1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 21 */ 22 23 #include <linux/latencytop.h> 24 #include <linux/sched.h> 25 #include <linux/cpumask.h> 26 #include <linux/slab.h> 27 #include <linux/profile.h> 28 #include <linux/interrupt.h> 29 30 #include <trace/events/sched.h> 31 32 #include "sched.h" 33 34 /* 35 * Targeted preemption latency for CPU-bound tasks: 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 37 * 38 * NOTE: this latency value is not the same as the concept of 39 * 'timeslice length' - timeslices in CFS are of variable length 40 * and have no persistent notion like in traditional, time-slice 41 * based scheduling concepts. 42 * 43 * (to see the precise effective timeslice length of your workload, 44 * run vmstat and monitor the context-switches (cs) field) 45 */ 46 unsigned int sysctl_sched_latency = 6000000ULL; 47 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 48 49 /* 50 * The initial- and re-scaling of tunables is configurable 51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 52 * 53 * Options are: 54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 57 */ 58 enum sched_tunable_scaling sysctl_sched_tunable_scaling 59 = SCHED_TUNABLESCALING_LOG; 60 61 /* 62 * Minimal preemption granularity for CPU-bound tasks: 63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 64 */ 65 unsigned int sysctl_sched_min_granularity = 750000ULL; 66 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 67 68 /* 69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 70 */ 71 static unsigned int sched_nr_latency = 8; 72 73 /* 74 * After fork, child runs first. If set to 0 (default) then 75 * parent will (try to) run first. 76 */ 77 unsigned int sysctl_sched_child_runs_first __read_mostly; 78 79 /* 80 * SCHED_OTHER wake-up granularity. 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 82 * 83 * This option delays the preemption effects of decoupled workloads 84 * and reduces their over-scheduling. Synchronous workloads will still 85 * have immediate wakeup/sleep latencies. 86 */ 87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 89 90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 91 92 /* 93 * The exponential sliding window over which load is averaged for shares 94 * distribution. 95 * (default: 10msec) 96 */ 97 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 98 99 #ifdef CONFIG_CFS_BANDWIDTH 100 /* 101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 102 * each time a cfs_rq requests quota. 103 * 104 * Note: in the case that the slice exceeds the runtime remaining (either due 105 * to consumption or the quota being specified to be smaller than the slice) 106 * we will always only issue the remaining available time. 107 * 108 * default: 5 msec, units: microseconds 109 */ 110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 111 #endif 112 113 /* 114 * Increase the granularity value when there are more CPUs, 115 * because with more CPUs the 'effective latency' as visible 116 * to users decreases. But the relationship is not linear, 117 * so pick a second-best guess by going with the log2 of the 118 * number of CPUs. 119 * 120 * This idea comes from the SD scheduler of Con Kolivas: 121 */ 122 static int get_update_sysctl_factor(void) 123 { 124 unsigned int cpus = min_t(int, num_online_cpus(), 8); 125 unsigned int factor; 126 127 switch (sysctl_sched_tunable_scaling) { 128 case SCHED_TUNABLESCALING_NONE: 129 factor = 1; 130 break; 131 case SCHED_TUNABLESCALING_LINEAR: 132 factor = cpus; 133 break; 134 case SCHED_TUNABLESCALING_LOG: 135 default: 136 factor = 1 + ilog2(cpus); 137 break; 138 } 139 140 return factor; 141 } 142 143 static void update_sysctl(void) 144 { 145 unsigned int factor = get_update_sysctl_factor(); 146 147 #define SET_SYSCTL(name) \ 148 (sysctl_##name = (factor) * normalized_sysctl_##name) 149 SET_SYSCTL(sched_min_granularity); 150 SET_SYSCTL(sched_latency); 151 SET_SYSCTL(sched_wakeup_granularity); 152 #undef SET_SYSCTL 153 } 154 155 void sched_init_granularity(void) 156 { 157 update_sysctl(); 158 } 159 160 #if BITS_PER_LONG == 32 161 # define WMULT_CONST (~0UL) 162 #else 163 # define WMULT_CONST (1UL << 32) 164 #endif 165 166 #define WMULT_SHIFT 32 167 168 /* 169 * Shift right and round: 170 */ 171 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) 172 173 /* 174 * delta *= weight / lw 175 */ 176 static unsigned long 177 calc_delta_mine(unsigned long delta_exec, unsigned long weight, 178 struct load_weight *lw) 179 { 180 u64 tmp; 181 182 /* 183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched 184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than 185 * 2^SCHED_LOAD_RESOLUTION. 186 */ 187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION))) 188 tmp = (u64)delta_exec * scale_load_down(weight); 189 else 190 tmp = (u64)delta_exec; 191 192 if (!lw->inv_weight) { 193 unsigned long w = scale_load_down(lw->weight); 194 195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 196 lw->inv_weight = 1; 197 else if (unlikely(!w)) 198 lw->inv_weight = WMULT_CONST; 199 else 200 lw->inv_weight = WMULT_CONST / w; 201 } 202 203 /* 204 * Check whether we'd overflow the 64-bit multiplication: 205 */ 206 if (unlikely(tmp > WMULT_CONST)) 207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, 208 WMULT_SHIFT/2); 209 else 210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); 211 212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); 213 } 214 215 216 const struct sched_class fair_sched_class; 217 218 /************************************************************** 219 * CFS operations on generic schedulable entities: 220 */ 221 222 #ifdef CONFIG_FAIR_GROUP_SCHED 223 224 /* cpu runqueue to which this cfs_rq is attached */ 225 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 226 { 227 return cfs_rq->rq; 228 } 229 230 /* An entity is a task if it doesn't "own" a runqueue */ 231 #define entity_is_task(se) (!se->my_q) 232 233 static inline struct task_struct *task_of(struct sched_entity *se) 234 { 235 #ifdef CONFIG_SCHED_DEBUG 236 WARN_ON_ONCE(!entity_is_task(se)); 237 #endif 238 return container_of(se, struct task_struct, se); 239 } 240 241 /* Walk up scheduling entities hierarchy */ 242 #define for_each_sched_entity(se) \ 243 for (; se; se = se->parent) 244 245 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 246 { 247 return p->se.cfs_rq; 248 } 249 250 /* runqueue on which this entity is (to be) queued */ 251 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 252 { 253 return se->cfs_rq; 254 } 255 256 /* runqueue "owned" by this group */ 257 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 258 { 259 return grp->my_q; 260 } 261 262 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 263 { 264 if (!cfs_rq->on_list) { 265 /* 266 * Ensure we either appear before our parent (if already 267 * enqueued) or force our parent to appear after us when it is 268 * enqueued. The fact that we always enqueue bottom-up 269 * reduces this to two cases. 270 */ 271 if (cfs_rq->tg->parent && 272 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 273 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 274 &rq_of(cfs_rq)->leaf_cfs_rq_list); 275 } else { 276 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 277 &rq_of(cfs_rq)->leaf_cfs_rq_list); 278 } 279 280 cfs_rq->on_list = 1; 281 } 282 } 283 284 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 285 { 286 if (cfs_rq->on_list) { 287 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 288 cfs_rq->on_list = 0; 289 } 290 } 291 292 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 293 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 294 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 295 296 /* Do the two (enqueued) entities belong to the same group ? */ 297 static inline int 298 is_same_group(struct sched_entity *se, struct sched_entity *pse) 299 { 300 if (se->cfs_rq == pse->cfs_rq) 301 return 1; 302 303 return 0; 304 } 305 306 static inline struct sched_entity *parent_entity(struct sched_entity *se) 307 { 308 return se->parent; 309 } 310 311 /* return depth at which a sched entity is present in the hierarchy */ 312 static inline int depth_se(struct sched_entity *se) 313 { 314 int depth = 0; 315 316 for_each_sched_entity(se) 317 depth++; 318 319 return depth; 320 } 321 322 static void 323 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 324 { 325 int se_depth, pse_depth; 326 327 /* 328 * preemption test can be made between sibling entities who are in the 329 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 330 * both tasks until we find their ancestors who are siblings of common 331 * parent. 332 */ 333 334 /* First walk up until both entities are at same depth */ 335 se_depth = depth_se(*se); 336 pse_depth = depth_se(*pse); 337 338 while (se_depth > pse_depth) { 339 se_depth--; 340 *se = parent_entity(*se); 341 } 342 343 while (pse_depth > se_depth) { 344 pse_depth--; 345 *pse = parent_entity(*pse); 346 } 347 348 while (!is_same_group(*se, *pse)) { 349 *se = parent_entity(*se); 350 *pse = parent_entity(*pse); 351 } 352 } 353 354 #else /* !CONFIG_FAIR_GROUP_SCHED */ 355 356 static inline struct task_struct *task_of(struct sched_entity *se) 357 { 358 return container_of(se, struct task_struct, se); 359 } 360 361 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 362 { 363 return container_of(cfs_rq, struct rq, cfs); 364 } 365 366 #define entity_is_task(se) 1 367 368 #define for_each_sched_entity(se) \ 369 for (; se; se = NULL) 370 371 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 372 { 373 return &task_rq(p)->cfs; 374 } 375 376 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 377 { 378 struct task_struct *p = task_of(se); 379 struct rq *rq = task_rq(p); 380 381 return &rq->cfs; 382 } 383 384 /* runqueue "owned" by this group */ 385 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 386 { 387 return NULL; 388 } 389 390 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 391 { 392 } 393 394 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 395 { 396 } 397 398 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 399 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 400 401 static inline int 402 is_same_group(struct sched_entity *se, struct sched_entity *pse) 403 { 404 return 1; 405 } 406 407 static inline struct sched_entity *parent_entity(struct sched_entity *se) 408 { 409 return NULL; 410 } 411 412 static inline void 413 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 414 { 415 } 416 417 #endif /* CONFIG_FAIR_GROUP_SCHED */ 418 419 static __always_inline 420 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec); 421 422 /************************************************************** 423 * Scheduling class tree data structure manipulation methods: 424 */ 425 426 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime) 427 { 428 s64 delta = (s64)(vruntime - min_vruntime); 429 if (delta > 0) 430 min_vruntime = vruntime; 431 432 return min_vruntime; 433 } 434 435 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 436 { 437 s64 delta = (s64)(vruntime - min_vruntime); 438 if (delta < 0) 439 min_vruntime = vruntime; 440 441 return min_vruntime; 442 } 443 444 static inline int entity_before(struct sched_entity *a, 445 struct sched_entity *b) 446 { 447 return (s64)(a->vruntime - b->vruntime) < 0; 448 } 449 450 static void update_min_vruntime(struct cfs_rq *cfs_rq) 451 { 452 u64 vruntime = cfs_rq->min_vruntime; 453 454 if (cfs_rq->curr) 455 vruntime = cfs_rq->curr->vruntime; 456 457 if (cfs_rq->rb_leftmost) { 458 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 459 struct sched_entity, 460 run_node); 461 462 if (!cfs_rq->curr) 463 vruntime = se->vruntime; 464 else 465 vruntime = min_vruntime(vruntime, se->vruntime); 466 } 467 468 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 469 #ifndef CONFIG_64BIT 470 smp_wmb(); 471 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 472 #endif 473 } 474 475 /* 476 * Enqueue an entity into the rb-tree: 477 */ 478 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 479 { 480 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 481 struct rb_node *parent = NULL; 482 struct sched_entity *entry; 483 int leftmost = 1; 484 485 /* 486 * Find the right place in the rbtree: 487 */ 488 while (*link) { 489 parent = *link; 490 entry = rb_entry(parent, struct sched_entity, run_node); 491 /* 492 * We dont care about collisions. Nodes with 493 * the same key stay together. 494 */ 495 if (entity_before(se, entry)) { 496 link = &parent->rb_left; 497 } else { 498 link = &parent->rb_right; 499 leftmost = 0; 500 } 501 } 502 503 /* 504 * Maintain a cache of leftmost tree entries (it is frequently 505 * used): 506 */ 507 if (leftmost) 508 cfs_rq->rb_leftmost = &se->run_node; 509 510 rb_link_node(&se->run_node, parent, link); 511 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 512 } 513 514 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 515 { 516 if (cfs_rq->rb_leftmost == &se->run_node) { 517 struct rb_node *next_node; 518 519 next_node = rb_next(&se->run_node); 520 cfs_rq->rb_leftmost = next_node; 521 } 522 523 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 524 } 525 526 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 527 { 528 struct rb_node *left = cfs_rq->rb_leftmost; 529 530 if (!left) 531 return NULL; 532 533 return rb_entry(left, struct sched_entity, run_node); 534 } 535 536 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 537 { 538 struct rb_node *next = rb_next(&se->run_node); 539 540 if (!next) 541 return NULL; 542 543 return rb_entry(next, struct sched_entity, run_node); 544 } 545 546 #ifdef CONFIG_SCHED_DEBUG 547 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 548 { 549 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 550 551 if (!last) 552 return NULL; 553 554 return rb_entry(last, struct sched_entity, run_node); 555 } 556 557 /************************************************************** 558 * Scheduling class statistics methods: 559 */ 560 561 int sched_proc_update_handler(struct ctl_table *table, int write, 562 void __user *buffer, size_t *lenp, 563 loff_t *ppos) 564 { 565 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 566 int factor = get_update_sysctl_factor(); 567 568 if (ret || !write) 569 return ret; 570 571 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 572 sysctl_sched_min_granularity); 573 574 #define WRT_SYSCTL(name) \ 575 (normalized_sysctl_##name = sysctl_##name / (factor)) 576 WRT_SYSCTL(sched_min_granularity); 577 WRT_SYSCTL(sched_latency); 578 WRT_SYSCTL(sched_wakeup_granularity); 579 #undef WRT_SYSCTL 580 581 return 0; 582 } 583 #endif 584 585 /* 586 * delta /= w 587 */ 588 static inline unsigned long 589 calc_delta_fair(unsigned long delta, struct sched_entity *se) 590 { 591 if (unlikely(se->load.weight != NICE_0_LOAD)) 592 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load); 593 594 return delta; 595 } 596 597 /* 598 * The idea is to set a period in which each task runs once. 599 * 600 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch 601 * this period because otherwise the slices get too small. 602 * 603 * p = (nr <= nl) ? l : l*nr/nl 604 */ 605 static u64 __sched_period(unsigned long nr_running) 606 { 607 u64 period = sysctl_sched_latency; 608 unsigned long nr_latency = sched_nr_latency; 609 610 if (unlikely(nr_running > nr_latency)) { 611 period = sysctl_sched_min_granularity; 612 period *= nr_running; 613 } 614 615 return period; 616 } 617 618 /* 619 * We calculate the wall-time slice from the period by taking a part 620 * proportional to the weight. 621 * 622 * s = p*P[w/rw] 623 */ 624 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 625 { 626 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 627 628 for_each_sched_entity(se) { 629 struct load_weight *load; 630 struct load_weight lw; 631 632 cfs_rq = cfs_rq_of(se); 633 load = &cfs_rq->load; 634 635 if (unlikely(!se->on_rq)) { 636 lw = cfs_rq->load; 637 638 update_load_add(&lw, se->load.weight); 639 load = &lw; 640 } 641 slice = calc_delta_mine(slice, se->load.weight, load); 642 } 643 return slice; 644 } 645 646 /* 647 * We calculate the vruntime slice of a to be inserted task 648 * 649 * vs = s/w 650 */ 651 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 652 { 653 return calc_delta_fair(sched_slice(cfs_rq, se), se); 654 } 655 656 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update); 657 static void update_cfs_shares(struct cfs_rq *cfs_rq); 658 659 /* 660 * Update the current task's runtime statistics. Skip current tasks that 661 * are not in our scheduling class. 