1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 #include <linux/rbtree_augmented.h> 51 52 #include <asm/switch_to.h> 53 54 #include <linux/sched/cond_resched.h> 55 56 #include "sched.h" 57 #include "stats.h" 58 #include "autogroup.h" 59 60 /* 61 * The initial- and re-scaling of tunables is configurable 62 * 63 * Options are: 64 * 65 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 66 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 67 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 68 * 69 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 70 */ 71 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 72 73 /* 74 * Minimal preemption granularity for CPU-bound tasks: 75 * 76 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 77 */ 78 unsigned int sysctl_sched_base_slice = 750000ULL; 79 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 80 81 /* 82 * After fork, child runs first. If set to 0 (default) then 83 * parent will (try to) run first. 84 */ 85 unsigned int sysctl_sched_child_runs_first __read_mostly; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 int sched_thermal_decay_shift; 90 static int __init setup_sched_thermal_decay_shift(char *str) 91 { 92 int _shift = 0; 93 94 if (kstrtoint(str, 0, &_shift)) 95 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 96 97 sched_thermal_decay_shift = clamp(_shift, 0, 10); 98 return 1; 99 } 100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 101 102 #ifdef CONFIG_SMP 103 /* 104 * For asym packing, by default the lower numbered CPU has higher priority. 105 */ 106 int __weak arch_asym_cpu_priority(int cpu) 107 { 108 return -cpu; 109 } 110 111 /* 112 * The margin used when comparing utilization with CPU capacity. 113 * 114 * (default: ~20%) 115 */ 116 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 117 118 /* 119 * The margin used when comparing CPU capacities. 120 * is 'cap1' noticeably greater than 'cap2' 121 * 122 * (default: ~5%) 123 */ 124 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 125 #endif 126 127 #ifdef CONFIG_CFS_BANDWIDTH 128 /* 129 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 130 * each time a cfs_rq requests quota. 131 * 132 * Note: in the case that the slice exceeds the runtime remaining (either due 133 * to consumption or the quota being specified to be smaller than the slice) 134 * we will always only issue the remaining available time. 135 * 136 * (default: 5 msec, units: microseconds) 137 */ 138 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 139 #endif 140 141 #ifdef CONFIG_NUMA_BALANCING 142 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 143 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 144 #endif 145 146 #ifdef CONFIG_SYSCTL 147 static struct ctl_table sched_fair_sysctls[] = { 148 { 149 .procname = "sched_child_runs_first", 150 .data = &sysctl_sched_child_runs_first, 151 .maxlen = sizeof(unsigned int), 152 .mode = 0644, 153 .proc_handler = proc_dointvec, 154 }, 155 #ifdef CONFIG_CFS_BANDWIDTH 156 { 157 .procname = "sched_cfs_bandwidth_slice_us", 158 .data = &sysctl_sched_cfs_bandwidth_slice, 159 .maxlen = sizeof(unsigned int), 160 .mode = 0644, 161 .proc_handler = proc_dointvec_minmax, 162 .extra1 = SYSCTL_ONE, 163 }, 164 #endif 165 #ifdef CONFIG_NUMA_BALANCING 166 { 167 .procname = "numa_balancing_promote_rate_limit_MBps", 168 .data = &sysctl_numa_balancing_promote_rate_limit, 169 .maxlen = sizeof(unsigned int), 170 .mode = 0644, 171 .proc_handler = proc_dointvec_minmax, 172 .extra1 = SYSCTL_ZERO, 173 }, 174 #endif /* CONFIG_NUMA_BALANCING */ 175 {} 176 }; 177 178 static int __init sched_fair_sysctl_init(void) 179 { 180 register_sysctl_init("kernel", sched_fair_sysctls); 181 return 0; 182 } 183 late_initcall(sched_fair_sysctl_init); 184 #endif 185 186 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 187 { 188 lw->weight += inc; 189 lw->inv_weight = 0; 190 } 191 192 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 193 { 194 lw->weight -= dec; 195 lw->inv_weight = 0; 196 } 197 198 static inline void update_load_set(struct load_weight *lw, unsigned long w) 199 { 200 lw->weight = w; 201 lw->inv_weight = 0; 202 } 203 204 /* 205 * Increase the granularity value when there are more CPUs, 206 * because with more CPUs the 'effective latency' as visible 207 * to users decreases. But the relationship is not linear, 208 * so pick a second-best guess by going with the log2 of the 209 * number of CPUs. 210 * 211 * This idea comes from the SD scheduler of Con Kolivas: 212 */ 213 static unsigned int get_update_sysctl_factor(void) 214 { 215 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 216 unsigned int factor; 217 218 switch (sysctl_sched_tunable_scaling) { 219 case SCHED_TUNABLESCALING_NONE: 220 factor = 1; 221 break; 222 case SCHED_TUNABLESCALING_LINEAR: 223 factor = cpus; 224 break; 225 case SCHED_TUNABLESCALING_LOG: 226 default: 227 factor = 1 + ilog2(cpus); 228 break; 229 } 230 231 return factor; 232 } 233 234 static void update_sysctl(void) 235 { 236 unsigned int factor = get_update_sysctl_factor(); 237 238 #define SET_SYSCTL(name) \ 239 (sysctl_##name = (factor) * normalized_sysctl_##name) 240 SET_SYSCTL(sched_base_slice); 241 #undef SET_SYSCTL 242 } 243 244 void __init sched_init_granularity(void) 245 { 246 update_sysctl(); 247 } 248 249 #define WMULT_CONST (~0U) 250 #define WMULT_SHIFT 32 251 252 static void __update_inv_weight(struct load_weight *lw) 253 { 254 unsigned long w; 255 256 if (likely(lw->inv_weight)) 257 return; 258 259 w = scale_load_down(lw->weight); 260 261 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 262 lw->inv_weight = 1; 263 else if (unlikely(!w)) 264 lw->inv_weight = WMULT_CONST; 265 else 266 lw->inv_weight = WMULT_CONST / w; 267 } 268 269 /* 270 * delta_exec * weight / lw.weight 271 * OR 272 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 273 * 274 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 275 * we're guaranteed shift stays positive because inv_weight is guaranteed to 276 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 277 * 278 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 279 * weight/lw.weight <= 1, and therefore our shift will also be positive. 280 */ 281 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 282 { 283 u64 fact = scale_load_down(weight); 284 u32 fact_hi = (u32)(fact >> 32); 285 int shift = WMULT_SHIFT; 286 int fs; 287 288 __update_inv_weight(lw); 289 290 if (unlikely(fact_hi)) { 291 fs = fls(fact_hi); 292 shift -= fs; 293 fact >>= fs; 294 } 295 296 fact = mul_u32_u32(fact, lw->inv_weight); 297 298 fact_hi = (u32)(fact >> 32); 299 if (fact_hi) { 300 fs = fls(fact_hi); 301 shift -= fs; 302 fact >>= fs; 303 } 304 305 return mul_u64_u32_shr(delta_exec, fact, shift); 306 } 307 308 /* 309 * delta /= w 310 */ 311 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 312 { 313 if (unlikely(se->load.weight != NICE_0_LOAD)) 314 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 315 316 return delta; 317 } 318 319 const struct sched_class fair_sched_class; 320 321 /************************************************************** 322 * CFS operations on generic schedulable entities: 323 */ 324 325 #ifdef CONFIG_FAIR_GROUP_SCHED 326 327 /* Walk up scheduling entities hierarchy */ 328 #define for_each_sched_entity(se) \ 329 for (; se; se = se->parent) 330 331 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 332 { 333 struct rq *rq = rq_of(cfs_rq); 334 int cpu = cpu_of(rq); 335 336 if (cfs_rq->on_list) 337 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 338 339 cfs_rq->on_list = 1; 340 341 /* 342 * Ensure we either appear before our parent (if already 343 * enqueued) or force our parent to appear after us when it is 344 * enqueued. The fact that we always enqueue bottom-up 345 * reduces this to two cases and a special case for the root 346 * cfs_rq. Furthermore, it also means that we will always reset 347 * tmp_alone_branch either when the branch is connected 348 * to a tree or when we reach the top of the tree 349 */ 350 if (cfs_rq->tg->parent && 351 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 352 /* 353 * If parent is already on the list, we add the child 354 * just before. Thanks to circular linked property of 355 * the list, this means to put the child at the tail 356 * of the list that starts by parent. 357 */ 358 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 359 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 360 /* 361 * The branch is now connected to its tree so we can 362 * reset tmp_alone_branch to the beginning of the 363 * list. 364 */ 365 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 366 return true; 367 } 368 369 if (!cfs_rq->tg->parent) { 370 /* 371 * cfs rq without parent should be put 372 * at the tail of the list. 373 */ 374 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 375 &rq->leaf_cfs_rq_list); 376 /* 377 * We have reach the top of a tree so we can reset 378 * tmp_alone_branch to the beginning of the list. 379 */ 380 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 381 return true; 382 } 383 384 /* 385 * The parent has not already been added so we want to 386 * make sure that it will be put after us. 387 * tmp_alone_branch points to the begin of the branch 388 * where we will add parent. 389 */ 390 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 391 /* 392 * update tmp_alone_branch to points to the new begin 393 * of the branch 394 */ 395 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 396 return false; 397 } 398 399 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 400 { 401 if (cfs_rq->on_list) { 402 struct rq *rq = rq_of(cfs_rq); 403 404 /* 405 * With cfs_rq being unthrottled/throttled during an enqueue, 406 * it can happen the tmp_alone_branch points the a leaf that 407 * we finally want to del. In this case, tmp_alone_branch moves 408 * to the prev element but it will point to rq->leaf_cfs_rq_list 409 * at the end of the enqueue. 410 */ 411 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 412 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 413 414 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 415 cfs_rq->on_list = 0; 416 } 417 } 418 419 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 420 { 421 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 422 } 423 424 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 425 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 426 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 427 leaf_cfs_rq_list) 428 429 /* Do the two (enqueued) entities belong to the same group ? */ 430 static inline struct cfs_rq * 431 is_same_group(struct sched_entity *se, struct sched_entity *pse) 432 { 433 if (se->cfs_rq == pse->cfs_rq) 434 return se->cfs_rq; 435 436 return NULL; 437 } 438 439 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 440 { 441 return se->parent; 442 } 443 444 static void 445 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 446 { 447 int se_depth, pse_depth; 448 449 /* 450 * preemption test can be made between sibling entities who are in the 451 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 452 * both tasks until we find their ancestors who are siblings of common 453 * parent. 454 */ 455 456 /* First walk up until both entities are at same depth */ 457 se_depth = (*se)->depth; 458 pse_depth = (*pse)->depth; 459 460 while (se_depth > pse_depth) { 461 se_depth--; 462 *se = parent_entity(*se); 463 } 464 465 while (pse_depth > se_depth) { 466 pse_depth--; 467 *pse = parent_entity(*pse); 468 } 469 470 while (!is_same_group(*se, *pse)) { 471 *se = parent_entity(*se); 472 *pse = parent_entity(*pse); 473 } 474 } 475 476 static int tg_is_idle(struct task_group *tg) 477 { 478 return tg->idle > 0; 479 } 480 481 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 482 { 483 return cfs_rq->idle > 0; 484 } 485 486 static int se_is_idle(struct sched_entity *se) 487 { 488 if (entity_is_task(se)) 489 return task_has_idle_policy(task_of(se)); 490 return cfs_rq_is_idle(group_cfs_rq(se)); 491 } 492 493 #else /* !CONFIG_FAIR_GROUP_SCHED */ 494 495 #define for_each_sched_entity(se) \ 496 for (; se; se = NULL) 497 498 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 499 { 500 return true; 501 } 502 503 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 504 { 505 } 506 507 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 508 { 509 } 510 511 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 512 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 513 514 static inline struct sched_entity *parent_entity(struct sched_entity *se) 515 { 516 return NULL; 517 } 518 519 static inline void 520 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 521 { 522 } 523 524 static inline int tg_is_idle(struct task_group *tg) 525 { 526 return 0; 527 } 528 529 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 530 { 531 return 0; 532 } 533 534 static int se_is_idle(struct sched_entity *se) 535 { 536 return 0; 537 } 538 539 #endif /* CONFIG_FAIR_GROUP_SCHED */ 540 541 static __always_inline 542 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 543 544 /************************************************************** 545 * Scheduling class tree data structure manipulation methods: 546 */ 547 548 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 549 { 550 s64 delta = (s64)(vruntime - max_vruntime); 551 if (delta > 0) 552 max_vruntime = vruntime; 553 554 return max_vruntime; 555 } 556 557 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 558 { 559 s64 delta = (s64)(vruntime - min_vruntime); 560 if (delta < 0) 561 min_vruntime = vruntime; 562 563 return min_vruntime; 564 } 565 566 static inline bool entity_before(const struct sched_entity *a, 567 const struct sched_entity *b) 568 { 569 return (s64)(a->vruntime - b->vruntime) < 0; 570 } 571 572 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 573 { 574 return (s64)(se->vruntime - cfs_rq->min_vruntime); 575 } 576 577 #define __node_2_se(node) \ 578 rb_entry((node), struct sched_entity, run_node) 579 580 /* 581 * Compute virtual time from the per-task service numbers: 582 * 583 * Fair schedulers conserve lag: 584 * 585 * \Sum lag_i = 0 586 * 587 * Where lag_i is given by: 588 * 589 * lag_i = S - s_i = w_i * (V - v_i) 590 * 591 * Where S is the ideal service time and V is it's virtual time counterpart. 592 * Therefore: 593 * 594 * \Sum lag_i = 0 595 * \Sum w_i * (V - v_i) = 0 596 * \Sum w_i * V - w_i * v_i = 0 597 * 598 * From which we can solve an expression for V in v_i (which we have in 599 * se->vruntime): 600 * 601 * \Sum v_i * w_i \Sum v_i * w_i 602 * V = -------------- = -------------- 603 * \Sum w_i W 604 * 605 * Specifically, this is the weighted average of all entity virtual runtimes. 606 * 607 * [[ NOTE: this is only equal to the ideal scheduler under the condition 608 * that join/leave operations happen at lag_i = 0, otherwise the 609 * virtual time has non-continguous motion equivalent to: 610 * 611 * V +-= lag_i / W 612 * 613 * Also see the comment in place_entity() that deals with this. ]] 614 * 615 * However, since v_i is u64, and the multiplcation could easily overflow 616 * transform it into a relative form that uses smaller quantities: 617 * 618 * Substitute: v_i == (v_i - v0) + v0 619 * 620 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 621 * V = ---------------------------- = --------------------- + v0 622 * W W 623 * 624 * Which we track using: 625 * 626 * v0 := cfs_rq->min_vruntime 627 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 628 * \Sum w_i := cfs_rq->avg_load 629 * 630 * Since min_vruntime is a monotonic increasing variable that closely tracks 631 * the per-task service, these deltas: (v_i - v), will be in the order of the 632 * maximal (virtual) lag induced in the system due to quantisation. 633 * 634 * Also, we use scale_load_down() to reduce the size. 635 * 636 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 637 */ 638 static void 639 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 640 { 641 unsigned long weight = scale_load_down(se->load.weight); 642 s64 key = entity_key(cfs_rq, se); 643 644 cfs_rq->avg_vruntime += key * weight; 645 cfs_rq->avg_load += weight; 646 } 647 648 static void 649 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 650 { 651 unsigned long weight = scale_load_down(se->load.weight); 652 s64 key = entity_key(cfs_rq, se); 653 654 cfs_rq->avg_vruntime -= key * weight; 655 cfs_rq->avg_load -= weight; 656 } 657 658 static inline 659 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 660 { 661 /* 662 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 663 */ 664 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 665 } 666 667 /* 668 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 669 * For this to be so, the result of this function must have a left bias. 670 */ 671 u64 avg_vruntime(struct cfs_rq *cfs_rq) 672 { 673 struct sched_entity *curr = cfs_rq->curr; 674 s64 avg = cfs_rq->avg_vruntime; 675 long load = cfs_rq->avg_load; 676 677 if (curr && curr->on_rq) { 678 unsigned long weight = scale_load_down(curr->load.weight); 679 680 avg += entity_key(cfs_rq, curr) * weight; 681 load += weight; 682 } 683 684 if (load) { 685 /* sign flips effective floor / ceil */ 686 if (avg < 0) 687 avg -= (load - 1); 688 avg = div_s64(avg, load); 689 } 690 691 return cfs_rq->min_vruntime + avg; 692 } 693 694 /* 695 * lag_i = S - s_i = w_i * (V - v_i) 696 * 697 * However, since V is approximated by the weighted average of all entities it 698 * is possible -- by addition/removal/reweight to the tree -- to move V around 699 * and end up with a larger lag than we started with. 700 * 701 * Limit this to either double the slice length with a minimum of TICK_NSEC 702 * since that is the timing granularity. 703 * 704 * EEVDF gives the following limit for a steady state system: 705 * 706 * -r_max < lag < max(r_max, q) 707 * 708 * XXX could add max_slice to the augmented data to track this. 709 */ 710 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 711 { 712 s64 lag, limit; 713 714 SCHED_WARN_ON(!se->on_rq); 715 lag = avg_vruntime(cfs_rq) - se->vruntime; 716 717 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 718 se->vlag = clamp(lag, -limit, limit); 719 } 720 721 /* 722 * Entity is eligible once it received less service than it ought to have, 723 * eg. lag >= 0. 724 * 725 * lag_i = S - s_i = w_i*(V - v_i) 726 * 727 * lag_i >= 0 -> V >= v_i 728 * 729 * \Sum (v_i - v)*w_i 730 * V = ------------------ + v 731 * \Sum w_i 732 * 733 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 734 * 735 * Note: using 'avg_vruntime() > se->vruntime' is inacurate due 736 * to the loss in precision caused by the division. 737 */ 738 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 739 { 740 struct sched_entity *curr = cfs_rq->curr; 741 s64 avg = cfs_rq->avg_vruntime; 742 long load = cfs_rq->avg_load; 743 744 if (curr && curr->on_rq) { 745 unsigned long weight = scale_load_down(curr->load.weight); 746 747 avg += entity_key(cfs_rq, curr) * weight; 748 load += weight; 749 } 750 751 return avg >= entity_key(cfs_rq, se) * load; 752 } 753 754 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 755 { 756 u64 min_vruntime = cfs_rq->min_vruntime; 757 /* 758 * open coded max_vruntime() to allow updating avg_vruntime 759 */ 760 s64 delta = (s64)(vruntime - min_vruntime); 761 if (delta > 0) { 762 avg_vruntime_update(cfs_rq, delta); 763 min_vruntime = vruntime; 764 } 765 return min_vruntime; 766 } 767 768 static void update_min_vruntime(struct cfs_rq *cfs_rq) 769 { 770 struct sched_entity *se = __pick_first_entity(cfs_rq); 771 struct sched_entity *curr = cfs_rq->curr; 772 773 u64 vruntime = cfs_rq->min_vruntime; 774 775 if (curr) { 776 if (curr->on_rq) 777 vruntime = curr->vruntime; 778 else 779 curr = NULL; 780 } 781 782 if (se) { 783 if (!curr) 784 vruntime = se->vruntime; 785 else 786 vruntime = min_vruntime(vruntime, se->vruntime); 787 } 788 789 /* ensure we never gain time by being placed backwards. */ 790 u64_u32_store(cfs_rq->min_vruntime, 791 __update_min_vruntime(cfs_rq, vruntime)); 792 } 793 794 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 795 { 796 return entity_before(__node_2_se(a), __node_2_se(b)); 797 } 798 799 #define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 800 801 static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node) 802 { 803 if (node) { 804 struct sched_entity *rse = __node_2_se(node); 805 if (deadline_gt(min_deadline, se, rse)) 806 se->min_deadline = rse->min_deadline; 807 } 808 } 809 810 /* 811 * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline) 812 */ 813 static inline bool min_deadline_update(struct sched_entity *se, bool exit) 814 { 815 u64 old_min_deadline = se->min_deadline; 816 struct rb_node *node = &se->run_node; 817 818 se->min_deadline = se->deadline; 819 __update_min_deadline(se, node->rb_right); 820 __update_min_deadline(se, node->rb_left); 821 822 return se->min_deadline == old_min_deadline; 823 } 824 825 RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity, 826 run_node, min_deadline, min_deadline_update); 827 828 /* 829 * Enqueue an entity into the rb-tree: 830 */ 831 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 832 { 833 avg_vruntime_add(cfs_rq, se); 834 se->min_deadline = se->deadline; 835 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 836 __entity_less, &min_deadline_cb); 837 } 838 839 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 840 { 841 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 842 &min_deadline_cb); 843 avg_vruntime_sub(cfs_rq, se); 844 } 845 846 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 847 { 848 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 849 850 if (!left) 851 return NULL; 852 853 return __node_2_se(left); 854 } 855 856 /* 857 * Earliest Eligible Virtual Deadline First 858 * 859 * In order to provide latency guarantees for different request sizes 860 * EEVDF selects the best runnable task from two criteria: 861 * 862 * 1) the task must be eligible (must be owed service) 863 * 864 * 2) from those tasks that meet 1), we select the one 865 * with the earliest virtual deadline. 866 * 867 * We can do this in O(log n) time due to an augmented RB-tree. The 868 * tree keeps the entries sorted on service, but also functions as a 869 * heap based on the deadline by keeping: 870 * 871 * se->min_deadline = min(se->deadline, se->{left,right}->min_deadline) 872 * 873 * Which allows an EDF like search on (sub)trees. 874 */ 875 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq) 876 { 877 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 878 struct sched_entity *curr = cfs_rq->curr; 879 struct sched_entity *best = NULL; 880 struct sched_entity *best_left = NULL; 881 882 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 883 curr = NULL; 884 best = curr; 885 886 /* 887 * Once selected, run a task until it either becomes non-eligible or 888 * until it gets a new slice. See the HACK in set_next_entity(). 889 */ 890 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 891 return curr; 892 893 while (node) { 894 struct sched_entity *se = __node_2_se(node); 895 896 /* 897 * If this entity is not eligible, try the left subtree. 898 */ 899 if (!entity_eligible(cfs_rq, se)) { 900 node = node->rb_left; 901 continue; 902 } 903 904 /* 905 * Now we heap search eligible trees for the best (min_)deadline 906 */ 907 if (!best || deadline_gt(deadline, best, se)) 908 best = se; 909 910 /* 911 * Every se in a left branch is eligible, keep track of the 912 * branch with the best min_deadline 913 */ 914 if (node->rb_left) { 915 struct sched_entity *left = __node_2_se(node->rb_left); 916 917 if (!best_left || deadline_gt(min_deadline, best_left, left)) 918 best_left = left; 919 920 /* 921 * min_deadline is in the left branch. rb_left and all 922 * descendants are eligible, so immediately switch to the second 923 * loop. 924 */ 925 if (left->min_deadline == se->min_deadline) 926 break; 927 } 928 929 /* min_deadline is at this node, no need to look right */ 930 if (se->deadline == se->min_deadline) 931 break; 932 933 /* else min_deadline is in the right branch. */ 934 node = node->rb_right; 935 } 936 937 /* 938 * We ran into an eligible node which is itself the best. 939 * (Or nr_running == 0 and both are NULL) 940 */ 941 if (!best_left || (s64)(best_left->min_deadline - best->deadline) > 0) 942 return best; 943 944 /* 945 * Now best_left and all of its children are eligible, and we are just 946 * looking for deadline == min_deadline 947 */ 948 node = &best_left->run_node; 949 while (node) { 950 struct sched_entity *se = __node_2_se(node); 951 952 /* min_deadline is the current node */ 953 if (se->deadline == se->min_deadline) 954 return se; 955 956 /* min_deadline is in the left branch */ 957 if (node->rb_left && 958 __node_2_se(node->rb_left)->min_deadline == se->min_deadline) { 959 node = node->rb_left; 960 continue; 961 } 962 963 /* else min_deadline is in the right branch */ 964 node = node->rb_right; 965 } 966 return NULL; 967 } 968 969 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 970 { 971 struct sched_entity *se = __pick_eevdf(cfs_rq); 972 973 if (!se) { 974 struct sched_entity *left = __pick_first_entity(cfs_rq); 975 if (left) { 976 pr_err("EEVDF scheduling fail, picking leftmost\n"); 977 return left; 978 } 979 } 980 981 return se; 982 } 983 984 #ifdef CONFIG_SCHED_DEBUG 985 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 986 { 987 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 988 989 if (!last) 990 return NULL; 991 992 return __node_2_se(last); 993 } 994 995 /************************************************************** 996 * Scheduling class statistics methods: 997 */ 998 #ifdef CONFIG_SMP 999 int sched_update_scaling(void) 1000 { 1001 unsigned int factor = get_update_sysctl_factor(); 1002 1003 #define WRT_SYSCTL(name) \ 1004 (normalized_sysctl_##name = sysctl_##name / (factor)) 1005 WRT_SYSCTL(sched_base_slice); 1006 #undef WRT_SYSCTL 1007 1008 return 0; 1009 } 1010 #endif 1011 #endif 1012 1013 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1014 1015 /* 1016 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1017 * this is probably good enough. 1018 */ 1019 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1020 { 1021 if ((s64)(se->vruntime - se->deadline) < 0) 1022 return; 1023 1024 /* 1025 * For EEVDF the virtual time slope is determined by w_i (iow. 1026 * nice) while the request time r_i is determined by 1027 * sysctl_sched_base_slice. 1028 */ 1029 se->slice = sysctl_sched_base_slice; 1030 1031 /* 1032 * EEVDF: vd_i = ve_i + r_i / w_i 1033 */ 1034 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1035 1036 /* 1037 * The task has consumed its request, reschedule. 1038 */ 1039 if (cfs_rq->nr_running > 1) { 1040 resched_curr(rq_of(cfs_rq)); 1041 clear_buddies(cfs_rq, se); 1042 } 1043 } 1044 1045 #include "pelt.h" 1046 #ifdef CONFIG_SMP 1047 1048 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1049 static unsigned long task_h_load(struct task_struct *p); 1050 static unsigned long capacity_of(int cpu); 1051 1052 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1053 void init_entity_runnable_average(struct sched_entity *se) 1054 { 1055 struct sched_avg *sa = &se->avg; 1056 1057 memset(sa, 0, sizeof(*sa)); 1058 1059 /* 1060 * Tasks are initialized with full load to be seen as heavy tasks until 1061 * they get a chance to stabilize to their real load level. 1062 * Group entities are initialized with zero load to reflect the fact that 1063 * nothing has been attached to the task group yet. 1064 */ 1065 if (entity_is_task(se)) 1066 sa->load_avg = scale_load_down(se->load.weight); 1067 1068 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 1069 } 1070 1071 /* 1072 * With new tasks being created, their initial util_avgs are extrapolated 1073 * based on the cfs_rq's current util_avg: 1074 * 1075 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 1076 * 1077 * However, in many cases, the above util_avg does not give a desired 1078 * value. Moreover, the sum of the util_avgs may be divergent, such 1079 * as when the series is a harmonic series. 1080 * 1081 * To solve this problem, we also cap the util_avg of successive tasks to 1082 * only 1/2 of the left utilization budget: 1083 * 1084 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1085 * 1086 * where n denotes the nth task and cpu_scale the CPU capacity. 1087 * 1088 * For example, for a CPU with 1024 of capacity, a simplest series from 1089 * the beginning would be like: 1090 * 1091 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1092 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1093 * 1094 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1095 * if util_avg > util_avg_cap. 1096 */ 1097 void post_init_entity_util_avg(struct task_struct *p) 1098 { 1099 struct sched_entity *se = &p->se; 1100 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1101 struct sched_avg *sa = &se->avg; 1102 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1103 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1104 1105 if (p->sched_class != &fair_sched_class) { 1106 /* 1107 * For !fair tasks do: 1108 * 1109 update_cfs_rq_load_avg(now, cfs_rq); 1110 attach_entity_load_avg(cfs_rq, se); 1111 switched_from_fair(rq, p); 1112 * 1113 * such that the next switched_to_fair() has the 1114 * expected state. 1115 */ 1116 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1117 return; 1118 } 1119 1120 if (cap > 0) { 1121 if (cfs_rq->avg.util_avg != 0) { 1122 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 1123 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1124 1125 if (sa->util_avg > cap) 1126 sa->util_avg = cap; 1127 } else { 1128 sa->util_avg = cap; 1129 } 1130 } 1131 1132 sa->runnable_avg = sa->util_avg; 1133 } 1134 1135 #else /* !CONFIG_SMP */ 1136 void init_entity_runnable_average(struct sched_entity *se) 1137 { 1138 } 1139 void post_init_entity_util_avg(struct task_struct *p) 1140 { 1141 } 1142 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1143 { 1144 } 1145 #endif /* CONFIG_SMP */ 1146 1147 /* 1148 * Update the current task's runtime statistics. 1149 */ 1150 static void update_curr(struct cfs_rq *cfs_rq) 1151 { 1152 struct sched_entity *curr = cfs_rq->curr; 1153 u64 now = rq_clock_task(rq_of(cfs_rq)); 1154 u64 delta_exec; 1155 1156 if (unlikely(!curr)) 1157 return; 1158 1159 delta_exec = now - curr->exec_start; 1160 if (unlikely((s64)delta_exec <= 0)) 1161 return; 1162 1163 curr->exec_start = now; 1164 1165 if (schedstat_enabled()) { 1166 struct sched_statistics *stats; 1167 1168 stats = __schedstats_from_se(curr); 1169 __schedstat_set(stats->exec_max, 1170 max(delta_exec, stats->exec_max)); 1171 } 1172 1173 curr->sum_exec_runtime += delta_exec; 1174 schedstat_add(cfs_rq->exec_clock, delta_exec); 1175 1176 curr->vruntime += calc_delta_fair(delta_exec, curr); 1177 update_deadline(cfs_rq, curr); 1178 update_min_vruntime(cfs_rq); 1179 1180 if (entity_is_task(curr)) { 1181 struct task_struct *curtask = task_of(curr); 1182 1183 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 1184 cgroup_account_cputime(curtask, delta_exec); 1185 account_group_exec_runtime(curtask, delta_exec); 1186 } 1187 1188 account_cfs_rq_runtime(cfs_rq, delta_exec); 1189 } 1190 1191 static void update_curr_fair(struct rq *rq) 1192 { 1193 update_curr(cfs_rq_of(&rq->curr->se)); 1194 } 1195 1196 static inline void 1197 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1198 { 1199 struct sched_statistics *stats; 1200 struct task_struct *p = NULL; 1201 1202 if (!schedstat_enabled()) 1203 return; 1204 1205 stats = __schedstats_from_se(se); 1206 1207 if (entity_is_task(se)) 1208 p = task_of(se); 1209 1210 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1211 } 1212 1213 static inline void 1214 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1215 { 1216 struct sched_statistics *stats; 1217 struct task_struct *p = NULL; 1218 1219 if (!schedstat_enabled()) 1220 return; 1221 1222 stats = __schedstats_from_se(se); 1223 1224 /* 1225 * When the sched_schedstat changes from 0 to 1, some sched se 1226 * maybe already in the runqueue, the se->statistics.wait_start 1227 * will be 0.So it will let the delta wrong. We need to avoid this 1228 * scenario. 1229 */ 1230 if (unlikely(!schedstat_val(stats->wait_start))) 1231 return; 1232 1233 if (entity_is_task(se)) 1234 p = task_of(se); 1235 1236 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1237 } 1238 1239 static inline void 1240 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1241 { 1242 struct sched_statistics *stats; 1243 struct task_struct *tsk = NULL; 1244 1245 if (!schedstat_enabled()) 1246 return; 1247 1248 stats = __schedstats_from_se(se); 1249 1250 if (entity_is_task(se)) 1251 tsk = task_of(se); 1252 1253 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1254 } 1255 1256 /* 1257 * Task is being enqueued - update stats: 1258 */ 1259 static inline void 1260 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1261 { 1262 if (!schedstat_enabled()) 1263 return; 1264 1265 /* 1266 * Are we enqueueing a waiting task? (for current tasks 1267 * a dequeue/enqueue event is a NOP) 1268 */ 1269 if (se != cfs_rq->curr) 1270 update_stats_wait_start_fair(cfs_rq, se); 1271 1272 if (flags & ENQUEUE_WAKEUP) 1273 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1274 } 1275 1276 static inline void 1277 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1278 { 1279 1280 if (!schedstat_enabled()) 1281 return; 1282 1283 /* 1284 * Mark the end of the wait period if dequeueing a 1285 * waiting task: 1286 */ 1287 if (se != cfs_rq->curr) 1288 update_stats_wait_end_fair(cfs_rq, se); 1289 1290 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1291 struct task_struct *tsk = task_of(se); 1292 unsigned int state; 1293 1294 /* XXX racy against TTWU */ 1295 state = READ_ONCE(tsk->__state); 1296 if (state & TASK_INTERRUPTIBLE) 1297 __schedstat_set(tsk->stats.sleep_start, 1298 rq_clock(rq_of(cfs_rq))); 1299 if (state & TASK_UNINTERRUPTIBLE) 1300 __schedstat_set(tsk->stats.block_start, 1301 rq_clock(rq_of(cfs_rq))); 1302 } 1303 } 1304 1305 /* 1306 * We are picking a new current task - update its stats: 1307 */ 1308 static inline void 1309 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1310 { 1311 /* 1312 * We are starting a new run period: 1313 */ 1314 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1315 } 1316 1317 /************************************************** 1318 * Scheduling class queueing methods: 1319 */ 1320 1321 static inline bool is_core_idle(int cpu) 1322 { 1323 #ifdef CONFIG_SCHED_SMT 1324 int sibling; 1325 1326 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1327 if (cpu == sibling) 1328 continue; 1329 1330 if (!idle_cpu(sibling)) 1331 return false; 1332 } 1333 #endif 1334 1335 return true; 1336 } 1337 1338 #ifdef CONFIG_NUMA 1339 #define NUMA_IMBALANCE_MIN 2 1340 1341 static inline long 1342 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1343 { 1344 /* 1345 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1346 * threshold. Above this threshold, individual tasks may be contending 1347 * for both memory bandwidth and any shared HT resources. This is an 1348 * approximation as the number of running tasks may not be related to 1349 * the number of busy CPUs due to sched_setaffinity. 1350 */ 1351 if (dst_running > imb_numa_nr) 1352 return imbalance; 1353 1354 /* 1355 * Allow a small imbalance based on a simple pair of communicating 1356 * tasks that remain local when the destination is lightly loaded. 1357 */ 1358 if (imbalance <= NUMA_IMBALANCE_MIN) 1359 return 0; 1360 1361 return imbalance; 1362 } 1363 #endif /* CONFIG_NUMA */ 1364 1365 #ifdef CONFIG_NUMA_BALANCING 1366 /* 1367 * Approximate time to scan a full NUMA task in ms. The task scan period is 1368 * calculated based on the tasks virtual memory size and 1369 * numa_balancing_scan_size. 1370 */ 1371 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1372 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1373 1374 /* Portion of address space to scan in MB */ 1375 unsigned int sysctl_numa_balancing_scan_size = 256; 1376 1377 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1378 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1379 1380 /* The page with hint page fault latency < threshold in ms is considered hot */ 1381 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1382 1383 struct numa_group { 1384 refcount_t refcount; 1385 1386 spinlock_t lock; /* nr_tasks, tasks */ 1387 int nr_tasks; 1388 pid_t gid; 1389 int active_nodes; 1390 1391 struct rcu_head rcu; 1392 unsigned long total_faults; 1393 unsigned long max_faults_cpu; 1394 /* 1395 * faults[] array is split into two regions: faults_mem and faults_cpu. 1396 * 1397 * Faults_cpu is used to decide whether memory should move 1398 * towards the CPU. As a consequence, these stats are weighted 1399 * more by CPU use than by memory faults. 1400 */ 1401 unsigned long faults[]; 1402 }; 1403 1404 /* 1405 * For functions that can be called in multiple contexts that permit reading 1406 * ->numa_group (see struct task_struct for locking rules). 1407 */ 1408 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1409 { 1410 return rcu_dereference_check(p->numa_group, p == current || 1411 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1412 } 1413 1414 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1415 { 1416 return rcu_dereference_protected(p->numa_group, p == current); 1417 } 1418 1419 static inline unsigned long group_faults_priv(struct numa_group *ng); 1420 static inline unsigned long group_faults_shared(struct numa_group *ng); 1421 1422 static unsigned int task_nr_scan_windows(struct task_struct *p) 1423 { 1424 unsigned long rss = 0; 1425 unsigned long nr_scan_pages; 1426 1427 /* 1428 * Calculations based on RSS as non-present and empty pages are skipped 1429 * by the PTE scanner and NUMA hinting faults should be trapped based 1430 * on resident pages 1431 */ 1432 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1433 rss = get_mm_rss(p->mm); 1434 if (!rss) 1435 rss = nr_scan_pages; 1436 1437 rss = round_up(rss, nr_scan_pages); 1438 return rss / nr_scan_pages; 1439 } 1440 1441 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1442 #define MAX_SCAN_WINDOW 2560 1443 1444 static unsigned int task_scan_min(struct task_struct *p) 1445 { 1446 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1447 unsigned int scan, floor; 1448 unsigned int windows = 1; 1449 1450 if (scan_size < MAX_SCAN_WINDOW) 1451 windows = MAX_SCAN_WINDOW / scan_size; 1452 floor = 1000 / windows; 1453 1454 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1455 return max_t(unsigned int, floor, scan); 1456 } 1457 1458 static unsigned int task_scan_start(struct task_struct *p) 1459 { 1460 unsigned long smin = task_scan_min(p); 1461 unsigned long period = smin; 1462 struct numa_group *ng; 1463 1464 /* Scale the maximum scan period with the amount of shared memory. */ 1465 rcu_read_lock(); 1466 ng = rcu_dereference(p->numa_group); 1467 if (ng) { 1468 unsigned long shared = group_faults_shared(ng); 1469 unsigned long private = group_faults_priv(ng); 1470 1471 period *= refcount_read(&ng->refcount); 1472 period *= shared + 1; 1473 period /= private + shared + 1; 1474 } 1475 rcu_read_unlock(); 1476 1477 return max(smin, period); 1478 } 1479 1480 static unsigned int task_scan_max(struct task_struct *p) 1481 { 1482 unsigned long smin = task_scan_min(p); 1483 unsigned long smax; 1484 struct numa_group *ng; 1485 1486 /* Watch for min being lower than max due to floor calculations */ 1487 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1488 1489 /* Scale the maximum scan period with the amount of shared memory. */ 1490 ng = deref_curr_numa_group(p); 1491 if (ng) { 1492 unsigned long shared = group_faults_shared(ng); 1493 unsigned long private = group_faults_priv(ng); 1494 unsigned long period = smax; 1495 1496 period *= refcount_read(&ng->refcount); 1497 period *= shared + 1; 1498 period /= private + shared + 1; 1499 1500 smax = max(smax, period); 1501 } 1502 1503 return max(smin, smax); 1504 } 1505 1506 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1507 { 1508 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1509 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1510 } 1511 1512 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1513 { 1514 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1515 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1516 } 1517 1518 /* Shared or private faults. */ 1519 #define NR_NUMA_HINT_FAULT_TYPES 2 1520 1521 /* Memory and CPU locality */ 1522 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1523 1524 /* Averaged statistics, and temporary buffers. */ 1525 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1526 1527 pid_t task_numa_group_id(struct task_struct *p) 1528 { 1529 struct numa_group *ng; 1530 pid_t gid = 0; 1531 1532 rcu_read_lock(); 1533 ng = rcu_dereference(p->numa_group); 1534 if (ng) 1535 gid = ng->gid; 1536 rcu_read_unlock(); 1537 1538 return gid; 1539 } 1540 1541 /* 1542 * The averaged statistics, shared & private, memory & CPU, 1543 * occupy the first half of the array. The second half of the 1544 * array is for current counters, which are averaged into the 1545 * first set by task_numa_placement. 1546 */ 1547 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1548 { 1549 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1550 } 1551 1552 static inline unsigned long task_faults(struct task_struct *p, int nid) 1553 { 1554 if (!p->numa_faults) 1555 return 0; 1556 1557 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1558 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1559 } 1560 1561 static inline unsigned long group_faults(struct task_struct *p, int nid) 1562 { 1563 struct numa_group *ng = deref_task_numa_group(p); 1564 1565 if (!ng) 1566 return 0; 1567 1568 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1569 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1570 } 1571 1572 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1573 { 1574 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1575 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1576 } 1577 1578 static inline unsigned long group_faults_priv(struct numa_group *ng) 1579 { 1580 unsigned long faults = 0; 1581 int node; 1582 1583 for_each_online_node(node) { 1584 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1585 } 1586 1587 return faults; 1588 } 1589 1590 static inline unsigned long group_faults_shared(struct numa_group *ng) 1591 { 1592 unsigned long faults = 0; 1593 int node; 1594 1595 for_each_online_node(node) { 1596 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1597 } 1598 1599 return faults; 1600 } 1601 1602 /* 1603 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1604 * considered part of a numa group's pseudo-interleaving set. Migrations 1605 * between these nodes are slowed down, to allow things to settle down. 1606 */ 1607 #define ACTIVE_NODE_FRACTION 3 1608 1609 static bool numa_is_active_node(int nid, struct numa_group *ng) 1610 { 1611 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1612 } 1613 1614 /* Handle placement on systems where not all nodes are directly connected. */ 1615 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1616 int lim_dist, bool task) 1617 { 1618 unsigned long score = 0; 1619 int node, max_dist; 1620 1621 /* 1622 * All nodes are directly connected, and the same distance 1623 * from each other. No need for fancy placement algorithms. 1624 */ 1625 if (sched_numa_topology_type == NUMA_DIRECT) 1626 return 0; 1627 1628 /* sched_max_numa_distance may be changed in parallel. */ 1629 max_dist = READ_ONCE(sched_max_numa_distance); 1630 /* 1631 * This code is called for each node, introducing N^2 complexity, 1632 * which should be ok given the number of nodes rarely exceeds 8. 1633 */ 1634 for_each_online_node(node) { 1635 unsigned long faults; 1636 int dist = node_distance(nid, node); 1637 1638 /* 1639 * The furthest away nodes in the system are not interesting 1640 * for placement; nid was already counted. 1641 */ 1642 if (dist >= max_dist || node == nid) 1643 continue; 1644 1645 /* 1646 * On systems with a backplane NUMA topology, compare groups 1647 * of nodes, and move tasks towards the group with the most 1648 * memory accesses. When comparing two nodes at distance 1649 * "hoplimit", only nodes closer by than "hoplimit" are part 1650 * of each group. Skip other nodes. 1651 */ 1652 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1653 continue; 1654 1655 /* Add up the faults from nearby nodes. */ 1656 if (task) 1657 faults = task_faults(p, node); 1658 else 1659 faults = group_faults(p, node); 1660 1661 /* 1662 * On systems with a glueless mesh NUMA topology, there are 1663 * no fixed "groups of nodes". Instead, nodes that are not 1664 * directly connected bounce traffic through intermediate 1665 * nodes; a numa_group can occupy any set of nodes. 1666 * The further away a node is, the less the faults count. 1667 * This seems to result in good task placement. 1668 */ 1669 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1670 faults *= (max_dist - dist); 1671 faults /= (max_dist - LOCAL_DISTANCE); 1672 } 1673 1674 score += faults; 1675 } 1676 1677 return score; 1678 } 1679 1680 /* 1681 * These return the fraction of accesses done by a particular task, or 1682 * task group, on a particular numa node. The group weight is given a 1683 * larger multiplier, in order to group tasks together that are almost 1684 * evenly spread out between numa nodes. 1685 */ 1686 static inline unsigned long task_weight(struct task_struct *p, int nid, 1687 int dist) 1688 { 1689 unsigned long faults, total_faults; 1690 1691 if (!p->numa_faults) 1692 return 0; 1693 1694 total_faults = p->total_numa_faults; 1695 1696 if (!total_faults) 1697 return 0; 1698 1699 faults = task_faults(p, nid); 1700 faults += score_nearby_nodes(p, nid, dist, true); 1701 1702 return 1000 * faults / total_faults; 1703 } 1704 1705 static inline unsigned long group_weight(struct task_struct *p, int nid, 1706 int dist) 1707 { 1708 struct numa_group *ng = deref_task_numa_group(p); 1709 unsigned long faults, total_faults; 1710 1711 if (!ng) 1712 return 0; 1713 1714 total_faults = ng->total_faults; 1715 1716 if (!total_faults) 1717 return 0; 1718 1719 faults = group_faults(p, nid); 1720 faults += score_nearby_nodes(p, nid, dist, false); 1721 1722 return 1000 * faults / total_faults; 1723 } 1724 1725 /* 1726 * If memory tiering mode is enabled, cpupid of slow memory page is 1727 * used to record scan time instead of CPU and PID. When tiering mode 1728 * is disabled at run time, the scan time (in cpupid) will be 1729 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1730 * access out of array bound. 1731 */ 1732 static inline bool cpupid_valid(int cpupid) 1733 { 1734 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1735 } 1736 1737 /* 1738 * For memory tiering mode, if there are enough free pages (more than 1739 * enough watermark defined here) in fast memory node, to take full 1740 * advantage of fast memory capacity, all recently accessed slow 1741 * memory pages will be migrated to fast memory node without 1742 * considering hot threshold. 1743 */ 1744 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1745 { 1746 int z; 1747 unsigned long enough_wmark; 1748 1749 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1750 pgdat->node_present_pages >> 4); 1751 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1752 struct zone *zone = pgdat->node_zones + z; 1753 1754 if (!populated_zone(zone)) 1755 continue; 1756 1757 if (zone_watermark_ok(zone, 0, 1758 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1759 ZONE_MOVABLE, 0)) 1760 return true; 1761 } 1762 return false; 1763 } 1764 1765 /* 1766 * For memory tiering mode, when page tables are scanned, the scan 1767 * time will be recorded in struct page in addition to make page 1768 * PROT_NONE for slow memory page. So when the page is accessed, in 1769 * hint page fault handler, the hint page fault latency is calculated 1770 * via, 1771 * 1772 * hint page fault latency = hint page fault time - scan time 1773 * 1774 * The smaller the hint page fault latency, the higher the possibility 1775 * for the page to be hot. 1776 */ 1777 static int numa_hint_fault_latency(struct page *page) 1778 { 1779 int last_time, time; 1780 1781 time = jiffies_to_msecs(jiffies); 1782 last_time = xchg_page_access_time(page, time); 1783 1784 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1785 } 1786 1787 /* 1788 * For memory tiering mode, too high promotion/demotion throughput may 1789 * hurt application latency. So we provide a mechanism to rate limit 1790 * the number of pages that are tried to be promoted. 