1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/prio.h> 41 42 #include <linux/cpuidle.h> 43 #include <linux/interrupt.h> 44 #include <linux/memory-tiers.h> 45 #include <linux/mempolicy.h> 46 #include <linux/mutex_api.h> 47 #include <linux/profile.h> 48 #include <linux/psi.h> 49 #include <linux/ratelimit.h> 50 #include <linux/task_work.h> 51 #include <linux/rbtree_augmented.h> 52 53 #include <asm/switch_to.h> 54 55 #include <uapi/linux/sched/types.h> 56 57 #include "sched.h" 58 #include "stats.h" 59 #include "autogroup.h" 60 61 /* 62 * The initial- and re-scaling of tunables is configurable 63 * 64 * Options are: 65 * 66 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 67 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) 68 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 69 * 70 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 71 */ 72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 73 74 /* 75 * Minimal preemption granularity for CPU-bound tasks: 76 * 77 * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds) 78 */ 79 unsigned int sysctl_sched_base_slice = 700000ULL; 80 static unsigned int normalized_sysctl_sched_base_slice = 700000ULL; 81 82 __read_mostly unsigned int sysctl_sched_migration_cost = 500000UL; 83 84 static int __init setup_sched_thermal_decay_shift(char *str) 85 { 86 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 87 return 1; 88 } 89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 90 91 #ifdef CONFIG_SMP 92 /* 93 * For asym packing, by default the lower numbered CPU has higher priority. 94 */ 95 int __weak arch_asym_cpu_priority(int cpu) 96 { 97 return -cpu; 98 } 99 100 /* 101 * The margin used when comparing utilization with CPU capacity. 102 * 103 * (default: ~20%) 104 */ 105 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 106 107 /* 108 * The margin used when comparing CPU capacities. 109 * is 'cap1' noticeably greater than 'cap2' 110 * 111 * (default: ~5%) 112 */ 113 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 114 #endif 115 116 #ifdef CONFIG_CFS_BANDWIDTH 117 /* 118 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 119 * each time a cfs_rq requests quota. 120 * 121 * Note: in the case that the slice exceeds the runtime remaining (either due 122 * to consumption or the quota being specified to be smaller than the slice) 123 * we will always only issue the remaining available time. 124 * 125 * (default: 5 msec, units: microseconds) 126 */ 127 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 128 #endif 129 130 #ifdef CONFIG_NUMA_BALANCING 131 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 132 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 133 #endif 134 135 #ifdef CONFIG_SYSCTL 136 static const struct ctl_table sched_fair_sysctls[] = { 137 #ifdef CONFIG_CFS_BANDWIDTH 138 { 139 .procname = "sched_cfs_bandwidth_slice_us", 140 .data = &sysctl_sched_cfs_bandwidth_slice, 141 .maxlen = sizeof(unsigned int), 142 .mode = 0644, 143 .proc_handler = proc_dointvec_minmax, 144 .extra1 = SYSCTL_ONE, 145 }, 146 #endif 147 #ifdef CONFIG_NUMA_BALANCING 148 { 149 .procname = "numa_balancing_promote_rate_limit_MBps", 150 .data = &sysctl_numa_balancing_promote_rate_limit, 151 .maxlen = sizeof(unsigned int), 152 .mode = 0644, 153 .proc_handler = proc_dointvec_minmax, 154 .extra1 = SYSCTL_ZERO, 155 }, 156 #endif /* CONFIG_NUMA_BALANCING */ 157 }; 158 159 static int __init sched_fair_sysctl_init(void) 160 { 161 register_sysctl_init("kernel", sched_fair_sysctls); 162 return 0; 163 } 164 late_initcall(sched_fair_sysctl_init); 165 #endif 166 167 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 168 { 169 lw->weight += inc; 170 lw->inv_weight = 0; 171 } 172 173 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 174 { 175 lw->weight -= dec; 176 lw->inv_weight = 0; 177 } 178 179 static inline void update_load_set(struct load_weight *lw, unsigned long w) 180 { 181 lw->weight = w; 182 lw->inv_weight = 0; 183 } 184 185 /* 186 * Increase the granularity value when there are more CPUs, 187 * because with more CPUs the 'effective latency' as visible 188 * to users decreases. But the relationship is not linear, 189 * so pick a second-best guess by going with the log2 of the 190 * number of CPUs. 191 * 192 * This idea comes from the SD scheduler of Con Kolivas: 193 */ 194 static unsigned int get_update_sysctl_factor(void) 195 { 196 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 197 unsigned int factor; 198 199 switch (sysctl_sched_tunable_scaling) { 200 case SCHED_TUNABLESCALING_NONE: 201 factor = 1; 202 break; 203 case SCHED_TUNABLESCALING_LINEAR: 204 factor = cpus; 205 break; 206 case SCHED_TUNABLESCALING_LOG: 207 default: 208 factor = 1 + ilog2(cpus); 209 break; 210 } 211 212 return factor; 213 } 214 215 static void update_sysctl(void) 216 { 217 unsigned int factor = get_update_sysctl_factor(); 218 219 #define SET_SYSCTL(name) \ 220 (sysctl_##name = (factor) * normalized_sysctl_##name) 221 SET_SYSCTL(sched_base_slice); 222 #undef SET_SYSCTL 223 } 224 225 void __init sched_init_granularity(void) 226 { 227 update_sysctl(); 228 } 229 230 #define WMULT_CONST (~0U) 231 #define WMULT_SHIFT 32 232 233 static void __update_inv_weight(struct load_weight *lw) 234 { 235 unsigned long w; 236 237 if (likely(lw->inv_weight)) 238 return; 239 240 w = scale_load_down(lw->weight); 241 242 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 243 lw->inv_weight = 1; 244 else if (unlikely(!w)) 245 lw->inv_weight = WMULT_CONST; 246 else 247 lw->inv_weight = WMULT_CONST / w; 248 } 249 250 /* 251 * delta_exec * weight / lw.weight 252 * OR 253 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 254 * 255 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 256 * we're guaranteed shift stays positive because inv_weight is guaranteed to 257 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 258 * 259 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 260 * weight/lw.weight <= 1, and therefore our shift will also be positive. 261 */ 262 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 263 { 264 u64 fact = scale_load_down(weight); 265 u32 fact_hi = (u32)(fact >> 32); 266 int shift = WMULT_SHIFT; 267 int fs; 268 269 __update_inv_weight(lw); 270 271 if (unlikely(fact_hi)) { 272 fs = fls(fact_hi); 273 shift -= fs; 274 fact >>= fs; 275 } 276 277 fact = mul_u32_u32(fact, lw->inv_weight); 278 279 fact_hi = (u32)(fact >> 32); 280 if (fact_hi) { 281 fs = fls(fact_hi); 282 shift -= fs; 283 fact >>= fs; 284 } 285 286 return mul_u64_u32_shr(delta_exec, fact, shift); 287 } 288 289 /* 290 * delta /= w 291 */ 292 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 293 { 294 if (unlikely(se->load.weight != NICE_0_LOAD)) 295 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 296 297 return delta; 298 } 299 300 const struct sched_class fair_sched_class; 301 302 /************************************************************** 303 * CFS operations on generic schedulable entities: 304 */ 305 306 #ifdef CONFIG_FAIR_GROUP_SCHED 307 308 /* Walk up scheduling entities hierarchy */ 309 #define for_each_sched_entity(se) \ 310 for (; se; se = se->parent) 311 312 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 313 { 314 struct rq *rq = rq_of(cfs_rq); 315 int cpu = cpu_of(rq); 316 317 if (cfs_rq->on_list) 318 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 319 320 cfs_rq->on_list = 1; 321 322 /* 323 * Ensure we either appear before our parent (if already 324 * enqueued) or force our parent to appear after us when it is 325 * enqueued. The fact that we always enqueue bottom-up 326 * reduces this to two cases and a special case for the root 327 * cfs_rq. Furthermore, it also means that we will always reset 328 * tmp_alone_branch either when the branch is connected 329 * to a tree or when we reach the top of the tree 330 */ 331 if (cfs_rq->tg->parent && 332 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 333 /* 334 * If parent is already on the list, we add the child 335 * just before. Thanks to circular linked property of 336 * the list, this means to put the child at the tail 337 * of the list that starts by parent. 338 */ 339 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 340 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 341 /* 342 * The branch is now connected to its tree so we can 343 * reset tmp_alone_branch to the beginning of the 344 * list. 345 */ 346 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 347 return true; 348 } 349 350 if (!cfs_rq->tg->parent) { 351 /* 352 * cfs rq without parent should be put 353 * at the tail of the list. 354 */ 355 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 356 &rq->leaf_cfs_rq_list); 357 /* 358 * We have reach the top of a tree so we can reset 359 * tmp_alone_branch to the beginning of the list. 360 */ 361 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 362 return true; 363 } 364 365 /* 366 * The parent has not already been added so we want to 367 * make sure that it will be put after us. 368 * tmp_alone_branch points to the begin of the branch 369 * where we will add parent. 370 */ 371 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 372 /* 373 * update tmp_alone_branch to points to the new begin 374 * of the branch 375 */ 376 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 377 return false; 378 } 379 380 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 381 { 382 if (cfs_rq->on_list) { 383 struct rq *rq = rq_of(cfs_rq); 384 385 /* 386 * With cfs_rq being unthrottled/throttled during an enqueue, 387 * it can happen the tmp_alone_branch points to the leaf that 388 * we finally want to delete. In this case, tmp_alone_branch moves 389 * to the prev element but it will point to rq->leaf_cfs_rq_list 390 * at the end of the enqueue. 391 */ 392 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 393 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 394 395 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 396 cfs_rq->on_list = 0; 397 } 398 } 399 400 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 401 { 402 WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 403 } 404 405 /* Iterate through all leaf cfs_rq's on a runqueue */ 406 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 407 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 408 leaf_cfs_rq_list) 409 410 /* Do the two (enqueued) entities belong to the same group ? */ 411 static inline struct cfs_rq * 412 is_same_group(struct sched_entity *se, struct sched_entity *pse) 413 { 414 if (se->cfs_rq == pse->cfs_rq) 415 return se->cfs_rq; 416 417 return NULL; 418 } 419 420 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 421 { 422 return se->parent; 423 } 424 425 static void 426 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 427 { 428 int se_depth, pse_depth; 429 430 /* 431 * preemption test can be made between sibling entities who are in the 432 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 433 * both tasks until we find their ancestors who are siblings of common 434 * parent. 435 */ 436 437 /* First walk up until both entities are at same depth */ 438 se_depth = (*se)->depth; 439 pse_depth = (*pse)->depth; 440 441 while (se_depth > pse_depth) { 442 se_depth--; 443 *se = parent_entity(*se); 444 } 445 446 while (pse_depth > se_depth) { 447 pse_depth--; 448 *pse = parent_entity(*pse); 449 } 450 451 while (!is_same_group(*se, *pse)) { 452 *se = parent_entity(*se); 453 *pse = parent_entity(*pse); 454 } 455 } 456 457 static int tg_is_idle(struct task_group *tg) 458 { 459 return tg->idle > 0; 460 } 461 462 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 463 { 464 return cfs_rq->idle > 0; 465 } 466 467 static int se_is_idle(struct sched_entity *se) 468 { 469 if (entity_is_task(se)) 470 return task_has_idle_policy(task_of(se)); 471 return cfs_rq_is_idle(group_cfs_rq(se)); 472 } 473 474 #else /* !CONFIG_FAIR_GROUP_SCHED */ 475 476 #define for_each_sched_entity(se) \ 477 for (; se; se = NULL) 478 479 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 480 { 481 return true; 482 } 483 484 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 485 { 486 } 487 488 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 489 { 490 } 491 492 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 493 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 494 495 static inline struct sched_entity *parent_entity(struct sched_entity *se) 496 { 497 return NULL; 498 } 499 500 static inline void 501 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 502 { 503 } 504 505 static inline int tg_is_idle(struct task_group *tg) 506 { 507 return 0; 508 } 509 510 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 511 { 512 return 0; 513 } 514 515 static int se_is_idle(struct sched_entity *se) 516 { 517 return task_has_idle_policy(task_of(se)); 518 } 519 520 #endif /* CONFIG_FAIR_GROUP_SCHED */ 521 522 static __always_inline 523 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 524 525 /************************************************************** 526 * Scheduling class tree data structure manipulation methods: 527 */ 528 529 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime) 530 { 531 s64 delta = (s64)(vruntime - max_vruntime); 532 if (delta > 0) 533 max_vruntime = vruntime; 534 535 return max_vruntime; 536 } 537 538 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime) 539 { 540 s64 delta = (s64)(vruntime - min_vruntime); 541 if (delta < 0) 542 min_vruntime = vruntime; 543 544 return min_vruntime; 545 } 546 547 static inline bool entity_before(const struct sched_entity *a, 548 const struct sched_entity *b) 549 { 550 /* 551 * Tiebreak on vruntime seems unnecessary since it can 552 * hardly happen. 553 */ 554 return (s64)(a->deadline - b->deadline) < 0; 555 } 556 557 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 558 { 559 return (s64)(se->vruntime - cfs_rq->min_vruntime); 560 } 561 562 #define __node_2_se(node) \ 563 rb_entry((node), struct sched_entity, run_node) 564 565 /* 566 * Compute virtual time from the per-task service numbers: 567 * 568 * Fair schedulers conserve lag: 569 * 570 * \Sum lag_i = 0 571 * 572 * Where lag_i is given by: 573 * 574 * lag_i = S - s_i = w_i * (V - v_i) 575 * 576 * Where S is the ideal service time and V is it's virtual time counterpart. 577 * Therefore: 578 * 579 * \Sum lag_i = 0 580 * \Sum w_i * (V - v_i) = 0 581 * \Sum w_i * V - w_i * v_i = 0 582 * 583 * From which we can solve an expression for V in v_i (which we have in 584 * se->vruntime): 585 * 586 * \Sum v_i * w_i \Sum v_i * w_i 587 * V = -------------- = -------------- 588 * \Sum w_i W 589 * 590 * Specifically, this is the weighted average of all entity virtual runtimes. 591 * 592 * [[ NOTE: this is only equal to the ideal scheduler under the condition 593 * that join/leave operations happen at lag_i = 0, otherwise the 594 * virtual time has non-contiguous motion equivalent to: 595 * 596 * V +-= lag_i / W 597 * 598 * Also see the comment in place_entity() that deals with this. ]] 599 * 600 * However, since v_i is u64, and the multiplication could easily overflow 601 * transform it into a relative form that uses smaller quantities: 602 * 603 * Substitute: v_i == (v_i - v0) + v0 604 * 605 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 606 * V = ---------------------------- = --------------------- + v0 607 * W W 608 * 609 * Which we track using: 610 * 611 * v0 := cfs_rq->min_vruntime 612 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 613 * \Sum w_i := cfs_rq->avg_load 614 * 615 * Since min_vruntime is a monotonic increasing variable that closely tracks 616 * the per-task service, these deltas: (v_i - v), will be in the order of the 617 * maximal (virtual) lag induced in the system due to quantisation. 618 * 619 * Also, we use scale_load_down() to reduce the size. 620 * 621 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 622 */ 623 static void 624 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 625 { 626 unsigned long weight = scale_load_down(se->load.weight); 627 s64 key = entity_key(cfs_rq, se); 628 629 cfs_rq->avg_vruntime += key * weight; 630 cfs_rq->avg_load += weight; 631 } 632 633 static void 634 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 635 { 636 unsigned long weight = scale_load_down(se->load.weight); 637 s64 key = entity_key(cfs_rq, se); 638 639 cfs_rq->avg_vruntime -= key * weight; 640 cfs_rq->avg_load -= weight; 641 } 642 643 static inline 644 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 645 { 646 /* 647 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 648 */ 649 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 650 } 651 652 /* 653 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 654 * For this to be so, the result of this function must have a left bias. 655 */ 656 u64 avg_vruntime(struct cfs_rq *cfs_rq) 657 { 658 struct sched_entity *curr = cfs_rq->curr; 659 s64 avg = cfs_rq->avg_vruntime; 660 long load = cfs_rq->avg_load; 661 662 if (curr && curr->on_rq) { 663 unsigned long weight = scale_load_down(curr->load.weight); 664 665 avg += entity_key(cfs_rq, curr) * weight; 666 load += weight; 667 } 668 669 if (load) { 670 /* sign flips effective floor / ceiling */ 671 if (avg < 0) 672 avg -= (load - 1); 673 avg = div_s64(avg, load); 674 } 675 676 return cfs_rq->min_vruntime + avg; 677 } 678 679 /* 680 * lag_i = S - s_i = w_i * (V - v_i) 681 * 682 * However, since V is approximated by the weighted average of all entities it 683 * is possible -- by addition/removal/reweight to the tree -- to move V around 684 * and end up with a larger lag than we started with. 685 * 686 * Limit this to either double the slice length with a minimum of TICK_NSEC 687 * since that is the timing granularity. 688 * 689 * EEVDF gives the following limit for a steady state system: 690 * 691 * -r_max < lag < max(r_max, q) 692 * 693 * XXX could add max_slice to the augmented data to track this. 694 */ 695 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 696 { 697 s64 vlag, limit; 698 699 WARN_ON_ONCE(!se->on_rq); 700 701 vlag = avg_vruntime(cfs_rq) - se->vruntime; 702 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 703 704 se->vlag = clamp(vlag, -limit, limit); 705 } 706 707 /* 708 * Entity is eligible once it received less service than it ought to have, 709 * eg. lag >= 0. 710 * 711 * lag_i = S - s_i = w_i*(V - v_i) 712 * 713 * lag_i >= 0 -> V >= v_i 714 * 715 * \Sum (v_i - v)*w_i 716 * V = ------------------ + v 717 * \Sum w_i 718 * 719 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 720 * 721 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 722 * to the loss in precision caused by the division. 723 */ 724 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 725 { 726 struct sched_entity *curr = cfs_rq->curr; 727 s64 avg = cfs_rq->avg_vruntime; 728 long load = cfs_rq->avg_load; 729 730 if (curr && curr->on_rq) { 731 unsigned long weight = scale_load_down(curr->load.weight); 732 733 avg += entity_key(cfs_rq, curr) * weight; 734 load += weight; 735 } 736 737 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 738 } 739 740 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 741 { 742 return vruntime_eligible(cfs_rq, se->vruntime); 743 } 744 745 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 746 { 747 u64 min_vruntime = cfs_rq->min_vruntime; 748 /* 749 * open coded max_vruntime() to allow updating avg_vruntime 750 */ 751 s64 delta = (s64)(vruntime - min_vruntime); 752 if (delta > 0) { 753 avg_vruntime_update(cfs_rq, delta); 754 min_vruntime = vruntime; 755 } 756 return min_vruntime; 757 } 758 759 static void update_min_vruntime(struct cfs_rq *cfs_rq) 760 { 761 struct sched_entity *se = __pick_root_entity(cfs_rq); 762 struct sched_entity *curr = cfs_rq->curr; 763 u64 vruntime = cfs_rq->min_vruntime; 764 765 if (curr) { 766 if (curr->on_rq) 767 vruntime = curr->vruntime; 768 else 769 curr = NULL; 770 } 771 772 if (se) { 773 if (!curr) 774 vruntime = se->min_vruntime; 775 else 776 vruntime = min_vruntime(vruntime, se->min_vruntime); 777 } 778 779 /* ensure we never gain time by being placed backwards. */ 780 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime); 781 } 782 783 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) 784 { 785 struct sched_entity *root = __pick_root_entity(cfs_rq); 786 struct sched_entity *curr = cfs_rq->curr; 787 u64 min_slice = ~0ULL; 788 789 if (curr && curr->on_rq) 790 min_slice = curr->slice; 791 792 if (root) 793 min_slice = min(min_slice, root->min_slice); 794 795 return min_slice; 796 } 797 798 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 799 { 800 return entity_before(__node_2_se(a), __node_2_se(b)); 801 } 802 803 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 804 805 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 806 { 807 if (node) { 808 struct sched_entity *rse = __node_2_se(node); 809 if (vruntime_gt(min_vruntime, se, rse)) 810 se->min_vruntime = rse->min_vruntime; 811 } 812 } 813 814 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) 815 { 816 if (node) { 817 struct sched_entity *rse = __node_2_se(node); 818 if (rse->min_slice < se->min_slice) 819 se->min_slice = rse->min_slice; 820 } 821 } 822 823 /* 824 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 825 */ 826 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 827 { 828 u64 old_min_vruntime = se->min_vruntime; 829 u64 old_min_slice = se->min_slice; 830 struct rb_node *node = &se->run_node; 831 832 se->min_vruntime = se->vruntime; 833 __min_vruntime_update(se, node->rb_right); 834 __min_vruntime_update(se, node->rb_left); 835 836 se->min_slice = se->slice; 837 __min_slice_update(se, node->rb_right); 838 __min_slice_update(se, node->rb_left); 839 840 return se->min_vruntime == old_min_vruntime && 841 se->min_slice == old_min_slice; 842 } 843 844 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 845 run_node, min_vruntime, min_vruntime_update); 846 847 /* 848 * Enqueue an entity into the rb-tree: 849 */ 850 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 851 { 852 avg_vruntime_add(cfs_rq, se); 853 se->min_vruntime = se->vruntime; 854 se->min_slice = se->slice; 855 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 856 __entity_less, &min_vruntime_cb); 857 } 858 859 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 860 { 861 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 862 &min_vruntime_cb); 863 avg_vruntime_sub(cfs_rq, se); 864 } 865 866 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 867 { 868 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 869 870 if (!root) 871 return NULL; 872 873 return __node_2_se(root); 874 } 875 876 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 877 { 878 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 879 880 if (!left) 881 return NULL; 882 883 return __node_2_se(left); 884 } 885 886 /* 887 * HACK, stash a copy of deadline at the point of pick in vlag, 888 * which isn't used until dequeue. 889 */ 890 static inline void set_protect_slice(struct sched_entity *se) 891 { 892 se->vlag = se->deadline; 893 } 894 895 static inline bool protect_slice(struct sched_entity *se) 896 { 897 return se->vlag == se->deadline; 898 } 899 900 static inline void cancel_protect_slice(struct sched_entity *se) 901 { 902 if (protect_slice(se)) 903 se->vlag = se->deadline + 1; 904 } 905 906 /* 907 * Earliest Eligible Virtual Deadline First 908 * 909 * In order to provide latency guarantees for different request sizes 910 * EEVDF selects the best runnable task from two criteria: 911 * 912 * 1) the task must be eligible (must be owed service) 913 * 914 * 2) from those tasks that meet 1), we select the one 915 * with the earliest virtual deadline. 916 * 917 * We can do this in O(log n) time due to an augmented RB-tree. The 918 * tree keeps the entries sorted on deadline, but also functions as a 919 * heap based on the vruntime by keeping: 920 * 921 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 922 * 923 * Which allows tree pruning through eligibility. 924 */ 925 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 926 { 927 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 928 struct sched_entity *se = __pick_first_entity(cfs_rq); 929 struct sched_entity *curr = cfs_rq->curr; 930 struct sched_entity *best = NULL; 931 932 /* 933 * We can safely skip eligibility check if there is only one entity 934 * in this cfs_rq, saving some cycles. 935 */ 936 if (cfs_rq->nr_queued == 1) 937 return curr && curr->on_rq ? curr : se; 938 939 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 940 curr = NULL; 941 942 if (sched_feat(RUN_TO_PARITY) && curr && protect_slice(curr)) 943 return curr; 944 945 /* Pick the leftmost entity if it's eligible */ 946 if (se && entity_eligible(cfs_rq, se)) { 947 best = se; 948 goto found; 949 } 950 951 /* Heap search for the EEVD entity */ 952 while (node) { 953 struct rb_node *left = node->rb_left; 954 955 /* 956 * Eligible entities in left subtree are always better 957 * choices, since they have earlier deadlines. 958 */ 959 if (left && vruntime_eligible(cfs_rq, 960 __node_2_se(left)->min_vruntime)) { 961 node = left; 962 continue; 963 } 964 965 se = __node_2_se(node); 966 967 /* 968 * The left subtree either is empty or has no eligible 969 * entity, so check the current node since it is the one 970 * with earliest deadline that might be eligible. 971 */ 972 if (entity_eligible(cfs_rq, se)) { 973 best = se; 974 break; 975 } 976 977 node = node->rb_right; 978 } 979 found: 980 if (!best || (curr && entity_before(curr, best))) 981 best = curr; 982 983 return best; 984 } 985 986 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 987 { 988 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 989 990 if (!last) 991 return NULL; 992 993 return __node_2_se(last); 994 } 995 996 /************************************************************** 997 * Scheduling class statistics methods: 998 */ 999 #ifdef CONFIG_SMP 1000 int sched_update_scaling(void) 1001 { 1002 unsigned int factor = get_update_sysctl_factor(); 1003 1004 #define WRT_SYSCTL(name) \ 1005 (normalized_sysctl_##name = sysctl_##name / (factor)) 1006 WRT_SYSCTL(sched_base_slice); 1007 #undef WRT_SYSCTL 1008 1009 return 0; 1010 } 1011 #endif 1012 1013 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1014 1015 /* 1016 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1017 * this is probably good enough. 1018 */ 1019 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1020 { 1021 if ((s64)(se->vruntime - se->deadline) < 0) 1022 return false; 1023 1024 /* 1025 * For EEVDF the virtual time slope is determined by w_i (iow. 1026 * nice) while the request time r_i is determined by 1027 * sysctl_sched_base_slice. 1028 */ 1029 if (!se->custom_slice) 1030 se->slice = sysctl_sched_base_slice; 1031 1032 /* 1033 * EEVDF: vd_i = ve_i + r_i / w_i 1034 */ 1035 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1036 1037 /* 1038 * The task has consumed its request, reschedule. 1039 */ 1040 return true; 1041 } 1042 1043 #include "pelt.h" 1044 #ifdef CONFIG_SMP 1045 1046 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1047 static unsigned long task_h_load(struct task_struct *p); 1048 static unsigned long capacity_of(int cpu); 1049 1050 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1051 void init_entity_runnable_average(struct sched_entity *se) 1052 { 1053 struct sched_avg *sa = &se->avg; 1054 1055 memset(sa, 0, sizeof(*sa)); 1056 1057 /* 1058 * Tasks are initialized with full load to be seen as heavy tasks until 1059 * they get a chance to stabilize to their real load level. 1060 * Group entities are initialized with zero load to reflect the fact that 1061 * nothing has been attached to the task group yet. 1062 */ 1063 if (entity_is_task(se)) 1064 sa->load_avg = scale_load_down(se->load.weight); 1065 1066 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1067 } 1068 1069 /* 1070 * With new tasks being created, their initial util_avgs are extrapolated 1071 * based on the cfs_rq's current util_avg: 1072 * 1073 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1074 * * se_weight(se) 1075 * 1076 * However, in many cases, the above util_avg does not give a desired 1077 * value. Moreover, the sum of the util_avgs may be divergent, such 1078 * as when the series is a harmonic series. 1079 * 1080 * To solve this problem, we also cap the util_avg of successive tasks to 1081 * only 1/2 of the left utilization budget: 1082 * 1083 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1084 * 1085 * where n denotes the nth task and cpu_scale the CPU capacity. 1086 * 1087 * For example, for a CPU with 1024 of capacity, a simplest series from 1088 * the beginning would be like: 1089 * 1090 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1091 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1092 * 1093 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1094 * if util_avg > util_avg_cap. 1095 */ 1096 void post_init_entity_util_avg(struct task_struct *p) 1097 { 1098 struct sched_entity *se = &p->se; 1099 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1100 struct sched_avg *sa = &se->avg; 1101 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1102 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1103 1104 if (p->sched_class != &fair_sched_class) { 1105 /* 1106 * For !fair tasks do: 1107 * 1108 update_cfs_rq_load_avg(now, cfs_rq); 1109 attach_entity_load_avg(cfs_rq, se); 1110 switched_from_fair(rq, p); 1111 * 1112 * such that the next switched_to_fair() has the 1113 * expected state. 1114 */ 1115 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1116 return; 1117 } 1118 1119 if (cap > 0) { 1120 if (cfs_rq->avg.util_avg != 0) { 1121 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1122 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1123 1124 if (sa->util_avg > cap) 1125 sa->util_avg = cap; 1126 } else { 1127 sa->util_avg = cap; 1128 } 1129 } 1130 1131 sa->runnable_avg = sa->util_avg; 1132 } 1133 1134 #else /* !CONFIG_SMP */ 1135 void init_entity_runnable_average(struct sched_entity *se) 1136 { 1137 } 1138 void post_init_entity_util_avg(struct task_struct *p) 1139 { 1140 } 1141 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1142 { 1143 } 1144 #endif /* CONFIG_SMP */ 1145 1146 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1147 { 1148 u64 now = rq_clock_task(rq); 1149 s64 delta_exec; 1150 1151 delta_exec = now - curr->exec_start; 1152 if (unlikely(delta_exec <= 0)) 1153 return delta_exec; 1154 1155 curr->exec_start = now; 1156 curr->sum_exec_runtime += delta_exec; 1157 1158 if (schedstat_enabled()) { 1159 struct sched_statistics *stats; 1160 1161 stats = __schedstats_from_se(curr); 1162 __schedstat_set(stats->exec_max, 1163 max(delta_exec, stats->exec_max)); 1164 } 1165 1166 return delta_exec; 1167 } 1168 1169 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1170 { 1171 trace_sched_stat_runtime(p, delta_exec); 1172 account_group_exec_runtime(p, delta_exec); 1173 cgroup_account_cputime(p, delta_exec); 1174 } 1175 1176 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1177 { 1178 if (!sched_feat(PREEMPT_SHORT)) 1179 return false; 1180 1181 if (curr->vlag == curr->deadline) 1182 return false; 1183 1184 return !entity_eligible(cfs_rq, curr); 1185 } 1186 1187 static inline bool do_preempt_short(struct cfs_rq *cfs_rq, 1188 struct sched_entity *pse, struct sched_entity *se) 1189 { 1190 if (!sched_feat(PREEMPT_SHORT)) 1191 return false; 1192 1193 if (pse->slice >= se->slice) 1194 return false; 1195 1196 if (!entity_eligible(cfs_rq, pse)) 1197 return false; 1198 1199 if (entity_before(pse, se)) 1200 return true; 1201 1202 if (!entity_eligible(cfs_rq, se)) 1203 return true; 1204 1205 return false; 1206 } 1207 1208 /* 1209 * Used by other classes to account runtime. 1210 */ 1211 s64 update_curr_common(struct rq *rq) 1212 { 1213 struct task_struct *donor = rq->donor; 1214 s64 delta_exec; 1215 1216 delta_exec = update_curr_se(rq, &donor->se); 1217 if (likely(delta_exec > 0)) 1218 update_curr_task(donor, delta_exec); 1219 1220 return delta_exec; 1221 } 1222 1223 /* 1224 * Update the current task's runtime statistics. 1225 */ 1226 static void update_curr(struct cfs_rq *cfs_rq) 1227 { 1228 struct sched_entity *curr = cfs_rq->curr; 1229 struct rq *rq = rq_of(cfs_rq); 1230 s64 delta_exec; 1231 bool resched; 1232 1233 if (unlikely(!curr)) 1234 return; 1235 1236 delta_exec = update_curr_se(rq, curr); 1237 if (unlikely(delta_exec <= 0)) 1238 return; 1239 1240 curr->vruntime += calc_delta_fair(delta_exec, curr); 1241 resched = update_deadline(cfs_rq, curr); 1242 update_min_vruntime(cfs_rq); 1243 1244 if (entity_is_task(curr)) { 1245 struct task_struct *p = task_of(curr); 1246 1247 update_curr_task(p, delta_exec); 1248 1249 /* 1250 * If the fair_server is active, we need to account for the 1251 * fair_server time whether or not the task is running on 1252 * behalf of fair_server or not: 1253 * - If the task is running on behalf of fair_server, we need 1254 * to limit its time based on the assigned runtime. 1255 * - Fair task that runs outside of fair_server should account 1256 * against fair_server such that it can account for this time 1257 * and possibly avoid running this period. 1258 */ 1259 if (dl_server_active(&rq->fair_server)) 1260 dl_server_update(&rq->fair_server, delta_exec); 1261 } 1262 1263 account_cfs_rq_runtime(cfs_rq, delta_exec); 1264 1265 if (cfs_rq->nr_queued == 1) 1266 return; 1267 1268 if (resched || did_preempt_short(cfs_rq, curr)) { 1269 resched_curr_lazy(rq); 1270 clear_buddies(cfs_rq, curr); 1271 } 1272 } 1273 1274 static void update_curr_fair(struct rq *rq) 1275 { 1276 update_curr(cfs_rq_of(&rq->donor->se)); 1277 } 1278 1279 static inline void 1280 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1281 { 1282 struct sched_statistics *stats; 1283 struct task_struct *p = NULL; 1284 1285 if (!schedstat_enabled()) 1286 return; 1287 1288 stats = __schedstats_from_se(se); 1289 1290 if (entity_is_task(se)) 1291 p = task_of(se); 1292 1293 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1294 } 1295 1296 static inline void 1297 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1298 { 1299 struct sched_statistics *stats; 1300 struct task_struct *p = NULL; 1301 1302 if (!schedstat_enabled()) 1303 return; 1304 1305 stats = __schedstats_from_se(se); 1306 1307 /* 1308 * When the sched_schedstat changes from 0 to 1, some sched se 1309 * maybe already in the runqueue, the se->statistics.wait_start 1310 * will be 0.So it will let the delta wrong. We need to avoid this 1311 * scenario. 1312 */ 1313 if (unlikely(!schedstat_val(stats->wait_start))) 1314 return; 1315 1316 if (entity_is_task(se)) 1317 p = task_of(se); 1318 1319 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1320 } 1321 1322 static inline void 1323 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1324 { 1325 struct sched_statistics *stats; 1326 struct task_struct *tsk = NULL; 1327 1328 if (!schedstat_enabled()) 1329 return; 1330 1331 stats = __schedstats_from_se(se); 1332 1333 if (entity_is_task(se)) 1334 tsk = task_of(se); 1335 1336 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1337 } 1338 1339 /* 1340 * Task is being enqueued - update stats: 1341 */ 1342 static inline void 1343 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1344 { 1345 if (!schedstat_enabled()) 1346 return; 1347 1348 /* 1349 * Are we enqueueing a waiting task? (for current tasks 1350 * a dequeue/enqueue event is a NOP) 1351 */ 1352 if (se != cfs_rq->curr) 1353 update_stats_wait_start_fair(cfs_rq, se); 1354 1355 if (flags & ENQUEUE_WAKEUP) 1356 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1357 } 1358 1359 static inline void 1360 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1361 { 1362 1363 if (!schedstat_enabled()) 1364 return; 1365 1366 /* 1367 * Mark the end of the wait period if dequeueing a 1368 * waiting task: 1369 */ 1370 if (se != cfs_rq->curr) 1371 update_stats_wait_end_fair(cfs_rq, se); 1372 1373 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1374 struct task_struct *tsk = task_of(se); 1375 unsigned int state; 1376 1377 /* XXX racy against TTWU */ 1378 state = READ_ONCE(tsk->__state); 1379 if (state & TASK_INTERRUPTIBLE) 1380 __schedstat_set(tsk->stats.sleep_start, 1381 rq_clock(rq_of(cfs_rq))); 1382 if (state & TASK_UNINTERRUPTIBLE) 1383 __schedstat_set(tsk->stats.block_start, 1384 rq_clock(rq_of(cfs_rq))); 1385 } 1386 } 1387 1388 /* 1389 * We are picking a new current task - update its stats: 1390 */ 1391 static inline void 1392 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1393 { 1394 /* 1395 * We are starting a new run period: 1396 */ 1397 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1398 } 1399 1400 /************************************************** 1401 * Scheduling class queueing methods: 1402 */ 1403 1404 static inline bool is_core_idle(int cpu) 1405 { 1406 #ifdef CONFIG_SCHED_SMT 1407 int sibling; 1408 1409 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1410 if (cpu == sibling) 1411 continue; 1412 1413 if (!idle_cpu(sibling)) 1414 return false; 1415 } 1416 #endif 1417 1418 return true; 1419 } 1420 1421 #ifdef CONFIG_NUMA 1422 #define NUMA_IMBALANCE_MIN 2 1423 1424 static inline long 1425 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1426 { 1427 /* 1428 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1429 * threshold. Above this threshold, individual tasks may be contending 1430 * for both memory bandwidth and any shared HT resources. This is an 1431 * approximation as the number of running tasks may not be related to 1432 * the number of busy CPUs due to sched_setaffinity. 1433 */ 1434 if (dst_running > imb_numa_nr) 1435 return imbalance; 1436 1437 /* 1438 * Allow a small imbalance based on a simple pair of communicating 1439 * tasks that remain local when the destination is lightly loaded. 1440 */ 1441 if (imbalance <= NUMA_IMBALANCE_MIN) 1442 return 0; 1443 1444 return imbalance; 1445 } 1446 #endif /* CONFIG_NUMA */ 1447 1448 #ifdef CONFIG_NUMA_BALANCING 1449 /* 1450 * Approximate time to scan a full NUMA task in ms. The task scan period is 1451 * calculated based on the tasks virtual memory size and 1452 * numa_balancing_scan_size. 1453 */ 1454 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1455 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1456 1457 /* Portion of address space to scan in MB */ 1458 unsigned int sysctl_numa_balancing_scan_size = 256; 1459 1460 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1461 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1462 1463 /* The page with hint page fault latency < threshold in ms is considered hot */ 1464 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1465 1466 struct numa_group { 1467 refcount_t refcount; 1468 1469 spinlock_t lock; /* nr_tasks, tasks */ 1470 int nr_tasks; 1471 pid_t gid; 1472 int active_nodes; 1473 1474 struct rcu_head rcu; 1475 unsigned long total_faults; 1476 unsigned long max_faults_cpu; 1477 /* 1478 * faults[] array is split into two regions: faults_mem and faults_cpu. 1479 * 1480 * Faults_cpu is used to decide whether memory should move 1481 * towards the CPU. As a consequence, these stats are weighted 1482 * more by CPU use than by memory faults. 1483 */ 1484 unsigned long faults[]; 1485 }; 1486 1487 /* 1488 * For functions that can be called in multiple contexts that permit reading 1489 * ->numa_group (see struct task_struct for locking rules). 1490 */ 1491 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1492 { 1493 return rcu_dereference_check(p->numa_group, p == current || 1494 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1495 } 1496 1497 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1498 { 1499 return rcu_dereference_protected(p->numa_group, p == current); 1500 } 1501 1502 static inline unsigned long group_faults_priv(struct numa_group *ng); 1503 static inline unsigned long group_faults_shared(struct numa_group *ng); 1504 1505 static unsigned int task_nr_scan_windows(struct task_struct *p) 1506 { 1507 unsigned long rss = 0; 1508 unsigned long nr_scan_pages; 1509 1510 /* 1511 * Calculations based on RSS as non-present and empty pages are skipped 1512 * by the PTE scanner and NUMA hinting faults should be trapped based 1513 * on resident pages 1514 */ 1515 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1516 rss = get_mm_rss(p->mm); 1517 if (!rss) 1518 rss = nr_scan_pages; 1519 1520 rss = round_up(rss, nr_scan_pages); 1521 return rss / nr_scan_pages; 1522 } 1523 1524 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1525 #define MAX_SCAN_WINDOW 2560 1526 1527 static unsigned int task_scan_min(struct task_struct *p) 1528 { 1529 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1530 unsigned int scan, floor; 1531 unsigned int windows = 1; 1532 1533 if (scan_size < MAX_SCAN_WINDOW) 1534 windows = MAX_SCAN_WINDOW / scan_size; 1535 floor = 1000 / windows; 1536 1537 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1538 return max_t(unsigned int, floor, scan); 1539 } 1540 1541 static unsigned int task_scan_start(struct task_struct *p) 1542 { 1543 unsigned long smin = task_scan_min(p); 1544 unsigned long period = smin; 1545 struct numa_group *ng; 1546 1547 /* Scale the maximum scan period with the amount of shared memory. */ 1548 rcu_read_lock(); 1549 ng = rcu_dereference(p->numa_group); 1550 if (ng) { 1551 unsigned long shared = group_faults_shared(ng); 1552 unsigned long private = group_faults_priv(ng); 1553 1554 period *= refcount_read(&ng->refcount); 1555 period *= shared + 1; 1556 period /= private + shared + 1; 1557 } 1558 rcu_read_unlock(); 1559 1560 return max(smin, period); 1561 } 1562 1563 static unsigned int task_scan_max(struct task_struct *p) 1564 { 1565 unsigned long smin = task_scan_min(p); 1566 unsigned long smax; 1567 struct numa_group *ng; 1568 1569 /* Watch for min being lower than max due to floor calculations */ 1570 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1571 1572 /* Scale the maximum scan period with the amount of shared memory. */ 1573 ng = deref_curr_numa_group(p); 1574 if (ng) { 1575 unsigned long shared = group_faults_shared(ng); 1576 unsigned long private = group_faults_priv(ng); 1577 unsigned long period = smax; 1578 1579 period *= refcount_read(&ng->refcount); 1580 period *= shared + 1; 1581 period /= private + shared + 1; 1582 1583 smax = max(smax, period); 1584 } 1585 1586 return max(smin, smax); 1587 } 1588 1589 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1590 { 1591 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1592 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1593 } 1594 1595 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1596 { 1597 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1598 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1599 } 1600 1601 /* Shared or private faults. */ 1602 #define NR_NUMA_HINT_FAULT_TYPES 2 1603 1604 /* Memory and CPU locality */ 1605 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1606 1607 /* Averaged statistics, and temporary buffers. */ 1608 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1609 1610 pid_t task_numa_group_id(struct task_struct *p) 1611 { 1612 struct numa_group *ng; 1613 pid_t gid = 0; 1614 1615 rcu_read_lock(); 1616 ng = rcu_dereference(p->numa_group); 1617 if (ng) 1618 gid = ng->gid; 1619 rcu_read_unlock(); 1620 1621 return gid; 1622 } 1623 1624 /* 1625 * The averaged statistics, shared & private, memory & CPU, 1626 * occupy the first half of the array. The second half of the 1627 * array is for current counters, which are averaged into the 1628 * first set by task_numa_placement. 1629 */ 1630 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1631 { 1632 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1633 } 1634 1635 static inline unsigned long task_faults(struct task_struct *p, int nid) 1636 { 1637 if (!p->numa_faults) 1638 return 0; 1639 1640 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1641 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1642 } 1643 1644 static inline unsigned long group_faults(struct task_struct *p, int nid) 1645 { 1646 struct numa_group *ng = deref_task_numa_group(p); 1647 1648 if (!ng) 1649 return 0; 1650 1651 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1652 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1653 } 1654 1655 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1656 { 1657 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1658 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1659 } 1660 1661 static inline unsigned long group_faults_priv(struct numa_group *ng) 1662 { 1663 unsigned long faults = 0; 1664 int node; 1665 1666 for_each_online_node(node) { 1667 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1668 } 1669 1670 return faults; 1671 } 1672 1673 static inline unsigned long group_faults_shared(struct numa_group *ng) 1674 { 1675 unsigned long faults = 0; 1676 int node; 1677 1678 for_each_online_node(node) { 1679 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1680 } 1681 1682 return faults; 1683 } 1684 1685 /* 1686 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1687 * considered part of a numa group's pseudo-interleaving set. Migrations 1688 * between these nodes are slowed down, to allow things to settle down. 1689 */ 1690 #define ACTIVE_NODE_FRACTION 3 1691 1692 static bool numa_is_active_node(int nid, struct numa_group *ng) 1693 { 1694 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1695 } 1696 1697 /* Handle placement on systems where not all nodes are directly connected. */ 1698 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1699 int lim_dist, bool task) 1700 { 1701 unsigned long score = 0; 1702 int node, max_dist; 1703 1704 /* 1705 * All nodes are directly connected, and the same distance 1706 * from each other. No need for fancy placement algorithms. 1707 */ 1708 if (sched_numa_topology_type == NUMA_DIRECT) 1709 return 0; 1710 1711 /* sched_max_numa_distance may be changed in parallel. */ 1712 max_dist = READ_ONCE(sched_max_numa_distance); 1713 /* 1714 * This code is called for each node, introducing N^2 complexity, 1715 * which should be OK given the number of nodes rarely exceeds 8. 1716 */ 1717 for_each_online_node(node) { 1718 unsigned long faults; 1719 int dist = node_distance(nid, node); 1720 1721 /* 1722 * The furthest away nodes in the system are not interesting 1723 * for placement; nid was already counted. 1724 */ 1725 if (dist >= max_dist || node == nid) 1726 continue; 1727 1728 /* 1729 * On systems with a backplane NUMA topology, compare groups 1730 * of nodes, and move tasks towards the group with the most 1731 * memory accesses. When comparing two nodes at distance 1732 * "hoplimit", only nodes closer by than "hoplimit" are part 1733 * of each group. Skip other nodes. 1734 */ 1735 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1736 continue; 1737 1738 /* Add up the faults from nearby nodes. */ 1739 if (task) 1740 faults = task_faults(p, node); 1741 else 1742 faults = group_faults(p, node); 1743 1744 /* 1745 * On systems with a glueless mesh NUMA topology, there are 1746 * no fixed "groups of nodes". Instead, nodes that are not 1747 * directly connected bounce traffic through intermediate 1748 * nodes; a numa_group can occupy any set of nodes. 1749 * The further away a node is, the less the faults count. 1750 * This seems to result in good task placement. 1751 */ 1752 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1753 faults *= (max_dist - dist); 1754 faults /= (max_dist - LOCAL_DISTANCE); 1755 } 1756 1757 score += faults; 1758 } 1759 1760 return score; 1761 } 1762 1763 /* 1764 * These return the fraction of accesses done by a particular task, or 1765 * task group, on a particular numa node. The group weight is given a 1766 * larger multiplier, in order to group tasks together that are almost 1767 * evenly spread out between numa nodes. 1768 */ 1769 static inline unsigned long task_weight(struct task_struct *p, int nid, 1770 int dist) 1771 { 1772 unsigned long faults, total_faults; 1773 1774 if (!p->numa_faults) 1775 return 0; 1776 1777 total_faults = p->total_numa_faults; 1778 1779 if (!total_faults) 1780 return 0; 1781 1782 faults = task_faults(p, nid); 1783 faults += score_nearby_nodes(p, nid, dist, true); 1784 1785 return 1000 * faults / total_faults; 1786 } 1787 1788 static inline unsigned long group_weight(struct task_struct *p, int nid, 1789 int dist) 1790 { 1791 struct numa_group *ng = deref_task_numa_group(p); 1792 unsigned long faults, total_faults; 1793 1794 if (!ng) 1795 return 0; 1796 1797 total_faults = ng->total_faults; 1798 1799 if (!total_faults) 1800 return 0; 1801 1802 faults = group_faults(p, nid); 1803 faults += score_nearby_nodes(p, nid, dist, false); 1804 1805 return 1000 * faults / total_faults; 1806 } 1807 1808 /* 1809 * If memory tiering mode is enabled, cpupid of slow memory page is 1810 * used to record scan time instead of CPU and PID. When tiering mode 1811 * is disabled at run time, the scan time (in cpupid) will be 1812 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1813 * access out of array bound. 1814 */ 1815 static inline bool cpupid_valid(int cpupid) 1816 { 1817 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1818 } 1819 1820 /* 1821 * For memory tiering mode, if there are enough free pages (more than 1822 * enough watermark defined here) in fast memory node, to take full 1823 * advantage of fast memory capacity, all recently accessed slow 1824 * memory pages will be migrated to fast memory node without 1825 * considering hot threshold. 1826 */ 1827 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1828 { 1829 int z; 1830 unsigned long enough_wmark; 1831 1832 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1833 pgdat->node_present_pages >> 4); 1834 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1835 struct zone *zone = pgdat->node_zones + z; 1836 1837 if (!populated_zone(zone)) 1838 continue; 1839 1840 if (zone_watermark_ok(zone, 0, 1841 promo_wmark_pages(zone) + enough_wmark, 1842 ZONE_MOVABLE, 0)) 1843 return true; 1844 } 1845 return false; 1846 } 1847 1848 /* 1849 * For memory tiering mode, when page tables are scanned, the scan 1850 * time will be recorded in struct page in addition to make page 1851 * PROT_NONE for slow memory page. So when the page is accessed, in 1852 * hint page fault handler, the hint page fault latency is calculated 1853 * via, 1854 * 1855 * hint page fault latency = hint page fault time - scan time 1856 * 1857 * The smaller the hint page fault latency, the higher the possibility 1858 * for the page to be hot. 1859 */ 1860 static int numa_hint_fault_latency(struct folio *folio) 1861 { 1862 int last_time, time; 1863 1864 time = jiffies_to_msecs(jiffies); 1865 last_time = folio_xchg_access_time(folio, time); 1866 1867 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1868 } 1869 1870 /* 1871 * For memory tiering mode, too high promotion/demotion throughput may 1872 * hurt application latency. So we provide a mechanism to rate limit 1873 * the number of pages that are tried to be promoted. 