1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 51 #include <asm/switch_to.h> 52 53 #include <linux/sched/cond_resched.h> 54 55 #include "sched.h" 56 #include "stats.h" 57 #include "autogroup.h" 58 59 /* 60 * Targeted preemption latency for CPU-bound tasks: 61 * 62 * NOTE: this latency value is not the same as the concept of 63 * 'timeslice length' - timeslices in CFS are of variable length 64 * and have no persistent notion like in traditional, time-slice 65 * based scheduling concepts. 66 * 67 * (to see the precise effective timeslice length of your workload, 68 * run vmstat and monitor the context-switches (cs) field) 69 * 70 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 71 */ 72 unsigned int sysctl_sched_latency = 6000000ULL; 73 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 74 75 /* 76 * The initial- and re-scaling of tunables is configurable 77 * 78 * Options are: 79 * 80 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 81 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 82 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 83 * 84 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 85 */ 86 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 87 88 /* 89 * Minimal preemption granularity for CPU-bound tasks: 90 * 91 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 92 */ 93 unsigned int sysctl_sched_min_granularity = 750000ULL; 94 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 95 96 /* 97 * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks. 98 * Applies only when SCHED_IDLE tasks compete with normal tasks. 99 * 100 * (default: 0.75 msec) 101 */ 102 unsigned int sysctl_sched_idle_min_granularity = 750000ULL; 103 104 /* 105 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 106 */ 107 static unsigned int sched_nr_latency = 8; 108 109 /* 110 * After fork, child runs first. If set to 0 (default) then 111 * parent will (try to) run first. 112 */ 113 unsigned int sysctl_sched_child_runs_first __read_mostly; 114 115 /* 116 * SCHED_OTHER wake-up granularity. 117 * 118 * This option delays the preemption effects of decoupled workloads 119 * and reduces their over-scheduling. Synchronous workloads will still 120 * have immediate wakeup/sleep latencies. 121 * 122 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 123 */ 124 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 125 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 126 127 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 128 129 int sched_thermal_decay_shift; 130 static int __init setup_sched_thermal_decay_shift(char *str) 131 { 132 int _shift = 0; 133 134 if (kstrtoint(str, 0, &_shift)) 135 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 136 137 sched_thermal_decay_shift = clamp(_shift, 0, 10); 138 return 1; 139 } 140 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 141 142 #ifdef CONFIG_SMP 143 /* 144 * For asym packing, by default the lower numbered CPU has higher priority. 145 */ 146 int __weak arch_asym_cpu_priority(int cpu) 147 { 148 return -cpu; 149 } 150 151 /* 152 * The margin used when comparing utilization with CPU capacity. 153 * 154 * (default: ~20%) 155 */ 156 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 157 158 /* 159 * The margin used when comparing CPU capacities. 160 * is 'cap1' noticeably greater than 'cap2' 161 * 162 * (default: ~5%) 163 */ 164 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 165 #endif 166 167 #ifdef CONFIG_CFS_BANDWIDTH 168 /* 169 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 170 * each time a cfs_rq requests quota. 171 * 172 * Note: in the case that the slice exceeds the runtime remaining (either due 173 * to consumption or the quota being specified to be smaller than the slice) 174 * we will always only issue the remaining available time. 175 * 176 * (default: 5 msec, units: microseconds) 177 */ 178 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 179 #endif 180 181 #ifdef CONFIG_NUMA_BALANCING 182 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 183 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 184 #endif 185 186 #ifdef CONFIG_SYSCTL 187 static struct ctl_table sched_fair_sysctls[] = { 188 { 189 .procname = "sched_child_runs_first", 190 .data = &sysctl_sched_child_runs_first, 191 .maxlen = sizeof(unsigned int), 192 .mode = 0644, 193 .proc_handler = proc_dointvec, 194 }, 195 #ifdef CONFIG_CFS_BANDWIDTH 196 { 197 .procname = "sched_cfs_bandwidth_slice_us", 198 .data = &sysctl_sched_cfs_bandwidth_slice, 199 .maxlen = sizeof(unsigned int), 200 .mode = 0644, 201 .proc_handler = proc_dointvec_minmax, 202 .extra1 = SYSCTL_ONE, 203 }, 204 #endif 205 #ifdef CONFIG_NUMA_BALANCING 206 { 207 .procname = "numa_balancing_promote_rate_limit_MBps", 208 .data = &sysctl_numa_balancing_promote_rate_limit, 209 .maxlen = sizeof(unsigned int), 210 .mode = 0644, 211 .proc_handler = proc_dointvec_minmax, 212 .extra1 = SYSCTL_ZERO, 213 }, 214 #endif /* CONFIG_NUMA_BALANCING */ 215 {} 216 }; 217 218 static int __init sched_fair_sysctl_init(void) 219 { 220 register_sysctl_init("kernel", sched_fair_sysctls); 221 return 0; 222 } 223 late_initcall(sched_fair_sysctl_init); 224 #endif 225 226 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 227 { 228 lw->weight += inc; 229 lw->inv_weight = 0; 230 } 231 232 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 233 { 234 lw->weight -= dec; 235 lw->inv_weight = 0; 236 } 237 238 static inline void update_load_set(struct load_weight *lw, unsigned long w) 239 { 240 lw->weight = w; 241 lw->inv_weight = 0; 242 } 243 244 /* 245 * Increase the granularity value when there are more CPUs, 246 * because with more CPUs the 'effective latency' as visible 247 * to users decreases. But the relationship is not linear, 248 * so pick a second-best guess by going with the log2 of the 249 * number of CPUs. 250 * 251 * This idea comes from the SD scheduler of Con Kolivas: 252 */ 253 static unsigned int get_update_sysctl_factor(void) 254 { 255 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 256 unsigned int factor; 257 258 switch (sysctl_sched_tunable_scaling) { 259 case SCHED_TUNABLESCALING_NONE: 260 factor = 1; 261 break; 262 case SCHED_TUNABLESCALING_LINEAR: 263 factor = cpus; 264 break; 265 case SCHED_TUNABLESCALING_LOG: 266 default: 267 factor = 1 + ilog2(cpus); 268 break; 269 } 270 271 return factor; 272 } 273 274 static void update_sysctl(void) 275 { 276 unsigned int factor = get_update_sysctl_factor(); 277 278 #define SET_SYSCTL(name) \ 279 (sysctl_##name = (factor) * normalized_sysctl_##name) 280 SET_SYSCTL(sched_min_granularity); 281 SET_SYSCTL(sched_latency); 282 SET_SYSCTL(sched_wakeup_granularity); 283 #undef SET_SYSCTL 284 } 285 286 void __init sched_init_granularity(void) 287 { 288 update_sysctl(); 289 } 290 291 #define WMULT_CONST (~0U) 292 #define WMULT_SHIFT 32 293 294 static void __update_inv_weight(struct load_weight *lw) 295 { 296 unsigned long w; 297 298 if (likely(lw->inv_weight)) 299 return; 300 301 w = scale_load_down(lw->weight); 302 303 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 304 lw->inv_weight = 1; 305 else if (unlikely(!w)) 306 lw->inv_weight = WMULT_CONST; 307 else 308 lw->inv_weight = WMULT_CONST / w; 309 } 310 311 /* 312 * delta_exec * weight / lw.weight 313 * OR 314 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 315 * 316 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 317 * we're guaranteed shift stays positive because inv_weight is guaranteed to 318 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 319 * 320 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 321 * weight/lw.weight <= 1, and therefore our shift will also be positive. 322 */ 323 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 324 { 325 u64 fact = scale_load_down(weight); 326 u32 fact_hi = (u32)(fact >> 32); 327 int shift = WMULT_SHIFT; 328 int fs; 329 330 __update_inv_weight(lw); 331 332 if (unlikely(fact_hi)) { 333 fs = fls(fact_hi); 334 shift -= fs; 335 fact >>= fs; 336 } 337 338 fact = mul_u32_u32(fact, lw->inv_weight); 339 340 fact_hi = (u32)(fact >> 32); 341 if (fact_hi) { 342 fs = fls(fact_hi); 343 shift -= fs; 344 fact >>= fs; 345 } 346 347 return mul_u64_u32_shr(delta_exec, fact, shift); 348 } 349 350 351 const struct sched_class fair_sched_class; 352 353 /************************************************************** 354 * CFS operations on generic schedulable entities: 355 */ 356 357 #ifdef CONFIG_FAIR_GROUP_SCHED 358 359 /* Walk up scheduling entities hierarchy */ 360 #define for_each_sched_entity(se) \ 361 for (; se; se = se->parent) 362 363 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 364 { 365 struct rq *rq = rq_of(cfs_rq); 366 int cpu = cpu_of(rq); 367 368 if (cfs_rq->on_list) 369 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 370 371 cfs_rq->on_list = 1; 372 373 /* 374 * Ensure we either appear before our parent (if already 375 * enqueued) or force our parent to appear after us when it is 376 * enqueued. The fact that we always enqueue bottom-up 377 * reduces this to two cases and a special case for the root 378 * cfs_rq. Furthermore, it also means that we will always reset 379 * tmp_alone_branch either when the branch is connected 380 * to a tree or when we reach the top of the tree 381 */ 382 if (cfs_rq->tg->parent && 383 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 384 /* 385 * If parent is already on the list, we add the child 386 * just before. Thanks to circular linked property of 387 * the list, this means to put the child at the tail 388 * of the list that starts by parent. 389 */ 390 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 391 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 392 /* 393 * The branch is now connected to its tree so we can 394 * reset tmp_alone_branch to the beginning of the 395 * list. 396 */ 397 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 398 return true; 399 } 400 401 if (!cfs_rq->tg->parent) { 402 /* 403 * cfs rq without parent should be put 404 * at the tail of the list. 405 */ 406 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 407 &rq->leaf_cfs_rq_list); 408 /* 409 * We have reach the top of a tree so we can reset 410 * tmp_alone_branch to the beginning of the list. 411 */ 412 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 413 return true; 414 } 415 416 /* 417 * The parent has not already been added so we want to 418 * make sure that it will be put after us. 419 * tmp_alone_branch points to the begin of the branch 420 * where we will add parent. 421 */ 422 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 423 /* 424 * update tmp_alone_branch to points to the new begin 425 * of the branch 426 */ 427 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 428 return false; 429 } 430 431 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 432 { 433 if (cfs_rq->on_list) { 434 struct rq *rq = rq_of(cfs_rq); 435 436 /* 437 * With cfs_rq being unthrottled/throttled during an enqueue, 438 * it can happen the tmp_alone_branch points the a leaf that 439 * we finally want to del. In this case, tmp_alone_branch moves 440 * to the prev element but it will point to rq->leaf_cfs_rq_list 441 * at the end of the enqueue. 442 */ 443 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 444 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 445 446 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 447 cfs_rq->on_list = 0; 448 } 449 } 450 451 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 452 { 453 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 454 } 455 456 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 457 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 458 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 459 leaf_cfs_rq_list) 460 461 /* Do the two (enqueued) entities belong to the same group ? */ 462 static inline struct cfs_rq * 463 is_same_group(struct sched_entity *se, struct sched_entity *pse) 464 { 465 if (se->cfs_rq == pse->cfs_rq) 466 return se->cfs_rq; 467 468 return NULL; 469 } 470 471 static inline struct sched_entity *parent_entity(struct sched_entity *se) 472 { 473 return se->parent; 474 } 475 476 static void 477 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 478 { 479 int se_depth, pse_depth; 480 481 /* 482 * preemption test can be made between sibling entities who are in the 483 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 484 * both tasks until we find their ancestors who are siblings of common 485 * parent. 486 */ 487 488 /* First walk up until both entities are at same depth */ 489 se_depth = (*se)->depth; 490 pse_depth = (*pse)->depth; 491 492 while (se_depth > pse_depth) { 493 se_depth--; 494 *se = parent_entity(*se); 495 } 496 497 while (pse_depth > se_depth) { 498 pse_depth--; 499 *pse = parent_entity(*pse); 500 } 501 502 while (!is_same_group(*se, *pse)) { 503 *se = parent_entity(*se); 504 *pse = parent_entity(*pse); 505 } 506 } 507 508 static int tg_is_idle(struct task_group *tg) 509 { 510 return tg->idle > 0; 511 } 512 513 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 514 { 515 return cfs_rq->idle > 0; 516 } 517 518 static int se_is_idle(struct sched_entity *se) 519 { 520 if (entity_is_task(se)) 521 return task_has_idle_policy(task_of(se)); 522 return cfs_rq_is_idle(group_cfs_rq(se)); 523 } 524 525 #else /* !CONFIG_FAIR_GROUP_SCHED */ 526 527 #define for_each_sched_entity(se) \ 528 for (; se; se = NULL) 529 530 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 531 { 532 return true; 533 } 534 535 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 536 { 537 } 538 539 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 540 { 541 } 542 543 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 544 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 545 546 static inline struct sched_entity *parent_entity(struct sched_entity *se) 547 { 548 return NULL; 549 } 550 551 static inline void 552 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 553 { 554 } 555 556 static inline int tg_is_idle(struct task_group *tg) 557 { 558 return 0; 559 } 560 561 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 562 { 563 return 0; 564 } 565 566 static int se_is_idle(struct sched_entity *se) 567 { 568 return 0; 569 } 570 571 #endif /* CONFIG_FAIR_GROUP_SCHED */ 572 573 static __always_inline 574 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 575 576 /************************************************************** 577 * Scheduling class tree data structure manipulation methods: 578 */ 579 580 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 581 { 582 s64 delta = (s64)(vruntime - max_vruntime); 583 if (delta > 0) 584 max_vruntime = vruntime; 585 586 return max_vruntime; 587 } 588 589 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 590 { 591 s64 delta = (s64)(vruntime - min_vruntime); 592 if (delta < 0) 593 min_vruntime = vruntime; 594 595 return min_vruntime; 596 } 597 598 static inline bool entity_before(struct sched_entity *a, 599 struct sched_entity *b) 600 { 601 return (s64)(a->vruntime - b->vruntime) < 0; 602 } 603 604 #define __node_2_se(node) \ 605 rb_entry((node), struct sched_entity, run_node) 606 607 static void update_min_vruntime(struct cfs_rq *cfs_rq) 608 { 609 struct sched_entity *curr = cfs_rq->curr; 610 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 611 612 u64 vruntime = cfs_rq->min_vruntime; 613 614 if (curr) { 615 if (curr->on_rq) 616 vruntime = curr->vruntime; 617 else 618 curr = NULL; 619 } 620 621 if (leftmost) { /* non-empty tree */ 622 struct sched_entity *se = __node_2_se(leftmost); 623 624 if (!curr) 625 vruntime = se->vruntime; 626 else 627 vruntime = min_vruntime(vruntime, se->vruntime); 628 } 629 630 /* ensure we never gain time by being placed backwards. */ 631 u64_u32_store(cfs_rq->min_vruntime, 632 max_vruntime(cfs_rq->min_vruntime, vruntime)); 633 } 634 635 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 636 { 637 return entity_before(__node_2_se(a), __node_2_se(b)); 638 } 639 640 /* 641 * Enqueue an entity into the rb-tree: 642 */ 643 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 644 { 645 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less); 646 } 647 648 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 649 { 650 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 651 } 652 653 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 654 { 655 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 656 657 if (!left) 658 return NULL; 659 660 return __node_2_se(left); 661 } 662 663 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 664 { 665 struct rb_node *next = rb_next(&se->run_node); 666 667 if (!next) 668 return NULL; 669 670 return __node_2_se(next); 671 } 672 673 #ifdef CONFIG_SCHED_DEBUG 674 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 675 { 676 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 677 678 if (!last) 679 return NULL; 680 681 return __node_2_se(last); 682 } 683 684 /************************************************************** 685 * Scheduling class statistics methods: 686 */ 687 688 int sched_update_scaling(void) 689 { 690 unsigned int factor = get_update_sysctl_factor(); 691 692 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 693 sysctl_sched_min_granularity); 694 695 #define WRT_SYSCTL(name) \ 696 (normalized_sysctl_##name = sysctl_##name / (factor)) 697 WRT_SYSCTL(sched_min_granularity); 698 WRT_SYSCTL(sched_latency); 699 WRT_SYSCTL(sched_wakeup_granularity); 700 #undef WRT_SYSCTL 701 702 return 0; 703 } 704 #endif 705 706 /* 707 * delta /= w 708 */ 709 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 710 { 711 if (unlikely(se->load.weight != NICE_0_LOAD)) 712 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 713 714 return delta; 715 } 716 717 /* 718 * The idea is to set a period in which each task runs once. 719 * 720 * When there are too many tasks (sched_nr_latency) we have to stretch 721 * this period because otherwise the slices get too small. 722 * 723 * p = (nr <= nl) ? l : l*nr/nl 724 */ 725 static u64 __sched_period(unsigned long nr_running) 726 { 727 if (unlikely(nr_running > sched_nr_latency)) 728 return nr_running * sysctl_sched_min_granularity; 729 else 730 return sysctl_sched_latency; 731 } 732 733 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq); 734 735 /* 736 * We calculate the wall-time slice from the period by taking a part 737 * proportional to the weight. 738 * 739 * s = p*P[w/rw] 740 */ 741 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 742 { 743 unsigned int nr_running = cfs_rq->nr_running; 744 struct sched_entity *init_se = se; 745 unsigned int min_gran; 746 u64 slice; 747 748 if (sched_feat(ALT_PERIOD)) 749 nr_running = rq_of(cfs_rq)->cfs.h_nr_running; 750 751 slice = __sched_period(nr_running + !se->on_rq); 752 753 for_each_sched_entity(se) { 754 struct load_weight *load; 755 struct load_weight lw; 756 struct cfs_rq *qcfs_rq; 757 758 qcfs_rq = cfs_rq_of(se); 759 load = &qcfs_rq->load; 760 761 if (unlikely(!se->on_rq)) { 762 lw = qcfs_rq->load; 763 764 update_load_add(&lw, se->load.weight); 765 load = &lw; 766 } 767 slice = __calc_delta(slice, se->load.weight, load); 768 } 769 770 if (sched_feat(BASE_SLICE)) { 771 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq)) 772 min_gran = sysctl_sched_idle_min_granularity; 773 else 774 min_gran = sysctl_sched_min_granularity; 775 776 slice = max_t(u64, slice, min_gran); 777 } 778 779 return slice; 780 } 781 782 /* 783 * We calculate the vruntime slice of a to-be-inserted task. 784 * 785 * vs = s/w 786 */ 787 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 788 { 789 return calc_delta_fair(sched_slice(cfs_rq, se), se); 790 } 791 792 #include "pelt.h" 793 #ifdef CONFIG_SMP 794 795 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 796 static unsigned long task_h_load(struct task_struct *p); 797 static unsigned long capacity_of(int cpu); 798 799 /* Give new sched_entity start runnable values to heavy its load in infant time */ 800 void init_entity_runnable_average(struct sched_entity *se) 801 { 802 struct sched_avg *sa = &se->avg; 803 804 memset(sa, 0, sizeof(*sa)); 805 806 /* 807 * Tasks are initialized with full load to be seen as heavy tasks until 808 * they get a chance to stabilize to their real load level. 809 * Group entities are initialized with zero load to reflect the fact that 810 * nothing has been attached to the task group yet. 811 */ 812 if (entity_is_task(se)) 813 sa->load_avg = scale_load_down(se->load.weight); 814 815 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 816 } 817 818 /* 819 * With new tasks being created, their initial util_avgs are extrapolated 820 * based on the cfs_rq's current util_avg: 821 * 822 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 823 * 824 * However, in many cases, the above util_avg does not give a desired 825 * value. Moreover, the sum of the util_avgs may be divergent, such 826 * as when the series is a harmonic series. 827 * 828 * To solve this problem, we also cap the util_avg of successive tasks to 829 * only 1/2 of the left utilization budget: 830 * 831 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 832 * 833 * where n denotes the nth task and cpu_scale the CPU capacity. 834 * 835 * For example, for a CPU with 1024 of capacity, a simplest series from 836 * the beginning would be like: 837 * 838 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 839 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 840 * 841 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 842 * if util_avg > util_avg_cap. 843 */ 844 void post_init_entity_util_avg(struct task_struct *p) 845 { 846 struct sched_entity *se = &p->se; 847 struct cfs_rq *cfs_rq = cfs_rq_of(se); 848 struct sched_avg *sa = &se->avg; 849 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 850 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 851 852 if (p->sched_class != &fair_sched_class) { 853 /* 854 * For !fair tasks do: 855 * 856 update_cfs_rq_load_avg(now, cfs_rq); 857 attach_entity_load_avg(cfs_rq, se); 858 switched_from_fair(rq, p); 859 * 860 * such that the next switched_to_fair() has the 861 * expected state. 862 */ 863 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 864 return; 865 } 866 867 if (cap > 0) { 868 if (cfs_rq->avg.util_avg != 0) { 869 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 870 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 871 872 if (sa->util_avg > cap) 873 sa->util_avg = cap; 874 } else { 875 sa->util_avg = cap; 876 } 877 } 878 879 sa->runnable_avg = sa->util_avg; 880 } 881 882 #else /* !CONFIG_SMP */ 883 void init_entity_runnable_average(struct sched_entity *se) 884 { 885 } 886 void post_init_entity_util_avg(struct task_struct *p) 887 { 888 } 889 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 890 { 891 } 892 #endif /* CONFIG_SMP */ 893 894 /* 895 * Update the current task's runtime statistics. 896 */ 897 static void update_curr(struct cfs_rq *cfs_rq) 898 { 899 struct sched_entity *curr = cfs_rq->curr; 900 u64 now = rq_clock_task(rq_of(cfs_rq)); 901 u64 delta_exec; 902 903 if (unlikely(!curr)) 904 return; 905 906 delta_exec = now - curr->exec_start; 907 if (unlikely((s64)delta_exec <= 0)) 908 return; 909 910 curr->exec_start = now; 911 912 if (schedstat_enabled()) { 913 struct sched_statistics *stats; 914 915 stats = __schedstats_from_se(curr); 916 __schedstat_set(stats->exec_max, 917 max(delta_exec, stats->exec_max)); 918 } 919 920 curr->sum_exec_runtime += delta_exec; 921 schedstat_add(cfs_rq->exec_clock, delta_exec); 922 923 curr->vruntime += calc_delta_fair(delta_exec, curr); 924 update_min_vruntime(cfs_rq); 925 926 if (entity_is_task(curr)) { 927 struct task_struct *curtask = task_of(curr); 928 929 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 930 cgroup_account_cputime(curtask, delta_exec); 931 account_group_exec_runtime(curtask, delta_exec); 932 } 933 934 account_cfs_rq_runtime(cfs_rq, delta_exec); 935 } 936 937 static void update_curr_fair(struct rq *rq) 938 { 939 update_curr(cfs_rq_of(&rq->curr->se)); 940 } 941 942 static inline void 943 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 944 { 945 struct sched_statistics *stats; 946 struct task_struct *p = NULL; 947 948 if (!schedstat_enabled()) 949 return; 950 951 stats = __schedstats_from_se(se); 952 953 if (entity_is_task(se)) 954 p = task_of(se); 955 956 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 957 } 958 959 static inline void 960 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 961 { 962 struct sched_statistics *stats; 963 struct task_struct *p = NULL; 964 965 if (!schedstat_enabled()) 966 return; 967 968 stats = __schedstats_from_se(se); 969 970 /* 971 * When the sched_schedstat changes from 0 to 1, some sched se 972 * maybe already in the runqueue, the se->statistics.wait_start 973 * will be 0.So it will let the delta wrong. We need to avoid this 974 * scenario. 975 */ 976 if (unlikely(!schedstat_val(stats->wait_start))) 977 return; 978 979 if (entity_is_task(se)) 980 p = task_of(se); 981 982 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 983 } 984 985 static inline void 986 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 987 { 988 struct sched_statistics *stats; 989 struct task_struct *tsk = NULL; 990 991 if (!schedstat_enabled()) 992 return; 993 994 stats = __schedstats_from_se(se); 995 996 if (entity_is_task(se)) 997 tsk = task_of(se); 998 999 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1000 } 1001 1002 /* 1003 * Task is being enqueued - update stats: 1004 */ 1005 static inline void 1006 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1007 { 1008 if (!schedstat_enabled()) 1009 return; 1010 1011 /* 1012 * Are we enqueueing a waiting task? (for current tasks 1013 * a dequeue/enqueue event is a NOP) 1014 */ 1015 if (se != cfs_rq->curr) 1016 update_stats_wait_start_fair(cfs_rq, se); 1017 1018 if (flags & ENQUEUE_WAKEUP) 1019 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1020 } 1021 1022 static inline void 1023 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1024 { 1025 1026 if (!schedstat_enabled()) 1027 return; 1028 1029 /* 1030 * Mark the end of the wait period if dequeueing a 1031 * waiting task: 1032 */ 1033 if (se != cfs_rq->curr) 1034 update_stats_wait_end_fair(cfs_rq, se); 1035 1036 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1037 struct task_struct *tsk = task_of(se); 1038 unsigned int state; 1039 1040 /* XXX racy against TTWU */ 1041 state = READ_ONCE(tsk->__state); 1042 if (state & TASK_INTERRUPTIBLE) 1043 __schedstat_set(tsk->stats.sleep_start, 1044 rq_clock(rq_of(cfs_rq))); 1045 if (state & TASK_UNINTERRUPTIBLE) 1046 __schedstat_set(tsk->stats.block_start, 1047 rq_clock(rq_of(cfs_rq))); 1048 } 1049 } 1050 1051 /* 1052 * We are picking a new current task - update its stats: 1053 */ 1054 static inline void 1055 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1056 { 1057 /* 1058 * We are starting a new run period: 1059 */ 1060 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1061 } 1062 1063 /************************************************** 1064 * Scheduling class queueing methods: 1065 */ 1066 1067 #ifdef CONFIG_NUMA 1068 #define NUMA_IMBALANCE_MIN 2 1069 1070 static inline long 1071 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1072 { 1073 /* 1074 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1075 * threshold. Above this threshold, individual tasks may be contending 1076 * for both memory bandwidth and any shared HT resources. This is an 1077 * approximation as the number of running tasks may not be related to 1078 * the number of busy CPUs due to sched_setaffinity. 1079 */ 1080 if (dst_running > imb_numa_nr) 1081 return imbalance; 1082 1083 /* 1084 * Allow a small imbalance based on a simple pair of communicating 1085 * tasks that remain local when the destination is lightly loaded. 1086 */ 1087 if (imbalance <= NUMA_IMBALANCE_MIN) 1088 return 0; 1089 1090 return imbalance; 1091 } 1092 #endif /* CONFIG_NUMA */ 1093 1094 #ifdef CONFIG_NUMA_BALANCING 1095 /* 1096 * Approximate time to scan a full NUMA task in ms. The task scan period is 1097 * calculated based on the tasks virtual memory size and 1098 * numa_balancing_scan_size. 1099 */ 1100 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1101 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1102 1103 /* Portion of address space to scan in MB */ 1104 unsigned int sysctl_numa_balancing_scan_size = 256; 1105 1106 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1107 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1108 1109 /* The page with hint page fault latency < threshold in ms is considered hot */ 1110 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1111 1112 struct numa_group { 1113 refcount_t refcount; 1114 1115 spinlock_t lock; /* nr_tasks, tasks */ 1116 int nr_tasks; 1117 pid_t gid; 1118 int active_nodes; 1119 1120 struct rcu_head rcu; 1121 unsigned long total_faults; 1122 unsigned long max_faults_cpu; 1123 /* 1124 * faults[] array is split into two regions: faults_mem and faults_cpu. 1125 * 1126 * Faults_cpu is used to decide whether memory should move 1127 * towards the CPU. As a consequence, these stats are weighted 1128 * more by CPU use than by memory faults. 1129 */ 1130 unsigned long faults[]; 1131 }; 1132 1133 /* 1134 * For functions that can be called in multiple contexts that permit reading 1135 * ->numa_group (see struct task_struct for locking rules). 1136 */ 1137 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1138 { 1139 return rcu_dereference_check(p->numa_group, p == current || 1140 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1141 } 1142 1143 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1144 { 1145 return rcu_dereference_protected(p->numa_group, p == current); 1146 } 1147 1148 static inline unsigned long group_faults_priv(struct numa_group *ng); 1149 static inline unsigned long group_faults_shared(struct numa_group *ng); 1150 1151 static unsigned int task_nr_scan_windows(struct task_struct *p) 1152 { 1153 unsigned long rss = 0; 1154 unsigned long nr_scan_pages; 1155 1156 /* 1157 * Calculations based on RSS as non-present and empty pages are skipped 1158 * by the PTE scanner and NUMA hinting faults should be trapped based 1159 * on resident pages 1160 */ 1161 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1162 rss = get_mm_rss(p->mm); 1163 if (!rss) 1164 rss = nr_scan_pages; 1165 1166 rss = round_up(rss, nr_scan_pages); 1167 return rss / nr_scan_pages; 1168 } 1169 1170 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1171 #define MAX_SCAN_WINDOW 2560 1172 1173 static unsigned int task_scan_min(struct task_struct *p) 1174 { 1175 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1176 unsigned int scan, floor; 1177 unsigned int windows = 1; 1178 1179 if (scan_size < MAX_SCAN_WINDOW) 1180 windows = MAX_SCAN_WINDOW / scan_size; 1181 floor = 1000 / windows; 1182 1183 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1184 return max_t(unsigned int, floor, scan); 1185 } 1186 1187 static unsigned int task_scan_start(struct task_struct *p) 1188 { 1189 unsigned long smin = task_scan_min(p); 1190 unsigned long period = smin; 1191 struct numa_group *ng; 1192 1193 /* Scale the maximum scan period with the amount of shared memory. */ 1194 rcu_read_lock(); 1195 ng = rcu_dereference(p->numa_group); 1196 if (ng) { 1197 unsigned long shared = group_faults_shared(ng); 1198 unsigned long private = group_faults_priv(ng); 1199 1200 period *= refcount_read(&ng->refcount); 1201 period *= shared + 1; 1202 period /= private + shared + 1; 1203 } 1204 rcu_read_unlock(); 1205 1206 return max(smin, period); 1207 } 1208 1209 static unsigned int task_scan_max(struct task_struct *p) 1210 { 1211 unsigned long smin = task_scan_min(p); 1212 unsigned long smax; 1213 struct numa_group *ng; 1214 1215 /* Watch for min being lower than max due to floor calculations */ 1216 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1217 1218 /* Scale the maximum scan period with the amount of shared memory. */ 1219 ng = deref_curr_numa_group(p); 1220 if (ng) { 1221 unsigned long shared = group_faults_shared(ng); 1222 unsigned long private = group_faults_priv(ng); 1223 unsigned long period = smax; 1224 1225 period *= refcount_read(&ng->refcount); 1226 period *= shared + 1; 1227 period /= private + shared + 1; 1228 1229 smax = max(smax, period); 1230 } 1231 1232 return max(smin, smax); 1233 } 1234 1235 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1236 { 1237 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1238 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1239 } 1240 1241 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1242 { 1243 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1244 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1245 } 1246 1247 /* Shared or private faults. */ 1248 #define NR_NUMA_HINT_FAULT_TYPES 2 1249 1250 /* Memory and CPU locality */ 1251 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1252 1253 /* Averaged statistics, and temporary buffers. */ 1254 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1255 1256 pid_t task_numa_group_id(struct task_struct *p) 1257 { 1258 struct numa_group *ng; 1259 pid_t gid = 0; 1260 1261 rcu_read_lock(); 1262 ng = rcu_dereference(p->numa_group); 1263 if (ng) 1264 gid = ng->gid; 1265 rcu_read_unlock(); 1266 1267 return gid; 1268 } 1269 1270 /* 1271 * The averaged statistics, shared & private, memory & CPU, 1272 * occupy the first half of the array. The second half of the 1273 * array is for current counters, which are averaged into the 1274 * first set by task_numa_placement. 1275 */ 1276 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1277 { 1278 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1279 } 1280 1281 static inline unsigned long task_faults(struct task_struct *p, int nid) 1282 { 1283 if (!p->numa_faults) 1284 return 0; 1285 1286 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1287 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1288 } 1289 1290 static inline unsigned long group_faults(struct task_struct *p, int nid) 1291 { 1292 struct numa_group *ng = deref_task_numa_group(p); 1293 1294 if (!ng) 1295 return 0; 1296 1297 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1298 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1299 } 1300 1301 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1302 { 1303 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1304 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1305 } 1306 1307 static inline unsigned long group_faults_priv(struct numa_group *ng) 1308 { 1309 unsigned long faults = 0; 1310 int node; 1311 1312 for_each_online_node(node) { 1313 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1314 } 1315 1316 return faults; 1317 } 1318 1319 static inline unsigned long group_faults_shared(struct numa_group *ng) 1320 { 1321 unsigned long faults = 0; 1322 int node; 1323 1324 for_each_online_node(node) { 1325 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1326 } 1327 1328 return faults; 1329 } 1330 1331 /* 1332 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1333 * considered part of a numa group's pseudo-interleaving set. Migrations 1334 * between these nodes are slowed down, to allow things to settle down. 1335 */ 1336 #define ACTIVE_NODE_FRACTION 3 1337 1338 static bool numa_is_active_node(int nid, struct numa_group *ng) 1339 { 1340 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1341 } 1342 1343 /* Handle placement on systems where not all nodes are directly connected. */ 1344 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1345 int lim_dist, bool task) 1346 { 1347 unsigned long score = 0; 1348 int node, max_dist; 1349 1350 /* 1351 * All nodes are directly connected, and the same distance 1352 * from each other. No need for fancy placement algorithms. 1353 */ 1354 if (sched_numa_topology_type == NUMA_DIRECT) 1355 return 0; 1356 1357 /* sched_max_numa_distance may be changed in parallel. */ 1358 max_dist = READ_ONCE(sched_max_numa_distance); 1359 /* 1360 * This code is called for each node, introducing N^2 complexity, 1361 * which should be ok given the number of nodes rarely exceeds 8. 1362 */ 1363 for_each_online_node(node) { 1364 unsigned long faults; 1365 int dist = node_distance(nid, node); 1366 1367 /* 1368 * The furthest away nodes in the system are not interesting 1369 * for placement; nid was already counted. 1370 */ 1371 if (dist >= max_dist || node == nid) 1372 continue; 1373 1374 /* 1375 * On systems with a backplane NUMA topology, compare groups 1376 * of nodes, and move tasks towards the group with the most 1377 * memory accesses. When comparing two nodes at distance 1378 * "hoplimit", only nodes closer by than "hoplimit" are part 1379 * of each group. Skip other nodes. 1380 */ 1381 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1382 continue; 1383 1384 /* Add up the faults from nearby nodes. */ 1385 if (task) 1386 faults = task_faults(p, node); 1387 else 1388 faults = group_faults(p, node); 1389 1390 /* 1391 * On systems with a glueless mesh NUMA topology, there are 1392 * no fixed "groups of nodes". Instead, nodes that are not 1393 * directly connected bounce traffic through intermediate 1394 * nodes; a numa_group can occupy any set of nodes. 1395 * The further away a node is, the less the faults count. 1396 * This seems to result in good task placement. 1397 */ 1398 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1399 faults *= (max_dist - dist); 1400 faults /= (max_dist - LOCAL_DISTANCE); 1401 } 1402 1403 score += faults; 1404 } 1405 1406 return score; 1407 } 1408 1409 /* 1410 * These return the fraction of accesses done by a particular task, or 1411 * task group, on a particular numa node. The group weight is given a 1412 * larger multiplier, in order to group tasks together that are almost 1413 * evenly spread out between numa nodes. 1414 */ 1415 static inline unsigned long task_weight(struct task_struct *p, int nid, 1416 int dist) 1417 { 1418 unsigned long faults, total_faults; 1419 1420 if (!p->numa_faults) 1421 return 0; 1422 1423 total_faults = p->total_numa_faults; 1424 1425 if (!total_faults) 1426 return 0; 1427 1428 faults = task_faults(p, nid); 1429 faults += score_nearby_nodes(p, nid, dist, true); 1430 1431 return 1000 * faults / total_faults; 1432 } 1433 1434 static inline unsigned long group_weight(struct task_struct *p, int nid, 1435 int dist) 1436 { 1437 struct numa_group *ng = deref_task_numa_group(p); 1438 unsigned long faults, total_faults; 1439 1440 if (!ng) 1441 return 0; 1442 1443 total_faults = ng->total_faults; 1444 1445 if (!total_faults) 1446 return 0; 1447 1448 faults = group_faults(p, nid); 1449 faults += score_nearby_nodes(p, nid, dist, false); 1450 1451 return 1000 * faults / total_faults; 1452 } 1453 1454 /* 1455 * If memory tiering mode is enabled, cpupid of slow memory page is 1456 * used to record scan time instead of CPU and PID. When tiering mode 1457 * is disabled at run time, the scan time (in cpupid) will be 1458 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1459 * access out of array bound. 1460 */ 1461 static inline bool cpupid_valid(int cpupid) 1462 { 1463 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1464 } 1465 1466 /* 1467 * For memory tiering mode, if there are enough free pages (more than 1468 * enough watermark defined here) in fast memory node, to take full 1469 * advantage of fast memory capacity, all recently accessed slow 1470 * memory pages will be migrated to fast memory node without 1471 * considering hot threshold. 1472 */ 1473 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1474 { 1475 int z; 1476 unsigned long enough_wmark; 1477 1478 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1479 pgdat->node_present_pages >> 4); 1480 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1481 struct zone *zone = pgdat->node_zones + z; 1482 1483 if (!populated_zone(zone)) 1484 continue; 1485 1486 if (zone_watermark_ok(zone, 0, 1487 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1488 ZONE_MOVABLE, 0)) 1489 return true; 1490 } 1491 return false; 1492 } 1493 1494 /* 1495 * For memory tiering mode, when page tables are scanned, the scan 1496 * time will be recorded in struct page in addition to make page 1497 * PROT_NONE for slow memory page. So when the page is accessed, in 1498 * hint page fault handler, the hint page fault latency is calculated 1499 * via, 1500 * 1501 * hint page fault latency = hint page fault time - scan time 1502 * 1503 * The smaller the hint page fault latency, the higher the possibility 1504 * for the page to be hot. 1505 */ 1506 static int numa_hint_fault_latency(struct page *page) 1507 { 1508 int last_time, time; 1509 1510 time = jiffies_to_msecs(jiffies); 1511 last_time = xchg_page_access_time(page, time); 1512 1513 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1514 } 1515 1516 /* 1517 * For memory tiering mode, too high promotion/demotion throughput may 1518 * hurt application latency. So we provide a mechanism to rate limit 1519 * the number of pages that are tried to be promoted. 1520 */ 1521 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1522 unsigned long rate_limit, int nr) 1523 { 1524 unsigned long nr_cand; 1525 unsigned int now, start; 1526 1527 now = jiffies_to_msecs(jiffies); 1528 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1529 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1530 start = pgdat->nbp_rl_start; 1531 if (now - start > MSEC_PER_SEC && 1532 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1533 pgdat->nbp_rl_nr_cand = nr_cand; 1534 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1535 return true; 1536 return false; 1537 } 1538 1539 #define NUMA_MIGRATION_ADJUST_STEPS 16 1540 1541 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1542 unsigned long rate_limit, 1543 unsigned int ref_th) 1544 { 1545 unsigned int now, start, th_period, unit_th, th; 1546 unsigned long nr_cand, ref_cand, diff_cand; 1547 1548 now = jiffies_to_msecs(jiffies); 1549 th_period = sysctl_numa_balancing_scan_period_max; 1550 start = pgdat->nbp_th_start; 1551 if (now - start > th_period && 1552 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1553 ref_cand = rate_limit * 1554 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1555 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1556 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1557 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1558 th = pgdat->nbp_threshold ? : ref_th; 1559 if (diff_cand > ref_cand * 11 / 10) 1560 th = max(th - unit_th, unit_th); 1561 else if (diff_cand < ref_cand * 9 / 10) 1562 th = min(th + unit_th, ref_th * 2); 1563 pgdat->nbp_th_nr_cand = nr_cand; 1564 pgdat->nbp_threshold = th; 1565 } 1566 } 1567 1568 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1569 int src_nid, int dst_cpu) 1570 { 1571 struct numa_group *ng = deref_curr_numa_group(p); 1572 int dst_nid = cpu_to_node(dst_cpu); 1573 int last_cpupid, this_cpupid; 1574 1575 /* 1576 * The pages in slow memory node should be migrated according 1577 * to hot/cold instead of private/shared. 1578 */ 1579 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1580 !node_is_toptier(src_nid)) { 1581 struct pglist_data *pgdat; 1582 unsigned long rate_limit; 1583 unsigned int latency, th, def_th; 1584 1585 pgdat = NODE_DATA(dst_nid); 1586 if (pgdat_free_space_enough(pgdat)) { 1587 /* workload changed, reset hot threshold */ 1588 pgdat->nbp_threshold = 0; 1589 return true; 1590 } 1591 1592 def_th = sysctl_numa_balancing_hot_threshold; 1593 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1594 (20 - PAGE_SHIFT); 1595 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1596 1597 th = pgdat->nbp_threshold ? : def_th; 1598 latency = numa_hint_fault_latency(page); 1599 if (latency >= th) 1600 return false; 1601 1602 return !numa_promotion_rate_limit(pgdat, rate_limit, 1603 thp_nr_pages(page)); 1604 } 1605 1606 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1607 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1608 1609 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1610 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1611 return false; 1612 1613 /* 1614 * Allow first faults or private faults to migrate immediately early in 1615 * the lifetime of a task. The magic number 4 is based on waiting for 1616 * two full passes of the "multi-stage node selection" test that is 1617 * executed below. 1618 */ 1619 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1620 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1621 return true; 1622 1623 /* 1624 * Multi-stage node selection is used in conjunction with a periodic 1625 * migration fault to build a temporal task<->page relation. By using 1626 * a two-stage filter we remove short/unlikely relations. 1627 * 1628 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1629 * a task's usage of a particular page (n_p) per total usage of this 1630 * page (n_t) (in a given time-span) to a probability. 1631 * 1632 * Our periodic faults will sample this probability and getting the 1633 * same result twice in a row, given these samples are fully 1634 * independent, is then given by P(n)^2, provided our sample period 1635 * is sufficiently short compared to the usage pattern. 1636 * 1637 * This quadric squishes small probabilities, making it less likely we 1638 * act on an unlikely task<->page relation. 1639 */ 1640 if (!cpupid_pid_unset(last_cpupid) && 1641 cpupid_to_nid(last_cpupid) != dst_nid) 1642 return false; 1643 1644 /* Always allow migrate on private faults */ 1645 if (cpupid_match_pid(p, last_cpupid)) 1646 return true; 1647 1648 /* A shared fault, but p->numa_group has not been set up yet. */ 1649 if (!ng) 1650 return true; 1651 1652 /* 1653 * Destination node is much more heavily used than the source 1654 * node? Allow migration. 1655 */ 1656 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1657 ACTIVE_NODE_FRACTION) 1658 return true; 1659 1660 /* 1661 * Distribute memory according to CPU & memory use on each node, 1662 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1663 * 1664 * faults_cpu(dst) 3 faults_cpu(src) 1665 * --------------- * - > --------------- 1666 * faults_mem(dst) 4 faults_mem(src) 1667 */ 1668 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1669 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1670 } 1671 1672 /* 1673 * 'numa_type' describes the node at the moment of load balancing. 