1791 */ 1792 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1793 unsigned long rate_limit, int nr) 1794 { 1795 unsigned long nr_cand; 1796 unsigned int now, start; 1797 1798 now = jiffies_to_msecs(jiffies); 1799 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1800 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1801 start = pgdat->nbp_rl_start; 1802 if (now - start > MSEC_PER_SEC && 1803 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1804 pgdat->nbp_rl_nr_cand = nr_cand; 1805 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1806 return true; 1807 return false; 1808 } 1809 1810 #define NUMA_MIGRATION_ADJUST_STEPS 16 1811 1812 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1813 unsigned long rate_limit, 1814 unsigned int ref_th) 1815 { 1816 unsigned int now, start, th_period, unit_th, th; 1817 unsigned long nr_cand, ref_cand, diff_cand; 1818 1819 now = jiffies_to_msecs(jiffies); 1820 th_period = sysctl_numa_balancing_scan_period_max; 1821 start = pgdat->nbp_th_start; 1822 if (now - start > th_period && 1823 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1824 ref_cand = rate_limit * 1825 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1826 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1827 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1828 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1829 th = pgdat->nbp_threshold ? : ref_th; 1830 if (diff_cand > ref_cand * 11 / 10) 1831 th = max(th - unit_th, unit_th); 1832 else if (diff_cand < ref_cand * 9 / 10) 1833 th = min(th + unit_th, ref_th * 2); 1834 pgdat->nbp_th_nr_cand = nr_cand; 1835 pgdat->nbp_threshold = th; 1836 } 1837 } 1838 1839 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1840 int src_nid, int dst_cpu) 1841 { 1842 struct numa_group *ng = deref_curr_numa_group(p); 1843 int dst_nid = cpu_to_node(dst_cpu); 1844 int last_cpupid, this_cpupid; 1845 1846 /* 1847 * The pages in slow memory node should be migrated according 1848 * to hot/cold instead of private/shared. 1849 */ 1850 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1851 !node_is_toptier(src_nid)) { 1852 struct pglist_data *pgdat; 1853 unsigned long rate_limit; 1854 unsigned int latency, th, def_th; 1855 1856 pgdat = NODE_DATA(dst_nid); 1857 if (pgdat_free_space_enough(pgdat)) { 1858 /* workload changed, reset hot threshold */ 1859 pgdat->nbp_threshold = 0; 1860 return true; 1861 } 1862 1863 def_th = sysctl_numa_balancing_hot_threshold; 1864 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1865 (20 - PAGE_SHIFT); 1866 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1867 1868 th = pgdat->nbp_threshold ? : def_th; 1869 latency = numa_hint_fault_latency(page); 1870 if (latency >= th) 1871 return false; 1872 1873 return !numa_promotion_rate_limit(pgdat, rate_limit, 1874 thp_nr_pages(page)); 1875 } 1876 1877 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1878 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1879 1880 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1881 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1882 return false; 1883 1884 /* 1885 * Allow first faults or private faults to migrate immediately early in 1886 * the lifetime of a task. The magic number 4 is based on waiting for 1887 * two full passes of the "multi-stage node selection" test that is 1888 * executed below. 1889 */ 1890 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1891 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1892 return true; 1893 1894 /* 1895 * Multi-stage node selection is used in conjunction with a periodic 1896 * migration fault to build a temporal task<->page relation. By using 1897 * a two-stage filter we remove short/unlikely relations. 1898 * 1899 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1900 * a task's usage of a particular page (n_p) per total usage of this 1901 * page (n_t) (in a given time-span) to a probability. 1902 * 1903 * Our periodic faults will sample this probability and getting the 1904 * same result twice in a row, given these samples are fully 1905 * independent, is then given by P(n)^2, provided our sample period 1906 * is sufficiently short compared to the usage pattern. 1907 * 1908 * This quadric squishes small probabilities, making it less likely we 1909 * act on an unlikely task<->page relation. 1910 */ 1911 if (!cpupid_pid_unset(last_cpupid) && 1912 cpupid_to_nid(last_cpupid) != dst_nid) 1913 return false; 1914 1915 /* Always allow migrate on private faults */ 1916 if (cpupid_match_pid(p, last_cpupid)) 1917 return true; 1918 1919 /* A shared fault, but p->numa_group has not been set up yet. */ 1920 if (!ng) 1921 return true; 1922 1923 /* 1924 * Destination node is much more heavily used than the source 1925 * node? Allow migration. 1926 */ 1927 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1928 ACTIVE_NODE_FRACTION) 1929 return true; 1930 1931 /* 1932 * Distribute memory according to CPU & memory use on each node, 1933 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1934 * 1935 * faults_cpu(dst) 3 faults_cpu(src) 1936 * --------------- * - > --------------- 1937 * faults_mem(dst) 4 faults_mem(src) 1938 */ 1939 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1940 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1941 } 1942 1943 /* 1944 * 'numa_type' describes the node at the moment of load balancing. 1945 */ 1946 enum numa_type { 1947 /* The node has spare capacity that can be used to run more tasks. */ 1948 node_has_spare = 0, 1949 /* 1950 * The node is fully used and the tasks don't compete for more CPU 1951 * cycles. Nevertheless, some tasks might wait before running. 1952 */ 1953 node_fully_busy, 1954 /* 1955 * The node is overloaded and can't provide expected CPU cycles to all 1956 * tasks. 1957 */ 1958 node_overloaded 1959 }; 1960 1961 /* Cached statistics for all CPUs within a node */ 1962 struct numa_stats { 1963 unsigned long load; 1964 unsigned long runnable; 1965 unsigned long util; 1966 /* Total compute capacity of CPUs on a node */ 1967 unsigned long compute_capacity; 1968 unsigned int nr_running; 1969 unsigned int weight; 1970 enum numa_type node_type; 1971 int idle_cpu; 1972 }; 1973 1974 struct task_numa_env { 1975 struct task_struct *p; 1976 1977 int src_cpu, src_nid; 1978 int dst_cpu, dst_nid; 1979 int imb_numa_nr; 1980 1981 struct numa_stats src_stats, dst_stats; 1982 1983 int imbalance_pct; 1984 int dist; 1985 1986 struct task_struct *best_task; 1987 long best_imp; 1988 int best_cpu; 1989 }; 1990 1991 static unsigned long cpu_load(struct rq *rq); 1992 static unsigned long cpu_runnable(struct rq *rq); 1993 1994 static inline enum 1995 numa_type numa_classify(unsigned int imbalance_pct, 1996 struct numa_stats *ns) 1997 { 1998 if ((ns->nr_running > ns->weight) && 1999 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2000 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2001 return node_overloaded; 2002 2003 if ((ns->nr_running < ns->weight) || 2004 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2005 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2006 return node_has_spare; 2007 2008 return node_fully_busy; 2009 } 2010 2011 #ifdef CONFIG_SCHED_SMT 2012 /* Forward declarations of select_idle_sibling helpers */ 2013 static inline bool test_idle_cores(int cpu); 2014 static inline int numa_idle_core(int idle_core, int cpu) 2015 { 2016 if (!static_branch_likely(&sched_smt_present) || 2017 idle_core >= 0 || !test_idle_cores(cpu)) 2018 return idle_core; 2019 2020 /* 2021 * Prefer cores instead of packing HT siblings 2022 * and triggering future load balancing. 2023 */ 2024 if (is_core_idle(cpu)) 2025 idle_core = cpu; 2026 2027 return idle_core; 2028 } 2029 #else 2030 static inline int numa_idle_core(int idle_core, int cpu) 2031 { 2032 return idle_core; 2033 } 2034 #endif 2035 2036 /* 2037 * Gather all necessary information to make NUMA balancing placement 2038 * decisions that are compatible with standard load balancer. This 2039 * borrows code and logic from update_sg_lb_stats but sharing a 2040 * common implementation is impractical. 2041 */ 2042 static void update_numa_stats(struct task_numa_env *env, 2043 struct numa_stats *ns, int nid, 2044 bool find_idle) 2045 { 2046 int cpu, idle_core = -1; 2047 2048 memset(ns, 0, sizeof(*ns)); 2049 ns->idle_cpu = -1; 2050 2051 rcu_read_lock(); 2052 for_each_cpu(cpu, cpumask_of_node(nid)) { 2053 struct rq *rq = cpu_rq(cpu); 2054 2055 ns->load += cpu_load(rq); 2056 ns->runnable += cpu_runnable(rq); 2057 ns->util += cpu_util_cfs(cpu); 2058 ns->nr_running += rq->cfs.h_nr_running; 2059 ns->compute_capacity += capacity_of(cpu); 2060 2061 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2062 if (READ_ONCE(rq->numa_migrate_on) || 2063 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2064 continue; 2065 2066 if (ns->idle_cpu == -1) 2067 ns->idle_cpu = cpu; 2068 2069 idle_core = numa_idle_core(idle_core, cpu); 2070 } 2071 } 2072 rcu_read_unlock(); 2073 2074 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2075 2076 ns->node_type = numa_classify(env->imbalance_pct, ns); 2077 2078 if (idle_core >= 0) 2079 ns->idle_cpu = idle_core; 2080 } 2081 2082 static void task_numa_assign(struct task_numa_env *env, 2083 struct task_struct *p, long imp) 2084 { 2085 struct rq *rq = cpu_rq(env->dst_cpu); 2086 2087 /* Check if run-queue part of active NUMA balance. */ 2088 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2089 int cpu; 2090 int start = env->dst_cpu; 2091 2092 /* Find alternative idle CPU. */ 2093 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2094 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2095 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2096 continue; 2097 } 2098 2099 env->dst_cpu = cpu; 2100 rq = cpu_rq(env->dst_cpu); 2101 if (!xchg(&rq->numa_migrate_on, 1)) 2102 goto assign; 2103 } 2104 2105 /* Failed to find an alternative idle CPU */ 2106 return; 2107 } 2108 2109 assign: 2110 /* 2111 * Clear previous best_cpu/rq numa-migrate flag, since task now 2112 * found a better CPU to move/swap. 2113 */ 2114 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2115 rq = cpu_rq(env->best_cpu); 2116 WRITE_ONCE(rq->numa_migrate_on, 0); 2117 } 2118 2119 if (env->best_task) 2120 put_task_struct(env->best_task); 2121 if (p) 2122 get_task_struct(p); 2123 2124 env->best_task = p; 2125 env->best_imp = imp; 2126 env->best_cpu = env->dst_cpu; 2127 } 2128 2129 static bool load_too_imbalanced(long src_load, long dst_load, 2130 struct task_numa_env *env) 2131 { 2132 long imb, old_imb; 2133 long orig_src_load, orig_dst_load; 2134 long src_capacity, dst_capacity; 2135 2136 /* 2137 * The load is corrected for the CPU capacity available on each node. 2138 * 2139 * src_load dst_load 2140 * ------------ vs --------- 2141 * src_capacity dst_capacity 2142 */ 2143 src_capacity = env->src_stats.compute_capacity; 2144 dst_capacity = env->dst_stats.compute_capacity; 2145 2146 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2147 2148 orig_src_load = env->src_stats.load; 2149 orig_dst_load = env->dst_stats.load; 2150 2151 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2152 2153 /* Would this change make things worse? */ 2154 return (imb > old_imb); 2155 } 2156 2157 /* 2158 * Maximum NUMA importance can be 1998 (2*999); 2159 * SMALLIMP @ 30 would be close to 1998/64. 2160 * Used to deter task migration. 2161 */ 2162 #define SMALLIMP 30 2163 2164 /* 2165 * This checks if the overall compute and NUMA accesses of the system would 2166 * be improved if the source tasks was migrated to the target dst_cpu taking 2167 * into account that it might be best if task running on the dst_cpu should 2168 * be exchanged with the source task 2169 */ 2170 static bool task_numa_compare(struct task_numa_env *env, 2171 long taskimp, long groupimp, bool maymove) 2172 { 2173 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2174 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2175 long imp = p_ng ? groupimp : taskimp; 2176 struct task_struct *cur; 2177 long src_load, dst_load; 2178 int dist = env->dist; 2179 long moveimp = imp; 2180 long load; 2181 bool stopsearch = false; 2182 2183 if (READ_ONCE(dst_rq->numa_migrate_on)) 2184 return false; 2185 2186 rcu_read_lock(); 2187 cur = rcu_dereference(dst_rq->curr); 2188 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2189 cur = NULL; 2190 2191 /* 2192 * Because we have preemption enabled we can get migrated around and 2193 * end try selecting ourselves (current == env->p) as a swap candidate. 2194 */ 2195 if (cur == env->p) { 2196 stopsearch = true; 2197 goto unlock; 2198 } 2199 2200 if (!cur) { 2201 if (maymove && moveimp >= env->best_imp) 2202 goto assign; 2203 else 2204 goto unlock; 2205 } 2206 2207 /* Skip this swap candidate if cannot move to the source cpu. */ 2208 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2209 goto unlock; 2210 2211 /* 2212 * Skip this swap candidate if it is not moving to its preferred 2213 * node and the best task is. 2214 */ 2215 if (env->best_task && 2216 env->best_task->numa_preferred_nid == env->src_nid && 2217 cur->numa_preferred_nid != env->src_nid) { 2218 goto unlock; 2219 } 2220 2221 /* 2222 * "imp" is the fault differential for the source task between the 2223 * source and destination node. Calculate the total differential for 2224 * the source task and potential destination task. The more negative 2225 * the value is, the more remote accesses that would be expected to 2226 * be incurred if the tasks were swapped. 2227 * 2228 * If dst and source tasks are in the same NUMA group, or not 2229 * in any group then look only at task weights. 2230 */ 2231 cur_ng = rcu_dereference(cur->numa_group); 2232 if (cur_ng == p_ng) { 2233 /* 2234 * Do not swap within a group or between tasks that have 2235 * no group if there is spare capacity. Swapping does 2236 * not address the load imbalance and helps one task at 2237 * the cost of punishing another. 2238 */ 2239 if (env->dst_stats.node_type == node_has_spare) 2240 goto unlock; 2241 2242 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2243 task_weight(cur, env->dst_nid, dist); 2244 /* 2245 * Add some hysteresis to prevent swapping the 2246 * tasks within a group over tiny differences. 2247 */ 2248 if (cur_ng) 2249 imp -= imp / 16; 2250 } else { 2251 /* 2252 * Compare the group weights. If a task is all by itself 2253 * (not part of a group), use the task weight instead. 2254 */ 2255 if (cur_ng && p_ng) 2256 imp += group_weight(cur, env->src_nid, dist) - 2257 group_weight(cur, env->dst_nid, dist); 2258 else 2259 imp += task_weight(cur, env->src_nid, dist) - 2260 task_weight(cur, env->dst_nid, dist); 2261 } 2262 2263 /* Discourage picking a task already on its preferred node */ 2264 if (cur->numa_preferred_nid == env->dst_nid) 2265 imp -= imp / 16; 2266 2267 /* 2268 * Encourage picking a task that moves to its preferred node. 2269 * This potentially makes imp larger than it's maximum of 2270 * 1998 (see SMALLIMP and task_weight for why) but in this 2271 * case, it does not matter. 2272 */ 2273 if (cur->numa_preferred_nid == env->src_nid) 2274 imp += imp / 8; 2275 2276 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2277 imp = moveimp; 2278 cur = NULL; 2279 goto assign; 2280 } 2281 2282 /* 2283 * Prefer swapping with a task moving to its preferred node over a 2284 * task that is not. 2285 */ 2286 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2287 env->best_task->numa_preferred_nid != env->src_nid) { 2288 goto assign; 2289 } 2290 2291 /* 2292 * If the NUMA importance is less than SMALLIMP, 2293 * task migration might only result in ping pong 2294 * of tasks and also hurt performance due to cache 2295 * misses. 2296 */ 2297 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2298 goto unlock; 2299 2300 /* 2301 * In the overloaded case, try and keep the load balanced. 2302 */ 2303 load = task_h_load(env->p) - task_h_load(cur); 2304 if (!load) 2305 goto assign; 2306 2307 dst_load = env->dst_stats.load + load; 2308 src_load = env->src_stats.load - load; 2309 2310 if (load_too_imbalanced(src_load, dst_load, env)) 2311 goto unlock; 2312 2313 assign: 2314 /* Evaluate an idle CPU for a task numa move. */ 2315 if (!cur) { 2316 int cpu = env->dst_stats.idle_cpu; 2317 2318 /* Nothing cached so current CPU went idle since the search. */ 2319 if (cpu < 0) 2320 cpu = env->dst_cpu; 2321 2322 /* 2323 * If the CPU is no longer truly idle and the previous best CPU 2324 * is, keep using it. 2325 */ 2326 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2327 idle_cpu(env->best_cpu)) { 2328 cpu = env->best_cpu; 2329 } 2330 2331 env->dst_cpu = cpu; 2332 } 2333 2334 task_numa_assign(env, cur, imp); 2335 2336 /* 2337 * If a move to idle is allowed because there is capacity or load 2338 * balance improves then stop the search. While a better swap 2339 * candidate may exist, a search is not free. 2340 */ 2341 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2342 stopsearch = true; 2343 2344 /* 2345 * If a swap candidate must be identified and the current best task 2346 * moves its preferred node then stop the search. 2347 */ 2348 if (!maymove && env->best_task && 2349 env->best_task->numa_preferred_nid == env->src_nid) { 2350 stopsearch = true; 2351 } 2352 unlock: 2353 rcu_read_unlock(); 2354 2355 return stopsearch; 2356 } 2357 2358 static void task_numa_find_cpu(struct task_numa_env *env, 2359 long taskimp, long groupimp) 2360 { 2361 bool maymove = false; 2362 int cpu; 2363 2364 /* 2365 * If dst node has spare capacity, then check if there is an 2366 * imbalance that would be overruled by the load balancer. 2367 */ 2368 if (env->dst_stats.node_type == node_has_spare) { 2369 unsigned int imbalance; 2370 int src_running, dst_running; 2371 2372 /* 2373 * Would movement cause an imbalance? Note that if src has 2374 * more running tasks that the imbalance is ignored as the 2375 * move improves the imbalance from the perspective of the 2376 * CPU load balancer. 2377 * */ 2378 src_running = env->src_stats.nr_running - 1; 2379 dst_running = env->dst_stats.nr_running + 1; 2380 imbalance = max(0, dst_running - src_running); 2381 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2382 env->imb_numa_nr); 2383 2384 /* Use idle CPU if there is no imbalance */ 2385 if (!imbalance) { 2386 maymove = true; 2387 if (env->dst_stats.idle_cpu >= 0) { 2388 env->dst_cpu = env->dst_stats.idle_cpu; 2389 task_numa_assign(env, NULL, 0); 2390 return; 2391 } 2392 } 2393 } else { 2394 long src_load, dst_load, load; 2395 /* 2396 * If the improvement from just moving env->p direction is better 2397 * than swapping tasks around, check if a move is possible. 2398 */ 2399 load = task_h_load(env->p); 2400 dst_load = env->dst_stats.load + load; 2401 src_load = env->src_stats.load - load; 2402 maymove = !load_too_imbalanced(src_load, dst_load, env); 2403 } 2404 2405 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2406 /* Skip this CPU if the source task cannot migrate */ 2407 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2408 continue; 2409 2410 env->dst_cpu = cpu; 2411 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2412 break; 2413 } 2414 } 2415 2416 static int task_numa_migrate(struct task_struct *p) 2417 { 2418 struct task_numa_env env = { 2419 .p = p, 2420 2421 .src_cpu = task_cpu(p), 2422 .src_nid = task_node(p), 2423 2424 .imbalance_pct = 112, 2425 2426 .best_task = NULL, 2427 .best_imp = 0, 2428 .best_cpu = -1, 2429 }; 2430 unsigned long taskweight, groupweight; 2431 struct sched_domain *sd; 2432 long taskimp, groupimp; 2433 struct numa_group *ng; 2434 struct rq *best_rq; 2435 int nid, ret, dist; 2436 2437 /* 2438 * Pick the lowest SD_NUMA domain, as that would have the smallest 2439 * imbalance and would be the first to start moving tasks about. 2440 * 2441 * And we want to avoid any moving of tasks about, as that would create 2442 * random movement of tasks -- counter the numa conditions we're trying 2443 * to satisfy here. 2444 */ 2445 rcu_read_lock(); 2446 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2447 if (sd) { 2448 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2449 env.imb_numa_nr = sd->imb_numa_nr; 2450 } 2451 rcu_read_unlock(); 2452 2453 /* 2454 * Cpusets can break the scheduler domain tree into smaller 2455 * balance domains, some of which do not cross NUMA boundaries. 2456 * Tasks that are "trapped" in such domains cannot be migrated 2457 * elsewhere, so there is no point in (re)trying. 2458 */ 2459 if (unlikely(!sd)) { 2460 sched_setnuma(p, task_node(p)); 2461 return -EINVAL; 2462 } 2463 2464 env.dst_nid = p->numa_preferred_nid; 2465 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2466 taskweight = task_weight(p, env.src_nid, dist); 2467 groupweight = group_weight(p, env.src_nid, dist); 2468 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2469 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2470 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2471 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2472 2473 /* Try to find a spot on the preferred nid. */ 2474 task_numa_find_cpu(&env, taskimp, groupimp); 2475 2476 /* 2477 * Look at other nodes in these cases: 2478 * - there is no space available on the preferred_nid 2479 * - the task is part of a numa_group that is interleaved across 2480 * multiple NUMA nodes; in order to better consolidate the group, 2481 * we need to check other locations. 2482 */ 2483 ng = deref_curr_numa_group(p); 2484 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2485 for_each_node_state(nid, N_CPU) { 2486 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2487 continue; 2488 2489 dist = node_distance(env.src_nid, env.dst_nid); 2490 if (sched_numa_topology_type == NUMA_BACKPLANE && 2491 dist != env.dist) { 2492 taskweight = task_weight(p, env.src_nid, dist); 2493 groupweight = group_weight(p, env.src_nid, dist); 2494 } 2495 2496 /* Only consider nodes where both task and groups benefit */ 2497 taskimp = task_weight(p, nid, dist) - taskweight; 2498 groupimp = group_weight(p, nid, dist) - groupweight; 2499 if (taskimp < 0 && groupimp < 0) 2500 continue; 2501 2502 env.dist = dist; 2503 env.dst_nid = nid; 2504 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2505 task_numa_find_cpu(&env, taskimp, groupimp); 2506 } 2507 } 2508 2509 /* 2510 * If the task is part of a workload that spans multiple NUMA nodes, 2511 * and is migrating into one of the workload's active nodes, remember 2512 * this node as the task's preferred numa node, so the workload can 2513 * settle down. 2514 * A task that migrated to a second choice node will be better off 2515 * trying for a better one later. Do not set the preferred node here. 2516 */ 2517 if (ng) { 2518 if (env.best_cpu == -1) 2519 nid = env.src_nid; 2520 else 2521 nid = cpu_to_node(env.best_cpu); 2522 2523 if (nid != p->numa_preferred_nid) 2524 sched_setnuma(p, nid); 2525 } 2526 2527 /* No better CPU than the current one was found. */ 2528 if (env.best_cpu == -1) { 2529 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2530 return -EAGAIN; 2531 } 2532 2533 best_rq = cpu_rq(env.best_cpu); 2534 if (env.best_task == NULL) { 2535 ret = migrate_task_to(p, env.best_cpu); 2536 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2537 if (ret != 0) 2538 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2539 return ret; 2540 } 2541 2542 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2543 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2544 2545 if (ret != 0) 2546 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2547 put_task_struct(env.best_task); 2548 return ret; 2549 } 2550 2551 /* Attempt to migrate a task to a CPU on the preferred node. */ 2552 static void numa_migrate_preferred(struct task_struct *p) 2553 { 2554 unsigned long interval = HZ; 2555 2556 /* This task has no NUMA fault statistics yet */ 2557 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2558 return; 2559 2560 /* Periodically retry migrating the task to the preferred node */ 2561 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2562 p->numa_migrate_retry = jiffies + interval; 2563 2564 /* Success if task is already running on preferred CPU */ 2565 if (task_node(p) == p->numa_preferred_nid) 2566 return; 2567 2568 /* Otherwise, try migrate to a CPU on the preferred node */ 2569 task_numa_migrate(p); 2570 } 2571 2572 /* 2573 * Find out how many nodes the workload is actively running on. Do this by 2574 * tracking the nodes from which NUMA hinting faults are triggered. This can 2575 * be different from the set of nodes where the workload's memory is currently 2576 * located. 2577 */ 2578 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2579 { 2580 unsigned long faults, max_faults = 0; 2581 int nid, active_nodes = 0; 2582 2583 for_each_node_state(nid, N_CPU) { 2584 faults = group_faults_cpu(numa_group, nid); 2585 if (faults > max_faults) 2586 max_faults = faults; 2587 } 2588 2589 for_each_node_state(nid, N_CPU) { 2590 faults = group_faults_cpu(numa_group, nid); 2591 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2592 active_nodes++; 2593 } 2594 2595 numa_group->max_faults_cpu = max_faults; 2596 numa_group->active_nodes = active_nodes; 2597 } 2598 2599 /* 2600 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2601 * increments. The more local the fault statistics are, the higher the scan 2602 * period will be for the next scan window. If local/(local+remote) ratio is 2603 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2604 * the scan period will decrease. Aim for 70% local accesses. 2605 */ 2606 #define NUMA_PERIOD_SLOTS 10 2607 #define NUMA_PERIOD_THRESHOLD 7 2608 2609 /* 2610 * Increase the scan period (slow down scanning) if the majority of 2611 * our memory is already on our local node, or if the majority of 2612 * the page accesses are shared with other processes. 2613 * Otherwise, decrease the scan period. 2614 */ 2615 static void update_task_scan_period(struct task_struct *p, 2616 unsigned long shared, unsigned long private) 2617 { 2618 unsigned int period_slot; 2619 int lr_ratio, ps_ratio; 2620 int diff; 2621 2622 unsigned long remote = p->numa_faults_locality[0]; 2623 unsigned long local = p->numa_faults_locality[1]; 2624 2625 /* 2626 * If there were no record hinting faults then either the task is 2627 * completely idle or all activity is in areas that are not of interest 2628 * to automatic numa balancing. Related to that, if there were failed 2629 * migration then it implies we are migrating too quickly or the local 2630 * node is overloaded. In either case, scan slower 2631 */ 2632 if (local + shared == 0 || p->numa_faults_locality[2]) { 2633 p->numa_scan_period = min(p->numa_scan_period_max, 2634 p->numa_scan_period << 1); 2635 2636 p->mm->numa_next_scan = jiffies + 2637 msecs_to_jiffies(p->numa_scan_period); 2638 2639 return; 2640 } 2641 2642 /* 2643 * Prepare to scale scan period relative to the current period. 2644 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2645 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2646 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2647 */ 2648 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2649 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2650 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2651 2652 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2653 /* 2654 * Most memory accesses are local. There is no need to 2655 * do fast NUMA scanning, since memory is already local. 2656 */ 2657 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2658 if (!slot) 2659 slot = 1; 2660 diff = slot * period_slot; 2661 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2662 /* 2663 * Most memory accesses are shared with other tasks. 2664 * There is no point in continuing fast NUMA scanning, 2665 * since other tasks may just move the memory elsewhere. 2666 */ 2667 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2668 if (!slot) 2669 slot = 1; 2670 diff = slot * period_slot; 2671 } else { 2672 /* 2673 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2674 * yet they are not on the local NUMA node. Speed up 2675 * NUMA scanning to get the memory moved over. 2676 */ 2677 int ratio = max(lr_ratio, ps_ratio); 2678 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2679 } 2680 2681 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2682 task_scan_min(p), task_scan_max(p)); 2683 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2684 } 2685 2686 /* 2687 * Get the fraction of time the task has been running since the last 2688 * NUMA placement cycle. The scheduler keeps similar statistics, but 2689 * decays those on a 32ms period, which is orders of magnitude off 2690 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2691 * stats only if the task is so new there are no NUMA statistics yet. 2692 */ 2693 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2694 { 2695 u64 runtime, delta, now; 2696 /* Use the start of this time slice to avoid calculations. */ 2697 now = p->se.exec_start; 2698 runtime = p->se.sum_exec_runtime; 2699 2700 if (p->last_task_numa_placement) { 2701 delta = runtime - p->last_sum_exec_runtime; 2702 *period = now - p->last_task_numa_placement; 2703 2704 /* Avoid time going backwards, prevent potential divide error: */ 2705 if (unlikely((s64)*period < 0)) 2706 *period = 0; 2707 } else { 2708 delta = p->se.avg.load_sum; 2709 *period = LOAD_AVG_MAX; 2710 } 2711 2712 p->last_sum_exec_runtime = runtime; 2713 p->last_task_numa_placement = now; 2714 2715 return delta; 2716 } 2717 2718 /* 2719 * Determine the preferred nid for a task in a numa_group. This needs to 2720 * be done in a way that produces consistent results with group_weight, 2721 * otherwise workloads might not converge. 2722 */ 2723 static int preferred_group_nid(struct task_struct *p, int nid) 2724 { 2725 nodemask_t nodes; 2726 int dist; 2727 2728 /* Direct connections between all NUMA nodes. */ 2729 if (sched_numa_topology_type == NUMA_DIRECT) 2730 return nid; 2731 2732 /* 2733 * On a system with glueless mesh NUMA topology, group_weight 2734 * scores nodes according to the number of NUMA hinting faults on 2735 * both the node itself, and on nearby nodes. 2736 */ 2737 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2738 unsigned long score, max_score = 0; 2739 int node, max_node = nid; 2740 2741 dist = sched_max_numa_distance; 2742 2743 for_each_node_state(node, N_CPU) { 2744 score = group_weight(p, node, dist); 2745 if (score > max_score) { 2746 max_score = score; 2747 max_node = node; 2748 } 2749 } 2750 return max_node; 2751 } 2752 2753 /* 2754 * Finding the preferred nid in a system with NUMA backplane 2755 * interconnect topology is more involved. The goal is to locate 2756 * tasks from numa_groups near each other in the system, and 2757 * untangle workloads from different sides of the system. This requires 2758 * searching down the hierarchy of node groups, recursively searching 2759 * inside the highest scoring group of nodes. The nodemask tricks 2760 * keep the complexity of the search down. 2761 */ 2762 nodes = node_states[N_CPU]; 2763 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2764 unsigned long max_faults = 0; 2765 nodemask_t max_group = NODE_MASK_NONE; 2766 int a, b; 2767 2768 /* Are there nodes at this distance from each other? */ 2769 if (!find_numa_distance(dist)) 2770 continue; 2771 2772 for_each_node_mask(a, nodes) { 2773 unsigned long faults = 0; 2774 nodemask_t this_group; 2775 nodes_clear(this_group); 2776 2777 /* Sum group's NUMA faults; includes a==b case. */ 2778 for_each_node_mask(b, nodes) { 2779 if (node_distance(a, b) < dist) { 2780 faults += group_faults(p, b); 2781 node_set(b, this_group); 2782 node_clear(b, nodes); 2783 } 2784 } 2785 2786 /* Remember the top group. */ 2787 if (faults > max_faults) { 2788 max_faults = faults; 2789 max_group = this_group; 2790 /* 2791 * subtle: at the smallest distance there is 2792 * just one node left in each "group", the 2793 * winner is the preferred nid. 2794 */ 2795 nid = a; 2796 } 2797 } 2798 /* Next round, evaluate the nodes within max_group. */ 2799 if (!max_faults) 2800 break; 2801 nodes = max_group; 2802 } 2803 return nid; 2804 } 2805 2806 static void task_numa_placement(struct task_struct *p) 2807 { 2808 int seq, nid, max_nid = NUMA_NO_NODE; 2809 unsigned long max_faults = 0; 2810 unsigned long fault_types[2] = { 0, 0 }; 2811 unsigned long total_faults; 2812 u64 runtime, period; 2813 spinlock_t *group_lock = NULL; 2814 struct numa_group *ng; 2815 2816 /* 2817 * The p->mm->numa_scan_seq field gets updated without 2818 * exclusive access. Use READ_ONCE() here to ensure 2819 * that the field is read in a single access: 2820 */ 2821 seq = READ_ONCE(p->mm->numa_scan_seq); 2822 if (p->numa_scan_seq == seq) 2823 return; 2824 p->numa_scan_seq = seq; 2825 p->numa_scan_period_max = task_scan_max(p); 2826 2827 total_faults = p->numa_faults_locality[0] + 2828 p->numa_faults_locality[1]; 2829 runtime = numa_get_avg_runtime(p, &period); 2830 2831 /* If the task is part of a group prevent parallel updates to group stats */ 2832 ng = deref_curr_numa_group(p); 2833 if (ng) { 2834 group_lock = &ng->lock; 2835 spin_lock_irq(group_lock); 2836 } 2837 2838 /* Find the node with the highest number of faults */ 2839 for_each_online_node(nid) { 2840 /* Keep track of the offsets in numa_faults array */ 2841 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2842 unsigned long faults = 0, group_faults = 0; 2843 int priv; 2844 2845 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2846 long diff, f_diff, f_weight; 2847 2848 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2849 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2850 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2851 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2852 2853 /* Decay existing window, copy faults since last scan */ 2854 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2855 fault_types[priv] += p->numa_faults[membuf_idx]; 2856 p->numa_faults[membuf_idx] = 0; 2857 2858 /* 2859 * Normalize the faults_from, so all tasks in a group 2860 * count according to CPU use, instead of by the raw 2861 * number of faults. Tasks with little runtime have 2862 * little over-all impact on throughput, and thus their 2863 * faults are less important. 2864 */ 2865 f_weight = div64_u64(runtime << 16, period + 1); 2866 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2867 (total_faults + 1); 2868 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2869 p->numa_faults[cpubuf_idx] = 0; 2870 2871 p->numa_faults[mem_idx] += diff; 2872 p->numa_faults[cpu_idx] += f_diff; 2873 faults += p->numa_faults[mem_idx]; 2874 p->total_numa_faults += diff; 2875 if (ng) { 2876 /* 2877 * safe because we can only change our own group 2878 * 2879 * mem_idx represents the offset for a given 2880 * nid and priv in a specific region because it 2881 * is at the beginning of the numa_faults array. 2882 */ 2883 ng->faults[mem_idx] += diff; 2884 ng->faults[cpu_idx] += f_diff; 2885 ng->total_faults += diff; 2886 group_faults += ng->faults[mem_idx]; 2887 } 2888 } 2889 2890 if (!ng) { 2891 if (faults > max_faults) { 2892 max_faults = faults; 2893 max_nid = nid; 2894 } 2895 } else if (group_faults > max_faults) { 2896 max_faults = group_faults; 2897 max_nid = nid; 2898 } 2899 } 2900 2901 /* Cannot migrate task to CPU-less node */ 2902 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) { 2903 int near_nid = max_nid; 2904 int distance, near_distance = INT_MAX; 2905 2906 for_each_node_state(nid, N_CPU) { 2907 distance = node_distance(max_nid, nid); 2908 if (distance < near_distance) { 2909 near_nid = nid; 2910 near_distance = distance; 2911 } 2912 } 2913 max_nid = near_nid; 2914 } 2915 2916 if (ng) { 2917 numa_group_count_active_nodes(ng); 2918 spin_unlock_irq(group_lock); 2919 max_nid = preferred_group_nid(p, max_nid); 2920 } 2921 2922 if (max_faults) { 2923 /* Set the new preferred node */ 2924 if (max_nid != p->numa_preferred_nid) 2925 sched_setnuma(p, max_nid); 2926 } 2927 2928 update_task_scan_period(p, fault_types[0], fault_types[1]); 2929 } 2930 2931 static inline int get_numa_group(struct numa_group *grp) 2932 { 2933 return refcount_inc_not_zero(&grp->refcount); 2934 } 2935 2936 static inline void put_numa_group(struct numa_group *grp) 2937 { 2938 if (refcount_dec_and_test(&grp->refcount)) 2939 kfree_rcu(grp, rcu); 2940 } 2941 2942 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2943 int *priv) 2944 { 2945 struct numa_group *grp, *my_grp; 2946 struct task_struct *tsk; 2947 bool join = false; 2948 int cpu = cpupid_to_cpu(cpupid); 2949 int i; 2950 2951 if (unlikely(!deref_curr_numa_group(p))) { 2952 unsigned int size = sizeof(struct numa_group) + 2953 NR_NUMA_HINT_FAULT_STATS * 2954 nr_node_ids * sizeof(unsigned long); 2955 2956 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2957 if (!grp) 2958 return; 2959 2960 refcount_set(&grp->refcount, 1); 2961 grp->active_nodes = 1; 2962 grp->max_faults_cpu = 0; 2963 spin_lock_init(&grp->lock); 2964 grp->gid = p->pid; 2965 2966 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2967 grp->faults[i] = p->numa_faults[i]; 2968 2969 grp->total_faults = p->total_numa_faults; 2970 2971 grp->nr_tasks++; 2972 rcu_assign_pointer(p->numa_group, grp); 2973 } 2974 2975 rcu_read_lock(); 2976 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2977 2978 if (!cpupid_match_pid(tsk, cpupid)) 2979 goto no_join; 2980 2981 grp = rcu_dereference(tsk->numa_group); 2982 if (!grp) 2983 goto no_join; 2984 2985 my_grp = deref_curr_numa_group(p); 2986 if (grp == my_grp) 2987 goto no_join; 2988 2989 /* 2990 * Only join the other group if its bigger; if we're the bigger group, 2991 * the other task will join us. 2992 */ 2993 if (my_grp->nr_tasks > grp->nr_tasks) 2994 goto no_join; 2995 2996 /* 2997 * Tie-break on the grp address. 2998 */ 2999 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3000 goto no_join; 3001 3002 /* Always join threads in the same process. */ 3003 if (tsk->mm == current->mm) 3004 join = true; 3005 3006 /* Simple filter to avoid false positives due to PID collisions */ 3007 if (flags & TNF_SHARED) 3008 join = true; 3009 3010 /* Update priv based on whether false sharing was detected */ 3011 *priv = !join; 3012 3013 if (join && !get_numa_group(grp)) 3014 goto no_join; 3015 3016 rcu_read_unlock(); 3017 3018 if (!join) 3019 return; 3020 3021 WARN_ON_ONCE(irqs_disabled()); 3022 double_lock_irq(&my_grp->lock, &grp->lock); 3023 3024 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3025 my_grp->faults[i] -= p->numa_faults[i]; 3026 grp->faults[i] += p->numa_faults[i]; 3027 } 3028 my_grp->total_faults -= p->total_numa_faults; 3029 grp->total_faults += p->total_numa_faults; 3030 3031 my_grp->nr_tasks--; 3032 grp->nr_tasks++; 3033 3034 spin_unlock(&my_grp->lock); 3035 spin_unlock_irq(&grp->lock); 3036 3037 rcu_assign_pointer(p->numa_group, grp); 3038 3039 put_numa_group(my_grp); 3040 return; 3041 3042 no_join: 3043 rcu_read_unlock(); 3044 return; 3045 } 3046 3047 /* 3048 * Get rid of NUMA statistics associated with a task (either current or dead). 3049 * If @final is set, the task is dead and has reached refcount zero, so we can 3050 * safely free all relevant data structures. Otherwise, there might be 3051 * concurrent reads from places like load balancing and procfs, and we should 3052 * reset the data back to default state without freeing ->numa_faults. 3053 */ 3054 void task_numa_free(struct task_struct *p, bool final) 3055 { 3056 /* safe: p either is current or is being freed by current */ 3057 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3058 unsigned long *numa_faults = p->numa_faults; 3059 unsigned long flags; 3060 int i; 3061 3062 if (!numa_faults) 3063 return; 3064 3065 if (grp) { 3066 spin_lock_irqsave(&grp->lock, flags); 3067 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3068 grp->faults[i] -= p->numa_faults[i]; 3069 grp->total_faults -= p->total_numa_faults; 3070 3071 grp->nr_tasks--; 3072 spin_unlock_irqrestore(&grp->lock, flags); 3073 RCU_INIT_POINTER(p->numa_group, NULL); 3074 put_numa_group(grp); 3075 } 3076 3077 if (final) { 3078 p->numa_faults = NULL; 3079 kfree(numa_faults); 3080 } else { 3081 p->total_numa_faults = 0; 3082 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3083 numa_faults[i] = 0; 3084 } 3085 } 3086 3087 /* 3088 * Got a PROT_NONE fault for a page on @node. 3089 */ 3090 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3091 { 3092 struct task_struct *p = current; 3093 bool migrated = flags & TNF_MIGRATED; 3094 int cpu_node = task_node(current); 3095 int local = !!(flags & TNF_FAULT_LOCAL); 3096 struct numa_group *ng; 3097 int priv; 3098 3099 if (!static_branch_likely(&sched_numa_balancing)) 3100 return; 3101 3102 /* for example, ksmd faulting in a user's mm */ 3103 if (!p->mm) 3104 return; 3105 3106 /* 3107 * NUMA faults statistics are unnecessary for the slow memory 3108 * node for memory tiering mode. 3109 */ 3110 if (!node_is_toptier(mem_node) && 3111 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3112 !cpupid_valid(last_cpupid))) 3113 return; 3114 3115 /* Allocate buffer to track faults on a per-node basis */ 3116 if (unlikely(!p->numa_faults)) { 3117 int size = sizeof(*p->numa_faults) * 3118 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3119 3120 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3121 if (!p->numa_faults) 3122 return; 3123 3124 p->total_numa_faults = 0; 3125 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3126 } 3127 3128 /* 3129 * First accesses are treated as private, otherwise consider accesses 3130 * to be private if the accessing pid has not changed 3131 */ 3132 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3133 priv = 1; 3134 } else { 3135 priv = cpupid_match_pid(p, last_cpupid); 3136 if (!priv && !(flags & TNF_NO_GROUP)) 3137 task_numa_group(p, last_cpupid, flags, &priv); 3138 } 3139 3140 /* 3141 * If a workload spans multiple NUMA nodes, a shared fault that 3142 * occurs wholly within the set of nodes that the workload is 3143 * actively using should be counted as local. This allows the 3144 * scan rate to slow down when a workload has settled down. 3145 */ 3146 ng = deref_curr_numa_group(p); 3147 if (!priv && !local && ng && ng->active_nodes > 1 && 3148 numa_is_active_node(cpu_node, ng) && 3149 numa_is_active_node(mem_node, ng)) 3150 local = 1; 3151 3152 /* 3153 * Retry to migrate task to preferred node periodically, in case it 3154 * previously failed, or the scheduler moved us. 3155 */ 3156 if (time_after(jiffies, p->numa_migrate_retry)) { 3157 task_numa_placement(p); 3158 numa_migrate_preferred(p); 3159 } 3160 3161 if (migrated) 3162 p->numa_pages_migrated += pages; 3163 if (flags & TNF_MIGRATE_FAIL) 3164 p->numa_faults_locality[2] += pages; 3165 3166 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3167 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3168 p->numa_faults_locality[local] += pages; 3169 } 3170 3171 static void reset_ptenuma_scan(struct task_struct *p) 3172 { 3173 /* 3174 * We only did a read acquisition of the mmap sem, so 3175 * p->mm->numa_scan_seq is written to without exclusive access 3176 * and the update is not guaranteed to be atomic. That's not 3177 * much of an issue though, since this is just used for 3178 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3179 * expensive, to avoid any form of compiler optimizations: 3180 */ 3181 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3182 p->mm->numa_scan_offset = 0; 3183 } 3184 3185 static bool vma_is_accessed(struct vm_area_struct *vma) 3186 { 3187 unsigned long pids; 3188 /* 3189 * Allow unconditional access first two times, so that all the (pages) 3190 * of VMAs get prot_none fault introduced irrespective of accesses. 3191 * This is also done to avoid any side effect of task scanning 3192 * amplifying the unfairness of disjoint set of VMAs' access. 3193 */ 3194 if (READ_ONCE(current->mm->numa_scan_seq) < 2) 3195 return true; 3196 3197 pids = vma->numab_state->access_pids[0] | vma->numab_state->access_pids[1]; 3198 return test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids); 3199 } 3200 3201 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3202 3203 /* 3204 * The expensive part of numa migration is done from task_work context. 3205 * Triggered from task_tick_numa(). 3206 */ 3207 static void task_numa_work(struct callback_head *work) 3208 { 3209 unsigned long migrate, next_scan, now = jiffies; 3210 struct task_struct *p = current; 3211 struct mm_struct *mm = p->mm; 3212 u64 runtime = p->se.sum_exec_runtime; 3213 struct vm_area_struct *vma; 3214 unsigned long start, end; 3215 unsigned long nr_pte_updates = 0; 3216 long pages, virtpages; 3217 struct vma_iterator vmi; 3218 3219 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3220 3221 work->next = work; 3222 /* 3223 * Who cares about NUMA placement when they're dying. 3224 * 3225 * NOTE: make sure not to dereference p->mm before this check, 3226 * exit_task_work() happens _after_ exit_mm() so we could be called 3227 * without p->mm even though we still had it when we enqueued this 3228 * work. 3229 */ 3230 if (p->flags & PF_EXITING) 3231 return; 3232 3233 if (!mm->numa_next_scan) { 3234 mm->numa_next_scan = now + 3235 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3236 } 3237 3238 /* 3239 * Enforce maximal scan/migration frequency.. 3240 */ 3241 migrate = mm->numa_next_scan; 3242 if (time_before(now, migrate)) 3243 return; 3244 3245 if (p->numa_scan_period == 0) { 3246 p->numa_scan_period_max = task_scan_max(p); 3247 p->numa_scan_period = task_scan_start(p); 3248 } 3249 3250 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3251 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3252 return; 3253 3254 /* 3255 * Delay this task enough that another task of this mm will likely win 3256 * the next time around. 3257 */ 3258 p->node_stamp += 2 * TICK_NSEC; 3259 3260 start = mm->numa_scan_offset; 3261 pages = sysctl_numa_balancing_scan_size; 3262 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3263 virtpages = pages * 8; /* Scan up to this much virtual space */ 3264 if (!pages) 3265 return; 3266 3267 3268 if (!mmap_read_trylock(mm)) 3269 return; 3270 vma_iter_init(&vmi, mm, start); 3271 vma = vma_next(&vmi); 3272 if (!vma) { 3273 reset_ptenuma_scan(p); 3274 start = 0; 3275 vma_iter_set(&vmi, start); 3276 vma = vma_next(&vmi); 3277 } 3278 3279 do { 3280 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3281 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3282 continue; 3283 } 3284 3285 /* 3286 * Shared library pages mapped by multiple processes are not 3287 * migrated as it is expected they are cache replicated. Avoid 3288 * hinting faults in read-only file-backed mappings or the vdso 3289 * as migrating the pages will be of marginal benefit. 3290 */ 3291 if (!vma->vm_mm || 3292 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 3293 continue; 3294 3295 /* 3296 * Skip inaccessible VMAs to avoid any confusion between 3297 * PROT_NONE and NUMA hinting ptes 3298 */ 3299 if (!vma_is_accessible(vma)) 3300 continue; 3301 3302 /* Initialise new per-VMA NUMAB state. */ 3303 if (!vma->numab_state) { 3304 vma->numab_state = kzalloc(sizeof(struct vma_numab_state), 3305 GFP_KERNEL); 3306 if (!vma->numab_state) 3307 continue; 3308 3309 vma->numab_state->next_scan = now + 3310 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3311 3312 /* Reset happens after 4 times scan delay of scan start */ 3313 vma->numab_state->next_pid_reset = vma->numab_state->next_scan + 3314 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3315 } 3316 3317 /* 3318 * Scanning the VMA's of short lived tasks add more overhead. So 3319 * delay the scan for new VMAs. 3320 */ 3321 if (mm->numa_scan_seq && time_before(jiffies, 3322 vma->numab_state->next_scan)) 3323 continue; 3324 3325 /* Do not scan the VMA if task has not accessed */ 3326 if (!vma_is_accessed(vma)) 3327 continue; 3328 3329 /* 3330 * RESET access PIDs regularly for old VMAs. Resetting after checking 3331 * vma for recent access to avoid clearing PID info before access.. 