xref: /linux/kernel/sched/fair.c (revision 27d9a0fdb53f05c93ed9c674b870c8add451697e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 
51 #include <asm/switch_to.h>
52 
53 #include <linux/sched/cond_resched.h>
54 
55 #include "sched.h"
56 #include "stats.h"
57 #include "autogroup.h"
58 
59 /*
60  * Targeted preemption latency for CPU-bound tasks:
61  *
62  * NOTE: this latency value is not the same as the concept of
63  * 'timeslice length' - timeslices in CFS are of variable length
64  * and have no persistent notion like in traditional, time-slice
65  * based scheduling concepts.
66  *
67  * (to see the precise effective timeslice length of your workload,
68  *  run vmstat and monitor the context-switches (cs) field)
69  *
70  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
71  */
72 unsigned int sysctl_sched_latency			= 6000000ULL;
73 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
74 
75 /*
76  * The initial- and re-scaling of tunables is configurable
77  *
78  * Options are:
79  *
80  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
81  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
82  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
83  *
84  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
85  */
86 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
87 
88 /*
89  * Minimal preemption granularity for CPU-bound tasks:
90  *
91  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
92  */
93 unsigned int sysctl_sched_min_granularity			= 750000ULL;
94 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
95 
96 /*
97  * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
98  * Applies only when SCHED_IDLE tasks compete with normal tasks.
99  *
100  * (default: 0.75 msec)
101  */
102 unsigned int sysctl_sched_idle_min_granularity			= 750000ULL;
103 
104 /*
105  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
106  */
107 static unsigned int sched_nr_latency = 8;
108 
109 /*
110  * After fork, child runs first. If set to 0 (default) then
111  * parent will (try to) run first.
112  */
113 unsigned int sysctl_sched_child_runs_first __read_mostly;
114 
115 /*
116  * SCHED_OTHER wake-up granularity.
117  *
118  * This option delays the preemption effects of decoupled workloads
119  * and reduces their over-scheduling. Synchronous workloads will still
120  * have immediate wakeup/sleep latencies.
121  *
122  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
123  */
124 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
125 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
126 
127 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
128 
129 int sched_thermal_decay_shift;
130 static int __init setup_sched_thermal_decay_shift(char *str)
131 {
132 	int _shift = 0;
133 
134 	if (kstrtoint(str, 0, &_shift))
135 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
136 
137 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
138 	return 1;
139 }
140 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
141 
142 #ifdef CONFIG_SMP
143 /*
144  * For asym packing, by default the lower numbered CPU has higher priority.
145  */
146 int __weak arch_asym_cpu_priority(int cpu)
147 {
148 	return -cpu;
149 }
150 
151 /*
152  * The margin used when comparing utilization with CPU capacity.
153  *
154  * (default: ~20%)
155  */
156 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
157 
158 /*
159  * The margin used when comparing CPU capacities.
160  * is 'cap1' noticeably greater than 'cap2'
161  *
162  * (default: ~5%)
163  */
164 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
165 #endif
166 
167 #ifdef CONFIG_CFS_BANDWIDTH
168 /*
169  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
170  * each time a cfs_rq requests quota.
171  *
172  * Note: in the case that the slice exceeds the runtime remaining (either due
173  * to consumption or the quota being specified to be smaller than the slice)
174  * we will always only issue the remaining available time.
175  *
176  * (default: 5 msec, units: microseconds)
177  */
178 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
179 #endif
180 
181 #ifdef CONFIG_NUMA_BALANCING
182 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
183 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
184 #endif
185 
186 #ifdef CONFIG_SYSCTL
187 static struct ctl_table sched_fair_sysctls[] = {
188 	{
189 		.procname       = "sched_child_runs_first",
190 		.data           = &sysctl_sched_child_runs_first,
191 		.maxlen         = sizeof(unsigned int),
192 		.mode           = 0644,
193 		.proc_handler   = proc_dointvec,
194 	},
195 #ifdef CONFIG_CFS_BANDWIDTH
196 	{
197 		.procname       = "sched_cfs_bandwidth_slice_us",
198 		.data           = &sysctl_sched_cfs_bandwidth_slice,
199 		.maxlen         = sizeof(unsigned int),
200 		.mode           = 0644,
201 		.proc_handler   = proc_dointvec_minmax,
202 		.extra1         = SYSCTL_ONE,
203 	},
204 #endif
205 #ifdef CONFIG_NUMA_BALANCING
206 	{
207 		.procname	= "numa_balancing_promote_rate_limit_MBps",
208 		.data		= &sysctl_numa_balancing_promote_rate_limit,
209 		.maxlen		= sizeof(unsigned int),
210 		.mode		= 0644,
211 		.proc_handler	= proc_dointvec_minmax,
212 		.extra1		= SYSCTL_ZERO,
213 	},
214 #endif /* CONFIG_NUMA_BALANCING */
215 	{}
216 };
217 
218 static int __init sched_fair_sysctl_init(void)
219 {
220 	register_sysctl_init("kernel", sched_fair_sysctls);
221 	return 0;
222 }
223 late_initcall(sched_fair_sysctl_init);
224 #endif
225 
226 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
227 {
228 	lw->weight += inc;
229 	lw->inv_weight = 0;
230 }
231 
232 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
233 {
234 	lw->weight -= dec;
235 	lw->inv_weight = 0;
236 }
237 
238 static inline void update_load_set(struct load_weight *lw, unsigned long w)
239 {
240 	lw->weight = w;
241 	lw->inv_weight = 0;
242 }
243 
244 /*
245  * Increase the granularity value when there are more CPUs,
246  * because with more CPUs the 'effective latency' as visible
247  * to users decreases. But the relationship is not linear,
248  * so pick a second-best guess by going with the log2 of the
249  * number of CPUs.
250  *
251  * This idea comes from the SD scheduler of Con Kolivas:
252  */
253 static unsigned int get_update_sysctl_factor(void)
254 {
255 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
256 	unsigned int factor;
257 
258 	switch (sysctl_sched_tunable_scaling) {
259 	case SCHED_TUNABLESCALING_NONE:
260 		factor = 1;
261 		break;
262 	case SCHED_TUNABLESCALING_LINEAR:
263 		factor = cpus;
264 		break;
265 	case SCHED_TUNABLESCALING_LOG:
266 	default:
267 		factor = 1 + ilog2(cpus);
268 		break;
269 	}
270 
271 	return factor;
272 }
273 
274 static void update_sysctl(void)
275 {
276 	unsigned int factor = get_update_sysctl_factor();
277 
278 #define SET_SYSCTL(name) \
279 	(sysctl_##name = (factor) * normalized_sysctl_##name)
280 	SET_SYSCTL(sched_min_granularity);
281 	SET_SYSCTL(sched_latency);
282 	SET_SYSCTL(sched_wakeup_granularity);
283 #undef SET_SYSCTL
284 }
285 
286 void __init sched_init_granularity(void)
287 {
288 	update_sysctl();
289 }
290 
291 #define WMULT_CONST	(~0U)
292 #define WMULT_SHIFT	32
293 
294 static void __update_inv_weight(struct load_weight *lw)
295 {
296 	unsigned long w;
297 
298 	if (likely(lw->inv_weight))
299 		return;
300 
301 	w = scale_load_down(lw->weight);
302 
303 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
304 		lw->inv_weight = 1;
305 	else if (unlikely(!w))
306 		lw->inv_weight = WMULT_CONST;
307 	else
308 		lw->inv_weight = WMULT_CONST / w;
309 }
310 
311 /*
312  * delta_exec * weight / lw.weight
313  *   OR
314  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
315  *
316  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
317  * we're guaranteed shift stays positive because inv_weight is guaranteed to
318  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
319  *
320  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
321  * weight/lw.weight <= 1, and therefore our shift will also be positive.
322  */
323 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
324 {
325 	u64 fact = scale_load_down(weight);
326 	u32 fact_hi = (u32)(fact >> 32);
327 	int shift = WMULT_SHIFT;
328 	int fs;
329 
330 	__update_inv_weight(lw);
331 
332 	if (unlikely(fact_hi)) {
333 		fs = fls(fact_hi);
334 		shift -= fs;
335 		fact >>= fs;
336 	}
337 
338 	fact = mul_u32_u32(fact, lw->inv_weight);
339 
340 	fact_hi = (u32)(fact >> 32);
341 	if (fact_hi) {
342 		fs = fls(fact_hi);
343 		shift -= fs;
344 		fact >>= fs;
345 	}
346 
347 	return mul_u64_u32_shr(delta_exec, fact, shift);
348 }
349 
350 
351 const struct sched_class fair_sched_class;
352 
353 /**************************************************************
354  * CFS operations on generic schedulable entities:
355  */
356 
357 #ifdef CONFIG_FAIR_GROUP_SCHED
358 
359 /* Walk up scheduling entities hierarchy */
360 #define for_each_sched_entity(se) \
361 		for (; se; se = se->parent)
362 
363 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364 {
365 	struct rq *rq = rq_of(cfs_rq);
366 	int cpu = cpu_of(rq);
367 
368 	if (cfs_rq->on_list)
369 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
370 
371 	cfs_rq->on_list = 1;
372 
373 	/*
374 	 * Ensure we either appear before our parent (if already
375 	 * enqueued) or force our parent to appear after us when it is
376 	 * enqueued. The fact that we always enqueue bottom-up
377 	 * reduces this to two cases and a special case for the root
378 	 * cfs_rq. Furthermore, it also means that we will always reset
379 	 * tmp_alone_branch either when the branch is connected
380 	 * to a tree or when we reach the top of the tree
381 	 */
382 	if (cfs_rq->tg->parent &&
383 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
384 		/*
385 		 * If parent is already on the list, we add the child
386 		 * just before. Thanks to circular linked property of
387 		 * the list, this means to put the child at the tail
388 		 * of the list that starts by parent.
389 		 */
390 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
391 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
392 		/*
393 		 * The branch is now connected to its tree so we can
394 		 * reset tmp_alone_branch to the beginning of the
395 		 * list.
396 		 */
397 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
398 		return true;
399 	}
400 
401 	if (!cfs_rq->tg->parent) {
402 		/*
403 		 * cfs rq without parent should be put
404 		 * at the tail of the list.
405 		 */
406 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
407 			&rq->leaf_cfs_rq_list);
408 		/*
409 		 * We have reach the top of a tree so we can reset
410 		 * tmp_alone_branch to the beginning of the list.
411 		 */
412 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
413 		return true;
414 	}
415 
416 	/*
417 	 * The parent has not already been added so we want to
418 	 * make sure that it will be put after us.
419 	 * tmp_alone_branch points to the begin of the branch
420 	 * where we will add parent.
421 	 */
422 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
423 	/*
424 	 * update tmp_alone_branch to points to the new begin
425 	 * of the branch
426 	 */
427 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
428 	return false;
429 }
430 
431 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
432 {
433 	if (cfs_rq->on_list) {
434 		struct rq *rq = rq_of(cfs_rq);
435 
436 		/*
437 		 * With cfs_rq being unthrottled/throttled during an enqueue,
438 		 * it can happen the tmp_alone_branch points the a leaf that
439 		 * we finally want to del. In this case, tmp_alone_branch moves
440 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
441 		 * at the end of the enqueue.
442 		 */
443 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
444 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
445 
446 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
447 		cfs_rq->on_list = 0;
448 	}
449 }
450 
451 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
452 {
453 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
454 }
455 
456 /* Iterate thr' all leaf cfs_rq's on a runqueue */
457 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
458 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
459 				 leaf_cfs_rq_list)
460 
461 /* Do the two (enqueued) entities belong to the same group ? */
462 static inline struct cfs_rq *
463 is_same_group(struct sched_entity *se, struct sched_entity *pse)
464 {
465 	if (se->cfs_rq == pse->cfs_rq)
466 		return se->cfs_rq;
467 
468 	return NULL;
469 }
470 
471 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
472 {
473 	return se->parent;
474 }
475 
476 static void
477 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
478 {
479 	int se_depth, pse_depth;
480 
481 	/*
482 	 * preemption test can be made between sibling entities who are in the
483 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
484 	 * both tasks until we find their ancestors who are siblings of common
485 	 * parent.
486 	 */
487 
488 	/* First walk up until both entities are at same depth */
489 	se_depth = (*se)->depth;
490 	pse_depth = (*pse)->depth;
491 
492 	while (se_depth > pse_depth) {
493 		se_depth--;
494 		*se = parent_entity(*se);
495 	}
496 
497 	while (pse_depth > se_depth) {
498 		pse_depth--;
499 		*pse = parent_entity(*pse);
500 	}
501 
502 	while (!is_same_group(*se, *pse)) {
503 		*se = parent_entity(*se);
504 		*pse = parent_entity(*pse);
505 	}
506 }
507 
508 static int tg_is_idle(struct task_group *tg)
509 {
510 	return tg->idle > 0;
511 }
512 
513 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
514 {
515 	return cfs_rq->idle > 0;
516 }
517 
518 static int se_is_idle(struct sched_entity *se)
519 {
520 	if (entity_is_task(se))
521 		return task_has_idle_policy(task_of(se));
522 	return cfs_rq_is_idle(group_cfs_rq(se));
523 }
524 
525 #else	/* !CONFIG_FAIR_GROUP_SCHED */
526 
527 #define for_each_sched_entity(se) \
528 		for (; se; se = NULL)
529 
530 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
531 {
532 	return true;
533 }
534 
535 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
536 {
537 }
538 
539 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
540 {
541 }
542 
543 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
544 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
545 
546 static inline struct sched_entity *parent_entity(struct sched_entity *se)
547 {
548 	return NULL;
549 }
550 
551 static inline void
552 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
553 {
554 }
555 
556 static inline int tg_is_idle(struct task_group *tg)
557 {
558 	return 0;
559 }
560 
561 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
562 {
563 	return 0;
564 }
565 
566 static int se_is_idle(struct sched_entity *se)
567 {
568 	return 0;
569 }
570 
571 #endif	/* CONFIG_FAIR_GROUP_SCHED */
572 
573 static __always_inline
574 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
575 
576 /**************************************************************
577  * Scheduling class tree data structure manipulation methods:
578  */
579 
580 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
581 {
582 	s64 delta = (s64)(vruntime - max_vruntime);
583 	if (delta > 0)
584 		max_vruntime = vruntime;
585 
586 	return max_vruntime;
587 }
588 
589 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
590 {
591 	s64 delta = (s64)(vruntime - min_vruntime);
592 	if (delta < 0)
593 		min_vruntime = vruntime;
594 
595 	return min_vruntime;
596 }
597 
598 static inline bool entity_before(const struct sched_entity *a,
599 				 const struct sched_entity *b)
600 {
601 	return (s64)(a->vruntime - b->vruntime) < 0;
602 }
603 
604 #define __node_2_se(node) \
605 	rb_entry((node), struct sched_entity, run_node)
606 
607 static void update_min_vruntime(struct cfs_rq *cfs_rq)
608 {
609 	struct sched_entity *curr = cfs_rq->curr;
610 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
611 
612 	u64 vruntime = cfs_rq->min_vruntime;
613 
614 	if (curr) {
615 		if (curr->on_rq)
616 			vruntime = curr->vruntime;
617 		else
618 			curr = NULL;
619 	}
620 
621 	if (leftmost) { /* non-empty tree */
622 		struct sched_entity *se = __node_2_se(leftmost);
623 
624 		if (!curr)
625 			vruntime = se->vruntime;
626 		else
627 			vruntime = min_vruntime(vruntime, se->vruntime);
628 	}
629 
630 	/* ensure we never gain time by being placed backwards. */
631 	u64_u32_store(cfs_rq->min_vruntime,
632 		      max_vruntime(cfs_rq->min_vruntime, vruntime));
633 }
634 
635 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
636 {
637 	return entity_before(__node_2_se(a), __node_2_se(b));
638 }
639 
640 /*
641  * Enqueue an entity into the rb-tree:
642  */
643 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
644 {
645 	rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
646 }
647 
648 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
649 {
650 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
651 }
652 
653 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
654 {
655 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
656 
657 	if (!left)
658 		return NULL;
659 
660 	return __node_2_se(left);
661 }
662 
663 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
664 {
665 	struct rb_node *next = rb_next(&se->run_node);
666 
667 	if (!next)
668 		return NULL;
669 
670 	return __node_2_se(next);
671 }
672 
673 #ifdef CONFIG_SCHED_DEBUG
674 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
675 {
676 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
677 
678 	if (!last)
679 		return NULL;
680 
681 	return __node_2_se(last);
682 }
683 
684 /**************************************************************
685  * Scheduling class statistics methods:
686  */
687 
688 int sched_update_scaling(void)
689 {
690 	unsigned int factor = get_update_sysctl_factor();
691 
692 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
693 					sysctl_sched_min_granularity);
694 
695 #define WRT_SYSCTL(name) \
696 	(normalized_sysctl_##name = sysctl_##name / (factor))
697 	WRT_SYSCTL(sched_min_granularity);
698 	WRT_SYSCTL(sched_latency);
699 	WRT_SYSCTL(sched_wakeup_granularity);
700 #undef WRT_SYSCTL
701 
702 	return 0;
703 }
704 #endif
705 
706 /*
707  * delta /= w
708  */
709 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
710 {
711 	if (unlikely(se->load.weight != NICE_0_LOAD))
712 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
713 
714 	return delta;
715 }
716 
717 /*
718  * The idea is to set a period in which each task runs once.
719  *
720  * When there are too many tasks (sched_nr_latency) we have to stretch
721  * this period because otherwise the slices get too small.
722  *
723  * p = (nr <= nl) ? l : l*nr/nl
724  */
725 static u64 __sched_period(unsigned long nr_running)
726 {
727 	if (unlikely(nr_running > sched_nr_latency))
728 		return nr_running * sysctl_sched_min_granularity;
729 	else
730 		return sysctl_sched_latency;
731 }
732 
733 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
734 
735 /*
736  * We calculate the wall-time slice from the period by taking a part
737  * proportional to the weight.
738  *
739  * s = p*P[w/rw]
740  */
741 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
742 {
743 	unsigned int nr_running = cfs_rq->nr_running;
744 	struct sched_entity *init_se = se;
745 	unsigned int min_gran;
746 	u64 slice;
747 
748 	if (sched_feat(ALT_PERIOD))
749 		nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
750 
751 	slice = __sched_period(nr_running + !se->on_rq);
752 
753 	for_each_sched_entity(se) {
754 		struct load_weight *load;
755 		struct load_weight lw;
756 		struct cfs_rq *qcfs_rq;
757 
758 		qcfs_rq = cfs_rq_of(se);
759 		load = &qcfs_rq->load;
760 
761 		if (unlikely(!se->on_rq)) {
762 			lw = qcfs_rq->load;
763 
764 			update_load_add(&lw, se->load.weight);
765 			load = &lw;
766 		}
767 		slice = __calc_delta(slice, se->load.weight, load);
768 	}
769 
770 	if (sched_feat(BASE_SLICE)) {
771 		if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
772 			min_gran = sysctl_sched_idle_min_granularity;
773 		else
774 			min_gran = sysctl_sched_min_granularity;
775 
776 		slice = max_t(u64, slice, min_gran);
777 	}
778 
779 	return slice;
780 }
781 
782 /*
783  * We calculate the vruntime slice of a to-be-inserted task.
784  *
785  * vs = s/w
786  */
787 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
788 {
789 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
790 }
791 
792 #include "pelt.h"
793 #ifdef CONFIG_SMP
794 
795 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
796 static unsigned long task_h_load(struct task_struct *p);
797 static unsigned long capacity_of(int cpu);
798 
799 /* Give new sched_entity start runnable values to heavy its load in infant time */
800 void init_entity_runnable_average(struct sched_entity *se)
801 {
802 	struct sched_avg *sa = &se->avg;
803 
804 	memset(sa, 0, sizeof(*sa));
805 
806 	/*
807 	 * Tasks are initialized with full load to be seen as heavy tasks until
808 	 * they get a chance to stabilize to their real load level.
809 	 * Group entities are initialized with zero load to reflect the fact that
810 	 * nothing has been attached to the task group yet.
811 	 */
812 	if (entity_is_task(se))
813 		sa->load_avg = scale_load_down(se->load.weight);
814 
815 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
816 }
817 
818 /*
819  * With new tasks being created, their initial util_avgs are extrapolated
820  * based on the cfs_rq's current util_avg:
821  *
822  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
823  *
824  * However, in many cases, the above util_avg does not give a desired
825  * value. Moreover, the sum of the util_avgs may be divergent, such
826  * as when the series is a harmonic series.
827  *
828  * To solve this problem, we also cap the util_avg of successive tasks to
829  * only 1/2 of the left utilization budget:
830  *
831  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
832  *
833  * where n denotes the nth task and cpu_scale the CPU capacity.
834  *
835  * For example, for a CPU with 1024 of capacity, a simplest series from
836  * the beginning would be like:
837  *
838  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
839  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
840  *
841  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
842  * if util_avg > util_avg_cap.
843  */
844 void post_init_entity_util_avg(struct task_struct *p)
845 {
846 	struct sched_entity *se = &p->se;
847 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
848 	struct sched_avg *sa = &se->avg;
849 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
850 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
851 
852 	if (p->sched_class != &fair_sched_class) {
853 		/*
854 		 * For !fair tasks do:
855 		 *
856 		update_cfs_rq_load_avg(now, cfs_rq);
857 		attach_entity_load_avg(cfs_rq, se);
858 		switched_from_fair(rq, p);
859 		 *
860 		 * such that the next switched_to_fair() has the
861 		 * expected state.
862 		 */
863 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
864 		return;
865 	}
866 
867 	if (cap > 0) {
868 		if (cfs_rq->avg.util_avg != 0) {
869 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
870 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
871 
872 			if (sa->util_avg > cap)
873 				sa->util_avg = cap;
874 		} else {
875 			sa->util_avg = cap;
876 		}
877 	}
878 
879 	sa->runnable_avg = sa->util_avg;
880 }
881 
882 #else /* !CONFIG_SMP */
883 void init_entity_runnable_average(struct sched_entity *se)
884 {
885 }
886 void post_init_entity_util_avg(struct task_struct *p)
887 {
888 }
889 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
890 {
891 }
892 #endif /* CONFIG_SMP */
893 
894 /*
895  * Update the current task's runtime statistics.
896  */
897 static void update_curr(struct cfs_rq *cfs_rq)
898 {
899 	struct sched_entity *curr = cfs_rq->curr;
900 	u64 now = rq_clock_task(rq_of(cfs_rq));
901 	u64 delta_exec;
902 
903 	if (unlikely(!curr))
904 		return;
905 
906 	delta_exec = now - curr->exec_start;
907 	if (unlikely((s64)delta_exec <= 0))
908 		return;
909 
910 	curr->exec_start = now;
911 
912 	if (schedstat_enabled()) {
913 		struct sched_statistics *stats;
914 
915 		stats = __schedstats_from_se(curr);
916 		__schedstat_set(stats->exec_max,
917 				max(delta_exec, stats->exec_max));
918 	}
919 
920 	curr->sum_exec_runtime += delta_exec;
921 	schedstat_add(cfs_rq->exec_clock, delta_exec);
922 
923 	curr->vruntime += calc_delta_fair(delta_exec, curr);
924 	update_min_vruntime(cfs_rq);
925 
926 	if (entity_is_task(curr)) {
927 		struct task_struct *curtask = task_of(curr);
928 
929 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
930 		cgroup_account_cputime(curtask, delta_exec);
931 		account_group_exec_runtime(curtask, delta_exec);
932 	}
933 
934 	account_cfs_rq_runtime(cfs_rq, delta_exec);
935 }
936 
937 static void update_curr_fair(struct rq *rq)
938 {
939 	update_curr(cfs_rq_of(&rq->curr->se));
940 }
941 
942 static inline void
943 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
944 {
945 	struct sched_statistics *stats;
946 	struct task_struct *p = NULL;
947 
948 	if (!schedstat_enabled())
949 		return;
950 
951 	stats = __schedstats_from_se(se);
952 
953 	if (entity_is_task(se))
954 		p = task_of(se);
955 
956 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
957 }
958 
959 static inline void
960 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
961 {
962 	struct sched_statistics *stats;
963 	struct task_struct *p = NULL;
964 
965 	if (!schedstat_enabled())
966 		return;
967 
968 	stats = __schedstats_from_se(se);
969 
970 	/*
971 	 * When the sched_schedstat changes from 0 to 1, some sched se
972 	 * maybe already in the runqueue, the se->statistics.wait_start
973 	 * will be 0.So it will let the delta wrong. We need to avoid this
974 	 * scenario.
975 	 */
976 	if (unlikely(!schedstat_val(stats->wait_start)))
977 		return;
978 
979 	if (entity_is_task(se))
980 		p = task_of(se);
981 
982 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
983 }
984 
985 static inline void
986 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
987 {
988 	struct sched_statistics *stats;
989 	struct task_struct *tsk = NULL;
990 
991 	if (!schedstat_enabled())
992 		return;
993 
994 	stats = __schedstats_from_se(se);
995 
996 	if (entity_is_task(se))
997 		tsk = task_of(se);
998 
999 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1000 }
1001 
1002 /*
1003  * Task is being enqueued - update stats:
1004  */
1005 static inline void
1006 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1007 {
1008 	if (!schedstat_enabled())
1009 		return;
1010 
1011 	/*
1012 	 * Are we enqueueing a waiting task? (for current tasks
1013 	 * a dequeue/enqueue event is a NOP)
1014 	 */
1015 	if (se != cfs_rq->curr)
1016 		update_stats_wait_start_fair(cfs_rq, se);
1017 
1018 	if (flags & ENQUEUE_WAKEUP)
1019 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1020 }
1021 
1022 static inline void
1023 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1024 {
1025 
1026 	if (!schedstat_enabled())
1027 		return;
1028 
1029 	/*
1030 	 * Mark the end of the wait period if dequeueing a
1031 	 * waiting task:
1032 	 */
1033 	if (se != cfs_rq->curr)
1034 		update_stats_wait_end_fair(cfs_rq, se);
1035 
1036 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1037 		struct task_struct *tsk = task_of(se);
1038 		unsigned int state;
1039 
1040 		/* XXX racy against TTWU */
1041 		state = READ_ONCE(tsk->__state);
1042 		if (state & TASK_INTERRUPTIBLE)
1043 			__schedstat_set(tsk->stats.sleep_start,
1044 				      rq_clock(rq_of(cfs_rq)));
1045 		if (state & TASK_UNINTERRUPTIBLE)
1046 			__schedstat_set(tsk->stats.block_start,
1047 				      rq_clock(rq_of(cfs_rq)));
1048 	}
1049 }
1050 
1051 /*
1052  * We are picking a new current task - update its stats:
1053  */
1054 static inline void
1055 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1056 {
1057 	/*
1058 	 * We are starting a new run period:
1059 	 */
1060 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1061 }
1062 
1063 /**************************************************
1064  * Scheduling class queueing methods:
1065  */
1066 
1067 #ifdef CONFIG_NUMA
1068 #define NUMA_IMBALANCE_MIN 2
1069 
1070 static inline long
1071 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1072 {
1073 	/*
1074 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1075 	 * threshold. Above this threshold, individual tasks may be contending
1076 	 * for both memory bandwidth and any shared HT resources.  This is an
1077 	 * approximation as the number of running tasks may not be related to
1078 	 * the number of busy CPUs due to sched_setaffinity.
1079 	 */
1080 	if (dst_running > imb_numa_nr)
1081 		return imbalance;
1082 
1083 	/*
1084 	 * Allow a small imbalance based on a simple pair of communicating
1085 	 * tasks that remain local when the destination is lightly loaded.
1086 	 */
1087 	if (imbalance <= NUMA_IMBALANCE_MIN)
1088 		return 0;
1089 
1090 	return imbalance;
1091 }
1092 #endif /* CONFIG_NUMA */
1093 
1094 #ifdef CONFIG_NUMA_BALANCING
1095 /*
1096  * Approximate time to scan a full NUMA task in ms. The task scan period is
1097  * calculated based on the tasks virtual memory size and
1098  * numa_balancing_scan_size.
1099  */
1100 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1101 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1102 
1103 /* Portion of address space to scan in MB */
1104 unsigned int sysctl_numa_balancing_scan_size = 256;
1105 
1106 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1107 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1108 
1109 /* The page with hint page fault latency < threshold in ms is considered hot */
1110 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1111 
1112 struct numa_group {
1113 	refcount_t refcount;
1114 
1115 	spinlock_t lock; /* nr_tasks, tasks */
1116 	int nr_tasks;
1117 	pid_t gid;
1118 	int active_nodes;
1119 
1120 	struct rcu_head rcu;
1121 	unsigned long total_faults;
1122 	unsigned long max_faults_cpu;
1123 	/*
1124 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1125 	 *
1126 	 * Faults_cpu is used to decide whether memory should move
1127 	 * towards the CPU. As a consequence, these stats are weighted
1128 	 * more by CPU use than by memory faults.
1129 	 */
1130 	unsigned long faults[];
1131 };
1132 
1133 /*
1134  * For functions that can be called in multiple contexts that permit reading
1135  * ->numa_group (see struct task_struct for locking rules).
1136  */
1137 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1138 {
1139 	return rcu_dereference_check(p->numa_group, p == current ||
1140 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1141 }
1142 
1143 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1144 {
1145 	return rcu_dereference_protected(p->numa_group, p == current);
1146 }
1147 
1148 static inline unsigned long group_faults_priv(struct numa_group *ng);
1149 static inline unsigned long group_faults_shared(struct numa_group *ng);
1150 
1151 static unsigned int task_nr_scan_windows(struct task_struct *p)
1152 {
1153 	unsigned long rss = 0;
1154 	unsigned long nr_scan_pages;
1155 
1156 	/*
1157 	 * Calculations based on RSS as non-present and empty pages are skipped
1158 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1159 	 * on resident pages
1160 	 */
1161 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1162 	rss = get_mm_rss(p->mm);
1163 	if (!rss)
1164 		rss = nr_scan_pages;
1165 
1166 	rss = round_up(rss, nr_scan_pages);
1167 	return rss / nr_scan_pages;
1168 }
1169 
1170 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1171 #define MAX_SCAN_WINDOW 2560
1172 
1173 static unsigned int task_scan_min(struct task_struct *p)
1174 {
1175 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1176 	unsigned int scan, floor;
1177 	unsigned int windows = 1;
1178 
1179 	if (scan_size < MAX_SCAN_WINDOW)
1180 		windows = MAX_SCAN_WINDOW / scan_size;
1181 	floor = 1000 / windows;
1182 
1183 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1184 	return max_t(unsigned int, floor, scan);
1185 }
1186 
1187 static unsigned int task_scan_start(struct task_struct *p)
1188 {
1189 	unsigned long smin = task_scan_min(p);
1190 	unsigned long period = smin;
1191 	struct numa_group *ng;
1192 
1193 	/* Scale the maximum scan period with the amount of shared memory. */
1194 	rcu_read_lock();
1195 	ng = rcu_dereference(p->numa_group);
1196 	if (ng) {
1197 		unsigned long shared = group_faults_shared(ng);
1198 		unsigned long private = group_faults_priv(ng);
1199 
1200 		period *= refcount_read(&ng->refcount);
1201 		period *= shared + 1;
1202 		period /= private + shared + 1;
1203 	}
1204 	rcu_read_unlock();
1205 
1206 	return max(smin, period);
1207 }
1208 
1209 static unsigned int task_scan_max(struct task_struct *p)
1210 {
1211 	unsigned long smin = task_scan_min(p);
1212 	unsigned long smax;
1213 	struct numa_group *ng;
1214 
1215 	/* Watch for min being lower than max due to floor calculations */
1216 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1217 
1218 	/* Scale the maximum scan period with the amount of shared memory. */
1219 	ng = deref_curr_numa_group(p);
1220 	if (ng) {
1221 		unsigned long shared = group_faults_shared(ng);
1222 		unsigned long private = group_faults_priv(ng);
1223 		unsigned long period = smax;
1224 
1225 		period *= refcount_read(&ng->refcount);
1226 		period *= shared + 1;
1227 		period /= private + shared + 1;
1228 
1229 		smax = max(smax, period);
1230 	}
1231 
1232 	return max(smin, smax);
1233 }
1234 
1235 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1236 {
1237 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1238 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1239 }
1240 
1241 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1242 {
1243 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1244 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1245 }
1246 
1247 /* Shared or private faults. */
1248 #define NR_NUMA_HINT_FAULT_TYPES 2
1249 
1250 /* Memory and CPU locality */
1251 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1252 
1253 /* Averaged statistics, and temporary buffers. */
1254 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1255 
1256 pid_t task_numa_group_id(struct task_struct *p)
1257 {
1258 	struct numa_group *ng;
1259 	pid_t gid = 0;
1260 
1261 	rcu_read_lock();
1262 	ng = rcu_dereference(p->numa_group);
1263 	if (ng)
1264 		gid = ng->gid;
1265 	rcu_read_unlock();
1266 
1267 	return gid;
1268 }
1269 
1270 /*
1271  * The averaged statistics, shared & private, memory & CPU,
1272  * occupy the first half of the array. The second half of the
1273  * array is for current counters, which are averaged into the
1274  * first set by task_numa_placement.
1275  */
1276 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1277 {
1278 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1279 }
1280 
1281 static inline unsigned long task_faults(struct task_struct *p, int nid)
1282 {
1283 	if (!p->numa_faults)
1284 		return 0;
1285 
1286 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1287 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1288 }
1289 
1290 static inline unsigned long group_faults(struct task_struct *p, int nid)
1291 {
1292 	struct numa_group *ng = deref_task_numa_group(p);
1293 
1294 	if (!ng)
1295 		return 0;
1296 
1297 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1298 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1299 }
1300 
1301 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1302 {
1303 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1304 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1305 }
1306 
1307 static inline unsigned long group_faults_priv(struct numa_group *ng)
1308 {
1309 	unsigned long faults = 0;
1310 	int node;
1311 
1312 	for_each_online_node(node) {
1313 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1314 	}
1315 
1316 	return faults;
1317 }
1318 
1319 static inline unsigned long group_faults_shared(struct numa_group *ng)
1320 {
1321 	unsigned long faults = 0;
1322 	int node;
1323 
1324 	for_each_online_node(node) {
1325 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1326 	}
1327 
1328 	return faults;
1329 }
1330 
1331 /*
1332  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1333  * considered part of a numa group's pseudo-interleaving set. Migrations
1334  * between these nodes are slowed down, to allow things to settle down.
1335  */
1336 #define ACTIVE_NODE_FRACTION 3
1337 
1338 static bool numa_is_active_node(int nid, struct numa_group *ng)
1339 {
1340 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1341 }
1342 
1343 /* Handle placement on systems where not all nodes are directly connected. */
1344 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1345 					int lim_dist, bool task)
1346 {
1347 	unsigned long score = 0;
1348 	int node, max_dist;
1349 
1350 	/*
1351 	 * All nodes are directly connected, and the same distance
1352 	 * from each other. No need for fancy placement algorithms.
1353 	 */
1354 	if (sched_numa_topology_type == NUMA_DIRECT)
1355 		return 0;
1356 
1357 	/* sched_max_numa_distance may be changed in parallel. */
1358 	max_dist = READ_ONCE(sched_max_numa_distance);
1359 	/*
1360 	 * This code is called for each node, introducing N^2 complexity,
1361 	 * which should be ok given the number of nodes rarely exceeds 8.
1362 	 */
1363 	for_each_online_node(node) {
1364 		unsigned long faults;
1365 		int dist = node_distance(nid, node);
1366 
1367 		/*
1368 		 * The furthest away nodes in the system are not interesting
1369 		 * for placement; nid was already counted.
1370 		 */
1371 		if (dist >= max_dist || node == nid)
1372 			continue;
1373 
1374 		/*
1375 		 * On systems with a backplane NUMA topology, compare groups
1376 		 * of nodes, and move tasks towards the group with the most
1377 		 * memory accesses. When comparing two nodes at distance
1378 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1379 		 * of each group. Skip other nodes.
1380 		 */
1381 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1382 			continue;
1383 
1384 		/* Add up the faults from nearby nodes. */
1385 		if (task)
1386 			faults = task_faults(p, node);
1387 		else
1388 			faults = group_faults(p, node);
1389 
1390 		/*
1391 		 * On systems with a glueless mesh NUMA topology, there are
1392 		 * no fixed "groups of nodes". Instead, nodes that are not
1393 		 * directly connected bounce traffic through intermediate
1394 		 * nodes; a numa_group can occupy any set of nodes.
1395 		 * The further away a node is, the less the faults count.
1396 		 * This seems to result in good task placement.
1397 		 */
1398 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1399 			faults *= (max_dist - dist);
1400 			faults /= (max_dist - LOCAL_DISTANCE);
1401 		}
1402 
1403 		score += faults;
1404 	}
1405 
1406 	return score;
1407 }
1408 
1409 /*
1410  * These return the fraction of accesses done by a particular task, or
1411  * task group, on a particular numa node.  The group weight is given a
1412  * larger multiplier, in order to group tasks together that are almost
1413  * evenly spread out between numa nodes.
1414  */
1415 static inline unsigned long task_weight(struct task_struct *p, int nid,
1416 					int dist)
1417 {
1418 	unsigned long faults, total_faults;
1419 
1420 	if (!p->numa_faults)
1421 		return 0;
1422 
1423 	total_faults = p->total_numa_faults;
1424 
1425 	if (!total_faults)
1426 		return 0;
1427 
1428 	faults = task_faults(p, nid);
1429 	faults += score_nearby_nodes(p, nid, dist, true);
1430 
1431 	return 1000 * faults / total_faults;
1432 }
1433 
1434 static inline unsigned long group_weight(struct task_struct *p, int nid,
1435 					 int dist)
1436 {
1437 	struct numa_group *ng = deref_task_numa_group(p);
1438 	unsigned long faults, total_faults;
1439 
1440 	if (!ng)
1441 		return 0;
1442 
1443 	total_faults = ng->total_faults;
1444 
1445 	if (!total_faults)
1446 		return 0;
1447 
1448 	faults = group_faults(p, nid);
1449 	faults += score_nearby_nodes(p, nid, dist, false);
1450 
1451 	return 1000 * faults / total_faults;
1452 }
1453 
1454 /*
1455  * If memory tiering mode is enabled, cpupid of slow memory page is
1456  * used to record scan time instead of CPU and PID.  When tiering mode
1457  * is disabled at run time, the scan time (in cpupid) will be
1458  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1459  * access out of array bound.
1460  */
1461 static inline bool cpupid_valid(int cpupid)
1462 {
1463 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1464 }
1465 
1466 /*
1467  * For memory tiering mode, if there are enough free pages (more than
1468  * enough watermark defined here) in fast memory node, to take full
1469  * advantage of fast memory capacity, all recently accessed slow
1470  * memory pages will be migrated to fast memory node without
1471  * considering hot threshold.
1472  */
1473 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1474 {
1475 	int z;
1476 	unsigned long enough_wmark;
1477 
1478 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1479 			   pgdat->node_present_pages >> 4);
1480 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1481 		struct zone *zone = pgdat->node_zones + z;
1482 
1483 		if (!populated_zone(zone))
1484 			continue;
1485 
1486 		if (zone_watermark_ok(zone, 0,
1487 				      wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1488 				      ZONE_MOVABLE, 0))
1489 			return true;
1490 	}
1491 	return false;
1492 }
1493 
1494 /*
1495  * For memory tiering mode, when page tables are scanned, the scan
1496  * time will be recorded in struct page in addition to make page
1497  * PROT_NONE for slow memory page.  So when the page is accessed, in
1498  * hint page fault handler, the hint page fault latency is calculated
1499  * via,
1500  *
1501  *	hint page fault latency = hint page fault time - scan time
1502  *
1503  * The smaller the hint page fault latency, the higher the possibility
1504  * for the page to be hot.
1505  */
1506 static int numa_hint_fault_latency(struct page *page)
1507 {
1508 	int last_time, time;
1509 
1510 	time = jiffies_to_msecs(jiffies);
1511 	last_time = xchg_page_access_time(page, time);
1512 
1513 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1514 }
1515 
1516 /*
1517  * For memory tiering mode, too high promotion/demotion throughput may
1518  * hurt application latency.  So we provide a mechanism to rate limit
1519  * the number of pages that are tried to be promoted.
1520  */
1521 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1522 				      unsigned long rate_limit, int nr)
1523 {
1524 	unsigned long nr_cand;
1525 	unsigned int now, start;
1526 
1527 	now = jiffies_to_msecs(jiffies);
1528 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1529 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1530 	start = pgdat->nbp_rl_start;
1531 	if (now - start > MSEC_PER_SEC &&
1532 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1533 		pgdat->nbp_rl_nr_cand = nr_cand;
1534 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1535 		return true;
1536 	return false;
1537 }
1538 
1539 #define NUMA_MIGRATION_ADJUST_STEPS	16
1540 
1541 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1542 					    unsigned long rate_limit,
1543 					    unsigned int ref_th)
1544 {
1545 	unsigned int now, start, th_period, unit_th, th;
1546 	unsigned long nr_cand, ref_cand, diff_cand;
1547 
1548 	now = jiffies_to_msecs(jiffies);
1549 	th_period = sysctl_numa_balancing_scan_period_max;
1550 	start = pgdat->nbp_th_start;
1551 	if (now - start > th_period &&
1552 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1553 		ref_cand = rate_limit *
1554 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1555 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1556 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1557 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1558 		th = pgdat->nbp_threshold ? : ref_th;
1559 		if (diff_cand > ref_cand * 11 / 10)
1560 			th = max(th - unit_th, unit_th);
1561 		else if (diff_cand < ref_cand * 9 / 10)
1562 			th = min(th + unit_th, ref_th * 2);
1563 		pgdat->nbp_th_nr_cand = nr_cand;
1564 		pgdat->nbp_threshold = th;
1565 	}
1566 }
1567 
1568 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1569 				int src_nid, int dst_cpu)
1570 {
1571 	struct numa_group *ng = deref_curr_numa_group(p);
1572 	int dst_nid = cpu_to_node(dst_cpu);
1573 	int last_cpupid, this_cpupid;
1574 
1575 	/*
1576 	 * The pages in slow memory node should be migrated according
1577 	 * to hot/cold instead of private/shared.
1578 	 */
1579 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1580 	    !node_is_toptier(src_nid)) {
1581 		struct pglist_data *pgdat;
1582 		unsigned long rate_limit;
1583 		unsigned int latency, th, def_th;
1584 
1585 		pgdat = NODE_DATA(dst_nid);
1586 		if (pgdat_free_space_enough(pgdat)) {
1587 			/* workload changed, reset hot threshold */
1588 			pgdat->nbp_threshold = 0;
1589 			return true;
1590 		}
1591 
1592 		def_th = sysctl_numa_balancing_hot_threshold;
1593 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1594 			(20 - PAGE_SHIFT);
1595 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1596 
1597 		th = pgdat->nbp_threshold ? : def_th;
1598 		latency = numa_hint_fault_latency(page);
1599 		if (latency >= th)
1600 			return false;
1601 
1602 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1603 						  thp_nr_pages(page));
1604 	}
1605 
1606 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1607 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1608 
1609 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1610 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1611 		return false;
1612 
1613 	/*
1614 	 * Allow first faults or private faults to migrate immediately early in
1615 	 * the lifetime of a task. The magic number 4 is based on waiting for
1616 	 * two full passes of the "multi-stage node selection" test that is
1617 	 * executed below.
1618 	 */
1619 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1620 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1621 		return true;
1622 
1623 	/*
1624 	 * Multi-stage node selection is used in conjunction with a periodic
1625 	 * migration fault to build a temporal task<->page relation. By using
1626 	 * a two-stage filter we remove short/unlikely relations.
1627 	 *
1628 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1629 	 * a task's usage of a particular page (n_p) per total usage of this
1630 	 * page (n_t) (in a given time-span) to a probability.
1631 	 *
1632 	 * Our periodic faults will sample this probability and getting the
1633 	 * same result twice in a row, given these samples are fully
1634 	 * independent, is then given by P(n)^2, provided our sample period
1635 	 * is sufficiently short compared to the usage pattern.
1636 	 *
1637 	 * This quadric squishes small probabilities, making it less likely we
1638 	 * act on an unlikely task<->page relation.
1639 	 */
1640 	if (!cpupid_pid_unset(last_cpupid) &&
1641 				cpupid_to_nid(last_cpupid) != dst_nid)
1642 		return false;
1643 
1644 	/* Always allow migrate on private faults */
1645 	if (cpupid_match_pid(p, last_cpupid))
1646 		return true;
1647 
1648 	/* A shared fault, but p->numa_group has not been set up yet. */
1649 	if (!ng)
1650 		return true;
1651 
1652 	/*
1653 	 * Destination node is much more heavily used than the source
1654 	 * node? Allow migration.
1655 	 */
1656 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1657 					ACTIVE_NODE_FRACTION)
1658 		return true;
1659 
1660 	/*
1661 	 * Distribute memory according to CPU & memory use on each node,
1662 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1663 	 *
1664 	 * faults_cpu(dst)   3   faults_cpu(src)
1665 	 * --------------- * - > ---------------
1666 	 * faults_mem(dst)   4   faults_mem(src)
1667 	 */
1668 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1669 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1670 }
1671 
1672 /*
1673  * 'numa_type' describes the node at the moment of load balancing.
1674  */
1675 enum numa_type {
1676 	/* The node has spare capacity that can be used to run more tasks.  */
1677 	node_has_spare = 0,
1678 	/*
1679 	 * The node is fully used and the tasks don't compete for more CPU
1680 	 * cycles. Nevertheless, some tasks might wait before running.
1681 	 */
1682 	node_fully_busy,
1683 	/*
1684 	 * The node is overloaded and can't provide expected CPU cycles to all
1685 	 * tasks.
1686 	 */
1687 	node_overloaded
1688 };
1689 
1690 /* Cached statistics for all CPUs within a node */
1691 struct numa_stats {
1692 	unsigned long load;
1693 	unsigned long runnable;
1694 	unsigned long util;
1695 	/* Total compute capacity of CPUs on a node */
1696 	unsigned long compute_capacity;
1697 	unsigned int nr_running;
1698 	unsigned int weight;
1699 	enum numa_type node_type;
1700 	int idle_cpu;
1701 };
1702 
1703 static inline bool is_core_idle(int cpu)
1704 {
1705 #ifdef CONFIG_SCHED_SMT
1706 	int sibling;
1707 
1708 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1709 		if (cpu == sibling)
1710 			continue;
1711 
1712 		if (!idle_cpu(sibling))
1713 			return false;
1714 	}
1715 #endif
1716 
1717 	return true;
1718 }
1719 
1720 struct task_numa_env {
1721 	struct task_struct *p;
1722 
1723 	int src_cpu, src_nid;
1724 	int dst_cpu, dst_nid;
1725 	int imb_numa_nr;
1726 
1727 	struct numa_stats src_stats, dst_stats;
1728 
1729 	int imbalance_pct;
1730 	int dist;
1731 
1732 	struct task_struct *best_task;
1733 	long best_imp;
1734 	int best_cpu;
1735 };
1736 
1737 static unsigned long cpu_load(struct rq *rq);
1738 static unsigned long cpu_runnable(struct rq *rq);
1739 
1740 static inline enum
1741 numa_type numa_classify(unsigned int imbalance_pct,
1742 			 struct numa_stats *ns)
1743 {
1744 	if ((ns->nr_running > ns->weight) &&
1745 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1746 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1747 		return node_overloaded;
1748 
1749 	if ((ns->nr_running < ns->weight) ||
1750 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1751 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1752 		return node_has_spare;
1753 
1754 	return node_fully_busy;
1755 }
1756 
1757 #ifdef CONFIG_SCHED_SMT
1758 /* Forward declarations of select_idle_sibling helpers */
1759 static inline bool test_idle_cores(int cpu);
1760 static inline int numa_idle_core(int idle_core, int cpu)
1761 {
1762 	if (!static_branch_likely(&sched_smt_present) ||
1763 	    idle_core >= 0 || !test_idle_cores(cpu))
1764 		return idle_core;
1765 
1766 	/*
1767 	 * Prefer cores instead of packing HT siblings
1768 	 * and triggering future load balancing.
1769 	 */
1770 	if (is_core_idle(cpu))
1771 		idle_core = cpu;
1772 
1773 	return idle_core;
1774 }
1775 #else
1776 static inline int numa_idle_core(int idle_core, int cpu)
1777 {
1778 	return idle_core;
1779 }
1780 #endif
1781 
1782 /*
1783  * Gather all necessary information to make NUMA balancing placement
1784  * decisions that are compatible with standard load balancer. This
1785  * borrows code and logic from update_sg_lb_stats but sharing a
1786  * common implementation is impractical.