1874 */ 1875 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1876 unsigned long rate_limit, int nr) 1877 { 1878 unsigned long nr_cand; 1879 unsigned int now, start; 1880 1881 now = jiffies_to_msecs(jiffies); 1882 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1883 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1884 start = pgdat->nbp_rl_start; 1885 if (now - start > MSEC_PER_SEC && 1886 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1887 pgdat->nbp_rl_nr_cand = nr_cand; 1888 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1889 return true; 1890 return false; 1891 } 1892 1893 #define NUMA_MIGRATION_ADJUST_STEPS 16 1894 1895 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1896 unsigned long rate_limit, 1897 unsigned int ref_th) 1898 { 1899 unsigned int now, start, th_period, unit_th, th; 1900 unsigned long nr_cand, ref_cand, diff_cand; 1901 1902 now = jiffies_to_msecs(jiffies); 1903 th_period = sysctl_numa_balancing_scan_period_max; 1904 start = pgdat->nbp_th_start; 1905 if (now - start > th_period && 1906 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1907 ref_cand = rate_limit * 1908 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1909 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1910 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1911 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1912 th = pgdat->nbp_threshold ? : ref_th; 1913 if (diff_cand > ref_cand * 11 / 10) 1914 th = max(th - unit_th, unit_th); 1915 else if (diff_cand < ref_cand * 9 / 10) 1916 th = min(th + unit_th, ref_th * 2); 1917 pgdat->nbp_th_nr_cand = nr_cand; 1918 pgdat->nbp_threshold = th; 1919 } 1920 } 1921 1922 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1923 int src_nid, int dst_cpu) 1924 { 1925 struct numa_group *ng = deref_curr_numa_group(p); 1926 int dst_nid = cpu_to_node(dst_cpu); 1927 int last_cpupid, this_cpupid; 1928 1929 /* 1930 * Cannot migrate to memoryless nodes. 1931 */ 1932 if (!node_state(dst_nid, N_MEMORY)) 1933 return false; 1934 1935 /* 1936 * The pages in slow memory node should be migrated according 1937 * to hot/cold instead of private/shared. 1938 */ 1939 if (folio_use_access_time(folio)) { 1940 struct pglist_data *pgdat; 1941 unsigned long rate_limit; 1942 unsigned int latency, th, def_th; 1943 1944 pgdat = NODE_DATA(dst_nid); 1945 if (pgdat_free_space_enough(pgdat)) { 1946 /* workload changed, reset hot threshold */ 1947 pgdat->nbp_threshold = 0; 1948 return true; 1949 } 1950 1951 def_th = sysctl_numa_balancing_hot_threshold; 1952 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1953 (20 - PAGE_SHIFT); 1954 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1955 1956 th = pgdat->nbp_threshold ? : def_th; 1957 latency = numa_hint_fault_latency(folio); 1958 if (latency >= th) 1959 return false; 1960 1961 return !numa_promotion_rate_limit(pgdat, rate_limit, 1962 folio_nr_pages(folio)); 1963 } 1964 1965 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1966 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1967 1968 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1969 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1970 return false; 1971 1972 /* 1973 * Allow first faults or private faults to migrate immediately early in 1974 * the lifetime of a task. The magic number 4 is based on waiting for 1975 * two full passes of the "multi-stage node selection" test that is 1976 * executed below. 1977 */ 1978 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1979 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1980 return true; 1981 1982 /* 1983 * Multi-stage node selection is used in conjunction with a periodic 1984 * migration fault to build a temporal task<->page relation. By using 1985 * a two-stage filter we remove short/unlikely relations. 1986 * 1987 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1988 * a task's usage of a particular page (n_p) per total usage of this 1989 * page (n_t) (in a given time-span) to a probability. 1990 * 1991 * Our periodic faults will sample this probability and getting the 1992 * same result twice in a row, given these samples are fully 1993 * independent, is then given by P(n)^2, provided our sample period 1994 * is sufficiently short compared to the usage pattern. 1995 * 1996 * This quadric squishes small probabilities, making it less likely we 1997 * act on an unlikely task<->page relation. 1998 */ 1999 if (!cpupid_pid_unset(last_cpupid) && 2000 cpupid_to_nid(last_cpupid) != dst_nid) 2001 return false; 2002 2003 /* Always allow migrate on private faults */ 2004 if (cpupid_match_pid(p, last_cpupid)) 2005 return true; 2006 2007 /* A shared fault, but p->numa_group has not been set up yet. */ 2008 if (!ng) 2009 return true; 2010 2011 /* 2012 * Destination node is much more heavily used than the source 2013 * node? Allow migration. 2014 */ 2015 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 2016 ACTIVE_NODE_FRACTION) 2017 return true; 2018 2019 /* 2020 * Distribute memory according to CPU & memory use on each node, 2021 * with 3/4 hysteresis to avoid unnecessary memory migrations: 2022 * 2023 * faults_cpu(dst) 3 faults_cpu(src) 2024 * --------------- * - > --------------- 2025 * faults_mem(dst) 4 faults_mem(src) 2026 */ 2027 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 2028 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 2029 } 2030 2031 /* 2032 * 'numa_type' describes the node at the moment of load balancing. 2033 */ 2034 enum numa_type { 2035 /* The node has spare capacity that can be used to run more tasks. */ 2036 node_has_spare = 0, 2037 /* 2038 * The node is fully used and the tasks don't compete for more CPU 2039 * cycles. Nevertheless, some tasks might wait before running. 2040 */ 2041 node_fully_busy, 2042 /* 2043 * The node is overloaded and can't provide expected CPU cycles to all 2044 * tasks. 2045 */ 2046 node_overloaded 2047 }; 2048 2049 /* Cached statistics for all CPUs within a node */ 2050 struct numa_stats { 2051 unsigned long load; 2052 unsigned long runnable; 2053 unsigned long util; 2054 /* Total compute capacity of CPUs on a node */ 2055 unsigned long compute_capacity; 2056 unsigned int nr_running; 2057 unsigned int weight; 2058 enum numa_type node_type; 2059 int idle_cpu; 2060 }; 2061 2062 struct task_numa_env { 2063 struct task_struct *p; 2064 2065 int src_cpu, src_nid; 2066 int dst_cpu, dst_nid; 2067 int imb_numa_nr; 2068 2069 struct numa_stats src_stats, dst_stats; 2070 2071 int imbalance_pct; 2072 int dist; 2073 2074 struct task_struct *best_task; 2075 long best_imp; 2076 int best_cpu; 2077 }; 2078 2079 static unsigned long cpu_load(struct rq *rq); 2080 static unsigned long cpu_runnable(struct rq *rq); 2081 2082 static inline enum 2083 numa_type numa_classify(unsigned int imbalance_pct, 2084 struct numa_stats *ns) 2085 { 2086 if ((ns->nr_running > ns->weight) && 2087 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2088 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2089 return node_overloaded; 2090 2091 if ((ns->nr_running < ns->weight) || 2092 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2093 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2094 return node_has_spare; 2095 2096 return node_fully_busy; 2097 } 2098 2099 #ifdef CONFIG_SCHED_SMT 2100 /* Forward declarations of select_idle_sibling helpers */ 2101 static inline bool test_idle_cores(int cpu); 2102 static inline int numa_idle_core(int idle_core, int cpu) 2103 { 2104 if (!static_branch_likely(&sched_smt_present) || 2105 idle_core >= 0 || !test_idle_cores(cpu)) 2106 return idle_core; 2107 2108 /* 2109 * Prefer cores instead of packing HT siblings 2110 * and triggering future load balancing. 2111 */ 2112 if (is_core_idle(cpu)) 2113 idle_core = cpu; 2114 2115 return idle_core; 2116 } 2117 #else 2118 static inline int numa_idle_core(int idle_core, int cpu) 2119 { 2120 return idle_core; 2121 } 2122 #endif 2123 2124 /* 2125 * Gather all necessary information to make NUMA balancing placement 2126 * decisions that are compatible with standard load balancer. This 2127 * borrows code and logic from update_sg_lb_stats but sharing a 2128 * common implementation is impractical. 2129 */ 2130 static void update_numa_stats(struct task_numa_env *env, 2131 struct numa_stats *ns, int nid, 2132 bool find_idle) 2133 { 2134 int cpu, idle_core = -1; 2135 2136 memset(ns, 0, sizeof(*ns)); 2137 ns->idle_cpu = -1; 2138 2139 rcu_read_lock(); 2140 for_each_cpu(cpu, cpumask_of_node(nid)) { 2141 struct rq *rq = cpu_rq(cpu); 2142 2143 ns->load += cpu_load(rq); 2144 ns->runnable += cpu_runnable(rq); 2145 ns->util += cpu_util_cfs(cpu); 2146 ns->nr_running += rq->cfs.h_nr_runnable; 2147 ns->compute_capacity += capacity_of(cpu); 2148 2149 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2150 if (READ_ONCE(rq->numa_migrate_on) || 2151 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2152 continue; 2153 2154 if (ns->idle_cpu == -1) 2155 ns->idle_cpu = cpu; 2156 2157 idle_core = numa_idle_core(idle_core, cpu); 2158 } 2159 } 2160 rcu_read_unlock(); 2161 2162 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2163 2164 ns->node_type = numa_classify(env->imbalance_pct, ns); 2165 2166 if (idle_core >= 0) 2167 ns->idle_cpu = idle_core; 2168 } 2169 2170 static void task_numa_assign(struct task_numa_env *env, 2171 struct task_struct *p, long imp) 2172 { 2173 struct rq *rq = cpu_rq(env->dst_cpu); 2174 2175 /* Check if run-queue part of active NUMA balance. */ 2176 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2177 int cpu; 2178 int start = env->dst_cpu; 2179 2180 /* Find alternative idle CPU. */ 2181 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2182 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2183 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2184 continue; 2185 } 2186 2187 env->dst_cpu = cpu; 2188 rq = cpu_rq(env->dst_cpu); 2189 if (!xchg(&rq->numa_migrate_on, 1)) 2190 goto assign; 2191 } 2192 2193 /* Failed to find an alternative idle CPU */ 2194 return; 2195 } 2196 2197 assign: 2198 /* 2199 * Clear previous best_cpu/rq numa-migrate flag, since task now 2200 * found a better CPU to move/swap. 2201 */ 2202 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2203 rq = cpu_rq(env->best_cpu); 2204 WRITE_ONCE(rq->numa_migrate_on, 0); 2205 } 2206 2207 if (env->best_task) 2208 put_task_struct(env->best_task); 2209 if (p) 2210 get_task_struct(p); 2211 2212 env->best_task = p; 2213 env->best_imp = imp; 2214 env->best_cpu = env->dst_cpu; 2215 } 2216 2217 static bool load_too_imbalanced(long src_load, long dst_load, 2218 struct task_numa_env *env) 2219 { 2220 long imb, old_imb; 2221 long orig_src_load, orig_dst_load; 2222 long src_capacity, dst_capacity; 2223 2224 /* 2225 * The load is corrected for the CPU capacity available on each node. 2226 * 2227 * src_load dst_load 2228 * ------------ vs --------- 2229 * src_capacity dst_capacity 2230 */ 2231 src_capacity = env->src_stats.compute_capacity; 2232 dst_capacity = env->dst_stats.compute_capacity; 2233 2234 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2235 2236 orig_src_load = env->src_stats.load; 2237 orig_dst_load = env->dst_stats.load; 2238 2239 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2240 2241 /* Would this change make things worse? */ 2242 return (imb > old_imb); 2243 } 2244 2245 /* 2246 * Maximum NUMA importance can be 1998 (2*999); 2247 * SMALLIMP @ 30 would be close to 1998/64. 2248 * Used to deter task migration. 2249 */ 2250 #define SMALLIMP 30 2251 2252 /* 2253 * This checks if the overall compute and NUMA accesses of the system would 2254 * be improved if the source tasks was migrated to the target dst_cpu taking 2255 * into account that it might be best if task running on the dst_cpu should 2256 * be exchanged with the source task 2257 */ 2258 static bool task_numa_compare(struct task_numa_env *env, 2259 long taskimp, long groupimp, bool maymove) 2260 { 2261 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2262 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2263 long imp = p_ng ? groupimp : taskimp; 2264 struct task_struct *cur; 2265 long src_load, dst_load; 2266 int dist = env->dist; 2267 long moveimp = imp; 2268 long load; 2269 bool stopsearch = false; 2270 2271 if (READ_ONCE(dst_rq->numa_migrate_on)) 2272 return false; 2273 2274 rcu_read_lock(); 2275 cur = rcu_dereference(dst_rq->curr); 2276 if (cur && ((cur->flags & (PF_EXITING | PF_KTHREAD)) || 2277 !cur->mm)) 2278 cur = NULL; 2279 2280 /* 2281 * Because we have preemption enabled we can get migrated around and 2282 * end try selecting ourselves (current == env->p) as a swap candidate. 2283 */ 2284 if (cur == env->p) { 2285 stopsearch = true; 2286 goto unlock; 2287 } 2288 2289 if (!cur) { 2290 if (maymove && moveimp >= env->best_imp) 2291 goto assign; 2292 else 2293 goto unlock; 2294 } 2295 2296 /* Skip this swap candidate if cannot move to the source cpu. */ 2297 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2298 goto unlock; 2299 2300 /* 2301 * Skip this swap candidate if it is not moving to its preferred 2302 * node and the best task is. 2303 */ 2304 if (env->best_task && 2305 env->best_task->numa_preferred_nid == env->src_nid && 2306 cur->numa_preferred_nid != env->src_nid) { 2307 goto unlock; 2308 } 2309 2310 /* 2311 * "imp" is the fault differential for the source task between the 2312 * source and destination node. Calculate the total differential for 2313 * the source task and potential destination task. The more negative 2314 * the value is, the more remote accesses that would be expected to 2315 * be incurred if the tasks were swapped. 2316 * 2317 * If dst and source tasks are in the same NUMA group, or not 2318 * in any group then look only at task weights. 2319 */ 2320 cur_ng = rcu_dereference(cur->numa_group); 2321 if (cur_ng == p_ng) { 2322 /* 2323 * Do not swap within a group or between tasks that have 2324 * no group if there is spare capacity. Swapping does 2325 * not address the load imbalance and helps one task at 2326 * the cost of punishing another. 2327 */ 2328 if (env->dst_stats.node_type == node_has_spare) 2329 goto unlock; 2330 2331 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2332 task_weight(cur, env->dst_nid, dist); 2333 /* 2334 * Add some hysteresis to prevent swapping the 2335 * tasks within a group over tiny differences. 2336 */ 2337 if (cur_ng) 2338 imp -= imp / 16; 2339 } else { 2340 /* 2341 * Compare the group weights. If a task is all by itself 2342 * (not part of a group), use the task weight instead. 2343 */ 2344 if (cur_ng && p_ng) 2345 imp += group_weight(cur, env->src_nid, dist) - 2346 group_weight(cur, env->dst_nid, dist); 2347 else 2348 imp += task_weight(cur, env->src_nid, dist) - 2349 task_weight(cur, env->dst_nid, dist); 2350 } 2351 2352 /* Discourage picking a task already on its preferred node */ 2353 if (cur->numa_preferred_nid == env->dst_nid) 2354 imp -= imp / 16; 2355 2356 /* 2357 * Encourage picking a task that moves to its preferred node. 2358 * This potentially makes imp larger than it's maximum of 2359 * 1998 (see SMALLIMP and task_weight for why) but in this 2360 * case, it does not matter. 2361 */ 2362 if (cur->numa_preferred_nid == env->src_nid) 2363 imp += imp / 8; 2364 2365 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2366 imp = moveimp; 2367 cur = NULL; 2368 goto assign; 2369 } 2370 2371 /* 2372 * Prefer swapping with a task moving to its preferred node over a 2373 * task that is not. 2374 */ 2375 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2376 env->best_task->numa_preferred_nid != env->src_nid) { 2377 goto assign; 2378 } 2379 2380 /* 2381 * If the NUMA importance is less than SMALLIMP, 2382 * task migration might only result in ping pong 2383 * of tasks and also hurt performance due to cache 2384 * misses. 2385 */ 2386 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2387 goto unlock; 2388 2389 /* 2390 * In the overloaded case, try and keep the load balanced. 2391 */ 2392 load = task_h_load(env->p) - task_h_load(cur); 2393 if (!load) 2394 goto assign; 2395 2396 dst_load = env->dst_stats.load + load; 2397 src_load = env->src_stats.load - load; 2398 2399 if (load_too_imbalanced(src_load, dst_load, env)) 2400 goto unlock; 2401 2402 assign: 2403 /* Evaluate an idle CPU for a task numa move. */ 2404 if (!cur) { 2405 int cpu = env->dst_stats.idle_cpu; 2406 2407 /* Nothing cached so current CPU went idle since the search. */ 2408 if (cpu < 0) 2409 cpu = env->dst_cpu; 2410 2411 /* 2412 * If the CPU is no longer truly idle and the previous best CPU 2413 * is, keep using it. 2414 */ 2415 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2416 idle_cpu(env->best_cpu)) { 2417 cpu = env->best_cpu; 2418 } 2419 2420 env->dst_cpu = cpu; 2421 } 2422 2423 task_numa_assign(env, cur, imp); 2424 2425 /* 2426 * If a move to idle is allowed because there is capacity or load 2427 * balance improves then stop the search. While a better swap 2428 * candidate may exist, a search is not free. 2429 */ 2430 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2431 stopsearch = true; 2432 2433 /* 2434 * If a swap candidate must be identified and the current best task 2435 * moves its preferred node then stop the search. 2436 */ 2437 if (!maymove && env->best_task && 2438 env->best_task->numa_preferred_nid == env->src_nid) { 2439 stopsearch = true; 2440 } 2441 unlock: 2442 rcu_read_unlock(); 2443 2444 return stopsearch; 2445 } 2446 2447 static void task_numa_find_cpu(struct task_numa_env *env, 2448 long taskimp, long groupimp) 2449 { 2450 bool maymove = false; 2451 int cpu; 2452 2453 /* 2454 * If dst node has spare capacity, then check if there is an 2455 * imbalance that would be overruled by the load balancer. 2456 */ 2457 if (env->dst_stats.node_type == node_has_spare) { 2458 unsigned int imbalance; 2459 int src_running, dst_running; 2460 2461 /* 2462 * Would movement cause an imbalance? Note that if src has 2463 * more running tasks that the imbalance is ignored as the 2464 * move improves the imbalance from the perspective of the 2465 * CPU load balancer. 2466 * */ 2467 src_running = env->src_stats.nr_running - 1; 2468 dst_running = env->dst_stats.nr_running + 1; 2469 imbalance = max(0, dst_running - src_running); 2470 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2471 env->imb_numa_nr); 2472 2473 /* Use idle CPU if there is no imbalance */ 2474 if (!imbalance) { 2475 maymove = true; 2476 if (env->dst_stats.idle_cpu >= 0) { 2477 env->dst_cpu = env->dst_stats.idle_cpu; 2478 task_numa_assign(env, NULL, 0); 2479 return; 2480 } 2481 } 2482 } else { 2483 long src_load, dst_load, load; 2484 /* 2485 * If the improvement from just moving env->p direction is better 2486 * than swapping tasks around, check if a move is possible. 2487 */ 2488 load = task_h_load(env->p); 2489 dst_load = env->dst_stats.load + load; 2490 src_load = env->src_stats.load - load; 2491 maymove = !load_too_imbalanced(src_load, dst_load, env); 2492 } 2493 2494 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2495 /* Skip this CPU if the source task cannot migrate */ 2496 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2497 continue; 2498 2499 env->dst_cpu = cpu; 2500 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2501 break; 2502 } 2503 } 2504 2505 static int task_numa_migrate(struct task_struct *p) 2506 { 2507 struct task_numa_env env = { 2508 .p = p, 2509 2510 .src_cpu = task_cpu(p), 2511 .src_nid = task_node(p), 2512 2513 .imbalance_pct = 112, 2514 2515 .best_task = NULL, 2516 .best_imp = 0, 2517 .best_cpu = -1, 2518 }; 2519 unsigned long taskweight, groupweight; 2520 struct sched_domain *sd; 2521 long taskimp, groupimp; 2522 struct numa_group *ng; 2523 struct rq *best_rq; 2524 int nid, ret, dist; 2525 2526 /* 2527 * Pick the lowest SD_NUMA domain, as that would have the smallest 2528 * imbalance and would be the first to start moving tasks about. 2529 * 2530 * And we want to avoid any moving of tasks about, as that would create 2531 * random movement of tasks -- counter the numa conditions we're trying 2532 * to satisfy here. 2533 */ 2534 rcu_read_lock(); 2535 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2536 if (sd) { 2537 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2538 env.imb_numa_nr = sd->imb_numa_nr; 2539 } 2540 rcu_read_unlock(); 2541 2542 /* 2543 * Cpusets can break the scheduler domain tree into smaller 2544 * balance domains, some of which do not cross NUMA boundaries. 2545 * Tasks that are "trapped" in such domains cannot be migrated 2546 * elsewhere, so there is no point in (re)trying. 2547 */ 2548 if (unlikely(!sd)) { 2549 sched_setnuma(p, task_node(p)); 2550 return -EINVAL; 2551 } 2552 2553 env.dst_nid = p->numa_preferred_nid; 2554 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2555 taskweight = task_weight(p, env.src_nid, dist); 2556 groupweight = group_weight(p, env.src_nid, dist); 2557 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2558 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2559 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2560 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2561 2562 /* Try to find a spot on the preferred nid. */ 2563 task_numa_find_cpu(&env, taskimp, groupimp); 2564 2565 /* 2566 * Look at other nodes in these cases: 2567 * - there is no space available on the preferred_nid 2568 * - the task is part of a numa_group that is interleaved across 2569 * multiple NUMA nodes; in order to better consolidate the group, 2570 * we need to check other locations. 2571 */ 2572 ng = deref_curr_numa_group(p); 2573 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2574 for_each_node_state(nid, N_CPU) { 2575 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2576 continue; 2577 2578 dist = node_distance(env.src_nid, env.dst_nid); 2579 if (sched_numa_topology_type == NUMA_BACKPLANE && 2580 dist != env.dist) { 2581 taskweight = task_weight(p, env.src_nid, dist); 2582 groupweight = group_weight(p, env.src_nid, dist); 2583 } 2584 2585 /* Only consider nodes where both task and groups benefit */ 2586 taskimp = task_weight(p, nid, dist) - taskweight; 2587 groupimp = group_weight(p, nid, dist) - groupweight; 2588 if (taskimp < 0 && groupimp < 0) 2589 continue; 2590 2591 env.dist = dist; 2592 env.dst_nid = nid; 2593 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2594 task_numa_find_cpu(&env, taskimp, groupimp); 2595 } 2596 } 2597 2598 /* 2599 * If the task is part of a workload that spans multiple NUMA nodes, 2600 * and is migrating into one of the workload's active nodes, remember 2601 * this node as the task's preferred numa node, so the workload can 2602 * settle down. 2603 * A task that migrated to a second choice node will be better off 2604 * trying for a better one later. Do not set the preferred node here. 2605 */ 2606 if (ng) { 2607 if (env.best_cpu == -1) 2608 nid = env.src_nid; 2609 else 2610 nid = cpu_to_node(env.best_cpu); 2611 2612 if (nid != p->numa_preferred_nid) 2613 sched_setnuma(p, nid); 2614 } 2615 2616 /* No better CPU than the current one was found. */ 2617 if (env.best_cpu == -1) { 2618 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2619 return -EAGAIN; 2620 } 2621 2622 best_rq = cpu_rq(env.best_cpu); 2623 if (env.best_task == NULL) { 2624 ret = migrate_task_to(p, env.best_cpu); 2625 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2626 if (ret != 0) 2627 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2628 return ret; 2629 } 2630 2631 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2632 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2633 2634 if (ret != 0) 2635 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2636 put_task_struct(env.best_task); 2637 return ret; 2638 } 2639 2640 /* Attempt to migrate a task to a CPU on the preferred node. */ 2641 static void numa_migrate_preferred(struct task_struct *p) 2642 { 2643 unsigned long interval = HZ; 2644 2645 /* This task has no NUMA fault statistics yet */ 2646 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2647 return; 2648 2649 /* Periodically retry migrating the task to the preferred node */ 2650 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2651 p->numa_migrate_retry = jiffies + interval; 2652 2653 /* Success if task is already running on preferred CPU */ 2654 if (task_node(p) == p->numa_preferred_nid) 2655 return; 2656 2657 /* Otherwise, try migrate to a CPU on the preferred node */ 2658 task_numa_migrate(p); 2659 } 2660 2661 /* 2662 * Find out how many nodes the workload is actively running on. Do this by 2663 * tracking the nodes from which NUMA hinting faults are triggered. This can 2664 * be different from the set of nodes where the workload's memory is currently 2665 * located. 2666 */ 2667 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2668 { 2669 unsigned long faults, max_faults = 0; 2670 int nid, active_nodes = 0; 2671 2672 for_each_node_state(nid, N_CPU) { 2673 faults = group_faults_cpu(numa_group, nid); 2674 if (faults > max_faults) 2675 max_faults = faults; 2676 } 2677 2678 for_each_node_state(nid, N_CPU) { 2679 faults = group_faults_cpu(numa_group, nid); 2680 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2681 active_nodes++; 2682 } 2683 2684 numa_group->max_faults_cpu = max_faults; 2685 numa_group->active_nodes = active_nodes; 2686 } 2687 2688 /* 2689 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2690 * increments. The more local the fault statistics are, the higher the scan 2691 * period will be for the next scan window. If local/(local+remote) ratio is 2692 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2693 * the scan period will decrease. Aim for 70% local accesses. 2694 */ 2695 #define NUMA_PERIOD_SLOTS 10 2696 #define NUMA_PERIOD_THRESHOLD 7 2697 2698 /* 2699 * Increase the scan period (slow down scanning) if the majority of 2700 * our memory is already on our local node, or if the majority of 2701 * the page accesses are shared with other processes. 2702 * Otherwise, decrease the scan period. 2703 */ 2704 static void update_task_scan_period(struct task_struct *p, 2705 unsigned long shared, unsigned long private) 2706 { 2707 unsigned int period_slot; 2708 int lr_ratio, ps_ratio; 2709 int diff; 2710 2711 unsigned long remote = p->numa_faults_locality[0]; 2712 unsigned long local = p->numa_faults_locality[1]; 2713 2714 /* 2715 * If there were no record hinting faults then either the task is 2716 * completely idle or all activity is in areas that are not of interest 2717 * to automatic numa balancing. Related to that, if there were failed 2718 * migration then it implies we are migrating too quickly or the local 2719 * node is overloaded. In either case, scan slower 2720 */ 2721 if (local + shared == 0 || p->numa_faults_locality[2]) { 2722 p->numa_scan_period = min(p->numa_scan_period_max, 2723 p->numa_scan_period << 1); 2724 2725 p->mm->numa_next_scan = jiffies + 2726 msecs_to_jiffies(p->numa_scan_period); 2727 2728 return; 2729 } 2730 2731 /* 2732 * Prepare to scale scan period relative to the current period. 2733 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2734 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2735 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2736 */ 2737 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2738 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2739 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2740 2741 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2742 /* 2743 * Most memory accesses are local. There is no need to 2744 * do fast NUMA scanning, since memory is already local. 2745 */ 2746 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2747 if (!slot) 2748 slot = 1; 2749 diff = slot * period_slot; 2750 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2751 /* 2752 * Most memory accesses are shared with other tasks. 2753 * There is no point in continuing fast NUMA scanning, 2754 * since other tasks may just move the memory elsewhere. 2755 */ 2756 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2757 if (!slot) 2758 slot = 1; 2759 diff = slot * period_slot; 2760 } else { 2761 /* 2762 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2763 * yet they are not on the local NUMA node. Speed up 2764 * NUMA scanning to get the memory moved over. 2765 */ 2766 int ratio = max(lr_ratio, ps_ratio); 2767 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2768 } 2769 2770 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2771 task_scan_min(p), task_scan_max(p)); 2772 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2773 } 2774 2775 /* 2776 * Get the fraction of time the task has been running since the last 2777 * NUMA placement cycle. The scheduler keeps similar statistics, but 2778 * decays those on a 32ms period, which is orders of magnitude off 2779 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2780 * stats only if the task is so new there are no NUMA statistics yet. 2781 */ 2782 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2783 { 2784 u64 runtime, delta, now; 2785 /* Use the start of this time slice to avoid calculations. */ 2786 now = p->se.exec_start; 2787 runtime = p->se.sum_exec_runtime; 2788 2789 if (p->last_task_numa_placement) { 2790 delta = runtime - p->last_sum_exec_runtime; 2791 *period = now - p->last_task_numa_placement; 2792 2793 /* Avoid time going backwards, prevent potential divide error: */ 2794 if (unlikely((s64)*period < 0)) 2795 *period = 0; 2796 } else { 2797 delta = p->se.avg.load_sum; 2798 *period = LOAD_AVG_MAX; 2799 } 2800 2801 p->last_sum_exec_runtime = runtime; 2802 p->last_task_numa_placement = now; 2803 2804 return delta; 2805 } 2806 2807 /* 2808 * Determine the preferred nid for a task in a numa_group. This needs to 2809 * be done in a way that produces consistent results with group_weight, 2810 * otherwise workloads might not converge. 2811 */ 2812 static int preferred_group_nid(struct task_struct *p, int nid) 2813 { 2814 nodemask_t nodes; 2815 int dist; 2816 2817 /* Direct connections between all NUMA nodes. */ 2818 if (sched_numa_topology_type == NUMA_DIRECT) 2819 return nid; 2820 2821 /* 2822 * On a system with glueless mesh NUMA topology, group_weight 2823 * scores nodes according to the number of NUMA hinting faults on 2824 * both the node itself, and on nearby nodes. 2825 */ 2826 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2827 unsigned long score, max_score = 0; 2828 int node, max_node = nid; 2829 2830 dist = sched_max_numa_distance; 2831 2832 for_each_node_state(node, N_CPU) { 2833 score = group_weight(p, node, dist); 2834 if (score > max_score) { 2835 max_score = score; 2836 max_node = node; 2837 } 2838 } 2839 return max_node; 2840 } 2841 2842 /* 2843 * Finding the preferred nid in a system with NUMA backplane 2844 * interconnect topology is more involved. The goal is to locate 2845 * tasks from numa_groups near each other in the system, and 2846 * untangle workloads from different sides of the system. This requires 2847 * searching down the hierarchy of node groups, recursively searching 2848 * inside the highest scoring group of nodes. The nodemask tricks 2849 * keep the complexity of the search down. 2850 */ 2851 nodes = node_states[N_CPU]; 2852 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2853 unsigned long max_faults = 0; 2854 nodemask_t max_group = NODE_MASK_NONE; 2855 int a, b; 2856 2857 /* Are there nodes at this distance from each other? */ 2858 if (!find_numa_distance(dist)) 2859 continue; 2860 2861 for_each_node_mask(a, nodes) { 2862 unsigned long faults = 0; 2863 nodemask_t this_group; 2864 nodes_clear(this_group); 2865 2866 /* Sum group's NUMA faults; includes a==b case. */ 2867 for_each_node_mask(b, nodes) { 2868 if (node_distance(a, b) < dist) { 2869 faults += group_faults(p, b); 2870 node_set(b, this_group); 2871 node_clear(b, nodes); 2872 } 2873 } 2874 2875 /* Remember the top group. */ 2876 if (faults > max_faults) { 2877 max_faults = faults; 2878 max_group = this_group; 2879 /* 2880 * subtle: at the smallest distance there is 2881 * just one node left in each "group", the 2882 * winner is the preferred nid. 2883 */ 2884 nid = a; 2885 } 2886 } 2887 /* Next round, evaluate the nodes within max_group. */ 2888 if (!max_faults) 2889 break; 2890 nodes = max_group; 2891 } 2892 return nid; 2893 } 2894 2895 static void task_numa_placement(struct task_struct *p) 2896 { 2897 int seq, nid, max_nid = NUMA_NO_NODE; 2898 unsigned long max_faults = 0; 2899 unsigned long fault_types[2] = { 0, 0 }; 2900 unsigned long total_faults; 2901 u64 runtime, period; 2902 spinlock_t *group_lock = NULL; 2903 struct numa_group *ng; 2904 2905 /* 2906 * The p->mm->numa_scan_seq field gets updated without 2907 * exclusive access. Use READ_ONCE() here to ensure 2908 * that the field is read in a single access: 2909 */ 2910 seq = READ_ONCE(p->mm->numa_scan_seq); 2911 if (p->numa_scan_seq == seq) 2912 return; 2913 p->numa_scan_seq = seq; 2914 p->numa_scan_period_max = task_scan_max(p); 2915 2916 total_faults = p->numa_faults_locality[0] + 2917 p->numa_faults_locality[1]; 2918 runtime = numa_get_avg_runtime(p, &period); 2919 2920 /* If the task is part of a group prevent parallel updates to group stats */ 2921 ng = deref_curr_numa_group(p); 2922 if (ng) { 2923 group_lock = &ng->lock; 2924 spin_lock_irq(group_lock); 2925 } 2926 2927 /* Find the node with the highest number of faults */ 2928 for_each_online_node(nid) { 2929 /* Keep track of the offsets in numa_faults array */ 2930 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2931 unsigned long faults = 0, group_faults = 0; 2932 int priv; 2933 2934 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2935 long diff, f_diff, f_weight; 2936 2937 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2938 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2939 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2940 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2941 2942 /* Decay existing window, copy faults since last scan */ 2943 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2944 fault_types[priv] += p->numa_faults[membuf_idx]; 2945 p->numa_faults[membuf_idx] = 0; 2946 2947 /* 2948 * Normalize the faults_from, so all tasks in a group 2949 * count according to CPU use, instead of by the raw 2950 * number of faults. Tasks with little runtime have 2951 * little over-all impact on throughput, and thus their 2952 * faults are less important. 2953 */ 2954 f_weight = div64_u64(runtime << 16, period + 1); 2955 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2956 (total_faults + 1); 2957 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2958 p->numa_faults[cpubuf_idx] = 0; 2959 2960 p->numa_faults[mem_idx] += diff; 2961 p->numa_faults[cpu_idx] += f_diff; 2962 faults += p->numa_faults[mem_idx]; 2963 p->total_numa_faults += diff; 2964 if (ng) { 2965 /* 2966 * safe because we can only change our own group 2967 * 2968 * mem_idx represents the offset for a given 2969 * nid and priv in a specific region because it 2970 * is at the beginning of the numa_faults array. 2971 */ 2972 ng->faults[mem_idx] += diff; 2973 ng->faults[cpu_idx] += f_diff; 2974 ng->total_faults += diff; 2975 group_faults += ng->faults[mem_idx]; 2976 } 2977 } 2978 2979 if (!ng) { 2980 if (faults > max_faults) { 2981 max_faults = faults; 2982 max_nid = nid; 2983 } 2984 } else if (group_faults > max_faults) { 2985 max_faults = group_faults; 2986 max_nid = nid; 2987 } 2988 } 2989 2990 /* Cannot migrate task to CPU-less node */ 2991 max_nid = numa_nearest_node(max_nid, N_CPU); 2992 2993 if (ng) { 2994 numa_group_count_active_nodes(ng); 2995 spin_unlock_irq(group_lock); 2996 max_nid = preferred_group_nid(p, max_nid); 2997 } 2998 2999 if (max_faults) { 3000 /* Set the new preferred node */ 3001 if (max_nid != p->numa_preferred_nid) 3002 sched_setnuma(p, max_nid); 3003 } 3004 3005 update_task_scan_period(p, fault_types[0], fault_types[1]); 3006 } 3007 3008 static inline int get_numa_group(struct numa_group *grp) 3009 { 3010 return refcount_inc_not_zero(&grp->refcount); 3011 } 3012 3013 static inline void put_numa_group(struct numa_group *grp) 3014 { 3015 if (refcount_dec_and_test(&grp->refcount)) 3016 kfree_rcu(grp, rcu); 3017 } 3018 3019 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 3020 int *priv) 3021 { 3022 struct numa_group *grp, *my_grp; 3023 struct task_struct *tsk; 3024 bool join = false; 3025 int cpu = cpupid_to_cpu(cpupid); 3026 int i; 3027 3028 if (unlikely(!deref_curr_numa_group(p))) { 3029 unsigned int size = sizeof(struct numa_group) + 3030 NR_NUMA_HINT_FAULT_STATS * 3031 nr_node_ids * sizeof(unsigned long); 3032 3033 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 3034 if (!grp) 3035 return; 3036 3037 refcount_set(&grp->refcount, 1); 3038 grp->active_nodes = 1; 3039 grp->max_faults_cpu = 0; 3040 spin_lock_init(&grp->lock); 3041 grp->gid = p->pid; 3042 3043 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3044 grp->faults[i] = p->numa_faults[i]; 3045 3046 grp->total_faults = p->total_numa_faults; 3047 3048 grp->nr_tasks++; 3049 rcu_assign_pointer(p->numa_group, grp); 3050 } 3051 3052 rcu_read_lock(); 3053 tsk = READ_ONCE(cpu_rq(cpu)->curr); 3054 3055 if (!cpupid_match_pid(tsk, cpupid)) 3056 goto no_join; 3057 3058 grp = rcu_dereference(tsk->numa_group); 3059 if (!grp) 3060 goto no_join; 3061 3062 my_grp = deref_curr_numa_group(p); 3063 if (grp == my_grp) 3064 goto no_join; 3065 3066 /* 3067 * Only join the other group if its bigger; if we're the bigger group, 3068 * the other task will join us. 3069 */ 3070 if (my_grp->nr_tasks > grp->nr_tasks) 3071 goto no_join; 3072 3073 /* 3074 * Tie-break on the grp address. 3075 */ 3076 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3077 goto no_join; 3078 3079 /* Always join threads in the same process. */ 3080 if (tsk->mm == current->mm) 3081 join = true; 3082 3083 /* Simple filter to avoid false positives due to PID collisions */ 3084 if (flags & TNF_SHARED) 3085 join = true; 3086 3087 /* Update priv based on whether false sharing was detected */ 3088 *priv = !join; 3089 3090 if (join && !get_numa_group(grp)) 3091 goto no_join; 3092 3093 rcu_read_unlock(); 3094 3095 if (!join) 3096 return; 3097 3098 WARN_ON_ONCE(irqs_disabled()); 3099 double_lock_irq(&my_grp->lock, &grp->lock); 3100 3101 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3102 my_grp->faults[i] -= p->numa_faults[i]; 3103 grp->faults[i] += p->numa_faults[i]; 3104 } 3105 my_grp->total_faults -= p->total_numa_faults; 3106 grp->total_faults += p->total_numa_faults; 3107 3108 my_grp->nr_tasks--; 3109 grp->nr_tasks++; 3110 3111 spin_unlock(&my_grp->lock); 3112 spin_unlock_irq(&grp->lock); 3113 3114 rcu_assign_pointer(p->numa_group, grp); 3115 3116 put_numa_group(my_grp); 3117 return; 3118 3119 no_join: 3120 rcu_read_unlock(); 3121 return; 3122 } 3123 3124 /* 3125 * Get rid of NUMA statistics associated with a task (either current or dead). 3126 * If @final is set, the task is dead and has reached refcount zero, so we can 3127 * safely free all relevant data structures. Otherwise, there might be 3128 * concurrent reads from places like load balancing and procfs, and we should 3129 * reset the data back to default state without freeing ->numa_faults. 3130 */ 3131 void task_numa_free(struct task_struct *p, bool final) 3132 { 3133 /* safe: p either is current or is being freed by current */ 3134 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3135 unsigned long *numa_faults = p->numa_faults; 3136 unsigned long flags; 3137 int i; 3138 3139 if (!numa_faults) 3140 return; 3141 3142 if (grp) { 3143 spin_lock_irqsave(&grp->lock, flags); 3144 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3145 grp->faults[i] -= p->numa_faults[i]; 3146 grp->total_faults -= p->total_numa_faults; 3147 3148 grp->nr_tasks--; 3149 spin_unlock_irqrestore(&grp->lock, flags); 3150 RCU_INIT_POINTER(p->numa_group, NULL); 3151 put_numa_group(grp); 3152 } 3153 3154 if (final) { 3155 p->numa_faults = NULL; 3156 kfree(numa_faults); 3157 } else { 3158 p->total_numa_faults = 0; 3159 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3160 numa_faults[i] = 0; 3161 } 3162 } 3163 3164 /* 3165 * Got a PROT_NONE fault for a page on @node. 3166 */ 3167 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3168 { 3169 struct task_struct *p = current; 3170 bool migrated = flags & TNF_MIGRATED; 3171 int cpu_node = task_node(current); 3172 int local = !!(flags & TNF_FAULT_LOCAL); 3173 struct numa_group *ng; 3174 int priv; 3175 3176 if (!static_branch_likely(&sched_numa_balancing)) 3177 return; 3178 3179 /* for example, ksmd faulting in a user's mm */ 3180 if (!p->mm) 3181 return; 3182 3183 /* 3184 * NUMA faults statistics are unnecessary for the slow memory 3185 * node for memory tiering mode. 3186 */ 3187 if (!node_is_toptier(mem_node) && 3188 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3189 !cpupid_valid(last_cpupid))) 3190 return; 3191 3192 /* Allocate buffer to track faults on a per-node basis */ 3193 if (unlikely(!p->numa_faults)) { 3194 int size = sizeof(*p->numa_faults) * 3195 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3196 3197 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3198 if (!p->numa_faults) 3199 return; 3200 3201 p->total_numa_faults = 0; 3202 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3203 } 3204 3205 /* 3206 * First accesses are treated as private, otherwise consider accesses 3207 * to be private if the accessing pid has not changed 3208 */ 3209 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3210 priv = 1; 3211 } else { 3212 priv = cpupid_match_pid(p, last_cpupid); 3213 if (!priv && !(flags & TNF_NO_GROUP)) 3214 task_numa_group(p, last_cpupid, flags, &priv); 3215 } 3216 3217 /* 3218 * If a workload spans multiple NUMA nodes, a shared fault that 3219 * occurs wholly within the set of nodes that the workload is 3220 * actively using should be counted as local. This allows the 3221 * scan rate to slow down when a workload has settled down. 3222 */ 3223 ng = deref_curr_numa_group(p); 3224 if (!priv && !local && ng && ng->active_nodes > 1 && 3225 numa_is_active_node(cpu_node, ng) && 3226 numa_is_active_node(mem_node, ng)) 3227 local = 1; 3228 3229 /* 3230 * Retry to migrate task to preferred node periodically, in case it 3231 * previously failed, or the scheduler moved us. 3232 */ 3233 if (time_after(jiffies, p->numa_migrate_retry)) { 3234 task_numa_placement(p); 3235 numa_migrate_preferred(p); 3236 } 3237 3238 if (migrated) 3239 p->numa_pages_migrated += pages; 3240 if (flags & TNF_MIGRATE_FAIL) 3241 p->numa_faults_locality[2] += pages; 3242 3243 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3244 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3245 p->numa_faults_locality[local] += pages; 3246 } 3247 3248 static void reset_ptenuma_scan(struct task_struct *p) 3249 { 3250 /* 3251 * We only did a read acquisition of the mmap sem, so 3252 * p->mm->numa_scan_seq is written to without exclusive access 3253 * and the update is not guaranteed to be atomic. That's not 3254 * much of an issue though, since this is just used for 3255 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3256 * expensive, to avoid any form of compiler optimizations: 3257 */ 3258 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3259 p->mm->numa_scan_offset = 0; 3260 } 3261 3262 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3263 { 3264 unsigned long pids; 3265 /* 3266 * Allow unconditional access first two times, so that all the (pages) 3267 * of VMAs get prot_none fault introduced irrespective of accesses. 3268 * This is also done to avoid any side effect of task scanning 3269 * amplifying the unfairness of disjoint set of VMAs' access. 3270 */ 3271 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3272 return true; 3273 3274 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3275 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3276 return true; 3277 3278 /* 3279 * Complete a scan that has already started regardless of PID access, or 3280 * some VMAs may never be scanned in multi-threaded applications: 3281 */ 3282 if (mm->numa_scan_offset > vma->vm_start) { 3283 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3284 return true; 3285 } 3286 3287 /* 3288 * This vma has not been accessed for a while, and if the number 3289 * the threads in the same process is low, which means no other 3290 * threads can help scan this vma, force a vma scan. 3291 */ 3292 if (READ_ONCE(mm->numa_scan_seq) > 3293 (vma->numab_state->prev_scan_seq + get_nr_threads(current))) 3294 return true; 3295 3296 return false; 3297 } 3298 3299 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3300 3301 /* 3302 * The expensive part of numa migration is done from task_work context. 3303 * Triggered from task_tick_numa(). 3304 */ 3305 static void task_numa_work(struct callback_head *work) 3306 { 3307 unsigned long migrate, next_scan, now = jiffies; 3308 struct task_struct *p = current; 3309 struct mm_struct *mm = p->mm; 3310 u64 runtime = p->se.sum_exec_runtime; 3311 struct vm_area_struct *vma; 3312 unsigned long start, end; 3313 unsigned long nr_pte_updates = 0; 3314 long pages, virtpages; 3315 struct vma_iterator vmi; 3316 bool vma_pids_skipped; 3317 bool vma_pids_forced = false; 3318 3319 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 3320 3321 work->next = work; 3322 /* 3323 * Who cares about NUMA placement when they're dying. 3324 * 3325 * NOTE: make sure not to dereference p->mm before this check, 3326 * exit_task_work() happens _after_ exit_mm() so we could be called 3327 * without p->mm even though we still had it when we enqueued this 3328 * work. 3329 */ 3330 if (p->flags & PF_EXITING) 3331 return; 3332 3333 /* 3334 * Memory is pinned to only one NUMA node via cpuset.mems, naturally 3335 * no page can be migrated. 3336 */ 3337 if (cpusets_enabled() && nodes_weight(cpuset_current_mems_allowed) == 1) { 3338 trace_sched_skip_cpuset_numa(current, &cpuset_current_mems_allowed); 3339 return; 3340 } 3341 3342 if (!mm->numa_next_scan) { 3343 mm->numa_next_scan = now + 3344 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3345 } 3346 3347 /* 3348 * Enforce maximal scan/migration frequency.. 3349 */ 3350 migrate = mm->numa_next_scan; 3351 if (time_before(now, migrate)) 3352 return; 3353 3354 if (p->numa_scan_period == 0) { 3355 p->numa_scan_period_max = task_scan_max(p); 3356 p->numa_scan_period = task_scan_start(p); 3357 } 3358 3359 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3360 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3361 return; 3362 3363 /* 3364 * Delay this task enough that another task of this mm will likely win 3365 * the next time around. 3366 */ 3367 p->node_stamp += 2 * TICK_NSEC; 3368 3369 pages = sysctl_numa_balancing_scan_size; 3370 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3371 virtpages = pages * 8; /* Scan up to this much virtual space */ 3372 if (!pages) 3373 return; 3374 3375 3376 if (!mmap_read_trylock(mm)) 3377 return; 3378 3379 /* 3380 * VMAs are skipped if the current PID has not trapped a fault within 3381 * the VMA recently. Allow scanning to be forced if there is no 3382 * suitable VMA remaining. 3383 */ 3384 vma_pids_skipped = false; 3385 3386 retry_pids: 3387 start = mm->numa_scan_offset; 3388 vma_iter_init(&vmi, mm, start); 3389 vma = vma_next(&vmi); 3390 if (!vma) { 3391 reset_ptenuma_scan(p); 3392 start = 0; 3393 vma_iter_set(&vmi, start); 3394 vma = vma_next(&vmi); 3395 } 3396 3397 for (; vma; vma = vma_next(&vmi)) { 3398 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3399 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3400 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3401 continue; 3402 } 3403 3404 /* 3405 * Shared library pages mapped by multiple processes are not 3406 * migrated as it is expected they are cache replicated. Avoid 3407 * hinting faults in read-only file-backed mappings or the vDSO 3408 * as migrating the pages will be of marginal benefit. 3409 */ 3410 if (!vma->vm_mm || 3411 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3412 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3413 continue; 3414 } 3415 3416 /* 3417 * Skip inaccessible VMAs to avoid any confusion between 3418 * PROT_NONE and NUMA hinting PTEs 3419 */ 3420 if (!vma_is_accessible(vma)) { 3421 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3422 continue; 3423 } 3424 3425 /* Initialise new per-VMA NUMAB state. */ 3426 if (!vma->numab_state) { 3427 struct vma_numab_state *ptr; 3428 3429 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL); 3430 if (!ptr) 3431 continue; 3432 3433 if (cmpxchg(&vma->numab_state, NULL, ptr)) { 3434 kfree(ptr); 3435 continue; 3436 } 3437 3438 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3439 3440 vma->numab_state->next_scan = now + 3441 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3442 3443 /* Reset happens after 4 times scan delay of scan start */ 3444 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3445 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3446 3447 /* 3448 * Ensure prev_scan_seq does not match numa_scan_seq, 3449 * to prevent VMAs being skipped prematurely on the 3450 * first scan: 3451 */ 3452 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3453 } 3454 3455 /* 3456 * Scanning the VMAs of short lived tasks add more overhead. So 3457 * delay the scan for new VMAs. 3458 */ 3459 if (mm->numa_scan_seq && time_before(jiffies, 3460 vma->numab_state->next_scan)) { 3461 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3462 continue; 3463 } 3464 3465 /* RESET access PIDs regularly for old VMAs. */ 3466 if (mm->numa_scan_seq && 3467 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3468 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3469 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3470 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3471 vma->numab_state->pids_active[1] = 0; 3472 } 3473 3474 /* Do not rescan VMAs twice within the same sequence. */ 3475 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3476 mm->numa_scan_offset = vma->vm_end; 3477 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3478 continue; 3479 } 3480 3481 /* 3482 * Do not scan the VMA if task has not accessed it, unless no other 3483 * VMA candidate exists. 3484 */ 3485 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3486 vma_pids_skipped = true; 3487 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3488 continue; 3489 } 3490 3491 do { 3492 start = max(start, vma->vm_start); 3493 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3494 end = min(end, vma->vm_end); 3495 nr_pte_updates = change_prot_numa(vma, start, end); 3496 3497 /* 3498 * Try to scan sysctl_numa_balancing_size worth of 3499 * hpages that have at least one present PTE that 3500 * is not already PTE-numa. If the VMA contains 3501 * areas that are unused or already full of prot_numa 3502 * PTEs, scan up to virtpages, to skip through those 3503 * areas faster. 