1674 */ 1675 enum numa_type { 1676 /* The node has spare capacity that can be used to run more tasks. */ 1677 node_has_spare = 0, 1678 /* 1679 * The node is fully used and the tasks don't compete for more CPU 1680 * cycles. Nevertheless, some tasks might wait before running. 1681 */ 1682 node_fully_busy, 1683 /* 1684 * The node is overloaded and can't provide expected CPU cycles to all 1685 * tasks. 1686 */ 1687 node_overloaded 1688 }; 1689 1690 /* Cached statistics for all CPUs within a node */ 1691 struct numa_stats { 1692 unsigned long load; 1693 unsigned long runnable; 1694 unsigned long util; 1695 /* Total compute capacity of CPUs on a node */ 1696 unsigned long compute_capacity; 1697 unsigned int nr_running; 1698 unsigned int weight; 1699 enum numa_type node_type; 1700 int idle_cpu; 1701 }; 1702 1703 static inline bool is_core_idle(int cpu) 1704 { 1705 #ifdef CONFIG_SCHED_SMT 1706 int sibling; 1707 1708 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1709 if (cpu == sibling) 1710 continue; 1711 1712 if (!idle_cpu(sibling)) 1713 return false; 1714 } 1715 #endif 1716 1717 return true; 1718 } 1719 1720 struct task_numa_env { 1721 struct task_struct *p; 1722 1723 int src_cpu, src_nid; 1724 int dst_cpu, dst_nid; 1725 int imb_numa_nr; 1726 1727 struct numa_stats src_stats, dst_stats; 1728 1729 int imbalance_pct; 1730 int dist; 1731 1732 struct task_struct *best_task; 1733 long best_imp; 1734 int best_cpu; 1735 }; 1736 1737 static unsigned long cpu_load(struct rq *rq); 1738 static unsigned long cpu_runnable(struct rq *rq); 1739 1740 static inline enum 1741 numa_type numa_classify(unsigned int imbalance_pct, 1742 struct numa_stats *ns) 1743 { 1744 if ((ns->nr_running > ns->weight) && 1745 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1746 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1747 return node_overloaded; 1748 1749 if ((ns->nr_running < ns->weight) || 1750 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1751 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1752 return node_has_spare; 1753 1754 return node_fully_busy; 1755 } 1756 1757 #ifdef CONFIG_SCHED_SMT 1758 /* Forward declarations of select_idle_sibling helpers */ 1759 static inline bool test_idle_cores(int cpu); 1760 static inline int numa_idle_core(int idle_core, int cpu) 1761 { 1762 if (!static_branch_likely(&sched_smt_present) || 1763 idle_core >= 0 || !test_idle_cores(cpu)) 1764 return idle_core; 1765 1766 /* 1767 * Prefer cores instead of packing HT siblings 1768 * and triggering future load balancing. 1769 */ 1770 if (is_core_idle(cpu)) 1771 idle_core = cpu; 1772 1773 return idle_core; 1774 } 1775 #else 1776 static inline int numa_idle_core(int idle_core, int cpu) 1777 { 1778 return idle_core; 1779 } 1780 #endif 1781 1782 /* 1783 * Gather all necessary information to make NUMA balancing placement 1784 * decisions that are compatible with standard load balancer. This 1785 * borrows code and logic from update_sg_lb_stats but sharing a 1786 * common implementation is impractical. 1787 */ 1788 static void update_numa_stats(struct task_numa_env *env, 1789 struct numa_stats *ns, int nid, 1790 bool find_idle) 1791 { 1792 int cpu, idle_core = -1; 1793 1794 memset(ns, 0, sizeof(*ns)); 1795 ns->idle_cpu = -1; 1796 1797 rcu_read_lock(); 1798 for_each_cpu(cpu, cpumask_of_node(nid)) { 1799 struct rq *rq = cpu_rq(cpu); 1800 1801 ns->load += cpu_load(rq); 1802 ns->runnable += cpu_runnable(rq); 1803 ns->util += cpu_util_cfs(cpu); 1804 ns->nr_running += rq->cfs.h_nr_running; 1805 ns->compute_capacity += capacity_of(cpu); 1806 1807 if (find_idle && !rq->nr_running && idle_cpu(cpu)) { 1808 if (READ_ONCE(rq->numa_migrate_on) || 1809 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1810 continue; 1811 1812 if (ns->idle_cpu == -1) 1813 ns->idle_cpu = cpu; 1814 1815 idle_core = numa_idle_core(idle_core, cpu); 1816 } 1817 } 1818 rcu_read_unlock(); 1819 1820 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1821 1822 ns->node_type = numa_classify(env->imbalance_pct, ns); 1823 1824 if (idle_core >= 0) 1825 ns->idle_cpu = idle_core; 1826 } 1827 1828 static void task_numa_assign(struct task_numa_env *env, 1829 struct task_struct *p, long imp) 1830 { 1831 struct rq *rq = cpu_rq(env->dst_cpu); 1832 1833 /* Check if run-queue part of active NUMA balance. */ 1834 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1835 int cpu; 1836 int start = env->dst_cpu; 1837 1838 /* Find alternative idle CPU. */ 1839 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) { 1840 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1841 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1842 continue; 1843 } 1844 1845 env->dst_cpu = cpu; 1846 rq = cpu_rq(env->dst_cpu); 1847 if (!xchg(&rq->numa_migrate_on, 1)) 1848 goto assign; 1849 } 1850 1851 /* Failed to find an alternative idle CPU */ 1852 return; 1853 } 1854 1855 assign: 1856 /* 1857 * Clear previous best_cpu/rq numa-migrate flag, since task now 1858 * found a better CPU to move/swap. 1859 */ 1860 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1861 rq = cpu_rq(env->best_cpu); 1862 WRITE_ONCE(rq->numa_migrate_on, 0); 1863 } 1864 1865 if (env->best_task) 1866 put_task_struct(env->best_task); 1867 if (p) 1868 get_task_struct(p); 1869 1870 env->best_task = p; 1871 env->best_imp = imp; 1872 env->best_cpu = env->dst_cpu; 1873 } 1874 1875 static bool load_too_imbalanced(long src_load, long dst_load, 1876 struct task_numa_env *env) 1877 { 1878 long imb, old_imb; 1879 long orig_src_load, orig_dst_load; 1880 long src_capacity, dst_capacity; 1881 1882 /* 1883 * The load is corrected for the CPU capacity available on each node. 1884 * 1885 * src_load dst_load 1886 * ------------ vs --------- 1887 * src_capacity dst_capacity 1888 */ 1889 src_capacity = env->src_stats.compute_capacity; 1890 dst_capacity = env->dst_stats.compute_capacity; 1891 1892 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1893 1894 orig_src_load = env->src_stats.load; 1895 orig_dst_load = env->dst_stats.load; 1896 1897 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1898 1899 /* Would this change make things worse? */ 1900 return (imb > old_imb); 1901 } 1902 1903 /* 1904 * Maximum NUMA importance can be 1998 (2*999); 1905 * SMALLIMP @ 30 would be close to 1998/64. 1906 * Used to deter task migration. 1907 */ 1908 #define SMALLIMP 30 1909 1910 /* 1911 * This checks if the overall compute and NUMA accesses of the system would 1912 * be improved if the source tasks was migrated to the target dst_cpu taking 1913 * into account that it might be best if task running on the dst_cpu should 1914 * be exchanged with the source task 1915 */ 1916 static bool task_numa_compare(struct task_numa_env *env, 1917 long taskimp, long groupimp, bool maymove) 1918 { 1919 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1920 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1921 long imp = p_ng ? groupimp : taskimp; 1922 struct task_struct *cur; 1923 long src_load, dst_load; 1924 int dist = env->dist; 1925 long moveimp = imp; 1926 long load; 1927 bool stopsearch = false; 1928 1929 if (READ_ONCE(dst_rq->numa_migrate_on)) 1930 return false; 1931 1932 rcu_read_lock(); 1933 cur = rcu_dereference(dst_rq->curr); 1934 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1935 cur = NULL; 1936 1937 /* 1938 * Because we have preemption enabled we can get migrated around and 1939 * end try selecting ourselves (current == env->p) as a swap candidate. 1940 */ 1941 if (cur == env->p) { 1942 stopsearch = true; 1943 goto unlock; 1944 } 1945 1946 if (!cur) { 1947 if (maymove && moveimp >= env->best_imp) 1948 goto assign; 1949 else 1950 goto unlock; 1951 } 1952 1953 /* Skip this swap candidate if cannot move to the source cpu. */ 1954 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1955 goto unlock; 1956 1957 /* 1958 * Skip this swap candidate if it is not moving to its preferred 1959 * node and the best task is. 1960 */ 1961 if (env->best_task && 1962 env->best_task->numa_preferred_nid == env->src_nid && 1963 cur->numa_preferred_nid != env->src_nid) { 1964 goto unlock; 1965 } 1966 1967 /* 1968 * "imp" is the fault differential for the source task between the 1969 * source and destination node. Calculate the total differential for 1970 * the source task and potential destination task. The more negative 1971 * the value is, the more remote accesses that would be expected to 1972 * be incurred if the tasks were swapped. 1973 * 1974 * If dst and source tasks are in the same NUMA group, or not 1975 * in any group then look only at task weights. 1976 */ 1977 cur_ng = rcu_dereference(cur->numa_group); 1978 if (cur_ng == p_ng) { 1979 /* 1980 * Do not swap within a group or between tasks that have 1981 * no group if there is spare capacity. Swapping does 1982 * not address the load imbalance and helps one task at 1983 * the cost of punishing another. 1984 */ 1985 if (env->dst_stats.node_type == node_has_spare) 1986 goto unlock; 1987 1988 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1989 task_weight(cur, env->dst_nid, dist); 1990 /* 1991 * Add some hysteresis to prevent swapping the 1992 * tasks within a group over tiny differences. 1993 */ 1994 if (cur_ng) 1995 imp -= imp / 16; 1996 } else { 1997 /* 1998 * Compare the group weights. If a task is all by itself 1999 * (not part of a group), use the task weight instead. 2000 */ 2001 if (cur_ng && p_ng) 2002 imp += group_weight(cur, env->src_nid, dist) - 2003 group_weight(cur, env->dst_nid, dist); 2004 else 2005 imp += task_weight(cur, env->src_nid, dist) - 2006 task_weight(cur, env->dst_nid, dist); 2007 } 2008 2009 /* Discourage picking a task already on its preferred node */ 2010 if (cur->numa_preferred_nid == env->dst_nid) 2011 imp -= imp / 16; 2012 2013 /* 2014 * Encourage picking a task that moves to its preferred node. 2015 * This potentially makes imp larger than it's maximum of 2016 * 1998 (see SMALLIMP and task_weight for why) but in this 2017 * case, it does not matter. 2018 */ 2019 if (cur->numa_preferred_nid == env->src_nid) 2020 imp += imp / 8; 2021 2022 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2023 imp = moveimp; 2024 cur = NULL; 2025 goto assign; 2026 } 2027 2028 /* 2029 * Prefer swapping with a task moving to its preferred node over a 2030 * task that is not. 2031 */ 2032 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2033 env->best_task->numa_preferred_nid != env->src_nid) { 2034 goto assign; 2035 } 2036 2037 /* 2038 * If the NUMA importance is less than SMALLIMP, 2039 * task migration might only result in ping pong 2040 * of tasks and also hurt performance due to cache 2041 * misses. 2042 */ 2043 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2044 goto unlock; 2045 2046 /* 2047 * In the overloaded case, try and keep the load balanced. 2048 */ 2049 load = task_h_load(env->p) - task_h_load(cur); 2050 if (!load) 2051 goto assign; 2052 2053 dst_load = env->dst_stats.load + load; 2054 src_load = env->src_stats.load - load; 2055 2056 if (load_too_imbalanced(src_load, dst_load, env)) 2057 goto unlock; 2058 2059 assign: 2060 /* Evaluate an idle CPU for a task numa move. */ 2061 if (!cur) { 2062 int cpu = env->dst_stats.idle_cpu; 2063 2064 /* Nothing cached so current CPU went idle since the search. */ 2065 if (cpu < 0) 2066 cpu = env->dst_cpu; 2067 2068 /* 2069 * If the CPU is no longer truly idle and the previous best CPU 2070 * is, keep using it. 2071 */ 2072 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2073 idle_cpu(env->best_cpu)) { 2074 cpu = env->best_cpu; 2075 } 2076 2077 env->dst_cpu = cpu; 2078 } 2079 2080 task_numa_assign(env, cur, imp); 2081 2082 /* 2083 * If a move to idle is allowed because there is capacity or load 2084 * balance improves then stop the search. While a better swap 2085 * candidate may exist, a search is not free. 2086 */ 2087 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2088 stopsearch = true; 2089 2090 /* 2091 * If a swap candidate must be identified and the current best task 2092 * moves its preferred node then stop the search. 2093 */ 2094 if (!maymove && env->best_task && 2095 env->best_task->numa_preferred_nid == env->src_nid) { 2096 stopsearch = true; 2097 } 2098 unlock: 2099 rcu_read_unlock(); 2100 2101 return stopsearch; 2102 } 2103 2104 static void task_numa_find_cpu(struct task_numa_env *env, 2105 long taskimp, long groupimp) 2106 { 2107 bool maymove = false; 2108 int cpu; 2109 2110 /* 2111 * If dst node has spare capacity, then check if there is an 2112 * imbalance that would be overruled by the load balancer. 2113 */ 2114 if (env->dst_stats.node_type == node_has_spare) { 2115 unsigned int imbalance; 2116 int src_running, dst_running; 2117 2118 /* 2119 * Would movement cause an imbalance? Note that if src has 2120 * more running tasks that the imbalance is ignored as the 2121 * move improves the imbalance from the perspective of the 2122 * CPU load balancer. 2123 * */ 2124 src_running = env->src_stats.nr_running - 1; 2125 dst_running = env->dst_stats.nr_running + 1; 2126 imbalance = max(0, dst_running - src_running); 2127 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2128 env->imb_numa_nr); 2129 2130 /* Use idle CPU if there is no imbalance */ 2131 if (!imbalance) { 2132 maymove = true; 2133 if (env->dst_stats.idle_cpu >= 0) { 2134 env->dst_cpu = env->dst_stats.idle_cpu; 2135 task_numa_assign(env, NULL, 0); 2136 return; 2137 } 2138 } 2139 } else { 2140 long src_load, dst_load, load; 2141 /* 2142 * If the improvement from just moving env->p direction is better 2143 * than swapping tasks around, check if a move is possible. 2144 */ 2145 load = task_h_load(env->p); 2146 dst_load = env->dst_stats.load + load; 2147 src_load = env->src_stats.load - load; 2148 maymove = !load_too_imbalanced(src_load, dst_load, env); 2149 } 2150 2151 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2152 /* Skip this CPU if the source task cannot migrate */ 2153 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2154 continue; 2155 2156 env->dst_cpu = cpu; 2157 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2158 break; 2159 } 2160 } 2161 2162 static int task_numa_migrate(struct task_struct *p) 2163 { 2164 struct task_numa_env env = { 2165 .p = p, 2166 2167 .src_cpu = task_cpu(p), 2168 .src_nid = task_node(p), 2169 2170 .imbalance_pct = 112, 2171 2172 .best_task = NULL, 2173 .best_imp = 0, 2174 .best_cpu = -1, 2175 }; 2176 unsigned long taskweight, groupweight; 2177 struct sched_domain *sd; 2178 long taskimp, groupimp; 2179 struct numa_group *ng; 2180 struct rq *best_rq; 2181 int nid, ret, dist; 2182 2183 /* 2184 * Pick the lowest SD_NUMA domain, as that would have the smallest 2185 * imbalance and would be the first to start moving tasks about. 2186 * 2187 * And we want to avoid any moving of tasks about, as that would create 2188 * random movement of tasks -- counter the numa conditions we're trying 2189 * to satisfy here. 2190 */ 2191 rcu_read_lock(); 2192 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2193 if (sd) { 2194 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2195 env.imb_numa_nr = sd->imb_numa_nr; 2196 } 2197 rcu_read_unlock(); 2198 2199 /* 2200 * Cpusets can break the scheduler domain tree into smaller 2201 * balance domains, some of which do not cross NUMA boundaries. 2202 * Tasks that are "trapped" in such domains cannot be migrated 2203 * elsewhere, so there is no point in (re)trying. 2204 */ 2205 if (unlikely(!sd)) { 2206 sched_setnuma(p, task_node(p)); 2207 return -EINVAL; 2208 } 2209 2210 env.dst_nid = p->numa_preferred_nid; 2211 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2212 taskweight = task_weight(p, env.src_nid, dist); 2213 groupweight = group_weight(p, env.src_nid, dist); 2214 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2215 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2216 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2217 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2218 2219 /* Try to find a spot on the preferred nid. */ 2220 task_numa_find_cpu(&env, taskimp, groupimp); 2221 2222 /* 2223 * Look at other nodes in these cases: 2224 * - there is no space available on the preferred_nid 2225 * - the task is part of a numa_group that is interleaved across 2226 * multiple NUMA nodes; in order to better consolidate the group, 2227 * we need to check other locations. 2228 */ 2229 ng = deref_curr_numa_group(p); 2230 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2231 for_each_node_state(nid, N_CPU) { 2232 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2233 continue; 2234 2235 dist = node_distance(env.src_nid, env.dst_nid); 2236 if (sched_numa_topology_type == NUMA_BACKPLANE && 2237 dist != env.dist) { 2238 taskweight = task_weight(p, env.src_nid, dist); 2239 groupweight = group_weight(p, env.src_nid, dist); 2240 } 2241 2242 /* Only consider nodes where both task and groups benefit */ 2243 taskimp = task_weight(p, nid, dist) - taskweight; 2244 groupimp = group_weight(p, nid, dist) - groupweight; 2245 if (taskimp < 0 && groupimp < 0) 2246 continue; 2247 2248 env.dist = dist; 2249 env.dst_nid = nid; 2250 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2251 task_numa_find_cpu(&env, taskimp, groupimp); 2252 } 2253 } 2254 2255 /* 2256 * If the task is part of a workload that spans multiple NUMA nodes, 2257 * and is migrating into one of the workload's active nodes, remember 2258 * this node as the task's preferred numa node, so the workload can 2259 * settle down. 2260 * A task that migrated to a second choice node will be better off 2261 * trying for a better one later. Do not set the preferred node here. 2262 */ 2263 if (ng) { 2264 if (env.best_cpu == -1) 2265 nid = env.src_nid; 2266 else 2267 nid = cpu_to_node(env.best_cpu); 2268 2269 if (nid != p->numa_preferred_nid) 2270 sched_setnuma(p, nid); 2271 } 2272 2273 /* No better CPU than the current one was found. */ 2274 if (env.best_cpu == -1) { 2275 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2276 return -EAGAIN; 2277 } 2278 2279 best_rq = cpu_rq(env.best_cpu); 2280 if (env.best_task == NULL) { 2281 ret = migrate_task_to(p, env.best_cpu); 2282 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2283 if (ret != 0) 2284 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2285 return ret; 2286 } 2287 2288 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2289 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2290 2291 if (ret != 0) 2292 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2293 put_task_struct(env.best_task); 2294 return ret; 2295 } 2296 2297 /* Attempt to migrate a task to a CPU on the preferred node. */ 2298 static void numa_migrate_preferred(struct task_struct *p) 2299 { 2300 unsigned long interval = HZ; 2301 2302 /* This task has no NUMA fault statistics yet */ 2303 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2304 return; 2305 2306 /* Periodically retry migrating the task to the preferred node */ 2307 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2308 p->numa_migrate_retry = jiffies + interval; 2309 2310 /* Success if task is already running on preferred CPU */ 2311 if (task_node(p) == p->numa_preferred_nid) 2312 return; 2313 2314 /* Otherwise, try migrate to a CPU on the preferred node */ 2315 task_numa_migrate(p); 2316 } 2317 2318 /* 2319 * Find out how many nodes the workload is actively running on. Do this by 2320 * tracking the nodes from which NUMA hinting faults are triggered. This can 2321 * be different from the set of nodes where the workload's memory is currently 2322 * located. 2323 */ 2324 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2325 { 2326 unsigned long faults, max_faults = 0; 2327 int nid, active_nodes = 0; 2328 2329 for_each_node_state(nid, N_CPU) { 2330 faults = group_faults_cpu(numa_group, nid); 2331 if (faults > max_faults) 2332 max_faults = faults; 2333 } 2334 2335 for_each_node_state(nid, N_CPU) { 2336 faults = group_faults_cpu(numa_group, nid); 2337 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2338 active_nodes++; 2339 } 2340 2341 numa_group->max_faults_cpu = max_faults; 2342 numa_group->active_nodes = active_nodes; 2343 } 2344 2345 /* 2346 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2347 * increments. The more local the fault statistics are, the higher the scan 2348 * period will be for the next scan window. If local/(local+remote) ratio is 2349 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2350 * the scan period will decrease. Aim for 70% local accesses. 2351 */ 2352 #define NUMA_PERIOD_SLOTS 10 2353 #define NUMA_PERIOD_THRESHOLD 7 2354 2355 /* 2356 * Increase the scan period (slow down scanning) if the majority of 2357 * our memory is already on our local node, or if the majority of 2358 * the page accesses are shared with other processes. 2359 * Otherwise, decrease the scan period. 2360 */ 2361 static void update_task_scan_period(struct task_struct *p, 2362 unsigned long shared, unsigned long private) 2363 { 2364 unsigned int period_slot; 2365 int lr_ratio, ps_ratio; 2366 int diff; 2367 2368 unsigned long remote = p->numa_faults_locality[0]; 2369 unsigned long local = p->numa_faults_locality[1]; 2370 2371 /* 2372 * If there were no record hinting faults then either the task is 2373 * completely idle or all activity is in areas that are not of interest 2374 * to automatic numa balancing. Related to that, if there were failed 2375 * migration then it implies we are migrating too quickly or the local 2376 * node is overloaded. In either case, scan slower 2377 */ 2378 if (local + shared == 0 || p->numa_faults_locality[2]) { 2379 p->numa_scan_period = min(p->numa_scan_period_max, 2380 p->numa_scan_period << 1); 2381 2382 p->mm->numa_next_scan = jiffies + 2383 msecs_to_jiffies(p->numa_scan_period); 2384 2385 return; 2386 } 2387 2388 /* 2389 * Prepare to scale scan period relative to the current period. 2390 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2391 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2392 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2393 */ 2394 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2395 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2396 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2397 2398 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2399 /* 2400 * Most memory accesses are local. There is no need to 2401 * do fast NUMA scanning, since memory is already local. 2402 */ 2403 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2404 if (!slot) 2405 slot = 1; 2406 diff = slot * period_slot; 2407 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2408 /* 2409 * Most memory accesses are shared with other tasks. 2410 * There is no point in continuing fast NUMA scanning, 2411 * since other tasks may just move the memory elsewhere. 2412 */ 2413 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2414 if (!slot) 2415 slot = 1; 2416 diff = slot * period_slot; 2417 } else { 2418 /* 2419 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2420 * yet they are not on the local NUMA node. Speed up 2421 * NUMA scanning to get the memory moved over. 2422 */ 2423 int ratio = max(lr_ratio, ps_ratio); 2424 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2425 } 2426 2427 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2428 task_scan_min(p), task_scan_max(p)); 2429 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2430 } 2431 2432 /* 2433 * Get the fraction of time the task has been running since the last 2434 * NUMA placement cycle. The scheduler keeps similar statistics, but 2435 * decays those on a 32ms period, which is orders of magnitude off 2436 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2437 * stats only if the task is so new there are no NUMA statistics yet. 2438 */ 2439 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2440 { 2441 u64 runtime, delta, now; 2442 /* Use the start of this time slice to avoid calculations. */ 2443 now = p->se.exec_start; 2444 runtime = p->se.sum_exec_runtime; 2445 2446 if (p->last_task_numa_placement) { 2447 delta = runtime - p->last_sum_exec_runtime; 2448 *period = now - p->last_task_numa_placement; 2449 2450 /* Avoid time going backwards, prevent potential divide error: */ 2451 if (unlikely((s64)*period < 0)) 2452 *period = 0; 2453 } else { 2454 delta = p->se.avg.load_sum; 2455 *period = LOAD_AVG_MAX; 2456 } 2457 2458 p->last_sum_exec_runtime = runtime; 2459 p->last_task_numa_placement = now; 2460 2461 return delta; 2462 } 2463 2464 /* 2465 * Determine the preferred nid for a task in a numa_group. This needs to 2466 * be done in a way that produces consistent results with group_weight, 2467 * otherwise workloads might not converge. 2468 */ 2469 static int preferred_group_nid(struct task_struct *p, int nid) 2470 { 2471 nodemask_t nodes; 2472 int dist; 2473 2474 /* Direct connections between all NUMA nodes. */ 2475 if (sched_numa_topology_type == NUMA_DIRECT) 2476 return nid; 2477 2478 /* 2479 * On a system with glueless mesh NUMA topology, group_weight 2480 * scores nodes according to the number of NUMA hinting faults on 2481 * both the node itself, and on nearby nodes. 2482 */ 2483 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2484 unsigned long score, max_score = 0; 2485 int node, max_node = nid; 2486 2487 dist = sched_max_numa_distance; 2488 2489 for_each_node_state(node, N_CPU) { 2490 score = group_weight(p, node, dist); 2491 if (score > max_score) { 2492 max_score = score; 2493 max_node = node; 2494 } 2495 } 2496 return max_node; 2497 } 2498 2499 /* 2500 * Finding the preferred nid in a system with NUMA backplane 2501 * interconnect topology is more involved. The goal is to locate 2502 * tasks from numa_groups near each other in the system, and 2503 * untangle workloads from different sides of the system. This requires 2504 * searching down the hierarchy of node groups, recursively searching 2505 * inside the highest scoring group of nodes. The nodemask tricks 2506 * keep the complexity of the search down. 2507 */ 2508 nodes = node_states[N_CPU]; 2509 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2510 unsigned long max_faults = 0; 2511 nodemask_t max_group = NODE_MASK_NONE; 2512 int a, b; 2513 2514 /* Are there nodes at this distance from each other? */ 2515 if (!find_numa_distance(dist)) 2516 continue; 2517 2518 for_each_node_mask(a, nodes) { 2519 unsigned long faults = 0; 2520 nodemask_t this_group; 2521 nodes_clear(this_group); 2522 2523 /* Sum group's NUMA faults; includes a==b case. */ 2524 for_each_node_mask(b, nodes) { 2525 if (node_distance(a, b) < dist) { 2526 faults += group_faults(p, b); 2527 node_set(b, this_group); 2528 node_clear(b, nodes); 2529 } 2530 } 2531 2532 /* Remember the top group. */ 2533 if (faults > max_faults) { 2534 max_faults = faults; 2535 max_group = this_group; 2536 /* 2537 * subtle: at the smallest distance there is 2538 * just one node left in each "group", the 2539 * winner is the preferred nid. 2540 */ 2541 nid = a; 2542 } 2543 } 2544 /* Next round, evaluate the nodes within max_group. */ 2545 if (!max_faults) 2546 break; 2547 nodes = max_group; 2548 } 2549 return nid; 2550 } 2551 2552 static void task_numa_placement(struct task_struct *p) 2553 { 2554 int seq, nid, max_nid = NUMA_NO_NODE; 2555 unsigned long max_faults = 0; 2556 unsigned long fault_types[2] = { 0, 0 }; 2557 unsigned long total_faults; 2558 u64 runtime, period; 2559 spinlock_t *group_lock = NULL; 2560 struct numa_group *ng; 2561 2562 /* 2563 * The p->mm->numa_scan_seq field gets updated without 2564 * exclusive access. Use READ_ONCE() here to ensure 2565 * that the field is read in a single access: 2566 */ 2567 seq = READ_ONCE(p->mm->numa_scan_seq); 2568 if (p->numa_scan_seq == seq) 2569 return; 2570 p->numa_scan_seq = seq; 2571 p->numa_scan_period_max = task_scan_max(p); 2572 2573 total_faults = p->numa_faults_locality[0] + 2574 p->numa_faults_locality[1]; 2575 runtime = numa_get_avg_runtime(p, &period); 2576 2577 /* If the task is part of a group prevent parallel updates to group stats */ 2578 ng = deref_curr_numa_group(p); 2579 if (ng) { 2580 group_lock = &ng->lock; 2581 spin_lock_irq(group_lock); 2582 } 2583 2584 /* Find the node with the highest number of faults */ 2585 for_each_online_node(nid) { 2586 /* Keep track of the offsets in numa_faults array */ 2587 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2588 unsigned long faults = 0, group_faults = 0; 2589 int priv; 2590 2591 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2592 long diff, f_diff, f_weight; 2593 2594 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2595 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2596 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2597 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2598 2599 /* Decay existing window, copy faults since last scan */ 2600 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2601 fault_types[priv] += p->numa_faults[membuf_idx]; 2602 p->numa_faults[membuf_idx] = 0; 2603 2604 /* 2605 * Normalize the faults_from, so all tasks in a group 2606 * count according to CPU use, instead of by the raw 2607 * number of faults. Tasks with little runtime have 2608 * little over-all impact on throughput, and thus their 2609 * faults are less important. 2610 */ 2611 f_weight = div64_u64(runtime << 16, period + 1); 2612 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2613 (total_faults + 1); 2614 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2615 p->numa_faults[cpubuf_idx] = 0; 2616 2617 p->numa_faults[mem_idx] += diff; 2618 p->numa_faults[cpu_idx] += f_diff; 2619 faults += p->numa_faults[mem_idx]; 2620 p->total_numa_faults += diff; 2621 if (ng) { 2622 /* 2623 * safe because we can only change our own group 2624 * 2625 * mem_idx represents the offset for a given 2626 * nid and priv in a specific region because it 2627 * is at the beginning of the numa_faults array. 2628 */ 2629 ng->faults[mem_idx] += diff; 2630 ng->faults[cpu_idx] += f_diff; 2631 ng->total_faults += diff; 2632 group_faults += ng->faults[mem_idx]; 2633 } 2634 } 2635 2636 if (!ng) { 2637 if (faults > max_faults) { 2638 max_faults = faults; 2639 max_nid = nid; 2640 } 2641 } else if (group_faults > max_faults) { 2642 max_faults = group_faults; 2643 max_nid = nid; 2644 } 2645 } 2646 2647 /* Cannot migrate task to CPU-less node */ 2648 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) { 2649 int near_nid = max_nid; 2650 int distance, near_distance = INT_MAX; 2651 2652 for_each_node_state(nid, N_CPU) { 2653 distance = node_distance(max_nid, nid); 2654 if (distance < near_distance) { 2655 near_nid = nid; 2656 near_distance = distance; 2657 } 2658 } 2659 max_nid = near_nid; 2660 } 2661 2662 if (ng) { 2663 numa_group_count_active_nodes(ng); 2664 spin_unlock_irq(group_lock); 2665 max_nid = preferred_group_nid(p, max_nid); 2666 } 2667 2668 if (max_faults) { 2669 /* Set the new preferred node */ 2670 if (max_nid != p->numa_preferred_nid) 2671 sched_setnuma(p, max_nid); 2672 } 2673 2674 update_task_scan_period(p, fault_types[0], fault_types[1]); 2675 } 2676 2677 static inline int get_numa_group(struct numa_group *grp) 2678 { 2679 return refcount_inc_not_zero(&grp->refcount); 2680 } 2681 2682 static inline void put_numa_group(struct numa_group *grp) 2683 { 2684 if (refcount_dec_and_test(&grp->refcount)) 2685 kfree_rcu(grp, rcu); 2686 } 2687 2688 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2689 int *priv) 2690 { 2691 struct numa_group *grp, *my_grp; 2692 struct task_struct *tsk; 2693 bool join = false; 2694 int cpu = cpupid_to_cpu(cpupid); 2695 int i; 2696 2697 if (unlikely(!deref_curr_numa_group(p))) { 2698 unsigned int size = sizeof(struct numa_group) + 2699 NR_NUMA_HINT_FAULT_STATS * 2700 nr_node_ids * sizeof(unsigned long); 2701 2702 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2703 if (!grp) 2704 return; 2705 2706 refcount_set(&grp->refcount, 1); 2707 grp->active_nodes = 1; 2708 grp->max_faults_cpu = 0; 2709 spin_lock_init(&grp->lock); 2710 grp->gid = p->pid; 2711 2712 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2713 grp->faults[i] = p->numa_faults[i]; 2714 2715 grp->total_faults = p->total_numa_faults; 2716 2717 grp->nr_tasks++; 2718 rcu_assign_pointer(p->numa_group, grp); 2719 } 2720 2721 rcu_read_lock(); 2722 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2723 2724 if (!cpupid_match_pid(tsk, cpupid)) 2725 goto no_join; 2726 2727 grp = rcu_dereference(tsk->numa_group); 2728 if (!grp) 2729 goto no_join; 2730 2731 my_grp = deref_curr_numa_group(p); 2732 if (grp == my_grp) 2733 goto no_join; 2734 2735 /* 2736 * Only join the other group if its bigger; if we're the bigger group, 2737 * the other task will join us. 2738 */ 2739 if (my_grp->nr_tasks > grp->nr_tasks) 2740 goto no_join; 2741 2742 /* 2743 * Tie-break on the grp address. 2744 */ 2745 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2746 goto no_join; 2747 2748 /* Always join threads in the same process. */ 2749 if (tsk->mm == current->mm) 2750 join = true; 2751 2752 /* Simple filter to avoid false positives due to PID collisions */ 2753 if (flags & TNF_SHARED) 2754 join = true; 2755 2756 /* Update priv based on whether false sharing was detected */ 2757 *priv = !join; 2758 2759 if (join && !get_numa_group(grp)) 2760 goto no_join; 2761 2762 rcu_read_unlock(); 2763 2764 if (!join) 2765 return; 2766 2767 WARN_ON_ONCE(irqs_disabled()); 2768 double_lock_irq(&my_grp->lock, &grp->lock); 2769 2770 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2771 my_grp->faults[i] -= p->numa_faults[i]; 2772 grp->faults[i] += p->numa_faults[i]; 2773 } 2774 my_grp->total_faults -= p->total_numa_faults; 2775 grp->total_faults += p->total_numa_faults; 2776 2777 my_grp->nr_tasks--; 2778 grp->nr_tasks++; 2779 2780 spin_unlock(&my_grp->lock); 2781 spin_unlock_irq(&grp->lock); 2782 2783 rcu_assign_pointer(p->numa_group, grp); 2784 2785 put_numa_group(my_grp); 2786 return; 2787 2788 no_join: 2789 rcu_read_unlock(); 2790 return; 2791 } 2792 2793 /* 2794 * Get rid of NUMA statistics associated with a task (either current or dead). 2795 * If @final is set, the task is dead and has reached refcount zero, so we can 2796 * safely free all relevant data structures. Otherwise, there might be 2797 * concurrent reads from places like load balancing and procfs, and we should 2798 * reset the data back to default state without freeing ->numa_faults. 2799 */ 2800 void task_numa_free(struct task_struct *p, bool final) 2801 { 2802 /* safe: p either is current or is being freed by current */ 2803 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2804 unsigned long *numa_faults = p->numa_faults; 2805 unsigned long flags; 2806 int i; 2807 2808 if (!numa_faults) 2809 return; 2810 2811 if (grp) { 2812 spin_lock_irqsave(&grp->lock, flags); 2813 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2814 grp->faults[i] -= p->numa_faults[i]; 2815 grp->total_faults -= p->total_numa_faults; 2816 2817 grp->nr_tasks--; 2818 spin_unlock_irqrestore(&grp->lock, flags); 2819 RCU_INIT_POINTER(p->numa_group, NULL); 2820 put_numa_group(grp); 2821 } 2822 2823 if (final) { 2824 p->numa_faults = NULL; 2825 kfree(numa_faults); 2826 } else { 2827 p->total_numa_faults = 0; 2828 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2829 numa_faults[i] = 0; 2830 } 2831 } 2832 2833 /* 2834 * Got a PROT_NONE fault for a page on @node. 2835 */ 2836 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2837 { 2838 struct task_struct *p = current; 2839 bool migrated = flags & TNF_MIGRATED; 2840 int cpu_node = task_node(current); 2841 int local = !!(flags & TNF_FAULT_LOCAL); 2842 struct numa_group *ng; 2843 int priv; 2844 2845 if (!static_branch_likely(&sched_numa_balancing)) 2846 return; 2847 2848 /* for example, ksmd faulting in a user's mm */ 2849 if (!p->mm) 2850 return; 2851 2852 /* 2853 * NUMA faults statistics are unnecessary for the slow memory 2854 * node for memory tiering mode. 2855 */ 2856 if (!node_is_toptier(mem_node) && 2857 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 2858 !cpupid_valid(last_cpupid))) 2859 return; 2860 2861 /* Allocate buffer to track faults on a per-node basis */ 2862 if (unlikely(!p->numa_faults)) { 2863 int size = sizeof(*p->numa_faults) * 2864 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2865 2866 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2867 if (!p->numa_faults) 2868 return; 2869 2870 p->total_numa_faults = 0; 2871 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2872 } 2873 2874 /* 2875 * First accesses are treated as private, otherwise consider accesses 2876 * to be private if the accessing pid has not changed 2877 */ 2878 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2879 priv = 1; 2880 } else { 2881 priv = cpupid_match_pid(p, last_cpupid); 2882 if (!priv && !(flags & TNF_NO_GROUP)) 2883 task_numa_group(p, last_cpupid, flags, &priv); 2884 } 2885 2886 /* 2887 * If a workload spans multiple NUMA nodes, a shared fault that 2888 * occurs wholly within the set of nodes that the workload is 2889 * actively using should be counted as local. This allows the 2890 * scan rate to slow down when a workload has settled down. 2891 */ 2892 ng = deref_curr_numa_group(p); 2893 if (!priv && !local && ng && ng->active_nodes > 1 && 2894 numa_is_active_node(cpu_node, ng) && 2895 numa_is_active_node(mem_node, ng)) 2896 local = 1; 2897 2898 /* 2899 * Retry to migrate task to preferred node periodically, in case it 2900 * previously failed, or the scheduler moved us. 2901 */ 2902 if (time_after(jiffies, p->numa_migrate_retry)) { 2903 task_numa_placement(p); 2904 numa_migrate_preferred(p); 2905 } 2906 2907 if (migrated) 2908 p->numa_pages_migrated += pages; 2909 if (flags & TNF_MIGRATE_FAIL) 2910 p->numa_faults_locality[2] += pages; 2911 2912 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2913 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2914 p->numa_faults_locality[local] += pages; 2915 } 2916 2917 static void reset_ptenuma_scan(struct task_struct *p) 2918 { 2919 /* 2920 * We only did a read acquisition of the mmap sem, so 2921 * p->mm->numa_scan_seq is written to without exclusive access 2922 * and the update is not guaranteed to be atomic. That's not 2923 * much of an issue though, since this is just used for 2924 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2925 * expensive, to avoid any form of compiler optimizations: 2926 */ 2927 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2928 p->mm->numa_scan_offset = 0; 2929 } 2930 2931 /* 2932 * The expensive part of numa migration is done from task_work context. 2933 * Triggered from task_tick_numa(). 2934 */ 2935 static void task_numa_work(struct callback_head *work) 2936 { 2937 unsigned long migrate, next_scan, now = jiffies; 2938 struct task_struct *p = current; 2939 struct mm_struct *mm = p->mm; 2940 u64 runtime = p->se.sum_exec_runtime; 2941 MA_STATE(mas, &mm->mm_mt, 0, 0); 2942 struct vm_area_struct *vma; 2943 unsigned long start, end; 2944 unsigned long nr_pte_updates = 0; 2945 long pages, virtpages; 2946 2947 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2948 2949 work->next = work; 2950 /* 2951 * Who cares about NUMA placement when they're dying. 2952 * 2953 * NOTE: make sure not to dereference p->mm before this check, 2954 * exit_task_work() happens _after_ exit_mm() so we could be called 2955 * without p->mm even though we still had it when we enqueued this 2956 * work. 2957 */ 2958 if (p->flags & PF_EXITING) 2959 return; 2960 2961 if (!mm->numa_next_scan) { 2962 mm->numa_next_scan = now + 2963 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2964 } 2965 2966 /* 2967 * Enforce maximal scan/migration frequency.. 2968 */ 2969 migrate = mm->numa_next_scan; 2970 if (time_before(now, migrate)) 2971 return; 2972 2973 if (p->numa_scan_period == 0) { 2974 p->numa_scan_period_max = task_scan_max(p); 2975 p->numa_scan_period = task_scan_start(p); 2976 } 2977 2978 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2979 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 2980 return; 2981 2982 /* 2983 * Delay this task enough that another task of this mm will likely win 2984 * the next time around. 2985 */ 2986 p->node_stamp += 2 * TICK_NSEC; 2987 2988 start = mm->numa_scan_offset; 2989 pages = sysctl_numa_balancing_scan_size; 2990 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2991 virtpages = pages * 8; /* Scan up to this much virtual space */ 2992 if (!pages) 2993 return; 2994 2995 2996 if (!mmap_read_trylock(mm)) 2997 return; 2998 mas_set(&mas, start); 2999 vma = mas_find(&mas, ULONG_MAX); 3000 if (!vma) { 3001 reset_ptenuma_scan(p); 3002 start = 0; 3003 mas_set(&mas, start); 3004 vma = mas_find(&mas, ULONG_MAX); 3005 } 3006 3007 for (; vma; vma = mas_find(&mas, ULONG_MAX)) { 3008 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3009 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3010 continue; 3011 } 3012 3013 /* 3014 * Shared library pages mapped by multiple processes are not 3015 * migrated as it is expected they are cache replicated. Avoid 3016 * hinting faults in read-only file-backed mappings or the vdso 3017 * as migrating the pages will be of marginal benefit. 3018 */ 3019 if (!vma->vm_mm || 3020 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 3021 continue; 3022 3023 /* 3024 * Skip inaccessible VMAs to avoid any confusion between 3025 * PROT_NONE and NUMA hinting ptes 3026 */ 3027 if (!vma_is_accessible(vma)) 3028 continue; 3029 3030 do { 3031 start = max(start, vma->vm_start); 3032 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3033 end = min(end, vma->vm_end); 3034 nr_pte_updates = change_prot_numa(vma, start, end); 3035 3036 /* 3037 * Try to scan sysctl_numa_balancing_size worth of 3038 * hpages that have at least one present PTE that 3039 * is not already pte-numa. If the VMA contains 3040 * areas that are unused or already full of prot_numa 3041 * PTEs, scan up to virtpages, to skip through those 3042 * areas faster. 3043 */ 3044 if (nr_pte_updates) 3045 pages -= (end - start) >> PAGE_SHIFT; 3046 virtpages -= (end - start) >> PAGE_SHIFT; 3047 3048 start = end; 3049 if (pages <= 0 || virtpages <= 0) 3050 goto out; 3051 3052 cond_resched(); 3053 } while (end != vma->vm_end); 3054 } 3055 3056 out: 3057 /* 3058 * It is possible to reach the end of the VMA list but the last few 3059 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3060 * would find the !migratable VMA on the next scan but not reset the 3061 * scanner to the start so check it now. 3062 */ 3063 if (vma) 3064 mm->numa_scan_offset = start; 3065 else 3066 reset_ptenuma_scan(p); 3067 mmap_read_unlock(mm); 3068 3069 /* 3070 * Make sure tasks use at least 32x as much time to run other code 3071 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3072 * Usually update_task_scan_period slows down scanning enough; on an 3073 * overloaded system we need to limit overhead on a per task basis. 3074 */ 3075 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3076 u64 diff = p->se.sum_exec_runtime - runtime; 3077 p->node_stamp += 32 * diff; 3078 } 3079 } 3080 3081 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3082 { 3083 int mm_users = 0; 3084 struct mm_struct *mm = p->mm; 3085 3086 if (mm) { 3087 mm_users = atomic_read(&mm->mm_users); 3088 if (mm_users == 1) { 3089 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3090 mm->numa_scan_seq = 0; 3091 } 3092 } 3093 p->node_stamp = 0; 3094 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3095 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3096 p->numa_migrate_retry = 0; 3097 /* Protect against double add, see task_tick_numa and task_numa_work */ 3098 p->numa_work.next = &p->numa_work; 3099 p->numa_faults = NULL; 3100 p->numa_pages_migrated = 0; 3101 p->total_numa_faults = 0; 3102 RCU_INIT_POINTER(p->numa_group, NULL); 3103 p->last_task_numa_placement = 0; 3104 p->last_sum_exec_runtime = 0; 3105 3106 init_task_work(&p->numa_work, task_numa_work); 3107 3108 /* New address space, reset the preferred nid */ 3109 if (!(clone_flags & CLONE_VM)) { 3110 p->numa_preferred_nid = NUMA_NO_NODE; 3111 return; 3112 } 3113 3114 /* 3115 * New thread, keep existing numa_preferred_nid which should be copied 3116 * already by arch_dup_task_struct but stagger when scans start. 3117 */ 3118 if (mm) { 3119 unsigned int delay; 3120 3121 delay = min_t(unsigned int, task_scan_max(current), 3122 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3123 delay += 2 * TICK_NSEC; 3124 p->node_stamp = delay; 3125 } 3126 } 3127 3128 /* 3129 * Drive the periodic memory faults.. 3130 */ 3131 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3132 { 3133 struct callback_head *work = &curr->numa_work; 3134 u64 period, now; 3135 3136 /* 3137 * We don't care about NUMA placement if we don't have memory. 3138 */ 3139 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3140 return; 3141 3142 /* 3143 * Using runtime rather than walltime has the dual advantage that 3144 * we (mostly) drive the selection from busy threads and that the 3145 * task needs to have done some actual work before we bother with 3146 * NUMA placement. 3147 */ 3148 now = curr->se.sum_exec_runtime; 3149 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3150 3151 if (now > curr->node_stamp + period) { 3152 if (!curr->node_stamp) 3153 curr->numa_scan_period = task_scan_start(curr); 3154 curr->node_stamp += period; 3155 3156 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3157 task_work_add(curr, work, TWA_RESUME); 3158 } 3159 } 3160 3161 static void update_scan_period(struct task_struct *p, int new_cpu) 3162 { 3163 int src_nid = cpu_to_node(task_cpu(p)); 3164 int dst_nid = cpu_to_node(new_cpu); 3165 3166 if (!static_branch_likely(&sched_numa_balancing)) 3167 return; 3168 3169 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3170 return; 3171 3172 if (src_nid == dst_nid) 3173 return; 3174 3175 /* 3176 * Allow resets if faults have been trapped before one scan 3177 * has completed. This is most likely due to a new task that 3178 * is pulled cross-node due to wakeups or load balancing. 