1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 #include <trace/events/sched.h> 26 27 /* 28 * Targeted preemption latency for CPU-bound tasks: 29 * 30 * NOTE: this latency value is not the same as the concept of 31 * 'timeslice length' - timeslices in CFS are of variable length 32 * and have no persistent notion like in traditional, time-slice 33 * based scheduling concepts. 34 * 35 * (to see the precise effective timeslice length of your workload, 36 * run vmstat and monitor the context-switches (cs) field) 37 * 38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 39 */ 40 unsigned int sysctl_sched_latency = 6000000ULL; 41 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 42 43 /* 44 * The initial- and re-scaling of tunables is configurable 45 * 46 * Options are: 47 * 48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 51 * 52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 53 */ 54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 55 56 /* 57 * Minimal preemption granularity for CPU-bound tasks: 58 * 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 60 */ 61 unsigned int sysctl_sched_min_granularity = 750000ULL; 62 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 63 64 /* 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 66 */ 67 static unsigned int sched_nr_latency = 8; 68 69 /* 70 * After fork, child runs first. If set to 0 (default) then 71 * parent will (try to) run first. 72 */ 73 unsigned int sysctl_sched_child_runs_first __read_mostly; 74 75 /* 76 * SCHED_OTHER wake-up granularity. 77 * 78 * This option delays the preemption effects of decoupled workloads 79 * and reduces their over-scheduling. Synchronous workloads will still 80 * have immediate wakeup/sleep latencies. 81 * 82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 83 */ 84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 85 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 #ifdef CONFIG_SMP 90 /* 91 * For asym packing, by default the lower numbered CPU has higher priority. 92 */ 93 int __weak arch_asym_cpu_priority(int cpu) 94 { 95 return -cpu; 96 } 97 98 /* 99 * The margin used when comparing utilization with CPU capacity: 100 * util * margin < capacity * 1024 101 * 102 * (default: ~20%) 103 */ 104 static unsigned int capacity_margin = 1280; 105 #endif 106 107 #ifdef CONFIG_CFS_BANDWIDTH 108 /* 109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 110 * each time a cfs_rq requests quota. 111 * 112 * Note: in the case that the slice exceeds the runtime remaining (either due 113 * to consumption or the quota being specified to be smaller than the slice) 114 * we will always only issue the remaining available time. 115 * 116 * (default: 5 msec, units: microseconds) 117 */ 118 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 119 #endif 120 121 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 122 { 123 lw->weight += inc; 124 lw->inv_weight = 0; 125 } 126 127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 128 { 129 lw->weight -= dec; 130 lw->inv_weight = 0; 131 } 132 133 static inline void update_load_set(struct load_weight *lw, unsigned long w) 134 { 135 lw->weight = w; 136 lw->inv_weight = 0; 137 } 138 139 /* 140 * Increase the granularity value when there are more CPUs, 141 * because with more CPUs the 'effective latency' as visible 142 * to users decreases. But the relationship is not linear, 143 * so pick a second-best guess by going with the log2 of the 144 * number of CPUs. 145 * 146 * This idea comes from the SD scheduler of Con Kolivas: 147 */ 148 static unsigned int get_update_sysctl_factor(void) 149 { 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 151 unsigned int factor; 152 153 switch (sysctl_sched_tunable_scaling) { 154 case SCHED_TUNABLESCALING_NONE: 155 factor = 1; 156 break; 157 case SCHED_TUNABLESCALING_LINEAR: 158 factor = cpus; 159 break; 160 case SCHED_TUNABLESCALING_LOG: 161 default: 162 factor = 1 + ilog2(cpus); 163 break; 164 } 165 166 return factor; 167 } 168 169 static void update_sysctl(void) 170 { 171 unsigned int factor = get_update_sysctl_factor(); 172 173 #define SET_SYSCTL(name) \ 174 (sysctl_##name = (factor) * normalized_sysctl_##name) 175 SET_SYSCTL(sched_min_granularity); 176 SET_SYSCTL(sched_latency); 177 SET_SYSCTL(sched_wakeup_granularity); 178 #undef SET_SYSCTL 179 } 180 181 void sched_init_granularity(void) 182 { 183 update_sysctl(); 184 } 185 186 #define WMULT_CONST (~0U) 187 #define WMULT_SHIFT 32 188 189 static void __update_inv_weight(struct load_weight *lw) 190 { 191 unsigned long w; 192 193 if (likely(lw->inv_weight)) 194 return; 195 196 w = scale_load_down(lw->weight); 197 198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 199 lw->inv_weight = 1; 200 else if (unlikely(!w)) 201 lw->inv_weight = WMULT_CONST; 202 else 203 lw->inv_weight = WMULT_CONST / w; 204 } 205 206 /* 207 * delta_exec * weight / lw.weight 208 * OR 209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 210 * 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 212 * we're guaranteed shift stays positive because inv_weight is guaranteed to 213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 214 * 215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 216 * weight/lw.weight <= 1, and therefore our shift will also be positive. 217 */ 218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 219 { 220 u64 fact = scale_load_down(weight); 221 int shift = WMULT_SHIFT; 222 223 __update_inv_weight(lw); 224 225 if (unlikely(fact >> 32)) { 226 while (fact >> 32) { 227 fact >>= 1; 228 shift--; 229 } 230 } 231 232 /* hint to use a 32x32->64 mul */ 233 fact = (u64)(u32)fact * lw->inv_weight; 234 235 while (fact >> 32) { 236 fact >>= 1; 237 shift--; 238 } 239 240 return mul_u64_u32_shr(delta_exec, fact, shift); 241 } 242 243 244 const struct sched_class fair_sched_class; 245 246 /************************************************************** 247 * CFS operations on generic schedulable entities: 248 */ 249 250 #ifdef CONFIG_FAIR_GROUP_SCHED 251 static inline struct task_struct *task_of(struct sched_entity *se) 252 { 253 SCHED_WARN_ON(!entity_is_task(se)); 254 return container_of(se, struct task_struct, se); 255 } 256 257 /* Walk up scheduling entities hierarchy */ 258 #define for_each_sched_entity(se) \ 259 for (; se; se = se->parent) 260 261 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 262 { 263 return p->se.cfs_rq; 264 } 265 266 /* runqueue on which this entity is (to be) queued */ 267 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 268 { 269 return se->cfs_rq; 270 } 271 272 /* runqueue "owned" by this group */ 273 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 274 { 275 return grp->my_q; 276 } 277 278 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 279 { 280 struct rq *rq = rq_of(cfs_rq); 281 int cpu = cpu_of(rq); 282 283 if (cfs_rq->on_list) 284 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 285 286 cfs_rq->on_list = 1; 287 288 /* 289 * Ensure we either appear before our parent (if already 290 * enqueued) or force our parent to appear after us when it is 291 * enqueued. The fact that we always enqueue bottom-up 292 * reduces this to two cases and a special case for the root 293 * cfs_rq. Furthermore, it also means that we will always reset 294 * tmp_alone_branch either when the branch is connected 295 * to a tree or when we reach the top of the tree 296 */ 297 if (cfs_rq->tg->parent && 298 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 299 /* 300 * If parent is already on the list, we add the child 301 * just before. Thanks to circular linked property of 302 * the list, this means to put the child at the tail 303 * of the list that starts by parent. 304 */ 305 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 306 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 307 /* 308 * The branch is now connected to its tree so we can 309 * reset tmp_alone_branch to the beginning of the 310 * list. 311 */ 312 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 313 return true; 314 } 315 316 if (!cfs_rq->tg->parent) { 317 /* 318 * cfs rq without parent should be put 319 * at the tail of the list. 320 */ 321 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 322 &rq->leaf_cfs_rq_list); 323 /* 324 * We have reach the top of a tree so we can reset 325 * tmp_alone_branch to the beginning of the list. 326 */ 327 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 328 return true; 329 } 330 331 /* 332 * The parent has not already been added so we want to 333 * make sure that it will be put after us. 334 * tmp_alone_branch points to the begin of the branch 335 * where we will add parent. 336 */ 337 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 338 /* 339 * update tmp_alone_branch to points to the new begin 340 * of the branch 341 */ 342 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 343 return false; 344 } 345 346 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 347 { 348 if (cfs_rq->on_list) { 349 struct rq *rq = rq_of(cfs_rq); 350 351 /* 352 * With cfs_rq being unthrottled/throttled during an enqueue, 353 * it can happen the tmp_alone_branch points the a leaf that 354 * we finally want to del. In this case, tmp_alone_branch moves 355 * to the prev element but it will point to rq->leaf_cfs_rq_list 356 * at the end of the enqueue. 357 */ 358 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 359 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 360 361 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 362 cfs_rq->on_list = 0; 363 } 364 } 365 366 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 367 { 368 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 369 } 370 371 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 372 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 373 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 374 leaf_cfs_rq_list) 375 376 /* Do the two (enqueued) entities belong to the same group ? */ 377 static inline struct cfs_rq * 378 is_same_group(struct sched_entity *se, struct sched_entity *pse) 379 { 380 if (se->cfs_rq == pse->cfs_rq) 381 return se->cfs_rq; 382 383 return NULL; 384 } 385 386 static inline struct sched_entity *parent_entity(struct sched_entity *se) 387 { 388 return se->parent; 389 } 390 391 static void 392 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 393 { 394 int se_depth, pse_depth; 395 396 /* 397 * preemption test can be made between sibling entities who are in the 398 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 399 * both tasks until we find their ancestors who are siblings of common 400 * parent. 401 */ 402 403 /* First walk up until both entities are at same depth */ 404 se_depth = (*se)->depth; 405 pse_depth = (*pse)->depth; 406 407 while (se_depth > pse_depth) { 408 se_depth--; 409 *se = parent_entity(*se); 410 } 411 412 while (pse_depth > se_depth) { 413 pse_depth--; 414 *pse = parent_entity(*pse); 415 } 416 417 while (!is_same_group(*se, *pse)) { 418 *se = parent_entity(*se); 419 *pse = parent_entity(*pse); 420 } 421 } 422 423 #else /* !CONFIG_FAIR_GROUP_SCHED */ 424 425 static inline struct task_struct *task_of(struct sched_entity *se) 426 { 427 return container_of(se, struct task_struct, se); 428 } 429 430 #define for_each_sched_entity(se) \ 431 for (; se; se = NULL) 432 433 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 434 { 435 return &task_rq(p)->cfs; 436 } 437 438 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 439 { 440 struct task_struct *p = task_of(se); 441 struct rq *rq = task_rq(p); 442 443 return &rq->cfs; 444 } 445 446 /* runqueue "owned" by this group */ 447 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 448 { 449 return NULL; 450 } 451 452 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 453 { 454 return true; 455 } 456 457 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 458 { 459 } 460 461 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 462 { 463 } 464 465 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 466 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 467 468 static inline struct sched_entity *parent_entity(struct sched_entity *se) 469 { 470 return NULL; 471 } 472 473 static inline void 474 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 475 { 476 } 477 478 #endif /* CONFIG_FAIR_GROUP_SCHED */ 479 480 static __always_inline 481 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 482 483 /************************************************************** 484 * Scheduling class tree data structure manipulation methods: 485 */ 486 487 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 488 { 489 s64 delta = (s64)(vruntime - max_vruntime); 490 if (delta > 0) 491 max_vruntime = vruntime; 492 493 return max_vruntime; 494 } 495 496 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 497 { 498 s64 delta = (s64)(vruntime - min_vruntime); 499 if (delta < 0) 500 min_vruntime = vruntime; 501 502 return min_vruntime; 503 } 504 505 static inline int entity_before(struct sched_entity *a, 506 struct sched_entity *b) 507 { 508 return (s64)(a->vruntime - b->vruntime) < 0; 509 } 510 511 static void update_min_vruntime(struct cfs_rq *cfs_rq) 512 { 513 struct sched_entity *curr = cfs_rq->curr; 514 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 515 516 u64 vruntime = cfs_rq->min_vruntime; 517 518 if (curr) { 519 if (curr->on_rq) 520 vruntime = curr->vruntime; 521 else 522 curr = NULL; 523 } 524 525 if (leftmost) { /* non-empty tree */ 526 struct sched_entity *se; 527 se = rb_entry(leftmost, struct sched_entity, run_node); 528 529 if (!curr) 530 vruntime = se->vruntime; 531 else 532 vruntime = min_vruntime(vruntime, se->vruntime); 533 } 534 535 /* ensure we never gain time by being placed backwards. */ 536 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 537 #ifndef CONFIG_64BIT 538 smp_wmb(); 539 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 540 #endif 541 } 542 543 /* 544 * Enqueue an entity into the rb-tree: 545 */ 546 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 547 { 548 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 549 struct rb_node *parent = NULL; 550 struct sched_entity *entry; 551 bool leftmost = true; 552 553 /* 554 * Find the right place in the rbtree: 555 */ 556 while (*link) { 557 parent = *link; 558 entry = rb_entry(parent, struct sched_entity, run_node); 559 /* 560 * We dont care about collisions. Nodes with 561 * the same key stay together. 562 */ 563 if (entity_before(se, entry)) { 564 link = &parent->rb_left; 565 } else { 566 link = &parent->rb_right; 567 leftmost = false; 568 } 569 } 570 571 rb_link_node(&se->run_node, parent, link); 572 rb_insert_color_cached(&se->run_node, 573 &cfs_rq->tasks_timeline, leftmost); 574 } 575 576 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 577 { 578 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 579 } 580 581 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 582 { 583 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 584 585 if (!left) 586 return NULL; 587 588 return rb_entry(left, struct sched_entity, run_node); 589 } 590 591 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 592 { 593 struct rb_node *next = rb_next(&se->run_node); 594 595 if (!next) 596 return NULL; 597 598 return rb_entry(next, struct sched_entity, run_node); 599 } 600 601 #ifdef CONFIG_SCHED_DEBUG 602 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 603 { 604 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 605 606 if (!last) 607 return NULL; 608 609 return rb_entry(last, struct sched_entity, run_node); 610 } 611 612 /************************************************************** 613 * Scheduling class statistics methods: 614 */ 615 616 int sched_proc_update_handler(struct ctl_table *table, int write, 617 void __user *buffer, size_t *lenp, 618 loff_t *ppos) 619 { 620 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 621 unsigned int factor = get_update_sysctl_factor(); 622 623 if (ret || !write) 624 return ret; 625 626 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 627 sysctl_sched_min_granularity); 628 629 #define WRT_SYSCTL(name) \ 630 (normalized_sysctl_##name = sysctl_##name / (factor)) 631 WRT_SYSCTL(sched_min_granularity); 632 WRT_SYSCTL(sched_latency); 633 WRT_SYSCTL(sched_wakeup_granularity); 634 #undef WRT_SYSCTL 635 636 return 0; 637 } 638 #endif 639 640 /* 641 * delta /= w 642 */ 643 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 644 { 645 if (unlikely(se->load.weight != NICE_0_LOAD)) 646 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 647 648 return delta; 649 } 650 651 /* 652 * The idea is to set a period in which each task runs once. 653 * 654 * When there are too many tasks (sched_nr_latency) we have to stretch 655 * this period because otherwise the slices get too small. 656 * 657 * p = (nr <= nl) ? l : l*nr/nl 658 */ 659 static u64 __sched_period(unsigned long nr_running) 660 { 661 if (unlikely(nr_running > sched_nr_latency)) 662 return nr_running * sysctl_sched_min_granularity; 663 else 664 return sysctl_sched_latency; 665 } 666 667 /* 668 * We calculate the wall-time slice from the period by taking a part 669 * proportional to the weight. 670 * 671 * s = p*P[w/rw] 672 */ 673 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 674 { 675 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 676 677 for_each_sched_entity(se) { 678 struct load_weight *load; 679 struct load_weight lw; 680 681 cfs_rq = cfs_rq_of(se); 682 load = &cfs_rq->load; 683 684 if (unlikely(!se->on_rq)) { 685 lw = cfs_rq->load; 686 687 update_load_add(&lw, se->load.weight); 688 load = &lw; 689 } 690 slice = __calc_delta(slice, se->load.weight, load); 691 } 692 return slice; 693 } 694 695 /* 696 * We calculate the vruntime slice of a to-be-inserted task. 697 * 698 * vs = s/w 699 */ 700 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 701 { 702 return calc_delta_fair(sched_slice(cfs_rq, se), se); 703 } 704 705 #include "pelt.h" 706 #ifdef CONFIG_SMP 707 708 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 709 static unsigned long task_h_load(struct task_struct *p); 710 static unsigned long capacity_of(int cpu); 711 712 /* Give new sched_entity start runnable values to heavy its load in infant time */ 713 void init_entity_runnable_average(struct sched_entity *se) 714 { 715 struct sched_avg *sa = &se->avg; 716 717 memset(sa, 0, sizeof(*sa)); 718 719 /* 720 * Tasks are initialized with full load to be seen as heavy tasks until 721 * they get a chance to stabilize to their real load level. 722 * Group entities are initialized with zero load to reflect the fact that 723 * nothing has been attached to the task group yet. 724 */ 725 if (entity_is_task(se)) 726 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight); 727 728 se->runnable_weight = se->load.weight; 729 730 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 731 } 732 733 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 734 static void attach_entity_cfs_rq(struct sched_entity *se); 735 736 /* 737 * With new tasks being created, their initial util_avgs are extrapolated 738 * based on the cfs_rq's current util_avg: 739 * 740 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 741 * 742 * However, in many cases, the above util_avg does not give a desired 743 * value. Moreover, the sum of the util_avgs may be divergent, such 744 * as when the series is a harmonic series. 745 * 746 * To solve this problem, we also cap the util_avg of successive tasks to 747 * only 1/2 of the left utilization budget: 748 * 749 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 750 * 751 * where n denotes the nth task and cpu_scale the CPU capacity. 752 * 753 * For example, for a CPU with 1024 of capacity, a simplest series from 754 * the beginning would be like: 755 * 756 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 757 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 758 * 759 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 760 * if util_avg > util_avg_cap. 761 */ 762 void post_init_entity_util_avg(struct task_struct *p) 763 { 764 struct sched_entity *se = &p->se; 765 struct cfs_rq *cfs_rq = cfs_rq_of(se); 766 struct sched_avg *sa = &se->avg; 767 long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq))); 768 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 769 770 if (cap > 0) { 771 if (cfs_rq->avg.util_avg != 0) { 772 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 773 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 774 775 if (sa->util_avg > cap) 776 sa->util_avg = cap; 777 } else { 778 sa->util_avg = cap; 779 } 780 } 781 782 if (p->sched_class != &fair_sched_class) { 783 /* 784 * For !fair tasks do: 785 * 786 update_cfs_rq_load_avg(now, cfs_rq); 787 attach_entity_load_avg(cfs_rq, se, 0); 788 switched_from_fair(rq, p); 789 * 790 * such that the next switched_to_fair() has the 791 * expected state. 792 */ 793 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 794 return; 795 } 796 797 attach_entity_cfs_rq(se); 798 } 799 800 #else /* !CONFIG_SMP */ 801 void init_entity_runnable_average(struct sched_entity *se) 802 { 803 } 804 void post_init_entity_util_avg(struct task_struct *p) 805 { 806 } 807 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 808 { 809 } 810 #endif /* CONFIG_SMP */ 811 812 /* 813 * Update the current task's runtime statistics. 814 */ 815 static void update_curr(struct cfs_rq *cfs_rq) 816 { 817 struct sched_entity *curr = cfs_rq->curr; 818 u64 now = rq_clock_task(rq_of(cfs_rq)); 819 u64 delta_exec; 820 821 if (unlikely(!curr)) 822 return; 823 824 delta_exec = now - curr->exec_start; 825 if (unlikely((s64)delta_exec <= 0)) 826 return; 827 828 curr->exec_start = now; 829 830 schedstat_set(curr->statistics.exec_max, 831 max(delta_exec, curr->statistics.exec_max)); 832 833 curr->sum_exec_runtime += delta_exec; 834 schedstat_add(cfs_rq->exec_clock, delta_exec); 835 836 curr->vruntime += calc_delta_fair(delta_exec, curr); 837 update_min_vruntime(cfs_rq); 838 839 if (entity_is_task(curr)) { 840 struct task_struct *curtask = task_of(curr); 841 842 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 843 cgroup_account_cputime(curtask, delta_exec); 844 account_group_exec_runtime(curtask, delta_exec); 845 } 846 847 account_cfs_rq_runtime(cfs_rq, delta_exec); 848 } 849 850 static void update_curr_fair(struct rq *rq) 851 { 852 update_curr(cfs_rq_of(&rq->curr->se)); 853 } 854 855 static inline void 856 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 857 { 858 u64 wait_start, prev_wait_start; 859 860 if (!schedstat_enabled()) 861 return; 862 863 wait_start = rq_clock(rq_of(cfs_rq)); 864 prev_wait_start = schedstat_val(se->statistics.wait_start); 865 866 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 867 likely(wait_start > prev_wait_start)) 868 wait_start -= prev_wait_start; 869 870 __schedstat_set(se->statistics.wait_start, wait_start); 871 } 872 873 static inline void 874 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 875 { 876 struct task_struct *p; 877 u64 delta; 878 879 if (!schedstat_enabled()) 880 return; 881 882 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 883 884 if (entity_is_task(se)) { 885 p = task_of(se); 886 if (task_on_rq_migrating(p)) { 887 /* 888 * Preserve migrating task's wait time so wait_start 889 * time stamp can be adjusted to accumulate wait time 890 * prior to migration. 891 */ 892 __schedstat_set(se->statistics.wait_start, delta); 893 return; 894 } 895 trace_sched_stat_wait(p, delta); 896 } 897 898 __schedstat_set(se->statistics.wait_max, 899 max(schedstat_val(se->statistics.wait_max), delta)); 900 __schedstat_inc(se->statistics.wait_count); 901 __schedstat_add(se->statistics.wait_sum, delta); 902 __schedstat_set(se->statistics.wait_start, 0); 903 } 904 905 static inline void 906 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 907 { 908 struct task_struct *tsk = NULL; 909 u64 sleep_start, block_start; 910 911 if (!schedstat_enabled()) 912 return; 913 914 sleep_start = schedstat_val(se->statistics.sleep_start); 915 block_start = schedstat_val(se->statistics.block_start); 916 917 if (entity_is_task(se)) 918 tsk = task_of(se); 919 920 if (sleep_start) { 921 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 922 923 if ((s64)delta < 0) 924 delta = 0; 925 926 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 927 __schedstat_set(se->statistics.sleep_max, delta); 928 929 __schedstat_set(se->statistics.sleep_start, 0); 930 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 931 932 if (tsk) { 933 account_scheduler_latency(tsk, delta >> 10, 1); 934 trace_sched_stat_sleep(tsk, delta); 935 } 936 } 937 if (block_start) { 938 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 939 940 if ((s64)delta < 0) 941 delta = 0; 942 943 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 944 __schedstat_set(se->statistics.block_max, delta); 945 946 __schedstat_set(se->statistics.block_start, 0); 947 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 948 949 if (tsk) { 950 if (tsk->in_iowait) { 951 __schedstat_add(se->statistics.iowait_sum, delta); 952 __schedstat_inc(se->statistics.iowait_count); 953 trace_sched_stat_iowait(tsk, delta); 954 } 955 956 trace_sched_stat_blocked(tsk, delta); 957 958 /* 959 * Blocking time is in units of nanosecs, so shift by 960 * 20 to get a milliseconds-range estimation of the 961 * amount of time that the task spent sleeping: 962 */ 963 if (unlikely(prof_on == SLEEP_PROFILING)) { 964 profile_hits(SLEEP_PROFILING, 965 (void *)get_wchan(tsk), 966 delta >> 20); 967 } 968 account_scheduler_latency(tsk, delta >> 10, 0); 969 } 970 } 971 } 972 973 /* 974 * Task is being enqueued - update stats: 975 */ 976 static inline void 977 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 978 { 979 if (!schedstat_enabled()) 980 return; 981 982 /* 983 * Are we enqueueing a waiting task? (for current tasks 984 * a dequeue/enqueue event is a NOP) 985 */ 986 if (se != cfs_rq->curr) 987 update_stats_wait_start(cfs_rq, se); 988 989 if (flags & ENQUEUE_WAKEUP) 990 update_stats_enqueue_sleeper(cfs_rq, se); 991 } 992 993 static inline void 994 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 995 { 996 997 if (!schedstat_enabled()) 998 return; 999 1000 /* 1001 * Mark the end of the wait period if dequeueing a 1002 * waiting task: 1003 */ 1004 if (se != cfs_rq->curr) 1005 update_stats_wait_end(cfs_rq, se); 1006 1007 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1008 struct task_struct *tsk = task_of(se); 1009 1010 if (tsk->state & TASK_INTERRUPTIBLE) 1011 __schedstat_set(se->statistics.sleep_start, 1012 rq_clock(rq_of(cfs_rq))); 1013 if (tsk->state & TASK_UNINTERRUPTIBLE) 1014 __schedstat_set(se->statistics.block_start, 1015 rq_clock(rq_of(cfs_rq))); 1016 } 1017 } 1018 1019 /* 1020 * We are picking a new current task - update its stats: 1021 */ 1022 static inline void 1023 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1024 { 1025 /* 1026 * We are starting a new run period: 1027 */ 1028 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1029 } 1030 1031 /************************************************** 1032 * Scheduling class queueing methods: 1033 */ 1034 1035 #ifdef CONFIG_NUMA_BALANCING 1036 /* 1037 * Approximate time to scan a full NUMA task in ms. The task scan period is 1038 * calculated based on the tasks virtual memory size and 1039 * numa_balancing_scan_size. 1040 */ 1041 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1042 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1043 1044 /* Portion of address space to scan in MB */ 1045 unsigned int sysctl_numa_balancing_scan_size = 256; 1046 1047 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1048 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1049 1050 struct numa_group { 1051 refcount_t refcount; 1052 1053 spinlock_t lock; /* nr_tasks, tasks */ 1054 int nr_tasks; 1055 pid_t gid; 1056 int active_nodes; 1057 1058 struct rcu_head rcu; 1059 unsigned long total_faults; 1060 unsigned long max_faults_cpu; 1061 /* 1062 * Faults_cpu is used to decide whether memory should move 1063 * towards the CPU. As a consequence, these stats are weighted 1064 * more by CPU use than by memory faults. 1065 */ 1066 unsigned long *faults_cpu; 1067 unsigned long faults[0]; 1068 }; 1069 1070 static inline unsigned long group_faults_priv(struct numa_group *ng); 1071 static inline unsigned long group_faults_shared(struct numa_group *ng); 1072 1073 static unsigned int task_nr_scan_windows(struct task_struct *p) 1074 { 1075 unsigned long rss = 0; 1076 unsigned long nr_scan_pages; 1077 1078 /* 1079 * Calculations based on RSS as non-present and empty pages are skipped 1080 * by the PTE scanner and NUMA hinting faults should be trapped based 1081 * on resident pages 1082 */ 1083 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1084 rss = get_mm_rss(p->mm); 1085 if (!rss) 1086 rss = nr_scan_pages; 1087 1088 rss = round_up(rss, nr_scan_pages); 1089 return rss / nr_scan_pages; 1090 } 1091 1092 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1093 #define MAX_SCAN_WINDOW 2560 1094 1095 static unsigned int task_scan_min(struct task_struct *p) 1096 { 1097 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1098 unsigned int scan, floor; 1099 unsigned int windows = 1; 1100 1101 if (scan_size < MAX_SCAN_WINDOW) 1102 windows = MAX_SCAN_WINDOW / scan_size; 1103 floor = 1000 / windows; 1104 1105 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1106 return max_t(unsigned int, floor, scan); 1107 } 1108 1109 static unsigned int task_scan_start(struct task_struct *p) 1110 { 1111 unsigned long smin = task_scan_min(p); 1112 unsigned long period = smin; 1113 1114 /* Scale the maximum scan period with the amount of shared memory. */ 1115 if (p->numa_group) { 1116 struct numa_group *ng = p->numa_group; 1117 unsigned long shared = group_faults_shared(ng); 1118 unsigned long private = group_faults_priv(ng); 1119 1120 period *= refcount_read(&ng->refcount); 1121 period *= shared + 1; 1122 period /= private + shared + 1; 1123 } 1124 1125 return max(smin, period); 1126 } 1127 1128 static unsigned int task_scan_max(struct task_struct *p) 1129 { 1130 unsigned long smin = task_scan_min(p); 1131 unsigned long smax; 1132 1133 /* Watch for min being lower than max due to floor calculations */ 1134 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1135 1136 /* Scale the maximum scan period with the amount of shared memory. */ 1137 if (p->numa_group) { 1138 struct numa_group *ng = p->numa_group; 1139 unsigned long shared = group_faults_shared(ng); 1140 unsigned long private = group_faults_priv(ng); 1141 unsigned long period = smax; 1142 1143 period *= refcount_read(&ng->refcount); 1144 period *= shared + 1; 1145 period /= private + shared + 1; 1146 1147 smax = max(smax, period); 1148 } 1149 1150 return max(smin, smax); 1151 } 1152 1153 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1154 { 1155 int mm_users = 0; 1156 struct mm_struct *mm = p->mm; 1157 1158 if (mm) { 1159 mm_users = atomic_read(&mm->mm_users); 1160 if (mm_users == 1) { 1161 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1162 mm->numa_scan_seq = 0; 1163 } 1164 } 1165 p->node_stamp = 0; 1166 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 1167 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1168 p->numa_work.next = &p->numa_work; 1169 p->numa_faults = NULL; 1170 p->numa_group = NULL; 1171 p->last_task_numa_placement = 0; 1172 p->last_sum_exec_runtime = 0; 1173 1174 /* New address space, reset the preferred nid */ 1175 if (!(clone_flags & CLONE_VM)) { 1176 p->numa_preferred_nid = NUMA_NO_NODE; 1177 return; 1178 } 1179 1180 /* 1181 * New thread, keep existing numa_preferred_nid which should be copied 1182 * already by arch_dup_task_struct but stagger when scans start. 1183 */ 1184 if (mm) { 1185 unsigned int delay; 1186 1187 delay = min_t(unsigned int, task_scan_max(current), 1188 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 1189 delay += 2 * TICK_NSEC; 1190 p->node_stamp = delay; 1191 } 1192 } 1193 1194 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1195 { 1196 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1197 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1198 } 1199 1200 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1201 { 1202 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1203 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1204 } 1205 1206 /* Shared or private faults. */ 1207 #define NR_NUMA_HINT_FAULT_TYPES 2 1208 1209 /* Memory and CPU locality */ 1210 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1211 1212 /* Averaged statistics, and temporary buffers. */ 1213 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1214 1215 pid_t task_numa_group_id(struct task_struct *p) 1216 { 1217 return p->numa_group ? p->numa_group->gid : 0; 1218 } 1219 1220 /* 1221 * The averaged statistics, shared & private, memory & CPU, 1222 * occupy the first half of the array. The second half of the 1223 * array is for current counters, which are averaged into the 1224 * first set by task_numa_placement. 1225 */ 1226 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1227 { 1228 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1229 } 1230 1231 static inline unsigned long task_faults(struct task_struct *p, int nid) 1232 { 1233 if (!p->numa_faults) 1234 return 0; 1235 1236 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1237 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1238 } 1239 1240 static inline unsigned long group_faults(struct task_struct *p, int nid) 1241 { 1242 if (!p->numa_group) 1243 return 0; 1244 1245 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1246 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1247 } 1248 1249 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1250 { 1251 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1252 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1253 } 1254 1255 static inline unsigned long group_faults_priv(struct numa_group *ng) 1256 { 1257 unsigned long faults = 0; 1258 int node; 1259 1260 for_each_online_node(node) { 1261 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1262 } 1263 1264 return faults; 1265 } 1266 1267 static inline unsigned long group_faults_shared(struct numa_group *ng) 1268 { 1269 unsigned long faults = 0; 1270 int node; 1271 1272 for_each_online_node(node) { 1273 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1274 } 1275 1276 return faults; 1277 } 1278 1279 /* 1280 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1281 * considered part of a numa group's pseudo-interleaving set. Migrations 1282 * between these nodes are slowed down, to allow things to settle down. 1283 */ 1284 #define ACTIVE_NODE_FRACTION 3 1285 1286 static bool numa_is_active_node(int nid, struct numa_group *ng) 1287 { 1288 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1289 } 1290 1291 /* Handle placement on systems where not all nodes are directly connected. */ 1292 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1293 int maxdist, bool task) 1294 { 1295 unsigned long score = 0; 1296 int node; 1297 1298 /* 1299 * All nodes are directly connected, and the same distance 1300 * from each other. No need for fancy placement algorithms. 1301 */ 1302 if (sched_numa_topology_type == NUMA_DIRECT) 1303 return 0; 1304 1305 /* 1306 * This code is called for each node, introducing N^2 complexity, 1307 * which should be ok given the number of nodes rarely exceeds 8. 1308 */ 1309 for_each_online_node(node) { 1310 unsigned long faults; 1311 int dist = node_distance(nid, node); 1312 1313 /* 1314 * The furthest away nodes in the system are not interesting 1315 * for placement; nid was already counted. 1316 */ 1317 if (dist == sched_max_numa_distance || node == nid) 1318 continue; 1319 1320 /* 1321 * On systems with a backplane NUMA topology, compare groups 1322 * of nodes, and move tasks towards the group with the most 1323 * memory accesses. When comparing two nodes at distance 1324 * "hoplimit", only nodes closer by than "hoplimit" are part 1325 * of each group. Skip other nodes. 1326 */ 1327 if (sched_numa_topology_type == NUMA_BACKPLANE && 1328 dist >= maxdist) 1329 continue; 1330 1331 /* Add up the faults from nearby nodes. */ 1332 if (task) 1333 faults = task_faults(p, node); 1334 else 1335 faults = group_faults(p, node); 1336 1337 /* 1338 * On systems with a glueless mesh NUMA topology, there are 1339 * no fixed "groups of nodes". Instead, nodes that are not 1340 * directly connected bounce traffic through intermediate 1341 * nodes; a numa_group can occupy any set of nodes. 1342 * The further away a node is, the less the faults count. 1343 * This seems to result in good task placement. 1344 */ 1345 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1346 faults *= (sched_max_numa_distance - dist); 1347 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1348 } 1349 1350 score += faults; 1351 } 1352 1353 return score; 1354 } 1355 1356 /* 1357 * These return the fraction of accesses done by a particular task, or 1358 * task group, on a particular numa node. The group weight is given a 1359 * larger multiplier, in order to group tasks together that are almost 1360 * evenly spread out between numa nodes. 1361 */ 1362 static inline unsigned long task_weight(struct task_struct *p, int nid, 1363 int dist) 1364 { 1365 unsigned long faults, total_faults; 1366 1367 if (!p->numa_faults) 1368 return 0; 1369 1370 total_faults = p->total_numa_faults; 1371 1372 if (!total_faults) 1373 return 0; 1374 1375 faults = task_faults(p, nid); 1376 faults += score_nearby_nodes(p, nid, dist, true); 1377 1378 return 1000 * faults / total_faults; 1379 } 1380 1381 static inline unsigned long group_weight(struct task_struct *p, int nid, 1382 int dist) 1383 { 1384 unsigned long faults, total_faults; 1385 1386 if (!p->numa_group) 1387 return 0; 1388 1389 total_faults = p->numa_group->total_faults; 1390 1391 if (!total_faults) 1392 return 0; 1393 1394 faults = group_faults(p, nid); 1395 faults += score_nearby_nodes(p, nid, dist, false); 1396 1397 return 1000 * faults / total_faults; 1398 } 1399 1400 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1401 int src_nid, int dst_cpu) 1402 { 1403 struct numa_group *ng = p->numa_group; 1404 int dst_nid = cpu_to_node(dst_cpu); 1405 int last_cpupid, this_cpupid; 1406 1407 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1408 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1409 1410 /* 1411 * Allow first faults or private faults to migrate immediately early in 1412 * the lifetime of a task. The magic number 4 is based on waiting for 1413 * two full passes of the "multi-stage node selection" test that is 1414 * executed below. 1415 */ 1416 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1417 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1418 return true; 1419 1420 /* 1421 * Multi-stage node selection is used in conjunction with a periodic 1422 * migration fault to build a temporal task<->page relation. By using 1423 * a two-stage filter we remove short/unlikely relations. 1424 * 1425 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1426 * a task's usage of a particular page (n_p) per total usage of this 1427 * page (n_t) (in a given time-span) to a probability. 1428 * 1429 * Our periodic faults will sample this probability and getting the 1430 * same result twice in a row, given these samples are fully 1431 * independent, is then given by P(n)^2, provided our sample period 1432 * is sufficiently short compared to the usage pattern. 1433 * 1434 * This quadric squishes small probabilities, making it less likely we 1435 * act on an unlikely task<->page relation. 