1787  */
1788 static void update_numa_stats(struct task_numa_env *env,
1789 			      struct numa_stats *ns, int nid,
1790 			      bool find_idle)
1791 {
1792 	int cpu, idle_core = -1;
1793 
1794 	memset(ns, 0, sizeof(*ns));
1795 	ns->idle_cpu = -1;
1796 
1797 	rcu_read_lock();
1798 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1799 		struct rq *rq = cpu_rq(cpu);
1800 
1801 		ns->load += cpu_load(rq);
1802 		ns->runnable += cpu_runnable(rq);
1803 		ns->util += cpu_util_cfs(cpu);
1804 		ns->nr_running += rq->cfs.h_nr_running;
1805 		ns->compute_capacity += capacity_of(cpu);
1806 
1807 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
1808 			if (READ_ONCE(rq->numa_migrate_on) ||
1809 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1810 				continue;
1811 
1812 			if (ns->idle_cpu == -1)
1813 				ns->idle_cpu = cpu;
1814 
1815 			idle_core = numa_idle_core(idle_core, cpu);
1816 		}
1817 	}
1818 	rcu_read_unlock();
1819 
1820 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1821 
1822 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1823 
1824 	if (idle_core >= 0)
1825 		ns->idle_cpu = idle_core;
1826 }
1827 
1828 static void task_numa_assign(struct task_numa_env *env,
1829 			     struct task_struct *p, long imp)
1830 {
1831 	struct rq *rq = cpu_rq(env->dst_cpu);
1832 
1833 	/* Check if run-queue part of active NUMA balance. */
1834 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1835 		int cpu;
1836 		int start = env->dst_cpu;
1837 
1838 		/* Find alternative idle CPU. */
1839 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
1840 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1841 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1842 				continue;
1843 			}
1844 
1845 			env->dst_cpu = cpu;
1846 			rq = cpu_rq(env->dst_cpu);
1847 			if (!xchg(&rq->numa_migrate_on, 1))
1848 				goto assign;
1849 		}
1850 
1851 		/* Failed to find an alternative idle CPU */
1852 		return;
1853 	}
1854 
1855 assign:
1856 	/*
1857 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1858 	 * found a better CPU to move/swap.
1859 	 */
1860 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1861 		rq = cpu_rq(env->best_cpu);
1862 		WRITE_ONCE(rq->numa_migrate_on, 0);
1863 	}
1864 
1865 	if (env->best_task)
1866 		put_task_struct(env->best_task);
1867 	if (p)
1868 		get_task_struct(p);
1869 
1870 	env->best_task = p;
1871 	env->best_imp = imp;
1872 	env->best_cpu = env->dst_cpu;
1873 }
1874 
1875 static bool load_too_imbalanced(long src_load, long dst_load,
1876 				struct task_numa_env *env)
1877 {
1878 	long imb, old_imb;
1879 	long orig_src_load, orig_dst_load;
1880 	long src_capacity, dst_capacity;
1881 
1882 	/*
1883 	 * The load is corrected for the CPU capacity available on each node.
1884 	 *
1885 	 * src_load        dst_load
1886 	 * ------------ vs ---------
1887 	 * src_capacity    dst_capacity
1888 	 */
1889 	src_capacity = env->src_stats.compute_capacity;
1890 	dst_capacity = env->dst_stats.compute_capacity;
1891 
1892 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1893 
1894 	orig_src_load = env->src_stats.load;
1895 	orig_dst_load = env->dst_stats.load;
1896 
1897 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1898 
1899 	/* Would this change make things worse? */
1900 	return (imb > old_imb);
1901 }
1902 
1903 /*
1904  * Maximum NUMA importance can be 1998 (2*999);
1905  * SMALLIMP @ 30 would be close to 1998/64.
1906  * Used to deter task migration.
1907  */
1908 #define SMALLIMP	30
1909 
1910 /*
1911  * This checks if the overall compute and NUMA accesses of the system would
1912  * be improved if the source tasks was migrated to the target dst_cpu taking
1913  * into account that it might be best if task running on the dst_cpu should
1914  * be exchanged with the source task
1915  */
1916 static bool task_numa_compare(struct task_numa_env *env,
1917 			      long taskimp, long groupimp, bool maymove)
1918 {
1919 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1920 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1921 	long imp = p_ng ? groupimp : taskimp;
1922 	struct task_struct *cur;
1923 	long src_load, dst_load;
1924 	int dist = env->dist;
1925 	long moveimp = imp;
1926 	long load;
1927 	bool stopsearch = false;
1928 
1929 	if (READ_ONCE(dst_rq->numa_migrate_on))
1930 		return false;
1931 
1932 	rcu_read_lock();
1933 	cur = rcu_dereference(dst_rq->curr);
1934 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1935 		cur = NULL;
1936 
1937 	/*
1938 	 * Because we have preemption enabled we can get migrated around and
1939 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1940 	 */
1941 	if (cur == env->p) {
1942 		stopsearch = true;
1943 		goto unlock;
1944 	}
1945 
1946 	if (!cur) {
1947 		if (maymove && moveimp >= env->best_imp)
1948 			goto assign;
1949 		else
1950 			goto unlock;
1951 	}
1952 
1953 	/* Skip this swap candidate if cannot move to the source cpu. */
1954 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1955 		goto unlock;
1956 
1957 	/*
1958 	 * Skip this swap candidate if it is not moving to its preferred
1959 	 * node and the best task is.
1960 	 */
1961 	if (env->best_task &&
1962 	    env->best_task->numa_preferred_nid == env->src_nid &&
1963 	    cur->numa_preferred_nid != env->src_nid) {
1964 		goto unlock;
1965 	}
1966 
1967 	/*
1968 	 * "imp" is the fault differential for the source task between the
1969 	 * source and destination node. Calculate the total differential for
1970 	 * the source task and potential destination task. The more negative
1971 	 * the value is, the more remote accesses that would be expected to
1972 	 * be incurred if the tasks were swapped.
1973 	 *
1974 	 * If dst and source tasks are in the same NUMA group, or not
1975 	 * in any group then look only at task weights.
1976 	 */
1977 	cur_ng = rcu_dereference(cur->numa_group);
1978 	if (cur_ng == p_ng) {
1979 		/*
1980 		 * Do not swap within a group or between tasks that have
1981 		 * no group if there is spare capacity. Swapping does
1982 		 * not address the load imbalance and helps one task at
1983 		 * the cost of punishing another.
1984 		 */
1985 		if (env->dst_stats.node_type == node_has_spare)
1986 			goto unlock;
1987 
1988 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1989 		      task_weight(cur, env->dst_nid, dist);
1990 		/*
1991 		 * Add some hysteresis to prevent swapping the
1992 		 * tasks within a group over tiny differences.
1993 		 */
1994 		if (cur_ng)
1995 			imp -= imp / 16;
1996 	} else {
1997 		/*
1998 		 * Compare the group weights. If a task is all by itself
1999 		 * (not part of a group), use the task weight instead.
2000 		 */
2001 		if (cur_ng && p_ng)
2002 			imp += group_weight(cur, env->src_nid, dist) -
2003 			       group_weight(cur, env->dst_nid, dist);
2004 		else
2005 			imp += task_weight(cur, env->src_nid, dist) -
2006 			       task_weight(cur, env->dst_nid, dist);
2007 	}
2008 
2009 	/* Discourage picking a task already on its preferred node */
2010 	if (cur->numa_preferred_nid == env->dst_nid)
2011 		imp -= imp / 16;
2012 
2013 	/*
2014 	 * Encourage picking a task that moves to its preferred node.
2015 	 * This potentially makes imp larger than it's maximum of
2016 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2017 	 * case, it does not matter.
2018 	 */
2019 	if (cur->numa_preferred_nid == env->src_nid)
2020 		imp += imp / 8;
2021 
2022 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2023 		imp = moveimp;
2024 		cur = NULL;
2025 		goto assign;
2026 	}
2027 
2028 	/*
2029 	 * Prefer swapping with a task moving to its preferred node over a
2030 	 * task that is not.
2031 	 */
2032 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2033 	    env->best_task->numa_preferred_nid != env->src_nid) {
2034 		goto assign;
2035 	}
2036 
2037 	/*
2038 	 * If the NUMA importance is less than SMALLIMP,
2039 	 * task migration might only result in ping pong
2040 	 * of tasks and also hurt performance due to cache
2041 	 * misses.
2042 	 */
2043 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2044 		goto unlock;
2045 
2046 	/*
2047 	 * In the overloaded case, try and keep the load balanced.
2048 	 */
2049 	load = task_h_load(env->p) - task_h_load(cur);
2050 	if (!load)
2051 		goto assign;
2052 
2053 	dst_load = env->dst_stats.load + load;
2054 	src_load = env->src_stats.load - load;
2055 
2056 	if (load_too_imbalanced(src_load, dst_load, env))
2057 		goto unlock;
2058 
2059 assign:
2060 	/* Evaluate an idle CPU for a task numa move. */
2061 	if (!cur) {
2062 		int cpu = env->dst_stats.idle_cpu;
2063 
2064 		/* Nothing cached so current CPU went idle since the search. */
2065 		if (cpu < 0)
2066 			cpu = env->dst_cpu;
2067 
2068 		/*
2069 		 * If the CPU is no longer truly idle and the previous best CPU
2070 		 * is, keep using it.
2071 		 */
2072 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2073 		    idle_cpu(env->best_cpu)) {
2074 			cpu = env->best_cpu;
2075 		}
2076 
2077 		env->dst_cpu = cpu;
2078 	}
2079 
2080 	task_numa_assign(env, cur, imp);
2081 
2082 	/*
2083 	 * If a move to idle is allowed because there is capacity or load
2084 	 * balance improves then stop the search. While a better swap
2085 	 * candidate may exist, a search is not free.
2086 	 */
2087 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2088 		stopsearch = true;
2089 
2090 	/*
2091 	 * If a swap candidate must be identified and the current best task
2092 	 * moves its preferred node then stop the search.
2093 	 */
2094 	if (!maymove && env->best_task &&
2095 	    env->best_task->numa_preferred_nid == env->src_nid) {
2096 		stopsearch = true;
2097 	}
2098 unlock:
2099 	rcu_read_unlock();
2100 
2101 	return stopsearch;
2102 }
2103 
2104 static void task_numa_find_cpu(struct task_numa_env *env,
2105 				long taskimp, long groupimp)
2106 {
2107 	bool maymove = false;
2108 	int cpu;
2109 
2110 	/*
2111 	 * If dst node has spare capacity, then check if there is an
2112 	 * imbalance that would be overruled by the load balancer.
2113 	 */
2114 	if (env->dst_stats.node_type == node_has_spare) {
2115 		unsigned int imbalance;
2116 		int src_running, dst_running;
2117 
2118 		/*
2119 		 * Would movement cause an imbalance? Note that if src has
2120 		 * more running tasks that the imbalance is ignored as the
2121 		 * move improves the imbalance from the perspective of the
2122 		 * CPU load balancer.
2123 		 * */
2124 		src_running = env->src_stats.nr_running - 1;
2125 		dst_running = env->dst_stats.nr_running + 1;
2126 		imbalance = max(0, dst_running - src_running);
2127 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2128 						  env->imb_numa_nr);
2129 
2130 		/* Use idle CPU if there is no imbalance */
2131 		if (!imbalance) {
2132 			maymove = true;
2133 			if (env->dst_stats.idle_cpu >= 0) {
2134 				env->dst_cpu = env->dst_stats.idle_cpu;
2135 				task_numa_assign(env, NULL, 0);
2136 				return;
2137 			}
2138 		}
2139 	} else {
2140 		long src_load, dst_load, load;
2141 		/*
2142 		 * If the improvement from just moving env->p direction is better
2143 		 * than swapping tasks around, check if a move is possible.
2144 		 */
2145 		load = task_h_load(env->p);
2146 		dst_load = env->dst_stats.load + load;
2147 		src_load = env->src_stats.load - load;
2148 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2149 	}
2150 
2151 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2152 		/* Skip this CPU if the source task cannot migrate */
2153 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2154 			continue;
2155 
2156 		env->dst_cpu = cpu;
2157 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2158 			break;
2159 	}
2160 }
2161 
2162 static int task_numa_migrate(struct task_struct *p)
2163 {
2164 	struct task_numa_env env = {
2165 		.p = p,
2166 
2167 		.src_cpu = task_cpu(p),
2168 		.src_nid = task_node(p),
2169 
2170 		.imbalance_pct = 112,
2171 
2172 		.best_task = NULL,
2173 		.best_imp = 0,
2174 		.best_cpu = -1,
2175 	};
2176 	unsigned long taskweight, groupweight;
2177 	struct sched_domain *sd;
2178 	long taskimp, groupimp;
2179 	struct numa_group *ng;
2180 	struct rq *best_rq;
2181 	int nid, ret, dist;
2182 
2183 	/*
2184 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2185 	 * imbalance and would be the first to start moving tasks about.
2186 	 *
2187 	 * And we want to avoid any moving of tasks about, as that would create
2188 	 * random movement of tasks -- counter the numa conditions we're trying
2189 	 * to satisfy here.
2190 	 */
2191 	rcu_read_lock();
2192 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2193 	if (sd) {
2194 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2195 		env.imb_numa_nr = sd->imb_numa_nr;
2196 	}
2197 	rcu_read_unlock();
2198 
2199 	/*
2200 	 * Cpusets can break the scheduler domain tree into smaller
2201 	 * balance domains, some of which do not cross NUMA boundaries.
2202 	 * Tasks that are "trapped" in such domains cannot be migrated
2203 	 * elsewhere, so there is no point in (re)trying.
2204 	 */
2205 	if (unlikely(!sd)) {
2206 		sched_setnuma(p, task_node(p));
2207 		return -EINVAL;
2208 	}
2209 
2210 	env.dst_nid = p->numa_preferred_nid;
2211 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2212 	taskweight = task_weight(p, env.src_nid, dist);
2213 	groupweight = group_weight(p, env.src_nid, dist);
2214 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2215 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2216 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2217 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2218 
2219 	/* Try to find a spot on the preferred nid. */
2220 	task_numa_find_cpu(&env, taskimp, groupimp);
2221 
2222 	/*
2223 	 * Look at other nodes in these cases:
2224 	 * - there is no space available on the preferred_nid
2225 	 * - the task is part of a numa_group that is interleaved across
2226 	 *   multiple NUMA nodes; in order to better consolidate the group,
2227 	 *   we need to check other locations.
2228 	 */
2229 	ng = deref_curr_numa_group(p);
2230 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2231 		for_each_node_state(nid, N_CPU) {
2232 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2233 				continue;
2234 
2235 			dist = node_distance(env.src_nid, env.dst_nid);
2236 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2237 						dist != env.dist) {
2238 				taskweight = task_weight(p, env.src_nid, dist);
2239 				groupweight = group_weight(p, env.src_nid, dist);
2240 			}
2241 
2242 			/* Only consider nodes where both task and groups benefit */
2243 			taskimp = task_weight(p, nid, dist) - taskweight;
2244 			groupimp = group_weight(p, nid, dist) - groupweight;
2245 			if (taskimp < 0 && groupimp < 0)
2246 				continue;
2247 
2248 			env.dist = dist;
2249 			env.dst_nid = nid;
2250 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2251 			task_numa_find_cpu(&env, taskimp, groupimp);
2252 		}
2253 	}
2254 
2255 	/*
2256 	 * If the task is part of a workload that spans multiple NUMA nodes,
2257 	 * and is migrating into one of the workload's active nodes, remember
2258 	 * this node as the task's preferred numa node, so the workload can
2259 	 * settle down.
2260 	 * A task that migrated to a second choice node will be better off
2261 	 * trying for a better one later. Do not set the preferred node here.
2262 	 */
2263 	if (ng) {
2264 		if (env.best_cpu == -1)
2265 			nid = env.src_nid;
2266 		else
2267 			nid = cpu_to_node(env.best_cpu);
2268 
2269 		if (nid != p->numa_preferred_nid)
2270 			sched_setnuma(p, nid);
2271 	}
2272 
2273 	/* No better CPU than the current one was found. */
2274 	if (env.best_cpu == -1) {
2275 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2276 		return -EAGAIN;
2277 	}
2278 
2279 	best_rq = cpu_rq(env.best_cpu);
2280 	if (env.best_task == NULL) {
2281 		ret = migrate_task_to(p, env.best_cpu);
2282 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2283 		if (ret != 0)
2284 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2285 		return ret;
2286 	}
2287 
2288 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2289 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2290 
2291 	if (ret != 0)
2292 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2293 	put_task_struct(env.best_task);
2294 	return ret;
2295 }
2296 
2297 /* Attempt to migrate a task to a CPU on the preferred node. */
2298 static void numa_migrate_preferred(struct task_struct *p)
2299 {
2300 	unsigned long interval = HZ;
2301 
2302 	/* This task has no NUMA fault statistics yet */
2303 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2304 		return;
2305 
2306 	/* Periodically retry migrating the task to the preferred node */
2307 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2308 	p->numa_migrate_retry = jiffies + interval;
2309 
2310 	/* Success if task is already running on preferred CPU */
2311 	if (task_node(p) == p->numa_preferred_nid)
2312 		return;
2313 
2314 	/* Otherwise, try migrate to a CPU on the preferred node */
2315 	task_numa_migrate(p);
2316 }
2317 
2318 /*
2319  * Find out how many nodes the workload is actively running on. Do this by
2320  * tracking the nodes from which NUMA hinting faults are triggered. This can
2321  * be different from the set of nodes where the workload's memory is currently
2322  * located.
2323  */
2324 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2325 {
2326 	unsigned long faults, max_faults = 0;
2327 	int nid, active_nodes = 0;
2328 
2329 	for_each_node_state(nid, N_CPU) {
2330 		faults = group_faults_cpu(numa_group, nid);
2331 		if (faults > max_faults)
2332 			max_faults = faults;
2333 	}
2334 
2335 	for_each_node_state(nid, N_CPU) {
2336 		faults = group_faults_cpu(numa_group, nid);
2337 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2338 			active_nodes++;
2339 	}
2340 
2341 	numa_group->max_faults_cpu = max_faults;
2342 	numa_group->active_nodes = active_nodes;
2343 }
2344 
2345 /*
2346  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2347  * increments. The more local the fault statistics are, the higher the scan
2348  * period will be for the next scan window. If local/(local+remote) ratio is
2349  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2350  * the scan period will decrease. Aim for 70% local accesses.
2351  */
2352 #define NUMA_PERIOD_SLOTS 10
2353 #define NUMA_PERIOD_THRESHOLD 7
2354 
2355 /*
2356  * Increase the scan period (slow down scanning) if the majority of
2357  * our memory is already on our local node, or if the majority of
2358  * the page accesses are shared with other processes.
2359  * Otherwise, decrease the scan period.
2360  */
2361 static void update_task_scan_period(struct task_struct *p,
2362 			unsigned long shared, unsigned long private)
2363 {
2364 	unsigned int period_slot;
2365 	int lr_ratio, ps_ratio;
2366 	int diff;
2367 
2368 	unsigned long remote = p->numa_faults_locality[0];
2369 	unsigned long local = p->numa_faults_locality[1];
2370 
2371 	/*
2372 	 * If there were no record hinting faults then either the task is
2373 	 * completely idle or all activity is in areas that are not of interest
2374 	 * to automatic numa balancing. Related to that, if there were failed
2375 	 * migration then it implies we are migrating too quickly or the local
2376 	 * node is overloaded. In either case, scan slower
2377 	 */
2378 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2379 		p->numa_scan_period = min(p->numa_scan_period_max,
2380 			p->numa_scan_period << 1);
2381 
2382 		p->mm->numa_next_scan = jiffies +
2383 			msecs_to_jiffies(p->numa_scan_period);
2384 
2385 		return;
2386 	}
2387 
2388 	/*
2389 	 * Prepare to scale scan period relative to the current period.
2390 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2391 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2392 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2393 	 */
2394 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2395 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2396 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2397 
2398 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2399 		/*
2400 		 * Most memory accesses are local. There is no need to
2401 		 * do fast NUMA scanning, since memory is already local.
2402 		 */
2403 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2404 		if (!slot)
2405 			slot = 1;
2406 		diff = slot * period_slot;
2407 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2408 		/*
2409 		 * Most memory accesses are shared with other tasks.
2410 		 * There is no point in continuing fast NUMA scanning,
2411 		 * since other tasks may just move the memory elsewhere.
2412 		 */
2413 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2414 		if (!slot)
2415 			slot = 1;
2416 		diff = slot * period_slot;
2417 	} else {
2418 		/*
2419 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2420 		 * yet they are not on the local NUMA node. Speed up
2421 		 * NUMA scanning to get the memory moved over.
2422 		 */
2423 		int ratio = max(lr_ratio, ps_ratio);
2424 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2425 	}
2426 
2427 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2428 			task_scan_min(p), task_scan_max(p));
2429 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2430 }
2431 
2432 /*
2433  * Get the fraction of time the task has been running since the last
2434  * NUMA placement cycle. The scheduler keeps similar statistics, but
2435  * decays those on a 32ms period, which is orders of magnitude off
2436  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2437  * stats only if the task is so new there are no NUMA statistics yet.
2438  */
2439 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2440 {
2441 	u64 runtime, delta, now;
2442 	/* Use the start of this time slice to avoid calculations. */
2443 	now = p->se.exec_start;
2444 	runtime = p->se.sum_exec_runtime;
2445 
2446 	if (p->last_task_numa_placement) {
2447 		delta = runtime - p->last_sum_exec_runtime;
2448 		*period = now - p->last_task_numa_placement;
2449 
2450 		/* Avoid time going backwards, prevent potential divide error: */
2451 		if (unlikely((s64)*period < 0))
2452 			*period = 0;
2453 	} else {
2454 		delta = p->se.avg.load_sum;
2455 		*period = LOAD_AVG_MAX;
2456 	}
2457 
2458 	p->last_sum_exec_runtime = runtime;
2459 	p->last_task_numa_placement = now;
2460 
2461 	return delta;
2462 }
2463 
2464 /*
2465  * Determine the preferred nid for a task in a numa_group. This needs to
2466  * be done in a way that produces consistent results with group_weight,
2467  * otherwise workloads might not converge.
2468  */
2469 static int preferred_group_nid(struct task_struct *p, int nid)
2470 {
2471 	nodemask_t nodes;
2472 	int dist;
2473 
2474 	/* Direct connections between all NUMA nodes. */
2475 	if (sched_numa_topology_type == NUMA_DIRECT)
2476 		return nid;
2477 
2478 	/*
2479 	 * On a system with glueless mesh NUMA topology, group_weight
2480 	 * scores nodes according to the number of NUMA hinting faults on
2481 	 * both the node itself, and on nearby nodes.
2482 	 */
2483 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2484 		unsigned long score, max_score = 0;
2485 		int node, max_node = nid;
2486 
2487 		dist = sched_max_numa_distance;
2488 
2489 		for_each_node_state(node, N_CPU) {
2490 			score = group_weight(p, node, dist);
2491 			if (score > max_score) {
2492 				max_score = score;
2493 				max_node = node;
2494 			}
2495 		}
2496 		return max_node;
2497 	}
2498 
2499 	/*
2500 	 * Finding the preferred nid in a system with NUMA backplane
2501 	 * interconnect topology is more involved. The goal is to locate
2502 	 * tasks from numa_groups near each other in the system, and
2503 	 * untangle workloads from different sides of the system. This requires
2504 	 * searching down the hierarchy of node groups, recursively searching
2505 	 * inside the highest scoring group of nodes. The nodemask tricks
2506 	 * keep the complexity of the search down.
2507 	 */
2508 	nodes = node_states[N_CPU];
2509 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2510 		unsigned long max_faults = 0;
2511 		nodemask_t max_group = NODE_MASK_NONE;
2512 		int a, b;
2513 
2514 		/* Are there nodes at this distance from each other? */
2515 		if (!find_numa_distance(dist))
2516 			continue;
2517 
2518 		for_each_node_mask(a, nodes) {
2519 			unsigned long faults = 0;
2520 			nodemask_t this_group;
2521 			nodes_clear(this_group);
2522 
2523 			/* Sum group's NUMA faults; includes a==b case. */
2524 			for_each_node_mask(b, nodes) {
2525 				if (node_distance(a, b) < dist) {
2526 					faults += group_faults(p, b);
2527 					node_set(b, this_group);
2528 					node_clear(b, nodes);
2529 				}
2530 			}
2531 
2532 			/* Remember the top group. */
2533 			if (faults > max_faults) {
2534 				max_faults = faults;
2535 				max_group = this_group;
2536 				/*
2537 				 * subtle: at the smallest distance there is
2538 				 * just one node left in each "group", the
2539 				 * winner is the preferred nid.
2540 				 */
2541 				nid = a;
2542 			}
2543 		}
2544 		/* Next round, evaluate the nodes within max_group. */
2545 		if (!max_faults)
2546 			break;
2547 		nodes = max_group;
2548 	}
2549 	return nid;
2550 }
2551 
2552 static void task_numa_placement(struct task_struct *p)
2553 {
2554 	int seq, nid, max_nid = NUMA_NO_NODE;
2555 	unsigned long max_faults = 0;
2556 	unsigned long fault_types[2] = { 0, 0 };
2557 	unsigned long total_faults;
2558 	u64 runtime, period;
2559 	spinlock_t *group_lock = NULL;
2560 	struct numa_group *ng;
2561 
2562 	/*
2563 	 * The p->mm->numa_scan_seq field gets updated without
2564 	 * exclusive access. Use READ_ONCE() here to ensure
2565 	 * that the field is read in a single access:
2566 	 */
2567 	seq = READ_ONCE(p->mm->numa_scan_seq);
2568 	if (p->numa_scan_seq == seq)
2569 		return;
2570 	p->numa_scan_seq = seq;
2571 	p->numa_scan_period_max = task_scan_max(p);
2572 
2573 	total_faults = p->numa_faults_locality[0] +
2574 		       p->numa_faults_locality[1];
2575 	runtime = numa_get_avg_runtime(p, &period);
2576 
2577 	/* If the task is part of a group prevent parallel updates to group stats */
2578 	ng = deref_curr_numa_group(p);
2579 	if (ng) {
2580 		group_lock = &ng->lock;
2581 		spin_lock_irq(group_lock);
2582 	}
2583 
2584 	/* Find the node with the highest number of faults */
2585 	for_each_online_node(nid) {
2586 		/* Keep track of the offsets in numa_faults array */
2587 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2588 		unsigned long faults = 0, group_faults = 0;
2589 		int priv;
2590 
2591 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2592 			long diff, f_diff, f_weight;
2593 
2594 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2595 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2596 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2597 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2598 
2599 			/* Decay existing window, copy faults since last scan */
2600 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2601 			fault_types[priv] += p->numa_faults[membuf_idx];
2602 			p->numa_faults[membuf_idx] = 0;
2603 
2604 			/*
2605 			 * Normalize the faults_from, so all tasks in a group
2606 			 * count according to CPU use, instead of by the raw
2607 			 * number of faults. Tasks with little runtime have
2608 			 * little over-all impact on throughput, and thus their
2609 			 * faults are less important.
2610 			 */
2611 			f_weight = div64_u64(runtime << 16, period + 1);
2612 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2613 				   (total_faults + 1);
2614 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2615 			p->numa_faults[cpubuf_idx] = 0;
2616 
2617 			p->numa_faults[mem_idx] += diff;
2618 			p->numa_faults[cpu_idx] += f_diff;
2619 			faults += p->numa_faults[mem_idx];
2620 			p->total_numa_faults += diff;
2621 			if (ng) {
2622 				/*
2623 				 * safe because we can only change our own group
2624 				 *
2625 				 * mem_idx represents the offset for a given
2626 				 * nid and priv in a specific region because it
2627 				 * is at the beginning of the numa_faults array.
2628 				 */
2629 				ng->faults[mem_idx] += diff;
2630 				ng->faults[cpu_idx] += f_diff;
2631 				ng->total_faults += diff;
2632 				group_faults += ng->faults[mem_idx];
2633 			}
2634 		}
2635 
2636 		if (!ng) {
2637 			if (faults > max_faults) {
2638 				max_faults = faults;
2639 				max_nid = nid;
2640 			}
2641 		} else if (group_faults > max_faults) {
2642 			max_faults = group_faults;
2643 			max_nid = nid;
2644 		}
2645 	}
2646 
2647 	/* Cannot migrate task to CPU-less node */
2648 	if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2649 		int near_nid = max_nid;
2650 		int distance, near_distance = INT_MAX;
2651 
2652 		for_each_node_state(nid, N_CPU) {
2653 			distance = node_distance(max_nid, nid);
2654 			if (distance < near_distance) {
2655 				near_nid = nid;
2656 				near_distance = distance;
2657 			}
2658 		}
2659 		max_nid = near_nid;
2660 	}
2661 
2662 	if (ng) {
2663 		numa_group_count_active_nodes(ng);
2664 		spin_unlock_irq(group_lock);
2665 		max_nid = preferred_group_nid(p, max_nid);
2666 	}
2667 
2668 	if (max_faults) {
2669 		/* Set the new preferred node */
2670 		if (max_nid != p->numa_preferred_nid)
2671 			sched_setnuma(p, max_nid);
2672 	}
2673 
2674 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2675 }
2676 
2677 static inline int get_numa_group(struct numa_group *grp)
2678 {
2679 	return refcount_inc_not_zero(&grp->refcount);
2680 }
2681 
2682 static inline void put_numa_group(struct numa_group *grp)
2683 {
2684 	if (refcount_dec_and_test(&grp->refcount))
2685 		kfree_rcu(grp, rcu);
2686 }
2687 
2688 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2689 			int *priv)
2690 {
2691 	struct numa_group *grp, *my_grp;
2692 	struct task_struct *tsk;
2693 	bool join = false;
2694 	int cpu = cpupid_to_cpu(cpupid);
2695 	int i;
2696 
2697 	if (unlikely(!deref_curr_numa_group(p))) {
2698 		unsigned int size = sizeof(struct numa_group) +
2699 				    NR_NUMA_HINT_FAULT_STATS *
2700 				    nr_node_ids * sizeof(unsigned long);
2701 
2702 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2703 		if (!grp)
2704 			return;
2705 
2706 		refcount_set(&grp->refcount, 1);
2707 		grp->active_nodes = 1;
2708 		grp->max_faults_cpu = 0;
2709 		spin_lock_init(&grp->lock);
2710 		grp->gid = p->pid;
2711 
2712 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2713 			grp->faults[i] = p->numa_faults[i];
2714 
2715 		grp->total_faults = p->total_numa_faults;
2716 
2717 		grp->nr_tasks++;
2718 		rcu_assign_pointer(p->numa_group, grp);
2719 	}
2720 
2721 	rcu_read_lock();
2722 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2723 
2724 	if (!cpupid_match_pid(tsk, cpupid))
2725 		goto no_join;
2726 
2727 	grp = rcu_dereference(tsk->numa_group);
2728 	if (!grp)
2729 		goto no_join;
2730 
2731 	my_grp = deref_curr_numa_group(p);
2732 	if (grp == my_grp)
2733 		goto no_join;
2734 
2735 	/*
2736 	 * Only join the other group if its bigger; if we're the bigger group,
2737 	 * the other task will join us.
2738 	 */
2739 	if (my_grp->nr_tasks > grp->nr_tasks)
2740 		goto no_join;
2741 
2742 	/*
2743 	 * Tie-break on the grp address.
2744 	 */
2745 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2746 		goto no_join;
2747 
2748 	/* Always join threads in the same process. */
2749 	if (tsk->mm == current->mm)
2750 		join = true;
2751 
2752 	/* Simple filter to avoid false positives due to PID collisions */
2753 	if (flags & TNF_SHARED)
2754 		join = true;
2755 
2756 	/* Update priv based on whether false sharing was detected */
2757 	*priv = !join;
2758 
2759 	if (join && !get_numa_group(grp))
2760 		goto no_join;
2761 
2762 	rcu_read_unlock();
2763 
2764 	if (!join)
2765 		return;
2766 
2767 	WARN_ON_ONCE(irqs_disabled());
2768 	double_lock_irq(&my_grp->lock, &grp->lock);
2769 
2770 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2771 		my_grp->faults[i] -= p->numa_faults[i];
2772 		grp->faults[i] += p->numa_faults[i];
2773 	}
2774 	my_grp->total_faults -= p->total_numa_faults;
2775 	grp->total_faults += p->total_numa_faults;
2776 
2777 	my_grp->nr_tasks--;
2778 	grp->nr_tasks++;
2779 
2780 	spin_unlock(&my_grp->lock);
2781 	spin_unlock_irq(&grp->lock);
2782 
2783 	rcu_assign_pointer(p->numa_group, grp);
2784 
2785 	put_numa_group(my_grp);
2786 	return;
2787 
2788 no_join:
2789 	rcu_read_unlock();
2790 	return;
2791 }
2792 
2793 /*
2794  * Get rid of NUMA statistics associated with a task (either current or dead).
2795  * If @final is set, the task is dead and has reached refcount zero, so we can
2796  * safely free all relevant data structures. Otherwise, there might be
2797  * concurrent reads from places like load balancing and procfs, and we should
2798  * reset the data back to default state without freeing ->numa_faults.
2799  */
2800 void task_numa_free(struct task_struct *p, bool final)
2801 {
2802 	/* safe: p either is current or is being freed by current */
2803 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2804 	unsigned long *numa_faults = p->numa_faults;
2805 	unsigned long flags;
2806 	int i;
2807 
2808 	if (!numa_faults)
2809 		return;
2810 
2811 	if (grp) {
2812 		spin_lock_irqsave(&grp->lock, flags);
2813 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2814 			grp->faults[i] -= p->numa_faults[i];
2815 		grp->total_faults -= p->total_numa_faults;
2816 
2817 		grp->nr_tasks--;
2818 		spin_unlock_irqrestore(&grp->lock, flags);
2819 		RCU_INIT_POINTER(p->numa_group, NULL);
2820 		put_numa_group(grp);
2821 	}
2822 
2823 	if (final) {
2824 		p->numa_faults = NULL;
2825 		kfree(numa_faults);
2826 	} else {
2827 		p->total_numa_faults = 0;
2828 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2829 			numa_faults[i] = 0;
2830 	}
2831 }
2832 
2833 /*
2834  * Got a PROT_NONE fault for a page on @node.
2835  */
2836 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2837 {
2838 	struct task_struct *p = current;
2839 	bool migrated = flags & TNF_MIGRATED;
2840 	int cpu_node = task_node(current);
2841 	int local = !!(flags & TNF_FAULT_LOCAL);
2842 	struct numa_group *ng;
2843 	int priv;
2844 
2845 	if (!static_branch_likely(&sched_numa_balancing))
2846 		return;
2847 
2848 	/* for example, ksmd faulting in a user's mm */
2849 	if (!p->mm)
2850 		return;
2851 
2852 	/*
2853 	 * NUMA faults statistics are unnecessary for the slow memory
2854 	 * node for memory tiering mode.
2855 	 */
2856 	if (!node_is_toptier(mem_node) &&
2857 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
2858 	     !cpupid_valid(last_cpupid)))
2859 		return;
2860 
2861 	/* Allocate buffer to track faults on a per-node basis */
2862 	if (unlikely(!p->numa_faults)) {
2863 		int size = sizeof(*p->numa_faults) *
2864 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2865 
2866 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2867 		if (!p->numa_faults)
2868 			return;
2869 
2870 		p->total_numa_faults = 0;
2871 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2872 	}
2873 
2874 	/*
2875 	 * First accesses are treated as private, otherwise consider accesses
2876 	 * to be private if the accessing pid has not changed
2877 	 */
2878 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2879 		priv = 1;
2880 	} else {
2881 		priv = cpupid_match_pid(p, last_cpupid);
2882 		if (!priv && !(flags & TNF_NO_GROUP))
2883 			task_numa_group(p, last_cpupid, flags, &priv);
2884 	}
2885 
2886 	/*
2887 	 * If a workload spans multiple NUMA nodes, a shared fault that
2888 	 * occurs wholly within the set of nodes that the workload is
2889 	 * actively using should be counted as local. This allows the
2890 	 * scan rate to slow down when a workload has settled down.
2891 	 */
2892 	ng = deref_curr_numa_group(p);
2893 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2894 				numa_is_active_node(cpu_node, ng) &&
2895 				numa_is_active_node(mem_node, ng))
2896 		local = 1;
2897 
2898 	/*
2899 	 * Retry to migrate task to preferred node periodically, in case it
2900 	 * previously failed, or the scheduler moved us.
2901 	 */
2902 	if (time_after(jiffies, p->numa_migrate_retry)) {
2903 		task_numa_placement(p);
2904 		numa_migrate_preferred(p);
2905 	}
2906 
2907 	if (migrated)
2908 		p->numa_pages_migrated += pages;
2909 	if (flags & TNF_MIGRATE_FAIL)
2910 		p->numa_faults_locality[2] += pages;
2911 
2912 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2913 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2914 	p->numa_faults_locality[local] += pages;
2915 }
2916 
2917 static void reset_ptenuma_scan(struct task_struct *p)
2918 {
2919 	/*
2920 	 * We only did a read acquisition of the mmap sem, so
2921 	 * p->mm->numa_scan_seq is written to without exclusive access
2922 	 * and the update is not guaranteed to be atomic. That's not
2923 	 * much of an issue though, since this is just used for
2924 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2925 	 * expensive, to avoid any form of compiler optimizations:
2926 	 */
2927 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2928 	p->mm->numa_scan_offset = 0;
2929 }
2930 
2931 static bool vma_is_accessed(struct vm_area_struct *vma)
2932 {
2933 	unsigned long pids;
2934 	/*
2935 	 * Allow unconditional access first two times, so that all the (pages)
2936 	 * of VMAs get prot_none fault introduced irrespective of accesses.
2937 	 * This is also done to avoid any side effect of task scanning
2938 	 * amplifying the unfairness of disjoint set of VMAs' access.
2939 	 */
2940 	if (READ_ONCE(current->mm->numa_scan_seq) < 2)
2941 		return true;
2942 
2943 	pids = vma->numab_state->access_pids[0] | vma->numab_state->access_pids[1];
2944 	return test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids);
2945 }
2946 
2947 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
2948 
2949 /*
2950  * The expensive part of numa migration is done from task_work context.
2951  * Triggered from task_tick_numa().
2952  */
2953 static void task_numa_work(struct callback_head *work)
2954 {
2955 	unsigned long migrate, next_scan, now = jiffies;
2956 	struct task_struct *p = current;
2957 	struct mm_struct *mm = p->mm;
2958 	u64 runtime = p->se.sum_exec_runtime;
2959 	struct vm_area_struct *vma;
2960 	unsigned long start, end;
2961 	unsigned long nr_pte_updates = 0;
2962 	long pages, virtpages;
2963 	struct vma_iterator vmi;
2964 
2965 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2966 
2967 	work->next = work;
2968 	/*
2969 	 * Who cares about NUMA placement when they're dying.
2970 	 *
2971 	 * NOTE: make sure not to dereference p->mm before this check,
2972 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2973 	 * without p->mm even though we still had it when we enqueued this
2974 	 * work.
2975 	 */
2976 	if (p->flags & PF_EXITING)
2977 		return;
2978 
2979 	if (!mm->numa_next_scan) {
2980 		mm->numa_next_scan = now +
2981 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2982 	}
2983 
2984 	/*
2985 	 * Enforce maximal scan/migration frequency..
2986 	 */
2987 	migrate = mm->numa_next_scan;
2988 	if (time_before(now, migrate))
2989 		return;
2990 
2991 	if (p->numa_scan_period == 0) {
2992 		p->numa_scan_period_max = task_scan_max(p);
2993 		p->numa_scan_period = task_scan_start(p);
2994 	}
2995 
2996 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2997 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
2998 		return;
2999 
3000 	/*
3001 	 * Delay this task enough that another task of this mm will likely win
3002 	 * the next time around.
3003 	 */
3004 	p->node_stamp += 2 * TICK_NSEC;
3005 
3006 	start = mm->numa_scan_offset;
3007 	pages = sysctl_numa_balancing_scan_size;
3008 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3009 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3010 	if (!pages)
3011 		return;
3012 
3013 
3014 	if (!mmap_read_trylock(mm))
3015 		return;
3016 	vma_iter_init(&vmi, mm, start);
3017 	vma = vma_next(&vmi);
3018 	if (!vma) {
3019 		reset_ptenuma_scan(p);
3020 		start = 0;
3021 		vma_iter_set(&vmi, start);
3022 		vma = vma_next(&vmi);
3023 	}
3024 
3025 	do {
3026 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3027 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3028 			continue;
3029 		}
3030 
3031 		/*
3032 		 * Shared library pages mapped by multiple processes are not
3033 		 * migrated as it is expected they are cache replicated. Avoid
3034 		 * hinting faults in read-only file-backed mappings or the vdso
3035 		 * as migrating the pages will be of marginal benefit.
3036 		 */
3037 		if (!vma->vm_mm ||
3038 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
3039 			continue;
3040 
3041 		/*
3042 		 * Skip inaccessible VMAs to avoid any confusion between
3043 		 * PROT_NONE and NUMA hinting ptes
3044 		 */
3045 		if (!vma_is_accessible(vma))
3046 			continue;
3047 
3048 		/* Initialise new per-VMA NUMAB state. */
3049 		if (!vma->numab_state) {
3050 			vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3051 				GFP_KERNEL);
3052 			if (!vma->numab_state)
3053 				continue;
3054 
3055 			vma->numab_state->next_scan = now +
3056 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3057 
3058 			/* Reset happens after 4 times scan delay of scan start */
3059 			vma->numab_state->next_pid_reset =  vma->numab_state->next_scan +
3060 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3061 		}
3062 
3063 		/*
3064 		 * Scanning the VMA's of short lived tasks add more overhead. So
3065 		 * delay the scan for new VMAs.
3066 		 */
3067 		if (mm->numa_scan_seq && time_before(jiffies,
3068 						vma->numab_state->next_scan))
3069 			continue;
3070 
3071 		/* Do not scan the VMA if task has not accessed */
3072 		if (!vma_is_accessed(vma))
3073 			continue;
3074 
3075 		/*
3076 		 * RESET access PIDs regularly for old VMAs. Resetting after checking
3077 		 * vma for recent access to avoid clearing PID info before access..
3078 		 */
3079 		if (mm->numa_scan_seq &&
3080 				time_after(jiffies, vma->numab_state->next_pid_reset)) {
3081 			vma->numab_state->next_pid_reset = vma->numab_state->next_pid_reset +
3082 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3083 			vma->numab_state->access_pids[0] = READ_ONCE(vma->numab_state->access_pids[1]);
3084 			vma->numab_state->access_pids[1] = 0;
3085 		}
3086 
3087 		do {
3088 			start = max(start, vma->vm_start);
3089 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3090 			end = min(end, vma->vm_end);
3091 			nr_pte_updates = change_prot_numa(vma, start, end);
3092 
3093 			/*
3094 			 * Try to scan sysctl_numa_balancing_size worth of
3095 			 * hpages that have at least one present PTE that
3096 			 * is not already pte-numa. If the VMA contains
3097 			 * areas that are unused or already full of prot_numa
3098 			 * PTEs, scan up to virtpages, to skip through those
3099 			 * areas faster.
3100 			 */
3101 			if (nr_pte_updates)
3102 				pages -= (end - start) >> PAGE_SHIFT;
3103 			virtpages -= (end - start) >> PAGE_SHIFT;
3104 
3105 			start = end;
3106 			if (pages <= 0 || virtpages <= 0)
3107 				goto out;
3108 
3109 			cond_resched();
3110 		} while (end != vma->vm_end);
3111 	} for_each_vma(vmi, vma);
3112 
3113 out:
3114 	/*
3115 	 * It is possible to reach the end of the VMA list but the last few
3116 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3117 	 * would find the !migratable VMA on the next scan but not reset the
3118 	 * scanner to the start so check it now.
3119 	 */
3120 	if (vma)
3121 		mm->numa_scan_offset = start;
3122 	else
3123 		reset_ptenuma_scan(p);
3124 	mmap_read_unlock(mm);
3125 
3126 	/*
3127 	 * Make sure tasks use at least 32x as much time to run other code
3128 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3129 	 * Usually update_task_scan_period slows down scanning enough; on an
3130 	 * overloaded system we need to limit overhead on a per task basis.
3131 	 */
3132 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3133 		u64 diff = p->se.sum_exec_runtime - runtime;
3134 		p->node_stamp += 32 * diff;
3135 	}
3136 }
3137 
3138 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3139 {
3140 	int mm_users = 0;
3141 	struct mm_struct *mm = p->mm;
3142 
3143 	if (mm) {
3144 		mm_users = atomic_read(&mm->mm_users);
3145 		if (mm_users == 1) {
3146 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3147 			mm->numa_scan_seq = 0;
3148 		}
3149 	}
3150 	p->node_stamp			= 0;
3151 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3152 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3153 	p->numa_migrate_retry		= 0;
3154 	/* Protect against double add, see task_tick_numa and task_numa_work */
3155 	p->numa_work.next		= &p->numa_work;
3156 	p->numa_faults			= NULL;
3157 	p->numa_pages_migrated		= 0;
3158 	p->total_numa_faults		= 0;
3159 	RCU_INIT_POINTER(p->numa_group, NULL);
3160 	p->last_task_numa_placement	= 0;
3161 	p->last_sum_exec_runtime	= 0;
3162 
3163 	init_task_work(&p->numa_work, task_numa_work);
3164 
3165 	/* New address space, reset the preferred nid */
3166 	if (!(clone_flags & CLONE_VM)) {
3167 		p->numa_preferred_nid = NUMA_NO_NODE;
3168 		return;
3169 	}
3170 
3171 	/*
3172 	 * New thread, keep existing numa_preferred_nid which should be copied
3173 	 * already by arch_dup_task_struct but stagger when scans start.
3174 	 */
3175 	if (mm) {
3176 		unsigned int delay;
3177 
3178 		delay = min_t(unsigned int, task_scan_max(current),
3179 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3180 		delay += 2 * TICK_NSEC;
3181 		p->node_stamp = delay;
3182 	}
3183 }
3184 
3185 /*
3186  * Drive the periodic memory faults..
3187  */
3188 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3189 {
3190 	struct callback_head *work = &curr->numa_work;
3191 	u64 period, now;
3192 
3193 	/*
3194 	 * We don't care about NUMA placement if we don't have memory.
3195 	 */
3196 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3197 		return;
3198 
3199 	/*
3200 	 * Using runtime rather than walltime has the dual advantage that
3201 	 * we (mostly) drive the selection from busy threads and that the
3202 	 * task needs to have done some actual work before we bother with
3203 	 * NUMA placement.
3204 	 */
3205 	now = curr->se.sum_exec_runtime;
3206 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3207 
3208 	if (now > curr->node_stamp + period) {
3209 		if (!curr->node_stamp)
3210 			curr->numa_scan_period = task_scan_start(curr);
3211 		curr->node_stamp += period;
3212 
3213 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3214 			task_work_add(curr, work, TWA_RESUME);
3215 	}
3216 }
3217 
3218 static void update_scan_period(struct task_struct *p, int new_cpu)
3219 {
3220 	int src_nid = cpu_to_node(task_cpu(p));
3221 	int dst_nid = cpu_to_node(new_cpu);
3222 
3223 	if (!static_branch_likely(&sched_numa_balancing))
3224 		return;
3225 
3226 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3227 		return;
3228 
3229 	if (src_nid == dst_nid)
3230 		return;
3231 
3232 	/*
3233 	 * Allow resets if faults have been trapped before one scan
3234 	 * has completed. This is most likely due to a new task that
3235 	 * is pulled cross-node due to wakeups or load balancing.
3236 	 */
3237 	if (p->numa_scan_seq) {
3238 		/*
3239 		 * Avoid scan adjustments if moving to the preferred
3240 		 * node or if the task was not previously running on
3241 		 * the preferred node.
3242 		 */
3243 		if (dst_nid == p->numa_preferred_nid ||
3244 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3245 			src_nid != p->numa_preferred_nid))
3246 			return;
3247 	}
3248 
3249 	p->numa_scan_period = task_scan_start(p);
3250 }
3251 
3252 #else
3253 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3254 {
3255 }
3256 
3257 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3258 {
3259 }
3260 
3261 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3262 {
3263 }
3264 
3265 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3266 {
3267 }
3268 
3269 #endif /* CONFIG_NUMA_BALANCING */
3270 
3271 static void
3272 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3273 {
3274 	update_load_add(&cfs_rq->load, se->load.weight);
3275 #ifdef CONFIG_SMP
3276 	if (entity_is_task(se)) {
3277 		struct rq *rq = rq_of(cfs_rq);
3278 
3279 		account_numa_enqueue(rq, task_of(se));
3280 		list_add(&se->group_node, &rq->cfs_tasks);
3281 	}
3282 #endif
3283 	cfs_rq->nr_running++;
3284 	if (se_is_idle(se))
3285 		cfs_rq->idle_nr_running++;
3286 }
3287 
3288 static void
3289 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3290 {
3291 	update_load_sub(&cfs_rq->load, se->load.weight);
3292 #ifdef CONFIG_SMP
3293 	if (entity_is_task(se)) {
3294 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3295 		list_del_init(&se->group_node);
3296 	}
3297 #endif
3298 	cfs_rq->nr_running--;
3299 	if (se_is_idle(se))
3300 		cfs_rq->idle_nr_running--;
3301 }
3302 
3303 /*
3304  * Signed add and clamp on underflow.