3179 */ 3180 if (p->numa_scan_seq) { 3181 /* 3182 * Avoid scan adjustments if moving to the preferred 3183 * node or if the task was not previously running on 3184 * the preferred node. 3185 */ 3186 if (dst_nid == p->numa_preferred_nid || 3187 (p->numa_preferred_nid != NUMA_NO_NODE && 3188 src_nid != p->numa_preferred_nid)) 3189 return; 3190 } 3191 3192 p->numa_scan_period = task_scan_start(p); 3193 } 3194 3195 #else 3196 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3197 { 3198 } 3199 3200 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3201 { 3202 } 3203 3204 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3205 { 3206 } 3207 3208 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3209 { 3210 } 3211 3212 #endif /* CONFIG_NUMA_BALANCING */ 3213 3214 static void 3215 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3216 { 3217 update_load_add(&cfs_rq->load, se->load.weight); 3218 #ifdef CONFIG_SMP 3219 if (entity_is_task(se)) { 3220 struct rq *rq = rq_of(cfs_rq); 3221 3222 account_numa_enqueue(rq, task_of(se)); 3223 list_add(&se->group_node, &rq->cfs_tasks); 3224 } 3225 #endif 3226 cfs_rq->nr_running++; 3227 if (se_is_idle(se)) 3228 cfs_rq->idle_nr_running++; 3229 } 3230 3231 static void 3232 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3233 { 3234 update_load_sub(&cfs_rq->load, se->load.weight); 3235 #ifdef CONFIG_SMP 3236 if (entity_is_task(se)) { 3237 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3238 list_del_init(&se->group_node); 3239 } 3240 #endif 3241 cfs_rq->nr_running--; 3242 if (se_is_idle(se)) 3243 cfs_rq->idle_nr_running--; 3244 } 3245 3246 /* 3247 * Signed add and clamp on underflow. 3248 * 3249 * Explicitly do a load-store to ensure the intermediate value never hits 3250 * memory. This allows lockless observations without ever seeing the negative 3251 * values. 3252 */ 3253 #define add_positive(_ptr, _val) do { \ 3254 typeof(_ptr) ptr = (_ptr); \ 3255 typeof(_val) val = (_val); \ 3256 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3257 \ 3258 res = var + val; \ 3259 \ 3260 if (val < 0 && res > var) \ 3261 res = 0; \ 3262 \ 3263 WRITE_ONCE(*ptr, res); \ 3264 } while (0) 3265 3266 /* 3267 * Unsigned subtract and clamp on underflow. 3268 * 3269 * Explicitly do a load-store to ensure the intermediate value never hits 3270 * memory. This allows lockless observations without ever seeing the negative 3271 * values. 3272 */ 3273 #define sub_positive(_ptr, _val) do { \ 3274 typeof(_ptr) ptr = (_ptr); \ 3275 typeof(*ptr) val = (_val); \ 3276 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3277 res = var - val; \ 3278 if (res > var) \ 3279 res = 0; \ 3280 WRITE_ONCE(*ptr, res); \ 3281 } while (0) 3282 3283 /* 3284 * Remove and clamp on negative, from a local variable. 3285 * 3286 * A variant of sub_positive(), which does not use explicit load-store 3287 * and is thus optimized for local variable updates. 3288 */ 3289 #define lsub_positive(_ptr, _val) do { \ 3290 typeof(_ptr) ptr = (_ptr); \ 3291 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3292 } while (0) 3293 3294 #ifdef CONFIG_SMP 3295 static inline void 3296 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3297 { 3298 cfs_rq->avg.load_avg += se->avg.load_avg; 3299 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3300 } 3301 3302 static inline void 3303 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3304 { 3305 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3306 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3307 /* See update_cfs_rq_load_avg() */ 3308 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3309 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3310 } 3311 #else 3312 static inline void 3313 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3314 static inline void 3315 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3316 #endif 3317 3318 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3319 unsigned long weight) 3320 { 3321 if (se->on_rq) { 3322 /* commit outstanding execution time */ 3323 if (cfs_rq->curr == se) 3324 update_curr(cfs_rq); 3325 update_load_sub(&cfs_rq->load, se->load.weight); 3326 } 3327 dequeue_load_avg(cfs_rq, se); 3328 3329 update_load_set(&se->load, weight); 3330 3331 #ifdef CONFIG_SMP 3332 do { 3333 u32 divider = get_pelt_divider(&se->avg); 3334 3335 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3336 } while (0); 3337 #endif 3338 3339 enqueue_load_avg(cfs_rq, se); 3340 if (se->on_rq) 3341 update_load_add(&cfs_rq->load, se->load.weight); 3342 3343 } 3344 3345 void reweight_task(struct task_struct *p, int prio) 3346 { 3347 struct sched_entity *se = &p->se; 3348 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3349 struct load_weight *load = &se->load; 3350 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3351 3352 reweight_entity(cfs_rq, se, weight); 3353 load->inv_weight = sched_prio_to_wmult[prio]; 3354 } 3355 3356 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3357 3358 #ifdef CONFIG_FAIR_GROUP_SCHED 3359 #ifdef CONFIG_SMP 3360 /* 3361 * All this does is approximate the hierarchical proportion which includes that 3362 * global sum we all love to hate. 3363 * 3364 * That is, the weight of a group entity, is the proportional share of the 3365 * group weight based on the group runqueue weights. That is: 3366 * 3367 * tg->weight * grq->load.weight 3368 * ge->load.weight = ----------------------------- (1) 3369 * \Sum grq->load.weight 3370 * 3371 * Now, because computing that sum is prohibitively expensive to compute (been 3372 * there, done that) we approximate it with this average stuff. The average 3373 * moves slower and therefore the approximation is cheaper and more stable. 3374 * 3375 * So instead of the above, we substitute: 3376 * 3377 * grq->load.weight -> grq->avg.load_avg (2) 3378 * 3379 * which yields the following: 3380 * 3381 * tg->weight * grq->avg.load_avg 3382 * ge->load.weight = ------------------------------ (3) 3383 * tg->load_avg 3384 * 3385 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3386 * 3387 * That is shares_avg, and it is right (given the approximation (2)). 3388 * 3389 * The problem with it is that because the average is slow -- it was designed 3390 * to be exactly that of course -- this leads to transients in boundary 3391 * conditions. In specific, the case where the group was idle and we start the 3392 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3393 * yielding bad latency etc.. 3394 * 3395 * Now, in that special case (1) reduces to: 3396 * 3397 * tg->weight * grq->load.weight 3398 * ge->load.weight = ----------------------------- = tg->weight (4) 3399 * grp->load.weight 3400 * 3401 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3402 * 3403 * So what we do is modify our approximation (3) to approach (4) in the (near) 3404 * UP case, like: 3405 * 3406 * ge->load.weight = 3407 * 3408 * tg->weight * grq->load.weight 3409 * --------------------------------------------------- (5) 3410 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3411 * 3412 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3413 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3414 * 3415 * 3416 * tg->weight * grq->load.weight 3417 * ge->load.weight = ----------------------------- (6) 3418 * tg_load_avg' 3419 * 3420 * Where: 3421 * 3422 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3423 * max(grq->load.weight, grq->avg.load_avg) 3424 * 3425 * And that is shares_weight and is icky. In the (near) UP case it approaches 3426 * (4) while in the normal case it approaches (3). It consistently 3427 * overestimates the ge->load.weight and therefore: 3428 * 3429 * \Sum ge->load.weight >= tg->weight 3430 * 3431 * hence icky! 3432 */ 3433 static long calc_group_shares(struct cfs_rq *cfs_rq) 3434 { 3435 long tg_weight, tg_shares, load, shares; 3436 struct task_group *tg = cfs_rq->tg; 3437 3438 tg_shares = READ_ONCE(tg->shares); 3439 3440 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3441 3442 tg_weight = atomic_long_read(&tg->load_avg); 3443 3444 /* Ensure tg_weight >= load */ 3445 tg_weight -= cfs_rq->tg_load_avg_contrib; 3446 tg_weight += load; 3447 3448 shares = (tg_shares * load); 3449 if (tg_weight) 3450 shares /= tg_weight; 3451 3452 /* 3453 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3454 * of a group with small tg->shares value. It is a floor value which is 3455 * assigned as a minimum load.weight to the sched_entity representing 3456 * the group on a CPU. 3457 * 3458 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3459 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3460 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3461 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3462 * instead of 0. 3463 */ 3464 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3465 } 3466 #endif /* CONFIG_SMP */ 3467 3468 /* 3469 * Recomputes the group entity based on the current state of its group 3470 * runqueue. 3471 */ 3472 static void update_cfs_group(struct sched_entity *se) 3473 { 3474 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3475 long shares; 3476 3477 if (!gcfs_rq) 3478 return; 3479 3480 if (throttled_hierarchy(gcfs_rq)) 3481 return; 3482 3483 #ifndef CONFIG_SMP 3484 shares = READ_ONCE(gcfs_rq->tg->shares); 3485 3486 if (likely(se->load.weight == shares)) 3487 return; 3488 #else 3489 shares = calc_group_shares(gcfs_rq); 3490 #endif 3491 3492 reweight_entity(cfs_rq_of(se), se, shares); 3493 } 3494 3495 #else /* CONFIG_FAIR_GROUP_SCHED */ 3496 static inline void update_cfs_group(struct sched_entity *se) 3497 { 3498 } 3499 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3500 3501 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3502 { 3503 struct rq *rq = rq_of(cfs_rq); 3504 3505 if (&rq->cfs == cfs_rq) { 3506 /* 3507 * There are a few boundary cases this might miss but it should 3508 * get called often enough that that should (hopefully) not be 3509 * a real problem. 3510 * 3511 * It will not get called when we go idle, because the idle 3512 * thread is a different class (!fair), nor will the utilization 3513 * number include things like RT tasks. 3514 * 3515 * As is, the util number is not freq-invariant (we'd have to 3516 * implement arch_scale_freq_capacity() for that). 3517 * 3518 * See cpu_util_cfs(). 3519 */ 3520 cpufreq_update_util(rq, flags); 3521 } 3522 } 3523 3524 #ifdef CONFIG_SMP 3525 static inline bool load_avg_is_decayed(struct sched_avg *sa) 3526 { 3527 if (sa->load_sum) 3528 return false; 3529 3530 if (sa->util_sum) 3531 return false; 3532 3533 if (sa->runnable_sum) 3534 return false; 3535 3536 /* 3537 * _avg must be null when _sum are null because _avg = _sum / divider 3538 * Make sure that rounding and/or propagation of PELT values never 3539 * break this. 3540 */ 3541 SCHED_WARN_ON(sa->load_avg || 3542 sa->util_avg || 3543 sa->runnable_avg); 3544 3545 return true; 3546 } 3547 3548 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3549 { 3550 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 3551 cfs_rq->last_update_time_copy); 3552 } 3553 #ifdef CONFIG_FAIR_GROUP_SCHED 3554 /* 3555 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 3556 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 3557 * bottom-up, we only have to test whether the cfs_rq before us on the list 3558 * is our child. 3559 * If cfs_rq is not on the list, test whether a child needs its to be added to 3560 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 3561 */ 3562 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 3563 { 3564 struct cfs_rq *prev_cfs_rq; 3565 struct list_head *prev; 3566 3567 if (cfs_rq->on_list) { 3568 prev = cfs_rq->leaf_cfs_rq_list.prev; 3569 } else { 3570 struct rq *rq = rq_of(cfs_rq); 3571 3572 prev = rq->tmp_alone_branch; 3573 } 3574 3575 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 3576 3577 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 3578 } 3579 3580 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 3581 { 3582 if (cfs_rq->load.weight) 3583 return false; 3584 3585 if (!load_avg_is_decayed(&cfs_rq->avg)) 3586 return false; 3587 3588 if (child_cfs_rq_on_list(cfs_rq)) 3589 return false; 3590 3591 return true; 3592 } 3593 3594 /** 3595 * update_tg_load_avg - update the tg's load avg 3596 * @cfs_rq: the cfs_rq whose avg changed 3597 * 3598 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3599 * However, because tg->load_avg is a global value there are performance 3600 * considerations. 3601 * 3602 * In order to avoid having to look at the other cfs_rq's, we use a 3603 * differential update where we store the last value we propagated. This in 3604 * turn allows skipping updates if the differential is 'small'. 3605 * 3606 * Updating tg's load_avg is necessary before update_cfs_share(). 3607 */ 3608 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3609 { 3610 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3611 3612 /* 3613 * No need to update load_avg for root_task_group as it is not used. 3614 */ 3615 if (cfs_rq->tg == &root_task_group) 3616 return; 3617 3618 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3619 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3620 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3621 } 3622 } 3623 3624 /* 3625 * Called within set_task_rq() right before setting a task's CPU. The 3626 * caller only guarantees p->pi_lock is held; no other assumptions, 3627 * including the state of rq->lock, should be made. 3628 */ 3629 void set_task_rq_fair(struct sched_entity *se, 3630 struct cfs_rq *prev, struct cfs_rq *next) 3631 { 3632 u64 p_last_update_time; 3633 u64 n_last_update_time; 3634 3635 if (!sched_feat(ATTACH_AGE_LOAD)) 3636 return; 3637 3638 /* 3639 * We are supposed to update the task to "current" time, then its up to 3640 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3641 * getting what current time is, so simply throw away the out-of-date 3642 * time. This will result in the wakee task is less decayed, but giving 3643 * the wakee more load sounds not bad. 3644 */ 3645 if (!(se->avg.last_update_time && prev)) 3646 return; 3647 3648 p_last_update_time = cfs_rq_last_update_time(prev); 3649 n_last_update_time = cfs_rq_last_update_time(next); 3650 3651 __update_load_avg_blocked_se(p_last_update_time, se); 3652 se->avg.last_update_time = n_last_update_time; 3653 } 3654 3655 /* 3656 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3657 * propagate its contribution. The key to this propagation is the invariant 3658 * that for each group: 3659 * 3660 * ge->avg == grq->avg (1) 3661 * 3662 * _IFF_ we look at the pure running and runnable sums. Because they 3663 * represent the very same entity, just at different points in the hierarchy. 3664 * 3665 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3666 * and simply copies the running/runnable sum over (but still wrong, because 3667 * the group entity and group rq do not have their PELT windows aligned). 3668 * 3669 * However, update_tg_cfs_load() is more complex. So we have: 3670 * 3671 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3672 * 3673 * And since, like util, the runnable part should be directly transferable, 3674 * the following would _appear_ to be the straight forward approach: 3675 * 3676 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3677 * 3678 * And per (1) we have: 3679 * 3680 * ge->avg.runnable_avg == grq->avg.runnable_avg 3681 * 3682 * Which gives: 3683 * 3684 * ge->load.weight * grq->avg.load_avg 3685 * ge->avg.load_avg = ----------------------------------- (4) 3686 * grq->load.weight 3687 * 3688 * Except that is wrong! 3689 * 3690 * Because while for entities historical weight is not important and we 3691 * really only care about our future and therefore can consider a pure 3692 * runnable sum, runqueues can NOT do this. 3693 * 3694 * We specifically want runqueues to have a load_avg that includes 3695 * historical weights. Those represent the blocked load, the load we expect 3696 * to (shortly) return to us. This only works by keeping the weights as 3697 * integral part of the sum. We therefore cannot decompose as per (3). 3698 * 3699 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3700 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3701 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3702 * runnable section of these tasks overlap (or not). If they were to perfectly 3703 * align the rq as a whole would be runnable 2/3 of the time. If however we 3704 * always have at least 1 runnable task, the rq as a whole is always runnable. 3705 * 3706 * So we'll have to approximate.. :/ 3707 * 3708 * Given the constraint: 3709 * 3710 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3711 * 3712 * We can construct a rule that adds runnable to a rq by assuming minimal 3713 * overlap. 3714 * 3715 * On removal, we'll assume each task is equally runnable; which yields: 3716 * 3717 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3718 * 3719 * XXX: only do this for the part of runnable > running ? 3720 * 3721 */ 3722 static inline void 3723 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3724 { 3725 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 3726 u32 new_sum, divider; 3727 3728 /* Nothing to update */ 3729 if (!delta_avg) 3730 return; 3731 3732 /* 3733 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3734 * See ___update_load_avg() for details. 3735 */ 3736 divider = get_pelt_divider(&cfs_rq->avg); 3737 3738 3739 /* Set new sched_entity's utilization */ 3740 se->avg.util_avg = gcfs_rq->avg.util_avg; 3741 new_sum = se->avg.util_avg * divider; 3742 delta_sum = (long)new_sum - (long)se->avg.util_sum; 3743 se->avg.util_sum = new_sum; 3744 3745 /* Update parent cfs_rq utilization */ 3746 add_positive(&cfs_rq->avg.util_avg, delta_avg); 3747 add_positive(&cfs_rq->avg.util_sum, delta_sum); 3748 3749 /* See update_cfs_rq_load_avg() */ 3750 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 3751 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 3752 } 3753 3754 static inline void 3755 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3756 { 3757 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3758 u32 new_sum, divider; 3759 3760 /* Nothing to update */ 3761 if (!delta_avg) 3762 return; 3763 3764 /* 3765 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3766 * See ___update_load_avg() for details. 3767 */ 3768 divider = get_pelt_divider(&cfs_rq->avg); 3769 3770 /* Set new sched_entity's runnable */ 3771 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3772 new_sum = se->avg.runnable_avg * divider; 3773 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 3774 se->avg.runnable_sum = new_sum; 3775 3776 /* Update parent cfs_rq runnable */ 3777 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 3778 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 3779 /* See update_cfs_rq_load_avg() */ 3780 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 3781 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 3782 } 3783 3784 static inline void 3785 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3786 { 3787 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3788 unsigned long load_avg; 3789 u64 load_sum = 0; 3790 s64 delta_sum; 3791 u32 divider; 3792 3793 if (!runnable_sum) 3794 return; 3795 3796 gcfs_rq->prop_runnable_sum = 0; 3797 3798 /* 3799 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3800 * See ___update_load_avg() for details. 3801 */ 3802 divider = get_pelt_divider(&cfs_rq->avg); 3803 3804 if (runnable_sum >= 0) { 3805 /* 3806 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3807 * the CPU is saturated running == runnable. 3808 */ 3809 runnable_sum += se->avg.load_sum; 3810 runnable_sum = min_t(long, runnable_sum, divider); 3811 } else { 3812 /* 3813 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3814 * assuming all tasks are equally runnable. 3815 */ 3816 if (scale_load_down(gcfs_rq->load.weight)) { 3817 load_sum = div_u64(gcfs_rq->avg.load_sum, 3818 scale_load_down(gcfs_rq->load.weight)); 3819 } 3820 3821 /* But make sure to not inflate se's runnable */ 3822 runnable_sum = min(se->avg.load_sum, load_sum); 3823 } 3824 3825 /* 3826 * runnable_sum can't be lower than running_sum 3827 * Rescale running sum to be in the same range as runnable sum 3828 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3829 * runnable_sum is in [0 : LOAD_AVG_MAX] 3830 */ 3831 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3832 runnable_sum = max(runnable_sum, running_sum); 3833 3834 load_sum = se_weight(se) * runnable_sum; 3835 load_avg = div_u64(load_sum, divider); 3836 3837 delta_avg = load_avg - se->avg.load_avg; 3838 if (!delta_avg) 3839 return; 3840 3841 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3842 3843 se->avg.load_sum = runnable_sum; 3844 se->avg.load_avg = load_avg; 3845 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3846 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3847 /* See update_cfs_rq_load_avg() */ 3848 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3849 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3850 } 3851 3852 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3853 { 3854 cfs_rq->propagate = 1; 3855 cfs_rq->prop_runnable_sum += runnable_sum; 3856 } 3857 3858 /* Update task and its cfs_rq load average */ 3859 static inline int propagate_entity_load_avg(struct sched_entity *se) 3860 { 3861 struct cfs_rq *cfs_rq, *gcfs_rq; 3862 3863 if (entity_is_task(se)) 3864 return 0; 3865 3866 gcfs_rq = group_cfs_rq(se); 3867 if (!gcfs_rq->propagate) 3868 return 0; 3869 3870 gcfs_rq->propagate = 0; 3871 3872 cfs_rq = cfs_rq_of(se); 3873 3874 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3875 3876 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3877 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3878 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3879 3880 trace_pelt_cfs_tp(cfs_rq); 3881 trace_pelt_se_tp(se); 3882 3883 return 1; 3884 } 3885 3886 /* 3887 * Check if we need to update the load and the utilization of a blocked 3888 * group_entity: 3889 */ 3890 static inline bool skip_blocked_update(struct sched_entity *se) 3891 { 3892 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3893 3894 /* 3895 * If sched_entity still have not zero load or utilization, we have to 3896 * decay it: 3897 */ 3898 if (se->avg.load_avg || se->avg.util_avg) 3899 return false; 3900 3901 /* 3902 * If there is a pending propagation, we have to update the load and 3903 * the utilization of the sched_entity: 3904 */ 3905 if (gcfs_rq->propagate) 3906 return false; 3907 3908 /* 3909 * Otherwise, the load and the utilization of the sched_entity is 3910 * already zero and there is no pending propagation, so it will be a 3911 * waste of time to try to decay it: 3912 */ 3913 return true; 3914 } 3915 3916 #else /* CONFIG_FAIR_GROUP_SCHED */ 3917 3918 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 3919 3920 static inline int propagate_entity_load_avg(struct sched_entity *se) 3921 { 3922 return 0; 3923 } 3924 3925 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3926 3927 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3928 3929 #ifdef CONFIG_NO_HZ_COMMON 3930 static inline void migrate_se_pelt_lag(struct sched_entity *se) 3931 { 3932 u64 throttled = 0, now, lut; 3933 struct cfs_rq *cfs_rq; 3934 struct rq *rq; 3935 bool is_idle; 3936 3937 if (load_avg_is_decayed(&se->avg)) 3938 return; 3939 3940 cfs_rq = cfs_rq_of(se); 3941 rq = rq_of(cfs_rq); 3942 3943 rcu_read_lock(); 3944 is_idle = is_idle_task(rcu_dereference(rq->curr)); 3945 rcu_read_unlock(); 3946 3947 /* 3948 * The lag estimation comes with a cost we don't want to pay all the 3949 * time. Hence, limiting to the case where the source CPU is idle and 3950 * we know we are at the greatest risk to have an outdated clock. 3951 */ 3952 if (!is_idle) 3953 return; 3954 3955 /* 3956 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 3957 * 3958 * last_update_time (the cfs_rq's last_update_time) 3959 * = cfs_rq_clock_pelt()@cfs_rq_idle 3960 * = rq_clock_pelt()@cfs_rq_idle 3961 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 3962 * 3963 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 3964 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 3965 * 3966 * rq_idle_lag (delta between now and rq's update) 3967 * = sched_clock_cpu() - rq_clock()@rq_idle 3968 * 3969 * We can then write: 3970 * 3971 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 3972 * sched_clock_cpu() - rq_clock()@rq_idle 3973 * Where: 3974 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 3975 * rq_clock()@rq_idle is rq->clock_idle 3976 * cfs->throttled_clock_pelt_time@cfs_rq_idle 3977 * is cfs_rq->throttled_pelt_idle 3978 */ 3979 3980 #ifdef CONFIG_CFS_BANDWIDTH 3981 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 3982 /* The clock has been stopped for throttling */ 3983 if (throttled == U64_MAX) 3984 return; 3985 #endif 3986 now = u64_u32_load(rq->clock_pelt_idle); 3987 /* 3988 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 3989 * is observed the old clock_pelt_idle value and the new clock_idle, 3990 * which lead to an underestimation. The opposite would lead to an 3991 * overestimation. 3992 */ 3993 smp_rmb(); 3994 lut = cfs_rq_last_update_time(cfs_rq); 3995 3996 now -= throttled; 3997 if (now < lut) 3998 /* 3999 * cfs_rq->avg.last_update_time is more recent than our 4000 * estimation, let's use it. 4001 */ 4002 now = lut; 4003 else 4004 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4005 4006 __update_load_avg_blocked_se(now, se); 4007 } 4008 #else 4009 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4010 #endif 4011 4012 /** 4013 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4014 * @now: current time, as per cfs_rq_clock_pelt() 4015 * @cfs_rq: cfs_rq to update 4016 * 4017 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4018 * avg. The immediate corollary is that all (fair) tasks must be attached. 4019 * 4020 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4021 * 4022 * Return: true if the load decayed or we removed load. 4023 * 4024 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4025 * call update_tg_load_avg() when this function returns true. 4026 */ 4027 static inline int 4028 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4029 { 4030 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4031 struct sched_avg *sa = &cfs_rq->avg; 4032 int decayed = 0; 4033 4034 if (cfs_rq->removed.nr) { 4035 unsigned long r; 4036 u32 divider = get_pelt_divider(&cfs_rq->avg); 4037 4038 raw_spin_lock(&cfs_rq->removed.lock); 4039 swap(cfs_rq->removed.util_avg, removed_util); 4040 swap(cfs_rq->removed.load_avg, removed_load); 4041 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4042 cfs_rq->removed.nr = 0; 4043 raw_spin_unlock(&cfs_rq->removed.lock); 4044 4045 r = removed_load; 4046 sub_positive(&sa->load_avg, r); 4047 sub_positive(&sa->load_sum, r * divider); 4048 /* See sa->util_sum below */ 4049 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4050 4051 r = removed_util; 4052 sub_positive(&sa->util_avg, r); 4053 sub_positive(&sa->util_sum, r * divider); 4054 /* 4055 * Because of rounding, se->util_sum might ends up being +1 more than 4056 * cfs->util_sum. Although this is not a problem by itself, detaching 4057 * a lot of tasks with the rounding problem between 2 updates of 4058 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4059 * cfs_util_avg is not. 4060 * Check that util_sum is still above its lower bound for the new 4061 * util_avg. Given that period_contrib might have moved since the last 4062 * sync, we are only sure that util_sum must be above or equal to 4063 * util_avg * minimum possible divider 4064 */ 4065 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4066 4067 r = removed_runnable; 4068 sub_positive(&sa->runnable_avg, r); 4069 sub_positive(&sa->runnable_sum, r * divider); 4070 /* See sa->util_sum above */ 4071 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4072 sa->runnable_avg * PELT_MIN_DIVIDER); 4073 4074 /* 4075 * removed_runnable is the unweighted version of removed_load so we 4076 * can use it to estimate removed_load_sum. 4077 */ 4078 add_tg_cfs_propagate(cfs_rq, 4079 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4080 4081 decayed = 1; 4082 } 4083 4084 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4085 u64_u32_store_copy(sa->last_update_time, 4086 cfs_rq->last_update_time_copy, 4087 sa->last_update_time); 4088 return decayed; 4089 } 4090 4091 /** 4092 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4093 * @cfs_rq: cfs_rq to attach to 4094 * @se: sched_entity to attach 4095 * 4096 * Must call update_cfs_rq_load_avg() before this, since we rely on 4097 * cfs_rq->avg.last_update_time being current. 4098 */ 4099 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4100 { 4101 /* 4102 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4103 * See ___update_load_avg() for details. 4104 */ 4105 u32 divider = get_pelt_divider(&cfs_rq->avg); 4106 4107 /* 4108 * When we attach the @se to the @cfs_rq, we must align the decay 4109 * window because without that, really weird and wonderful things can 4110 * happen. 4111 * 4112 * XXX illustrate 4113 */ 4114 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4115 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4116 4117 /* 4118 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4119 * period_contrib. This isn't strictly correct, but since we're 4120 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4121 * _sum a little. 4122 */ 4123 se->avg.util_sum = se->avg.util_avg * divider; 4124 4125 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4126 4127 se->avg.load_sum = se->avg.load_avg * divider; 4128 if (se_weight(se) < se->avg.load_sum) 4129 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4130 else 4131 se->avg.load_sum = 1; 4132 4133 enqueue_load_avg(cfs_rq, se); 4134 cfs_rq->avg.util_avg += se->avg.util_avg; 4135 cfs_rq->avg.util_sum += se->avg.util_sum; 4136 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4137 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4138 4139 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4140 4141 cfs_rq_util_change(cfs_rq, 0); 4142 4143 trace_pelt_cfs_tp(cfs_rq); 4144 } 4145 4146 /** 4147 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4148 * @cfs_rq: cfs_rq to detach from 4149 * @se: sched_entity to detach 4150 * 4151 * Must call update_cfs_rq_load_avg() before this, since we rely on 4152 * cfs_rq->avg.last_update_time being current. 4153 */ 4154 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4155 { 4156 dequeue_load_avg(cfs_rq, se); 4157 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4158 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4159 /* See update_cfs_rq_load_avg() */ 4160 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4161 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4162 4163 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4164 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4165 /* See update_cfs_rq_load_avg() */ 4166 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4167 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4168 4169 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4170 4171 cfs_rq_util_change(cfs_rq, 0); 4172 4173 trace_pelt_cfs_tp(cfs_rq); 4174 } 4175 4176 /* 4177 * Optional action to be done while updating the load average 4178 */ 4179 #define UPDATE_TG 0x1 4180 #define SKIP_AGE_LOAD 0x2 4181 #define DO_ATTACH 0x4 4182 #define DO_DETACH 0x8 4183 4184 /* Update task and its cfs_rq load average */ 4185 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4186 { 4187 u64 now = cfs_rq_clock_pelt(cfs_rq); 4188 int decayed; 4189 4190 /* 4191 * Track task load average for carrying it to new CPU after migrated, and 4192 * track group sched_entity load average for task_h_load calc in migration 4193 */ 4194 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4195 __update_load_avg_se(now, cfs_rq, se); 4196 4197 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4198 decayed |= propagate_entity_load_avg(se); 4199 4200 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4201 4202 /* 4203 * DO_ATTACH means we're here from enqueue_entity(). 4204 * !last_update_time means we've passed through 4205 * migrate_task_rq_fair() indicating we migrated. 4206 * 4207 * IOW we're enqueueing a task on a new CPU. 4208 */ 4209 attach_entity_load_avg(cfs_rq, se); 4210 update_tg_load_avg(cfs_rq); 4211 4212 } else if (flags & DO_DETACH) { 4213 /* 4214 * DO_DETACH means we're here from dequeue_entity() 4215 * and we are migrating task out of the CPU. 4216 */ 4217 detach_entity_load_avg(cfs_rq, se); 4218 update_tg_load_avg(cfs_rq); 4219 } else if (decayed) { 4220 cfs_rq_util_change(cfs_rq, 0); 4221 4222 if (flags & UPDATE_TG) 4223 update_tg_load_avg(cfs_rq); 4224 } 4225 } 4226 4227 /* 4228 * Synchronize entity load avg of dequeued entity without locking 4229 * the previous rq. 4230 */ 4231 static void sync_entity_load_avg(struct sched_entity *se) 4232 { 4233 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4234 u64 last_update_time; 4235 4236 last_update_time = cfs_rq_last_update_time(cfs_rq); 4237 __update_load_avg_blocked_se(last_update_time, se); 4238 } 4239 4240 /* 4241 * Task first catches up with cfs_rq, and then subtract 4242 * itself from the cfs_rq (task must be off the queue now). 4243 */ 4244 static void remove_entity_load_avg(struct sched_entity *se) 4245 { 4246 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4247 unsigned long flags; 4248 4249 /* 4250 * tasks cannot exit without having gone through wake_up_new_task() -> 4251 * enqueue_task_fair() which will have added things to the cfs_rq, 4252 * so we can remove unconditionally. 4253 */ 4254 4255 sync_entity_load_avg(se); 4256 4257 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4258 ++cfs_rq->removed.nr; 4259 cfs_rq->removed.util_avg += se->avg.util_avg; 4260 cfs_rq->removed.load_avg += se->avg.load_avg; 4261 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4262 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4263 } 4264 4265 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4266 { 4267 return cfs_rq->avg.runnable_avg; 4268 } 4269 4270 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4271 { 4272 return cfs_rq->avg.load_avg; 4273 } 4274 4275 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 4276 4277 static inline unsigned long task_util(struct task_struct *p) 4278 { 4279 return READ_ONCE(p->se.avg.util_avg); 4280 } 4281 4282 static inline unsigned long _task_util_est(struct task_struct *p) 4283 { 4284 struct util_est ue = READ_ONCE(p->se.avg.util_est); 4285 4286 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 4287 } 4288 4289 static inline unsigned long task_util_est(struct task_struct *p) 4290 { 4291 return max(task_util(p), _task_util_est(p)); 4292 } 4293 4294 #ifdef CONFIG_UCLAMP_TASK 4295 static inline unsigned long uclamp_task_util(struct task_struct *p, 4296 unsigned long uclamp_min, 4297 unsigned long uclamp_max) 4298 { 4299 return clamp(task_util_est(p), uclamp_min, uclamp_max); 4300 } 4301 #else 4302 static inline unsigned long uclamp_task_util(struct task_struct *p, 4303 unsigned long uclamp_min, 4304 unsigned long uclamp_max) 4305 { 4306 return task_util_est(p); 4307 } 4308 #endif 4309 4310 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4311 struct task_struct *p) 4312 { 4313 unsigned int enqueued; 4314 4315 if (!sched_feat(UTIL_EST)) 4316 return; 4317 4318 /* Update root cfs_rq's estimated utilization */ 4319 enqueued = cfs_rq->avg.util_est.enqueued; 4320 enqueued += _task_util_est(p); 4321 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4322 4323 trace_sched_util_est_cfs_tp(cfs_rq); 4324 } 4325 4326 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4327 struct task_struct *p) 4328 { 4329 unsigned int enqueued; 4330 4331 if (!sched_feat(UTIL_EST)) 4332 return; 4333 4334 /* Update root cfs_rq's estimated utilization */ 4335 enqueued = cfs_rq->avg.util_est.enqueued; 4336 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4337 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4338 4339 trace_sched_util_est_cfs_tp(cfs_rq); 4340 } 4341 4342 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4343 4344 /* 4345 * Check if a (signed) value is within a specified (unsigned) margin, 4346 * based on the observation that: 4347 * 4348 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4349 * 4350 * NOTE: this only works when value + margin < INT_MAX. 4351 */ 4352 static inline bool within_margin(int value, int margin) 4353 { 4354 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4355 } 4356 4357 static inline void util_est_update(struct cfs_rq *cfs_rq, 4358 struct task_struct *p, 4359 bool task_sleep) 4360 { 4361 long last_ewma_diff, last_enqueued_diff; 4362 struct util_est ue; 4363 4364 if (!sched_feat(UTIL_EST)) 4365 return; 4366 4367 /* 4368 * Skip update of task's estimated utilization when the task has not 4369 * yet completed an activation, e.g. being migrated. 4370 */ 4371 if (!task_sleep) 4372 return; 4373 4374 /* 4375 * If the PELT values haven't changed since enqueue time, 4376 * skip the util_est update. 4377 */ 4378 ue = p->se.avg.util_est; 4379 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4380 return; 4381 4382 last_enqueued_diff = ue.enqueued; 4383 4384 /* 4385 * Reset EWMA on utilization increases, the moving average is used only 4386 * to smooth utilization decreases. 4387 */ 4388 ue.enqueued = task_util(p); 4389 if (sched_feat(UTIL_EST_FASTUP)) { 4390 if (ue.ewma < ue.enqueued) { 4391 ue.ewma = ue.enqueued; 4392 goto done; 4393 } 4394 } 4395 4396 /* 4397 * Skip update of task's estimated utilization when its members are 4398 * already ~1% close to its last activation value. 4399 */ 4400 last_ewma_diff = ue.enqueued - ue.ewma; 4401 last_enqueued_diff -= ue.enqueued; 4402 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4403 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4404 goto done; 4405 4406 return; 4407 } 4408 4409 /* 4410 * To avoid overestimation of actual task utilization, skip updates if 4411 * we cannot grant there is idle time in this CPU. 4412 */ 4413 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4414 return; 4415 4416 /* 4417 * Update Task's estimated utilization 4418 * 4419 * When *p completes an activation we can consolidate another sample 4420 * of the task size. This is done by storing the current PELT value 4421 * as ue.enqueued and by using this value to update the Exponential 4422 * Weighted Moving Average (EWMA): 4423 * 4424 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4425 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4426 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4427 * = w * ( last_ewma_diff ) + ewma(t-1) 4428 * = w * (last_ewma_diff + ewma(t-1) / w) 4429 * 4430 * Where 'w' is the weight of new samples, which is configured to be 4431 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4432 */ 4433 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4434 ue.ewma += last_ewma_diff; 4435 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4436 done: 4437 ue.enqueued |= UTIL_AVG_UNCHANGED; 4438 WRITE_ONCE(p->se.avg.util_est, ue); 4439 4440 trace_sched_util_est_se_tp(&p->se); 4441 } 4442 4443 static inline int util_fits_cpu(unsigned long util, 4444 unsigned long uclamp_min, 4445 unsigned long uclamp_max, 4446 int cpu) 4447 { 4448 unsigned long capacity_orig, capacity_orig_thermal; 4449 unsigned long capacity = capacity_of(cpu); 4450 bool fits, uclamp_max_fits; 4451 4452 /* 4453 * Check if the real util fits without any uclamp boost/cap applied. 4454 */ 4455 fits = fits_capacity(util, capacity); 4456 4457 if (!uclamp_is_used()) 4458 return fits; 4459 4460 /* 4461 * We must use capacity_orig_of() for comparing against uclamp_min and 4462 * uclamp_max. We only care about capacity pressure (by using 4463 * capacity_of()) for comparing against the real util. 4464 * 4465 * If a task is boosted to 1024 for example, we don't want a tiny 4466 * pressure to skew the check whether it fits a CPU or not. 4467 * 4468 * Similarly if a task is capped to capacity_orig_of(little_cpu), it 4469 * should fit a little cpu even if there's some pressure. 4470 * 4471 * Only exception is for thermal pressure since it has a direct impact 4472 * on available OPP of the system. 4473 * 4474 * We honour it for uclamp_min only as a drop in performance level 4475 * could result in not getting the requested minimum performance level. 4476 * 4477 * For uclamp_max, we can tolerate a drop in performance level as the 4478 * goal is to cap the task. So it's okay if it's getting less. 4479 * 4480 * In case of capacity inversion we should honour the inverted capacity 4481 * for both uclamp_min and uclamp_max all the time. 4482 */ 4483 capacity_orig = cpu_in_capacity_inversion(cpu); 4484 if (capacity_orig) { 4485 capacity_orig_thermal = capacity_orig; 4486 } else { 4487 capacity_orig = capacity_orig_of(cpu); 4488 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu); 4489 } 4490 4491 /* 4492 * We want to force a task to fit a cpu as implied by uclamp_max. 4493 * But we do have some corner cases to cater for.. 4494 * 4495 * 4496 * C=z 4497 * | ___ 4498 * | C=y | | 4499 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4500 * | C=x | | | | 4501 * | ___ | | | | 4502 * | | | | | | | (util somewhere in this region) 4503 * | | | | | | | 4504 * | | | | | | | 4505 * +---------------------------------------- 4506 * cpu0 cpu1 cpu2 4507 * 4508 * In the above example if a task is capped to a specific performance 4509 * point, y, then when: 4510 * 4511 * * util = 80% of x then it does not fit on cpu0 and should migrate 4512 * to cpu1 4513 * * util = 80% of y then it is forced to fit on cpu1 to honour 4514 * uclamp_max request. 4515 * 4516 * which is what we're enforcing here. A task always fits if 4517 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 4518 * the normal upmigration rules should withhold still. 4519 * 4520 * Only exception is when we are on max capacity, then we need to be 4521 * careful not to block overutilized state. This is so because: 4522 * 4523 * 1. There's no concept of capping at max_capacity! We can't go 4524 * beyond this performance level anyway. 4525 * 2. The system is being saturated when we're operating near 4526 * max capacity, it doesn't make sense to block overutilized. 4527 */ 4528 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 4529 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 4530 fits = fits || uclamp_max_fits; 4531 4532 /* 4533 * 4534 * C=z 4535 * | ___ (region a, capped, util >= uclamp_max) 4536 * | C=y | | 4537 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4538 * | C=x | | | | 4539 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 4540 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 4541 * | | | | | | | 4542 * | | | | | | | (region c, boosted, util < uclamp_min) 4543 * +---------------------------------------- 4544 * cpu0 cpu1 cpu2 4545 * 4546 * a) If util > uclamp_max, then we're capped, we don't care about 4547 * actual fitness value here. We only care if uclamp_max fits 4548 * capacity without taking margin/pressure into account. 4549 * See comment above. 4550 * 4551 * b) If uclamp_min <= util <= uclamp_max, then the normal 4552 * fits_capacity() rules apply. Except we need to ensure that we 4553 * enforce we remain within uclamp_max, see comment above. 4554 * 4555 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 4556 * need to take into account the boosted value fits the CPU without 4557 * taking margin/pressure into account. 4558 * 4559 * Cases (a) and (b) are handled in the 'fits' variable already. We 4560 * just need to consider an extra check for case (c) after ensuring we 4561 * handle the case uclamp_min > uclamp_max. 4562 */ 4563 uclamp_min = min(uclamp_min, uclamp_max); 4564 if (util < uclamp_min && capacity_orig != SCHED_CAPACITY_SCALE) 4565 fits = fits && (uclamp_min <= capacity_orig_thermal); 4566 4567 return fits; 4568 } 4569 4570 static inline int task_fits_cpu(struct task_struct *p, int cpu) 4571 { 4572 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 4573 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 4574 unsigned long util = task_util_est(p); 4575 return util_fits_cpu(util, uclamp_min, uclamp_max, cpu); 4576 } 4577 4578 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4579 { 4580 if (!sched_asym_cpucap_active()) 4581 return; 4582 4583 if (!p || p->nr_cpus_allowed == 1) { 4584 rq->misfit_task_load = 0; 4585 return; 4586 } 4587 4588 if (task_fits_cpu(p, cpu_of(rq))) { 4589 rq->misfit_task_load = 0; 4590 return; 4591 } 4592 4593 /* 4594 * Make sure that misfit_task_load will not be null even if 4595 * task_h_load() returns 0. 