662 */ 663 static inline void 664 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, 665 unsigned long delta_exec) 666 { 667 unsigned long delta_exec_weighted; 668 669 schedstat_set(curr->statistics.exec_max, 670 max((u64)delta_exec, curr->statistics.exec_max)); 671 672 curr->sum_exec_runtime += delta_exec; 673 schedstat_add(cfs_rq, exec_clock, delta_exec); 674 delta_exec_weighted = calc_delta_fair(delta_exec, curr); 675 676 curr->vruntime += delta_exec_weighted; 677 update_min_vruntime(cfs_rq); 678 679 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED 680 cfs_rq->load_unacc_exec_time += delta_exec; 681 #endif 682 } 683 684 static void update_curr(struct cfs_rq *cfs_rq) 685 { 686 struct sched_entity *curr = cfs_rq->curr; 687 u64 now = rq_of(cfs_rq)->clock_task; 688 unsigned long delta_exec; 689 690 if (unlikely(!curr)) 691 return; 692 693 /* 694 * Get the amount of time the current task was running 695 * since the last time we changed load (this cannot 696 * overflow on 32 bits): 697 */ 698 delta_exec = (unsigned long)(now - curr->exec_start); 699 if (!delta_exec) 700 return; 701 702 __update_curr(cfs_rq, curr, delta_exec); 703 curr->exec_start = now; 704 705 if (entity_is_task(curr)) { 706 struct task_struct *curtask = task_of(curr); 707 708 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 709 cpuacct_charge(curtask, delta_exec); 710 account_group_exec_runtime(curtask, delta_exec); 711 } 712 713 account_cfs_rq_runtime(cfs_rq, delta_exec); 714 } 715 716 static inline void 717 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 718 { 719 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock); 720 } 721 722 /* 723 * Task is being enqueued - update stats: 724 */ 725 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 726 { 727 /* 728 * Are we enqueueing a waiting task? (for current tasks 729 * a dequeue/enqueue event is a NOP) 730 */ 731 if (se != cfs_rq->curr) 732 update_stats_wait_start(cfs_rq, se); 733 } 734 735 static void 736 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 737 { 738 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, 739 rq_of(cfs_rq)->clock - se->statistics.wait_start)); 740 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); 741 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + 742 rq_of(cfs_rq)->clock - se->statistics.wait_start); 743 #ifdef CONFIG_SCHEDSTATS 744 if (entity_is_task(se)) { 745 trace_sched_stat_wait(task_of(se), 746 rq_of(cfs_rq)->clock - se->statistics.wait_start); 747 } 748 #endif 749 schedstat_set(se->statistics.wait_start, 0); 750 } 751 752 static inline void 753 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 754 { 755 /* 756 * Mark the end of the wait period if dequeueing a 757 * waiting task: 758 */ 759 if (se != cfs_rq->curr) 760 update_stats_wait_end(cfs_rq, se); 761 } 762 763 /* 764 * We are picking a new current task - update its stats: 765 */ 766 static inline void 767 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 768 { 769 /* 770 * We are starting a new run period: 771 */ 772 se->exec_start = rq_of(cfs_rq)->clock_task; 773 } 774 775 /************************************************** 776 * Scheduling class queueing methods: 777 */ 778 779 static void 780 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 781 { 782 update_load_add(&cfs_rq->load, se->load.weight); 783 if (!parent_entity(se)) 784 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 785 #ifdef CONFIG_SMP 786 if (entity_is_task(se)) 787 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks); 788 #endif 789 cfs_rq->nr_running++; 790 } 791 792 static void 793 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 794 { 795 update_load_sub(&cfs_rq->load, se->load.weight); 796 if (!parent_entity(se)) 797 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 798 if (entity_is_task(se)) 799 list_del_init(&se->group_node); 800 cfs_rq->nr_running--; 801 } 802 803 #ifdef CONFIG_FAIR_GROUP_SCHED 804 /* we need this in update_cfs_load and load-balance functions below */ 805 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 806 # ifdef CONFIG_SMP 807 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq, 808 int global_update) 809 { 810 struct task_group *tg = cfs_rq->tg; 811 long load_avg; 812 813 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1); 814 load_avg -= cfs_rq->load_contribution; 815 816 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) { 817 atomic_add(load_avg, &tg->load_weight); 818 cfs_rq->load_contribution += load_avg; 819 } 820 } 821 822 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) 823 { 824 u64 period = sysctl_sched_shares_window; 825 u64 now, delta; 826 unsigned long load = cfs_rq->load.weight; 827 828 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq)) 829 return; 830 831 now = rq_of(cfs_rq)->clock_task; 832 delta = now - cfs_rq->load_stamp; 833 834 /* truncate load history at 4 idle periods */ 835 if (cfs_rq->load_stamp > cfs_rq->load_last && 836 now - cfs_rq->load_last > 4 * period) { 837 cfs_rq->load_period = 0; 838 cfs_rq->load_avg = 0; 839 delta = period - 1; 840 } 841 842 cfs_rq->load_stamp = now; 843 cfs_rq->load_unacc_exec_time = 0; 844 cfs_rq->load_period += delta; 845 if (load) { 846 cfs_rq->load_last = now; 847 cfs_rq->load_avg += delta * load; 848 } 849 850 /* consider updating load contribution on each fold or truncate */ 851 if (global_update || cfs_rq->load_period > period 852 || !cfs_rq->load_period) 853 update_cfs_rq_load_contribution(cfs_rq, global_update); 854 855 while (cfs_rq->load_period > period) { 856 /* 857 * Inline assembly required to prevent the compiler 858 * optimising this loop into a divmod call. 859 * See __iter_div_u64_rem() for another example of this. 860 */ 861 asm("" : "+rm" (cfs_rq->load_period)); 862 cfs_rq->load_period /= 2; 863 cfs_rq->load_avg /= 2; 864 } 865 866 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg) 867 list_del_leaf_cfs_rq(cfs_rq); 868 } 869 870 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) 871 { 872 long tg_weight; 873 874 /* 875 * Use this CPU's actual weight instead of the last load_contribution 876 * to gain a more accurate current total weight. See 877 * update_cfs_rq_load_contribution(). 878 */ 879 tg_weight = atomic_read(&tg->load_weight); 880 tg_weight -= cfs_rq->load_contribution; 881 tg_weight += cfs_rq->load.weight; 882 883 return tg_weight; 884 } 885 886 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 887 { 888 long tg_weight, load, shares; 889 890 tg_weight = calc_tg_weight(tg, cfs_rq); 891 load = cfs_rq->load.weight; 892 893 shares = (tg->shares * load); 894 if (tg_weight) 895 shares /= tg_weight; 896 897 if (shares < MIN_SHARES) 898 shares = MIN_SHARES; 899 if (shares > tg->shares) 900 shares = tg->shares; 901 902 return shares; 903 } 904 905 static void update_entity_shares_tick(struct cfs_rq *cfs_rq) 906 { 907 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) { 908 update_cfs_load(cfs_rq, 0); 909 update_cfs_shares(cfs_rq); 910 } 911 } 912 # else /* CONFIG_SMP */ 913 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) 914 { 915 } 916 917 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 918 { 919 return tg->shares; 920 } 921 922 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) 923 { 924 } 925 # endif /* CONFIG_SMP */ 926 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 927 unsigned long weight) 928 { 929 if (se->on_rq) { 930 /* commit outstanding execution time */ 931 if (cfs_rq->curr == se) 932 update_curr(cfs_rq); 933 account_entity_dequeue(cfs_rq, se); 934 } 935 936 update_load_set(&se->load, weight); 937 938 if (se->on_rq) 939 account_entity_enqueue(cfs_rq, se); 940 } 941 942 static void update_cfs_shares(struct cfs_rq *cfs_rq) 943 { 944 struct task_group *tg; 945 struct sched_entity *se; 946 long shares; 947 948 tg = cfs_rq->tg; 949 se = tg->se[cpu_of(rq_of(cfs_rq))]; 950 if (!se || throttled_hierarchy(cfs_rq)) 951 return; 952 #ifndef CONFIG_SMP 953 if (likely(se->load.weight == tg->shares)) 954 return; 955 #endif 956 shares = calc_cfs_shares(cfs_rq, tg); 957 958 reweight_entity(cfs_rq_of(se), se, shares); 959 } 960 #else /* CONFIG_FAIR_GROUP_SCHED */ 961 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) 962 { 963 } 964 965 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 966 { 967 } 968 969 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) 970 { 971 } 972 #endif /* CONFIG_FAIR_GROUP_SCHED */ 973 974 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 975 { 976 #ifdef CONFIG_SCHEDSTATS 977 struct task_struct *tsk = NULL; 978 979 if (entity_is_task(se)) 980 tsk = task_of(se); 981 982 if (se->statistics.sleep_start) { 983 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start; 984 985 if ((s64)delta < 0) 986 delta = 0; 987 988 if (unlikely(delta > se->statistics.sleep_max)) 989 se->statistics.sleep_max = delta; 990 991 se->statistics.sleep_start = 0; 992 se->statistics.sum_sleep_runtime += delta; 993 994 if (tsk) { 995 account_scheduler_latency(tsk, delta >> 10, 1); 996 trace_sched_stat_sleep(tsk, delta); 997 } 998 } 999 if (se->statistics.block_start) { 1000 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start; 1001 1002 if ((s64)delta < 0) 1003 delta = 0; 1004 1005 if (unlikely(delta > se->statistics.block_max)) 1006 se->statistics.block_max = delta; 1007 1008 se->statistics.block_start = 0; 1009 se->statistics.sum_sleep_runtime += delta; 1010 1011 if (tsk) { 1012 if (tsk->in_iowait) { 1013 se->statistics.iowait_sum += delta; 1014 se->statistics.iowait_count++; 1015 trace_sched_stat_iowait(tsk, delta); 1016 } 1017 1018 trace_sched_stat_blocked(tsk, delta); 1019 1020 /* 1021 * Blocking time is in units of nanosecs, so shift by 1022 * 20 to get a milliseconds-range estimation of the 1023 * amount of time that the task spent sleeping: 1024 */ 1025 if (unlikely(prof_on == SLEEP_PROFILING)) { 1026 profile_hits(SLEEP_PROFILING, 1027 (void *)get_wchan(tsk), 1028 delta >> 20); 1029 } 1030 account_scheduler_latency(tsk, delta >> 10, 0); 1031 } 1032 } 1033 #endif 1034 } 1035 1036 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 1037 { 1038 #ifdef CONFIG_SCHED_DEBUG 1039 s64 d = se->vruntime - cfs_rq->min_vruntime; 1040 1041 if (d < 0) 1042 d = -d; 1043 1044 if (d > 3*sysctl_sched_latency) 1045 schedstat_inc(cfs_rq, nr_spread_over); 1046 #endif 1047 } 1048 1049 static void 1050 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 1051 { 1052 u64 vruntime = cfs_rq->min_vruntime; 1053 1054 /* 1055 * The 'current' period is already promised to the current tasks, 1056 * however the extra weight of the new task will slow them down a 1057 * little, place the new task so that it fits in the slot that 1058 * stays open at the end. 1059 */ 1060 if (initial && sched_feat(START_DEBIT)) 1061 vruntime += sched_vslice(cfs_rq, se); 1062 1063 /* sleeps up to a single latency don't count. */ 1064 if (!initial) { 1065 unsigned long thresh = sysctl_sched_latency; 1066 1067 /* 1068 * Halve their sleep time's effect, to allow 1069 * for a gentler effect of sleepers: 1070 */ 1071 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 1072 thresh >>= 1; 1073 1074 vruntime -= thresh; 1075 } 1076 1077 /* ensure we never gain time by being placed backwards. */ 1078 vruntime = max_vruntime(se->vruntime, vruntime); 1079 1080 se->vruntime = vruntime; 1081 } 1082 1083 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 1084 1085 static void 1086 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1087 { 1088 /* 1089 * Update the normalized vruntime before updating min_vruntime 1090 * through callig update_curr(). 1091 */ 1092 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) 1093 se->vruntime += cfs_rq->min_vruntime; 1094 1095 /* 1096 * Update run-time statistics of the 'current'. 1097 */ 1098 update_curr(cfs_rq); 1099 update_cfs_load(cfs_rq, 0); 1100 account_entity_enqueue(cfs_rq, se); 1101 update_cfs_shares(cfs_rq); 1102 1103 if (flags & ENQUEUE_WAKEUP) { 1104 place_entity(cfs_rq, se, 0); 1105 enqueue_sleeper(cfs_rq, se); 1106 } 1107 1108 update_stats_enqueue(cfs_rq, se); 1109 check_spread(cfs_rq, se); 1110 if (se != cfs_rq->curr) 1111 __enqueue_entity(cfs_rq, se); 1112 se->on_rq = 1; 1113 1114 if (cfs_rq->nr_running == 1) { 1115 list_add_leaf_cfs_rq(cfs_rq); 1116 check_enqueue_throttle(cfs_rq); 1117 } 1118 } 1119 1120 static void __clear_buddies_last(struct sched_entity *se) 1121 { 1122 for_each_sched_entity(se) { 1123 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1124 if (cfs_rq->last == se) 1125 cfs_rq->last = NULL; 1126 else 1127 break; 1128 } 1129 } 1130 1131 static void __clear_buddies_next(struct sched_entity *se) 1132 { 1133 for_each_sched_entity(se) { 1134 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1135 if (cfs_rq->next == se) 1136 cfs_rq->next = NULL; 1137 else 1138 break; 1139 } 1140 } 1141 1142 static void __clear_buddies_skip(struct sched_entity *se) 1143 { 1144 for_each_sched_entity(se) { 1145 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1146 if (cfs_rq->skip == se) 1147 cfs_rq->skip = NULL; 1148 else 1149 break; 1150 } 1151 } 1152 1153 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 1154 { 1155 if (cfs_rq->last == se) 1156 __clear_buddies_last(se); 1157 1158 if (cfs_rq->next == se) 1159 __clear_buddies_next(se); 1160 1161 if (cfs_rq->skip == se) 1162 __clear_buddies_skip(se); 1163 } 1164 1165 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 1166 1167 static void 1168 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1169 { 1170 /* 1171 * Update run-time statistics of the 'current'. 1172 */ 1173 update_curr(cfs_rq); 1174 1175 update_stats_dequeue(cfs_rq, se); 1176 if (flags & DEQUEUE_SLEEP) { 1177 #ifdef CONFIG_SCHEDSTATS 1178 if (entity_is_task(se)) { 1179 struct task_struct *tsk = task_of(se); 1180 1181 if (tsk->state & TASK_INTERRUPTIBLE) 1182 se->statistics.sleep_start = rq_of(cfs_rq)->clock; 1183 if (tsk->state & TASK_UNINTERRUPTIBLE) 1184 se->statistics.block_start = rq_of(cfs_rq)->clock; 1185 } 1186 #endif 1187 } 1188 1189 clear_buddies(cfs_rq, se); 1190 1191 if (se != cfs_rq->curr) 1192 __dequeue_entity(cfs_rq, se); 1193 se->on_rq = 0; 1194 update_cfs_load(cfs_rq, 0); 1195 account_entity_dequeue(cfs_rq, se); 1196 1197 /* 1198 * Normalize the entity after updating the min_vruntime because the 1199 * update can refer to the ->curr item and we need to reflect this 1200 * movement in our normalized position. 1201 */ 1202 if (!(flags & DEQUEUE_SLEEP)) 1203 se->vruntime -= cfs_rq->min_vruntime; 1204 1205 /* return excess runtime on last dequeue */ 1206 return_cfs_rq_runtime(cfs_rq); 1207 1208 update_min_vruntime(cfs_rq); 1209 update_cfs_shares(cfs_rq); 1210 } 1211 1212 /* 1213 * Preempt the current task with a newly woken task if needed: 1214 */ 1215 static void 1216 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1217 { 1218 unsigned long ideal_runtime, delta_exec; 1219 struct sched_entity *se; 1220 s64 delta; 1221 1222 ideal_runtime = sched_slice(cfs_rq, curr); 1223 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 1224 if (delta_exec > ideal_runtime) { 1225 resched_task(rq_of(cfs_rq)->curr); 1226 /* 1227 * The current task ran long enough, ensure it doesn't get 1228 * re-elected due to buddy favours. 1229 */ 1230 clear_buddies(cfs_rq, curr); 1231 return; 1232 } 1233 1234 /* 1235 * Ensure that a task that missed wakeup preemption by a 1236 * narrow margin doesn't have to wait for a full slice. 1237 * This also mitigates buddy induced latencies under load. 1238 */ 1239 if (delta_exec < sysctl_sched_min_granularity) 1240 return; 1241 1242 se = __pick_first_entity(cfs_rq); 1243 delta = curr->vruntime - se->vruntime; 1244 1245 if (delta < 0) 1246 return; 1247 1248 if (delta > ideal_runtime) 1249 resched_task(rq_of(cfs_rq)->curr); 1250 } 1251 1252 static void 1253 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 1254 { 1255 /* 'current' is not kept within the tree. */ 1256 if (se->on_rq) { 1257 /* 1258 * Any task has to be enqueued before it get to execute on 1259 * a CPU. So account for the time it spent waiting on the 1260 * runqueue. 1261 */ 1262 update_stats_wait_end(cfs_rq, se); 1263 __dequeue_entity(cfs_rq, se); 1264 } 1265 1266 update_stats_curr_start(cfs_rq, se); 1267 cfs_rq->curr = se; 1268 #ifdef CONFIG_SCHEDSTATS 1269 /* 1270 * Track our maximum slice length, if the CPU's load is at 1271 * least twice that of our own weight (i.e. dont track it 1272 * when there are only lesser-weight tasks around): 1273 */ 1274 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 1275 se->statistics.slice_max = max(se->statistics.slice_max, 1276 se->sum_exec_runtime - se->prev_sum_exec_runtime); 1277 } 1278 #endif 1279 se->prev_sum_exec_runtime = se->sum_exec_runtime; 1280 } 1281 1282 static int 1283 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 1284 1285 /* 1286 * Pick the next process, keeping these things in mind, in this order: 1287 * 1) keep things fair between processes/task groups 1288 * 2) pick the "next" process, since someone really wants that to run 1289 * 3) pick the "last" process, for cache locality 1290 * 4) do not run the "skip" process, if something else is available 1291 */ 1292 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) 1293 { 1294 struct sched_entity *se = __pick_first_entity(cfs_rq); 1295 struct sched_entity *left = se; 1296 1297 /* 1298 * Avoid running the skip buddy, if running something else can 1299 * be done without getting too unfair. 1300 */ 1301 if (cfs_rq->skip == se) { 1302 struct sched_entity *second = __pick_next_entity(se); 1303 if (second && wakeup_preempt_entity(second, left) < 1) 1304 se = second; 1305 } 1306 1307 /* 1308 * Prefer last buddy, try to return the CPU to a preempted task. 1309 */ 1310 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 1311 se = cfs_rq->last; 1312 1313 /* 1314 * Someone really wants this to run. If it's not unfair, run it. 1315 */ 1316 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 1317 se = cfs_rq->next; 1318 1319 clear_buddies(cfs_rq, se); 1320 1321 return se; 1322 } 1323 1324 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 1325 1326 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 1327 { 1328 /* 1329 * If still on the runqueue then deactivate_task() 1330 * was not called and update_curr() has to be done: 1331 */ 1332 if (prev->on_rq) 1333 update_curr(cfs_rq); 1334 1335 /* throttle cfs_rqs exceeding runtime */ 1336 check_cfs_rq_runtime(cfs_rq); 1337 1338 check_spread(cfs_rq, prev); 1339 if (prev->on_rq) { 1340 update_stats_wait_start(cfs_rq, prev); 1341 /* Put 'current' back into the tree. */ 1342 __enqueue_entity(cfs_rq, prev); 1343 } 1344 cfs_rq->curr = NULL; 1345 } 1346 1347 static void 1348 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 1349 { 1350 /* 1351 * Update run-time statistics of the 'current'. 1352 */ 1353 update_curr(cfs_rq); 1354 1355 /* 1356 * Update share accounting for long-running entities. 1357 */ 1358 update_entity_shares_tick(cfs_rq); 1359 1360 #ifdef CONFIG_SCHED_HRTICK 1361 /* 1362 * queued ticks are scheduled to match the slice, so don't bother 1363 * validating it and just reschedule. 1364 */ 1365 if (queued) { 1366 resched_task(rq_of(cfs_rq)->curr); 1367 return; 1368 } 1369 /* 1370 * don't let the period tick interfere with the hrtick preemption 1371 */ 1372 if (!sched_feat(DOUBLE_TICK) && 1373 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 1374 return; 1375 #endif 1376 1377 if (cfs_rq->nr_running > 1) 1378 check_preempt_tick(cfs_rq, curr); 1379 } 1380 1381 1382 /************************************************** 1383 * CFS bandwidth control machinery 1384 */ 1385 1386 #ifdef CONFIG_CFS_BANDWIDTH 1387 1388 #ifdef HAVE_JUMP_LABEL 1389 static struct static_key __cfs_bandwidth_used; 1390 1391 static inline bool cfs_bandwidth_used(void) 1392 { 1393 return static_key_false(&__cfs_bandwidth_used); 1394 } 1395 1396 void account_cfs_bandwidth_used(int enabled, int was_enabled) 1397 { 1398 /* only need to count groups transitioning between enabled/!enabled */ 1399 if (enabled && !was_enabled) 1400 static_key_slow_inc(&__cfs_bandwidth_used); 1401 else if (!enabled && was_enabled) 1402 static_key_slow_dec(&__cfs_bandwidth_used); 1403 } 1404 #else /* HAVE_JUMP_LABEL */ 1405 static bool cfs_bandwidth_used(void) 1406 { 1407 return true; 1408 } 1409 1410 void account_cfs_bandwidth_used(int enabled, int was_enabled) {} 1411 #endif /* HAVE_JUMP_LABEL */ 1412 1413 /* 1414 * default period for cfs group bandwidth. 