3504 */ 3505 if (nr_pte_updates) 3506 pages -= (end - start) >> PAGE_SHIFT; 3507 virtpages -= (end - start) >> PAGE_SHIFT; 3508 3509 start = end; 3510 if (pages <= 0 || virtpages <= 0) 3511 goto out; 3512 3513 cond_resched(); 3514 } while (end != vma->vm_end); 3515 3516 /* VMA scan is complete, do not scan until next sequence. */ 3517 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3518 3519 /* 3520 * Only force scan within one VMA at a time, to limit the 3521 * cost of scanning a potentially uninteresting VMA. 3522 */ 3523 if (vma_pids_forced) 3524 break; 3525 } 3526 3527 /* 3528 * If no VMAs are remaining and VMAs were skipped due to the PID 3529 * not accessing the VMA previously, then force a scan to ensure 3530 * forward progress: 3531 */ 3532 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3533 vma_pids_forced = true; 3534 goto retry_pids; 3535 } 3536 3537 out: 3538 /* 3539 * It is possible to reach the end of the VMA list but the last few 3540 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3541 * would find the !migratable VMA on the next scan but not reset the 3542 * scanner to the start so check it now. 3543 */ 3544 if (vma) 3545 mm->numa_scan_offset = start; 3546 else 3547 reset_ptenuma_scan(p); 3548 mmap_read_unlock(mm); 3549 3550 /* 3551 * Make sure tasks use at least 32x as much time to run other code 3552 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3553 * Usually update_task_scan_period slows down scanning enough; on an 3554 * overloaded system we need to limit overhead on a per task basis. 3555 */ 3556 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3557 u64 diff = p->se.sum_exec_runtime - runtime; 3558 p->node_stamp += 32 * diff; 3559 } 3560 } 3561 3562 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3563 { 3564 int mm_users = 0; 3565 struct mm_struct *mm = p->mm; 3566 3567 if (mm) { 3568 mm_users = atomic_read(&mm->mm_users); 3569 if (mm_users == 1) { 3570 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3571 mm->numa_scan_seq = 0; 3572 } 3573 } 3574 p->node_stamp = 0; 3575 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3576 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3577 p->numa_migrate_retry = 0; 3578 /* Protect against double add, see task_tick_numa and task_numa_work */ 3579 p->numa_work.next = &p->numa_work; 3580 p->numa_faults = NULL; 3581 p->numa_pages_migrated = 0; 3582 p->total_numa_faults = 0; 3583 RCU_INIT_POINTER(p->numa_group, NULL); 3584 p->last_task_numa_placement = 0; 3585 p->last_sum_exec_runtime = 0; 3586 3587 init_task_work(&p->numa_work, task_numa_work); 3588 3589 /* New address space, reset the preferred nid */ 3590 if (!(clone_flags & CLONE_VM)) { 3591 p->numa_preferred_nid = NUMA_NO_NODE; 3592 return; 3593 } 3594 3595 /* 3596 * New thread, keep existing numa_preferred_nid which should be copied 3597 * already by arch_dup_task_struct but stagger when scans start. 3598 */ 3599 if (mm) { 3600 unsigned int delay; 3601 3602 delay = min_t(unsigned int, task_scan_max(current), 3603 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3604 delay += 2 * TICK_NSEC; 3605 p->node_stamp = delay; 3606 } 3607 } 3608 3609 /* 3610 * Drive the periodic memory faults.. 3611 */ 3612 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3613 { 3614 struct callback_head *work = &curr->numa_work; 3615 u64 period, now; 3616 3617 /* 3618 * We don't care about NUMA placement if we don't have memory. 3619 */ 3620 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3621 return; 3622 3623 /* 3624 * Using runtime rather than walltime has the dual advantage that 3625 * we (mostly) drive the selection from busy threads and that the 3626 * task needs to have done some actual work before we bother with 3627 * NUMA placement. 3628 */ 3629 now = curr->se.sum_exec_runtime; 3630 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3631 3632 if (now > curr->node_stamp + period) { 3633 if (!curr->node_stamp) 3634 curr->numa_scan_period = task_scan_start(curr); 3635 curr->node_stamp += period; 3636 3637 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3638 task_work_add(curr, work, TWA_RESUME); 3639 } 3640 } 3641 3642 static void update_scan_period(struct task_struct *p, int new_cpu) 3643 { 3644 int src_nid = cpu_to_node(task_cpu(p)); 3645 int dst_nid = cpu_to_node(new_cpu); 3646 3647 if (!static_branch_likely(&sched_numa_balancing)) 3648 return; 3649 3650 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3651 return; 3652 3653 if (src_nid == dst_nid) 3654 return; 3655 3656 /* 3657 * Allow resets if faults have been trapped before one scan 3658 * has completed. This is most likely due to a new task that 3659 * is pulled cross-node due to wakeups or load balancing. 3660 */ 3661 if (p->numa_scan_seq) { 3662 /* 3663 * Avoid scan adjustments if moving to the preferred 3664 * node or if the task was not previously running on 3665 * the preferred node. 3666 */ 3667 if (dst_nid == p->numa_preferred_nid || 3668 (p->numa_preferred_nid != NUMA_NO_NODE && 3669 src_nid != p->numa_preferred_nid)) 3670 return; 3671 } 3672 3673 p->numa_scan_period = task_scan_start(p); 3674 } 3675 3676 #else 3677 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3678 { 3679 } 3680 3681 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3682 { 3683 } 3684 3685 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3686 { 3687 } 3688 3689 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3690 { 3691 } 3692 3693 #endif /* CONFIG_NUMA_BALANCING */ 3694 3695 static void 3696 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3697 { 3698 update_load_add(&cfs_rq->load, se->load.weight); 3699 #ifdef CONFIG_SMP 3700 if (entity_is_task(se)) { 3701 struct rq *rq = rq_of(cfs_rq); 3702 3703 account_numa_enqueue(rq, task_of(se)); 3704 list_add(&se->group_node, &rq->cfs_tasks); 3705 } 3706 #endif 3707 cfs_rq->nr_queued++; 3708 } 3709 3710 static void 3711 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3712 { 3713 update_load_sub(&cfs_rq->load, se->load.weight); 3714 #ifdef CONFIG_SMP 3715 if (entity_is_task(se)) { 3716 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3717 list_del_init(&se->group_node); 3718 } 3719 #endif 3720 cfs_rq->nr_queued--; 3721 } 3722 3723 /* 3724 * Signed add and clamp on underflow. 3725 * 3726 * Explicitly do a load-store to ensure the intermediate value never hits 3727 * memory. This allows lockless observations without ever seeing the negative 3728 * values. 3729 */ 3730 #define add_positive(_ptr, _val) do { \ 3731 typeof(_ptr) ptr = (_ptr); \ 3732 typeof(_val) val = (_val); \ 3733 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3734 \ 3735 res = var + val; \ 3736 \ 3737 if (val < 0 && res > var) \ 3738 res = 0; \ 3739 \ 3740 WRITE_ONCE(*ptr, res); \ 3741 } while (0) 3742 3743 /* 3744 * Unsigned subtract and clamp on underflow. 3745 * 3746 * Explicitly do a load-store to ensure the intermediate value never hits 3747 * memory. This allows lockless observations without ever seeing the negative 3748 * values. 3749 */ 3750 #define sub_positive(_ptr, _val) do { \ 3751 typeof(_ptr) ptr = (_ptr); \ 3752 typeof(*ptr) val = (_val); \ 3753 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3754 res = var - val; \ 3755 if (res > var) \ 3756 res = 0; \ 3757 WRITE_ONCE(*ptr, res); \ 3758 } while (0) 3759 3760 /* 3761 * Remove and clamp on negative, from a local variable. 3762 * 3763 * A variant of sub_positive(), which does not use explicit load-store 3764 * and is thus optimized for local variable updates. 3765 */ 3766 #define lsub_positive(_ptr, _val) do { \ 3767 typeof(_ptr) ptr = (_ptr); \ 3768 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3769 } while (0) 3770 3771 #ifdef CONFIG_SMP 3772 static inline void 3773 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3774 { 3775 cfs_rq->avg.load_avg += se->avg.load_avg; 3776 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3777 } 3778 3779 static inline void 3780 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3781 { 3782 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3783 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3784 /* See update_cfs_rq_load_avg() */ 3785 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3786 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3787 } 3788 #else 3789 static inline void 3790 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3791 static inline void 3792 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3793 #endif 3794 3795 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags); 3796 3797 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3798 unsigned long weight) 3799 { 3800 bool curr = cfs_rq->curr == se; 3801 3802 if (se->on_rq) { 3803 /* commit outstanding execution time */ 3804 update_curr(cfs_rq); 3805 update_entity_lag(cfs_rq, se); 3806 se->deadline -= se->vruntime; 3807 se->rel_deadline = 1; 3808 cfs_rq->nr_queued--; 3809 if (!curr) 3810 __dequeue_entity(cfs_rq, se); 3811 update_load_sub(&cfs_rq->load, se->load.weight); 3812 } 3813 dequeue_load_avg(cfs_rq, se); 3814 3815 /* 3816 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3817 * we need to scale se->vlag when w_i changes. 3818 */ 3819 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3820 if (se->rel_deadline) 3821 se->deadline = div_s64(se->deadline * se->load.weight, weight); 3822 3823 update_load_set(&se->load, weight); 3824 3825 #ifdef CONFIG_SMP 3826 do { 3827 u32 divider = get_pelt_divider(&se->avg); 3828 3829 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3830 } while (0); 3831 #endif 3832 3833 enqueue_load_avg(cfs_rq, se); 3834 if (se->on_rq) { 3835 place_entity(cfs_rq, se, 0); 3836 update_load_add(&cfs_rq->load, se->load.weight); 3837 if (!curr) 3838 __enqueue_entity(cfs_rq, se); 3839 cfs_rq->nr_queued++; 3840 3841 /* 3842 * The entity's vruntime has been adjusted, so let's check 3843 * whether the rq-wide min_vruntime needs updated too. Since 3844 * the calculations above require stable min_vruntime rather 3845 * than up-to-date one, we do the update at the end of the 3846 * reweight process. 3847 */ 3848 update_min_vruntime(cfs_rq); 3849 } 3850 } 3851 3852 static void reweight_task_fair(struct rq *rq, struct task_struct *p, 3853 const struct load_weight *lw) 3854 { 3855 struct sched_entity *se = &p->se; 3856 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3857 struct load_weight *load = &se->load; 3858 3859 reweight_entity(cfs_rq, se, lw->weight); 3860 load->inv_weight = lw->inv_weight; 3861 } 3862 3863 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3864 3865 #ifdef CONFIG_FAIR_GROUP_SCHED 3866 #ifdef CONFIG_SMP 3867 /* 3868 * All this does is approximate the hierarchical proportion which includes that 3869 * global sum we all love to hate. 3870 * 3871 * That is, the weight of a group entity, is the proportional share of the 3872 * group weight based on the group runqueue weights. That is: 3873 * 3874 * tg->weight * grq->load.weight 3875 * ge->load.weight = ----------------------------- (1) 3876 * \Sum grq->load.weight 3877 * 3878 * Now, because computing that sum is prohibitively expensive to compute (been 3879 * there, done that) we approximate it with this average stuff. The average 3880 * moves slower and therefore the approximation is cheaper and more stable. 3881 * 3882 * So instead of the above, we substitute: 3883 * 3884 * grq->load.weight -> grq->avg.load_avg (2) 3885 * 3886 * which yields the following: 3887 * 3888 * tg->weight * grq->avg.load_avg 3889 * ge->load.weight = ------------------------------ (3) 3890 * tg->load_avg 3891 * 3892 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3893 * 3894 * That is shares_avg, and it is right (given the approximation (2)). 3895 * 3896 * The problem with it is that because the average is slow -- it was designed 3897 * to be exactly that of course -- this leads to transients in boundary 3898 * conditions. In specific, the case where the group was idle and we start the 3899 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3900 * yielding bad latency etc.. 3901 * 3902 * Now, in that special case (1) reduces to: 3903 * 3904 * tg->weight * grq->load.weight 3905 * ge->load.weight = ----------------------------- = tg->weight (4) 3906 * grp->load.weight 3907 * 3908 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3909 * 3910 * So what we do is modify our approximation (3) to approach (4) in the (near) 3911 * UP case, like: 3912 * 3913 * ge->load.weight = 3914 * 3915 * tg->weight * grq->load.weight 3916 * --------------------------------------------------- (5) 3917 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3918 * 3919 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3920 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3921 * 3922 * 3923 * tg->weight * grq->load.weight 3924 * ge->load.weight = ----------------------------- (6) 3925 * tg_load_avg' 3926 * 3927 * Where: 3928 * 3929 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3930 * max(grq->load.weight, grq->avg.load_avg) 3931 * 3932 * And that is shares_weight and is icky. In the (near) UP case it approaches 3933 * (4) while in the normal case it approaches (3). It consistently 3934 * overestimates the ge->load.weight and therefore: 3935 * 3936 * \Sum ge->load.weight >= tg->weight 3937 * 3938 * hence icky! 3939 */ 3940 static long calc_group_shares(struct cfs_rq *cfs_rq) 3941 { 3942 long tg_weight, tg_shares, load, shares; 3943 struct task_group *tg = cfs_rq->tg; 3944 3945 tg_shares = READ_ONCE(tg->shares); 3946 3947 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3948 3949 tg_weight = atomic_long_read(&tg->load_avg); 3950 3951 /* Ensure tg_weight >= load */ 3952 tg_weight -= cfs_rq->tg_load_avg_contrib; 3953 tg_weight += load; 3954 3955 shares = (tg_shares * load); 3956 if (tg_weight) 3957 shares /= tg_weight; 3958 3959 /* 3960 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3961 * of a group with small tg->shares value. It is a floor value which is 3962 * assigned as a minimum load.weight to the sched_entity representing 3963 * the group on a CPU. 3964 * 3965 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3966 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3967 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3968 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3969 * instead of 0. 3970 */ 3971 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3972 } 3973 #endif /* CONFIG_SMP */ 3974 3975 /* 3976 * Recomputes the group entity based on the current state of its group 3977 * runqueue. 3978 */ 3979 static void update_cfs_group(struct sched_entity *se) 3980 { 3981 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3982 long shares; 3983 3984 /* 3985 * When a group becomes empty, preserve its weight. This matters for 3986 * DELAY_DEQUEUE. 3987 */ 3988 if (!gcfs_rq || !gcfs_rq->load.weight) 3989 return; 3990 3991 if (throttled_hierarchy(gcfs_rq)) 3992 return; 3993 3994 #ifndef CONFIG_SMP 3995 shares = READ_ONCE(gcfs_rq->tg->shares); 3996 #else 3997 shares = calc_group_shares(gcfs_rq); 3998 #endif 3999 if (unlikely(se->load.weight != shares)) 4000 reweight_entity(cfs_rq_of(se), se, shares); 4001 } 4002 4003 #else /* CONFIG_FAIR_GROUP_SCHED */ 4004 static inline void update_cfs_group(struct sched_entity *se) 4005 { 4006 } 4007 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4008 4009 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 4010 { 4011 struct rq *rq = rq_of(cfs_rq); 4012 4013 if (&rq->cfs == cfs_rq) { 4014 /* 4015 * There are a few boundary cases this might miss but it should 4016 * get called often enough that that should (hopefully) not be 4017 * a real problem. 4018 * 4019 * It will not get called when we go idle, because the idle 4020 * thread is a different class (!fair), nor will the utilization 4021 * number include things like RT tasks. 4022 * 4023 * As is, the util number is not freq-invariant (we'd have to 4024 * implement arch_scale_freq_capacity() for that). 4025 * 4026 * See cpu_util_cfs(). 4027 */ 4028 cpufreq_update_util(rq, flags); 4029 } 4030 } 4031 4032 #ifdef CONFIG_SMP 4033 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4034 { 4035 if (sa->load_sum) 4036 return false; 4037 4038 if (sa->util_sum) 4039 return false; 4040 4041 if (sa->runnable_sum) 4042 return false; 4043 4044 /* 4045 * _avg must be null when _sum are null because _avg = _sum / divider 4046 * Make sure that rounding and/or propagation of PELT values never 4047 * break this. 4048 */ 4049 WARN_ON_ONCE(sa->load_avg || 4050 sa->util_avg || 4051 sa->runnable_avg); 4052 4053 return true; 4054 } 4055 4056 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4057 { 4058 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4059 cfs_rq->last_update_time_copy); 4060 } 4061 #ifdef CONFIG_FAIR_GROUP_SCHED 4062 /* 4063 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4064 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4065 * bottom-up, we only have to test whether the cfs_rq before us on the list 4066 * is our child. 4067 * If cfs_rq is not on the list, test whether a child needs its to be added to 4068 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4069 */ 4070 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4071 { 4072 struct cfs_rq *prev_cfs_rq; 4073 struct list_head *prev; 4074 struct rq *rq = rq_of(cfs_rq); 4075 4076 if (cfs_rq->on_list) { 4077 prev = cfs_rq->leaf_cfs_rq_list.prev; 4078 } else { 4079 prev = rq->tmp_alone_branch; 4080 } 4081 4082 if (prev == &rq->leaf_cfs_rq_list) 4083 return false; 4084 4085 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4086 4087 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4088 } 4089 4090 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4091 { 4092 if (cfs_rq->load.weight) 4093 return false; 4094 4095 if (!load_avg_is_decayed(&cfs_rq->avg)) 4096 return false; 4097 4098 if (child_cfs_rq_on_list(cfs_rq)) 4099 return false; 4100 4101 return true; 4102 } 4103 4104 /** 4105 * update_tg_load_avg - update the tg's load avg 4106 * @cfs_rq: the cfs_rq whose avg changed 4107 * 4108 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4109 * However, because tg->load_avg is a global value there are performance 4110 * considerations. 4111 * 4112 * In order to avoid having to look at the other cfs_rq's, we use a 4113 * differential update where we store the last value we propagated. This in 4114 * turn allows skipping updates if the differential is 'small'. 4115 * 4116 * Updating tg's load_avg is necessary before update_cfs_share(). 4117 */ 4118 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4119 { 4120 long delta; 4121 u64 now; 4122 4123 /* 4124 * No need to update load_avg for root_task_group as it is not used. 4125 */ 4126 if (cfs_rq->tg == &root_task_group) 4127 return; 4128 4129 /* rq has been offline and doesn't contribute to the share anymore: */ 4130 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4131 return; 4132 4133 /* 4134 * For migration heavy workloads, access to tg->load_avg can be 4135 * unbound. Limit the update rate to at most once per ms. 4136 */ 4137 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4138 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4139 return; 4140 4141 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4142 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4143 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4144 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4145 cfs_rq->last_update_tg_load_avg = now; 4146 } 4147 } 4148 4149 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4150 { 4151 long delta; 4152 u64 now; 4153 4154 /* 4155 * No need to update load_avg for root_task_group, as it is not used. 4156 */ 4157 if (cfs_rq->tg == &root_task_group) 4158 return; 4159 4160 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4161 delta = 0 - cfs_rq->tg_load_avg_contrib; 4162 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4163 cfs_rq->tg_load_avg_contrib = 0; 4164 cfs_rq->last_update_tg_load_avg = now; 4165 } 4166 4167 /* CPU offline callback: */ 4168 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4169 { 4170 struct task_group *tg; 4171 4172 lockdep_assert_rq_held(rq); 4173 4174 /* 4175 * The rq clock has already been updated in 4176 * set_rq_offline(), so we should skip updating 4177 * the rq clock again in unthrottle_cfs_rq(). 4178 */ 4179 rq_clock_start_loop_update(rq); 4180 4181 rcu_read_lock(); 4182 list_for_each_entry_rcu(tg, &task_groups, list) { 4183 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4184 4185 clear_tg_load_avg(cfs_rq); 4186 } 4187 rcu_read_unlock(); 4188 4189 rq_clock_stop_loop_update(rq); 4190 } 4191 4192 /* 4193 * Called within set_task_rq() right before setting a task's CPU. The 4194 * caller only guarantees p->pi_lock is held; no other assumptions, 4195 * including the state of rq->lock, should be made. 4196 */ 4197 void set_task_rq_fair(struct sched_entity *se, 4198 struct cfs_rq *prev, struct cfs_rq *next) 4199 { 4200 u64 p_last_update_time; 4201 u64 n_last_update_time; 4202 4203 if (!sched_feat(ATTACH_AGE_LOAD)) 4204 return; 4205 4206 /* 4207 * We are supposed to update the task to "current" time, then its up to 4208 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4209 * getting what current time is, so simply throw away the out-of-date 4210 * time. This will result in the wakee task is less decayed, but giving 4211 * the wakee more load sounds not bad. 4212 */ 4213 if (!(se->avg.last_update_time && prev)) 4214 return; 4215 4216 p_last_update_time = cfs_rq_last_update_time(prev); 4217 n_last_update_time = cfs_rq_last_update_time(next); 4218 4219 __update_load_avg_blocked_se(p_last_update_time, se); 4220 se->avg.last_update_time = n_last_update_time; 4221 } 4222 4223 /* 4224 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4225 * propagate its contribution. The key to this propagation is the invariant 4226 * that for each group: 4227 * 4228 * ge->avg == grq->avg (1) 4229 * 4230 * _IFF_ we look at the pure running and runnable sums. Because they 4231 * represent the very same entity, just at different points in the hierarchy. 4232 * 4233 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4234 * and simply copies the running/runnable sum over (but still wrong, because 4235 * the group entity and group rq do not have their PELT windows aligned). 4236 * 4237 * However, update_tg_cfs_load() is more complex. So we have: 4238 * 4239 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4240 * 4241 * And since, like util, the runnable part should be directly transferable, 4242 * the following would _appear_ to be the straight forward approach: 4243 * 4244 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4245 * 4246 * And per (1) we have: 4247 * 4248 * ge->avg.runnable_avg == grq->avg.runnable_avg 4249 * 4250 * Which gives: 4251 * 4252 * ge->load.weight * grq->avg.load_avg 4253 * ge->avg.load_avg = ----------------------------------- (4) 4254 * grq->load.weight 4255 * 4256 * Except that is wrong! 4257 * 4258 * Because while for entities historical weight is not important and we 4259 * really only care about our future and therefore can consider a pure 4260 * runnable sum, runqueues can NOT do this. 4261 * 4262 * We specifically want runqueues to have a load_avg that includes 4263 * historical weights. Those represent the blocked load, the load we expect 4264 * to (shortly) return to us. This only works by keeping the weights as 4265 * integral part of the sum. We therefore cannot decompose as per (3). 4266 * 4267 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4268 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4269 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4270 * runnable section of these tasks overlap (or not). If they were to perfectly 4271 * align the rq as a whole would be runnable 2/3 of the time. If however we 4272 * always have at least 1 runnable task, the rq as a whole is always runnable. 4273 * 4274 * So we'll have to approximate.. :/ 4275 * 4276 * Given the constraint: 4277 * 4278 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4279 * 4280 * We can construct a rule that adds runnable to a rq by assuming minimal 4281 * overlap. 4282 * 4283 * On removal, we'll assume each task is equally runnable; which yields: 4284 * 4285 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4286 * 4287 * XXX: only do this for the part of runnable > running ? 4288 * 4289 */ 4290 static inline void 4291 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4292 { 4293 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4294 u32 new_sum, divider; 4295 4296 /* Nothing to update */ 4297 if (!delta_avg) 4298 return; 4299 4300 /* 4301 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4302 * See ___update_load_avg() for details. 4303 */ 4304 divider = get_pelt_divider(&cfs_rq->avg); 4305 4306 4307 /* Set new sched_entity's utilization */ 4308 se->avg.util_avg = gcfs_rq->avg.util_avg; 4309 new_sum = se->avg.util_avg * divider; 4310 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4311 se->avg.util_sum = new_sum; 4312 4313 /* Update parent cfs_rq utilization */ 4314 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4315 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4316 4317 /* See update_cfs_rq_load_avg() */ 4318 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4319 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4320 } 4321 4322 static inline void 4323 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4324 { 4325 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4326 u32 new_sum, divider; 4327 4328 /* Nothing to update */ 4329 if (!delta_avg) 4330 return; 4331 4332 /* 4333 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4334 * See ___update_load_avg() for details. 4335 */ 4336 divider = get_pelt_divider(&cfs_rq->avg); 4337 4338 /* Set new sched_entity's runnable */ 4339 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4340 new_sum = se->avg.runnable_avg * divider; 4341 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4342 se->avg.runnable_sum = new_sum; 4343 4344 /* Update parent cfs_rq runnable */ 4345 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4346 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4347 /* See update_cfs_rq_load_avg() */ 4348 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4349 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4350 } 4351 4352 static inline void 4353 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4354 { 4355 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4356 unsigned long load_avg; 4357 u64 load_sum = 0; 4358 s64 delta_sum; 4359 u32 divider; 4360 4361 if (!runnable_sum) 4362 return; 4363 4364 gcfs_rq->prop_runnable_sum = 0; 4365 4366 /* 4367 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4368 * See ___update_load_avg() for details. 4369 */ 4370 divider = get_pelt_divider(&cfs_rq->avg); 4371 4372 if (runnable_sum >= 0) { 4373 /* 4374 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4375 * the CPU is saturated running == runnable. 4376 */ 4377 runnable_sum += se->avg.load_sum; 4378 runnable_sum = min_t(long, runnable_sum, divider); 4379 } else { 4380 /* 4381 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4382 * assuming all tasks are equally runnable. 4383 */ 4384 if (scale_load_down(gcfs_rq->load.weight)) { 4385 load_sum = div_u64(gcfs_rq->avg.load_sum, 4386 scale_load_down(gcfs_rq->load.weight)); 4387 } 4388 4389 /* But make sure to not inflate se's runnable */ 4390 runnable_sum = min(se->avg.load_sum, load_sum); 4391 } 4392 4393 /* 4394 * runnable_sum can't be lower than running_sum 4395 * Rescale running sum to be in the same range as runnable sum 4396 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4397 * runnable_sum is in [0 : LOAD_AVG_MAX] 4398 */ 4399 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4400 runnable_sum = max(runnable_sum, running_sum); 4401 4402 load_sum = se_weight(se) * runnable_sum; 4403 load_avg = div_u64(load_sum, divider); 4404 4405 delta_avg = load_avg - se->avg.load_avg; 4406 if (!delta_avg) 4407 return; 4408 4409 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4410 4411 se->avg.load_sum = runnable_sum; 4412 se->avg.load_avg = load_avg; 4413 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4414 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4415 /* See update_cfs_rq_load_avg() */ 4416 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4417 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4418 } 4419 4420 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4421 { 4422 cfs_rq->propagate = 1; 4423 cfs_rq->prop_runnable_sum += runnable_sum; 4424 } 4425 4426 /* Update task and its cfs_rq load average */ 4427 static inline int propagate_entity_load_avg(struct sched_entity *se) 4428 { 4429 struct cfs_rq *cfs_rq, *gcfs_rq; 4430 4431 if (entity_is_task(se)) 4432 return 0; 4433 4434 gcfs_rq = group_cfs_rq(se); 4435 if (!gcfs_rq->propagate) 4436 return 0; 4437 4438 gcfs_rq->propagate = 0; 4439 4440 cfs_rq = cfs_rq_of(se); 4441 4442 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4443 4444 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4445 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4446 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4447 4448 trace_pelt_cfs_tp(cfs_rq); 4449 trace_pelt_se_tp(se); 4450 4451 return 1; 4452 } 4453 4454 /* 4455 * Check if we need to update the load and the utilization of a blocked 4456 * group_entity: 4457 */ 4458 static inline bool skip_blocked_update(struct sched_entity *se) 4459 { 4460 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4461 4462 /* 4463 * If sched_entity still have not zero load or utilization, we have to 4464 * decay it: 4465 */ 4466 if (se->avg.load_avg || se->avg.util_avg) 4467 return false; 4468 4469 /* 4470 * If there is a pending propagation, we have to update the load and 4471 * the utilization of the sched_entity: 4472 */ 4473 if (gcfs_rq->propagate) 4474 return false; 4475 4476 /* 4477 * Otherwise, the load and the utilization of the sched_entity is 4478 * already zero and there is no pending propagation, so it will be a 4479 * waste of time to try to decay it: 4480 */ 4481 return true; 4482 } 4483 4484 #else /* CONFIG_FAIR_GROUP_SCHED */ 4485 4486 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4487 4488 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4489 4490 static inline int propagate_entity_load_avg(struct sched_entity *se) 4491 { 4492 return 0; 4493 } 4494 4495 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4496 4497 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4498 4499 #ifdef CONFIG_NO_HZ_COMMON 4500 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4501 { 4502 u64 throttled = 0, now, lut; 4503 struct cfs_rq *cfs_rq; 4504 struct rq *rq; 4505 bool is_idle; 4506 4507 if (load_avg_is_decayed(&se->avg)) 4508 return; 4509 4510 cfs_rq = cfs_rq_of(se); 4511 rq = rq_of(cfs_rq); 4512 4513 rcu_read_lock(); 4514 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4515 rcu_read_unlock(); 4516 4517 /* 4518 * The lag estimation comes with a cost we don't want to pay all the 4519 * time. Hence, limiting to the case where the source CPU is idle and 4520 * we know we are at the greatest risk to have an outdated clock. 4521 */ 4522 if (!is_idle) 4523 return; 4524 4525 /* 4526 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4527 * 4528 * last_update_time (the cfs_rq's last_update_time) 4529 * = cfs_rq_clock_pelt()@cfs_rq_idle 4530 * = rq_clock_pelt()@cfs_rq_idle 4531 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4532 * 4533 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4534 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4535 * 4536 * rq_idle_lag (delta between now and rq's update) 4537 * = sched_clock_cpu() - rq_clock()@rq_idle 4538 * 4539 * We can then write: 4540 * 4541 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4542 * sched_clock_cpu() - rq_clock()@rq_idle 4543 * Where: 4544 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4545 * rq_clock()@rq_idle is rq->clock_idle 4546 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4547 * is cfs_rq->throttled_pelt_idle 4548 */ 4549 4550 #ifdef CONFIG_CFS_BANDWIDTH 4551 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4552 /* The clock has been stopped for throttling */ 4553 if (throttled == U64_MAX) 4554 return; 4555 #endif 4556 now = u64_u32_load(rq->clock_pelt_idle); 4557 /* 4558 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4559 * is observed the old clock_pelt_idle value and the new clock_idle, 4560 * which lead to an underestimation. The opposite would lead to an 4561 * overestimation. 4562 */ 4563 smp_rmb(); 4564 lut = cfs_rq_last_update_time(cfs_rq); 4565 4566 now -= throttled; 4567 if (now < lut) 4568 /* 4569 * cfs_rq->avg.last_update_time is more recent than our 4570 * estimation, let's use it. 4571 */ 4572 now = lut; 4573 else 4574 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4575 4576 __update_load_avg_blocked_se(now, se); 4577 } 4578 #else 4579 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4580 #endif 4581 4582 /** 4583 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4584 * @now: current time, as per cfs_rq_clock_pelt() 4585 * @cfs_rq: cfs_rq to update 4586 * 4587 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4588 * avg. The immediate corollary is that all (fair) tasks must be attached. 4589 * 4590 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4591 * 4592 * Return: true if the load decayed or we removed load. 4593 * 4594 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4595 * call update_tg_load_avg() when this function returns true. 4596 */ 4597 static inline int 4598 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4599 { 4600 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4601 struct sched_avg *sa = &cfs_rq->avg; 4602 int decayed = 0; 4603 4604 if (cfs_rq->removed.nr) { 4605 unsigned long r; 4606 u32 divider = get_pelt_divider(&cfs_rq->avg); 4607 4608 raw_spin_lock(&cfs_rq->removed.lock); 4609 swap(cfs_rq->removed.util_avg, removed_util); 4610 swap(cfs_rq->removed.load_avg, removed_load); 4611 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4612 cfs_rq->removed.nr = 0; 4613 raw_spin_unlock(&cfs_rq->removed.lock); 4614 4615 r = removed_load; 4616 sub_positive(&sa->load_avg, r); 4617 sub_positive(&sa->load_sum, r * divider); 4618 /* See sa->util_sum below */ 4619 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4620 4621 r = removed_util; 4622 sub_positive(&sa->util_avg, r); 4623 sub_positive(&sa->util_sum, r * divider); 4624 /* 4625 * Because of rounding, se->util_sum might ends up being +1 more than 4626 * cfs->util_sum. Although this is not a problem by itself, detaching 4627 * a lot of tasks with the rounding problem between 2 updates of 4628 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4629 * cfs_util_avg is not. 4630 * Check that util_sum is still above its lower bound for the new 4631 * util_avg. Given that period_contrib might have moved since the last 4632 * sync, we are only sure that util_sum must be above or equal to 4633 * util_avg * minimum possible divider 4634 */ 4635 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4636 4637 r = removed_runnable; 4638 sub_positive(&sa->runnable_avg, r); 4639 sub_positive(&sa->runnable_sum, r * divider); 4640 /* See sa->util_sum above */ 4641 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4642 sa->runnable_avg * PELT_MIN_DIVIDER); 4643 4644 /* 4645 * removed_runnable is the unweighted version of removed_load so we 4646 * can use it to estimate removed_load_sum. 4647 */ 4648 add_tg_cfs_propagate(cfs_rq, 4649 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4650 4651 decayed = 1; 4652 } 4653 4654 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4655 u64_u32_store_copy(sa->last_update_time, 4656 cfs_rq->last_update_time_copy, 4657 sa->last_update_time); 4658 return decayed; 4659 } 4660 4661 /** 4662 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4663 * @cfs_rq: cfs_rq to attach to 4664 * @se: sched_entity to attach 4665 * 4666 * Must call update_cfs_rq_load_avg() before this, since we rely on 4667 * cfs_rq->avg.last_update_time being current. 4668 */ 4669 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4670 { 4671 /* 4672 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4673 * See ___update_load_avg() for details. 4674 */ 4675 u32 divider = get_pelt_divider(&cfs_rq->avg); 4676 4677 /* 4678 * When we attach the @se to the @cfs_rq, we must align the decay 4679 * window because without that, really weird and wonderful things can 4680 * happen. 4681 * 4682 * XXX illustrate 4683 */ 4684 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4685 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4686 4687 /* 4688 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4689 * period_contrib. This isn't strictly correct, but since we're 4690 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4691 * _sum a little. 4692 */ 4693 se->avg.util_sum = se->avg.util_avg * divider; 4694 4695 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4696 4697 se->avg.load_sum = se->avg.load_avg * divider; 4698 if (se_weight(se) < se->avg.load_sum) 4699 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4700 else 4701 se->avg.load_sum = 1; 4702 4703 enqueue_load_avg(cfs_rq, se); 4704 cfs_rq->avg.util_avg += se->avg.util_avg; 4705 cfs_rq->avg.util_sum += se->avg.util_sum; 4706 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4707 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4708 4709 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4710 4711 cfs_rq_util_change(cfs_rq, 0); 4712 4713 trace_pelt_cfs_tp(cfs_rq); 4714 } 4715 4716 /** 4717 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4718 * @cfs_rq: cfs_rq to detach from 4719 * @se: sched_entity to detach 4720 * 4721 * Must call update_cfs_rq_load_avg() before this, since we rely on 4722 * cfs_rq->avg.last_update_time being current. 4723 */ 4724 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4725 { 4726 dequeue_load_avg(cfs_rq, se); 4727 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4728 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4729 /* See update_cfs_rq_load_avg() */ 4730 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4731 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4732 4733 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4734 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4735 /* See update_cfs_rq_load_avg() */ 4736 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4737 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4738 4739 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4740 4741 cfs_rq_util_change(cfs_rq, 0); 4742 4743 trace_pelt_cfs_tp(cfs_rq); 4744 } 4745 4746 /* 4747 * Optional action to be done while updating the load average 4748 */ 4749 #define UPDATE_TG 0x1 4750 #define SKIP_AGE_LOAD 0x2 4751 #define DO_ATTACH 0x4 4752 #define DO_DETACH 0x8 4753 4754 /* Update task and its cfs_rq load average */ 4755 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4756 { 4757 u64 now = cfs_rq_clock_pelt(cfs_rq); 4758 int decayed; 4759 4760 /* 4761 * Track task load average for carrying it to new CPU after migrated, and 4762 * track group sched_entity load average for task_h_load calculation in migration 4763 */ 4764 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4765 __update_load_avg_se(now, cfs_rq, se); 4766 4767 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4768 decayed |= propagate_entity_load_avg(se); 4769 4770 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4771 4772 /* 4773 * DO_ATTACH means we're here from enqueue_entity(). 4774 * !last_update_time means we've passed through 4775 * migrate_task_rq_fair() indicating we migrated. 4776 * 4777 * IOW we're enqueueing a task on a new CPU. 4778 */ 4779 attach_entity_load_avg(cfs_rq, se); 4780 update_tg_load_avg(cfs_rq); 4781 4782 } else if (flags & DO_DETACH) { 4783 /* 4784 * DO_DETACH means we're here from dequeue_entity() 4785 * and we are migrating task out of the CPU. 4786 */ 4787 detach_entity_load_avg(cfs_rq, se); 4788 update_tg_load_avg(cfs_rq); 4789 } else if (decayed) { 4790 cfs_rq_util_change(cfs_rq, 0); 4791 4792 if (flags & UPDATE_TG) 4793 update_tg_load_avg(cfs_rq); 4794 } 4795 } 4796 4797 /* 4798 * Synchronize entity load avg of dequeued entity without locking 4799 * the previous rq. 4800 */ 4801 static void sync_entity_load_avg(struct sched_entity *se) 4802 { 4803 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4804 u64 last_update_time; 4805 4806 last_update_time = cfs_rq_last_update_time(cfs_rq); 4807 __update_load_avg_blocked_se(last_update_time, se); 4808 } 4809 4810 /* 4811 * Task first catches up with cfs_rq, and then subtract 4812 * itself from the cfs_rq (task must be off the queue now). 4813 */ 4814 static void remove_entity_load_avg(struct sched_entity *se) 4815 { 4816 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4817 unsigned long flags; 4818 4819 /* 4820 * tasks cannot exit without having gone through wake_up_new_task() -> 4821 * enqueue_task_fair() which will have added things to the cfs_rq, 4822 * so we can remove unconditionally. 4823 */ 4824 4825 sync_entity_load_avg(se); 4826 4827 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4828 ++cfs_rq->removed.nr; 4829 cfs_rq->removed.util_avg += se->avg.util_avg; 4830 cfs_rq->removed.load_avg += se->avg.load_avg; 4831 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4832 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4833 } 4834 4835 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4836 { 4837 return cfs_rq->avg.runnable_avg; 4838 } 4839 4840 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4841 { 4842 return cfs_rq->avg.load_avg; 4843 } 4844 4845 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4846 4847 static inline unsigned long task_util(struct task_struct *p) 4848 { 4849 return READ_ONCE(p->se.avg.util_avg); 4850 } 4851 4852 static inline unsigned long task_runnable(struct task_struct *p) 4853 { 4854 return READ_ONCE(p->se.avg.runnable_avg); 4855 } 4856 4857 static inline unsigned long _task_util_est(struct task_struct *p) 4858 { 4859 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4860 } 4861 4862 static inline unsigned long task_util_est(struct task_struct *p) 4863 { 4864 return max(task_util(p), _task_util_est(p)); 4865 } 4866 4867 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4868 struct task_struct *p) 4869 { 4870 unsigned int enqueued; 4871 4872 if (!sched_feat(UTIL_EST)) 4873 return; 4874 4875 /* Update root cfs_rq's estimated utilization */ 4876 enqueued = cfs_rq->avg.util_est; 4877 enqueued += _task_util_est(p); 4878 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4879 4880 trace_sched_util_est_cfs_tp(cfs_rq); 4881 } 4882 4883 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4884 struct task_struct *p) 4885 { 4886 unsigned int enqueued; 4887 4888 if (!sched_feat(UTIL_EST)) 4889 return; 4890 4891 /* Update root cfs_rq's estimated utilization */ 4892 enqueued = cfs_rq->avg.util_est; 4893 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4894 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4895 4896 trace_sched_util_est_cfs_tp(cfs_rq); 4897 } 4898 4899 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4900 4901 static inline void util_est_update(struct cfs_rq *cfs_rq, 4902 struct task_struct *p, 4903 bool task_sleep) 4904 { 4905 unsigned int ewma, dequeued, last_ewma_diff; 4906 4907 if (!sched_feat(UTIL_EST)) 4908 return; 4909 4910 /* 4911 * Skip update of task's estimated utilization when the task has not 4912 * yet completed an activation, e.g. being migrated. 4913 */ 4914 if (!task_sleep) 4915 return; 4916 4917 /* Get current estimate of utilization */ 4918 ewma = READ_ONCE(p->se.avg.util_est); 4919 4920 /* 4921 * If the PELT values haven't changed since enqueue time, 4922 * skip the util_est update. 4923 */ 4924 if (ewma & UTIL_AVG_UNCHANGED) 4925 return; 4926 4927 /* Get utilization at dequeue */ 4928 dequeued = task_util(p); 4929 4930 /* 4931 * Reset EWMA on utilization increases, the moving average is used only 4932 * to smooth utilization decreases. 4933 */ 4934 if (ewma <= dequeued) { 4935 ewma = dequeued; 4936 goto done; 4937 } 4938 4939 /* 4940 * Skip update of task's estimated utilization when its members are 4941 * already ~1% close to its last activation value. 4942 */ 4943 last_ewma_diff = ewma - dequeued; 4944 if (last_ewma_diff < UTIL_EST_MARGIN) 4945 goto done; 4946 4947 /* 4948 * To avoid underestimate of task utilization, skip updates of EWMA if 4949 * we cannot grant that thread got all CPU time it wanted. 4950 */ 4951 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 4952 goto done; 4953 4954 4955 /* 4956 * Update Task's estimated utilization 4957 * 4958 * When *p completes an activation we can consolidate another sample 4959 * of the task size. This is done by using this value to update the 4960 * Exponential Weighted Moving Average (EWMA): 4961 * 4962 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4963 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4964 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4965 * = w * ( -last_ewma_diff ) + ewma(t-1) 4966 * = w * (-last_ewma_diff + ewma(t-1) / w) 4967 * 4968 * Where 'w' is the weight of new samples, which is configured to be 4969 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4970 */ 4971 ewma <<= UTIL_EST_WEIGHT_SHIFT; 4972 ewma -= last_ewma_diff; 4973 ewma >>= UTIL_EST_WEIGHT_SHIFT; 4974 done: 4975 ewma |= UTIL_AVG_UNCHANGED; 4976 WRITE_ONCE(p->se.avg.util_est, ewma); 4977 4978 trace_sched_util_est_se_tp(&p->se); 4979 } 4980 4981 static inline unsigned long get_actual_cpu_capacity(int cpu) 4982 { 4983 unsigned long capacity = arch_scale_cpu_capacity(cpu); 4984 4985 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 4986 4987 return capacity; 4988 } 4989 4990 static inline int util_fits_cpu(unsigned long util, 4991 unsigned long uclamp_min, 4992 unsigned long uclamp_max, 4993 int cpu) 4994 { 4995 unsigned long capacity = capacity_of(cpu); 4996 unsigned long capacity_orig; 4997 bool fits, uclamp_max_fits; 4998 4999 /* 5000 * Check if the real util fits without any uclamp boost/cap applied. 5001 */ 5002 fits = fits_capacity(util, capacity); 5003 5004 if (!uclamp_is_used()) 5005 return fits; 5006 5007 /* 5008 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 5009 * uclamp_max. We only care about capacity pressure (by using 5010 * capacity_of()) for comparing against the real util. 5011 * 5012 * If a task is boosted to 1024 for example, we don't want a tiny 5013 * pressure to skew the check whether it fits a CPU or not. 5014 * 5015 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 5016 * should fit a little cpu even if there's some pressure. 5017 * 5018 * Only exception is for HW or cpufreq pressure since it has a direct impact 5019 * on available OPP of the system. 5020 * 5021 * We honour it for uclamp_min only as a drop in performance level 5022 * could result in not getting the requested minimum performance level. 5023 * 5024 * For uclamp_max, we can tolerate a drop in performance level as the 5025 * goal is to cap the task. So it's okay if it's getting less. 5026 */ 5027 capacity_orig = arch_scale_cpu_capacity(cpu); 5028 5029 /* 5030 * We want to force a task to fit a cpu as implied by uclamp_max. 5031 * But we do have some corner cases to cater for.. 5032 * 5033 * 5034 * C=z 5035 * | ___ 5036 * | C=y | | 5037 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5038 * | C=x | | | | 5039 * | ___ | | | | 5040 * | | | | | | | (util somewhere in this region) 5041 * | | | | | | | 5042 * | | | | | | | 5043 * +---------------------------------------- 5044 * CPU0 CPU1 CPU2 5045 * 5046 * In the above example if a task is capped to a specific performance 5047 * point, y, then when: 5048 * 5049 * * util = 80% of x then it does not fit on CPU0 and should migrate 5050 * to CPU1 5051 * * util = 80% of y then it is forced to fit on CPU1 to honour 5052 * uclamp_max request. 5053 * 5054 * which is what we're enforcing here. A task always fits if 5055 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5056 * the normal upmigration rules should withhold still. 5057 * 5058 * Only exception is when we are on max capacity, then we need to be 5059 * careful not to block overutilized state. This is so because: 5060 * 5061 * 1. There's no concept of capping at max_capacity! We can't go 5062 * beyond this performance level anyway. 5063 * 2. The system is being saturated when we're operating near 5064 * max capacity, it doesn't make sense to block overutilized. 5065 */ 5066 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5067 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5068 fits = fits || uclamp_max_fits; 5069 5070 /* 5071 * 5072 * C=z 5073 * | ___ (region a, capped, util >= uclamp_max) 5074 * | C=y | | 5075 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5076 * | C=x | | | | 5077 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5078 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5079 * | | | | | | | 5080 * | | | | | | | (region c, boosted, util < uclamp_min) 5081 * +---------------------------------------- 5082 * CPU0 CPU1 CPU2 5083 * 5084 * a) If util > uclamp_max, then we're capped, we don't care about 5085 * actual fitness value here. We only care if uclamp_max fits 5086 * capacity without taking margin/pressure into account. 5087 * See comment above. 5088 * 5089 * b) If uclamp_min <= util <= uclamp_max, then the normal 5090 * fits_capacity() rules apply. Except we need to ensure that we 5091 * enforce we remain within uclamp_max, see comment above. 5092 * 5093 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5094 * need to take into account the boosted value fits the CPU without 5095 * taking margin/pressure into account. 5096 * 5097 * Cases (a) and (b) are handled in the 'fits' variable already. We 5098 * just need to consider an extra check for case (c) after ensuring we 5099 * handle the case uclamp_min > uclamp_max. 5100 */ 5101 uclamp_min = min(uclamp_min, uclamp_max); 5102 if (fits && (util < uclamp_min) && 5103 (uclamp_min > get_actual_cpu_capacity(cpu))) 5104 return -1; 5105 5106 return fits; 5107 } 5108 5109 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5110 { 5111 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5112 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5113 unsigned long util = task_util_est(p); 5114 /* 5115 * Return true only if the cpu fully fits the task requirements, which 5116 * include the utilization but also the performance hints. 5117 */ 5118 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5119 } 5120 5121 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5122 { 5123 int cpu = cpu_of(rq); 5124 5125 if (!sched_asym_cpucap_active()) 5126 return; 5127 5128 /* 5129 * Affinity allows us to go somewhere higher? Or are we on biggest 5130 * available CPU already? Or do we fit into this CPU ? 5131 */ 5132 if (!p || (p->nr_cpus_allowed == 1) || 5133 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5134 task_fits_cpu(p, cpu)) { 5135 5136 rq->misfit_task_load = 0; 5137 return; 5138 } 5139 5140 /* 5141 * Make sure that misfit_task_load will not be null even if 5142 * task_h_load() returns 0. 