4596 */ 4597 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4598 } 4599 4600 #else /* CONFIG_SMP */ 4601 4602 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4603 { 4604 return true; 4605 } 4606 4607 #define UPDATE_TG 0x0 4608 #define SKIP_AGE_LOAD 0x0 4609 #define DO_ATTACH 0x0 4610 #define DO_DETACH 0x0 4611 4612 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4613 { 4614 cfs_rq_util_change(cfs_rq, 0); 4615 } 4616 4617 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4618 4619 static inline void 4620 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4621 static inline void 4622 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4623 4624 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4625 { 4626 return 0; 4627 } 4628 4629 static inline void 4630 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4631 4632 static inline void 4633 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4634 4635 static inline void 4636 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4637 bool task_sleep) {} 4638 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4639 4640 #endif /* CONFIG_SMP */ 4641 4642 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4643 { 4644 #ifdef CONFIG_SCHED_DEBUG 4645 s64 d = se->vruntime - cfs_rq->min_vruntime; 4646 4647 if (d < 0) 4648 d = -d; 4649 4650 if (d > 3*sysctl_sched_latency) 4651 schedstat_inc(cfs_rq->nr_spread_over); 4652 #endif 4653 } 4654 4655 static void 4656 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4657 { 4658 u64 vruntime = cfs_rq->min_vruntime; 4659 4660 /* 4661 * The 'current' period is already promised to the current tasks, 4662 * however the extra weight of the new task will slow them down a 4663 * little, place the new task so that it fits in the slot that 4664 * stays open at the end. 4665 */ 4666 if (initial && sched_feat(START_DEBIT)) 4667 vruntime += sched_vslice(cfs_rq, se); 4668 4669 /* sleeps up to a single latency don't count. */ 4670 if (!initial) { 4671 unsigned long thresh; 4672 4673 if (se_is_idle(se)) 4674 thresh = sysctl_sched_min_granularity; 4675 else 4676 thresh = sysctl_sched_latency; 4677 4678 /* 4679 * Halve their sleep time's effect, to allow 4680 * for a gentler effect of sleepers: 4681 */ 4682 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4683 thresh >>= 1; 4684 4685 vruntime -= thresh; 4686 } 4687 4688 /* ensure we never gain time by being placed backwards. */ 4689 se->vruntime = max_vruntime(se->vruntime, vruntime); 4690 } 4691 4692 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4693 4694 static inline bool cfs_bandwidth_used(void); 4695 4696 /* 4697 * MIGRATION 4698 * 4699 * dequeue 4700 * update_curr() 4701 * update_min_vruntime() 4702 * vruntime -= min_vruntime 4703 * 4704 * enqueue 4705 * update_curr() 4706 * update_min_vruntime() 4707 * vruntime += min_vruntime 4708 * 4709 * this way the vruntime transition between RQs is done when both 4710 * min_vruntime are up-to-date. 4711 * 4712 * WAKEUP (remote) 4713 * 4714 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4715 * vruntime -= min_vruntime 4716 * 4717 * enqueue 4718 * update_curr() 4719 * update_min_vruntime() 4720 * vruntime += min_vruntime 4721 * 4722 * this way we don't have the most up-to-date min_vruntime on the originating 4723 * CPU and an up-to-date min_vruntime on the destination CPU. 4724 */ 4725 4726 static void 4727 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4728 { 4729 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4730 bool curr = cfs_rq->curr == se; 4731 4732 /* 4733 * If we're the current task, we must renormalise before calling 4734 * update_curr(). 4735 */ 4736 if (renorm && curr) 4737 se->vruntime += cfs_rq->min_vruntime; 4738 4739 update_curr(cfs_rq); 4740 4741 /* 4742 * Otherwise, renormalise after, such that we're placed at the current 4743 * moment in time, instead of some random moment in the past. Being 4744 * placed in the past could significantly boost this task to the 4745 * fairness detriment of existing tasks. 4746 */ 4747 if (renorm && !curr) 4748 se->vruntime += cfs_rq->min_vruntime; 4749 4750 /* 4751 * When enqueuing a sched_entity, we must: 4752 * - Update loads to have both entity and cfs_rq synced with now. 4753 * - For group_entity, update its runnable_weight to reflect the new 4754 * h_nr_running of its group cfs_rq. 4755 * - For group_entity, update its weight to reflect the new share of 4756 * its group cfs_rq 4757 * - Add its new weight to cfs_rq->load.weight 4758 */ 4759 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4760 se_update_runnable(se); 4761 update_cfs_group(se); 4762 account_entity_enqueue(cfs_rq, se); 4763 4764 if (flags & ENQUEUE_WAKEUP) 4765 place_entity(cfs_rq, se, 0); 4766 4767 check_schedstat_required(); 4768 update_stats_enqueue_fair(cfs_rq, se, flags); 4769 check_spread(cfs_rq, se); 4770 if (!curr) 4771 __enqueue_entity(cfs_rq, se); 4772 se->on_rq = 1; 4773 4774 if (cfs_rq->nr_running == 1) { 4775 check_enqueue_throttle(cfs_rq); 4776 if (!throttled_hierarchy(cfs_rq)) 4777 list_add_leaf_cfs_rq(cfs_rq); 4778 } 4779 } 4780 4781 static void __clear_buddies_last(struct sched_entity *se) 4782 { 4783 for_each_sched_entity(se) { 4784 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4785 if (cfs_rq->last != se) 4786 break; 4787 4788 cfs_rq->last = NULL; 4789 } 4790 } 4791 4792 static void __clear_buddies_next(struct sched_entity *se) 4793 { 4794 for_each_sched_entity(se) { 4795 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4796 if (cfs_rq->next != se) 4797 break; 4798 4799 cfs_rq->next = NULL; 4800 } 4801 } 4802 4803 static void __clear_buddies_skip(struct sched_entity *se) 4804 { 4805 for_each_sched_entity(se) { 4806 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4807 if (cfs_rq->skip != se) 4808 break; 4809 4810 cfs_rq->skip = NULL; 4811 } 4812 } 4813 4814 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4815 { 4816 if (cfs_rq->last == se) 4817 __clear_buddies_last(se); 4818 4819 if (cfs_rq->next == se) 4820 __clear_buddies_next(se); 4821 4822 if (cfs_rq->skip == se) 4823 __clear_buddies_skip(se); 4824 } 4825 4826 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4827 4828 static void 4829 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4830 { 4831 int action = UPDATE_TG; 4832 4833 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 4834 action |= DO_DETACH; 4835 4836 /* 4837 * Update run-time statistics of the 'current'. 4838 */ 4839 update_curr(cfs_rq); 4840 4841 /* 4842 * When dequeuing a sched_entity, we must: 4843 * - Update loads to have both entity and cfs_rq synced with now. 4844 * - For group_entity, update its runnable_weight to reflect the new 4845 * h_nr_running of its group cfs_rq. 4846 * - Subtract its previous weight from cfs_rq->load.weight. 4847 * - For group entity, update its weight to reflect the new share 4848 * of its group cfs_rq. 4849 */ 4850 update_load_avg(cfs_rq, se, action); 4851 se_update_runnable(se); 4852 4853 update_stats_dequeue_fair(cfs_rq, se, flags); 4854 4855 clear_buddies(cfs_rq, se); 4856 4857 if (se != cfs_rq->curr) 4858 __dequeue_entity(cfs_rq, se); 4859 se->on_rq = 0; 4860 account_entity_dequeue(cfs_rq, se); 4861 4862 /* 4863 * Normalize after update_curr(); which will also have moved 4864 * min_vruntime if @se is the one holding it back. But before doing 4865 * update_min_vruntime() again, which will discount @se's position and 4866 * can move min_vruntime forward still more. 4867 */ 4868 if (!(flags & DEQUEUE_SLEEP)) 4869 se->vruntime -= cfs_rq->min_vruntime; 4870 4871 /* return excess runtime on last dequeue */ 4872 return_cfs_rq_runtime(cfs_rq); 4873 4874 update_cfs_group(se); 4875 4876 /* 4877 * Now advance min_vruntime if @se was the entity holding it back, 4878 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4879 * put back on, and if we advance min_vruntime, we'll be placed back 4880 * further than we started -- ie. we'll be penalized. 4881 */ 4882 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4883 update_min_vruntime(cfs_rq); 4884 4885 if (cfs_rq->nr_running == 0) 4886 update_idle_cfs_rq_clock_pelt(cfs_rq); 4887 } 4888 4889 /* 4890 * Preempt the current task with a newly woken task if needed: 4891 */ 4892 static void 4893 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4894 { 4895 unsigned long ideal_runtime, delta_exec; 4896 struct sched_entity *se; 4897 s64 delta; 4898 4899 ideal_runtime = sched_slice(cfs_rq, curr); 4900 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4901 if (delta_exec > ideal_runtime) { 4902 resched_curr(rq_of(cfs_rq)); 4903 /* 4904 * The current task ran long enough, ensure it doesn't get 4905 * re-elected due to buddy favours. 4906 */ 4907 clear_buddies(cfs_rq, curr); 4908 return; 4909 } 4910 4911 /* 4912 * Ensure that a task that missed wakeup preemption by a 4913 * narrow margin doesn't have to wait for a full slice. 4914 * This also mitigates buddy induced latencies under load. 4915 */ 4916 if (delta_exec < sysctl_sched_min_granularity) 4917 return; 4918 4919 se = __pick_first_entity(cfs_rq); 4920 delta = curr->vruntime - se->vruntime; 4921 4922 if (delta < 0) 4923 return; 4924 4925 if (delta > ideal_runtime) 4926 resched_curr(rq_of(cfs_rq)); 4927 } 4928 4929 static void 4930 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4931 { 4932 clear_buddies(cfs_rq, se); 4933 4934 /* 'current' is not kept within the tree. */ 4935 if (se->on_rq) { 4936 /* 4937 * Any task has to be enqueued before it get to execute on 4938 * a CPU. So account for the time it spent waiting on the 4939 * runqueue. 4940 */ 4941 update_stats_wait_end_fair(cfs_rq, se); 4942 __dequeue_entity(cfs_rq, se); 4943 update_load_avg(cfs_rq, se, UPDATE_TG); 4944 } 4945 4946 update_stats_curr_start(cfs_rq, se); 4947 cfs_rq->curr = se; 4948 4949 /* 4950 * Track our maximum slice length, if the CPU's load is at 4951 * least twice that of our own weight (i.e. dont track it 4952 * when there are only lesser-weight tasks around): 4953 */ 4954 if (schedstat_enabled() && 4955 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4956 struct sched_statistics *stats; 4957 4958 stats = __schedstats_from_se(se); 4959 __schedstat_set(stats->slice_max, 4960 max((u64)stats->slice_max, 4961 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4962 } 4963 4964 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4965 } 4966 4967 static int 4968 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4969 4970 /* 4971 * Pick the next process, keeping these things in mind, in this order: 4972 * 1) keep things fair between processes/task groups 4973 * 2) pick the "next" process, since someone really wants that to run 4974 * 3) pick the "last" process, for cache locality 4975 * 4) do not run the "skip" process, if something else is available 4976 */ 4977 static struct sched_entity * 4978 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4979 { 4980 struct sched_entity *left = __pick_first_entity(cfs_rq); 4981 struct sched_entity *se; 4982 4983 /* 4984 * If curr is set we have to see if its left of the leftmost entity 4985 * still in the tree, provided there was anything in the tree at all. 4986 */ 4987 if (!left || (curr && entity_before(curr, left))) 4988 left = curr; 4989 4990 se = left; /* ideally we run the leftmost entity */ 4991 4992 /* 4993 * Avoid running the skip buddy, if running something else can 4994 * be done without getting too unfair. 4995 */ 4996 if (cfs_rq->skip && cfs_rq->skip == se) { 4997 struct sched_entity *second; 4998 4999 if (se == curr) { 5000 second = __pick_first_entity(cfs_rq); 5001 } else { 5002 second = __pick_next_entity(se); 5003 if (!second || (curr && entity_before(curr, second))) 5004 second = curr; 5005 } 5006 5007 if (second && wakeup_preempt_entity(second, left) < 1) 5008 se = second; 5009 } 5010 5011 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { 5012 /* 5013 * Someone really wants this to run. If it's not unfair, run it. 5014 */ 5015 se = cfs_rq->next; 5016 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { 5017 /* 5018 * Prefer last buddy, try to return the CPU to a preempted task. 5019 */ 5020 se = cfs_rq->last; 5021 } 5022 5023 return se; 5024 } 5025 5026 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5027 5028 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5029 { 5030 /* 5031 * If still on the runqueue then deactivate_task() 5032 * was not called and update_curr() has to be done: 5033 */ 5034 if (prev->on_rq) 5035 update_curr(cfs_rq); 5036 5037 /* throttle cfs_rqs exceeding runtime */ 5038 check_cfs_rq_runtime(cfs_rq); 5039 5040 check_spread(cfs_rq, prev); 5041 5042 if (prev->on_rq) { 5043 update_stats_wait_start_fair(cfs_rq, prev); 5044 /* Put 'current' back into the tree. */ 5045 __enqueue_entity(cfs_rq, prev); 5046 /* in !on_rq case, update occurred at dequeue */ 5047 update_load_avg(cfs_rq, prev, 0); 5048 } 5049 cfs_rq->curr = NULL; 5050 } 5051 5052 static void 5053 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5054 { 5055 /* 5056 * Update run-time statistics of the 'current'. 5057 */ 5058 update_curr(cfs_rq); 5059 5060 /* 5061 * Ensure that runnable average is periodically updated. 5062 */ 5063 update_load_avg(cfs_rq, curr, UPDATE_TG); 5064 update_cfs_group(curr); 5065 5066 #ifdef CONFIG_SCHED_HRTICK 5067 /* 5068 * queued ticks are scheduled to match the slice, so don't bother 5069 * validating it and just reschedule. 5070 */ 5071 if (queued) { 5072 resched_curr(rq_of(cfs_rq)); 5073 return; 5074 } 5075 /* 5076 * don't let the period tick interfere with the hrtick preemption 5077 */ 5078 if (!sched_feat(DOUBLE_TICK) && 5079 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5080 return; 5081 #endif 5082 5083 if (cfs_rq->nr_running > 1) 5084 check_preempt_tick(cfs_rq, curr); 5085 } 5086 5087 5088 /************************************************** 5089 * CFS bandwidth control machinery 5090 */ 5091 5092 #ifdef CONFIG_CFS_BANDWIDTH 5093 5094 #ifdef CONFIG_JUMP_LABEL 5095 static struct static_key __cfs_bandwidth_used; 5096 5097 static inline bool cfs_bandwidth_used(void) 5098 { 5099 return static_key_false(&__cfs_bandwidth_used); 5100 } 5101 5102 void cfs_bandwidth_usage_inc(void) 5103 { 5104 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5105 } 5106 5107 void cfs_bandwidth_usage_dec(void) 5108 { 5109 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5110 } 5111 #else /* CONFIG_JUMP_LABEL */ 5112 static bool cfs_bandwidth_used(void) 5113 { 5114 return true; 5115 } 5116 5117 void cfs_bandwidth_usage_inc(void) {} 5118 void cfs_bandwidth_usage_dec(void) {} 5119 #endif /* CONFIG_JUMP_LABEL */ 5120 5121 /* 5122 * default period for cfs group bandwidth. 5123 * default: 0.1s, units: nanoseconds 5124 */ 5125 static inline u64 default_cfs_period(void) 5126 { 5127 return 100000000ULL; 5128 } 5129 5130 static inline u64 sched_cfs_bandwidth_slice(void) 5131 { 5132 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5133 } 5134 5135 /* 5136 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5137 * directly instead of rq->clock to avoid adding additional synchronization 5138 * around rq->lock. 5139 * 5140 * requires cfs_b->lock 5141 */ 5142 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5143 { 5144 s64 runtime; 5145 5146 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5147 return; 5148 5149 cfs_b->runtime += cfs_b->quota; 5150 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5151 if (runtime > 0) { 5152 cfs_b->burst_time += runtime; 5153 cfs_b->nr_burst++; 5154 } 5155 5156 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5157 cfs_b->runtime_snap = cfs_b->runtime; 5158 } 5159 5160 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5161 { 5162 return &tg->cfs_bandwidth; 5163 } 5164 5165 /* returns 0 on failure to allocate runtime */ 5166 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5167 struct cfs_rq *cfs_rq, u64 target_runtime) 5168 { 5169 u64 min_amount, amount = 0; 5170 5171 lockdep_assert_held(&cfs_b->lock); 5172 5173 /* note: this is a positive sum as runtime_remaining <= 0 */ 5174 min_amount = target_runtime - cfs_rq->runtime_remaining; 5175 5176 if (cfs_b->quota == RUNTIME_INF) 5177 amount = min_amount; 5178 else { 5179 start_cfs_bandwidth(cfs_b); 5180 5181 if (cfs_b->runtime > 0) { 5182 amount = min(cfs_b->runtime, min_amount); 5183 cfs_b->runtime -= amount; 5184 cfs_b->idle = 0; 5185 } 5186 } 5187 5188 cfs_rq->runtime_remaining += amount; 5189 5190 return cfs_rq->runtime_remaining > 0; 5191 } 5192 5193 /* returns 0 on failure to allocate runtime */ 5194 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5195 { 5196 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5197 int ret; 5198 5199 raw_spin_lock(&cfs_b->lock); 5200 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5201 raw_spin_unlock(&cfs_b->lock); 5202 5203 return ret; 5204 } 5205 5206 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5207 { 5208 /* dock delta_exec before expiring quota (as it could span periods) */ 5209 cfs_rq->runtime_remaining -= delta_exec; 5210 5211 if (likely(cfs_rq->runtime_remaining > 0)) 5212 return; 5213 5214 if (cfs_rq->throttled) 5215 return; 5216 /* 5217 * if we're unable to extend our runtime we resched so that the active 5218 * hierarchy can be throttled 5219 */ 5220 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5221 resched_curr(rq_of(cfs_rq)); 5222 } 5223 5224 static __always_inline 5225 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5226 { 5227 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5228 return; 5229 5230 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5231 } 5232 5233 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5234 { 5235 return cfs_bandwidth_used() && cfs_rq->throttled; 5236 } 5237 5238 /* check whether cfs_rq, or any parent, is throttled */ 5239 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5240 { 5241 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5242 } 5243 5244 /* 5245 * Ensure that neither of the group entities corresponding to src_cpu or 5246 * dest_cpu are members of a throttled hierarchy when performing group 5247 * load-balance operations. 5248 */ 5249 static inline int throttled_lb_pair(struct task_group *tg, 5250 int src_cpu, int dest_cpu) 5251 { 5252 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5253 5254 src_cfs_rq = tg->cfs_rq[src_cpu]; 5255 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5256 5257 return throttled_hierarchy(src_cfs_rq) || 5258 throttled_hierarchy(dest_cfs_rq); 5259 } 5260 5261 static int tg_unthrottle_up(struct task_group *tg, void *data) 5262 { 5263 struct rq *rq = data; 5264 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5265 5266 cfs_rq->throttle_count--; 5267 if (!cfs_rq->throttle_count) { 5268 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5269 cfs_rq->throttled_clock_pelt; 5270 5271 /* Add cfs_rq with load or one or more already running entities to the list */ 5272 if (!cfs_rq_is_decayed(cfs_rq)) 5273 list_add_leaf_cfs_rq(cfs_rq); 5274 } 5275 5276 return 0; 5277 } 5278 5279 static int tg_throttle_down(struct task_group *tg, void *data) 5280 { 5281 struct rq *rq = data; 5282 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5283 5284 /* group is entering throttled state, stop time */ 5285 if (!cfs_rq->throttle_count) { 5286 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5287 list_del_leaf_cfs_rq(cfs_rq); 5288 } 5289 cfs_rq->throttle_count++; 5290 5291 return 0; 5292 } 5293 5294 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5295 { 5296 struct rq *rq = rq_of(cfs_rq); 5297 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5298 struct sched_entity *se; 5299 long task_delta, idle_task_delta, dequeue = 1; 5300 5301 raw_spin_lock(&cfs_b->lock); 5302 /* This will start the period timer if necessary */ 5303 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5304 /* 5305 * We have raced with bandwidth becoming available, and if we 5306 * actually throttled the timer might not unthrottle us for an 5307 * entire period. We additionally needed to make sure that any 5308 * subsequent check_cfs_rq_runtime calls agree not to throttle 5309 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5310 * for 1ns of runtime rather than just check cfs_b. 5311 */ 5312 dequeue = 0; 5313 } else { 5314 list_add_tail_rcu(&cfs_rq->throttled_list, 5315 &cfs_b->throttled_cfs_rq); 5316 } 5317 raw_spin_unlock(&cfs_b->lock); 5318 5319 if (!dequeue) 5320 return false; /* Throttle no longer required. */ 5321 5322 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5323 5324 /* freeze hierarchy runnable averages while throttled */ 5325 rcu_read_lock(); 5326 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5327 rcu_read_unlock(); 5328 5329 task_delta = cfs_rq->h_nr_running; 5330 idle_task_delta = cfs_rq->idle_h_nr_running; 5331 for_each_sched_entity(se) { 5332 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5333 /* throttled entity or throttle-on-deactivate */ 5334 if (!se->on_rq) 5335 goto done; 5336 5337 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5338 5339 if (cfs_rq_is_idle(group_cfs_rq(se))) 5340 idle_task_delta = cfs_rq->h_nr_running; 5341 5342 qcfs_rq->h_nr_running -= task_delta; 5343 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5344 5345 if (qcfs_rq->load.weight) { 5346 /* Avoid re-evaluating load for this entity: */ 5347 se = parent_entity(se); 5348 break; 5349 } 5350 } 5351 5352 for_each_sched_entity(se) { 5353 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5354 /* throttled entity or throttle-on-deactivate */ 5355 if (!se->on_rq) 5356 goto done; 5357 5358 update_load_avg(qcfs_rq, se, 0); 5359 se_update_runnable(se); 5360 5361 if (cfs_rq_is_idle(group_cfs_rq(se))) 5362 idle_task_delta = cfs_rq->h_nr_running; 5363 5364 qcfs_rq->h_nr_running -= task_delta; 5365 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5366 } 5367 5368 /* At this point se is NULL and we are at root level*/ 5369 sub_nr_running(rq, task_delta); 5370 5371 done: 5372 /* 5373 * Note: distribution will already see us throttled via the 5374 * throttled-list. rq->lock protects completion. 5375 */ 5376 cfs_rq->throttled = 1; 5377 cfs_rq->throttled_clock = rq_clock(rq); 5378 return true; 5379 } 5380 5381 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5382 { 5383 struct rq *rq = rq_of(cfs_rq); 5384 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5385 struct sched_entity *se; 5386 long task_delta, idle_task_delta; 5387 5388 se = cfs_rq->tg->se[cpu_of(rq)]; 5389 5390 cfs_rq->throttled = 0; 5391 5392 update_rq_clock(rq); 5393 5394 raw_spin_lock(&cfs_b->lock); 5395 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5396 list_del_rcu(&cfs_rq->throttled_list); 5397 raw_spin_unlock(&cfs_b->lock); 5398 5399 /* update hierarchical throttle state */ 5400 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5401 5402 if (!cfs_rq->load.weight) { 5403 if (!cfs_rq->on_list) 5404 return; 5405 /* 5406 * Nothing to run but something to decay (on_list)? 5407 * Complete the branch. 5408 */ 5409 for_each_sched_entity(se) { 5410 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5411 break; 5412 } 5413 goto unthrottle_throttle; 5414 } 5415 5416 task_delta = cfs_rq->h_nr_running; 5417 idle_task_delta = cfs_rq->idle_h_nr_running; 5418 for_each_sched_entity(se) { 5419 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5420 5421 if (se->on_rq) 5422 break; 5423 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5424 5425 if (cfs_rq_is_idle(group_cfs_rq(se))) 5426 idle_task_delta = cfs_rq->h_nr_running; 5427 5428 qcfs_rq->h_nr_running += task_delta; 5429 qcfs_rq->idle_h_nr_running += idle_task_delta; 5430 5431 /* end evaluation on encountering a throttled cfs_rq */ 5432 if (cfs_rq_throttled(qcfs_rq)) 5433 goto unthrottle_throttle; 5434 } 5435 5436 for_each_sched_entity(se) { 5437 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5438 5439 update_load_avg(qcfs_rq, se, UPDATE_TG); 5440 se_update_runnable(se); 5441 5442 if (cfs_rq_is_idle(group_cfs_rq(se))) 5443 idle_task_delta = cfs_rq->h_nr_running; 5444 5445 qcfs_rq->h_nr_running += task_delta; 5446 qcfs_rq->idle_h_nr_running += idle_task_delta; 5447 5448 /* end evaluation on encountering a throttled cfs_rq */ 5449 if (cfs_rq_throttled(qcfs_rq)) 5450 goto unthrottle_throttle; 5451 } 5452 5453 /* At this point se is NULL and we are at root level*/ 5454 add_nr_running(rq, task_delta); 5455 5456 unthrottle_throttle: 5457 assert_list_leaf_cfs_rq(rq); 5458 5459 /* Determine whether we need to wake up potentially idle CPU: */ 5460 if (rq->curr == rq->idle && rq->cfs.nr_running) 5461 resched_curr(rq); 5462 } 5463 5464 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5465 { 5466 struct cfs_rq *cfs_rq; 5467 u64 runtime, remaining = 1; 5468 5469 rcu_read_lock(); 5470 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5471 throttled_list) { 5472 struct rq *rq = rq_of(cfs_rq); 5473 struct rq_flags rf; 5474 5475 rq_lock_irqsave(rq, &rf); 5476 if (!cfs_rq_throttled(cfs_rq)) 5477 goto next; 5478 5479 /* By the above check, this should never be true */ 5480 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5481 5482 raw_spin_lock(&cfs_b->lock); 5483 runtime = -cfs_rq->runtime_remaining + 1; 5484 if (runtime > cfs_b->runtime) 5485 runtime = cfs_b->runtime; 5486 cfs_b->runtime -= runtime; 5487 remaining = cfs_b->runtime; 5488 raw_spin_unlock(&cfs_b->lock); 5489 5490 cfs_rq->runtime_remaining += runtime; 5491 5492 /* we check whether we're throttled above */ 5493 if (cfs_rq->runtime_remaining > 0) 5494 unthrottle_cfs_rq(cfs_rq); 5495 5496 next: 5497 rq_unlock_irqrestore(rq, &rf); 5498 5499 if (!remaining) 5500 break; 5501 } 5502 rcu_read_unlock(); 5503 } 5504 5505 /* 5506 * Responsible for refilling a task_group's bandwidth and unthrottling its 5507 * cfs_rqs as appropriate. If there has been no activity within the last 5508 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5509 * used to track this state. 5510 */ 5511 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5512 { 5513 int throttled; 5514 5515 /* no need to continue the timer with no bandwidth constraint */ 5516 if (cfs_b->quota == RUNTIME_INF) 5517 goto out_deactivate; 5518 5519 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5520 cfs_b->nr_periods += overrun; 5521 5522 /* Refill extra burst quota even if cfs_b->idle */ 5523 __refill_cfs_bandwidth_runtime(cfs_b); 5524 5525 /* 5526 * idle depends on !throttled (for the case of a large deficit), and if 5527 * we're going inactive then everything else can be deferred 5528 */ 5529 if (cfs_b->idle && !throttled) 5530 goto out_deactivate; 5531 5532 if (!throttled) { 5533 /* mark as potentially idle for the upcoming period */ 5534 cfs_b->idle = 1; 5535 return 0; 5536 } 5537 5538 /* account preceding periods in which throttling occurred */ 5539 cfs_b->nr_throttled += overrun; 5540 5541 /* 5542 * This check is repeated as we release cfs_b->lock while we unthrottle. 5543 */ 5544 while (throttled && cfs_b->runtime > 0) { 5545 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5546 /* we can't nest cfs_b->lock while distributing bandwidth */ 5547 distribute_cfs_runtime(cfs_b); 5548 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5549 5550 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5551 } 5552 5553 /* 5554 * While we are ensured activity in the period following an 5555 * unthrottle, this also covers the case in which the new bandwidth is 5556 * insufficient to cover the existing bandwidth deficit. (Forcing the 5557 * timer to remain active while there are any throttled entities.) 5558 */ 5559 cfs_b->idle = 0; 5560 5561 return 0; 5562 5563 out_deactivate: 5564 return 1; 5565 } 5566 5567 /* a cfs_rq won't donate quota below this amount */ 5568 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5569 /* minimum remaining period time to redistribute slack quota */ 5570 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5571 /* how long we wait to gather additional slack before distributing */ 5572 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5573 5574 /* 5575 * Are we near the end of the current quota period? 5576 * 5577 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5578 * hrtimer base being cleared by hrtimer_start. In the case of 5579 * migrate_hrtimers, base is never cleared, so we are fine. 5580 */ 5581 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5582 { 5583 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5584 s64 remaining; 5585 5586 /* if the call-back is running a quota refresh is already occurring */ 5587 if (hrtimer_callback_running(refresh_timer)) 5588 return 1; 5589 5590 /* is a quota refresh about to occur? */ 5591 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5592 if (remaining < (s64)min_expire) 5593 return 1; 5594 5595 return 0; 5596 } 5597 5598 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5599 { 5600 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5601 5602 /* if there's a quota refresh soon don't bother with slack */ 5603 if (runtime_refresh_within(cfs_b, min_left)) 5604 return; 5605 5606 /* don't push forwards an existing deferred unthrottle */ 5607 if (cfs_b->slack_started) 5608 return; 5609 cfs_b->slack_started = true; 5610 5611 hrtimer_start(&cfs_b->slack_timer, 5612 ns_to_ktime(cfs_bandwidth_slack_period), 5613 HRTIMER_MODE_REL); 5614 } 5615 5616 /* we know any runtime found here is valid as update_curr() precedes return */ 5617 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5618 { 5619 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5620 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5621 5622 if (slack_runtime <= 0) 5623 return; 5624 5625 raw_spin_lock(&cfs_b->lock); 5626 if (cfs_b->quota != RUNTIME_INF) { 5627 cfs_b->runtime += slack_runtime; 5628 5629 /* we are under rq->lock, defer unthrottling using a timer */ 5630 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5631 !list_empty(&cfs_b->throttled_cfs_rq)) 5632 start_cfs_slack_bandwidth(cfs_b); 5633 } 5634 raw_spin_unlock(&cfs_b->lock); 5635 5636 /* even if it's not valid for return we don't want to try again */ 5637 cfs_rq->runtime_remaining -= slack_runtime; 5638 } 5639 5640 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5641 { 5642 if (!cfs_bandwidth_used()) 5643 return; 5644 5645 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5646 return; 5647 5648 __return_cfs_rq_runtime(cfs_rq); 5649 } 5650 5651 /* 5652 * This is done with a timer (instead of inline with bandwidth return) since 5653 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5654 */ 5655 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5656 { 5657 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5658 unsigned long flags; 5659 5660 /* confirm we're still not at a refresh boundary */ 5661 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5662 cfs_b->slack_started = false; 5663 5664 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5665 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5666 return; 5667 } 5668 5669 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5670 runtime = cfs_b->runtime; 5671 5672 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5673 5674 if (!runtime) 5675 return; 5676 5677 distribute_cfs_runtime(cfs_b); 5678 } 5679 5680 /* 5681 * When a group wakes up we want to make sure that its quota is not already 5682 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5683 * runtime as update_curr() throttling can not trigger until it's on-rq. 5684 */ 5685 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5686 { 5687 if (!cfs_bandwidth_used()) 5688 return; 5689 5690 /* an active group must be handled by the update_curr()->put() path */ 5691 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5692 return; 5693 5694 /* ensure the group is not already throttled */ 5695 if (cfs_rq_throttled(cfs_rq)) 5696 return; 5697 5698 /* update runtime allocation */ 5699 account_cfs_rq_runtime(cfs_rq, 0); 5700 if (cfs_rq->runtime_remaining <= 0) 5701 throttle_cfs_rq(cfs_rq); 5702 } 5703 5704 static void sync_throttle(struct task_group *tg, int cpu) 5705 { 5706 struct cfs_rq *pcfs_rq, *cfs_rq; 5707 5708 if (!cfs_bandwidth_used()) 5709 return; 5710 5711 if (!tg->parent) 5712 return; 5713 5714 cfs_rq = tg->cfs_rq[cpu]; 5715 pcfs_rq = tg->parent->cfs_rq[cpu]; 5716 5717 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5718 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 5719 } 5720 5721 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5722 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5723 { 5724 if (!cfs_bandwidth_used()) 5725 return false; 5726 5727 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5728 return false; 5729 5730 /* 5731 * it's possible for a throttled entity to be forced into a running 5732 * state (e.g. set_curr_task), in this case we're finished. 5733 */ 5734 if (cfs_rq_throttled(cfs_rq)) 5735 return true; 5736 5737 return throttle_cfs_rq(cfs_rq); 5738 } 5739 5740 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5741 { 5742 struct cfs_bandwidth *cfs_b = 5743 container_of(timer, struct cfs_bandwidth, slack_timer); 5744 5745 do_sched_cfs_slack_timer(cfs_b); 5746 5747 return HRTIMER_NORESTART; 5748 } 5749 5750 extern const u64 max_cfs_quota_period; 5751 5752 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5753 { 5754 struct cfs_bandwidth *cfs_b = 5755 container_of(timer, struct cfs_bandwidth, period_timer); 5756 unsigned long flags; 5757 int overrun; 5758 int idle = 0; 5759 int count = 0; 5760 5761 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5762 for (;;) { 5763 overrun = hrtimer_forward_now(timer, cfs_b->period); 5764 if (!overrun) 5765 break; 5766 5767 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5768 5769 if (++count > 3) { 5770 u64 new, old = ktime_to_ns(cfs_b->period); 5771 5772 /* 5773 * Grow period by a factor of 2 to avoid losing precision. 5774 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5775 * to fail. 5776 */ 5777 new = old * 2; 5778 if (new < max_cfs_quota_period) { 5779 cfs_b->period = ns_to_ktime(new); 5780 cfs_b->quota *= 2; 5781 cfs_b->burst *= 2; 5782 5783 pr_warn_ratelimited( 5784 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5785 smp_processor_id(), 5786 div_u64(new, NSEC_PER_USEC), 5787 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5788 } else { 5789 pr_warn_ratelimited( 5790 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5791 smp_processor_id(), 5792 div_u64(old, NSEC_PER_USEC), 5793 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5794 } 5795 5796 /* reset count so we don't come right back in here */ 5797 count = 0; 5798 } 5799 } 5800 if (idle) 5801 cfs_b->period_active = 0; 5802 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5803 5804 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5805 } 5806 5807 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5808 { 5809 raw_spin_lock_init(&cfs_b->lock); 5810 cfs_b->runtime = 0; 5811 cfs_b->quota = RUNTIME_INF; 5812 cfs_b->period = ns_to_ktime(default_cfs_period()); 5813 cfs_b->burst = 0; 5814 5815 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5816 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5817 cfs_b->period_timer.function = sched_cfs_period_timer; 5818 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5819 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5820 cfs_b->slack_started = false; 5821 } 5822 5823 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5824 { 5825 cfs_rq->runtime_enabled = 0; 5826 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5827 } 5828 5829 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5830 { 5831 lockdep_assert_held(&cfs_b->lock); 5832 5833 if (cfs_b->period_active) 5834 return; 5835 5836 cfs_b->period_active = 1; 5837 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5838 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5839 } 5840 5841 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5842 { 5843 /* init_cfs_bandwidth() was not called */ 5844 if (!cfs_b->throttled_cfs_rq.next) 5845 return; 5846 5847 hrtimer_cancel(&cfs_b->period_timer); 5848 hrtimer_cancel(&cfs_b->slack_timer); 5849 } 5850 5851 /* 5852 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5853 * 5854 * The race is harmless, since modifying bandwidth settings of unhooked group 5855 * bits doesn't do much. 5856 */ 5857 5858 /* cpu online callback */ 5859 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5860 { 5861 struct task_group *tg; 5862 5863 lockdep_assert_rq_held(rq); 5864 5865 rcu_read_lock(); 5866 list_for_each_entry_rcu(tg, &task_groups, list) { 5867 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5868 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5869 5870 raw_spin_lock(&cfs_b->lock); 5871 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5872 raw_spin_unlock(&cfs_b->lock); 5873 } 5874 rcu_read_unlock(); 5875 } 5876 5877 /* cpu offline callback */ 5878 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5879 { 5880 struct task_group *tg; 5881 5882 lockdep_assert_rq_held(rq); 5883 5884 rcu_read_lock(); 5885 list_for_each_entry_rcu(tg, &task_groups, list) { 5886 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5887 5888 if (!cfs_rq->runtime_enabled) 5889 continue; 5890 5891 /* 5892 * clock_task is not advancing so we just need to make sure 5893 * there's some valid quota amount 5894 */ 5895 cfs_rq->runtime_remaining = 1; 5896 /* 5897 * Offline rq is schedulable till CPU is completely disabled 5898 * in take_cpu_down(), so we prevent new cfs throttling here. 5899 */ 5900 cfs_rq->runtime_enabled = 0; 5901 5902 if (cfs_rq_throttled(cfs_rq)) 5903 unthrottle_cfs_rq(cfs_rq); 5904 } 5905 rcu_read_unlock(); 5906 } 5907 5908 #else /* CONFIG_CFS_BANDWIDTH */ 5909 5910 static inline bool cfs_bandwidth_used(void) 5911 { 5912 return false; 5913 } 5914 5915 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5916 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5917 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5918 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5919 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5920 5921 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5922 { 5923 return 0; 5924 } 5925 5926 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5927 { 5928 return 0; 5929 } 5930 5931 static inline int throttled_lb_pair(struct task_group *tg, 5932 int src_cpu, int dest_cpu) 5933 { 5934 return 0; 5935 } 5936 5937 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5938 5939 #ifdef CONFIG_FAIR_GROUP_SCHED 5940 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5941 #endif 5942 5943 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5944 { 5945 return NULL; 5946 } 5947 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5948 static inline void update_runtime_enabled(struct rq *rq) {} 5949 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5950 5951 #endif /* CONFIG_CFS_BANDWIDTH */ 5952 5953 /************************************************** 5954 * CFS operations on tasks: 5955 */ 5956 5957 #ifdef CONFIG_SCHED_HRTICK 5958 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5959 { 5960 struct sched_entity *se = &p->se; 5961 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5962 5963 SCHED_WARN_ON(task_rq(p) != rq); 5964 5965 if (rq->cfs.h_nr_running > 1) { 5966 u64 slice = sched_slice(cfs_rq, se); 5967 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5968 s64 delta = slice - ran; 5969 5970 if (delta < 0) { 5971 if (task_current(rq, p)) 5972 resched_curr(rq); 5973 return; 5974 } 5975 hrtick_start(rq, delta); 5976 } 5977 } 5978 5979 /* 5980 * called from enqueue/dequeue and updates the hrtick when the 5981 * current task is from our class and nr_running is low enough 5982 * to matter. 5983 */ 5984 static void hrtick_update(struct rq *rq) 5985 { 5986 struct task_struct *curr = rq->curr; 5987 5988 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 5989 return; 5990 5991 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5992 hrtick_start_fair(rq, curr); 5993 } 5994 #else /* !CONFIG_SCHED_HRTICK */ 5995 static inline void 5996 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5997 { 5998 } 5999 6000 static inline void hrtick_update(struct rq *rq) 6001 { 6002 } 6003 #endif 6004 6005 #ifdef CONFIG_SMP 6006 static inline bool cpu_overutilized(int cpu) 6007 { 6008 unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6009 unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6010 6011 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6012 } 6013 6014 static inline void update_overutilized_status(struct rq *rq) 6015 { 6016 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 6017 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 6018 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 6019 } 6020 } 6021 #else 6022 static inline void update_overutilized_status(struct rq *rq) { } 6023 #endif 6024 6025 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6026 static int sched_idle_rq(struct rq *rq) 6027 { 6028 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6029 rq->nr_running); 6030 } 6031 6032 /* 6033 * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use 6034 * of idle_nr_running, which does not consider idle descendants of normal 6035 * entities. 6036 */ 6037 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq) 6038 { 6039 return cfs_rq->nr_running && 6040 cfs_rq->nr_running == cfs_rq->idle_nr_running; 6041 } 6042 6043 #ifdef CONFIG_SMP 6044 static int sched_idle_cpu(int cpu) 6045 { 6046 return sched_idle_rq(cpu_rq(cpu)); 6047 } 6048 #endif 6049 6050 /* 6051 * The enqueue_task method is called before nr_running is 6052 * increased. Here we update the fair scheduling stats and 6053 * then put the task into the rbtree: 6054 */ 6055 static void 6056 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6057 { 6058 struct cfs_rq *cfs_rq; 6059 struct sched_entity *se = &p->se; 6060 int idle_h_nr_running = task_has_idle_policy(p); 6061 int task_new = !(flags & ENQUEUE_WAKEUP); 6062 6063 /* 6064 * The code below (indirectly) updates schedutil which looks at 6065 * the cfs_rq utilization to select a frequency. 6066 * Let's add the task's estimated utilization to the cfs_rq's 6067 * estimated utilization, before we update schedutil. 6068 */ 6069 util_est_enqueue(&rq->cfs, p); 6070 6071 /* 6072 * If in_iowait is set, the code below may not trigger any cpufreq 6073 * utilization updates, so do it here explicitly with the IOWAIT flag 6074 * passed. 6075 */ 6076 if (p->in_iowait) 6077 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6078 6079 for_each_sched_entity(se) { 6080 if (se->on_rq) 6081 break; 6082 cfs_rq = cfs_rq_of(se); 6083 enqueue_entity(cfs_rq, se, flags); 6084 6085 cfs_rq->h_nr_running++; 6086 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6087 6088 if (cfs_rq_is_idle(cfs_rq)) 6089 idle_h_nr_running = 1; 6090 6091 /* end evaluation on encountering a throttled cfs_rq */ 6092 if (cfs_rq_throttled(cfs_rq)) 6093 goto enqueue_throttle; 6094 6095 flags = ENQUEUE_WAKEUP; 6096 } 6097 6098 for_each_sched_entity(se) { 6099 cfs_rq = cfs_rq_of(se); 6100 6101 update_load_avg(cfs_rq, se, UPDATE_TG); 6102 se_update_runnable(se); 6103 update_cfs_group(se); 6104 6105 cfs_rq->h_nr_running++; 6106 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6107 6108 if (cfs_rq_is_idle(cfs_rq)) 6109 idle_h_nr_running = 1; 6110 6111 /* end evaluation on encountering a throttled cfs_rq */ 6112 if (cfs_rq_throttled(cfs_rq)) 6113 goto enqueue_throttle; 6114 } 6115 6116 /* At this point se is NULL and we are at root level*/ 6117 add_nr_running(rq, 1); 6118 6119 /* 6120 * Since new tasks are assigned an initial util_avg equal to 6121 * half of the spare capacity of their CPU, tiny tasks have the 6122 * ability to cross the overutilized threshold, which will 6123 * result in the load balancer ruining all the task placement 6124 * done by EAS. As a way to mitigate that effect, do not account 6125 * for the first enqueue operation of new tasks during the 6126 * overutilized flag detection. 6127 * 6128 * A better way of solving this problem would be to wait for 6129 * the PELT signals of tasks to converge before taking them 6130 * into account, but that is not straightforward to implement, 6131 * and the following generally works well enough in practice. 6132 */ 6133 if (!task_new) 6134 update_overutilized_status(rq); 6135 6136 enqueue_throttle: 6137 assert_list_leaf_cfs_rq(rq); 6138 6139 hrtick_update(rq); 6140 } 6141 6142 static void set_next_buddy(struct sched_entity *se); 6143 6144 /* 6145 * The dequeue_task method is called before nr_running is 6146 * decreased. We remove the task from the rbtree and 6147 * update the fair scheduling stats: 6148 */ 6149 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6150 { 6151 struct cfs_rq *cfs_rq; 6152 struct sched_entity *se = &p->se; 6153 int task_sleep = flags & DEQUEUE_SLEEP; 6154 int idle_h_nr_running = task_has_idle_policy(p); 6155 bool was_sched_idle = sched_idle_rq(rq); 6156 6157 util_est_dequeue(&rq->cfs, p); 6158 6159 for_each_sched_entity(se) { 6160 cfs_rq = cfs_rq_of(se); 6161 dequeue_entity(cfs_rq, se, flags); 6162 6163 cfs_rq->h_nr_running--; 6164 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6165 6166 if (cfs_rq_is_idle(cfs_rq)) 6167 idle_h_nr_running = 1; 6168 6169 /* end evaluation on encountering a throttled cfs_rq */ 6170 if (cfs_rq_throttled(cfs_rq)) 6171 goto dequeue_throttle; 6172 6173 /* Don't dequeue parent if it has other entities besides us */ 6174 if (cfs_rq->load.weight) { 6175 /* Avoid re-evaluating load for this entity: */ 6176 se = parent_entity(se); 6177 /* 6178 * Bias pick_next to pick a task from this cfs_rq, as 6179 * p is sleeping when it is within its sched_slice. 6180 */ 6181 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 6182 set_next_buddy(se); 6183 break; 6184 } 6185 flags |= DEQUEUE_SLEEP; 6186 } 6187 6188 for_each_sched_entity(se) { 6189 cfs_rq = cfs_rq_of(se); 6190 6191 update_load_avg(cfs_rq, se, UPDATE_TG); 6192 se_update_runnable(se); 6193 update_cfs_group(se); 6194 6195 cfs_rq->h_nr_running--; 6196 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6197 6198 if (cfs_rq_is_idle(cfs_rq)) 6199 idle_h_nr_running = 1; 6200 6201 /* end evaluation on encountering a throttled cfs_rq */ 6202 if (cfs_rq_throttled(cfs_rq)) 6203 goto dequeue_throttle; 6204 6205 } 6206 6207 /* At this point se is NULL and we are at root level*/ 6208 sub_nr_running(rq, 1); 6209 6210 /* balance early to pull high priority tasks */ 6211 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 6212 rq->next_balance = jiffies; 6213 6214 dequeue_throttle: 6215 util_est_update(&rq->cfs, p, task_sleep); 6216 hrtick_update(rq); 6217 } 6218 6219 #ifdef CONFIG_SMP 6220 6221 /* Working cpumask for: load_balance, load_balance_newidle. */ 6222 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6223 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 6224 6225 #ifdef CONFIG_NO_HZ_COMMON 6226 6227 static struct { 6228 cpumask_var_t idle_cpus_mask; 6229 atomic_t nr_cpus; 6230 int has_blocked; /* Idle CPUS has blocked load */ 6231 int needs_update; /* Newly idle CPUs need their next_balance collated */ 6232 unsigned long next_balance; /* in jiffy units */ 6233 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 6234 } nohz ____cacheline_aligned; 6235 6236 #endif /* CONFIG_NO_HZ_COMMON */ 6237 6238 static unsigned long cpu_load(struct rq *rq) 6239 { 6240 return cfs_rq_load_avg(&rq->cfs); 6241 } 6242 6243 /* 6244 * cpu_load_without - compute CPU load without any contributions from *p 6245 * @cpu: the CPU which load is requested 6246 * @p: the task which load should be discounted 6247 * 6248 * The load of a CPU is defined by the load of tasks currently enqueued on that 6249 * CPU as well as tasks which are currently sleeping after an execution on that 6250 * CPU. 6251 * 6252 * This method returns the load of the specified CPU by discounting the load of 6253 * the specified task, whenever the task is currently contributing to the CPU 6254 * load. 6255 */ 6256 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 6257 { 6258 struct cfs_rq *cfs_rq; 6259 unsigned int load; 6260 6261 /* Task has no contribution or is new */ 6262 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6263 return cpu_load(rq); 6264 6265 cfs_rq = &rq->cfs; 6266 load = READ_ONCE(cfs_rq->avg.load_avg); 6267 6268 /* Discount task's util from CPU's util */ 6269 lsub_positive(&load, task_h_load(p)); 6270 6271 return load; 6272 } 6273 6274 static unsigned long cpu_runnable(struct rq *rq) 6275 { 6276 return cfs_rq_runnable_avg(&rq->cfs); 6277 } 6278 6279 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 6280 { 6281 struct cfs_rq *cfs_rq; 6282 unsigned int runnable; 6283 6284 /* Task has no contribution or is new */ 6285 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6286 return cpu_runnable(rq); 6287 6288 cfs_rq = &rq->cfs; 6289 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 6290 6291 /* Discount task's runnable from CPU's runnable */ 6292 lsub_positive(&runnable, p->se.avg.runnable_avg); 6293 6294 return runnable; 6295 } 6296 6297 static unsigned long capacity_of(int cpu) 6298 { 6299 return cpu_rq(cpu)->cpu_capacity; 6300 } 6301 6302 static void record_wakee(struct task_struct *p) 6303 { 6304 /* 6305 * Only decay a single time; tasks that have less then 1 wakeup per 6306 * jiffy will not have built up many flips. 