106 	unsigned int rr_interval = 0;
8107 
8108 	/*
8109 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8110 	 * idle runqueue:
8111 	 */
8112 	if (rq->cfs.load.weight)
8113 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8114 
8115 	return rr_interval;
8116 }
8117 
8118 /*
8119  * All the scheduling class methods:
8120  */
8121 const struct sched_class fair_sched_class = {
8122 	.next			= &idle_sched_class,
8123 	.enqueue_task		= enqueue_task_fair,
8124 	.dequeue_task		= dequeue_task_fair,
8125 	.yield_task		= yield_task_fair,
8126 	.yield_to_task		= yield_to_task_fair,
8127 
8128 	.check_preempt_curr	= check_preempt_wakeup,
8129 
8130 	.pick_next_task		= pick_next_task_fair,
8131 	.put_prev_task		= put_prev_task_fair,
8132 
8133 #ifdef CONFIG_SMP
8134 	.select_task_rq		= select_task_rq_fair,
8135 	.migrate_task_rq	= migrate_task_rq_fair,
8136 
8137 	.rq_online		= rq_online_fair,
8138 	.rq_offline		= rq_offline_fair,
8139 
8140 	.task_waking		= task_waking_fair,
8141 #endif
8142 
8143 	.set_curr_task          = set_curr_task_fair,
8144 	.task_tick		= task_tick_fair,
8145 	.task_fork		= task_fork_fair,
8146 
8147 	.prio_changed		= prio_changed_fair,
8148 	.switched_from		= switched_from_fair,
8149 	.switched_to		= switched_to_fair,
8150 
8151 	.get_rr_interval	= get_rr_interval_fair,
8152 
8153 	.update_curr		= update_curr_fair,
8154 
8155 #ifdef CONFIG_FAIR_GROUP_SCHED
8156 	.task_move_group	= task_move_group_fair,
8157 #endif
8158 };
8159 
8160 #ifdef CONFIG_SCHED_DEBUG
8161 void print_cfs_stats(struct seq_file *m, int cpu)
8162 {
8163 	struct cfs_rq *cfs_rq;
8164 
8165 	rcu_read_lock();
8166 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8167 		print_cfs_rq(m, cpu, cfs_rq);
8168 	rcu_read_unlock();
8169 }
8170 #endif
8171 
8172 __init void init_sched_fair_class(void)
8173 {
8174 #ifdef CONFIG_SMP
8175 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8176 
8177 #ifdef CONFIG_NO_HZ_COMMON
8178 	nohz.next_balance = jiffies;
8179 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8180 	cpu_notifier(sched_ilb_notifier, 0);
8181 #endif
8182 #endif /* SMP */
8183 
8184 }
8185