1415 * default: 0.1s, units: nanoseconds 1416 */ 1417 static inline u64 default_cfs_period(void) 1418 { 1419 return 100000000ULL; 1420 } 1421 1422 static inline u64 sched_cfs_bandwidth_slice(void) 1423 { 1424 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 1425 } 1426 1427 /* 1428 * Replenish runtime according to assigned quota and update expiration time. 1429 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 1430 * additional synchronization around rq->lock. 1431 * 1432 * requires cfs_b->lock 1433 */ 1434 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 1435 { 1436 u64 now; 1437 1438 if (cfs_b->quota == RUNTIME_INF) 1439 return; 1440 1441 now = sched_clock_cpu(smp_processor_id()); 1442 cfs_b->runtime = cfs_b->quota; 1443 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 1444 } 1445 1446 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 1447 { 1448 return &tg->cfs_bandwidth; 1449 } 1450 1451 /* returns 0 on failure to allocate runtime */ 1452 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 1453 { 1454 struct task_group *tg = cfs_rq->tg; 1455 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 1456 u64 amount = 0, min_amount, expires; 1457 1458 /* note: this is a positive sum as runtime_remaining <= 0 */ 1459 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 1460 1461 raw_spin_lock(&cfs_b->lock); 1462 if (cfs_b->quota == RUNTIME_INF) 1463 amount = min_amount; 1464 else { 1465 /* 1466 * If the bandwidth pool has become inactive, then at least one 1467 * period must have elapsed since the last consumption. 1468 * Refresh the global state and ensure bandwidth timer becomes 1469 * active. 1470 */ 1471 if (!cfs_b->timer_active) { 1472 __refill_cfs_bandwidth_runtime(cfs_b); 1473 __start_cfs_bandwidth(cfs_b); 1474 } 1475 1476 if (cfs_b->runtime > 0) { 1477 amount = min(cfs_b->runtime, min_amount); 1478 cfs_b->runtime -= amount; 1479 cfs_b->idle = 0; 1480 } 1481 } 1482 expires = cfs_b->runtime_expires; 1483 raw_spin_unlock(&cfs_b->lock); 1484 1485 cfs_rq->runtime_remaining += amount; 1486 /* 1487 * we may have advanced our local expiration to account for allowed 1488 * spread between our sched_clock and the one on which runtime was 1489 * issued. 1490 */ 1491 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 1492 cfs_rq->runtime_expires = expires; 1493 1494 return cfs_rq->runtime_remaining > 0; 1495 } 1496 1497 /* 1498 * Note: This depends on the synchronization provided by sched_clock and the 1499 * fact that rq->clock snapshots this value. 1500 */ 1501 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 1502 { 1503 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 1504 struct rq *rq = rq_of(cfs_rq); 1505 1506 /* if the deadline is ahead of our clock, nothing to do */ 1507 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0)) 1508 return; 1509 1510 if (cfs_rq->runtime_remaining < 0) 1511 return; 1512 1513 /* 1514 * If the local deadline has passed we have to consider the 1515 * possibility that our sched_clock is 'fast' and the global deadline 1516 * has not truly expired. 1517 * 1518 * Fortunately we can check determine whether this the case by checking 1519 * whether the global deadline has advanced. 1520 */ 1521 1522 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) { 1523 /* extend local deadline, drift is bounded above by 2 ticks */ 1524 cfs_rq->runtime_expires += TICK_NSEC; 1525 } else { 1526 /* global deadline is ahead, expiration has passed */ 1527 cfs_rq->runtime_remaining = 0; 1528 } 1529 } 1530 1531 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, 1532 unsigned long delta_exec) 1533 { 1534 /* dock delta_exec before expiring quota (as it could span periods) */ 1535 cfs_rq->runtime_remaining -= delta_exec; 1536 expire_cfs_rq_runtime(cfs_rq); 1537 1538 if (likely(cfs_rq->runtime_remaining > 0)) 1539 return; 1540 1541 /* 1542 * if we're unable to extend our runtime we resched so that the active 1543 * hierarchy can be throttled 1544 */ 1545 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 1546 resched_task(rq_of(cfs_rq)->curr); 1547 } 1548 1549 static __always_inline 1550 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) 1551 { 1552 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 1553 return; 1554 1555 __account_cfs_rq_runtime(cfs_rq, delta_exec); 1556 } 1557 1558 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 1559 { 1560 return cfs_bandwidth_used() && cfs_rq->throttled; 1561 } 1562 1563 /* check whether cfs_rq, or any parent, is throttled */ 1564 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 1565 { 1566 return cfs_bandwidth_used() && cfs_rq->throttle_count; 1567 } 1568 1569 /* 1570 * Ensure that neither of the group entities corresponding to src_cpu or 1571 * dest_cpu are members of a throttled hierarchy when performing group 1572 * load-balance operations. 1573 */ 1574 static inline int throttled_lb_pair(struct task_group *tg, 1575 int src_cpu, int dest_cpu) 1576 { 1577 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 1578 1579 src_cfs_rq = tg->cfs_rq[src_cpu]; 1580 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 1581 1582 return throttled_hierarchy(src_cfs_rq) || 1583 throttled_hierarchy(dest_cfs_rq); 1584 } 1585 1586 /* updated child weight may affect parent so we have to do this bottom up */ 1587 static int tg_unthrottle_up(struct task_group *tg, void *data) 1588 { 1589 struct rq *rq = data; 1590 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 1591 1592 cfs_rq->throttle_count--; 1593 #ifdef CONFIG_SMP 1594 if (!cfs_rq->throttle_count) { 1595 u64 delta = rq->clock_task - cfs_rq->load_stamp; 1596 1597 /* leaving throttled state, advance shares averaging windows */ 1598 cfs_rq->load_stamp += delta; 1599 cfs_rq->load_last += delta; 1600 1601 /* update entity weight now that we are on_rq again */ 1602 update_cfs_shares(cfs_rq); 1603 } 1604 #endif 1605 1606 return 0; 1607 } 1608 1609 static int tg_throttle_down(struct task_group *tg, void *data) 1610 { 1611 struct rq *rq = data; 1612 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 1613 1614 /* group is entering throttled state, record last load */ 1615 if (!cfs_rq->throttle_count) 1616 update_cfs_load(cfs_rq, 0); 1617 cfs_rq->throttle_count++; 1618 1619 return 0; 1620 } 1621 1622 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 1623 { 1624 struct rq *rq = rq_of(cfs_rq); 1625 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 1626 struct sched_entity *se; 1627 long task_delta, dequeue = 1; 1628 1629 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 1630 1631 /* account load preceding throttle */ 1632 rcu_read_lock(); 1633 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 1634 rcu_read_unlock(); 1635 1636 task_delta = cfs_rq->h_nr_running; 1637 for_each_sched_entity(se) { 1638 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 1639 /* throttled entity or throttle-on-deactivate */ 1640 if (!se->on_rq) 1641 break; 1642 1643 if (dequeue) 1644 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 1645 qcfs_rq->h_nr_running -= task_delta; 1646 1647 if (qcfs_rq->load.weight) 1648 dequeue = 0; 1649 } 1650 1651 if (!se) 1652 rq->nr_running -= task_delta; 1653 1654 cfs_rq->throttled = 1; 1655 cfs_rq->throttled_timestamp = rq->clock; 1656 raw_spin_lock(&cfs_b->lock); 1657 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 1658 raw_spin_unlock(&cfs_b->lock); 1659 } 1660 1661 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 1662 { 1663 struct rq *rq = rq_of(cfs_rq); 1664 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 1665 struct sched_entity *se; 1666 int enqueue = 1; 1667 long task_delta; 1668 1669 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 1670 1671 cfs_rq->throttled = 0; 1672 raw_spin_lock(&cfs_b->lock); 1673 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp; 1674 list_del_rcu(&cfs_rq->throttled_list); 1675 raw_spin_unlock(&cfs_b->lock); 1676 cfs_rq->throttled_timestamp = 0; 1677 1678 update_rq_clock(rq); 1679 /* update hierarchical throttle state */ 1680 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 1681 1682 if (!cfs_rq->load.weight) 1683 return; 1684 1685 task_delta = cfs_rq->h_nr_running; 1686 for_each_sched_entity(se) { 1687 if (se->on_rq) 1688 enqueue = 0; 1689 1690 cfs_rq = cfs_rq_of(se); 1691 if (enqueue) 1692 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 1693 cfs_rq->h_nr_running += task_delta; 1694 1695 if (cfs_rq_throttled(cfs_rq)) 1696 break; 1697 } 1698 1699 if (!se) 1700 rq->nr_running += task_delta; 1701 1702 /* determine whether we need to wake up potentially idle cpu */ 1703 if (rq->curr == rq->idle && rq->cfs.nr_running) 1704 resched_task(rq->curr); 1705 } 1706 1707 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 1708 u64 remaining, u64 expires) 1709 { 1710 struct cfs_rq *cfs_rq; 1711 u64 runtime = remaining; 1712 1713 rcu_read_lock(); 1714 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 1715 throttled_list) { 1716 struct rq *rq = rq_of(cfs_rq); 1717 1718 raw_spin_lock(&rq->lock); 1719 if (!cfs_rq_throttled(cfs_rq)) 1720 goto next; 1721 1722 runtime = -cfs_rq->runtime_remaining + 1; 1723 if (runtime > remaining) 1724 runtime = remaining; 1725 remaining -= runtime; 1726 1727 cfs_rq->runtime_remaining += runtime; 1728 cfs_rq->runtime_expires = expires; 1729 1730 /* we check whether we're throttled above */ 1731 if (cfs_rq->runtime_remaining > 0) 1732 unthrottle_cfs_rq(cfs_rq); 1733 1734 next: 1735 raw_spin_unlock(&rq->lock); 1736 1737 if (!remaining) 1738 break; 1739 } 1740 rcu_read_unlock(); 1741 1742 return remaining; 1743 } 1744 1745 /* 1746 * Responsible for refilling a task_group's bandwidth and unthrottling its 1747 * cfs_rqs as appropriate. If there has been no activity within the last 1748 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 1749 * used to track this state. 1750 */ 1751 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 1752 { 1753 u64 runtime, runtime_expires; 1754 int idle = 1, throttled; 1755 1756 raw_spin_lock(&cfs_b->lock); 1757 /* no need to continue the timer with no bandwidth constraint */ 1758 if (cfs_b->quota == RUNTIME_INF) 1759 goto out_unlock; 1760 1761 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 1762 /* idle depends on !throttled (for the case of a large deficit) */ 1763 idle = cfs_b->idle && !throttled; 1764 cfs_b->nr_periods += overrun; 1765 1766 /* if we're going inactive then everything else can be deferred */ 1767 if (idle) 1768 goto out_unlock; 1769 1770 __refill_cfs_bandwidth_runtime(cfs_b); 1771 1772 if (!throttled) { 1773 /* mark as potentially idle for the upcoming period */ 1774 cfs_b->idle = 1; 1775 goto out_unlock; 1776 } 1777 1778 /* account preceding periods in which throttling occurred */ 1779 cfs_b->nr_throttled += overrun; 1780 1781 /* 1782 * There are throttled entities so we must first use the new bandwidth 1783 * to unthrottle them before making it generally available. This 1784 * ensures that all existing debts will be paid before a new cfs_rq is 1785 * allowed to run. 1786 */ 1787 runtime = cfs_b->runtime; 1788 runtime_expires = cfs_b->runtime_expires; 1789 cfs_b->runtime = 0; 1790 1791 /* 1792 * This check is repeated as we are holding onto the new bandwidth 1793 * while we unthrottle. This can potentially race with an unthrottled 1794 * group trying to acquire new bandwidth from the global pool. 1795 */ 1796 while (throttled && runtime > 0) { 1797 raw_spin_unlock(&cfs_b->lock); 1798 /* we can't nest cfs_b->lock while distributing bandwidth */ 1799 runtime = distribute_cfs_runtime(cfs_b, runtime, 1800 runtime_expires); 1801 raw_spin_lock(&cfs_b->lock); 1802 1803 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 1804 } 1805 1806 /* return (any) remaining runtime */ 1807 cfs_b->runtime = runtime; 1808 /* 1809 * While we are ensured activity in the period following an 1810 * unthrottle, this also covers the case in which the new bandwidth is 1811 * insufficient to cover the existing bandwidth deficit. (Forcing the 1812 * timer to remain active while there are any throttled entities.) 1813 */ 1814 cfs_b->idle = 0; 1815 out_unlock: 1816 if (idle) 1817 cfs_b->timer_active = 0; 1818 raw_spin_unlock(&cfs_b->lock); 1819 1820 return idle; 1821 } 1822 1823 /* a cfs_rq won't donate quota below this amount */ 1824 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 1825 /* minimum remaining period time to redistribute slack quota */ 1826 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 1827 /* how long we wait to gather additional slack before distributing */ 1828 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 1829 1830 /* are we near the end of the current quota period? */ 1831 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 1832 { 1833 struct hrtimer *refresh_timer = &cfs_b->period_timer; 1834 u64 remaining; 1835 1836 /* if the call-back is running a quota refresh is already occurring */ 1837 if (hrtimer_callback_running(refresh_timer)) 1838 return 1; 1839 1840 /* is a quota refresh about to occur? */ 1841 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 1842 if (remaining < min_expire) 1843 return 1; 1844 1845 return 0; 1846 } 1847 1848 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 1849 { 1850 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 1851 1852 /* if there's a quota refresh soon don't bother with slack */ 1853 if (runtime_refresh_within(cfs_b, min_left)) 1854 return; 1855 1856 start_bandwidth_timer(&cfs_b->slack_timer, 1857 ns_to_ktime(cfs_bandwidth_slack_period)); 1858 } 1859 1860 /* we know any runtime found here is valid as update_curr() precedes return */ 1861 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 1862 { 1863 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 1864 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 1865 1866 if (slack_runtime <= 0) 1867 return; 1868 1869 raw_spin_lock(&cfs_b->lock); 1870 if (cfs_b->quota != RUNTIME_INF && 1871 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 1872 cfs_b->runtime += slack_runtime; 1873 1874 /* we are under rq->lock, defer unthrottling using a timer */ 1875 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 1876 !list_empty(&cfs_b->throttled_cfs_rq)) 1877 start_cfs_slack_bandwidth(cfs_b); 1878 } 1879 raw_spin_unlock(&cfs_b->lock); 1880 1881 /* even if it's not valid for return we don't want to try again */ 1882 cfs_rq->runtime_remaining -= slack_runtime; 1883 } 1884 1885 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 1886 { 1887 if (!cfs_bandwidth_used()) 1888 return; 1889 1890 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 1891 return; 1892 1893 __return_cfs_rq_runtime(cfs_rq); 1894 } 1895 1896 /* 1897 * This is done with a timer (instead of inline with bandwidth return) since 1898 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 1899 */ 1900 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 1901 { 1902 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 1903 u64 expires; 1904 1905 /* confirm we're still not at a refresh boundary */ 1906 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) 1907 return; 1908 1909 raw_spin_lock(&cfs_b->lock); 1910 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) { 1911 runtime = cfs_b->runtime; 1912 cfs_b->runtime = 0; 1913 } 1914 expires = cfs_b->runtime_expires; 1915 raw_spin_unlock(&cfs_b->lock); 1916 1917 if (!runtime) 1918 return; 1919 1920 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 1921 1922 raw_spin_lock(&cfs_b->lock); 1923 if (expires == cfs_b->runtime_expires) 1924 cfs_b->runtime = runtime; 1925 raw_spin_unlock(&cfs_b->lock); 1926 } 1927 1928 /* 1929 * When a group wakes up we want to make sure that its quota is not already 1930 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 1931 * runtime as update_curr() throttling can not not trigger until it's on-rq. 1932 */ 1933 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 1934 { 1935 if (!cfs_bandwidth_used()) 1936 return; 1937 1938 /* an active group must be handled by the update_curr()->put() path */ 1939 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 1940 return; 1941 1942 /* ensure the group is not already throttled */ 1943 if (cfs_rq_throttled(cfs_rq)) 1944 return; 1945 1946 /* update runtime allocation */ 1947 account_cfs_rq_runtime(cfs_rq, 0); 1948 if (cfs_rq->runtime_remaining <= 0) 1949 throttle_cfs_rq(cfs_rq); 1950 } 1951 1952 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 1953 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 1954 { 1955 if (!cfs_bandwidth_used()) 1956 return; 1957 1958 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 1959 return; 1960 1961 /* 1962 * it's possible for a throttled entity to be forced into a running 1963 * state (e.g. set_curr_task), in this case we're finished. 1964 */ 1965 if (cfs_rq_throttled(cfs_rq)) 1966 return; 1967 1968 throttle_cfs_rq(cfs_rq); 1969 } 1970 1971 static inline u64 default_cfs_period(void); 1972 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun); 1973 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b); 1974 1975 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 1976 { 1977 struct cfs_bandwidth *cfs_b = 1978 container_of(timer, struct cfs_bandwidth, slack_timer); 1979 do_sched_cfs_slack_timer(cfs_b); 1980 1981 return HRTIMER_NORESTART; 1982 } 1983 1984 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 1985 { 1986 struct cfs_bandwidth *cfs_b = 1987 container_of(timer, struct cfs_bandwidth, period_timer); 1988 ktime_t now; 1989 int overrun; 1990 int idle = 0; 1991 1992 for (;;) { 1993 now = hrtimer_cb_get_time(timer); 1994 overrun = hrtimer_forward(timer, now, cfs_b->period); 1995 1996 if (!overrun) 1997 break; 1998 1999 idle = do_sched_cfs_period_timer(cfs_b, overrun); 2000 } 2001 2002 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 2003 } 2004 2005 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2006 { 2007 raw_spin_lock_init(&cfs_b->lock); 2008 cfs_b->runtime = 0; 2009 cfs_b->quota = RUNTIME_INF; 2010 cfs_b->period = ns_to_ktime(default_cfs_period()); 2011 2012 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 2013 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2014 cfs_b->period_timer.function = sched_cfs_period_timer; 2015 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2016 cfs_b->slack_timer.function = sched_cfs_slack_timer; 2017 } 2018 2019 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2020 { 2021 cfs_rq->runtime_enabled = 0; 2022 INIT_LIST_HEAD(&cfs_rq->throttled_list); 2023 } 2024 2025 /* requires cfs_b->lock, may release to reprogram timer */ 2026 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2027 { 2028 /* 2029 * The timer may be active because we're trying to set a new bandwidth 2030 * period or because we're racing with the tear-down path 2031 * (timer_active==0 becomes visible before the hrtimer call-back 2032 * terminates). In either case we ensure that it's re-programmed 2033 */ 2034 while (unlikely(hrtimer_active(&cfs_b->period_timer))) { 2035 raw_spin_unlock(&cfs_b->lock); 2036 /* ensure cfs_b->lock is available while we wait */ 2037 hrtimer_cancel(&cfs_b->period_timer); 2038 2039 raw_spin_lock(&cfs_b->lock); 2040 /* if someone else restarted the timer then we're done */ 2041 if (cfs_b->timer_active) 2042 return; 2043 } 2044 2045 cfs_b->timer_active = 1; 2046 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); 2047 } 2048 2049 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2050 { 2051 hrtimer_cancel(&cfs_b->period_timer); 2052 hrtimer_cancel(&cfs_b->slack_timer); 2053 } 2054 2055 void unthrottle_offline_cfs_rqs(struct rq *rq) 2056 { 2057 struct cfs_rq *cfs_rq; 2058 2059 for_each_leaf_cfs_rq(rq, cfs_rq) { 2060 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2061 2062 if (!cfs_rq->runtime_enabled) 2063 continue; 2064 2065 /* 2066 * clock_task is not advancing so we just need to make sure 2067 * there's some valid quota amount 2068 */ 2069 cfs_rq->runtime_remaining = cfs_b->quota; 2070 if (cfs_rq_throttled(cfs_rq)) 2071 unthrottle_cfs_rq(cfs_rq); 2072 } 2073 } 2074 2075 #else /* CONFIG_CFS_BANDWIDTH */ 2076 static __always_inline 2077 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {} 2078 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2079 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 2080 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2081 2082 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 2083 { 2084 return 0; 2085 } 2086 2087 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 2088 { 2089 return 0; 2090 } 2091 2092 static inline int throttled_lb_pair(struct task_group *tg, 2093 int src_cpu, int dest_cpu) 2094 { 2095 return 0; 2096 } 2097 2098 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 2099 2100 #ifdef CONFIG_FAIR_GROUP_SCHED 2101 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2102 #endif 2103 2104 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 2105 { 2106 return NULL; 2107 } 2108 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 2109 void unthrottle_offline_cfs_rqs(struct rq *rq) {} 2110 2111 #endif /* CONFIG_CFS_BANDWIDTH */ 2112 2113 /************************************************** 2114 * CFS operations on tasks: 2115 */ 2116 2117 #ifdef CONFIG_SCHED_HRTICK 2118 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 2119 { 2120 struct sched_entity *se = &p->se; 2121 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2122 2123 WARN_ON(task_rq(p) != rq); 2124 2125 if (cfs_rq->nr_running > 1) { 2126 u64 slice = sched_slice(cfs_rq, se); 2127 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 2128 s64 delta = slice - ran; 2129 2130 if (delta < 0) { 2131 if (rq->curr == p) 2132 resched_task(p); 2133 return; 2134 } 2135 2136 /* 2137 * Don't schedule slices shorter than 10000ns, that just 2138 * doesn't make sense. Rely on vruntime for fairness. 