1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 21 */ 22 23 #include <linux/sched/mm.h> 24 #include <linux/sched/topology.h> 25 26 #include <linux/latencytop.h> 27 #include <linux/cpumask.h> 28 #include <linux/cpuidle.h> 29 #include <linux/slab.h> 30 #include <linux/profile.h> 31 #include <linux/interrupt.h> 32 #include <linux/mempolicy.h> 33 #include <linux/migrate.h> 34 #include <linux/task_work.h> 35 36 #include <trace/events/sched.h> 37 38 #include "sched.h" 39 40 /* 41 * Targeted preemption latency for CPU-bound tasks: 42 * 43 * NOTE: this latency value is not the same as the concept of 44 * 'timeslice length' - timeslices in CFS are of variable length 45 * and have no persistent notion like in traditional, time-slice 46 * based scheduling concepts. 47 * 48 * (to see the precise effective timeslice length of your workload, 49 * run vmstat and monitor the context-switches (cs) field) 50 * 51 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 52 */ 53 unsigned int sysctl_sched_latency = 6000000ULL; 54 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 55 56 /* 57 * The initial- and re-scaling of tunables is configurable 58 * 59 * Options are: 60 * 61 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 62 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 63 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 64 * 65 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 66 */ 67 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 68 69 /* 70 * Minimal preemption granularity for CPU-bound tasks: 71 * 72 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 73 */ 74 unsigned int sysctl_sched_min_granularity = 750000ULL; 75 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 76 77 /* 78 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 79 */ 80 static unsigned int sched_nr_latency = 8; 81 82 /* 83 * After fork, child runs first. If set to 0 (default) then 84 * parent will (try to) run first. 85 */ 86 unsigned int sysctl_sched_child_runs_first __read_mostly; 87 88 /* 89 * SCHED_OTHER wake-up granularity. 90 * 91 * This option delays the preemption effects of decoupled workloads 92 * and reduces their over-scheduling. Synchronous workloads will still 93 * have immediate wakeup/sleep latencies. 94 * 95 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 96 */ 97 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 98 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 99 100 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 101 102 #ifdef CONFIG_SMP 103 /* 104 * For asym packing, by default the lower numbered cpu has higher priority. 105 */ 106 int __weak arch_asym_cpu_priority(int cpu) 107 { 108 return -cpu; 109 } 110 #endif 111 112 #ifdef CONFIG_CFS_BANDWIDTH 113 /* 114 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 115 * each time a cfs_rq requests quota. 116 * 117 * Note: in the case that the slice exceeds the runtime remaining (either due 118 * to consumption or the quota being specified to be smaller than the slice) 119 * we will always only issue the remaining available time. 120 * 121 * (default: 5 msec, units: microseconds) 122 */ 123 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 124 #endif 125 126 /* 127 * The margin used when comparing utilization with CPU capacity: 128 * util * margin < capacity * 1024 129 * 130 * (default: ~20%) 131 */ 132 unsigned int capacity_margin = 1280; 133 134 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 135 { 136 lw->weight += inc; 137 lw->inv_weight = 0; 138 } 139 140 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 141 { 142 lw->weight -= dec; 143 lw->inv_weight = 0; 144 } 145 146 static inline void update_load_set(struct load_weight *lw, unsigned long w) 147 { 148 lw->weight = w; 149 lw->inv_weight = 0; 150 } 151 152 /* 153 * Increase the granularity value when there are more CPUs, 154 * because with more CPUs the 'effective latency' as visible 155 * to users decreases. But the relationship is not linear, 156 * so pick a second-best guess by going with the log2 of the 157 * number of CPUs. 158 * 159 * This idea comes from the SD scheduler of Con Kolivas: 160 */ 161 static unsigned int get_update_sysctl_factor(void) 162 { 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 164 unsigned int factor; 165 166 switch (sysctl_sched_tunable_scaling) { 167 case SCHED_TUNABLESCALING_NONE: 168 factor = 1; 169 break; 170 case SCHED_TUNABLESCALING_LINEAR: 171 factor = cpus; 172 break; 173 case SCHED_TUNABLESCALING_LOG: 174 default: 175 factor = 1 + ilog2(cpus); 176 break; 177 } 178 179 return factor; 180 } 181 182 static void update_sysctl(void) 183 { 184 unsigned int factor = get_update_sysctl_factor(); 185 186 #define SET_SYSCTL(name) \ 187 (sysctl_##name = (factor) * normalized_sysctl_##name) 188 SET_SYSCTL(sched_min_granularity); 189 SET_SYSCTL(sched_latency); 190 SET_SYSCTL(sched_wakeup_granularity); 191 #undef SET_SYSCTL 192 } 193 194 void sched_init_granularity(void) 195 { 196 update_sysctl(); 197 } 198 199 #define WMULT_CONST (~0U) 200 #define WMULT_SHIFT 32 201 202 static void __update_inv_weight(struct load_weight *lw) 203 { 204 unsigned long w; 205 206 if (likely(lw->inv_weight)) 207 return; 208 209 w = scale_load_down(lw->weight); 210 211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 212 lw->inv_weight = 1; 213 else if (unlikely(!w)) 214 lw->inv_weight = WMULT_CONST; 215 else 216 lw->inv_weight = WMULT_CONST / w; 217 } 218 219 /* 220 * delta_exec * weight / lw.weight 221 * OR 222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 223 * 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 225 * we're guaranteed shift stays positive because inv_weight is guaranteed to 226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 227 * 228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 229 * weight/lw.weight <= 1, and therefore our shift will also be positive. 230 */ 231 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 232 { 233 u64 fact = scale_load_down(weight); 234 int shift = WMULT_SHIFT; 235 236 __update_inv_weight(lw); 237 238 if (unlikely(fact >> 32)) { 239 while (fact >> 32) { 240 fact >>= 1; 241 shift--; 242 } 243 } 244 245 /* hint to use a 32x32->64 mul */ 246 fact = (u64)(u32)fact * lw->inv_weight; 247 248 while (fact >> 32) { 249 fact >>= 1; 250 shift--; 251 } 252 253 return mul_u64_u32_shr(delta_exec, fact, shift); 254 } 255 256 257 const struct sched_class fair_sched_class; 258 259 /************************************************************** 260 * CFS operations on generic schedulable entities: 261 */ 262 263 #ifdef CONFIG_FAIR_GROUP_SCHED 264 265 /* cpu runqueue to which this cfs_rq is attached */ 266 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 267 { 268 return cfs_rq->rq; 269 } 270 271 /* An entity is a task if it doesn't "own" a runqueue */ 272 #define entity_is_task(se) (!se->my_q) 273 274 static inline struct task_struct *task_of(struct sched_entity *se) 275 { 276 SCHED_WARN_ON(!entity_is_task(se)); 277 return container_of(se, struct task_struct, se); 278 } 279 280 /* Walk up scheduling entities hierarchy */ 281 #define for_each_sched_entity(se) \ 282 for (; se; se = se->parent) 283 284 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 285 { 286 return p->se.cfs_rq; 287 } 288 289 /* runqueue on which this entity is (to be) queued */ 290 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 291 { 292 return se->cfs_rq; 293 } 294 295 /* runqueue "owned" by this group */ 296 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 297 { 298 return grp->my_q; 299 } 300 301 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 302 { 303 if (!cfs_rq->on_list) { 304 struct rq *rq = rq_of(cfs_rq); 305 int cpu = cpu_of(rq); 306 /* 307 * Ensure we either appear before our parent (if already 308 * enqueued) or force our parent to appear after us when it is 309 * enqueued. The fact that we always enqueue bottom-up 310 * reduces this to two cases and a special case for the root 311 * cfs_rq. Furthermore, it also means that we will always reset 312 * tmp_alone_branch either when the branch is connected 313 * to a tree or when we reach the beg of the tree 314 */ 315 if (cfs_rq->tg->parent && 316 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 317 /* 318 * If parent is already on the list, we add the child 319 * just before. Thanks to circular linked property of 320 * the list, this means to put the child at the tail 321 * of the list that starts by parent. 322 */ 323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 324 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 325 /* 326 * The branch is now connected to its tree so we can 327 * reset tmp_alone_branch to the beginning of the 328 * list. 329 */ 330 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 331 } else if (!cfs_rq->tg->parent) { 332 /* 333 * cfs rq without parent should be put 334 * at the tail of the list. 335 */ 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 337 &rq->leaf_cfs_rq_list); 338 /* 339 * We have reach the beg of a tree so we can reset 340 * tmp_alone_branch to the beginning of the list. 341 */ 342 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 343 } else { 344 /* 345 * The parent has not already been added so we want to 346 * make sure that it will be put after us. 347 * tmp_alone_branch points to the beg of the branch 348 * where we will add parent. 349 */ 350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 351 rq->tmp_alone_branch); 352 /* 353 * update tmp_alone_branch to points to the new beg 354 * of the branch 355 */ 356 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 357 } 358 359 cfs_rq->on_list = 1; 360 } 361 } 362 363 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 364 { 365 if (cfs_rq->on_list) { 366 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 367 cfs_rq->on_list = 0; 368 } 369 } 370 371 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 372 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 373 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 374 leaf_cfs_rq_list) 375 376 /* Do the two (enqueued) entities belong to the same group ? */ 377 static inline struct cfs_rq * 378 is_same_group(struct sched_entity *se, struct sched_entity *pse) 379 { 380 if (se->cfs_rq == pse->cfs_rq) 381 return se->cfs_rq; 382 383 return NULL; 384 } 385 386 static inline struct sched_entity *parent_entity(struct sched_entity *se) 387 { 388 return se->parent; 389 } 390 391 static void 392 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 393 { 394 int se_depth, pse_depth; 395 396 /* 397 * preemption test can be made between sibling entities who are in the 398 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 399 * both tasks until we find their ancestors who are siblings of common 400 * parent. 401 */ 402 403 /* First walk up until both entities are at same depth */ 404 se_depth = (*se)->depth; 405 pse_depth = (*pse)->depth; 406 407 while (se_depth > pse_depth) { 408 se_depth--; 409 *se = parent_entity(*se); 410 } 411 412 while (pse_depth > se_depth) { 413 pse_depth--; 414 *pse = parent_entity(*pse); 415 } 416 417 while (!is_same_group(*se, *pse)) { 418 *se = parent_entity(*se); 419 *pse = parent_entity(*pse); 420 } 421 } 422 423 #else /* !CONFIG_FAIR_GROUP_SCHED */ 424 425 static inline struct task_struct *task_of(struct sched_entity *se) 426 { 427 return container_of(se, struct task_struct, se); 428 } 429 430 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 431 { 432 return container_of(cfs_rq, struct rq, cfs); 433 } 434 435 #define entity_is_task(se) 1 436 437 #define for_each_sched_entity(se) \ 438 for (; se; se = NULL) 439 440 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 441 { 442 return &task_rq(p)->cfs; 443 } 444 445 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 446 { 447 struct task_struct *p = task_of(se); 448 struct rq *rq = task_rq(p); 449 450 return &rq->cfs; 451 } 452 453 /* runqueue "owned" by this group */ 454 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 455 { 456 return NULL; 457 } 458 459 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 460 { 461 } 462 463 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 464 { 465 } 466 467 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 468 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 469 470 static inline struct sched_entity *parent_entity(struct sched_entity *se) 471 { 472 return NULL; 473 } 474 475 static inline void 476 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 477 { 478 } 479 480 #endif /* CONFIG_FAIR_GROUP_SCHED */ 481 482 static __always_inline 483 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 484 485 /************************************************************** 486 * Scheduling class tree data structure manipulation methods: 487 */ 488 489 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 490 { 491 s64 delta = (s64)(vruntime - max_vruntime); 492 if (delta > 0) 493 max_vruntime = vruntime; 494 495 return max_vruntime; 496 } 497 498 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 499 { 500 s64 delta = (s64)(vruntime - min_vruntime); 501 if (delta < 0) 502 min_vruntime = vruntime; 503 504 return min_vruntime; 505 } 506 507 static inline int entity_before(struct sched_entity *a, 508 struct sched_entity *b) 509 { 510 return (s64)(a->vruntime - b->vruntime) < 0; 511 } 512 513 static void update_min_vruntime(struct cfs_rq *cfs_rq) 514 { 515 struct sched_entity *curr = cfs_rq->curr; 516 517 u64 vruntime = cfs_rq->min_vruntime; 518 519 if (curr) { 520 if (curr->on_rq) 521 vruntime = curr->vruntime; 522 else 523 curr = NULL; 524 } 525 526 if (cfs_rq->rb_leftmost) { 527 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 528 struct sched_entity, 529 run_node); 530 531 if (!curr) 532 vruntime = se->vruntime; 533 else 534 vruntime = min_vruntime(vruntime, se->vruntime); 535 } 536 537 /* ensure we never gain time by being placed backwards. */ 538 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 539 #ifndef CONFIG_64BIT 540 smp_wmb(); 541 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 542 #endif 543 } 544 545 /* 546 * Enqueue an entity into the rb-tree: 547 */ 548 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 549 { 550 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 551 struct rb_node *parent = NULL; 552 struct sched_entity *entry; 553 int leftmost = 1; 554 555 /* 556 * Find the right place in the rbtree: 557 */ 558 while (*link) { 559 parent = *link; 560 entry = rb_entry(parent, struct sched_entity, run_node); 561 /* 562 * We dont care about collisions. Nodes with 563 * the same key stay together. 564 */ 565 if (entity_before(se, entry)) { 566 link = &parent->rb_left; 567 } else { 568 link = &parent->rb_right; 569 leftmost = 0; 570 } 571 } 572 573 /* 574 * Maintain a cache of leftmost tree entries (it is frequently 575 * used): 576 */ 577 if (leftmost) 578 cfs_rq->rb_leftmost = &se->run_node; 579 580 rb_link_node(&se->run_node, parent, link); 581 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 582 } 583 584 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 585 { 586 if (cfs_rq->rb_leftmost == &se->run_node) { 587 struct rb_node *next_node; 588 589 next_node = rb_next(&se->run_node); 590 cfs_rq->rb_leftmost = next_node; 591 } 592 593 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 594 } 595 596 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 597 { 598 struct rb_node *left = cfs_rq->rb_leftmost; 599 600 if (!left) 601 return NULL; 602 603 return rb_entry(left, struct sched_entity, run_node); 604 } 605 606 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 607 { 608 struct rb_node *next = rb_next(&se->run_node); 609 610 if (!next) 611 return NULL; 612 613 return rb_entry(next, struct sched_entity, run_node); 614 } 615 616 #ifdef CONFIG_SCHED_DEBUG 617 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 618 { 619 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 620 621 if (!last) 622 return NULL; 623 624 return rb_entry(last, struct sched_entity, run_node); 625 } 626 627 /************************************************************** 628 * Scheduling class statistics methods: 629 */ 630 631 int sched_proc_update_handler(struct ctl_table *table, int write, 632 void __user *buffer, size_t *lenp, 633 loff_t *ppos) 634 { 635 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 636 unsigned int factor = get_update_sysctl_factor(); 637 638 if (ret || !write) 639 return ret; 640 641 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 642 sysctl_sched_min_granularity); 643 644 #define WRT_SYSCTL(name) \ 645 (normalized_sysctl_##name = sysctl_##name / (factor)) 646 WRT_SYSCTL(sched_min_granularity); 647 WRT_SYSCTL(sched_latency); 648 WRT_SYSCTL(sched_wakeup_granularity); 649 #undef WRT_SYSCTL 650 651 return 0; 652 } 653 #endif 654 655 /* 656 * delta /= w 657 */ 658 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 659 { 660 if (unlikely(se->load.weight != NICE_0_LOAD)) 661 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 662 663 return delta; 664 } 665 666 /* 667 * The idea is to set a period in which each task runs once. 668 * 669 * When there are too many tasks (sched_nr_latency) we have to stretch 670 * this period because otherwise the slices get too small. 671 * 672 * p = (nr <= nl) ? l : l*nr/nl 673 */ 674 static u64 __sched_period(unsigned long nr_running) 675 { 676 if (unlikely(nr_running > sched_nr_latency)) 677 return nr_running * sysctl_sched_min_granularity; 678 else 679 return sysctl_sched_latency; 680 } 681 682 /* 683 * We calculate the wall-time slice from the period by taking a part 684 * proportional to the weight. 685 * 686 * s = p*P[w/rw] 687 */ 688 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 689 { 690 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 691 692 for_each_sched_entity(se) { 693 struct load_weight *load; 694 struct load_weight lw; 695 696 cfs_rq = cfs_rq_of(se); 697 load = &cfs_rq->load; 698 699 if (unlikely(!se->on_rq)) { 700 lw = cfs_rq->load; 701 702 update_load_add(&lw, se->load.weight); 703 load = &lw; 704 } 705 slice = __calc_delta(slice, se->load.weight, load); 706 } 707 return slice; 708 } 709 710 /* 711 * We calculate the vruntime slice of a to-be-inserted task. 712 * 713 * vs = s/w 714 */ 715 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 716 { 717 return calc_delta_fair(sched_slice(cfs_rq, se), se); 718 } 719 720 #ifdef CONFIG_SMP 721 722 #include "sched-pelt.h" 723 724 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 725 static unsigned long task_h_load(struct task_struct *p); 726 727 /* Give new sched_entity start runnable values to heavy its load in infant time */ 728 void init_entity_runnable_average(struct sched_entity *se) 729 { 730 struct sched_avg *sa = &se->avg; 731 732 sa->last_update_time = 0; 733 /* 734 * sched_avg's period_contrib should be strictly less then 1024, so 735 * we give it 1023 to make sure it is almost a period (1024us), and 736 * will definitely be update (after enqueue). 737 */ 738 sa->period_contrib = 1023; 739 /* 740 * Tasks are intialized with full load to be seen as heavy tasks until 741 * they get a chance to stabilize to their real load level. 742 * Group entities are intialized with zero load to reflect the fact that 743 * nothing has been attached to the task group yet. 744 */ 745 if (entity_is_task(se)) 746 sa->load_avg = scale_load_down(se->load.weight); 747 sa->load_sum = sa->load_avg * LOAD_AVG_MAX; 748 /* 749 * At this point, util_avg won't be used in select_task_rq_fair anyway 750 */ 751 sa->util_avg = 0; 752 sa->util_sum = 0; 753 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 754 } 755 756 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 757 static void attach_entity_cfs_rq(struct sched_entity *se); 758 759 /* 760 * With new tasks being created, their initial util_avgs are extrapolated 761 * based on the cfs_rq's current util_avg: 762 * 763 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 764 * 765 * However, in many cases, the above util_avg does not give a desired 766 * value. Moreover, the sum of the util_avgs may be divergent, such 767 * as when the series is a harmonic series. 768 * 769 * To solve this problem, we also cap the util_avg of successive tasks to 770 * only 1/2 of the left utilization budget: 771 * 772 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n 773 * 774 * where n denotes the nth task. 775 * 776 * For example, a simplest series from the beginning would be like: 777 * 778 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 779 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 780 * 781 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 782 * if util_avg > util_avg_cap. 783 */ 784 void post_init_entity_util_avg(struct sched_entity *se) 785 { 786 struct cfs_rq *cfs_rq = cfs_rq_of(se); 787 struct sched_avg *sa = &se->avg; 788 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2; 789 790 if (cap > 0) { 791 if (cfs_rq->avg.util_avg != 0) { 792 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 793 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 794 795 if (sa->util_avg > cap) 796 sa->util_avg = cap; 797 } else { 798 sa->util_avg = cap; 799 } 800 sa->util_sum = sa->util_avg * LOAD_AVG_MAX; 801 } 802 803 if (entity_is_task(se)) { 804 struct task_struct *p = task_of(se); 805 if (p->sched_class != &fair_sched_class) { 806 /* 807 * For !fair tasks do: 808 * 809 update_cfs_rq_load_avg(now, cfs_rq); 810 attach_entity_load_avg(cfs_rq, se); 811 switched_from_fair(rq, p); 812 * 813 * such that the next switched_to_fair() has the 814 * expected state. 815 */ 816 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq); 817 return; 818 } 819 } 820 821 attach_entity_cfs_rq(se); 822 } 823 824 #else /* !CONFIG_SMP */ 825 void init_entity_runnable_average(struct sched_entity *se) 826 { 827 } 828 void post_init_entity_util_avg(struct sched_entity *se) 829 { 830 } 831 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 832 { 833 } 834 #endif /* CONFIG_SMP */ 835 836 /* 837 * Update the current task's runtime statistics. 838 */ 839 static void update_curr(struct cfs_rq *cfs_rq) 840 { 841 struct sched_entity *curr = cfs_rq->curr; 842 u64 now = rq_clock_task(rq_of(cfs_rq)); 843 u64 delta_exec; 844 845 if (unlikely(!curr)) 846 return; 847 848 delta_exec = now - curr->exec_start; 849 if (unlikely((s64)delta_exec <= 0)) 850 return; 851 852 curr->exec_start = now; 853 854 schedstat_set(curr->statistics.exec_max, 855 max(delta_exec, curr->statistics.exec_max)); 856 857 curr->sum_exec_runtime += delta_exec; 858 schedstat_add(cfs_rq->exec_clock, delta_exec); 859 860 curr->vruntime += calc_delta_fair(delta_exec, curr); 861 update_min_vruntime(cfs_rq); 862 863 if (entity_is_task(curr)) { 864 struct task_struct *curtask = task_of(curr); 865 866 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 867 cpuacct_charge(curtask, delta_exec); 868 account_group_exec_runtime(curtask, delta_exec); 869 } 870 871 account_cfs_rq_runtime(cfs_rq, delta_exec); 872 } 873 874 static void update_curr_fair(struct rq *rq) 875 { 876 update_curr(cfs_rq_of(&rq->curr->se)); 877 } 878 879 static inline void 880 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 881 { 882 u64 wait_start, prev_wait_start; 883 884 if (!schedstat_enabled()) 885 return; 886 887 wait_start = rq_clock(rq_of(cfs_rq)); 888 prev_wait_start = schedstat_val(se->statistics.wait_start); 889 890 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 891 likely(wait_start > prev_wait_start)) 892 wait_start -= prev_wait_start; 893 894 schedstat_set(se->statistics.wait_start, wait_start); 895 } 896 897 static inline void 898 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 899 { 900 struct task_struct *p; 901 u64 delta; 902 903 if (!schedstat_enabled()) 904 return; 905 906 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 907 908 if (entity_is_task(se)) { 909 p = task_of(se); 910 if (task_on_rq_migrating(p)) { 911 /* 912 * Preserve migrating task's wait time so wait_start 913 * time stamp can be adjusted to accumulate wait time 914 * prior to migration. 915 */ 916 schedstat_set(se->statistics.wait_start, delta); 917 return; 918 } 919 trace_sched_stat_wait(p, delta); 920 } 921 922 schedstat_set(se->statistics.wait_max, 923 max(schedstat_val(se->statistics.wait_max), delta)); 924 schedstat_inc(se->statistics.wait_count); 925 schedstat_add(se->statistics.wait_sum, delta); 926 schedstat_set(se->statistics.wait_start, 0); 927 } 928 929 static inline void 930 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 931 { 932 struct task_struct *tsk = NULL; 933 u64 sleep_start, block_start; 934 935 if (!schedstat_enabled()) 936 return; 937 938 sleep_start = schedstat_val(se->statistics.sleep_start); 939 block_start = schedstat_val(se->statistics.block_start); 940 941 if (entity_is_task(se)) 942 tsk = task_of(se); 943 944 if (sleep_start) { 945 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 946 947 if ((s64)delta < 0) 948 delta = 0; 949 950 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 951 schedstat_set(se->statistics.sleep_max, delta); 952 953 schedstat_set(se->statistics.sleep_start, 0); 954 schedstat_add(se->statistics.sum_sleep_runtime, delta); 955 956 if (tsk) { 957 account_scheduler_latency(tsk, delta >> 10, 1); 958 trace_sched_stat_sleep(tsk, delta); 959 } 960 } 961 if (block_start) { 962 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 963 964 if ((s64)delta < 0) 965 delta = 0; 966 967 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 968 schedstat_set(se->statistics.block_max, delta); 969 970 schedstat_set(se->statistics.block_start, 0); 971 schedstat_add(se->statistics.sum_sleep_runtime, delta); 972 973 if (tsk) { 974 if (tsk->in_iowait) { 975 schedstat_add(se->statistics.iowait_sum, delta); 976 schedstat_inc(se->statistics.iowait_count); 977 trace_sched_stat_iowait(tsk, delta); 978 } 979 980 trace_sched_stat_blocked(tsk, delta); 981 982 /* 983 * Blocking time is in units of nanosecs, so shift by 984 * 20 to get a milliseconds-range estimation of the 985 * amount of time that the task spent sleeping: 986 */ 987 if (unlikely(prof_on == SLEEP_PROFILING)) { 988 profile_hits(SLEEP_PROFILING, 989 (void *)get_wchan(tsk), 990 delta >> 20); 991 } 992 account_scheduler_latency(tsk, delta >> 10, 0); 993 } 994 } 995 } 996 997 /* 998 * Task is being enqueued - update stats: 999 */ 1000 static inline void 1001 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1002 { 1003 if (!schedstat_enabled()) 1004 return; 1005 1006 /* 1007 * Are we enqueueing a waiting task? (for current tasks 1008 * a dequeue/enqueue event is a NOP) 1009 */ 1010 if (se != cfs_rq->curr) 1011 update_stats_wait_start(cfs_rq, se); 1012 1013 if (flags & ENQUEUE_WAKEUP) 1014 update_stats_enqueue_sleeper(cfs_rq, se); 1015 } 1016 1017 static inline void 1018 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1019 { 1020 1021 if (!schedstat_enabled()) 1022 return; 1023 1024 /* 1025 * Mark the end of the wait period if dequeueing a 1026 * waiting task: 1027 */ 1028 if (se != cfs_rq->curr) 1029 update_stats_wait_end(cfs_rq, se); 1030 1031 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1032 struct task_struct *tsk = task_of(se); 1033 1034 if (tsk->state & TASK_INTERRUPTIBLE) 1035 schedstat_set(se->statistics.sleep_start, 1036 rq_clock(rq_of(cfs_rq))); 1037 if (tsk->state & TASK_UNINTERRUPTIBLE) 1038 schedstat_set(se->statistics.block_start, 1039 rq_clock(rq_of(cfs_rq))); 1040 } 1041 } 1042 1043 /* 1044 * We are picking a new current task - update its stats: 1045 */ 1046 static inline void 1047 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1048 { 1049 /* 1050 * We are starting a new run period: 1051 */ 1052 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1053 } 1054 1055 /************************************************** 1056 * Scheduling class queueing methods: 1057 */ 1058 1059 #ifdef CONFIG_NUMA_BALANCING 1060 /* 1061 * Approximate time to scan a full NUMA task in ms. The task scan period is 1062 * calculated based on the tasks virtual memory size and 1063 * numa_balancing_scan_size. 1064 */ 1065 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1066 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1067 1068 /* Portion of address space to scan in MB */ 1069 unsigned int sysctl_numa_balancing_scan_size = 256; 1070 1071 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1072 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1073 1074 struct numa_group { 1075 atomic_t refcount; 1076 1077 spinlock_t lock; /* nr_tasks, tasks */ 1078 int nr_tasks; 1079 pid_t gid; 1080 int active_nodes; 1081 1082 struct rcu_head rcu; 1083 unsigned long total_faults; 1084 unsigned long max_faults_cpu; 1085 /* 1086 * Faults_cpu is used to decide whether memory should move 1087 * towards the CPU. As a consequence, these stats are weighted 1088 * more by CPU use than by memory faults. 1089 */ 1090 unsigned long *faults_cpu; 1091 unsigned long faults[0]; 1092 }; 1093 1094 static inline unsigned long group_faults_priv(struct numa_group *ng); 1095 static inline unsigned long group_faults_shared(struct numa_group *ng); 1096 1097 static unsigned int task_nr_scan_windows(struct task_struct *p) 1098 { 1099 unsigned long rss = 0; 1100 unsigned long nr_scan_pages; 1101 1102 /* 1103 * Calculations based on RSS as non-present and empty pages are skipped 1104 * by the PTE scanner and NUMA hinting faults should be trapped based 1105 * on resident pages 1106 */ 1107 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1108 rss = get_mm_rss(p->mm); 1109 if (!rss) 1110 rss = nr_scan_pages; 1111 1112 rss = round_up(rss, nr_scan_pages); 1113 return rss / nr_scan_pages; 1114 } 1115 1116 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1117 #define MAX_SCAN_WINDOW 2560 1118 1119 static unsigned int task_scan_min(struct task_struct *p) 1120 { 1121 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1122 unsigned int scan, floor; 1123 unsigned int windows = 1; 1124 1125 if (scan_size < MAX_SCAN_WINDOW) 1126 windows = MAX_SCAN_WINDOW / scan_size; 1127 floor = 1000 / windows; 1128 1129 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1130 return max_t(unsigned int, floor, scan); 1131 } 1132 1133 static unsigned int task_scan_start(struct task_struct *p) 1134 { 1135 unsigned long smin = task_scan_min(p); 1136 unsigned long period = smin; 1137 1138 /* Scale the maximum scan period with the amount of shared memory. */ 1139 if (p->numa_group) { 1140 struct numa_group *ng = p->numa_group; 1141 unsigned long shared = group_faults_shared(ng); 1142 unsigned long private = group_faults_priv(ng); 1143 1144 period *= atomic_read(&ng->refcount); 1145 period *= shared + 1; 1146 period /= private + shared + 1; 1147 } 1148 1149 return max(smin, period); 1150 } 1151 1152 static unsigned int task_scan_max(struct task_struct *p) 1153 { 1154 unsigned long smin = task_scan_min(p); 1155 unsigned long smax; 1156 1157 /* Watch for min being lower than max due to floor calculations */ 1158 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1159 1160 /* Scale the maximum scan period with the amount of shared memory. */ 1161 if (p->numa_group) { 1162 struct numa_group *ng = p->numa_group; 1163 unsigned long shared = group_faults_shared(ng); 1164 unsigned long private = group_faults_priv(ng); 1165 unsigned long period = smax; 1166 1167 period *= atomic_read(&ng->refcount); 1168 period *= shared + 1; 1169 period /= private + shared + 1; 1170 1171 smax = max(smax, period); 1172 } 1173 1174 return max(smin, smax); 1175 } 1176 1177 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1178 { 1179 rq->nr_numa_running += (p->numa_preferred_nid != -1); 1180 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1181 } 1182 1183 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1184 { 1185 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 1186 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1187 } 1188 1189 /* Shared or private faults. */ 1190 #define NR_NUMA_HINT_FAULT_TYPES 2 1191 1192 /* Memory and CPU locality */ 1193 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1194 1195 /* Averaged statistics, and temporary buffers. */ 1196 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1197 1198 pid_t task_numa_group_id(struct task_struct *p) 1199 { 1200 return p->numa_group ? p->numa_group->gid : 0; 1201 } 1202 1203 /* 1204 * The averaged statistics, shared & private, memory & cpu, 1205 * occupy the first half of the array. The second half of the 1206 * array is for current counters, which are averaged into the 1207 * first set by task_numa_placement. 1208 */ 1209 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1210 { 1211 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1212 } 1213 1214 static inline unsigned long task_faults(struct task_struct *p, int nid) 1215 { 1216 if (!p->numa_faults) 1217 return 0; 1218 1219 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1220 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1221 } 1222 1223 static inline unsigned long group_faults(struct task_struct *p, int nid) 1224 { 1225 if (!p->numa_group) 1226 return 0; 1227 1228 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1229 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1230 } 1231 1232 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1233 { 1234 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1235 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1236 } 1237 1238 static inline unsigned long group_faults_priv(struct numa_group *ng) 1239 { 1240 unsigned long faults = 0; 1241 int node; 1242 1243 for_each_online_node(node) { 1244 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1245 } 1246 1247 return faults; 1248 } 1249 1250 static inline unsigned long group_faults_shared(struct numa_group *ng) 1251 { 1252 unsigned long faults = 0; 1253 int node; 1254 1255 for_each_online_node(node) { 1256 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1257 } 1258 1259 return faults; 1260 } 1261 1262 /* 1263 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1264 * considered part of a numa group's pseudo-interleaving set. Migrations 1265 * between these nodes are slowed down, to allow things to settle down. 1266 */ 1267 #define ACTIVE_NODE_FRACTION 3 1268 1269 static bool numa_is_active_node(int nid, struct numa_group *ng) 1270 { 1271 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1272 } 1273 1274 /* Handle placement on systems where not all nodes are directly connected. */ 1275 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1276 int maxdist, bool task) 1277 { 1278 unsigned long score = 0; 1279 int node; 1280 1281 /* 1282 * All nodes are directly connected, and the same distance 1283 * from each other. No need for fancy placement algorithms. 1284 */ 1285 if (sched_numa_topology_type == NUMA_DIRECT) 1286 return 0; 1287 1288 /* 1289 * This code is called for each node, introducing N^2 complexity, 1290 * which should be ok given the number of nodes rarely exceeds 8. 1291 */ 1292 for_each_online_node(node) { 1293 unsigned long faults; 1294 int dist = node_distance(nid, node); 1295 1296 /* 1297 * The furthest away nodes in the system are not interesting 1298 * for placement; nid was already counted. 