1436 */ 1437 if (!cpupid_pid_unset(last_cpupid) && 1438 cpupid_to_nid(last_cpupid) != dst_nid) 1439 return false; 1440 1441 /* Always allow migrate on private faults */ 1442 if (cpupid_match_pid(p, last_cpupid)) 1443 return true; 1444 1445 /* A shared fault, but p->numa_group has not been set up yet. */ 1446 if (!ng) 1447 return true; 1448 1449 /* 1450 * Destination node is much more heavily used than the source 1451 * node? Allow migration. 1452 */ 1453 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1454 ACTIVE_NODE_FRACTION) 1455 return true; 1456 1457 /* 1458 * Distribute memory according to CPU & memory use on each node, 1459 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1460 * 1461 * faults_cpu(dst) 3 faults_cpu(src) 1462 * --------------- * - > --------------- 1463 * faults_mem(dst) 4 faults_mem(src) 1464 */ 1465 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1466 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1467 } 1468 1469 static unsigned long weighted_cpuload(struct rq *rq); 1470 static unsigned long source_load(int cpu, int type); 1471 static unsigned long target_load(int cpu, int type); 1472 1473 /* Cached statistics for all CPUs within a node */ 1474 struct numa_stats { 1475 unsigned long load; 1476 1477 /* Total compute capacity of CPUs on a node */ 1478 unsigned long compute_capacity; 1479 }; 1480 1481 /* 1482 * XXX borrowed from update_sg_lb_stats 1483 */ 1484 static void update_numa_stats(struct numa_stats *ns, int nid) 1485 { 1486 int cpu; 1487 1488 memset(ns, 0, sizeof(*ns)); 1489 for_each_cpu(cpu, cpumask_of_node(nid)) { 1490 struct rq *rq = cpu_rq(cpu); 1491 1492 ns->load += weighted_cpuload(rq); 1493 ns->compute_capacity += capacity_of(cpu); 1494 } 1495 1496 } 1497 1498 struct task_numa_env { 1499 struct task_struct *p; 1500 1501 int src_cpu, src_nid; 1502 int dst_cpu, dst_nid; 1503 1504 struct numa_stats src_stats, dst_stats; 1505 1506 int imbalance_pct; 1507 int dist; 1508 1509 struct task_struct *best_task; 1510 long best_imp; 1511 int best_cpu; 1512 }; 1513 1514 static void task_numa_assign(struct task_numa_env *env, 1515 struct task_struct *p, long imp) 1516 { 1517 struct rq *rq = cpu_rq(env->dst_cpu); 1518 1519 /* Bail out if run-queue part of active NUMA balance. */ 1520 if (xchg(&rq->numa_migrate_on, 1)) 1521 return; 1522 1523 /* 1524 * Clear previous best_cpu/rq numa-migrate flag, since task now 1525 * found a better CPU to move/swap. 1526 */ 1527 if (env->best_cpu != -1) { 1528 rq = cpu_rq(env->best_cpu); 1529 WRITE_ONCE(rq->numa_migrate_on, 0); 1530 } 1531 1532 if (env->best_task) 1533 put_task_struct(env->best_task); 1534 if (p) 1535 get_task_struct(p); 1536 1537 env->best_task = p; 1538 env->best_imp = imp; 1539 env->best_cpu = env->dst_cpu; 1540 } 1541 1542 static bool load_too_imbalanced(long src_load, long dst_load, 1543 struct task_numa_env *env) 1544 { 1545 long imb, old_imb; 1546 long orig_src_load, orig_dst_load; 1547 long src_capacity, dst_capacity; 1548 1549 /* 1550 * The load is corrected for the CPU capacity available on each node. 1551 * 1552 * src_load dst_load 1553 * ------------ vs --------- 1554 * src_capacity dst_capacity 1555 */ 1556 src_capacity = env->src_stats.compute_capacity; 1557 dst_capacity = env->dst_stats.compute_capacity; 1558 1559 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1560 1561 orig_src_load = env->src_stats.load; 1562 orig_dst_load = env->dst_stats.load; 1563 1564 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1565 1566 /* Would this change make things worse? */ 1567 return (imb > old_imb); 1568 } 1569 1570 /* 1571 * Maximum NUMA importance can be 1998 (2*999); 1572 * SMALLIMP @ 30 would be close to 1998/64. 1573 * Used to deter task migration. 1574 */ 1575 #define SMALLIMP 30 1576 1577 /* 1578 * This checks if the overall compute and NUMA accesses of the system would 1579 * be improved if the source tasks was migrated to the target dst_cpu taking 1580 * into account that it might be best if task running on the dst_cpu should 1581 * be exchanged with the source task 1582 */ 1583 static void task_numa_compare(struct task_numa_env *env, 1584 long taskimp, long groupimp, bool maymove) 1585 { 1586 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1587 struct task_struct *cur; 1588 long src_load, dst_load; 1589 long load; 1590 long imp = env->p->numa_group ? groupimp : taskimp; 1591 long moveimp = imp; 1592 int dist = env->dist; 1593 1594 if (READ_ONCE(dst_rq->numa_migrate_on)) 1595 return; 1596 1597 rcu_read_lock(); 1598 cur = task_rcu_dereference(&dst_rq->curr); 1599 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1600 cur = NULL; 1601 1602 /* 1603 * Because we have preemption enabled we can get migrated around and 1604 * end try selecting ourselves (current == env->p) as a swap candidate. 1605 */ 1606 if (cur == env->p) 1607 goto unlock; 1608 1609 if (!cur) { 1610 if (maymove && moveimp >= env->best_imp) 1611 goto assign; 1612 else 1613 goto unlock; 1614 } 1615 1616 /* 1617 * "imp" is the fault differential for the source task between the 1618 * source and destination node. Calculate the total differential for 1619 * the source task and potential destination task. The more negative 1620 * the value is, the more remote accesses that would be expected to 1621 * be incurred if the tasks were swapped. 1622 */ 1623 /* Skip this swap candidate if cannot move to the source cpu */ 1624 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed)) 1625 goto unlock; 1626 1627 /* 1628 * If dst and source tasks are in the same NUMA group, or not 1629 * in any group then look only at task weights. 1630 */ 1631 if (cur->numa_group == env->p->numa_group) { 1632 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1633 task_weight(cur, env->dst_nid, dist); 1634 /* 1635 * Add some hysteresis to prevent swapping the 1636 * tasks within a group over tiny differences. 1637 */ 1638 if (cur->numa_group) 1639 imp -= imp / 16; 1640 } else { 1641 /* 1642 * Compare the group weights. If a task is all by itself 1643 * (not part of a group), use the task weight instead. 1644 */ 1645 if (cur->numa_group && env->p->numa_group) 1646 imp += group_weight(cur, env->src_nid, dist) - 1647 group_weight(cur, env->dst_nid, dist); 1648 else 1649 imp += task_weight(cur, env->src_nid, dist) - 1650 task_weight(cur, env->dst_nid, dist); 1651 } 1652 1653 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1654 imp = moveimp; 1655 cur = NULL; 1656 goto assign; 1657 } 1658 1659 /* 1660 * If the NUMA importance is less than SMALLIMP, 1661 * task migration might only result in ping pong 1662 * of tasks and also hurt performance due to cache 1663 * misses. 1664 */ 1665 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1666 goto unlock; 1667 1668 /* 1669 * In the overloaded case, try and keep the load balanced. 1670 */ 1671 load = task_h_load(env->p) - task_h_load(cur); 1672 if (!load) 1673 goto assign; 1674 1675 dst_load = env->dst_stats.load + load; 1676 src_load = env->src_stats.load - load; 1677 1678 if (load_too_imbalanced(src_load, dst_load, env)) 1679 goto unlock; 1680 1681 assign: 1682 /* 1683 * One idle CPU per node is evaluated for a task numa move. 1684 * Call select_idle_sibling to maybe find a better one. 1685 */ 1686 if (!cur) { 1687 /* 1688 * select_idle_siblings() uses an per-CPU cpumask that 1689 * can be used from IRQ context. 1690 */ 1691 local_irq_disable(); 1692 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1693 env->dst_cpu); 1694 local_irq_enable(); 1695 } 1696 1697 task_numa_assign(env, cur, imp); 1698 unlock: 1699 rcu_read_unlock(); 1700 } 1701 1702 static void task_numa_find_cpu(struct task_numa_env *env, 1703 long taskimp, long groupimp) 1704 { 1705 long src_load, dst_load, load; 1706 bool maymove = false; 1707 int cpu; 1708 1709 load = task_h_load(env->p); 1710 dst_load = env->dst_stats.load + load; 1711 src_load = env->src_stats.load - load; 1712 1713 /* 1714 * If the improvement from just moving env->p direction is better 1715 * than swapping tasks around, check if a move is possible. 1716 */ 1717 maymove = !load_too_imbalanced(src_load, dst_load, env); 1718 1719 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1720 /* Skip this CPU if the source task cannot migrate */ 1721 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed)) 1722 continue; 1723 1724 env->dst_cpu = cpu; 1725 task_numa_compare(env, taskimp, groupimp, maymove); 1726 } 1727 } 1728 1729 static int task_numa_migrate(struct task_struct *p) 1730 { 1731 struct task_numa_env env = { 1732 .p = p, 1733 1734 .src_cpu = task_cpu(p), 1735 .src_nid = task_node(p), 1736 1737 .imbalance_pct = 112, 1738 1739 .best_task = NULL, 1740 .best_imp = 0, 1741 .best_cpu = -1, 1742 }; 1743 struct sched_domain *sd; 1744 struct rq *best_rq; 1745 unsigned long taskweight, groupweight; 1746 int nid, ret, dist; 1747 long taskimp, groupimp; 1748 1749 /* 1750 * Pick the lowest SD_NUMA domain, as that would have the smallest 1751 * imbalance and would be the first to start moving tasks about. 1752 * 1753 * And we want to avoid any moving of tasks about, as that would create 1754 * random movement of tasks -- counter the numa conditions we're trying 1755 * to satisfy here. 1756 */ 1757 rcu_read_lock(); 1758 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1759 if (sd) 1760 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1761 rcu_read_unlock(); 1762 1763 /* 1764 * Cpusets can break the scheduler domain tree into smaller 1765 * balance domains, some of which do not cross NUMA boundaries. 1766 * Tasks that are "trapped" in such domains cannot be migrated 1767 * elsewhere, so there is no point in (re)trying. 1768 */ 1769 if (unlikely(!sd)) { 1770 sched_setnuma(p, task_node(p)); 1771 return -EINVAL; 1772 } 1773 1774 env.dst_nid = p->numa_preferred_nid; 1775 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1776 taskweight = task_weight(p, env.src_nid, dist); 1777 groupweight = group_weight(p, env.src_nid, dist); 1778 update_numa_stats(&env.src_stats, env.src_nid); 1779 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1780 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1781 update_numa_stats(&env.dst_stats, env.dst_nid); 1782 1783 /* Try to find a spot on the preferred nid. */ 1784 task_numa_find_cpu(&env, taskimp, groupimp); 1785 1786 /* 1787 * Look at other nodes in these cases: 1788 * - there is no space available on the preferred_nid 1789 * - the task is part of a numa_group that is interleaved across 1790 * multiple NUMA nodes; in order to better consolidate the group, 1791 * we need to check other locations. 1792 */ 1793 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1794 for_each_online_node(nid) { 1795 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1796 continue; 1797 1798 dist = node_distance(env.src_nid, env.dst_nid); 1799 if (sched_numa_topology_type == NUMA_BACKPLANE && 1800 dist != env.dist) { 1801 taskweight = task_weight(p, env.src_nid, dist); 1802 groupweight = group_weight(p, env.src_nid, dist); 1803 } 1804 1805 /* Only consider nodes where both task and groups benefit */ 1806 taskimp = task_weight(p, nid, dist) - taskweight; 1807 groupimp = group_weight(p, nid, dist) - groupweight; 1808 if (taskimp < 0 && groupimp < 0) 1809 continue; 1810 1811 env.dist = dist; 1812 env.dst_nid = nid; 1813 update_numa_stats(&env.dst_stats, env.dst_nid); 1814 task_numa_find_cpu(&env, taskimp, groupimp); 1815 } 1816 } 1817 1818 /* 1819 * If the task is part of a workload that spans multiple NUMA nodes, 1820 * and is migrating into one of the workload's active nodes, remember 1821 * this node as the task's preferred numa node, so the workload can 1822 * settle down. 1823 * A task that migrated to a second choice node will be better off 1824 * trying for a better one later. Do not set the preferred node here. 1825 */ 1826 if (p->numa_group) { 1827 if (env.best_cpu == -1) 1828 nid = env.src_nid; 1829 else 1830 nid = cpu_to_node(env.best_cpu); 1831 1832 if (nid != p->numa_preferred_nid) 1833 sched_setnuma(p, nid); 1834 } 1835 1836 /* No better CPU than the current one was found. */ 1837 if (env.best_cpu == -1) 1838 return -EAGAIN; 1839 1840 best_rq = cpu_rq(env.best_cpu); 1841 if (env.best_task == NULL) { 1842 ret = migrate_task_to(p, env.best_cpu); 1843 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1844 if (ret != 0) 1845 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1846 return ret; 1847 } 1848 1849 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 1850 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1851 1852 if (ret != 0) 1853 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1854 put_task_struct(env.best_task); 1855 return ret; 1856 } 1857 1858 /* Attempt to migrate a task to a CPU on the preferred node. */ 1859 static void numa_migrate_preferred(struct task_struct *p) 1860 { 1861 unsigned long interval = HZ; 1862 1863 /* This task has no NUMA fault statistics yet */ 1864 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 1865 return; 1866 1867 /* Periodically retry migrating the task to the preferred node */ 1868 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1869 p->numa_migrate_retry = jiffies + interval; 1870 1871 /* Success if task is already running on preferred CPU */ 1872 if (task_node(p) == p->numa_preferred_nid) 1873 return; 1874 1875 /* Otherwise, try migrate to a CPU on the preferred node */ 1876 task_numa_migrate(p); 1877 } 1878 1879 /* 1880 * Find out how many nodes on the workload is actively running on. Do this by 1881 * tracking the nodes from which NUMA hinting faults are triggered. This can 1882 * be different from the set of nodes where the workload's memory is currently 1883 * located. 1884 */ 1885 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1886 { 1887 unsigned long faults, max_faults = 0; 1888 int nid, active_nodes = 0; 1889 1890 for_each_online_node(nid) { 1891 faults = group_faults_cpu(numa_group, nid); 1892 if (faults > max_faults) 1893 max_faults = faults; 1894 } 1895 1896 for_each_online_node(nid) { 1897 faults = group_faults_cpu(numa_group, nid); 1898 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1899 active_nodes++; 1900 } 1901 1902 numa_group->max_faults_cpu = max_faults; 1903 numa_group->active_nodes = active_nodes; 1904 } 1905 1906 /* 1907 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1908 * increments. The more local the fault statistics are, the higher the scan 1909 * period will be for the next scan window. If local/(local+remote) ratio is 1910 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1911 * the scan period will decrease. Aim for 70% local accesses. 1912 */ 1913 #define NUMA_PERIOD_SLOTS 10 1914 #define NUMA_PERIOD_THRESHOLD 7 1915 1916 /* 1917 * Increase the scan period (slow down scanning) if the majority of 1918 * our memory is already on our local node, or if the majority of 1919 * the page accesses are shared with other processes. 1920 * Otherwise, decrease the scan period. 1921 */ 1922 static void update_task_scan_period(struct task_struct *p, 1923 unsigned long shared, unsigned long private) 1924 { 1925 unsigned int period_slot; 1926 int lr_ratio, ps_ratio; 1927 int diff; 1928 1929 unsigned long remote = p->numa_faults_locality[0]; 1930 unsigned long local = p->numa_faults_locality[1]; 1931 1932 /* 1933 * If there were no record hinting faults then either the task is 1934 * completely idle or all activity is areas that are not of interest 1935 * to automatic numa balancing. Related to that, if there were failed 1936 * migration then it implies we are migrating too quickly or the local 1937 * node is overloaded. In either case, scan slower 1938 */ 1939 if (local + shared == 0 || p->numa_faults_locality[2]) { 1940 p->numa_scan_period = min(p->numa_scan_period_max, 1941 p->numa_scan_period << 1); 1942 1943 p->mm->numa_next_scan = jiffies + 1944 msecs_to_jiffies(p->numa_scan_period); 1945 1946 return; 1947 } 1948 1949 /* 1950 * Prepare to scale scan period relative to the current period. 1951 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1952 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1953 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1954 */ 1955 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1956 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1957 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 1958 1959 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 1960 /* 1961 * Most memory accesses are local. There is no need to 1962 * do fast NUMA scanning, since memory is already local. 1963 */ 1964 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 1965 if (!slot) 1966 slot = 1; 1967 diff = slot * period_slot; 1968 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 1969 /* 1970 * Most memory accesses are shared with other tasks. 1971 * There is no point in continuing fast NUMA scanning, 1972 * since other tasks may just move the memory elsewhere. 1973 */ 1974 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 1975 if (!slot) 1976 slot = 1; 1977 diff = slot * period_slot; 1978 } else { 1979 /* 1980 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 1981 * yet they are not on the local NUMA node. Speed up 1982 * NUMA scanning to get the memory moved over. 1983 */ 1984 int ratio = max(lr_ratio, ps_ratio); 1985 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1986 } 1987 1988 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1989 task_scan_min(p), task_scan_max(p)); 1990 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1991 } 1992 1993 /* 1994 * Get the fraction of time the task has been running since the last 1995 * NUMA placement cycle. The scheduler keeps similar statistics, but 1996 * decays those on a 32ms period, which is orders of magnitude off 1997 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1998 * stats only if the task is so new there are no NUMA statistics yet. 1999 */ 2000 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2001 { 2002 u64 runtime, delta, now; 2003 /* Use the start of this time slice to avoid calculations. */ 2004 now = p->se.exec_start; 2005 runtime = p->se.sum_exec_runtime; 2006 2007 if (p->last_task_numa_placement) { 2008 delta = runtime - p->last_sum_exec_runtime; 2009 *period = now - p->last_task_numa_placement; 2010 } else { 2011 delta = p->se.avg.load_sum; 2012 *period = LOAD_AVG_MAX; 2013 } 2014 2015 p->last_sum_exec_runtime = runtime; 2016 p->last_task_numa_placement = now; 2017 2018 return delta; 2019 } 2020 2021 /* 2022 * Determine the preferred nid for a task in a numa_group. This needs to 2023 * be done in a way that produces consistent results with group_weight, 2024 * otherwise workloads might not converge. 2025 */ 2026 static int preferred_group_nid(struct task_struct *p, int nid) 2027 { 2028 nodemask_t nodes; 2029 int dist; 2030 2031 /* Direct connections between all NUMA nodes. */ 2032 if (sched_numa_topology_type == NUMA_DIRECT) 2033 return nid; 2034 2035 /* 2036 * On a system with glueless mesh NUMA topology, group_weight 2037 * scores nodes according to the number of NUMA hinting faults on 2038 * both the node itself, and on nearby nodes. 2039 */ 2040 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2041 unsigned long score, max_score = 0; 2042 int node, max_node = nid; 2043 2044 dist = sched_max_numa_distance; 2045 2046 for_each_online_node(node) { 2047 score = group_weight(p, node, dist); 2048 if (score > max_score) { 2049 max_score = score; 2050 max_node = node; 2051 } 2052 } 2053 return max_node; 2054 } 2055 2056 /* 2057 * Finding the preferred nid in a system with NUMA backplane 2058 * interconnect topology is more involved. The goal is to locate 2059 * tasks from numa_groups near each other in the system, and 2060 * untangle workloads from different sides of the system. This requires 2061 * searching down the hierarchy of node groups, recursively searching 2062 * inside the highest scoring group of nodes. The nodemask tricks 2063 * keep the complexity of the search down. 2064 */ 2065 nodes = node_online_map; 2066 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2067 unsigned long max_faults = 0; 2068 nodemask_t max_group = NODE_MASK_NONE; 2069 int a, b; 2070 2071 /* Are there nodes at this distance from each other? */ 2072 if (!find_numa_distance(dist)) 2073 continue; 2074 2075 for_each_node_mask(a, nodes) { 2076 unsigned long faults = 0; 2077 nodemask_t this_group; 2078 nodes_clear(this_group); 2079 2080 /* Sum group's NUMA faults; includes a==b case. */ 2081 for_each_node_mask(b, nodes) { 2082 if (node_distance(a, b) < dist) { 2083 faults += group_faults(p, b); 2084 node_set(b, this_group); 2085 node_clear(b, nodes); 2086 } 2087 } 2088 2089 /* Remember the top group. */ 2090 if (faults > max_faults) { 2091 max_faults = faults; 2092 max_group = this_group; 2093 /* 2094 * subtle: at the smallest distance there is 2095 * just one node left in each "group", the 2096 * winner is the preferred nid. 2097 */ 2098 nid = a; 2099 } 2100 } 2101 /* Next round, evaluate the nodes within max_group. */ 2102 if (!max_faults) 2103 break; 2104 nodes = max_group; 2105 } 2106 return nid; 2107 } 2108 2109 static void task_numa_placement(struct task_struct *p) 2110 { 2111 int seq, nid, max_nid = NUMA_NO_NODE; 2112 unsigned long max_faults = 0; 2113 unsigned long fault_types[2] = { 0, 0 }; 2114 unsigned long total_faults; 2115 u64 runtime, period; 2116 spinlock_t *group_lock = NULL; 2117 2118 /* 2119 * The p->mm->numa_scan_seq field gets updated without 2120 * exclusive access. Use READ_ONCE() here to ensure 2121 * that the field is read in a single access: 2122 */ 2123 seq = READ_ONCE(p->mm->numa_scan_seq); 2124 if (p->numa_scan_seq == seq) 2125 return; 2126 p->numa_scan_seq = seq; 2127 p->numa_scan_period_max = task_scan_max(p); 2128 2129 total_faults = p->numa_faults_locality[0] + 2130 p->numa_faults_locality[1]; 2131 runtime = numa_get_avg_runtime(p, &period); 2132 2133 /* If the task is part of a group prevent parallel updates to group stats */ 2134 if (p->numa_group) { 2135 group_lock = &p->numa_group->lock; 2136 spin_lock_irq(group_lock); 2137 } 2138 2139 /* Find the node with the highest number of faults */ 2140 for_each_online_node(nid) { 2141 /* Keep track of the offsets in numa_faults array */ 2142 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2143 unsigned long faults = 0, group_faults = 0; 2144 int priv; 2145 2146 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2147 long diff, f_diff, f_weight; 2148 2149 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2150 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2151 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2152 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2153 2154 /* Decay existing window, copy faults since last scan */ 2155 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2156 fault_types[priv] += p->numa_faults[membuf_idx]; 2157 p->numa_faults[membuf_idx] = 0; 2158 2159 /* 2160 * Normalize the faults_from, so all tasks in a group 2161 * count according to CPU use, instead of by the raw 2162 * number of faults. Tasks with little runtime have 2163 * little over-all impact on throughput, and thus their 2164 * faults are less important. 2165 */ 2166 f_weight = div64_u64(runtime << 16, period + 1); 2167 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2168 (total_faults + 1); 2169 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2170 p->numa_faults[cpubuf_idx] = 0; 2171 2172 p->numa_faults[mem_idx] += diff; 2173 p->numa_faults[cpu_idx] += f_diff; 2174 faults += p->numa_faults[mem_idx]; 2175 p->total_numa_faults += diff; 2176 if (p->numa_group) { 2177 /* 2178 * safe because we can only change our own group 2179 * 2180 * mem_idx represents the offset for a given 2181 * nid and priv in a specific region because it 2182 * is at the beginning of the numa_faults array. 2183 */ 2184 p->numa_group->faults[mem_idx] += diff; 2185 p->numa_group->faults_cpu[mem_idx] += f_diff; 2186 p->numa_group->total_faults += diff; 2187 group_faults += p->numa_group->faults[mem_idx]; 2188 } 2189 } 2190 2191 if (!p->numa_group) { 2192 if (faults > max_faults) { 2193 max_faults = faults; 2194 max_nid = nid; 2195 } 2196 } else if (group_faults > max_faults) { 2197 max_faults = group_faults; 2198 max_nid = nid; 2199 } 2200 } 2201 2202 if (p->numa_group) { 2203 numa_group_count_active_nodes(p->numa_group); 2204 spin_unlock_irq(group_lock); 2205 max_nid = preferred_group_nid(p, max_nid); 2206 } 2207 2208 if (max_faults) { 2209 /* Set the new preferred node */ 2210 if (max_nid != p->numa_preferred_nid) 2211 sched_setnuma(p, max_nid); 2212 } 2213 2214 update_task_scan_period(p, fault_types[0], fault_types[1]); 2215 } 2216 2217 static inline int get_numa_group(struct numa_group *grp) 2218 { 2219 return refcount_inc_not_zero(&grp->refcount); 2220 } 2221 2222 static inline void put_numa_group(struct numa_group *grp) 2223 { 2224 if (refcount_dec_and_test(&grp->refcount)) 2225 kfree_rcu(grp, rcu); 2226 } 2227 2228 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2229 int *priv) 2230 { 2231 struct numa_group *grp, *my_grp; 2232 struct task_struct *tsk; 2233 bool join = false; 2234 int cpu = cpupid_to_cpu(cpupid); 2235 int i; 2236 2237 if (unlikely(!p->numa_group)) { 2238 unsigned int size = sizeof(struct numa_group) + 2239 4*nr_node_ids*sizeof(unsigned long); 2240 2241 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2242 if (!grp) 2243 return; 2244 2245 refcount_set(&grp->refcount, 1); 2246 grp->active_nodes = 1; 2247 grp->max_faults_cpu = 0; 2248 spin_lock_init(&grp->lock); 2249 grp->gid = p->pid; 2250 /* Second half of the array tracks nids where faults happen */ 2251 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2252 nr_node_ids; 2253 2254 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2255 grp->faults[i] = p->numa_faults[i]; 2256 2257 grp->total_faults = p->total_numa_faults; 2258 2259 grp->nr_tasks++; 2260 rcu_assign_pointer(p->numa_group, grp); 2261 } 2262 2263 rcu_read_lock(); 2264 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2265 2266 if (!cpupid_match_pid(tsk, cpupid)) 2267 goto no_join; 2268 2269 grp = rcu_dereference(tsk->numa_group); 2270 if (!grp) 2271 goto no_join; 2272 2273 my_grp = p->numa_group; 2274 if (grp == my_grp) 2275 goto no_join; 2276 2277 /* 2278 * Only join the other group if its bigger; if we're the bigger group, 2279 * the other task will join us. 2280 */ 2281 if (my_grp->nr_tasks > grp->nr_tasks) 2282 goto no_join; 2283 2284 /* 2285 * Tie-break on the grp address. 2286 */ 2287 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2288 goto no_join; 2289 2290 /* Always join threads in the same process. */ 2291 if (tsk->mm == current->mm) 2292 join = true; 2293 2294 /* Simple filter to avoid false positives due to PID collisions */ 2295 if (flags & TNF_SHARED) 2296 join = true; 2297 2298 /* Update priv based on whether false sharing was detected */ 2299 *priv = !join; 2300 2301 if (join && !get_numa_group(grp)) 2302 goto no_join; 2303 2304 rcu_read_unlock(); 2305 2306 if (!join) 2307 return; 2308 2309 BUG_ON(irqs_disabled()); 2310 double_lock_irq(&my_grp->lock, &grp->lock); 2311 2312 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2313 my_grp->faults[i] -= p->numa_faults[i]; 2314 grp->faults[i] += p->numa_faults[i]; 2315 } 2316 my_grp->total_faults -= p->total_numa_faults; 2317 grp->total_faults += p->total_numa_faults; 2318 2319 my_grp->nr_tasks--; 2320 grp->nr_tasks++; 2321 2322 spin_unlock(&my_grp->lock); 2323 spin_unlock_irq(&grp->lock); 2324 2325 rcu_assign_pointer(p->numa_group, grp); 2326 2327 put_numa_group(my_grp); 2328 return; 2329 2330 no_join: 2331 rcu_read_unlock(); 2332 return; 2333 } 2334 2335 void task_numa_free(struct task_struct *p) 2336 { 2337 struct numa_group *grp = p->numa_group; 2338 void *numa_faults = p->numa_faults; 2339 unsigned long flags; 2340 int i; 2341 2342 if (grp) { 2343 spin_lock_irqsave(&grp->lock, flags); 2344 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2345 grp->faults[i] -= p->numa_faults[i]; 2346 grp->total_faults -= p->total_numa_faults; 2347 2348 grp->nr_tasks--; 2349 spin_unlock_irqrestore(&grp->lock, flags); 2350 RCU_INIT_POINTER(p->numa_group, NULL); 2351 put_numa_group(grp); 2352 } 2353 2354 p->numa_faults = NULL; 2355 kfree(numa_faults); 2356 } 2357 2358 /* 2359 * Got a PROT_NONE fault for a page on @node. 2360 */ 2361 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2362 { 2363 struct task_struct *p = current; 2364 bool migrated = flags & TNF_MIGRATED; 2365 int cpu_node = task_node(current); 2366 int local = !!(flags & TNF_FAULT_LOCAL); 2367 struct numa_group *ng; 2368 int priv; 2369 2370 if (!static_branch_likely(&sched_numa_balancing)) 2371 return; 2372 2373 /* for example, ksmd faulting in a user's mm */ 2374 if (!p->mm) 2375 return; 2376 2377 /* Allocate buffer to track faults on a per-node basis */ 2378 if (unlikely(!p->numa_faults)) { 2379 int size = sizeof(*p->numa_faults) * 2380 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2381 2382 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2383 if (!p->numa_faults) 2384 return; 2385 2386 p->total_numa_faults = 0; 2387 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2388 } 2389 2390 /* 2391 * First accesses are treated as private, otherwise consider accesses 2392 * to be private if the accessing pid has not changed 2393 */ 2394 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2395 priv = 1; 2396 } else { 2397 priv = cpupid_match_pid(p, last_cpupid); 2398 if (!priv && !(flags & TNF_NO_GROUP)) 2399 task_numa_group(p, last_cpupid, flags, &priv); 2400 } 2401 2402 /* 2403 * If a workload spans multiple NUMA nodes, a shared fault that 2404 * occurs wholly within the set of nodes that the workload is 2405 * actively using should be counted as local. This allows the 2406 * scan rate to slow down when a workload has settled down. 2407 */ 2408 ng = p->numa_group; 2409 if (!priv && !local && ng && ng->active_nodes > 1 && 2410 numa_is_active_node(cpu_node, ng) && 2411 numa_is_active_node(mem_node, ng)) 2412 local = 1; 2413 2414 /* 2415 * Retry to migrate task to preferred node periodically, in case it 2416 * previously failed, or the scheduler moved us. 2417 */ 2418 if (time_after(jiffies, p->numa_migrate_retry)) { 2419 task_numa_placement(p); 2420 numa_migrate_preferred(p); 2421 } 2422 2423 if (migrated) 2424 p->numa_pages_migrated += pages; 2425 if (flags & TNF_MIGRATE_FAIL) 2426 p->numa_faults_locality[2] += pages; 2427 2428 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2429 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2430 p->numa_faults_locality[local] += pages; 2431 } 2432 2433 static void reset_ptenuma_scan(struct task_struct *p) 2434 { 2435 /* 2436 * We only did a read acquisition of the mmap sem, so 2437 * p->mm->numa_scan_seq is written to without exclusive access 2438 * and the update is not guaranteed to be atomic. That's not 2439 * much of an issue though, since this is just used for 2440 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2441 * expensive, to avoid any form of compiler optimizations: 2442 */ 2443 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2444 p->mm->numa_scan_offset = 0; 2445 } 2446 2447 /* 2448 * The expensive part of numa migration is done from task_work context. 2449 * Triggered from task_tick_numa(). 2450 */ 2451 void task_numa_work(struct callback_head *work) 2452 { 2453 unsigned long migrate, next_scan, now = jiffies; 2454 struct task_struct *p = current; 2455 struct mm_struct *mm = p->mm; 2456 u64 runtime = p->se.sum_exec_runtime; 2457 struct vm_area_struct *vma; 2458 unsigned long start, end; 2459 unsigned long nr_pte_updates = 0; 2460 long pages, virtpages; 2461 2462 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2463 2464 work->next = work; /* protect against double add */ 2465 /* 2466 * Who cares about NUMA placement when they're dying. 2467 * 2468 * NOTE: make sure not to dereference p->mm before this check, 2469 * exit_task_work() happens _after_ exit_mm() so we could be called 2470 * without p->mm even though we still had it when we enqueued this 2471 * work. 2472 */ 2473 if (p->flags & PF_EXITING) 2474 return; 2475 2476 if (!mm->numa_next_scan) { 2477 mm->numa_next_scan = now + 2478 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2479 } 2480 2481 /* 2482 * Enforce maximal scan/migration frequency.. 2483 */ 2484 migrate = mm->numa_next_scan; 2485 if (time_before(now, migrate)) 2486 return; 2487 2488 if (p->numa_scan_period == 0) { 2489 p->numa_scan_period_max = task_scan_max(p); 2490 p->numa_scan_period = task_scan_start(p); 2491 } 2492 2493 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2494 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2495 return; 2496 2497 /* 2498 * Delay this task enough that another task of this mm will likely win 2499 * the next time around. 2500 */ 2501 p->node_stamp += 2 * TICK_NSEC; 2502 2503 start = mm->numa_scan_offset; 2504 pages = sysctl_numa_balancing_scan_size; 2505 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2506 virtpages = pages * 8; /* Scan up to this much virtual space */ 2507 if (!pages) 2508 return; 2509 2510 2511 if (!down_read_trylock(&mm->mmap_sem)) 2512 return; 2513 vma = find_vma(mm, start); 2514 if (!vma) { 2515 reset_ptenuma_scan(p); 2516 start = 0; 2517 vma = mm->mmap; 2518 } 2519 for (; vma; vma = vma->vm_next) { 2520 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2521 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2522 continue; 2523 } 2524 2525 /* 2526 * Shared library pages mapped by multiple processes are not 2527 * migrated as it is expected they are cache replicated. Avoid 2528 * hinting faults in read-only file-backed mappings or the vdso 2529 * as migrating the pages will be of marginal benefit. 2530 */ 2531 if (!vma->vm_mm || 2532 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2533 continue; 2534 2535 /* 2536 * Skip inaccessible VMAs to avoid any confusion between 2537 * PROT_NONE and NUMA hinting ptes 2538 */ 2539 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2540 continue; 2541 2542 do { 2543 start = max(start, vma->vm_start); 2544 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2545 end = min(end, vma->vm_end); 2546 nr_pte_updates = change_prot_numa(vma, start, end); 2547 2548 /* 2549 * Try to scan sysctl_numa_balancing_size worth of 2550 * hpages that have at least one present PTE that 2551 * is not already pte-numa. If the VMA contains 2552 * areas that are unused or already full of prot_numa 2553 * PTEs, scan up to virtpages, to skip through those 2554 * areas faster. 2555 */ 2556 if (nr_pte_updates) 2557 pages -= (end - start) >> PAGE_SHIFT; 2558 virtpages -= (end - start) >> PAGE_SHIFT; 2559 2560 start = end; 2561 if (pages <= 0 || virtpages <= 0) 2562 goto out; 2563 2564 cond_resched(); 2565 } while (end != vma->vm_end); 2566 } 2567 2568 out: 2569 /* 2570 * It is possible to reach the end of the VMA list but the last few 2571 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2572 * would find the !migratable VMA on the next scan but not reset the 2573 * scanner to the start so check it now. 2574 */ 2575 if (vma) 2576 mm->numa_scan_offset = start; 2577 else 2578 reset_ptenuma_scan(p); 2579 up_read(&mm->mmap_sem); 2580 2581 /* 2582 * Make sure tasks use at least 32x as much time to run other code 2583 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2584 * Usually update_task_scan_period slows down scanning enough; on an 2585 * overloaded system we need to limit overhead on a per task basis. 2586 */ 2587 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2588 u64 diff = p->se.sum_exec_runtime - runtime; 2589 p->node_stamp += 32 * diff; 2590 } 2591 } 2592 2593 /* 2594 * Drive the periodic memory faults.. 2595 */ 2596 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2597 { 2598 struct callback_head *work = &curr->numa_work; 2599 u64 period, now; 2600 2601 /* 2602 * We don't care about NUMA placement if we don't have memory. 2603 */ 2604 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2605 return; 2606 2607 /* 2608 * Using runtime rather than walltime has the dual advantage that 2609 * we (mostly) drive the selection from busy threads and that the 2610 * task needs to have done some actual work before we bother with 2611 * NUMA placement. 2612 */ 2613 now = curr->se.sum_exec_runtime; 2614 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2615 2616 if (now > curr->node_stamp + period) { 2617 if (!curr->node_stamp) 2618 curr->numa_scan_period = task_scan_start(curr); 2619 curr->node_stamp += period; 2620 2621 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2622 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2623 task_work_add(curr, work, true); 2624 } 2625 } 2626 } 2627 2628 static void update_scan_period(struct task_struct *p, int new_cpu) 2629 { 2630 int src_nid = cpu_to_node(task_cpu(p)); 2631 int dst_nid = cpu_to_node(new_cpu); 2632 2633 if (!static_branch_likely(&sched_numa_balancing)) 2634 return; 2635 2636 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2637 return; 2638 2639 if (src_nid == dst_nid) 2640 return; 2641 2642 /* 2643 * Allow resets if faults have been trapped before one scan 2644 * has completed. This is most likely due to a new task that 2645 * is pulled cross-node due to wakeups or load balancing. 2646 */ 2647 if (p->numa_scan_seq) { 2648 /* 2649 * Avoid scan adjustments if moving to the preferred 2650 * node or if the task was not previously running on 2651 * the preferred node. 2652 */ 2653 if (dst_nid == p->numa_preferred_nid || 2654 (p->numa_preferred_nid != NUMA_NO_NODE && 2655 src_nid != p->numa_preferred_nid)) 2656 return; 2657 } 2658 2659 p->numa_scan_period = task_scan_start(p); 2660 } 2661 2662 #else 2663 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2664 { 2665 } 2666 2667 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2668 { 2669 } 2670 2671 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2672 { 2673 } 2674 2675 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2676 { 2677 } 2678 2679 #endif /* CONFIG_NUMA_BALANCING */ 2680 2681 static void 2682 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2683 { 2684 update_load_add(&cfs_rq->load, se->load.weight); 2685 if (!parent_entity(se)) 2686 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2687 #ifdef CONFIG_SMP 2688 if (entity_is_task(se)) { 2689 struct rq *rq = rq_of(cfs_rq); 2690 2691 account_numa_enqueue(rq, task_of(se)); 2692 list_add(&se->group_node, &rq->cfs_tasks); 2693 } 2694 #endif 2695 cfs_rq->nr_running++; 2696 } 2697 2698 static void 2699 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2700 { 2701 update_load_sub(&cfs_rq->load, se->load.weight); 2702 if (!parent_entity(se)) 2703 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2704 #ifdef CONFIG_SMP 2705 if (entity_is_task(se)) { 2706 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2707 list_del_init(&se->group_node); 2708 } 2709 #endif 2710 cfs_rq->nr_running--; 2711 } 2712 2713 /* 2714 * Signed add and clamp on underflow. 2715 * 2716 * Explicitly do a load-store to ensure the intermediate value never hits 2717 * memory. This allows lockless observations without ever seeing the negative 2718 * values. 2719 */ 2720 #define add_positive(_ptr, _val) do { \ 2721 typeof(_ptr) ptr = (_ptr); \ 2722 typeof(_val) val = (_val); \ 2723 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2724 \ 2725 res = var + val; \ 2726 \ 2727 if (val < 0 && res > var) \ 2728 res = 0; \ 2729 \ 2730 WRITE_ONCE(*ptr, res); \ 2731 } while (0) 2732 2733 /* 2734 * Unsigned subtract and clamp on underflow. 2735 * 2736 * Explicitly do a load-store to ensure the intermediate value never hits 2737 * memory. This allows lockless observations without ever seeing the negative 2738 * values. 