2139 */ 2140 if (rq->curr != p) 2141 delta = max_t(s64, 10000LL, delta); 2142 2143 hrtick_start(rq, delta); 2144 } 2145 } 2146 2147 /* 2148 * called from enqueue/dequeue and updates the hrtick when the 2149 * current task is from our class and nr_running is low enough 2150 * to matter. 2151 */ 2152 static void hrtick_update(struct rq *rq) 2153 { 2154 struct task_struct *curr = rq->curr; 2155 2156 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 2157 return; 2158 2159 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 2160 hrtick_start_fair(rq, curr); 2161 } 2162 #else /* !CONFIG_SCHED_HRTICK */ 2163 static inline void 2164 hrtick_start_fair(struct rq *rq, struct task_struct *p) 2165 { 2166 } 2167 2168 static inline void hrtick_update(struct rq *rq) 2169 { 2170 } 2171 #endif 2172 2173 /* 2174 * The enqueue_task method is called before nr_running is 2175 * increased. Here we update the fair scheduling stats and 2176 * then put the task into the rbtree: 2177 */ 2178 static void 2179 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 2180 { 2181 struct cfs_rq *cfs_rq; 2182 struct sched_entity *se = &p->se; 2183 2184 for_each_sched_entity(se) { 2185 if (se->on_rq) 2186 break; 2187 cfs_rq = cfs_rq_of(se); 2188 enqueue_entity(cfs_rq, se, flags); 2189 2190 /* 2191 * end evaluation on encountering a throttled cfs_rq 2192 * 2193 * note: in the case of encountering a throttled cfs_rq we will 2194 * post the final h_nr_running increment below. 2195 */ 2196 if (cfs_rq_throttled(cfs_rq)) 2197 break; 2198 cfs_rq->h_nr_running++; 2199 2200 flags = ENQUEUE_WAKEUP; 2201 } 2202 2203 for_each_sched_entity(se) { 2204 cfs_rq = cfs_rq_of(se); 2205 cfs_rq->h_nr_running++; 2206 2207 if (cfs_rq_throttled(cfs_rq)) 2208 break; 2209 2210 update_cfs_load(cfs_rq, 0); 2211 update_cfs_shares(cfs_rq); 2212 } 2213 2214 if (!se) 2215 inc_nr_running(rq); 2216 hrtick_update(rq); 2217 } 2218 2219 static void set_next_buddy(struct sched_entity *se); 2220 2221 /* 2222 * The dequeue_task method is called before nr_running is 2223 * decreased. We remove the task from the rbtree and 2224 * update the fair scheduling stats: 2225 */ 2226 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 2227 { 2228 struct cfs_rq *cfs_rq; 2229 struct sched_entity *se = &p->se; 2230 int task_sleep = flags & DEQUEUE_SLEEP; 2231 2232 for_each_sched_entity(se) { 2233 cfs_rq = cfs_rq_of(se); 2234 dequeue_entity(cfs_rq, se, flags); 2235 2236 /* 2237 * end evaluation on encountering a throttled cfs_rq 2238 * 2239 * note: in the case of encountering a throttled cfs_rq we will 2240 * post the final h_nr_running decrement below. 2241 */ 2242 if (cfs_rq_throttled(cfs_rq)) 2243 break; 2244 cfs_rq->h_nr_running--; 2245 2246 /* Don't dequeue parent if it has other entities besides us */ 2247 if (cfs_rq->load.weight) { 2248 /* 2249 * Bias pick_next to pick a task from this cfs_rq, as 2250 * p is sleeping when it is within its sched_slice. 2251 */ 2252 if (task_sleep && parent_entity(se)) 2253 set_next_buddy(parent_entity(se)); 2254 2255 /* avoid re-evaluating load for this entity */ 2256 se = parent_entity(se); 2257 break; 2258 } 2259 flags |= DEQUEUE_SLEEP; 2260 } 2261 2262 for_each_sched_entity(se) { 2263 cfs_rq = cfs_rq_of(se); 2264 cfs_rq->h_nr_running--; 2265 2266 if (cfs_rq_throttled(cfs_rq)) 2267 break; 2268 2269 update_cfs_load(cfs_rq, 0); 2270 update_cfs_shares(cfs_rq); 2271 } 2272 2273 if (!se) 2274 dec_nr_running(rq); 2275 hrtick_update(rq); 2276 } 2277 2278 #ifdef CONFIG_SMP 2279 /* Used instead of source_load when we know the type == 0 */ 2280 static unsigned long weighted_cpuload(const int cpu) 2281 { 2282 return cpu_rq(cpu)->load.weight; 2283 } 2284 2285 /* 2286 * Return a low guess at the load of a migration-source cpu weighted 2287 * according to the scheduling class and "nice" value. 2288 * 2289 * We want to under-estimate the load of migration sources, to 2290 * balance conservatively. 2291 */ 2292 static unsigned long source_load(int cpu, int type) 2293 { 2294 struct rq *rq = cpu_rq(cpu); 2295 unsigned long total = weighted_cpuload(cpu); 2296 2297 if (type == 0 || !sched_feat(LB_BIAS)) 2298 return total; 2299 2300 return min(rq->cpu_load[type-1], total); 2301 } 2302 2303 /* 2304 * Return a high guess at the load of a migration-target cpu weighted 2305 * according to the scheduling class and "nice" value. 2306 */ 2307 static unsigned long target_load(int cpu, int type) 2308 { 2309 struct rq *rq = cpu_rq(cpu); 2310 unsigned long total = weighted_cpuload(cpu); 2311 2312 if (type == 0 || !sched_feat(LB_BIAS)) 2313 return total; 2314 2315 return max(rq->cpu_load[type-1], total); 2316 } 2317 2318 static unsigned long power_of(int cpu) 2319 { 2320 return cpu_rq(cpu)->cpu_power; 2321 } 2322 2323 static unsigned long cpu_avg_load_per_task(int cpu) 2324 { 2325 struct rq *rq = cpu_rq(cpu); 2326 unsigned long nr_running = ACCESS_ONCE(rq->nr_running); 2327 2328 if (nr_running) 2329 return rq->load.weight / nr_running; 2330 2331 return 0; 2332 } 2333 2334 2335 static void task_waking_fair(struct task_struct *p) 2336 { 2337 struct sched_entity *se = &p->se; 2338 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2339 u64 min_vruntime; 2340 2341 #ifndef CONFIG_64BIT 2342 u64 min_vruntime_copy; 2343 2344 do { 2345 min_vruntime_copy = cfs_rq->min_vruntime_copy; 2346 smp_rmb(); 2347 min_vruntime = cfs_rq->min_vruntime; 2348 } while (min_vruntime != min_vruntime_copy); 2349 #else 2350 min_vruntime = cfs_rq->min_vruntime; 2351 #endif 2352 2353 se->vruntime -= min_vruntime; 2354 } 2355 2356 #ifdef CONFIG_FAIR_GROUP_SCHED 2357 /* 2358 * effective_load() calculates the load change as seen from the root_task_group 2359 * 2360 * Adding load to a group doesn't make a group heavier, but can cause movement 2361 * of group shares between cpus. Assuming the shares were perfectly aligned one 2362 * can calculate the shift in shares. 2363 * 2364 * Calculate the effective load difference if @wl is added (subtracted) to @tg 2365 * on this @cpu and results in a total addition (subtraction) of @wg to the 2366 * total group weight. 2367 * 2368 * Given a runqueue weight distribution (rw_i) we can compute a shares 2369 * distribution (s_i) using: 2370 * 2371 * s_i = rw_i / \Sum rw_j (1) 2372 * 2373 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 2374 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 2375 * shares distribution (s_i): 2376 * 2377 * rw_i = { 2, 4, 1, 0 } 2378 * s_i = { 2/7, 4/7, 1/7, 0 } 2379 * 2380 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 2381 * task used to run on and the CPU the waker is running on), we need to 2382 * compute the effect of waking a task on either CPU and, in case of a sync 2383 * wakeup, compute the effect of the current task going to sleep. 2384 * 2385 * So for a change of @wl to the local @cpu with an overall group weight change 2386 * of @wl we can compute the new shares distribution (s'_i) using: 2387 * 2388 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 2389 * 2390 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 2391 * differences in waking a task to CPU 0. The additional task changes the 2392 * weight and shares distributions like: 2393 * 2394 * rw'_i = { 3, 4, 1, 0 } 2395 * s'_i = { 3/8, 4/8, 1/8, 0 } 2396 * 2397 * We can then compute the difference in effective weight by using: 2398 * 2399 * dw_i = S * (s'_i - s_i) (3) 2400 * 2401 * Where 'S' is the group weight as seen by its parent. 2402 * 2403 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 2404 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 2405 * 4/7) times the weight of the group. 2406 */ 2407 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 2408 { 2409 struct sched_entity *se = tg->se[cpu]; 2410 2411 if (!tg->parent) /* the trivial, non-cgroup case */ 2412 return wl; 2413 2414 for_each_sched_entity(se) { 2415 long w, W; 2416 2417 tg = se->my_q->tg; 2418 2419 /* 2420 * W = @wg + \Sum rw_j 2421 */ 2422 W = wg + calc_tg_weight(tg, se->my_q); 2423 2424 /* 2425 * w = rw_i + @wl 2426 */ 2427 w = se->my_q->load.weight + wl; 2428 2429 /* 2430 * wl = S * s'_i; see (2) 2431 */ 2432 if (W > 0 && w < W) 2433 wl = (w * tg->shares) / W; 2434 else 2435 wl = tg->shares; 2436 2437 /* 2438 * Per the above, wl is the new se->load.weight value; since 2439 * those are clipped to [MIN_SHARES, ...) do so now. See 2440 * calc_cfs_shares(). 2441 */ 2442 if (wl < MIN_SHARES) 2443 wl = MIN_SHARES; 2444 2445 /* 2446 * wl = dw_i = S * (s'_i - s_i); see (3) 2447 */ 2448 wl -= se->load.weight; 2449 2450 /* 2451 * Recursively apply this logic to all parent groups to compute 2452 * the final effective load change on the root group. Since 2453 * only the @tg group gets extra weight, all parent groups can 2454 * only redistribute existing shares. @wl is the shift in shares 2455 * resulting from this level per the above. 2456 */ 2457 wg = 0; 2458 } 2459 2460 return wl; 2461 } 2462 #else 2463 2464 static inline unsigned long effective_load(struct task_group *tg, int cpu, 2465 unsigned long wl, unsigned long wg) 2466 { 2467 return wl; 2468 } 2469 2470 #endif 2471 2472 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 2473 { 2474 s64 this_load, load; 2475 int idx, this_cpu, prev_cpu; 2476 unsigned long tl_per_task; 2477 struct task_group *tg; 2478 unsigned long weight; 2479 int balanced; 2480 2481 idx = sd->wake_idx; 2482 this_cpu = smp_processor_id(); 2483 prev_cpu = task_cpu(p); 2484 load = source_load(prev_cpu, idx); 2485 this_load = target_load(this_cpu, idx); 2486 2487 /* 2488 * If sync wakeup then subtract the (maximum possible) 2489 * effect of the currently running task from the load 2490 * of the current CPU: 2491 */ 2492 if (sync) { 2493 tg = task_group(current); 2494 weight = current->se.load.weight; 2495 2496 this_load += effective_load(tg, this_cpu, -weight, -weight); 2497 load += effective_load(tg, prev_cpu, 0, -weight); 2498 } 2499 2500 tg = task_group(p); 2501 weight = p->se.load.weight; 2502 2503 /* 2504 * In low-load situations, where prev_cpu is idle and this_cpu is idle 2505 * due to the sync cause above having dropped this_load to 0, we'll 2506 * always have an imbalance, but there's really nothing you can do 2507 * about that, so that's good too. 2508 * 2509 * Otherwise check if either cpus are near enough in load to allow this 2510 * task to be woken on this_cpu. 2511 */ 2512 if (this_load > 0) { 2513 s64 this_eff_load, prev_eff_load; 2514 2515 this_eff_load = 100; 2516 this_eff_load *= power_of(prev_cpu); 2517 this_eff_load *= this_load + 2518 effective_load(tg, this_cpu, weight, weight); 2519 2520 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 2521 prev_eff_load *= power_of(this_cpu); 2522 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 2523 2524 balanced = this_eff_load <= prev_eff_load; 2525 } else 2526 balanced = true; 2527 2528 /* 2529 * If the currently running task will sleep within 2530 * a reasonable amount of time then attract this newly 2531 * woken task: 2532 */ 2533 if (sync && balanced) 2534 return 1; 2535 2536 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 2537 tl_per_task = cpu_avg_load_per_task(this_cpu); 2538 2539 if (balanced || 2540 (this_load <= load && 2541 this_load + target_load(prev_cpu, idx) <= tl_per_task)) { 2542 /* 2543 * This domain has SD_WAKE_AFFINE and 2544 * p is cache cold in this domain, and 2545 * there is no bad imbalance. 2546 */ 2547 schedstat_inc(sd, ttwu_move_affine); 2548 schedstat_inc(p, se.statistics.nr_wakeups_affine); 2549 2550 return 1; 2551 } 2552 return 0; 2553 } 2554 2555 /* 2556 * find_idlest_group finds and returns the least busy CPU group within the 2557 * domain. 2558 */ 2559 static struct sched_group * 2560 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 2561 int this_cpu, int load_idx) 2562 { 2563 struct sched_group *idlest = NULL, *group = sd->groups; 2564 unsigned long min_load = ULONG_MAX, this_load = 0; 2565 int imbalance = 100 + (sd->imbalance_pct-100)/2; 2566 2567 do { 2568 unsigned long load, avg_load; 2569 int local_group; 2570 int i; 2571 2572 /* Skip over this group if it has no CPUs allowed */ 2573 if (!cpumask_intersects(sched_group_cpus(group), 2574 tsk_cpus_allowed(p))) 2575 continue; 2576 2577 local_group = cpumask_test_cpu(this_cpu, 2578 sched_group_cpus(group)); 2579 2580 /* Tally up the load of all CPUs in the group */ 2581 avg_load = 0; 2582 2583 for_each_cpu(i, sched_group_cpus(group)) { 2584 /* Bias balancing toward cpus of our domain */ 2585 if (local_group) 2586 load = source_load(i, load_idx); 2587 else 2588 load = target_load(i, load_idx); 2589 2590 avg_load += load; 2591 } 2592 2593 /* Adjust by relative CPU power of the group */ 2594 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power; 2595 2596 if (local_group) { 2597 this_load = avg_load; 2598 } else if (avg_load < min_load) { 2599 min_load = avg_load; 2600 idlest = group; 2601 } 2602 } while (group = group->next, group != sd->groups); 2603 2604 if (!idlest || 100*this_load < imbalance*min_load) 2605 return NULL; 2606 return idlest; 2607 } 2608 2609 /* 2610 * find_idlest_cpu - find the idlest cpu among the cpus in group. 2611 */ 2612 static int 2613 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 2614 { 2615 unsigned long load, min_load = ULONG_MAX; 2616 int idlest = -1; 2617 int i; 2618 2619 /* Traverse only the allowed CPUs */ 2620 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 2621 load = weighted_cpuload(i); 2622 2623 if (load < min_load || (load == min_load && i == this_cpu)) { 2624 min_load = load; 2625 idlest = i; 2626 } 2627 } 2628 2629 return idlest; 2630 } 2631 2632 /* 2633 * Try and locate an idle CPU in the sched_domain. 2634 */ 2635 static int select_idle_sibling(struct task_struct *p, int target) 2636 { 2637 int cpu = smp_processor_id(); 2638 int prev_cpu = task_cpu(p); 2639 struct sched_domain *sd; 2640 2641 /* 2642 * If the task is going to be woken-up on this cpu and if it is 2643 * already idle, then it is the right target. 2644 */ 2645 if (target == cpu && idle_cpu(cpu)) 2646 return cpu; 2647 2648 /* 2649 * If the task is going to be woken-up on the cpu where it previously 2650 * ran and if it is currently idle, then it the right target. 2651 */ 2652 if (target == prev_cpu && idle_cpu(prev_cpu)) 2653 return prev_cpu; 2654 2655 /* 2656 * Otherwise, check assigned siblings to find an elegible idle cpu. 2657 */ 2658 sd = rcu_dereference(per_cpu(sd_llc, target)); 2659 2660 for_each_lower_domain(sd) { 2661 if (!cpumask_test_cpu(sd->idle_buddy, tsk_cpus_allowed(p))) 2662 continue; 2663 if (idle_cpu(sd->idle_buddy)) 2664 return sd->idle_buddy; 2665 } 2666 2667 return target; 2668 } 2669 2670 /* 2671 * sched_balance_self: balance the current task (running on cpu) in domains 2672 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and 2673 * SD_BALANCE_EXEC. 2674 * 2675 * Balance, ie. select the least loaded group. 2676 * 2677 * Returns the target CPU number, or the same CPU if no balancing is needed. 2678 * 2679 * preempt must be disabled. 2680 */ 2681 static int 2682 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) 2683 { 2684 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 2685 int cpu = smp_processor_id(); 2686 int prev_cpu = task_cpu(p); 2687 int new_cpu = cpu; 2688 int want_affine = 0; 2689 int want_sd = 1; 2690 int sync = wake_flags & WF_SYNC; 2691 2692 if (p->nr_cpus_allowed == 1) 2693 return prev_cpu; 2694 2695 if (sd_flag & SD_BALANCE_WAKE) { 2696 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 2697 want_affine = 1; 2698 new_cpu = prev_cpu; 2699 } 2700 2701 rcu_read_lock(); 2702 for_each_domain(cpu, tmp) { 2703 if (!(tmp->flags & SD_LOAD_BALANCE)) 2704 continue; 2705 2706 /* 2707 * If power savings logic is enabled for a domain, see if we 2708 * are not overloaded, if so, don't balance wider. 2709 */ 2710 if (tmp->flags & (SD_PREFER_LOCAL)) { 2711 unsigned long power = 0; 2712 unsigned long nr_running = 0; 2713 unsigned long capacity; 2714 int i; 2715 2716 for_each_cpu(i, sched_domain_span(tmp)) { 2717 power += power_of(i); 2718 nr_running += cpu_rq(i)->cfs.nr_running; 2719 } 2720 2721 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE); 2722 2723 if (nr_running < capacity) 2724 want_sd = 0; 2725 } 2726 2727 /* 2728 * If both cpu and prev_cpu are part of this domain, 2729 * cpu is a valid SD_WAKE_AFFINE target. 2730 */ 2731 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 2732 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 2733 affine_sd = tmp; 2734 want_affine = 0; 2735 } 2736 2737 if (!want_sd && !want_affine) 2738 break; 2739 2740 if (!