xref: /linux/kernel/sched/fair.c (revision 1623bc27a85a93e82194c8d077eccc464efa67db)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51 
52 #include <asm/switch_to.h>
53 
54 #include "sched.h"
55 #include "stats.h"
56 #include "autogroup.h"
57 
58 /*
59  * The initial- and re-scaling of tunables is configurable
60  *
61  * Options are:
62  *
63  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
64  *   SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
65  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66  *
67  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68  */
69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70 
71 /*
72  * Minimal preemption granularity for CPU-bound tasks:
73  *
74  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75  */
76 unsigned int sysctl_sched_base_slice			= 750000ULL;
77 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
78 
79 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
80 
81 static int __init setup_sched_thermal_decay_shift(char *str)
82 {
83 	pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
84 	return 1;
85 }
86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
87 
88 #ifdef CONFIG_SMP
89 /*
90  * For asym packing, by default the lower numbered CPU has higher priority.
91  */
92 int __weak arch_asym_cpu_priority(int cpu)
93 {
94 	return -cpu;
95 }
96 
97 /*
98  * The margin used when comparing utilization with CPU capacity.
99  *
100  * (default: ~20%)
101  */
102 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
103 
104 /*
105  * The margin used when comparing CPU capacities.
106  * is 'cap1' noticeably greater than 'cap2'
107  *
108  * (default: ~5%)
109  */
110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
111 #endif
112 
113 #ifdef CONFIG_CFS_BANDWIDTH
114 /*
115  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
116  * each time a cfs_rq requests quota.
117  *
118  * Note: in the case that the slice exceeds the runtime remaining (either due
119  * to consumption or the quota being specified to be smaller than the slice)
120  * we will always only issue the remaining available time.
121  *
122  * (default: 5 msec, units: microseconds)
123  */
124 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
125 #endif
126 
127 #ifdef CONFIG_NUMA_BALANCING
128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
129 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
130 #endif
131 
132 #ifdef CONFIG_SYSCTL
133 static struct ctl_table sched_fair_sysctls[] = {
134 #ifdef CONFIG_CFS_BANDWIDTH
135 	{
136 		.procname       = "sched_cfs_bandwidth_slice_us",
137 		.data           = &sysctl_sched_cfs_bandwidth_slice,
138 		.maxlen         = sizeof(unsigned int),
139 		.mode           = 0644,
140 		.proc_handler   = proc_dointvec_minmax,
141 		.extra1         = SYSCTL_ONE,
142 	},
143 #endif
144 #ifdef CONFIG_NUMA_BALANCING
145 	{
146 		.procname	= "numa_balancing_promote_rate_limit_MBps",
147 		.data		= &sysctl_numa_balancing_promote_rate_limit,
148 		.maxlen		= sizeof(unsigned int),
149 		.mode		= 0644,
150 		.proc_handler	= proc_dointvec_minmax,
151 		.extra1		= SYSCTL_ZERO,
152 	},
153 #endif /* CONFIG_NUMA_BALANCING */
154 };
155 
156 static int __init sched_fair_sysctl_init(void)
157 {
158 	register_sysctl_init("kernel", sched_fair_sysctls);
159 	return 0;
160 }
161 late_initcall(sched_fair_sysctl_init);
162 #endif
163 
164 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
165 {
166 	lw->weight += inc;
167 	lw->inv_weight = 0;
168 }
169 
170 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
171 {
172 	lw->weight -= dec;
173 	lw->inv_weight = 0;
174 }
175 
176 static inline void update_load_set(struct load_weight *lw, unsigned long w)
177 {
178 	lw->weight = w;
179 	lw->inv_weight = 0;
180 }
181 
182 /*
183  * Increase the granularity value when there are more CPUs,
184  * because with more CPUs the 'effective latency' as visible
185  * to users decreases. But the relationship is not linear,
186  * so pick a second-best guess by going with the log2 of the
187  * number of CPUs.
188  *
189  * This idea comes from the SD scheduler of Con Kolivas:
190  */
191 static unsigned int get_update_sysctl_factor(void)
192 {
193 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
194 	unsigned int factor;
195 
196 	switch (sysctl_sched_tunable_scaling) {
197 	case SCHED_TUNABLESCALING_NONE:
198 		factor = 1;
199 		break;
200 	case SCHED_TUNABLESCALING_LINEAR:
201 		factor = cpus;
202 		break;
203 	case SCHED_TUNABLESCALING_LOG:
204 	default:
205 		factor = 1 + ilog2(cpus);
206 		break;
207 	}
208 
209 	return factor;
210 }
211 
212 static void update_sysctl(void)
213 {
214 	unsigned int factor = get_update_sysctl_factor();
215 
216 #define SET_SYSCTL(name) \
217 	(sysctl_##name = (factor) * normalized_sysctl_##name)
218 	SET_SYSCTL(sched_base_slice);
219 #undef SET_SYSCTL
220 }
221 
222 void __init sched_init_granularity(void)
223 {
224 	update_sysctl();
225 }
226 
227 #define WMULT_CONST	(~0U)
228 #define WMULT_SHIFT	32
229 
230 static void __update_inv_weight(struct load_weight *lw)
231 {
232 	unsigned long w;
233 
234 	if (likely(lw->inv_weight))
235 		return;
236 
237 	w = scale_load_down(lw->weight);
238 
239 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
240 		lw->inv_weight = 1;
241 	else if (unlikely(!w))
242 		lw->inv_weight = WMULT_CONST;
243 	else
244 		lw->inv_weight = WMULT_CONST / w;
245 }
246 
247 /*
248  * delta_exec * weight / lw.weight
249  *   OR
250  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
251  *
252  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
253  * we're guaranteed shift stays positive because inv_weight is guaranteed to
254  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
255  *
256  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
257  * weight/lw.weight <= 1, and therefore our shift will also be positive.
258  */
259 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
260 {
261 	u64 fact = scale_load_down(weight);
262 	u32 fact_hi = (u32)(fact >> 32);
263 	int shift = WMULT_SHIFT;
264 	int fs;
265 
266 	__update_inv_weight(lw);
267 
268 	if (unlikely(fact_hi)) {
269 		fs = fls(fact_hi);
270 		shift -= fs;
271 		fact >>= fs;
272 	}
273 
274 	fact = mul_u32_u32(fact, lw->inv_weight);
275 
276 	fact_hi = (u32)(fact >> 32);
277 	if (fact_hi) {
278 		fs = fls(fact_hi);
279 		shift -= fs;
280 		fact >>= fs;
281 	}
282 
283 	return mul_u64_u32_shr(delta_exec, fact, shift);
284 }
285 
286 /*
287  * delta /= w
288  */
289 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
290 {
291 	if (unlikely(se->load.weight != NICE_0_LOAD))
292 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
293 
294 	return delta;
295 }
296 
297 const struct sched_class fair_sched_class;
298 
299 /**************************************************************
300  * CFS operations on generic schedulable entities:
301  */
302 
303 #ifdef CONFIG_FAIR_GROUP_SCHED
304 
305 /* Walk up scheduling entities hierarchy */
306 #define for_each_sched_entity(se) \
307 		for (; se; se = se->parent)
308 
309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
310 {
311 	struct rq *rq = rq_of(cfs_rq);
312 	int cpu = cpu_of(rq);
313 
314 	if (cfs_rq->on_list)
315 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
316 
317 	cfs_rq->on_list = 1;
318 
319 	/*
320 	 * Ensure we either appear before our parent (if already
321 	 * enqueued) or force our parent to appear after us when it is
322 	 * enqueued. The fact that we always enqueue bottom-up
323 	 * reduces this to two cases and a special case for the root
324 	 * cfs_rq. Furthermore, it also means that we will always reset
325 	 * tmp_alone_branch either when the branch is connected
326 	 * to a tree or when we reach the top of the tree
327 	 */
328 	if (cfs_rq->tg->parent &&
329 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
330 		/*
331 		 * If parent is already on the list, we add the child
332 		 * just before. Thanks to circular linked property of
333 		 * the list, this means to put the child at the tail
334 		 * of the list that starts by parent.
335 		 */
336 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
338 		/*
339 		 * The branch is now connected to its tree so we can
340 		 * reset tmp_alone_branch to the beginning of the
341 		 * list.
342 		 */
343 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
344 		return true;
345 	}
346 
347 	if (!cfs_rq->tg->parent) {
348 		/*
349 		 * cfs rq without parent should be put
350 		 * at the tail of the list.
351 		 */
352 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
353 			&rq->leaf_cfs_rq_list);
354 		/*
355 		 * We have reach the top of a tree so we can reset
356 		 * tmp_alone_branch to the beginning of the list.
357 		 */
358 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
359 		return true;
360 	}
361 
362 	/*
363 	 * The parent has not already been added so we want to
364 	 * make sure that it will be put after us.
365 	 * tmp_alone_branch points to the begin of the branch
366 	 * where we will add parent.
367 	 */
368 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
369 	/*
370 	 * update tmp_alone_branch to points to the new begin
371 	 * of the branch
372 	 */
373 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
374 	return false;
375 }
376 
377 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
378 {
379 	if (cfs_rq->on_list) {
380 		struct rq *rq = rq_of(cfs_rq);
381 
382 		/*
383 		 * With cfs_rq being unthrottled/throttled during an enqueue,
384 		 * it can happen the tmp_alone_branch points to the leaf that
385 		 * we finally want to delete. In this case, tmp_alone_branch moves
386 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
387 		 * at the end of the enqueue.
388 		 */
389 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
390 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
391 
392 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
393 		cfs_rq->on_list = 0;
394 	}
395 }
396 
397 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
398 {
399 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
400 }
401 
402 /* Iterate through all leaf cfs_rq's on a runqueue */
403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
404 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
405 				 leaf_cfs_rq_list)
406 
407 /* Do the two (enqueued) entities belong to the same group ? */
408 static inline struct cfs_rq *
409 is_same_group(struct sched_entity *se, struct sched_entity *pse)
410 {
411 	if (se->cfs_rq == pse->cfs_rq)
412 		return se->cfs_rq;
413 
414 	return NULL;
415 }
416 
417 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
418 {
419 	return se->parent;
420 }
421 
422 static void
423 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
424 {
425 	int se_depth, pse_depth;
426 
427 	/*
428 	 * preemption test can be made between sibling entities who are in the
429 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
430 	 * both tasks until we find their ancestors who are siblings of common
431 	 * parent.
432 	 */
433 
434 	/* First walk up until both entities are at same depth */
435 	se_depth = (*se)->depth;
436 	pse_depth = (*pse)->depth;
437 
438 	while (se_depth > pse_depth) {
439 		se_depth--;
440 		*se = parent_entity(*se);
441 	}
442 
443 	while (pse_depth > se_depth) {
444 		pse_depth--;
445 		*pse = parent_entity(*pse);
446 	}
447 
448 	while (!is_same_group(*se, *pse)) {
449 		*se = parent_entity(*se);
450 		*pse = parent_entity(*pse);
451 	}
452 }
453 
454 static int tg_is_idle(struct task_group *tg)
455 {
456 	return tg->idle > 0;
457 }
458 
459 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
460 {
461 	return cfs_rq->idle > 0;
462 }
463 
464 static int se_is_idle(struct sched_entity *se)
465 {
466 	if (entity_is_task(se))
467 		return task_has_idle_policy(task_of(se));
468 	return cfs_rq_is_idle(group_cfs_rq(se));
469 }
470 
471 #else	/* !CONFIG_FAIR_GROUP_SCHED */
472 
473 #define for_each_sched_entity(se) \
474 		for (; se; se = NULL)
475 
476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
477 {
478 	return true;
479 }
480 
481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
482 {
483 }
484 
485 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
486 {
487 }
488 
489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
490 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
491 
492 static inline struct sched_entity *parent_entity(struct sched_entity *se)
493 {
494 	return NULL;
495 }
496 
497 static inline void
498 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
499 {
500 }
501 
502 static inline int tg_is_idle(struct task_group *tg)
503 {
504 	return 0;
505 }
506 
507 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
508 {
509 	return 0;
510 }
511 
512 static int se_is_idle(struct sched_entity *se)
513 {
514 	return task_has_idle_policy(task_of(se));
515 }
516 
517 #endif	/* CONFIG_FAIR_GROUP_SCHED */
518 
519 static __always_inline
520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
521 
522 /**************************************************************
523  * Scheduling class tree data structure manipulation methods:
524  */
525 
526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
527 {
528 	s64 delta = (s64)(vruntime - max_vruntime);
529 	if (delta > 0)
530 		max_vruntime = vruntime;
531 
532 	return max_vruntime;
533 }
534 
535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
536 {
537 	s64 delta = (s64)(vruntime - min_vruntime);
538 	if (delta < 0)
539 		min_vruntime = vruntime;
540 
541 	return min_vruntime;
542 }
543 
544 static inline bool entity_before(const struct sched_entity *a,
545 				 const struct sched_entity *b)
546 {
547 	/*
548 	 * Tiebreak on vruntime seems unnecessary since it can
549 	 * hardly happen.
550 	 */
551 	return (s64)(a->deadline - b->deadline) < 0;
552 }
553 
554 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
555 {
556 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
557 }
558 
559 #define __node_2_se(node) \
560 	rb_entry((node), struct sched_entity, run_node)
561 
562 /*
563  * Compute virtual time from the per-task service numbers:
564  *
565  * Fair schedulers conserve lag:
566  *
567  *   \Sum lag_i = 0
568  *
569  * Where lag_i is given by:
570  *
571  *   lag_i = S - s_i = w_i * (V - v_i)
572  *
573  * Where S is the ideal service time and V is it's virtual time counterpart.
574  * Therefore:
575  *
576  *   \Sum lag_i = 0
577  *   \Sum w_i * (V - v_i) = 0
578  *   \Sum w_i * V - w_i * v_i = 0
579  *
580  * From which we can solve an expression for V in v_i (which we have in
581  * se->vruntime):
582  *
583  *       \Sum v_i * w_i   \Sum v_i * w_i
584  *   V = -------------- = --------------
585  *          \Sum w_i            W
586  *
587  * Specifically, this is the weighted average of all entity virtual runtimes.
588  *
589  * [[ NOTE: this is only equal to the ideal scheduler under the condition
590  *          that join/leave operations happen at lag_i = 0, otherwise the
591  *          virtual time has non-contiguous motion equivalent to:
592  *
593  *	      V +-= lag_i / W
594  *
595  *	    Also see the comment in place_entity() that deals with this. ]]
596  *
597  * However, since v_i is u64, and the multiplication could easily overflow
598  * transform it into a relative form that uses smaller quantities:
599  *
600  * Substitute: v_i == (v_i - v0) + v0
601  *
602  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
603  * V = ---------------------------- = --------------------- + v0
604  *                  W                            W
605  *
606  * Which we track using:
607  *
608  *                    v0 := cfs_rq->min_vruntime
609  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
610  *              \Sum w_i := cfs_rq->avg_load
611  *
612  * Since min_vruntime is a monotonic increasing variable that closely tracks
613  * the per-task service, these deltas: (v_i - v), will be in the order of the
614  * maximal (virtual) lag induced in the system due to quantisation.
615  *
616  * Also, we use scale_load_down() to reduce the size.
617  *
618  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
619  */
620 static void
621 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
622 {
623 	unsigned long weight = scale_load_down(se->load.weight);
624 	s64 key = entity_key(cfs_rq, se);
625 
626 	cfs_rq->avg_vruntime += key * weight;
627 	cfs_rq->avg_load += weight;
628 }
629 
630 static void
631 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
632 {
633 	unsigned long weight = scale_load_down(se->load.weight);
634 	s64 key = entity_key(cfs_rq, se);
635 
636 	cfs_rq->avg_vruntime -= key * weight;
637 	cfs_rq->avg_load -= weight;
638 }
639 
640 static inline
641 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
642 {
643 	/*
644 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
645 	 */
646 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
647 }
648 
649 /*
650  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
651  * For this to be so, the result of this function must have a left bias.
652  */
653 u64 avg_vruntime(struct cfs_rq *cfs_rq)
654 {
655 	struct sched_entity *curr = cfs_rq->curr;
656 	s64 avg = cfs_rq->avg_vruntime;
657 	long load = cfs_rq->avg_load;
658 
659 	if (curr && curr->on_rq) {
660 		unsigned long weight = scale_load_down(curr->load.weight);
661 
662 		avg += entity_key(cfs_rq, curr) * weight;
663 		load += weight;
664 	}
665 
666 	if (load) {
667 		/* sign flips effective floor / ceiling */
668 		if (avg < 0)
669 			avg -= (load - 1);
670 		avg = div_s64(avg, load);
671 	}
672 
673 	return cfs_rq->min_vruntime + avg;
674 }
675 
676 /*
677  * lag_i = S - s_i = w_i * (V - v_i)
678  *
679  * However, since V is approximated by the weighted average of all entities it
680  * is possible -- by addition/removal/reweight to the tree -- to move V around
681  * and end up with a larger lag than we started with.
682  *
683  * Limit this to either double the slice length with a minimum of TICK_NSEC
684  * since that is the timing granularity.
685  *
686  * EEVDF gives the following limit for a steady state system:
687  *
688  *   -r_max < lag < max(r_max, q)
689  *
690  * XXX could add max_slice to the augmented data to track this.
691  */
692 static s64 entity_lag(u64 avruntime, struct sched_entity *se)
693 {
694 	s64 vlag, limit;
695 
696 	vlag = avruntime - se->vruntime;
697 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
698 
699 	return clamp(vlag, -limit, limit);
700 }
701 
702 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
703 {
704 	SCHED_WARN_ON(!se->on_rq);
705 
706 	se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
707 }
708 
709 /*
710  * Entity is eligible once it received less service than it ought to have,
711  * eg. lag >= 0.
712  *
713  * lag_i = S - s_i = w_i*(V - v_i)
714  *
715  * lag_i >= 0 -> V >= v_i
716  *
717  *     \Sum (v_i - v)*w_i
718  * V = ------------------ + v
719  *          \Sum w_i
720  *
721  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
722  *
723  * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
724  *       to the loss in precision caused by the division.
725  */
726 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
727 {
728 	struct sched_entity *curr = cfs_rq->curr;
729 	s64 avg = cfs_rq->avg_vruntime;
730 	long load = cfs_rq->avg_load;
731 
732 	if (curr && curr->on_rq) {
733 		unsigned long weight = scale_load_down(curr->load.weight);
734 
735 		avg += entity_key(cfs_rq, curr) * weight;
736 		load += weight;
737 	}
738 
739 	return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
740 }
741 
742 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
743 {
744 	return vruntime_eligible(cfs_rq, se->vruntime);
745 }
746 
747 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
748 {
749 	u64 min_vruntime = cfs_rq->min_vruntime;
750 	/*
751 	 * open coded max_vruntime() to allow updating avg_vruntime
752 	 */
753 	s64 delta = (s64)(vruntime - min_vruntime);
754 	if (delta > 0) {
755 		avg_vruntime_update(cfs_rq, delta);
756 		min_vruntime = vruntime;
757 	}
758 	return min_vruntime;
759 }
760 
761 static void update_min_vruntime(struct cfs_rq *cfs_rq)
762 {
763 	struct sched_entity *se = __pick_root_entity(cfs_rq);
764 	struct sched_entity *curr = cfs_rq->curr;
765 	u64 vruntime = cfs_rq->min_vruntime;
766 
767 	if (curr) {
768 		if (curr->on_rq)
769 			vruntime = curr->vruntime;
770 		else
771 			curr = NULL;
772 	}
773 
774 	if (se) {
775 		if (!curr)
776 			vruntime = se->min_vruntime;
777 		else
778 			vruntime = min_vruntime(vruntime, se->min_vruntime);
779 	}
780 
781 	/* ensure we never gain time by being placed backwards. */
782 	cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
783 }
784 
785 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
786 {
787 	struct sched_entity *root = __pick_root_entity(cfs_rq);
788 	struct sched_entity *curr = cfs_rq->curr;
789 	u64 min_slice = ~0ULL;
790 
791 	if (curr && curr->on_rq)
792 		min_slice = curr->slice;
793 
794 	if (root)
795 		min_slice = min(min_slice, root->min_slice);
796 
797 	return min_slice;
798 }
799 
800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
801 {
802 	return entity_before(__node_2_se(a), __node_2_se(b));
803 }
804 
805 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
806 
807 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
808 {
809 	if (node) {
810 		struct sched_entity *rse = __node_2_se(node);
811 		if (vruntime_gt(min_vruntime, se, rse))
812 			se->min_vruntime = rse->min_vruntime;
813 	}
814 }
815 
816 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
817 {
818 	if (node) {
819 		struct sched_entity *rse = __node_2_se(node);
820 		if (rse->min_slice < se->min_slice)
821 			se->min_slice = rse->min_slice;
822 	}
823 }
824 
825 /*
826  * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
827  */
828 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
829 {
830 	u64 old_min_vruntime = se->min_vruntime;
831 	u64 old_min_slice = se->min_slice;
832 	struct rb_node *node = &se->run_node;
833 
834 	se->min_vruntime = se->vruntime;
835 	__min_vruntime_update(se, node->rb_right);
836 	__min_vruntime_update(se, node->rb_left);
837 
838 	se->min_slice = se->slice;
839 	__min_slice_update(se, node->rb_right);
840 	__min_slice_update(se, node->rb_left);
841 
842 	return se->min_vruntime == old_min_vruntime &&
843 	       se->min_slice == old_min_slice;
844 }
845 
846 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
847 		     run_node, min_vruntime, min_vruntime_update);
848 
849 /*
850  * Enqueue an entity into the rb-tree:
851  */
852 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
853 {
854 	avg_vruntime_add(cfs_rq, se);
855 	se->min_vruntime = se->vruntime;
856 	se->min_slice = se->slice;
857 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
858 				__entity_less, &min_vruntime_cb);
859 }
860 
861 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
862 {
863 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
864 				  &min_vruntime_cb);
865 	avg_vruntime_sub(cfs_rq, se);
866 }
867 
868 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
869 {
870 	struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
871 
872 	if (!root)
873 		return NULL;
874 
875 	return __node_2_se(root);
876 }
877 
878 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
879 {
880 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
881 
882 	if (!left)
883 		return NULL;
884 
885 	return __node_2_se(left);
886 }
887 
888 /*
889  * Earliest Eligible Virtual Deadline First
890  *
891  * In order to provide latency guarantees for different request sizes
892  * EEVDF selects the best runnable task from two criteria:
893  *
894  *  1) the task must be eligible (must be owed service)
895  *
896  *  2) from those tasks that meet 1), we select the one
897  *     with the earliest virtual deadline.