2739 */ 2740 #define sub_positive(_ptr, _val) do { \ 2741 typeof(_ptr) ptr = (_ptr); \ 2742 typeof(*ptr) val = (_val); \ 2743 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2744 res = var - val; \ 2745 if (res > var) \ 2746 res = 0; \ 2747 WRITE_ONCE(*ptr, res); \ 2748 } while (0) 2749 2750 /* 2751 * Remove and clamp on negative, from a local variable. 2752 * 2753 * A variant of sub_positive(), which does not use explicit load-store 2754 * and is thus optimized for local variable updates. 2755 */ 2756 #define lsub_positive(_ptr, _val) do { \ 2757 typeof(_ptr) ptr = (_ptr); \ 2758 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 2759 } while (0) 2760 2761 #ifdef CONFIG_SMP 2762 static inline void 2763 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2764 { 2765 cfs_rq->runnable_weight += se->runnable_weight; 2766 2767 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg; 2768 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum; 2769 } 2770 2771 static inline void 2772 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2773 { 2774 cfs_rq->runnable_weight -= se->runnable_weight; 2775 2776 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg); 2777 sub_positive(&cfs_rq->avg.runnable_load_sum, 2778 se_runnable(se) * se->avg.runnable_load_sum); 2779 } 2780 2781 static inline void 2782 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2783 { 2784 cfs_rq->avg.load_avg += se->avg.load_avg; 2785 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 2786 } 2787 2788 static inline void 2789 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2790 { 2791 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 2792 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 2793 } 2794 #else 2795 static inline void 2796 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2797 static inline void 2798 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2799 static inline void 2800 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2801 static inline void 2802 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2803 #endif 2804 2805 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2806 unsigned long weight, unsigned long runnable) 2807 { 2808 if (se->on_rq) { 2809 /* commit outstanding execution time */ 2810 if (cfs_rq->curr == se) 2811 update_curr(cfs_rq); 2812 account_entity_dequeue(cfs_rq, se); 2813 dequeue_runnable_load_avg(cfs_rq, se); 2814 } 2815 dequeue_load_avg(cfs_rq, se); 2816 2817 se->runnable_weight = runnable; 2818 update_load_set(&se->load, weight); 2819 2820 #ifdef CONFIG_SMP 2821 do { 2822 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 2823 2824 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 2825 se->avg.runnable_load_avg = 2826 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider); 2827 } while (0); 2828 #endif 2829 2830 enqueue_load_avg(cfs_rq, se); 2831 if (se->on_rq) { 2832 account_entity_enqueue(cfs_rq, se); 2833 enqueue_runnable_load_avg(cfs_rq, se); 2834 } 2835 } 2836 2837 void reweight_task(struct task_struct *p, int prio) 2838 { 2839 struct sched_entity *se = &p->se; 2840 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2841 struct load_weight *load = &se->load; 2842 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 2843 2844 reweight_entity(cfs_rq, se, weight, weight); 2845 load->inv_weight = sched_prio_to_wmult[prio]; 2846 } 2847 2848 #ifdef CONFIG_FAIR_GROUP_SCHED 2849 #ifdef CONFIG_SMP 2850 /* 2851 * All this does is approximate the hierarchical proportion which includes that 2852 * global sum we all love to hate. 2853 * 2854 * That is, the weight of a group entity, is the proportional share of the 2855 * group weight based on the group runqueue weights. That is: 2856 * 2857 * tg->weight * grq->load.weight 2858 * ge->load.weight = ----------------------------- (1) 2859 * \Sum grq->load.weight 2860 * 2861 * Now, because computing that sum is prohibitively expensive to compute (been 2862 * there, done that) we approximate it with this average stuff. The average 2863 * moves slower and therefore the approximation is cheaper and more stable. 2864 * 2865 * So instead of the above, we substitute: 2866 * 2867 * grq->load.weight -> grq->avg.load_avg (2) 2868 * 2869 * which yields the following: 2870 * 2871 * tg->weight * grq->avg.load_avg 2872 * ge->load.weight = ------------------------------ (3) 2873 * tg->load_avg 2874 * 2875 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 2876 * 2877 * That is shares_avg, and it is right (given the approximation (2)). 2878 * 2879 * The problem with it is that because the average is slow -- it was designed 2880 * to be exactly that of course -- this leads to transients in boundary 2881 * conditions. In specific, the case where the group was idle and we start the 2882 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 2883 * yielding bad latency etc.. 2884 * 2885 * Now, in that special case (1) reduces to: 2886 * 2887 * tg->weight * grq->load.weight 2888 * ge->load.weight = ----------------------------- = tg->weight (4) 2889 * grp->load.weight 2890 * 2891 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 2892 * 2893 * So what we do is modify our approximation (3) to approach (4) in the (near) 2894 * UP case, like: 2895 * 2896 * ge->load.weight = 2897 * 2898 * tg->weight * grq->load.weight 2899 * --------------------------------------------------- (5) 2900 * tg->load_avg - grq->avg.load_avg + grq->load.weight 2901 * 2902 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 2903 * we need to use grq->avg.load_avg as its lower bound, which then gives: 2904 * 2905 * 2906 * tg->weight * grq->load.weight 2907 * ge->load.weight = ----------------------------- (6) 2908 * tg_load_avg' 2909 * 2910 * Where: 2911 * 2912 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 2913 * max(grq->load.weight, grq->avg.load_avg) 2914 * 2915 * And that is shares_weight and is icky. In the (near) UP case it approaches 2916 * (4) while in the normal case it approaches (3). It consistently 2917 * overestimates the ge->load.weight and therefore: 2918 * 2919 * \Sum ge->load.weight >= tg->weight 2920 * 2921 * hence icky! 2922 */ 2923 static long calc_group_shares(struct cfs_rq *cfs_rq) 2924 { 2925 long tg_weight, tg_shares, load, shares; 2926 struct task_group *tg = cfs_rq->tg; 2927 2928 tg_shares = READ_ONCE(tg->shares); 2929 2930 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 2931 2932 tg_weight = atomic_long_read(&tg->load_avg); 2933 2934 /* Ensure tg_weight >= load */ 2935 tg_weight -= cfs_rq->tg_load_avg_contrib; 2936 tg_weight += load; 2937 2938 shares = (tg_shares * load); 2939 if (tg_weight) 2940 shares /= tg_weight; 2941 2942 /* 2943 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 2944 * of a group with small tg->shares value. It is a floor value which is 2945 * assigned as a minimum load.weight to the sched_entity representing 2946 * the group on a CPU. 2947 * 2948 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 2949 * on an 8-core system with 8 tasks each runnable on one CPU shares has 2950 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 2951 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 2952 * instead of 0. 2953 */ 2954 return clamp_t(long, shares, MIN_SHARES, tg_shares); 2955 } 2956 2957 /* 2958 * This calculates the effective runnable weight for a group entity based on 2959 * the group entity weight calculated above. 2960 * 2961 * Because of the above approximation (2), our group entity weight is 2962 * an load_avg based ratio (3). This means that it includes blocked load and 2963 * does not represent the runnable weight. 2964 * 2965 * Approximate the group entity's runnable weight per ratio from the group 2966 * runqueue: 2967 * 2968 * grq->avg.runnable_load_avg 2969 * ge->runnable_weight = ge->load.weight * -------------------------- (7) 2970 * grq->avg.load_avg 2971 * 2972 * However, analogous to above, since the avg numbers are slow, this leads to 2973 * transients in the from-idle case. Instead we use: 2974 * 2975 * ge->runnable_weight = ge->load.weight * 2976 * 2977 * max(grq->avg.runnable_load_avg, grq->runnable_weight) 2978 * ----------------------------------------------------- (8) 2979 * max(grq->avg.load_avg, grq->load.weight) 2980 * 2981 * Where these max() serve both to use the 'instant' values to fix the slow 2982 * from-idle and avoid the /0 on to-idle, similar to (6). 2983 */ 2984 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares) 2985 { 2986 long runnable, load_avg; 2987 2988 load_avg = max(cfs_rq->avg.load_avg, 2989 scale_load_down(cfs_rq->load.weight)); 2990 2991 runnable = max(cfs_rq->avg.runnable_load_avg, 2992 scale_load_down(cfs_rq->runnable_weight)); 2993 2994 runnable *= shares; 2995 if (load_avg) 2996 runnable /= load_avg; 2997 2998 return clamp_t(long, runnable, MIN_SHARES, shares); 2999 } 3000 #endif /* CONFIG_SMP */ 3001 3002 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3003 3004 /* 3005 * Recomputes the group entity based on the current state of its group 3006 * runqueue. 3007 */ 3008 static void update_cfs_group(struct sched_entity *se) 3009 { 3010 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3011 long shares, runnable; 3012 3013 if (!gcfs_rq) 3014 return; 3015 3016 if (throttled_hierarchy(gcfs_rq)) 3017 return; 3018 3019 #ifndef CONFIG_SMP 3020 runnable = shares = READ_ONCE(gcfs_rq->tg->shares); 3021 3022 if (likely(se->load.weight == shares)) 3023 return; 3024 #else 3025 shares = calc_group_shares(gcfs_rq); 3026 runnable = calc_group_runnable(gcfs_rq, shares); 3027 #endif 3028 3029 reweight_entity(cfs_rq_of(se), se, shares, runnable); 3030 } 3031 3032 #else /* CONFIG_FAIR_GROUP_SCHED */ 3033 static inline void update_cfs_group(struct sched_entity *se) 3034 { 3035 } 3036 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3037 3038 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3039 { 3040 struct rq *rq = rq_of(cfs_rq); 3041 3042 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) { 3043 /* 3044 * There are a few boundary cases this might miss but it should 3045 * get called often enough that that should (hopefully) not be 3046 * a real problem. 3047 * 3048 * It will not get called when we go idle, because the idle 3049 * thread is a different class (!fair), nor will the utilization 3050 * number include things like RT tasks. 3051 * 3052 * As is, the util number is not freq-invariant (we'd have to 3053 * implement arch_scale_freq_capacity() for that). 3054 * 3055 * See cpu_util(). 3056 */ 3057 cpufreq_update_util(rq, flags); 3058 } 3059 } 3060 3061 #ifdef CONFIG_SMP 3062 #ifdef CONFIG_FAIR_GROUP_SCHED 3063 /** 3064 * update_tg_load_avg - update the tg's load avg 3065 * @cfs_rq: the cfs_rq whose avg changed 3066 * @force: update regardless of how small the difference 3067 * 3068 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3069 * However, because tg->load_avg is a global value there are performance 3070 * considerations. 3071 * 3072 * In order to avoid having to look at the other cfs_rq's, we use a 3073 * differential update where we store the last value we propagated. This in 3074 * turn allows skipping updates if the differential is 'small'. 3075 * 3076 * Updating tg's load_avg is necessary before update_cfs_share(). 3077 */ 3078 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3079 { 3080 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3081 3082 /* 3083 * No need to update load_avg for root_task_group as it is not used. 3084 */ 3085 if (cfs_rq->tg == &root_task_group) 3086 return; 3087 3088 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3089 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3090 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3091 } 3092 } 3093 3094 /* 3095 * Called within set_task_rq() right before setting a task's CPU. The 3096 * caller only guarantees p->pi_lock is held; no other assumptions, 3097 * including the state of rq->lock, should be made. 3098 */ 3099 void set_task_rq_fair(struct sched_entity *se, 3100 struct cfs_rq *prev, struct cfs_rq *next) 3101 { 3102 u64 p_last_update_time; 3103 u64 n_last_update_time; 3104 3105 if (!sched_feat(ATTACH_AGE_LOAD)) 3106 return; 3107 3108 /* 3109 * We are supposed to update the task to "current" time, then its up to 3110 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3111 * getting what current time is, so simply throw away the out-of-date 3112 * time. This will result in the wakee task is less decayed, but giving 3113 * the wakee more load sounds not bad. 3114 */ 3115 if (!(se->avg.last_update_time && prev)) 3116 return; 3117 3118 #ifndef CONFIG_64BIT 3119 { 3120 u64 p_last_update_time_copy; 3121 u64 n_last_update_time_copy; 3122 3123 do { 3124 p_last_update_time_copy = prev->load_last_update_time_copy; 3125 n_last_update_time_copy = next->load_last_update_time_copy; 3126 3127 smp_rmb(); 3128 3129 p_last_update_time = prev->avg.last_update_time; 3130 n_last_update_time = next->avg.last_update_time; 3131 3132 } while (p_last_update_time != p_last_update_time_copy || 3133 n_last_update_time != n_last_update_time_copy); 3134 } 3135 #else 3136 p_last_update_time = prev->avg.last_update_time; 3137 n_last_update_time = next->avg.last_update_time; 3138 #endif 3139 __update_load_avg_blocked_se(p_last_update_time, se); 3140 se->avg.last_update_time = n_last_update_time; 3141 } 3142 3143 3144 /* 3145 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3146 * propagate its contribution. The key to this propagation is the invariant 3147 * that for each group: 3148 * 3149 * ge->avg == grq->avg (1) 3150 * 3151 * _IFF_ we look at the pure running and runnable sums. Because they 3152 * represent the very same entity, just at different points in the hierarchy. 3153 * 3154 * Per the above update_tg_cfs_util() is trivial and simply copies the running 3155 * sum over (but still wrong, because the group entity and group rq do not have 3156 * their PELT windows aligned). 3157 * 3158 * However, update_tg_cfs_runnable() is more complex. So we have: 3159 * 3160 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3161 * 3162 * And since, like util, the runnable part should be directly transferable, 3163 * the following would _appear_ to be the straight forward approach: 3164 * 3165 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3166 * 3167 * And per (1) we have: 3168 * 3169 * ge->avg.runnable_avg == grq->avg.runnable_avg 3170 * 3171 * Which gives: 3172 * 3173 * ge->load.weight * grq->avg.load_avg 3174 * ge->avg.load_avg = ----------------------------------- (4) 3175 * grq->load.weight 3176 * 3177 * Except that is wrong! 3178 * 3179 * Because while for entities historical weight is not important and we 3180 * really only care about our future and therefore can consider a pure 3181 * runnable sum, runqueues can NOT do this. 3182 * 3183 * We specifically want runqueues to have a load_avg that includes 3184 * historical weights. Those represent the blocked load, the load we expect 3185 * to (shortly) return to us. This only works by keeping the weights as 3186 * integral part of the sum. We therefore cannot decompose as per (3). 3187 * 3188 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3189 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3190 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3191 * runnable section of these tasks overlap (or not). If they were to perfectly 3192 * align the rq as a whole would be runnable 2/3 of the time. If however we 3193 * always have at least 1 runnable task, the rq as a whole is always runnable. 3194 * 3195 * So we'll have to approximate.. :/ 3196 * 3197 * Given the constraint: 3198 * 3199 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3200 * 3201 * We can construct a rule that adds runnable to a rq by assuming minimal 3202 * overlap. 3203 * 3204 * On removal, we'll assume each task is equally runnable; which yields: 3205 * 3206 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3207 * 3208 * XXX: only do this for the part of runnable > running ? 3209 * 3210 */ 3211 3212 static inline void 3213 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3214 { 3215 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3216 3217 /* Nothing to update */ 3218 if (!delta) 3219 return; 3220 3221 /* 3222 * The relation between sum and avg is: 3223 * 3224 * LOAD_AVG_MAX - 1024 + sa->period_contrib 3225 * 3226 * however, the PELT windows are not aligned between grq and gse. 3227 */ 3228 3229 /* Set new sched_entity's utilization */ 3230 se->avg.util_avg = gcfs_rq->avg.util_avg; 3231 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3232 3233 /* Update parent cfs_rq utilization */ 3234 add_positive(&cfs_rq->avg.util_avg, delta); 3235 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3236 } 3237 3238 static inline void 3239 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3240 { 3241 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3242 unsigned long runnable_load_avg, load_avg; 3243 u64 runnable_load_sum, load_sum = 0; 3244 s64 delta_sum; 3245 3246 if (!runnable_sum) 3247 return; 3248 3249 gcfs_rq->prop_runnable_sum = 0; 3250 3251 if (runnable_sum >= 0) { 3252 /* 3253 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3254 * the CPU is saturated running == runnable. 3255 */ 3256 runnable_sum += se->avg.load_sum; 3257 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); 3258 } else { 3259 /* 3260 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3261 * assuming all tasks are equally runnable. 3262 */ 3263 if (scale_load_down(gcfs_rq->load.weight)) { 3264 load_sum = div_s64(gcfs_rq->avg.load_sum, 3265 scale_load_down(gcfs_rq->load.weight)); 3266 } 3267 3268 /* But make sure to not inflate se's runnable */ 3269 runnable_sum = min(se->avg.load_sum, load_sum); 3270 } 3271 3272 /* 3273 * runnable_sum can't be lower than running_sum 3274 * Rescale running sum to be in the same range as runnable sum 3275 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3276 * runnable_sum is in [0 : LOAD_AVG_MAX] 3277 */ 3278 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3279 runnable_sum = max(runnable_sum, running_sum); 3280 3281 load_sum = (s64)se_weight(se) * runnable_sum; 3282 load_avg = div_s64(load_sum, LOAD_AVG_MAX); 3283 3284 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3285 delta_avg = load_avg - se->avg.load_avg; 3286 3287 se->avg.load_sum = runnable_sum; 3288 se->avg.load_avg = load_avg; 3289 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3290 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3291 3292 runnable_load_sum = (s64)se_runnable(se) * runnable_sum; 3293 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX); 3294 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum; 3295 delta_avg = runnable_load_avg - se->avg.runnable_load_avg; 3296 3297 se->avg.runnable_load_sum = runnable_sum; 3298 se->avg.runnable_load_avg = runnable_load_avg; 3299 3300 if (se->on_rq) { 3301 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg); 3302 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum); 3303 } 3304 } 3305 3306 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3307 { 3308 cfs_rq->propagate = 1; 3309 cfs_rq->prop_runnable_sum += runnable_sum; 3310 } 3311 3312 /* Update task and its cfs_rq load average */ 3313 static inline int propagate_entity_load_avg(struct sched_entity *se) 3314 { 3315 struct cfs_rq *cfs_rq, *gcfs_rq; 3316 3317 if (entity_is_task(se)) 3318 return 0; 3319 3320 gcfs_rq = group_cfs_rq(se); 3321 if (!gcfs_rq->propagate) 3322 return 0; 3323 3324 gcfs_rq->propagate = 0; 3325 3326 cfs_rq = cfs_rq_of(se); 3327 3328 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3329 3330 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3331 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3332 3333 return 1; 3334 } 3335 3336 /* 3337 * Check if we need to update the load and the utilization of a blocked 3338 * group_entity: 3339 */ 3340 static inline bool skip_blocked_update(struct sched_entity *se) 3341 { 3342 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3343 3344 /* 3345 * If sched_entity still have not zero load or utilization, we have to 3346 * decay it: 3347 */ 3348 if (se->avg.load_avg || se->avg.util_avg) 3349 return false; 3350 3351 /* 3352 * If there is a pending propagation, we have to update the load and 3353 * the utilization of the sched_entity: 3354 */ 3355 if (gcfs_rq->propagate) 3356 return false; 3357 3358 /* 3359 * Otherwise, the load and the utilization of the sched_entity is 3360 * already zero and there is no pending propagation, so it will be a 3361 * waste of time to try to decay it: 3362 */ 3363 return true; 3364 } 3365 3366 #else /* CONFIG_FAIR_GROUP_SCHED */ 3367 3368 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3369 3370 static inline int propagate_entity_load_avg(struct sched_entity *se) 3371 { 3372 return 0; 3373 } 3374 3375 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3376 3377 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3378 3379 /** 3380 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3381 * @now: current time, as per cfs_rq_clock_pelt() 3382 * @cfs_rq: cfs_rq to update 3383 * 3384 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3385 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3386 * post_init_entity_util_avg(). 3387 * 3388 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3389 * 3390 * Returns true if the load decayed or we removed load. 3391 * 3392 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3393 * call update_tg_load_avg() when this function returns true. 3394 */ 3395 static inline int 3396 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3397 { 3398 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0; 3399 struct sched_avg *sa = &cfs_rq->avg; 3400 int decayed = 0; 3401 3402 if (cfs_rq->removed.nr) { 3403 unsigned long r; 3404 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3405 3406 raw_spin_lock(&cfs_rq->removed.lock); 3407 swap(cfs_rq->removed.util_avg, removed_util); 3408 swap(cfs_rq->removed.load_avg, removed_load); 3409 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum); 3410 cfs_rq->removed.nr = 0; 3411 raw_spin_unlock(&cfs_rq->removed.lock); 3412 3413 r = removed_load; 3414 sub_positive(&sa->load_avg, r); 3415 sub_positive(&sa->load_sum, r * divider); 3416 3417 r = removed_util; 3418 sub_positive(&sa->util_avg, r); 3419 sub_positive(&sa->util_sum, r * divider); 3420 3421 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum); 3422 3423 decayed = 1; 3424 } 3425 3426 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3427 3428 #ifndef CONFIG_64BIT 3429 smp_wmb(); 3430 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3431 #endif 3432 3433 if (decayed) 3434 cfs_rq_util_change(cfs_rq, 0); 3435 3436 return decayed; 3437 } 3438 3439 /** 3440 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3441 * @cfs_rq: cfs_rq to attach to 3442 * @se: sched_entity to attach 3443 * @flags: migration hints 3444 * 3445 * Must call update_cfs_rq_load_avg() before this, since we rely on 3446 * cfs_rq->avg.last_update_time being current. 3447 */ 3448 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3449 { 3450 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3451 3452 /* 3453 * When we attach the @se to the @cfs_rq, we must align the decay 3454 * window because without that, really weird and wonderful things can 3455 * happen. 3456 * 3457 * XXX illustrate 3458 */ 3459 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3460 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3461 3462 /* 3463 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3464 * period_contrib. This isn't strictly correct, but since we're 3465 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3466 * _sum a little. 3467 */ 3468 se->avg.util_sum = se->avg.util_avg * divider; 3469 3470 se->avg.load_sum = divider; 3471 if (se_weight(se)) { 3472 se->avg.load_sum = 3473 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3474 } 3475 3476 se->avg.runnable_load_sum = se->avg.load_sum; 3477 3478 enqueue_load_avg(cfs_rq, se); 3479 cfs_rq->avg.util_avg += se->avg.util_avg; 3480 cfs_rq->avg.util_sum += se->avg.util_sum; 3481 3482 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3483 3484 cfs_rq_util_change(cfs_rq, flags); 3485 } 3486 3487 /** 3488 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3489 * @cfs_rq: cfs_rq to detach from 3490 * @se: sched_entity to detach 3491 * 3492 * Must call update_cfs_rq_load_avg() before this, since we rely on 3493 * cfs_rq->avg.last_update_time being current. 3494 */ 3495 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3496 { 3497 dequeue_load_avg(cfs_rq, se); 3498 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3499 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3500 3501 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3502 3503 cfs_rq_util_change(cfs_rq, 0); 3504 } 3505 3506 /* 3507 * Optional action to be done while updating the load average 3508 */ 3509 #define UPDATE_TG 0x1 3510 #define SKIP_AGE_LOAD 0x2 3511 #define DO_ATTACH 0x4 3512 3513 /* Update task and its cfs_rq load average */ 3514 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3515 { 3516 u64 now = cfs_rq_clock_pelt(cfs_rq); 3517 int decayed; 3518 3519 /* 3520 * Track task load average for carrying it to new CPU after migrated, and 3521 * track group sched_entity load average for task_h_load calc in migration 3522 */ 3523 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3524 __update_load_avg_se(now, cfs_rq, se); 3525 3526 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3527 decayed |= propagate_entity_load_avg(se); 3528 3529 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3530 3531 /* 3532 * DO_ATTACH means we're here from enqueue_entity(). 3533 * !last_update_time means we've passed through 3534 * migrate_task_rq_fair() indicating we migrated. 3535 * 3536 * IOW we're enqueueing a task on a new CPU. 3537 */ 3538 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION); 3539 update_tg_load_avg(cfs_rq, 0); 3540 3541 } else if (decayed && (flags & UPDATE_TG)) 3542 update_tg_load_avg(cfs_rq, 0); 3543 } 3544 3545 #ifndef CONFIG_64BIT 3546 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3547 { 3548 u64 last_update_time_copy; 3549 u64 last_update_time; 3550 3551 do { 3552 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3553 smp_rmb(); 3554 last_update_time = cfs_rq->avg.last_update_time; 3555 } while (last_update_time != last_update_time_copy); 3556 3557 return last_update_time; 3558 } 3559 #else 3560 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3561 { 3562 return cfs_rq->avg.last_update_time; 3563 } 3564 #endif 3565 3566 /* 3567 * Synchronize entity load avg of dequeued entity without locking 3568 * the previous rq. 3569 */ 3570 void sync_entity_load_avg(struct sched_entity *se) 3571 { 3572 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3573 u64 last_update_time; 3574 3575 last_update_time = cfs_rq_last_update_time(cfs_rq); 3576 __update_load_avg_blocked_se(last_update_time, se); 3577 } 3578 3579 /* 3580 * Task first catches up with cfs_rq, and then subtract 3581 * itself from the cfs_rq (task must be off the queue now). 3582 */ 3583 void remove_entity_load_avg(struct sched_entity *se) 3584 { 3585 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3586 unsigned long flags; 3587 3588 /* 3589 * tasks cannot exit without having gone through wake_up_new_task() -> 3590 * post_init_entity_util_avg() which will have added things to the 3591 * cfs_rq, so we can remove unconditionally. 3592 */ 3593 3594 sync_entity_load_avg(se); 3595 3596 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3597 ++cfs_rq->removed.nr; 3598 cfs_rq->removed.util_avg += se->avg.util_avg; 3599 cfs_rq->removed.load_avg += se->avg.load_avg; 3600 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */ 3601 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3602 } 3603 3604 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3605 { 3606 return cfs_rq->avg.runnable_load_avg; 3607 } 3608 3609 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3610 { 3611 return cfs_rq->avg.load_avg; 3612 } 3613 3614 static int idle_balance(struct rq *this_rq, struct rq_flags *rf); 3615 3616 static inline unsigned long task_util(struct task_struct *p) 3617 { 3618 return READ_ONCE(p->se.avg.util_avg); 3619 } 3620 3621 static inline unsigned long _task_util_est(struct task_struct *p) 3622 { 3623 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3624 3625 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED); 3626 } 3627 3628 static inline unsigned long task_util_est(struct task_struct *p) 3629 { 3630 return max(task_util(p), _task_util_est(p)); 3631 } 3632 3633 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3634 struct task_struct *p) 3635 { 3636 unsigned int enqueued; 3637 3638 if (!sched_feat(UTIL_EST)) 3639 return; 3640 3641 /* Update root cfs_rq's estimated utilization */ 3642 enqueued = cfs_rq->avg.util_est.enqueued; 3643 enqueued += _task_util_est(p); 3644 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3645 } 3646 3647 /* 3648 * Check if a (signed) value is within a specified (unsigned) margin, 3649 * based on the observation that: 3650 * 3651 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3652 * 3653 * NOTE: this only works when value + maring < INT_MAX. 3654 */ 3655 static inline bool within_margin(int value, int margin) 3656 { 3657 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3658 } 3659 3660 static void 3661 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) 3662 { 3663 long last_ewma_diff; 3664 struct util_est ue; 3665 int cpu; 3666 3667 if (!sched_feat(UTIL_EST)) 3668 return; 3669 3670 /* Update root cfs_rq's estimated utilization */ 3671 ue.enqueued = cfs_rq->avg.util_est.enqueued; 3672 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p)); 3673 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); 3674 3675 /* 3676 * Skip update of task's estimated utilization when the task has not 3677 * yet completed an activation, e.g. being migrated. 3678 */ 3679 if (!task_sleep) 3680 return; 3681 3682 /* 3683 * If the PELT values haven't changed since enqueue time, 3684 * skip the util_est update. 3685 */ 3686 ue = p->se.avg.util_est; 3687 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3688 return; 3689 3690 /* 3691 * Skip update of task's estimated utilization when its EWMA is 3692 * already ~1% close to its last activation value. 3693 */ 3694 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 3695 last_ewma_diff = ue.enqueued - ue.ewma; 3696 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 3697 return; 3698 3699 /* 3700 * To avoid overestimation of actual task utilization, skip updates if 3701 * we cannot grant there is idle time in this CPU. 3702 */ 3703 cpu = cpu_of(rq_of(cfs_rq)); 3704 if (task_util(p) > capacity_orig_of(cpu)) 3705 return; 3706 3707 /* 3708 * Update Task's estimated utilization 3709 * 3710 * When *p completes an activation we can consolidate another sample 3711 * of the task size. This is done by storing the current PELT value 3712 * as ue.enqueued and by using this value to update the Exponential 3713 * Weighted Moving Average (EWMA): 3714 * 3715 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 3716 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 3717 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 3718 * = w * ( last_ewma_diff ) + ewma(t-1) 3719 * = w * (last_ewma_diff + ewma(t-1) / w) 3720 * 3721 * Where 'w' is the weight of new samples, which is configured to be 3722 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 3723 */ 3724 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 3725 ue.ewma += last_ewma_diff; 3726 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 3727 WRITE_ONCE(p->se.avg.util_est, ue); 3728 } 3729 3730 static inline int task_fits_capacity(struct task_struct *p, long capacity) 3731 { 3732 return capacity * 1024 > task_util_est(p) * capacity_margin; 3733 } 3734 3735 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 3736 { 3737 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 3738 return; 3739 3740 if (!p) { 3741 rq->misfit_task_load = 0; 3742 return; 3743 } 3744 3745 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 3746 rq->misfit_task_load = 0; 3747 return; 3748 } 3749 3750 rq->misfit_task_load = task_h_load(p); 3751 } 3752 3753 #else /* CONFIG_SMP */ 3754 3755 #define UPDATE_TG 0x0 3756 #define SKIP_AGE_LOAD 0x0 3757 #define DO_ATTACH 0x0 3758 3759 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 3760 { 3761 cfs_rq_util_change(cfs_rq, 0); 3762 } 3763 3764 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3765 3766 static inline void 3767 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {} 3768 static inline void 3769 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3770 3771 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 3772 { 3773 return 0; 3774 } 3775 3776 static inline void 3777 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 3778 3779 static inline void 3780 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, 3781 bool task_sleep) {} 3782 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 3783 3784 #endif /* CONFIG_SMP */ 3785 3786 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3787 { 3788 #ifdef CONFIG_SCHED_DEBUG 3789 s64 d = se->vruntime - cfs_rq->min_vruntime; 3790 3791 if (d < 0) 3792 d = -d; 3793 3794 if (d > 3*sysctl_sched_latency) 3795 schedstat_inc(cfs_rq->nr_spread_over); 3796 #endif 3797 } 3798 3799 static void 3800 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3801 { 3802 u64 vruntime = cfs_rq->min_vruntime; 3803 3804 /* 3805 * The 'current' period is already promised to the current tasks, 3806 * however the extra weight of the new task will slow them down a 3807 * little, place the new task so that it fits in the slot that 3808 * stays open at the end. 3809 */ 3810 if (initial && sched_feat(START_DEBIT)) 3811 vruntime += sched_vslice(cfs_rq, se); 3812 3813 /* sleeps up to a single latency don't count. */ 3814 if (!initial) { 3815 unsigned long thresh = sysctl_sched_latency; 3816 3817 /* 3818 * Halve their sleep time's effect, to allow 3819 * for a gentler effect of sleepers: 3820 */ 3821 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3822 thresh >>= 1; 3823 3824 vruntime -= thresh; 3825 } 3826 3827 /* ensure we never gain time by being placed backwards. */ 3828 se->vruntime = max_vruntime(se->vruntime, vruntime); 3829 } 3830 3831 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3832 3833 static inline void check_schedstat_required(void) 3834 { 3835 #ifdef CONFIG_SCHEDSTATS 3836 if (schedstat_enabled()) 3837 return; 3838 3839 /* Force schedstat enabled if a dependent tracepoint is active */ 3840 if (trace_sched_stat_wait_enabled() || 3841 trace_sched_stat_sleep_enabled() || 3842 trace_sched_stat_iowait_enabled() || 3843 trace_sched_stat_blocked_enabled() || 3844 trace_sched_stat_runtime_enabled()) { 3845 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3846 "stat_blocked and stat_runtime require the " 3847 "kernel parameter schedstats=enable or " 3848 "kernel.sched_schedstats=1\n"); 3849 } 3850 #endif 3851 } 3852 3853 3854 /* 3855 * MIGRATION 3856 * 3857 * dequeue 3858 * update_curr() 3859 * update_min_vruntime() 3860 * vruntime -= min_vruntime 3861 * 3862 * enqueue 3863 * update_curr() 3864 * update_min_vruntime() 3865 * vruntime += min_vruntime 3866 * 3867 * this way the vruntime transition between RQs is done when both 3868 * min_vruntime are up-to-date. 3869 * 3870 * WAKEUP (remote) 3871 * 3872 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3873 * vruntime -= min_vruntime 3874 * 3875 * enqueue 3876 * update_curr() 3877 * update_min_vruntime() 3878 * vruntime += min_vruntime 3879 * 3880 * this way we don't have the most up-to-date min_vruntime on the originating 3881 * CPU and an up-to-date min_vruntime on the destination CPU. 3882 */ 3883 3884 static void 3885 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3886 { 3887 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3888 bool curr = cfs_rq->curr == se; 3889 3890 /* 3891 * If we're the current task, we must renormalise before calling 3892 * update_curr(). 3893 */ 3894 if (renorm && curr) 3895 se->vruntime += cfs_rq->min_vruntime; 3896 3897 update_curr(cfs_rq); 3898 3899 /* 3900 * Otherwise, renormalise after, such that we're placed at the current 3901 * moment in time, instead of some random moment in the past. Being 3902 * placed in the past could significantly boost this task to the 3903 * fairness detriment of existing tasks. 3904 */ 3905 if (renorm && !curr) 3906 se->vruntime += cfs_rq->min_vruntime; 3907 3908 /* 3909 * When enqueuing a sched_entity, we must: 3910 * - Update loads to have both entity and cfs_rq synced with now. 3911 * - Add its load to cfs_rq->runnable_avg 3912 * - For group_entity, update its weight to reflect the new share of 3913 * its group cfs_rq 3914 * - Add its new weight to cfs_rq->load.weight 3915 */ 3916 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 3917 update_cfs_group(se); 3918 enqueue_runnable_load_avg(cfs_rq, se); 3919 account_entity_enqueue(cfs_rq, se); 3920 3921 if (flags & ENQUEUE_WAKEUP) 3922 place_entity(cfs_rq, se, 0); 3923 3924 check_schedstat_required(); 3925 update_stats_enqueue(cfs_rq, se, flags); 3926 check_spread(cfs_rq, se); 3927 if (!curr) 3928 __enqueue_entity(cfs_rq, se); 3929 se->on_rq = 1; 3930 3931 if (cfs_rq->nr_running == 1) { 3932 list_add_leaf_cfs_rq(cfs_rq); 3933 check_enqueue_throttle(cfs_rq); 3934 } 3935 } 3936 3937 static void __clear_buddies_last(struct sched_entity *se) 3938 { 3939 for_each_sched_entity(se) { 3940 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3941 if (cfs_rq->last != se) 3942 break; 3943 3944 cfs_rq->last = NULL; 3945 } 3946 } 3947 3948 static void __clear_buddies_next(struct sched_entity *se) 3949 { 3950 for_each_sched_entity(se) { 3951 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3952 if (cfs_rq->next != se) 3953 break; 3954 3955 cfs_rq->next = NULL; 3956 } 3957 } 3958 3959 static void __clear_buddies_skip(struct sched_entity *se) 3960 { 3961 for_each_sched_entity(se) { 3962 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3963 if (cfs_rq->skip != se) 3964 break; 3965 3966 cfs_rq->skip = NULL; 3967 } 3968 } 3969 3970 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3971 { 3972 if (cfs_rq->last == se) 3973 __clear_buddies_last(se); 3974 3975 if (cfs_rq->next == se) 3976 __clear_buddies_next(se); 3977 3978 if (cfs_rq->skip == se) 3979 __clear_buddies_skip(se); 3980 } 3981 3982 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3983 3984 static void 3985 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3986 { 3987 /* 3988 * Update run-time statistics of the 'current'. 3989 */ 3990 update_curr(cfs_rq); 3991 3992 /* 3993 * When dequeuing a sched_entity, we must: 3994 * - Update loads to have both entity and cfs_rq synced with now. 3995 * - Subtract its load from the cfs_rq->runnable_avg. 3996 * - Subtract its previous weight from cfs_rq->load.weight. 3997 * - For group entity, update its weight to reflect the new share 3998 * of its group cfs_rq. 3999 */ 4000 update_load_avg(cfs_rq, se, UPDATE_TG); 4001 dequeue_runnable_load_avg(cfs_rq, se); 4002 4003 update_stats_dequeue(cfs_rq, se, flags); 4004 4005 clear_buddies(cfs_rq, se); 4006 4007 if (se != cfs_rq->curr) 4008 __dequeue_entity(cfs_rq, se); 4009 se->on_rq = 0; 4010 account_entity_dequeue(cfs_rq, se); 4011 4012 /* 4013 * Normalize after update_curr(); which will also have moved 4014 * min_vruntime if @se is the one holding it back. But before doing 4015 * update_min_vruntime() again, which will discount @se's position and 4016 * can move min_vruntime forward still more. 4017 */ 4018 if (!