3305  *
3306  * Explicitly do a load-store to ensure the intermediate value never hits
3307  * memory. This allows lockless observations without ever seeing the negative
3308  * values.
3309  */
3310 #define add_positive(_ptr, _val) do {                           \
3311 	typeof(_ptr) ptr = (_ptr);                              \
3312 	typeof(_val) val = (_val);                              \
3313 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3314 								\
3315 	res = var + val;                                        \
3316 								\
3317 	if (val < 0 && res > var)                               \
3318 		res = 0;                                        \
3319 								\
3320 	WRITE_ONCE(*ptr, res);                                  \
3321 } while (0)
3322 
3323 /*
3324  * Unsigned subtract and clamp on underflow.
3325  *
3326  * Explicitly do a load-store to ensure the intermediate value never hits
3327  * memory. This allows lockless observations without ever seeing the negative
3328  * values.
3329  */
3330 #define sub_positive(_ptr, _val) do {				\
3331 	typeof(_ptr) ptr = (_ptr);				\
3332 	typeof(*ptr) val = (_val);				\
3333 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3334 	res = var - val;					\
3335 	if (res > var)						\
3336 		res = 0;					\
3337 	WRITE_ONCE(*ptr, res);					\
3338 } while (0)
3339 
3340 /*
3341  * Remove and clamp on negative, from a local variable.
3342  *
3343  * A variant of sub_positive(), which does not use explicit load-store
3344  * and is thus optimized for local variable updates.
3345  */
3346 #define lsub_positive(_ptr, _val) do {				\
3347 	typeof(_ptr) ptr = (_ptr);				\
3348 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3349 } while (0)
3350 
3351 #ifdef CONFIG_SMP
3352 static inline void
3353 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3354 {
3355 	cfs_rq->avg.load_avg += se->avg.load_avg;
3356 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3357 }
3358 
3359 static inline void
3360 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3361 {
3362 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3363 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3364 	/* See update_cfs_rq_load_avg() */
3365 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3366 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3367 }
3368 #else
3369 static inline void
3370 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3371 static inline void
3372 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3373 #endif
3374 
3375 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3376 			    unsigned long weight)
3377 {
3378 	if (se->on_rq) {
3379 		/* commit outstanding execution time */
3380 		if (cfs_rq->curr == se)
3381 			update_curr(cfs_rq);
3382 		update_load_sub(&cfs_rq->load, se->load.weight);
3383 	}
3384 	dequeue_load_avg(cfs_rq, se);
3385 
3386 	update_load_set(&se->load, weight);
3387 
3388 #ifdef CONFIG_SMP
3389 	do {
3390 		u32 divider = get_pelt_divider(&se->avg);
3391 
3392 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3393 	} while (0);
3394 #endif
3395 
3396 	enqueue_load_avg(cfs_rq, se);
3397 	if (se->on_rq)
3398 		update_load_add(&cfs_rq->load, se->load.weight);
3399 
3400 }
3401 
3402 void reweight_task(struct task_struct *p, int prio)
3403 {
3404 	struct sched_entity *se = &p->se;
3405 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3406 	struct load_weight *load = &se->load;
3407 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3408 
3409 	reweight_entity(cfs_rq, se, weight);
3410 	load->inv_weight = sched_prio_to_wmult[prio];
3411 }
3412 
3413 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3414 
3415 #ifdef CONFIG_FAIR_GROUP_SCHED
3416 #ifdef CONFIG_SMP
3417 /*
3418  * All this does is approximate the hierarchical proportion which includes that
3419  * global sum we all love to hate.
3420  *
3421  * That is, the weight of a group entity, is the proportional share of the
3422  * group weight based on the group runqueue weights. That is:
3423  *
3424  *                     tg->weight * grq->load.weight
3425  *   ge->load.weight = -----------------------------               (1)
3426  *                       \Sum grq->load.weight
3427  *
3428  * Now, because computing that sum is prohibitively expensive to compute (been
3429  * there, done that) we approximate it with this average stuff. The average
3430  * moves slower and therefore the approximation is cheaper and more stable.
3431  *
3432  * So instead of the above, we substitute:
3433  *
3434  *   grq->load.weight -> grq->avg.load_avg                         (2)
3435  *
3436  * which yields the following:
3437  *
3438  *                     tg->weight * grq->avg.load_avg
3439  *   ge->load.weight = ------------------------------              (3)
3440  *                             tg->load_avg
3441  *
3442  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3443  *
3444  * That is shares_avg, and it is right (given the approximation (2)).
3445  *
3446  * The problem with it is that because the average is slow -- it was designed
3447  * to be exactly that of course -- this leads to transients in boundary
3448  * conditions. In specific, the case where the group was idle and we start the
3449  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3450  * yielding bad latency etc..
3451  *
3452  * Now, in that special case (1) reduces to:
3453  *
3454  *                     tg->weight * grq->load.weight
3455  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3456  *                         grp->load.weight
3457  *
3458  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3459  *
3460  * So what we do is modify our approximation (3) to approach (4) in the (near)
3461  * UP case, like:
3462  *
3463  *   ge->load.weight =
3464  *
3465  *              tg->weight * grq->load.weight
3466  *     ---------------------------------------------------         (5)
3467  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3468  *
3469  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3470  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3471  *
3472  *
3473  *                     tg->weight * grq->load.weight
3474  *   ge->load.weight = -----------------------------		   (6)
3475  *                             tg_load_avg'
3476  *
3477  * Where:
3478  *
3479  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3480  *                  max(grq->load.weight, grq->avg.load_avg)
3481  *
3482  * And that is shares_weight and is icky. In the (near) UP case it approaches
3483  * (4) while in the normal case it approaches (3). It consistently
3484  * overestimates the ge->load.weight and therefore:
3485  *
3486  *   \Sum ge->load.weight >= tg->weight
3487  *
3488  * hence icky!
3489  */
3490 static long calc_group_shares(struct cfs_rq *cfs_rq)
3491 {
3492 	long tg_weight, tg_shares, load, shares;
3493 	struct task_group *tg = cfs_rq->tg;
3494 
3495 	tg_shares = READ_ONCE(tg->shares);
3496 
3497 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3498 
3499 	tg_weight = atomic_long_read(&tg->load_avg);
3500 
3501 	/* Ensure tg_weight >= load */
3502 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3503 	tg_weight += load;
3504 
3505 	shares = (tg_shares * load);
3506 	if (tg_weight)
3507 		shares /= tg_weight;
3508 
3509 	/*
3510 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3511 	 * of a group with small tg->shares value. It is a floor value which is
3512 	 * assigned as a minimum load.weight to the sched_entity representing
3513 	 * the group on a CPU.
3514 	 *
3515 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3516 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3517 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3518 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3519 	 * instead of 0.
3520 	 */
3521 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3522 }
3523 #endif /* CONFIG_SMP */
3524 
3525 /*
3526  * Recomputes the group entity based on the current state of its group
3527  * runqueue.
3528  */
3529 static void update_cfs_group(struct sched_entity *se)
3530 {
3531 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3532 	long shares;
3533 
3534 	if (!gcfs_rq)
3535 		return;
3536 
3537 	if (throttled_hierarchy(gcfs_rq))
3538 		return;
3539 
3540 #ifndef CONFIG_SMP
3541 	shares = READ_ONCE(gcfs_rq->tg->shares);
3542 
3543 	if (likely(se->load.weight == shares))
3544 		return;
3545 #else
3546 	shares   = calc_group_shares(gcfs_rq);
3547 #endif
3548 
3549 	reweight_entity(cfs_rq_of(se), se, shares);
3550 }
3551 
3552 #else /* CONFIG_FAIR_GROUP_SCHED */
3553 static inline void update_cfs_group(struct sched_entity *se)
3554 {
3555 }
3556 #endif /* CONFIG_FAIR_GROUP_SCHED */
3557 
3558 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3559 {
3560 	struct rq *rq = rq_of(cfs_rq);
3561 
3562 	if (&rq->cfs == cfs_rq) {
3563 		/*
3564 		 * There are a few boundary cases this might miss but it should
3565 		 * get called often enough that that should (hopefully) not be
3566 		 * a real problem.
3567 		 *
3568 		 * It will not get called when we go idle, because the idle
3569 		 * thread is a different class (!fair), nor will the utilization
3570 		 * number include things like RT tasks.
3571 		 *
3572 		 * As is, the util number is not freq-invariant (we'd have to
3573 		 * implement arch_scale_freq_capacity() for that).
3574 		 *
3575 		 * See cpu_util_cfs().
3576 		 */
3577 		cpufreq_update_util(rq, flags);
3578 	}
3579 }
3580 
3581 #ifdef CONFIG_SMP
3582 static inline bool load_avg_is_decayed(struct sched_avg *sa)
3583 {
3584 	if (sa->load_sum)
3585 		return false;
3586 
3587 	if (sa->util_sum)
3588 		return false;
3589 
3590 	if (sa->runnable_sum)
3591 		return false;
3592 
3593 	/*
3594 	 * _avg must be null when _sum are null because _avg = _sum / divider
3595 	 * Make sure that rounding and/or propagation of PELT values never
3596 	 * break this.
3597 	 */
3598 	SCHED_WARN_ON(sa->load_avg ||
3599 		      sa->util_avg ||
3600 		      sa->runnable_avg);
3601 
3602 	return true;
3603 }
3604 
3605 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3606 {
3607 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
3608 				 cfs_rq->last_update_time_copy);
3609 }
3610 #ifdef CONFIG_FAIR_GROUP_SCHED
3611 /*
3612  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3613  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3614  * bottom-up, we only have to test whether the cfs_rq before us on the list
3615  * is our child.
3616  * If cfs_rq is not on the list, test whether a child needs its to be added to
3617  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
3618  */
3619 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3620 {
3621 	struct cfs_rq *prev_cfs_rq;
3622 	struct list_head *prev;
3623 
3624 	if (cfs_rq->on_list) {
3625 		prev = cfs_rq->leaf_cfs_rq_list.prev;
3626 	} else {
3627 		struct rq *rq = rq_of(cfs_rq);
3628 
3629 		prev = rq->tmp_alone_branch;
3630 	}
3631 
3632 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3633 
3634 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3635 }
3636 
3637 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3638 {
3639 	if (cfs_rq->load.weight)
3640 		return false;
3641 
3642 	if (!load_avg_is_decayed(&cfs_rq->avg))
3643 		return false;
3644 
3645 	if (child_cfs_rq_on_list(cfs_rq))
3646 		return false;
3647 
3648 	return true;
3649 }
3650 
3651 /**
3652  * update_tg_load_avg - update the tg's load avg
3653  * @cfs_rq: the cfs_rq whose avg changed
3654  *
3655  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3656  * However, because tg->load_avg is a global value there are performance
3657  * considerations.
3658  *
3659  * In order to avoid having to look at the other cfs_rq's, we use a
3660  * differential update where we store the last value we propagated. This in
3661  * turn allows skipping updates if the differential is 'small'.
3662  *
3663  * Updating tg's load_avg is necessary before update_cfs_share().
3664  */
3665 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3666 {
3667 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3668 
3669 	/*
3670 	 * No need to update load_avg for root_task_group as it is not used.
3671 	 */
3672 	if (cfs_rq->tg == &root_task_group)
3673 		return;
3674 
3675 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3676 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3677 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3678 	}
3679 }
3680 
3681 /*
3682  * Called within set_task_rq() right before setting a task's CPU. The
3683  * caller only guarantees p->pi_lock is held; no other assumptions,
3684  * including the state of rq->lock, should be made.
3685  */
3686 void set_task_rq_fair(struct sched_entity *se,
3687 		      struct cfs_rq *prev, struct cfs_rq *next)
3688 {
3689 	u64 p_last_update_time;
3690 	u64 n_last_update_time;
3691 
3692 	if (!sched_feat(ATTACH_AGE_LOAD))
3693 		return;
3694 
3695 	/*
3696 	 * We are supposed to update the task to "current" time, then its up to
3697 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3698 	 * getting what current time is, so simply throw away the out-of-date
3699 	 * time. This will result in the wakee task is less decayed, but giving
3700 	 * the wakee more load sounds not bad.
3701 	 */
3702 	if (!(se->avg.last_update_time && prev))
3703 		return;
3704 
3705 	p_last_update_time = cfs_rq_last_update_time(prev);
3706 	n_last_update_time = cfs_rq_last_update_time(next);
3707 
3708 	__update_load_avg_blocked_se(p_last_update_time, se);
3709 	se->avg.last_update_time = n_last_update_time;
3710 }
3711 
3712 /*
3713  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3714  * propagate its contribution. The key to this propagation is the invariant
3715  * that for each group:
3716  *
3717  *   ge->avg == grq->avg						(1)
3718  *
3719  * _IFF_ we look at the pure running and runnable sums. Because they
3720  * represent the very same entity, just at different points in the hierarchy.
3721  *
3722  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3723  * and simply copies the running/runnable sum over (but still wrong, because
3724  * the group entity and group rq do not have their PELT windows aligned).
3725  *
3726  * However, update_tg_cfs_load() is more complex. So we have:
3727  *
3728  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3729  *
3730  * And since, like util, the runnable part should be directly transferable,
3731  * the following would _appear_ to be the straight forward approach:
3732  *
3733  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3734  *
3735  * And per (1) we have:
3736  *
3737  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3738  *
3739  * Which gives:
3740  *
3741  *                      ge->load.weight * grq->avg.load_avg
3742  *   ge->avg.load_avg = -----------------------------------		(4)
3743  *                               grq->load.weight
3744  *
3745  * Except that is wrong!
3746  *
3747  * Because while for entities historical weight is not important and we
3748  * really only care about our future and therefore can consider a pure
3749  * runnable sum, runqueues can NOT do this.
3750  *
3751  * We specifically want runqueues to have a load_avg that includes
3752  * historical weights. Those represent the blocked load, the load we expect
3753  * to (shortly) return to us. This only works by keeping the weights as
3754  * integral part of the sum. We therefore cannot decompose as per (3).
3755  *
3756  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3757  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3758  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3759  * runnable section of these tasks overlap (or not). If they were to perfectly
3760  * align the rq as a whole would be runnable 2/3 of the time. If however we
3761  * always have at least 1 runnable task, the rq as a whole is always runnable.
3762  *
3763  * So we'll have to approximate.. :/
3764  *
3765  * Given the constraint:
3766  *
3767  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3768  *
3769  * We can construct a rule that adds runnable to a rq by assuming minimal
3770  * overlap.
3771  *
3772  * On removal, we'll assume each task is equally runnable; which yields:
3773  *
3774  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3775  *
3776  * XXX: only do this for the part of runnable > running ?
3777  *
3778  */
3779 static inline void
3780 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3781 {
3782 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
3783 	u32 new_sum, divider;
3784 
3785 	/* Nothing to update */
3786 	if (!delta_avg)
3787 		return;
3788 
3789 	/*
3790 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3791 	 * See ___update_load_avg() for details.
3792 	 */
3793 	divider = get_pelt_divider(&cfs_rq->avg);
3794 
3795 
3796 	/* Set new sched_entity's utilization */
3797 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3798 	new_sum = se->avg.util_avg * divider;
3799 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
3800 	se->avg.util_sum = new_sum;
3801 
3802 	/* Update parent cfs_rq utilization */
3803 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
3804 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
3805 
3806 	/* See update_cfs_rq_load_avg() */
3807 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3808 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
3809 }
3810 
3811 static inline void
3812 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3813 {
3814 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3815 	u32 new_sum, divider;
3816 
3817 	/* Nothing to update */
3818 	if (!delta_avg)
3819 		return;
3820 
3821 	/*
3822 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3823 	 * See ___update_load_avg() for details.
3824 	 */
3825 	divider = get_pelt_divider(&cfs_rq->avg);
3826 
3827 	/* Set new sched_entity's runnable */
3828 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3829 	new_sum = se->avg.runnable_avg * divider;
3830 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
3831 	se->avg.runnable_sum = new_sum;
3832 
3833 	/* Update parent cfs_rq runnable */
3834 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
3835 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
3836 	/* See update_cfs_rq_load_avg() */
3837 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3838 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
3839 }
3840 
3841 static inline void
3842 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3843 {
3844 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3845 	unsigned long load_avg;
3846 	u64 load_sum = 0;
3847 	s64 delta_sum;
3848 	u32 divider;
3849 
3850 	if (!runnable_sum)
3851 		return;
3852 
3853 	gcfs_rq->prop_runnable_sum = 0;
3854 
3855 	/*
3856 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3857 	 * See ___update_load_avg() for details.
3858 	 */
3859 	divider = get_pelt_divider(&cfs_rq->avg);
3860 
3861 	if (runnable_sum >= 0) {
3862 		/*
3863 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3864 		 * the CPU is saturated running == runnable.
3865 		 */
3866 		runnable_sum += se->avg.load_sum;
3867 		runnable_sum = min_t(long, runnable_sum, divider);
3868 	} else {
3869 		/*
3870 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3871 		 * assuming all tasks are equally runnable.
3872 		 */
3873 		if (scale_load_down(gcfs_rq->load.weight)) {
3874 			load_sum = div_u64(gcfs_rq->avg.load_sum,
3875 				scale_load_down(gcfs_rq->load.weight));
3876 		}
3877 
3878 		/* But make sure to not inflate se's runnable */
3879 		runnable_sum = min(se->avg.load_sum, load_sum);
3880 	}
3881 
3882 	/*
3883 	 * runnable_sum can't be lower than running_sum
3884 	 * Rescale running sum to be in the same range as runnable sum
3885 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3886 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3887 	 */
3888 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3889 	runnable_sum = max(runnable_sum, running_sum);
3890 
3891 	load_sum = se_weight(se) * runnable_sum;
3892 	load_avg = div_u64(load_sum, divider);
3893 
3894 	delta_avg = load_avg - se->avg.load_avg;
3895 	if (!delta_avg)
3896 		return;
3897 
3898 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3899 
3900 	se->avg.load_sum = runnable_sum;
3901 	se->avg.load_avg = load_avg;
3902 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3903 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3904 	/* See update_cfs_rq_load_avg() */
3905 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3906 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3907 }
3908 
3909 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3910 {
3911 	cfs_rq->propagate = 1;
3912 	cfs_rq->prop_runnable_sum += runnable_sum;
3913 }
3914 
3915 /* Update task and its cfs_rq load average */
3916 static inline int propagate_entity_load_avg(struct sched_entity *se)
3917 {
3918 	struct cfs_rq *cfs_rq, *gcfs_rq;
3919 
3920 	if (entity_is_task(se))
3921 		return 0;
3922 
3923 	gcfs_rq = group_cfs_rq(se);
3924 	if (!gcfs_rq->propagate)
3925 		return 0;
3926 
3927 	gcfs_rq->propagate = 0;
3928 
3929 	cfs_rq = cfs_rq_of(se);
3930 
3931 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3932 
3933 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3934 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3935 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3936 
3937 	trace_pelt_cfs_tp(cfs_rq);
3938 	trace_pelt_se_tp(se);
3939 
3940 	return 1;
3941 }
3942 
3943 /*
3944  * Check if we need to update the load and the utilization of a blocked
3945  * group_entity:
3946  */
3947 static inline bool skip_blocked_update(struct sched_entity *se)
3948 {
3949 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3950 
3951 	/*
3952 	 * If sched_entity still have not zero load or utilization, we have to
3953 	 * decay it:
3954 	 */
3955 	if (se->avg.load_avg || se->avg.util_avg)
3956 		return false;
3957 
3958 	/*
3959 	 * If there is a pending propagation, we have to update the load and
3960 	 * the utilization of the sched_entity:
3961 	 */
3962 	if (gcfs_rq->propagate)
3963 		return false;
3964 
3965 	/*
3966 	 * Otherwise, the load and the utilization of the sched_entity is
3967 	 * already zero and there is no pending propagation, so it will be a
3968 	 * waste of time to try to decay it:
3969 	 */
3970 	return true;
3971 }
3972 
3973 #else /* CONFIG_FAIR_GROUP_SCHED */
3974 
3975 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3976 
3977 static inline int propagate_entity_load_avg(struct sched_entity *se)
3978 {
3979 	return 0;
3980 }
3981 
3982 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3983 
3984 #endif /* CONFIG_FAIR_GROUP_SCHED */
3985 
3986 #ifdef CONFIG_NO_HZ_COMMON
3987 static inline void migrate_se_pelt_lag(struct sched_entity *se)
3988 {
3989 	u64 throttled = 0, now, lut;
3990 	struct cfs_rq *cfs_rq;
3991 	struct rq *rq;
3992 	bool is_idle;
3993 
3994 	if (load_avg_is_decayed(&se->avg))
3995 		return;
3996 
3997 	cfs_rq = cfs_rq_of(se);
3998 	rq = rq_of(cfs_rq);
3999 
4000 	rcu_read_lock();
4001 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4002 	rcu_read_unlock();
4003 
4004 	/*
4005 	 * The lag estimation comes with a cost we don't want to pay all the
4006 	 * time. Hence, limiting to the case where the source CPU is idle and
4007 	 * we know we are at the greatest risk to have an outdated clock.
4008 	 */
4009 	if (!is_idle)
4010 		return;
4011 
4012 	/*
4013 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4014 	 *
4015 	 *   last_update_time (the cfs_rq's last_update_time)
4016 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4017 	 *      = rq_clock_pelt()@cfs_rq_idle
4018 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4019 	 *
4020 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4021 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4022 	 *
4023 	 *   rq_idle_lag (delta between now and rq's update)
4024 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4025 	 *
4026 	 * We can then write:
4027 	 *
4028 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4029 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4030 	 * Where:
4031 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4032 	 *      rq_clock()@rq_idle      is rq->clock_idle
4033 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4034 	 *                              is cfs_rq->throttled_pelt_idle
4035 	 */
4036 
4037 #ifdef CONFIG_CFS_BANDWIDTH
4038 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4039 	/* The clock has been stopped for throttling */
4040 	if (throttled == U64_MAX)
4041 		return;
4042 #endif
4043 	now = u64_u32_load(rq->clock_pelt_idle);
4044 	/*
4045 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4046 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4047 	 * which lead to an underestimation. The opposite would lead to an
4048 	 * overestimation.
4049 	 */
4050 	smp_rmb();
4051 	lut = cfs_rq_last_update_time(cfs_rq);
4052 
4053 	now -= throttled;
4054 	if (now < lut)
4055 		/*
4056 		 * cfs_rq->avg.last_update_time is more recent than our
4057 		 * estimation, let's use it.
4058 		 */
4059 		now = lut;
4060 	else
4061 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4062 
4063 	__update_load_avg_blocked_se(now, se);
4064 }
4065 #else
4066 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4067 #endif
4068 
4069 /**
4070  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4071  * @now: current time, as per cfs_rq_clock_pelt()
4072  * @cfs_rq: cfs_rq to update
4073  *
4074  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4075  * avg. The immediate corollary is that all (fair) tasks must be attached.
4076  *
4077  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4078  *
4079  * Return: true if the load decayed or we removed load.
4080  *
4081  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4082  * call update_tg_load_avg() when this function returns true.
4083  */
4084 static inline int
4085 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4086 {
4087 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4088 	struct sched_avg *sa = &cfs_rq->avg;
4089 	int decayed = 0;
4090 
4091 	if (cfs_rq->removed.nr) {
4092 		unsigned long r;
4093 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4094 
4095 		raw_spin_lock(&cfs_rq->removed.lock);
4096 		swap(cfs_rq->removed.util_avg, removed_util);
4097 		swap(cfs_rq->removed.load_avg, removed_load);
4098 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4099 		cfs_rq->removed.nr = 0;
4100 		raw_spin_unlock(&cfs_rq->removed.lock);
4101 
4102 		r = removed_load;
4103 		sub_positive(&sa->load_avg, r);
4104 		sub_positive(&sa->load_sum, r * divider);
4105 		/* See sa->util_sum below */
4106 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4107 
4108 		r = removed_util;
4109 		sub_positive(&sa->util_avg, r);
4110 		sub_positive(&sa->util_sum, r * divider);
4111 		/*
4112 		 * Because of rounding, se->util_sum might ends up being +1 more than
4113 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4114 		 * a lot of tasks with the rounding problem between 2 updates of
4115 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4116 		 * cfs_util_avg is not.
4117 		 * Check that util_sum is still above its lower bound for the new
4118 		 * util_avg. Given that period_contrib might have moved since the last
4119 		 * sync, we are only sure that util_sum must be above or equal to
4120 		 *    util_avg * minimum possible divider
4121 		 */
4122 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4123 
4124 		r = removed_runnable;
4125 		sub_positive(&sa->runnable_avg, r);
4126 		sub_positive(&sa->runnable_sum, r * divider);
4127 		/* See sa->util_sum above */
4128 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4129 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4130 
4131 		/*
4132 		 * removed_runnable is the unweighted version of removed_load so we
4133 		 * can use it to estimate removed_load_sum.
4134 		 */
4135 		add_tg_cfs_propagate(cfs_rq,
4136 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4137 
4138 		decayed = 1;
4139 	}
4140 
4141 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4142 	u64_u32_store_copy(sa->last_update_time,
4143 			   cfs_rq->last_update_time_copy,
4144 			   sa->last_update_time);
4145 	return decayed;
4146 }
4147 
4148 /**
4149  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4150  * @cfs_rq: cfs_rq to attach to
4151  * @se: sched_entity to attach
4152  *
4153  * Must call update_cfs_rq_load_avg() before this, since we rely on
4154  * cfs_rq->avg.last_update_time being current.
4155  */
4156 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4157 {
4158 	/*
4159 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4160 	 * See ___update_load_avg() for details.
4161 	 */
4162 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4163 
4164 	/*
4165 	 * When we attach the @se to the @cfs_rq, we must align the decay
4166 	 * window because without that, really weird and wonderful things can
4167 	 * happen.
4168 	 *
4169 	 * XXX illustrate
4170 	 */
4171 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4172 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4173 
4174 	/*
4175 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4176 	 * period_contrib. This isn't strictly correct, but since we're
4177 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4178 	 * _sum a little.
4179 	 */
4180 	se->avg.util_sum = se->avg.util_avg * divider;
4181 
4182 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4183 
4184 	se->avg.load_sum = se->avg.load_avg * divider;
4185 	if (se_weight(se) < se->avg.load_sum)
4186 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4187 	else
4188 		se->avg.load_sum = 1;
4189 
4190 	enqueue_load_avg(cfs_rq, se);
4191 	cfs_rq->avg.util_avg += se->avg.util_avg;
4192 	cfs_rq->avg.util_sum += se->avg.util_sum;
4193 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4194 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4195 
4196 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4197 
4198 	cfs_rq_util_change(cfs_rq, 0);
4199 
4200 	trace_pelt_cfs_tp(cfs_rq);
4201 }
4202 
4203 /**
4204  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4205  * @cfs_rq: cfs_rq to detach from
4206  * @se: sched_entity to detach
4207  *
4208  * Must call update_cfs_rq_load_avg() before this, since we rely on
4209  * cfs_rq->avg.last_update_time being current.
4210  */
4211 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4212 {
4213 	dequeue_load_avg(cfs_rq, se);
4214 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4215 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4216 	/* See update_cfs_rq_load_avg() */
4217 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4218 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4219 
4220 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4221 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4222 	/* See update_cfs_rq_load_avg() */
4223 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4224 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4225 
4226 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4227 
4228 	cfs_rq_util_change(cfs_rq, 0);
4229 
4230 	trace_pelt_cfs_tp(cfs_rq);
4231 }
4232 
4233 /*
4234  * Optional action to be done while updating the load average
4235  */
4236 #define UPDATE_TG	0x1
4237 #define SKIP_AGE_LOAD	0x2
4238 #define DO_ATTACH	0x4
4239 #define DO_DETACH	0x8
4240 
4241 /* Update task and its cfs_rq load average */
4242 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4243 {
4244 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4245 	int decayed;
4246 
4247 	/*
4248 	 * Track task load average for carrying it to new CPU after migrated, and
4249 	 * track group sched_entity load average for task_h_load calc in migration
4250 	 */
4251 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4252 		__update_load_avg_se(now, cfs_rq, se);
4253 
4254 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4255 	decayed |= propagate_entity_load_avg(se);
4256 
4257 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4258 
4259 		/*
4260 		 * DO_ATTACH means we're here from enqueue_entity().
4261 		 * !last_update_time means we've passed through
4262 		 * migrate_task_rq_fair() indicating we migrated.
4263 		 *
4264 		 * IOW we're enqueueing a task on a new CPU.
4265 		 */
4266 		attach_entity_load_avg(cfs_rq, se);
4267 		update_tg_load_avg(cfs_rq);
4268 
4269 	} else if (flags & DO_DETACH) {
4270 		/*
4271 		 * DO_DETACH means we're here from dequeue_entity()
4272 		 * and we are migrating task out of the CPU.
4273 		 */
4274 		detach_entity_load_avg(cfs_rq, se);
4275 		update_tg_load_avg(cfs_rq);
4276 	} else if (decayed) {
4277 		cfs_rq_util_change(cfs_rq, 0);
4278 
4279 		if (flags & UPDATE_TG)
4280 			update_tg_load_avg(cfs_rq);
4281 	}
4282 }
4283 
4284 /*
4285  * Synchronize entity load avg of dequeued entity without locking
4286  * the previous rq.
4287  */
4288 static void sync_entity_load_avg(struct sched_entity *se)
4289 {
4290 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4291 	u64 last_update_time;
4292 
4293 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4294 	__update_load_avg_blocked_se(last_update_time, se);
4295 }
4296 
4297 /*
4298  * Task first catches up with cfs_rq, and then subtract
4299  * itself from the cfs_rq (task must be off the queue now).
4300  */
4301 static void remove_entity_load_avg(struct sched_entity *se)
4302 {
4303 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4304 	unsigned long flags;
4305 
4306 	/*
4307 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4308 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4309 	 * so we can remove unconditionally.
4310 	 */
4311 
4312 	sync_entity_load_avg(se);
4313 
4314 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4315 	++cfs_rq->removed.nr;
4316 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4317 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4318 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4319 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4320 }
4321 
4322 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4323 {
4324 	return cfs_rq->avg.runnable_avg;
4325 }
4326 
4327 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4328 {
4329 	return cfs_rq->avg.load_avg;
4330 }
4331 
4332 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4333 
4334 static inline unsigned long task_util(struct task_struct *p)
4335 {
4336 	return READ_ONCE(p->se.avg.util_avg);
4337 }
4338 
4339 static inline unsigned long _task_util_est(struct task_struct *p)
4340 {
4341 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
4342 
4343 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4344 }
4345 
4346 static inline unsigned long task_util_est(struct task_struct *p)
4347 {
4348 	return max(task_util(p), _task_util_est(p));
4349 }
4350 
4351 #ifdef CONFIG_UCLAMP_TASK
4352 static inline unsigned long uclamp_task_util(struct task_struct *p,
4353 					     unsigned long uclamp_min,
4354 					     unsigned long uclamp_max)
4355 {
4356 	return clamp(task_util_est(p), uclamp_min, uclamp_max);
4357 }
4358 #else
4359 static inline unsigned long uclamp_task_util(struct task_struct *p,
4360 					     unsigned long uclamp_min,
4361 					     unsigned long uclamp_max)
4362 {
4363 	return task_util_est(p);
4364 }
4365 #endif
4366 
4367 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4368 				    struct task_struct *p)
4369 {
4370 	unsigned int enqueued;
4371 
4372 	if (!sched_feat(UTIL_EST))
4373 		return;
4374 
4375 	/* Update root cfs_rq's estimated utilization */
4376 	enqueued  = cfs_rq->avg.util_est.enqueued;
4377 	enqueued += _task_util_est(p);
4378 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4379 
4380 	trace_sched_util_est_cfs_tp(cfs_rq);
4381 }
4382 
4383 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4384 				    struct task_struct *p)
4385 {
4386 	unsigned int enqueued;
4387 
4388 	if (!sched_feat(UTIL_EST))
4389 		return;
4390 
4391 	/* Update root cfs_rq's estimated utilization */
4392 	enqueued  = cfs_rq->avg.util_est.enqueued;
4393 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4394 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4395 
4396 	trace_sched_util_est_cfs_tp(cfs_rq);
4397 }
4398 
4399 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4400 
4401 /*
4402  * Check if a (signed) value is within a specified (unsigned) margin,
4403  * based on the observation that:
4404  *
4405  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4406  *
4407  * NOTE: this only works when value + margin < INT_MAX.
4408  */
4409 static inline bool within_margin(int value, int margin)
4410 {
4411 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4412 }
4413 
4414 static inline void util_est_update(struct cfs_rq *cfs_rq,
4415 				   struct task_struct *p,
4416 				   bool task_sleep)
4417 {
4418 	long last_ewma_diff, last_enqueued_diff;
4419 	struct util_est ue;
4420 
4421 	if (!sched_feat(UTIL_EST))
4422 		return;
4423 
4424 	/*
4425 	 * Skip update of task's estimated utilization when the task has not
4426 	 * yet completed an activation, e.g. being migrated.
4427 	 */
4428 	if (!task_sleep)
4429 		return;
4430 
4431 	/*
4432 	 * If the PELT values haven't changed since enqueue time,
4433 	 * skip the util_est update.
4434 	 */
4435 	ue = p->se.avg.util_est;
4436 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4437 		return;
4438 
4439 	last_enqueued_diff = ue.enqueued;
4440 
4441 	/*
4442 	 * Reset EWMA on utilization increases, the moving average is used only
4443 	 * to smooth utilization decreases.
4444 	 */
4445 	ue.enqueued = task_util(p);
4446 	if (sched_feat(UTIL_EST_FASTUP)) {
4447 		if (ue.ewma < ue.enqueued) {
4448 			ue.ewma = ue.enqueued;
4449 			goto done;
4450 		}
4451 	}
4452 
4453 	/*
4454 	 * Skip update of task's estimated utilization when its members are
4455 	 * already ~1% close to its last activation value.
4456 	 */
4457 	last_ewma_diff = ue.enqueued - ue.ewma;
4458 	last_enqueued_diff -= ue.enqueued;
4459 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4460 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4461 			goto done;
4462 
4463 		return;
4464 	}
4465 
4466 	/*
4467 	 * To avoid overestimation of actual task utilization, skip updates if
4468 	 * we cannot grant there is idle time in this CPU.
4469 	 */
4470 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4471 		return;
4472 
4473 	/*
4474 	 * Update Task's estimated utilization
4475 	 *
4476 	 * When *p completes an activation we can consolidate another sample
4477 	 * of the task size. This is done by storing the current PELT value
4478 	 * as ue.enqueued and by using this value to update the Exponential
4479 	 * Weighted Moving Average (EWMA):
4480 	 *
4481 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4482 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4483 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4484 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4485 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4486 	 *
4487 	 * Where 'w' is the weight of new samples, which is configured to be
4488 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4489 	 */
4490 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4491 	ue.ewma  += last_ewma_diff;
4492 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4493 done:
4494 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4495 	WRITE_ONCE(p->se.avg.util_est, ue);
4496 
4497 	trace_sched_util_est_se_tp(&p->se);
4498 }
4499 
4500 static inline int util_fits_cpu(unsigned long util,
4501 				unsigned long uclamp_min,
4502 				unsigned long uclamp_max,
4503 				int cpu)
4504 {
4505 	unsigned long capacity_orig, capacity_orig_thermal;
4506 	unsigned long capacity = capacity_of(cpu);
4507 	bool fits, uclamp_max_fits;
4508 
4509 	/*
4510 	 * Check if the real util fits without any uclamp boost/cap applied.
4511 	 */
4512 	fits = fits_capacity(util, capacity);
4513 
4514 	if (!uclamp_is_used())
4515 		return fits;
4516 
4517 	/*
4518 	 * We must use capacity_orig_of() for comparing against uclamp_min and
4519 	 * uclamp_max. We only care about capacity pressure (by using
4520 	 * capacity_of()) for comparing against the real util.
4521 	 *
4522 	 * If a task is boosted to 1024 for example, we don't want a tiny
4523 	 * pressure to skew the check whether it fits a CPU or not.
4524 	 *
4525 	 * Similarly if a task is capped to capacity_orig_of(little_cpu), it
4526 	 * should fit a little cpu even if there's some pressure.
4527 	 *
4528 	 * Only exception is for thermal pressure since it has a direct impact
4529 	 * on available OPP of the system.
4530 	 *
4531 	 * We honour it for uclamp_min only as a drop in performance level
4532 	 * could result in not getting the requested minimum performance level.
4533 	 *
4534 	 * For uclamp_max, we can tolerate a drop in performance level as the
4535 	 * goal is to cap the task. So it's okay if it's getting less.
4536 	 */
4537 	capacity_orig = capacity_orig_of(cpu);
4538 	capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
4539 
4540 	/*
4541 	 * We want to force a task to fit a cpu as implied by uclamp_max.
4542 	 * But we do have some corner cases to cater for..
4543 	 *
4544 	 *
4545 	 *                                 C=z
4546 	 *   |                             ___
4547 	 *   |                  C=y       |   |
4548 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
4549 	 *   |      C=x        |   |      |   |
4550 	 *   |      ___        |   |      |   |
4551 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
4552 	 *   |     |   |       |   |      |   |
4553 	 *   |     |   |       |   |      |   |
4554 	 *   +----------------------------------------
4555 	 *         cpu0        cpu1       cpu2
4556 	 *
4557 	 *   In the above example if a task is capped to a specific performance
4558 	 *   point, y, then when:
4559 	 *
4560 	 *   * util = 80% of x then it does not fit on cpu0 and should migrate
4561 	 *     to cpu1
4562 	 *   * util = 80% of y then it is forced to fit on cpu1 to honour
4563 	 *     uclamp_max request.
4564 	 *
4565 	 *   which is what we're enforcing here. A task always fits if
4566 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
4567 	 *   the normal upmigration rules should withhold still.
4568 	 *
4569 	 *   Only exception is when we are on max capacity, then we need to be
4570 	 *   careful not to block overutilized state. This is so because:
4571 	 *
4572 	 *     1. There's no concept of capping at max_capacity! We can't go
4573 	 *        beyond this performance level anyway.
4574 	 *     2. The system is being saturated when we're operating near
4575 	 *        max capacity, it doesn't make sense to block overutilized.
4576 	 */
4577 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
4578 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
4579 	fits = fits || uclamp_max_fits;
4580 
4581 	/*
4582 	 *
4583 	 *                                 C=z
4584 	 *   |                             ___       (region a, capped, util >= uclamp_max)
4585 	 *   |                  C=y       |   |
4586 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4587 	 *   |      C=x        |   |      |   |
4588 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
4589 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
4590 	 *   |     |   |       |   |      |   |
4591 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
4592 	 *   +----------------------------------------
4593 	 *         cpu0        cpu1       cpu2
4594 	 *
4595 	 * a) If util > uclamp_max, then we're capped, we don't care about
4596 	 *    actual fitness value here. We only care if uclamp_max fits
4597 	 *    capacity without taking margin/pressure into account.
4598 	 *    See comment above.
4599 	 *
4600 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
4601 	 *    fits_capacity() rules apply. Except we need to ensure that we
4602 	 *    enforce we remain within uclamp_max, see comment above.
4603 	 *
4604 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
4605 	 *    need to take into account the boosted value fits the CPU without
4606 	 *    taking margin/pressure into account.
4607 	 *
4608 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
4609 	 * just need to consider an extra check for case (c) after ensuring we
4610 	 * handle the case uclamp_min > uclamp_max.
4611 	 */
4612 	uclamp_min = min(uclamp_min, uclamp_max);
4613 	if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
4614 		return -1;
4615 
4616 	return fits;
4617 }
4618 
4619 static inline int task_fits_cpu(struct task_struct *p, int cpu)
4620 {
4621 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
4622 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
4623 	unsigned long util = task_util_est(p);
4624 	/*
4625 	 * Return true only if the cpu fully fits the task requirements, which
4626 	 * include the utilization but also the performance hints.
4627 	 */
4628 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
4629 }
4630 
4631 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4632 {
4633 	if (!sched_asym_cpucap_active())
4634 		return;
4635 
4636 	if (!p || p->nr_cpus_allowed == 1) {
4637 		rq->misfit_task_load = 0;
4638 		return;
4639 	}
4640 
4641 	if (task_fits_cpu(p, cpu_of(rq))) {
4642 		rq->misfit_task_load = 0;
4643 		return;
4644 	}
4645 
4646 	/*
4647 	 * Make sure that misfit_task_load will not be null even if
4648 	 * task_h_load() returns 0.
4649 	 */
4650 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4651 }
4652 
4653 #else /* CONFIG_SMP */
4654 
4655 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4656 {
4657 	return true;
4658 }
4659 
4660 #define UPDATE_TG	0x0
4661 #define SKIP_AGE_LOAD	0x0
4662 #define DO_ATTACH	0x0
4663 #define DO_DETACH	0x0
4664 
4665 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4666 {
4667 	cfs_rq_util_change(cfs_rq, 0);
4668 }
4669 
4670 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4671 
4672 static inline void
4673 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4674 static inline void
4675 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4676 
4677 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4678 {
4679 	return 0;
4680 }
4681 
4682 static inline void
4683 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4684 
4685 static inline void
4686 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4687 
4688 static inline void
4689 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4690 		bool task_sleep) {}
4691 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4692 
4693 #endif /* CONFIG_SMP */
4694 
4695 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4696 {
4697 #ifdef CONFIG_SCHED_DEBUG
4698 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4699 
4700 	if (d < 0)
4701 		d = -d;
4702 
4703 	if (d > 3*sysctl_sched_latency)
4704 		schedstat_inc(cfs_rq->nr_spread_over);
4705 #endif
4706 }
4707 
4708 static inline bool entity_is_long_sleeper(struct sched_entity *se)
4709 {
4710 	struct cfs_rq *cfs_rq;
4711 	u64 sleep_time;
4712 
4713 	if (se->exec_start == 0)
4714 		return false;
4715 
4716 	cfs_rq = cfs_rq_of(se);
4717 
4718 	sleep_time = rq_clock_task(rq_of(cfs_rq));
4719 
4720 	/* Happen while migrating because of clock task divergence */
4721 	if (sleep_time <= se->exec_start)
4722 		return false;
4723 
4724 	sleep_time -= se->exec_start;
4725 	if (sleep_time > ((1ULL << 63) / scale_load_down(NICE_0_LOAD)))
4726 		return true;
4727 
4728 	return false;
4729 }
4730 
4731 static void
4732 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4733 {
4734 	u64 vruntime = cfs_rq->min_vruntime;
4735 
4736 	/*
4737 	 * The 'current' period is already promised to the current tasks,
4738 	 * however the extra weight of the new task will slow them down a
4739 	 * little, place the new task so that it fits in the slot that
4740 	 * stays open at the end.
4741 	 */
4742 	if (initial && sched_feat(START_DEBIT))
4743 		vruntime += sched_vslice(cfs_rq, se);
4744 
4745 	/* sleeps up to a single latency don't count. */
4746 	if (!initial) {
4747 		unsigned long thresh;
4748 
4749 		if (se_is_idle(se))
4750 			thresh = sysctl_sched_min_granularity;
4751 		else
4752 			thresh = sysctl_sched_latency;
4753 
4754 		/*
4755 		 * Halve their sleep time's effect, to allow
4756 		 * for a gentler effect of sleepers:
4757 		 */
4758 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4759 			thresh >>= 1;
4760 
4761 		vruntime -= thresh;
4762 	}
4763 
4764 	/*
4765 	 * Pull vruntime of the entity being placed to the base level of
4766 	 * cfs_rq, to prevent boosting it if placed backwards.
4767 	 * However, min_vruntime can advance much faster than real time, with
4768 	 * the extreme being when an entity with the minimal weight always runs
4769 	 * on the cfs_rq. If the waking entity slept for a long time, its
4770 	 * vruntime difference from min_vruntime may overflow s64 and their
4771 	 * comparison may get inversed, so ignore the entity's original
4772 	 * vruntime in that case.
4773 	 * The maximal vruntime speedup is given by the ratio of normal to
4774 	 * minimal weight: scale_load_down(NICE_0_LOAD) / MIN_SHARES.
4775 	 * When placing a migrated waking entity, its exec_start has been set
4776 	 * from a different rq. In order to take into account a possible
4777 	 * divergence between new and prev rq's clocks task because of irq and
4778 	 * stolen time, we take an additional margin.
4779 	 * So, cutting off on the sleep time of
4780 	 *     2^63 / scale_load_down(NICE_0_LOAD) ~ 104 days
4781 	 * should be safe.
4782 	 */
4783 	if (entity_is_long_sleeper(se))
4784 		se->vruntime = vruntime;
4785 	else
4786 		se->vruntime = max_vruntime(se->vruntime, vruntime);
4787 }
4788 
4789 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4790 
4791 static inline bool cfs_bandwidth_used(void);
4792 
4793 /*
4794  * MIGRATION
4795  *
4796  *	dequeue
4797  *	  update_curr()
4798  *	    update_min_vruntime()
4799  *	  vruntime -= min_vruntime
4800  *
4801  *	enqueue
4802  *	  update_curr()
4803  *	    update_min_vruntime()
4804  *	  vruntime += min_vruntime
4805  *
4806  * this way the vruntime transition between RQs is done when both
4807  * min_vruntime are up-to-date.
4808  *
4809  * WAKEUP (remote)
4810  *
4811  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4812  *	  vruntime -= min_vruntime
4813  *
4814  *	enqueue
4815  *	  update_curr()
4816  *	    update_min_vruntime()
4817  *	  vruntime += min_vruntime
4818  *
4819  * this way we don't have the most up-to-date min_vruntime on the originating
4820  * CPU and an up-to-date min_vruntime on the destination CPU.
4821  */
4822 
4823 static void
4824 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4825 {
4826 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4827 	bool curr = cfs_rq->curr == se;
4828 
4829 	/*
4830 	 * If we're the current task, we must renormalise before calling
4831 	 * update_curr().
4832 	 */
4833 	if (renorm && curr)
4834 		se->vruntime += cfs_rq->min_vruntime;
4835 
4836 	update_curr(cfs_rq);
4837 
4838 	/*
4839 	 * Otherwise, renormalise after, such that we're placed at the current
4840 	 * moment in time, instead of some random moment in the past. Being
4841 	 * placed in the past could significantly boost this task to the
4842 	 * fairness detriment of existing tasks.
4843 	 */
4844 	if (renorm && !curr)
4845 		se->vruntime += cfs_rq->min_vruntime;
4846 
4847 	/*
4848 	 * When enqueuing a sched_entity, we must:
4849 	 *   - Update loads to have both entity and cfs_rq synced with now.
4850 	 *   - For group_entity, update its runnable_weight to reflect the new
4851 	 *     h_nr_running of its group cfs_rq.
4852 	 *   - For group_entity, update its weight to reflect the new share of
4853 	 *     its group cfs_rq
4854 	 *   - Add its new weight to cfs_rq->load.weight
4855 	 */
4856 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4857 	se_update_runnable(se);
4858 	update_cfs_group(se);
4859 	account_entity_enqueue(cfs_rq, se);
4860 
4861 	if (flags & ENQUEUE_WAKEUP)
4862 		place_entity(cfs_rq, se, 0);
4863 	/* Entity has migrated, no longer consider this task hot */
4864 	if (flags & ENQUEUE_MIGRATED)
4865 		se->exec_start = 0;
4866 
4867 	check_schedstat_required();
4868 	update_stats_enqueue_fair(cfs_rq, se, flags);
4869 	check_spread(cfs_rq, se);
4870 	if (!curr)
4871 		__enqueue_entity(cfs_rq, se);
4872 	se->on_rq = 1;
4873 
4874 	if (cfs_rq->nr_running == 1) {
4875 		check_enqueue_throttle(cfs_rq);
4876 		if (!throttled_hierarchy(cfs_rq))
4877 			list_add_leaf_cfs_rq(cfs_rq);
4878 	}
4879 }
4880 
4881 static void __clear_buddies_last(struct sched_entity *se)
4882 {
4883 	for_each_sched_entity(se) {
4884 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4885 		if (cfs_rq->last != se)
4886 			break;
4887 
4888 		cfs_rq->last = NULL;
4889 	}
4890 }
4891 
4892 static void __clear_buddies_next(struct sched_entity *se)
4893 {
4894 	for_each_sched_entity(se) {
4895 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4896 		if (cfs_rq->next != se)
4897 			break;
4898 
4899 		cfs_rq->next = NULL;
4900 	}
4901 }
4902 
4903 static void __clear_buddies_skip(struct sched_entity *se)
4904 {
4905 	for_each_sched_entity(se) {
4906 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4907 		if (cfs_rq->skip != se)
4908 			break;
4909 
4910 		cfs_rq->skip = NULL;
4911 	}
4912 }
4913 
4914 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4915 {
4916 	if (cfs_rq->last == se)
4917 		__clear_buddies_last(se);
4918 
4919 	if (cfs_rq->next == se)
4920 		__clear_buddies_next(se);
4921 
4922 	if (cfs_rq->skip == se)
4923 		__clear_buddies_skip(se);
4924 }
4925 
4926 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4927 
4928 static void
4929 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4930 {
4931 	int action = UPDATE_TG;
4932 
4933 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
4934 		action |= DO_DETACH;
4935 
4936 	/*
4937 	 * Update run-time statistics of the 'current'.
