xref: /linux/kernel/sched/fair.c (revision 26b433d0da062d6e19d75350c0171d3cf8ff560d)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21  */
22 
23 #include <linux/sched/mm.h>
24 #include <linux/sched/topology.h>
25 
26 #include <linux/latencytop.h>
27 #include <linux/cpumask.h>
28 #include <linux/cpuidle.h>
29 #include <linux/slab.h>
30 #include <linux/profile.h>
31 #include <linux/interrupt.h>
32 #include <linux/mempolicy.h>
33 #include <linux/migrate.h>
34 #include <linux/task_work.h>
35 
36 #include <trace/events/sched.h>
37 
38 #include "sched.h"
39 
40 /*
41  * Targeted preemption latency for CPU-bound tasks:
42  *
43  * NOTE: this latency value is not the same as the concept of
44  * 'timeslice length' - timeslices in CFS are of variable length
45  * and have no persistent notion like in traditional, time-slice
46  * based scheduling concepts.
47  *
48  * (to see the precise effective timeslice length of your workload,
49  *  run vmstat and monitor the context-switches (cs) field)
50  *
51  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
52  */
53 unsigned int sysctl_sched_latency			= 6000000ULL;
54 unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
55 
56 /*
57  * The initial- and re-scaling of tunables is configurable
58  *
59  * Options are:
60  *
61  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
62  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
63  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
64  *
65  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
66  */
67 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
68 
69 /*
70  * Minimal preemption granularity for CPU-bound tasks:
71  *
72  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
73  */
74 unsigned int sysctl_sched_min_granularity		= 750000ULL;
75 unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
76 
77 /*
78  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
79  */
80 static unsigned int sched_nr_latency = 8;
81 
82 /*
83  * After fork, child runs first. If set to 0 (default) then
84  * parent will (try to) run first.
85  */
86 unsigned int sysctl_sched_child_runs_first __read_mostly;
87 
88 /*
89  * SCHED_OTHER wake-up granularity.
90  *
91  * This option delays the preemption effects of decoupled workloads
92  * and reduces their over-scheduling. Synchronous workloads will still
93  * have immediate wakeup/sleep latencies.
94  *
95  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
96  */
97 unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
98 unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
99 
100 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
101 
102 #ifdef CONFIG_SMP
103 /*
104  * For asym packing, by default the lower numbered cpu has higher priority.
105  */
106 int __weak arch_asym_cpu_priority(int cpu)
107 {
108 	return -cpu;
109 }
110 #endif
111 
112 #ifdef CONFIG_CFS_BANDWIDTH
113 /*
114  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
115  * each time a cfs_rq requests quota.
116  *
117  * Note: in the case that the slice exceeds the runtime remaining (either due
118  * to consumption or the quota being specified to be smaller than the slice)
119  * we will always only issue the remaining available time.
120  *
121  * (default: 5 msec, units: microseconds)
122  */
123 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
124 #endif
125 
126 /*
127  * The margin used when comparing utilization with CPU capacity:
128  * util * margin < capacity * 1024
129  *
130  * (default: ~20%)
131  */
132 unsigned int capacity_margin				= 1280;
133 
134 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135 {
136 	lw->weight += inc;
137 	lw->inv_weight = 0;
138 }
139 
140 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141 {
142 	lw->weight -= dec;
143 	lw->inv_weight = 0;
144 }
145 
146 static inline void update_load_set(struct load_weight *lw, unsigned long w)
147 {
148 	lw->weight = w;
149 	lw->inv_weight = 0;
150 }
151 
152 /*
153  * Increase the granularity value when there are more CPUs,
154  * because with more CPUs the 'effective latency' as visible
155  * to users decreases. But the relationship is not linear,
156  * so pick a second-best guess by going with the log2 of the
157  * number of CPUs.
158  *
159  * This idea comes from the SD scheduler of Con Kolivas:
160  */
161 static unsigned int get_update_sysctl_factor(void)
162 {
163 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
164 	unsigned int factor;
165 
166 	switch (sysctl_sched_tunable_scaling) {
167 	case SCHED_TUNABLESCALING_NONE:
168 		factor = 1;
169 		break;
170 	case SCHED_TUNABLESCALING_LINEAR:
171 		factor = cpus;
172 		break;
173 	case SCHED_TUNABLESCALING_LOG:
174 	default:
175 		factor = 1 + ilog2(cpus);
176 		break;
177 	}
178 
179 	return factor;
180 }
181 
182 static void update_sysctl(void)
183 {
184 	unsigned int factor = get_update_sysctl_factor();
185 
186 #define SET_SYSCTL(name) \
187 	(sysctl_##name = (factor) * normalized_sysctl_##name)
188 	SET_SYSCTL(sched_min_granularity);
189 	SET_SYSCTL(sched_latency);
190 	SET_SYSCTL(sched_wakeup_granularity);
191 #undef SET_SYSCTL
192 }
193 
194 void sched_init_granularity(void)
195 {
196 	update_sysctl();
197 }
198 
199 #define WMULT_CONST	(~0U)
200 #define WMULT_SHIFT	32
201 
202 static void __update_inv_weight(struct load_weight *lw)
203 {
204 	unsigned long w;
205 
206 	if (likely(lw->inv_weight))
207 		return;
208 
209 	w = scale_load_down(lw->weight);
210 
211 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 		lw->inv_weight = 1;
213 	else if (unlikely(!w))
214 		lw->inv_weight = WMULT_CONST;
215 	else
216 		lw->inv_weight = WMULT_CONST / w;
217 }
218 
219 /*
220  * delta_exec * weight / lw.weight
221  *   OR
222  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223  *
224  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225  * we're guaranteed shift stays positive because inv_weight is guaranteed to
226  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227  *
228  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229  * weight/lw.weight <= 1, and therefore our shift will also be positive.
230  */
231 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
232 {
233 	u64 fact = scale_load_down(weight);
234 	int shift = WMULT_SHIFT;
235 
236 	__update_inv_weight(lw);
237 
238 	if (unlikely(fact >> 32)) {
239 		while (fact >> 32) {
240 			fact >>= 1;
241 			shift--;
242 		}
243 	}
244 
245 	/* hint to use a 32x32->64 mul */
246 	fact = (u64)(u32)fact * lw->inv_weight;
247 
248 	while (fact >> 32) {
249 		fact >>= 1;
250 		shift--;
251 	}
252 
253 	return mul_u64_u32_shr(delta_exec, fact, shift);
254 }
255 
256 
257 const struct sched_class fair_sched_class;
258 
259 /**************************************************************
260  * CFS operations on generic schedulable entities:
261  */
262 
263 #ifdef CONFIG_FAIR_GROUP_SCHED
264 
265 /* cpu runqueue to which this cfs_rq is attached */
266 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
267 {
268 	return cfs_rq->rq;
269 }
270 
271 /* An entity is a task if it doesn't "own" a runqueue */
272 #define entity_is_task(se)	(!se->my_q)
273 
274 static inline struct task_struct *task_of(struct sched_entity *se)
275 {
276 	SCHED_WARN_ON(!entity_is_task(se));
277 	return container_of(se, struct task_struct, se);
278 }
279 
280 /* Walk up scheduling entities hierarchy */
281 #define for_each_sched_entity(se) \
282 		for (; se; se = se->parent)
283 
284 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
285 {
286 	return p->se.cfs_rq;
287 }
288 
289 /* runqueue on which this entity is (to be) queued */
290 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
291 {
292 	return se->cfs_rq;
293 }
294 
295 /* runqueue "owned" by this group */
296 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
297 {
298 	return grp->my_q;
299 }
300 
301 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302 {
303 	if (!cfs_rq->on_list) {
304 		struct rq *rq = rq_of(cfs_rq);
305 		int cpu = cpu_of(rq);
306 		/*
307 		 * Ensure we either appear before our parent (if already
308 		 * enqueued) or force our parent to appear after us when it is
309 		 * enqueued. The fact that we always enqueue bottom-up
310 		 * reduces this to two cases and a special case for the root
311 		 * cfs_rq. Furthermore, it also means that we will always reset
312 		 * tmp_alone_branch either when the branch is connected
313 		 * to a tree or when we reach the beg of the tree
314 		 */
315 		if (cfs_rq->tg->parent &&
316 		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
317 			/*
318 			 * If parent is already on the list, we add the child
319 			 * just before. Thanks to circular linked property of
320 			 * the list, this means to put the child at the tail
321 			 * of the list that starts by parent.
322 			 */
323 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
325 			/*
326 			 * The branch is now connected to its tree so we can
327 			 * reset tmp_alone_branch to the beginning of the
328 			 * list.
329 			 */
330 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
331 		} else if (!cfs_rq->tg->parent) {
332 			/*
333 			 * cfs rq without parent should be put
334 			 * at the tail of the list.
335 			 */
336 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 				&rq->leaf_cfs_rq_list);
338 			/*
339 			 * We have reach the beg of a tree so we can reset
340 			 * tmp_alone_branch to the beginning of the list.
341 			 */
342 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 		} else {
344 			/*
345 			 * The parent has not already been added so we want to
346 			 * make sure that it will be put after us.
347 			 * tmp_alone_branch points to the beg of the branch
348 			 * where we will add parent.
349 			 */
350 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
351 				rq->tmp_alone_branch);
352 			/*
353 			 * update tmp_alone_branch to points to the new beg
354 			 * of the branch
355 			 */
356 			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
357 		}
358 
359 		cfs_rq->on_list = 1;
360 	}
361 }
362 
363 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364 {
365 	if (cfs_rq->on_list) {
366 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
367 		cfs_rq->on_list = 0;
368 	}
369 }
370 
371 /* Iterate thr' all leaf cfs_rq's on a runqueue */
372 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
373 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
374 				 leaf_cfs_rq_list)
375 
376 /* Do the two (enqueued) entities belong to the same group ? */
377 static inline struct cfs_rq *
378 is_same_group(struct sched_entity *se, struct sched_entity *pse)
379 {
380 	if (se->cfs_rq == pse->cfs_rq)
381 		return se->cfs_rq;
382 
383 	return NULL;
384 }
385 
386 static inline struct sched_entity *parent_entity(struct sched_entity *se)
387 {
388 	return se->parent;
389 }
390 
391 static void
392 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
393 {
394 	int se_depth, pse_depth;
395 
396 	/*
397 	 * preemption test can be made between sibling entities who are in the
398 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
399 	 * both tasks until we find their ancestors who are siblings of common
400 	 * parent.
401 	 */
402 
403 	/* First walk up until both entities are at same depth */
404 	se_depth = (*se)->depth;
405 	pse_depth = (*pse)->depth;
406 
407 	while (se_depth > pse_depth) {
408 		se_depth--;
409 		*se = parent_entity(*se);
410 	}
411 
412 	while (pse_depth > se_depth) {
413 		pse_depth--;
414 		*pse = parent_entity(*pse);
415 	}
416 
417 	while (!is_same_group(*se, *pse)) {
418 		*se = parent_entity(*se);
419 		*pse = parent_entity(*pse);
420 	}
421 }
422 
423 #else	/* !CONFIG_FAIR_GROUP_SCHED */
424 
425 static inline struct task_struct *task_of(struct sched_entity *se)
426 {
427 	return container_of(se, struct task_struct, se);
428 }
429 
430 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
431 {
432 	return container_of(cfs_rq, struct rq, cfs);
433 }
434 
435 #define entity_is_task(se)	1
436 
437 #define for_each_sched_entity(se) \
438 		for (; se; se = NULL)
439 
440 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
441 {
442 	return &task_rq(p)->cfs;
443 }
444 
445 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
446 {
447 	struct task_struct *p = task_of(se);
448 	struct rq *rq = task_rq(p);
449 
450 	return &rq->cfs;
451 }
452 
453 /* runqueue "owned" by this group */
454 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
455 {
456 	return NULL;
457 }
458 
459 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
460 {
461 }
462 
463 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
464 {
465 }
466 
467 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
468 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
469 
470 static inline struct sched_entity *parent_entity(struct sched_entity *se)
471 {
472 	return NULL;
473 }
474 
475 static inline void
476 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
477 {
478 }
479 
480 #endif	/* CONFIG_FAIR_GROUP_SCHED */
481 
482 static __always_inline
483 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
484 
485 /**************************************************************
486  * Scheduling class tree data structure manipulation methods:
487  */
488 
489 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
490 {
491 	s64 delta = (s64)(vruntime - max_vruntime);
492 	if (delta > 0)
493 		max_vruntime = vruntime;
494 
495 	return max_vruntime;
496 }
497 
498 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
499 {
500 	s64 delta = (s64)(vruntime - min_vruntime);
501 	if (delta < 0)
502 		min_vruntime = vruntime;
503 
504 	return min_vruntime;
505 }
506 
507 static inline int entity_before(struct sched_entity *a,
508 				struct sched_entity *b)
509 {
510 	return (s64)(a->vruntime - b->vruntime) < 0;
511 }
512 
513 static void update_min_vruntime(struct cfs_rq *cfs_rq)
514 {
515 	struct sched_entity *curr = cfs_rq->curr;
516 
517 	u64 vruntime = cfs_rq->min_vruntime;
518 
519 	if (curr) {
520 		if (curr->on_rq)
521 			vruntime = curr->vruntime;
522 		else
523 			curr = NULL;
524 	}
525 
526 	if (cfs_rq->rb_leftmost) {
527 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
528 						   struct sched_entity,
529 						   run_node);
530 
531 		if (!curr)
532 			vruntime = se->vruntime;
533 		else
534 			vruntime = min_vruntime(vruntime, se->vruntime);
535 	}
536 
537 	/* ensure we never gain time by being placed backwards. */
538 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
539 #ifndef CONFIG_64BIT
540 	smp_wmb();
541 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
542 #endif
543 }
544 
545 /*
546  * Enqueue an entity into the rb-tree:
547  */
548 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
549 {
550 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
551 	struct rb_node *parent = NULL;
552 	struct sched_entity *entry;
553 	int leftmost = 1;
554 
555 	/*
556 	 * Find the right place in the rbtree:
557 	 */
558 	while (*link) {
559 		parent = *link;
560 		entry = rb_entry(parent, struct sched_entity, run_node);
561 		/*
562 		 * We dont care about collisions. Nodes with
563 		 * the same key stay together.
564 		 */
565 		if (entity_before(se, entry)) {
566 			link = &parent->rb_left;
567 		} else {
568 			link = &parent->rb_right;
569 			leftmost = 0;
570 		}
571 	}
572 
573 	/*
574 	 * Maintain a cache of leftmost tree entries (it is frequently
575 	 * used):
576 	 */
577 	if (leftmost)
578 		cfs_rq->rb_leftmost = &se->run_node;
579 
580 	rb_link_node(&se->run_node, parent, link);
581 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
582 }
583 
584 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
585 {
586 	if (cfs_rq->rb_leftmost == &se->run_node) {
587 		struct rb_node *next_node;
588 
589 		next_node = rb_next(&se->run_node);
590 		cfs_rq->rb_leftmost = next_node;
591 	}
592 
593 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
594 }
595 
596 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
597 {
598 	struct rb_node *left = cfs_rq->rb_leftmost;
599 
600 	if (!left)
601 		return NULL;
602 
603 	return rb_entry(left, struct sched_entity, run_node);
604 }
605 
606 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
607 {
608 	struct rb_node *next = rb_next(&se->run_node);
609 
610 	if (!next)
611 		return NULL;
612 
613 	return rb_entry(next, struct sched_entity, run_node);
614 }
615 
616 #ifdef CONFIG_SCHED_DEBUG
617 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
618 {
619 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
620 
621 	if (!last)
622 		return NULL;
623 
624 	return rb_entry(last, struct sched_entity, run_node);
625 }
626 
627 /**************************************************************
628  * Scheduling class statistics methods:
629  */
630 
631 int sched_proc_update_handler(struct ctl_table *table, int write,
632 		void __user *buffer, size_t *lenp,
633 		loff_t *ppos)
634 {
635 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
636 	unsigned int factor = get_update_sysctl_factor();
637 
638 	if (ret || !write)
639 		return ret;
640 
641 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
642 					sysctl_sched_min_granularity);
643 
644 #define WRT_SYSCTL(name) \
645 	(normalized_sysctl_##name = sysctl_##name / (factor))
646 	WRT_SYSCTL(sched_min_granularity);
647 	WRT_SYSCTL(sched_latency);
648 	WRT_SYSCTL(sched_wakeup_granularity);
649 #undef WRT_SYSCTL
650 
651 	return 0;
652 }
653 #endif
654 
655 /*
656  * delta /= w
657  */
658 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
659 {
660 	if (unlikely(se->load.weight != NICE_0_LOAD))
661 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
662 
663 	return delta;
664 }
665 
666 /*
667  * The idea is to set a period in which each task runs once.
668  *
669  * When there are too many tasks (sched_nr_latency) we have to stretch
670  * this period because otherwise the slices get too small.
671  *
672  * p = (nr <= nl) ? l : l*nr/nl
673  */
674 static u64 __sched_period(unsigned long nr_running)
675 {
676 	if (unlikely(nr_running > sched_nr_latency))
677 		return nr_running * sysctl_sched_min_granularity;
678 	else
679 		return sysctl_sched_latency;
680 }
681 
682 /*
683  * We calculate the wall-time slice from the period by taking a part
684  * proportional to the weight.
685  *
686  * s = p*P[w/rw]
687  */
688 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
689 {
690 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
691 
692 	for_each_sched_entity(se) {
693 		struct load_weight *load;
694 		struct load_weight lw;
695 
696 		cfs_rq = cfs_rq_of(se);
697 		load = &cfs_rq->load;
698 
699 		if (unlikely(!se->on_rq)) {
700 			lw = cfs_rq->load;
701 
702 			update_load_add(&lw, se->load.weight);
703 			load = &lw;
704 		}
705 		slice = __calc_delta(slice, se->load.weight, load);
706 	}
707 	return slice;
708 }
709 
710 /*
711  * We calculate the vruntime slice of a to-be-inserted task.
712  *
713  * vs = s/w
714  */
715 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
716 {
717 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
718 }
719 
720 #ifdef CONFIG_SMP
721 
722 #include "sched-pelt.h"
723 
724 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
725 static unsigned long task_h_load(struct task_struct *p);
726 
727 /* Give new sched_entity start runnable values to heavy its load in infant time */
728 void init_entity_runnable_average(struct sched_entity *se)
729 {
730 	struct sched_avg *sa = &se->avg;
731 
732 	sa->last_update_time = 0;
733 	/*
734 	 * sched_avg's period_contrib should be strictly less then 1024, so
735 	 * we give it 1023 to make sure it is almost a period (1024us), and
736 	 * will definitely be update (after enqueue).
737 	 */
738 	sa->period_contrib = 1023;
739 	/*
740 	 * Tasks are intialized with full load to be seen as heavy tasks until
741 	 * they get a chance to stabilize to their real load level.
742 	 * Group entities are intialized with zero load to reflect the fact that
743 	 * nothing has been attached to the task group yet.
744 	 */
745 	if (entity_is_task(se))
746 		sa->load_avg = scale_load_down(se->load.weight);
747 	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
748 	/*
749 	 * At this point, util_avg won't be used in select_task_rq_fair anyway
750 	 */
751 	sa->util_avg = 0;
752 	sa->util_sum = 0;
753 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
754 }
755 
756 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
757 static void attach_entity_cfs_rq(struct sched_entity *se);
758 
759 /*
760  * With new tasks being created, their initial util_avgs are extrapolated
761  * based on the cfs_rq's current util_avg:
762  *
763  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
764  *
765  * However, in many cases, the above util_avg does not give a desired
766  * value. Moreover, the sum of the util_avgs may be divergent, such
767  * as when the series is a harmonic series.
768  *
769  * To solve this problem, we also cap the util_avg of successive tasks to
770  * only 1/2 of the left utilization budget:
771  *
772  *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
773  *
774  * where n denotes the nth task.
775  *
776  * For example, a simplest series from the beginning would be like:
777  *
778  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
779  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
780  *
781  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
782  * if util_avg > util_avg_cap.
783  */
784 void post_init_entity_util_avg(struct sched_entity *se)
785 {
786 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
787 	struct sched_avg *sa = &se->avg;
788 	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
789 
790 	if (cap > 0) {
791 		if (cfs_rq->avg.util_avg != 0) {
792 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
793 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
794 
795 			if (sa->util_avg > cap)
796 				sa->util_avg = cap;
797 		} else {
798 			sa->util_avg = cap;
799 		}
800 		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
801 	}
802 
803 	if (entity_is_task(se)) {
804 		struct task_struct *p = task_of(se);
805 		if (p->sched_class != &fair_sched_class) {
806 			/*
807 			 * For !fair tasks do:
808 			 *
809 			update_cfs_rq_load_avg(now, cfs_rq);
810 			attach_entity_load_avg(cfs_rq, se);
811 			switched_from_fair(rq, p);
812 			 *
813 			 * such that the next switched_to_fair() has the
814 			 * expected state.
815 			 */
816 			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
817 			return;
818 		}
819 	}
820 
821 	attach_entity_cfs_rq(se);
822 }
823 
824 #else /* !CONFIG_SMP */
825 void init_entity_runnable_average(struct sched_entity *se)
826 {
827 }
828 void post_init_entity_util_avg(struct sched_entity *se)
829 {
830 }
831 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
832 {
833 }
834 #endif /* CONFIG_SMP */
835 
836 /*
837  * Update the current task's runtime statistics.
838  */
839 static void update_curr(struct cfs_rq *cfs_rq)
840 {
841 	struct sched_entity *curr = cfs_rq->curr;
842 	u64 now = rq_clock_task(rq_of(cfs_rq));
843 	u64 delta_exec;
844 
845 	if (unlikely(!curr))
846 		return;
847 
848 	delta_exec = now - curr->exec_start;
849 	if (unlikely((s64)delta_exec <= 0))
850 		return;
851 
852 	curr->exec_start = now;
853 
854 	schedstat_set(curr->statistics.exec_max,
855 		      max(delta_exec, curr->statistics.exec_max));
856 
857 	curr->sum_exec_runtime += delta_exec;
858 	schedstat_add(cfs_rq->exec_clock, delta_exec);
859 
860 	curr->vruntime += calc_delta_fair(delta_exec, curr);
861 	update_min_vruntime(cfs_rq);
862 
863 	if (entity_is_task(curr)) {
864 		struct task_struct *curtask = task_of(curr);
865 
866 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
867 		cpuacct_charge(curtask, delta_exec);
868 		account_group_exec_runtime(curtask, delta_exec);
869 	}
870 
871 	account_cfs_rq_runtime(cfs_rq, delta_exec);
872 }
873 
874 static void update_curr_fair(struct rq *rq)
875 {
876 	update_curr(cfs_rq_of(&rq->curr->se));
877 }
878 
879 static inline void
880 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
881 {
882 	u64 wait_start, prev_wait_start;
883 
884 	if (!schedstat_enabled())
885 		return;
886 
887 	wait_start = rq_clock(rq_of(cfs_rq));
888 	prev_wait_start = schedstat_val(se->statistics.wait_start);
889 
890 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
891 	    likely(wait_start > prev_wait_start))
892 		wait_start -= prev_wait_start;
893 
894 	schedstat_set(se->statistics.wait_start, wait_start);
895 }
896 
897 static inline void
898 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
899 {
900 	struct task_struct *p;
901 	u64 delta;
902 
903 	if (!schedstat_enabled())
904 		return;
905 
906 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
907 
908 	if (entity_is_task(se)) {
909 		p = task_of(se);
910 		if (task_on_rq_migrating(p)) {
911 			/*
912 			 * Preserve migrating task's wait time so wait_start
913 			 * time stamp can be adjusted to accumulate wait time
914 			 * prior to migration.
915 			 */
916 			schedstat_set(se->statistics.wait_start, delta);
917 			return;
918 		}
919 		trace_sched_stat_wait(p, delta);
920 	}
921 
922 	schedstat_set(se->statistics.wait_max,
923 		      max(schedstat_val(se->statistics.wait_max), delta));
924 	schedstat_inc(se->statistics.wait_count);
925 	schedstat_add(se->statistics.wait_sum, delta);
926 	schedstat_set(se->statistics.wait_start, 0);
927 }
928 
929 static inline void
930 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
931 {
932 	struct task_struct *tsk = NULL;
933 	u64 sleep_start, block_start;
934 
935 	if (!schedstat_enabled())
936 		return;
937 
938 	sleep_start = schedstat_val(se->statistics.sleep_start);
939 	block_start = schedstat_val(se->statistics.block_start);
940 
941 	if (entity_is_task(se))
942 		tsk = task_of(se);
943 
944 	if (sleep_start) {
945 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
946 
947 		if ((s64)delta < 0)
948 			delta = 0;
949 
950 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
951 			schedstat_set(se->statistics.sleep_max, delta);
952 
953 		schedstat_set(se->statistics.sleep_start, 0);
954 		schedstat_add(se->statistics.sum_sleep_runtime, delta);
955 
956 		if (tsk) {
957 			account_scheduler_latency(tsk, delta >> 10, 1);
958 			trace_sched_stat_sleep(tsk, delta);
959 		}
960 	}
961 	if (block_start) {
962 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
963 
964 		if ((s64)delta < 0)
965 			delta = 0;
966 
967 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
968 			schedstat_set(se->statistics.block_max, delta);
969 
970 		schedstat_set(se->statistics.block_start, 0);
971 		schedstat_add(se->statistics.sum_sleep_runtime, delta);
972 
973 		if (tsk) {
974 			if (tsk->in_iowait) {
975 				schedstat_add(se->statistics.iowait_sum, delta);
976 				schedstat_inc(se->statistics.iowait_count);
977 				trace_sched_stat_iowait(tsk, delta);
978 			}
979 
980 			trace_sched_stat_blocked(tsk, delta);
981 
982 			/*
983 			 * Blocking time is in units of nanosecs, so shift by
984 			 * 20 to get a milliseconds-range estimation of the
985 			 * amount of time that the task spent sleeping:
986 			 */
987 			if (unlikely(prof_on == SLEEP_PROFILING)) {
988 				profile_hits(SLEEP_PROFILING,
989 						(void *)get_wchan(tsk),
990 						delta >> 20);
991 			}
992 			account_scheduler_latency(tsk, delta >> 10, 0);
993 		}
994 	}
995 }
996 
997 /*
998  * Task is being enqueued - update stats:
999  */
1000 static inline void
1001 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1002 {
1003 	if (!schedstat_enabled())
1004 		return;
1005 
1006 	/*
1007 	 * Are we enqueueing a waiting task? (for current tasks
1008 	 * a dequeue/enqueue event is a NOP)
1009 	 */
1010 	if (se != cfs_rq->curr)
1011 		update_stats_wait_start(cfs_rq, se);
1012 
1013 	if (flags & ENQUEUE_WAKEUP)
1014 		update_stats_enqueue_sleeper(cfs_rq, se);
1015 }
1016 
1017 static inline void
1018 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1019 {
1020 
1021 	if (!schedstat_enabled())
1022 		return;
1023 
1024 	/*
1025 	 * Mark the end of the wait period if dequeueing a
1026 	 * waiting task:
1027 	 */
1028 	if (se != cfs_rq->curr)
1029 		update_stats_wait_end(cfs_rq, se);
1030 
1031 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1032 		struct task_struct *tsk = task_of(se);
1033 
1034 		if (tsk->state & TASK_INTERRUPTIBLE)
1035 			schedstat_set(se->statistics.sleep_start,
1036 				      rq_clock(rq_of(cfs_rq)));
1037 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1038 			schedstat_set(se->statistics.block_start,
1039 				      rq_clock(rq_of(cfs_rq)));
1040 	}
1041 }
1042 
1043 /*
1044  * We are picking a new current task - update its stats:
1045  */
1046 static inline void
1047 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1048 {
1049 	/*
1050 	 * We are starting a new run period:
1051 	 */
1052 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1053 }
1054 
1055 /**************************************************
1056  * Scheduling class queueing methods:
1057  */
1058 
1059 #ifdef CONFIG_NUMA_BALANCING
1060 /*
1061  * Approximate time to scan a full NUMA task in ms. The task scan period is
1062  * calculated based on the tasks virtual memory size and
1063  * numa_balancing_scan_size.
1064  */
1065 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1066 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1067 
1068 /* Portion of address space to scan in MB */
1069 unsigned int sysctl_numa_balancing_scan_size = 256;
1070 
1071 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1072 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1073 
1074 struct numa_group {
1075 	atomic_t refcount;
1076 
1077 	spinlock_t lock; /* nr_tasks, tasks */
1078 	int nr_tasks;
1079 	pid_t gid;
1080 	int active_nodes;
1081 
1082 	struct rcu_head rcu;
1083 	unsigned long total_faults;
1084 	unsigned long max_faults_cpu;
1085 	/*
1086 	 * Faults_cpu is used to decide whether memory should move
1087 	 * towards the CPU. As a consequence, these stats are weighted
1088 	 * more by CPU use than by memory faults.
1089 	 */
1090 	unsigned long *faults_cpu;
1091 	unsigned long faults[0];
1092 };
1093 
1094 static inline unsigned long group_faults_priv(struct numa_group *ng);
1095 static inline unsigned long group_faults_shared(struct numa_group *ng);
1096 
1097 static unsigned int task_nr_scan_windows(struct task_struct *p)
1098 {
1099 	unsigned long rss = 0;
1100 	unsigned long nr_scan_pages;
1101 
1102 	/*
1103 	 * Calculations based on RSS as non-present and empty pages are skipped
1104 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1105 	 * on resident pages
1106 	 */
1107 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1108 	rss = get_mm_rss(p->mm);
1109 	if (!rss)
1110 		rss = nr_scan_pages;
1111 
1112 	rss = round_up(rss, nr_scan_pages);
1113 	return rss / nr_scan_pages;
1114 }
1115 
1116 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1117 #define MAX_SCAN_WINDOW 2560
1118 
1119 static unsigned int task_scan_min(struct task_struct *p)
1120 {
1121 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1122 	unsigned int scan, floor;
1123 	unsigned int windows = 1;
1124 
1125 	if (scan_size < MAX_SCAN_WINDOW)
1126 		windows = MAX_SCAN_WINDOW / scan_size;
1127 	floor = 1000 / windows;
1128 
1129 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1130 	return max_t(unsigned int, floor, scan);
1131 }
1132 
1133 static unsigned int task_scan_start(struct task_struct *p)
1134 {
1135 	unsigned long smin = task_scan_min(p);
1136 	unsigned long period = smin;
1137 
1138 	/* Scale the maximum scan period with the amount of shared memory. */
1139 	if (p->numa_group) {
1140 		struct numa_group *ng = p->numa_group;
1141 		unsigned long shared = group_faults_shared(ng);
1142 		unsigned long private = group_faults_priv(ng);
1143 
1144 		period *= atomic_read(&ng->refcount);
1145 		period *= shared + 1;
1146 		period /= private + shared + 1;
1147 	}
1148 
1149 	return max(smin, period);
1150 }
1151 
1152 static unsigned int task_scan_max(struct task_struct *p)
1153 {
1154 	unsigned long smin = task_scan_min(p);
1155 	unsigned long smax;
1156 
1157 	/* Watch for min being lower than max due to floor calculations */
1158 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1159 
1160 	/* Scale the maximum scan period with the amount of shared memory. */
1161 	if (p->numa_group) {
1162 		struct numa_group *ng = p->numa_group;
1163 		unsigned long shared = group_faults_shared(ng);
1164 		unsigned long private = group_faults_priv(ng);
1165 		unsigned long period = smax;
1166 
1167 		period *= atomic_read(&ng->refcount);
1168 		period *= shared + 1;
1169 		period /= private + shared + 1;
1170 
1171 		smax = max(smax, period);
1172 	}
1173 
1174 	return max(smin, smax);
1175 }
1176 
1177 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1178 {
1179 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
1180 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1181 }
1182 
1183 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1184 {
1185 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1186 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1187 }
1188 
1189 /* Shared or private faults. */
1190 #define NR_NUMA_HINT_FAULT_TYPES 2
1191 
1192 /* Memory and CPU locality */
1193 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1194 
1195 /* Averaged statistics, and temporary buffers. */
1196 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1197 
1198 pid_t task_numa_group_id(struct task_struct *p)
1199 {
1200 	return p->numa_group ? p->numa_group->gid : 0;
1201 }
1202 
1203 /*
1204  * The averaged statistics, shared & private, memory & cpu,
1205  * occupy the first half of the array. The second half of the
1206  * array is for current counters, which are averaged into the
1207  * first set by task_numa_placement.
1208  */
1209 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1210 {
1211 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1212 }
1213 
1214 static inline unsigned long task_faults(struct task_struct *p, int nid)
1215 {
1216 	if (!p->numa_faults)
1217 		return 0;
1218 
1219 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1220 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1221 }
1222 
1223 static inline unsigned long group_faults(struct task_struct *p, int nid)
1224 {
1225 	if (!p->numa_group)
1226 		return 0;
1227 
1228 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1229 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1230 }
1231 
1232 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1233 {
1234 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1235 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1236 }
1237 
1238 static inline unsigned long group_faults_priv(struct numa_group *ng)
1239 {
1240 	unsigned long faults = 0;
1241 	int node;
1242 
1243 	for_each_online_node(node) {
1244 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1245 	}
1246 
1247 	return faults;
1248 }
1249 
1250 static inline unsigned long group_faults_shared(struct numa_group *ng)
1251 {
1252 	unsigned long faults = 0;
1253 	int node;
1254 
1255 	for_each_online_node(node) {
1256 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1257 	}
1258 
1259 	return faults;
1260 }
1261 
1262 /*
1263  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1264  * considered part of a numa group's pseudo-interleaving set. Migrations
1265  * between these nodes are slowed down, to allow things to settle down.
1266  */
1267 #define ACTIVE_NODE_FRACTION 3
1268 
1269 static bool numa_is_active_node(int nid, struct numa_group *ng)
1270 {
1271 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1272 }
1273 
1274 /* Handle placement on systems where not all nodes are directly connected. */
1275 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1276 					int maxdist, bool task)
1277 {
1278 	unsigned long score = 0;
1279 	int node;
1280 
1281 	/*
1282 	 * All nodes are directly connected, and the same distance
1283 	 * from each other. No need for fancy placement algorithms.
1284 	 */
1285 	if (sched_numa_topology_type == NUMA_DIRECT)
1286 		return 0;
1287 
1288 	/*
1289 	 * This code is called for each node, introducing N^2 complexity,
1290 	 * which should be ok given the number of nodes rarely exceeds 8.
1291 	 */
1292 	for_each_online_node(node) {
1293 		unsigned long faults;
1294 		int dist = node_distance(nid, node);
1295 
1296 		/*
1297 		 * The furthest away nodes in the system are not interesting
1298 		 * for placement; nid was already counted.
1299 		 */
1300 		if (dist == sched_max_numa_distance || node == nid)
1301 			continue;
1302 
1303 		/*
1304 		 * On systems with a backplane NUMA topology, compare groups
1305 		 * of nodes, and move tasks towards the group with the most
1306 		 * memory accesses. When comparing two nodes at distance
1307 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1308 		 * of each group. Skip other nodes.
1309 		 */
1310 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1311 					dist > maxdist)
1312 			continue;
1313 
1314 		/* Add up the faults from nearby nodes. */
1315 		if (task)
1316 			faults = task_faults(p, node);
1317 		else
1318 			faults = group_faults(p, node);
1319 
1320 		/*
1321 		 * On systems with a glueless mesh NUMA topology, there are
1322 		 * no fixed "groups of nodes". Instead, nodes that are not
1323 		 * directly connected bounce traffic through intermediate
1324 		 * nodes; a numa_group can occupy any set of nodes.
1325 		 * The further away a node is, the less the faults count.
1326 		 * This seems to result in good task placement.
1327 		 */
1328 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1329 			faults *= (sched_max_numa_distance - dist);
1330 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1331 		}
1332 
1333 		score += faults;
1334 	}
1335 
1336 	return score;
1337 }
1338 
1339 /*
1340  * These return the fraction of accesses done by a particular task, or
1341  * task group, on a particular numa node.  The group weight is given a
1342  * larger multiplier, in order to group tasks together that are almost
1343  * evenly spread out between numa nodes.
1344  */
1345 static inline unsigned long task_weight(struct task_struct *p, int nid,
1346 					int dist)
1347 {
1348 	unsigned long faults, total_faults;
1349 
1350 	if (!p->numa_faults)
1351 		return 0;
1352 
1353 	total_faults = p->total_numa_faults;
1354 
1355 	if (!total_faults)
1356 		return 0;
1357 
1358 	faults = task_faults(p, nid);
1359 	faults += score_nearby_nodes(p, nid, dist, true);
1360 
1361 	return 1000 * faults / total_faults;
1362 }
1363 
1364 static inline unsigned long group_weight(struct task_struct *p, int nid,
1365 					 int dist)
1366 {
1367 	unsigned long faults, total_faults;
1368 
1369 	if (!p->numa_group)
1370 		return 0;
1371 
1372 	total_faults = p->numa_group->total_faults;
1373 
1374 	if (!total_faults)
1375 		return 0;
1376 
1377 	faults = group_faults(p, nid);
1378 	faults += score_nearby_nodes(p, nid, dist, false);
1379 
1380 	return 1000 * faults / total_faults;
1381 }
1382 
1383 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1384 				int src_nid, int dst_cpu)
1385 {
1386 	struct numa_group *ng = p->numa_group;
1387 	int dst_nid = cpu_to_node(dst_cpu);
1388 	int last_cpupid, this_cpupid;
1389 
1390 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1391 
1392 	/*
1393 	 * Multi-stage node selection is used in conjunction with a periodic
1394 	 * migration fault to build a temporal task<->page relation. By using
1395 	 * a two-stage filter we remove short/unlikely relations.