898  *
899  * We can do this in O(log n) time due to an augmented RB-tree. The
900  * tree keeps the entries sorted on deadline, but also functions as a
901  * heap based on the vruntime by keeping:
902  *
903  *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
904  *
905  * Which allows tree pruning through eligibility.
906  */
907 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
908 {
909 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
910 	struct sched_entity *se = __pick_first_entity(cfs_rq);
911 	struct sched_entity *curr = cfs_rq->curr;
912 	struct sched_entity *best = NULL;
913 
914 	/*
915 	 * We can safely skip eligibility check if there is only one entity
916 	 * in this cfs_rq, saving some cycles.
917 	 */
918 	if (cfs_rq->nr_running == 1)
919 		return curr && curr->on_rq ? curr : se;
920 
921 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
922 		curr = NULL;
923 
924 	/*
925 	 * Once selected, run a task until it either becomes non-eligible or
926 	 * until it gets a new slice. See the HACK in set_next_entity().
927 	 */
928 	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
929 		return curr;
930 
931 	/* Pick the leftmost entity if it's eligible */
932 	if (se && entity_eligible(cfs_rq, se)) {
933 		best = se;
934 		goto found;
935 	}
936 
937 	/* Heap search for the EEVD entity */
938 	while (node) {
939 		struct rb_node *left = node->rb_left;
940 
941 		/*
942 		 * Eligible entities in left subtree are always better
943 		 * choices, since they have earlier deadlines.
944 		 */
945 		if (left && vruntime_eligible(cfs_rq,
946 					__node_2_se(left)->min_vruntime)) {
947 			node = left;
948 			continue;
949 		}
950 
951 		se = __node_2_se(node);
952 
953 		/*
954 		 * The left subtree either is empty or has no eligible
955 		 * entity, so check the current node since it is the one
956 		 * with earliest deadline that might be eligible.
957 		 */
958 		if (entity_eligible(cfs_rq, se)) {
959 			best = se;
960 			break;
961 		}
962 
963 		node = node->rb_right;
964 	}
965 found:
966 	if (!best || (curr && entity_before(curr, best)))
967 		best = curr;
968 
969 	return best;
970 }
971 
972 #ifdef CONFIG_SCHED_DEBUG
973 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
974 {
975 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
976 
977 	if (!last)
978 		return NULL;
979 
980 	return __node_2_se(last);
981 }
982 
983 /**************************************************************
984  * Scheduling class statistics methods:
985  */
986 #ifdef CONFIG_SMP
987 int sched_update_scaling(void)
988 {
989 	unsigned int factor = get_update_sysctl_factor();
990 
991 #define WRT_SYSCTL(name) \
992 	(normalized_sysctl_##name = sysctl_##name / (factor))
993 	WRT_SYSCTL(sched_base_slice);
994 #undef WRT_SYSCTL
995 
996 	return 0;
997 }
998 #endif
999 #endif
1000 
1001 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1002 
1003 /*
1004  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1005  * this is probably good enough.
1006  */
1007 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1008 {
1009 	if ((s64)(se->vruntime - se->deadline) < 0)
1010 		return false;
1011 
1012 	/*
1013 	 * For EEVDF the virtual time slope is determined by w_i (iow.
1014 	 * nice) while the request time r_i is determined by
1015 	 * sysctl_sched_base_slice.
1016 	 */
1017 	if (!se->custom_slice)
1018 		se->slice = sysctl_sched_base_slice;
1019 
1020 	/*
1021 	 * EEVDF: vd_i = ve_i + r_i / w_i
1022 	 */
1023 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1024 
1025 	/*
1026 	 * The task has consumed its request, reschedule.
1027 	 */
1028 	return true;
1029 }
1030 
1031 #include "pelt.h"
1032 #ifdef CONFIG_SMP
1033 
1034 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1035 static unsigned long task_h_load(struct task_struct *p);
1036 static unsigned long capacity_of(int cpu);
1037 
1038 /* Give new sched_entity start runnable values to heavy its load in infant time */
1039 void init_entity_runnable_average(struct sched_entity *se)
1040 {
1041 	struct sched_avg *sa = &se->avg;
1042 
1043 	memset(sa, 0, sizeof(*sa));
1044 
1045 	/*
1046 	 * Tasks are initialized with full load to be seen as heavy tasks until
1047 	 * they get a chance to stabilize to their real load level.
1048 	 * Group entities are initialized with zero load to reflect the fact that
1049 	 * nothing has been attached to the task group yet.
1050 	 */
1051 	if (entity_is_task(se))
1052 		sa->load_avg = scale_load_down(se->load.weight);
1053 
1054 	/* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1055 }
1056 
1057 /*
1058  * With new tasks being created, their initial util_avgs are extrapolated
1059  * based on the cfs_rq's current util_avg:
1060  *
1061  *   util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1062  *		* se_weight(se)
1063  *
1064  * However, in many cases, the above util_avg does not give a desired
1065  * value. Moreover, the sum of the util_avgs may be divergent, such
1066  * as when the series is a harmonic series.
1067  *
1068  * To solve this problem, we also cap the util_avg of successive tasks to
1069  * only 1/2 of the left utilization budget:
1070  *
1071  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1072  *
1073  * where n denotes the nth task and cpu_scale the CPU capacity.
1074  *
1075  * For example, for a CPU with 1024 of capacity, a simplest series from
1076  * the beginning would be like:
1077  *
1078  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1079  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1080  *
1081  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1082  * if util_avg > util_avg_cap.
1083  */
1084 void post_init_entity_util_avg(struct task_struct *p)
1085 {
1086 	struct sched_entity *se = &p->se;
1087 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1088 	struct sched_avg *sa = &se->avg;
1089 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1090 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1091 
1092 	if (p->sched_class != &fair_sched_class) {
1093 		/*
1094 		 * For !fair tasks do:
1095 		 *
1096 		update_cfs_rq_load_avg(now, cfs_rq);
1097 		attach_entity_load_avg(cfs_rq, se);
1098 		switched_from_fair(rq, p);
1099 		 *
1100 		 * such that the next switched_to_fair() has the
1101 		 * expected state.
1102 		 */
1103 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1104 		return;
1105 	}
1106 
1107 	if (cap > 0) {
1108 		if (cfs_rq->avg.util_avg != 0) {
1109 			sa->util_avg  = cfs_rq->avg.util_avg * se_weight(se);
1110 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1111 
1112 			if (sa->util_avg > cap)
1113 				sa->util_avg = cap;
1114 		} else {
1115 			sa->util_avg = cap;
1116 		}
1117 	}
1118 
1119 	sa->runnable_avg = sa->util_avg;
1120 }
1121 
1122 #else /* !CONFIG_SMP */
1123 void init_entity_runnable_average(struct sched_entity *se)
1124 {
1125 }
1126 void post_init_entity_util_avg(struct task_struct *p)
1127 {
1128 }
1129 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1130 {
1131 }
1132 #endif /* CONFIG_SMP */
1133 
1134 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1135 {
1136 	u64 now = rq_clock_task(rq);
1137 	s64 delta_exec;
1138 
1139 	delta_exec = now - curr->exec_start;
1140 	if (unlikely(delta_exec <= 0))
1141 		return delta_exec;
1142 
1143 	curr->exec_start = now;
1144 	curr->sum_exec_runtime += delta_exec;
1145 
1146 	if (schedstat_enabled()) {
1147 		struct sched_statistics *stats;
1148 
1149 		stats = __schedstats_from_se(curr);
1150 		__schedstat_set(stats->exec_max,
1151 				max(delta_exec, stats->exec_max));
1152 	}
1153 
1154 	return delta_exec;
1155 }
1156 
1157 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1158 {
1159 	trace_sched_stat_runtime(p, delta_exec);
1160 	account_group_exec_runtime(p, delta_exec);
1161 	cgroup_account_cputime(p, delta_exec);
1162 }
1163 
1164 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1165 {
1166 	if (!sched_feat(PREEMPT_SHORT))
1167 		return false;
1168 
1169 	if (curr->vlag == curr->deadline)
1170 		return false;
1171 
1172 	return !entity_eligible(cfs_rq, curr);
1173 }
1174 
1175 static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
1176 				    struct sched_entity *pse, struct sched_entity *se)
1177 {
1178 	if (!sched_feat(PREEMPT_SHORT))
1179 		return false;
1180 
1181 	if (pse->slice >= se->slice)
1182 		return false;
1183 
1184 	if (!entity_eligible(cfs_rq, pse))
1185 		return false;
1186 
1187 	if (entity_before(pse, se))
1188 		return true;
1189 
1190 	if (!entity_eligible(cfs_rq, se))
1191 		return true;
1192 
1193 	return false;
1194 }
1195 
1196 /*
1197  * Used by other classes to account runtime.
1198  */
1199 s64 update_curr_common(struct rq *rq)
1200 {
1201 	struct task_struct *donor = rq->donor;
1202 	s64 delta_exec;
1203 
1204 	delta_exec = update_curr_se(rq, &donor->se);
1205 	if (likely(delta_exec > 0))
1206 		update_curr_task(donor, delta_exec);
1207 
1208 	return delta_exec;
1209 }
1210 
1211 /*
1212  * Update the current task's runtime statistics.
1213  */
1214 static void update_curr(struct cfs_rq *cfs_rq)
1215 {
1216 	struct sched_entity *curr = cfs_rq->curr;
1217 	struct rq *rq = rq_of(cfs_rq);
1218 	s64 delta_exec;
1219 	bool resched;
1220 
1221 	if (unlikely(!curr))
1222 		return;
1223 
1224 	delta_exec = update_curr_se(rq, curr);
1225 	if (unlikely(delta_exec <= 0))
1226 		return;
1227 
1228 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1229 	resched = update_deadline(cfs_rq, curr);
1230 	update_min_vruntime(cfs_rq);
1231 
1232 	if (entity_is_task(curr)) {
1233 		struct task_struct *p = task_of(curr);
1234 
1235 		update_curr_task(p, delta_exec);
1236 
1237 		/*
1238 		 * If the fair_server is active, we need to account for the
1239 		 * fair_server time whether or not the task is running on
1240 		 * behalf of fair_server or not:
1241 		 *  - If the task is running on behalf of fair_server, we need
1242 		 *    to limit its time based on the assigned runtime.
1243 		 *  - Fair task that runs outside of fair_server should account
1244 		 *    against fair_server such that it can account for this time
1245 		 *    and possibly avoid running this period.
1246 		 */
1247 		if (dl_server_active(&rq->fair_server))
1248 			dl_server_update(&rq->fair_server, delta_exec);
1249 	}
1250 
1251 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1252 
1253 	if (cfs_rq->nr_running == 1)
1254 		return;
1255 
1256 	if (resched || did_preempt_short(cfs_rq, curr)) {
1257 		resched_curr_lazy(rq);
1258 		clear_buddies(cfs_rq, curr);
1259 	}
1260 }
1261 
1262 static void update_curr_fair(struct rq *rq)
1263 {
1264 	update_curr(cfs_rq_of(&rq->donor->se));
1265 }
1266 
1267 static inline void
1268 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1269 {
1270 	struct sched_statistics *stats;
1271 	struct task_struct *p = NULL;
1272 
1273 	if (!schedstat_enabled())
1274 		return;
1275 
1276 	stats = __schedstats_from_se(se);
1277 
1278 	if (entity_is_task(se))
1279 		p = task_of(se);
1280 
1281 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1282 }
1283 
1284 static inline void
1285 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1286 {
1287 	struct sched_statistics *stats;
1288 	struct task_struct *p = NULL;
1289 
1290 	if (!schedstat_enabled())
1291 		return;
1292 
1293 	stats = __schedstats_from_se(se);
1294 
1295 	/*
1296 	 * When the sched_schedstat changes from 0 to 1, some sched se
1297 	 * maybe already in the runqueue, the se->statistics.wait_start
1298 	 * will be 0.So it will let the delta wrong. We need to avoid this
1299 	 * scenario.
1300 	 */
1301 	if (unlikely(!schedstat_val(stats->wait_start)))
1302 		return;
1303 
1304 	if (entity_is_task(se))
1305 		p = task_of(se);
1306 
1307 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1308 }
1309 
1310 static inline void
1311 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1312 {
1313 	struct sched_statistics *stats;
1314 	struct task_struct *tsk = NULL;
1315 
1316 	if (!schedstat_enabled())
1317 		return;
1318 
1319 	stats = __schedstats_from_se(se);
1320 
1321 	if (entity_is_task(se))
1322 		tsk = task_of(se);
1323 
1324 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1325 }
1326 
1327 /*
1328  * Task is being enqueued - update stats:
1329  */
1330 static inline void
1331 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1332 {
1333 	if (!schedstat_enabled())
1334 		return;
1335 
1336 	/*
1337 	 * Are we enqueueing a waiting task? (for current tasks
1338 	 * a dequeue/enqueue event is a NOP)
1339 	 */
1340 	if (se != cfs_rq->curr)
1341 		update_stats_wait_start_fair(cfs_rq, se);
1342 
1343 	if (flags & ENQUEUE_WAKEUP)
1344 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1345 }
1346 
1347 static inline void
1348 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1349 {
1350 
1351 	if (!schedstat_enabled())
1352 		return;
1353 
1354 	/*
1355 	 * Mark the end of the wait period if dequeueing a
1356 	 * waiting task:
1357 	 */
1358 	if (se != cfs_rq->curr)
1359 		update_stats_wait_end_fair(cfs_rq, se);
1360 
1361 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1362 		struct task_struct *tsk = task_of(se);
1363 		unsigned int state;
1364 
1365 		/* XXX racy against TTWU */
1366 		state = READ_ONCE(tsk->__state);
1367 		if (state & TASK_INTERRUPTIBLE)
1368 			__schedstat_set(tsk->stats.sleep_start,
1369 				      rq_clock(rq_of(cfs_rq)));
1370 		if (state & TASK_UNINTERRUPTIBLE)
1371 			__schedstat_set(tsk->stats.block_start,
1372 				      rq_clock(rq_of(cfs_rq)));
1373 	}
1374 }
1375 
1376 /*
1377  * We are picking a new current task - update its stats:
1378  */
1379 static inline void
1380 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1381 {
1382 	/*
1383 	 * We are starting a new run period:
1384 	 */
1385 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1386 }
1387 
1388 /**************************************************
1389  * Scheduling class queueing methods:
1390  */
1391 
1392 static inline bool is_core_idle(int cpu)
1393 {
1394 #ifdef CONFIG_SCHED_SMT
1395 	int sibling;
1396 
1397 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1398 		if (cpu == sibling)
1399 			continue;
1400 
1401 		if (!idle_cpu(sibling))
1402 			return false;
1403 	}
1404 #endif
1405 
1406 	return true;
1407 }
1408 
1409 #ifdef CONFIG_NUMA
1410 #define NUMA_IMBALANCE_MIN 2
1411 
1412 static inline long
1413 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1414 {
1415 	/*
1416 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1417 	 * threshold. Above this threshold, individual tasks may be contending
1418 	 * for both memory bandwidth and any shared HT resources.  This is an
1419 	 * approximation as the number of running tasks may not be related to
1420 	 * the number of busy CPUs due to sched_setaffinity.
1421 	 */
1422 	if (dst_running > imb_numa_nr)
1423 		return imbalance;
1424 
1425 	/*
1426 	 * Allow a small imbalance based on a simple pair of communicating
1427 	 * tasks that remain local when the destination is lightly loaded.
1428 	 */
1429 	if (imbalance <= NUMA_IMBALANCE_MIN)
1430 		return 0;
1431 
1432 	return imbalance;
1433 }
1434 #endif /* CONFIG_NUMA */
1435 
1436 #ifdef CONFIG_NUMA_BALANCING
1437 /*
1438  * Approximate time to scan a full NUMA task in ms. The task scan period is
1439  * calculated based on the tasks virtual memory size and
1440  * numa_balancing_scan_size.
1441  */
1442 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1443 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1444 
1445 /* Portion of address space to scan in MB */
1446 unsigned int sysctl_numa_balancing_scan_size = 256;
1447 
1448 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1449 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1450 
1451 /* The page with hint page fault latency < threshold in ms is considered hot */
1452 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1453 
1454 struct numa_group {
1455 	refcount_t refcount;
1456 
1457 	spinlock_t lock; /* nr_tasks, tasks */
1458 	int nr_tasks;
1459 	pid_t gid;
1460 	int active_nodes;
1461 
1462 	struct rcu_head rcu;
1463 	unsigned long total_faults;
1464 	unsigned long max_faults_cpu;
1465 	/*
1466 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1467 	 *
1468 	 * Faults_cpu is used to decide whether memory should move
1469 	 * towards the CPU. As a consequence, these stats are weighted
1470 	 * more by CPU use than by memory faults.
1471 	 */
1472 	unsigned long faults[];
1473 };
1474 
1475 /*
1476  * For functions that can be called in multiple contexts that permit reading
1477  * ->numa_group (see struct task_struct for locking rules).