(flags & DEQUEUE_SLEEP)) 4019 se->vruntime -= cfs_rq->min_vruntime; 4020 4021 /* return excess runtime on last dequeue */ 4022 return_cfs_rq_runtime(cfs_rq); 4023 4024 update_cfs_group(se); 4025 4026 /* 4027 * Now advance min_vruntime if @se was the entity holding it back, 4028 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4029 * put back on, and if we advance min_vruntime, we'll be placed back 4030 * further than we started -- ie. we'll be penalized. 4031 */ 4032 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4033 update_min_vruntime(cfs_rq); 4034 } 4035 4036 /* 4037 * Preempt the current task with a newly woken task if needed: 4038 */ 4039 static void 4040 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4041 { 4042 unsigned long ideal_runtime, delta_exec; 4043 struct sched_entity *se; 4044 s64 delta; 4045 4046 ideal_runtime = sched_slice(cfs_rq, curr); 4047 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4048 if (delta_exec > ideal_runtime) { 4049 resched_curr(rq_of(cfs_rq)); 4050 /* 4051 * The current task ran long enough, ensure it doesn't get 4052 * re-elected due to buddy favours. 4053 */ 4054 clear_buddies(cfs_rq, curr); 4055 return; 4056 } 4057 4058 /* 4059 * Ensure that a task that missed wakeup preemption by a 4060 * narrow margin doesn't have to wait for a full slice. 4061 * This also mitigates buddy induced latencies under load. 4062 */ 4063 if (delta_exec < sysctl_sched_min_granularity) 4064 return; 4065 4066 se = __pick_first_entity(cfs_rq); 4067 delta = curr->vruntime - se->vruntime; 4068 4069 if (delta < 0) 4070 return; 4071 4072 if (delta > ideal_runtime) 4073 resched_curr(rq_of(cfs_rq)); 4074 } 4075 4076 static void 4077 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4078 { 4079 /* 'current' is not kept within the tree. */ 4080 if (se->on_rq) { 4081 /* 4082 * Any task has to be enqueued before it get to execute on 4083 * a CPU. So account for the time it spent waiting on the 4084 * runqueue. 4085 */ 4086 update_stats_wait_end(cfs_rq, se); 4087 __dequeue_entity(cfs_rq, se); 4088 update_load_avg(cfs_rq, se, UPDATE_TG); 4089 } 4090 4091 update_stats_curr_start(cfs_rq, se); 4092 cfs_rq->curr = se; 4093 4094 /* 4095 * Track our maximum slice length, if the CPU's load is at 4096 * least twice that of our own weight (i.e. dont track it 4097 * when there are only lesser-weight tasks around): 4098 */ 4099 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 4100 schedstat_set(se->statistics.slice_max, 4101 max((u64)schedstat_val(se->statistics.slice_max), 4102 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4103 } 4104 4105 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4106 } 4107 4108 static int 4109 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4110 4111 /* 4112 * Pick the next process, keeping these things in mind, in this order: 4113 * 1) keep things fair between processes/task groups 4114 * 2) pick the "next" process, since someone really wants that to run 4115 * 3) pick the "last" process, for cache locality 4116 * 4) do not run the "skip" process, if something else is available 4117 */ 4118 static struct sched_entity * 4119 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4120 { 4121 struct sched_entity *left = __pick_first_entity(cfs_rq); 4122 struct sched_entity *se; 4123 4124 /* 4125 * If curr is set we have to see if its left of the leftmost entity 4126 * still in the tree, provided there was anything in the tree at all. 4127 */ 4128 if (!left || (curr && entity_before(curr, left))) 4129 left = curr; 4130 4131 se = left; /* ideally we run the leftmost entity */ 4132 4133 /* 4134 * Avoid running the skip buddy, if running something else can 4135 * be done without getting too unfair. 4136 */ 4137 if (cfs_rq->skip == se) { 4138 struct sched_entity *second; 4139 4140 if (se == curr) { 4141 second = __pick_first_entity(cfs_rq); 4142 } else { 4143 second = __pick_next_entity(se); 4144 if (!second || (curr && entity_before(curr, second))) 4145 second = curr; 4146 } 4147 4148 if (second && wakeup_preempt_entity(second, left) < 1) 4149 se = second; 4150 } 4151 4152 /* 4153 * Prefer last buddy, try to return the CPU to a preempted task. 4154 */ 4155 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4156 se = cfs_rq->last; 4157 4158 /* 4159 * Someone really wants this to run. If it's not unfair, run it. 4160 */ 4161 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4162 se = cfs_rq->next; 4163 4164 clear_buddies(cfs_rq, se); 4165 4166 return se; 4167 } 4168 4169 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4170 4171 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4172 { 4173 /* 4174 * If still on the runqueue then deactivate_task() 4175 * was not called and update_curr() has to be done: 4176 */ 4177 if (prev->on_rq) 4178 update_curr(cfs_rq); 4179 4180 /* throttle cfs_rqs exceeding runtime */ 4181 check_cfs_rq_runtime(cfs_rq); 4182 4183 check_spread(cfs_rq, prev); 4184 4185 if (prev->on_rq) { 4186 update_stats_wait_start(cfs_rq, prev); 4187 /* Put 'current' back into the tree. */ 4188 __enqueue_entity(cfs_rq, prev); 4189 /* in !on_rq case, update occurred at dequeue */ 4190 update_load_avg(cfs_rq, prev, 0); 4191 } 4192 cfs_rq->curr = NULL; 4193 } 4194 4195 static void 4196 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4197 { 4198 /* 4199 * Update run-time statistics of the 'current'. 4200 */ 4201 update_curr(cfs_rq); 4202 4203 /* 4204 * Ensure that runnable average is periodically updated. 4205 */ 4206 update_load_avg(cfs_rq, curr, UPDATE_TG); 4207 update_cfs_group(curr); 4208 4209 #ifdef CONFIG_SCHED_HRTICK 4210 /* 4211 * queued ticks are scheduled to match the slice, so don't bother 4212 * validating it and just reschedule. 4213 */ 4214 if (queued) { 4215 resched_curr(rq_of(cfs_rq)); 4216 return; 4217 } 4218 /* 4219 * don't let the period tick interfere with the hrtick preemption 4220 */ 4221 if (!sched_feat(DOUBLE_TICK) && 4222 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4223 return; 4224 #endif 4225 4226 if (cfs_rq->nr_running > 1) 4227 check_preempt_tick(cfs_rq, curr); 4228 } 4229 4230 4231 /************************************************** 4232 * CFS bandwidth control machinery 4233 */ 4234 4235 #ifdef CONFIG_CFS_BANDWIDTH 4236 4237 #ifdef CONFIG_JUMP_LABEL 4238 static struct static_key __cfs_bandwidth_used; 4239 4240 static inline bool cfs_bandwidth_used(void) 4241 { 4242 return static_key_false(&__cfs_bandwidth_used); 4243 } 4244 4245 void cfs_bandwidth_usage_inc(void) 4246 { 4247 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4248 } 4249 4250 void cfs_bandwidth_usage_dec(void) 4251 { 4252 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4253 } 4254 #else /* CONFIG_JUMP_LABEL */ 4255 static bool cfs_bandwidth_used(void) 4256 { 4257 return true; 4258 } 4259 4260 void cfs_bandwidth_usage_inc(void) {} 4261 void cfs_bandwidth_usage_dec(void) {} 4262 #endif /* CONFIG_JUMP_LABEL */ 4263 4264 /* 4265 * default period for cfs group bandwidth. 4266 * default: 0.1s, units: nanoseconds 4267 */ 4268 static inline u64 default_cfs_period(void) 4269 { 4270 return 100000000ULL; 4271 } 4272 4273 static inline u64 sched_cfs_bandwidth_slice(void) 4274 { 4275 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4276 } 4277 4278 /* 4279 * Replenish runtime according to assigned quota and update expiration time. 4280 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 4281 * additional synchronization around rq->lock. 4282 * 4283 * requires cfs_b->lock 4284 */ 4285 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4286 { 4287 u64 now; 4288 4289 if (cfs_b->quota == RUNTIME_INF) 4290 return; 4291 4292 now = sched_clock_cpu(smp_processor_id()); 4293 cfs_b->runtime = cfs_b->quota; 4294 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 4295 cfs_b->expires_seq++; 4296 } 4297 4298 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4299 { 4300 return &tg->cfs_bandwidth; 4301 } 4302 4303 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 4304 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4305 { 4306 if (unlikely(cfs_rq->throttle_count)) 4307 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 4308 4309 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 4310 } 4311 4312 /* returns 0 on failure to allocate runtime */ 4313 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4314 { 4315 struct task_group *tg = cfs_rq->tg; 4316 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4317 u64 amount = 0, min_amount, expires; 4318 int expires_seq; 4319 4320 /* note: this is a positive sum as runtime_remaining <= 0 */ 4321 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4322 4323 raw_spin_lock(&cfs_b->lock); 4324 if (cfs_b->quota == RUNTIME_INF) 4325 amount = min_amount; 4326 else { 4327 start_cfs_bandwidth(cfs_b); 4328 4329 if (cfs_b->runtime > 0) { 4330 amount = min(cfs_b->runtime, min_amount); 4331 cfs_b->runtime -= amount; 4332 cfs_b->idle = 0; 4333 } 4334 } 4335 expires_seq = cfs_b->expires_seq; 4336 expires = cfs_b->runtime_expires; 4337 raw_spin_unlock(&cfs_b->lock); 4338 4339 cfs_rq->runtime_remaining += amount; 4340 /* 4341 * we may have advanced our local expiration to account for allowed 4342 * spread between our sched_clock and the one on which runtime was 4343 * issued. 4344 */ 4345 if (cfs_rq->expires_seq != expires_seq) { 4346 cfs_rq->expires_seq = expires_seq; 4347 cfs_rq->runtime_expires = expires; 4348 } 4349 4350 return cfs_rq->runtime_remaining > 0; 4351 } 4352 4353 /* 4354 * Note: This depends on the synchronization provided by sched_clock and the 4355 * fact that rq->clock snapshots this value. 4356 */ 4357 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4358 { 4359 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4360 4361 /* if the deadline is ahead of our clock, nothing to do */ 4362 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 4363 return; 4364 4365 if (cfs_rq->runtime_remaining < 0) 4366 return; 4367 4368 /* 4369 * If the local deadline has passed we have to consider the 4370 * possibility that our sched_clock is 'fast' and the global deadline 4371 * has not truly expired. 4372 * 4373 * Fortunately we can check determine whether this the case by checking 4374 * whether the global deadline(cfs_b->expires_seq) has advanced. 4375 */ 4376 if (cfs_rq->expires_seq == cfs_b->expires_seq) { 4377 /* extend local deadline, drift is bounded above by 2 ticks */ 4378 cfs_rq->runtime_expires += TICK_NSEC; 4379 } else { 4380 /* global deadline is ahead, expiration has passed */ 4381 cfs_rq->runtime_remaining = 0; 4382 } 4383 } 4384 4385 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4386 { 4387 /* dock delta_exec before expiring quota (as it could span periods) */ 4388 cfs_rq->runtime_remaining -= delta_exec; 4389 expire_cfs_rq_runtime(cfs_rq); 4390 4391 if (likely(cfs_rq->runtime_remaining > 0)) 4392 return; 4393 4394 /* 4395 * if we're unable to extend our runtime we resched so that the active 4396 * hierarchy can be throttled 4397 */ 4398 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4399 resched_curr(rq_of(cfs_rq)); 4400 } 4401 4402 static __always_inline 4403 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4404 { 4405 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4406 return; 4407 4408 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4409 } 4410 4411 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4412 { 4413 return cfs_bandwidth_used() && cfs_rq->throttled; 4414 } 4415 4416 /* check whether cfs_rq, or any parent, is throttled */ 4417 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4418 { 4419 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4420 } 4421 4422 /* 4423 * Ensure that neither of the group entities corresponding to src_cpu or 4424 * dest_cpu are members of a throttled hierarchy when performing group 4425 * load-balance operations. 4426 */ 4427 static inline int throttled_lb_pair(struct task_group *tg, 4428 int src_cpu, int dest_cpu) 4429 { 4430 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4431 4432 src_cfs_rq = tg->cfs_rq[src_cpu]; 4433 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4434 4435 return throttled_hierarchy(src_cfs_rq) || 4436 throttled_hierarchy(dest_cfs_rq); 4437 } 4438 4439 static int tg_unthrottle_up(struct task_group *tg, void *data) 4440 { 4441 struct rq *rq = data; 4442 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4443 4444 cfs_rq->throttle_count--; 4445 if (!cfs_rq->throttle_count) { 4446 /* adjust cfs_rq_clock_task() */ 4447 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4448 cfs_rq->throttled_clock_task; 4449 4450 /* Add cfs_rq with already running entity in the list */ 4451 if (cfs_rq->nr_running >= 1) 4452 list_add_leaf_cfs_rq(cfs_rq); 4453 } 4454 4455 return 0; 4456 } 4457 4458 static int tg_throttle_down(struct task_group *tg, void *data) 4459 { 4460 struct rq *rq = data; 4461 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4462 4463 /* group is entering throttled state, stop time */ 4464 if (!cfs_rq->throttle_count) { 4465 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4466 list_del_leaf_cfs_rq(cfs_rq); 4467 } 4468 cfs_rq->throttle_count++; 4469 4470 return 0; 4471 } 4472 4473 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4474 { 4475 struct rq *rq = rq_of(cfs_rq); 4476 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4477 struct sched_entity *se; 4478 long task_delta, dequeue = 1; 4479 bool empty; 4480 4481 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4482 4483 /* freeze hierarchy runnable averages while throttled */ 4484 rcu_read_lock(); 4485 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4486 rcu_read_unlock(); 4487 4488 task_delta = cfs_rq->h_nr_running; 4489 for_each_sched_entity(se) { 4490 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4491 /* throttled entity or throttle-on-deactivate */ 4492 if (!se->on_rq) 4493 break; 4494 4495 if (dequeue) 4496 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4497 qcfs_rq->h_nr_running -= task_delta; 4498 4499 if (qcfs_rq->load.weight) 4500 dequeue = 0; 4501 } 4502 4503 if (!se) 4504 sub_nr_running(rq, task_delta); 4505 4506 cfs_rq->throttled = 1; 4507 cfs_rq->throttled_clock = rq_clock(rq); 4508 raw_spin_lock(&cfs_b->lock); 4509 empty = list_empty(&cfs_b->throttled_cfs_rq); 4510 4511 /* 4512 * Add to the _head_ of the list, so that an already-started 4513 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is 4514 * not running add to the tail so that later runqueues don't get starved. 4515 */ 4516 if (cfs_b->distribute_running) 4517 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4518 else 4519 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4520 4521 /* 4522 * If we're the first throttled task, make sure the bandwidth 4523 * timer is running. 4524 */ 4525 if (empty) 4526 start_cfs_bandwidth(cfs_b); 4527 4528 raw_spin_unlock(&cfs_b->lock); 4529 } 4530 4531 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4532 { 4533 struct rq *rq = rq_of(cfs_rq); 4534 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4535 struct sched_entity *se; 4536 int enqueue = 1; 4537 long task_delta; 4538 4539 se = cfs_rq->tg->se[cpu_of(rq)]; 4540 4541 cfs_rq->throttled = 0; 4542 4543 update_rq_clock(rq); 4544 4545 raw_spin_lock(&cfs_b->lock); 4546 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4547 list_del_rcu(&cfs_rq->throttled_list); 4548 raw_spin_unlock(&cfs_b->lock); 4549 4550 /* update hierarchical throttle state */ 4551 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4552 4553 if (!cfs_rq->load.weight) 4554 return; 4555 4556 task_delta = cfs_rq->h_nr_running; 4557 for_each_sched_entity(se) { 4558 if (se->on_rq) 4559 enqueue = 0; 4560 4561 cfs_rq = cfs_rq_of(se); 4562 if (enqueue) 4563 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4564 cfs_rq->h_nr_running += task_delta; 4565 4566 if (cfs_rq_throttled(cfs_rq)) 4567 break; 4568 } 4569 4570 assert_list_leaf_cfs_rq(rq); 4571 4572 if (!se) 4573 add_nr_running(rq, task_delta); 4574 4575 /* Determine whether we need to wake up potentially idle CPU: */ 4576 if (rq->curr == rq->idle && rq->cfs.nr_running) 4577 resched_curr(rq); 4578 } 4579 4580 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 4581 u64 remaining, u64 expires) 4582 { 4583 struct cfs_rq *cfs_rq; 4584 u64 runtime; 4585 u64 starting_runtime = remaining; 4586 4587 rcu_read_lock(); 4588 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4589 throttled_list) { 4590 struct rq *rq = rq_of(cfs_rq); 4591 struct rq_flags rf; 4592 4593 rq_lock_irqsave(rq, &rf); 4594 if (!cfs_rq_throttled(cfs_rq)) 4595 goto next; 4596 4597 runtime = -cfs_rq->runtime_remaining + 1; 4598 if (runtime > remaining) 4599 runtime = remaining; 4600 remaining -= runtime; 4601 4602 cfs_rq->runtime_remaining += runtime; 4603 cfs_rq->runtime_expires = expires; 4604 4605 /* we check whether we're throttled above */ 4606 if (cfs_rq->runtime_remaining > 0) 4607 unthrottle_cfs_rq(cfs_rq); 4608 4609 next: 4610 rq_unlock_irqrestore(rq, &rf); 4611 4612 if (!remaining) 4613 break; 4614 } 4615 rcu_read_unlock(); 4616 4617 return starting_runtime - remaining; 4618 } 4619 4620 /* 4621 * Responsible for refilling a task_group's bandwidth and unthrottling its 4622 * cfs_rqs as appropriate. If there has been no activity within the last 4623 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4624 * used to track this state. 4625 */ 4626 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 4627 { 4628 u64 runtime, runtime_expires; 4629 int throttled; 4630 4631 /* no need to continue the timer with no bandwidth constraint */ 4632 if (cfs_b->quota == RUNTIME_INF) 4633 goto out_deactivate; 4634 4635 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4636 cfs_b->nr_periods += overrun; 4637 4638 /* 4639 * idle depends on !throttled (for the case of a large deficit), and if 4640 * we're going inactive then everything else can be deferred 4641 */ 4642 if (cfs_b->idle && !throttled) 4643 goto out_deactivate; 4644 4645 __refill_cfs_bandwidth_runtime(cfs_b); 4646 4647 if (!throttled) { 4648 /* mark as potentially idle for the upcoming period */ 4649 cfs_b->idle = 1; 4650 return 0; 4651 } 4652 4653 /* account preceding periods in which throttling occurred */ 4654 cfs_b->nr_throttled += overrun; 4655 4656 runtime_expires = cfs_b->runtime_expires; 4657 4658 /* 4659 * This check is repeated as we are holding onto the new bandwidth while 4660 * we unthrottle. This can potentially race with an unthrottled group 4661 * trying to acquire new bandwidth from the global pool. This can result 4662 * in us over-using our runtime if it is all used during this loop, but 4663 * only by limited amounts in that extreme case. 4664 */ 4665 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) { 4666 runtime = cfs_b->runtime; 4667 cfs_b->distribute_running = 1; 4668 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4669 /* we can't nest cfs_b->lock while distributing bandwidth */ 4670 runtime = distribute_cfs_runtime(cfs_b, runtime, 4671 runtime_expires); 4672 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4673 4674 cfs_b->distribute_running = 0; 4675 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4676 4677 lsub_positive(&cfs_b->runtime, runtime); 4678 } 4679 4680 /* 4681 * While we are ensured activity in the period following an 4682 * unthrottle, this also covers the case in which the new bandwidth is 4683 * insufficient to cover the existing bandwidth deficit. (Forcing the 4684 * timer to remain active while there are any throttled entities.) 4685 */ 4686 cfs_b->idle = 0; 4687 4688 return 0; 4689 4690 out_deactivate: 4691 return 1; 4692 } 4693 4694 /* a cfs_rq won't donate quota below this amount */ 4695 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4696 /* minimum remaining period time to redistribute slack quota */ 4697 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4698 /* how long we wait to gather additional slack before distributing */ 4699 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4700 4701 /* 4702 * Are we near the end of the current quota period? 4703 * 4704 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4705 * hrtimer base being cleared by hrtimer_start. In the case of 4706 * migrate_hrtimers, base is never cleared, so we are fine. 4707 */ 4708 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4709 { 4710 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4711 u64 remaining; 4712 4713 /* if the call-back is running a quota refresh is already occurring */ 4714 if (hrtimer_callback_running(refresh_timer)) 4715 return 1; 4716 4717 /* is a quota refresh about to occur? */ 4718 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4719 if (remaining < min_expire) 4720 return 1; 4721 4722 return 0; 4723 } 4724 4725 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4726 { 4727 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4728 4729 /* if there's a quota refresh soon don't bother with slack */ 4730 if (runtime_refresh_within(cfs_b, min_left)) 4731 return; 4732 4733 hrtimer_start(&cfs_b->slack_timer, 4734 ns_to_ktime(cfs_bandwidth_slack_period), 4735 HRTIMER_MODE_REL); 4736 } 4737 4738 /* we know any runtime found here is valid as update_curr() precedes return */ 4739 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4740 { 4741 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4742 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4743 4744 if (slack_runtime <= 0) 4745 return; 4746 4747 raw_spin_lock(&cfs_b->lock); 4748 if (cfs_b->quota != RUNTIME_INF && 4749 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4750 cfs_b->runtime += slack_runtime; 4751 4752 /* we are under rq->lock, defer unthrottling using a timer */ 4753 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4754 !list_empty(&cfs_b->throttled_cfs_rq)) 4755 start_cfs_slack_bandwidth(cfs_b); 4756 } 4757 raw_spin_unlock(&cfs_b->lock); 4758 4759 /* even if it's not valid for return we don't want to try again */ 4760 cfs_rq->runtime_remaining -= slack_runtime; 4761 } 4762 4763 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4764 { 4765 if (!cfs_bandwidth_used()) 4766 return; 4767 4768 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4769 return; 4770 4771 __return_cfs_rq_runtime(cfs_rq); 4772 } 4773 4774 /* 4775 * This is done with a timer (instead of inline with bandwidth return) since 4776 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4777 */ 4778 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4779 { 4780 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4781 unsigned long flags; 4782 u64 expires; 4783 4784 /* confirm we're still not at a refresh boundary */ 4785 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4786 if (cfs_b->distribute_running) { 4787 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4788 return; 4789 } 4790 4791 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4792 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4793 return; 4794 } 4795 4796 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4797 runtime = cfs_b->runtime; 4798 4799 expires = cfs_b->runtime_expires; 4800 if (runtime) 4801 cfs_b->distribute_running = 1; 4802 4803 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4804 4805 if (!runtime) 4806 return; 4807 4808 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4809 4810 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4811 if (expires == cfs_b->runtime_expires) 4812 lsub_positive(&cfs_b->runtime, runtime); 4813 cfs_b->distribute_running = 0; 4814 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4815 } 4816 4817 /* 4818 * When a group wakes up we want to make sure that its quota is not already 4819 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4820 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4821 */ 4822 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4823 { 4824 if (!cfs_bandwidth_used()) 4825 return; 4826 4827 /* an active group must be handled by the update_curr()->put() path */ 4828 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4829 return; 4830 4831 /* ensure the group is not already throttled */ 4832 if (cfs_rq_throttled(cfs_rq)) 4833 return; 4834 4835 /* update runtime allocation */ 4836 account_cfs_rq_runtime(cfs_rq, 0); 4837 if (cfs_rq->runtime_remaining <= 0) 4838 throttle_cfs_rq(cfs_rq); 4839 } 4840 4841 static void sync_throttle(struct task_group *tg, int cpu) 4842 { 4843 struct cfs_rq *pcfs_rq, *cfs_rq; 4844 4845 if (!cfs_bandwidth_used()) 4846 return; 4847 4848 if (!tg->parent) 4849 return; 4850 4851 cfs_rq = tg->cfs_rq[cpu]; 4852 pcfs_rq = tg->parent->cfs_rq[cpu]; 4853 4854 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4855 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4856 } 4857 4858 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4859 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4860 { 4861 if (!cfs_bandwidth_used()) 4862 return false; 4863 4864 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4865 return false; 4866 4867 /* 4868 * it's possible for a throttled entity to be forced into a running 4869 * state (e.g. set_curr_task), in this case we're finished. 4870 */ 4871 if (cfs_rq_throttled(cfs_rq)) 4872 return true; 4873 4874 throttle_cfs_rq(cfs_rq); 4875 return true; 4876 } 4877 4878 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4879 { 4880 struct cfs_bandwidth *cfs_b = 4881 container_of(timer, struct cfs_bandwidth, slack_timer); 4882 4883 do_sched_cfs_slack_timer(cfs_b); 4884 4885 return HRTIMER_NORESTART; 4886 } 4887 4888 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4889 { 4890 struct cfs_bandwidth *cfs_b = 4891 container_of(timer, struct cfs_bandwidth, period_timer); 4892 unsigned long flags; 4893 int overrun; 4894 int idle = 0; 4895 4896 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4897 for (;;) { 4898 overrun = hrtimer_forward_now(timer, cfs_b->period); 4899 if (!overrun) 4900 break; 4901 4902 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 4903 } 4904 if (idle) 4905 cfs_b->period_active = 0; 4906 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4907 4908 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4909 } 4910 4911 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4912 { 4913 raw_spin_lock_init(&cfs_b->lock); 4914 cfs_b->runtime = 0; 4915 cfs_b->quota = RUNTIME_INF; 4916 cfs_b->period = ns_to_ktime(default_cfs_period()); 4917 4918 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4919 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4920 cfs_b->period_timer.function = sched_cfs_period_timer; 4921 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4922 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4923 cfs_b->distribute_running = 0; 4924 } 4925 4926 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4927 { 4928 cfs_rq->runtime_enabled = 0; 4929 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4930 } 4931 4932 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4933 { 4934 u64 overrun; 4935 4936 lockdep_assert_held(&cfs_b->lock); 4937 4938 if (cfs_b->period_active) 4939 return; 4940 4941 cfs_b->period_active = 1; 4942 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 4943 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period); 4944 cfs_b->expires_seq++; 4945 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 4946 } 4947 4948 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4949 { 4950 /* init_cfs_bandwidth() was not called */ 4951 if (!cfs_b->throttled_cfs_rq.next) 4952 return; 4953 4954 hrtimer_cancel(&cfs_b->period_timer); 4955 hrtimer_cancel(&cfs_b->slack_timer); 4956 } 4957 4958 /* 4959 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 4960 * 4961 * The race is harmless, since modifying bandwidth settings of unhooked group 4962 * bits doesn't do much. 4963 */ 4964 4965 /* cpu online calback */ 4966 static void __maybe_unused update_runtime_enabled(struct rq *rq) 4967 { 4968 struct task_group *tg; 4969 4970 lockdep_assert_held(&rq->lock); 4971 4972 rcu_read_lock(); 4973 list_for_each_entry_rcu(tg, &task_groups, list) { 4974 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 4975 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4976 4977 raw_spin_lock(&cfs_b->lock); 4978 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 4979 raw_spin_unlock(&cfs_b->lock); 4980 } 4981 rcu_read_unlock(); 4982 } 4983 4984 /* cpu offline callback */ 4985 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 4986 { 4987 struct task_group *tg; 4988 4989 lockdep_assert_held(&rq->lock); 4990 4991 rcu_read_lock(); 4992 list_for_each_entry_rcu(tg, &task_groups, list) { 4993 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4994 4995 if (!cfs_rq->runtime_enabled) 4996 continue; 4997 4998 /* 4999 * clock_task is not advancing so we just need to make sure 5000 * there's some valid quota amount 5001 */ 5002 cfs_rq->runtime_remaining = 1; 5003 /* 5004 * Offline rq is schedulable till CPU is completely disabled 5005 * in take_cpu_down(), so we prevent new cfs throttling here. 5006 */ 5007 cfs_rq->runtime_enabled = 0; 5008 5009 if (cfs_rq_throttled(cfs_rq)) 5010 unthrottle_cfs_rq(cfs_rq); 5011 } 5012 rcu_read_unlock(); 5013 } 5014 5015 #else /* CONFIG_CFS_BANDWIDTH */ 5016 5017 static inline bool cfs_bandwidth_used(void) 5018 { 5019 return false; 5020 } 5021 5022 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 5023 { 5024 return rq_clock_task(rq_of(cfs_rq)); 5025 } 5026 5027 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5028 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5029 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5030 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5031 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5032 5033 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5034 { 5035 return 0; 5036 } 5037 5038 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5039 { 5040 return 0; 5041 } 5042 5043 static inline int throttled_lb_pair(struct task_group *tg, 5044 int src_cpu, int dest_cpu) 5045 { 5046 return 0; 5047 } 5048 5049 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5050 5051 #ifdef CONFIG_FAIR_GROUP_SCHED 5052 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5053 #endif 5054 5055 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5056 { 5057 return NULL; 5058 } 5059 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5060 static inline void update_runtime_enabled(struct rq *rq) {} 5061 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5062 5063 #endif /* CONFIG_CFS_BANDWIDTH */ 5064 5065 /************************************************** 5066 * CFS operations on tasks: 5067 */ 5068 5069 #ifdef CONFIG_SCHED_HRTICK 5070 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5071 { 5072 struct sched_entity *se = &p->se; 5073 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5074 5075 SCHED_WARN_ON(task_rq(p) != rq); 5076 5077 if (rq->cfs.h_nr_running > 1) { 5078 u64 slice = sched_slice(cfs_rq, se); 5079 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5080 s64 delta = slice - ran; 5081 5082 if (delta < 0) { 5083 if (rq->curr == p) 5084 resched_curr(rq); 5085 return; 5086 } 5087 hrtick_start(rq, delta); 5088 } 5089 } 5090 5091 /* 5092 * called from enqueue/dequeue and updates the hrtick when the 5093 * current task is from our class and nr_running is low enough 5094 * to matter. 5095 */ 5096 static void hrtick_update(struct rq *rq) 5097 { 5098 struct task_struct *curr = rq->curr; 5099 5100 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5101 return; 5102 5103 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5104 hrtick_start_fair(rq, curr); 5105 } 5106 #else /* !CONFIG_SCHED_HRTICK */ 5107 static inline void 5108 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5109 { 5110 } 5111 5112 static inline void hrtick_update(struct rq *rq) 5113 { 5114 } 5115 #endif 5116 5117 #ifdef CONFIG_SMP 5118 static inline unsigned long cpu_util(int cpu); 5119 static unsigned long capacity_of(int cpu); 5120 5121 static inline bool cpu_overutilized(int cpu) 5122 { 5123 return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin); 5124 } 5125 5126 static inline void update_overutilized_status(struct rq *rq) 5127 { 5128 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) 5129 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5130 } 5131 #else 5132 static inline void update_overutilized_status(struct rq *rq) { } 5133 #endif 5134 5135 /* 5136 * The enqueue_task method is called before nr_running is 5137 * increased. Here we update the fair scheduling stats and 5138 * then put the task into the rbtree: 5139 */ 5140 static void 5141 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5142 { 5143 struct cfs_rq *cfs_rq; 5144 struct sched_entity *se = &p->se; 5145 5146 /* 5147 * The code below (indirectly) updates schedutil which looks at 5148 * the cfs_rq utilization to select a frequency. 5149 * Let's add the task's estimated utilization to the cfs_rq's 5150 * estimated utilization, before we update schedutil. 5151 */ 5152 util_est_enqueue(&rq->cfs, p); 5153 5154 /* 5155 * If in_iowait is set, the code below may not trigger any cpufreq 5156 * utilization updates, so do it here explicitly with the IOWAIT flag 5157 * passed. 5158 */ 5159 if (p->in_iowait) 5160 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5161 5162 for_each_sched_entity(se) { 5163 if (se->on_rq) 5164 break; 5165 cfs_rq = cfs_rq_of(se); 5166 enqueue_entity(cfs_rq, se, flags); 5167 5168 /* 5169 * end evaluation on encountering a throttled cfs_rq 5170 * 5171 * note: in the case of encountering a throttled cfs_rq we will 5172 * post the final h_nr_running increment below. 5173 */ 5174 if (cfs_rq_throttled(cfs_rq)) 5175 break; 5176 cfs_rq->h_nr_running++; 5177 5178 flags = ENQUEUE_WAKEUP; 5179 } 5180 5181 for_each_sched_entity(se) { 5182 cfs_rq = cfs_rq_of(se); 5183 cfs_rq->h_nr_running++; 5184 5185 if (cfs_rq_throttled(cfs_rq)) 5186 break; 5187 5188 update_load_avg(cfs_rq, se, UPDATE_TG); 5189 update_cfs_group(se); 5190 } 5191 5192 if (!se) { 5193 add_nr_running(rq, 1); 5194 /* 5195 * Since new tasks are assigned an initial util_avg equal to 5196 * half of the spare capacity of their CPU, tiny tasks have the 5197 * ability to cross the overutilized threshold, which will 5198 * result in the load balancer ruining all the task placement 5199 * done by EAS. As a way to mitigate that effect, do not account 5200 * for the first enqueue operation of new tasks during the 5201 * overutilized flag detection. 5202 * 5203 * A better way of solving this problem would be to wait for 5204 * the PELT signals of tasks to converge before taking them 5205 * into account, but that is not straightforward to implement, 5206 * and the following generally works well enough in practice. 5207 */ 5208 if (flags & ENQUEUE_WAKEUP) 5209 update_overutilized_status(rq); 5210 5211 } 5212 5213 if (cfs_bandwidth_used()) { 5214 /* 5215 * When bandwidth control is enabled; the cfs_rq_throttled() 5216 * breaks in the above iteration can result in incomplete 5217 * leaf list maintenance, resulting in triggering the assertion 5218 * below. 5219 */ 5220 for_each_sched_entity(se) { 5221 cfs_rq = cfs_rq_of(se); 5222 5223 if (list_add_leaf_cfs_rq(cfs_rq)) 5224 break; 5225 } 5226 } 5227 5228 assert_list_leaf_cfs_rq(rq); 5229 5230 hrtick_update(rq); 5231 } 5232 5233 static void set_next_buddy(struct sched_entity *se); 5234 5235 /* 5236 * The dequeue_task method is called before nr_running is 5237 * decreased. We remove the task from the rbtree and 5238 * update the fair scheduling stats: 5239 */ 5240 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5241 { 5242 struct cfs_rq *cfs_rq; 5243 struct sched_entity *se = &p->se; 5244 int task_sleep = flags & DEQUEUE_SLEEP; 5245 5246 for_each_sched_entity(se) { 5247 cfs_rq = cfs_rq_of(se); 5248 dequeue_entity(cfs_rq, se, flags); 5249 5250 /* 5251 * end evaluation on encountering a throttled cfs_rq 5252 * 5253 * note: in the case of encountering a throttled cfs_rq we will 5254 * post the final h_nr_running decrement below. 5255 */ 5256 if (cfs_rq_throttled(cfs_rq)) 5257 break; 5258 cfs_rq->h_nr_running--; 5259 5260 /* Don't dequeue parent if it has other entities besides us */ 5261 if (cfs_rq->load.weight) { 5262 /* Avoid re-evaluating load for this entity: */ 5263 se = parent_entity(se); 5264 /* 5265 * Bias pick_next to pick a task from this cfs_rq, as 5266 * p is sleeping when it is within its sched_slice. 5267 */ 5268 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5269 set_next_buddy(se); 5270 break; 5271 } 5272 flags |= DEQUEUE_SLEEP; 5273 } 5274 5275 for_each_sched_entity(se) { 5276 cfs_rq = cfs_rq_of(se); 5277 cfs_rq->h_nr_running--; 5278 5279 if (cfs_rq_throttled(cfs_rq)) 5280 break; 5281 5282 update_load_avg(cfs_rq, se, UPDATE_TG); 5283 update_cfs_group(se); 5284 } 5285 5286 if (!se) 5287 sub_nr_running(rq, 1); 5288 5289 util_est_dequeue(&rq->cfs, p, task_sleep); 5290 hrtick_update(rq); 5291 } 5292 5293 #ifdef CONFIG_SMP 5294 5295 /* Working cpumask for: load_balance, load_balance_newidle. */ 5296 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5297 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5298 5299 #ifdef CONFIG_NO_HZ_COMMON 5300 /* 5301 * per rq 'load' arrray crap; XXX kill this. 5302 */ 5303 5304 /* 5305 * The exact cpuload calculated at every tick would be: 5306 * 5307 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 5308 * 5309 * If a CPU misses updates for n ticks (as it was idle) and update gets 5310 * called on the n+1-th tick when CPU may be busy, then we have: 5311 * 5312 * load_n = (1 - 1/2^i)^n * load_0 5313 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 5314 * 5315 * decay_load_missed() below does efficient calculation of 5316 * 5317 * load' = (1 - 1/2^i)^n * load 5318 * 5319 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 5320 * This allows us to precompute the above in said factors, thereby allowing the 5321 * reduction of an arbitrary n in O(log_2 n) steps. (See also 5322 * fixed_power_int()) 5323 * 5324 * The calculation is approximated on a 128 point scale. 5325 */ 5326 #define DEGRADE_SHIFT 7 5327 5328 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 5329 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 5330 { 0, 0, 0, 0, 0, 0, 0, 0 }, 5331 { 64, 32, 8, 0, 0, 0, 0, 0 }, 5332 { 96, 72, 40, 12, 1, 0, 0, 0 }, 5333 { 112, 98, 75, 43, 15, 1, 0, 0 }, 5334 { 120, 112, 98, 76, 45, 16, 2, 0 } 5335 }; 5336 5337 /* 5338 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 5339 * would be when CPU is idle and so we just decay the old load without 5340 * adding any new load. 5341 */ 5342 static unsigned long 5343 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 5344 { 5345 int j = 0; 5346 5347 if (!missed_updates) 5348 return load; 5349 5350 if (missed_updates >= degrade_zero_ticks[idx]) 5351 return 0; 5352 5353 if (idx == 1) 5354 return load >> missed_updates; 5355 5356 while (missed_updates) { 5357 if (missed_updates % 2) 5358 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 5359 5360 missed_updates >>= 1; 5361 j++; 5362 } 5363 return load; 5364 } 5365 5366 static struct { 5367 cpumask_var_t idle_cpus_mask; 5368 atomic_t nr_cpus; 5369 int has_blocked; /* Idle CPUS has blocked load */ 5370 unsigned long next_balance; /* in jiffy units */ 5371 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5372 } nohz ____cacheline_aligned; 5373 5374 #endif /* CONFIG_NO_HZ_COMMON */ 5375 5376 /** 5377 * __cpu_load_update - update the rq->cpu_load[] statistics 5378 * @this_rq: The rq to update statistics for 5379 * @this_load: The current load 5380 * @pending_updates: The number of missed updates 5381 * 5382 * Update rq->cpu_load[] statistics. This function is usually called every 5383 * scheduler tick (TICK_NSEC). 