1396 	 *
1397 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1398 	 * a task's usage of a particular page (n_p) per total usage of this
1399 	 * page (n_t) (in a given time-span) to a probability.
1400 	 *
1401 	 * Our periodic faults will sample this probability and getting the
1402 	 * same result twice in a row, given these samples are fully
1403 	 * independent, is then given by P(n)^2, provided our sample period
1404 	 * is sufficiently short compared to the usage pattern.
1405 	 *
1406 	 * This quadric squishes small probabilities, making it less likely we
1407 	 * act on an unlikely task<->page relation.
1408 	 */
1409 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1410 	if (!cpupid_pid_unset(last_cpupid) &&
1411 				cpupid_to_nid(last_cpupid) != dst_nid)
1412 		return false;
1413 
1414 	/* Always allow migrate on private faults */
1415 	if (cpupid_match_pid(p, last_cpupid))
1416 		return true;
1417 
1418 	/* A shared fault, but p->numa_group has not been set up yet. */
1419 	if (!ng)
1420 		return true;
1421 
1422 	/*
1423 	 * Destination node is much more heavily used than the source
1424 	 * node? Allow migration.
1425 	 */
1426 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1427 					ACTIVE_NODE_FRACTION)
1428 		return true;
1429 
1430 	/*
1431 	 * Distribute memory according to CPU & memory use on each node,
1432 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1433 	 *
1434 	 * faults_cpu(dst)   3   faults_cpu(src)
1435 	 * --------------- * - > ---------------
1436 	 * faults_mem(dst)   4   faults_mem(src)
1437 	 */
1438 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1439 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1440 }
1441 
1442 static unsigned long weighted_cpuload(struct rq *rq);
1443 static unsigned long source_load(int cpu, int type);
1444 static unsigned long target_load(int cpu, int type);
1445 static unsigned long capacity_of(int cpu);
1446 
1447 /* Cached statistics for all CPUs within a node */
1448 struct numa_stats {
1449 	unsigned long nr_running;
1450 	unsigned long load;
1451 
1452 	/* Total compute capacity of CPUs on a node */
1453 	unsigned long compute_capacity;
1454 
1455 	/* Approximate capacity in terms of runnable tasks on a node */
1456 	unsigned long task_capacity;
1457 	int has_free_capacity;
1458 };
1459 
1460 /*
1461  * XXX borrowed from update_sg_lb_stats
1462  */
1463 static void update_numa_stats(struct numa_stats *ns, int nid)
1464 {
1465 	int smt, cpu, cpus = 0;
1466 	unsigned long capacity;
1467 
1468 	memset(ns, 0, sizeof(*ns));
1469 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1470 		struct rq *rq = cpu_rq(cpu);
1471 
1472 		ns->nr_running += rq->nr_running;
1473 		ns->load += weighted_cpuload(rq);
1474 		ns->compute_capacity += capacity_of(cpu);
1475 
1476 		cpus++;
1477 	}
1478 
1479 	/*
1480 	 * If we raced with hotplug and there are no CPUs left in our mask
1481 	 * the @ns structure is NULL'ed and task_numa_compare() will
1482 	 * not find this node attractive.
1483 	 *
1484 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1485 	 * imbalance and bail there.
1486 	 */
1487 	if (!cpus)
1488 		return;
1489 
1490 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1491 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1492 	capacity = cpus / smt; /* cores */
1493 
1494 	ns->task_capacity = min_t(unsigned, capacity,
1495 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1496 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1497 }
1498 
1499 struct task_numa_env {
1500 	struct task_struct *p;
1501 
1502 	int src_cpu, src_nid;
1503 	int dst_cpu, dst_nid;
1504 
1505 	struct numa_stats src_stats, dst_stats;
1506 
1507 	int imbalance_pct;
1508 	int dist;
1509 
1510 	struct task_struct *best_task;
1511 	long best_imp;
1512 	int best_cpu;
1513 };
1514 
1515 static void task_numa_assign(struct task_numa_env *env,
1516 			     struct task_struct *p, long imp)
1517 {
1518 	if (env->best_task)
1519 		put_task_struct(env->best_task);
1520 	if (p)
1521 		get_task_struct(p);
1522 
1523 	env->best_task = p;
1524 	env->best_imp = imp;
1525 	env->best_cpu = env->dst_cpu;
1526 }
1527 
1528 static bool load_too_imbalanced(long src_load, long dst_load,
1529 				struct task_numa_env *env)
1530 {
1531 	long imb, old_imb;
1532 	long orig_src_load, orig_dst_load;
1533 	long src_capacity, dst_capacity;
1534 
1535 	/*
1536 	 * The load is corrected for the CPU capacity available on each node.
1537 	 *
1538 	 * src_load        dst_load
1539 	 * ------------ vs ---------
1540 	 * src_capacity    dst_capacity
1541 	 */
1542 	src_capacity = env->src_stats.compute_capacity;
1543 	dst_capacity = env->dst_stats.compute_capacity;
1544 
1545 	/* We care about the slope of the imbalance, not the direction. */
1546 	if (dst_load < src_load)
1547 		swap(dst_load, src_load);
1548 
1549 	/* Is the difference below the threshold? */
1550 	imb = dst_load * src_capacity * 100 -
1551 	      src_load * dst_capacity * env->imbalance_pct;
1552 	if (imb <= 0)
1553 		return false;
1554 
1555 	/*
1556 	 * The imbalance is above the allowed threshold.
1557 	 * Compare it with the old imbalance.
1558 	 */
1559 	orig_src_load = env->src_stats.load;
1560 	orig_dst_load = env->dst_stats.load;
1561 
1562 	if (orig_dst_load < orig_src_load)
1563 		swap(orig_dst_load, orig_src_load);
1564 
1565 	old_imb = orig_dst_load * src_capacity * 100 -
1566 		  orig_src_load * dst_capacity * env->imbalance_pct;
1567 
1568 	/* Would this change make things worse? */
1569 	return (imb > old_imb);
1570 }
1571 
1572 /*
1573  * This checks if the overall compute and NUMA accesses of the system would
1574  * be improved if the source tasks was migrated to the target dst_cpu taking
1575  * into account that it might be best if task running on the dst_cpu should
1576  * be exchanged with the source task
1577  */
1578 static void task_numa_compare(struct task_numa_env *env,
1579 			      long taskimp, long groupimp)
1580 {
1581 	struct rq *src_rq = cpu_rq(env->src_cpu);
1582 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1583 	struct task_struct *cur;
1584 	long src_load, dst_load;
1585 	long load;
1586 	long imp = env->p->numa_group ? groupimp : taskimp;
1587 	long moveimp = imp;
1588 	int dist = env->dist;
1589 
1590 	rcu_read_lock();
1591 	cur = task_rcu_dereference(&dst_rq->curr);
1592 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1593 		cur = NULL;
1594 
1595 	/*
1596 	 * Because we have preemption enabled we can get migrated around and
1597 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1598 	 */
1599 	if (cur == env->p)
1600 		goto unlock;
1601 
1602 	/*
1603 	 * "imp" is the fault differential for the source task between the
1604 	 * source and destination node. Calculate the total differential for
1605 	 * the source task and potential destination task. The more negative
1606 	 * the value is, the more rmeote accesses that would be expected to
1607 	 * be incurred if the tasks were swapped.
1608 	 */
1609 	if (cur) {
1610 		/* Skip this swap candidate if cannot move to the source cpu */
1611 		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1612 			goto unlock;
1613 
1614 		/*
1615 		 * If dst and source tasks are in the same NUMA group, or not
1616 		 * in any group then look only at task weights.
1617 		 */
1618 		if (cur->numa_group == env->p->numa_group) {
1619 			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1620 			      task_weight(cur, env->dst_nid, dist);
1621 			/*
1622 			 * Add some hysteresis to prevent swapping the
1623 			 * tasks within a group over tiny differences.
1624 			 */
1625 			if (cur->numa_group)
1626 				imp -= imp/16;
1627 		} else {
1628 			/*
1629 			 * Compare the group weights. If a task is all by
1630 			 * itself (not part of a group), use the task weight
1631 			 * instead.
1632 			 */
1633 			if (cur->numa_group)
1634 				imp += group_weight(cur, env->src_nid, dist) -
1635 				       group_weight(cur, env->dst_nid, dist);
1636 			else
1637 				imp += task_weight(cur, env->src_nid, dist) -
1638 				       task_weight(cur, env->dst_nid, dist);
1639 		}
1640 	}
1641 
1642 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1643 		goto unlock;
1644 
1645 	if (!cur) {
1646 		/* Is there capacity at our destination? */
1647 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1648 		    !env->dst_stats.has_free_capacity)
1649 			goto unlock;
1650 
1651 		goto balance;
1652 	}
1653 
1654 	/* Balance doesn't matter much if we're running a task per cpu */
1655 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1656 			dst_rq->nr_running == 1)
1657 		goto assign;
1658 
1659 	/*
1660 	 * In the overloaded case, try and keep the load balanced.
1661 	 */
1662 balance:
1663 	load = task_h_load(env->p);
1664 	dst_load = env->dst_stats.load + load;
1665 	src_load = env->src_stats.load - load;
1666 
1667 	if (moveimp > imp && moveimp > env->best_imp) {
1668 		/*
1669 		 * If the improvement from just moving env->p direction is
1670 		 * better than swapping tasks around, check if a move is
1671 		 * possible. Store a slightly smaller score than moveimp,
1672 		 * so an actually idle CPU will win.
1673 		 */
1674 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1675 			imp = moveimp - 1;
1676 			cur = NULL;
1677 			goto assign;
1678 		}
1679 	}
1680 
1681 	if (imp <= env->best_imp)
1682 		goto unlock;
1683 
1684 	if (cur) {
1685 		load = task_h_load(cur);
1686 		dst_load -= load;
1687 		src_load += load;
1688 	}
1689 
1690 	if (load_too_imbalanced(src_load, dst_load, env))
1691 		goto unlock;
1692 
1693 	/*
1694 	 * One idle CPU per node is evaluated for a task numa move.
1695 	 * Call select_idle_sibling to maybe find a better one.
1696 	 */
1697 	if (!cur) {
1698 		/*
1699 		 * select_idle_siblings() uses an per-cpu cpumask that
1700 		 * can be used from IRQ context.
1701 		 */
1702 		local_irq_disable();
1703 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1704 						   env->dst_cpu);
1705 		local_irq_enable();
1706 	}
1707 
1708 assign:
1709 	task_numa_assign(env, cur, imp);
1710 unlock:
1711 	rcu_read_unlock();
1712 }
1713 
1714 static void task_numa_find_cpu(struct task_numa_env *env,
1715 				long taskimp, long groupimp)
1716 {
1717 	int cpu;
1718 
1719 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1720 		/* Skip this CPU if the source task cannot migrate */
1721 		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1722 			continue;
1723 
1724 		env->dst_cpu = cpu;
1725 		task_numa_compare(env, taskimp, groupimp);
1726 	}
1727 }
1728 
1729 /* Only move tasks to a NUMA node less busy than the current node. */
1730 static bool numa_has_capacity(struct task_numa_env *env)
1731 {
1732 	struct numa_stats *src = &env->src_stats;
1733 	struct numa_stats *dst = &env->dst_stats;
1734 
1735 	if (src->has_free_capacity && !dst->has_free_capacity)
1736 		return false;
1737 
1738 	/*
1739 	 * Only consider a task move if the source has a higher load
1740 	 * than the destination, corrected for CPU capacity on each node.
1741 	 *
1742 	 *      src->load                dst->load
1743 	 * --------------------- vs ---------------------
1744 	 * src->compute_capacity    dst->compute_capacity
1745 	 */
1746 	if (src->load * dst->compute_capacity * env->imbalance_pct >
1747 
1748 	    dst->load * src->compute_capacity * 100)
1749 		return true;
1750 
1751 	return false;
1752 }
1753 
1754 static int task_numa_migrate(struct task_struct *p)
1755 {
1756 	struct task_numa_env env = {
1757 		.p = p,
1758 
1759 		.src_cpu = task_cpu(p),
1760 		.src_nid = task_node(p),
1761 
1762 		.imbalance_pct = 112,
1763 
1764 		.best_task = NULL,
1765 		.best_imp = 0,
1766 		.best_cpu = -1,
1767 	};
1768 	struct sched_domain *sd;
1769 	unsigned long taskweight, groupweight;
1770 	int nid, ret, dist;
1771 	long taskimp, groupimp;
1772 
1773 	/*
1774 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1775 	 * imbalance and would be the first to start moving tasks about.
1776 	 *
1777 	 * And we want to avoid any moving of tasks about, as that would create
1778 	 * random movement of tasks -- counter the numa conditions we're trying
1779 	 * to satisfy here.
1780 	 */
1781 	rcu_read_lock();
1782 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1783 	if (sd)
1784 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1785 	rcu_read_unlock();
1786 
1787 	/*
1788 	 * Cpusets can break the scheduler domain tree into smaller
1789 	 * balance domains, some of which do not cross NUMA boundaries.
1790 	 * Tasks that are "trapped" in such domains cannot be migrated
1791 	 * elsewhere, so there is no point in (re)trying.
1792 	 */
1793 	if (unlikely(!sd)) {
1794 		p->numa_preferred_nid = task_node(p);
1795 		return -EINVAL;
1796 	}
1797 
1798 	env.dst_nid = p->numa_preferred_nid;
1799 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1800 	taskweight = task_weight(p, env.src_nid, dist);
1801 	groupweight = group_weight(p, env.src_nid, dist);
1802 	update_numa_stats(&env.src_stats, env.src_nid);
1803 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1804 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1805 	update_numa_stats(&env.dst_stats, env.dst_nid);
1806 
1807 	/* Try to find a spot on the preferred nid. */
1808 	if (numa_has_capacity(&env))
1809 		task_numa_find_cpu(&env, taskimp, groupimp);
1810 
1811 	/*
1812 	 * Look at other nodes in these cases:
1813 	 * - there is no space available on the preferred_nid
1814 	 * - the task is part of a numa_group that is interleaved across
1815 	 *   multiple NUMA nodes; in order to better consolidate the group,
1816 	 *   we need to check other locations.
1817 	 */
1818 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1819 		for_each_online_node(nid) {
1820 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1821 				continue;
1822 
1823 			dist = node_distance(env.src_nid, env.dst_nid);
1824 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1825 						dist != env.dist) {
1826 				taskweight = task_weight(p, env.src_nid, dist);
1827 				groupweight = group_weight(p, env.src_nid, dist);
1828 			}
1829 
1830 			/* Only consider nodes where both task and groups benefit */
1831 			taskimp = task_weight(p, nid, dist) - taskweight;
1832 			groupimp = group_weight(p, nid, dist) - groupweight;
1833 			if (taskimp < 0 && groupimp < 0)
1834 				continue;
1835 
1836 			env.dist = dist;
1837 			env.dst_nid = nid;
1838 			update_numa_stats(&env.dst_stats, env.dst_nid);
1839 			if (numa_has_capacity(&env))
1840 				task_numa_find_cpu(&env, taskimp, groupimp);
1841 		}
1842 	}
1843 
1844 	/*
1845 	 * If the task is part of a workload that spans multiple NUMA nodes,
1846 	 * and is migrating into one of the workload's active nodes, remember
1847 	 * this node as the task's preferred numa node, so the workload can
1848 	 * settle down.
1849 	 * A task that migrated to a second choice node will be better off
1850 	 * trying for a better one later. Do not set the preferred node here.
1851 	 */
1852 	if (p->numa_group) {
1853 		struct numa_group *ng = p->numa_group;
1854 
1855 		if (env.best_cpu == -1)
1856 			nid = env.src_nid;
1857 		else
1858 			nid = env.dst_nid;
1859 
1860 		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1861 			sched_setnuma(p, env.dst_nid);
1862 	}
1863 
1864 	/* No better CPU than the current one was found. */
1865 	if (env.best_cpu == -1)
1866 		return -EAGAIN;
1867 
1868 	/*
1869 	 * Reset the scan period if the task is being rescheduled on an
1870 	 * alternative node to recheck if the tasks is now properly placed.
1871 	 */
1872 	p->numa_scan_period = task_scan_start(p);
1873 
1874 	if (env.best_task == NULL) {
1875 		ret = migrate_task_to(p, env.best_cpu);
1876 		if (ret != 0)
1877 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1878 		return ret;
1879 	}
1880 
1881 	ret = migrate_swap(p, env.best_task);
1882 	if (ret != 0)
1883 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1884 	put_task_struct(env.best_task);
1885 	return ret;
1886 }
1887 
1888 /* Attempt to migrate a task to a CPU on the preferred node. */
1889 static void numa_migrate_preferred(struct task_struct *p)
1890 {
1891 	unsigned long interval = HZ;
1892 
1893 	/* This task has no NUMA fault statistics yet */
1894 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1895 		return;
1896 
1897 	/* Periodically retry migrating the task to the preferred node */
1898 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1899 	p->numa_migrate_retry = jiffies + interval;
1900 
1901 	/* Success if task is already running on preferred CPU */
1902 	if (task_node(p) == p->numa_preferred_nid)
1903 		return;
1904 
1905 	/* Otherwise, try migrate to a CPU on the preferred node */
1906 	task_numa_migrate(p);
1907 }
1908 
1909 /*
1910  * Find out how many nodes on the workload is actively running on. Do this by
1911  * tracking the nodes from which NUMA hinting faults are triggered. This can
1912  * be different from the set of nodes where the workload's memory is currently
1913  * located.
1914  */
1915 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1916 {
1917 	unsigned long faults, max_faults = 0;
1918 	int nid, active_nodes = 0;
1919 
1920 	for_each_online_node(nid) {
1921 		faults = group_faults_cpu(numa_group, nid);
1922 		if (faults > max_faults)
1923 			max_faults = faults;
1924 	}
1925 
1926 	for_each_online_node(nid) {
1927 		faults = group_faults_cpu(numa_group, nid);
1928 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1929 			active_nodes++;
1930 	}
1931 
1932 	numa_group->max_faults_cpu = max_faults;
1933 	numa_group->active_nodes = active_nodes;
1934 }
1935 
1936 /*
1937  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1938  * increments. The more local the fault statistics are, the higher the scan
1939  * period will be for the next scan window. If local/(local+remote) ratio is
1940  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1941  * the scan period will decrease. Aim for 70% local accesses.
1942  */
1943 #define NUMA_PERIOD_SLOTS 10
1944 #define NUMA_PERIOD_THRESHOLD 7
1945 
1946 /*
1947  * Increase the scan period (slow down scanning) if the majority of
1948  * our memory is already on our local node, or if the majority of
1949  * the page accesses are shared with other processes.
1950  * Otherwise, decrease the scan period.
1951  */
1952 static void update_task_scan_period(struct task_struct *p,
1953 			unsigned long shared, unsigned long private)
1954 {
1955 	unsigned int period_slot;
1956 	int lr_ratio, ps_ratio;
1957 	int diff;
1958 
1959 	unsigned long remote = p->numa_faults_locality[0];
1960 	unsigned long local = p->numa_faults_locality[1];
1961 
1962 	/*
1963 	 * If there were no record hinting faults then either the task is
1964 	 * completely idle or all activity is areas that are not of interest
1965 	 * to automatic numa balancing. Related to that, if there were failed
1966 	 * migration then it implies we are migrating too quickly or the local
1967 	 * node is overloaded. In either case, scan slower
1968 	 */
1969 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1970 		p->numa_scan_period = min(p->numa_scan_period_max,
1971 			p->numa_scan_period << 1);
1972 
1973 		p->mm->numa_next_scan = jiffies +
1974 			msecs_to_jiffies(p->numa_scan_period);
1975 
1976 		return;
1977 	}
1978 
1979 	/*
1980 	 * Prepare to scale scan period relative to the current period.
1981 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1982 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1983 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1984 	 */
1985 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1986 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1987 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1988 
1989 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1990 		/*
1991 		 * Most memory accesses are local. There is no need to
1992 		 * do fast NUMA scanning, since memory is already local.
1993 		 */
1994 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1995 		if (!slot)
1996 			slot = 1;
1997 		diff = slot * period_slot;
1998 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1999 		/*
2000 		 * Most memory accesses are shared with other tasks.
2001 		 * There is no point in continuing fast NUMA scanning,
2002 		 * since other tasks may just move the memory elsewhere.
2003 		 */
2004 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2005 		if (!slot)
2006 			slot = 1;
2007 		diff = slot * period_slot;
2008 	} else {
2009 		/*
2010 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2011 		 * yet they are not on the local NUMA node. Speed up
2012 		 * NUMA scanning to get the memory moved over.
2013 		 */
2014 		int ratio = max(lr_ratio, ps_ratio);
2015 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2016 	}
2017 
2018 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2019 			task_scan_min(p), task_scan_max(p));
2020 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2021 }
2022 
2023 /*
2024  * Get the fraction of time the task has been running since the last
2025  * NUMA placement cycle. The scheduler keeps similar statistics, but
2026  * decays those on a 32ms period, which is orders of magnitude off
2027  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2028  * stats only if the task is so new there are no NUMA statistics yet.
2029  */
2030 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2031 {
2032 	u64 runtime, delta, now;
2033 	/* Use the start of this time slice to avoid calculations. */
2034 	now = p->se.exec_start;
2035 	runtime = p->se.sum_exec_runtime;
2036 
2037 	if (p->last_task_numa_placement) {
2038 		delta = runtime - p->last_sum_exec_runtime;
2039 		*period = now - p->last_task_numa_placement;
2040 	} else {
2041 		delta = p->se.avg.load_sum / p->se.load.weight;
2042 		*period = LOAD_AVG_MAX;
2043 	}
2044 
2045 	p->last_sum_exec_runtime = runtime;
2046 	p->last_task_numa_placement = now;
2047 
2048 	return delta;
2049 }
2050 
2051 /*
2052  * Determine the preferred nid for a task in a numa_group. This needs to
2053  * be done in a way that produces consistent results with group_weight,
2054  * otherwise workloads might not converge.
2055  */
2056 static int preferred_group_nid(struct task_struct *p, int nid)
2057 {
2058 	nodemask_t nodes;
2059 	int dist;
2060 
2061 	/* Direct connections between all NUMA nodes. */
2062 	if (sched_numa_topology_type == NUMA_DIRECT)
2063 		return nid;
2064 
2065 	/*
2066 	 * On a system with glueless mesh NUMA topology, group_weight
2067 	 * scores nodes according to the number of NUMA hinting faults on
2068 	 * both the node itself, and on nearby nodes.
2069 	 */
2070 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2071 		unsigned long score, max_score = 0;
2072 		int node, max_node = nid;
2073 
2074 		dist = sched_max_numa_distance;
2075 
2076 		for_each_online_node(node) {
2077 			score = group_weight(p, node, dist);
2078 			if (score > max_score) {
2079 				max_score = score;
2080 				max_node = node;
2081 			}
2082 		}
2083 		return max_node;
2084 	}
2085 
2086 	/*
2087 	 * Finding the preferred nid in a system with NUMA backplane
2088 	 * interconnect topology is more involved. The goal is to locate
2089 	 * tasks from numa_groups near each other in the system, and
2090 	 * untangle workloads from different sides of the system. This requires
2091 	 * searching down the hierarchy of node groups, recursively searching
2092 	 * inside the highest scoring group of nodes. The nodemask tricks
2093 	 * keep the complexity of the search down.
2094 	 */
2095 	nodes = node_online_map;
2096 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2097 		unsigned long max_faults = 0;
2098 		nodemask_t max_group = NODE_MASK_NONE;
2099 		int a, b;
2100 
2101 		/* Are there nodes at this distance from each other? */
2102 		if (!find_numa_distance(dist))
2103 			continue;
2104 
2105 		for_each_node_mask(a, nodes) {
2106 			unsigned long faults = 0;
2107 			nodemask_t this_group;
2108 			nodes_clear(this_group);
2109 
2110 			/* Sum group's NUMA faults; includes a==b case. */
2111 			for_each_node_mask(b, nodes) {
2112 				if (node_distance(a, b) < dist) {
2113 					faults += group_faults(p, b);
2114 					node_set(b, this_group);
2115 					node_clear(b, nodes);
2116 				}
2117 			}
2118 
2119 			/* Remember the top group. */
2120 			if (faults > max_faults) {
2121 				max_faults = faults;
2122 				max_group = this_group;
2123 				/*
2124 				 * subtle: at the smallest distance there is
2125 				 * just one node left in each "group", the
2126 				 * winner is the preferred nid.
2127 				 */
2128 				nid = a;
2129 			}
2130 		}
2131 		/* Next round, evaluate the nodes within max_group. */
2132 		if (!max_faults)
2133 			break;
2134 		nodes = max_group;
2135 	}
2136 	return nid;
2137 }
2138 
2139 static void task_numa_placement(struct task_struct *p)
2140 {
2141 	int seq, nid, max_nid = -1, max_group_nid = -1;
2142 	unsigned long max_faults = 0, max_group_faults = 0;
2143 	unsigned long fault_types[2] = { 0, 0 };
2144 	unsigned long total_faults;
2145 	u64 runtime, period;
2146 	spinlock_t *group_lock = NULL;
2147 
2148 	/*
2149 	 * The p->mm->numa_scan_seq field gets updated without
2150 	 * exclusive access. Use READ_ONCE() here to ensure
2151 	 * that the field is read in a single access:
2152 	 */
2153 	seq = READ_ONCE(p->mm->numa_scan_seq);
2154 	if (p->numa_scan_seq == seq)
2155 		return;
2156 	p->numa_scan_seq = seq;
2157 	p->numa_scan_period_max = task_scan_max(p);
2158 
2159 	total_faults = p->numa_faults_locality[0] +
2160 		       p->numa_faults_locality[1];
2161 	runtime = numa_get_avg_runtime(p, &period);
2162 
2163 	/* If the task is part of a group prevent parallel updates to group stats */
2164 	if (p->numa_group) {
2165 		group_lock = &p->numa_group->lock;
2166 		spin_lock_irq(group_lock);
2167 	}
2168 
2169 	/* Find the node with the highest number of faults */
2170 	for_each_online_node(nid) {
2171 		/* Keep track of the offsets in numa_faults array */
2172 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2173 		unsigned long faults = 0, group_faults = 0;
2174 		int priv;
2175 
2176 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2177 			long diff, f_diff, f_weight;
2178 
2179 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2180 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2181 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2182 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2183 
2184 			/* Decay existing window, copy faults since last scan */
2185 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2186 			fault_types[priv] += p->numa_faults[membuf_idx];
2187 			p->numa_faults[membuf_idx] = 0;
2188 
2189 			/*
2190 			 * Normalize the faults_from, so all tasks in a group
2191 			 * count according to CPU use, instead of by the raw
2192 			 * number of faults. Tasks with little runtime have
2193 			 * little over-all impact on throughput, and thus their
2194 			 * faults are less important.
2195 			 */
2196 			f_weight = div64_u64(runtime << 16, period + 1);
2197 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2198 				   (total_faults + 1);
2199 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2200 			p->numa_faults[cpubuf_idx] = 0;
2201 
2202 			p->numa_faults[mem_idx] += diff;
2203 			p->numa_faults[cpu_idx] += f_diff;
2204 			faults += p->numa_faults[mem_idx];
2205 			p->total_numa_faults += diff;
2206 			if (p->numa_group) {
2207 				/*
2208 				 * safe because we can only change our own group
2209 				 *
2210 				 * mem_idx represents the offset for a given
2211 				 * nid and priv in a specific region because it
2212 				 * is at the beginning of the numa_faults array.
2213 				 */
2214 				p->numa_group->faults[mem_idx] += diff;
2215 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2216 				p->numa_group->total_faults += diff;
2217 				group_faults += p->numa_group->faults[mem_idx];
2218 			}
2219 		}
2220 
2221 		if (faults > max_faults) {
2222 			max_faults = faults;
2223 			max_nid = nid;
2224 		}
2225 
2226 		if (group_faults > max_group_faults) {
2227 			max_group_faults = group_faults;
2228 			max_group_nid = nid;
2229 		}
2230 	}
2231 
2232 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2233 
2234 	if (p->numa_group) {
2235 		numa_group_count_active_nodes(p->numa_group);
2236 		spin_unlock_irq(group_lock);
2237 		max_nid = preferred_group_nid(p, max_group_nid);
2238 	}
2239 
2240 	if (max_faults) {
2241 		/* Set the new preferred node */
2242 		if (max_nid != p->numa_preferred_nid)
2243 			sched_setnuma(p, max_nid);
2244 
2245 		if (task_node(p) != p->numa_preferred_nid)
2246 			numa_migrate_preferred(p);
2247 	}
2248 }
2249 
2250 static inline int get_numa_group(struct numa_group *grp)
2251 {
2252 	return atomic_inc_not_zero(&grp->refcount);
2253 }
2254 
2255 static inline void put_numa_group(struct numa_group *grp)
2256 {
2257 	if (atomic_dec_and_test(&grp->refcount))
2258 		kfree_rcu(grp, rcu);
2259 }
2260 
2261 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2262 			int *priv)
2263 {
2264 	struct numa_group *grp, *my_grp;
2265 	struct task_struct *tsk;
2266 	bool join = false;
2267 	int cpu = cpupid_to_cpu(cpupid);
2268 	int i;
2269 
2270 	if (unlikely(!p->numa_group)) {
2271 		unsigned int size = sizeof(struct numa_group) +
2272 				    4*nr_node_ids*sizeof(unsigned long);
2273 
2274 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2275 		if (!grp)
2276 			return;
2277 
2278 		atomic_set(&grp->refcount, 1);
2279 		grp->active_nodes = 1;
2280 		grp->max_faults_cpu = 0;
2281 		spin_lock_init(&grp->lock);
2282 		grp->gid = p->pid;
2283 		/* Second half of the array tracks nids where faults happen */
2284 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2285 						nr_node_ids;
2286 
2287 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2288 			grp->faults[i] = p->numa_faults[i];
2289 
2290 		grp->total_faults = p->total_numa_faults;
2291 
2292 		grp->nr_tasks++;
2293 		rcu_assign_pointer(p->numa_group, grp);
2294 	}
2295 
2296 	rcu_read_lock();
2297 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2298 
2299 	if (!cpupid_match_pid(tsk, cpupid))
2300 		goto no_join;
2301 
2302 	grp = rcu_dereference(tsk->numa_group);
2303 	if (!grp)
2304 		goto no_join;
2305 
2306 	my_grp = p->numa_group;
2307 	if (grp == my_grp)
2308 		goto no_join;
2309 
2310 	/*
2311 	 * Only join the other group if its bigger; if we're the bigger group,
2312 	 * the other task will join us.
2313 	 */
2314 	if (my_grp->nr_tasks > grp->nr_tasks)
2315 		goto no_join;
2316 
2317 	/*
2318 	 * Tie-break on the grp address.
2319 	 */
2320 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2321 		goto no_join;
2322 
2323 	/* Always join threads in the same process. */
2324 	if (tsk->mm == current->mm)
2325 		join = true;
2326 
2327 	/* Simple filter to avoid false positives due to PID collisions */
2328 	if (flags & TNF_SHARED)
2329 		join = true;
2330 
2331 	/* Update priv based on whether false sharing was detected */
2332 	*priv = !join;
2333 
2334 	if (join && !get_numa_group(grp))
2335 		goto no_join;
2336 
2337 	rcu_read_unlock();
2338 
2339 	if (!join)
2340 		return;
2341 
2342 	BUG_ON(irqs_disabled());
2343 	double_lock_irq(&my_grp->lock, &grp->lock);
2344 
2345 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2346 		my_grp->faults[i] -= p->numa_faults[i];
2347 		grp->faults[i] += p->numa_faults[i];
2348 	}
2349 	my_grp->total_faults -= p->total_numa_faults;
2350 	grp->total_faults += p->total_numa_faults;
2351 
2352 	my_grp->nr_tasks--;
2353 	grp->nr_tasks++;
2354 
2355 	spin_unlock(&my_grp->lock);
2356 	spin_unlock_irq(&grp->lock);
2357 
2358 	rcu_assign_pointer(p->numa_group, grp);
2359 
2360 	put_numa_group(my_grp);
2361 	return;
2362 
2363 no_join:
2364 	rcu_read_unlock();
2365 	return;
2366 }
2367 
2368 void task_numa_free(struct task_struct *p)
2369 {
2370 	struct numa_group *grp = p->numa_group;
2371 	void *numa_faults = p->numa_faults;
2372 	unsigned long flags;
2373 	int i;
2374 
2375 	if (grp) {
2376 		spin_lock_irqsave(&grp->lock, flags);
2377 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2378 			grp->faults[i] -= p->numa_faults[i];
2379 		grp->total_faults -= p->total_numa_faults;
2380 
2381 		grp->nr_tasks--;
2382 		spin_unlock_irqrestore(&grp->lock, flags);
2383 		RCU_INIT_POINTER(p->numa_group, NULL);
2384 		put_numa_group(grp);
2385 	}
2386 
2387 	p->numa_faults = NULL;
2388 	kfree(numa_faults);
2389 }
2390 
2391 /*
2392  * Got a PROT_NONE fault for a page on @node.
2393  */
2394 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2395 {
2396 	struct task_struct *p = current;
2397 	bool migrated = flags & TNF_MIGRATED;
2398 	int cpu_node = task_node(current);
2399 	int local = !!(flags & TNF_FAULT_LOCAL);
2400 	struct numa_group *ng;
2401 	int priv;
2402 
2403 	if (!static_branch_likely(&sched_numa_balancing))
2404 		return;
2405 
2406 	/* for example, ksmd faulting in a user's mm */
2407 	if (!p->mm)
2408 		return;
2409 
2410 	/* Allocate buffer to track faults on a per-node basis */
2411 	if (unlikely(!p->numa_faults)) {
2412 		int size = sizeof(*p->numa_faults) *
2413 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2414 
2415 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2416 		if (!p->numa_faults)
2417 			return;
2418 
2419 		p->total_numa_faults = 0;
2420 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2421 	}
2422 
2423 	/*
2424 	 * First accesses are treated as private, otherwise consider accesses
2425 	 * to be private if the accessing pid has not changed
2426 	 */
2427 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2428 		priv = 1;
2429 	} else {
2430 		priv = cpupid_match_pid(p, last_cpupid);
2431 		if (!priv && !(flags & TNF_NO_GROUP))
2432 			task_numa_group(p, last_cpupid, flags, &priv);
2433 	}
2434 
2435 	/*
2436 	 * If a workload spans multiple NUMA nodes, a shared fault that
2437 	 * occurs wholly within the set of nodes that the workload is
2438 	 * actively using should be counted as local. This allows the
2439 	 * scan rate to slow down when a workload has settled down.
2440 	 */
2441 	ng = p->numa_group;
2442 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2443 				numa_is_active_node(cpu_node, ng) &&
2444 				numa_is_active_node(mem_node, ng))
2445 		local = 1;
2446 
2447 	task_numa_placement(p);
2448 
2449 	/*
2450 	 * Retry task to preferred node migration periodically, in case it
2451 	 * case it previously failed, or the scheduler moved us.
2452 	 */
2453 	if (time_after(jiffies, p->numa_migrate_retry))
2454 		numa_migrate_preferred(p);
2455 
2456 	if (migrated)
2457 		p->numa_pages_migrated += pages;
2458 	if (flags & TNF_MIGRATE_FAIL)
2459 		p->numa_faults_locality[2] += pages;
2460 
2461 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2462 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2463 	p->numa_faults_locality[local] += pages;
2464 }
2465 
2466 static void reset_ptenuma_scan(struct task_struct *p)
2467 {
2468 	/*
2469 	 * We only did a read acquisition of the mmap sem, so
2470 	 * p->mm->numa_scan_seq is written to without exclusive access
2471 	 * and the update is not guaranteed to be atomic. That's not
2472 	 * much of an issue though, since this is just used for
2473 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2474 	 * expensive, to avoid any form of compiler optimizations:
2475 	 */
2476 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2477 	p->mm->numa_scan_offset = 0;
2478 }
2479 
2480 /*
2481  * The expensive part of numa migration is done from task_work context.
2482  * Triggered from task_tick_numa().
2483  */
2484 void task_numa_work(struct callback_head *work)
2485 {
2486 	unsigned long migrate, next_scan, now = jiffies;
2487 	struct task_struct *p = current;
2488 	struct mm_struct *mm = p->mm;
2489 	u64 runtime = p->se.sum_exec_runtime;
2490 	struct vm_area_struct *vma;
2491 	unsigned long start, end;
2492 	unsigned long nr_pte_updates = 0;
2493 	long pages, virtpages;
2494 
2495 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2496 
2497 	work->next = work; /* protect against double add */
2498 	/*
2499 	 * Who cares about NUMA placement when they're dying.