1478  */
1479 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1480 {
1481 	return rcu_dereference_check(p->numa_group, p == current ||
1482 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1483 }
1484 
1485 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1486 {
1487 	return rcu_dereference_protected(p->numa_group, p == current);
1488 }
1489 
1490 static inline unsigned long group_faults_priv(struct numa_group *ng);
1491 static inline unsigned long group_faults_shared(struct numa_group *ng);
1492 
1493 static unsigned int task_nr_scan_windows(struct task_struct *p)
1494 {
1495 	unsigned long rss = 0;
1496 	unsigned long nr_scan_pages;
1497 
1498 	/*
1499 	 * Calculations based on RSS as non-present and empty pages are skipped
1500 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1501 	 * on resident pages
1502 	 */
1503 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1504 	rss = get_mm_rss(p->mm);
1505 	if (!rss)
1506 		rss = nr_scan_pages;
1507 
1508 	rss = round_up(rss, nr_scan_pages);
1509 	return rss / nr_scan_pages;
1510 }
1511 
1512 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1513 #define MAX_SCAN_WINDOW 2560
1514 
1515 static unsigned int task_scan_min(struct task_struct *p)
1516 {
1517 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1518 	unsigned int scan, floor;
1519 	unsigned int windows = 1;
1520 
1521 	if (scan_size < MAX_SCAN_WINDOW)
1522 		windows = MAX_SCAN_WINDOW / scan_size;
1523 	floor = 1000 / windows;
1524 
1525 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1526 	return max_t(unsigned int, floor, scan);
1527 }
1528 
1529 static unsigned int task_scan_start(struct task_struct *p)
1530 {
1531 	unsigned long smin = task_scan_min(p);
1532 	unsigned long period = smin;
1533 	struct numa_group *ng;
1534 
1535 	/* Scale the maximum scan period with the amount of shared memory. */
1536 	rcu_read_lock();
1537 	ng = rcu_dereference(p->numa_group);
1538 	if (ng) {
1539 		unsigned long shared = group_faults_shared(ng);
1540 		unsigned long private = group_faults_priv(ng);
1541 
1542 		period *= refcount_read(&ng->refcount);
1543 		period *= shared + 1;
1544 		period /= private + shared + 1;
1545 	}
1546 	rcu_read_unlock();
1547 
1548 	return max(smin, period);
1549 }
1550 
1551 static unsigned int task_scan_max(struct task_struct *p)
1552 {
1553 	unsigned long smin = task_scan_min(p);
1554 	unsigned long smax;
1555 	struct numa_group *ng;
1556 
1557 	/* Watch for min being lower than max due to floor calculations */
1558 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1559 
1560 	/* Scale the maximum scan period with the amount of shared memory. */
1561 	ng = deref_curr_numa_group(p);
1562 	if (ng) {
1563 		unsigned long shared = group_faults_shared(ng);
1564 		unsigned long private = group_faults_priv(ng);
1565 		unsigned long period = smax;
1566 
1567 		period *= refcount_read(&ng->refcount);
1568 		period *= shared + 1;
1569 		period /= private + shared + 1;
1570 
1571 		smax = max(smax, period);
1572 	}
1573 
1574 	return max(smin, smax);
1575 }
1576 
1577 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1578 {
1579 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1580 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1581 }
1582 
1583 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1584 {
1585 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1586 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1587 }
1588 
1589 /* Shared or private faults. */
1590 #define NR_NUMA_HINT_FAULT_TYPES 2
1591 
1592 /* Memory and CPU locality */
1593 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1594 
1595 /* Averaged statistics, and temporary buffers. */
1596 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1597 
1598 pid_t task_numa_group_id(struct task_struct *p)
1599 {
1600 	struct numa_group *ng;
1601 	pid_t gid = 0;
1602 
1603 	rcu_read_lock();
1604 	ng = rcu_dereference(p->numa_group);
1605 	if (ng)
1606 		gid = ng->gid;
1607 	rcu_read_unlock();
1608 
1609 	return gid;
1610 }
1611 
1612 /*
1613  * The averaged statistics, shared & private, memory & CPU,
1614  * occupy the first half of the array. The second half of the
1615  * array is for current counters, which are averaged into the
1616  * first set by task_numa_placement.
1617  */
1618 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1619 {
1620 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1621 }
1622 
1623 static inline unsigned long task_faults(struct task_struct *p, int nid)
1624 {
1625 	if (!p->numa_faults)
1626 		return 0;
1627 
1628 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1629 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1630 }
1631 
1632 static inline unsigned long group_faults(struct task_struct *p, int nid)
1633 {
1634 	struct numa_group *ng = deref_task_numa_group(p);
1635 
1636 	if (!ng)
1637 		return 0;
1638 
1639 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1640 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1641 }
1642 
1643 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1644 {
1645 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1646 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1647 }
1648 
1649 static inline unsigned long group_faults_priv(struct numa_group *ng)
1650 {
1651 	unsigned long faults = 0;
1652 	int node;
1653 
1654 	for_each_online_node(node) {
1655 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1656 	}
1657 
1658 	return faults;
1659 }
1660 
1661 static inline unsigned long group_faults_shared(struct numa_group *ng)
1662 {
1663 	unsigned long faults = 0;
1664 	int node;
1665 
1666 	for_each_online_node(node) {
1667 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1668 	}
1669 
1670 	return faults;
1671 }
1672 
1673 /*
1674  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1675  * considered part of a numa group's pseudo-interleaving set. Migrations
1676  * between these nodes are slowed down, to allow things to settle down.
1677  */
1678 #define ACTIVE_NODE_FRACTION 3
1679 
1680 static bool numa_is_active_node(int nid, struct numa_group *ng)
1681 {
1682 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1683 }
1684 
1685 /* Handle placement on systems where not all nodes are directly connected. */
1686 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1687 					int lim_dist, bool task)
1688 {
1689 	unsigned long score = 0;
1690 	int node, max_dist;
1691 
1692 	/*
1693 	 * All nodes are directly connected, and the same distance
1694 	 * from each other. No need for fancy placement algorithms.
1695 	 */
1696 	if (sched_numa_topology_type == NUMA_DIRECT)
1697 		return 0;
1698 
1699 	/* sched_max_numa_distance may be changed in parallel. */
1700 	max_dist = READ_ONCE(sched_max_numa_distance);
1701 	/*
1702 	 * This code is called for each node, introducing N^2 complexity,
1703 	 * which should be OK given the number of nodes rarely exceeds 8.
1704 	 */
1705 	for_each_online_node(node) {
1706 		unsigned long faults;
1707 		int dist = node_distance(nid, node);
1708 
1709 		/*
1710 		 * The furthest away nodes in the system are not interesting
1711 		 * for placement; nid was already counted.
1712 		 */
1713 		if (dist >= max_dist || node == nid)
1714 			continue;
1715 
1716 		/*
1717 		 * On systems with a backplane NUMA topology, compare groups
1718 		 * of nodes, and move tasks towards the group with the most
1719 		 * memory accesses. When comparing two nodes at distance
1720 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1721 		 * of each group. Skip other nodes.
1722 		 */
1723 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1724 			continue;
1725 
1726 		/* Add up the faults from nearby nodes. */
1727 		if (task)
1728 			faults = task_faults(p, node);
1729 		else
1730 			faults = group_faults(p, node);
1731 
1732 		/*
1733 		 * On systems with a glueless mesh NUMA topology, there are
1734 		 * no fixed "groups of nodes". Instead, nodes that are not
1735 		 * directly connected bounce traffic through intermediate
1736 		 * nodes; a numa_group can occupy any set of nodes.
1737 		 * The further away a node is, the less the faults count.
1738 		 * This seems to result in good task placement.
1739 		 */
1740 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1741 			faults *= (max_dist - dist);
1742 			faults /= (max_dist - LOCAL_DISTANCE);
1743 		}
1744 
1745 		score += faults;
1746 	}
1747 
1748 	return score;
1749 }
1750 
1751 /*
1752  * These return the fraction of accesses done by a particular task, or
1753  * task group, on a particular numa node.  The group weight is given a
1754  * larger multiplier, in order to group tasks together that are almost
1755  * evenly spread out between numa nodes.
1756  */
1757 static inline unsigned long task_weight(struct task_struct *p, int nid,
1758 					int dist)
1759 {
1760 	unsigned long faults, total_faults;
1761 
1762 	if (!p->numa_faults)
1763 		return 0;
1764 
1765 	total_faults = p->total_numa_faults;
1766 
1767 	if (!total_faults)
1768 		return 0;
1769 
1770 	faults = task_faults(p, nid);
1771 	faults += score_nearby_nodes(p, nid, dist, true);
1772 
1773 	return 1000 * faults / total_faults;
1774 }
1775 
1776 static inline unsigned long group_weight(struct task_struct *p, int nid,
1777 					 int dist)
1778 {
1779 	struct numa_group *ng = deref_task_numa_group(p);
1780 	unsigned long faults, total_faults;
1781 
1782 	if (!ng)
1783 		return 0;
1784 
1785 	total_faults = ng->total_faults;
1786 
1787 	if (!total_faults)
1788 		return 0;
1789 
1790 	faults = group_faults(p, nid);
1791 	faults += score_nearby_nodes(p, nid, dist, false);
1792 
1793 	return 1000 * faults / total_faults;
1794 }
1795 
1796 /*
1797  * If memory tiering mode is enabled, cpupid of slow memory page is
1798  * used to record scan time instead of CPU and PID.  When tiering mode
1799  * is disabled at run time, the scan time (in cpupid) will be
1800  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1801  * access out of array bound.
1802  */
1803 static inline bool cpupid_valid(int cpupid)
1804 {
1805 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1806 }
1807 
1808 /*
1809  * For memory tiering mode, if there are enough free pages (more than
1810  * enough watermark defined here) in fast memory node, to take full
1811  * advantage of fast memory capacity, all recently accessed slow
1812  * memory pages will be migrated to fast memory node without
1813  * considering hot threshold.
1814  */
1815 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1816 {
1817 	int z;
1818 	unsigned long enough_wmark;
1819 
1820 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1821 			   pgdat->node_present_pages >> 4);
1822 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1823 		struct zone *zone = pgdat->node_zones + z;
1824 
1825 		if (!populated_zone(zone))
1826 			continue;
1827 
1828 		if (zone_watermark_ok(zone, 0,
1829 				      promo_wmark_pages(zone) + enough_wmark,
1830 				      ZONE_MOVABLE, 0))
1831 			return true;
1832 	}
1833 	return false;
1834 }
1835 
1836 /*
1837  * For memory tiering mode, when page tables are scanned, the scan
1838  * time will be recorded in struct page in addition to make page
1839  * PROT_NONE for slow memory page.  So when the page is accessed, in
1840  * hint page fault handler, the hint page fault latency is calculated
1841  * via,
1842  *
1843  *	hint page fault latency = hint page fault time - scan time
1844  *
1845  * The smaller the hint page fault latency, the higher the possibility
1846  * for the page to be hot.
1847  */
1848 static int numa_hint_fault_latency(struct folio *folio)
1849 {
1850 	int last_time, time;
1851 
1852 	time = jiffies_to_msecs(jiffies);
1853 	last_time = folio_xchg_access_time(folio, time);
1854 
1855 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1856 }
1857 
1858 /*
1859  * For memory tiering mode, too high promotion/demotion throughput may
1860  * hurt application latency.  So we provide a mechanism to rate limit
1861  * the number of pages that are tried to be promoted.
1862  */
1863 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1864 				      unsigned long rate_limit, int nr)
1865 {
1866 	unsigned long nr_cand;
1867 	unsigned int now, start;
1868 
1869 	now = jiffies_to_msecs(jiffies);
1870 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1871 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1872 	start = pgdat->nbp_rl_start;
1873 	if (now - start > MSEC_PER_SEC &&
1874 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1875 		pgdat->nbp_rl_nr_cand = nr_cand;
1876 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1877 		return true;
1878 	return false;
1879 }
1880 
1881 #define NUMA_MIGRATION_ADJUST_STEPS	16
1882 
1883 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1884 					    unsigned long rate_limit,
1885 					    unsigned int ref_th)
1886 {
1887 	unsigned int now, start, th_period, unit_th, th;
1888 	unsigned long nr_cand, ref_cand, diff_cand;
1889 
1890 	now = jiffies_to_msecs(jiffies);
1891 	th_period = sysctl_numa_balancing_scan_period_max;
1892 	start = pgdat->nbp_th_start;
1893 	if (now - start > th_period &&
1894 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1895 		ref_cand = rate_limit *
1896 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1897 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1898 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1899 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1900 		th = pgdat->nbp_threshold ? : ref_th;
1901 		if (diff_cand > ref_cand * 11 / 10)
1902 			th = max(th - unit_th, unit_th);
1903 		else if (diff_cand < ref_cand * 9 / 10)
1904 			th = min(th + unit_th, ref_th * 2);
1905 		pgdat->nbp_th_nr_cand = nr_cand;
1906 		pgdat->nbp_threshold = th;
1907 	}
1908 }
1909 
1910 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1911 				int src_nid, int dst_cpu)
1912 {
1913 	struct numa_group *ng = deref_curr_numa_group(p);
1914 	int dst_nid = cpu_to_node(dst_cpu);
1915 	int last_cpupid, this_cpupid;
1916 
1917 	/*
1918 	 * Cannot migrate to memoryless nodes.
1919 	 */
1920 	if (!node_state(dst_nid, N_MEMORY))
1921 		return false;
1922 
1923 	/*
1924 	 * The pages in slow memory node should be migrated according
1925 	 * to hot/cold instead of private/shared.
1926 	 */
1927 	if (folio_use_access_time(folio)) {
1928 		struct pglist_data *pgdat;
1929 		unsigned long rate_limit;
1930 		unsigned int latency, th, def_th;
1931 
1932 		pgdat = NODE_DATA(dst_nid);
1933 		if (pgdat_free_space_enough(pgdat)) {
1934 			/* workload changed, reset hot threshold */
1935 			pgdat->nbp_threshold = 0;
1936 			return true;
1937 		}
1938 
1939 		def_th = sysctl_numa_balancing_hot_threshold;
1940 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1941 			(20 - PAGE_SHIFT);
1942 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1943 
1944 		th = pgdat->nbp_threshold ? : def_th;
1945 		latency = numa_hint_fault_latency(folio);
1946 		if (latency >= th)
1947 			return false;
1948 
1949 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1950 						  folio_nr_pages(folio));
1951 	}
1952 
1953 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1954 	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1955 
1956 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1957 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1958 		return false;
1959 
1960 	/*
1961 	 * Allow first faults or private faults to migrate immediately early in
1962 	 * the lifetime of a task. The magic number 4 is based on waiting for
1963 	 * two full passes of the "multi-stage node selection" test that is
1964 	 * executed below.
1965 	 */
1966 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1967 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1968 		return true;
1969 
1970 	/*
1971 	 * Multi-stage node selection is used in conjunction with a periodic
1972 	 * migration fault to build a temporal task<->page relation. By using
1973 	 * a two-stage filter we remove short/unlikely relations.
1974 	 *
1975 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1976 	 * a task's usage of a particular page (n_p) per total usage of this
1977 	 * page (n_t) (in a given time-span) to a probability.
1978 	 *
1979 	 * Our periodic faults will sample this probability and getting the
1980 	 * same result twice in a row, given these samples are fully
1981 	 * independent, is then given by P(n)^2, provided our sample period
1982 	 * is sufficiently short compared to the usage pattern.
1983 	 *
1984 	 * This quadric squishes small probabilities, making it less likely we
1985 	 * act on an unlikely task<->page relation.
1986 	 */
1987 	if (!cpupid_pid_unset(last_cpupid) &&
1988 				cpupid_to_nid(last_cpupid) != dst_nid)
1989 		return false;
1990 
1991 	/* Always allow migrate on private faults */
1992 	if (cpupid_match_pid(p, last_cpupid))
1993 		return true;
1994 
1995 	/* A shared fault, but p->numa_group has not been set up yet. */
1996 	if (!ng)
1997 		return true;
1998 
1999 	/*
2000 	 * Destination node is much more heavily used than the source
2001 	 * node? Allow migration.
2002 	 */
2003 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
2004 					ACTIVE_NODE_FRACTION)
2005 		return true;
2006 
2007 	/*
2008 	 * Distribute memory according to CPU & memory use on each node,
2009 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2010 	 *
2011 	 * faults_cpu(dst)   3   faults_cpu(src)
2012 	 * --------------- * - > ---------------
2013 	 * faults_mem(dst)   4   faults_mem(src)
2014 	 */
2015 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2016 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2017 }
2018 
2019 /*
2020  * 'numa_type' describes the node at the moment of load balancing.
2021  */
2022 enum numa_type {
2023 	/* The node has spare capacity that can be used to run more tasks.  */
2024 	node_has_spare = 0,
2025 	/*
2026 	 * The node is fully used and the tasks don't compete for more CPU
2027 	 * cycles. Nevertheless, some tasks might wait before running.
2028 	 */
2029 	node_fully_busy,
2030 	/*
2031 	 * The node is overloaded and can't provide expected CPU cycles to all
2032 	 * tasks.
2033 	 */
2034 	node_overloaded
2035 };
2036 
2037 /* Cached statistics for all CPUs within a node */
2038 struct numa_stats {
2039 	unsigned long load;
2040 	unsigned long runnable;
2041 	unsigned long util;
2042 	/* Total compute capacity of CPUs on a node */
2043 	unsigned long compute_capacity;
2044 	unsigned int nr_running;
2045 	unsigned int weight;
2046 	enum numa_type node_type;
2047 	int idle_cpu;
2048 };
2049 
2050 struct task_numa_env {
2051 	struct task_struct *p;
2052 
2053 	int src_cpu, src_nid;
2054 	int dst_cpu, dst_nid;
2055 	int imb_numa_nr;
2056 
2057 	struct numa_stats src_stats, dst_stats;
2058 
2059 	int imbalance_pct;
2060 	int dist;
2061 
2062 	struct task_struct *best_task;
2063 	long best_imp;
2064 	int best_cpu;
2065 };
2066 
2067 static unsigned long cpu_load(struct rq *rq);
2068 static unsigned long cpu_runnable(struct rq *rq);
2069 
2070 static inline enum
2071 numa_type numa_classify(unsigned int imbalance_pct,
2072 			 struct numa_stats *ns)
2073 {
2074 	if ((ns->nr_running > ns->weight) &&
2075 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2076 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2077 		return node_overloaded;
2078 
2079 	if ((ns->nr_running < ns->weight) ||
2080 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2081 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2082 		return node_has_spare;
2083 
2084 	return node_fully_busy;
2085 }
2086 
2087 #ifdef CONFIG_SCHED_SMT
2088 /* Forward declarations of select_idle_sibling helpers */
2089 static inline bool test_idle_cores(int cpu);
2090 static inline int numa_idle_core(int idle_core, int cpu)
2091 {
2092 	if (!static_branch_likely(&sched_smt_present) ||
2093 	    idle_core >= 0 || !test_idle_cores(cpu))
2094 		return idle_core;
2095 
2096 	/*
2097 	 * Prefer cores instead of packing HT siblings
2098 	 * and triggering future load balancing.
2099 	 */
2100 	if (is_core_idle(cpu))
2101 		idle_core = cpu;
2102 
2103 	return idle_core;
2104 }
2105 #else
2106 static inline int numa_idle_core(int idle_core, int cpu)
2107 {
2108 	return idle_core;
2109 }
2110 #endif
2111 
2112 /*
2113  * Gather all necessary information to make NUMA balancing placement
2114  * decisions that are compatible with standard load balancer. This
2115  * borrows code and logic from update_sg_lb_stats but sharing a
2116  * common implementation is impractical.
2117  */
2118 static void update_numa_stats(struct task_numa_env *env,
2119 			      struct numa_stats *ns, int nid,
2120 			      bool find_idle)
2121 {
2122 	int cpu, idle_core = -1;
2123 
2124 	memset(ns, 0, sizeof(*ns));
2125 	ns->idle_cpu = -1;
2126 
2127 	rcu_read_lock();
2128 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2129 		struct rq *rq = cpu_rq(cpu);
2130 
2131 		ns->load += cpu_load(rq);
2132 		ns->runnable += cpu_runnable(rq);
2133 		ns->util += cpu_util_cfs(cpu);
2134 		ns->nr_running += rq->cfs.h_nr_running;
2135 		ns->compute_capacity += capacity_of(cpu);
2136 
2137 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2138 			if (READ_ONCE(rq->numa_migrate_on) ||
2139 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2140 				continue;
2141 
2142 			if (ns->idle_cpu == -1)
2143 				ns->idle_cpu = cpu;
2144 
2145 			idle_core = numa_idle_core(idle_core, cpu);
2146 		}
2147 	}
2148 	rcu_read_unlock();
2149 
2150 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2151 
2152 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2153 
2154 	if (idle_core >= 0)
2155 		ns->idle_cpu = idle_core;
2156 }
2157 
2158 static void task_numa_assign(struct task_numa_env *env,
2159 			     struct task_struct *p, long imp)
2160 {
2161 	struct rq *rq = cpu_rq(env->dst_cpu);
2162 
2163 	/* Check if run-queue part of active NUMA balance. */
2164 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2165 		int cpu;
2166 		int start = env->dst_cpu;
2167 
2168 		/* Find alternative idle CPU. */
2169 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2170 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2171 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2172 				continue;
2173 			}
2174 
2175 			env->dst_cpu = cpu;
2176 			rq = cpu_rq(env->dst_cpu);
2177 			if (!xchg(&rq->numa_migrate_on, 1))
2178 				goto assign;
2179 		}
2180 
2181 		/* Failed to find an alternative idle CPU */
2182 		return;
2183 	}
2184 
2185 assign:
2186 	/*
2187 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2188 	 * found a better CPU to move/swap.
2189 	 */
2190 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2191 		rq = cpu_rq(env->best_cpu);
2192 		WRITE_ONCE(rq->numa_migrate_on, 0);
2193 	}
2194 
2195 	if (env->best_task)
2196 		put_task_struct(env->best_task);
2197 	if (p)
2198 		get_task_struct(p);
2199 
2200 	env->best_task = p;
2201 	env->best_imp = imp;
2202 	env->best_cpu = env->dst_cpu;
2203 }
2204 
2205 static bool load_too_imbalanced(long src_load, long dst_load,
2206 				struct task_numa_env *env)
2207 {
2208 	long imb, old_imb;
2209 	long orig_src_load, orig_dst_load;
2210 	long src_capacity, dst_capacity;
2211 
2212 	/*
2213 	 * The load is corrected for the CPU capacity available on each node.