5384 * 5385 * This function computes a decaying average: 5386 * 5387 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 5388 * 5389 * Because of NOHZ it might not get called on every tick which gives need for 5390 * the @pending_updates argument. 5391 * 5392 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 5393 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 5394 * = A * (A * load[i]_n-2 + B) + B 5395 * = A * (A * (A * load[i]_n-3 + B) + B) + B 5396 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 5397 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 5398 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 5399 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 5400 * 5401 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 5402 * any change in load would have resulted in the tick being turned back on. 5403 * 5404 * For regular NOHZ, this reduces to: 5405 * 5406 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 5407 * 5408 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 5409 * term. 5410 */ 5411 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 5412 unsigned long pending_updates) 5413 { 5414 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 5415 int i, scale; 5416 5417 this_rq->nr_load_updates++; 5418 5419 /* Update our load: */ 5420 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 5421 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 5422 unsigned long old_load, new_load; 5423 5424 /* scale is effectively 1 << i now, and >> i divides by scale */ 5425 5426 old_load = this_rq->cpu_load[i]; 5427 #ifdef CONFIG_NO_HZ_COMMON 5428 old_load = decay_load_missed(old_load, pending_updates - 1, i); 5429 if (tickless_load) { 5430 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 5431 /* 5432 * old_load can never be a negative value because a 5433 * decayed tickless_load cannot be greater than the 5434 * original tickless_load. 5435 */ 5436 old_load += tickless_load; 5437 } 5438 #endif 5439 new_load = this_load; 5440 /* 5441 * Round up the averaging division if load is increasing. This 5442 * prevents us from getting stuck on 9 if the load is 10, for 5443 * example. 5444 */ 5445 if (new_load > old_load) 5446 new_load += scale - 1; 5447 5448 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 5449 } 5450 } 5451 5452 /* Used instead of source_load when we know the type == 0 */ 5453 static unsigned long weighted_cpuload(struct rq *rq) 5454 { 5455 return cfs_rq_runnable_load_avg(&rq->cfs); 5456 } 5457 5458 #ifdef CONFIG_NO_HZ_COMMON 5459 /* 5460 * There is no sane way to deal with nohz on smp when using jiffies because the 5461 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading 5462 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 5463 * 5464 * Therefore we need to avoid the delta approach from the regular tick when 5465 * possible since that would seriously skew the load calculation. This is why we 5466 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 5467 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 5468 * loop exit, nohz_idle_balance, nohz full exit...) 5469 * 5470 * This means we might still be one tick off for nohz periods. 5471 */ 5472 5473 static void cpu_load_update_nohz(struct rq *this_rq, 5474 unsigned long curr_jiffies, 5475 unsigned long load) 5476 { 5477 unsigned long pending_updates; 5478 5479 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 5480 if (pending_updates) { 5481 this_rq->last_load_update_tick = curr_jiffies; 5482 /* 5483 * In the regular NOHZ case, we were idle, this means load 0. 5484 * In the NOHZ_FULL case, we were non-idle, we should consider 5485 * its weighted load. 5486 */ 5487 cpu_load_update(this_rq, load, pending_updates); 5488 } 5489 } 5490 5491 /* 5492 * Called from nohz_idle_balance() to update the load ratings before doing the 5493 * idle balance. 5494 */ 5495 static void cpu_load_update_idle(struct rq *this_rq) 5496 { 5497 /* 5498 * bail if there's load or we're actually up-to-date. 5499 */ 5500 if (weighted_cpuload(this_rq)) 5501 return; 5502 5503 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 5504 } 5505 5506 /* 5507 * Record CPU load on nohz entry so we know the tickless load to account 5508 * on nohz exit. cpu_load[0] happens then to be updated more frequently 5509 * than other cpu_load[idx] but it should be fine as cpu_load readers 5510 * shouldn't rely into synchronized cpu_load[*] updates. 5511 */ 5512 void cpu_load_update_nohz_start(void) 5513 { 5514 struct rq *this_rq = this_rq(); 5515 5516 /* 5517 * This is all lockless but should be fine. If weighted_cpuload changes 5518 * concurrently we'll exit nohz. And cpu_load write can race with 5519 * cpu_load_update_idle() but both updater would be writing the same. 5520 */ 5521 this_rq->cpu_load[0] = weighted_cpuload(this_rq); 5522 } 5523 5524 /* 5525 * Account the tickless load in the end of a nohz frame. 5526 */ 5527 void cpu_load_update_nohz_stop(void) 5528 { 5529 unsigned long curr_jiffies = READ_ONCE(jiffies); 5530 struct rq *this_rq = this_rq(); 5531 unsigned long load; 5532 struct rq_flags rf; 5533 5534 if (curr_jiffies == this_rq->last_load_update_tick) 5535 return; 5536 5537 load = weighted_cpuload(this_rq); 5538 rq_lock(this_rq, &rf); 5539 update_rq_clock(this_rq); 5540 cpu_load_update_nohz(this_rq, curr_jiffies, load); 5541 rq_unlock(this_rq, &rf); 5542 } 5543 #else /* !CONFIG_NO_HZ_COMMON */ 5544 static inline void cpu_load_update_nohz(struct rq *this_rq, 5545 unsigned long curr_jiffies, 5546 unsigned long load) { } 5547 #endif /* CONFIG_NO_HZ_COMMON */ 5548 5549 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 5550 { 5551 #ifdef CONFIG_NO_HZ_COMMON 5552 /* See the mess around cpu_load_update_nohz(). */ 5553 this_rq->last_load_update_tick = READ_ONCE(jiffies); 5554 #endif 5555 cpu_load_update(this_rq, load, 1); 5556 } 5557 5558 /* 5559 * Called from scheduler_tick() 5560 */ 5561 void cpu_load_update_active(struct rq *this_rq) 5562 { 5563 unsigned long load = weighted_cpuload(this_rq); 5564 5565 if (tick_nohz_tick_stopped()) 5566 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 5567 else 5568 cpu_load_update_periodic(this_rq, load); 5569 } 5570 5571 /* 5572 * Return a low guess at the load of a migration-source CPU weighted 5573 * according to the scheduling class and "nice" value. 5574 * 5575 * We want to under-estimate the load of migration sources, to 5576 * balance conservatively. 5577 */ 5578 static unsigned long source_load(int cpu, int type) 5579 { 5580 struct rq *rq = cpu_rq(cpu); 5581 unsigned long total = weighted_cpuload(rq); 5582 5583 if (type == 0 || !sched_feat(LB_BIAS)) 5584 return total; 5585 5586 return min(rq->cpu_load[type-1], total); 5587 } 5588 5589 /* 5590 * Return a high guess at the load of a migration-target CPU weighted 5591 * according to the scheduling class and "nice" value. 5592 */ 5593 static unsigned long target_load(int cpu, int type) 5594 { 5595 struct rq *rq = cpu_rq(cpu); 5596 unsigned long total = weighted_cpuload(rq); 5597 5598 if (type == 0 || !sched_feat(LB_BIAS)) 5599 return total; 5600 5601 return max(rq->cpu_load[type-1], total); 5602 } 5603 5604 static unsigned long capacity_of(int cpu) 5605 { 5606 return cpu_rq(cpu)->cpu_capacity; 5607 } 5608 5609 static unsigned long cpu_avg_load_per_task(int cpu) 5610 { 5611 struct rq *rq = cpu_rq(cpu); 5612 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5613 unsigned long load_avg = weighted_cpuload(rq); 5614 5615 if (nr_running) 5616 return load_avg / nr_running; 5617 5618 return 0; 5619 } 5620 5621 static void record_wakee(struct task_struct *p) 5622 { 5623 /* 5624 * Only decay a single time; tasks that have less then 1 wakeup per 5625 * jiffy will not have built up many flips. 5626 */ 5627 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5628 current->wakee_flips >>= 1; 5629 current->wakee_flip_decay_ts = jiffies; 5630 } 5631 5632 if (current->last_wakee != p) { 5633 current->last_wakee = p; 5634 current->wakee_flips++; 5635 } 5636 } 5637 5638 /* 5639 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5640 * 5641 * A waker of many should wake a different task than the one last awakened 5642 * at a frequency roughly N times higher than one of its wakees. 5643 * 5644 * In order to determine whether we should let the load spread vs consolidating 5645 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5646 * partner, and a factor of lls_size higher frequency in the other. 5647 * 5648 * With both conditions met, we can be relatively sure that the relationship is 5649 * non-monogamous, with partner count exceeding socket size. 5650 * 5651 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5652 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5653 * socket size. 5654 */ 5655 static int wake_wide(struct task_struct *p) 5656 { 5657 unsigned int master = current->wakee_flips; 5658 unsigned int slave = p->wakee_flips; 5659 int factor = this_cpu_read(sd_llc_size); 5660 5661 if (master < slave) 5662 swap(master, slave); 5663 if (slave < factor || master < slave * factor) 5664 return 0; 5665 return 1; 5666 } 5667 5668 /* 5669 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5670 * soonest. For the purpose of speed we only consider the waking and previous 5671 * CPU. 5672 * 5673 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5674 * cache-affine and is (or will be) idle. 5675 * 5676 * wake_affine_weight() - considers the weight to reflect the average 5677 * scheduling latency of the CPUs. This seems to work 5678 * for the overloaded case. 5679 */ 5680 static int 5681 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5682 { 5683 /* 5684 * If this_cpu is idle, it implies the wakeup is from interrupt 5685 * context. Only allow the move if cache is shared. Otherwise an 5686 * interrupt intensive workload could force all tasks onto one 5687 * node depending on the IO topology or IRQ affinity settings. 5688 * 5689 * If the prev_cpu is idle and cache affine then avoid a migration. 5690 * There is no guarantee that the cache hot data from an interrupt 5691 * is more important than cache hot data on the prev_cpu and from 5692 * a cpufreq perspective, it's better to have higher utilisation 5693 * on one CPU. 5694 */ 5695 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5696 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5697 5698 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5699 return this_cpu; 5700 5701 return nr_cpumask_bits; 5702 } 5703 5704 static int 5705 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5706 int this_cpu, int prev_cpu, int sync) 5707 { 5708 s64 this_eff_load, prev_eff_load; 5709 unsigned long task_load; 5710 5711 this_eff_load = target_load(this_cpu, sd->wake_idx); 5712 5713 if (sync) { 5714 unsigned long current_load = task_h_load(current); 5715 5716 if (current_load > this_eff_load) 5717 return this_cpu; 5718 5719 this_eff_load -= current_load; 5720 } 5721 5722 task_load = task_h_load(p); 5723 5724 this_eff_load += task_load; 5725 if (sched_feat(WA_BIAS)) 5726 this_eff_load *= 100; 5727 this_eff_load *= capacity_of(prev_cpu); 5728 5729 prev_eff_load = source_load(prev_cpu, sd->wake_idx); 5730 prev_eff_load -= task_load; 5731 if (sched_feat(WA_BIAS)) 5732 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5733 prev_eff_load *= capacity_of(this_cpu); 5734 5735 /* 5736 * If sync, adjust the weight of prev_eff_load such that if 5737 * prev_eff == this_eff that select_idle_sibling() will consider 5738 * stacking the wakee on top of the waker if no other CPU is 5739 * idle. 5740 */ 5741 if (sync) 5742 prev_eff_load += 1; 5743 5744 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5745 } 5746 5747 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5748 int this_cpu, int prev_cpu, int sync) 5749 { 5750 int target = nr_cpumask_bits; 5751 5752 if (sched_feat(WA_IDLE)) 5753 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5754 5755 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5756 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5757 5758 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5759 if (target == nr_cpumask_bits) 5760 return prev_cpu; 5761 5762 schedstat_inc(sd->ttwu_move_affine); 5763 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5764 return target; 5765 } 5766 5767 static unsigned long cpu_util_without(int cpu, struct task_struct *p); 5768 5769 static unsigned long capacity_spare_without(int cpu, struct task_struct *p) 5770 { 5771 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0); 5772 } 5773 5774 /* 5775 * find_idlest_group finds and returns the least busy CPU group within the 5776 * domain. 5777 * 5778 * Assumes p is allowed on at least one CPU in sd. 5779 */ 5780 static struct sched_group * 5781 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5782 int this_cpu, int sd_flag) 5783 { 5784 struct sched_group *idlest = NULL, *group = sd->groups; 5785 struct sched_group *most_spare_sg = NULL; 5786 unsigned long min_runnable_load = ULONG_MAX; 5787 unsigned long this_runnable_load = ULONG_MAX; 5788 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX; 5789 unsigned long most_spare = 0, this_spare = 0; 5790 int load_idx = sd->forkexec_idx; 5791 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 5792 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 5793 (sd->imbalance_pct-100) / 100; 5794 5795 if (sd_flag & SD_BALANCE_WAKE) 5796 load_idx = sd->wake_idx; 5797 5798 do { 5799 unsigned long load, avg_load, runnable_load; 5800 unsigned long spare_cap, max_spare_cap; 5801 int local_group; 5802 int i; 5803 5804 /* Skip over this group if it has no CPUs allowed */ 5805 if (!cpumask_intersects(sched_group_span(group), 5806 &p->cpus_allowed)) 5807 continue; 5808 5809 local_group = cpumask_test_cpu(this_cpu, 5810 sched_group_span(group)); 5811 5812 /* 5813 * Tally up the load of all CPUs in the group and find 5814 * the group containing the CPU with most spare capacity. 5815 */ 5816 avg_load = 0; 5817 runnable_load = 0; 5818 max_spare_cap = 0; 5819 5820 for_each_cpu(i, sched_group_span(group)) { 5821 /* Bias balancing toward CPUs of our domain */ 5822 if (local_group) 5823 load = source_load(i, load_idx); 5824 else 5825 load = target_load(i, load_idx); 5826 5827 runnable_load += load; 5828 5829 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 5830 5831 spare_cap = capacity_spare_without(i, p); 5832 5833 if (spare_cap > max_spare_cap) 5834 max_spare_cap = spare_cap; 5835 } 5836 5837 /* Adjust by relative CPU capacity of the group */ 5838 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 5839 group->sgc->capacity; 5840 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 5841 group->sgc->capacity; 5842 5843 if (local_group) { 5844 this_runnable_load = runnable_load; 5845 this_avg_load = avg_load; 5846 this_spare = max_spare_cap; 5847 } else { 5848 if (min_runnable_load > (runnable_load + imbalance)) { 5849 /* 5850 * The runnable load is significantly smaller 5851 * so we can pick this new CPU: 5852 */ 5853 min_runnable_load = runnable_load; 5854 min_avg_load = avg_load; 5855 idlest = group; 5856 } else if ((runnable_load < (min_runnable_load + imbalance)) && 5857 (100*min_avg_load > imbalance_scale*avg_load)) { 5858 /* 5859 * The runnable loads are close so take the 5860 * blocked load into account through avg_load: 5861 */ 5862 min_avg_load = avg_load; 5863 idlest = group; 5864 } 5865 5866 if (most_spare < max_spare_cap) { 5867 most_spare = max_spare_cap; 5868 most_spare_sg = group; 5869 } 5870 } 5871 } while (group = group->next, group != sd->groups); 5872 5873 /* 5874 * The cross-over point between using spare capacity or least load 5875 * is too conservative for high utilization tasks on partially 5876 * utilized systems if we require spare_capacity > task_util(p), 5877 * so we allow for some task stuffing by using 5878 * spare_capacity > task_util(p)/2. 5879 * 5880 * Spare capacity can't be used for fork because the utilization has 5881 * not been set yet, we must first select a rq to compute the initial 5882 * utilization. 5883 */ 5884 if (sd_flag & SD_BALANCE_FORK) 5885 goto skip_spare; 5886 5887 if (this_spare > task_util(p) / 2 && 5888 imbalance_scale*this_spare > 100*most_spare) 5889 return NULL; 5890 5891 if (most_spare > task_util(p) / 2) 5892 return most_spare_sg; 5893 5894 skip_spare: 5895 if (!idlest) 5896 return NULL; 5897 5898 /* 5899 * When comparing groups across NUMA domains, it's possible for the 5900 * local domain to be very lightly loaded relative to the remote 5901 * domains but "imbalance" skews the comparison making remote CPUs 5902 * look much more favourable. When considering cross-domain, add 5903 * imbalance to the runnable load on the remote node and consider 5904 * staying local. 5905 */ 5906 if ((sd->flags & SD_NUMA) && 5907 min_runnable_load + imbalance >= this_runnable_load) 5908 return NULL; 5909 5910 if (min_runnable_load > (this_runnable_load + imbalance)) 5911 return NULL; 5912 5913 if ((this_runnable_load < (min_runnable_load + imbalance)) && 5914 (100*this_avg_load < imbalance_scale*min_avg_load)) 5915 return NULL; 5916 5917 return idlest; 5918 } 5919 5920 /* 5921 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5922 */ 5923 static int 5924 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5925 { 5926 unsigned long load, min_load = ULONG_MAX; 5927 unsigned int min_exit_latency = UINT_MAX; 5928 u64 latest_idle_timestamp = 0; 5929 int least_loaded_cpu = this_cpu; 5930 int shallowest_idle_cpu = -1; 5931 int i; 5932 5933 /* Check if we have any choice: */ 5934 if (group->group_weight == 1) 5935 return cpumask_first(sched_group_span(group)); 5936 5937 /* Traverse only the allowed CPUs */ 5938 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) { 5939 if (available_idle_cpu(i)) { 5940 struct rq *rq = cpu_rq(i); 5941 struct cpuidle_state *idle = idle_get_state(rq); 5942 if (idle && idle->exit_latency < min_exit_latency) { 5943 /* 5944 * We give priority to a CPU whose idle state 5945 * has the smallest exit latency irrespective 5946 * of any idle timestamp. 5947 */ 5948 min_exit_latency = idle->exit_latency; 5949 latest_idle_timestamp = rq->idle_stamp; 5950 shallowest_idle_cpu = i; 5951 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5952 rq->idle_stamp > latest_idle_timestamp) { 5953 /* 5954 * If equal or no active idle state, then 5955 * the most recently idled CPU might have 5956 * a warmer cache. 5957 */ 5958 latest_idle_timestamp = rq->idle_stamp; 5959 shallowest_idle_cpu = i; 5960 } 5961 } else if (shallowest_idle_cpu == -1) { 5962 load = weighted_cpuload(cpu_rq(i)); 5963 if (load < min_load) { 5964 min_load = load; 5965 least_loaded_cpu = i; 5966 } 5967 } 5968 } 5969 5970 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5971 } 5972 5973 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5974 int cpu, int prev_cpu, int sd_flag) 5975 { 5976 int new_cpu = cpu; 5977 5978 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed)) 5979 return prev_cpu; 5980 5981 /* 5982 * We need task's util for capacity_spare_without, sync it up to 5983 * prev_cpu's last_update_time. 5984 */ 5985 if (!(sd_flag & SD_BALANCE_FORK)) 5986 sync_entity_load_avg(&p->se); 5987 5988 while (sd) { 5989 struct sched_group *group; 5990 struct sched_domain *tmp; 5991 int weight; 5992 5993 if (!(sd->flags & sd_flag)) { 5994 sd = sd->child; 5995 continue; 5996 } 5997 5998 group = find_idlest_group(sd, p, cpu, sd_flag); 5999 if (!group) { 6000 sd = sd->child; 6001 continue; 6002 } 6003 6004 new_cpu = find_idlest_group_cpu(group, p, cpu); 6005 if (new_cpu == cpu) { 6006 /* Now try balancing at a lower domain level of 'cpu': */ 6007 sd = sd->child; 6008 continue; 6009 } 6010 6011 /* Now try balancing at a lower domain level of 'new_cpu': */ 6012 cpu = new_cpu; 6013 weight = sd->span_weight; 6014 sd = NULL; 6015 for_each_domain(cpu, tmp) { 6016 if (weight <= tmp->span_weight) 6017 break; 6018 if (tmp->flags & sd_flag) 6019 sd = tmp; 6020 } 6021 } 6022 6023 return new_cpu; 6024 } 6025 6026 #ifdef CONFIG_SCHED_SMT 6027 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6028 EXPORT_SYMBOL_GPL(sched_smt_present); 6029 6030 static inline void set_idle_cores(int cpu, int val) 6031 { 6032 struct sched_domain_shared *sds; 6033 6034 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6035 if (sds) 6036 WRITE_ONCE(sds->has_idle_cores, val); 6037 } 6038 6039 static inline bool test_idle_cores(int cpu, bool def) 6040 { 6041 struct sched_domain_shared *sds; 6042 6043 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6044 if (sds) 6045 return READ_ONCE(sds->has_idle_cores); 6046 6047 return def; 6048 } 6049 6050 /* 6051 * Scans the local SMT mask to see if the entire core is idle, and records this 6052 * information in sd_llc_shared->has_idle_cores. 6053 * 6054 * Since SMT siblings share all cache levels, inspecting this limited remote 6055 * state should be fairly cheap. 6056 */ 6057 void __update_idle_core(struct rq *rq) 6058 { 6059 int core = cpu_of(rq); 6060 int cpu; 6061 6062 rcu_read_lock(); 6063 if (test_idle_cores(core, true)) 6064 goto unlock; 6065 6066 for_each_cpu(cpu, cpu_smt_mask(core)) { 6067 if (cpu == core) 6068 continue; 6069 6070 if (!available_idle_cpu(cpu)) 6071 goto unlock; 6072 } 6073 6074 set_idle_cores(core, 1); 6075 unlock: 6076 rcu_read_unlock(); 6077 } 6078 6079 /* 6080 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6081 * there are no idle cores left in the system; tracked through 6082 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6083 */ 6084 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6085 { 6086 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6087 int core, cpu; 6088 6089 if (!static_branch_likely(&sched_smt_present)) 6090 return -1; 6091 6092 if (!test_idle_cores(target, false)) 6093 return -1; 6094 6095 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed); 6096 6097 for_each_cpu_wrap(core, cpus, target) { 6098 bool idle = true; 6099 6100 for_each_cpu(cpu, cpu_smt_mask(core)) { 6101 __cpumask_clear_cpu(cpu, cpus); 6102 if (!available_idle_cpu(cpu)) 6103 idle = false; 6104 } 6105 6106 if (idle) 6107 return core; 6108 } 6109 6110 /* 6111 * Failed to find an idle core; stop looking for one. 6112 */ 6113 set_idle_cores(target, 0); 6114 6115 return -1; 6116 } 6117 6118 /* 6119 * Scan the local SMT mask for idle CPUs. 6120 */ 6121 static int select_idle_smt(struct task_struct *p, int target) 6122 { 6123 int cpu; 6124 6125 if (!static_branch_likely(&sched_smt_present)) 6126 return -1; 6127 6128 for_each_cpu(cpu, cpu_smt_mask(target)) { 6129 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6130 continue; 6131 if (available_idle_cpu(cpu)) 6132 return cpu; 6133 } 6134 6135 return -1; 6136 } 6137 6138 #else /* CONFIG_SCHED_SMT */ 6139 6140 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6141 { 6142 return -1; 6143 } 6144 6145 static inline int select_idle_smt(struct task_struct *p, int target) 6146 { 6147 return -1; 6148 } 6149 6150 #endif /* CONFIG_SCHED_SMT */ 6151 6152 /* 6153 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6154 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6155 * average idle time for this rq (as found in rq->avg_idle). 6156 */ 6157 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 6158 { 6159 struct sched_domain *this_sd; 6160 u64 avg_cost, avg_idle; 6161 u64 time, cost; 6162 s64 delta; 6163 int cpu, nr = INT_MAX; 6164 6165 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6166 if (!this_sd) 6167 return -1; 6168 6169 /* 6170 * Due to large variance we need a large fuzz factor; hackbench in 6171 * particularly is sensitive here. 6172 */ 6173 avg_idle = this_rq()->avg_idle / 512; 6174 avg_cost = this_sd->avg_scan_cost + 1; 6175 6176 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 6177 return -1; 6178 6179 if (sched_feat(SIS_PROP)) { 6180 u64 span_avg = sd->span_weight * avg_idle; 6181 if (span_avg > 4*avg_cost) 6182 nr = div_u64(span_avg, avg_cost); 6183 else 6184 nr = 4; 6185 } 6186 6187 time = local_clock(); 6188 6189 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { 6190 if (!--nr) 6191 return -1; 6192 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6193 continue; 6194 if (available_idle_cpu(cpu)) 6195 break; 6196 } 6197 6198 time = local_clock() - time; 6199 cost = this_sd->avg_scan_cost; 6200 delta = (s64)(time - cost) / 8; 6201 this_sd->avg_scan_cost += delta; 6202 6203 return cpu; 6204 } 6205 6206 /* 6207 * Try and locate an idle core/thread in the LLC cache domain. 6208 */ 6209 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6210 { 6211 struct sched_domain *sd; 6212 int i, recent_used_cpu; 6213 6214 if (available_idle_cpu(target)) 6215 return target; 6216 6217 /* 6218 * If the previous CPU is cache affine and idle, don't be stupid: 6219 */ 6220 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev)) 6221 return prev; 6222 6223 /* Check a recently used CPU as a potential idle candidate: */ 6224 recent_used_cpu = p->recent_used_cpu; 6225 if (recent_used_cpu != prev && 6226 recent_used_cpu != target && 6227 cpus_share_cache(recent_used_cpu, target) && 6228 available_idle_cpu(recent_used_cpu) && 6229 cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) { 6230 /* 6231 * Replace recent_used_cpu with prev as it is a potential 6232 * candidate for the next wake: 6233 */ 6234 p->recent_used_cpu = prev; 6235 return recent_used_cpu; 6236 } 6237 6238 sd = rcu_dereference(per_cpu(sd_llc, target)); 6239 if (!sd) 6240 return target; 6241 6242 i = select_idle_core(p, sd, target); 6243 if ((unsigned)i < nr_cpumask_bits) 6244 return i; 6245 6246 i = select_idle_cpu(p, sd, target); 6247 if ((unsigned)i < nr_cpumask_bits) 6248 return i; 6249 6250 i = select_idle_smt(p, target); 6251 if ((unsigned)i < nr_cpumask_bits) 6252 return i; 6253 6254 return target; 6255 } 6256 6257 /** 6258 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks 6259 * @cpu: the CPU to get the utilization of 6260 * 6261 * The unit of the return value must be the one of capacity so we can compare 6262 * the utilization with the capacity of the CPU that is available for CFS task 6263 * (ie cpu_capacity). 6264 * 6265 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6266 * recent utilization of currently non-runnable tasks on a CPU. It represents 6267 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6268 * capacity_orig is the cpu_capacity available at the highest frequency 6269 * (arch_scale_freq_capacity()). 6270 * The utilization of a CPU converges towards a sum equal to or less than the 6271 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6272 * the running time on this CPU scaled by capacity_curr. 6273 * 6274 * The estimated utilization of a CPU is defined to be the maximum between its 6275 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6276 * currently RUNNABLE on that CPU. 6277 * This allows to properly represent the expected utilization of a CPU which 6278 * has just got a big task running since a long sleep period. At the same time 6279 * however it preserves the benefits of the "blocked utilization" in 6280 * describing the potential for other tasks waking up on the same CPU. 6281 * 6282 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6283 * higher than capacity_orig because of unfortunate rounding in 6284 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6285 * the average stabilizes with the new running time. We need to check that the 6286 * utilization stays within the range of [0..capacity_orig] and cap it if 6287 * necessary. Without utilization capping, a group could be seen as overloaded 6288 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6289 * available capacity. We allow utilization to overshoot capacity_curr (but not 6290 * capacity_orig) as it useful for predicting the capacity required after task 6291 * migrations (scheduler-driven DVFS). 6292 * 6293 * Return: the (estimated) utilization for the specified CPU 6294 */ 6295 static inline unsigned long cpu_util(int cpu) 6296 { 6297 struct cfs_rq *cfs_rq; 6298 unsigned int util; 6299 6300 cfs_rq = &cpu_rq(cpu)->cfs; 6301 util = READ_ONCE(cfs_rq->avg.util_avg); 6302 6303 if (sched_feat(UTIL_EST)) 6304 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6305 6306 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6307 } 6308 6309 /* 6310 * cpu_util_without: compute cpu utilization without any contributions from *p 6311 * @cpu: the CPU which utilization is requested 6312 * @p: the task which utilization should be discounted 6313 * 6314 * The utilization of a CPU is defined by the utilization of tasks currently 6315 * enqueued on that CPU as well as tasks which are currently sleeping after an 6316 * execution on that CPU. 6317 * 6318 * This method returns the utilization of the specified CPU by discounting the 6319 * utilization of the specified task, whenever the task is currently 6320 * contributing to the CPU utilization. 6321 */ 6322 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6323 { 6324 struct cfs_rq *cfs_rq; 6325 unsigned int util; 6326 6327 /* Task has no contribution or is new */ 6328 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6329 return cpu_util(cpu); 6330 6331 cfs_rq = &cpu_rq(cpu)->cfs; 6332 util = READ_ONCE(cfs_rq->avg.util_avg); 6333 6334 /* Discount task's util from CPU's util */ 6335 lsub_positive(&util, task_util(p)); 6336 6337 /* 6338 * Covered cases: 6339 * 6340 * a) if *p is the only task sleeping on this CPU, then: 6341 * cpu_util (== task_util) > util_est (== 0) 6342 * and thus we return: 6343 * cpu_util_without = (cpu_util - task_util) = 0 6344 * 6345 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6346 * IDLE, then: 6347 * cpu_util >= task_util 6348 * cpu_util > util_est (== 0) 6349 * and thus we discount *p's blocked utilization to return: 6350 * cpu_util_without = (cpu_util - task_util) >= 0 6351 * 6352 * c) if other tasks are RUNNABLE on that CPU and 6353 * util_est > cpu_util 6354 * then we use util_est since it returns a more restrictive 6355 * estimation of the spare capacity on that CPU, by just 6356 * considering the expected utilization of tasks already 6357 * runnable on that CPU. 6358 * 6359 * Cases a) and b) are covered by the above code, while case c) is 6360 * covered by the following code when estimated utilization is 6361 * enabled. 6362 */ 6363 if (sched_feat(UTIL_EST)) { 6364 unsigned int estimated = 6365 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6366 6367 /* 6368 * Despite the following checks we still have a small window 6369 * for a possible race, when an execl's select_task_rq_fair() 6370 * races with LB's detach_task(): 6371 * 6372 * detach_task() 6373 * p->on_rq = TASK_ON_RQ_MIGRATING; 6374 * ---------------------------------- A 6375 * deactivate_task() \ 6376 * dequeue_task() + RaceTime 6377 * util_est_dequeue() / 6378 * ---------------------------------- B 6379 * 6380 * The additional check on "current == p" it's required to 6381 * properly fix the execl regression and it helps in further 6382 * reducing the chances for the above race. 6383 */ 6384 if (unlikely(task_on_rq_queued(p) || current == p)) 6385 lsub_positive(&estimated, _task_util_est(p)); 6386 6387 util = max(util, estimated); 6388 } 6389 6390 /* 6391 * Utilization (estimated) can exceed the CPU capacity, thus let's 6392 * clamp to the maximum CPU capacity to ensure consistency with 6393 * the cpu_util call. 6394 */ 6395 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6396 } 6397 6398 /* 6399 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 6400 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 6401 * 6402 * In that case WAKE_AFFINE doesn't make sense and we'll let 6403 * BALANCE_WAKE sort things out. 6404 */ 6405 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 6406 { 6407 long min_cap, max_cap; 6408 6409 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 6410 return 0; 6411 6412 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 6413 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 6414 6415 /* Minimum capacity is close to max, no need to abort wake_affine */ 6416 if (max_cap - min_cap < max_cap >> 3) 6417 return 0; 6418 6419 /* Bring task utilization in sync with prev_cpu */ 6420 sync_entity_load_avg(&p->se); 6421 6422 return !task_fits_capacity(p, min_cap); 6423 } 6424 6425 /* 6426 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6427 * to @dst_cpu. 6428 */ 6429 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6430 { 6431 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6432 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6433 6434 /* 6435 * If @p migrates from @cpu to another, remove its contribution. Or, 6436 * if @p migrates from another CPU to @cpu, add its contribution. In 6437 * the other cases, @cpu is not impacted by the migration, so the 6438 * util_avg should already be correct. 6439 */ 6440 if (task_cpu(p) == cpu && dst_cpu != cpu) 6441 sub_positive(&util, task_util(p)); 6442 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6443 util += task_util(p); 6444 6445 if (sched_feat(UTIL_EST)) { 6446 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6447 6448 /* 6449 * During wake-up, the task isn't enqueued yet and doesn't 6450 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6451 * so just add it (if needed) to "simulate" what will be 6452 * cpu_util() after the task has been enqueued. 6453 */ 6454 if (dst_cpu == cpu) 6455 util_est += _task_util_est(p); 6456 6457 util = max(util, util_est); 6458 } 6459 6460 return min(util, capacity_orig_of(cpu)); 6461 } 6462 6463 /* 6464 * compute_energy(): Estimates the energy that would be consumed if @p was 6465 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6466 * landscape of the * CPUs after the task migration, and uses the Energy Model 6467 * to compute what would be the energy if we decided to actually migrate that 6468 * task. 6469 */ 6470 static long 6471 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6472 { 6473 long util, max_util, sum_util, energy = 0; 6474 int cpu; 6475 6476 for (; pd; pd = pd->next) { 6477 max_util = sum_util = 0; 6478 /* 6479 * The capacity state of CPUs of the current rd can be driven by 6480 * CPUs of another rd if they belong to the same performance 6481 * domain. So, account for the utilization of these CPUs too 6482 * by masking pd with cpu_online_mask instead of the rd span. 6483 * 6484 * If an entire performance domain is outside of the current rd, 6485 * it will not appear in its pd list and will not be accounted 6486 * by compute_energy(). 6487 */ 6488 for_each_cpu_and(cpu, perf_domain_span(pd), cpu_online_mask) { 6489 util = cpu_util_next(cpu, p, dst_cpu); 6490 util = schedutil_energy_util(cpu, util); 6491 max_util = max(util, max_util); 6492 sum_util += util; 6493 } 6494 6495 energy += em_pd_energy(pd->em_pd, max_util, sum_util); 6496 } 6497 6498 return energy; 6499 } 6500 6501 /* 6502 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6503 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6504 * spare capacity in each performance domain and uses it as a potential 6505 * candidate to execute the task. Then, it uses the Energy Model to figure 6506 * out which of the CPU candidates is the most energy-efficient. 6507 * 6508 * The rationale for this heuristic is as follows. In a performance domain, 6509 * all the most energy efficient CPU candidates (according to the Energy 6510 * Model) are those for which we'll request a low frequency. When there are 6511 * several CPUs for which the frequency request will be the same, we don't 6512 * have enough data to break the tie between them, because the Energy Model 6513 * only includes active power costs. With this model, if we assume that 6514 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6515 * the maximum spare capacity in a performance domain is guaranteed to be among 6516 * the best candidates of the performance domain. 6517 * 6518 * In practice, it could be preferable from an energy standpoint to pack 6519 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6520 * but that could also hurt our chances to go cluster idle, and we have no 6521 * ways to tell with the current Energy Model if this is actually a good 6522 * idea or not. So, find_energy_efficient_cpu() basically favors 6523 * cluster-packing, and spreading inside a cluster. That should at least be 6524 * a good thing for latency, and this is consistent with the idea that most 6525 * of the energy savings of EAS come from the asymmetry of the system, and 6526 * not so much from breaking the tie between identical CPUs. That's also the 6527 * reason why EAS is enabled in the topology code only for systems where 6528 * SD_ASYM_CPUCAPACITY is set. 6529 * 6530 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6531 * they don't have any useful utilization data yet and it's not possible to 6532 * forecast their impact on energy consumption. Consequently, they will be 6533 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6534 * to be energy-inefficient in some use-cases. The alternative would be to 6535 * bias new tasks towards specific types of CPUs first, or to try to infer 6536 * their util_avg from the parent task, but those heuristics could hurt 6537 * other use-cases too. So, until someone finds a better way to solve this, 6538 * let's keep things simple by re-using the existing slow path. 6539 */ 6540 6541 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6542 { 6543 unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX; 6544 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6545 int cpu, best_energy_cpu = prev_cpu; 6546 struct perf_domain *head, *pd; 6547 unsigned long cpu_cap, util; 6548 struct sched_domain *sd; 6549 6550 rcu_read_lock(); 6551 pd = rcu_dereference(rd->pd); 6552 if (!pd || READ_ONCE(rd->overutilized)) 6553 goto fail; 6554 head = pd; 6555 6556 /* 6557 * Energy-aware wake-up happens on the lowest sched_domain starting 6558 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6559 */ 6560 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6561 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6562 sd = sd->parent; 6563 if (!sd) 6564 goto fail; 6565 6566 sync_entity_load_avg(&p->se); 6567 if (!task_util_est(p)) 6568 goto unlock; 6569 6570 for (; pd; pd = pd->next) { 6571 unsigned long cur_energy, spare_cap, max_spare_cap = 0; 6572 int max_spare_cap_cpu = -1; 6573 6574 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6575 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6576 continue; 6577 6578 /* Skip CPUs that will be overutilized. */ 6579 util = cpu_util_next(cpu, p, cpu); 6580 cpu_cap = capacity_of(cpu); 6581 if (cpu_cap * 1024 < util * capacity_margin) 6582 continue; 6583 6584 /* Always use prev_cpu as a candidate. */ 6585 if (cpu == prev_cpu) { 6586 prev_energy = compute_energy(p, prev_cpu, head); 6587 best_energy = min(best_energy, prev_energy); 6588 continue; 6589 } 6590 6591 /* 6592 * Find the CPU with the maximum spare capacity in 6593 * the performance domain 6594 */ 6595 spare_cap = cpu_cap - util; 6596 if (spare_cap > max_spare_cap) { 6597 max_spare_cap = spare_cap; 6598 max_spare_cap_cpu = cpu; 6599 } 6600 } 6601 6602 /* Evaluate the energy impact of using this CPU. */ 6603 if (max_spare_cap_cpu >= 0) { 6604 cur_energy = compute_energy(p, max_spare_cap_cpu, head); 6605 if (cur_energy < best_energy) { 6606 best_energy = cur_energy; 6607 best_energy_cpu = max_spare_cap_cpu; 6608 } 6609 } 6610 } 6611 unlock: 6612 rcu_read_unlock(); 6613 6614 /* 6615 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6616 * least 6% of the energy used by prev_cpu. 6617 */ 6618 if (prev_energy == ULONG_MAX) 6619 return best_energy_cpu; 6620 6621 if ((prev_energy - best_energy) > (prev_energy >> 4)) 6622 return best_energy_cpu; 6623 6624 return prev_cpu; 6625 6626 fail: 6627 rcu_read_unlock(); 6628 6629 return -1; 6630 } 6631 6632 /* 6633 * select_task_rq_fair: Select target runqueue for the waking task in domains 6634 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6635 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6636 * 6637 * Balances load by selecting the idlest CPU in the idlest group, or under 6638 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6639 * 6640 * Returns the target CPU number. 