3332 */ 3333 if (mm->numa_scan_seq && 3334 time_after(jiffies, vma->numab_state->next_pid_reset)) { 3335 vma->numab_state->next_pid_reset = vma->numab_state->next_pid_reset + 3336 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3337 vma->numab_state->access_pids[0] = READ_ONCE(vma->numab_state->access_pids[1]); 3338 vma->numab_state->access_pids[1] = 0; 3339 } 3340 3341 do { 3342 start = max(start, vma->vm_start); 3343 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3344 end = min(end, vma->vm_end); 3345 nr_pte_updates = change_prot_numa(vma, start, end); 3346 3347 /* 3348 * Try to scan sysctl_numa_balancing_size worth of 3349 * hpages that have at least one present PTE that 3350 * is not already pte-numa. If the VMA contains 3351 * areas that are unused or already full of prot_numa 3352 * PTEs, scan up to virtpages, to skip through those 3353 * areas faster. 3354 */ 3355 if (nr_pte_updates) 3356 pages -= (end - start) >> PAGE_SHIFT; 3357 virtpages -= (end - start) >> PAGE_SHIFT; 3358 3359 start = end; 3360 if (pages <= 0 || virtpages <= 0) 3361 goto out; 3362 3363 cond_resched(); 3364 } while (end != vma->vm_end); 3365 } for_each_vma(vmi, vma); 3366 3367 out: 3368 /* 3369 * It is possible to reach the end of the VMA list but the last few 3370 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3371 * would find the !migratable VMA on the next scan but not reset the 3372 * scanner to the start so check it now. 3373 */ 3374 if (vma) 3375 mm->numa_scan_offset = start; 3376 else 3377 reset_ptenuma_scan(p); 3378 mmap_read_unlock(mm); 3379 3380 /* 3381 * Make sure tasks use at least 32x as much time to run other code 3382 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3383 * Usually update_task_scan_period slows down scanning enough; on an 3384 * overloaded system we need to limit overhead on a per task basis. 3385 */ 3386 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3387 u64 diff = p->se.sum_exec_runtime - runtime; 3388 p->node_stamp += 32 * diff; 3389 } 3390 } 3391 3392 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3393 { 3394 int mm_users = 0; 3395 struct mm_struct *mm = p->mm; 3396 3397 if (mm) { 3398 mm_users = atomic_read(&mm->mm_users); 3399 if (mm_users == 1) { 3400 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3401 mm->numa_scan_seq = 0; 3402 } 3403 } 3404 p->node_stamp = 0; 3405 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3406 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3407 p->numa_migrate_retry = 0; 3408 /* Protect against double add, see task_tick_numa and task_numa_work */ 3409 p->numa_work.next = &p->numa_work; 3410 p->numa_faults = NULL; 3411 p->numa_pages_migrated = 0; 3412 p->total_numa_faults = 0; 3413 RCU_INIT_POINTER(p->numa_group, NULL); 3414 p->last_task_numa_placement = 0; 3415 p->last_sum_exec_runtime = 0; 3416 3417 init_task_work(&p->numa_work, task_numa_work); 3418 3419 /* New address space, reset the preferred nid */ 3420 if (!(clone_flags & CLONE_VM)) { 3421 p->numa_preferred_nid = NUMA_NO_NODE; 3422 return; 3423 } 3424 3425 /* 3426 * New thread, keep existing numa_preferred_nid which should be copied 3427 * already by arch_dup_task_struct but stagger when scans start. 3428 */ 3429 if (mm) { 3430 unsigned int delay; 3431 3432 delay = min_t(unsigned int, task_scan_max(current), 3433 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3434 delay += 2 * TICK_NSEC; 3435 p->node_stamp = delay; 3436 } 3437 } 3438 3439 /* 3440 * Drive the periodic memory faults.. 3441 */ 3442 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3443 { 3444 struct callback_head *work = &curr->numa_work; 3445 u64 period, now; 3446 3447 /* 3448 * We don't care about NUMA placement if we don't have memory. 3449 */ 3450 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3451 return; 3452 3453 /* 3454 * Using runtime rather than walltime has the dual advantage that 3455 * we (mostly) drive the selection from busy threads and that the 3456 * task needs to have done some actual work before we bother with 3457 * NUMA placement. 3458 */ 3459 now = curr->se.sum_exec_runtime; 3460 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3461 3462 if (now > curr->node_stamp + period) { 3463 if (!curr->node_stamp) 3464 curr->numa_scan_period = task_scan_start(curr); 3465 curr->node_stamp += period; 3466 3467 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3468 task_work_add(curr, work, TWA_RESUME); 3469 } 3470 } 3471 3472 static void update_scan_period(struct task_struct *p, int new_cpu) 3473 { 3474 int src_nid = cpu_to_node(task_cpu(p)); 3475 int dst_nid = cpu_to_node(new_cpu); 3476 3477 if (!static_branch_likely(&sched_numa_balancing)) 3478 return; 3479 3480 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3481 return; 3482 3483 if (src_nid == dst_nid) 3484 return; 3485 3486 /* 3487 * Allow resets if faults have been trapped before one scan 3488 * has completed. This is most likely due to a new task that 3489 * is pulled cross-node due to wakeups or load balancing. 3490 */ 3491 if (p->numa_scan_seq) { 3492 /* 3493 * Avoid scan adjustments if moving to the preferred 3494 * node or if the task was not previously running on 3495 * the preferred node. 3496 */ 3497 if (dst_nid == p->numa_preferred_nid || 3498 (p->numa_preferred_nid != NUMA_NO_NODE && 3499 src_nid != p->numa_preferred_nid)) 3500 return; 3501 } 3502 3503 p->numa_scan_period = task_scan_start(p); 3504 } 3505 3506 #else 3507 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3508 { 3509 } 3510 3511 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3512 { 3513 } 3514 3515 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3516 { 3517 } 3518 3519 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3520 { 3521 } 3522 3523 #endif /* CONFIG_NUMA_BALANCING */ 3524 3525 static void 3526 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3527 { 3528 update_load_add(&cfs_rq->load, se->load.weight); 3529 #ifdef CONFIG_SMP 3530 if (entity_is_task(se)) { 3531 struct rq *rq = rq_of(cfs_rq); 3532 3533 account_numa_enqueue(rq, task_of(se)); 3534 list_add(&se->group_node, &rq->cfs_tasks); 3535 } 3536 #endif 3537 cfs_rq->nr_running++; 3538 if (se_is_idle(se)) 3539 cfs_rq->idle_nr_running++; 3540 } 3541 3542 static void 3543 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3544 { 3545 update_load_sub(&cfs_rq->load, se->load.weight); 3546 #ifdef CONFIG_SMP 3547 if (entity_is_task(se)) { 3548 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3549 list_del_init(&se->group_node); 3550 } 3551 #endif 3552 cfs_rq->nr_running--; 3553 if (se_is_idle(se)) 3554 cfs_rq->idle_nr_running--; 3555 } 3556 3557 /* 3558 * Signed add and clamp on underflow. 3559 * 3560 * Explicitly do a load-store to ensure the intermediate value never hits 3561 * memory. This allows lockless observations without ever seeing the negative 3562 * values. 3563 */ 3564 #define add_positive(_ptr, _val) do { \ 3565 typeof(_ptr) ptr = (_ptr); \ 3566 typeof(_val) val = (_val); \ 3567 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3568 \ 3569 res = var + val; \ 3570 \ 3571 if (val < 0 && res > var) \ 3572 res = 0; \ 3573 \ 3574 WRITE_ONCE(*ptr, res); \ 3575 } while (0) 3576 3577 /* 3578 * Unsigned subtract and clamp on underflow. 3579 * 3580 * Explicitly do a load-store to ensure the intermediate value never hits 3581 * memory. This allows lockless observations without ever seeing the negative 3582 * values. 3583 */ 3584 #define sub_positive(_ptr, _val) do { \ 3585 typeof(_ptr) ptr = (_ptr); \ 3586 typeof(*ptr) val = (_val); \ 3587 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3588 res = var - val; \ 3589 if (res > var) \ 3590 res = 0; \ 3591 WRITE_ONCE(*ptr, res); \ 3592 } while (0) 3593 3594 /* 3595 * Remove and clamp on negative, from a local variable. 3596 * 3597 * A variant of sub_positive(), which does not use explicit load-store 3598 * and is thus optimized for local variable updates. 3599 */ 3600 #define lsub_positive(_ptr, _val) do { \ 3601 typeof(_ptr) ptr = (_ptr); \ 3602 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3603 } while (0) 3604 3605 #ifdef CONFIG_SMP 3606 static inline void 3607 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3608 { 3609 cfs_rq->avg.load_avg += se->avg.load_avg; 3610 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3611 } 3612 3613 static inline void 3614 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3615 { 3616 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3617 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3618 /* See update_cfs_rq_load_avg() */ 3619 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3620 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3621 } 3622 #else 3623 static inline void 3624 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3625 static inline void 3626 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3627 #endif 3628 3629 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3630 unsigned long weight) 3631 { 3632 unsigned long old_weight = se->load.weight; 3633 3634 if (se->on_rq) { 3635 /* commit outstanding execution time */ 3636 if (cfs_rq->curr == se) 3637 update_curr(cfs_rq); 3638 else 3639 avg_vruntime_sub(cfs_rq, se); 3640 update_load_sub(&cfs_rq->load, se->load.weight); 3641 } 3642 dequeue_load_avg(cfs_rq, se); 3643 3644 update_load_set(&se->load, weight); 3645 3646 if (!se->on_rq) { 3647 /* 3648 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3649 * we need to scale se->vlag when w_i changes. 3650 */ 3651 se->vlag = div_s64(se->vlag * old_weight, weight); 3652 } else { 3653 s64 deadline = se->deadline - se->vruntime; 3654 /* 3655 * When the weight changes, the virtual time slope changes and 3656 * we should adjust the relative virtual deadline accordingly. 3657 */ 3658 deadline = div_s64(deadline * old_weight, weight); 3659 se->deadline = se->vruntime + deadline; 3660 min_deadline_cb_propagate(&se->run_node, NULL); 3661 } 3662 3663 #ifdef CONFIG_SMP 3664 do { 3665 u32 divider = get_pelt_divider(&se->avg); 3666 3667 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3668 } while (0); 3669 #endif 3670 3671 enqueue_load_avg(cfs_rq, se); 3672 if (se->on_rq) { 3673 update_load_add(&cfs_rq->load, se->load.weight); 3674 if (cfs_rq->curr != se) 3675 avg_vruntime_add(cfs_rq, se); 3676 } 3677 } 3678 3679 void reweight_task(struct task_struct *p, int prio) 3680 { 3681 struct sched_entity *se = &p->se; 3682 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3683 struct load_weight *load = &se->load; 3684 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3685 3686 reweight_entity(cfs_rq, se, weight); 3687 load->inv_weight = sched_prio_to_wmult[prio]; 3688 } 3689 3690 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3691 3692 #ifdef CONFIG_FAIR_GROUP_SCHED 3693 #ifdef CONFIG_SMP 3694 /* 3695 * All this does is approximate the hierarchical proportion which includes that 3696 * global sum we all love to hate. 3697 * 3698 * That is, the weight of a group entity, is the proportional share of the 3699 * group weight based on the group runqueue weights. That is: 3700 * 3701 * tg->weight * grq->load.weight 3702 * ge->load.weight = ----------------------------- (1) 3703 * \Sum grq->load.weight 3704 * 3705 * Now, because computing that sum is prohibitively expensive to compute (been 3706 * there, done that) we approximate it with this average stuff. The average 3707 * moves slower and therefore the approximation is cheaper and more stable. 3708 * 3709 * So instead of the above, we substitute: 3710 * 3711 * grq->load.weight -> grq->avg.load_avg (2) 3712 * 3713 * which yields the following: 3714 * 3715 * tg->weight * grq->avg.load_avg 3716 * ge->load.weight = ------------------------------ (3) 3717 * tg->load_avg 3718 * 3719 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3720 * 3721 * That is shares_avg, and it is right (given the approximation (2)). 3722 * 3723 * The problem with it is that because the average is slow -- it was designed 3724 * to be exactly that of course -- this leads to transients in boundary 3725 * conditions. In specific, the case where the group was idle and we start the 3726 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3727 * yielding bad latency etc.. 3728 * 3729 * Now, in that special case (1) reduces to: 3730 * 3731 * tg->weight * grq->load.weight 3732 * ge->load.weight = ----------------------------- = tg->weight (4) 3733 * grp->load.weight 3734 * 3735 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3736 * 3737 * So what we do is modify our approximation (3) to approach (4) in the (near) 3738 * UP case, like: 3739 * 3740 * ge->load.weight = 3741 * 3742 * tg->weight * grq->load.weight 3743 * --------------------------------------------------- (5) 3744 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3745 * 3746 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3747 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3748 * 3749 * 3750 * tg->weight * grq->load.weight 3751 * ge->load.weight = ----------------------------- (6) 3752 * tg_load_avg' 3753 * 3754 * Where: 3755 * 3756 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3757 * max(grq->load.weight, grq->avg.load_avg) 3758 * 3759 * And that is shares_weight and is icky. In the (near) UP case it approaches 3760 * (4) while in the normal case it approaches (3). It consistently 3761 * overestimates the ge->load.weight and therefore: 3762 * 3763 * \Sum ge->load.weight >= tg->weight 3764 * 3765 * hence icky! 3766 */ 3767 static long calc_group_shares(struct cfs_rq *cfs_rq) 3768 { 3769 long tg_weight, tg_shares, load, shares; 3770 struct task_group *tg = cfs_rq->tg; 3771 3772 tg_shares = READ_ONCE(tg->shares); 3773 3774 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3775 3776 tg_weight = atomic_long_read(&tg->load_avg); 3777 3778 /* Ensure tg_weight >= load */ 3779 tg_weight -= cfs_rq->tg_load_avg_contrib; 3780 tg_weight += load; 3781 3782 shares = (tg_shares * load); 3783 if (tg_weight) 3784 shares /= tg_weight; 3785 3786 /* 3787 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3788 * of a group with small tg->shares value. It is a floor value which is 3789 * assigned as a minimum load.weight to the sched_entity representing 3790 * the group on a CPU. 3791 * 3792 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3793 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3794 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3795 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3796 * instead of 0. 3797 */ 3798 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3799 } 3800 #endif /* CONFIG_SMP */ 3801 3802 /* 3803 * Recomputes the group entity based on the current state of its group 3804 * runqueue. 3805 */ 3806 static void update_cfs_group(struct sched_entity *se) 3807 { 3808 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3809 long shares; 3810 3811 if (!gcfs_rq) 3812 return; 3813 3814 if (throttled_hierarchy(gcfs_rq)) 3815 return; 3816 3817 #ifndef CONFIG_SMP 3818 shares = READ_ONCE(gcfs_rq->tg->shares); 3819 3820 if (likely(se->load.weight == shares)) 3821 return; 3822 #else 3823 shares = calc_group_shares(gcfs_rq); 3824 #endif 3825 3826 reweight_entity(cfs_rq_of(se), se, shares); 3827 } 3828 3829 #else /* CONFIG_FAIR_GROUP_SCHED */ 3830 static inline void update_cfs_group(struct sched_entity *se) 3831 { 3832 } 3833 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3834 3835 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3836 { 3837 struct rq *rq = rq_of(cfs_rq); 3838 3839 if (&rq->cfs == cfs_rq) { 3840 /* 3841 * There are a few boundary cases this might miss but it should 3842 * get called often enough that that should (hopefully) not be 3843 * a real problem. 3844 * 3845 * It will not get called when we go idle, because the idle 3846 * thread is a different class (!fair), nor will the utilization 3847 * number include things like RT tasks. 3848 * 3849 * As is, the util number is not freq-invariant (we'd have to 3850 * implement arch_scale_freq_capacity() for that). 3851 * 3852 * See cpu_util_cfs(). 3853 */ 3854 cpufreq_update_util(rq, flags); 3855 } 3856 } 3857 3858 #ifdef CONFIG_SMP 3859 static inline bool load_avg_is_decayed(struct sched_avg *sa) 3860 { 3861 if (sa->load_sum) 3862 return false; 3863 3864 if (sa->util_sum) 3865 return false; 3866 3867 if (sa->runnable_sum) 3868 return false; 3869 3870 /* 3871 * _avg must be null when _sum are null because _avg = _sum / divider 3872 * Make sure that rounding and/or propagation of PELT values never 3873 * break this. 3874 */ 3875 SCHED_WARN_ON(sa->load_avg || 3876 sa->util_avg || 3877 sa->runnable_avg); 3878 3879 return true; 3880 } 3881 3882 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3883 { 3884 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 3885 cfs_rq->last_update_time_copy); 3886 } 3887 #ifdef CONFIG_FAIR_GROUP_SCHED 3888 /* 3889 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 3890 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 3891 * bottom-up, we only have to test whether the cfs_rq before us on the list 3892 * is our child. 3893 * If cfs_rq is not on the list, test whether a child needs its to be added to 3894 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 3895 */ 3896 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 3897 { 3898 struct cfs_rq *prev_cfs_rq; 3899 struct list_head *prev; 3900 3901 if (cfs_rq->on_list) { 3902 prev = cfs_rq->leaf_cfs_rq_list.prev; 3903 } else { 3904 struct rq *rq = rq_of(cfs_rq); 3905 3906 prev = rq->tmp_alone_branch; 3907 } 3908 3909 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 3910 3911 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 3912 } 3913 3914 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 3915 { 3916 if (cfs_rq->load.weight) 3917 return false; 3918 3919 if (!load_avg_is_decayed(&cfs_rq->avg)) 3920 return false; 3921 3922 if (child_cfs_rq_on_list(cfs_rq)) 3923 return false; 3924 3925 return true; 3926 } 3927 3928 /** 3929 * update_tg_load_avg - update the tg's load avg 3930 * @cfs_rq: the cfs_rq whose avg changed 3931 * 3932 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3933 * However, because tg->load_avg is a global value there are performance 3934 * considerations. 3935 * 3936 * In order to avoid having to look at the other cfs_rq's, we use a 3937 * differential update where we store the last value we propagated. This in 3938 * turn allows skipping updates if the differential is 'small'. 3939 * 3940 * Updating tg's load_avg is necessary before update_cfs_share(). 3941 */ 3942 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3943 { 3944 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3945 3946 /* 3947 * No need to update load_avg for root_task_group as it is not used. 3948 */ 3949 if (cfs_rq->tg == &root_task_group) 3950 return; 3951 3952 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3953 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3954 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3955 } 3956 } 3957 3958 /* 3959 * Called within set_task_rq() right before setting a task's CPU. The 3960 * caller only guarantees p->pi_lock is held; no other assumptions, 3961 * including the state of rq->lock, should be made. 3962 */ 3963 void set_task_rq_fair(struct sched_entity *se, 3964 struct cfs_rq *prev, struct cfs_rq *next) 3965 { 3966 u64 p_last_update_time; 3967 u64 n_last_update_time; 3968 3969 if (!sched_feat(ATTACH_AGE_LOAD)) 3970 return; 3971 3972 /* 3973 * We are supposed to update the task to "current" time, then its up to 3974 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3975 * getting what current time is, so simply throw away the out-of-date 3976 * time. This will result in the wakee task is less decayed, but giving 3977 * the wakee more load sounds not bad. 3978 */ 3979 if (!(se->avg.last_update_time && prev)) 3980 return; 3981 3982 p_last_update_time = cfs_rq_last_update_time(prev); 3983 n_last_update_time = cfs_rq_last_update_time(next); 3984 3985 __update_load_avg_blocked_se(p_last_update_time, se); 3986 se->avg.last_update_time = n_last_update_time; 3987 } 3988 3989 /* 3990 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3991 * propagate its contribution. The key to this propagation is the invariant 3992 * that for each group: 3993 * 3994 * ge->avg == grq->avg (1) 3995 * 3996 * _IFF_ we look at the pure running and runnable sums. Because they 3997 * represent the very same entity, just at different points in the hierarchy. 3998 * 3999 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4000 * and simply copies the running/runnable sum over (but still wrong, because 4001 * the group entity and group rq do not have their PELT windows aligned). 4002 * 4003 * However, update_tg_cfs_load() is more complex. So we have: 4004 * 4005 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4006 * 4007 * And since, like util, the runnable part should be directly transferable, 4008 * the following would _appear_ to be the straight forward approach: 4009 * 4010 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4011 * 4012 * And per (1) we have: 4013 * 4014 * ge->avg.runnable_avg == grq->avg.runnable_avg 4015 * 4016 * Which gives: 4017 * 4018 * ge->load.weight * grq->avg.load_avg 4019 * ge->avg.load_avg = ----------------------------------- (4) 4020 * grq->load.weight 4021 * 4022 * Except that is wrong! 4023 * 4024 * Because while for entities historical weight is not important and we 4025 * really only care about our future and therefore can consider a pure 4026 * runnable sum, runqueues can NOT do this. 4027 * 4028 * We specifically want runqueues to have a load_avg that includes 4029 * historical weights. Those represent the blocked load, the load we expect 4030 * to (shortly) return to us. This only works by keeping the weights as 4031 * integral part of the sum. We therefore cannot decompose as per (3). 4032 * 4033 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4034 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4035 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4036 * runnable section of these tasks overlap (or not). If they were to perfectly 4037 * align the rq as a whole would be runnable 2/3 of the time. If however we 4038 * always have at least 1 runnable task, the rq as a whole is always runnable. 4039 * 4040 * So we'll have to approximate.. :/ 4041 * 4042 * Given the constraint: 4043 * 4044 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4045 * 4046 * We can construct a rule that adds runnable to a rq by assuming minimal 4047 * overlap. 4048 * 4049 * On removal, we'll assume each task is equally runnable; which yields: 4050 * 4051 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4052 * 4053 * XXX: only do this for the part of runnable > running ? 4054 * 4055 */ 4056 static inline void 4057 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4058 { 4059 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4060 u32 new_sum, divider; 4061 4062 /* Nothing to update */ 4063 if (!delta_avg) 4064 return; 4065 4066 /* 4067 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4068 * See ___update_load_avg() for details. 4069 */ 4070 divider = get_pelt_divider(&cfs_rq->avg); 4071 4072 4073 /* Set new sched_entity's utilization */ 4074 se->avg.util_avg = gcfs_rq->avg.util_avg; 4075 new_sum = se->avg.util_avg * divider; 4076 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4077 se->avg.util_sum = new_sum; 4078 4079 /* Update parent cfs_rq utilization */ 4080 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4081 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4082 4083 /* See update_cfs_rq_load_avg() */ 4084 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4085 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4086 } 4087 4088 static inline void 4089 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4090 { 4091 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4092 u32 new_sum, divider; 4093 4094 /* Nothing to update */ 4095 if (!delta_avg) 4096 return; 4097 4098 /* 4099 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4100 * See ___update_load_avg() for details. 4101 */ 4102 divider = get_pelt_divider(&cfs_rq->avg); 4103 4104 /* Set new sched_entity's runnable */ 4105 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4106 new_sum = se->avg.runnable_avg * divider; 4107 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4108 se->avg.runnable_sum = new_sum; 4109 4110 /* Update parent cfs_rq runnable */ 4111 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4112 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4113 /* See update_cfs_rq_load_avg() */ 4114 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4115 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4116 } 4117 4118 static inline void 4119 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4120 { 4121 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4122 unsigned long load_avg; 4123 u64 load_sum = 0; 4124 s64 delta_sum; 4125 u32 divider; 4126 4127 if (!runnable_sum) 4128 return; 4129 4130 gcfs_rq->prop_runnable_sum = 0; 4131 4132 /* 4133 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4134 * See ___update_load_avg() for details. 4135 */ 4136 divider = get_pelt_divider(&cfs_rq->avg); 4137 4138 if (runnable_sum >= 0) { 4139 /* 4140 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4141 * the CPU is saturated running == runnable. 4142 */ 4143 runnable_sum += se->avg.load_sum; 4144 runnable_sum = min_t(long, runnable_sum, divider); 4145 } else { 4146 /* 4147 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4148 * assuming all tasks are equally runnable. 4149 */ 4150 if (scale_load_down(gcfs_rq->load.weight)) { 4151 load_sum = div_u64(gcfs_rq->avg.load_sum, 4152 scale_load_down(gcfs_rq->load.weight)); 4153 } 4154 4155 /* But make sure to not inflate se's runnable */ 4156 runnable_sum = min(se->avg.load_sum, load_sum); 4157 } 4158 4159 /* 4160 * runnable_sum can't be lower than running_sum 4161 * Rescale running sum to be in the same range as runnable sum 4162 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4163 * runnable_sum is in [0 : LOAD_AVG_MAX] 4164 */ 4165 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4166 runnable_sum = max(runnable_sum, running_sum); 4167 4168 load_sum = se_weight(se) * runnable_sum; 4169 load_avg = div_u64(load_sum, divider); 4170 4171 delta_avg = load_avg - se->avg.load_avg; 4172 if (!delta_avg) 4173 return; 4174 4175 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4176 4177 se->avg.load_sum = runnable_sum; 4178 se->avg.load_avg = load_avg; 4179 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4180 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4181 /* See update_cfs_rq_load_avg() */ 4182 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4183 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4184 } 4185 4186 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4187 { 4188 cfs_rq->propagate = 1; 4189 cfs_rq->prop_runnable_sum += runnable_sum; 4190 } 4191 4192 /* Update task and its cfs_rq load average */ 4193 static inline int propagate_entity_load_avg(struct sched_entity *se) 4194 { 4195 struct cfs_rq *cfs_rq, *gcfs_rq; 4196 4197 if (entity_is_task(se)) 4198 return 0; 4199 4200 gcfs_rq = group_cfs_rq(se); 4201 if (!gcfs_rq->propagate) 4202 return 0; 4203 4204 gcfs_rq->propagate = 0; 4205 4206 cfs_rq = cfs_rq_of(se); 4207 4208 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4209 4210 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4211 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4212 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4213 4214 trace_pelt_cfs_tp(cfs_rq); 4215 trace_pelt_se_tp(se); 4216 4217 return 1; 4218 } 4219 4220 /* 4221 * Check if we need to update the load and the utilization of a blocked 4222 * group_entity: 4223 */ 4224 static inline bool skip_blocked_update(struct sched_entity *se) 4225 { 4226 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4227 4228 /* 4229 * If sched_entity still have not zero load or utilization, we have to 4230 * decay it: 4231 */ 4232 if (se->avg.load_avg || se->avg.util_avg) 4233 return false; 4234 4235 /* 4236 * If there is a pending propagation, we have to update the load and 4237 * the utilization of the sched_entity: 4238 */ 4239 if (gcfs_rq->propagate) 4240 return false; 4241 4242 /* 4243 * Otherwise, the load and the utilization of the sched_entity is 4244 * already zero and there is no pending propagation, so it will be a 4245 * waste of time to try to decay it: 4246 */ 4247 return true; 4248 } 4249 4250 #else /* CONFIG_FAIR_GROUP_SCHED */ 4251 4252 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4253 4254 static inline int propagate_entity_load_avg(struct sched_entity *se) 4255 { 4256 return 0; 4257 } 4258 4259 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4260 4261 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4262 4263 #ifdef CONFIG_NO_HZ_COMMON 4264 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4265 { 4266 u64 throttled = 0, now, lut; 4267 struct cfs_rq *cfs_rq; 4268 struct rq *rq; 4269 bool is_idle; 4270 4271 if (load_avg_is_decayed(&se->avg)) 4272 return; 4273 4274 cfs_rq = cfs_rq_of(se); 4275 rq = rq_of(cfs_rq); 4276 4277 rcu_read_lock(); 4278 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4279 rcu_read_unlock(); 4280 4281 /* 4282 * The lag estimation comes with a cost we don't want to pay all the 4283 * time. Hence, limiting to the case where the source CPU is idle and 4284 * we know we are at the greatest risk to have an outdated clock. 4285 */ 4286 if (!is_idle) 4287 return; 4288 4289 /* 4290 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4291 * 4292 * last_update_time (the cfs_rq's last_update_time) 4293 * = cfs_rq_clock_pelt()@cfs_rq_idle 4294 * = rq_clock_pelt()@cfs_rq_idle 4295 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4296 * 4297 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4298 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4299 * 4300 * rq_idle_lag (delta between now and rq's update) 4301 * = sched_clock_cpu() - rq_clock()@rq_idle 4302 * 4303 * We can then write: 4304 * 4305 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4306 * sched_clock_cpu() - rq_clock()@rq_idle 4307 * Where: 4308 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4309 * rq_clock()@rq_idle is rq->clock_idle 4310 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4311 * is cfs_rq->throttled_pelt_idle 4312 */ 4313 4314 #ifdef CONFIG_CFS_BANDWIDTH 4315 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4316 /* The clock has been stopped for throttling */ 4317 if (throttled == U64_MAX) 4318 return; 4319 #endif 4320 now = u64_u32_load(rq->clock_pelt_idle); 4321 /* 4322 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4323 * is observed the old clock_pelt_idle value and the new clock_idle, 4324 * which lead to an underestimation. The opposite would lead to an 4325 * overestimation. 4326 */ 4327 smp_rmb(); 4328 lut = cfs_rq_last_update_time(cfs_rq); 4329 4330 now -= throttled; 4331 if (now < lut) 4332 /* 4333 * cfs_rq->avg.last_update_time is more recent than our 4334 * estimation, let's use it. 4335 */ 4336 now = lut; 4337 else 4338 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4339 4340 __update_load_avg_blocked_se(now, se); 4341 } 4342 #else 4343 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4344 #endif 4345 4346 /** 4347 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4348 * @now: current time, as per cfs_rq_clock_pelt() 4349 * @cfs_rq: cfs_rq to update 4350 * 4351 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4352 * avg. The immediate corollary is that all (fair) tasks must be attached. 4353 * 4354 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4355 * 4356 * Return: true if the load decayed or we removed load. 4357 * 4358 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4359 * call update_tg_load_avg() when this function returns true. 4360 */ 4361 static inline int 4362 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4363 { 4364 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4365 struct sched_avg *sa = &cfs_rq->avg; 4366 int decayed = 0; 4367 4368 if (cfs_rq->removed.nr) { 4369 unsigned long r; 4370 u32 divider = get_pelt_divider(&cfs_rq->avg); 4371 4372 raw_spin_lock(&cfs_rq->removed.lock); 4373 swap(cfs_rq->removed.util_avg, removed_util); 4374 swap(cfs_rq->removed.load_avg, removed_load); 4375 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4376 cfs_rq->removed.nr = 0; 4377 raw_spin_unlock(&cfs_rq->removed.lock); 4378 4379 r = removed_load; 4380 sub_positive(&sa->load_avg, r); 4381 sub_positive(&sa->load_sum, r * divider); 4382 /* See sa->util_sum below */ 4383 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4384 4385 r = removed_util; 4386 sub_positive(&sa->util_avg, r); 4387 sub_positive(&sa->util_sum, r * divider); 4388 /* 4389 * Because of rounding, se->util_sum might ends up being +1 more than 4390 * cfs->util_sum. Although this is not a problem by itself, detaching 4391 * a lot of tasks with the rounding problem between 2 updates of 4392 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4393 * cfs_util_avg is not. 4394 * Check that util_sum is still above its lower bound for the new 4395 * util_avg. Given that period_contrib might have moved since the last 4396 * sync, we are only sure that util_sum must be above or equal to 4397 * util_avg * minimum possible divider 4398 */ 4399 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4400 4401 r = removed_runnable; 4402 sub_positive(&sa->runnable_avg, r); 4403 sub_positive(&sa->runnable_sum, r * divider); 4404 /* See sa->util_sum above */ 4405 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4406 sa->runnable_avg * PELT_MIN_DIVIDER); 4407 4408 /* 4409 * removed_runnable is the unweighted version of removed_load so we 4410 * can use it to estimate removed_load_sum. 4411 */ 4412 add_tg_cfs_propagate(cfs_rq, 4413 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4414 4415 decayed = 1; 4416 } 4417 4418 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4419 u64_u32_store_copy(sa->last_update_time, 4420 cfs_rq->last_update_time_copy, 4421 sa->last_update_time); 4422 return decayed; 4423 } 4424 4425 /** 4426 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4427 * @cfs_rq: cfs_rq to attach to 4428 * @se: sched_entity to attach 4429 * 4430 * Must call update_cfs_rq_load_avg() before this, since we rely on 4431 * cfs_rq->avg.last_update_time being current. 4432 */ 4433 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4434 { 4435 /* 4436 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4437 * See ___update_load_avg() for details. 4438 */ 4439 u32 divider = get_pelt_divider(&cfs_rq->avg); 4440 4441 /* 4442 * When we attach the @se to the @cfs_rq, we must align the decay 4443 * window because without that, really weird and wonderful things can 4444 * happen. 4445 * 4446 * XXX illustrate 4447 */ 4448 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4449 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4450 4451 /* 4452 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4453 * period_contrib. This isn't strictly correct, but since we're 4454 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4455 * _sum a little. 4456 */ 4457 se->avg.util_sum = se->avg.util_avg * divider; 4458 4459 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4460 4461 se->avg.load_sum = se->avg.load_avg * divider; 4462 if (se_weight(se) < se->avg.load_sum) 4463 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4464 else 4465 se->avg.load_sum = 1; 4466 4467 enqueue_load_avg(cfs_rq, se); 4468 cfs_rq->avg.util_avg += se->avg.util_avg; 4469 cfs_rq->avg.util_sum += se->avg.util_sum; 4470 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4471 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4472 4473 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4474 4475 cfs_rq_util_change(cfs_rq, 0); 4476 4477 trace_pelt_cfs_tp(cfs_rq); 4478 } 4479 4480 /** 4481 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4482 * @cfs_rq: cfs_rq to detach from 4483 * @se: sched_entity to detach 4484 * 4485 * Must call update_cfs_rq_load_avg() before this, since we rely on 4486 * cfs_rq->avg.last_update_time being current. 4487 */ 4488 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4489 { 4490 dequeue_load_avg(cfs_rq, se); 4491 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4492 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4493 /* See update_cfs_rq_load_avg() */ 4494 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4495 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4496 4497 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4498 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4499 /* See update_cfs_rq_load_avg() */ 4500 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4501 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4502 4503 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4504 4505 cfs_rq_util_change(cfs_rq, 0); 4506 4507 trace_pelt_cfs_tp(cfs_rq); 4508 } 4509 4510 /* 4511 * Optional action to be done while updating the load average 4512 */ 4513 #define UPDATE_TG 0x1 4514 #define SKIP_AGE_LOAD 0x2 4515 #define DO_ATTACH 0x4 4516 #define DO_DETACH 0x8 4517 4518 /* Update task and its cfs_rq load average */ 4519 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4520 { 4521 u64 now = cfs_rq_clock_pelt(cfs_rq); 4522 int decayed; 4523 4524 /* 4525 * Track task load average for carrying it to new CPU after migrated, and 4526 * track group sched_entity load average for task_h_load calc in migration 4527 */ 4528 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4529 __update_load_avg_se(now, cfs_rq, se); 4530 4531 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4532 decayed |= propagate_entity_load_avg(se); 4533 4534 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4535 4536 /* 4537 * DO_ATTACH means we're here from enqueue_entity(). 4538 * !last_update_time means we've passed through 4539 * migrate_task_rq_fair() indicating we migrated. 4540 * 4541 * IOW we're enqueueing a task on a new CPU. 4542 */ 4543 attach_entity_load_avg(cfs_rq, se); 4544 update_tg_load_avg(cfs_rq); 4545 4546 } else if (flags & DO_DETACH) { 4547 /* 4548 * DO_DETACH means we're here from dequeue_entity() 4549 * and we are migrating task out of the CPU. 4550 */ 4551 detach_entity_load_avg(cfs_rq, se); 4552 update_tg_load_avg(cfs_rq); 4553 } else if (decayed) { 4554 cfs_rq_util_change(cfs_rq, 0); 4555 4556 if (flags & UPDATE_TG) 4557 update_tg_load_avg(cfs_rq); 4558 } 4559 } 4560 4561 /* 4562 * Synchronize entity load avg of dequeued entity without locking 4563 * the previous rq. 4564 */ 4565 static void sync_entity_load_avg(struct sched_entity *se) 4566 { 4567 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4568 u64 last_update_time; 4569 4570 last_update_time = cfs_rq_last_update_time(cfs_rq); 4571 __update_load_avg_blocked_se(last_update_time, se); 4572 } 4573 4574 /* 4575 * Task first catches up with cfs_rq, and then subtract 4576 * itself from the cfs_rq (task must be off the queue now). 4577 */ 4578 static void remove_entity_load_avg(struct sched_entity *se) 4579 { 4580 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4581 unsigned long flags; 4582 4583 /* 4584 * tasks cannot exit without having gone through wake_up_new_task() -> 4585 * enqueue_task_fair() which will have added things to the cfs_rq, 4586 * so we can remove unconditionally. 4587 */ 4588 4589 sync_entity_load_avg(se); 4590 4591 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4592 ++cfs_rq->removed.nr; 4593 cfs_rq->removed.util_avg += se->avg.util_avg; 4594 cfs_rq->removed.load_avg += se->avg.load_avg; 4595 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4596 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4597 } 4598 4599 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4600 { 4601 return cfs_rq->avg.runnable_avg; 4602 } 4603 4604 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4605 { 4606 return cfs_rq->avg.load_avg; 4607 } 4608 4609 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 4610 4611 static inline unsigned long task_util(struct task_struct *p) 4612 { 4613 return READ_ONCE(p->se.avg.util_avg); 4614 } 4615 4616 static inline unsigned long _task_util_est(struct task_struct *p) 4617 { 4618 struct util_est ue = READ_ONCE(p->se.avg.util_est); 4619 4620 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 4621 } 4622 4623 static inline unsigned long task_util_est(struct task_struct *p) 4624 { 4625 return max(task_util(p), _task_util_est(p)); 4626 } 4627 4628 #ifdef CONFIG_UCLAMP_TASK 4629 static inline unsigned long uclamp_task_util(struct task_struct *p, 4630 unsigned long uclamp_min, 4631 unsigned long uclamp_max) 4632 { 4633 return clamp(task_util_est(p), uclamp_min, uclamp_max); 4634 } 4635 #else 4636 static inline unsigned long uclamp_task_util(struct task_struct *p, 4637 unsigned long uclamp_min, 4638 unsigned long uclamp_max) 4639 { 4640 return task_util_est(p); 4641 } 4642 #endif 4643 4644 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4645 struct task_struct *p) 4646 { 4647 unsigned int enqueued; 4648 4649 if (!sched_feat(UTIL_EST)) 4650 return; 4651 4652 /* Update root cfs_rq's estimated utilization */ 4653 enqueued = cfs_rq->avg.util_est.enqueued; 4654 enqueued += _task_util_est(p); 4655 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4656 4657 trace_sched_util_est_cfs_tp(cfs_rq); 4658 } 4659 4660 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4661 struct task_struct *p) 4662 { 4663 unsigned int enqueued; 4664 4665 if (!sched_feat(UTIL_EST)) 4666 return; 4667 4668 /* Update root cfs_rq's estimated utilization */ 4669 enqueued = cfs_rq->avg.util_est.enqueued; 4670 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4671 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4672 4673 trace_sched_util_est_cfs_tp(cfs_rq); 4674 } 4675 4676 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4677 4678 /* 4679 * Check if a (signed) value is within a specified (unsigned) margin, 4680 * based on the observation that: 4681 * 4682 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4683 * 4684 * NOTE: this only works when value + margin < INT_MAX. 4685 */ 4686 static inline bool within_margin(int value, int margin) 4687 { 4688 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4689 } 4690 4691 static inline void util_est_update(struct cfs_rq *cfs_rq, 4692 struct task_struct *p, 4693 bool task_sleep) 4694 { 4695 long last_ewma_diff, last_enqueued_diff; 4696 struct util_est ue; 4697 4698 if (!sched_feat(UTIL_EST)) 4699 return; 4700 4701 /* 4702 * Skip update of task's estimated utilization when the task has not 4703 * yet completed an activation, e.g. being migrated. 4704 */ 4705 if (!task_sleep) 4706 return; 4707 4708 /* 4709 * If the PELT values haven't changed since enqueue time, 4710 * skip the util_est update. 4711 */ 4712 ue = p->se.avg.util_est; 4713 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4714 return; 4715 4716 last_enqueued_diff = ue.enqueued; 4717 4718 /* 4719 * Reset EWMA on utilization increases, the moving average is used only 4720 * to smooth utilization decreases. 4721 */ 4722 ue.enqueued = task_util(p); 4723 if (sched_feat(UTIL_EST_FASTUP)) { 4724 if (ue.ewma < ue.enqueued) { 4725 ue.ewma = ue.enqueued; 4726 goto done; 4727 } 4728 } 4729 4730 /* 4731 * Skip update of task's estimated utilization when its members are 4732 * already ~1% close to its last activation value. 4733 */ 4734 last_ewma_diff = ue.enqueued - ue.ewma; 4735 last_enqueued_diff -= ue.enqueued; 4736 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4737 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4738 goto done; 4739 4740 return; 4741 } 4742 4743 /* 4744 * To avoid overestimation of actual task utilization, skip updates if 4745 * we cannot grant there is idle time in this CPU. 4746 */ 4747 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4748 return; 4749 4750 /* 4751 * Update Task's estimated utilization 4752 * 4753 * When *p completes an activation we can consolidate another sample 4754 * of the task size. This is done by storing the current PELT value 4755 * as ue.enqueued and by using this value to update the Exponential 4756 * Weighted Moving Average (EWMA): 4757 * 4758 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4759 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4760 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4761 * = w * ( last_ewma_diff ) + ewma(t-1) 4762 * = w * (last_ewma_diff + ewma(t-1) / w) 4763 * 4764 * Where 'w' is the weight of new samples, which is configured to be 4765 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4766 */ 4767 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4768 ue.ewma += last_ewma_diff; 4769 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4770 done: 4771 ue.enqueued |= UTIL_AVG_UNCHANGED; 4772 WRITE_ONCE(p->se.avg.util_est, ue); 4773 4774 trace_sched_util_est_se_tp(&p->se); 4775 } 4776 4777 static inline int util_fits_cpu(unsigned long util, 4778 unsigned long uclamp_min, 4779 unsigned long uclamp_max, 4780 int cpu) 4781 { 4782 unsigned long capacity_orig, capacity_orig_thermal; 4783 unsigned long capacity = capacity_of(cpu); 4784 bool fits, uclamp_max_fits; 4785 4786 /* 4787 * Check if the real util fits without any uclamp boost/cap applied. 4788 */ 4789 fits = fits_capacity(util, capacity); 4790 4791 if (!uclamp_is_used()) 4792 return fits; 4793 4794 /* 4795 * We must use capacity_orig_of() for comparing against uclamp_min and 4796 * uclamp_max. We only care about capacity pressure (by using 4797 * capacity_of()) for comparing against the real util. 4798 * 4799 * If a task is boosted to 1024 for example, we don't want a tiny 4800 * pressure to skew the check whether it fits a CPU or not. 4801 * 4802 * Similarly if a task is capped to capacity_orig_of(little_cpu), it 4803 * should fit a little cpu even if there's some pressure. 4804 * 4805 * Only exception is for thermal pressure since it has a direct impact 4806 * on available OPP of the system. 4807 * 4808 * We honour it for uclamp_min only as a drop in performance level 4809 * could result in not getting the requested minimum performance level. 4810 * 4811 * For uclamp_max, we can tolerate a drop in performance level as the 4812 * goal is to cap the task. So it's okay if it's getting less. 4813 */ 4814 capacity_orig = capacity_orig_of(cpu); 4815 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu); 4816 4817 /* 4818 * We want to force a task to fit a cpu as implied by uclamp_max. 4819 * But we do have some corner cases to cater for.. 4820 * 4821 * 4822 * C=z 4823 * | ___ 4824 * | C=y | | 4825 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4826 * | C=x | | | | 4827 * | ___ | | | | 4828 * | | | | | | | (util somewhere in this region) 4829 * | | | | | | | 4830 * | | | | | | | 4831 * +---------------------------------------- 4832 * cpu0 cpu1 cpu2 4833 * 4834 * In the above example if a task is capped to a specific performance 4835 * point, y, then when: 4836 * 4837 * * util = 80% of x then it does not fit on cpu0 and should migrate 4838 * to cpu1 4839 * * util = 80% of y then it is forced to fit on cpu1 to honour 4840 * uclamp_max request. 4841 * 4842 * which is what we're enforcing here. A task always fits if 4843 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 4844 * the normal upmigration rules should withhold still. 4845 * 4846 * Only exception is when we are on max capacity, then we need to be 4847 * careful not to block overutilized state. This is so because: 4848 * 4849 * 1. There's no concept of capping at max_capacity! We can't go 4850 * beyond this performance level anyway. 4851 * 2. The system is being saturated when we're operating near 4852 * max capacity, it doesn't make sense to block overutilized. 4853 */ 4854 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 4855 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 4856 fits = fits || uclamp_max_fits; 4857 4858 /* 4859 * 4860 * C=z 4861 * | ___ (region a, capped, util >= uclamp_max) 4862 * | C=y | | 4863 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4864 * | C=x | | | | 4865 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 4866 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 4867 * | | | | | | | 4868 * | | | | | | | (region c, boosted, util < uclamp_min) 4869 * +---------------------------------------- 4870 * cpu0 cpu1 cpu2 4871 * 4872 * a) If util > uclamp_max, then we're capped, we don't care about 4873 * actual fitness value here. We only care if uclamp_max fits 4874 * capacity without taking margin/pressure into account. 