2500 	 *
2501 	 * NOTE: make sure not to dereference p->mm before this check,
2502 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2503 	 * without p->mm even though we still had it when we enqueued this
2504 	 * work.
2505 	 */
2506 	if (p->flags & PF_EXITING)
2507 		return;
2508 
2509 	if (!mm->numa_next_scan) {
2510 		mm->numa_next_scan = now +
2511 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2512 	}
2513 
2514 	/*
2515 	 * Enforce maximal scan/migration frequency..
2516 	 */
2517 	migrate = mm->numa_next_scan;
2518 	if (time_before(now, migrate))
2519 		return;
2520 
2521 	if (p->numa_scan_period == 0) {
2522 		p->numa_scan_period_max = task_scan_max(p);
2523 		p->numa_scan_period = task_scan_start(p);
2524 	}
2525 
2526 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2527 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2528 		return;
2529 
2530 	/*
2531 	 * Delay this task enough that another task of this mm will likely win
2532 	 * the next time around.
2533 	 */
2534 	p->node_stamp += 2 * TICK_NSEC;
2535 
2536 	start = mm->numa_scan_offset;
2537 	pages = sysctl_numa_balancing_scan_size;
2538 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2539 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2540 	if (!pages)
2541 		return;
2542 
2543 
2544 	if (!down_read_trylock(&mm->mmap_sem))
2545 		return;
2546 	vma = find_vma(mm, start);
2547 	if (!vma) {
2548 		reset_ptenuma_scan(p);
2549 		start = 0;
2550 		vma = mm->mmap;
2551 	}
2552 	for (; vma; vma = vma->vm_next) {
2553 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2554 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2555 			continue;
2556 		}
2557 
2558 		/*
2559 		 * Shared library pages mapped by multiple processes are not
2560 		 * migrated as it is expected they are cache replicated. Avoid
2561 		 * hinting faults in read-only file-backed mappings or the vdso
2562 		 * as migrating the pages will be of marginal benefit.
2563 		 */
2564 		if (!vma->vm_mm ||
2565 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2566 			continue;
2567 
2568 		/*
2569 		 * Skip inaccessible VMAs to avoid any confusion between
2570 		 * PROT_NONE and NUMA hinting ptes
2571 		 */
2572 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2573 			continue;
2574 
2575 		do {
2576 			start = max(start, vma->vm_start);
2577 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2578 			end = min(end, vma->vm_end);
2579 			nr_pte_updates = change_prot_numa(vma, start, end);
2580 
2581 			/*
2582 			 * Try to scan sysctl_numa_balancing_size worth of
2583 			 * hpages that have at least one present PTE that
2584 			 * is not already pte-numa. If the VMA contains
2585 			 * areas that are unused or already full of prot_numa
2586 			 * PTEs, scan up to virtpages, to skip through those
2587 			 * areas faster.
2588 			 */
2589 			if (nr_pte_updates)
2590 				pages -= (end - start) >> PAGE_SHIFT;
2591 			virtpages -= (end - start) >> PAGE_SHIFT;
2592 
2593 			start = end;
2594 			if (pages <= 0 || virtpages <= 0)
2595 				goto out;
2596 
2597 			cond_resched();
2598 		} while (end != vma->vm_end);
2599 	}
2600 
2601 out:
2602 	/*
2603 	 * It is possible to reach the end of the VMA list but the last few
2604 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2605 	 * would find the !migratable VMA on the next scan but not reset the
2606 	 * scanner to the start so check it now.
2607 	 */
2608 	if (vma)
2609 		mm->numa_scan_offset = start;
2610 	else
2611 		reset_ptenuma_scan(p);
2612 	up_read(&mm->mmap_sem);
2613 
2614 	/*
2615 	 * Make sure tasks use at least 32x as much time to run other code
2616 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2617 	 * Usually update_task_scan_period slows down scanning enough; on an
2618 	 * overloaded system we need to limit overhead on a per task basis.
2619 	 */
2620 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2621 		u64 diff = p->se.sum_exec_runtime - runtime;
2622 		p->node_stamp += 32 * diff;
2623 	}
2624 }
2625 
2626 /*
2627  * Drive the periodic memory faults..
2628  */
2629 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2630 {
2631 	struct callback_head *work = &curr->numa_work;
2632 	u64 period, now;
2633 
2634 	/*
2635 	 * We don't care about NUMA placement if we don't have memory.
2636 	 */
2637 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2638 		return;
2639 
2640 	/*
2641 	 * Using runtime rather than walltime has the dual advantage that
2642 	 * we (mostly) drive the selection from busy threads and that the
2643 	 * task needs to have done some actual work before we bother with
2644 	 * NUMA placement.
2645 	 */
2646 	now = curr->se.sum_exec_runtime;
2647 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2648 
2649 	if (now > curr->node_stamp + period) {
2650 		if (!curr->node_stamp)
2651 			curr->numa_scan_period = task_scan_start(curr);
2652 		curr->node_stamp += period;
2653 
2654 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2655 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2656 			task_work_add(curr, work, true);
2657 		}
2658 	}
2659 }
2660 
2661 #else
2662 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2663 {
2664 }
2665 
2666 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2667 {
2668 }
2669 
2670 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2671 {
2672 }
2673 
2674 #endif /* CONFIG_NUMA_BALANCING */
2675 
2676 static void
2677 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2678 {
2679 	update_load_add(&cfs_rq->load, se->load.weight);
2680 	if (!parent_entity(se))
2681 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2682 #ifdef CONFIG_SMP
2683 	if (entity_is_task(se)) {
2684 		struct rq *rq = rq_of(cfs_rq);
2685 
2686 		account_numa_enqueue(rq, task_of(se));
2687 		list_add(&se->group_node, &rq->cfs_tasks);
2688 	}
2689 #endif
2690 	cfs_rq->nr_running++;
2691 }
2692 
2693 static void
2694 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2695 {
2696 	update_load_sub(&cfs_rq->load, se->load.weight);
2697 	if (!parent_entity(se))
2698 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2699 #ifdef CONFIG_SMP
2700 	if (entity_is_task(se)) {
2701 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2702 		list_del_init(&se->group_node);
2703 	}
2704 #endif
2705 	cfs_rq->nr_running--;
2706 }
2707 
2708 #ifdef CONFIG_FAIR_GROUP_SCHED
2709 # ifdef CONFIG_SMP
2710 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2711 {
2712 	long tg_weight, load, shares;
2713 
2714 	/*
2715 	 * This really should be: cfs_rq->avg.load_avg, but instead we use
2716 	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2717 	 * the shares for small weight interactive tasks.
2718 	 */
2719 	load = scale_load_down(cfs_rq->load.weight);
2720 
2721 	tg_weight = atomic_long_read(&tg->load_avg);
2722 
2723 	/* Ensure tg_weight >= load */
2724 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2725 	tg_weight += load;
2726 
2727 	shares = (tg->shares * load);
2728 	if (tg_weight)
2729 		shares /= tg_weight;
2730 
2731 	/*
2732 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2733 	 * of a group with small tg->shares value. It is a floor value which is
2734 	 * assigned as a minimum load.weight to the sched_entity representing
2735 	 * the group on a CPU.
2736 	 *
2737 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2738 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2739 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2740 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2741 	 * instead of 0.
2742 	 */
2743 	if (shares < MIN_SHARES)
2744 		shares = MIN_SHARES;
2745 	if (shares > tg->shares)
2746 		shares = tg->shares;
2747 
2748 	return shares;
2749 }
2750 # else /* CONFIG_SMP */
2751 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2752 {
2753 	return tg->shares;
2754 }
2755 # endif /* CONFIG_SMP */
2756 
2757 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2758 			    unsigned long weight)
2759 {
2760 	if (se->on_rq) {
2761 		/* commit outstanding execution time */
2762 		if (cfs_rq->curr == se)
2763 			update_curr(cfs_rq);
2764 		account_entity_dequeue(cfs_rq, se);
2765 	}
2766 
2767 	update_load_set(&se->load, weight);
2768 
2769 	if (se->on_rq)
2770 		account_entity_enqueue(cfs_rq, se);
2771 }
2772 
2773 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2774 
2775 static void update_cfs_shares(struct sched_entity *se)
2776 {
2777 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2778 	struct task_group *tg;
2779 	long shares;
2780 
2781 	if (!cfs_rq)
2782 		return;
2783 
2784 	if (throttled_hierarchy(cfs_rq))
2785 		return;
2786 
2787 	tg = cfs_rq->tg;
2788 
2789 #ifndef CONFIG_SMP
2790 	if (likely(se->load.weight == tg->shares))
2791 		return;
2792 #endif
2793 	shares = calc_cfs_shares(cfs_rq, tg);
2794 
2795 	reweight_entity(cfs_rq_of(se), se, shares);
2796 }
2797 
2798 #else /* CONFIG_FAIR_GROUP_SCHED */
2799 static inline void update_cfs_shares(struct sched_entity *se)
2800 {
2801 }
2802 #endif /* CONFIG_FAIR_GROUP_SCHED */
2803 
2804 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2805 {
2806 	struct rq *rq = rq_of(cfs_rq);
2807 
2808 	if (&rq->cfs == cfs_rq) {
2809 		/*
2810 		 * There are a few boundary cases this might miss but it should
2811 		 * get called often enough that that should (hopefully) not be
2812 		 * a real problem -- added to that it only calls on the local
2813 		 * CPU, so if we enqueue remotely we'll miss an update, but
2814 		 * the next tick/schedule should update.
2815 		 *
2816 		 * It will not get called when we go idle, because the idle
2817 		 * thread is a different class (!fair), nor will the utilization
2818 		 * number include things like RT tasks.
2819 		 *
2820 		 * As is, the util number is not freq-invariant (we'd have to
2821 		 * implement arch_scale_freq_capacity() for that).
2822 		 *
2823 		 * See cpu_util().
2824 		 */
2825 		cpufreq_update_util(rq, 0);
2826 	}
2827 }
2828 
2829 #ifdef CONFIG_SMP
2830 /*
2831  * Approximate:
2832  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2833  */
2834 static u64 decay_load(u64 val, u64 n)
2835 {
2836 	unsigned int local_n;
2837 
2838 	if (unlikely(n > LOAD_AVG_PERIOD * 63))
2839 		return 0;
2840 
2841 	/* after bounds checking we can collapse to 32-bit */
2842 	local_n = n;
2843 
2844 	/*
2845 	 * As y^PERIOD = 1/2, we can combine
2846 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2847 	 * With a look-up table which covers y^n (n<PERIOD)
2848 	 *
2849 	 * To achieve constant time decay_load.
2850 	 */
2851 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2852 		val >>= local_n / LOAD_AVG_PERIOD;
2853 		local_n %= LOAD_AVG_PERIOD;
2854 	}
2855 
2856 	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2857 	return val;
2858 }
2859 
2860 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
2861 {
2862 	u32 c1, c2, c3 = d3; /* y^0 == 1 */
2863 
2864 	/*
2865 	 * c1 = d1 y^p
2866 	 */
2867 	c1 = decay_load((u64)d1, periods);
2868 
2869 	/*
2870 	 *            p-1
2871 	 * c2 = 1024 \Sum y^n
2872 	 *            n=1
2873 	 *
2874 	 *              inf        inf
2875 	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
2876 	 *              n=0        n=p
2877 	 */
2878 	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
2879 
2880 	return c1 + c2 + c3;
2881 }
2882 
2883 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2884 
2885 /*
2886  * Accumulate the three separate parts of the sum; d1 the remainder
2887  * of the last (incomplete) period, d2 the span of full periods and d3
2888  * the remainder of the (incomplete) current period.
2889  *
2890  *           d1          d2           d3
2891  *           ^           ^            ^
2892  *           |           |            |
2893  *         |<->|<----------------->|<--->|
2894  * ... |---x---|------| ... |------|-----x (now)
2895  *
2896  *                           p-1
2897  * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
2898  *                           n=1
2899  *
2900  *    = u y^p +					(Step 1)
2901  *
2902  *                     p-1
2903  *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2)
2904  *                     n=1
2905  */
2906 static __always_inline u32
2907 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
2908 	       unsigned long weight, int running, struct cfs_rq *cfs_rq)
2909 {
2910 	unsigned long scale_freq, scale_cpu;
2911 	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
2912 	u64 periods;
2913 
2914 	scale_freq = arch_scale_freq_capacity(NULL, cpu);
2915 	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2916 
2917 	delta += sa->period_contrib;
2918 	periods = delta / 1024; /* A period is 1024us (~1ms) */
2919 
2920 	/*
2921 	 * Step 1: decay old *_sum if we crossed period boundaries.
2922 	 */
2923 	if (periods) {
2924 		sa->load_sum = decay_load(sa->load_sum, periods);
2925 		if (cfs_rq) {
2926 			cfs_rq->runnable_load_sum =
2927 				decay_load(cfs_rq->runnable_load_sum, periods);
2928 		}
2929 		sa->util_sum = decay_load((u64)(sa->util_sum), periods);
2930 
2931 		/*
2932 		 * Step 2
2933 		 */
2934 		delta %= 1024;
2935 		contrib = __accumulate_pelt_segments(periods,
2936 				1024 - sa->period_contrib, delta);
2937 	}
2938 	sa->period_contrib = delta;
2939 
2940 	contrib = cap_scale(contrib, scale_freq);
2941 	if (weight) {
2942 		sa->load_sum += weight * contrib;
2943 		if (cfs_rq)
2944 			cfs_rq->runnable_load_sum += weight * contrib;
2945 	}
2946 	if (running)
2947 		sa->util_sum += contrib * scale_cpu;
2948 
2949 	return periods;
2950 }
2951 
2952 /*
2953  * We can represent the historical contribution to runnable average as the
2954  * coefficients of a geometric series.  To do this we sub-divide our runnable
2955  * history into segments of approximately 1ms (1024us); label the segment that
2956  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2957  *
2958  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2959  *      p0            p1           p2
2960  *     (now)       (~1ms ago)  (~2ms ago)
2961  *
2962  * Let u_i denote the fraction of p_i that the entity was runnable.
2963  *
2964  * We then designate the fractions u_i as our co-efficients, yielding the
2965  * following representation of historical load:
2966  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2967  *
2968  * We choose y based on the with of a reasonably scheduling period, fixing:
2969  *   y^32 = 0.5
2970  *
2971  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2972  * approximately half as much as the contribution to load within the last ms
2973  * (u_0).
2974  *
2975  * When a period "rolls over" and we have new u_0`, multiplying the previous
2976  * sum again by y is sufficient to update:
2977  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2978  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2979  */
2980 static __always_inline int
2981 ___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2982 		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2983 {
2984 	u64 delta;
2985 
2986 	delta = now - sa->last_update_time;
2987 	/*
2988 	 * This should only happen when time goes backwards, which it
2989 	 * unfortunately does during sched clock init when we swap over to TSC.
2990 	 */
2991 	if ((s64)delta < 0) {
2992 		sa->last_update_time = now;
2993 		return 0;
2994 	}
2995 
2996 	/*
2997 	 * Use 1024ns as the unit of measurement since it's a reasonable
2998 	 * approximation of 1us and fast to compute.
2999 	 */
3000 	delta >>= 10;
3001 	if (!delta)
3002 		return 0;
3003 
3004 	sa->last_update_time += delta << 10;
3005 
3006 	/*
3007 	 * running is a subset of runnable (weight) so running can't be set if
3008 	 * runnable is clear. But there are some corner cases where the current
3009 	 * se has been already dequeued but cfs_rq->curr still points to it.
3010 	 * This means that weight will be 0 but not running for a sched_entity
3011 	 * but also for a cfs_rq if the latter becomes idle. As an example,
3012 	 * this happens during idle_balance() which calls
3013 	 * update_blocked_averages()
3014 	 */
3015 	if (!weight)
3016 		running = 0;
3017 
3018 	/*
3019 	 * Now we know we crossed measurement unit boundaries. The *_avg
3020 	 * accrues by two steps:
3021 	 *
3022 	 * Step 1: accumulate *_sum since last_update_time. If we haven't
3023 	 * crossed period boundaries, finish.
3024 	 */
3025 	if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
3026 		return 0;
3027 
3028 	/*
3029 	 * Step 2: update *_avg.
3030 	 */
3031 	sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
3032 	if (cfs_rq) {
3033 		cfs_rq->runnable_load_avg =
3034 			div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
3035 	}
3036 	sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib);
3037 
3038 	return 1;
3039 }
3040 
3041 static int
3042 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
3043 {
3044 	return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
3045 }
3046 
3047 static int
3048 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
3049 {
3050 	return ___update_load_avg(now, cpu, &se->avg,
3051 				  se->on_rq * scale_load_down(se->load.weight),
3052 				  cfs_rq->curr == se, NULL);
3053 }
3054 
3055 static int
3056 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
3057 {
3058 	return ___update_load_avg(now, cpu, &cfs_rq->avg,
3059 			scale_load_down(cfs_rq->load.weight),
3060 			cfs_rq->curr != NULL, cfs_rq);
3061 }
3062 
3063 /*
3064  * Signed add and clamp on underflow.
3065  *
3066  * Explicitly do a load-store to ensure the intermediate value never hits
3067  * memory. This allows lockless observations without ever seeing the negative
3068  * values.
3069  */
3070 #define add_positive(_ptr, _val) do {                           \
3071 	typeof(_ptr) ptr = (_ptr);                              \
3072 	typeof(_val) val = (_val);                              \
3073 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3074 								\
3075 	res = var + val;                                        \
3076 								\
3077 	if (val < 0 && res > var)                               \
3078 		res = 0;                                        \
3079 								\
3080 	WRITE_ONCE(*ptr, res);                                  \
3081 } while (0)
3082 
3083 #ifdef CONFIG_FAIR_GROUP_SCHED
3084 /**
3085  * update_tg_load_avg - update the tg's load avg
3086  * @cfs_rq: the cfs_rq whose avg changed
3087  * @force: update regardless of how small the difference
3088  *
3089  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3090  * However, because tg->load_avg is a global value there are performance
3091  * considerations.
3092  *
3093  * In order to avoid having to look at the other cfs_rq's, we use a
3094  * differential update where we store the last value we propagated. This in
3095  * turn allows skipping updates if the differential is 'small'.
3096  *
3097  * Updating tg's load_avg is necessary before update_cfs_share().
3098  */
3099 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3100 {
3101 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3102 
3103 	/*
3104 	 * No need to update load_avg for root_task_group as it is not used.
3105 	 */
3106 	if (cfs_rq->tg == &root_task_group)
3107 		return;
3108 
3109 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3110 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3111 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3112 	}
3113 }
3114 
3115 /*
3116  * Called within set_task_rq() right before setting a task's cpu. The
3117  * caller only guarantees p->pi_lock is held; no other assumptions,
3118  * including the state of rq->lock, should be made.
3119  */
3120 void set_task_rq_fair(struct sched_entity *se,
3121 		      struct cfs_rq *prev, struct cfs_rq *next)
3122 {
3123 	u64 p_last_update_time;
3124 	u64 n_last_update_time;
3125 
3126 	if (!sched_feat(ATTACH_AGE_LOAD))
3127 		return;
3128 
3129 	/*
3130 	 * We are supposed to update the task to "current" time, then its up to
3131 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3132 	 * getting what current time is, so simply throw away the out-of-date
3133 	 * time. This will result in the wakee task is less decayed, but giving
3134 	 * the wakee more load sounds not bad.
3135 	 */
3136 	if (!(se->avg.last_update_time && prev))
3137 		return;
3138 
3139 #ifndef CONFIG_64BIT
3140 	{
3141 		u64 p_last_update_time_copy;
3142 		u64 n_last_update_time_copy;
3143 
3144 		do {
3145 			p_last_update_time_copy = prev->load_last_update_time_copy;
3146 			n_last_update_time_copy = next->load_last_update_time_copy;
3147 
3148 			smp_rmb();
3149 
3150 			p_last_update_time = prev->avg.last_update_time;
3151 			n_last_update_time = next->avg.last_update_time;
3152 
3153 		} while (p_last_update_time != p_last_update_time_copy ||
3154 			 n_last_update_time != n_last_update_time_copy);
3155 	}
3156 #else
3157 	p_last_update_time = prev->avg.last_update_time;
3158 	n_last_update_time = next->avg.last_update_time;
3159 #endif
3160 	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3161 	se->avg.last_update_time = n_last_update_time;
3162 }
3163 
3164 /* Take into account change of utilization of a child task group */
3165 static inline void
3166 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3167 {
3168 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3169 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3170 
3171 	/* Nothing to update */
3172 	if (!delta)
3173 		return;
3174 
3175 	/* Set new sched_entity's utilization */
3176 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3177 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3178 
3179 	/* Update parent cfs_rq utilization */
3180 	add_positive(&cfs_rq->avg.util_avg, delta);
3181 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3182 }
3183 
3184 /* Take into account change of load of a child task group */
3185 static inline void
3186 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3187 {
3188 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3189 	long delta, load = gcfs_rq->avg.load_avg;
3190 
3191 	/*
3192 	 * If the load of group cfs_rq is null, the load of the
3193 	 * sched_entity will also be null so we can skip the formula
3194 	 */
3195 	if (load) {
3196 		long tg_load;
3197 
3198 		/* Get tg's load and ensure tg_load > 0 */
3199 		tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3200 
3201 		/* Ensure tg_load >= load and updated with current load*/
3202 		tg_load -= gcfs_rq->tg_load_avg_contrib;
3203 		tg_load += load;
3204 
3205 		/*
3206 		 * We need to compute a correction term in the case that the
3207 		 * task group is consuming more CPU than a task of equal
3208 		 * weight. A task with a weight equals to tg->shares will have
3209 		 * a load less or equal to scale_load_down(tg->shares).
3210 		 * Similarly, the sched_entities that represent the task group
3211 		 * at parent level, can't have a load higher than
3212 		 * scale_load_down(tg->shares). And the Sum of sched_entities'
3213 		 * load must be <= scale_load_down(tg->shares).
3214 		 */
3215 		if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3216 			/* scale gcfs_rq's load into tg's shares*/
3217 			load *= scale_load_down(gcfs_rq->tg->shares);
3218 			load /= tg_load;
3219 		}
3220 	}
3221 
3222 	delta = load - se->avg.load_avg;
3223 
3224 	/* Nothing to update */
3225 	if (!delta)
3226 		return;
3227 
3228 	/* Set new sched_entity's load */
3229 	se->avg.load_avg = load;
3230 	se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3231 
3232 	/* Update parent cfs_rq load */
3233 	add_positive(&cfs_rq->avg.load_avg, delta);
3234 	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3235 
3236 	/*
3237 	 * If the sched_entity is already enqueued, we also have to update the
3238 	 * runnable load avg.
3239 	 */
3240 	if (se->on_rq) {
3241 		/* Update parent cfs_rq runnable_load_avg */
3242 		add_positive(&cfs_rq->runnable_load_avg, delta);
3243 		cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3244 	}
3245 }
3246 
3247 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3248 {
3249 	cfs_rq->propagate_avg = 1;
3250 }
3251 
3252 static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3253 {
3254 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
3255 
3256 	if (!cfs_rq->propagate_avg)
3257 		return 0;
3258 
3259 	cfs_rq->propagate_avg = 0;
3260 	return 1;
3261 }
3262 
3263 /* Update task and its cfs_rq load average */
3264 static inline int propagate_entity_load_avg(struct sched_entity *se)
3265 {
3266 	struct cfs_rq *cfs_rq;
3267 
3268 	if (entity_is_task(se))
3269 		return 0;
3270 
3271 	if (!test_and_clear_tg_cfs_propagate(se))
3272 		return 0;
3273 
3274 	cfs_rq = cfs_rq_of(se);
3275 
3276 	set_tg_cfs_propagate(cfs_rq);
3277 
3278 	update_tg_cfs_util(cfs_rq, se);
3279 	update_tg_cfs_load(cfs_rq, se);
3280 
3281 	return 1;
3282 }
3283 
3284 /*
3285  * Check if we need to update the load and the utilization of a blocked
3286  * group_entity:
3287  */
3288 static inline bool skip_blocked_update(struct sched_entity *se)
3289 {
3290 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3291 
3292 	/*
3293 	 * If sched_entity still have not zero load or utilization, we have to
3294 	 * decay it:
3295 	 */
3296 	if (se->avg.load_avg || se->avg.util_avg)
3297 		return false;
3298 
3299 	/*
3300 	 * If there is a pending propagation, we have to update the load and
3301 	 * the utilization of the sched_entity:
3302 	 */
3303 	if (gcfs_rq->propagate_avg)
3304 		return false;
3305 
3306 	/*
3307 	 * Otherwise, the load and the utilization of the sched_entity is
3308 	 * already zero and there is no pending propagation, so it will be a
3309 	 * waste of time to try to decay it:
3310 	 */
3311 	return true;
3312 }
3313 
3314 #else /* CONFIG_FAIR_GROUP_SCHED */
3315 
3316 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3317 
3318 static inline int propagate_entity_load_avg(struct sched_entity *se)
3319 {
3320 	return 0;
3321 }
3322 
3323 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3324 
3325 #endif /* CONFIG_FAIR_GROUP_SCHED */
3326 
3327 /*
3328  * Unsigned subtract and clamp on underflow.
3329  *
3330  * Explicitly do a load-store to ensure the intermediate value never hits
3331  * memory. This allows lockless observations without ever seeing the negative
3332  * values.
3333  */
3334 #define sub_positive(_ptr, _val) do {				\
3335 	typeof(_ptr) ptr = (_ptr);				\
3336 	typeof(*ptr) val = (_val);				\
3337 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3338 	res = var - val;					\
3339 	if (res > var)						\
3340 		res = 0;					\
3341 	WRITE_ONCE(*ptr, res);					\
3342 } while (0)
3343 
3344 /**
3345  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3346  * @now: current time, as per cfs_rq_clock_task()
3347  * @cfs_rq: cfs_rq to update
3348  *
3349  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3350  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3351  * post_init_entity_util_avg().
3352  *
3353  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3354  *
3355  * Returns true if the load decayed or we removed load.
3356  *
3357  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3358  * call update_tg_load_avg() when this function returns true.
3359  */
3360 static inline int
3361 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3362 {
3363 	struct sched_avg *sa = &cfs_rq->avg;
3364 	int decayed, removed_load = 0, removed_util = 0;
3365 
3366 	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3367 		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3368 		sub_positive(&sa->load_avg, r);
3369 		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3370 		removed_load = 1;
3371 		set_tg_cfs_propagate(cfs_rq);
3372 	}
3373 
3374 	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3375 		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3376 		sub_positive(&sa->util_avg, r);
3377 		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3378 		removed_util = 1;
3379 		set_tg_cfs_propagate(cfs_rq);
3380 	}
3381 
3382 	decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3383 
3384 #ifndef CONFIG_64BIT
3385 	smp_wmb();
3386 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3387 #endif
3388 
3389 	if (decayed || removed_util)
3390 		cfs_rq_util_change(cfs_rq);
3391 
3392 	return decayed || removed_load;
3393 }
3394 
3395 /*
3396  * Optional action to be done while updating the load average
3397  */
3398 #define UPDATE_TG	0x1
3399 #define SKIP_AGE_LOAD	0x2
3400 
3401 /* Update task and its cfs_rq load average */
3402 static inline void update_load_avg(struct sched_entity *se, int flags)
3403 {
3404 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3405 	u64 now = cfs_rq_clock_task(cfs_rq);
3406 	struct rq *rq = rq_of(cfs_rq);
3407 	int cpu = cpu_of(rq);
3408 	int decayed;
3409 
3410 	/*
3411 	 * Track task load average for carrying it to new CPU after migrated, and
3412 	 * track group sched_entity load average for task_h_load calc in migration
3413 	 */
3414 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3415 		__update_load_avg_se(now, cpu, cfs_rq, se);
3416 
3417 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3418 	decayed |= propagate_entity_load_avg(se);
3419 
3420 	if (decayed && (flags & UPDATE_TG))
3421 		update_tg_load_avg(cfs_rq, 0);
3422 }
3423 
3424 /**
3425  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3426  * @cfs_rq: cfs_rq to attach to
3427  * @se: sched_entity to attach
3428  *
3429  * Must call update_cfs_rq_load_avg() before this, since we rely on
3430  * cfs_rq->avg.last_update_time being current.
3431  */
3432 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3433 {
3434 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3435 	cfs_rq->avg.load_avg += se->avg.load_avg;
3436 	cfs_rq->avg.load_sum += se->avg.load_sum;
3437 	cfs_rq->avg.util_avg += se->avg.util_avg;
3438 	cfs_rq->avg.util_sum += se->avg.util_sum;
3439 	set_tg_cfs_propagate(cfs_rq);
3440 
3441 	cfs_rq_util_change(cfs_rq);
3442 }
3443 
3444 /**
3445  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3446  * @cfs_rq: cfs_rq to detach from
3447  * @se: sched_entity to detach
3448  *
3449  * Must call update_cfs_rq_load_avg() before this, since we rely on
3450  * cfs_rq->avg.last_update_time being current.
3451  */
3452 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3453 {
3454 
3455 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3456 	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3457 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3458 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3459 	set_tg_cfs_propagate(cfs_rq);
3460 
3461 	cfs_rq_util_change(cfs_rq);
3462 }
3463 
3464 /* Add the load generated by se into cfs_rq's load average */
3465 static inline void
3466 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3467 {
3468 	struct sched_avg *sa = &se->avg;
3469 
3470 	cfs_rq->runnable_load_avg += sa->load_avg;
3471 	cfs_rq->runnable_load_sum += sa->load_sum;
3472 
3473 	if (!sa->last_update_time) {
3474 		attach_entity_load_avg(cfs_rq, se);
3475 		update_tg_load_avg(cfs_rq, 0);
3476 	}
3477 }
3478 
3479 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3480 static inline void
3481 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3482 {
3483 	cfs_rq->runnable_load_avg =
3484 		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3485 	cfs_rq->runnable_load_sum =
3486 		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3487 }
3488 
3489 #ifndef CONFIG_64BIT
3490 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3491 {
3492 	u64 last_update_time_copy;
3493 	u64 last_update_time;
3494 
3495 	do {
3496 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3497 		smp_rmb();
3498 		last_update_time = cfs_rq->avg.last_update_time;
3499 	} while (last_update_time != last_update_time_copy);
3500 
3501 	return last_update_time;
3502 }
3503 #else
3504 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3505 {
3506 	return cfs_rq->avg.last_update_time;
3507 }
3508 #endif
3509 
3510 /*
3511  * Synchronize entity load avg of dequeued entity without locking
3512  * the previous rq.
3513  */
3514 void sync_entity_load_avg(struct sched_entity *se)
3515 {
3516 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3517 	u64 last_update_time;
3518 
3519 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3520 	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3521 }
3522 
3523 /*
3524  * Task first catches up with cfs_rq, and then subtract
3525  * itself from the cfs_rq (task must be off the queue now).
3526  */
3527 void remove_entity_load_avg(struct sched_entity *se)
3528 {
3529 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3530 
3531 	/*
3532 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3533 	 * post_init_entity_util_avg() which will have added things to the
3534 	 * cfs_rq, so we can remove unconditionally.
3535 	 *
3536 	 * Similarly for groups, they will have passed through
3537 	 * post_init_entity_util_avg() before unregister_sched_fair_group()
3538 	 * calls this.
3539 	 */
3540 
3541 	sync_entity_load_avg(se);
3542 	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3543 	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3544 }
3545 
3546 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3547 {
3548 	return cfs_rq->runnable_load_avg;
3549 }
3550 
3551 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3552 {
3553 	return cfs_rq->avg.load_avg;
3554 }
3555 
3556 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3557 
3558 #else /* CONFIG_SMP */
3559 
3560 static inline int
3561 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3562 {
3563 	return 0;
3564 }
3565 
3566 #define UPDATE_TG	0x0
3567 #define SKIP_AGE_LOAD	0x0
3568 
3569 static inline void update_load_avg(struct sched_entity *se, int not_used1)
3570 {
3571 	cfs_rq_util_change(cfs_rq_of(se));
3572 }
3573 
3574 static inline void
3575 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3576 static inline void
3577 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3578 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3579 
3580 static inline void
3581 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3582 static inline void
3583 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3584 
3585 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3586 {
3587 	return 0;
3588 }
3589 
3590 #endif /* CONFIG_SMP */
3591 
3592 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3593 {
3594 #ifdef CONFIG_SCHED_DEBUG
3595 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3596 
3597 	if (d < 0)
3598 		d = -d;
3599 
3600 	if (d > 3*sysctl_sched_latency)
3601 		schedstat_inc(cfs_rq->nr_spread_over);
3602 #endif
3603 }
3604 
3605 static void
3606 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3607 {
3608 	u64 vruntime = cfs_rq->min_vruntime;
3609 
3610 	/*
3611 	 * The 'current' period is already promised to the current tasks,
3612 	 * however the extra weight of the new task will slow them down a
3613 	 * little, place the new task so that it fits in the slot that
3614 	 * stays open at the end.
3615 	 */
3616 	if (initial && sched_feat(START_DEBIT))
3617 		vruntime += sched_vslice(cfs_rq, se);
3618 
3619 	/* sleeps up to a single latency don't count. */
3620 	if (!initial) {
3621 		unsigned long thresh = sysctl_sched_latency;
3622 
3623 		/*
3624 		 * Halve their sleep time's effect, to allow
3625 		 * for a gentler effect of sleepers:
3626 		 */
3627 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3628 			thresh >>= 1;
3629 
3630 		vruntime -= thresh;
3631 	}
3632 
3633 	/* ensure we never gain time by being placed backwards. */
3634 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3635 }
3636 
3637 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3638 
3639 static inline void check_schedstat_required(void)
3640 {
3641 #ifdef CONFIG_SCHEDSTATS
3642 	if (schedstat_enabled())
3643 		return;
3644 
3645 	/* Force schedstat enabled if a dependent tracepoint is active */
3646 	if (trace_sched_stat_wait_enabled()    ||
3647 			trace_sched_stat_sleep_enabled()   ||
3648 			trace_sched_stat_iowait_enabled()  ||
3649 			trace_sched_stat_blocked_enabled() ||
3650 			trace_sched_stat_runtime_enabled())  {
3651 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3652 			     "stat_blocked and stat_runtime require the "
3653 			     "kernel parameter schedstats=enable or "
3654 			     "kernel.sched_schedstats=1\n");
3655 	}
3656 #endif
3657 }
3658 
3659 
3660 /*
3661  * MIGRATION
3662  *
3663  *	dequeue
3664  *	  update_curr()
3665  *	    update_min_vruntime()
3666  *	  vruntime -= min_vruntime
3667  *
3668  *	enqueue
3669  *	  update_curr()
3670  *	    update_min_vruntime()
3671  *	  vruntime += min_vruntime
3672  *
3673  * this way the vruntime transition between RQs is done when both
3674  * min_vruntime are up-to-date.
3675  *
3676  * WAKEUP (remote)
3677  *
3678  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3679  *	  vruntime -= min_vruntime
3680  *
3681  *	enqueue
3682  *	  update_curr()
3683  *	    update_min_vruntime()
3684  *	  vruntime += min_vruntime
3685  *
3686  * this way we don't have the most up-to-date min_vruntime on the originating
3687  * CPU and an up-to-date min_vruntime on the destination CPU.
3688  */
3689 
3690 static void
3691 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3692 {
3693 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3694 	bool curr = cfs_rq->curr == se;
3695 
3696 	/*
3697 	 * If we're the current task, we must renormalise before calling
3698 	 * update_curr().
3699 	 */
3700 	if (renorm && curr)
3701 		se->vruntime += cfs_rq->min_vruntime;
3702 
3703 	update_curr(cfs_rq);
3704 
3705 	/*
3706 	 * Otherwise, renormalise after, such that we're placed at the current
3707 	 * moment in time, instead of some random moment in the past. Being
3708 	 * placed in the past could significantly boost this task to the
3709 	 * fairness detriment of existing tasks.
3710 	 */
3711 	if (renorm && !curr)
3712 		se->vruntime += cfs_rq->min_vruntime;
3713 
3714 	/*
3715 	 * When enqueuing a sched_entity, we must:
3716 	 *   - Update loads to have both entity and cfs_rq synced with now.