1299 */ 1300 if (dist == sched_max_numa_distance || node == nid) 1301 continue; 1302 1303 /* 1304 * On systems with a backplane NUMA topology, compare groups 1305 * of nodes, and move tasks towards the group with the most 1306 * memory accesses. When comparing two nodes at distance 1307 * "hoplimit", only nodes closer by than "hoplimit" are part 1308 * of each group. Skip other nodes. 1309 */ 1310 if (sched_numa_topology_type == NUMA_BACKPLANE && 1311 dist > maxdist) 1312 continue; 1313 1314 /* Add up the faults from nearby nodes. */ 1315 if (task) 1316 faults = task_faults(p, node); 1317 else 1318 faults = group_faults(p, node); 1319 1320 /* 1321 * On systems with a glueless mesh NUMA topology, there are 1322 * no fixed "groups of nodes". Instead, nodes that are not 1323 * directly connected bounce traffic through intermediate 1324 * nodes; a numa_group can occupy any set of nodes. 1325 * The further away a node is, the less the faults count. 1326 * This seems to result in good task placement. 1327 */ 1328 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1329 faults *= (sched_max_numa_distance - dist); 1330 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1331 } 1332 1333 score += faults; 1334 } 1335 1336 return score; 1337 } 1338 1339 /* 1340 * These return the fraction of accesses done by a particular task, or 1341 * task group, on a particular numa node. The group weight is given a 1342 * larger multiplier, in order to group tasks together that are almost 1343 * evenly spread out between numa nodes. 1344 */ 1345 static inline unsigned long task_weight(struct task_struct *p, int nid, 1346 int dist) 1347 { 1348 unsigned long faults, total_faults; 1349 1350 if (!p->numa_faults) 1351 return 0; 1352 1353 total_faults = p->total_numa_faults; 1354 1355 if (!total_faults) 1356 return 0; 1357 1358 faults = task_faults(p, nid); 1359 faults += score_nearby_nodes(p, nid, dist, true); 1360 1361 return 1000 * faults / total_faults; 1362 } 1363 1364 static inline unsigned long group_weight(struct task_struct *p, int nid, 1365 int dist) 1366 { 1367 unsigned long faults, total_faults; 1368 1369 if (!p->numa_group) 1370 return 0; 1371 1372 total_faults = p->numa_group->total_faults; 1373 1374 if (!total_faults) 1375 return 0; 1376 1377 faults = group_faults(p, nid); 1378 faults += score_nearby_nodes(p, nid, dist, false); 1379 1380 return 1000 * faults / total_faults; 1381 } 1382 1383 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1384 int src_nid, int dst_cpu) 1385 { 1386 struct numa_group *ng = p->numa_group; 1387 int dst_nid = cpu_to_node(dst_cpu); 1388 int last_cpupid, this_cpupid; 1389 1390 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1391 1392 /* 1393 * Multi-stage node selection is used in conjunction with a periodic 1394 * migration fault to build a temporal task<->page relation. By using 1395 * a two-stage filter we remove short/unlikely relations. 1396 * 1397 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1398 * a task's usage of a particular page (n_p) per total usage of this 1399 * page (n_t) (in a given time-span) to a probability. 1400 * 1401 * Our periodic faults will sample this probability and getting the 1402 * same result twice in a row, given these samples are fully 1403 * independent, is then given by P(n)^2, provided our sample period 1404 * is sufficiently short compared to the usage pattern. 1405 * 1406 * This quadric squishes small probabilities, making it less likely we 1407 * act on an unlikely task<->page relation. 1408 */ 1409 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1410 if (!cpupid_pid_unset(last_cpupid) && 1411 cpupid_to_nid(last_cpupid) != dst_nid) 1412 return false; 1413 1414 /* Always allow migrate on private faults */ 1415 if (cpupid_match_pid(p, last_cpupid)) 1416 return true; 1417 1418 /* A shared fault, but p->numa_group has not been set up yet. */ 1419 if (!ng) 1420 return true; 1421 1422 /* 1423 * Destination node is much more heavily used than the source 1424 * node? Allow migration. 1425 */ 1426 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1427 ACTIVE_NODE_FRACTION) 1428 return true; 1429 1430 /* 1431 * Distribute memory according to CPU & memory use on each node, 1432 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1433 * 1434 * faults_cpu(dst) 3 faults_cpu(src) 1435 * --------------- * - > --------------- 1436 * faults_mem(dst) 4 faults_mem(src) 1437 */ 1438 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1439 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1440 } 1441 1442 static unsigned long weighted_cpuload(struct rq *rq); 1443 static unsigned long source_load(int cpu, int type); 1444 static unsigned long target_load(int cpu, int type); 1445 static unsigned long capacity_of(int cpu); 1446 1447 /* Cached statistics for all CPUs within a node */ 1448 struct numa_stats { 1449 unsigned long nr_running; 1450 unsigned long load; 1451 1452 /* Total compute capacity of CPUs on a node */ 1453 unsigned long compute_capacity; 1454 1455 /* Approximate capacity in terms of runnable tasks on a node */ 1456 unsigned long task_capacity; 1457 int has_free_capacity; 1458 }; 1459 1460 /* 1461 * XXX borrowed from update_sg_lb_stats 1462 */ 1463 static void update_numa_stats(struct numa_stats *ns, int nid) 1464 { 1465 int smt, cpu, cpus = 0; 1466 unsigned long capacity; 1467 1468 memset(ns, 0, sizeof(*ns)); 1469 for_each_cpu(cpu, cpumask_of_node(nid)) { 1470 struct rq *rq = cpu_rq(cpu); 1471 1472 ns->nr_running += rq->nr_running; 1473 ns->load += weighted_cpuload(rq); 1474 ns->compute_capacity += capacity_of(cpu); 1475 1476 cpus++; 1477 } 1478 1479 /* 1480 * If we raced with hotplug and there are no CPUs left in our mask 1481 * the @ns structure is NULL'ed and task_numa_compare() will 1482 * not find this node attractive. 1483 * 1484 * We'll either bail at !has_free_capacity, or we'll detect a huge 1485 * imbalance and bail there. 1486 */ 1487 if (!cpus) 1488 return; 1489 1490 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1491 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1492 capacity = cpus / smt; /* cores */ 1493 1494 ns->task_capacity = min_t(unsigned, capacity, 1495 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1496 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1497 } 1498 1499 struct task_numa_env { 1500 struct task_struct *p; 1501 1502 int src_cpu, src_nid; 1503 int dst_cpu, dst_nid; 1504 1505 struct numa_stats src_stats, dst_stats; 1506 1507 int imbalance_pct; 1508 int dist; 1509 1510 struct task_struct *best_task; 1511 long best_imp; 1512 int best_cpu; 1513 }; 1514 1515 static void task_numa_assign(struct task_numa_env *env, 1516 struct task_struct *p, long imp) 1517 { 1518 if (env->best_task) 1519 put_task_struct(env->best_task); 1520 if (p) 1521 get_task_struct(p); 1522 1523 env->best_task = p; 1524 env->best_imp = imp; 1525 env->best_cpu = env->dst_cpu; 1526 } 1527 1528 static bool load_too_imbalanced(long src_load, long dst_load, 1529 struct task_numa_env *env) 1530 { 1531 long imb, old_imb; 1532 long orig_src_load, orig_dst_load; 1533 long src_capacity, dst_capacity; 1534 1535 /* 1536 * The load is corrected for the CPU capacity available on each node. 1537 * 1538 * src_load dst_load 1539 * ------------ vs --------- 1540 * src_capacity dst_capacity 1541 */ 1542 src_capacity = env->src_stats.compute_capacity; 1543 dst_capacity = env->dst_stats.compute_capacity; 1544 1545 /* We care about the slope of the imbalance, not the direction. */ 1546 if (dst_load < src_load) 1547 swap(dst_load, src_load); 1548 1549 /* Is the difference below the threshold? */ 1550 imb = dst_load * src_capacity * 100 - 1551 src_load * dst_capacity * env->imbalance_pct; 1552 if (imb <= 0) 1553 return false; 1554 1555 /* 1556 * The imbalance is above the allowed threshold. 1557 * Compare it with the old imbalance. 1558 */ 1559 orig_src_load = env->src_stats.load; 1560 orig_dst_load = env->dst_stats.load; 1561 1562 if (orig_dst_load < orig_src_load) 1563 swap(orig_dst_load, orig_src_load); 1564 1565 old_imb = orig_dst_load * src_capacity * 100 - 1566 orig_src_load * dst_capacity * env->imbalance_pct; 1567 1568 /* Would this change make things worse? */ 1569 return (imb > old_imb); 1570 } 1571 1572 /* 1573 * This checks if the overall compute and NUMA accesses of the system would 1574 * be improved if the source tasks was migrated to the target dst_cpu taking 1575 * into account that it might be best if task running on the dst_cpu should 1576 * be exchanged with the source task 1577 */ 1578 static void task_numa_compare(struct task_numa_env *env, 1579 long taskimp, long groupimp) 1580 { 1581 struct rq *src_rq = cpu_rq(env->src_cpu); 1582 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1583 struct task_struct *cur; 1584 long src_load, dst_load; 1585 long load; 1586 long imp = env->p->numa_group ? groupimp : taskimp; 1587 long moveimp = imp; 1588 int dist = env->dist; 1589 1590 rcu_read_lock(); 1591 cur = task_rcu_dereference(&dst_rq->curr); 1592 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1593 cur = NULL; 1594 1595 /* 1596 * Because we have preemption enabled we can get migrated around and 1597 * end try selecting ourselves (current == env->p) as a swap candidate. 1598 */ 1599 if (cur == env->p) 1600 goto unlock; 1601 1602 /* 1603 * "imp" is the fault differential for the source task between the 1604 * source and destination node. Calculate the total differential for 1605 * the source task and potential destination task. The more negative 1606 * the value is, the more rmeote accesses that would be expected to 1607 * be incurred if the tasks were swapped. 1608 */ 1609 if (cur) { 1610 /* Skip this swap candidate if cannot move to the source cpu */ 1611 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed)) 1612 goto unlock; 1613 1614 /* 1615 * If dst and source tasks are in the same NUMA group, or not 1616 * in any group then look only at task weights. 1617 */ 1618 if (cur->numa_group == env->p->numa_group) { 1619 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1620 task_weight(cur, env->dst_nid, dist); 1621 /* 1622 * Add some hysteresis to prevent swapping the 1623 * tasks within a group over tiny differences. 1624 */ 1625 if (cur->numa_group) 1626 imp -= imp/16; 1627 } else { 1628 /* 1629 * Compare the group weights. If a task is all by 1630 * itself (not part of a group), use the task weight 1631 * instead. 1632 */ 1633 if (cur->numa_group) 1634 imp += group_weight(cur, env->src_nid, dist) - 1635 group_weight(cur, env->dst_nid, dist); 1636 else 1637 imp += task_weight(cur, env->src_nid, dist) - 1638 task_weight(cur, env->dst_nid, dist); 1639 } 1640 } 1641 1642 if (imp <= env->best_imp && moveimp <= env->best_imp) 1643 goto unlock; 1644 1645 if (!cur) { 1646 /* Is there capacity at our destination? */ 1647 if (env->src_stats.nr_running <= env->src_stats.task_capacity && 1648 !env->dst_stats.has_free_capacity) 1649 goto unlock; 1650 1651 goto balance; 1652 } 1653 1654 /* Balance doesn't matter much if we're running a task per cpu */ 1655 if (imp > env->best_imp && src_rq->nr_running == 1 && 1656 dst_rq->nr_running == 1) 1657 goto assign; 1658 1659 /* 1660 * In the overloaded case, try and keep the load balanced. 1661 */ 1662 balance: 1663 load = task_h_load(env->p); 1664 dst_load = env->dst_stats.load + load; 1665 src_load = env->src_stats.load - load; 1666 1667 if (moveimp > imp && moveimp > env->best_imp) { 1668 /* 1669 * If the improvement from just moving env->p direction is 1670 * better than swapping tasks around, check if a move is 1671 * possible. Store a slightly smaller score than moveimp, 1672 * so an actually idle CPU will win. 1673 */ 1674 if (!load_too_imbalanced(src_load, dst_load, env)) { 1675 imp = moveimp - 1; 1676 cur = NULL; 1677 goto assign; 1678 } 1679 } 1680 1681 if (imp <= env->best_imp) 1682 goto unlock; 1683 1684 if (cur) { 1685 load = task_h_load(cur); 1686 dst_load -= load; 1687 src_load += load; 1688 } 1689 1690 if (load_too_imbalanced(src_load, dst_load, env)) 1691 goto unlock; 1692 1693 /* 1694 * One idle CPU per node is evaluated for a task numa move. 1695 * Call select_idle_sibling to maybe find a better one. 1696 */ 1697 if (!cur) { 1698 /* 1699 * select_idle_siblings() uses an per-cpu cpumask that 1700 * can be used from IRQ context. 1701 */ 1702 local_irq_disable(); 1703 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1704 env->dst_cpu); 1705 local_irq_enable(); 1706 } 1707 1708 assign: 1709 task_numa_assign(env, cur, imp); 1710 unlock: 1711 rcu_read_unlock(); 1712 } 1713 1714 static void task_numa_find_cpu(struct task_numa_env *env, 1715 long taskimp, long groupimp) 1716 { 1717 int cpu; 1718 1719 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1720 /* Skip this CPU if the source task cannot migrate */ 1721 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed)) 1722 continue; 1723 1724 env->dst_cpu = cpu; 1725 task_numa_compare(env, taskimp, groupimp); 1726 } 1727 } 1728 1729 /* Only move tasks to a NUMA node less busy than the current node. */ 1730 static bool numa_has_capacity(struct task_numa_env *env) 1731 { 1732 struct numa_stats *src = &env->src_stats; 1733 struct numa_stats *dst = &env->dst_stats; 1734 1735 if (src->has_free_capacity && !dst->has_free_capacity) 1736 return false; 1737 1738 /* 1739 * Only consider a task move if the source has a higher load 1740 * than the destination, corrected for CPU capacity on each node. 1741 * 1742 * src->load dst->load 1743 * --------------------- vs --------------------- 1744 * src->compute_capacity dst->compute_capacity 1745 */ 1746 if (src->load * dst->compute_capacity * env->imbalance_pct > 1747 1748 dst->load * src->compute_capacity * 100) 1749 return true; 1750 1751 return false; 1752 } 1753 1754 static int task_numa_migrate(struct task_struct *p) 1755 { 1756 struct task_numa_env env = { 1757 .p = p, 1758 1759 .src_cpu = task_cpu(p), 1760 .src_nid = task_node(p), 1761 1762 .imbalance_pct = 112, 1763 1764 .best_task = NULL, 1765 .best_imp = 0, 1766 .best_cpu = -1, 1767 }; 1768 struct sched_domain *sd; 1769 unsigned long taskweight, groupweight; 1770 int nid, ret, dist; 1771 long taskimp, groupimp; 1772 1773 /* 1774 * Pick the lowest SD_NUMA domain, as that would have the smallest 1775 * imbalance and would be the first to start moving tasks about. 1776 * 1777 * And we want to avoid any moving of tasks about, as that would create 1778 * random movement of tasks -- counter the numa conditions we're trying 1779 * to satisfy here. 1780 */ 1781 rcu_read_lock(); 1782 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1783 if (sd) 1784 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1785 rcu_read_unlock(); 1786 1787 /* 1788 * Cpusets can break the scheduler domain tree into smaller 1789 * balance domains, some of which do not cross NUMA boundaries. 1790 * Tasks that are "trapped" in such domains cannot be migrated 1791 * elsewhere, so there is no point in (re)trying. 1792 */ 1793 if (unlikely(!sd)) { 1794 p->numa_preferred_nid = task_node(p); 1795 return -EINVAL; 1796 } 1797 1798 env.dst_nid = p->numa_preferred_nid; 1799 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1800 taskweight = task_weight(p, env.src_nid, dist); 1801 groupweight = group_weight(p, env.src_nid, dist); 1802 update_numa_stats(&env.src_stats, env.src_nid); 1803 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1804 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1805 update_numa_stats(&env.dst_stats, env.dst_nid); 1806 1807 /* Try to find a spot on the preferred nid. */ 1808 if (numa_has_capacity(&env)) 1809 task_numa_find_cpu(&env, taskimp, groupimp); 1810 1811 /* 1812 * Look at other nodes in these cases: 1813 * - there is no space available on the preferred_nid 1814 * - the task is part of a numa_group that is interleaved across 1815 * multiple NUMA nodes; in order to better consolidate the group, 1816 * we need to check other locations. 1817 */ 1818 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1819 for_each_online_node(nid) { 1820 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1821 continue; 1822 1823 dist = node_distance(env.src_nid, env.dst_nid); 1824 if (sched_numa_topology_type == NUMA_BACKPLANE && 1825 dist != env.dist) { 1826 taskweight = task_weight(p, env.src_nid, dist); 1827 groupweight = group_weight(p, env.src_nid, dist); 1828 } 1829 1830 /* Only consider nodes where both task and groups benefit */ 1831 taskimp = task_weight(p, nid, dist) - taskweight; 1832 groupimp = group_weight(p, nid, dist) - groupweight; 1833 if (taskimp < 0 && groupimp < 0) 1834 continue; 1835 1836 env.dist = dist; 1837 env.dst_nid = nid; 1838 update_numa_stats(&env.dst_stats, env.dst_nid); 1839 if (numa_has_capacity(&env)) 1840 task_numa_find_cpu(&env, taskimp, groupimp); 1841 } 1842 } 1843 1844 /* 1845 * If the task is part of a workload that spans multiple NUMA nodes, 1846 * and is migrating into one of the workload's active nodes, remember 1847 * this node as the task's preferred numa node, so the workload can 1848 * settle down. 1849 * A task that migrated to a second choice node will be better off 1850 * trying for a better one later. Do not set the preferred node here. 1851 */ 1852 if (p->numa_group) { 1853 struct numa_group *ng = p->numa_group; 1854 1855 if (env.best_cpu == -1) 1856 nid = env.src_nid; 1857 else 1858 nid = env.dst_nid; 1859 1860 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng)) 1861 sched_setnuma(p, env.dst_nid); 1862 } 1863 1864 /* No better CPU than the current one was found. */ 1865 if (env.best_cpu == -1) 1866 return -EAGAIN; 1867 1868 /* 1869 * Reset the scan period if the task is being rescheduled on an 1870 * alternative node to recheck if the tasks is now properly placed. 1871 */ 1872 p->numa_scan_period = task_scan_start(p); 1873 1874 if (env.best_task == NULL) { 1875 ret = migrate_task_to(p, env.best_cpu); 1876 if (ret != 0) 1877 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1878 return ret; 1879 } 1880 1881 ret = migrate_swap(p, env.best_task); 1882 if (ret != 0) 1883 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1884 put_task_struct(env.best_task); 1885 return ret; 1886 } 1887 1888 /* Attempt to migrate a task to a CPU on the preferred node. */ 1889 static void numa_migrate_preferred(struct task_struct *p) 1890 { 1891 unsigned long interval = HZ; 1892 1893 /* This task has no NUMA fault statistics yet */ 1894 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1895 return; 1896 1897 /* Periodically retry migrating the task to the preferred node */ 1898 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1899 p->numa_migrate_retry = jiffies + interval; 1900 1901 /* Success if task is already running on preferred CPU */ 1902 if (task_node(p) == p->numa_preferred_nid) 1903 return; 1904 1905 /* Otherwise, try migrate to a CPU on the preferred node */ 1906 task_numa_migrate(p); 1907 } 1908 1909 /* 1910 * Find out how many nodes on the workload is actively running on. Do this by 1911 * tracking the nodes from which NUMA hinting faults are triggered. This can 1912 * be different from the set of nodes where the workload's memory is currently 1913 * located. 1914 */ 1915 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1916 { 1917 unsigned long faults, max_faults = 0; 1918 int nid, active_nodes = 0; 1919 1920 for_each_online_node(nid) { 1921 faults = group_faults_cpu(numa_group, nid); 1922 if (faults > max_faults) 1923 max_faults = faults; 1924 } 1925 1926 for_each_online_node(nid) { 1927 faults = group_faults_cpu(numa_group, nid); 1928 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1929 active_nodes++; 1930 } 1931 1932 numa_group->max_faults_cpu = max_faults; 1933 numa_group->active_nodes = active_nodes; 1934 } 1935 1936 /* 1937 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1938 * increments. The more local the fault statistics are, the higher the scan 1939 * period will be for the next scan window. If local/(local+remote) ratio is 1940 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1941 * the scan period will decrease. Aim for 70% local accesses. 1942 */ 1943 #define NUMA_PERIOD_SLOTS 10 1944 #define NUMA_PERIOD_THRESHOLD 7 1945 1946 /* 1947 * Increase the scan period (slow down scanning) if the majority of 1948 * our memory is already on our local node, or if the majority of 1949 * the page accesses are shared with other processes. 1950 * Otherwise, decrease the scan period. 1951 */ 1952 static void update_task_scan_period(struct task_struct *p, 1953 unsigned long shared, unsigned long private) 1954 { 1955 unsigned int period_slot; 1956 int lr_ratio, ps_ratio; 1957 int diff; 1958 1959 unsigned long remote = p->numa_faults_locality[0]; 1960 unsigned long local = p->numa_faults_locality[1]; 1961 1962 /* 1963 * If there were no record hinting faults then either the task is 1964 * completely idle or all activity is areas that are not of interest 1965 * to automatic numa balancing. Related to that, if there were failed 1966 * migration then it implies we are migrating too quickly or the local 1967 * node is overloaded. In either case, scan slower 1968 */ 1969 if (local + shared == 0 || p->numa_faults_locality[2]) { 1970 p->numa_scan_period = min(p->numa_scan_period_max, 1971 p->numa_scan_period << 1); 1972 1973 p->mm->numa_next_scan = jiffies + 1974 msecs_to_jiffies(p->numa_scan_period); 1975 1976 return; 1977 } 1978 1979 /* 1980 * Prepare to scale scan period relative to the current period. 1981 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1982 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1983 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1984 */ 1985 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1986 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1987 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 1988 1989 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 1990 /* 1991 * Most memory accesses are local. There is no need to 1992 * do fast NUMA scanning, since memory is already local. 1993 */ 1994 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 1995 if (!slot) 1996 slot = 1; 1997 diff = slot * period_slot; 1998 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 1999 /* 2000 * Most memory accesses are shared with other tasks. 2001 * There is no point in continuing fast NUMA scanning, 2002 * since other tasks may just move the memory elsewhere. 2003 */ 2004 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2005 if (!slot) 2006 slot = 1; 2007 diff = slot * period_slot; 2008 } else { 2009 /* 2010 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2011 * yet they are not on the local NUMA node. Speed up 2012 * NUMA scanning to get the memory moved over. 2013 */ 2014 int ratio = max(lr_ratio, ps_ratio); 2015 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2016 } 2017 2018 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2019 task_scan_min(p), task_scan_max(p)); 2020 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2021 } 2022 2023 /* 2024 * Get the fraction of time the task has been running since the last 2025 * NUMA placement cycle. The scheduler keeps similar statistics, but 2026 * decays those on a 32ms period, which is orders of magnitude off 2027 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2028 * stats only if the task is so new there are no NUMA statistics yet. 2029 */ 2030 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2031 { 2032 u64 runtime, delta, now; 2033 /* Use the start of this time slice to avoid calculations. */ 2034 now = p->se.exec_start; 2035 runtime = p->se.sum_exec_runtime; 2036 2037 if (p->last_task_numa_placement) { 2038 delta = runtime - p->last_sum_exec_runtime; 2039 *period = now - p->last_task_numa_placement; 2040 } else { 2041 delta = p->se.avg.load_sum / p->se.load.weight; 2042 *period = LOAD_AVG_MAX; 2043 } 2044 2045 p->last_sum_exec_runtime = runtime; 2046 p->last_task_numa_placement = now; 2047 2048 return delta; 2049 } 2050 2051 /* 2052 * Determine the preferred nid for a task in a numa_group. This needs to 2053 * be done in a way that produces consistent results with group_weight, 2054 * otherwise workloads might not converge. 2055 */ 2056 static int preferred_group_nid(struct task_struct *p, int nid) 2057 { 2058 nodemask_t nodes; 2059 int dist; 2060 2061 /* Direct connections between all NUMA nodes. */ 2062 if (sched_numa_topology_type == NUMA_DIRECT) 2063 return nid; 2064 2065 /* 2066 * On a system with glueless mesh NUMA topology, group_weight 2067 * scores nodes according to the number of NUMA hinting faults on 2068 * both the node itself, and on nearby nodes. 2069 */ 2070 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2071 unsigned long score, max_score = 0; 2072 int node, max_node = nid; 2073 2074 dist = sched_max_numa_distance; 2075 2076 for_each_online_node(node) { 2077 score = group_weight(p, node, dist); 2078 if (score > max_score) { 2079 max_score = score; 2080 max_node = node; 2081 } 2082 } 2083 return max_node; 2084 } 2085 2086 /* 2087 * Finding the preferred nid in a system with NUMA backplane 2088 * interconnect topology is more involved. The goal is to locate 2089 * tasks from numa_groups near each other in the system, and 2090 * untangle workloads from different sides of the system. This requires 2091 * searching down the hierarchy of node groups, recursively searching 2092 * inside the highest scoring group of nodes. The nodemask tricks 2093 * keep the complexity of the search down. 2094 */ 2095 nodes = node_online_map; 2096 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2097 unsigned long max_faults = 0; 2098 nodemask_t max_group = NODE_MASK_NONE; 2099 int a, b; 2100 2101 /* Are there nodes at this distance from each other? */ 2102 if (!find_numa_distance(dist)) 2103 continue; 2104 2105 for_each_node_mask(a, nodes) { 2106 unsigned long faults = 0; 2107 nodemask_t this_group; 2108 nodes_clear(this_group); 2109 2110 /* Sum group's NUMA faults; includes a==b case. */ 2111 for_each_node_mask(b, nodes) { 2112 if (node_distance(a, b) < dist) { 2113 faults += group_faults(p, b); 2114 node_set(b, this_group); 2115 node_clear(b, nodes); 2116 } 2117 } 2118 2119 /* Remember the top group. */ 2120 if (faults > max_faults) { 2121 max_faults = faults; 2122 max_group = this_group; 2123 /* 2124 * subtle: at the smallest distance there is 2125 * just one node left in each "group", the 2126 * winner is the preferred nid. 2127 */ 2128 nid = a; 2129 } 2130 } 2131 /* Next round, evaluate the nodes within max_group. */ 2132 if (!max_faults) 2133 break; 2134 nodes = max_group; 2135 } 2136 return nid; 2137 } 2138 2139 static void task_numa_placement(struct task_struct *p) 2140 { 2141 int seq, nid, max_nid = -1, max_group_nid = -1; 2142 unsigned long max_faults = 0, max_group_faults = 0; 2143 unsigned long fault_types[2] = { 0, 0 }; 2144 unsigned long total_faults; 2145 u64 runtime, period; 2146 spinlock_t *group_lock = NULL; 2147 2148 /* 2149 * The p->mm->numa_scan_seq field gets updated without 2150 * exclusive access. Use READ_ONCE() here to ensure 2151 * that the field is read in a single access: 2152 */ 2153 seq = READ_ONCE(p->mm->numa_scan_seq); 2154 if (p->numa_scan_seq == seq) 2155 return; 2156 p->numa_scan_seq = seq; 2157 p->numa_scan_period_max = task_scan_max(p); 2158 2159 total_faults = p->numa_faults_locality[0] + 2160 p->numa_faults_locality[1]; 2161 runtime = numa_get_avg_runtime(p, &period); 2162 2163 /* If the task is part of a group prevent parallel updates to group stats */ 2164 if (p->numa_group) { 2165 group_lock = &p->numa_group->lock; 2166 spin_lock_irq(group_lock); 2167 } 2168 2169 /* Find the node with the highest number of faults */ 2170 for_each_online_node(nid) { 2171 /* Keep track of the offsets in numa_faults array */ 2172 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2173 unsigned long faults = 0, group_faults = 0; 2174 int priv; 2175 2176 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2177 long diff, f_diff, f_weight; 2178 2179 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2180 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2181 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2182 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2183 2184 /* Decay existing window, copy faults since last scan */ 2185 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2186 fault_types[priv] += p->numa_faults[membuf_idx]; 2187 p->numa_faults[membuf_idx] = 0; 2188 2189 /* 2190 * Normalize the faults_from, so all tasks in a group 2191 * count according to CPU use, instead of by the raw 2192 * number of faults. Tasks with little runtime have 2193 * little over-all impact on throughput, and thus their 2194 * faults are less important. 2195 */ 2196 f_weight = div64_u64(runtime << 16, period + 1); 2197 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2198 (total_faults + 1); 2199 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2200 p->numa_faults[cpubuf_idx] = 0; 2201 2202 p->numa_faults[mem_idx] += diff; 2203 p->numa_faults[cpu_idx] += f_diff; 2204 faults += p->numa_faults[mem_idx]; 2205 p->total_numa_faults += diff; 2206 if (p->numa_group) { 2207 /* 2208 * safe because we can only change our own group 2209 * 2210 * mem_idx represents the offset for a given 2211 * nid and priv in a specific region because it 2212 * is at the beginning of the numa_faults array. 2213 */ 2214 p->numa_group->faults[mem_idx] += diff; 2215 p->numa_group->faults_cpu[mem_idx] += f_diff; 2216 p->numa_group->total_faults += diff; 2217 group_faults += p->numa_group->faults[mem_idx]; 2218 } 2219 } 2220 2221 if (faults > max_faults) { 2222 max_faults = faults; 2223 max_nid = nid; 2224 } 2225 2226 if (group_faults > max_group_faults) { 2227 max_group_faults = group_faults; 2228 max_group_nid = nid; 2229 } 2230 } 2231 2232 update_task_scan_period(p, fault_types[0], fault_types[1]); 2233 2234 if (p->numa_group) { 2235 numa_group_count_active_nodes(p->numa_group); 2236 spin_unlock_irq(group_lock); 2237 max_nid = preferred_group_nid(p, max_group_nid); 2238 } 2239 2240 if (max_faults) { 2241 /* Set the new preferred node */ 2242 if (max_nid != p->numa_preferred_nid) 2243 sched_setnuma(p, max_nid); 2244 2245 if (task_node(p) != p->numa_preferred_nid) 2246 numa_migrate_preferred(p); 2247 } 2248 } 2249 2250 static inline int get_numa_group(struct numa_group *grp) 2251 { 2252 return atomic_inc_not_zero(&grp->refcount); 2253 } 2254 2255 static inline void put_numa_group(struct numa_group *grp) 2256 { 2257 if (atomic_dec_and_test(&grp->refcount)) 2258 kfree_rcu(grp, rcu); 2259 } 2260 2261 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2262 int *priv) 2263 { 2264 struct numa_group *grp, *my_grp; 2265 struct task_struct *tsk; 2266 bool join = false; 2267 int cpu = cpupid_to_cpu(cpupid); 2268 int i; 2269 2270 if (unlikely(!p->numa_group)) { 2271 unsigned int size = sizeof(struct numa_group) + 2272 4*nr_node_ids*sizeof(unsigned long); 2273 2274 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2275 if (!grp) 2276 return; 2277 2278 atomic_set(&grp->refcount, 1); 2279 grp->active_nodes = 1; 2280 grp->max_faults_cpu = 0; 2281 spin_lock_init(&grp->lock); 2282 grp->gid = p->pid; 2283 /* Second half of the array tracks nids where faults happen */ 2284 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2285 nr_node_ids; 2286 2287 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2288 grp->faults[i] = p->numa_faults[i]; 2289 2290 grp->total_faults = p->total_numa_faults; 2291 2292 grp->nr_tasks++; 2293 rcu_assign_pointer(p->numa_group, grp); 2294 } 2295 2296 rcu_read_lock(); 2297 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2298 2299 if (!cpupid_match_pid(tsk, cpupid)) 2300 goto no_join; 2301 2302 grp = rcu_dereference(tsk->numa_group); 2303 if (!grp) 2304 goto no_join; 2305 2306 my_grp = p->numa_group; 2307 if (grp == my_grp) 2308 goto no_join; 2309 2310 /* 2311 * Only join the other group if its bigger; if we're the bigger group, 2312 * the other task will join us. 2313 */ 2314 if (my_grp->nr_tasks > grp->nr_tasks) 2315 goto no_join; 2316 2317 /* 2318 * Tie-break on the grp address. 2319 */ 2320 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2321 goto no_join; 2322 2323 /* Always join threads in the same process. */ 2324 if (tsk->mm == current->mm) 2325 join = true; 2326 2327 /* Simple filter to avoid false positives due to PID collisions */ 2328 if (flags & TNF_SHARED) 2329 join = true; 2330 2331 /* Update priv based on whether false sharing was detected */ 2332 *priv = !join; 2333 2334 if (join && !get_numa_group(grp)) 2335 goto no_join; 2336 2337 rcu_read_unlock(); 2338 2339 if (!join) 2340 return; 2341 2342 BUG_ON(irqs_disabled()); 2343 double_lock_irq(&my_grp->lock, &grp->lock); 2344 2345 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2346 my_grp->faults[i] -= p->numa_faults[i]; 2347 grp->faults[i] += p->numa_faults[i]; 2348 } 2349 my_grp->total_faults -= p->total_numa_faults; 2350 grp->total_faults += p->total_numa_faults; 2351 2352 my_grp->nr_tasks--; 2353 grp->nr_tasks++; 2354 2355 spin_unlock(&my_grp->lock); 2356 spin_unlock_irq(&grp->lock); 2357 2358 rcu_assign_pointer(p->numa_group, grp); 2359 2360 put_numa_group(my_grp); 2361 return; 2362 2363 no_join: 2364 rcu_read_unlock(); 2365 return; 2366 } 2367 2368 void task_numa_free(struct task_struct *p) 2369 { 2370 struct numa_group *grp = p->numa_group; 2371 void *numa_faults = p->numa_faults; 2372 unsigned long flags; 2373 int i; 2374 2375 if (grp) { 2376 spin_lock_irqsave(&grp->lock, flags); 2377 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2378 grp->faults[i] -= p->numa_faults[i]; 2379 grp->total_faults -= p->total_numa_faults; 2380 2381 grp->nr_tasks--; 2382 spin_unlock_irqrestore(&grp->lock, flags); 2383 RCU_INIT_POINTER(p->numa_group, NULL); 2384 put_numa_group(grp); 2385 } 2386 2387 p->numa_faults = NULL; 2388 kfree(numa_faults); 2389 } 2390 2391 /* 2392 * Got a PROT_NONE fault for a page on @node. 2393 */ 2394 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2395 { 2396 struct task_struct *p = current; 2397 bool migrated = flags & TNF_MIGRATED; 2398 int cpu_node = task_node(current); 2399 int local = !!(flags & TNF_FAULT_LOCAL); 2400 struct numa_group *ng; 2401 int priv; 2402 2403 if (!static_branch_likely(&sched_numa_balancing)) 2404 return; 2405 2406 /* for example, ksmd faulting in a user's mm */ 2407 if (!p->mm) 2408 return; 2409 2410 /* Allocate buffer to track faults on a per-node basis */ 2411 if (unlikely(!p->numa_faults)) { 2412 int size = sizeof(*p->numa_faults) * 2413 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2414 2415 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2416 if (!p->numa_faults) 2417 return; 2418 2419 p->total_numa_faults = 0; 2420 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2421 } 2422 2423 /* 2424 * First accesses are treated as private, otherwise consider accesses 2425 * to be private if the accessing pid has not changed 2426 */ 2427 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2428 priv = 1; 2429 } else { 2430 priv = cpupid_match_pid(p, last_cpupid); 2431 if (!priv && !