6641 * 6642 * preempt must be disabled. 6643 */ 6644 static int 6645 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6646 { 6647 struct sched_domain *tmp, *sd = NULL; 6648 int cpu = smp_processor_id(); 6649 int new_cpu = prev_cpu; 6650 int want_affine = 0; 6651 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6652 6653 if (sd_flag & SD_BALANCE_WAKE) { 6654 record_wakee(p); 6655 6656 if (sched_energy_enabled()) { 6657 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6658 if (new_cpu >= 0) 6659 return new_cpu; 6660 new_cpu = prev_cpu; 6661 } 6662 6663 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) && 6664 cpumask_test_cpu(cpu, &p->cpus_allowed); 6665 } 6666 6667 rcu_read_lock(); 6668 for_each_domain(cpu, tmp) { 6669 if (!(tmp->flags & SD_LOAD_BALANCE)) 6670 break; 6671 6672 /* 6673 * If both 'cpu' and 'prev_cpu' are part of this domain, 6674 * cpu is a valid SD_WAKE_AFFINE target. 6675 */ 6676 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6677 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6678 if (cpu != prev_cpu) 6679 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6680 6681 sd = NULL; /* Prefer wake_affine over balance flags */ 6682 break; 6683 } 6684 6685 if (tmp->flags & sd_flag) 6686 sd = tmp; 6687 else if (!want_affine) 6688 break; 6689 } 6690 6691 if (unlikely(sd)) { 6692 /* Slow path */ 6693 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6694 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ 6695 /* Fast path */ 6696 6697 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6698 6699 if (want_affine) 6700 current->recent_used_cpu = cpu; 6701 } 6702 rcu_read_unlock(); 6703 6704 return new_cpu; 6705 } 6706 6707 static void detach_entity_cfs_rq(struct sched_entity *se); 6708 6709 /* 6710 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6711 * cfs_rq_of(p) references at time of call are still valid and identify the 6712 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6713 */ 6714 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6715 { 6716 /* 6717 * As blocked tasks retain absolute vruntime the migration needs to 6718 * deal with this by subtracting the old and adding the new 6719 * min_vruntime -- the latter is done by enqueue_entity() when placing 6720 * the task on the new runqueue. 6721 */ 6722 if (p->state == TASK_WAKING) { 6723 struct sched_entity *se = &p->se; 6724 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6725 u64 min_vruntime; 6726 6727 #ifndef CONFIG_64BIT 6728 u64 min_vruntime_copy; 6729 6730 do { 6731 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6732 smp_rmb(); 6733 min_vruntime = cfs_rq->min_vruntime; 6734 } while (min_vruntime != min_vruntime_copy); 6735 #else 6736 min_vruntime = cfs_rq->min_vruntime; 6737 #endif 6738 6739 se->vruntime -= min_vruntime; 6740 } 6741 6742 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6743 /* 6744 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6745 * rq->lock and can modify state directly. 6746 */ 6747 lockdep_assert_held(&task_rq(p)->lock); 6748 detach_entity_cfs_rq(&p->se); 6749 6750 } else { 6751 /* 6752 * We are supposed to update the task to "current" time, then 6753 * its up to date and ready to go to new CPU/cfs_rq. But we 6754 * have difficulty in getting what current time is, so simply 6755 * throw away the out-of-date time. This will result in the 6756 * wakee task is less decayed, but giving the wakee more load 6757 * sounds not bad. 6758 */ 6759 remove_entity_load_avg(&p->se); 6760 } 6761 6762 /* Tell new CPU we are migrated */ 6763 p->se.avg.last_update_time = 0; 6764 6765 /* We have migrated, no longer consider this task hot */ 6766 p->se.exec_start = 0; 6767 6768 update_scan_period(p, new_cpu); 6769 } 6770 6771 static void task_dead_fair(struct task_struct *p) 6772 { 6773 remove_entity_load_avg(&p->se); 6774 } 6775 #endif /* CONFIG_SMP */ 6776 6777 static unsigned long wakeup_gran(struct sched_entity *se) 6778 { 6779 unsigned long gran = sysctl_sched_wakeup_granularity; 6780 6781 /* 6782 * Since its curr running now, convert the gran from real-time 6783 * to virtual-time in his units. 6784 * 6785 * By using 'se' instead of 'curr' we penalize light tasks, so 6786 * they get preempted easier. That is, if 'se' < 'curr' then 6787 * the resulting gran will be larger, therefore penalizing the 6788 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6789 * be smaller, again penalizing the lighter task. 6790 * 6791 * This is especially important for buddies when the leftmost 6792 * task is higher priority than the buddy. 6793 */ 6794 return calc_delta_fair(gran, se); 6795 } 6796 6797 /* 6798 * Should 'se' preempt 'curr'. 6799 * 6800 * |s1 6801 * |s2 6802 * |s3 6803 * g 6804 * |<--->|c 6805 * 6806 * w(c, s1) = -1 6807 * w(c, s2) = 0 6808 * w(c, s3) = 1 6809 * 6810 */ 6811 static int 6812 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6813 { 6814 s64 gran, vdiff = curr->vruntime - se->vruntime; 6815 6816 if (vdiff <= 0) 6817 return -1; 6818 6819 gran = wakeup_gran(se); 6820 if (vdiff > gran) 6821 return 1; 6822 6823 return 0; 6824 } 6825 6826 static void set_last_buddy(struct sched_entity *se) 6827 { 6828 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6829 return; 6830 6831 for_each_sched_entity(se) { 6832 if (SCHED_WARN_ON(!se->on_rq)) 6833 return; 6834 cfs_rq_of(se)->last = se; 6835 } 6836 } 6837 6838 static void set_next_buddy(struct sched_entity *se) 6839 { 6840 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6841 return; 6842 6843 for_each_sched_entity(se) { 6844 if (SCHED_WARN_ON(!se->on_rq)) 6845 return; 6846 cfs_rq_of(se)->next = se; 6847 } 6848 } 6849 6850 static void set_skip_buddy(struct sched_entity *se) 6851 { 6852 for_each_sched_entity(se) 6853 cfs_rq_of(se)->skip = se; 6854 } 6855 6856 /* 6857 * Preempt the current task with a newly woken task if needed: 6858 */ 6859 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6860 { 6861 struct task_struct *curr = rq->curr; 6862 struct sched_entity *se = &curr->se, *pse = &p->se; 6863 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6864 int scale = cfs_rq->nr_running >= sched_nr_latency; 6865 int next_buddy_marked = 0; 6866 6867 if (unlikely(se == pse)) 6868 return; 6869 6870 /* 6871 * This is possible from callers such as attach_tasks(), in which we 6872 * unconditionally check_prempt_curr() after an enqueue (which may have 6873 * lead to a throttle). This both saves work and prevents false 6874 * next-buddy nomination below. 6875 */ 6876 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6877 return; 6878 6879 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6880 set_next_buddy(pse); 6881 next_buddy_marked = 1; 6882 } 6883 6884 /* 6885 * We can come here with TIF_NEED_RESCHED already set from new task 6886 * wake up path. 6887 * 6888 * Note: this also catches the edge-case of curr being in a throttled 6889 * group (e.g. via set_curr_task), since update_curr() (in the 6890 * enqueue of curr) will have resulted in resched being set. This 6891 * prevents us from potentially nominating it as a false LAST_BUDDY 6892 * below. 6893 */ 6894 if (test_tsk_need_resched(curr)) 6895 return; 6896 6897 /* Idle tasks are by definition preempted by non-idle tasks. */ 6898 if (unlikely(task_has_idle_policy(curr)) && 6899 likely(!task_has_idle_policy(p))) 6900 goto preempt; 6901 6902 /* 6903 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6904 * is driven by the tick): 6905 */ 6906 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6907 return; 6908 6909 find_matching_se(&se, &pse); 6910 update_curr(cfs_rq_of(se)); 6911 BUG_ON(!pse); 6912 if (wakeup_preempt_entity(se, pse) == 1) { 6913 /* 6914 * Bias pick_next to pick the sched entity that is 6915 * triggering this preemption. 6916 */ 6917 if (!next_buddy_marked) 6918 set_next_buddy(pse); 6919 goto preempt; 6920 } 6921 6922 return; 6923 6924 preempt: 6925 resched_curr(rq); 6926 /* 6927 * Only set the backward buddy when the current task is still 6928 * on the rq. This can happen when a wakeup gets interleaved 6929 * with schedule on the ->pre_schedule() or idle_balance() 6930 * point, either of which can * drop the rq lock. 6931 * 6932 * Also, during early boot the idle thread is in the fair class, 6933 * for obvious reasons its a bad idea to schedule back to it. 6934 */ 6935 if (unlikely(!se->on_rq || curr == rq->idle)) 6936 return; 6937 6938 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6939 set_last_buddy(se); 6940 } 6941 6942 static struct task_struct * 6943 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6944 { 6945 struct cfs_rq *cfs_rq = &rq->cfs; 6946 struct sched_entity *se; 6947 struct task_struct *p; 6948 int new_tasks; 6949 6950 again: 6951 if (!cfs_rq->nr_running) 6952 goto idle; 6953 6954 #ifdef CONFIG_FAIR_GROUP_SCHED 6955 if (prev->sched_class != &fair_sched_class) 6956 goto simple; 6957 6958 /* 6959 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6960 * likely that a next task is from the same cgroup as the current. 6961 * 6962 * Therefore attempt to avoid putting and setting the entire cgroup 6963 * hierarchy, only change the part that actually changes. 6964 */ 6965 6966 do { 6967 struct sched_entity *curr = cfs_rq->curr; 6968 6969 /* 6970 * Since we got here without doing put_prev_entity() we also 6971 * have to consider cfs_rq->curr. If it is still a runnable 6972 * entity, update_curr() will update its vruntime, otherwise 6973 * forget we've ever seen it. 6974 */ 6975 if (curr) { 6976 if (curr->on_rq) 6977 update_curr(cfs_rq); 6978 else 6979 curr = NULL; 6980 6981 /* 6982 * This call to check_cfs_rq_runtime() will do the 6983 * throttle and dequeue its entity in the parent(s). 6984 * Therefore the nr_running test will indeed 6985 * be correct. 6986 */ 6987 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 6988 cfs_rq = &rq->cfs; 6989 6990 if (!cfs_rq->nr_running) 6991 goto idle; 6992 6993 goto simple; 6994 } 6995 } 6996 6997 se = pick_next_entity(cfs_rq, curr); 6998 cfs_rq = group_cfs_rq(se); 6999 } while (cfs_rq); 7000 7001 p = task_of(se); 7002 7003 /* 7004 * Since we haven't yet done put_prev_entity and if the selected task 7005 * is a different task than we started out with, try and touch the 7006 * least amount of cfs_rqs. 7007 */ 7008 if (prev != p) { 7009 struct sched_entity *pse = &prev->se; 7010 7011 while (!(cfs_rq = is_same_group(se, pse))) { 7012 int se_depth = se->depth; 7013 int pse_depth = pse->depth; 7014 7015 if (se_depth <= pse_depth) { 7016 put_prev_entity(cfs_rq_of(pse), pse); 7017 pse = parent_entity(pse); 7018 } 7019 if (se_depth >= pse_depth) { 7020 set_next_entity(cfs_rq_of(se), se); 7021 se = parent_entity(se); 7022 } 7023 } 7024 7025 put_prev_entity(cfs_rq, pse); 7026 set_next_entity(cfs_rq, se); 7027 } 7028 7029 goto done; 7030 simple: 7031 #endif 7032 7033 put_prev_task(rq, prev); 7034 7035 do { 7036 se = pick_next_entity(cfs_rq, NULL); 7037 set_next_entity(cfs_rq, se); 7038 cfs_rq = group_cfs_rq(se); 7039 } while (cfs_rq); 7040 7041 p = task_of(se); 7042 7043 done: __maybe_unused; 7044 #ifdef CONFIG_SMP 7045 /* 7046 * Move the next running task to the front of 7047 * the list, so our cfs_tasks list becomes MRU 7048 * one. 7049 */ 7050 list_move(&p->se.group_node, &rq->cfs_tasks); 7051 #endif 7052 7053 if (hrtick_enabled(rq)) 7054 hrtick_start_fair(rq, p); 7055 7056 update_misfit_status(p, rq); 7057 7058 return p; 7059 7060 idle: 7061 update_misfit_status(NULL, rq); 7062 new_tasks = idle_balance(rq, rf); 7063 7064 /* 7065 * Because idle_balance() releases (and re-acquires) rq->lock, it is 7066 * possible for any higher priority task to appear. In that case we 7067 * must re-start the pick_next_entity() loop. 7068 */ 7069 if (new_tasks < 0) 7070 return RETRY_TASK; 7071 7072 if (new_tasks > 0) 7073 goto again; 7074 7075 /* 7076 * rq is about to be idle, check if we need to update the 7077 * lost_idle_time of clock_pelt 7078 */ 7079 update_idle_rq_clock_pelt(rq); 7080 7081 return NULL; 7082 } 7083 7084 /* 7085 * Account for a descheduled task: 7086 */ 7087 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7088 { 7089 struct sched_entity *se = &prev->se; 7090 struct cfs_rq *cfs_rq; 7091 7092 for_each_sched_entity(se) { 7093 cfs_rq = cfs_rq_of(se); 7094 put_prev_entity(cfs_rq, se); 7095 } 7096 } 7097 7098 /* 7099 * sched_yield() is very simple 7100 * 7101 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7102 */ 7103 static void yield_task_fair(struct rq *rq) 7104 { 7105 struct task_struct *curr = rq->curr; 7106 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7107 struct sched_entity *se = &curr->se; 7108 7109 /* 7110 * Are we the only task in the tree? 7111 */ 7112 if (unlikely(rq->nr_running == 1)) 7113 return; 7114 7115 clear_buddies(cfs_rq, se); 7116 7117 if (curr->policy != SCHED_BATCH) { 7118 update_rq_clock(rq); 7119 /* 7120 * Update run-time statistics of the 'current'. 7121 */ 7122 update_curr(cfs_rq); 7123 /* 7124 * Tell update_rq_clock() that we've just updated, 7125 * so we don't do microscopic update in schedule() 7126 * and double the fastpath cost. 7127 */ 7128 rq_clock_skip_update(rq); 7129 } 7130 7131 set_skip_buddy(se); 7132 } 7133 7134 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 7135 { 7136 struct sched_entity *se = &p->se; 7137 7138 /* throttled hierarchies are not runnable */ 7139 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7140 return false; 7141 7142 /* Tell the scheduler that we'd really like pse to run next. */ 7143 set_next_buddy(se); 7144 7145 yield_task_fair(rq); 7146 7147 return true; 7148 } 7149 7150 #ifdef CONFIG_SMP 7151 /************************************************** 7152 * Fair scheduling class load-balancing methods. 7153 * 7154 * BASICS 7155 * 7156 * The purpose of load-balancing is to achieve the same basic fairness the 7157 * per-CPU scheduler provides, namely provide a proportional amount of compute 7158 * time to each task. This is expressed in the following equation: 7159 * 7160 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7161 * 7162 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7163 * W_i,0 is defined as: 7164 * 7165 * W_i,0 = \Sum_j w_i,j (2) 7166 * 7167 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7168 * is derived from the nice value as per sched_prio_to_weight[]. 7169 * 7170 * The weight average is an exponential decay average of the instantaneous 7171 * weight: 7172 * 7173 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7174 * 7175 * C_i is the compute capacity of CPU i, typically it is the 7176 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7177 * can also include other factors [XXX]. 7178 * 7179 * To achieve this balance we define a measure of imbalance which follows 7180 * directly from (1): 7181 * 7182 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7183 * 7184 * We them move tasks around to minimize the imbalance. In the continuous 7185 * function space it is obvious this converges, in the discrete case we get 7186 * a few fun cases generally called infeasible weight scenarios. 7187 * 7188 * [XXX expand on: 7189 * - infeasible weights; 7190 * - local vs global optima in the discrete case. ] 7191 * 7192 * 7193 * SCHED DOMAINS 7194 * 7195 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7196 * for all i,j solution, we create a tree of CPUs that follows the hardware 7197 * topology where each level pairs two lower groups (or better). This results 7198 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7199 * tree to only the first of the previous level and we decrease the frequency 7200 * of load-balance at each level inv. proportional to the number of CPUs in 7201 * the groups. 7202 * 7203 * This yields: 7204 * 7205 * log_2 n 1 n 7206 * \Sum { --- * --- * 2^i } = O(n) (5) 7207 * i = 0 2^i 2^i 7208 * `- size of each group 7209 * | | `- number of CPUs doing load-balance 7210 * | `- freq 7211 * `- sum over all levels 7212 * 7213 * Coupled with a limit on how many tasks we can migrate every balance pass, 7214 * this makes (5) the runtime complexity of the balancer. 7215 * 7216 * An important property here is that each CPU is still (indirectly) connected 7217 * to every other CPU in at most O(log n) steps: 7218 * 7219 * The adjacency matrix of the resulting graph is given by: 7220 * 7221 * log_2 n 7222 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7223 * k = 0 7224 * 7225 * And you'll find that: 7226 * 7227 * A^(log_2 n)_i,j != 0 for all i,j (7) 7228 * 7229 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7230 * The task movement gives a factor of O(m), giving a convergence complexity 7231 * of: 7232 * 7233 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7234 * 7235 * 7236 * WORK CONSERVING 7237 * 7238 * In order to avoid CPUs going idle while there's still work to do, new idle 7239 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7240 * tree itself instead of relying on other CPUs to bring it work. 7241 * 7242 * This adds some complexity to both (5) and (8) but it reduces the total idle 7243 * time. 7244 * 7245 * [XXX more?] 7246 * 7247 * 7248 * CGROUPS 7249 * 7250 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7251 * 7252 * s_k,i 7253 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7254 * S_k 7255 * 7256 * Where 7257 * 7258 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7259 * 7260 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7261 * 7262 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7263 * property. 7264 * 7265 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7266 * rewrite all of this once again.] 7267 */ 7268 7269 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7270 7271 enum fbq_type { regular, remote, all }; 7272 7273 enum group_type { 7274 group_other = 0, 7275 group_misfit_task, 7276 group_imbalanced, 7277 group_overloaded, 7278 }; 7279 7280 #define LBF_ALL_PINNED 0x01 7281 #define LBF_NEED_BREAK 0x02 7282 #define LBF_DST_PINNED 0x04 7283 #define LBF_SOME_PINNED 0x08 7284 #define LBF_NOHZ_STATS 0x10 7285 #define LBF_NOHZ_AGAIN 0x20 7286 7287 struct lb_env { 7288 struct sched_domain *sd; 7289 7290 struct rq *src_rq; 7291 int src_cpu; 7292 7293 int dst_cpu; 7294 struct rq *dst_rq; 7295 7296 struct cpumask *dst_grpmask; 7297 int new_dst_cpu; 7298 enum cpu_idle_type idle; 7299 long imbalance; 7300 /* The set of CPUs under consideration for load-balancing */ 7301 struct cpumask *cpus; 7302 7303 unsigned int flags; 7304 7305 unsigned int loop; 7306 unsigned int loop_break; 7307 unsigned int loop_max; 7308 7309 enum fbq_type fbq_type; 7310 enum group_type src_grp_type; 7311 struct list_head tasks; 7312 }; 7313 7314 /* 7315 * Is this task likely cache-hot: 7316 */ 7317 static int task_hot(struct task_struct *p, struct lb_env *env) 7318 { 7319 s64 delta; 7320 7321 lockdep_assert_held(&env->src_rq->lock); 7322 7323 if (p->sched_class != &fair_sched_class) 7324 return 0; 7325 7326 if (unlikely(task_has_idle_policy(p))) 7327 return 0; 7328 7329 /* 7330 * Buddy candidates are cache hot: 7331 */ 7332 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7333 (&p->se == cfs_rq_of(&p->se)->next || 7334 &p->se == cfs_rq_of(&p->se)->last)) 7335 return 1; 7336 7337 if (sysctl_sched_migration_cost == -1) 7338 return 1; 7339 if (sysctl_sched_migration_cost == 0) 7340 return 0; 7341 7342 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7343 7344 return delta < (s64)sysctl_sched_migration_cost; 7345 } 7346 7347 #ifdef CONFIG_NUMA_BALANCING 7348 /* 7349 * Returns 1, if task migration degrades locality 7350 * Returns 0, if task migration improves locality i.e migration preferred. 7351 * Returns -1, if task migration is not affected by locality. 7352 */ 7353 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7354 { 7355 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7356 unsigned long src_weight, dst_weight; 7357 int src_nid, dst_nid, dist; 7358 7359 if (!static_branch_likely(&sched_numa_balancing)) 7360 return -1; 7361 7362 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7363 return -1; 7364 7365 src_nid = cpu_to_node(env->src_cpu); 7366 dst_nid = cpu_to_node(env->dst_cpu); 7367 7368 if (src_nid == dst_nid) 7369 return -1; 7370 7371 /* Migrating away from the preferred node is always bad. */ 7372 if (src_nid == p->numa_preferred_nid) { 7373 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7374 return 1; 7375 else 7376 return -1; 7377 } 7378 7379 /* Encourage migration to the preferred node. */ 7380 if (dst_nid == p->numa_preferred_nid) 7381 return 0; 7382 7383 /* Leaving a core idle is often worse than degrading locality. */ 7384 if (env->idle == CPU_IDLE) 7385 return -1; 7386 7387 dist = node_distance(src_nid, dst_nid); 7388 if (numa_group) { 7389 src_weight = group_weight(p, src_nid, dist); 7390 dst_weight = group_weight(p, dst_nid, dist); 7391 } else { 7392 src_weight = task_weight(p, src_nid, dist); 7393 dst_weight = task_weight(p, dst_nid, dist); 7394 } 7395 7396 return dst_weight < src_weight; 7397 } 7398 7399 #else 7400 static inline int migrate_degrades_locality(struct task_struct *p, 7401 struct lb_env *env) 7402 { 7403 return -1; 7404 } 7405 #endif 7406 7407 /* 7408 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7409 */ 7410 static 7411 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7412 { 7413 int tsk_cache_hot; 7414 7415 lockdep_assert_held(&env->src_rq->lock); 7416 7417 /* 7418 * We do not migrate tasks that are: 7419 * 1) throttled_lb_pair, or 7420 * 2) cannot be migrated to this CPU due to cpus_allowed, or 7421 * 3) running (obviously), or 7422 * 4) are cache-hot on their current CPU. 7423 */ 7424 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7425 return 0; 7426 7427 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) { 7428 int cpu; 7429 7430 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7431 7432 env->flags |= LBF_SOME_PINNED; 7433 7434 /* 7435 * Remember if this task can be migrated to any other CPU in 7436 * our sched_group. We may want to revisit it if we couldn't 7437 * meet load balance goals by pulling other tasks on src_cpu. 7438 * 7439 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7440 * already computed one in current iteration. 7441 */ 7442 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7443 return 0; 7444 7445 /* Prevent to re-select dst_cpu via env's CPUs: */ 7446 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7447 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) { 7448 env->flags |= LBF_DST_PINNED; 7449 env->new_dst_cpu = cpu; 7450 break; 7451 } 7452 } 7453 7454 return 0; 7455 } 7456 7457 /* Record that we found atleast one task that could run on dst_cpu */ 7458 env->flags &= ~LBF_ALL_PINNED; 7459 7460 if (task_running(env->src_rq, p)) { 7461 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7462 return 0; 7463 } 7464 7465 /* 7466 * Aggressive migration if: 7467 * 1) destination numa is preferred 7468 * 2) task is cache cold, or 7469 * 3) too many balance attempts have failed. 7470 */ 7471 tsk_cache_hot = migrate_degrades_locality(p, env); 7472 if (tsk_cache_hot == -1) 7473 tsk_cache_hot = task_hot(p, env); 7474 7475 if (tsk_cache_hot <= 0 || 7476 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7477 if (tsk_cache_hot == 1) { 7478 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7479 schedstat_inc(p->se.statistics.nr_forced_migrations); 7480 } 7481 return 1; 7482 } 7483 7484 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7485 return 0; 7486 } 7487 7488 /* 7489 * detach_task() -- detach the task for the migration specified in env 7490 */ 7491 static void detach_task(struct task_struct *p, struct lb_env *env) 7492 { 7493 lockdep_assert_held(&env->src_rq->lock); 7494 7495 p->on_rq = TASK_ON_RQ_MIGRATING; 7496 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7497 set_task_cpu(p, env->dst_cpu); 7498 } 7499 7500 /* 7501 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7502 * part of active balancing operations within "domain". 7503 * 7504 * Returns a task if successful and NULL otherwise. 7505 */ 7506 static struct task_struct *detach_one_task(struct lb_env *env) 7507 { 7508 struct task_struct *p; 7509 7510 lockdep_assert_held(&env->src_rq->lock); 7511 7512 list_for_each_entry_reverse(p, 7513 &env->src_rq->cfs_tasks, se.group_node) { 7514 if (!can_migrate_task(p, env)) 7515 continue; 7516 7517 detach_task(p, env); 7518 7519 /* 7520 * Right now, this is only the second place where 7521 * lb_gained[env->idle] is updated (other is detach_tasks) 7522 * so we can safely collect stats here rather than 7523 * inside detach_tasks(). 7524 */ 7525 schedstat_inc(env->sd->lb_gained[env->idle]); 7526 return p; 7527 } 7528 return NULL; 7529 } 7530 7531 static const unsigned int sched_nr_migrate_break = 32; 7532 7533 /* 7534 * detach_tasks() -- tries to detach up to imbalance weighted load from 7535 * busiest_rq, as part of a balancing operation within domain "sd". 7536 * 7537 * Returns number of detached tasks if successful and 0 otherwise. 7538 */ 7539 static int detach_tasks(struct lb_env *env) 7540 { 7541 struct list_head *tasks = &env->src_rq->cfs_tasks; 7542 struct task_struct *p; 7543 unsigned long load; 7544 int detached = 0; 7545 7546 lockdep_assert_held(&env->src_rq->lock); 7547 7548 if (env->imbalance <= 0) 7549 return 0; 7550 7551 while (!list_empty(tasks)) { 7552 /* 7553 * We don't want to steal all, otherwise we may be treated likewise, 7554 * which could at worst lead to a livelock crash. 7555 */ 7556 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7557 break; 7558 7559 p = list_last_entry(tasks, struct task_struct, se.group_node); 7560 7561 env->loop++; 7562 /* We've more or less seen every task there is, call it quits */ 7563 if (env->loop > env->loop_max) 7564 break; 7565 7566 /* take a breather every nr_migrate tasks */ 7567 if (env->loop > env->loop_break) { 7568 env->loop_break += sched_nr_migrate_break; 7569 env->flags |= LBF_NEED_BREAK; 7570 break; 7571 } 7572 7573 if (!can_migrate_task(p, env)) 7574 goto next; 7575 7576 load = task_h_load(p); 7577 7578 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 7579 goto next; 7580 7581 if ((load / 2) > env->imbalance) 7582 goto next; 7583 7584 detach_task(p, env); 7585 list_add(&p->se.group_node, &env->tasks); 7586 7587 detached++; 7588 env->imbalance -= load; 7589 7590 #ifdef CONFIG_PREEMPT 7591 /* 7592 * NEWIDLE balancing is a source of latency, so preemptible 7593 * kernels will stop after the first task is detached to minimize 7594 * the critical section. 7595 */ 7596 if (env->idle == CPU_NEWLY_IDLE) 7597 break; 7598 #endif 7599 7600 /* 7601 * We only want to steal up to the prescribed amount of 7602 * weighted load. 7603 */ 7604 if (env->imbalance <= 0) 7605 break; 7606 7607 continue; 7608 next: 7609 list_move(&p->se.group_node, tasks); 7610 } 7611 7612 /* 7613 * Right now, this is one of only two places we collect this stat 7614 * so we can safely collect detach_one_task() stats here rather 7615 * than inside detach_one_task(). 7616 */ 7617 schedstat_add(env->sd->lb_gained[env->idle], detached); 7618 7619 return detached; 7620 } 7621 7622 /* 7623 * attach_task() -- attach the task detached by detach_task() to its new rq. 7624 */ 7625 static void attach_task(struct rq *rq, struct task_struct *p) 7626 { 7627 lockdep_assert_held(&rq->lock); 7628 7629 BUG_ON(task_rq(p) != rq); 7630 activate_task(rq, p, ENQUEUE_NOCLOCK); 7631 p->on_rq = TASK_ON_RQ_QUEUED; 7632 check_preempt_curr(rq, p, 0); 7633 } 7634 7635 /* 7636 * attach_one_task() -- attaches the task returned from detach_one_task() to 7637 * its new rq. 7638 */ 7639 static void attach_one_task(struct rq *rq, struct task_struct *p) 7640 { 7641 struct rq_flags rf; 7642 7643 rq_lock(rq, &rf); 7644 update_rq_clock(rq); 7645 attach_task(rq, p); 7646 rq_unlock(rq, &rf); 7647 } 7648 7649 /* 7650 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7651 * new rq. 7652 */ 7653 static void attach_tasks(struct lb_env *env) 7654 { 7655 struct list_head *tasks = &env->tasks; 7656 struct task_struct *p; 7657 struct rq_flags rf; 7658 7659 rq_lock(env->dst_rq, &rf); 7660 update_rq_clock(env->dst_rq); 7661 7662 while (!list_empty(tasks)) { 7663 p = list_first_entry(tasks, struct task_struct, se.group_node); 7664 list_del_init(&p->se.group_node); 7665 7666 attach_task(env->dst_rq, p); 7667 } 7668 7669 rq_unlock(env->dst_rq, &rf); 7670 } 7671 7672 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7673 { 7674 if (cfs_rq->avg.load_avg) 7675 return true; 7676 7677 if (cfs_rq->avg.util_avg) 7678 return true; 7679 7680 return false; 7681 } 7682 7683 static inline bool others_have_blocked(struct rq *rq) 7684 { 7685 if (READ_ONCE(rq->avg_rt.util_avg)) 7686 return true; 7687 7688 if (READ_ONCE(rq->avg_dl.util_avg)) 7689 return true; 7690 7691 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 7692 if (READ_ONCE(rq->avg_irq.util_avg)) 7693 return true; 7694 #endif 7695 7696 return false; 7697 } 7698 7699 #ifdef CONFIG_FAIR_GROUP_SCHED 7700 7701 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7702 { 7703 if (cfs_rq->load.weight) 7704 return false; 7705 7706 if (cfs_rq->avg.load_sum) 7707 return false; 7708 7709 if (cfs_rq->avg.util_sum) 7710 return false; 7711 7712 if (cfs_rq->avg.runnable_load_sum) 7713 return false; 7714 7715 return true; 7716 } 7717 7718 static void update_blocked_averages(int cpu) 7719 { 7720 struct rq *rq = cpu_rq(cpu); 7721 struct cfs_rq *cfs_rq, *pos; 7722 const struct sched_class *curr_class; 7723 struct rq_flags rf; 7724 bool done = true; 7725 7726 rq_lock_irqsave(rq, &rf); 7727 update_rq_clock(rq); 7728 7729 /* 7730 * Iterates the task_group tree in a bottom up fashion, see 7731 * list_add_leaf_cfs_rq() for details. 7732 */ 7733 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7734 struct sched_entity *se; 7735 7736 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) 7737 update_tg_load_avg(cfs_rq, 0); 7738 7739 /* Propagate pending load changes to the parent, if any: */ 7740 se = cfs_rq->tg->se[cpu]; 7741 if (se && !skip_blocked_update(se)) 7742 update_load_avg(cfs_rq_of(se), se, 0); 7743 7744 /* 7745 * There can be a lot of idle CPU cgroups. Don't let fully 7746 * decayed cfs_rqs linger on the list. 7747 */ 7748 if (cfs_rq_is_decayed(cfs_rq)) 7749 list_del_leaf_cfs_rq(cfs_rq); 7750 7751 /* Don't need periodic decay once load/util_avg are null */ 7752 if (cfs_rq_has_blocked(cfs_rq)) 7753 done = false; 7754 } 7755 7756 curr_class = rq->curr->sched_class; 7757 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class); 7758 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class); 7759 update_irq_load_avg(rq, 0); 7760 /* Don't need periodic decay once load/util_avg are null */ 7761 if (others_have_blocked(rq)) 7762 done = false; 7763 7764 #ifdef CONFIG_NO_HZ_COMMON 7765 rq->last_blocked_load_update_tick = jiffies; 7766 if (done) 7767 rq->has_blocked_load = 0; 7768 #endif 7769 rq_unlock_irqrestore(rq, &rf); 7770 } 7771 7772 /* 7773 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7774 * This needs to be done in a top-down fashion because the load of a child 7775 * group is a fraction of its parents load. 7776 */ 7777 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7778 { 7779 struct rq *rq = rq_of(cfs_rq); 7780 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7781 unsigned long now = jiffies; 7782 unsigned long load; 7783 7784 if (cfs_rq->last_h_load_update == now) 7785 return; 7786 7787 cfs_rq->h_load_next = NULL; 7788 for_each_sched_entity(se) { 7789 cfs_rq = cfs_rq_of(se); 7790 cfs_rq->h_load_next = se; 7791 if (cfs_rq->last_h_load_update == now) 7792 break; 7793 } 7794 7795 if (!se) { 7796 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7797 cfs_rq->last_h_load_update = now; 7798 } 7799 7800 while ((se = cfs_rq->h_load_next) != NULL) { 7801 load = cfs_rq->h_load; 7802 load = div64_ul(load * se->avg.load_avg, 7803 cfs_rq_load_avg(cfs_rq) + 1); 7804 cfs_rq = group_cfs_rq(se); 7805 cfs_rq->h_load = load; 7806 cfs_rq->last_h_load_update = now; 7807 } 7808 } 7809 7810 static unsigned long task_h_load(struct task_struct *p) 7811 { 7812 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7813 7814 update_cfs_rq_h_load(cfs_rq); 7815 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7816 cfs_rq_load_avg(cfs_rq) + 1); 7817 } 7818 #else 7819 static inline void update_blocked_averages(int cpu) 7820 { 7821 struct rq *rq = cpu_rq(cpu); 7822 struct cfs_rq *cfs_rq = &rq->cfs; 7823 const struct sched_class *curr_class; 7824 struct rq_flags rf; 7825 7826 rq_lock_irqsave(rq, &rf); 7827 update_rq_clock(rq); 7828 update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 7829 7830 curr_class = rq->curr->sched_class; 7831 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class); 7832 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class); 7833 update_irq_load_avg(rq, 0); 7834 #ifdef CONFIG_NO_HZ_COMMON 7835 rq->last_blocked_load_update_tick = jiffies; 7836 if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq)) 7837 rq->has_blocked_load = 0; 7838 #endif 7839 rq_unlock_irqrestore(rq, &rf); 7840 } 7841 7842 static unsigned long task_h_load(struct task_struct *p) 7843 { 7844 return p->se.avg.load_avg; 7845 } 7846 #endif 7847 7848 /********** Helpers for find_busiest_group ************************/ 7849 7850 /* 7851 * sg_lb_stats - stats of a sched_group required for load_balancing 7852 */ 7853 struct sg_lb_stats { 7854 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7855 unsigned long group_load; /* Total load over the CPUs of the group */ 7856 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 7857 unsigned long load_per_task; 7858 unsigned long group_capacity; 7859 unsigned long group_util; /* Total utilization of the group */ 7860 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7861 unsigned int idle_cpus; 7862 unsigned int group_weight; 7863 enum group_type group_type; 7864 int group_no_capacity; 7865 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 7866 #ifdef CONFIG_NUMA_BALANCING 7867 unsigned int nr_numa_running; 7868 unsigned int nr_preferred_running; 7869 #endif 7870 }; 7871 7872 /* 7873 * sd_lb_stats - Structure to store the statistics of a sched_domain 7874 * during load balancing. 7875 */ 7876 struct sd_lb_stats { 7877 struct sched_group *busiest; /* Busiest group in this sd */ 7878 struct sched_group *local; /* Local group in this sd */ 7879 unsigned long total_running; 7880 unsigned long total_load; /* Total load of all groups in sd */ 7881 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7882 unsigned long avg_load; /* Average load across all groups in sd */ 7883 7884 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7885 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7886 }; 7887 7888 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7889 { 7890 /* 7891 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7892 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7893 * We must however clear busiest_stat::avg_load because 7894 * update_sd_pick_busiest() reads this before assignment. 7895 */ 7896 *sds = (struct sd_lb_stats){ 7897 .busiest = NULL, 7898 .local = NULL, 7899 .total_running = 0UL, 7900 .total_load = 0UL, 7901 .total_capacity = 0UL, 7902 .busiest_stat = { 7903 .avg_load = 0UL, 7904 .sum_nr_running = 0, 7905 .group_type = group_other, 7906 }, 7907 }; 7908 } 7909 7910 /** 7911 * get_sd_load_idx - Obtain the load index for a given sched domain. 7912 * @sd: The sched_domain whose load_idx is to be obtained. 7913 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 7914 * 7915 * Return: The load index. 7916 */ 7917 static inline int get_sd_load_idx(struct sched_domain *sd, 7918 enum cpu_idle_type idle) 7919 { 7920 int load_idx; 7921 7922 switch (idle) { 7923 case CPU_NOT_IDLE: 7924 load_idx = sd->busy_idx; 7925 break; 7926 7927 case CPU_NEWLY_IDLE: 7928 load_idx = sd->newidle_idx; 7929 break; 7930 default: 7931 load_idx = sd->idle_idx; 7932 break; 7933 } 7934 7935 return load_idx; 7936 } 7937 7938 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu) 7939 { 7940 struct rq *rq = cpu_rq(cpu); 7941 unsigned long max = arch_scale_cpu_capacity(sd, cpu); 7942 unsigned long used, free; 7943 unsigned long irq; 7944 7945 irq = cpu_util_irq(rq); 7946 7947 if (unlikely(irq >= max)) 7948 return 1; 7949 7950 used = READ_ONCE(rq->avg_rt.util_avg); 7951 used += READ_ONCE(rq->avg_dl.util_avg); 7952 7953 if (unlikely(used >= max)) 7954 return 1; 7955 7956 free = max - used; 7957 7958 return scale_irq_capacity(free, irq, max); 7959 } 7960 7961 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7962 { 7963 unsigned long capacity = scale_rt_capacity(sd, cpu); 7964 struct sched_group *sdg = sd->groups; 7965 7966 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu); 7967 7968 if (!capacity) 7969 capacity = 1; 7970 7971 cpu_rq(cpu)->cpu_capacity = capacity; 7972 sdg->sgc->capacity = capacity; 7973 sdg->sgc->min_capacity = capacity; 7974 sdg->sgc->max_capacity = capacity; 7975 } 7976 7977 void update_group_capacity(struct sched_domain *sd, int cpu) 7978 { 7979 struct sched_domain *child = sd->child; 7980 struct sched_group *group, *sdg = sd->groups; 7981 unsigned long capacity, min_capacity, max_capacity; 7982 unsigned long interval; 7983 7984 interval = msecs_to_jiffies(sd->balance_interval); 7985 interval = clamp(interval, 1UL, max_load_balance_interval); 7986 sdg->sgc->next_update = jiffies + interval; 7987 7988 if (!child) { 7989 update_cpu_capacity(sd, cpu); 7990 return; 7991 } 7992 7993 capacity = 0; 7994 min_capacity = ULONG_MAX; 7995 max_capacity = 0; 7996 7997 if (child->flags & SD_OVERLAP) { 7998 /* 7999 * SD_OVERLAP domains cannot assume that child groups 8000 * span the current group. 8001 */ 8002 8003 for_each_cpu(cpu, sched_group_span(sdg)) { 8004 struct sched_group_capacity *sgc; 8005 struct rq *rq = cpu_rq(cpu); 8006 8007 /* 8008 * build_sched_domains() -> init_sched_groups_capacity() 8009 * gets here before we've attached the domains to the 8010 * runqueues. 8011 * 8012 * Use capacity_of(), which is set irrespective of domains 8013 * in update_cpu_capacity(). 8014 * 8015 * This avoids capacity from being 0 and 8016 * causing divide-by-zero issues on boot. 8017 */ 8018 if (unlikely(!rq->sd)) { 8019 capacity += capacity_of(cpu); 8020 } else { 8021 sgc = rq->sd->groups->sgc; 8022 capacity += sgc->capacity; 8023 } 8024 8025 min_capacity = min(capacity, min_capacity); 8026 max_capacity = max(capacity, max_capacity); 8027 } 8028 } else { 8029 /* 8030 * !SD_OVERLAP domains can assume that child groups 8031 * span the current group. 8032 */ 8033 8034 group = child->groups; 8035 do { 8036 struct sched_group_capacity *sgc = group->sgc; 8037 8038 capacity += sgc->capacity; 8039 min_capacity = min(sgc->min_capacity, min_capacity); 8040 max_capacity = max(sgc->max_capacity, max_capacity); 8041 group = group->next; 8042 } while (group != child->groups); 8043 } 8044 8045 sdg->sgc->capacity = capacity; 8046 sdg->sgc->min_capacity = min_capacity; 8047 sdg->sgc->max_capacity = max_capacity; 8048 } 8049 8050 /* 8051 * Check whether the capacity of the rq has been noticeably reduced by side 8052 * activity. The imbalance_pct is used for the threshold. 