4938 	 */
4939 	update_curr(cfs_rq);
4940 
4941 	/*
4942 	 * When dequeuing a sched_entity, we must:
4943 	 *   - Update loads to have both entity and cfs_rq synced with now.
4944 	 *   - For group_entity, update its runnable_weight to reflect the new
4945 	 *     h_nr_running of its group cfs_rq.
4946 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4947 	 *   - For group entity, update its weight to reflect the new share
4948 	 *     of its group cfs_rq.
4949 	 */
4950 	update_load_avg(cfs_rq, se, action);
4951 	se_update_runnable(se);
4952 
4953 	update_stats_dequeue_fair(cfs_rq, se, flags);
4954 
4955 	clear_buddies(cfs_rq, se);
4956 
4957 	if (se != cfs_rq->curr)
4958 		__dequeue_entity(cfs_rq, se);
4959 	se->on_rq = 0;
4960 	account_entity_dequeue(cfs_rq, se);
4961 
4962 	/*
4963 	 * Normalize after update_curr(); which will also have moved
4964 	 * min_vruntime if @se is the one holding it back. But before doing
4965 	 * update_min_vruntime() again, which will discount @se's position and
4966 	 * can move min_vruntime forward still more.
4967 	 */
4968 	if (!(flags & DEQUEUE_SLEEP))
4969 		se->vruntime -= cfs_rq->min_vruntime;
4970 
4971 	/* return excess runtime on last dequeue */
4972 	return_cfs_rq_runtime(cfs_rq);
4973 
4974 	update_cfs_group(se);
4975 
4976 	/*
4977 	 * Now advance min_vruntime if @se was the entity holding it back,
4978 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4979 	 * put back on, and if we advance min_vruntime, we'll be placed back
4980 	 * further than we started -- ie. we'll be penalized.
4981 	 */
4982 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4983 		update_min_vruntime(cfs_rq);
4984 
4985 	if (cfs_rq->nr_running == 0)
4986 		update_idle_cfs_rq_clock_pelt(cfs_rq);
4987 }
4988 
4989 /*
4990  * Preempt the current task with a newly woken task if needed:
4991  */
4992 static void
4993 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4994 {
4995 	unsigned long ideal_runtime, delta_exec;
4996 	struct sched_entity *se;
4997 	s64 delta;
4998 
4999 	/*
5000 	 * When many tasks blow up the sched_period; it is possible that
5001 	 * sched_slice() reports unusually large results (when many tasks are
5002 	 * very light for example). Therefore impose a maximum.
5003 	 */
5004 	ideal_runtime = min_t(u64, sched_slice(cfs_rq, curr), sysctl_sched_latency);
5005 
5006 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
5007 	if (delta_exec > ideal_runtime) {
5008 		resched_curr(rq_of(cfs_rq));
5009 		/*
5010 		 * The current task ran long enough, ensure it doesn't get
5011 		 * re-elected due to buddy favours.
5012 		 */
5013 		clear_buddies(cfs_rq, curr);
5014 		return;
5015 	}
5016 
5017 	/*
5018 	 * Ensure that a task that missed wakeup preemption by a
5019 	 * narrow margin doesn't have to wait for a full slice.
5020 	 * This also mitigates buddy induced latencies under load.
5021 	 */
5022 	if (delta_exec < sysctl_sched_min_granularity)
5023 		return;
5024 
5025 	se = __pick_first_entity(cfs_rq);
5026 	delta = curr->vruntime - se->vruntime;
5027 
5028 	if (delta < 0)
5029 		return;
5030 
5031 	if (delta > ideal_runtime)
5032 		resched_curr(rq_of(cfs_rq));
5033 }
5034 
5035 static void
5036 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5037 {
5038 	clear_buddies(cfs_rq, se);
5039 
5040 	/* 'current' is not kept within the tree. */
5041 	if (se->on_rq) {
5042 		/*
5043 		 * Any task has to be enqueued before it get to execute on
5044 		 * a CPU. So account for the time it spent waiting on the
5045 		 * runqueue.
5046 		 */
5047 		update_stats_wait_end_fair(cfs_rq, se);
5048 		__dequeue_entity(cfs_rq, se);
5049 		update_load_avg(cfs_rq, se, UPDATE_TG);
5050 	}
5051 
5052 	update_stats_curr_start(cfs_rq, se);
5053 	cfs_rq->curr = se;
5054 
5055 	/*
5056 	 * Track our maximum slice length, if the CPU's load is at
5057 	 * least twice that of our own weight (i.e. dont track it
5058 	 * when there are only lesser-weight tasks around):
5059 	 */
5060 	if (schedstat_enabled() &&
5061 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5062 		struct sched_statistics *stats;
5063 
5064 		stats = __schedstats_from_se(se);
5065 		__schedstat_set(stats->slice_max,
5066 				max((u64)stats->slice_max,
5067 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5068 	}
5069 
5070 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5071 }
5072 
5073 static int
5074 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
5075 
5076 /*
5077  * Pick the next process, keeping these things in mind, in this order:
5078  * 1) keep things fair between processes/task groups
5079  * 2) pick the "next" process, since someone really wants that to run
5080  * 3) pick the "last" process, for cache locality
5081  * 4) do not run the "skip" process, if something else is available
5082  */
5083 static struct sched_entity *
5084 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
5085 {
5086 	struct sched_entity *left = __pick_first_entity(cfs_rq);
5087 	struct sched_entity *se;
5088 
5089 	/*
5090 	 * If curr is set we have to see if its left of the leftmost entity
5091 	 * still in the tree, provided there was anything in the tree at all.
5092 	 */
5093 	if (!left || (curr && entity_before(curr, left)))
5094 		left = curr;
5095 
5096 	se = left; /* ideally we run the leftmost entity */
5097 
5098 	/*
5099 	 * Avoid running the skip buddy, if running something else can
5100 	 * be done without getting too unfair.
5101 	 */
5102 	if (cfs_rq->skip && cfs_rq->skip == se) {
5103 		struct sched_entity *second;
5104 
5105 		if (se == curr) {
5106 			second = __pick_first_entity(cfs_rq);
5107 		} else {
5108 			second = __pick_next_entity(se);
5109 			if (!second || (curr && entity_before(curr, second)))
5110 				second = curr;
5111 		}
5112 
5113 		if (second && wakeup_preempt_entity(second, left) < 1)
5114 			se = second;
5115 	}
5116 
5117 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
5118 		/*
5119 		 * Someone really wants this to run. If it's not unfair, run it.
5120 		 */
5121 		se = cfs_rq->next;
5122 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
5123 		/*
5124 		 * Prefer last buddy, try to return the CPU to a preempted task.
5125 		 */
5126 		se = cfs_rq->last;
5127 	}
5128 
5129 	return se;
5130 }
5131 
5132 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5133 
5134 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5135 {
5136 	/*
5137 	 * If still on the runqueue then deactivate_task()
5138 	 * was not called and update_curr() has to be done:
5139 	 */
5140 	if (prev->on_rq)
5141 		update_curr(cfs_rq);
5142 
5143 	/* throttle cfs_rqs exceeding runtime */
5144 	check_cfs_rq_runtime(cfs_rq);
5145 
5146 	check_spread(cfs_rq, prev);
5147 
5148 	if (prev->on_rq) {
5149 		update_stats_wait_start_fair(cfs_rq, prev);
5150 		/* Put 'current' back into the tree. */
5151 		__enqueue_entity(cfs_rq, prev);
5152 		/* in !on_rq case, update occurred at dequeue */
5153 		update_load_avg(cfs_rq, prev, 0);
5154 	}
5155 	cfs_rq->curr = NULL;
5156 }
5157 
5158 static void
5159 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5160 {
5161 	/*
5162 	 * Update run-time statistics of the 'current'.
5163 	 */
5164 	update_curr(cfs_rq);
5165 
5166 	/*
5167 	 * Ensure that runnable average is periodically updated.
5168 	 */
5169 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5170 	update_cfs_group(curr);
5171 
5172 #ifdef CONFIG_SCHED_HRTICK
5173 	/*
5174 	 * queued ticks are scheduled to match the slice, so don't bother
5175 	 * validating it and just reschedule.
5176 	 */
5177 	if (queued) {
5178 		resched_curr(rq_of(cfs_rq));
5179 		return;
5180 	}
5181 	/*
5182 	 * don't let the period tick interfere with the hrtick preemption
5183 	 */
5184 	if (!sched_feat(DOUBLE_TICK) &&
5185 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5186 		return;
5187 #endif
5188 
5189 	if (cfs_rq->nr_running > 1)
5190 		check_preempt_tick(cfs_rq, curr);
5191 }
5192 
5193 
5194 /**************************************************
5195  * CFS bandwidth control machinery
5196  */
5197 
5198 #ifdef CONFIG_CFS_BANDWIDTH
5199 
5200 #ifdef CONFIG_JUMP_LABEL
5201 static struct static_key __cfs_bandwidth_used;
5202 
5203 static inline bool cfs_bandwidth_used(void)
5204 {
5205 	return static_key_false(&__cfs_bandwidth_used);
5206 }
5207 
5208 void cfs_bandwidth_usage_inc(void)
5209 {
5210 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5211 }
5212 
5213 void cfs_bandwidth_usage_dec(void)
5214 {
5215 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5216 }
5217 #else /* CONFIG_JUMP_LABEL */
5218 static bool cfs_bandwidth_used(void)
5219 {
5220 	return true;
5221 }
5222 
5223 void cfs_bandwidth_usage_inc(void) {}
5224 void cfs_bandwidth_usage_dec(void) {}
5225 #endif /* CONFIG_JUMP_LABEL */
5226 
5227 /*
5228  * default period for cfs group bandwidth.
5229  * default: 0.1s, units: nanoseconds
5230  */
5231 static inline u64 default_cfs_period(void)
5232 {
5233 	return 100000000ULL;
5234 }
5235 
5236 static inline u64 sched_cfs_bandwidth_slice(void)
5237 {
5238 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5239 }
5240 
5241 /*
5242  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5243  * directly instead of rq->clock to avoid adding additional synchronization
5244  * around rq->lock.
5245  *
5246  * requires cfs_b->lock
5247  */
5248 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5249 {
5250 	s64 runtime;
5251 
5252 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5253 		return;
5254 
5255 	cfs_b->runtime += cfs_b->quota;
5256 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5257 	if (runtime > 0) {
5258 		cfs_b->burst_time += runtime;
5259 		cfs_b->nr_burst++;
5260 	}
5261 
5262 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5263 	cfs_b->runtime_snap = cfs_b->runtime;
5264 }
5265 
5266 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5267 {
5268 	return &tg->cfs_bandwidth;
5269 }
5270 
5271 /* returns 0 on failure to allocate runtime */
5272 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5273 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5274 {
5275 	u64 min_amount, amount = 0;
5276 
5277 	lockdep_assert_held(&cfs_b->lock);
5278 
5279 	/* note: this is a positive sum as runtime_remaining <= 0 */
5280 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5281 
5282 	if (cfs_b->quota == RUNTIME_INF)
5283 		amount = min_amount;
5284 	else {
5285 		start_cfs_bandwidth(cfs_b);
5286 
5287 		if (cfs_b->runtime > 0) {
5288 			amount = min(cfs_b->runtime, min_amount);
5289 			cfs_b->runtime -= amount;
5290 			cfs_b->idle = 0;
5291 		}
5292 	}
5293 
5294 	cfs_rq->runtime_remaining += amount;
5295 
5296 	return cfs_rq->runtime_remaining > 0;
5297 }
5298 
5299 /* returns 0 on failure to allocate runtime */
5300 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5301 {
5302 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5303 	int ret;
5304 
5305 	raw_spin_lock(&cfs_b->lock);
5306 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5307 	raw_spin_unlock(&cfs_b->lock);
5308 
5309 	return ret;
5310 }
5311 
5312 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5313 {
5314 	/* dock delta_exec before expiring quota (as it could span periods) */
5315 	cfs_rq->runtime_remaining -= delta_exec;
5316 
5317 	if (likely(cfs_rq->runtime_remaining > 0))
5318 		return;
5319 
5320 	if (cfs_rq->throttled)
5321 		return;
5322 	/*
5323 	 * if we're unable to extend our runtime we resched so that the active
5324 	 * hierarchy can be throttled
5325 	 */
5326 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5327 		resched_curr(rq_of(cfs_rq));
5328 }
5329 
5330 static __always_inline
5331 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5332 {
5333 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5334 		return;
5335 
5336 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5337 }
5338 
5339 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5340 {
5341 	return cfs_bandwidth_used() && cfs_rq->throttled;
5342 }
5343 
5344 /* check whether cfs_rq, or any parent, is throttled */
5345 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5346 {
5347 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5348 }
5349 
5350 /*
5351  * Ensure that neither of the group entities corresponding to src_cpu or
5352  * dest_cpu are members of a throttled hierarchy when performing group
5353  * load-balance operations.
5354  */
5355 static inline int throttled_lb_pair(struct task_group *tg,
5356 				    int src_cpu, int dest_cpu)
5357 {
5358 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5359 
5360 	src_cfs_rq = tg->cfs_rq[src_cpu];
5361 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5362 
5363 	return throttled_hierarchy(src_cfs_rq) ||
5364 	       throttled_hierarchy(dest_cfs_rq);
5365 }
5366 
5367 static int tg_unthrottle_up(struct task_group *tg, void *data)
5368 {
5369 	struct rq *rq = data;
5370 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5371 
5372 	cfs_rq->throttle_count--;
5373 	if (!cfs_rq->throttle_count) {
5374 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5375 					     cfs_rq->throttled_clock_pelt;
5376 
5377 		/* Add cfs_rq with load or one or more already running entities to the list */
5378 		if (!cfs_rq_is_decayed(cfs_rq))
5379 			list_add_leaf_cfs_rq(cfs_rq);
5380 	}
5381 
5382 	return 0;
5383 }
5384 
5385 static int tg_throttle_down(struct task_group *tg, void *data)
5386 {
5387 	struct rq *rq = data;
5388 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5389 
5390 	/* group is entering throttled state, stop time */
5391 	if (!cfs_rq->throttle_count) {
5392 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5393 		list_del_leaf_cfs_rq(cfs_rq);
5394 	}
5395 	cfs_rq->throttle_count++;
5396 
5397 	return 0;
5398 }
5399 
5400 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5401 {
5402 	struct rq *rq = rq_of(cfs_rq);
5403 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5404 	struct sched_entity *se;
5405 	long task_delta, idle_task_delta, dequeue = 1;
5406 
5407 	raw_spin_lock(&cfs_b->lock);
5408 	/* This will start the period timer if necessary */
5409 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5410 		/*
5411 		 * We have raced with bandwidth becoming available, and if we
5412 		 * actually throttled the timer might not unthrottle us for an
5413 		 * entire period. We additionally needed to make sure that any
5414 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5415 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5416 		 * for 1ns of runtime rather than just check cfs_b.
5417 		 */
5418 		dequeue = 0;
5419 	} else {
5420 		list_add_tail_rcu(&cfs_rq->throttled_list,
5421 				  &cfs_b->throttled_cfs_rq);
5422 	}
5423 	raw_spin_unlock(&cfs_b->lock);
5424 
5425 	if (!dequeue)
5426 		return false;  /* Throttle no longer required. */
5427 
5428 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5429 
5430 	/* freeze hierarchy runnable averages while throttled */
5431 	rcu_read_lock();
5432 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5433 	rcu_read_unlock();
5434 
5435 	task_delta = cfs_rq->h_nr_running;
5436 	idle_task_delta = cfs_rq->idle_h_nr_running;
5437 	for_each_sched_entity(se) {
5438 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5439 		/* throttled entity or throttle-on-deactivate */
5440 		if (!se->on_rq)
5441 			goto done;
5442 
5443 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5444 
5445 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5446 			idle_task_delta = cfs_rq->h_nr_running;
5447 
5448 		qcfs_rq->h_nr_running -= task_delta;
5449 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5450 
5451 		if (qcfs_rq->load.weight) {
5452 			/* Avoid re-evaluating load for this entity: */
5453 			se = parent_entity(se);
5454 			break;
5455 		}
5456 	}
5457 
5458 	for_each_sched_entity(se) {
5459 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5460 		/* throttled entity or throttle-on-deactivate */
5461 		if (!se->on_rq)
5462 			goto done;
5463 
5464 		update_load_avg(qcfs_rq, se, 0);
5465 		se_update_runnable(se);
5466 
5467 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5468 			idle_task_delta = cfs_rq->h_nr_running;
5469 
5470 		qcfs_rq->h_nr_running -= task_delta;
5471 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5472 	}
5473 
5474 	/* At this point se is NULL and we are at root level*/
5475 	sub_nr_running(rq, task_delta);
5476 
5477 done:
5478 	/*
5479 	 * Note: distribution will already see us throttled via the
5480 	 * throttled-list.  rq->lock protects completion.
5481 	 */
5482 	cfs_rq->throttled = 1;
5483 	cfs_rq->throttled_clock = rq_clock(rq);
5484 	return true;
5485 }
5486 
5487 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5488 {
5489 	struct rq *rq = rq_of(cfs_rq);
5490 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5491 	struct sched_entity *se;
5492 	long task_delta, idle_task_delta;
5493 
5494 	se = cfs_rq->tg->se[cpu_of(rq)];
5495 
5496 	cfs_rq->throttled = 0;
5497 
5498 	update_rq_clock(rq);
5499 
5500 	raw_spin_lock(&cfs_b->lock);
5501 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5502 	list_del_rcu(&cfs_rq->throttled_list);
5503 	raw_spin_unlock(&cfs_b->lock);
5504 
5505 	/* update hierarchical throttle state */
5506 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5507 
5508 	if (!cfs_rq->load.weight) {
5509 		if (!cfs_rq->on_list)
5510 			return;
5511 		/*
5512 		 * Nothing to run but something to decay (on_list)?
5513 		 * Complete the branch.
5514 		 */
5515 		for_each_sched_entity(se) {
5516 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5517 				break;
5518 		}
5519 		goto unthrottle_throttle;
5520 	}
5521 
5522 	task_delta = cfs_rq->h_nr_running;
5523 	idle_task_delta = cfs_rq->idle_h_nr_running;
5524 	for_each_sched_entity(se) {
5525 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5526 
5527 		if (se->on_rq)
5528 			break;
5529 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5530 
5531 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5532 			idle_task_delta = cfs_rq->h_nr_running;
5533 
5534 		qcfs_rq->h_nr_running += task_delta;
5535 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5536 
5537 		/* end evaluation on encountering a throttled cfs_rq */
5538 		if (cfs_rq_throttled(qcfs_rq))
5539 			goto unthrottle_throttle;
5540 	}
5541 
5542 	for_each_sched_entity(se) {
5543 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5544 
5545 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5546 		se_update_runnable(se);
5547 
5548 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5549 			idle_task_delta = cfs_rq->h_nr_running;
5550 
5551 		qcfs_rq->h_nr_running += task_delta;
5552 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5553 
5554 		/* end evaluation on encountering a throttled cfs_rq */
5555 		if (cfs_rq_throttled(qcfs_rq))
5556 			goto unthrottle_throttle;
5557 	}
5558 
5559 	/* At this point se is NULL and we are at root level*/
5560 	add_nr_running(rq, task_delta);
5561 
5562 unthrottle_throttle:
5563 	assert_list_leaf_cfs_rq(rq);
5564 
5565 	/* Determine whether we need to wake up potentially idle CPU: */
5566 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5567 		resched_curr(rq);
5568 }
5569 
5570 #ifdef CONFIG_SMP
5571 static void __cfsb_csd_unthrottle(void *arg)
5572 {
5573 	struct cfs_rq *cursor, *tmp;
5574 	struct rq *rq = arg;
5575 	struct rq_flags rf;
5576 
5577 	rq_lock(rq, &rf);
5578 
5579 	/*
5580 	 * Since we hold rq lock we're safe from concurrent manipulation of
5581 	 * the CSD list. However, this RCU critical section annotates the
5582 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
5583 	 * race with group being freed in the window between removing it
5584 	 * from the list and advancing to the next entry in the list.
5585 	 */
5586 	rcu_read_lock();
5587 
5588 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5589 				 throttled_csd_list) {
5590 		list_del_init(&cursor->throttled_csd_list);
5591 
5592 		if (cfs_rq_throttled(cursor))
5593 			unthrottle_cfs_rq(cursor);
5594 	}
5595 
5596 	rcu_read_unlock();
5597 
5598 	rq_unlock(rq, &rf);
5599 }
5600 
5601 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5602 {
5603 	struct rq *rq = rq_of(cfs_rq);
5604 	bool first;
5605 
5606 	if (rq == this_rq()) {
5607 		unthrottle_cfs_rq(cfs_rq);
5608 		return;
5609 	}
5610 
5611 	/* Already enqueued */
5612 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5613 		return;
5614 
5615 	first = list_empty(&rq->cfsb_csd_list);
5616 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5617 	if (first)
5618 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5619 }
5620 #else
5621 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5622 {
5623 	unthrottle_cfs_rq(cfs_rq);
5624 }
5625 #endif
5626 
5627 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5628 {
5629 	lockdep_assert_rq_held(rq_of(cfs_rq));
5630 
5631 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
5632 	    cfs_rq->runtime_remaining <= 0))
5633 		return;
5634 
5635 	__unthrottle_cfs_rq_async(cfs_rq);
5636 }
5637 
5638 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5639 {
5640 	struct cfs_rq *local_unthrottle = NULL;
5641 	int this_cpu = smp_processor_id();
5642 	u64 runtime, remaining = 1;
5643 	bool throttled = false;
5644 	struct cfs_rq *cfs_rq;
5645 	struct rq_flags rf;
5646 	struct rq *rq;
5647 
5648 	rcu_read_lock();
5649 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5650 				throttled_list) {
5651 		rq = rq_of(cfs_rq);
5652 
5653 		if (!remaining) {
5654 			throttled = true;
5655 			break;
5656 		}
5657 
5658 		rq_lock_irqsave(rq, &rf);
5659 		if (!cfs_rq_throttled(cfs_rq))
5660 			goto next;
5661 
5662 #ifdef CONFIG_SMP
5663 		/* Already queued for async unthrottle */
5664 		if (!list_empty(&cfs_rq->throttled_csd_list))
5665 			goto next;
5666 #endif
5667 
5668 		/* By the above checks, this should never be true */
5669 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5670 
5671 		raw_spin_lock(&cfs_b->lock);
5672 		runtime = -cfs_rq->runtime_remaining + 1;
5673 		if (runtime > cfs_b->runtime)
5674 			runtime = cfs_b->runtime;
5675 		cfs_b->runtime -= runtime;
5676 		remaining = cfs_b->runtime;
5677 		raw_spin_unlock(&cfs_b->lock);
5678 
5679 		cfs_rq->runtime_remaining += runtime;
5680 
5681 		/* we check whether we're throttled above */
5682 		if (cfs_rq->runtime_remaining > 0) {
5683 			if (cpu_of(rq) != this_cpu ||
5684 			    SCHED_WARN_ON(local_unthrottle))
5685 				unthrottle_cfs_rq_async(cfs_rq);
5686 			else
5687 				local_unthrottle = cfs_rq;
5688 		} else {
5689 			throttled = true;
5690 		}
5691 
5692 next:
5693 		rq_unlock_irqrestore(rq, &rf);
5694 	}
5695 	rcu_read_unlock();
5696 
5697 	if (local_unthrottle) {
5698 		rq = cpu_rq(this_cpu);
5699 		rq_lock_irqsave(rq, &rf);
5700 		if (cfs_rq_throttled(local_unthrottle))
5701 			unthrottle_cfs_rq(local_unthrottle);
5702 		rq_unlock_irqrestore(rq, &rf);
5703 	}
5704 
5705 	return throttled;
5706 }
5707 
5708 /*
5709  * Responsible for refilling a task_group's bandwidth and unthrottling its
5710  * cfs_rqs as appropriate. If there has been no activity within the last
5711  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5712  * used to track this state.
5713  */
5714 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5715 {
5716 	int throttled;
5717 
5718 	/* no need to continue the timer with no bandwidth constraint */
5719 	if (cfs_b->quota == RUNTIME_INF)
5720 		goto out_deactivate;
5721 
5722 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5723 	cfs_b->nr_periods += overrun;
5724 
5725 	/* Refill extra burst quota even if cfs_b->idle */
5726 	__refill_cfs_bandwidth_runtime(cfs_b);
5727 
5728 	/*
5729 	 * idle depends on !throttled (for the case of a large deficit), and if
5730 	 * we're going inactive then everything else can be deferred
5731 	 */
5732 	if (cfs_b->idle && !throttled)
5733 		goto out_deactivate;
5734 
5735 	if (!throttled) {
5736 		/* mark as potentially idle for the upcoming period */
5737 		cfs_b->idle = 1;
5738 		return 0;
5739 	}
5740 
5741 	/* account preceding periods in which throttling occurred */
5742 	cfs_b->nr_throttled += overrun;
5743 
5744 	/*
5745 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
5746 	 */
5747 	while (throttled && cfs_b->runtime > 0) {
5748 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5749 		/* we can't nest cfs_b->lock while distributing bandwidth */
5750 		throttled = distribute_cfs_runtime(cfs_b);
5751 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5752 	}
5753 
5754 	/*
5755 	 * While we are ensured activity in the period following an
5756 	 * unthrottle, this also covers the case in which the new bandwidth is
5757 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5758 	 * timer to remain active while there are any throttled entities.)
5759 	 */
5760 	cfs_b->idle = 0;
5761 
5762 	return 0;
5763 
5764 out_deactivate:
5765 	return 1;
5766 }
5767 
5768 /* a cfs_rq won't donate quota below this amount */
5769 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5770 /* minimum remaining period time to redistribute slack quota */
5771 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5772 /* how long we wait to gather additional slack before distributing */
5773 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5774 
5775 /*
5776  * Are we near the end of the current quota period?
5777  *
5778  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5779  * hrtimer base being cleared by hrtimer_start. In the case of
5780  * migrate_hrtimers, base is never cleared, so we are fine.
5781  */
5782 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5783 {
5784 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5785 	s64 remaining;
5786 
5787 	/* if the call-back is running a quota refresh is already occurring */
5788 	if (hrtimer_callback_running(refresh_timer))
5789 		return 1;
5790 
5791 	/* is a quota refresh about to occur? */
5792 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5793 	if (remaining < (s64)min_expire)
5794 		return 1;
5795 
5796 	return 0;
5797 }
5798 
5799 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5800 {
5801 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5802 
5803 	/* if there's a quota refresh soon don't bother with slack */
5804 	if (runtime_refresh_within(cfs_b, min_left))
5805 		return;
5806 
5807 	/* don't push forwards an existing deferred unthrottle */
5808 	if (cfs_b->slack_started)
5809 		return;
5810 	cfs_b->slack_started = true;
5811 
5812 	hrtimer_start(&cfs_b->slack_timer,
5813 			ns_to_ktime(cfs_bandwidth_slack_period),
5814 			HRTIMER_MODE_REL);
5815 }
5816 
5817 /* we know any runtime found here is valid as update_curr() precedes return */
5818 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5819 {
5820 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5821 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5822 
5823 	if (slack_runtime <= 0)
5824 		return;
5825 
5826 	raw_spin_lock(&cfs_b->lock);
5827 	if (cfs_b->quota != RUNTIME_INF) {
5828 		cfs_b->runtime += slack_runtime;
5829 
5830 		/* we are under rq->lock, defer unthrottling using a timer */
5831 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5832 		    !list_empty(&cfs_b->throttled_cfs_rq))
5833 			start_cfs_slack_bandwidth(cfs_b);
5834 	}
5835 	raw_spin_unlock(&cfs_b->lock);
5836 
5837 	/* even if it's not valid for return we don't want to try again */
5838 	cfs_rq->runtime_remaining -= slack_runtime;
5839 }
5840 
5841 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5842 {
5843 	if (!cfs_bandwidth_used())
5844 		return;
5845 
5846 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5847 		return;
5848 
5849 	__return_cfs_rq_runtime(cfs_rq);
5850 }
5851 
5852 /*
5853  * This is done with a timer (instead of inline with bandwidth return) since
5854  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5855  */
5856 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5857 {
5858 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5859 	unsigned long flags;
5860 
5861 	/* confirm we're still not at a refresh boundary */
5862 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5863 	cfs_b->slack_started = false;
5864 
5865 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5866 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5867 		return;
5868 	}
5869 
5870 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5871 		runtime = cfs_b->runtime;
5872 
5873 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5874 
5875 	if (!runtime)
5876 		return;
5877 
5878 	distribute_cfs_runtime(cfs_b);
5879 }
5880 
5881 /*
5882  * When a group wakes up we want to make sure that its quota is not already
5883  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5884  * runtime as update_curr() throttling can not trigger until it's on-rq.
5885  */
5886 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5887 {
5888 	if (!cfs_bandwidth_used())
5889 		return;
5890 
5891 	/* an active group must be handled by the update_curr()->put() path */
5892 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5893 		return;
5894 
5895 	/* ensure the group is not already throttled */
5896 	if (cfs_rq_throttled(cfs_rq))
5897 		return;
5898 
5899 	/* update runtime allocation */
5900 	account_cfs_rq_runtime(cfs_rq, 0);
5901 	if (cfs_rq->runtime_remaining <= 0)
5902 		throttle_cfs_rq(cfs_rq);
5903 }
5904 
5905 static void sync_throttle(struct task_group *tg, int cpu)
5906 {
5907 	struct cfs_rq *pcfs_rq, *cfs_rq;
5908 
5909 	if (!cfs_bandwidth_used())
5910 		return;
5911 
5912 	if (!tg->parent)
5913 		return;
5914 
5915 	cfs_rq = tg->cfs_rq[cpu];
5916 	pcfs_rq = tg->parent->cfs_rq[cpu];
5917 
5918 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5919 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
5920 }
5921 
5922 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5923 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5924 {
5925 	if (!cfs_bandwidth_used())
5926 		return false;
5927 
5928 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5929 		return false;
5930 
5931 	/*
5932 	 * it's possible for a throttled entity to be forced into a running
5933 	 * state (e.g. set_curr_task), in this case we're finished.
5934 	 */
5935 	if (cfs_rq_throttled(cfs_rq))
5936 		return true;
5937 
5938 	return throttle_cfs_rq(cfs_rq);
5939 }
5940 
5941 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5942 {
5943 	struct cfs_bandwidth *cfs_b =
5944 		container_of(timer, struct cfs_bandwidth, slack_timer);
5945 
5946 	do_sched_cfs_slack_timer(cfs_b);
5947 
5948 	return HRTIMER_NORESTART;
5949 }
5950 
5951 extern const u64 max_cfs_quota_period;
5952 
5953 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5954 {
5955 	struct cfs_bandwidth *cfs_b =
5956 		container_of(timer, struct cfs_bandwidth, period_timer);
5957 	unsigned long flags;
5958 	int overrun;
5959 	int idle = 0;
5960 	int count = 0;
5961 
5962 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5963 	for (;;) {
5964 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5965 		if (!overrun)
5966 			break;
5967 
5968 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5969 
5970 		if (++count > 3) {
5971 			u64 new, old = ktime_to_ns(cfs_b->period);
5972 
5973 			/*
5974 			 * Grow period by a factor of 2 to avoid losing precision.
5975 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5976 			 * to fail.
5977 			 */
5978 			new = old * 2;
5979 			if (new < max_cfs_quota_period) {
5980 				cfs_b->period = ns_to_ktime(new);
5981 				cfs_b->quota *= 2;
5982 				cfs_b->burst *= 2;
5983 
5984 				pr_warn_ratelimited(
5985 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5986 					smp_processor_id(),
5987 					div_u64(new, NSEC_PER_USEC),
5988 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5989 			} else {
5990 				pr_warn_ratelimited(
5991 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5992 					smp_processor_id(),
5993 					div_u64(old, NSEC_PER_USEC),
5994 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5995 			}
5996 
5997 			/* reset count so we don't come right back in here */
5998 			count = 0;
5999 		}
6000 	}
6001 	if (idle)
6002 		cfs_b->period_active = 0;
6003 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6004 
6005 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6006 }
6007 
6008 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6009 {
6010 	raw_spin_lock_init(&cfs_b->lock);
6011 	cfs_b->runtime = 0;
6012 	cfs_b->quota = RUNTIME_INF;
6013 	cfs_b->period = ns_to_ktime(default_cfs_period());
6014 	cfs_b->burst = 0;
6015 
6016 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6017 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6018 	cfs_b->period_timer.function = sched_cfs_period_timer;
6019 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6020 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6021 	cfs_b->slack_started = false;
6022 }
6023 
6024 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6025 {
6026 	cfs_rq->runtime_enabled = 0;
6027 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6028 #ifdef CONFIG_SMP
6029 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6030 #endif
6031 }
6032 
6033 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6034 {
6035 	lockdep_assert_held(&cfs_b->lock);
6036 
6037 	if (cfs_b->period_active)
6038 		return;
6039 
6040 	cfs_b->period_active = 1;
6041 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6042 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6043 }
6044 
6045 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6046 {
6047 	int __maybe_unused i;
6048 
6049 	/* init_cfs_bandwidth() was not called */
6050 	if (!cfs_b->throttled_cfs_rq.next)
6051 		return;
6052 
6053 	hrtimer_cancel(&cfs_b->period_timer);
6054 	hrtimer_cancel(&cfs_b->slack_timer);
6055 
6056 	/*
6057 	 * It is possible that we still have some cfs_rq's pending on a CSD
6058 	 * list, though this race is very rare. In order for this to occur, we
6059 	 * must have raced with the last task leaving the group while there
6060 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6061 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6062 	 * we can simply flush all pending CSD work inline here. We're
6063 	 * guaranteed at this point that no additional cfs_rq of this group can
6064 	 * join a CSD list.
6065 	 */
6066 #ifdef CONFIG_SMP
6067 	for_each_possible_cpu(i) {
6068 		struct rq *rq = cpu_rq(i);
6069 		unsigned long flags;
6070 
6071 		if (list_empty(&rq->cfsb_csd_list))
6072 			continue;
6073 
6074 		local_irq_save(flags);
6075 		__cfsb_csd_unthrottle(rq);
6076 		local_irq_restore(flags);
6077 	}
6078 #endif
6079 }
6080 
6081 /*
6082  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6083  *
6084  * The race is harmless, since modifying bandwidth settings of unhooked group
6085  * bits doesn't do much.
6086  */
6087 
6088 /* cpu online callback */
6089 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6090 {
6091 	struct task_group *tg;
6092 
6093 	lockdep_assert_rq_held(rq);
6094 
6095 	rcu_read_lock();
6096 	list_for_each_entry_rcu(tg, &task_groups, list) {
6097 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6098 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6099 
6100 		raw_spin_lock(&cfs_b->lock);
6101 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6102 		raw_spin_unlock(&cfs_b->lock);
6103 	}
6104 	rcu_read_unlock();
6105 }
6106 
6107 /* cpu offline callback */
6108 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6109 {
6110 	struct task_group *tg;
6111 
6112 	lockdep_assert_rq_held(rq);
6113 
6114 	rcu_read_lock();
6115 	list_for_each_entry_rcu(tg, &task_groups, list) {
6116 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6117 
6118 		if (!cfs_rq->runtime_enabled)
6119 			continue;
6120 
6121 		/*
6122 		 * clock_task is not advancing so we just need to make sure
6123 		 * there's some valid quota amount
6124 		 */
6125 		cfs_rq->runtime_remaining = 1;
6126 		/*
6127 		 * Offline rq is schedulable till CPU is completely disabled
6128 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6129 		 */
6130 		cfs_rq->runtime_enabled = 0;
6131 
6132 		if (cfs_rq_throttled(cfs_rq))
6133 			unthrottle_cfs_rq(cfs_rq);
6134 	}
6135 	rcu_read_unlock();
6136 }
6137 
6138 #else /* CONFIG_CFS_BANDWIDTH */
6139 
6140 static inline bool cfs_bandwidth_used(void)
6141 {
6142 	return false;
6143 }
6144 
6145 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6146 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6147 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6148 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6149 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6150 
6151 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6152 {
6153 	return 0;
6154 }
6155 
6156 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6157 {
6158 	return 0;
6159 }
6160 
6161 static inline int throttled_lb_pair(struct task_group *tg,
6162 				    int src_cpu, int dest_cpu)
6163 {
6164 	return 0;
6165 }
6166 
6167 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6168 
6169 #ifdef CONFIG_FAIR_GROUP_SCHED
6170 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6171 #endif
6172 
6173 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6174 {
6175 	return NULL;
6176 }
6177 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6178 static inline void update_runtime_enabled(struct rq *rq) {}
6179 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6180 
6181 #endif /* CONFIG_CFS_BANDWIDTH */
6182 
6183 /**************************************************
6184  * CFS operations on tasks:
6185  */
6186 
6187 #ifdef CONFIG_SCHED_HRTICK
6188 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6189 {
6190 	struct sched_entity *se = &p->se;
6191 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
6192 
6193 	SCHED_WARN_ON(task_rq(p) != rq);
6194 
6195 	if (rq->cfs.h_nr_running > 1) {
6196 		u64 slice = sched_slice(cfs_rq, se);
6197 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6198 		s64 delta = slice - ran;
6199 
6200 		if (delta < 0) {
6201 			if (task_current(rq, p))
6202 				resched_curr(rq);
6203 			return;
6204 		}
6205 		hrtick_start(rq, delta);
6206 	}
6207 }
6208 
6209 /*
6210  * called from enqueue/dequeue and updates the hrtick when the
6211  * current task is from our class and nr_running is low enough
6212  * to matter.
6213  */
6214 static void hrtick_update(struct rq *rq)
6215 {
6216 	struct task_struct *curr = rq->curr;
6217 
6218 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6219 		return;
6220 
6221 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
6222 		hrtick_start_fair(rq, curr);
6223 }
6224 #else /* !CONFIG_SCHED_HRTICK */
6225 static inline void
6226 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6227 {
6228 }
6229 
6230 static inline void hrtick_update(struct rq *rq)
6231 {
6232 }
6233 #endif
6234 
6235 #ifdef CONFIG_SMP
6236 static inline bool cpu_overutilized(int cpu)
6237 {
6238 	unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6239 	unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6240 
6241 	/* Return true only if the utilization doesn't fit CPU's capacity */
6242 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6243 }
6244 
6245 static inline void update_overutilized_status(struct rq *rq)
6246 {
6247 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
6248 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
6249 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
6250 	}
6251 }
6252 #else
6253 static inline void update_overutilized_status(struct rq *rq) { }
6254 #endif
6255 
6256 /* Runqueue only has SCHED_IDLE tasks enqueued */
6257 static int sched_idle_rq(struct rq *rq)
6258 {
6259 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6260 			rq->nr_running);
6261 }
6262 
6263 /*
6264  * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
6265  * of idle_nr_running, which does not consider idle descendants of normal
6266  * entities.
6267  */
6268 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
6269 {
6270 	return cfs_rq->nr_running &&
6271 		cfs_rq->nr_running == cfs_rq->idle_nr_running;
6272 }
6273 
6274 #ifdef CONFIG_SMP
6275 static int sched_idle_cpu(int cpu)
6276 {
6277 	return sched_idle_rq(cpu_rq(cpu));
6278 }
6279 #endif
6280 
6281 /*
6282  * The enqueue_task method is called before nr_running is
6283  * increased. Here we update the fair scheduling stats and
6284  * then put the task into the rbtree:
6285  */
6286 static void
6287 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6288 {
6289 	struct cfs_rq *cfs_rq;
6290 	struct sched_entity *se = &p->se;
6291 	int idle_h_nr_running = task_has_idle_policy(p);
6292 	int task_new = !(flags & ENQUEUE_WAKEUP);
6293 
6294 	/*
6295 	 * The code below (indirectly) updates schedutil which looks at
6296 	 * the cfs_rq utilization to select a frequency.
6297 	 * Let's add the task's estimated utilization to the cfs_rq's
6298 	 * estimated utilization, before we update schedutil.
6299 	 */
6300 	util_est_enqueue(&rq->cfs, p);
6301 
6302 	/*
6303 	 * If in_iowait is set, the code below may not trigger any cpufreq
6304 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6305 	 * passed.
6306 	 */
6307 	if (p->in_iowait)
6308 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6309 
6310 	for_each_sched_entity(se) {
6311 		if (se->on_rq)
6312 			break;
6313 		cfs_rq = cfs_rq_of(se);
6314 		enqueue_entity(cfs_rq, se, flags);
6315 
6316 		cfs_rq->h_nr_running++;
6317 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6318 
6319 		if (cfs_rq_is_idle(cfs_rq))
6320 			idle_h_nr_running = 1;
6321 
6322 		/* end evaluation on encountering a throttled cfs_rq */
6323 		if (cfs_rq_throttled(cfs_rq))
6324 			goto enqueue_throttle;
6325 
6326 		flags = ENQUEUE_WAKEUP;
6327 	}
6328 
6329 	for_each_sched_entity(se) {
6330 		cfs_rq = cfs_rq_of(se);
6331 
6332 		update_load_avg(cfs_rq, se, UPDATE_TG);
6333 		se_update_runnable(se);
6334 		update_cfs_group(se);
6335 
6336 		cfs_rq->h_nr_running++;
6337 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6338 
6339 		if (cfs_rq_is_idle(cfs_rq))
6340 			idle_h_nr_running = 1;
6341 
6342 		/* end evaluation on encountering a throttled cfs_rq */
6343 		if (cfs_rq_throttled(cfs_rq))
6344 			goto enqueue_throttle;
6345 	}
6346 
6347 	/* At this point se is NULL and we are at root level*/
6348 	add_nr_running(rq, 1);
6349 
6350 	/*
6351 	 * Since new tasks are assigned an initial util_avg equal to
6352 	 * half of the spare capacity of their CPU, tiny tasks have the
6353 	 * ability to cross the overutilized threshold, which will
6354 	 * result in the load balancer ruining all the task placement
6355 	 * done by EAS. As a way to mitigate that effect, do not account
6356 	 * for the first enqueue operation of new tasks during the
6357 	 * overutilized flag detection.
6358 	 *
6359 	 * A better way of solving this problem would be to wait for
6360 	 * the PELT signals of tasks to converge before taking them
6361 	 * into account, but that is not straightforward to implement,
6362 	 * and the following generally works well enough in practice.
6363 	 */
6364 	if (!task_new)
6365 		update_overutilized_status(rq);
6366 
6367 enqueue_throttle:
6368 	assert_list_leaf_cfs_rq(rq);
6369 
6370 	hrtick_update(rq);
6371 }
6372 
6373 static void set_next_buddy(struct sched_entity *se);
6374 
6375 /*
6376  * The dequeue_task method is called before nr_running is
6377  * decreased. We remove the task from the rbtree and
6378  * update the fair scheduling stats:
6379  */
6380 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6381 {
6382 	struct cfs_rq *cfs_rq;
6383 	struct sched_entity *se = &p->se;
6384 	int task_sleep = flags & DEQUEUE_SLEEP;
6385 	int idle_h_nr_running = task_has_idle_policy(p);
6386 	bool was_sched_idle = sched_idle_rq(rq);
6387 
6388 	util_est_dequeue(&rq->cfs, p);
6389 
6390 	for_each_sched_entity(se) {
6391 		cfs_rq = cfs_rq_of(se);
6392 		dequeue_entity(cfs_rq, se, flags);
6393 
6394 		cfs_rq->h_nr_running--;
6395 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6396 
6397 		if (cfs_rq_is_idle(cfs_rq))
6398 			idle_h_nr_running = 1;
6399 
6400 		/* end evaluation on encountering a throttled cfs_rq */
6401 		if (cfs_rq_throttled(cfs_rq))
6402 			goto dequeue_throttle;
6403 
6404 		/* Don't dequeue parent if it has other entities besides us */
6405 		if (cfs_rq->load.weight) {
6406 			/* Avoid re-evaluating load for this entity: */
6407 			se = parent_entity(se);
6408 			/*
6409 			 * Bias pick_next to pick a task from this cfs_rq, as
6410 			 * p is sleeping when it is within its sched_slice.
6411 			 */
6412 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6413 				set_next_buddy(se);
6414 			break;
6415 		}
6416 		flags |= DEQUEUE_SLEEP;
6417 	}
6418 
6419 	for_each_sched_entity(se) {
6420 		cfs_rq = cfs_rq_of(se);
6421 
6422 		update_load_avg(cfs_rq, se, UPDATE_TG);
6423 		se_update_runnable(se);
6424 		update_cfs_group(se);
6425 
6426 		cfs_rq->h_nr_running--;
6427 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6428 
6429 		if (cfs_rq_is_idle(cfs_rq))
6430 			idle_h_nr_running = 1;
6431 
6432 		/* end evaluation on encountering a throttled cfs_rq */
6433 		if (cfs_rq_throttled(cfs_rq))
6434 			goto dequeue_throttle;
6435 
6436 	}
6437 
6438 	/* At this point se is NULL and we are at root level*/
6439 	sub_nr_running(rq, 1);
6440 
6441 	/* balance early to pull high priority tasks */
6442 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6443 		rq->next_balance = jiffies;
6444 
6445 dequeue_throttle:
6446 	util_est_update(&rq->cfs, p, task_sleep);
6447 	hrtick_update(rq);
6448 }
6449 
6450 #ifdef CONFIG_SMP
6451 
6452 /* Working cpumask for: load_balance, load_balance_newidle. */
6453 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6454 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6455 
6456 #ifdef CONFIG_NO_HZ_COMMON
6457 
6458 static struct {
6459 	cpumask_var_t idle_cpus_mask;
6460 	atomic_t nr_cpus;
6461 	int has_blocked;		/* Idle CPUS has blocked load */
6462 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
6463 	unsigned long next_balance;     /* in jiffy units */
6464 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6465 } nohz ____cacheline_aligned;
6466 
6467 #endif /* CONFIG_NO_HZ_COMMON */
6468 
6469 static unsigned long cpu_load(struct rq *rq)
6470 {
6471 	return cfs_rq_load_avg(&rq->cfs);
6472 }
6473 
6474 /*
6475  * cpu_load_without - compute CPU load without any contributions from *p
6476  * @cpu: the CPU which load is requested
6477  * @p: the task which load should be discounted
6478  *
6479  * The load of a CPU is defined by the load of tasks currently enqueued on that
6480  * CPU as well as tasks which are currently sleeping after an execution on that
6481  * CPU.
6482  *
6483  * This method returns the load of the specified CPU by discounting the load of
6484  * the specified task, whenever the task is currently contributing to the CPU
6485  * load.
6486  */
6487 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6488 {
6489 	struct cfs_rq *cfs_rq;
6490 	unsigned int load;
6491 
6492 	/* Task has no contribution or is new */
6493 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6494 		return cpu_load(rq);
6495 
6496 	cfs_rq = &rq->cfs;
6497 	load = READ_ONCE(cfs_rq->avg.load_avg);
6498 
6499 	/* Discount task's util from CPU's util */
6500 	lsub_positive(&load, task_h_load(p));
6501 
6502 	return load;
6503 }
6504 
6505 static unsigned long cpu_runnable(struct rq *rq)
6506 {
6507 	return cfs_rq_runnable_avg(&rq->cfs);
6508 }
6509 
6510 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6511 {
6512 	struct cfs_rq *cfs_rq;
6513 	unsigned int runnable;
6514 
6515 	/* Task has no contribution or is new */
6516 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6517 		return cpu_runnable(rq);
6518 
6519 	cfs_rq = &rq->cfs;
6520 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6521 
6522 	/* Discount task's runnable from CPU's runnable */
6523 	lsub_positive(&runnable, p->se.avg.runnable_avg);
6524 
6525 	return runnable;
6526 }
6527 
6528 static unsigned long capacity_of(int cpu)
6529 {
6530 	return cpu_rq(cpu)->cpu_capacity;
6531 }
6532 
6533 static void record_wakee(struct task_struct *p)
6534 {
6535 	/*
6536 	 * Only decay a single time; tasks that have less then 1 wakeup per
6537 	 * jiffy will not have built up many flips.