(flags & TNF_NO_GROUP)) 2432 task_numa_group(p, last_cpupid, flags, &priv); 2433 } 2434 2435 /* 2436 * If a workload spans multiple NUMA nodes, a shared fault that 2437 * occurs wholly within the set of nodes that the workload is 2438 * actively using should be counted as local. This allows the 2439 * scan rate to slow down when a workload has settled down. 2440 */ 2441 ng = p->numa_group; 2442 if (!priv && !local && ng && ng->active_nodes > 1 && 2443 numa_is_active_node(cpu_node, ng) && 2444 numa_is_active_node(mem_node, ng)) 2445 local = 1; 2446 2447 task_numa_placement(p); 2448 2449 /* 2450 * Retry task to preferred node migration periodically, in case it 2451 * case it previously failed, or the scheduler moved us. 2452 */ 2453 if (time_after(jiffies, p->numa_migrate_retry)) 2454 numa_migrate_preferred(p); 2455 2456 if (migrated) 2457 p->numa_pages_migrated += pages; 2458 if (flags & TNF_MIGRATE_FAIL) 2459 p->numa_faults_locality[2] += pages; 2460 2461 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2462 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2463 p->numa_faults_locality[local] += pages; 2464 } 2465 2466 static void reset_ptenuma_scan(struct task_struct *p) 2467 { 2468 /* 2469 * We only did a read acquisition of the mmap sem, so 2470 * p->mm->numa_scan_seq is written to without exclusive access 2471 * and the update is not guaranteed to be atomic. That's not 2472 * much of an issue though, since this is just used for 2473 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2474 * expensive, to avoid any form of compiler optimizations: 2475 */ 2476 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2477 p->mm->numa_scan_offset = 0; 2478 } 2479 2480 /* 2481 * The expensive part of numa migration is done from task_work context. 2482 * Triggered from task_tick_numa(). 2483 */ 2484 void task_numa_work(struct callback_head *work) 2485 { 2486 unsigned long migrate, next_scan, now = jiffies; 2487 struct task_struct *p = current; 2488 struct mm_struct *mm = p->mm; 2489 u64 runtime = p->se.sum_exec_runtime; 2490 struct vm_area_struct *vma; 2491 unsigned long start, end; 2492 unsigned long nr_pte_updates = 0; 2493 long pages, virtpages; 2494 2495 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2496 2497 work->next = work; /* protect against double add */ 2498 /* 2499 * Who cares about NUMA placement when they're dying. 2500 * 2501 * NOTE: make sure not to dereference p->mm before this check, 2502 * exit_task_work() happens _after_ exit_mm() so we could be called 2503 * without p->mm even though we still had it when we enqueued this 2504 * work. 2505 */ 2506 if (p->flags & PF_EXITING) 2507 return; 2508 2509 if (!mm->numa_next_scan) { 2510 mm->numa_next_scan = now + 2511 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2512 } 2513 2514 /* 2515 * Enforce maximal scan/migration frequency.. 2516 */ 2517 migrate = mm->numa_next_scan; 2518 if (time_before(now, migrate)) 2519 return; 2520 2521 if (p->numa_scan_period == 0) { 2522 p->numa_scan_period_max = task_scan_max(p); 2523 p->numa_scan_period = task_scan_start(p); 2524 } 2525 2526 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2527 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2528 return; 2529 2530 /* 2531 * Delay this task enough that another task of this mm will likely win 2532 * the next time around. 2533 */ 2534 p->node_stamp += 2 * TICK_NSEC; 2535 2536 start = mm->numa_scan_offset; 2537 pages = sysctl_numa_balancing_scan_size; 2538 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2539 virtpages = pages * 8; /* Scan up to this much virtual space */ 2540 if (!pages) 2541 return; 2542 2543 2544 if (!down_read_trylock(&mm->mmap_sem)) 2545 return; 2546 vma = find_vma(mm, start); 2547 if (!vma) { 2548 reset_ptenuma_scan(p); 2549 start = 0; 2550 vma = mm->mmap; 2551 } 2552 for (; vma; vma = vma->vm_next) { 2553 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2554 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2555 continue; 2556 } 2557 2558 /* 2559 * Shared library pages mapped by multiple processes are not 2560 * migrated as it is expected they are cache replicated. Avoid 2561 * hinting faults in read-only file-backed mappings or the vdso 2562 * as migrating the pages will be of marginal benefit. 2563 */ 2564 if (!vma->vm_mm || 2565 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2566 continue; 2567 2568 /* 2569 * Skip inaccessible VMAs to avoid any confusion between 2570 * PROT_NONE and NUMA hinting ptes 2571 */ 2572 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2573 continue; 2574 2575 do { 2576 start = max(start, vma->vm_start); 2577 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2578 end = min(end, vma->vm_end); 2579 nr_pte_updates = change_prot_numa(vma, start, end); 2580 2581 /* 2582 * Try to scan sysctl_numa_balancing_size worth of 2583 * hpages that have at least one present PTE that 2584 * is not already pte-numa. If the VMA contains 2585 * areas that are unused or already full of prot_numa 2586 * PTEs, scan up to virtpages, to skip through those 2587 * areas faster. 2588 */ 2589 if (nr_pte_updates) 2590 pages -= (end - start) >> PAGE_SHIFT; 2591 virtpages -= (end - start) >> PAGE_SHIFT; 2592 2593 start = end; 2594 if (pages <= 0 || virtpages <= 0) 2595 goto out; 2596 2597 cond_resched(); 2598 } while (end != vma->vm_end); 2599 } 2600 2601 out: 2602 /* 2603 * It is possible to reach the end of the VMA list but the last few 2604 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2605 * would find the !migratable VMA on the next scan but not reset the 2606 * scanner to the start so check it now. 2607 */ 2608 if (vma) 2609 mm->numa_scan_offset = start; 2610 else 2611 reset_ptenuma_scan(p); 2612 up_read(&mm->mmap_sem); 2613 2614 /* 2615 * Make sure tasks use at least 32x as much time to run other code 2616 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2617 * Usually update_task_scan_period slows down scanning enough; on an 2618 * overloaded system we need to limit overhead on a per task basis. 2619 */ 2620 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2621 u64 diff = p->se.sum_exec_runtime - runtime; 2622 p->node_stamp += 32 * diff; 2623 } 2624 } 2625 2626 /* 2627 * Drive the periodic memory faults.. 2628 */ 2629 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2630 { 2631 struct callback_head *work = &curr->numa_work; 2632 u64 period, now; 2633 2634 /* 2635 * We don't care about NUMA placement if we don't have memory. 2636 */ 2637 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2638 return; 2639 2640 /* 2641 * Using runtime rather than walltime has the dual advantage that 2642 * we (mostly) drive the selection from busy threads and that the 2643 * task needs to have done some actual work before we bother with 2644 * NUMA placement. 2645 */ 2646 now = curr->se.sum_exec_runtime; 2647 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2648 2649 if (now > curr->node_stamp + period) { 2650 if (!curr->node_stamp) 2651 curr->numa_scan_period = task_scan_start(curr); 2652 curr->node_stamp += period; 2653 2654 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2655 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2656 task_work_add(curr, work, true); 2657 } 2658 } 2659 } 2660 2661 #else 2662 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2663 { 2664 } 2665 2666 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2667 { 2668 } 2669 2670 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2671 { 2672 } 2673 2674 #endif /* CONFIG_NUMA_BALANCING */ 2675 2676 static void 2677 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2678 { 2679 update_load_add(&cfs_rq->load, se->load.weight); 2680 if (!parent_entity(se)) 2681 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2682 #ifdef CONFIG_SMP 2683 if (entity_is_task(se)) { 2684 struct rq *rq = rq_of(cfs_rq); 2685 2686 account_numa_enqueue(rq, task_of(se)); 2687 list_add(&se->group_node, &rq->cfs_tasks); 2688 } 2689 #endif 2690 cfs_rq->nr_running++; 2691 } 2692 2693 static void 2694 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2695 { 2696 update_load_sub(&cfs_rq->load, se->load.weight); 2697 if (!parent_entity(se)) 2698 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2699 #ifdef CONFIG_SMP 2700 if (entity_is_task(se)) { 2701 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2702 list_del_init(&se->group_node); 2703 } 2704 #endif 2705 cfs_rq->nr_running--; 2706 } 2707 2708 #ifdef CONFIG_FAIR_GROUP_SCHED 2709 # ifdef CONFIG_SMP 2710 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2711 { 2712 long tg_weight, load, shares; 2713 2714 /* 2715 * This really should be: cfs_rq->avg.load_avg, but instead we use 2716 * cfs_rq->load.weight, which is its upper bound. This helps ramp up 2717 * the shares for small weight interactive tasks. 2718 */ 2719 load = scale_load_down(cfs_rq->load.weight); 2720 2721 tg_weight = atomic_long_read(&tg->load_avg); 2722 2723 /* Ensure tg_weight >= load */ 2724 tg_weight -= cfs_rq->tg_load_avg_contrib; 2725 tg_weight += load; 2726 2727 shares = (tg->shares * load); 2728 if (tg_weight) 2729 shares /= tg_weight; 2730 2731 /* 2732 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 2733 * of a group with small tg->shares value. It is a floor value which is 2734 * assigned as a minimum load.weight to the sched_entity representing 2735 * the group on a CPU. 2736 * 2737 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 2738 * on an 8-core system with 8 tasks each runnable on one CPU shares has 2739 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 2740 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 2741 * instead of 0. 2742 */ 2743 if (shares < MIN_SHARES) 2744 shares = MIN_SHARES; 2745 if (shares > tg->shares) 2746 shares = tg->shares; 2747 2748 return shares; 2749 } 2750 # else /* CONFIG_SMP */ 2751 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2752 { 2753 return tg->shares; 2754 } 2755 # endif /* CONFIG_SMP */ 2756 2757 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2758 unsigned long weight) 2759 { 2760 if (se->on_rq) { 2761 /* commit outstanding execution time */ 2762 if (cfs_rq->curr == se) 2763 update_curr(cfs_rq); 2764 account_entity_dequeue(cfs_rq, se); 2765 } 2766 2767 update_load_set(&se->load, weight); 2768 2769 if (se->on_rq) 2770 account_entity_enqueue(cfs_rq, se); 2771 } 2772 2773 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2774 2775 static void update_cfs_shares(struct sched_entity *se) 2776 { 2777 struct cfs_rq *cfs_rq = group_cfs_rq(se); 2778 struct task_group *tg; 2779 long shares; 2780 2781 if (!cfs_rq) 2782 return; 2783 2784 if (throttled_hierarchy(cfs_rq)) 2785 return; 2786 2787 tg = cfs_rq->tg; 2788 2789 #ifndef CONFIG_SMP 2790 if (likely(se->load.weight == tg->shares)) 2791 return; 2792 #endif 2793 shares = calc_cfs_shares(cfs_rq, tg); 2794 2795 reweight_entity(cfs_rq_of(se), se, shares); 2796 } 2797 2798 #else /* CONFIG_FAIR_GROUP_SCHED */ 2799 static inline void update_cfs_shares(struct sched_entity *se) 2800 { 2801 } 2802 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2803 2804 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq) 2805 { 2806 struct rq *rq = rq_of(cfs_rq); 2807 2808 if (&rq->cfs == cfs_rq) { 2809 /* 2810 * There are a few boundary cases this might miss but it should 2811 * get called often enough that that should (hopefully) not be 2812 * a real problem -- added to that it only calls on the local 2813 * CPU, so if we enqueue remotely we'll miss an update, but 2814 * the next tick/schedule should update. 2815 * 2816 * It will not get called when we go idle, because the idle 2817 * thread is a different class (!fair), nor will the utilization 2818 * number include things like RT tasks. 2819 * 2820 * As is, the util number is not freq-invariant (we'd have to 2821 * implement arch_scale_freq_capacity() for that). 2822 * 2823 * See cpu_util(). 2824 */ 2825 cpufreq_update_util(rq, 0); 2826 } 2827 } 2828 2829 #ifdef CONFIG_SMP 2830 /* 2831 * Approximate: 2832 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 2833 */ 2834 static u64 decay_load(u64 val, u64 n) 2835 { 2836 unsigned int local_n; 2837 2838 if (unlikely(n > LOAD_AVG_PERIOD * 63)) 2839 return 0; 2840 2841 /* after bounds checking we can collapse to 32-bit */ 2842 local_n = n; 2843 2844 /* 2845 * As y^PERIOD = 1/2, we can combine 2846 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 2847 * With a look-up table which covers y^n (n<PERIOD) 2848 * 2849 * To achieve constant time decay_load. 2850 */ 2851 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 2852 val >>= local_n / LOAD_AVG_PERIOD; 2853 local_n %= LOAD_AVG_PERIOD; 2854 } 2855 2856 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 2857 return val; 2858 } 2859 2860 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3) 2861 { 2862 u32 c1, c2, c3 = d3; /* y^0 == 1 */ 2863 2864 /* 2865 * c1 = d1 y^p 2866 */ 2867 c1 = decay_load((u64)d1, periods); 2868 2869 /* 2870 * p-1 2871 * c2 = 1024 \Sum y^n 2872 * n=1 2873 * 2874 * inf inf 2875 * = 1024 ( \Sum y^n - \Sum y^n - y^0 ) 2876 * n=0 n=p 2877 */ 2878 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024; 2879 2880 return c1 + c2 + c3; 2881 } 2882 2883 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 2884 2885 /* 2886 * Accumulate the three separate parts of the sum; d1 the remainder 2887 * of the last (incomplete) period, d2 the span of full periods and d3 2888 * the remainder of the (incomplete) current period. 2889 * 2890 * d1 d2 d3 2891 * ^ ^ ^ 2892 * | | | 2893 * |<->|<----------------->|<--->| 2894 * ... |---x---|------| ... |------|-----x (now) 2895 * 2896 * p-1 2897 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0 2898 * n=1 2899 * 2900 * = u y^p + (Step 1) 2901 * 2902 * p-1 2903 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2) 2904 * n=1 2905 */ 2906 static __always_inline u32 2907 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa, 2908 unsigned long weight, int running, struct cfs_rq *cfs_rq) 2909 { 2910 unsigned long scale_freq, scale_cpu; 2911 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */ 2912 u64 periods; 2913 2914 scale_freq = arch_scale_freq_capacity(NULL, cpu); 2915 scale_cpu = arch_scale_cpu_capacity(NULL, cpu); 2916 2917 delta += sa->period_contrib; 2918 periods = delta / 1024; /* A period is 1024us (~1ms) */ 2919 2920 /* 2921 * Step 1: decay old *_sum if we crossed period boundaries. 2922 */ 2923 if (periods) { 2924 sa->load_sum = decay_load(sa->load_sum, periods); 2925 if (cfs_rq) { 2926 cfs_rq->runnable_load_sum = 2927 decay_load(cfs_rq->runnable_load_sum, periods); 2928 } 2929 sa->util_sum = decay_load((u64)(sa->util_sum), periods); 2930 2931 /* 2932 * Step 2 2933 */ 2934 delta %= 1024; 2935 contrib = __accumulate_pelt_segments(periods, 2936 1024 - sa->period_contrib, delta); 2937 } 2938 sa->period_contrib = delta; 2939 2940 contrib = cap_scale(contrib, scale_freq); 2941 if (weight) { 2942 sa->load_sum += weight * contrib; 2943 if (cfs_rq) 2944 cfs_rq->runnable_load_sum += weight * contrib; 2945 } 2946 if (running) 2947 sa->util_sum += contrib * scale_cpu; 2948 2949 return periods; 2950 } 2951 2952 /* 2953 * We can represent the historical contribution to runnable average as the 2954 * coefficients of a geometric series. To do this we sub-divide our runnable 2955 * history into segments of approximately 1ms (1024us); label the segment that 2956 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 2957 * 2958 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 2959 * p0 p1 p2 2960 * (now) (~1ms ago) (~2ms ago) 2961 * 2962 * Let u_i denote the fraction of p_i that the entity was runnable. 2963 * 2964 * We then designate the fractions u_i as our co-efficients, yielding the 2965 * following representation of historical load: 2966 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 2967 * 2968 * We choose y based on the with of a reasonably scheduling period, fixing: 2969 * y^32 = 0.5 2970 * 2971 * This means that the contribution to load ~32ms ago (u_32) will be weighted 2972 * approximately half as much as the contribution to load within the last ms 2973 * (u_0). 2974 * 2975 * When a period "rolls over" and we have new u_0`, multiplying the previous 2976 * sum again by y is sufficient to update: 2977 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 2978 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 2979 */ 2980 static __always_inline int 2981 ___update_load_avg(u64 now, int cpu, struct sched_avg *sa, 2982 unsigned long weight, int running, struct cfs_rq *cfs_rq) 2983 { 2984 u64 delta; 2985 2986 delta = now - sa->last_update_time; 2987 /* 2988 * This should only happen when time goes backwards, which it 2989 * unfortunately does during sched clock init when we swap over to TSC. 2990 */ 2991 if ((s64)delta < 0) { 2992 sa->last_update_time = now; 2993 return 0; 2994 } 2995 2996 /* 2997 * Use 1024ns as the unit of measurement since it's a reasonable 2998 * approximation of 1us and fast to compute. 2999 */ 3000 delta >>= 10; 3001 if (!delta) 3002 return 0; 3003 3004 sa->last_update_time += delta << 10; 3005 3006 /* 3007 * running is a subset of runnable (weight) so running can't be set if 3008 * runnable is clear. But there are some corner cases where the current 3009 * se has been already dequeued but cfs_rq->curr still points to it. 3010 * This means that weight will be 0 but not running for a sched_entity 3011 * but also for a cfs_rq if the latter becomes idle. As an example, 3012 * this happens during idle_balance() which calls 3013 * update_blocked_averages() 3014 */ 3015 if (!weight) 3016 running = 0; 3017 3018 /* 3019 * Now we know we crossed measurement unit boundaries. The *_avg 3020 * accrues by two steps: 3021 * 3022 * Step 1: accumulate *_sum since last_update_time. If we haven't 3023 * crossed period boundaries, finish. 3024 */ 3025 if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq)) 3026 return 0; 3027 3028 /* 3029 * Step 2: update *_avg. 3030 */ 3031 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib); 3032 if (cfs_rq) { 3033 cfs_rq->runnable_load_avg = 3034 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib); 3035 } 3036 sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib); 3037 3038 return 1; 3039 } 3040 3041 static int 3042 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se) 3043 { 3044 return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL); 3045 } 3046 3047 static int 3048 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se) 3049 { 3050 return ___update_load_avg(now, cpu, &se->avg, 3051 se->on_rq * scale_load_down(se->load.weight), 3052 cfs_rq->curr == se, NULL); 3053 } 3054 3055 static int 3056 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq) 3057 { 3058 return ___update_load_avg(now, cpu, &cfs_rq->avg, 3059 scale_load_down(cfs_rq->load.weight), 3060 cfs_rq->curr != NULL, cfs_rq); 3061 } 3062 3063 /* 3064 * Signed add and clamp on underflow. 3065 * 3066 * Explicitly do a load-store to ensure the intermediate value never hits 3067 * memory. This allows lockless observations without ever seeing the negative 3068 * values. 3069 */ 3070 #define add_positive(_ptr, _val) do { \ 3071 typeof(_ptr) ptr = (_ptr); \ 3072 typeof(_val) val = (_val); \ 3073 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3074 \ 3075 res = var + val; \ 3076 \ 3077 if (val < 0 && res > var) \ 3078 res = 0; \ 3079 \ 3080 WRITE_ONCE(*ptr, res); \ 3081 } while (0) 3082 3083 #ifdef CONFIG_FAIR_GROUP_SCHED 3084 /** 3085 * update_tg_load_avg - update the tg's load avg 3086 * @cfs_rq: the cfs_rq whose avg changed 3087 * @force: update regardless of how small the difference 3088 * 3089 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3090 * However, because tg->load_avg is a global value there are performance 3091 * considerations. 3092 * 3093 * In order to avoid having to look at the other cfs_rq's, we use a 3094 * differential update where we store the last value we propagated. This in 3095 * turn allows skipping updates if the differential is 'small'. 3096 * 3097 * Updating tg's load_avg is necessary before update_cfs_share(). 3098 */ 3099 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3100 { 3101 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3102 3103 /* 3104 * No need to update load_avg for root_task_group as it is not used. 3105 */ 3106 if (cfs_rq->tg == &root_task_group) 3107 return; 3108 3109 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3110 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3111 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3112 } 3113 } 3114 3115 /* 3116 * Called within set_task_rq() right before setting a task's cpu. The 3117 * caller only guarantees p->pi_lock is held; no other assumptions, 3118 * including the state of rq->lock, should be made. 3119 */ 3120 void set_task_rq_fair(struct sched_entity *se, 3121 struct cfs_rq *prev, struct cfs_rq *next) 3122 { 3123 u64 p_last_update_time; 3124 u64 n_last_update_time; 3125 3126 if (!sched_feat(ATTACH_AGE_LOAD)) 3127 return; 3128 3129 /* 3130 * We are supposed to update the task to "current" time, then its up to 3131 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3132 * getting what current time is, so simply throw away the out-of-date 3133 * time. This will result in the wakee task is less decayed, but giving 3134 * the wakee more load sounds not bad. 3135 */ 3136 if (!(se->avg.last_update_time && prev)) 3137 return; 3138 3139 #ifndef CONFIG_64BIT 3140 { 3141 u64 p_last_update_time_copy; 3142 u64 n_last_update_time_copy; 3143 3144 do { 3145 p_last_update_time_copy = prev->load_last_update_time_copy; 3146 n_last_update_time_copy = next->load_last_update_time_copy; 3147 3148 smp_rmb(); 3149 3150 p_last_update_time = prev->avg.last_update_time; 3151 n_last_update_time = next->avg.last_update_time; 3152 3153 } while (p_last_update_time != p_last_update_time_copy || 3154 n_last_update_time != n_last_update_time_copy); 3155 } 3156 #else 3157 p_last_update_time = prev->avg.last_update_time; 3158 n_last_update_time = next->avg.last_update_time; 3159 #endif 3160 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se); 3161 se->avg.last_update_time = n_last_update_time; 3162 } 3163 3164 /* Take into account change of utilization of a child task group */ 3165 static inline void 3166 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se) 3167 { 3168 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3169 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3170 3171 /* Nothing to update */ 3172 if (!delta) 3173 return; 3174 3175 /* Set new sched_entity's utilization */ 3176 se->avg.util_avg = gcfs_rq->avg.util_avg; 3177 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3178 3179 /* Update parent cfs_rq utilization */ 3180 add_positive(&cfs_rq->avg.util_avg, delta); 3181 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3182 } 3183 3184 /* Take into account change of load of a child task group */ 3185 static inline void 3186 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se) 3187 { 3188 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3189 long delta, load = gcfs_rq->avg.load_avg; 3190 3191 /* 3192 * If the load of group cfs_rq is null, the load of the 3193 * sched_entity will also be null so we can skip the formula 3194 */ 3195 if (load) { 3196 long tg_load; 3197 3198 /* Get tg's load and ensure tg_load > 0 */ 3199 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1; 3200 3201 /* Ensure tg_load >= load and updated with current load*/ 3202 tg_load -= gcfs_rq->tg_load_avg_contrib; 3203 tg_load += load; 3204 3205 /* 3206 * We need to compute a correction term in the case that the 3207 * task group is consuming more CPU than a task of equal 3208 * weight. A task with a weight equals to tg->shares will have 3209 * a load less or equal to scale_load_down(tg->shares). 3210 * Similarly, the sched_entities that represent the task group 3211 * at parent level, can't have a load higher than 3212 * scale_load_down(tg->shares). And the Sum of sched_entities' 3213 * load must be <= scale_load_down(tg->shares). 3214 */ 3215 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) { 3216 /* scale gcfs_rq's load into tg's shares*/ 3217 load *= scale_load_down(gcfs_rq->tg->shares); 3218 load /= tg_load; 3219 } 3220 } 3221 3222 delta = load - se->avg.load_avg; 3223 3224 /* Nothing to update */ 3225 if (!delta) 3226 return; 3227 3228 /* Set new sched_entity's load */ 3229 se->avg.load_avg = load; 3230 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX; 3231 3232 /* Update parent cfs_rq load */ 3233 add_positive(&cfs_rq->avg.load_avg, delta); 3234 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX; 3235 3236 /* 3237 * If the sched_entity is already enqueued, we also have to update the 3238 * runnable load avg. 3239 */ 3240 if (se->on_rq) { 3241 /* Update parent cfs_rq runnable_load_avg */ 3242 add_positive(&cfs_rq->runnable_load_avg, delta); 3243 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX; 3244 } 3245 } 3246 3247 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) 3248 { 3249 cfs_rq->propagate_avg = 1; 3250 } 3251 3252 static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se) 3253 { 3254 struct cfs_rq *cfs_rq = group_cfs_rq(se); 3255 3256 if (!cfs_rq->propagate_avg) 3257 return 0; 3258 3259 cfs_rq->propagate_avg = 0; 3260 return 1; 3261 } 3262 3263 /* Update task and its cfs_rq load average */ 3264 static inline int propagate_entity_load_avg(struct sched_entity *se) 3265 { 3266 struct cfs_rq *cfs_rq; 3267 3268 if (entity_is_task(se)) 3269 return 0; 3270 3271 if (!test_and_clear_tg_cfs_propagate(se)) 3272 return 0; 3273 3274 cfs_rq = cfs_rq_of(se); 3275 3276 set_tg_cfs_propagate(cfs_rq); 3277 3278 update_tg_cfs_util(cfs_rq, se); 3279 update_tg_cfs_load(cfs_rq, se); 3280 3281 return 1; 3282 } 3283 3284 /* 3285 * Check if we need to update the load and the utilization of a blocked 3286 * group_entity: 3287 */ 3288 static inline bool skip_blocked_update(struct sched_entity *se) 3289 { 3290 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3291 3292 /* 3293 * If sched_entity still have not zero load or utilization, we have to 3294 * decay it: 3295 */ 3296 if (se->avg.load_avg || se->avg.util_avg) 3297 return false; 3298 3299 /* 3300 * If there is a pending propagation, we have to update the load and 3301 * the utilization of the sched_entity: 3302 */ 3303 if (gcfs_rq->propagate_avg) 3304 return false; 3305 3306 /* 3307 * Otherwise, the load and the utilization of the sched_entity is 3308 * already zero and there is no pending propagation, so it will be a 3309 * waste of time to try to decay it: 3310 */ 3311 return true; 3312 } 3313 3314 #else /* CONFIG_FAIR_GROUP_SCHED */ 3315 3316 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3317 3318 static inline int propagate_entity_load_avg(struct sched_entity *se) 3319 { 3320 return 0; 3321 } 3322 3323 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {} 3324 3325 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3326 3327 /* 3328 * Unsigned subtract and clamp on underflow. 3329 * 3330 * Explicitly do a load-store to ensure the intermediate value never hits 3331 * memory. This allows lockless observations without ever seeing the negative 3332 * values. 3333 */ 3334 #define sub_positive(_ptr, _val) do { \ 3335 typeof(_ptr) ptr = (_ptr); \ 3336 typeof(*ptr) val = (_val); \ 3337 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3338 res = var - val; \ 3339 if (res > var) \ 3340 res = 0; \ 3341 WRITE_ONCE(*ptr, res); \ 3342 } while (0) 3343 3344 /** 3345 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3346 * @now: current time, as per cfs_rq_clock_task() 3347 * @cfs_rq: cfs_rq to update 3348 * 3349 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3350 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3351 * post_init_entity_util_avg(). 3352 * 3353 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3354 * 3355 * Returns true if the load decayed or we removed load. 3356 * 3357 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3358 * call update_tg_load_avg() when this function returns true. 3359 */ 3360 static inline int 3361 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3362 { 3363 struct sched_avg *sa = &cfs_rq->avg; 3364 int decayed, removed_load = 0, removed_util = 0; 3365 3366 if (atomic_long_read(&cfs_rq->removed_load_avg)) { 3367 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0); 3368 sub_positive(&sa->load_avg, r); 3369 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX); 3370 removed_load = 1; 3371 set_tg_cfs_propagate(cfs_rq); 3372 } 3373 3374 if (atomic_long_read(&cfs_rq->removed_util_avg)) { 3375 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0); 3376 sub_positive(&sa->util_avg, r); 3377 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX); 3378 removed_util = 1; 3379 set_tg_cfs_propagate(cfs_rq); 3380 } 3381 3382 decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq); 3383 3384 #ifndef CONFIG_64BIT 3385 smp_wmb(); 3386 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3387 #endif 3388 3389 if (decayed || removed_util) 3390 cfs_rq_util_change(cfs_rq); 3391 3392 return decayed || removed_load; 3393 } 3394 3395 /* 3396 * Optional action to be done while updating the load average 3397 */ 3398 #define UPDATE_TG 0x1 3399 #define SKIP_AGE_LOAD 0x2 3400 3401 /* Update task and its cfs_rq load average */ 3402 static inline void update_load_avg(struct sched_entity *se, int flags) 3403 { 3404 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3405 u64 now = cfs_rq_clock_task(cfs_rq); 3406 struct rq *rq = rq_of(cfs_rq); 3407 int cpu = cpu_of(rq); 3408 int decayed; 3409 3410 /* 3411 * Track task load average for carrying it to new CPU after migrated, and 3412 * track group sched_entity load average for task_h_load calc in migration 3413 */ 3414 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3415 __update_load_avg_se(now, cpu, cfs_rq, se); 3416 3417 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3418 decayed |= propagate_entity_load_avg(se); 3419 3420 if (decayed && (flags & UPDATE_TG)) 3421 update_tg_load_avg(cfs_rq, 0); 3422 } 3423 3424 /** 3425 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3426 * @cfs_rq: cfs_rq to attach to 3427 * @se: sched_entity to attach 3428 * 3429 * Must call update_cfs_rq_load_avg() before this, since we rely on 3430 * cfs_rq->avg.last_update_time being current. 3431 */ 3432 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3433 { 3434 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3435 cfs_rq->avg.load_avg += se->avg.load_avg; 3436 cfs_rq->avg.load_sum += se->avg.load_sum; 3437 cfs_rq->avg.util_avg += se->avg.util_avg; 3438 cfs_rq->avg.util_sum += se->avg.util_sum; 3439 set_tg_cfs_propagate(cfs_rq); 3440 3441 cfs_rq_util_change(cfs_rq); 3442 } 3443 3444 /** 3445 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3446 * @cfs_rq: cfs_rq to detach from 3447 * @se: sched_entity to detach 3448 * 3449 * Must call update_cfs_rq_load_avg() before this, since we rely on 3450 * cfs_rq->avg.last_update_time being current. 3451 */ 3452 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3453 { 3454 3455 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3456 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum); 3457 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3458 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3459 set_tg_cfs_propagate(cfs_rq); 3460 3461 cfs_rq_util_change(cfs_rq); 3462 } 3463 3464 /* Add the load generated by se into cfs_rq's load average */ 3465 static inline void 3466 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3467 { 3468 struct sched_avg *sa = &se->avg; 3469 3470 cfs_rq->runnable_load_avg += sa->load_avg; 3471 cfs_rq->runnable_load_sum += sa->load_sum; 3472 3473 if (!sa->last_update_time) { 3474 attach_entity_load_avg(cfs_rq, se); 3475 update_tg_load_avg(cfs_rq, 0); 3476 } 3477 } 3478 3479 /* Remove the runnable load generated by se from cfs_rq's runnable load average */ 3480 static inline void 3481 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3482 { 3483 cfs_rq->runnable_load_avg = 3484 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0); 3485 cfs_rq->runnable_load_sum = 3486 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0); 3487 } 3488 3489 #ifndef CONFIG_64BIT 3490 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3491 { 3492 u64 last_update_time_copy; 3493 u64 last_update_time; 3494 3495 do { 3496 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3497 smp_rmb(); 3498 last_update_time = cfs_rq->avg.last_update_time; 3499 } while (last_update_time != last_update_time_copy); 3500 3501 return last_update_time; 3502 } 3503 #else 3504 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3505 { 3506 return cfs_rq->avg.last_update_time; 3507 } 3508 #endif 3509 3510 /* 3511 * Synchronize entity load avg of dequeued entity without locking 3512 * the previous rq. 3513 */ 3514 void sync_entity_load_avg(struct sched_entity *se) 3515 { 3516 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3517 u64 last_update_time; 3518 3519 last_update_time = cfs_rq_last_update_time(cfs_rq); 3520 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se); 3521 } 3522 3523 /* 3524 * Task first catches up with cfs_rq, and then subtract 3525 * itself from the cfs_rq (task must be off the queue now). 3526 */ 3527 void remove_entity_load_avg(struct sched_entity *se) 3528 { 3529 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3530 3531 /* 3532 * tasks cannot exit without having gone through wake_up_new_task() -> 3533 * post_init_entity_util_avg() which will have added things to the 3534 * cfs_rq, so we can remove unconditionally. 