6307 */ 6308 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 6309 current->wakee_flips >>= 1; 6310 current->wakee_flip_decay_ts = jiffies; 6311 } 6312 6313 if (current->last_wakee != p) { 6314 current->last_wakee = p; 6315 current->wakee_flips++; 6316 } 6317 } 6318 6319 /* 6320 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 6321 * 6322 * A waker of many should wake a different task than the one last awakened 6323 * at a frequency roughly N times higher than one of its wakees. 6324 * 6325 * In order to determine whether we should let the load spread vs consolidating 6326 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 6327 * partner, and a factor of lls_size higher frequency in the other. 6328 * 6329 * With both conditions met, we can be relatively sure that the relationship is 6330 * non-monogamous, with partner count exceeding socket size. 6331 * 6332 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 6333 * whatever is irrelevant, spread criteria is apparent partner count exceeds 6334 * socket size. 6335 */ 6336 static int wake_wide(struct task_struct *p) 6337 { 6338 unsigned int master = current->wakee_flips; 6339 unsigned int slave = p->wakee_flips; 6340 int factor = __this_cpu_read(sd_llc_size); 6341 6342 if (master < slave) 6343 swap(master, slave); 6344 if (slave < factor || master < slave * factor) 6345 return 0; 6346 return 1; 6347 } 6348 6349 /* 6350 * The purpose of wake_affine() is to quickly determine on which CPU we can run 6351 * soonest. For the purpose of speed we only consider the waking and previous 6352 * CPU. 6353 * 6354 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 6355 * cache-affine and is (or will be) idle. 6356 * 6357 * wake_affine_weight() - considers the weight to reflect the average 6358 * scheduling latency of the CPUs. This seems to work 6359 * for the overloaded case. 6360 */ 6361 static int 6362 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 6363 { 6364 /* 6365 * If this_cpu is idle, it implies the wakeup is from interrupt 6366 * context. Only allow the move if cache is shared. Otherwise an 6367 * interrupt intensive workload could force all tasks onto one 6368 * node depending on the IO topology or IRQ affinity settings. 6369 * 6370 * If the prev_cpu is idle and cache affine then avoid a migration. 6371 * There is no guarantee that the cache hot data from an interrupt 6372 * is more important than cache hot data on the prev_cpu and from 6373 * a cpufreq perspective, it's better to have higher utilisation 6374 * on one CPU. 6375 */ 6376 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 6377 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 6378 6379 if (sync && cpu_rq(this_cpu)->nr_running == 1) 6380 return this_cpu; 6381 6382 if (available_idle_cpu(prev_cpu)) 6383 return prev_cpu; 6384 6385 return nr_cpumask_bits; 6386 } 6387 6388 static int 6389 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 6390 int this_cpu, int prev_cpu, int sync) 6391 { 6392 s64 this_eff_load, prev_eff_load; 6393 unsigned long task_load; 6394 6395 this_eff_load = cpu_load(cpu_rq(this_cpu)); 6396 6397 if (sync) { 6398 unsigned long current_load = task_h_load(current); 6399 6400 if (current_load > this_eff_load) 6401 return this_cpu; 6402 6403 this_eff_load -= current_load; 6404 } 6405 6406 task_load = task_h_load(p); 6407 6408 this_eff_load += task_load; 6409 if (sched_feat(WA_BIAS)) 6410 this_eff_load *= 100; 6411 this_eff_load *= capacity_of(prev_cpu); 6412 6413 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 6414 prev_eff_load -= task_load; 6415 if (sched_feat(WA_BIAS)) 6416 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 6417 prev_eff_load *= capacity_of(this_cpu); 6418 6419 /* 6420 * If sync, adjust the weight of prev_eff_load such that if 6421 * prev_eff == this_eff that select_idle_sibling() will consider 6422 * stacking the wakee on top of the waker if no other CPU is 6423 * idle. 6424 */ 6425 if (sync) 6426 prev_eff_load += 1; 6427 6428 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 6429 } 6430 6431 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 6432 int this_cpu, int prev_cpu, int sync) 6433 { 6434 int target = nr_cpumask_bits; 6435 6436 if (sched_feat(WA_IDLE)) 6437 target = wake_affine_idle(this_cpu, prev_cpu, sync); 6438 6439 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 6440 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 6441 6442 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 6443 if (target == nr_cpumask_bits) 6444 return prev_cpu; 6445 6446 schedstat_inc(sd->ttwu_move_affine); 6447 schedstat_inc(p->stats.nr_wakeups_affine); 6448 return target; 6449 } 6450 6451 static struct sched_group * 6452 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 6453 6454 /* 6455 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 6456 */ 6457 static int 6458 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 6459 { 6460 unsigned long load, min_load = ULONG_MAX; 6461 unsigned int min_exit_latency = UINT_MAX; 6462 u64 latest_idle_timestamp = 0; 6463 int least_loaded_cpu = this_cpu; 6464 int shallowest_idle_cpu = -1; 6465 int i; 6466 6467 /* Check if we have any choice: */ 6468 if (group->group_weight == 1) 6469 return cpumask_first(sched_group_span(group)); 6470 6471 /* Traverse only the allowed CPUs */ 6472 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 6473 struct rq *rq = cpu_rq(i); 6474 6475 if (!sched_core_cookie_match(rq, p)) 6476 continue; 6477 6478 if (sched_idle_cpu(i)) 6479 return i; 6480 6481 if (available_idle_cpu(i)) { 6482 struct cpuidle_state *idle = idle_get_state(rq); 6483 if (idle && idle->exit_latency < min_exit_latency) { 6484 /* 6485 * We give priority to a CPU whose idle state 6486 * has the smallest exit latency irrespective 6487 * of any idle timestamp. 6488 */ 6489 min_exit_latency = idle->exit_latency; 6490 latest_idle_timestamp = rq->idle_stamp; 6491 shallowest_idle_cpu = i; 6492 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6493 rq->idle_stamp > latest_idle_timestamp) { 6494 /* 6495 * If equal or no active idle state, then 6496 * the most recently idled CPU might have 6497 * a warmer cache. 6498 */ 6499 latest_idle_timestamp = rq->idle_stamp; 6500 shallowest_idle_cpu = i; 6501 } 6502 } else if (shallowest_idle_cpu == -1) { 6503 load = cpu_load(cpu_rq(i)); 6504 if (load < min_load) { 6505 min_load = load; 6506 least_loaded_cpu = i; 6507 } 6508 } 6509 } 6510 6511 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6512 } 6513 6514 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6515 int cpu, int prev_cpu, int sd_flag) 6516 { 6517 int new_cpu = cpu; 6518 6519 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 6520 return prev_cpu; 6521 6522 /* 6523 * We need task's util for cpu_util_without, sync it up to 6524 * prev_cpu's last_update_time. 6525 */ 6526 if (!(sd_flag & SD_BALANCE_FORK)) 6527 sync_entity_load_avg(&p->se); 6528 6529 while (sd) { 6530 struct sched_group *group; 6531 struct sched_domain *tmp; 6532 int weight; 6533 6534 if (!(sd->flags & sd_flag)) { 6535 sd = sd->child; 6536 continue; 6537 } 6538 6539 group = find_idlest_group(sd, p, cpu); 6540 if (!group) { 6541 sd = sd->child; 6542 continue; 6543 } 6544 6545 new_cpu = find_idlest_group_cpu(group, p, cpu); 6546 if (new_cpu == cpu) { 6547 /* Now try balancing at a lower domain level of 'cpu': */ 6548 sd = sd->child; 6549 continue; 6550 } 6551 6552 /* Now try balancing at a lower domain level of 'new_cpu': */ 6553 cpu = new_cpu; 6554 weight = sd->span_weight; 6555 sd = NULL; 6556 for_each_domain(cpu, tmp) { 6557 if (weight <= tmp->span_weight) 6558 break; 6559 if (tmp->flags & sd_flag) 6560 sd = tmp; 6561 } 6562 } 6563 6564 return new_cpu; 6565 } 6566 6567 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 6568 { 6569 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 6570 sched_cpu_cookie_match(cpu_rq(cpu), p)) 6571 return cpu; 6572 6573 return -1; 6574 } 6575 6576 #ifdef CONFIG_SCHED_SMT 6577 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6578 EXPORT_SYMBOL_GPL(sched_smt_present); 6579 6580 static inline void set_idle_cores(int cpu, int val) 6581 { 6582 struct sched_domain_shared *sds; 6583 6584 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6585 if (sds) 6586 WRITE_ONCE(sds->has_idle_cores, val); 6587 } 6588 6589 static inline bool test_idle_cores(int cpu) 6590 { 6591 struct sched_domain_shared *sds; 6592 6593 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6594 if (sds) 6595 return READ_ONCE(sds->has_idle_cores); 6596 6597 return false; 6598 } 6599 6600 /* 6601 * Scans the local SMT mask to see if the entire core is idle, and records this 6602 * information in sd_llc_shared->has_idle_cores. 6603 * 6604 * Since SMT siblings share all cache levels, inspecting this limited remote 6605 * state should be fairly cheap. 6606 */ 6607 void __update_idle_core(struct rq *rq) 6608 { 6609 int core = cpu_of(rq); 6610 int cpu; 6611 6612 rcu_read_lock(); 6613 if (test_idle_cores(core)) 6614 goto unlock; 6615 6616 for_each_cpu(cpu, cpu_smt_mask(core)) { 6617 if (cpu == core) 6618 continue; 6619 6620 if (!available_idle_cpu(cpu)) 6621 goto unlock; 6622 } 6623 6624 set_idle_cores(core, 1); 6625 unlock: 6626 rcu_read_unlock(); 6627 } 6628 6629 /* 6630 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6631 * there are no idle cores left in the system; tracked through 6632 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6633 */ 6634 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6635 { 6636 bool idle = true; 6637 int cpu; 6638 6639 for_each_cpu(cpu, cpu_smt_mask(core)) { 6640 if (!available_idle_cpu(cpu)) { 6641 idle = false; 6642 if (*idle_cpu == -1) { 6643 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 6644 *idle_cpu = cpu; 6645 break; 6646 } 6647 continue; 6648 } 6649 break; 6650 } 6651 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 6652 *idle_cpu = cpu; 6653 } 6654 6655 if (idle) 6656 return core; 6657 6658 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6659 return -1; 6660 } 6661 6662 /* 6663 * Scan the local SMT mask for idle CPUs. 6664 */ 6665 static int select_idle_smt(struct task_struct *p, int target) 6666 { 6667 int cpu; 6668 6669 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 6670 if (cpu == target) 6671 continue; 6672 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6673 return cpu; 6674 } 6675 6676 return -1; 6677 } 6678 6679 #else /* CONFIG_SCHED_SMT */ 6680 6681 static inline void set_idle_cores(int cpu, int val) 6682 { 6683 } 6684 6685 static inline bool test_idle_cores(int cpu) 6686 { 6687 return false; 6688 } 6689 6690 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6691 { 6692 return __select_idle_cpu(core, p); 6693 } 6694 6695 static inline int select_idle_smt(struct task_struct *p, int target) 6696 { 6697 return -1; 6698 } 6699 6700 #endif /* CONFIG_SCHED_SMT */ 6701 6702 /* 6703 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6704 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6705 * average idle time for this rq (as found in rq->avg_idle). 6706 */ 6707 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 6708 { 6709 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 6710 int i, cpu, idle_cpu = -1, nr = INT_MAX; 6711 struct sched_domain_shared *sd_share; 6712 struct rq *this_rq = this_rq(); 6713 int this = smp_processor_id(); 6714 struct sched_domain *this_sd = NULL; 6715 u64 time = 0; 6716 6717 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6718 6719 if (sched_feat(SIS_PROP) && !has_idle_core) { 6720 u64 avg_cost, avg_idle, span_avg; 6721 unsigned long now = jiffies; 6722 6723 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6724 if (!this_sd) 6725 return -1; 6726 6727 /* 6728 * If we're busy, the assumption that the last idle period 6729 * predicts the future is flawed; age away the remaining 6730 * predicted idle time. 6731 */ 6732 if (unlikely(this_rq->wake_stamp < now)) { 6733 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 6734 this_rq->wake_stamp++; 6735 this_rq->wake_avg_idle >>= 1; 6736 } 6737 } 6738 6739 avg_idle = this_rq->wake_avg_idle; 6740 avg_cost = this_sd->avg_scan_cost + 1; 6741 6742 span_avg = sd->span_weight * avg_idle; 6743 if (span_avg > 4*avg_cost) 6744 nr = div_u64(span_avg, avg_cost); 6745 else 6746 nr = 4; 6747 6748 time = cpu_clock(this); 6749 } 6750 6751 if (sched_feat(SIS_UTIL)) { 6752 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 6753 if (sd_share) { 6754 /* because !--nr is the condition to stop scan */ 6755 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 6756 /* overloaded LLC is unlikely to have idle cpu/core */ 6757 if (nr == 1) 6758 return -1; 6759 } 6760 } 6761 6762 for_each_cpu_wrap(cpu, cpus, target + 1) { 6763 if (has_idle_core) { 6764 i = select_idle_core(p, cpu, cpus, &idle_cpu); 6765 if ((unsigned int)i < nr_cpumask_bits) 6766 return i; 6767 6768 } else { 6769 if (!--nr) 6770 return -1; 6771 idle_cpu = __select_idle_cpu(cpu, p); 6772 if ((unsigned int)idle_cpu < nr_cpumask_bits) 6773 break; 6774 } 6775 } 6776 6777 if (has_idle_core) 6778 set_idle_cores(target, false); 6779 6780 if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) { 6781 time = cpu_clock(this) - time; 6782 6783 /* 6784 * Account for the scan cost of wakeups against the average 6785 * idle time. 6786 */ 6787 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 6788 6789 update_avg(&this_sd->avg_scan_cost, time); 6790 } 6791 6792 return idle_cpu; 6793 } 6794 6795 /* 6796 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6797 * the task fits. If no CPU is big enough, but there are idle ones, try to 6798 * maximize capacity. 6799 */ 6800 static int 6801 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6802 { 6803 unsigned long task_util, util_min, util_max, best_cap = 0; 6804 int cpu, best_cpu = -1; 6805 struct cpumask *cpus; 6806 6807 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 6808 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6809 6810 task_util = task_util_est(p); 6811 util_min = uclamp_eff_value(p, UCLAMP_MIN); 6812 util_max = uclamp_eff_value(p, UCLAMP_MAX); 6813 6814 for_each_cpu_wrap(cpu, cpus, target) { 6815 unsigned long cpu_cap = capacity_of(cpu); 6816 6817 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6818 continue; 6819 if (util_fits_cpu(task_util, util_min, util_max, cpu)) 6820 return cpu; 6821 6822 if (cpu_cap > best_cap) { 6823 best_cap = cpu_cap; 6824 best_cpu = cpu; 6825 } 6826 } 6827 6828 return best_cpu; 6829 } 6830 6831 static inline bool asym_fits_cpu(unsigned long util, 6832 unsigned long util_min, 6833 unsigned long util_max, 6834 int cpu) 6835 { 6836 if (sched_asym_cpucap_active()) 6837 return util_fits_cpu(util, util_min, util_max, cpu); 6838 6839 return true; 6840 } 6841 6842 /* 6843 * Try and locate an idle core/thread in the LLC cache domain. 6844 */ 6845 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6846 { 6847 bool has_idle_core = false; 6848 struct sched_domain *sd; 6849 unsigned long task_util, util_min, util_max; 6850 int i, recent_used_cpu; 6851 6852 /* 6853 * On asymmetric system, update task utilization because we will check 6854 * that the task fits with cpu's capacity. 6855 */ 6856 if (sched_asym_cpucap_active()) { 6857 sync_entity_load_avg(&p->se); 6858 task_util = task_util_est(p); 6859 util_min = uclamp_eff_value(p, UCLAMP_MIN); 6860 util_max = uclamp_eff_value(p, UCLAMP_MAX); 6861 } 6862 6863 /* 6864 * per-cpu select_rq_mask usage 6865 */ 6866 lockdep_assert_irqs_disabled(); 6867 6868 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 6869 asym_fits_cpu(task_util, util_min, util_max, target)) 6870 return target; 6871 6872 /* 6873 * If the previous CPU is cache affine and idle, don't be stupid: 6874 */ 6875 if (prev != target && cpus_share_cache(prev, target) && 6876 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 6877 asym_fits_cpu(task_util, util_min, util_max, prev)) 6878 return prev; 6879 6880 /* 6881 * Allow a per-cpu kthread to stack with the wakee if the 6882 * kworker thread and the tasks previous CPUs are the same. 6883 * The assumption is that the wakee queued work for the 6884 * per-cpu kthread that is now complete and the wakeup is 6885 * essentially a sync wakeup. An obvious example of this 6886 * pattern is IO completions. 6887 */ 6888 if (is_per_cpu_kthread(current) && 6889 in_task() && 6890 prev == smp_processor_id() && 6891 this_rq()->nr_running <= 1 && 6892 asym_fits_cpu(task_util, util_min, util_max, prev)) { 6893 return prev; 6894 } 6895 6896 /* Check a recently used CPU as a potential idle candidate: */ 6897 recent_used_cpu = p->recent_used_cpu; 6898 p->recent_used_cpu = prev; 6899 if (recent_used_cpu != prev && 6900 recent_used_cpu != target && 6901 cpus_share_cache(recent_used_cpu, target) && 6902 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6903 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && 6904 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 6905 return recent_used_cpu; 6906 } 6907 6908 /* 6909 * For asymmetric CPU capacity systems, our domain of interest is 6910 * sd_asym_cpucapacity rather than sd_llc. 6911 */ 6912 if (sched_asym_cpucap_active()) { 6913 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 6914 /* 6915 * On an asymmetric CPU capacity system where an exclusive 6916 * cpuset defines a symmetric island (i.e. one unique 6917 * capacity_orig value through the cpuset), the key will be set 6918 * but the CPUs within that cpuset will not have a domain with 6919 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 6920 * capacity path. 6921 */ 6922 if (sd) { 6923 i = select_idle_capacity(p, sd, target); 6924 return ((unsigned)i < nr_cpumask_bits) ? i : target; 6925 } 6926 } 6927 6928 sd = rcu_dereference(per_cpu(sd_llc, target)); 6929 if (!sd) 6930 return target; 6931 6932 if (sched_smt_active()) { 6933 has_idle_core = test_idle_cores(target); 6934 6935 if (!has_idle_core && cpus_share_cache(prev, target)) { 6936 i = select_idle_smt(p, prev); 6937 if ((unsigned int)i < nr_cpumask_bits) 6938 return i; 6939 } 6940 } 6941 6942 i = select_idle_cpu(p, sd, has_idle_core, target); 6943 if ((unsigned)i < nr_cpumask_bits) 6944 return i; 6945 6946 return target; 6947 } 6948 6949 /* 6950 * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu 6951 * (@dst_cpu = -1) or migrated to @dst_cpu. 6952 */ 6953 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6954 { 6955 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6956 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 6957 6958 /* 6959 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 6960 * contribution. If @p migrates from another CPU to @cpu add its 6961 * contribution. In all the other cases @cpu is not impacted by the 6962 * migration so its util_avg is already correct. 6963 */ 6964 if (task_cpu(p) == cpu && dst_cpu != cpu) 6965 lsub_positive(&util, task_util(p)); 6966 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6967 util += task_util(p); 6968 6969 if (sched_feat(UTIL_EST)) { 6970 unsigned long util_est; 6971 6972 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6973 6974 /* 6975 * During wake-up @p isn't enqueued yet and doesn't contribute 6976 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued. 6977 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 6978 * has been enqueued. 6979 * 6980 * During exec (@dst_cpu = -1) @p is enqueued and does 6981 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued. 6982 * Remove it to "simulate" cpu_util without @p's contribution. 6983 * 6984 * Despite the task_on_rq_queued(@p) check there is still a 6985 * small window for a possible race when an exec 6986 * select_task_rq_fair() races with LB's detach_task(). 6987 * 6988 * detach_task() 6989 * deactivate_task() 6990 * p->on_rq = TASK_ON_RQ_MIGRATING; 6991 * -------------------------------- A 6992 * dequeue_task() \ 6993 * dequeue_task_fair() + Race Time 6994 * util_est_dequeue() / 6995 * -------------------------------- B 6996 * 6997 * The additional check "current == p" is required to further 6998 * reduce the race window. 6999 */ 7000 if (dst_cpu == cpu) 7001 util_est += _task_util_est(p); 7002 else if (unlikely(task_on_rq_queued(p) || current == p)) 7003 lsub_positive(&util_est, _task_util_est(p)); 7004 7005 util = max(util, util_est); 7006 } 7007 7008 return min(util, capacity_orig_of(cpu)); 7009 } 7010 7011 /* 7012 * cpu_util_without: compute cpu utilization without any contributions from *p 7013 * @cpu: the CPU which utilization is requested 7014 * @p: the task which utilization should be discounted 7015 * 7016 * The utilization of a CPU is defined by the utilization of tasks currently 7017 * enqueued on that CPU as well as tasks which are currently sleeping after an 7018 * execution on that CPU. 7019 * 7020 * This method returns the utilization of the specified CPU by discounting the 7021 * utilization of the specified task, whenever the task is currently 7022 * contributing to the CPU utilization. 7023 */ 7024 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7025 { 7026 /* Task has no contribution or is new */ 7027 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7028 return cpu_util_cfs(cpu); 7029 7030 return cpu_util_next(cpu, p, -1); 7031 } 7032 7033 /* 7034 * energy_env - Utilization landscape for energy estimation. 7035 * @task_busy_time: Utilization contribution by the task for which we test the 7036 * placement. Given by eenv_task_busy_time(). 7037 * @pd_busy_time: Utilization of the whole perf domain without the task 7038 * contribution. Given by eenv_pd_busy_time(). 7039 * @cpu_cap: Maximum CPU capacity for the perf domain. 7040 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 7041 */ 7042 struct energy_env { 7043 unsigned long task_busy_time; 7044 unsigned long pd_busy_time; 7045 unsigned long cpu_cap; 7046 unsigned long pd_cap; 7047 }; 7048 7049 /* 7050 * Compute the task busy time for compute_energy(). This time cannot be 7051 * injected directly into effective_cpu_util() because of the IRQ scaling. 7052 * The latter only makes sense with the most recent CPUs where the task has 7053 * run. 7054 */ 7055 static inline void eenv_task_busy_time(struct energy_env *eenv, 7056 struct task_struct *p, int prev_cpu) 7057 { 7058 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 7059 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 7060 7061 if (unlikely(irq >= max_cap)) 7062 busy_time = max_cap; 7063 else 7064 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 7065 7066 eenv->task_busy_time = busy_time; 7067 } 7068 7069 /* 7070 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 7071 * utilization for each @pd_cpus, it however doesn't take into account 7072 * clamping since the ratio (utilization / cpu_capacity) is already enough to 7073 * scale the EM reported power consumption at the (eventually clamped) 7074 * cpu_capacity. 7075 * 7076 * The contribution of the task @p for which we want to estimate the 7077 * energy cost is removed (by cpu_util_next()) and must be calculated 7078 * separately (see eenv_task_busy_time). This ensures: 7079 * 7080 * - A stable PD utilization, no matter which CPU of that PD we want to place 7081 * the task on. 7082 * 7083 * - A fair comparison between CPUs as the task contribution (task_util()) 7084 * will always be the same no matter which CPU utilization we rely on 7085 * (util_avg or util_est). 7086 * 7087 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 7088 * exceed @eenv->pd_cap. 7089 */ 7090 static inline void eenv_pd_busy_time(struct energy_env *eenv, 7091 struct cpumask *pd_cpus, 7092 struct task_struct *p) 7093 { 7094 unsigned long busy_time = 0; 7095 int cpu; 7096 7097 for_each_cpu(cpu, pd_cpus) { 7098 unsigned long util = cpu_util_next(cpu, p, -1); 7099 7100 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL); 7101 } 7102 7103 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 7104 } 7105 7106 /* 7107 * Compute the maximum utilization for compute_energy() when the task @p 7108 * is placed on the cpu @dst_cpu. 7109 * 7110 * Returns the maximum utilization among @eenv->cpus. This utilization can't 7111 * exceed @eenv->cpu_cap. 7112 */ 7113 static inline unsigned long 7114 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 7115 struct task_struct *p, int dst_cpu) 7116 { 7117 unsigned long max_util = 0; 7118 int cpu; 7119 7120 for_each_cpu(cpu, pd_cpus) { 7121 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 7122 unsigned long util = cpu_util_next(cpu, p, dst_cpu); 7123 unsigned long cpu_util; 7124 7125 /* 7126 * Performance domain frequency: utilization clamping 7127 * must be considered since it affects the selection 7128 * of the performance domain frequency. 7129 * NOTE: in case RT tasks are running, by default the 7130 * FREQUENCY_UTIL's utilization can be max OPP. 7131 */ 7132 cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk); 7133 max_util = max(max_util, cpu_util); 7134 } 7135 7136 return min(max_util, eenv->cpu_cap); 7137 } 7138 7139 /* 7140 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 7141 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 7142 * contribution is ignored. 7143 */ 7144 static inline unsigned long 7145 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 7146 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 7147 { 7148 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 7149 unsigned long busy_time = eenv->pd_busy_time; 7150 7151 if (dst_cpu >= 0) 7152 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 7153 7154 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 7155 } 7156 7157 /* 7158 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 7159 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 7160 * spare capacity in each performance domain and uses it as a potential 7161 * candidate to execute the task. Then, it uses the Energy Model to figure 7162 * out which of the CPU candidates is the most energy-efficient. 7163 * 7164 * The rationale for this heuristic is as follows. In a performance domain, 7165 * all the most energy efficient CPU candidates (according to the Energy 7166 * Model) are those for which we'll request a low frequency. When there are 7167 * several CPUs for which the frequency request will be the same, we don't 7168 * have enough data to break the tie between them, because the Energy Model 7169 * only includes active power costs. With this model, if we assume that 7170 * frequency requests follow utilization (e.g. using schedutil), the CPU with 7171 * the maximum spare capacity in a performance domain is guaranteed to be among 7172 * the best candidates of the performance domain. 7173 * 7174 * In practice, it could be preferable from an energy standpoint to pack 7175 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 7176 * but that could also hurt our chances to go cluster idle, and we have no 7177 * ways to tell with the current Energy Model if this is actually a good 7178 * idea or not. So, find_energy_efficient_cpu() basically favors 7179 * cluster-packing, and spreading inside a cluster. That should at least be 7180 * a good thing for latency, and this is consistent with the idea that most 7181 * of the energy savings of EAS come from the asymmetry of the system, and 7182 * not so much from breaking the tie between identical CPUs. That's also the 7183 * reason why EAS is enabled in the topology code only for systems where 7184 * SD_ASYM_CPUCAPACITY is set. 7185 * 7186 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 7187 * they don't have any useful utilization data yet and it's not possible to 7188 * forecast their impact on energy consumption. Consequently, they will be 7189 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 7190 * to be energy-inefficient in some use-cases. The alternative would be to 7191 * bias new tasks towards specific types of CPUs first, or to try to infer 7192 * their util_avg from the parent task, but those heuristics could hurt 7193 * other use-cases too. So, until someone finds a better way to solve this, 7194 * let's keep things simple by re-using the existing slow path. 7195 */ 7196 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 7197 { 7198 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7199 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 7200 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 7201 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 7202 struct root_domain *rd = this_rq()->rd; 7203 int cpu, best_energy_cpu, target = -1; 7204 struct sched_domain *sd; 7205 struct perf_domain *pd; 7206 struct energy_env eenv; 7207 7208 rcu_read_lock(); 7209 pd = rcu_dereference(rd->pd); 7210 if (!pd || READ_ONCE(rd->overutilized)) 7211 goto unlock; 7212 7213 /* 7214 * Energy-aware wake-up happens on the lowest sched_domain starting 7215 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 7216 */ 7217 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 7218 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 7219 sd = sd->parent; 7220 if (!sd) 7221 goto unlock; 7222 7223 target = prev_cpu; 7224 7225 sync_entity_load_avg(&p->se); 7226 if (!uclamp_task_util(p, p_util_min, p_util_max)) 7227 goto unlock; 7228 7229 eenv_task_busy_time(&eenv, p, prev_cpu); 7230 7231 for (; pd; pd = pd->next) { 7232 unsigned long cpu_cap, cpu_thermal_cap, util; 7233 unsigned long cur_delta, max_spare_cap = 0; 7234 unsigned long rq_util_min, rq_util_max; 7235 unsigned long util_min, util_max; 7236 unsigned long prev_spare_cap = 0; 7237 int max_spare_cap_cpu = -1; 7238 unsigned long base_energy; 7239 7240 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 7241 7242 if (cpumask_empty(cpus)) 7243 continue; 7244 7245 /* Account thermal pressure for the energy estimation */ 7246 cpu = cpumask_first(cpus); 7247 cpu_thermal_cap = arch_scale_cpu_capacity(cpu); 7248 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu); 7249 7250 eenv.cpu_cap = cpu_thermal_cap; 7251 eenv.pd_cap = 0; 7252 7253 for_each_cpu(cpu, cpus) { 7254 eenv.pd_cap += cpu_thermal_cap; 7255 7256 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7257 continue; 7258 7259 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 7260 continue; 7261 7262 util = cpu_util_next(cpu, p, cpu); 7263 cpu_cap = capacity_of(cpu); 7264 7265 /* 7266 * Skip CPUs that cannot satisfy the capacity request. 7267 * IOW, placing the task there would make the CPU 7268 * overutilized. Take uclamp into account to see how 7269 * much capacity we can get out of the CPU; this is 7270 * aligned with sched_cpu_util(). 7271 */ 7272 if (uclamp_is_used()) { 7273 if (uclamp_rq_is_idle(cpu_rq(cpu))) { 7274 util_min = p_util_min; 7275 util_max = p_util_max; 7276 } else { 7277 /* 7278 * Open code uclamp_rq_util_with() except for 7279 * the clamp() part. Ie: apply max aggregation 7280 * only. util_fits_cpu() logic requires to 7281 * operate on non clamped util but must use the 7282 * max-aggregated uclamp_{min, max}. 7283 */ 7284 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 7285 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 7286 7287 util_min = max(rq_util_min, p_util_min); 7288 util_max = max(rq_util_max, p_util_max); 7289 } 7290 } 7291 if (!util_fits_cpu(util, util_min, util_max, cpu)) 7292 continue; 7293 7294 lsub_positive(&cpu_cap, util); 7295 7296 if (cpu == prev_cpu) { 7297 /* Always use prev_cpu as a candidate. */ 7298 prev_spare_cap = cpu_cap; 7299 } else if (cpu_cap > max_spare_cap) { 7300 /* 7301 * Find the CPU with the maximum spare capacity 7302 * among the remaining CPUs in the performance 7303 * domain. 7304 */ 7305 max_spare_cap = cpu_cap; 7306 max_spare_cap_cpu = cpu; 7307 } 7308 } 7309 7310 if (max_spare_cap_cpu < 0 && prev_spare_cap == 0) 7311 continue; 7312 7313 eenv_pd_busy_time(&eenv, cpus, p); 7314 /* Compute the 'base' energy of the pd, without @p */ 7315 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 7316 7317 /* Evaluate the energy impact of using prev_cpu. */ 7318 if (prev_spare_cap > 0) { 7319 prev_delta = compute_energy(&eenv, pd, cpus, p, 7320 prev_cpu); 7321 /* CPU utilization has changed */ 7322 if (prev_delta < base_energy) 7323 goto unlock; 7324 prev_delta -= base_energy; 7325 best_delta = min(best_delta, prev_delta); 7326 } 7327 7328 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 7329 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 7330 cur_delta = compute_energy(&eenv, pd, cpus, p, 7331 max_spare_cap_cpu); 7332 /* CPU utilization has changed */ 7333 if (cur_delta < base_energy) 7334 goto unlock; 7335 cur_delta -= base_energy; 7336 if (cur_delta < best_delta) { 7337 best_delta = cur_delta; 7338 best_energy_cpu = max_spare_cap_cpu; 7339 } 7340 } 7341 } 7342 rcu_read_unlock(); 7343 7344 if (best_delta < prev_delta) 7345 target = best_energy_cpu; 7346 7347 return target; 7348 7349 unlock: 7350 rcu_read_unlock(); 7351 7352 return target; 7353 } 7354 7355 /* 7356 * select_task_rq_fair: Select target runqueue for the waking task in domains 7357 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 7358 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 7359 * 7360 * Balances load by selecting the idlest CPU in the idlest group, or under 7361 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 7362 * 7363 * Returns the target CPU number. 7364 */ 7365 static int 7366 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 7367 { 7368 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 7369 struct sched_domain *tmp, *sd = NULL; 7370 int cpu = smp_processor_id(); 7371 int new_cpu = prev_cpu; 7372 int want_affine = 0; 7373 /* SD_flags and WF_flags share the first nibble */ 7374 int sd_flag = wake_flags & 0xF; 7375 7376 /* 7377 * required for stable ->cpus_allowed 7378 */ 7379 lockdep_assert_held(&p->pi_lock); 7380 if (wake_flags & WF_TTWU) { 7381 record_wakee(p); 7382 7383 if (sched_energy_enabled()) { 7384 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 7385 if (new_cpu >= 0) 7386 return new_cpu; 7387 new_cpu = prev_cpu; 7388 } 7389 7390 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 7391 } 7392 7393 rcu_read_lock(); 7394 for_each_domain(cpu, tmp) { 7395 /* 7396 * If both 'cpu' and 'prev_cpu' are part of this domain, 7397 * cpu is a valid SD_WAKE_AFFINE target. 7398 */ 7399 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 7400 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 7401 if (cpu != prev_cpu) 7402 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 7403 7404 sd = NULL; /* Prefer wake_affine over balance flags */ 7405 break; 7406 } 7407 7408 /* 7409 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 7410 * usually do not have SD_BALANCE_WAKE set. That means wakeup 7411 * will usually go to the fast path. 7412 */ 7413 if (tmp->flags & sd_flag) 7414 sd = tmp; 7415 else if (!want_affine) 7416 break; 7417 } 7418 7419 if (unlikely(sd)) { 7420 /* Slow path */ 7421 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 7422 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 7423 /* Fast path */ 7424 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 7425 } 7426 rcu_read_unlock(); 7427 7428 return new_cpu; 7429 } 7430 7431 /* 7432 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 7433 * cfs_rq_of(p) references at time of call are still valid and identify the 7434 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 7435 */ 7436 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 7437 { 7438 struct sched_entity *se = &p->se; 7439 7440 /* 7441 * As blocked tasks retain absolute vruntime the migration needs to 7442 * deal with this by subtracting the old and adding the new 7443 * min_vruntime -- the latter is done by enqueue_entity() when placing 7444 * the task on the new runqueue. 7445 */ 7446 if (READ_ONCE(p->__state) == TASK_WAKING) { 7447 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7448 7449 se->vruntime -= u64_u32_load(cfs_rq->min_vruntime); 7450 } 7451 7452 if (!task_on_rq_migrating(p)) { 7453 remove_entity_load_avg(se); 7454 7455 /* 7456 * Here, the task's PELT values have been updated according to 7457 * the current rq's clock. But if that clock hasn't been 7458 * updated in a while, a substantial idle time will be missed, 7459 * leading to an inflation after wake-up on the new rq. 7460 * 7461 * Estimate the missing time from the cfs_rq last_update_time 7462 * and update sched_avg to improve the PELT continuity after 7463 * migration. 7464 */ 7465 migrate_se_pelt_lag(se); 7466 } 7467 7468 /* Tell new CPU we are migrated */ 7469 se->avg.last_update_time = 0; 7470 7471 /* We have migrated, no longer consider this task hot */ 7472 se->exec_start = 0; 7473 7474 update_scan_period(p, new_cpu); 7475 } 7476 7477 static void task_dead_fair(struct task_struct *p) 7478 { 7479 remove_entity_load_avg(&p->se); 7480 } 7481 7482 static int 7483 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7484 { 7485 if (rq->nr_running) 7486 return 1; 7487 7488 return newidle_balance(rq, rf) != 0; 7489 } 7490 #endif /* CONFIG_SMP */ 7491 7492 static unsigned long wakeup_gran(struct sched_entity *se) 7493 { 7494 unsigned long gran = sysctl_sched_wakeup_granularity; 7495 7496 /* 7497 * Since its curr running now, convert the gran from real-time 7498 * to virtual-time in his units. 7499 * 7500 * By using 'se' instead of 'curr' we penalize light tasks, so 7501 * they get preempted easier. That is, if 'se' < 'curr' then 7502 * the resulting gran will be larger, therefore penalizing the 7503 * lighter, if otoh 'se' > 'curr' then the resulting gran will 7504 * be smaller, again penalizing the lighter task. 7505 * 7506 * This is especially important for buddies when the leftmost 7507 * task is higher priority than the buddy. 7508 */ 7509 return calc_delta_fair(gran, se); 7510 } 7511 7512 /* 7513 * Should 'se' preempt 'curr'. 7514 * 7515 * |s1 7516 * |s2 7517 * |s3 7518 * g 7519 * |<--->|c 7520 * 7521 * w(c, s1) = -1 7522 * w(c, s2) = 0 7523 * w(c, s3) = 1 7524 * 7525 */ 7526 static int 7527 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 7528 { 7529 s64 gran, vdiff = curr->vruntime - se->vruntime; 7530 7531 if (vdiff <= 0) 7532 return -1; 7533 7534 gran = wakeup_gran(se); 7535 if (vdiff > gran) 7536 return 1; 7537 7538 return 0; 7539 } 7540 7541 static void set_last_buddy(struct sched_entity *se) 7542 { 7543 for_each_sched_entity(se) { 7544 if (SCHED_WARN_ON(!se->on_rq)) 7545 return; 7546 if (se_is_idle(se)) 7547 return; 7548 cfs_rq_of(se)->last = se; 7549 } 7550 } 7551 7552 static void set_next_buddy(struct sched_entity *se) 7553 { 7554 for_each_sched_entity(se) { 7555 if (SCHED_WARN_ON(!se->on_rq)) 7556 return; 7557 if (se_is_idle(se)) 7558 return; 7559 cfs_rq_of(se)->next = se; 7560 } 7561 } 7562 7563 static void set_skip_buddy(struct sched_entity *se) 7564 { 7565 for_each_sched_entity(se) 7566 cfs_rq_of(se)->skip = se; 7567 } 7568 7569 /* 7570 * Preempt the current task with a newly woken task if needed: 7571 */ 7572 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 7573 { 7574 struct task_struct *curr = rq->curr; 7575 struct sched_entity *se = &curr->se, *pse = &p->se; 7576 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7577 int scale = cfs_rq->nr_running >= sched_nr_latency; 7578 int next_buddy_marked = 0; 7579 int cse_is_idle, pse_is_idle; 7580 7581 if (unlikely(se == pse)) 7582 return; 7583 7584 /* 7585 * This is possible from callers such as attach_tasks(), in which we 7586 * unconditionally check_preempt_curr() after an enqueue (which may have 7587 * lead to a throttle). This both saves work and prevents false 7588 * next-buddy nomination below. 7589 */ 7590 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 7591 return; 7592 7593 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 7594 set_next_buddy(pse); 7595 next_buddy_marked = 1; 7596 } 7597 7598 /* 7599 * We can come here with TIF_NEED_RESCHED already set from new task 7600 * wake up path. 7601 * 7602 * Note: this also catches the edge-case of curr being in a throttled 7603 * group (e.g. via set_curr_task), since update_curr() (in the 7604 * enqueue of curr) will have resulted in resched being set. This 7605 * prevents us from potentially nominating it as a false LAST_BUDDY 7606 * below. 7607 */ 7608 if (test_tsk_need_resched(curr)) 7609 return; 7610 7611 /* Idle tasks are by definition preempted by non-idle tasks. */ 7612 if (unlikely(task_has_idle_policy(curr)) && 7613 likely(!task_has_idle_policy(p))) 7614 goto preempt; 7615 7616 /* 7617 * Batch and idle tasks do not preempt non-idle tasks (their preemption 7618 * is driven by the tick): 7619 */ 7620 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 7621 return; 7622 7623 find_matching_se(&se, &pse); 7624 WARN_ON_ONCE(!pse); 7625 7626 cse_is_idle = se_is_idle(se); 7627 pse_is_idle = se_is_idle(pse); 7628 7629 /* 7630 * Preempt an idle group in favor of a non-idle group (and don't preempt 7631 * in the inverse case). 7632 */ 7633 if (cse_is_idle && !pse_is_idle) 7634 goto preempt; 7635 if (cse_is_idle != pse_is_idle) 7636 return; 7637 7638 update_curr(cfs_rq_of(se)); 7639 if (wakeup_preempt_entity(se, pse) == 1) { 7640 /* 7641 * Bias pick_next to pick the sched entity that is 7642 * triggering this preemption. 7643 */ 7644 if (!next_buddy_marked) 7645 set_next_buddy(pse); 7646 goto preempt; 7647 } 7648 7649 return; 7650 7651 preempt: 7652 resched_curr(rq); 7653 /* 7654 * Only set the backward buddy when the current task is still 7655 * on the rq. This can happen when a wakeup gets interleaved 7656 * with schedule on the ->pre_schedule() or idle_balance() 7657 * point, either of which can * drop the rq lock. 7658 * 7659 * Also, during early boot the idle thread is in the fair class, 7660 * for obvious reasons its a bad idea to schedule back to it. 7661 */ 7662 if (unlikely(!se->on_rq || curr == rq->idle)) 7663 return; 7664 7665 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 7666 set_last_buddy(se); 7667 } 7668 7669 #ifdef CONFIG_SMP 7670 static struct task_struct *pick_task_fair(struct rq *rq) 7671 { 7672 struct sched_entity *se; 7673 struct cfs_rq *cfs_rq; 7674 7675 again: 7676 cfs_rq = &rq->cfs; 7677 if (!cfs_rq->nr_running) 7678 return NULL; 7679 7680 do { 7681 struct sched_entity *curr = cfs_rq->curr; 7682 7683 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 7684 if (curr) { 7685 if (curr->on_rq) 7686 update_curr(cfs_rq); 7687 else 7688 curr = NULL; 7689 7690 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 7691 goto again; 7692 } 7693 7694 se = pick_next_entity(cfs_rq, curr); 7695 cfs_rq = group_cfs_rq(se); 7696 } while (cfs_rq); 7697 7698 return task_of(se); 7699 } 7700 #endif 7701 7702 struct task_struct * 7703 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7704 { 7705 struct cfs_rq *cfs_rq = &rq->cfs; 7706 struct sched_entity *se; 7707 struct task_struct *p; 7708 int new_tasks; 7709 7710 again: 7711 if (!sched_fair_runnable(rq)) 7712 goto idle; 7713 7714 #ifdef CONFIG_FAIR_GROUP_SCHED 7715 if (!prev || prev->sched_class != &fair_sched_class) 7716 goto simple; 7717 7718 /* 7719 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 7720 * likely that a next task is from the same cgroup as the current. 7721 * 7722 * Therefore attempt to avoid putting and setting the entire cgroup 7723 * hierarchy, only change the part that actually changes. 7724 */ 7725 7726 do { 7727 struct sched_entity *curr = cfs_rq->curr; 7728 7729 /* 7730 * Since we got here without doing put_prev_entity() we also 7731 * have to consider cfs_rq->curr. If it is still a runnable 7732 * entity, update_curr() will update its vruntime, otherwise 7733 * forget we've ever seen it. 7734 */ 7735 if (curr) { 7736 if (curr->on_rq) 7737 update_curr(cfs_rq); 7738 else 7739 curr = NULL; 7740 7741 /* 7742 * This call to check_cfs_rq_runtime() will do the 7743 * throttle and dequeue its entity in the parent(s). 7744 * Therefore the nr_running test will indeed 7745 * be correct. 7746 */ 7747 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7748 cfs_rq = &rq->cfs; 7749 7750 if (!cfs_rq->nr_running) 7751 goto idle; 7752 7753 goto simple; 7754 } 7755 } 7756 7757 se = pick_next_entity(cfs_rq, curr); 7758 cfs_rq = group_cfs_rq(se); 7759 } while (cfs_rq); 7760 7761 p = task_of(se); 7762 7763 /* 7764 * Since we haven't yet done put_prev_entity and if the selected task 7765 * is a different task than we started out with, try and touch the 7766 * least amount of cfs_rqs. 7767 */ 7768 if (prev != p) { 7769 struct sched_entity *pse = &prev->se; 7770 7771 while (!