4875 * See comment above. 4876 * 4877 * b) If uclamp_min <= util <= uclamp_max, then the normal 4878 * fits_capacity() rules apply. Except we need to ensure that we 4879 * enforce we remain within uclamp_max, see comment above. 4880 * 4881 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 4882 * need to take into account the boosted value fits the CPU without 4883 * taking margin/pressure into account. 4884 * 4885 * Cases (a) and (b) are handled in the 'fits' variable already. We 4886 * just need to consider an extra check for case (c) after ensuring we 4887 * handle the case uclamp_min > uclamp_max. 4888 */ 4889 uclamp_min = min(uclamp_min, uclamp_max); 4890 if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal)) 4891 return -1; 4892 4893 return fits; 4894 } 4895 4896 static inline int task_fits_cpu(struct task_struct *p, int cpu) 4897 { 4898 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 4899 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 4900 unsigned long util = task_util_est(p); 4901 /* 4902 * Return true only if the cpu fully fits the task requirements, which 4903 * include the utilization but also the performance hints. 4904 */ 4905 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 4906 } 4907 4908 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4909 { 4910 if (!sched_asym_cpucap_active()) 4911 return; 4912 4913 if (!p || p->nr_cpus_allowed == 1) { 4914 rq->misfit_task_load = 0; 4915 return; 4916 } 4917 4918 if (task_fits_cpu(p, cpu_of(rq))) { 4919 rq->misfit_task_load = 0; 4920 return; 4921 } 4922 4923 /* 4924 * Make sure that misfit_task_load will not be null even if 4925 * task_h_load() returns 0. 4926 */ 4927 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4928 } 4929 4930 #else /* CONFIG_SMP */ 4931 4932 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4933 { 4934 return true; 4935 } 4936 4937 #define UPDATE_TG 0x0 4938 #define SKIP_AGE_LOAD 0x0 4939 #define DO_ATTACH 0x0 4940 #define DO_DETACH 0x0 4941 4942 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4943 { 4944 cfs_rq_util_change(cfs_rq, 0); 4945 } 4946 4947 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4948 4949 static inline void 4950 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4951 static inline void 4952 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4953 4954 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4955 { 4956 return 0; 4957 } 4958 4959 static inline void 4960 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4961 4962 static inline void 4963 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4964 4965 static inline void 4966 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4967 bool task_sleep) {} 4968 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4969 4970 #endif /* CONFIG_SMP */ 4971 4972 static void 4973 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4974 { 4975 u64 vslice, vruntime = avg_vruntime(cfs_rq); 4976 s64 lag = 0; 4977 4978 se->slice = sysctl_sched_base_slice; 4979 vslice = calc_delta_fair(se->slice, se); 4980 4981 /* 4982 * Due to how V is constructed as the weighted average of entities, 4983 * adding tasks with positive lag, or removing tasks with negative lag 4984 * will move 'time' backwards, this can screw around with the lag of 4985 * other tasks. 4986 * 4987 * EEVDF: placement strategy #1 / #2 4988 */ 4989 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) { 4990 struct sched_entity *curr = cfs_rq->curr; 4991 unsigned long load; 4992 4993 lag = se->vlag; 4994 4995 /* 4996 * If we want to place a task and preserve lag, we have to 4997 * consider the effect of the new entity on the weighted 4998 * average and compensate for this, otherwise lag can quickly 4999 * evaporate. 5000 * 5001 * Lag is defined as: 5002 * 5003 * lag_i = S - s_i = w_i * (V - v_i) 5004 * 5005 * To avoid the 'w_i' term all over the place, we only track 5006 * the virtual lag: 5007 * 5008 * vl_i = V - v_i <=> v_i = V - vl_i 5009 * 5010 * And we take V to be the weighted average of all v: 5011 * 5012 * V = (\Sum w_j*v_j) / W 5013 * 5014 * Where W is: \Sum w_j 5015 * 5016 * Then, the weighted average after adding an entity with lag 5017 * vl_i is given by: 5018 * 5019 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5020 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5021 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5022 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5023 * = V - w_i*vl_i / (W + w_i) 5024 * 5025 * And the actual lag after adding an entity with vl_i is: 5026 * 5027 * vl'_i = V' - v_i 5028 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5029 * = vl_i - w_i*vl_i / (W + w_i) 5030 * 5031 * Which is strictly less than vl_i. So in order to preserve lag 5032 * we should inflate the lag before placement such that the 5033 * effective lag after placement comes out right. 5034 * 5035 * As such, invert the above relation for vl'_i to get the vl_i 5036 * we need to use such that the lag after placement is the lag 5037 * we computed before dequeue. 5038 * 5039 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5040 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5041 * 5042 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5043 * = W*vl_i 5044 * 5045 * vl_i = (W + w_i)*vl'_i / W 5046 */ 5047 load = cfs_rq->avg_load; 5048 if (curr && curr->on_rq) 5049 load += scale_load_down(curr->load.weight); 5050 5051 lag *= load + scale_load_down(se->load.weight); 5052 if (WARN_ON_ONCE(!load)) 5053 load = 1; 5054 lag = div_s64(lag, load); 5055 } 5056 5057 se->vruntime = vruntime - lag; 5058 5059 /* 5060 * When joining the competition; the exisiting tasks will be, 5061 * on average, halfway through their slice, as such start tasks 5062 * off with half a slice to ease into the competition. 5063 */ 5064 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5065 vslice /= 2; 5066 5067 /* 5068 * EEVDF: vd_i = ve_i + r_i/w_i 5069 */ 5070 se->deadline = se->vruntime + vslice; 5071 } 5072 5073 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5074 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5075 5076 static inline bool cfs_bandwidth_used(void); 5077 5078 static void 5079 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5080 { 5081 bool curr = cfs_rq->curr == se; 5082 5083 /* 5084 * If we're the current task, we must renormalise before calling 5085 * update_curr(). 5086 */ 5087 if (curr) 5088 place_entity(cfs_rq, se, flags); 5089 5090 update_curr(cfs_rq); 5091 5092 /* 5093 * When enqueuing a sched_entity, we must: 5094 * - Update loads to have both entity and cfs_rq synced with now. 5095 * - For group_entity, update its runnable_weight to reflect the new 5096 * h_nr_running of its group cfs_rq. 5097 * - For group_entity, update its weight to reflect the new share of 5098 * its group cfs_rq 5099 * - Add its new weight to cfs_rq->load.weight 5100 */ 5101 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5102 se_update_runnable(se); 5103 /* 5104 * XXX update_load_avg() above will have attached us to the pelt sum; 5105 * but update_cfs_group() here will re-adjust the weight and have to 5106 * undo/redo all that. Seems wasteful. 5107 */ 5108 update_cfs_group(se); 5109 5110 /* 5111 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5112 * we can place the entity. 5113 */ 5114 if (!curr) 5115 place_entity(cfs_rq, se, flags); 5116 5117 account_entity_enqueue(cfs_rq, se); 5118 5119 /* Entity has migrated, no longer consider this task hot */ 5120 if (flags & ENQUEUE_MIGRATED) 5121 se->exec_start = 0; 5122 5123 check_schedstat_required(); 5124 update_stats_enqueue_fair(cfs_rq, se, flags); 5125 if (!curr) 5126 __enqueue_entity(cfs_rq, se); 5127 se->on_rq = 1; 5128 5129 if (cfs_rq->nr_running == 1) { 5130 check_enqueue_throttle(cfs_rq); 5131 if (!throttled_hierarchy(cfs_rq)) { 5132 list_add_leaf_cfs_rq(cfs_rq); 5133 } else { 5134 #ifdef CONFIG_CFS_BANDWIDTH 5135 struct rq *rq = rq_of(cfs_rq); 5136 5137 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5138 cfs_rq->throttled_clock = rq_clock(rq); 5139 if (!cfs_rq->throttled_clock_self) 5140 cfs_rq->throttled_clock_self = rq_clock(rq); 5141 #endif 5142 } 5143 } 5144 } 5145 5146 static void __clear_buddies_next(struct sched_entity *se) 5147 { 5148 for_each_sched_entity(se) { 5149 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5150 if (cfs_rq->next != se) 5151 break; 5152 5153 cfs_rq->next = NULL; 5154 } 5155 } 5156 5157 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5158 { 5159 if (cfs_rq->next == se) 5160 __clear_buddies_next(se); 5161 } 5162 5163 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5164 5165 static void 5166 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5167 { 5168 int action = UPDATE_TG; 5169 5170 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5171 action |= DO_DETACH; 5172 5173 /* 5174 * Update run-time statistics of the 'current'. 5175 */ 5176 update_curr(cfs_rq); 5177 5178 /* 5179 * When dequeuing a sched_entity, we must: 5180 * - Update loads to have both entity and cfs_rq synced with now. 5181 * - For group_entity, update its runnable_weight to reflect the new 5182 * h_nr_running of its group cfs_rq. 5183 * - Subtract its previous weight from cfs_rq->load.weight. 5184 * - For group entity, update its weight to reflect the new share 5185 * of its group cfs_rq. 5186 */ 5187 update_load_avg(cfs_rq, se, action); 5188 se_update_runnable(se); 5189 5190 update_stats_dequeue_fair(cfs_rq, se, flags); 5191 5192 clear_buddies(cfs_rq, se); 5193 5194 update_entity_lag(cfs_rq, se); 5195 if (se != cfs_rq->curr) 5196 __dequeue_entity(cfs_rq, se); 5197 se->on_rq = 0; 5198 account_entity_dequeue(cfs_rq, se); 5199 5200 /* return excess runtime on last dequeue */ 5201 return_cfs_rq_runtime(cfs_rq); 5202 5203 update_cfs_group(se); 5204 5205 /* 5206 * Now advance min_vruntime if @se was the entity holding it back, 5207 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5208 * put back on, and if we advance min_vruntime, we'll be placed back 5209 * further than we started -- ie. we'll be penalized. 5210 */ 5211 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5212 update_min_vruntime(cfs_rq); 5213 5214 if (cfs_rq->nr_running == 0) 5215 update_idle_cfs_rq_clock_pelt(cfs_rq); 5216 } 5217 5218 static void 5219 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5220 { 5221 clear_buddies(cfs_rq, se); 5222 5223 /* 'current' is not kept within the tree. */ 5224 if (se->on_rq) { 5225 /* 5226 * Any task has to be enqueued before it get to execute on 5227 * a CPU. So account for the time it spent waiting on the 5228 * runqueue. 5229 */ 5230 update_stats_wait_end_fair(cfs_rq, se); 5231 __dequeue_entity(cfs_rq, se); 5232 update_load_avg(cfs_rq, se, UPDATE_TG); 5233 /* 5234 * HACK, stash a copy of deadline at the point of pick in vlag, 5235 * which isn't used until dequeue. 5236 */ 5237 se->vlag = se->deadline; 5238 } 5239 5240 update_stats_curr_start(cfs_rq, se); 5241 cfs_rq->curr = se; 5242 5243 /* 5244 * Track our maximum slice length, if the CPU's load is at 5245 * least twice that of our own weight (i.e. dont track it 5246 * when there are only lesser-weight tasks around): 5247 */ 5248 if (schedstat_enabled() && 5249 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5250 struct sched_statistics *stats; 5251 5252 stats = __schedstats_from_se(se); 5253 __schedstat_set(stats->slice_max, 5254 max((u64)stats->slice_max, 5255 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5256 } 5257 5258 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5259 } 5260 5261 /* 5262 * Pick the next process, keeping these things in mind, in this order: 5263 * 1) keep things fair between processes/task groups 5264 * 2) pick the "next" process, since someone really wants that to run 5265 * 3) pick the "last" process, for cache locality 5266 * 4) do not run the "skip" process, if something else is available 5267 */ 5268 static struct sched_entity * 5269 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 5270 { 5271 /* 5272 * Enabling NEXT_BUDDY will affect latency but not fairness. 5273 */ 5274 if (sched_feat(NEXT_BUDDY) && 5275 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) 5276 return cfs_rq->next; 5277 5278 return pick_eevdf(cfs_rq); 5279 } 5280 5281 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5282 5283 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5284 { 5285 /* 5286 * If still on the runqueue then deactivate_task() 5287 * was not called and update_curr() has to be done: 5288 */ 5289 if (prev->on_rq) 5290 update_curr(cfs_rq); 5291 5292 /* throttle cfs_rqs exceeding runtime */ 5293 check_cfs_rq_runtime(cfs_rq); 5294 5295 if (prev->on_rq) { 5296 update_stats_wait_start_fair(cfs_rq, prev); 5297 /* Put 'current' back into the tree. */ 5298 __enqueue_entity(cfs_rq, prev); 5299 /* in !on_rq case, update occurred at dequeue */ 5300 update_load_avg(cfs_rq, prev, 0); 5301 } 5302 cfs_rq->curr = NULL; 5303 } 5304 5305 static void 5306 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5307 { 5308 /* 5309 * Update run-time statistics of the 'current'. 5310 */ 5311 update_curr(cfs_rq); 5312 5313 /* 5314 * Ensure that runnable average is periodically updated. 5315 */ 5316 update_load_avg(cfs_rq, curr, UPDATE_TG); 5317 update_cfs_group(curr); 5318 5319 #ifdef CONFIG_SCHED_HRTICK 5320 /* 5321 * queued ticks are scheduled to match the slice, so don't bother 5322 * validating it and just reschedule. 5323 */ 5324 if (queued) { 5325 resched_curr(rq_of(cfs_rq)); 5326 return; 5327 } 5328 /* 5329 * don't let the period tick interfere with the hrtick preemption 5330 */ 5331 if (!sched_feat(DOUBLE_TICK) && 5332 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5333 return; 5334 #endif 5335 } 5336 5337 5338 /************************************************** 5339 * CFS bandwidth control machinery 5340 */ 5341 5342 #ifdef CONFIG_CFS_BANDWIDTH 5343 5344 #ifdef CONFIG_JUMP_LABEL 5345 static struct static_key __cfs_bandwidth_used; 5346 5347 static inline bool cfs_bandwidth_used(void) 5348 { 5349 return static_key_false(&__cfs_bandwidth_used); 5350 } 5351 5352 void cfs_bandwidth_usage_inc(void) 5353 { 5354 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5355 } 5356 5357 void cfs_bandwidth_usage_dec(void) 5358 { 5359 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5360 } 5361 #else /* CONFIG_JUMP_LABEL */ 5362 static bool cfs_bandwidth_used(void) 5363 { 5364 return true; 5365 } 5366 5367 void cfs_bandwidth_usage_inc(void) {} 5368 void cfs_bandwidth_usage_dec(void) {} 5369 #endif /* CONFIG_JUMP_LABEL */ 5370 5371 /* 5372 * default period for cfs group bandwidth. 5373 * default: 0.1s, units: nanoseconds 5374 */ 5375 static inline u64 default_cfs_period(void) 5376 { 5377 return 100000000ULL; 5378 } 5379 5380 static inline u64 sched_cfs_bandwidth_slice(void) 5381 { 5382 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5383 } 5384 5385 /* 5386 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5387 * directly instead of rq->clock to avoid adding additional synchronization 5388 * around rq->lock. 5389 * 5390 * requires cfs_b->lock 5391 */ 5392 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5393 { 5394 s64 runtime; 5395 5396 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5397 return; 5398 5399 cfs_b->runtime += cfs_b->quota; 5400 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5401 if (runtime > 0) { 5402 cfs_b->burst_time += runtime; 5403 cfs_b->nr_burst++; 5404 } 5405 5406 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5407 cfs_b->runtime_snap = cfs_b->runtime; 5408 } 5409 5410 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5411 { 5412 return &tg->cfs_bandwidth; 5413 } 5414 5415 /* returns 0 on failure to allocate runtime */ 5416 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5417 struct cfs_rq *cfs_rq, u64 target_runtime) 5418 { 5419 u64 min_amount, amount = 0; 5420 5421 lockdep_assert_held(&cfs_b->lock); 5422 5423 /* note: this is a positive sum as runtime_remaining <= 0 */ 5424 min_amount = target_runtime - cfs_rq->runtime_remaining; 5425 5426 if (cfs_b->quota == RUNTIME_INF) 5427 amount = min_amount; 5428 else { 5429 start_cfs_bandwidth(cfs_b); 5430 5431 if (cfs_b->runtime > 0) { 5432 amount = min(cfs_b->runtime, min_amount); 5433 cfs_b->runtime -= amount; 5434 cfs_b->idle = 0; 5435 } 5436 } 5437 5438 cfs_rq->runtime_remaining += amount; 5439 5440 return cfs_rq->runtime_remaining > 0; 5441 } 5442 5443 /* returns 0 on failure to allocate runtime */ 5444 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5445 { 5446 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5447 int ret; 5448 5449 raw_spin_lock(&cfs_b->lock); 5450 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5451 raw_spin_unlock(&cfs_b->lock); 5452 5453 return ret; 5454 } 5455 5456 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5457 { 5458 /* dock delta_exec before expiring quota (as it could span periods) */ 5459 cfs_rq->runtime_remaining -= delta_exec; 5460 5461 if (likely(cfs_rq->runtime_remaining > 0)) 5462 return; 5463 5464 if (cfs_rq->throttled) 5465 return; 5466 /* 5467 * if we're unable to extend our runtime we resched so that the active 5468 * hierarchy can be throttled 5469 */ 5470 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5471 resched_curr(rq_of(cfs_rq)); 5472 } 5473 5474 static __always_inline 5475 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5476 { 5477 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5478 return; 5479 5480 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5481 } 5482 5483 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5484 { 5485 return cfs_bandwidth_used() && cfs_rq->throttled; 5486 } 5487 5488 /* check whether cfs_rq, or any parent, is throttled */ 5489 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5490 { 5491 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5492 } 5493 5494 /* 5495 * Ensure that neither of the group entities corresponding to src_cpu or 5496 * dest_cpu are members of a throttled hierarchy when performing group 5497 * load-balance operations. 5498 */ 5499 static inline int throttled_lb_pair(struct task_group *tg, 5500 int src_cpu, int dest_cpu) 5501 { 5502 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5503 5504 src_cfs_rq = tg->cfs_rq[src_cpu]; 5505 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5506 5507 return throttled_hierarchy(src_cfs_rq) || 5508 throttled_hierarchy(dest_cfs_rq); 5509 } 5510 5511 static int tg_unthrottle_up(struct task_group *tg, void *data) 5512 { 5513 struct rq *rq = data; 5514 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5515 5516 cfs_rq->throttle_count--; 5517 if (!cfs_rq->throttle_count) { 5518 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5519 cfs_rq->throttled_clock_pelt; 5520 5521 /* Add cfs_rq with load or one or more already running entities to the list */ 5522 if (!cfs_rq_is_decayed(cfs_rq)) 5523 list_add_leaf_cfs_rq(cfs_rq); 5524 5525 if (cfs_rq->throttled_clock_self) { 5526 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5527 5528 cfs_rq->throttled_clock_self = 0; 5529 5530 if (SCHED_WARN_ON((s64)delta < 0)) 5531 delta = 0; 5532 5533 cfs_rq->throttled_clock_self_time += delta; 5534 } 5535 } 5536 5537 return 0; 5538 } 5539 5540 static int tg_throttle_down(struct task_group *tg, void *data) 5541 { 5542 struct rq *rq = data; 5543 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5544 5545 /* group is entering throttled state, stop time */ 5546 if (!cfs_rq->throttle_count) { 5547 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5548 list_del_leaf_cfs_rq(cfs_rq); 5549 5550 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5551 if (cfs_rq->nr_running) 5552 cfs_rq->throttled_clock_self = rq_clock(rq); 5553 } 5554 cfs_rq->throttle_count++; 5555 5556 return 0; 5557 } 5558 5559 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5560 { 5561 struct rq *rq = rq_of(cfs_rq); 5562 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5563 struct sched_entity *se; 5564 long task_delta, idle_task_delta, dequeue = 1; 5565 5566 raw_spin_lock(&cfs_b->lock); 5567 /* This will start the period timer if necessary */ 5568 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5569 /* 5570 * We have raced with bandwidth becoming available, and if we 5571 * actually throttled the timer might not unthrottle us for an 5572 * entire period. We additionally needed to make sure that any 5573 * subsequent check_cfs_rq_runtime calls agree not to throttle 5574 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5575 * for 1ns of runtime rather than just check cfs_b. 5576 */ 5577 dequeue = 0; 5578 } else { 5579 list_add_tail_rcu(&cfs_rq->throttled_list, 5580 &cfs_b->throttled_cfs_rq); 5581 } 5582 raw_spin_unlock(&cfs_b->lock); 5583 5584 if (!dequeue) 5585 return false; /* Throttle no longer required. */ 5586 5587 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5588 5589 /* freeze hierarchy runnable averages while throttled */ 5590 rcu_read_lock(); 5591 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5592 rcu_read_unlock(); 5593 5594 task_delta = cfs_rq->h_nr_running; 5595 idle_task_delta = cfs_rq->idle_h_nr_running; 5596 for_each_sched_entity(se) { 5597 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5598 /* throttled entity or throttle-on-deactivate */ 5599 if (!se->on_rq) 5600 goto done; 5601 5602 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5603 5604 if (cfs_rq_is_idle(group_cfs_rq(se))) 5605 idle_task_delta = cfs_rq->h_nr_running; 5606 5607 qcfs_rq->h_nr_running -= task_delta; 5608 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5609 5610 if (qcfs_rq->load.weight) { 5611 /* Avoid re-evaluating load for this entity: */ 5612 se = parent_entity(se); 5613 break; 5614 } 5615 } 5616 5617 for_each_sched_entity(se) { 5618 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5619 /* throttled entity or throttle-on-deactivate */ 5620 if (!se->on_rq) 5621 goto done; 5622 5623 update_load_avg(qcfs_rq, se, 0); 5624 se_update_runnable(se); 5625 5626 if (cfs_rq_is_idle(group_cfs_rq(se))) 5627 idle_task_delta = cfs_rq->h_nr_running; 5628 5629 qcfs_rq->h_nr_running -= task_delta; 5630 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5631 } 5632 5633 /* At this point se is NULL and we are at root level*/ 5634 sub_nr_running(rq, task_delta); 5635 5636 done: 5637 /* 5638 * Note: distribution will already see us throttled via the 5639 * throttled-list. rq->lock protects completion. 5640 */ 5641 cfs_rq->throttled = 1; 5642 SCHED_WARN_ON(cfs_rq->throttled_clock); 5643 if (cfs_rq->nr_running) 5644 cfs_rq->throttled_clock = rq_clock(rq); 5645 return true; 5646 } 5647 5648 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5649 { 5650 struct rq *rq = rq_of(cfs_rq); 5651 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5652 struct sched_entity *se; 5653 long task_delta, idle_task_delta; 5654 5655 se = cfs_rq->tg->se[cpu_of(rq)]; 5656 5657 cfs_rq->throttled = 0; 5658 5659 update_rq_clock(rq); 5660 5661 raw_spin_lock(&cfs_b->lock); 5662 if (cfs_rq->throttled_clock) { 5663 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5664 cfs_rq->throttled_clock = 0; 5665 } 5666 list_del_rcu(&cfs_rq->throttled_list); 5667 raw_spin_unlock(&cfs_b->lock); 5668 5669 /* update hierarchical throttle state */ 5670 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5671 5672 if (!cfs_rq->load.weight) { 5673 if (!cfs_rq->on_list) 5674 return; 5675 /* 5676 * Nothing to run but something to decay (on_list)? 5677 * Complete the branch. 5678 */ 5679 for_each_sched_entity(se) { 5680 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5681 break; 5682 } 5683 goto unthrottle_throttle; 5684 } 5685 5686 task_delta = cfs_rq->h_nr_running; 5687 idle_task_delta = cfs_rq->idle_h_nr_running; 5688 for_each_sched_entity(se) { 5689 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5690 5691 if (se->on_rq) 5692 break; 5693 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5694 5695 if (cfs_rq_is_idle(group_cfs_rq(se))) 5696 idle_task_delta = cfs_rq->h_nr_running; 5697 5698 qcfs_rq->h_nr_running += task_delta; 5699 qcfs_rq->idle_h_nr_running += idle_task_delta; 5700 5701 /* end evaluation on encountering a throttled cfs_rq */ 5702 if (cfs_rq_throttled(qcfs_rq)) 5703 goto unthrottle_throttle; 5704 } 5705 5706 for_each_sched_entity(se) { 5707 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5708 5709 update_load_avg(qcfs_rq, se, UPDATE_TG); 5710 se_update_runnable(se); 5711 5712 if (cfs_rq_is_idle(group_cfs_rq(se))) 5713 idle_task_delta = cfs_rq->h_nr_running; 5714 5715 qcfs_rq->h_nr_running += task_delta; 5716 qcfs_rq->idle_h_nr_running += idle_task_delta; 5717 5718 /* end evaluation on encountering a throttled cfs_rq */ 5719 if (cfs_rq_throttled(qcfs_rq)) 5720 goto unthrottle_throttle; 5721 } 5722 5723 /* At this point se is NULL and we are at root level*/ 5724 add_nr_running(rq, task_delta); 5725 5726 unthrottle_throttle: 5727 assert_list_leaf_cfs_rq(rq); 5728 5729 /* Determine whether we need to wake up potentially idle CPU: */ 5730 if (rq->curr == rq->idle && rq->cfs.nr_running) 5731 resched_curr(rq); 5732 } 5733 5734 #ifdef CONFIG_SMP 5735 static void __cfsb_csd_unthrottle(void *arg) 5736 { 5737 struct cfs_rq *cursor, *tmp; 5738 struct rq *rq = arg; 5739 struct rq_flags rf; 5740 5741 rq_lock(rq, &rf); 5742 5743 /* 5744 * Iterating over the list can trigger several call to 5745 * update_rq_clock() in unthrottle_cfs_rq(). 5746 * Do it once and skip the potential next ones. 5747 */ 5748 update_rq_clock(rq); 5749 rq_clock_start_loop_update(rq); 5750 5751 /* 5752 * Since we hold rq lock we're safe from concurrent manipulation of 5753 * the CSD list. However, this RCU critical section annotates the 5754 * fact that we pair with sched_free_group_rcu(), so that we cannot 5755 * race with group being freed in the window between removing it 5756 * from the list and advancing to the next entry in the list. 5757 */ 5758 rcu_read_lock(); 5759 5760 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 5761 throttled_csd_list) { 5762 list_del_init(&cursor->throttled_csd_list); 5763 5764 if (cfs_rq_throttled(cursor)) 5765 unthrottle_cfs_rq(cursor); 5766 } 5767 5768 rcu_read_unlock(); 5769 5770 rq_clock_stop_loop_update(rq); 5771 rq_unlock(rq, &rf); 5772 } 5773 5774 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5775 { 5776 struct rq *rq = rq_of(cfs_rq); 5777 bool first; 5778 5779 if (rq == this_rq()) { 5780 unthrottle_cfs_rq(cfs_rq); 5781 return; 5782 } 5783 5784 /* Already enqueued */ 5785 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 5786 return; 5787 5788 first = list_empty(&rq->cfsb_csd_list); 5789 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 5790 if (first) 5791 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 5792 } 5793 #else 5794 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5795 { 5796 unthrottle_cfs_rq(cfs_rq); 5797 } 5798 #endif 5799 5800 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5801 { 5802 lockdep_assert_rq_held(rq_of(cfs_rq)); 5803 5804 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 5805 cfs_rq->runtime_remaining <= 0)) 5806 return; 5807 5808 __unthrottle_cfs_rq_async(cfs_rq); 5809 } 5810 5811 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5812 { 5813 struct cfs_rq *local_unthrottle = NULL; 5814 int this_cpu = smp_processor_id(); 5815 u64 runtime, remaining = 1; 5816 bool throttled = false; 5817 struct cfs_rq *cfs_rq; 5818 struct rq_flags rf; 5819 struct rq *rq; 5820 5821 rcu_read_lock(); 5822 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5823 throttled_list) { 5824 rq = rq_of(cfs_rq); 5825 5826 if (!remaining) { 5827 throttled = true; 5828 break; 5829 } 5830 5831 rq_lock_irqsave(rq, &rf); 5832 if (!cfs_rq_throttled(cfs_rq)) 5833 goto next; 5834 5835 #ifdef CONFIG_SMP 5836 /* Already queued for async unthrottle */ 5837 if (!list_empty(&cfs_rq->throttled_csd_list)) 5838 goto next; 5839 #endif 5840 5841 /* By the above checks, this should never be true */ 5842 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5843 5844 raw_spin_lock(&cfs_b->lock); 5845 runtime = -cfs_rq->runtime_remaining + 1; 5846 if (runtime > cfs_b->runtime) 5847 runtime = cfs_b->runtime; 5848 cfs_b->runtime -= runtime; 5849 remaining = cfs_b->runtime; 5850 raw_spin_unlock(&cfs_b->lock); 5851 5852 cfs_rq->runtime_remaining += runtime; 5853 5854 /* we check whether we're throttled above */ 5855 if (cfs_rq->runtime_remaining > 0) { 5856 if (cpu_of(rq) != this_cpu || 5857 SCHED_WARN_ON(local_unthrottle)) 5858 unthrottle_cfs_rq_async(cfs_rq); 5859 else 5860 local_unthrottle = cfs_rq; 5861 } else { 5862 throttled = true; 5863 } 5864 5865 next: 5866 rq_unlock_irqrestore(rq, &rf); 5867 } 5868 rcu_read_unlock(); 5869 5870 if (local_unthrottle) { 5871 rq = cpu_rq(this_cpu); 5872 rq_lock_irqsave(rq, &rf); 5873 if (cfs_rq_throttled(local_unthrottle)) 5874 unthrottle_cfs_rq(local_unthrottle); 5875 rq_unlock_irqrestore(rq, &rf); 5876 } 5877 5878 return throttled; 5879 } 5880 5881 /* 5882 * Responsible for refilling a task_group's bandwidth and unthrottling its 5883 * cfs_rqs as appropriate. If there has been no activity within the last 5884 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5885 * used to track this state. 5886 */ 5887 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5888 { 5889 int throttled; 5890 5891 /* no need to continue the timer with no bandwidth constraint */ 5892 if (cfs_b->quota == RUNTIME_INF) 5893 goto out_deactivate; 5894 5895 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5896 cfs_b->nr_periods += overrun; 5897 5898 /* Refill extra burst quota even if cfs_b->idle */ 5899 __refill_cfs_bandwidth_runtime(cfs_b); 5900 5901 /* 5902 * idle depends on !throttled (for the case of a large deficit), and if 5903 * we're going inactive then everything else can be deferred 5904 */ 5905 if (cfs_b->idle && !throttled) 5906 goto out_deactivate; 5907 5908 if (!throttled) { 5909 /* mark as potentially idle for the upcoming period */ 5910 cfs_b->idle = 1; 5911 return 0; 5912 } 5913 5914 /* account preceding periods in which throttling occurred */ 5915 cfs_b->nr_throttled += overrun; 5916 5917 /* 5918 * This check is repeated as we release cfs_b->lock while we unthrottle. 5919 */ 5920 while (throttled && cfs_b->runtime > 0) { 5921 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5922 /* we can't nest cfs_b->lock while distributing bandwidth */ 5923 throttled = distribute_cfs_runtime(cfs_b); 5924 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5925 } 5926 5927 /* 5928 * While we are ensured activity in the period following an 5929 * unthrottle, this also covers the case in which the new bandwidth is 5930 * insufficient to cover the existing bandwidth deficit. (Forcing the 5931 * timer to remain active while there are any throttled entities.) 5932 */ 5933 cfs_b->idle = 0; 5934 5935 return 0; 5936 5937 out_deactivate: 5938 return 1; 5939 } 5940 5941 /* a cfs_rq won't donate quota below this amount */ 5942 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5943 /* minimum remaining period time to redistribute slack quota */ 5944 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5945 /* how long we wait to gather additional slack before distributing */ 5946 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5947 5948 /* 5949 * Are we near the end of the current quota period? 5950 * 5951 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5952 * hrtimer base being cleared by hrtimer_start. In the case of 5953 * migrate_hrtimers, base is never cleared, so we are fine. 5954 */ 5955 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5956 { 5957 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5958 s64 remaining; 5959 5960 /* if the call-back is running a quota refresh is already occurring */ 5961 if (hrtimer_callback_running(refresh_timer)) 5962 return 1; 5963 5964 /* is a quota refresh about to occur? */ 5965 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5966 if (remaining < (s64)min_expire) 5967 return 1; 5968 5969 return 0; 5970 } 5971 5972 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5973 { 5974 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5975 5976 /* if there's a quota refresh soon don't bother with slack */ 5977 if (runtime_refresh_within(cfs_b, min_left)) 5978 return; 5979 5980 /* don't push forwards an existing deferred unthrottle */ 5981 if (cfs_b->slack_started) 5982 return; 5983 cfs_b->slack_started = true; 5984 5985 hrtimer_start(&cfs_b->slack_timer, 5986 ns_to_ktime(cfs_bandwidth_slack_period), 5987 HRTIMER_MODE_REL); 5988 } 5989 5990 /* we know any runtime found here is valid as update_curr() precedes return */ 5991 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5992 { 5993 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5994 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5995 5996 if (slack_runtime <= 0) 5997 return; 5998 5999 raw_spin_lock(&cfs_b->lock); 6000 if (cfs_b->quota != RUNTIME_INF) { 6001 cfs_b->runtime += slack_runtime; 6002 6003 /* we are under rq->lock, defer unthrottling using a timer */ 6004 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6005 !list_empty(&cfs_b->throttled_cfs_rq)) 6006 start_cfs_slack_bandwidth(cfs_b); 6007 } 6008 raw_spin_unlock(&cfs_b->lock); 6009 6010 /* even if it's not valid for return we don't want to try again */ 6011 cfs_rq->runtime_remaining -= slack_runtime; 6012 } 6013 6014 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6015 { 6016 if (!cfs_bandwidth_used()) 6017 return; 6018 6019 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 6020 return; 6021 6022 __return_cfs_rq_runtime(cfs_rq); 6023 } 6024 6025 /* 6026 * This is done with a timer (instead of inline with bandwidth return) since 6027 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6028 */ 6029 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6030 { 6031 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6032 unsigned long flags; 6033 6034 /* confirm we're still not at a refresh boundary */ 6035 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6036 cfs_b->slack_started = false; 6037 6038 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6039 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6040 return; 6041 } 6042 6043 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6044 runtime = cfs_b->runtime; 6045 6046 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6047 6048 if (!runtime) 6049 return; 6050 6051 distribute_cfs_runtime(cfs_b); 6052 } 6053 6054 /* 6055 * When a group wakes up we want to make sure that its quota is not already 6056 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6057 * runtime as update_curr() throttling can not trigger until it's on-rq. 6058 */ 6059 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6060 { 6061 if (!cfs_bandwidth_used()) 6062 return; 6063 6064 /* an active group must be handled by the update_curr()->put() path */ 6065 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6066 return; 6067 6068 /* ensure the group is not already throttled */ 6069 if (cfs_rq_throttled(cfs_rq)) 6070 return; 6071 6072 /* update runtime allocation */ 6073 account_cfs_rq_runtime(cfs_rq, 0); 6074 if (cfs_rq->runtime_remaining <= 0) 6075 throttle_cfs_rq(cfs_rq); 6076 } 6077 6078 static void sync_throttle(struct task_group *tg, int cpu) 6079 { 6080 struct cfs_rq *pcfs_rq, *cfs_rq; 6081 6082 if (!cfs_bandwidth_used()) 6083 return; 6084 6085 if (!tg->parent) 6086 return; 6087 6088 cfs_rq = tg->cfs_rq[cpu]; 6089 pcfs_rq = tg->parent->cfs_rq[cpu]; 6090 6091 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6092 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6093 } 6094 6095 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6096 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6097 { 6098 if (!cfs_bandwidth_used()) 6099 return false; 6100 6101 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6102 return false; 6103 6104 /* 6105 * it's possible for a throttled entity to be forced into a running 6106 * state (e.g. set_curr_task), in this case we're finished. 6107 */ 6108 if (cfs_rq_throttled(cfs_rq)) 6109 return true; 6110 6111 return throttle_cfs_rq(cfs_rq); 6112 } 6113 6114 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6115 { 6116 struct cfs_bandwidth *cfs_b = 6117 container_of(timer, struct cfs_bandwidth, slack_timer); 6118 6119 do_sched_cfs_slack_timer(cfs_b); 6120 6121 return HRTIMER_NORESTART; 6122 } 6123 6124 extern const u64 max_cfs_quota_period; 6125 6126 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6127 { 6128 struct cfs_bandwidth *cfs_b = 6129 container_of(timer, struct cfs_bandwidth, period_timer); 6130 unsigned long flags; 6131 int overrun; 6132 int idle = 0; 6133 int count = 0; 6134 6135 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6136 for (;;) { 6137 overrun = hrtimer_forward_now(timer, cfs_b->period); 6138 if (!overrun) 6139 break; 6140 6141 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6142 6143 if (++count > 3) { 6144 u64 new, old = ktime_to_ns(cfs_b->period); 6145 6146 /* 6147 * Grow period by a factor of 2 to avoid losing precision. 6148 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6149 * to fail. 6150 */ 6151 new = old * 2; 6152 if (new < max_cfs_quota_period) { 6153 cfs_b->period = ns_to_ktime(new); 6154 cfs_b->quota *= 2; 6155 cfs_b->burst *= 2; 6156 6157 pr_warn_ratelimited( 6158 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6159 smp_processor_id(), 6160 div_u64(new, NSEC_PER_USEC), 6161 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6162 } else { 6163 pr_warn_ratelimited( 6164 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6165 smp_processor_id(), 6166 div_u64(old, NSEC_PER_USEC), 6167 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6168 } 6169 6170 /* reset count so we don't come right back in here */ 6171 count = 0; 6172 } 6173 } 6174 if (idle) 6175 cfs_b->period_active = 0; 6176 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6177 6178 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6179 } 6180 6181 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6182 { 6183 raw_spin_lock_init(&cfs_b->lock); 6184 cfs_b->runtime = 0; 6185 cfs_b->quota = RUNTIME_INF; 6186 cfs_b->period = ns_to_ktime(default_cfs_period()); 6187 cfs_b->burst = 0; 6188 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6189 6190 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6191 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6192 cfs_b->period_timer.function = sched_cfs_period_timer; 6193 6194 /* Add a random offset so that timers interleave */ 6195 hrtimer_set_expires(&cfs_b->period_timer, 6196 get_random_u32_below(cfs_b->period)); 6197 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6198 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6199 cfs_b->slack_started = false; 6200 } 6201 6202 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6203 { 6204 cfs_rq->runtime_enabled = 0; 6205 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6206 #ifdef CONFIG_SMP 6207 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6208 #endif 6209 } 6210 6211 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6212 { 6213 lockdep_assert_held(&cfs_b->lock); 6214 6215 if (cfs_b->period_active) 6216 return; 6217 6218 cfs_b->period_active = 1; 6219 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6220 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6221 } 6222 6223 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6224 { 6225 int __maybe_unused i; 6226 6227 /* init_cfs_bandwidth() was not called */ 6228 if (!cfs_b->throttled_cfs_rq.next) 6229 return; 6230 6231 hrtimer_cancel(&cfs_b->period_timer); 6232 hrtimer_cancel(&cfs_b->slack_timer); 6233 6234 /* 6235 * It is possible that we still have some cfs_rq's pending on a CSD 6236 * list, though this race is very rare. In order for this to occur, we 6237 * must have raced with the last task leaving the group while there 6238 * exist throttled cfs_rq(s), and the period_timer must have queued the 6239 * CSD item but the remote cpu has not yet processed it. To handle this, 6240 * we can simply flush all pending CSD work inline here. We're 6241 * guaranteed at this point that no additional cfs_rq of this group can 6242 * join a CSD list. 6243 */ 6244 #ifdef CONFIG_SMP 6245 for_each_possible_cpu(i) { 6246 struct rq *rq = cpu_rq(i); 6247 unsigned long flags; 6248 6249 if (list_empty(&rq->cfsb_csd_list)) 6250 continue; 6251 6252 local_irq_save(flags); 6253 __cfsb_csd_unthrottle(rq); 6254 local_irq_restore(flags); 6255 } 6256 #endif 6257 } 6258 6259 /* 6260 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6261 * 6262 * The race is harmless, since modifying bandwidth settings of unhooked group 6263 * bits doesn't do much. 6264 */ 6265 6266 /* cpu online callback */ 6267 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6268 { 6269 struct task_group *tg; 6270 6271 lockdep_assert_rq_held(rq); 6272 6273 rcu_read_lock(); 6274 list_for_each_entry_rcu(tg, &task_groups, list) { 6275 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6276 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6277 6278 raw_spin_lock(&cfs_b->lock); 6279 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6280 raw_spin_unlock(&cfs_b->lock); 6281 } 6282 rcu_read_unlock(); 6283 } 6284 6285 /* cpu offline callback */ 6286 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6287 { 6288 struct task_group *tg; 6289 6290 lockdep_assert_rq_held(rq); 6291 6292 /* 6293 * The rq clock has already been updated in the 6294 * set_rq_offline(), so we should skip updating 6295 * the rq clock again in unthrottle_cfs_rq(). 6296 */ 6297 rq_clock_start_loop_update(rq); 6298 6299 rcu_read_lock(); 6300 list_for_each_entry_rcu(tg, &task_groups, list) { 6301 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6302 6303 if (!cfs_rq->runtime_enabled) 6304 continue; 6305 6306 /* 6307 * clock_task is not advancing so we just need to make sure 6308 * there's some valid quota amount 6309 */ 6310 cfs_rq->runtime_remaining = 1; 6311 /* 6312 * Offline rq is schedulable till CPU is completely disabled 6313 * in take_cpu_down(), so we prevent new cfs throttling here. 6314 */ 6315 cfs_rq->runtime_enabled = 0; 6316 6317 if (cfs_rq_throttled(cfs_rq)) 6318 unthrottle_cfs_rq(cfs_rq); 6319 } 6320 rcu_read_unlock(); 6321 6322 rq_clock_stop_loop_update(rq); 6323 } 6324 6325 bool cfs_task_bw_constrained(struct task_struct *p) 6326 { 6327 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6328 6329 if (!cfs_bandwidth_used()) 6330 return false; 6331 6332 if (cfs_rq->runtime_enabled || 6333 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6334 return true; 6335 6336 return false; 6337 } 6338 6339 #ifdef CONFIG_NO_HZ_FULL 6340 /* called from pick_next_task_fair() */ 6341 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6342 { 6343 int cpu = cpu_of(rq); 6344 6345 if (!sched_feat(HZ_BW) || !cfs_bandwidth_used()) 6346 return; 6347 6348 if (!tick_nohz_full_cpu(cpu)) 6349 return; 6350 6351 if (rq->nr_running != 1) 6352 return; 6353 6354 /* 6355 * We know there is only one task runnable and we've just picked it. The 6356 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6357 * be otherwise able to stop the tick. Just need to check if we are using 6358 * bandwidth control. 6359 */ 6360 if (cfs_task_bw_constrained(p)) 6361 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6362 } 6363 #endif 6364 6365 #else /* CONFIG_CFS_BANDWIDTH */ 6366 6367 static inline bool cfs_bandwidth_used(void) 6368 { 6369 return false; 6370 } 6371 6372 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6373 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6374 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6375 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6376 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6377 6378 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6379 { 6380 return 0; 6381 } 6382 6383 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6384 { 6385 return 0; 6386 } 6387 6388 static inline int throttled_lb_pair(struct task_group *tg, 6389 int src_cpu, int dest_cpu) 6390 { 6391 return 0; 6392 } 6393 6394 #ifdef CONFIG_FAIR_GROUP_SCHED 6395 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6396 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6397 #endif 6398 6399 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6400 { 6401 return NULL; 6402 } 6403 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6404 static inline void update_runtime_enabled(struct rq *rq) {} 6405 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6406 #ifdef CONFIG_CGROUP_SCHED 6407 bool cfs_task_bw_constrained(struct task_struct *p) 6408 { 6409 return false; 6410 } 6411 #endif 6412 #endif /* CONFIG_CFS_BANDWIDTH */ 6413 6414 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6415 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6416 #endif 6417 6418 /************************************************** 6419 * CFS operations on tasks: 6420 */ 6421 6422 #ifdef CONFIG_SCHED_HRTICK 6423 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6424 { 6425 struct sched_entity *se = &p->se; 6426 6427 SCHED_WARN_ON(task_rq(p) != rq); 6428 6429 if (rq->cfs.h_nr_running > 1) { 6430 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6431 u64 slice = se->slice; 6432 s64 delta = slice - ran; 6433 6434 if (delta < 0) { 6435 if (task_current(rq, p)) 6436 resched_curr(rq); 6437 return; 6438 } 6439 hrtick_start(rq, delta); 6440 } 6441 } 6442 6443 /* 6444 * called from enqueue/dequeue and updates the hrtick when the 6445 * current task is from our class and nr_running is low enough 6446 * to matter. 6447 */ 6448 static void hrtick_update(struct rq *rq) 6449 { 6450 struct task_struct *curr = rq->curr; 6451 6452 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6453 return; 6454 6455 hrtick_start_fair(rq, curr); 6456 } 6457 #else /* !CONFIG_SCHED_HRTICK */ 6458 static inline void 6459 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6460 { 6461 } 6462 6463 static inline void hrtick_update(struct rq *rq) 6464 { 6465 } 6466 #endif 6467 6468 #ifdef CONFIG_SMP 6469 static inline bool cpu_overutilized(int cpu) 6470 { 6471 unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6472 unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6473 6474 /* Return true only if the utilization doesn't fit CPU's capacity */ 6475 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6476 } 6477 6478 static inline void update_overutilized_status(struct rq *rq) 6479 { 6480 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 6481 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 6482 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 6483 } 6484 } 6485 #else 6486 static inline void update_overutilized_status(struct rq *rq) { } 6487 #endif 6488 6489 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6490 static int sched_idle_rq(struct rq *rq) 6491 { 6492 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6493 rq->nr_running); 6494 } 6495 6496 #ifdef CONFIG_SMP 6497 static int sched_idle_cpu(int cpu) 6498 { 6499 return sched_idle_rq(cpu_rq(cpu)); 6500 } 6501 #endif 6502 6503 /* 6504 * The enqueue_task method is called before nr_running is 6505 * increased. Here we update the fair scheduling stats and 6506 * then put the task into the rbtree: 6507 */ 6508 static void 6509 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6510 { 6511 struct cfs_rq *cfs_rq; 6512 struct sched_entity *se = &p->se; 6513 int idle_h_nr_running = task_has_idle_policy(p); 6514 int task_new = !(flags & ENQUEUE_WAKEUP); 6515 6516 /* 6517 * The code below (indirectly) updates schedutil which looks at 6518 * the cfs_rq utilization to select a frequency. 6519 * Let's add the task's estimated utilization to the cfs_rq's 6520 * estimated utilization, before we update schedutil. 6521 */ 6522 util_est_enqueue(&rq->cfs, p); 6523 6524 /* 6525 * If in_iowait is set, the code below may not trigger any cpufreq 6526 * utilization updates, so do it here explicitly with the IOWAIT flag 6527 * passed. 