5143 */ 5144 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5145 } 5146 5147 #else /* CONFIG_SMP */ 5148 5149 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5150 { 5151 return !cfs_rq->nr_queued; 5152 } 5153 5154 #define UPDATE_TG 0x0 5155 #define SKIP_AGE_LOAD 0x0 5156 #define DO_ATTACH 0x0 5157 #define DO_DETACH 0x0 5158 5159 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5160 { 5161 cfs_rq_util_change(cfs_rq, 0); 5162 } 5163 5164 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5165 5166 static inline void 5167 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5168 static inline void 5169 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5170 5171 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf) 5172 { 5173 return 0; 5174 } 5175 5176 static inline void 5177 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5178 5179 static inline void 5180 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5181 5182 static inline void 5183 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5184 bool task_sleep) {} 5185 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5186 5187 #endif /* CONFIG_SMP */ 5188 5189 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr) 5190 { 5191 struct sched_entity *se = &p->se; 5192 5193 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 5194 if (attr->sched_runtime) { 5195 se->custom_slice = 1; 5196 se->slice = clamp_t(u64, attr->sched_runtime, 5197 NSEC_PER_MSEC/10, /* HZ=1000 * 10 */ 5198 NSEC_PER_MSEC*100); /* HZ=100 / 10 */ 5199 } else { 5200 se->custom_slice = 0; 5201 se->slice = sysctl_sched_base_slice; 5202 } 5203 } 5204 5205 static void 5206 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5207 { 5208 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5209 s64 lag = 0; 5210 5211 if (!se->custom_slice) 5212 se->slice = sysctl_sched_base_slice; 5213 vslice = calc_delta_fair(se->slice, se); 5214 5215 /* 5216 * Due to how V is constructed as the weighted average of entities, 5217 * adding tasks with positive lag, or removing tasks with negative lag 5218 * will move 'time' backwards, this can screw around with the lag of 5219 * other tasks. 5220 * 5221 * EEVDF: placement strategy #1 / #2 5222 */ 5223 if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) { 5224 struct sched_entity *curr = cfs_rq->curr; 5225 unsigned long load; 5226 5227 lag = se->vlag; 5228 5229 /* 5230 * If we want to place a task and preserve lag, we have to 5231 * consider the effect of the new entity on the weighted 5232 * average and compensate for this, otherwise lag can quickly 5233 * evaporate. 5234 * 5235 * Lag is defined as: 5236 * 5237 * lag_i = S - s_i = w_i * (V - v_i) 5238 * 5239 * To avoid the 'w_i' term all over the place, we only track 5240 * the virtual lag: 5241 * 5242 * vl_i = V - v_i <=> v_i = V - vl_i 5243 * 5244 * And we take V to be the weighted average of all v: 5245 * 5246 * V = (\Sum w_j*v_j) / W 5247 * 5248 * Where W is: \Sum w_j 5249 * 5250 * Then, the weighted average after adding an entity with lag 5251 * vl_i is given by: 5252 * 5253 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5254 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5255 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5256 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5257 * = V - w_i*vl_i / (W + w_i) 5258 * 5259 * And the actual lag after adding an entity with vl_i is: 5260 * 5261 * vl'_i = V' - v_i 5262 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5263 * = vl_i - w_i*vl_i / (W + w_i) 5264 * 5265 * Which is strictly less than vl_i. So in order to preserve lag 5266 * we should inflate the lag before placement such that the 5267 * effective lag after placement comes out right. 5268 * 5269 * As such, invert the above relation for vl'_i to get the vl_i 5270 * we need to use such that the lag after placement is the lag 5271 * we computed before dequeue. 5272 * 5273 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5274 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5275 * 5276 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5277 * = W*vl_i 5278 * 5279 * vl_i = (W + w_i)*vl'_i / W 5280 */ 5281 load = cfs_rq->avg_load; 5282 if (curr && curr->on_rq) 5283 load += scale_load_down(curr->load.weight); 5284 5285 lag *= load + scale_load_down(se->load.weight); 5286 if (WARN_ON_ONCE(!load)) 5287 load = 1; 5288 lag = div_s64(lag, load); 5289 } 5290 5291 se->vruntime = vruntime - lag; 5292 5293 if (se->rel_deadline) { 5294 se->deadline += se->vruntime; 5295 se->rel_deadline = 0; 5296 return; 5297 } 5298 5299 /* 5300 * When joining the competition; the existing tasks will be, 5301 * on average, halfway through their slice, as such start tasks 5302 * off with half a slice to ease into the competition. 5303 */ 5304 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5305 vslice /= 2; 5306 5307 /* 5308 * EEVDF: vd_i = ve_i + r_i/w_i 5309 */ 5310 se->deadline = se->vruntime + vslice; 5311 } 5312 5313 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5314 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5315 5316 static void 5317 requeue_delayed_entity(struct sched_entity *se); 5318 5319 static void 5320 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5321 { 5322 bool curr = cfs_rq->curr == se; 5323 5324 /* 5325 * If we're the current task, we must renormalise before calling 5326 * update_curr(). 5327 */ 5328 if (curr) 5329 place_entity(cfs_rq, se, flags); 5330 5331 update_curr(cfs_rq); 5332 5333 /* 5334 * When enqueuing a sched_entity, we must: 5335 * - Update loads to have both entity and cfs_rq synced with now. 5336 * - For group_entity, update its runnable_weight to reflect the new 5337 * h_nr_runnable of its group cfs_rq. 5338 * - For group_entity, update its weight to reflect the new share of 5339 * its group cfs_rq 5340 * - Add its new weight to cfs_rq->load.weight 5341 */ 5342 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5343 se_update_runnable(se); 5344 /* 5345 * XXX update_load_avg() above will have attached us to the pelt sum; 5346 * but update_cfs_group() here will re-adjust the weight and have to 5347 * undo/redo all that. Seems wasteful. 5348 */ 5349 update_cfs_group(se); 5350 5351 /* 5352 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5353 * we can place the entity. 5354 */ 5355 if (!curr) 5356 place_entity(cfs_rq, se, flags); 5357 5358 account_entity_enqueue(cfs_rq, se); 5359 5360 /* Entity has migrated, no longer consider this task hot */ 5361 if (flags & ENQUEUE_MIGRATED) 5362 se->exec_start = 0; 5363 5364 check_schedstat_required(); 5365 update_stats_enqueue_fair(cfs_rq, se, flags); 5366 if (!curr) 5367 __enqueue_entity(cfs_rq, se); 5368 se->on_rq = 1; 5369 5370 if (cfs_rq->nr_queued == 1) { 5371 check_enqueue_throttle(cfs_rq); 5372 if (!throttled_hierarchy(cfs_rq)) { 5373 list_add_leaf_cfs_rq(cfs_rq); 5374 } else { 5375 #ifdef CONFIG_CFS_BANDWIDTH 5376 struct rq *rq = rq_of(cfs_rq); 5377 5378 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5379 cfs_rq->throttled_clock = rq_clock(rq); 5380 if (!cfs_rq->throttled_clock_self) 5381 cfs_rq->throttled_clock_self = rq_clock(rq); 5382 #endif 5383 } 5384 } 5385 } 5386 5387 static void __clear_buddies_next(struct sched_entity *se) 5388 { 5389 for_each_sched_entity(se) { 5390 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5391 if (cfs_rq->next != se) 5392 break; 5393 5394 cfs_rq->next = NULL; 5395 } 5396 } 5397 5398 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5399 { 5400 if (cfs_rq->next == se) 5401 __clear_buddies_next(se); 5402 } 5403 5404 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5405 5406 static void set_delayed(struct sched_entity *se) 5407 { 5408 se->sched_delayed = 1; 5409 5410 /* 5411 * Delayed se of cfs_rq have no tasks queued on them. 5412 * Do not adjust h_nr_runnable since dequeue_entities() 5413 * will account it for blocked tasks. 5414 */ 5415 if (!entity_is_task(se)) 5416 return; 5417 5418 for_each_sched_entity(se) { 5419 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5420 5421 cfs_rq->h_nr_runnable--; 5422 if (cfs_rq_throttled(cfs_rq)) 5423 break; 5424 } 5425 } 5426 5427 static void clear_delayed(struct sched_entity *se) 5428 { 5429 se->sched_delayed = 0; 5430 5431 /* 5432 * Delayed se of cfs_rq have no tasks queued on them. 5433 * Do not adjust h_nr_runnable since a dequeue has 5434 * already accounted for it or an enqueue of a task 5435 * below it will account for it in enqueue_task_fair(). 5436 */ 5437 if (!entity_is_task(se)) 5438 return; 5439 5440 for_each_sched_entity(se) { 5441 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5442 5443 cfs_rq->h_nr_runnable++; 5444 if (cfs_rq_throttled(cfs_rq)) 5445 break; 5446 } 5447 } 5448 5449 static inline void finish_delayed_dequeue_entity(struct sched_entity *se) 5450 { 5451 clear_delayed(se); 5452 if (sched_feat(DELAY_ZERO) && se->vlag > 0) 5453 se->vlag = 0; 5454 } 5455 5456 static bool 5457 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5458 { 5459 bool sleep = flags & DEQUEUE_SLEEP; 5460 int action = UPDATE_TG; 5461 5462 update_curr(cfs_rq); 5463 clear_buddies(cfs_rq, se); 5464 5465 if (flags & DEQUEUE_DELAYED) { 5466 WARN_ON_ONCE(!se->sched_delayed); 5467 } else { 5468 bool delay = sleep; 5469 /* 5470 * DELAY_DEQUEUE relies on spurious wakeups, special task 5471 * states must not suffer spurious wakeups, excempt them. 5472 */ 5473 if (flags & DEQUEUE_SPECIAL) 5474 delay = false; 5475 5476 WARN_ON_ONCE(delay && se->sched_delayed); 5477 5478 if (sched_feat(DELAY_DEQUEUE) && delay && 5479 !entity_eligible(cfs_rq, se)) { 5480 update_load_avg(cfs_rq, se, 0); 5481 set_delayed(se); 5482 return false; 5483 } 5484 } 5485 5486 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5487 action |= DO_DETACH; 5488 5489 /* 5490 * When dequeuing a sched_entity, we must: 5491 * - Update loads to have both entity and cfs_rq synced with now. 5492 * - For group_entity, update its runnable_weight to reflect the new 5493 * h_nr_runnable of its group cfs_rq. 5494 * - Subtract its previous weight from cfs_rq->load.weight. 5495 * - For group entity, update its weight to reflect the new share 5496 * of its group cfs_rq. 5497 */ 5498 update_load_avg(cfs_rq, se, action); 5499 se_update_runnable(se); 5500 5501 update_stats_dequeue_fair(cfs_rq, se, flags); 5502 5503 update_entity_lag(cfs_rq, se); 5504 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { 5505 se->deadline -= se->vruntime; 5506 se->rel_deadline = 1; 5507 } 5508 5509 if (se != cfs_rq->curr) 5510 __dequeue_entity(cfs_rq, se); 5511 se->on_rq = 0; 5512 account_entity_dequeue(cfs_rq, se); 5513 5514 /* return excess runtime on last dequeue */ 5515 return_cfs_rq_runtime(cfs_rq); 5516 5517 update_cfs_group(se); 5518 5519 /* 5520 * Now advance min_vruntime if @se was the entity holding it back, 5521 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5522 * put back on, and if we advance min_vruntime, we'll be placed back 5523 * further than we started -- i.e. we'll be penalized. 5524 */ 5525 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5526 update_min_vruntime(cfs_rq); 5527 5528 if (flags & DEQUEUE_DELAYED) 5529 finish_delayed_dequeue_entity(se); 5530 5531 if (cfs_rq->nr_queued == 0) 5532 update_idle_cfs_rq_clock_pelt(cfs_rq); 5533 5534 return true; 5535 } 5536 5537 static void 5538 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5539 { 5540 clear_buddies(cfs_rq, se); 5541 5542 /* 'current' is not kept within the tree. */ 5543 if (se->on_rq) { 5544 /* 5545 * Any task has to be enqueued before it get to execute on 5546 * a CPU. So account for the time it spent waiting on the 5547 * runqueue. 5548 */ 5549 update_stats_wait_end_fair(cfs_rq, se); 5550 __dequeue_entity(cfs_rq, se); 5551 update_load_avg(cfs_rq, se, UPDATE_TG); 5552 5553 set_protect_slice(se); 5554 } 5555 5556 update_stats_curr_start(cfs_rq, se); 5557 WARN_ON_ONCE(cfs_rq->curr); 5558 cfs_rq->curr = se; 5559 5560 /* 5561 * Track our maximum slice length, if the CPU's load is at 5562 * least twice that of our own weight (i.e. don't track it 5563 * when there are only lesser-weight tasks around): 5564 */ 5565 if (schedstat_enabled() && 5566 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5567 struct sched_statistics *stats; 5568 5569 stats = __schedstats_from_se(se); 5570 __schedstat_set(stats->slice_max, 5571 max((u64)stats->slice_max, 5572 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5573 } 5574 5575 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5576 } 5577 5578 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); 5579 5580 /* 5581 * Pick the next process, keeping these things in mind, in this order: 5582 * 1) keep things fair between processes/task groups 5583 * 2) pick the "next" process, since someone really wants that to run 5584 * 3) pick the "last" process, for cache locality 5585 * 4) do not run the "skip" process, if something else is available 5586 */ 5587 static struct sched_entity * 5588 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) 5589 { 5590 struct sched_entity *se; 5591 5592 /* 5593 * Picking the ->next buddy will affect latency but not fairness. 5594 */ 5595 if (sched_feat(PICK_BUDDY) && 5596 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { 5597 /* ->next will never be delayed */ 5598 WARN_ON_ONCE(cfs_rq->next->sched_delayed); 5599 return cfs_rq->next; 5600 } 5601 5602 se = pick_eevdf(cfs_rq); 5603 if (se->sched_delayed) { 5604 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5605 /* 5606 * Must not reference @se again, see __block_task(). 5607 */ 5608 return NULL; 5609 } 5610 return se; 5611 } 5612 5613 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5614 5615 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5616 { 5617 /* 5618 * If still on the runqueue then deactivate_task() 5619 * was not called and update_curr() has to be done: 5620 */ 5621 if (prev->on_rq) 5622 update_curr(cfs_rq); 5623 5624 /* throttle cfs_rqs exceeding runtime */ 5625 check_cfs_rq_runtime(cfs_rq); 5626 5627 if (prev->on_rq) { 5628 update_stats_wait_start_fair(cfs_rq, prev); 5629 /* Put 'current' back into the tree. */ 5630 __enqueue_entity(cfs_rq, prev); 5631 /* in !on_rq case, update occurred at dequeue */ 5632 update_load_avg(cfs_rq, prev, 0); 5633 } 5634 WARN_ON_ONCE(cfs_rq->curr != prev); 5635 cfs_rq->curr = NULL; 5636 } 5637 5638 static void 5639 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5640 { 5641 /* 5642 * Update run-time statistics of the 'current'. 5643 */ 5644 update_curr(cfs_rq); 5645 5646 /* 5647 * Ensure that runnable average is periodically updated. 5648 */ 5649 update_load_avg(cfs_rq, curr, UPDATE_TG); 5650 update_cfs_group(curr); 5651 5652 #ifdef CONFIG_SCHED_HRTICK 5653 /* 5654 * queued ticks are scheduled to match the slice, so don't bother 5655 * validating it and just reschedule. 5656 */ 5657 if (queued) { 5658 resched_curr_lazy(rq_of(cfs_rq)); 5659 return; 5660 } 5661 #endif 5662 } 5663 5664 5665 /************************************************** 5666 * CFS bandwidth control machinery 5667 */ 5668 5669 #ifdef CONFIG_CFS_BANDWIDTH 5670 5671 #ifdef CONFIG_JUMP_LABEL 5672 static struct static_key __cfs_bandwidth_used; 5673 5674 static inline bool cfs_bandwidth_used(void) 5675 { 5676 return static_key_false(&__cfs_bandwidth_used); 5677 } 5678 5679 void cfs_bandwidth_usage_inc(void) 5680 { 5681 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5682 } 5683 5684 void cfs_bandwidth_usage_dec(void) 5685 { 5686 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5687 } 5688 #else /* CONFIG_JUMP_LABEL */ 5689 static bool cfs_bandwidth_used(void) 5690 { 5691 return true; 5692 } 5693 5694 void cfs_bandwidth_usage_inc(void) {} 5695 void cfs_bandwidth_usage_dec(void) {} 5696 #endif /* CONFIG_JUMP_LABEL */ 5697 5698 /* 5699 * default period for cfs group bandwidth. 5700 * default: 0.1s, units: nanoseconds 5701 */ 5702 static inline u64 default_cfs_period(void) 5703 { 5704 return 100000000ULL; 5705 } 5706 5707 static inline u64 sched_cfs_bandwidth_slice(void) 5708 { 5709 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5710 } 5711 5712 /* 5713 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5714 * directly instead of rq->clock to avoid adding additional synchronization 5715 * around rq->lock. 5716 * 5717 * requires cfs_b->lock 5718 */ 5719 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5720 { 5721 s64 runtime; 5722 5723 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5724 return; 5725 5726 cfs_b->runtime += cfs_b->quota; 5727 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5728 if (runtime > 0) { 5729 cfs_b->burst_time += runtime; 5730 cfs_b->nr_burst++; 5731 } 5732 5733 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5734 cfs_b->runtime_snap = cfs_b->runtime; 5735 } 5736 5737 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5738 { 5739 return &tg->cfs_bandwidth; 5740 } 5741 5742 /* returns 0 on failure to allocate runtime */ 5743 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5744 struct cfs_rq *cfs_rq, u64 target_runtime) 5745 { 5746 u64 min_amount, amount = 0; 5747 5748 lockdep_assert_held(&cfs_b->lock); 5749 5750 /* note: this is a positive sum as runtime_remaining <= 0 */ 5751 min_amount = target_runtime - cfs_rq->runtime_remaining; 5752 5753 if (cfs_b->quota == RUNTIME_INF) 5754 amount = min_amount; 5755 else { 5756 start_cfs_bandwidth(cfs_b); 5757 5758 if (cfs_b->runtime > 0) { 5759 amount = min(cfs_b->runtime, min_amount); 5760 cfs_b->runtime -= amount; 5761 cfs_b->idle = 0; 5762 } 5763 } 5764 5765 cfs_rq->runtime_remaining += amount; 5766 5767 return cfs_rq->runtime_remaining > 0; 5768 } 5769 5770 /* returns 0 on failure to allocate runtime */ 5771 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5772 { 5773 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5774 int ret; 5775 5776 raw_spin_lock(&cfs_b->lock); 5777 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5778 raw_spin_unlock(&cfs_b->lock); 5779 5780 return ret; 5781 } 5782 5783 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5784 { 5785 /* dock delta_exec before expiring quota (as it could span periods) */ 5786 cfs_rq->runtime_remaining -= delta_exec; 5787 5788 if (likely(cfs_rq->runtime_remaining > 0)) 5789 return; 5790 5791 if (cfs_rq->throttled) 5792 return; 5793 /* 5794 * if we're unable to extend our runtime we resched so that the active 5795 * hierarchy can be throttled 5796 */ 5797 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5798 resched_curr(rq_of(cfs_rq)); 5799 } 5800 5801 static __always_inline 5802 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5803 { 5804 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5805 return; 5806 5807 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5808 } 5809 5810 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5811 { 5812 return cfs_bandwidth_used() && cfs_rq->throttled; 5813 } 5814 5815 /* check whether cfs_rq, or any parent, is throttled */ 5816 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5817 { 5818 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5819 } 5820 5821 /* 5822 * Ensure that neither of the group entities corresponding to src_cpu or 5823 * dest_cpu are members of a throttled hierarchy when performing group 5824 * load-balance operations. 5825 */ 5826 static inline int throttled_lb_pair(struct task_group *tg, 5827 int src_cpu, int dest_cpu) 5828 { 5829 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5830 5831 src_cfs_rq = tg->cfs_rq[src_cpu]; 5832 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5833 5834 return throttled_hierarchy(src_cfs_rq) || 5835 throttled_hierarchy(dest_cfs_rq); 5836 } 5837 5838 static int tg_unthrottle_up(struct task_group *tg, void *data) 5839 { 5840 struct rq *rq = data; 5841 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5842 5843 cfs_rq->throttle_count--; 5844 if (!cfs_rq->throttle_count) { 5845 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5846 cfs_rq->throttled_clock_pelt; 5847 5848 /* Add cfs_rq with load or one or more already running entities to the list */ 5849 if (!cfs_rq_is_decayed(cfs_rq)) 5850 list_add_leaf_cfs_rq(cfs_rq); 5851 5852 if (cfs_rq->throttled_clock_self) { 5853 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5854 5855 cfs_rq->throttled_clock_self = 0; 5856 5857 if (WARN_ON_ONCE((s64)delta < 0)) 5858 delta = 0; 5859 5860 cfs_rq->throttled_clock_self_time += delta; 5861 } 5862 } 5863 5864 return 0; 5865 } 5866 5867 static int tg_throttle_down(struct task_group *tg, void *data) 5868 { 5869 struct rq *rq = data; 5870 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5871 5872 /* group is entering throttled state, stop time */ 5873 if (!cfs_rq->throttle_count) { 5874 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5875 list_del_leaf_cfs_rq(cfs_rq); 5876 5877 WARN_ON_ONCE(cfs_rq->throttled_clock_self); 5878 if (cfs_rq->nr_queued) 5879 cfs_rq->throttled_clock_self = rq_clock(rq); 5880 } 5881 cfs_rq->throttle_count++; 5882 5883 return 0; 5884 } 5885 5886 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5887 { 5888 struct rq *rq = rq_of(cfs_rq); 5889 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5890 struct sched_entity *se; 5891 long queued_delta, runnable_delta, idle_delta, dequeue = 1; 5892 long rq_h_nr_queued = rq->cfs.h_nr_queued; 5893 5894 raw_spin_lock(&cfs_b->lock); 5895 /* This will start the period timer if necessary */ 5896 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5897 /* 5898 * We have raced with bandwidth becoming available, and if we 5899 * actually throttled the timer might not unthrottle us for an 5900 * entire period. We additionally needed to make sure that any 5901 * subsequent check_cfs_rq_runtime calls agree not to throttle 5902 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5903 * for 1ns of runtime rather than just check cfs_b. 5904 */ 5905 dequeue = 0; 5906 } else { 5907 list_add_tail_rcu(&cfs_rq->throttled_list, 5908 &cfs_b->throttled_cfs_rq); 5909 } 5910 raw_spin_unlock(&cfs_b->lock); 5911 5912 if (!dequeue) 5913 return false; /* Throttle no longer required. */ 5914 5915 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5916 5917 /* freeze hierarchy runnable averages while throttled */ 5918 rcu_read_lock(); 5919 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5920 rcu_read_unlock(); 5921 5922 queued_delta = cfs_rq->h_nr_queued; 5923 runnable_delta = cfs_rq->h_nr_runnable; 5924 idle_delta = cfs_rq->h_nr_idle; 5925 for_each_sched_entity(se) { 5926 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5927 int flags; 5928 5929 /* throttled entity or throttle-on-deactivate */ 5930 if (!se->on_rq) 5931 goto done; 5932 5933 /* 5934 * Abuse SPECIAL to avoid delayed dequeue in this instance. 5935 * This avoids teaching dequeue_entities() about throttled 5936 * entities and keeps things relatively simple. 5937 */ 5938 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL; 5939 if (se->sched_delayed) 5940 flags |= DEQUEUE_DELAYED; 5941 dequeue_entity(qcfs_rq, se, flags); 5942 5943 if (cfs_rq_is_idle(group_cfs_rq(se))) 5944 idle_delta = cfs_rq->h_nr_queued; 5945 5946 qcfs_rq->h_nr_queued -= queued_delta; 5947 qcfs_rq->h_nr_runnable -= runnable_delta; 5948 qcfs_rq->h_nr_idle -= idle_delta; 5949 5950 if (qcfs_rq->load.weight) { 5951 /* Avoid re-evaluating load for this entity: */ 5952 se = parent_entity(se); 5953 break; 5954 } 5955 } 5956 5957 for_each_sched_entity(se) { 5958 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5959 /* throttled entity or throttle-on-deactivate */ 5960 if (!se->on_rq) 5961 goto done; 5962 5963 update_load_avg(qcfs_rq, se, 0); 5964 se_update_runnable(se); 5965 5966 if (cfs_rq_is_idle(group_cfs_rq(se))) 5967 idle_delta = cfs_rq->h_nr_queued; 5968 5969 qcfs_rq->h_nr_queued -= queued_delta; 5970 qcfs_rq->h_nr_runnable -= runnable_delta; 5971 qcfs_rq->h_nr_idle -= idle_delta; 5972 } 5973 5974 /* At this point se is NULL and we are at root level*/ 5975 sub_nr_running(rq, queued_delta); 5976 5977 /* Stop the fair server if throttling resulted in no runnable tasks */ 5978 if (rq_h_nr_queued && !rq->cfs.h_nr_queued) 5979 dl_server_stop(&rq->fair_server); 5980 done: 5981 /* 5982 * Note: distribution will already see us throttled via the 5983 * throttled-list. rq->lock protects completion. 5984 */ 5985 cfs_rq->throttled = 1; 5986 WARN_ON_ONCE(cfs_rq->throttled_clock); 5987 if (cfs_rq->nr_queued) 5988 cfs_rq->throttled_clock = rq_clock(rq); 5989 return true; 5990 } 5991 5992 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5993 { 5994 struct rq *rq = rq_of(cfs_rq); 5995 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5996 struct sched_entity *se; 5997 long queued_delta, runnable_delta, idle_delta; 5998 long rq_h_nr_queued = rq->cfs.h_nr_queued; 5999 6000 se = cfs_rq->tg->se[cpu_of(rq)]; 6001 6002 cfs_rq->throttled = 0; 6003 6004 update_rq_clock(rq); 6005 6006 raw_spin_lock(&cfs_b->lock); 6007 if (cfs_rq->throttled_clock) { 6008 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 6009 cfs_rq->throttled_clock = 0; 6010 } 6011 list_del_rcu(&cfs_rq->throttled_list); 6012 raw_spin_unlock(&cfs_b->lock); 6013 6014 /* update hierarchical throttle state */ 6015 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 6016 6017 if (!cfs_rq->load.weight) { 6018 if (!cfs_rq->on_list) 6019 return; 6020 /* 6021 * Nothing to run but something to decay (on_list)? 6022 * Complete the branch. 6023 */ 6024 for_each_sched_entity(se) { 6025 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 6026 break; 6027 } 6028 goto unthrottle_throttle; 6029 } 6030 6031 queued_delta = cfs_rq->h_nr_queued; 6032 runnable_delta = cfs_rq->h_nr_runnable; 6033 idle_delta = cfs_rq->h_nr_idle; 6034 for_each_sched_entity(se) { 6035 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6036 6037 /* Handle any unfinished DELAY_DEQUEUE business first. */ 6038 if (se->sched_delayed) { 6039 int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED; 6040 6041 dequeue_entity(qcfs_rq, se, flags); 6042 } else if (se->on_rq) 6043 break; 6044 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 6045 6046 if (cfs_rq_is_idle(group_cfs_rq(se))) 6047 idle_delta = cfs_rq->h_nr_queued; 6048 6049 qcfs_rq->h_nr_queued += queued_delta; 6050 qcfs_rq->h_nr_runnable += runnable_delta; 6051 qcfs_rq->h_nr_idle += idle_delta; 6052 6053 /* end evaluation on encountering a throttled cfs_rq */ 6054 if (cfs_rq_throttled(qcfs_rq)) 6055 goto unthrottle_throttle; 6056 } 6057 6058 for_each_sched_entity(se) { 6059 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6060 6061 update_load_avg(qcfs_rq, se, UPDATE_TG); 6062 se_update_runnable(se); 6063 6064 if (cfs_rq_is_idle(group_cfs_rq(se))) 6065 idle_delta = cfs_rq->h_nr_queued; 6066 6067 qcfs_rq->h_nr_queued += queued_delta; 6068 qcfs_rq->h_nr_runnable += runnable_delta; 6069 qcfs_rq->h_nr_idle += idle_delta; 6070 6071 /* end evaluation on encountering a throttled cfs_rq */ 6072 if (cfs_rq_throttled(qcfs_rq)) 6073 goto unthrottle_throttle; 6074 } 6075 6076 /* Start the fair server if un-throttling resulted in new runnable tasks */ 6077 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) 6078 dl_server_start(&rq->fair_server); 6079 6080 /* At this point se is NULL and we are at root level*/ 6081 add_nr_running(rq, queued_delta); 6082 6083 unthrottle_throttle: 6084 assert_list_leaf_cfs_rq(rq); 6085 6086 /* Determine whether we need to wake up potentially idle CPU: */ 6087 if (rq->curr == rq->idle && rq->cfs.nr_queued) 6088 resched_curr(rq); 6089 } 6090 6091 #ifdef CONFIG_SMP 6092 static void __cfsb_csd_unthrottle(void *arg) 6093 { 6094 struct cfs_rq *cursor, *tmp; 6095 struct rq *rq = arg; 6096 struct rq_flags rf; 6097 6098 rq_lock(rq, &rf); 6099 6100 /* 6101 * Iterating over the list can trigger several call to 6102 * update_rq_clock() in unthrottle_cfs_rq(). 6103 * Do it once and skip the potential next ones. 6104 */ 6105 update_rq_clock(rq); 6106 rq_clock_start_loop_update(rq); 6107 6108 /* 6109 * Since we hold rq lock we're safe from concurrent manipulation of 6110 * the CSD list. However, this RCU critical section annotates the 6111 * fact that we pair with sched_free_group_rcu(), so that we cannot 6112 * race with group being freed in the window between removing it 6113 * from the list and advancing to the next entry in the list. 6114 */ 6115 rcu_read_lock(); 6116 6117 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 6118 throttled_csd_list) { 6119 list_del_init(&cursor->throttled_csd_list); 6120 6121 if (cfs_rq_throttled(cursor)) 6122 unthrottle_cfs_rq(cursor); 6123 } 6124 6125 rcu_read_unlock(); 6126 6127 rq_clock_stop_loop_update(rq); 6128 rq_unlock(rq, &rf); 6129 } 6130 6131 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6132 { 6133 struct rq *rq = rq_of(cfs_rq); 6134 bool first; 6135 6136 if (rq == this_rq()) { 6137 unthrottle_cfs_rq(cfs_rq); 6138 return; 6139 } 6140 6141 /* Already enqueued */ 6142 if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list))) 6143 return; 6144 6145 first = list_empty(&rq->cfsb_csd_list); 6146 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 6147 if (first) 6148 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 6149 } 6150 #else 6151 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6152 { 6153 unthrottle_cfs_rq(cfs_rq); 6154 } 6155 #endif 6156 6157 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6158 { 6159 lockdep_assert_rq_held(rq_of(cfs_rq)); 6160 6161 if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) || 6162 cfs_rq->runtime_remaining <= 0)) 6163 return; 6164 6165 __unthrottle_cfs_rq_async(cfs_rq); 6166 } 6167 6168 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6169 { 6170 int this_cpu = smp_processor_id(); 6171 u64 runtime, remaining = 1; 6172 bool throttled = false; 6173 struct cfs_rq *cfs_rq, *tmp; 6174 struct rq_flags rf; 6175 struct rq *rq; 6176 LIST_HEAD(local_unthrottle); 6177 6178 rcu_read_lock(); 6179 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6180 throttled_list) { 6181 rq = rq_of(cfs_rq); 6182 6183 if (!remaining) { 6184 throttled = true; 6185 break; 6186 } 6187 6188 rq_lock_irqsave(rq, &rf); 6189 if (!cfs_rq_throttled(cfs_rq)) 6190 goto next; 6191 6192 /* Already queued for async unthrottle */ 6193 if (!list_empty(&cfs_rq->throttled_csd_list)) 6194 goto next; 6195 6196 /* By the above checks, this should never be true */ 6197 WARN_ON_ONCE(cfs_rq->runtime_remaining > 0); 6198 6199 raw_spin_lock(&cfs_b->lock); 6200 runtime = -cfs_rq->runtime_remaining + 1; 6201 if (runtime > cfs_b->runtime) 6202 runtime = cfs_b->runtime; 6203 cfs_b->runtime -= runtime; 6204 remaining = cfs_b->runtime; 6205 raw_spin_unlock(&cfs_b->lock); 6206 6207 cfs_rq->runtime_remaining += runtime; 6208 6209 /* we check whether we're throttled above */ 6210 if (cfs_rq->runtime_remaining > 0) { 6211 if (cpu_of(rq) != this_cpu) { 6212 unthrottle_cfs_rq_async(cfs_rq); 6213 } else { 6214 /* 6215 * We currently only expect to be unthrottling 6216 * a single cfs_rq locally. 6217 */ 6218 WARN_ON_ONCE(!list_empty(&local_unthrottle)); 6219 list_add_tail(&cfs_rq->throttled_csd_list, 6220 &local_unthrottle); 6221 } 6222 } else { 6223 throttled = true; 6224 } 6225 6226 next: 6227 rq_unlock_irqrestore(rq, &rf); 6228 } 6229 6230 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6231 throttled_csd_list) { 6232 struct rq *rq = rq_of(cfs_rq); 6233 6234 rq_lock_irqsave(rq, &rf); 6235 6236 list_del_init(&cfs_rq->throttled_csd_list); 6237 6238 if (cfs_rq_throttled(cfs_rq)) 6239 unthrottle_cfs_rq(cfs_rq); 6240 6241 rq_unlock_irqrestore(rq, &rf); 6242 } 6243 WARN_ON_ONCE(!list_empty(&local_unthrottle)); 6244 6245 rcu_read_unlock(); 6246 6247 return throttled; 6248 } 6249 6250 /* 6251 * Responsible for refilling a task_group's bandwidth and unthrottling its 6252 * cfs_rqs as appropriate. If there has been no activity within the last 6253 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6254 * used to track this state. 6255 */ 6256 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6257 { 6258 int throttled; 6259 6260 /* no need to continue the timer with no bandwidth constraint */ 6261 if (cfs_b->quota == RUNTIME_INF) 6262 goto out_deactivate; 6263 6264 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6265 cfs_b->nr_periods += overrun; 6266 6267 /* Refill extra burst quota even if cfs_b->idle */ 6268 __refill_cfs_bandwidth_runtime(cfs_b); 6269 6270 /* 6271 * idle depends on !throttled (for the case of a large deficit), and if 6272 * we're going inactive then everything else can be deferred 6273 */ 6274 if (cfs_b->idle && !throttled) 6275 goto out_deactivate; 6276 6277 if (!throttled) { 6278 /* mark as potentially idle for the upcoming period */ 6279 cfs_b->idle = 1; 6280 return 0; 6281 } 6282 6283 /* account preceding periods in which throttling occurred */ 6284 cfs_b->nr_throttled += overrun; 6285 6286 /* 6287 * This check is repeated as we release cfs_b->lock while we unthrottle. 6288 */ 6289 while (throttled && cfs_b->runtime > 0) { 6290 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6291 /* we can't nest cfs_b->lock while distributing bandwidth */ 6292 throttled = distribute_cfs_runtime(cfs_b); 6293 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6294 } 6295 6296 /* 6297 * While we are ensured activity in the period following an 6298 * unthrottle, this also covers the case in which the new bandwidth is 6299 * insufficient to cover the existing bandwidth deficit. (Forcing the 6300 * timer to remain active while there are any throttled entities.) 6301 */ 6302 cfs_b->idle = 0; 6303 6304 return 0; 6305 6306 out_deactivate: 6307 return 1; 6308 } 6309 6310 /* a cfs_rq won't donate quota below this amount */ 6311 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6312 /* minimum remaining period time to redistribute slack quota */ 6313 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6314 /* how long we wait to gather additional slack before distributing */ 6315 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6316 6317 /* 6318 * Are we near the end of the current quota period? 6319 * 6320 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6321 * hrtimer base being cleared by hrtimer_start. In the case of 6322 * migrate_hrtimers, base is never cleared, so we are fine. 6323 */ 6324 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6325 { 6326 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6327 s64 remaining; 6328 6329 /* if the call-back is running a quota refresh is already occurring */ 6330 if (hrtimer_callback_running(refresh_timer)) 6331 return 1; 6332 6333 /* is a quota refresh about to occur? */ 6334 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6335 if (remaining < (s64)min_expire) 6336 return 1; 6337 6338 return 0; 6339 } 6340 6341 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6342 { 6343 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6344 6345 /* if there's a quota refresh soon don't bother with slack */ 6346 if (runtime_refresh_within(cfs_b, min_left)) 6347 return; 6348 6349 /* don't push forwards an existing deferred unthrottle */ 6350 if (cfs_b->slack_started) 6351 return; 6352 cfs_b->slack_started = true; 6353 6354 hrtimer_start(&cfs_b->slack_timer, 6355 ns_to_ktime(cfs_bandwidth_slack_period), 6356 HRTIMER_MODE_REL); 6357 } 6358 6359 /* we know any runtime found here is valid as update_curr() precedes return */ 6360 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6361 { 6362 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6363 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6364 6365 if (slack_runtime <= 0) 6366 return; 6367 6368 raw_spin_lock(&cfs_b->lock); 6369 if (cfs_b->quota != RUNTIME_INF) { 6370 cfs_b->runtime += slack_runtime; 6371 6372 /* we are under rq->lock, defer unthrottling using a timer */ 6373 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6374 !list_empty(&cfs_b->throttled_cfs_rq)) 6375 start_cfs_slack_bandwidth(cfs_b); 6376 } 6377 raw_spin_unlock(&cfs_b->lock); 6378 6379 /* even if it's not valid for return we don't want to try again */ 6380 cfs_rq->runtime_remaining -= slack_runtime; 6381 } 6382 6383 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6384 { 6385 if (!cfs_bandwidth_used()) 6386 return; 6387 6388 if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued) 6389 return; 6390 6391 __return_cfs_rq_runtime(cfs_rq); 6392 } 6393 6394 /* 6395 * This is done with a timer (instead of inline with bandwidth return) since 6396 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6397 */ 6398 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6399 { 6400 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6401 unsigned long flags; 6402 6403 /* confirm we're still not at a refresh boundary */ 6404 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6405 cfs_b->slack_started = false; 6406 6407 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6408 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6409 return; 6410 } 6411 6412 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6413 runtime = cfs_b->runtime; 6414 6415 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6416 6417 if (!runtime) 6418 return; 6419 6420 distribute_cfs_runtime(cfs_b); 6421 } 6422 6423 /* 6424 * When a group wakes up we want to make sure that its quota is not already 6425 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6426 * runtime as update_curr() throttling can not trigger until it's on-rq. 6427 */ 6428 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6429 { 6430 if (!cfs_bandwidth_used()) 6431 return; 6432 6433 /* an active group must be handled by the update_curr()->put() path */ 6434 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6435 return; 6436 6437 /* ensure the group is not already throttled */ 6438 if (cfs_rq_throttled(cfs_rq)) 6439 return; 6440 6441 /* update runtime allocation */ 6442 account_cfs_rq_runtime(cfs_rq, 0); 6443 if (cfs_rq->runtime_remaining <= 0) 6444 throttle_cfs_rq(cfs_rq); 6445 } 6446 6447 static void sync_throttle(struct task_group *tg, int cpu) 6448 { 6449 struct cfs_rq *pcfs_rq, *cfs_rq; 6450 6451 if (!cfs_bandwidth_used()) 6452 return; 6453 6454 if (!tg->parent) 6455 return; 6456 6457 cfs_rq = tg->cfs_rq[cpu]; 6458 pcfs_rq = tg->parent->cfs_rq[cpu]; 6459 6460 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6461 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6462 } 6463 6464 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6465 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6466 { 6467 if (!cfs_bandwidth_used()) 6468 return false; 6469 6470 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6471 return false; 6472 6473 /* 6474 * it's possible for a throttled entity to be forced into a running 6475 * state (e.g. set_curr_task), in this case we're finished. 6476 */ 6477 if (cfs_rq_throttled(cfs_rq)) 6478 return true; 6479 6480 return throttle_cfs_rq(cfs_rq); 6481 } 6482 6483 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6484 { 6485 struct cfs_bandwidth *cfs_b = 6486 container_of(timer, struct cfs_bandwidth, slack_timer); 6487 6488 do_sched_cfs_slack_timer(cfs_b); 6489 6490 return HRTIMER_NORESTART; 6491 } 6492 6493 extern const u64 max_cfs_quota_period; 6494 6495 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6496 { 6497 struct cfs_bandwidth *cfs_b = 6498 container_of(timer, struct cfs_bandwidth, period_timer); 6499 unsigned long flags; 6500 int overrun; 6501 int idle = 0; 6502 int count = 0; 6503 6504 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6505 for (;;) { 6506 overrun = hrtimer_forward_now(timer, cfs_b->period); 6507 if (!overrun) 6508 break; 6509 6510 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6511 6512 if (++count > 3) { 6513 u64 new, old = ktime_to_ns(cfs_b->period); 6514 6515 /* 6516 * Grow period by a factor of 2 to avoid losing precision. 6517 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6518 * to fail. 6519 */ 6520 new = old * 2; 6521 if (new < max_cfs_quota_period) { 6522 cfs_b->period = ns_to_ktime(new); 6523 cfs_b->quota *= 2; 6524 cfs_b->burst *= 2; 6525 6526 pr_warn_ratelimited( 6527 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6528 smp_processor_id(), 6529 div_u64(new, NSEC_PER_USEC), 6530 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6531 } else { 6532 pr_warn_ratelimited( 6533 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6534 smp_processor_id(), 6535 div_u64(old, NSEC_PER_USEC), 6536 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6537 } 6538 6539 /* reset count so we don't come right back in here */ 6540 count = 0; 6541 } 6542 } 6543 if (idle) 6544 cfs_b->period_active = 0; 6545 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6546 6547 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6548 } 6549 6550 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6551 { 6552 raw_spin_lock_init(&cfs_b->lock); 6553 cfs_b->runtime = 0; 6554 cfs_b->quota = RUNTIME_INF; 6555 cfs_b->period = ns_to_ktime(default_cfs_period()); 6556 cfs_b->burst = 0; 6557 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6558 6559 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6560 hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC, 6561 HRTIMER_MODE_ABS_PINNED); 6562 6563 /* Add a random offset so that timers interleave */ 6564 hrtimer_set_expires(&cfs_b->period_timer, 6565 get_random_u32_below(cfs_b->period)); 6566 hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC, 6567 HRTIMER_MODE_REL); 6568 cfs_b->slack_started = false; 6569 } 6570 6571 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6572 { 6573 cfs_rq->runtime_enabled = 0; 6574 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6575 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6576 } 6577 6578 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6579 { 6580 lockdep_assert_held(&cfs_b->lock); 6581 6582 if (cfs_b->period_active) 6583 return; 6584 6585 cfs_b->period_active = 1; 6586 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6587 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6588 } 6589 6590 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6591 { 6592 int __maybe_unused i; 6593 6594 /* init_cfs_bandwidth() was not called */ 6595 if (!cfs_b->throttled_cfs_rq.next) 6596 return; 6597 6598 hrtimer_cancel(&cfs_b->period_timer); 6599 hrtimer_cancel(&cfs_b->slack_timer); 6600 6601 /* 6602 * It is possible that we still have some cfs_rq's pending on a CSD 6603 * list, though this race is very rare. In order for this to occur, we 6604 * must have raced with the last task leaving the group while there 6605 * exist throttled cfs_rq(s), and the period_timer must have queued the 6606 * CSD item but the remote cpu has not yet processed it. To handle this, 6607 * we can simply flush all pending CSD work inline here. We're 6608 * guaranteed at this point that no additional cfs_rq of this group can 6609 * join a CSD list. 6610 */ 6611 #ifdef CONFIG_SMP 6612 for_each_possible_cpu(i) { 6613 struct rq *rq = cpu_rq(i); 6614 unsigned long flags; 6615 6616 if (list_empty(&rq->cfsb_csd_list)) 6617 continue; 6618 6619 local_irq_save(flags); 6620 __cfsb_csd_unthrottle(rq); 6621 local_irq_restore(flags); 6622 } 6623 #endif 6624 } 6625 6626 /* 6627 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6628 * 6629 * The race is harmless, since modifying bandwidth settings of unhooked group 6630 * bits doesn't do much. 6631 */ 6632 6633 /* cpu online callback */ 6634 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6635 { 6636 struct task_group *tg; 6637 6638 lockdep_assert_rq_held(rq); 6639 6640 rcu_read_lock(); 6641 list_for_each_entry_rcu(tg, &task_groups, list) { 6642 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6643 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6644 6645 raw_spin_lock(&cfs_b->lock); 6646 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6647 raw_spin_unlock(&cfs_b->lock); 6648 } 6649 rcu_read_unlock(); 6650 } 6651 6652 /* cpu offline callback */ 6653 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6654 { 6655 struct task_group *tg; 6656 6657 lockdep_assert_rq_held(rq); 6658 6659 // Do not unthrottle for an active CPU 6660 if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask)) 6661 return; 6662 6663 /* 6664 * The rq clock has already been updated in the 6665 * set_rq_offline(), so we should skip updating 6666 * the rq clock again in unthrottle_cfs_rq(). 6667 */ 6668 rq_clock_start_loop_update(rq); 6669 6670 rcu_read_lock(); 6671 list_for_each_entry_rcu(tg, &task_groups, list) { 6672 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6673 6674 if (!cfs_rq->runtime_enabled) 6675 continue; 6676 6677 /* 6678 * Offline rq is schedulable till CPU is completely disabled 6679 * in take_cpu_down(), so we prevent new cfs throttling here. 6680 */ 6681 cfs_rq->runtime_enabled = 0; 6682 6683 if (!cfs_rq_throttled(cfs_rq)) 6684 continue; 6685 6686 /* 6687 * clock_task is not advancing so we just need to make sure 6688 * there's some valid quota amount 6689 */ 6690 cfs_rq->runtime_remaining = 1; 6691 unthrottle_cfs_rq(cfs_rq); 6692 } 6693 rcu_read_unlock(); 6694 6695 rq_clock_stop_loop_update(rq); 6696 } 6697 6698 bool cfs_task_bw_constrained(struct task_struct *p) 6699 { 6700 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6701 6702 if (!cfs_bandwidth_used()) 6703 return false; 6704 6705 if (cfs_rq->runtime_enabled || 6706 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6707 return true; 6708 6709 return false; 6710 } 6711 6712 #ifdef CONFIG_NO_HZ_FULL 6713 /* called from pick_next_task_fair() */ 6714 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6715 { 6716 int cpu = cpu_of(rq); 6717 6718 if (!cfs_bandwidth_used()) 6719 return; 6720 6721 if (!tick_nohz_full_cpu(cpu)) 6722 return; 6723 6724 if (rq->nr_running != 1) 6725 return; 6726 6727 /* 6728 * We know there is only one task runnable and we've just picked it. The 6729 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6730 * be otherwise able to stop the tick. Just need to check if we are using 6731 * bandwidth control. 6732 */ 6733 if (cfs_task_bw_constrained(p)) 6734 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6735 } 6736 #endif 6737 6738 #else /* CONFIG_CFS_BANDWIDTH */ 6739 6740 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6741 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6742 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6743 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6744 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6745 6746 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6747 { 6748 return 0; 6749 } 6750 6751 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6752 { 6753 return 0; 6754 } 6755 6756 static inline int throttled_lb_pair(struct task_group *tg, 6757 int src_cpu, int dest_cpu) 6758 { 6759 return 0; 6760 } 6761 6762 #ifdef CONFIG_FAIR_GROUP_SCHED 6763 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6764 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6765 #endif 6766 6767 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6768 { 6769 return NULL; 6770 } 6771 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6772 static inline void update_runtime_enabled(struct rq *rq) {} 6773 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6774 #ifdef CONFIG_CGROUP_SCHED 6775 bool cfs_task_bw_constrained(struct task_struct *p) 6776 { 6777 return false; 6778 } 6779 #endif 6780 #endif /* CONFIG_CFS_BANDWIDTH */ 6781 6782 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6783 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6784 #endif 6785 6786 /************************************************** 6787 * CFS operations on tasks: 6788 */ 6789 6790 #ifdef CONFIG_SCHED_HRTICK 6791 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6792 { 6793 struct sched_entity *se = &p->se; 6794 6795 WARN_ON_ONCE(task_rq(p) != rq); 6796 6797 if (rq->cfs.h_nr_queued > 1) { 6798 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6799 u64 slice = se->slice; 6800 s64 delta = slice - ran; 6801 6802 if (delta < 0) { 6803 if (task_current_donor(rq, p)) 6804 resched_curr(rq); 6805 return; 6806 } 6807 hrtick_start(rq, delta); 6808 } 6809 } 6810 6811 /* 6812 * called from enqueue/dequeue and updates the hrtick when the 6813 * current task is from our class and nr_running is low enough 6814 * to matter. 6815 */ 6816 static void hrtick_update(struct rq *rq) 6817 { 6818 struct task_struct *donor = rq->donor; 6819 6820 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class) 6821 return; 6822 6823 hrtick_start_fair(rq, donor); 6824 } 6825 #else /* !CONFIG_SCHED_HRTICK */ 6826 static inline void 6827 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6828 { 6829 } 6830 6831 static inline void hrtick_update(struct rq *rq) 6832 { 6833 } 6834 #endif 6835 6836 #ifdef CONFIG_SMP 6837 static inline bool cpu_overutilized(int cpu) 6838 { 6839 unsigned long rq_util_min, rq_util_max; 6840 6841 if (!sched_energy_enabled()) 6842 return false; 6843 6844 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6845 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6846 6847 /* Return true only if the utilization doesn't fit CPU's capacity */ 6848 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6849 } 6850 6851 /* 6852 * overutilized value make sense only if EAS is enabled 6853 */ 6854 static inline bool is_rd_overutilized(struct root_domain *rd) 6855 { 6856 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6857 } 6858 6859 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6860 { 6861 if (!sched_energy_enabled()) 6862 return; 6863 6864 WRITE_ONCE(rd->overutilized, flag); 6865 trace_sched_overutilized_tp(rd, flag); 6866 } 6867 6868 static inline void check_update_overutilized_status(struct rq *rq) 6869 { 6870 /* 6871 * overutilized field is used for load balancing decisions only 6872 * if energy aware scheduler is being used 6873 */ 6874 6875 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6876 set_rd_overutilized(rq->rd, 1); 6877 } 6878 #else 6879 static inline void check_update_overutilized_status(struct rq *rq) { } 6880 #endif 6881 6882 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6883 static int sched_idle_rq(struct rq *rq) 6884 { 6885 return unlikely(rq->nr_running == rq->cfs.h_nr_idle && 6886 rq->nr_running); 6887 } 6888 6889 #ifdef CONFIG_SMP 6890 static int sched_idle_cpu(int cpu) 6891 { 6892 return sched_idle_rq(cpu_rq(cpu)); 6893 } 6894 #endif 6895 6896 static void 6897 requeue_delayed_entity(struct sched_entity *se) 6898 { 6899 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6900 6901 /* 6902 * se->sched_delayed should imply: se->on_rq == 1. 6903 * Because a delayed entity is one that is still on 6904 * the runqueue competing until elegibility. 6905 */ 6906 WARN_ON_ONCE(!se->sched_delayed); 6907 WARN_ON_ONCE(!se->on_rq); 6908 6909 if (sched_feat(DELAY_ZERO)) { 6910 update_entity_lag(cfs_rq, se); 6911 if (se->vlag > 0) { 6912 cfs_rq->nr_queued--; 6913 if (se != cfs_rq->curr) 6914 __dequeue_entity(cfs_rq, se); 6915 se->vlag = 0; 6916 place_entity(cfs_rq, se, 0); 6917 if (se != cfs_rq->curr) 6918 __enqueue_entity(cfs_rq, se); 6919 cfs_rq->nr_queued++; 6920 } 6921 } 6922 6923 update_load_avg(cfs_rq, se, 0); 6924 clear_delayed(se); 6925 } 6926 6927 /* 6928 * The enqueue_task method is called before nr_running is 6929 * increased. Here we update the fair scheduling stats and 6930 * then put the task into the rbtree: 6931 */ 6932 static void 6933 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6934 { 6935 struct cfs_rq *cfs_rq; 6936 struct sched_entity *se = &p->se; 6937 int h_nr_idle = task_has_idle_policy(p); 6938 int h_nr_runnable = 1; 6939 int task_new = !