(cfs_rq = is_same_group(se, pse))) { 7772 int se_depth = se->depth; 7773 int pse_depth = pse->depth; 7774 7775 if (se_depth <= pse_depth) { 7776 put_prev_entity(cfs_rq_of(pse), pse); 7777 pse = parent_entity(pse); 7778 } 7779 if (se_depth >= pse_depth) { 7780 set_next_entity(cfs_rq_of(se), se); 7781 se = parent_entity(se); 7782 } 7783 } 7784 7785 put_prev_entity(cfs_rq, pse); 7786 set_next_entity(cfs_rq, se); 7787 } 7788 7789 goto done; 7790 simple: 7791 #endif 7792 if (prev) 7793 put_prev_task(rq, prev); 7794 7795 do { 7796 se = pick_next_entity(cfs_rq, NULL); 7797 set_next_entity(cfs_rq, se); 7798 cfs_rq = group_cfs_rq(se); 7799 } while (cfs_rq); 7800 7801 p = task_of(se); 7802 7803 done: __maybe_unused; 7804 #ifdef CONFIG_SMP 7805 /* 7806 * Move the next running task to the front of 7807 * the list, so our cfs_tasks list becomes MRU 7808 * one. 7809 */ 7810 list_move(&p->se.group_node, &rq->cfs_tasks); 7811 #endif 7812 7813 if (hrtick_enabled_fair(rq)) 7814 hrtick_start_fair(rq, p); 7815 7816 update_misfit_status(p, rq); 7817 7818 return p; 7819 7820 idle: 7821 if (!rf) 7822 return NULL; 7823 7824 new_tasks = newidle_balance(rq, rf); 7825 7826 /* 7827 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 7828 * possible for any higher priority task to appear. In that case we 7829 * must re-start the pick_next_entity() loop. 7830 */ 7831 if (new_tasks < 0) 7832 return RETRY_TASK; 7833 7834 if (new_tasks > 0) 7835 goto again; 7836 7837 /* 7838 * rq is about to be idle, check if we need to update the 7839 * lost_idle_time of clock_pelt 7840 */ 7841 update_idle_rq_clock_pelt(rq); 7842 7843 return NULL; 7844 } 7845 7846 static struct task_struct *__pick_next_task_fair(struct rq *rq) 7847 { 7848 return pick_next_task_fair(rq, NULL, NULL); 7849 } 7850 7851 /* 7852 * Account for a descheduled task: 7853 */ 7854 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7855 { 7856 struct sched_entity *se = &prev->se; 7857 struct cfs_rq *cfs_rq; 7858 7859 for_each_sched_entity(se) { 7860 cfs_rq = cfs_rq_of(se); 7861 put_prev_entity(cfs_rq, se); 7862 } 7863 } 7864 7865 /* 7866 * sched_yield() is very simple 7867 * 7868 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7869 */ 7870 static void yield_task_fair(struct rq *rq) 7871 { 7872 struct task_struct *curr = rq->curr; 7873 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7874 struct sched_entity *se = &curr->se; 7875 7876 /* 7877 * Are we the only task in the tree? 7878 */ 7879 if (unlikely(rq->nr_running == 1)) 7880 return; 7881 7882 clear_buddies(cfs_rq, se); 7883 7884 if (curr->policy != SCHED_BATCH) { 7885 update_rq_clock(rq); 7886 /* 7887 * Update run-time statistics of the 'current'. 7888 */ 7889 update_curr(cfs_rq); 7890 /* 7891 * Tell update_rq_clock() that we've just updated, 7892 * so we don't do microscopic update in schedule() 7893 * and double the fastpath cost. 7894 */ 7895 rq_clock_skip_update(rq); 7896 } 7897 7898 set_skip_buddy(se); 7899 } 7900 7901 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 7902 { 7903 struct sched_entity *se = &p->se; 7904 7905 /* throttled hierarchies are not runnable */ 7906 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7907 return false; 7908 7909 /* Tell the scheduler that we'd really like pse to run next. */ 7910 set_next_buddy(se); 7911 7912 yield_task_fair(rq); 7913 7914 return true; 7915 } 7916 7917 #ifdef CONFIG_SMP 7918 /************************************************** 7919 * Fair scheduling class load-balancing methods. 7920 * 7921 * BASICS 7922 * 7923 * The purpose of load-balancing is to achieve the same basic fairness the 7924 * per-CPU scheduler provides, namely provide a proportional amount of compute 7925 * time to each task. This is expressed in the following equation: 7926 * 7927 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7928 * 7929 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7930 * W_i,0 is defined as: 7931 * 7932 * W_i,0 = \Sum_j w_i,j (2) 7933 * 7934 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7935 * is derived from the nice value as per sched_prio_to_weight[]. 7936 * 7937 * The weight average is an exponential decay average of the instantaneous 7938 * weight: 7939 * 7940 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7941 * 7942 * C_i is the compute capacity of CPU i, typically it is the 7943 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7944 * can also include other factors [XXX]. 7945 * 7946 * To achieve this balance we define a measure of imbalance which follows 7947 * directly from (1): 7948 * 7949 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7950 * 7951 * We them move tasks around to minimize the imbalance. In the continuous 7952 * function space it is obvious this converges, in the discrete case we get 7953 * a few fun cases generally called infeasible weight scenarios. 7954 * 7955 * [XXX expand on: 7956 * - infeasible weights; 7957 * - local vs global optima in the discrete case. ] 7958 * 7959 * 7960 * SCHED DOMAINS 7961 * 7962 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7963 * for all i,j solution, we create a tree of CPUs that follows the hardware 7964 * topology where each level pairs two lower groups (or better). This results 7965 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7966 * tree to only the first of the previous level and we decrease the frequency 7967 * of load-balance at each level inv. proportional to the number of CPUs in 7968 * the groups. 7969 * 7970 * This yields: 7971 * 7972 * log_2 n 1 n 7973 * \Sum { --- * --- * 2^i } = O(n) (5) 7974 * i = 0 2^i 2^i 7975 * `- size of each group 7976 * | | `- number of CPUs doing load-balance 7977 * | `- freq 7978 * `- sum over all levels 7979 * 7980 * Coupled with a limit on how many tasks we can migrate every balance pass, 7981 * this makes (5) the runtime complexity of the balancer. 7982 * 7983 * An important property here is that each CPU is still (indirectly) connected 7984 * to every other CPU in at most O(log n) steps: 7985 * 7986 * The adjacency matrix of the resulting graph is given by: 7987 * 7988 * log_2 n 7989 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7990 * k = 0 7991 * 7992 * And you'll find that: 7993 * 7994 * A^(log_2 n)_i,j != 0 for all i,j (7) 7995 * 7996 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7997 * The task movement gives a factor of O(m), giving a convergence complexity 7998 * of: 7999 * 8000 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 8001 * 8002 * 8003 * WORK CONSERVING 8004 * 8005 * In order to avoid CPUs going idle while there's still work to do, new idle 8006 * balancing is more aggressive and has the newly idle CPU iterate up the domain 8007 * tree itself instead of relying on other CPUs to bring it work. 8008 * 8009 * This adds some complexity to both (5) and (8) but it reduces the total idle 8010 * time. 8011 * 8012 * [XXX more?] 8013 * 8014 * 8015 * CGROUPS 8016 * 8017 * Cgroups make a horror show out of (2), instead of a simple sum we get: 8018 * 8019 * s_k,i 8020 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 8021 * S_k 8022 * 8023 * Where 8024 * 8025 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 8026 * 8027 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 8028 * 8029 * The big problem is S_k, its a global sum needed to compute a local (W_i) 8030 * property. 8031 * 8032 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 8033 * rewrite all of this once again.] 8034 */ 8035 8036 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 8037 8038 enum fbq_type { regular, remote, all }; 8039 8040 /* 8041 * 'group_type' describes the group of CPUs at the moment of load balancing. 8042 * 8043 * The enum is ordered by pulling priority, with the group with lowest priority 8044 * first so the group_type can simply be compared when selecting the busiest 8045 * group. See update_sd_pick_busiest(). 8046 */ 8047 enum group_type { 8048 /* The group has spare capacity that can be used to run more tasks. */ 8049 group_has_spare = 0, 8050 /* 8051 * The group is fully used and the tasks don't compete for more CPU 8052 * cycles. Nevertheless, some tasks might wait before running. 8053 */ 8054 group_fully_busy, 8055 /* 8056 * One task doesn't fit with CPU's capacity and must be migrated to a 8057 * more powerful CPU. 8058 */ 8059 group_misfit_task, 8060 /* 8061 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 8062 * and the task should be migrated to it instead of running on the 8063 * current CPU. 8064 */ 8065 group_asym_packing, 8066 /* 8067 * The tasks' affinity constraints previously prevented the scheduler 8068 * from balancing the load across the system. 8069 */ 8070 group_imbalanced, 8071 /* 8072 * The CPU is overloaded and can't provide expected CPU cycles to all 8073 * tasks. 8074 */ 8075 group_overloaded 8076 }; 8077 8078 enum migration_type { 8079 migrate_load = 0, 8080 migrate_util, 8081 migrate_task, 8082 migrate_misfit 8083 }; 8084 8085 #define LBF_ALL_PINNED 0x01 8086 #define LBF_NEED_BREAK 0x02 8087 #define LBF_DST_PINNED 0x04 8088 #define LBF_SOME_PINNED 0x08 8089 #define LBF_ACTIVE_LB 0x10 8090 8091 struct lb_env { 8092 struct sched_domain *sd; 8093 8094 struct rq *src_rq; 8095 int src_cpu; 8096 8097 int dst_cpu; 8098 struct rq *dst_rq; 8099 8100 struct cpumask *dst_grpmask; 8101 int new_dst_cpu; 8102 enum cpu_idle_type idle; 8103 long imbalance; 8104 /* The set of CPUs under consideration for load-balancing */ 8105 struct cpumask *cpus; 8106 8107 unsigned int flags; 8108 8109 unsigned int loop; 8110 unsigned int loop_break; 8111 unsigned int loop_max; 8112 8113 enum fbq_type fbq_type; 8114 enum migration_type migration_type; 8115 struct list_head tasks; 8116 }; 8117 8118 /* 8119 * Is this task likely cache-hot: 8120 */ 8121 static int task_hot(struct task_struct *p, struct lb_env *env) 8122 { 8123 s64 delta; 8124 8125 lockdep_assert_rq_held(env->src_rq); 8126 8127 if (p->sched_class != &fair_sched_class) 8128 return 0; 8129 8130 if (unlikely(task_has_idle_policy(p))) 8131 return 0; 8132 8133 /* SMT siblings share cache */ 8134 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 8135 return 0; 8136 8137 /* 8138 * Buddy candidates are cache hot: 8139 */ 8140 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 8141 (&p->se == cfs_rq_of(&p->se)->next || 8142 &p->se == cfs_rq_of(&p->se)->last)) 8143 return 1; 8144 8145 if (sysctl_sched_migration_cost == -1) 8146 return 1; 8147 8148 /* 8149 * Don't migrate task if the task's cookie does not match 8150 * with the destination CPU's core cookie. 8151 */ 8152 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 8153 return 1; 8154 8155 if (sysctl_sched_migration_cost == 0) 8156 return 0; 8157 8158 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 8159 8160 return delta < (s64)sysctl_sched_migration_cost; 8161 } 8162 8163 #ifdef CONFIG_NUMA_BALANCING 8164 /* 8165 * Returns 1, if task migration degrades locality 8166 * Returns 0, if task migration improves locality i.e migration preferred. 8167 * Returns -1, if task migration is not affected by locality. 8168 */ 8169 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 8170 { 8171 struct numa_group *numa_group = rcu_dereference(p->numa_group); 8172 unsigned long src_weight, dst_weight; 8173 int src_nid, dst_nid, dist; 8174 8175 if (!static_branch_likely(&sched_numa_balancing)) 8176 return -1; 8177 8178 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 8179 return -1; 8180 8181 src_nid = cpu_to_node(env->src_cpu); 8182 dst_nid = cpu_to_node(env->dst_cpu); 8183 8184 if (src_nid == dst_nid) 8185 return -1; 8186 8187 /* Migrating away from the preferred node is always bad. */ 8188 if (src_nid == p->numa_preferred_nid) { 8189 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 8190 return 1; 8191 else 8192 return -1; 8193 } 8194 8195 /* Encourage migration to the preferred node. */ 8196 if (dst_nid == p->numa_preferred_nid) 8197 return 0; 8198 8199 /* Leaving a core idle is often worse than degrading locality. */ 8200 if (env->idle == CPU_IDLE) 8201 return -1; 8202 8203 dist = node_distance(src_nid, dst_nid); 8204 if (numa_group) { 8205 src_weight = group_weight(p, src_nid, dist); 8206 dst_weight = group_weight(p, dst_nid, dist); 8207 } else { 8208 src_weight = task_weight(p, src_nid, dist); 8209 dst_weight = task_weight(p, dst_nid, dist); 8210 } 8211 8212 return dst_weight < src_weight; 8213 } 8214 8215 #else 8216 static inline int migrate_degrades_locality(struct task_struct *p, 8217 struct lb_env *env) 8218 { 8219 return -1; 8220 } 8221 #endif 8222 8223 /* 8224 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 8225 */ 8226 static 8227 int can_migrate_task(struct task_struct *p, struct lb_env *env) 8228 { 8229 int tsk_cache_hot; 8230 8231 lockdep_assert_rq_held(env->src_rq); 8232 8233 /* 8234 * We do not migrate tasks that are: 8235 * 1) throttled_lb_pair, or 8236 * 2) cannot be migrated to this CPU due to cpus_ptr, or 8237 * 3) running (obviously), or 8238 * 4) are cache-hot on their current CPU. 8239 */ 8240 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 8241 return 0; 8242 8243 /* Disregard pcpu kthreads; they are where they need to be. */ 8244 if (kthread_is_per_cpu(p)) 8245 return 0; 8246 8247 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 8248 int cpu; 8249 8250 schedstat_inc(p->stats.nr_failed_migrations_affine); 8251 8252 env->flags |= LBF_SOME_PINNED; 8253 8254 /* 8255 * Remember if this task can be migrated to any other CPU in 8256 * our sched_group. We may want to revisit it if we couldn't 8257 * meet load balance goals by pulling other tasks on src_cpu. 8258 * 8259 * Avoid computing new_dst_cpu 8260 * - for NEWLY_IDLE 8261 * - if we have already computed one in current iteration 8262 * - if it's an active balance 8263 */ 8264 if (env->idle == CPU_NEWLY_IDLE || 8265 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 8266 return 0; 8267 8268 /* Prevent to re-select dst_cpu via env's CPUs: */ 8269 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 8270 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 8271 env->flags |= LBF_DST_PINNED; 8272 env->new_dst_cpu = cpu; 8273 break; 8274 } 8275 } 8276 8277 return 0; 8278 } 8279 8280 /* Record that we found at least one task that could run on dst_cpu */ 8281 env->flags &= ~LBF_ALL_PINNED; 8282 8283 if (task_on_cpu(env->src_rq, p)) { 8284 schedstat_inc(p->stats.nr_failed_migrations_running); 8285 return 0; 8286 } 8287 8288 /* 8289 * Aggressive migration if: 8290 * 1) active balance 8291 * 2) destination numa is preferred 8292 * 3) task is cache cold, or 8293 * 4) too many balance attempts have failed. 8294 */ 8295 if (env->flags & LBF_ACTIVE_LB) 8296 return 1; 8297 8298 tsk_cache_hot = migrate_degrades_locality(p, env); 8299 if (tsk_cache_hot == -1) 8300 tsk_cache_hot = task_hot(p, env); 8301 8302 if (tsk_cache_hot <= 0 || 8303 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 8304 if (tsk_cache_hot == 1) { 8305 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 8306 schedstat_inc(p->stats.nr_forced_migrations); 8307 } 8308 return 1; 8309 } 8310 8311 schedstat_inc(p->stats.nr_failed_migrations_hot); 8312 return 0; 8313 } 8314 8315 /* 8316 * detach_task() -- detach the task for the migration specified in env 8317 */ 8318 static void detach_task(struct task_struct *p, struct lb_env *env) 8319 { 8320 lockdep_assert_rq_held(env->src_rq); 8321 8322 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 8323 set_task_cpu(p, env->dst_cpu); 8324 } 8325 8326 /* 8327 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 8328 * part of active balancing operations within "domain". 8329 * 8330 * Returns a task if successful and NULL otherwise. 8331 */ 8332 static struct task_struct *detach_one_task(struct lb_env *env) 8333 { 8334 struct task_struct *p; 8335 8336 lockdep_assert_rq_held(env->src_rq); 8337 8338 list_for_each_entry_reverse(p, 8339 &env->src_rq->cfs_tasks, se.group_node) { 8340 if (!can_migrate_task(p, env)) 8341 continue; 8342 8343 detach_task(p, env); 8344 8345 /* 8346 * Right now, this is only the second place where 8347 * lb_gained[env->idle] is updated (other is detach_tasks) 8348 * so we can safely collect stats here rather than 8349 * inside detach_tasks(). 8350 */ 8351 schedstat_inc(env->sd->lb_gained[env->idle]); 8352 return p; 8353 } 8354 return NULL; 8355 } 8356 8357 /* 8358 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 8359 * busiest_rq, as part of a balancing operation within domain "sd". 8360 * 8361 * Returns number of detached tasks if successful and 0 otherwise. 8362 */ 8363 static int detach_tasks(struct lb_env *env) 8364 { 8365 struct list_head *tasks = &env->src_rq->cfs_tasks; 8366 unsigned long util, load; 8367 struct task_struct *p; 8368 int detached = 0; 8369 8370 lockdep_assert_rq_held(env->src_rq); 8371 8372 /* 8373 * Source run queue has been emptied by another CPU, clear 8374 * LBF_ALL_PINNED flag as we will not test any task. 8375 */ 8376 if (env->src_rq->nr_running <= 1) { 8377 env->flags &= ~LBF_ALL_PINNED; 8378 return 0; 8379 } 8380 8381 if (env->imbalance <= 0) 8382 return 0; 8383 8384 while (!list_empty(tasks)) { 8385 /* 8386 * We don't want to steal all, otherwise we may be treated likewise, 8387 * which could at worst lead to a livelock crash. 8388 */ 8389 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 8390 break; 8391 8392 env->loop++; 8393 /* 8394 * We've more or less seen every task there is, call it quits 8395 * unless we haven't found any movable task yet. 8396 */ 8397 if (env->loop > env->loop_max && 8398 !(env->flags & LBF_ALL_PINNED)) 8399 break; 8400 8401 /* take a breather every nr_migrate tasks */ 8402 if (env->loop > env->loop_break) { 8403 env->loop_break += SCHED_NR_MIGRATE_BREAK; 8404 env->flags |= LBF_NEED_BREAK; 8405 break; 8406 } 8407 8408 p = list_last_entry(tasks, struct task_struct, se.group_node); 8409 8410 if (!can_migrate_task(p, env)) 8411 goto next; 8412 8413 switch (env->migration_type) { 8414 case migrate_load: 8415 /* 8416 * Depending of the number of CPUs and tasks and the 8417 * cgroup hierarchy, task_h_load() can return a null 8418 * value. Make sure that env->imbalance decreases 8419 * otherwise detach_tasks() will stop only after 8420 * detaching up to loop_max tasks. 8421 */ 8422 load = max_t(unsigned long, task_h_load(p), 1); 8423 8424 if (sched_feat(LB_MIN) && 8425 load < 16 && !env->sd->nr_balance_failed) 8426 goto next; 8427 8428 /* 8429 * Make sure that we don't migrate too much load. 8430 * Nevertheless, let relax the constraint if 8431 * scheduler fails to find a good waiting task to 8432 * migrate. 8433 */ 8434 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 8435 goto next; 8436 8437 env->imbalance -= load; 8438 break; 8439 8440 case migrate_util: 8441 util = task_util_est(p); 8442 8443 if (util > env->imbalance) 8444 goto next; 8445 8446 env->imbalance -= util; 8447 break; 8448 8449 case migrate_task: 8450 env->imbalance--; 8451 break; 8452 8453 case migrate_misfit: 8454 /* This is not a misfit task */ 8455 if (task_fits_cpu(p, env->src_cpu)) 8456 goto next; 8457 8458 env->imbalance = 0; 8459 break; 8460 } 8461 8462 detach_task(p, env); 8463 list_add(&p->se.group_node, &env->tasks); 8464 8465 detached++; 8466 8467 #ifdef CONFIG_PREEMPTION 8468 /* 8469 * NEWIDLE balancing is a source of latency, so preemptible 8470 * kernels will stop after the first task is detached to minimize 8471 * the critical section. 8472 */ 8473 if (env->idle == CPU_NEWLY_IDLE) 8474 break; 8475 #endif 8476 8477 /* 8478 * We only want to steal up to the prescribed amount of 8479 * load/util/tasks. 8480 */ 8481 if (env->imbalance <= 0) 8482 break; 8483 8484 continue; 8485 next: 8486 list_move(&p->se.group_node, tasks); 8487 } 8488 8489 /* 8490 * Right now, this is one of only two places we collect this stat 8491 * so we can safely collect detach_one_task() stats here rather 8492 * than inside detach_one_task(). 8493 */ 8494 schedstat_add(env->sd->lb_gained[env->idle], detached); 8495 8496 return detached; 8497 } 8498 8499 /* 8500 * attach_task() -- attach the task detached by detach_task() to its new rq. 8501 */ 8502 static void attach_task(struct rq *rq, struct task_struct *p) 8503 { 8504 lockdep_assert_rq_held(rq); 8505 8506 WARN_ON_ONCE(task_rq(p) != rq); 8507 activate_task(rq, p, ENQUEUE_NOCLOCK); 8508 check_preempt_curr(rq, p, 0); 8509 } 8510 8511 /* 8512 * attach_one_task() -- attaches the task returned from detach_one_task() to 8513 * its new rq. 8514 */ 8515 static void attach_one_task(struct rq *rq, struct task_struct *p) 8516 { 8517 struct rq_flags rf; 8518 8519 rq_lock(rq, &rf); 8520 update_rq_clock(rq); 8521 attach_task(rq, p); 8522 rq_unlock(rq, &rf); 8523 } 8524 8525 /* 8526 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 8527 * new rq. 8528 */ 8529 static void attach_tasks(struct lb_env *env) 8530 { 8531 struct list_head *tasks = &env->tasks; 8532 struct task_struct *p; 8533 struct rq_flags rf; 8534 8535 rq_lock(env->dst_rq, &rf); 8536 update_rq_clock(env->dst_rq); 8537 8538 while (!list_empty(tasks)) { 8539 p = list_first_entry(tasks, struct task_struct, se.group_node); 8540 list_del_init(&p->se.group_node); 8541 8542 attach_task(env->dst_rq, p); 8543 } 8544 8545 rq_unlock(env->dst_rq, &rf); 8546 } 8547 8548 #ifdef CONFIG_NO_HZ_COMMON 8549 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 8550 { 8551 if (cfs_rq->avg.load_avg) 8552 return true; 8553 8554 if (cfs_rq->avg.util_avg) 8555 return true; 8556 8557 return false; 8558 } 8559 8560 static inline bool others_have_blocked(struct rq *rq) 8561 { 8562 if (READ_ONCE(rq->avg_rt.util_avg)) 8563 return true; 8564 8565 if (READ_ONCE(rq->avg_dl.util_avg)) 8566 return true; 8567 8568 if (thermal_load_avg(rq)) 8569 return true; 8570 8571 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 8572 if (READ_ONCE(rq->avg_irq.util_avg)) 8573 return true; 8574 #endif 8575 8576 return false; 8577 } 8578 8579 static inline void update_blocked_load_tick(struct rq *rq) 8580 { 8581 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 8582 } 8583 8584 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 8585 { 8586 if (!has_blocked) 8587 rq->has_blocked_load = 0; 8588 } 8589 #else 8590 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 8591 static inline bool others_have_blocked(struct rq *rq) { return false; } 8592 static inline void update_blocked_load_tick(struct rq *rq) {} 8593 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 8594 #endif 8595 8596 static bool __update_blocked_others(struct rq *rq, bool *done) 8597 { 8598 const struct sched_class *curr_class; 8599 u64 now = rq_clock_pelt(rq); 8600 unsigned long thermal_pressure; 8601 bool decayed; 8602 8603 /* 8604 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 8605 * DL and IRQ signals have been updated before updating CFS. 8606 */ 8607 curr_class = rq->curr->sched_class; 8608 8609 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 8610 8611 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 8612 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 8613 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 8614 update_irq_load_avg(rq, 0); 8615 8616 if (others_have_blocked(rq)) 8617 *done = false; 8618 8619 return decayed; 8620 } 8621 8622 #ifdef CONFIG_FAIR_GROUP_SCHED 8623 8624 static bool __update_blocked_fair(struct rq *rq, bool *done) 8625 { 8626 struct cfs_rq *cfs_rq, *pos; 8627 bool decayed = false; 8628 int cpu = cpu_of(rq); 8629 8630 /* 8631 * Iterates the task_group tree in a bottom up fashion, see 8632 * list_add_leaf_cfs_rq() for details. 8633 */ 8634 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 8635 struct sched_entity *se; 8636 8637 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 8638 update_tg_load_avg(cfs_rq); 8639 8640 if (cfs_rq->nr_running == 0) 8641 update_idle_cfs_rq_clock_pelt(cfs_rq); 8642 8643 if (cfs_rq == &rq->cfs) 8644 decayed = true; 8645 } 8646 8647 /* Propagate pending load changes to the parent, if any: */ 8648 se = cfs_rq->tg->se[cpu]; 8649 if (se && !skip_blocked_update(se)) 8650 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 8651 8652 /* 8653 * There can be a lot of idle CPU cgroups. Don't let fully 8654 * decayed cfs_rqs linger on the list. 8655 */ 8656 if (cfs_rq_is_decayed(cfs_rq)) 8657 list_del_leaf_cfs_rq(cfs_rq); 8658 8659 /* Don't need periodic decay once load/util_avg are null */ 8660 if (cfs_rq_has_blocked(cfs_rq)) 8661 *done = false; 8662 } 8663 8664 return decayed; 8665 } 8666 8667 /* 8668 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 8669 * This needs to be done in a top-down fashion because the load of a child 8670 * group is a fraction of its parents load. 8671 */ 8672 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 8673 { 8674 struct rq *rq = rq_of(cfs_rq); 8675 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 8676 unsigned long now = jiffies; 8677 unsigned long load; 8678 8679 if (cfs_rq->last_h_load_update == now) 8680 return; 8681 8682 WRITE_ONCE(cfs_rq->h_load_next, NULL); 8683 for_each_sched_entity(se) { 8684 cfs_rq = cfs_rq_of(se); 8685 WRITE_ONCE(cfs_rq->h_load_next, se); 8686 if (cfs_rq->last_h_load_update == now) 8687 break; 8688 } 8689 8690 if (!se) { 8691 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 8692 cfs_rq->last_h_load_update = now; 8693 } 8694 8695 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 8696 load = cfs_rq->h_load; 8697 load = div64_ul(load * se->avg.load_avg, 8698 cfs_rq_load_avg(cfs_rq) + 1); 8699 cfs_rq = group_cfs_rq(se); 8700 cfs_rq->h_load = load; 8701 cfs_rq->last_h_load_update = now; 8702 } 8703 } 8704 8705 static unsigned long task_h_load(struct task_struct *p) 8706 { 8707 struct cfs_rq *cfs_rq = task_cfs_rq(p); 8708 8709 update_cfs_rq_h_load(cfs_rq); 8710 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 8711 cfs_rq_load_avg(cfs_rq) + 1); 8712 } 8713 #else 8714 static bool __update_blocked_fair(struct rq *rq, bool *done) 8715 { 8716 struct cfs_rq *cfs_rq = &rq->cfs; 8717 bool decayed; 8718 8719 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 8720 if (cfs_rq_has_blocked(cfs_rq)) 8721 *done = false; 8722 8723 return decayed; 8724 } 8725 8726 static unsigned long task_h_load(struct task_struct *p) 8727 { 8728 return p->se.avg.load_avg; 8729 } 8730 #endif 8731 8732 static void update_blocked_averages(int cpu) 8733 { 8734 bool decayed = false, done = true; 8735 struct rq *rq = cpu_rq(cpu); 8736 struct rq_flags rf; 8737 8738 rq_lock_irqsave(rq, &rf); 8739 update_blocked_load_tick(rq); 8740 update_rq_clock(rq); 8741 8742 decayed |= __update_blocked_others(rq, &done); 8743 decayed |= __update_blocked_fair(rq, &done); 8744 8745 update_blocked_load_status(rq, !done); 8746 if (decayed) 8747 cpufreq_update_util(rq, 0); 8748 rq_unlock_irqrestore(rq, &rf); 8749 } 8750 8751 /********** Helpers for find_busiest_group ************************/ 8752 8753 /* 8754 * sg_lb_stats - stats of a sched_group required for load_balancing 8755 */ 8756 struct sg_lb_stats { 8757 unsigned long avg_load; /*Avg load across the CPUs of the group */ 8758 unsigned long group_load; /* Total load over the CPUs of the group */ 8759 unsigned long group_capacity; 8760 unsigned long group_util; /* Total utilization over the CPUs of the group */ 8761 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 8762 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 8763 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 8764 unsigned int idle_cpus; 8765 unsigned int group_weight; 8766 enum group_type group_type; 8767 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 8768 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 8769 #ifdef CONFIG_NUMA_BALANCING 8770 unsigned int nr_numa_running; 8771 unsigned int nr_preferred_running; 8772 #endif 8773 }; 8774 8775 /* 8776 * sd_lb_stats - Structure to store the statistics of a sched_domain 8777 * during load balancing. 8778 */ 8779 struct sd_lb_stats { 8780 struct sched_group *busiest; /* Busiest group in this sd */ 8781 struct sched_group *local; /* Local group in this sd */ 8782 unsigned long total_load; /* Total load of all groups in sd */ 8783 unsigned long total_capacity; /* Total capacity of all groups in sd */ 8784 unsigned long avg_load; /* Average load across all groups in sd */ 8785 unsigned int prefer_sibling; /* tasks should go to sibling first */ 8786 8787 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 8788 struct sg_lb_stats local_stat; /* Statistics of the local group */ 8789 }; 8790 8791 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 8792 { 8793 /* 8794 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 8795 * local_stat because update_sg_lb_stats() does a full clear/assignment. 8796 * We must however set busiest_stat::group_type and 8797 * busiest_stat::idle_cpus to the worst busiest group because 8798 * update_sd_pick_busiest() reads these before assignment. 8799 */ 8800 *sds = (struct sd_lb_stats){ 8801 .busiest = NULL, 8802 .local = NULL, 8803 .total_load = 0UL, 8804 .total_capacity = 0UL, 8805 .busiest_stat = { 8806 .idle_cpus = UINT_MAX, 8807 .group_type = group_has_spare, 8808 }, 8809 }; 8810 } 8811 8812 static unsigned long scale_rt_capacity(int cpu) 8813 { 8814 struct rq *rq = cpu_rq(cpu); 8815 unsigned long max = arch_scale_cpu_capacity(cpu); 8816 unsigned long used, free; 8817 unsigned long irq; 8818 8819 irq = cpu_util_irq(rq); 8820 8821 if (unlikely(irq >= max)) 8822 return 1; 8823 8824 /* 8825 * avg_rt.util_avg and avg_dl.util_avg track binary signals 8826 * (running and not running) with weights 0 and 1024 respectively. 8827 * avg_thermal.load_avg tracks thermal pressure and the weighted 8828 * average uses the actual delta max capacity(load). 8829 */ 8830 used = READ_ONCE(rq->avg_rt.util_avg); 8831 used += READ_ONCE(rq->avg_dl.util_avg); 8832 used += thermal_load_avg(rq); 8833 8834 if (unlikely(used >= max)) 8835 return 1; 8836 8837 free = max - used; 8838 8839 return scale_irq_capacity(free, irq, max); 8840 } 8841 8842 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 8843 { 8844 unsigned long capacity_orig = arch_scale_cpu_capacity(cpu); 8845 unsigned long capacity = scale_rt_capacity(cpu); 8846 struct sched_group *sdg = sd->groups; 8847 struct rq *rq = cpu_rq(cpu); 8848 8849 rq->cpu_capacity_orig = capacity_orig; 8850 8851 if (!capacity) 8852 capacity = 1; 8853 8854 rq->cpu_capacity = capacity; 8855 8856 /* 8857 * Detect if the performance domain is in capacity inversion state. 8858 * 8859 * Capacity inversion happens when another perf domain with equal or 8860 * lower capacity_orig_of() ends up having higher capacity than this 8861 * domain after subtracting thermal pressure. 8862 * 8863 * We only take into account thermal pressure in this detection as it's 8864 * the only metric that actually results in *real* reduction of 8865 * capacity due to performance points (OPPs) being dropped/become 8866 * unreachable due to thermal throttling. 8867 * 8868 * We assume: 8869 * * That all cpus in a perf domain have the same capacity_orig 8870 * (same uArch). 8871 * * Thermal pressure will impact all cpus in this perf domain 8872 * equally. 8873 */ 8874 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 8875 unsigned long inv_cap = capacity_orig - thermal_load_avg(rq); 8876 struct perf_domain *pd = rcu_dereference(rq->rd->pd); 8877 8878 rq->cpu_capacity_inverted = 0; 8879 8880 for (; pd; pd = pd->next) { 8881 struct cpumask *pd_span = perf_domain_span(pd); 8882 unsigned long pd_cap_orig, pd_cap; 8883 8884 cpu = cpumask_any(pd_span); 8885 pd_cap_orig = arch_scale_cpu_capacity(cpu); 8886 8887 if (capacity_orig < pd_cap_orig) 8888 continue; 8889 8890 /* 8891 * handle the case of multiple perf domains have the 8892 * same capacity_orig but one of them is under higher 8893 * thermal pressure. We record it as capacity 8894 * inversion. 8895 */ 8896 if (capacity_orig == pd_cap_orig) { 8897 pd_cap = pd_cap_orig - thermal_load_avg(cpu_rq(cpu)); 8898 8899 if (pd_cap > inv_cap) { 8900 rq->cpu_capacity_inverted = inv_cap; 8901 break; 8902 } 8903 } else if (pd_cap_orig > inv_cap) { 8904 rq->cpu_capacity_inverted = inv_cap; 8905 break; 8906 } 8907 } 8908 } 8909 8910 trace_sched_cpu_capacity_tp(rq); 8911 8912 sdg->sgc->capacity = capacity; 8913 sdg->sgc->min_capacity = capacity; 8914 sdg->sgc->max_capacity = capacity; 8915 } 8916 8917 void update_group_capacity(struct sched_domain *sd, int cpu) 8918 { 8919 struct sched_domain *child = sd->child; 8920 struct sched_group *group, *sdg = sd->groups; 8921 unsigned long capacity, min_capacity, max_capacity; 8922 unsigned long interval; 8923 8924 interval = msecs_to_jiffies(sd->balance_interval); 8925 interval = clamp(interval, 1UL, max_load_balance_interval); 8926 sdg->sgc->next_update = jiffies + interval; 8927 8928 if (!child) { 8929 update_cpu_capacity(sd, cpu); 8930 return; 8931 } 8932 8933 capacity = 0; 8934 min_capacity = ULONG_MAX; 8935 max_capacity = 0; 8936 8937 if (child->flags & SD_OVERLAP) { 8938 /* 8939 * SD_OVERLAP domains cannot assume that child groups 8940 * span the current group. 8941 */ 8942 8943 for_each_cpu(cpu, sched_group_span(sdg)) { 8944 unsigned long cpu_cap = capacity_of(cpu); 8945 8946 capacity += cpu_cap; 8947 min_capacity = min(cpu_cap, min_capacity); 8948 max_capacity = max(cpu_cap, max_capacity); 8949 } 8950 } else { 8951 /* 8952 * !SD_OVERLAP domains can assume that child groups 8953 * span the current group. 8954 */ 8955 8956 group = child->groups; 8957 do { 8958 struct sched_group_capacity *sgc = group->sgc; 8959 8960 capacity += sgc->capacity; 8961 min_capacity = min(sgc->min_capacity, min_capacity); 8962 max_capacity = max(sgc->max_capacity, max_capacity); 8963 group = group->next; 8964 } while (group != child->groups); 8965 } 8966 8967 sdg->sgc->capacity = capacity; 8968 sdg->sgc->min_capacity = min_capacity; 8969 sdg->sgc->max_capacity = max_capacity; 8970 } 8971 8972 /* 8973 * Check whether the capacity of the rq has been noticeably reduced by side 8974 * activity. The imbalance_pct is used for the threshold. 8975 * Return true is the capacity is reduced 8976 */ 8977 static inline int 8978 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8979 { 8980 return ((rq->cpu_capacity * sd->imbalance_pct) < 8981 (rq->cpu_capacity_orig * 100)); 8982 } 8983 8984 /* 8985 * Check whether a rq has a misfit task and if it looks like we can actually 8986 * help that task: we can migrate the task to a CPU of higher capacity, or 8987 * the task's current CPU is heavily pressured. 8988 */ 8989 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8990 { 8991 return rq->misfit_task_load && 8992 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8993 check_cpu_capacity(rq, sd)); 8994 } 8995 8996 /* 8997 * Group imbalance indicates (and tries to solve) the problem where balancing 8998 * groups is inadequate due to ->cpus_ptr constraints. 8999 * 9000 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9001 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 9002 * Something like: 9003 * 9004 * { 0 1 2 3 } { 4 5 6 7 } 9005 * * * * * 9006 * 9007 * If we were to balance group-wise we'd place two tasks in the first group and 9008 * two tasks in the second group. Clearly this is undesired as it will overload 9009 * cpu 3 and leave one of the CPUs in the second group unused. 9010 * 9011 * The current solution to this issue is detecting the skew in the first group 9012 * by noticing the lower domain failed to reach balance and had difficulty 9013 * moving tasks due to affinity constraints. 9014 * 9015 * When this is so detected; this group becomes a candidate for busiest; see 9016 * update_sd_pick_busiest(). And calculate_imbalance() and 9017 * find_busiest_group() avoid some of the usual balance conditions to allow it 9018 * to create an effective group imbalance. 9019 * 9020 * This is a somewhat tricky proposition since the next run might not find the 9021 * group imbalance and decide the groups need to be balanced again. A most 9022 * subtle and fragile situation. 9023 */ 9024 9025 static inline int sg_imbalanced(struct sched_group *group) 9026 { 9027 return group->sgc->imbalance; 9028 } 9029 9030 /* 9031 * group_has_capacity returns true if the group has spare capacity that could 9032 * be used by some tasks. 9033 * We consider that a group has spare capacity if the number of task is 9034 * smaller than the number of CPUs or if the utilization is lower than the 9035 * available capacity for CFS tasks. 9036 * For the latter, we use a threshold to stabilize the state, to take into 9037 * account the variance of the tasks' load and to return true if the available 9038 * capacity in meaningful for the load balancer. 9039 * As an example, an available capacity of 1% can appear but it doesn't make 9040 * any benefit for the load balance. 9041 */ 9042 static inline bool 9043 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9044 { 9045 if (sgs->sum_nr_running < sgs->group_weight) 9046 return true; 9047 9048 if ((sgs->group_capacity * imbalance_pct) < 9049 (sgs->group_runnable * 100)) 9050 return false; 9051 9052 if ((sgs->group_capacity * 100) > 9053 (sgs->group_util * imbalance_pct)) 9054 return true; 9055 9056 return false; 9057 } 9058 9059 /* 9060 * group_is_overloaded returns true if the group has more tasks than it can 9061 * handle. 9062 * group_is_overloaded is not equals to !group_has_capacity because a group 9063 * with the exact right number of tasks, has no more spare capacity but is not 9064 * overloaded so both group_has_capacity and group_is_overloaded return 9065 * false. 9066 */ 9067 static inline bool 9068 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9069 { 9070 if (sgs->sum_nr_running <= sgs->group_weight) 9071 return false; 9072 9073 if ((sgs->group_capacity * 100) < 9074 (sgs->group_util * imbalance_pct)) 9075 return true; 9076 9077 if ((sgs->group_capacity * imbalance_pct) < 9078 (sgs->group_runnable * 100)) 9079 return true; 9080 9081 return false; 9082 } 9083 9084 static inline enum 9085 group_type group_classify(unsigned int imbalance_pct, 9086 struct sched_group *group, 9087 struct sg_lb_stats *sgs) 9088 { 9089 if (group_is_overloaded(imbalance_pct, sgs)) 9090 return group_overloaded; 9091 9092 if (sg_imbalanced(group)) 9093 return group_imbalanced; 9094 9095 if (sgs->group_asym_packing) 9096 return group_asym_packing; 9097 9098 if (sgs->group_misfit_task_load) 9099 return group_misfit_task; 9100 9101 if (!group_has_capacity(imbalance_pct, sgs)) 9102 return group_fully_busy; 9103 9104 return group_has_spare; 9105 } 9106 9107 /** 9108 * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks 9109 * @dst_cpu: Destination CPU of the load balancing 9110 * @sds: Load-balancing data with statistics of the local group 9111 * @sgs: Load-balancing statistics of the candidate busiest group 9112 * @sg: The candidate busiest group 9113 * 9114 * Check the state of the SMT siblings of both @sds::local and @sg and decide 9115 * if @dst_cpu can pull tasks. 9116 * 9117 * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of 9118 * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks 9119 * only if @dst_cpu has higher priority. 9120 * 9121 * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more 9122 * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority. 9123 * Bigger imbalances in the number of busy CPUs will be dealt with in 9124 * update_sd_pick_busiest(). 9125 * 9126 * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings 9127 * of @dst_cpu are idle and @sg has lower priority. 9128 * 9129 * Return: true if @dst_cpu can pull tasks, false otherwise. 9130 */ 9131 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds, 9132 struct sg_lb_stats *sgs, 9133 struct sched_group *sg) 9134 { 9135 #ifdef CONFIG_SCHED_SMT 9136 bool local_is_smt, sg_is_smt; 9137 int sg_busy_cpus; 9138 9139 local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY; 9140 sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY; 9141 9142 sg_busy_cpus = sgs->group_weight - sgs->idle_cpus; 9143 9144 if (!local_is_smt) { 9145 /* 9146 * If we are here, @dst_cpu is idle and does not have SMT 9147 * siblings. Pull tasks if candidate group has two or more 9148 * busy CPUs. 9149 */ 9150 if (sg_busy_cpus >= 2) /* implies sg_is_smt */ 9151 return true; 9152 9153 /* 9154 * @dst_cpu does not have SMT siblings. @sg may have SMT 9155 * siblings and only one is busy. In such case, @dst_cpu 9156 * can help if it has higher priority and is idle (i.e., 9157 * it has no running tasks). 9158 */ 9159 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 9160 } 9161 9162 /* @dst_cpu has SMT siblings. */ 9163 9164 if (sg_is_smt) { 9165 int local_busy_cpus = sds->local->group_weight - 9166 sds->local_stat.idle_cpus; 9167 int busy_cpus_delta = sg_busy_cpus - local_busy_cpus; 9168 9169 if (busy_cpus_delta == 1) 9170 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 9171 9172 return false; 9173 } 9174 9175 /* 9176 * @sg does not have SMT siblings. Ensure that @sds::local does not end 9177 * up with more than one busy SMT sibling and only pull tasks if there 9178 * are not busy CPUs (i.e., no CPU has running tasks). 9179 */ 9180 if (!sds->local_stat.sum_nr_running) 9181 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 9182 9183 return false; 9184 #else 9185 /* Always return false so that callers deal with non-SMT cases. */ 9186 return false; 9187 #endif 9188 } 9189 9190 static inline bool 9191 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 9192 struct sched_group *group) 9193 { 9194 /* Only do SMT checks if either local or candidate have SMT siblings */ 9195 if ((sds->local->flags & SD_SHARE_CPUCAPACITY) || 9196 (group->flags & SD_SHARE_CPUCAPACITY)) 9197 return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group); 9198 9199 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 9200 } 9201 9202 static inline bool 9203 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 9204 { 9205 /* 9206 * When there is more than 1 task, the group_overloaded case already 9207 * takes care of cpu with reduced capacity 9208 */ 9209 if (rq->cfs.h_nr_running != 1) 9210 return false; 9211 9212 return check_cpu_capacity(rq, sd); 9213 } 9214 9215 /** 9216 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 9217 * @env: The load balancing environment. 9218 * @sds: Load-balancing data with statistics of the local group. 9219 * @group: sched_group whose statistics are to be updated. 9220 * @sgs: variable to hold the statistics for this group. 9221 * @sg_status: Holds flag indicating the status of the sched_group 9222 */ 9223 static inline void update_sg_lb_stats(struct lb_env *env, 9224 struct sd_lb_stats *sds, 9225 struct sched_group *group, 9226 struct sg_lb_stats *sgs, 9227 int *sg_status) 9228 { 9229 int i, nr_running, local_group; 9230 9231 memset(sgs, 0, sizeof(*sgs)); 9232 9233 local_group = group == sds->local; 9234 9235 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9236 struct rq *rq = cpu_rq(i); 9237 unsigned long load = cpu_load(rq); 9238 9239 sgs->group_load += load; 9240 sgs->group_util += cpu_util_cfs(i); 9241 sgs->group_runnable += cpu_runnable(rq); 9242 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 9243 9244 nr_running = rq->nr_running; 9245 sgs->sum_nr_running += nr_running; 9246 9247 if (nr_running > 1) 9248 *sg_status |= SG_OVERLOAD; 9249 9250 if (cpu_overutilized(i)) 9251 *sg_status |= SG_OVERUTILIZED; 9252 9253 #ifdef CONFIG_NUMA_BALANCING 9254 sgs->nr_numa_running += rq->nr_numa_running; 9255 sgs->nr_preferred_running += rq->nr_preferred_running; 9256 #endif 9257 /* 9258 * No need to call idle_cpu() if nr_running is not 0 9259 */ 9260 if (!nr_running && idle_cpu(i)) { 9261 sgs->idle_cpus++; 9262 /* Idle cpu can't have misfit task */ 9263 continue; 9264 } 9265 9266 if (local_group) 9267 continue; 9268 9269 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9270 /* Check for a misfit task on the cpu */ 9271 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 9272 sgs->group_misfit_task_load = rq->misfit_task_load; 9273 *sg_status |= SG_OVERLOAD; 9274 } 9275 } else if ((env->idle != CPU_NOT_IDLE) && 9276 sched_reduced_capacity(rq, env->sd)) { 9277 /* Check for a task running on a CPU with reduced capacity */ 9278 if (sgs->group_misfit_task_load < load) 9279 sgs->group_misfit_task_load = load; 9280 } 9281 } 9282 9283 sgs->group_capacity = group->sgc->capacity; 9284 9285 sgs->group_weight = group->group_weight; 9286 9287 /* Check if dst CPU is idle and preferred to this group */ 9288 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 9289 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 9290 sched_asym(env, sds, sgs, group)) { 9291 sgs->group_asym_packing = 1; 9292 } 9293 9294 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 9295 9296 /* Computing avg_load makes sense only when group is overloaded */ 9297 if (sgs->group_type == group_overloaded) 9298 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9299 sgs->group_capacity; 9300 } 9301 9302 /** 9303 * update_sd_pick_busiest - return 1 on busiest group 9304 * @env: The load balancing environment. 9305 * @sds: sched_domain statistics 9306 * @sg: sched_group candidate to be checked for being the busiest 9307 * @sgs: sched_group statistics 9308 * 9309 * Determine if @sg is a busier group than the previously selected 9310 * busiest group. 9311 * 9312 * Return: %true if @sg is a busier group than the previously selected 9313 * busiest group. %false otherwise. 9314 */ 9315 static bool update_sd_pick_busiest(struct lb_env *env, 9316 struct sd_lb_stats *sds, 9317 struct sched_group *sg, 9318 struct sg_lb_stats *sgs) 9319 { 9320 struct sg_lb_stats *busiest = &sds->busiest_stat; 9321 9322 /* Make sure that there is at least one task to pull */ 9323 if (!sgs->sum_h_nr_running) 9324 return false; 9325 9326 /* 9327 * Don't try to pull misfit tasks we can't help. 9328 * We can use max_capacity here as reduction in capacity on some 9329 * CPUs in the group should either be possible to resolve 9330 * internally or be covered by avg_load imbalance (eventually). 9331 */ 9332 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9333 (sgs->group_type == group_misfit_task) && 9334 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 9335 sds->local_stat.group_type != group_has_spare)) 9336 return false; 9337 9338 if (sgs->group_type > busiest->group_type) 9339 return true; 9340 9341 if (sgs->group_type < busiest->group_type) 9342 return false; 9343 9344 /* 9345 * The candidate and the current busiest group are the same type of 9346 * group. Let check which one is the busiest according to the type. 9347 */ 9348 9349 switch (sgs->group_type) { 9350 case group_overloaded: 9351 /* Select the overloaded group with highest avg_load. */ 9352 if (sgs->avg_load <= busiest->avg_load) 9353 return false; 9354 break; 9355 9356 case group_imbalanced: 9357 /* 9358 * Select the 1st imbalanced group as we don't have any way to 9359 * choose one more than another. 