3535 * 3536 * Similarly for groups, they will have passed through 3537 * post_init_entity_util_avg() before unregister_sched_fair_group() 3538 * calls this. 3539 */ 3540 3541 sync_entity_load_avg(se); 3542 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg); 3543 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg); 3544 } 3545 3546 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3547 { 3548 return cfs_rq->runnable_load_avg; 3549 } 3550 3551 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3552 { 3553 return cfs_rq->avg.load_avg; 3554 } 3555 3556 static int idle_balance(struct rq *this_rq, struct rq_flags *rf); 3557 3558 #else /* CONFIG_SMP */ 3559 3560 static inline int 3561 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3562 { 3563 return 0; 3564 } 3565 3566 #define UPDATE_TG 0x0 3567 #define SKIP_AGE_LOAD 0x0 3568 3569 static inline void update_load_avg(struct sched_entity *se, int not_used1) 3570 { 3571 cfs_rq_util_change(cfs_rq_of(se)); 3572 } 3573 3574 static inline void 3575 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3576 static inline void 3577 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3578 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3579 3580 static inline void 3581 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3582 static inline void 3583 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3584 3585 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 3586 { 3587 return 0; 3588 } 3589 3590 #endif /* CONFIG_SMP */ 3591 3592 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3593 { 3594 #ifdef CONFIG_SCHED_DEBUG 3595 s64 d = se->vruntime - cfs_rq->min_vruntime; 3596 3597 if (d < 0) 3598 d = -d; 3599 3600 if (d > 3*sysctl_sched_latency) 3601 schedstat_inc(cfs_rq->nr_spread_over); 3602 #endif 3603 } 3604 3605 static void 3606 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3607 { 3608 u64 vruntime = cfs_rq->min_vruntime; 3609 3610 /* 3611 * The 'current' period is already promised to the current tasks, 3612 * however the extra weight of the new task will slow them down a 3613 * little, place the new task so that it fits in the slot that 3614 * stays open at the end. 3615 */ 3616 if (initial && sched_feat(START_DEBIT)) 3617 vruntime += sched_vslice(cfs_rq, se); 3618 3619 /* sleeps up to a single latency don't count. */ 3620 if (!initial) { 3621 unsigned long thresh = sysctl_sched_latency; 3622 3623 /* 3624 * Halve their sleep time's effect, to allow 3625 * for a gentler effect of sleepers: 3626 */ 3627 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3628 thresh >>= 1; 3629 3630 vruntime -= thresh; 3631 } 3632 3633 /* ensure we never gain time by being placed backwards. */ 3634 se->vruntime = max_vruntime(se->vruntime, vruntime); 3635 } 3636 3637 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3638 3639 static inline void check_schedstat_required(void) 3640 { 3641 #ifdef CONFIG_SCHEDSTATS 3642 if (schedstat_enabled()) 3643 return; 3644 3645 /* Force schedstat enabled if a dependent tracepoint is active */ 3646 if (trace_sched_stat_wait_enabled() || 3647 trace_sched_stat_sleep_enabled() || 3648 trace_sched_stat_iowait_enabled() || 3649 trace_sched_stat_blocked_enabled() || 3650 trace_sched_stat_runtime_enabled()) { 3651 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3652 "stat_blocked and stat_runtime require the " 3653 "kernel parameter schedstats=enable or " 3654 "kernel.sched_schedstats=1\n"); 3655 } 3656 #endif 3657 } 3658 3659 3660 /* 3661 * MIGRATION 3662 * 3663 * dequeue 3664 * update_curr() 3665 * update_min_vruntime() 3666 * vruntime -= min_vruntime 3667 * 3668 * enqueue 3669 * update_curr() 3670 * update_min_vruntime() 3671 * vruntime += min_vruntime 3672 * 3673 * this way the vruntime transition between RQs is done when both 3674 * min_vruntime are up-to-date. 3675 * 3676 * WAKEUP (remote) 3677 * 3678 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3679 * vruntime -= min_vruntime 3680 * 3681 * enqueue 3682 * update_curr() 3683 * update_min_vruntime() 3684 * vruntime += min_vruntime 3685 * 3686 * this way we don't have the most up-to-date min_vruntime on the originating 3687 * CPU and an up-to-date min_vruntime on the destination CPU. 3688 */ 3689 3690 static void 3691 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3692 { 3693 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3694 bool curr = cfs_rq->curr == se; 3695 3696 /* 3697 * If we're the current task, we must renormalise before calling 3698 * update_curr(). 3699 */ 3700 if (renorm && curr) 3701 se->vruntime += cfs_rq->min_vruntime; 3702 3703 update_curr(cfs_rq); 3704 3705 /* 3706 * Otherwise, renormalise after, such that we're placed at the current 3707 * moment in time, instead of some random moment in the past. Being 3708 * placed in the past could significantly boost this task to the 3709 * fairness detriment of existing tasks. 3710 */ 3711 if (renorm && !curr) 3712 se->vruntime += cfs_rq->min_vruntime; 3713 3714 /* 3715 * When enqueuing a sched_entity, we must: 3716 * - Update loads to have both entity and cfs_rq synced with now. 3717 * - Add its load to cfs_rq->runnable_avg 3718 * - For group_entity, update its weight to reflect the new share of 3719 * its group cfs_rq 3720 * - Add its new weight to cfs_rq->load.weight 3721 */ 3722 update_load_avg(se, UPDATE_TG); 3723 enqueue_entity_load_avg(cfs_rq, se); 3724 update_cfs_shares(se); 3725 account_entity_enqueue(cfs_rq, se); 3726 3727 if (flags & ENQUEUE_WAKEUP) 3728 place_entity(cfs_rq, se, 0); 3729 3730 check_schedstat_required(); 3731 update_stats_enqueue(cfs_rq, se, flags); 3732 check_spread(cfs_rq, se); 3733 if (!curr) 3734 __enqueue_entity(cfs_rq, se); 3735 se->on_rq = 1; 3736 3737 if (cfs_rq->nr_running == 1) { 3738 list_add_leaf_cfs_rq(cfs_rq); 3739 check_enqueue_throttle(cfs_rq); 3740 } 3741 } 3742 3743 static void __clear_buddies_last(struct sched_entity *se) 3744 { 3745 for_each_sched_entity(se) { 3746 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3747 if (cfs_rq->last != se) 3748 break; 3749 3750 cfs_rq->last = NULL; 3751 } 3752 } 3753 3754 static void __clear_buddies_next(struct sched_entity *se) 3755 { 3756 for_each_sched_entity(se) { 3757 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3758 if (cfs_rq->next != se) 3759 break; 3760 3761 cfs_rq->next = NULL; 3762 } 3763 } 3764 3765 static void __clear_buddies_skip(struct sched_entity *se) 3766 { 3767 for_each_sched_entity(se) { 3768 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3769 if (cfs_rq->skip != se) 3770 break; 3771 3772 cfs_rq->skip = NULL; 3773 } 3774 } 3775 3776 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3777 { 3778 if (cfs_rq->last == se) 3779 __clear_buddies_last(se); 3780 3781 if (cfs_rq->next == se) 3782 __clear_buddies_next(se); 3783 3784 if (cfs_rq->skip == se) 3785 __clear_buddies_skip(se); 3786 } 3787 3788 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3789 3790 static void 3791 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3792 { 3793 /* 3794 * Update run-time statistics of the 'current'. 3795 */ 3796 update_curr(cfs_rq); 3797 3798 /* 3799 * When dequeuing a sched_entity, we must: 3800 * - Update loads to have both entity and cfs_rq synced with now. 3801 * - Substract its load from the cfs_rq->runnable_avg. 3802 * - Substract its previous weight from cfs_rq->load.weight. 3803 * - For group entity, update its weight to reflect the new share 3804 * of its group cfs_rq. 3805 */ 3806 update_load_avg(se, UPDATE_TG); 3807 dequeue_entity_load_avg(cfs_rq, se); 3808 3809 update_stats_dequeue(cfs_rq, se, flags); 3810 3811 clear_buddies(cfs_rq, se); 3812 3813 if (se != cfs_rq->curr) 3814 __dequeue_entity(cfs_rq, se); 3815 se->on_rq = 0; 3816 account_entity_dequeue(cfs_rq, se); 3817 3818 /* 3819 * Normalize after update_curr(); which will also have moved 3820 * min_vruntime if @se is the one holding it back. But before doing 3821 * update_min_vruntime() again, which will discount @se's position and 3822 * can move min_vruntime forward still more. 3823 */ 3824 if (!(flags & DEQUEUE_SLEEP)) 3825 se->vruntime -= cfs_rq->min_vruntime; 3826 3827 /* return excess runtime on last dequeue */ 3828 return_cfs_rq_runtime(cfs_rq); 3829 3830 update_cfs_shares(se); 3831 3832 /* 3833 * Now advance min_vruntime if @se was the entity holding it back, 3834 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 3835 * put back on, and if we advance min_vruntime, we'll be placed back 3836 * further than we started -- ie. we'll be penalized. 3837 */ 3838 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 3839 update_min_vruntime(cfs_rq); 3840 } 3841 3842 /* 3843 * Preempt the current task with a newly woken task if needed: 3844 */ 3845 static void 3846 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3847 { 3848 unsigned long ideal_runtime, delta_exec; 3849 struct sched_entity *se; 3850 s64 delta; 3851 3852 ideal_runtime = sched_slice(cfs_rq, curr); 3853 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 3854 if (delta_exec > ideal_runtime) { 3855 resched_curr(rq_of(cfs_rq)); 3856 /* 3857 * The current task ran long enough, ensure it doesn't get 3858 * re-elected due to buddy favours. 3859 */ 3860 clear_buddies(cfs_rq, curr); 3861 return; 3862 } 3863 3864 /* 3865 * Ensure that a task that missed wakeup preemption by a 3866 * narrow margin doesn't have to wait for a full slice. 3867 * This also mitigates buddy induced latencies under load. 3868 */ 3869 if (delta_exec < sysctl_sched_min_granularity) 3870 return; 3871 3872 se = __pick_first_entity(cfs_rq); 3873 delta = curr->vruntime - se->vruntime; 3874 3875 if (delta < 0) 3876 return; 3877 3878 if (delta > ideal_runtime) 3879 resched_curr(rq_of(cfs_rq)); 3880 } 3881 3882 static void 3883 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 3884 { 3885 /* 'current' is not kept within the tree. */ 3886 if (se->on_rq) { 3887 /* 3888 * Any task has to be enqueued before it get to execute on 3889 * a CPU. So account for the time it spent waiting on the 3890 * runqueue. 3891 */ 3892 update_stats_wait_end(cfs_rq, se); 3893 __dequeue_entity(cfs_rq, se); 3894 update_load_avg(se, UPDATE_TG); 3895 } 3896 3897 update_stats_curr_start(cfs_rq, se); 3898 cfs_rq->curr = se; 3899 3900 /* 3901 * Track our maximum slice length, if the CPU's load is at 3902 * least twice that of our own weight (i.e. dont track it 3903 * when there are only lesser-weight tasks around): 3904 */ 3905 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 3906 schedstat_set(se->statistics.slice_max, 3907 max((u64)schedstat_val(se->statistics.slice_max), 3908 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 3909 } 3910 3911 se->prev_sum_exec_runtime = se->sum_exec_runtime; 3912 } 3913 3914 static int 3915 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 3916 3917 /* 3918 * Pick the next process, keeping these things in mind, in this order: 3919 * 1) keep things fair between processes/task groups 3920 * 2) pick the "next" process, since someone really wants that to run 3921 * 3) pick the "last" process, for cache locality 3922 * 4) do not run the "skip" process, if something else is available 3923 */ 3924 static struct sched_entity * 3925 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3926 { 3927 struct sched_entity *left = __pick_first_entity(cfs_rq); 3928 struct sched_entity *se; 3929 3930 /* 3931 * If curr is set we have to see if its left of the leftmost entity 3932 * still in the tree, provided there was anything in the tree at all. 3933 */ 3934 if (!left || (curr && entity_before(curr, left))) 3935 left = curr; 3936 3937 se = left; /* ideally we run the leftmost entity */ 3938 3939 /* 3940 * Avoid running the skip buddy, if running something else can 3941 * be done without getting too unfair. 3942 */ 3943 if (cfs_rq->skip == se) { 3944 struct sched_entity *second; 3945 3946 if (se == curr) { 3947 second = __pick_first_entity(cfs_rq); 3948 } else { 3949 second = __pick_next_entity(se); 3950 if (!second || (curr && entity_before(curr, second))) 3951 second = curr; 3952 } 3953 3954 if (second && wakeup_preempt_entity(second, left) < 1) 3955 se = second; 3956 } 3957 3958 /* 3959 * Prefer last buddy, try to return the CPU to a preempted task. 3960 */ 3961 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 3962 se = cfs_rq->last; 3963 3964 /* 3965 * Someone really wants this to run. If it's not unfair, run it. 3966 */ 3967 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 3968 se = cfs_rq->next; 3969 3970 clear_buddies(cfs_rq, se); 3971 3972 return se; 3973 } 3974 3975 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3976 3977 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 3978 { 3979 /* 3980 * If still on the runqueue then deactivate_task() 3981 * was not called and update_curr() has to be done: 3982 */ 3983 if (prev->on_rq) 3984 update_curr(cfs_rq); 3985 3986 /* throttle cfs_rqs exceeding runtime */ 3987 check_cfs_rq_runtime(cfs_rq); 3988 3989 check_spread(cfs_rq, prev); 3990 3991 if (prev->on_rq) { 3992 update_stats_wait_start(cfs_rq, prev); 3993 /* Put 'current' back into the tree. */ 3994 __enqueue_entity(cfs_rq, prev); 3995 /* in !on_rq case, update occurred at dequeue */ 3996 update_load_avg(prev, 0); 3997 } 3998 cfs_rq->curr = NULL; 3999 } 4000 4001 static void 4002 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4003 { 4004 /* 4005 * Update run-time statistics of the 'current'. 4006 */ 4007 update_curr(cfs_rq); 4008 4009 /* 4010 * Ensure that runnable average is periodically updated. 4011 */ 4012 update_load_avg(curr, UPDATE_TG); 4013 update_cfs_shares(curr); 4014 4015 #ifdef CONFIG_SCHED_HRTICK 4016 /* 4017 * queued ticks are scheduled to match the slice, so don't bother 4018 * validating it and just reschedule. 4019 */ 4020 if (queued) { 4021 resched_curr(rq_of(cfs_rq)); 4022 return; 4023 } 4024 /* 4025 * don't let the period tick interfere with the hrtick preemption 4026 */ 4027 if (!sched_feat(DOUBLE_TICK) && 4028 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4029 return; 4030 #endif 4031 4032 if (cfs_rq->nr_running > 1) 4033 check_preempt_tick(cfs_rq, curr); 4034 } 4035 4036 4037 /************************************************** 4038 * CFS bandwidth control machinery 4039 */ 4040 4041 #ifdef CONFIG_CFS_BANDWIDTH 4042 4043 #ifdef HAVE_JUMP_LABEL 4044 static struct static_key __cfs_bandwidth_used; 4045 4046 static inline bool cfs_bandwidth_used(void) 4047 { 4048 return static_key_false(&__cfs_bandwidth_used); 4049 } 4050 4051 void cfs_bandwidth_usage_inc(void) 4052 { 4053 static_key_slow_inc(&__cfs_bandwidth_used); 4054 } 4055 4056 void cfs_bandwidth_usage_dec(void) 4057 { 4058 static_key_slow_dec(&__cfs_bandwidth_used); 4059 } 4060 #else /* HAVE_JUMP_LABEL */ 4061 static bool cfs_bandwidth_used(void) 4062 { 4063 return true; 4064 } 4065 4066 void cfs_bandwidth_usage_inc(void) {} 4067 void cfs_bandwidth_usage_dec(void) {} 4068 #endif /* HAVE_JUMP_LABEL */ 4069 4070 /* 4071 * default period for cfs group bandwidth. 4072 * default: 0.1s, units: nanoseconds 4073 */ 4074 static inline u64 default_cfs_period(void) 4075 { 4076 return 100000000ULL; 4077 } 4078 4079 static inline u64 sched_cfs_bandwidth_slice(void) 4080 { 4081 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4082 } 4083 4084 /* 4085 * Replenish runtime according to assigned quota and update expiration time. 4086 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 4087 * additional synchronization around rq->lock. 4088 * 4089 * requires cfs_b->lock 4090 */ 4091 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4092 { 4093 u64 now; 4094 4095 if (cfs_b->quota == RUNTIME_INF) 4096 return; 4097 4098 now = sched_clock_cpu(smp_processor_id()); 4099 cfs_b->runtime = cfs_b->quota; 4100 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 4101 } 4102 4103 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4104 { 4105 return &tg->cfs_bandwidth; 4106 } 4107 4108 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 4109 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4110 { 4111 if (unlikely(cfs_rq->throttle_count)) 4112 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 4113 4114 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 4115 } 4116 4117 /* returns 0 on failure to allocate runtime */ 4118 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4119 { 4120 struct task_group *tg = cfs_rq->tg; 4121 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4122 u64 amount = 0, min_amount, expires; 4123 4124 /* note: this is a positive sum as runtime_remaining <= 0 */ 4125 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4126 4127 raw_spin_lock(&cfs_b->lock); 4128 if (cfs_b->quota == RUNTIME_INF) 4129 amount = min_amount; 4130 else { 4131 start_cfs_bandwidth(cfs_b); 4132 4133 if (cfs_b->runtime > 0) { 4134 amount = min(cfs_b->runtime, min_amount); 4135 cfs_b->runtime -= amount; 4136 cfs_b->idle = 0; 4137 } 4138 } 4139 expires = cfs_b->runtime_expires; 4140 raw_spin_unlock(&cfs_b->lock); 4141 4142 cfs_rq->runtime_remaining += amount; 4143 /* 4144 * we may have advanced our local expiration to account for allowed 4145 * spread between our sched_clock and the one on which runtime was 4146 * issued. 4147 */ 4148 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 4149 cfs_rq->runtime_expires = expires; 4150 4151 return cfs_rq->runtime_remaining > 0; 4152 } 4153 4154 /* 4155 * Note: This depends on the synchronization provided by sched_clock and the 4156 * fact that rq->clock snapshots this value. 4157 */ 4158 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4159 { 4160 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4161 4162 /* if the deadline is ahead of our clock, nothing to do */ 4163 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 4164 return; 4165 4166 if (cfs_rq->runtime_remaining < 0) 4167 return; 4168 4169 /* 4170 * If the local deadline has passed we have to consider the 4171 * possibility that our sched_clock is 'fast' and the global deadline 4172 * has not truly expired. 4173 * 4174 * Fortunately we can check determine whether this the case by checking 4175 * whether the global deadline has advanced. It is valid to compare 4176 * cfs_b->runtime_expires without any locks since we only care about 4177 * exact equality, so a partial write will still work. 4178 */ 4179 4180 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { 4181 /* extend local deadline, drift is bounded above by 2 ticks */ 4182 cfs_rq->runtime_expires += TICK_NSEC; 4183 } else { 4184 /* global deadline is ahead, expiration has passed */ 4185 cfs_rq->runtime_remaining = 0; 4186 } 4187 } 4188 4189 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4190 { 4191 /* dock delta_exec before expiring quota (as it could span periods) */ 4192 cfs_rq->runtime_remaining -= delta_exec; 4193 expire_cfs_rq_runtime(cfs_rq); 4194 4195 if (likely(cfs_rq->runtime_remaining > 0)) 4196 return; 4197 4198 /* 4199 * if we're unable to extend our runtime we resched so that the active 4200 * hierarchy can be throttled 4201 */ 4202 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4203 resched_curr(rq_of(cfs_rq)); 4204 } 4205 4206 static __always_inline 4207 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4208 { 4209 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4210 return; 4211 4212 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4213 } 4214 4215 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4216 { 4217 return cfs_bandwidth_used() && cfs_rq->throttled; 4218 } 4219 4220 /* check whether cfs_rq, or any parent, is throttled */ 4221 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4222 { 4223 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4224 } 4225 4226 /* 4227 * Ensure that neither of the group entities corresponding to src_cpu or 4228 * dest_cpu are members of a throttled hierarchy when performing group 4229 * load-balance operations. 4230 */ 4231 static inline int throttled_lb_pair(struct task_group *tg, 4232 int src_cpu, int dest_cpu) 4233 { 4234 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4235 4236 src_cfs_rq = tg->cfs_rq[src_cpu]; 4237 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4238 4239 return throttled_hierarchy(src_cfs_rq) || 4240 throttled_hierarchy(dest_cfs_rq); 4241 } 4242 4243 /* updated child weight may affect parent so we have to do this bottom up */ 4244 static int tg_unthrottle_up(struct task_group *tg, void *data) 4245 { 4246 struct rq *rq = data; 4247 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4248 4249 cfs_rq->throttle_count--; 4250 if (!cfs_rq->throttle_count) { 4251 /* adjust cfs_rq_clock_task() */ 4252 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4253 cfs_rq->throttled_clock_task; 4254 } 4255 4256 return 0; 4257 } 4258 4259 static int tg_throttle_down(struct task_group *tg, void *data) 4260 { 4261 struct rq *rq = data; 4262 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4263 4264 /* group is entering throttled state, stop time */ 4265 if (!cfs_rq->throttle_count) 4266 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4267 cfs_rq->throttle_count++; 4268 4269 return 0; 4270 } 4271 4272 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4273 { 4274 struct rq *rq = rq_of(cfs_rq); 4275 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4276 struct sched_entity *se; 4277 long task_delta, dequeue = 1; 4278 bool empty; 4279 4280 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4281 4282 /* freeze hierarchy runnable averages while throttled */ 4283 rcu_read_lock(); 4284 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4285 rcu_read_unlock(); 4286 4287 task_delta = cfs_rq->h_nr_running; 4288 for_each_sched_entity(se) { 4289 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4290 /* throttled entity or throttle-on-deactivate */ 4291 if (!se->on_rq) 4292 break; 4293 4294 if (dequeue) 4295 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4296 qcfs_rq->h_nr_running -= task_delta; 4297 4298 if (qcfs_rq->load.weight) 4299 dequeue = 0; 4300 } 4301 4302 if (!se) 4303 sub_nr_running(rq, task_delta); 4304 4305 cfs_rq->throttled = 1; 4306 cfs_rq->throttled_clock = rq_clock(rq); 4307 raw_spin_lock(&cfs_b->lock); 4308 empty = list_empty(&cfs_b->throttled_cfs_rq); 4309 4310 /* 4311 * Add to the _head_ of the list, so that an already-started 4312 * distribute_cfs_runtime will not see us 4313 */ 4314 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4315 4316 /* 4317 * If we're the first throttled task, make sure the bandwidth 4318 * timer is running. 4319 */ 4320 if (empty) 4321 start_cfs_bandwidth(cfs_b); 4322 4323 raw_spin_unlock(&cfs_b->lock); 4324 } 4325 4326 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4327 { 4328 struct rq *rq = rq_of(cfs_rq); 4329 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4330 struct sched_entity *se; 4331 int enqueue = 1; 4332 long task_delta; 4333 4334 se = cfs_rq->tg->se[cpu_of(rq)]; 4335 4336 cfs_rq->throttled = 0; 4337 4338 update_rq_clock(rq); 4339 4340 raw_spin_lock(&cfs_b->lock); 4341 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4342 list_del_rcu(&cfs_rq->throttled_list); 4343 raw_spin_unlock(&cfs_b->lock); 4344 4345 /* update hierarchical throttle state */ 4346 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4347 4348 if (!cfs_rq->load.weight) 4349 return; 4350 4351 task_delta = cfs_rq->h_nr_running; 4352 for_each_sched_entity(se) { 4353 if (se->on_rq) 4354 enqueue = 0; 4355 4356 cfs_rq = cfs_rq_of(se); 4357 if (enqueue) 4358 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4359 cfs_rq->h_nr_running += task_delta; 4360 4361 if (cfs_rq_throttled(cfs_rq)) 4362 break; 4363 } 4364 4365 if (!se) 4366 add_nr_running(rq, task_delta); 4367 4368 /* determine whether we need to wake up potentially idle cpu */ 4369 if (rq->curr == rq->idle && rq->cfs.nr_running) 4370 resched_curr(rq); 4371 } 4372 4373 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 4374 u64 remaining, u64 expires) 4375 { 4376 struct cfs_rq *cfs_rq; 4377 u64 runtime; 4378 u64 starting_runtime = remaining; 4379 4380 rcu_read_lock(); 4381 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4382 throttled_list) { 4383 struct rq *rq = rq_of(cfs_rq); 4384 struct rq_flags rf; 4385 4386 rq_lock(rq, &rf); 4387 if (!cfs_rq_throttled(cfs_rq)) 4388 goto next; 4389 4390 runtime = -cfs_rq->runtime_remaining + 1; 4391 if (runtime > remaining) 4392 runtime = remaining; 4393 remaining -= runtime; 4394 4395 cfs_rq->runtime_remaining += runtime; 4396 cfs_rq->runtime_expires = expires; 4397 4398 /* we check whether we're throttled above */ 4399 if (cfs_rq->runtime_remaining > 0) 4400 unthrottle_cfs_rq(cfs_rq); 4401 4402 next: 4403 rq_unlock(rq, &rf); 4404 4405 if (!remaining) 4406 break; 4407 } 4408 rcu_read_unlock(); 4409 4410 return starting_runtime - remaining; 4411 } 4412 4413 /* 4414 * Responsible for refilling a task_group's bandwidth and unthrottling its 4415 * cfs_rqs as appropriate. If there has been no activity within the last 4416 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4417 * used to track this state. 4418 */ 4419 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 4420 { 4421 u64 runtime, runtime_expires; 4422 int throttled; 4423 4424 /* no need to continue the timer with no bandwidth constraint */ 4425 if (cfs_b->quota == RUNTIME_INF) 4426 goto out_deactivate; 4427 4428 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4429 cfs_b->nr_periods += overrun; 4430 4431 /* 4432 * idle depends on !throttled (for the case of a large deficit), and if 4433 * we're going inactive then everything else can be deferred 4434 */ 4435 if (cfs_b->idle && !throttled) 4436 goto out_deactivate; 4437 4438 __refill_cfs_bandwidth_runtime(cfs_b); 4439 4440 if (!throttled) { 4441 /* mark as potentially idle for the upcoming period */ 4442 cfs_b->idle = 1; 4443 return 0; 4444 } 4445 4446 /* account preceding periods in which throttling occurred */ 4447 cfs_b->nr_throttled += overrun; 4448 4449 runtime_expires = cfs_b->runtime_expires; 4450 4451 /* 4452 * This check is repeated as we are holding onto the new bandwidth while 4453 * we unthrottle. This can potentially race with an unthrottled group 4454 * trying to acquire new bandwidth from the global pool. This can result 4455 * in us over-using our runtime if it is all used during this loop, but 4456 * only by limited amounts in that extreme case. 4457 */ 4458 while (throttled && cfs_b->runtime > 0) { 4459 runtime = cfs_b->runtime; 4460 raw_spin_unlock(&cfs_b->lock); 4461 /* we can't nest cfs_b->lock while distributing bandwidth */ 4462 runtime = distribute_cfs_runtime(cfs_b, runtime, 4463 runtime_expires); 4464 raw_spin_lock(&cfs_b->lock); 4465 4466 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4467 4468 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4469 } 4470 4471 /* 4472 * While we are ensured activity in the period following an 4473 * unthrottle, this also covers the case in which the new bandwidth is 4474 * insufficient to cover the existing bandwidth deficit. (Forcing the 4475 * timer to remain active while there are any throttled entities.) 4476 */ 4477 cfs_b->idle = 0; 4478 4479 return 0; 4480 4481 out_deactivate: 4482 return 1; 4483 } 4484 4485 /* a cfs_rq won't donate quota below this amount */ 4486 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4487 /* minimum remaining period time to redistribute slack quota */ 4488 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4489 /* how long we wait to gather additional slack before distributing */ 4490 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4491 4492 /* 4493 * Are we near the end of the current quota period? 4494 * 4495 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4496 * hrtimer base being cleared by hrtimer_start. In the case of 4497 * migrate_hrtimers, base is never cleared, so we are fine. 4498 */ 4499 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4500 { 4501 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4502 u64 remaining; 4503 4504 /* if the call-back is running a quota refresh is already occurring */ 4505 if (hrtimer_callback_running(refresh_timer)) 4506 return 1; 4507 4508 /* is a quota refresh about to occur? */ 4509 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4510 if (remaining < min_expire) 4511 return 1; 4512 4513 return 0; 4514 } 4515 4516 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4517 { 4518 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4519 4520 /* if there's a quota refresh soon don't bother with slack */ 4521 if (runtime_refresh_within(cfs_b, min_left)) 4522 return; 4523 4524 hrtimer_start(&cfs_b->slack_timer, 4525 ns_to_ktime(cfs_bandwidth_slack_period), 4526 HRTIMER_MODE_REL); 4527 } 4528 4529 /* we know any runtime found here is valid as update_curr() precedes return */ 4530 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4531 { 4532 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4533 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4534 4535 if (slack_runtime <= 0) 4536 return; 4537 4538 raw_spin_lock(&cfs_b->lock); 4539 if (cfs_b->quota != RUNTIME_INF && 4540 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4541 cfs_b->runtime += slack_runtime; 4542 4543 /* we are under rq->lock, defer unthrottling using a timer */ 4544 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4545 !list_empty(&cfs_b->throttled_cfs_rq)) 4546 start_cfs_slack_bandwidth(cfs_b); 4547 } 4548 raw_spin_unlock(&cfs_b->lock); 4549 4550 /* even if it's not valid for return we don't want to try again */ 4551 cfs_rq->runtime_remaining -= slack_runtime; 4552 } 4553 4554 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4555 { 4556 if (!cfs_bandwidth_used()) 4557 return; 4558 4559 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4560 return; 4561 4562 __return_cfs_rq_runtime(cfs_rq); 4563 } 4564 4565 /* 4566 * This is done with a timer (instead of inline with bandwidth return) since 4567 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4568 */ 4569 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4570 { 4571 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4572 u64 expires; 4573 4574 /* confirm we're still not at a refresh boundary */ 4575 raw_spin_lock(&cfs_b->lock); 4576 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4577 raw_spin_unlock(&cfs_b->lock); 4578 return; 4579 } 4580 4581 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4582 runtime = cfs_b->runtime; 4583 4584 expires = cfs_b->runtime_expires; 4585 raw_spin_unlock(&cfs_b->lock); 4586 4587 if (!runtime) 4588 return; 4589 4590 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4591 4592 raw_spin_lock(&cfs_b->lock); 4593 if (expires == cfs_b->runtime_expires) 4594 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4595 raw_spin_unlock(&cfs_b->lock); 4596 } 4597 4598 /* 4599 * When a group wakes up we want to make sure that its quota is not already 4600 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4601 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4602 */ 4603 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4604 { 4605 if (!cfs_bandwidth_used()) 4606 return; 4607 4608 /* an active group must be handled by the update_curr()->put() path */ 4609 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4610 return; 4611 4612 /* ensure the group is not already throttled */ 4613 if (cfs_rq_throttled(cfs_rq)) 4614 return; 4615 4616 /* update runtime allocation */ 4617 account_cfs_rq_runtime(cfs_rq, 0); 4618 if (cfs_rq->runtime_remaining <= 0) 4619 throttle_cfs_rq(cfs_rq); 4620 } 4621 4622 static void sync_throttle(struct task_group *tg, int cpu) 4623 { 4624 struct cfs_rq *pcfs_rq, *cfs_rq; 4625 4626 if (!cfs_bandwidth_used()) 4627 return; 4628 4629 if (!tg->parent) 4630 return; 4631 4632 cfs_rq = tg->cfs_rq[cpu]; 4633 pcfs_rq = tg->parent->cfs_rq[cpu]; 4634 4635 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4636 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4637 } 4638 4639 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4640 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4641 { 4642 if (!cfs_bandwidth_used()) 4643 return false; 4644 4645 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4646 return false; 4647 4648 /* 4649 * it's possible for a throttled entity to be forced into a running 4650 * state (e.g. set_curr_task), in this case we're finished. 4651 */ 4652 if (cfs_rq_throttled(cfs_rq)) 4653 return true; 4654 4655 throttle_cfs_rq(cfs_rq); 4656 return true; 4657 } 4658 4659 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4660 { 4661 struct cfs_bandwidth *cfs_b = 4662 container_of(timer, struct cfs_bandwidth, slack_timer); 4663 4664 do_sched_cfs_slack_timer(cfs_b); 4665 4666 return HRTIMER_NORESTART; 4667 } 4668 4669 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4670 { 4671 struct cfs_bandwidth *cfs_b = 4672 container_of(timer, struct cfs_bandwidth, period_timer); 4673 int overrun; 4674 int idle = 0; 4675 4676 raw_spin_lock(&cfs_b->lock); 4677 for (;;) { 4678 overrun = hrtimer_forward_now(timer, cfs_b->period); 4679 if (!overrun) 4680 break; 4681 4682 idle = do_sched_cfs_period_timer(cfs_b, overrun); 4683 } 4684 if (idle) 4685 cfs_b->period_active = 0; 4686 raw_spin_unlock(&cfs_b->lock); 4687 4688 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4689 } 4690 4691 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4692 { 4693 raw_spin_lock_init(&cfs_b->lock); 4694 cfs_b->runtime = 0; 4695 cfs_b->quota = RUNTIME_INF; 4696 cfs_b->period = ns_to_ktime(default_cfs_period()); 4697 4698 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4699 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4700 cfs_b->period_timer.function = sched_cfs_period_timer; 4701 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4702 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4703 } 4704 4705 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4706 { 4707 cfs_rq->runtime_enabled = 0; 4708 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4709 } 4710 4711 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4712 { 4713 lockdep_assert_held(&cfs_b->lock); 4714 4715 if (!cfs_b->period_active) { 4716 cfs_b->period_active = 1; 4717 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 4718 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 4719 } 4720 } 4721 4722 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4723 { 4724 /* init_cfs_bandwidth() was not called */ 4725 if (!cfs_b->throttled_cfs_rq.next) 4726 return; 4727 4728 hrtimer_cancel(&cfs_b->period_timer); 4729 hrtimer_cancel(&cfs_b->slack_timer); 4730 } 4731 4732 /* 4733 * Both these cpu hotplug callbacks race against unregister_fair_sched_group() 4734 * 4735 * The race is harmless, since modifying bandwidth settings of unhooked group 4736 * bits doesn't do much. 4737 */ 4738 4739 /* cpu online calback */ 4740 static void __maybe_unused update_runtime_enabled(struct rq *rq) 4741 { 4742 struct task_group *tg; 4743 4744 lockdep_assert_held(&rq->lock); 4745 4746 rcu_read_lock(); 4747 list_for_each_entry_rcu(tg, &task_groups, list) { 4748 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 4749 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4750 4751 raw_spin_lock(&cfs_b->lock); 4752 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 4753 raw_spin_unlock(&cfs_b->lock); 4754 } 4755 rcu_read_unlock(); 4756 } 4757 4758 /* cpu offline callback */ 4759 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 4760 { 4761 struct task_group *tg; 4762 4763 lockdep_assert_held(&rq->lock); 4764 4765 rcu_read_lock(); 4766 list_for_each_entry_rcu(tg, &task_groups, list) { 4767 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4768 4769 if (!cfs_rq->runtime_enabled) 4770 continue; 4771 4772 /* 4773 * clock_task is not advancing so we just need to make sure 4774 * there's some valid quota amount 4775 */ 4776 cfs_rq->runtime_remaining = 1; 4777 /* 4778 * Offline rq is schedulable till cpu is completely disabled 4779 * in take_cpu_down(), so we prevent new cfs throttling here. 4780 */ 4781 cfs_rq->runtime_enabled = 0; 4782 4783 if (cfs_rq_throttled(cfs_rq)) 4784 unthrottle_cfs_rq(cfs_rq); 4785 } 4786 rcu_read_unlock(); 4787 } 4788 4789 #else /* CONFIG_CFS_BANDWIDTH */ 4790 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4791 { 4792 return rq_clock_task(rq_of(cfs_rq)); 4793 } 4794 4795 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 4796 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 4797 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 4798 static inline void sync_throttle(struct task_group *tg, int cpu) {} 4799 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4800 4801 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4802 { 4803 return 0; 4804 } 4805 4806 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4807 { 4808 return 0; 4809 } 4810 4811 static inline int throttled_lb_pair(struct task_group *tg, 4812 int src_cpu, int dest_cpu) 4813 { 4814 return 0; 4815 } 4816 4817 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4818 4819 #ifdef CONFIG_FAIR_GROUP_SCHED 4820 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4821 #endif 4822 4823 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4824 { 4825 return NULL; 4826 } 4827 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4828 static inline void update_runtime_enabled(struct rq *rq) {} 4829 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 4830 4831 #endif /* CONFIG_CFS_BANDWIDTH */ 4832 4833 /************************************************** 4834 * CFS operations on tasks: 4835 */ 4836 4837 #ifdef CONFIG_SCHED_HRTICK 4838 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 4839 { 4840 struct sched_entity *se = &p->se; 4841 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4842 4843 SCHED_WARN_ON(task_rq(p) != rq); 4844 4845 if (rq->cfs.h_nr_running > 1) { 4846 u64 slice = sched_slice(cfs_rq, se); 4847 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 4848 s64 delta = slice - ran; 4849 4850 if (delta < 0) { 4851 if (rq->curr == p) 4852 resched_curr(rq); 4853 return; 4854 } 4855 hrtick_start(rq, delta); 4856 } 4857 } 4858 4859 /* 4860 * called from enqueue/dequeue and updates the hrtick when the 4861 * current task is from our class and nr_running is low enough 4862 * to matter. 