3717 	 *   - Add its load to cfs_rq->runnable_avg
3718 	 *   - For group_entity, update its weight to reflect the new share of
3719 	 *     its group cfs_rq
3720 	 *   - Add its new weight to cfs_rq->load.weight
3721 	 */
3722 	update_load_avg(se, UPDATE_TG);
3723 	enqueue_entity_load_avg(cfs_rq, se);
3724 	update_cfs_shares(se);
3725 	account_entity_enqueue(cfs_rq, se);
3726 
3727 	if (flags & ENQUEUE_WAKEUP)
3728 		place_entity(cfs_rq, se, 0);
3729 
3730 	check_schedstat_required();
3731 	update_stats_enqueue(cfs_rq, se, flags);
3732 	check_spread(cfs_rq, se);
3733 	if (!curr)
3734 		__enqueue_entity(cfs_rq, se);
3735 	se->on_rq = 1;
3736 
3737 	if (cfs_rq->nr_running == 1) {
3738 		list_add_leaf_cfs_rq(cfs_rq);
3739 		check_enqueue_throttle(cfs_rq);
3740 	}
3741 }
3742 
3743 static void __clear_buddies_last(struct sched_entity *se)
3744 {
3745 	for_each_sched_entity(se) {
3746 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3747 		if (cfs_rq->last != se)
3748 			break;
3749 
3750 		cfs_rq->last = NULL;
3751 	}
3752 }
3753 
3754 static void __clear_buddies_next(struct sched_entity *se)
3755 {
3756 	for_each_sched_entity(se) {
3757 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3758 		if (cfs_rq->next != se)
3759 			break;
3760 
3761 		cfs_rq->next = NULL;
3762 	}
3763 }
3764 
3765 static void __clear_buddies_skip(struct sched_entity *se)
3766 {
3767 	for_each_sched_entity(se) {
3768 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3769 		if (cfs_rq->skip != se)
3770 			break;
3771 
3772 		cfs_rq->skip = NULL;
3773 	}
3774 }
3775 
3776 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3777 {
3778 	if (cfs_rq->last == se)
3779 		__clear_buddies_last(se);
3780 
3781 	if (cfs_rq->next == se)
3782 		__clear_buddies_next(se);
3783 
3784 	if (cfs_rq->skip == se)
3785 		__clear_buddies_skip(se);
3786 }
3787 
3788 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3789 
3790 static void
3791 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3792 {
3793 	/*
3794 	 * Update run-time statistics of the 'current'.
3795 	 */
3796 	update_curr(cfs_rq);
3797 
3798 	/*
3799 	 * When dequeuing a sched_entity, we must:
3800 	 *   - Update loads to have both entity and cfs_rq synced with now.
3801 	 *   - Substract its load from the cfs_rq->runnable_avg.
3802 	 *   - Substract its previous weight from cfs_rq->load.weight.
3803 	 *   - For group entity, update its weight to reflect the new share
3804 	 *     of its group cfs_rq.
3805 	 */
3806 	update_load_avg(se, UPDATE_TG);
3807 	dequeue_entity_load_avg(cfs_rq, se);
3808 
3809 	update_stats_dequeue(cfs_rq, se, flags);
3810 
3811 	clear_buddies(cfs_rq, se);
3812 
3813 	if (se != cfs_rq->curr)
3814 		__dequeue_entity(cfs_rq, se);
3815 	se->on_rq = 0;
3816 	account_entity_dequeue(cfs_rq, se);
3817 
3818 	/*
3819 	 * Normalize after update_curr(); which will also have moved
3820 	 * min_vruntime if @se is the one holding it back. But before doing
3821 	 * update_min_vruntime() again, which will discount @se's position and
3822 	 * can move min_vruntime forward still more.
3823 	 */
3824 	if (!(flags & DEQUEUE_SLEEP))
3825 		se->vruntime -= cfs_rq->min_vruntime;
3826 
3827 	/* return excess runtime on last dequeue */
3828 	return_cfs_rq_runtime(cfs_rq);
3829 
3830 	update_cfs_shares(se);
3831 
3832 	/*
3833 	 * Now advance min_vruntime if @se was the entity holding it back,
3834 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3835 	 * put back on, and if we advance min_vruntime, we'll be placed back
3836 	 * further than we started -- ie. we'll be penalized.
3837 	 */
3838 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3839 		update_min_vruntime(cfs_rq);
3840 }
3841 
3842 /*
3843  * Preempt the current task with a newly woken task if needed:
3844  */
3845 static void
3846 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3847 {
3848 	unsigned long ideal_runtime, delta_exec;
3849 	struct sched_entity *se;
3850 	s64 delta;
3851 
3852 	ideal_runtime = sched_slice(cfs_rq, curr);
3853 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3854 	if (delta_exec > ideal_runtime) {
3855 		resched_curr(rq_of(cfs_rq));
3856 		/*
3857 		 * The current task ran long enough, ensure it doesn't get
3858 		 * re-elected due to buddy favours.
3859 		 */
3860 		clear_buddies(cfs_rq, curr);
3861 		return;
3862 	}
3863 
3864 	/*
3865 	 * Ensure that a task that missed wakeup preemption by a
3866 	 * narrow margin doesn't have to wait for a full slice.
3867 	 * This also mitigates buddy induced latencies under load.
3868 	 */
3869 	if (delta_exec < sysctl_sched_min_granularity)
3870 		return;
3871 
3872 	se = __pick_first_entity(cfs_rq);
3873 	delta = curr->vruntime - se->vruntime;
3874 
3875 	if (delta < 0)
3876 		return;
3877 
3878 	if (delta > ideal_runtime)
3879 		resched_curr(rq_of(cfs_rq));
3880 }
3881 
3882 static void
3883 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3884 {
3885 	/* 'current' is not kept within the tree. */
3886 	if (se->on_rq) {
3887 		/*
3888 		 * Any task has to be enqueued before it get to execute on
3889 		 * a CPU. So account for the time it spent waiting on the
3890 		 * runqueue.
3891 		 */
3892 		update_stats_wait_end(cfs_rq, se);
3893 		__dequeue_entity(cfs_rq, se);
3894 		update_load_avg(se, UPDATE_TG);
3895 	}
3896 
3897 	update_stats_curr_start(cfs_rq, se);
3898 	cfs_rq->curr = se;
3899 
3900 	/*
3901 	 * Track our maximum slice length, if the CPU's load is at
3902 	 * least twice that of our own weight (i.e. dont track it
3903 	 * when there are only lesser-weight tasks around):
3904 	 */
3905 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3906 		schedstat_set(se->statistics.slice_max,
3907 			max((u64)schedstat_val(se->statistics.slice_max),
3908 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
3909 	}
3910 
3911 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3912 }
3913 
3914 static int
3915 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3916 
3917 /*
3918  * Pick the next process, keeping these things in mind, in this order:
3919  * 1) keep things fair between processes/task groups
3920  * 2) pick the "next" process, since someone really wants that to run
3921  * 3) pick the "last" process, for cache locality
3922  * 4) do not run the "skip" process, if something else is available
3923  */
3924 static struct sched_entity *
3925 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3926 {
3927 	struct sched_entity *left = __pick_first_entity(cfs_rq);
3928 	struct sched_entity *se;
3929 
3930 	/*
3931 	 * If curr is set we have to see if its left of the leftmost entity
3932 	 * still in the tree, provided there was anything in the tree at all.
3933 	 */
3934 	if (!left || (curr && entity_before(curr, left)))
3935 		left = curr;
3936 
3937 	se = left; /* ideally we run the leftmost entity */
3938 
3939 	/*
3940 	 * Avoid running the skip buddy, if running something else can
3941 	 * be done without getting too unfair.
3942 	 */
3943 	if (cfs_rq->skip == se) {
3944 		struct sched_entity *second;
3945 
3946 		if (se == curr) {
3947 			second = __pick_first_entity(cfs_rq);
3948 		} else {
3949 			second = __pick_next_entity(se);
3950 			if (!second || (curr && entity_before(curr, second)))
3951 				second = curr;
3952 		}
3953 
3954 		if (second && wakeup_preempt_entity(second, left) < 1)
3955 			se = second;
3956 	}
3957 
3958 	/*
3959 	 * Prefer last buddy, try to return the CPU to a preempted task.
3960 	 */
3961 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3962 		se = cfs_rq->last;
3963 
3964 	/*
3965 	 * Someone really wants this to run. If it's not unfair, run it.
3966 	 */
3967 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3968 		se = cfs_rq->next;
3969 
3970 	clear_buddies(cfs_rq, se);
3971 
3972 	return se;
3973 }
3974 
3975 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3976 
3977 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3978 {
3979 	/*
3980 	 * If still on the runqueue then deactivate_task()
3981 	 * was not called and update_curr() has to be done:
3982 	 */
3983 	if (prev->on_rq)
3984 		update_curr(cfs_rq);
3985 
3986 	/* throttle cfs_rqs exceeding runtime */
3987 	check_cfs_rq_runtime(cfs_rq);
3988 
3989 	check_spread(cfs_rq, prev);
3990 
3991 	if (prev->on_rq) {
3992 		update_stats_wait_start(cfs_rq, prev);
3993 		/* Put 'current' back into the tree. */
3994 		__enqueue_entity(cfs_rq, prev);
3995 		/* in !on_rq case, update occurred at dequeue */
3996 		update_load_avg(prev, 0);
3997 	}
3998 	cfs_rq->curr = NULL;
3999 }
4000 
4001 static void
4002 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4003 {
4004 	/*
4005 	 * Update run-time statistics of the 'current'.
4006 	 */
4007 	update_curr(cfs_rq);
4008 
4009 	/*
4010 	 * Ensure that runnable average is periodically updated.
4011 	 */
4012 	update_load_avg(curr, UPDATE_TG);
4013 	update_cfs_shares(curr);
4014 
4015 #ifdef CONFIG_SCHED_HRTICK
4016 	/*
4017 	 * queued ticks are scheduled to match the slice, so don't bother
4018 	 * validating it and just reschedule.
4019 	 */
4020 	if (queued) {
4021 		resched_curr(rq_of(cfs_rq));
4022 		return;
4023 	}
4024 	/*
4025 	 * don't let the period tick interfere with the hrtick preemption
4026 	 */
4027 	if (!sched_feat(DOUBLE_TICK) &&
4028 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4029 		return;
4030 #endif
4031 
4032 	if (cfs_rq->nr_running > 1)
4033 		check_preempt_tick(cfs_rq, curr);
4034 }
4035 
4036 
4037 /**************************************************
4038  * CFS bandwidth control machinery
4039  */
4040 
4041 #ifdef CONFIG_CFS_BANDWIDTH
4042 
4043 #ifdef HAVE_JUMP_LABEL
4044 static struct static_key __cfs_bandwidth_used;
4045 
4046 static inline bool cfs_bandwidth_used(void)
4047 {
4048 	return static_key_false(&__cfs_bandwidth_used);
4049 }
4050 
4051 void cfs_bandwidth_usage_inc(void)
4052 {
4053 	static_key_slow_inc(&__cfs_bandwidth_used);
4054 }
4055 
4056 void cfs_bandwidth_usage_dec(void)
4057 {
4058 	static_key_slow_dec(&__cfs_bandwidth_used);
4059 }
4060 #else /* HAVE_JUMP_LABEL */
4061 static bool cfs_bandwidth_used(void)
4062 {
4063 	return true;
4064 }
4065 
4066 void cfs_bandwidth_usage_inc(void) {}
4067 void cfs_bandwidth_usage_dec(void) {}
4068 #endif /* HAVE_JUMP_LABEL */
4069 
4070 /*
4071  * default period for cfs group bandwidth.
4072  * default: 0.1s, units: nanoseconds
4073  */
4074 static inline u64 default_cfs_period(void)
4075 {
4076 	return 100000000ULL;
4077 }
4078 
4079 static inline u64 sched_cfs_bandwidth_slice(void)
4080 {
4081 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4082 }
4083 
4084 /*
4085  * Replenish runtime according to assigned quota and update expiration time.
4086  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4087  * additional synchronization around rq->lock.
4088  *
4089  * requires cfs_b->lock
4090  */
4091 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4092 {
4093 	u64 now;
4094 
4095 	if (cfs_b->quota == RUNTIME_INF)
4096 		return;
4097 
4098 	now = sched_clock_cpu(smp_processor_id());
4099 	cfs_b->runtime = cfs_b->quota;
4100 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4101 }
4102 
4103 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4104 {
4105 	return &tg->cfs_bandwidth;
4106 }
4107 
4108 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4109 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4110 {
4111 	if (unlikely(cfs_rq->throttle_count))
4112 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4113 
4114 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4115 }
4116 
4117 /* returns 0 on failure to allocate runtime */
4118 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4119 {
4120 	struct task_group *tg = cfs_rq->tg;
4121 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4122 	u64 amount = 0, min_amount, expires;
4123 
4124 	/* note: this is a positive sum as runtime_remaining <= 0 */
4125 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4126 
4127 	raw_spin_lock(&cfs_b->lock);
4128 	if (cfs_b->quota == RUNTIME_INF)
4129 		amount = min_amount;
4130 	else {
4131 		start_cfs_bandwidth(cfs_b);
4132 
4133 		if (cfs_b->runtime > 0) {
4134 			amount = min(cfs_b->runtime, min_amount);
4135 			cfs_b->runtime -= amount;
4136 			cfs_b->idle = 0;
4137 		}
4138 	}
4139 	expires = cfs_b->runtime_expires;
4140 	raw_spin_unlock(&cfs_b->lock);
4141 
4142 	cfs_rq->runtime_remaining += amount;
4143 	/*
4144 	 * we may have advanced our local expiration to account for allowed
4145 	 * spread between our sched_clock and the one on which runtime was
4146 	 * issued.
4147 	 */
4148 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4149 		cfs_rq->runtime_expires = expires;
4150 
4151 	return cfs_rq->runtime_remaining > 0;
4152 }
4153 
4154 /*
4155  * Note: This depends on the synchronization provided by sched_clock and the
4156  * fact that rq->clock snapshots this value.
4157  */
4158 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4159 {
4160 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4161 
4162 	/* if the deadline is ahead of our clock, nothing to do */
4163 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4164 		return;
4165 
4166 	if (cfs_rq->runtime_remaining < 0)
4167 		return;
4168 
4169 	/*
4170 	 * If the local deadline has passed we have to consider the
4171 	 * possibility that our sched_clock is 'fast' and the global deadline
4172 	 * has not truly expired.
4173 	 *
4174 	 * Fortunately we can check determine whether this the case by checking
4175 	 * whether the global deadline has advanced. It is valid to compare
4176 	 * cfs_b->runtime_expires without any locks since we only care about
4177 	 * exact equality, so a partial write will still work.
4178 	 */
4179 
4180 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
4181 		/* extend local deadline, drift is bounded above by 2 ticks */
4182 		cfs_rq->runtime_expires += TICK_NSEC;
4183 	} else {
4184 		/* global deadline is ahead, expiration has passed */
4185 		cfs_rq->runtime_remaining = 0;
4186 	}
4187 }
4188 
4189 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4190 {
4191 	/* dock delta_exec before expiring quota (as it could span periods) */
4192 	cfs_rq->runtime_remaining -= delta_exec;
4193 	expire_cfs_rq_runtime(cfs_rq);
4194 
4195 	if (likely(cfs_rq->runtime_remaining > 0))
4196 		return;
4197 
4198 	/*
4199 	 * if we're unable to extend our runtime we resched so that the active
4200 	 * hierarchy can be throttled
4201 	 */
4202 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4203 		resched_curr(rq_of(cfs_rq));
4204 }
4205 
4206 static __always_inline
4207 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4208 {
4209 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4210 		return;
4211 
4212 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4213 }
4214 
4215 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4216 {
4217 	return cfs_bandwidth_used() && cfs_rq->throttled;
4218 }
4219 
4220 /* check whether cfs_rq, or any parent, is throttled */
4221 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4222 {
4223 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4224 }
4225 
4226 /*
4227  * Ensure that neither of the group entities corresponding to src_cpu or
4228  * dest_cpu are members of a throttled hierarchy when performing group
4229  * load-balance operations.
4230  */
4231 static inline int throttled_lb_pair(struct task_group *tg,
4232 				    int src_cpu, int dest_cpu)
4233 {
4234 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4235 
4236 	src_cfs_rq = tg->cfs_rq[src_cpu];
4237 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4238 
4239 	return throttled_hierarchy(src_cfs_rq) ||
4240 	       throttled_hierarchy(dest_cfs_rq);
4241 }
4242 
4243 /* updated child weight may affect parent so we have to do this bottom up */
4244 static int tg_unthrottle_up(struct task_group *tg, void *data)
4245 {
4246 	struct rq *rq = data;
4247 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4248 
4249 	cfs_rq->throttle_count--;
4250 	if (!cfs_rq->throttle_count) {
4251 		/* adjust cfs_rq_clock_task() */
4252 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4253 					     cfs_rq->throttled_clock_task;
4254 	}
4255 
4256 	return 0;
4257 }
4258 
4259 static int tg_throttle_down(struct task_group *tg, void *data)
4260 {
4261 	struct rq *rq = data;
4262 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4263 
4264 	/* group is entering throttled state, stop time */
4265 	if (!cfs_rq->throttle_count)
4266 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4267 	cfs_rq->throttle_count++;
4268 
4269 	return 0;
4270 }
4271 
4272 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4273 {
4274 	struct rq *rq = rq_of(cfs_rq);
4275 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4276 	struct sched_entity *se;
4277 	long task_delta, dequeue = 1;
4278 	bool empty;
4279 
4280 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4281 
4282 	/* freeze hierarchy runnable averages while throttled */
4283 	rcu_read_lock();
4284 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4285 	rcu_read_unlock();
4286 
4287 	task_delta = cfs_rq->h_nr_running;
4288 	for_each_sched_entity(se) {
4289 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4290 		/* throttled entity or throttle-on-deactivate */
4291 		if (!se->on_rq)
4292 			break;
4293 
4294 		if (dequeue)
4295 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4296 		qcfs_rq->h_nr_running -= task_delta;
4297 
4298 		if (qcfs_rq->load.weight)
4299 			dequeue = 0;
4300 	}
4301 
4302 	if (!se)
4303 		sub_nr_running(rq, task_delta);
4304 
4305 	cfs_rq->throttled = 1;
4306 	cfs_rq->throttled_clock = rq_clock(rq);
4307 	raw_spin_lock(&cfs_b->lock);
4308 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4309 
4310 	/*
4311 	 * Add to the _head_ of the list, so that an already-started
4312 	 * distribute_cfs_runtime will not see us
4313 	 */
4314 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4315 
4316 	/*
4317 	 * If we're the first throttled task, make sure the bandwidth
4318 	 * timer is running.
4319 	 */
4320 	if (empty)
4321 		start_cfs_bandwidth(cfs_b);
4322 
4323 	raw_spin_unlock(&cfs_b->lock);
4324 }
4325 
4326 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4327 {
4328 	struct rq *rq = rq_of(cfs_rq);
4329 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4330 	struct sched_entity *se;
4331 	int enqueue = 1;
4332 	long task_delta;
4333 
4334 	se = cfs_rq->tg->se[cpu_of(rq)];
4335 
4336 	cfs_rq->throttled = 0;
4337 
4338 	update_rq_clock(rq);
4339 
4340 	raw_spin_lock(&cfs_b->lock);
4341 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4342 	list_del_rcu(&cfs_rq->throttled_list);
4343 	raw_spin_unlock(&cfs_b->lock);
4344 
4345 	/* update hierarchical throttle state */
4346 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4347 
4348 	if (!cfs_rq->load.weight)
4349 		return;
4350 
4351 	task_delta = cfs_rq->h_nr_running;
4352 	for_each_sched_entity(se) {
4353 		if (se->on_rq)
4354 			enqueue = 0;
4355 
4356 		cfs_rq = cfs_rq_of(se);
4357 		if (enqueue)
4358 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4359 		cfs_rq->h_nr_running += task_delta;
4360 
4361 		if (cfs_rq_throttled(cfs_rq))
4362 			break;
4363 	}
4364 
4365 	if (!se)
4366 		add_nr_running(rq, task_delta);
4367 
4368 	/* determine whether we need to wake up potentially idle cpu */
4369 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4370 		resched_curr(rq);
4371 }
4372 
4373 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4374 		u64 remaining, u64 expires)
4375 {
4376 	struct cfs_rq *cfs_rq;
4377 	u64 runtime;
4378 	u64 starting_runtime = remaining;
4379 
4380 	rcu_read_lock();
4381 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4382 				throttled_list) {
4383 		struct rq *rq = rq_of(cfs_rq);
4384 		struct rq_flags rf;
4385 
4386 		rq_lock(rq, &rf);
4387 		if (!cfs_rq_throttled(cfs_rq))
4388 			goto next;
4389 
4390 		runtime = -cfs_rq->runtime_remaining + 1;
4391 		if (runtime > remaining)
4392 			runtime = remaining;
4393 		remaining -= runtime;
4394 
4395 		cfs_rq->runtime_remaining += runtime;
4396 		cfs_rq->runtime_expires = expires;
4397 
4398 		/* we check whether we're throttled above */
4399 		if (cfs_rq->runtime_remaining > 0)
4400 			unthrottle_cfs_rq(cfs_rq);
4401 
4402 next:
4403 		rq_unlock(rq, &rf);
4404 
4405 		if (!remaining)
4406 			break;
4407 	}
4408 	rcu_read_unlock();
4409 
4410 	return starting_runtime - remaining;
4411 }
4412 
4413 /*
4414  * Responsible for refilling a task_group's bandwidth and unthrottling its
4415  * cfs_rqs as appropriate. If there has been no activity within the last
4416  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4417  * used to track this state.
4418  */
4419 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4420 {
4421 	u64 runtime, runtime_expires;
4422 	int throttled;
4423 
4424 	/* no need to continue the timer with no bandwidth constraint */
4425 	if (cfs_b->quota == RUNTIME_INF)
4426 		goto out_deactivate;
4427 
4428 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4429 	cfs_b->nr_periods += overrun;
4430 
4431 	/*
4432 	 * idle depends on !throttled (for the case of a large deficit), and if
4433 	 * we're going inactive then everything else can be deferred
4434 	 */
4435 	if (cfs_b->idle && !throttled)
4436 		goto out_deactivate;
4437 
4438 	__refill_cfs_bandwidth_runtime(cfs_b);
4439 
4440 	if (!throttled) {
4441 		/* mark as potentially idle for the upcoming period */
4442 		cfs_b->idle = 1;
4443 		return 0;
4444 	}
4445 
4446 	/* account preceding periods in which throttling occurred */
4447 	cfs_b->nr_throttled += overrun;
4448 
4449 	runtime_expires = cfs_b->runtime_expires;
4450 
4451 	/*
4452 	 * This check is repeated as we are holding onto the new bandwidth while
4453 	 * we unthrottle. This can potentially race with an unthrottled group
4454 	 * trying to acquire new bandwidth from the global pool. This can result
4455 	 * in us over-using our runtime if it is all used during this loop, but
4456 	 * only by limited amounts in that extreme case.
4457 	 */
4458 	while (throttled && cfs_b->runtime > 0) {
4459 		runtime = cfs_b->runtime;
4460 		raw_spin_unlock(&cfs_b->lock);
4461 		/* we can't nest cfs_b->lock while distributing bandwidth */
4462 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4463 						 runtime_expires);
4464 		raw_spin_lock(&cfs_b->lock);
4465 
4466 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4467 
4468 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4469 	}
4470 
4471 	/*
4472 	 * While we are ensured activity in the period following an
4473 	 * unthrottle, this also covers the case in which the new bandwidth is
4474 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4475 	 * timer to remain active while there are any throttled entities.)
4476 	 */
4477 	cfs_b->idle = 0;
4478 
4479 	return 0;
4480 
4481 out_deactivate:
4482 	return 1;
4483 }
4484 
4485 /* a cfs_rq won't donate quota below this amount */
4486 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4487 /* minimum remaining period time to redistribute slack quota */
4488 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4489 /* how long we wait to gather additional slack before distributing */
4490 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4491 
4492 /*
4493  * Are we near the end of the current quota period?
4494  *
4495  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4496  * hrtimer base being cleared by hrtimer_start. In the case of
4497  * migrate_hrtimers, base is never cleared, so we are fine.
4498  */
4499 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4500 {
4501 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4502 	u64 remaining;
4503 
4504 	/* if the call-back is running a quota refresh is already occurring */
4505 	if (hrtimer_callback_running(refresh_timer))
4506 		return 1;
4507 
4508 	/* is a quota refresh about to occur? */
4509 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4510 	if (remaining < min_expire)
4511 		return 1;
4512 
4513 	return 0;
4514 }
4515 
4516 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4517 {
4518 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4519 
4520 	/* if there's a quota refresh soon don't bother with slack */
4521 	if (runtime_refresh_within(cfs_b, min_left))
4522 		return;
4523 
4524 	hrtimer_start(&cfs_b->slack_timer,
4525 			ns_to_ktime(cfs_bandwidth_slack_period),
4526 			HRTIMER_MODE_REL);
4527 }
4528 
4529 /* we know any runtime found here is valid as update_curr() precedes return */
4530 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4531 {
4532 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4533 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4534 
4535 	if (slack_runtime <= 0)
4536 		return;
4537 
4538 	raw_spin_lock(&cfs_b->lock);
4539 	if (cfs_b->quota != RUNTIME_INF &&
4540 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4541 		cfs_b->runtime += slack_runtime;
4542 
4543 		/* we are under rq->lock, defer unthrottling using a timer */
4544 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4545 		    !list_empty(&cfs_b->throttled_cfs_rq))
4546 			start_cfs_slack_bandwidth(cfs_b);
4547 	}
4548 	raw_spin_unlock(&cfs_b->lock);
4549 
4550 	/* even if it's not valid for return we don't want to try again */
4551 	cfs_rq->runtime_remaining -= slack_runtime;
4552 }
4553 
4554 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4555 {
4556 	if (!cfs_bandwidth_used())
4557 		return;
4558 
4559 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4560 		return;
4561 
4562 	__return_cfs_rq_runtime(cfs_rq);
4563 }
4564 
4565 /*
4566  * This is done with a timer (instead of inline with bandwidth return) since
4567  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4568  */
4569 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4570 {
4571 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4572 	u64 expires;
4573 
4574 	/* confirm we're still not at a refresh boundary */
4575 	raw_spin_lock(&cfs_b->lock);
4576 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4577 		raw_spin_unlock(&cfs_b->lock);
4578 		return;
4579 	}
4580 
4581 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4582 		runtime = cfs_b->runtime;
4583 
4584 	expires = cfs_b->runtime_expires;
4585 	raw_spin_unlock(&cfs_b->lock);
4586 
4587 	if (!runtime)
4588 		return;
4589 
4590 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4591 
4592 	raw_spin_lock(&cfs_b->lock);
4593 	if (expires == cfs_b->runtime_expires)
4594 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4595 	raw_spin_unlock(&cfs_b->lock);
4596 }
4597 
4598 /*
4599  * When a group wakes up we want to make sure that its quota is not already
4600  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4601  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4602  */
4603 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4604 {
4605 	if (!cfs_bandwidth_used())
4606 		return;
4607 
4608 	/* an active group must be handled by the update_curr()->put() path */
4609 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4610 		return;
4611 
4612 	/* ensure the group is not already throttled */
4613 	if (cfs_rq_throttled(cfs_rq))
4614 		return;
4615 
4616 	/* update runtime allocation */
4617 	account_cfs_rq_runtime(cfs_rq, 0);
4618 	if (cfs_rq->runtime_remaining <= 0)
4619 		throttle_cfs_rq(cfs_rq);
4620 }
4621 
4622 static void sync_throttle(struct task_group *tg, int cpu)
4623 {
4624 	struct cfs_rq *pcfs_rq, *cfs_rq;
4625 
4626 	if (!cfs_bandwidth_used())
4627 		return;
4628 
4629 	if (!tg->parent)
4630 		return;
4631 
4632 	cfs_rq = tg->cfs_rq[cpu];
4633 	pcfs_rq = tg->parent->cfs_rq[cpu];
4634 
4635 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4636 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4637 }
4638 
4639 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4640 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4641 {
4642 	if (!cfs_bandwidth_used())
4643 		return false;
4644 
4645 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4646 		return false;
4647 
4648 	/*
4649 	 * it's possible for a throttled entity to be forced into a running
4650 	 * state (e.g. set_curr_task), in this case we're finished.
4651 	 */
4652 	if (cfs_rq_throttled(cfs_rq))
4653 		return true;
4654 
4655 	throttle_cfs_rq(cfs_rq);
4656 	return true;
4657 }
4658 
4659 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4660 {
4661 	struct cfs_bandwidth *cfs_b =
4662 		container_of(timer, struct cfs_bandwidth, slack_timer);
4663 
4664 	do_sched_cfs_slack_timer(cfs_b);
4665 
4666 	return HRTIMER_NORESTART;
4667 }
4668 
4669 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4670 {
4671 	struct cfs_bandwidth *cfs_b =
4672 		container_of(timer, struct cfs_bandwidth, period_timer);
4673 	int overrun;
4674 	int idle = 0;
4675 
4676 	raw_spin_lock(&cfs_b->lock);
4677 	for (;;) {
4678 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4679 		if (!overrun)
4680 			break;
4681 
4682 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
4683 	}
4684 	if (idle)
4685 		cfs_b->period_active = 0;
4686 	raw_spin_unlock(&cfs_b->lock);
4687 
4688 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4689 }
4690 
4691 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4692 {
4693 	raw_spin_lock_init(&cfs_b->lock);
4694 	cfs_b->runtime = 0;
4695 	cfs_b->quota = RUNTIME_INF;
4696 	cfs_b->period = ns_to_ktime(default_cfs_period());
4697 
4698 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4699 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4700 	cfs_b->period_timer.function = sched_cfs_period_timer;
4701 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4702 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4703 }
4704 
4705 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4706 {
4707 	cfs_rq->runtime_enabled = 0;
4708 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4709 }
4710 
4711 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4712 {
4713 	lockdep_assert_held(&cfs_b->lock);
4714 
4715 	if (!cfs_b->period_active) {
4716 		cfs_b->period_active = 1;
4717 		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4718 		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4719 	}
4720 }
4721 
4722 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4723 {
4724 	/* init_cfs_bandwidth() was not called */
4725 	if (!cfs_b->throttled_cfs_rq.next)
4726 		return;
4727 
4728 	hrtimer_cancel(&cfs_b->period_timer);
4729 	hrtimer_cancel(&cfs_b->slack_timer);
4730 }
4731 
4732 /*
4733  * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
4734  *
4735  * The race is harmless, since modifying bandwidth settings of unhooked group
4736  * bits doesn't do much.
4737  */
4738 
4739 /* cpu online calback */
4740 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4741 {
4742 	struct task_group *tg;
4743 
4744 	lockdep_assert_held(&rq->lock);
4745 
4746 	rcu_read_lock();
4747 	list_for_each_entry_rcu(tg, &task_groups, list) {
4748 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4749 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4750 
4751 		raw_spin_lock(&cfs_b->lock);
4752 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4753 		raw_spin_unlock(&cfs_b->lock);
4754 	}
4755 	rcu_read_unlock();
4756 }
4757 
4758 /* cpu offline callback */
4759 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4760 {
4761 	struct task_group *tg;
4762 
4763 	lockdep_assert_held(&rq->lock);
4764 
4765 	rcu_read_lock();
4766 	list_for_each_entry_rcu(tg, &task_groups, list) {
4767 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4768 
4769 		if (!cfs_rq->runtime_enabled)
4770 			continue;
4771 
4772 		/*
4773 		 * clock_task is not advancing so we just need to make sure
4774 		 * there's some valid quota amount
4775 		 */
4776 		cfs_rq->runtime_remaining = 1;
4777 		/*
4778 		 * Offline rq is schedulable till cpu is completely disabled
4779 		 * in take_cpu_down(), so we prevent new cfs throttling here.
4780 		 */
4781 		cfs_rq->runtime_enabled = 0;
4782 
4783 		if (cfs_rq_throttled(cfs_rq))
4784 			unthrottle_cfs_rq(cfs_rq);
4785 	}
4786 	rcu_read_unlock();
4787 }
4788 
4789 #else /* CONFIG_CFS_BANDWIDTH */
4790 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4791 {
4792 	return rq_clock_task(rq_of(cfs_rq));
4793 }
4794 
4795 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4796 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4797 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4798 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4799 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4800 
4801 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4802 {
4803 	return 0;
4804 }
4805 
4806 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4807 {
4808 	return 0;
4809 }
4810 
4811 static inline int throttled_lb_pair(struct task_group *tg,
4812 				    int src_cpu, int dest_cpu)
4813 {
4814 	return 0;
4815 }
4816 
4817 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4818 
4819 #ifdef CONFIG_FAIR_GROUP_SCHED
4820 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4821 #endif
4822 
4823 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4824 {
4825 	return NULL;
4826 }
4827 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4828 static inline void update_runtime_enabled(struct rq *rq) {}
4829 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4830 
4831 #endif /* CONFIG_CFS_BANDWIDTH */
4832 
4833 /**************************************************
4834  * CFS operations on tasks:
4835  */
4836 
4837 #ifdef CONFIG_SCHED_HRTICK
4838 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4839 {
4840 	struct sched_entity *se = &p->se;
4841 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4842 
4843 	SCHED_WARN_ON(task_rq(p) != rq);
4844 
4845 	if (rq->cfs.h_nr_running > 1) {
4846 		u64 slice = sched_slice(cfs_rq, se);
4847 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4848 		s64 delta = slice - ran;
4849 
4850 		if (delta < 0) {
4851 			if (rq->curr == p)
4852 				resched_curr(rq);
4853 			return;
4854 		}
4855 		hrtick_start(rq, delta);
4856 	}
4857 }
4858 
4859 /*
4860  * called from enqueue/dequeue and updates the hrtick when the
4861  * current task is from our class and nr_running is low enough
4862  * to matter.
4863  */
4864 static void hrtick_update(struct rq *rq)
4865 {
4866 	struct task_struct *curr = rq->curr;
4867 
4868 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4869 		return;
4870 
4871 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4872 		hrtick_start_fair(rq, curr);
4873 }
4874 #else /* !CONFIG_SCHED_HRTICK */
4875 static inline void
4876 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4877 {
4878 }
4879 
4880 static inline void hrtick_update(struct rq *rq)
4881 {
4882 }
4883 #endif
4884 
4885 /*
4886  * The enqueue_task method is called before nr_running is
4887  * increased. Here we update the fair scheduling stats and
4888  * then put the task into the rbtree:
4889  */
4890 static void
4891 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4892 {
4893 	struct cfs_rq *cfs_rq;
4894 	struct sched_entity *se = &p->se;
4895 
4896 	/*
4897 	 * If in_iowait is set, the code below may not trigger any cpufreq
4898 	 * utilization updates, so do it here explicitly with the IOWAIT flag
4899 	 * passed.
4900 	 */
4901 	if (p->in_iowait)
4902 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
4903 
4904 	for_each_sched_entity(se) {
4905 		if (se->on_rq)
4906 			break;
4907 		cfs_rq = cfs_rq_of(se);
4908 		enqueue_entity(cfs_rq, se, flags);
4909 
4910 		/*
4911 		 * end evaluation on encountering a throttled cfs_rq
4912 		 *
4913 		 * note: in the case of encountering a throttled cfs_rq we will
4914 		 * post the final h_nr_running increment below.
4915 		 */
4916 		if (cfs_rq_throttled(cfs_rq))
4917 			break;
4918 		cfs_rq->h_nr_running++;
4919 
4920 		flags = ENQUEUE_WAKEUP;
4921 	}
4922 
4923 	for_each_sched_entity(se) {
4924 		cfs_rq = cfs_rq_of(se);
4925 		cfs_rq->h_nr_running++;
4926 
4927 		if (cfs_rq_throttled(cfs_rq))
4928 			break;
4929 
4930 		update_load_avg(se, UPDATE_TG);
4931 		update_cfs_shares(se);
4932 	}
4933 
4934 	if (!se)
4935 		add_nr_running(rq, 1);
4936 
4937 	hrtick_update(rq);
4938 }
4939 
4940 static void set_next_buddy(struct sched_entity *se);
4941 
4942 /*
4943  * The dequeue_task method is called before nr_running is
4944  * decreased. We remove the task from the rbtree and
4945  * update the fair scheduling stats:
4946  */
4947 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4948 {
4949 	struct cfs_rq *cfs_rq;
4950 	struct sched_entity *se = &p->se;
4951 	int task_sleep = flags & DEQUEUE_SLEEP;
4952 
4953 	for_each_sched_entity(se) {
4954 		cfs_rq = cfs_rq_of(se);
4955 		dequeue_entity(cfs_rq, se, flags);
4956 
4957 		/*
4958 		 * end evaluation on encountering a throttled cfs_rq
4959 		 *
4960 		 * note: in the case of encountering a throttled cfs_rq we will
4961 		 * post the final h_nr_running decrement below.
4962 		*/
4963 		if (cfs_rq_throttled(cfs_rq))
4964 			break;
4965 		cfs_rq->h_nr_running--;
4966 
4967 		/* Don't dequeue parent if it has other entities besides us */
4968 		if (cfs_rq->load.weight) {
4969 			/* Avoid re-evaluating load for this entity: */
4970 			se = parent_entity(se);
4971 			/*
4972 			 * Bias pick_next to pick a task from this cfs_rq, as
4973 			 * p is sleeping when it is within its sched_slice.