2214 	 *
2215 	 * src_load        dst_load
2216 	 * ------------ vs ---------
2217 	 * src_capacity    dst_capacity
2218 	 */
2219 	src_capacity = env->src_stats.compute_capacity;
2220 	dst_capacity = env->dst_stats.compute_capacity;
2221 
2222 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2223 
2224 	orig_src_load = env->src_stats.load;
2225 	orig_dst_load = env->dst_stats.load;
2226 
2227 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2228 
2229 	/* Would this change make things worse? */
2230 	return (imb > old_imb);
2231 }
2232 
2233 /*
2234  * Maximum NUMA importance can be 1998 (2*999);
2235  * SMALLIMP @ 30 would be close to 1998/64.
2236  * Used to deter task migration.
2237  */
2238 #define SMALLIMP	30
2239 
2240 /*
2241  * This checks if the overall compute and NUMA accesses of the system would
2242  * be improved if the source tasks was migrated to the target dst_cpu taking
2243  * into account that it might be best if task running on the dst_cpu should
2244  * be exchanged with the source task
2245  */
2246 static bool task_numa_compare(struct task_numa_env *env,
2247 			      long taskimp, long groupimp, bool maymove)
2248 {
2249 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2250 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2251 	long imp = p_ng ? groupimp : taskimp;
2252 	struct task_struct *cur;
2253 	long src_load, dst_load;
2254 	int dist = env->dist;
2255 	long moveimp = imp;
2256 	long load;
2257 	bool stopsearch = false;
2258 
2259 	if (READ_ONCE(dst_rq->numa_migrate_on))
2260 		return false;
2261 
2262 	rcu_read_lock();
2263 	cur = rcu_dereference(dst_rq->curr);
2264 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2265 		cur = NULL;
2266 
2267 	/*
2268 	 * Because we have preemption enabled we can get migrated around and
2269 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2270 	 */
2271 	if (cur == env->p) {
2272 		stopsearch = true;
2273 		goto unlock;
2274 	}
2275 
2276 	if (!cur) {
2277 		if (maymove && moveimp >= env->best_imp)
2278 			goto assign;
2279 		else
2280 			goto unlock;
2281 	}
2282 
2283 	/* Skip this swap candidate if cannot move to the source cpu. */
2284 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2285 		goto unlock;
2286 
2287 	/*
2288 	 * Skip this swap candidate if it is not moving to its preferred
2289 	 * node and the best task is.
2290 	 */
2291 	if (env->best_task &&
2292 	    env->best_task->numa_preferred_nid == env->src_nid &&
2293 	    cur->numa_preferred_nid != env->src_nid) {
2294 		goto unlock;
2295 	}
2296 
2297 	/*
2298 	 * "imp" is the fault differential for the source task between the
2299 	 * source and destination node. Calculate the total differential for
2300 	 * the source task and potential destination task. The more negative
2301 	 * the value is, the more remote accesses that would be expected to
2302 	 * be incurred if the tasks were swapped.
2303 	 *
2304 	 * If dst and source tasks are in the same NUMA group, or not
2305 	 * in any group then look only at task weights.
2306 	 */
2307 	cur_ng = rcu_dereference(cur->numa_group);
2308 	if (cur_ng == p_ng) {
2309 		/*
2310 		 * Do not swap within a group or between tasks that have
2311 		 * no group if there is spare capacity. Swapping does
2312 		 * not address the load imbalance and helps one task at
2313 		 * the cost of punishing another.
2314 		 */
2315 		if (env->dst_stats.node_type == node_has_spare)
2316 			goto unlock;
2317 
2318 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2319 		      task_weight(cur, env->dst_nid, dist);
2320 		/*
2321 		 * Add some hysteresis to prevent swapping the
2322 		 * tasks within a group over tiny differences.
2323 		 */
2324 		if (cur_ng)
2325 			imp -= imp / 16;
2326 	} else {
2327 		/*
2328 		 * Compare the group weights. If a task is all by itself
2329 		 * (not part of a group), use the task weight instead.
2330 		 */
2331 		if (cur_ng && p_ng)
2332 			imp += group_weight(cur, env->src_nid, dist) -
2333 			       group_weight(cur, env->dst_nid, dist);
2334 		else
2335 			imp += task_weight(cur, env->src_nid, dist) -
2336 			       task_weight(cur, env->dst_nid, dist);
2337 	}
2338 
2339 	/* Discourage picking a task already on its preferred node */
2340 	if (cur->numa_preferred_nid == env->dst_nid)
2341 		imp -= imp / 16;
2342 
2343 	/*
2344 	 * Encourage picking a task that moves to its preferred node.
2345 	 * This potentially makes imp larger than it's maximum of
2346 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2347 	 * case, it does not matter.
2348 	 */
2349 	if (cur->numa_preferred_nid == env->src_nid)
2350 		imp += imp / 8;
2351 
2352 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2353 		imp = moveimp;
2354 		cur = NULL;
2355 		goto assign;
2356 	}
2357 
2358 	/*
2359 	 * Prefer swapping with a task moving to its preferred node over a
2360 	 * task that is not.
2361 	 */
2362 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2363 	    env->best_task->numa_preferred_nid != env->src_nid) {
2364 		goto assign;
2365 	}
2366 
2367 	/*
2368 	 * If the NUMA importance is less than SMALLIMP,
2369 	 * task migration might only result in ping pong
2370 	 * of tasks and also hurt performance due to cache
2371 	 * misses.
2372 	 */
2373 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2374 		goto unlock;
2375 
2376 	/*
2377 	 * In the overloaded case, try and keep the load balanced.
2378 	 */
2379 	load = task_h_load(env->p) - task_h_load(cur);
2380 	if (!load)
2381 		goto assign;
2382 
2383 	dst_load = env->dst_stats.load + load;
2384 	src_load = env->src_stats.load - load;
2385 
2386 	if (load_too_imbalanced(src_load, dst_load, env))
2387 		goto unlock;
2388 
2389 assign:
2390 	/* Evaluate an idle CPU for a task numa move. */
2391 	if (!cur) {
2392 		int cpu = env->dst_stats.idle_cpu;
2393 
2394 		/* Nothing cached so current CPU went idle since the search. */
2395 		if (cpu < 0)
2396 			cpu = env->dst_cpu;
2397 
2398 		/*
2399 		 * If the CPU is no longer truly idle and the previous best CPU
2400 		 * is, keep using it.
2401 		 */
2402 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2403 		    idle_cpu(env->best_cpu)) {
2404 			cpu = env->best_cpu;
2405 		}
2406 
2407 		env->dst_cpu = cpu;
2408 	}
2409 
2410 	task_numa_assign(env, cur, imp);
2411 
2412 	/*
2413 	 * If a move to idle is allowed because there is capacity or load
2414 	 * balance improves then stop the search. While a better swap
2415 	 * candidate may exist, a search is not free.
2416 	 */
2417 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2418 		stopsearch = true;
2419 
2420 	/*
2421 	 * If a swap candidate must be identified and the current best task
2422 	 * moves its preferred node then stop the search.
2423 	 */
2424 	if (!maymove && env->best_task &&
2425 	    env->best_task->numa_preferred_nid == env->src_nid) {
2426 		stopsearch = true;
2427 	}
2428 unlock:
2429 	rcu_read_unlock();
2430 
2431 	return stopsearch;
2432 }
2433 
2434 static void task_numa_find_cpu(struct task_numa_env *env,
2435 				long taskimp, long groupimp)
2436 {
2437 	bool maymove = false;
2438 	int cpu;
2439 
2440 	/*
2441 	 * If dst node has spare capacity, then check if there is an
2442 	 * imbalance that would be overruled by the load balancer.
2443 	 */
2444 	if (env->dst_stats.node_type == node_has_spare) {
2445 		unsigned int imbalance;
2446 		int src_running, dst_running;
2447 
2448 		/*
2449 		 * Would movement cause an imbalance? Note that if src has
2450 		 * more running tasks that the imbalance is ignored as the
2451 		 * move improves the imbalance from the perspective of the
2452 		 * CPU load balancer.
2453 		 * */
2454 		src_running = env->src_stats.nr_running - 1;
2455 		dst_running = env->dst_stats.nr_running + 1;
2456 		imbalance = max(0, dst_running - src_running);
2457 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2458 						  env->imb_numa_nr);
2459 
2460 		/* Use idle CPU if there is no imbalance */
2461 		if (!imbalance) {
2462 			maymove = true;
2463 			if (env->dst_stats.idle_cpu >= 0) {
2464 				env->dst_cpu = env->dst_stats.idle_cpu;
2465 				task_numa_assign(env, NULL, 0);
2466 				return;
2467 			}
2468 		}
2469 	} else {
2470 		long src_load, dst_load, load;
2471 		/*
2472 		 * If the improvement from just moving env->p direction is better
2473 		 * than swapping tasks around, check if a move is possible.
2474 		 */
2475 		load = task_h_load(env->p);
2476 		dst_load = env->dst_stats.load + load;
2477 		src_load = env->src_stats.load - load;
2478 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2479 	}
2480 
2481 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2482 		/* Skip this CPU if the source task cannot migrate */
2483 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2484 			continue;
2485 
2486 		env->dst_cpu = cpu;
2487 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2488 			break;
2489 	}
2490 }
2491 
2492 static int task_numa_migrate(struct task_struct *p)
2493 {
2494 	struct task_numa_env env = {
2495 		.p = p,
2496 
2497 		.src_cpu = task_cpu(p),
2498 		.src_nid = task_node(p),
2499 
2500 		.imbalance_pct = 112,
2501 
2502 		.best_task = NULL,
2503 		.best_imp = 0,
2504 		.best_cpu = -1,
2505 	};
2506 	unsigned long taskweight, groupweight;
2507 	struct sched_domain *sd;
2508 	long taskimp, groupimp;
2509 	struct numa_group *ng;
2510 	struct rq *best_rq;
2511 	int nid, ret, dist;
2512 
2513 	/*
2514 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2515 	 * imbalance and would be the first to start moving tasks about.
2516 	 *
2517 	 * And we want to avoid any moving of tasks about, as that would create
2518 	 * random movement of tasks -- counter the numa conditions we're trying
2519 	 * to satisfy here.
2520 	 */
2521 	rcu_read_lock();
2522 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2523 	if (sd) {
2524 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2525 		env.imb_numa_nr = sd->imb_numa_nr;
2526 	}
2527 	rcu_read_unlock();
2528 
2529 	/*
2530 	 * Cpusets can break the scheduler domain tree into smaller
2531 	 * balance domains, some of which do not cross NUMA boundaries.
2532 	 * Tasks that are "trapped" in such domains cannot be migrated
2533 	 * elsewhere, so there is no point in (re)trying.
2534 	 */
2535 	if (unlikely(!sd)) {
2536 		sched_setnuma(p, task_node(p));
2537 		return -EINVAL;
2538 	}
2539 
2540 	env.dst_nid = p->numa_preferred_nid;
2541 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2542 	taskweight = task_weight(p, env.src_nid, dist);
2543 	groupweight = group_weight(p, env.src_nid, dist);
2544 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2545 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2546 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2547 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2548 
2549 	/* Try to find a spot on the preferred nid. */
2550 	task_numa_find_cpu(&env, taskimp, groupimp);
2551 
2552 	/*
2553 	 * Look at other nodes in these cases:
2554 	 * - there is no space available on the preferred_nid
2555 	 * - the task is part of a numa_group that is interleaved across
2556 	 *   multiple NUMA nodes; in order to better consolidate the group,
2557 	 *   we need to check other locations.
2558 	 */
2559 	ng = deref_curr_numa_group(p);
2560 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2561 		for_each_node_state(nid, N_CPU) {
2562 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2563 				continue;
2564 
2565 			dist = node_distance(env.src_nid, env.dst_nid);
2566 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2567 						dist != env.dist) {
2568 				taskweight = task_weight(p, env.src_nid, dist);
2569 				groupweight = group_weight(p, env.src_nid, dist);
2570 			}
2571 
2572 			/* Only consider nodes where both task and groups benefit */
2573 			taskimp = task_weight(p, nid, dist) - taskweight;
2574 			groupimp = group_weight(p, nid, dist) - groupweight;
2575 			if (taskimp < 0 && groupimp < 0)
2576 				continue;
2577 
2578 			env.dist = dist;
2579 			env.dst_nid = nid;
2580 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2581 			task_numa_find_cpu(&env, taskimp, groupimp);
2582 		}
2583 	}
2584 
2585 	/*
2586 	 * If the task is part of a workload that spans multiple NUMA nodes,
2587 	 * and is migrating into one of the workload's active nodes, remember
2588 	 * this node as the task's preferred numa node, so the workload can
2589 	 * settle down.
2590 	 * A task that migrated to a second choice node will be better off
2591 	 * trying for a better one later. Do not set the preferred node here.
2592 	 */
2593 	if (ng) {
2594 		if (env.best_cpu == -1)
2595 			nid = env.src_nid;
2596 		else
2597 			nid = cpu_to_node(env.best_cpu);
2598 
2599 		if (nid != p->numa_preferred_nid)
2600 			sched_setnuma(p, nid);
2601 	}
2602 
2603 	/* No better CPU than the current one was found. */
2604 	if (env.best_cpu == -1) {
2605 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2606 		return -EAGAIN;
2607 	}
2608 
2609 	best_rq = cpu_rq(env.best_cpu);
2610 	if (env.best_task == NULL) {
2611 		ret = migrate_task_to(p, env.best_cpu);
2612 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2613 		if (ret != 0)
2614 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2615 		return ret;
2616 	}
2617 
2618 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2619 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2620 
2621 	if (ret != 0)
2622 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2623 	put_task_struct(env.best_task);
2624 	return ret;
2625 }
2626 
2627 /* Attempt to migrate a task to a CPU on the preferred node. */
2628 static void numa_migrate_preferred(struct task_struct *p)
2629 {
2630 	unsigned long interval = HZ;
2631 
2632 	/* This task has no NUMA fault statistics yet */
2633 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2634 		return;
2635 
2636 	/* Periodically retry migrating the task to the preferred node */
2637 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2638 	p->numa_migrate_retry = jiffies + interval;
2639 
2640 	/* Success if task is already running on preferred CPU */
2641 	if (task_node(p) == p->numa_preferred_nid)
2642 		return;
2643 
2644 	/* Otherwise, try migrate to a CPU on the preferred node */
2645 	task_numa_migrate(p);
2646 }
2647 
2648 /*
2649  * Find out how many nodes the workload is actively running on. Do this by
2650  * tracking the nodes from which NUMA hinting faults are triggered. This can
2651  * be different from the set of nodes where the workload's memory is currently
2652  * located.
2653  */
2654 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2655 {
2656 	unsigned long faults, max_faults = 0;
2657 	int nid, active_nodes = 0;
2658 
2659 	for_each_node_state(nid, N_CPU) {
2660 		faults = group_faults_cpu(numa_group, nid);
2661 		if (faults > max_faults)
2662 			max_faults = faults;
2663 	}
2664 
2665 	for_each_node_state(nid, N_CPU) {
2666 		faults = group_faults_cpu(numa_group, nid);
2667 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2668 			active_nodes++;
2669 	}
2670 
2671 	numa_group->max_faults_cpu = max_faults;
2672 	numa_group->active_nodes = active_nodes;
2673 }
2674 
2675 /*
2676  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2677  * increments. The more local the fault statistics are, the higher the scan
2678  * period will be for the next scan window. If local/(local+remote) ratio is
2679  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2680  * the scan period will decrease. Aim for 70% local accesses.
2681  */
2682 #define NUMA_PERIOD_SLOTS 10
2683 #define NUMA_PERIOD_THRESHOLD 7
2684 
2685 /*
2686  * Increase the scan period (slow down scanning) if the majority of
2687  * our memory is already on our local node, or if the majority of
2688  * the page accesses are shared with other processes.
2689  * Otherwise, decrease the scan period.
2690  */
2691 static void update_task_scan_period(struct task_struct *p,
2692 			unsigned long shared, unsigned long private)
2693 {
2694 	unsigned int period_slot;
2695 	int lr_ratio, ps_ratio;
2696 	int diff;
2697 
2698 	unsigned long remote = p->numa_faults_locality[0];
2699 	unsigned long local = p->numa_faults_locality[1];
2700 
2701 	/*
2702 	 * If there were no record hinting faults then either the task is
2703 	 * completely idle or all activity is in areas that are not of interest
2704 	 * to automatic numa balancing. Related to that, if there were failed
2705 	 * migration then it implies we are migrating too quickly or the local
2706 	 * node is overloaded. In either case, scan slower
2707 	 */
2708 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2709 		p->numa_scan_period = min(p->numa_scan_period_max,
2710 			p->numa_scan_period << 1);
2711 
2712 		p->mm->numa_next_scan = jiffies +
2713 			msecs_to_jiffies(p->numa_scan_period);
2714 
2715 		return;
2716 	}
2717 
2718 	/*
2719 	 * Prepare to scale scan period relative to the current period.
2720 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2721 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2722 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2723 	 */
2724 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2725 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2726 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2727 
2728 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2729 		/*
2730 		 * Most memory accesses are local. There is no need to
2731 		 * do fast NUMA scanning, since memory is already local.
2732 		 */
2733 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2734 		if (!slot)
2735 			slot = 1;
2736 		diff = slot * period_slot;
2737 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2738 		/*
2739 		 * Most memory accesses are shared with other tasks.
2740 		 * There is no point in continuing fast NUMA scanning,
2741 		 * since other tasks may just move the memory elsewhere.
2742 		 */
2743 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2744 		if (!slot)
2745 			slot = 1;
2746 		diff = slot * period_slot;
2747 	} else {
2748 		/*
2749 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2750 		 * yet they are not on the local NUMA node. Speed up
2751 		 * NUMA scanning to get the memory moved over.
2752 		 */
2753 		int ratio = max(lr_ratio, ps_ratio);
2754 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2755 	}
2756 
2757 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2758 			task_scan_min(p), task_scan_max(p));
2759 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2760 }
2761 
2762 /*
2763  * Get the fraction of time the task has been running since the last
2764  * NUMA placement cycle. The scheduler keeps similar statistics, but
2765  * decays those on a 32ms period, which is orders of magnitude off
2766  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2767  * stats only if the task is so new there are no NUMA statistics yet.
2768  */
2769 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2770 {
2771 	u64 runtime, delta, now;
2772 	/* Use the start of this time slice to avoid calculations. */
2773 	now = p->se.exec_start;
2774 	runtime = p->se.sum_exec_runtime;
2775 
2776 	if (p->last_task_numa_placement) {
2777 		delta = runtime - p->last_sum_exec_runtime;
2778 		*period = now - p->last_task_numa_placement;
2779 
2780 		/* Avoid time going backwards, prevent potential divide error: */
2781 		if (unlikely((s64)*period < 0))
2782 			*period = 0;
2783 	} else {
2784 		delta = p->se.avg.load_sum;
2785 		*period = LOAD_AVG_MAX;
2786 	}
2787 
2788 	p->last_sum_exec_runtime = runtime;
2789 	p->last_task_numa_placement = now;
2790 
2791 	return delta;
2792 }
2793 
2794 /*
2795  * Determine the preferred nid for a task in a numa_group. This needs to
2796  * be done in a way that produces consistent results with group_weight,
2797  * otherwise workloads might not converge.
2798  */
2799 static int preferred_group_nid(struct task_struct *p, int nid)
2800 {
2801 	nodemask_t nodes;
2802 	int dist;
2803 
2804 	/* Direct connections between all NUMA nodes. */
2805 	if (sched_numa_topology_type == NUMA_DIRECT)
2806 		return nid;
2807 
2808 	/*
2809 	 * On a system with glueless mesh NUMA topology, group_weight
2810 	 * scores nodes according to the number of NUMA hinting faults on
2811 	 * both the node itself, and on nearby nodes.
2812 	 */
2813 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2814 		unsigned long score, max_score = 0;
2815 		int node, max_node = nid;
2816 
2817 		dist = sched_max_numa_distance;
2818 
2819 		for_each_node_state(node, N_CPU) {
2820 			score = group_weight(p, node, dist);
2821 			if (score > max_score) {
2822 				max_score = score;
2823 				max_node = node;
2824 			}
2825 		}
2826 		return max_node;
2827 	}
2828 
2829 	/*
2830 	 * Finding the preferred nid in a system with NUMA backplane
2831 	 * interconnect topology is more involved. The goal is to locate
2832 	 * tasks from numa_groups near each other in the system, and
2833 	 * untangle workloads from different sides of the system. This requires
2834 	 * searching down the hierarchy of node groups, recursively searching
2835 	 * inside the highest scoring group of nodes. The nodemask tricks
2836 	 * keep the complexity of the search down.