4863 */ 4864 static void hrtick_update(struct rq *rq) 4865 { 4866 struct task_struct *curr = rq->curr; 4867 4868 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 4869 return; 4870 4871 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 4872 hrtick_start_fair(rq, curr); 4873 } 4874 #else /* !CONFIG_SCHED_HRTICK */ 4875 static inline void 4876 hrtick_start_fair(struct rq *rq, struct task_struct *p) 4877 { 4878 } 4879 4880 static inline void hrtick_update(struct rq *rq) 4881 { 4882 } 4883 #endif 4884 4885 /* 4886 * The enqueue_task method is called before nr_running is 4887 * increased. Here we update the fair scheduling stats and 4888 * then put the task into the rbtree: 4889 */ 4890 static void 4891 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4892 { 4893 struct cfs_rq *cfs_rq; 4894 struct sched_entity *se = &p->se; 4895 4896 /* 4897 * If in_iowait is set, the code below may not trigger any cpufreq 4898 * utilization updates, so do it here explicitly with the IOWAIT flag 4899 * passed. 4900 */ 4901 if (p->in_iowait) 4902 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 4903 4904 for_each_sched_entity(se) { 4905 if (se->on_rq) 4906 break; 4907 cfs_rq = cfs_rq_of(se); 4908 enqueue_entity(cfs_rq, se, flags); 4909 4910 /* 4911 * end evaluation on encountering a throttled cfs_rq 4912 * 4913 * note: in the case of encountering a throttled cfs_rq we will 4914 * post the final h_nr_running increment below. 4915 */ 4916 if (cfs_rq_throttled(cfs_rq)) 4917 break; 4918 cfs_rq->h_nr_running++; 4919 4920 flags = ENQUEUE_WAKEUP; 4921 } 4922 4923 for_each_sched_entity(se) { 4924 cfs_rq = cfs_rq_of(se); 4925 cfs_rq->h_nr_running++; 4926 4927 if (cfs_rq_throttled(cfs_rq)) 4928 break; 4929 4930 update_load_avg(se, UPDATE_TG); 4931 update_cfs_shares(se); 4932 } 4933 4934 if (!se) 4935 add_nr_running(rq, 1); 4936 4937 hrtick_update(rq); 4938 } 4939 4940 static void set_next_buddy(struct sched_entity *se); 4941 4942 /* 4943 * The dequeue_task method is called before nr_running is 4944 * decreased. We remove the task from the rbtree and 4945 * update the fair scheduling stats: 4946 */ 4947 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4948 { 4949 struct cfs_rq *cfs_rq; 4950 struct sched_entity *se = &p->se; 4951 int task_sleep = flags & DEQUEUE_SLEEP; 4952 4953 for_each_sched_entity(se) { 4954 cfs_rq = cfs_rq_of(se); 4955 dequeue_entity(cfs_rq, se, flags); 4956 4957 /* 4958 * end evaluation on encountering a throttled cfs_rq 4959 * 4960 * note: in the case of encountering a throttled cfs_rq we will 4961 * post the final h_nr_running decrement below. 4962 */ 4963 if (cfs_rq_throttled(cfs_rq)) 4964 break; 4965 cfs_rq->h_nr_running--; 4966 4967 /* Don't dequeue parent if it has other entities besides us */ 4968 if (cfs_rq->load.weight) { 4969 /* Avoid re-evaluating load for this entity: */ 4970 se = parent_entity(se); 4971 /* 4972 * Bias pick_next to pick a task from this cfs_rq, as 4973 * p is sleeping when it is within its sched_slice. 4974 */ 4975 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 4976 set_next_buddy(se); 4977 break; 4978 } 4979 flags |= DEQUEUE_SLEEP; 4980 } 4981 4982 for_each_sched_entity(se) { 4983 cfs_rq = cfs_rq_of(se); 4984 cfs_rq->h_nr_running--; 4985 4986 if (cfs_rq_throttled(cfs_rq)) 4987 break; 4988 4989 update_load_avg(se, UPDATE_TG); 4990 update_cfs_shares(se); 4991 } 4992 4993 if (!se) 4994 sub_nr_running(rq, 1); 4995 4996 hrtick_update(rq); 4997 } 4998 4999 #ifdef CONFIG_SMP 5000 5001 /* Working cpumask for: load_balance, load_balance_newidle. */ 5002 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5003 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5004 5005 #ifdef CONFIG_NO_HZ_COMMON 5006 /* 5007 * per rq 'load' arrray crap; XXX kill this. 5008 */ 5009 5010 /* 5011 * The exact cpuload calculated at every tick would be: 5012 * 5013 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 5014 * 5015 * If a cpu misses updates for n ticks (as it was idle) and update gets 5016 * called on the n+1-th tick when cpu may be busy, then we have: 5017 * 5018 * load_n = (1 - 1/2^i)^n * load_0 5019 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 5020 * 5021 * decay_load_missed() below does efficient calculation of 5022 * 5023 * load' = (1 - 1/2^i)^n * load 5024 * 5025 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 5026 * This allows us to precompute the above in said factors, thereby allowing the 5027 * reduction of an arbitrary n in O(log_2 n) steps. (See also 5028 * fixed_power_int()) 5029 * 5030 * The calculation is approximated on a 128 point scale. 5031 */ 5032 #define DEGRADE_SHIFT 7 5033 5034 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 5035 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 5036 { 0, 0, 0, 0, 0, 0, 0, 0 }, 5037 { 64, 32, 8, 0, 0, 0, 0, 0 }, 5038 { 96, 72, 40, 12, 1, 0, 0, 0 }, 5039 { 112, 98, 75, 43, 15, 1, 0, 0 }, 5040 { 120, 112, 98, 76, 45, 16, 2, 0 } 5041 }; 5042 5043 /* 5044 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 5045 * would be when CPU is idle and so we just decay the old load without 5046 * adding any new load. 5047 */ 5048 static unsigned long 5049 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 5050 { 5051 int j = 0; 5052 5053 if (!missed_updates) 5054 return load; 5055 5056 if (missed_updates >= degrade_zero_ticks[idx]) 5057 return 0; 5058 5059 if (idx == 1) 5060 return load >> missed_updates; 5061 5062 while (missed_updates) { 5063 if (missed_updates % 2) 5064 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 5065 5066 missed_updates >>= 1; 5067 j++; 5068 } 5069 return load; 5070 } 5071 #endif /* CONFIG_NO_HZ_COMMON */ 5072 5073 /** 5074 * __cpu_load_update - update the rq->cpu_load[] statistics 5075 * @this_rq: The rq to update statistics for 5076 * @this_load: The current load 5077 * @pending_updates: The number of missed updates 5078 * 5079 * Update rq->cpu_load[] statistics. This function is usually called every 5080 * scheduler tick (TICK_NSEC). 5081 * 5082 * This function computes a decaying average: 5083 * 5084 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 5085 * 5086 * Because of NOHZ it might not get called on every tick which gives need for 5087 * the @pending_updates argument. 5088 * 5089 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 5090 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 5091 * = A * (A * load[i]_n-2 + B) + B 5092 * = A * (A * (A * load[i]_n-3 + B) + B) + B 5093 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 5094 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 5095 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 5096 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 5097 * 5098 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 5099 * any change in load would have resulted in the tick being turned back on. 5100 * 5101 * For regular NOHZ, this reduces to: 5102 * 5103 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 5104 * 5105 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 5106 * term. 5107 */ 5108 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 5109 unsigned long pending_updates) 5110 { 5111 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 5112 int i, scale; 5113 5114 this_rq->nr_load_updates++; 5115 5116 /* Update our load: */ 5117 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 5118 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 5119 unsigned long old_load, new_load; 5120 5121 /* scale is effectively 1 << i now, and >> i divides by scale */ 5122 5123 old_load = this_rq->cpu_load[i]; 5124 #ifdef CONFIG_NO_HZ_COMMON 5125 old_load = decay_load_missed(old_load, pending_updates - 1, i); 5126 if (tickless_load) { 5127 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 5128 /* 5129 * old_load can never be a negative value because a 5130 * decayed tickless_load cannot be greater than the 5131 * original tickless_load. 5132 */ 5133 old_load += tickless_load; 5134 } 5135 #endif 5136 new_load = this_load; 5137 /* 5138 * Round up the averaging division if load is increasing. This 5139 * prevents us from getting stuck on 9 if the load is 10, for 5140 * example. 5141 */ 5142 if (new_load > old_load) 5143 new_load += scale - 1; 5144 5145 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 5146 } 5147 5148 sched_avg_update(this_rq); 5149 } 5150 5151 /* Used instead of source_load when we know the type == 0 */ 5152 static unsigned long weighted_cpuload(struct rq *rq) 5153 { 5154 return cfs_rq_runnable_load_avg(&rq->cfs); 5155 } 5156 5157 #ifdef CONFIG_NO_HZ_COMMON 5158 /* 5159 * There is no sane way to deal with nohz on smp when using jiffies because the 5160 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 5161 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 5162 * 5163 * Therefore we need to avoid the delta approach from the regular tick when 5164 * possible since that would seriously skew the load calculation. This is why we 5165 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 5166 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 5167 * loop exit, nohz_idle_balance, nohz full exit...) 5168 * 5169 * This means we might still be one tick off for nohz periods. 5170 */ 5171 5172 static void cpu_load_update_nohz(struct rq *this_rq, 5173 unsigned long curr_jiffies, 5174 unsigned long load) 5175 { 5176 unsigned long pending_updates; 5177 5178 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 5179 if (pending_updates) { 5180 this_rq->last_load_update_tick = curr_jiffies; 5181 /* 5182 * In the regular NOHZ case, we were idle, this means load 0. 5183 * In the NOHZ_FULL case, we were non-idle, we should consider 5184 * its weighted load. 5185 */ 5186 cpu_load_update(this_rq, load, pending_updates); 5187 } 5188 } 5189 5190 /* 5191 * Called from nohz_idle_balance() to update the load ratings before doing the 5192 * idle balance. 5193 */ 5194 static void cpu_load_update_idle(struct rq *this_rq) 5195 { 5196 /* 5197 * bail if there's load or we're actually up-to-date. 5198 */ 5199 if (weighted_cpuload(this_rq)) 5200 return; 5201 5202 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 5203 } 5204 5205 /* 5206 * Record CPU load on nohz entry so we know the tickless load to account 5207 * on nohz exit. cpu_load[0] happens then to be updated more frequently 5208 * than other cpu_load[idx] but it should be fine as cpu_load readers 5209 * shouldn't rely into synchronized cpu_load[*] updates. 5210 */ 5211 void cpu_load_update_nohz_start(void) 5212 { 5213 struct rq *this_rq = this_rq(); 5214 5215 /* 5216 * This is all lockless but should be fine. If weighted_cpuload changes 5217 * concurrently we'll exit nohz. And cpu_load write can race with 5218 * cpu_load_update_idle() but both updater would be writing the same. 5219 */ 5220 this_rq->cpu_load[0] = weighted_cpuload(this_rq); 5221 } 5222 5223 /* 5224 * Account the tickless load in the end of a nohz frame. 5225 */ 5226 void cpu_load_update_nohz_stop(void) 5227 { 5228 unsigned long curr_jiffies = READ_ONCE(jiffies); 5229 struct rq *this_rq = this_rq(); 5230 unsigned long load; 5231 struct rq_flags rf; 5232 5233 if (curr_jiffies == this_rq->last_load_update_tick) 5234 return; 5235 5236 load = weighted_cpuload(this_rq); 5237 rq_lock(this_rq, &rf); 5238 update_rq_clock(this_rq); 5239 cpu_load_update_nohz(this_rq, curr_jiffies, load); 5240 rq_unlock(this_rq, &rf); 5241 } 5242 #else /* !CONFIG_NO_HZ_COMMON */ 5243 static inline void cpu_load_update_nohz(struct rq *this_rq, 5244 unsigned long curr_jiffies, 5245 unsigned long load) { } 5246 #endif /* CONFIG_NO_HZ_COMMON */ 5247 5248 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 5249 { 5250 #ifdef CONFIG_NO_HZ_COMMON 5251 /* See the mess around cpu_load_update_nohz(). */ 5252 this_rq->last_load_update_tick = READ_ONCE(jiffies); 5253 #endif 5254 cpu_load_update(this_rq, load, 1); 5255 } 5256 5257 /* 5258 * Called from scheduler_tick() 5259 */ 5260 void cpu_load_update_active(struct rq *this_rq) 5261 { 5262 unsigned long load = weighted_cpuload(this_rq); 5263 5264 if (tick_nohz_tick_stopped()) 5265 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 5266 else 5267 cpu_load_update_periodic(this_rq, load); 5268 } 5269 5270 /* 5271 * Return a low guess at the load of a migration-source cpu weighted 5272 * according to the scheduling class and "nice" value. 5273 * 5274 * We want to under-estimate the load of migration sources, to 5275 * balance conservatively. 5276 */ 5277 static unsigned long source_load(int cpu, int type) 5278 { 5279 struct rq *rq = cpu_rq(cpu); 5280 unsigned long total = weighted_cpuload(rq); 5281 5282 if (type == 0 || !sched_feat(LB_BIAS)) 5283 return total; 5284 5285 return min(rq->cpu_load[type-1], total); 5286 } 5287 5288 /* 5289 * Return a high guess at the load of a migration-target cpu weighted 5290 * according to the scheduling class and "nice" value. 5291 */ 5292 static unsigned long target_load(int cpu, int type) 5293 { 5294 struct rq *rq = cpu_rq(cpu); 5295 unsigned long total = weighted_cpuload(rq); 5296 5297 if (type == 0 || !sched_feat(LB_BIAS)) 5298 return total; 5299 5300 return max(rq->cpu_load[type-1], total); 5301 } 5302 5303 static unsigned long capacity_of(int cpu) 5304 { 5305 return cpu_rq(cpu)->cpu_capacity; 5306 } 5307 5308 static unsigned long capacity_orig_of(int cpu) 5309 { 5310 return cpu_rq(cpu)->cpu_capacity_orig; 5311 } 5312 5313 static unsigned long cpu_avg_load_per_task(int cpu) 5314 { 5315 struct rq *rq = cpu_rq(cpu); 5316 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5317 unsigned long load_avg = weighted_cpuload(rq); 5318 5319 if (nr_running) 5320 return load_avg / nr_running; 5321 5322 return 0; 5323 } 5324 5325 static void record_wakee(struct task_struct *p) 5326 { 5327 /* 5328 * Only decay a single time; tasks that have less then 1 wakeup per 5329 * jiffy will not have built up many flips. 5330 */ 5331 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5332 current->wakee_flips >>= 1; 5333 current->wakee_flip_decay_ts = jiffies; 5334 } 5335 5336 if (current->last_wakee != p) { 5337 current->last_wakee = p; 5338 current->wakee_flips++; 5339 } 5340 } 5341 5342 /* 5343 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5344 * 5345 * A waker of many should wake a different task than the one last awakened 5346 * at a frequency roughly N times higher than one of its wakees. 5347 * 5348 * In order to determine whether we should let the load spread vs consolidating 5349 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5350 * partner, and a factor of lls_size higher frequency in the other. 5351 * 5352 * With both conditions met, we can be relatively sure that the relationship is 5353 * non-monogamous, with partner count exceeding socket size. 5354 * 5355 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5356 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5357 * socket size. 5358 */ 5359 static int wake_wide(struct task_struct *p) 5360 { 5361 unsigned int master = current->wakee_flips; 5362 unsigned int slave = p->wakee_flips; 5363 int factor = this_cpu_read(sd_llc_size); 5364 5365 if (master < slave) 5366 swap(master, slave); 5367 if (slave < factor || master < slave * factor) 5368 return 0; 5369 return 1; 5370 } 5371 5372 struct llc_stats { 5373 unsigned long nr_running; 5374 unsigned long load; 5375 unsigned long capacity; 5376 int has_capacity; 5377 }; 5378 5379 static bool get_llc_stats(struct llc_stats *stats, int cpu) 5380 { 5381 struct sched_domain_shared *sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5382 5383 if (!sds) 5384 return false; 5385 5386 stats->nr_running = READ_ONCE(sds->nr_running); 5387 stats->load = READ_ONCE(sds->load); 5388 stats->capacity = READ_ONCE(sds->capacity); 5389 stats->has_capacity = stats->nr_running < per_cpu(sd_llc_size, cpu); 5390 5391 return true; 5392 } 5393 5394 /* 5395 * Can a task be moved from prev_cpu to this_cpu without causing a load 5396 * imbalance that would trigger the load balancer? 5397 * 5398 * Since we're running on 'stale' values, we might in fact create an imbalance 5399 * but recomputing these values is expensive, as that'd mean iteration 2 cache 5400 * domains worth of CPUs. 5401 */ 5402 static bool 5403 wake_affine_llc(struct sched_domain *sd, struct task_struct *p, 5404 int this_cpu, int prev_cpu, int sync) 5405 { 5406 struct llc_stats prev_stats, this_stats; 5407 s64 this_eff_load, prev_eff_load; 5408 unsigned long task_load; 5409 5410 if (!get_llc_stats(&prev_stats, prev_cpu) || 5411 !get_llc_stats(&this_stats, this_cpu)) 5412 return false; 5413 5414 /* 5415 * If sync wakeup then subtract the (maximum possible) 5416 * effect of the currently running task from the load 5417 * of the current LLC. 5418 */ 5419 if (sync) { 5420 unsigned long current_load = task_h_load(current); 5421 5422 /* in this case load hits 0 and this LLC is considered 'idle' */ 5423 if (current_load > this_stats.load) 5424 return true; 5425 5426 this_stats.load -= current_load; 5427 } 5428 5429 /* 5430 * The has_capacity stuff is not SMT aware, but by trying to balance 5431 * the nr_running on both ends we try and fill the domain at equal 5432 * rates, thereby first consuming cores before siblings. 5433 */ 5434 5435 /* if the old cache has capacity, stay there */ 5436 if (prev_stats.has_capacity && prev_stats.nr_running < this_stats.nr_running+1) 5437 return false; 5438 5439 /* if this cache has capacity, come here */ 5440 if (this_stats.has_capacity && this_stats.nr_running < prev_stats.nr_running+1) 5441 return true; 5442 5443 /* 5444 * Check to see if we can move the load without causing too much 5445 * imbalance. 5446 */ 5447 task_load = task_h_load(p); 5448 5449 this_eff_load = 100; 5450 this_eff_load *= prev_stats.capacity; 5451 5452 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 5453 prev_eff_load *= this_stats.capacity; 5454 5455 this_eff_load *= this_stats.load + task_load; 5456 prev_eff_load *= prev_stats.load - task_load; 5457 5458 return this_eff_load <= prev_eff_load; 5459 } 5460 5461 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5462 int prev_cpu, int sync) 5463 { 5464 int this_cpu = smp_processor_id(); 5465 bool affine; 5466 5467 /* 5468 * Default to no affine wakeups; wake_affine() should not effect a task 5469 * placement the load-balancer feels inclined to undo. The conservative 5470 * option is therefore to not move tasks when they wake up. 5471 */ 5472 affine = false; 5473 5474 /* 5475 * If the wakeup is across cache domains, try to evaluate if movement 5476 * makes sense, otherwise rely on select_idle_siblings() to do 5477 * placement inside the cache domain. 5478 */ 5479 if (!cpus_share_cache(prev_cpu, this_cpu)) 5480 affine = wake_affine_llc(sd, p, this_cpu, prev_cpu, sync); 5481 5482 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5483 if (affine) { 5484 schedstat_inc(sd->ttwu_move_affine); 5485 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5486 } 5487 5488 return affine; 5489 } 5490 5491 static inline int task_util(struct task_struct *p); 5492 static int cpu_util_wake(int cpu, struct task_struct *p); 5493 5494 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p) 5495 { 5496 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p); 5497 } 5498 5499 /* 5500 * find_idlest_group finds and returns the least busy CPU group within the 5501 * domain. 5502 */ 5503 static struct sched_group * 5504 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5505 int this_cpu, int sd_flag) 5506 { 5507 struct sched_group *idlest = NULL, *group = sd->groups; 5508 struct sched_group *most_spare_sg = NULL; 5509 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0; 5510 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0; 5511 unsigned long most_spare = 0, this_spare = 0; 5512 int load_idx = sd->forkexec_idx; 5513 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 5514 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 5515 (sd->imbalance_pct-100) / 100; 5516 5517 if (sd_flag & SD_BALANCE_WAKE) 5518 load_idx = sd->wake_idx; 5519 5520 do { 5521 unsigned long load, avg_load, runnable_load; 5522 unsigned long spare_cap, max_spare_cap; 5523 int local_group; 5524 int i; 5525 5526 /* Skip over this group if it has no CPUs allowed */ 5527 if (!cpumask_intersects(sched_group_span(group), 5528 &p->cpus_allowed)) 5529 continue; 5530 5531 local_group = cpumask_test_cpu(this_cpu, 5532 sched_group_span(group)); 5533 5534 /* 5535 * Tally up the load of all CPUs in the group and find 5536 * the group containing the CPU with most spare capacity. 5537 */ 5538 avg_load = 0; 5539 runnable_load = 0; 5540 max_spare_cap = 0; 5541 5542 for_each_cpu(i, sched_group_span(group)) { 5543 /* Bias balancing toward cpus of our domain */ 5544 if (local_group) 5545 load = source_load(i, load_idx); 5546 else 5547 load = target_load(i, load_idx); 5548 5549 runnable_load += load; 5550 5551 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 5552 5553 spare_cap = capacity_spare_wake(i, p); 5554 5555 if (spare_cap > max_spare_cap) 5556 max_spare_cap = spare_cap; 5557 } 5558 5559 /* Adjust by relative CPU capacity of the group */ 5560 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 5561 group->sgc->capacity; 5562 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 5563 group->sgc->capacity; 5564 5565 if (local_group) { 5566 this_runnable_load = runnable_load; 5567 this_avg_load = avg_load; 5568 this_spare = max_spare_cap; 5569 } else { 5570 if (min_runnable_load > (runnable_load + imbalance)) { 5571 /* 5572 * The runnable load is significantly smaller 5573 * so we can pick this new cpu 5574 */ 5575 min_runnable_load = runnable_load; 5576 min_avg_load = avg_load; 5577 idlest = group; 5578 } else if ((runnable_load < (min_runnable_load + imbalance)) && 5579 (100*min_avg_load > imbalance_scale*avg_load)) { 5580 /* 5581 * The runnable loads are close so take the 5582 * blocked load into account through avg_load. 5583 */ 5584 min_avg_load = avg_load; 5585 idlest = group; 5586 } 5587 5588 if (most_spare < max_spare_cap) { 5589 most_spare = max_spare_cap; 5590 most_spare_sg = group; 5591 } 5592 } 5593 } while (group = group->next, group != sd->groups); 5594 5595 /* 5596 * The cross-over point between using spare capacity or least load 5597 * is too conservative for high utilization tasks on partially 5598 * utilized systems if we require spare_capacity > task_util(p), 5599 * so we allow for some task stuffing by using 5600 * spare_capacity > task_util(p)/2. 5601 * 5602 * Spare capacity can't be used for fork because the utilization has 5603 * not been set yet, we must first select a rq to compute the initial 5604 * utilization. 5605 */ 5606 if (sd_flag & SD_BALANCE_FORK) 5607 goto skip_spare; 5608 5609 if (this_spare > task_util(p) / 2 && 5610 imbalance_scale*this_spare > 100*most_spare) 5611 return NULL; 5612 5613 if (most_spare > task_util(p) / 2) 5614 return most_spare_sg; 5615 5616 skip_spare: 5617 if (!idlest) 5618 return NULL; 5619 5620 if (min_runnable_load > (this_runnable_load + imbalance)) 5621 return NULL; 5622 5623 if ((this_runnable_load < (min_runnable_load + imbalance)) && 5624 (100*this_avg_load < imbalance_scale*min_avg_load)) 5625 return NULL; 5626 5627 return idlest; 5628 } 5629 5630 /* 5631 * find_idlest_cpu - find the idlest cpu among the cpus in group. 5632 */ 5633 static int 5634 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5635 { 5636 unsigned long load, min_load = ULONG_MAX; 5637 unsigned int min_exit_latency = UINT_MAX; 5638 u64 latest_idle_timestamp = 0; 5639 int least_loaded_cpu = this_cpu; 5640 int shallowest_idle_cpu = -1; 5641 int i; 5642 5643 /* Check if we have any choice: */ 5644 if (group->group_weight == 1) 5645 return cpumask_first(sched_group_span(group)); 5646 5647 /* Traverse only the allowed CPUs */ 5648 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) { 5649 if (idle_cpu(i)) { 5650 struct rq *rq = cpu_rq(i); 5651 struct cpuidle_state *idle = idle_get_state(rq); 5652 if (idle && idle->exit_latency < min_exit_latency) { 5653 /* 5654 * We give priority to a CPU whose idle state 5655 * has the smallest exit latency irrespective 5656 * of any idle timestamp. 5657 */ 5658 min_exit_latency = idle->exit_latency; 5659 latest_idle_timestamp = rq->idle_stamp; 5660 shallowest_idle_cpu = i; 5661 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5662 rq->idle_stamp > latest_idle_timestamp) { 5663 /* 5664 * If equal or no active idle state, then 5665 * the most recently idled CPU might have 5666 * a warmer cache. 5667 */ 5668 latest_idle_timestamp = rq->idle_stamp; 5669 shallowest_idle_cpu = i; 5670 } 5671 } else if (shallowest_idle_cpu == -1) { 5672 load = weighted_cpuload(cpu_rq(i)); 5673 if (load < min_load || (load == min_load && i == this_cpu)) { 5674 min_load = load; 5675 least_loaded_cpu = i; 5676 } 5677 } 5678 } 5679 5680 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5681 } 5682 5683 #ifdef CONFIG_SCHED_SMT 5684 5685 static inline void set_idle_cores(int cpu, int val) 5686 { 5687 struct sched_domain_shared *sds; 5688 5689 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5690 if (sds) 5691 WRITE_ONCE(sds->has_idle_cores, val); 5692 } 5693 5694 static inline bool test_idle_cores(int cpu, bool def) 5695 { 5696 struct sched_domain_shared *sds; 5697 5698 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5699 if (sds) 5700 return READ_ONCE(sds->has_idle_cores); 5701 5702 return def; 5703 } 5704 5705 /* 5706 * Scans the local SMT mask to see if the entire core is idle, and records this 5707 * information in sd_llc_shared->has_idle_cores. 5708 * 5709 * Since SMT siblings share all cache levels, inspecting this limited remote 5710 * state should be fairly cheap. 5711 */ 5712 void __update_idle_core(struct rq *rq) 5713 { 5714 int core = cpu_of(rq); 5715 int cpu; 5716 5717 rcu_read_lock(); 5718 if (test_idle_cores(core, true)) 5719 goto unlock; 5720 5721 for_each_cpu(cpu, cpu_smt_mask(core)) { 5722 if (cpu == core) 5723 continue; 5724 5725 if (!idle_cpu(cpu)) 5726 goto unlock; 5727 } 5728 5729 set_idle_cores(core, 1); 5730 unlock: 5731 rcu_read_unlock(); 5732 } 5733 5734 /* 5735 * Scan the entire LLC domain for idle cores; this dynamically switches off if 5736 * there are no idle cores left in the system; tracked through 5737 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 5738 */ 5739 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5740 { 5741 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 5742 int core, cpu; 5743 5744 if (!static_branch_likely(&sched_smt_present)) 5745 return -1; 5746 5747 if (!test_idle_cores(target, false)) 5748 return -1; 5749 5750 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed); 5751 5752 for_each_cpu_wrap(core, cpus, target) { 5753 bool idle = true; 5754 5755 for_each_cpu(cpu, cpu_smt_mask(core)) { 5756 cpumask_clear_cpu(cpu, cpus); 5757 if (!idle_cpu(cpu)) 5758 idle = false; 5759 } 5760 5761 if (idle) 5762 return core; 5763 } 5764 5765 /* 5766 * Failed to find an idle core; stop looking for one. 5767 */ 5768 set_idle_cores(target, 0); 5769 5770 return -1; 5771 } 5772 5773 /* 5774 * Scan the local SMT mask for idle CPUs. 5775 */ 5776 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 5777 { 5778 int cpu; 5779 5780 if (!static_branch_likely(&sched_smt_present)) 5781 return -1; 5782 5783 for_each_cpu(cpu, cpu_smt_mask(target)) { 5784 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 5785 continue; 5786 if (idle_cpu(cpu)) 5787 return cpu; 5788 } 5789 5790 return -1; 5791 } 5792 5793 #else /* CONFIG_SCHED_SMT */ 5794 5795 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5796 { 5797 return -1; 5798 } 5799 5800 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 5801 { 5802 return -1; 5803 } 5804 5805 #endif /* CONFIG_SCHED_SMT */ 5806 5807 /* 5808 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 5809 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 5810 * average idle time for this rq (as found in rq->avg_idle). 5811 */ 5812 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 5813 { 5814 struct sched_domain *this_sd; 5815 u64 avg_cost, avg_idle; 5816 u64 time, cost; 5817 s64 delta; 5818 int cpu, nr = INT_MAX; 5819 5820 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 5821 if (!this_sd) 5822 return -1; 5823 5824 /* 5825 * Due to large variance we need a large fuzz factor; hackbench in 5826 * particularly is sensitive here. 5827 */ 5828 avg_idle = this_rq()->avg_idle / 512; 5829 avg_cost = this_sd->avg_scan_cost + 1; 5830 5831 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 5832 return -1; 5833 5834 if (sched_feat(SIS_PROP)) { 5835 u64 span_avg = sd->span_weight * avg_idle; 5836 if (span_avg > 4*avg_cost) 5837 nr = div_u64(span_avg, avg_cost); 5838 else 5839 nr = 4; 5840 } 5841 5842 time = local_clock(); 5843 5844 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { 5845 if (!--nr) 5846 return -1; 5847 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 5848 continue; 5849 if (idle_cpu(cpu)) 5850 break; 5851 } 5852 5853 time = local_clock() - time; 5854 cost = this_sd->avg_scan_cost; 5855 delta = (s64)(time - cost) / 8; 5856 this_sd->avg_scan_cost += delta; 5857 5858 return cpu; 5859 } 5860 5861 /* 5862 * Try and locate an idle core/thread in the LLC cache domain. 5863 */ 5864 static int select_idle_sibling(struct task_struct *p, int prev, int target) 5865 { 5866 struct sched_domain *sd; 5867 int i; 5868 5869 if (idle_cpu(target)) 5870 return target; 5871 5872 /* 5873 * If the previous cpu is cache affine and idle, don't be stupid. 5874 */ 5875 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev)) 5876 return prev; 5877 5878 sd = rcu_dereference(per_cpu(sd_llc, target)); 5879 if (!sd) 5880 return target; 5881 5882 i = select_idle_core(p, sd, target); 5883 if ((unsigned)i < nr_cpumask_bits) 5884 return i; 5885 5886 i = select_idle_cpu(p, sd, target); 5887 if ((unsigned)i < nr_cpumask_bits) 5888 return i; 5889 5890 i = select_idle_smt(p, sd, target); 5891 if ((unsigned)i < nr_cpumask_bits) 5892 return i; 5893 5894 return target; 5895 } 5896 5897 /* 5898 * cpu_util returns the amount of capacity of a CPU that is used by CFS 5899 * tasks. The unit of the return value must be the one of capacity so we can 5900 * compare the utilization with the capacity of the CPU that is available for 5901 * CFS task (ie cpu_capacity). 5902 * 5903 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 5904 * recent utilization of currently non-runnable tasks on a CPU. It represents 5905 * the amount of utilization of a CPU in the range [0..capacity_orig] where 5906 * capacity_orig is the cpu_capacity available at the highest frequency 5907 * (arch_scale_freq_capacity()). 5908 * The utilization of a CPU converges towards a sum equal to or less than the 5909 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 5910 * the running time on this CPU scaled by capacity_curr. 5911 * 5912 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 5913 * higher than capacity_orig because of unfortunate rounding in 5914 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 5915 * the average stabilizes with the new running time. We need to check that the 5916 * utilization stays within the range of [0..capacity_orig] and cap it if 5917 * necessary. Without utilization capping, a group could be seen as overloaded 5918 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 5919 * available capacity. We allow utilization to overshoot capacity_curr (but not 5920 * capacity_orig) as it useful for predicting the capacity required after task 5921 * migrations (scheduler-driven DVFS). 5922 */ 5923 static int cpu_util(int cpu) 5924 { 5925 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg; 5926 unsigned long capacity = capacity_orig_of(cpu); 5927 5928 return (util >= capacity) ? capacity : util; 5929 } 5930 5931 static inline int task_util(struct task_struct *p) 5932 { 5933 return p->se.avg.util_avg; 5934 } 5935 5936 /* 5937 * cpu_util_wake: Compute cpu utilization with any contributions from 5938 * the waking task p removed. 5939 */ 5940 static int cpu_util_wake(int cpu, struct task_struct *p) 5941 { 5942 unsigned long util, capacity; 5943 5944 /* Task has no contribution or is new */ 5945 if (cpu != task_cpu(p) || !p->se.avg.last_update_time) 5946 return cpu_util(cpu); 5947 5948 capacity = capacity_orig_of(cpu); 5949 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0); 5950 5951 return (util >= capacity) ? capacity : util; 5952 } 5953 5954 /* 5955 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 5956 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 5957 * 5958 * In that case WAKE_AFFINE doesn't make sense and we'll let 5959 * BALANCE_WAKE sort things out. 5960 */ 5961 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 5962 { 5963 long min_cap, max_cap; 5964 5965 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 5966 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 5967 5968 /* Minimum capacity is close to max, no need to abort wake_affine */ 5969 if (max_cap - min_cap < max_cap >> 3) 5970 return 0; 5971 5972 /* Bring task utilization in sync with prev_cpu */ 5973 sync_entity_load_avg(&p->se); 5974 5975 return min_cap * 1024 < task_util(p) * capacity_margin; 5976 } 5977 5978 /* 5979 * select_task_rq_fair: Select target runqueue for the waking task in domains 5980 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 5981 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 5982 * 5983 * Balances load by selecting the idlest cpu in the idlest group, or under 5984 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. 