(tmp->flags & sd_flag)) 2741 continue; 2742 2743 if (want_sd) 2744 sd = tmp; 2745 } 2746 2747 if (affine_sd) { 2748 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync)) 2749 prev_cpu = cpu; 2750 2751 new_cpu = select_idle_sibling(p, prev_cpu); 2752 goto unlock; 2753 } 2754 2755 while (sd) { 2756 int load_idx = sd->forkexec_idx; 2757 struct sched_group *group; 2758 int weight; 2759 2760 if (!(sd->flags & sd_flag)) { 2761 sd = sd->child; 2762 continue; 2763 } 2764 2765 if (sd_flag & SD_BALANCE_WAKE) 2766 load_idx = sd->wake_idx; 2767 2768 group = find_idlest_group(sd, p, cpu, load_idx); 2769 if (!group) { 2770 sd = sd->child; 2771 continue; 2772 } 2773 2774 new_cpu = find_idlest_cpu(group, p, cpu); 2775 if (new_cpu == -1 || new_cpu == cpu) { 2776 /* Now try balancing at a lower domain level of cpu */ 2777 sd = sd->child; 2778 continue; 2779 } 2780 2781 /* Now try balancing at a lower domain level of new_cpu */ 2782 cpu = new_cpu; 2783 weight = sd->span_weight; 2784 sd = NULL; 2785 for_each_domain(cpu, tmp) { 2786 if (weight <= tmp->span_weight) 2787 break; 2788 if (tmp->flags & sd_flag) 2789 sd = tmp; 2790 } 2791 /* while loop will break here if sd == NULL */ 2792 } 2793 unlock: 2794 rcu_read_unlock(); 2795 2796 return new_cpu; 2797 } 2798 #endif /* CONFIG_SMP */ 2799 2800 static unsigned long 2801 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 2802 { 2803 unsigned long gran = sysctl_sched_wakeup_granularity; 2804 2805 /* 2806 * Since its curr running now, convert the gran from real-time 2807 * to virtual-time in his units. 2808 * 2809 * By using 'se' instead of 'curr' we penalize light tasks, so 2810 * they get preempted easier. That is, if 'se' < 'curr' then 2811 * the resulting gran will be larger, therefore penalizing the 2812 * lighter, if otoh 'se' > 'curr' then the resulting gran will 2813 * be smaller, again penalizing the lighter task. 2814 * 2815 * This is especially important for buddies when the leftmost 2816 * task is higher priority than the buddy. 2817 */ 2818 return calc_delta_fair(gran, se); 2819 } 2820 2821 /* 2822 * Should 'se' preempt 'curr'. 2823 * 2824 * |s1 2825 * |s2 2826 * |s3 2827 * g 2828 * |<--->|c 2829 * 2830 * w(c, s1) = -1 2831 * w(c, s2) = 0 2832 * w(c, s3) = 1 2833 * 2834 */ 2835 static int 2836 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 2837 { 2838 s64 gran, vdiff = curr->vruntime - se->vruntime; 2839 2840 if (vdiff <= 0) 2841 return -1; 2842 2843 gran = wakeup_gran(curr, se); 2844 if (vdiff > gran) 2845 return 1; 2846 2847 return 0; 2848 } 2849 2850 static void set_last_buddy(struct sched_entity *se) 2851 { 2852 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 2853 return; 2854 2855 for_each_sched_entity(se) 2856 cfs_rq_of(se)->last = se; 2857 } 2858 2859 static void set_next_buddy(struct sched_entity *se) 2860 { 2861 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 2862 return; 2863 2864 for_each_sched_entity(se) 2865 cfs_rq_of(se)->next = se; 2866 } 2867 2868 static void set_skip_buddy(struct sched_entity *se) 2869 { 2870 for_each_sched_entity(se) 2871 cfs_rq_of(se)->skip = se; 2872 } 2873 2874 /* 2875 * Preempt the current task with a newly woken task if needed: 2876 */ 2877 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 2878 { 2879 struct task_struct *curr = rq->curr; 2880 struct sched_entity *se = &curr->se, *pse = &p->se; 2881 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 2882 int scale = cfs_rq->nr_running >= sched_nr_latency; 2883 int next_buddy_marked = 0; 2884 2885 if (unlikely(se == pse)) 2886 return; 2887 2888 /* 2889 * This is possible from callers such as move_task(), in which we 2890 * unconditionally check_prempt_curr() after an enqueue (which may have 2891 * lead to a throttle). This both saves work and prevents false 2892 * next-buddy nomination below. 2893 */ 2894 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 2895 return; 2896 2897 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 2898 set_next_buddy(pse); 2899 next_buddy_marked = 1; 2900 } 2901 2902 /* 2903 * We can come here with TIF_NEED_RESCHED already set from new task 2904 * wake up path. 2905 * 2906 * Note: this also catches the edge-case of curr being in a throttled 2907 * group (e.g. via set_curr_task), since update_curr() (in the 2908 * enqueue of curr) will have resulted in resched being set. This 2909 * prevents us from potentially nominating it as a false LAST_BUDDY 2910 * below. 2911 */ 2912 if (test_tsk_need_resched(curr)) 2913 return; 2914 2915 /* Idle tasks are by definition preempted by non-idle tasks. */ 2916 if (unlikely(curr->policy == SCHED_IDLE) && 2917 likely(p->policy != SCHED_IDLE)) 2918 goto preempt; 2919 2920 /* 2921 * Batch and idle tasks do not preempt non-idle tasks (their preemption 2922 * is driven by the tick): 2923 */ 2924 if (unlikely(p->policy != SCHED_NORMAL)) 2925 return; 2926 2927 find_matching_se(&se, &pse); 2928 update_curr(cfs_rq_of(se)); 2929 BUG_ON(!pse); 2930 if (wakeup_preempt_entity(se, pse) == 1) { 2931 /* 2932 * Bias pick_next to pick the sched entity that is 2933 * triggering this preemption. 2934 */ 2935 if (!next_buddy_marked) 2936 set_next_buddy(pse); 2937 goto preempt; 2938 } 2939 2940 return; 2941 2942 preempt: 2943 resched_task(curr); 2944 /* 2945 * Only set the backward buddy when the current task is still 2946 * on the rq. This can happen when a wakeup gets interleaved 2947 * with schedule on the ->pre_schedule() or idle_balance() 2948 * point, either of which can * drop the rq lock. 2949 * 2950 * Also, during early boot the idle thread is in the fair class, 2951 * for obvious reasons its a bad idea to schedule back to it. 2952 */ 2953 if (unlikely(!se->on_rq || curr == rq->idle)) 2954 return; 2955 2956 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 2957 set_last_buddy(se); 2958 } 2959 2960 static struct task_struct *pick_next_task_fair(struct rq *rq) 2961 { 2962 struct task_struct *p; 2963 struct cfs_rq *cfs_rq = &rq->cfs; 2964 struct sched_entity *se; 2965 2966 if (!cfs_rq->nr_running) 2967 return NULL; 2968 2969 do { 2970 se = pick_next_entity(cfs_rq); 2971 set_next_entity(cfs_rq, se); 2972 cfs_rq = group_cfs_rq(se); 2973 } while (cfs_rq); 2974 2975 p = task_of(se); 2976 if (hrtick_enabled(rq)) 2977 hrtick_start_fair(rq, p); 2978 2979 return p; 2980 } 2981 2982 /* 2983 * Account for a descheduled task: 2984 */ 2985 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 2986 { 2987 struct sched_entity *se = &prev->se; 2988 struct cfs_rq *cfs_rq; 2989 2990 for_each_sched_entity(se) { 2991 cfs_rq = cfs_rq_of(se); 2992 put_prev_entity(cfs_rq, se); 2993 } 2994 } 2995 2996 /* 2997 * sched_yield() is very simple 2998 * 2999 * The magic of dealing with the ->skip buddy is in pick_next_entity. 3000 */ 3001 static void yield_task_fair(struct rq *rq) 3002 { 3003 struct task_struct *curr = rq->curr; 3004 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 3005 struct sched_entity *se = &curr->se; 3006 3007 /* 3008 * Are we the only task in the tree? 3009 */ 3010 if (unlikely(rq->nr_running == 1)) 3011 return; 3012 3013 clear_buddies(cfs_rq, se); 3014 3015 if (curr->policy != SCHED_BATCH) { 3016 update_rq_clock(rq); 3017 /* 3018 * Update run-time statistics of the 'current'. 3019 */ 3020 update_curr(cfs_rq); 3021 /* 3022 * Tell update_rq_clock() that we've just updated, 3023 * so we don't do microscopic update in schedule() 3024 * and double the fastpath cost. 3025 */ 3026 rq->skip_clock_update = 1; 3027 } 3028 3029 set_skip_buddy(se); 3030 } 3031 3032 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 3033 { 3034 struct sched_entity *se = &p->se; 3035 3036 /* throttled hierarchies are not runnable */ 3037 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 3038 return false; 3039 3040 /* Tell the scheduler that we'd really like pse to run next. */ 3041 set_next_buddy(se); 3042 3043 yield_task_fair(rq); 3044 3045 return true; 3046 } 3047 3048 #ifdef CONFIG_SMP 3049 /************************************************** 3050 * Fair scheduling class load-balancing methods: 3051 */ 3052 3053 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 3054 3055 #define LBF_ALL_PINNED 0x01 3056 #define LBF_NEED_BREAK 0x02 3057 #define LBF_SOME_PINNED 0x04 3058 3059 struct lb_env { 3060 struct sched_domain *sd; 3061 3062 struct rq *src_rq; 3063 int src_cpu; 3064 3065 int dst_cpu; 3066 struct rq *dst_rq; 3067 3068 struct cpumask *dst_grpmask; 3069 int new_dst_cpu; 3070 enum cpu_idle_type idle; 3071 long imbalance; 3072 unsigned int flags; 3073 3074 unsigned int loop; 3075 unsigned int loop_break; 3076 unsigned int loop_max; 3077 }; 3078 3079 /* 3080 * move_task - move a task from one runqueue to another runqueue. 3081 * Both runqueues must be locked. 3082 */ 3083 static void move_task(struct task_struct *p, struct lb_env *env) 3084 { 3085 deactivate_task(env->src_rq, p, 0); 3086 set_task_cpu(p, env->dst_cpu); 3087 activate_task(env->dst_rq, p, 0); 3088 check_preempt_curr(env->dst_rq, p, 0); 3089 } 3090 3091 /* 3092 * Is this task likely cache-hot: 3093 */ 3094 static int 3095 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) 3096 { 3097 s64 delta; 3098 3099 if (p->sched_class != &fair_sched_class) 3100 return 0; 3101 3102 if (unlikely(p->policy == SCHED_IDLE)) 3103 return 0; 3104 3105 /* 3106 * Buddy candidates are cache hot: 3107 */ 3108 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && 3109 (&p->se == cfs_rq_of(&p->se)->next || 3110 &p->se == cfs_rq_of(&p->se)->last)) 3111 return 1; 3112 3113 if (sysctl_sched_migration_cost == -1) 3114 return 1; 3115 if (sysctl_sched_migration_cost == 0) 3116 return 0; 3117 3118 delta = now - p->se.exec_start; 3119 3120 return delta < (s64)sysctl_sched_migration_cost; 3121 } 3122 3123 /* 3124 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 3125 */ 3126 static 3127 int can_migrate_task(struct task_struct *p, struct lb_env *env) 3128 { 3129 int tsk_cache_hot = 0; 3130 /* 3131 * We do not migrate tasks that are: 3132 * 1) running (obviously), or 3133 * 2) cannot be migrated to this CPU due to cpus_allowed, or 3134 * 3) are cache-hot on their current CPU. 3135 */ 3136 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 3137 int new_dst_cpu; 3138 3139 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 3140 3141 /* 3142 * Remember if this task can be migrated to any other cpu in 3143 * our sched_group. We may want to revisit it if we couldn't 3144 * meet load balance goals by pulling other tasks on src_cpu. 3145 * 3146 * Also avoid computing new_dst_cpu if we have already computed 3147 * one in current iteration. 3148 */ 3149 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED)) 3150 return 0; 3151 3152 new_dst_cpu = cpumask_first_and(env->dst_grpmask, 3153 tsk_cpus_allowed(p)); 3154 if (new_dst_cpu < nr_cpu_ids) { 3155 env->flags |= LBF_SOME_PINNED; 3156 env->new_dst_cpu = new_dst_cpu; 3157 } 3158 return 0; 3159 } 3160 3161 /* Record that we found atleast one task that could run on dst_cpu */ 3162 env->flags &= ~LBF_ALL_PINNED; 3163 3164 if (task_running(env->src_rq, p)) { 3165 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 3166 return 0; 3167 } 3168 3169 /* 3170 * Aggressive migration if: 3171 * 1) task is cache cold, or 3172 * 2) too many balance attempts have failed. 3173 */ 3174 3175 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd); 3176 if (!tsk_cache_hot || 3177 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 3178 #ifdef CONFIG_SCHEDSTATS 3179 if (tsk_cache_hot) { 3180 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 3181 schedstat_inc(p, se.statistics.nr_forced_migrations); 3182 } 3183 #endif 3184 return 1; 3185 } 3186 3187 if (tsk_cache_hot) { 3188 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 3189 return 0; 3190 } 3191 return 1; 3192 } 3193 3194 /* 3195 * move_one_task tries to move exactly one task from busiest to this_rq, as 3196 * part of active balancing operations within "domain". 3197 * Returns 1 if successful and 0 otherwise. 3198 * 3199 * Called with both runqueues locked. 3200 */ 3201 static int move_one_task(struct lb_env *env) 3202 { 3203 struct task_struct *p, *n; 3204 3205 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 3206 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu)) 3207 continue; 3208 3209 if (!can_migrate_task(p, env)) 3210 continue; 3211 3212 move_task(p, env); 3213 /* 3214 * Right now, this is only the second place move_task() 3215 * is called, so we can safely collect move_task() 3216 * stats here rather than inside move_task(). 3217 */ 3218 schedstat_inc(env->sd, lb_gained[env->idle]); 3219 return 1; 3220 } 3221 return 0; 3222 } 3223 3224 static unsigned long task_h_load(struct task_struct *p); 3225 3226 static const unsigned int sched_nr_migrate_break = 32; 3227 3228 /* 3229 * move_tasks tries to move up to imbalance weighted load from busiest to 3230 * this_rq, as part of a balancing operation within domain "sd". 3231 * Returns 1 if successful and 0 otherwise. 3232 * 3233 * Called with both runqueues locked. 3234 */ 3235 static int move_tasks(struct lb_env *env) 3236 { 3237 struct list_head *tasks = &env->src_rq->cfs_tasks; 3238 struct task_struct *p; 3239 unsigned long load; 3240 int pulled = 0; 3241 3242 if (env->imbalance <= 0) 3243 return 0; 3244 3245 while (!list_empty(tasks)) { 3246 p = list_first_entry(tasks, struct task_struct, se.group_node); 3247 3248 env->loop++; 3249 /* We've more or less seen every task there is, call it quits */ 3250 if (env->loop > env->loop_max) 3251 break; 3252 3253 /* take a breather every nr_migrate tasks */ 3254 if (env->loop > env->loop_break) { 3255 env->loop_break += sched_nr_migrate_break; 3256 env->flags |= LBF_NEED_BREAK; 3257 break; 3258 } 3259 3260 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 3261 goto next; 3262 3263 load = task_h_load(p); 3264 3265 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 3266 goto next; 3267 3268 if ((load / 2) > env->imbalance) 3269 goto next; 3270 3271 if (!can_migrate_task(p, env)) 3272 goto next; 3273 3274 move_task(p, env); 3275 pulled++; 3276 env->imbalance -= load; 3277 3278 #ifdef CONFIG_PREEMPT 3279 /* 3280 * NEWIDLE balancing is a source of latency, so preemptible 3281 * kernels will stop after the first task is pulled to minimize 3282 * the critical section. 3283 */ 3284 if (env->idle == CPU_NEWLY_IDLE) 3285 break; 3286 #endif 3287 3288 /* 3289 * We only want to steal up to the prescribed amount of 3290 * weighted load. 3291 */ 3292 if (env->imbalance <= 0) 3293 break; 3294 3295 continue; 3296 next: 3297 list_move_tail(&p->se.group_node, tasks); 3298 } 3299 3300 /* 3301 * Right now, this is one of only two places move_task() is called, 3302 * so we can safely collect move_task() stats here rather than 3303 * inside move_task(). 3304 */ 3305 schedstat_add(env->sd, lb_gained[env->idle], pulled); 3306 3307 return pulled; 3308 } 3309 3310 #ifdef CONFIG_FAIR_GROUP_SCHED 3311 /* 3312 * update tg->load_weight by folding this cpu's load_avg 3313 */ 3314 static int update_shares_cpu(struct task_group *tg, int cpu) 3315 { 3316 struct cfs_rq *cfs_rq; 3317 unsigned long flags; 3318 struct rq *rq; 3319 3320 if (!tg->se[cpu]) 3321 return 0; 3322 3323 rq = cpu_rq(cpu); 3324 cfs_rq = tg->cfs_rq[cpu]; 3325 3326 raw_spin_lock_irqsave(&rq->lock, flags); 3327 3328 update_rq_clock(rq); 3329 update_cfs_load(cfs_rq, 1); 3330 3331 /* 3332 * We need to update shares after updating tg->load_weight in 3333 * order to adjust the weight of groups with long running tasks. 3334 */ 3335 update_cfs_shares(cfs_rq); 3336 3337 raw_spin_unlock_irqrestore(&rq->lock, flags); 3338 3339 return 0; 3340 } 3341 3342 static void update_shares(int cpu) 3343 { 3344 struct cfs_rq *cfs_rq; 3345 struct rq *rq = cpu_rq(cpu); 3346 3347 rcu_read_lock(); 3348 /* 3349 * Iterates the task_group tree in a bottom up fashion, see 3350 * list_add_leaf_cfs_rq() for details. 3351 */ 3352 for_each_leaf_cfs_rq(rq, cfs_rq) { 3353 /* throttled entities do not contribute to load */ 3354 if (throttled_hierarchy(cfs_rq)) 3355 continue; 3356 3357 update_shares_cpu(cfs_rq->tg, cpu); 3358 } 3359 rcu_read_unlock(); 3360 } 3361 3362 /* 3363 * Compute the cpu's hierarchical load factor for each task group. 3364 * This needs to be done in a top-down fashion because the load of a child 3365 * group is a fraction of its parents load. 3366 */ 3367 static int tg_load_down(struct task_group *tg, void *data) 3368 { 3369 unsigned long load; 3370 long cpu = (long)data; 3371 3372 if (!tg->parent) { 3373 load = cpu_rq(cpu)->load.weight; 3374 } else { 3375 load = tg->parent->cfs_rq[cpu]->h_load; 3376 load *= tg->se[cpu]->load.weight; 3377 load /= tg->parent->cfs_rq[cpu]->load.weight + 1; 3378 } 3379 3380 tg->cfs_rq[cpu]->h_load = load; 3381 3382 return 0; 3383 } 3384 3385 static void update_h_load(long cpu) 3386 { 3387 rcu_read_lock(); 3388 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); 3389 rcu_read_unlock(); 3390 } 3391 3392 static unsigned long task_h_load(struct task_struct *p) 3393 { 3394 struct cfs_rq *cfs_rq = task_cfs_rq(p); 3395 unsigned long load; 3396 3397 load = p->se.load.weight; 3398 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1); 3399 3400 return load; 3401 } 3402 #else 3403 static inline void update_shares(int cpu) 3404 { 3405 } 3406 3407 static inline void update_h_load(long cpu) 3408 { 3409 } 3410 3411 static unsigned long task_h_load(struct task_struct *p) 3412 { 3413 return p->se.load.weight; 3414 } 3415 #endif 3416 3417 /********** Helpers for find_busiest_group ************************/ 3418 /* 3419 * sd_lb_stats - Structure to store the statistics of a sched_domain 3420 * during load balancing. 3421 */ 3422 struct sd_lb_stats { 3423 struct sched_group *busiest; /* Busiest group in this sd */ 3424 struct sched_group *this; /* Local group in this sd */ 3425 unsigned long total_load; /* Total load of all groups in sd */ 3426 unsigned long total_pwr; /* Total power of all groups in sd */ 3427 unsigned long avg_load; /* Average load across all groups in sd */ 3428 3429 /** Statistics of this group */ 3430 unsigned long this_load; 3431 unsigned long this_load_per_task; 3432 unsigned long this_nr_running; 3433 unsigned long this_has_capacity; 3434 unsigned int this_idle_cpus; 3435 3436 /* Statistics of the busiest group */ 3437 unsigned int busiest_idle_cpus; 3438 unsigned long max_load; 3439 unsigned long busiest_load_per_task; 3440 unsigned long busiest_nr_running; 3441 unsigned long busiest_group_capacity; 3442 unsigned long busiest_has_capacity; 3443 unsigned int busiest_group_weight; 3444 3445 int group_imb; /* Is there imbalance in this sd */ 3446 }; 3447 3448 /* 3449 * sg_lb_stats - stats of a sched_group required for load_balancing 3450 */ 3451 struct sg_lb_stats { 3452 unsigned long avg_load; /*Avg load across the CPUs of the group */ 3453 unsigned long group_load; /* Total load over the CPUs of the group */ 3454 unsigned long sum_nr_running; /* Nr tasks running in the group */ 3455 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 3456 unsigned long group_capacity; 3457 unsigned long idle_cpus; 3458 unsigned long group_weight; 3459 int group_imb; /* Is there an imbalance in the group ? */ 3460 int group_has_capacity; /* Is there extra capacity in the group? */ 3461 }; 3462 3463 /** 3464 * get_sd_load_idx - Obtain the load index for a given sched domain. 