6528 */ 6529 if (p->in_iowait) 6530 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6531 6532 for_each_sched_entity(se) { 6533 if (se->on_rq) 6534 break; 6535 cfs_rq = cfs_rq_of(se); 6536 enqueue_entity(cfs_rq, se, flags); 6537 6538 cfs_rq->h_nr_running++; 6539 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6540 6541 if (cfs_rq_is_idle(cfs_rq)) 6542 idle_h_nr_running = 1; 6543 6544 /* end evaluation on encountering a throttled cfs_rq */ 6545 if (cfs_rq_throttled(cfs_rq)) 6546 goto enqueue_throttle; 6547 6548 flags = ENQUEUE_WAKEUP; 6549 } 6550 6551 for_each_sched_entity(se) { 6552 cfs_rq = cfs_rq_of(se); 6553 6554 update_load_avg(cfs_rq, se, UPDATE_TG); 6555 se_update_runnable(se); 6556 update_cfs_group(se); 6557 6558 cfs_rq->h_nr_running++; 6559 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6560 6561 if (cfs_rq_is_idle(cfs_rq)) 6562 idle_h_nr_running = 1; 6563 6564 /* end evaluation on encountering a throttled cfs_rq */ 6565 if (cfs_rq_throttled(cfs_rq)) 6566 goto enqueue_throttle; 6567 } 6568 6569 /* At this point se is NULL and we are at root level*/ 6570 add_nr_running(rq, 1); 6571 6572 /* 6573 * Since new tasks are assigned an initial util_avg equal to 6574 * half of the spare capacity of their CPU, tiny tasks have the 6575 * ability to cross the overutilized threshold, which will 6576 * result in the load balancer ruining all the task placement 6577 * done by EAS. As a way to mitigate that effect, do not account 6578 * for the first enqueue operation of new tasks during the 6579 * overutilized flag detection. 6580 * 6581 * A better way of solving this problem would be to wait for 6582 * the PELT signals of tasks to converge before taking them 6583 * into account, but that is not straightforward to implement, 6584 * and the following generally works well enough in practice. 6585 */ 6586 if (!task_new) 6587 update_overutilized_status(rq); 6588 6589 enqueue_throttle: 6590 assert_list_leaf_cfs_rq(rq); 6591 6592 hrtick_update(rq); 6593 } 6594 6595 static void set_next_buddy(struct sched_entity *se); 6596 6597 /* 6598 * The dequeue_task method is called before nr_running is 6599 * decreased. We remove the task from the rbtree and 6600 * update the fair scheduling stats: 6601 */ 6602 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6603 { 6604 struct cfs_rq *cfs_rq; 6605 struct sched_entity *se = &p->se; 6606 int task_sleep = flags & DEQUEUE_SLEEP; 6607 int idle_h_nr_running = task_has_idle_policy(p); 6608 bool was_sched_idle = sched_idle_rq(rq); 6609 6610 util_est_dequeue(&rq->cfs, p); 6611 6612 for_each_sched_entity(se) { 6613 cfs_rq = cfs_rq_of(se); 6614 dequeue_entity(cfs_rq, se, flags); 6615 6616 cfs_rq->h_nr_running--; 6617 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6618 6619 if (cfs_rq_is_idle(cfs_rq)) 6620 idle_h_nr_running = 1; 6621 6622 /* end evaluation on encountering a throttled cfs_rq */ 6623 if (cfs_rq_throttled(cfs_rq)) 6624 goto dequeue_throttle; 6625 6626 /* Don't dequeue parent if it has other entities besides us */ 6627 if (cfs_rq->load.weight) { 6628 /* Avoid re-evaluating load for this entity: */ 6629 se = parent_entity(se); 6630 /* 6631 * Bias pick_next to pick a task from this cfs_rq, as 6632 * p is sleeping when it is within its sched_slice. 6633 */ 6634 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 6635 set_next_buddy(se); 6636 break; 6637 } 6638 flags |= DEQUEUE_SLEEP; 6639 } 6640 6641 for_each_sched_entity(se) { 6642 cfs_rq = cfs_rq_of(se); 6643 6644 update_load_avg(cfs_rq, se, UPDATE_TG); 6645 se_update_runnable(se); 6646 update_cfs_group(se); 6647 6648 cfs_rq->h_nr_running--; 6649 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6650 6651 if (cfs_rq_is_idle(cfs_rq)) 6652 idle_h_nr_running = 1; 6653 6654 /* end evaluation on encountering a throttled cfs_rq */ 6655 if (cfs_rq_throttled(cfs_rq)) 6656 goto dequeue_throttle; 6657 6658 } 6659 6660 /* At this point se is NULL and we are at root level*/ 6661 sub_nr_running(rq, 1); 6662 6663 /* balance early to pull high priority tasks */ 6664 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 6665 rq->next_balance = jiffies; 6666 6667 dequeue_throttle: 6668 util_est_update(&rq->cfs, p, task_sleep); 6669 hrtick_update(rq); 6670 } 6671 6672 #ifdef CONFIG_SMP 6673 6674 /* Working cpumask for: load_balance, load_balance_newidle. */ 6675 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6676 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 6677 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 6678 6679 #ifdef CONFIG_NO_HZ_COMMON 6680 6681 static struct { 6682 cpumask_var_t idle_cpus_mask; 6683 atomic_t nr_cpus; 6684 int has_blocked; /* Idle CPUS has blocked load */ 6685 int needs_update; /* Newly idle CPUs need their next_balance collated */ 6686 unsigned long next_balance; /* in jiffy units */ 6687 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 6688 } nohz ____cacheline_aligned; 6689 6690 #endif /* CONFIG_NO_HZ_COMMON */ 6691 6692 static unsigned long cpu_load(struct rq *rq) 6693 { 6694 return cfs_rq_load_avg(&rq->cfs); 6695 } 6696 6697 /* 6698 * cpu_load_without - compute CPU load without any contributions from *p 6699 * @cpu: the CPU which load is requested 6700 * @p: the task which load should be discounted 6701 * 6702 * The load of a CPU is defined by the load of tasks currently enqueued on that 6703 * CPU as well as tasks which are currently sleeping after an execution on that 6704 * CPU. 6705 * 6706 * This method returns the load of the specified CPU by discounting the load of 6707 * the specified task, whenever the task is currently contributing to the CPU 6708 * load. 6709 */ 6710 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 6711 { 6712 struct cfs_rq *cfs_rq; 6713 unsigned int load; 6714 6715 /* Task has no contribution or is new */ 6716 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6717 return cpu_load(rq); 6718 6719 cfs_rq = &rq->cfs; 6720 load = READ_ONCE(cfs_rq->avg.load_avg); 6721 6722 /* Discount task's util from CPU's util */ 6723 lsub_positive(&load, task_h_load(p)); 6724 6725 return load; 6726 } 6727 6728 static unsigned long cpu_runnable(struct rq *rq) 6729 { 6730 return cfs_rq_runnable_avg(&rq->cfs); 6731 } 6732 6733 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 6734 { 6735 struct cfs_rq *cfs_rq; 6736 unsigned int runnable; 6737 6738 /* Task has no contribution or is new */ 6739 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6740 return cpu_runnable(rq); 6741 6742 cfs_rq = &rq->cfs; 6743 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 6744 6745 /* Discount task's runnable from CPU's runnable */ 6746 lsub_positive(&runnable, p->se.avg.runnable_avg); 6747 6748 return runnable; 6749 } 6750 6751 static unsigned long capacity_of(int cpu) 6752 { 6753 return cpu_rq(cpu)->cpu_capacity; 6754 } 6755 6756 static void record_wakee(struct task_struct *p) 6757 { 6758 /* 6759 * Only decay a single time; tasks that have less then 1 wakeup per 6760 * jiffy will not have built up many flips. 6761 */ 6762 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 6763 current->wakee_flips >>= 1; 6764 current->wakee_flip_decay_ts = jiffies; 6765 } 6766 6767 if (current->last_wakee != p) { 6768 current->last_wakee = p; 6769 current->wakee_flips++; 6770 } 6771 } 6772 6773 /* 6774 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 6775 * 6776 * A waker of many should wake a different task than the one last awakened 6777 * at a frequency roughly N times higher than one of its wakees. 6778 * 6779 * In order to determine whether we should let the load spread vs consolidating 6780 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 6781 * partner, and a factor of lls_size higher frequency in the other. 6782 * 6783 * With both conditions met, we can be relatively sure that the relationship is 6784 * non-monogamous, with partner count exceeding socket size. 6785 * 6786 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 6787 * whatever is irrelevant, spread criteria is apparent partner count exceeds 6788 * socket size. 6789 */ 6790 static int wake_wide(struct task_struct *p) 6791 { 6792 unsigned int master = current->wakee_flips; 6793 unsigned int slave = p->wakee_flips; 6794 int factor = __this_cpu_read(sd_llc_size); 6795 6796 if (master < slave) 6797 swap(master, slave); 6798 if (slave < factor || master < slave * factor) 6799 return 0; 6800 return 1; 6801 } 6802 6803 /* 6804 * The purpose of wake_affine() is to quickly determine on which CPU we can run 6805 * soonest. For the purpose of speed we only consider the waking and previous 6806 * CPU. 6807 * 6808 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 6809 * cache-affine and is (or will be) idle. 6810 * 6811 * wake_affine_weight() - considers the weight to reflect the average 6812 * scheduling latency of the CPUs. This seems to work 6813 * for the overloaded case. 6814 */ 6815 static int 6816 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 6817 { 6818 /* 6819 * If this_cpu is idle, it implies the wakeup is from interrupt 6820 * context. Only allow the move if cache is shared. Otherwise an 6821 * interrupt intensive workload could force all tasks onto one 6822 * node depending on the IO topology or IRQ affinity settings. 6823 * 6824 * If the prev_cpu is idle and cache affine then avoid a migration. 6825 * There is no guarantee that the cache hot data from an interrupt 6826 * is more important than cache hot data on the prev_cpu and from 6827 * a cpufreq perspective, it's better to have higher utilisation 6828 * on one CPU. 6829 */ 6830 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 6831 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 6832 6833 if (sync && cpu_rq(this_cpu)->nr_running == 1) 6834 return this_cpu; 6835 6836 if (available_idle_cpu(prev_cpu)) 6837 return prev_cpu; 6838 6839 return nr_cpumask_bits; 6840 } 6841 6842 static int 6843 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 6844 int this_cpu, int prev_cpu, int sync) 6845 { 6846 s64 this_eff_load, prev_eff_load; 6847 unsigned long task_load; 6848 6849 this_eff_load = cpu_load(cpu_rq(this_cpu)); 6850 6851 if (sync) { 6852 unsigned long current_load = task_h_load(current); 6853 6854 if (current_load > this_eff_load) 6855 return this_cpu; 6856 6857 this_eff_load -= current_load; 6858 } 6859 6860 task_load = task_h_load(p); 6861 6862 this_eff_load += task_load; 6863 if (sched_feat(WA_BIAS)) 6864 this_eff_load *= 100; 6865 this_eff_load *= capacity_of(prev_cpu); 6866 6867 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 6868 prev_eff_load -= task_load; 6869 if (sched_feat(WA_BIAS)) 6870 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 6871 prev_eff_load *= capacity_of(this_cpu); 6872 6873 /* 6874 * If sync, adjust the weight of prev_eff_load such that if 6875 * prev_eff == this_eff that select_idle_sibling() will consider 6876 * stacking the wakee on top of the waker if no other CPU is 6877 * idle. 6878 */ 6879 if (sync) 6880 prev_eff_load += 1; 6881 6882 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 6883 } 6884 6885 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 6886 int this_cpu, int prev_cpu, int sync) 6887 { 6888 int target = nr_cpumask_bits; 6889 6890 if (sched_feat(WA_IDLE)) 6891 target = wake_affine_idle(this_cpu, prev_cpu, sync); 6892 6893 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 6894 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 6895 6896 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 6897 if (target != this_cpu) 6898 return prev_cpu; 6899 6900 schedstat_inc(sd->ttwu_move_affine); 6901 schedstat_inc(p->stats.nr_wakeups_affine); 6902 return target; 6903 } 6904 6905 static struct sched_group * 6906 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 6907 6908 /* 6909 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 6910 */ 6911 static int 6912 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 6913 { 6914 unsigned long load, min_load = ULONG_MAX; 6915 unsigned int min_exit_latency = UINT_MAX; 6916 u64 latest_idle_timestamp = 0; 6917 int least_loaded_cpu = this_cpu; 6918 int shallowest_idle_cpu = -1; 6919 int i; 6920 6921 /* Check if we have any choice: */ 6922 if (group->group_weight == 1) 6923 return cpumask_first(sched_group_span(group)); 6924 6925 /* Traverse only the allowed CPUs */ 6926 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 6927 struct rq *rq = cpu_rq(i); 6928 6929 if (!sched_core_cookie_match(rq, p)) 6930 continue; 6931 6932 if (sched_idle_cpu(i)) 6933 return i; 6934 6935 if (available_idle_cpu(i)) { 6936 struct cpuidle_state *idle = idle_get_state(rq); 6937 if (idle && idle->exit_latency < min_exit_latency) { 6938 /* 6939 * We give priority to a CPU whose idle state 6940 * has the smallest exit latency irrespective 6941 * of any idle timestamp. 6942 */ 6943 min_exit_latency = idle->exit_latency; 6944 latest_idle_timestamp = rq->idle_stamp; 6945 shallowest_idle_cpu = i; 6946 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6947 rq->idle_stamp > latest_idle_timestamp) { 6948 /* 6949 * If equal or no active idle state, then 6950 * the most recently idled CPU might have 6951 * a warmer cache. 6952 */ 6953 latest_idle_timestamp = rq->idle_stamp; 6954 shallowest_idle_cpu = i; 6955 } 6956 } else if (shallowest_idle_cpu == -1) { 6957 load = cpu_load(cpu_rq(i)); 6958 if (load < min_load) { 6959 min_load = load; 6960 least_loaded_cpu = i; 6961 } 6962 } 6963 } 6964 6965 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6966 } 6967 6968 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6969 int cpu, int prev_cpu, int sd_flag) 6970 { 6971 int new_cpu = cpu; 6972 6973 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 6974 return prev_cpu; 6975 6976 /* 6977 * We need task's util for cpu_util_without, sync it up to 6978 * prev_cpu's last_update_time. 6979 */ 6980 if (!(sd_flag & SD_BALANCE_FORK)) 6981 sync_entity_load_avg(&p->se); 6982 6983 while (sd) { 6984 struct sched_group *group; 6985 struct sched_domain *tmp; 6986 int weight; 6987 6988 if (!(sd->flags & sd_flag)) { 6989 sd = sd->child; 6990 continue; 6991 } 6992 6993 group = find_idlest_group(sd, p, cpu); 6994 if (!group) { 6995 sd = sd->child; 6996 continue; 6997 } 6998 6999 new_cpu = find_idlest_group_cpu(group, p, cpu); 7000 if (new_cpu == cpu) { 7001 /* Now try balancing at a lower domain level of 'cpu': */ 7002 sd = sd->child; 7003 continue; 7004 } 7005 7006 /* Now try balancing at a lower domain level of 'new_cpu': */ 7007 cpu = new_cpu; 7008 weight = sd->span_weight; 7009 sd = NULL; 7010 for_each_domain(cpu, tmp) { 7011 if (weight <= tmp->span_weight) 7012 break; 7013 if (tmp->flags & sd_flag) 7014 sd = tmp; 7015 } 7016 } 7017 7018 return new_cpu; 7019 } 7020 7021 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7022 { 7023 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7024 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7025 return cpu; 7026 7027 return -1; 7028 } 7029 7030 #ifdef CONFIG_SCHED_SMT 7031 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7032 EXPORT_SYMBOL_GPL(sched_smt_present); 7033 7034 static inline void set_idle_cores(int cpu, int val) 7035 { 7036 struct sched_domain_shared *sds; 7037 7038 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7039 if (sds) 7040 WRITE_ONCE(sds->has_idle_cores, val); 7041 } 7042 7043 static inline bool test_idle_cores(int cpu) 7044 { 7045 struct sched_domain_shared *sds; 7046 7047 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7048 if (sds) 7049 return READ_ONCE(sds->has_idle_cores); 7050 7051 return false; 7052 } 7053 7054 /* 7055 * Scans the local SMT mask to see if the entire core is idle, and records this 7056 * information in sd_llc_shared->has_idle_cores. 7057 * 7058 * Since SMT siblings share all cache levels, inspecting this limited remote 7059 * state should be fairly cheap. 7060 */ 7061 void __update_idle_core(struct rq *rq) 7062 { 7063 int core = cpu_of(rq); 7064 int cpu; 7065 7066 rcu_read_lock(); 7067 if (test_idle_cores(core)) 7068 goto unlock; 7069 7070 for_each_cpu(cpu, cpu_smt_mask(core)) { 7071 if (cpu == core) 7072 continue; 7073 7074 if (!available_idle_cpu(cpu)) 7075 goto unlock; 7076 } 7077 7078 set_idle_cores(core, 1); 7079 unlock: 7080 rcu_read_unlock(); 7081 } 7082 7083 /* 7084 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7085 * there are no idle cores left in the system; tracked through 7086 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7087 */ 7088 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7089 { 7090 bool idle = true; 7091 int cpu; 7092 7093 for_each_cpu(cpu, cpu_smt_mask(core)) { 7094 if (!available_idle_cpu(cpu)) { 7095 idle = false; 7096 if (*idle_cpu == -1) { 7097 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 7098 *idle_cpu = cpu; 7099 break; 7100 } 7101 continue; 7102 } 7103 break; 7104 } 7105 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 7106 *idle_cpu = cpu; 7107 } 7108 7109 if (idle) 7110 return core; 7111 7112 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7113 return -1; 7114 } 7115 7116 /* 7117 * Scan the local SMT mask for idle CPUs. 7118 */ 7119 static int select_idle_smt(struct task_struct *p, int target) 7120 { 7121 int cpu; 7122 7123 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7124 if (cpu == target) 7125 continue; 7126 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7127 return cpu; 7128 } 7129 7130 return -1; 7131 } 7132 7133 #else /* CONFIG_SCHED_SMT */ 7134 7135 static inline void set_idle_cores(int cpu, int val) 7136 { 7137 } 7138 7139 static inline bool test_idle_cores(int cpu) 7140 { 7141 return false; 7142 } 7143 7144 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7145 { 7146 return __select_idle_cpu(core, p); 7147 } 7148 7149 static inline int select_idle_smt(struct task_struct *p, int target) 7150 { 7151 return -1; 7152 } 7153 7154 #endif /* CONFIG_SCHED_SMT */ 7155 7156 /* 7157 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7158 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7159 * average idle time for this rq (as found in rq->avg_idle). 7160 */ 7161 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7162 { 7163 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7164 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7165 struct sched_domain_shared *sd_share; 7166 struct rq *this_rq = this_rq(); 7167 int this = smp_processor_id(); 7168 struct sched_domain *this_sd = NULL; 7169 u64 time = 0; 7170 7171 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7172 7173 if (sched_feat(SIS_PROP) && !has_idle_core) { 7174 u64 avg_cost, avg_idle, span_avg; 7175 unsigned long now = jiffies; 7176 7177 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 7178 if (!this_sd) 7179 return -1; 7180 7181 /* 7182 * If we're busy, the assumption that the last idle period 7183 * predicts the future is flawed; age away the remaining 7184 * predicted idle time. 7185 */ 7186 if (unlikely(this_rq->wake_stamp < now)) { 7187 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 7188 this_rq->wake_stamp++; 7189 this_rq->wake_avg_idle >>= 1; 7190 } 7191 } 7192 7193 avg_idle = this_rq->wake_avg_idle; 7194 avg_cost = this_sd->avg_scan_cost + 1; 7195 7196 span_avg = sd->span_weight * avg_idle; 7197 if (span_avg > 4*avg_cost) 7198 nr = div_u64(span_avg, avg_cost); 7199 else 7200 nr = 4; 7201 7202 time = cpu_clock(this); 7203 } 7204 7205 if (sched_feat(SIS_UTIL)) { 7206 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7207 if (sd_share) { 7208 /* because !--nr is the condition to stop scan */ 7209 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7210 /* overloaded LLC is unlikely to have idle cpu/core */ 7211 if (nr == 1) 7212 return -1; 7213 } 7214 } 7215 7216 for_each_cpu_wrap(cpu, cpus, target + 1) { 7217 if (has_idle_core) { 7218 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7219 if ((unsigned int)i < nr_cpumask_bits) 7220 return i; 7221 7222 } else { 7223 if (!--nr) 7224 return -1; 7225 idle_cpu = __select_idle_cpu(cpu, p); 7226 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7227 break; 7228 } 7229 } 7230 7231 if (has_idle_core) 7232 set_idle_cores(target, false); 7233 7234 if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) { 7235 time = cpu_clock(this) - time; 7236 7237 /* 7238 * Account for the scan cost of wakeups against the average 7239 * idle time. 7240 */ 7241 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 7242 7243 update_avg(&this_sd->avg_scan_cost, time); 7244 } 7245 7246 return idle_cpu; 7247 } 7248 7249 /* 7250 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7251 * the task fits. If no CPU is big enough, but there are idle ones, try to 7252 * maximize capacity. 7253 */ 7254 static int 7255 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7256 { 7257 unsigned long task_util, util_min, util_max, best_cap = 0; 7258 int fits, best_fits = 0; 7259 int cpu, best_cpu = -1; 7260 struct cpumask *cpus; 7261 7262 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7263 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7264 7265 task_util = task_util_est(p); 7266 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7267 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7268 7269 for_each_cpu_wrap(cpu, cpus, target) { 7270 unsigned long cpu_cap = capacity_of(cpu); 7271 7272 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7273 continue; 7274 7275 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7276 7277 /* This CPU fits with all requirements */ 7278 if (fits > 0) 7279 return cpu; 7280 /* 7281 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7282 * Look for the CPU with best capacity. 7283 */ 7284 else if (fits < 0) 7285 cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu)); 7286 7287 /* 7288 * First, select CPU which fits better (-1 being better than 0). 7289 * Then, select the one with best capacity at same level. 7290 */ 7291 if ((fits < best_fits) || 7292 ((fits == best_fits) && (cpu_cap > best_cap))) { 7293 best_cap = cpu_cap; 7294 best_cpu = cpu; 7295 best_fits = fits; 7296 } 7297 } 7298 7299 return best_cpu; 7300 } 7301 7302 static inline bool asym_fits_cpu(unsigned long util, 7303 unsigned long util_min, 7304 unsigned long util_max, 7305 int cpu) 7306 { 7307 if (sched_asym_cpucap_active()) 7308 /* 7309 * Return true only if the cpu fully fits the task requirements 7310 * which include the utilization and the performance hints. 7311 */ 7312 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7313 7314 return true; 7315 } 7316 7317 /* 7318 * Try and locate an idle core/thread in the LLC cache domain. 7319 */ 7320 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7321 { 7322 bool has_idle_core = false; 7323 struct sched_domain *sd; 7324 unsigned long task_util, util_min, util_max; 7325 int i, recent_used_cpu; 7326 7327 /* 7328 * On asymmetric system, update task utilization because we will check 7329 * that the task fits with cpu's capacity. 7330 */ 7331 if (sched_asym_cpucap_active()) { 7332 sync_entity_load_avg(&p->se); 7333 task_util = task_util_est(p); 7334 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7335 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7336 } 7337 7338 /* 7339 * per-cpu select_rq_mask usage 7340 */ 7341 lockdep_assert_irqs_disabled(); 7342 7343 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7344 asym_fits_cpu(task_util, util_min, util_max, target)) 7345 return target; 7346 7347 /* 7348 * If the previous CPU is cache affine and idle, don't be stupid: 7349 */ 7350 if (prev != target && cpus_share_cache(prev, target) && 7351 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7352 asym_fits_cpu(task_util, util_min, util_max, prev)) 7353 return prev; 7354 7355 /* 7356 * Allow a per-cpu kthread to stack with the wakee if the 7357 * kworker thread and the tasks previous CPUs are the same. 7358 * The assumption is that the wakee queued work for the 7359 * per-cpu kthread that is now complete and the wakeup is 7360 * essentially a sync wakeup. An obvious example of this 7361 * pattern is IO completions. 7362 */ 7363 if (is_per_cpu_kthread(current) && 7364 in_task() && 7365 prev == smp_processor_id() && 7366 this_rq()->nr_running <= 1 && 7367 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7368 return prev; 7369 } 7370 7371 /* Check a recently used CPU as a potential idle candidate: */ 7372 recent_used_cpu = p->recent_used_cpu; 7373 p->recent_used_cpu = prev; 7374 if (recent_used_cpu != prev && 7375 recent_used_cpu != target && 7376 cpus_share_cache(recent_used_cpu, target) && 7377 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7378 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7379 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7380 return recent_used_cpu; 7381 } 7382 7383 /* 7384 * For asymmetric CPU capacity systems, our domain of interest is 7385 * sd_asym_cpucapacity rather than sd_llc. 7386 */ 7387 if (sched_asym_cpucap_active()) { 7388 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7389 /* 7390 * On an asymmetric CPU capacity system where an exclusive 7391 * cpuset defines a symmetric island (i.e. one unique 7392 * capacity_orig value through the cpuset), the key will be set 7393 * but the CPUs within that cpuset will not have a domain with 7394 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7395 * capacity path. 7396 */ 7397 if (sd) { 7398 i = select_idle_capacity(p, sd, target); 7399 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7400 } 7401 } 7402 7403 sd = rcu_dereference(per_cpu(sd_llc, target)); 7404 if (!sd) 7405 return target; 7406 7407 if (sched_smt_active()) { 7408 has_idle_core = test_idle_cores(target); 7409 7410 if (!has_idle_core && cpus_share_cache(prev, target)) { 7411 i = select_idle_smt(p, prev); 7412 if ((unsigned int)i < nr_cpumask_bits) 7413 return i; 7414 } 7415 } 7416 7417 i = select_idle_cpu(p, sd, has_idle_core, target); 7418 if ((unsigned)i < nr_cpumask_bits) 7419 return i; 7420 7421 return target; 7422 } 7423 7424 /** 7425 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7426 * @cpu: the CPU to get the utilization for 7427 * @p: task for which the CPU utilization should be predicted or NULL 7428 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7429 * @boost: 1 to enable boosting, otherwise 0 7430 * 7431 * The unit of the return value must be the same as the one of CPU capacity 7432 * so that CPU utilization can be compared with CPU capacity. 7433 * 7434 * CPU utilization is the sum of running time of runnable tasks plus the 7435 * recent utilization of currently non-runnable tasks on that CPU. 7436 * It represents the amount of CPU capacity currently used by CFS tasks in 7437 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7438 * capacity at f_max. 7439 * 7440 * The estimated CPU utilization is defined as the maximum between CPU 7441 * utilization and sum of the estimated utilization of the currently 7442 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7443 * previously-executed tasks, which helps better deduce how busy a CPU will 7444 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7445 * of such a task would be significantly decayed at this point of time. 7446 * 7447 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7448 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7449 * utilization. Boosting is implemented in cpu_util() so that internal 7450 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7451 * latter via cpu_util_cfs_boost(). 7452 * 7453 * CPU utilization can be higher than the current CPU capacity 7454 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7455 * of rounding errors as well as task migrations or wakeups of new tasks. 7456 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7457 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7458 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7459 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7460 * though since this is useful for predicting the CPU capacity required 7461 * after task migrations (scheduler-driven DVFS). 7462 * 7463 * Return: (Boosted) (estimated) utilization for the specified CPU. 7464 */ 7465 static unsigned long 7466 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7467 { 7468 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7469 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7470 unsigned long runnable; 7471 7472 if (boost) { 7473 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7474 util = max(util, runnable); 7475 } 7476 7477 /* 7478 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7479 * contribution. If @p migrates from another CPU to @cpu add its 7480 * contribution. In all the other cases @cpu is not impacted by the 7481 * migration so its util_avg is already correct. 7482 */ 7483 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 7484 lsub_positive(&util, task_util(p)); 7485 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 7486 util += task_util(p); 7487 7488 if (sched_feat(UTIL_EST)) { 7489 unsigned long util_est; 7490 7491 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 7492 7493 /* 7494 * During wake-up @p isn't enqueued yet and doesn't contribute 7495 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued. 7496 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7497 * has been enqueued. 7498 * 7499 * During exec (@dst_cpu = -1) @p is enqueued and does 7500 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued. 7501 * Remove it to "simulate" cpu_util without @p's contribution. 7502 * 7503 * Despite the task_on_rq_queued(@p) check there is still a 7504 * small window for a possible race when an exec 7505 * select_task_rq_fair() races with LB's detach_task(). 7506 * 7507 * detach_task() 7508 * deactivate_task() 7509 * p->on_rq = TASK_ON_RQ_MIGRATING; 7510 * -------------------------------- A 7511 * dequeue_task() \ 7512 * dequeue_task_fair() + Race Time 7513 * util_est_dequeue() / 7514 * -------------------------------- B 7515 * 7516 * The additional check "current == p" is required to further 7517 * reduce the race window. 7518 */ 7519 if (dst_cpu == cpu) 7520 util_est += _task_util_est(p); 7521 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 7522 lsub_positive(&util_est, _task_util_est(p)); 7523 7524 util = max(util, util_est); 7525 } 7526 7527 return min(util, capacity_orig_of(cpu)); 7528 } 7529 7530 unsigned long cpu_util_cfs(int cpu) 7531 { 7532 return cpu_util(cpu, NULL, -1, 0); 7533 } 7534 7535 unsigned long cpu_util_cfs_boost(int cpu) 7536 { 7537 return cpu_util(cpu, NULL, -1, 1); 7538 } 7539 7540 /* 7541 * cpu_util_without: compute cpu utilization without any contributions from *p 7542 * @cpu: the CPU which utilization is requested 7543 * @p: the task which utilization should be discounted 7544 * 7545 * The utilization of a CPU is defined by the utilization of tasks currently 7546 * enqueued on that CPU as well as tasks which are currently sleeping after an 7547 * execution on that CPU. 7548 * 7549 * This method returns the utilization of the specified CPU by discounting the 7550 * utilization of the specified task, whenever the task is currently 7551 * contributing to the CPU utilization. 7552 */ 7553 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7554 { 7555 /* Task has no contribution or is new */ 7556 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7557 p = NULL; 7558 7559 return cpu_util(cpu, p, -1, 0); 7560 } 7561 7562 /* 7563 * energy_env - Utilization landscape for energy estimation. 7564 * @task_busy_time: Utilization contribution by the task for which we test the 7565 * placement. Given by eenv_task_busy_time(). 7566 * @pd_busy_time: Utilization of the whole perf domain without the task 7567 * contribution. Given by eenv_pd_busy_time(). 7568 * @cpu_cap: Maximum CPU capacity for the perf domain. 7569 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 7570 */ 7571 struct energy_env { 7572 unsigned long task_busy_time; 7573 unsigned long pd_busy_time; 7574 unsigned long cpu_cap; 7575 unsigned long pd_cap; 7576 }; 7577 7578 /* 7579 * Compute the task busy time for compute_energy(). This time cannot be 7580 * injected directly into effective_cpu_util() because of the IRQ scaling. 7581 * The latter only makes sense with the most recent CPUs where the task has 7582 * run. 7583 */ 7584 static inline void eenv_task_busy_time(struct energy_env *eenv, 7585 struct task_struct *p, int prev_cpu) 7586 { 7587 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 7588 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 7589 7590 if (unlikely(irq >= max_cap)) 7591 busy_time = max_cap; 7592 else 7593 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 7594 7595 eenv->task_busy_time = busy_time; 7596 } 7597 7598 /* 7599 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 7600 * utilization for each @pd_cpus, it however doesn't take into account 7601 * clamping since the ratio (utilization / cpu_capacity) is already enough to 7602 * scale the EM reported power consumption at the (eventually clamped) 7603 * cpu_capacity. 7604 * 7605 * The contribution of the task @p for which we want to estimate the 7606 * energy cost is removed (by cpu_util()) and must be calculated 7607 * separately (see eenv_task_busy_time). This ensures: 7608 * 7609 * - A stable PD utilization, no matter which CPU of that PD we want to place 7610 * the task on. 7611 * 7612 * - A fair comparison between CPUs as the task contribution (task_util()) 7613 * will always be the same no matter which CPU utilization we rely on 7614 * (util_avg or util_est). 7615 * 7616 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 7617 * exceed @eenv->pd_cap. 7618 */ 7619 static inline void eenv_pd_busy_time(struct energy_env *eenv, 7620 struct cpumask *pd_cpus, 7621 struct task_struct *p) 7622 { 7623 unsigned long busy_time = 0; 7624 int cpu; 7625 7626 for_each_cpu(cpu, pd_cpus) { 7627 unsigned long util = cpu_util(cpu, p, -1, 0); 7628 7629 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL); 7630 } 7631 7632 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 7633 } 7634 7635 /* 7636 * Compute the maximum utilization for compute_energy() when the task @p 7637 * is placed on the cpu @dst_cpu. 7638 * 7639 * Returns the maximum utilization among @eenv->cpus. This utilization can't 7640 * exceed @eenv->cpu_cap. 7641 */ 7642 static inline unsigned long 7643 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 7644 struct task_struct *p, int dst_cpu) 7645 { 7646 unsigned long max_util = 0; 7647 int cpu; 7648 7649 for_each_cpu(cpu, pd_cpus) { 7650 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 7651 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 7652 unsigned long eff_util; 7653 7654 /* 7655 * Performance domain frequency: utilization clamping 7656 * must be considered since it affects the selection 7657 * of the performance domain frequency. 7658 * NOTE: in case RT tasks are running, by default the 7659 * FREQUENCY_UTIL's utilization can be max OPP. 7660 */ 7661 eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk); 7662 max_util = max(max_util, eff_util); 7663 } 7664 7665 return min(max_util, eenv->cpu_cap); 7666 } 7667 7668 /* 7669 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 7670 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 7671 * contribution is ignored. 7672 */ 7673 static inline unsigned long 7674 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 7675 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 7676 { 7677 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 7678 unsigned long busy_time = eenv->pd_busy_time; 7679 7680 if (dst_cpu >= 0) 7681 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 7682 7683 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 7684 } 7685 7686 /* 7687 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 7688 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 7689 * spare capacity in each performance domain and uses it as a potential 7690 * candidate to execute the task. Then, it uses the Energy Model to figure 7691 * out which of the CPU candidates is the most energy-efficient. 7692 * 7693 * The rationale for this heuristic is as follows. In a performance domain, 7694 * all the most energy efficient CPU candidates (according to the Energy 7695 * Model) are those for which we'll request a low frequency. When there are 7696 * several CPUs for which the frequency request will be the same, we don't 7697 * have enough data to break the tie between them, because the Energy Model 7698 * only includes active power costs. With this model, if we assume that 7699 * frequency requests follow utilization (e.g. using schedutil), the CPU with 7700 * the maximum spare capacity in a performance domain is guaranteed to be among 7701 * the best candidates of the performance domain. 7702 * 7703 * In practice, it could be preferable from an energy standpoint to pack 7704 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 7705 * but that could also hurt our chances to go cluster idle, and we have no 7706 * ways to tell with the current Energy Model if this is actually a good 7707 * idea or not. So, find_energy_efficient_cpu() basically favors 7708 * cluster-packing, and spreading inside a cluster. That should at least be 7709 * a good thing for latency, and this is consistent with the idea that most 7710 * of the energy savings of EAS come from the asymmetry of the system, and 7711 * not so much from breaking the tie between identical CPUs. That's also the 7712 * reason why EAS is enabled in the topology code only for systems where 7713 * SD_ASYM_CPUCAPACITY is set. 7714 * 7715 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 7716 * they don't have any useful utilization data yet and it's not possible to 7717 * forecast their impact on energy consumption. Consequently, they will be 7718 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 7719 * to be energy-inefficient in some use-cases. The alternative would be to 7720 * bias new tasks towards specific types of CPUs first, or to try to infer 7721 * their util_avg from the parent task, but those heuristics could hurt 7722 * other use-cases too. So, until someone finds a better way to solve this, 7723 * let's keep things simple by re-using the existing slow path. 7724 */ 7725 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 7726 { 7727 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7728 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 7729 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 7730 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 7731 struct root_domain *rd = this_rq()->rd; 7732 int cpu, best_energy_cpu, target = -1; 7733 int prev_fits = -1, best_fits = -1; 7734 unsigned long best_thermal_cap = 0; 7735 unsigned long prev_thermal_cap = 0; 7736 struct sched_domain *sd; 7737 struct perf_domain *pd; 7738 struct energy_env eenv; 7739 7740 rcu_read_lock(); 7741 pd = rcu_dereference(rd->pd); 7742 if (!pd || READ_ONCE(rd->overutilized)) 7743 goto unlock; 7744 7745 /* 7746 * Energy-aware wake-up happens on the lowest sched_domain starting 7747 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 7748 */ 7749 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 7750 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 7751 sd = sd->parent; 7752 if (!sd) 7753 goto unlock; 7754 7755 target = prev_cpu; 7756 7757 sync_entity_load_avg(&p->se); 7758 if (!uclamp_task_util(p, p_util_min, p_util_max)) 7759 goto unlock; 7760 7761 eenv_task_busy_time(&eenv, p, prev_cpu); 7762 7763 for (; pd; pd = pd->next) { 7764 unsigned long util_min = p_util_min, util_max = p_util_max; 7765 unsigned long cpu_cap, cpu_thermal_cap, util; 7766 unsigned long cur_delta, max_spare_cap = 0; 7767 unsigned long rq_util_min, rq_util_max; 7768 unsigned long prev_spare_cap = 0; 7769 int max_spare_cap_cpu = -1; 7770 unsigned long base_energy; 7771 int fits, max_fits = -1; 7772 7773 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 7774 7775 if (cpumask_empty(cpus)) 7776 continue; 7777 7778 /* Account thermal pressure for the energy estimation */ 7779 cpu = cpumask_first(cpus); 7780 cpu_thermal_cap = arch_scale_cpu_capacity(cpu); 7781 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu); 7782 7783 eenv.cpu_cap = cpu_thermal_cap; 7784 eenv.pd_cap = 0; 7785 7786 for_each_cpu(cpu, cpus) { 7787 struct rq *rq = cpu_rq(cpu); 7788 7789 eenv.pd_cap += cpu_thermal_cap; 7790 7791 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7792 continue; 7793 7794 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 7795 continue; 7796 7797 util = cpu_util(cpu, p, cpu, 0); 7798 cpu_cap = capacity_of(cpu); 7799 7800 /* 7801 * Skip CPUs that cannot satisfy the capacity request. 7802 * IOW, placing the task there would make the CPU 7803 * overutilized. Take uclamp into account to see how 7804 * much capacity we can get out of the CPU; this is 7805 * aligned with sched_cpu_util(). 7806 */ 7807 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 7808 /* 7809 * Open code uclamp_rq_util_with() except for 7810 * the clamp() part. Ie: apply max aggregation 7811 * only. util_fits_cpu() logic requires to 7812 * operate on non clamped util but must use the 7813 * max-aggregated uclamp_{min, max}. 7814 */ 7815 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 7816 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 7817 7818 util_min = max(rq_util_min, p_util_min); 7819 util_max = max(rq_util_max, p_util_max); 7820 } 7821 7822 fits = util_fits_cpu(util, util_min, util_max, cpu); 7823 if (!fits) 7824 continue; 7825 7826 lsub_positive(&cpu_cap, util); 7827 7828 if (cpu == prev_cpu) { 7829 /* Always use prev_cpu as a candidate. */ 7830 prev_spare_cap = cpu_cap; 7831 prev_fits = fits; 7832 } else if ((fits > max_fits) || 7833 ((fits == max_fits) && (cpu_cap > max_spare_cap))) { 7834 /* 7835 * Find the CPU with the maximum spare capacity 7836 * among the remaining CPUs in the performance 7837 * domain. 7838 */ 7839 max_spare_cap = cpu_cap; 7840 max_spare_cap_cpu = cpu; 7841 max_fits = fits; 7842 } 7843 } 7844 7845 if (max_spare_cap_cpu < 0 && prev_spare_cap == 0) 7846 continue; 7847 7848 eenv_pd_busy_time(&eenv, cpus, p); 7849 /* Compute the 'base' energy of the pd, without @p */ 7850 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 7851 7852 /* Evaluate the energy impact of using prev_cpu. */ 7853 if (prev_spare_cap > 0) { 7854 prev_delta = compute_energy(&eenv, pd, cpus, p, 7855 prev_cpu); 7856 /* CPU utilization has changed */ 7857 if (prev_delta < base_energy) 7858 goto unlock; 7859 prev_delta -= base_energy; 7860 prev_thermal_cap = cpu_thermal_cap; 7861 best_delta = min(best_delta, prev_delta); 7862 } 7863 7864 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 7865 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 7866 /* Current best energy cpu fits better */ 7867 if (max_fits < best_fits) 7868 continue; 7869 7870 /* 7871 * Both don't fit performance hint (i.e. uclamp_min) 7872 * but best energy cpu has better capacity. 7873 */ 7874 if ((max_fits < 0) && 7875 (cpu_thermal_cap <= best_thermal_cap)) 7876 continue; 7877 7878 cur_delta = compute_energy(&eenv, pd, cpus, p, 7879 max_spare_cap_cpu); 7880 /* CPU utilization has changed */ 7881 if (cur_delta < base_energy) 7882 goto unlock; 7883 cur_delta -= base_energy; 7884 7885 /* 7886 * Both fit for the task but best energy cpu has lower 7887 * energy impact. 7888 */ 7889 if ((max_fits > 0) && (best_fits > 0) && 7890 (cur_delta >= best_delta)) 7891 continue; 7892 7893 best_delta = cur_delta; 7894 best_energy_cpu = max_spare_cap_cpu; 7895 best_fits = max_fits; 7896 best_thermal_cap = cpu_thermal_cap; 7897 } 7898 } 7899 rcu_read_unlock(); 7900 7901 if ((best_fits > prev_fits) || 7902 ((best_fits > 0) && (best_delta < prev_delta)) || 7903 ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap))) 7904 target = best_energy_cpu; 7905 7906 return target; 7907 7908 unlock: 7909 rcu_read_unlock(); 7910 7911 return target; 7912 } 7913 7914 /* 7915 * select_task_rq_fair: Select target runqueue for the waking task in domains 7916 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 7917 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 7918 * 7919 * Balances load by selecting the idlest CPU in the idlest group, or under 7920 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 7921 * 7922 * Returns the target CPU number. 7923 */ 7924 static int 7925 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 7926 { 7927 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 7928 struct sched_domain *tmp, *sd = NULL; 7929 int cpu = smp_processor_id(); 7930 int new_cpu = prev_cpu; 7931 int want_affine = 0; 7932 /* SD_flags and WF_flags share the first nibble */ 7933 int sd_flag = wake_flags & 0xF; 7934 7935 /* 7936 * required for stable ->cpus_allowed 7937 */ 7938 lockdep_assert_held(&p->pi_lock); 7939 if (wake_flags & WF_TTWU) { 7940 record_wakee(p); 7941 7942 if ((wake_flags & WF_CURRENT_CPU) && 7943 cpumask_test_cpu(cpu, p->cpus_ptr)) 7944 return cpu; 7945 7946 if (sched_energy_enabled()) { 7947 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 7948 if (new_cpu >= 0) 7949 return new_cpu; 7950 new_cpu = prev_cpu; 7951 } 7952 7953 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 7954 } 7955 7956 rcu_read_lock(); 7957 for_each_domain(cpu, tmp) { 7958 /* 7959 * If both 'cpu' and 'prev_cpu' are part of this domain, 7960 * cpu is a valid SD_WAKE_AFFINE target. 7961 */ 7962 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 7963 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 7964 if (cpu != prev_cpu) 7965 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 7966 7967 sd = NULL; /* Prefer wake_affine over balance flags */ 7968 break; 7969 } 7970 7971 /* 7972 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 7973 * usually do not have SD_BALANCE_WAKE set. That means wakeup 7974 * will usually go to the fast path. 7975 */ 7976 if (tmp->flags & sd_flag) 7977 sd = tmp; 7978 else if (!want_affine) 7979 break; 7980 } 7981 7982 if (unlikely(sd)) { 7983 /* Slow path */ 7984 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 7985 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 7986 /* Fast path */ 7987 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 7988 } 7989 rcu_read_unlock(); 7990 7991 return new_cpu; 7992 } 7993 7994 /* 7995 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 7996 * cfs_rq_of(p) references at time of call are still valid and identify the 7997 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 7998 */ 7999 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8000 { 8001 struct sched_entity *se = &p->se; 8002 8003 if (!task_on_rq_migrating(p)) { 8004 remove_entity_load_avg(se); 8005 8006 /* 8007 * Here, the task's PELT values have been updated according to 8008 * the current rq's clock. But if that clock hasn't been 8009 * updated in a while, a substantial idle time will be missed, 8010 * leading to an inflation after wake-up on the new rq. 8011 * 8012 * Estimate the missing time from the cfs_rq last_update_time 8013 * and update sched_avg to improve the PELT continuity after 8014 * migration. 8015 */ 8016 migrate_se_pelt_lag(se); 8017 } 8018 8019 /* Tell new CPU we are migrated */ 8020 se->avg.last_update_time = 0; 8021 8022 update_scan_period(p, new_cpu); 8023 } 8024 8025 static void task_dead_fair(struct task_struct *p) 8026 { 8027 remove_entity_load_avg(&p->se); 8028 } 8029 8030 static int 8031 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8032 { 8033 if (rq->nr_running) 8034 return 1; 8035 8036 return newidle_balance(rq, rf) != 0; 8037 } 8038 #endif /* CONFIG_SMP */ 8039 8040 static void set_next_buddy(struct sched_entity *se) 8041 { 8042 for_each_sched_entity(se) { 8043 if (SCHED_WARN_ON(!se->on_rq)) 8044 return; 8045 if (se_is_idle(se)) 8046 return; 8047 cfs_rq_of(se)->next = se; 8048 } 8049 } 8050 8051 /* 8052 * Preempt the current task with a newly woken task if needed: 8053 */ 8054 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 8055 { 8056 struct task_struct *curr = rq->curr; 8057 struct sched_entity *se = &curr->se, *pse = &p->se; 8058 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8059 int next_buddy_marked = 0; 8060 int cse_is_idle, pse_is_idle; 8061 8062 if (unlikely(se == pse)) 8063 return; 8064 8065 /* 8066 * This is possible from callers such as attach_tasks(), in which we 8067 * unconditionally check_preempt_curr() after an enqueue (which may have 8068 * lead to a throttle). This both saves work and prevents false 8069 * next-buddy nomination below. 