9360 */ 9361 return false; 9362 9363 case group_asym_packing: 9364 /* Prefer to move from lowest priority CPU's work */ 9365 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 9366 return false; 9367 break; 9368 9369 case group_misfit_task: 9370 /* 9371 * If we have more than one misfit sg go with the biggest 9372 * misfit. 9373 */ 9374 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 9375 return false; 9376 break; 9377 9378 case group_fully_busy: 9379 /* 9380 * Select the fully busy group with highest avg_load. In 9381 * theory, there is no need to pull task from such kind of 9382 * group because tasks have all compute capacity that they need 9383 * but we can still improve the overall throughput by reducing 9384 * contention when accessing shared HW resources. 9385 * 9386 * XXX for now avg_load is not computed and always 0 so we 9387 * select the 1st one. 9388 */ 9389 if (sgs->avg_load <= busiest->avg_load) 9390 return false; 9391 break; 9392 9393 case group_has_spare: 9394 /* 9395 * Select not overloaded group with lowest number of idle cpus 9396 * and highest number of running tasks. We could also compare 9397 * the spare capacity which is more stable but it can end up 9398 * that the group has less spare capacity but finally more idle 9399 * CPUs which means less opportunity to pull tasks. 9400 */ 9401 if (sgs->idle_cpus > busiest->idle_cpus) 9402 return false; 9403 else if ((sgs->idle_cpus == busiest->idle_cpus) && 9404 (sgs->sum_nr_running <= busiest->sum_nr_running)) 9405 return false; 9406 9407 break; 9408 } 9409 9410 /* 9411 * Candidate sg has no more than one task per CPU and has higher 9412 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 9413 * throughput. Maximize throughput, power/energy consequences are not 9414 * considered. 9415 */ 9416 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9417 (sgs->group_type <= group_fully_busy) && 9418 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 9419 return false; 9420 9421 return true; 9422 } 9423 9424 #ifdef CONFIG_NUMA_BALANCING 9425 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9426 { 9427 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 9428 return regular; 9429 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 9430 return remote; 9431 return all; 9432 } 9433 9434 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9435 { 9436 if (rq->nr_running > rq->nr_numa_running) 9437 return regular; 9438 if (rq->nr_running > rq->nr_preferred_running) 9439 return remote; 9440 return all; 9441 } 9442 #else 9443 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9444 { 9445 return all; 9446 } 9447 9448 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9449 { 9450 return regular; 9451 } 9452 #endif /* CONFIG_NUMA_BALANCING */ 9453 9454 9455 struct sg_lb_stats; 9456 9457 /* 9458 * task_running_on_cpu - return 1 if @p is running on @cpu. 9459 */ 9460 9461 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 9462 { 9463 /* Task has no contribution or is new */ 9464 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 9465 return 0; 9466 9467 if (task_on_rq_queued(p)) 9468 return 1; 9469 9470 return 0; 9471 } 9472 9473 /** 9474 * idle_cpu_without - would a given CPU be idle without p ? 9475 * @cpu: the processor on which idleness is tested. 9476 * @p: task which should be ignored. 9477 * 9478 * Return: 1 if the CPU would be idle. 0 otherwise. 9479 */ 9480 static int idle_cpu_without(int cpu, struct task_struct *p) 9481 { 9482 struct rq *rq = cpu_rq(cpu); 9483 9484 if (rq->curr != rq->idle && rq->curr != p) 9485 return 0; 9486 9487 /* 9488 * rq->nr_running can't be used but an updated version without the 9489 * impact of p on cpu must be used instead. The updated nr_running 9490 * be computed and tested before calling idle_cpu_without(). 9491 */ 9492 9493 #ifdef CONFIG_SMP 9494 if (rq->ttwu_pending) 9495 return 0; 9496 #endif 9497 9498 return 1; 9499 } 9500 9501 /* 9502 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 9503 * @sd: The sched_domain level to look for idlest group. 9504 * @group: sched_group whose statistics are to be updated. 9505 * @sgs: variable to hold the statistics for this group. 9506 * @p: The task for which we look for the idlest group/CPU. 9507 */ 9508 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 9509 struct sched_group *group, 9510 struct sg_lb_stats *sgs, 9511 struct task_struct *p) 9512 { 9513 int i, nr_running; 9514 9515 memset(sgs, 0, sizeof(*sgs)); 9516 9517 /* Assume that task can't fit any CPU of the group */ 9518 if (sd->flags & SD_ASYM_CPUCAPACITY) 9519 sgs->group_misfit_task_load = 1; 9520 9521 for_each_cpu(i, sched_group_span(group)) { 9522 struct rq *rq = cpu_rq(i); 9523 unsigned int local; 9524 9525 sgs->group_load += cpu_load_without(rq, p); 9526 sgs->group_util += cpu_util_without(i, p); 9527 sgs->group_runnable += cpu_runnable_without(rq, p); 9528 local = task_running_on_cpu(i, p); 9529 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 9530 9531 nr_running = rq->nr_running - local; 9532 sgs->sum_nr_running += nr_running; 9533 9534 /* 9535 * No need to call idle_cpu_without() if nr_running is not 0 9536 */ 9537 if (!nr_running && idle_cpu_without(i, p)) 9538 sgs->idle_cpus++; 9539 9540 /* Check if task fits in the CPU */ 9541 if (sd->flags & SD_ASYM_CPUCAPACITY && 9542 sgs->group_misfit_task_load && 9543 task_fits_cpu(p, i)) 9544 sgs->group_misfit_task_load = 0; 9545 9546 } 9547 9548 sgs->group_capacity = group->sgc->capacity; 9549 9550 sgs->group_weight = group->group_weight; 9551 9552 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 9553 9554 /* 9555 * Computing avg_load makes sense only when group is fully busy or 9556 * overloaded 9557 */ 9558 if (sgs->group_type == group_fully_busy || 9559 sgs->group_type == group_overloaded) 9560 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9561 sgs->group_capacity; 9562 } 9563 9564 static bool update_pick_idlest(struct sched_group *idlest, 9565 struct sg_lb_stats *idlest_sgs, 9566 struct sched_group *group, 9567 struct sg_lb_stats *sgs) 9568 { 9569 if (sgs->group_type < idlest_sgs->group_type) 9570 return true; 9571 9572 if (sgs->group_type > idlest_sgs->group_type) 9573 return false; 9574 9575 /* 9576 * The candidate and the current idlest group are the same type of 9577 * group. Let check which one is the idlest according to the type. 9578 */ 9579 9580 switch (sgs->group_type) { 9581 case group_overloaded: 9582 case group_fully_busy: 9583 /* Select the group with lowest avg_load. */ 9584 if (idlest_sgs->avg_load <= sgs->avg_load) 9585 return false; 9586 break; 9587 9588 case group_imbalanced: 9589 case group_asym_packing: 9590 /* Those types are not used in the slow wakeup path */ 9591 return false; 9592 9593 case group_misfit_task: 9594 /* Select group with the highest max capacity */ 9595 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 9596 return false; 9597 break; 9598 9599 case group_has_spare: 9600 /* Select group with most idle CPUs */ 9601 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 9602 return false; 9603 9604 /* Select group with lowest group_util */ 9605 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 9606 idlest_sgs->group_util <= sgs->group_util) 9607 return false; 9608 9609 break; 9610 } 9611 9612 return true; 9613 } 9614 9615 /* 9616 * find_idlest_group() finds and returns the least busy CPU group within the 9617 * domain. 9618 * 9619 * Assumes p is allowed on at least one CPU in sd. 9620 */ 9621 static struct sched_group * 9622 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 9623 { 9624 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 9625 struct sg_lb_stats local_sgs, tmp_sgs; 9626 struct sg_lb_stats *sgs; 9627 unsigned long imbalance; 9628 struct sg_lb_stats idlest_sgs = { 9629 .avg_load = UINT_MAX, 9630 .group_type = group_overloaded, 9631 }; 9632 9633 do { 9634 int local_group; 9635 9636 /* Skip over this group if it has no CPUs allowed */ 9637 if (!cpumask_intersects(sched_group_span(group), 9638 p->cpus_ptr)) 9639 continue; 9640 9641 /* Skip over this group if no cookie matched */ 9642 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 9643 continue; 9644 9645 local_group = cpumask_test_cpu(this_cpu, 9646 sched_group_span(group)); 9647 9648 if (local_group) { 9649 sgs = &local_sgs; 9650 local = group; 9651 } else { 9652 sgs = &tmp_sgs; 9653 } 9654 9655 update_sg_wakeup_stats(sd, group, sgs, p); 9656 9657 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 9658 idlest = group; 9659 idlest_sgs = *sgs; 9660 } 9661 9662 } while (group = group->next, group != sd->groups); 9663 9664 9665 /* There is no idlest group to push tasks to */ 9666 if (!idlest) 9667 return NULL; 9668 9669 /* The local group has been skipped because of CPU affinity */ 9670 if (!local) 9671 return idlest; 9672 9673 /* 9674 * If the local group is idler than the selected idlest group 9675 * don't try and push the task. 9676 */ 9677 if (local_sgs.group_type < idlest_sgs.group_type) 9678 return NULL; 9679 9680 /* 9681 * If the local group is busier than the selected idlest group 9682 * try and push the task. 9683 */ 9684 if (local_sgs.group_type > idlest_sgs.group_type) 9685 return idlest; 9686 9687 switch (local_sgs.group_type) { 9688 case group_overloaded: 9689 case group_fully_busy: 9690 9691 /* Calculate allowed imbalance based on load */ 9692 imbalance = scale_load_down(NICE_0_LOAD) * 9693 (sd->imbalance_pct-100) / 100; 9694 9695 /* 9696 * When comparing groups across NUMA domains, it's possible for 9697 * the local domain to be very lightly loaded relative to the 9698 * remote domains but "imbalance" skews the comparison making 9699 * remote CPUs look much more favourable. When considering 9700 * cross-domain, add imbalance to the load on the remote node 9701 * and consider staying local. 9702 */ 9703 9704 if ((sd->flags & SD_NUMA) && 9705 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 9706 return NULL; 9707 9708 /* 9709 * If the local group is less loaded than the selected 9710 * idlest group don't try and push any tasks. 9711 */ 9712 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 9713 return NULL; 9714 9715 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 9716 return NULL; 9717 break; 9718 9719 case group_imbalanced: 9720 case group_asym_packing: 9721 /* Those type are not used in the slow wakeup path */ 9722 return NULL; 9723 9724 case group_misfit_task: 9725 /* Select group with the highest max capacity */ 9726 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 9727 return NULL; 9728 break; 9729 9730 case group_has_spare: 9731 #ifdef CONFIG_NUMA 9732 if (sd->flags & SD_NUMA) { 9733 int imb_numa_nr = sd->imb_numa_nr; 9734 #ifdef CONFIG_NUMA_BALANCING 9735 int idlest_cpu; 9736 /* 9737 * If there is spare capacity at NUMA, try to select 9738 * the preferred node 9739 */ 9740 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 9741 return NULL; 9742 9743 idlest_cpu = cpumask_first(sched_group_span(idlest)); 9744 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 9745 return idlest; 9746 #endif /* CONFIG_NUMA_BALANCING */ 9747 /* 9748 * Otherwise, keep the task close to the wakeup source 9749 * and improve locality if the number of running tasks 9750 * would remain below threshold where an imbalance is 9751 * allowed while accounting for the possibility the 9752 * task is pinned to a subset of CPUs. If there is a 9753 * real need of migration, periodic load balance will 9754 * take care of it. 9755 */ 9756 if (p->nr_cpus_allowed != NR_CPUS) { 9757 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 9758 9759 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 9760 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 9761 } 9762 9763 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 9764 if (!adjust_numa_imbalance(imbalance, 9765 local_sgs.sum_nr_running + 1, 9766 imb_numa_nr)) { 9767 return NULL; 9768 } 9769 } 9770 #endif /* CONFIG_NUMA */ 9771 9772 /* 9773 * Select group with highest number of idle CPUs. We could also 9774 * compare the utilization which is more stable but it can end 9775 * up that the group has less spare capacity but finally more 9776 * idle CPUs which means more opportunity to run task. 9777 */ 9778 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 9779 return NULL; 9780 break; 9781 } 9782 9783 return idlest; 9784 } 9785 9786 static void update_idle_cpu_scan(struct lb_env *env, 9787 unsigned long sum_util) 9788 { 9789 struct sched_domain_shared *sd_share; 9790 int llc_weight, pct; 9791 u64 x, y, tmp; 9792 /* 9793 * Update the number of CPUs to scan in LLC domain, which could 9794 * be used as a hint in select_idle_cpu(). The update of sd_share 9795 * could be expensive because it is within a shared cache line. 9796 * So the write of this hint only occurs during periodic load 9797 * balancing, rather than CPU_NEWLY_IDLE, because the latter 9798 * can fire way more frequently than the former. 9799 */ 9800 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 9801 return; 9802 9803 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 9804 if (env->sd->span_weight != llc_weight) 9805 return; 9806 9807 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 9808 if (!sd_share) 9809 return; 9810 9811 /* 9812 * The number of CPUs to search drops as sum_util increases, when 9813 * sum_util hits 85% or above, the scan stops. 9814 * The reason to choose 85% as the threshold is because this is the 9815 * imbalance_pct(117) when a LLC sched group is overloaded. 9816 * 9817 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 9818 * and y'= y / SCHED_CAPACITY_SCALE 9819 * 9820 * x is the ratio of sum_util compared to the CPU capacity: 9821 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 9822 * y' is the ratio of CPUs to be scanned in the LLC domain, 9823 * and the number of CPUs to scan is calculated by: 9824 * 9825 * nr_scan = llc_weight * y' [2] 9826 * 9827 * When x hits the threshold of overloaded, AKA, when 9828 * x = 100 / pct, y drops to 0. According to [1], 9829 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 9830 * 9831 * Scale x by SCHED_CAPACITY_SCALE: 9832 * x' = sum_util / llc_weight; [3] 9833 * 9834 * and finally [1] becomes: 9835 * y = SCHED_CAPACITY_SCALE - 9836 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 9837 * 9838 */ 9839 /* equation [3] */ 9840 x = sum_util; 9841 do_div(x, llc_weight); 9842 9843 /* equation [4] */ 9844 pct = env->sd->imbalance_pct; 9845 tmp = x * x * pct * pct; 9846 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 9847 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 9848 y = SCHED_CAPACITY_SCALE - tmp; 9849 9850 /* equation [2] */ 9851 y *= llc_weight; 9852 do_div(y, SCHED_CAPACITY_SCALE); 9853 if ((int)y != sd_share->nr_idle_scan) 9854 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 9855 } 9856 9857 /** 9858 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 9859 * @env: The load balancing environment. 9860 * @sds: variable to hold the statistics for this sched_domain. 9861 */ 9862 9863 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 9864 { 9865 struct sched_domain *child = env->sd->child; 9866 struct sched_group *sg = env->sd->groups; 9867 struct sg_lb_stats *local = &sds->local_stat; 9868 struct sg_lb_stats tmp_sgs; 9869 unsigned long sum_util = 0; 9870 int sg_status = 0; 9871 9872 do { 9873 struct sg_lb_stats *sgs = &tmp_sgs; 9874 int local_group; 9875 9876 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 9877 if (local_group) { 9878 sds->local = sg; 9879 sgs = local; 9880 9881 if (env->idle != CPU_NEWLY_IDLE || 9882 time_after_eq(jiffies, sg->sgc->next_update)) 9883 update_group_capacity(env->sd, env->dst_cpu); 9884 } 9885 9886 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 9887 9888 if (local_group) 9889 goto next_group; 9890 9891 9892 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 9893 sds->busiest = sg; 9894 sds->busiest_stat = *sgs; 9895 } 9896 9897 next_group: 9898 /* Now, start updating sd_lb_stats */ 9899 sds->total_load += sgs->group_load; 9900 sds->total_capacity += sgs->group_capacity; 9901 9902 sum_util += sgs->group_util; 9903 sg = sg->next; 9904 } while (sg != env->sd->groups); 9905 9906 /* Tag domain that child domain prefers tasks go to siblings first */ 9907 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 9908 9909 9910 if (env->sd->flags & SD_NUMA) 9911 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 9912 9913 if (!env->sd->parent) { 9914 struct root_domain *rd = env->dst_rq->rd; 9915 9916 /* update overload indicator if we are at root domain */ 9917 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 9918 9919 /* Update over-utilization (tipping point, U >= 0) indicator */ 9920 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 9921 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 9922 } else if (sg_status & SG_OVERUTILIZED) { 9923 struct root_domain *rd = env->dst_rq->rd; 9924 9925 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 9926 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 9927 } 9928 9929 update_idle_cpu_scan(env, sum_util); 9930 } 9931 9932 /** 9933 * calculate_imbalance - Calculate the amount of imbalance present within the 9934 * groups of a given sched_domain during load balance. 9935 * @env: load balance environment 9936 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 9937 */ 9938 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 9939 { 9940 struct sg_lb_stats *local, *busiest; 9941 9942 local = &sds->local_stat; 9943 busiest = &sds->busiest_stat; 9944 9945 if (busiest->group_type == group_misfit_task) { 9946 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9947 /* Set imbalance to allow misfit tasks to be balanced. */ 9948 env->migration_type = migrate_misfit; 9949 env->imbalance = 1; 9950 } else { 9951 /* 9952 * Set load imbalance to allow moving task from cpu 9953 * with reduced capacity. 9954 */ 9955 env->migration_type = migrate_load; 9956 env->imbalance = busiest->group_misfit_task_load; 9957 } 9958 return; 9959 } 9960 9961 if (busiest->group_type == group_asym_packing) { 9962 /* 9963 * In case of asym capacity, we will try to migrate all load to 9964 * the preferred CPU. 9965 */ 9966 env->migration_type = migrate_task; 9967 env->imbalance = busiest->sum_h_nr_running; 9968 return; 9969 } 9970 9971 if (busiest->group_type == group_imbalanced) { 9972 /* 9973 * In the group_imb case we cannot rely on group-wide averages 9974 * to ensure CPU-load equilibrium, try to move any task to fix 9975 * the imbalance. The next load balance will take care of 9976 * balancing back the system. 9977 */ 9978 env->migration_type = migrate_task; 9979 env->imbalance = 1; 9980 return; 9981 } 9982 9983 /* 9984 * Try to use spare capacity of local group without overloading it or 9985 * emptying busiest. 9986 */ 9987 if (local->group_type == group_has_spare) { 9988 if ((busiest->group_type > group_fully_busy) && 9989 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 9990 /* 9991 * If busiest is overloaded, try to fill spare 9992 * capacity. This might end up creating spare capacity 9993 * in busiest or busiest still being overloaded but 9994 * there is no simple way to directly compute the 9995 * amount of load to migrate in order to balance the 9996 * system. 9997 */ 9998 env->migration_type = migrate_util; 9999 env->imbalance = max(local->group_capacity, local->group_util) - 10000 local->group_util; 10001 10002 /* 10003 * In some cases, the group's utilization is max or even 10004 * higher than capacity because of migrations but the 10005 * local CPU is (newly) idle. There is at least one 10006 * waiting task in this overloaded busiest group. Let's 10007 * try to pull it. 10008 */ 10009 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 10010 env->migration_type = migrate_task; 10011 env->imbalance = 1; 10012 } 10013 10014 return; 10015 } 10016 10017 if (busiest->group_weight == 1 || sds->prefer_sibling) { 10018 unsigned int nr_diff = busiest->sum_nr_running; 10019 /* 10020 * When prefer sibling, evenly spread running tasks on 10021 * groups. 10022 */ 10023 env->migration_type = migrate_task; 10024 lsub_positive(&nr_diff, local->sum_nr_running); 10025 env->imbalance = nr_diff; 10026 } else { 10027 10028 /* 10029 * If there is no overload, we just want to even the number of 10030 * idle cpus. 10031 */ 10032 env->migration_type = migrate_task; 10033 env->imbalance = max_t(long, 0, 10034 (local->idle_cpus - busiest->idle_cpus)); 10035 } 10036 10037 #ifdef CONFIG_NUMA 10038 /* Consider allowing a small imbalance between NUMA groups */ 10039 if (env->sd->flags & SD_NUMA) { 10040 env->imbalance = adjust_numa_imbalance(env->imbalance, 10041 local->sum_nr_running + 1, 10042 env->sd->imb_numa_nr); 10043 } 10044 #endif 10045 10046 /* Number of tasks to move to restore balance */ 10047 env->imbalance >>= 1; 10048 10049 return; 10050 } 10051 10052 /* 10053 * Local is fully busy but has to take more load to relieve the 10054 * busiest group 10055 */ 10056 if (local->group_type < group_overloaded) { 10057 /* 10058 * Local will become overloaded so the avg_load metrics are 10059 * finally needed. 10060 */ 10061 10062 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 10063 local->group_capacity; 10064 10065 /* 10066 * If the local group is more loaded than the selected 10067 * busiest group don't try to pull any tasks. 10068 */ 10069 if (local->avg_load >= busiest->avg_load) { 10070 env->imbalance = 0; 10071 return; 10072 } 10073 10074 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 10075 sds->total_capacity; 10076 } 10077 10078 /* 10079 * Both group are or will become overloaded and we're trying to get all 10080 * the CPUs to the average_load, so we don't want to push ourselves 10081 * above the average load, nor do we wish to reduce the max loaded CPU 10082 * below the average load. At the same time, we also don't want to 10083 * reduce the group load below the group capacity. Thus we look for 10084 * the minimum possible imbalance. 10085 */ 10086 env->migration_type = migrate_load; 10087 env->imbalance = min( 10088 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 10089 (sds->avg_load - local->avg_load) * local->group_capacity 10090 ) / SCHED_CAPACITY_SCALE; 10091 } 10092 10093 /******* find_busiest_group() helpers end here *********************/ 10094 10095 /* 10096 * Decision matrix according to the local and busiest group type: 10097 * 10098 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 10099 * has_spare nr_idle balanced N/A N/A balanced balanced 10100 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 10101 * misfit_task force N/A N/A N/A N/A N/A 10102 * asym_packing force force N/A N/A force force 10103 * imbalanced force force N/A N/A force force 10104 * overloaded force force N/A N/A force avg_load 10105 * 10106 * N/A : Not Applicable because already filtered while updating 10107 * statistics. 10108 * balanced : The system is balanced for these 2 groups. 10109 * force : Calculate the imbalance as load migration is probably needed. 10110 * avg_load : Only if imbalance is significant enough. 10111 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 10112 * different in groups. 10113 */ 10114 10115 /** 10116 * find_busiest_group - Returns the busiest group within the sched_domain 10117 * if there is an imbalance. 10118 * @env: The load balancing environment. 10119 * 10120 * Also calculates the amount of runnable load which should be moved 10121 * to restore balance. 10122 * 10123 * Return: - The busiest group if imbalance exists. 10124 */ 10125 static struct sched_group *find_busiest_group(struct lb_env *env) 10126 { 10127 struct sg_lb_stats *local, *busiest; 10128 struct sd_lb_stats sds; 10129 10130 init_sd_lb_stats(&sds); 10131 10132 /* 10133 * Compute the various statistics relevant for load balancing at 10134 * this level. 10135 */ 10136 update_sd_lb_stats(env, &sds); 10137 10138 if (sched_energy_enabled()) { 10139 struct root_domain *rd = env->dst_rq->rd; 10140 10141 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 10142 goto out_balanced; 10143 } 10144 10145 local = &sds.local_stat; 10146 busiest = &sds.busiest_stat; 10147 10148 /* There is no busy sibling group to pull tasks from */ 10149 if (!sds.busiest) 10150 goto out_balanced; 10151 10152 /* Misfit tasks should be dealt with regardless of the avg load */ 10153 if (busiest->group_type == group_misfit_task) 10154 goto force_balance; 10155 10156 /* ASYM feature bypasses nice load balance check */ 10157 if (busiest->group_type == group_asym_packing) 10158 goto force_balance; 10159 10160 /* 10161 * If the busiest group is imbalanced the below checks don't 10162 * work because they assume all things are equal, which typically 10163 * isn't true due to cpus_ptr constraints and the like. 10164 */ 10165 if (busiest->group_type == group_imbalanced) 10166 goto force_balance; 10167 10168 /* 10169 * If the local group is busier than the selected busiest group 10170 * don't try and pull any tasks. 10171 */ 10172 if (local->group_type > busiest->group_type) 10173 goto out_balanced; 10174 10175 /* 10176 * When groups are overloaded, use the avg_load to ensure fairness 10177 * between tasks. 10178 */ 10179 if (local->group_type == group_overloaded) { 10180 /* 10181 * If the local group is more loaded than the selected 10182 * busiest group don't try to pull any tasks. 10183 */ 10184 if (local->avg_load >= busiest->avg_load) 10185 goto out_balanced; 10186 10187 /* XXX broken for overlapping NUMA groups */ 10188 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 10189 sds.total_capacity; 10190 10191 /* 10192 * Don't pull any tasks if this group is already above the 10193 * domain average load. 10194 */ 10195 if (local->avg_load >= sds.avg_load) 10196 goto out_balanced; 10197 10198 /* 10199 * If the busiest group is more loaded, use imbalance_pct to be 10200 * conservative. 10201 */ 10202 if (100 * busiest->avg_load <= 10203 env->sd->imbalance_pct * local->avg_load) 10204 goto out_balanced; 10205 } 10206 10207 /* Try to move all excess tasks to child's sibling domain */ 10208 if (sds.prefer_sibling && local->group_type == group_has_spare && 10209 busiest->sum_nr_running > local->sum_nr_running + 1) 10210 goto force_balance; 10211 10212 if (busiest->group_type != group_overloaded) { 10213 if (env->idle == CPU_NOT_IDLE) 10214 /* 10215 * If the busiest group is not overloaded (and as a 10216 * result the local one too) but this CPU is already 10217 * busy, let another idle CPU try to pull task. 10218 */ 10219 goto out_balanced; 10220 10221 if (busiest->group_weight > 1 && 10222 local->idle_cpus <= (busiest->idle_cpus + 1)) 10223 /* 10224 * If the busiest group is not overloaded 10225 * and there is no imbalance between this and busiest 10226 * group wrt idle CPUs, it is balanced. The imbalance 10227 * becomes significant if the diff is greater than 1 10228 * otherwise we might end up to just move the imbalance 10229 * on another group. Of course this applies only if 10230 * there is more than 1 CPU per group. 10231 */ 10232 goto out_balanced; 10233 10234 if (busiest->sum_h_nr_running == 1) 10235 /* 10236 * busiest doesn't have any tasks waiting to run 10237 */ 10238 goto out_balanced; 10239 } 10240 10241 force_balance: 10242 /* Looks like there is an imbalance. Compute it */ 10243 calculate_imbalance(env, &sds); 10244 return env->imbalance ? sds.busiest : NULL; 10245 10246 out_balanced: 10247 env->imbalance = 0; 10248 return NULL; 10249 } 10250 10251 /* 10252 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 10253 */ 10254 static struct rq *find_busiest_queue(struct lb_env *env, 10255 struct sched_group *group) 10256 { 10257 struct rq *busiest = NULL, *rq; 10258 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 10259 unsigned int busiest_nr = 0; 10260 int i; 10261 10262 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10263 unsigned long capacity, load, util; 10264 unsigned int nr_running; 10265 enum fbq_type rt; 10266 10267 rq = cpu_rq(i); 10268 rt = fbq_classify_rq(rq); 10269 10270 /* 10271 * We classify groups/runqueues into three groups: 10272 * - regular: there are !numa tasks 10273 * - remote: there are numa tasks that run on the 'wrong' node 10274 * - all: there is no distinction 10275 * 10276 * In order to avoid migrating ideally placed numa tasks, 10277 * ignore those when there's better options. 10278 * 10279 * If we ignore the actual busiest queue to migrate another 10280 * task, the next balance pass can still reduce the busiest 10281 * queue by moving tasks around inside the node. 10282 * 10283 * If we cannot move enough load due to this classification 10284 * the next pass will adjust the group classification and 10285 * allow migration of more tasks. 10286 * 10287 * Both cases only affect the total convergence complexity. 10288 */ 10289 if (rt > env->fbq_type) 10290 continue; 10291 10292 nr_running = rq->cfs.h_nr_running; 10293 if (!nr_running) 10294 continue; 10295 10296 capacity = capacity_of(i); 10297 10298 /* 10299 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 10300 * eventually lead to active_balancing high->low capacity. 10301 * Higher per-CPU capacity is considered better than balancing 10302 * average load. 10303 */ 10304 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 10305 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 10306 nr_running == 1) 10307 continue; 10308 10309 /* Make sure we only pull tasks from a CPU of lower priority */ 10310 if ((env->sd->flags & SD_ASYM_PACKING) && 10311 sched_asym_prefer(i, env->dst_cpu) && 10312 nr_running == 1) 10313 continue; 10314 10315 switch (env->migration_type) { 10316 case migrate_load: 10317 /* 10318 * When comparing with load imbalance, use cpu_load() 10319 * which is not scaled with the CPU capacity. 10320 */ 10321 load = cpu_load(rq); 10322 10323 if (nr_running == 1 && load > env->imbalance && 10324 !check_cpu_capacity(rq, env->sd)) 10325 break; 10326 10327 /* 10328 * For the load comparisons with the other CPUs, 10329 * consider the cpu_load() scaled with the CPU 10330 * capacity, so that the load can be moved away 10331 * from the CPU that is potentially running at a 10332 * lower capacity. 10333 * 10334 * Thus we're looking for max(load_i / capacity_i), 10335 * crosswise multiplication to rid ourselves of the 10336 * division works out to: 10337 * load_i * capacity_j > load_j * capacity_i; 10338 * where j is our previous maximum. 10339 */ 10340 if (load * busiest_capacity > busiest_load * capacity) { 10341 busiest_load = load; 10342 busiest_capacity = capacity; 10343 busiest = rq; 10344 } 10345 break; 10346 10347 case migrate_util: 10348 util = cpu_util_cfs(i); 10349 10350 /* 10351 * Don't try to pull utilization from a CPU with one 10352 * running task. Whatever its utilization, we will fail 10353 * detach the task. 10354 */ 10355 if (nr_running <= 1) 10356 continue; 10357 10358 if (busiest_util < util) { 10359 busiest_util = util; 10360 busiest = rq; 10361 } 10362 break; 10363 10364 case migrate_task: 10365 if (busiest_nr < nr_running) { 10366 busiest_nr = nr_running; 10367 busiest = rq; 10368 } 10369 break; 10370 10371 case migrate_misfit: 10372 /* 10373 * For ASYM_CPUCAPACITY domains with misfit tasks we 10374 * simply seek the "biggest" misfit task. 10375 */ 10376 if (rq->misfit_task_load > busiest_load) { 10377 busiest_load = rq->misfit_task_load; 10378 busiest = rq; 10379 } 10380 10381 break; 10382 10383 } 10384 } 10385 10386 return busiest; 10387 } 10388 10389 /* 10390 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 10391 * so long as it is large enough. 10392 */ 10393 #define MAX_PINNED_INTERVAL 512 10394 10395 static inline bool 10396 asym_active_balance(struct lb_env *env) 10397 { 10398 /* 10399 * ASYM_PACKING needs to force migrate tasks from busy but 10400 * lower priority CPUs in order to pack all tasks in the 10401 * highest priority CPUs. 10402 */ 10403 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 10404 sched_asym_prefer(env->dst_cpu, env->src_cpu); 10405 } 10406 10407 static inline bool 10408 imbalanced_active_balance(struct lb_env *env) 10409 { 10410 struct sched_domain *sd = env->sd; 10411 10412 /* 10413 * The imbalanced case includes the case of pinned tasks preventing a fair 10414 * distribution of the load on the system but also the even distribution of the 10415 * threads on a system with spare capacity 10416 */ 10417 if ((env->migration_type == migrate_task) && 10418 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 10419 return 1; 10420 10421 return 0; 10422 } 10423 10424 static int need_active_balance(struct lb_env *env) 10425 { 10426 struct sched_domain *sd = env->sd; 10427 10428 if (asym_active_balance(env)) 10429 return 1; 10430 10431 if (imbalanced_active_balance(env)) 10432 return 1; 10433 10434 /* 10435 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 10436 * It's worth migrating the task if the src_cpu's capacity is reduced 10437 * because of other sched_class or IRQs if more capacity stays 10438 * available on dst_cpu. 10439 */ 10440 if ((env->idle != CPU_NOT_IDLE) && 10441 (env->src_rq->cfs.h_nr_running == 1)) { 10442 if ((check_cpu_capacity(env->src_rq, sd)) && 10443 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 10444 return 1; 10445 } 10446 10447 if (env->migration_type == migrate_misfit) 10448 return 1; 10449 10450 return 0; 10451 } 10452 10453 static int active_load_balance_cpu_stop(void *data); 10454 10455 static int should_we_balance(struct lb_env *env) 10456 { 10457 struct sched_group *sg = env->sd->groups; 10458 int cpu; 10459 10460 /* 10461 * Ensure the balancing environment is consistent; can happen 10462 * when the softirq triggers 'during' hotplug. 10463 */ 10464 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 10465 return 0; 10466 10467 /* 10468 * In the newly idle case, we will allow all the CPUs 10469 * to do the newly idle load balance. 10470 * 10471 * However, we bail out if we already have tasks or a wakeup pending, 10472 * to optimize wakeup latency. 10473 */ 10474 if (env->idle == CPU_NEWLY_IDLE) { 10475 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 10476 return 0; 10477 return 1; 10478 } 10479 10480 /* Try to find first idle CPU */ 10481 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 10482 if (!idle_cpu(cpu)) 10483 continue; 10484 10485 /* Are we the first idle CPU? */ 10486 return cpu == env->dst_cpu; 10487 } 10488 10489 /* Are we the first CPU of this group ? */ 10490 return group_balance_cpu(sg) == env->dst_cpu; 10491 } 10492 10493 /* 10494 * Check this_cpu to ensure it is balanced within domain. Attempt to move 10495 * tasks if there is an imbalance. 10496 */ 10497 static int load_balance(int this_cpu, struct rq *this_rq, 10498 struct sched_domain *sd, enum cpu_idle_type idle, 10499 int *continue_balancing) 10500 { 10501 int ld_moved, cur_ld_moved, active_balance = 0; 10502 struct sched_domain *sd_parent = sd->parent; 10503 struct sched_group *group; 10504 struct rq *busiest; 10505 struct rq_flags rf; 10506 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 10507 struct lb_env env = { 10508 .sd = sd, 10509 .dst_cpu = this_cpu, 10510 .dst_rq = this_rq, 10511 .dst_grpmask = sched_group_span(sd->groups), 10512 .idle = idle, 10513 .loop_break = SCHED_NR_MIGRATE_BREAK, 10514 .cpus = cpus, 10515 .fbq_type = all, 10516 .tasks = LIST_HEAD_INIT(env.tasks), 10517 }; 10518 10519 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 10520 10521 schedstat_inc(sd->lb_count[idle]); 10522 10523 redo: 10524 if (!should_we_balance(&env)) { 10525 *continue_balancing = 0; 10526 goto out_balanced; 10527 } 10528 10529 group = find_busiest_group(&env); 10530 if (!group) { 10531 schedstat_inc(sd->lb_nobusyg[idle]); 10532 goto out_balanced; 10533 } 10534 10535 busiest = find_busiest_queue(&env, group); 10536 if (!busiest) { 10537 schedstat_inc(sd->lb_nobusyq[idle]); 10538 goto out_balanced; 10539 } 10540 10541 WARN_ON_ONCE(busiest == env.dst_rq); 10542 10543 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 10544 10545 env.src_cpu = busiest->cpu; 10546 env.src_rq = busiest; 10547 10548 ld_moved = 0; 10549 /* Clear this flag as soon as we find a pullable task */ 10550 env.flags |= LBF_ALL_PINNED; 10551 if (busiest->nr_running > 1) { 10552 /* 10553 * Attempt to move tasks. If find_busiest_group has found 10554 * an imbalance but busiest->nr_running <= 1, the group is 10555 * still unbalanced. ld_moved simply stays zero, so it is 10556 * correctly treated as an imbalance. 10557 */ 10558 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 10559 10560 more_balance: 10561 rq_lock_irqsave(busiest, &rf); 10562 update_rq_clock(busiest); 10563 10564 /* 10565 * cur_ld_moved - load moved in current iteration 10566 * ld_moved - cumulative load moved across iterations 10567 */ 10568 cur_ld_moved = detach_tasks(&env); 10569 10570 /* 10571 * We've detached some tasks from busiest_rq. Every 10572 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 10573 * unlock busiest->lock, and we are able to be sure 10574 * that nobody can manipulate the tasks in parallel. 10575 * See task_rq_lock() family for the details. 10576 */ 10577 10578 rq_unlock(busiest, &rf); 10579 10580 if (cur_ld_moved) { 10581 attach_tasks(&env); 10582 ld_moved += cur_ld_moved; 10583 } 10584 10585 local_irq_restore(rf.flags); 10586 10587 if (env.flags & LBF_NEED_BREAK) { 10588 env.flags &= ~LBF_NEED_BREAK; 10589 /* Stop if we tried all running tasks */ 10590 if (env.loop < busiest->nr_running) 10591 goto more_balance; 10592 } 10593 10594 /* 10595 * Revisit (affine) tasks on src_cpu that couldn't be moved to 10596 * us and move them to an alternate dst_cpu in our sched_group 10597 * where they can run. The upper limit on how many times we 10598 * iterate on same src_cpu is dependent on number of CPUs in our 10599 * sched_group. 10600 * 10601 * This changes load balance semantics a bit on who can move 10602 * load to a given_cpu. In addition to the given_cpu itself 10603 * (or a ilb_cpu acting on its behalf where given_cpu is 10604 * nohz-idle), we now have balance_cpu in a position to move 10605 * load to given_cpu. In rare situations, this may cause 10606 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 10607 * _independently_ and at _same_ time to move some load to 10608 * given_cpu) causing excess load to be moved to given_cpu. 10609 * This however should not happen so much in practice and 10610 * moreover subsequent load balance cycles should correct the 10611 * excess load moved. 10612 */ 10613 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 10614 10615 /* Prevent to re-select dst_cpu via env's CPUs */ 10616 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 10617 10618 env.dst_rq = cpu_rq(env.new_dst_cpu); 10619 env.dst_cpu = env.new_dst_cpu; 10620 env.flags &= ~LBF_DST_PINNED; 10621 env.loop = 0; 10622 env.loop_break = SCHED_NR_MIGRATE_BREAK; 10623 10624 /* 10625 * Go back to "more_balance" rather than "redo" since we 10626 * need to continue with same src_cpu. 10627 */ 10628 goto more_balance; 10629 } 10630 10631 /* 10632 * We failed to reach balance because of affinity. 10633 */ 10634 if (sd_parent) { 10635 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10636 10637 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 10638 *group_imbalance = 1; 10639 } 10640 10641 /* All tasks on this runqueue were pinned by CPU affinity */ 10642 if (unlikely(env.flags & LBF_ALL_PINNED)) { 10643 __cpumask_clear_cpu(cpu_of(busiest), cpus); 10644 /* 10645 * Attempting to continue load balancing at the current 10646 * sched_domain level only makes sense if there are 10647 * active CPUs remaining as possible busiest CPUs to 10648 * pull load from which are not contained within the 10649 * destination group that is receiving any migrated 10650 * load. 10651 */ 10652 if (!cpumask_subset(cpus, env.dst_grpmask)) { 10653 env.loop = 0; 10654 env.loop_break = SCHED_NR_MIGRATE_BREAK; 10655 goto redo; 10656 } 10657 goto out_all_pinned; 10658 } 10659 } 10660 10661 if (!ld_moved) { 10662 schedstat_inc(sd->lb_failed[idle]); 10663 /* 10664 * Increment the failure counter only on periodic balance. 10665 * We do not want newidle balance, which can be very 10666 * frequent, pollute the failure counter causing 10667 * excessive cache_hot migrations and active balances. 10668 */ 10669 if (idle != CPU_NEWLY_IDLE) 10670 sd->nr_balance_failed++; 10671 10672 if (need_active_balance(&env)) { 10673 unsigned long flags; 10674 10675 raw_spin_rq_lock_irqsave(busiest, flags); 10676 10677 /* 10678 * Don't kick the active_load_balance_cpu_stop, 10679 * if the curr task on busiest CPU can't be 10680 * moved to this_cpu: 10681 */ 10682 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 10683 raw_spin_rq_unlock_irqrestore(busiest, flags); 10684 goto out_one_pinned; 10685 } 10686 10687 /* Record that we found at least one task that could run on this_cpu */ 10688 env.flags &= ~LBF_ALL_PINNED; 10689 10690 /* 10691 * ->active_balance synchronizes accesses to 10692 * ->active_balance_work. Once set, it's cleared 10693 * only after active load balance is finished. 10694 */ 10695 if (!busiest->active_balance) { 10696 busiest->active_balance = 1; 10697 busiest->push_cpu = this_cpu; 10698 active_balance = 1; 10699 } 10700 raw_spin_rq_unlock_irqrestore(busiest, flags); 10701 10702 if (active_balance) { 10703 stop_one_cpu_nowait(cpu_of(busiest), 10704 active_load_balance_cpu_stop, busiest, 10705 &busiest->active_balance_work); 10706 } 10707 } 10708 } else { 10709 sd->nr_balance_failed = 0; 10710 } 10711 10712 if (likely(!active_balance) || need_active_balance(&env)) { 10713 /* We were unbalanced, so reset the balancing interval */ 10714 sd->balance_interval = sd->min_interval; 10715 } 10716 10717 goto out; 10718 10719 out_balanced: 10720 /* 10721 * We reach balance although we may have faced some affinity 10722 * constraints. Clear the imbalance flag only if other tasks got 10723 * a chance to move and fix the imbalance. 10724 */ 10725 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 10726 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10727 10728 if (*group_imbalance) 10729 *group_imbalance = 0; 10730 } 10731 10732 out_all_pinned: 10733 /* 10734 * We reach balance because all tasks are pinned at this level so 10735 * we can't migrate them. Let the imbalance flag set so parent level 10736 * can try to migrate them. 10737 */ 10738 schedstat_inc(sd->lb_balanced[idle]); 10739 10740 sd->nr_balance_failed = 0; 10741 10742 out_one_pinned: 10743 ld_moved = 0; 10744 10745 /* 10746 * newidle_balance() disregards balance intervals, so we could 10747 * repeatedly reach this code, which would lead to balance_interval 10748 * skyrocketing in a short amount of time. Skip the balance_interval 10749 * increase logic to avoid that. 10750 */ 10751 if (env.idle == CPU_NEWLY_IDLE) 10752 goto out; 10753 10754 /* tune up the balancing interval */ 10755 if ((env.flags & LBF_ALL_PINNED && 10756 sd->balance_interval < MAX_PINNED_INTERVAL) || 10757 sd->balance_interval < sd->max_interval) 10758 sd->balance_interval *= 2; 10759 out: 10760 return ld_moved; 10761 } 10762 10763 static inline unsigned long 10764 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 10765 { 10766 unsigned long interval = sd->balance_interval; 10767 10768 if (cpu_busy) 10769 interval *= sd->busy_factor; 10770 10771 /* scale ms to jiffies */ 10772 interval = msecs_to_jiffies(interval); 10773 10774 /* 10775 * Reduce likelihood of busy balancing at higher domains racing with 10776 * balancing at lower domains by preventing their balancing periods 10777 * from being multiples of each other. 10778 */ 10779 if (cpu_busy) 10780 interval -= 1; 10781 10782 interval = clamp(interval, 1UL, max_load_balance_interval); 10783 10784 return interval; 10785 } 10786 10787 static inline void 10788 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 10789 { 10790 unsigned long interval, next; 10791 10792 /* used by idle balance, so cpu_busy = 0 */ 10793 interval = get_sd_balance_interval(sd, 0); 10794 next = sd->last_balance + interval; 10795 10796 if (time_after(*next_balance, next)) 10797 *next_balance = next; 10798 } 10799 10800 /* 10801 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 10802 * running tasks off the busiest CPU onto idle CPUs. It requires at 10803 * least 1 task to be running on each physical CPU where possible, and 10804 * avoids physical / logical imbalances. 10805 */ 10806 static int active_load_balance_cpu_stop(void *data) 10807 { 10808 struct rq *busiest_rq = data; 10809 int busiest_cpu = cpu_of(busiest_rq); 10810 int target_cpu = busiest_rq->push_cpu; 10811 struct rq *target_rq = cpu_rq(target_cpu); 10812 struct sched_domain *sd; 10813 struct task_struct *p = NULL; 10814 struct rq_flags rf; 10815 10816 rq_lock_irq(busiest_rq, &rf); 10817 /* 10818 * Between queueing the stop-work and running it is a hole in which 10819 * CPUs can become inactive. We should not move tasks from or to 10820 * inactive CPUs. 10821 */ 10822 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 10823 goto out_unlock; 10824 10825 /* Make sure the requested CPU hasn't gone down in the meantime: */ 10826 if (unlikely(busiest_cpu != smp_processor_id() || 10827 !busiest_rq->active_balance)) 10828 goto out_unlock; 10829 10830 /* Is there any task to move? */ 10831 if (busiest_rq->nr_running <= 1) 10832 goto out_unlock; 10833 10834 /* 10835 * This condition is "impossible", if it occurs 10836 * we need to fix it. Originally reported by 10837 * Bjorn Helgaas on a 128-CPU setup. 