4974 			 */
4975 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4976 				set_next_buddy(se);
4977 			break;
4978 		}
4979 		flags |= DEQUEUE_SLEEP;
4980 	}
4981 
4982 	for_each_sched_entity(se) {
4983 		cfs_rq = cfs_rq_of(se);
4984 		cfs_rq->h_nr_running--;
4985 
4986 		if (cfs_rq_throttled(cfs_rq))
4987 			break;
4988 
4989 		update_load_avg(se, UPDATE_TG);
4990 		update_cfs_shares(se);
4991 	}
4992 
4993 	if (!se)
4994 		sub_nr_running(rq, 1);
4995 
4996 	hrtick_update(rq);
4997 }
4998 
4999 #ifdef CONFIG_SMP
5000 
5001 /* Working cpumask for: load_balance, load_balance_newidle. */
5002 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5003 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5004 
5005 #ifdef CONFIG_NO_HZ_COMMON
5006 /*
5007  * per rq 'load' arrray crap; XXX kill this.
5008  */
5009 
5010 /*
5011  * The exact cpuload calculated at every tick would be:
5012  *
5013  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5014  *
5015  * If a cpu misses updates for n ticks (as it was idle) and update gets
5016  * called on the n+1-th tick when cpu may be busy, then we have:
5017  *
5018  *   load_n   = (1 - 1/2^i)^n * load_0
5019  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5020  *
5021  * decay_load_missed() below does efficient calculation of
5022  *
5023  *   load' = (1 - 1/2^i)^n * load
5024  *
5025  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5026  * This allows us to precompute the above in said factors, thereby allowing the
5027  * reduction of an arbitrary n in O(log_2 n) steps. (See also
5028  * fixed_power_int())
5029  *
5030  * The calculation is approximated on a 128 point scale.
5031  */
5032 #define DEGRADE_SHIFT		7
5033 
5034 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5035 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5036 	{   0,   0,  0,  0,  0,  0, 0, 0 },
5037 	{  64,  32,  8,  0,  0,  0, 0, 0 },
5038 	{  96,  72, 40, 12,  1,  0, 0, 0 },
5039 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
5040 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
5041 };
5042 
5043 /*
5044  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5045  * would be when CPU is idle and so we just decay the old load without
5046  * adding any new load.
5047  */
5048 static unsigned long
5049 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5050 {
5051 	int j = 0;
5052 
5053 	if (!missed_updates)
5054 		return load;
5055 
5056 	if (missed_updates >= degrade_zero_ticks[idx])
5057 		return 0;
5058 
5059 	if (idx == 1)
5060 		return load >> missed_updates;
5061 
5062 	while (missed_updates) {
5063 		if (missed_updates % 2)
5064 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5065 
5066 		missed_updates >>= 1;
5067 		j++;
5068 	}
5069 	return load;
5070 }
5071 #endif /* CONFIG_NO_HZ_COMMON */
5072 
5073 /**
5074  * __cpu_load_update - update the rq->cpu_load[] statistics
5075  * @this_rq: The rq to update statistics for
5076  * @this_load: The current load
5077  * @pending_updates: The number of missed updates
5078  *
5079  * Update rq->cpu_load[] statistics. This function is usually called every
5080  * scheduler tick (TICK_NSEC).
5081  *
5082  * This function computes a decaying average:
5083  *
5084  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5085  *
5086  * Because of NOHZ it might not get called on every tick which gives need for
5087  * the @pending_updates argument.
5088  *
5089  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5090  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5091  *             = A * (A * load[i]_n-2 + B) + B
5092  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
5093  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5094  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5095  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5096  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5097  *
5098  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5099  * any change in load would have resulted in the tick being turned back on.
5100  *
5101  * For regular NOHZ, this reduces to:
5102  *
5103  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
5104  *
5105  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5106  * term.
5107  */
5108 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5109 			    unsigned long pending_updates)
5110 {
5111 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5112 	int i, scale;
5113 
5114 	this_rq->nr_load_updates++;
5115 
5116 	/* Update our load: */
5117 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5118 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5119 		unsigned long old_load, new_load;
5120 
5121 		/* scale is effectively 1 << i now, and >> i divides by scale */
5122 
5123 		old_load = this_rq->cpu_load[i];
5124 #ifdef CONFIG_NO_HZ_COMMON
5125 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5126 		if (tickless_load) {
5127 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5128 			/*
5129 			 * old_load can never be a negative value because a
5130 			 * decayed tickless_load cannot be greater than the
5131 			 * original tickless_load.
5132 			 */
5133 			old_load += tickless_load;
5134 		}
5135 #endif
5136 		new_load = this_load;
5137 		/*
5138 		 * Round up the averaging division if load is increasing. This
5139 		 * prevents us from getting stuck on 9 if the load is 10, for
5140 		 * example.
5141 		 */
5142 		if (new_load > old_load)
5143 			new_load += scale - 1;
5144 
5145 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5146 	}
5147 
5148 	sched_avg_update(this_rq);
5149 }
5150 
5151 /* Used instead of source_load when we know the type == 0 */
5152 static unsigned long weighted_cpuload(struct rq *rq)
5153 {
5154 	return cfs_rq_runnable_load_avg(&rq->cfs);
5155 }
5156 
5157 #ifdef CONFIG_NO_HZ_COMMON
5158 /*
5159  * There is no sane way to deal with nohz on smp when using jiffies because the
5160  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5161  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5162  *
5163  * Therefore we need to avoid the delta approach from the regular tick when
5164  * possible since that would seriously skew the load calculation. This is why we
5165  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5166  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5167  * loop exit, nohz_idle_balance, nohz full exit...)
5168  *
5169  * This means we might still be one tick off for nohz periods.
5170  */
5171 
5172 static void cpu_load_update_nohz(struct rq *this_rq,
5173 				 unsigned long curr_jiffies,
5174 				 unsigned long load)
5175 {
5176 	unsigned long pending_updates;
5177 
5178 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5179 	if (pending_updates) {
5180 		this_rq->last_load_update_tick = curr_jiffies;
5181 		/*
5182 		 * In the regular NOHZ case, we were idle, this means load 0.
5183 		 * In the NOHZ_FULL case, we were non-idle, we should consider
5184 		 * its weighted load.
5185 		 */
5186 		cpu_load_update(this_rq, load, pending_updates);
5187 	}
5188 }
5189 
5190 /*
5191  * Called from nohz_idle_balance() to update the load ratings before doing the
5192  * idle balance.
5193  */
5194 static void cpu_load_update_idle(struct rq *this_rq)
5195 {
5196 	/*
5197 	 * bail if there's load or we're actually up-to-date.
5198 	 */
5199 	if (weighted_cpuload(this_rq))
5200 		return;
5201 
5202 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5203 }
5204 
5205 /*
5206  * Record CPU load on nohz entry so we know the tickless load to account
5207  * on nohz exit. cpu_load[0] happens then to be updated more frequently
5208  * than other cpu_load[idx] but it should be fine as cpu_load readers
5209  * shouldn't rely into synchronized cpu_load[*] updates.
5210  */
5211 void cpu_load_update_nohz_start(void)
5212 {
5213 	struct rq *this_rq = this_rq();
5214 
5215 	/*
5216 	 * This is all lockless but should be fine. If weighted_cpuload changes
5217 	 * concurrently we'll exit nohz. And cpu_load write can race with
5218 	 * cpu_load_update_idle() but both updater would be writing the same.
5219 	 */
5220 	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5221 }
5222 
5223 /*
5224  * Account the tickless load in the end of a nohz frame.
5225  */
5226 void cpu_load_update_nohz_stop(void)
5227 {
5228 	unsigned long curr_jiffies = READ_ONCE(jiffies);
5229 	struct rq *this_rq = this_rq();
5230 	unsigned long load;
5231 	struct rq_flags rf;
5232 
5233 	if (curr_jiffies == this_rq->last_load_update_tick)
5234 		return;
5235 
5236 	load = weighted_cpuload(this_rq);
5237 	rq_lock(this_rq, &rf);
5238 	update_rq_clock(this_rq);
5239 	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5240 	rq_unlock(this_rq, &rf);
5241 }
5242 #else /* !CONFIG_NO_HZ_COMMON */
5243 static inline void cpu_load_update_nohz(struct rq *this_rq,
5244 					unsigned long curr_jiffies,
5245 					unsigned long load) { }
5246 #endif /* CONFIG_NO_HZ_COMMON */
5247 
5248 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5249 {
5250 #ifdef CONFIG_NO_HZ_COMMON
5251 	/* See the mess around cpu_load_update_nohz(). */
5252 	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5253 #endif
5254 	cpu_load_update(this_rq, load, 1);
5255 }
5256 
5257 /*
5258  * Called from scheduler_tick()
5259  */
5260 void cpu_load_update_active(struct rq *this_rq)
5261 {
5262 	unsigned long load = weighted_cpuload(this_rq);
5263 
5264 	if (tick_nohz_tick_stopped())
5265 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5266 	else
5267 		cpu_load_update_periodic(this_rq, load);
5268 }
5269 
5270 /*
5271  * Return a low guess at the load of a migration-source cpu weighted
5272  * according to the scheduling class and "nice" value.
5273  *
5274  * We want to under-estimate the load of migration sources, to
5275  * balance conservatively.
5276  */
5277 static unsigned long source_load(int cpu, int type)
5278 {
5279 	struct rq *rq = cpu_rq(cpu);
5280 	unsigned long total = weighted_cpuload(rq);
5281 
5282 	if (type == 0 || !sched_feat(LB_BIAS))
5283 		return total;
5284 
5285 	return min(rq->cpu_load[type-1], total);
5286 }
5287 
5288 /*
5289  * Return a high guess at the load of a migration-target cpu weighted
5290  * according to the scheduling class and "nice" value.
5291  */
5292 static unsigned long target_load(int cpu, int type)
5293 {
5294 	struct rq *rq = cpu_rq(cpu);
5295 	unsigned long total = weighted_cpuload(rq);
5296 
5297 	if (type == 0 || !sched_feat(LB_BIAS))
5298 		return total;
5299 
5300 	return max(rq->cpu_load[type-1], total);
5301 }
5302 
5303 static unsigned long capacity_of(int cpu)
5304 {
5305 	return cpu_rq(cpu)->cpu_capacity;
5306 }
5307 
5308 static unsigned long capacity_orig_of(int cpu)
5309 {
5310 	return cpu_rq(cpu)->cpu_capacity_orig;
5311 }
5312 
5313 static unsigned long cpu_avg_load_per_task(int cpu)
5314 {
5315 	struct rq *rq = cpu_rq(cpu);
5316 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5317 	unsigned long load_avg = weighted_cpuload(rq);
5318 
5319 	if (nr_running)
5320 		return load_avg / nr_running;
5321 
5322 	return 0;
5323 }
5324 
5325 static void record_wakee(struct task_struct *p)
5326 {
5327 	/*
5328 	 * Only decay a single time; tasks that have less then 1 wakeup per
5329 	 * jiffy will not have built up many flips.
5330 	 */
5331 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5332 		current->wakee_flips >>= 1;
5333 		current->wakee_flip_decay_ts = jiffies;
5334 	}
5335 
5336 	if (current->last_wakee != p) {
5337 		current->last_wakee = p;
5338 		current->wakee_flips++;
5339 	}
5340 }
5341 
5342 /*
5343  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5344  *
5345  * A waker of many should wake a different task than the one last awakened
5346  * at a frequency roughly N times higher than one of its wakees.
5347  *
5348  * In order to determine whether we should let the load spread vs consolidating
5349  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5350  * partner, and a factor of lls_size higher frequency in the other.
5351  *
5352  * With both conditions met, we can be relatively sure that the relationship is
5353  * non-monogamous, with partner count exceeding socket size.
5354  *
5355  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5356  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5357  * socket size.
5358  */
5359 static int wake_wide(struct task_struct *p)
5360 {
5361 	unsigned int master = current->wakee_flips;
5362 	unsigned int slave = p->wakee_flips;
5363 	int factor = this_cpu_read(sd_llc_size);
5364 
5365 	if (master < slave)
5366 		swap(master, slave);
5367 	if (slave < factor || master < slave * factor)
5368 		return 0;
5369 	return 1;
5370 }
5371 
5372 struct llc_stats {
5373 	unsigned long	nr_running;
5374 	unsigned long	load;
5375 	unsigned long	capacity;
5376 	int		has_capacity;
5377 };
5378 
5379 static bool get_llc_stats(struct llc_stats *stats, int cpu)
5380 {
5381 	struct sched_domain_shared *sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5382 
5383 	if (!sds)
5384 		return false;
5385 
5386 	stats->nr_running	= READ_ONCE(sds->nr_running);
5387 	stats->load		= READ_ONCE(sds->load);
5388 	stats->capacity		= READ_ONCE(sds->capacity);
5389 	stats->has_capacity	= stats->nr_running < per_cpu(sd_llc_size, cpu);
5390 
5391 	return true;
5392 }
5393 
5394 /*
5395  * Can a task be moved from prev_cpu to this_cpu without causing a load
5396  * imbalance that would trigger the load balancer?
5397  *
5398  * Since we're running on 'stale' values, we might in fact create an imbalance
5399  * but recomputing these values is expensive, as that'd mean iteration 2 cache
5400  * domains worth of CPUs.
5401  */
5402 static bool
5403 wake_affine_llc(struct sched_domain *sd, struct task_struct *p,
5404 		int this_cpu, int prev_cpu, int sync)
5405 {
5406 	struct llc_stats prev_stats, this_stats;
5407 	s64 this_eff_load, prev_eff_load;
5408 	unsigned long task_load;
5409 
5410 	if (!get_llc_stats(&prev_stats, prev_cpu) ||
5411 	    !get_llc_stats(&this_stats, this_cpu))
5412 		return false;
5413 
5414 	/*
5415 	 * If sync wakeup then subtract the (maximum possible)
5416 	 * effect of the currently running task from the load
5417 	 * of the current LLC.
5418 	 */
5419 	if (sync) {
5420 		unsigned long current_load = task_h_load(current);
5421 
5422 		/* in this case load hits 0 and this LLC is considered 'idle' */
5423 		if (current_load > this_stats.load)
5424 			return true;
5425 
5426 		this_stats.load -= current_load;
5427 	}
5428 
5429 	/*
5430 	 * The has_capacity stuff is not SMT aware, but by trying to balance
5431 	 * the nr_running on both ends we try and fill the domain at equal
5432 	 * rates, thereby first consuming cores before siblings.
5433 	 */
5434 
5435 	/* if the old cache has capacity, stay there */
5436 	if (prev_stats.has_capacity && prev_stats.nr_running < this_stats.nr_running+1)
5437 		return false;
5438 
5439 	/* if this cache has capacity, come here */
5440 	if (this_stats.has_capacity && this_stats.nr_running < prev_stats.nr_running+1)
5441 		return true;
5442 
5443 	/*
5444 	 * Check to see if we can move the load without causing too much
5445 	 * imbalance.
5446 	 */
5447 	task_load = task_h_load(p);
5448 
5449 	this_eff_load = 100;
5450 	this_eff_load *= prev_stats.capacity;
5451 
5452 	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5453 	prev_eff_load *= this_stats.capacity;
5454 
5455 	this_eff_load *= this_stats.load + task_load;
5456 	prev_eff_load *= prev_stats.load - task_load;
5457 
5458 	return this_eff_load <= prev_eff_load;
5459 }
5460 
5461 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5462 		       int prev_cpu, int sync)
5463 {
5464 	int this_cpu = smp_processor_id();
5465 	bool affine;
5466 
5467 	/*
5468 	 * Default to no affine wakeups; wake_affine() should not effect a task
5469 	 * placement the load-balancer feels inclined to undo. The conservative
5470 	 * option is therefore to not move tasks when they wake up.
5471 	 */
5472 	affine = false;
5473 
5474 	/*
5475 	 * If the wakeup is across cache domains, try to evaluate if movement
5476 	 * makes sense, otherwise rely on select_idle_siblings() to do
5477 	 * placement inside the cache domain.
5478 	 */
5479 	if (!cpus_share_cache(prev_cpu, this_cpu))
5480 		affine = wake_affine_llc(sd, p, this_cpu, prev_cpu, sync);
5481 
5482 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5483 	if (affine) {
5484 		schedstat_inc(sd->ttwu_move_affine);
5485 		schedstat_inc(p->se.statistics.nr_wakeups_affine);
5486 	}
5487 
5488 	return affine;
5489 }
5490 
5491 static inline int task_util(struct task_struct *p);
5492 static int cpu_util_wake(int cpu, struct task_struct *p);
5493 
5494 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5495 {
5496 	return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5497 }
5498 
5499 /*
5500  * find_idlest_group finds and returns the least busy CPU group within the
5501  * domain.
5502  */
5503 static struct sched_group *
5504 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5505 		  int this_cpu, int sd_flag)
5506 {
5507 	struct sched_group *idlest = NULL, *group = sd->groups;
5508 	struct sched_group *most_spare_sg = NULL;
5509 	unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5510 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
5511 	unsigned long most_spare = 0, this_spare = 0;
5512 	int load_idx = sd->forkexec_idx;
5513 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5514 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5515 				(sd->imbalance_pct-100) / 100;
5516 
5517 	if (sd_flag & SD_BALANCE_WAKE)
5518 		load_idx = sd->wake_idx;
5519 
5520 	do {
5521 		unsigned long load, avg_load, runnable_load;
5522 		unsigned long spare_cap, max_spare_cap;
5523 		int local_group;
5524 		int i;
5525 
5526 		/* Skip over this group if it has no CPUs allowed */
5527 		if (!cpumask_intersects(sched_group_span(group),
5528 					&p->cpus_allowed))
5529 			continue;
5530 
5531 		local_group = cpumask_test_cpu(this_cpu,
5532 					       sched_group_span(group));
5533 
5534 		/*
5535 		 * Tally up the load of all CPUs in the group and find
5536 		 * the group containing the CPU with most spare capacity.
5537 		 */
5538 		avg_load = 0;
5539 		runnable_load = 0;
5540 		max_spare_cap = 0;
5541 
5542 		for_each_cpu(i, sched_group_span(group)) {
5543 			/* Bias balancing toward cpus of our domain */
5544 			if (local_group)
5545 				load = source_load(i, load_idx);
5546 			else
5547 				load = target_load(i, load_idx);
5548 
5549 			runnable_load += load;
5550 
5551 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5552 
5553 			spare_cap = capacity_spare_wake(i, p);
5554 
5555 			if (spare_cap > max_spare_cap)
5556 				max_spare_cap = spare_cap;
5557 		}
5558 
5559 		/* Adjust by relative CPU capacity of the group */
5560 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5561 					group->sgc->capacity;
5562 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5563 					group->sgc->capacity;
5564 
5565 		if (local_group) {
5566 			this_runnable_load = runnable_load;
5567 			this_avg_load = avg_load;
5568 			this_spare = max_spare_cap;
5569 		} else {
5570 			if (min_runnable_load > (runnable_load + imbalance)) {
5571 				/*
5572 				 * The runnable load is significantly smaller
5573 				 * so we can pick this new cpu
5574 				 */
5575 				min_runnable_load = runnable_load;
5576 				min_avg_load = avg_load;
5577 				idlest = group;
5578 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5579 				   (100*min_avg_load > imbalance_scale*avg_load)) {
5580 				/*
5581 				 * The runnable loads are close so take the
5582 				 * blocked load into account through avg_load.
5583 				 */
5584 				min_avg_load = avg_load;
5585 				idlest = group;
5586 			}
5587 
5588 			if (most_spare < max_spare_cap) {
5589 				most_spare = max_spare_cap;
5590 				most_spare_sg = group;
5591 			}
5592 		}
5593 	} while (group = group->next, group != sd->groups);
5594 
5595 	/*
5596 	 * The cross-over point between using spare capacity or least load
5597 	 * is too conservative for high utilization tasks on partially
5598 	 * utilized systems if we require spare_capacity > task_util(p),
5599 	 * so we allow for some task stuffing by using
5600 	 * spare_capacity > task_util(p)/2.
5601 	 *
5602 	 * Spare capacity can't be used for fork because the utilization has
5603 	 * not been set yet, we must first select a rq to compute the initial
5604 	 * utilization.
5605 	 */
5606 	if (sd_flag & SD_BALANCE_FORK)
5607 		goto skip_spare;
5608 
5609 	if (this_spare > task_util(p) / 2 &&
5610 	    imbalance_scale*this_spare > 100*most_spare)
5611 		return NULL;
5612 
5613 	if (most_spare > task_util(p) / 2)
5614 		return most_spare_sg;
5615 
5616 skip_spare:
5617 	if (!idlest)
5618 		return NULL;
5619 
5620 	if (min_runnable_load > (this_runnable_load + imbalance))
5621 		return NULL;
5622 
5623 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5624 	     (100*this_avg_load < imbalance_scale*min_avg_load))
5625 		return NULL;
5626 
5627 	return idlest;
5628 }
5629 
5630 /*
5631  * find_idlest_cpu - find the idlest cpu among the cpus in group.
5632  */
5633 static int
5634 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5635 {
5636 	unsigned long load, min_load = ULONG_MAX;
5637 	unsigned int min_exit_latency = UINT_MAX;
5638 	u64 latest_idle_timestamp = 0;
5639 	int least_loaded_cpu = this_cpu;
5640 	int shallowest_idle_cpu = -1;
5641 	int i;
5642 
5643 	/* Check if we have any choice: */
5644 	if (group->group_weight == 1)
5645 		return cpumask_first(sched_group_span(group));
5646 
5647 	/* Traverse only the allowed CPUs */
5648 	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5649 		if (idle_cpu(i)) {
5650 			struct rq *rq = cpu_rq(i);
5651 			struct cpuidle_state *idle = idle_get_state(rq);
5652 			if (idle && idle->exit_latency < min_exit_latency) {
5653 				/*
5654 				 * We give priority to a CPU whose idle state
5655 				 * has the smallest exit latency irrespective
5656 				 * of any idle timestamp.
5657 				 */
5658 				min_exit_latency = idle->exit_latency;
5659 				latest_idle_timestamp = rq->idle_stamp;
5660 				shallowest_idle_cpu = i;
5661 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5662 				   rq->idle_stamp > latest_idle_timestamp) {
5663 				/*
5664 				 * If equal or no active idle state, then
5665 				 * the most recently idled CPU might have
5666 				 * a warmer cache.
5667 				 */
5668 				latest_idle_timestamp = rq->idle_stamp;
5669 				shallowest_idle_cpu = i;
5670 			}
5671 		} else if (shallowest_idle_cpu == -1) {
5672 			load = weighted_cpuload(cpu_rq(i));
5673 			if (load < min_load || (load == min_load && i == this_cpu)) {
5674 				min_load = load;
5675 				least_loaded_cpu = i;
5676 			}
5677 		}
5678 	}
5679 
5680 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5681 }
5682 
5683 #ifdef CONFIG_SCHED_SMT
5684 
5685 static inline void set_idle_cores(int cpu, int val)
5686 {
5687 	struct sched_domain_shared *sds;
5688 
5689 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5690 	if (sds)
5691 		WRITE_ONCE(sds->has_idle_cores, val);
5692 }
5693 
5694 static inline bool test_idle_cores(int cpu, bool def)
5695 {
5696 	struct sched_domain_shared *sds;
5697 
5698 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5699 	if (sds)
5700 		return READ_ONCE(sds->has_idle_cores);
5701 
5702 	return def;
5703 }
5704 
5705 /*
5706  * Scans the local SMT mask to see if the entire core is idle, and records this
5707  * information in sd_llc_shared->has_idle_cores.
5708  *
5709  * Since SMT siblings share all cache levels, inspecting this limited remote
5710  * state should be fairly cheap.
5711  */
5712 void __update_idle_core(struct rq *rq)
5713 {
5714 	int core = cpu_of(rq);
5715 	int cpu;
5716 
5717 	rcu_read_lock();
5718 	if (test_idle_cores(core, true))
5719 		goto unlock;
5720 
5721 	for_each_cpu(cpu, cpu_smt_mask(core)) {
5722 		if (cpu == core)
5723 			continue;
5724 
5725 		if (!idle_cpu(cpu))
5726 			goto unlock;
5727 	}
5728 
5729 	set_idle_cores(core, 1);
5730 unlock:
5731 	rcu_read_unlock();
5732 }
5733 
5734 /*
5735  * Scan the entire LLC domain for idle cores; this dynamically switches off if
5736  * there are no idle cores left in the system; tracked through
5737  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5738  */
5739 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5740 {
5741 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5742 	int core, cpu;
5743 
5744 	if (!static_branch_likely(&sched_smt_present))
5745 		return -1;
5746 
5747 	if (!test_idle_cores(target, false))
5748 		return -1;
5749 
5750 	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5751 
5752 	for_each_cpu_wrap(core, cpus, target) {
5753 		bool idle = true;
5754 
5755 		for_each_cpu(cpu, cpu_smt_mask(core)) {
5756 			cpumask_clear_cpu(cpu, cpus);
5757 			if (!idle_cpu(cpu))
5758 				idle = false;
5759 		}
5760 
5761 		if (idle)
5762 			return core;
5763 	}
5764 
5765 	/*
5766 	 * Failed to find an idle core; stop looking for one.
5767 	 */
5768 	set_idle_cores(target, 0);
5769 
5770 	return -1;
5771 }
5772 
5773 /*
5774  * Scan the local SMT mask for idle CPUs.
5775  */
5776 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5777 {
5778 	int cpu;
5779 
5780 	if (!static_branch_likely(&sched_smt_present))
5781 		return -1;
5782 
5783 	for_each_cpu(cpu, cpu_smt_mask(target)) {
5784 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5785 			continue;
5786 		if (idle_cpu(cpu))
5787 			return cpu;
5788 	}
5789 
5790 	return -1;
5791 }
5792 
5793 #else /* CONFIG_SCHED_SMT */
5794 
5795 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5796 {
5797 	return -1;
5798 }
5799 
5800 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5801 {
5802 	return -1;
5803 }
5804 
5805 #endif /* CONFIG_SCHED_SMT */
5806 
5807 /*
5808  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5809  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5810  * average idle time for this rq (as found in rq->avg_idle).
5811  */
5812 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5813 {
5814 	struct sched_domain *this_sd;
5815 	u64 avg_cost, avg_idle;
5816 	u64 time, cost;
5817 	s64 delta;
5818 	int cpu, nr = INT_MAX;
5819 
5820 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5821 	if (!this_sd)
5822 		return -1;
5823 
5824 	/*
5825 	 * Due to large variance we need a large fuzz factor; hackbench in
5826 	 * particularly is sensitive here.
5827 	 */
5828 	avg_idle = this_rq()->avg_idle / 512;
5829 	avg_cost = this_sd->avg_scan_cost + 1;
5830 
5831 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
5832 		return -1;
5833 
5834 	if (sched_feat(SIS_PROP)) {
5835 		u64 span_avg = sd->span_weight * avg_idle;
5836 		if (span_avg > 4*avg_cost)
5837 			nr = div_u64(span_avg, avg_cost);
5838 		else
5839 			nr = 4;
5840 	}
5841 
5842 	time = local_clock();
5843 
5844 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
5845 		if (!--nr)
5846 			return -1;
5847 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5848 			continue;
5849 		if (idle_cpu(cpu))
5850 			break;
5851 	}
5852 
5853 	time = local_clock() - time;
5854 	cost = this_sd->avg_scan_cost;
5855 	delta = (s64)(time - cost) / 8;
5856 	this_sd->avg_scan_cost += delta;
5857 
5858 	return cpu;
5859 }
5860 
5861 /*
5862  * Try and locate an idle core/thread in the LLC cache domain.
5863  */
5864 static int select_idle_sibling(struct task_struct *p, int prev, int target)
5865 {
5866 	struct sched_domain *sd;
5867 	int i;
5868 
5869 	if (idle_cpu(target))
5870 		return target;
5871 
5872 	/*
5873 	 * If the previous cpu is cache affine and idle, don't be stupid.
5874 	 */
5875 	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5876 		return prev;
5877 
5878 	sd = rcu_dereference(per_cpu(sd_llc, target));
5879 	if (!sd)
5880 		return target;
5881 
5882 	i = select_idle_core(p, sd, target);
5883 	if ((unsigned)i < nr_cpumask_bits)
5884 		return i;
5885 
5886 	i = select_idle_cpu(p, sd, target);
5887 	if ((unsigned)i < nr_cpumask_bits)
5888 		return i;
5889 
5890 	i = select_idle_smt(p, sd, target);
5891 	if ((unsigned)i < nr_cpumask_bits)
5892 		return i;
5893 
5894 	return target;
5895 }
5896 
5897 /*
5898  * cpu_util returns the amount of capacity of a CPU that is used by CFS
5899  * tasks. The unit of the return value must be the one of capacity so we can
5900  * compare the utilization with the capacity of the CPU that is available for
5901  * CFS task (ie cpu_capacity).
5902  *
5903  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5904  * recent utilization of currently non-runnable tasks on a CPU. It represents
5905  * the amount of utilization of a CPU in the range [0..capacity_orig] where
5906  * capacity_orig is the cpu_capacity available at the highest frequency
5907  * (arch_scale_freq_capacity()).
5908  * The utilization of a CPU converges towards a sum equal to or less than the
5909  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5910  * the running time on this CPU scaled by capacity_curr.
5911  *
5912  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5913  * higher than capacity_orig because of unfortunate rounding in
5914  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5915  * the average stabilizes with the new running time. We need to check that the
5916  * utilization stays within the range of [0..capacity_orig] and cap it if
5917  * necessary. Without utilization capping, a group could be seen as overloaded
5918  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5919  * available capacity. We allow utilization to overshoot capacity_curr (but not
5920  * capacity_orig) as it useful for predicting the capacity required after task
5921  * migrations (scheduler-driven DVFS).
5922  */
5923 static int cpu_util(int cpu)
5924 {
5925 	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5926 	unsigned long capacity = capacity_orig_of(cpu);
5927 
5928 	return (util >= capacity) ? capacity : util;
5929 }
5930 
5931 static inline int task_util(struct task_struct *p)
5932 {
5933 	return p->se.avg.util_avg;
5934 }
5935 
5936 /*
5937  * cpu_util_wake: Compute cpu utilization with any contributions from
5938  * the waking task p removed.
5939  */
5940 static int cpu_util_wake(int cpu, struct task_struct *p)
5941 {
5942 	unsigned long util, capacity;
5943 
5944 	/* Task has no contribution or is new */
5945 	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5946 		return cpu_util(cpu);
5947 
5948 	capacity = capacity_orig_of(cpu);
5949 	util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5950 
5951 	return (util >= capacity) ? capacity : util;
5952 }
5953 
5954 /*
5955  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5956  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5957  *
5958  * In that case WAKE_AFFINE doesn't make sense and we'll let
5959  * BALANCE_WAKE sort things out.
5960  */
5961 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5962 {
5963 	long min_cap, max_cap;
5964 
5965 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5966 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5967 
5968 	/* Minimum capacity is close to max, no need to abort wake_affine */
5969 	if (max_cap - min_cap < max_cap >> 3)
5970 		return 0;
5971 
5972 	/* Bring task utilization in sync with prev_cpu */
5973 	sync_entity_load_avg(&p->se);
5974 
5975 	return min_cap * 1024 < task_util(p) * capacity_margin;
5976 }
5977 
5978 /*
5979  * select_task_rq_fair: Select target runqueue for the waking task in domains
5980  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5981  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5982  *
5983  * Balances load by selecting the idlest cpu in the idlest group, or under
5984  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5985  *
5986  * Returns the target cpu number.
5987  *
5988  * preempt must be disabled.
5989  */
5990 static int
5991 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5992 {
5993 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5994 	int cpu = smp_processor_id();
5995 	int new_cpu = prev_cpu;
5996 	int want_affine = 0;
5997 	int sync = wake_flags & WF_SYNC;
5998 
5999 	if (sd_flag & SD_BALANCE_WAKE) {
6000 		record_wakee(p);
6001 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6002 			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
6003 	}
6004 
6005 	rcu_read_lock();
6006 	for_each_domain(cpu, tmp) {
6007 		if (!(tmp->flags & SD_LOAD_BALANCE))
6008 			break;
6009 
6010 		/*
6011 		 * If both cpu and prev_cpu are part of this domain,
6012 		 * cpu is a valid SD_WAKE_AFFINE target.
6013 		 */
6014 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6015 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6016 			affine_sd = tmp;
6017 			break;
6018 		}
6019 
6020 		if (tmp->flags & sd_flag)
6021 			sd = tmp;
6022 		else if (!want_affine)
6023 			break;
6024 	}
6025 
6026 	if (affine_sd) {
6027 		sd = NULL; /* Prefer wake_affine over balance flags */
6028 		if (cpu == prev_cpu)
6029 			goto pick_cpu;
6030 
6031 		if (wake_affine(affine_sd, p, prev_cpu, sync))
6032 			new_cpu = cpu;
6033 	}
6034 
6035 	if (!sd) {
6036  pick_cpu:
6037 		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
6038 			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6039 
6040 	} else while (sd) {
6041 		struct sched_group *group;
6042 		int weight;
6043 
6044 		if (!(sd->flags & sd_flag)) {
6045 			sd = sd->child;
6046 			continue;
6047 		}
6048 
6049 		group = find_idlest_group(sd, p, cpu, sd_flag);
6050 		if (!group) {
6051 			sd = sd->child;
6052 			continue;
6053 		}
6054 
6055 		new_cpu = find_idlest_cpu(group, p, cpu);
6056 		if (new_cpu == -1 || new_cpu == cpu) {
6057 			/* Now try balancing at a lower domain level of cpu */
6058 			sd = sd->child;
6059 			continue;
6060 		}
6061 
6062 		/* Now try balancing at a lower domain level of new_cpu */
6063 		cpu = new_cpu;
6064 		weight = sd->span_weight;
6065 		sd = NULL;
6066 		for_each_domain(cpu, tmp) {
6067 			if (weight <= tmp->span_weight)
6068 				break;
6069 			if (tmp->flags & sd_flag)
6070 				sd = tmp;
6071 		}
6072 		/* while loop will break here if sd == NULL */
6073 	}
6074 	rcu_read_unlock();
6075 
6076 	return new_cpu;
6077 }
6078 
6079 /*
6080  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6081  * cfs_rq_of(p) references at time of call are still valid and identify the
6082  * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6083  */
6084 static void migrate_task_rq_fair(struct task_struct *p)
6085 {
6086 	/*
6087 	 * As blocked tasks retain absolute vruntime the migration needs to
6088 	 * deal with this by subtracting the old and adding the new
6089 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6090 	 * the task on the new runqueue.
6091 	 */
6092 	if (p->state == TASK_WAKING) {
6093 		struct sched_entity *se = &p->se;
6094 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6095 		u64 min_vruntime;
6096 
6097 #ifndef CONFIG_64BIT
6098 		u64 min_vruntime_copy;
6099 
6100 		do {
6101 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6102 			smp_rmb();
6103 			min_vruntime = cfs_rq->min_vruntime;
6104 		} while (min_vruntime != min_vruntime_copy);
6105 #else
6106 		min_vruntime = cfs_rq->min_vruntime;
6107 #endif
6108 
6109 		se->vruntime -= min_vruntime;
6110 	}
6111 
6112 	/*
6113 	 * We are supposed to update the task to "current" time, then its up to date
6114 	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6115 	 * what current time is, so simply throw away the out-of-date time. This
6116 	 * will result in the wakee task is less decayed, but giving the wakee more
6117 	 * load sounds not bad.
6118 	 */
6119 	remove_entity_load_avg(&p->se);
6120 
6121 	/* Tell new CPU we are migrated */
6122 	p->se.avg.last_update_time = 0;
6123 
6124 	/* We have migrated, no longer consider this task hot */
6125 	p->se.exec_start = 0;
6126 }
6127 
6128 static void task_dead_fair(struct task_struct *p)
6129 {
6130 	remove_entity_load_avg(&p->se);
6131 }
6132 #endif /* CONFIG_SMP */
6133 
6134 static unsigned long
6135 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6136 {
6137 	unsigned long gran = sysctl_sched_wakeup_granularity;
6138 
6139 	/*
6140 	 * Since its curr running now, convert the gran from real-time
6141 	 * to virtual-time in his units.
6142 	 *
6143 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6144 	 * they get preempted easier. That is, if 'se' < 'curr' then
6145 	 * the resulting gran will be larger, therefore penalizing the
6146 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6147 	 * be smaller, again penalizing the lighter task.
6148 	 *
6149 	 * This is especially important for buddies when the leftmost
6150 	 * task is higher priority than the buddy.
6151 	 */
6152 	return calc_delta_fair(gran, se);
6153 }
6154 
6155 /*
6156  * Should 'se' preempt 'curr'.