8070 */ 8071 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8072 return; 8073 8074 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { 8075 set_next_buddy(pse); 8076 next_buddy_marked = 1; 8077 } 8078 8079 /* 8080 * We can come here with TIF_NEED_RESCHED already set from new task 8081 * wake up path. 8082 * 8083 * Note: this also catches the edge-case of curr being in a throttled 8084 * group (e.g. via set_curr_task), since update_curr() (in the 8085 * enqueue of curr) will have resulted in resched being set. This 8086 * prevents us from potentially nominating it as a false LAST_BUDDY 8087 * below. 8088 */ 8089 if (test_tsk_need_resched(curr)) 8090 return; 8091 8092 /* Idle tasks are by definition preempted by non-idle tasks. */ 8093 if (unlikely(task_has_idle_policy(curr)) && 8094 likely(!task_has_idle_policy(p))) 8095 goto preempt; 8096 8097 /* 8098 * Batch and idle tasks do not preempt non-idle tasks (their preemption 8099 * is driven by the tick): 8100 */ 8101 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 8102 return; 8103 8104 find_matching_se(&se, &pse); 8105 WARN_ON_ONCE(!pse); 8106 8107 cse_is_idle = se_is_idle(se); 8108 pse_is_idle = se_is_idle(pse); 8109 8110 /* 8111 * Preempt an idle group in favor of a non-idle group (and don't preempt 8112 * in the inverse case). 8113 */ 8114 if (cse_is_idle && !pse_is_idle) 8115 goto preempt; 8116 if (cse_is_idle != pse_is_idle) 8117 return; 8118 8119 cfs_rq = cfs_rq_of(se); 8120 update_curr(cfs_rq); 8121 8122 /* 8123 * XXX pick_eevdf(cfs_rq) != se ? 8124 */ 8125 if (pick_eevdf(cfs_rq) == pse) 8126 goto preempt; 8127 8128 return; 8129 8130 preempt: 8131 resched_curr(rq); 8132 } 8133 8134 #ifdef CONFIG_SMP 8135 static struct task_struct *pick_task_fair(struct rq *rq) 8136 { 8137 struct sched_entity *se; 8138 struct cfs_rq *cfs_rq; 8139 8140 again: 8141 cfs_rq = &rq->cfs; 8142 if (!cfs_rq->nr_running) 8143 return NULL; 8144 8145 do { 8146 struct sched_entity *curr = cfs_rq->curr; 8147 8148 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 8149 if (curr) { 8150 if (curr->on_rq) 8151 update_curr(cfs_rq); 8152 else 8153 curr = NULL; 8154 8155 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8156 goto again; 8157 } 8158 8159 se = pick_next_entity(cfs_rq, curr); 8160 cfs_rq = group_cfs_rq(se); 8161 } while (cfs_rq); 8162 8163 return task_of(se); 8164 } 8165 #endif 8166 8167 struct task_struct * 8168 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8169 { 8170 struct cfs_rq *cfs_rq = &rq->cfs; 8171 struct sched_entity *se; 8172 struct task_struct *p; 8173 int new_tasks; 8174 8175 again: 8176 if (!sched_fair_runnable(rq)) 8177 goto idle; 8178 8179 #ifdef CONFIG_FAIR_GROUP_SCHED 8180 if (!prev || prev->sched_class != &fair_sched_class) 8181 goto simple; 8182 8183 /* 8184 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8185 * likely that a next task is from the same cgroup as the current. 8186 * 8187 * Therefore attempt to avoid putting and setting the entire cgroup 8188 * hierarchy, only change the part that actually changes. 8189 */ 8190 8191 do { 8192 struct sched_entity *curr = cfs_rq->curr; 8193 8194 /* 8195 * Since we got here without doing put_prev_entity() we also 8196 * have to consider cfs_rq->curr. If it is still a runnable 8197 * entity, update_curr() will update its vruntime, otherwise 8198 * forget we've ever seen it. 8199 */ 8200 if (curr) { 8201 if (curr->on_rq) 8202 update_curr(cfs_rq); 8203 else 8204 curr = NULL; 8205 8206 /* 8207 * This call to check_cfs_rq_runtime() will do the 8208 * throttle and dequeue its entity in the parent(s). 8209 * Therefore the nr_running test will indeed 8210 * be correct. 8211 */ 8212 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 8213 cfs_rq = &rq->cfs; 8214 8215 if (!cfs_rq->nr_running) 8216 goto idle; 8217 8218 goto simple; 8219 } 8220 } 8221 8222 se = pick_next_entity(cfs_rq, curr); 8223 cfs_rq = group_cfs_rq(se); 8224 } while (cfs_rq); 8225 8226 p = task_of(se); 8227 8228 /* 8229 * Since we haven't yet done put_prev_entity and if the selected task 8230 * is a different task than we started out with, try and touch the 8231 * least amount of cfs_rqs. 8232 */ 8233 if (prev != p) { 8234 struct sched_entity *pse = &prev->se; 8235 8236 while (!(cfs_rq = is_same_group(se, pse))) { 8237 int se_depth = se->depth; 8238 int pse_depth = pse->depth; 8239 8240 if (se_depth <= pse_depth) { 8241 put_prev_entity(cfs_rq_of(pse), pse); 8242 pse = parent_entity(pse); 8243 } 8244 if (se_depth >= pse_depth) { 8245 set_next_entity(cfs_rq_of(se), se); 8246 se = parent_entity(se); 8247 } 8248 } 8249 8250 put_prev_entity(cfs_rq, pse); 8251 set_next_entity(cfs_rq, se); 8252 } 8253 8254 goto done; 8255 simple: 8256 #endif 8257 if (prev) 8258 put_prev_task(rq, prev); 8259 8260 do { 8261 se = pick_next_entity(cfs_rq, NULL); 8262 set_next_entity(cfs_rq, se); 8263 cfs_rq = group_cfs_rq(se); 8264 } while (cfs_rq); 8265 8266 p = task_of(se); 8267 8268 done: __maybe_unused; 8269 #ifdef CONFIG_SMP 8270 /* 8271 * Move the next running task to the front of 8272 * the list, so our cfs_tasks list becomes MRU 8273 * one. 8274 */ 8275 list_move(&p->se.group_node, &rq->cfs_tasks); 8276 #endif 8277 8278 if (hrtick_enabled_fair(rq)) 8279 hrtick_start_fair(rq, p); 8280 8281 update_misfit_status(p, rq); 8282 sched_fair_update_stop_tick(rq, p); 8283 8284 return p; 8285 8286 idle: 8287 if (!rf) 8288 return NULL; 8289 8290 new_tasks = newidle_balance(rq, rf); 8291 8292 /* 8293 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 8294 * possible for any higher priority task to appear. In that case we 8295 * must re-start the pick_next_entity() loop. 8296 */ 8297 if (new_tasks < 0) 8298 return RETRY_TASK; 8299 8300 if (new_tasks > 0) 8301 goto again; 8302 8303 /* 8304 * rq is about to be idle, check if we need to update the 8305 * lost_idle_time of clock_pelt 8306 */ 8307 update_idle_rq_clock_pelt(rq); 8308 8309 return NULL; 8310 } 8311 8312 static struct task_struct *__pick_next_task_fair(struct rq *rq) 8313 { 8314 return pick_next_task_fair(rq, NULL, NULL); 8315 } 8316 8317 /* 8318 * Account for a descheduled task: 8319 */ 8320 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 8321 { 8322 struct sched_entity *se = &prev->se; 8323 struct cfs_rq *cfs_rq; 8324 8325 for_each_sched_entity(se) { 8326 cfs_rq = cfs_rq_of(se); 8327 put_prev_entity(cfs_rq, se); 8328 } 8329 } 8330 8331 /* 8332 * sched_yield() is very simple 8333 */ 8334 static void yield_task_fair(struct rq *rq) 8335 { 8336 struct task_struct *curr = rq->curr; 8337 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8338 struct sched_entity *se = &curr->se; 8339 8340 /* 8341 * Are we the only task in the tree? 8342 */ 8343 if (unlikely(rq->nr_running == 1)) 8344 return; 8345 8346 clear_buddies(cfs_rq, se); 8347 8348 update_rq_clock(rq); 8349 /* 8350 * Update run-time statistics of the 'current'. 8351 */ 8352 update_curr(cfs_rq); 8353 /* 8354 * Tell update_rq_clock() that we've just updated, 8355 * so we don't do microscopic update in schedule() 8356 * and double the fastpath cost. 8357 */ 8358 rq_clock_skip_update(rq); 8359 8360 se->deadline += calc_delta_fair(se->slice, se); 8361 } 8362 8363 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8364 { 8365 struct sched_entity *se = &p->se; 8366 8367 /* throttled hierarchies are not runnable */ 8368 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8369 return false; 8370 8371 /* Tell the scheduler that we'd really like pse to run next. */ 8372 set_next_buddy(se); 8373 8374 yield_task_fair(rq); 8375 8376 return true; 8377 } 8378 8379 #ifdef CONFIG_SMP 8380 /************************************************** 8381 * Fair scheduling class load-balancing methods. 8382 * 8383 * BASICS 8384 * 8385 * The purpose of load-balancing is to achieve the same basic fairness the 8386 * per-CPU scheduler provides, namely provide a proportional amount of compute 8387 * time to each task. This is expressed in the following equation: 8388 * 8389 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 8390 * 8391 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 8392 * W_i,0 is defined as: 8393 * 8394 * W_i,0 = \Sum_j w_i,j (2) 8395 * 8396 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 8397 * is derived from the nice value as per sched_prio_to_weight[]. 8398 * 8399 * The weight average is an exponential decay average of the instantaneous 8400 * weight: 8401 * 8402 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 8403 * 8404 * C_i is the compute capacity of CPU i, typically it is the 8405 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 8406 * can also include other factors [XXX]. 8407 * 8408 * To achieve this balance we define a measure of imbalance which follows 8409 * directly from (1): 8410 * 8411 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 8412 * 8413 * We them move tasks around to minimize the imbalance. In the continuous 8414 * function space it is obvious this converges, in the discrete case we get 8415 * a few fun cases generally called infeasible weight scenarios. 8416 * 8417 * [XXX expand on: 8418 * - infeasible weights; 8419 * - local vs global optima in the discrete case. ] 8420 * 8421 * 8422 * SCHED DOMAINS 8423 * 8424 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 8425 * for all i,j solution, we create a tree of CPUs that follows the hardware 8426 * topology where each level pairs two lower groups (or better). This results 8427 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 8428 * tree to only the first of the previous level and we decrease the frequency 8429 * of load-balance at each level inv. proportional to the number of CPUs in 8430 * the groups. 8431 * 8432 * This yields: 8433 * 8434 * log_2 n 1 n 8435 * \Sum { --- * --- * 2^i } = O(n) (5) 8436 * i = 0 2^i 2^i 8437 * `- size of each group 8438 * | | `- number of CPUs doing load-balance 8439 * | `- freq 8440 * `- sum over all levels 8441 * 8442 * Coupled with a limit on how many tasks we can migrate every balance pass, 8443 * this makes (5) the runtime complexity of the balancer. 8444 * 8445 * An important property here is that each CPU is still (indirectly) connected 8446 * to every other CPU in at most O(log n) steps: 8447 * 8448 * The adjacency matrix of the resulting graph is given by: 8449 * 8450 * log_2 n 8451 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 8452 * k = 0 8453 * 8454 * And you'll find that: 8455 * 8456 * A^(log_2 n)_i,j != 0 for all i,j (7) 8457 * 8458 * Showing there's indeed a path between every CPU in at most O(log n) steps. 8459 * The task movement gives a factor of O(m), giving a convergence complexity 8460 * of: 8461 * 8462 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 8463 * 8464 * 8465 * WORK CONSERVING 8466 * 8467 * In order to avoid CPUs going idle while there's still work to do, new idle 8468 * balancing is more aggressive and has the newly idle CPU iterate up the domain 8469 * tree itself instead of relying on other CPUs to bring it work. 8470 * 8471 * This adds some complexity to both (5) and (8) but it reduces the total idle 8472 * time. 8473 * 8474 * [XXX more?] 8475 * 8476 * 8477 * CGROUPS 8478 * 8479 * Cgroups make a horror show out of (2), instead of a simple sum we get: 8480 * 8481 * s_k,i 8482 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 8483 * S_k 8484 * 8485 * Where 8486 * 8487 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 8488 * 8489 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 8490 * 8491 * The big problem is S_k, its a global sum needed to compute a local (W_i) 8492 * property. 8493 * 8494 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 8495 * rewrite all of this once again.] 8496 */ 8497 8498 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 8499 8500 enum fbq_type { regular, remote, all }; 8501 8502 /* 8503 * 'group_type' describes the group of CPUs at the moment of load balancing. 8504 * 8505 * The enum is ordered by pulling priority, with the group with lowest priority 8506 * first so the group_type can simply be compared when selecting the busiest 8507 * group. See update_sd_pick_busiest(). 8508 */ 8509 enum group_type { 8510 /* The group has spare capacity that can be used to run more tasks. */ 8511 group_has_spare = 0, 8512 /* 8513 * The group is fully used and the tasks don't compete for more CPU 8514 * cycles. Nevertheless, some tasks might wait before running. 8515 */ 8516 group_fully_busy, 8517 /* 8518 * One task doesn't fit with CPU's capacity and must be migrated to a 8519 * more powerful CPU. 8520 */ 8521 group_misfit_task, 8522 /* 8523 * Balance SMT group that's fully busy. Can benefit from migration 8524 * a task on SMT with busy sibling to another CPU on idle core. 8525 */ 8526 group_smt_balance, 8527 /* 8528 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 8529 * and the task should be migrated to it instead of running on the 8530 * current CPU. 8531 */ 8532 group_asym_packing, 8533 /* 8534 * The tasks' affinity constraints previously prevented the scheduler 8535 * from balancing the load across the system. 8536 */ 8537 group_imbalanced, 8538 /* 8539 * The CPU is overloaded and can't provide expected CPU cycles to all 8540 * tasks. 8541 */ 8542 group_overloaded 8543 }; 8544 8545 enum migration_type { 8546 migrate_load = 0, 8547 migrate_util, 8548 migrate_task, 8549 migrate_misfit 8550 }; 8551 8552 #define LBF_ALL_PINNED 0x01 8553 #define LBF_NEED_BREAK 0x02 8554 #define LBF_DST_PINNED 0x04 8555 #define LBF_SOME_PINNED 0x08 8556 #define LBF_ACTIVE_LB 0x10 8557 8558 struct lb_env { 8559 struct sched_domain *sd; 8560 8561 struct rq *src_rq; 8562 int src_cpu; 8563 8564 int dst_cpu; 8565 struct rq *dst_rq; 8566 8567 struct cpumask *dst_grpmask; 8568 int new_dst_cpu; 8569 enum cpu_idle_type idle; 8570 long imbalance; 8571 /* The set of CPUs under consideration for load-balancing */ 8572 struct cpumask *cpus; 8573 8574 unsigned int flags; 8575 8576 unsigned int loop; 8577 unsigned int loop_break; 8578 unsigned int loop_max; 8579 8580 enum fbq_type fbq_type; 8581 enum migration_type migration_type; 8582 struct list_head tasks; 8583 }; 8584 8585 /* 8586 * Is this task likely cache-hot: 8587 */ 8588 static int task_hot(struct task_struct *p, struct lb_env *env) 8589 { 8590 s64 delta; 8591 8592 lockdep_assert_rq_held(env->src_rq); 8593 8594 if (p->sched_class != &fair_sched_class) 8595 return 0; 8596 8597 if (unlikely(task_has_idle_policy(p))) 8598 return 0; 8599 8600 /* SMT siblings share cache */ 8601 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 8602 return 0; 8603 8604 /* 8605 * Buddy candidates are cache hot: 8606 */ 8607 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 8608 (&p->se == cfs_rq_of(&p->se)->next)) 8609 return 1; 8610 8611 if (sysctl_sched_migration_cost == -1) 8612 return 1; 8613 8614 /* 8615 * Don't migrate task if the task's cookie does not match 8616 * with the destination CPU's core cookie. 8617 */ 8618 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 8619 return 1; 8620 8621 if (sysctl_sched_migration_cost == 0) 8622 return 0; 8623 8624 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 8625 8626 return delta < (s64)sysctl_sched_migration_cost; 8627 } 8628 8629 #ifdef CONFIG_NUMA_BALANCING 8630 /* 8631 * Returns 1, if task migration degrades locality 8632 * Returns 0, if task migration improves locality i.e migration preferred. 8633 * Returns -1, if task migration is not affected by locality. 8634 */ 8635 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 8636 { 8637 struct numa_group *numa_group = rcu_dereference(p->numa_group); 8638 unsigned long src_weight, dst_weight; 8639 int src_nid, dst_nid, dist; 8640 8641 if (!static_branch_likely(&sched_numa_balancing)) 8642 return -1; 8643 8644 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 8645 return -1; 8646 8647 src_nid = cpu_to_node(env->src_cpu); 8648 dst_nid = cpu_to_node(env->dst_cpu); 8649 8650 if (src_nid == dst_nid) 8651 return -1; 8652 8653 /* Migrating away from the preferred node is always bad. */ 8654 if (src_nid == p->numa_preferred_nid) { 8655 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 8656 return 1; 8657 else 8658 return -1; 8659 } 8660 8661 /* Encourage migration to the preferred node. */ 8662 if (dst_nid == p->numa_preferred_nid) 8663 return 0; 8664 8665 /* Leaving a core idle is often worse than degrading locality. */ 8666 if (env->idle == CPU_IDLE) 8667 return -1; 8668 8669 dist = node_distance(src_nid, dst_nid); 8670 if (numa_group) { 8671 src_weight = group_weight(p, src_nid, dist); 8672 dst_weight = group_weight(p, dst_nid, dist); 8673 } else { 8674 src_weight = task_weight(p, src_nid, dist); 8675 dst_weight = task_weight(p, dst_nid, dist); 8676 } 8677 8678 return dst_weight < src_weight; 8679 } 8680 8681 #else 8682 static inline int migrate_degrades_locality(struct task_struct *p, 8683 struct lb_env *env) 8684 { 8685 return -1; 8686 } 8687 #endif 8688 8689 /* 8690 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 8691 */ 8692 static 8693 int can_migrate_task(struct task_struct *p, struct lb_env *env) 8694 { 8695 int tsk_cache_hot; 8696 8697 lockdep_assert_rq_held(env->src_rq); 8698 8699 /* 8700 * We do not migrate tasks that are: 8701 * 1) throttled_lb_pair, or 8702 * 2) cannot be migrated to this CPU due to cpus_ptr, or 8703 * 3) running (obviously), or 8704 * 4) are cache-hot on their current CPU. 8705 */ 8706 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 8707 return 0; 8708 8709 /* Disregard pcpu kthreads; they are where they need to be. */ 8710 if (kthread_is_per_cpu(p)) 8711 return 0; 8712 8713 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 8714 int cpu; 8715 8716 schedstat_inc(p->stats.nr_failed_migrations_affine); 8717 8718 env->flags |= LBF_SOME_PINNED; 8719 8720 /* 8721 * Remember if this task can be migrated to any other CPU in 8722 * our sched_group. We may want to revisit it if we couldn't 8723 * meet load balance goals by pulling other tasks on src_cpu. 8724 * 8725 * Avoid computing new_dst_cpu 8726 * - for NEWLY_IDLE 8727 * - if we have already computed one in current iteration 8728 * - if it's an active balance 8729 */ 8730 if (env->idle == CPU_NEWLY_IDLE || 8731 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 8732 return 0; 8733 8734 /* Prevent to re-select dst_cpu via env's CPUs: */ 8735 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 8736 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 8737 env->flags |= LBF_DST_PINNED; 8738 env->new_dst_cpu = cpu; 8739 break; 8740 } 8741 } 8742 8743 return 0; 8744 } 8745 8746 /* Record that we found at least one task that could run on dst_cpu */ 8747 env->flags &= ~LBF_ALL_PINNED; 8748 8749 if (task_on_cpu(env->src_rq, p)) { 8750 schedstat_inc(p->stats.nr_failed_migrations_running); 8751 return 0; 8752 } 8753 8754 /* 8755 * Aggressive migration if: 8756 * 1) active balance 8757 * 2) destination numa is preferred 8758 * 3) task is cache cold, or 8759 * 4) too many balance attempts have failed. 8760 */ 8761 if (env->flags & LBF_ACTIVE_LB) 8762 return 1; 8763 8764 tsk_cache_hot = migrate_degrades_locality(p, env); 8765 if (tsk_cache_hot == -1) 8766 tsk_cache_hot = task_hot(p, env); 8767 8768 if (tsk_cache_hot <= 0 || 8769 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 8770 if (tsk_cache_hot == 1) { 8771 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 8772 schedstat_inc(p->stats.nr_forced_migrations); 8773 } 8774 return 1; 8775 } 8776 8777 schedstat_inc(p->stats.nr_failed_migrations_hot); 8778 return 0; 8779 } 8780 8781 /* 8782 * detach_task() -- detach the task for the migration specified in env 8783 */ 8784 static void detach_task(struct task_struct *p, struct lb_env *env) 8785 { 8786 lockdep_assert_rq_held(env->src_rq); 8787 8788 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 8789 set_task_cpu(p, env->dst_cpu); 8790 } 8791 8792 /* 8793 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 8794 * part of active balancing operations within "domain". 8795 * 8796 * Returns a task if successful and NULL otherwise. 8797 */ 8798 static struct task_struct *detach_one_task(struct lb_env *env) 8799 { 8800 struct task_struct *p; 8801 8802 lockdep_assert_rq_held(env->src_rq); 8803 8804 list_for_each_entry_reverse(p, 8805 &env->src_rq->cfs_tasks, se.group_node) { 8806 if (!can_migrate_task(p, env)) 8807 continue; 8808 8809 detach_task(p, env); 8810 8811 /* 8812 * Right now, this is only the second place where 8813 * lb_gained[env->idle] is updated (other is detach_tasks) 8814 * so we can safely collect stats here rather than 8815 * inside detach_tasks(). 8816 */ 8817 schedstat_inc(env->sd->lb_gained[env->idle]); 8818 return p; 8819 } 8820 return NULL; 8821 } 8822 8823 /* 8824 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 8825 * busiest_rq, as part of a balancing operation within domain "sd". 8826 * 8827 * Returns number of detached tasks if successful and 0 otherwise. 8828 */ 8829 static int detach_tasks(struct lb_env *env) 8830 { 8831 struct list_head *tasks = &env->src_rq->cfs_tasks; 8832 unsigned long util, load; 8833 struct task_struct *p; 8834 int detached = 0; 8835 8836 lockdep_assert_rq_held(env->src_rq); 8837 8838 /* 8839 * Source run queue has been emptied by another CPU, clear 8840 * LBF_ALL_PINNED flag as we will not test any task. 8841 */ 8842 if (env->src_rq->nr_running <= 1) { 8843 env->flags &= ~LBF_ALL_PINNED; 8844 return 0; 8845 } 8846 8847 if (env->imbalance <= 0) 8848 return 0; 8849 8850 while (!list_empty(tasks)) { 8851 /* 8852 * We don't want to steal all, otherwise we may be treated likewise, 8853 * which could at worst lead to a livelock crash. 8854 */ 8855 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 8856 break; 8857 8858 env->loop++; 8859 /* 8860 * We've more or less seen every task there is, call it quits 8861 * unless we haven't found any movable task yet. 8862 */ 8863 if (env->loop > env->loop_max && 8864 !(env->flags & LBF_ALL_PINNED)) 8865 break; 8866 8867 /* take a breather every nr_migrate tasks */ 8868 if (env->loop > env->loop_break) { 8869 env->loop_break += SCHED_NR_MIGRATE_BREAK; 8870 env->flags |= LBF_NEED_BREAK; 8871 break; 8872 } 8873 8874 p = list_last_entry(tasks, struct task_struct, se.group_node); 8875 8876 if (!can_migrate_task(p, env)) 8877 goto next; 8878 8879 switch (env->migration_type) { 8880 case migrate_load: 8881 /* 8882 * Depending of the number of CPUs and tasks and the 8883 * cgroup hierarchy, task_h_load() can return a null 8884 * value. Make sure that env->imbalance decreases 8885 * otherwise detach_tasks() will stop only after 8886 * detaching up to loop_max tasks. 8887 */ 8888 load = max_t(unsigned long, task_h_load(p), 1); 8889 8890 if (sched_feat(LB_MIN) && 8891 load < 16 && !env->sd->nr_balance_failed) 8892 goto next; 8893 8894 /* 8895 * Make sure that we don't migrate too much load. 8896 * Nevertheless, let relax the constraint if 8897 * scheduler fails to find a good waiting task to 8898 * migrate. 8899 */ 8900 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 8901 goto next; 8902 8903 env->imbalance -= load; 8904 break; 8905 8906 case migrate_util: 8907 util = task_util_est(p); 8908 8909 if (util > env->imbalance) 8910 goto next; 8911 8912 env->imbalance -= util; 8913 break; 8914 8915 case migrate_task: 8916 env->imbalance--; 8917 break; 8918 8919 case migrate_misfit: 8920 /* This is not a misfit task */ 8921 if (task_fits_cpu(p, env->src_cpu)) 8922 goto next; 8923 8924 env->imbalance = 0; 8925 break; 8926 } 8927 8928 detach_task(p, env); 8929 list_add(&p->se.group_node, &env->tasks); 8930 8931 detached++; 8932 8933 #ifdef CONFIG_PREEMPTION 8934 /* 8935 * NEWIDLE balancing is a source of latency, so preemptible 8936 * kernels will stop after the first task is detached to minimize 8937 * the critical section. 8938 */ 8939 if (env->idle == CPU_NEWLY_IDLE) 8940 break; 8941 #endif 8942 8943 /* 8944 * We only want to steal up to the prescribed amount of 8945 * load/util/tasks. 8946 */ 8947 if (env->imbalance <= 0) 8948 break; 8949 8950 continue; 8951 next: 8952 list_move(&p->se.group_node, tasks); 8953 } 8954 8955 /* 8956 * Right now, this is one of only two places we collect this stat 8957 * so we can safely collect detach_one_task() stats here rather 8958 * than inside detach_one_task(). 8959 */ 8960 schedstat_add(env->sd->lb_gained[env->idle], detached); 8961 8962 return detached; 8963 } 8964 8965 /* 8966 * attach_task() -- attach the task detached by detach_task() to its new rq. 8967 */ 8968 static void attach_task(struct rq *rq, struct task_struct *p) 8969 { 8970 lockdep_assert_rq_held(rq); 8971 8972 WARN_ON_ONCE(task_rq(p) != rq); 8973 activate_task(rq, p, ENQUEUE_NOCLOCK); 8974 check_preempt_curr(rq, p, 0); 8975 } 8976 8977 /* 8978 * attach_one_task() -- attaches the task returned from detach_one_task() to 8979 * its new rq. 8980 */ 8981 static void attach_one_task(struct rq *rq, struct task_struct *p) 8982 { 8983 struct rq_flags rf; 8984 8985 rq_lock(rq, &rf); 8986 update_rq_clock(rq); 8987 attach_task(rq, p); 8988 rq_unlock(rq, &rf); 8989 } 8990 8991 /* 8992 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 8993 * new rq. 8994 */ 8995 static void attach_tasks(struct lb_env *env) 8996 { 8997 struct list_head *tasks = &env->tasks; 8998 struct task_struct *p; 8999 struct rq_flags rf; 9000 9001 rq_lock(env->dst_rq, &rf); 9002 update_rq_clock(env->dst_rq); 9003 9004 while (!list_empty(tasks)) { 9005 p = list_first_entry(tasks, struct task_struct, se.group_node); 9006 list_del_init(&p->se.group_node); 9007 9008 attach_task(env->dst_rq, p); 9009 } 9010 9011 rq_unlock(env->dst_rq, &rf); 9012 } 9013 9014 #ifdef CONFIG_NO_HZ_COMMON 9015 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9016 { 9017 if (cfs_rq->avg.load_avg) 9018 return true; 9019 9020 if (cfs_rq->avg.util_avg) 9021 return true; 9022 9023 return false; 9024 } 9025 9026 static inline bool others_have_blocked(struct rq *rq) 9027 { 9028 if (READ_ONCE(rq->avg_rt.util_avg)) 9029 return true; 9030 9031 if (READ_ONCE(rq->avg_dl.util_avg)) 9032 return true; 9033 9034 if (thermal_load_avg(rq)) 9035 return true; 9036 9037 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 9038 if (READ_ONCE(rq->avg_irq.util_avg)) 9039 return true; 9040 #endif 9041 9042 return false; 9043 } 9044 9045 static inline void update_blocked_load_tick(struct rq *rq) 9046 { 9047 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9048 } 9049 9050 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9051 { 9052 if (!has_blocked) 9053 rq->has_blocked_load = 0; 9054 } 9055 #else 9056 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9057 static inline bool others_have_blocked(struct rq *rq) { return false; } 9058 static inline void update_blocked_load_tick(struct rq *rq) {} 9059 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9060 #endif 9061 9062 static bool __update_blocked_others(struct rq *rq, bool *done) 9063 { 9064 const struct sched_class *curr_class; 9065 u64 now = rq_clock_pelt(rq); 9066 unsigned long thermal_pressure; 9067 bool decayed; 9068 9069 /* 9070 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9071 * DL and IRQ signals have been updated before updating CFS. 9072 */ 9073 curr_class = rq->curr->sched_class; 9074 9075 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 9076 9077 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 9078 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 9079 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 9080 update_irq_load_avg(rq, 0); 9081 9082 if (others_have_blocked(rq)) 9083 *done = false; 9084 9085 return decayed; 9086 } 9087 9088 #ifdef CONFIG_FAIR_GROUP_SCHED 9089 9090 static bool __update_blocked_fair(struct rq *rq, bool *done) 9091 { 9092 struct cfs_rq *cfs_rq, *pos; 9093 bool decayed = false; 9094 int cpu = cpu_of(rq); 9095 9096 /* 9097 * Iterates the task_group tree in a bottom up fashion, see 9098 * list_add_leaf_cfs_rq() for details. 9099 */ 9100 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9101 struct sched_entity *se; 9102 9103 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9104 update_tg_load_avg(cfs_rq); 9105 9106 if (cfs_rq->nr_running == 0) 9107 update_idle_cfs_rq_clock_pelt(cfs_rq); 9108 9109 if (cfs_rq == &rq->cfs) 9110 decayed = true; 9111 } 9112 9113 /* Propagate pending load changes to the parent, if any: */ 9114 se = cfs_rq->tg->se[cpu]; 9115 if (se && !skip_blocked_update(se)) 9116 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9117 9118 /* 9119 * There can be a lot of idle CPU cgroups. Don't let fully 9120 * decayed cfs_rqs linger on the list. 9121 */ 9122 if (cfs_rq_is_decayed(cfs_rq)) 9123 list_del_leaf_cfs_rq(cfs_rq); 9124 9125 /* Don't need periodic decay once load/util_avg are null */ 9126 if (cfs_rq_has_blocked(cfs_rq)) 9127 *done = false; 9128 } 9129 9130 return decayed; 9131 } 9132 9133 /* 9134 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9135 * This needs to be done in a top-down fashion because the load of a child 9136 * group is a fraction of its parents load. 9137 */ 9138 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9139 { 9140 struct rq *rq = rq_of(cfs_rq); 9141 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9142 unsigned long now = jiffies; 9143 unsigned long load; 9144 9145 if (cfs_rq->last_h_load_update == now) 9146 return; 9147 9148 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9149 for_each_sched_entity(se) { 9150 cfs_rq = cfs_rq_of(se); 9151 WRITE_ONCE(cfs_rq->h_load_next, se); 9152 if (cfs_rq->last_h_load_update == now) 9153 break; 9154 } 9155 9156 if (!se) { 9157 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9158 cfs_rq->last_h_load_update = now; 9159 } 9160 9161 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9162 load = cfs_rq->h_load; 9163 load = div64_ul(load * se->avg.load_avg, 9164 cfs_rq_load_avg(cfs_rq) + 1); 9165 cfs_rq = group_cfs_rq(se); 9166 cfs_rq->h_load = load; 9167 cfs_rq->last_h_load_update = now; 9168 } 9169 } 9170 9171 static unsigned long task_h_load(struct task_struct *p) 9172 { 9173 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9174 9175 update_cfs_rq_h_load(cfs_rq); 9176 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9177 cfs_rq_load_avg(cfs_rq) + 1); 9178 } 9179 #else 9180 static bool __update_blocked_fair(struct rq *rq, bool *done) 9181 { 9182 struct cfs_rq *cfs_rq = &rq->cfs; 9183 bool decayed; 9184 9185 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9186 if (cfs_rq_has_blocked(cfs_rq)) 9187 *done = false; 9188 9189 return decayed; 9190 } 9191 9192 static unsigned long task_h_load(struct task_struct *p) 9193 { 9194 return p->se.avg.load_avg; 9195 } 9196 #endif 9197 9198 static void update_blocked_averages(int cpu) 9199 { 9200 bool decayed = false, done = true; 9201 struct rq *rq = cpu_rq(cpu); 9202 struct rq_flags rf; 9203 9204 rq_lock_irqsave(rq, &rf); 9205 update_blocked_load_tick(rq); 9206 update_rq_clock(rq); 9207 9208 decayed |= __update_blocked_others(rq, &done); 9209 decayed |= __update_blocked_fair(rq, &done); 9210 9211 update_blocked_load_status(rq, !done); 9212 if (decayed) 9213 cpufreq_update_util(rq, 0); 9214 rq_unlock_irqrestore(rq, &rf); 9215 } 9216 9217 /********** Helpers for find_busiest_group ************************/ 9218 9219 /* 9220 * sg_lb_stats - stats of a sched_group required for load_balancing 9221 */ 9222 struct sg_lb_stats { 9223 unsigned long avg_load; /*Avg load across the CPUs of the group */ 9224 unsigned long group_load; /* Total load over the CPUs of the group */ 9225 unsigned long group_capacity; 9226 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9227 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9228 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 9229 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9230 unsigned int idle_cpus; 9231 unsigned int group_weight; 9232 enum group_type group_type; 9233 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9234 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9235 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9236 #ifdef CONFIG_NUMA_BALANCING 9237 unsigned int nr_numa_running; 9238 unsigned int nr_preferred_running; 9239 #endif 9240 }; 9241 9242 /* 9243 * sd_lb_stats - Structure to store the statistics of a sched_domain 9244 * during load balancing. 9245 */ 9246 struct sd_lb_stats { 9247 struct sched_group *busiest; /* Busiest group in this sd */ 9248 struct sched_group *local; /* Local group in this sd */ 9249 unsigned long total_load; /* Total load of all groups in sd */ 9250 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9251 unsigned long avg_load; /* Average load across all groups in sd */ 9252 unsigned int prefer_sibling; /* tasks should go to sibling first */ 9253 9254 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 9255 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9256 }; 9257 9258 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9259 { 9260 /* 9261 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9262 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9263 * We must however set busiest_stat::group_type and 9264 * busiest_stat::idle_cpus to the worst busiest group because 9265 * update_sd_pick_busiest() reads these before assignment. 9266 */ 9267 *sds = (struct sd_lb_stats){ 9268 .busiest = NULL, 9269 .local = NULL, 9270 .total_load = 0UL, 9271 .total_capacity = 0UL, 9272 .busiest_stat = { 9273 .idle_cpus = UINT_MAX, 9274 .group_type = group_has_spare, 9275 }, 9276 }; 9277 } 9278 9279 static unsigned long scale_rt_capacity(int cpu) 9280 { 9281 struct rq *rq = cpu_rq(cpu); 9282 unsigned long max = arch_scale_cpu_capacity(cpu); 9283 unsigned long used, free; 9284 unsigned long irq; 9285 9286 irq = cpu_util_irq(rq); 9287 9288 if (unlikely(irq >= max)) 9289 return 1; 9290 9291 /* 9292 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9293 * (running and not running) with weights 0 and 1024 respectively. 9294 * avg_thermal.load_avg tracks thermal pressure and the weighted 9295 * average uses the actual delta max capacity(load). 9296 */ 9297 used = READ_ONCE(rq->avg_rt.util_avg); 9298 used += READ_ONCE(rq->avg_dl.util_avg); 9299 used += thermal_load_avg(rq); 9300 9301 if (unlikely(used >= max)) 9302 return 1; 9303 9304 free = max - used; 9305 9306 return scale_irq_capacity(free, irq, max); 9307 } 9308 9309 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9310 { 9311 unsigned long capacity = scale_rt_capacity(cpu); 9312 struct sched_group *sdg = sd->groups; 9313 9314 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 9315 9316 if (!capacity) 9317 capacity = 1; 9318 9319 cpu_rq(cpu)->cpu_capacity = capacity; 9320 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9321 9322 sdg->sgc->capacity = capacity; 9323 sdg->sgc->min_capacity = capacity; 9324 sdg->sgc->max_capacity = capacity; 9325 } 9326 9327 void update_group_capacity(struct sched_domain *sd, int cpu) 9328 { 9329 struct sched_domain *child = sd->child; 9330 struct sched_group *group, *sdg = sd->groups; 9331 unsigned long capacity, min_capacity, max_capacity; 9332 unsigned long interval; 9333 9334 interval = msecs_to_jiffies(sd->balance_interval); 9335 interval = clamp(interval, 1UL, max_load_balance_interval); 9336 sdg->sgc->next_update = jiffies + interval; 9337 9338 if (!child) { 9339 update_cpu_capacity(sd, cpu); 9340 return; 9341 } 9342 9343 capacity = 0; 9344 min_capacity = ULONG_MAX; 9345 max_capacity = 0; 9346 9347 if (child->flags & SD_OVERLAP) { 9348 /* 9349 * SD_OVERLAP domains cannot assume that child groups 9350 * span the current group. 9351 */ 9352 9353 for_each_cpu(cpu, sched_group_span(sdg)) { 9354 unsigned long cpu_cap = capacity_of(cpu); 9355 9356 capacity += cpu_cap; 9357 min_capacity = min(cpu_cap, min_capacity); 9358 max_capacity = max(cpu_cap, max_capacity); 9359 } 9360 } else { 9361 /* 9362 * !SD_OVERLAP domains can assume that child groups 9363 * span the current group. 9364 */ 9365 9366 group = child->groups; 9367 do { 9368 struct sched_group_capacity *sgc = group->sgc; 9369 9370 capacity += sgc->capacity; 9371 min_capacity = min(sgc->min_capacity, min_capacity); 9372 max_capacity = max(sgc->max_capacity, max_capacity); 9373 group = group->next; 9374 } while (group != child->groups); 9375 } 9376 9377 sdg->sgc->capacity = capacity; 9378 sdg->sgc->min_capacity = min_capacity; 9379 sdg->sgc->max_capacity = max_capacity; 9380 } 9381 9382 /* 9383 * Check whether the capacity of the rq has been noticeably reduced by side 9384 * activity. The imbalance_pct is used for the threshold. 9385 * Return true is the capacity is reduced 9386 */ 9387 static inline int 9388 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 9389 { 9390 return ((rq->cpu_capacity * sd->imbalance_pct) < 9391 (rq->cpu_capacity_orig * 100)); 9392 } 9393 9394 /* 9395 * Check whether a rq has a misfit task and if it looks like we can actually 9396 * help that task: we can migrate the task to a CPU of higher capacity, or 9397 * the task's current CPU is heavily pressured. 9398 */ 9399 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 9400 { 9401 return rq->misfit_task_load && 9402 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 9403 check_cpu_capacity(rq, sd)); 9404 } 9405 9406 /* 9407 * Group imbalance indicates (and tries to solve) the problem where balancing 9408 * groups is inadequate due to ->cpus_ptr constraints. 9409 * 9410 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9411 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 9412 * Something like: 9413 * 9414 * { 0 1 2 3 } { 4 5 6 7 } 9415 * * * * * 9416 * 9417 * If we were to balance group-wise we'd place two tasks in the first group and 9418 * two tasks in the second group. Clearly this is undesired as it will overload 9419 * cpu 3 and leave one of the CPUs in the second group unused. 9420 * 9421 * The current solution to this issue is detecting the skew in the first group 9422 * by noticing the lower domain failed to reach balance and had difficulty 9423 * moving tasks due to affinity constraints. 9424 * 9425 * When this is so detected; this group becomes a candidate for busiest; see 9426 * update_sd_pick_busiest(). And calculate_imbalance() and 9427 * find_busiest_group() avoid some of the usual balance conditions to allow it 9428 * to create an effective group imbalance. 9429 * 9430 * This is a somewhat tricky proposition since the next run might not find the 9431 * group imbalance and decide the groups need to be balanced again. A most 9432 * subtle and fragile situation. 9433 */ 9434 9435 static inline int sg_imbalanced(struct sched_group *group) 9436 { 9437 return group->sgc->imbalance; 9438 } 9439 9440 /* 9441 * group_has_capacity returns true if the group has spare capacity that could 9442 * be used by some tasks. 9443 * We consider that a group has spare capacity if the number of task is 9444 * smaller than the number of CPUs or if the utilization is lower than the 9445 * available capacity for CFS tasks. 9446 * For the latter, we use a threshold to stabilize the state, to take into 9447 * account the variance of the tasks' load and to return true if the available 9448 * capacity in meaningful for the load balancer. 9449 * As an example, an available capacity of 1% can appear but it doesn't make 9450 * any benefit for the load balance. 9451 */ 9452 static inline bool 9453 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9454 { 9455 if (sgs->sum_nr_running < sgs->group_weight) 9456 return true; 9457 9458 if ((sgs->group_capacity * imbalance_pct) < 9459 (sgs->group_runnable * 100)) 9460 return false; 9461 9462 if ((sgs->group_capacity * 100) > 9463 (sgs->group_util * imbalance_pct)) 9464 return true; 9465 9466 return false; 9467 } 9468 9469 /* 9470 * group_is_overloaded returns true if the group has more tasks than it can 9471 * handle. 9472 * group_is_overloaded is not equals to !group_has_capacity because a group 9473 * with the exact right number of tasks, has no more spare capacity but is not 9474 * overloaded so both group_has_capacity and group_is_overloaded return 9475 * false. 9476 */ 9477 static inline bool 9478 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9479 { 9480 if (sgs->sum_nr_running <= sgs->group_weight) 9481 return false; 9482 9483 if ((sgs->group_capacity * 100) < 9484 (sgs->group_util * imbalance_pct)) 9485 return true; 9486 9487 if ((sgs->group_capacity * imbalance_pct) < 9488 (sgs->group_runnable * 100)) 9489 return true; 9490 9491 return false; 9492 } 9493 9494 static inline enum 9495 group_type group_classify(unsigned int imbalance_pct, 9496 struct sched_group *group, 9497 struct sg_lb_stats *sgs) 9498 { 9499 if (group_is_overloaded(imbalance_pct, sgs)) 9500 return group_overloaded; 9501 9502 if (sg_imbalanced(group)) 9503 return group_imbalanced; 9504 9505 if (sgs->group_asym_packing) 9506 return group_asym_packing; 9507 9508 if (sgs->group_smt_balance) 9509 return group_smt_balance; 9510 9511 if (sgs->group_misfit_task_load) 9512 return group_misfit_task; 9513 9514 if (!group_has_capacity(imbalance_pct, sgs)) 9515 return group_fully_busy; 9516 9517 return group_has_spare; 9518 } 9519 9520 /** 9521 * sched_use_asym_prio - Check whether asym_packing priority must be used 9522 * @sd: The scheduling domain of the load balancing 9523 * @cpu: A CPU 9524 * 9525 * Always use CPU priority when balancing load between SMT siblings. When 9526 * balancing load between cores, it is not sufficient that @cpu is idle. Only 9527 * use CPU priority if the whole core is idle. 9528 * 9529 * Returns: True if the priority of @cpu must be followed. False otherwise. 9530 */ 9531 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 9532 { 9533 if (!sched_smt_active()) 9534 return true; 9535 9536 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 9537 } 9538 9539 /** 9540 * sched_asym - Check if the destination CPU can do asym_packing load balance 9541 * @env: The load balancing environment 9542 * @sds: Load-balancing data with statistics of the local group 9543 * @sgs: Load-balancing statistics of the candidate busiest group 9544 * @group: The candidate busiest group 9545 * 9546 * @env::dst_cpu can do asym_packing if it has higher priority than the 9547 * preferred CPU of @group. 9548 * 9549 * SMT is a special case. If we are balancing load between cores, @env::dst_cpu 9550 * can do asym_packing balance only if all its SMT siblings are idle. Also, it 9551 * can only do it if @group is an SMT group and has exactly on busy CPU. Larger 9552 * imbalances in the number of CPUS are dealt with in find_busiest_group(). 9553 * 9554 * If we are balancing load within an SMT core, or at DIE domain level, always 9555 * proceed. 9556 * 9557 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 9558 * otherwise. 9559 */ 9560 static inline bool 9561 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 9562 struct sched_group *group) 9563 { 9564 /* Ensure that the whole local core is idle, if applicable. */ 9565 if (!sched_use_asym_prio(env->sd, env->dst_cpu)) 9566 return false; 9567 9568 /* 9569 * CPU priorities does not make sense for SMT cores with more than one 9570 * busy sibling. 9571 */ 9572 if (group->flags & SD_SHARE_CPUCAPACITY) { 9573 if (sgs->group_weight - sgs->idle_cpus != 1) 9574 return false; 9575 } 9576 9577 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 9578 } 9579 9580 /* One group has more than one SMT CPU while the other group does not */ 9581 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 9582 struct sched_group *sg2) 9583 { 9584 if (!sg1 || !sg2) 9585 return false; 9586 9587 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 9588 (sg2->flags & SD_SHARE_CPUCAPACITY); 9589 } 9590 9591 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 9592 struct sched_group *group) 9593 { 9594 if (env->idle == CPU_NOT_IDLE) 9595 return false; 9596 9597 /* 9598 * For SMT source group, it is better to move a task 9599 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 9600 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 9601 * will not be on. 9602 */ 9603 if (group->flags & SD_SHARE_CPUCAPACITY && 9604 sgs->sum_h_nr_running > 1) 9605 return true; 9606 9607 return false; 9608 } 9609 9610 static inline long sibling_imbalance(struct lb_env *env, 9611 struct sd_lb_stats *sds, 9612 struct sg_lb_stats *busiest, 9613 struct sg_lb_stats *local) 9614 { 9615 int ncores_busiest, ncores_local; 9616 long imbalance; 9617 9618 if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running) 9619 return 0; 9620 9621 ncores_busiest = sds->busiest->cores; 9622 ncores_local = sds->local->cores; 9623 9624 if (ncores_busiest == ncores_local) { 9625 imbalance = busiest->sum_nr_running; 9626 lsub_positive(&imbalance, local->sum_nr_running); 9627 return imbalance; 9628 } 9629 9630 /* Balance such that nr_running/ncores ratio are same on both groups */ 9631 imbalance = ncores_local * busiest->sum_nr_running; 9632 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 9633 /* Normalize imbalance and do rounding on normalization */ 9634 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 9635 imbalance /= ncores_local + ncores_busiest; 9636 9637 /* Take advantage of resource in an empty sched group */ 9638 if (imbalance <= 1 && local->sum_nr_running == 0 && 9639 busiest->sum_nr_running > 1) 9640 imbalance = 2; 9641 9642 return imbalance; 9643 } 9644 9645 static inline bool 9646 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 9647 { 9648 /* 9649 * When there is more than 1 task, the group_overloaded case already 9650 * takes care of cpu with reduced capacity 9651 */ 9652 if (rq->cfs.h_nr_running != 1) 9653 return false; 9654 9655 return check_cpu_capacity(rq, sd); 9656 } 9657 9658 /** 9659 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 9660 * @env: The load balancing environment. 9661 * @sds: Load-balancing data with statistics of the local group. 9662 * @group: sched_group whose statistics are to be updated. 9663 * @sgs: variable to hold the statistics for this group. 9664 * @sg_status: Holds flag indicating the status of the sched_group 9665 */ 9666 static inline void update_sg_lb_stats(struct lb_env *env, 9667 struct sd_lb_stats *sds, 9668 struct sched_group *group, 9669 struct sg_lb_stats *sgs, 9670 int *sg_status) 9671 { 9672 int i, nr_running, local_group; 9673 9674 memset(sgs, 0, sizeof(*sgs)); 9675 9676 local_group = group == sds->local; 9677 9678 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9679 struct rq *rq = cpu_rq(i); 9680 unsigned long load = cpu_load(rq); 9681 9682 sgs->group_load += load; 9683 sgs->group_util += cpu_util_cfs(i); 9684 sgs->group_runnable += cpu_runnable(rq); 9685 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 9686 9687 nr_running = rq->nr_running; 9688 sgs->sum_nr_running += nr_running; 9689 9690 if (nr_running > 1) 9691 *sg_status |= SG_OVERLOAD; 9692 9693 if (cpu_overutilized(i)) 9694 *sg_status |= SG_OVERUTILIZED; 9695 9696 #ifdef CONFIG_NUMA_BALANCING 9697 sgs->nr_numa_running += rq->nr_numa_running; 9698 sgs->nr_preferred_running += rq->nr_preferred_running; 9699 #endif 9700 /* 9701 * No need to call idle_cpu() if nr_running is not 0 9702 */ 9703 if (!nr_running && idle_cpu(i)) { 9704 sgs->idle_cpus++; 9705 /* Idle cpu can't have misfit task */ 9706 continue; 9707 } 9708 9709 if (local_group) 9710 continue; 9711 9712 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9713 /* Check for a misfit task on the cpu */ 9714 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 9715 sgs->group_misfit_task_load = rq->misfit_task_load; 9716 *sg_status |= SG_OVERLOAD; 9717 } 9718 } else if ((env->idle != CPU_NOT_IDLE) && 9719 sched_reduced_capacity(rq, env->sd)) { 9720 /* Check for a task running on a CPU with reduced capacity */ 9721 if (sgs->group_misfit_task_load < load) 9722 sgs->group_misfit_task_load = load; 9723 } 9724 } 9725 9726 sgs->group_capacity = group->sgc->capacity; 9727 9728 sgs->group_weight = group->group_weight; 9729 9730 /* Check if dst CPU is idle and preferred to this group */ 9731 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 9732 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 9733 sched_asym(env, sds, sgs, group)) { 9734 sgs->group_asym_packing = 1; 9735 } 9736 9737 /* Check for loaded SMT group to be balanced to dst CPU */ 9738 if (!local_group && smt_balance(env, sgs, group)) 9739 sgs->group_smt_balance = 1; 9740 9741 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 9742 9743 /* Computing avg_load makes sense only when group is overloaded */ 9744 if (sgs->group_type == group_overloaded) 9745 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9746 sgs->group_capacity; 9747 } 9748 9749 /** 9750 * update_sd_pick_busiest - return 1 on busiest group 9751 * @env: The load balancing environment. 