(flags & ENQUEUE_WAKEUP); 6940 int rq_h_nr_queued = rq->cfs.h_nr_queued; 6941 u64 slice = 0; 6942 6943 /* 6944 * The code below (indirectly) updates schedutil which looks at 6945 * the cfs_rq utilization to select a frequency. 6946 * Let's add the task's estimated utilization to the cfs_rq's 6947 * estimated utilization, before we update schedutil. 6948 */ 6949 if (!p->se.sched_delayed || (flags & ENQUEUE_DELAYED)) 6950 util_est_enqueue(&rq->cfs, p); 6951 6952 if (flags & ENQUEUE_DELAYED) { 6953 requeue_delayed_entity(se); 6954 return; 6955 } 6956 6957 /* 6958 * If in_iowait is set, the code below may not trigger any cpufreq 6959 * utilization updates, so do it here explicitly with the IOWAIT flag 6960 * passed. 6961 */ 6962 if (p->in_iowait) 6963 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6964 6965 if (task_new && se->sched_delayed) 6966 h_nr_runnable = 0; 6967 6968 for_each_sched_entity(se) { 6969 if (se->on_rq) { 6970 if (se->sched_delayed) 6971 requeue_delayed_entity(se); 6972 break; 6973 } 6974 cfs_rq = cfs_rq_of(se); 6975 6976 /* 6977 * Basically set the slice of group entries to the min_slice of 6978 * their respective cfs_rq. This ensures the group can service 6979 * its entities in the desired time-frame. 6980 */ 6981 if (slice) { 6982 se->slice = slice; 6983 se->custom_slice = 1; 6984 } 6985 enqueue_entity(cfs_rq, se, flags); 6986 slice = cfs_rq_min_slice(cfs_rq); 6987 6988 cfs_rq->h_nr_runnable += h_nr_runnable; 6989 cfs_rq->h_nr_queued++; 6990 cfs_rq->h_nr_idle += h_nr_idle; 6991 6992 if (cfs_rq_is_idle(cfs_rq)) 6993 h_nr_idle = 1; 6994 6995 /* end evaluation on encountering a throttled cfs_rq */ 6996 if (cfs_rq_throttled(cfs_rq)) 6997 goto enqueue_throttle; 6998 6999 flags = ENQUEUE_WAKEUP; 7000 } 7001 7002 for_each_sched_entity(se) { 7003 cfs_rq = cfs_rq_of(se); 7004 7005 update_load_avg(cfs_rq, se, UPDATE_TG); 7006 se_update_runnable(se); 7007 update_cfs_group(se); 7008 7009 se->slice = slice; 7010 if (se != cfs_rq->curr) 7011 min_vruntime_cb_propagate(&se->run_node, NULL); 7012 slice = cfs_rq_min_slice(cfs_rq); 7013 7014 cfs_rq->h_nr_runnable += h_nr_runnable; 7015 cfs_rq->h_nr_queued++; 7016 cfs_rq->h_nr_idle += h_nr_idle; 7017 7018 if (cfs_rq_is_idle(cfs_rq)) 7019 h_nr_idle = 1; 7020 7021 /* end evaluation on encountering a throttled cfs_rq */ 7022 if (cfs_rq_throttled(cfs_rq)) 7023 goto enqueue_throttle; 7024 } 7025 7026 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) { 7027 /* Account for idle runtime */ 7028 if (!rq->nr_running) 7029 dl_server_update_idle_time(rq, rq->curr); 7030 dl_server_start(&rq->fair_server); 7031 } 7032 7033 /* At this point se is NULL and we are at root level*/ 7034 add_nr_running(rq, 1); 7035 7036 /* 7037 * Since new tasks are assigned an initial util_avg equal to 7038 * half of the spare capacity of their CPU, tiny tasks have the 7039 * ability to cross the overutilized threshold, which will 7040 * result in the load balancer ruining all the task placement 7041 * done by EAS. As a way to mitigate that effect, do not account 7042 * for the first enqueue operation of new tasks during the 7043 * overutilized flag detection. 7044 * 7045 * A better way of solving this problem would be to wait for 7046 * the PELT signals of tasks to converge before taking them 7047 * into account, but that is not straightforward to implement, 7048 * and the following generally works well enough in practice. 7049 */ 7050 if (!task_new) 7051 check_update_overutilized_status(rq); 7052 7053 enqueue_throttle: 7054 assert_list_leaf_cfs_rq(rq); 7055 7056 hrtick_update(rq); 7057 } 7058 7059 static void set_next_buddy(struct sched_entity *se); 7060 7061 /* 7062 * Basically dequeue_task_fair(), except it can deal with dequeue_entity() 7063 * failing half-way through and resume the dequeue later. 7064 * 7065 * Returns: 7066 * -1 - dequeue delayed 7067 * 0 - dequeue throttled 7068 * 1 - dequeue complete 7069 */ 7070 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) 7071 { 7072 bool was_sched_idle = sched_idle_rq(rq); 7073 int rq_h_nr_queued = rq->cfs.h_nr_queued; 7074 bool task_sleep = flags & DEQUEUE_SLEEP; 7075 bool task_delayed = flags & DEQUEUE_DELAYED; 7076 struct task_struct *p = NULL; 7077 int h_nr_idle = 0; 7078 int h_nr_queued = 0; 7079 int h_nr_runnable = 0; 7080 struct cfs_rq *cfs_rq; 7081 u64 slice = 0; 7082 7083 if (entity_is_task(se)) { 7084 p = task_of(se); 7085 h_nr_queued = 1; 7086 h_nr_idle = task_has_idle_policy(p); 7087 if (task_sleep || task_delayed || !se->sched_delayed) 7088 h_nr_runnable = 1; 7089 } 7090 7091 for_each_sched_entity(se) { 7092 cfs_rq = cfs_rq_of(se); 7093 7094 if (!dequeue_entity(cfs_rq, se, flags)) { 7095 if (p && &p->se == se) 7096 return -1; 7097 7098 slice = cfs_rq_min_slice(cfs_rq); 7099 break; 7100 } 7101 7102 cfs_rq->h_nr_runnable -= h_nr_runnable; 7103 cfs_rq->h_nr_queued -= h_nr_queued; 7104 cfs_rq->h_nr_idle -= h_nr_idle; 7105 7106 if (cfs_rq_is_idle(cfs_rq)) 7107 h_nr_idle = h_nr_queued; 7108 7109 /* end evaluation on encountering a throttled cfs_rq */ 7110 if (cfs_rq_throttled(cfs_rq)) 7111 return 0; 7112 7113 /* Don't dequeue parent if it has other entities besides us */ 7114 if (cfs_rq->load.weight) { 7115 slice = cfs_rq_min_slice(cfs_rq); 7116 7117 /* Avoid re-evaluating load for this entity: */ 7118 se = parent_entity(se); 7119 /* 7120 * Bias pick_next to pick a task from this cfs_rq, as 7121 * p is sleeping when it is within its sched_slice. 7122 */ 7123 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 7124 set_next_buddy(se); 7125 break; 7126 } 7127 flags |= DEQUEUE_SLEEP; 7128 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); 7129 } 7130 7131 for_each_sched_entity(se) { 7132 cfs_rq = cfs_rq_of(se); 7133 7134 update_load_avg(cfs_rq, se, UPDATE_TG); 7135 se_update_runnable(se); 7136 update_cfs_group(se); 7137 7138 se->slice = slice; 7139 if (se != cfs_rq->curr) 7140 min_vruntime_cb_propagate(&se->run_node, NULL); 7141 slice = cfs_rq_min_slice(cfs_rq); 7142 7143 cfs_rq->h_nr_runnable -= h_nr_runnable; 7144 cfs_rq->h_nr_queued -= h_nr_queued; 7145 cfs_rq->h_nr_idle -= h_nr_idle; 7146 7147 if (cfs_rq_is_idle(cfs_rq)) 7148 h_nr_idle = h_nr_queued; 7149 7150 /* end evaluation on encountering a throttled cfs_rq */ 7151 if (cfs_rq_throttled(cfs_rq)) 7152 return 0; 7153 } 7154 7155 sub_nr_running(rq, h_nr_queued); 7156 7157 if (rq_h_nr_queued && !rq->cfs.h_nr_queued) 7158 dl_server_stop(&rq->fair_server); 7159 7160 /* balance early to pull high priority tasks */ 7161 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 7162 rq->next_balance = jiffies; 7163 7164 if (p && task_delayed) { 7165 WARN_ON_ONCE(!task_sleep); 7166 WARN_ON_ONCE(p->on_rq != 1); 7167 7168 /* Fix-up what dequeue_task_fair() skipped */ 7169 hrtick_update(rq); 7170 7171 /* 7172 * Fix-up what block_task() skipped. 7173 * 7174 * Must be last, @p might not be valid after this. 7175 */ 7176 __block_task(rq, p); 7177 } 7178 7179 return 1; 7180 } 7181 7182 /* 7183 * The dequeue_task method is called before nr_running is 7184 * decreased. We remove the task from the rbtree and 7185 * update the fair scheduling stats: 7186 */ 7187 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 7188 { 7189 if (!p->se.sched_delayed) 7190 util_est_dequeue(&rq->cfs, p); 7191 7192 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); 7193 if (dequeue_entities(rq, &p->se, flags) < 0) 7194 return false; 7195 7196 /* 7197 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED). 7198 */ 7199 7200 hrtick_update(rq); 7201 return true; 7202 } 7203 7204 static inline unsigned int cfs_h_nr_delayed(struct rq *rq) 7205 { 7206 return (rq->cfs.h_nr_queued - rq->cfs.h_nr_runnable); 7207 } 7208 7209 #ifdef CONFIG_SMP 7210 7211 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 7212 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7213 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 7214 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 7215 7216 #ifdef CONFIG_NO_HZ_COMMON 7217 7218 static struct { 7219 cpumask_var_t idle_cpus_mask; 7220 atomic_t nr_cpus; 7221 int has_blocked; /* Idle CPUS has blocked load */ 7222 int needs_update; /* Newly idle CPUs need their next_balance collated */ 7223 unsigned long next_balance; /* in jiffy units */ 7224 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 7225 } nohz ____cacheline_aligned; 7226 7227 #endif /* CONFIG_NO_HZ_COMMON */ 7228 7229 static unsigned long cpu_load(struct rq *rq) 7230 { 7231 return cfs_rq_load_avg(&rq->cfs); 7232 } 7233 7234 /* 7235 * cpu_load_without - compute CPU load without any contributions from *p 7236 * @cpu: the CPU which load is requested 7237 * @p: the task which load should be discounted 7238 * 7239 * The load of a CPU is defined by the load of tasks currently enqueued on that 7240 * CPU as well as tasks which are currently sleeping after an execution on that 7241 * CPU. 7242 * 7243 * This method returns the load of the specified CPU by discounting the load of 7244 * the specified task, whenever the task is currently contributing to the CPU 7245 * load. 7246 */ 7247 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 7248 { 7249 struct cfs_rq *cfs_rq; 7250 unsigned int load; 7251 7252 /* Task has no contribution or is new */ 7253 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7254 return cpu_load(rq); 7255 7256 cfs_rq = &rq->cfs; 7257 load = READ_ONCE(cfs_rq->avg.load_avg); 7258 7259 /* Discount task's util from CPU's util */ 7260 lsub_positive(&load, task_h_load(p)); 7261 7262 return load; 7263 } 7264 7265 static unsigned long cpu_runnable(struct rq *rq) 7266 { 7267 return cfs_rq_runnable_avg(&rq->cfs); 7268 } 7269 7270 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 7271 { 7272 struct cfs_rq *cfs_rq; 7273 unsigned int runnable; 7274 7275 /* Task has no contribution or is new */ 7276 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7277 return cpu_runnable(rq); 7278 7279 cfs_rq = &rq->cfs; 7280 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7281 7282 /* Discount task's runnable from CPU's runnable */ 7283 lsub_positive(&runnable, p->se.avg.runnable_avg); 7284 7285 return runnable; 7286 } 7287 7288 static unsigned long capacity_of(int cpu) 7289 { 7290 return cpu_rq(cpu)->cpu_capacity; 7291 } 7292 7293 static void record_wakee(struct task_struct *p) 7294 { 7295 /* 7296 * Only decay a single time; tasks that have less then 1 wakeup per 7297 * jiffy will not have built up many flips. 7298 */ 7299 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7300 current->wakee_flips >>= 1; 7301 current->wakee_flip_decay_ts = jiffies; 7302 } 7303 7304 if (current->last_wakee != p) { 7305 current->last_wakee = p; 7306 current->wakee_flips++; 7307 } 7308 } 7309 7310 /* 7311 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7312 * 7313 * A waker of many should wake a different task than the one last awakened 7314 * at a frequency roughly N times higher than one of its wakees. 7315 * 7316 * In order to determine whether we should let the load spread vs consolidating 7317 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7318 * partner, and a factor of lls_size higher frequency in the other. 7319 * 7320 * With both conditions met, we can be relatively sure that the relationship is 7321 * non-monogamous, with partner count exceeding socket size. 7322 * 7323 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7324 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7325 * socket size. 7326 */ 7327 static int wake_wide(struct task_struct *p) 7328 { 7329 unsigned int master = current->wakee_flips; 7330 unsigned int slave = p->wakee_flips; 7331 int factor = __this_cpu_read(sd_llc_size); 7332 7333 if (master < slave) 7334 swap(master, slave); 7335 if (slave < factor || master < slave * factor) 7336 return 0; 7337 return 1; 7338 } 7339 7340 /* 7341 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7342 * soonest. For the purpose of speed we only consider the waking and previous 7343 * CPU. 7344 * 7345 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7346 * cache-affine and is (or will be) idle. 7347 * 7348 * wake_affine_weight() - considers the weight to reflect the average 7349 * scheduling latency of the CPUs. This seems to work 7350 * for the overloaded case. 7351 */ 7352 static int 7353 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7354 { 7355 /* 7356 * If this_cpu is idle, it implies the wakeup is from interrupt 7357 * context. Only allow the move if cache is shared. Otherwise an 7358 * interrupt intensive workload could force all tasks onto one 7359 * node depending on the IO topology or IRQ affinity settings. 7360 * 7361 * If the prev_cpu is idle and cache affine then avoid a migration. 7362 * There is no guarantee that the cache hot data from an interrupt 7363 * is more important than cache hot data on the prev_cpu and from 7364 * a cpufreq perspective, it's better to have higher utilisation 7365 * on one CPU. 7366 */ 7367 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7368 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7369 7370 if (sync) { 7371 struct rq *rq = cpu_rq(this_cpu); 7372 7373 if ((rq->nr_running - cfs_h_nr_delayed(rq)) == 1) 7374 return this_cpu; 7375 } 7376 7377 if (available_idle_cpu(prev_cpu)) 7378 return prev_cpu; 7379 7380 return nr_cpumask_bits; 7381 } 7382 7383 static int 7384 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7385 int this_cpu, int prev_cpu, int sync) 7386 { 7387 s64 this_eff_load, prev_eff_load; 7388 unsigned long task_load; 7389 7390 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7391 7392 if (sync) { 7393 unsigned long current_load = task_h_load(current); 7394 7395 if (current_load > this_eff_load) 7396 return this_cpu; 7397 7398 this_eff_load -= current_load; 7399 } 7400 7401 task_load = task_h_load(p); 7402 7403 this_eff_load += task_load; 7404 if (sched_feat(WA_BIAS)) 7405 this_eff_load *= 100; 7406 this_eff_load *= capacity_of(prev_cpu); 7407 7408 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7409 prev_eff_load -= task_load; 7410 if (sched_feat(WA_BIAS)) 7411 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7412 prev_eff_load *= capacity_of(this_cpu); 7413 7414 /* 7415 * If sync, adjust the weight of prev_eff_load such that if 7416 * prev_eff == this_eff that select_idle_sibling() will consider 7417 * stacking the wakee on top of the waker if no other CPU is 7418 * idle. 7419 */ 7420 if (sync) 7421 prev_eff_load += 1; 7422 7423 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7424 } 7425 7426 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7427 int this_cpu, int prev_cpu, int sync) 7428 { 7429 int target = nr_cpumask_bits; 7430 7431 if (sched_feat(WA_IDLE)) 7432 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7433 7434 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7435 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7436 7437 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7438 if (target != this_cpu) 7439 return prev_cpu; 7440 7441 schedstat_inc(sd->ttwu_move_affine); 7442 schedstat_inc(p->stats.nr_wakeups_affine); 7443 return target; 7444 } 7445 7446 static struct sched_group * 7447 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7448 7449 /* 7450 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7451 */ 7452 static int 7453 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7454 { 7455 unsigned long load, min_load = ULONG_MAX; 7456 unsigned int min_exit_latency = UINT_MAX; 7457 u64 latest_idle_timestamp = 0; 7458 int least_loaded_cpu = this_cpu; 7459 int shallowest_idle_cpu = -1; 7460 int i; 7461 7462 /* Check if we have any choice: */ 7463 if (group->group_weight == 1) 7464 return cpumask_first(sched_group_span(group)); 7465 7466 /* Traverse only the allowed CPUs */ 7467 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7468 struct rq *rq = cpu_rq(i); 7469 7470 if (!sched_core_cookie_match(rq, p)) 7471 continue; 7472 7473 if (sched_idle_cpu(i)) 7474 return i; 7475 7476 if (available_idle_cpu(i)) { 7477 struct cpuidle_state *idle = idle_get_state(rq); 7478 if (idle && idle->exit_latency < min_exit_latency) { 7479 /* 7480 * We give priority to a CPU whose idle state 7481 * has the smallest exit latency irrespective 7482 * of any idle timestamp. 7483 */ 7484 min_exit_latency = idle->exit_latency; 7485 latest_idle_timestamp = rq->idle_stamp; 7486 shallowest_idle_cpu = i; 7487 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7488 rq->idle_stamp > latest_idle_timestamp) { 7489 /* 7490 * If equal or no active idle state, then 7491 * the most recently idled CPU might have 7492 * a warmer cache. 7493 */ 7494 latest_idle_timestamp = rq->idle_stamp; 7495 shallowest_idle_cpu = i; 7496 } 7497 } else if (shallowest_idle_cpu == -1) { 7498 load = cpu_load(cpu_rq(i)); 7499 if (load < min_load) { 7500 min_load = load; 7501 least_loaded_cpu = i; 7502 } 7503 } 7504 } 7505 7506 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7507 } 7508 7509 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7510 int cpu, int prev_cpu, int sd_flag) 7511 { 7512 int new_cpu = cpu; 7513 7514 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7515 return prev_cpu; 7516 7517 /* 7518 * We need task's util for cpu_util_without, sync it up to 7519 * prev_cpu's last_update_time. 7520 */ 7521 if (!(sd_flag & SD_BALANCE_FORK)) 7522 sync_entity_load_avg(&p->se); 7523 7524 while (sd) { 7525 struct sched_group *group; 7526 struct sched_domain *tmp; 7527 int weight; 7528 7529 if (!(sd->flags & sd_flag)) { 7530 sd = sd->child; 7531 continue; 7532 } 7533 7534 group = sched_balance_find_dst_group(sd, p, cpu); 7535 if (!group) { 7536 sd = sd->child; 7537 continue; 7538 } 7539 7540 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7541 if (new_cpu == cpu) { 7542 /* Now try balancing at a lower domain level of 'cpu': */ 7543 sd = sd->child; 7544 continue; 7545 } 7546 7547 /* Now try balancing at a lower domain level of 'new_cpu': */ 7548 cpu = new_cpu; 7549 weight = sd->span_weight; 7550 sd = NULL; 7551 for_each_domain(cpu, tmp) { 7552 if (weight <= tmp->span_weight) 7553 break; 7554 if (tmp->flags & sd_flag) 7555 sd = tmp; 7556 } 7557 } 7558 7559 return new_cpu; 7560 } 7561 7562 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7563 { 7564 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7565 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7566 return cpu; 7567 7568 return -1; 7569 } 7570 7571 #ifdef CONFIG_SCHED_SMT 7572 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7573 EXPORT_SYMBOL_GPL(sched_smt_present); 7574 7575 static inline void set_idle_cores(int cpu, int val) 7576 { 7577 struct sched_domain_shared *sds; 7578 7579 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7580 if (sds) 7581 WRITE_ONCE(sds->has_idle_cores, val); 7582 } 7583 7584 static inline bool test_idle_cores(int cpu) 7585 { 7586 struct sched_domain_shared *sds; 7587 7588 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7589 if (sds) 7590 return READ_ONCE(sds->has_idle_cores); 7591 7592 return false; 7593 } 7594 7595 /* 7596 * Scans the local SMT mask to see if the entire core is idle, and records this 7597 * information in sd_llc_shared->has_idle_cores. 7598 * 7599 * Since SMT siblings share all cache levels, inspecting this limited remote 7600 * state should be fairly cheap. 7601 */ 7602 void __update_idle_core(struct rq *rq) 7603 { 7604 int core = cpu_of(rq); 7605 int cpu; 7606 7607 rcu_read_lock(); 7608 if (test_idle_cores(core)) 7609 goto unlock; 7610 7611 for_each_cpu(cpu, cpu_smt_mask(core)) { 7612 if (cpu == core) 7613 continue; 7614 7615 if (!available_idle_cpu(cpu)) 7616 goto unlock; 7617 } 7618 7619 set_idle_cores(core, 1); 7620 unlock: 7621 rcu_read_unlock(); 7622 } 7623 7624 /* 7625 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7626 * there are no idle cores left in the system; tracked through 7627 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7628 */ 7629 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7630 { 7631 bool idle = true; 7632 int cpu; 7633 7634 for_each_cpu(cpu, cpu_smt_mask(core)) { 7635 if (!available_idle_cpu(cpu)) { 7636 idle = false; 7637 if (*idle_cpu == -1) { 7638 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7639 *idle_cpu = cpu; 7640 break; 7641 } 7642 continue; 7643 } 7644 break; 7645 } 7646 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7647 *idle_cpu = cpu; 7648 } 7649 7650 if (idle) 7651 return core; 7652 7653 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7654 return -1; 7655 } 7656 7657 /* 7658 * Scan the local SMT mask for idle CPUs. 7659 */ 7660 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7661 { 7662 int cpu; 7663 7664 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7665 if (cpu == target) 7666 continue; 7667 /* 7668 * Check if the CPU is in the LLC scheduling domain of @target. 7669 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7670 */ 7671 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7672 continue; 7673 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7674 return cpu; 7675 } 7676 7677 return -1; 7678 } 7679 7680 #else /* CONFIG_SCHED_SMT */ 7681 7682 static inline void set_idle_cores(int cpu, int val) 7683 { 7684 } 7685 7686 static inline bool test_idle_cores(int cpu) 7687 { 7688 return false; 7689 } 7690 7691 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7692 { 7693 return __select_idle_cpu(core, p); 7694 } 7695 7696 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7697 { 7698 return -1; 7699 } 7700 7701 #endif /* CONFIG_SCHED_SMT */ 7702 7703 /* 7704 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7705 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7706 * average idle time for this rq (as found in rq->avg_idle). 7707 */ 7708 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7709 { 7710 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7711 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7712 struct sched_domain_shared *sd_share; 7713 7714 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7715 7716 if (sched_feat(SIS_UTIL)) { 7717 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7718 if (sd_share) { 7719 /* because !--nr is the condition to stop scan */ 7720 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7721 /* overloaded LLC is unlikely to have idle cpu/core */ 7722 if (nr == 1) 7723 return -1; 7724 } 7725 } 7726 7727 if (static_branch_unlikely(&sched_cluster_active)) { 7728 struct sched_group *sg = sd->groups; 7729 7730 if (sg->flags & SD_CLUSTER) { 7731 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7732 if (!cpumask_test_cpu(cpu, cpus)) 7733 continue; 7734 7735 if (has_idle_core) { 7736 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7737 if ((unsigned int)i < nr_cpumask_bits) 7738 return i; 7739 } else { 7740 if (--nr <= 0) 7741 return -1; 7742 idle_cpu = __select_idle_cpu(cpu, p); 7743 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7744 return idle_cpu; 7745 } 7746 } 7747 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7748 } 7749 } 7750 7751 for_each_cpu_wrap(cpu, cpus, target + 1) { 7752 if (has_idle_core) { 7753 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7754 if ((unsigned int)i < nr_cpumask_bits) 7755 return i; 7756 7757 } else { 7758 if (--nr <= 0) 7759 return -1; 7760 idle_cpu = __select_idle_cpu(cpu, p); 7761 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7762 break; 7763 } 7764 } 7765 7766 if (has_idle_core) 7767 set_idle_cores(target, false); 7768 7769 return idle_cpu; 7770 } 7771 7772 /* 7773 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7774 * the task fits. If no CPU is big enough, but there are idle ones, try to 7775 * maximize capacity. 7776 */ 7777 static int 7778 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7779 { 7780 unsigned long task_util, util_min, util_max, best_cap = 0; 7781 int fits, best_fits = 0; 7782 int cpu, best_cpu = -1; 7783 struct cpumask *cpus; 7784 7785 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7786 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7787 7788 task_util = task_util_est(p); 7789 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7790 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7791 7792 for_each_cpu_wrap(cpu, cpus, target) { 7793 unsigned long cpu_cap = capacity_of(cpu); 7794 7795 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7796 continue; 7797 7798 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7799 7800 /* This CPU fits with all requirements */ 7801 if (fits > 0) 7802 return cpu; 7803 /* 7804 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7805 * Look for the CPU with best capacity. 7806 */ 7807 else if (fits < 0) 7808 cpu_cap = get_actual_cpu_capacity(cpu); 7809 7810 /* 7811 * First, select CPU which fits better (-1 being better than 0). 7812 * Then, select the one with best capacity at same level. 7813 */ 7814 if ((fits < best_fits) || 7815 ((fits == best_fits) && (cpu_cap > best_cap))) { 7816 best_cap = cpu_cap; 7817 best_cpu = cpu; 7818 best_fits = fits; 7819 } 7820 } 7821 7822 return best_cpu; 7823 } 7824 7825 static inline bool asym_fits_cpu(unsigned long util, 7826 unsigned long util_min, 7827 unsigned long util_max, 7828 int cpu) 7829 { 7830 if (sched_asym_cpucap_active()) 7831 /* 7832 * Return true only if the cpu fully fits the task requirements 7833 * which include the utilization and the performance hints. 7834 */ 7835 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7836 7837 return true; 7838 } 7839 7840 /* 7841 * Try and locate an idle core/thread in the LLC cache domain. 7842 */ 7843 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7844 { 7845 bool has_idle_core = false; 7846 struct sched_domain *sd; 7847 unsigned long task_util, util_min, util_max; 7848 int i, recent_used_cpu, prev_aff = -1; 7849 7850 /* 7851 * On asymmetric system, update task utilization because we will check 7852 * that the task fits with CPU's capacity. 7853 */ 7854 if (sched_asym_cpucap_active()) { 7855 sync_entity_load_avg(&p->se); 7856 task_util = task_util_est(p); 7857 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7858 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7859 } 7860 7861 /* 7862 * per-cpu select_rq_mask usage 7863 */ 7864 lockdep_assert_irqs_disabled(); 7865 7866 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7867 asym_fits_cpu(task_util, util_min, util_max, target)) 7868 return target; 7869 7870 /* 7871 * If the previous CPU is cache affine and idle, don't be stupid: 7872 */ 7873 if (prev != target && cpus_share_cache(prev, target) && 7874 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7875 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7876 7877 if (!static_branch_unlikely(&sched_cluster_active) || 7878 cpus_share_resources(prev, target)) 7879 return prev; 7880 7881 prev_aff = prev; 7882 } 7883 7884 /* 7885 * Allow a per-cpu kthread to stack with the wakee if the 7886 * kworker thread and the tasks previous CPUs are the same. 7887 * The assumption is that the wakee queued work for the 7888 * per-cpu kthread that is now complete and the wakeup is 7889 * essentially a sync wakeup. An obvious example of this 7890 * pattern is IO completions. 7891 */ 7892 if (is_per_cpu_kthread(current) && 7893 in_task() && 7894 prev == smp_processor_id() && 7895 this_rq()->nr_running <= 1 && 7896 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7897 return prev; 7898 } 7899 7900 /* Check a recently used CPU as a potential idle candidate: */ 7901 recent_used_cpu = p->recent_used_cpu; 7902 p->recent_used_cpu = prev; 7903 if (recent_used_cpu != prev && 7904 recent_used_cpu != target && 7905 cpus_share_cache(recent_used_cpu, target) && 7906 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7907 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7908 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7909 7910 if (!static_branch_unlikely(&sched_cluster_active) || 7911 cpus_share_resources(recent_used_cpu, target)) 7912 return recent_used_cpu; 7913 7914 } else { 7915 recent_used_cpu = -1; 7916 } 7917 7918 /* 7919 * For asymmetric CPU capacity systems, our domain of interest is 7920 * sd_asym_cpucapacity rather than sd_llc. 7921 */ 7922 if (sched_asym_cpucap_active()) { 7923 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7924 /* 7925 * On an asymmetric CPU capacity system where an exclusive 7926 * cpuset defines a symmetric island (i.e. one unique 7927 * capacity_orig value through the cpuset), the key will be set 7928 * but the CPUs within that cpuset will not have a domain with 7929 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7930 * capacity path. 7931 */ 7932 if (sd) { 7933 i = select_idle_capacity(p, sd, target); 7934 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7935 } 7936 } 7937 7938 sd = rcu_dereference(per_cpu(sd_llc, target)); 7939 if (!sd) 7940 return target; 7941 7942 if (sched_smt_active()) { 7943 has_idle_core = test_idle_cores(target); 7944 7945 if (!has_idle_core && cpus_share_cache(prev, target)) { 7946 i = select_idle_smt(p, sd, prev); 7947 if ((unsigned int)i < nr_cpumask_bits) 7948 return i; 7949 } 7950 } 7951 7952 i = select_idle_cpu(p, sd, has_idle_core, target); 7953 if ((unsigned)i < nr_cpumask_bits) 7954 return i; 7955 7956 /* 7957 * For cluster machines which have lower sharing cache like L2 or 7958 * LLC Tag, we tend to find an idle CPU in the target's cluster 7959 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7960 * use them if possible when no idle CPU found in select_idle_cpu(). 7961 */ 7962 if ((unsigned int)prev_aff < nr_cpumask_bits) 7963 return prev_aff; 7964 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7965 return recent_used_cpu; 7966 7967 return target; 7968 } 7969 7970 /** 7971 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7972 * @cpu: the CPU to get the utilization for 7973 * @p: task for which the CPU utilization should be predicted or NULL 7974 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7975 * @boost: 1 to enable boosting, otherwise 0 7976 * 7977 * The unit of the return value must be the same as the one of CPU capacity 7978 * so that CPU utilization can be compared with CPU capacity. 7979 * 7980 * CPU utilization is the sum of running time of runnable tasks plus the 7981 * recent utilization of currently non-runnable tasks on that CPU. 7982 * It represents the amount of CPU capacity currently used by CFS tasks in 7983 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7984 * capacity at f_max. 7985 * 7986 * The estimated CPU utilization is defined as the maximum between CPU 7987 * utilization and sum of the estimated utilization of the currently 7988 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7989 * previously-executed tasks, which helps better deduce how busy a CPU will 7990 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7991 * of such a task would be significantly decayed at this point of time. 7992 * 7993 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7994 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7995 * utilization. Boosting is implemented in cpu_util() so that internal 7996 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7997 * latter via cpu_util_cfs_boost(). 7998 * 7999 * CPU utilization can be higher than the current CPU capacity 8000 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 8001 * of rounding errors as well as task migrations or wakeups of new tasks. 8002 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 8003 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 8004 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 8005 * capacity. CPU utilization is allowed to overshoot current CPU capacity 8006 * though since this is useful for predicting the CPU capacity required 8007 * after task migrations (scheduler-driven DVFS). 8008 * 8009 * Return: (Boosted) (estimated) utilization for the specified CPU. 8010 */ 8011 static unsigned long 8012 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 8013 { 8014 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 8015 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 8016 unsigned long runnable; 8017 8018 if (boost) { 8019 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 8020 util = max(util, runnable); 8021 } 8022 8023 /* 8024 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 8025 * contribution. If @p migrates from another CPU to @cpu add its 8026 * contribution. In all the other cases @cpu is not impacted by the 8027 * migration so its util_avg is already correct. 8028 */ 8029 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 8030 lsub_positive(&util, task_util(p)); 8031 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 8032 util += task_util(p); 8033 8034 if (sched_feat(UTIL_EST)) { 8035 unsigned long util_est; 8036 8037 util_est = READ_ONCE(cfs_rq->avg.util_est); 8038 8039 /* 8040 * During wake-up @p isn't enqueued yet and doesn't contribute 8041 * to any cpu_rq(cpu)->cfs.avg.util_est. 8042 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 8043 * has been enqueued. 8044 * 8045 * During exec (@dst_cpu = -1) @p is enqueued and does 8046 * contribute to cpu_rq(cpu)->cfs.util_est. 8047 * Remove it to "simulate" cpu_util without @p's contribution. 8048 * 8049 * Despite the task_on_rq_queued(@p) check there is still a 8050 * small window for a possible race when an exec 8051 * select_task_rq_fair() races with LB's detach_task(). 8052 * 8053 * detach_task() 8054 * deactivate_task() 8055 * p->on_rq = TASK_ON_RQ_MIGRATING; 8056 * -------------------------------- A 8057 * dequeue_task() \ 8058 * dequeue_task_fair() + Race Time 8059 * util_est_dequeue() / 8060 * -------------------------------- B 8061 * 8062 * The additional check "current == p" is required to further 8063 * reduce the race window. 8064 */ 8065 if (dst_cpu == cpu) 8066 util_est += _task_util_est(p); 8067 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 8068 lsub_positive(&util_est, _task_util_est(p)); 8069 8070 util = max(util, util_est); 8071 } 8072 8073 return min(util, arch_scale_cpu_capacity(cpu)); 8074 } 8075 8076 unsigned long cpu_util_cfs(int cpu) 8077 { 8078 return cpu_util(cpu, NULL, -1, 0); 8079 } 8080 8081 unsigned long cpu_util_cfs_boost(int cpu) 8082 { 8083 return cpu_util(cpu, NULL, -1, 1); 8084 } 8085 8086 /* 8087 * cpu_util_without: compute cpu utilization without any contributions from *p 8088 * @cpu: the CPU which utilization is requested 8089 * @p: the task which utilization should be discounted 8090 * 8091 * The utilization of a CPU is defined by the utilization of tasks currently 8092 * enqueued on that CPU as well as tasks which are currently sleeping after an 8093 * execution on that CPU. 8094 * 8095 * This method returns the utilization of the specified CPU by discounting the 8096 * utilization of the specified task, whenever the task is currently 8097 * contributing to the CPU utilization. 8098 */ 8099 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 8100 { 8101 /* Task has no contribution or is new */ 8102 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8103 p = NULL; 8104 8105 return cpu_util(cpu, p, -1, 0); 8106 } 8107 8108 /* 8109 * This function computes an effective utilization for the given CPU, to be 8110 * used for frequency selection given the linear relation: f = u * f_max. 8111 * 8112 * The scheduler tracks the following metrics: 8113 * 8114 * cpu_util_{cfs,rt,dl,irq}() 8115 * cpu_bw_dl() 8116 * 8117 * Where the cfs,rt and dl util numbers are tracked with the same metric and 8118 * synchronized windows and are thus directly comparable. 8119 * 8120 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 8121 * which excludes things like IRQ and steal-time. These latter are then accrued 8122 * in the IRQ utilization. 8123 * 8124 * The DL bandwidth number OTOH is not a measured metric but a value computed 8125 * based on the task model parameters and gives the minimal utilization 8126 * required to meet deadlines. 8127 */ 8128 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 8129 unsigned long *min, 8130 unsigned long *max) 8131 { 8132 unsigned long util, irq, scale; 8133 struct rq *rq = cpu_rq(cpu); 8134 8135 scale = arch_scale_cpu_capacity(cpu); 8136 8137 /* 8138 * Early check to see if IRQ/steal time saturates the CPU, can be 8139 * because of inaccuracies in how we track these -- see 8140 * update_irq_load_avg(). 8141 */ 8142 irq = cpu_util_irq(rq); 8143 if (unlikely(irq >= scale)) { 8144 if (min) 8145 *min = scale; 8146 if (max) 8147 *max = scale; 8148 return scale; 8149 } 8150 8151 if (min) { 8152 /* 8153 * The minimum utilization returns the highest level between: 8154 * - the computed DL bandwidth needed with the IRQ pressure which 8155 * steals time to the deadline task. 8156 * - The minimum performance requirement for CFS and/or RT. 8157 */ 8158 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); 8159 8160 /* 8161 * When an RT task is runnable and uclamp is not used, we must 8162 * ensure that the task will run at maximum compute capacity. 8163 */ 8164 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) 8165 *min = max(*min, scale); 8166 } 8167 8168 /* 8169 * Because the time spend on RT/DL tasks is visible as 'lost' time to 8170 * CFS tasks and we use the same metric to track the effective 8171 * utilization (PELT windows are synchronized) we can directly add them 8172 * to obtain the CPU's actual utilization. 8173 */ 8174 util = util_cfs + cpu_util_rt(rq); 8175 util += cpu_util_dl(rq); 8176 8177 /* 8178 * The maximum hint is a soft bandwidth requirement, which can be lower 8179 * than the actual utilization because of uclamp_max requirements. 8180 */ 8181 if (max) 8182 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); 8183 8184 if (util >= scale) 8185 return scale; 8186 8187 /* 8188 * There is still idle time; further improve the number by using the 8189 * IRQ metric. Because IRQ/steal time is hidden from the task clock we 8190 * need to scale the task numbers: 8191 * 8192 * max - irq 8193 * U' = irq + --------- * U 8194 * max 8195 */ 8196 util = scale_irq_capacity(util, irq, scale); 8197 util += irq; 8198 8199 return min(scale, util); 8200 } 8201 8202 unsigned long sched_cpu_util(int cpu) 8203 { 8204 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); 8205 } 8206 8207 /* 8208 * energy_env - Utilization landscape for energy estimation. 8209 * @task_busy_time: Utilization contribution by the task for which we test the 8210 * placement. Given by eenv_task_busy_time(). 8211 * @pd_busy_time: Utilization of the whole perf domain without the task 8212 * contribution. Given by eenv_pd_busy_time(). 8213 * @cpu_cap: Maximum CPU capacity for the perf domain. 8214 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 8215 */ 8216 struct energy_env { 8217 unsigned long task_busy_time; 8218 unsigned long pd_busy_time; 8219 unsigned long cpu_cap; 8220 unsigned long pd_cap; 8221 }; 8222 8223 /* 8224 * Compute the task busy time for compute_energy(). This time cannot be 8225 * injected directly into effective_cpu_util() because of the IRQ scaling. 8226 * The latter only makes sense with the most recent CPUs where the task has 8227 * run. 8228 */ 8229 static inline void eenv_task_busy_time(struct energy_env *eenv, 8230 struct task_struct *p, int prev_cpu) 8231 { 8232 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 8233 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 8234 8235 if (unlikely(irq >= max_cap)) 8236 busy_time = max_cap; 8237 else 8238 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 8239 8240 eenv->task_busy_time = busy_time; 8241 } 8242 8243 /* 8244 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 8245 * utilization for each @pd_cpus, it however doesn't take into account 8246 * clamping since the ratio (utilization / cpu_capacity) is already enough to 8247 * scale the EM reported power consumption at the (eventually clamped) 8248 * cpu_capacity. 8249 * 8250 * The contribution of the task @p for which we want to estimate the 8251 * energy cost is removed (by cpu_util()) and must be calculated 8252 * separately (see eenv_task_busy_time). This ensures: 8253 * 8254 * - A stable PD utilization, no matter which CPU of that PD we want to place 8255 * the task on. 8256 * 8257 * - A fair comparison between CPUs as the task contribution (task_util()) 8258 * will always be the same no matter which CPU utilization we rely on 8259 * (util_avg or util_est). 8260 * 8261 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 8262 * exceed @eenv->pd_cap. 8263 */ 8264 static inline void eenv_pd_busy_time(struct energy_env *eenv, 8265 struct cpumask *pd_cpus, 8266 struct task_struct *p) 8267 { 8268 unsigned long busy_time = 0; 8269 int cpu; 8270 8271 for_each_cpu(cpu, pd_cpus) { 8272 unsigned long util = cpu_util(cpu, p, -1, 0); 8273 8274 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 8275 } 8276 8277 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 8278 } 8279 8280 /* 8281 * Compute the maximum utilization for compute_energy() when the task @p 8282 * is placed on the cpu @dst_cpu. 8283 * 8284 * Returns the maximum utilization among @eenv->cpus. This utilization can't 8285 * exceed @eenv->cpu_cap. 8286 */ 8287 static inline unsigned long 8288 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 8289 struct task_struct *p, int dst_cpu) 8290 { 8291 unsigned long max_util = 0; 8292 int cpu; 8293 8294 for_each_cpu(cpu, pd_cpus) { 8295 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 8296 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 8297 unsigned long eff_util, min, max; 8298 8299 /* 8300 * Performance domain frequency: utilization clamping 8301 * must be considered since it affects the selection 8302 * of the performance domain frequency. 8303 * NOTE: in case RT tasks are running, by default the min 8304 * utilization can be max OPP. 8305 */ 8306 eff_util = effective_cpu_util(cpu, util, &min, &max); 8307 8308 /* Task's uclamp can modify min and max value */ 8309 if (tsk && uclamp_is_used()) { 8310 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 8311 8312 /* 8313 * If there is no active max uclamp constraint, 8314 * directly use task's one, otherwise keep max. 8315 */ 8316 if (uclamp_rq_is_idle(cpu_rq(cpu))) 8317 max = uclamp_eff_value(p, UCLAMP_MAX); 8318 else 8319 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 8320 } 8321 8322 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 8323 max_util = max(max_util, eff_util); 8324 } 8325 8326 return min(max_util, eenv->cpu_cap); 8327 } 8328 8329 /* 8330 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 8331 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 8332 * contribution is ignored. 8333 */ 8334 static inline unsigned long 8335 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 8336 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 8337 { 8338 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 8339 unsigned long busy_time = eenv->pd_busy_time; 8340 unsigned long energy; 8341 8342 if (dst_cpu >= 0) 8343 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 8344 8345 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 8346 8347 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 8348 8349 return energy; 8350 } 8351 8352 /* 8353 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 8354 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 8355 * spare capacity in each performance domain and uses it as a potential 8356 * candidate to execute the task. Then, it uses the Energy Model to figure 8357 * out which of the CPU candidates is the most energy-efficient. 8358 * 8359 * The rationale for this heuristic is as follows. In a performance domain, 8360 * all the most energy efficient CPU candidates (according to the Energy 8361 * Model) are those for which we'll request a low frequency. When there are 8362 * several CPUs for which the frequency request will be the same, we don't 8363 * have enough data to break the tie between them, because the Energy Model 8364 * only includes active power costs. With this model, if we assume that 8365 * frequency requests follow utilization (e.g. using schedutil), the CPU with 8366 * the maximum spare capacity in a performance domain is guaranteed to be among 8367 * the best candidates of the performance domain. 8368 * 8369 * In practice, it could be preferable from an energy standpoint to pack 8370 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 8371 * but that could also hurt our chances to go cluster idle, and we have no 8372 * ways to tell with the current Energy Model if this is actually a good 8373 * idea or not. So, find_energy_efficient_cpu() basically favors 8374 * cluster-packing, and spreading inside a cluster. That should at least be 8375 * a good thing for latency, and this is consistent with the idea that most 8376 * of the energy savings of EAS come from the asymmetry of the system, and 8377 * not so much from breaking the tie between identical CPUs. That's also the 8378 * reason why EAS is enabled in the topology code only for systems where 8379 * SD_ASYM_CPUCAPACITY is set. 8380 * 8381 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 8382 * they don't have any useful utilization data yet and it's not possible to 8383 * forecast their impact on energy consumption. Consequently, they will be 8384 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 8385 * to be energy-inefficient in some use-cases. The alternative would be to 8386 * bias new tasks towards specific types of CPUs first, or to try to infer 8387 * their util_avg from the parent task, but those heuristics could hurt 8388 * other use-cases too. So, until someone finds a better way to solve this, 8389 * let's keep things simple by re-using the existing slow path. 8390 */ 8391 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 8392 { 8393 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 8394 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 8395 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 8396 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 8397 struct root_domain *rd = this_rq()->rd; 8398 int cpu, best_energy_cpu, target = -1; 8399 int prev_fits = -1, best_fits = -1; 8400 unsigned long best_actual_cap = 0; 8401 unsigned long prev_actual_cap = 0; 8402 struct sched_domain *sd; 8403 struct perf_domain *pd; 8404 struct energy_env eenv; 8405 8406 rcu_read_lock(); 8407 pd = rcu_dereference(rd->pd); 8408 if (!pd) 8409 goto unlock; 8410 8411 /* 8412 * Energy-aware wake-up happens on the lowest sched_domain starting 8413 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8414 */ 8415 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 8416 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8417 sd = sd->parent; 8418 if (!sd) 8419 goto unlock; 8420 8421 target = prev_cpu; 8422 8423 sync_entity_load_avg(&p->se); 8424 if (!task_util_est(p) && p_util_min == 0) 8425 goto unlock; 8426 8427 eenv_task_busy_time(&eenv, p, prev_cpu); 8428 8429 for (; pd; pd = pd->next) { 8430 unsigned long util_min = p_util_min, util_max = p_util_max; 8431 unsigned long cpu_cap, cpu_actual_cap, util; 8432 long prev_spare_cap = -1, max_spare_cap = -1; 8433 unsigned long rq_util_min, rq_util_max; 8434 unsigned long cur_delta, base_energy; 8435 int max_spare_cap_cpu = -1; 8436 int fits, max_fits = -1; 8437 8438 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8439 8440 if (cpumask_empty(cpus)) 8441 continue; 8442 8443 /* Account external pressure for the energy estimation */ 8444 cpu = cpumask_first(cpus); 8445 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8446 8447 eenv.cpu_cap = cpu_actual_cap; 8448 eenv.pd_cap = 0; 8449 8450 for_each_cpu(cpu, cpus) { 8451 struct rq *rq = cpu_rq(cpu); 8452 8453 eenv.pd_cap += cpu_actual_cap; 8454 8455 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8456 continue; 8457 8458 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8459 continue; 8460 8461 util = cpu_util(cpu, p, cpu, 0); 8462 cpu_cap = capacity_of(cpu); 8463 8464 /* 8465 * Skip CPUs that cannot satisfy the capacity request. 8466 * IOW, placing the task there would make the CPU 8467 * overutilized. Take uclamp into account to see how 8468 * much capacity we can get out of the CPU; this is 8469 * aligned with sched_cpu_util(). 8470 */ 8471 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8472 /* 8473 * Open code uclamp_rq_util_with() except for 8474 * the clamp() part. I.e.: apply max aggregation 8475 * only. util_fits_cpu() logic requires to 8476 * operate on non clamped util but must use the 8477 * max-aggregated uclamp_{min, max}. 8478 */ 8479 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8480 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8481 8482 util_min = max(rq_util_min, p_util_min); 8483 util_max = max(rq_util_max, p_util_max); 8484 } 8485 8486 fits = util_fits_cpu(util, util_min, util_max, cpu); 8487 if (!fits) 8488 continue; 8489 8490 lsub_positive(&cpu_cap, util); 8491 8492 if (cpu == prev_cpu) { 8493 /* Always use prev_cpu as a candidate. */ 8494 prev_spare_cap = cpu_cap; 8495 prev_fits = fits; 8496 } else if ((fits > max_fits) || 8497 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8498 /* 8499 * Find the CPU with the maximum spare capacity 8500 * among the remaining CPUs in the performance 8501 * domain. 8502 */ 8503 max_spare_cap = cpu_cap; 8504 max_spare_cap_cpu = cpu; 8505 max_fits = fits; 8506 } 8507 } 8508 8509 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8510 continue; 8511 8512 eenv_pd_busy_time(&eenv, cpus, p); 8513 /* Compute the 'base' energy of the pd, without @p */ 8514 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8515 8516 /* Evaluate the energy impact of using prev_cpu. */ 8517 if (prev_spare_cap > -1) { 8518 prev_delta = compute_energy(&eenv, pd, cpus, p, 8519 prev_cpu); 8520 /* CPU utilization has changed */ 8521 if (prev_delta < base_energy) 8522 goto unlock; 8523 prev_delta -= base_energy; 8524 prev_actual_cap = cpu_actual_cap; 8525 best_delta = min(best_delta, prev_delta); 8526 } 8527 8528 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8529 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8530 /* Current best energy cpu fits better */ 8531 if (max_fits < best_fits) 8532 continue; 8533 8534 /* 8535 * Both don't fit performance hint (i.e. uclamp_min) 8536 * but best energy cpu has better capacity. 8537 */ 8538 if ((max_fits < 0) && 8539 (cpu_actual_cap <= best_actual_cap)) 8540 continue; 8541 8542 cur_delta = compute_energy(&eenv, pd, cpus, p, 8543 max_spare_cap_cpu); 8544 /* CPU utilization has changed */ 8545 if (cur_delta < base_energy) 8546 goto unlock; 8547 cur_delta -= base_energy; 8548 8549 /* 8550 * Both fit for the task but best energy cpu has lower 8551 * energy impact. 