6157  *
6158  *             |s1
6159  *        |s2
6160  *   |s3
6161  *         g
6162  *      |<--->|c
6163  *
6164  *  w(c, s1) = -1
6165  *  w(c, s2) =  0
6166  *  w(c, s3) =  1
6167  *
6168  */
6169 static int
6170 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6171 {
6172 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6173 
6174 	if (vdiff <= 0)
6175 		return -1;
6176 
6177 	gran = wakeup_gran(curr, se);
6178 	if (vdiff > gran)
6179 		return 1;
6180 
6181 	return 0;
6182 }
6183 
6184 static void set_last_buddy(struct sched_entity *se)
6185 {
6186 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6187 		return;
6188 
6189 	for_each_sched_entity(se) {
6190 		if (SCHED_WARN_ON(!se->on_rq))
6191 			return;
6192 		cfs_rq_of(se)->last = se;
6193 	}
6194 }
6195 
6196 static void set_next_buddy(struct sched_entity *se)
6197 {
6198 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6199 		return;
6200 
6201 	for_each_sched_entity(se) {
6202 		if (SCHED_WARN_ON(!se->on_rq))
6203 			return;
6204 		cfs_rq_of(se)->next = se;
6205 	}
6206 }
6207 
6208 static void set_skip_buddy(struct sched_entity *se)
6209 {
6210 	for_each_sched_entity(se)
6211 		cfs_rq_of(se)->skip = se;
6212 }
6213 
6214 /*
6215  * Preempt the current task with a newly woken task if needed:
6216  */
6217 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6218 {
6219 	struct task_struct *curr = rq->curr;
6220 	struct sched_entity *se = &curr->se, *pse = &p->se;
6221 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6222 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6223 	int next_buddy_marked = 0;
6224 
6225 	if (unlikely(se == pse))
6226 		return;
6227 
6228 	/*
6229 	 * This is possible from callers such as attach_tasks(), in which we
6230 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6231 	 * lead to a throttle).  This both saves work and prevents false
6232 	 * next-buddy nomination below.
6233 	 */
6234 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6235 		return;
6236 
6237 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6238 		set_next_buddy(pse);
6239 		next_buddy_marked = 1;
6240 	}
6241 
6242 	/*
6243 	 * We can come here with TIF_NEED_RESCHED already set from new task
6244 	 * wake up path.
6245 	 *
6246 	 * Note: this also catches the edge-case of curr being in a throttled
6247 	 * group (e.g. via set_curr_task), since update_curr() (in the
6248 	 * enqueue of curr) will have resulted in resched being set.  This
6249 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6250 	 * below.
6251 	 */
6252 	if (test_tsk_need_resched(curr))
6253 		return;
6254 
6255 	/* Idle tasks are by definition preempted by non-idle tasks. */
6256 	if (unlikely(curr->policy == SCHED_IDLE) &&
6257 	    likely(p->policy != SCHED_IDLE))
6258 		goto preempt;
6259 
6260 	/*
6261 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6262 	 * is driven by the tick):
6263 	 */
6264 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6265 		return;
6266 
6267 	find_matching_se(&se, &pse);
6268 	update_curr(cfs_rq_of(se));
6269 	BUG_ON(!pse);
6270 	if (wakeup_preempt_entity(se, pse) == 1) {
6271 		/*
6272 		 * Bias pick_next to pick the sched entity that is
6273 		 * triggering this preemption.
6274 		 */
6275 		if (!next_buddy_marked)
6276 			set_next_buddy(pse);
6277 		goto preempt;
6278 	}
6279 
6280 	return;
6281 
6282 preempt:
6283 	resched_curr(rq);
6284 	/*
6285 	 * Only set the backward buddy when the current task is still
6286 	 * on the rq. This can happen when a wakeup gets interleaved
6287 	 * with schedule on the ->pre_schedule() or idle_balance()
6288 	 * point, either of which can * drop the rq lock.
6289 	 *
6290 	 * Also, during early boot the idle thread is in the fair class,
6291 	 * for obvious reasons its a bad idea to schedule back to it.
6292 	 */
6293 	if (unlikely(!se->on_rq || curr == rq->idle))
6294 		return;
6295 
6296 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6297 		set_last_buddy(se);
6298 }
6299 
6300 static struct task_struct *
6301 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6302 {
6303 	struct cfs_rq *cfs_rq = &rq->cfs;
6304 	struct sched_entity *se;
6305 	struct task_struct *p;
6306 	int new_tasks;
6307 
6308 again:
6309 	if (!cfs_rq->nr_running)
6310 		goto idle;
6311 
6312 #ifdef CONFIG_FAIR_GROUP_SCHED
6313 	if (prev->sched_class != &fair_sched_class)
6314 		goto simple;
6315 
6316 	/*
6317 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6318 	 * likely that a next task is from the same cgroup as the current.
6319 	 *
6320 	 * Therefore attempt to avoid putting and setting the entire cgroup
6321 	 * hierarchy, only change the part that actually changes.
6322 	 */
6323 
6324 	do {
6325 		struct sched_entity *curr = cfs_rq->curr;
6326 
6327 		/*
6328 		 * Since we got here without doing put_prev_entity() we also
6329 		 * have to consider cfs_rq->curr. If it is still a runnable
6330 		 * entity, update_curr() will update its vruntime, otherwise
6331 		 * forget we've ever seen it.
6332 		 */
6333 		if (curr) {
6334 			if (curr->on_rq)
6335 				update_curr(cfs_rq);
6336 			else
6337 				curr = NULL;
6338 
6339 			/*
6340 			 * This call to check_cfs_rq_runtime() will do the
6341 			 * throttle and dequeue its entity in the parent(s).
6342 			 * Therefore the nr_running test will indeed
6343 			 * be correct.
6344 			 */
6345 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6346 				cfs_rq = &rq->cfs;
6347 
6348 				if (!cfs_rq->nr_running)
6349 					goto idle;
6350 
6351 				goto simple;
6352 			}
6353 		}
6354 
6355 		se = pick_next_entity(cfs_rq, curr);
6356 		cfs_rq = group_cfs_rq(se);
6357 	} while (cfs_rq);
6358 
6359 	p = task_of(se);
6360 
6361 	/*
6362 	 * Since we haven't yet done put_prev_entity and if the selected task
6363 	 * is a different task than we started out with, try and touch the
6364 	 * least amount of cfs_rqs.
6365 	 */
6366 	if (prev != p) {
6367 		struct sched_entity *pse = &prev->se;
6368 
6369 		while (!(cfs_rq = is_same_group(se, pse))) {
6370 			int se_depth = se->depth;
6371 			int pse_depth = pse->depth;
6372 
6373 			if (se_depth <= pse_depth) {
6374 				put_prev_entity(cfs_rq_of(pse), pse);
6375 				pse = parent_entity(pse);
6376 			}
6377 			if (se_depth >= pse_depth) {
6378 				set_next_entity(cfs_rq_of(se), se);
6379 				se = parent_entity(se);
6380 			}
6381 		}
6382 
6383 		put_prev_entity(cfs_rq, pse);
6384 		set_next_entity(cfs_rq, se);
6385 	}
6386 
6387 	if (hrtick_enabled(rq))
6388 		hrtick_start_fair(rq, p);
6389 
6390 	return p;
6391 simple:
6392 #endif
6393 
6394 	put_prev_task(rq, prev);
6395 
6396 	do {
6397 		se = pick_next_entity(cfs_rq, NULL);
6398 		set_next_entity(cfs_rq, se);
6399 		cfs_rq = group_cfs_rq(se);
6400 	} while (cfs_rq);
6401 
6402 	p = task_of(se);
6403 
6404 	if (hrtick_enabled(rq))
6405 		hrtick_start_fair(rq, p);
6406 
6407 	return p;
6408 
6409 idle:
6410 	new_tasks = idle_balance(rq, rf);
6411 
6412 	/*
6413 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6414 	 * possible for any higher priority task to appear. In that case we
6415 	 * must re-start the pick_next_entity() loop.
6416 	 */
6417 	if (new_tasks < 0)
6418 		return RETRY_TASK;
6419 
6420 	if (new_tasks > 0)
6421 		goto again;
6422 
6423 	return NULL;
6424 }
6425 
6426 /*
6427  * Account for a descheduled task:
6428  */
6429 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6430 {
6431 	struct sched_entity *se = &prev->se;
6432 	struct cfs_rq *cfs_rq;
6433 
6434 	for_each_sched_entity(se) {
6435 		cfs_rq = cfs_rq_of(se);
6436 		put_prev_entity(cfs_rq, se);
6437 	}
6438 }
6439 
6440 /*
6441  * sched_yield() is very simple
6442  *
6443  * The magic of dealing with the ->skip buddy is in pick_next_entity.
6444  */
6445 static void yield_task_fair(struct rq *rq)
6446 {
6447 	struct task_struct *curr = rq->curr;
6448 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6449 	struct sched_entity *se = &curr->se;
6450 
6451 	/*
6452 	 * Are we the only task in the tree?
6453 	 */
6454 	if (unlikely(rq->nr_running == 1))
6455 		return;
6456 
6457 	clear_buddies(cfs_rq, se);
6458 
6459 	if (curr->policy != SCHED_BATCH) {
6460 		update_rq_clock(rq);
6461 		/*
6462 		 * Update run-time statistics of the 'current'.
6463 		 */
6464 		update_curr(cfs_rq);
6465 		/*
6466 		 * Tell update_rq_clock() that we've just updated,
6467 		 * so we don't do microscopic update in schedule()
6468 		 * and double the fastpath cost.
6469 		 */
6470 		rq_clock_skip_update(rq, true);
6471 	}
6472 
6473 	set_skip_buddy(se);
6474 }
6475 
6476 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6477 {
6478 	struct sched_entity *se = &p->se;
6479 
6480 	/* throttled hierarchies are not runnable */
6481 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6482 		return false;
6483 
6484 	/* Tell the scheduler that we'd really like pse to run next. */
6485 	set_next_buddy(se);
6486 
6487 	yield_task_fair(rq);
6488 
6489 	return true;
6490 }
6491 
6492 #ifdef CONFIG_SMP
6493 /**************************************************
6494  * Fair scheduling class load-balancing methods.
6495  *
6496  * BASICS
6497  *
6498  * The purpose of load-balancing is to achieve the same basic fairness the
6499  * per-cpu scheduler provides, namely provide a proportional amount of compute
6500  * time to each task. This is expressed in the following equation:
6501  *
6502  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
6503  *
6504  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6505  * W_i,0 is defined as:
6506  *
6507  *   W_i,0 = \Sum_j w_i,j                                             (2)
6508  *
6509  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6510  * is derived from the nice value as per sched_prio_to_weight[].
6511  *
6512  * The weight average is an exponential decay average of the instantaneous
6513  * weight:
6514  *
6515  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
6516  *
6517  * C_i is the compute capacity of cpu i, typically it is the
6518  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6519  * can also include other factors [XXX].
6520  *
6521  * To achieve this balance we define a measure of imbalance which follows
6522  * directly from (1):
6523  *
6524  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
6525  *
6526  * We them move tasks around to minimize the imbalance. In the continuous
6527  * function space it is obvious this converges, in the discrete case we get
6528  * a few fun cases generally called infeasible weight scenarios.
6529  *
6530  * [XXX expand on:
6531  *     - infeasible weights;
6532  *     - local vs global optima in the discrete case. ]
6533  *
6534  *
6535  * SCHED DOMAINS
6536  *
6537  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6538  * for all i,j solution, we create a tree of cpus that follows the hardware
6539  * topology where each level pairs two lower groups (or better). This results
6540  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6541  * tree to only the first of the previous level and we decrease the frequency
6542  * of load-balance at each level inv. proportional to the number of cpus in
6543  * the groups.
6544  *
6545  * This yields:
6546  *
6547  *     log_2 n     1     n
6548  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
6549  *     i = 0      2^i   2^i
6550  *                               `- size of each group
6551  *         |         |     `- number of cpus doing load-balance
6552  *         |         `- freq
6553  *         `- sum over all levels
6554  *
6555  * Coupled with a limit on how many tasks we can migrate every balance pass,
6556  * this makes (5) the runtime complexity of the balancer.
6557  *
6558  * An important property here is that each CPU is still (indirectly) connected
6559  * to every other cpu in at most O(log n) steps:
6560  *
6561  * The adjacency matrix of the resulting graph is given by:
6562  *
6563  *             log_2 n
6564  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
6565  *             k = 0
6566  *
6567  * And you'll find that:
6568  *
6569  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
6570  *
6571  * Showing there's indeed a path between every cpu in at most O(log n) steps.
6572  * The task movement gives a factor of O(m), giving a convergence complexity
6573  * of:
6574  *
6575  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
6576  *
6577  *
6578  * WORK CONSERVING
6579  *
6580  * In order to avoid CPUs going idle while there's still work to do, new idle
6581  * balancing is more aggressive and has the newly idle cpu iterate up the domain
6582  * tree itself instead of relying on other CPUs to bring it work.
6583  *
6584  * This adds some complexity to both (5) and (8) but it reduces the total idle
6585  * time.
6586  *
6587  * [XXX more?]
6588  *
6589  *
6590  * CGROUPS
6591  *
6592  * Cgroups make a horror show out of (2), instead of a simple sum we get:
6593  *
6594  *                                s_k,i
6595  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
6596  *                                 S_k
6597  *
6598  * Where
6599  *
6600  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
6601  *
6602  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6603  *
6604  * The big problem is S_k, its a global sum needed to compute a local (W_i)
6605  * property.
6606  *
6607  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6608  *      rewrite all of this once again.]
6609  */
6610 
6611 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6612 
6613 enum fbq_type { regular, remote, all };
6614 
6615 #define LBF_ALL_PINNED	0x01
6616 #define LBF_NEED_BREAK	0x02
6617 #define LBF_DST_PINNED  0x04
6618 #define LBF_SOME_PINNED	0x08
6619 
6620 struct lb_env {
6621 	struct sched_domain	*sd;
6622 
6623 	struct rq		*src_rq;
6624 	int			src_cpu;
6625 
6626 	int			dst_cpu;
6627 	struct rq		*dst_rq;
6628 
6629 	struct cpumask		*dst_grpmask;
6630 	int			new_dst_cpu;
6631 	enum cpu_idle_type	idle;
6632 	long			imbalance;
6633 	/* The set of CPUs under consideration for load-balancing */
6634 	struct cpumask		*cpus;
6635 
6636 	unsigned int		flags;
6637 
6638 	unsigned int		loop;
6639 	unsigned int		loop_break;
6640 	unsigned int		loop_max;
6641 
6642 	enum fbq_type		fbq_type;
6643 	struct list_head	tasks;
6644 };
6645 
6646 /*
6647  * Is this task likely cache-hot:
6648  */
6649 static int task_hot(struct task_struct *p, struct lb_env *env)
6650 {
6651 	s64 delta;
6652 
6653 	lockdep_assert_held(&env->src_rq->lock);
6654 
6655 	if (p->sched_class != &fair_sched_class)
6656 		return 0;
6657 
6658 	if (unlikely(p->policy == SCHED_IDLE))
6659 		return 0;
6660 
6661 	/*
6662 	 * Buddy candidates are cache hot:
6663 	 */
6664 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6665 			(&p->se == cfs_rq_of(&p->se)->next ||
6666 			 &p->se == cfs_rq_of(&p->se)->last))
6667 		return 1;
6668 
6669 	if (sysctl_sched_migration_cost == -1)
6670 		return 1;
6671 	if (sysctl_sched_migration_cost == 0)
6672 		return 0;
6673 
6674 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6675 
6676 	return delta < (s64)sysctl_sched_migration_cost;
6677 }
6678 
6679 #ifdef CONFIG_NUMA_BALANCING
6680 /*
6681  * Returns 1, if task migration degrades locality
6682  * Returns 0, if task migration improves locality i.e migration preferred.
6683  * Returns -1, if task migration is not affected by locality.
6684  */
6685 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6686 {
6687 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6688 	unsigned long src_faults, dst_faults;
6689 	int src_nid, dst_nid;
6690 
6691 	if (!static_branch_likely(&sched_numa_balancing))
6692 		return -1;
6693 
6694 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6695 		return -1;
6696 
6697 	src_nid = cpu_to_node(env->src_cpu);
6698 	dst_nid = cpu_to_node(env->dst_cpu);
6699 
6700 	if (src_nid == dst_nid)
6701 		return -1;
6702 
6703 	/* Migrating away from the preferred node is always bad. */
6704 	if (src_nid == p->numa_preferred_nid) {
6705 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6706 			return 1;
6707 		else
6708 			return -1;
6709 	}
6710 
6711 	/* Encourage migration to the preferred node. */
6712 	if (dst_nid == p->numa_preferred_nid)
6713 		return 0;
6714 
6715 	/* Leaving a core idle is often worse than degrading locality. */
6716 	if (env->idle != CPU_NOT_IDLE)
6717 		return -1;
6718 
6719 	if (numa_group) {
6720 		src_faults = group_faults(p, src_nid);
6721 		dst_faults = group_faults(p, dst_nid);
6722 	} else {
6723 		src_faults = task_faults(p, src_nid);
6724 		dst_faults = task_faults(p, dst_nid);
6725 	}
6726 
6727 	return dst_faults < src_faults;
6728 }
6729 
6730 #else
6731 static inline int migrate_degrades_locality(struct task_struct *p,
6732 					     struct lb_env *env)
6733 {
6734 	return -1;
6735 }
6736 #endif
6737 
6738 /*
6739  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6740  */
6741 static
6742 int can_migrate_task(struct task_struct *p, struct lb_env *env)
6743 {
6744 	int tsk_cache_hot;
6745 
6746 	lockdep_assert_held(&env->src_rq->lock);
6747 
6748 	/*
6749 	 * We do not migrate tasks that are:
6750 	 * 1) throttled_lb_pair, or
6751 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6752 	 * 3) running (obviously), or
6753 	 * 4) are cache-hot on their current CPU.
6754 	 */
6755 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6756 		return 0;
6757 
6758 	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
6759 		int cpu;
6760 
6761 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6762 
6763 		env->flags |= LBF_SOME_PINNED;
6764 
6765 		/*
6766 		 * Remember if this task can be migrated to any other cpu in
6767 		 * our sched_group. We may want to revisit it if we couldn't
6768 		 * meet load balance goals by pulling other tasks on src_cpu.
6769 		 *
6770 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
6771 		 * already computed one in current iteration.
6772 		 */
6773 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
6774 			return 0;
6775 
6776 		/* Prevent to re-select dst_cpu via env's cpus */
6777 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6778 			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6779 				env->flags |= LBF_DST_PINNED;
6780 				env->new_dst_cpu = cpu;
6781 				break;
6782 			}
6783 		}
6784 
6785 		return 0;
6786 	}
6787 
6788 	/* Record that we found atleast one task that could run on dst_cpu */
6789 	env->flags &= ~LBF_ALL_PINNED;
6790 
6791 	if (task_running(env->src_rq, p)) {
6792 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6793 		return 0;
6794 	}
6795 
6796 	/*
6797 	 * Aggressive migration if:
6798 	 * 1) destination numa is preferred
6799 	 * 2) task is cache cold, or
6800 	 * 3) too many balance attempts have failed.
6801 	 */
6802 	tsk_cache_hot = migrate_degrades_locality(p, env);
6803 	if (tsk_cache_hot == -1)
6804 		tsk_cache_hot = task_hot(p, env);
6805 
6806 	if (tsk_cache_hot <= 0 ||
6807 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6808 		if (tsk_cache_hot == 1) {
6809 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6810 			schedstat_inc(p->se.statistics.nr_forced_migrations);
6811 		}
6812 		return 1;
6813 	}
6814 
6815 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
6816 	return 0;
6817 }
6818 
6819 /*
6820  * detach_task() -- detach the task for the migration specified in env
6821  */
6822 static void detach_task(struct task_struct *p, struct lb_env *env)
6823 {
6824 	lockdep_assert_held(&env->src_rq->lock);
6825 
6826 	p->on_rq = TASK_ON_RQ_MIGRATING;
6827 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
6828 	set_task_cpu(p, env->dst_cpu);
6829 }
6830 
6831 /*
6832  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6833  * part of active balancing operations within "domain".
6834  *
6835  * Returns a task if successful and NULL otherwise.
6836  */
6837 static struct task_struct *detach_one_task(struct lb_env *env)
6838 {
6839 	struct task_struct *p, *n;
6840 
6841 	lockdep_assert_held(&env->src_rq->lock);
6842 
6843 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
6844 		if (!can_migrate_task(p, env))
6845 			continue;
6846 
6847 		detach_task(p, env);
6848 
6849 		/*
6850 		 * Right now, this is only the second place where
6851 		 * lb_gained[env->idle] is updated (other is detach_tasks)
6852 		 * so we can safely collect stats here rather than
6853 		 * inside detach_tasks().
6854 		 */
6855 		schedstat_inc(env->sd->lb_gained[env->idle]);
6856 		return p;
6857 	}
6858 	return NULL;
6859 }
6860 
6861 static const unsigned int sched_nr_migrate_break = 32;
6862 
6863 /*
6864  * detach_tasks() -- tries to detach up to imbalance weighted load from
6865  * busiest_rq, as part of a balancing operation within domain "sd".
6866  *
6867  * Returns number of detached tasks if successful and 0 otherwise.
6868  */
6869 static int detach_tasks(struct lb_env *env)
6870 {
6871 	struct list_head *tasks = &env->src_rq->cfs_tasks;
6872 	struct task_struct *p;
6873 	unsigned long load;
6874 	int detached = 0;
6875 
6876 	lockdep_assert_held(&env->src_rq->lock);
6877 
6878 	if (env->imbalance <= 0)
6879 		return 0;
6880 
6881 	while (!list_empty(tasks)) {
6882 		/*
6883 		 * We don't want to steal all, otherwise we may be treated likewise,
6884 		 * which could at worst lead to a livelock crash.
6885 		 */
6886 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6887 			break;
6888 
6889 		p = list_first_entry(tasks, struct task_struct, se.group_node);
6890 
6891 		env->loop++;
6892 		/* We've more or less seen every task there is, call it quits */
6893 		if (env->loop > env->loop_max)
6894 			break;
6895 
6896 		/* take a breather every nr_migrate tasks */
6897 		if (env->loop > env->loop_break) {
6898 			env->loop_break += sched_nr_migrate_break;
6899 			env->flags |= LBF_NEED_BREAK;
6900 			break;
6901 		}
6902 
6903 		if (!can_migrate_task(p, env))
6904 			goto next;
6905 
6906 		load = task_h_load(p);
6907 
6908 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6909 			goto next;
6910 
6911 		if ((load / 2) > env->imbalance)
6912 			goto next;
6913 
6914 		detach_task(p, env);
6915 		list_add(&p->se.group_node, &env->tasks);
6916 
6917 		detached++;
6918 		env->imbalance -= load;
6919 
6920 #ifdef CONFIG_PREEMPT
6921 		/*
6922 		 * NEWIDLE balancing is a source of latency, so preemptible
6923 		 * kernels will stop after the first task is detached to minimize
6924 		 * the critical section.
6925 		 */
6926 		if (env->idle == CPU_NEWLY_IDLE)
6927 			break;
6928 #endif
6929 
6930 		/*
6931 		 * We only want to steal up to the prescribed amount of
6932 		 * weighted load.
6933 		 */
6934 		if (env->imbalance <= 0)
6935 			break;
6936 
6937 		continue;
6938 next:
6939 		list_move_tail(&p->se.group_node, tasks);
6940 	}
6941 
6942 	/*
6943 	 * Right now, this is one of only two places we collect this stat
6944 	 * so we can safely collect detach_one_task() stats here rather
6945 	 * than inside detach_one_task().
6946 	 */
6947 	schedstat_add(env->sd->lb_gained[env->idle], detached);
6948 
6949 	return detached;
6950 }
6951 
6952 /*
6953  * attach_task() -- attach the task detached by detach_task() to its new rq.
6954  */
6955 static void attach_task(struct rq *rq, struct task_struct *p)
6956 {
6957 	lockdep_assert_held(&rq->lock);
6958 
6959 	BUG_ON(task_rq(p) != rq);
6960 	activate_task(rq, p, ENQUEUE_NOCLOCK);
6961 	p->on_rq = TASK_ON_RQ_QUEUED;
6962 	check_preempt_curr(rq, p, 0);
6963 }
6964 
6965 /*
6966  * attach_one_task() -- attaches the task returned from detach_one_task() to
6967  * its new rq.
6968  */
6969 static void attach_one_task(struct rq *rq, struct task_struct *p)
6970 {
6971 	struct rq_flags rf;
6972 
6973 	rq_lock(rq, &rf);
6974 	update_rq_clock(rq);
6975 	attach_task(rq, p);
6976 	rq_unlock(rq, &rf);
6977 }
6978 
6979 /*
6980  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6981  * new rq.
6982  */
6983 static void attach_tasks(struct lb_env *env)
6984 {
6985 	struct list_head *tasks = &env->tasks;
6986 	struct task_struct *p;
6987 	struct rq_flags rf;
6988 
6989 	rq_lock(env->dst_rq, &rf);
6990 	update_rq_clock(env->dst_rq);
6991 
6992 	while (!list_empty(tasks)) {
6993 		p = list_first_entry(tasks, struct task_struct, se.group_node);
6994 		list_del_init(&p->se.group_node);
6995 
6996 		attach_task(env->dst_rq, p);
6997 	}
6998 
6999 	rq_unlock(env->dst_rq, &rf);
7000 }
7001 
7002 #ifdef CONFIG_FAIR_GROUP_SCHED
7003 
7004 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7005 {
7006 	if (cfs_rq->load.weight)
7007 		return false;
7008 
7009 	if (cfs_rq->avg.load_sum)
7010 		return false;
7011 
7012 	if (cfs_rq->avg.util_sum)
7013 		return false;
7014 
7015 	if (cfs_rq->runnable_load_sum)
7016 		return false;
7017 
7018 	return true;
7019 }
7020 
7021 static void update_blocked_averages(int cpu)
7022 {
7023 	struct rq *rq = cpu_rq(cpu);
7024 	struct cfs_rq *cfs_rq, *pos;
7025 	struct rq_flags rf;
7026 
7027 	rq_lock_irqsave(rq, &rf);
7028 	update_rq_clock(rq);
7029 
7030 	/*
7031 	 * Iterates the task_group tree in a bottom up fashion, see
7032 	 * list_add_leaf_cfs_rq() for details.
7033 	 */
7034 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7035 		struct sched_entity *se;
7036 
7037 		/* throttled entities do not contribute to load */
7038 		if (throttled_hierarchy(cfs_rq))
7039 			continue;
7040 
7041 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7042 			update_tg_load_avg(cfs_rq, 0);
7043 
7044 		/* Propagate pending load changes to the parent, if any: */
7045 		se = cfs_rq->tg->se[cpu];
7046 		if (se && !skip_blocked_update(se))
7047 			update_load_avg(se, 0);
7048 
7049 		/*
7050 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7051 		 * decayed cfs_rqs linger on the list.
7052 		 */
7053 		if (cfs_rq_is_decayed(cfs_rq))
7054 			list_del_leaf_cfs_rq(cfs_rq);
7055 	}
7056 	rq_unlock_irqrestore(rq, &rf);
7057 }
7058 
7059 /*
7060  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7061  * This needs to be done in a top-down fashion because the load of a child
7062  * group is a fraction of its parents load.
7063  */
7064 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7065 {
7066 	struct rq *rq = rq_of(cfs_rq);
7067 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7068 	unsigned long now = jiffies;
7069 	unsigned long load;
7070 
7071 	if (cfs_rq->last_h_load_update == now)
7072 		return;
7073 
7074 	cfs_rq->h_load_next = NULL;
7075 	for_each_sched_entity(se) {
7076 		cfs_rq = cfs_rq_of(se);
7077 		cfs_rq->h_load_next = se;
7078 		if (cfs_rq->last_h_load_update == now)
7079 			break;
7080 	}
7081 
7082 	if (!se) {
7083 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7084 		cfs_rq->last_h_load_update = now;
7085 	}
7086 
7087 	while ((se = cfs_rq->h_load_next) != NULL) {
7088 		load = cfs_rq->h_load;
7089 		load = div64_ul(load * se->avg.load_avg,
7090 			cfs_rq_load_avg(cfs_rq) + 1);
7091 		cfs_rq = group_cfs_rq(se);
7092 		cfs_rq->h_load = load;
7093 		cfs_rq->last_h_load_update = now;
7094 	}
7095 }
7096 
7097 static unsigned long task_h_load(struct task_struct *p)
7098 {
7099 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7100 
7101 	update_cfs_rq_h_load(cfs_rq);
7102 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7103 			cfs_rq_load_avg(cfs_rq) + 1);
7104 }
7105 #else
7106 static inline void update_blocked_averages(int cpu)
7107 {
7108 	struct rq *rq = cpu_rq(cpu);
7109 	struct cfs_rq *cfs_rq = &rq->cfs;
7110 	struct rq_flags rf;
7111 
7112 	rq_lock_irqsave(rq, &rf);
7113 	update_rq_clock(rq);
7114 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7115 	rq_unlock_irqrestore(rq, &rf);
7116 }
7117 
7118 static unsigned long task_h_load(struct task_struct *p)
7119 {
7120 	return p->se.avg.load_avg;
7121 }
7122 #endif
7123 
7124 /********** Helpers for find_busiest_group ************************/
7125 
7126 enum group_type {
7127 	group_other = 0,
7128 	group_imbalanced,
7129 	group_overloaded,
7130 };
7131 
7132 /*
7133  * sg_lb_stats - stats of a sched_group required for load_balancing
7134  */
7135 struct sg_lb_stats {
7136 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7137 	unsigned long group_load; /* Total load over the CPUs of the group */
7138 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7139 	unsigned long load_per_task;
7140 	unsigned long group_capacity;
7141 	unsigned long group_util; /* Total utilization of the group */
7142 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7143 	unsigned int idle_cpus;
7144 	unsigned int group_weight;
7145 	enum group_type group_type;
7146 	int group_no_capacity;
7147 #ifdef CONFIG_NUMA_BALANCING
7148 	unsigned int nr_numa_running;
7149 	unsigned int nr_preferred_running;
7150 #endif
7151 };
7152 
7153 /*
7154  * sd_lb_stats - Structure to store the statistics of a sched_domain
7155  *		 during load balancing.
7156  */
7157 struct sd_lb_stats {
7158 	struct sched_group *busiest;	/* Busiest group in this sd */
7159 	struct sched_group *local;	/* Local group in this sd */
7160 	unsigned long total_running;
7161 	unsigned long total_load;	/* Total load of all groups in sd */
7162 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7163 	unsigned long avg_load;	/* Average load across all groups in sd */
7164 
7165 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7166 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7167 };
7168 
7169 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7170 {
7171 	/*
7172 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7173 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7174 	 * We must however clear busiest_stat::avg_load because
7175 	 * update_sd_pick_busiest() reads this before assignment.
7176 	 */
7177 	*sds = (struct sd_lb_stats){
7178 		.busiest = NULL,
7179 		.local = NULL,
7180 		.total_running = 0UL,
7181 		.total_load = 0UL,
7182 		.total_capacity = 0UL,
7183 		.busiest_stat = {
7184 			.avg_load = 0UL,
7185 			.sum_nr_running = 0,
7186 			.group_type = group_other,
7187 		},
7188 	};
7189 }
7190 
7191 /**
7192  * get_sd_load_idx - Obtain the load index for a given sched domain.
7193  * @sd: The sched_domain whose load_idx is to be obtained.
7194  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7195  *
7196  * Return: The load index.
7197  */
7198 static inline int get_sd_load_idx(struct sched_domain *sd,
7199 					enum cpu_idle_type idle)
7200 {
7201 	int load_idx;
7202 
7203 	switch (idle) {
7204 	case CPU_NOT_IDLE:
7205 		load_idx = sd->busy_idx;
7206 		break;
7207 
7208 	case CPU_NEWLY_IDLE:
7209 		load_idx = sd->newidle_idx;
7210 		break;
7211 	default:
7212 		load_idx = sd->idle_idx;
7213 		break;
7214 	}
7215 
7216 	return load_idx;
7217 }
7218 
7219 static unsigned long scale_rt_capacity(int cpu)
7220 {
7221 	struct rq *rq = cpu_rq(cpu);
7222 	u64 total, used, age_stamp, avg;
7223 	s64 delta;
7224 
7225 	/*
7226 	 * Since we're reading these variables without serialization make sure
7227 	 * we read them once before doing sanity checks on them.
7228 	 */
7229 	age_stamp = READ_ONCE(rq->age_stamp);
7230 	avg = READ_ONCE(rq->rt_avg);
7231 	delta = __rq_clock_broken(rq) - age_stamp;
7232 
7233 	if (unlikely(delta < 0))
7234 		delta = 0;
7235 
7236 	total = sched_avg_period() + delta;
7237 
7238 	used = div_u64(avg, total);
7239 
7240 	if (likely(used < SCHED_CAPACITY_SCALE))
7241 		return SCHED_CAPACITY_SCALE - used;
7242 
7243 	return 1;
7244 }
7245 
7246 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7247 {
7248 	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7249 	struct sched_group *sdg = sd->groups;
7250 
7251 	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7252 
7253 	capacity *= scale_rt_capacity(cpu);
7254 	capacity >>= SCHED_CAPACITY_SHIFT;
7255 
7256 	if (!capacity)
7257 		capacity = 1;
7258 
7259 	cpu_rq(cpu)->cpu_capacity = capacity;
7260 	sdg->sgc->capacity = capacity;
7261 	sdg->sgc->min_capacity = capacity;
7262 }
7263 
7264 void update_group_capacity(struct sched_domain *sd, int cpu)
7265 {
7266 	struct sched_domain *child = sd->child;
7267 	struct sched_group *group, *sdg = sd->groups;
7268 	unsigned long capacity, min_capacity;
7269 	unsigned long interval;
7270 
7271 	interval = msecs_to_jiffies(sd->balance_interval);
7272 	interval = clamp(interval, 1UL, max_load_balance_interval);
7273 	sdg->sgc->next_update = jiffies + interval;
7274 
7275 	if (!child) {
7276 		update_cpu_capacity(sd, cpu);
7277 		return;
7278 	}
7279 
7280 	capacity = 0;
7281 	min_capacity = ULONG_MAX;
7282 
7283 	if (child->flags & SD_OVERLAP) {
7284 		/*
7285 		 * SD_OVERLAP domains cannot assume that child groups
7286 		 * span the current group.
7287 		 */
7288 
7289 		for_each_cpu(cpu, sched_group_span(sdg)) {
7290 			struct sched_group_capacity *sgc;
7291 			struct rq *rq = cpu_rq(cpu);
7292 
7293 			/*
7294 			 * build_sched_domains() -> init_sched_groups_capacity()
7295 			 * gets here before we've attached the domains to the
7296 			 * runqueues.
7297 			 *
7298 			 * Use capacity_of(), which is set irrespective of domains
7299 			 * in update_cpu_capacity().
7300 			 *
7301 			 * This avoids capacity from being 0 and
7302 			 * causing divide-by-zero issues on boot.
7303 			 */
7304 			if (unlikely(!rq->sd)) {
7305 				capacity += capacity_of(cpu);
7306 			} else {
7307 				sgc = rq->sd->groups->sgc;
7308 				capacity += sgc->capacity;
7309 			}
7310 
7311 			min_capacity = min(capacity, min_capacity);
7312 		}
7313 	} else  {
7314 		/*
7315 		 * !SD_OVERLAP domains can assume that child groups
7316 		 * span the current group.
7317 		 */
7318 
7319 		group = child->groups;
7320 		do {
7321 			struct sched_group_capacity *sgc = group->sgc;
7322 
7323 			capacity += sgc->capacity;
7324 			min_capacity = min(sgc->min_capacity, min_capacity);
7325 			group = group->next;
7326 		} while (group != child->groups);
7327 	}
7328 
7329 	sdg->sgc->capacity = capacity;
7330 	sdg->sgc->min_capacity = min_capacity;
7331 }
7332 
7333 /*
7334  * Check whether the capacity of the rq has been noticeably reduced by side
7335  * activity. The imbalance_pct is used for the threshold.
7336  * Return true is the capacity is reduced
7337  */
7338 static inline int
7339 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7340 {
7341 	return ((rq->cpu_capacity * sd->imbalance_pct) <
7342 				(rq->cpu_capacity_orig * 100));
7343 }
7344 
7345 /*
7346  * Group imbalance indicates (and tries to solve) the problem where balancing
7347  * groups is inadequate due to ->cpus_allowed constraints.
7348  *
7349  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7350  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7351  * Something like:
7352  *
7353  *	{ 0 1 2 3 } { 4 5 6 7 }
7354  *	        *     * * *
7355  *
7356  * If we were to balance group-wise we'd place two tasks in the first group and
7357  * two tasks in the second group. Clearly this is undesired as it will overload
7358  * cpu 3 and leave one of the cpus in the second group unused.
7359  *
7360  * The current solution to this issue is detecting the skew in the first group
7361  * by noticing the lower domain failed to reach balance and had difficulty
7362  * moving tasks due to affinity constraints.
7363  *
7364  * When this is so detected; this group becomes a candidate for busiest; see
7365  * update_sd_pick_busiest(). And calculate_imbalance() and
7366  * find_busiest_group() avoid some of the usual balance conditions to allow it
7367  * to create an effective group imbalance.
7368  *
7369  * This is a somewhat tricky proposition since the next run might not find the
7370  * group imbalance and decide the groups need to be balanced again. A most
7371  * subtle and fragile situation.
7372  */
7373 
7374 static inline int sg_imbalanced(struct sched_group *group)
7375 {
7376 	return group->sgc->imbalance;
7377 }
7378 
7379 /*
7380  * group_has_capacity returns true if the group has spare capacity that could
7381  * be used by some tasks.