9752 * @sds: sched_domain statistics 9753 * @sg: sched_group candidate to be checked for being the busiest 9754 * @sgs: sched_group statistics 9755 * 9756 * Determine if @sg is a busier group than the previously selected 9757 * busiest group. 9758 * 9759 * Return: %true if @sg is a busier group than the previously selected 9760 * busiest group. %false otherwise. 9761 */ 9762 static bool update_sd_pick_busiest(struct lb_env *env, 9763 struct sd_lb_stats *sds, 9764 struct sched_group *sg, 9765 struct sg_lb_stats *sgs) 9766 { 9767 struct sg_lb_stats *busiest = &sds->busiest_stat; 9768 9769 /* Make sure that there is at least one task to pull */ 9770 if (!sgs->sum_h_nr_running) 9771 return false; 9772 9773 /* 9774 * Don't try to pull misfit tasks we can't help. 9775 * We can use max_capacity here as reduction in capacity on some 9776 * CPUs in the group should either be possible to resolve 9777 * internally or be covered by avg_load imbalance (eventually). 9778 */ 9779 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9780 (sgs->group_type == group_misfit_task) && 9781 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 9782 sds->local_stat.group_type != group_has_spare)) 9783 return false; 9784 9785 if (sgs->group_type > busiest->group_type) 9786 return true; 9787 9788 if (sgs->group_type < busiest->group_type) 9789 return false; 9790 9791 /* 9792 * The candidate and the current busiest group are the same type of 9793 * group. Let check which one is the busiest according to the type. 9794 */ 9795 9796 switch (sgs->group_type) { 9797 case group_overloaded: 9798 /* Select the overloaded group with highest avg_load. */ 9799 if (sgs->avg_load <= busiest->avg_load) 9800 return false; 9801 break; 9802 9803 case group_imbalanced: 9804 /* 9805 * Select the 1st imbalanced group as we don't have any way to 9806 * choose one more than another. 9807 */ 9808 return false; 9809 9810 case group_asym_packing: 9811 /* Prefer to move from lowest priority CPU's work */ 9812 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 9813 return false; 9814 break; 9815 9816 case group_misfit_task: 9817 /* 9818 * If we have more than one misfit sg go with the biggest 9819 * misfit. 9820 */ 9821 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 9822 return false; 9823 break; 9824 9825 case group_smt_balance: 9826 /* 9827 * Check if we have spare CPUs on either SMT group to 9828 * choose has spare or fully busy handling. 9829 */ 9830 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 9831 goto has_spare; 9832 9833 fallthrough; 9834 9835 case group_fully_busy: 9836 /* 9837 * Select the fully busy group with highest avg_load. In 9838 * theory, there is no need to pull task from such kind of 9839 * group because tasks have all compute capacity that they need 9840 * but we can still improve the overall throughput by reducing 9841 * contention when accessing shared HW resources. 9842 * 9843 * XXX for now avg_load is not computed and always 0 so we 9844 * select the 1st one, except if @sg is composed of SMT 9845 * siblings. 9846 */ 9847 9848 if (sgs->avg_load < busiest->avg_load) 9849 return false; 9850 9851 if (sgs->avg_load == busiest->avg_load) { 9852 /* 9853 * SMT sched groups need more help than non-SMT groups. 9854 * If @sg happens to also be SMT, either choice is good. 9855 */ 9856 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 9857 return false; 9858 } 9859 9860 break; 9861 9862 case group_has_spare: 9863 /* 9864 * Do not pick sg with SMT CPUs over sg with pure CPUs, 9865 * as we do not want to pull task off SMT core with one task 9866 * and make the core idle. 9867 */ 9868 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 9869 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 9870 return false; 9871 else 9872 return true; 9873 } 9874 has_spare: 9875 9876 /* 9877 * Select not overloaded group with lowest number of idle cpus 9878 * and highest number of running tasks. We could also compare 9879 * the spare capacity which is more stable but it can end up 9880 * that the group has less spare capacity but finally more idle 9881 * CPUs which means less opportunity to pull tasks. 9882 */ 9883 if (sgs->idle_cpus > busiest->idle_cpus) 9884 return false; 9885 else if ((sgs->idle_cpus == busiest->idle_cpus) && 9886 (sgs->sum_nr_running <= busiest->sum_nr_running)) 9887 return false; 9888 9889 break; 9890 } 9891 9892 /* 9893 * Candidate sg has no more than one task per CPU and has higher 9894 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 9895 * throughput. Maximize throughput, power/energy consequences are not 9896 * considered. 9897 */ 9898 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9899 (sgs->group_type <= group_fully_busy) && 9900 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 9901 return false; 9902 9903 return true; 9904 } 9905 9906 #ifdef CONFIG_NUMA_BALANCING 9907 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9908 { 9909 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 9910 return regular; 9911 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 9912 return remote; 9913 return all; 9914 } 9915 9916 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9917 { 9918 if (rq->nr_running > rq->nr_numa_running) 9919 return regular; 9920 if (rq->nr_running > rq->nr_preferred_running) 9921 return remote; 9922 return all; 9923 } 9924 #else 9925 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9926 { 9927 return all; 9928 } 9929 9930 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9931 { 9932 return regular; 9933 } 9934 #endif /* CONFIG_NUMA_BALANCING */ 9935 9936 9937 struct sg_lb_stats; 9938 9939 /* 9940 * task_running_on_cpu - return 1 if @p is running on @cpu. 9941 */ 9942 9943 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 9944 { 9945 /* Task has no contribution or is new */ 9946 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 9947 return 0; 9948 9949 if (task_on_rq_queued(p)) 9950 return 1; 9951 9952 return 0; 9953 } 9954 9955 /** 9956 * idle_cpu_without - would a given CPU be idle without p ? 9957 * @cpu: the processor on which idleness is tested. 9958 * @p: task which should be ignored. 9959 * 9960 * Return: 1 if the CPU would be idle. 0 otherwise. 9961 */ 9962 static int idle_cpu_without(int cpu, struct task_struct *p) 9963 { 9964 struct rq *rq = cpu_rq(cpu); 9965 9966 if (rq->curr != rq->idle && rq->curr != p) 9967 return 0; 9968 9969 /* 9970 * rq->nr_running can't be used but an updated version without the 9971 * impact of p on cpu must be used instead. The updated nr_running 9972 * be computed and tested before calling idle_cpu_without(). 9973 */ 9974 9975 #ifdef CONFIG_SMP 9976 if (rq->ttwu_pending) 9977 return 0; 9978 #endif 9979 9980 return 1; 9981 } 9982 9983 /* 9984 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 9985 * @sd: The sched_domain level to look for idlest group. 9986 * @group: sched_group whose statistics are to be updated. 9987 * @sgs: variable to hold the statistics for this group. 9988 * @p: The task for which we look for the idlest group/CPU. 9989 */ 9990 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 9991 struct sched_group *group, 9992 struct sg_lb_stats *sgs, 9993 struct task_struct *p) 9994 { 9995 int i, nr_running; 9996 9997 memset(sgs, 0, sizeof(*sgs)); 9998 9999 /* Assume that task can't fit any CPU of the group */ 10000 if (sd->flags & SD_ASYM_CPUCAPACITY) 10001 sgs->group_misfit_task_load = 1; 10002 10003 for_each_cpu(i, sched_group_span(group)) { 10004 struct rq *rq = cpu_rq(i); 10005 unsigned int local; 10006 10007 sgs->group_load += cpu_load_without(rq, p); 10008 sgs->group_util += cpu_util_without(i, p); 10009 sgs->group_runnable += cpu_runnable_without(rq, p); 10010 local = task_running_on_cpu(i, p); 10011 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 10012 10013 nr_running = rq->nr_running - local; 10014 sgs->sum_nr_running += nr_running; 10015 10016 /* 10017 * No need to call idle_cpu_without() if nr_running is not 0 10018 */ 10019 if (!nr_running && idle_cpu_without(i, p)) 10020 sgs->idle_cpus++; 10021 10022 /* Check if task fits in the CPU */ 10023 if (sd->flags & SD_ASYM_CPUCAPACITY && 10024 sgs->group_misfit_task_load && 10025 task_fits_cpu(p, i)) 10026 sgs->group_misfit_task_load = 0; 10027 10028 } 10029 10030 sgs->group_capacity = group->sgc->capacity; 10031 10032 sgs->group_weight = group->group_weight; 10033 10034 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10035 10036 /* 10037 * Computing avg_load makes sense only when group is fully busy or 10038 * overloaded 10039 */ 10040 if (sgs->group_type == group_fully_busy || 10041 sgs->group_type == group_overloaded) 10042 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10043 sgs->group_capacity; 10044 } 10045 10046 static bool update_pick_idlest(struct sched_group *idlest, 10047 struct sg_lb_stats *idlest_sgs, 10048 struct sched_group *group, 10049 struct sg_lb_stats *sgs) 10050 { 10051 if (sgs->group_type < idlest_sgs->group_type) 10052 return true; 10053 10054 if (sgs->group_type > idlest_sgs->group_type) 10055 return false; 10056 10057 /* 10058 * The candidate and the current idlest group are the same type of 10059 * group. Let check which one is the idlest according to the type. 10060 */ 10061 10062 switch (sgs->group_type) { 10063 case group_overloaded: 10064 case group_fully_busy: 10065 /* Select the group with lowest avg_load. */ 10066 if (idlest_sgs->avg_load <= sgs->avg_load) 10067 return false; 10068 break; 10069 10070 case group_imbalanced: 10071 case group_asym_packing: 10072 case group_smt_balance: 10073 /* Those types are not used in the slow wakeup path */ 10074 return false; 10075 10076 case group_misfit_task: 10077 /* Select group with the highest max capacity */ 10078 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10079 return false; 10080 break; 10081 10082 case group_has_spare: 10083 /* Select group with most idle CPUs */ 10084 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10085 return false; 10086 10087 /* Select group with lowest group_util */ 10088 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10089 idlest_sgs->group_util <= sgs->group_util) 10090 return false; 10091 10092 break; 10093 } 10094 10095 return true; 10096 } 10097 10098 /* 10099 * find_idlest_group() finds and returns the least busy CPU group within the 10100 * domain. 10101 * 10102 * Assumes p is allowed on at least one CPU in sd. 10103 */ 10104 static struct sched_group * 10105 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10106 { 10107 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10108 struct sg_lb_stats local_sgs, tmp_sgs; 10109 struct sg_lb_stats *sgs; 10110 unsigned long imbalance; 10111 struct sg_lb_stats idlest_sgs = { 10112 .avg_load = UINT_MAX, 10113 .group_type = group_overloaded, 10114 }; 10115 10116 do { 10117 int local_group; 10118 10119 /* Skip over this group if it has no CPUs allowed */ 10120 if (!cpumask_intersects(sched_group_span(group), 10121 p->cpus_ptr)) 10122 continue; 10123 10124 /* Skip over this group if no cookie matched */ 10125 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10126 continue; 10127 10128 local_group = cpumask_test_cpu(this_cpu, 10129 sched_group_span(group)); 10130 10131 if (local_group) { 10132 sgs = &local_sgs; 10133 local = group; 10134 } else { 10135 sgs = &tmp_sgs; 10136 } 10137 10138 update_sg_wakeup_stats(sd, group, sgs, p); 10139 10140 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10141 idlest = group; 10142 idlest_sgs = *sgs; 10143 } 10144 10145 } while (group = group->next, group != sd->groups); 10146 10147 10148 /* There is no idlest group to push tasks to */ 10149 if (!idlest) 10150 return NULL; 10151 10152 /* The local group has been skipped because of CPU affinity */ 10153 if (!local) 10154 return idlest; 10155 10156 /* 10157 * If the local group is idler than the selected idlest group 10158 * don't try and push the task. 10159 */ 10160 if (local_sgs.group_type < idlest_sgs.group_type) 10161 return NULL; 10162 10163 /* 10164 * If the local group is busier than the selected idlest group 10165 * try and push the task. 10166 */ 10167 if (local_sgs.group_type > idlest_sgs.group_type) 10168 return idlest; 10169 10170 switch (local_sgs.group_type) { 10171 case group_overloaded: 10172 case group_fully_busy: 10173 10174 /* Calculate allowed imbalance based on load */ 10175 imbalance = scale_load_down(NICE_0_LOAD) * 10176 (sd->imbalance_pct-100) / 100; 10177 10178 /* 10179 * When comparing groups across NUMA domains, it's possible for 10180 * the local domain to be very lightly loaded relative to the 10181 * remote domains but "imbalance" skews the comparison making 10182 * remote CPUs look much more favourable. When considering 10183 * cross-domain, add imbalance to the load on the remote node 10184 * and consider staying local. 10185 */ 10186 10187 if ((sd->flags & SD_NUMA) && 10188 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10189 return NULL; 10190 10191 /* 10192 * If the local group is less loaded than the selected 10193 * idlest group don't try and push any tasks. 10194 */ 10195 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10196 return NULL; 10197 10198 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10199 return NULL; 10200 break; 10201 10202 case group_imbalanced: 10203 case group_asym_packing: 10204 case group_smt_balance: 10205 /* Those type are not used in the slow wakeup path */ 10206 return NULL; 10207 10208 case group_misfit_task: 10209 /* Select group with the highest max capacity */ 10210 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10211 return NULL; 10212 break; 10213 10214 case group_has_spare: 10215 #ifdef CONFIG_NUMA 10216 if (sd->flags & SD_NUMA) { 10217 int imb_numa_nr = sd->imb_numa_nr; 10218 #ifdef CONFIG_NUMA_BALANCING 10219 int idlest_cpu; 10220 /* 10221 * If there is spare capacity at NUMA, try to select 10222 * the preferred node 10223 */ 10224 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10225 return NULL; 10226 10227 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10228 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10229 return idlest; 10230 #endif /* CONFIG_NUMA_BALANCING */ 10231 /* 10232 * Otherwise, keep the task close to the wakeup source 10233 * and improve locality if the number of running tasks 10234 * would remain below threshold where an imbalance is 10235 * allowed while accounting for the possibility the 10236 * task is pinned to a subset of CPUs. If there is a 10237 * real need of migration, periodic load balance will 10238 * take care of it. 10239 */ 10240 if (p->nr_cpus_allowed != NR_CPUS) { 10241 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10242 10243 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10244 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10245 } 10246 10247 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10248 if (!adjust_numa_imbalance(imbalance, 10249 local_sgs.sum_nr_running + 1, 10250 imb_numa_nr)) { 10251 return NULL; 10252 } 10253 } 10254 #endif /* CONFIG_NUMA */ 10255 10256 /* 10257 * Select group with highest number of idle CPUs. We could also 10258 * compare the utilization which is more stable but it can end 10259 * up that the group has less spare capacity but finally more 10260 * idle CPUs which means more opportunity to run task. 10261 */ 10262 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10263 return NULL; 10264 break; 10265 } 10266 10267 return idlest; 10268 } 10269 10270 static void update_idle_cpu_scan(struct lb_env *env, 10271 unsigned long sum_util) 10272 { 10273 struct sched_domain_shared *sd_share; 10274 int llc_weight, pct; 10275 u64 x, y, tmp; 10276 /* 10277 * Update the number of CPUs to scan in LLC domain, which could 10278 * be used as a hint in select_idle_cpu(). The update of sd_share 10279 * could be expensive because it is within a shared cache line. 10280 * So the write of this hint only occurs during periodic load 10281 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10282 * can fire way more frequently than the former. 10283 */ 10284 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10285 return; 10286 10287 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10288 if (env->sd->span_weight != llc_weight) 10289 return; 10290 10291 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10292 if (!sd_share) 10293 return; 10294 10295 /* 10296 * The number of CPUs to search drops as sum_util increases, when 10297 * sum_util hits 85% or above, the scan stops. 10298 * The reason to choose 85% as the threshold is because this is the 10299 * imbalance_pct(117) when a LLC sched group is overloaded. 10300 * 10301 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10302 * and y'= y / SCHED_CAPACITY_SCALE 10303 * 10304 * x is the ratio of sum_util compared to the CPU capacity: 10305 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10306 * y' is the ratio of CPUs to be scanned in the LLC domain, 10307 * and the number of CPUs to scan is calculated by: 10308 * 10309 * nr_scan = llc_weight * y' [2] 10310 * 10311 * When x hits the threshold of overloaded, AKA, when 10312 * x = 100 / pct, y drops to 0. According to [1], 10313 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10314 * 10315 * Scale x by SCHED_CAPACITY_SCALE: 10316 * x' = sum_util / llc_weight; [3] 10317 * 10318 * and finally [1] becomes: 10319 * y = SCHED_CAPACITY_SCALE - 10320 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10321 * 10322 */ 10323 /* equation [3] */ 10324 x = sum_util; 10325 do_div(x, llc_weight); 10326 10327 /* equation [4] */ 10328 pct = env->sd->imbalance_pct; 10329 tmp = x * x * pct * pct; 10330 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10331 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10332 y = SCHED_CAPACITY_SCALE - tmp; 10333 10334 /* equation [2] */ 10335 y *= llc_weight; 10336 do_div(y, SCHED_CAPACITY_SCALE); 10337 if ((int)y != sd_share->nr_idle_scan) 10338 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10339 } 10340 10341 /** 10342 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10343 * @env: The load balancing environment. 10344 * @sds: variable to hold the statistics for this sched_domain. 10345 */ 10346 10347 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10348 { 10349 struct sched_group *sg = env->sd->groups; 10350 struct sg_lb_stats *local = &sds->local_stat; 10351 struct sg_lb_stats tmp_sgs; 10352 unsigned long sum_util = 0; 10353 int sg_status = 0; 10354 10355 do { 10356 struct sg_lb_stats *sgs = &tmp_sgs; 10357 int local_group; 10358 10359 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10360 if (local_group) { 10361 sds->local = sg; 10362 sgs = local; 10363 10364 if (env->idle != CPU_NEWLY_IDLE || 10365 time_after_eq(jiffies, sg->sgc->next_update)) 10366 update_group_capacity(env->sd, env->dst_cpu); 10367 } 10368 10369 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 10370 10371 if (local_group) 10372 goto next_group; 10373 10374 10375 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 10376 sds->busiest = sg; 10377 sds->busiest_stat = *sgs; 10378 } 10379 10380 next_group: 10381 /* Now, start updating sd_lb_stats */ 10382 sds->total_load += sgs->group_load; 10383 sds->total_capacity += sgs->group_capacity; 10384 10385 sum_util += sgs->group_util; 10386 sg = sg->next; 10387 } while (sg != env->sd->groups); 10388 10389 /* 10390 * Indicate that the child domain of the busiest group prefers tasks 10391 * go to a child's sibling domains first. NB the flags of a sched group 10392 * are those of the child domain. 10393 */ 10394 if (sds->busiest) 10395 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 10396 10397 10398 if (env->sd->flags & SD_NUMA) 10399 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 10400 10401 if (!env->sd->parent) { 10402 struct root_domain *rd = env->dst_rq->rd; 10403 10404 /* update overload indicator if we are at root domain */ 10405 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 10406 10407 /* Update over-utilization (tipping point, U >= 0) indicator */ 10408 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 10409 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 10410 } else if (sg_status & SG_OVERUTILIZED) { 10411 struct root_domain *rd = env->dst_rq->rd; 10412 10413 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 10414 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 10415 } 10416 10417 update_idle_cpu_scan(env, sum_util); 10418 } 10419 10420 /** 10421 * calculate_imbalance - Calculate the amount of imbalance present within the 10422 * groups of a given sched_domain during load balance. 10423 * @env: load balance environment 10424 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 10425 */ 10426 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 10427 { 10428 struct sg_lb_stats *local, *busiest; 10429 10430 local = &sds->local_stat; 10431 busiest = &sds->busiest_stat; 10432 10433 if (busiest->group_type == group_misfit_task) { 10434 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10435 /* Set imbalance to allow misfit tasks to be balanced. */ 10436 env->migration_type = migrate_misfit; 10437 env->imbalance = 1; 10438 } else { 10439 /* 10440 * Set load imbalance to allow moving task from cpu 10441 * with reduced capacity. 10442 */ 10443 env->migration_type = migrate_load; 10444 env->imbalance = busiest->group_misfit_task_load; 10445 } 10446 return; 10447 } 10448 10449 if (busiest->group_type == group_asym_packing) { 10450 /* 10451 * In case of asym capacity, we will try to migrate all load to 10452 * the preferred CPU. 10453 */ 10454 env->migration_type = migrate_task; 10455 env->imbalance = busiest->sum_h_nr_running; 10456 return; 10457 } 10458 10459 if (busiest->group_type == group_smt_balance) { 10460 /* Reduce number of tasks sharing CPU capacity */ 10461 env->migration_type = migrate_task; 10462 env->imbalance = 1; 10463 return; 10464 } 10465 10466 if (busiest->group_type == group_imbalanced) { 10467 /* 10468 * In the group_imb case we cannot rely on group-wide averages 10469 * to ensure CPU-load equilibrium, try to move any task to fix 10470 * the imbalance. The next load balance will take care of 10471 * balancing back the system. 10472 */ 10473 env->migration_type = migrate_task; 10474 env->imbalance = 1; 10475 return; 10476 } 10477 10478 /* 10479 * Try to use spare capacity of local group without overloading it or 10480 * emptying busiest. 10481 */ 10482 if (local->group_type == group_has_spare) { 10483 if ((busiest->group_type > group_fully_busy) && 10484 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 10485 /* 10486 * If busiest is overloaded, try to fill spare 10487 * capacity. This might end up creating spare capacity 10488 * in busiest or busiest still being overloaded but 10489 * there is no simple way to directly compute the 10490 * amount of load to migrate in order to balance the 10491 * system. 10492 */ 10493 env->migration_type = migrate_util; 10494 env->imbalance = max(local->group_capacity, local->group_util) - 10495 local->group_util; 10496 10497 /* 10498 * In some cases, the group's utilization is max or even 10499 * higher than capacity because of migrations but the 10500 * local CPU is (newly) idle. There is at least one 10501 * waiting task in this overloaded busiest group. Let's 10502 * try to pull it. 10503 */ 10504 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 10505 env->migration_type = migrate_task; 10506 env->imbalance = 1; 10507 } 10508 10509 return; 10510 } 10511 10512 if (busiest->group_weight == 1 || sds->prefer_sibling) { 10513 /* 10514 * When prefer sibling, evenly spread running tasks on 10515 * groups. 10516 */ 10517 env->migration_type = migrate_task; 10518 env->imbalance = sibling_imbalance(env, sds, busiest, local); 10519 } else { 10520 10521 /* 10522 * If there is no overload, we just want to even the number of 10523 * idle cpus. 10524 */ 10525 env->migration_type = migrate_task; 10526 env->imbalance = max_t(long, 0, 10527 (local->idle_cpus - busiest->idle_cpus)); 10528 } 10529 10530 #ifdef CONFIG_NUMA 10531 /* Consider allowing a small imbalance between NUMA groups */ 10532 if (env->sd->flags & SD_NUMA) { 10533 env->imbalance = adjust_numa_imbalance(env->imbalance, 10534 local->sum_nr_running + 1, 10535 env->sd->imb_numa_nr); 10536 } 10537 #endif 10538 10539 /* Number of tasks to move to restore balance */ 10540 env->imbalance >>= 1; 10541 10542 return; 10543 } 10544 10545 /* 10546 * Local is fully busy but has to take more load to relieve the 10547 * busiest group 10548 */ 10549 if (local->group_type < group_overloaded) { 10550 /* 10551 * Local will become overloaded so the avg_load metrics are 10552 * finally needed. 10553 */ 10554 10555 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 10556 local->group_capacity; 10557 10558 /* 10559 * If the local group is more loaded than the selected 10560 * busiest group don't try to pull any tasks. 10561 */ 10562 if (local->avg_load >= busiest->avg_load) { 10563 env->imbalance = 0; 10564 return; 10565 } 10566 10567 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 10568 sds->total_capacity; 10569 10570 /* 10571 * If the local group is more loaded than the average system 10572 * load, don't try to pull any tasks. 10573 */ 10574 if (local->avg_load >= sds->avg_load) { 10575 env->imbalance = 0; 10576 return; 10577 } 10578 10579 } 10580 10581 /* 10582 * Both group are or will become overloaded and we're trying to get all 10583 * the CPUs to the average_load, so we don't want to push ourselves 10584 * above the average load, nor do we wish to reduce the max loaded CPU 10585 * below the average load. At the same time, we also don't want to 10586 * reduce the group load below the group capacity. Thus we look for 10587 * the minimum possible imbalance. 10588 */ 10589 env->migration_type = migrate_load; 10590 env->imbalance = min( 10591 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 10592 (sds->avg_load - local->avg_load) * local->group_capacity 10593 ) / SCHED_CAPACITY_SCALE; 10594 } 10595 10596 /******* find_busiest_group() helpers end here *********************/ 10597 10598 /* 10599 * Decision matrix according to the local and busiest group type: 10600 * 10601 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 10602 * has_spare nr_idle balanced N/A N/A balanced balanced 10603 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 10604 * misfit_task force N/A N/A N/A N/A N/A 10605 * asym_packing force force N/A N/A force force 10606 * imbalanced force force N/A N/A force force 10607 * overloaded force force N/A N/A force avg_load 10608 * 10609 * N/A : Not Applicable because already filtered while updating 10610 * statistics. 10611 * balanced : The system is balanced for these 2 groups. 10612 * force : Calculate the imbalance as load migration is probably needed. 10613 * avg_load : Only if imbalance is significant enough. 10614 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 10615 * different in groups. 10616 */ 10617 10618 /** 10619 * find_busiest_group - Returns the busiest group within the sched_domain 10620 * if there is an imbalance. 10621 * @env: The load balancing environment. 10622 * 10623 * Also calculates the amount of runnable load which should be moved 10624 * to restore balance. 10625 * 10626 * Return: - The busiest group if imbalance exists. 10627 */ 10628 static struct sched_group *find_busiest_group(struct lb_env *env) 10629 { 10630 struct sg_lb_stats *local, *busiest; 10631 struct sd_lb_stats sds; 10632 10633 init_sd_lb_stats(&sds); 10634 10635 /* 10636 * Compute the various statistics relevant for load balancing at 10637 * this level. 10638 */ 10639 update_sd_lb_stats(env, &sds); 10640 10641 /* There is no busy sibling group to pull tasks from */ 10642 if (!sds.busiest) 10643 goto out_balanced; 10644 10645 busiest = &sds.busiest_stat; 10646 10647 /* Misfit tasks should be dealt with regardless of the avg load */ 10648 if (busiest->group_type == group_misfit_task) 10649 goto force_balance; 10650 10651 if (sched_energy_enabled()) { 10652 struct root_domain *rd = env->dst_rq->rd; 10653 10654 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 10655 goto out_balanced; 10656 } 10657 10658 /* ASYM feature bypasses nice load balance check */ 10659 if (busiest->group_type == group_asym_packing) 10660 goto force_balance; 10661 10662 /* 10663 * If the busiest group is imbalanced the below checks don't 10664 * work because they assume all things are equal, which typically 10665 * isn't true due to cpus_ptr constraints and the like. 10666 */ 10667 if (busiest->group_type == group_imbalanced) 10668 goto force_balance; 10669 10670 local = &sds.local_stat; 10671 /* 10672 * If the local group is busier than the selected busiest group 10673 * don't try and pull any tasks. 10674 */ 10675 if (local->group_type > busiest->group_type) 10676 goto out_balanced; 10677 10678 /* 10679 * When groups are overloaded, use the avg_load to ensure fairness 10680 * between tasks. 10681 */ 10682 if (local->group_type == group_overloaded) { 10683 /* 10684 * If the local group is more loaded than the selected 10685 * busiest group don't try to pull any tasks. 10686 */ 10687 if (local->avg_load >= busiest->avg_load) 10688 goto out_balanced; 10689 10690 /* XXX broken for overlapping NUMA groups */ 10691 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 10692 sds.total_capacity; 10693 10694 /* 10695 * Don't pull any tasks if this group is already above the 10696 * domain average load. 10697 */ 10698 if (local->avg_load >= sds.avg_load) 10699 goto out_balanced; 10700 10701 /* 10702 * If the busiest group is more loaded, use imbalance_pct to be 10703 * conservative. 10704 */ 10705 if (100 * busiest->avg_load <= 10706 env->sd->imbalance_pct * local->avg_load) 10707 goto out_balanced; 10708 } 10709 10710 /* 10711 * Try to move all excess tasks to a sibling domain of the busiest 10712 * group's child domain. 10713 */ 10714 if (sds.prefer_sibling && local->group_type == group_has_spare && 10715 sibling_imbalance(env, &sds, busiest, local) > 1) 10716 goto force_balance; 10717 10718 if (busiest->group_type != group_overloaded) { 10719 if (env->idle == CPU_NOT_IDLE) { 10720 /* 10721 * If the busiest group is not overloaded (and as a 10722 * result the local one too) but this CPU is already 10723 * busy, let another idle CPU try to pull task. 10724 */ 10725 goto out_balanced; 10726 } 10727 10728 if (busiest->group_type == group_smt_balance && 10729 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 10730 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 10731 goto force_balance; 10732 } 10733 10734 if (busiest->group_weight > 1 && 10735 local->idle_cpus <= (busiest->idle_cpus + 1)) { 10736 /* 10737 * If the busiest group is not overloaded 10738 * and there is no imbalance between this and busiest 10739 * group wrt idle CPUs, it is balanced. The imbalance 10740 * becomes significant if the diff is greater than 1 10741 * otherwise we might end up to just move the imbalance 10742 * on another group. Of course this applies only if 10743 * there is more than 1 CPU per group. 10744 */ 10745 goto out_balanced; 10746 } 10747 10748 if (busiest->sum_h_nr_running == 1) { 10749 /* 10750 * busiest doesn't have any tasks waiting to run 10751 */ 10752 goto out_balanced; 10753 } 10754 } 10755 10756 force_balance: 10757 /* Looks like there is an imbalance. Compute it */ 10758 calculate_imbalance(env, &sds); 10759 return env->imbalance ? sds.busiest : NULL; 10760 10761 out_balanced: 10762 env->imbalance = 0; 10763 return NULL; 10764 } 10765 10766 /* 10767 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 10768 */ 10769 static struct rq *find_busiest_queue(struct lb_env *env, 10770 struct sched_group *group) 10771 { 10772 struct rq *busiest = NULL, *rq; 10773 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 10774 unsigned int busiest_nr = 0; 10775 int i; 10776 10777 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10778 unsigned long capacity, load, util; 10779 unsigned int nr_running; 10780 enum fbq_type rt; 10781 10782 rq = cpu_rq(i); 10783 rt = fbq_classify_rq(rq); 10784 10785 /* 10786 * We classify groups/runqueues into three groups: 10787 * - regular: there are !numa tasks 10788 * - remote: there are numa tasks that run on the 'wrong' node 10789 * - all: there is no distinction 10790 * 10791 * In order to avoid migrating ideally placed numa tasks, 10792 * ignore those when there's better options. 10793 * 10794 * If we ignore the actual busiest queue to migrate another 10795 * task, the next balance pass can still reduce the busiest 10796 * queue by moving tasks around inside the node. 10797 * 10798 * If we cannot move enough load due to this classification 10799 * the next pass will adjust the group classification and 10800 * allow migration of more tasks. 10801 * 10802 * Both cases only affect the total convergence complexity. 10803 */ 10804 if (rt > env->fbq_type) 10805 continue; 10806 10807 nr_running = rq->cfs.h_nr_running; 10808 if (!nr_running) 10809 continue; 10810 10811 capacity = capacity_of(i); 10812 10813 /* 10814 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 10815 * eventually lead to active_balancing high->low capacity. 10816 * Higher per-CPU capacity is considered better than balancing 10817 * average load. 10818 */ 10819 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 10820 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 10821 nr_running == 1) 10822 continue; 10823 10824 /* 10825 * Make sure we only pull tasks from a CPU of lower priority 10826 * when balancing between SMT siblings. 10827 * 10828 * If balancing between cores, let lower priority CPUs help 10829 * SMT cores with more than one busy sibling. 10830 */ 10831 if ((env->sd->flags & SD_ASYM_PACKING) && 10832 sched_use_asym_prio(env->sd, i) && 10833 sched_asym_prefer(i, env->dst_cpu) && 10834 nr_running == 1) 10835 continue; 10836 10837 switch (env->migration_type) { 10838 case migrate_load: 10839 /* 10840 * When comparing with load imbalance, use cpu_load() 10841 * which is not scaled with the CPU capacity. 10842 */ 10843 load = cpu_load(rq); 10844 10845 if (nr_running == 1 && load > env->imbalance && 10846 !check_cpu_capacity(rq, env->sd)) 10847 break; 10848 10849 /* 10850 * For the load comparisons with the other CPUs, 10851 * consider the cpu_load() scaled with the CPU 10852 * capacity, so that the load can be moved away 10853 * from the CPU that is potentially running at a 10854 * lower capacity. 10855 * 10856 * Thus we're looking for max(load_i / capacity_i), 10857 * crosswise multiplication to rid ourselves of the 10858 * division works out to: 10859 * load_i * capacity_j > load_j * capacity_i; 10860 * where j is our previous maximum. 10861 */ 10862 if (load * busiest_capacity > busiest_load * capacity) { 10863 busiest_load = load; 10864 busiest_capacity = capacity; 10865 busiest = rq; 10866 } 10867 break; 10868 10869 case migrate_util: 10870 util = cpu_util_cfs_boost(i); 10871 10872 /* 10873 * Don't try to pull utilization from a CPU with one 10874 * running task. Whatever its utilization, we will fail 10875 * detach the task. 10876 */ 10877 if (nr_running <= 1) 10878 continue; 10879 10880 if (busiest_util < util) { 10881 busiest_util = util; 10882 busiest = rq; 10883 } 10884 break; 10885 10886 case migrate_task: 10887 if (busiest_nr < nr_running) { 10888 busiest_nr = nr_running; 10889 busiest = rq; 10890 } 10891 break; 10892 10893 case migrate_misfit: 10894 /* 10895 * For ASYM_CPUCAPACITY domains with misfit tasks we 10896 * simply seek the "biggest" misfit task. 10897 */ 10898 if (rq->misfit_task_load > busiest_load) { 10899 busiest_load = rq->misfit_task_load; 10900 busiest = rq; 10901 } 10902 10903 break; 10904 10905 } 10906 } 10907 10908 return busiest; 10909 } 10910 10911 /* 10912 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 10913 * so long as it is large enough. 10914 */ 10915 #define MAX_PINNED_INTERVAL 512 10916 10917 static inline bool 10918 asym_active_balance(struct lb_env *env) 10919 { 10920 /* 10921 * ASYM_PACKING needs to force migrate tasks from busy but lower 10922 * priority CPUs in order to pack all tasks in the highest priority 10923 * CPUs. When done between cores, do it only if the whole core if the 10924 * whole core is idle. 10925 * 10926 * If @env::src_cpu is an SMT core with busy siblings, let 10927 * the lower priority @env::dst_cpu help it. Do not follow 10928 * CPU priority. 10929 */ 10930 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 10931 sched_use_asym_prio(env->sd, env->dst_cpu) && 10932 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 10933 !sched_use_asym_prio(env->sd, env->src_cpu)); 10934 } 10935 10936 static inline bool 10937 imbalanced_active_balance(struct lb_env *env) 10938 { 10939 struct sched_domain *sd = env->sd; 10940 10941 /* 10942 * The imbalanced case includes the case of pinned tasks preventing a fair 10943 * distribution of the load on the system but also the even distribution of the 10944 * threads on a system with spare capacity 10945 */ 10946 if ((env->migration_type == migrate_task) && 10947 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 10948 return 1; 10949 10950 return 0; 10951 } 10952 10953 static int need_active_balance(struct lb_env *env) 10954 { 10955 struct sched_domain *sd = env->sd; 10956 10957 if (asym_active_balance(env)) 10958 return 1; 10959 10960 if (imbalanced_active_balance(env)) 10961 return 1; 10962 10963 /* 10964 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 10965 * It's worth migrating the task if the src_cpu's capacity is reduced 10966 * because of other sched_class or IRQs if more capacity stays 10967 * available on dst_cpu. 10968 */ 10969 if ((env->idle != CPU_NOT_IDLE) && 10970 (env->src_rq->cfs.h_nr_running == 1)) { 10971 if ((check_cpu_capacity(env->src_rq, sd)) && 10972 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 10973 return 1; 10974 } 10975 10976 if (env->migration_type == migrate_misfit) 10977 return 1; 10978 10979 return 0; 10980 } 10981 10982 static int active_load_balance_cpu_stop(void *data); 10983 10984 static int should_we_balance(struct lb_env *env) 10985 { 10986 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 10987 struct sched_group *sg = env->sd->groups; 10988 int cpu, idle_smt = -1; 10989 10990 /* 10991 * Ensure the balancing environment is consistent; can happen 10992 * when the softirq triggers 'during' hotplug. 10993 */ 10994 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 10995 return 0; 10996 10997 /* 10998 * In the newly idle case, we will allow all the CPUs 10999 * to do the newly idle load balance. 11000 * 11001 * However, we bail out if we already have tasks or a wakeup pending, 11002 * to optimize wakeup latency. 11003 */ 11004 if (env->idle == CPU_NEWLY_IDLE) { 11005 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11006 return 0; 11007 return 1; 11008 } 11009 11010 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11011 /* Try to find first idle CPU */ 11012 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11013 if (!idle_cpu(cpu)) 11014 continue; 11015 11016 /* 11017 * Don't balance to idle SMT in busy core right away when 11018 * balancing cores, but remember the first idle SMT CPU for 11019 * later consideration. Find CPU on an idle core first. 11020 */ 11021 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11022 if (idle_smt == -1) 11023 idle_smt = cpu; 11024 /* 11025 * If the core is not idle, and first SMT sibling which is 11026 * idle has been found, then its not needed to check other 11027 * SMT siblings for idleness: 11028 */ 11029 #ifdef CONFIG_SCHED_SMT 11030 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11031 #endif 11032 continue; 11033 } 11034 11035 /* Are we the first idle CPU? */ 11036 return cpu == env->dst_cpu; 11037 } 11038 11039 if (idle_smt == env->dst_cpu) 11040 return true; 11041 11042 /* Are we the first CPU of this group ? */ 11043 return group_balance_cpu(sg) == env->dst_cpu; 11044 } 11045 11046 /* 11047 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11048 * tasks if there is an imbalance. 11049 */ 11050 static int load_balance(int this_cpu, struct rq *this_rq, 11051 struct sched_domain *sd, enum cpu_idle_type idle, 11052 int *continue_balancing) 11053 { 11054 int ld_moved, cur_ld_moved, active_balance = 0; 11055 struct sched_domain *sd_parent = sd->parent; 11056 struct sched_group *group; 11057 struct rq *busiest; 11058 struct rq_flags rf; 11059 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11060 struct lb_env env = { 11061 .sd = sd, 11062 .dst_cpu = this_cpu, 11063 .dst_rq = this_rq, 11064 .dst_grpmask = group_balance_mask(sd->groups), 11065 .idle = idle, 11066 .loop_break = SCHED_NR_MIGRATE_BREAK, 11067 .cpus = cpus, 11068 .fbq_type = all, 11069 .tasks = LIST_HEAD_INIT(env.tasks), 11070 }; 11071 11072 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11073 11074 schedstat_inc(sd->lb_count[idle]); 11075 11076 redo: 11077 if (!should_we_balance(&env)) { 11078 *continue_balancing = 0; 11079 goto out_balanced; 11080 } 11081 11082 group = find_busiest_group(&env); 11083 if (!group) { 11084 schedstat_inc(sd->lb_nobusyg[idle]); 11085 goto out_balanced; 11086 } 11087 11088 busiest = find_busiest_queue(&env, group); 11089 if (!busiest) { 11090 schedstat_inc(sd->lb_nobusyq[idle]); 11091 goto out_balanced; 11092 } 11093 11094 WARN_ON_ONCE(busiest == env.dst_rq); 11095 11096 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 11097 11098 env.src_cpu = busiest->cpu; 11099 env.src_rq = busiest; 11100 11101 ld_moved = 0; 11102 /* Clear this flag as soon as we find a pullable task */ 11103 env.flags |= LBF_ALL_PINNED; 11104 if (busiest->nr_running > 1) { 11105 /* 11106 * Attempt to move tasks. If find_busiest_group has found 11107 * an imbalance but busiest->nr_running <= 1, the group is 11108 * still unbalanced. ld_moved simply stays zero, so it is 11109 * correctly treated as an imbalance. 11110 */ 11111 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11112 11113 more_balance: 11114 rq_lock_irqsave(busiest, &rf); 11115 update_rq_clock(busiest); 11116 11117 /* 11118 * cur_ld_moved - load moved in current iteration 11119 * ld_moved - cumulative load moved across iterations 11120 */ 11121 cur_ld_moved = detach_tasks(&env); 11122 11123 /* 11124 * We've detached some tasks from busiest_rq. Every 11125 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11126 * unlock busiest->lock, and we are able to be sure 11127 * that nobody can manipulate the tasks in parallel. 11128 * See task_rq_lock() family for the details. 11129 */ 11130 11131 rq_unlock(busiest, &rf); 11132 11133 if (cur_ld_moved) { 11134 attach_tasks(&env); 11135 ld_moved += cur_ld_moved; 11136 } 11137 11138 local_irq_restore(rf.flags); 11139 11140 if (env.flags & LBF_NEED_BREAK) { 11141 env.flags &= ~LBF_NEED_BREAK; 11142 /* Stop if we tried all running tasks */ 11143 if (env.loop < busiest->nr_running) 11144 goto more_balance; 11145 } 11146 11147 /* 11148 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11149 * us and move them to an alternate dst_cpu in our sched_group 11150 * where they can run. The upper limit on how many times we 11151 * iterate on same src_cpu is dependent on number of CPUs in our 11152 * sched_group. 11153 * 11154 * This changes load balance semantics a bit on who can move 11155 * load to a given_cpu. In addition to the given_cpu itself 11156 * (or a ilb_cpu acting on its behalf where given_cpu is 11157 * nohz-idle), we now have balance_cpu in a position to move 11158 * load to given_cpu. In rare situations, this may cause 11159 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11160 * _independently_ and at _same_ time to move some load to 11161 * given_cpu) causing excess load to be moved to given_cpu. 11162 * This however should not happen so much in practice and 11163 * moreover subsequent load balance cycles should correct the 11164 * excess load moved. 11165 */ 11166 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11167 11168 /* Prevent to re-select dst_cpu via env's CPUs */ 11169 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11170 11171 env.dst_rq = cpu_rq(env.new_dst_cpu); 11172 env.dst_cpu = env.new_dst_cpu; 11173 env.flags &= ~LBF_DST_PINNED; 11174 env.loop = 0; 11175 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11176 11177 /* 11178 * Go back to "more_balance" rather than "redo" since we 11179 * need to continue with same src_cpu. 11180 */ 11181 goto more_balance; 11182 } 11183 11184 /* 11185 * We failed to reach balance because of affinity. 11186 */ 11187 if (sd_parent) { 11188 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11189 11190 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11191 *group_imbalance = 1; 11192 } 11193 11194 /* All tasks on this runqueue were pinned by CPU affinity */ 11195 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11196 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11197 /* 11198 * Attempting to continue load balancing at the current 11199 * sched_domain level only makes sense if there are 11200 * active CPUs remaining as possible busiest CPUs to 11201 * pull load from which are not contained within the 11202 * destination group that is receiving any migrated 11203 * load. 11204 */ 11205 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11206 env.loop = 0; 11207 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11208 goto redo; 11209 } 11210 goto out_all_pinned; 11211 } 11212 } 11213 11214 if (!ld_moved) { 11215 schedstat_inc(sd->lb_failed[idle]); 11216 /* 11217 * Increment the failure counter only on periodic balance. 11218 * We do not want newidle balance, which can be very 11219 * frequent, pollute the failure counter causing 11220 * excessive cache_hot migrations and active balances. 11221 */ 11222 if (idle != CPU_NEWLY_IDLE) 11223 sd->nr_balance_failed++; 11224 11225 if (need_active_balance(&env)) { 11226 unsigned long flags; 11227 11228 raw_spin_rq_lock_irqsave(busiest, flags); 11229 11230 /* 11231 * Don't kick the active_load_balance_cpu_stop, 11232 * if the curr task on busiest CPU can't be 11233 * moved to this_cpu: 11234 */ 11235 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11236 raw_spin_rq_unlock_irqrestore(busiest, flags); 11237 goto out_one_pinned; 11238 } 11239 11240 /* Record that we found at least one task that could run on this_cpu */ 11241 env.flags &= ~LBF_ALL_PINNED; 11242 11243 /* 11244 * ->active_balance synchronizes accesses to 11245 * ->active_balance_work. Once set, it's cleared 11246 * only after active load balance is finished. 11247 */ 11248 if (!busiest->active_balance) { 11249 busiest->active_balance = 1; 11250 busiest->push_cpu = this_cpu; 11251 active_balance = 1; 11252 } 11253 raw_spin_rq_unlock_irqrestore(busiest, flags); 11254 11255 if (active_balance) { 11256 stop_one_cpu_nowait(cpu_of(busiest), 11257 active_load_balance_cpu_stop, busiest, 11258 &busiest->active_balance_work); 11259 } 11260 } 11261 } else { 11262 sd->nr_balance_failed = 0; 11263 } 11264 11265 if (likely(!active_balance) || need_active_balance(&env)) { 11266 /* We were unbalanced, so reset the balancing interval */ 11267 sd->balance_interval = sd->min_interval; 11268 } 11269 11270 goto out; 11271 11272 out_balanced: 11273 /* 11274 * We reach balance although we may have faced some affinity 11275 * constraints. Clear the imbalance flag only if other tasks got 11276 * a chance to move and fix the imbalance. 11277 */ 11278 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11279 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11280 11281 if (*group_imbalance) 11282 *group_imbalance = 0; 11283 } 11284 11285 out_all_pinned: 11286 /* 11287 * We reach balance because all tasks are pinned at this level so 11288 * we can't migrate them. Let the imbalance flag set so parent level 11289 * can try to migrate them. 11290 */ 11291 schedstat_inc(sd->lb_balanced[idle]); 11292 11293 sd->nr_balance_failed = 0; 11294 11295 out_one_pinned: 11296 ld_moved = 0; 11297 11298 /* 11299 * newidle_balance() disregards balance intervals, so we could 11300 * repeatedly reach this code, which would lead to balance_interval 11301 * skyrocketing in a short amount of time. Skip the balance_interval 11302 * increase logic to avoid that. 11303 */ 11304 if (env.idle == CPU_NEWLY_IDLE) 11305 goto out; 11306 11307 /* tune up the balancing interval */ 11308 if ((env.flags & LBF_ALL_PINNED && 11309 sd->balance_interval < MAX_PINNED_INTERVAL) || 11310 sd->balance_interval < sd->max_interval) 11311 sd->balance_interval *= 2; 11312 out: 11313 return ld_moved; 11314 } 11315 11316 static inline unsigned long 11317 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11318 { 11319 unsigned long interval = sd->balance_interval; 11320 11321 if (cpu_busy) 11322 interval *= sd->busy_factor; 11323 11324 /* scale ms to jiffies */ 11325 interval = msecs_to_jiffies(interval); 11326 11327 /* 11328 * Reduce likelihood of busy balancing at higher domains racing with 11329 * balancing at lower domains by preventing their balancing periods 11330 * from being multiples of each other. 