8053 * Return true is the capacity is reduced 8054 */ 8055 static inline int 8056 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8057 { 8058 return ((rq->cpu_capacity * sd->imbalance_pct) < 8059 (rq->cpu_capacity_orig * 100)); 8060 } 8061 8062 /* 8063 * Check whether a rq has a misfit task and if it looks like we can actually 8064 * help that task: we can migrate the task to a CPU of higher capacity, or 8065 * the task's current CPU is heavily pressured. 8066 */ 8067 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8068 { 8069 return rq->misfit_task_load && 8070 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8071 check_cpu_capacity(rq, sd)); 8072 } 8073 8074 /* 8075 * Group imbalance indicates (and tries to solve) the problem where balancing 8076 * groups is inadequate due to ->cpus_allowed constraints. 8077 * 8078 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8079 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8080 * Something like: 8081 * 8082 * { 0 1 2 3 } { 4 5 6 7 } 8083 * * * * * 8084 * 8085 * If we were to balance group-wise we'd place two tasks in the first group and 8086 * two tasks in the second group. Clearly this is undesired as it will overload 8087 * cpu 3 and leave one of the CPUs in the second group unused. 8088 * 8089 * The current solution to this issue is detecting the skew in the first group 8090 * by noticing the lower domain failed to reach balance and had difficulty 8091 * moving tasks due to affinity constraints. 8092 * 8093 * When this is so detected; this group becomes a candidate for busiest; see 8094 * update_sd_pick_busiest(). And calculate_imbalance() and 8095 * find_busiest_group() avoid some of the usual balance conditions to allow it 8096 * to create an effective group imbalance. 8097 * 8098 * This is a somewhat tricky proposition since the next run might not find the 8099 * group imbalance and decide the groups need to be balanced again. A most 8100 * subtle and fragile situation. 8101 */ 8102 8103 static inline int sg_imbalanced(struct sched_group *group) 8104 { 8105 return group->sgc->imbalance; 8106 } 8107 8108 /* 8109 * group_has_capacity returns true if the group has spare capacity that could 8110 * be used by some tasks. 8111 * We consider that a group has spare capacity if the * number of task is 8112 * smaller than the number of CPUs or if the utilization is lower than the 8113 * available capacity for CFS tasks. 8114 * For the latter, we use a threshold to stabilize the state, to take into 8115 * account the variance of the tasks' load and to return true if the available 8116 * capacity in meaningful for the load balancer. 8117 * As an example, an available capacity of 1% can appear but it doesn't make 8118 * any benefit for the load balance. 8119 */ 8120 static inline bool 8121 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 8122 { 8123 if (sgs->sum_nr_running < sgs->group_weight) 8124 return true; 8125 8126 if ((sgs->group_capacity * 100) > 8127 (sgs->group_util * env->sd->imbalance_pct)) 8128 return true; 8129 8130 return false; 8131 } 8132 8133 /* 8134 * group_is_overloaded returns true if the group has more tasks than it can 8135 * handle. 8136 * group_is_overloaded is not equals to !group_has_capacity because a group 8137 * with the exact right number of tasks, has no more spare capacity but is not 8138 * overloaded so both group_has_capacity and group_is_overloaded return 8139 * false. 8140 */ 8141 static inline bool 8142 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 8143 { 8144 if (sgs->sum_nr_running <= sgs->group_weight) 8145 return false; 8146 8147 if ((sgs->group_capacity * 100) < 8148 (sgs->group_util * env->sd->imbalance_pct)) 8149 return true; 8150 8151 return false; 8152 } 8153 8154 /* 8155 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller 8156 * per-CPU capacity than sched_group ref. 8157 */ 8158 static inline bool 8159 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 8160 { 8161 return sg->sgc->min_capacity * capacity_margin < 8162 ref->sgc->min_capacity * 1024; 8163 } 8164 8165 /* 8166 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller 8167 * per-CPU capacity_orig than sched_group ref. 8168 */ 8169 static inline bool 8170 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 8171 { 8172 return sg->sgc->max_capacity * capacity_margin < 8173 ref->sgc->max_capacity * 1024; 8174 } 8175 8176 static inline enum 8177 group_type group_classify(struct sched_group *group, 8178 struct sg_lb_stats *sgs) 8179 { 8180 if (sgs->group_no_capacity) 8181 return group_overloaded; 8182 8183 if (sg_imbalanced(group)) 8184 return group_imbalanced; 8185 8186 if (sgs->group_misfit_task_load) 8187 return group_misfit_task; 8188 8189 return group_other; 8190 } 8191 8192 static bool update_nohz_stats(struct rq *rq, bool force) 8193 { 8194 #ifdef CONFIG_NO_HZ_COMMON 8195 unsigned int cpu = rq->cpu; 8196 8197 if (!rq->has_blocked_load) 8198 return false; 8199 8200 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 8201 return false; 8202 8203 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 8204 return true; 8205 8206 update_blocked_averages(cpu); 8207 8208 return rq->has_blocked_load; 8209 #else 8210 return false; 8211 #endif 8212 } 8213 8214 /** 8215 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8216 * @env: The load balancing environment. 8217 * @group: sched_group whose statistics are to be updated. 8218 * @sgs: variable to hold the statistics for this group. 8219 * @sg_status: Holds flag indicating the status of the sched_group 8220 */ 8221 static inline void update_sg_lb_stats(struct lb_env *env, 8222 struct sched_group *group, 8223 struct sg_lb_stats *sgs, 8224 int *sg_status) 8225 { 8226 int local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group)); 8227 int load_idx = get_sd_load_idx(env->sd, env->idle); 8228 unsigned long load; 8229 int i, nr_running; 8230 8231 memset(sgs, 0, sizeof(*sgs)); 8232 8233 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8234 struct rq *rq = cpu_rq(i); 8235 8236 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 8237 env->flags |= LBF_NOHZ_AGAIN; 8238 8239 /* Bias balancing toward CPUs of our domain: */ 8240 if (local_group) 8241 load = target_load(i, load_idx); 8242 else 8243 load = source_load(i, load_idx); 8244 8245 sgs->group_load += load; 8246 sgs->group_util += cpu_util(i); 8247 sgs->sum_nr_running += rq->cfs.h_nr_running; 8248 8249 nr_running = rq->nr_running; 8250 if (nr_running > 1) 8251 *sg_status |= SG_OVERLOAD; 8252 8253 if (cpu_overutilized(i)) 8254 *sg_status |= SG_OVERUTILIZED; 8255 8256 #ifdef CONFIG_NUMA_BALANCING 8257 sgs->nr_numa_running += rq->nr_numa_running; 8258 sgs->nr_preferred_running += rq->nr_preferred_running; 8259 #endif 8260 sgs->sum_weighted_load += weighted_cpuload(rq); 8261 /* 8262 * No need to call idle_cpu() if nr_running is not 0 8263 */ 8264 if (!nr_running && idle_cpu(i)) 8265 sgs->idle_cpus++; 8266 8267 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8268 sgs->group_misfit_task_load < rq->misfit_task_load) { 8269 sgs->group_misfit_task_load = rq->misfit_task_load; 8270 *sg_status |= SG_OVERLOAD; 8271 } 8272 } 8273 8274 /* Adjust by relative CPU capacity of the group */ 8275 sgs->group_capacity = group->sgc->capacity; 8276 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 8277 8278 if (sgs->sum_nr_running) 8279 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 8280 8281 sgs->group_weight = group->group_weight; 8282 8283 sgs->group_no_capacity = group_is_overloaded(env, sgs); 8284 sgs->group_type = group_classify(group, sgs); 8285 } 8286 8287 /** 8288 * update_sd_pick_busiest - return 1 on busiest group 8289 * @env: The load balancing environment. 8290 * @sds: sched_domain statistics 8291 * @sg: sched_group candidate to be checked for being the busiest 8292 * @sgs: sched_group statistics 8293 * 8294 * Determine if @sg is a busier group than the previously selected 8295 * busiest group. 8296 * 8297 * Return: %true if @sg is a busier group than the previously selected 8298 * busiest group. %false otherwise. 8299 */ 8300 static bool update_sd_pick_busiest(struct lb_env *env, 8301 struct sd_lb_stats *sds, 8302 struct sched_group *sg, 8303 struct sg_lb_stats *sgs) 8304 { 8305 struct sg_lb_stats *busiest = &sds->busiest_stat; 8306 8307 /* 8308 * Don't try to pull misfit tasks we can't help. 8309 * We can use max_capacity here as reduction in capacity on some 8310 * CPUs in the group should either be possible to resolve 8311 * internally or be covered by avg_load imbalance (eventually). 8312 */ 8313 if (sgs->group_type == group_misfit_task && 8314 (!group_smaller_max_cpu_capacity(sg, sds->local) || 8315 !group_has_capacity(env, &sds->local_stat))) 8316 return false; 8317 8318 if (sgs->group_type > busiest->group_type) 8319 return true; 8320 8321 if (sgs->group_type < busiest->group_type) 8322 return false; 8323 8324 if (sgs->avg_load <= busiest->avg_load) 8325 return false; 8326 8327 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 8328 goto asym_packing; 8329 8330 /* 8331 * Candidate sg has no more than one task per CPU and 8332 * has higher per-CPU capacity. Migrating tasks to less 8333 * capable CPUs may harm throughput. Maximize throughput, 8334 * power/energy consequences are not considered. 8335 */ 8336 if (sgs->sum_nr_running <= sgs->group_weight && 8337 group_smaller_min_cpu_capacity(sds->local, sg)) 8338 return false; 8339 8340 /* 8341 * If we have more than one misfit sg go with the biggest misfit. 8342 */ 8343 if (sgs->group_type == group_misfit_task && 8344 sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8345 return false; 8346 8347 asym_packing: 8348 /* This is the busiest node in its class. */ 8349 if (!(env->sd->flags & SD_ASYM_PACKING)) 8350 return true; 8351 8352 /* No ASYM_PACKING if target CPU is already busy */ 8353 if (env->idle == CPU_NOT_IDLE) 8354 return true; 8355 /* 8356 * ASYM_PACKING needs to move all the work to the highest 8357 * prority CPUs in the group, therefore mark all groups 8358 * of lower priority than ourself as busy. 8359 */ 8360 if (sgs->sum_nr_running && 8361 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 8362 if (!sds->busiest) 8363 return true; 8364 8365 /* Prefer to move from lowest priority CPU's work */ 8366 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 8367 sg->asym_prefer_cpu)) 8368 return true; 8369 } 8370 8371 return false; 8372 } 8373 8374 #ifdef CONFIG_NUMA_BALANCING 8375 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8376 { 8377 if (sgs->sum_nr_running > sgs->nr_numa_running) 8378 return regular; 8379 if (sgs->sum_nr_running > sgs->nr_preferred_running) 8380 return remote; 8381 return all; 8382 } 8383 8384 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8385 { 8386 if (rq->nr_running > rq->nr_numa_running) 8387 return regular; 8388 if (rq->nr_running > rq->nr_preferred_running) 8389 return remote; 8390 return all; 8391 } 8392 #else 8393 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8394 { 8395 return all; 8396 } 8397 8398 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8399 { 8400 return regular; 8401 } 8402 #endif /* CONFIG_NUMA_BALANCING */ 8403 8404 /** 8405 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 8406 * @env: The load balancing environment. 8407 * @sds: variable to hold the statistics for this sched_domain. 8408 */ 8409 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 8410 { 8411 struct sched_domain *child = env->sd->child; 8412 struct sched_group *sg = env->sd->groups; 8413 struct sg_lb_stats *local = &sds->local_stat; 8414 struct sg_lb_stats tmp_sgs; 8415 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 8416 int sg_status = 0; 8417 8418 #ifdef CONFIG_NO_HZ_COMMON 8419 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 8420 env->flags |= LBF_NOHZ_STATS; 8421 #endif 8422 8423 do { 8424 struct sg_lb_stats *sgs = &tmp_sgs; 8425 int local_group; 8426 8427 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 8428 if (local_group) { 8429 sds->local = sg; 8430 sgs = local; 8431 8432 if (env->idle != CPU_NEWLY_IDLE || 8433 time_after_eq(jiffies, sg->sgc->next_update)) 8434 update_group_capacity(env->sd, env->dst_cpu); 8435 } 8436 8437 update_sg_lb_stats(env, sg, sgs, &sg_status); 8438 8439 if (local_group) 8440 goto next_group; 8441 8442 /* 8443 * In case the child domain prefers tasks go to siblings 8444 * first, lower the sg capacity so that we'll try 8445 * and move all the excess tasks away. We lower the capacity 8446 * of a group only if the local group has the capacity to fit 8447 * these excess tasks. The extra check prevents the case where 8448 * you always pull from the heaviest group when it is already 8449 * under-utilized (possible with a large weight task outweighs 8450 * the tasks on the system). 8451 */ 8452 if (prefer_sibling && sds->local && 8453 group_has_capacity(env, local) && 8454 (sgs->sum_nr_running > local->sum_nr_running + 1)) { 8455 sgs->group_no_capacity = 1; 8456 sgs->group_type = group_classify(sg, sgs); 8457 } 8458 8459 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 8460 sds->busiest = sg; 8461 sds->busiest_stat = *sgs; 8462 } 8463 8464 next_group: 8465 /* Now, start updating sd_lb_stats */ 8466 sds->total_running += sgs->sum_nr_running; 8467 sds->total_load += sgs->group_load; 8468 sds->total_capacity += sgs->group_capacity; 8469 8470 sg = sg->next; 8471 } while (sg != env->sd->groups); 8472 8473 #ifdef CONFIG_NO_HZ_COMMON 8474 if ((env->flags & LBF_NOHZ_AGAIN) && 8475 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 8476 8477 WRITE_ONCE(nohz.next_blocked, 8478 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 8479 } 8480 #endif 8481 8482 if (env->sd->flags & SD_NUMA) 8483 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8484 8485 if (!env->sd->parent) { 8486 struct root_domain *rd = env->dst_rq->rd; 8487 8488 /* update overload indicator if we are at root domain */ 8489 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 8490 8491 /* Update over-utilization (tipping point, U >= 0) indicator */ 8492 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 8493 } else if (sg_status & SG_OVERUTILIZED) { 8494 WRITE_ONCE(env->dst_rq->rd->overutilized, SG_OVERUTILIZED); 8495 } 8496 } 8497 8498 /** 8499 * check_asym_packing - Check to see if the group is packed into the 8500 * sched domain. 8501 * 8502 * This is primarily intended to used at the sibling level. Some 8503 * cores like POWER7 prefer to use lower numbered SMT threads. In the 8504 * case of POWER7, it can move to lower SMT modes only when higher 8505 * threads are idle. When in lower SMT modes, the threads will 8506 * perform better since they share less core resources. Hence when we 8507 * have idle threads, we want them to be the higher ones. 8508 * 8509 * This packing function is run on idle threads. It checks to see if 8510 * the busiest CPU in this domain (core in the P7 case) has a higher 8511 * CPU number than the packing function is being run on. Here we are 8512 * assuming lower CPU number will be equivalent to lower a SMT thread 8513 * number. 8514 * 8515 * Return: 1 when packing is required and a task should be moved to 8516 * this CPU. The amount of the imbalance is returned in env->imbalance. 8517 * 8518 * @env: The load balancing environment. 8519 * @sds: Statistics of the sched_domain which is to be packed 8520 */ 8521 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 8522 { 8523 int busiest_cpu; 8524 8525 if (!(env->sd->flags & SD_ASYM_PACKING)) 8526 return 0; 8527 8528 if (env->idle == CPU_NOT_IDLE) 8529 return 0; 8530 8531 if (!sds->busiest) 8532 return 0; 8533 8534 busiest_cpu = sds->busiest->asym_prefer_cpu; 8535 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 8536 return 0; 8537 8538 env->imbalance = sds->busiest_stat.group_load; 8539 8540 return 1; 8541 } 8542 8543 /** 8544 * fix_small_imbalance - Calculate the minor imbalance that exists 8545 * amongst the groups of a sched_domain, during 8546 * load balancing. 8547 * @env: The load balancing environment. 8548 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 8549 */ 8550 static inline 8551 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8552 { 8553 unsigned long tmp, capa_now = 0, capa_move = 0; 8554 unsigned int imbn = 2; 8555 unsigned long scaled_busy_load_per_task; 8556 struct sg_lb_stats *local, *busiest; 8557 8558 local = &sds->local_stat; 8559 busiest = &sds->busiest_stat; 8560 8561 if (!local->sum_nr_running) 8562 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 8563 else if (busiest->load_per_task > local->load_per_task) 8564 imbn = 1; 8565 8566 scaled_busy_load_per_task = 8567 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8568 busiest->group_capacity; 8569 8570 if (busiest->avg_load + scaled_busy_load_per_task >= 8571 local->avg_load + (scaled_busy_load_per_task * imbn)) { 8572 env->imbalance = busiest->load_per_task; 8573 return; 8574 } 8575 8576 /* 8577 * OK, we don't have enough imbalance to justify moving tasks, 8578 * however we may be able to increase total CPU capacity used by 8579 * moving them. 8580 */ 8581 8582 capa_now += busiest->group_capacity * 8583 min(busiest->load_per_task, busiest->avg_load); 8584 capa_now += local->group_capacity * 8585 min(local->load_per_task, local->avg_load); 8586 capa_now /= SCHED_CAPACITY_SCALE; 8587 8588 /* Amount of load we'd subtract */ 8589 if (busiest->avg_load > scaled_busy_load_per_task) { 8590 capa_move += busiest->group_capacity * 8591 min(busiest->load_per_task, 8592 busiest->avg_load - scaled_busy_load_per_task); 8593 } 8594 8595 /* Amount of load we'd add */ 8596 if (busiest->avg_load * busiest->group_capacity < 8597 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 8598 tmp = (busiest->avg_load * busiest->group_capacity) / 8599 local->group_capacity; 8600 } else { 8601 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8602 local->group_capacity; 8603 } 8604 capa_move += local->group_capacity * 8605 min(local->load_per_task, local->avg_load + tmp); 8606 capa_move /= SCHED_CAPACITY_SCALE; 8607 8608 /* Move if we gain throughput */ 8609 if (capa_move > capa_now) 8610 env->imbalance = busiest->load_per_task; 8611 } 8612 8613 /** 8614 * calculate_imbalance - Calculate the amount of imbalance present within the 8615 * groups of a given sched_domain during load balance. 8616 * @env: load balance environment 8617 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8618 */ 8619 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8620 { 8621 unsigned long max_pull, load_above_capacity = ~0UL; 8622 struct sg_lb_stats *local, *busiest; 8623 8624 local = &sds->local_stat; 8625 busiest = &sds->busiest_stat; 8626 8627 if (busiest->group_type == group_imbalanced) { 8628 /* 8629 * In the group_imb case we cannot rely on group-wide averages 8630 * to ensure CPU-load equilibrium, look at wider averages. XXX 8631 */ 8632 busiest->load_per_task = 8633 min(busiest->load_per_task, sds->avg_load); 8634 } 8635 8636 /* 8637 * Avg load of busiest sg can be less and avg load of local sg can 8638 * be greater than avg load across all sgs of sd because avg load 8639 * factors in sg capacity and sgs with smaller group_type are 8640 * skipped when updating the busiest sg: 8641 */ 8642 if (busiest->group_type != group_misfit_task && 8643 (busiest->avg_load <= sds->avg_load || 8644 local->avg_load >= sds->avg_load)) { 8645 env->imbalance = 0; 8646 return fix_small_imbalance(env, sds); 8647 } 8648 8649 /* 8650 * If there aren't any idle CPUs, avoid creating some. 8651 */ 8652 if (busiest->group_type == group_overloaded && 8653 local->group_type == group_overloaded) { 8654 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 8655 if (load_above_capacity > busiest->group_capacity) { 8656 load_above_capacity -= busiest->group_capacity; 8657 load_above_capacity *= scale_load_down(NICE_0_LOAD); 8658 load_above_capacity /= busiest->group_capacity; 8659 } else 8660 load_above_capacity = ~0UL; 8661 } 8662 8663 /* 8664 * We're trying to get all the CPUs to the average_load, so we don't 8665 * want to push ourselves above the average load, nor do we wish to 8666 * reduce the max loaded CPU below the average load. At the same time, 8667 * we also don't want to reduce the group load below the group 8668 * capacity. Thus we look for the minimum possible imbalance. 8669 */ 8670 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 8671 8672 /* How much load to actually move to equalise the imbalance */ 8673 env->imbalance = min( 8674 max_pull * busiest->group_capacity, 8675 (sds->avg_load - local->avg_load) * local->group_capacity 8676 ) / SCHED_CAPACITY_SCALE; 8677 8678 /* Boost imbalance to allow misfit task to be balanced. */ 8679 if (busiest->group_type == group_misfit_task) { 8680 env->imbalance = max_t(long, env->imbalance, 8681 busiest->group_misfit_task_load); 8682 } 8683 8684 /* 8685 * if *imbalance is less than the average load per runnable task 8686 * there is no guarantee that any tasks will be moved so we'll have 8687 * a think about bumping its value to force at least one task to be 8688 * moved 8689 */ 8690 if (env->imbalance < busiest->load_per_task) 8691 return fix_small_imbalance(env, sds); 8692 } 8693 8694 /******* find_busiest_group() helpers end here *********************/ 8695 8696 /** 8697 * find_busiest_group - Returns the busiest group within the sched_domain 8698 * if there is an imbalance. 8699 * 8700 * Also calculates the amount of weighted load which should be moved 8701 * to restore balance. 8702 * 8703 * @env: The load balancing environment. 8704 * 8705 * Return: - The busiest group if imbalance exists. 8706 */ 8707 static struct sched_group *find_busiest_group(struct lb_env *env) 8708 { 8709 struct sg_lb_stats *local, *busiest; 8710 struct sd_lb_stats sds; 8711 8712 init_sd_lb_stats(&sds); 8713 8714 /* 8715 * Compute the various statistics relavent for load balancing at 8716 * this level. 8717 */ 8718 update_sd_lb_stats(env, &sds); 8719 8720 if (sched_energy_enabled()) { 8721 struct root_domain *rd = env->dst_rq->rd; 8722 8723 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 8724 goto out_balanced; 8725 } 8726 8727 local = &sds.local_stat; 8728 busiest = &sds.busiest_stat; 8729 8730 /* ASYM feature bypasses nice load balance check */ 8731 if (check_asym_packing(env, &sds)) 8732 return sds.busiest; 8733 8734 /* There is no busy sibling group to pull tasks from */ 8735 if (!sds.busiest || busiest->sum_nr_running == 0) 8736 goto out_balanced; 8737 8738 /* XXX broken for overlapping NUMA groups */ 8739 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 8740 / sds.total_capacity; 8741 8742 /* 8743 * If the busiest group is imbalanced the below checks don't 8744 * work because they assume all things are equal, which typically 8745 * isn't true due to cpus_allowed constraints and the like. 8746 */ 8747 if (busiest->group_type == group_imbalanced) 8748 goto force_balance; 8749 8750 /* 8751 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group 8752 * capacities from resulting in underutilization due to avg_load. 8753 */ 8754 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) && 8755 busiest->group_no_capacity) 8756 goto force_balance; 8757 8758 /* Misfit tasks should be dealt with regardless of the avg load */ 8759 if (busiest->group_type == group_misfit_task) 8760 goto force_balance; 8761 8762 /* 8763 * If the local group is busier than the selected busiest group 8764 * don't try and pull any tasks. 8765 */ 8766 if (local->avg_load >= busiest->avg_load) 8767 goto out_balanced; 8768 8769 /* 8770 * Don't pull any tasks if this group is already above the domain 8771 * average load. 8772 */ 8773 if (local->avg_load >= sds.avg_load) 8774 goto out_balanced; 8775 8776 if (env->idle == CPU_IDLE) { 8777 /* 8778 * This CPU is idle. If the busiest group is not overloaded 8779 * and there is no imbalance between this and busiest group 8780 * wrt idle CPUs, it is balanced. The imbalance becomes 8781 * significant if the diff is greater than 1 otherwise we 8782 * might end up to just move the imbalance on another group 8783 */ 8784 if ((busiest->group_type != group_overloaded) && 8785 (local->idle_cpus <= (busiest->idle_cpus + 1))) 8786 goto out_balanced; 8787 } else { 8788 /* 8789 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 8790 * imbalance_pct to be conservative. 8791 */ 8792 if (100 * busiest->avg_load <= 8793 env->sd->imbalance_pct * local->avg_load) 8794 goto out_balanced; 8795 } 8796 8797 force_balance: 8798 /* Looks like there is an imbalance. Compute it */ 8799 env->src_grp_type = busiest->group_type; 8800 calculate_imbalance(env, &sds); 8801 return env->imbalance ? sds.busiest : NULL; 8802 8803 out_balanced: 8804 env->imbalance = 0; 8805 return NULL; 8806 } 8807 8808 /* 8809 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 8810 */ 8811 static struct rq *find_busiest_queue(struct lb_env *env, 8812 struct sched_group *group) 8813 { 8814 struct rq *busiest = NULL, *rq; 8815 unsigned long busiest_load = 0, busiest_capacity = 1; 8816 int i; 8817 8818 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8819 unsigned long capacity, wl; 8820 enum fbq_type rt; 8821 8822 rq = cpu_rq(i); 8823 rt = fbq_classify_rq(rq); 8824 8825 /* 8826 * We classify groups/runqueues into three groups: 8827 * - regular: there are !numa tasks 8828 * - remote: there are numa tasks that run on the 'wrong' node 8829 * - all: there is no distinction 8830 * 8831 * In order to avoid migrating ideally placed numa tasks, 8832 * ignore those when there's better options. 8833 * 8834 * If we ignore the actual busiest queue to migrate another 8835 * task, the next balance pass can still reduce the busiest 8836 * queue by moving tasks around inside the node. 8837 * 8838 * If we cannot move enough load due to this classification 8839 * the next pass will adjust the group classification and 8840 * allow migration of more tasks. 8841 * 8842 * Both cases only affect the total convergence complexity. 8843 */ 8844 if (rt > env->fbq_type) 8845 continue; 8846 8847 /* 8848 * For ASYM_CPUCAPACITY domains with misfit tasks we simply 8849 * seek the "biggest" misfit task. 8850 */ 8851 if (env->src_grp_type == group_misfit_task) { 8852 if (rq->misfit_task_load > busiest_load) { 8853 busiest_load = rq->misfit_task_load; 8854 busiest = rq; 8855 } 8856 8857 continue; 8858 } 8859 8860 capacity = capacity_of(i); 8861 8862 /* 8863 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 8864 * eventually lead to active_balancing high->low capacity. 8865 * Higher per-CPU capacity is considered better than balancing 8866 * average load. 8867 */ 8868 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8869 capacity_of(env->dst_cpu) < capacity && 8870 rq->nr_running == 1) 8871 continue; 8872 8873 wl = weighted_cpuload(rq); 8874 8875 /* 8876 * When comparing with imbalance, use weighted_cpuload() 8877 * which is not scaled with the CPU capacity. 8878 */ 8879 8880 if (rq->nr_running == 1 && wl > env->imbalance && 8881 !check_cpu_capacity(rq, env->sd)) 8882 continue; 8883 8884 /* 8885 * For the load comparisons with the other CPU's, consider 8886 * the weighted_cpuload() scaled with the CPU capacity, so 8887 * that the load can be moved away from the CPU that is 8888 * potentially running at a lower capacity. 8889 * 8890 * Thus we're looking for max(wl_i / capacity_i), crosswise 8891 * multiplication to rid ourselves of the division works out 8892 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 8893 * our previous maximum. 8894 */ 8895 if (wl * busiest_capacity > busiest_load * capacity) { 8896 busiest_load = wl; 8897 busiest_capacity = capacity; 8898 busiest = rq; 8899 } 8900 } 8901 8902 return busiest; 8903 } 8904 8905 /* 8906 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 8907 * so long as it is large enough. 8908 */ 8909 #define MAX_PINNED_INTERVAL 512 8910 8911 static inline bool 8912 asym_active_balance(struct lb_env *env) 8913 { 8914 /* 8915 * ASYM_PACKING needs to force migrate tasks from busy but 8916 * lower priority CPUs in order to pack all tasks in the 8917 * highest priority CPUs. 8918 */ 8919 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 8920 sched_asym_prefer(env->dst_cpu, env->src_cpu); 8921 } 8922 8923 static inline bool 8924 voluntary_active_balance(struct lb_env *env) 8925 { 8926 struct sched_domain *sd = env->sd; 8927 8928 if (asym_active_balance(env)) 8929 return 1; 8930 8931 /* 8932 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 8933 * It's worth migrating the task if the src_cpu's capacity is reduced 8934 * because of other sched_class or IRQs if more capacity stays 8935 * available on dst_cpu. 8936 */ 8937 if ((env->idle != CPU_NOT_IDLE) && 8938 (env->src_rq->cfs.h_nr_running == 1)) { 8939 if ((check_cpu_capacity(env->src_rq, sd)) && 8940 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 8941 return 1; 8942 } 8943 8944 if (env->src_grp_type == group_misfit_task) 8945 return 1; 8946 8947 return 0; 8948 } 8949 8950 static int need_active_balance(struct lb_env *env) 8951 { 8952 struct sched_domain *sd = env->sd; 8953 8954 if (voluntary_active_balance(env)) 8955 return 1; 8956 8957 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 8958 } 8959 8960 static int active_load_balance_cpu_stop(void *data); 8961 8962 static int should_we_balance(struct lb_env *env) 8963 { 8964 struct sched_group *sg = env->sd->groups; 8965 int cpu, balance_cpu = -1; 8966 8967 /* 8968 * Ensure the balancing environment is consistent; can happen 8969 * when the softirq triggers 'during' hotplug. 8970 */ 8971 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 8972 return 0; 8973 8974 /* 8975 * In the newly idle case, we will allow all the CPUs 8976 * to do the newly idle load balance. 8977 */ 8978 if (env->idle == CPU_NEWLY_IDLE) 8979 return 1; 8980 8981 /* Try to find first idle CPU */ 8982 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 8983 if (!idle_cpu(cpu)) 8984 continue; 8985 8986 balance_cpu = cpu; 8987 break; 8988 } 8989 8990 if (balance_cpu == -1) 8991 balance_cpu = group_balance_cpu(sg); 8992 8993 /* 8994 * First idle CPU or the first CPU(busiest) in this sched group 8995 * is eligible for doing load balancing at this and above domains. 8996 */ 8997 return balance_cpu == env->dst_cpu; 8998 } 8999 9000 /* 9001 * Check this_cpu to ensure it is balanced within domain. Attempt to move 9002 * tasks if there is an imbalance. 9003 */ 9004 static int load_balance(int this_cpu, struct rq *this_rq, 9005 struct sched_domain *sd, enum cpu_idle_type idle, 9006 int *continue_balancing) 9007 { 9008 int ld_moved, cur_ld_moved, active_balance = 0; 9009 struct sched_domain *sd_parent = sd->parent; 9010 struct sched_group *group; 9011 struct rq *busiest; 9012 struct rq_flags rf; 9013 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 9014 9015 struct lb_env env = { 9016 .sd = sd, 9017 .dst_cpu = this_cpu, 9018 .dst_rq = this_rq, 9019 .dst_grpmask = sched_group_span(sd->groups), 9020 .idle = idle, 9021 .loop_break = sched_nr_migrate_break, 9022 .cpus = cpus, 9023 .fbq_type = all, 9024 .tasks = LIST_HEAD_INIT(env.tasks), 9025 }; 9026 9027 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 9028 9029 schedstat_inc(sd->lb_count[idle]); 9030 9031 redo: 9032 if (!should_we_balance(&env)) { 9033 *continue_balancing = 0; 9034 goto out_balanced; 9035 } 9036 9037 group = find_busiest_group(&env); 9038 if (!group) { 9039 schedstat_inc(sd->lb_nobusyg[idle]); 9040 goto out_balanced; 9041 } 9042 9043 busiest = find_busiest_queue(&env, group); 9044 if (!busiest) { 9045 schedstat_inc(sd->lb_nobusyq[idle]); 9046 goto out_balanced; 9047 } 9048 9049 BUG_ON(busiest == env.dst_rq); 9050 9051 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 9052 9053 env.src_cpu = busiest->cpu; 9054 env.src_rq = busiest; 9055 9056 ld_moved = 0; 9057 if (busiest->nr_running > 1) { 9058 /* 9059 * Attempt to move tasks. If find_busiest_group has found 9060 * an imbalance but busiest->nr_running <= 1, the group is 9061 * still unbalanced. ld_moved simply stays zero, so it is 9062 * correctly treated as an imbalance. 9063 */ 9064 env.flags |= LBF_ALL_PINNED; 9065 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 9066 9067 more_balance: 9068 rq_lock_irqsave(busiest, &rf); 9069 update_rq_clock(busiest); 9070 9071 /* 9072 * cur_ld_moved - load moved in current iteration 9073 * ld_moved - cumulative load moved across iterations 9074 */ 9075 cur_ld_moved = detach_tasks(&env); 9076 9077 /* 9078 * We've detached some tasks from busiest_rq. Every 9079 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 9080 * unlock busiest->lock, and we are able to be sure 9081 * that nobody can manipulate the tasks in parallel. 9082 * See task_rq_lock() family for the details. 9083 */ 9084 9085 rq_unlock(busiest, &rf); 9086 9087 if (cur_ld_moved) { 9088 attach_tasks(&env); 9089 ld_moved += cur_ld_moved; 9090 } 9091 9092 local_irq_restore(rf.flags); 9093 9094 if (env.flags & LBF_NEED_BREAK) { 9095 env.flags &= ~LBF_NEED_BREAK; 9096 goto more_balance; 9097 } 9098 9099 /* 9100 * Revisit (affine) tasks on src_cpu that couldn't be moved to 9101 * us and move them to an alternate dst_cpu in our sched_group 9102 * where they can run. The upper limit on how many times we 9103 * iterate on same src_cpu is dependent on number of CPUs in our 9104 * sched_group. 9105 * 9106 * This changes load balance semantics a bit on who can move 9107 * load to a given_cpu. In addition to the given_cpu itself 9108 * (or a ilb_cpu acting on its behalf where given_cpu is 9109 * nohz-idle), we now have balance_cpu in a position to move 9110 * load to given_cpu. In rare situations, this may cause 9111 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 9112 * _independently_ and at _same_ time to move some load to 9113 * given_cpu) causing exceess load to be moved to given_cpu. 9114 * This however should not happen so much in practice and 9115 * moreover subsequent load balance cycles should correct the 9116 * excess load moved. 9117 */ 9118 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 9119 9120 /* Prevent to re-select dst_cpu via env's CPUs */ 9121 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 9122 9123 env.dst_rq = cpu_rq(env.new_dst_cpu); 9124 env.dst_cpu = env.new_dst_cpu; 9125 env.flags &= ~LBF_DST_PINNED; 9126 env.loop = 0; 9127 env.loop_break = sched_nr_migrate_break; 9128 9129 /* 9130 * Go back to "more_balance" rather than "redo" since we 9131 * need to continue with same src_cpu. 9132 */ 9133 goto more_balance; 9134 } 9135 9136 /* 9137 * We failed to reach balance because of affinity. 9138 */ 9139 if (sd_parent) { 9140 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9141 9142 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 9143 *group_imbalance = 1; 9144 } 9145 9146 /* All tasks on this runqueue were pinned by CPU affinity */ 9147 if (unlikely(env.flags & LBF_ALL_PINNED)) { 9148 __cpumask_clear_cpu(cpu_of(busiest), cpus); 9149 /* 9150 * Attempting to continue load balancing at the current 9151 * sched_domain level only makes sense if there are 9152 * active CPUs remaining as possible busiest CPUs to 9153 * pull load from which are not contained within the 9154 * destination group that is receiving any migrated 9155 * load. 9156 */ 9157 if (!cpumask_subset(cpus, env.dst_grpmask)) { 9158 env.loop = 0; 9159 env.loop_break = sched_nr_migrate_break; 9160 goto redo; 9161 } 9162 goto out_all_pinned; 9163 } 9164 } 9165 9166 if (!ld_moved) { 9167 schedstat_inc(sd->lb_failed[idle]); 9168 /* 9169 * Increment the failure counter only on periodic balance. 9170 * We do not want newidle balance, which can be very 9171 * frequent, pollute the failure counter causing 9172 * excessive cache_hot migrations and active balances. 9173 */ 9174 if (idle != CPU_NEWLY_IDLE) 9175 sd->nr_balance_failed++; 9176 9177 if (need_active_balance(&env)) { 9178 unsigned long flags; 9179 9180 raw_spin_lock_irqsave(&busiest->lock, flags); 9181 9182 /* 9183 * Don't kick the active_load_balance_cpu_stop, 9184 * if the curr task on busiest CPU can't be 9185 * moved to this_cpu: 9186 */ 9187 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { 9188 raw_spin_unlock_irqrestore(&busiest->lock, 9189 flags); 9190 env.flags |= LBF_ALL_PINNED; 9191 goto out_one_pinned; 9192 } 9193 9194 /* 9195 * ->active_balance synchronizes accesses to 9196 * ->active_balance_work. Once set, it's cleared 9197 * only after active load balance is finished. 9198 */ 9199 if (!busiest->active_balance) { 9200 busiest->active_balance = 1; 9201 busiest->push_cpu = this_cpu; 9202 active_balance = 1; 9203 } 9204 raw_spin_unlock_irqrestore(&busiest->lock, flags); 9205 9206 if (active_balance) { 9207 stop_one_cpu_nowait(cpu_of(busiest), 9208 active_load_balance_cpu_stop, busiest, 9209 &busiest->active_balance_work); 9210 } 9211 9212 /* We've kicked active balancing, force task migration. */ 9213 sd->nr_balance_failed = sd->cache_nice_tries+1; 9214 } 9215 } else 9216 sd->nr_balance_failed = 0; 9217 9218 if (likely(!active_balance) || voluntary_active_balance(&env)) { 9219 /* We were unbalanced, so reset the balancing interval */ 9220 sd->balance_interval = sd->min_interval; 9221 } else { 9222 /* 9223 * If we've begun active balancing, start to back off. This 9224 * case may not be covered by the all_pinned logic if there 9225 * is only 1 task on the busy runqueue (because we don't call 9226 * detach_tasks). 9227 */ 9228 if (sd->balance_interval < sd->max_interval) 9229 sd->balance_interval *= 2; 9230 } 9231 9232 goto out; 9233 9234 out_balanced: 9235 /* 9236 * We reach balance although we may have faced some affinity 9237 * constraints. Clear the imbalance flag if it was set. 9238 */ 9239 if (sd_parent) { 9240 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9241 9242 if (*group_imbalance) 9243 *group_imbalance = 0; 9244 } 9245 9246 out_all_pinned: 9247 /* 9248 * We reach balance because all tasks are pinned at this level so 9249 * we can't migrate them. Let the imbalance flag set so parent level 9250 * can try to migrate them. 9251 */ 9252 schedstat_inc(sd->lb_balanced[idle]); 9253 9254 sd->nr_balance_failed = 0; 9255 9256 out_one_pinned: 9257 ld_moved = 0; 9258 9259 /* 9260 * idle_balance() disregards balance intervals, so we could repeatedly 9261 * reach this code, which would lead to balance_interval skyrocketting 9262 * in a short amount of time. Skip the balance_interval increase logic 9263 * to avoid that. 9264 */ 9265 if (env.idle == CPU_NEWLY_IDLE) 9266 goto out; 9267 9268 /* tune up the balancing interval */ 9269 if ((env.flags & LBF_ALL_PINNED && 9270 sd->balance_interval < MAX_PINNED_INTERVAL) || 9271 sd->balance_interval < sd->max_interval) 9272 sd->balance_interval *= 2; 9273 out: 9274 return ld_moved; 9275 } 9276 9277 static inline unsigned long 9278 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9279 { 9280 unsigned long interval = sd->balance_interval; 9281 9282 if (cpu_busy) 9283 interval *= sd->busy_factor; 9284 9285 /* scale ms to jiffies */ 9286 interval = msecs_to_jiffies(interval); 9287 interval = clamp(interval, 1UL, max_load_balance_interval); 9288 9289 return interval; 9290 } 9291 9292 static inline void 9293 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 9294 { 9295 unsigned long interval, next; 9296 9297 /* used by idle balance, so cpu_busy = 0 */ 9298 interval = get_sd_balance_interval(sd, 0); 9299 next = sd->last_balance + interval; 9300 9301 if (time_after(*next_balance, next)) 9302 *next_balance = next; 9303 } 9304 9305 /* 9306 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 9307 * running tasks off the busiest CPU onto idle CPUs. It requires at 9308 * least 1 task to be running on each physical CPU where possible, and 9309 * avoids physical / logical imbalances. 