3465 * @sd: The sched_domain whose load_idx is to be obtained. 3466 * @idle: The Idle status of the CPU for whose sd load_icx is obtained. 3467 */ 3468 static inline int get_sd_load_idx(struct sched_domain *sd, 3469 enum cpu_idle_type idle) 3470 { 3471 int load_idx; 3472 3473 switch (idle) { 3474 case CPU_NOT_IDLE: 3475 load_idx = sd->busy_idx; 3476 break; 3477 3478 case CPU_NEWLY_IDLE: 3479 load_idx = sd->newidle_idx; 3480 break; 3481 default: 3482 load_idx = sd->idle_idx; 3483 break; 3484 } 3485 3486 return load_idx; 3487 } 3488 3489 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) 3490 { 3491 return SCHED_POWER_SCALE; 3492 } 3493 3494 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) 3495 { 3496 return default_scale_freq_power(sd, cpu); 3497 } 3498 3499 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) 3500 { 3501 unsigned long weight = sd->span_weight; 3502 unsigned long smt_gain = sd->smt_gain; 3503 3504 smt_gain /= weight; 3505 3506 return smt_gain; 3507 } 3508 3509 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) 3510 { 3511 return default_scale_smt_power(sd, cpu); 3512 } 3513 3514 unsigned long scale_rt_power(int cpu) 3515 { 3516 struct rq *rq = cpu_rq(cpu); 3517 u64 total, available, age_stamp, avg; 3518 3519 /* 3520 * Since we're reading these variables without serialization make sure 3521 * we read them once before doing sanity checks on them. 3522 */ 3523 age_stamp = ACCESS_ONCE(rq->age_stamp); 3524 avg = ACCESS_ONCE(rq->rt_avg); 3525 3526 total = sched_avg_period() + (rq->clock - age_stamp); 3527 3528 if (unlikely(total < avg)) { 3529 /* Ensures that power won't end up being negative */ 3530 available = 0; 3531 } else { 3532 available = total - avg; 3533 } 3534 3535 if (unlikely((s64)total < SCHED_POWER_SCALE)) 3536 total = SCHED_POWER_SCALE; 3537 3538 total >>= SCHED_POWER_SHIFT; 3539 3540 return div_u64(available, total); 3541 } 3542 3543 static void update_cpu_power(struct sched_domain *sd, int cpu) 3544 { 3545 unsigned long weight = sd->span_weight; 3546 unsigned long power = SCHED_POWER_SCALE; 3547 struct sched_group *sdg = sd->groups; 3548 3549 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { 3550 if (sched_feat(ARCH_POWER)) 3551 power *= arch_scale_smt_power(sd, cpu); 3552 else 3553 power *= default_scale_smt_power(sd, cpu); 3554 3555 power >>= SCHED_POWER_SHIFT; 3556 } 3557 3558 sdg->sgp->power_orig = power; 3559 3560 if (sched_feat(ARCH_POWER)) 3561 power *= arch_scale_freq_power(sd, cpu); 3562 else 3563 power *= default_scale_freq_power(sd, cpu); 3564 3565 power >>= SCHED_POWER_SHIFT; 3566 3567 power *= scale_rt_power(cpu); 3568 power >>= SCHED_POWER_SHIFT; 3569 3570 if (!power) 3571 power = 1; 3572 3573 cpu_rq(cpu)->cpu_power = power; 3574 sdg->sgp->power = power; 3575 } 3576 3577 void update_group_power(struct sched_domain *sd, int cpu) 3578 { 3579 struct sched_domain *child = sd->child; 3580 struct sched_group *group, *sdg = sd->groups; 3581 unsigned long power; 3582 unsigned long interval; 3583 3584 interval = msecs_to_jiffies(sd->balance_interval); 3585 interval = clamp(interval, 1UL, max_load_balance_interval); 3586 sdg->sgp->next_update = jiffies + interval; 3587 3588 if (!child) { 3589 update_cpu_power(sd, cpu); 3590 return; 3591 } 3592 3593 power = 0; 3594 3595 if (child->flags & SD_OVERLAP) { 3596 /* 3597 * SD_OVERLAP domains cannot assume that child groups 3598 * span the current group. 3599 */ 3600 3601 for_each_cpu(cpu, sched_group_cpus(sdg)) 3602 power += power_of(cpu); 3603 } else { 3604 /* 3605 * !SD_OVERLAP domains can assume that child groups 3606 * span the current group. 3607 */ 3608 3609 group = child->groups; 3610 do { 3611 power += group->sgp->power; 3612 group = group->next; 3613 } while (group != child->groups); 3614 } 3615 3616 sdg->sgp->power_orig = sdg->sgp->power = power; 3617 } 3618 3619 /* 3620 * Try and fix up capacity for tiny siblings, this is needed when 3621 * things like SD_ASYM_PACKING need f_b_g to select another sibling 3622 * which on its own isn't powerful enough. 3623 * 3624 * See update_sd_pick_busiest() and check_asym_packing(). 3625 */ 3626 static inline int 3627 fix_small_capacity(struct sched_domain *sd, struct sched_group *group) 3628 { 3629 /* 3630 * Only siblings can have significantly less than SCHED_POWER_SCALE 3631 */ 3632 if (!(sd->flags & SD_SHARE_CPUPOWER)) 3633 return 0; 3634 3635 /* 3636 * If ~90% of the cpu_power is still there, we're good. 3637 */ 3638 if (group->sgp->power * 32 > group->sgp->power_orig * 29) 3639 return 1; 3640 3641 return 0; 3642 } 3643 3644 /** 3645 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 3646 * @env: The load balancing environment. 3647 * @group: sched_group whose statistics are to be updated. 3648 * @load_idx: Load index of sched_domain of this_cpu for load calc. 3649 * @local_group: Does group contain this_cpu. 3650 * @cpus: Set of cpus considered for load balancing. 3651 * @balance: Should we balance. 3652 * @sgs: variable to hold the statistics for this group. 3653 */ 3654 static inline void update_sg_lb_stats(struct lb_env *env, 3655 struct sched_group *group, int load_idx, 3656 int local_group, const struct cpumask *cpus, 3657 int *balance, struct sg_lb_stats *sgs) 3658 { 3659 unsigned long nr_running, max_nr_running, min_nr_running; 3660 unsigned long load, max_cpu_load, min_cpu_load; 3661 unsigned int balance_cpu = -1, first_idle_cpu = 0; 3662 unsigned long avg_load_per_task = 0; 3663 int i; 3664 3665 if (local_group) 3666 balance_cpu = group_balance_cpu(group); 3667 3668 /* Tally up the load of all CPUs in the group */ 3669 max_cpu_load = 0; 3670 min_cpu_load = ~0UL; 3671 max_nr_running = 0; 3672 min_nr_running = ~0UL; 3673 3674 for_each_cpu_and(i, sched_group_cpus(group), cpus) { 3675 struct rq *rq = cpu_rq(i); 3676 3677 nr_running = rq->nr_running; 3678 3679 /* Bias balancing toward cpus of our domain */ 3680 if (local_group) { 3681 if (idle_cpu(i) && !first_idle_cpu && 3682 cpumask_test_cpu(i, sched_group_mask(group))) { 3683 first_idle_cpu = 1; 3684 balance_cpu = i; 3685 } 3686 3687 load = target_load(i, load_idx); 3688 } else { 3689 load = source_load(i, load_idx); 3690 if (load > max_cpu_load) 3691 max_cpu_load = load; 3692 if (min_cpu_load > load) 3693 min_cpu_load = load; 3694 3695 if (nr_running > max_nr_running) 3696 max_nr_running = nr_running; 3697 if (min_nr_running > nr_running) 3698 min_nr_running = nr_running; 3699 } 3700 3701 sgs->group_load += load; 3702 sgs->sum_nr_running += nr_running; 3703 sgs->sum_weighted_load += weighted_cpuload(i); 3704 if (idle_cpu(i)) 3705 sgs->idle_cpus++; 3706 } 3707 3708 /* 3709 * First idle cpu or the first cpu(busiest) in this sched group 3710 * is eligible for doing load balancing at this and above 3711 * domains. In the newly idle case, we will allow all the cpu's 3712 * to do the newly idle load balance. 3713 */ 3714 if (local_group) { 3715 if (env->idle != CPU_NEWLY_IDLE) { 3716 if (balance_cpu != env->dst_cpu) { 3717 *balance = 0; 3718 return; 3719 } 3720 update_group_power(env->sd, env->dst_cpu); 3721 } else if (time_after_eq(jiffies, group->sgp->next_update)) 3722 update_group_power(env->sd, env->dst_cpu); 3723 } 3724 3725 /* Adjust by relative CPU power of the group */ 3726 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power; 3727 3728 /* 3729 * Consider the group unbalanced when the imbalance is larger 3730 * than the average weight of a task. 3731 * 3732 * APZ: with cgroup the avg task weight can vary wildly and 3733 * might not be a suitable number - should we keep a 3734 * normalized nr_running number somewhere that negates 3735 * the hierarchy? 3736 */ 3737 if (sgs->sum_nr_running) 3738 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 3739 3740 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && 3741 (max_nr_running - min_nr_running) > 1) 3742 sgs->group_imb = 1; 3743 3744 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power, 3745 SCHED_POWER_SCALE); 3746 if (!sgs->group_capacity) 3747 sgs->group_capacity = fix_small_capacity(env->sd, group); 3748 sgs->group_weight = group->group_weight; 3749 3750 if (sgs->group_capacity > sgs->sum_nr_running) 3751 sgs->group_has_capacity = 1; 3752 } 3753 3754 /** 3755 * update_sd_pick_busiest - return 1 on busiest group 3756 * @env: The load balancing environment. 3757 * @sds: sched_domain statistics 3758 * @sg: sched_group candidate to be checked for being the busiest 3759 * @sgs: sched_group statistics 3760 * 3761 * Determine if @sg is a busier group than the previously selected 3762 * busiest group. 3763 */ 3764 static bool update_sd_pick_busiest(struct lb_env *env, 3765 struct sd_lb_stats *sds, 3766 struct sched_group *sg, 3767 struct sg_lb_stats *sgs) 3768 { 3769 if (sgs->avg_load <= sds->max_load) 3770 return false; 3771 3772 if (sgs->sum_nr_running > sgs->group_capacity) 3773 return true; 3774 3775 if (sgs->group_imb) 3776 return true; 3777 3778 /* 3779 * ASYM_PACKING needs to move all the work to the lowest 3780 * numbered CPUs in the group, therefore mark all groups 3781 * higher than ourself as busy. 3782 */ 3783 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && 3784 env->dst_cpu < group_first_cpu(sg)) { 3785 if (!sds->busiest) 3786 return true; 3787 3788 if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) 3789 return true; 3790 } 3791 3792 return false; 3793 } 3794 3795 /** 3796 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 3797 * @env: The load balancing environment. 3798 * @cpus: Set of cpus considered for load balancing. 3799 * @balance: Should we balance. 3800 * @sds: variable to hold the statistics for this sched_domain. 3801 */ 3802 static inline void update_sd_lb_stats(struct lb_env *env, 3803 const struct cpumask *cpus, 3804 int *balance, struct sd_lb_stats *sds) 3805 { 3806 struct sched_domain *child = env->sd->child; 3807 struct sched_group *sg = env->sd->groups; 3808 struct sg_lb_stats sgs; 3809 int load_idx, prefer_sibling = 0; 3810 3811 if (child && child->flags & SD_PREFER_SIBLING) 3812 prefer_sibling = 1; 3813 3814 load_idx = get_sd_load_idx(env->sd, env->idle); 3815 3816 do { 3817 int local_group; 3818 3819 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 3820 memset(&sgs, 0, sizeof(sgs)); 3821 update_sg_lb_stats(env, sg, load_idx, local_group, 3822 cpus, balance, &sgs); 3823 3824 if (local_group && !(*balance)) 3825 return; 3826 3827 sds->total_load += sgs.group_load; 3828 sds->total_pwr += sg->sgp->power; 3829 3830 /* 3831 * In case the child domain prefers tasks go to siblings 3832 * first, lower the sg capacity to one so that we'll try 3833 * and move all the excess tasks away. We lower the capacity 3834 * of a group only if the local group has the capacity to fit 3835 * these excess tasks, i.e. nr_running < group_capacity. The 3836 * extra check prevents the case where you always pull from the 3837 * heaviest group when it is already under-utilized (possible 3838 * with a large weight task outweighs the tasks on the system). 3839 */ 3840 if (prefer_sibling && !local_group && sds->this_has_capacity) 3841 sgs.group_capacity = min(sgs.group_capacity, 1UL); 3842 3843 if (local_group) { 3844 sds->this_load = sgs.avg_load; 3845 sds->this = sg; 3846 sds->this_nr_running = sgs.sum_nr_running; 3847 sds->this_load_per_task = sgs.sum_weighted_load; 3848 sds->this_has_capacity = sgs.group_has_capacity; 3849 sds->this_idle_cpus = sgs.idle_cpus; 3850 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) { 3851 sds->max_load = sgs.avg_load; 3852 sds->busiest = sg; 3853 sds->busiest_nr_running = sgs.sum_nr_running; 3854 sds->busiest_idle_cpus = sgs.idle_cpus; 3855 sds->busiest_group_capacity = sgs.group_capacity; 3856 sds->busiest_load_per_task = sgs.sum_weighted_load; 3857 sds->busiest_has_capacity = sgs.group_has_capacity; 3858 sds->busiest_group_weight = sgs.group_weight; 3859 sds->group_imb = sgs.group_imb; 3860 } 3861 3862 sg = sg->next; 3863 } while (sg != env->sd->groups); 3864 } 3865 3866 /** 3867 * check_asym_packing - Check to see if the group is packed into the 3868 * sched doman. 3869 * 3870 * This is primarily intended to used at the sibling level. Some 3871 * cores like POWER7 prefer to use lower numbered SMT threads. In the 3872 * case of POWER7, it can move to lower SMT modes only when higher 3873 * threads are idle. When in lower SMT modes, the threads will 3874 * perform better since they share less core resources. Hence when we 3875 * have idle threads, we want them to be the higher ones. 3876 * 3877 * This packing function is run on idle threads. It checks to see if 3878 * the busiest CPU in this domain (core in the P7 case) has a higher 3879 * CPU number than the packing function is being run on. Here we are 3880 * assuming lower CPU number will be equivalent to lower a SMT thread 3881 * number. 3882 * 3883 * Returns 1 when packing is required and a task should be moved to 3884 * this CPU. The amount of the imbalance is returned in *imbalance. 3885 * 3886 * @env: The load balancing environment. 3887 * @sds: Statistics of the sched_domain which is to be packed 3888 */ 3889 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 3890 { 3891 int busiest_cpu; 3892 3893 if (!(env->sd->flags & SD_ASYM_PACKING)) 3894 return 0; 3895 3896 if (!sds->busiest) 3897 return 0; 3898 3899 busiest_cpu = group_first_cpu(sds->busiest); 3900 if (env->dst_cpu > busiest_cpu) 3901 return 0; 3902 3903 env->imbalance = DIV_ROUND_CLOSEST( 3904 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE); 3905 3906 return 1; 3907 } 3908 3909 /** 3910 * fix_small_imbalance - Calculate the minor imbalance that exists 3911 * amongst the groups of a sched_domain, during 3912 * load balancing. 3913 * @env: The load balancing environment. 3914 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 3915 */ 3916 static inline 3917 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 3918 { 3919 unsigned long tmp, pwr_now = 0, pwr_move = 0; 3920 unsigned int imbn = 2; 3921 unsigned long scaled_busy_load_per_task; 3922 3923 if (sds->this_nr_running) { 3924 sds->this_load_per_task /= sds->this_nr_running; 3925 if (sds->busiest_load_per_task > 3926 sds->this_load_per_task) 3927 imbn = 1; 3928 } else { 3929 sds->this_load_per_task = 3930 cpu_avg_load_per_task(env->dst_cpu); 3931 } 3932 3933 scaled_busy_load_per_task = sds->busiest_load_per_task 3934 * SCHED_POWER_SCALE; 3935 scaled_busy_load_per_task /= sds->busiest->sgp->power; 3936 3937 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >= 3938 (scaled_busy_load_per_task * imbn)) { 3939 env->imbalance = sds->busiest_load_per_task; 3940 return; 3941 } 3942 3943 /* 3944 * OK, we don't have enough imbalance to justify moving tasks, 3945 * however we may be able to increase total CPU power used by 3946 * moving them. 3947 */ 3948 3949 pwr_now += sds->busiest->sgp->power * 3950 min(sds->busiest_load_per_task, sds->max_load); 3951 pwr_now += sds->this->sgp->power * 3952 min(sds->this_load_per_task, sds->this_load); 3953 pwr_now /= SCHED_POWER_SCALE; 3954 3955 /* Amount of load we'd subtract */ 3956 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / 3957 sds->busiest->sgp->power; 3958 if (sds->max_load > tmp) 3959 pwr_move += sds->busiest->sgp->power * 3960 min(sds->busiest_load_per_task, sds->max_load - tmp); 3961 3962 /* Amount of load we'd add */ 3963 if (sds->max_load * sds->busiest->sgp->power < 3964 sds->busiest_load_per_task * SCHED_POWER_SCALE) 3965 tmp = (sds->max_load * sds->busiest->sgp->power) / 3966 sds->this->sgp->power; 3967 else 3968 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / 3969 sds->this->sgp->power; 3970 pwr_move += sds->this->sgp->power * 3971 min(sds->this_load_per_task, sds->this_load + tmp); 3972 pwr_move /= SCHED_POWER_SCALE; 3973 3974 /* Move if we gain throughput */ 3975 if (pwr_move > pwr_now) 3976 env->imbalance = sds->busiest_load_per_task; 3977 } 3978 3979 /** 3980 * calculate_imbalance - Calculate the amount of imbalance present within the 3981 * groups of a given sched_domain during load balance. 3982 * @env: load balance environment 3983 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 3984 */ 3985 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 3986 { 3987 unsigned long max_pull, load_above_capacity = ~0UL; 3988 3989 sds->busiest_load_per_task /= sds->busiest_nr_running; 3990 if (sds->group_imb) { 3991 sds->busiest_load_per_task = 3992 min(sds->busiest_load_per_task, sds->avg_load); 3993 } 3994 3995 /* 3996 * In the presence of smp nice balancing, certain scenarios can have 3997 * max load less than avg load(as we skip the groups at or below 3998 * its cpu_power, while calculating max_load..) 3999 */ 4000 if (sds->max_load < sds->avg_load) { 4001 env->imbalance = 0; 4002 return fix_small_imbalance(env, sds); 4003 } 4004 4005 if (!sds->group_imb) { 4006 /* 4007 * Don't want to pull so many tasks that a group would go idle. 4008 */ 4009 load_above_capacity = (sds->busiest_nr_running - 4010 sds->busiest_group_capacity); 4011 4012 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE); 4013 4014 load_above_capacity /= sds->busiest->sgp->power; 4015 } 4016 4017 /* 4018 * We're trying to get all the cpus to the average_load, so we don't 4019 * want to push ourselves above the average load, nor do we wish to 4020 * reduce the max loaded cpu below the average load. At the same time, 4021 * we also don't want to reduce the group load below the group capacity 4022 * (so that we can implement power-savings policies etc). Thus we look 4023 * for the minimum possible imbalance. 4024 * Be careful of negative numbers as they'll appear as very large values 4025 * with unsigned longs. 4026 */ 4027 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity); 4028 4029 /* How much load to actually move to equalise the imbalance */ 4030 env->imbalance = min(max_pull * sds->busiest->sgp->power, 4031 (sds->avg_load - sds->this_load) * sds->this->sgp->power) 4032 / SCHED_POWER_SCALE; 4033 4034 /* 4035 * if *imbalance is less than the average load per runnable task 4036 * there is no guarantee that any tasks will be moved so we'll have 4037 * a think about bumping its value to force at least one task to be 4038 * moved 4039 */ 4040 if (env->imbalance < sds->busiest_load_per_task) 4041 return fix_small_imbalance(env, sds); 4042 4043 } 4044 4045 /******* find_busiest_group() helpers end here *********************/ 4046 4047 /** 4048 * find_busiest_group - Returns the busiest group within the sched_domain 4049 * if there is an imbalance. If there isn't an imbalance, and 4050 * the user has opted for power-savings, it returns a group whose 4051 * CPUs can be put to idle by rebalancing those tasks elsewhere, if 4052 * such a group exists. 