7382  * We consider that a group has spare capacity if the  * number of task is
7383  * smaller than the number of CPUs or if the utilization is lower than the
7384  * available capacity for CFS tasks.
7385  * For the latter, we use a threshold to stabilize the state, to take into
7386  * account the variance of the tasks' load and to return true if the available
7387  * capacity in meaningful for the load balancer.
7388  * As an example, an available capacity of 1% can appear but it doesn't make
7389  * any benefit for the load balance.
7390  */
7391 static inline bool
7392 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7393 {
7394 	if (sgs->sum_nr_running < sgs->group_weight)
7395 		return true;
7396 
7397 	if ((sgs->group_capacity * 100) >
7398 			(sgs->group_util * env->sd->imbalance_pct))
7399 		return true;
7400 
7401 	return false;
7402 }
7403 
7404 /*
7405  *  group_is_overloaded returns true if the group has more tasks than it can
7406  *  handle.
7407  *  group_is_overloaded is not equals to !group_has_capacity because a group
7408  *  with the exact right number of tasks, has no more spare capacity but is not
7409  *  overloaded so both group_has_capacity and group_is_overloaded return
7410  *  false.
7411  */
7412 static inline bool
7413 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7414 {
7415 	if (sgs->sum_nr_running <= sgs->group_weight)
7416 		return false;
7417 
7418 	if ((sgs->group_capacity * 100) <
7419 			(sgs->group_util * env->sd->imbalance_pct))
7420 		return true;
7421 
7422 	return false;
7423 }
7424 
7425 /*
7426  * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7427  * per-CPU capacity than sched_group ref.
7428  */
7429 static inline bool
7430 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7431 {
7432 	return sg->sgc->min_capacity * capacity_margin <
7433 						ref->sgc->min_capacity * 1024;
7434 }
7435 
7436 static inline enum
7437 group_type group_classify(struct sched_group *group,
7438 			  struct sg_lb_stats *sgs)
7439 {
7440 	if (sgs->group_no_capacity)
7441 		return group_overloaded;
7442 
7443 	if (sg_imbalanced(group))
7444 		return group_imbalanced;
7445 
7446 	return group_other;
7447 }
7448 
7449 /**
7450  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7451  * @env: The load balancing environment.
7452  * @group: sched_group whose statistics are to be updated.
7453  * @load_idx: Load index of sched_domain of this_cpu for load calc.
7454  * @local_group: Does group contain this_cpu.
7455  * @sgs: variable to hold the statistics for this group.
7456  * @overload: Indicate more than one runnable task for any CPU.
7457  */
7458 static inline void update_sg_lb_stats(struct lb_env *env,
7459 			struct sched_group *group, int load_idx,
7460 			int local_group, struct sg_lb_stats *sgs,
7461 			bool *overload)
7462 {
7463 	unsigned long load;
7464 	int i, nr_running;
7465 
7466 	memset(sgs, 0, sizeof(*sgs));
7467 
7468 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7469 		struct rq *rq = cpu_rq(i);
7470 
7471 		/* Bias balancing toward cpus of our domain */
7472 		if (local_group)
7473 			load = target_load(i, load_idx);
7474 		else
7475 			load = source_load(i, load_idx);
7476 
7477 		sgs->group_load += load;
7478 		sgs->group_util += cpu_util(i);
7479 		sgs->sum_nr_running += rq->cfs.h_nr_running;
7480 
7481 		nr_running = rq->nr_running;
7482 		if (nr_running > 1)
7483 			*overload = true;
7484 
7485 #ifdef CONFIG_NUMA_BALANCING
7486 		sgs->nr_numa_running += rq->nr_numa_running;
7487 		sgs->nr_preferred_running += rq->nr_preferred_running;
7488 #endif
7489 		sgs->sum_weighted_load += weighted_cpuload(rq);
7490 		/*
7491 		 * No need to call idle_cpu() if nr_running is not 0
7492 		 */
7493 		if (!nr_running && idle_cpu(i))
7494 			sgs->idle_cpus++;
7495 	}
7496 
7497 	/* Adjust by relative CPU capacity of the group */
7498 	sgs->group_capacity = group->sgc->capacity;
7499 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7500 
7501 	if (sgs->sum_nr_running)
7502 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7503 
7504 	sgs->group_weight = group->group_weight;
7505 
7506 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7507 	sgs->group_type = group_classify(group, sgs);
7508 }
7509 
7510 /**
7511  * update_sd_pick_busiest - return 1 on busiest group
7512  * @env: The load balancing environment.
7513  * @sds: sched_domain statistics
7514  * @sg: sched_group candidate to be checked for being the busiest
7515  * @sgs: sched_group statistics
7516  *
7517  * Determine if @sg is a busier group than the previously selected
7518  * busiest group.
7519  *
7520  * Return: %true if @sg is a busier group than the previously selected
7521  * busiest group. %false otherwise.
7522  */
7523 static bool update_sd_pick_busiest(struct lb_env *env,
7524 				   struct sd_lb_stats *sds,
7525 				   struct sched_group *sg,
7526 				   struct sg_lb_stats *sgs)
7527 {
7528 	struct sg_lb_stats *busiest = &sds->busiest_stat;
7529 
7530 	if (sgs->group_type > busiest->group_type)
7531 		return true;
7532 
7533 	if (sgs->group_type < busiest->group_type)
7534 		return false;
7535 
7536 	if (sgs->avg_load <= busiest->avg_load)
7537 		return false;
7538 
7539 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7540 		goto asym_packing;
7541 
7542 	/*
7543 	 * Candidate sg has no more than one task per CPU and
7544 	 * has higher per-CPU capacity. Migrating tasks to less
7545 	 * capable CPUs may harm throughput. Maximize throughput,
7546 	 * power/energy consequences are not considered.
7547 	 */
7548 	if (sgs->sum_nr_running <= sgs->group_weight &&
7549 	    group_smaller_cpu_capacity(sds->local, sg))
7550 		return false;
7551 
7552 asym_packing:
7553 	/* This is the busiest node in its class. */
7554 	if (!(env->sd->flags & SD_ASYM_PACKING))
7555 		return true;
7556 
7557 	/* No ASYM_PACKING if target cpu is already busy */
7558 	if (env->idle == CPU_NOT_IDLE)
7559 		return true;
7560 	/*
7561 	 * ASYM_PACKING needs to move all the work to the highest
7562 	 * prority CPUs in the group, therefore mark all groups
7563 	 * of lower priority than ourself as busy.
7564 	 */
7565 	if (sgs->sum_nr_running &&
7566 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7567 		if (!sds->busiest)
7568 			return true;
7569 
7570 		/* Prefer to move from lowest priority cpu's work */
7571 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7572 				      sg->asym_prefer_cpu))
7573 			return true;
7574 	}
7575 
7576 	return false;
7577 }
7578 
7579 #ifdef CONFIG_NUMA_BALANCING
7580 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7581 {
7582 	if (sgs->sum_nr_running > sgs->nr_numa_running)
7583 		return regular;
7584 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
7585 		return remote;
7586 	return all;
7587 }
7588 
7589 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7590 {
7591 	if (rq->nr_running > rq->nr_numa_running)
7592 		return regular;
7593 	if (rq->nr_running > rq->nr_preferred_running)
7594 		return remote;
7595 	return all;
7596 }
7597 #else
7598 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7599 {
7600 	return all;
7601 }
7602 
7603 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7604 {
7605 	return regular;
7606 }
7607 #endif /* CONFIG_NUMA_BALANCING */
7608 
7609 /**
7610  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7611  * @env: The load balancing environment.
7612  * @sds: variable to hold the statistics for this sched_domain.
7613  */
7614 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7615 {
7616 	struct sched_domain_shared *shared = env->sd->shared;
7617 	struct sched_domain *child = env->sd->child;
7618 	struct sched_group *sg = env->sd->groups;
7619 	struct sg_lb_stats *local = &sds->local_stat;
7620 	struct sg_lb_stats tmp_sgs;
7621 	int load_idx, prefer_sibling = 0;
7622 	bool overload = false;
7623 
7624 	if (child && child->flags & SD_PREFER_SIBLING)
7625 		prefer_sibling = 1;
7626 
7627 	load_idx = get_sd_load_idx(env->sd, env->idle);
7628 
7629 	do {
7630 		struct sg_lb_stats *sgs = &tmp_sgs;
7631 		int local_group;
7632 
7633 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
7634 		if (local_group) {
7635 			sds->local = sg;
7636 			sgs = local;
7637 
7638 			if (env->idle != CPU_NEWLY_IDLE ||
7639 			    time_after_eq(jiffies, sg->sgc->next_update))
7640 				update_group_capacity(env->sd, env->dst_cpu);
7641 		}
7642 
7643 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7644 						&overload);
7645 
7646 		if (local_group)
7647 			goto next_group;
7648 
7649 		/*
7650 		 * In case the child domain prefers tasks go to siblings
7651 		 * first, lower the sg capacity so that we'll try
7652 		 * and move all the excess tasks away. We lower the capacity
7653 		 * of a group only if the local group has the capacity to fit
7654 		 * these excess tasks. The extra check prevents the case where
7655 		 * you always pull from the heaviest group when it is already
7656 		 * under-utilized (possible with a large weight task outweighs
7657 		 * the tasks on the system).
7658 		 */
7659 		if (prefer_sibling && sds->local &&
7660 		    group_has_capacity(env, local) &&
7661 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
7662 			sgs->group_no_capacity = 1;
7663 			sgs->group_type = group_classify(sg, sgs);
7664 		}
7665 
7666 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7667 			sds->busiest = sg;
7668 			sds->busiest_stat = *sgs;
7669 		}
7670 
7671 next_group:
7672 		/* Now, start updating sd_lb_stats */
7673 		sds->total_running += sgs->sum_nr_running;
7674 		sds->total_load += sgs->group_load;
7675 		sds->total_capacity += sgs->group_capacity;
7676 
7677 		sg = sg->next;
7678 	} while (sg != env->sd->groups);
7679 
7680 	if (env->sd->flags & SD_NUMA)
7681 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7682 
7683 	if (!env->sd->parent) {
7684 		/* update overload indicator if we are at root domain */
7685 		if (env->dst_rq->rd->overload != overload)
7686 			env->dst_rq->rd->overload = overload;
7687 	}
7688 
7689 	if (!shared)
7690 		return;
7691 
7692 	/*
7693 	 * Since these are sums over groups they can contain some CPUs
7694 	 * multiple times for the NUMA domains.
7695 	 *
7696 	 * Currently only wake_affine_llc() and find_busiest_group()
7697 	 * uses these numbers, only the last is affected by this problem.
7698 	 *
7699 	 * XXX fix that.
7700 	 */
7701 	WRITE_ONCE(shared->nr_running,	sds->total_running);
7702 	WRITE_ONCE(shared->load,	sds->total_load);
7703 	WRITE_ONCE(shared->capacity,	sds->total_capacity);
7704 }
7705 
7706 /**
7707  * check_asym_packing - Check to see if the group is packed into the
7708  *			sched domain.
7709  *
7710  * This is primarily intended to used at the sibling level.  Some
7711  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
7712  * case of POWER7, it can move to lower SMT modes only when higher
7713  * threads are idle.  When in lower SMT modes, the threads will
7714  * perform better since they share less core resources.  Hence when we
7715  * have idle threads, we want them to be the higher ones.
7716  *
7717  * This packing function is run on idle threads.  It checks to see if
7718  * the busiest CPU in this domain (core in the P7 case) has a higher
7719  * CPU number than the packing function is being run on.  Here we are
7720  * assuming lower CPU number will be equivalent to lower a SMT thread
7721  * number.
7722  *
7723  * Return: 1 when packing is required and a task should be moved to
7724  * this CPU.  The amount of the imbalance is returned in *imbalance.
7725  *
7726  * @env: The load balancing environment.
7727  * @sds: Statistics of the sched_domain which is to be packed
7728  */
7729 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7730 {
7731 	int busiest_cpu;
7732 
7733 	if (!(env->sd->flags & SD_ASYM_PACKING))
7734 		return 0;
7735 
7736 	if (env->idle == CPU_NOT_IDLE)
7737 		return 0;
7738 
7739 	if (!sds->busiest)
7740 		return 0;
7741 
7742 	busiest_cpu = sds->busiest->asym_prefer_cpu;
7743 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7744 		return 0;
7745 
7746 	env->imbalance = DIV_ROUND_CLOSEST(
7747 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7748 		SCHED_CAPACITY_SCALE);
7749 
7750 	return 1;
7751 }
7752 
7753 /**
7754  * fix_small_imbalance - Calculate the minor imbalance that exists
7755  *			amongst the groups of a sched_domain, during
7756  *			load balancing.
7757  * @env: The load balancing environment.
7758  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
7759  */
7760 static inline
7761 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7762 {
7763 	unsigned long tmp, capa_now = 0, capa_move = 0;
7764 	unsigned int imbn = 2;
7765 	unsigned long scaled_busy_load_per_task;
7766 	struct sg_lb_stats *local, *busiest;
7767 
7768 	local = &sds->local_stat;
7769 	busiest = &sds->busiest_stat;
7770 
7771 	if (!local->sum_nr_running)
7772 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7773 	else if (busiest->load_per_task > local->load_per_task)
7774 		imbn = 1;
7775 
7776 	scaled_busy_load_per_task =
7777 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7778 		busiest->group_capacity;
7779 
7780 	if (busiest->avg_load + scaled_busy_load_per_task >=
7781 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
7782 		env->imbalance = busiest->load_per_task;
7783 		return;
7784 	}
7785 
7786 	/*
7787 	 * OK, we don't have enough imbalance to justify moving tasks,
7788 	 * however we may be able to increase total CPU capacity used by
7789 	 * moving them.
7790 	 */
7791 
7792 	capa_now += busiest->group_capacity *
7793 			min(busiest->load_per_task, busiest->avg_load);
7794 	capa_now += local->group_capacity *
7795 			min(local->load_per_task, local->avg_load);
7796 	capa_now /= SCHED_CAPACITY_SCALE;
7797 
7798 	/* Amount of load we'd subtract */
7799 	if (busiest->avg_load > scaled_busy_load_per_task) {
7800 		capa_move += busiest->group_capacity *
7801 			    min(busiest->load_per_task,
7802 				busiest->avg_load - scaled_busy_load_per_task);
7803 	}
7804 
7805 	/* Amount of load we'd add */
7806 	if (busiest->avg_load * busiest->group_capacity <
7807 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7808 		tmp = (busiest->avg_load * busiest->group_capacity) /
7809 		      local->group_capacity;
7810 	} else {
7811 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7812 		      local->group_capacity;
7813 	}
7814 	capa_move += local->group_capacity *
7815 		    min(local->load_per_task, local->avg_load + tmp);
7816 	capa_move /= SCHED_CAPACITY_SCALE;
7817 
7818 	/* Move if we gain throughput */
7819 	if (capa_move > capa_now)
7820 		env->imbalance = busiest->load_per_task;
7821 }
7822 
7823 /**
7824  * calculate_imbalance - Calculate the amount of imbalance present within the
7825  *			 groups of a given sched_domain during load balance.
7826  * @env: load balance environment
7827  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7828  */
7829 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7830 {
7831 	unsigned long max_pull, load_above_capacity = ~0UL;
7832 	struct sg_lb_stats *local, *busiest;
7833 
7834 	local = &sds->local_stat;
7835 	busiest = &sds->busiest_stat;
7836 
7837 	if (busiest->group_type == group_imbalanced) {
7838 		/*
7839 		 * In the group_imb case we cannot rely on group-wide averages
7840 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
7841 		 */
7842 		busiest->load_per_task =
7843 			min(busiest->load_per_task, sds->avg_load);
7844 	}
7845 
7846 	/*
7847 	 * Avg load of busiest sg can be less and avg load of local sg can
7848 	 * be greater than avg load across all sgs of sd because avg load
7849 	 * factors in sg capacity and sgs with smaller group_type are
7850 	 * skipped when updating the busiest sg:
7851 	 */
7852 	if (busiest->avg_load <= sds->avg_load ||
7853 	    local->avg_load >= sds->avg_load) {
7854 		env->imbalance = 0;
7855 		return fix_small_imbalance(env, sds);
7856 	}
7857 
7858 	/*
7859 	 * If there aren't any idle cpus, avoid creating some.
7860 	 */
7861 	if (busiest->group_type == group_overloaded &&
7862 	    local->group_type   == group_overloaded) {
7863 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7864 		if (load_above_capacity > busiest->group_capacity) {
7865 			load_above_capacity -= busiest->group_capacity;
7866 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
7867 			load_above_capacity /= busiest->group_capacity;
7868 		} else
7869 			load_above_capacity = ~0UL;
7870 	}
7871 
7872 	/*
7873 	 * We're trying to get all the cpus to the average_load, so we don't
7874 	 * want to push ourselves above the average load, nor do we wish to
7875 	 * reduce the max loaded cpu below the average load. At the same time,
7876 	 * we also don't want to reduce the group load below the group
7877 	 * capacity. Thus we look for the minimum possible imbalance.
7878 	 */
7879 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7880 
7881 	/* How much load to actually move to equalise the imbalance */
7882 	env->imbalance = min(
7883 		max_pull * busiest->group_capacity,
7884 		(sds->avg_load - local->avg_load) * local->group_capacity
7885 	) / SCHED_CAPACITY_SCALE;
7886 
7887 	/*
7888 	 * if *imbalance is less than the average load per runnable task
7889 	 * there is no guarantee that any tasks will be moved so we'll have
7890 	 * a think about bumping its value to force at least one task to be
7891 	 * moved
7892 	 */
7893 	if (env->imbalance < busiest->load_per_task)
7894 		return fix_small_imbalance(env, sds);
7895 }
7896 
7897 /******* find_busiest_group() helpers end here *********************/
7898 
7899 /**
7900  * find_busiest_group - Returns the busiest group within the sched_domain
7901  * if there is an imbalance.
7902  *
7903  * Also calculates the amount of weighted load which should be moved
7904  * to restore balance.
7905  *
7906  * @env: The load balancing environment.
7907  *
7908  * Return:	- The busiest group if imbalance exists.
7909  */
7910 static struct sched_group *find_busiest_group(struct lb_env *env)
7911 {
7912 	struct sg_lb_stats *local, *busiest;
7913 	struct sd_lb_stats sds;
7914 
7915 	init_sd_lb_stats(&sds);
7916 
7917 	/*
7918 	 * Compute the various statistics relavent for load balancing at
7919 	 * this level.
7920 	 */
7921 	update_sd_lb_stats(env, &sds);
7922 	local = &sds.local_stat;
7923 	busiest = &sds.busiest_stat;
7924 
7925 	/* ASYM feature bypasses nice load balance check */
7926 	if (check_asym_packing(env, &sds))
7927 		return sds.busiest;
7928 
7929 	/* There is no busy sibling group to pull tasks from */
7930 	if (!sds.busiest || busiest->sum_nr_running == 0)
7931 		goto out_balanced;
7932 
7933 	/* XXX broken for overlapping NUMA groups */
7934 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7935 						/ sds.total_capacity;
7936 
7937 	/*
7938 	 * If the busiest group is imbalanced the below checks don't
7939 	 * work because they assume all things are equal, which typically
7940 	 * isn't true due to cpus_allowed constraints and the like.
7941 	 */
7942 	if (busiest->group_type == group_imbalanced)
7943 		goto force_balance;
7944 
7945 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7946 	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7947 	    busiest->group_no_capacity)
7948 		goto force_balance;
7949 
7950 	/*
7951 	 * If the local group is busier than the selected busiest group
7952 	 * don't try and pull any tasks.
7953 	 */
7954 	if (local->avg_load >= busiest->avg_load)
7955 		goto out_balanced;
7956 
7957 	/*
7958 	 * Don't pull any tasks if this group is already above the domain
7959 	 * average load.
7960 	 */
7961 	if (local->avg_load >= sds.avg_load)
7962 		goto out_balanced;
7963 
7964 	if (env->idle == CPU_IDLE) {
7965 		/*
7966 		 * This cpu is idle. If the busiest group is not overloaded
7967 		 * and there is no imbalance between this and busiest group
7968 		 * wrt idle cpus, it is balanced. The imbalance becomes
7969 		 * significant if the diff is greater than 1 otherwise we
7970 		 * might end up to just move the imbalance on another group
7971 		 */
7972 		if ((busiest->group_type != group_overloaded) &&
7973 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7974 			goto out_balanced;
7975 	} else {
7976 		/*
7977 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7978 		 * imbalance_pct to be conservative.
7979 		 */
7980 		if (100 * busiest->avg_load <=
7981 				env->sd->imbalance_pct * local->avg_load)
7982 			goto out_balanced;
7983 	}
7984 
7985 force_balance:
7986 	/* Looks like there is an imbalance. Compute it */
7987 	calculate_imbalance(env, &sds);
7988 	return sds.busiest;
7989 
7990 out_balanced:
7991 	env->imbalance = 0;
7992 	return NULL;
7993 }
7994 
7995 /*
7996  * find_busiest_queue - find the busiest runqueue among the cpus in group.
7997  */
7998 static struct rq *find_busiest_queue(struct lb_env *env,
7999 				     struct sched_group *group)
8000 {
8001 	struct rq *busiest = NULL, *rq;
8002 	unsigned long busiest_load = 0, busiest_capacity = 1;
8003 	int i;
8004 
8005 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8006 		unsigned long capacity, wl;
8007 		enum fbq_type rt;
8008 
8009 		rq = cpu_rq(i);
8010 		rt = fbq_classify_rq(rq);
8011 
8012 		/*
8013 		 * We classify groups/runqueues into three groups:
8014 		 *  - regular: there are !numa tasks
8015 		 *  - remote:  there are numa tasks that run on the 'wrong' node
8016 		 *  - all:     there is no distinction
8017 		 *
8018 		 * In order to avoid migrating ideally placed numa tasks,
8019 		 * ignore those when there's better options.
8020 		 *
8021 		 * If we ignore the actual busiest queue to migrate another
8022 		 * task, the next balance pass can still reduce the busiest
8023 		 * queue by moving tasks around inside the node.
8024 		 *
8025 		 * If we cannot move enough load due to this classification
8026 		 * the next pass will adjust the group classification and
8027 		 * allow migration of more tasks.
8028 		 *
8029 		 * Both cases only affect the total convergence complexity.
8030 		 */
8031 		if (rt > env->fbq_type)
8032 			continue;
8033 
8034 		capacity = capacity_of(i);
8035 
8036 		wl = weighted_cpuload(rq);
8037 
8038 		/*
8039 		 * When comparing with imbalance, use weighted_cpuload()
8040 		 * which is not scaled with the cpu capacity.
8041 		 */
8042 
8043 		if (rq->nr_running == 1 && wl > env->imbalance &&
8044 		    !check_cpu_capacity(rq, env->sd))
8045 			continue;
8046 
8047 		/*
8048 		 * For the load comparisons with the other cpu's, consider
8049 		 * the weighted_cpuload() scaled with the cpu capacity, so
8050 		 * that the load can be moved away from the cpu that is
8051 		 * potentially running at a lower capacity.
8052 		 *
8053 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8054 		 * multiplication to rid ourselves of the division works out
8055 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
8056 		 * our previous maximum.
8057 		 */
8058 		if (wl * busiest_capacity > busiest_load * capacity) {
8059 			busiest_load = wl;
8060 			busiest_capacity = capacity;
8061 			busiest = rq;
8062 		}
8063 	}
8064 
8065 	return busiest;
8066 }
8067 
8068 /*
8069  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8070  * so long as it is large enough.
8071  */
8072 #define MAX_PINNED_INTERVAL	512
8073 
8074 static int need_active_balance(struct lb_env *env)
8075 {
8076 	struct sched_domain *sd = env->sd;
8077 
8078 	if (env->idle == CPU_NEWLY_IDLE) {
8079 
8080 		/*
8081 		 * ASYM_PACKING needs to force migrate tasks from busy but
8082 		 * lower priority CPUs in order to pack all tasks in the
8083 		 * highest priority CPUs.
8084 		 */
8085 		if ((sd->flags & SD_ASYM_PACKING) &&
8086 		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8087 			return 1;
8088 	}
8089 
8090 	/*
8091 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8092 	 * It's worth migrating the task if the src_cpu's capacity is reduced
8093 	 * because of other sched_class or IRQs if more capacity stays
8094 	 * available on dst_cpu.
8095 	 */
8096 	if ((env->idle != CPU_NOT_IDLE) &&
8097 	    (env->src_rq->cfs.h_nr_running == 1)) {
8098 		if ((check_cpu_capacity(env->src_rq, sd)) &&
8099 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8100 			return 1;
8101 	}
8102 
8103 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8104 }
8105 
8106 static int active_load_balance_cpu_stop(void *data);
8107 
8108 static int should_we_balance(struct lb_env *env)
8109 {
8110 	struct sched_group *sg = env->sd->groups;
8111 	int cpu, balance_cpu = -1;
8112 
8113 	/*
8114 	 * In the newly idle case, we will allow all the cpu's
8115 	 * to do the newly idle load balance.
8116 	 */
8117 	if (env->idle == CPU_NEWLY_IDLE)
8118 		return 1;
8119 
8120 	/* Try to find first idle cpu */
8121 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8122 		if (!idle_cpu(cpu))
8123 			continue;
8124 
8125 		balance_cpu = cpu;
8126 		break;
8127 	}
8128 
8129 	if (balance_cpu == -1)
8130 		balance_cpu = group_balance_cpu(sg);
8131 
8132 	/*
8133 	 * First idle cpu or the first cpu(busiest) in this sched group
8134 	 * is eligible for doing load balancing at this and above domains.
8135 	 */
8136 	return balance_cpu == env->dst_cpu;
8137 }
8138 
8139 /*
8140  * Check this_cpu to ensure it is balanced within domain. Attempt to move
8141  * tasks if there is an imbalance.
8142  */
8143 static int load_balance(int this_cpu, struct rq *this_rq,
8144 			struct sched_domain *sd, enum cpu_idle_type idle,
8145 			int *continue_balancing)
8146 {
8147 	int ld_moved, cur_ld_moved, active_balance = 0;
8148 	struct sched_domain *sd_parent = sd->parent;
8149 	struct sched_group *group;
8150 	struct rq *busiest;
8151 	struct rq_flags rf;
8152 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8153 
8154 	struct lb_env env = {
8155 		.sd		= sd,
8156 		.dst_cpu	= this_cpu,
8157 		.dst_rq		= this_rq,
8158 		.dst_grpmask    = sched_group_span(sd->groups),
8159 		.idle		= idle,
8160 		.loop_break	= sched_nr_migrate_break,
8161 		.cpus		= cpus,
8162 		.fbq_type	= all,
8163 		.tasks		= LIST_HEAD_INIT(env.tasks),
8164 	};
8165 
8166 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8167 
8168 	schedstat_inc(sd->lb_count[idle]);
8169 
8170 redo:
8171 	if (!should_we_balance(&env)) {
8172 		*continue_balancing = 0;
8173 		goto out_balanced;
8174 	}
8175 
8176 	group = find_busiest_group(&env);
8177 	if (!group) {
8178 		schedstat_inc(sd->lb_nobusyg[idle]);
8179 		goto out_balanced;
8180 	}
8181 
8182 	busiest = find_busiest_queue(&env, group);
8183 	if (!busiest) {
8184 		schedstat_inc(sd->lb_nobusyq[idle]);
8185 		goto out_balanced;
8186 	}
8187 
8188 	BUG_ON(busiest == env.dst_rq);
8189 
8190 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8191 
8192 	env.src_cpu = busiest->cpu;
8193 	env.src_rq = busiest;
8194 
8195 	ld_moved = 0;
8196 	if (busiest->nr_running > 1) {
8197 		/*
8198 		 * Attempt to move tasks. If find_busiest_group has found
8199 		 * an imbalance but busiest->nr_running <= 1, the group is
8200 		 * still unbalanced. ld_moved simply stays zero, so it is
8201 		 * correctly treated as an imbalance.
8202 		 */
8203 		env.flags |= LBF_ALL_PINNED;
8204 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8205 
8206 more_balance:
8207 		rq_lock_irqsave(busiest, &rf);
8208 		update_rq_clock(busiest);
8209 
8210 		/*
8211 		 * cur_ld_moved - load moved in current iteration
8212 		 * ld_moved     - cumulative load moved across iterations
8213 		 */
8214 		cur_ld_moved = detach_tasks(&env);
8215 
8216 		/*
8217 		 * We've detached some tasks from busiest_rq. Every
8218 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8219 		 * unlock busiest->lock, and we are able to be sure
8220 		 * that nobody can manipulate the tasks in parallel.
8221 		 * See task_rq_lock() family for the details.
8222 		 */
8223 
8224 		rq_unlock(busiest, &rf);
8225 
8226 		if (cur_ld_moved) {
8227 			attach_tasks(&env);
8228 			ld_moved += cur_ld_moved;
8229 		}
8230 
8231 		local_irq_restore(rf.flags);
8232 
8233 		if (env.flags & LBF_NEED_BREAK) {
8234 			env.flags &= ~LBF_NEED_BREAK;
8235 			goto more_balance;
8236 		}
8237 
8238 		/*
8239 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8240 		 * us and move them to an alternate dst_cpu in our sched_group
8241 		 * where they can run. The upper limit on how many times we
8242 		 * iterate on same src_cpu is dependent on number of cpus in our
8243 		 * sched_group.
8244 		 *
8245 		 * This changes load balance semantics a bit on who can move
8246 		 * load to a given_cpu. In addition to the given_cpu itself
8247 		 * (or a ilb_cpu acting on its behalf where given_cpu is
8248 		 * nohz-idle), we now have balance_cpu in a position to move
8249 		 * load to given_cpu. In rare situations, this may cause
8250 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8251 		 * _independently_ and at _same_ time to move some load to
8252 		 * given_cpu) causing exceess load to be moved to given_cpu.
8253 		 * This however should not happen so much in practice and
8254 		 * moreover subsequent load balance cycles should correct the
8255 		 * excess load moved.
8256 		 */
8257 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8258 
8259 			/* Prevent to re-select dst_cpu via env's cpus */
8260 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
8261 
8262 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8263 			env.dst_cpu	 = env.new_dst_cpu;
8264 			env.flags	&= ~LBF_DST_PINNED;
8265 			env.loop	 = 0;
8266 			env.loop_break	 = sched_nr_migrate_break;
8267 
8268 			/*
8269 			 * Go back to "more_balance" rather than "redo" since we
8270 			 * need to continue with same src_cpu.
8271 			 */
8272 			goto more_balance;
8273 		}
8274 
8275 		/*
8276 		 * We failed to reach balance because of affinity.
8277 		 */
8278 		if (sd_parent) {
8279 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8280 
8281 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8282 				*group_imbalance = 1;
8283 		}
8284 
8285 		/* All tasks on this runqueue were pinned by CPU affinity */
8286 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8287 			cpumask_clear_cpu(cpu_of(busiest), cpus);
8288 			/*
8289 			 * Attempting to continue load balancing at the current
8290 			 * sched_domain level only makes sense if there are
8291 			 * active CPUs remaining as possible busiest CPUs to
8292 			 * pull load from which are not contained within the
8293 			 * destination group that is receiving any migrated
8294 			 * load.
8295 			 */
8296 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8297 				env.loop = 0;
8298 				env.loop_break = sched_nr_migrate_break;
8299 				goto redo;
8300 			}
8301 			goto out_all_pinned;
8302 		}
8303 	}
8304 
8305 	if (!ld_moved) {
8306 		schedstat_inc(sd->lb_failed[idle]);
8307 		/*
8308 		 * Increment the failure counter only on periodic balance.
8309 		 * We do not want newidle balance, which can be very
8310 		 * frequent, pollute the failure counter causing
8311 		 * excessive cache_hot migrations and active balances.
8312 		 */
8313 		if (idle != CPU_NEWLY_IDLE)
8314 			sd->nr_balance_failed++;
8315 
8316 		if (need_active_balance(&env)) {
8317 			unsigned long flags;
8318 
8319 			raw_spin_lock_irqsave(&busiest->lock, flags);
8320 
8321 			/* don't kick the active_load_balance_cpu_stop,
8322 			 * if the curr task on busiest cpu can't be
8323 			 * moved to this_cpu
8324 			 */
8325 			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8326 				raw_spin_unlock_irqrestore(&busiest->lock,
8327 							    flags);
8328 				env.flags |= LBF_ALL_PINNED;
8329 				goto out_one_pinned;
8330 			}
8331 
8332 			/*
8333 			 * ->active_balance synchronizes accesses to
8334 			 * ->active_balance_work.  Once set, it's cleared
8335 			 * only after active load balance is finished.
8336 			 */
8337 			if (!busiest->active_balance) {
8338 				busiest->active_balance = 1;
8339 				busiest->push_cpu = this_cpu;
8340 				active_balance = 1;
8341 			}
8342 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8343 
8344 			if (active_balance) {
8345 				stop_one_cpu_nowait(cpu_of(busiest),
8346 					active_load_balance_cpu_stop, busiest,
8347 					&busiest->active_balance_work);
8348 			}
8349 
8350 			/* We've kicked active balancing, force task migration. */
8351 			sd->nr_balance_failed = sd->cache_nice_tries+1;
8352 		}
8353 	} else
8354 		sd->nr_balance_failed = 0;
8355 
8356 	if (likely(!active_balance)) {
8357 		/* We were unbalanced, so reset the balancing interval */
8358 		sd->balance_interval = sd->min_interval;
8359 	} else {
8360 		/*
8361 		 * If we've begun active balancing, start to back off. This
8362 		 * case may not be covered by the all_pinned logic if there
8363 		 * is only 1 task on the busy runqueue (because we don't call
8364 		 * detach_tasks).
8365 		 */
8366 		if (sd->balance_interval < sd->max_interval)
8367 			sd->balance_interval *= 2;
8368 	}
8369 
8370 	goto out;
8371 
8372 out_balanced:
8373 	/*
8374 	 * We reach balance although we may have faced some affinity
8375 	 * constraints. Clear the imbalance flag if it was set.
8376 	 */
8377 	if (sd_parent) {
8378 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8379 
8380 		if (*group_imbalance)
8381 			*group_imbalance = 0;
8382 	}
8383 
8384 out_all_pinned:
8385 	/*
8386 	 * We reach balance because all tasks are pinned at this level so
8387 	 * we can't migrate them. Let the imbalance flag set so parent level
8388 	 * can try to migrate them.
8389 	 */
8390 	schedstat_inc(sd->lb_balanced[idle]);
8391 
8392 	sd->nr_balance_failed = 0;
8393 
8394 out_one_pinned:
8395 	/* tune up the balancing interval */
8396 	if (((env.flags & LBF_ALL_PINNED) &&
8397 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8398 			(sd->balance_interval < sd->max_interval))
8399 		sd->balance_interval *= 2;
8400 
8401 	ld_moved = 0;
8402 out:
8403 	return ld_moved;
8404 }
8405 
8406 static inline unsigned long
8407 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8408 {
8409 	unsigned long interval = sd->balance_interval;
8410 
8411 	if (cpu_busy)
8412 		interval *= sd->busy_factor;
8413 
8414 	/* scale ms to jiffies */
8415 	interval = msecs_to_jiffies(interval);
8416 	interval = clamp(interval, 1UL, max_load_balance_interval);
8417 
8418 	return interval;
8419 }
8420 
8421 static inline void
8422 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8423 {
8424 	unsigned long interval, next;
8425 
8426 	/* used by idle balance, so cpu_busy = 0 */
8427 	interval = get_sd_balance_interval(sd, 0);
8428 	next = sd->last_balance + interval;
8429 
8430 	if (time_after(*next_balance, next))
8431 		*next_balance = next;
8432 }
8433 
8434 /*
8435  * idle_balance is called by schedule() if this_cpu is about to become
8436  * idle. Attempts to pull tasks from other CPUs.
8437  */
8438 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8439 {
8440 	unsigned long next_balance = jiffies + HZ;
8441 	int this_cpu = this_rq->cpu;
8442 	struct sched_domain *sd;
8443 	int pulled_task = 0;
8444 	u64 curr_cost = 0;
8445 
8446 	/*
8447 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
8448 	 * measure the duration of idle_balance() as idle time.
8449 	 */
8450 	this_rq->idle_stamp = rq_clock(this_rq);
8451 
8452 	/*
8453 	 * This is OK, because current is on_cpu, which avoids it being picked
8454 	 * for load-balance and preemption/IRQs are still disabled avoiding
8455 	 * further scheduler activity on it and we're being very careful to
8456 	 * re-start the picking loop.