5985 * 5986 * Returns the target cpu number. 5987 * 5988 * preempt must be disabled. 5989 */ 5990 static int 5991 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 5992 { 5993 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 5994 int cpu = smp_processor_id(); 5995 int new_cpu = prev_cpu; 5996 int want_affine = 0; 5997 int sync = wake_flags & WF_SYNC; 5998 5999 if (sd_flag & SD_BALANCE_WAKE) { 6000 record_wakee(p); 6001 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) 6002 && cpumask_test_cpu(cpu, &p->cpus_allowed); 6003 } 6004 6005 rcu_read_lock(); 6006 for_each_domain(cpu, tmp) { 6007 if (!(tmp->flags & SD_LOAD_BALANCE)) 6008 break; 6009 6010 /* 6011 * If both cpu and prev_cpu are part of this domain, 6012 * cpu is a valid SD_WAKE_AFFINE target. 6013 */ 6014 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6015 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6016 affine_sd = tmp; 6017 break; 6018 } 6019 6020 if (tmp->flags & sd_flag) 6021 sd = tmp; 6022 else if (!want_affine) 6023 break; 6024 } 6025 6026 if (affine_sd) { 6027 sd = NULL; /* Prefer wake_affine over balance flags */ 6028 if (cpu == prev_cpu) 6029 goto pick_cpu; 6030 6031 if (wake_affine(affine_sd, p, prev_cpu, sync)) 6032 new_cpu = cpu; 6033 } 6034 6035 if (!sd) { 6036 pick_cpu: 6037 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */ 6038 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6039 6040 } else while (sd) { 6041 struct sched_group *group; 6042 int weight; 6043 6044 if (!(sd->flags & sd_flag)) { 6045 sd = sd->child; 6046 continue; 6047 } 6048 6049 group = find_idlest_group(sd, p, cpu, sd_flag); 6050 if (!group) { 6051 sd = sd->child; 6052 continue; 6053 } 6054 6055 new_cpu = find_idlest_cpu(group, p, cpu); 6056 if (new_cpu == -1 || new_cpu == cpu) { 6057 /* Now try balancing at a lower domain level of cpu */ 6058 sd = sd->child; 6059 continue; 6060 } 6061 6062 /* Now try balancing at a lower domain level of new_cpu */ 6063 cpu = new_cpu; 6064 weight = sd->span_weight; 6065 sd = NULL; 6066 for_each_domain(cpu, tmp) { 6067 if (weight <= tmp->span_weight) 6068 break; 6069 if (tmp->flags & sd_flag) 6070 sd = tmp; 6071 } 6072 /* while loop will break here if sd == NULL */ 6073 } 6074 rcu_read_unlock(); 6075 6076 return new_cpu; 6077 } 6078 6079 /* 6080 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 6081 * cfs_rq_of(p) references at time of call are still valid and identify the 6082 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6083 */ 6084 static void migrate_task_rq_fair(struct task_struct *p) 6085 { 6086 /* 6087 * As blocked tasks retain absolute vruntime the migration needs to 6088 * deal with this by subtracting the old and adding the new 6089 * min_vruntime -- the latter is done by enqueue_entity() when placing 6090 * the task on the new runqueue. 6091 */ 6092 if (p->state == TASK_WAKING) { 6093 struct sched_entity *se = &p->se; 6094 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6095 u64 min_vruntime; 6096 6097 #ifndef CONFIG_64BIT 6098 u64 min_vruntime_copy; 6099 6100 do { 6101 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6102 smp_rmb(); 6103 min_vruntime = cfs_rq->min_vruntime; 6104 } while (min_vruntime != min_vruntime_copy); 6105 #else 6106 min_vruntime = cfs_rq->min_vruntime; 6107 #endif 6108 6109 se->vruntime -= min_vruntime; 6110 } 6111 6112 /* 6113 * We are supposed to update the task to "current" time, then its up to date 6114 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting 6115 * what current time is, so simply throw away the out-of-date time. This 6116 * will result in the wakee task is less decayed, but giving the wakee more 6117 * load sounds not bad. 6118 */ 6119 remove_entity_load_avg(&p->se); 6120 6121 /* Tell new CPU we are migrated */ 6122 p->se.avg.last_update_time = 0; 6123 6124 /* We have migrated, no longer consider this task hot */ 6125 p->se.exec_start = 0; 6126 } 6127 6128 static void task_dead_fair(struct task_struct *p) 6129 { 6130 remove_entity_load_avg(&p->se); 6131 } 6132 #endif /* CONFIG_SMP */ 6133 6134 static unsigned long 6135 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 6136 { 6137 unsigned long gran = sysctl_sched_wakeup_granularity; 6138 6139 /* 6140 * Since its curr running now, convert the gran from real-time 6141 * to virtual-time in his units. 6142 * 6143 * By using 'se' instead of 'curr' we penalize light tasks, so 6144 * they get preempted easier. That is, if 'se' < 'curr' then 6145 * the resulting gran will be larger, therefore penalizing the 6146 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6147 * be smaller, again penalizing the lighter task. 6148 * 6149 * This is especially important for buddies when the leftmost 6150 * task is higher priority than the buddy. 6151 */ 6152 return calc_delta_fair(gran, se); 6153 } 6154 6155 /* 6156 * Should 'se' preempt 'curr'. 6157 * 6158 * |s1 6159 * |s2 6160 * |s3 6161 * g 6162 * |<--->|c 6163 * 6164 * w(c, s1) = -1 6165 * w(c, s2) = 0 6166 * w(c, s3) = 1 6167 * 6168 */ 6169 static int 6170 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6171 { 6172 s64 gran, vdiff = curr->vruntime - se->vruntime; 6173 6174 if (vdiff <= 0) 6175 return -1; 6176 6177 gran = wakeup_gran(curr, se); 6178 if (vdiff > gran) 6179 return 1; 6180 6181 return 0; 6182 } 6183 6184 static void set_last_buddy(struct sched_entity *se) 6185 { 6186 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6187 return; 6188 6189 for_each_sched_entity(se) { 6190 if (SCHED_WARN_ON(!se->on_rq)) 6191 return; 6192 cfs_rq_of(se)->last = se; 6193 } 6194 } 6195 6196 static void set_next_buddy(struct sched_entity *se) 6197 { 6198 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6199 return; 6200 6201 for_each_sched_entity(se) { 6202 if (SCHED_WARN_ON(!se->on_rq)) 6203 return; 6204 cfs_rq_of(se)->next = se; 6205 } 6206 } 6207 6208 static void set_skip_buddy(struct sched_entity *se) 6209 { 6210 for_each_sched_entity(se) 6211 cfs_rq_of(se)->skip = se; 6212 } 6213 6214 /* 6215 * Preempt the current task with a newly woken task if needed: 6216 */ 6217 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6218 { 6219 struct task_struct *curr = rq->curr; 6220 struct sched_entity *se = &curr->se, *pse = &p->se; 6221 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6222 int scale = cfs_rq->nr_running >= sched_nr_latency; 6223 int next_buddy_marked = 0; 6224 6225 if (unlikely(se == pse)) 6226 return; 6227 6228 /* 6229 * This is possible from callers such as attach_tasks(), in which we 6230 * unconditionally check_prempt_curr() after an enqueue (which may have 6231 * lead to a throttle). This both saves work and prevents false 6232 * next-buddy nomination below. 6233 */ 6234 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6235 return; 6236 6237 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6238 set_next_buddy(pse); 6239 next_buddy_marked = 1; 6240 } 6241 6242 /* 6243 * We can come here with TIF_NEED_RESCHED already set from new task 6244 * wake up path. 6245 * 6246 * Note: this also catches the edge-case of curr being in a throttled 6247 * group (e.g. via set_curr_task), since update_curr() (in the 6248 * enqueue of curr) will have resulted in resched being set. This 6249 * prevents us from potentially nominating it as a false LAST_BUDDY 6250 * below. 6251 */ 6252 if (test_tsk_need_resched(curr)) 6253 return; 6254 6255 /* Idle tasks are by definition preempted by non-idle tasks. */ 6256 if (unlikely(curr->policy == SCHED_IDLE) && 6257 likely(p->policy != SCHED_IDLE)) 6258 goto preempt; 6259 6260 /* 6261 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6262 * is driven by the tick): 6263 */ 6264 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6265 return; 6266 6267 find_matching_se(&se, &pse); 6268 update_curr(cfs_rq_of(se)); 6269 BUG_ON(!pse); 6270 if (wakeup_preempt_entity(se, pse) == 1) { 6271 /* 6272 * Bias pick_next to pick the sched entity that is 6273 * triggering this preemption. 6274 */ 6275 if (!next_buddy_marked) 6276 set_next_buddy(pse); 6277 goto preempt; 6278 } 6279 6280 return; 6281 6282 preempt: 6283 resched_curr(rq); 6284 /* 6285 * Only set the backward buddy when the current task is still 6286 * on the rq. This can happen when a wakeup gets interleaved 6287 * with schedule on the ->pre_schedule() or idle_balance() 6288 * point, either of which can * drop the rq lock. 6289 * 6290 * Also, during early boot the idle thread is in the fair class, 6291 * for obvious reasons its a bad idea to schedule back to it. 6292 */ 6293 if (unlikely(!se->on_rq || curr == rq->idle)) 6294 return; 6295 6296 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6297 set_last_buddy(se); 6298 } 6299 6300 static struct task_struct * 6301 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6302 { 6303 struct cfs_rq *cfs_rq = &rq->cfs; 6304 struct sched_entity *se; 6305 struct task_struct *p; 6306 int new_tasks; 6307 6308 again: 6309 if (!cfs_rq->nr_running) 6310 goto idle; 6311 6312 #ifdef CONFIG_FAIR_GROUP_SCHED 6313 if (prev->sched_class != &fair_sched_class) 6314 goto simple; 6315 6316 /* 6317 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6318 * likely that a next task is from the same cgroup as the current. 6319 * 6320 * Therefore attempt to avoid putting and setting the entire cgroup 6321 * hierarchy, only change the part that actually changes. 6322 */ 6323 6324 do { 6325 struct sched_entity *curr = cfs_rq->curr; 6326 6327 /* 6328 * Since we got here without doing put_prev_entity() we also 6329 * have to consider cfs_rq->curr. If it is still a runnable 6330 * entity, update_curr() will update its vruntime, otherwise 6331 * forget we've ever seen it. 6332 */ 6333 if (curr) { 6334 if (curr->on_rq) 6335 update_curr(cfs_rq); 6336 else 6337 curr = NULL; 6338 6339 /* 6340 * This call to check_cfs_rq_runtime() will do the 6341 * throttle and dequeue its entity in the parent(s). 6342 * Therefore the nr_running test will indeed 6343 * be correct. 6344 */ 6345 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 6346 cfs_rq = &rq->cfs; 6347 6348 if (!cfs_rq->nr_running) 6349 goto idle; 6350 6351 goto simple; 6352 } 6353 } 6354 6355 se = pick_next_entity(cfs_rq, curr); 6356 cfs_rq = group_cfs_rq(se); 6357 } while (cfs_rq); 6358 6359 p = task_of(se); 6360 6361 /* 6362 * Since we haven't yet done put_prev_entity and if the selected task 6363 * is a different task than we started out with, try and touch the 6364 * least amount of cfs_rqs. 6365 */ 6366 if (prev != p) { 6367 struct sched_entity *pse = &prev->se; 6368 6369 while (!(cfs_rq = is_same_group(se, pse))) { 6370 int se_depth = se->depth; 6371 int pse_depth = pse->depth; 6372 6373 if (se_depth <= pse_depth) { 6374 put_prev_entity(cfs_rq_of(pse), pse); 6375 pse = parent_entity(pse); 6376 } 6377 if (se_depth >= pse_depth) { 6378 set_next_entity(cfs_rq_of(se), se); 6379 se = parent_entity(se); 6380 } 6381 } 6382 6383 put_prev_entity(cfs_rq, pse); 6384 set_next_entity(cfs_rq, se); 6385 } 6386 6387 if (hrtick_enabled(rq)) 6388 hrtick_start_fair(rq, p); 6389 6390 return p; 6391 simple: 6392 #endif 6393 6394 put_prev_task(rq, prev); 6395 6396 do { 6397 se = pick_next_entity(cfs_rq, NULL); 6398 set_next_entity(cfs_rq, se); 6399 cfs_rq = group_cfs_rq(se); 6400 } while (cfs_rq); 6401 6402 p = task_of(se); 6403 6404 if (hrtick_enabled(rq)) 6405 hrtick_start_fair(rq, p); 6406 6407 return p; 6408 6409 idle: 6410 new_tasks = idle_balance(rq, rf); 6411 6412 /* 6413 * Because idle_balance() releases (and re-acquires) rq->lock, it is 6414 * possible for any higher priority task to appear. In that case we 6415 * must re-start the pick_next_entity() loop. 6416 */ 6417 if (new_tasks < 0) 6418 return RETRY_TASK; 6419 6420 if (new_tasks > 0) 6421 goto again; 6422 6423 return NULL; 6424 } 6425 6426 /* 6427 * Account for a descheduled task: 6428 */ 6429 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 6430 { 6431 struct sched_entity *se = &prev->se; 6432 struct cfs_rq *cfs_rq; 6433 6434 for_each_sched_entity(se) { 6435 cfs_rq = cfs_rq_of(se); 6436 put_prev_entity(cfs_rq, se); 6437 } 6438 } 6439 6440 /* 6441 * sched_yield() is very simple 6442 * 6443 * The magic of dealing with the ->skip buddy is in pick_next_entity. 6444 */ 6445 static void yield_task_fair(struct rq *rq) 6446 { 6447 struct task_struct *curr = rq->curr; 6448 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6449 struct sched_entity *se = &curr->se; 6450 6451 /* 6452 * Are we the only task in the tree? 6453 */ 6454 if (unlikely(rq->nr_running == 1)) 6455 return; 6456 6457 clear_buddies(cfs_rq, se); 6458 6459 if (curr->policy != SCHED_BATCH) { 6460 update_rq_clock(rq); 6461 /* 6462 * Update run-time statistics of the 'current'. 6463 */ 6464 update_curr(cfs_rq); 6465 /* 6466 * Tell update_rq_clock() that we've just updated, 6467 * so we don't do microscopic update in schedule() 6468 * and double the fastpath cost. 6469 */ 6470 rq_clock_skip_update(rq, true); 6471 } 6472 6473 set_skip_buddy(se); 6474 } 6475 6476 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 6477 { 6478 struct sched_entity *se = &p->se; 6479 6480 /* throttled hierarchies are not runnable */ 6481 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 6482 return false; 6483 6484 /* Tell the scheduler that we'd really like pse to run next. */ 6485 set_next_buddy(se); 6486 6487 yield_task_fair(rq); 6488 6489 return true; 6490 } 6491 6492 #ifdef CONFIG_SMP 6493 /************************************************** 6494 * Fair scheduling class load-balancing methods. 6495 * 6496 * BASICS 6497 * 6498 * The purpose of load-balancing is to achieve the same basic fairness the 6499 * per-cpu scheduler provides, namely provide a proportional amount of compute 6500 * time to each task. This is expressed in the following equation: 6501 * 6502 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 6503 * 6504 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 6505 * W_i,0 is defined as: 6506 * 6507 * W_i,0 = \Sum_j w_i,j (2) 6508 * 6509 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 6510 * is derived from the nice value as per sched_prio_to_weight[]. 6511 * 6512 * The weight average is an exponential decay average of the instantaneous 6513 * weight: 6514 * 6515 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 6516 * 6517 * C_i is the compute capacity of cpu i, typically it is the 6518 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 6519 * can also include other factors [XXX]. 6520 * 6521 * To achieve this balance we define a measure of imbalance which follows 6522 * directly from (1): 6523 * 6524 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 6525 * 6526 * We them move tasks around to minimize the imbalance. In the continuous 6527 * function space it is obvious this converges, in the discrete case we get 6528 * a few fun cases generally called infeasible weight scenarios. 6529 * 6530 * [XXX expand on: 6531 * - infeasible weights; 6532 * - local vs global optima in the discrete case. ] 6533 * 6534 * 6535 * SCHED DOMAINS 6536 * 6537 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 6538 * for all i,j solution, we create a tree of cpus that follows the hardware 6539 * topology where each level pairs two lower groups (or better). This results 6540 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 6541 * tree to only the first of the previous level and we decrease the frequency 6542 * of load-balance at each level inv. proportional to the number of cpus in 6543 * the groups. 6544 * 6545 * This yields: 6546 * 6547 * log_2 n 1 n 6548 * \Sum { --- * --- * 2^i } = O(n) (5) 6549 * i = 0 2^i 2^i 6550 * `- size of each group 6551 * | | `- number of cpus doing load-balance 6552 * | `- freq 6553 * `- sum over all levels 6554 * 6555 * Coupled with a limit on how many tasks we can migrate every balance pass, 6556 * this makes (5) the runtime complexity of the balancer. 6557 * 6558 * An important property here is that each CPU is still (indirectly) connected 6559 * to every other cpu in at most O(log n) steps: 6560 * 6561 * The adjacency matrix of the resulting graph is given by: 6562 * 6563 * log_2 n 6564 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 6565 * k = 0 6566 * 6567 * And you'll find that: 6568 * 6569 * A^(log_2 n)_i,j != 0 for all i,j (7) 6570 * 6571 * Showing there's indeed a path between every cpu in at most O(log n) steps. 6572 * The task movement gives a factor of O(m), giving a convergence complexity 6573 * of: 6574 * 6575 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 6576 * 6577 * 6578 * WORK CONSERVING 6579 * 6580 * In order to avoid CPUs going idle while there's still work to do, new idle 6581 * balancing is more aggressive and has the newly idle cpu iterate up the domain 6582 * tree itself instead of relying on other CPUs to bring it work. 6583 * 6584 * This adds some complexity to both (5) and (8) but it reduces the total idle 6585 * time. 6586 * 6587 * [XXX more?] 6588 * 6589 * 6590 * CGROUPS 6591 * 6592 * Cgroups make a horror show out of (2), instead of a simple sum we get: 6593 * 6594 * s_k,i 6595 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 6596 * S_k 6597 * 6598 * Where 6599 * 6600 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 6601 * 6602 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 6603 * 6604 * The big problem is S_k, its a global sum needed to compute a local (W_i) 6605 * property. 6606 * 6607 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 6608 * rewrite all of this once again.] 6609 */ 6610 6611 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 6612 6613 enum fbq_type { regular, remote, all }; 6614 6615 #define LBF_ALL_PINNED 0x01 6616 #define LBF_NEED_BREAK 0x02 6617 #define LBF_DST_PINNED 0x04 6618 #define LBF_SOME_PINNED 0x08 6619 6620 struct lb_env { 6621 struct sched_domain *sd; 6622 6623 struct rq *src_rq; 6624 int src_cpu; 6625 6626 int dst_cpu; 6627 struct rq *dst_rq; 6628 6629 struct cpumask *dst_grpmask; 6630 int new_dst_cpu; 6631 enum cpu_idle_type idle; 6632 long imbalance; 6633 /* The set of CPUs under consideration for load-balancing */ 6634 struct cpumask *cpus; 6635 6636 unsigned int flags; 6637 6638 unsigned int loop; 6639 unsigned int loop_break; 6640 unsigned int loop_max; 6641 6642 enum fbq_type fbq_type; 6643 struct list_head tasks; 6644 }; 6645 6646 /* 6647 * Is this task likely cache-hot: 6648 */ 6649 static int task_hot(struct task_struct *p, struct lb_env *env) 6650 { 6651 s64 delta; 6652 6653 lockdep_assert_held(&env->src_rq->lock); 6654 6655 if (p->sched_class != &fair_sched_class) 6656 return 0; 6657 6658 if (unlikely(p->policy == SCHED_IDLE)) 6659 return 0; 6660 6661 /* 6662 * Buddy candidates are cache hot: 6663 */ 6664 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 6665 (&p->se == cfs_rq_of(&p->se)->next || 6666 &p->se == cfs_rq_of(&p->se)->last)) 6667 return 1; 6668 6669 if (sysctl_sched_migration_cost == -1) 6670 return 1; 6671 if (sysctl_sched_migration_cost == 0) 6672 return 0; 6673 6674 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 6675 6676 return delta < (s64)sysctl_sched_migration_cost; 6677 } 6678 6679 #ifdef CONFIG_NUMA_BALANCING 6680 /* 6681 * Returns 1, if task migration degrades locality 6682 * Returns 0, if task migration improves locality i.e migration preferred. 6683 * Returns -1, if task migration is not affected by locality. 6684 */ 6685 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 6686 { 6687 struct numa_group *numa_group = rcu_dereference(p->numa_group); 6688 unsigned long src_faults, dst_faults; 6689 int src_nid, dst_nid; 6690 6691 if (!static_branch_likely(&sched_numa_balancing)) 6692 return -1; 6693 6694 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 6695 return -1; 6696 6697 src_nid = cpu_to_node(env->src_cpu); 6698 dst_nid = cpu_to_node(env->dst_cpu); 6699 6700 if (src_nid == dst_nid) 6701 return -1; 6702 6703 /* Migrating away from the preferred node is always bad. */ 6704 if (src_nid == p->numa_preferred_nid) { 6705 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 6706 return 1; 6707 else 6708 return -1; 6709 } 6710 6711 /* Encourage migration to the preferred node. */ 6712 if (dst_nid == p->numa_preferred_nid) 6713 return 0; 6714 6715 /* Leaving a core idle is often worse than degrading locality. */ 6716 if (env->idle != CPU_NOT_IDLE) 6717 return -1; 6718 6719 if (numa_group) { 6720 src_faults = group_faults(p, src_nid); 6721 dst_faults = group_faults(p, dst_nid); 6722 } else { 6723 src_faults = task_faults(p, src_nid); 6724 dst_faults = task_faults(p, dst_nid); 6725 } 6726 6727 return dst_faults < src_faults; 6728 } 6729 6730 #else 6731 static inline int migrate_degrades_locality(struct task_struct *p, 6732 struct lb_env *env) 6733 { 6734 return -1; 6735 } 6736 #endif 6737 6738 /* 6739 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 6740 */ 6741 static 6742 int can_migrate_task(struct task_struct *p, struct lb_env *env) 6743 { 6744 int tsk_cache_hot; 6745 6746 lockdep_assert_held(&env->src_rq->lock); 6747 6748 /* 6749 * We do not migrate tasks that are: 6750 * 1) throttled_lb_pair, or 6751 * 2) cannot be migrated to this CPU due to cpus_allowed, or 6752 * 3) running (obviously), or 6753 * 4) are cache-hot on their current CPU. 6754 */ 6755 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 6756 return 0; 6757 6758 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) { 6759 int cpu; 6760 6761 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 6762 6763 env->flags |= LBF_SOME_PINNED; 6764 6765 /* 6766 * Remember if this task can be migrated to any other cpu in 6767 * our sched_group. We may want to revisit it if we couldn't 6768 * meet load balance goals by pulling other tasks on src_cpu. 6769 * 6770 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 6771 * already computed one in current iteration. 6772 */ 6773 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 6774 return 0; 6775 6776 /* Prevent to re-select dst_cpu via env's cpus */ 6777 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 6778 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) { 6779 env->flags |= LBF_DST_PINNED; 6780 env->new_dst_cpu = cpu; 6781 break; 6782 } 6783 } 6784 6785 return 0; 6786 } 6787 6788 /* Record that we found atleast one task that could run on dst_cpu */ 6789 env->flags &= ~LBF_ALL_PINNED; 6790 6791 if (task_running(env->src_rq, p)) { 6792 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 6793 return 0; 6794 } 6795 6796 /* 6797 * Aggressive migration if: 6798 * 1) destination numa is preferred 6799 * 2) task is cache cold, or 6800 * 3) too many balance attempts have failed. 6801 */ 6802 tsk_cache_hot = migrate_degrades_locality(p, env); 6803 if (tsk_cache_hot == -1) 6804 tsk_cache_hot = task_hot(p, env); 6805 6806 if (tsk_cache_hot <= 0 || 6807 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 6808 if (tsk_cache_hot == 1) { 6809 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 6810 schedstat_inc(p->se.statistics.nr_forced_migrations); 6811 } 6812 return 1; 6813 } 6814 6815 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 6816 return 0; 6817 } 6818 6819 /* 6820 * detach_task() -- detach the task for the migration specified in env 6821 */ 6822 static void detach_task(struct task_struct *p, struct lb_env *env) 6823 { 6824 lockdep_assert_held(&env->src_rq->lock); 6825 6826 p->on_rq = TASK_ON_RQ_MIGRATING; 6827 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 6828 set_task_cpu(p, env->dst_cpu); 6829 } 6830 6831 /* 6832 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 6833 * part of active balancing operations within "domain". 6834 * 6835 * Returns a task if successful and NULL otherwise. 6836 */ 6837 static struct task_struct *detach_one_task(struct lb_env *env) 6838 { 6839 struct task_struct *p, *n; 6840 6841 lockdep_assert_held(&env->src_rq->lock); 6842 6843 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 6844 if (!can_migrate_task(p, env)) 6845 continue; 6846 6847 detach_task(p, env); 6848 6849 /* 6850 * Right now, this is only the second place where 6851 * lb_gained[env->idle] is updated (other is detach_tasks) 6852 * so we can safely collect stats here rather than 6853 * inside detach_tasks(). 6854 */ 6855 schedstat_inc(env->sd->lb_gained[env->idle]); 6856 return p; 6857 } 6858 return NULL; 6859 } 6860 6861 static const unsigned int sched_nr_migrate_break = 32; 6862 6863 /* 6864 * detach_tasks() -- tries to detach up to imbalance weighted load from 6865 * busiest_rq, as part of a balancing operation within domain "sd". 6866 * 6867 * Returns number of detached tasks if successful and 0 otherwise. 6868 */ 6869 static int detach_tasks(struct lb_env *env) 6870 { 6871 struct list_head *tasks = &env->src_rq->cfs_tasks; 6872 struct task_struct *p; 6873 unsigned long load; 6874 int detached = 0; 6875 6876 lockdep_assert_held(&env->src_rq->lock); 6877 6878 if (env->imbalance <= 0) 6879 return 0; 6880 6881 while (!list_empty(tasks)) { 6882 /* 6883 * We don't want to steal all, otherwise we may be treated likewise, 6884 * which could at worst lead to a livelock crash. 6885 */ 6886 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 6887 break; 6888 6889 p = list_first_entry(tasks, struct task_struct, se.group_node); 6890 6891 env->loop++; 6892 /* We've more or less seen every task there is, call it quits */ 6893 if (env->loop > env->loop_max) 6894 break; 6895 6896 /* take a breather every nr_migrate tasks */ 6897 if (env->loop > env->loop_break) { 6898 env->loop_break += sched_nr_migrate_break; 6899 env->flags |= LBF_NEED_BREAK; 6900 break; 6901 } 6902 6903 if (!can_migrate_task(p, env)) 6904 goto next; 6905 6906 load = task_h_load(p); 6907 6908 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 6909 goto next; 6910 6911 if ((load / 2) > env->imbalance) 6912 goto next; 6913 6914 detach_task(p, env); 6915 list_add(&p->se.group_node, &env->tasks); 6916 6917 detached++; 6918 env->imbalance -= load; 6919 6920 #ifdef CONFIG_PREEMPT 6921 /* 6922 * NEWIDLE balancing is a source of latency, so preemptible 6923 * kernels will stop after the first task is detached to minimize 6924 * the critical section. 6925 */ 6926 if (env->idle == CPU_NEWLY_IDLE) 6927 break; 6928 #endif 6929 6930 /* 6931 * We only want to steal up to the prescribed amount of 6932 * weighted load. 6933 */ 6934 if (env->imbalance <= 0) 6935 break; 6936 6937 continue; 6938 next: 6939 list_move_tail(&p->se.group_node, tasks); 6940 } 6941 6942 /* 6943 * Right now, this is one of only two places we collect this stat 6944 * so we can safely collect detach_one_task() stats here rather 6945 * than inside detach_one_task(). 6946 */ 6947 schedstat_add(env->sd->lb_gained[env->idle], detached); 6948 6949 return detached; 6950 } 6951 6952 /* 6953 * attach_task() -- attach the task detached by detach_task() to its new rq. 6954 */ 6955 static void attach_task(struct rq *rq, struct task_struct *p) 6956 { 6957 lockdep_assert_held(&rq->lock); 6958 6959 BUG_ON(task_rq(p) != rq); 6960 activate_task(rq, p, ENQUEUE_NOCLOCK); 6961 p->on_rq = TASK_ON_RQ_QUEUED; 6962 check_preempt_curr(rq, p, 0); 6963 } 6964 6965 /* 6966 * attach_one_task() -- attaches the task returned from detach_one_task() to 6967 * its new rq. 6968 */ 6969 static void attach_one_task(struct rq *rq, struct task_struct *p) 6970 { 6971 struct rq_flags rf; 6972 6973 rq_lock(rq, &rf); 6974 update_rq_clock(rq); 6975 attach_task(rq, p); 6976 rq_unlock(rq, &rf); 6977 } 6978 6979 /* 6980 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 6981 * new rq. 6982 */ 6983 static void attach_tasks(struct lb_env *env) 6984 { 6985 struct list_head *tasks = &env->tasks; 6986 struct task_struct *p; 6987 struct rq_flags rf; 6988 6989 rq_lock(env->dst_rq, &rf); 6990 update_rq_clock(env->dst_rq); 6991 6992 while (!list_empty(tasks)) { 6993 p = list_first_entry(tasks, struct task_struct, se.group_node); 6994 list_del_init(&p->se.group_node); 6995 6996 attach_task(env->dst_rq, p); 6997 } 6998 6999 rq_unlock(env->dst_rq, &rf); 7000 } 7001 7002 #ifdef CONFIG_FAIR_GROUP_SCHED 7003 7004 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7005 { 7006 if (cfs_rq->load.weight) 7007 return false; 7008 7009 if (cfs_rq->avg.load_sum) 7010 return false; 7011 7012 if (cfs_rq->avg.util_sum) 7013 return false; 7014 7015 if (cfs_rq->runnable_load_sum) 7016 return false; 7017 7018 return true; 7019 } 7020 7021 static void update_blocked_averages(int cpu) 7022 { 7023 struct rq *rq = cpu_rq(cpu); 7024 struct cfs_rq *cfs_rq, *pos; 7025 struct rq_flags rf; 7026 7027 rq_lock_irqsave(rq, &rf); 7028 update_rq_clock(rq); 7029 7030 /* 7031 * Iterates the task_group tree in a bottom up fashion, see 7032 * list_add_leaf_cfs_rq() for details. 7033 */ 7034 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7035 struct sched_entity *se; 7036 7037 /* throttled entities do not contribute to load */ 7038 if (throttled_hierarchy(cfs_rq)) 7039 continue; 7040 7041 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq)) 7042 update_tg_load_avg(cfs_rq, 0); 7043 7044 /* Propagate pending load changes to the parent, if any: */ 7045 se = cfs_rq->tg->se[cpu]; 7046 if (se && !skip_blocked_update(se)) 7047 update_load_avg(se, 0); 7048 7049 /* 7050 * There can be a lot of idle CPU cgroups. Don't let fully 7051 * decayed cfs_rqs linger on the list. 7052 */ 7053 if (cfs_rq_is_decayed(cfs_rq)) 7054 list_del_leaf_cfs_rq(cfs_rq); 7055 } 7056 rq_unlock_irqrestore(rq, &rf); 7057 } 7058 7059 /* 7060 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7061 * This needs to be done in a top-down fashion because the load of a child 7062 * group is a fraction of its parents load. 7063 */ 7064 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7065 { 7066 struct rq *rq = rq_of(cfs_rq); 7067 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7068 unsigned long now = jiffies; 7069 unsigned long load; 7070 7071 if (cfs_rq->last_h_load_update == now) 7072 return; 7073 7074 cfs_rq->h_load_next = NULL; 7075 for_each_sched_entity(se) { 7076 cfs_rq = cfs_rq_of(se); 7077 cfs_rq->h_load_next = se; 7078 if (cfs_rq->last_h_load_update == now) 7079 break; 7080 } 7081 7082 if (!se) { 7083 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7084 cfs_rq->last_h_load_update = now; 7085 } 7086 7087 while ((se = cfs_rq->h_load_next) != NULL) { 7088 load = cfs_rq->h_load; 7089 load = div64_ul(load * se->avg.load_avg, 7090 cfs_rq_load_avg(cfs_rq) + 1); 7091 cfs_rq = group_cfs_rq(se); 7092 cfs_rq->h_load = load; 7093 cfs_rq->last_h_load_update = now; 7094 } 7095 } 7096 7097 static unsigned long task_h_load(struct task_struct *p) 7098 { 7099 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7100 7101 update_cfs_rq_h_load(cfs_rq); 7102 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7103 cfs_rq_load_avg(cfs_rq) + 1); 7104 } 7105 #else 7106 static inline void update_blocked_averages(int cpu) 7107 { 7108 struct rq *rq = cpu_rq(cpu); 7109 struct cfs_rq *cfs_rq = &rq->cfs; 7110 struct rq_flags rf; 7111 7112 rq_lock_irqsave(rq, &rf); 7113 update_rq_clock(rq); 7114 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq); 7115 rq_unlock_irqrestore(rq, &rf); 7116 } 7117 7118 static unsigned long task_h_load(struct task_struct *p) 7119 { 7120 return p->se.avg.load_avg; 7121 } 7122 #endif 7123 7124 /********** Helpers for find_busiest_group ************************/ 7125 7126 enum group_type { 7127 group_other = 0, 7128 group_imbalanced, 7129 group_overloaded, 7130 }; 7131 7132 /* 7133 * sg_lb_stats - stats of a sched_group required for load_balancing 7134 */ 7135 struct sg_lb_stats { 7136 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7137 unsigned long group_load; /* Total load over the CPUs of the group */ 7138 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 7139 unsigned long load_per_task; 7140 unsigned long group_capacity; 7141 unsigned long group_util; /* Total utilization of the group */ 7142 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7143 unsigned int idle_cpus; 7144 unsigned int group_weight; 7145 enum group_type group_type; 7146 int group_no_capacity; 7147 #ifdef CONFIG_NUMA_BALANCING 7148 unsigned int nr_numa_running; 7149 unsigned int nr_preferred_running; 7150 #endif 7151 }; 7152 7153 /* 7154 * sd_lb_stats - Structure to store the statistics of a sched_domain 7155 * during load balancing. 7156 */ 7157 struct sd_lb_stats { 7158 struct sched_group *busiest; /* Busiest group in this sd */ 7159 struct sched_group *local; /* Local group in this sd */ 7160 unsigned long total_running; 7161 unsigned long total_load; /* Total load of all groups in sd */ 7162 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7163 unsigned long avg_load; /* Average load across all groups in sd */ 7164 7165 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7166 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7167 }; 7168 7169 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7170 { 7171 /* 7172 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7173 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7174 * We must however clear busiest_stat::avg_load because 7175 * update_sd_pick_busiest() reads this before assignment. 7176 */ 7177 *sds = (struct sd_lb_stats){ 7178 .busiest = NULL, 7179 .local = NULL, 7180 .total_running = 0UL, 7181 .total_load = 0UL, 7182 .total_capacity = 0UL, 7183 .busiest_stat = { 7184 .avg_load = 0UL, 7185 .sum_nr_running = 0, 7186 .group_type = group_other, 7187 }, 7188 }; 7189 } 7190 7191 /** 7192 * get_sd_load_idx - Obtain the load index for a given sched domain. 7193 * @sd: The sched_domain whose load_idx is to be obtained. 7194 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 7195 * 7196 * Return: The load index. 7197 */ 7198 static inline int get_sd_load_idx(struct sched_domain *sd, 7199 enum cpu_idle_type idle) 7200 { 7201 int load_idx; 7202 7203 switch (idle) { 7204 case CPU_NOT_IDLE: 7205 load_idx = sd->busy_idx; 7206 break; 7207 7208 case CPU_NEWLY_IDLE: 7209 load_idx = sd->newidle_idx; 7210 break; 7211 default: 7212 load_idx = sd->idle_idx; 7213 break; 7214 } 7215 7216 return load_idx; 7217 } 7218 7219 static unsigned long scale_rt_capacity(int cpu) 7220 { 7221 struct rq *rq = cpu_rq(cpu); 7222 u64 total, used, age_stamp, avg; 7223 s64 delta; 7224 7225 /* 7226 * Since we're reading these variables without serialization make sure 7227 * we read them once before doing sanity checks on them. 7228 */ 7229 age_stamp = READ_ONCE(rq->age_stamp); 7230 avg = READ_ONCE(rq->rt_avg); 7231 delta = __rq_clock_broken(rq) - age_stamp; 7232 7233 if (unlikely(delta < 0)) 7234 delta = 0; 7235 7236 total = sched_avg_period() + delta; 7237 7238 used = div_u64(avg, total); 7239 7240 if (likely(used < SCHED_CAPACITY_SCALE)) 7241 return SCHED_CAPACITY_SCALE - used; 7242 7243 return 1; 7244 } 7245 7246 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7247 { 7248 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu); 7249 struct sched_group *sdg = sd->groups; 7250 7251 cpu_rq(cpu)->cpu_capacity_orig = capacity; 7252 7253 capacity *= scale_rt_capacity(cpu); 7254 capacity >>= SCHED_CAPACITY_SHIFT; 7255 7256 if (!capacity) 7257 capacity = 1; 7258 7259 cpu_rq(cpu)->cpu_capacity = capacity; 7260 sdg->sgc->capacity = capacity; 7261 sdg->sgc->min_capacity = capacity; 7262 } 7263 7264 void update_group_capacity(struct sched_domain *sd, int cpu) 7265 { 7266 struct sched_domain *child = sd->child; 7267 struct sched_group *group, *sdg = sd->groups; 7268 unsigned long capacity, min_capacity; 7269 unsigned long interval; 7270 7271 interval = msecs_to_jiffies(sd->balance_interval); 7272 interval = clamp(interval, 1UL, max_load_balance_interval); 7273 sdg->sgc->next_update = jiffies + interval; 7274 7275 if (!child) { 7276 update_cpu_capacity(sd, cpu); 7277 return; 7278 } 7279 7280 capacity = 0; 7281 min_capacity = ULONG_MAX; 7282 7283 if (child->flags & SD_OVERLAP) { 7284 /* 7285 * SD_OVERLAP domains cannot assume that child groups 7286 * span the current group. 