2837 	 */
2838 	nodes = node_states[N_CPU];
2839 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2840 		unsigned long max_faults = 0;
2841 		nodemask_t max_group = NODE_MASK_NONE;
2842 		int a, b;
2843 
2844 		/* Are there nodes at this distance from each other? */
2845 		if (!find_numa_distance(dist))
2846 			continue;
2847 
2848 		for_each_node_mask(a, nodes) {
2849 			unsigned long faults = 0;
2850 			nodemask_t this_group;
2851 			nodes_clear(this_group);
2852 
2853 			/* Sum group's NUMA faults; includes a==b case. */
2854 			for_each_node_mask(b, nodes) {
2855 				if (node_distance(a, b) < dist) {
2856 					faults += group_faults(p, b);
2857 					node_set(b, this_group);
2858 					node_clear(b, nodes);
2859 				}
2860 			}
2861 
2862 			/* Remember the top group. */
2863 			if (faults > max_faults) {
2864 				max_faults = faults;
2865 				max_group = this_group;
2866 				/*
2867 				 * subtle: at the smallest distance there is
2868 				 * just one node left in each "group", the
2869 				 * winner is the preferred nid.
2870 				 */
2871 				nid = a;
2872 			}
2873 		}
2874 		/* Next round, evaluate the nodes within max_group. */
2875 		if (!max_faults)
2876 			break;
2877 		nodes = max_group;
2878 	}
2879 	return nid;
2880 }
2881 
2882 static void task_numa_placement(struct task_struct *p)
2883 {
2884 	int seq, nid, max_nid = NUMA_NO_NODE;
2885 	unsigned long max_faults = 0;
2886 	unsigned long fault_types[2] = { 0, 0 };
2887 	unsigned long total_faults;
2888 	u64 runtime, period;
2889 	spinlock_t *group_lock = NULL;
2890 	struct numa_group *ng;
2891 
2892 	/*
2893 	 * The p->mm->numa_scan_seq field gets updated without
2894 	 * exclusive access. Use READ_ONCE() here to ensure
2895 	 * that the field is read in a single access:
2896 	 */
2897 	seq = READ_ONCE(p->mm->numa_scan_seq);
2898 	if (p->numa_scan_seq == seq)
2899 		return;
2900 	p->numa_scan_seq = seq;
2901 	p->numa_scan_period_max = task_scan_max(p);
2902 
2903 	total_faults = p->numa_faults_locality[0] +
2904 		       p->numa_faults_locality[1];
2905 	runtime = numa_get_avg_runtime(p, &period);
2906 
2907 	/* If the task is part of a group prevent parallel updates to group stats */
2908 	ng = deref_curr_numa_group(p);
2909 	if (ng) {
2910 		group_lock = &ng->lock;
2911 		spin_lock_irq(group_lock);
2912 	}
2913 
2914 	/* Find the node with the highest number of faults */
2915 	for_each_online_node(nid) {
2916 		/* Keep track of the offsets in numa_faults array */
2917 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2918 		unsigned long faults = 0, group_faults = 0;
2919 		int priv;
2920 
2921 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2922 			long diff, f_diff, f_weight;
2923 
2924 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2925 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2926 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2927 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2928 
2929 			/* Decay existing window, copy faults since last scan */
2930 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2931 			fault_types[priv] += p->numa_faults[membuf_idx];
2932 			p->numa_faults[membuf_idx] = 0;
2933 
2934 			/*
2935 			 * Normalize the faults_from, so all tasks in a group
2936 			 * count according to CPU use, instead of by the raw
2937 			 * number of faults. Tasks with little runtime have
2938 			 * little over-all impact on throughput, and thus their
2939 			 * faults are less important.
2940 			 */
2941 			f_weight = div64_u64(runtime << 16, period + 1);
2942 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2943 				   (total_faults + 1);
2944 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2945 			p->numa_faults[cpubuf_idx] = 0;
2946 
2947 			p->numa_faults[mem_idx] += diff;
2948 			p->numa_faults[cpu_idx] += f_diff;
2949 			faults += p->numa_faults[mem_idx];
2950 			p->total_numa_faults += diff;
2951 			if (ng) {
2952 				/*
2953 				 * safe because we can only change our own group
2954 				 *
2955 				 * mem_idx represents the offset for a given
2956 				 * nid and priv in a specific region because it
2957 				 * is at the beginning of the numa_faults array.
2958 				 */
2959 				ng->faults[mem_idx] += diff;
2960 				ng->faults[cpu_idx] += f_diff;
2961 				ng->total_faults += diff;
2962 				group_faults += ng->faults[mem_idx];
2963 			}
2964 		}
2965 
2966 		if (!ng) {
2967 			if (faults > max_faults) {
2968 				max_faults = faults;
2969 				max_nid = nid;
2970 			}
2971 		} else if (group_faults > max_faults) {
2972 			max_faults = group_faults;
2973 			max_nid = nid;
2974 		}
2975 	}
2976 
2977 	/* Cannot migrate task to CPU-less node */
2978 	max_nid = numa_nearest_node(max_nid, N_CPU);
2979 
2980 	if (ng) {
2981 		numa_group_count_active_nodes(ng);
2982 		spin_unlock_irq(group_lock);
2983 		max_nid = preferred_group_nid(p, max_nid);
2984 	}
2985 
2986 	if (max_faults) {
2987 		/* Set the new preferred node */
2988 		if (max_nid != p->numa_preferred_nid)
2989 			sched_setnuma(p, max_nid);
2990 	}
2991 
2992 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2993 }
2994 
2995 static inline int get_numa_group(struct numa_group *grp)
2996 {
2997 	return refcount_inc_not_zero(&grp->refcount);
2998 }
2999 
3000 static inline void put_numa_group(struct numa_group *grp)
3001 {
3002 	if (refcount_dec_and_test(&grp->refcount))
3003 		kfree_rcu(grp, rcu);
3004 }
3005 
3006 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3007 			int *priv)
3008 {
3009 	struct numa_group *grp, *my_grp;
3010 	struct task_struct *tsk;
3011 	bool join = false;
3012 	int cpu = cpupid_to_cpu(cpupid);
3013 	int i;
3014 
3015 	if (unlikely(!deref_curr_numa_group(p))) {
3016 		unsigned int size = sizeof(struct numa_group) +
3017 				    NR_NUMA_HINT_FAULT_STATS *
3018 				    nr_node_ids * sizeof(unsigned long);
3019 
3020 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3021 		if (!grp)
3022 			return;
3023 
3024 		refcount_set(&grp->refcount, 1);
3025 		grp->active_nodes = 1;
3026 		grp->max_faults_cpu = 0;
3027 		spin_lock_init(&grp->lock);
3028 		grp->gid = p->pid;
3029 
3030 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3031 			grp->faults[i] = p->numa_faults[i];
3032 
3033 		grp->total_faults = p->total_numa_faults;
3034 
3035 		grp->nr_tasks++;
3036 		rcu_assign_pointer(p->numa_group, grp);
3037 	}
3038 
3039 	rcu_read_lock();
3040 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
3041 
3042 	if (!cpupid_match_pid(tsk, cpupid))
3043 		goto no_join;
3044 
3045 	grp = rcu_dereference(tsk->numa_group);
3046 	if (!grp)
3047 		goto no_join;
3048 
3049 	my_grp = deref_curr_numa_group(p);
3050 	if (grp == my_grp)
3051 		goto no_join;
3052 
3053 	/*
3054 	 * Only join the other group if its bigger; if we're the bigger group,
3055 	 * the other task will join us.
3056 	 */
3057 	if (my_grp->nr_tasks > grp->nr_tasks)
3058 		goto no_join;
3059 
3060 	/*
3061 	 * Tie-break on the grp address.
3062 	 */
3063 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3064 		goto no_join;
3065 
3066 	/* Always join threads in the same process. */
3067 	if (tsk->mm == current->mm)
3068 		join = true;
3069 
3070 	/* Simple filter to avoid false positives due to PID collisions */
3071 	if (flags & TNF_SHARED)
3072 		join = true;
3073 
3074 	/* Update priv based on whether false sharing was detected */
3075 	*priv = !join;
3076 
3077 	if (join && !get_numa_group(grp))
3078 		goto no_join;
3079 
3080 	rcu_read_unlock();
3081 
3082 	if (!join)
3083 		return;
3084 
3085 	WARN_ON_ONCE(irqs_disabled());
3086 	double_lock_irq(&my_grp->lock, &grp->lock);
3087 
3088 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3089 		my_grp->faults[i] -= p->numa_faults[i];
3090 		grp->faults[i] += p->numa_faults[i];
3091 	}
3092 	my_grp->total_faults -= p->total_numa_faults;
3093 	grp->total_faults += p->total_numa_faults;
3094 
3095 	my_grp->nr_tasks--;
3096 	grp->nr_tasks++;
3097 
3098 	spin_unlock(&my_grp->lock);
3099 	spin_unlock_irq(&grp->lock);
3100 
3101 	rcu_assign_pointer(p->numa_group, grp);
3102 
3103 	put_numa_group(my_grp);
3104 	return;
3105 
3106 no_join:
3107 	rcu_read_unlock();
3108 	return;
3109 }
3110 
3111 /*
3112  * Get rid of NUMA statistics associated with a task (either current or dead).
3113  * If @final is set, the task is dead and has reached refcount zero, so we can
3114  * safely free all relevant data structures. Otherwise, there might be
3115  * concurrent reads from places like load balancing and procfs, and we should
3116  * reset the data back to default state without freeing ->numa_faults.
3117  */
3118 void task_numa_free(struct task_struct *p, bool final)
3119 {
3120 	/* safe: p either is current or is being freed by current */
3121 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3122 	unsigned long *numa_faults = p->numa_faults;
3123 	unsigned long flags;
3124 	int i;
3125 
3126 	if (!numa_faults)
3127 		return;
3128 
3129 	if (grp) {
3130 		spin_lock_irqsave(&grp->lock, flags);
3131 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3132 			grp->faults[i] -= p->numa_faults[i];
3133 		grp->total_faults -= p->total_numa_faults;
3134 
3135 		grp->nr_tasks--;
3136 		spin_unlock_irqrestore(&grp->lock, flags);
3137 		RCU_INIT_POINTER(p->numa_group, NULL);
3138 		put_numa_group(grp);
3139 	}
3140 
3141 	if (final) {
3142 		p->numa_faults = NULL;
3143 		kfree(numa_faults);
3144 	} else {
3145 		p->total_numa_faults = 0;
3146 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3147 			numa_faults[i] = 0;
3148 	}
3149 }
3150 
3151 /*
3152  * Got a PROT_NONE fault for a page on @node.
3153  */
3154 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3155 {
3156 	struct task_struct *p = current;
3157 	bool migrated = flags & TNF_MIGRATED;
3158 	int cpu_node = task_node(current);
3159 	int local = !!(flags & TNF_FAULT_LOCAL);
3160 	struct numa_group *ng;
3161 	int priv;
3162 
3163 	if (!static_branch_likely(&sched_numa_balancing))
3164 		return;
3165 
3166 	/* for example, ksmd faulting in a user's mm */
3167 	if (!p->mm)
3168 		return;
3169 
3170 	/*
3171 	 * NUMA faults statistics are unnecessary for the slow memory
3172 	 * node for memory tiering mode.
3173 	 */
3174 	if (!node_is_toptier(mem_node) &&
3175 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3176 	     !cpupid_valid(last_cpupid)))
3177 		return;
3178 
3179 	/* Allocate buffer to track faults on a per-node basis */
3180 	if (unlikely(!p->numa_faults)) {
3181 		int size = sizeof(*p->numa_faults) *
3182 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3183 
3184 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3185 		if (!p->numa_faults)
3186 			return;
3187 
3188 		p->total_numa_faults = 0;
3189 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3190 	}
3191 
3192 	/*
3193 	 * First accesses are treated as private, otherwise consider accesses
3194 	 * to be private if the accessing pid has not changed
3195 	 */
3196 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3197 		priv = 1;
3198 	} else {
3199 		priv = cpupid_match_pid(p, last_cpupid);
3200 		if (!priv && !(flags & TNF_NO_GROUP))
3201 			task_numa_group(p, last_cpupid, flags, &priv);
3202 	}
3203 
3204 	/*
3205 	 * If a workload spans multiple NUMA nodes, a shared fault that
3206 	 * occurs wholly within the set of nodes that the workload is
3207 	 * actively using should be counted as local. This allows the
3208 	 * scan rate to slow down when a workload has settled down.
3209 	 */
3210 	ng = deref_curr_numa_group(p);
3211 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3212 				numa_is_active_node(cpu_node, ng) &&
3213 				numa_is_active_node(mem_node, ng))
3214 		local = 1;
3215 
3216 	/*
3217 	 * Retry to migrate task to preferred node periodically, in case it
3218 	 * previously failed, or the scheduler moved us.
3219 	 */
3220 	if (time_after(jiffies, p->numa_migrate_retry)) {
3221 		task_numa_placement(p);
3222 		numa_migrate_preferred(p);
3223 	}
3224 
3225 	if (migrated)
3226 		p->numa_pages_migrated += pages;
3227 	if (flags & TNF_MIGRATE_FAIL)
3228 		p->numa_faults_locality[2] += pages;
3229 
3230 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3231 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3232 	p->numa_faults_locality[local] += pages;
3233 }
3234 
3235 static void reset_ptenuma_scan(struct task_struct *p)
3236 {
3237 	/*
3238 	 * We only did a read acquisition of the mmap sem, so
3239 	 * p->mm->numa_scan_seq is written to without exclusive access
3240 	 * and the update is not guaranteed to be atomic. That's not
3241 	 * much of an issue though, since this is just used for
3242 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3243 	 * expensive, to avoid any form of compiler optimizations:
3244 	 */
3245 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3246 	p->mm->numa_scan_offset = 0;
3247 }
3248 
3249 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3250 {
3251 	unsigned long pids;
3252 	/*
3253 	 * Allow unconditional access first two times, so that all the (pages)
3254 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3255 	 * This is also done to avoid any side effect of task scanning
3256 	 * amplifying the unfairness of disjoint set of VMAs' access.
3257 	 */
3258 	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3259 		return true;
3260 
3261 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3262 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3263 		return true;
3264 
3265 	/*
3266 	 * Complete a scan that has already started regardless of PID access, or
3267 	 * some VMAs may never be scanned in multi-threaded applications:
3268 	 */
3269 	if (mm->numa_scan_offset > vma->vm_start) {
3270 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3271 		return true;
3272 	}
3273 
3274 	/*
3275 	 * This vma has not been accessed for a while, and if the number
3276 	 * the threads in the same process is low, which means no other
3277 	 * threads can help scan this vma, force a vma scan.
3278 	 */
3279 	if (READ_ONCE(mm->numa_scan_seq) >
3280 	   (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3281 		return true;
3282 
3283 	return false;
3284 }
3285 
3286 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3287 
3288 /*
3289  * The expensive part of numa migration is done from task_work context.
3290  * Triggered from task_tick_numa().
3291  */
3292 static void task_numa_work(struct callback_head *work)
3293 {
3294 	unsigned long migrate, next_scan, now = jiffies;
3295 	struct task_struct *p = current;
3296 	struct mm_struct *mm = p->mm;
3297 	u64 runtime = p->se.sum_exec_runtime;
3298 	struct vm_area_struct *vma;
3299 	unsigned long start, end;
3300 	unsigned long nr_pte_updates = 0;
3301 	long pages, virtpages;
3302 	struct vma_iterator vmi;
3303 	bool vma_pids_skipped;
3304 	bool vma_pids_forced = false;
3305 
3306 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3307 
3308 	work->next = work;
3309 	/*
3310 	 * Who cares about NUMA placement when they're dying.
3311 	 *
3312 	 * NOTE: make sure not to dereference p->mm before this check,
3313 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3314 	 * without p->mm even though we still had it when we enqueued this
3315 	 * work.
3316 	 */
3317 	if (p->flags & PF_EXITING)
3318 		return;
3319 
3320 	if (!mm->numa_next_scan) {
3321 		mm->numa_next_scan = now +
3322 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3323 	}
3324 
3325 	/*
3326 	 * Enforce maximal scan/migration frequency..
3327 	 */
3328 	migrate = mm->numa_next_scan;
3329 	if (time_before(now, migrate))
3330 		return;
3331 
3332 	if (p->numa_scan_period == 0) {
3333 		p->numa_scan_period_max = task_scan_max(p);
3334 		p->numa_scan_period = task_scan_start(p);
3335 	}
3336 
3337 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3338 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3339 		return;
3340 
3341 	/*
3342 	 * Delay this task enough that another task of this mm will likely win
3343 	 * the next time around.
3344 	 */
3345 	p->node_stamp += 2 * TICK_NSEC;
3346 
3347 	pages = sysctl_numa_balancing_scan_size;
3348 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3349 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3350 	if (!pages)
3351 		return;
3352 
3353 
3354 	if (!mmap_read_trylock(mm))
3355 		return;
3356 
3357 	/*
3358 	 * VMAs are skipped if the current PID has not trapped a fault within
3359 	 * the VMA recently. Allow scanning to be forced if there is no
3360 	 * suitable VMA remaining.
3361 	 */
3362 	vma_pids_skipped = false;
3363 
3364 retry_pids:
3365 	start = mm->numa_scan_offset;
3366 	vma_iter_init(&vmi, mm, start);
3367 	vma = vma_next(&vmi);
3368 	if (!vma) {
3369 		reset_ptenuma_scan(p);
3370 		start = 0;
3371 		vma_iter_set(&vmi, start);
3372 		vma = vma_next(&vmi);
3373 	}
3374 
3375 	for (; vma; vma = vma_next(&vmi)) {
3376 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3377 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3378 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3379 			continue;
3380 		}
3381 
3382 		/*
3383 		 * Shared library pages mapped by multiple processes are not
3384 		 * migrated as it is expected they are cache replicated. Avoid
3385 		 * hinting faults in read-only file-backed mappings or the vDSO
3386 		 * as migrating the pages will be of marginal benefit.
3387 		 */
3388 		if (!vma->vm_mm ||
3389 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3390 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3391 			continue;
3392 		}
3393 
3394 		/*
3395 		 * Skip inaccessible VMAs to avoid any confusion between
3396 		 * PROT_NONE and NUMA hinting PTEs
3397 		 */
3398 		if (!vma_is_accessible(vma)) {
3399 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3400 			continue;
3401 		}
3402 
3403 		/* Initialise new per-VMA NUMAB state. */
3404 		if (!vma->numab_state) {
3405 			struct vma_numab_state *ptr;
3406 
3407 			ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
3408 			if (!ptr)
3409 				continue;
3410 
3411 			if (cmpxchg(&vma->numab_state, NULL, ptr)) {
3412 				kfree(ptr);
3413 				continue;
3414 			}
3415 
3416 			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3417 
3418 			vma->numab_state->next_scan = now +
3419 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3420 
3421 			/* Reset happens after 4 times scan delay of scan start */
3422 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3423 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3424 
3425 			/*
3426 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3427 			 * to prevent VMAs being skipped prematurely on the
3428 			 * first scan:
3429 			 */
3430 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3431 		}
3432 
3433 		/*
3434 		 * Scanning the VMAs of short lived tasks add more overhead. So
3435 		 * delay the scan for new VMAs.
3436 		 */
3437 		if (mm->numa_scan_seq && time_before(jiffies,
3438 						vma->numab_state->next_scan)) {
3439 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3440 			continue;
3441 		}
3442 
3443 		/* RESET access PIDs regularly for old VMAs. */
3444 		if (mm->numa_scan_seq &&
3445 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3446 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3447 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3448 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3449 			vma->numab_state->pids_active[1] = 0;
3450 		}
3451 
3452 		/* Do not rescan VMAs twice within the same sequence. */
3453 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3454 			mm->numa_scan_offset = vma->vm_end;
3455 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3456 			continue;
3457 		}
3458 
3459 		/*
3460 		 * Do not scan the VMA if task has not accessed it, unless no other
3461 		 * VMA candidate exists.
3462 		 */
3463 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3464 			vma_pids_skipped = true;
3465 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3466 			continue;
3467 		}
3468 
3469 		do {
3470 			start = max(start, vma->vm_start);
3471 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3472 			end = min(end, vma->vm_end);
3473 			nr_pte_updates = change_prot_numa(vma, start, end);
3474 
3475 			/*
3476 			 * Try to scan sysctl_numa_balancing_size worth of
3477 			 * hpages that have at least one present PTE that
3478 			 * is not already PTE-numa. If the VMA contains
3479 			 * areas that are unused or already full of prot_numa
3480 			 * PTEs, scan up to virtpages, to skip through those
3481 			 * areas faster.