8457 	 */
8458 	rq_unpin_lock(this_rq, rf);
8459 
8460 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8461 	    !this_rq->rd->overload) {
8462 		rcu_read_lock();
8463 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
8464 		if (sd)
8465 			update_next_balance(sd, &next_balance);
8466 		rcu_read_unlock();
8467 
8468 		goto out;
8469 	}
8470 
8471 	raw_spin_unlock(&this_rq->lock);
8472 
8473 	update_blocked_averages(this_cpu);
8474 	rcu_read_lock();
8475 	for_each_domain(this_cpu, sd) {
8476 		int continue_balancing = 1;
8477 		u64 t0, domain_cost;
8478 
8479 		if (!(sd->flags & SD_LOAD_BALANCE))
8480 			continue;
8481 
8482 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8483 			update_next_balance(sd, &next_balance);
8484 			break;
8485 		}
8486 
8487 		if (sd->flags & SD_BALANCE_NEWIDLE) {
8488 			t0 = sched_clock_cpu(this_cpu);
8489 
8490 			pulled_task = load_balance(this_cpu, this_rq,
8491 						   sd, CPU_NEWLY_IDLE,
8492 						   &continue_balancing);
8493 
8494 			domain_cost = sched_clock_cpu(this_cpu) - t0;
8495 			if (domain_cost > sd->max_newidle_lb_cost)
8496 				sd->max_newidle_lb_cost = domain_cost;
8497 
8498 			curr_cost += domain_cost;
8499 		}
8500 
8501 		update_next_balance(sd, &next_balance);
8502 
8503 		/*
8504 		 * Stop searching for tasks to pull if there are
8505 		 * now runnable tasks on this rq.
8506 		 */
8507 		if (pulled_task || this_rq->nr_running > 0)
8508 			break;
8509 	}
8510 	rcu_read_unlock();
8511 
8512 	raw_spin_lock(&this_rq->lock);
8513 
8514 	if (curr_cost > this_rq->max_idle_balance_cost)
8515 		this_rq->max_idle_balance_cost = curr_cost;
8516 
8517 	/*
8518 	 * While browsing the domains, we released the rq lock, a task could
8519 	 * have been enqueued in the meantime. Since we're not going idle,
8520 	 * pretend we pulled a task.
8521 	 */
8522 	if (this_rq->cfs.h_nr_running && !pulled_task)
8523 		pulled_task = 1;
8524 
8525 out:
8526 	/* Move the next balance forward */
8527 	if (time_after(this_rq->next_balance, next_balance))
8528 		this_rq->next_balance = next_balance;
8529 
8530 	/* Is there a task of a high priority class? */
8531 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8532 		pulled_task = -1;
8533 
8534 	if (pulled_task)
8535 		this_rq->idle_stamp = 0;
8536 
8537 	rq_repin_lock(this_rq, rf);
8538 
8539 	return pulled_task;
8540 }
8541 
8542 /*
8543  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8544  * running tasks off the busiest CPU onto idle CPUs. It requires at
8545  * least 1 task to be running on each physical CPU where possible, and
8546  * avoids physical / logical imbalances.
8547  */
8548 static int active_load_balance_cpu_stop(void *data)
8549 {
8550 	struct rq *busiest_rq = data;
8551 	int busiest_cpu = cpu_of(busiest_rq);
8552 	int target_cpu = busiest_rq->push_cpu;
8553 	struct rq *target_rq = cpu_rq(target_cpu);
8554 	struct sched_domain *sd;
8555 	struct task_struct *p = NULL;
8556 	struct rq_flags rf;
8557 
8558 	rq_lock_irq(busiest_rq, &rf);
8559 
8560 	/* make sure the requested cpu hasn't gone down in the meantime */
8561 	if (unlikely(busiest_cpu != smp_processor_id() ||
8562 		     !busiest_rq->active_balance))
8563 		goto out_unlock;
8564 
8565 	/* Is there any task to move? */
8566 	if (busiest_rq->nr_running <= 1)
8567 		goto out_unlock;
8568 
8569 	/*
8570 	 * This condition is "impossible", if it occurs
8571 	 * we need to fix it. Originally reported by
8572 	 * Bjorn Helgaas on a 128-cpu setup.
8573 	 */
8574 	BUG_ON(busiest_rq == target_rq);
8575 
8576 	/* Search for an sd spanning us and the target CPU. */
8577 	rcu_read_lock();
8578 	for_each_domain(target_cpu, sd) {
8579 		if ((sd->flags & SD_LOAD_BALANCE) &&
8580 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8581 				break;
8582 	}
8583 
8584 	if (likely(sd)) {
8585 		struct lb_env env = {
8586 			.sd		= sd,
8587 			.dst_cpu	= target_cpu,
8588 			.dst_rq		= target_rq,
8589 			.src_cpu	= busiest_rq->cpu,
8590 			.src_rq		= busiest_rq,
8591 			.idle		= CPU_IDLE,
8592 			/*
8593 			 * can_migrate_task() doesn't need to compute new_dst_cpu
8594 			 * for active balancing. Since we have CPU_IDLE, but no
8595 			 * @dst_grpmask we need to make that test go away with lying
8596 			 * about DST_PINNED.
8597 			 */
8598 			.flags		= LBF_DST_PINNED,
8599 		};
8600 
8601 		schedstat_inc(sd->alb_count);
8602 		update_rq_clock(busiest_rq);
8603 
8604 		p = detach_one_task(&env);
8605 		if (p) {
8606 			schedstat_inc(sd->alb_pushed);
8607 			/* Active balancing done, reset the failure counter. */
8608 			sd->nr_balance_failed = 0;
8609 		} else {
8610 			schedstat_inc(sd->alb_failed);
8611 		}
8612 	}
8613 	rcu_read_unlock();
8614 out_unlock:
8615 	busiest_rq->active_balance = 0;
8616 	rq_unlock(busiest_rq, &rf);
8617 
8618 	if (p)
8619 		attach_one_task(target_rq, p);
8620 
8621 	local_irq_enable();
8622 
8623 	return 0;
8624 }
8625 
8626 static inline int on_null_domain(struct rq *rq)
8627 {
8628 	return unlikely(!rcu_dereference_sched(rq->sd));
8629 }
8630 
8631 #ifdef CONFIG_NO_HZ_COMMON
8632 /*
8633  * idle load balancing details
8634  * - When one of the busy CPUs notice that there may be an idle rebalancing
8635  *   needed, they will kick the idle load balancer, which then does idle
8636  *   load balancing for all the idle CPUs.
8637  */
8638 static struct {
8639 	cpumask_var_t idle_cpus_mask;
8640 	atomic_t nr_cpus;
8641 	unsigned long next_balance;     /* in jiffy units */
8642 } nohz ____cacheline_aligned;
8643 
8644 static inline int find_new_ilb(void)
8645 {
8646 	int ilb = cpumask_first(nohz.idle_cpus_mask);
8647 
8648 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
8649 		return ilb;
8650 
8651 	return nr_cpu_ids;
8652 }
8653 
8654 /*
8655  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8656  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8657  * CPU (if there is one).
8658  */
8659 static void nohz_balancer_kick(void)
8660 {
8661 	int ilb_cpu;
8662 
8663 	nohz.next_balance++;
8664 
8665 	ilb_cpu = find_new_ilb();
8666 
8667 	if (ilb_cpu >= nr_cpu_ids)
8668 		return;
8669 
8670 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8671 		return;
8672 	/*
8673 	 * Use smp_send_reschedule() instead of resched_cpu().
8674 	 * This way we generate a sched IPI on the target cpu which
8675 	 * is idle. And the softirq performing nohz idle load balance
8676 	 * will be run before returning from the IPI.
8677 	 */
8678 	smp_send_reschedule(ilb_cpu);
8679 	return;
8680 }
8681 
8682 void nohz_balance_exit_idle(unsigned int cpu)
8683 {
8684 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8685 		/*
8686 		 * Completely isolated CPUs don't ever set, so we must test.
8687 		 */
8688 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8689 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8690 			atomic_dec(&nohz.nr_cpus);
8691 		}
8692 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8693 	}
8694 }
8695 
8696 static inline void set_cpu_sd_state_busy(void)
8697 {
8698 	struct sched_domain *sd;
8699 	int cpu = smp_processor_id();
8700 
8701 	rcu_read_lock();
8702 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
8703 
8704 	if (!sd || !sd->nohz_idle)
8705 		goto unlock;
8706 	sd->nohz_idle = 0;
8707 
8708 	atomic_inc(&sd->shared->nr_busy_cpus);
8709 unlock:
8710 	rcu_read_unlock();
8711 }
8712 
8713 void set_cpu_sd_state_idle(void)
8714 {
8715 	struct sched_domain *sd;
8716 	int cpu = smp_processor_id();
8717 
8718 	rcu_read_lock();
8719 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
8720 
8721 	if (!sd || sd->nohz_idle)
8722 		goto unlock;
8723 	sd->nohz_idle = 1;
8724 
8725 	atomic_dec(&sd->shared->nr_busy_cpus);
8726 unlock:
8727 	rcu_read_unlock();
8728 }
8729 
8730 /*
8731  * This routine will record that the cpu is going idle with tick stopped.
8732  * This info will be used in performing idle load balancing in the future.
8733  */
8734 void nohz_balance_enter_idle(int cpu)
8735 {
8736 	/*
8737 	 * If this cpu is going down, then nothing needs to be done.
8738 	 */
8739 	if (!cpu_active(cpu))
8740 		return;
8741 
8742 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
8743 	if (!is_housekeeping_cpu(cpu))
8744 		return;
8745 
8746 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8747 		return;
8748 
8749 	/*
8750 	 * If we're a completely isolated CPU, we don't play.
8751 	 */
8752 	if (on_null_domain(cpu_rq(cpu)))
8753 		return;
8754 
8755 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8756 	atomic_inc(&nohz.nr_cpus);
8757 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8758 }
8759 #endif
8760 
8761 static DEFINE_SPINLOCK(balancing);
8762 
8763 /*
8764  * Scale the max load_balance interval with the number of CPUs in the system.
8765  * This trades load-balance latency on larger machines for less cross talk.
8766  */
8767 void update_max_interval(void)
8768 {
8769 	max_load_balance_interval = HZ*num_online_cpus()/10;
8770 }
8771 
8772 /*
8773  * It checks each scheduling domain to see if it is due to be balanced,
8774  * and initiates a balancing operation if so.
8775  *
8776  * Balancing parameters are set up in init_sched_domains.
8777  */
8778 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8779 {
8780 	int continue_balancing = 1;
8781 	int cpu = rq->cpu;
8782 	unsigned long interval;
8783 	struct sched_domain *sd;
8784 	/* Earliest time when we have to do rebalance again */
8785 	unsigned long next_balance = jiffies + 60*HZ;
8786 	int update_next_balance = 0;
8787 	int need_serialize, need_decay = 0;
8788 	u64 max_cost = 0;
8789 
8790 	update_blocked_averages(cpu);
8791 
8792 	rcu_read_lock();
8793 	for_each_domain(cpu, sd) {
8794 		/*
8795 		 * Decay the newidle max times here because this is a regular
8796 		 * visit to all the domains. Decay ~1% per second.
8797 		 */
8798 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8799 			sd->max_newidle_lb_cost =
8800 				(sd->max_newidle_lb_cost * 253) / 256;
8801 			sd->next_decay_max_lb_cost = jiffies + HZ;
8802 			need_decay = 1;
8803 		}
8804 		max_cost += sd->max_newidle_lb_cost;
8805 
8806 		if (!(sd->flags & SD_LOAD_BALANCE))
8807 			continue;
8808 
8809 		/*
8810 		 * Stop the load balance at this level. There is another
8811 		 * CPU in our sched group which is doing load balancing more
8812 		 * actively.
8813 		 */
8814 		if (!continue_balancing) {
8815 			if (need_decay)
8816 				continue;
8817 			break;
8818 		}
8819 
8820 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8821 
8822 		need_serialize = sd->flags & SD_SERIALIZE;
8823 		if (need_serialize) {
8824 			if (!spin_trylock(&balancing))
8825 				goto out;
8826 		}
8827 
8828 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8829 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8830 				/*
8831 				 * The LBF_DST_PINNED logic could have changed
8832 				 * env->dst_cpu, so we can't know our idle
8833 				 * state even if we migrated tasks. Update it.
8834 				 */
8835 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8836 			}
8837 			sd->last_balance = jiffies;
8838 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8839 		}
8840 		if (need_serialize)
8841 			spin_unlock(&balancing);
8842 out:
8843 		if (time_after(next_balance, sd->last_balance + interval)) {
8844 			next_balance = sd->last_balance + interval;
8845 			update_next_balance = 1;
8846 		}
8847 	}
8848 	if (need_decay) {
8849 		/*
8850 		 * Ensure the rq-wide value also decays but keep it at a
8851 		 * reasonable floor to avoid funnies with rq->avg_idle.
8852 		 */
8853 		rq->max_idle_balance_cost =
8854 			max((u64)sysctl_sched_migration_cost, max_cost);
8855 	}
8856 	rcu_read_unlock();
8857 
8858 	/*
8859 	 * next_balance will be updated only when there is a need.
8860 	 * When the cpu is attached to null domain for ex, it will not be
8861 	 * updated.
8862 	 */
8863 	if (likely(update_next_balance)) {
8864 		rq->next_balance = next_balance;
8865 
8866 #ifdef CONFIG_NO_HZ_COMMON
8867 		/*
8868 		 * If this CPU has been elected to perform the nohz idle
8869 		 * balance. Other idle CPUs have already rebalanced with
8870 		 * nohz_idle_balance() and nohz.next_balance has been
8871 		 * updated accordingly. This CPU is now running the idle load
8872 		 * balance for itself and we need to update the
8873 		 * nohz.next_balance accordingly.
8874 		 */
8875 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8876 			nohz.next_balance = rq->next_balance;
8877 #endif
8878 	}
8879 }
8880 
8881 #ifdef CONFIG_NO_HZ_COMMON
8882 /*
8883  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8884  * rebalancing for all the cpus for whom scheduler ticks are stopped.
8885  */
8886 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8887 {
8888 	int this_cpu = this_rq->cpu;
8889 	struct rq *rq;
8890 	int balance_cpu;
8891 	/* Earliest time when we have to do rebalance again */
8892 	unsigned long next_balance = jiffies + 60*HZ;
8893 	int update_next_balance = 0;
8894 
8895 	if (idle != CPU_IDLE ||
8896 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8897 		goto end;
8898 
8899 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8900 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8901 			continue;
8902 
8903 		/*
8904 		 * If this cpu gets work to do, stop the load balancing
8905 		 * work being done for other cpus. Next load
8906 		 * balancing owner will pick it up.
8907 		 */
8908 		if (need_resched())
8909 			break;
8910 
8911 		rq = cpu_rq(balance_cpu);
8912 
8913 		/*
8914 		 * If time for next balance is due,
8915 		 * do the balance.
8916 		 */
8917 		if (time_after_eq(jiffies, rq->next_balance)) {
8918 			struct rq_flags rf;
8919 
8920 			rq_lock_irq(rq, &rf);
8921 			update_rq_clock(rq);
8922 			cpu_load_update_idle(rq);
8923 			rq_unlock_irq(rq, &rf);
8924 
8925 			rebalance_domains(rq, CPU_IDLE);
8926 		}
8927 
8928 		if (time_after(next_balance, rq->next_balance)) {
8929 			next_balance = rq->next_balance;
8930 			update_next_balance = 1;
8931 		}
8932 	}
8933 
8934 	/*
8935 	 * next_balance will be updated only when there is a need.
8936 	 * When the CPU is attached to null domain for ex, it will not be
8937 	 * updated.
8938 	 */
8939 	if (likely(update_next_balance))
8940 		nohz.next_balance = next_balance;
8941 end:
8942 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8943 }
8944 
8945 /*
8946  * Current heuristic for kicking the idle load balancer in the presence
8947  * of an idle cpu in the system.
8948  *   - This rq has more than one task.
8949  *   - This rq has at least one CFS task and the capacity of the CPU is
8950  *     significantly reduced because of RT tasks or IRQs.
8951  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
8952  *     multiple busy cpu.
8953  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8954  *     domain span are idle.
8955  */
8956 static inline bool nohz_kick_needed(struct rq *rq)
8957 {
8958 	unsigned long now = jiffies;
8959 	struct sched_domain_shared *sds;
8960 	struct sched_domain *sd;
8961 	int nr_busy, i, cpu = rq->cpu;
8962 	bool kick = false;
8963 
8964 	if (unlikely(rq->idle_balance))
8965 		return false;
8966 
8967        /*
8968 	* We may be recently in ticked or tickless idle mode. At the first
8969 	* busy tick after returning from idle, we will update the busy stats.
8970 	*/
8971 	set_cpu_sd_state_busy();
8972 	nohz_balance_exit_idle(cpu);
8973 
8974 	/*
8975 	 * None are in tickless mode and hence no need for NOHZ idle load
8976 	 * balancing.
8977 	 */
8978 	if (likely(!atomic_read(&nohz.nr_cpus)))
8979 		return false;
8980 
8981 	if (time_before(now, nohz.next_balance))
8982 		return false;
8983 
8984 	if (rq->nr_running >= 2)
8985 		return true;
8986 
8987 	rcu_read_lock();
8988 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8989 	if (sds) {
8990 		/*
8991 		 * XXX: write a coherent comment on why we do this.
8992 		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8993 		 */
8994 		nr_busy = atomic_read(&sds->nr_busy_cpus);
8995 		if (nr_busy > 1) {
8996 			kick = true;
8997 			goto unlock;
8998 		}
8999 
9000 	}
9001 
9002 	sd = rcu_dereference(rq->sd);
9003 	if (sd) {
9004 		if ((rq->cfs.h_nr_running >= 1) &&
9005 				check_cpu_capacity(rq, sd)) {
9006 			kick = true;
9007 			goto unlock;
9008 		}
9009 	}
9010 
9011 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
9012 	if (sd) {
9013 		for_each_cpu(i, sched_domain_span(sd)) {
9014 			if (i == cpu ||
9015 			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9016 				continue;
9017 
9018 			if (sched_asym_prefer(i, cpu)) {
9019 				kick = true;
9020 				goto unlock;
9021 			}
9022 		}
9023 	}
9024 unlock:
9025 	rcu_read_unlock();
9026 	return kick;
9027 }
9028 #else
9029 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
9030 #endif
9031 
9032 /*
9033  * run_rebalance_domains is triggered when needed from the scheduler tick.
9034  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9035  */
9036 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9037 {
9038 	struct rq *this_rq = this_rq();
9039 	enum cpu_idle_type idle = this_rq->idle_balance ?
9040 						CPU_IDLE : CPU_NOT_IDLE;
9041 
9042 	/*
9043 	 * If this cpu has a pending nohz_balance_kick, then do the
9044 	 * balancing on behalf of the other idle cpus whose ticks are
9045 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9046 	 * give the idle cpus a chance to load balance. Else we may
9047 	 * load balance only within the local sched_domain hierarchy
9048 	 * and abort nohz_idle_balance altogether if we pull some load.
9049 	 */
9050 	nohz_idle_balance(this_rq, idle);
9051 	rebalance_domains(this_rq, idle);
9052 }
9053 
9054 /*
9055  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9056  */
9057 void trigger_load_balance(struct rq *rq)
9058 {
9059 	/* Don't need to rebalance while attached to NULL domain */
9060 	if (unlikely(on_null_domain(rq)))
9061 		return;
9062 
9063 	if (time_after_eq(jiffies, rq->next_balance))
9064 		raise_softirq(SCHED_SOFTIRQ);
9065 #ifdef CONFIG_NO_HZ_COMMON
9066 	if (nohz_kick_needed(rq))
9067 		nohz_balancer_kick();
9068 #endif
9069 }
9070 
9071 static void rq_online_fair(struct rq *rq)
9072 {
9073 	update_sysctl();
9074 
9075 	update_runtime_enabled(rq);
9076 }
9077 
9078 static void rq_offline_fair(struct rq *rq)
9079 {
9080 	update_sysctl();
9081 
9082 	/* Ensure any throttled groups are reachable by pick_next_task */
9083 	unthrottle_offline_cfs_rqs(rq);
9084 }
9085 
9086 #endif /* CONFIG_SMP */
9087 
9088 /*
9089  * scheduler tick hitting a task of our scheduling class:
9090  */
9091 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9092 {
9093 	struct cfs_rq *cfs_rq;
9094 	struct sched_entity *se = &curr->se;
9095 
9096 	for_each_sched_entity(se) {
9097 		cfs_rq = cfs_rq_of(se);
9098 		entity_tick(cfs_rq, se, queued);
9099 	}
9100 
9101 	if (static_branch_unlikely(&sched_numa_balancing))
9102 		task_tick_numa(rq, curr);
9103 }
9104 
9105 /*
9106  * called on fork with the child task as argument from the parent's context
9107  *  - child not yet on the tasklist
9108  *  - preemption disabled
9109  */
9110 static void task_fork_fair(struct task_struct *p)
9111 {
9112 	struct cfs_rq *cfs_rq;
9113 	struct sched_entity *se = &p->se, *curr;
9114 	struct rq *rq = this_rq();
9115 	struct rq_flags rf;
9116 
9117 	rq_lock(rq, &rf);
9118 	update_rq_clock(rq);
9119 
9120 	cfs_rq = task_cfs_rq(current);
9121 	curr = cfs_rq->curr;
9122 	if (curr) {
9123 		update_curr(cfs_rq);
9124 		se->vruntime = curr->vruntime;
9125 	}
9126 	place_entity(cfs_rq, se, 1);
9127 
9128 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9129 		/*
9130 		 * Upon rescheduling, sched_class::put_prev_task() will place
9131 		 * 'current' within the tree based on its new key value.
9132 		 */
9133 		swap(curr->vruntime, se->vruntime);
9134 		resched_curr(rq);
9135 	}
9136 
9137 	se->vruntime -= cfs_rq->min_vruntime;
9138 	rq_unlock(rq, &rf);
9139 }
9140 
9141 /*
9142  * Priority of the task has changed. Check to see if we preempt
9143  * the current task.
9144  */
9145 static void
9146 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9147 {
9148 	if (!task_on_rq_queued(p))
9149 		return;
9150 
9151 	/*
9152 	 * Reschedule if we are currently running on this runqueue and
9153 	 * our priority decreased, or if we are not currently running on
9154 	 * this runqueue and our priority is higher than the current's
9155 	 */
9156 	if (rq->curr == p) {
9157 		if (p->prio > oldprio)
9158 			resched_curr(rq);
9159 	} else
9160 		check_preempt_curr(rq, p, 0);
9161 }
9162 
9163 static inline bool vruntime_normalized(struct task_struct *p)
9164 {
9165 	struct sched_entity *se = &p->se;
9166 
9167 	/*
9168 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9169 	 * the dequeue_entity(.flags=0) will already have normalized the
9170 	 * vruntime.
9171 	 */
9172 	if (p->on_rq)
9173 		return true;
9174 
9175 	/*
9176 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
9177 	 * But there are some cases where it has already been normalized:
9178 	 *
9179 	 * - A forked child which is waiting for being woken up by
9180 	 *   wake_up_new_task().
9181 	 * - A task which has been woken up by try_to_wake_up() and
9182 	 *   waiting for actually being woken up by sched_ttwu_pending().
9183 	 */
9184 	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9185 		return true;
9186 
9187 	return false;
9188 }
9189 
9190 #ifdef CONFIG_FAIR_GROUP_SCHED
9191 /*
9192  * Propagate the changes of the sched_entity across the tg tree to make it
9193  * visible to the root
9194  */
9195 static void propagate_entity_cfs_rq(struct sched_entity *se)
9196 {
9197 	struct cfs_rq *cfs_rq;
9198 
9199 	/* Start to propagate at parent */
9200 	se = se->parent;
9201 
9202 	for_each_sched_entity(se) {
9203 		cfs_rq = cfs_rq_of(se);
9204 
9205 		if (cfs_rq_throttled(cfs_rq))
9206 			break;
9207 
9208 		update_load_avg(se, UPDATE_TG);
9209 	}
9210 }
9211 #else
9212 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9213 #endif
9214 
9215 static void detach_entity_cfs_rq(struct sched_entity *se)
9216 {
9217 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9218 
9219 	/* Catch up with the cfs_rq and remove our load when we leave */
9220 	update_load_avg(se, 0);
9221 	detach_entity_load_avg(cfs_rq, se);
9222 	update_tg_load_avg(cfs_rq, false);
9223 	propagate_entity_cfs_rq(se);
9224 }
9225 
9226 static void attach_entity_cfs_rq(struct sched_entity *se)
9227 {
9228 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9229 
9230 #ifdef CONFIG_FAIR_GROUP_SCHED
9231 	/*
9232 	 * Since the real-depth could have been changed (only FAIR
9233 	 * class maintain depth value), reset depth properly.
9234 	 */
9235 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9236 #endif
9237 
9238 	/* Synchronize entity with its cfs_rq */
9239 	update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9240 	attach_entity_load_avg(cfs_rq, se);
9241 	update_tg_load_avg(cfs_rq, false);
9242 	propagate_entity_cfs_rq(se);
9243 }
9244 
9245 static void detach_task_cfs_rq(struct task_struct *p)
9246 {
9247 	struct sched_entity *se = &p->se;
9248 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9249 
9250 	if (!vruntime_normalized(p)) {
9251 		/*
9252 		 * Fix up our vruntime so that the current sleep doesn't
9253 		 * cause 'unlimited' sleep bonus.
9254 		 */
9255 		place_entity(cfs_rq, se, 0);
9256 		se->vruntime -= cfs_rq->min_vruntime;
9257 	}
9258 
9259 	detach_entity_cfs_rq(se);
9260 }
9261 
9262 static void attach_task_cfs_rq(struct task_struct *p)
9263 {
9264 	struct sched_entity *se = &p->se;
9265 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9266 
9267 	attach_entity_cfs_rq(se);
9268 
9269 	if (!vruntime_normalized(p))
9270 		se->vruntime += cfs_rq->min_vruntime;
9271 }
9272 
9273 static void switched_from_fair(struct rq *rq, struct task_struct *p)
9274 {
9275 	detach_task_cfs_rq(p);
9276 }
9277 
9278 static void switched_to_fair(struct rq *rq, struct task_struct *p)
9279 {
9280 	attach_task_cfs_rq(p);
9281 
9282 	if (task_on_rq_queued(p)) {
9283 		/*
9284 		 * We were most likely switched from sched_rt, so
9285 		 * kick off the schedule if running, otherwise just see
9286 		 * if we can still preempt the current task.
9287 		 */
9288 		if (rq->curr == p)
9289 			resched_curr(rq);
9290 		else
9291 			check_preempt_curr(rq, p, 0);
9292 	}
9293 }
9294 
9295 /* Account for a task changing its policy or group.
9296  *
9297  * This routine is mostly called to set cfs_rq->curr field when a task
9298  * migrates between groups/classes.
9299  */
9300 static void set_curr_task_fair(struct rq *rq)
9301 {
9302 	struct sched_entity *se = &rq->curr->se;
9303 
9304 	for_each_sched_entity(se) {
9305 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
9306 
9307 		set_next_entity(cfs_rq, se);
9308 		/* ensure bandwidth has been allocated on our new cfs_rq */
9309 		account_cfs_rq_runtime(cfs_rq, 0);
9310 	}
9311 }
9312 
9313 void init_cfs_rq(struct cfs_rq *cfs_rq)
9314 {
9315 	cfs_rq->tasks_timeline = RB_ROOT;
9316 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9317 #ifndef CONFIG_64BIT
9318 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9319 #endif
9320 #ifdef CONFIG_SMP
9321 #ifdef CONFIG_FAIR_GROUP_SCHED
9322 	cfs_rq->propagate_avg = 0;
9323 #endif
9324 	atomic_long_set(&cfs_rq->removed_load_avg, 0);
9325 	atomic_long_set(&cfs_rq->removed_util_avg, 0);
9326 #endif
9327 }
9328 
9329 #ifdef CONFIG_FAIR_GROUP_SCHED
9330 static void task_set_group_fair(struct task_struct *p)
9331 {
9332 	struct sched_entity *se = &p->se;
9333 
9334 	set_task_rq(p, task_cpu(p));
9335 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9336 }
9337 
9338 static void task_move_group_fair(struct task_struct *p)
9339 {
9340 	detach_task_cfs_rq(p);
9341 	set_task_rq(p, task_cpu(p));
9342 
9343 #ifdef CONFIG_SMP
9344 	/* Tell se's cfs_rq has been changed -- migrated */
9345 	p->se.avg.last_update_time = 0;
9346 #endif
9347 	attach_task_cfs_rq(p);
9348 }
9349 
9350 static void task_change_group_fair(struct task_struct *p, int type)
9351 {
9352 	switch (type) {
9353 	case TASK_SET_GROUP:
9354 		task_set_group_fair(p);
9355 		break;
9356 
9357 	case TASK_MOVE_GROUP:
9358 		task_move_group_fair(p);
9359 		break;
9360 	}
9361 }
9362 
9363 void free_fair_sched_group(struct task_group *tg)
9364 {
9365 	int i;
9366 
9367 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9368 
9369 	for_each_possible_cpu(i) {
9370 		if (tg->cfs_rq)
9371 			kfree(tg->cfs_rq[i]);
9372 		if (tg->se)
9373 			kfree(tg->se[i]);
9374 	}
9375 
9376 	kfree(tg->cfs_rq);
9377 	kfree(tg->se);
9378 }
9379 
9380 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9381 {
9382 	struct sched_entity *se;
9383 	struct cfs_rq *cfs_rq;
9384 	int i;
9385 
9386 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9387 	if (!tg->cfs_rq)
9388 		goto err;
9389 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9390 	if (!tg->se)
9391 		goto err;
9392 
9393 	tg->shares = NICE_0_LOAD;
9394 
9395 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9396 
9397 	for_each_possible_cpu(i) {
9398 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9399 				      GFP_KERNEL, cpu_to_node(i));
9400 		if (!cfs_rq)
9401 			goto err;
9402 
9403 		se = kzalloc_node(sizeof(struct sched_entity),
9404 				  GFP_KERNEL, cpu_to_node(i));
9405 		if (!se)
9406 			goto err_free_rq;
9407 
9408 		init_cfs_rq(cfs_rq);
9409 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9410 		init_entity_runnable_average(se);
9411 	}
9412 
9413 	return 1;
9414 
9415 err_free_rq:
9416 	kfree(cfs_rq);
9417 err:
9418 	return 0;
9419 }
9420 
9421 void online_fair_sched_group(struct task_group *tg)
9422 {
9423 	struct sched_entity *se;
9424 	struct rq *rq;
9425 	int i;
9426 
9427 	for_each_possible_cpu(i) {
9428 		rq = cpu_rq(i);
9429 		se = tg->se[i];
9430 
9431 		raw_spin_lock_irq(&rq->lock);
9432 		update_rq_clock(rq);
9433 		attach_entity_cfs_rq(se);
9434 		sync_throttle(tg, i);
9435 		raw_spin_unlock_irq(&rq->lock);
9436 	}
9437 }
9438 
9439 void unregister_fair_sched_group(struct task_group *tg)
9440 {
9441 	unsigned long flags;
9442 	struct rq *rq;
9443 	int cpu;
9444 
9445 	for_each_possible_cpu(cpu) {
9446 		if (tg->se[cpu])
9447 			remove_entity_load_avg(tg->se[cpu]);
9448 
9449 		/*
9450 		 * Only empty task groups can be destroyed; so we can speculatively
9451 		 * check on_list without danger of it being re-added.
9452 		 */
9453 		if (!tg->cfs_rq[cpu]->on_list)
9454 			continue;
9455 
9456 		rq = cpu_rq(cpu);
9457 
9458 		raw_spin_lock_irqsave(&rq->lock, flags);
9459 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9460 		raw_spin_unlock_irqrestore(&rq->lock, flags);
9461 	}
9462 }
9463 
9464 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9465 			struct sched_entity *se, int cpu,
9466 			struct sched_entity *parent)
9467 {
9468 	struct rq *rq = cpu_rq(cpu);
9469 
9470 	cfs_rq->tg = tg;
9471 	cfs_rq->rq = rq;
9472 	init_cfs_rq_runtime(cfs_rq);
9473 
9474 	tg->cfs_rq[cpu] = cfs_rq;
9475 	tg->se[cpu] = se;
9476 
9477 	/* se could be NULL for root_task_group */
9478 	if (!se)
9479 		return;
9480 
9481 	if (!parent) {
9482 		se->cfs_rq = &rq->cfs;
9483 		se->depth = 0;
9484 	} else {
9485 		se->cfs_rq = parent->my_q;
9486 		se->depth = parent->depth + 1;
9487 	}
9488 
9489 	se->my_q = cfs_rq;
9490 	/* guarantee group entities always have weight */
9491 	update_load_set(&se->load, NICE_0_LOAD);
9492 	se->parent = parent;
9493 }
9494 
9495 static DEFINE_MUTEX(shares_mutex);
9496 
9497 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9498 {
9499 	int i;
9500 
9501 	/*
9502 	 * We can't change the weight of the root cgroup.
9503 	 */
9504 	if (!tg->se[0])
9505 		return -EINVAL;
9506 
9507 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9508 
9509 	mutex_lock(&shares_mutex);
9510 	if (tg->shares == shares)
9511 		goto done;
9512 
9513 	tg->shares = shares;
9514 	for_each_possible_cpu(i) {
9515 		struct rq *rq = cpu_rq(i);
9516 		struct sched_entity *se = tg->se[i];
9517 		struct rq_flags rf;
9518 
9519 		/* Propagate contribution to hierarchy */
9520 		rq_lock_irqsave(rq, &rf);
9521 		update_rq_clock(rq);
9522 		for_each_sched_entity(se) {
9523 			update_load_avg(se, UPDATE_TG);
9524 			update_cfs_shares(se);
9525 		}
9526 		rq_unlock_irqrestore(rq, &rf);
9527 	}
9528 
9529 done:
9530 	mutex_unlock(&shares_mutex);
9531 	return 0;
9532 }
9533 #else /* CONFIG_FAIR_GROUP_SCHED */
9534 
9535 void free_fair_sched_group(struct task_group *tg) { }
9536 
9537 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9538 {
9539 	return 1;
9540 }
9541 
9542 void online_fair_sched_group(struct task_group *tg) { }
9543 
9544 void unregister_fair_sched_group(struct task_group *tg) { }
9545 
9546 #endif /* CONFIG_FAIR_GROUP_SCHED */
9547 
9548 
9549 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9550 {
9551 	struct sched_entity *se = &task->se;
9552 	unsigned int rr_interval = 0;
9553 
9554 	/*
9555 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9556 	 * idle runqueue:
9557 	 */
9558 	if (rq->cfs.load.weight)
9559 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9560 
9561 	return rr_interval;
9562 }
9563 
9564 /*
9565  * All the scheduling class methods:
9566  */
9567 const struct sched_class fair_sched_class = {
9568 	.next			= &idle_sched_class,
9569 	.enqueue_task		= enqueue_task_fair,
9570 	.dequeue_task		= dequeue_task_fair,
9571 	.yield_task		= yield_task_fair,
9572 	.yield_to_task		= yield_to_task_fair,
9573 
9574 	.check_preempt_curr	= check_preempt_wakeup,
9575 
9576 	.pick_next_task		= pick_next_task_fair,
9577 	.put_prev_task		= put_prev_task_fair,
9578 
9579 #ifdef CONFIG_SMP
9580 	.select_task_rq		= select_task_rq_fair,
9581 	.migrate_task_rq	= migrate_task_rq_fair,
9582 
9583 	.rq_online		= rq_online_fair,
9584 	.rq_offline		= rq_offline_fair,
9585 
9586 	.task_dead		= task_dead_fair,
9587 	.set_cpus_allowed	= set_cpus_allowed_common,
9588 #endif
9589 
9590 	.set_curr_task          = set_curr_task_fair,
9591 	.task_tick		= task_tick_fair,
9592 	.task_fork		= task_fork_fair,
9593 
9594 	.prio_changed		= prio_changed_fair,
9595 	.switched_from		= switched_from_fair,
9596 	.switched_to		= switched_to_fair,
9597 
9598 	.get_rr_interval	= get_rr_interval_fair,
9599 
9600 	.update_curr		= update_curr_fair,
9601 
9602 #ifdef CONFIG_FAIR_GROUP_SCHED
9603 	.task_change_group	= task_change_group_fair,
9604 #endif
9605 };
9606 
9607 #ifdef CONFIG_SCHED_DEBUG
9608 void print_cfs_stats(struct seq_file *m, int cpu)
9609 {
9610 	struct cfs_rq *cfs_rq, *pos;
9611 
9612 	rcu_read_lock();
9613 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
9614 		print_cfs_rq(m, cpu, cfs_rq);
9615 	rcu_read_unlock();
9616 }
9617 
9618 #ifdef CONFIG_NUMA_BALANCING
9619 void show_numa_stats(struct task_struct *p, struct seq_file *m)
9620 {
9621 	int node;
9622 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9623 
9624 	for_each_online_node(node) {
9625 		if (p->numa_faults) {
9626 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9627 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9628 		}
9629 		if (p->numa_group) {
9630 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9631 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9632 		}
9633 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9634 	}
9635 }
9636 #endif /* CONFIG_NUMA_BALANCING */
9637 #endif /* CONFIG_SCHED_DEBUG */
9638 
9639 __init void init_sched_fair_class(void)
9640 {
9641 #ifdef CONFIG_SMP
9642 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9643 
9644 #ifdef CONFIG_NO_HZ_COMMON
9645 	nohz.next_balance = jiffies;
9646 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
9647 #endif
9648 #endif /* SMP */
9649 
9650 }
9651