4053 * 4054 * Also calculates the amount of weighted load which should be moved 4055 * to restore balance. 4056 * 4057 * @env: The load balancing environment. 4058 * @cpus: The set of CPUs under consideration for load-balancing. 4059 * @balance: Pointer to a variable indicating if this_cpu 4060 * is the appropriate cpu to perform load balancing at this_level. 4061 * 4062 * Returns: - the busiest group if imbalance exists. 4063 * - If no imbalance and user has opted for power-savings balance, 4064 * return the least loaded group whose CPUs can be 4065 * put to idle by rebalancing its tasks onto our group. 4066 */ 4067 static struct sched_group * 4068 find_busiest_group(struct lb_env *env, const struct cpumask *cpus, int *balance) 4069 { 4070 struct sd_lb_stats sds; 4071 4072 memset(&sds, 0, sizeof(sds)); 4073 4074 /* 4075 * Compute the various statistics relavent for load balancing at 4076 * this level. 4077 */ 4078 update_sd_lb_stats(env, cpus, balance, &sds); 4079 4080 /* 4081 * this_cpu is not the appropriate cpu to perform load balancing at 4082 * this level. 4083 */ 4084 if (!(*balance)) 4085 goto ret; 4086 4087 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && 4088 check_asym_packing(env, &sds)) 4089 return sds.busiest; 4090 4091 /* There is no busy sibling group to pull tasks from */ 4092 if (!sds.busiest || sds.busiest_nr_running == 0) 4093 goto out_balanced; 4094 4095 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr; 4096 4097 /* 4098 * If the busiest group is imbalanced the below checks don't 4099 * work because they assumes all things are equal, which typically 4100 * isn't true due to cpus_allowed constraints and the like. 4101 */ 4102 if (sds.group_imb) 4103 goto force_balance; 4104 4105 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 4106 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity && 4107 !sds.busiest_has_capacity) 4108 goto force_balance; 4109 4110 /* 4111 * If the local group is more busy than the selected busiest group 4112 * don't try and pull any tasks. 4113 */ 4114 if (sds.this_load >= sds.max_load) 4115 goto out_balanced; 4116 4117 /* 4118 * Don't pull any tasks if this group is already above the domain 4119 * average load. 4120 */ 4121 if (sds.this_load >= sds.avg_load) 4122 goto out_balanced; 4123 4124 if (env->idle == CPU_IDLE) { 4125 /* 4126 * This cpu is idle. If the busiest group load doesn't 4127 * have more tasks than the number of available cpu's and 4128 * there is no imbalance between this and busiest group 4129 * wrt to idle cpu's, it is balanced. 4130 */ 4131 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) && 4132 sds.busiest_nr_running <= sds.busiest_group_weight) 4133 goto out_balanced; 4134 } else { 4135 /* 4136 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 4137 * imbalance_pct to be conservative. 4138 */ 4139 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load) 4140 goto out_balanced; 4141 } 4142 4143 force_balance: 4144 /* Looks like there is an imbalance. Compute it */ 4145 calculate_imbalance(env, &sds); 4146 return sds.busiest; 4147 4148 out_balanced: 4149 ret: 4150 env->imbalance = 0; 4151 return NULL; 4152 } 4153 4154 /* 4155 * find_busiest_queue - find the busiest runqueue among the cpus in group. 4156 */ 4157 static struct rq *find_busiest_queue(struct lb_env *env, 4158 struct sched_group *group, 4159 const struct cpumask *cpus) 4160 { 4161 struct rq *busiest = NULL, *rq; 4162 unsigned long max_load = 0; 4163 int i; 4164 4165 for_each_cpu(i, sched_group_cpus(group)) { 4166 unsigned long power = power_of(i); 4167 unsigned long capacity = DIV_ROUND_CLOSEST(power, 4168 SCHED_POWER_SCALE); 4169 unsigned long wl; 4170 4171 if (!capacity) 4172 capacity = fix_small_capacity(env->sd, group); 4173 4174 if (!cpumask_test_cpu(i, cpus)) 4175 continue; 4176 4177 rq = cpu_rq(i); 4178 wl = weighted_cpuload(i); 4179 4180 /* 4181 * When comparing with imbalance, use weighted_cpuload() 4182 * which is not scaled with the cpu power. 4183 */ 4184 if (capacity && rq->nr_running == 1 && wl > env->imbalance) 4185 continue; 4186 4187 /* 4188 * For the load comparisons with the other cpu's, consider 4189 * the weighted_cpuload() scaled with the cpu power, so that 4190 * the load can be moved away from the cpu that is potentially 4191 * running at a lower capacity. 4192 */ 4193 wl = (wl * SCHED_POWER_SCALE) / power; 4194 4195 if (wl > max_load) { 4196 max_load = wl; 4197 busiest = rq; 4198 } 4199 } 4200 4201 return busiest; 4202 } 4203 4204 /* 4205 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 4206 * so long as it is large enough. 4207 */ 4208 #define MAX_PINNED_INTERVAL 512 4209 4210 /* Working cpumask for load_balance and load_balance_newidle. */ 4211 DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); 4212 4213 static int need_active_balance(struct lb_env *env) 4214 { 4215 struct sched_domain *sd = env->sd; 4216 4217 if (env->idle == CPU_NEWLY_IDLE) { 4218 4219 /* 4220 * ASYM_PACKING needs to force migrate tasks from busy but 4221 * higher numbered CPUs in order to pack all tasks in the 4222 * lowest numbered CPUs. 4223 */ 4224 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 4225 return 1; 4226 } 4227 4228 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 4229 } 4230 4231 static int active_load_balance_cpu_stop(void *data); 4232 4233 /* 4234 * Check this_cpu to ensure it is balanced within domain. Attempt to move 4235 * tasks if there is an imbalance. 4236 */ 4237 static int load_balance(int this_cpu, struct rq *this_rq, 4238 struct sched_domain *sd, enum cpu_idle_type idle, 4239 int *balance) 4240 { 4241 int ld_moved, cur_ld_moved, active_balance = 0; 4242 int lb_iterations, max_lb_iterations; 4243 struct sched_group *group; 4244 struct rq *busiest; 4245 unsigned long flags; 4246 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); 4247 4248 struct lb_env env = { 4249 .sd = sd, 4250 .dst_cpu = this_cpu, 4251 .dst_rq = this_rq, 4252 .dst_grpmask = sched_group_cpus(sd->groups), 4253 .idle = idle, 4254 .loop_break = sched_nr_migrate_break, 4255 }; 4256 4257 cpumask_copy(cpus, cpu_active_mask); 4258 max_lb_iterations = cpumask_weight(env.dst_grpmask); 4259 4260 schedstat_inc(sd, lb_count[idle]); 4261 4262 redo: 4263 group = find_busiest_group(&env, cpus, balance); 4264 4265 if (*balance == 0) 4266 goto out_balanced; 4267 4268 if (!group) { 4269 schedstat_inc(sd, lb_nobusyg[idle]); 4270 goto out_balanced; 4271 } 4272 4273 busiest = find_busiest_queue(&env, group, cpus); 4274 if (!busiest) { 4275 schedstat_inc(sd, lb_nobusyq[idle]); 4276 goto out_balanced; 4277 } 4278 4279 BUG_ON(busiest == this_rq); 4280 4281 schedstat_add(sd, lb_imbalance[idle], env.imbalance); 4282 4283 ld_moved = 0; 4284 lb_iterations = 1; 4285 if (busiest->nr_running > 1) { 4286 /* 4287 * Attempt to move tasks. If find_busiest_group has found 4288 * an imbalance but busiest->nr_running <= 1, the group is 4289 * still unbalanced. ld_moved simply stays zero, so it is 4290 * correctly treated as an imbalance. 4291 */ 4292 env.flags |= LBF_ALL_PINNED; 4293 env.src_cpu = busiest->cpu; 4294 env.src_rq = busiest; 4295 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 4296 4297 more_balance: 4298 local_irq_save(flags); 4299 double_rq_lock(this_rq, busiest); 4300 if (!env.loop) 4301 update_h_load(env.src_cpu); 4302 4303 /* 4304 * cur_ld_moved - load moved in current iteration 4305 * ld_moved - cumulative load moved across iterations 4306 */ 4307 cur_ld_moved = move_tasks(&env); 4308 ld_moved += cur_ld_moved; 4309 double_rq_unlock(this_rq, busiest); 4310 local_irq_restore(flags); 4311 4312 if (env.flags & LBF_NEED_BREAK) { 4313 env.flags &= ~LBF_NEED_BREAK; 4314 goto more_balance; 4315 } 4316 4317 /* 4318 * some other cpu did the load balance for us. 4319 */ 4320 if (cur_ld_moved && env.dst_cpu != smp_processor_id()) 4321 resched_cpu(env.dst_cpu); 4322 4323 /* 4324 * Revisit (affine) tasks on src_cpu that couldn't be moved to 4325 * us and move them to an alternate dst_cpu in our sched_group 4326 * where they can run. The upper limit on how many times we 4327 * iterate on same src_cpu is dependent on number of cpus in our 4328 * sched_group. 4329 * 4330 * This changes load balance semantics a bit on who can move 4331 * load to a given_cpu. In addition to the given_cpu itself 4332 * (or a ilb_cpu acting on its behalf where given_cpu is 4333 * nohz-idle), we now have balance_cpu in a position to move 4334 * load to given_cpu. In rare situations, this may cause 4335 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 4336 * _independently_ and at _same_ time to move some load to 4337 * given_cpu) causing exceess load to be moved to given_cpu. 4338 * This however should not happen so much in practice and 4339 * moreover subsequent load balance cycles should correct the 4340 * excess load moved. 4341 */ 4342 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 && 4343 lb_iterations++ < max_lb_iterations) { 4344 4345 this_rq = cpu_rq(env.new_dst_cpu); 4346 env.dst_rq = this_rq; 4347 env.dst_cpu = env.new_dst_cpu; 4348 env.flags &= ~LBF_SOME_PINNED; 4349 env.loop = 0; 4350 env.loop_break = sched_nr_migrate_break; 4351 /* 4352 * Go back to "more_balance" rather than "redo" since we 4353 * need to continue with same src_cpu. 4354 */ 4355 goto more_balance; 4356 } 4357 4358 /* All tasks on this runqueue were pinned by CPU affinity */ 4359 if (unlikely(env.flags & LBF_ALL_PINNED)) { 4360 cpumask_clear_cpu(cpu_of(busiest), cpus); 4361 if (!cpumask_empty(cpus)) { 4362 env.loop = 0; 4363 env.loop_break = sched_nr_migrate_break; 4364 goto redo; 4365 } 4366 goto out_balanced; 4367 } 4368 } 4369 4370 if (!ld_moved) { 4371 schedstat_inc(sd, lb_failed[idle]); 4372 /* 4373 * Increment the failure counter only on periodic balance. 4374 * We do not want newidle balance, which can be very 4375 * frequent, pollute the failure counter causing 4376 * excessive cache_hot migrations and active balances. 4377 */ 4378 if (idle != CPU_NEWLY_IDLE) 4379 sd->nr_balance_failed++; 4380 4381 if (need_active_balance(&env)) { 4382 raw_spin_lock_irqsave(&busiest->lock, flags); 4383 4384 /* don't kick the active_load_balance_cpu_stop, 4385 * if the curr task on busiest cpu can't be 4386 * moved to this_cpu 4387 */ 4388 if (!cpumask_test_cpu(this_cpu, 4389 tsk_cpus_allowed(busiest->curr))) { 4390 raw_spin_unlock_irqrestore(&busiest->lock, 4391 flags); 4392 env.flags |= LBF_ALL_PINNED; 4393 goto out_one_pinned; 4394 } 4395 4396 /* 4397 * ->active_balance synchronizes accesses to 4398 * ->active_balance_work. Once set, it's cleared 4399 * only after active load balance is finished. 4400 */ 4401 if (!busiest->active_balance) { 4402 busiest->active_balance = 1; 4403 busiest->push_cpu = this_cpu; 4404 active_balance = 1; 4405 } 4406 raw_spin_unlock_irqrestore(&busiest->lock, flags); 4407 4408 if (active_balance) { 4409 stop_one_cpu_nowait(cpu_of(busiest), 4410 active_load_balance_cpu_stop, busiest, 4411 &busiest->active_balance_work); 4412 } 4413 4414 /* 4415 * We've kicked active balancing, reset the failure 4416 * counter. 4417 */ 4418 sd->nr_balance_failed = sd->cache_nice_tries+1; 4419 } 4420 } else 4421 sd->nr_balance_failed = 0; 4422 4423 if (likely(!active_balance)) { 4424 /* We were unbalanced, so reset the balancing interval */ 4425 sd->balance_interval = sd->min_interval; 4426 } else { 4427 /* 4428 * If we've begun active balancing, start to back off. This 4429 * case may not be covered by the all_pinned logic if there 4430 * is only 1 task on the busy runqueue (because we don't call 4431 * move_tasks). 4432 */ 4433 if (sd->balance_interval < sd->max_interval) 4434 sd->balance_interval *= 2; 4435 } 4436 4437 goto out; 4438 4439 out_balanced: 4440 schedstat_inc(sd, lb_balanced[idle]); 4441 4442 sd->nr_balance_failed = 0; 4443 4444 out_one_pinned: 4445 /* tune up the balancing interval */ 4446 if (((env.flags & LBF_ALL_PINNED) && 4447 sd->balance_interval < MAX_PINNED_INTERVAL) || 4448 (sd->balance_interval < sd->max_interval)) 4449 sd->balance_interval *= 2; 4450 4451 ld_moved = 0; 4452 out: 4453 return ld_moved; 4454 } 4455 4456 /* 4457 * idle_balance is called by schedule() if this_cpu is about to become 4458 * idle. Attempts to pull tasks from other CPUs. 4459 */ 4460 void idle_balance(int this_cpu, struct rq *this_rq) 4461 { 4462 struct sched_domain *sd; 4463 int pulled_task = 0; 4464 unsigned long next_balance = jiffies + HZ; 4465 4466 this_rq->idle_stamp = this_rq->clock; 4467 4468 if (this_rq->avg_idle < sysctl_sched_migration_cost) 4469 return; 4470 4471 /* 4472 * Drop the rq->lock, but keep IRQ/preempt disabled. 4473 */ 4474 raw_spin_unlock(&this_rq->lock); 4475 4476 update_shares(this_cpu); 4477 rcu_read_lock(); 4478 for_each_domain(this_cpu, sd) { 4479 unsigned long interval; 4480 int balance = 1; 4481 4482 if (!(sd->flags & SD_LOAD_BALANCE)) 4483 continue; 4484 4485 if (sd->flags & SD_BALANCE_NEWIDLE) { 4486 /* If we've pulled tasks over stop searching: */ 4487 pulled_task = load_balance(this_cpu, this_rq, 4488 sd, CPU_NEWLY_IDLE, &balance); 4489 } 4490 4491 interval = msecs_to_jiffies(sd->balance_interval); 4492 if (time_after(next_balance, sd->last_balance + interval)) 4493 next_balance = sd->last_balance + interval; 4494 if (pulled_task) { 4495 this_rq->idle_stamp = 0; 4496 break; 4497 } 4498 } 4499 rcu_read_unlock(); 4500 4501 raw_spin_lock(&this_rq->lock); 4502 4503 if (pulled_task || time_after(jiffies, this_rq->next_balance)) { 4504 /* 4505 * We are going idle. next_balance may be set based on 4506 * a busy processor. So reset next_balance. 4507 */ 4508 this_rq->next_balance = next_balance; 4509 } 4510 } 4511 4512 /* 4513 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 4514 * running tasks off the busiest CPU onto idle CPUs. It requires at 4515 * least 1 task to be running on each physical CPU where possible, and 4516 * avoids physical / logical imbalances. 4517 */ 4518 static int active_load_balance_cpu_stop(void *data) 4519 { 4520 struct rq *busiest_rq = data; 4521 int busiest_cpu = cpu_of(busiest_rq); 4522 int target_cpu = busiest_rq->push_cpu; 4523 struct rq *target_rq = cpu_rq(target_cpu); 4524 struct sched_domain *sd; 4525 4526 raw_spin_lock_irq(&busiest_rq->lock); 4527 4528 /* make sure the requested cpu hasn't gone down in the meantime */ 4529 if (unlikely(busiest_cpu != smp_processor_id() || 4530 !busiest_rq->active_balance)) 4531 goto out_unlock; 4532 4533 /* Is there any task to move? */ 4534 if (busiest_rq->nr_running <= 1) 4535 goto out_unlock; 4536 4537 /* 4538 * This condition is "impossible", if it occurs 4539 * we need to fix it. Originally reported by 4540 * Bjorn Helgaas on a 128-cpu setup. 4541 */ 4542 BUG_ON(busiest_rq == target_rq); 4543 4544 /* move a task from busiest_rq to target_rq */ 4545 double_lock_balance(busiest_rq, target_rq); 4546 4547 /* Search for an sd spanning us and the target CPU. */ 4548 rcu_read_lock(); 4549 for_each_domain(target_cpu, sd) { 4550 if ((sd->flags & SD_LOAD_BALANCE) && 4551 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 4552 break; 4553 } 4554 4555 if (likely(sd)) { 4556 struct lb_env env = { 4557 .sd = sd, 4558 .dst_cpu = target_cpu, 4559 .dst_rq = target_rq, 4560 .src_cpu = busiest_rq->cpu, 4561 .src_rq = busiest_rq, 4562 .idle = CPU_IDLE, 4563 }; 4564 4565 schedstat_inc(sd, alb_count); 4566 4567 if (move_one_task(&env)) 4568 schedstat_inc(sd, alb_pushed); 4569 else 4570 schedstat_inc(sd, alb_failed); 4571 } 4572 rcu_read_unlock(); 4573 double_unlock_balance(busiest_rq, target_rq); 4574 out_unlock: 4575 busiest_rq->active_balance = 0; 4576 raw_spin_unlock_irq(&busiest_rq->lock); 4577 return 0; 4578 } 4579 4580 #ifdef CONFIG_NO_HZ 4581 /* 4582 * idle load balancing details 4583 * - When one of the busy CPUs notice that there may be an idle rebalancing 4584 * needed, they will kick the idle load balancer, which then does idle 4585 * load balancing for all the idle CPUs. 4586 */ 4587 static struct { 4588 cpumask_var_t idle_cpus_mask; 4589 atomic_t nr_cpus; 4590 unsigned long next_balance; /* in jiffy units */ 4591 } nohz ____cacheline_aligned; 4592 4593 static inline int find_new_ilb(int call_cpu) 4594 { 4595 int ilb = cpumask_first(nohz.idle_cpus_mask); 4596 4597 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 4598 return ilb; 4599 4600 return nr_cpu_ids; 4601 } 4602 4603 /* 4604 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 4605 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 4606 * CPU (if there is one). 4607 */ 4608 static void nohz_balancer_kick(int cpu) 4609 { 4610 int ilb_cpu; 4611 4612 nohz.next_balance++; 4613 4614 ilb_cpu = find_new_ilb(cpu); 4615 4616 if (ilb_cpu >= nr_cpu_ids) 4617 return; 4618 4619 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 4620 return; 4621 /* 4622 * Use smp_send_reschedule() instead of resched_cpu(). 4623 * This way we generate a sched IPI on the target cpu which 4624 * is idle. And the softirq performing nohz idle load balance 4625 * will be run before returning from the IPI. 4626 */ 4627 smp_send_reschedule(ilb_cpu); 4628 return; 4629 } 4630 4631 static inline void clear_nohz_tick_stopped(int cpu) 4632 { 4633 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 4634 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 4635 atomic_dec(&nohz.nr_cpus); 4636 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 4637 } 4638 } 4639 4640 static inline void set_cpu_sd_state_busy(void) 4641 { 4642 struct sched_domain *sd; 4643 int cpu = smp_processor_id(); 4644 4645 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu))) 4646 return; 4647 clear_bit(NOHZ_IDLE, nohz_flags(cpu)); 4648 4649 rcu_read_lock(); 4650 for_each_domain(cpu, sd) 4651 atomic_inc(&sd->groups->sgp->nr_busy_cpus); 4652 rcu_read_unlock(); 4653 } 4654 4655 void set_cpu_sd_state_idle(void) 4656 { 4657 struct sched_domain *sd; 4658 int cpu = smp_processor_id(); 4659 4660 if (test_bit(NOHZ_IDLE, nohz_flags(cpu))) 4661 return; 4662 set_bit(NOHZ_IDLE, nohz_flags(cpu)); 4663 4664 rcu_read_lock(); 4665 for_each_domain(cpu, sd) 4666 atomic_dec(&sd->groups->sgp->nr_busy_cpus); 4667 rcu_read_unlock(); 4668 } 4669 4670 /* 4671 * This routine will record that this cpu is going idle with tick stopped. 4672 * This info will be used in performing idle load balancing in the future. 4673 */ 4674 void select_nohz_load_balancer(int stop_tick) 4675 { 4676 int cpu = smp_processor_id(); 4677 4678 /* 4679 * If this cpu is going down, then nothing needs to be done. 4680 */ 4681 if (!cpu_active(cpu)) 4682 return; 4683 4684 if (stop_tick) { 4685 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 4686 return; 4687 4688 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 4689 atomic_inc(&nohz.nr_cpus); 4690 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 4691 } 4692 return; 4693 } 4694 4695 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb, 4696 unsigned long action, void *hcpu) 4697 { 4698 switch (action & ~CPU_TASKS_FROZEN) { 4699 case CPU_DYING: 4700 clear_nohz_tick_stopped(smp_processor_id()); 4701 return NOTIFY_OK; 4702 default: 4703 return NOTIFY_DONE; 4704 } 4705 } 4706 #endif 4707 4708 static DEFINE_SPINLOCK(balancing); 4709 4710 /* 4711 * Scale the max load_balance interval with the number of CPUs in the system. 