7287 */ 7288 7289 for_each_cpu(cpu, sched_group_span(sdg)) { 7290 struct sched_group_capacity *sgc; 7291 struct rq *rq = cpu_rq(cpu); 7292 7293 /* 7294 * build_sched_domains() -> init_sched_groups_capacity() 7295 * gets here before we've attached the domains to the 7296 * runqueues. 7297 * 7298 * Use capacity_of(), which is set irrespective of domains 7299 * in update_cpu_capacity(). 7300 * 7301 * This avoids capacity from being 0 and 7302 * causing divide-by-zero issues on boot. 7303 */ 7304 if (unlikely(!rq->sd)) { 7305 capacity += capacity_of(cpu); 7306 } else { 7307 sgc = rq->sd->groups->sgc; 7308 capacity += sgc->capacity; 7309 } 7310 7311 min_capacity = min(capacity, min_capacity); 7312 } 7313 } else { 7314 /* 7315 * !SD_OVERLAP domains can assume that child groups 7316 * span the current group. 7317 */ 7318 7319 group = child->groups; 7320 do { 7321 struct sched_group_capacity *sgc = group->sgc; 7322 7323 capacity += sgc->capacity; 7324 min_capacity = min(sgc->min_capacity, min_capacity); 7325 group = group->next; 7326 } while (group != child->groups); 7327 } 7328 7329 sdg->sgc->capacity = capacity; 7330 sdg->sgc->min_capacity = min_capacity; 7331 } 7332 7333 /* 7334 * Check whether the capacity of the rq has been noticeably reduced by side 7335 * activity. The imbalance_pct is used for the threshold. 7336 * Return true is the capacity is reduced 7337 */ 7338 static inline int 7339 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 7340 { 7341 return ((rq->cpu_capacity * sd->imbalance_pct) < 7342 (rq->cpu_capacity_orig * 100)); 7343 } 7344 7345 /* 7346 * Group imbalance indicates (and tries to solve) the problem where balancing 7347 * groups is inadequate due to ->cpus_allowed constraints. 7348 * 7349 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 7350 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 7351 * Something like: 7352 * 7353 * { 0 1 2 3 } { 4 5 6 7 } 7354 * * * * * 7355 * 7356 * If we were to balance group-wise we'd place two tasks in the first group and 7357 * two tasks in the second group. Clearly this is undesired as it will overload 7358 * cpu 3 and leave one of the cpus in the second group unused. 7359 * 7360 * The current solution to this issue is detecting the skew in the first group 7361 * by noticing the lower domain failed to reach balance and had difficulty 7362 * moving tasks due to affinity constraints. 7363 * 7364 * When this is so detected; this group becomes a candidate for busiest; see 7365 * update_sd_pick_busiest(). And calculate_imbalance() and 7366 * find_busiest_group() avoid some of the usual balance conditions to allow it 7367 * to create an effective group imbalance. 7368 * 7369 * This is a somewhat tricky proposition since the next run might not find the 7370 * group imbalance and decide the groups need to be balanced again. A most 7371 * subtle and fragile situation. 7372 */ 7373 7374 static inline int sg_imbalanced(struct sched_group *group) 7375 { 7376 return group->sgc->imbalance; 7377 } 7378 7379 /* 7380 * group_has_capacity returns true if the group has spare capacity that could 7381 * be used by some tasks. 7382 * We consider that a group has spare capacity if the * number of task is 7383 * smaller than the number of CPUs or if the utilization is lower than the 7384 * available capacity for CFS tasks. 7385 * For the latter, we use a threshold to stabilize the state, to take into 7386 * account the variance of the tasks' load and to return true if the available 7387 * capacity in meaningful for the load balancer. 7388 * As an example, an available capacity of 1% can appear but it doesn't make 7389 * any benefit for the load balance. 7390 */ 7391 static inline bool 7392 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 7393 { 7394 if (sgs->sum_nr_running < sgs->group_weight) 7395 return true; 7396 7397 if ((sgs->group_capacity * 100) > 7398 (sgs->group_util * env->sd->imbalance_pct)) 7399 return true; 7400 7401 return false; 7402 } 7403 7404 /* 7405 * group_is_overloaded returns true if the group has more tasks than it can 7406 * handle. 7407 * group_is_overloaded is not equals to !group_has_capacity because a group 7408 * with the exact right number of tasks, has no more spare capacity but is not 7409 * overloaded so both group_has_capacity and group_is_overloaded return 7410 * false. 7411 */ 7412 static inline bool 7413 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 7414 { 7415 if (sgs->sum_nr_running <= sgs->group_weight) 7416 return false; 7417 7418 if ((sgs->group_capacity * 100) < 7419 (sgs->group_util * env->sd->imbalance_pct)) 7420 return true; 7421 7422 return false; 7423 } 7424 7425 /* 7426 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller 7427 * per-CPU capacity than sched_group ref. 7428 */ 7429 static inline bool 7430 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7431 { 7432 return sg->sgc->min_capacity * capacity_margin < 7433 ref->sgc->min_capacity * 1024; 7434 } 7435 7436 static inline enum 7437 group_type group_classify(struct sched_group *group, 7438 struct sg_lb_stats *sgs) 7439 { 7440 if (sgs->group_no_capacity) 7441 return group_overloaded; 7442 7443 if (sg_imbalanced(group)) 7444 return group_imbalanced; 7445 7446 return group_other; 7447 } 7448 7449 /** 7450 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 7451 * @env: The load balancing environment. 7452 * @group: sched_group whose statistics are to be updated. 7453 * @load_idx: Load index of sched_domain of this_cpu for load calc. 7454 * @local_group: Does group contain this_cpu. 7455 * @sgs: variable to hold the statistics for this group. 7456 * @overload: Indicate more than one runnable task for any CPU. 7457 */ 7458 static inline void update_sg_lb_stats(struct lb_env *env, 7459 struct sched_group *group, int load_idx, 7460 int local_group, struct sg_lb_stats *sgs, 7461 bool *overload) 7462 { 7463 unsigned long load; 7464 int i, nr_running; 7465 7466 memset(sgs, 0, sizeof(*sgs)); 7467 7468 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 7469 struct rq *rq = cpu_rq(i); 7470 7471 /* Bias balancing toward cpus of our domain */ 7472 if (local_group) 7473 load = target_load(i, load_idx); 7474 else 7475 load = source_load(i, load_idx); 7476 7477 sgs->group_load += load; 7478 sgs->group_util += cpu_util(i); 7479 sgs->sum_nr_running += rq->cfs.h_nr_running; 7480 7481 nr_running = rq->nr_running; 7482 if (nr_running > 1) 7483 *overload = true; 7484 7485 #ifdef CONFIG_NUMA_BALANCING 7486 sgs->nr_numa_running += rq->nr_numa_running; 7487 sgs->nr_preferred_running += rq->nr_preferred_running; 7488 #endif 7489 sgs->sum_weighted_load += weighted_cpuload(rq); 7490 /* 7491 * No need to call idle_cpu() if nr_running is not 0 7492 */ 7493 if (!nr_running && idle_cpu(i)) 7494 sgs->idle_cpus++; 7495 } 7496 7497 /* Adjust by relative CPU capacity of the group */ 7498 sgs->group_capacity = group->sgc->capacity; 7499 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 7500 7501 if (sgs->sum_nr_running) 7502 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 7503 7504 sgs->group_weight = group->group_weight; 7505 7506 sgs->group_no_capacity = group_is_overloaded(env, sgs); 7507 sgs->group_type = group_classify(group, sgs); 7508 } 7509 7510 /** 7511 * update_sd_pick_busiest - return 1 on busiest group 7512 * @env: The load balancing environment. 7513 * @sds: sched_domain statistics 7514 * @sg: sched_group candidate to be checked for being the busiest 7515 * @sgs: sched_group statistics 7516 * 7517 * Determine if @sg is a busier group than the previously selected 7518 * busiest group. 7519 * 7520 * Return: %true if @sg is a busier group than the previously selected 7521 * busiest group. %false otherwise. 7522 */ 7523 static bool update_sd_pick_busiest(struct lb_env *env, 7524 struct sd_lb_stats *sds, 7525 struct sched_group *sg, 7526 struct sg_lb_stats *sgs) 7527 { 7528 struct sg_lb_stats *busiest = &sds->busiest_stat; 7529 7530 if (sgs->group_type > busiest->group_type) 7531 return true; 7532 7533 if (sgs->group_type < busiest->group_type) 7534 return false; 7535 7536 if (sgs->avg_load <= busiest->avg_load) 7537 return false; 7538 7539 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 7540 goto asym_packing; 7541 7542 /* 7543 * Candidate sg has no more than one task per CPU and 7544 * has higher per-CPU capacity. Migrating tasks to less 7545 * capable CPUs may harm throughput. Maximize throughput, 7546 * power/energy consequences are not considered. 7547 */ 7548 if (sgs->sum_nr_running <= sgs->group_weight && 7549 group_smaller_cpu_capacity(sds->local, sg)) 7550 return false; 7551 7552 asym_packing: 7553 /* This is the busiest node in its class. */ 7554 if (!(env->sd->flags & SD_ASYM_PACKING)) 7555 return true; 7556 7557 /* No ASYM_PACKING if target cpu is already busy */ 7558 if (env->idle == CPU_NOT_IDLE) 7559 return true; 7560 /* 7561 * ASYM_PACKING needs to move all the work to the highest 7562 * prority CPUs in the group, therefore mark all groups 7563 * of lower priority than ourself as busy. 7564 */ 7565 if (sgs->sum_nr_running && 7566 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 7567 if (!sds->busiest) 7568 return true; 7569 7570 /* Prefer to move from lowest priority cpu's work */ 7571 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 7572 sg->asym_prefer_cpu)) 7573 return true; 7574 } 7575 7576 return false; 7577 } 7578 7579 #ifdef CONFIG_NUMA_BALANCING 7580 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7581 { 7582 if (sgs->sum_nr_running > sgs->nr_numa_running) 7583 return regular; 7584 if (sgs->sum_nr_running > sgs->nr_preferred_running) 7585 return remote; 7586 return all; 7587 } 7588 7589 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7590 { 7591 if (rq->nr_running > rq->nr_numa_running) 7592 return regular; 7593 if (rq->nr_running > rq->nr_preferred_running) 7594 return remote; 7595 return all; 7596 } 7597 #else 7598 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7599 { 7600 return all; 7601 } 7602 7603 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7604 { 7605 return regular; 7606 } 7607 #endif /* CONFIG_NUMA_BALANCING */ 7608 7609 /** 7610 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 7611 * @env: The load balancing environment. 7612 * @sds: variable to hold the statistics for this sched_domain. 7613 */ 7614 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 7615 { 7616 struct sched_domain_shared *shared = env->sd->shared; 7617 struct sched_domain *child = env->sd->child; 7618 struct sched_group *sg = env->sd->groups; 7619 struct sg_lb_stats *local = &sds->local_stat; 7620 struct sg_lb_stats tmp_sgs; 7621 int load_idx, prefer_sibling = 0; 7622 bool overload = false; 7623 7624 if (child && child->flags & SD_PREFER_SIBLING) 7625 prefer_sibling = 1; 7626 7627 load_idx = get_sd_load_idx(env->sd, env->idle); 7628 7629 do { 7630 struct sg_lb_stats *sgs = &tmp_sgs; 7631 int local_group; 7632 7633 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 7634 if (local_group) { 7635 sds->local = sg; 7636 sgs = local; 7637 7638 if (env->idle != CPU_NEWLY_IDLE || 7639 time_after_eq(jiffies, sg->sgc->next_update)) 7640 update_group_capacity(env->sd, env->dst_cpu); 7641 } 7642 7643 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 7644 &overload); 7645 7646 if (local_group) 7647 goto next_group; 7648 7649 /* 7650 * In case the child domain prefers tasks go to siblings 7651 * first, lower the sg capacity so that we'll try 7652 * and move all the excess tasks away. We lower the capacity 7653 * of a group only if the local group has the capacity to fit 7654 * these excess tasks. The extra check prevents the case where 7655 * you always pull from the heaviest group when it is already 7656 * under-utilized (possible with a large weight task outweighs 7657 * the tasks on the system). 7658 */ 7659 if (prefer_sibling && sds->local && 7660 group_has_capacity(env, local) && 7661 (sgs->sum_nr_running > local->sum_nr_running + 1)) { 7662 sgs->group_no_capacity = 1; 7663 sgs->group_type = group_classify(sg, sgs); 7664 } 7665 7666 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 7667 sds->busiest = sg; 7668 sds->busiest_stat = *sgs; 7669 } 7670 7671 next_group: 7672 /* Now, start updating sd_lb_stats */ 7673 sds->total_running += sgs->sum_nr_running; 7674 sds->total_load += sgs->group_load; 7675 sds->total_capacity += sgs->group_capacity; 7676 7677 sg = sg->next; 7678 } while (sg != env->sd->groups); 7679 7680 if (env->sd->flags & SD_NUMA) 7681 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 7682 7683 if (!env->sd->parent) { 7684 /* update overload indicator if we are at root domain */ 7685 if (env->dst_rq->rd->overload != overload) 7686 env->dst_rq->rd->overload = overload; 7687 } 7688 7689 if (!shared) 7690 return; 7691 7692 /* 7693 * Since these are sums over groups they can contain some CPUs 7694 * multiple times for the NUMA domains. 7695 * 7696 * Currently only wake_affine_llc() and find_busiest_group() 7697 * uses these numbers, only the last is affected by this problem. 7698 * 7699 * XXX fix that. 7700 */ 7701 WRITE_ONCE(shared->nr_running, sds->total_running); 7702 WRITE_ONCE(shared->load, sds->total_load); 7703 WRITE_ONCE(shared->capacity, sds->total_capacity); 7704 } 7705 7706 /** 7707 * check_asym_packing - Check to see if the group is packed into the 7708 * sched domain. 7709 * 7710 * This is primarily intended to used at the sibling level. Some 7711 * cores like POWER7 prefer to use lower numbered SMT threads. In the 7712 * case of POWER7, it can move to lower SMT modes only when higher 7713 * threads are idle. When in lower SMT modes, the threads will 7714 * perform better since they share less core resources. Hence when we 7715 * have idle threads, we want them to be the higher ones. 7716 * 7717 * This packing function is run on idle threads. It checks to see if 7718 * the busiest CPU in this domain (core in the P7 case) has a higher 7719 * CPU number than the packing function is being run on. Here we are 7720 * assuming lower CPU number will be equivalent to lower a SMT thread 7721 * number. 7722 * 7723 * Return: 1 when packing is required and a task should be moved to 7724 * this CPU. The amount of the imbalance is returned in *imbalance. 7725 * 7726 * @env: The load balancing environment. 7727 * @sds: Statistics of the sched_domain which is to be packed 7728 */ 7729 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 7730 { 7731 int busiest_cpu; 7732 7733 if (!(env->sd->flags & SD_ASYM_PACKING)) 7734 return 0; 7735 7736 if (env->idle == CPU_NOT_IDLE) 7737 return 0; 7738 7739 if (!sds->busiest) 7740 return 0; 7741 7742 busiest_cpu = sds->busiest->asym_prefer_cpu; 7743 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 7744 return 0; 7745 7746 env->imbalance = DIV_ROUND_CLOSEST( 7747 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 7748 SCHED_CAPACITY_SCALE); 7749 7750 return 1; 7751 } 7752 7753 /** 7754 * fix_small_imbalance - Calculate the minor imbalance that exists 7755 * amongst the groups of a sched_domain, during 7756 * load balancing. 7757 * @env: The load balancing environment. 7758 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 7759 */ 7760 static inline 7761 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 7762 { 7763 unsigned long tmp, capa_now = 0, capa_move = 0; 7764 unsigned int imbn = 2; 7765 unsigned long scaled_busy_load_per_task; 7766 struct sg_lb_stats *local, *busiest; 7767 7768 local = &sds->local_stat; 7769 busiest = &sds->busiest_stat; 7770 7771 if (!local->sum_nr_running) 7772 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 7773 else if (busiest->load_per_task > local->load_per_task) 7774 imbn = 1; 7775 7776 scaled_busy_load_per_task = 7777 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 7778 busiest->group_capacity; 7779 7780 if (busiest->avg_load + scaled_busy_load_per_task >= 7781 local->avg_load + (scaled_busy_load_per_task * imbn)) { 7782 env->imbalance = busiest->load_per_task; 7783 return; 7784 } 7785 7786 /* 7787 * OK, we don't have enough imbalance to justify moving tasks, 7788 * however we may be able to increase total CPU capacity used by 7789 * moving them. 7790 */ 7791 7792 capa_now += busiest->group_capacity * 7793 min(busiest->load_per_task, busiest->avg_load); 7794 capa_now += local->group_capacity * 7795 min(local->load_per_task, local->avg_load); 7796 capa_now /= SCHED_CAPACITY_SCALE; 7797 7798 /* Amount of load we'd subtract */ 7799 if (busiest->avg_load > scaled_busy_load_per_task) { 7800 capa_move += busiest->group_capacity * 7801 min(busiest->load_per_task, 7802 busiest->avg_load - scaled_busy_load_per_task); 7803 } 7804 7805 /* Amount of load we'd add */ 7806 if (busiest->avg_load * busiest->group_capacity < 7807 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 7808 tmp = (busiest->avg_load * busiest->group_capacity) / 7809 local->group_capacity; 7810 } else { 7811 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 7812 local->group_capacity; 7813 } 7814 capa_move += local->group_capacity * 7815 min(local->load_per_task, local->avg_load + tmp); 7816 capa_move /= SCHED_CAPACITY_SCALE; 7817 7818 /* Move if we gain throughput */ 7819 if (capa_move > capa_now) 7820 env->imbalance = busiest->load_per_task; 7821 } 7822 7823 /** 7824 * calculate_imbalance - Calculate the amount of imbalance present within the 7825 * groups of a given sched_domain during load balance. 7826 * @env: load balance environment 7827 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 7828 */ 7829 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 7830 { 7831 unsigned long max_pull, load_above_capacity = ~0UL; 7832 struct sg_lb_stats *local, *busiest; 7833 7834 local = &sds->local_stat; 7835 busiest = &sds->busiest_stat; 7836 7837 if (busiest->group_type == group_imbalanced) { 7838 /* 7839 * In the group_imb case we cannot rely on group-wide averages 7840 * to ensure cpu-load equilibrium, look at wider averages. XXX 7841 */ 7842 busiest->load_per_task = 7843 min(busiest->load_per_task, sds->avg_load); 7844 } 7845 7846 /* 7847 * Avg load of busiest sg can be less and avg load of local sg can 7848 * be greater than avg load across all sgs of sd because avg load 7849 * factors in sg capacity and sgs with smaller group_type are 7850 * skipped when updating the busiest sg: 7851 */ 7852 if (busiest->avg_load <= sds->avg_load || 7853 local->avg_load >= sds->avg_load) { 7854 env->imbalance = 0; 7855 return fix_small_imbalance(env, sds); 7856 } 7857 7858 /* 7859 * If there aren't any idle cpus, avoid creating some. 7860 */ 7861 if (busiest->group_type == group_overloaded && 7862 local->group_type == group_overloaded) { 7863 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 7864 if (load_above_capacity > busiest->group_capacity) { 7865 load_above_capacity -= busiest->group_capacity; 7866 load_above_capacity *= scale_load_down(NICE_0_LOAD); 7867 load_above_capacity /= busiest->group_capacity; 7868 } else 7869 load_above_capacity = ~0UL; 7870 } 7871 7872 /* 7873 * We're trying to get all the cpus to the average_load, so we don't 7874 * want to push ourselves above the average load, nor do we wish to 7875 * reduce the max loaded cpu below the average load. At the same time, 7876 * we also don't want to reduce the group load below the group 7877 * capacity. Thus we look for the minimum possible imbalance. 7878 */ 7879 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 7880 7881 /* How much load to actually move to equalise the imbalance */ 7882 env->imbalance = min( 7883 max_pull * busiest->group_capacity, 7884 (sds->avg_load - local->avg_load) * local->group_capacity 7885 ) / SCHED_CAPACITY_SCALE; 7886 7887 /* 7888 * if *imbalance is less than the average load per runnable task 7889 * there is no guarantee that any tasks will be moved so we'll have 7890 * a think about bumping its value to force at least one task to be 7891 * moved 7892 */ 7893 if (env->imbalance < busiest->load_per_task) 7894 return fix_small_imbalance(env, sds); 7895 } 7896 7897 /******* find_busiest_group() helpers end here *********************/ 7898 7899 /** 7900 * find_busiest_group - Returns the busiest group within the sched_domain 7901 * if there is an imbalance. 7902 * 7903 * Also calculates the amount of weighted load which should be moved 7904 * to restore balance. 7905 * 7906 * @env: The load balancing environment. 7907 * 7908 * Return: - The busiest group if imbalance exists. 7909 */ 7910 static struct sched_group *find_busiest_group(struct lb_env *env) 7911 { 7912 struct sg_lb_stats *local, *busiest; 7913 struct sd_lb_stats sds; 7914 7915 init_sd_lb_stats(&sds); 7916 7917 /* 7918 * Compute the various statistics relavent for load balancing at 7919 * this level. 7920 */ 7921 update_sd_lb_stats(env, &sds); 7922 local = &sds.local_stat; 7923 busiest = &sds.busiest_stat; 7924 7925 /* ASYM feature bypasses nice load balance check */ 7926 if (check_asym_packing(env, &sds)) 7927 return sds.busiest; 7928 7929 /* There is no busy sibling group to pull tasks from */ 7930 if (!sds.busiest || busiest->sum_nr_running == 0) 7931 goto out_balanced; 7932 7933 /* XXX broken for overlapping NUMA groups */ 7934 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 7935 / sds.total_capacity; 7936 7937 /* 7938 * If the busiest group is imbalanced the below checks don't 7939 * work because they assume all things are equal, which typically 7940 * isn't true due to cpus_allowed constraints and the like. 7941 */ 7942 if (busiest->group_type == group_imbalanced) 7943 goto force_balance; 7944 7945 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 7946 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) && 7947 busiest->group_no_capacity) 7948 goto force_balance; 7949 7950 /* 7951 * If the local group is busier than the selected busiest group 7952 * don't try and pull any tasks. 7953 */ 7954 if (local->avg_load >= busiest->avg_load) 7955 goto out_balanced; 7956 7957 /* 7958 * Don't pull any tasks if this group is already above the domain 7959 * average load. 7960 */ 7961 if (local->avg_load >= sds.avg_load) 7962 goto out_balanced; 7963 7964 if (env->idle == CPU_IDLE) { 7965 /* 7966 * This cpu is idle. If the busiest group is not overloaded 7967 * and there is no imbalance between this and busiest group 7968 * wrt idle cpus, it is balanced. The imbalance becomes 7969 * significant if the diff is greater than 1 otherwise we 7970 * might end up to just move the imbalance on another group 7971 */ 7972 if ((busiest->group_type != group_overloaded) && 7973 (local->idle_cpus <= (busiest->idle_cpus + 1))) 7974 goto out_balanced; 7975 } else { 7976 /* 7977 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 7978 * imbalance_pct to be conservative. 7979 */ 7980 if (100 * busiest->avg_load <= 7981 env->sd->imbalance_pct * local->avg_load) 7982 goto out_balanced; 7983 } 7984 7985 force_balance: 7986 /* Looks like there is an imbalance. Compute it */ 7987 calculate_imbalance(env, &sds); 7988 return sds.busiest; 7989 7990 out_balanced: 7991 env->imbalance = 0; 7992 return NULL; 7993 } 7994 7995 /* 7996 * find_busiest_queue - find the busiest runqueue among the cpus in group. 7997 */ 7998 static struct rq *find_busiest_queue(struct lb_env *env, 7999 struct sched_group *group) 8000 { 8001 struct rq *busiest = NULL, *rq; 8002 unsigned long busiest_load = 0, busiest_capacity = 1; 8003 int i; 8004 8005 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8006 unsigned long capacity, wl; 8007 enum fbq_type rt; 8008 8009 rq = cpu_rq(i); 8010 rt = fbq_classify_rq(rq); 8011 8012 /* 8013 * We classify groups/runqueues into three groups: 8014 * - regular: there are !numa tasks 8015 * - remote: there are numa tasks that run on the 'wrong' node 8016 * - all: there is no distinction 8017 * 8018 * In order to avoid migrating ideally placed numa tasks, 8019 * ignore those when there's better options. 8020 * 8021 * If we ignore the actual busiest queue to migrate another 8022 * task, the next balance pass can still reduce the busiest 8023 * queue by moving tasks around inside the node. 8024 * 8025 * If we cannot move enough load due to this classification 8026 * the next pass will adjust the group classification and 8027 * allow migration of more tasks. 8028 * 8029 * Both cases only affect the total convergence complexity. 8030 */ 8031 if (rt > env->fbq_type) 8032 continue; 8033 8034 capacity = capacity_of(i); 8035 8036 wl = weighted_cpuload(rq); 8037 8038 /* 8039 * When comparing with imbalance, use weighted_cpuload() 8040 * which is not scaled with the cpu capacity. 8041 */ 8042 8043 if (rq->nr_running == 1 && wl > env->imbalance && 8044 !check_cpu_capacity(rq, env->sd)) 8045 continue; 8046 8047 /* 8048 * For the load comparisons with the other cpu's, consider 8049 * the weighted_cpuload() scaled with the cpu capacity, so 8050 * that the load can be moved away from the cpu that is 8051 * potentially running at a lower capacity. 8052 * 8053 * Thus we're looking for max(wl_i / capacity_i), crosswise 8054 * multiplication to rid ourselves of the division works out 8055 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 8056 * our previous maximum. 8057 */ 8058 if (wl * busiest_capacity > busiest_load * capacity) { 8059 busiest_load = wl; 8060 busiest_capacity = capacity; 8061 busiest = rq; 8062 } 8063 } 8064 8065 return busiest; 8066 } 8067 8068 /* 8069 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 8070 * so long as it is large enough. 8071 */ 8072 #define MAX_PINNED_INTERVAL 512 8073 8074 static int need_active_balance(struct lb_env *env) 8075 { 8076 struct sched_domain *sd = env->sd; 8077 8078 if (env->idle == CPU_NEWLY_IDLE) { 8079 8080 /* 8081 * ASYM_PACKING needs to force migrate tasks from busy but 8082 * lower priority CPUs in order to pack all tasks in the 8083 * highest priority CPUs. 8084 */ 8085 if ((sd->flags & SD_ASYM_PACKING) && 8086 sched_asym_prefer(env->dst_cpu, env->src_cpu)) 8087 return 1; 8088 } 8089 8090 /* 8091 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 8092 * It's worth migrating the task if the src_cpu's capacity is reduced 8093 * because of other sched_class or IRQs if more capacity stays 8094 * available on dst_cpu. 8095 */ 8096 if ((env->idle != CPU_NOT_IDLE) && 8097 (env->src_rq->cfs.h_nr_running == 1)) { 8098 if ((check_cpu_capacity(env->src_rq, sd)) && 8099 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 8100 return 1; 8101 } 8102 8103 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 8104 } 8105 8106 static int active_load_balance_cpu_stop(void *data); 8107 8108 static int should_we_balance(struct lb_env *env) 8109 { 8110 struct sched_group *sg = env->sd->groups; 8111 int cpu, balance_cpu = -1; 8112 8113 /* 8114 * In the newly idle case, we will allow all the cpu's 8115 * to do the newly idle load balance. 8116 */ 8117 if (env->idle == CPU_NEWLY_IDLE) 8118 return 1; 8119 8120 /* Try to find first idle cpu */ 8121 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 8122 if (!idle_cpu(cpu)) 8123 continue; 8124 8125 balance_cpu = cpu; 8126 break; 8127 } 8128 8129 if (balance_cpu == -1) 8130 balance_cpu = group_balance_cpu(sg); 8131 8132 /* 8133 * First idle cpu or the first cpu(busiest) in this sched group 8134 * is eligible for doing load balancing at this and above domains. 8135 */ 8136 return balance_cpu == env->dst_cpu; 8137 } 8138 8139 /* 8140 * Check this_cpu to ensure it is balanced within domain. Attempt to move 8141 * tasks if there is an imbalance. 8142 */ 8143 static int load_balance(int this_cpu, struct rq *this_rq, 8144 struct sched_domain *sd, enum cpu_idle_type idle, 8145 int *continue_balancing) 8146 { 8147 int ld_moved, cur_ld_moved, active_balance = 0; 8148 struct sched_domain *sd_parent = sd->parent; 8149 struct sched_group *group; 8150 struct rq *busiest; 8151 struct rq_flags rf; 8152 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 8153 8154 struct lb_env env = { 8155 .sd = sd, 8156 .dst_cpu = this_cpu, 8157 .dst_rq = this_rq, 8158 .dst_grpmask = sched_group_span(sd->groups), 8159 .idle = idle, 8160 .loop_break = sched_nr_migrate_break, 8161 .cpus = cpus, 8162 .fbq_type = all, 8163 .tasks = LIST_HEAD_INIT(env.tasks), 8164 }; 8165 8166 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 8167 8168 schedstat_inc(sd->lb_count[idle]); 8169 8170 redo: 8171 if (!should_we_balance(&env)) { 8172 *continue_balancing = 0; 8173 goto out_balanced; 8174 } 8175 8176 group = find_busiest_group(&env); 8177 if (!group) { 8178 schedstat_inc(sd->lb_nobusyg[idle]); 8179 goto out_balanced; 8180 } 8181 8182 busiest = find_busiest_queue(&env, group); 8183 if (!busiest) { 8184 schedstat_inc(sd->lb_nobusyq[idle]); 8185 goto out_balanced; 8186 } 8187 8188 BUG_ON(busiest == env.dst_rq); 8189 8190 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 8191 8192 env.src_cpu = busiest->cpu; 8193 env.src_rq = busiest; 8194 8195 ld_moved = 0; 8196 if (busiest->nr_running > 1) { 8197 /* 8198 * Attempt to move tasks. If find_busiest_group has found 8199 * an imbalance but busiest->nr_running <= 1, the group is 8200 * still unbalanced. ld_moved simply stays zero, so it is 8201 * correctly treated as an imbalance. 8202 */ 8203 env.flags |= LBF_ALL_PINNED; 8204 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 8205 8206 more_balance: 8207 rq_lock_irqsave(busiest, &rf); 8208 update_rq_clock(busiest); 8209 8210 /* 8211 * cur_ld_moved - load moved in current iteration 8212 * ld_moved - cumulative load moved across iterations 8213 */ 8214 cur_ld_moved = detach_tasks(&env); 8215 8216 /* 8217 * We've detached some tasks from busiest_rq. Every 8218 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 8219 * unlock busiest->lock, and we are able to be sure 8220 * that nobody can manipulate the tasks in parallel. 8221 * See task_rq_lock() family for the details. 8222 */ 8223 8224 rq_unlock(busiest, &rf); 8225 8226 if (cur_ld_moved) { 8227 attach_tasks(&env); 8228 ld_moved += cur_ld_moved; 8229 } 8230 8231 local_irq_restore(rf.flags); 8232 8233 if (env.flags & LBF_NEED_BREAK) { 8234 env.flags &= ~LBF_NEED_BREAK; 8235 goto more_balance; 8236 } 8237 8238 /* 8239 * Revisit (affine) tasks on src_cpu that couldn't be moved to 8240 * us and move them to an alternate dst_cpu in our sched_group 8241 * where they can run. The upper limit on how many times we 8242 * iterate on same src_cpu is dependent on number of cpus in our 8243 * sched_group. 8244 * 8245 * This changes load balance semantics a bit on who can move 8246 * load to a given_cpu. In addition to the given_cpu itself 8247 * (or a ilb_cpu acting on its behalf where given_cpu is 8248 * nohz-idle), we now have balance_cpu in a position to move 8249 * load to given_cpu. In rare situations, this may cause 8250 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 8251 * _independently_ and at _same_ time to move some load to 8252 * given_cpu) causing exceess load to be moved to given_cpu. 8253 * This however should not happen so much in practice and 8254 * moreover subsequent load balance cycles should correct the 8255 * excess load moved. 8256 */ 8257 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 8258 8259 /* Prevent to re-select dst_cpu via env's cpus */ 8260 cpumask_clear_cpu(env.dst_cpu, env.cpus); 8261 8262 env.dst_rq = cpu_rq(env.new_dst_cpu); 8263 env.dst_cpu = env.new_dst_cpu; 8264 env.flags &= ~LBF_DST_PINNED; 8265 env.loop = 0; 8266 env.loop_break = sched_nr_migrate_break; 8267 8268 /* 8269 * Go back to "more_balance" rather than "redo" since we 8270 * need to continue with same src_cpu. 8271 */ 8272 goto more_balance; 8273 } 8274 8275 /* 8276 * We failed to reach balance because of affinity. 8277 */ 8278 if (sd_parent) { 8279 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8280 8281 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 8282 *group_imbalance = 1; 8283 } 8284 8285 /* All tasks on this runqueue were pinned by CPU affinity */ 8286 if (unlikely(env.flags & LBF_ALL_PINNED)) { 8287 cpumask_clear_cpu(cpu_of(busiest), cpus); 8288 /* 8289 * Attempting to continue load balancing at the current 8290 * sched_domain level only makes sense if there are 8291 * active CPUs remaining as possible busiest CPUs to 8292 * pull load from which are not contained within the 8293 * destination group that is receiving any migrated 8294 * load. 8295 */ 8296 if (!cpumask_subset(cpus, env.dst_grpmask)) { 8297 env.loop = 0; 8298 env.loop_break = sched_nr_migrate_break; 8299 goto redo; 8300 } 8301 goto out_all_pinned; 8302 } 8303 } 8304 8305 if (!ld_moved) { 8306 schedstat_inc(sd->lb_failed[idle]); 8307 /* 8308 * Increment the failure counter only on periodic balance. 8309 * We do not want newidle balance, which can be very 8310 * frequent, pollute the failure counter causing 8311 * excessive cache_hot migrations and active balances. 8312 */ 8313 if (idle != CPU_NEWLY_IDLE) 8314 sd->nr_balance_failed++; 8315 8316 if (need_active_balance(&env)) { 8317 unsigned long flags; 8318 8319 raw_spin_lock_irqsave(&busiest->lock, flags); 8320 8321 /* don't kick the active_load_balance_cpu_stop, 8322 * if the curr task on busiest cpu can't be 8323 * moved to this_cpu 8324 */ 8325 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { 8326 raw_spin_unlock_irqrestore(&busiest->lock, 8327 flags); 8328 env.flags |= LBF_ALL_PINNED; 8329 goto out_one_pinned; 8330 } 8331 8332 /* 8333 * ->active_balance synchronizes accesses to 8334 * ->active_balance_work. Once set, it's cleared 8335 * only after active load balance is finished. 8336 */ 8337 if (!busiest->active_balance) { 8338 busiest->active_balance = 1; 8339 busiest->push_cpu = this_cpu; 8340 active_balance = 1; 8341 } 8342 raw_spin_unlock_irqrestore(&busiest->lock, flags); 8343 8344 if (active_balance) { 8345 stop_one_cpu_nowait(cpu_of(busiest), 8346 active_load_balance_cpu_stop, busiest, 8347 &busiest->active_balance_work); 8348 } 8349 8350 /* We've kicked active balancing, force task migration. */ 8351 sd->nr_balance_failed = sd->cache_nice_tries+1; 8352 } 8353 } else 8354 sd->nr_balance_failed = 0; 8355 8356 if (likely(!active_balance)) { 8357 /* We were unbalanced, so reset the balancing interval */ 8358 sd->balance_interval = sd->min_interval; 8359 } else { 8360 /* 8361 * If we've begun active balancing, start to back off. This 8362 * case may not be covered by the all_pinned logic if there 8363 * is only 1 task on the busy runqueue (because we don't call 8364 * detach_tasks). 