8552 */ 8553 if ((max_fits > 0) && (best_fits > 0) && 8554 (cur_delta >= best_delta)) 8555 continue; 8556 8557 best_delta = cur_delta; 8558 best_energy_cpu = max_spare_cap_cpu; 8559 best_fits = max_fits; 8560 best_actual_cap = cpu_actual_cap; 8561 } 8562 } 8563 rcu_read_unlock(); 8564 8565 if ((best_fits > prev_fits) || 8566 ((best_fits > 0) && (best_delta < prev_delta)) || 8567 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8568 target = best_energy_cpu; 8569 8570 return target; 8571 8572 unlock: 8573 rcu_read_unlock(); 8574 8575 return target; 8576 } 8577 8578 /* 8579 * select_task_rq_fair: Select target runqueue for the waking task in domains 8580 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8581 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8582 * 8583 * Balances load by selecting the idlest CPU in the idlest group, or under 8584 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8585 * 8586 * Returns the target CPU number. 8587 */ 8588 static int 8589 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8590 { 8591 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8592 struct sched_domain *tmp, *sd = NULL; 8593 int cpu = smp_processor_id(); 8594 int new_cpu = prev_cpu; 8595 int want_affine = 0; 8596 /* SD_flags and WF_flags share the first nibble */ 8597 int sd_flag = wake_flags & 0xF; 8598 8599 /* 8600 * required for stable ->cpus_allowed 8601 */ 8602 lockdep_assert_held(&p->pi_lock); 8603 if (wake_flags & WF_TTWU) { 8604 record_wakee(p); 8605 8606 if ((wake_flags & WF_CURRENT_CPU) && 8607 cpumask_test_cpu(cpu, p->cpus_ptr)) 8608 return cpu; 8609 8610 if (!is_rd_overutilized(this_rq()->rd)) { 8611 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8612 if (new_cpu >= 0) 8613 return new_cpu; 8614 new_cpu = prev_cpu; 8615 } 8616 8617 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8618 } 8619 8620 rcu_read_lock(); 8621 for_each_domain(cpu, tmp) { 8622 /* 8623 * If both 'cpu' and 'prev_cpu' are part of this domain, 8624 * cpu is a valid SD_WAKE_AFFINE target. 8625 */ 8626 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8627 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8628 if (cpu != prev_cpu) 8629 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8630 8631 sd = NULL; /* Prefer wake_affine over balance flags */ 8632 break; 8633 } 8634 8635 /* 8636 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8637 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8638 * will usually go to the fast path. 8639 */ 8640 if (tmp->flags & sd_flag) 8641 sd = tmp; 8642 else if (!want_affine) 8643 break; 8644 } 8645 8646 if (unlikely(sd)) { 8647 /* Slow path */ 8648 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8649 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8650 /* Fast path */ 8651 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8652 } 8653 rcu_read_unlock(); 8654 8655 return new_cpu; 8656 } 8657 8658 /* 8659 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8660 * cfs_rq_of(p) references at time of call are still valid and identify the 8661 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8662 */ 8663 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8664 { 8665 struct sched_entity *se = &p->se; 8666 8667 if (!task_on_rq_migrating(p)) { 8668 remove_entity_load_avg(se); 8669 8670 /* 8671 * Here, the task's PELT values have been updated according to 8672 * the current rq's clock. But if that clock hasn't been 8673 * updated in a while, a substantial idle time will be missed, 8674 * leading to an inflation after wake-up on the new rq. 8675 * 8676 * Estimate the missing time from the cfs_rq last_update_time 8677 * and update sched_avg to improve the PELT continuity after 8678 * migration. 8679 */ 8680 migrate_se_pelt_lag(se); 8681 } 8682 8683 /* Tell new CPU we are migrated */ 8684 se->avg.last_update_time = 0; 8685 8686 update_scan_period(p, new_cpu); 8687 } 8688 8689 static void task_dead_fair(struct task_struct *p) 8690 { 8691 struct sched_entity *se = &p->se; 8692 8693 if (se->sched_delayed) { 8694 struct rq_flags rf; 8695 struct rq *rq; 8696 8697 rq = task_rq_lock(p, &rf); 8698 if (se->sched_delayed) { 8699 update_rq_clock(rq); 8700 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 8701 } 8702 task_rq_unlock(rq, p, &rf); 8703 } 8704 8705 remove_entity_load_avg(se); 8706 } 8707 8708 /* 8709 * Set the max capacity the task is allowed to run at for misfit detection. 8710 */ 8711 static void set_task_max_allowed_capacity(struct task_struct *p) 8712 { 8713 struct asym_cap_data *entry; 8714 8715 if (!sched_asym_cpucap_active()) 8716 return; 8717 8718 rcu_read_lock(); 8719 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8720 cpumask_t *cpumask; 8721 8722 cpumask = cpu_capacity_span(entry); 8723 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8724 continue; 8725 8726 p->max_allowed_capacity = entry->capacity; 8727 break; 8728 } 8729 rcu_read_unlock(); 8730 } 8731 8732 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8733 { 8734 set_cpus_allowed_common(p, ctx); 8735 set_task_max_allowed_capacity(p); 8736 } 8737 8738 static int 8739 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8740 { 8741 if (sched_fair_runnable(rq)) 8742 return 1; 8743 8744 return sched_balance_newidle(rq, rf) != 0; 8745 } 8746 #else 8747 static inline void set_task_max_allowed_capacity(struct task_struct *p) {} 8748 #endif /* CONFIG_SMP */ 8749 8750 static void set_next_buddy(struct sched_entity *se) 8751 { 8752 for_each_sched_entity(se) { 8753 if (WARN_ON_ONCE(!se->on_rq)) 8754 return; 8755 if (se_is_idle(se)) 8756 return; 8757 cfs_rq_of(se)->next = se; 8758 } 8759 } 8760 8761 /* 8762 * Preempt the current task with a newly woken task if needed: 8763 */ 8764 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8765 { 8766 struct task_struct *donor = rq->donor; 8767 struct sched_entity *se = &donor->se, *pse = &p->se; 8768 struct cfs_rq *cfs_rq = task_cfs_rq(donor); 8769 int cse_is_idle, pse_is_idle; 8770 8771 if (unlikely(se == pse)) 8772 return; 8773 8774 /* 8775 * This is possible from callers such as attach_tasks(), in which we 8776 * unconditionally wakeup_preempt() after an enqueue (which may have 8777 * lead to a throttle). This both saves work and prevents false 8778 * next-buddy nomination below. 8779 */ 8780 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8781 return; 8782 8783 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) { 8784 set_next_buddy(pse); 8785 } 8786 8787 /* 8788 * We can come here with TIF_NEED_RESCHED already set from new task 8789 * wake up path. 8790 * 8791 * Note: this also catches the edge-case of curr being in a throttled 8792 * group (e.g. via set_curr_task), since update_curr() (in the 8793 * enqueue of curr) will have resulted in resched being set. This 8794 * prevents us from potentially nominating it as a false LAST_BUDDY 8795 * below. 8796 */ 8797 if (test_tsk_need_resched(rq->curr)) 8798 return; 8799 8800 if (!sched_feat(WAKEUP_PREEMPTION)) 8801 return; 8802 8803 find_matching_se(&se, &pse); 8804 WARN_ON_ONCE(!pse); 8805 8806 cse_is_idle = se_is_idle(se); 8807 pse_is_idle = se_is_idle(pse); 8808 8809 /* 8810 * Preempt an idle entity in favor of a non-idle entity (and don't preempt 8811 * in the inverse case). 8812 */ 8813 if (cse_is_idle && !pse_is_idle) { 8814 /* 8815 * When non-idle entity preempt an idle entity, 8816 * don't give idle entity slice protection. 8817 */ 8818 cancel_protect_slice(se); 8819 goto preempt; 8820 } 8821 8822 if (cse_is_idle != pse_is_idle) 8823 return; 8824 8825 /* 8826 * BATCH and IDLE tasks do not preempt others. 8827 */ 8828 if (unlikely(!normal_policy(p->policy))) 8829 return; 8830 8831 cfs_rq = cfs_rq_of(se); 8832 update_curr(cfs_rq); 8833 /* 8834 * If @p has a shorter slice than current and @p is eligible, override 8835 * current's slice protection in order to allow preemption. 8836 * 8837 * Note that even if @p does not turn out to be the most eligible 8838 * task at this moment, current's slice protection will be lost. 8839 */ 8840 if (do_preempt_short(cfs_rq, pse, se)) 8841 cancel_protect_slice(se); 8842 8843 /* 8844 * If @p has become the most eligible task, force preemption. 8845 */ 8846 if (pick_eevdf(cfs_rq) == pse) 8847 goto preempt; 8848 8849 return; 8850 8851 preempt: 8852 resched_curr_lazy(rq); 8853 } 8854 8855 static struct task_struct *pick_task_fair(struct rq *rq) 8856 { 8857 struct sched_entity *se; 8858 struct cfs_rq *cfs_rq; 8859 8860 again: 8861 cfs_rq = &rq->cfs; 8862 if (!cfs_rq->nr_queued) 8863 return NULL; 8864 8865 do { 8866 /* Might not have done put_prev_entity() */ 8867 if (cfs_rq->curr && cfs_rq->curr->on_rq) 8868 update_curr(cfs_rq); 8869 8870 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8871 goto again; 8872 8873 se = pick_next_entity(rq, cfs_rq); 8874 if (!se) 8875 goto again; 8876 cfs_rq = group_cfs_rq(se); 8877 } while (cfs_rq); 8878 8879 return task_of(se); 8880 } 8881 8882 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8883 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8884 8885 struct task_struct * 8886 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8887 { 8888 struct sched_entity *se; 8889 struct task_struct *p; 8890 int new_tasks; 8891 8892 again: 8893 p = pick_task_fair(rq); 8894 if (!p) 8895 goto idle; 8896 se = &p->se; 8897 8898 #ifdef CONFIG_FAIR_GROUP_SCHED 8899 if (prev->sched_class != &fair_sched_class) 8900 goto simple; 8901 8902 __put_prev_set_next_dl_server(rq, prev, p); 8903 8904 /* 8905 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8906 * likely that a next task is from the same cgroup as the current. 8907 * 8908 * Therefore attempt to avoid putting and setting the entire cgroup 8909 * hierarchy, only change the part that actually changes. 8910 * 8911 * Since we haven't yet done put_prev_entity and if the selected task 8912 * is a different task than we started out with, try and touch the 8913 * least amount of cfs_rqs. 8914 */ 8915 if (prev != p) { 8916 struct sched_entity *pse = &prev->se; 8917 struct cfs_rq *cfs_rq; 8918 8919 while (!(cfs_rq = is_same_group(se, pse))) { 8920 int se_depth = se->depth; 8921 int pse_depth = pse->depth; 8922 8923 if (se_depth <= pse_depth) { 8924 put_prev_entity(cfs_rq_of(pse), pse); 8925 pse = parent_entity(pse); 8926 } 8927 if (se_depth >= pse_depth) { 8928 set_next_entity(cfs_rq_of(se), se); 8929 se = parent_entity(se); 8930 } 8931 } 8932 8933 put_prev_entity(cfs_rq, pse); 8934 set_next_entity(cfs_rq, se); 8935 8936 __set_next_task_fair(rq, p, true); 8937 } 8938 8939 return p; 8940 8941 simple: 8942 #endif 8943 put_prev_set_next_task(rq, prev, p); 8944 return p; 8945 8946 idle: 8947 if (!rf) 8948 return NULL; 8949 8950 new_tasks = sched_balance_newidle(rq, rf); 8951 8952 /* 8953 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is 8954 * possible for any higher priority task to appear. In that case we 8955 * must re-start the pick_next_entity() loop. 8956 */ 8957 if (new_tasks < 0) 8958 return RETRY_TASK; 8959 8960 if (new_tasks > 0) 8961 goto again; 8962 8963 /* 8964 * rq is about to be idle, check if we need to update the 8965 * lost_idle_time of clock_pelt 8966 */ 8967 update_idle_rq_clock_pelt(rq); 8968 8969 return NULL; 8970 } 8971 8972 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev) 8973 { 8974 return pick_next_task_fair(rq, prev, NULL); 8975 } 8976 8977 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se) 8978 { 8979 return !!dl_se->rq->cfs.nr_queued; 8980 } 8981 8982 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se) 8983 { 8984 return pick_task_fair(dl_se->rq); 8985 } 8986 8987 void fair_server_init(struct rq *rq) 8988 { 8989 struct sched_dl_entity *dl_se = &rq->fair_server; 8990 8991 init_dl_entity(dl_se); 8992 8993 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task); 8994 } 8995 8996 /* 8997 * Account for a descheduled task: 8998 */ 8999 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) 9000 { 9001 struct sched_entity *se = &prev->se; 9002 struct cfs_rq *cfs_rq; 9003 9004 for_each_sched_entity(se) { 9005 cfs_rq = cfs_rq_of(se); 9006 put_prev_entity(cfs_rq, se); 9007 } 9008 } 9009 9010 /* 9011 * sched_yield() is very simple 9012 */ 9013 static void yield_task_fair(struct rq *rq) 9014 { 9015 struct task_struct *curr = rq->curr; 9016 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 9017 struct sched_entity *se = &curr->se; 9018 9019 /* 9020 * Are we the only task in the tree? 9021 */ 9022 if (unlikely(rq->nr_running == 1)) 9023 return; 9024 9025 clear_buddies(cfs_rq, se); 9026 9027 update_rq_clock(rq); 9028 /* 9029 * Update run-time statistics of the 'current'. 9030 */ 9031 update_curr(cfs_rq); 9032 /* 9033 * Tell update_rq_clock() that we've just updated, 9034 * so we don't do microscopic update in schedule() 9035 * and double the fastpath cost. 9036 */ 9037 rq_clock_skip_update(rq); 9038 9039 se->deadline += calc_delta_fair(se->slice, se); 9040 } 9041 9042 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 9043 { 9044 struct sched_entity *se = &p->se; 9045 9046 /* throttled hierarchies are not runnable */ 9047 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 9048 return false; 9049 9050 /* Tell the scheduler that we'd really like se to run next. */ 9051 set_next_buddy(se); 9052 9053 yield_task_fair(rq); 9054 9055 return true; 9056 } 9057 9058 #ifdef CONFIG_SMP 9059 /************************************************** 9060 * Fair scheduling class load-balancing methods. 9061 * 9062 * BASICS 9063 * 9064 * The purpose of load-balancing is to achieve the same basic fairness the 9065 * per-CPU scheduler provides, namely provide a proportional amount of compute 9066 * time to each task. This is expressed in the following equation: 9067 * 9068 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 9069 * 9070 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 9071 * W_i,0 is defined as: 9072 * 9073 * W_i,0 = \Sum_j w_i,j (2) 9074 * 9075 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 9076 * is derived from the nice value as per sched_prio_to_weight[]. 9077 * 9078 * The weight average is an exponential decay average of the instantaneous 9079 * weight: 9080 * 9081 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 9082 * 9083 * C_i is the compute capacity of CPU i, typically it is the 9084 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 9085 * can also include other factors [XXX]. 9086 * 9087 * To achieve this balance we define a measure of imbalance which follows 9088 * directly from (1): 9089 * 9090 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 9091 * 9092 * We them move tasks around to minimize the imbalance. In the continuous 9093 * function space it is obvious this converges, in the discrete case we get 9094 * a few fun cases generally called infeasible weight scenarios. 9095 * 9096 * [XXX expand on: 9097 * - infeasible weights; 9098 * - local vs global optima in the discrete case. ] 9099 * 9100 * 9101 * SCHED DOMAINS 9102 * 9103 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 9104 * for all i,j solution, we create a tree of CPUs that follows the hardware 9105 * topology where each level pairs two lower groups (or better). This results 9106 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 9107 * tree to only the first of the previous level and we decrease the frequency 9108 * of load-balance at each level inversely proportional to the number of CPUs in 9109 * the groups. 9110 * 9111 * This yields: 9112 * 9113 * log_2 n 1 n 9114 * \Sum { --- * --- * 2^i } = O(n) (5) 9115 * i = 0 2^i 2^i 9116 * `- size of each group 9117 * | | `- number of CPUs doing load-balance 9118 * | `- freq 9119 * `- sum over all levels 9120 * 9121 * Coupled with a limit on how many tasks we can migrate every balance pass, 9122 * this makes (5) the runtime complexity of the balancer. 9123 * 9124 * An important property here is that each CPU is still (indirectly) connected 9125 * to every other CPU in at most O(log n) steps: 9126 * 9127 * The adjacency matrix of the resulting graph is given by: 9128 * 9129 * log_2 n 9130 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 9131 * k = 0 9132 * 9133 * And you'll find that: 9134 * 9135 * A^(log_2 n)_i,j != 0 for all i,j (7) 9136 * 9137 * Showing there's indeed a path between every CPU in at most O(log n) steps. 9138 * The task movement gives a factor of O(m), giving a convergence complexity 9139 * of: 9140 * 9141 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 9142 * 9143 * 9144 * WORK CONSERVING 9145 * 9146 * In order to avoid CPUs going idle while there's still work to do, new idle 9147 * balancing is more aggressive and has the newly idle CPU iterate up the domain 9148 * tree itself instead of relying on other CPUs to bring it work. 9149 * 9150 * This adds some complexity to both (5) and (8) but it reduces the total idle 9151 * time. 9152 * 9153 * [XXX more?] 9154 * 9155 * 9156 * CGROUPS 9157 * 9158 * Cgroups make a horror show out of (2), instead of a simple sum we get: 9159 * 9160 * s_k,i 9161 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 9162 * S_k 9163 * 9164 * Where 9165 * 9166 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 9167 * 9168 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 9169 * 9170 * The big problem is S_k, its a global sum needed to compute a local (W_i) 9171 * property. 9172 * 9173 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 9174 * rewrite all of this once again.] 9175 */ 9176 9177 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 9178 9179 enum fbq_type { regular, remote, all }; 9180 9181 /* 9182 * 'group_type' describes the group of CPUs at the moment of load balancing. 9183 * 9184 * The enum is ordered by pulling priority, with the group with lowest priority 9185 * first so the group_type can simply be compared when selecting the busiest 9186 * group. See update_sd_pick_busiest(). 9187 */ 9188 enum group_type { 9189 /* The group has spare capacity that can be used to run more tasks. */ 9190 group_has_spare = 0, 9191 /* 9192 * The group is fully used and the tasks don't compete for more CPU 9193 * cycles. Nevertheless, some tasks might wait before running. 9194 */ 9195 group_fully_busy, 9196 /* 9197 * One task doesn't fit with CPU's capacity and must be migrated to a 9198 * more powerful CPU. 9199 */ 9200 group_misfit_task, 9201 /* 9202 * Balance SMT group that's fully busy. Can benefit from migration 9203 * a task on SMT with busy sibling to another CPU on idle core. 9204 */ 9205 group_smt_balance, 9206 /* 9207 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 9208 * and the task should be migrated to it instead of running on the 9209 * current CPU. 9210 */ 9211 group_asym_packing, 9212 /* 9213 * The tasks' affinity constraints previously prevented the scheduler 9214 * from balancing the load across the system. 9215 */ 9216 group_imbalanced, 9217 /* 9218 * The CPU is overloaded and can't provide expected CPU cycles to all 9219 * tasks. 9220 */ 9221 group_overloaded 9222 }; 9223 9224 enum migration_type { 9225 migrate_load = 0, 9226 migrate_util, 9227 migrate_task, 9228 migrate_misfit 9229 }; 9230 9231 #define LBF_ALL_PINNED 0x01 9232 #define LBF_NEED_BREAK 0x02 9233 #define LBF_DST_PINNED 0x04 9234 #define LBF_SOME_PINNED 0x08 9235 #define LBF_ACTIVE_LB 0x10 9236 9237 struct lb_env { 9238 struct sched_domain *sd; 9239 9240 struct rq *src_rq; 9241 int src_cpu; 9242 9243 int dst_cpu; 9244 struct rq *dst_rq; 9245 9246 struct cpumask *dst_grpmask; 9247 int new_dst_cpu; 9248 enum cpu_idle_type idle; 9249 long imbalance; 9250 /* The set of CPUs under consideration for load-balancing */ 9251 struct cpumask *cpus; 9252 9253 unsigned int flags; 9254 9255 unsigned int loop; 9256 unsigned int loop_break; 9257 unsigned int loop_max; 9258 9259 enum fbq_type fbq_type; 9260 enum migration_type migration_type; 9261 struct list_head tasks; 9262 }; 9263 9264 /* 9265 * Is this task likely cache-hot: 9266 */ 9267 static int task_hot(struct task_struct *p, struct lb_env *env) 9268 { 9269 s64 delta; 9270 9271 lockdep_assert_rq_held(env->src_rq); 9272 9273 if (p->sched_class != &fair_sched_class) 9274 return 0; 9275 9276 if (unlikely(task_has_idle_policy(p))) 9277 return 0; 9278 9279 /* SMT siblings share cache */ 9280 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 9281 return 0; 9282 9283 /* 9284 * Buddy candidates are cache hot: 9285 */ 9286 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 9287 (&p->se == cfs_rq_of(&p->se)->next)) 9288 return 1; 9289 9290 if (sysctl_sched_migration_cost == -1) 9291 return 1; 9292 9293 /* 9294 * Don't migrate task if the task's cookie does not match 9295 * with the destination CPU's core cookie. 9296 */ 9297 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 9298 return 1; 9299 9300 if (sysctl_sched_migration_cost == 0) 9301 return 0; 9302 9303 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 9304 9305 return delta < (s64)sysctl_sched_migration_cost; 9306 } 9307 9308 #ifdef CONFIG_NUMA_BALANCING 9309 /* 9310 * Returns a positive value, if task migration degrades locality. 9311 * Returns 0, if task migration is not affected by locality. 9312 * Returns a negative value, if task migration improves locality i.e migration preferred. 9313 */ 9314 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 9315 { 9316 struct numa_group *numa_group = rcu_dereference(p->numa_group); 9317 unsigned long src_weight, dst_weight; 9318 int src_nid, dst_nid, dist; 9319 9320 if (!static_branch_likely(&sched_numa_balancing)) 9321 return 0; 9322 9323 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 9324 return 0; 9325 9326 src_nid = cpu_to_node(env->src_cpu); 9327 dst_nid = cpu_to_node(env->dst_cpu); 9328 9329 if (src_nid == dst_nid) 9330 return 0; 9331 9332 /* Migrating away from the preferred node is always bad. */ 9333 if (src_nid == p->numa_preferred_nid) { 9334 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 9335 return 1; 9336 else 9337 return 0; 9338 } 9339 9340 /* Encourage migration to the preferred node. */ 9341 if (dst_nid == p->numa_preferred_nid) 9342 return -1; 9343 9344 /* Leaving a core idle is often worse than degrading locality. */ 9345 if (env->idle == CPU_IDLE) 9346 return 0; 9347 9348 dist = node_distance(src_nid, dst_nid); 9349 if (numa_group) { 9350 src_weight = group_weight(p, src_nid, dist); 9351 dst_weight = group_weight(p, dst_nid, dist); 9352 } else { 9353 src_weight = task_weight(p, src_nid, dist); 9354 dst_weight = task_weight(p, dst_nid, dist); 9355 } 9356 9357 return src_weight - dst_weight; 9358 } 9359 9360 #else 9361 static inline long migrate_degrades_locality(struct task_struct *p, 9362 struct lb_env *env) 9363 { 9364 return 0; 9365 } 9366 #endif 9367 9368 /* 9369 * Check whether the task is ineligible on the destination cpu 9370 * 9371 * When the PLACE_LAG scheduling feature is enabled and 9372 * dst_cfs_rq->nr_queued is greater than 1, if the task 9373 * is ineligible, it will also be ineligible when 9374 * it is migrated to the destination cpu. 9375 */ 9376 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu) 9377 { 9378 struct cfs_rq *dst_cfs_rq; 9379 9380 #ifdef CONFIG_FAIR_GROUP_SCHED 9381 dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu]; 9382 #else 9383 dst_cfs_rq = &cpu_rq(dest_cpu)->cfs; 9384 #endif 9385 if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued && 9386 !entity_eligible(task_cfs_rq(p), &p->se)) 9387 return 1; 9388 9389 return 0; 9390 } 9391 9392 /* 9393 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 9394 */ 9395 static 9396 int can_migrate_task(struct task_struct *p, struct lb_env *env) 9397 { 9398 long degrades, hot; 9399 9400 lockdep_assert_rq_held(env->src_rq); 9401 if (p->sched_task_hot) 9402 p->sched_task_hot = 0; 9403 9404 /* 9405 * We do not migrate tasks that are: 9406 * 1) delayed dequeued unless we migrate load, or 9407 * 2) throttled_lb_pair, or 9408 * 3) cannot be migrated to this CPU due to cpus_ptr, or 9409 * 4) running (obviously), or 9410 * 5) are cache-hot on their current CPU. 9411 */ 9412 if ((p->se.sched_delayed) && (env->migration_type != migrate_load)) 9413 return 0; 9414 9415 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 9416 return 0; 9417 9418 /* 9419 * We want to prioritize the migration of eligible tasks. 9420 * For ineligible tasks we soft-limit them and only allow 9421 * them to migrate when nr_balance_failed is non-zero to 9422 * avoid load-balancing trying very hard to balance the load. 9423 */ 9424 if (!env->sd->nr_balance_failed && 9425 task_is_ineligible_on_dst_cpu(p, env->dst_cpu)) 9426 return 0; 9427 9428 /* Disregard percpu kthreads; they are where they need to be. */ 9429 if (kthread_is_per_cpu(p)) 9430 return 0; 9431 9432 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9433 int cpu; 9434 9435 schedstat_inc(p->stats.nr_failed_migrations_affine); 9436 9437 env->flags |= LBF_SOME_PINNED; 9438 9439 /* 9440 * Remember if this task can be migrated to any other CPU in 9441 * our sched_group. We may want to revisit it if we couldn't 9442 * meet load balance goals by pulling other tasks on src_cpu. 9443 * 9444 * Avoid computing new_dst_cpu 9445 * - for NEWLY_IDLE 9446 * - if we have already computed one in current iteration 9447 * - if it's an active balance 9448 */ 9449 if (env->idle == CPU_NEWLY_IDLE || 9450 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9451 return 0; 9452 9453 /* Prevent to re-select dst_cpu via env's CPUs: */ 9454 cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr); 9455 9456 if (cpu < nr_cpu_ids) { 9457 env->flags |= LBF_DST_PINNED; 9458 env->new_dst_cpu = cpu; 9459 } 9460 9461 return 0; 9462 } 9463 9464 /* Record that we found at least one task that could run on dst_cpu */ 9465 env->flags &= ~LBF_ALL_PINNED; 9466 9467 if (task_on_cpu(env->src_rq, p)) { 9468 schedstat_inc(p->stats.nr_failed_migrations_running); 9469 return 0; 9470 } 9471 9472 /* 9473 * Aggressive migration if: 9474 * 1) active balance 9475 * 2) destination numa is preferred 9476 * 3) task is cache cold, or 9477 * 4) too many balance attempts have failed. 9478 */ 9479 if (env->flags & LBF_ACTIVE_LB) 9480 return 1; 9481 9482 degrades = migrate_degrades_locality(p, env); 9483 if (!degrades) 9484 hot = task_hot(p, env); 9485 else 9486 hot = degrades > 0; 9487 9488 if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9489 if (hot) 9490 p->sched_task_hot = 1; 9491 return 1; 9492 } 9493 9494 schedstat_inc(p->stats.nr_failed_migrations_hot); 9495 return 0; 9496 } 9497 9498 /* 9499 * detach_task() -- detach the task for the migration specified in env 9500 */ 9501 static void detach_task(struct task_struct *p, struct lb_env *env) 9502 { 9503 lockdep_assert_rq_held(env->src_rq); 9504 9505 if (p->sched_task_hot) { 9506 p->sched_task_hot = 0; 9507 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9508 schedstat_inc(p->stats.nr_forced_migrations); 9509 } 9510 9511 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9512 set_task_cpu(p, env->dst_cpu); 9513 } 9514 9515 /* 9516 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9517 * part of active balancing operations within "domain". 9518 * 9519 * Returns a task if successful and NULL otherwise. 9520 */ 9521 static struct task_struct *detach_one_task(struct lb_env *env) 9522 { 9523 struct task_struct *p; 9524 9525 lockdep_assert_rq_held(env->src_rq); 9526 9527 list_for_each_entry_reverse(p, 9528 &env->src_rq->cfs_tasks, se.group_node) { 9529 if (!can_migrate_task(p, env)) 9530 continue; 9531 9532 detach_task(p, env); 9533 9534 /* 9535 * Right now, this is only the second place where 9536 * lb_gained[env->idle] is updated (other is detach_tasks) 9537 * so we can safely collect stats here rather than 9538 * inside detach_tasks(). 9539 */ 9540 schedstat_inc(env->sd->lb_gained[env->idle]); 9541 return p; 9542 } 9543 return NULL; 9544 } 9545 9546 /* 9547 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9548 * busiest_rq, as part of a balancing operation within domain "sd". 9549 * 9550 * Returns number of detached tasks if successful and 0 otherwise. 9551 */ 9552 static int detach_tasks(struct lb_env *env) 9553 { 9554 struct list_head *tasks = &env->src_rq->cfs_tasks; 9555 unsigned long util, load; 9556 struct task_struct *p; 9557 int detached = 0; 9558 9559 lockdep_assert_rq_held(env->src_rq); 9560 9561 /* 9562 * Source run queue has been emptied by another CPU, clear 9563 * LBF_ALL_PINNED flag as we will not test any task. 9564 */ 9565 if (env->src_rq->nr_running <= 1) { 9566 env->flags &= ~LBF_ALL_PINNED; 9567 return 0; 9568 } 9569 9570 if (env->imbalance <= 0) 9571 return 0; 9572 9573 while (!list_empty(tasks)) { 9574 /* 9575 * We don't want to steal all, otherwise we may be treated likewise, 9576 * which could at worst lead to a livelock crash. 9577 */ 9578 if (env->idle && env->src_rq->nr_running <= 1) 9579 break; 9580 9581 env->loop++; 9582 /* We've more or less seen every task there is, call it quits */ 9583 if (env->loop > env->loop_max) 9584 break; 9585 9586 /* take a breather every nr_migrate tasks */ 9587 if (env->loop > env->loop_break) { 9588 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9589 env->flags |= LBF_NEED_BREAK; 9590 break; 9591 } 9592 9593 p = list_last_entry(tasks, struct task_struct, se.group_node); 9594 9595 if (!can_migrate_task(p, env)) 9596 goto next; 9597 9598 switch (env->migration_type) { 9599 case migrate_load: 9600 /* 9601 * Depending of the number of CPUs and tasks and the 9602 * cgroup hierarchy, task_h_load() can return a null 9603 * value. Make sure that env->imbalance decreases 9604 * otherwise detach_tasks() will stop only after 9605 * detaching up to loop_max tasks. 9606 */ 9607 load = max_t(unsigned long, task_h_load(p), 1); 9608 9609 if (sched_feat(LB_MIN) && 9610 load < 16 && !env->sd->nr_balance_failed) 9611 goto next; 9612 9613 /* 9614 * Make sure that we don't migrate too much load. 9615 * Nevertheless, let relax the constraint if 9616 * scheduler fails to find a good waiting task to 9617 * migrate. 9618 */ 9619 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9620 goto next; 9621 9622 env->imbalance -= load; 9623 break; 9624 9625 case migrate_util: 9626 util = task_util_est(p); 9627 9628 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9629 goto next; 9630 9631 env->imbalance -= util; 9632 break; 9633 9634 case migrate_task: 9635 env->imbalance--; 9636 break; 9637 9638 case migrate_misfit: 9639 /* This is not a misfit task */ 9640 if (task_fits_cpu(p, env->src_cpu)) 9641 goto next; 9642 9643 env->imbalance = 0; 9644 break; 9645 } 9646 9647 detach_task(p, env); 9648 list_add(&p->se.group_node, &env->tasks); 9649 9650 detached++; 9651 9652 #ifdef CONFIG_PREEMPTION 9653 /* 9654 * NEWIDLE balancing is a source of latency, so preemptible 9655 * kernels will stop after the first task is detached to minimize 9656 * the critical section. 9657 */ 9658 if (env->idle == CPU_NEWLY_IDLE) 9659 break; 9660 #endif 9661 9662 /* 9663 * We only want to steal up to the prescribed amount of 9664 * load/util/tasks. 9665 */ 9666 if (env->imbalance <= 0) 9667 break; 9668 9669 continue; 9670 next: 9671 if (p->sched_task_hot) 9672 schedstat_inc(p->stats.nr_failed_migrations_hot); 9673 9674 list_move(&p->se.group_node, tasks); 9675 } 9676 9677 /* 9678 * Right now, this is one of only two places we collect this stat 9679 * so we can safely collect detach_one_task() stats here rather 9680 * than inside detach_one_task(). 9681 */ 9682 schedstat_add(env->sd->lb_gained[env->idle], detached); 9683 9684 return detached; 9685 } 9686 9687 /* 9688 * attach_task() -- attach the task detached by detach_task() to its new rq. 9689 */ 9690 static void attach_task(struct rq *rq, struct task_struct *p) 9691 { 9692 lockdep_assert_rq_held(rq); 9693 9694 WARN_ON_ONCE(task_rq(p) != rq); 9695 activate_task(rq, p, ENQUEUE_NOCLOCK); 9696 wakeup_preempt(rq, p, 0); 9697 } 9698 9699 /* 9700 * attach_one_task() -- attaches the task returned from detach_one_task() to 9701 * its new rq. 9702 */ 9703 static void attach_one_task(struct rq *rq, struct task_struct *p) 9704 { 9705 struct rq_flags rf; 9706 9707 rq_lock(rq, &rf); 9708 update_rq_clock(rq); 9709 attach_task(rq, p); 9710 rq_unlock(rq, &rf); 9711 } 9712 9713 /* 9714 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9715 * new rq. 9716 */ 9717 static void attach_tasks(struct lb_env *env) 9718 { 9719 struct list_head *tasks = &env->tasks; 9720 struct task_struct *p; 9721 struct rq_flags rf; 9722 9723 rq_lock(env->dst_rq, &rf); 9724 update_rq_clock(env->dst_rq); 9725 9726 while (!list_empty(tasks)) { 9727 p = list_first_entry(tasks, struct task_struct, se.group_node); 9728 list_del_init(&p->se.group_node); 9729 9730 attach_task(env->dst_rq, p); 9731 } 9732 9733 rq_unlock(env->dst_rq, &rf); 9734 } 9735 9736 #ifdef CONFIG_NO_HZ_COMMON 9737 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9738 { 9739 if (cfs_rq->avg.load_avg) 9740 return true; 9741 9742 if (cfs_rq->avg.util_avg) 9743 return true; 9744 9745 return false; 9746 } 9747 9748 static inline bool others_have_blocked(struct rq *rq) 9749 { 9750 if (cpu_util_rt(rq)) 9751 return true; 9752 9753 if (cpu_util_dl(rq)) 9754 return true; 9755 9756 if (hw_load_avg(rq)) 9757 return true; 9758 9759 if (cpu_util_irq(rq)) 9760 return true; 9761 9762 return false; 9763 } 9764 9765 static inline void update_blocked_load_tick(struct rq *rq) 9766 { 9767 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9768 } 9769 9770 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9771 { 9772 if (!has_blocked) 9773 rq->has_blocked_load = 0; 9774 } 9775 #else 9776 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9777 static inline bool others_have_blocked(struct rq *rq) { return false; } 9778 static inline void update_blocked_load_tick(struct rq *rq) {} 9779 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9780 #endif 9781 9782 static bool __update_blocked_others(struct rq *rq, bool *done) 9783 { 9784 bool updated; 9785 9786 /* 9787 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9788 * DL and IRQ signals have been updated before updating CFS. 9789 */ 9790 updated = update_other_load_avgs(rq); 9791 9792 if (others_have_blocked(rq)) 9793 *done = false; 9794 9795 return updated; 9796 } 9797 9798 #ifdef CONFIG_FAIR_GROUP_SCHED 9799 9800 static bool __update_blocked_fair(struct rq *rq, bool *done) 9801 { 9802 struct cfs_rq *cfs_rq, *pos; 9803 bool decayed = false; 9804 int cpu = cpu_of(rq); 9805 9806 /* 9807 * Iterates the task_group tree in a bottom up fashion, see 9808 * list_add_leaf_cfs_rq() for details. 9809 */ 9810 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9811 struct sched_entity *se; 9812 9813 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9814 update_tg_load_avg(cfs_rq); 9815 9816 if (cfs_rq->nr_queued == 0) 9817 update_idle_cfs_rq_clock_pelt(cfs_rq); 9818 9819 if (cfs_rq == &rq->cfs) 9820 decayed = true; 9821 } 9822 9823 /* Propagate pending load changes to the parent, if any: */ 9824 se = cfs_rq->tg->se[cpu]; 9825 if (se && !skip_blocked_update(se)) 9826 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9827 9828 /* 9829 * There can be a lot of idle CPU cgroups. Don't let fully 9830 * decayed cfs_rqs linger on the list. 9831 */ 9832 if (cfs_rq_is_decayed(cfs_rq)) 9833 list_del_leaf_cfs_rq(cfs_rq); 9834 9835 /* Don't need periodic decay once load/util_avg are null */ 9836 if (cfs_rq_has_blocked(cfs_rq)) 9837 *done = false; 9838 } 9839 9840 return decayed; 9841 } 9842 9843 /* 9844 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9845 * This needs to be done in a top-down fashion because the load of a child 9846 * group is a fraction of its parents load. 9847 */ 9848 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9849 { 9850 struct rq *rq = rq_of(cfs_rq); 9851 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9852 unsigned long now = jiffies; 9853 unsigned long load; 9854 9855 if (cfs_rq->last_h_load_update == now) 9856 return; 9857 9858 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9859 for_each_sched_entity(se) { 9860 cfs_rq = cfs_rq_of(se); 9861 WRITE_ONCE(cfs_rq->h_load_next, se); 9862 if (cfs_rq->last_h_load_update == now) 9863 break; 9864 } 9865 9866 if (!se) { 9867 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9868 cfs_rq->last_h_load_update = now; 9869 } 9870 9871 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9872 load = cfs_rq->h_load; 9873 load = div64_ul(load * se->avg.load_avg, 9874 cfs_rq_load_avg(cfs_rq) + 1); 9875 cfs_rq = group_cfs_rq(se); 9876 cfs_rq->h_load = load; 9877 cfs_rq->last_h_load_update = now; 9878 } 9879 } 9880 9881 static unsigned long task_h_load(struct task_struct *p) 9882 { 9883 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9884 9885 update_cfs_rq_h_load(cfs_rq); 9886 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9887 cfs_rq_load_avg(cfs_rq) + 1); 9888 } 9889 #else 9890 static bool __update_blocked_fair(struct rq *rq, bool *done) 9891 { 9892 struct cfs_rq *cfs_rq = &rq->cfs; 9893 bool decayed; 9894 9895 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9896 if (cfs_rq_has_blocked(cfs_rq)) 9897 *done = false; 9898 9899 return decayed; 9900 } 9901 9902 static unsigned long task_h_load(struct task_struct *p) 9903 { 9904 return p->se.avg.load_avg; 9905 } 9906 #endif 9907 9908 static void sched_balance_update_blocked_averages(int cpu) 9909 { 9910 bool decayed = false, done = true; 9911 struct rq *rq = cpu_rq(cpu); 9912 struct rq_flags rf; 9913 9914 rq_lock_irqsave(rq, &rf); 9915 update_blocked_load_tick(rq); 9916 update_rq_clock(rq); 9917 9918 decayed |= __update_blocked_others(rq, &done); 9919 decayed |= __update_blocked_fair(rq, &done); 9920 9921 update_blocked_load_status(rq, !done); 9922 if (decayed) 9923 cpufreq_update_util(rq, 0); 9924 rq_unlock_irqrestore(rq, &rf); 9925 } 9926 9927 /********** Helpers for sched_balance_find_src_group ************************/ 9928 9929 /* 9930 * sg_lb_stats - stats of a sched_group required for load-balancing: 9931 */ 9932 struct sg_lb_stats { 9933 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9934 unsigned long group_load; /* Total load over the CPUs of the group */ 9935 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9936 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9937 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9938 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9939 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9940 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9941 unsigned int group_weight; 9942 enum group_type group_type; 9943 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9944 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9945 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9946 #ifdef CONFIG_NUMA_BALANCING 9947 unsigned int nr_numa_running; 9948 unsigned int nr_preferred_running; 9949 #endif 9950 }; 9951 9952 /* 9953 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9954 */ 9955 struct sd_lb_stats { 9956 struct sched_group *busiest; /* Busiest group in this sd */ 9957 struct sched_group *local; /* Local group in this sd */ 9958 unsigned long total_load; /* Total load of all groups in sd */ 9959 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9960 unsigned long avg_load; /* Average load across all groups in sd */ 9961 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 9962 9963 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 9964 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9965 }; 9966 9967 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9968 { 9969 /* 9970 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9971 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9972 * We must however set busiest_stat::group_type and 9973 * busiest_stat::idle_cpus to the worst busiest group because 9974 * update_sd_pick_busiest() reads these before assignment. 9975 */ 9976 *sds = (struct sd_lb_stats){ 9977 .busiest = NULL, 9978 .local = NULL, 9979 .total_load = 0UL, 9980 .total_capacity = 0UL, 9981 .busiest_stat = { 9982 .idle_cpus = UINT_MAX, 9983 .group_type = group_has_spare, 9984 }, 9985 }; 9986 } 9987 9988 static unsigned long scale_rt_capacity(int cpu) 9989 { 9990 unsigned long max = get_actual_cpu_capacity(cpu); 9991 struct rq *rq = cpu_rq(cpu); 9992 unsigned long used, free; 9993 unsigned long irq; 9994 9995 irq = cpu_util_irq(rq); 9996 9997 if (unlikely(irq >= max)) 9998 return 1; 9999 10000 /* 10001 * avg_rt.util_avg and avg_dl.util_avg track binary signals 10002 * (running and not running) with weights 0 and 1024 respectively. 10003 */ 10004 used = cpu_util_rt(rq); 10005 used += cpu_util_dl(rq); 10006 10007 if (unlikely(used >= max)) 10008 return 1; 10009 10010 free = max - used; 10011 10012 return scale_irq_capacity(free, irq, max); 10013 } 10014 10015 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 10016 { 10017 unsigned long capacity = scale_rt_capacity(cpu); 10018 struct sched_group *sdg = sd->groups; 10019 10020 if (!capacity) 10021 capacity = 1; 10022 10023 cpu_rq(cpu)->cpu_capacity = capacity; 10024 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 10025 10026 sdg->sgc->capacity = capacity; 10027 sdg->sgc->min_capacity = capacity; 10028 sdg->sgc->max_capacity = capacity; 10029 } 10030 10031 void update_group_capacity(struct sched_domain *sd, int cpu) 10032 { 10033 struct sched_domain *child = sd->child; 10034 struct sched_group *group, *sdg = sd->groups; 10035 unsigned long capacity, min_capacity, max_capacity; 10036 unsigned long interval; 10037 10038 interval = msecs_to_jiffies(sd->balance_interval); 10039 interval = clamp(interval, 1UL, max_load_balance_interval); 10040 sdg->sgc->next_update = jiffies + interval; 10041 10042 if (!child) { 10043 update_cpu_capacity(sd, cpu); 10044 return; 10045 } 10046 10047 capacity = 0; 10048 min_capacity = ULONG_MAX; 10049 max_capacity = 0; 10050 10051 if (child->flags & SD_OVERLAP) { 10052 /* 10053 * SD_OVERLAP domains cannot assume that child groups 10054 * span the current group. 10055 */ 10056 10057 for_each_cpu(cpu, sched_group_span(sdg)) { 10058 unsigned long cpu_cap = capacity_of(cpu); 10059 10060 capacity += cpu_cap; 10061 min_capacity = min(cpu_cap, min_capacity); 10062 max_capacity = max(cpu_cap, max_capacity); 10063 } 10064 } else { 10065 /* 10066 * !SD_OVERLAP domains can assume that child groups 10067 * span the current group. 10068 */ 10069 10070 group = child->groups; 10071 do { 10072 struct sched_group_capacity *sgc = group->sgc; 10073 10074 capacity += sgc->capacity; 10075 min_capacity = min(sgc->min_capacity, min_capacity); 10076 max_capacity = max(sgc->max_capacity, max_capacity); 10077 group = group->next; 10078 } while (group != child->groups); 10079 } 10080 10081 sdg->sgc->capacity = capacity; 10082 sdg->sgc->min_capacity = min_capacity; 10083 sdg->sgc->max_capacity = max_capacity; 10084 } 10085 10086 /* 10087 * Check whether the capacity of the rq has been noticeably reduced by side 10088 * activity. The imbalance_pct is used for the threshold. 10089 * Return true is the capacity is reduced 10090 */ 10091 static inline int 10092 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 10093 { 10094 return ((rq->cpu_capacity * sd->imbalance_pct) < 10095 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 10096 } 10097 10098 /* Check if the rq has a misfit task */ 10099 static inline bool check_misfit_status(struct rq *rq) 10100 { 10101 return rq->misfit_task_load; 10102 } 10103 10104 /* 10105 * Group imbalance indicates (and tries to solve) the problem where balancing 10106 * groups is inadequate due to ->cpus_ptr constraints. 10107 * 10108 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 10109 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 10110 * Something like: 10111 * 10112 * { 0 1 2 3 } { 4 5 6 7 } 10113 * * * * * 10114 * 10115 * If we were to balance group-wise we'd place two tasks in the first group and 10116 * two tasks in the second group. Clearly this is undesired as it will overload 10117 * cpu 3 and leave one of the CPUs in the second group unused. 10118 * 10119 * The current solution to this issue is detecting the skew in the first group 10120 * by noticing the lower domain failed to reach balance and had difficulty 10121 * moving tasks due to affinity constraints. 10122 * 10123 * When this is so detected; this group becomes a candidate for busiest; see 10124 * update_sd_pick_busiest(). And calculate_imbalance() and 10125 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 10126 * to create an effective group imbalance. 10127 * 10128 * This is a somewhat tricky proposition since the next run might not find the 10129 * group imbalance and decide the groups need to be balanced again. A most 10130 * subtle and fragile situation. 10131 */ 10132 10133 static inline int sg_imbalanced(struct sched_group *group) 10134 { 10135 return group->sgc->imbalance; 10136 } 10137 10138 /* 10139 * group_has_capacity returns true if the group has spare capacity that could 10140 * be used by some tasks. 10141 * We consider that a group has spare capacity if the number of task is 10142 * smaller than the number of CPUs or if the utilization is lower than the 10143 * available capacity for CFS tasks. 10144 * For the latter, we use a threshold to stabilize the state, to take into 10145 * account the variance of the tasks' load and to return true if the available 10146 * capacity in meaningful for the load balancer. 10147 * As an example, an available capacity of 1% can appear but it doesn't make 10148 * any benefit for the load balance. 10149 */ 10150 static inline bool 10151 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10152 { 10153 if (sgs->sum_nr_running < sgs->group_weight) 10154 return true; 10155 10156 if ((sgs->group_capacity * imbalance_pct) < 10157 (sgs->group_runnable * 100)) 10158 return false; 10159 10160 if ((sgs->group_capacity * 100) > 10161 (sgs->group_util * imbalance_pct)) 10162 return true; 10163 10164 return false; 10165 } 10166 10167 /* 10168 * group_is_overloaded returns true if the group has more tasks than it can 10169 * handle. 10170 * group_is_overloaded is not equals to !group_has_capacity because a group 10171 * with the exact right number of tasks, has no more spare capacity but is not 10172 * overloaded so both group_has_capacity and group_is_overloaded return 10173 * false. 10174 */ 10175 static inline bool 10176 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10177 { 10178 if (sgs->sum_nr_running <= sgs->group_weight) 10179 return false; 10180 10181 if ((sgs->group_capacity * 100) < 10182 (sgs->group_util * imbalance_pct)) 10183 return true; 10184 10185 if ((sgs->group_capacity * imbalance_pct) < 10186 (sgs->group_runnable * 100)) 10187 return true; 10188 10189 return false; 10190 } 10191 10192 static inline enum 10193 group_type group_classify(unsigned int imbalance_pct, 10194 struct sched_group *group, 10195 struct sg_lb_stats *sgs) 10196 { 10197 if (group_is_overloaded(imbalance_pct, sgs)) 10198 return group_overloaded; 10199 10200 if (sg_imbalanced(group)) 10201 return group_imbalanced; 10202 10203 if (sgs->group_asym_packing) 10204 return group_asym_packing; 10205 10206 if (sgs->group_smt_balance) 10207 return group_smt_balance; 10208 10209 if (sgs->group_misfit_task_load) 10210 return group_misfit_task; 10211 10212 if (!group_has_capacity(imbalance_pct, sgs)) 10213 return group_fully_busy; 10214 10215 return group_has_spare; 10216 } 10217 10218 /** 10219 * sched_use_asym_prio - Check whether asym_packing priority must be used 10220 * @sd: The scheduling domain of the load balancing 10221 * @cpu: A CPU 10222 * 10223 * Always use CPU priority when balancing load between SMT siblings. When 10224 * balancing load between cores, it is not sufficient that @cpu is idle. Only 10225 * use CPU priority if the whole core is idle. 10226 * 10227 * Returns: True if the priority of @cpu must be followed. False otherwise. 10228 */ 10229 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 10230 { 10231 if (!(sd->flags & SD_ASYM_PACKING)) 10232 return false; 10233 10234 if (!sched_smt_active()) 10235 return true; 10236 10237 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 10238 } 10239 10240 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 10241 { 10242 /* 10243 * First check if @dst_cpu can do asym_packing load balance. Only do it 10244 * if it has higher priority than @src_cpu. 10245 */ 10246 return sched_use_asym_prio(sd, dst_cpu) && 10247 sched_asym_prefer(dst_cpu, src_cpu); 10248 } 10249 10250 /** 10251 * sched_group_asym - Check if the destination CPU can do asym_packing balance 10252 * @env: The load balancing environment 10253 * @sgs: Load-balancing statistics of the candidate busiest group 10254 * @group: The candidate busiest group 10255 * 10256 * @env::dst_cpu can do asym_packing if it has higher priority than the 10257 * preferred CPU of @group. 10258 * 10259 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 10260 * otherwise. 10261 */ 10262 static inline bool 10263 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 10264 { 10265 /* 10266 * CPU priorities do not make sense for SMT cores with more than one 10267 * busy sibling. 10268 */ 10269 if ((group->flags & SD_SHARE_CPUCAPACITY) && 10270 (sgs->group_weight - sgs->idle_cpus != 1)) 10271 return false; 10272 10273 return sched_asym(env->sd, env->dst_cpu, READ_ONCE(group->asym_prefer_cpu)); 10274 } 10275 10276 /* One group has more than one SMT CPU while the other group does not */ 10277 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 10278 struct sched_group *sg2) 10279 { 10280 if (!sg1 || !sg2) 10281 return false; 10282 10283 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 10284 (sg2->flags & SD_SHARE_CPUCAPACITY); 10285 } 10286 10287 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 10288 struct sched_group *group) 10289 { 10290 if (!env->idle) 10291 return false; 10292 10293 /* 10294 * For SMT source group, it is better to move a task 10295 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 10296 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 10297 * will not be on. 10298 */ 10299 if (group->flags & SD_SHARE_CPUCAPACITY && 10300 sgs->sum_h_nr_running > 1) 10301 return true; 10302 10303 return false; 10304 } 10305 10306 static inline long sibling_imbalance(struct lb_env *env, 10307 struct sd_lb_stats *sds, 10308 struct sg_lb_stats *busiest, 10309 struct sg_lb_stats *local) 10310 { 10311 int ncores_busiest, ncores_local; 10312 long imbalance; 10313 10314 if (!env->idle || !busiest->sum_nr_running) 10315 return 0; 10316 10317 ncores_busiest = sds->busiest->cores; 10318 ncores_local = sds->local->cores; 10319 10320 if (ncores_busiest == ncores_local) { 10321 imbalance = busiest->sum_nr_running; 10322 lsub_positive(&imbalance, local->sum_nr_running); 10323 return imbalance; 10324 } 10325 10326 /* Balance such that nr_running/ncores ratio are same on both groups */ 10327 imbalance = ncores_local * busiest->sum_nr_running; 10328 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 10329 /* Normalize imbalance and do rounding on normalization */ 10330 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 10331 imbalance /= ncores_local + ncores_busiest; 10332 10333 /* Take advantage of resource in an empty sched group */ 10334 if (imbalance <= 1 && local->sum_nr_running == 0 && 10335 busiest->sum_nr_running > 1) 10336 imbalance = 2; 10337 10338 return imbalance; 10339 } 10340 10341 static inline bool 10342 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 10343 { 10344 /* 10345 * When there is more than 1 task, the group_overloaded case already 10346 * takes care of cpu with reduced capacity 10347 */ 10348 if (rq->cfs.h_nr_runnable != 1) 10349 return false; 10350 10351 return check_cpu_capacity(rq, sd); 10352 } 10353 10354 /** 10355 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 10356 * @env: The load balancing environment. 