9310 */ 9311 static int active_load_balance_cpu_stop(void *data) 9312 { 9313 struct rq *busiest_rq = data; 9314 int busiest_cpu = cpu_of(busiest_rq); 9315 int target_cpu = busiest_rq->push_cpu; 9316 struct rq *target_rq = cpu_rq(target_cpu); 9317 struct sched_domain *sd; 9318 struct task_struct *p = NULL; 9319 struct rq_flags rf; 9320 9321 rq_lock_irq(busiest_rq, &rf); 9322 /* 9323 * Between queueing the stop-work and running it is a hole in which 9324 * CPUs can become inactive. We should not move tasks from or to 9325 * inactive CPUs. 9326 */ 9327 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 9328 goto out_unlock; 9329 9330 /* Make sure the requested CPU hasn't gone down in the meantime: */ 9331 if (unlikely(busiest_cpu != smp_processor_id() || 9332 !busiest_rq->active_balance)) 9333 goto out_unlock; 9334 9335 /* Is there any task to move? */ 9336 if (busiest_rq->nr_running <= 1) 9337 goto out_unlock; 9338 9339 /* 9340 * This condition is "impossible", if it occurs 9341 * we need to fix it. Originally reported by 9342 * Bjorn Helgaas on a 128-CPU setup. 9343 */ 9344 BUG_ON(busiest_rq == target_rq); 9345 9346 /* Search for an sd spanning us and the target CPU. */ 9347 rcu_read_lock(); 9348 for_each_domain(target_cpu, sd) { 9349 if ((sd->flags & SD_LOAD_BALANCE) && 9350 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 9351 break; 9352 } 9353 9354 if (likely(sd)) { 9355 struct lb_env env = { 9356 .sd = sd, 9357 .dst_cpu = target_cpu, 9358 .dst_rq = target_rq, 9359 .src_cpu = busiest_rq->cpu, 9360 .src_rq = busiest_rq, 9361 .idle = CPU_IDLE, 9362 /* 9363 * can_migrate_task() doesn't need to compute new_dst_cpu 9364 * for active balancing. Since we have CPU_IDLE, but no 9365 * @dst_grpmask we need to make that test go away with lying 9366 * about DST_PINNED. 9367 */ 9368 .flags = LBF_DST_PINNED, 9369 }; 9370 9371 schedstat_inc(sd->alb_count); 9372 update_rq_clock(busiest_rq); 9373 9374 p = detach_one_task(&env); 9375 if (p) { 9376 schedstat_inc(sd->alb_pushed); 9377 /* Active balancing done, reset the failure counter. */ 9378 sd->nr_balance_failed = 0; 9379 } else { 9380 schedstat_inc(sd->alb_failed); 9381 } 9382 } 9383 rcu_read_unlock(); 9384 out_unlock: 9385 busiest_rq->active_balance = 0; 9386 rq_unlock(busiest_rq, &rf); 9387 9388 if (p) 9389 attach_one_task(target_rq, p); 9390 9391 local_irq_enable(); 9392 9393 return 0; 9394 } 9395 9396 static DEFINE_SPINLOCK(balancing); 9397 9398 /* 9399 * Scale the max load_balance interval with the number of CPUs in the system. 9400 * This trades load-balance latency on larger machines for less cross talk. 9401 */ 9402 void update_max_interval(void) 9403 { 9404 max_load_balance_interval = HZ*num_online_cpus()/10; 9405 } 9406 9407 /* 9408 * It checks each scheduling domain to see if it is due to be balanced, 9409 * and initiates a balancing operation if so. 9410 * 9411 * Balancing parameters are set up in init_sched_domains. 9412 */ 9413 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9414 { 9415 int continue_balancing = 1; 9416 int cpu = rq->cpu; 9417 unsigned long interval; 9418 struct sched_domain *sd; 9419 /* Earliest time when we have to do rebalance again */ 9420 unsigned long next_balance = jiffies + 60*HZ; 9421 int update_next_balance = 0; 9422 int need_serialize, need_decay = 0; 9423 u64 max_cost = 0; 9424 9425 rcu_read_lock(); 9426 for_each_domain(cpu, sd) { 9427 /* 9428 * Decay the newidle max times here because this is a regular 9429 * visit to all the domains. Decay ~1% per second. 9430 */ 9431 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 9432 sd->max_newidle_lb_cost = 9433 (sd->max_newidle_lb_cost * 253) / 256; 9434 sd->next_decay_max_lb_cost = jiffies + HZ; 9435 need_decay = 1; 9436 } 9437 max_cost += sd->max_newidle_lb_cost; 9438 9439 if (!(sd->flags & SD_LOAD_BALANCE)) 9440 continue; 9441 9442 /* 9443 * Stop the load balance at this level. There is another 9444 * CPU in our sched group which is doing load balancing more 9445 * actively. 9446 */ 9447 if (!continue_balancing) { 9448 if (need_decay) 9449 continue; 9450 break; 9451 } 9452 9453 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9454 9455 need_serialize = sd->flags & SD_SERIALIZE; 9456 if (need_serialize) { 9457 if (!spin_trylock(&balancing)) 9458 goto out; 9459 } 9460 9461 if (time_after_eq(jiffies, sd->last_balance + interval)) { 9462 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 9463 /* 9464 * The LBF_DST_PINNED logic could have changed 9465 * env->dst_cpu, so we can't know our idle 9466 * state even if we migrated tasks. Update it. 9467 */ 9468 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 9469 } 9470 sd->last_balance = jiffies; 9471 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9472 } 9473 if (need_serialize) 9474 spin_unlock(&balancing); 9475 out: 9476 if (time_after(next_balance, sd->last_balance + interval)) { 9477 next_balance = sd->last_balance + interval; 9478 update_next_balance = 1; 9479 } 9480 } 9481 if (need_decay) { 9482 /* 9483 * Ensure the rq-wide value also decays but keep it at a 9484 * reasonable floor to avoid funnies with rq->avg_idle. 9485 */ 9486 rq->max_idle_balance_cost = 9487 max((u64)sysctl_sched_migration_cost, max_cost); 9488 } 9489 rcu_read_unlock(); 9490 9491 /* 9492 * next_balance will be updated only when there is a need. 9493 * When the cpu is attached to null domain for ex, it will not be 9494 * updated. 9495 */ 9496 if (likely(update_next_balance)) { 9497 rq->next_balance = next_balance; 9498 9499 #ifdef CONFIG_NO_HZ_COMMON 9500 /* 9501 * If this CPU has been elected to perform the nohz idle 9502 * balance. Other idle CPUs have already rebalanced with 9503 * nohz_idle_balance() and nohz.next_balance has been 9504 * updated accordingly. This CPU is now running the idle load 9505 * balance for itself and we need to update the 9506 * nohz.next_balance accordingly. 9507 */ 9508 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 9509 nohz.next_balance = rq->next_balance; 9510 #endif 9511 } 9512 } 9513 9514 static inline int on_null_domain(struct rq *rq) 9515 { 9516 return unlikely(!rcu_dereference_sched(rq->sd)); 9517 } 9518 9519 #ifdef CONFIG_NO_HZ_COMMON 9520 /* 9521 * idle load balancing details 9522 * - When one of the busy CPUs notice that there may be an idle rebalancing 9523 * needed, they will kick the idle load balancer, which then does idle 9524 * load balancing for all the idle CPUs. 9525 */ 9526 9527 static inline int find_new_ilb(void) 9528 { 9529 int ilb = cpumask_first(nohz.idle_cpus_mask); 9530 9531 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 9532 return ilb; 9533 9534 return nr_cpu_ids; 9535 } 9536 9537 /* 9538 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 9539 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 9540 * CPU (if there is one). 9541 */ 9542 static void kick_ilb(unsigned int flags) 9543 { 9544 int ilb_cpu; 9545 9546 nohz.next_balance++; 9547 9548 ilb_cpu = find_new_ilb(); 9549 9550 if (ilb_cpu >= nr_cpu_ids) 9551 return; 9552 9553 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 9554 if (flags & NOHZ_KICK_MASK) 9555 return; 9556 9557 /* 9558 * Use smp_send_reschedule() instead of resched_cpu(). 9559 * This way we generate a sched IPI on the target CPU which 9560 * is idle. And the softirq performing nohz idle load balance 9561 * will be run before returning from the IPI. 9562 */ 9563 smp_send_reschedule(ilb_cpu); 9564 } 9565 9566 /* 9567 * Current decision point for kicking the idle load balancer in the presence 9568 * of idle CPUs in the system. 9569 */ 9570 static void nohz_balancer_kick(struct rq *rq) 9571 { 9572 unsigned long now = jiffies; 9573 struct sched_domain_shared *sds; 9574 struct sched_domain *sd; 9575 int nr_busy, i, cpu = rq->cpu; 9576 unsigned int flags = 0; 9577 9578 if (unlikely(rq->idle_balance)) 9579 return; 9580 9581 /* 9582 * We may be recently in ticked or tickless idle mode. At the first 9583 * busy tick after returning from idle, we will update the busy stats. 9584 */ 9585 nohz_balance_exit_idle(rq); 9586 9587 /* 9588 * None are in tickless mode and hence no need for NOHZ idle load 9589 * balancing. 9590 */ 9591 if (likely(!atomic_read(&nohz.nr_cpus))) 9592 return; 9593 9594 if (READ_ONCE(nohz.has_blocked) && 9595 time_after(now, READ_ONCE(nohz.next_blocked))) 9596 flags = NOHZ_STATS_KICK; 9597 9598 if (time_before(now, nohz.next_balance)) 9599 goto out; 9600 9601 if (rq->nr_running >= 2) { 9602 flags = NOHZ_KICK_MASK; 9603 goto out; 9604 } 9605 9606 rcu_read_lock(); 9607 9608 sd = rcu_dereference(rq->sd); 9609 if (sd) { 9610 /* 9611 * If there's a CFS task and the current CPU has reduced 9612 * capacity; kick the ILB to see if there's a better CPU to run 9613 * on. 9614 */ 9615 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 9616 flags = NOHZ_KICK_MASK; 9617 goto unlock; 9618 } 9619 } 9620 9621 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 9622 if (sd) { 9623 /* 9624 * When ASYM_PACKING; see if there's a more preferred CPU 9625 * currently idle; in which case, kick the ILB to move tasks 9626 * around. 9627 */ 9628 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 9629 if (sched_asym_prefer(i, cpu)) { 9630 flags = NOHZ_KICK_MASK; 9631 goto unlock; 9632 } 9633 } 9634 } 9635 9636 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 9637 if (sd) { 9638 /* 9639 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 9640 * to run the misfit task on. 9641 */ 9642 if (check_misfit_status(rq, sd)) { 9643 flags = NOHZ_KICK_MASK; 9644 goto unlock; 9645 } 9646 9647 /* 9648 * For asymmetric systems, we do not want to nicely balance 9649 * cache use, instead we want to embrace asymmetry and only 9650 * ensure tasks have enough CPU capacity. 9651 * 9652 * Skip the LLC logic because it's not relevant in that case. 9653 */ 9654 goto unlock; 9655 } 9656 9657 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 9658 if (sds) { 9659 /* 9660 * If there is an imbalance between LLC domains (IOW we could 9661 * increase the overall cache use), we need some less-loaded LLC 9662 * domain to pull some load. Likewise, we may need to spread 9663 * load within the current LLC domain (e.g. packed SMT cores but 9664 * other CPUs are idle). We can't really know from here how busy 9665 * the others are - so just get a nohz balance going if it looks 9666 * like this LLC domain has tasks we could move. 9667 */ 9668 nr_busy = atomic_read(&sds->nr_busy_cpus); 9669 if (nr_busy > 1) { 9670 flags = NOHZ_KICK_MASK; 9671 goto unlock; 9672 } 9673 } 9674 unlock: 9675 rcu_read_unlock(); 9676 out: 9677 if (flags) 9678 kick_ilb(flags); 9679 } 9680 9681 static void set_cpu_sd_state_busy(int cpu) 9682 { 9683 struct sched_domain *sd; 9684 9685 rcu_read_lock(); 9686 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9687 9688 if (!sd || !sd->nohz_idle) 9689 goto unlock; 9690 sd->nohz_idle = 0; 9691 9692 atomic_inc(&sd->shared->nr_busy_cpus); 9693 unlock: 9694 rcu_read_unlock(); 9695 } 9696 9697 void nohz_balance_exit_idle(struct rq *rq) 9698 { 9699 SCHED_WARN_ON(rq != this_rq()); 9700 9701 if (likely(!rq->nohz_tick_stopped)) 9702 return; 9703 9704 rq->nohz_tick_stopped = 0; 9705 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 9706 atomic_dec(&nohz.nr_cpus); 9707 9708 set_cpu_sd_state_busy(rq->cpu); 9709 } 9710 9711 static void set_cpu_sd_state_idle(int cpu) 9712 { 9713 struct sched_domain *sd; 9714 9715 rcu_read_lock(); 9716 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9717 9718 if (!sd || sd->nohz_idle) 9719 goto unlock; 9720 sd->nohz_idle = 1; 9721 9722 atomic_dec(&sd->shared->nr_busy_cpus); 9723 unlock: 9724 rcu_read_unlock(); 9725 } 9726 9727 /* 9728 * This routine will record that the CPU is going idle with tick stopped. 9729 * This info will be used in performing idle load balancing in the future. 9730 */ 9731 void nohz_balance_enter_idle(int cpu) 9732 { 9733 struct rq *rq = cpu_rq(cpu); 9734 9735 SCHED_WARN_ON(cpu != smp_processor_id()); 9736 9737 /* If this CPU is going down, then nothing needs to be done: */ 9738 if (!cpu_active(cpu)) 9739 return; 9740 9741 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 9742 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 9743 return; 9744 9745 /* 9746 * Can be set safely without rq->lock held 9747 * If a clear happens, it will have evaluated last additions because 9748 * rq->lock is held during the check and the clear 9749 */ 9750 rq->has_blocked_load = 1; 9751 9752 /* 9753 * The tick is still stopped but load could have been added in the 9754 * meantime. We set the nohz.has_blocked flag to trig a check of the 9755 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 9756 * of nohz.has_blocked can only happen after checking the new load 9757 */ 9758 if (rq->nohz_tick_stopped) 9759 goto out; 9760 9761 /* If we're a completely isolated CPU, we don't play: */ 9762 if (on_null_domain(rq)) 9763 return; 9764 9765 rq->nohz_tick_stopped = 1; 9766 9767 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 9768 atomic_inc(&nohz.nr_cpus); 9769 9770 /* 9771 * Ensures that if nohz_idle_balance() fails to observe our 9772 * @idle_cpus_mask store, it must observe the @has_blocked 9773 * store. 9774 */ 9775 smp_mb__after_atomic(); 9776 9777 set_cpu_sd_state_idle(cpu); 9778 9779 out: 9780 /* 9781 * Each time a cpu enter idle, we assume that it has blocked load and 9782 * enable the periodic update of the load of idle cpus 9783 */ 9784 WRITE_ONCE(nohz.has_blocked, 1); 9785 } 9786 9787 /* 9788 * Internal function that runs load balance for all idle cpus. The load balance 9789 * can be a simple update of blocked load or a complete load balance with 9790 * tasks movement depending of flags. 9791 * The function returns false if the loop has stopped before running 9792 * through all idle CPUs. 9793 */ 9794 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 9795 enum cpu_idle_type idle) 9796 { 9797 /* Earliest time when we have to do rebalance again */ 9798 unsigned long now = jiffies; 9799 unsigned long next_balance = now + 60*HZ; 9800 bool has_blocked_load = false; 9801 int update_next_balance = 0; 9802 int this_cpu = this_rq->cpu; 9803 int balance_cpu; 9804 int ret = false; 9805 struct rq *rq; 9806 9807 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 9808 9809 /* 9810 * We assume there will be no idle load after this update and clear 9811 * the has_blocked flag. If a cpu enters idle in the mean time, it will 9812 * set the has_blocked flag and trig another update of idle load. 9813 * Because a cpu that becomes idle, is added to idle_cpus_mask before 9814 * setting the flag, we are sure to not clear the state and not 9815 * check the load of an idle cpu. 9816 */ 9817 WRITE_ONCE(nohz.has_blocked, 0); 9818 9819 /* 9820 * Ensures that if we miss the CPU, we must see the has_blocked 9821 * store from nohz_balance_enter_idle(). 9822 */ 9823 smp_mb(); 9824 9825 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 9826 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 9827 continue; 9828 9829 /* 9830 * If this CPU gets work to do, stop the load balancing 9831 * work being done for other CPUs. Next load 9832 * balancing owner will pick it up. 9833 */ 9834 if (need_resched()) { 9835 has_blocked_load = true; 9836 goto abort; 9837 } 9838 9839 rq = cpu_rq(balance_cpu); 9840 9841 has_blocked_load |= update_nohz_stats(rq, true); 9842 9843 /* 9844 * If time for next balance is due, 9845 * do the balance. 9846 */ 9847 if (time_after_eq(jiffies, rq->next_balance)) { 9848 struct rq_flags rf; 9849 9850 rq_lock_irqsave(rq, &rf); 9851 update_rq_clock(rq); 9852 cpu_load_update_idle(rq); 9853 rq_unlock_irqrestore(rq, &rf); 9854 9855 if (flags & NOHZ_BALANCE_KICK) 9856 rebalance_domains(rq, CPU_IDLE); 9857 } 9858 9859 if (time_after(next_balance, rq->next_balance)) { 9860 next_balance = rq->next_balance; 9861 update_next_balance = 1; 9862 } 9863 } 9864 9865 /* Newly idle CPU doesn't need an update */ 9866 if (idle != CPU_NEWLY_IDLE) { 9867 update_blocked_averages(this_cpu); 9868 has_blocked_load |= this_rq->has_blocked_load; 9869 } 9870 9871 if (flags & NOHZ_BALANCE_KICK) 9872 rebalance_domains(this_rq, CPU_IDLE); 9873 9874 WRITE_ONCE(nohz.next_blocked, 9875 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 9876 9877 /* The full idle balance loop has been done */ 9878 ret = true; 9879 9880 abort: 9881 /* There is still blocked load, enable periodic update */ 9882 if (has_blocked_load) 9883 WRITE_ONCE(nohz.has_blocked, 1); 9884 9885 /* 9886 * next_balance will be updated only when there is a need. 9887 * When the CPU is attached to null domain for ex, it will not be 9888 * updated. 9889 */ 9890 if (likely(update_next_balance)) 9891 nohz.next_balance = next_balance; 9892 9893 return ret; 9894 } 9895 9896 /* 9897 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 9898 * rebalancing for all the cpus for whom scheduler ticks are stopped. 9899 */ 9900 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9901 { 9902 int this_cpu = this_rq->cpu; 9903 unsigned int flags; 9904 9905 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK)) 9906 return false; 9907 9908 if (idle != CPU_IDLE) { 9909 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9910 return false; 9911 } 9912 9913 /* could be _relaxed() */ 9914 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9915 if (!(flags & NOHZ_KICK_MASK)) 9916 return false; 9917 9918 _nohz_idle_balance(this_rq, flags, idle); 9919 9920 return true; 9921 } 9922 9923 static void nohz_newidle_balance(struct rq *this_rq) 9924 { 9925 int this_cpu = this_rq->cpu; 9926 9927 /* 9928 * This CPU doesn't want to be disturbed by scheduler 9929 * housekeeping 9930 */ 9931 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 9932 return; 9933 9934 /* Will wake up very soon. No time for doing anything else*/ 9935 if (this_rq->avg_idle < sysctl_sched_migration_cost) 9936 return; 9937 9938 /* Don't need to update blocked load of idle CPUs*/ 9939 if (!READ_ONCE(nohz.has_blocked) || 9940 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 9941 return; 9942 9943 raw_spin_unlock(&this_rq->lock); 9944 /* 9945 * This CPU is going to be idle and blocked load of idle CPUs 9946 * need to be updated. Run the ilb locally as it is a good 9947 * candidate for ilb instead of waking up another idle CPU. 9948 * Kick an normal ilb if we failed to do the update. 9949 */ 9950 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 9951 kick_ilb(NOHZ_STATS_KICK); 9952 raw_spin_lock(&this_rq->lock); 9953 } 9954 9955 #else /* !CONFIG_NO_HZ_COMMON */ 9956 static inline void nohz_balancer_kick(struct rq *rq) { } 9957 9958 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9959 { 9960 return false; 9961 } 9962 9963 static inline void nohz_newidle_balance(struct rq *this_rq) { } 9964 #endif /* CONFIG_NO_HZ_COMMON */ 9965 9966 /* 9967 * idle_balance is called by schedule() if this_cpu is about to become 9968 * idle. Attempts to pull tasks from other CPUs. 9969 */ 9970 static int idle_balance(struct rq *this_rq, struct rq_flags *rf) 9971 { 9972 unsigned long next_balance = jiffies + HZ; 9973 int this_cpu = this_rq->cpu; 9974 struct sched_domain *sd; 9975 int pulled_task = 0; 9976 u64 curr_cost = 0; 9977 9978 /* 9979 * We must set idle_stamp _before_ calling idle_balance(), such that we 9980 * measure the duration of idle_balance() as idle time. 9981 */ 9982 this_rq->idle_stamp = rq_clock(this_rq); 9983 9984 /* 9985 * Do not pull tasks towards !active CPUs... 9986 */ 9987 if (!cpu_active(this_cpu)) 9988 return 0; 9989 9990 /* 9991 * This is OK, because current is on_cpu, which avoids it being picked 9992 * for load-balance and preemption/IRQs are still disabled avoiding 9993 * further scheduler activity on it and we're being very careful to 9994 * re-start the picking loop. 9995 */ 9996 rq_unpin_lock(this_rq, rf); 9997 9998 if (this_rq->avg_idle < sysctl_sched_migration_cost || 9999 !READ_ONCE(this_rq->rd->overload)) { 10000 10001 rcu_read_lock(); 10002 sd = rcu_dereference_check_sched_domain(this_rq->sd); 10003 if (sd) 10004 update_next_balance(sd, &next_balance); 10005 rcu_read_unlock(); 10006 10007 nohz_newidle_balance(this_rq); 10008 10009 goto out; 10010 } 10011 10012 raw_spin_unlock(&this_rq->lock); 10013 10014 update_blocked_averages(this_cpu); 10015 rcu_read_lock(); 10016 for_each_domain(this_cpu, sd) { 10017 int continue_balancing = 1; 10018 u64 t0, domain_cost; 10019 10020 if (!(sd->flags & SD_LOAD_BALANCE)) 10021 continue; 10022 10023 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 10024 update_next_balance(sd, &next_balance); 10025 break; 10026 } 10027 10028 if (sd->flags & SD_BALANCE_NEWIDLE) { 10029 t0 = sched_clock_cpu(this_cpu); 10030 10031 pulled_task = load_balance(this_cpu, this_rq, 10032 sd, CPU_NEWLY_IDLE, 10033 &continue_balancing); 10034 10035 domain_cost = sched_clock_cpu(this_cpu) - t0; 10036 if (domain_cost > sd->max_newidle_lb_cost) 10037 sd->max_newidle_lb_cost = domain_cost; 10038 10039 curr_cost += domain_cost; 10040 } 10041 10042 update_next_balance(sd, &next_balance); 10043 10044 /* 10045 * Stop searching for tasks to pull if there are 10046 * now runnable tasks on this rq. 10047 */ 10048 if (pulled_task || this_rq->nr_running > 0) 10049 break; 10050 } 10051 rcu_read_unlock(); 10052 10053 raw_spin_lock(&this_rq->lock); 10054 10055 if (curr_cost > this_rq->max_idle_balance_cost) 10056 this_rq->max_idle_balance_cost = curr_cost; 10057 10058 out: 10059 /* 10060 * While browsing the domains, we released the rq lock, a task could 10061 * have been enqueued in the meantime. Since we're not going idle, 10062 * pretend we pulled a task. 10063 */ 10064 if (this_rq->cfs.h_nr_running && !pulled_task) 10065 pulled_task = 1; 10066 10067 /* Move the next balance forward */ 10068 if (time_after(this_rq->next_balance, next_balance)) 10069 this_rq->next_balance = next_balance; 10070 10071 /* Is there a task of a high priority class? */ 10072 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 10073 pulled_task = -1; 10074 10075 if (pulled_task) 10076 this_rq->idle_stamp = 0; 10077 10078 rq_repin_lock(this_rq, rf); 10079 10080 return pulled_task; 10081 } 10082 10083 /* 10084 * run_rebalance_domains is triggered when needed from the scheduler tick. 10085 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 10086 */ 10087 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 10088 { 10089 struct rq *this_rq = this_rq(); 10090 enum cpu_idle_type idle = this_rq->idle_balance ? 10091 CPU_IDLE : CPU_NOT_IDLE; 10092 10093 /* 10094 * If this CPU has a pending nohz_balance_kick, then do the 10095 * balancing on behalf of the other idle CPUs whose ticks are 10096 * stopped. Do nohz_idle_balance *before* rebalance_domains to 10097 * give the idle CPUs a chance to load balance. Else we may 10098 * load balance only within the local sched_domain hierarchy 10099 * and abort nohz_idle_balance altogether if we pull some load. 10100 */ 10101 if (nohz_idle_balance(this_rq, idle)) 10102 return; 10103 10104 /* normal load balance */ 10105 update_blocked_averages(this_rq->cpu); 10106 rebalance_domains(this_rq, idle); 10107 } 10108 10109 /* 10110 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 10111 */ 10112 void trigger_load_balance(struct rq *rq) 10113 { 10114 /* Don't need to rebalance while attached to NULL domain */ 10115 if (unlikely(on_null_domain(rq))) 10116 return; 10117 10118 if (time_after_eq(jiffies, rq->next_balance)) 10119 raise_softirq(SCHED_SOFTIRQ); 10120 10121 nohz_balancer_kick(rq); 10122 } 10123 10124 static void rq_online_fair(struct rq *rq) 10125 { 10126 update_sysctl(); 10127 10128 update_runtime_enabled(rq); 10129 } 10130 10131 static void rq_offline_fair(struct rq *rq) 10132 { 10133 update_sysctl(); 10134 10135 /* Ensure any throttled groups are reachable by pick_next_task */ 10136 unthrottle_offline_cfs_rqs(rq); 10137 } 10138 10139 #endif /* CONFIG_SMP */ 10140 10141 /* 10142 * scheduler tick hitting a task of our scheduling class. 10143 * 10144 * NOTE: This function can be called remotely by the tick offload that 10145 * goes along full dynticks. Therefore no local assumption can be made 10146 * and everything must be accessed through the @rq and @curr passed in 10147 * parameters. 10148 */ 10149 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 10150 { 10151 struct cfs_rq *cfs_rq; 10152 struct sched_entity *se = &curr->se; 10153 10154 for_each_sched_entity(se) { 10155 cfs_rq = cfs_rq_of(se); 10156 entity_tick(cfs_rq, se, queued); 10157 } 10158 10159 if (static_branch_unlikely(&sched_numa_balancing)) 10160 task_tick_numa(rq, curr); 10161 10162 update_misfit_status(curr, rq); 10163 update_overutilized_status(task_rq(curr)); 10164 } 10165 10166 /* 10167 * called on fork with the child task as argument from the parent's context 10168 * - child not yet on the tasklist 10169 * - preemption disabled 10170 */ 10171 static void task_fork_fair(struct task_struct *p) 10172 { 10173 struct cfs_rq *cfs_rq; 10174 struct sched_entity *se = &p->se, *curr; 10175 struct rq *rq = this_rq(); 10176 struct rq_flags rf; 10177 10178 rq_lock(rq, &rf); 10179 update_rq_clock(rq); 10180 10181 cfs_rq = task_cfs_rq(current); 10182 curr = cfs_rq->curr; 10183 if (curr) { 10184 update_curr(cfs_rq); 10185 se->vruntime = curr->vruntime; 10186 } 10187 place_entity(cfs_rq, se, 1); 10188 10189 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 10190 /* 10191 * Upon rescheduling, sched_class::put_prev_task() will place 10192 * 'current' within the tree based on its new key value. 10193 */ 10194 swap(curr->vruntime, se->vruntime); 10195 resched_curr(rq); 10196 } 10197 10198 se->vruntime -= cfs_rq->min_vruntime; 10199 rq_unlock(rq, &rf); 10200 } 10201 10202 /* 10203 * Priority of the task has changed. Check to see if we preempt 10204 * the current task. 10205 */ 10206 static void 10207 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 10208 { 10209 if (!task_on_rq_queued(p)) 10210 return; 10211 10212 /* 10213 * Reschedule if we are currently running on this runqueue and 10214 * our priority decreased, or if we are not currently running on 10215 * this runqueue and our priority is higher than the current's 10216 */ 10217 if (rq->curr == p) { 10218 if (p->prio > oldprio) 10219 resched_curr(rq); 10220 } else 10221 check_preempt_curr(rq, p, 0); 10222 } 10223 10224 static inline bool vruntime_normalized(struct task_struct *p) 10225 { 10226 struct sched_entity *se = &p->se; 10227 10228 /* 10229 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 10230 * the dequeue_entity(.flags=0) will already have normalized the 10231 * vruntime. 10232 */ 10233 if (p->on_rq) 10234 return true; 10235 10236 /* 10237 * When !on_rq, vruntime of the task has usually NOT been normalized. 10238 * But there are some cases where it has already been normalized: 10239 * 10240 * - A forked child which is waiting for being woken up by 10241 * wake_up_new_task(). 10242 * - A task which has been woken up by try_to_wake_up() and 10243 * waiting for actually being woken up by sched_ttwu_pending(). 10244 */ 10245 if (!se->sum_exec_runtime || 10246 (p->state == TASK_WAKING && p->sched_remote_wakeup)) 10247 return true; 10248 10249 return false; 10250 } 10251 10252 #ifdef CONFIG_FAIR_GROUP_SCHED 10253 /* 10254 * Propagate the changes of the sched_entity across the tg tree to make it 10255 * visible to the root 10256 */ 10257 static void propagate_entity_cfs_rq(struct sched_entity *se) 10258 { 10259 struct cfs_rq *cfs_rq; 10260 10261 /* Start to propagate at parent */ 10262 se = se->parent; 10263 10264 for_each_sched_entity(se) { 10265 cfs_rq = cfs_rq_of(se); 10266 10267 if (cfs_rq_throttled(cfs_rq)) 10268 break; 10269 10270 update_load_avg(cfs_rq, se, UPDATE_TG); 10271 } 10272 } 10273 #else 10274 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 10275 #endif 10276 10277 static void detach_entity_cfs_rq(struct sched_entity *se) 10278 { 10279 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10280 10281 /* Catch up with the cfs_rq and remove our load when we leave */ 10282 update_load_avg(cfs_rq, se, 0); 10283 detach_entity_load_avg(cfs_rq, se); 10284 update_tg_load_avg(cfs_rq, false); 10285 propagate_entity_cfs_rq(se); 10286 } 10287 10288 static void attach_entity_cfs_rq(struct sched_entity *se) 10289 { 10290 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10291 10292 #ifdef CONFIG_FAIR_GROUP_SCHED 10293 /* 10294 * Since the real-depth could have been changed (only FAIR 10295 * class maintain depth value), reset depth properly. 10296 */ 10297 se->depth = se->parent ? se->parent->depth + 1 : 0; 10298 #endif 10299 10300 /* Synchronize entity with its cfs_rq */ 10301 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 10302 attach_entity_load_avg(cfs_rq, se, 0); 10303 update_tg_load_avg(cfs_rq, false); 10304 propagate_entity_cfs_rq(se); 10305 } 10306 10307 static void detach_task_cfs_rq(struct task_struct *p) 10308 { 10309 struct sched_entity *se = &p->se; 10310 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10311 10312 if (!vruntime_normalized(p)) { 10313 /* 10314 * Fix up our vruntime so that the current sleep doesn't 10315 * cause 'unlimited' sleep bonus. 10316 */ 10317 place_entity(cfs_rq, se, 0); 10318 se->vruntime -= cfs_rq->min_vruntime; 10319 } 10320 10321 detach_entity_cfs_rq(se); 10322 } 10323 10324 static void attach_task_cfs_rq(struct task_struct *p) 10325 { 10326 struct sched_entity *se = &p->se; 10327 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10328 10329 attach_entity_cfs_rq(se); 10330 10331 if (!vruntime_normalized(p)) 10332 se->vruntime += cfs_rq->min_vruntime; 10333 } 10334 10335 static void switched_from_fair(struct rq *rq, struct task_struct *p) 10336 { 10337 detach_task_cfs_rq(p); 10338 } 10339 10340 static void switched_to_fair(struct rq *rq, struct task_struct *p) 10341 { 10342 attach_task_cfs_rq(p); 10343 10344 if (task_on_rq_queued(p)) { 10345 /* 10346 * We were most likely switched from sched_rt, so 10347 * kick off the schedule if running, otherwise just see 10348 * if we can still preempt the current task. 10349 */ 10350 if (rq->curr == p) 10351 resched_curr(rq); 10352 else 10353 check_preempt_curr(rq, p, 0); 10354 } 10355 } 10356 10357 /* Account for a task changing its policy or group. 10358 * 10359 * This routine is mostly called to set cfs_rq->curr field when a task 10360 * migrates between groups/classes. 10361 */ 10362 static void set_curr_task_fair(struct rq *rq) 10363 { 10364 struct sched_entity *se = &rq->curr->se; 10365 10366 for_each_sched_entity(se) { 10367 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10368 10369 set_next_entity(cfs_rq, se); 10370 /* ensure bandwidth has been allocated on our new cfs_rq */ 10371 account_cfs_rq_runtime(cfs_rq, 0); 10372 } 10373 } 10374 10375 void init_cfs_rq(struct cfs_rq *cfs_rq) 10376 { 10377 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 10378 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 10379 #ifndef CONFIG_64BIT 10380 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 10381 #endif 10382 #ifdef CONFIG_SMP 10383 raw_spin_lock_init(&cfs_rq->removed.lock); 10384 #endif 10385 } 10386 10387 #ifdef CONFIG_FAIR_GROUP_SCHED 10388 static void task_set_group_fair(struct task_struct *p) 10389 { 10390 struct sched_entity *se = &p->se; 10391 10392 set_task_rq(p, task_cpu(p)); 10393 se->depth = se->parent ? se->parent->depth + 1 : 0; 10394 } 10395 10396 static void task_move_group_fair(struct task_struct *p) 10397 { 10398 detach_task_cfs_rq(p); 10399 set_task_rq(p, task_cpu(p)); 10400 10401 #ifdef CONFIG_SMP 10402 /* Tell se's cfs_rq has been changed -- migrated */ 10403 p->se.avg.last_update_time = 0; 10404 #endif 10405 attach_task_cfs_rq(p); 10406 } 10407 10408 static void task_change_group_fair(struct task_struct *p, int type) 10409 { 10410 switch (type) { 10411 case TASK_SET_GROUP: 10412 task_set_group_fair(p); 10413 break; 10414 10415 case TASK_MOVE_GROUP: 10416 task_move_group_fair(p); 10417 break; 10418 } 10419 } 10420 10421 void free_fair_sched_group(struct task_group *tg) 10422 { 10423 int i; 10424 10425 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10426 10427 for_each_possible_cpu(i) { 10428 if (tg->cfs_rq) 10429 kfree(tg->cfs_rq[i]); 10430 if (tg->se) 10431 kfree(tg->se[i]); 10432 } 10433 10434 kfree(tg->cfs_rq); 10435 kfree(tg->se); 10436 } 10437 10438 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10439 { 10440 struct sched_entity *se; 10441 struct cfs_rq *cfs_rq; 10442 int i; 10443 10444 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 10445 if (!tg->cfs_rq) 10446 goto err; 10447 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 10448 if (!tg->se) 10449 goto err; 10450 10451 tg->shares = NICE_0_LOAD; 10452 10453 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10454 10455 for_each_possible_cpu(i) { 10456 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 10457 GFP_KERNEL, cpu_to_node(i)); 10458 if (!cfs_rq) 10459 goto err; 10460 10461 se = kzalloc_node(sizeof(struct sched_entity), 10462 GFP_KERNEL, cpu_to_node(i)); 10463 if (!se) 10464 goto err_free_rq; 10465 10466 init_cfs_rq(cfs_rq); 10467 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 10468 init_entity_runnable_average(se); 10469 } 10470 10471 return 1; 10472 10473 err_free_rq: 10474 kfree(cfs_rq); 10475 err: 10476 return 0; 10477 } 10478 10479 void online_fair_sched_group(struct task_group *tg) 10480 { 10481 struct sched_entity *se; 10482 struct rq *rq; 10483 int i; 10484 10485 for_each_possible_cpu(i) { 10486 rq = cpu_rq(i); 10487 se = tg->se[i]; 10488 10489 raw_spin_lock_irq(&rq->lock); 10490 update_rq_clock(rq); 10491 attach_entity_cfs_rq(se); 10492 sync_throttle(tg, i); 10493 raw_spin_unlock_irq(&rq->lock); 10494 } 10495 } 10496 10497 void unregister_fair_sched_group(struct task_group *tg) 10498 { 10499 unsigned long flags; 10500 struct rq *rq; 10501 int cpu; 10502 10503 for_each_possible_cpu(cpu) { 10504 if (tg->se[cpu]) 10505 remove_entity_load_avg(tg->se[cpu]); 10506 10507 /* 10508 * Only empty task groups can be destroyed; so we can speculatively 10509 * check on_list without danger of it being re-added. 10510 */ 10511 if (!tg->cfs_rq[cpu]->on_list) 10512 continue; 10513 10514 rq = cpu_rq(cpu); 10515 10516 raw_spin_lock_irqsave(&rq->lock, flags); 10517 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 10518 raw_spin_unlock_irqrestore(&rq->lock, flags); 10519 } 10520 } 10521 10522 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 10523 struct sched_entity *se, int cpu, 10524 struct sched_entity *parent) 10525 { 10526 struct rq *rq = cpu_rq(cpu); 10527 10528 cfs_rq->tg = tg; 10529 cfs_rq->rq = rq; 10530 init_cfs_rq_runtime(cfs_rq); 10531 10532 tg->cfs_rq[cpu] = cfs_rq; 10533 tg->se[cpu] = se; 10534 10535 /* se could be NULL for root_task_group */ 10536 if (!se) 10537 return; 10538 10539 if (!parent) { 10540 se->cfs_rq = &rq->cfs; 10541 se->depth = 0; 10542 } else { 10543 se->cfs_rq = parent->my_q; 10544 se->depth = parent->depth + 1; 10545 } 10546 10547 se->my_q = cfs_rq; 10548 /* guarantee group entities always have weight */ 10549 update_load_set(&se->load, NICE_0_LOAD); 10550 se->parent = parent; 10551 } 10552 10553 static DEFINE_MUTEX(shares_mutex); 10554 10555 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 10556 { 10557 int i; 10558 10559 /* 10560 * We can't change the weight of the root cgroup. 10561 */ 10562 if (!tg->se[0]) 10563 return -EINVAL; 10564 10565 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 10566 10567 mutex_lock(&shares_mutex); 10568 if (tg->shares == shares) 10569 goto done; 10570 10571 tg->shares = shares; 10572 for_each_possible_cpu(i) { 10573 struct rq *rq = cpu_rq(i); 10574 struct sched_entity *se = tg->se[i]; 10575 struct rq_flags rf; 10576 10577 /* Propagate contribution to hierarchy */ 10578 rq_lock_irqsave(rq, &rf); 10579 update_rq_clock(rq); 10580 for_each_sched_entity(se) { 10581 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 10582 update_cfs_group(se); 10583 } 10584 rq_unlock_irqrestore(rq, &rf); 10585 } 10586 10587 done: 10588 mutex_unlock(&shares_mutex); 10589 return 0; 10590 } 10591 #else /* CONFIG_FAIR_GROUP_SCHED */ 10592 10593 void free_fair_sched_group(struct task_group *tg) { } 10594 10595 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10596 { 10597 return 1; 10598 } 10599 10600 void online_fair_sched_group(struct task_group *tg) { } 10601 10602 void unregister_fair_sched_group(struct task_group *tg) { } 10603 10604 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10605 10606 10607 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 10608 { 10609 struct sched_entity *se = &task->se; 10610 unsigned int rr_interval = 0; 10611 10612 /* 10613 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 10614 * idle runqueue: 10615 */ 10616 if (rq->cfs.load.weight) 10617 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 10618 10619 return rr_interval; 10620 } 10621 10622 /* 10623 * All the scheduling class methods: 10624 */ 10625 const struct sched_class fair_sched_class = { 10626 .next = &idle_sched_class, 10627 .enqueue_task = enqueue_task_fair, 10628 .dequeue_task = dequeue_task_fair, 10629 .yield_task = yield_task_fair, 10630 .yield_to_task = yield_to_task_fair, 10631 10632 .check_preempt_curr = check_preempt_wakeup, 10633 10634 .pick_next_task = pick_next_task_fair, 10635 .put_prev_task = put_prev_task_fair, 10636 10637 #ifdef CONFIG_SMP 10638 .select_task_rq = select_task_rq_fair, 10639 .migrate_task_rq = migrate_task_rq_fair, 10640 10641 .rq_online = rq_online_fair, 10642 .rq_offline = rq_offline_fair, 10643 10644 .task_dead = task_dead_fair, 10645 .set_cpus_allowed = set_cpus_allowed_common, 10646 #endif 10647 10648 .set_curr_task = set_curr_task_fair, 10649 .task_tick = task_tick_fair, 10650 .task_fork = task_fork_fair, 10651 10652 .prio_changed = prio_changed_fair, 10653 .switched_from = switched_from_fair, 10654 .switched_to = switched_to_fair, 10655 10656 .get_rr_interval = get_rr_interval_fair, 10657 10658 .update_curr = update_curr_fair, 10659 10660 #ifdef CONFIG_FAIR_GROUP_SCHED 10661 .task_change_group = task_change_group_fair, 10662 #endif 10663 }; 10664 10665 #ifdef CONFIG_SCHED_DEBUG 10666 void print_cfs_stats(struct seq_file *m, int cpu) 10667 { 10668 struct cfs_rq *cfs_rq, *pos; 10669 10670 rcu_read_lock(); 10671 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 10672 print_cfs_rq(m, cpu, cfs_rq); 10673 rcu_read_unlock(); 10674 } 10675 10676 #ifdef CONFIG_NUMA_BALANCING 10677 void show_numa_stats(struct task_struct *p, struct seq_file *m) 10678 { 10679 int node; 10680 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 10681 10682 for_each_online_node(node) { 10683 if (p->numa_faults) { 10684 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 10685 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 10686 } 10687 if (p->numa_group) { 10688 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 10689 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 10690 } 10691 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 10692 } 10693 } 10694 #endif /* CONFIG_NUMA_BALANCING */ 10695 #endif /* CONFIG_SCHED_DEBUG */ 10696 10697 __init void init_sched_fair_class(void) 10698 { 10699 #ifdef CONFIG_SMP 10700 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 10701 10702 #ifdef CONFIG_NO_HZ_COMMON 10703 nohz.next_balance = jiffies; 10704 nohz.next_blocked = jiffies; 10705 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 10706 #endif 10707 #endif /* SMP */ 10708 10709 } 10710