6538 	 */
6539 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6540 		current->wakee_flips >>= 1;
6541 		current->wakee_flip_decay_ts = jiffies;
6542 	}
6543 
6544 	if (current->last_wakee != p) {
6545 		current->last_wakee = p;
6546 		current->wakee_flips++;
6547 	}
6548 }
6549 
6550 /*
6551  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6552  *
6553  * A waker of many should wake a different task than the one last awakened
6554  * at a frequency roughly N times higher than one of its wakees.
6555  *
6556  * In order to determine whether we should let the load spread vs consolidating
6557  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6558  * partner, and a factor of lls_size higher frequency in the other.
6559  *
6560  * With both conditions met, we can be relatively sure that the relationship is
6561  * non-monogamous, with partner count exceeding socket size.
6562  *
6563  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6564  * whatever is irrelevant, spread criteria is apparent partner count exceeds
6565  * socket size.
6566  */
6567 static int wake_wide(struct task_struct *p)
6568 {
6569 	unsigned int master = current->wakee_flips;
6570 	unsigned int slave = p->wakee_flips;
6571 	int factor = __this_cpu_read(sd_llc_size);
6572 
6573 	if (master < slave)
6574 		swap(master, slave);
6575 	if (slave < factor || master < slave * factor)
6576 		return 0;
6577 	return 1;
6578 }
6579 
6580 /*
6581  * The purpose of wake_affine() is to quickly determine on which CPU we can run
6582  * soonest. For the purpose of speed we only consider the waking and previous
6583  * CPU.
6584  *
6585  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
6586  *			cache-affine and is (or	will be) idle.
6587  *
6588  * wake_affine_weight() - considers the weight to reflect the average
6589  *			  scheduling latency of the CPUs. This seems to work
6590  *			  for the overloaded case.
6591  */
6592 static int
6593 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
6594 {
6595 	/*
6596 	 * If this_cpu is idle, it implies the wakeup is from interrupt
6597 	 * context. Only allow the move if cache is shared. Otherwise an
6598 	 * interrupt intensive workload could force all tasks onto one
6599 	 * node depending on the IO topology or IRQ affinity settings.
6600 	 *
6601 	 * If the prev_cpu is idle and cache affine then avoid a migration.
6602 	 * There is no guarantee that the cache hot data from an interrupt
6603 	 * is more important than cache hot data on the prev_cpu and from
6604 	 * a cpufreq perspective, it's better to have higher utilisation
6605 	 * on one CPU.
6606 	 */
6607 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6608 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6609 
6610 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
6611 		return this_cpu;
6612 
6613 	if (available_idle_cpu(prev_cpu))
6614 		return prev_cpu;
6615 
6616 	return nr_cpumask_bits;
6617 }
6618 
6619 static int
6620 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6621 		   int this_cpu, int prev_cpu, int sync)
6622 {
6623 	s64 this_eff_load, prev_eff_load;
6624 	unsigned long task_load;
6625 
6626 	this_eff_load = cpu_load(cpu_rq(this_cpu));
6627 
6628 	if (sync) {
6629 		unsigned long current_load = task_h_load(current);
6630 
6631 		if (current_load > this_eff_load)
6632 			return this_cpu;
6633 
6634 		this_eff_load -= current_load;
6635 	}
6636 
6637 	task_load = task_h_load(p);
6638 
6639 	this_eff_load += task_load;
6640 	if (sched_feat(WA_BIAS))
6641 		this_eff_load *= 100;
6642 	this_eff_load *= capacity_of(prev_cpu);
6643 
6644 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6645 	prev_eff_load -= task_load;
6646 	if (sched_feat(WA_BIAS))
6647 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6648 	prev_eff_load *= capacity_of(this_cpu);
6649 
6650 	/*
6651 	 * If sync, adjust the weight of prev_eff_load such that if
6652 	 * prev_eff == this_eff that select_idle_sibling() will consider
6653 	 * stacking the wakee on top of the waker if no other CPU is
6654 	 * idle.
6655 	 */
6656 	if (sync)
6657 		prev_eff_load += 1;
6658 
6659 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6660 }
6661 
6662 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6663 		       int this_cpu, int prev_cpu, int sync)
6664 {
6665 	int target = nr_cpumask_bits;
6666 
6667 	if (sched_feat(WA_IDLE))
6668 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
6669 
6670 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6671 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6672 
6673 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
6674 	if (target == nr_cpumask_bits)
6675 		return prev_cpu;
6676 
6677 	schedstat_inc(sd->ttwu_move_affine);
6678 	schedstat_inc(p->stats.nr_wakeups_affine);
6679 	return target;
6680 }
6681 
6682 static struct sched_group *
6683 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6684 
6685 /*
6686  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6687  */
6688 static int
6689 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6690 {
6691 	unsigned long load, min_load = ULONG_MAX;
6692 	unsigned int min_exit_latency = UINT_MAX;
6693 	u64 latest_idle_timestamp = 0;
6694 	int least_loaded_cpu = this_cpu;
6695 	int shallowest_idle_cpu = -1;
6696 	int i;
6697 
6698 	/* Check if we have any choice: */
6699 	if (group->group_weight == 1)
6700 		return cpumask_first(sched_group_span(group));
6701 
6702 	/* Traverse only the allowed CPUs */
6703 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6704 		struct rq *rq = cpu_rq(i);
6705 
6706 		if (!sched_core_cookie_match(rq, p))
6707 			continue;
6708 
6709 		if (sched_idle_cpu(i))
6710 			return i;
6711 
6712 		if (available_idle_cpu(i)) {
6713 			struct cpuidle_state *idle = idle_get_state(rq);
6714 			if (idle && idle->exit_latency < min_exit_latency) {
6715 				/*
6716 				 * We give priority to a CPU whose idle state
6717 				 * has the smallest exit latency irrespective
6718 				 * of any idle timestamp.
6719 				 */
6720 				min_exit_latency = idle->exit_latency;
6721 				latest_idle_timestamp = rq->idle_stamp;
6722 				shallowest_idle_cpu = i;
6723 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
6724 				   rq->idle_stamp > latest_idle_timestamp) {
6725 				/*
6726 				 * If equal or no active idle state, then
6727 				 * the most recently idled CPU might have
6728 				 * a warmer cache.
6729 				 */
6730 				latest_idle_timestamp = rq->idle_stamp;
6731 				shallowest_idle_cpu = i;
6732 			}
6733 		} else if (shallowest_idle_cpu == -1) {
6734 			load = cpu_load(cpu_rq(i));
6735 			if (load < min_load) {
6736 				min_load = load;
6737 				least_loaded_cpu = i;
6738 			}
6739 		}
6740 	}
6741 
6742 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6743 }
6744 
6745 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6746 				  int cpu, int prev_cpu, int sd_flag)
6747 {
6748 	int new_cpu = cpu;
6749 
6750 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6751 		return prev_cpu;
6752 
6753 	/*
6754 	 * We need task's util for cpu_util_without, sync it up to
6755 	 * prev_cpu's last_update_time.
6756 	 */
6757 	if (!(sd_flag & SD_BALANCE_FORK))
6758 		sync_entity_load_avg(&p->se);
6759 
6760 	while (sd) {
6761 		struct sched_group *group;
6762 		struct sched_domain *tmp;
6763 		int weight;
6764 
6765 		if (!(sd->flags & sd_flag)) {
6766 			sd = sd->child;
6767 			continue;
6768 		}
6769 
6770 		group = find_idlest_group(sd, p, cpu);
6771 		if (!group) {
6772 			sd = sd->child;
6773 			continue;
6774 		}
6775 
6776 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6777 		if (new_cpu == cpu) {
6778 			/* Now try balancing at a lower domain level of 'cpu': */
6779 			sd = sd->child;
6780 			continue;
6781 		}
6782 
6783 		/* Now try balancing at a lower domain level of 'new_cpu': */
6784 		cpu = new_cpu;
6785 		weight = sd->span_weight;
6786 		sd = NULL;
6787 		for_each_domain(cpu, tmp) {
6788 			if (weight <= tmp->span_weight)
6789 				break;
6790 			if (tmp->flags & sd_flag)
6791 				sd = tmp;
6792 		}
6793 	}
6794 
6795 	return new_cpu;
6796 }
6797 
6798 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6799 {
6800 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6801 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
6802 		return cpu;
6803 
6804 	return -1;
6805 }
6806 
6807 #ifdef CONFIG_SCHED_SMT
6808 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6809 EXPORT_SYMBOL_GPL(sched_smt_present);
6810 
6811 static inline void set_idle_cores(int cpu, int val)
6812 {
6813 	struct sched_domain_shared *sds;
6814 
6815 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6816 	if (sds)
6817 		WRITE_ONCE(sds->has_idle_cores, val);
6818 }
6819 
6820 static inline bool test_idle_cores(int cpu)
6821 {
6822 	struct sched_domain_shared *sds;
6823 
6824 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6825 	if (sds)
6826 		return READ_ONCE(sds->has_idle_cores);
6827 
6828 	return false;
6829 }
6830 
6831 /*
6832  * Scans the local SMT mask to see if the entire core is idle, and records this
6833  * information in sd_llc_shared->has_idle_cores.
6834  *
6835  * Since SMT siblings share all cache levels, inspecting this limited remote
6836  * state should be fairly cheap.
6837  */
6838 void __update_idle_core(struct rq *rq)
6839 {
6840 	int core = cpu_of(rq);
6841 	int cpu;
6842 
6843 	rcu_read_lock();
6844 	if (test_idle_cores(core))
6845 		goto unlock;
6846 
6847 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6848 		if (cpu == core)
6849 			continue;
6850 
6851 		if (!available_idle_cpu(cpu))
6852 			goto unlock;
6853 	}
6854 
6855 	set_idle_cores(core, 1);
6856 unlock:
6857 	rcu_read_unlock();
6858 }
6859 
6860 /*
6861  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6862  * there are no idle cores left in the system; tracked through
6863  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6864  */
6865 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6866 {
6867 	bool idle = true;
6868 	int cpu;
6869 
6870 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6871 		if (!available_idle_cpu(cpu)) {
6872 			idle = false;
6873 			if (*idle_cpu == -1) {
6874 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6875 					*idle_cpu = cpu;
6876 					break;
6877 				}
6878 				continue;
6879 			}
6880 			break;
6881 		}
6882 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6883 			*idle_cpu = cpu;
6884 	}
6885 
6886 	if (idle)
6887 		return core;
6888 
6889 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6890 	return -1;
6891 }
6892 
6893 /*
6894  * Scan the local SMT mask for idle CPUs.
6895  */
6896 static int select_idle_smt(struct task_struct *p, int target)
6897 {
6898 	int cpu;
6899 
6900 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
6901 		if (cpu == target)
6902 			continue;
6903 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6904 			return cpu;
6905 	}
6906 
6907 	return -1;
6908 }
6909 
6910 #else /* CONFIG_SCHED_SMT */
6911 
6912 static inline void set_idle_cores(int cpu, int val)
6913 {
6914 }
6915 
6916 static inline bool test_idle_cores(int cpu)
6917 {
6918 	return false;
6919 }
6920 
6921 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6922 {
6923 	return __select_idle_cpu(core, p);
6924 }
6925 
6926 static inline int select_idle_smt(struct task_struct *p, int target)
6927 {
6928 	return -1;
6929 }
6930 
6931 #endif /* CONFIG_SCHED_SMT */
6932 
6933 /*
6934  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6935  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6936  * average idle time for this rq (as found in rq->avg_idle).
6937  */
6938 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6939 {
6940 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
6941 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
6942 	struct sched_domain_shared *sd_share;
6943 	struct rq *this_rq = this_rq();
6944 	int this = smp_processor_id();
6945 	struct sched_domain *this_sd = NULL;
6946 	u64 time = 0;
6947 
6948 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6949 
6950 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6951 		u64 avg_cost, avg_idle, span_avg;
6952 		unsigned long now = jiffies;
6953 
6954 		this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6955 		if (!this_sd)
6956 			return -1;
6957 
6958 		/*
6959 		 * If we're busy, the assumption that the last idle period
6960 		 * predicts the future is flawed; age away the remaining
6961 		 * predicted idle time.
6962 		 */
6963 		if (unlikely(this_rq->wake_stamp < now)) {
6964 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6965 				this_rq->wake_stamp++;
6966 				this_rq->wake_avg_idle >>= 1;
6967 			}
6968 		}
6969 
6970 		avg_idle = this_rq->wake_avg_idle;
6971 		avg_cost = this_sd->avg_scan_cost + 1;
6972 
6973 		span_avg = sd->span_weight * avg_idle;
6974 		if (span_avg > 4*avg_cost)
6975 			nr = div_u64(span_avg, avg_cost);
6976 		else
6977 			nr = 4;
6978 
6979 		time = cpu_clock(this);
6980 	}
6981 
6982 	if (sched_feat(SIS_UTIL)) {
6983 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
6984 		if (sd_share) {
6985 			/* because !--nr is the condition to stop scan */
6986 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
6987 			/* overloaded LLC is unlikely to have idle cpu/core */
6988 			if (nr == 1)
6989 				return -1;
6990 		}
6991 	}
6992 
6993 	for_each_cpu_wrap(cpu, cpus, target + 1) {
6994 		if (has_idle_core) {
6995 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
6996 			if ((unsigned int)i < nr_cpumask_bits)
6997 				return i;
6998 
6999 		} else {
7000 			if (!--nr)
7001 				return -1;
7002 			idle_cpu = __select_idle_cpu(cpu, p);
7003 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7004 				break;
7005 		}
7006 	}
7007 
7008 	if (has_idle_core)
7009 		set_idle_cores(target, false);
7010 
7011 	if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
7012 		time = cpu_clock(this) - time;
7013 
7014 		/*
7015 		 * Account for the scan cost of wakeups against the average
7016 		 * idle time.
7017 		 */
7018 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
7019 
7020 		update_avg(&this_sd->avg_scan_cost, time);
7021 	}
7022 
7023 	return idle_cpu;
7024 }
7025 
7026 /*
7027  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7028  * the task fits. If no CPU is big enough, but there are idle ones, try to
7029  * maximize capacity.
7030  */
7031 static int
7032 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7033 {
7034 	unsigned long task_util, util_min, util_max, best_cap = 0;
7035 	int fits, best_fits = 0;
7036 	int cpu, best_cpu = -1;
7037 	struct cpumask *cpus;
7038 
7039 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7040 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7041 
7042 	task_util = task_util_est(p);
7043 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7044 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7045 
7046 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7047 		unsigned long cpu_cap = capacity_of(cpu);
7048 
7049 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7050 			continue;
7051 
7052 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7053 
7054 		/* This CPU fits with all requirements */
7055 		if (fits > 0)
7056 			return cpu;
7057 		/*
7058 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7059 		 * Look for the CPU with best capacity.
7060 		 */
7061 		else if (fits < 0)
7062 			cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu));
7063 
7064 		/*
7065 		 * First, select CPU which fits better (-1 being better than 0).
7066 		 * Then, select the one with best capacity at same level.
7067 		 */
7068 		if ((fits < best_fits) ||
7069 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7070 			best_cap = cpu_cap;
7071 			best_cpu = cpu;
7072 			best_fits = fits;
7073 		}
7074 	}
7075 
7076 	return best_cpu;
7077 }
7078 
7079 static inline bool asym_fits_cpu(unsigned long util,
7080 				 unsigned long util_min,
7081 				 unsigned long util_max,
7082 				 int cpu)
7083 {
7084 	if (sched_asym_cpucap_active())
7085 		/*
7086 		 * Return true only if the cpu fully fits the task requirements
7087 		 * which include the utilization and the performance hints.
7088 		 */
7089 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7090 
7091 	return true;
7092 }
7093 
7094 /*
7095  * Try and locate an idle core/thread in the LLC cache domain.
7096  */
7097 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7098 {
7099 	bool has_idle_core = false;
7100 	struct sched_domain *sd;
7101 	unsigned long task_util, util_min, util_max;
7102 	int i, recent_used_cpu;
7103 
7104 	/*
7105 	 * On asymmetric system, update task utilization because we will check
7106 	 * that the task fits with cpu's capacity.
7107 	 */
7108 	if (sched_asym_cpucap_active()) {
7109 		sync_entity_load_avg(&p->se);
7110 		task_util = task_util_est(p);
7111 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7112 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7113 	}
7114 
7115 	/*
7116 	 * per-cpu select_rq_mask usage
7117 	 */
7118 	lockdep_assert_irqs_disabled();
7119 
7120 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7121 	    asym_fits_cpu(task_util, util_min, util_max, target))
7122 		return target;
7123 
7124 	/*
7125 	 * If the previous CPU is cache affine and idle, don't be stupid:
7126 	 */
7127 	if (prev != target && cpus_share_cache(prev, target) &&
7128 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7129 	    asym_fits_cpu(task_util, util_min, util_max, prev))
7130 		return prev;
7131 
7132 	/*
7133 	 * Allow a per-cpu kthread to stack with the wakee if the
7134 	 * kworker thread and the tasks previous CPUs are the same.
7135 	 * The assumption is that the wakee queued work for the
7136 	 * per-cpu kthread that is now complete and the wakeup is
7137 	 * essentially a sync wakeup. An obvious example of this
7138 	 * pattern is IO completions.
7139 	 */
7140 	if (is_per_cpu_kthread(current) &&
7141 	    in_task() &&
7142 	    prev == smp_processor_id() &&
7143 	    this_rq()->nr_running <= 1 &&
7144 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7145 		return prev;
7146 	}
7147 
7148 	/* Check a recently used CPU as a potential idle candidate: */
7149 	recent_used_cpu = p->recent_used_cpu;
7150 	p->recent_used_cpu = prev;
7151 	if (recent_used_cpu != prev &&
7152 	    recent_used_cpu != target &&
7153 	    cpus_share_cache(recent_used_cpu, target) &&
7154 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7155 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
7156 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7157 		return recent_used_cpu;
7158 	}
7159 
7160 	/*
7161 	 * For asymmetric CPU capacity systems, our domain of interest is
7162 	 * sd_asym_cpucapacity rather than sd_llc.
7163 	 */
7164 	if (sched_asym_cpucap_active()) {
7165 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7166 		/*
7167 		 * On an asymmetric CPU capacity system where an exclusive
7168 		 * cpuset defines a symmetric island (i.e. one unique
7169 		 * capacity_orig value through the cpuset), the key will be set
7170 		 * but the CPUs within that cpuset will not have a domain with
7171 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7172 		 * capacity path.
7173 		 */
7174 		if (sd) {
7175 			i = select_idle_capacity(p, sd, target);
7176 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7177 		}
7178 	}
7179 
7180 	sd = rcu_dereference(per_cpu(sd_llc, target));
7181 	if (!sd)
7182 		return target;
7183 
7184 	if (sched_smt_active()) {
7185 		has_idle_core = test_idle_cores(target);
7186 
7187 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7188 			i = select_idle_smt(p, prev);
7189 			if ((unsigned int)i < nr_cpumask_bits)
7190 				return i;
7191 		}
7192 	}
7193 
7194 	i = select_idle_cpu(p, sd, has_idle_core, target);
7195 	if ((unsigned)i < nr_cpumask_bits)
7196 		return i;
7197 
7198 	return target;
7199 }
7200 
7201 /*
7202  * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu
7203  * (@dst_cpu = -1) or migrated to @dst_cpu.
7204  */
7205 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
7206 {
7207 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7208 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7209 
7210 	/*
7211 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7212 	 * contribution. If @p migrates from another CPU to @cpu add its
7213 	 * contribution. In all the other cases @cpu is not impacted by the
7214 	 * migration so its util_avg is already correct.
7215 	 */
7216 	if (task_cpu(p) == cpu && dst_cpu != cpu)
7217 		lsub_positive(&util, task_util(p));
7218 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
7219 		util += task_util(p);
7220 
7221 	if (sched_feat(UTIL_EST)) {
7222 		unsigned long util_est;
7223 
7224 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
7225 
7226 		/*
7227 		 * During wake-up @p isn't enqueued yet and doesn't contribute
7228 		 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
7229 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7230 		 * has been enqueued.
7231 		 *
7232 		 * During exec (@dst_cpu = -1) @p is enqueued and does
7233 		 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
7234 		 * Remove it to "simulate" cpu_util without @p's contribution.
7235 		 *
7236 		 * Despite the task_on_rq_queued(@p) check there is still a
7237 		 * small window for a possible race when an exec
7238 		 * select_task_rq_fair() races with LB's detach_task().
7239 		 *
7240 		 *   detach_task()
7241 		 *     deactivate_task()
7242 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7243 		 *       -------------------------------- A
7244 		 *       dequeue_task()                    \
7245 		 *         dequeue_task_fair()              + Race Time
7246 		 *           util_est_dequeue()            /
7247 		 *       -------------------------------- B
7248 		 *
7249 		 * The additional check "current == p" is required to further
7250 		 * reduce the race window.
7251 		 */
7252 		if (dst_cpu == cpu)
7253 			util_est += _task_util_est(p);
7254 		else if (unlikely(task_on_rq_queued(p) || current == p))
7255 			lsub_positive(&util_est, _task_util_est(p));
7256 
7257 		util = max(util, util_est);
7258 	}
7259 
7260 	return min(util, capacity_orig_of(cpu));
7261 }
7262 
7263 /*
7264  * cpu_util_without: compute cpu utilization without any contributions from *p
7265  * @cpu: the CPU which utilization is requested
7266  * @p: the task which utilization should be discounted
7267  *
7268  * The utilization of a CPU is defined by the utilization of tasks currently
7269  * enqueued on that CPU as well as tasks which are currently sleeping after an
7270  * execution on that CPU.
7271  *
7272  * This method returns the utilization of the specified CPU by discounting the
7273  * utilization of the specified task, whenever the task is currently
7274  * contributing to the CPU utilization.
7275  */
7276 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7277 {
7278 	/* Task has no contribution or is new */
7279 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7280 		return cpu_util_cfs(cpu);
7281 
7282 	return cpu_util_next(cpu, p, -1);
7283 }
7284 
7285 /*
7286  * energy_env - Utilization landscape for energy estimation.
7287  * @task_busy_time: Utilization contribution by the task for which we test the
7288  *                  placement. Given by eenv_task_busy_time().
7289  * @pd_busy_time:   Utilization of the whole perf domain without the task
7290  *                  contribution. Given by eenv_pd_busy_time().
7291  * @cpu_cap:        Maximum CPU capacity for the perf domain.
7292  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7293  */
7294 struct energy_env {
7295 	unsigned long task_busy_time;
7296 	unsigned long pd_busy_time;
7297 	unsigned long cpu_cap;
7298 	unsigned long pd_cap;
7299 };
7300 
7301 /*
7302  * Compute the task busy time for compute_energy(). This time cannot be
7303  * injected directly into effective_cpu_util() because of the IRQ scaling.
7304  * The latter only makes sense with the most recent CPUs where the task has
7305  * run.
7306  */
7307 static inline void eenv_task_busy_time(struct energy_env *eenv,
7308 				       struct task_struct *p, int prev_cpu)
7309 {
7310 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7311 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7312 
7313 	if (unlikely(irq >= max_cap))
7314 		busy_time = max_cap;
7315 	else
7316 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7317 
7318 	eenv->task_busy_time = busy_time;
7319 }
7320 
7321 /*
7322  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7323  * utilization for each @pd_cpus, it however doesn't take into account
7324  * clamping since the ratio (utilization / cpu_capacity) is already enough to
7325  * scale the EM reported power consumption at the (eventually clamped)
7326  * cpu_capacity.
7327  *
7328  * The contribution of the task @p for which we want to estimate the
7329  * energy cost is removed (by cpu_util_next()) and must be calculated
7330  * separately (see eenv_task_busy_time). This ensures:
7331  *
7332  *   - A stable PD utilization, no matter which CPU of that PD we want to place
7333  *     the task on.
7334  *
7335  *   - A fair comparison between CPUs as the task contribution (task_util())
7336  *     will always be the same no matter which CPU utilization we rely on
7337  *     (util_avg or util_est).
7338  *
7339  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7340  * exceed @eenv->pd_cap.
7341  */
7342 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7343 				     struct cpumask *pd_cpus,
7344 				     struct task_struct *p)
7345 {
7346 	unsigned long busy_time = 0;
7347 	int cpu;
7348 
7349 	for_each_cpu(cpu, pd_cpus) {
7350 		unsigned long util = cpu_util_next(cpu, p, -1);
7351 
7352 		busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
7353 	}
7354 
7355 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7356 }
7357 
7358 /*
7359  * Compute the maximum utilization for compute_energy() when the task @p
7360  * is placed on the cpu @dst_cpu.
7361  *
7362  * Returns the maximum utilization among @eenv->cpus. This utilization can't
7363  * exceed @eenv->cpu_cap.
7364  */
7365 static inline unsigned long
7366 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7367 		 struct task_struct *p, int dst_cpu)
7368 {
7369 	unsigned long max_util = 0;
7370 	int cpu;
7371 
7372 	for_each_cpu(cpu, pd_cpus) {
7373 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7374 		unsigned long util = cpu_util_next(cpu, p, dst_cpu);
7375 		unsigned long cpu_util;
7376 
7377 		/*
7378 		 * Performance domain frequency: utilization clamping
7379 		 * must be considered since it affects the selection
7380 		 * of the performance domain frequency.
7381 		 * NOTE: in case RT tasks are running, by default the
7382 		 * FREQUENCY_UTIL's utilization can be max OPP.
7383 		 */
7384 		cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
7385 		max_util = max(max_util, cpu_util);
7386 	}
7387 
7388 	return min(max_util, eenv->cpu_cap);
7389 }
7390 
7391 /*
7392  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7393  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7394  * contribution is ignored.
7395  */
7396 static inline unsigned long
7397 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7398 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7399 {
7400 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7401 	unsigned long busy_time = eenv->pd_busy_time;
7402 
7403 	if (dst_cpu >= 0)
7404 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7405 
7406 	return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7407 }
7408 
7409 /*
7410  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7411  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7412  * spare capacity in each performance domain and uses it as a potential
7413  * candidate to execute the task. Then, it uses the Energy Model to figure
7414  * out which of the CPU candidates is the most energy-efficient.
7415  *
7416  * The rationale for this heuristic is as follows. In a performance domain,
7417  * all the most energy efficient CPU candidates (according to the Energy
7418  * Model) are those for which we'll request a low frequency. When there are
7419  * several CPUs for which the frequency request will be the same, we don't
7420  * have enough data to break the tie between them, because the Energy Model
7421  * only includes active power costs. With this model, if we assume that
7422  * frequency requests follow utilization (e.g. using schedutil), the CPU with
7423  * the maximum spare capacity in a performance domain is guaranteed to be among
7424  * the best candidates of the performance domain.
7425  *
7426  * In practice, it could be preferable from an energy standpoint to pack
7427  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7428  * but that could also hurt our chances to go cluster idle, and we have no
7429  * ways to tell with the current Energy Model if this is actually a good
7430  * idea or not. So, find_energy_efficient_cpu() basically favors
7431  * cluster-packing, and spreading inside a cluster. That should at least be
7432  * a good thing for latency, and this is consistent with the idea that most
7433  * of the energy savings of EAS come from the asymmetry of the system, and
7434  * not so much from breaking the tie between identical CPUs. That's also the
7435  * reason why EAS is enabled in the topology code only for systems where
7436  * SD_ASYM_CPUCAPACITY is set.
7437  *
7438  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7439  * they don't have any useful utilization data yet and it's not possible to
7440  * forecast their impact on energy consumption. Consequently, they will be
7441  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7442  * to be energy-inefficient in some use-cases. The alternative would be to
7443  * bias new tasks towards specific types of CPUs first, or to try to infer
7444  * their util_avg from the parent task, but those heuristics could hurt
7445  * other use-cases too. So, until someone finds a better way to solve this,
7446  * let's keep things simple by re-using the existing slow path.
7447  */
7448 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7449 {
7450 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7451 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7452 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7453 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7454 	struct root_domain *rd = this_rq()->rd;
7455 	int cpu, best_energy_cpu, target = -1;
7456 	int prev_fits = -1, best_fits = -1;
7457 	unsigned long best_thermal_cap = 0;
7458 	unsigned long prev_thermal_cap = 0;
7459 	struct sched_domain *sd;
7460 	struct perf_domain *pd;
7461 	struct energy_env eenv;
7462 
7463 	rcu_read_lock();
7464 	pd = rcu_dereference(rd->pd);
7465 	if (!pd || READ_ONCE(rd->overutilized))
7466 		goto unlock;
7467 
7468 	/*
7469 	 * Energy-aware wake-up happens on the lowest sched_domain starting
7470 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7471 	 */
7472 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7473 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7474 		sd = sd->parent;
7475 	if (!sd)
7476 		goto unlock;
7477 
7478 	target = prev_cpu;
7479 
7480 	sync_entity_load_avg(&p->se);
7481 	if (!uclamp_task_util(p, p_util_min, p_util_max))
7482 		goto unlock;
7483 
7484 	eenv_task_busy_time(&eenv, p, prev_cpu);
7485 
7486 	for (; pd; pd = pd->next) {
7487 		unsigned long util_min = p_util_min, util_max = p_util_max;
7488 		unsigned long cpu_cap, cpu_thermal_cap, util;
7489 		unsigned long cur_delta, max_spare_cap = 0;
7490 		unsigned long rq_util_min, rq_util_max;
7491 		unsigned long prev_spare_cap = 0;
7492 		int max_spare_cap_cpu = -1;
7493 		unsigned long base_energy;
7494 		int fits, max_fits = -1;
7495 
7496 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
7497 
7498 		if (cpumask_empty(cpus))
7499 			continue;
7500 
7501 		/* Account thermal pressure for the energy estimation */
7502 		cpu = cpumask_first(cpus);
7503 		cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
7504 		cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
7505 
7506 		eenv.cpu_cap = cpu_thermal_cap;
7507 		eenv.pd_cap = 0;
7508 
7509 		for_each_cpu(cpu, cpus) {
7510 			struct rq *rq = cpu_rq(cpu);
7511 
7512 			eenv.pd_cap += cpu_thermal_cap;
7513 
7514 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7515 				continue;
7516 
7517 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
7518 				continue;
7519 
7520 			util = cpu_util_next(cpu, p, cpu);
7521 			cpu_cap = capacity_of(cpu);
7522 
7523 			/*
7524 			 * Skip CPUs that cannot satisfy the capacity request.
7525 			 * IOW, placing the task there would make the CPU
7526 			 * overutilized. Take uclamp into account to see how
7527 			 * much capacity we can get out of the CPU; this is
7528 			 * aligned with sched_cpu_util().
7529 			 */
7530 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
7531 				/*
7532 				 * Open code uclamp_rq_util_with() except for
7533 				 * the clamp() part. Ie: apply max aggregation
7534 				 * only. util_fits_cpu() logic requires to
7535 				 * operate on non clamped util but must use the
7536 				 * max-aggregated uclamp_{min, max}.
7537 				 */
7538 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
7539 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
7540 
7541 				util_min = max(rq_util_min, p_util_min);
7542 				util_max = max(rq_util_max, p_util_max);
7543 			}
7544 
7545 			fits = util_fits_cpu(util, util_min, util_max, cpu);
7546 			if (!fits)
7547 				continue;
7548 
7549 			lsub_positive(&cpu_cap, util);
7550 
7551 			if (cpu == prev_cpu) {
7552 				/* Always use prev_cpu as a candidate. */
7553 				prev_spare_cap = cpu_cap;
7554 				prev_fits = fits;
7555 			} else if ((fits > max_fits) ||
7556 				   ((fits == max_fits) && (cpu_cap > max_spare_cap))) {
7557 				/*
7558 				 * Find the CPU with the maximum spare capacity
7559 				 * among the remaining CPUs in the performance
7560 				 * domain.
7561 				 */
7562 				max_spare_cap = cpu_cap;
7563 				max_spare_cap_cpu = cpu;
7564 				max_fits = fits;
7565 			}
7566 		}
7567 
7568 		if (max_spare_cap_cpu < 0 && prev_spare_cap == 0)
7569 			continue;
7570 
7571 		eenv_pd_busy_time(&eenv, cpus, p);
7572 		/* Compute the 'base' energy of the pd, without @p */
7573 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
7574 
7575 		/* Evaluate the energy impact of using prev_cpu. */
7576 		if (prev_spare_cap > 0) {
7577 			prev_delta = compute_energy(&eenv, pd, cpus, p,
7578 						    prev_cpu);
7579 			/* CPU utilization has changed */
7580 			if (prev_delta < base_energy)
7581 				goto unlock;
7582 			prev_delta -= base_energy;
7583 			prev_thermal_cap = cpu_thermal_cap;
7584 			best_delta = min(best_delta, prev_delta);
7585 		}
7586 
7587 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
7588 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
7589 			/* Current best energy cpu fits better */
7590 			if (max_fits < best_fits)
7591 				continue;
7592 
7593 			/*
7594 			 * Both don't fit performance hint (i.e. uclamp_min)
7595 			 * but best energy cpu has better capacity.
7596 			 */
7597 			if ((max_fits < 0) &&
7598 			    (cpu_thermal_cap <= best_thermal_cap))
7599 				continue;
7600 
7601 			cur_delta = compute_energy(&eenv, pd, cpus, p,
7602 						   max_spare_cap_cpu);
7603 			/* CPU utilization has changed */
7604 			if (cur_delta < base_energy)
7605 				goto unlock;
7606 			cur_delta -= base_energy;
7607 
7608 			/*
7609 			 * Both fit for the task but best energy cpu has lower
7610 			 * energy impact.
7611 			 */
7612 			if ((max_fits > 0) && (best_fits > 0) &&
7613 			    (cur_delta >= best_delta))
7614 				continue;
7615 
7616 			best_delta = cur_delta;
7617 			best_energy_cpu = max_spare_cap_cpu;
7618 			best_fits = max_fits;
7619 			best_thermal_cap = cpu_thermal_cap;
7620 		}
7621 	}
7622 	rcu_read_unlock();
7623 
7624 	if ((best_fits > prev_fits) ||
7625 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
7626 	    ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
7627 		target = best_energy_cpu;
7628 
7629 	return target;
7630 
7631 unlock:
7632 	rcu_read_unlock();
7633 
7634 	return target;
7635 }
7636 
7637 /*
7638  * select_task_rq_fair: Select target runqueue for the waking task in domains
7639  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
7640  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
7641  *
7642  * Balances load by selecting the idlest CPU in the idlest group, or under
7643  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
7644  *
7645  * Returns the target CPU number.
7646  */
7647 static int
7648 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
7649 {
7650 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
7651 	struct sched_domain *tmp, *sd = NULL;
7652 	int cpu = smp_processor_id();
7653 	int new_cpu = prev_cpu;
7654 	int want_affine = 0;
7655 	/* SD_flags and WF_flags share the first nibble */
7656 	int sd_flag = wake_flags & 0xF;
7657 
7658 	/*
7659 	 * required for stable ->cpus_allowed
7660 	 */
7661 	lockdep_assert_held(&p->pi_lock);
7662 	if (wake_flags & WF_TTWU) {
7663 		record_wakee(p);
7664 
7665 		if (sched_energy_enabled()) {
7666 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
7667 			if (new_cpu >= 0)
7668 				return new_cpu;
7669 			new_cpu = prev_cpu;
7670 		}
7671 
7672 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
7673 	}
7674 
7675 	rcu_read_lock();
7676 	for_each_domain(cpu, tmp) {
7677 		/*
7678 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
7679 		 * cpu is a valid SD_WAKE_AFFINE target.
7680 		 */
7681 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
7682 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
7683 			if (cpu != prev_cpu)
7684 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
7685 
7686 			sd = NULL; /* Prefer wake_affine over balance flags */
7687 			break;
7688 		}
7689 
7690 		/*
7691 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
7692 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
7693 		 * will usually go to the fast path.
7694 		 */
7695 		if (tmp->flags & sd_flag)
7696 			sd = tmp;
7697 		else if (!want_affine)
7698 			break;
7699 	}
7700 
7701 	if (unlikely(sd)) {
7702 		/* Slow path */
7703 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
7704 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
7705 		/* Fast path */
7706 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
7707 	}
7708 	rcu_read_unlock();
7709 
7710 	return new_cpu;
7711 }
7712 
7713 /*
7714  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
7715  * cfs_rq_of(p) references at time of call are still valid and identify the
7716  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
7717  */
7718 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
7719 {
7720 	struct sched_entity *se = &p->se;
7721 
7722 	/*
7723 	 * As blocked tasks retain absolute vruntime the migration needs to
7724 	 * deal with this by subtracting the old and adding the new
7725 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
7726 	 * the task on the new runqueue.
7727 	 */
7728 	if (READ_ONCE(p->__state) == TASK_WAKING) {
7729 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7730 
7731 		se->vruntime -= u64_u32_load(cfs_rq->min_vruntime);
7732 	}
7733 
7734 	if (!task_on_rq_migrating(p)) {
7735 		remove_entity_load_avg(se);
7736 
7737 		/*
7738 		 * Here, the task's PELT values have been updated according to
7739 		 * the current rq's clock. But if that clock hasn't been
7740 		 * updated in a while, a substantial idle time will be missed,
7741 		 * leading to an inflation after wake-up on the new rq.
7742 		 *
7743 		 * Estimate the missing time from the cfs_rq last_update_time
7744 		 * and update sched_avg to improve the PELT continuity after
7745 		 * migration.
7746 		 */
7747 		migrate_se_pelt_lag(se);
7748 	}
7749 
7750 	/* Tell new CPU we are migrated */
7751 	se->avg.last_update_time = 0;
7752 
7753 	update_scan_period(p, new_cpu);
7754 }
7755 
7756 static void task_dead_fair(struct task_struct *p)
7757 {
7758 	remove_entity_load_avg(&p->se);
7759 }
7760 
7761 static int
7762 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7763 {
7764 	if (rq->nr_running)
7765 		return 1;
7766 
7767 	return newidle_balance(rq, rf) != 0;
7768 }
7769 #endif /* CONFIG_SMP */
7770 
7771 static unsigned long wakeup_gran(struct sched_entity *se)
7772 {
7773 	unsigned long gran = sysctl_sched_wakeup_granularity;
7774 
7775 	/*
7776 	 * Since its curr running now, convert the gran from real-time
7777 	 * to virtual-time in his units.
7778 	 *
7779 	 * By using 'se' instead of 'curr' we penalize light tasks, so
7780 	 * they get preempted easier. That is, if 'se' < 'curr' then
7781 	 * the resulting gran will be larger, therefore penalizing the
7782 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7783 	 * be smaller, again penalizing the lighter task.
7784 	 *
7785 	 * This is especially important for buddies when the leftmost
7786 	 * task is higher priority than the buddy.
7787 	 */
7788 	return calc_delta_fair(gran, se);
7789 }
7790 
7791 /*
7792  * Should 'se' preempt 'curr'.
7793  *
7794  *             |s1
7795  *        |s2
7796  *   |s3
7797  *         g
7798  *      |<--->|c
7799  *
7800  *  w(c, s1) = -1
7801  *  w(c, s2) =  0
7802  *  w(c, s3) =  1
7803  *
7804  */
7805 static int
7806 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7807 {
7808 	s64 gran, vdiff = curr->vruntime - se->vruntime;
7809 
7810 	if (vdiff <= 0)
7811 		return -1;
7812 
7813 	gran = wakeup_gran(se);
7814 	if (vdiff > gran)
7815 		return 1;
7816 
7817 	return 0;
7818 }
7819 
7820 static void set_last_buddy(struct sched_entity *se)
7821 {
7822 	for_each_sched_entity(se) {
7823 		if (SCHED_WARN_ON(!se->on_rq))
7824 			return;
7825 		if (se_is_idle(se))
7826 			return;
7827 		cfs_rq_of(se)->last = se;
7828 	}
7829 }
7830 
7831 static void set_next_buddy(struct sched_entity *se)
7832 {
7833 	for_each_sched_entity(se) {
7834 		if (SCHED_WARN_ON(!se->on_rq))
7835 			return;
7836 		if (se_is_idle(se))
7837 			return;
7838 		cfs_rq_of(se)->next = se;
7839 	}
7840 }
7841 
7842 static void set_skip_buddy(struct sched_entity *se)
7843 {
7844 	for_each_sched_entity(se)
7845 		cfs_rq_of(se)->skip = se;
7846 }
7847 
7848 /*
7849  * Preempt the current task with a newly woken task if needed:
7850  */
7851 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7852 {
7853 	struct task_struct *curr = rq->curr;
7854 	struct sched_entity *se = &curr->se, *pse = &p->se;
7855 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7856 	int scale = cfs_rq->nr_running >= sched_nr_latency;
7857 	int next_buddy_marked = 0;
7858 	int cse_is_idle, pse_is_idle;
7859 
7860 	if (unlikely(se == pse))
7861 		return;
7862 
7863 	/*
7864 	 * This is possible from callers such as attach_tasks(), in which we
7865 	 * unconditionally check_preempt_curr() after an enqueue (which may have
7866 	 * lead to a throttle).  This both saves work and prevents false
7867 	 * next-buddy nomination below.
7868 	 */
7869 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7870 		return;
7871 
7872 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7873 		set_next_buddy(pse);
7874 		next_buddy_marked = 1;
7875 	}
7876 
7877 	/*
7878 	 * We can come here with TIF_NEED_RESCHED already set from new task
7879 	 * wake up path.
7880 	 *
7881 	 * Note: this also catches the edge-case of curr being in a throttled
7882 	 * group (e.g. via set_curr_task), since update_curr() (in the
7883 	 * enqueue of curr) will have resulted in resched being set.  This
7884 	 * prevents us from potentially nominating it as a false LAST_BUDDY
7885 	 * below.
7886 	 */
7887 	if (test_tsk_need_resched(curr))
7888 		return;
7889 
7890 	/* Idle tasks are by definition preempted by non-idle tasks. */
7891 	if (unlikely(task_has_idle_policy(curr)) &&
7892 	    likely(!task_has_idle_policy(p)))
7893 		goto preempt;
7894 
7895 	/*
7896 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7897 	 * is driven by the tick):
7898 	 */
7899 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7900 		return;
7901 
7902 	find_matching_se(&se, &pse);
7903 	WARN_ON_ONCE(!pse);
7904 
7905 	cse_is_idle = se_is_idle(se);
7906 	pse_is_idle = se_is_idle(pse);
7907 
7908 	/*
7909 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
7910 	 * in the inverse case).
7911 	 */
7912 	if (cse_is_idle && !pse_is_idle)
7913 		goto preempt;
7914 	if (cse_is_idle != pse_is_idle)
7915 		return;
7916 
7917 	update_curr(cfs_rq_of(se));
7918 	if (wakeup_preempt_entity(se, pse) == 1) {
7919 		/*
7920 		 * Bias pick_next to pick the sched entity that is
7921 		 * triggering this preemption.
7922 		 */
7923 		if (!next_buddy_marked)
7924 			set_next_buddy(pse);
7925 		goto preempt;
7926 	}
7927 
7928 	return;
7929 
7930 preempt:
7931 	resched_curr(rq);
7932 	/*
7933 	 * Only set the backward buddy when the current task is still
7934 	 * on the rq. This can happen when a wakeup gets interleaved
7935 	 * with schedule on the ->pre_schedule() or idle_balance()
7936 	 * point, either of which can * drop the rq lock.
7937 	 *
7938 	 * Also, during early boot the idle thread is in the fair class,
7939 	 * for obvious reasons its a bad idea to schedule back to it.
7940 	 */
7941 	if (unlikely(!se->on_rq || curr == rq->idle))
7942 		return;
7943 
7944 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7945 		set_last_buddy(se);
7946 }
7947 
7948 #ifdef CONFIG_SMP
7949 static struct task_struct *pick_task_fair(struct rq *rq)
7950 {
7951 	struct sched_entity *se;
7952 	struct cfs_rq *cfs_rq;
7953 
7954 again:
7955 	cfs_rq = &rq->cfs;
7956 	if (!cfs_rq->nr_running)
7957 		return NULL;
7958 
7959 	do {
7960 		struct sched_entity *curr = cfs_rq->curr;
7961 
7962 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7963 		if (curr) {
7964 			if (curr->on_rq)
7965 				update_curr(cfs_rq);
7966 			else
7967 				curr = NULL;
7968 
7969 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7970 				goto again;
7971 		}
7972 
7973 		se = pick_next_entity(cfs_rq, curr);
7974 		cfs_rq = group_cfs_rq(se);
7975 	} while (cfs_rq);
7976 
7977 	return task_of(se);
7978 }
7979 #endif
7980 
7981 struct task_struct *
7982 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7983 {
7984 	struct cfs_rq *cfs_rq = &rq->cfs;
7985 	struct sched_entity *se;
7986 	struct task_struct *p;
7987 	int new_tasks;
7988 
7989 again:
7990 	if (!sched_fair_runnable(rq))
7991 		goto idle;
7992 
7993 #ifdef CONFIG_FAIR_GROUP_SCHED
7994 	if (!prev || prev->sched_class != &fair_sched_class)
7995 		goto simple;
7996 
7997 	/*
7998 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7999 	 * likely that a next task is from the same cgroup as the current.
8000 	 *
8001 	 * Therefore attempt to avoid putting and setting the entire cgroup
8002 	 * hierarchy, only change the part that actually changes.
8003 	 */
8004 
8005 	do {
8006 		struct sched_entity *curr = cfs_rq->curr;
8007 
8008 		/*
8009 		 * Since we got here without doing put_prev_entity() we also
8010 		 * have to consider cfs_rq->curr. If it is still a runnable
8011 		 * entity, update_curr() will update its vruntime, otherwise
8012 		 * forget we've ever seen it.
8013 		 */
8014 		if (curr) {
8015 			if (curr->on_rq)
8016 				update_curr(cfs_rq);
8017 			else
8018 				curr = NULL;
8019 
8020 			/*
8021 			 * This call to check_cfs_rq_runtime() will do the
8022 			 * throttle and dequeue its entity in the parent(s).
8023 			 * Therefore the nr_running test will indeed
8024 			 * be correct.
8025 			 */
8026 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8027 				cfs_rq = &rq->cfs;
8028 
8029 				if (!cfs_rq->nr_running)
8030 					goto idle;
8031 
8032 				goto simple;
8033 			}
8034 		}
8035 
8036 		se = pick_next_entity(cfs_rq, curr);
8037 		cfs_rq = group_cfs_rq(se);
8038 	} while (cfs_rq);
8039 
8040 	p = task_of(se);
8041 
8042 	/*
8043 	 * Since we haven't yet done put_prev_entity and if the selected task
8044 	 * is a different task than we started out with, try and touch the
8045 	 * least amount of cfs_rqs.
8046 	 */
8047 	if (prev != p) {
8048 		struct sched_entity *pse = &prev->se;
8049 
8050 		while (!(cfs_rq = is_same_group(se, pse))) {
8051 			int se_depth = se->depth;
8052 			int pse_depth = pse->depth;
8053 
8054 			if (se_depth <= pse_depth) {
8055 				put_prev_entity(cfs_rq_of(pse), pse);
8056 				pse = parent_entity(pse);
8057 			}
8058 			if (se_depth >= pse_depth) {
8059 				set_next_entity(cfs_rq_of(se), se);
8060 				se = parent_entity(se);
8061 			}
8062 		}
8063 
8064 		put_prev_entity(cfs_rq, pse);
8065 		set_next_entity(cfs_rq, se);
8066 	}
8067 
8068 	goto done;
8069 simple:
8070 #endif
8071 	if (prev)
8072 		put_prev_task(rq, prev);
8073 
8074 	do {
8075 		se = pick_next_entity(cfs_rq, NULL);
8076 		set_next_entity(cfs_rq, se);
8077 		cfs_rq = group_cfs_rq(se);
8078 	} while (cfs_rq);
8079 
8080 	p = task_of(se);
8081 
8082 done: __maybe_unused;
8083 #ifdef CONFIG_SMP
8084 	/*
8085 	 * Move the next running task to the front of
8086 	 * the list, so our cfs_tasks list becomes MRU
8087 	 * one.