8365 */ 8366 if (sd->balance_interval < sd->max_interval) 8367 sd->balance_interval *= 2; 8368 } 8369 8370 goto out; 8371 8372 out_balanced: 8373 /* 8374 * We reach balance although we may have faced some affinity 8375 * constraints. Clear the imbalance flag if it was set. 8376 */ 8377 if (sd_parent) { 8378 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8379 8380 if (*group_imbalance) 8381 *group_imbalance = 0; 8382 } 8383 8384 out_all_pinned: 8385 /* 8386 * We reach balance because all tasks are pinned at this level so 8387 * we can't migrate them. Let the imbalance flag set so parent level 8388 * can try to migrate them. 8389 */ 8390 schedstat_inc(sd->lb_balanced[idle]); 8391 8392 sd->nr_balance_failed = 0; 8393 8394 out_one_pinned: 8395 /* tune up the balancing interval */ 8396 if (((env.flags & LBF_ALL_PINNED) && 8397 sd->balance_interval < MAX_PINNED_INTERVAL) || 8398 (sd->balance_interval < sd->max_interval)) 8399 sd->balance_interval *= 2; 8400 8401 ld_moved = 0; 8402 out: 8403 return ld_moved; 8404 } 8405 8406 static inline unsigned long 8407 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 8408 { 8409 unsigned long interval = sd->balance_interval; 8410 8411 if (cpu_busy) 8412 interval *= sd->busy_factor; 8413 8414 /* scale ms to jiffies */ 8415 interval = msecs_to_jiffies(interval); 8416 interval = clamp(interval, 1UL, max_load_balance_interval); 8417 8418 return interval; 8419 } 8420 8421 static inline void 8422 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 8423 { 8424 unsigned long interval, next; 8425 8426 /* used by idle balance, so cpu_busy = 0 */ 8427 interval = get_sd_balance_interval(sd, 0); 8428 next = sd->last_balance + interval; 8429 8430 if (time_after(*next_balance, next)) 8431 *next_balance = next; 8432 } 8433 8434 /* 8435 * idle_balance is called by schedule() if this_cpu is about to become 8436 * idle. Attempts to pull tasks from other CPUs. 8437 */ 8438 static int idle_balance(struct rq *this_rq, struct rq_flags *rf) 8439 { 8440 unsigned long next_balance = jiffies + HZ; 8441 int this_cpu = this_rq->cpu; 8442 struct sched_domain *sd; 8443 int pulled_task = 0; 8444 u64 curr_cost = 0; 8445 8446 /* 8447 * We must set idle_stamp _before_ calling idle_balance(), such that we 8448 * measure the duration of idle_balance() as idle time. 8449 */ 8450 this_rq->idle_stamp = rq_clock(this_rq); 8451 8452 /* 8453 * This is OK, because current is on_cpu, which avoids it being picked 8454 * for load-balance and preemption/IRQs are still disabled avoiding 8455 * further scheduler activity on it and we're being very careful to 8456 * re-start the picking loop. 8457 */ 8458 rq_unpin_lock(this_rq, rf); 8459 8460 if (this_rq->avg_idle < sysctl_sched_migration_cost || 8461 !this_rq->rd->overload) { 8462 rcu_read_lock(); 8463 sd = rcu_dereference_check_sched_domain(this_rq->sd); 8464 if (sd) 8465 update_next_balance(sd, &next_balance); 8466 rcu_read_unlock(); 8467 8468 goto out; 8469 } 8470 8471 raw_spin_unlock(&this_rq->lock); 8472 8473 update_blocked_averages(this_cpu); 8474 rcu_read_lock(); 8475 for_each_domain(this_cpu, sd) { 8476 int continue_balancing = 1; 8477 u64 t0, domain_cost; 8478 8479 if (!(sd->flags & SD_LOAD_BALANCE)) 8480 continue; 8481 8482 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 8483 update_next_balance(sd, &next_balance); 8484 break; 8485 } 8486 8487 if (sd->flags & SD_BALANCE_NEWIDLE) { 8488 t0 = sched_clock_cpu(this_cpu); 8489 8490 pulled_task = load_balance(this_cpu, this_rq, 8491 sd, CPU_NEWLY_IDLE, 8492 &continue_balancing); 8493 8494 domain_cost = sched_clock_cpu(this_cpu) - t0; 8495 if (domain_cost > sd->max_newidle_lb_cost) 8496 sd->max_newidle_lb_cost = domain_cost; 8497 8498 curr_cost += domain_cost; 8499 } 8500 8501 update_next_balance(sd, &next_balance); 8502 8503 /* 8504 * Stop searching for tasks to pull if there are 8505 * now runnable tasks on this rq. 8506 */ 8507 if (pulled_task || this_rq->nr_running > 0) 8508 break; 8509 } 8510 rcu_read_unlock(); 8511 8512 raw_spin_lock(&this_rq->lock); 8513 8514 if (curr_cost > this_rq->max_idle_balance_cost) 8515 this_rq->max_idle_balance_cost = curr_cost; 8516 8517 /* 8518 * While browsing the domains, we released the rq lock, a task could 8519 * have been enqueued in the meantime. Since we're not going idle, 8520 * pretend we pulled a task. 8521 */ 8522 if (this_rq->cfs.h_nr_running && !pulled_task) 8523 pulled_task = 1; 8524 8525 out: 8526 /* Move the next balance forward */ 8527 if (time_after(this_rq->next_balance, next_balance)) 8528 this_rq->next_balance = next_balance; 8529 8530 /* Is there a task of a high priority class? */ 8531 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 8532 pulled_task = -1; 8533 8534 if (pulled_task) 8535 this_rq->idle_stamp = 0; 8536 8537 rq_repin_lock(this_rq, rf); 8538 8539 return pulled_task; 8540 } 8541 8542 /* 8543 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 8544 * running tasks off the busiest CPU onto idle CPUs. It requires at 8545 * least 1 task to be running on each physical CPU where possible, and 8546 * avoids physical / logical imbalances. 8547 */ 8548 static int active_load_balance_cpu_stop(void *data) 8549 { 8550 struct rq *busiest_rq = data; 8551 int busiest_cpu = cpu_of(busiest_rq); 8552 int target_cpu = busiest_rq->push_cpu; 8553 struct rq *target_rq = cpu_rq(target_cpu); 8554 struct sched_domain *sd; 8555 struct task_struct *p = NULL; 8556 struct rq_flags rf; 8557 8558 rq_lock_irq(busiest_rq, &rf); 8559 8560 /* make sure the requested cpu hasn't gone down in the meantime */ 8561 if (unlikely(busiest_cpu != smp_processor_id() || 8562 !busiest_rq->active_balance)) 8563 goto out_unlock; 8564 8565 /* Is there any task to move? */ 8566 if (busiest_rq->nr_running <= 1) 8567 goto out_unlock; 8568 8569 /* 8570 * This condition is "impossible", if it occurs 8571 * we need to fix it. Originally reported by 8572 * Bjorn Helgaas on a 128-cpu setup. 8573 */ 8574 BUG_ON(busiest_rq == target_rq); 8575 8576 /* Search for an sd spanning us and the target CPU. */ 8577 rcu_read_lock(); 8578 for_each_domain(target_cpu, sd) { 8579 if ((sd->flags & SD_LOAD_BALANCE) && 8580 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 8581 break; 8582 } 8583 8584 if (likely(sd)) { 8585 struct lb_env env = { 8586 .sd = sd, 8587 .dst_cpu = target_cpu, 8588 .dst_rq = target_rq, 8589 .src_cpu = busiest_rq->cpu, 8590 .src_rq = busiest_rq, 8591 .idle = CPU_IDLE, 8592 /* 8593 * can_migrate_task() doesn't need to compute new_dst_cpu 8594 * for active balancing. Since we have CPU_IDLE, but no 8595 * @dst_grpmask we need to make that test go away with lying 8596 * about DST_PINNED. 8597 */ 8598 .flags = LBF_DST_PINNED, 8599 }; 8600 8601 schedstat_inc(sd->alb_count); 8602 update_rq_clock(busiest_rq); 8603 8604 p = detach_one_task(&env); 8605 if (p) { 8606 schedstat_inc(sd->alb_pushed); 8607 /* Active balancing done, reset the failure counter. */ 8608 sd->nr_balance_failed = 0; 8609 } else { 8610 schedstat_inc(sd->alb_failed); 8611 } 8612 } 8613 rcu_read_unlock(); 8614 out_unlock: 8615 busiest_rq->active_balance = 0; 8616 rq_unlock(busiest_rq, &rf); 8617 8618 if (p) 8619 attach_one_task(target_rq, p); 8620 8621 local_irq_enable(); 8622 8623 return 0; 8624 } 8625 8626 static inline int on_null_domain(struct rq *rq) 8627 { 8628 return unlikely(!rcu_dereference_sched(rq->sd)); 8629 } 8630 8631 #ifdef CONFIG_NO_HZ_COMMON 8632 /* 8633 * idle load balancing details 8634 * - When one of the busy CPUs notice that there may be an idle rebalancing 8635 * needed, they will kick the idle load balancer, which then does idle 8636 * load balancing for all the idle CPUs. 8637 */ 8638 static struct { 8639 cpumask_var_t idle_cpus_mask; 8640 atomic_t nr_cpus; 8641 unsigned long next_balance; /* in jiffy units */ 8642 } nohz ____cacheline_aligned; 8643 8644 static inline int find_new_ilb(void) 8645 { 8646 int ilb = cpumask_first(nohz.idle_cpus_mask); 8647 8648 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 8649 return ilb; 8650 8651 return nr_cpu_ids; 8652 } 8653 8654 /* 8655 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 8656 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 8657 * CPU (if there is one). 8658 */ 8659 static void nohz_balancer_kick(void) 8660 { 8661 int ilb_cpu; 8662 8663 nohz.next_balance++; 8664 8665 ilb_cpu = find_new_ilb(); 8666 8667 if (ilb_cpu >= nr_cpu_ids) 8668 return; 8669 8670 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 8671 return; 8672 /* 8673 * Use smp_send_reschedule() instead of resched_cpu(). 8674 * This way we generate a sched IPI on the target cpu which 8675 * is idle. And the softirq performing nohz idle load balance 8676 * will be run before returning from the IPI. 8677 */ 8678 smp_send_reschedule(ilb_cpu); 8679 return; 8680 } 8681 8682 void nohz_balance_exit_idle(unsigned int cpu) 8683 { 8684 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 8685 /* 8686 * Completely isolated CPUs don't ever set, so we must test. 8687 */ 8688 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { 8689 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 8690 atomic_dec(&nohz.nr_cpus); 8691 } 8692 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 8693 } 8694 } 8695 8696 static inline void set_cpu_sd_state_busy(void) 8697 { 8698 struct sched_domain *sd; 8699 int cpu = smp_processor_id(); 8700 8701 rcu_read_lock(); 8702 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 8703 8704 if (!sd || !sd->nohz_idle) 8705 goto unlock; 8706 sd->nohz_idle = 0; 8707 8708 atomic_inc(&sd->shared->nr_busy_cpus); 8709 unlock: 8710 rcu_read_unlock(); 8711 } 8712 8713 void set_cpu_sd_state_idle(void) 8714 { 8715 struct sched_domain *sd; 8716 int cpu = smp_processor_id(); 8717 8718 rcu_read_lock(); 8719 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 8720 8721 if (!sd || sd->nohz_idle) 8722 goto unlock; 8723 sd->nohz_idle = 1; 8724 8725 atomic_dec(&sd->shared->nr_busy_cpus); 8726 unlock: 8727 rcu_read_unlock(); 8728 } 8729 8730 /* 8731 * This routine will record that the cpu is going idle with tick stopped. 8732 * This info will be used in performing idle load balancing in the future. 8733 */ 8734 void nohz_balance_enter_idle(int cpu) 8735 { 8736 /* 8737 * If this cpu is going down, then nothing needs to be done. 8738 */ 8739 if (!cpu_active(cpu)) 8740 return; 8741 8742 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 8743 if (!is_housekeeping_cpu(cpu)) 8744 return; 8745 8746 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 8747 return; 8748 8749 /* 8750 * If we're a completely isolated CPU, we don't play. 8751 */ 8752 if (on_null_domain(cpu_rq(cpu))) 8753 return; 8754 8755 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 8756 atomic_inc(&nohz.nr_cpus); 8757 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 8758 } 8759 #endif 8760 8761 static DEFINE_SPINLOCK(balancing); 8762 8763 /* 8764 * Scale the max load_balance interval with the number of CPUs in the system. 8765 * This trades load-balance latency on larger machines for less cross talk. 8766 */ 8767 void update_max_interval(void) 8768 { 8769 max_load_balance_interval = HZ*num_online_cpus()/10; 8770 } 8771 8772 /* 8773 * It checks each scheduling domain to see if it is due to be balanced, 8774 * and initiates a balancing operation if so. 8775 * 8776 * Balancing parameters are set up in init_sched_domains. 8777 */ 8778 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 8779 { 8780 int continue_balancing = 1; 8781 int cpu = rq->cpu; 8782 unsigned long interval; 8783 struct sched_domain *sd; 8784 /* Earliest time when we have to do rebalance again */ 8785 unsigned long next_balance = jiffies + 60*HZ; 8786 int update_next_balance = 0; 8787 int need_serialize, need_decay = 0; 8788 u64 max_cost = 0; 8789 8790 update_blocked_averages(cpu); 8791 8792 rcu_read_lock(); 8793 for_each_domain(cpu, sd) { 8794 /* 8795 * Decay the newidle max times here because this is a regular 8796 * visit to all the domains. Decay ~1% per second. 8797 */ 8798 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 8799 sd->max_newidle_lb_cost = 8800 (sd->max_newidle_lb_cost * 253) / 256; 8801 sd->next_decay_max_lb_cost = jiffies + HZ; 8802 need_decay = 1; 8803 } 8804 max_cost += sd->max_newidle_lb_cost; 8805 8806 if (!(sd->flags & SD_LOAD_BALANCE)) 8807 continue; 8808 8809 /* 8810 * Stop the load balance at this level. There is another 8811 * CPU in our sched group which is doing load balancing more 8812 * actively. 8813 */ 8814 if (!continue_balancing) { 8815 if (need_decay) 8816 continue; 8817 break; 8818 } 8819 8820 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8821 8822 need_serialize = sd->flags & SD_SERIALIZE; 8823 if (need_serialize) { 8824 if (!spin_trylock(&balancing)) 8825 goto out; 8826 } 8827 8828 if (time_after_eq(jiffies, sd->last_balance + interval)) { 8829 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 8830 /* 8831 * The LBF_DST_PINNED logic could have changed 8832 * env->dst_cpu, so we can't know our idle 8833 * state even if we migrated tasks. Update it. 8834 */ 8835 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 8836 } 8837 sd->last_balance = jiffies; 8838 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8839 } 8840 if (need_serialize) 8841 spin_unlock(&balancing); 8842 out: 8843 if (time_after(next_balance, sd->last_balance + interval)) { 8844 next_balance = sd->last_balance + interval; 8845 update_next_balance = 1; 8846 } 8847 } 8848 if (need_decay) { 8849 /* 8850 * Ensure the rq-wide value also decays but keep it at a 8851 * reasonable floor to avoid funnies with rq->avg_idle. 8852 */ 8853 rq->max_idle_balance_cost = 8854 max((u64)sysctl_sched_migration_cost, max_cost); 8855 } 8856 rcu_read_unlock(); 8857 8858 /* 8859 * next_balance will be updated only when there is a need. 8860 * When the cpu is attached to null domain for ex, it will not be 8861 * updated. 8862 */ 8863 if (likely(update_next_balance)) { 8864 rq->next_balance = next_balance; 8865 8866 #ifdef CONFIG_NO_HZ_COMMON 8867 /* 8868 * If this CPU has been elected to perform the nohz idle 8869 * balance. Other idle CPUs have already rebalanced with 8870 * nohz_idle_balance() and nohz.next_balance has been 8871 * updated accordingly. This CPU is now running the idle load 8872 * balance for itself and we need to update the 8873 * nohz.next_balance accordingly. 8874 */ 8875 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 8876 nohz.next_balance = rq->next_balance; 8877 #endif 8878 } 8879 } 8880 8881 #ifdef CONFIG_NO_HZ_COMMON 8882 /* 8883 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 8884 * rebalancing for all the cpus for whom scheduler ticks are stopped. 8885 */ 8886 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 8887 { 8888 int this_cpu = this_rq->cpu; 8889 struct rq *rq; 8890 int balance_cpu; 8891 /* Earliest time when we have to do rebalance again */ 8892 unsigned long next_balance = jiffies + 60*HZ; 8893 int update_next_balance = 0; 8894 8895 if (idle != CPU_IDLE || 8896 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 8897 goto end; 8898 8899 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 8900 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 8901 continue; 8902 8903 /* 8904 * If this cpu gets work to do, stop the load balancing 8905 * work being done for other cpus. Next load 8906 * balancing owner will pick it up. 8907 */ 8908 if (need_resched()) 8909 break; 8910 8911 rq = cpu_rq(balance_cpu); 8912 8913 /* 8914 * If time for next balance is due, 8915 * do the balance. 8916 */ 8917 if (time_after_eq(jiffies, rq->next_balance)) { 8918 struct rq_flags rf; 8919 8920 rq_lock_irq(rq, &rf); 8921 update_rq_clock(rq); 8922 cpu_load_update_idle(rq); 8923 rq_unlock_irq(rq, &rf); 8924 8925 rebalance_domains(rq, CPU_IDLE); 8926 } 8927 8928 if (time_after(next_balance, rq->next_balance)) { 8929 next_balance = rq->next_balance; 8930 update_next_balance = 1; 8931 } 8932 } 8933 8934 /* 8935 * next_balance will be updated only when there is a need. 8936 * When the CPU is attached to null domain for ex, it will not be 8937 * updated. 8938 */ 8939 if (likely(update_next_balance)) 8940 nohz.next_balance = next_balance; 8941 end: 8942 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 8943 } 8944 8945 /* 8946 * Current heuristic for kicking the idle load balancer in the presence 8947 * of an idle cpu in the system. 8948 * - This rq has more than one task. 8949 * - This rq has at least one CFS task and the capacity of the CPU is 8950 * significantly reduced because of RT tasks or IRQs. 8951 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 8952 * multiple busy cpu. 8953 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 8954 * domain span are idle. 8955 */ 8956 static inline bool nohz_kick_needed(struct rq *rq) 8957 { 8958 unsigned long now = jiffies; 8959 struct sched_domain_shared *sds; 8960 struct sched_domain *sd; 8961 int nr_busy, i, cpu = rq->cpu; 8962 bool kick = false; 8963 8964 if (unlikely(rq->idle_balance)) 8965 return false; 8966 8967 /* 8968 * We may be recently in ticked or tickless idle mode. At the first 8969 * busy tick after returning from idle, we will update the busy stats. 8970 */ 8971 set_cpu_sd_state_busy(); 8972 nohz_balance_exit_idle(cpu); 8973 8974 /* 8975 * None are in tickless mode and hence no need for NOHZ idle load 8976 * balancing. 8977 */ 8978 if (likely(!atomic_read(&nohz.nr_cpus))) 8979 return false; 8980 8981 if (time_before(now, nohz.next_balance)) 8982 return false; 8983 8984 if (rq->nr_running >= 2) 8985 return true; 8986 8987 rcu_read_lock(); 8988 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 8989 if (sds) { 8990 /* 8991 * XXX: write a coherent comment on why we do this. 8992 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com 8993 */ 8994 nr_busy = atomic_read(&sds->nr_busy_cpus); 8995 if (nr_busy > 1) { 8996 kick = true; 8997 goto unlock; 8998 } 8999 9000 } 9001 9002 sd = rcu_dereference(rq->sd); 9003 if (sd) { 9004 if ((rq->cfs.h_nr_running >= 1) && 9005 check_cpu_capacity(rq, sd)) { 9006 kick = true; 9007 goto unlock; 9008 } 9009 } 9010 9011 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 9012 if (sd) { 9013 for_each_cpu(i, sched_domain_span(sd)) { 9014 if (i == cpu || 9015 !cpumask_test_cpu(i, nohz.idle_cpus_mask)) 9016 continue; 9017 9018 if (sched_asym_prefer(i, cpu)) { 9019 kick = true; 9020 goto unlock; 9021 } 9022 } 9023 } 9024 unlock: 9025 rcu_read_unlock(); 9026 return kick; 9027 } 9028 #else 9029 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 9030 #endif 9031 9032 /* 9033 * run_rebalance_domains is triggered when needed from the scheduler tick. 9034 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 9035 */ 9036 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 9037 { 9038 struct rq *this_rq = this_rq(); 9039 enum cpu_idle_type idle = this_rq->idle_balance ? 9040 CPU_IDLE : CPU_NOT_IDLE; 9041 9042 /* 9043 * If this cpu has a pending nohz_balance_kick, then do the 9044 * balancing on behalf of the other idle cpus whose ticks are 9045 * stopped. Do nohz_idle_balance *before* rebalance_domains to 9046 * give the idle cpus a chance to load balance. Else we may 9047 * load balance only within the local sched_domain hierarchy 9048 * and abort nohz_idle_balance altogether if we pull some load. 9049 */ 9050 nohz_idle_balance(this_rq, idle); 9051 rebalance_domains(this_rq, idle); 9052 } 9053 9054 /* 9055 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 9056 */ 9057 void trigger_load_balance(struct rq *rq) 9058 { 9059 /* Don't need to rebalance while attached to NULL domain */ 9060 if (unlikely(on_null_domain(rq))) 9061 return; 9062 9063 if (time_after_eq(jiffies, rq->next_balance)) 9064 raise_softirq(SCHED_SOFTIRQ); 9065 #ifdef CONFIG_NO_HZ_COMMON 9066 if (nohz_kick_needed(rq)) 9067 nohz_balancer_kick(); 9068 #endif 9069 } 9070 9071 static void rq_online_fair(struct rq *rq) 9072 { 9073 update_sysctl(); 9074 9075 update_runtime_enabled(rq); 9076 } 9077 9078 static void rq_offline_fair(struct rq *rq) 9079 { 9080 update_sysctl(); 9081 9082 /* Ensure any throttled groups are reachable by pick_next_task */ 9083 unthrottle_offline_cfs_rqs(rq); 9084 } 9085 9086 #endif /* CONFIG_SMP */ 9087 9088 /* 9089 * scheduler tick hitting a task of our scheduling class: 9090 */ 9091 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 9092 { 9093 struct cfs_rq *cfs_rq; 9094 struct sched_entity *se = &curr->se; 9095 9096 for_each_sched_entity(se) { 9097 cfs_rq = cfs_rq_of(se); 9098 entity_tick(cfs_rq, se, queued); 9099 } 9100 9101 if (static_branch_unlikely(&sched_numa_balancing)) 9102 task_tick_numa(rq, curr); 9103 } 9104 9105 /* 9106 * called on fork with the child task as argument from the parent's context 9107 * - child not yet on the tasklist 9108 * - preemption disabled 9109 */ 9110 static void task_fork_fair(struct task_struct *p) 9111 { 9112 struct cfs_rq *cfs_rq; 9113 struct sched_entity *se = &p->se, *curr; 9114 struct rq *rq = this_rq(); 9115 struct rq_flags rf; 9116 9117 rq_lock(rq, &rf); 9118 update_rq_clock(rq); 9119 9120 cfs_rq = task_cfs_rq(current); 9121 curr = cfs_rq->curr; 9122 if (curr) { 9123 update_curr(cfs_rq); 9124 se->vruntime = curr->vruntime; 9125 } 9126 place_entity(cfs_rq, se, 1); 9127 9128 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 9129 /* 9130 * Upon rescheduling, sched_class::put_prev_task() will place 9131 * 'current' within the tree based on its new key value. 9132 */ 9133 swap(curr->vruntime, se->vruntime); 9134 resched_curr(rq); 9135 } 9136 9137 se->vruntime -= cfs_rq->min_vruntime; 9138 rq_unlock(rq, &rf); 9139 } 9140 9141 /* 9142 * Priority of the task has changed. Check to see if we preempt 9143 * the current task. 9144 */ 9145 static void 9146 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 9147 { 9148 if (!task_on_rq_queued(p)) 9149 return; 9150 9151 /* 9152 * Reschedule if we are currently running on this runqueue and 9153 * our priority decreased, or if we are not currently running on 9154 * this runqueue and our priority is higher than the current's 9155 */ 9156 if (rq->curr == p) { 9157 if (p->prio > oldprio) 9158 resched_curr(rq); 9159 } else 9160 check_preempt_curr(rq, p, 0); 9161 } 9162 9163 static inline bool vruntime_normalized(struct task_struct *p) 9164 { 9165 struct sched_entity *se = &p->se; 9166 9167 /* 9168 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 9169 * the dequeue_entity(.flags=0) will already have normalized the 9170 * vruntime. 9171 */ 9172 if (p->on_rq) 9173 return true; 9174 9175 /* 9176 * When !on_rq, vruntime of the task has usually NOT been normalized. 9177 * But there are some cases where it has already been normalized: 9178 * 9179 * - A forked child which is waiting for being woken up by 9180 * wake_up_new_task(). 9181 * - A task which has been woken up by try_to_wake_up() and 9182 * waiting for actually being woken up by sched_ttwu_pending(). 9183 */ 9184 if (!se->sum_exec_runtime || p->state == TASK_WAKING) 9185 return true; 9186 9187 return false; 9188 } 9189 9190 #ifdef CONFIG_FAIR_GROUP_SCHED 9191 /* 9192 * Propagate the changes of the sched_entity across the tg tree to make it 9193 * visible to the root 9194 */ 9195 static void propagate_entity_cfs_rq(struct sched_entity *se) 9196 { 9197 struct cfs_rq *cfs_rq; 9198 9199 /* Start to propagate at parent */ 9200 se = se->parent; 9201 9202 for_each_sched_entity(se) { 9203 cfs_rq = cfs_rq_of(se); 9204 9205 if (cfs_rq_throttled(cfs_rq)) 9206 break; 9207 9208 update_load_avg(se, UPDATE_TG); 9209 } 9210 } 9211 #else 9212 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 9213 #endif 9214 9215 static void detach_entity_cfs_rq(struct sched_entity *se) 9216 { 9217 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9218 9219 /* Catch up with the cfs_rq and remove our load when we leave */ 9220 update_load_avg(se, 0); 9221 detach_entity_load_avg(cfs_rq, se); 9222 update_tg_load_avg(cfs_rq, false); 9223 propagate_entity_cfs_rq(se); 9224 } 9225 9226 static void attach_entity_cfs_rq(struct sched_entity *se) 9227 { 9228 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9229 9230 #ifdef CONFIG_FAIR_GROUP_SCHED 9231 /* 9232 * Since the real-depth could have been changed (only FAIR 9233 * class maintain depth value), reset depth properly. 9234 */ 9235 se->depth = se->parent ? se->parent->depth + 1 : 0; 9236 #endif 9237 9238 /* Synchronize entity with its cfs_rq */ 9239 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 9240 attach_entity_load_avg(cfs_rq, se); 9241 update_tg_load_avg(cfs_rq, false); 9242 propagate_entity_cfs_rq(se); 9243 } 9244 9245 static void detach_task_cfs_rq(struct task_struct *p) 9246 { 9247 struct sched_entity *se = &p->se; 9248 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9249 9250 if (!vruntime_normalized(p)) { 9251 /* 9252 * Fix up our vruntime so that the current sleep doesn't 9253 * cause 'unlimited' sleep bonus. 9254 */ 9255 place_entity(cfs_rq, se, 0); 9256 se->vruntime -= cfs_rq->min_vruntime; 9257 } 9258 9259 detach_entity_cfs_rq(se); 9260 } 9261 9262 static void attach_task_cfs_rq(struct task_struct *p) 9263 { 9264 struct sched_entity *se = &p->se; 9265 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9266 9267 attach_entity_cfs_rq(se); 9268 9269 if (!vruntime_normalized(p)) 9270 se->vruntime += cfs_rq->min_vruntime; 9271 } 9272 9273 static void switched_from_fair(struct rq *rq, struct task_struct *p) 9274 { 9275 detach_task_cfs_rq(p); 9276 } 9277 9278 static void switched_to_fair(struct rq *rq, struct task_struct *p) 9279 { 9280 attach_task_cfs_rq(p); 9281 9282 if (task_on_rq_queued(p)) { 9283 /* 9284 * We were most likely switched from sched_rt, so 9285 * kick off the schedule if running, otherwise just see 9286 * if we can still preempt the current task. 9287 */ 9288 if (rq->curr == p) 9289 resched_curr(rq); 9290 else 9291 check_preempt_curr(rq, p, 0); 9292 } 9293 } 9294 9295 /* Account for a task changing its policy or group. 9296 * 9297 * This routine is mostly called to set cfs_rq->curr field when a task 9298 * migrates between groups/classes. 9299 */ 9300 static void set_curr_task_fair(struct rq *rq) 9301 { 9302 struct sched_entity *se = &rq->curr->se; 9303 9304 for_each_sched_entity(se) { 9305 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9306 9307 set_next_entity(cfs_rq, se); 9308 /* ensure bandwidth has been allocated on our new cfs_rq */ 9309 account_cfs_rq_runtime(cfs_rq, 0); 9310 } 9311 } 9312 9313 void init_cfs_rq(struct cfs_rq *cfs_rq) 9314 { 9315 cfs_rq->tasks_timeline = RB_ROOT; 9316 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 9317 #ifndef CONFIG_64BIT 9318 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 9319 #endif 9320 #ifdef CONFIG_SMP 9321 #ifdef CONFIG_FAIR_GROUP_SCHED 9322 cfs_rq->propagate_avg = 0; 9323 #endif 9324 atomic_long_set(&cfs_rq->removed_load_avg, 0); 9325 atomic_long_set(&cfs_rq->removed_util_avg, 0); 9326 #endif 9327 } 9328 9329 #ifdef CONFIG_FAIR_GROUP_SCHED 9330 static void task_set_group_fair(struct task_struct *p) 9331 { 9332 struct sched_entity *se = &p->se; 9333 9334 set_task_rq(p, task_cpu(p)); 9335 se->depth = se->parent ? se->parent->depth + 1 : 0; 9336 } 9337 9338 static void task_move_group_fair(struct task_struct *p) 9339 { 9340 detach_task_cfs_rq(p); 9341 set_task_rq(p, task_cpu(p)); 9342 9343 #ifdef CONFIG_SMP 9344 /* Tell se's cfs_rq has been changed -- migrated */ 9345 p->se.avg.last_update_time = 0; 9346 #endif 9347 attach_task_cfs_rq(p); 9348 } 9349 9350 static void task_change_group_fair(struct task_struct *p, int type) 9351 { 9352 switch (type) { 9353 case TASK_SET_GROUP: 9354 task_set_group_fair(p); 9355 break; 9356 9357 case TASK_MOVE_GROUP: 9358 task_move_group_fair(p); 9359 break; 9360 } 9361 } 9362 9363 void free_fair_sched_group(struct task_group *tg) 9364 { 9365 int i; 9366 9367 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 9368 9369 for_each_possible_cpu(i) { 9370 if (tg->cfs_rq) 9371 kfree(tg->cfs_rq[i]); 9372 if (tg->se) 9373 kfree(tg->se[i]); 9374 } 9375 9376 kfree(tg->cfs_rq); 9377 kfree(tg->se); 9378 } 9379 9380 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 9381 { 9382 struct sched_entity *se; 9383 struct cfs_rq *cfs_rq; 9384 int i; 9385 9386 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 9387 if (!tg->cfs_rq) 9388 goto err; 9389 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 9390 if (!tg->se) 9391 goto err; 9392 9393 tg->shares = NICE_0_LOAD; 9394 9395 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 9396 9397 for_each_possible_cpu(i) { 9398 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 9399 GFP_KERNEL, cpu_to_node(i)); 9400 if (!cfs_rq) 9401 goto err; 9402 9403 se = kzalloc_node(sizeof(struct sched_entity), 9404 GFP_KERNEL, cpu_to_node(i)); 9405 if (!se) 9406 goto err_free_rq; 9407 9408 init_cfs_rq(cfs_rq); 9409 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 9410 init_entity_runnable_average(se); 9411 } 9412 9413 return 1; 9414 9415 err_free_rq: 9416 kfree(cfs_rq); 9417 err: 9418 return 0; 9419 } 9420 9421 void online_fair_sched_group(struct task_group *tg) 9422 { 9423 struct sched_entity *se; 9424 struct rq *rq; 9425 int i; 9426 9427 for_each_possible_cpu(i) { 9428 rq = cpu_rq(i); 9429 se = tg->se[i]; 9430 9431 raw_spin_lock_irq(&rq->lock); 9432 update_rq_clock(rq); 9433 attach_entity_cfs_rq(se); 9434 sync_throttle(tg, i); 9435 raw_spin_unlock_irq(&rq->lock); 9436 } 9437 } 9438 9439 void unregister_fair_sched_group(struct task_group *tg) 9440 { 9441 unsigned long flags; 9442 struct rq *rq; 9443 int cpu; 9444 9445 for_each_possible_cpu(cpu) { 9446 if (tg->se[cpu]) 9447 remove_entity_load_avg(tg->se[cpu]); 9448 9449 /* 9450 * Only empty task groups can be destroyed; so we can speculatively 9451 * check on_list without danger of it being re-added. 9452 */ 9453 if (!tg->cfs_rq[cpu]->on_list) 9454 continue; 9455 9456 rq = cpu_rq(cpu); 9457 9458 raw_spin_lock_irqsave(&rq->lock, flags); 9459 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 9460 raw_spin_unlock_irqrestore(&rq->lock, flags); 9461 } 9462 } 9463 9464 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 9465 struct sched_entity *se, int cpu, 9466 struct sched_entity *parent) 9467 { 9468 struct rq *rq = cpu_rq(cpu); 9469 9470 cfs_rq->tg = tg; 9471 cfs_rq->rq = rq; 9472 init_cfs_rq_runtime(cfs_rq); 9473 9474 tg->cfs_rq[cpu] = cfs_rq; 9475 tg->se[cpu] = se; 9476 9477 /* se could be NULL for root_task_group */ 9478 if (!se) 9479 return; 9480 9481 if (!parent) { 9482 se->cfs_rq = &rq->cfs; 9483 se->depth = 0; 9484 } else { 9485 se->cfs_rq = parent->my_q; 9486 se->depth = parent->depth + 1; 9487 } 9488 9489 se->my_q = cfs_rq; 9490 /* guarantee group entities always have weight */ 9491 update_load_set(&se->load, NICE_0_LOAD); 9492 se->parent = parent; 9493 } 9494 9495 static DEFINE_MUTEX(shares_mutex); 9496 9497 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 9498 { 9499 int i; 9500 9501 /* 9502 * We can't change the weight of the root cgroup. 9503 */ 9504 if (!tg->se[0]) 9505 return -EINVAL; 9506 9507 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 9508 9509 mutex_lock(&shares_mutex); 9510 if (tg->shares == shares) 9511 goto done; 9512 9513 tg->shares = shares; 9514 for_each_possible_cpu(i) { 9515 struct rq *rq = cpu_rq(i); 9516 struct sched_entity *se = tg->se[i]; 9517 struct rq_flags rf; 9518 9519 /* Propagate contribution to hierarchy */ 9520 rq_lock_irqsave(rq, &rf); 9521 update_rq_clock(rq); 9522 for_each_sched_entity(se) { 9523 update_load_avg(se, UPDATE_TG); 9524 update_cfs_shares(se); 9525 } 9526 rq_unlock_irqrestore(rq, &rf); 9527 } 9528 9529 done: 9530 mutex_unlock(&shares_mutex); 9531 return 0; 9532 } 9533 #else /* CONFIG_FAIR_GROUP_SCHED */ 9534 9535 void free_fair_sched_group(struct task_group *tg) { } 9536 9537 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 9538 { 9539 return 1; 9540 } 9541 9542 void online_fair_sched_group(struct task_group *tg) { } 9543 9544 void unregister_fair_sched_group(struct task_group *tg) { } 9545 9546 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9547 9548 9549 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 9550 { 9551 struct sched_entity *se = &task->se; 9552 unsigned int rr_interval = 0; 9553 9554 /* 9555 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 9556 * idle runqueue: 9557 */ 9558 if (rq->cfs.load.weight) 9559 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 9560 9561 return rr_interval; 9562 } 9563 9564 /* 9565 * All the scheduling class methods: 9566 */ 9567 const struct sched_class fair_sched_class = { 9568 .next = &idle_sched_class, 9569 .enqueue_task = enqueue_task_fair, 9570 .dequeue_task = dequeue_task_fair, 9571 .yield_task = yield_task_fair, 9572 .yield_to_task = yield_to_task_fair, 9573 9574 .check_preempt_curr = check_preempt_wakeup, 9575 9576 .pick_next_task = pick_next_task_fair, 9577 .put_prev_task = put_prev_task_fair, 9578 9579 #ifdef CONFIG_SMP 9580 .select_task_rq = select_task_rq_fair, 9581 .migrate_task_rq = migrate_task_rq_fair, 9582 9583 .rq_online = rq_online_fair, 9584 .rq_offline = rq_offline_fair, 9585 9586 .task_dead = task_dead_fair, 9587 .set_cpus_allowed = set_cpus_allowed_common, 9588 #endif 9589 9590 .set_curr_task = set_curr_task_fair, 9591 .task_tick = task_tick_fair, 9592 .task_fork = task_fork_fair, 9593 9594 .prio_changed = prio_changed_fair, 9595 .switched_from = switched_from_fair, 9596 .switched_to = switched_to_fair, 9597 9598 .get_rr_interval = get_rr_interval_fair, 9599 9600 .update_curr = update_curr_fair, 9601 9602 #ifdef CONFIG_FAIR_GROUP_SCHED 9603 .task_change_group = task_change_group_fair, 9604 #endif 9605 }; 9606 9607 #ifdef CONFIG_SCHED_DEBUG 9608 void print_cfs_stats(struct seq_file *m, int cpu) 9609 { 9610 struct cfs_rq *cfs_rq, *pos; 9611 9612 rcu_read_lock(); 9613 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 9614 print_cfs_rq(m, cpu, cfs_rq); 9615 rcu_read_unlock(); 9616 } 9617 9618 #ifdef CONFIG_NUMA_BALANCING 9619 void show_numa_stats(struct task_struct *p, struct seq_file *m) 9620 { 9621 int node; 9622 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 9623 9624 for_each_online_node(node) { 9625 if (p->numa_faults) { 9626 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 9627 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 9628 } 9629 if (p->numa_group) { 9630 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 9631 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 9632 } 9633 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 9634 } 9635 } 9636 #endif /* CONFIG_NUMA_BALANCING */ 9637 #endif /* CONFIG_SCHED_DEBUG */ 9638 9639 __init void init_sched_fair_class(void) 9640 { 9641 #ifdef CONFIG_SMP 9642 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 9643 9644 #ifdef CONFIG_NO_HZ_COMMON 9645 nohz.next_balance = jiffies; 9646 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 9647 #endif 9648 #endif /* SMP */ 9649 9650 } 9651