3482 			 */
3483 			if (nr_pte_updates)
3484 				pages -= (end - start) >> PAGE_SHIFT;
3485 			virtpages -= (end - start) >> PAGE_SHIFT;
3486 
3487 			start = end;
3488 			if (pages <= 0 || virtpages <= 0)
3489 				goto out;
3490 
3491 			cond_resched();
3492 		} while (end != vma->vm_end);
3493 
3494 		/* VMA scan is complete, do not scan until next sequence. */
3495 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3496 
3497 		/*
3498 		 * Only force scan within one VMA at a time, to limit the
3499 		 * cost of scanning a potentially uninteresting VMA.
3500 		 */
3501 		if (vma_pids_forced)
3502 			break;
3503 	}
3504 
3505 	/*
3506 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3507 	 * not accessing the VMA previously, then force a scan to ensure
3508 	 * forward progress:
3509 	 */
3510 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3511 		vma_pids_forced = true;
3512 		goto retry_pids;
3513 	}
3514 
3515 out:
3516 	/*
3517 	 * It is possible to reach the end of the VMA list but the last few
3518 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3519 	 * would find the !migratable VMA on the next scan but not reset the
3520 	 * scanner to the start so check it now.
3521 	 */
3522 	if (vma)
3523 		mm->numa_scan_offset = start;
3524 	else
3525 		reset_ptenuma_scan(p);
3526 	mmap_read_unlock(mm);
3527 
3528 	/*
3529 	 * Make sure tasks use at least 32x as much time to run other code
3530 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3531 	 * Usually update_task_scan_period slows down scanning enough; on an
3532 	 * overloaded system we need to limit overhead on a per task basis.
3533 	 */
3534 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3535 		u64 diff = p->se.sum_exec_runtime - runtime;
3536 		p->node_stamp += 32 * diff;
3537 	}
3538 }
3539 
3540 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3541 {
3542 	int mm_users = 0;
3543 	struct mm_struct *mm = p->mm;
3544 
3545 	if (mm) {
3546 		mm_users = atomic_read(&mm->mm_users);
3547 		if (mm_users == 1) {
3548 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3549 			mm->numa_scan_seq = 0;
3550 		}
3551 	}
3552 	p->node_stamp			= 0;
3553 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3554 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3555 	p->numa_migrate_retry		= 0;
3556 	/* Protect against double add, see task_tick_numa and task_numa_work */
3557 	p->numa_work.next		= &p->numa_work;
3558 	p->numa_faults			= NULL;
3559 	p->numa_pages_migrated		= 0;
3560 	p->total_numa_faults		= 0;
3561 	RCU_INIT_POINTER(p->numa_group, NULL);
3562 	p->last_task_numa_placement	= 0;
3563 	p->last_sum_exec_runtime	= 0;
3564 
3565 	init_task_work(&p->numa_work, task_numa_work);
3566 
3567 	/* New address space, reset the preferred nid */
3568 	if (!(clone_flags & CLONE_VM)) {
3569 		p->numa_preferred_nid = NUMA_NO_NODE;
3570 		return;
3571 	}
3572 
3573 	/*
3574 	 * New thread, keep existing numa_preferred_nid which should be copied
3575 	 * already by arch_dup_task_struct but stagger when scans start.
3576 	 */
3577 	if (mm) {
3578 		unsigned int delay;
3579 
3580 		delay = min_t(unsigned int, task_scan_max(current),
3581 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3582 		delay += 2 * TICK_NSEC;
3583 		p->node_stamp = delay;
3584 	}
3585 }
3586 
3587 /*
3588  * Drive the periodic memory faults..
3589  */
3590 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3591 {
3592 	struct callback_head *work = &curr->numa_work;
3593 	u64 period, now;
3594 
3595 	/*
3596 	 * We don't care about NUMA placement if we don't have memory.
3597 	 */
3598 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3599 		return;
3600 
3601 	/*
3602 	 * Using runtime rather than walltime has the dual advantage that
3603 	 * we (mostly) drive the selection from busy threads and that the
3604 	 * task needs to have done some actual work before we bother with
3605 	 * NUMA placement.
3606 	 */
3607 	now = curr->se.sum_exec_runtime;
3608 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3609 
3610 	if (now > curr->node_stamp + period) {
3611 		if (!curr->node_stamp)
3612 			curr->numa_scan_period = task_scan_start(curr);
3613 		curr->node_stamp += period;
3614 
3615 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3616 			task_work_add(curr, work, TWA_RESUME);
3617 	}
3618 }
3619 
3620 static void update_scan_period(struct task_struct *p, int new_cpu)
3621 {
3622 	int src_nid = cpu_to_node(task_cpu(p));
3623 	int dst_nid = cpu_to_node(new_cpu);
3624 
3625 	if (!static_branch_likely(&sched_numa_balancing))
3626 		return;
3627 
3628 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3629 		return;
3630 
3631 	if (src_nid == dst_nid)
3632 		return;
3633 
3634 	/*
3635 	 * Allow resets if faults have been trapped before one scan
3636 	 * has completed. This is most likely due to a new task that
3637 	 * is pulled cross-node due to wakeups or load balancing.
3638 	 */
3639 	if (p->numa_scan_seq) {
3640 		/*
3641 		 * Avoid scan adjustments if moving to the preferred
3642 		 * node or if the task was not previously running on
3643 		 * the preferred node.
3644 		 */
3645 		if (dst_nid == p->numa_preferred_nid ||
3646 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3647 			src_nid != p->numa_preferred_nid))
3648 			return;
3649 	}
3650 
3651 	p->numa_scan_period = task_scan_start(p);
3652 }
3653 
3654 #else
3655 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3656 {
3657 }
3658 
3659 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3660 {
3661 }
3662 
3663 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3664 {
3665 }
3666 
3667 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3668 {
3669 }
3670 
3671 #endif /* CONFIG_NUMA_BALANCING */
3672 
3673 static void
3674 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3675 {
3676 	update_load_add(&cfs_rq->load, se->load.weight);
3677 #ifdef CONFIG_SMP
3678 	if (entity_is_task(se)) {
3679 		struct rq *rq = rq_of(cfs_rq);
3680 
3681 		account_numa_enqueue(rq, task_of(se));
3682 		list_add(&se->group_node, &rq->cfs_tasks);
3683 	}
3684 #endif
3685 	cfs_rq->nr_running++;
3686 	if (se_is_idle(se))
3687 		cfs_rq->idle_nr_running++;
3688 }
3689 
3690 static void
3691 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3692 {
3693 	update_load_sub(&cfs_rq->load, se->load.weight);
3694 #ifdef CONFIG_SMP
3695 	if (entity_is_task(se)) {
3696 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3697 		list_del_init(&se->group_node);
3698 	}
3699 #endif
3700 	cfs_rq->nr_running--;
3701 	if (se_is_idle(se))
3702 		cfs_rq->idle_nr_running--;
3703 }
3704 
3705 /*
3706  * Signed add and clamp on underflow.
3707  *
3708  * Explicitly do a load-store to ensure the intermediate value never hits
3709  * memory. This allows lockless observations without ever seeing the negative
3710  * values.
3711  */
3712 #define add_positive(_ptr, _val) do {                           \
3713 	typeof(_ptr) ptr = (_ptr);                              \
3714 	typeof(_val) val = (_val);                              \
3715 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3716 								\
3717 	res = var + val;                                        \
3718 								\
3719 	if (val < 0 && res > var)                               \
3720 		res = 0;                                        \
3721 								\
3722 	WRITE_ONCE(*ptr, res);                                  \
3723 } while (0)
3724 
3725 /*
3726  * Unsigned subtract and clamp on underflow.
3727  *
3728  * Explicitly do a load-store to ensure the intermediate value never hits
3729  * memory. This allows lockless observations without ever seeing the negative
3730  * values.
3731  */
3732 #define sub_positive(_ptr, _val) do {				\
3733 	typeof(_ptr) ptr = (_ptr);				\
3734 	typeof(*ptr) val = (_val);				\
3735 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3736 	res = var - val;					\
3737 	if (res > var)						\
3738 		res = 0;					\
3739 	WRITE_ONCE(*ptr, res);					\
3740 } while (0)
3741 
3742 /*
3743  * Remove and clamp on negative, from a local variable.
3744  *
3745  * A variant of sub_positive(), which does not use explicit load-store
3746  * and is thus optimized for local variable updates.
3747  */
3748 #define lsub_positive(_ptr, _val) do {				\
3749 	typeof(_ptr) ptr = (_ptr);				\
3750 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3751 } while (0)
3752 
3753 #ifdef CONFIG_SMP
3754 static inline void
3755 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3756 {
3757 	cfs_rq->avg.load_avg += se->avg.load_avg;
3758 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3759 }
3760 
3761 static inline void
3762 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3763 {
3764 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3765 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3766 	/* See update_cfs_rq_load_avg() */
3767 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3768 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3769 }
3770 #else
3771 static inline void
3772 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3773 static inline void
3774 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3775 #endif
3776 
3777 static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
3778 			   unsigned long weight)
3779 {
3780 	unsigned long old_weight = se->load.weight;
3781 	s64 vlag, vslice;
3782 
3783 	/*
3784 	 * VRUNTIME
3785 	 * --------
3786 	 *
3787 	 * COROLLARY #1: The virtual runtime of the entity needs to be
3788 	 * adjusted if re-weight at !0-lag point.
3789 	 *
3790 	 * Proof: For contradiction assume this is not true, so we can
3791 	 * re-weight without changing vruntime at !0-lag point.
3792 	 *
3793 	 *             Weight	VRuntime   Avg-VRuntime
3794 	 *     before    w          v            V
3795 	 *      after    w'         v'           V'
3796 	 *
3797 	 * Since lag needs to be preserved through re-weight:
3798 	 *
3799 	 *	lag = (V - v)*w = (V'- v')*w', where v = v'
3800 	 *	==>	V' = (V - v)*w/w' + v		(1)
3801 	 *
3802 	 * Let W be the total weight of the entities before reweight,
3803 	 * since V' is the new weighted average of entities:
3804 	 *
3805 	 *	V' = (WV + w'v - wv) / (W + w' - w)	(2)
3806 	 *
3807 	 * by using (1) & (2) we obtain:
3808 	 *
3809 	 *	(WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3810 	 *	==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3811 	 *	==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3812 	 *	==>	(V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3813 	 *
3814 	 * Since we are doing at !0-lag point which means V != v, we
3815 	 * can simplify (3):
3816 	 *
3817 	 *	==>	W / (W + w' - w) = w / w'
3818 	 *	==>	Ww' = Ww + ww' - ww
3819 	 *	==>	W * (w' - w) = w * (w' - w)
3820 	 *	==>	W = w	(re-weight indicates w' != w)
3821 	 *
3822 	 * So the cfs_rq contains only one entity, hence vruntime of
3823 	 * the entity @v should always equal to the cfs_rq's weighted
3824 	 * average vruntime @V, which means we will always re-weight
3825 	 * at 0-lag point, thus breach assumption. Proof completed.
3826 	 *
3827 	 *
3828 	 * COROLLARY #2: Re-weight does NOT affect weighted average
3829 	 * vruntime of all the entities.
3830 	 *
3831 	 * Proof: According to corollary #1, Eq. (1) should be:
3832 	 *
3833 	 *	(V - v)*w = (V' - v')*w'
3834 	 *	==>    v' = V' - (V - v)*w/w'		(4)
3835 	 *
3836 	 * According to the weighted average formula, we have:
3837 	 *
3838 	 *	V' = (WV - wv + w'v') / (W - w + w')
3839 	 *	   = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3840 	 *	   = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3841 	 *	   = (WV + w'V' - Vw) / (W - w + w')
3842 	 *
3843 	 *	==>  V'*(W - w + w') = WV + w'V' - Vw
3844 	 *	==>	V' * (W - w) = (W - w) * V	(5)
3845 	 *
3846 	 * If the entity is the only one in the cfs_rq, then reweight
3847 	 * always occurs at 0-lag point, so V won't change. Or else
3848 	 * there are other entities, hence W != w, then Eq. (5) turns
3849 	 * into V' = V. So V won't change in either case, proof done.
3850 	 *
3851 	 *
3852 	 * So according to corollary #1 & #2, the effect of re-weight
3853 	 * on vruntime should be:
3854 	 *
3855 	 *	v' = V' - (V - v) * w / w'		(4)
3856 	 *	   = V  - (V - v) * w / w'
3857 	 *	   = V  - vl * w / w'
3858 	 *	   = V  - vl'
3859 	 */
3860 	if (avruntime != se->vruntime) {
3861 		vlag = entity_lag(avruntime, se);
3862 		vlag = div_s64(vlag * old_weight, weight);
3863 		se->vruntime = avruntime - vlag;
3864 	}
3865 
3866 	/*
3867 	 * DEADLINE
3868 	 * --------
3869 	 *
3870 	 * When the weight changes, the virtual time slope changes and
3871 	 * we should adjust the relative virtual deadline accordingly.
3872 	 *
3873 	 *	d' = v' + (d - v)*w/w'
3874 	 *	   = V' - (V - v)*w/w' + (d - v)*w/w'
3875 	 *	   = V  - (V - v)*w/w' + (d - v)*w/w'
3876 	 *	   = V  + (d - V)*w/w'
3877 	 */
3878 	vslice = (s64)(se->deadline - avruntime);
3879 	vslice = div_s64(vslice * old_weight, weight);
3880 	se->deadline = avruntime + vslice;
3881 }
3882 
3883 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3884 			    unsigned long weight)
3885 {
3886 	bool curr = cfs_rq->curr == se;
3887 	u64 avruntime;
3888 
3889 	if (se->on_rq) {
3890 		/* commit outstanding execution time */
3891 		update_curr(cfs_rq);
3892 		avruntime = avg_vruntime(cfs_rq);
3893 		if (!curr)
3894 			__dequeue_entity(cfs_rq, se);
3895 		update_load_sub(&cfs_rq->load, se->load.weight);
3896 	}
3897 	dequeue_load_avg(cfs_rq, se);
3898 
3899 	if (se->on_rq) {
3900 		reweight_eevdf(se, avruntime, weight);
3901 	} else {
3902 		/*
3903 		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3904 		 * we need to scale se->vlag when w_i changes.
3905 		 */
3906 		se->vlag = div_s64(se->vlag * se->load.weight, weight);
3907 	}
3908 
3909 	update_load_set(&se->load, weight);
3910 
3911 #ifdef CONFIG_SMP
3912 	do {
3913 		u32 divider = get_pelt_divider(&se->avg);
3914 
3915 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3916 	} while (0);
3917 #endif
3918 
3919 	enqueue_load_avg(cfs_rq, se);
3920 	if (se->on_rq) {
3921 		update_load_add(&cfs_rq->load, se->load.weight);
3922 		if (!curr)
3923 			__enqueue_entity(cfs_rq, se);
3924 
3925 		/*
3926 		 * The entity's vruntime has been adjusted, so let's check
3927 		 * whether the rq-wide min_vruntime needs updated too. Since
3928 		 * the calculations above require stable min_vruntime rather
3929 		 * than up-to-date one, we do the update at the end of the
3930 		 * reweight process.
3931 		 */
3932 		update_min_vruntime(cfs_rq);
3933 	}
3934 }
3935 
3936 static void reweight_task_fair(struct rq *rq, struct task_struct *p,
3937 			       const struct load_weight *lw)
3938 {
3939 	struct sched_entity *se = &p->se;
3940 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3941 	struct load_weight *load = &se->load;
3942 
3943 	reweight_entity(cfs_rq, se, lw->weight);
3944 	load->inv_weight = lw->inv_weight;
3945 }
3946 
3947 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3948 
3949 #ifdef CONFIG_FAIR_GROUP_SCHED
3950 #ifdef CONFIG_SMP
3951 /*
3952  * All this does is approximate the hierarchical proportion which includes that
3953  * global sum we all love to hate.
3954  *
3955  * That is, the weight of a group entity, is the proportional share of the
3956  * group weight based on the group runqueue weights. That is:
3957  *
3958  *                     tg->weight * grq->load.weight
3959  *   ge->load.weight = -----------------------------               (1)
3960  *                       \Sum grq->load.weight
3961  *
3962  * Now, because computing that sum is prohibitively expensive to compute (been
3963  * there, done that) we approximate it with this average stuff. The average
3964  * moves slower and therefore the approximation is cheaper and more stable.
3965  *
3966  * So instead of the above, we substitute:
3967  *
3968  *   grq->load.weight -> grq->avg.load_avg                         (2)
3969  *
3970  * which yields the following:
3971  *
3972  *                     tg->weight * grq->avg.load_avg
3973  *   ge->load.weight = ------------------------------              (3)
3974  *                             tg->load_avg
3975  *
3976  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3977  *
3978  * That is shares_avg, and it is right (given the approximation (2)).
3979  *
3980  * The problem with it is that because the average is slow -- it was designed
3981  * to be exactly that of course -- this leads to transients in boundary
3982  * conditions. In specific, the case where the group was idle and we start the
3983  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3984  * yielding bad latency etc..
3985  *
3986  * Now, in that special case (1) reduces to:
3987  *
3988  *                     tg->weight * grq->load.weight
3989  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3990  *                         grp->load.weight
3991  *
3992  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3993  *
3994  * So what we do is modify our approximation (3) to approach (4) in the (near)
3995  * UP case, like:
3996  *
3997  *   ge->load.weight =
3998  *
3999  *              tg->weight * grq->load.weight
4000  *     ---------------------------------------------------         (5)
4001  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
4002  *
4003  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
4004  * we need to use grq->avg.load_avg as its lower bound, which then gives:
4005  *
4006  *
4007  *                     tg->weight * grq->load.weight
4008  *   ge->load.weight = -----------------------------		   (6)
4009  *                             tg_load_avg'
4010  *
4011  * Where:
4012  *
4013  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
4014  *                  max(grq->load.weight, grq->avg.load_avg)
4015  *
4016  * And that is shares_weight and is icky. In the (near) UP case it approaches
4017  * (4) while in the normal case it approaches (3). It consistently
4018  * overestimates the ge->load.weight and therefore:
4019  *
4020  *   \Sum ge->load.weight >= tg->weight
4021  *
4022  * hence icky!
4023  */
4024 static long calc_group_shares(struct cfs_rq *cfs_rq)
4025 {
4026 	long tg_weight, tg_shares, load, shares;
4027 	struct task_group *tg = cfs_rq->tg;
4028 
4029 	tg_shares = READ_ONCE(tg->shares);
4030 
4031 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
4032 
4033 	tg_weight = atomic_long_read(&tg->load_avg);
4034 
4035 	/* Ensure tg_weight >= load */
4036 	tg_weight -= cfs_rq->tg_load_avg_contrib;
4037 	tg_weight += load;
4038 
4039 	shares = (tg_shares * load);
4040 	if (tg_weight)
4041 		shares /= tg_weight;
4042 
4043 	/*
4044 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
4045 	 * of a group with small tg->shares value. It is a floor value which is
4046 	 * assigned as a minimum load.weight to the sched_entity representing
4047 	 * the group on a CPU.
4048 	 *
4049 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
4050 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
4051 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
4052 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
4053 	 * instead of 0.
4054 	 */
4055 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
4056 }
4057 #endif /* CONFIG_SMP */
4058 
4059 /*
4060  * Recomputes the group entity based on the current state of its group
4061  * runqueue.
4062  */
4063 static void update_cfs_group(struct sched_entity *se)
4064 {
4065 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4066 	long shares;
4067 
4068 	if (!gcfs_rq)
4069 		return;
4070 
4071 	if (throttled_hierarchy(gcfs_rq))
4072 		return;
4073 
4074 #ifndef CONFIG_SMP
4075 	shares = READ_ONCE(gcfs_rq->tg->shares);
4076 #else
4077 	shares = calc_group_shares(gcfs_rq);
4078 #endif
4079 	if (unlikely(se->load.weight != shares))
4080 		reweight_entity(cfs_rq_of(se), se, shares);
4081 }
4082 
4083 #else /* CONFIG_FAIR_GROUP_SCHED */
4084 static inline void update_cfs_group(struct sched_entity *se)
4085 {
4086 }
4087 #endif /* CONFIG_FAIR_GROUP_SCHED */
4088 
4089 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
4090 {
4091 	struct rq *rq = rq_of(cfs_rq);
4092 
4093 	if (&rq->cfs == cfs_rq) {
4094 		/*
4095 		 * There are a few boundary cases this might miss but it should
4096 		 * get called often enough that that should (hopefully) not be
4097 		 * a real problem.