10357 * @sds: Load-balancing data with statistics of the local group. 10358 * @group: sched_group whose statistics are to be updated. 10359 * @sgs: variable to hold the statistics for this group. 10360 * @sg_overloaded: sched_group is overloaded 10361 * @sg_overutilized: sched_group is overutilized 10362 */ 10363 static inline void update_sg_lb_stats(struct lb_env *env, 10364 struct sd_lb_stats *sds, 10365 struct sched_group *group, 10366 struct sg_lb_stats *sgs, 10367 bool *sg_overloaded, 10368 bool *sg_overutilized) 10369 { 10370 int i, nr_running, local_group, sd_flags = env->sd->flags; 10371 bool balancing_at_rd = !env->sd->parent; 10372 10373 memset(sgs, 0, sizeof(*sgs)); 10374 10375 local_group = group == sds->local; 10376 10377 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10378 struct rq *rq = cpu_rq(i); 10379 unsigned long load = cpu_load(rq); 10380 10381 sgs->group_load += load; 10382 sgs->group_util += cpu_util_cfs(i); 10383 sgs->group_runnable += cpu_runnable(rq); 10384 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable; 10385 10386 nr_running = rq->nr_running; 10387 sgs->sum_nr_running += nr_running; 10388 10389 if (cpu_overutilized(i)) 10390 *sg_overutilized = 1; 10391 10392 /* 10393 * No need to call idle_cpu() if nr_running is not 0 10394 */ 10395 if (!nr_running && idle_cpu(i)) { 10396 sgs->idle_cpus++; 10397 /* Idle cpu can't have misfit task */ 10398 continue; 10399 } 10400 10401 /* Overload indicator is only updated at root domain */ 10402 if (balancing_at_rd && nr_running > 1) 10403 *sg_overloaded = 1; 10404 10405 #ifdef CONFIG_NUMA_BALANCING 10406 /* Only fbq_classify_group() uses this to classify NUMA groups */ 10407 if (sd_flags & SD_NUMA) { 10408 sgs->nr_numa_running += rq->nr_numa_running; 10409 sgs->nr_preferred_running += rq->nr_preferred_running; 10410 } 10411 #endif 10412 if (local_group) 10413 continue; 10414 10415 if (sd_flags & SD_ASYM_CPUCAPACITY) { 10416 /* Check for a misfit task on the cpu */ 10417 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 10418 sgs->group_misfit_task_load = rq->misfit_task_load; 10419 *sg_overloaded = 1; 10420 } 10421 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 10422 /* Check for a task running on a CPU with reduced capacity */ 10423 if (sgs->group_misfit_task_load < load) 10424 sgs->group_misfit_task_load = load; 10425 } 10426 } 10427 10428 sgs->group_capacity = group->sgc->capacity; 10429 10430 sgs->group_weight = group->group_weight; 10431 10432 /* Check if dst CPU is idle and preferred to this group */ 10433 if (!local_group && env->idle && sgs->sum_h_nr_running && 10434 sched_group_asym(env, sgs, group)) 10435 sgs->group_asym_packing = 1; 10436 10437 /* Check for loaded SMT group to be balanced to dst CPU */ 10438 if (!local_group && smt_balance(env, sgs, group)) 10439 sgs->group_smt_balance = 1; 10440 10441 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10442 10443 /* Computing avg_load makes sense only when group is overloaded */ 10444 if (sgs->group_type == group_overloaded) 10445 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10446 sgs->group_capacity; 10447 } 10448 10449 /** 10450 * update_sd_pick_busiest - return 1 on busiest group 10451 * @env: The load balancing environment. 10452 * @sds: sched_domain statistics 10453 * @sg: sched_group candidate to be checked for being the busiest 10454 * @sgs: sched_group statistics 10455 * 10456 * Determine if @sg is a busier group than the previously selected 10457 * busiest group. 10458 * 10459 * Return: %true if @sg is a busier group than the previously selected 10460 * busiest group. %false otherwise. 10461 */ 10462 static bool update_sd_pick_busiest(struct lb_env *env, 10463 struct sd_lb_stats *sds, 10464 struct sched_group *sg, 10465 struct sg_lb_stats *sgs) 10466 { 10467 struct sg_lb_stats *busiest = &sds->busiest_stat; 10468 10469 /* Make sure that there is at least one task to pull */ 10470 if (!sgs->sum_h_nr_running) 10471 return false; 10472 10473 /* 10474 * Don't try to pull misfit tasks we can't help. 10475 * We can use max_capacity here as reduction in capacity on some 10476 * CPUs in the group should either be possible to resolve 10477 * internally or be covered by avg_load imbalance (eventually). 10478 */ 10479 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10480 (sgs->group_type == group_misfit_task) && 10481 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10482 sds->local_stat.group_type != group_has_spare)) 10483 return false; 10484 10485 if (sgs->group_type > busiest->group_type) 10486 return true; 10487 10488 if (sgs->group_type < busiest->group_type) 10489 return false; 10490 10491 /* 10492 * The candidate and the current busiest group are the same type of 10493 * group. Let check which one is the busiest according to the type. 10494 */ 10495 10496 switch (sgs->group_type) { 10497 case group_overloaded: 10498 /* Select the overloaded group with highest avg_load. */ 10499 return sgs->avg_load > busiest->avg_load; 10500 10501 case group_imbalanced: 10502 /* 10503 * Select the 1st imbalanced group as we don't have any way to 10504 * choose one more than another. 10505 */ 10506 return false; 10507 10508 case group_asym_packing: 10509 /* Prefer to move from lowest priority CPU's work */ 10510 return sched_asym_prefer(READ_ONCE(sds->busiest->asym_prefer_cpu), 10511 READ_ONCE(sg->asym_prefer_cpu)); 10512 10513 case group_misfit_task: 10514 /* 10515 * If we have more than one misfit sg go with the biggest 10516 * misfit. 10517 */ 10518 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10519 10520 case group_smt_balance: 10521 /* 10522 * Check if we have spare CPUs on either SMT group to 10523 * choose has spare or fully busy handling. 10524 */ 10525 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10526 goto has_spare; 10527 10528 fallthrough; 10529 10530 case group_fully_busy: 10531 /* 10532 * Select the fully busy group with highest avg_load. In 10533 * theory, there is no need to pull task from such kind of 10534 * group because tasks have all compute capacity that they need 10535 * but we can still improve the overall throughput by reducing 10536 * contention when accessing shared HW resources. 10537 * 10538 * XXX for now avg_load is not computed and always 0 so we 10539 * select the 1st one, except if @sg is composed of SMT 10540 * siblings. 10541 */ 10542 10543 if (sgs->avg_load < busiest->avg_load) 10544 return false; 10545 10546 if (sgs->avg_load == busiest->avg_load) { 10547 /* 10548 * SMT sched groups need more help than non-SMT groups. 10549 * If @sg happens to also be SMT, either choice is good. 10550 */ 10551 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10552 return false; 10553 } 10554 10555 break; 10556 10557 case group_has_spare: 10558 /* 10559 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10560 * as we do not want to pull task off SMT core with one task 10561 * and make the core idle. 10562 */ 10563 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10564 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10565 return false; 10566 else 10567 return true; 10568 } 10569 has_spare: 10570 10571 /* 10572 * Select not overloaded group with lowest number of idle CPUs 10573 * and highest number of running tasks. We could also compare 10574 * the spare capacity which is more stable but it can end up 10575 * that the group has less spare capacity but finally more idle 10576 * CPUs which means less opportunity to pull tasks. 10577 */ 10578 if (sgs->idle_cpus > busiest->idle_cpus) 10579 return false; 10580 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10581 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10582 return false; 10583 10584 break; 10585 } 10586 10587 /* 10588 * Candidate sg has no more than one task per CPU and has higher 10589 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10590 * throughput. Maximize throughput, power/energy consequences are not 10591 * considered. 10592 */ 10593 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10594 (sgs->group_type <= group_fully_busy) && 10595 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10596 return false; 10597 10598 return true; 10599 } 10600 10601 #ifdef CONFIG_NUMA_BALANCING 10602 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10603 { 10604 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10605 return regular; 10606 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10607 return remote; 10608 return all; 10609 } 10610 10611 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10612 { 10613 if (rq->nr_running > rq->nr_numa_running) 10614 return regular; 10615 if (rq->nr_running > rq->nr_preferred_running) 10616 return remote; 10617 return all; 10618 } 10619 #else 10620 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10621 { 10622 return all; 10623 } 10624 10625 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10626 { 10627 return regular; 10628 } 10629 #endif /* CONFIG_NUMA_BALANCING */ 10630 10631 10632 struct sg_lb_stats; 10633 10634 /* 10635 * task_running_on_cpu - return 1 if @p is running on @cpu. 10636 */ 10637 10638 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10639 { 10640 /* Task has no contribution or is new */ 10641 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10642 return 0; 10643 10644 if (task_on_rq_queued(p)) 10645 return 1; 10646 10647 return 0; 10648 } 10649 10650 /** 10651 * idle_cpu_without - would a given CPU be idle without p ? 10652 * @cpu: the processor on which idleness is tested. 10653 * @p: task which should be ignored. 10654 * 10655 * Return: 1 if the CPU would be idle. 0 otherwise. 10656 */ 10657 static int idle_cpu_without(int cpu, struct task_struct *p) 10658 { 10659 struct rq *rq = cpu_rq(cpu); 10660 10661 if (rq->curr != rq->idle && rq->curr != p) 10662 return 0; 10663 10664 /* 10665 * rq->nr_running can't be used but an updated version without the 10666 * impact of p on cpu must be used instead. The updated nr_running 10667 * be computed and tested before calling idle_cpu_without(). 10668 */ 10669 10670 if (rq->ttwu_pending) 10671 return 0; 10672 10673 return 1; 10674 } 10675 10676 /* 10677 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10678 * @sd: The sched_domain level to look for idlest group. 10679 * @group: sched_group whose statistics are to be updated. 10680 * @sgs: variable to hold the statistics for this group. 10681 * @p: The task for which we look for the idlest group/CPU. 10682 */ 10683 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10684 struct sched_group *group, 10685 struct sg_lb_stats *sgs, 10686 struct task_struct *p) 10687 { 10688 int i, nr_running; 10689 10690 memset(sgs, 0, sizeof(*sgs)); 10691 10692 /* Assume that task can't fit any CPU of the group */ 10693 if (sd->flags & SD_ASYM_CPUCAPACITY) 10694 sgs->group_misfit_task_load = 1; 10695 10696 for_each_cpu(i, sched_group_span(group)) { 10697 struct rq *rq = cpu_rq(i); 10698 unsigned int local; 10699 10700 sgs->group_load += cpu_load_without(rq, p); 10701 sgs->group_util += cpu_util_without(i, p); 10702 sgs->group_runnable += cpu_runnable_without(rq, p); 10703 local = task_running_on_cpu(i, p); 10704 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local; 10705 10706 nr_running = rq->nr_running - local; 10707 sgs->sum_nr_running += nr_running; 10708 10709 /* 10710 * No need to call idle_cpu_without() if nr_running is not 0 10711 */ 10712 if (!nr_running && idle_cpu_without(i, p)) 10713 sgs->idle_cpus++; 10714 10715 /* Check if task fits in the CPU */ 10716 if (sd->flags & SD_ASYM_CPUCAPACITY && 10717 sgs->group_misfit_task_load && 10718 task_fits_cpu(p, i)) 10719 sgs->group_misfit_task_load = 0; 10720 10721 } 10722 10723 sgs->group_capacity = group->sgc->capacity; 10724 10725 sgs->group_weight = group->group_weight; 10726 10727 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10728 10729 /* 10730 * Computing avg_load makes sense only when group is fully busy or 10731 * overloaded 10732 */ 10733 if (sgs->group_type == group_fully_busy || 10734 sgs->group_type == group_overloaded) 10735 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10736 sgs->group_capacity; 10737 } 10738 10739 static bool update_pick_idlest(struct sched_group *idlest, 10740 struct sg_lb_stats *idlest_sgs, 10741 struct sched_group *group, 10742 struct sg_lb_stats *sgs) 10743 { 10744 if (sgs->group_type < idlest_sgs->group_type) 10745 return true; 10746 10747 if (sgs->group_type > idlest_sgs->group_type) 10748 return false; 10749 10750 /* 10751 * The candidate and the current idlest group are the same type of 10752 * group. Let check which one is the idlest according to the type. 10753 */ 10754 10755 switch (sgs->group_type) { 10756 case group_overloaded: 10757 case group_fully_busy: 10758 /* Select the group with lowest avg_load. */ 10759 if (idlest_sgs->avg_load <= sgs->avg_load) 10760 return false; 10761 break; 10762 10763 case group_imbalanced: 10764 case group_asym_packing: 10765 case group_smt_balance: 10766 /* Those types are not used in the slow wakeup path */ 10767 return false; 10768 10769 case group_misfit_task: 10770 /* Select group with the highest max capacity */ 10771 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10772 return false; 10773 break; 10774 10775 case group_has_spare: 10776 /* Select group with most idle CPUs */ 10777 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10778 return false; 10779 10780 /* Select group with lowest group_util */ 10781 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10782 idlest_sgs->group_util <= sgs->group_util) 10783 return false; 10784 10785 break; 10786 } 10787 10788 return true; 10789 } 10790 10791 /* 10792 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10793 * domain. 10794 * 10795 * Assumes p is allowed on at least one CPU in sd. 10796 */ 10797 static struct sched_group * 10798 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10799 { 10800 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10801 struct sg_lb_stats local_sgs, tmp_sgs; 10802 struct sg_lb_stats *sgs; 10803 unsigned long imbalance; 10804 struct sg_lb_stats idlest_sgs = { 10805 .avg_load = UINT_MAX, 10806 .group_type = group_overloaded, 10807 }; 10808 10809 do { 10810 int local_group; 10811 10812 /* Skip over this group if it has no CPUs allowed */ 10813 if (!cpumask_intersects(sched_group_span(group), 10814 p->cpus_ptr)) 10815 continue; 10816 10817 /* Skip over this group if no cookie matched */ 10818 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10819 continue; 10820 10821 local_group = cpumask_test_cpu(this_cpu, 10822 sched_group_span(group)); 10823 10824 if (local_group) { 10825 sgs = &local_sgs; 10826 local = group; 10827 } else { 10828 sgs = &tmp_sgs; 10829 } 10830 10831 update_sg_wakeup_stats(sd, group, sgs, p); 10832 10833 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10834 idlest = group; 10835 idlest_sgs = *sgs; 10836 } 10837 10838 } while (group = group->next, group != sd->groups); 10839 10840 10841 /* There is no idlest group to push tasks to */ 10842 if (!idlest) 10843 return NULL; 10844 10845 /* The local group has been skipped because of CPU affinity */ 10846 if (!local) 10847 return idlest; 10848 10849 /* 10850 * If the local group is idler than the selected idlest group 10851 * don't try and push the task. 10852 */ 10853 if (local_sgs.group_type < idlest_sgs.group_type) 10854 return NULL; 10855 10856 /* 10857 * If the local group is busier than the selected idlest group 10858 * try and push the task. 10859 */ 10860 if (local_sgs.group_type > idlest_sgs.group_type) 10861 return idlest; 10862 10863 switch (local_sgs.group_type) { 10864 case group_overloaded: 10865 case group_fully_busy: 10866 10867 /* Calculate allowed imbalance based on load */ 10868 imbalance = scale_load_down(NICE_0_LOAD) * 10869 (sd->imbalance_pct-100) / 100; 10870 10871 /* 10872 * When comparing groups across NUMA domains, it's possible for 10873 * the local domain to be very lightly loaded relative to the 10874 * remote domains but "imbalance" skews the comparison making 10875 * remote CPUs look much more favourable. When considering 10876 * cross-domain, add imbalance to the load on the remote node 10877 * and consider staying local. 10878 */ 10879 10880 if ((sd->flags & SD_NUMA) && 10881 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10882 return NULL; 10883 10884 /* 10885 * If the local group is less loaded than the selected 10886 * idlest group don't try and push any tasks. 10887 */ 10888 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10889 return NULL; 10890 10891 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10892 return NULL; 10893 break; 10894 10895 case group_imbalanced: 10896 case group_asym_packing: 10897 case group_smt_balance: 10898 /* Those type are not used in the slow wakeup path */ 10899 return NULL; 10900 10901 case group_misfit_task: 10902 /* Select group with the highest max capacity */ 10903 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10904 return NULL; 10905 break; 10906 10907 case group_has_spare: 10908 #ifdef CONFIG_NUMA 10909 if (sd->flags & SD_NUMA) { 10910 int imb_numa_nr = sd->imb_numa_nr; 10911 #ifdef CONFIG_NUMA_BALANCING 10912 int idlest_cpu; 10913 /* 10914 * If there is spare capacity at NUMA, try to select 10915 * the preferred node 10916 */ 10917 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10918 return NULL; 10919 10920 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10921 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10922 return idlest; 10923 #endif /* CONFIG_NUMA_BALANCING */ 10924 /* 10925 * Otherwise, keep the task close to the wakeup source 10926 * and improve locality if the number of running tasks 10927 * would remain below threshold where an imbalance is 10928 * allowed while accounting for the possibility the 10929 * task is pinned to a subset of CPUs. If there is a 10930 * real need of migration, periodic load balance will 10931 * take care of it. 10932 */ 10933 if (p->nr_cpus_allowed != NR_CPUS) { 10934 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10935 10936 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10937 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10938 } 10939 10940 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10941 if (!adjust_numa_imbalance(imbalance, 10942 local_sgs.sum_nr_running + 1, 10943 imb_numa_nr)) { 10944 return NULL; 10945 } 10946 } 10947 #endif /* CONFIG_NUMA */ 10948 10949 /* 10950 * Select group with highest number of idle CPUs. We could also 10951 * compare the utilization which is more stable but it can end 10952 * up that the group has less spare capacity but finally more 10953 * idle CPUs which means more opportunity to run task. 10954 */ 10955 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10956 return NULL; 10957 break; 10958 } 10959 10960 return idlest; 10961 } 10962 10963 static void update_idle_cpu_scan(struct lb_env *env, 10964 unsigned long sum_util) 10965 { 10966 struct sched_domain_shared *sd_share; 10967 int llc_weight, pct; 10968 u64 x, y, tmp; 10969 /* 10970 * Update the number of CPUs to scan in LLC domain, which could 10971 * be used as a hint in select_idle_cpu(). The update of sd_share 10972 * could be expensive because it is within a shared cache line. 10973 * So the write of this hint only occurs during periodic load 10974 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10975 * can fire way more frequently than the former. 10976 */ 10977 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10978 return; 10979 10980 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10981 if (env->sd->span_weight != llc_weight) 10982 return; 10983 10984 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10985 if (!sd_share) 10986 return; 10987 10988 /* 10989 * The number of CPUs to search drops as sum_util increases, when 10990 * sum_util hits 85% or above, the scan stops. 10991 * The reason to choose 85% as the threshold is because this is the 10992 * imbalance_pct(117) when a LLC sched group is overloaded. 10993 * 10994 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10995 * and y'= y / SCHED_CAPACITY_SCALE 10996 * 10997 * x is the ratio of sum_util compared to the CPU capacity: 10998 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10999 * y' is the ratio of CPUs to be scanned in the LLC domain, 11000 * and the number of CPUs to scan is calculated by: 11001 * 11002 * nr_scan = llc_weight * y' [2] 11003 * 11004 * When x hits the threshold of overloaded, AKA, when 11005 * x = 100 / pct, y drops to 0. According to [1], 11006 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 11007 * 11008 * Scale x by SCHED_CAPACITY_SCALE: 11009 * x' = sum_util / llc_weight; [3] 11010 * 11011 * and finally [1] becomes: 11012 * y = SCHED_CAPACITY_SCALE - 11013 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 11014 * 11015 */ 11016 /* equation [3] */ 11017 x = sum_util; 11018 do_div(x, llc_weight); 11019 11020 /* equation [4] */ 11021 pct = env->sd->imbalance_pct; 11022 tmp = x * x * pct * pct; 11023 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 11024 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 11025 y = SCHED_CAPACITY_SCALE - tmp; 11026 11027 /* equation [2] */ 11028 y *= llc_weight; 11029 do_div(y, SCHED_CAPACITY_SCALE); 11030 if ((int)y != sd_share->nr_idle_scan) 11031 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 11032 } 11033 11034 /** 11035 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 11036 * @env: The load balancing environment. 11037 * @sds: variable to hold the statistics for this sched_domain. 11038 */ 11039 11040 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 11041 { 11042 struct sched_group *sg = env->sd->groups; 11043 struct sg_lb_stats *local = &sds->local_stat; 11044 struct sg_lb_stats tmp_sgs; 11045 unsigned long sum_util = 0; 11046 bool sg_overloaded = 0, sg_overutilized = 0; 11047 11048 do { 11049 struct sg_lb_stats *sgs = &tmp_sgs; 11050 int local_group; 11051 11052 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 11053 if (local_group) { 11054 sds->local = sg; 11055 sgs = local; 11056 11057 if (env->idle != CPU_NEWLY_IDLE || 11058 time_after_eq(jiffies, sg->sgc->next_update)) 11059 update_group_capacity(env->sd, env->dst_cpu); 11060 } 11061 11062 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 11063 11064 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 11065 sds->busiest = sg; 11066 sds->busiest_stat = *sgs; 11067 } 11068 11069 /* Now, start updating sd_lb_stats */ 11070 sds->total_load += sgs->group_load; 11071 sds->total_capacity += sgs->group_capacity; 11072 11073 sum_util += sgs->group_util; 11074 sg = sg->next; 11075 } while (sg != env->sd->groups); 11076 11077 /* 11078 * Indicate that the child domain of the busiest group prefers tasks 11079 * go to a child's sibling domains first. NB the flags of a sched group 11080 * are those of the child domain. 11081 */ 11082 if (sds->busiest) 11083 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 11084 11085 11086 if (env->sd->flags & SD_NUMA) 11087 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 11088 11089 if (!env->sd->parent) { 11090 /* update overload indicator if we are at root domain */ 11091 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 11092 11093 /* Update over-utilization (tipping point, U >= 0) indicator */ 11094 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11095 } else if (sg_overutilized) { 11096 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11097 } 11098 11099 update_idle_cpu_scan(env, sum_util); 11100 } 11101 11102 /** 11103 * calculate_imbalance - Calculate the amount of imbalance present within the 11104 * groups of a given sched_domain during load balance. 11105 * @env: load balance environment 11106 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 11107 */ 11108 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 11109 { 11110 struct sg_lb_stats *local, *busiest; 11111 11112 local = &sds->local_stat; 11113 busiest = &sds->busiest_stat; 11114 11115 if (busiest->group_type == group_misfit_task) { 11116 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 11117 /* Set imbalance to allow misfit tasks to be balanced. */ 11118 env->migration_type = migrate_misfit; 11119 env->imbalance = 1; 11120 } else { 11121 /* 11122 * Set load imbalance to allow moving task from cpu 11123 * with reduced capacity. 11124 */ 11125 env->migration_type = migrate_load; 11126 env->imbalance = busiest->group_misfit_task_load; 11127 } 11128 return; 11129 } 11130 11131 if (busiest->group_type == group_asym_packing) { 11132 /* 11133 * In case of asym capacity, we will try to migrate all load to 11134 * the preferred CPU. 11135 */ 11136 env->migration_type = migrate_task; 11137 env->imbalance = busiest->sum_h_nr_running; 11138 return; 11139 } 11140 11141 if (busiest->group_type == group_smt_balance) { 11142 /* Reduce number of tasks sharing CPU capacity */ 11143 env->migration_type = migrate_task; 11144 env->imbalance = 1; 11145 return; 11146 } 11147 11148 if (busiest->group_type == group_imbalanced) { 11149 /* 11150 * In the group_imb case we cannot rely on group-wide averages 11151 * to ensure CPU-load equilibrium, try to move any task to fix 11152 * the imbalance. The next load balance will take care of 11153 * balancing back the system. 11154 */ 11155 env->migration_type = migrate_task; 11156 env->imbalance = 1; 11157 return; 11158 } 11159 11160 /* 11161 * Try to use spare capacity of local group without overloading it or 11162 * emptying busiest. 11163 */ 11164 if (local->group_type == group_has_spare) { 11165 if ((busiest->group_type > group_fully_busy) && 11166 !(env->sd->flags & SD_SHARE_LLC)) { 11167 /* 11168 * If busiest is overloaded, try to fill spare 11169 * capacity. This might end up creating spare capacity 11170 * in busiest or busiest still being overloaded but 11171 * there is no simple way to directly compute the 11172 * amount of load to migrate in order to balance the 11173 * system. 11174 */ 11175 env->migration_type = migrate_util; 11176 env->imbalance = max(local->group_capacity, local->group_util) - 11177 local->group_util; 11178 11179 /* 11180 * In some cases, the group's utilization is max or even 11181 * higher than capacity because of migrations but the 11182 * local CPU is (newly) idle. There is at least one 11183 * waiting task in this overloaded busiest group. Let's 11184 * try to pull it. 11185 */ 11186 if (env->idle && env->imbalance == 0) { 11187 env->migration_type = migrate_task; 11188 env->imbalance = 1; 11189 } 11190 11191 return; 11192 } 11193 11194 if (busiest->group_weight == 1 || sds->prefer_sibling) { 11195 /* 11196 * When prefer sibling, evenly spread running tasks on 11197 * groups. 11198 */ 11199 env->migration_type = migrate_task; 11200 env->imbalance = sibling_imbalance(env, sds, busiest, local); 11201 } else { 11202 11203 /* 11204 * If there is no overload, we just want to even the number of 11205 * idle CPUs. 11206 */ 11207 env->migration_type = migrate_task; 11208 env->imbalance = max_t(long, 0, 11209 (local->idle_cpus - busiest->idle_cpus)); 11210 } 11211 11212 #ifdef CONFIG_NUMA 11213 /* Consider allowing a small imbalance between NUMA groups */ 11214 if (env->sd->flags & SD_NUMA) { 11215 env->imbalance = adjust_numa_imbalance(env->imbalance, 11216 local->sum_nr_running + 1, 11217 env->sd->imb_numa_nr); 11218 } 11219 #endif 11220 11221 /* Number of tasks to move to restore balance */ 11222 env->imbalance >>= 1; 11223 11224 return; 11225 } 11226 11227 /* 11228 * Local is fully busy but has to take more load to relieve the 11229 * busiest group 11230 */ 11231 if (local->group_type < group_overloaded) { 11232 /* 11233 * Local will become overloaded so the avg_load metrics are 11234 * finally needed. 11235 */ 11236 11237 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 11238 local->group_capacity; 11239 11240 /* 11241 * If the local group is more loaded than the selected 11242 * busiest group don't try to pull any tasks. 11243 */ 11244 if (local->avg_load >= busiest->avg_load) { 11245 env->imbalance = 0; 11246 return; 11247 } 11248 11249 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 11250 sds->total_capacity; 11251 11252 /* 11253 * If the local group is more loaded than the average system 11254 * load, don't try to pull any tasks. 11255 */ 11256 if (local->avg_load >= sds->avg_load) { 11257 env->imbalance = 0; 11258 return; 11259 } 11260 11261 } 11262 11263 /* 11264 * Both group are or will become overloaded and we're trying to get all 11265 * the CPUs to the average_load, so we don't want to push ourselves 11266 * above the average load, nor do we wish to reduce the max loaded CPU 11267 * below the average load. At the same time, we also don't want to 11268 * reduce the group load below the group capacity. Thus we look for 11269 * the minimum possible imbalance. 11270 */ 11271 env->migration_type = migrate_load; 11272 env->imbalance = min( 11273 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 11274 (sds->avg_load - local->avg_load) * local->group_capacity 11275 ) / SCHED_CAPACITY_SCALE; 11276 } 11277 11278 /******* sched_balance_find_src_group() helpers end here *********************/ 11279 11280 /* 11281 * Decision matrix according to the local and busiest group type: 11282 * 11283 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 11284 * has_spare nr_idle balanced N/A N/A balanced balanced 11285 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 11286 * misfit_task force N/A N/A N/A N/A N/A 11287 * asym_packing force force N/A N/A force force 11288 * imbalanced force force N/A N/A force force 11289 * overloaded force force N/A N/A force avg_load 11290 * 11291 * N/A : Not Applicable because already filtered while updating 11292 * statistics. 11293 * balanced : The system is balanced for these 2 groups. 11294 * force : Calculate the imbalance as load migration is probably needed. 11295 * avg_load : Only if imbalance is significant enough. 11296 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 11297 * different in groups. 11298 */ 11299 11300 /** 11301 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 11302 * if there is an imbalance. 11303 * @env: The load balancing environment. 11304 * 11305 * Also calculates the amount of runnable load which should be moved 11306 * to restore balance. 11307 * 11308 * Return: - The busiest group if imbalance exists. 11309 */ 11310 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 11311 { 11312 struct sg_lb_stats *local, *busiest; 11313 struct sd_lb_stats sds; 11314 11315 init_sd_lb_stats(&sds); 11316 11317 /* 11318 * Compute the various statistics relevant for load balancing at 11319 * this level. 11320 */ 11321 update_sd_lb_stats(env, &sds); 11322 11323 /* There is no busy sibling group to pull tasks from */ 11324 if (!sds.busiest) 11325 goto out_balanced; 11326 11327 busiest = &sds.busiest_stat; 11328 11329 /* Misfit tasks should be dealt with regardless of the avg load */ 11330 if (busiest->group_type == group_misfit_task) 11331 goto force_balance; 11332 11333 if (!is_rd_overutilized(env->dst_rq->rd) && 11334 rcu_dereference(env->dst_rq->rd->pd)) 11335 goto out_balanced; 11336 11337 /* ASYM feature bypasses nice load balance check */ 11338 if (busiest->group_type == group_asym_packing) 11339 goto force_balance; 11340 11341 /* 11342 * If the busiest group is imbalanced the below checks don't 11343 * work because they assume all things are equal, which typically 11344 * isn't true due to cpus_ptr constraints and the like. 11345 */ 11346 if (busiest->group_type == group_imbalanced) 11347 goto force_balance; 11348 11349 local = &sds.local_stat; 11350 /* 11351 * If the local group is busier than the selected busiest group 11352 * don't try and pull any tasks. 11353 */ 11354 if (local->group_type > busiest->group_type) 11355 goto out_balanced; 11356 11357 /* 11358 * When groups are overloaded, use the avg_load to ensure fairness 11359 * between tasks. 11360 */ 11361 if (local->group_type == group_overloaded) { 11362 /* 11363 * If the local group is more loaded than the selected 11364 * busiest group don't try to pull any tasks. 11365 */ 11366 if (local->avg_load >= busiest->avg_load) 11367 goto out_balanced; 11368 11369 /* XXX broken for overlapping NUMA groups */ 11370 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 11371 sds.total_capacity; 11372 11373 /* 11374 * Don't pull any tasks if this group is already above the 11375 * domain average load. 11376 */ 11377 if (local->avg_load >= sds.avg_load) 11378 goto out_balanced; 11379 11380 /* 11381 * If the busiest group is more loaded, use imbalance_pct to be 11382 * conservative. 11383 */ 11384 if (100 * busiest->avg_load <= 11385 env->sd->imbalance_pct * local->avg_load) 11386 goto out_balanced; 11387 } 11388 11389 /* 11390 * Try to move all excess tasks to a sibling domain of the busiest 11391 * group's child domain. 11392 */ 11393 if (sds.prefer_sibling && local->group_type == group_has_spare && 11394 sibling_imbalance(env, &sds, busiest, local) > 1) 11395 goto force_balance; 11396 11397 if (busiest->group_type != group_overloaded) { 11398 if (!env->idle) { 11399 /* 11400 * If the busiest group is not overloaded (and as a 11401 * result the local one too) but this CPU is already 11402 * busy, let another idle CPU try to pull task. 11403 */ 11404 goto out_balanced; 11405 } 11406 11407 if (busiest->group_type == group_smt_balance && 11408 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 11409 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 11410 goto force_balance; 11411 } 11412 11413 if (busiest->group_weight > 1 && 11414 local->idle_cpus <= (busiest->idle_cpus + 1)) { 11415 /* 11416 * If the busiest group is not overloaded 11417 * and there is no imbalance between this and busiest 11418 * group wrt idle CPUs, it is balanced. The imbalance 11419 * becomes significant if the diff is greater than 1 11420 * otherwise we might end up to just move the imbalance 11421 * on another group. Of course this applies only if 11422 * there is more than 1 CPU per group. 11423 */ 11424 goto out_balanced; 11425 } 11426 11427 if (busiest->sum_h_nr_running == 1) { 11428 /* 11429 * busiest doesn't have any tasks waiting to run 11430 */ 11431 goto out_balanced; 11432 } 11433 } 11434 11435 force_balance: 11436 /* Looks like there is an imbalance. Compute it */ 11437 calculate_imbalance(env, &sds); 11438 return env->imbalance ? sds.busiest : NULL; 11439 11440 out_balanced: 11441 env->imbalance = 0; 11442 return NULL; 11443 } 11444 11445 /* 11446 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11447 */ 11448 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11449 struct sched_group *group) 11450 { 11451 struct rq *busiest = NULL, *rq; 11452 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11453 unsigned int busiest_nr = 0; 11454 int i; 11455 11456 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11457 unsigned long capacity, load, util; 11458 unsigned int nr_running; 11459 enum fbq_type rt; 11460 11461 rq = cpu_rq(i); 11462 rt = fbq_classify_rq(rq); 11463 11464 /* 11465 * We classify groups/runqueues into three groups: 11466 * - regular: there are !numa tasks 11467 * - remote: there are numa tasks that run on the 'wrong' node 11468 * - all: there is no distinction 11469 * 11470 * In order to avoid migrating ideally placed numa tasks, 11471 * ignore those when there's better options. 11472 * 11473 * If we ignore the actual busiest queue to migrate another 11474 * task, the next balance pass can still reduce the busiest 11475 * queue by moving tasks around inside the node. 11476 * 11477 * If we cannot move enough load due to this classification 11478 * the next pass will adjust the group classification and 11479 * allow migration of more tasks. 11480 * 11481 * Both cases only affect the total convergence complexity. 11482 */ 11483 if (rt > env->fbq_type) 11484 continue; 11485 11486 nr_running = rq->cfs.h_nr_runnable; 11487 if (!nr_running) 11488 continue; 11489 11490 capacity = capacity_of(i); 11491 11492 /* 11493 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11494 * eventually lead to active_balancing high->low capacity. 11495 * Higher per-CPU capacity is considered better than balancing 11496 * average load. 11497 */ 11498 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11499 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11500 nr_running == 1) 11501 continue; 11502 11503 /* 11504 * Make sure we only pull tasks from a CPU of lower priority 11505 * when balancing between SMT siblings. 11506 * 11507 * If balancing between cores, let lower priority CPUs help 11508 * SMT cores with more than one busy sibling. 11509 */ 11510 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11511 continue; 11512 11513 switch (env->migration_type) { 11514 case migrate_load: 11515 /* 11516 * When comparing with load imbalance, use cpu_load() 11517 * which is not scaled with the CPU capacity. 11518 */ 11519 load = cpu_load(rq); 11520 11521 if (nr_running == 1 && load > env->imbalance && 11522 !check_cpu_capacity(rq, env->sd)) 11523 break; 11524 11525 /* 11526 * For the load comparisons with the other CPUs, 11527 * consider the cpu_load() scaled with the CPU 11528 * capacity, so that the load can be moved away 11529 * from the CPU that is potentially running at a 11530 * lower capacity. 11531 * 11532 * Thus we're looking for max(load_i / capacity_i), 11533 * crosswise multiplication to rid ourselves of the 11534 * division works out to: 11535 * load_i * capacity_j > load_j * capacity_i; 11536 * where j is our previous maximum. 11537 */ 11538 if (load * busiest_capacity > busiest_load * capacity) { 11539 busiest_load = load; 11540 busiest_capacity = capacity; 11541 busiest = rq; 11542 } 11543 break; 11544 11545 case migrate_util: 11546 util = cpu_util_cfs_boost(i); 11547 11548 /* 11549 * Don't try to pull utilization from a CPU with one 11550 * running task. Whatever its utilization, we will fail 11551 * detach the task. 11552 */ 11553 if (nr_running <= 1) 11554 continue; 11555 11556 if (busiest_util < util) { 11557 busiest_util = util; 11558 busiest = rq; 11559 } 11560 break; 11561 11562 case migrate_task: 11563 if (busiest_nr < nr_running) { 11564 busiest_nr = nr_running; 11565 busiest = rq; 11566 } 11567 break; 11568 11569 case migrate_misfit: 11570 /* 11571 * For ASYM_CPUCAPACITY domains with misfit tasks we 11572 * simply seek the "biggest" misfit task. 11573 */ 11574 if (rq->misfit_task_load > busiest_load) { 11575 busiest_load = rq->misfit_task_load; 11576 busiest = rq; 11577 } 11578 11579 break; 11580 11581 } 11582 } 11583 11584 return busiest; 11585 } 11586 11587 /* 11588 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11589 * so long as it is large enough. 11590 */ 11591 #define MAX_PINNED_INTERVAL 512 11592 11593 static inline bool 11594 asym_active_balance(struct lb_env *env) 11595 { 11596 /* 11597 * ASYM_PACKING needs to force migrate tasks from busy but lower 11598 * priority CPUs in order to pack all tasks in the highest priority 11599 * CPUs. When done between cores, do it only if the whole core if the 11600 * whole core is idle. 11601 * 11602 * If @env::src_cpu is an SMT core with busy siblings, let 11603 * the lower priority @env::dst_cpu help it. Do not follow 11604 * CPU priority. 11605 */ 11606 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11607 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11608 !sched_use_asym_prio(env->sd, env->src_cpu)); 11609 } 11610 11611 static inline bool 11612 imbalanced_active_balance(struct lb_env *env) 11613 { 11614 struct sched_domain *sd = env->sd; 11615 11616 /* 11617 * The imbalanced case includes the case of pinned tasks preventing a fair 11618 * distribution of the load on the system but also the even distribution of the 11619 * threads on a system with spare capacity 11620 */ 11621 if ((env->migration_type == migrate_task) && 11622 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11623 return 1; 11624 11625 return 0; 11626 } 11627 11628 static int need_active_balance(struct lb_env *env) 11629 { 11630 struct sched_domain *sd = env->sd; 11631 11632 if (asym_active_balance(env)) 11633 return 1; 11634 11635 if (imbalanced_active_balance(env)) 11636 return 1; 11637 11638 /* 11639 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11640 * It's worth migrating the task if the src_cpu's capacity is reduced 11641 * because of other sched_class or IRQs if more capacity stays 11642 * available on dst_cpu. 11643 */ 11644 if (env->idle && 11645 (env->src_rq->cfs.h_nr_runnable == 1)) { 11646 if ((check_cpu_capacity(env->src_rq, sd)) && 11647 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11648 return 1; 11649 } 11650 11651 if (env->migration_type == migrate_misfit) 11652 return 1; 11653 11654 return 0; 11655 } 11656 11657 static int active_load_balance_cpu_stop(void *data); 11658 11659 static int should_we_balance(struct lb_env *env) 11660 { 11661 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11662 struct sched_group *sg = env->sd->groups; 11663 int cpu, idle_smt = -1; 11664 11665 /* 11666 * Ensure the balancing environment is consistent; can happen 11667 * when the softirq triggers 'during' hotplug. 11668 */ 11669 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11670 return 0; 11671 11672 /* 11673 * In the newly idle case, we will allow all the CPUs 11674 * to do the newly idle load balance. 11675 * 11676 * However, we bail out if we already have tasks or a wakeup pending, 11677 * to optimize wakeup latency. 11678 */ 11679 if (env->idle == CPU_NEWLY_IDLE) { 11680 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11681 return 0; 11682 return 1; 11683 } 11684 11685 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11686 /* Try to find first idle CPU */ 11687 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11688 if (!idle_cpu(cpu)) 11689 continue; 11690 11691 /* 11692 * Don't balance to idle SMT in busy core right away when 11693 * balancing cores, but remember the first idle SMT CPU for 11694 * later consideration. Find CPU on an idle core first. 11695 */ 11696 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11697 if (idle_smt == -1) 11698 idle_smt = cpu; 11699 /* 11700 * If the core is not idle, and first SMT sibling which is 11701 * idle has been found, then its not needed to check other 11702 * SMT siblings for idleness: 11703 */ 11704 #ifdef CONFIG_SCHED_SMT 11705 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11706 #endif 11707 continue; 11708 } 11709 11710 /* 11711 * Are we the first idle core in a non-SMT domain or higher, 11712 * or the first idle CPU in a SMT domain? 11713 */ 11714 return cpu == env->dst_cpu; 11715 } 11716 11717 /* Are we the first idle CPU with busy siblings? */ 11718 if (idle_smt != -1) 11719 return idle_smt == env->dst_cpu; 11720 11721 /* Are we the first CPU of this group ? */ 11722 return group_balance_cpu(sg) == env->dst_cpu; 11723 } 11724 11725 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd, 11726 enum cpu_idle_type idle) 11727 { 11728 if (!schedstat_enabled()) 11729 return; 11730 11731 switch (env->migration_type) { 11732 case migrate_load: 11733 __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance); 11734 break; 11735 case migrate_util: 11736 __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance); 11737 break; 11738 case migrate_task: 11739 __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance); 11740 break; 11741 case migrate_misfit: 11742 __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance); 11743 break; 11744 } 11745 } 11746 11747 /* 11748 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11749 * tasks if there is an imbalance. 11750 */ 11751 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11752 struct sched_domain *sd, enum cpu_idle_type idle, 11753 int *continue_balancing) 11754 { 11755 int ld_moved, cur_ld_moved, active_balance = 0; 11756 struct sched_domain *sd_parent = sd->parent; 11757 struct sched_group *group; 11758 struct rq *busiest; 11759 struct rq_flags rf; 11760 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11761 struct lb_env env = { 11762 .sd = sd, 11763 .dst_cpu = this_cpu, 11764 .dst_rq = this_rq, 11765 .dst_grpmask = group_balance_mask(sd->groups), 11766 .idle = idle, 11767 .loop_break = SCHED_NR_MIGRATE_BREAK, 11768 .cpus = cpus, 11769 .fbq_type = all, 11770 .tasks = LIST_HEAD_INIT(env.tasks), 11771 }; 11772 11773 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11774 11775 schedstat_inc(sd->lb_count[idle]); 11776 11777 redo: 11778 if (!should_we_balance(&env)) { 11779 *continue_balancing = 0; 11780 goto out_balanced; 11781 } 11782 11783 group = sched_balance_find_src_group(&env); 11784 if (!group) { 11785 schedstat_inc(sd->lb_nobusyg[idle]); 11786 goto out_balanced; 11787 } 11788 11789 busiest = sched_balance_find_src_rq(&env, group); 11790 if (!busiest) { 11791 schedstat_inc(sd->lb_nobusyq[idle]); 11792 goto out_balanced; 11793 } 11794 11795 WARN_ON_ONCE(busiest == env.dst_rq); 11796 11797 update_lb_imbalance_stat(&env, sd, idle); 11798 11799 env.src_cpu = busiest->cpu; 11800 env.src_rq = busiest; 11801 11802 ld_moved = 0; 11803 /* Clear this flag as soon as we find a pullable task */ 11804 env.flags |= LBF_ALL_PINNED; 11805 if (busiest->nr_running > 1) { 11806 /* 11807 * Attempt to move tasks. If sched_balance_find_src_group has found 11808 * an imbalance but busiest->nr_running <= 1, the group is 11809 * still unbalanced. ld_moved simply stays zero, so it is 11810 * correctly treated as an imbalance. 11811 */ 11812 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11813 11814 more_balance: 11815 rq_lock_irqsave(busiest, &rf); 11816 update_rq_clock(busiest); 11817 11818 /* 11819 * cur_ld_moved - load moved in current iteration 11820 * ld_moved - cumulative load moved across iterations 11821 */ 11822 cur_ld_moved = detach_tasks(&env); 11823 11824 /* 11825 * We've detached some tasks from busiest_rq. Every 11826 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11827 * unlock busiest->lock, and we are able to be sure 11828 * that nobody can manipulate the tasks in parallel. 11829 * See task_rq_lock() family for the details. 11830 */ 11831 11832 rq_unlock(busiest, &rf); 11833 11834 if (cur_ld_moved) { 11835 attach_tasks(&env); 11836 ld_moved += cur_ld_moved; 11837 } 11838 11839 local_irq_restore(rf.flags); 11840 11841 if (env.flags & LBF_NEED_BREAK) { 11842 env.flags &= ~LBF_NEED_BREAK; 11843 goto more_balance; 11844 } 11845 11846 /* 11847 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11848 * us and move them to an alternate dst_cpu in our sched_group 11849 * where they can run. The upper limit on how many times we 11850 * iterate on same src_cpu is dependent on number of CPUs in our 11851 * sched_group. 11852 * 11853 * This changes load balance semantics a bit on who can move 11854 * load to a given_cpu. In addition to the given_cpu itself 11855 * (or a ilb_cpu acting on its behalf where given_cpu is 11856 * nohz-idle), we now have balance_cpu in a position to move 11857 * load to given_cpu. In rare situations, this may cause 11858 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11859 * _independently_ and at _same_ time to move some load to 11860 * given_cpu) causing excess load to be moved to given_cpu. 11861 * This however should not happen so much in practice and 11862 * moreover subsequent load balance cycles should correct the 11863 * excess load moved. 11864 */ 11865 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11866 11867 /* Prevent to re-select dst_cpu via env's CPUs */ 11868 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11869 11870 env.dst_rq = cpu_rq(env.new_dst_cpu); 11871 env.dst_cpu = env.new_dst_cpu; 11872 env.flags &= ~LBF_DST_PINNED; 11873 env.loop = 0; 11874 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11875 11876 /* 11877 * Go back to "more_balance" rather than "redo" since we 11878 * need to continue with same src_cpu. 11879 */ 11880 goto more_balance; 11881 } 11882 11883 /* 11884 * We failed to reach balance because of affinity. 11885 */ 11886 if (sd_parent) { 11887 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11888 11889 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11890 *group_imbalance = 1; 11891 } 11892 11893 /* All tasks on this runqueue were pinned by CPU affinity */ 11894 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11895 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11896 /* 11897 * Attempting to continue load balancing at the current 11898 * sched_domain level only makes sense if there are 11899 * active CPUs remaining as possible busiest CPUs to 11900 * pull load from which are not contained within the 11901 * destination group that is receiving any migrated 11902 * load. 11903 */ 11904 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11905 env.loop = 0; 11906 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11907 goto redo; 11908 } 11909 goto out_all_pinned; 11910 } 11911 } 11912 11913 if (!ld_moved) { 11914 schedstat_inc(sd->lb_failed[idle]); 11915 /* 11916 * Increment the failure counter only on periodic balance. 11917 * We do not want newidle balance, which can be very 11918 * frequent, pollute the failure counter causing 11919 * excessive cache_hot migrations and active balances. 11920 * 11921 * Similarly for migration_misfit which is not related to 11922 * load/util migration, don't pollute nr_balance_failed. 11923 */ 11924 if (idle != CPU_NEWLY_IDLE && 11925 env.migration_type != migrate_misfit) 11926 sd->nr_balance_failed++; 11927 11928 if (need_active_balance(&env)) { 11929 unsigned long flags; 11930 11931 raw_spin_rq_lock_irqsave(busiest, flags); 11932 11933 /* 11934 * Don't kick the active_load_balance_cpu_stop, 11935 * if the curr task on busiest CPU can't be 11936 * moved to this_cpu: 11937 */ 11938 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11939 raw_spin_rq_unlock_irqrestore(busiest, flags); 11940 goto out_one_pinned; 11941 } 11942 11943 /* Record that we found at least one task that could run on this_cpu */ 11944 env.flags &= ~LBF_ALL_PINNED; 11945 11946 /* 11947 * ->active_balance synchronizes accesses to 11948 * ->active_balance_work. Once set, it's cleared 11949 * only after active load balance is finished. 