10838 */ 10839 WARN_ON_ONCE(busiest_rq == target_rq); 10840 10841 /* Search for an sd spanning us and the target CPU. */ 10842 rcu_read_lock(); 10843 for_each_domain(target_cpu, sd) { 10844 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 10845 break; 10846 } 10847 10848 if (likely(sd)) { 10849 struct lb_env env = { 10850 .sd = sd, 10851 .dst_cpu = target_cpu, 10852 .dst_rq = target_rq, 10853 .src_cpu = busiest_rq->cpu, 10854 .src_rq = busiest_rq, 10855 .idle = CPU_IDLE, 10856 .flags = LBF_ACTIVE_LB, 10857 }; 10858 10859 schedstat_inc(sd->alb_count); 10860 update_rq_clock(busiest_rq); 10861 10862 p = detach_one_task(&env); 10863 if (p) { 10864 schedstat_inc(sd->alb_pushed); 10865 /* Active balancing done, reset the failure counter. */ 10866 sd->nr_balance_failed = 0; 10867 } else { 10868 schedstat_inc(sd->alb_failed); 10869 } 10870 } 10871 rcu_read_unlock(); 10872 out_unlock: 10873 busiest_rq->active_balance = 0; 10874 rq_unlock(busiest_rq, &rf); 10875 10876 if (p) 10877 attach_one_task(target_rq, p); 10878 10879 local_irq_enable(); 10880 10881 return 0; 10882 } 10883 10884 static DEFINE_SPINLOCK(balancing); 10885 10886 /* 10887 * Scale the max load_balance interval with the number of CPUs in the system. 10888 * This trades load-balance latency on larger machines for less cross talk. 10889 */ 10890 void update_max_interval(void) 10891 { 10892 max_load_balance_interval = HZ*num_online_cpus()/10; 10893 } 10894 10895 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 10896 { 10897 if (cost > sd->max_newidle_lb_cost) { 10898 /* 10899 * Track max cost of a domain to make sure to not delay the 10900 * next wakeup on the CPU. 10901 */ 10902 sd->max_newidle_lb_cost = cost; 10903 sd->last_decay_max_lb_cost = jiffies; 10904 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 10905 /* 10906 * Decay the newidle max times by ~1% per second to ensure that 10907 * it is not outdated and the current max cost is actually 10908 * shorter. 10909 */ 10910 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 10911 sd->last_decay_max_lb_cost = jiffies; 10912 10913 return true; 10914 } 10915 10916 return false; 10917 } 10918 10919 /* 10920 * It checks each scheduling domain to see if it is due to be balanced, 10921 * and initiates a balancing operation if so. 10922 * 10923 * Balancing parameters are set up in init_sched_domains. 10924 */ 10925 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 10926 { 10927 int continue_balancing = 1; 10928 int cpu = rq->cpu; 10929 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10930 unsigned long interval; 10931 struct sched_domain *sd; 10932 /* Earliest time when we have to do rebalance again */ 10933 unsigned long next_balance = jiffies + 60*HZ; 10934 int update_next_balance = 0; 10935 int need_serialize, need_decay = 0; 10936 u64 max_cost = 0; 10937 10938 rcu_read_lock(); 10939 for_each_domain(cpu, sd) { 10940 /* 10941 * Decay the newidle max times here because this is a regular 10942 * visit to all the domains. 10943 */ 10944 need_decay = update_newidle_cost(sd, 0); 10945 max_cost += sd->max_newidle_lb_cost; 10946 10947 /* 10948 * Stop the load balance at this level. There is another 10949 * CPU in our sched group which is doing load balancing more 10950 * actively. 10951 */ 10952 if (!continue_balancing) { 10953 if (need_decay) 10954 continue; 10955 break; 10956 } 10957 10958 interval = get_sd_balance_interval(sd, busy); 10959 10960 need_serialize = sd->flags & SD_SERIALIZE; 10961 if (need_serialize) { 10962 if (!spin_trylock(&balancing)) 10963 goto out; 10964 } 10965 10966 if (time_after_eq(jiffies, sd->last_balance + interval)) { 10967 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 10968 /* 10969 * The LBF_DST_PINNED logic could have changed 10970 * env->dst_cpu, so we can't know our idle 10971 * state even if we migrated tasks. Update it. 10972 */ 10973 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 10974 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10975 } 10976 sd->last_balance = jiffies; 10977 interval = get_sd_balance_interval(sd, busy); 10978 } 10979 if (need_serialize) 10980 spin_unlock(&balancing); 10981 out: 10982 if (time_after(next_balance, sd->last_balance + interval)) { 10983 next_balance = sd->last_balance + interval; 10984 update_next_balance = 1; 10985 } 10986 } 10987 if (need_decay) { 10988 /* 10989 * Ensure the rq-wide value also decays but keep it at a 10990 * reasonable floor to avoid funnies with rq->avg_idle. 10991 */ 10992 rq->max_idle_balance_cost = 10993 max((u64)sysctl_sched_migration_cost, max_cost); 10994 } 10995 rcu_read_unlock(); 10996 10997 /* 10998 * next_balance will be updated only when there is a need. 10999 * When the cpu is attached to null domain for ex, it will not be 11000 * updated. 11001 */ 11002 if (likely(update_next_balance)) 11003 rq->next_balance = next_balance; 11004 11005 } 11006 11007 static inline int on_null_domain(struct rq *rq) 11008 { 11009 return unlikely(!rcu_dereference_sched(rq->sd)); 11010 } 11011 11012 #ifdef CONFIG_NO_HZ_COMMON 11013 /* 11014 * idle load balancing details 11015 * - When one of the busy CPUs notice that there may be an idle rebalancing 11016 * needed, they will kick the idle load balancer, which then does idle 11017 * load balancing for all the idle CPUs. 11018 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set 11019 * anywhere yet. 11020 */ 11021 11022 static inline int find_new_ilb(void) 11023 { 11024 int ilb; 11025 const struct cpumask *hk_mask; 11026 11027 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 11028 11029 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) { 11030 11031 if (ilb == smp_processor_id()) 11032 continue; 11033 11034 if (idle_cpu(ilb)) 11035 return ilb; 11036 } 11037 11038 return nr_cpu_ids; 11039 } 11040 11041 /* 11042 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 11043 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 11044 */ 11045 static void kick_ilb(unsigned int flags) 11046 { 11047 int ilb_cpu; 11048 11049 /* 11050 * Increase nohz.next_balance only when if full ilb is triggered but 11051 * not if we only update stats. 11052 */ 11053 if (flags & NOHZ_BALANCE_KICK) 11054 nohz.next_balance = jiffies+1; 11055 11056 ilb_cpu = find_new_ilb(); 11057 11058 if (ilb_cpu >= nr_cpu_ids) 11059 return; 11060 11061 /* 11062 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 11063 * the first flag owns it; cleared by nohz_csd_func(). 11064 */ 11065 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 11066 if (flags & NOHZ_KICK_MASK) 11067 return; 11068 11069 /* 11070 * This way we generate an IPI on the target CPU which 11071 * is idle. And the softirq performing nohz idle load balance 11072 * will be run before returning from the IPI. 11073 */ 11074 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 11075 } 11076 11077 /* 11078 * Current decision point for kicking the idle load balancer in the presence 11079 * of idle CPUs in the system. 11080 */ 11081 static void nohz_balancer_kick(struct rq *rq) 11082 { 11083 unsigned long now = jiffies; 11084 struct sched_domain_shared *sds; 11085 struct sched_domain *sd; 11086 int nr_busy, i, cpu = rq->cpu; 11087 unsigned int flags = 0; 11088 11089 if (unlikely(rq->idle_balance)) 11090 return; 11091 11092 /* 11093 * We may be recently in ticked or tickless idle mode. At the first 11094 * busy tick after returning from idle, we will update the busy stats. 11095 */ 11096 nohz_balance_exit_idle(rq); 11097 11098 /* 11099 * None are in tickless mode and hence no need for NOHZ idle load 11100 * balancing. 11101 */ 11102 if (likely(!atomic_read(&nohz.nr_cpus))) 11103 return; 11104 11105 if (READ_ONCE(nohz.has_blocked) && 11106 time_after(now, READ_ONCE(nohz.next_blocked))) 11107 flags = NOHZ_STATS_KICK; 11108 11109 if (time_before(now, nohz.next_balance)) 11110 goto out; 11111 11112 if (rq->nr_running >= 2) { 11113 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11114 goto out; 11115 } 11116 11117 rcu_read_lock(); 11118 11119 sd = rcu_dereference(rq->sd); 11120 if (sd) { 11121 /* 11122 * If there's a CFS task and the current CPU has reduced 11123 * capacity; kick the ILB to see if there's a better CPU to run 11124 * on. 11125 */ 11126 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 11127 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11128 goto unlock; 11129 } 11130 } 11131 11132 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 11133 if (sd) { 11134 /* 11135 * When ASYM_PACKING; see if there's a more preferred CPU 11136 * currently idle; in which case, kick the ILB to move tasks 11137 * around. 11138 */ 11139 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 11140 if (sched_asym_prefer(i, cpu)) { 11141 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11142 goto unlock; 11143 } 11144 } 11145 } 11146 11147 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 11148 if (sd) { 11149 /* 11150 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 11151 * to run the misfit task on. 11152 */ 11153 if (check_misfit_status(rq, sd)) { 11154 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11155 goto unlock; 11156 } 11157 11158 /* 11159 * For asymmetric systems, we do not want to nicely balance 11160 * cache use, instead we want to embrace asymmetry and only 11161 * ensure tasks have enough CPU capacity. 11162 * 11163 * Skip the LLC logic because it's not relevant in that case. 11164 */ 11165 goto unlock; 11166 } 11167 11168 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 11169 if (sds) { 11170 /* 11171 * If there is an imbalance between LLC domains (IOW we could 11172 * increase the overall cache use), we need some less-loaded LLC 11173 * domain to pull some load. Likewise, we may need to spread 11174 * load within the current LLC domain (e.g. packed SMT cores but 11175 * other CPUs are idle). We can't really know from here how busy 11176 * the others are - so just get a nohz balance going if it looks 11177 * like this LLC domain has tasks we could move. 11178 */ 11179 nr_busy = atomic_read(&sds->nr_busy_cpus); 11180 if (nr_busy > 1) { 11181 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11182 goto unlock; 11183 } 11184 } 11185 unlock: 11186 rcu_read_unlock(); 11187 out: 11188 if (READ_ONCE(nohz.needs_update)) 11189 flags |= NOHZ_NEXT_KICK; 11190 11191 if (flags) 11192 kick_ilb(flags); 11193 } 11194 11195 static void set_cpu_sd_state_busy(int cpu) 11196 { 11197 struct sched_domain *sd; 11198 11199 rcu_read_lock(); 11200 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11201 11202 if (!sd || !sd->nohz_idle) 11203 goto unlock; 11204 sd->nohz_idle = 0; 11205 11206 atomic_inc(&sd->shared->nr_busy_cpus); 11207 unlock: 11208 rcu_read_unlock(); 11209 } 11210 11211 void nohz_balance_exit_idle(struct rq *rq) 11212 { 11213 SCHED_WARN_ON(rq != this_rq()); 11214 11215 if (likely(!rq->nohz_tick_stopped)) 11216 return; 11217 11218 rq->nohz_tick_stopped = 0; 11219 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 11220 atomic_dec(&nohz.nr_cpus); 11221 11222 set_cpu_sd_state_busy(rq->cpu); 11223 } 11224 11225 static void set_cpu_sd_state_idle(int cpu) 11226 { 11227 struct sched_domain *sd; 11228 11229 rcu_read_lock(); 11230 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11231 11232 if (!sd || sd->nohz_idle) 11233 goto unlock; 11234 sd->nohz_idle = 1; 11235 11236 atomic_dec(&sd->shared->nr_busy_cpus); 11237 unlock: 11238 rcu_read_unlock(); 11239 } 11240 11241 /* 11242 * This routine will record that the CPU is going idle with tick stopped. 11243 * This info will be used in performing idle load balancing in the future. 11244 */ 11245 void nohz_balance_enter_idle(int cpu) 11246 { 11247 struct rq *rq = cpu_rq(cpu); 11248 11249 SCHED_WARN_ON(cpu != smp_processor_id()); 11250 11251 /* If this CPU is going down, then nothing needs to be done: */ 11252 if (!cpu_active(cpu)) 11253 return; 11254 11255 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 11256 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 11257 return; 11258 11259 /* 11260 * Can be set safely without rq->lock held 11261 * If a clear happens, it will have evaluated last additions because 11262 * rq->lock is held during the check and the clear 11263 */ 11264 rq->has_blocked_load = 1; 11265 11266 /* 11267 * The tick is still stopped but load could have been added in the 11268 * meantime. We set the nohz.has_blocked flag to trig a check of the 11269 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 11270 * of nohz.has_blocked can only happen after checking the new load 11271 */ 11272 if (rq->nohz_tick_stopped) 11273 goto out; 11274 11275 /* If we're a completely isolated CPU, we don't play: */ 11276 if (on_null_domain(rq)) 11277 return; 11278 11279 rq->nohz_tick_stopped = 1; 11280 11281 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 11282 atomic_inc(&nohz.nr_cpus); 11283 11284 /* 11285 * Ensures that if nohz_idle_balance() fails to observe our 11286 * @idle_cpus_mask store, it must observe the @has_blocked 11287 * and @needs_update stores. 11288 */ 11289 smp_mb__after_atomic(); 11290 11291 set_cpu_sd_state_idle(cpu); 11292 11293 WRITE_ONCE(nohz.needs_update, 1); 11294 out: 11295 /* 11296 * Each time a cpu enter idle, we assume that it has blocked load and 11297 * enable the periodic update of the load of idle cpus 11298 */ 11299 WRITE_ONCE(nohz.has_blocked, 1); 11300 } 11301 11302 static bool update_nohz_stats(struct rq *rq) 11303 { 11304 unsigned int cpu = rq->cpu; 11305 11306 if (!rq->has_blocked_load) 11307 return false; 11308 11309 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 11310 return false; 11311 11312 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 11313 return true; 11314 11315 update_blocked_averages(cpu); 11316 11317 return rq->has_blocked_load; 11318 } 11319 11320 /* 11321 * Internal function that runs load balance for all idle cpus. The load balance 11322 * can be a simple update of blocked load or a complete load balance with 11323 * tasks movement depending of flags. 11324 */ 11325 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 11326 { 11327 /* Earliest time when we have to do rebalance again */ 11328 unsigned long now = jiffies; 11329 unsigned long next_balance = now + 60*HZ; 11330 bool has_blocked_load = false; 11331 int update_next_balance = 0; 11332 int this_cpu = this_rq->cpu; 11333 int balance_cpu; 11334 struct rq *rq; 11335 11336 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 11337 11338 /* 11339 * We assume there will be no idle load after this update and clear 11340 * the has_blocked flag. If a cpu enters idle in the mean time, it will 11341 * set the has_blocked flag and trigger another update of idle load. 11342 * Because a cpu that becomes idle, is added to idle_cpus_mask before 11343 * setting the flag, we are sure to not clear the state and not 11344 * check the load of an idle cpu. 11345 * 11346 * Same applies to idle_cpus_mask vs needs_update. 11347 */ 11348 if (flags & NOHZ_STATS_KICK) 11349 WRITE_ONCE(nohz.has_blocked, 0); 11350 if (flags & NOHZ_NEXT_KICK) 11351 WRITE_ONCE(nohz.needs_update, 0); 11352 11353 /* 11354 * Ensures that if we miss the CPU, we must see the has_blocked 11355 * store from nohz_balance_enter_idle(). 11356 */ 11357 smp_mb(); 11358 11359 /* 11360 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 11361 * chance for other idle cpu to pull load. 11362 */ 11363 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 11364 if (!idle_cpu(balance_cpu)) 11365 continue; 11366 11367 /* 11368 * If this CPU gets work to do, stop the load balancing 11369 * work being done for other CPUs. Next load 11370 * balancing owner will pick it up. 11371 */ 11372 if (need_resched()) { 11373 if (flags & NOHZ_STATS_KICK) 11374 has_blocked_load = true; 11375 if (flags & NOHZ_NEXT_KICK) 11376 WRITE_ONCE(nohz.needs_update, 1); 11377 goto abort; 11378 } 11379 11380 rq = cpu_rq(balance_cpu); 11381 11382 if (flags & NOHZ_STATS_KICK) 11383 has_blocked_load |= update_nohz_stats(rq); 11384 11385 /* 11386 * If time for next balance is due, 11387 * do the balance. 11388 */ 11389 if (time_after_eq(jiffies, rq->next_balance)) { 11390 struct rq_flags rf; 11391 11392 rq_lock_irqsave(rq, &rf); 11393 update_rq_clock(rq); 11394 rq_unlock_irqrestore(rq, &rf); 11395 11396 if (flags & NOHZ_BALANCE_KICK) 11397 rebalance_domains(rq, CPU_IDLE); 11398 } 11399 11400 if (time_after(next_balance, rq->next_balance)) { 11401 next_balance = rq->next_balance; 11402 update_next_balance = 1; 11403 } 11404 } 11405 11406 /* 11407 * next_balance will be updated only when there is a need. 11408 * When the CPU is attached to null domain for ex, it will not be 11409 * updated. 11410 */ 11411 if (likely(update_next_balance)) 11412 nohz.next_balance = next_balance; 11413 11414 if (flags & NOHZ_STATS_KICK) 11415 WRITE_ONCE(nohz.next_blocked, 11416 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 11417 11418 abort: 11419 /* There is still blocked load, enable periodic update */ 11420 if (has_blocked_load) 11421 WRITE_ONCE(nohz.has_blocked, 1); 11422 } 11423 11424 /* 11425 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 11426 * rebalancing for all the cpus for whom scheduler ticks are stopped. 11427 */ 11428 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 11429 { 11430 unsigned int flags = this_rq->nohz_idle_balance; 11431 11432 if (!flags) 11433 return false; 11434 11435 this_rq->nohz_idle_balance = 0; 11436 11437 if (idle != CPU_IDLE) 11438 return false; 11439 11440 _nohz_idle_balance(this_rq, flags); 11441 11442 return true; 11443 } 11444 11445 /* 11446 * Check if we need to run the ILB for updating blocked load before entering 11447 * idle state. 11448 */ 11449 void nohz_run_idle_balance(int cpu) 11450 { 11451 unsigned int flags; 11452 11453 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 11454 11455 /* 11456 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 11457 * (ie NOHZ_STATS_KICK set) and will do the same. 11458 */ 11459 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 11460 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 11461 } 11462 11463 static void nohz_newidle_balance(struct rq *this_rq) 11464 { 11465 int this_cpu = this_rq->cpu; 11466 11467 /* 11468 * This CPU doesn't want to be disturbed by scheduler 11469 * housekeeping 11470 */ 11471 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 11472 return; 11473 11474 /* Will wake up very soon. No time for doing anything else*/ 11475 if (this_rq->avg_idle < sysctl_sched_migration_cost) 11476 return; 11477 11478 /* Don't need to update blocked load of idle CPUs*/ 11479 if (!READ_ONCE(nohz.has_blocked) || 11480 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 11481 return; 11482 11483 /* 11484 * Set the need to trigger ILB in order to update blocked load 11485 * before entering idle state. 11486 */ 11487 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 11488 } 11489 11490 #else /* !CONFIG_NO_HZ_COMMON */ 11491 static inline void nohz_balancer_kick(struct rq *rq) { } 11492 11493 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 11494 { 11495 return false; 11496 } 11497 11498 static inline void nohz_newidle_balance(struct rq *this_rq) { } 11499 #endif /* CONFIG_NO_HZ_COMMON */ 11500 11501 /* 11502 * newidle_balance is called by schedule() if this_cpu is about to become 11503 * idle. Attempts to pull tasks from other CPUs. 11504 * 11505 * Returns: 11506 * < 0 - we released the lock and there are !fair tasks present 11507 * 0 - failed, no new tasks 11508 * > 0 - success, new (fair) tasks present 11509 */ 11510 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 11511 { 11512 unsigned long next_balance = jiffies + HZ; 11513 int this_cpu = this_rq->cpu; 11514 u64 t0, t1, curr_cost = 0; 11515 struct sched_domain *sd; 11516 int pulled_task = 0; 11517 11518 update_misfit_status(NULL, this_rq); 11519 11520 /* 11521 * There is a task waiting to run. No need to search for one. 11522 * Return 0; the task will be enqueued when switching to idle. 11523 */ 11524 if (this_rq->ttwu_pending) 11525 return 0; 11526 11527 /* 11528 * We must set idle_stamp _before_ calling idle_balance(), such that we 11529 * measure the duration of idle_balance() as idle time. 11530 */ 11531 this_rq->idle_stamp = rq_clock(this_rq); 11532 11533 /* 11534 * Do not pull tasks towards !active CPUs... 11535 */ 11536 if (!cpu_active(this_cpu)) 11537 return 0; 11538 11539 /* 11540 * This is OK, because current is on_cpu, which avoids it being picked 11541 * for load-balance and preemption/IRQs are still disabled avoiding 11542 * further scheduler activity on it and we're being very careful to 11543 * re-start the picking loop. 11544 */ 11545 rq_unpin_lock(this_rq, rf); 11546 11547 rcu_read_lock(); 11548 sd = rcu_dereference_check_sched_domain(this_rq->sd); 11549 11550 if (!READ_ONCE(this_rq->rd->overload) || 11551 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 11552 11553 if (sd) 11554 update_next_balance(sd, &next_balance); 11555 rcu_read_unlock(); 11556 11557 goto out; 11558 } 11559 rcu_read_unlock(); 11560 11561 raw_spin_rq_unlock(this_rq); 11562 11563 t0 = sched_clock_cpu(this_cpu); 11564 update_blocked_averages(this_cpu); 11565 11566 rcu_read_lock(); 11567 for_each_domain(this_cpu, sd) { 11568 int continue_balancing = 1; 11569 u64 domain_cost; 11570 11571 update_next_balance(sd, &next_balance); 11572 11573 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 11574 break; 11575 11576 if (sd->flags & SD_BALANCE_NEWIDLE) { 11577 11578 pulled_task = load_balance(this_cpu, this_rq, 11579 sd, CPU_NEWLY_IDLE, 11580 &continue_balancing); 11581 11582 t1 = sched_clock_cpu(this_cpu); 11583 domain_cost = t1 - t0; 11584 update_newidle_cost(sd, domain_cost); 11585 11586 curr_cost += domain_cost; 11587 t0 = t1; 11588 } 11589 11590 /* 11591 * Stop searching for tasks to pull if there are 11592 * now runnable tasks on this rq. 11593 */ 11594 if (pulled_task || this_rq->nr_running > 0 || 11595 this_rq->ttwu_pending) 11596 break; 11597 } 11598 rcu_read_unlock(); 11599 11600 raw_spin_rq_lock(this_rq); 11601 11602 if (curr_cost > this_rq->max_idle_balance_cost) 11603 this_rq->max_idle_balance_cost = curr_cost; 11604 11605 /* 11606 * While browsing the domains, we released the rq lock, a task could 11607 * have been enqueued in the meantime. Since we're not going idle, 11608 * pretend we pulled a task. 11609 */ 11610 if (this_rq->cfs.h_nr_running && !pulled_task) 11611 pulled_task = 1; 11612 11613 /* Is there a task of a high priority class? */ 11614 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 11615 pulled_task = -1; 11616 11617 out: 11618 /* Move the next balance forward */ 11619 if (time_after(this_rq->next_balance, next_balance)) 11620 this_rq->next_balance = next_balance; 11621 11622 if (pulled_task) 11623 this_rq->idle_stamp = 0; 11624 else 11625 nohz_newidle_balance(this_rq); 11626 11627 rq_repin_lock(this_rq, rf); 11628 11629 return pulled_task; 11630 } 11631 11632 /* 11633 * run_rebalance_domains is triggered when needed from the scheduler tick. 11634 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 11635 */ 11636 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 11637 { 11638 struct rq *this_rq = this_rq(); 11639 enum cpu_idle_type idle = this_rq->idle_balance ? 11640 CPU_IDLE : CPU_NOT_IDLE; 11641 11642 /* 11643 * If this CPU has a pending nohz_balance_kick, then do the 11644 * balancing on behalf of the other idle CPUs whose ticks are 11645 * stopped. Do nohz_idle_balance *before* rebalance_domains to 11646 * give the idle CPUs a chance to load balance. Else we may 11647 * load balance only within the local sched_domain hierarchy 11648 * and abort nohz_idle_balance altogether if we pull some load. 11649 */ 11650 if (nohz_idle_balance(this_rq, idle)) 11651 return; 11652 11653 /* normal load balance */ 11654 update_blocked_averages(this_rq->cpu); 11655 rebalance_domains(this_rq, idle); 11656 } 11657 11658 /* 11659 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 11660 */ 11661 void trigger_load_balance(struct rq *rq) 11662 { 11663 /* 11664 * Don't need to rebalance while attached to NULL domain or 11665 * runqueue CPU is not active 11666 */ 11667 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 11668 return; 11669 11670 if (time_after_eq(jiffies, rq->next_balance)) 11671 raise_softirq(SCHED_SOFTIRQ); 11672 11673 nohz_balancer_kick(rq); 11674 } 11675 11676 static void rq_online_fair(struct rq *rq) 11677 { 11678 update_sysctl(); 11679 11680 update_runtime_enabled(rq); 11681 } 11682 11683 static void rq_offline_fair(struct rq *rq) 11684 { 11685 update_sysctl(); 11686 11687 /* Ensure any throttled groups are reachable by pick_next_task */ 11688 unthrottle_offline_cfs_rqs(rq); 11689 } 11690 11691 #endif /* CONFIG_SMP */ 11692 11693 #ifdef CONFIG_SCHED_CORE 11694 static inline bool 11695 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 11696 { 11697 u64 slice = sched_slice(cfs_rq_of(se), se); 11698 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 11699 11700 return (rtime * min_nr_tasks > slice); 11701 } 11702 11703 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 11704 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 11705 { 11706 if (!sched_core_enabled(rq)) 11707 return; 11708 11709 /* 11710 * If runqueue has only one task which used up its slice and 11711 * if the sibling is forced idle, then trigger schedule to 11712 * give forced idle task a chance. 11713 * 11714 * sched_slice() considers only this active rq and it gets the 11715 * whole slice. But during force idle, we have siblings acting 11716 * like a single runqueue and hence we need to consider runnable 11717 * tasks on this CPU and the forced idle CPU. Ideally, we should 11718 * go through the forced idle rq, but that would be a perf hit. 11719 * We can assume that the forced idle CPU has at least 11720 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 11721 * if we need to give up the CPU. 11722 */ 11723 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 11724 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 11725 resched_curr(rq); 11726 } 11727 11728 /* 11729 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 11730 */ 11731 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle) 11732 { 11733 for_each_sched_entity(se) { 11734 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11735 11736 if (forceidle) { 11737 if (cfs_rq->forceidle_seq == fi_seq) 11738 break; 11739 cfs_rq->forceidle_seq = fi_seq; 11740 } 11741 11742 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 11743 } 11744 } 11745 11746 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 11747 { 11748 struct sched_entity *se = &p->se; 11749 11750 if (p->sched_class != &fair_sched_class) 11751 return; 11752 11753 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 11754 } 11755 11756 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 11757 { 11758 struct rq *rq = task_rq(a); 11759 struct sched_entity *sea = &a->se; 11760 struct sched_entity *seb = &b->se; 11761 struct cfs_rq *cfs_rqa; 11762 struct cfs_rq *cfs_rqb; 11763 s64 delta; 11764 11765 SCHED_WARN_ON(task_rq(b)->core != rq->core); 11766 11767 #ifdef CONFIG_FAIR_GROUP_SCHED 11768 /* 11769 * Find an se in the hierarchy for tasks a and b, such that the se's 11770 * are immediate siblings. 11771 */ 11772 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 11773 int sea_depth = sea->depth; 11774 int seb_depth = seb->depth; 11775 11776 if (sea_depth >= seb_depth) 11777 sea = parent_entity(sea); 11778 if (sea_depth <= seb_depth) 11779 seb = parent_entity(seb); 11780 } 11781 11782 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 11783 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 11784 11785 cfs_rqa = sea->cfs_rq; 11786 cfs_rqb = seb->cfs_rq; 11787 #else 11788 cfs_rqa = &task_rq(a)->cfs; 11789 cfs_rqb = &task_rq(b)->cfs; 11790 #endif 11791 11792 /* 11793 * Find delta after normalizing se's vruntime with its cfs_rq's 11794 * min_vruntime_fi, which would have been updated in prior calls 11795 * to se_fi_update(). 11796 */ 11797 delta = (s64)(sea->vruntime - seb->vruntime) + 11798 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 11799 11800 return delta > 0; 11801 } 11802 #else 11803 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 11804 #endif 11805 11806 /* 11807 * scheduler tick hitting a task of our scheduling class. 11808 * 11809 * NOTE: This function can be called remotely by the tick offload that 11810 * goes along full dynticks. Therefore no local assumption can be made 11811 * and everything must be accessed through the @rq and @curr passed in 11812 * parameters. 11813 */ 11814 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 11815 { 11816 struct cfs_rq *cfs_rq; 11817 struct sched_entity *se = &curr->se; 11818 11819 for_each_sched_entity(se) { 11820 cfs_rq = cfs_rq_of(se); 11821 entity_tick(cfs_rq, se, queued); 11822 } 11823 11824 if (static_branch_unlikely(&sched_numa_balancing)) 11825 task_tick_numa(rq, curr); 11826 11827 update_misfit_status(curr, rq); 11828 update_overutilized_status(task_rq(curr)); 11829 11830 task_tick_core(rq, curr); 11831 } 11832 11833 /* 11834 * called on fork with the child task as argument from the parent's context 11835 * - child not yet on the tasklist 11836 * - preemption disabled 11837 */ 11838 static void task_fork_fair(struct task_struct *p) 11839 { 11840 struct cfs_rq *cfs_rq; 11841 struct sched_entity *se = &p->se, *curr; 11842 struct rq *rq = this_rq(); 11843 struct rq_flags rf; 11844 11845 rq_lock(rq, &rf); 11846 update_rq_clock(rq); 11847 11848 cfs_rq = task_cfs_rq(current); 11849 curr = cfs_rq->curr; 11850 if (curr) { 11851 update_curr(cfs_rq); 11852 se->vruntime = curr->vruntime; 11853 } 11854 place_entity(cfs_rq, se, 1); 11855 11856 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 11857 /* 11858 * Upon rescheduling, sched_class::put_prev_task() will place 11859 * 'current' within the tree based on its new key value. 11860 */ 11861 swap(curr->vruntime, se->vruntime); 11862 resched_curr(rq); 11863 } 11864 11865 se->vruntime -= cfs_rq->min_vruntime; 11866 rq_unlock(rq, &rf); 11867 } 11868 11869 /* 11870 * Priority of the task has changed. Check to see if we preempt 11871 * the current task. 11872 */ 11873 static void 11874 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 11875 { 11876 if (!task_on_rq_queued(p)) 11877 return; 11878 11879 if (rq->cfs.nr_running == 1) 11880 return; 11881 11882 /* 11883 * Reschedule if we are currently running on this runqueue and 11884 * our priority decreased, or if we are not currently running on 11885 * this runqueue and our priority is higher than the current's 11886 */ 11887 if (task_current(rq, p)) { 11888 if (p->prio > oldprio) 11889 resched_curr(rq); 11890 } else 11891 check_preempt_curr(rq, p, 0); 11892 } 11893 11894 static inline bool vruntime_normalized(struct task_struct *p) 11895 { 11896 struct sched_entity *se = &p->se; 11897 11898 /* 11899 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 11900 * the dequeue_entity(.flags=0) will already have normalized the 11901 * vruntime. 11902 */ 11903 if (p->on_rq) 11904 return true; 11905 11906 /* 11907 * When !on_rq, vruntime of the task has usually NOT been normalized. 11908 * But there are some cases where it has already been normalized: 11909 * 11910 * - A forked child which is waiting for being woken up by 11911 * wake_up_new_task(). 11912 * - A task which has been woken up by try_to_wake_up() and 11913 * waiting for actually being woken up by sched_ttwu_pending(). 11914 */ 11915 if (!se->sum_exec_runtime || 11916 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup)) 11917 return true; 11918 11919 return false; 11920 } 11921 11922 #ifdef CONFIG_FAIR_GROUP_SCHED 11923 /* 11924 * Propagate the changes of the sched_entity across the tg tree to make it 11925 * visible to the root 11926 */ 11927 static void propagate_entity_cfs_rq(struct sched_entity *se) 11928 { 11929 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11930 11931 if (cfs_rq_throttled(cfs_rq)) 11932 return; 11933 11934 if (!throttled_hierarchy(cfs_rq)) 11935 list_add_leaf_cfs_rq(cfs_rq); 11936 11937 /* Start to propagate at parent */ 11938 se = se->parent; 11939 11940 for_each_sched_entity(se) { 11941 cfs_rq = cfs_rq_of(se); 11942 11943 update_load_avg(cfs_rq, se, UPDATE_TG); 11944 11945 if (cfs_rq_throttled(cfs_rq)) 11946 break; 11947 11948 if (!throttled_hierarchy(cfs_rq)) 11949 list_add_leaf_cfs_rq(cfs_rq); 11950 } 11951 } 11952 #else 11953 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 11954 #endif 11955 11956 static void detach_entity_cfs_rq(struct sched_entity *se) 11957 { 11958 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11959 11960 #ifdef CONFIG_SMP 11961 /* 11962 * In case the task sched_avg hasn't been attached: 11963 * - A forked task which hasn't been woken up by wake_up_new_task(). 11964 * - A task which has been woken up by try_to_wake_up() but is 11965 * waiting for actually being woken up by sched_ttwu_pending(). 11966 */ 11967 if (!se->avg.last_update_time) 11968 return; 11969 #endif 11970 11971 /* Catch up with the cfs_rq and remove our load when we leave */ 11972 update_load_avg(cfs_rq, se, 0); 11973 detach_entity_load_avg(cfs_rq, se); 11974 update_tg_load_avg(cfs_rq); 11975 propagate_entity_cfs_rq(se); 11976 } 11977 11978 static void attach_entity_cfs_rq(struct sched_entity *se) 11979 { 11980 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11981 11982 /* Synchronize entity with its cfs_rq */ 11983 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 11984 attach_entity_load_avg(cfs_rq, se); 11985 update_tg_load_avg(cfs_rq); 11986 propagate_entity_cfs_rq(se); 11987 } 11988 11989 static void detach_task_cfs_rq(struct task_struct *p) 11990 { 11991 struct sched_entity *se = &p->se; 11992 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11993 11994 if (!vruntime_normalized(p)) { 11995 /* 11996 * Fix up our vruntime so that the current sleep doesn't 11997 * cause 'unlimited' sleep bonus. 11998 */ 11999 place_entity(cfs_rq, se, 0); 12000 se->vruntime -= cfs_rq->min_vruntime; 12001 } 12002 12003 detach_entity_cfs_rq(se); 12004 } 12005 12006 static void attach_task_cfs_rq(struct task_struct *p) 12007 { 12008 struct sched_entity *se = &p->se; 12009 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12010 12011 attach_entity_cfs_rq(se); 12012 12013 if (!vruntime_normalized(p)) 12014 se->vruntime += cfs_rq->min_vruntime; 12015 } 12016 12017 static void switched_from_fair(struct rq *rq, struct task_struct *p) 12018 { 12019 detach_task_cfs_rq(p); 12020 } 12021 12022 static void switched_to_fair(struct rq *rq, struct task_struct *p) 12023 { 12024 attach_task_cfs_rq(p); 12025 12026 if (task_on_rq_queued(p)) { 12027 /* 12028 * We were most likely switched from sched_rt, so 12029 * kick off the schedule if running, otherwise just see 12030 * if we can still preempt the current task. 12031 */ 12032 if (task_current(rq, p)) 12033 resched_curr(rq); 12034 else 12035 check_preempt_curr(rq, p, 0); 12036 } 12037 } 12038 12039 /* Account for a task changing its policy or group. 12040 * 12041 * This routine is mostly called to set cfs_rq->curr field when a task 12042 * migrates between groups/classes. 12043 */ 12044 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 12045 { 12046 struct sched_entity *se = &p->se; 12047 12048 #ifdef CONFIG_SMP 12049 if (task_on_rq_queued(p)) { 12050 /* 12051 * Move the next running task to the front of the list, so our 12052 * cfs_tasks list becomes MRU one. 12053 */ 12054 list_move(&se->group_node, &rq->cfs_tasks); 12055 } 12056 #endif 12057 12058 for_each_sched_entity(se) { 12059 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12060 12061 set_next_entity(cfs_rq, se); 12062 /* ensure bandwidth has been allocated on our new cfs_rq */ 12063 account_cfs_rq_runtime(cfs_rq, 0); 12064 } 12065 } 12066 12067 void init_cfs_rq(struct cfs_rq *cfs_rq) 12068 { 12069 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 12070 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 12071 #ifdef CONFIG_SMP 12072 raw_spin_lock_init(&cfs_rq->removed.lock); 12073 #endif 12074 } 12075 12076 #ifdef CONFIG_FAIR_GROUP_SCHED 12077 static void task_change_group_fair(struct task_struct *p) 12078 { 12079 /* 12080 * We couldn't detach or attach a forked task which 12081 * hasn't been woken up by wake_up_new_task(). 12082 */ 12083 if (READ_ONCE(p->__state) == TASK_NEW) 12084 return; 12085 12086 detach_task_cfs_rq(p); 12087 12088 #ifdef CONFIG_SMP 12089 /* Tell se's cfs_rq has been changed -- migrated */ 12090 p->se.avg.last_update_time = 0; 12091 #endif 12092 set_task_rq(p, task_cpu(p)); 12093 attach_task_cfs_rq(p); 12094 } 12095 12096 void free_fair_sched_group(struct task_group *tg) 12097 { 12098 int i; 12099 12100 for_each_possible_cpu(i) { 12101 if (tg->cfs_rq) 12102 kfree(tg->cfs_rq[i]); 12103 if (tg->se) 12104 kfree(tg->se[i]); 12105 } 12106 12107 kfree(tg->cfs_rq); 12108 kfree(tg->se); 12109 } 12110 12111 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12112 { 12113 struct sched_entity *se; 12114 struct cfs_rq *cfs_rq; 12115 int i; 12116 12117 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 12118 if (!tg->cfs_rq) 12119 goto err; 12120 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 12121 if (!tg->se) 12122 goto err; 12123 12124 tg->shares = NICE_0_LOAD; 12125 12126 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12127 12128 for_each_possible_cpu(i) { 12129 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 12130 GFP_KERNEL, cpu_to_node(i)); 12131 if (!cfs_rq) 12132 goto err; 12133 12134 se = kzalloc_node(sizeof(struct sched_entity_stats), 12135 GFP_KERNEL, cpu_to_node(i)); 12136 if (!se) 12137 goto err_free_rq; 12138 12139 init_cfs_rq(cfs_rq); 12140 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 12141 init_entity_runnable_average(se); 12142 } 12143 12144 return 1; 12145 12146 err_free_rq: 12147 kfree(cfs_rq); 12148 err: 12149 return 0; 12150 } 12151 12152 void online_fair_sched_group(struct task_group *tg) 12153 { 12154 struct sched_entity *se; 12155 struct rq_flags rf; 12156 struct rq *rq; 12157 int i; 12158 12159 for_each_possible_cpu(i) { 12160 rq = cpu_rq(i); 12161 se = tg->se[i]; 12162 rq_lock_irq(rq, &rf); 12163 update_rq_clock(rq); 12164 attach_entity_cfs_rq(se); 12165 sync_throttle(tg, i); 12166 rq_unlock_irq(rq, &rf); 12167 } 12168 } 12169 12170 void unregister_fair_sched_group(struct task_group *tg) 12171 { 12172 unsigned long flags; 12173 struct rq *rq; 12174 int cpu; 12175 12176 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12177 12178 for_each_possible_cpu(cpu) { 12179 if (tg->se[cpu]) 12180 remove_entity_load_avg(tg->se[cpu]); 12181 12182 /* 12183 * Only empty task groups can be destroyed; so we can speculatively 12184 * check on_list without danger of it being re-added. 12185 */ 12186 if (!tg->cfs_rq[cpu]->on_list) 12187 continue; 12188 12189 rq = cpu_rq(cpu); 12190 12191 raw_spin_rq_lock_irqsave(rq, flags); 12192 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 12193 raw_spin_rq_unlock_irqrestore(rq, flags); 12194 } 12195 } 12196 12197 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 12198 struct sched_entity *se, int cpu, 12199 struct sched_entity *parent) 12200 { 12201 struct rq *rq = cpu_rq(cpu); 12202 12203 cfs_rq->tg = tg; 12204 cfs_rq->rq = rq; 12205 init_cfs_rq_runtime(cfs_rq); 12206 12207 tg->cfs_rq[cpu] = cfs_rq; 12208 tg->se[cpu] = se; 12209 12210 /* se could be NULL for root_task_group */ 12211 if (!se) 12212 return; 12213 12214 if (!parent) { 12215 se->cfs_rq = &rq->cfs; 12216 se->depth = 0; 12217 } else { 12218 se->cfs_rq = parent->my_q; 12219 se->depth = parent->depth + 1; 12220 } 12221 12222 se->my_q = cfs_rq; 12223 /* guarantee group entities always have weight */ 12224 update_load_set(&se->load, NICE_0_LOAD); 12225 se->parent = parent; 12226 } 12227 12228 static DEFINE_MUTEX(shares_mutex); 12229 12230 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 12231 { 12232 int i; 12233 12234 lockdep_assert_held(&shares_mutex); 12235 12236 /* 12237 * We can't change the weight of the root cgroup. 12238 */ 12239 if (!tg->se[0]) 12240 return -EINVAL; 12241 12242 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 12243 12244 if (tg->shares == shares) 12245 return 0; 12246 12247 tg->shares = shares; 12248 for_each_possible_cpu(i) { 12249 struct rq *rq = cpu_rq(i); 12250 struct sched_entity *se = tg->se[i]; 12251 struct rq_flags rf; 12252 12253 /* Propagate contribution to hierarchy */ 12254 rq_lock_irqsave(rq, &rf); 12255 update_rq_clock(rq); 12256 for_each_sched_entity(se) { 12257 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 12258 update_cfs_group(se); 12259 } 12260 rq_unlock_irqrestore(rq, &rf); 12261 } 12262 12263 return 0; 12264 } 12265 12266 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 12267 { 12268 int ret; 12269 12270 mutex_lock(&shares_mutex); 12271 if (tg_is_idle(tg)) 12272 ret = -EINVAL; 12273 else 12274 ret = __sched_group_set_shares(tg, shares); 12275 mutex_unlock(&shares_mutex); 12276 12277 return ret; 12278 } 12279 12280 int sched_group_set_idle(struct task_group *tg, long idle) 12281 { 12282 int i; 12283 12284 if (tg == &root_task_group) 12285 return -EINVAL; 12286 12287 if (idle < 0 || idle > 1) 12288 return -EINVAL; 12289 12290 mutex_lock(&shares_mutex); 12291 12292 if (tg->idle == idle) { 12293 mutex_unlock(&shares_mutex); 12294 return 0; 12295 } 12296 12297 tg->idle = idle; 12298 12299 for_each_possible_cpu(i) { 12300 struct rq *rq = cpu_rq(i); 12301 struct sched_entity *se = tg->se[i]; 12302 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 12303 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 12304 long idle_task_delta; 12305 struct rq_flags rf; 12306 12307 rq_lock_irqsave(rq, &rf); 12308 12309 grp_cfs_rq->idle = idle; 12310 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 12311 goto next_cpu; 12312 12313 if (se->on_rq) { 12314 parent_cfs_rq = cfs_rq_of(se); 12315 if (cfs_rq_is_idle(grp_cfs_rq)) 12316 parent_cfs_rq->idle_nr_running++; 12317 else 12318 parent_cfs_rq->idle_nr_running--; 12319 } 12320 12321 idle_task_delta = grp_cfs_rq->h_nr_running - 12322 grp_cfs_rq->idle_h_nr_running; 12323 if (!cfs_rq_is_idle(grp_cfs_rq)) 12324 idle_task_delta *= -1; 12325 12326 for_each_sched_entity(se) { 12327 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12328 12329 if (!se->on_rq) 12330 break; 12331 12332 cfs_rq->idle_h_nr_running += idle_task_delta; 12333 12334 /* Already accounted at parent level and above. */ 12335 if (cfs_rq_is_idle(cfs_rq)) 12336 break; 12337 } 12338 12339 next_cpu: 12340 rq_unlock_irqrestore(rq, &rf); 12341 } 12342 12343 /* Idle groups have minimum weight. */ 12344 if (tg_is_idle(tg)) 12345 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 12346 else 12347 __sched_group_set_shares(tg, NICE_0_LOAD); 12348 12349 mutex_unlock(&shares_mutex); 12350 return 0; 12351 } 12352 12353 #else /* CONFIG_FAIR_GROUP_SCHED */ 12354 12355 void free_fair_sched_group(struct task_group *tg) { } 12356 12357 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12358 { 12359 return 1; 12360 } 12361 12362 void online_fair_sched_group(struct task_group *tg) { } 12363 12364 void unregister_fair_sched_group(struct task_group *tg) { } 12365 12366 #endif /* CONFIG_FAIR_GROUP_SCHED */ 12367 12368 12369 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 12370 { 12371 struct sched_entity *se = &task->se; 12372 unsigned int rr_interval = 0; 12373 12374 /* 12375 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 12376 * idle runqueue: 12377 */ 12378 if (rq->cfs.load.weight) 12379 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 12380 12381 return rr_interval; 12382 } 12383 12384 /* 12385 * All the scheduling class methods: 12386 */ 12387 DEFINE_SCHED_CLASS(fair) = { 12388 12389 .enqueue_task = enqueue_task_fair, 12390 .dequeue_task = dequeue_task_fair, 12391 .yield_task = yield_task_fair, 12392 .yield_to_task = yield_to_task_fair, 12393 12394 .check_preempt_curr = check_preempt_wakeup, 12395 12396 .pick_next_task = __pick_next_task_fair, 12397 .put_prev_task = put_prev_task_fair, 12398 .set_next_task = set_next_task_fair, 12399 12400 #ifdef CONFIG_SMP 12401 .balance = balance_fair, 12402 .pick_task = pick_task_fair, 12403 .select_task_rq = select_task_rq_fair, 12404 .migrate_task_rq = migrate_task_rq_fair, 12405 12406 .rq_online = rq_online_fair, 12407 .rq_offline = rq_offline_fair, 12408 12409 .task_dead = task_dead_fair, 12410 .set_cpus_allowed = set_cpus_allowed_common, 12411 #endif 12412 12413 .task_tick = task_tick_fair, 12414 .task_fork = task_fork_fair, 12415 12416 .prio_changed = prio_changed_fair, 12417 .switched_from = switched_from_fair, 12418 .switched_to = switched_to_fair, 12419 12420 .get_rr_interval = get_rr_interval_fair, 12421 12422 .update_curr = update_curr_fair, 12423 12424 #ifdef CONFIG_FAIR_GROUP_SCHED 12425 .task_change_group = task_change_group_fair, 12426 #endif 12427 12428 #ifdef CONFIG_UCLAMP_TASK 12429 .uclamp_enabled = 1, 12430 #endif 12431 }; 12432 12433 #ifdef CONFIG_SCHED_DEBUG 12434 void print_cfs_stats(struct seq_file *m, int cpu) 12435 { 12436 struct cfs_rq *cfs_rq, *pos; 12437 12438 rcu_read_lock(); 12439 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 12440 print_cfs_rq(m, cpu, cfs_rq); 12441 rcu_read_unlock(); 12442 } 12443 12444 #ifdef CONFIG_NUMA_BALANCING 12445 void show_numa_stats(struct task_struct *p, struct seq_file *m) 12446 { 12447 int node; 12448 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 12449 struct numa_group *ng; 12450 12451 rcu_read_lock(); 12452 ng = rcu_dereference(p->numa_group); 12453 for_each_online_node(node) { 12454 if (p->numa_faults) { 12455 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 12456 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 12457 } 12458 if (ng) { 12459 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 12460 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 12461 } 12462 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 12463 } 12464 rcu_read_unlock(); 12465 } 12466 #endif /* CONFIG_NUMA_BALANCING */ 12467 #endif /* CONFIG_SCHED_DEBUG */ 12468 12469 __init void init_sched_fair_class(void) 12470 { 12471 #ifdef CONFIG_SMP 12472 int i; 12473 12474 for_each_possible_cpu(i) { 12475 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 12476 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 12477 } 12478 12479 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 12480 12481 #ifdef CONFIG_NO_HZ_COMMON 12482 nohz.next_balance = jiffies; 12483 nohz.next_blocked = jiffies; 12484 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 12485 #endif 12486 #endif /* SMP */ 12487 12488 } 12489