4712 * This trades load-balance latency on larger machines for less cross talk. 4713 */ 4714 void update_max_interval(void) 4715 { 4716 max_load_balance_interval = HZ*num_online_cpus()/10; 4717 } 4718 4719 /* 4720 * It checks each scheduling domain to see if it is due to be balanced, 4721 * and initiates a balancing operation if so. 4722 * 4723 * Balancing parameters are set up in arch_init_sched_domains. 4724 */ 4725 static void rebalance_domains(int cpu, enum cpu_idle_type idle) 4726 { 4727 int balance = 1; 4728 struct rq *rq = cpu_rq(cpu); 4729 unsigned long interval; 4730 struct sched_domain *sd; 4731 /* Earliest time when we have to do rebalance again */ 4732 unsigned long next_balance = jiffies + 60*HZ; 4733 int update_next_balance = 0; 4734 int need_serialize; 4735 4736 update_shares(cpu); 4737 4738 rcu_read_lock(); 4739 for_each_domain(cpu, sd) { 4740 if (!(sd->flags & SD_LOAD_BALANCE)) 4741 continue; 4742 4743 interval = sd->balance_interval; 4744 if (idle != CPU_IDLE) 4745 interval *= sd->busy_factor; 4746 4747 /* scale ms to jiffies */ 4748 interval = msecs_to_jiffies(interval); 4749 interval = clamp(interval, 1UL, max_load_balance_interval); 4750 4751 need_serialize = sd->flags & SD_SERIALIZE; 4752 4753 if (need_serialize) { 4754 if (!spin_trylock(&balancing)) 4755 goto out; 4756 } 4757 4758 if (time_after_eq(jiffies, sd->last_balance + interval)) { 4759 if (load_balance(cpu, rq, sd, idle, &balance)) { 4760 /* 4761 * We've pulled tasks over so either we're no 4762 * longer idle. 4763 */ 4764 idle = CPU_NOT_IDLE; 4765 } 4766 sd->last_balance = jiffies; 4767 } 4768 if (need_serialize) 4769 spin_unlock(&balancing); 4770 out: 4771 if (time_after(next_balance, sd->last_balance + interval)) { 4772 next_balance = sd->last_balance + interval; 4773 update_next_balance = 1; 4774 } 4775 4776 /* 4777 * Stop the load balance at this level. There is another 4778 * CPU in our sched group which is doing load balancing more 4779 * actively. 4780 */ 4781 if (!balance) 4782 break; 4783 } 4784 rcu_read_unlock(); 4785 4786 /* 4787 * next_balance will be updated only when there is a need. 4788 * When the cpu is attached to null domain for ex, it will not be 4789 * updated. 4790 */ 4791 if (likely(update_next_balance)) 4792 rq->next_balance = next_balance; 4793 } 4794 4795 #ifdef CONFIG_NO_HZ 4796 /* 4797 * In CONFIG_NO_HZ case, the idle balance kickee will do the 4798 * rebalancing for all the cpus for whom scheduler ticks are stopped. 4799 */ 4800 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) 4801 { 4802 struct rq *this_rq = cpu_rq(this_cpu); 4803 struct rq *rq; 4804 int balance_cpu; 4805 4806 if (idle != CPU_IDLE || 4807 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 4808 goto end; 4809 4810 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 4811 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 4812 continue; 4813 4814 /* 4815 * If this cpu gets work to do, stop the load balancing 4816 * work being done for other cpus. Next load 4817 * balancing owner will pick it up. 4818 */ 4819 if (need_resched()) 4820 break; 4821 4822 raw_spin_lock_irq(&this_rq->lock); 4823 update_rq_clock(this_rq); 4824 update_idle_cpu_load(this_rq); 4825 raw_spin_unlock_irq(&this_rq->lock); 4826 4827 rebalance_domains(balance_cpu, CPU_IDLE); 4828 4829 rq = cpu_rq(balance_cpu); 4830 if (time_after(this_rq->next_balance, rq->next_balance)) 4831 this_rq->next_balance = rq->next_balance; 4832 } 4833 nohz.next_balance = this_rq->next_balance; 4834 end: 4835 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 4836 } 4837 4838 /* 4839 * Current heuristic for kicking the idle load balancer in the presence 4840 * of an idle cpu is the system. 4841 * - This rq has more than one task. 4842 * - At any scheduler domain level, this cpu's scheduler group has multiple 4843 * busy cpu's exceeding the group's power. 4844 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 4845 * domain span are idle. 4846 */ 4847 static inline int nohz_kick_needed(struct rq *rq, int cpu) 4848 { 4849 unsigned long now = jiffies; 4850 struct sched_domain *sd; 4851 4852 if (unlikely(idle_cpu(cpu))) 4853 return 0; 4854 4855 /* 4856 * We may be recently in ticked or tickless idle mode. At the first 4857 * busy tick after returning from idle, we will update the busy stats. 4858 */ 4859 set_cpu_sd_state_busy(); 4860 clear_nohz_tick_stopped(cpu); 4861 4862 /* 4863 * None are in tickless mode and hence no need for NOHZ idle load 4864 * balancing. 4865 */ 4866 if (likely(!atomic_read(&nohz.nr_cpus))) 4867 return 0; 4868 4869 if (time_before(now, nohz.next_balance)) 4870 return 0; 4871 4872 if (rq->nr_running >= 2) 4873 goto need_kick; 4874 4875 rcu_read_lock(); 4876 for_each_domain(cpu, sd) { 4877 struct sched_group *sg = sd->groups; 4878 struct sched_group_power *sgp = sg->sgp; 4879 int nr_busy = atomic_read(&sgp->nr_busy_cpus); 4880 4881 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1) 4882 goto need_kick_unlock; 4883 4884 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight 4885 && (cpumask_first_and(nohz.idle_cpus_mask, 4886 sched_domain_span(sd)) < cpu)) 4887 goto need_kick_unlock; 4888 4889 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING))) 4890 break; 4891 } 4892 rcu_read_unlock(); 4893 return 0; 4894 4895 need_kick_unlock: 4896 rcu_read_unlock(); 4897 need_kick: 4898 return 1; 4899 } 4900 #else 4901 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { } 4902 #endif 4903 4904 /* 4905 * run_rebalance_domains is triggered when needed from the scheduler tick. 4906 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 4907 */ 4908 static void run_rebalance_domains(struct softirq_action *h) 4909 { 4910 int this_cpu = smp_processor_id(); 4911 struct rq *this_rq = cpu_rq(this_cpu); 4912 enum cpu_idle_type idle = this_rq->idle_balance ? 4913 CPU_IDLE : CPU_NOT_IDLE; 4914 4915 rebalance_domains(this_cpu, idle); 4916 4917 /* 4918 * If this cpu has a pending nohz_balance_kick, then do the 4919 * balancing on behalf of the other idle cpus whose ticks are 4920 * stopped. 4921 */ 4922 nohz_idle_balance(this_cpu, idle); 4923 } 4924 4925 static inline int on_null_domain(int cpu) 4926 { 4927 return !rcu_dereference_sched(cpu_rq(cpu)->sd); 4928 } 4929 4930 /* 4931 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 4932 */ 4933 void trigger_load_balance(struct rq *rq, int cpu) 4934 { 4935 /* Don't need to rebalance while attached to NULL domain */ 4936 if (time_after_eq(jiffies, rq->next_balance) && 4937 likely(!on_null_domain(cpu))) 4938 raise_softirq(SCHED_SOFTIRQ); 4939 #ifdef CONFIG_NO_HZ 4940 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu))) 4941 nohz_balancer_kick(cpu); 4942 #endif 4943 } 4944 4945 static void rq_online_fair(struct rq *rq) 4946 { 4947 update_sysctl(); 4948 } 4949 4950 static void rq_offline_fair(struct rq *rq) 4951 { 4952 update_sysctl(); 4953 } 4954 4955 #endif /* CONFIG_SMP */ 4956 4957 /* 4958 * scheduler tick hitting a task of our scheduling class: 4959 */ 4960 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 4961 { 4962 struct cfs_rq *cfs_rq; 4963 struct sched_entity *se = &curr->se; 4964 4965 for_each_sched_entity(se) { 4966 cfs_rq = cfs_rq_of(se); 4967 entity_tick(cfs_rq, se, queued); 4968 } 4969 } 4970 4971 /* 4972 * called on fork with the child task as argument from the parent's context 4973 * - child not yet on the tasklist 4974 * - preemption disabled 4975 */ 4976 static void task_fork_fair(struct task_struct *p) 4977 { 4978 struct cfs_rq *cfs_rq; 4979 struct sched_entity *se = &p->se, *curr; 4980 int this_cpu = smp_processor_id(); 4981 struct rq *rq = this_rq(); 4982 unsigned long flags; 4983 4984 raw_spin_lock_irqsave(&rq->lock, flags); 4985 4986 update_rq_clock(rq); 4987 4988 cfs_rq = task_cfs_rq(current); 4989 curr = cfs_rq->curr; 4990 4991 if (unlikely(task_cpu(p) != this_cpu)) { 4992 rcu_read_lock(); 4993 __set_task_cpu(p, this_cpu); 4994 rcu_read_unlock(); 4995 } 4996 4997 update_curr(cfs_rq); 4998 4999 if (curr) 5000 se->vruntime = curr->vruntime; 5001 place_entity(cfs_rq, se, 1); 5002 5003 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 5004 /* 5005 * Upon rescheduling, sched_class::put_prev_task() will place 5006 * 'current' within the tree based on its new key value. 5007 */ 5008 swap(curr->vruntime, se->vruntime); 5009 resched_task(rq->curr); 5010 } 5011 5012 se->vruntime -= cfs_rq->min_vruntime; 5013 5014 raw_spin_unlock_irqrestore(&rq->lock, flags); 5015 } 5016 5017 /* 5018 * Priority of the task has changed. Check to see if we preempt 5019 * the current task. 5020 */ 5021 static void 5022 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 5023 { 5024 if (!p->se.on_rq) 5025 return; 5026 5027 /* 5028 * Reschedule if we are currently running on this runqueue and 5029 * our priority decreased, or if we are not currently running on 5030 * this runqueue and our priority is higher than the current's 5031 */ 5032 if (rq->curr == p) { 5033 if (p->prio > oldprio) 5034 resched_task(rq->curr); 5035 } else 5036 check_preempt_curr(rq, p, 0); 5037 } 5038 5039 static void switched_from_fair(struct rq *rq, struct task_struct *p) 5040 { 5041 struct sched_entity *se = &p->se; 5042 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5043 5044 /* 5045 * Ensure the task's vruntime is normalized, so that when its 5046 * switched back to the fair class the enqueue_entity(.flags=0) will 5047 * do the right thing. 5048 * 5049 * If it was on_rq, then the dequeue_entity(.flags=0) will already 5050 * have normalized the vruntime, if it was !on_rq, then only when 5051 * the task is sleeping will it still have non-normalized vruntime. 5052 */ 5053 if (!se->on_rq && p->state != TASK_RUNNING) { 5054 /* 5055 * Fix up our vruntime so that the current sleep doesn't 5056 * cause 'unlimited' sleep bonus. 5057 */ 5058 place_entity(cfs_rq, se, 0); 5059 se->vruntime -= cfs_rq->min_vruntime; 5060 } 5061 } 5062 5063 /* 5064 * We switched to the sched_fair class. 5065 */ 5066 static void switched_to_fair(struct rq *rq, struct task_struct *p) 5067 { 5068 if (!p->se.on_rq) 5069 return; 5070 5071 /* 5072 * We were most likely switched from sched_rt, so 5073 * kick off the schedule if running, otherwise just see 5074 * if we can still preempt the current task. 5075 */ 5076 if (rq->curr == p) 5077 resched_task(rq->curr); 5078 else 5079 check_preempt_curr(rq, p, 0); 5080 } 5081 5082 /* Account for a task changing its policy or group. 5083 * 5084 * This routine is mostly called to set cfs_rq->curr field when a task 5085 * migrates between groups/classes. 5086 */ 5087 static void set_curr_task_fair(struct rq *rq) 5088 { 5089 struct sched_entity *se = &rq->curr->se; 5090 5091 for_each_sched_entity(se) { 5092 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5093 5094 set_next_entity(cfs_rq, se); 5095 /* ensure bandwidth has been allocated on our new cfs_rq */ 5096 account_cfs_rq_runtime(cfs_rq, 0); 5097 } 5098 } 5099 5100 void init_cfs_rq(struct cfs_rq *cfs_rq) 5101 { 5102 cfs_rq->tasks_timeline = RB_ROOT; 5103 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 5104 #ifndef CONFIG_64BIT 5105 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 5106 #endif 5107 } 5108 5109 #ifdef CONFIG_FAIR_GROUP_SCHED 5110 static void task_move_group_fair(struct task_struct *p, int on_rq) 5111 { 5112 /* 5113 * If the task was not on the rq at the time of this cgroup movement 5114 * it must have been asleep, sleeping tasks keep their ->vruntime 5115 * absolute on their old rq until wakeup (needed for the fair sleeper 5116 * bonus in place_entity()). 5117 * 5118 * If it was on the rq, we've just 'preempted' it, which does convert 5119 * ->vruntime to a relative base. 5120 * 5121 * Make sure both cases convert their relative position when migrating 5122 * to another cgroup's rq. This does somewhat interfere with the 5123 * fair sleeper stuff for the first placement, but who cares. 5124 */ 5125 /* 5126 * When !on_rq, vruntime of the task has usually NOT been normalized. 5127 * But there are some cases where it has already been normalized: 5128 * 5129 * - Moving a forked child which is waiting for being woken up by 5130 * wake_up_new_task(). 5131 * - Moving a task which has been woken up by try_to_wake_up() and 5132 * waiting for actually being woken up by sched_ttwu_pending(). 5133 * 5134 * To prevent boost or penalty in the new cfs_rq caused by delta 5135 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. 5136 */ 5137 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING)) 5138 on_rq = 1; 5139 5140 if (!on_rq) 5141 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime; 5142 set_task_rq(p, task_cpu(p)); 5143 if (!on_rq) 5144 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime; 5145 } 5146 5147 void free_fair_sched_group(struct task_group *tg) 5148 { 5149 int i; 5150 5151 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 5152 5153 for_each_possible_cpu(i) { 5154 if (tg->cfs_rq) 5155 kfree(tg->cfs_rq[i]); 5156 if (tg->se) 5157 kfree(tg->se[i]); 5158 } 5159 5160 kfree(tg->cfs_rq); 5161 kfree(tg->se); 5162 } 5163 5164 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 5165 { 5166 struct cfs_rq *cfs_rq; 5167 struct sched_entity *se; 5168 int i; 5169 5170 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 5171 if (!tg->cfs_rq) 5172 goto err; 5173 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 5174 if (!tg->se) 5175 goto err; 5176 5177 tg->shares = NICE_0_LOAD; 5178 5179 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 5180 5181 for_each_possible_cpu(i) { 5182 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 5183 GFP_KERNEL, cpu_to_node(i)); 5184 if (!cfs_rq) 5185 goto err; 5186 5187 se = kzalloc_node(sizeof(struct sched_entity), 5188 GFP_KERNEL, cpu_to_node(i)); 5189 if (!se) 5190 goto err_free_rq; 5191 5192 init_cfs_rq(cfs_rq); 5193 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 5194 } 5195 5196 return 1; 5197 5198 err_free_rq: 5199 kfree(cfs_rq); 5200 err: 5201 return 0; 5202 } 5203 5204 void unregister_fair_sched_group(struct task_group *tg, int cpu) 5205 { 5206 struct rq *rq = cpu_rq(cpu); 5207 unsigned long flags; 5208 5209 /* 5210 * Only empty task groups can be destroyed; so we can speculatively 5211 * check on_list without danger of it being re-added. 5212 */ 5213 if (!tg->cfs_rq[cpu]->on_list) 5214 return; 5215 5216 raw_spin_lock_irqsave(&rq->lock, flags); 5217 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 5218 raw_spin_unlock_irqrestore(&rq->lock, flags); 5219 } 5220 5221 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 5222 struct sched_entity *se, int cpu, 5223 struct sched_entity *parent) 5224 { 5225 struct rq *rq = cpu_rq(cpu); 5226 5227 cfs_rq->tg = tg; 5228 cfs_rq->rq = rq; 5229 #ifdef CONFIG_SMP 5230 /* allow initial update_cfs_load() to truncate */ 5231 cfs_rq->load_stamp = 1; 5232 #endif 5233 init_cfs_rq_runtime(cfs_rq); 5234 5235 tg->cfs_rq[cpu] = cfs_rq; 5236 tg->se[cpu] = se; 5237 5238 /* se could be NULL for root_task_group */ 5239 if (!se) 5240 return; 5241 5242 if (!parent) 5243 se->cfs_rq = &rq->cfs; 5244 else 5245 se->cfs_rq = parent->my_q; 5246 5247 se->my_q = cfs_rq; 5248 update_load_set(&se->load, 0); 5249 se->parent = parent; 5250 } 5251 5252 static DEFINE_MUTEX(shares_mutex); 5253 5254 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 5255 { 5256 int i; 5257 unsigned long flags; 5258 5259 /* 5260 * We can't change the weight of the root cgroup. 5261 */ 5262 if (!tg->se[0]) 5263 return -EINVAL; 5264 5265 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 5266 5267 mutex_lock(&shares_mutex); 5268 if (tg->shares == shares) 5269 goto done; 5270 5271 tg->shares = shares; 5272 for_each_possible_cpu(i) { 5273 struct rq *rq = cpu_rq(i); 5274 struct sched_entity *se; 5275 5276 se = tg->se[i]; 5277 /* Propagate contribution to hierarchy */ 5278 raw_spin_lock_irqsave(&rq->lock, flags); 5279 for_each_sched_entity(se) 5280 update_cfs_shares(group_cfs_rq(se)); 5281 raw_spin_unlock_irqrestore(&rq->lock, flags); 5282 } 5283 5284 done: 5285 mutex_unlock(&shares_mutex); 5286 return 0; 5287 } 5288 #else /* CONFIG_FAIR_GROUP_SCHED */ 5289 5290 void free_fair_sched_group(struct task_group *tg) { } 5291 5292 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 5293 { 5294 return 1; 5295 } 5296 5297 void unregister_fair_sched_group(struct task_group *tg, int cpu) { } 5298 5299 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5300 5301 5302 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 5303 { 5304 struct sched_entity *se = &task->se; 5305 unsigned int rr_interval = 0; 5306 5307 /* 5308 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 5309 * idle runqueue: 5310 */ 5311 if (rq->cfs.load.weight) 5312 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); 5313 5314 return rr_interval; 5315 } 5316 5317 /* 5318 * All the scheduling class methods: 5319 */ 5320 const struct sched_class fair_sched_class = { 5321 .next = &idle_sched_class, 5322 .enqueue_task = enqueue_task_fair, 5323 .dequeue_task = dequeue_task_fair, 5324 .yield_task = yield_task_fair, 5325 .yield_to_task = yield_to_task_fair, 5326 5327 .check_preempt_curr = check_preempt_wakeup, 5328 5329 .pick_next_task = pick_next_task_fair, 5330 .put_prev_task = put_prev_task_fair, 5331 5332 #ifdef CONFIG_SMP 5333 .select_task_rq = select_task_rq_fair, 5334 5335 .rq_online = rq_online_fair, 5336 .rq_offline = rq_offline_fair, 5337 5338 .task_waking = task_waking_fair, 5339 #endif 5340 5341 .set_curr_task = set_curr_task_fair, 5342 .task_tick = task_tick_fair, 5343 .task_fork = task_fork_fair, 5344 5345 .prio_changed = prio_changed_fair, 5346 .switched_from = switched_from_fair, 5347 .switched_to = switched_to_fair, 5348 5349 .get_rr_interval = get_rr_interval_fair, 5350 5351 #ifdef CONFIG_FAIR_GROUP_SCHED 5352 .task_move_group = task_move_group_fair, 5353 #endif 5354 }; 5355 5356 #ifdef CONFIG_SCHED_DEBUG 5357 void print_cfs_stats(struct seq_file *m, int cpu) 5358 { 5359 struct cfs_rq *cfs_rq; 5360 5361 rcu_read_lock(); 5362 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 5363 print_cfs_rq(m, cpu, cfs_rq); 5364 rcu_read_unlock(); 5365 } 5366 #endif 5367 5368 __init void init_sched_fair_class(void) 5369 { 5370 #ifdef CONFIG_SMP 5371 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 5372 5373 #ifdef CONFIG_NO_HZ 5374 nohz.next_balance = jiffies; 5375 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 5376 cpu_notifier(sched_ilb_notifier, 0); 5377 #endif 5378 #endif /* SMP */ 5379 5380 } 5381