11950 */ 11951 if (!busiest->active_balance) { 11952 busiest->active_balance = 1; 11953 busiest->push_cpu = this_cpu; 11954 active_balance = 1; 11955 } 11956 11957 preempt_disable(); 11958 raw_spin_rq_unlock_irqrestore(busiest, flags); 11959 if (active_balance) { 11960 stop_one_cpu_nowait(cpu_of(busiest), 11961 active_load_balance_cpu_stop, busiest, 11962 &busiest->active_balance_work); 11963 } 11964 preempt_enable(); 11965 } 11966 } else { 11967 sd->nr_balance_failed = 0; 11968 } 11969 11970 if (likely(!active_balance) || need_active_balance(&env)) { 11971 /* We were unbalanced, so reset the balancing interval */ 11972 sd->balance_interval = sd->min_interval; 11973 } 11974 11975 goto out; 11976 11977 out_balanced: 11978 /* 11979 * We reach balance although we may have faced some affinity 11980 * constraints. Clear the imbalance flag only if other tasks got 11981 * a chance to move and fix the imbalance. 11982 */ 11983 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11984 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11985 11986 if (*group_imbalance) 11987 *group_imbalance = 0; 11988 } 11989 11990 out_all_pinned: 11991 /* 11992 * We reach balance because all tasks are pinned at this level so 11993 * we can't migrate them. Let the imbalance flag set so parent level 11994 * can try to migrate them. 11995 */ 11996 schedstat_inc(sd->lb_balanced[idle]); 11997 11998 sd->nr_balance_failed = 0; 11999 12000 out_one_pinned: 12001 ld_moved = 0; 12002 12003 /* 12004 * sched_balance_newidle() disregards balance intervals, so we could 12005 * repeatedly reach this code, which would lead to balance_interval 12006 * skyrocketing in a short amount of time. Skip the balance_interval 12007 * increase logic to avoid that. 12008 * 12009 * Similarly misfit migration which is not necessarily an indication of 12010 * the system being busy and requires lb to backoff to let it settle 12011 * down. 12012 */ 12013 if (env.idle == CPU_NEWLY_IDLE || 12014 env.migration_type == migrate_misfit) 12015 goto out; 12016 12017 /* tune up the balancing interval */ 12018 if ((env.flags & LBF_ALL_PINNED && 12019 sd->balance_interval < MAX_PINNED_INTERVAL) || 12020 sd->balance_interval < sd->max_interval) 12021 sd->balance_interval *= 2; 12022 out: 12023 return ld_moved; 12024 } 12025 12026 static inline unsigned long 12027 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 12028 { 12029 unsigned long interval = sd->balance_interval; 12030 12031 if (cpu_busy) 12032 interval *= sd->busy_factor; 12033 12034 /* scale ms to jiffies */ 12035 interval = msecs_to_jiffies(interval); 12036 12037 /* 12038 * Reduce likelihood of busy balancing at higher domains racing with 12039 * balancing at lower domains by preventing their balancing periods 12040 * from being multiples of each other. 12041 */ 12042 if (cpu_busy) 12043 interval -= 1; 12044 12045 interval = clamp(interval, 1UL, max_load_balance_interval); 12046 12047 return interval; 12048 } 12049 12050 static inline void 12051 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 12052 { 12053 unsigned long interval, next; 12054 12055 /* used by idle balance, so cpu_busy = 0 */ 12056 interval = get_sd_balance_interval(sd, 0); 12057 next = sd->last_balance + interval; 12058 12059 if (time_after(*next_balance, next)) 12060 *next_balance = next; 12061 } 12062 12063 /* 12064 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 12065 * running tasks off the busiest CPU onto idle CPUs. It requires at 12066 * least 1 task to be running on each physical CPU where possible, and 12067 * avoids physical / logical imbalances. 12068 */ 12069 static int active_load_balance_cpu_stop(void *data) 12070 { 12071 struct rq *busiest_rq = data; 12072 int busiest_cpu = cpu_of(busiest_rq); 12073 int target_cpu = busiest_rq->push_cpu; 12074 struct rq *target_rq = cpu_rq(target_cpu); 12075 struct sched_domain *sd; 12076 struct task_struct *p = NULL; 12077 struct rq_flags rf; 12078 12079 rq_lock_irq(busiest_rq, &rf); 12080 /* 12081 * Between queueing the stop-work and running it is a hole in which 12082 * CPUs can become inactive. We should not move tasks from or to 12083 * inactive CPUs. 12084 */ 12085 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 12086 goto out_unlock; 12087 12088 /* Make sure the requested CPU hasn't gone down in the meantime: */ 12089 if (unlikely(busiest_cpu != smp_processor_id() || 12090 !busiest_rq->active_balance)) 12091 goto out_unlock; 12092 12093 /* Is there any task to move? */ 12094 if (busiest_rq->nr_running <= 1) 12095 goto out_unlock; 12096 12097 /* 12098 * This condition is "impossible", if it occurs 12099 * we need to fix it. Originally reported by 12100 * Bjorn Helgaas on a 128-CPU setup. 12101 */ 12102 WARN_ON_ONCE(busiest_rq == target_rq); 12103 12104 /* Search for an sd spanning us and the target CPU. */ 12105 rcu_read_lock(); 12106 for_each_domain(target_cpu, sd) { 12107 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 12108 break; 12109 } 12110 12111 if (likely(sd)) { 12112 struct lb_env env = { 12113 .sd = sd, 12114 .dst_cpu = target_cpu, 12115 .dst_rq = target_rq, 12116 .src_cpu = busiest_rq->cpu, 12117 .src_rq = busiest_rq, 12118 .idle = CPU_IDLE, 12119 .flags = LBF_ACTIVE_LB, 12120 }; 12121 12122 schedstat_inc(sd->alb_count); 12123 update_rq_clock(busiest_rq); 12124 12125 p = detach_one_task(&env); 12126 if (p) { 12127 schedstat_inc(sd->alb_pushed); 12128 /* Active balancing done, reset the failure counter. */ 12129 sd->nr_balance_failed = 0; 12130 } else { 12131 schedstat_inc(sd->alb_failed); 12132 } 12133 } 12134 rcu_read_unlock(); 12135 out_unlock: 12136 busiest_rq->active_balance = 0; 12137 rq_unlock(busiest_rq, &rf); 12138 12139 if (p) 12140 attach_one_task(target_rq, p); 12141 12142 local_irq_enable(); 12143 12144 return 0; 12145 } 12146 12147 /* 12148 * This flag serializes load-balancing passes over large domains 12149 * (above the NODE topology level) - only one load-balancing instance 12150 * may run at a time, to reduce overhead on very large systems with 12151 * lots of CPUs and large NUMA distances. 12152 * 12153 * - Note that load-balancing passes triggered while another one 12154 * is executing are skipped and not re-tried. 12155 * 12156 * - Also note that this does not serialize rebalance_domains() 12157 * execution, as non-SD_SERIALIZE domains will still be 12158 * load-balanced in parallel. 12159 */ 12160 static atomic_t sched_balance_running = ATOMIC_INIT(0); 12161 12162 /* 12163 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 12164 * This trades load-balance latency on larger machines for less cross talk. 12165 */ 12166 void update_max_interval(void) 12167 { 12168 max_load_balance_interval = HZ*num_online_cpus()/10; 12169 } 12170 12171 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 12172 { 12173 if (cost > sd->max_newidle_lb_cost) { 12174 /* 12175 * Track max cost of a domain to make sure to not delay the 12176 * next wakeup on the CPU. 12177 */ 12178 sd->max_newidle_lb_cost = cost; 12179 sd->last_decay_max_lb_cost = jiffies; 12180 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 12181 /* 12182 * Decay the newidle max times by ~1% per second to ensure that 12183 * it is not outdated and the current max cost is actually 12184 * shorter. 12185 */ 12186 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 12187 sd->last_decay_max_lb_cost = jiffies; 12188 12189 return true; 12190 } 12191 12192 return false; 12193 } 12194 12195 /* 12196 * It checks each scheduling domain to see if it is due to be balanced, 12197 * and initiates a balancing operation if so. 12198 * 12199 * Balancing parameters are set up in init_sched_domains. 12200 */ 12201 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 12202 { 12203 int continue_balancing = 1; 12204 int cpu = rq->cpu; 12205 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 12206 unsigned long interval; 12207 struct sched_domain *sd; 12208 /* Earliest time when we have to do rebalance again */ 12209 unsigned long next_balance = jiffies + 60*HZ; 12210 int update_next_balance = 0; 12211 int need_serialize, need_decay = 0; 12212 u64 max_cost = 0; 12213 12214 rcu_read_lock(); 12215 for_each_domain(cpu, sd) { 12216 /* 12217 * Decay the newidle max times here because this is a regular 12218 * visit to all the domains. 12219 */ 12220 need_decay = update_newidle_cost(sd, 0); 12221 max_cost += sd->max_newidle_lb_cost; 12222 12223 /* 12224 * Stop the load balance at this level. There is another 12225 * CPU in our sched group which is doing load balancing more 12226 * actively. 12227 */ 12228 if (!continue_balancing) { 12229 if (need_decay) 12230 continue; 12231 break; 12232 } 12233 12234 interval = get_sd_balance_interval(sd, busy); 12235 12236 need_serialize = sd->flags & SD_SERIALIZE; 12237 if (need_serialize) { 12238 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) 12239 goto out; 12240 } 12241 12242 if (time_after_eq(jiffies, sd->last_balance + interval)) { 12243 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 12244 /* 12245 * The LBF_DST_PINNED logic could have changed 12246 * env->dst_cpu, so we can't know our idle 12247 * state even if we migrated tasks. Update it. 12248 */ 12249 idle = idle_cpu(cpu); 12250 busy = !idle && !sched_idle_cpu(cpu); 12251 } 12252 sd->last_balance = jiffies; 12253 interval = get_sd_balance_interval(sd, busy); 12254 } 12255 if (need_serialize) 12256 atomic_set_release(&sched_balance_running, 0); 12257 out: 12258 if (time_after(next_balance, sd->last_balance + interval)) { 12259 next_balance = sd->last_balance + interval; 12260 update_next_balance = 1; 12261 } 12262 } 12263 if (need_decay) { 12264 /* 12265 * Ensure the rq-wide value also decays but keep it at a 12266 * reasonable floor to avoid funnies with rq->avg_idle. 12267 */ 12268 rq->max_idle_balance_cost = 12269 max((u64)sysctl_sched_migration_cost, max_cost); 12270 } 12271 rcu_read_unlock(); 12272 12273 /* 12274 * next_balance will be updated only when there is a need. 12275 * When the cpu is attached to null domain for ex, it will not be 12276 * updated. 12277 */ 12278 if (likely(update_next_balance)) 12279 rq->next_balance = next_balance; 12280 12281 } 12282 12283 static inline int on_null_domain(struct rq *rq) 12284 { 12285 return unlikely(!rcu_dereference_sched(rq->sd)); 12286 } 12287 12288 #ifdef CONFIG_NO_HZ_COMMON 12289 /* 12290 * NOHZ idle load balancing (ILB) details: 12291 * 12292 * - When one of the busy CPUs notices that there may be an idle rebalancing 12293 * needed, they will kick the idle load balancer, which then does idle 12294 * load balancing for all the idle CPUs. 12295 */ 12296 static inline int find_new_ilb(void) 12297 { 12298 const struct cpumask *hk_mask; 12299 int ilb_cpu; 12300 12301 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 12302 12303 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 12304 12305 if (ilb_cpu == smp_processor_id()) 12306 continue; 12307 12308 if (idle_cpu(ilb_cpu)) 12309 return ilb_cpu; 12310 } 12311 12312 return -1; 12313 } 12314 12315 /* 12316 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 12317 * SMP function call (IPI). 12318 * 12319 * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set 12320 * (if there is one). 12321 */ 12322 static void kick_ilb(unsigned int flags) 12323 { 12324 int ilb_cpu; 12325 12326 /* 12327 * Increase nohz.next_balance only when if full ilb is triggered but 12328 * not if we only update stats. 12329 */ 12330 if (flags & NOHZ_BALANCE_KICK) 12331 nohz.next_balance = jiffies+1; 12332 12333 ilb_cpu = find_new_ilb(); 12334 if (ilb_cpu < 0) 12335 return; 12336 12337 /* 12338 * Don't bother if no new NOHZ balance work items for ilb_cpu, 12339 * i.e. all bits in flags are already set in ilb_cpu. 12340 */ 12341 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) 12342 return; 12343 12344 /* 12345 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 12346 * the first flag owns it; cleared by nohz_csd_func(). 12347 */ 12348 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 12349 if (flags & NOHZ_KICK_MASK) 12350 return; 12351 12352 /* 12353 * This way we generate an IPI on the target CPU which 12354 * is idle, and the softirq performing NOHZ idle load balancing 12355 * will be run before returning from the IPI. 12356 */ 12357 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 12358 } 12359 12360 /* 12361 * Current decision point for kicking the idle load balancer in the presence 12362 * of idle CPUs in the system. 12363 */ 12364 static void nohz_balancer_kick(struct rq *rq) 12365 { 12366 unsigned long now = jiffies; 12367 struct sched_domain_shared *sds; 12368 struct sched_domain *sd; 12369 int nr_busy, i, cpu = rq->cpu; 12370 unsigned int flags = 0; 12371 12372 if (unlikely(rq->idle_balance)) 12373 return; 12374 12375 /* 12376 * We may be recently in ticked or tickless idle mode. At the first 12377 * busy tick after returning from idle, we will update the busy stats. 12378 */ 12379 nohz_balance_exit_idle(rq); 12380 12381 /* 12382 * None are in tickless mode and hence no need for NOHZ idle load 12383 * balancing: 12384 */ 12385 if (likely(!atomic_read(&nohz.nr_cpus))) 12386 return; 12387 12388 if (READ_ONCE(nohz.has_blocked) && 12389 time_after(now, READ_ONCE(nohz.next_blocked))) 12390 flags = NOHZ_STATS_KICK; 12391 12392 if (time_before(now, nohz.next_balance)) 12393 goto out; 12394 12395 if (rq->nr_running >= 2) { 12396 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12397 goto out; 12398 } 12399 12400 rcu_read_lock(); 12401 12402 sd = rcu_dereference(rq->sd); 12403 if (sd) { 12404 /* 12405 * If there's a runnable CFS task and the current CPU has reduced 12406 * capacity, kick the ILB to see if there's a better CPU to run on: 12407 */ 12408 if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) { 12409 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12410 goto unlock; 12411 } 12412 } 12413 12414 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 12415 if (sd) { 12416 /* 12417 * When ASYM_PACKING; see if there's a more preferred CPU 12418 * currently idle; in which case, kick the ILB to move tasks 12419 * around. 12420 * 12421 * When balancing between cores, all the SMT siblings of the 12422 * preferred CPU must be idle. 12423 */ 12424 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 12425 if (sched_asym(sd, i, cpu)) { 12426 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12427 goto unlock; 12428 } 12429 } 12430 } 12431 12432 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 12433 if (sd) { 12434 /* 12435 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 12436 * to run the misfit task on. 12437 */ 12438 if (check_misfit_status(rq)) { 12439 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12440 goto unlock; 12441 } 12442 12443 /* 12444 * For asymmetric systems, we do not want to nicely balance 12445 * cache use, instead we want to embrace asymmetry and only 12446 * ensure tasks have enough CPU capacity. 12447 * 12448 * Skip the LLC logic because it's not relevant in that case. 12449 */ 12450 goto unlock; 12451 } 12452 12453 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 12454 if (sds) { 12455 /* 12456 * If there is an imbalance between LLC domains (IOW we could 12457 * increase the overall cache utilization), we need a less-loaded LLC 12458 * domain to pull some load from. Likewise, we may need to spread 12459 * load within the current LLC domain (e.g. packed SMT cores but 12460 * other CPUs are idle). We can't really know from here how busy 12461 * the others are - so just get a NOHZ balance going if it looks 12462 * like this LLC domain has tasks we could move. 12463 */ 12464 nr_busy = atomic_read(&sds->nr_busy_cpus); 12465 if (nr_busy > 1) { 12466 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12467 goto unlock; 12468 } 12469 } 12470 unlock: 12471 rcu_read_unlock(); 12472 out: 12473 if (READ_ONCE(nohz.needs_update)) 12474 flags |= NOHZ_NEXT_KICK; 12475 12476 if (flags) 12477 kick_ilb(flags); 12478 } 12479 12480 static void set_cpu_sd_state_busy(int cpu) 12481 { 12482 struct sched_domain *sd; 12483 12484 rcu_read_lock(); 12485 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12486 12487 if (!sd || !sd->nohz_idle) 12488 goto unlock; 12489 sd->nohz_idle = 0; 12490 12491 atomic_inc(&sd->shared->nr_busy_cpus); 12492 unlock: 12493 rcu_read_unlock(); 12494 } 12495 12496 void nohz_balance_exit_idle(struct rq *rq) 12497 { 12498 WARN_ON_ONCE(rq != this_rq()); 12499 12500 if (likely(!rq->nohz_tick_stopped)) 12501 return; 12502 12503 rq->nohz_tick_stopped = 0; 12504 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12505 atomic_dec(&nohz.nr_cpus); 12506 12507 set_cpu_sd_state_busy(rq->cpu); 12508 } 12509 12510 static void set_cpu_sd_state_idle(int cpu) 12511 { 12512 struct sched_domain *sd; 12513 12514 rcu_read_lock(); 12515 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12516 12517 if (!sd || sd->nohz_idle) 12518 goto unlock; 12519 sd->nohz_idle = 1; 12520 12521 atomic_dec(&sd->shared->nr_busy_cpus); 12522 unlock: 12523 rcu_read_unlock(); 12524 } 12525 12526 /* 12527 * This routine will record that the CPU is going idle with tick stopped. 12528 * This info will be used in performing idle load balancing in the future. 12529 */ 12530 void nohz_balance_enter_idle(int cpu) 12531 { 12532 struct rq *rq = cpu_rq(cpu); 12533 12534 WARN_ON_ONCE(cpu != smp_processor_id()); 12535 12536 /* If this CPU is going down, then nothing needs to be done: */ 12537 if (!cpu_active(cpu)) 12538 return; 12539 12540 /* 12541 * Can be set safely without rq->lock held 12542 * If a clear happens, it will have evaluated last additions because 12543 * rq->lock is held during the check and the clear 12544 */ 12545 rq->has_blocked_load = 1; 12546 12547 /* 12548 * The tick is still stopped but load could have been added in the 12549 * meantime. We set the nohz.has_blocked flag to trig a check of the 12550 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12551 * of nohz.has_blocked can only happen after checking the new load 12552 */ 12553 if (rq->nohz_tick_stopped) 12554 goto out; 12555 12556 /* If we're a completely isolated CPU, we don't play: */ 12557 if (on_null_domain(rq)) 12558 return; 12559 12560 rq->nohz_tick_stopped = 1; 12561 12562 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12563 atomic_inc(&nohz.nr_cpus); 12564 12565 /* 12566 * Ensures that if nohz_idle_balance() fails to observe our 12567 * @idle_cpus_mask store, it must observe the @has_blocked 12568 * and @needs_update stores. 12569 */ 12570 smp_mb__after_atomic(); 12571 12572 set_cpu_sd_state_idle(cpu); 12573 12574 WRITE_ONCE(nohz.needs_update, 1); 12575 out: 12576 /* 12577 * Each time a cpu enter idle, we assume that it has blocked load and 12578 * enable the periodic update of the load of idle CPUs 12579 */ 12580 WRITE_ONCE(nohz.has_blocked, 1); 12581 } 12582 12583 static bool update_nohz_stats(struct rq *rq) 12584 { 12585 unsigned int cpu = rq->cpu; 12586 12587 if (!rq->has_blocked_load) 12588 return false; 12589 12590 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12591 return false; 12592 12593 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12594 return true; 12595 12596 sched_balance_update_blocked_averages(cpu); 12597 12598 return rq->has_blocked_load; 12599 } 12600 12601 /* 12602 * Internal function that runs load balance for all idle CPUs. The load balance 12603 * can be a simple update of blocked load or a complete load balance with 12604 * tasks movement depending of flags. 12605 */ 12606 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12607 { 12608 /* Earliest time when we have to do rebalance again */ 12609 unsigned long now = jiffies; 12610 unsigned long next_balance = now + 60*HZ; 12611 bool has_blocked_load = false; 12612 int update_next_balance = 0; 12613 int this_cpu = this_rq->cpu; 12614 int balance_cpu; 12615 struct rq *rq; 12616 12617 WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12618 12619 /* 12620 * We assume there will be no idle load after this update and clear 12621 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12622 * set the has_blocked flag and trigger another update of idle load. 12623 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12624 * setting the flag, we are sure to not clear the state and not 12625 * check the load of an idle cpu. 12626 * 12627 * Same applies to idle_cpus_mask vs needs_update. 12628 */ 12629 if (flags & NOHZ_STATS_KICK) 12630 WRITE_ONCE(nohz.has_blocked, 0); 12631 if (flags & NOHZ_NEXT_KICK) 12632 WRITE_ONCE(nohz.needs_update, 0); 12633 12634 /* 12635 * Ensures that if we miss the CPU, we must see the has_blocked 12636 * store from nohz_balance_enter_idle(). 12637 */ 12638 smp_mb(); 12639 12640 /* 12641 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12642 * chance for other idle cpu to pull load. 12643 */ 12644 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12645 if (!idle_cpu(balance_cpu)) 12646 continue; 12647 12648 /* 12649 * If this CPU gets work to do, stop the load balancing 12650 * work being done for other CPUs. Next load 12651 * balancing owner will pick it up. 12652 */ 12653 if (!idle_cpu(this_cpu) && need_resched()) { 12654 if (flags & NOHZ_STATS_KICK) 12655 has_blocked_load = true; 12656 if (flags & NOHZ_NEXT_KICK) 12657 WRITE_ONCE(nohz.needs_update, 1); 12658 goto abort; 12659 } 12660 12661 rq = cpu_rq(balance_cpu); 12662 12663 if (flags & NOHZ_STATS_KICK) 12664 has_blocked_load |= update_nohz_stats(rq); 12665 12666 /* 12667 * If time for next balance is due, 12668 * do the balance. 12669 */ 12670 if (time_after_eq(jiffies, rq->next_balance)) { 12671 struct rq_flags rf; 12672 12673 rq_lock_irqsave(rq, &rf); 12674 update_rq_clock(rq); 12675 rq_unlock_irqrestore(rq, &rf); 12676 12677 if (flags & NOHZ_BALANCE_KICK) 12678 sched_balance_domains(rq, CPU_IDLE); 12679 } 12680 12681 if (time_after(next_balance, rq->next_balance)) { 12682 next_balance = rq->next_balance; 12683 update_next_balance = 1; 12684 } 12685 } 12686 12687 /* 12688 * next_balance will be updated only when there is a need. 12689 * When the CPU is attached to null domain for ex, it will not be 12690 * updated. 12691 */ 12692 if (likely(update_next_balance)) 12693 nohz.next_balance = next_balance; 12694 12695 if (flags & NOHZ_STATS_KICK) 12696 WRITE_ONCE(nohz.next_blocked, 12697 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12698 12699 abort: 12700 /* There is still blocked load, enable periodic update */ 12701 if (has_blocked_load) 12702 WRITE_ONCE(nohz.has_blocked, 1); 12703 } 12704 12705 /* 12706 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12707 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12708 */ 12709 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12710 { 12711 unsigned int flags = this_rq->nohz_idle_balance; 12712 12713 if (!flags) 12714 return false; 12715 12716 this_rq->nohz_idle_balance = 0; 12717 12718 if (idle != CPU_IDLE) 12719 return false; 12720 12721 _nohz_idle_balance(this_rq, flags); 12722 12723 return true; 12724 } 12725 12726 /* 12727 * Check if we need to directly run the ILB for updating blocked load before 12728 * entering idle state. Here we run ILB directly without issuing IPIs. 12729 * 12730 * Note that when this function is called, the tick may not yet be stopped on 12731 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12732 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12733 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12734 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12735 * called from this function on (this) CPU that's not yet in the mask. That's 12736 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12737 * updating the blocked load of already idle CPUs without waking up one of 12738 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12739 * cpu about to enter idle, because it can take a long time. 12740 */ 12741 void nohz_run_idle_balance(int cpu) 12742 { 12743 unsigned int flags; 12744 12745 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12746 12747 /* 12748 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12749 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12750 */ 12751 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12752 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12753 } 12754 12755 static void nohz_newidle_balance(struct rq *this_rq) 12756 { 12757 int this_cpu = this_rq->cpu; 12758 12759 /* Will wake up very soon. No time for doing anything else*/ 12760 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12761 return; 12762 12763 /* Don't need to update blocked load of idle CPUs*/ 12764 if (!READ_ONCE(nohz.has_blocked) || 12765 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12766 return; 12767 12768 /* 12769 * Set the need to trigger ILB in order to update blocked load 12770 * before entering idle state. 12771 */ 12772 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12773 } 12774 12775 #else /* !CONFIG_NO_HZ_COMMON */ 12776 static inline void nohz_balancer_kick(struct rq *rq) { } 12777 12778 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12779 { 12780 return false; 12781 } 12782 12783 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12784 #endif /* CONFIG_NO_HZ_COMMON */ 12785 12786 /* 12787 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12788 * idle. Attempts to pull tasks from other CPUs. 12789 * 12790 * Returns: 12791 * < 0 - we released the lock and there are !fair tasks present 12792 * 0 - failed, no new tasks 12793 * > 0 - success, new (fair) tasks present 12794 */ 12795 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12796 { 12797 unsigned long next_balance = jiffies + HZ; 12798 int this_cpu = this_rq->cpu; 12799 int continue_balancing = 1; 12800 u64 t0, t1, curr_cost = 0; 12801 struct sched_domain *sd; 12802 int pulled_task = 0; 12803 12804 update_misfit_status(NULL, this_rq); 12805 12806 /* 12807 * There is a task waiting to run. No need to search for one. 12808 * Return 0; the task will be enqueued when switching to idle. 12809 */ 12810 if (this_rq->ttwu_pending) 12811 return 0; 12812 12813 /* 12814 * We must set idle_stamp _before_ calling sched_balance_rq() 12815 * for CPU_NEWLY_IDLE, such that we measure the this duration 12816 * as idle time. 12817 */ 12818 this_rq->idle_stamp = rq_clock(this_rq); 12819 12820 /* 12821 * Do not pull tasks towards !active CPUs... 12822 */ 12823 if (!cpu_active(this_cpu)) 12824 return 0; 12825 12826 /* 12827 * This is OK, because current is on_cpu, which avoids it being picked 12828 * for load-balance and preemption/IRQs are still disabled avoiding 12829 * further scheduler activity on it and we're being very careful to 12830 * re-start the picking loop. 12831 */ 12832 rq_unpin_lock(this_rq, rf); 12833 12834 rcu_read_lock(); 12835 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12836 12837 if (!get_rd_overloaded(this_rq->rd) || 12838 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12839 12840 if (sd) 12841 update_next_balance(sd, &next_balance); 12842 rcu_read_unlock(); 12843 12844 goto out; 12845 } 12846 rcu_read_unlock(); 12847 12848 raw_spin_rq_unlock(this_rq); 12849 12850 t0 = sched_clock_cpu(this_cpu); 12851 sched_balance_update_blocked_averages(this_cpu); 12852 12853 rcu_read_lock(); 12854 for_each_domain(this_cpu, sd) { 12855 u64 domain_cost; 12856 12857 update_next_balance(sd, &next_balance); 12858 12859 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12860 break; 12861 12862 if (sd->flags & SD_BALANCE_NEWIDLE) { 12863 12864 pulled_task = sched_balance_rq(this_cpu, this_rq, 12865 sd, CPU_NEWLY_IDLE, 12866 &continue_balancing); 12867 12868 t1 = sched_clock_cpu(this_cpu); 12869 domain_cost = t1 - t0; 12870 update_newidle_cost(sd, domain_cost); 12871 12872 curr_cost += domain_cost; 12873 t0 = t1; 12874 } 12875 12876 /* 12877 * Stop searching for tasks to pull if there are 12878 * now runnable tasks on this rq. 12879 */ 12880 if (pulled_task || !continue_balancing) 12881 break; 12882 } 12883 rcu_read_unlock(); 12884 12885 raw_spin_rq_lock(this_rq); 12886 12887 if (curr_cost > this_rq->max_idle_balance_cost) 12888 this_rq->max_idle_balance_cost = curr_cost; 12889 12890 /* 12891 * While browsing the domains, we released the rq lock, a task could 12892 * have been enqueued in the meantime. Since we're not going idle, 12893 * pretend we pulled a task. 12894 */ 12895 if (this_rq->cfs.h_nr_queued && !pulled_task) 12896 pulled_task = 1; 12897 12898 /* Is there a task of a high priority class? */ 12899 if (this_rq->nr_running != this_rq->cfs.h_nr_queued) 12900 pulled_task = -1; 12901 12902 out: 12903 /* Move the next balance forward */ 12904 if (time_after(this_rq->next_balance, next_balance)) 12905 this_rq->next_balance = next_balance; 12906 12907 if (pulled_task) 12908 this_rq->idle_stamp = 0; 12909 else 12910 nohz_newidle_balance(this_rq); 12911 12912 rq_repin_lock(this_rq, rf); 12913 12914 return pulled_task; 12915 } 12916 12917 /* 12918 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 12919 * 12920 * - directly from the local sched_tick() for periodic load balancing 12921 * 12922 * - indirectly from a remote sched_tick() for NOHZ idle balancing 12923 * through the SMP cross-call nohz_csd_func() 12924 */ 12925 static __latent_entropy void sched_balance_softirq(void) 12926 { 12927 struct rq *this_rq = this_rq(); 12928 enum cpu_idle_type idle = this_rq->idle_balance; 12929 /* 12930 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 12931 * balancing on behalf of the other idle CPUs whose ticks are 12932 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 12933 * give the idle CPUs a chance to load balance. Else we may 12934 * load balance only within the local sched_domain hierarchy 12935 * and abort nohz_idle_balance altogether if we pull some load. 12936 */ 12937 if (nohz_idle_balance(this_rq, idle)) 12938 return; 12939 12940 /* normal load balance */ 12941 sched_balance_update_blocked_averages(this_rq->cpu); 12942 sched_balance_domains(this_rq, idle); 12943 } 12944 12945 /* 12946 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12947 */ 12948 void sched_balance_trigger(struct rq *rq) 12949 { 12950 /* 12951 * Don't need to rebalance while attached to NULL domain or 12952 * runqueue CPU is not active 12953 */ 12954 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12955 return; 12956 12957 if (time_after_eq(jiffies, rq->next_balance)) 12958 raise_softirq(SCHED_SOFTIRQ); 12959 12960 nohz_balancer_kick(rq); 12961 } 12962 12963 static void rq_online_fair(struct rq *rq) 12964 { 12965 update_sysctl(); 12966 12967 update_runtime_enabled(rq); 12968 } 12969 12970 static void rq_offline_fair(struct rq *rq) 12971 { 12972 update_sysctl(); 12973 12974 /* Ensure any throttled groups are reachable by pick_next_task */ 12975 unthrottle_offline_cfs_rqs(rq); 12976 12977 /* Ensure that we remove rq contribution to group share: */ 12978 clear_tg_offline_cfs_rqs(rq); 12979 } 12980 12981 #endif /* CONFIG_SMP */ 12982 12983 #ifdef CONFIG_SCHED_CORE 12984 static inline bool 12985 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12986 { 12987 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12988 u64 slice = se->slice; 12989 12990 return (rtime * min_nr_tasks > slice); 12991 } 12992 12993 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12994 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12995 { 12996 if (!sched_core_enabled(rq)) 12997 return; 12998 12999 /* 13000 * If runqueue has only one task which used up its slice and 13001 * if the sibling is forced idle, then trigger schedule to 13002 * give forced idle task a chance. 13003 * 13004 * sched_slice() considers only this active rq and it gets the 13005 * whole slice. But during force idle, we have siblings acting 13006 * like a single runqueue and hence we need to consider runnable 13007 * tasks on this CPU and the forced idle CPU. Ideally, we should 13008 * go through the forced idle rq, but that would be a perf hit. 13009 * We can assume that the forced idle CPU has at least 13010 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 13011 * if we need to give up the CPU. 13012 */ 13013 if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 && 13014 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 13015 resched_curr(rq); 13016 } 13017 13018 /* 13019 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 13020 */ 13021 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 13022 bool forceidle) 13023 { 13024 for_each_sched_entity(se) { 13025 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13026 13027 if (forceidle) { 13028 if (cfs_rq->forceidle_seq == fi_seq) 13029 break; 13030 cfs_rq->forceidle_seq = fi_seq; 13031 } 13032 13033 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 13034 } 13035 } 13036 13037 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 13038 { 13039 struct sched_entity *se = &p->se; 13040 13041 if (p->sched_class != &fair_sched_class) 13042 return; 13043 13044 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 13045 } 13046 13047 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 13048 bool in_fi) 13049 { 13050 struct rq *rq = task_rq(a); 13051 const struct sched_entity *sea = &a->se; 13052 const struct sched_entity *seb = &b->se; 13053 struct cfs_rq *cfs_rqa; 13054 struct cfs_rq *cfs_rqb; 13055 s64 delta; 13056 13057 WARN_ON_ONCE(task_rq(b)->core != rq->core); 13058 13059 #ifdef CONFIG_FAIR_GROUP_SCHED 13060 /* 13061 * Find an se in the hierarchy for tasks a and b, such that the se's 13062 * are immediate siblings. 13063 */ 13064 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 13065 int sea_depth = sea->depth; 13066 int seb_depth = seb->depth; 13067 13068 if (sea_depth >= seb_depth) 13069 sea = parent_entity(sea); 13070 if (sea_depth <= seb_depth) 13071 seb = parent_entity(seb); 13072 } 13073 13074 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 13075 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 13076 13077 cfs_rqa = sea->cfs_rq; 13078 cfs_rqb = seb->cfs_rq; 13079 #else 13080 cfs_rqa = &task_rq(a)->cfs; 13081 cfs_rqb = &task_rq(b)->cfs; 13082 #endif 13083 13084 /* 13085 * Find delta after normalizing se's vruntime with its cfs_rq's 13086 * min_vruntime_fi, which would have been updated in prior calls 13087 * to se_fi_update(). 13088 */ 13089 delta = (s64)(sea->vruntime - seb->vruntime) + 13090 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 13091 13092 return delta > 0; 13093 } 13094 13095 static int task_is_throttled_fair(struct task_struct *p, int cpu) 13096 { 13097 struct cfs_rq *cfs_rq; 13098 13099 #ifdef CONFIG_FAIR_GROUP_SCHED 13100 cfs_rq = task_group(p)->cfs_rq[cpu]; 13101 #else 13102 cfs_rq = &cpu_rq(cpu)->cfs; 13103 #endif 13104 return throttled_hierarchy(cfs_rq); 13105 } 13106 #else 13107 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 13108 #endif 13109 13110 /* 13111 * scheduler tick hitting a task of our scheduling class. 13112 * 13113 * NOTE: This function can be called remotely by the tick offload that 13114 * goes along full dynticks. Therefore no local assumption can be made 13115 * and everything must be accessed through the @rq and @curr passed in 13116 * parameters. 13117 */ 13118 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 13119 { 13120 struct cfs_rq *cfs_rq; 13121 struct sched_entity *se = &curr->se; 13122 13123 for_each_sched_entity(se) { 13124 cfs_rq = cfs_rq_of(se); 13125 entity_tick(cfs_rq, se, queued); 13126 } 13127 13128 if (static_branch_unlikely(&sched_numa_balancing)) 13129 task_tick_numa(rq, curr); 13130 13131 update_misfit_status(curr, rq); 13132 check_update_overutilized_status(task_rq(curr)); 13133 13134 task_tick_core(rq, curr); 13135 } 13136 13137 /* 13138 * called on fork with the child task as argument from the parent's context 13139 * - child not yet on the tasklist 13140 * - preemption disabled 13141 */ 13142 static void task_fork_fair(struct task_struct *p) 13143 { 13144 set_task_max_allowed_capacity(p); 13145 } 13146 13147 /* 13148 * Priority of the task has changed. Check to see if we preempt 13149 * the current task. 13150 */ 13151 static void 13152 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 13153 { 13154 if (!task_on_rq_queued(p)) 13155 return; 13156 13157 if (rq->cfs.nr_queued == 1) 13158 return; 13159 13160 /* 13161 * Reschedule if we are currently running on this runqueue and 13162 * our priority decreased, or if we are not currently running on 13163 * this runqueue and our priority is higher than the current's 13164 */ 13165 if (task_current_donor(rq, p)) { 13166 if (p->prio > oldprio) 13167 resched_curr(rq); 13168 } else 13169 wakeup_preempt(rq, p, 0); 13170 } 13171 13172 #ifdef CONFIG_FAIR_GROUP_SCHED 13173 /* 13174 * Propagate the changes of the sched_entity across the tg tree to make it 13175 * visible to the root 13176 */ 13177 static void propagate_entity_cfs_rq(struct sched_entity *se) 13178 { 13179 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13180 13181 if (cfs_rq_throttled(cfs_rq)) 13182 return; 13183 13184 if (!throttled_hierarchy(cfs_rq)) 13185 list_add_leaf_cfs_rq(cfs_rq); 13186 13187 /* Start to propagate at parent */ 13188 se = se->parent; 13189 13190 for_each_sched_entity(se) { 13191 cfs_rq = cfs_rq_of(se); 13192 13193 update_load_avg(cfs_rq, se, UPDATE_TG); 13194 13195 if (cfs_rq_throttled(cfs_rq)) 13196 break; 13197 13198 if (!throttled_hierarchy(cfs_rq)) 13199 list_add_leaf_cfs_rq(cfs_rq); 13200 } 13201 } 13202 #else 13203 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 13204 #endif 13205 13206 static void detach_entity_cfs_rq(struct sched_entity *se) 13207 { 13208 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13209 13210 #ifdef CONFIG_SMP 13211 /* 13212 * In case the task sched_avg hasn't been attached: 13213 * - A forked task which hasn't been woken up by wake_up_new_task(). 13214 * - A task which has been woken up by try_to_wake_up() but is 13215 * waiting for actually being woken up by sched_ttwu_pending(). 13216 */ 13217 if (!se->avg.last_update_time) 13218 return; 13219 #endif 13220 13221 /* Catch up with the cfs_rq and remove our load when we leave */ 13222 update_load_avg(cfs_rq, se, 0); 13223 detach_entity_load_avg(cfs_rq, se); 13224 update_tg_load_avg(cfs_rq); 13225 propagate_entity_cfs_rq(se); 13226 } 13227 13228 static void attach_entity_cfs_rq(struct sched_entity *se) 13229 { 13230 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13231 13232 /* Synchronize entity with its cfs_rq */ 13233 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 13234 attach_entity_load_avg(cfs_rq, se); 13235 update_tg_load_avg(cfs_rq); 13236 propagate_entity_cfs_rq(se); 13237 } 13238 13239 static void detach_task_cfs_rq(struct task_struct *p) 13240 { 13241 struct sched_entity *se = &p->se; 13242 13243 detach_entity_cfs_rq(se); 13244 } 13245 13246 static void attach_task_cfs_rq(struct task_struct *p) 13247 { 13248 struct sched_entity *se = &p->se; 13249 13250 attach_entity_cfs_rq(se); 13251 } 13252 13253 static void switched_from_fair(struct rq *rq, struct task_struct *p) 13254 { 13255 detach_task_cfs_rq(p); 13256 } 13257 13258 static void switched_to_fair(struct rq *rq, struct task_struct *p) 13259 { 13260 WARN_ON_ONCE(p->se.sched_delayed); 13261 13262 attach_task_cfs_rq(p); 13263 13264 set_task_max_allowed_capacity(p); 13265 13266 if (task_on_rq_queued(p)) { 13267 /* 13268 * We were most likely switched from sched_rt, so 13269 * kick off the schedule if running, otherwise just see 13270 * if we can still preempt the current task. 13271 */ 13272 if (task_current_donor(rq, p)) 13273 resched_curr(rq); 13274 else 13275 wakeup_preempt(rq, p, 0); 13276 } 13277 } 13278 13279 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13280 { 13281 struct sched_entity *se = &p->se; 13282 13283 #ifdef CONFIG_SMP 13284 if (task_on_rq_queued(p)) { 13285 /* 13286 * Move the next running task to the front of the list, so our 13287 * cfs_tasks list becomes MRU one. 13288 */ 13289 list_move(&se->group_node, &rq->cfs_tasks); 13290 } 13291 #endif 13292 if (!first) 13293 return; 13294 13295 WARN_ON_ONCE(se->sched_delayed); 13296 13297 if (hrtick_enabled_fair(rq)) 13298 hrtick_start_fair(rq, p); 13299 13300 update_misfit_status(p, rq); 13301 sched_fair_update_stop_tick(rq, p); 13302 } 13303 13304 /* 13305 * Account for a task changing its policy or group. 13306 * 13307 * This routine is mostly called to set cfs_rq->curr field when a task 13308 * migrates between groups/classes. 13309 */ 13310 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13311 { 13312 struct sched_entity *se = &p->se; 13313 13314 for_each_sched_entity(se) { 13315 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13316 13317 set_next_entity(cfs_rq, se); 13318 /* ensure bandwidth has been allocated on our new cfs_rq */ 13319 account_cfs_rq_runtime(cfs_rq, 0); 13320 } 13321 13322 __set_next_task_fair(rq, p, first); 13323 } 13324 13325 void init_cfs_rq(struct cfs_rq *cfs_rq) 13326 { 13327 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 13328 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 13329 #ifdef CONFIG_SMP 13330 raw_spin_lock_init(&cfs_rq->removed.lock); 13331 #endif 13332 } 13333 13334 #ifdef CONFIG_FAIR_GROUP_SCHED 13335 static void task_change_group_fair(struct task_struct *p) 13336 { 13337 /* 13338 * We couldn't detach or attach a forked task which 13339 * hasn't been woken up by wake_up_new_task(). 13340 */ 13341 if (READ_ONCE(p->__state) == TASK_NEW) 13342 return; 13343 13344 detach_task_cfs_rq(p); 13345 13346 #ifdef CONFIG_SMP 13347 /* Tell se's cfs_rq has been changed -- migrated */ 13348 p->se.avg.last_update_time = 0; 13349 #endif 13350 set_task_rq(p, task_cpu(p)); 13351 attach_task_cfs_rq(p); 13352 } 13353 13354 void free_fair_sched_group(struct task_group *tg) 13355 { 13356 int i; 13357 13358 for_each_possible_cpu(i) { 13359 if (tg->cfs_rq) 13360 kfree(tg->cfs_rq[i]); 13361 if (tg->se) 13362 kfree(tg->se[i]); 13363 } 13364 13365 kfree(tg->cfs_rq); 13366 kfree(tg->se); 13367 } 13368 13369 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 13370 { 13371 struct sched_entity *se; 13372 struct cfs_rq *cfs_rq; 13373 int i; 13374 13375 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 13376 if (!tg->cfs_rq) 13377 goto err; 13378 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 13379 if (!tg->se) 13380 goto err; 13381 13382 tg->shares = NICE_0_LOAD; 13383 13384 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 13385 13386 for_each_possible_cpu(i) { 13387 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 13388 GFP_KERNEL, cpu_to_node(i)); 13389 if (!cfs_rq) 13390 goto err; 13391 13392 se = kzalloc_node(sizeof(struct sched_entity_stats), 13393 GFP_KERNEL, cpu_to_node(i)); 13394 if (!se) 13395 goto err_free_rq; 13396 13397 init_cfs_rq(cfs_rq); 13398 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 13399 init_entity_runnable_average(se); 13400 } 13401 13402 return 1; 13403 13404 err_free_rq: 13405 kfree(cfs_rq); 13406 err: 13407 return 0; 13408 } 13409 13410 void online_fair_sched_group(struct task_group *tg) 13411 { 13412 struct sched_entity *se; 13413 struct rq_flags rf; 13414 struct rq *rq; 13415 int i; 13416 13417 for_each_possible_cpu(i) { 13418 rq = cpu_rq(i); 13419 se = tg->se[i]; 13420 rq_lock_irq(rq, &rf); 13421 update_rq_clock(rq); 13422 attach_entity_cfs_rq(se); 13423 sync_throttle(tg, i); 13424 rq_unlock_irq(rq, &rf); 13425 } 13426 } 13427 13428 void unregister_fair_sched_group(struct task_group *tg) 13429 { 13430 int cpu; 13431 13432 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 13433 13434 for_each_possible_cpu(cpu) { 13435 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 13436 struct sched_entity *se = tg->se[cpu]; 13437 struct rq *rq = cpu_rq(cpu); 13438 13439 if (se) { 13440 if (se->sched_delayed) { 13441 guard(rq_lock_irqsave)(rq); 13442 if (se->sched_delayed) { 13443 update_rq_clock(rq); 13444 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 13445 } 13446 list_del_leaf_cfs_rq(cfs_rq); 13447 } 13448 remove_entity_load_avg(se); 13449 } 13450 13451 /* 13452 * Only empty task groups can be destroyed; so we can speculatively 13453 * check on_list without danger of it being re-added. 13454 */ 13455 if (cfs_rq->on_list) { 13456 guard(rq_lock_irqsave)(rq); 13457 list_del_leaf_cfs_rq(cfs_rq); 13458 } 13459 } 13460 } 13461 13462 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13463 struct sched_entity *se, int cpu, 13464 struct sched_entity *parent) 13465 { 13466 struct rq *rq = cpu_rq(cpu); 13467 13468 cfs_rq->tg = tg; 13469 cfs_rq->rq = rq; 13470 init_cfs_rq_runtime(cfs_rq); 13471 13472 tg->cfs_rq[cpu] = cfs_rq; 13473 tg->se[cpu] = se; 13474 13475 /* se could be NULL for root_task_group */ 13476 if (!se) 13477 return; 13478 13479 if (!parent) { 13480 se->cfs_rq = &rq->cfs; 13481 se->depth = 0; 13482 } else { 13483 se->cfs_rq = parent->my_q; 13484 se->depth = parent->depth + 1; 13485 } 13486 13487 se->my_q = cfs_rq; 13488 /* guarantee group entities always have weight */ 13489 update_load_set(&se->load, NICE_0_LOAD); 13490 se->parent = parent; 13491 } 13492 13493 static DEFINE_MUTEX(shares_mutex); 13494 13495 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13496 { 13497 int i; 13498 13499 lockdep_assert_held(&shares_mutex); 13500 13501 /* 13502 * We can't change the weight of the root cgroup. 13503 */ 13504 if (!tg->se[0]) 13505 return -EINVAL; 13506 13507 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13508 13509 if (tg->shares == shares) 13510 return 0; 13511 13512 tg->shares = shares; 13513 for_each_possible_cpu(i) { 13514 struct rq *rq = cpu_rq(i); 13515 struct sched_entity *se = tg->se[i]; 13516 struct rq_flags rf; 13517 13518 /* Propagate contribution to hierarchy */ 13519 rq_lock_irqsave(rq, &rf); 13520 update_rq_clock(rq); 13521 for_each_sched_entity(se) { 13522 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13523 update_cfs_group(se); 13524 } 13525 rq_unlock_irqrestore(rq, &rf); 13526 } 13527 13528 return 0; 13529 } 13530 13531 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13532 { 13533 int ret; 13534 13535 mutex_lock(&shares_mutex); 13536 if (tg_is_idle(tg)) 13537 ret = -EINVAL; 13538 else 13539 ret = __sched_group_set_shares(tg, shares); 13540 mutex_unlock(&shares_mutex); 13541 13542 return ret; 13543 } 13544 13545 int sched_group_set_idle(struct task_group *tg, long idle) 13546 { 13547 int i; 13548 13549 if (tg == &root_task_group) 13550 return -EINVAL; 13551 13552 if (idle < 0 || idle > 1) 13553 return -EINVAL; 13554 13555 mutex_lock(&shares_mutex); 13556 13557 if (tg->idle == idle) { 13558 mutex_unlock(&shares_mutex); 13559 return 0; 13560 } 13561 13562 tg->idle = idle; 13563 13564 for_each_possible_cpu(i) { 13565 struct rq *rq = cpu_rq(i); 13566 struct sched_entity *se = tg->se[i]; 13567 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i]; 13568 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13569 long idle_task_delta; 13570 struct rq_flags rf; 13571 13572 rq_lock_irqsave(rq, &rf); 13573 13574 grp_cfs_rq->idle = idle; 13575 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13576 goto next_cpu; 13577 13578 idle_task_delta = grp_cfs_rq->h_nr_queued - 13579 grp_cfs_rq->h_nr_idle; 13580 if (!cfs_rq_is_idle(grp_cfs_rq)) 13581 idle_task_delta *= -1; 13582 13583 for_each_sched_entity(se) { 13584 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13585 13586 if (!se->on_rq) 13587 break; 13588 13589 cfs_rq->h_nr_idle += idle_task_delta; 13590 13591 /* Already accounted at parent level and above. */ 13592 if (cfs_rq_is_idle(cfs_rq)) 13593 break; 13594 } 13595 13596 next_cpu: 13597 rq_unlock_irqrestore(rq, &rf); 13598 } 13599 13600 /* Idle groups have minimum weight. */ 13601 if (tg_is_idle(tg)) 13602 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13603 else 13604 __sched_group_set_shares(tg, NICE_0_LOAD); 13605 13606 mutex_unlock(&shares_mutex); 13607 return 0; 13608 } 13609 13610 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13611 13612 13613 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13614 { 13615 struct sched_entity *se = &task->se; 13616 unsigned int rr_interval = 0; 13617 13618 /* 13619 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13620 * idle runqueue: 13621 */ 13622 if (rq->cfs.load.weight) 13623 rr_interval = NS_TO_JIFFIES(se->slice); 13624 13625 return rr_interval; 13626 } 13627 13628 /* 13629 * All the scheduling class methods: 13630 */ 13631 DEFINE_SCHED_CLASS(fair) = { 13632 13633 .enqueue_task = enqueue_task_fair, 13634 .dequeue_task = dequeue_task_fair, 13635 .yield_task = yield_task_fair, 13636 .yield_to_task = yield_to_task_fair, 13637 13638 .wakeup_preempt = check_preempt_wakeup_fair, 13639 13640 .pick_task = pick_task_fair, 13641 .pick_next_task = __pick_next_task_fair, 13642 .put_prev_task = put_prev_task_fair, 13643 .set_next_task = set_next_task_fair, 13644 13645 #ifdef CONFIG_SMP 13646 .balance = balance_fair, 13647 .select_task_rq = select_task_rq_fair, 13648 .migrate_task_rq = migrate_task_rq_fair, 13649 13650 .rq_online = rq_online_fair, 13651 .rq_offline = rq_offline_fair, 13652 13653 .task_dead = task_dead_fair, 13654 .set_cpus_allowed = set_cpus_allowed_fair, 13655 #endif 13656 13657 .task_tick = task_tick_fair, 13658 .task_fork = task_fork_fair, 13659 13660 .reweight_task = reweight_task_fair, 13661 .prio_changed = prio_changed_fair, 13662 .switched_from = switched_from_fair, 13663 .switched_to = switched_to_fair, 13664 13665 .get_rr_interval = get_rr_interval_fair, 13666 13667 .update_curr = update_curr_fair, 13668 13669 #ifdef CONFIG_FAIR_GROUP_SCHED 13670 .task_change_group = task_change_group_fair, 13671 #endif 13672 13673 #ifdef CONFIG_SCHED_CORE 13674 .task_is_throttled = task_is_throttled_fair, 13675 #endif 13676 13677 #ifdef CONFIG_UCLAMP_TASK 13678 .uclamp_enabled = 1, 13679 #endif 13680 }; 13681 13682 void print_cfs_stats(struct seq_file *m, int cpu) 13683 { 13684 struct cfs_rq *cfs_rq, *pos; 13685 13686 rcu_read_lock(); 13687 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13688 print_cfs_rq(m, cpu, cfs_rq); 13689 rcu_read_unlock(); 13690 } 13691 13692 #ifdef CONFIG_NUMA_BALANCING 13693 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13694 { 13695 int node; 13696 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13697 struct numa_group *ng; 13698 13699 rcu_read_lock(); 13700 ng = rcu_dereference(p->numa_group); 13701 for_each_online_node(node) { 13702 if (p->numa_faults) { 13703 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13704 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13705 } 13706 if (ng) { 13707 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13708 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13709 } 13710 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13711 } 13712 rcu_read_unlock(); 13713 } 13714 #endif /* CONFIG_NUMA_BALANCING */ 13715 13716 __init void init_sched_fair_class(void) 13717 { 13718 #ifdef CONFIG_SMP 13719 int i; 13720 13721 for_each_possible_cpu(i) { 13722 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13723 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13724 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13725 GFP_KERNEL, cpu_to_node(i)); 13726 13727 #ifdef CONFIG_CFS_BANDWIDTH 13728 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13729 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13730 #endif 13731 } 13732 13733 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13734 13735 #ifdef CONFIG_NO_HZ_COMMON 13736 nohz.next_balance = jiffies; 13737 nohz.next_blocked = jiffies; 13738 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13739 #endif 13740 #endif /* SMP */ 13741 13742 } 13743