8088 	 */
8089 	list_move(&p->se.group_node, &rq->cfs_tasks);
8090 #endif
8091 
8092 	if (hrtick_enabled_fair(rq))
8093 		hrtick_start_fair(rq, p);
8094 
8095 	update_misfit_status(p, rq);
8096 
8097 	return p;
8098 
8099 idle:
8100 	if (!rf)
8101 		return NULL;
8102 
8103 	new_tasks = newidle_balance(rq, rf);
8104 
8105 	/*
8106 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
8107 	 * possible for any higher priority task to appear. In that case we
8108 	 * must re-start the pick_next_entity() loop.
8109 	 */
8110 	if (new_tasks < 0)
8111 		return RETRY_TASK;
8112 
8113 	if (new_tasks > 0)
8114 		goto again;
8115 
8116 	/*
8117 	 * rq is about to be idle, check if we need to update the
8118 	 * lost_idle_time of clock_pelt
8119 	 */
8120 	update_idle_rq_clock_pelt(rq);
8121 
8122 	return NULL;
8123 }
8124 
8125 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8126 {
8127 	return pick_next_task_fair(rq, NULL, NULL);
8128 }
8129 
8130 /*
8131  * Account for a descheduled task:
8132  */
8133 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8134 {
8135 	struct sched_entity *se = &prev->se;
8136 	struct cfs_rq *cfs_rq;
8137 
8138 	for_each_sched_entity(se) {
8139 		cfs_rq = cfs_rq_of(se);
8140 		put_prev_entity(cfs_rq, se);
8141 	}
8142 }
8143 
8144 /*
8145  * sched_yield() is very simple
8146  *
8147  * The magic of dealing with the ->skip buddy is in pick_next_entity.
8148  */
8149 static void yield_task_fair(struct rq *rq)
8150 {
8151 	struct task_struct *curr = rq->curr;
8152 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8153 	struct sched_entity *se = &curr->se;
8154 
8155 	/*
8156 	 * Are we the only task in the tree?
8157 	 */
8158 	if (unlikely(rq->nr_running == 1))
8159 		return;
8160 
8161 	clear_buddies(cfs_rq, se);
8162 
8163 	if (curr->policy != SCHED_BATCH) {
8164 		update_rq_clock(rq);
8165 		/*
8166 		 * Update run-time statistics of the 'current'.
8167 		 */
8168 		update_curr(cfs_rq);
8169 		/*
8170 		 * Tell update_rq_clock() that we've just updated,
8171 		 * so we don't do microscopic update in schedule()
8172 		 * and double the fastpath cost.
8173 		 */
8174 		rq_clock_skip_update(rq);
8175 	}
8176 
8177 	set_skip_buddy(se);
8178 }
8179 
8180 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8181 {
8182 	struct sched_entity *se = &p->se;
8183 
8184 	/* throttled hierarchies are not runnable */
8185 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8186 		return false;
8187 
8188 	/* Tell the scheduler that we'd really like pse to run next. */
8189 	set_next_buddy(se);
8190 
8191 	yield_task_fair(rq);
8192 
8193 	return true;
8194 }
8195 
8196 #ifdef CONFIG_SMP
8197 /**************************************************
8198  * Fair scheduling class load-balancing methods.
8199  *
8200  * BASICS
8201  *
8202  * The purpose of load-balancing is to achieve the same basic fairness the
8203  * per-CPU scheduler provides, namely provide a proportional amount of compute
8204  * time to each task. This is expressed in the following equation:
8205  *
8206  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8207  *
8208  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8209  * W_i,0 is defined as:
8210  *
8211  *   W_i,0 = \Sum_j w_i,j                                             (2)
8212  *
8213  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8214  * is derived from the nice value as per sched_prio_to_weight[].
8215  *
8216  * The weight average is an exponential decay average of the instantaneous
8217  * weight:
8218  *
8219  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
8220  *
8221  * C_i is the compute capacity of CPU i, typically it is the
8222  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8223  * can also include other factors [XXX].
8224  *
8225  * To achieve this balance we define a measure of imbalance which follows
8226  * directly from (1):
8227  *
8228  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
8229  *
8230  * We them move tasks around to minimize the imbalance. In the continuous
8231  * function space it is obvious this converges, in the discrete case we get
8232  * a few fun cases generally called infeasible weight scenarios.
8233  *
8234  * [XXX expand on:
8235  *     - infeasible weights;
8236  *     - local vs global optima in the discrete case. ]
8237  *
8238  *
8239  * SCHED DOMAINS
8240  *
8241  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8242  * for all i,j solution, we create a tree of CPUs that follows the hardware
8243  * topology where each level pairs two lower groups (or better). This results
8244  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8245  * tree to only the first of the previous level and we decrease the frequency
8246  * of load-balance at each level inv. proportional to the number of CPUs in
8247  * the groups.
8248  *
8249  * This yields:
8250  *
8251  *     log_2 n     1     n
8252  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
8253  *     i = 0      2^i   2^i
8254  *                               `- size of each group
8255  *         |         |     `- number of CPUs doing load-balance
8256  *         |         `- freq
8257  *         `- sum over all levels
8258  *
8259  * Coupled with a limit on how many tasks we can migrate every balance pass,
8260  * this makes (5) the runtime complexity of the balancer.
8261  *
8262  * An important property here is that each CPU is still (indirectly) connected
8263  * to every other CPU in at most O(log n) steps:
8264  *
8265  * The adjacency matrix of the resulting graph is given by:
8266  *
8267  *             log_2 n
8268  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
8269  *             k = 0
8270  *
8271  * And you'll find that:
8272  *
8273  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
8274  *
8275  * Showing there's indeed a path between every CPU in at most O(log n) steps.
8276  * The task movement gives a factor of O(m), giving a convergence complexity
8277  * of:
8278  *
8279  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
8280  *
8281  *
8282  * WORK CONSERVING
8283  *
8284  * In order to avoid CPUs going idle while there's still work to do, new idle
8285  * balancing is more aggressive and has the newly idle CPU iterate up the domain
8286  * tree itself instead of relying on other CPUs to bring it work.
8287  *
8288  * This adds some complexity to both (5) and (8) but it reduces the total idle
8289  * time.
8290  *
8291  * [XXX more?]
8292  *
8293  *
8294  * CGROUPS
8295  *
8296  * Cgroups make a horror show out of (2), instead of a simple sum we get:
8297  *
8298  *                                s_k,i
8299  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
8300  *                                 S_k
8301  *
8302  * Where
8303  *
8304  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
8305  *
8306  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8307  *
8308  * The big problem is S_k, its a global sum needed to compute a local (W_i)
8309  * property.
8310  *
8311  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8312  *      rewrite all of this once again.]
8313  */
8314 
8315 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8316 
8317 enum fbq_type { regular, remote, all };
8318 
8319 /*
8320  * 'group_type' describes the group of CPUs at the moment of load balancing.
8321  *
8322  * The enum is ordered by pulling priority, with the group with lowest priority
8323  * first so the group_type can simply be compared when selecting the busiest
8324  * group. See update_sd_pick_busiest().
8325  */
8326 enum group_type {
8327 	/* The group has spare capacity that can be used to run more tasks.  */
8328 	group_has_spare = 0,
8329 	/*
8330 	 * The group is fully used and the tasks don't compete for more CPU
8331 	 * cycles. Nevertheless, some tasks might wait before running.
8332 	 */
8333 	group_fully_busy,
8334 	/*
8335 	 * One task doesn't fit with CPU's capacity and must be migrated to a
8336 	 * more powerful CPU.
8337 	 */
8338 	group_misfit_task,
8339 	/*
8340 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8341 	 * and the task should be migrated to it instead of running on the
8342 	 * current CPU.
8343 	 */
8344 	group_asym_packing,
8345 	/*
8346 	 * The tasks' affinity constraints previously prevented the scheduler
8347 	 * from balancing the load across the system.
8348 	 */
8349 	group_imbalanced,
8350 	/*
8351 	 * The CPU is overloaded and can't provide expected CPU cycles to all
8352 	 * tasks.
8353 	 */
8354 	group_overloaded
8355 };
8356 
8357 enum migration_type {
8358 	migrate_load = 0,
8359 	migrate_util,
8360 	migrate_task,
8361 	migrate_misfit
8362 };
8363 
8364 #define LBF_ALL_PINNED	0x01
8365 #define LBF_NEED_BREAK	0x02
8366 #define LBF_DST_PINNED  0x04
8367 #define LBF_SOME_PINNED	0x08
8368 #define LBF_ACTIVE_LB	0x10
8369 
8370 struct lb_env {
8371 	struct sched_domain	*sd;
8372 
8373 	struct rq		*src_rq;
8374 	int			src_cpu;
8375 
8376 	int			dst_cpu;
8377 	struct rq		*dst_rq;
8378 
8379 	struct cpumask		*dst_grpmask;
8380 	int			new_dst_cpu;
8381 	enum cpu_idle_type	idle;
8382 	long			imbalance;
8383 	/* The set of CPUs under consideration for load-balancing */
8384 	struct cpumask		*cpus;
8385 
8386 	unsigned int		flags;
8387 
8388 	unsigned int		loop;
8389 	unsigned int		loop_break;
8390 	unsigned int		loop_max;
8391 
8392 	enum fbq_type		fbq_type;
8393 	enum migration_type	migration_type;
8394 	struct list_head	tasks;
8395 };
8396 
8397 /*
8398  * Is this task likely cache-hot:
8399  */
8400 static int task_hot(struct task_struct *p, struct lb_env *env)
8401 {
8402 	s64 delta;
8403 
8404 	lockdep_assert_rq_held(env->src_rq);
8405 
8406 	if (p->sched_class != &fair_sched_class)
8407 		return 0;
8408 
8409 	if (unlikely(task_has_idle_policy(p)))
8410 		return 0;
8411 
8412 	/* SMT siblings share cache */
8413 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8414 		return 0;
8415 
8416 	/*
8417 	 * Buddy candidates are cache hot:
8418 	 */
8419 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8420 			(&p->se == cfs_rq_of(&p->se)->next ||
8421 			 &p->se == cfs_rq_of(&p->se)->last))
8422 		return 1;
8423 
8424 	if (sysctl_sched_migration_cost == -1)
8425 		return 1;
8426 
8427 	/*
8428 	 * Don't migrate task if the task's cookie does not match
8429 	 * with the destination CPU's core cookie.
8430 	 */
8431 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8432 		return 1;
8433 
8434 	if (sysctl_sched_migration_cost == 0)
8435 		return 0;
8436 
8437 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8438 
8439 	return delta < (s64)sysctl_sched_migration_cost;
8440 }
8441 
8442 #ifdef CONFIG_NUMA_BALANCING
8443 /*
8444  * Returns 1, if task migration degrades locality
8445  * Returns 0, if task migration improves locality i.e migration preferred.
8446  * Returns -1, if task migration is not affected by locality.
8447  */
8448 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8449 {
8450 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
8451 	unsigned long src_weight, dst_weight;
8452 	int src_nid, dst_nid, dist;
8453 
8454 	if (!static_branch_likely(&sched_numa_balancing))
8455 		return -1;
8456 
8457 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8458 		return -1;
8459 
8460 	src_nid = cpu_to_node(env->src_cpu);
8461 	dst_nid = cpu_to_node(env->dst_cpu);
8462 
8463 	if (src_nid == dst_nid)
8464 		return -1;
8465 
8466 	/* Migrating away from the preferred node is always bad. */
8467 	if (src_nid == p->numa_preferred_nid) {
8468 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8469 			return 1;
8470 		else
8471 			return -1;
8472 	}
8473 
8474 	/* Encourage migration to the preferred node. */
8475 	if (dst_nid == p->numa_preferred_nid)
8476 		return 0;
8477 
8478 	/* Leaving a core idle is often worse than degrading locality. */
8479 	if (env->idle == CPU_IDLE)
8480 		return -1;
8481 
8482 	dist = node_distance(src_nid, dst_nid);
8483 	if (numa_group) {
8484 		src_weight = group_weight(p, src_nid, dist);
8485 		dst_weight = group_weight(p, dst_nid, dist);
8486 	} else {
8487 		src_weight = task_weight(p, src_nid, dist);
8488 		dst_weight = task_weight(p, dst_nid, dist);
8489 	}
8490 
8491 	return dst_weight < src_weight;
8492 }
8493 
8494 #else
8495 static inline int migrate_degrades_locality(struct task_struct *p,
8496 					     struct lb_env *env)
8497 {
8498 	return -1;
8499 }
8500 #endif
8501 
8502 /*
8503  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8504  */
8505 static
8506 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8507 {
8508 	int tsk_cache_hot;
8509 
8510 	lockdep_assert_rq_held(env->src_rq);
8511 
8512 	/*
8513 	 * We do not migrate tasks that are:
8514 	 * 1) throttled_lb_pair, or
8515 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8516 	 * 3) running (obviously), or
8517 	 * 4) are cache-hot on their current CPU.
8518 	 */
8519 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8520 		return 0;
8521 
8522 	/* Disregard pcpu kthreads; they are where they need to be. */
8523 	if (kthread_is_per_cpu(p))
8524 		return 0;
8525 
8526 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8527 		int cpu;
8528 
8529 		schedstat_inc(p->stats.nr_failed_migrations_affine);
8530 
8531 		env->flags |= LBF_SOME_PINNED;
8532 
8533 		/*
8534 		 * Remember if this task can be migrated to any other CPU in
8535 		 * our sched_group. We may want to revisit it if we couldn't
8536 		 * meet load balance goals by pulling other tasks on src_cpu.
8537 		 *
8538 		 * Avoid computing new_dst_cpu
8539 		 * - for NEWLY_IDLE
8540 		 * - if we have already computed one in current iteration
8541 		 * - if it's an active balance
8542 		 */
8543 		if (env->idle == CPU_NEWLY_IDLE ||
8544 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8545 			return 0;
8546 
8547 		/* Prevent to re-select dst_cpu via env's CPUs: */
8548 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8549 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8550 				env->flags |= LBF_DST_PINNED;
8551 				env->new_dst_cpu = cpu;
8552 				break;
8553 			}
8554 		}
8555 
8556 		return 0;
8557 	}
8558 
8559 	/* Record that we found at least one task that could run on dst_cpu */
8560 	env->flags &= ~LBF_ALL_PINNED;
8561 
8562 	if (task_on_cpu(env->src_rq, p)) {
8563 		schedstat_inc(p->stats.nr_failed_migrations_running);
8564 		return 0;
8565 	}
8566 
8567 	/*
8568 	 * Aggressive migration if:
8569 	 * 1) active balance
8570 	 * 2) destination numa is preferred
8571 	 * 3) task is cache cold, or
8572 	 * 4) too many balance attempts have failed.
8573 	 */
8574 	if (env->flags & LBF_ACTIVE_LB)
8575 		return 1;
8576 
8577 	tsk_cache_hot = migrate_degrades_locality(p, env);
8578 	if (tsk_cache_hot == -1)
8579 		tsk_cache_hot = task_hot(p, env);
8580 
8581 	if (tsk_cache_hot <= 0 ||
8582 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8583 		if (tsk_cache_hot == 1) {
8584 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8585 			schedstat_inc(p->stats.nr_forced_migrations);
8586 		}
8587 		return 1;
8588 	}
8589 
8590 	schedstat_inc(p->stats.nr_failed_migrations_hot);
8591 	return 0;
8592 }
8593 
8594 /*
8595  * detach_task() -- detach the task for the migration specified in env
8596  */
8597 static void detach_task(struct task_struct *p, struct lb_env *env)
8598 {
8599 	lockdep_assert_rq_held(env->src_rq);
8600 
8601 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
8602 	set_task_cpu(p, env->dst_cpu);
8603 }
8604 
8605 /*
8606  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
8607  * part of active balancing operations within "domain".
8608  *
8609  * Returns a task if successful and NULL otherwise.
8610  */
8611 static struct task_struct *detach_one_task(struct lb_env *env)
8612 {
8613 	struct task_struct *p;
8614 
8615 	lockdep_assert_rq_held(env->src_rq);
8616 
8617 	list_for_each_entry_reverse(p,
8618 			&env->src_rq->cfs_tasks, se.group_node) {
8619 		if (!can_migrate_task(p, env))
8620 			continue;
8621 
8622 		detach_task(p, env);
8623 
8624 		/*
8625 		 * Right now, this is only the second place where
8626 		 * lb_gained[env->idle] is updated (other is detach_tasks)
8627 		 * so we can safely collect stats here rather than
8628 		 * inside detach_tasks().
8629 		 */
8630 		schedstat_inc(env->sd->lb_gained[env->idle]);
8631 		return p;
8632 	}
8633 	return NULL;
8634 }
8635 
8636 /*
8637  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
8638  * busiest_rq, as part of a balancing operation within domain "sd".
8639  *
8640  * Returns number of detached tasks if successful and 0 otherwise.
8641  */
8642 static int detach_tasks(struct lb_env *env)
8643 {
8644 	struct list_head *tasks = &env->src_rq->cfs_tasks;
8645 	unsigned long util, load;
8646 	struct task_struct *p;
8647 	int detached = 0;
8648 
8649 	lockdep_assert_rq_held(env->src_rq);
8650 
8651 	/*
8652 	 * Source run queue has been emptied by another CPU, clear
8653 	 * LBF_ALL_PINNED flag as we will not test any task.
8654 	 */
8655 	if (env->src_rq->nr_running <= 1) {
8656 		env->flags &= ~LBF_ALL_PINNED;
8657 		return 0;
8658 	}
8659 
8660 	if (env->imbalance <= 0)
8661 		return 0;
8662 
8663 	while (!list_empty(tasks)) {
8664 		/*
8665 		 * We don't want to steal all, otherwise we may be treated likewise,
8666 		 * which could at worst lead to a livelock crash.
8667 		 */
8668 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
8669 			break;
8670 
8671 		env->loop++;
8672 		/*
8673 		 * We've more or less seen every task there is, call it quits
8674 		 * unless we haven't found any movable task yet.
8675 		 */
8676 		if (env->loop > env->loop_max &&
8677 		    !(env->flags & LBF_ALL_PINNED))
8678 			break;
8679 
8680 		/* take a breather every nr_migrate tasks */
8681 		if (env->loop > env->loop_break) {
8682 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
8683 			env->flags |= LBF_NEED_BREAK;
8684 			break;
8685 		}
8686 
8687 		p = list_last_entry(tasks, struct task_struct, se.group_node);
8688 
8689 		if (!can_migrate_task(p, env))
8690 			goto next;
8691 
8692 		switch (env->migration_type) {
8693 		case migrate_load:
8694 			/*
8695 			 * Depending of the number of CPUs and tasks and the
8696 			 * cgroup hierarchy, task_h_load() can return a null
8697 			 * value. Make sure that env->imbalance decreases
8698 			 * otherwise detach_tasks() will stop only after
8699 			 * detaching up to loop_max tasks.
8700 			 */
8701 			load = max_t(unsigned long, task_h_load(p), 1);
8702 
8703 			if (sched_feat(LB_MIN) &&
8704 			    load < 16 && !env->sd->nr_balance_failed)
8705 				goto next;
8706 
8707 			/*
8708 			 * Make sure that we don't migrate too much load.
8709 			 * Nevertheless, let relax the constraint if
8710 			 * scheduler fails to find a good waiting task to
8711 			 * migrate.
8712 			 */
8713 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
8714 				goto next;
8715 
8716 			env->imbalance -= load;
8717 			break;
8718 
8719 		case migrate_util:
8720 			util = task_util_est(p);
8721 
8722 			if (util > env->imbalance)
8723 				goto next;
8724 
8725 			env->imbalance -= util;
8726 			break;
8727 
8728 		case migrate_task:
8729 			env->imbalance--;
8730 			break;
8731 
8732 		case migrate_misfit:
8733 			/* This is not a misfit task */
8734 			if (task_fits_cpu(p, env->src_cpu))
8735 				goto next;
8736 
8737 			env->imbalance = 0;
8738 			break;
8739 		}
8740 
8741 		detach_task(p, env);
8742 		list_add(&p->se.group_node, &env->tasks);
8743 
8744 		detached++;
8745 
8746 #ifdef CONFIG_PREEMPTION
8747 		/*
8748 		 * NEWIDLE balancing is a source of latency, so preemptible
8749 		 * kernels will stop after the first task is detached to minimize
8750 		 * the critical section.
8751 		 */
8752 		if (env->idle == CPU_NEWLY_IDLE)
8753 			break;
8754 #endif
8755 
8756 		/*
8757 		 * We only want to steal up to the prescribed amount of
8758 		 * load/util/tasks.
8759 		 */
8760 		if (env->imbalance <= 0)
8761 			break;
8762 
8763 		continue;
8764 next:
8765 		list_move(&p->se.group_node, tasks);
8766 	}
8767 
8768 	/*
8769 	 * Right now, this is one of only two places we collect this stat
8770 	 * so we can safely collect detach_one_task() stats here rather
8771 	 * than inside detach_one_task().
8772 	 */
8773 	schedstat_add(env->sd->lb_gained[env->idle], detached);
8774 
8775 	return detached;
8776 }
8777 
8778 /*
8779  * attach_task() -- attach the task detached by detach_task() to its new rq.
8780  */
8781 static void attach_task(struct rq *rq, struct task_struct *p)
8782 {
8783 	lockdep_assert_rq_held(rq);
8784 
8785 	WARN_ON_ONCE(task_rq(p) != rq);
8786 	activate_task(rq, p, ENQUEUE_NOCLOCK);
8787 	check_preempt_curr(rq, p, 0);
8788 }
8789 
8790 /*
8791  * attach_one_task() -- attaches the task returned from detach_one_task() to
8792  * its new rq.
8793  */
8794 static void attach_one_task(struct rq *rq, struct task_struct *p)
8795 {
8796 	struct rq_flags rf;
8797 
8798 	rq_lock(rq, &rf);
8799 	update_rq_clock(rq);
8800 	attach_task(rq, p);
8801 	rq_unlock(rq, &rf);
8802 }
8803 
8804 /*
8805  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8806  * new rq.
8807  */
8808 static void attach_tasks(struct lb_env *env)
8809 {
8810 	struct list_head *tasks = &env->tasks;
8811 	struct task_struct *p;
8812 	struct rq_flags rf;
8813 
8814 	rq_lock(env->dst_rq, &rf);
8815 	update_rq_clock(env->dst_rq);
8816 
8817 	while (!list_empty(tasks)) {
8818 		p = list_first_entry(tasks, struct task_struct, se.group_node);
8819 		list_del_init(&p->se.group_node);
8820 
8821 		attach_task(env->dst_rq, p);
8822 	}
8823 
8824 	rq_unlock(env->dst_rq, &rf);
8825 }
8826 
8827 #ifdef CONFIG_NO_HZ_COMMON
8828 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8829 {
8830 	if (cfs_rq->avg.load_avg)
8831 		return true;
8832 
8833 	if (cfs_rq->avg.util_avg)
8834 		return true;
8835 
8836 	return false;
8837 }
8838 
8839 static inline bool others_have_blocked(struct rq *rq)
8840 {
8841 	if (READ_ONCE(rq->avg_rt.util_avg))
8842 		return true;
8843 
8844 	if (READ_ONCE(rq->avg_dl.util_avg))
8845 		return true;
8846 
8847 	if (thermal_load_avg(rq))
8848 		return true;
8849 
8850 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8851 	if (READ_ONCE(rq->avg_irq.util_avg))
8852 		return true;
8853 #endif
8854 
8855 	return false;
8856 }
8857 
8858 static inline void update_blocked_load_tick(struct rq *rq)
8859 {
8860 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8861 }
8862 
8863 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8864 {
8865 	if (!has_blocked)
8866 		rq->has_blocked_load = 0;
8867 }
8868 #else
8869 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8870 static inline bool others_have_blocked(struct rq *rq) { return false; }
8871 static inline void update_blocked_load_tick(struct rq *rq) {}
8872 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8873 #endif
8874 
8875 static bool __update_blocked_others(struct rq *rq, bool *done)
8876 {
8877 	const struct sched_class *curr_class;
8878 	u64 now = rq_clock_pelt(rq);
8879 	unsigned long thermal_pressure;
8880 	bool decayed;
8881 
8882 	/*
8883 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8884 	 * DL and IRQ signals have been updated before updating CFS.
8885 	 */
8886 	curr_class = rq->curr->sched_class;
8887 
8888 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8889 
8890 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8891 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8892 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8893 		  update_irq_load_avg(rq, 0);
8894 
8895 	if (others_have_blocked(rq))
8896 		*done = false;
8897 
8898 	return decayed;
8899 }
8900 
8901 #ifdef CONFIG_FAIR_GROUP_SCHED
8902 
8903 static bool __update_blocked_fair(struct rq *rq, bool *done)
8904 {
8905 	struct cfs_rq *cfs_rq, *pos;
8906 	bool decayed = false;
8907 	int cpu = cpu_of(rq);
8908 
8909 	/*
8910 	 * Iterates the task_group tree in a bottom up fashion, see
8911 	 * list_add_leaf_cfs_rq() for details.
8912 	 */
8913 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8914 		struct sched_entity *se;
8915 
8916 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8917 			update_tg_load_avg(cfs_rq);
8918 
8919 			if (cfs_rq->nr_running == 0)
8920 				update_idle_cfs_rq_clock_pelt(cfs_rq);
8921 
8922 			if (cfs_rq == &rq->cfs)
8923 				decayed = true;
8924 		}
8925 
8926 		/* Propagate pending load changes to the parent, if any: */
8927 		se = cfs_rq->tg->se[cpu];
8928 		if (se && !skip_blocked_update(se))
8929 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8930 
8931 		/*
8932 		 * There can be a lot of idle CPU cgroups.  Don't let fully
8933 		 * decayed cfs_rqs linger on the list.
8934 		 */
8935 		if (cfs_rq_is_decayed(cfs_rq))
8936 			list_del_leaf_cfs_rq(cfs_rq);
8937 
8938 		/* Don't need periodic decay once load/util_avg are null */
8939 		if (cfs_rq_has_blocked(cfs_rq))
8940 			*done = false;
8941 	}
8942 
8943 	return decayed;
8944 }
8945 
8946 /*
8947  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8948  * This needs to be done in a top-down fashion because the load of a child
8949  * group is a fraction of its parents load.
8950  */
8951 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8952 {
8953 	struct rq *rq = rq_of(cfs_rq);
8954 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8955 	unsigned long now = jiffies;
8956 	unsigned long load;
8957 
8958 	if (cfs_rq->last_h_load_update == now)
8959 		return;
8960 
8961 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
8962 	for_each_sched_entity(se) {
8963 		cfs_rq = cfs_rq_of(se);
8964 		WRITE_ONCE(cfs_rq->h_load_next, se);
8965 		if (cfs_rq->last_h_load_update == now)
8966 			break;
8967 	}
8968 
8969 	if (!se) {
8970 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8971 		cfs_rq->last_h_load_update = now;
8972 	}
8973 
8974 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8975 		load = cfs_rq->h_load;
8976 		load = div64_ul(load * se->avg.load_avg,
8977 			cfs_rq_load_avg(cfs_rq) + 1);
8978 		cfs_rq = group_cfs_rq(se);
8979 		cfs_rq->h_load = load;
8980 		cfs_rq->last_h_load_update = now;
8981 	}
8982 }
8983 
8984 static unsigned long task_h_load(struct task_struct *p)
8985 {
8986 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
8987 
8988 	update_cfs_rq_h_load(cfs_rq);
8989 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8990 			cfs_rq_load_avg(cfs_rq) + 1);
8991 }
8992 #else
8993 static bool __update_blocked_fair(struct rq *rq, bool *done)
8994 {
8995 	struct cfs_rq *cfs_rq = &rq->cfs;
8996 	bool decayed;
8997 
8998 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8999 	if (cfs_rq_has_blocked(cfs_rq))
9000 		*done = false;
9001 
9002 	return decayed;
9003 }
9004 
9005 static unsigned long task_h_load(struct task_struct *p)
9006 {
9007 	return p->se.avg.load_avg;
9008 }
9009 #endif
9010 
9011 static void update_blocked_averages(int cpu)
9012 {
9013 	bool decayed = false, done = true;
9014 	struct rq *rq = cpu_rq(cpu);
9015 	struct rq_flags rf;
9016 
9017 	rq_lock_irqsave(rq, &rf);
9018 	update_blocked_load_tick(rq);
9019 	update_rq_clock(rq);
9020 
9021 	decayed |= __update_blocked_others(rq, &done);
9022 	decayed |= __update_blocked_fair(rq, &done);
9023 
9024 	update_blocked_load_status(rq, !done);
9025 	if (decayed)
9026 		cpufreq_update_util(rq, 0);
9027 	rq_unlock_irqrestore(rq, &rf);
9028 }
9029 
9030 /********** Helpers for find_busiest_group ************************/
9031 
9032 /*
9033  * sg_lb_stats - stats of a sched_group required for load_balancing
9034  */
9035 struct sg_lb_stats {
9036 	unsigned long avg_load; /*Avg load across the CPUs of the group */
9037 	unsigned long group_load; /* Total load over the CPUs of the group */
9038 	unsigned long group_capacity;
9039 	unsigned long group_util; /* Total utilization over the CPUs of the group */
9040 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9041 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
9042 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9043 	unsigned int idle_cpus;
9044 	unsigned int group_weight;
9045 	enum group_type group_type;
9046 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9047 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9048 #ifdef CONFIG_NUMA_BALANCING
9049 	unsigned int nr_numa_running;
9050 	unsigned int nr_preferred_running;
9051 #endif
9052 };
9053 
9054 /*
9055  * sd_lb_stats - Structure to store the statistics of a sched_domain
9056  *		 during load balancing.
9057  */
9058 struct sd_lb_stats {
9059 	struct sched_group *busiest;	/* Busiest group in this sd */
9060 	struct sched_group *local;	/* Local group in this sd */
9061 	unsigned long total_load;	/* Total load of all groups in sd */
9062 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
9063 	unsigned long avg_load;	/* Average load across all groups in sd */
9064 	unsigned int prefer_sibling; /* tasks should go to sibling first */
9065 
9066 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
9067 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
9068 };
9069 
9070 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9071 {
9072 	/*
9073 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9074 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9075 	 * We must however set busiest_stat::group_type and
9076 	 * busiest_stat::idle_cpus to the worst busiest group because
9077 	 * update_sd_pick_busiest() reads these before assignment.
9078 	 */
9079 	*sds = (struct sd_lb_stats){
9080 		.busiest = NULL,
9081 		.local = NULL,
9082 		.total_load = 0UL,
9083 		.total_capacity = 0UL,
9084 		.busiest_stat = {
9085 			.idle_cpus = UINT_MAX,
9086 			.group_type = group_has_spare,
9087 		},
9088 	};
9089 }
9090 
9091 static unsigned long scale_rt_capacity(int cpu)
9092 {
9093 	struct rq *rq = cpu_rq(cpu);
9094 	unsigned long max = arch_scale_cpu_capacity(cpu);
9095 	unsigned long used, free;
9096 	unsigned long irq;
9097 
9098 	irq = cpu_util_irq(rq);
9099 
9100 	if (unlikely(irq >= max))
9101 		return 1;
9102 
9103 	/*
9104 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9105 	 * (running and not running) with weights 0 and 1024 respectively.
9106 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
9107 	 * average uses the actual delta max capacity(load).
9108 	 */
9109 	used = READ_ONCE(rq->avg_rt.util_avg);
9110 	used += READ_ONCE(rq->avg_dl.util_avg);
9111 	used += thermal_load_avg(rq);
9112 
9113 	if (unlikely(used >= max))
9114 		return 1;
9115 
9116 	free = max - used;
9117 
9118 	return scale_irq_capacity(free, irq, max);
9119 }
9120 
9121 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9122 {
9123 	unsigned long capacity = scale_rt_capacity(cpu);
9124 	struct sched_group *sdg = sd->groups;
9125 
9126 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
9127 
9128 	if (!capacity)
9129 		capacity = 1;
9130 
9131 	cpu_rq(cpu)->cpu_capacity = capacity;
9132 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9133 
9134 	sdg->sgc->capacity = capacity;
9135 	sdg->sgc->min_capacity = capacity;
9136 	sdg->sgc->max_capacity = capacity;
9137 }
9138 
9139 void update_group_capacity(struct sched_domain *sd, int cpu)
9140 {
9141 	struct sched_domain *child = sd->child;
9142 	struct sched_group *group, *sdg = sd->groups;
9143 	unsigned long capacity, min_capacity, max_capacity;
9144 	unsigned long interval;
9145 
9146 	interval = msecs_to_jiffies(sd->balance_interval);
9147 	interval = clamp(interval, 1UL, max_load_balance_interval);
9148 	sdg->sgc->next_update = jiffies + interval;
9149 
9150 	if (!child) {
9151 		update_cpu_capacity(sd, cpu);
9152 		return;
9153 	}
9154 
9155 	capacity = 0;
9156 	min_capacity = ULONG_MAX;
9157 	max_capacity = 0;
9158 
9159 	if (child->flags & SD_OVERLAP) {
9160 		/*
9161 		 * SD_OVERLAP domains cannot assume that child groups
9162 		 * span the current group.
9163 		 */
9164 
9165 		for_each_cpu(cpu, sched_group_span(sdg)) {
9166 			unsigned long cpu_cap = capacity_of(cpu);
9167 
9168 			capacity += cpu_cap;
9169 			min_capacity = min(cpu_cap, min_capacity);
9170 			max_capacity = max(cpu_cap, max_capacity);
9171 		}
9172 	} else  {
9173 		/*
9174 		 * !SD_OVERLAP domains can assume that child groups
9175 		 * span the current group.
9176 		 */
9177 
9178 		group = child->groups;
9179 		do {
9180 			struct sched_group_capacity *sgc = group->sgc;
9181 
9182 			capacity += sgc->capacity;
9183 			min_capacity = min(sgc->min_capacity, min_capacity);
9184 			max_capacity = max(sgc->max_capacity, max_capacity);
9185 			group = group->next;
9186 		} while (group != child->groups);
9187 	}
9188 
9189 	sdg->sgc->capacity = capacity;
9190 	sdg->sgc->min_capacity = min_capacity;
9191 	sdg->sgc->max_capacity = max_capacity;
9192 }
9193 
9194 /*
9195  * Check whether the capacity of the rq has been noticeably reduced by side
9196  * activity. The imbalance_pct is used for the threshold.
9197  * Return true is the capacity is reduced
9198  */
9199 static inline int
9200 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9201 {
9202 	return ((rq->cpu_capacity * sd->imbalance_pct) <
9203 				(rq->cpu_capacity_orig * 100));
9204 }
9205 
9206 /*
9207  * Check whether a rq has a misfit task and if it looks like we can actually
9208  * help that task: we can migrate the task to a CPU of higher capacity, or
9209  * the task's current CPU is heavily pressured.
9210  */
9211 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9212 {
9213 	return rq->misfit_task_load &&
9214 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
9215 		 check_cpu_capacity(rq, sd));
9216 }
9217 
9218 /*
9219  * Group imbalance indicates (and tries to solve) the problem where balancing
9220  * groups is inadequate due to ->cpus_ptr constraints.
9221  *
9222  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9223  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9224  * Something like:
9225  *
9226  *	{ 0 1 2 3 } { 4 5 6 7 }
9227  *	        *     * * *
9228  *
9229  * If we were to balance group-wise we'd place two tasks in the first group and
9230  * two tasks in the second group. Clearly this is undesired as it will overload
9231  * cpu 3 and leave one of the CPUs in the second group unused.
9232  *
9233  * The current solution to this issue is detecting the skew in the first group
9234  * by noticing the lower domain failed to reach balance and had difficulty
9235  * moving tasks due to affinity constraints.
9236  *
9237  * When this is so detected; this group becomes a candidate for busiest; see
9238  * update_sd_pick_busiest(). And calculate_imbalance() and
9239  * find_busiest_group() avoid some of the usual balance conditions to allow it
9240  * to create an effective group imbalance.
9241  *
9242  * This is a somewhat tricky proposition since the next run might not find the
9243  * group imbalance and decide the groups need to be balanced again. A most
9244  * subtle and fragile situation.
9245  */
9246 
9247 static inline int sg_imbalanced(struct sched_group *group)
9248 {
9249 	return group->sgc->imbalance;
9250 }
9251 
9252 /*
9253  * group_has_capacity returns true if the group has spare capacity that could
9254  * be used by some tasks.
9255  * We consider that a group has spare capacity if the number of task is
9256  * smaller than the number of CPUs or if the utilization is lower than the
9257  * available capacity for CFS tasks.
9258  * For the latter, we use a threshold to stabilize the state, to take into
9259  * account the variance of the tasks' load and to return true if the available
9260  * capacity in meaningful for the load balancer.
9261  * As an example, an available capacity of 1% can appear but it doesn't make
9262  * any benefit for the load balance.
9263  */
9264 static inline bool
9265 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9266 {
9267 	if (sgs->sum_nr_running < sgs->group_weight)
9268 		return true;
9269 
9270 	if ((sgs->group_capacity * imbalance_pct) <
9271 			(sgs->group_runnable * 100))
9272 		return false;
9273 
9274 	if ((sgs->group_capacity * 100) >
9275 			(sgs->group_util * imbalance_pct))
9276 		return true;
9277 
9278 	return false;
9279 }
9280 
9281 /*
9282  *  group_is_overloaded returns true if the group has more tasks than it can
9283  *  handle.
9284  *  group_is_overloaded is not equals to !group_has_capacity because a group
9285  *  with the exact right number of tasks, has no more spare capacity but is not
9286  *  overloaded so both group_has_capacity and group_is_overloaded return
9287  *  false.
9288  */
9289 static inline bool
9290 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9291 {
9292 	if (sgs->sum_nr_running <= sgs->group_weight)
9293 		return false;
9294 
9295 	if ((sgs->group_capacity * 100) <
9296 			(sgs->group_util * imbalance_pct))
9297 		return true;
9298 
9299 	if ((sgs->group_capacity * imbalance_pct) <
9300 			(sgs->group_runnable * 100))
9301 		return true;
9302 
9303 	return false;
9304 }
9305 
9306 static inline enum
9307 group_type group_classify(unsigned int imbalance_pct,
9308 			  struct sched_group *group,
9309 			  struct sg_lb_stats *sgs)
9310 {
9311 	if (group_is_overloaded(imbalance_pct, sgs))
9312 		return group_overloaded;
9313 
9314 	if (sg_imbalanced(group))
9315 		return group_imbalanced;
9316 
9317 	if (sgs->group_asym_packing)
9318 		return group_asym_packing;
9319 
9320 	if (sgs->group_misfit_task_load)
9321 		return group_misfit_task;
9322 
9323 	if (!group_has_capacity(imbalance_pct, sgs))
9324 		return group_fully_busy;
9325 
9326 	return group_has_spare;
9327 }
9328 
9329 /**
9330  * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks
9331  * @dst_cpu:	Destination CPU of the load balancing
9332  * @sds:	Load-balancing data with statistics of the local group
9333  * @sgs:	Load-balancing statistics of the candidate busiest group
9334  * @sg:		The candidate busiest group
9335  *
9336  * Check the state of the SMT siblings of both @sds::local and @sg and decide
9337  * if @dst_cpu can pull tasks.
9338  *
9339  * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of
9340  * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks
9341  * only if @dst_cpu has higher priority.
9342  *
9343  * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more
9344  * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority.
9345  * Bigger imbalances in the number of busy CPUs will be dealt with in
9346  * update_sd_pick_busiest().
9347  *
9348  * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings
9349  * of @dst_cpu are idle and @sg has lower priority.
9350  *
9351  * Return: true if @dst_cpu can pull tasks, false otherwise.
9352  */
9353 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds,
9354 				    struct sg_lb_stats *sgs,
9355 				    struct sched_group *sg)
9356 {
9357 #ifdef CONFIG_SCHED_SMT
9358 	bool local_is_smt, sg_is_smt;
9359 	int sg_busy_cpus;
9360 
9361 	local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY;
9362 	sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY;
9363 
9364 	sg_busy_cpus = sgs->group_weight - sgs->idle_cpus;
9365 
9366 	if (!local_is_smt) {
9367 		/*
9368 		 * If we are here, @dst_cpu is idle and does not have SMT
9369 		 * siblings. Pull tasks if candidate group has two or more
9370 		 * busy CPUs.
9371 		 */
9372 		if (sg_busy_cpus >= 2) /* implies sg_is_smt */
9373 			return true;
9374 
9375 		/*
9376 		 * @dst_cpu does not have SMT siblings. @sg may have SMT
9377 		 * siblings and only one is busy. In such case, @dst_cpu
9378 		 * can help if it has higher priority and is idle (i.e.,
9379 		 * it has no running tasks).
9380 		 */
9381 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
9382 	}
9383 
9384 	/* @dst_cpu has SMT siblings. */
9385 
9386 	if (sg_is_smt) {
9387 		int local_busy_cpus = sds->local->group_weight -
9388 				      sds->local_stat.idle_cpus;
9389 		int busy_cpus_delta = sg_busy_cpus - local_busy_cpus;
9390 
9391 		if (busy_cpus_delta == 1)
9392 			return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
9393 
9394 		return false;
9395 	}
9396 
9397 	/*
9398 	 * @sg does not have SMT siblings. Ensure that @sds::local does not end
9399 	 * up with more than one busy SMT sibling and only pull tasks if there
9400 	 * are not busy CPUs (i.e., no CPU has running tasks).
9401 	 */
9402 	if (!sds->local_stat.sum_nr_running)
9403 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
9404 
9405 	return false;
9406 #else
9407 	/* Always return false so that callers deal with non-SMT cases. */
9408 	return false;
9409 #endif
9410 }
9411 
9412 static inline bool
9413 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
9414 	   struct sched_group *group)
9415 {
9416 	/* Only do SMT checks if either local or candidate have SMT siblings */
9417 	if ((sds->local->flags & SD_SHARE_CPUCAPACITY) ||
9418 	    (group->flags & SD_SHARE_CPUCAPACITY))
9419 		return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group);
9420 
9421 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
9422 }
9423 
9424 static inline bool
9425 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9426 {
9427 	/*
9428 	 * When there is more than 1 task, the group_overloaded case already
9429 	 * takes care of cpu with reduced capacity
9430 	 */
9431 	if (rq->cfs.h_nr_running != 1)
9432 		return false;
9433 
9434 	return check_cpu_capacity(rq, sd);
9435 }
9436 
9437 /**
9438  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9439  * @env: The load balancing environment.
9440  * @sds: Load-balancing data with statistics of the local group.
9441  * @group: sched_group whose statistics are to be updated.
9442  * @sgs: variable to hold the statistics for this group.
9443  * @sg_status: Holds flag indicating the status of the sched_group
9444  */
9445 static inline void update_sg_lb_stats(struct lb_env *env,
9446 				      struct sd_lb_stats *sds,
9447 				      struct sched_group *group,
9448 				      struct sg_lb_stats *sgs,
9449 				      int *sg_status)
9450 {
9451 	int i, nr_running, local_group;
9452 
9453 	memset(sgs, 0, sizeof(*sgs));
9454 
9455 	local_group = group == sds->local;
9456 
9457 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9458 		struct rq *rq = cpu_rq(i);
9459 		unsigned long load = cpu_load(rq);
9460 
9461 		sgs->group_load += load;
9462 		sgs->group_util += cpu_util_cfs(i);
9463 		sgs->group_runnable += cpu_runnable(rq);
9464 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9465 
9466 		nr_running = rq->nr_running;
9467 		sgs->sum_nr_running += nr_running;
9468 
9469 		if (nr_running > 1)
9470 			*sg_status |= SG_OVERLOAD;
9471 
9472 		if (cpu_overutilized(i))
9473 			*sg_status |= SG_OVERUTILIZED;
9474 
9475 #ifdef CONFIG_NUMA_BALANCING
9476 		sgs->nr_numa_running += rq->nr_numa_running;
9477 		sgs->nr_preferred_running += rq->nr_preferred_running;
9478 #endif
9479 		/*
9480 		 * No need to call idle_cpu() if nr_running is not 0
9481 		 */
9482 		if (!nr_running && idle_cpu(i)) {
9483 			sgs->idle_cpus++;
9484 			/* Idle cpu can't have misfit task */
9485 			continue;
9486 		}
9487 
9488 		if (local_group)
9489 			continue;
9490 
9491 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9492 			/* Check for a misfit task on the cpu */
9493 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9494 				sgs->group_misfit_task_load = rq->misfit_task_load;
9495 				*sg_status |= SG_OVERLOAD;
9496 			}
9497 		} else if ((env->idle != CPU_NOT_IDLE) &&
9498 			   sched_reduced_capacity(rq, env->sd)) {
9499 			/* Check for a task running on a CPU with reduced capacity */
9500 			if (sgs->group_misfit_task_load < load)
9501 				sgs->group_misfit_task_load = load;
9502 		}
9503 	}
9504 
9505 	sgs->group_capacity = group->sgc->capacity;
9506 
9507 	sgs->group_weight = group->group_weight;
9508 
9509 	/* Check if dst CPU is idle and preferred to this group */
9510 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
9511 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9512 	    sched_asym(env, sds, sgs, group)) {
9513 		sgs->group_asym_packing = 1;
9514 	}
9515 
9516 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9517 
9518 	/* Computing avg_load makes sense only when group is overloaded */
9519 	if (sgs->group_type == group_overloaded)
9520 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9521 				sgs->group_capacity;
9522 }
9523 
9524 /**
9525  * update_sd_pick_busiest - return 1 on busiest group
9526  * @env: The load balancing environment.
9527  * @sds: sched_domain statistics
9528  * @sg: sched_group candidate to be checked for being the busiest
9529  * @sgs: sched_group statistics
9530  *
9531  * Determine if @sg is a busier group than the previously selected
9532  * busiest group.
9533  *
9534  * Return: %true if @sg is a busier group than the previously selected
9535  * busiest group. %false otherwise.
9536  */
9537 static bool update_sd_pick_busiest(struct lb_env *env,
9538 				   struct sd_lb_stats *sds,
9539 				   struct sched_group *sg,
9540 				   struct sg_lb_stats *sgs)
9541 {
9542 	struct sg_lb_stats *busiest = &sds->busiest_stat;
9543 
9544 	/* Make sure that there is at least one task to pull */
9545 	if (!sgs->sum_h_nr_running)
9546 		return false;
9547 
9548 	/*
9549 	 * Don't try to pull misfit tasks we can't help.
9550 	 * We can use max_capacity here as reduction in capacity on some
9551 	 * CPUs in the group should either be possible to resolve
9552 	 * internally or be covered by avg_load imbalance (eventually).
9553 	 */
9554 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9555 	    (sgs->group_type == group_misfit_task) &&
9556 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9557 	     sds->local_stat.group_type != group_has_spare))
9558 		return false;
9559 
9560 	if (sgs->group_type > busiest->group_type)
9561 		return true;
9562 
9563 	if (sgs->group_type < busiest->group_type)
9564 		return false;
9565 
9566 	/*
9567 	 * The candidate and the current busiest group are the same type of
9568 	 * group. Let check which one is the busiest according to the type.
9569 	 */
9570 
9571 	switch (sgs->group_type) {
9572 	case group_overloaded:
9573 		/* Select the overloaded group with highest avg_load. */
9574 		if (sgs->avg_load <= busiest->avg_load)
9575 			return false;
9576 		break;
9577 
9578 	case group_imbalanced:
9579 		/*
9580 		 * Select the 1st imbalanced group as we don't have any way to
9581 		 * choose one more than another.
9582 		 */
9583 		return false;
9584 
9585 	case group_asym_packing:
9586 		/* Prefer to move from lowest priority CPU's work */
9587 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
9588 			return false;
9589 		break;
9590 
9591 	case group_misfit_task:
9592 		/*
9593 		 * If we have more than one misfit sg go with the biggest
9594 		 * misfit.
9595 		 */
9596 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9597 			return false;
9598 		break;
9599 
9600 	case group_fully_busy:
9601 		/*
9602 		 * Select the fully busy group with highest avg_load. In
9603 		 * theory, there is no need to pull task from such kind of
9604 		 * group because tasks have all compute capacity that they need
9605 		 * but we can still improve the overall throughput by reducing
9606 		 * contention when accessing shared HW resources.
9607 		 *
9608 		 * XXX for now avg_load is not computed and always 0 so we
9609 		 * select the 1st one.
9610 		 */
9611 		if (sgs->avg_load <= busiest->avg_load)
9612 			return false;
9613 		break;
9614 
9615 	case group_has_spare:
9616 		/*
9617 		 * Select not overloaded group with lowest number of idle cpus
9618 		 * and highest number of running tasks. We could also compare
9619 		 * the spare capacity which is more stable but it can end up
9620 		 * that the group has less spare capacity but finally more idle
9621 		 * CPUs which means less opportunity to pull tasks.