11331 */ 11332 if (cpu_busy) 11333 interval -= 1; 11334 11335 interval = clamp(interval, 1UL, max_load_balance_interval); 11336 11337 return interval; 11338 } 11339 11340 static inline void 11341 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11342 { 11343 unsigned long interval, next; 11344 11345 /* used by idle balance, so cpu_busy = 0 */ 11346 interval = get_sd_balance_interval(sd, 0); 11347 next = sd->last_balance + interval; 11348 11349 if (time_after(*next_balance, next)) 11350 *next_balance = next; 11351 } 11352 11353 /* 11354 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11355 * running tasks off the busiest CPU onto idle CPUs. It requires at 11356 * least 1 task to be running on each physical CPU where possible, and 11357 * avoids physical / logical imbalances. 11358 */ 11359 static int active_load_balance_cpu_stop(void *data) 11360 { 11361 struct rq *busiest_rq = data; 11362 int busiest_cpu = cpu_of(busiest_rq); 11363 int target_cpu = busiest_rq->push_cpu; 11364 struct rq *target_rq = cpu_rq(target_cpu); 11365 struct sched_domain *sd; 11366 struct task_struct *p = NULL; 11367 struct rq_flags rf; 11368 11369 rq_lock_irq(busiest_rq, &rf); 11370 /* 11371 * Between queueing the stop-work and running it is a hole in which 11372 * CPUs can become inactive. We should not move tasks from or to 11373 * inactive CPUs. 11374 */ 11375 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 11376 goto out_unlock; 11377 11378 /* Make sure the requested CPU hasn't gone down in the meantime: */ 11379 if (unlikely(busiest_cpu != smp_processor_id() || 11380 !busiest_rq->active_balance)) 11381 goto out_unlock; 11382 11383 /* Is there any task to move? */ 11384 if (busiest_rq->nr_running <= 1) 11385 goto out_unlock; 11386 11387 /* 11388 * This condition is "impossible", if it occurs 11389 * we need to fix it. Originally reported by 11390 * Bjorn Helgaas on a 128-CPU setup. 11391 */ 11392 WARN_ON_ONCE(busiest_rq == target_rq); 11393 11394 /* Search for an sd spanning us and the target CPU. */ 11395 rcu_read_lock(); 11396 for_each_domain(target_cpu, sd) { 11397 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 11398 break; 11399 } 11400 11401 if (likely(sd)) { 11402 struct lb_env env = { 11403 .sd = sd, 11404 .dst_cpu = target_cpu, 11405 .dst_rq = target_rq, 11406 .src_cpu = busiest_rq->cpu, 11407 .src_rq = busiest_rq, 11408 .idle = CPU_IDLE, 11409 .flags = LBF_ACTIVE_LB, 11410 }; 11411 11412 schedstat_inc(sd->alb_count); 11413 update_rq_clock(busiest_rq); 11414 11415 p = detach_one_task(&env); 11416 if (p) { 11417 schedstat_inc(sd->alb_pushed); 11418 /* Active balancing done, reset the failure counter. */ 11419 sd->nr_balance_failed = 0; 11420 } else { 11421 schedstat_inc(sd->alb_failed); 11422 } 11423 } 11424 rcu_read_unlock(); 11425 out_unlock: 11426 busiest_rq->active_balance = 0; 11427 rq_unlock(busiest_rq, &rf); 11428 11429 if (p) 11430 attach_one_task(target_rq, p); 11431 11432 local_irq_enable(); 11433 11434 return 0; 11435 } 11436 11437 static DEFINE_SPINLOCK(balancing); 11438 11439 /* 11440 * Scale the max load_balance interval with the number of CPUs in the system. 11441 * This trades load-balance latency on larger machines for less cross talk. 11442 */ 11443 void update_max_interval(void) 11444 { 11445 max_load_balance_interval = HZ*num_online_cpus()/10; 11446 } 11447 11448 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 11449 { 11450 if (cost > sd->max_newidle_lb_cost) { 11451 /* 11452 * Track max cost of a domain to make sure to not delay the 11453 * next wakeup on the CPU. 11454 */ 11455 sd->max_newidle_lb_cost = cost; 11456 sd->last_decay_max_lb_cost = jiffies; 11457 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 11458 /* 11459 * Decay the newidle max times by ~1% per second to ensure that 11460 * it is not outdated and the current max cost is actually 11461 * shorter. 11462 */ 11463 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 11464 sd->last_decay_max_lb_cost = jiffies; 11465 11466 return true; 11467 } 11468 11469 return false; 11470 } 11471 11472 /* 11473 * It checks each scheduling domain to see if it is due to be balanced, 11474 * and initiates a balancing operation if so. 11475 * 11476 * Balancing parameters are set up in init_sched_domains. 11477 */ 11478 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 11479 { 11480 int continue_balancing = 1; 11481 int cpu = rq->cpu; 11482 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11483 unsigned long interval; 11484 struct sched_domain *sd; 11485 /* Earliest time when we have to do rebalance again */ 11486 unsigned long next_balance = jiffies + 60*HZ; 11487 int update_next_balance = 0; 11488 int need_serialize, need_decay = 0; 11489 u64 max_cost = 0; 11490 11491 rcu_read_lock(); 11492 for_each_domain(cpu, sd) { 11493 /* 11494 * Decay the newidle max times here because this is a regular 11495 * visit to all the domains. 11496 */ 11497 need_decay = update_newidle_cost(sd, 0); 11498 max_cost += sd->max_newidle_lb_cost; 11499 11500 /* 11501 * Stop the load balance at this level. There is another 11502 * CPU in our sched group which is doing load balancing more 11503 * actively. 11504 */ 11505 if (!continue_balancing) { 11506 if (need_decay) 11507 continue; 11508 break; 11509 } 11510 11511 interval = get_sd_balance_interval(sd, busy); 11512 11513 need_serialize = sd->flags & SD_SERIALIZE; 11514 if (need_serialize) { 11515 if (!spin_trylock(&balancing)) 11516 goto out; 11517 } 11518 11519 if (time_after_eq(jiffies, sd->last_balance + interval)) { 11520 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 11521 /* 11522 * The LBF_DST_PINNED logic could have changed 11523 * env->dst_cpu, so we can't know our idle 11524 * state even if we migrated tasks. Update it. 11525 */ 11526 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 11527 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11528 } 11529 sd->last_balance = jiffies; 11530 interval = get_sd_balance_interval(sd, busy); 11531 } 11532 if (need_serialize) 11533 spin_unlock(&balancing); 11534 out: 11535 if (time_after(next_balance, sd->last_balance + interval)) { 11536 next_balance = sd->last_balance + interval; 11537 update_next_balance = 1; 11538 } 11539 } 11540 if (need_decay) { 11541 /* 11542 * Ensure the rq-wide value also decays but keep it at a 11543 * reasonable floor to avoid funnies with rq->avg_idle. 11544 */ 11545 rq->max_idle_balance_cost = 11546 max((u64)sysctl_sched_migration_cost, max_cost); 11547 } 11548 rcu_read_unlock(); 11549 11550 /* 11551 * next_balance will be updated only when there is a need. 11552 * When the cpu is attached to null domain for ex, it will not be 11553 * updated. 11554 */ 11555 if (likely(update_next_balance)) 11556 rq->next_balance = next_balance; 11557 11558 } 11559 11560 static inline int on_null_domain(struct rq *rq) 11561 { 11562 return unlikely(!rcu_dereference_sched(rq->sd)); 11563 } 11564 11565 #ifdef CONFIG_NO_HZ_COMMON 11566 /* 11567 * idle load balancing details 11568 * - When one of the busy CPUs notice that there may be an idle rebalancing 11569 * needed, they will kick the idle load balancer, which then does idle 11570 * load balancing for all the idle CPUs. 11571 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set 11572 * anywhere yet. 11573 */ 11574 11575 static inline int find_new_ilb(void) 11576 { 11577 int ilb; 11578 const struct cpumask *hk_mask; 11579 11580 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 11581 11582 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) { 11583 11584 if (ilb == smp_processor_id()) 11585 continue; 11586 11587 if (idle_cpu(ilb)) 11588 return ilb; 11589 } 11590 11591 return nr_cpu_ids; 11592 } 11593 11594 /* 11595 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 11596 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 11597 */ 11598 static void kick_ilb(unsigned int flags) 11599 { 11600 int ilb_cpu; 11601 11602 /* 11603 * Increase nohz.next_balance only when if full ilb is triggered but 11604 * not if we only update stats. 11605 */ 11606 if (flags & NOHZ_BALANCE_KICK) 11607 nohz.next_balance = jiffies+1; 11608 11609 ilb_cpu = find_new_ilb(); 11610 11611 if (ilb_cpu >= nr_cpu_ids) 11612 return; 11613 11614 /* 11615 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 11616 * the first flag owns it; cleared by nohz_csd_func(). 11617 */ 11618 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 11619 if (flags & NOHZ_KICK_MASK) 11620 return; 11621 11622 /* 11623 * This way we generate an IPI on the target CPU which 11624 * is idle. And the softirq performing nohz idle load balance 11625 * will be run before returning from the IPI. 11626 */ 11627 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 11628 } 11629 11630 /* 11631 * Current decision point for kicking the idle load balancer in the presence 11632 * of idle CPUs in the system. 11633 */ 11634 static void nohz_balancer_kick(struct rq *rq) 11635 { 11636 unsigned long now = jiffies; 11637 struct sched_domain_shared *sds; 11638 struct sched_domain *sd; 11639 int nr_busy, i, cpu = rq->cpu; 11640 unsigned int flags = 0; 11641 11642 if (unlikely(rq->idle_balance)) 11643 return; 11644 11645 /* 11646 * We may be recently in ticked or tickless idle mode. At the first 11647 * busy tick after returning from idle, we will update the busy stats. 11648 */ 11649 nohz_balance_exit_idle(rq); 11650 11651 /* 11652 * None are in tickless mode and hence no need for NOHZ idle load 11653 * balancing. 11654 */ 11655 if (likely(!atomic_read(&nohz.nr_cpus))) 11656 return; 11657 11658 if (READ_ONCE(nohz.has_blocked) && 11659 time_after(now, READ_ONCE(nohz.next_blocked))) 11660 flags = NOHZ_STATS_KICK; 11661 11662 if (time_before(now, nohz.next_balance)) 11663 goto out; 11664 11665 if (rq->nr_running >= 2) { 11666 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11667 goto out; 11668 } 11669 11670 rcu_read_lock(); 11671 11672 sd = rcu_dereference(rq->sd); 11673 if (sd) { 11674 /* 11675 * If there's a CFS task and the current CPU has reduced 11676 * capacity; kick the ILB to see if there's a better CPU to run 11677 * on. 11678 */ 11679 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 11680 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11681 goto unlock; 11682 } 11683 } 11684 11685 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 11686 if (sd) { 11687 /* 11688 * When ASYM_PACKING; see if there's a more preferred CPU 11689 * currently idle; in which case, kick the ILB to move tasks 11690 * around. 11691 * 11692 * When balancing betwen cores, all the SMT siblings of the 11693 * preferred CPU must be idle. 11694 */ 11695 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 11696 if (sched_use_asym_prio(sd, i) && 11697 sched_asym_prefer(i, cpu)) { 11698 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11699 goto unlock; 11700 } 11701 } 11702 } 11703 11704 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 11705 if (sd) { 11706 /* 11707 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 11708 * to run the misfit task on. 11709 */ 11710 if (check_misfit_status(rq, sd)) { 11711 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11712 goto unlock; 11713 } 11714 11715 /* 11716 * For asymmetric systems, we do not want to nicely balance 11717 * cache use, instead we want to embrace asymmetry and only 11718 * ensure tasks have enough CPU capacity. 11719 * 11720 * Skip the LLC logic because it's not relevant in that case. 11721 */ 11722 goto unlock; 11723 } 11724 11725 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 11726 if (sds) { 11727 /* 11728 * If there is an imbalance between LLC domains (IOW we could 11729 * increase the overall cache use), we need some less-loaded LLC 11730 * domain to pull some load. Likewise, we may need to spread 11731 * load within the current LLC domain (e.g. packed SMT cores but 11732 * other CPUs are idle). We can't really know from here how busy 11733 * the others are - so just get a nohz balance going if it looks 11734 * like this LLC domain has tasks we could move. 11735 */ 11736 nr_busy = atomic_read(&sds->nr_busy_cpus); 11737 if (nr_busy > 1) { 11738 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11739 goto unlock; 11740 } 11741 } 11742 unlock: 11743 rcu_read_unlock(); 11744 out: 11745 if (READ_ONCE(nohz.needs_update)) 11746 flags |= NOHZ_NEXT_KICK; 11747 11748 if (flags) 11749 kick_ilb(flags); 11750 } 11751 11752 static void set_cpu_sd_state_busy(int cpu) 11753 { 11754 struct sched_domain *sd; 11755 11756 rcu_read_lock(); 11757 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11758 11759 if (!sd || !sd->nohz_idle) 11760 goto unlock; 11761 sd->nohz_idle = 0; 11762 11763 atomic_inc(&sd->shared->nr_busy_cpus); 11764 unlock: 11765 rcu_read_unlock(); 11766 } 11767 11768 void nohz_balance_exit_idle(struct rq *rq) 11769 { 11770 SCHED_WARN_ON(rq != this_rq()); 11771 11772 if (likely(!rq->nohz_tick_stopped)) 11773 return; 11774 11775 rq->nohz_tick_stopped = 0; 11776 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 11777 atomic_dec(&nohz.nr_cpus); 11778 11779 set_cpu_sd_state_busy(rq->cpu); 11780 } 11781 11782 static void set_cpu_sd_state_idle(int cpu) 11783 { 11784 struct sched_domain *sd; 11785 11786 rcu_read_lock(); 11787 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11788 11789 if (!sd || sd->nohz_idle) 11790 goto unlock; 11791 sd->nohz_idle = 1; 11792 11793 atomic_dec(&sd->shared->nr_busy_cpus); 11794 unlock: 11795 rcu_read_unlock(); 11796 } 11797 11798 /* 11799 * This routine will record that the CPU is going idle with tick stopped. 11800 * This info will be used in performing idle load balancing in the future. 11801 */ 11802 void nohz_balance_enter_idle(int cpu) 11803 { 11804 struct rq *rq = cpu_rq(cpu); 11805 11806 SCHED_WARN_ON(cpu != smp_processor_id()); 11807 11808 /* If this CPU is going down, then nothing needs to be done: */ 11809 if (!cpu_active(cpu)) 11810 return; 11811 11812 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 11813 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 11814 return; 11815 11816 /* 11817 * Can be set safely without rq->lock held 11818 * If a clear happens, it will have evaluated last additions because 11819 * rq->lock is held during the check and the clear 11820 */ 11821 rq->has_blocked_load = 1; 11822 11823 /* 11824 * The tick is still stopped but load could have been added in the 11825 * meantime. We set the nohz.has_blocked flag to trig a check of the 11826 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 11827 * of nohz.has_blocked can only happen after checking the new load 11828 */ 11829 if (rq->nohz_tick_stopped) 11830 goto out; 11831 11832 /* If we're a completely isolated CPU, we don't play: */ 11833 if (on_null_domain(rq)) 11834 return; 11835 11836 rq->nohz_tick_stopped = 1; 11837 11838 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 11839 atomic_inc(&nohz.nr_cpus); 11840 11841 /* 11842 * Ensures that if nohz_idle_balance() fails to observe our 11843 * @idle_cpus_mask store, it must observe the @has_blocked 11844 * and @needs_update stores. 11845 */ 11846 smp_mb__after_atomic(); 11847 11848 set_cpu_sd_state_idle(cpu); 11849 11850 WRITE_ONCE(nohz.needs_update, 1); 11851 out: 11852 /* 11853 * Each time a cpu enter idle, we assume that it has blocked load and 11854 * enable the periodic update of the load of idle cpus 11855 */ 11856 WRITE_ONCE(nohz.has_blocked, 1); 11857 } 11858 11859 static bool update_nohz_stats(struct rq *rq) 11860 { 11861 unsigned int cpu = rq->cpu; 11862 11863 if (!rq->has_blocked_load) 11864 return false; 11865 11866 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 11867 return false; 11868 11869 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 11870 return true; 11871 11872 update_blocked_averages(cpu); 11873 11874 return rq->has_blocked_load; 11875 } 11876 11877 /* 11878 * Internal function that runs load balance for all idle cpus. The load balance 11879 * can be a simple update of blocked load or a complete load balance with 11880 * tasks movement depending of flags. 11881 */ 11882 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 11883 { 11884 /* Earliest time when we have to do rebalance again */ 11885 unsigned long now = jiffies; 11886 unsigned long next_balance = now + 60*HZ; 11887 bool has_blocked_load = false; 11888 int update_next_balance = 0; 11889 int this_cpu = this_rq->cpu; 11890 int balance_cpu; 11891 struct rq *rq; 11892 11893 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 11894 11895 /* 11896 * We assume there will be no idle load after this update and clear 11897 * the has_blocked flag. If a cpu enters idle in the mean time, it will 11898 * set the has_blocked flag and trigger another update of idle load. 11899 * Because a cpu that becomes idle, is added to idle_cpus_mask before 11900 * setting the flag, we are sure to not clear the state and not 11901 * check the load of an idle cpu. 11902 * 11903 * Same applies to idle_cpus_mask vs needs_update. 11904 */ 11905 if (flags & NOHZ_STATS_KICK) 11906 WRITE_ONCE(nohz.has_blocked, 0); 11907 if (flags & NOHZ_NEXT_KICK) 11908 WRITE_ONCE(nohz.needs_update, 0); 11909 11910 /* 11911 * Ensures that if we miss the CPU, we must see the has_blocked 11912 * store from nohz_balance_enter_idle(). 11913 */ 11914 smp_mb(); 11915 11916 /* 11917 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 11918 * chance for other idle cpu to pull load. 11919 */ 11920 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 11921 if (!idle_cpu(balance_cpu)) 11922 continue; 11923 11924 /* 11925 * If this CPU gets work to do, stop the load balancing 11926 * work being done for other CPUs. Next load 11927 * balancing owner will pick it up. 11928 */ 11929 if (need_resched()) { 11930 if (flags & NOHZ_STATS_KICK) 11931 has_blocked_load = true; 11932 if (flags & NOHZ_NEXT_KICK) 11933 WRITE_ONCE(nohz.needs_update, 1); 11934 goto abort; 11935 } 11936 11937 rq = cpu_rq(balance_cpu); 11938 11939 if (flags & NOHZ_STATS_KICK) 11940 has_blocked_load |= update_nohz_stats(rq); 11941 11942 /* 11943 * If time for next balance is due, 11944 * do the balance. 11945 */ 11946 if (time_after_eq(jiffies, rq->next_balance)) { 11947 struct rq_flags rf; 11948 11949 rq_lock_irqsave(rq, &rf); 11950 update_rq_clock(rq); 11951 rq_unlock_irqrestore(rq, &rf); 11952 11953 if (flags & NOHZ_BALANCE_KICK) 11954 rebalance_domains(rq, CPU_IDLE); 11955 } 11956 11957 if (time_after(next_balance, rq->next_balance)) { 11958 next_balance = rq->next_balance; 11959 update_next_balance = 1; 11960 } 11961 } 11962 11963 /* 11964 * next_balance will be updated only when there is a need. 11965 * When the CPU is attached to null domain for ex, it will not be 11966 * updated. 11967 */ 11968 if (likely(update_next_balance)) 11969 nohz.next_balance = next_balance; 11970 11971 if (flags & NOHZ_STATS_KICK) 11972 WRITE_ONCE(nohz.next_blocked, 11973 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 11974 11975 abort: 11976 /* There is still blocked load, enable periodic update */ 11977 if (has_blocked_load) 11978 WRITE_ONCE(nohz.has_blocked, 1); 11979 } 11980 11981 /* 11982 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 11983 * rebalancing for all the cpus for whom scheduler ticks are stopped. 11984 */ 11985 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 11986 { 11987 unsigned int flags = this_rq->nohz_idle_balance; 11988 11989 if (!flags) 11990 return false; 11991 11992 this_rq->nohz_idle_balance = 0; 11993 11994 if (idle != CPU_IDLE) 11995 return false; 11996 11997 _nohz_idle_balance(this_rq, flags); 11998 11999 return true; 12000 } 12001 12002 /* 12003 * Check if we need to run the ILB for updating blocked load before entering 12004 * idle state. 12005 */ 12006 void nohz_run_idle_balance(int cpu) 12007 { 12008 unsigned int flags; 12009 12010 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12011 12012 /* 12013 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12014 * (ie NOHZ_STATS_KICK set) and will do the same. 12015 */ 12016 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12017 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12018 } 12019 12020 static void nohz_newidle_balance(struct rq *this_rq) 12021 { 12022 int this_cpu = this_rq->cpu; 12023 12024 /* 12025 * This CPU doesn't want to be disturbed by scheduler 12026 * housekeeping 12027 */ 12028 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 12029 return; 12030 12031 /* Will wake up very soon. No time for doing anything else*/ 12032 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12033 return; 12034 12035 /* Don't need to update blocked load of idle CPUs*/ 12036 if (!READ_ONCE(nohz.has_blocked) || 12037 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12038 return; 12039 12040 /* 12041 * Set the need to trigger ILB in order to update blocked load 12042 * before entering idle state. 12043 */ 12044 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12045 } 12046 12047 #else /* !CONFIG_NO_HZ_COMMON */ 12048 static inline void nohz_balancer_kick(struct rq *rq) { } 12049 12050 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12051 { 12052 return false; 12053 } 12054 12055 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12056 #endif /* CONFIG_NO_HZ_COMMON */ 12057 12058 /* 12059 * newidle_balance is called by schedule() if this_cpu is about to become 12060 * idle. Attempts to pull tasks from other CPUs. 12061 * 12062 * Returns: 12063 * < 0 - we released the lock and there are !fair tasks present 12064 * 0 - failed, no new tasks 12065 * > 0 - success, new (fair) tasks present 12066 */ 12067 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 12068 { 12069 unsigned long next_balance = jiffies + HZ; 12070 int this_cpu = this_rq->cpu; 12071 u64 t0, t1, curr_cost = 0; 12072 struct sched_domain *sd; 12073 int pulled_task = 0; 12074 12075 update_misfit_status(NULL, this_rq); 12076 12077 /* 12078 * There is a task waiting to run. No need to search for one. 12079 * Return 0; the task will be enqueued when switching to idle. 12080 */ 12081 if (this_rq->ttwu_pending) 12082 return 0; 12083 12084 /* 12085 * We must set idle_stamp _before_ calling idle_balance(), such that we 12086 * measure the duration of idle_balance() as idle time. 12087 */ 12088 this_rq->idle_stamp = rq_clock(this_rq); 12089 12090 /* 12091 * Do not pull tasks towards !active CPUs... 12092 */ 12093 if (!cpu_active(this_cpu)) 12094 return 0; 12095 12096 /* 12097 * This is OK, because current is on_cpu, which avoids it being picked 12098 * for load-balance and preemption/IRQs are still disabled avoiding 12099 * further scheduler activity on it and we're being very careful to 12100 * re-start the picking loop. 12101 */ 12102 rq_unpin_lock(this_rq, rf); 12103 12104 rcu_read_lock(); 12105 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12106 12107 if (!READ_ONCE(this_rq->rd->overload) || 12108 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12109 12110 if (sd) 12111 update_next_balance(sd, &next_balance); 12112 rcu_read_unlock(); 12113 12114 goto out; 12115 } 12116 rcu_read_unlock(); 12117 12118 raw_spin_rq_unlock(this_rq); 12119 12120 t0 = sched_clock_cpu(this_cpu); 12121 update_blocked_averages(this_cpu); 12122 12123 rcu_read_lock(); 12124 for_each_domain(this_cpu, sd) { 12125 int continue_balancing = 1; 12126 u64 domain_cost; 12127 12128 update_next_balance(sd, &next_balance); 12129 12130 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12131 break; 12132 12133 if (sd->flags & SD_BALANCE_NEWIDLE) { 12134 12135 pulled_task = load_balance(this_cpu, this_rq, 12136 sd, CPU_NEWLY_IDLE, 12137 &continue_balancing); 12138 12139 t1 = sched_clock_cpu(this_cpu); 12140 domain_cost = t1 - t0; 12141 update_newidle_cost(sd, domain_cost); 12142 12143 curr_cost += domain_cost; 12144 t0 = t1; 12145 } 12146 12147 /* 12148 * Stop searching for tasks to pull if there are 12149 * now runnable tasks on this rq. 12150 */ 12151 if (pulled_task || this_rq->nr_running > 0 || 12152 this_rq->ttwu_pending) 12153 break; 12154 } 12155 rcu_read_unlock(); 12156 12157 raw_spin_rq_lock(this_rq); 12158 12159 if (curr_cost > this_rq->max_idle_balance_cost) 12160 this_rq->max_idle_balance_cost = curr_cost; 12161 12162 /* 12163 * While browsing the domains, we released the rq lock, a task could 12164 * have been enqueued in the meantime. Since we're not going idle, 12165 * pretend we pulled a task. 12166 */ 12167 if (this_rq->cfs.h_nr_running && !pulled_task) 12168 pulled_task = 1; 12169 12170 /* Is there a task of a high priority class? */ 12171 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 12172 pulled_task = -1; 12173 12174 out: 12175 /* Move the next balance forward */ 12176 if (time_after(this_rq->next_balance, next_balance)) 12177 this_rq->next_balance = next_balance; 12178 12179 if (pulled_task) 12180 this_rq->idle_stamp = 0; 12181 else 12182 nohz_newidle_balance(this_rq); 12183 12184 rq_repin_lock(this_rq, rf); 12185 12186 return pulled_task; 12187 } 12188 12189 /* 12190 * run_rebalance_domains is triggered when needed from the scheduler tick. 12191 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 12192 */ 12193 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 12194 { 12195 struct rq *this_rq = this_rq(); 12196 enum cpu_idle_type idle = this_rq->idle_balance ? 12197 CPU_IDLE : CPU_NOT_IDLE; 12198 12199 /* 12200 * If this CPU has a pending nohz_balance_kick, then do the 12201 * balancing on behalf of the other idle CPUs whose ticks are 12202 * stopped. Do nohz_idle_balance *before* rebalance_domains to 12203 * give the idle CPUs a chance to load balance. Else we may 12204 * load balance only within the local sched_domain hierarchy 12205 * and abort nohz_idle_balance altogether if we pull some load. 12206 */ 12207 if (nohz_idle_balance(this_rq, idle)) 12208 return; 12209 12210 /* normal load balance */ 12211 update_blocked_averages(this_rq->cpu); 12212 rebalance_domains(this_rq, idle); 12213 } 12214 12215 /* 12216 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12217 */ 12218 void trigger_load_balance(struct rq *rq) 12219 { 12220 /* 12221 * Don't need to rebalance while attached to NULL domain or 12222 * runqueue CPU is not active 12223 */ 12224 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12225 return; 12226 12227 if (time_after_eq(jiffies, rq->next_balance)) 12228 raise_softirq(SCHED_SOFTIRQ); 12229 12230 nohz_balancer_kick(rq); 12231 } 12232 12233 static void rq_online_fair(struct rq *rq) 12234 { 12235 update_sysctl(); 12236 12237 update_runtime_enabled(rq); 12238 } 12239 12240 static void rq_offline_fair(struct rq *rq) 12241 { 12242 update_sysctl(); 12243 12244 /* Ensure any throttled groups are reachable by pick_next_task */ 12245 unthrottle_offline_cfs_rqs(rq); 12246 } 12247 12248 #endif /* CONFIG_SMP */ 12249 12250 #ifdef CONFIG_SCHED_CORE 12251 static inline bool 12252 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12253 { 12254 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12255 u64 slice = se->slice; 12256 12257 return (rtime * min_nr_tasks > slice); 12258 } 12259 12260 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12261 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12262 { 12263 if (!sched_core_enabled(rq)) 12264 return; 12265 12266 /* 12267 * If runqueue has only one task which used up its slice and 12268 * if the sibling is forced idle, then trigger schedule to 12269 * give forced idle task a chance. 12270 * 12271 * sched_slice() considers only this active rq and it gets the 12272 * whole slice. But during force idle, we have siblings acting 12273 * like a single runqueue and hence we need to consider runnable 12274 * tasks on this CPU and the forced idle CPU. Ideally, we should 12275 * go through the forced idle rq, but that would be a perf hit. 12276 * We can assume that the forced idle CPU has at least 12277 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12278 * if we need to give up the CPU. 12279 */ 12280 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 12281 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12282 resched_curr(rq); 12283 } 12284 12285 /* 12286 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12287 */ 12288 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12289 bool forceidle) 12290 { 12291 for_each_sched_entity(se) { 12292 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12293 12294 if (forceidle) { 12295 if (cfs_rq->forceidle_seq == fi_seq) 12296 break; 12297 cfs_rq->forceidle_seq = fi_seq; 12298 } 12299 12300 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12301 } 12302 } 12303 12304 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12305 { 12306 struct sched_entity *se = &p->se; 12307 12308 if (p->sched_class != &fair_sched_class) 12309 return; 12310 12311 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12312 } 12313 12314 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12315 bool in_fi) 12316 { 12317 struct rq *rq = task_rq(a); 12318 const struct sched_entity *sea = &a->se; 12319 const struct sched_entity *seb = &b->se; 12320 struct cfs_rq *cfs_rqa; 12321 struct cfs_rq *cfs_rqb; 12322 s64 delta; 12323 12324 SCHED_WARN_ON(task_rq(b)->core != rq->core); 12325 12326 #ifdef CONFIG_FAIR_GROUP_SCHED 12327 /* 12328 * Find an se in the hierarchy for tasks a and b, such that the se's 12329 * are immediate siblings. 12330 */ 12331 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12332 int sea_depth = sea->depth; 12333 int seb_depth = seb->depth; 12334 12335 if (sea_depth >= seb_depth) 12336 sea = parent_entity(sea); 12337 if (sea_depth <= seb_depth) 12338 seb = parent_entity(seb); 12339 } 12340 12341 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 12342 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 12343 12344 cfs_rqa = sea->cfs_rq; 12345 cfs_rqb = seb->cfs_rq; 12346 #else 12347 cfs_rqa = &task_rq(a)->cfs; 12348 cfs_rqb = &task_rq(b)->cfs; 12349 #endif 12350 12351 /* 12352 * Find delta after normalizing se's vruntime with its cfs_rq's 12353 * min_vruntime_fi, which would have been updated in prior calls 12354 * to se_fi_update(). 12355 */ 12356 delta = (s64)(sea->vruntime - seb->vruntime) + 12357 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 12358 12359 return delta > 0; 12360 } 12361 12362 static int task_is_throttled_fair(struct task_struct *p, int cpu) 12363 { 12364 struct cfs_rq *cfs_rq; 12365 12366 #ifdef CONFIG_FAIR_GROUP_SCHED 12367 cfs_rq = task_group(p)->cfs_rq[cpu]; 12368 #else 12369 cfs_rq = &cpu_rq(cpu)->cfs; 12370 #endif 12371 return throttled_hierarchy(cfs_rq); 12372 } 12373 #else 12374 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 12375 #endif 12376 12377 /* 12378 * scheduler tick hitting a task of our scheduling class. 12379 * 12380 * NOTE: This function can be called remotely by the tick offload that 12381 * goes along full dynticks. Therefore no local assumption can be made 12382 * and everything must be accessed through the @rq and @curr passed in 12383 * parameters. 12384 */ 12385 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 12386 { 12387 struct cfs_rq *cfs_rq; 12388 struct sched_entity *se = &curr->se; 12389 12390 for_each_sched_entity(se) { 12391 cfs_rq = cfs_rq_of(se); 12392 entity_tick(cfs_rq, se, queued); 12393 } 12394 12395 if (static_branch_unlikely(&sched_numa_balancing)) 12396 task_tick_numa(rq, curr); 12397 12398 update_misfit_status(curr, rq); 12399 update_overutilized_status(task_rq(curr)); 12400 12401 task_tick_core(rq, curr); 12402 } 12403 12404 /* 12405 * called on fork with the child task as argument from the parent's context 12406 * - child not yet on the tasklist 12407 * - preemption disabled 12408 */ 12409 static void task_fork_fair(struct task_struct *p) 12410 { 12411 struct sched_entity *se = &p->se, *curr; 12412 struct cfs_rq *cfs_rq; 12413 struct rq *rq = this_rq(); 12414 struct rq_flags rf; 12415 12416 rq_lock(rq, &rf); 12417 update_rq_clock(rq); 12418 12419 cfs_rq = task_cfs_rq(current); 12420 curr = cfs_rq->curr; 12421 if (curr) 12422 update_curr(cfs_rq); 12423 place_entity(cfs_rq, se, ENQUEUE_INITIAL); 12424 rq_unlock(rq, &rf); 12425 } 12426 12427 /* 12428 * Priority of the task has changed. Check to see if we preempt 12429 * the current task. 12430 */ 12431 static void 12432 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 12433 { 12434 if (!task_on_rq_queued(p)) 12435 return; 12436 12437 if (rq->cfs.nr_running == 1) 12438 return; 12439 12440 /* 12441 * Reschedule if we are currently running on this runqueue and 12442 * our priority decreased, or if we are not currently running on 12443 * this runqueue and our priority is higher than the current's 12444 */ 12445 if (task_current(rq, p)) { 12446 if (p->prio > oldprio) 12447 resched_curr(rq); 12448 } else 12449 check_preempt_curr(rq, p, 0); 12450 } 12451 12452 #ifdef CONFIG_FAIR_GROUP_SCHED 12453 /* 12454 * Propagate the changes of the sched_entity across the tg tree to make it 12455 * visible to the root 12456 */ 12457 static void propagate_entity_cfs_rq(struct sched_entity *se) 12458 { 12459 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12460 12461 if (cfs_rq_throttled(cfs_rq)) 12462 return; 12463 12464 if (!throttled_hierarchy(cfs_rq)) 12465 list_add_leaf_cfs_rq(cfs_rq); 12466 12467 /* Start to propagate at parent */ 12468 se = se->parent; 12469 12470 for_each_sched_entity(se) { 12471 cfs_rq = cfs_rq_of(se); 12472 12473 update_load_avg(cfs_rq, se, UPDATE_TG); 12474 12475 if (cfs_rq_throttled(cfs_rq)) 12476 break; 12477 12478 if (!throttled_hierarchy(cfs_rq)) 12479 list_add_leaf_cfs_rq(cfs_rq); 12480 } 12481 } 12482 #else 12483 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 12484 #endif 12485 12486 static void detach_entity_cfs_rq(struct sched_entity *se) 12487 { 12488 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12489 12490 #ifdef CONFIG_SMP 12491 /* 12492 * In case the task sched_avg hasn't been attached: 12493 * - A forked task which hasn't been woken up by wake_up_new_task(). 12494 * - A task which has been woken up by try_to_wake_up() but is 12495 * waiting for actually being woken up by sched_ttwu_pending(). 12496 */ 12497 if (!se->avg.last_update_time) 12498 return; 12499 #endif 12500 12501 /* Catch up with the cfs_rq and remove our load when we leave */ 12502 update_load_avg(cfs_rq, se, 0); 12503 detach_entity_load_avg(cfs_rq, se); 12504 update_tg_load_avg(cfs_rq); 12505 propagate_entity_cfs_rq(se); 12506 } 12507 12508 static void attach_entity_cfs_rq(struct sched_entity *se) 12509 { 12510 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12511 12512 /* Synchronize entity with its cfs_rq */ 12513 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 12514 attach_entity_load_avg(cfs_rq, se); 12515 update_tg_load_avg(cfs_rq); 12516 propagate_entity_cfs_rq(se); 12517 } 12518 12519 static void detach_task_cfs_rq(struct task_struct *p) 12520 { 12521 struct sched_entity *se = &p->se; 12522 12523 detach_entity_cfs_rq(se); 12524 } 12525 12526 static void attach_task_cfs_rq(struct task_struct *p) 12527 { 12528 struct sched_entity *se = &p->se; 12529 12530 attach_entity_cfs_rq(se); 12531 } 12532 12533 static void switched_from_fair(struct rq *rq, struct task_struct *p) 12534 { 12535 detach_task_cfs_rq(p); 12536 } 12537 12538 static void switched_to_fair(struct rq *rq, struct task_struct *p) 12539 { 12540 attach_task_cfs_rq(p); 12541 12542 if (task_on_rq_queued(p)) { 12543 /* 12544 * We were most likely switched from sched_rt, so 12545 * kick off the schedule if running, otherwise just see 12546 * if we can still preempt the current task. 12547 */ 12548 if (task_current(rq, p)) 12549 resched_curr(rq); 12550 else 12551 check_preempt_curr(rq, p, 0); 12552 } 12553 } 12554 12555 /* Account for a task changing its policy or group. 12556 * 12557 * This routine is mostly called to set cfs_rq->curr field when a task 12558 * migrates between groups/classes. 12559 */ 12560 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 12561 { 12562 struct sched_entity *se = &p->se; 12563 12564 #ifdef CONFIG_SMP 12565 if (task_on_rq_queued(p)) { 12566 /* 12567 * Move the next running task to the front of the list, so our 12568 * cfs_tasks list becomes MRU one. 12569 */ 12570 list_move(&se->group_node, &rq->cfs_tasks); 12571 } 12572 #endif 12573 12574 for_each_sched_entity(se) { 12575 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12576 12577 set_next_entity(cfs_rq, se); 12578 /* ensure bandwidth has been allocated on our new cfs_rq */ 12579 account_cfs_rq_runtime(cfs_rq, 0); 12580 } 12581 } 12582 12583 void init_cfs_rq(struct cfs_rq *cfs_rq) 12584 { 12585 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 12586 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 12587 #ifdef CONFIG_SMP 12588 raw_spin_lock_init(&cfs_rq->removed.lock); 12589 #endif 12590 } 12591 12592 #ifdef CONFIG_FAIR_GROUP_SCHED 12593 static void task_change_group_fair(struct task_struct *p) 12594 { 12595 /* 12596 * We couldn't detach or attach a forked task which 12597 * hasn't been woken up by wake_up_new_task(). 12598 */ 12599 if (READ_ONCE(p->__state) == TASK_NEW) 12600 return; 12601 12602 detach_task_cfs_rq(p); 12603 12604 #ifdef CONFIG_SMP 12605 /* Tell se's cfs_rq has been changed -- migrated */ 12606 p->se.avg.last_update_time = 0; 12607 #endif 12608 set_task_rq(p, task_cpu(p)); 12609 attach_task_cfs_rq(p); 12610 } 12611 12612 void free_fair_sched_group(struct task_group *tg) 12613 { 12614 int i; 12615 12616 for_each_possible_cpu(i) { 12617 if (tg->cfs_rq) 12618 kfree(tg->cfs_rq[i]); 12619 if (tg->se) 12620 kfree(tg->se[i]); 12621 } 12622 12623 kfree(tg->cfs_rq); 12624 kfree(tg->se); 12625 } 12626 12627 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12628 { 12629 struct sched_entity *se; 12630 struct cfs_rq *cfs_rq; 12631 int i; 12632 12633 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 12634 if (!tg->cfs_rq) 12635 goto err; 12636 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 12637 if (!tg->se) 12638 goto err; 12639 12640 tg->shares = NICE_0_LOAD; 12641 12642 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 12643 12644 for_each_possible_cpu(i) { 12645 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 12646 GFP_KERNEL, cpu_to_node(i)); 12647 if (!cfs_rq) 12648 goto err; 12649 12650 se = kzalloc_node(sizeof(struct sched_entity_stats), 12651 GFP_KERNEL, cpu_to_node(i)); 12652 if (!se) 12653 goto err_free_rq; 12654 12655 init_cfs_rq(cfs_rq); 12656 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 12657 init_entity_runnable_average(se); 12658 } 12659 12660 return 1; 12661 12662 err_free_rq: 12663 kfree(cfs_rq); 12664 err: 12665 return 0; 12666 } 12667 12668 void online_fair_sched_group(struct task_group *tg) 12669 { 12670 struct sched_entity *se; 12671 struct rq_flags rf; 12672 struct rq *rq; 12673 int i; 12674 12675 for_each_possible_cpu(i) { 12676 rq = cpu_rq(i); 12677 se = tg->se[i]; 12678 rq_lock_irq(rq, &rf); 12679 update_rq_clock(rq); 12680 attach_entity_cfs_rq(se); 12681 sync_throttle(tg, i); 12682 rq_unlock_irq(rq, &rf); 12683 } 12684 } 12685 12686 void unregister_fair_sched_group(struct task_group *tg) 12687 { 12688 unsigned long flags; 12689 struct rq *rq; 12690 int cpu; 12691 12692 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12693 12694 for_each_possible_cpu(cpu) { 12695 if (tg->se[cpu]) 12696 remove_entity_load_avg(tg->se[cpu]); 12697 12698 /* 12699 * Only empty task groups can be destroyed; so we can speculatively 12700 * check on_list without danger of it being re-added. 12701 */ 12702 if (!tg->cfs_rq[cpu]->on_list) 12703 continue; 12704 12705 rq = cpu_rq(cpu); 12706 12707 raw_spin_rq_lock_irqsave(rq, flags); 12708 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 12709 raw_spin_rq_unlock_irqrestore(rq, flags); 12710 } 12711 } 12712 12713 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 12714 struct sched_entity *se, int cpu, 12715 struct sched_entity *parent) 12716 { 12717 struct rq *rq = cpu_rq(cpu); 12718 12719 cfs_rq->tg = tg; 12720 cfs_rq->rq = rq; 12721 init_cfs_rq_runtime(cfs_rq); 12722 12723 tg->cfs_rq[cpu] = cfs_rq; 12724 tg->se[cpu] = se; 12725 12726 /* se could be NULL for root_task_group */ 12727 if (!se) 12728 return; 12729 12730 if (!parent) { 12731 se->cfs_rq = &rq->cfs; 12732 se->depth = 0; 12733 } else { 12734 se->cfs_rq = parent->my_q; 12735 se->depth = parent->depth + 1; 12736 } 12737 12738 se->my_q = cfs_rq; 12739 /* guarantee group entities always have weight */ 12740 update_load_set(&se->load, NICE_0_LOAD); 12741 se->parent = parent; 12742 } 12743 12744 static DEFINE_MUTEX(shares_mutex); 12745 12746 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 12747 { 12748 int i; 12749 12750 lockdep_assert_held(&shares_mutex); 12751 12752 /* 12753 * We can't change the weight of the root cgroup. 12754 */ 12755 if (!tg->se[0]) 12756 return -EINVAL; 12757 12758 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 12759 12760 if (tg->shares == shares) 12761 return 0; 12762 12763 tg->shares = shares; 12764 for_each_possible_cpu(i) { 12765 struct rq *rq = cpu_rq(i); 12766 struct sched_entity *se = tg->se[i]; 12767 struct rq_flags rf; 12768 12769 /* Propagate contribution to hierarchy */ 12770 rq_lock_irqsave(rq, &rf); 12771 update_rq_clock(rq); 12772 for_each_sched_entity(se) { 12773 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 12774 update_cfs_group(se); 12775 } 12776 rq_unlock_irqrestore(rq, &rf); 12777 } 12778 12779 return 0; 12780 } 12781 12782 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 12783 { 12784 int ret; 12785 12786 mutex_lock(&shares_mutex); 12787 if (tg_is_idle(tg)) 12788 ret = -EINVAL; 12789 else 12790 ret = __sched_group_set_shares(tg, shares); 12791 mutex_unlock(&shares_mutex); 12792 12793 return ret; 12794 } 12795 12796 int sched_group_set_idle(struct task_group *tg, long idle) 12797 { 12798 int i; 12799 12800 if (tg == &root_task_group) 12801 return -EINVAL; 12802 12803 if (idle < 0 || idle > 1) 12804 return -EINVAL; 12805 12806 mutex_lock(&shares_mutex); 12807 12808 if (tg->idle == idle) { 12809 mutex_unlock(&shares_mutex); 12810 return 0; 12811 } 12812 12813 tg->idle = idle; 12814 12815 for_each_possible_cpu(i) { 12816 struct rq *rq = cpu_rq(i); 12817 struct sched_entity *se = tg->se[i]; 12818 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 12819 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 12820 long idle_task_delta; 12821 struct rq_flags rf; 12822 12823 rq_lock_irqsave(rq, &rf); 12824 12825 grp_cfs_rq->idle = idle; 12826 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 12827 goto next_cpu; 12828 12829 if (se->on_rq) { 12830 parent_cfs_rq = cfs_rq_of(se); 12831 if (cfs_rq_is_idle(grp_cfs_rq)) 12832 parent_cfs_rq->idle_nr_running++; 12833 else 12834 parent_cfs_rq->idle_nr_running--; 12835 } 12836 12837 idle_task_delta = grp_cfs_rq->h_nr_running - 12838 grp_cfs_rq->idle_h_nr_running; 12839 if (!cfs_rq_is_idle(grp_cfs_rq)) 12840 idle_task_delta *= -1; 12841 12842 for_each_sched_entity(se) { 12843 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12844 12845 if (!se->on_rq) 12846 break; 12847 12848 cfs_rq->idle_h_nr_running += idle_task_delta; 12849 12850 /* Already accounted at parent level and above. */ 12851 if (cfs_rq_is_idle(cfs_rq)) 12852 break; 12853 } 12854 12855 next_cpu: 12856 rq_unlock_irqrestore(rq, &rf); 12857 } 12858 12859 /* Idle groups have minimum weight. */ 12860 if (tg_is_idle(tg)) 12861 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 12862 else 12863 __sched_group_set_shares(tg, NICE_0_LOAD); 12864 12865 mutex_unlock(&shares_mutex); 12866 return 0; 12867 } 12868 12869 #else /* CONFIG_FAIR_GROUP_SCHED */ 12870 12871 void free_fair_sched_group(struct task_group *tg) { } 12872 12873 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12874 { 12875 return 1; 12876 } 12877 12878 void online_fair_sched_group(struct task_group *tg) { } 12879 12880 void unregister_fair_sched_group(struct task_group *tg) { } 12881 12882 #endif /* CONFIG_FAIR_GROUP_SCHED */ 12883 12884 12885 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 12886 { 12887 struct sched_entity *se = &task->se; 12888 unsigned int rr_interval = 0; 12889 12890 /* 12891 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 12892 * idle runqueue: 12893 */ 12894 if (rq->cfs.load.weight) 12895 rr_interval = NS_TO_JIFFIES(se->slice); 12896 12897 return rr_interval; 12898 } 12899 12900 /* 12901 * All the scheduling class methods: 12902 */ 12903 DEFINE_SCHED_CLASS(fair) = { 12904 12905 .enqueue_task = enqueue_task_fair, 12906 .dequeue_task = dequeue_task_fair, 12907 .yield_task = yield_task_fair, 12908 .yield_to_task = yield_to_task_fair, 12909 12910 .check_preempt_curr = check_preempt_wakeup, 12911 12912 .pick_next_task = __pick_next_task_fair, 12913 .put_prev_task = put_prev_task_fair, 12914 .set_next_task = set_next_task_fair, 12915 12916 #ifdef CONFIG_SMP 12917 .balance = balance_fair, 12918 .pick_task = pick_task_fair, 12919 .select_task_rq = select_task_rq_fair, 12920 .migrate_task_rq = migrate_task_rq_fair, 12921 12922 .rq_online = rq_online_fair, 12923 .rq_offline = rq_offline_fair, 12924 12925 .task_dead = task_dead_fair, 12926 .set_cpus_allowed = set_cpus_allowed_common, 12927 #endif 12928 12929 .task_tick = task_tick_fair, 12930 .task_fork = task_fork_fair, 12931 12932 .prio_changed = prio_changed_fair, 12933 .switched_from = switched_from_fair, 12934 .switched_to = switched_to_fair, 12935 12936 .get_rr_interval = get_rr_interval_fair, 12937 12938 .update_curr = update_curr_fair, 12939 12940 #ifdef CONFIG_FAIR_GROUP_SCHED 12941 .task_change_group = task_change_group_fair, 12942 #endif 12943 12944 #ifdef CONFIG_SCHED_CORE 12945 .task_is_throttled = task_is_throttled_fair, 12946 #endif 12947 12948 #ifdef CONFIG_UCLAMP_TASK 12949 .uclamp_enabled = 1, 12950 #endif 12951 }; 12952 12953 #ifdef CONFIG_SCHED_DEBUG 12954 void print_cfs_stats(struct seq_file *m, int cpu) 12955 { 12956 struct cfs_rq *cfs_rq, *pos; 12957 12958 rcu_read_lock(); 12959 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 12960 print_cfs_rq(m, cpu, cfs_rq); 12961 rcu_read_unlock(); 12962 } 12963 12964 #ifdef CONFIG_NUMA_BALANCING 12965 void show_numa_stats(struct task_struct *p, struct seq_file *m) 12966 { 12967 int node; 12968 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 12969 struct numa_group *ng; 12970 12971 rcu_read_lock(); 12972 ng = rcu_dereference(p->numa_group); 12973 for_each_online_node(node) { 12974 if (p->numa_faults) { 12975 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 12976 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 12977 } 12978 if (ng) { 12979 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 12980 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 12981 } 12982 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 12983 } 12984 rcu_read_unlock(); 12985 } 12986 #endif /* CONFIG_NUMA_BALANCING */ 12987 #endif /* CONFIG_SCHED_DEBUG */ 12988 12989 __init void init_sched_fair_class(void) 12990 { 12991 #ifdef CONFIG_SMP 12992 int i; 12993 12994 for_each_possible_cpu(i) { 12995 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 12996 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 12997 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 12998 GFP_KERNEL, cpu_to_node(i)); 12999 13000 #ifdef CONFIG_CFS_BANDWIDTH 13001 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13002 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13003 #endif 13004 } 13005 13006 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 13007 13008 #ifdef CONFIG_NO_HZ_COMMON 13009 nohz.next_balance = jiffies; 13010 nohz.next_blocked = jiffies; 13011 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13012 #endif 13013 #endif /* SMP */ 13014 13015 } 13016