4098 		 *
4099 		 * It will not get called when we go idle, because the idle
4100 		 * thread is a different class (!fair), nor will the utilization
4101 		 * number include things like RT tasks.
4102 		 *
4103 		 * As is, the util number is not freq-invariant (we'd have to
4104 		 * implement arch_scale_freq_capacity() for that).
4105 		 *
4106 		 * See cpu_util_cfs().
4107 		 */
4108 		cpufreq_update_util(rq, flags);
4109 	}
4110 }
4111 
4112 #ifdef CONFIG_SMP
4113 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4114 {
4115 	if (sa->load_sum)
4116 		return false;
4117 
4118 	if (sa->util_sum)
4119 		return false;
4120 
4121 	if (sa->runnable_sum)
4122 		return false;
4123 
4124 	/*
4125 	 * _avg must be null when _sum are null because _avg = _sum / divider
4126 	 * Make sure that rounding and/or propagation of PELT values never
4127 	 * break this.
4128 	 */
4129 	SCHED_WARN_ON(sa->load_avg ||
4130 		      sa->util_avg ||
4131 		      sa->runnable_avg);
4132 
4133 	return true;
4134 }
4135 
4136 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4137 {
4138 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4139 				 cfs_rq->last_update_time_copy);
4140 }
4141 #ifdef CONFIG_FAIR_GROUP_SCHED
4142 /*
4143  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4144  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4145  * bottom-up, we only have to test whether the cfs_rq before us on the list
4146  * is our child.
4147  * If cfs_rq is not on the list, test whether a child needs its to be added to
4148  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4149  */
4150 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4151 {
4152 	struct cfs_rq *prev_cfs_rq;
4153 	struct list_head *prev;
4154 
4155 	if (cfs_rq->on_list) {
4156 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4157 	} else {
4158 		struct rq *rq = rq_of(cfs_rq);
4159 
4160 		prev = rq->tmp_alone_branch;
4161 	}
4162 
4163 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4164 
4165 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4166 }
4167 
4168 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4169 {
4170 	if (cfs_rq->load.weight)
4171 		return false;
4172 
4173 	if (!load_avg_is_decayed(&cfs_rq->avg))
4174 		return false;
4175 
4176 	if (child_cfs_rq_on_list(cfs_rq))
4177 		return false;
4178 
4179 	return true;
4180 }
4181 
4182 /**
4183  * update_tg_load_avg - update the tg's load avg
4184  * @cfs_rq: the cfs_rq whose avg changed
4185  *
4186  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4187  * However, because tg->load_avg is a global value there are performance
4188  * considerations.
4189  *
4190  * In order to avoid having to look at the other cfs_rq's, we use a
4191  * differential update where we store the last value we propagated. This in
4192  * turn allows skipping updates if the differential is 'small'.
4193  *
4194  * Updating tg's load_avg is necessary before update_cfs_share().
4195  */
4196 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4197 {
4198 	long delta;
4199 	u64 now;
4200 
4201 	/*
4202 	 * No need to update load_avg for root_task_group as it is not used.
4203 	 */
4204 	if (cfs_rq->tg == &root_task_group)
4205 		return;
4206 
4207 	/* rq has been offline and doesn't contribute to the share anymore: */
4208 	if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4209 		return;
4210 
4211 	/*
4212 	 * For migration heavy workloads, access to tg->load_avg can be
4213 	 * unbound. Limit the update rate to at most once per ms.
4214 	 */
4215 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4216 	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4217 		return;
4218 
4219 	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4220 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4221 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4222 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4223 		cfs_rq->last_update_tg_load_avg = now;
4224 	}
4225 }
4226 
4227 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4228 {
4229 	long delta;
4230 	u64 now;
4231 
4232 	/*
4233 	 * No need to update load_avg for root_task_group, as it is not used.
4234 	 */
4235 	if (cfs_rq->tg == &root_task_group)
4236 		return;
4237 
4238 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4239 	delta = 0 - cfs_rq->tg_load_avg_contrib;
4240 	atomic_long_add(delta, &cfs_rq->tg->load_avg);
4241 	cfs_rq->tg_load_avg_contrib = 0;
4242 	cfs_rq->last_update_tg_load_avg = now;
4243 }
4244 
4245 /* CPU offline callback: */
4246 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4247 {
4248 	struct task_group *tg;
4249 
4250 	lockdep_assert_rq_held(rq);
4251 
4252 	/*
4253 	 * The rq clock has already been updated in
4254 	 * set_rq_offline(), so we should skip updating
4255 	 * the rq clock again in unthrottle_cfs_rq().
4256 	 */
4257 	rq_clock_start_loop_update(rq);
4258 
4259 	rcu_read_lock();
4260 	list_for_each_entry_rcu(tg, &task_groups, list) {
4261 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4262 
4263 		clear_tg_load_avg(cfs_rq);
4264 	}
4265 	rcu_read_unlock();
4266 
4267 	rq_clock_stop_loop_update(rq);
4268 }
4269 
4270 /*
4271  * Called within set_task_rq() right before setting a task's CPU. The
4272  * caller only guarantees p->pi_lock is held; no other assumptions,
4273  * including the state of rq->lock, should be made.
4274  */
4275 void set_task_rq_fair(struct sched_entity *se,
4276 		      struct cfs_rq *prev, struct cfs_rq *next)
4277 {
4278 	u64 p_last_update_time;
4279 	u64 n_last_update_time;
4280 
4281 	if (!sched_feat(ATTACH_AGE_LOAD))
4282 		return;
4283 
4284 	/*
4285 	 * We are supposed to update the task to "current" time, then its up to
4286 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4287 	 * getting what current time is, so simply throw away the out-of-date
4288 	 * time. This will result in the wakee task is less decayed, but giving
4289 	 * the wakee more load sounds not bad.
4290 	 */
4291 	if (!(se->avg.last_update_time && prev))
4292 		return;
4293 
4294 	p_last_update_time = cfs_rq_last_update_time(prev);
4295 	n_last_update_time = cfs_rq_last_update_time(next);
4296 
4297 	__update_load_avg_blocked_se(p_last_update_time, se);
4298 	se->avg.last_update_time = n_last_update_time;
4299 }
4300 
4301 /*
4302  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4303  * propagate its contribution. The key to this propagation is the invariant
4304  * that for each group:
4305  *
4306  *   ge->avg == grq->avg						(1)
4307  *
4308  * _IFF_ we look at the pure running and runnable sums. Because they
4309  * represent the very same entity, just at different points in the hierarchy.
4310  *
4311  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4312  * and simply copies the running/runnable sum over (but still wrong, because
4313  * the group entity and group rq do not have their PELT windows aligned).
4314  *
4315  * However, update_tg_cfs_load() is more complex. So we have:
4316  *
4317  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4318  *
4319  * And since, like util, the runnable part should be directly transferable,
4320  * the following would _appear_ to be the straight forward approach:
4321  *
4322  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4323  *
4324  * And per (1) we have:
4325  *
4326  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4327  *
4328  * Which gives:
4329  *
4330  *                      ge->load.weight * grq->avg.load_avg
4331  *   ge->avg.load_avg = -----------------------------------		(4)
4332  *                               grq->load.weight
4333  *
4334  * Except that is wrong!
4335  *
4336  * Because while for entities historical weight is not important and we
4337  * really only care about our future and therefore can consider a pure
4338  * runnable sum, runqueues can NOT do this.
4339  *
4340  * We specifically want runqueues to have a load_avg that includes
4341  * historical weights. Those represent the blocked load, the load we expect
4342  * to (shortly) return to us. This only works by keeping the weights as
4343  * integral part of the sum. We therefore cannot decompose as per (3).
4344  *
4345  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4346  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4347  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4348  * runnable section of these tasks overlap (or not). If they were to perfectly
4349  * align the rq as a whole would be runnable 2/3 of the time. If however we
4350  * always have at least 1 runnable task, the rq as a whole is always runnable.
4351  *
4352  * So we'll have to approximate.. :/
4353  *
4354  * Given the constraint:
4355  *
4356  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4357  *
4358  * We can construct a rule that adds runnable to a rq by assuming minimal
4359  * overlap.
4360  *
4361  * On removal, we'll assume each task is equally runnable; which yields:
4362  *
4363  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4364  *
4365  * XXX: only do this for the part of runnable > running ?
4366  *
4367  */
4368 static inline void
4369 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4370 {
4371 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4372 	u32 new_sum, divider;
4373 
4374 	/* Nothing to update */
4375 	if (!delta_avg)
4376 		return;
4377 
4378 	/*
4379 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4380 	 * See ___update_load_avg() for details.
4381 	 */
4382 	divider = get_pelt_divider(&cfs_rq->avg);
4383 
4384 
4385 	/* Set new sched_entity's utilization */
4386 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4387 	new_sum = se->avg.util_avg * divider;
4388 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4389 	se->avg.util_sum = new_sum;
4390 
4391 	/* Update parent cfs_rq utilization */
4392 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4393 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4394 
4395 	/* See update_cfs_rq_load_avg() */
4396 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4397 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4398 }
4399 
4400 static inline void
4401 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4402 {
4403 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4404 	u32 new_sum, divider;
4405 
4406 	/* Nothing to update */
4407 	if (!delta_avg)
4408 		return;
4409 
4410 	/*
4411 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4412 	 * See ___update_load_avg() for details.
4413 	 */
4414 	divider = get_pelt_divider(&cfs_rq->avg);
4415 
4416 	/* Set new sched_entity's runnable */
4417 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4418 	new_sum = se->avg.runnable_avg * divider;
4419 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4420 	se->avg.runnable_sum = new_sum;
4421 
4422 	/* Update parent cfs_rq runnable */
4423 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4424 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4425 	/* See update_cfs_rq_load_avg() */
4426 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4427 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4428 }
4429 
4430 static inline void
4431 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4432 {
4433 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4434 	unsigned long load_avg;
4435 	u64 load_sum = 0;
4436 	s64 delta_sum;
4437 	u32 divider;
4438 
4439 	if (!runnable_sum)
4440 		return;
4441 
4442 	gcfs_rq->prop_runnable_sum = 0;
4443 
4444 	/*
4445 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4446 	 * See ___update_load_avg() for details.
4447 	 */
4448 	divider = get_pelt_divider(&cfs_rq->avg);
4449 
4450 	if (runnable_sum >= 0) {
4451 		/*
4452 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4453 		 * the CPU is saturated running == runnable.
4454 		 */
4455 		runnable_sum += se->avg.load_sum;
4456 		runnable_sum = min_t(long, runnable_sum, divider);
4457 	} else {
4458 		/*
4459 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4460 		 * assuming all tasks are equally runnable.
4461 		 */
4462 		if (scale_load_down(gcfs_rq->load.weight)) {
4463 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4464 				scale_load_down(gcfs_rq->load.weight));
4465 		}
4466 
4467 		/* But make sure to not inflate se's runnable */
4468 		runnable_sum = min(se->avg.load_sum, load_sum);
4469 	}
4470 
4471 	/*
4472 	 * runnable_sum can't be lower than running_sum
4473 	 * Rescale running sum to be in the same range as runnable sum
4474 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4475 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4476 	 */
4477 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4478 	runnable_sum = max(runnable_sum, running_sum);
4479 
4480 	load_sum = se_weight(se) * runnable_sum;
4481 	load_avg = div_u64(load_sum, divider);
4482 
4483 	delta_avg = load_avg - se->avg.load_avg;
4484 	if (!delta_avg)
4485 		return;
4486 
4487 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4488 
4489 	se->avg.load_sum = runnable_sum;
4490 	se->avg.load_avg = load_avg;
4491 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4492 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4493 	/* See update_cfs_rq_load_avg() */
4494 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4495 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4496 }
4497 
4498 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4499 {
4500 	cfs_rq->propagate = 1;
4501 	cfs_rq->prop_runnable_sum += runnable_sum;
4502 }
4503 
4504 /* Update task and its cfs_rq load average */
4505 static inline int propagate_entity_load_avg(struct sched_entity *se)
4506 {
4507 	struct cfs_rq *cfs_rq, *gcfs_rq;
4508 
4509 	if (entity_is_task(se))
4510 		return 0;
4511 
4512 	gcfs_rq = group_cfs_rq(se);
4513 	if (!gcfs_rq->propagate)
4514 		return 0;
4515 
4516 	gcfs_rq->propagate = 0;
4517 
4518 	cfs_rq = cfs_rq_of(se);
4519 
4520 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4521 
4522 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4523 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4524 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4525 
4526 	trace_pelt_cfs_tp(cfs_rq);
4527 	trace_pelt_se_tp(se);
4528 
4529 	return 1;
4530 }
4531 
4532 /*
4533  * Check if we need to update the load and the utilization of a blocked
4534  * group_entity:
4535  */
4536 static inline bool skip_blocked_update(struct sched_entity *se)
4537 {
4538 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4539 
4540 	/*
4541 	 * If sched_entity still have not zero load or utilization, we have to
4542 	 * decay it:
4543 	 */
4544 	if (se->avg.load_avg || se->avg.util_avg)
4545 		return false;
4546 
4547 	/*
4548 	 * If there is a pending propagation, we have to update the load and
4549 	 * the utilization of the sched_entity:
4550 	 */
4551 	if (gcfs_rq->propagate)
4552 		return false;
4553 
4554 	/*
4555 	 * Otherwise, the load and the utilization of the sched_entity is
4556 	 * already zero and there is no pending propagation, so it will be a
4557 	 * waste of time to try to decay it:
4558 	 */
4559 	return true;
4560 }
4561 
4562 #else /* CONFIG_FAIR_GROUP_SCHED */
4563 
4564 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4565 
4566 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4567 
4568 static inline int propagate_entity_load_avg(struct sched_entity *se)
4569 {
4570 	return 0;
4571 }
4572 
4573 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4574 
4575 #endif /* CONFIG_FAIR_GROUP_SCHED */
4576 
4577 #ifdef CONFIG_NO_HZ_COMMON
4578 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4579 {
4580 	u64 throttled = 0, now, lut;
4581 	struct cfs_rq *cfs_rq;
4582 	struct rq *rq;
4583 	bool is_idle;
4584 
4585 	if (load_avg_is_decayed(&se->avg))
4586 		return;
4587 
4588 	cfs_rq = cfs_rq_of(se);
4589 	rq = rq_of(cfs_rq);
4590 
4591 	rcu_read_lock();
4592 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4593 	rcu_read_unlock();
4594 
4595 	/*
4596 	 * The lag estimation comes with a cost we don't want to pay all the
4597 	 * time. Hence, limiting to the case where the source CPU is idle and
4598 	 * we know we are at the greatest risk to have an outdated clock.
4599 	 */
4600 	if (!is_idle)
4601 		return;
4602 
4603 	/*
4604 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4605 	 *
4606 	 *   last_update_time (the cfs_rq's last_update_time)
4607 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4608 	 *      = rq_clock_pelt()@cfs_rq_idle
4609 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4610 	 *
4611 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4612 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4613 	 *
4614 	 *   rq_idle_lag (delta between now and rq's update)
4615 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4616 	 *
4617 	 * We can then write:
4618 	 *
4619 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4620 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4621 	 * Where:
4622 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4623 	 *      rq_clock()@rq_idle      is rq->clock_idle
4624 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4625 	 *                              is cfs_rq->throttled_pelt_idle
4626 	 */
4627 
4628 #ifdef CONFIG_CFS_BANDWIDTH
4629 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4630 	/* The clock has been stopped for throttling */
4631 	if (throttled == U64_MAX)
4632 		return;
4633 #endif
4634 	now = u64_u32_load(rq->clock_pelt_idle);
4635 	/*
4636 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4637 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4638 	 * which lead to an underestimation. The opposite would lead to an
4639 	 * overestimation.
4640 	 */
4641 	smp_rmb();
4642 	lut = cfs_rq_last_update_time(cfs_rq);
4643 
4644 	now -= throttled;
4645 	if (now < lut)
4646 		/*
4647 		 * cfs_rq->avg.last_update_time is more recent than our
4648 		 * estimation, let's use it.
4649 		 */
4650 		now = lut;
4651 	else
4652 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4653 
4654 	__update_load_avg_blocked_se(now, se);
4655 }
4656 #else
4657 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4658 #endif
4659 
4660 /**
4661  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4662  * @now: current time, as per cfs_rq_clock_pelt()
4663  * @cfs_rq: cfs_rq to update
4664  *
4665  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4666  * avg. The immediate corollary is that all (fair) tasks must be attached.
4667  *
4668  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4669  *
4670  * Return: true if the load decayed or we removed load.
4671  *
4672  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4673  * call update_tg_load_avg() when this function returns true.
4674  */
4675 static inline int
4676 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4677 {
4678 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4679 	struct sched_avg *sa = &cfs_rq->avg;
4680 	int decayed = 0;
4681 
4682 	if (cfs_rq->removed.nr) {
4683 		unsigned long r;
4684 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4685 
4686 		raw_spin_lock(&cfs_rq->removed.lock);
4687 		swap(cfs_rq->removed.util_avg, removed_util);
4688 		swap(cfs_rq->removed.load_avg, removed_load);
4689 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4690 		cfs_rq->removed.nr = 0;
4691 		raw_spin_unlock(&cfs_rq->removed.lock);
4692 
4693 		r = removed_load;
4694 		sub_positive(&sa->load_avg, r);
4695 		sub_positive(&sa->load_sum, r * divider);
4696 		/* See sa->util_sum below */
4697 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4698 
4699 		r = removed_util;
4700 		sub_positive(&sa->util_avg, r);
4701 		sub_positive(&sa->util_sum, r * divider);
4702 		/*
4703 		 * Because of rounding, se->util_sum might ends up being +1 more than
4704 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4705 		 * a lot of tasks with the rounding problem between 2 updates of
4706 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4707 		 * cfs_util_avg is not.
4708 		 * Check that util_sum is still above its lower bound for the new
4709 		 * util_avg. Given that period_contrib might have moved since the last
4710 		 * sync, we are only sure that util_sum must be above or equal to
4711 		 *    util_avg * minimum possible divider
4712 		 */
4713 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4714 
4715 		r = removed_runnable;
4716 		sub_positive(&sa->runnable_avg, r);
4717 		sub_positive(&sa->runnable_sum, r * divider);
4718 		/* See sa->util_sum above */
4719 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4720 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4721 
4722 		/*
4723 		 * removed_runnable is the unweighted version of removed_load so we
4724 		 * can use it to estimate removed_load_sum.
4725 		 */
4726 		add_tg_cfs_propagate(cfs_rq,
4727 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4728 
4729 		decayed = 1;
4730 	}
4731 
4732 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4733 	u64_u32_store_copy(sa->last_update_time,
4734 			   cfs_rq->last_update_time_copy,
4735 			   sa->last_update_time);
4736 	return decayed;
4737 }
4738 
4739 /**
4740  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4741  * @cfs_rq: cfs_rq to attach to
4742  * @se: sched_entity to attach
4743  *
4744  * Must call update_cfs_rq_load_avg() before this, since we rely on
4745  * cfs_rq->avg.last_update_time being current.
4746  */
4747 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4748 {
4749 	/*
4750 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4751 	 * See ___update_load_avg() for details.
4752 	 */
4753 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4754 
4755 	/*
4756 	 * When we attach the @se to the @cfs_rq, we must align the decay
4757 	 * window because without that, really weird and wonderful things can
4758 	 * happen.
4759 	 *
4760 	 * XXX illustrate
4761 	 */
4762 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4763 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4764 
4765 	/*
4766 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4767 	 * period_contrib. This isn't strictly correct, but since we're
4768 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4769 	 * _sum a little.
4770 	 */
4771 	se->avg.util_sum = se->avg.util_avg * divider;
4772 
4773 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4774 
4775 	se->avg.load_sum = se->avg.load_avg * divider;
4776 	if (se_weight(se) < se->avg.load_sum)
4777 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4778 	else
4779 		se->avg.load_sum = 1;
4780 
4781 	enqueue_load_avg(cfs_rq, se);
4782 	cfs_rq->avg.util_avg += se->avg.util_avg;
4783 	cfs_rq->avg.util_sum += se->avg.util_sum;
4784 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4785 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4786 
4787 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4788 
4789 	cfs_rq_util_change(cfs_rq, 0);
4790 
4791 	trace_pelt_cfs_tp(cfs_rq);
4792 }
4793 
4794 /**
4795  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4796  * @cfs_rq: cfs_rq to detach from
4797  * @se: sched_entity to detach
4798  *
4799  * Must call update_cfs_rq_load_avg() before this, since we rely on
4800  * cfs_rq->avg.last_update_time being current.