9622 		 */
9623 		if (sgs->idle_cpus > busiest->idle_cpus)
9624 			return false;
9625 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
9626 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
9627 			return false;
9628 
9629 		break;
9630 	}
9631 
9632 	/*
9633 	 * Candidate sg has no more than one task per CPU and has higher
9634 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
9635 	 * throughput. Maximize throughput, power/energy consequences are not
9636 	 * considered.
9637 	 */
9638 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9639 	    (sgs->group_type <= group_fully_busy) &&
9640 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
9641 		return false;
9642 
9643 	return true;
9644 }
9645 
9646 #ifdef CONFIG_NUMA_BALANCING
9647 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9648 {
9649 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
9650 		return regular;
9651 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
9652 		return remote;
9653 	return all;
9654 }
9655 
9656 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9657 {
9658 	if (rq->nr_running > rq->nr_numa_running)
9659 		return regular;
9660 	if (rq->nr_running > rq->nr_preferred_running)
9661 		return remote;
9662 	return all;
9663 }
9664 #else
9665 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9666 {
9667 	return all;
9668 }
9669 
9670 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9671 {
9672 	return regular;
9673 }
9674 #endif /* CONFIG_NUMA_BALANCING */
9675 
9676 
9677 struct sg_lb_stats;
9678 
9679 /*
9680  * task_running_on_cpu - return 1 if @p is running on @cpu.
9681  */
9682 
9683 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
9684 {
9685 	/* Task has no contribution or is new */
9686 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
9687 		return 0;
9688 
9689 	if (task_on_rq_queued(p))
9690 		return 1;
9691 
9692 	return 0;
9693 }
9694 
9695 /**
9696  * idle_cpu_without - would a given CPU be idle without p ?
9697  * @cpu: the processor on which idleness is tested.
9698  * @p: task which should be ignored.
9699  *
9700  * Return: 1 if the CPU would be idle. 0 otherwise.
9701  */
9702 static int idle_cpu_without(int cpu, struct task_struct *p)
9703 {
9704 	struct rq *rq = cpu_rq(cpu);
9705 
9706 	if (rq->curr != rq->idle && rq->curr != p)
9707 		return 0;
9708 
9709 	/*
9710 	 * rq->nr_running can't be used but an updated version without the
9711 	 * impact of p on cpu must be used instead. The updated nr_running
9712 	 * be computed and tested before calling idle_cpu_without().
9713 	 */
9714 
9715 #ifdef CONFIG_SMP
9716 	if (rq->ttwu_pending)
9717 		return 0;
9718 #endif
9719 
9720 	return 1;
9721 }
9722 
9723 /*
9724  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
9725  * @sd: The sched_domain level to look for idlest group.
9726  * @group: sched_group whose statistics are to be updated.
9727  * @sgs: variable to hold the statistics for this group.
9728  * @p: The task for which we look for the idlest group/CPU.
9729  */
9730 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
9731 					  struct sched_group *group,
9732 					  struct sg_lb_stats *sgs,
9733 					  struct task_struct *p)
9734 {
9735 	int i, nr_running;
9736 
9737 	memset(sgs, 0, sizeof(*sgs));
9738 
9739 	/* Assume that task can't fit any CPU of the group */
9740 	if (sd->flags & SD_ASYM_CPUCAPACITY)
9741 		sgs->group_misfit_task_load = 1;
9742 
9743 	for_each_cpu(i, sched_group_span(group)) {
9744 		struct rq *rq = cpu_rq(i);
9745 		unsigned int local;
9746 
9747 		sgs->group_load += cpu_load_without(rq, p);
9748 		sgs->group_util += cpu_util_without(i, p);
9749 		sgs->group_runnable += cpu_runnable_without(rq, p);
9750 		local = task_running_on_cpu(i, p);
9751 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
9752 
9753 		nr_running = rq->nr_running - local;
9754 		sgs->sum_nr_running += nr_running;
9755 
9756 		/*
9757 		 * No need to call idle_cpu_without() if nr_running is not 0
9758 		 */
9759 		if (!nr_running && idle_cpu_without(i, p))
9760 			sgs->idle_cpus++;
9761 
9762 		/* Check if task fits in the CPU */
9763 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
9764 		    sgs->group_misfit_task_load &&
9765 		    task_fits_cpu(p, i))
9766 			sgs->group_misfit_task_load = 0;
9767 
9768 	}
9769 
9770 	sgs->group_capacity = group->sgc->capacity;
9771 
9772 	sgs->group_weight = group->group_weight;
9773 
9774 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
9775 
9776 	/*
9777 	 * Computing avg_load makes sense only when group is fully busy or
9778 	 * overloaded
9779 	 */
9780 	if (sgs->group_type == group_fully_busy ||
9781 		sgs->group_type == group_overloaded)
9782 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9783 				sgs->group_capacity;
9784 }
9785 
9786 static bool update_pick_idlest(struct sched_group *idlest,
9787 			       struct sg_lb_stats *idlest_sgs,
9788 			       struct sched_group *group,
9789 			       struct sg_lb_stats *sgs)
9790 {
9791 	if (sgs->group_type < idlest_sgs->group_type)
9792 		return true;
9793 
9794 	if (sgs->group_type > idlest_sgs->group_type)
9795 		return false;
9796 
9797 	/*
9798 	 * The candidate and the current idlest group are the same type of
9799 	 * group. Let check which one is the idlest according to the type.
9800 	 */
9801 
9802 	switch (sgs->group_type) {
9803 	case group_overloaded:
9804 	case group_fully_busy:
9805 		/* Select the group with lowest avg_load. */
9806 		if (idlest_sgs->avg_load <= sgs->avg_load)
9807 			return false;
9808 		break;
9809 
9810 	case group_imbalanced:
9811 	case group_asym_packing:
9812 		/* Those types are not used in the slow wakeup path */
9813 		return false;
9814 
9815 	case group_misfit_task:
9816 		/* Select group with the highest max capacity */
9817 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
9818 			return false;
9819 		break;
9820 
9821 	case group_has_spare:
9822 		/* Select group with most idle CPUs */
9823 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
9824 			return false;
9825 
9826 		/* Select group with lowest group_util */
9827 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9828 			idlest_sgs->group_util <= sgs->group_util)
9829 			return false;
9830 
9831 		break;
9832 	}
9833 
9834 	return true;
9835 }
9836 
9837 /*
9838  * find_idlest_group() finds and returns the least busy CPU group within the
9839  * domain.
9840  *
9841  * Assumes p is allowed on at least one CPU in sd.
9842  */
9843 static struct sched_group *
9844 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9845 {
9846 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9847 	struct sg_lb_stats local_sgs, tmp_sgs;
9848 	struct sg_lb_stats *sgs;
9849 	unsigned long imbalance;
9850 	struct sg_lb_stats idlest_sgs = {
9851 			.avg_load = UINT_MAX,
9852 			.group_type = group_overloaded,
9853 	};
9854 
9855 	do {
9856 		int local_group;
9857 
9858 		/* Skip over this group if it has no CPUs allowed */
9859 		if (!cpumask_intersects(sched_group_span(group),
9860 					p->cpus_ptr))
9861 			continue;
9862 
9863 		/* Skip over this group if no cookie matched */
9864 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9865 			continue;
9866 
9867 		local_group = cpumask_test_cpu(this_cpu,
9868 					       sched_group_span(group));
9869 
9870 		if (local_group) {
9871 			sgs = &local_sgs;
9872 			local = group;
9873 		} else {
9874 			sgs = &tmp_sgs;
9875 		}
9876 
9877 		update_sg_wakeup_stats(sd, group, sgs, p);
9878 
9879 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9880 			idlest = group;
9881 			idlest_sgs = *sgs;
9882 		}
9883 
9884 	} while (group = group->next, group != sd->groups);
9885 
9886 
9887 	/* There is no idlest group to push tasks to */
9888 	if (!idlest)
9889 		return NULL;
9890 
9891 	/* The local group has been skipped because of CPU affinity */
9892 	if (!local)
9893 		return idlest;
9894 
9895 	/*
9896 	 * If the local group is idler than the selected idlest group
9897 	 * don't try and push the task.
9898 	 */
9899 	if (local_sgs.group_type < idlest_sgs.group_type)
9900 		return NULL;
9901 
9902 	/*
9903 	 * If the local group is busier than the selected idlest group
9904 	 * try and push the task.
9905 	 */
9906 	if (local_sgs.group_type > idlest_sgs.group_type)
9907 		return idlest;
9908 
9909 	switch (local_sgs.group_type) {
9910 	case group_overloaded:
9911 	case group_fully_busy:
9912 
9913 		/* Calculate allowed imbalance based on load */
9914 		imbalance = scale_load_down(NICE_0_LOAD) *
9915 				(sd->imbalance_pct-100) / 100;
9916 
9917 		/*
9918 		 * When comparing groups across NUMA domains, it's possible for
9919 		 * the local domain to be very lightly loaded relative to the
9920 		 * remote domains but "imbalance" skews the comparison making
9921 		 * remote CPUs look much more favourable. When considering
9922 		 * cross-domain, add imbalance to the load on the remote node
9923 		 * and consider staying local.
9924 		 */
9925 
9926 		if ((sd->flags & SD_NUMA) &&
9927 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9928 			return NULL;
9929 
9930 		/*
9931 		 * If the local group is less loaded than the selected
9932 		 * idlest group don't try and push any tasks.
9933 		 */
9934 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9935 			return NULL;
9936 
9937 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9938 			return NULL;
9939 		break;
9940 
9941 	case group_imbalanced:
9942 	case group_asym_packing:
9943 		/* Those type are not used in the slow wakeup path */
9944 		return NULL;
9945 
9946 	case group_misfit_task:
9947 		/* Select group with the highest max capacity */
9948 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9949 			return NULL;
9950 		break;
9951 
9952 	case group_has_spare:
9953 #ifdef CONFIG_NUMA
9954 		if (sd->flags & SD_NUMA) {
9955 			int imb_numa_nr = sd->imb_numa_nr;
9956 #ifdef CONFIG_NUMA_BALANCING
9957 			int idlest_cpu;
9958 			/*
9959 			 * If there is spare capacity at NUMA, try to select
9960 			 * the preferred node
9961 			 */
9962 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9963 				return NULL;
9964 
9965 			idlest_cpu = cpumask_first(sched_group_span(idlest));
9966 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9967 				return idlest;
9968 #endif /* CONFIG_NUMA_BALANCING */
9969 			/*
9970 			 * Otherwise, keep the task close to the wakeup source
9971 			 * and improve locality if the number of running tasks
9972 			 * would remain below threshold where an imbalance is
9973 			 * allowed while accounting for the possibility the
9974 			 * task is pinned to a subset of CPUs. If there is a
9975 			 * real need of migration, periodic load balance will
9976 			 * take care of it.
9977 			 */
9978 			if (p->nr_cpus_allowed != NR_CPUS) {
9979 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
9980 
9981 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
9982 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
9983 			}
9984 
9985 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
9986 			if (!adjust_numa_imbalance(imbalance,
9987 						   local_sgs.sum_nr_running + 1,
9988 						   imb_numa_nr)) {
9989 				return NULL;
9990 			}
9991 		}
9992 #endif /* CONFIG_NUMA */
9993 
9994 		/*
9995 		 * Select group with highest number of idle CPUs. We could also
9996 		 * compare the utilization which is more stable but it can end
9997 		 * up that the group has less spare capacity but finally more
9998 		 * idle CPUs which means more opportunity to run task.
9999 		 */
10000 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10001 			return NULL;
10002 		break;
10003 	}
10004 
10005 	return idlest;
10006 }
10007 
10008 static void update_idle_cpu_scan(struct lb_env *env,
10009 				 unsigned long sum_util)
10010 {
10011 	struct sched_domain_shared *sd_share;
10012 	int llc_weight, pct;
10013 	u64 x, y, tmp;
10014 	/*
10015 	 * Update the number of CPUs to scan in LLC domain, which could
10016 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10017 	 * could be expensive because it is within a shared cache line.
10018 	 * So the write of this hint only occurs during periodic load
10019 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10020 	 * can fire way more frequently than the former.
10021 	 */
10022 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10023 		return;
10024 
10025 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10026 	if (env->sd->span_weight != llc_weight)
10027 		return;
10028 
10029 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10030 	if (!sd_share)
10031 		return;
10032 
10033 	/*
10034 	 * The number of CPUs to search drops as sum_util increases, when
10035 	 * sum_util hits 85% or above, the scan stops.
10036 	 * The reason to choose 85% as the threshold is because this is the
10037 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10038 	 *
10039 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10040 	 * and y'= y / SCHED_CAPACITY_SCALE
10041 	 *
10042 	 * x is the ratio of sum_util compared to the CPU capacity:
10043 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10044 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10045 	 * and the number of CPUs to scan is calculated by:
10046 	 *
10047 	 * nr_scan = llc_weight * y'                                    [2]
10048 	 *
10049 	 * When x hits the threshold of overloaded, AKA, when
10050 	 * x = 100 / pct, y drops to 0. According to [1],
10051 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10052 	 *
10053 	 * Scale x by SCHED_CAPACITY_SCALE:
10054 	 * x' = sum_util / llc_weight;                                  [3]
10055 	 *
10056 	 * and finally [1] becomes:
10057 	 * y = SCHED_CAPACITY_SCALE -
10058 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10059 	 *
10060 	 */
10061 	/* equation [3] */
10062 	x = sum_util;
10063 	do_div(x, llc_weight);
10064 
10065 	/* equation [4] */
10066 	pct = env->sd->imbalance_pct;
10067 	tmp = x * x * pct * pct;
10068 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10069 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10070 	y = SCHED_CAPACITY_SCALE - tmp;
10071 
10072 	/* equation [2] */
10073 	y *= llc_weight;
10074 	do_div(y, SCHED_CAPACITY_SCALE);
10075 	if ((int)y != sd_share->nr_idle_scan)
10076 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10077 }
10078 
10079 /**
10080  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10081  * @env: The load balancing environment.
10082  * @sds: variable to hold the statistics for this sched_domain.
10083  */
10084 
10085 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10086 {
10087 	struct sched_domain *child = env->sd->child;
10088 	struct sched_group *sg = env->sd->groups;
10089 	struct sg_lb_stats *local = &sds->local_stat;
10090 	struct sg_lb_stats tmp_sgs;
10091 	unsigned long sum_util = 0;
10092 	int sg_status = 0;
10093 
10094 	do {
10095 		struct sg_lb_stats *sgs = &tmp_sgs;
10096 		int local_group;
10097 
10098 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10099 		if (local_group) {
10100 			sds->local = sg;
10101 			sgs = local;
10102 
10103 			if (env->idle != CPU_NEWLY_IDLE ||
10104 			    time_after_eq(jiffies, sg->sgc->next_update))
10105 				update_group_capacity(env->sd, env->dst_cpu);
10106 		}
10107 
10108 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
10109 
10110 		if (local_group)
10111 			goto next_group;
10112 
10113 
10114 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
10115 			sds->busiest = sg;
10116 			sds->busiest_stat = *sgs;
10117 		}
10118 
10119 next_group:
10120 		/* Now, start updating sd_lb_stats */
10121 		sds->total_load += sgs->group_load;
10122 		sds->total_capacity += sgs->group_capacity;
10123 
10124 		sum_util += sgs->group_util;
10125 		sg = sg->next;
10126 	} while (sg != env->sd->groups);
10127 
10128 	/* Tag domain that child domain prefers tasks go to siblings first */
10129 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
10130 
10131 
10132 	if (env->sd->flags & SD_NUMA)
10133 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10134 
10135 	if (!env->sd->parent) {
10136 		struct root_domain *rd = env->dst_rq->rd;
10137 
10138 		/* update overload indicator if we are at root domain */
10139 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
10140 
10141 		/* Update over-utilization (tipping point, U >= 0) indicator */
10142 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
10143 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
10144 	} else if (sg_status & SG_OVERUTILIZED) {
10145 		struct root_domain *rd = env->dst_rq->rd;
10146 
10147 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
10148 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
10149 	}
10150 
10151 	update_idle_cpu_scan(env, sum_util);
10152 }
10153 
10154 /**
10155  * calculate_imbalance - Calculate the amount of imbalance present within the
10156  *			 groups of a given sched_domain during load balance.
10157  * @env: load balance environment
10158  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10159  */
10160 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10161 {
10162 	struct sg_lb_stats *local, *busiest;
10163 
10164 	local = &sds->local_stat;
10165 	busiest = &sds->busiest_stat;
10166 
10167 	if (busiest->group_type == group_misfit_task) {
10168 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10169 			/* Set imbalance to allow misfit tasks to be balanced. */
10170 			env->migration_type = migrate_misfit;
10171 			env->imbalance = 1;
10172 		} else {
10173 			/*
10174 			 * Set load imbalance to allow moving task from cpu
10175 			 * with reduced capacity.
10176 			 */
10177 			env->migration_type = migrate_load;
10178 			env->imbalance = busiest->group_misfit_task_load;
10179 		}
10180 		return;
10181 	}
10182 
10183 	if (busiest->group_type == group_asym_packing) {
10184 		/*
10185 		 * In case of asym capacity, we will try to migrate all load to
10186 		 * the preferred CPU.
10187 		 */
10188 		env->migration_type = migrate_task;
10189 		env->imbalance = busiest->sum_h_nr_running;
10190 		return;
10191 	}
10192 
10193 	if (busiest->group_type == group_imbalanced) {
10194 		/*
10195 		 * In the group_imb case we cannot rely on group-wide averages
10196 		 * to ensure CPU-load equilibrium, try to move any task to fix
10197 		 * the imbalance. The next load balance will take care of
10198 		 * balancing back the system.
10199 		 */
10200 		env->migration_type = migrate_task;
10201 		env->imbalance = 1;
10202 		return;
10203 	}
10204 
10205 	/*
10206 	 * Try to use spare capacity of local group without overloading it or
10207 	 * emptying busiest.
10208 	 */
10209 	if (local->group_type == group_has_spare) {
10210 		if ((busiest->group_type > group_fully_busy) &&
10211 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
10212 			/*
10213 			 * If busiest is overloaded, try to fill spare
10214 			 * capacity. This might end up creating spare capacity
10215 			 * in busiest or busiest still being overloaded but
10216 			 * there is no simple way to directly compute the
10217 			 * amount of load to migrate in order to balance the
10218 			 * system.
10219 			 */
10220 			env->migration_type = migrate_util;
10221 			env->imbalance = max(local->group_capacity, local->group_util) -
10222 					 local->group_util;
10223 
10224 			/*
10225 			 * In some cases, the group's utilization is max or even
10226 			 * higher than capacity because of migrations but the
10227 			 * local CPU is (newly) idle. There is at least one
10228 			 * waiting task in this overloaded busiest group. Let's
10229 			 * try to pull it.
10230 			 */
10231 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
10232 				env->migration_type = migrate_task;
10233 				env->imbalance = 1;
10234 			}
10235 
10236 			return;
10237 		}
10238 
10239 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
10240 			unsigned int nr_diff = busiest->sum_nr_running;
10241 			/*
10242 			 * When prefer sibling, evenly spread running tasks on
10243 			 * groups.
10244 			 */
10245 			env->migration_type = migrate_task;
10246 			lsub_positive(&nr_diff, local->sum_nr_running);
10247 			env->imbalance = nr_diff;
10248 		} else {
10249 
10250 			/*
10251 			 * If there is no overload, we just want to even the number of
10252 			 * idle cpus.
10253 			 */
10254 			env->migration_type = migrate_task;
10255 			env->imbalance = max_t(long, 0,
10256 					       (local->idle_cpus - busiest->idle_cpus));
10257 		}
10258 
10259 #ifdef CONFIG_NUMA
10260 		/* Consider allowing a small imbalance between NUMA groups */
10261 		if (env->sd->flags & SD_NUMA) {
10262 			env->imbalance = adjust_numa_imbalance(env->imbalance,
10263 							       local->sum_nr_running + 1,
10264 							       env->sd->imb_numa_nr);
10265 		}
10266 #endif
10267 
10268 		/* Number of tasks to move to restore balance */
10269 		env->imbalance >>= 1;
10270 
10271 		return;
10272 	}
10273 
10274 	/*
10275 	 * Local is fully busy but has to take more load to relieve the
10276 	 * busiest group
10277 	 */
10278 	if (local->group_type < group_overloaded) {
10279 		/*
10280 		 * Local will become overloaded so the avg_load metrics are
10281 		 * finally needed.
10282 		 */
10283 
10284 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10285 				  local->group_capacity;
10286 
10287 		/*
10288 		 * If the local group is more loaded than the selected
10289 		 * busiest group don't try to pull any tasks.
10290 		 */
10291 		if (local->avg_load >= busiest->avg_load) {
10292 			env->imbalance = 0;
10293 			return;
10294 		}
10295 
10296 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10297 				sds->total_capacity;
10298 	}
10299 
10300 	/*
10301 	 * Both group are or will become overloaded and we're trying to get all
10302 	 * the CPUs to the average_load, so we don't want to push ourselves
10303 	 * above the average load, nor do we wish to reduce the max loaded CPU
10304 	 * below the average load. At the same time, we also don't want to
10305 	 * reduce the group load below the group capacity. Thus we look for
10306 	 * the minimum possible imbalance.
10307 	 */
10308 	env->migration_type = migrate_load;
10309 	env->imbalance = min(
10310 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10311 		(sds->avg_load - local->avg_load) * local->group_capacity
10312 	) / SCHED_CAPACITY_SCALE;
10313 }
10314 
10315 /******* find_busiest_group() helpers end here *********************/
10316 
10317 /*
10318  * Decision matrix according to the local and busiest group type:
10319  *
10320  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10321  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
10322  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
10323  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
10324  * asym_packing     force     force      N/A    N/A  force      force
10325  * imbalanced       force     force      N/A    N/A  force      force
10326  * overloaded       force     force      N/A    N/A  force      avg_load
10327  *
10328  * N/A :      Not Applicable because already filtered while updating
10329  *            statistics.
10330  * balanced : The system is balanced for these 2 groups.
10331  * force :    Calculate the imbalance as load migration is probably needed.
10332  * avg_load : Only if imbalance is significant enough.
10333  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
10334  *            different in groups.
10335  */
10336 
10337 /**
10338  * find_busiest_group - Returns the busiest group within the sched_domain
10339  * if there is an imbalance.
10340  * @env: The load balancing environment.
10341  *
10342  * Also calculates the amount of runnable load which should be moved
10343  * to restore balance.
10344  *
10345  * Return:	- The busiest group if imbalance exists.
10346  */
10347 static struct sched_group *find_busiest_group(struct lb_env *env)
10348 {
10349 	struct sg_lb_stats *local, *busiest;
10350 	struct sd_lb_stats sds;
10351 
10352 	init_sd_lb_stats(&sds);
10353 
10354 	/*
10355 	 * Compute the various statistics relevant for load balancing at
10356 	 * this level.
10357 	 */
10358 	update_sd_lb_stats(env, &sds);
10359 
10360 	/* There is no busy sibling group to pull tasks from */
10361 	if (!sds.busiest)
10362 		goto out_balanced;
10363 
10364 	busiest = &sds.busiest_stat;
10365 
10366 	/* Misfit tasks should be dealt with regardless of the avg load */
10367 	if (busiest->group_type == group_misfit_task)
10368 		goto force_balance;
10369 
10370 	if (sched_energy_enabled()) {
10371 		struct root_domain *rd = env->dst_rq->rd;
10372 
10373 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10374 			goto out_balanced;
10375 	}
10376 
10377 	/* ASYM feature bypasses nice load balance check */
10378 	if (busiest->group_type == group_asym_packing)
10379 		goto force_balance;
10380 
10381 	/*
10382 	 * If the busiest group is imbalanced the below checks don't
10383 	 * work because they assume all things are equal, which typically
10384 	 * isn't true due to cpus_ptr constraints and the like.
10385 	 */
10386 	if (busiest->group_type == group_imbalanced)
10387 		goto force_balance;
10388 
10389 	local = &sds.local_stat;
10390 	/*
10391 	 * If the local group is busier than the selected busiest group
10392 	 * don't try and pull any tasks.
10393 	 */
10394 	if (local->group_type > busiest->group_type)
10395 		goto out_balanced;
10396 
10397 	/*
10398 	 * When groups are overloaded, use the avg_load to ensure fairness
10399 	 * between tasks.
10400 	 */
10401 	if (local->group_type == group_overloaded) {
10402 		/*
10403 		 * If the local group is more loaded than the selected
10404 		 * busiest group don't try to pull any tasks.
10405 		 */
10406 		if (local->avg_load >= busiest->avg_load)
10407 			goto out_balanced;
10408 
10409 		/* XXX broken for overlapping NUMA groups */
10410 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10411 				sds.total_capacity;
10412 
10413 		/*
10414 		 * Don't pull any tasks if this group is already above the
10415 		 * domain average load.
10416 		 */
10417 		if (local->avg_load >= sds.avg_load)
10418 			goto out_balanced;
10419 
10420 		/*
10421 		 * If the busiest group is more loaded, use imbalance_pct to be
10422 		 * conservative.
10423 		 */
10424 		if (100 * busiest->avg_load <=
10425 				env->sd->imbalance_pct * local->avg_load)
10426 			goto out_balanced;
10427 	}
10428 
10429 	/* Try to move all excess tasks to child's sibling domain */
10430 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
10431 	    busiest->sum_nr_running > local->sum_nr_running + 1)
10432 		goto force_balance;
10433 
10434 	if (busiest->group_type != group_overloaded) {
10435 		if (env->idle == CPU_NOT_IDLE)
10436 			/*
10437 			 * If the busiest group is not overloaded (and as a
10438 			 * result the local one too) but this CPU is already
10439 			 * busy, let another idle CPU try to pull task.
10440 			 */
10441 			goto out_balanced;
10442 
10443 		if (busiest->group_weight > 1 &&
10444 		    local->idle_cpus <= (busiest->idle_cpus + 1))
10445 			/*
10446 			 * If the busiest group is not overloaded
10447 			 * and there is no imbalance between this and busiest
10448 			 * group wrt idle CPUs, it is balanced. The imbalance
10449 			 * becomes significant if the diff is greater than 1
10450 			 * otherwise we might end up to just move the imbalance
10451 			 * on another group. Of course this applies only if
10452 			 * there is more than 1 CPU per group.
10453 			 */
10454 			goto out_balanced;
10455 
10456 		if (busiest->sum_h_nr_running == 1)
10457 			/*
10458 			 * busiest doesn't have any tasks waiting to run
10459 			 */
10460 			goto out_balanced;
10461 	}
10462 
10463 force_balance:
10464 	/* Looks like there is an imbalance. Compute it */
10465 	calculate_imbalance(env, &sds);
10466 	return env->imbalance ? sds.busiest : NULL;
10467 
10468 out_balanced:
10469 	env->imbalance = 0;
10470 	return NULL;
10471 }
10472 
10473 /*
10474  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10475  */
10476 static struct rq *find_busiest_queue(struct lb_env *env,
10477 				     struct sched_group *group)
10478 {
10479 	struct rq *busiest = NULL, *rq;
10480 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10481 	unsigned int busiest_nr = 0;
10482 	int i;
10483 
10484 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10485 		unsigned long capacity, load, util;
10486 		unsigned int nr_running;
10487 		enum fbq_type rt;
10488 
10489 		rq = cpu_rq(i);
10490 		rt = fbq_classify_rq(rq);
10491 
10492 		/*
10493 		 * We classify groups/runqueues into three groups:
10494 		 *  - regular: there are !numa tasks
10495 		 *  - remote:  there are numa tasks that run on the 'wrong' node
10496 		 *  - all:     there is no distinction
10497 		 *
10498 		 * In order to avoid migrating ideally placed numa tasks,
10499 		 * ignore those when there's better options.
10500 		 *
10501 		 * If we ignore the actual busiest queue to migrate another
10502 		 * task, the next balance pass can still reduce the busiest
10503 		 * queue by moving tasks around inside the node.
10504 		 *
10505 		 * If we cannot move enough load due to this classification
10506 		 * the next pass will adjust the group classification and
10507 		 * allow migration of more tasks.
10508 		 *
10509 		 * Both cases only affect the total convergence complexity.
10510 		 */
10511 		if (rt > env->fbq_type)
10512 			continue;
10513 
10514 		nr_running = rq->cfs.h_nr_running;
10515 		if (!nr_running)
10516 			continue;
10517 
10518 		capacity = capacity_of(i);
10519 
10520 		/*
10521 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
10522 		 * eventually lead to active_balancing high->low capacity.
10523 		 * Higher per-CPU capacity is considered better than balancing
10524 		 * average load.
10525 		 */
10526 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
10527 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
10528 		    nr_running == 1)
10529 			continue;
10530 
10531 		/* Make sure we only pull tasks from a CPU of lower priority */
10532 		if ((env->sd->flags & SD_ASYM_PACKING) &&
10533 		    sched_asym_prefer(i, env->dst_cpu) &&
10534 		    nr_running == 1)
10535 			continue;
10536 
10537 		switch (env->migration_type) {
10538 		case migrate_load:
10539 			/*
10540 			 * When comparing with load imbalance, use cpu_load()
10541 			 * which is not scaled with the CPU capacity.
10542 			 */
10543 			load = cpu_load(rq);
10544 
10545 			if (nr_running == 1 && load > env->imbalance &&
10546 			    !check_cpu_capacity(rq, env->sd))
10547 				break;
10548 
10549 			/*
10550 			 * For the load comparisons with the other CPUs,
10551 			 * consider the cpu_load() scaled with the CPU
10552 			 * capacity, so that the load can be moved away
10553 			 * from the CPU that is potentially running at a
10554 			 * lower capacity.
10555 			 *
10556 			 * Thus we're looking for max(load_i / capacity_i),
10557 			 * crosswise multiplication to rid ourselves of the
10558 			 * division works out to:
10559 			 * load_i * capacity_j > load_j * capacity_i;
10560 			 * where j is our previous maximum.
10561 			 */
10562 			if (load * busiest_capacity > busiest_load * capacity) {
10563 				busiest_load = load;
10564 				busiest_capacity = capacity;
10565 				busiest = rq;
10566 			}
10567 			break;
10568 
10569 		case migrate_util:
10570 			util = cpu_util_cfs(i);
10571 
10572 			/*
10573 			 * Don't try to pull utilization from a CPU with one
10574 			 * running task. Whatever its utilization, we will fail
10575 			 * detach the task.
10576 			 */
10577 			if (nr_running <= 1)
10578 				continue;
10579 
10580 			if (busiest_util < util) {
10581 				busiest_util = util;
10582 				busiest = rq;
10583 			}
10584 			break;
10585 
10586 		case migrate_task:
10587 			if (busiest_nr < nr_running) {
10588 				busiest_nr = nr_running;
10589 				busiest = rq;
10590 			}
10591 			break;
10592 
10593 		case migrate_misfit:
10594 			/*
10595 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
10596 			 * simply seek the "biggest" misfit task.
10597 			 */
10598 			if (rq->misfit_task_load > busiest_load) {
10599 				busiest_load = rq->misfit_task_load;
10600 				busiest = rq;
10601 			}
10602 
10603 			break;
10604 
10605 		}
10606 	}
10607 
10608 	return busiest;
10609 }
10610 
10611 /*
10612  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
10613  * so long as it is large enough.
10614  */
10615 #define MAX_PINNED_INTERVAL	512
10616 
10617 static inline bool
10618 asym_active_balance(struct lb_env *env)
10619 {
10620 	/*
10621 	 * ASYM_PACKING needs to force migrate tasks from busy but
10622 	 * lower priority CPUs in order to pack all tasks in the
10623 	 * highest priority CPUs.
10624 	 */
10625 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
10626 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
10627 }
10628 
10629 static inline bool
10630 imbalanced_active_balance(struct lb_env *env)
10631 {
10632 	struct sched_domain *sd = env->sd;
10633 
10634 	/*
10635 	 * The imbalanced case includes the case of pinned tasks preventing a fair
10636 	 * distribution of the load on the system but also the even distribution of the
10637 	 * threads on a system with spare capacity
10638 	 */
10639 	if ((env->migration_type == migrate_task) &&
10640 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
10641 		return 1;
10642 
10643 	return 0;
10644 }
10645 
10646 static int need_active_balance(struct lb_env *env)
10647 {
10648 	struct sched_domain *sd = env->sd;
10649 
10650 	if (asym_active_balance(env))
10651 		return 1;
10652 
10653 	if (imbalanced_active_balance(env))
10654 		return 1;
10655 
10656 	/*
10657 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
10658 	 * It's worth migrating the task if the src_cpu's capacity is reduced
10659 	 * because of other sched_class or IRQs if more capacity stays
10660 	 * available on dst_cpu.
10661 	 */
10662 	if ((env->idle != CPU_NOT_IDLE) &&
10663 	    (env->src_rq->cfs.h_nr_running == 1)) {
10664 		if ((check_cpu_capacity(env->src_rq, sd)) &&
10665 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
10666 			return 1;
10667 	}
10668 
10669 	if (env->migration_type == migrate_misfit)
10670 		return 1;
10671 
10672 	return 0;
10673 }
10674 
10675 static int active_load_balance_cpu_stop(void *data);
10676 
10677 static int should_we_balance(struct lb_env *env)
10678 {
10679 	struct sched_group *sg = env->sd->groups;
10680 	int cpu;
10681 
10682 	/*
10683 	 * Ensure the balancing environment is consistent; can happen
10684 	 * when the softirq triggers 'during' hotplug.
10685 	 */
10686 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
10687 		return 0;
10688 
10689 	/*
10690 	 * In the newly idle case, we will allow all the CPUs
10691 	 * to do the newly idle load balance.
10692 	 *
10693 	 * However, we bail out if we already have tasks or a wakeup pending,
10694 	 * to optimize wakeup latency.
10695 	 */
10696 	if (env->idle == CPU_NEWLY_IDLE) {
10697 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
10698 			return 0;
10699 		return 1;
10700 	}
10701 
10702 	/* Try to find first idle CPU */
10703 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
10704 		if (!idle_cpu(cpu))
10705 			continue;
10706 
10707 		/* Are we the first idle CPU? */
10708 		return cpu == env->dst_cpu;
10709 	}
10710 
10711 	/* Are we the first CPU of this group ? */
10712 	return group_balance_cpu(sg) == env->dst_cpu;
10713 }
10714 
10715 /*
10716  * Check this_cpu to ensure it is balanced within domain. Attempt to move
10717  * tasks if there is an imbalance.
10718  */
10719 static int load_balance(int this_cpu, struct rq *this_rq,
10720 			struct sched_domain *sd, enum cpu_idle_type idle,
10721 			int *continue_balancing)
10722 {
10723 	int ld_moved, cur_ld_moved, active_balance = 0;
10724 	struct sched_domain *sd_parent = sd->parent;
10725 	struct sched_group *group;
10726 	struct rq *busiest;
10727 	struct rq_flags rf;
10728 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
10729 	struct lb_env env = {
10730 		.sd		= sd,
10731 		.dst_cpu	= this_cpu,
10732 		.dst_rq		= this_rq,
10733 		.dst_grpmask    = sched_group_span(sd->groups),
10734 		.idle		= idle,
10735 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
10736 		.cpus		= cpus,
10737 		.fbq_type	= all,
10738 		.tasks		= LIST_HEAD_INIT(env.tasks),
10739 	};
10740 
10741 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
10742 
10743 	schedstat_inc(sd->lb_count[idle]);
10744 
10745 redo:
10746 	if (!should_we_balance(&env)) {
10747 		*continue_balancing = 0;
10748 		goto out_balanced;
10749 	}
10750 
10751 	group = find_busiest_group(&env);
10752 	if (!group) {
10753 		schedstat_inc(sd->lb_nobusyg[idle]);
10754 		goto out_balanced;
10755 	}
10756 
10757 	busiest = find_busiest_queue(&env, group);
10758 	if (!busiest) {
10759 		schedstat_inc(sd->lb_nobusyq[idle]);
10760 		goto out_balanced;
10761 	}
10762 
10763 	WARN_ON_ONCE(busiest == env.dst_rq);
10764 
10765 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
10766 
10767 	env.src_cpu = busiest->cpu;
10768 	env.src_rq = busiest;
10769 
10770 	ld_moved = 0;
10771 	/* Clear this flag as soon as we find a pullable task */
10772 	env.flags |= LBF_ALL_PINNED;
10773 	if (busiest->nr_running > 1) {
10774 		/*
10775 		 * Attempt to move tasks. If find_busiest_group has found
10776 		 * an imbalance but busiest->nr_running <= 1, the group is
10777 		 * still unbalanced. ld_moved simply stays zero, so it is
10778 		 * correctly treated as an imbalance.
10779 		 */
10780 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
10781 
10782 more_balance:
10783 		rq_lock_irqsave(busiest, &rf);
10784 		update_rq_clock(busiest);
10785 
10786 		/*
10787 		 * cur_ld_moved - load moved in current iteration
10788 		 * ld_moved     - cumulative load moved across iterations
10789 		 */
10790 		cur_ld_moved = detach_tasks(&env);
10791 
10792 		/*
10793 		 * We've detached some tasks from busiest_rq. Every
10794 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
10795 		 * unlock busiest->lock, and we are able to be sure
10796 		 * that nobody can manipulate the tasks in parallel.
10797 		 * See task_rq_lock() family for the details.
10798 		 */
10799 
10800 		rq_unlock(busiest, &rf);
10801 
10802 		if (cur_ld_moved) {
10803 			attach_tasks(&env);
10804 			ld_moved += cur_ld_moved;
10805 		}
10806 
10807 		local_irq_restore(rf.flags);
10808 
10809 		if (env.flags & LBF_NEED_BREAK) {
10810 			env.flags &= ~LBF_NEED_BREAK;
10811 			/* Stop if we tried all running tasks */
10812 			if (env.loop < busiest->nr_running)
10813 				goto more_balance;
10814 		}
10815 
10816 		/*
10817 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
10818 		 * us and move them to an alternate dst_cpu in our sched_group
10819 		 * where they can run. The upper limit on how many times we
10820 		 * iterate on same src_cpu is dependent on number of CPUs in our
10821 		 * sched_group.
10822 		 *
10823 		 * This changes load balance semantics a bit on who can move
10824 		 * load to a given_cpu. In addition to the given_cpu itself
10825 		 * (or a ilb_cpu acting on its behalf where given_cpu is
10826 		 * nohz-idle), we now have balance_cpu in a position to move
10827 		 * load to given_cpu. In rare situations, this may cause
10828 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
10829 		 * _independently_ and at _same_ time to move some load to
10830 		 * given_cpu) causing excess load to be moved to given_cpu.
10831 		 * This however should not happen so much in practice and
10832 		 * moreover subsequent load balance cycles should correct the
10833 		 * excess load moved.
10834 		 */
10835 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
10836 
10837 			/* Prevent to re-select dst_cpu via env's CPUs */
10838 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
10839 
10840 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
10841 			env.dst_cpu	 = env.new_dst_cpu;
10842 			env.flags	&= ~LBF_DST_PINNED;
10843 			env.loop	 = 0;
10844 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
10845 
10846 			/*
10847 			 * Go back to "more_balance" rather than "redo" since we
10848 			 * need to continue with same src_cpu.
10849 			 */
10850 			goto more_balance;
10851 		}
10852 
10853 		/*
10854 		 * We failed to reach balance because of affinity.
10855 		 */
10856 		if (sd_parent) {
10857 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10858 
10859 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
10860 				*group_imbalance = 1;
10861 		}
10862 
10863 		/* All tasks on this runqueue were pinned by CPU affinity */
10864 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
10865 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
10866 			/*
10867 			 * Attempting to continue load balancing at the current
10868 			 * sched_domain level only makes sense if there are
10869 			 * active CPUs remaining as possible busiest CPUs to
10870 			 * pull load from which are not contained within the
10871 			 * destination group that is receiving any migrated
10872 			 * load.
10873 			 */
10874 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
10875 				env.loop = 0;
10876 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
10877 				goto redo;
10878 			}
10879 			goto out_all_pinned;
10880 		}
10881 	}
10882 
10883 	if (!ld_moved) {
10884 		schedstat_inc(sd->lb_failed[idle]);
10885 		/*
10886 		 * Increment the failure counter only on periodic balance.
10887 		 * We do not want newidle balance, which can be very
10888 		 * frequent, pollute the failure counter causing
10889 		 * excessive cache_hot migrations and active balances.
10890 		 */
10891 		if (idle != CPU_NEWLY_IDLE)
10892 			sd->nr_balance_failed++;
10893 
10894 		if (need_active_balance(&env)) {
10895 			unsigned long flags;
10896 
10897 			raw_spin_rq_lock_irqsave(busiest, flags);
10898 
10899 			/*
10900 			 * Don't kick the active_load_balance_cpu_stop,
10901 			 * if the curr task on busiest CPU can't be
10902 			 * moved to this_cpu:
10903 			 */
10904 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
10905 				raw_spin_rq_unlock_irqrestore(busiest, flags);
10906 				goto out_one_pinned;
10907 			}
10908 
10909 			/* Record that we found at least one task that could run on this_cpu */
10910 			env.flags &= ~LBF_ALL_PINNED;
10911 
10912 			/*
10913 			 * ->active_balance synchronizes accesses to
10914 			 * ->active_balance_work.  Once set, it's cleared
10915 			 * only after active load balance is finished.
10916 			 */
10917 			if (!busiest->active_balance) {
10918 				busiest->active_balance = 1;
10919 				busiest->push_cpu = this_cpu;
10920 				active_balance = 1;
10921 			}
10922 			raw_spin_rq_unlock_irqrestore(busiest, flags);
10923 
10924 			if (active_balance) {
10925 				stop_one_cpu_nowait(cpu_of(busiest),
10926 					active_load_balance_cpu_stop, busiest,
10927 					&busiest->active_balance_work);
10928 			}
10929 		}
10930 	} else {
10931 		sd->nr_balance_failed = 0;
10932 	}
10933 
10934 	if (likely(!active_balance) || need_active_balance(&env)) {
10935 		/* We were unbalanced, so reset the balancing interval */
10936 		sd->balance_interval = sd->min_interval;
10937 	}
10938 
10939 	goto out;
10940 
10941 out_balanced:
10942 	/*
10943 	 * We reach balance although we may have faced some affinity
10944 	 * constraints. Clear the imbalance flag only if other tasks got
10945 	 * a chance to move and fix the imbalance.
10946 	 */
10947 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10948 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10949 
10950 		if (*group_imbalance)
10951 			*group_imbalance = 0;
10952 	}
10953 
10954 out_all_pinned:
10955 	/*
10956 	 * We reach balance because all tasks are pinned at this level so
10957 	 * we can't migrate them. Let the imbalance flag set so parent level
10958 	 * can try to migrate them.
10959 	 */
10960 	schedstat_inc(sd->lb_balanced[idle]);
10961 
10962 	sd->nr_balance_failed = 0;
10963 
10964 out_one_pinned:
10965 	ld_moved = 0;
10966 
10967 	/*
10968 	 * newidle_balance() disregards balance intervals, so we could
10969 	 * repeatedly reach this code, which would lead to balance_interval
10970 	 * skyrocketing in a short amount of time. Skip the balance_interval
10971 	 * increase logic to avoid that.
10972 	 */
10973 	if (env.idle == CPU_NEWLY_IDLE)
10974 		goto out;
10975 
10976 	/* tune up the balancing interval */
10977 	if ((env.flags & LBF_ALL_PINNED &&
10978 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
10979 	    sd->balance_interval < sd->max_interval)
10980 		sd->balance_interval *= 2;
10981 out:
10982 	return ld_moved;
10983 }
10984 
10985 static inline unsigned long
10986 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10987 {
10988 	unsigned long interval = sd->balance_interval;
10989 
10990 	if (cpu_busy)
10991 		interval *= sd->busy_factor;
10992 
10993 	/* scale ms to jiffies */
10994 	interval = msecs_to_jiffies(interval);
10995 
10996 	/*
10997 	 * Reduce likelihood of busy balancing at higher domains racing with
10998 	 * balancing at lower domains by preventing their balancing periods
10999 	 * from being multiples of each other.
11000 	 */
11001 	if (cpu_busy)
11002 		interval -= 1;
11003 
11004 	interval = clamp(interval, 1UL, max_load_balance_interval);
11005 
11006 	return interval;
11007 }
11008 
11009 static inline void
11010 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11011 {
11012 	unsigned long interval, next;
11013 
11014 	/* used by idle balance, so cpu_busy = 0 */
11015 	interval = get_sd_balance_interval(sd, 0);
11016 	next = sd->last_balance + interval;
11017 
11018 	if (time_after(*next_balance, next))
11019 		*next_balance = next;
11020 }
11021 
11022 /*
11023  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11024  * running tasks off the busiest CPU onto idle CPUs. It requires at
11025  * least 1 task to be running on each physical CPU where possible, and
11026  * avoids physical / logical imbalances.
11027  */
11028 static int active_load_balance_cpu_stop(void *data)
11029 {
11030 	struct rq *busiest_rq = data;
11031 	int busiest_cpu = cpu_of(busiest_rq);
11032 	int target_cpu = busiest_rq->push_cpu;
11033 	struct rq *target_rq = cpu_rq(target_cpu);
11034 	struct sched_domain *sd;
11035 	struct task_struct *p = NULL;
11036 	struct rq_flags rf;
11037 
11038 	rq_lock_irq(busiest_rq, &rf);
11039 	/*
11040 	 * Between queueing the stop-work and running it is a hole in which
11041 	 * CPUs can become inactive. We should not move tasks from or to
11042 	 * inactive CPUs.
11043 	 */
11044 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11045 		goto out_unlock;
11046 
11047 	/* Make sure the requested CPU hasn't gone down in the meantime: */
11048 	if (unlikely(busiest_cpu != smp_processor_id() ||
11049 		     !busiest_rq->active_balance))
11050 		goto out_unlock;
11051 
11052 	/* Is there any task to move? */
11053 	if (busiest_rq->nr_running <= 1)
11054 		goto out_unlock;
11055 
11056 	/*
11057 	 * This condition is "impossible", if it occurs
11058 	 * we need to fix it. Originally reported by
11059 	 * Bjorn Helgaas on a 128-CPU setup.
11060 	 */
11061 	WARN_ON_ONCE(busiest_rq == target_rq);
11062 
11063 	/* Search for an sd spanning us and the target CPU. */
11064 	rcu_read_lock();
11065 	for_each_domain(target_cpu, sd) {
11066 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11067 			break;
11068 	}
11069 
11070 	if (likely(sd)) {
11071 		struct lb_env env = {
11072 			.sd		= sd,
11073 			.dst_cpu	= target_cpu,
11074 			.dst_rq		= target_rq,
11075 			.src_cpu	= busiest_rq->cpu,
11076 			.src_rq		= busiest_rq,
11077 			.idle		= CPU_IDLE,
11078 			.flags		= LBF_ACTIVE_LB,
11079 		};
11080 
11081 		schedstat_inc(sd->alb_count);
11082 		update_rq_clock(busiest_rq);
11083 
11084 		p = detach_one_task(&env);
11085 		if (p) {
11086 			schedstat_inc(sd->alb_pushed);
11087 			/* Active balancing done, reset the failure counter. */
11088 			sd->nr_balance_failed = 0;
11089 		} else {
11090 			schedstat_inc(sd->alb_failed);
11091 		}
11092 	}
11093 	rcu_read_unlock();
11094 out_unlock:
11095 	busiest_rq->active_balance = 0;
11096 	rq_unlock(busiest_rq, &rf);
11097 
11098 	if (p)
11099 		attach_one_task(target_rq, p);
11100 
11101 	local_irq_enable();
11102 
11103 	return 0;
11104 }
11105 
11106 static DEFINE_SPINLOCK(balancing);
11107 
11108 /*
11109  * Scale the max load_balance interval with the number of CPUs in the system.
11110  * This trades load-balance latency on larger machines for less cross talk.
11111  */
11112 void update_max_interval(void)
11113 {
11114 	max_load_balance_interval = HZ*num_online_cpus()/10;
11115 }
11116 
11117 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11118 {
11119 	if (cost > sd->max_newidle_lb_cost) {
11120 		/*
11121 		 * Track max cost of a domain to make sure to not delay the
11122 		 * next wakeup on the CPU.
11123 		 */
11124 		sd->max_newidle_lb_cost = cost;
11125 		sd->last_decay_max_lb_cost = jiffies;
11126 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11127 		/*
11128 		 * Decay the newidle max times by ~1% per second to ensure that
11129 		 * it is not outdated and the current max cost is actually
11130 		 * shorter.
11131 		 */
11132 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11133 		sd->last_decay_max_lb_cost = jiffies;
11134 
11135 		return true;
11136 	}
11137 
11138 	return false;
11139 }
11140 
11141 /*
11142  * It checks each scheduling domain to see if it is due to be balanced,
11143  * and initiates a balancing operation if so.
11144  *
11145  * Balancing parameters are set up in init_sched_domains.
11146  */
11147 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11148 {
11149 	int continue_balancing = 1;
11150 	int cpu = rq->cpu;
11151 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11152 	unsigned long interval;
11153 	struct sched_domain *sd;
11154 	/* Earliest time when we have to do rebalance again */
11155 	unsigned long next_balance = jiffies + 60*HZ;
11156 	int update_next_balance = 0;
11157 	int need_serialize, need_decay = 0;
11158 	u64 max_cost = 0;
11159 
11160 	rcu_read_lock();
11161 	for_each_domain(cpu, sd) {
11162 		/*
11163 		 * Decay the newidle max times here because this is a regular
11164 		 * visit to all the domains.
11165 		 */
11166 		need_decay = update_newidle_cost(sd, 0);
11167 		max_cost += sd->max_newidle_lb_cost;
11168 
11169 		/*
11170 		 * Stop the load balance at this level. There is another
11171 		 * CPU in our sched group which is doing load balancing more
11172 		 * actively.
11173 		 */
11174 		if (!continue_balancing) {
11175 			if (need_decay)
11176 				continue;
11177 			break;
11178 		}
11179 
11180 		interval = get_sd_balance_interval(sd, busy);
11181 
11182 		need_serialize = sd->flags & SD_SERIALIZE;
11183 		if (need_serialize) {
11184 			if (!spin_trylock(&balancing))
11185 				goto out;
11186 		}
11187 
11188 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
11189 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11190 				/*
11191 				 * The LBF_DST_PINNED logic could have changed
11192 				 * env->dst_cpu, so we can't know our idle
11193 				 * state even if we migrated tasks. Update it.
11194 				 */
11195 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11196 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11197 			}
11198 			sd->last_balance = jiffies;
11199 			interval = get_sd_balance_interval(sd, busy);
11200 		}
11201 		if (need_serialize)
11202 			spin_unlock(&balancing);
11203 out:
11204 		if (time_after(next_balance, sd->last_balance + interval)) {
11205 			next_balance = sd->last_balance + interval;
11206 			update_next_balance = 1;
11207 		}
11208 	}
11209 	if (need_decay) {
11210 		/*
11211 		 * Ensure the rq-wide value also decays but keep it at a
11212 		 * reasonable floor to avoid funnies with rq->avg_idle.
11213 		 */
11214 		rq->max_idle_balance_cost =
11215 			max((u64)sysctl_sched_migration_cost, max_cost);
11216 	}
11217 	rcu_read_unlock();
11218 
11219 	/*
11220 	 * next_balance will be updated only when there is a need.
11221 	 * When the cpu is attached to null domain for ex, it will not be
11222 	 * updated.
11223 	 */
11224 	if (likely(update_next_balance))
11225 		rq->next_balance = next_balance;
11226 
11227 }
11228 
11229 static inline int on_null_domain(struct rq *rq)
11230 {
11231 	return unlikely(!rcu_dereference_sched(rq->sd));
11232 }
11233 
11234 #ifdef CONFIG_NO_HZ_COMMON
11235 /*
11236  * idle load balancing details
11237  * - When one of the busy CPUs notice that there may be an idle rebalancing
11238  *   needed, they will kick the idle load balancer, which then does idle
11239  *   load balancing for all the idle CPUs.
11240  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
11241  *   anywhere yet.
11242  */
11243 
11244 static inline int find_new_ilb(void)
11245 {
11246 	int ilb;
11247 	const struct cpumask *hk_mask;
11248 
11249 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11250 
11251 	for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
11252 
11253 		if (ilb == smp_processor_id())
11254 			continue;
11255 
11256 		if (idle_cpu(ilb))
11257 			return ilb;
11258 	}
11259 
11260 	return nr_cpu_ids;
11261 }
11262 
11263 /*
11264  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
11265  * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11266  */
11267 static void kick_ilb(unsigned int flags)
11268 {
11269 	int ilb_cpu;
11270 
11271 	/*
11272 	 * Increase nohz.next_balance only when if full ilb is triggered but
11273 	 * not if we only update stats.
11274 	 */
11275 	if (flags & NOHZ_BALANCE_KICK)
11276 		nohz.next_balance = jiffies+1;
11277 
11278 	ilb_cpu = find_new_ilb();
11279 
11280 	if (ilb_cpu >= nr_cpu_ids)
11281 		return;
11282 
11283 	/*
11284 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11285 	 * the first flag owns it; cleared by nohz_csd_func().
11286 	 */
11287 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11288 	if (flags & NOHZ_KICK_MASK)
11289 		return;
11290 
11291 	/*
11292 	 * This way we generate an IPI on the target CPU which
11293 	 * is idle. And the softirq performing nohz idle load balance
11294 	 * will be run before returning from the IPI.
11295 	 */
11296 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11297 }
11298 
11299 /*
11300  * Current decision point for kicking the idle load balancer in the presence
11301  * of idle CPUs in the system.
11302  */
11303 static void nohz_balancer_kick(struct rq *rq)
11304 {
11305 	unsigned long now = jiffies;
11306 	struct sched_domain_shared *sds;
11307 	struct sched_domain *sd;
11308 	int nr_busy, i, cpu = rq->cpu;
11309 	unsigned int flags = 0;
11310 
11311 	if (unlikely(rq->idle_balance))
11312 		return;
11313 
11314 	/*
11315 	 * We may be recently in ticked or tickless idle mode. At the first
11316 	 * busy tick after returning from idle, we will update the busy stats.
11317 	 */
11318 	nohz_balance_exit_idle(rq);
11319 
11320 	/*
11321 	 * None are in tickless mode and hence no need for NOHZ idle load
11322 	 * balancing.
11323 	 */
11324 	if (likely(!atomic_read(&nohz.nr_cpus)))
11325 		return;
11326 
11327 	if (READ_ONCE(nohz.has_blocked) &&
11328 	    time_after(now, READ_ONCE(nohz.next_blocked)))
11329 		flags = NOHZ_STATS_KICK;
11330 
11331 	if (time_before(now, nohz.next_balance))
11332 		goto out;
11333 
11334 	if (rq->nr_running >= 2) {
11335 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11336 		goto out;
11337 	}
11338 
11339 	rcu_read_lock();
11340 
11341 	sd = rcu_dereference(rq->sd);
11342 	if (sd) {
11343 		/*
11344 		 * If there's a CFS task and the current CPU has reduced
11345 		 * capacity; kick the ILB to see if there's a better CPU to run
11346 		 * on.
11347 		 */
11348 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11349 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11350 			goto unlock;
11351 		}
11352 	}
11353 
11354 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11355 	if (sd) {
11356 		/*
11357 		 * When ASYM_PACKING; see if there's a more preferred CPU
11358 		 * currently idle; in which case, kick the ILB to move tasks
11359 		 * around.
11360 		 */
11361 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11362 			if (sched_asym_prefer(i, cpu)) {
11363 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11364 				goto unlock;
11365 			}
11366 		}
11367 	}
11368 
11369 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11370 	if (sd) {
11371 		/*
11372 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11373 		 * to run the misfit task on.
11374 		 */
11375 		if (check_misfit_status(rq, sd)) {
11376 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11377 			goto unlock;
11378 		}
11379 
11380 		/*
11381 		 * For asymmetric systems, we do not want to nicely balance
11382 		 * cache use, instead we want to embrace asymmetry and only
11383 		 * ensure tasks have enough CPU capacity.
11384 		 *
11385 		 * Skip the LLC logic because it's not relevant in that case.
11386 		 */
11387 		goto unlock;
11388 	}
11389 
11390 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11391 	if (sds) {
11392 		/*
11393 		 * If there is an imbalance between LLC domains (IOW we could
11394 		 * increase the overall cache use), we need some less-loaded LLC
11395 		 * domain to pull some load. Likewise, we may need to spread
11396 		 * load within the current LLC domain (e.g. packed SMT cores but
11397 		 * other CPUs are idle). We can't really know from here how busy
11398 		 * the others are - so just get a nohz balance going if it looks
11399 		 * like this LLC domain has tasks we could move.
11400 		 */
11401 		nr_busy = atomic_read(&sds->nr_busy_cpus);
11402 		if (nr_busy > 1) {
11403 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11404 			goto unlock;
11405 		}
11406 	}
11407 unlock:
11408 	rcu_read_unlock();
11409 out:
11410 	if (READ_ONCE(nohz.needs_update))
11411 		flags |= NOHZ_NEXT_KICK;
11412 
11413 	if (flags)
11414 		kick_ilb(flags);
11415 }
11416 
11417 static void set_cpu_sd_state_busy(int cpu)
11418 {
11419 	struct sched_domain *sd;
11420 
11421 	rcu_read_lock();
11422 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11423 
11424 	if (!sd || !sd->nohz_idle)
11425 		goto unlock;
11426 	sd->nohz_idle = 0;
11427 
11428 	atomic_inc(&sd->shared->nr_busy_cpus);
11429 unlock:
11430 	rcu_read_unlock();
11431 }
11432 
11433 void nohz_balance_exit_idle(struct rq *rq)
11434 {
11435 	SCHED_WARN_ON(rq != this_rq());
11436 
11437 	if (likely(!rq->nohz_tick_stopped))
11438 		return;
11439 
11440 	rq->nohz_tick_stopped = 0;
11441 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11442 	atomic_dec(&nohz.nr_cpus);
11443 
11444 	set_cpu_sd_state_busy(rq->cpu);
11445 }
11446 
11447 static void set_cpu_sd_state_idle(int cpu)
11448 {
11449 	struct sched_domain *sd;
11450 
11451 	rcu_read_lock();
11452 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11453 
11454 	if (!sd || sd->nohz_idle)
11455 		goto unlock;
11456 	sd->nohz_idle = 1;
11457 
11458 	atomic_dec(&sd->shared->nr_busy_cpus);
11459 unlock:
11460 	rcu_read_unlock();
11461 }
11462 
11463 /*
11464  * This routine will record that the CPU is going idle with tick stopped.
11465  * This info will be used in performing idle load balancing in the future.
11466  */
11467 void nohz_balance_enter_idle(int cpu)
11468 {
11469 	struct rq *rq = cpu_rq(cpu);
11470 
11471 	SCHED_WARN_ON(cpu != smp_processor_id());
11472 
11473 	/* If this CPU is going down, then nothing needs to be done: */
11474 	if (!cpu_active(cpu))
11475 		return;
11476 
11477 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
11478 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
11479 		return;
11480 
11481 	/*
11482 	 * Can be set safely without rq->lock held
11483 	 * If a clear happens, it will have evaluated last additions because
11484 	 * rq->lock is held during the check and the clear
11485 	 */
11486 	rq->has_blocked_load = 1;
11487 
11488 	/*
11489 	 * The tick is still stopped but load could have been added in the
11490 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
11491 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
11492 	 * of nohz.has_blocked can only happen after checking the new load
11493 	 */
11494 	if (rq->nohz_tick_stopped)
11495 		goto out;
11496 
11497 	/* If we're a completely isolated CPU, we don't play: */
11498 	if (on_null_domain(rq))
11499 		return;
11500 
11501 	rq->nohz_tick_stopped = 1;
11502 
11503 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
11504 	atomic_inc(&nohz.nr_cpus);
11505 
11506 	/*
11507 	 * Ensures that if nohz_idle_balance() fails to observe our
11508 	 * @idle_cpus_mask store, it must observe the @has_blocked
11509 	 * and @needs_update stores.
11510 	 */
11511 	smp_mb__after_atomic();
11512 
11513 	set_cpu_sd_state_idle(cpu);
11514 
11515 	WRITE_ONCE(nohz.needs_update, 1);
11516 out:
11517 	/*
11518 	 * Each time a cpu enter idle, we assume that it has blocked load and
11519 	 * enable the periodic update of the load of idle cpus
11520 	 */
11521 	WRITE_ONCE(nohz.has_blocked, 1);
11522 }
11523 
11524 static bool update_nohz_stats(struct rq *rq)
11525 {
11526 	unsigned int cpu = rq->cpu;
11527 
11528 	if (!rq->has_blocked_load)
11529 		return false;
11530 
11531 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
11532 		return false;
11533 
11534 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
11535 		return true;
11536 
11537 	update_blocked_averages(cpu);
11538 
11539 	return rq->has_blocked_load;
11540 }
11541 
11542 /*
11543  * Internal function that runs load balance for all idle cpus. The load balance
11544  * can be a simple update of blocked load or a complete load balance with
11545  * tasks movement depending of flags.
11546  */
11547 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
11548 {
11549 	/* Earliest time when we have to do rebalance again */
11550 	unsigned long now = jiffies;
11551 	unsigned long next_balance = now + 60*HZ;
11552 	bool has_blocked_load = false;
11553 	int update_next_balance = 0;
11554 	int this_cpu = this_rq->cpu;
11555 	int balance_cpu;
11556 	struct rq *rq;
11557 
11558 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
11559 
11560 	/*
11561 	 * We assume there will be no idle load after this update and clear
11562 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
11563 	 * set the has_blocked flag and trigger another update of idle load.
11564 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
11565 	 * setting the flag, we are sure to not clear the state and not
11566 	 * check the load of an idle cpu.
11567 	 *
11568 	 * Same applies to idle_cpus_mask vs needs_update.
11569 	 */
11570 	if (flags & NOHZ_STATS_KICK)
11571 		WRITE_ONCE(nohz.has_blocked, 0);
11572 	if (flags & NOHZ_NEXT_KICK)
11573 		WRITE_ONCE(nohz.needs_update, 0);
11574 
11575 	/*
11576 	 * Ensures that if we miss the CPU, we must see the has_blocked
11577 	 * store from nohz_balance_enter_idle().
11578 	 */
11579 	smp_mb();
11580 
11581 	/*
11582 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
11583 	 * chance for other idle cpu to pull load.
11584 	 */
11585 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
11586 		if (!idle_cpu(balance_cpu))
11587 			continue;
11588 
11589 		/*
11590 		 * If this CPU gets work to do, stop the load balancing
11591 		 * work being done for other CPUs. Next load
11592 		 * balancing owner will pick it up.
11593 		 */
11594 		if (need_resched()) {
11595 			if (flags & NOHZ_STATS_KICK)
11596 				has_blocked_load = true;
11597 			if (flags & NOHZ_NEXT_KICK)
11598 				WRITE_ONCE(nohz.needs_update, 1);
11599 			goto abort;
11600 		}
11601 
11602 		rq = cpu_rq(balance_cpu);
11603 
11604 		if (flags & NOHZ_STATS_KICK)
11605 			has_blocked_load |= update_nohz_stats(rq);
11606 
11607 		/*
11608 		 * If time for next balance is due,
11609 		 * do the balance.
11610 		 */
11611 		if (time_after_eq(jiffies, rq->next_balance)) {
11612 			struct rq_flags rf;
11613 
11614 			rq_lock_irqsave(rq, &rf);
11615 			update_rq_clock(rq);
11616 			rq_unlock_irqrestore(rq, &rf);
11617 
11618 			if (flags & NOHZ_BALANCE_KICK)
11619 				rebalance_domains(rq, CPU_IDLE);
11620 		}
11621 
11622 		if (time_after(next_balance, rq->next_balance)) {
11623 			next_balance = rq->next_balance;
11624 			update_next_balance = 1;
11625 		}
11626 	}
11627 
11628 	/*
11629 	 * next_balance will be updated only when there is a need.
11630 	 * When the CPU is attached to null domain for ex, it will not be
11631 	 * updated.
11632 	 */
11633 	if (likely(update_next_balance))
11634 		nohz.next_balance = next_balance;
11635 
11636 	if (flags & NOHZ_STATS_KICK)
11637 		WRITE_ONCE(nohz.next_blocked,
11638 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
11639 
11640 abort:
11641 	/* There is still blocked load, enable periodic update */
11642 	if (has_blocked_load)
11643 		WRITE_ONCE(nohz.has_blocked, 1);
11644 }
11645 
11646 /*
11647  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
11648  * rebalancing for all the cpus for whom scheduler ticks are stopped.
11649  */
11650 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11651 {
11652 	unsigned int flags = this_rq->nohz_idle_balance;
11653 
11654 	if (!flags)
11655 		return false;
11656 
11657 	this_rq->nohz_idle_balance = 0;
11658 
11659 	if (idle != CPU_IDLE)
11660 		return false;
11661 
11662 	_nohz_idle_balance(this_rq, flags);
11663 
11664 	return true;
11665 }
11666 
11667 /*
11668  * Check if we need to run the ILB for updating blocked load before entering
11669  * idle state.
11670  */
11671 void nohz_run_idle_balance(int cpu)
11672 {
11673 	unsigned int flags;
11674 
11675 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
11676 
11677 	/*
11678 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
11679 	 * (ie NOHZ_STATS_KICK set) and will do the same.
11680 	 */
11681 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
11682 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
11683 }
11684 
11685 static void nohz_newidle_balance(struct rq *this_rq)
11686 {
11687 	int this_cpu = this_rq->cpu;
11688 
11689 	/*
11690 	 * This CPU doesn't want to be disturbed by scheduler
11691 	 * housekeeping
11692 	 */
11693 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
11694 		return;
11695 
11696 	/* Will wake up very soon. No time for doing anything else*/
11697 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
11698 		return;
11699 
11700 	/* Don't need to update blocked load of idle CPUs*/
11701 	if (!READ_ONCE(nohz.has_blocked) ||
11702 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
11703 		return;
11704 
11705 	/*
11706 	 * Set the need to trigger ILB in order to update blocked load
11707 	 * before entering idle state.
11708 	 */
11709 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
11710 }
11711 
11712 #else /* !CONFIG_NO_HZ_COMMON */
11713 static inline void nohz_balancer_kick(struct rq *rq) { }
11714 
11715 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11716 {
11717 	return false;
11718 }
11719 
11720 static inline void nohz_newidle_balance(struct rq *this_rq) { }
11721 #endif /* CONFIG_NO_HZ_COMMON */
11722 
11723 /*
11724  * newidle_balance is called by schedule() if this_cpu is about to become
11725  * idle. Attempts to pull tasks from other CPUs.
11726  *
11727  * Returns:
11728  *   < 0 - we released the lock and there are !fair tasks present
11729  *     0 - failed, no new tasks
11730  *   > 0 - success, new (fair) tasks present
11731  */
11732 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
11733 {
11734 	unsigned long next_balance = jiffies + HZ;
11735 	int this_cpu = this_rq->cpu;
11736 	u64 t0, t1, curr_cost = 0;
11737 	struct sched_domain *sd;
11738 	int pulled_task = 0;
11739 
11740 	update_misfit_status(NULL, this_rq);
11741 
11742 	/*
11743 	 * There is a task waiting to run. No need to search for one.
11744 	 * Return 0; the task will be enqueued when switching to idle.
11745 	 */
11746 	if (this_rq->ttwu_pending)
11747 		return 0;
11748 
11749 	/*
11750 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
11751 	 * measure the duration of idle_balance() as idle time.
11752 	 */
11753 	this_rq->idle_stamp = rq_clock(this_rq);
11754 
11755 	/*
11756 	 * Do not pull tasks towards !active CPUs...
11757 	 */
11758 	if (!cpu_active(this_cpu))
11759 		return 0;
11760 
11761 	/*
11762 	 * This is OK, because current is on_cpu, which avoids it being picked
11763 	 * for load-balance and preemption/IRQs are still disabled avoiding
11764 	 * further scheduler activity on it and we're being very careful to
11765 	 * re-start the picking loop.
11766 	 */
11767 	rq_unpin_lock(this_rq, rf);
11768 
11769 	rcu_read_lock();
11770 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
11771 
11772 	if (!READ_ONCE(this_rq->rd->overload) ||
11773 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
11774 
11775 		if (sd)
11776 			update_next_balance(sd, &next_balance);
11777 		rcu_read_unlock();
11778 
11779 		goto out;
11780 	}
11781 	rcu_read_unlock();
11782 
11783 	raw_spin_rq_unlock(this_rq);
11784 
11785 	t0 = sched_clock_cpu(this_cpu);
11786 	update_blocked_averages(this_cpu);
11787 
11788 	rcu_read_lock();
11789 	for_each_domain(this_cpu, sd) {
11790 		int continue_balancing = 1;
11791 		u64 domain_cost;
11792 
11793 		update_next_balance(sd, &next_balance);
11794 
11795 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
11796 			break;
11797 
11798 		if (sd->flags & SD_BALANCE_NEWIDLE) {
11799 
11800 			pulled_task = load_balance(this_cpu, this_rq,
11801 						   sd, CPU_NEWLY_IDLE,
11802 						   &continue_balancing);
11803 
11804 			t1 = sched_clock_cpu(this_cpu);
11805 			domain_cost = t1 - t0;
11806 			update_newidle_cost(sd, domain_cost);
11807 
11808 			curr_cost += domain_cost;
11809 			t0 = t1;
11810 		}
11811 
11812 		/*
11813 		 * Stop searching for tasks to pull if there are
11814 		 * now runnable tasks on this rq.
11815 		 */
11816 		if (pulled_task || this_rq->nr_running > 0 ||
11817 		    this_rq->ttwu_pending)
11818 			break;
11819 	}
11820 	rcu_read_unlock();
11821 
11822 	raw_spin_rq_lock(this_rq);
11823 
11824 	if (curr_cost > this_rq->max_idle_balance_cost)
11825 		this_rq->max_idle_balance_cost = curr_cost;
11826 
11827 	/*
11828 	 * While browsing the domains, we released the rq lock, a task could
11829 	 * have been enqueued in the meantime. Since we're not going idle,
11830 	 * pretend we pulled a task.
11831 	 */
11832 	if (this_rq->cfs.h_nr_running && !pulled_task)
11833 		pulled_task = 1;
11834 
11835 	/* Is there a task of a high priority class? */
11836 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
11837 		pulled_task = -1;
11838 
11839 out:
11840 	/* Move the next balance forward */
11841 	if (time_after(this_rq->next_balance, next_balance))
11842 		this_rq->next_balance = next_balance;
11843 
11844 	if (pulled_task)
11845 		this_rq->idle_stamp = 0;
11846 	else
11847 		nohz_newidle_balance(this_rq);
11848 
11849 	rq_repin_lock(this_rq, rf);
11850 
11851 	return pulled_task;
11852 }
11853 
11854 /*
11855  * run_rebalance_domains is triggered when needed from the scheduler tick.
11856  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
11857  */
11858 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
11859 {
11860 	struct rq *this_rq = this_rq();
11861 	enum cpu_idle_type idle = this_rq->idle_balance ?
11862 						CPU_IDLE : CPU_NOT_IDLE;
11863 
11864 	/*
11865 	 * If this CPU has a pending nohz_balance_kick, then do the
11866 	 * balancing on behalf of the other idle CPUs whose ticks are
11867 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
11868 	 * give the idle CPUs a chance to load balance. Else we may
11869 	 * load balance only within the local sched_domain hierarchy
11870 	 * and abort nohz_idle_balance altogether if we pull some load.
11871 	 */
11872 	if (nohz_idle_balance(this_rq, idle))
11873 		return;
11874 
11875 	/* normal load balance */
11876 	update_blocked_averages(this_rq->cpu);
11877 	rebalance_domains(this_rq, idle);
11878 }
11879 
11880 /*
11881  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
11882  */
11883 void trigger_load_balance(struct rq *rq)
11884 {
11885 	/*
11886 	 * Don't need to rebalance while attached to NULL domain or
11887 	 * runqueue CPU is not active
11888 	 */
11889 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
11890 		return;
11891 
11892 	if (time_after_eq(jiffies, rq->next_balance))
11893 		raise_softirq(SCHED_SOFTIRQ);
11894 
11895 	nohz_balancer_kick(rq);
11896 }
11897 
11898 static void rq_online_fair(struct rq *rq)
11899 {
11900 	update_sysctl();
11901 
11902 	update_runtime_enabled(rq);
11903 }
11904 
11905 static void rq_offline_fair(struct rq *rq)
11906 {
11907 	update_sysctl();
11908 
11909 	/* Ensure any throttled groups are reachable by pick_next_task */
11910 	unthrottle_offline_cfs_rqs(rq);
11911 }
11912 
11913 #endif /* CONFIG_SMP */
11914 
11915 #ifdef CONFIG_SCHED_CORE
11916 static inline bool
11917 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
11918 {
11919 	u64 slice = sched_slice(cfs_rq_of(se), se);
11920 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
11921 
11922 	return (rtime * min_nr_tasks > slice);
11923 }
11924 
11925 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
11926 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
11927 {
11928 	if (!sched_core_enabled(rq))
11929 		return;
11930 
11931 	/*
11932 	 * If runqueue has only one task which used up its slice and
11933 	 * if the sibling is forced idle, then trigger schedule to
11934 	 * give forced idle task a chance.
11935 	 *
11936 	 * sched_slice() considers only this active rq and it gets the
11937 	 * whole slice. But during force idle, we have siblings acting
11938 	 * like a single runqueue and hence we need to consider runnable
11939 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
11940 	 * go through the forced idle rq, but that would be a perf hit.
11941 	 * We can assume that the forced idle CPU has at least
11942 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
11943 	 * if we need to give up the CPU.
11944 	 */
11945 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
11946 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
11947 		resched_curr(rq);
11948 }
11949 
11950 /*
11951  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
11952  */
11953 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
11954 			 bool forceidle)
11955 {
11956 	for_each_sched_entity(se) {
11957 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11958 
11959 		if (forceidle) {
11960 			if (cfs_rq->forceidle_seq == fi_seq)
11961 				break;
11962 			cfs_rq->forceidle_seq = fi_seq;
11963 		}
11964 
11965 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11966 	}
11967 }
11968 
11969 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11970 {
11971 	struct sched_entity *se = &p->se;
11972 
11973 	if (p->sched_class != &fair_sched_class)
11974 		return;
11975 
11976 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11977 }
11978 
11979 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
11980 			bool in_fi)
11981 {
11982 	struct rq *rq = task_rq(a);
11983 	const struct sched_entity *sea = &a->se;
11984 	const struct sched_entity *seb = &b->se;
11985 	struct cfs_rq *cfs_rqa;
11986 	struct cfs_rq *cfs_rqb;
11987 	s64 delta;
11988 
11989 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
11990 
11991 #ifdef CONFIG_FAIR_GROUP_SCHED
11992 	/*
11993 	 * Find an se in the hierarchy for tasks a and b, such that the se's
11994 	 * are immediate siblings.
11995 	 */
11996 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11997 		int sea_depth = sea->depth;
11998 		int seb_depth = seb->depth;
11999 
12000 		if (sea_depth >= seb_depth)
12001 			sea = parent_entity(sea);
12002 		if (sea_depth <= seb_depth)
12003 			seb = parent_entity(seb);
12004 	}
12005 
12006 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12007 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12008 
12009 	cfs_rqa = sea->cfs_rq;
12010 	cfs_rqb = seb->cfs_rq;
12011 #else
12012 	cfs_rqa = &task_rq(a)->cfs;
12013 	cfs_rqb = &task_rq(b)->cfs;
12014 #endif
12015 
12016 	/*
12017 	 * Find delta after normalizing se's vruntime with its cfs_rq's
12018 	 * min_vruntime_fi, which would have been updated in prior calls
12019 	 * to se_fi_update().
12020 	 */
12021 	delta = (s64)(sea->vruntime - seb->vruntime) +
12022 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12023 
12024 	return delta > 0;
12025 }
12026 #else
12027 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12028 #endif
12029 
12030 /*
12031  * scheduler tick hitting a task of our scheduling class.
12032  *
12033  * NOTE: This function can be called remotely by the tick offload that
12034  * goes along full dynticks. Therefore no local assumption can be made
12035  * and everything must be accessed through the @rq and @curr passed in
12036  * parameters.
12037  */
12038 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12039 {
12040 	struct cfs_rq *cfs_rq;
12041 	struct sched_entity *se = &curr->se;
12042 
12043 	for_each_sched_entity(se) {
12044 		cfs_rq = cfs_rq_of(se);
12045 		entity_tick(cfs_rq, se, queued);
12046 	}
12047 
12048 	if (static_branch_unlikely(&sched_numa_balancing))
12049 		task_tick_numa(rq, curr);
12050 
12051 	update_misfit_status(curr, rq);
12052 	update_overutilized_status(task_rq(curr));
12053 
12054 	task_tick_core(rq, curr);
12055 }
12056 
12057 /*
12058  * called on fork with the child task as argument from the parent's context
12059  *  - child not yet on the tasklist
12060  *  - preemption disabled
12061  */
12062 static void task_fork_fair(struct task_struct *p)
12063 {
12064 	struct cfs_rq *cfs_rq;
12065 	struct sched_entity *se = &p->se, *curr;
12066 	struct rq *rq = this_rq();
12067 	struct rq_flags rf;
12068 
12069 	rq_lock(rq, &rf);
12070 	update_rq_clock(rq);
12071 
12072 	cfs_rq = task_cfs_rq(current);
12073 	curr = cfs_rq->curr;
12074 	if (curr) {
12075 		update_curr(cfs_rq);
12076 		se->vruntime = curr->vruntime;
12077 	}
12078 	place_entity(cfs_rq, se, 1);
12079 
12080 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
12081 		/*
12082 		 * Upon rescheduling, sched_class::put_prev_task() will place
12083 		 * 'current' within the tree based on its new key value.
12084 		 */
12085 		swap(curr->vruntime, se->vruntime);
12086 		resched_curr(rq);
12087 	}
12088 
12089 	se->vruntime -= cfs_rq->min_vruntime;
12090 	rq_unlock(rq, &rf);
12091 }
12092 
12093 /*
12094  * Priority of the task has changed. Check to see if we preempt
12095  * the current task.
12096  */
12097 static void
12098 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12099 {
12100 	if (!task_on_rq_queued(p))
12101 		return;
12102 
12103 	if (rq->cfs.nr_running == 1)
12104 		return;
12105 
12106 	/*
12107 	 * Reschedule if we are currently running on this runqueue and
12108 	 * our priority decreased, or if we are not currently running on
12109 	 * this runqueue and our priority is higher than the current's
12110 	 */
12111 	if (task_current(rq, p)) {
12112 		if (p->prio > oldprio)
12113 			resched_curr(rq);
12114 	} else
12115 		check_preempt_curr(rq, p, 0);
12116 }
12117 
12118 static inline bool vruntime_normalized(struct task_struct *p)
12119 {
12120 	struct sched_entity *se = &p->se;
12121 
12122 	/*
12123 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
12124 	 * the dequeue_entity(.flags=0) will already have normalized the
12125 	 * vruntime.
12126 	 */
12127 	if (p->on_rq)
12128 		return true;
12129 
12130 	/*
12131 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
12132 	 * But there are some cases where it has already been normalized:
12133 	 *
12134 	 * - A forked child which is waiting for being woken up by
12135 	 *   wake_up_new_task().
12136 	 * - A task which has been woken up by try_to_wake_up() and
12137 	 *   waiting for actually being woken up by sched_ttwu_pending().
12138 	 */
12139 	if (!se->sum_exec_runtime ||
12140 	    (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
12141 		return true;
12142 
12143 	return false;
12144 }
12145 
12146 #ifdef CONFIG_FAIR_GROUP_SCHED
12147 /*
12148  * Propagate the changes of the sched_entity across the tg tree to make it
12149  * visible to the root
12150  */
12151 static void propagate_entity_cfs_rq(struct sched_entity *se)
12152 {
12153 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12154 
12155 	if (cfs_rq_throttled(cfs_rq))
12156 		return;
12157 
12158 	if (!throttled_hierarchy(cfs_rq))
12159 		list_add_leaf_cfs_rq(cfs_rq);
12160 
12161 	/* Start to propagate at parent */
12162 	se = se->parent;
12163 
12164 	for_each_sched_entity(se) {
12165 		cfs_rq = cfs_rq_of(se);
12166 
12167 		update_load_avg(cfs_rq, se, UPDATE_TG);
12168 
12169 		if (cfs_rq_throttled(cfs_rq))
12170 			break;
12171 
12172 		if (!throttled_hierarchy(cfs_rq))
12173 			list_add_leaf_cfs_rq(cfs_rq);
12174 	}
12175 }
12176 #else
12177 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12178 #endif
12179 
12180 static void detach_entity_cfs_rq(struct sched_entity *se)
12181 {
12182 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12183 
12184 #ifdef CONFIG_SMP
12185 	/*
12186 	 * In case the task sched_avg hasn't been attached:
12187 	 * - A forked task which hasn't been woken up by wake_up_new_task().
12188 	 * - A task which has been woken up by try_to_wake_up() but is
12189 	 *   waiting for actually being woken up by sched_ttwu_pending().
12190 	 */
12191 	if (!se->avg.last_update_time)
12192 		return;
12193 #endif
12194 
12195 	/* Catch up with the cfs_rq and remove our load when we leave */
12196 	update_load_avg(cfs_rq, se, 0);
12197 	detach_entity_load_avg(cfs_rq, se);
12198 	update_tg_load_avg(cfs_rq);
12199 	propagate_entity_cfs_rq(se);
12200 }
12201 
12202 static void attach_entity_cfs_rq(struct sched_entity *se)
12203 {
12204 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12205 
12206 	/* Synchronize entity with its cfs_rq */
12207 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12208 	attach_entity_load_avg(cfs_rq, se);
12209 	update_tg_load_avg(cfs_rq);
12210 	propagate_entity_cfs_rq(se);
12211 }
12212 
12213 static void detach_task_cfs_rq(struct task_struct *p)
12214 {
12215 	struct sched_entity *se = &p->se;
12216 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12217 
12218 	if (!vruntime_normalized(p)) {
12219 		/*
12220 		 * Fix up our vruntime so that the current sleep doesn't
12221 		 * cause 'unlimited' sleep bonus.
12222 		 */
12223 		place_entity(cfs_rq, se, 0);
12224 		se->vruntime -= cfs_rq->min_vruntime;
12225 	}
12226 
12227 	detach_entity_cfs_rq(se);
12228 }
12229 
12230 static void attach_task_cfs_rq(struct task_struct *p)
12231 {
12232 	struct sched_entity *se = &p->se;
12233 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12234 
12235 	attach_entity_cfs_rq(se);
12236 
12237 	if (!vruntime_normalized(p))
12238 		se->vruntime += cfs_rq->min_vruntime;
12239 }
12240 
12241 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12242 {
12243 	detach_task_cfs_rq(p);
12244 }
12245 
12246 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12247 {
12248 	attach_task_cfs_rq(p);
12249 
12250 	if (task_on_rq_queued(p)) {
12251 		/*
12252 		 * We were most likely switched from sched_rt, so
12253 		 * kick off the schedule if running, otherwise just see
12254 		 * if we can still preempt the current task.
12255 		 */
12256 		if (task_current(rq, p))
12257 			resched_curr(rq);
12258 		else
12259 			check_preempt_curr(rq, p, 0);
12260 	}
12261 }
12262 
12263 /* Account for a task changing its policy or group.
12264  *
12265  * This routine is mostly called to set cfs_rq->curr field when a task
12266  * migrates between groups/classes.
12267  */
12268 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12269 {
12270 	struct sched_entity *se = &p->se;
12271 
12272 #ifdef CONFIG_SMP
12273 	if (task_on_rq_queued(p)) {
12274 		/*
12275 		 * Move the next running task to the front of the list, so our
12276 		 * cfs_tasks list becomes MRU one.
12277 		 */
12278 		list_move(&se->group_node, &rq->cfs_tasks);
12279 	}
12280 #endif
12281 
12282 	for_each_sched_entity(se) {
12283 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12284 
12285 		set_next_entity(cfs_rq, se);
12286 		/* ensure bandwidth has been allocated on our new cfs_rq */
12287 		account_cfs_rq_runtime(cfs_rq, 0);
12288 	}
12289 }
12290 
12291 void init_cfs_rq(struct cfs_rq *cfs_rq)
12292 {
12293 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12294 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12295 #ifdef CONFIG_SMP
12296 	raw_spin_lock_init(&cfs_rq->removed.lock);
12297 #endif
12298 }
12299 
12300 #ifdef CONFIG_FAIR_GROUP_SCHED
12301 static void task_change_group_fair(struct task_struct *p)
12302 {
12303 	/*
12304 	 * We couldn't detach or attach a forked task which
12305 	 * hasn't been woken up by wake_up_new_task().
12306 	 */
12307 	if (READ_ONCE(p->__state) == TASK_NEW)
12308 		return;
12309 
12310 	detach_task_cfs_rq(p);
12311 
12312 #ifdef CONFIG_SMP
12313 	/* Tell se's cfs_rq has been changed -- migrated */
12314 	p->se.avg.last_update_time = 0;
12315 #endif
12316 	set_task_rq(p, task_cpu(p));
12317 	attach_task_cfs_rq(p);
12318 }
12319 
12320 void free_fair_sched_group(struct task_group *tg)
12321 {
12322 	int i;
12323 
12324 	for_each_possible_cpu(i) {
12325 		if (tg->cfs_rq)
12326 			kfree(tg->cfs_rq[i]);
12327 		if (tg->se)
12328 			kfree(tg->se[i]);
12329 	}
12330 
12331 	kfree(tg->cfs_rq);
12332 	kfree(tg->se);
12333 }
12334 
12335 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12336 {
12337 	struct sched_entity *se;
12338 	struct cfs_rq *cfs_rq;
12339 	int i;
12340 
12341 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12342 	if (!tg->cfs_rq)
12343 		goto err;
12344 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12345 	if (!tg->se)
12346 		goto err;
12347 
12348 	tg->shares = NICE_0_LOAD;
12349 
12350 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
12351 
12352 	for_each_possible_cpu(i) {
12353 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12354 				      GFP_KERNEL, cpu_to_node(i));
12355 		if (!cfs_rq)
12356 			goto err;
12357 
12358 		se = kzalloc_node(sizeof(struct sched_entity_stats),
12359 				  GFP_KERNEL, cpu_to_node(i));
12360 		if (!se)
12361 			goto err_free_rq;
12362 
12363 		init_cfs_rq(cfs_rq);
12364 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12365 		init_entity_runnable_average(se);
12366 	}
12367 
12368 	return 1;
12369 
12370 err_free_rq:
12371 	kfree(cfs_rq);
12372 err:
12373 	return 0;
12374 }
12375 
12376 void online_fair_sched_group(struct task_group *tg)
12377 {
12378 	struct sched_entity *se;
12379 	struct rq_flags rf;
12380 	struct rq *rq;
12381 	int i;
12382 
12383 	for_each_possible_cpu(i) {
12384 		rq = cpu_rq(i);
12385 		se = tg->se[i];
12386 		rq_lock_irq(rq, &rf);
12387 		update_rq_clock(rq);
12388 		attach_entity_cfs_rq(se);
12389 		sync_throttle(tg, i);
12390 		rq_unlock_irq(rq, &rf);
12391 	}
12392 }
12393 
12394 void unregister_fair_sched_group(struct task_group *tg)
12395 {
12396 	unsigned long flags;
12397 	struct rq *rq;
12398 	int cpu;
12399 
12400 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12401 
12402 	for_each_possible_cpu(cpu) {
12403 		if (tg->se[cpu])
12404 			remove_entity_load_avg(tg->se[cpu]);
12405 
12406 		/*
12407 		 * Only empty task groups can be destroyed; so we can speculatively
12408 		 * check on_list without danger of it being re-added.
12409 		 */
12410 		if (!tg->cfs_rq[cpu]->on_list)
12411 			continue;
12412 
12413 		rq = cpu_rq(cpu);
12414 
12415 		raw_spin_rq_lock_irqsave(rq, flags);
12416 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12417 		raw_spin_rq_unlock_irqrestore(rq, flags);
12418 	}
12419 }
12420 
12421 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12422 			struct sched_entity *se, int cpu,
12423 			struct sched_entity *parent)
12424 {
12425 	struct rq *rq = cpu_rq(cpu);
12426 
12427 	cfs_rq->tg = tg;
12428 	cfs_rq->rq = rq;
12429 	init_cfs_rq_runtime(cfs_rq);
12430 
12431 	tg->cfs_rq[cpu] = cfs_rq;
12432 	tg->se[cpu] = se;
12433 
12434 	/* se could be NULL for root_task_group */
12435 	if (!se)
12436 		return;
12437 
12438 	if (!parent) {
12439 		se->cfs_rq = &rq->cfs;
12440 		se->depth = 0;
12441 	} else {
12442 		se->cfs_rq = parent->my_q;
12443 		se->depth = parent->depth + 1;
12444 	}
12445 
12446 	se->my_q = cfs_rq;
12447 	/* guarantee group entities always have weight */
12448 	update_load_set(&se->load, NICE_0_LOAD);
12449 	se->parent = parent;
12450 }
12451 
12452 static DEFINE_MUTEX(shares_mutex);
12453 
12454 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12455 {
12456 	int i;
12457 
12458 	lockdep_assert_held(&shares_mutex);
12459 
12460 	/*
12461 	 * We can't change the weight of the root cgroup.
12462 	 */
12463 	if (!tg->se[0])
12464 		return -EINVAL;
12465 
12466 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12467 
12468 	if (tg->shares == shares)
12469 		return 0;
12470 
12471 	tg->shares = shares;
12472 	for_each_possible_cpu(i) {
12473 		struct rq *rq = cpu_rq(i);
12474 		struct sched_entity *se = tg->se[i];
12475 		struct rq_flags rf;
12476 
12477 		/* Propagate contribution to hierarchy */
12478 		rq_lock_irqsave(rq, &rf);
12479 		update_rq_clock(rq);
12480 		for_each_sched_entity(se) {
12481 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12482 			update_cfs_group(se);
12483 		}
12484 		rq_unlock_irqrestore(rq, &rf);
12485 	}
12486 
12487 	return 0;
12488 }
12489 
12490 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
12491 {
12492 	int ret;
12493 
12494 	mutex_lock(&shares_mutex);
12495 	if (tg_is_idle(tg))
12496 		ret = -EINVAL;
12497 	else
12498 		ret = __sched_group_set_shares(tg, shares);
12499 	mutex_unlock(&shares_mutex);
12500 
12501 	return ret;
12502 }
12503 
12504 int sched_group_set_idle(struct task_group *tg, long idle)
12505 {
12506 	int i;
12507 
12508 	if (tg == &root_task_group)
12509 		return -EINVAL;
12510 
12511 	if (idle < 0 || idle > 1)
12512 		return -EINVAL;
12513 
12514 	mutex_lock(&shares_mutex);
12515 
12516 	if (tg->idle == idle) {
12517 		mutex_unlock(&shares_mutex);
12518 		return 0;
12519 	}
12520 
12521 	tg->idle = idle;
12522 
12523 	for_each_possible_cpu(i) {
12524 		struct rq *rq = cpu_rq(i);
12525 		struct sched_entity *se = tg->se[i];
12526 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
12527 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
12528 		long idle_task_delta;
12529 		struct rq_flags rf;
12530 
12531 		rq_lock_irqsave(rq, &rf);
12532 
12533 		grp_cfs_rq->idle = idle;
12534 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
12535 			goto next_cpu;
12536 
12537 		if (se->on_rq) {
12538 			parent_cfs_rq = cfs_rq_of(se);
12539 			if (cfs_rq_is_idle(grp_cfs_rq))
12540 				parent_cfs_rq->idle_nr_running++;
12541 			else
12542 				parent_cfs_rq->idle_nr_running--;
12543 		}
12544 
12545 		idle_task_delta = grp_cfs_rq->h_nr_running -
12546 				  grp_cfs_rq->idle_h_nr_running;
12547 		if (!cfs_rq_is_idle(grp_cfs_rq))
12548 			idle_task_delta *= -1;
12549 
12550 		for_each_sched_entity(se) {
12551 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
12552 
12553 			if (!se->on_rq)
12554 				break;
12555 
12556 			cfs_rq->idle_h_nr_running += idle_task_delta;
12557 
12558 			/* Already accounted at parent level and above. */
12559 			if (cfs_rq_is_idle(cfs_rq))
12560 				break;
12561 		}
12562 
12563 next_cpu:
12564 		rq_unlock_irqrestore(rq, &rf);
12565 	}
12566 
12567 	/* Idle groups have minimum weight. */
12568 	if (tg_is_idle(tg))
12569 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
12570 	else
12571 		__sched_group_set_shares(tg, NICE_0_LOAD);
12572 
12573 	mutex_unlock(&shares_mutex);
12574 	return 0;
12575 }
12576 
12577 #else /* CONFIG_FAIR_GROUP_SCHED */
12578 
12579 void free_fair_sched_group(struct task_group *tg) { }
12580 
12581 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12582 {
12583 	return 1;
12584 }
12585 
12586 void online_fair_sched_group(struct task_group *tg) { }
12587 
12588 void unregister_fair_sched_group(struct task_group *tg) { }
12589 
12590 #endif /* CONFIG_FAIR_GROUP_SCHED */
12591 
12592 
12593 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
12594 {
12595 	struct sched_entity *se = &task->se;
12596 	unsigned int rr_interval = 0;
12597 
12598 	/*
12599 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
12600 	 * idle runqueue:
12601 	 */
12602 	if (rq->cfs.load.weight)
12603 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
12604 
12605 	return rr_interval;
12606 }
12607 
12608 /*
12609  * All the scheduling class methods:
12610  */
12611 DEFINE_SCHED_CLASS(fair) = {
12612 
12613 	.enqueue_task		= enqueue_task_fair,
12614 	.dequeue_task		= dequeue_task_fair,
12615 	.yield_task		= yield_task_fair,
12616 	.yield_to_task		= yield_to_task_fair,
12617 
12618 	.check_preempt_curr	= check_preempt_wakeup,
12619 
12620 	.pick_next_task		= __pick_next_task_fair,
12621 	.put_prev_task		= put_prev_task_fair,
12622 	.set_next_task          = set_next_task_fair,
12623 
12624 #ifdef CONFIG_SMP
12625 	.balance		= balance_fair,
12626 	.pick_task		= pick_task_fair,
12627 	.select_task_rq		= select_task_rq_fair,
12628 	.migrate_task_rq	= migrate_task_rq_fair,
12629 
12630 	.rq_online		= rq_online_fair,
12631 	.rq_offline		= rq_offline_fair,
12632 
12633 	.task_dead		= task_dead_fair,
12634 	.set_cpus_allowed	= set_cpus_allowed_common,
12635 #endif
12636 
12637 	.task_tick		= task_tick_fair,
12638 	.task_fork		= task_fork_fair,
12639 
12640 	.prio_changed		= prio_changed_fair,
12641 	.switched_from		= switched_from_fair,
12642 	.switched_to		= switched_to_fair,
12643 
12644 	.get_rr_interval	= get_rr_interval_fair,
12645 
12646 	.update_curr		= update_curr_fair,
12647 
12648 #ifdef CONFIG_FAIR_GROUP_SCHED
12649 	.task_change_group	= task_change_group_fair,
12650 #endif
12651 
12652 #ifdef CONFIG_UCLAMP_TASK
12653 	.uclamp_enabled		= 1,
12654 #endif
12655 };
12656 
12657 #ifdef CONFIG_SCHED_DEBUG
12658 void print_cfs_stats(struct seq_file *m, int cpu)
12659 {
12660 	struct cfs_rq *cfs_rq, *pos;
12661 
12662 	rcu_read_lock();
12663 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
12664 		print_cfs_rq(m, cpu, cfs_rq);
12665 	rcu_read_unlock();
12666 }
12667 
12668 #ifdef CONFIG_NUMA_BALANCING
12669 void show_numa_stats(struct task_struct *p, struct seq_file *m)
12670 {
12671 	int node;
12672 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
12673 	struct numa_group *ng;
12674 
12675 	rcu_read_lock();
12676 	ng = rcu_dereference(p->numa_group);
12677 	for_each_online_node(node) {
12678 		if (p->numa_faults) {
12679 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
12680 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
12681 		}
12682 		if (ng) {
12683 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
12684 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
12685 		}
12686 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
12687 	}
12688 	rcu_read_unlock();
12689 }
12690 #endif /* CONFIG_NUMA_BALANCING */
12691 #endif /* CONFIG_SCHED_DEBUG */
12692 
12693 __init void init_sched_fair_class(void)
12694 {
12695 #ifdef CONFIG_SMP
12696 	int i;
12697 
12698 	for_each_possible_cpu(i) {
12699 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
12700 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
12701 
12702 #ifdef CONFIG_CFS_BANDWIDTH
12703 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
12704 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
12705 #endif
12706 	}
12707 
12708 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
12709 
12710 #ifdef CONFIG_NO_HZ_COMMON
12711 	nohz.next_balance = jiffies;
12712 	nohz.next_blocked = jiffies;
12713 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
12714 #endif
12715 #endif /* SMP */
12716 
12717 }
12718