4801  */
4802 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4803 {
4804 	dequeue_load_avg(cfs_rq, se);
4805 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4806 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4807 	/* See update_cfs_rq_load_avg() */
4808 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4809 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4810 
4811 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4812 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4813 	/* See update_cfs_rq_load_avg() */
4814 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4815 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4816 
4817 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4818 
4819 	cfs_rq_util_change(cfs_rq, 0);
4820 
4821 	trace_pelt_cfs_tp(cfs_rq);
4822 }
4823 
4824 /*
4825  * Optional action to be done while updating the load average
4826  */
4827 #define UPDATE_TG	0x1
4828 #define SKIP_AGE_LOAD	0x2
4829 #define DO_ATTACH	0x4
4830 #define DO_DETACH	0x8
4831 
4832 /* Update task and its cfs_rq load average */
4833 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4834 {
4835 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4836 	int decayed;
4837 
4838 	/*
4839 	 * Track task load average for carrying it to new CPU after migrated, and
4840 	 * track group sched_entity load average for task_h_load calculation in migration
4841 	 */
4842 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4843 		__update_load_avg_se(now, cfs_rq, se);
4844 
4845 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4846 	decayed |= propagate_entity_load_avg(se);
4847 
4848 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4849 
4850 		/*
4851 		 * DO_ATTACH means we're here from enqueue_entity().
4852 		 * !last_update_time means we've passed through
4853 		 * migrate_task_rq_fair() indicating we migrated.
4854 		 *
4855 		 * IOW we're enqueueing a task on a new CPU.
4856 		 */
4857 		attach_entity_load_avg(cfs_rq, se);
4858 		update_tg_load_avg(cfs_rq);
4859 
4860 	} else if (flags & DO_DETACH) {
4861 		/*
4862 		 * DO_DETACH means we're here from dequeue_entity()
4863 		 * and we are migrating task out of the CPU.
4864 		 */
4865 		detach_entity_load_avg(cfs_rq, se);
4866 		update_tg_load_avg(cfs_rq);
4867 	} else if (decayed) {
4868 		cfs_rq_util_change(cfs_rq, 0);
4869 
4870 		if (flags & UPDATE_TG)
4871 			update_tg_load_avg(cfs_rq);
4872 	}
4873 }
4874 
4875 /*
4876  * Synchronize entity load avg of dequeued entity without locking
4877  * the previous rq.
4878  */
4879 static void sync_entity_load_avg(struct sched_entity *se)
4880 {
4881 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4882 	u64 last_update_time;
4883 
4884 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4885 	__update_load_avg_blocked_se(last_update_time, se);
4886 }
4887 
4888 /*
4889  * Task first catches up with cfs_rq, and then subtract
4890  * itself from the cfs_rq (task must be off the queue now).
4891  */
4892 static void remove_entity_load_avg(struct sched_entity *se)
4893 {
4894 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4895 	unsigned long flags;
4896 
4897 	/*
4898 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4899 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4900 	 * so we can remove unconditionally.
4901 	 */
4902 
4903 	sync_entity_load_avg(se);
4904 
4905 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4906 	++cfs_rq->removed.nr;
4907 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4908 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4909 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4910 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4911 }
4912 
4913 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4914 {
4915 	return cfs_rq->avg.runnable_avg;
4916 }
4917 
4918 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4919 {
4920 	return cfs_rq->avg.load_avg;
4921 }
4922 
4923 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4924 
4925 static inline unsigned long task_util(struct task_struct *p)
4926 {
4927 	return READ_ONCE(p->se.avg.util_avg);
4928 }
4929 
4930 static inline unsigned long task_runnable(struct task_struct *p)
4931 {
4932 	return READ_ONCE(p->se.avg.runnable_avg);
4933 }
4934 
4935 static inline unsigned long _task_util_est(struct task_struct *p)
4936 {
4937 	return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4938 }
4939 
4940 static inline unsigned long task_util_est(struct task_struct *p)
4941 {
4942 	return max(task_util(p), _task_util_est(p));
4943 }
4944 
4945 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4946 				    struct task_struct *p)
4947 {
4948 	unsigned int enqueued;
4949 
4950 	if (!sched_feat(UTIL_EST))
4951 		return;
4952 
4953 	/* Update root cfs_rq's estimated utilization */
4954 	enqueued  = cfs_rq->avg.util_est;
4955 	enqueued += _task_util_est(p);
4956 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4957 
4958 	trace_sched_util_est_cfs_tp(cfs_rq);
4959 }
4960 
4961 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4962 				    struct task_struct *p)
4963 {
4964 	unsigned int enqueued;
4965 
4966 	if (!sched_feat(UTIL_EST))
4967 		return;
4968 
4969 	/* Update root cfs_rq's estimated utilization */
4970 	enqueued  = cfs_rq->avg.util_est;
4971 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4972 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4973 
4974 	trace_sched_util_est_cfs_tp(cfs_rq);
4975 }
4976 
4977 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4978 
4979 static inline void util_est_update(struct cfs_rq *cfs_rq,
4980 				   struct task_struct *p,
4981 				   bool task_sleep)
4982 {
4983 	unsigned int ewma, dequeued, last_ewma_diff;
4984 
4985 	if (!sched_feat(UTIL_EST))
4986 		return;
4987 
4988 	/*
4989 	 * Skip update of task's estimated utilization when the task has not
4990 	 * yet completed an activation, e.g. being migrated.
4991 	 */
4992 	if (!task_sleep)
4993 		return;
4994 
4995 	/* Get current estimate of utilization */
4996 	ewma = READ_ONCE(p->se.avg.util_est);
4997 
4998 	/*
4999 	 * If the PELT values haven't changed since enqueue time,
5000 	 * skip the util_est update.
5001 	 */
5002 	if (ewma & UTIL_AVG_UNCHANGED)
5003 		return;
5004 
5005 	/* Get utilization at dequeue */
5006 	dequeued = task_util(p);
5007 
5008 	/*
5009 	 * Reset EWMA on utilization increases, the moving average is used only
5010 	 * to smooth utilization decreases.
5011 	 */
5012 	if (ewma <= dequeued) {
5013 		ewma = dequeued;
5014 		goto done;
5015 	}
5016 
5017 	/*
5018 	 * Skip update of task's estimated utilization when its members are
5019 	 * already ~1% close to its last activation value.
5020 	 */
5021 	last_ewma_diff = ewma - dequeued;
5022 	if (last_ewma_diff < UTIL_EST_MARGIN)
5023 		goto done;
5024 
5025 	/*
5026 	 * To avoid overestimation of actual task utilization, skip updates if
5027 	 * we cannot grant there is idle time in this CPU.
5028 	 */
5029 	if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
5030 		return;
5031 
5032 	/*
5033 	 * To avoid underestimate of task utilization, skip updates of EWMA if
5034 	 * we cannot grant that thread got all CPU time it wanted.
5035 	 */
5036 	if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
5037 		goto done;
5038 
5039 
5040 	/*
5041 	 * Update Task's estimated utilization
5042 	 *
5043 	 * When *p completes an activation we can consolidate another sample
5044 	 * of the task size. This is done by using this value to update the
5045 	 * Exponential Weighted Moving Average (EWMA):
5046 	 *
5047 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
5048 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
5049 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
5050 	 *          = w * (      -last_ewma_diff           ) +     ewma(t-1)
5051 	 *          = w * (-last_ewma_diff +  ewma(t-1) / w)
5052 	 *
5053 	 * Where 'w' is the weight of new samples, which is configured to be
5054 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
5055 	 */
5056 	ewma <<= UTIL_EST_WEIGHT_SHIFT;
5057 	ewma  -= last_ewma_diff;
5058 	ewma >>= UTIL_EST_WEIGHT_SHIFT;
5059 done:
5060 	ewma |= UTIL_AVG_UNCHANGED;
5061 	WRITE_ONCE(p->se.avg.util_est, ewma);
5062 
5063 	trace_sched_util_est_se_tp(&p->se);
5064 }
5065 
5066 static inline unsigned long get_actual_cpu_capacity(int cpu)
5067 {
5068 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
5069 
5070 	capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
5071 
5072 	return capacity;
5073 }
5074 
5075 static inline int util_fits_cpu(unsigned long util,
5076 				unsigned long uclamp_min,
5077 				unsigned long uclamp_max,
5078 				int cpu)
5079 {
5080 	unsigned long capacity = capacity_of(cpu);
5081 	unsigned long capacity_orig;
5082 	bool fits, uclamp_max_fits;
5083 
5084 	/*
5085 	 * Check if the real util fits without any uclamp boost/cap applied.
5086 	 */
5087 	fits = fits_capacity(util, capacity);
5088 
5089 	if (!uclamp_is_used())
5090 		return fits;
5091 
5092 	/*
5093 	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
5094 	 * uclamp_max. We only care about capacity pressure (by using
5095 	 * capacity_of()) for comparing against the real util.
5096 	 *
5097 	 * If a task is boosted to 1024 for example, we don't want a tiny
5098 	 * pressure to skew the check whether it fits a CPU or not.
5099 	 *
5100 	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
5101 	 * should fit a little cpu even if there's some pressure.
5102 	 *
5103 	 * Only exception is for HW or cpufreq pressure since it has a direct impact
5104 	 * on available OPP of the system.
5105 	 *
5106 	 * We honour it for uclamp_min only as a drop in performance level
5107 	 * could result in not getting the requested minimum performance level.
5108 	 *
5109 	 * For uclamp_max, we can tolerate a drop in performance level as the
5110 	 * goal is to cap the task. So it's okay if it's getting less.
5111 	 */
5112 	capacity_orig = arch_scale_cpu_capacity(cpu);
5113 
5114 	/*
5115 	 * We want to force a task to fit a cpu as implied by uclamp_max.
5116 	 * But we do have some corner cases to cater for..
5117 	 *
5118 	 *
5119 	 *                                 C=z
5120 	 *   |                             ___
5121 	 *   |                  C=y       |   |
5122 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
5123 	 *   |      C=x        |   |      |   |
5124 	 *   |      ___        |   |      |   |
5125 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5126 	 *   |     |   |       |   |      |   |
5127 	 *   |     |   |       |   |      |   |
5128 	 *   +----------------------------------------
5129 	 *         CPU0        CPU1       CPU2
5130 	 *
5131 	 *   In the above example if a task is capped to a specific performance
5132 	 *   point, y, then when:
5133 	 *
5134 	 *   * util = 80% of x then it does not fit on CPU0 and should migrate
5135 	 *     to CPU1
5136 	 *   * util = 80% of y then it is forced to fit on CPU1 to honour
5137 	 *     uclamp_max request.
5138 	 *
5139 	 *   which is what we're enforcing here. A task always fits if
5140 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5141 	 *   the normal upmigration rules should withhold still.
5142 	 *
5143 	 *   Only exception is when we are on max capacity, then we need to be
5144 	 *   careful not to block overutilized state. This is so because:
5145 	 *
5146 	 *     1. There's no concept of capping at max_capacity! We can't go
5147 	 *        beyond this performance level anyway.
5148 	 *     2. The system is being saturated when we're operating near
5149 	 *        max capacity, it doesn't make sense to block overutilized.
5150 	 */
5151 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5152 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5153 	fits = fits || uclamp_max_fits;
5154 
5155 	/*
5156 	 *
5157 	 *                                 C=z
5158 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5159 	 *   |                  C=y       |   |
5160 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5161 	 *   |      C=x        |   |      |   |
5162 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5163 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5164 	 *   |     |   |       |   |      |   |
5165 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5166 	 *   +----------------------------------------
5167 	 *         CPU0        CPU1       CPU2
5168 	 *
5169 	 * a) If util > uclamp_max, then we're capped, we don't care about
5170 	 *    actual fitness value here. We only care if uclamp_max fits
5171 	 *    capacity without taking margin/pressure into account.
5172 	 *    See comment above.
5173 	 *
5174 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5175 	 *    fits_capacity() rules apply. Except we need to ensure that we
5176 	 *    enforce we remain within uclamp_max, see comment above.
5177 	 *
5178 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5179 	 *    need to take into account the boosted value fits the CPU without
5180 	 *    taking margin/pressure into account.
5181 	 *
5182 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5183 	 * just need to consider an extra check for case (c) after ensuring we
5184 	 * handle the case uclamp_min > uclamp_max.
5185 	 */
5186 	uclamp_min = min(uclamp_min, uclamp_max);
5187 	if (fits && (util < uclamp_min) &&
5188 	    (uclamp_min > get_actual_cpu_capacity(cpu)))
5189 		return -1;
5190 
5191 	return fits;
5192 }
5193 
5194 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5195 {
5196 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5197 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5198 	unsigned long util = task_util_est(p);
5199 	/*
5200 	 * Return true only if the cpu fully fits the task requirements, which
5201 	 * include the utilization but also the performance hints.
5202 	 */
5203 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5204 }
5205 
5206 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5207 {
5208 	int cpu = cpu_of(rq);
5209 
5210 	if (!sched_asym_cpucap_active())
5211 		return;
5212 
5213 	/*
5214 	 * Affinity allows us to go somewhere higher?  Or are we on biggest
5215 	 * available CPU already? Or do we fit into this CPU ?
5216 	 */
5217 	if (!p || (p->nr_cpus_allowed == 1) ||
5218 	    (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5219 	    task_fits_cpu(p, cpu)) {
5220 
5221 		rq->misfit_task_load = 0;
5222 		return;
5223 	}
5224 
5225 	/*
5226 	 * Make sure that misfit_task_load will not be null even if
5227 	 * task_h_load() returns 0.
5228 	 */
5229 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5230 }
5231 
5232 #else /* CONFIG_SMP */
5233 
5234 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5235 {
5236 	return !cfs_rq->nr_running;
5237 }
5238 
5239 #define UPDATE_TG	0x0
5240 #define SKIP_AGE_LOAD	0x0
5241 #define DO_ATTACH	0x0
5242 #define DO_DETACH	0x0
5243 
5244 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5245 {
5246 	cfs_rq_util_change(cfs_rq, 0);
5247 }
5248 
5249 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5250 
5251 static inline void
5252 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5253 static inline void
5254 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5255 
5256 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
5257 {
5258 	return 0;
5259 }
5260 
5261 static inline void
5262 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5263 
5264 static inline void
5265 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5266 
5267 static inline void
5268 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5269 		bool task_sleep) {}
5270 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5271 
5272 #endif /* CONFIG_SMP */
5273 
5274 static void
5275 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5276 {
5277 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5278 	s64 lag = 0;
5279 
5280 	if (!se->custom_slice)
5281 		se->slice = sysctl_sched_base_slice;
5282 	vslice = calc_delta_fair(se->slice, se);
5283 
5284 	/*
5285 	 * Due to how V is constructed as the weighted average of entities,
5286 	 * adding tasks with positive lag, or removing tasks with negative lag
5287 	 * will move 'time' backwards, this can screw around with the lag of
5288 	 * other tasks.
5289 	 *
5290 	 * EEVDF: placement strategy #1 / #2
5291 	 */
5292 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running && se->vlag) {
5293 		struct sched_entity *curr = cfs_rq->curr;
5294 		unsigned long load;
5295 
5296 		lag = se->vlag;
5297 
5298 		/*
5299 		 * If we want to place a task and preserve lag, we have to
5300 		 * consider the effect of the new entity on the weighted
5301 		 * average and compensate for this, otherwise lag can quickly
5302 		 * evaporate.
5303 		 *
5304 		 * Lag is defined as:
5305 		 *
5306 		 *   lag_i = S - s_i = w_i * (V - v_i)
5307 		 *
5308 		 * To avoid the 'w_i' term all over the place, we only track
5309 		 * the virtual lag:
5310 		 *
5311 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5312 		 *
5313 		 * And we take V to be the weighted average of all v:
5314 		 *
5315 		 *   V = (\Sum w_j*v_j) / W
5316 		 *
5317 		 * Where W is: \Sum w_j
5318 		 *
5319 		 * Then, the weighted average after adding an entity with lag
5320 		 * vl_i is given by:
5321 		 *
5322 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5323 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5324 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5325 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5326 		 *      = V - w_i*vl_i / (W + w_i)
5327 		 *
5328 		 * And the actual lag after adding an entity with vl_i is:
5329 		 *
5330 		 *   vl'_i = V' - v_i
5331 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5332 		 *         = vl_i - w_i*vl_i / (W + w_i)
5333 		 *
5334 		 * Which is strictly less than vl_i. So in order to preserve lag
5335 		 * we should inflate the lag before placement such that the
5336 		 * effective lag after placement comes out right.
5337 		 *
5338 		 * As such, invert the above relation for vl'_i to get the vl_i
5339 		 * we need to use such that the lag after placement is the lag
5340 		 * we computed before dequeue.
5341 		 *
5342 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5343 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5344 		 *
5345 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5346 		 *                   = W*vl_i
5347 		 *
5348 		 *   vl_i = (W + w_i)*vl'_i / W
5349 		 */
5350 		load = cfs_rq->avg_load;
5351 		if (curr && curr->on_rq)
5352 			load += scale_load_down(curr->load.weight);
5353 
5354 		lag *= load + scale_load_down(se->load.weight);
5355 		if (WARN_ON_ONCE(!load))
5356 			load = 1;
5357 		lag = div_s64(lag, load);
5358 	}
5359 
5360 	se->vruntime = vruntime - lag;
5361 
5362 	if (sched_feat(PLACE_REL_DEADLINE) && se->rel_deadline) {
5363 		se->deadline += se->vruntime;
5364 		se->rel_deadline = 0;
5365 		return;
5366 	}
5367 
5368 	/*
5369 	 * When joining the competition; the existing tasks will be,
5370 	 * on average, halfway through their slice, as such start tasks
5371 	 * off with half a slice to ease into the competition.
5372 	 */
5373 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5374 		vslice /= 2;
5375 
5376 	/*
5377 	 * EEVDF: vd_i = ve_i + r_i/w_i
5378 	 */
5379 	se->deadline = se->vruntime + vslice;
5380 }
5381 
5382 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5383 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5384 
5385 static inline bool cfs_bandwidth_used(void);
5386 
5387 static void
5388 requeue_delayed_entity(struct sched_entity *se);
5389 
5390 static void
5391 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5392 {
5393 	bool curr = cfs_rq->curr == se;
5394 
5395 	/*
5396 	 * If we're the current task, we must renormalise before calling
5397 	 * update_curr().
5398 	 */
5399 	if (curr)
5400 		place_entity(cfs_rq, se, flags);
5401 
5402 	update_curr(cfs_rq);
5403 
5404 	/*
5405 	 * When enqueuing a sched_entity, we must:
5406 	 *   - Update loads to have both entity and cfs_rq synced with now.
5407 	 *   - For group_entity, update its runnable_weight to reflect the new
5408 	 *     h_nr_running of its group cfs_rq.
5409 	 *   - For group_entity, update its weight to reflect the new share of
5410 	 *     its group cfs_rq
5411 	 *   - Add its new weight to cfs_rq->load.weight
5412 	 */
5413 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5414 	se_update_runnable(se);
5415 	/*
5416 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5417 	 * but update_cfs_group() here will re-adjust the weight and have to
5418 	 * undo/redo all that. Seems wasteful.
5419 	 */
5420 	update_cfs_group(se);
5421 
5422 	/*
5423 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5424 	 * we can place the entity.
5425 	 */
5426 	if (!curr)
5427 		place_entity(cfs_rq, se, flags);
5428 
5429 	account_entity_enqueue(cfs_rq, se);
5430 
5431 	/* Entity has migrated, no longer consider this task hot */
5432 	if (flags & ENQUEUE_MIGRATED)
5433 		se->exec_start = 0;
5434 
5435 	check_schedstat_required();
5436 	update_stats_enqueue_fair(cfs_rq, se, flags);
5437 	if (!curr)
5438 		__enqueue_entity(cfs_rq, se);
5439 	se->on_rq = 1;
5440 
5441 	if (cfs_rq->nr_running == 1) {
5442 		check_enqueue_throttle(cfs_rq);
5443 		if (!throttled_hierarchy(cfs_rq)) {
5444 			list_add_leaf_cfs_rq(cfs_rq);
5445 		} else {
5446 #ifdef CONFIG_CFS_BANDWIDTH
5447 			struct rq *rq = rq_of(cfs_rq);
5448 
5449 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5450 				cfs_rq->throttled_clock = rq_clock(rq);
5451 			if (!cfs_rq->throttled_clock_self)
5452 				cfs_rq->throttled_clock_self = rq_clock(rq);
5453 #endif
5454 		}
5455 	}
5456 }
5457 
5458 static void __clear_buddies_next(struct sched_entity *se)
5459 {
5460 	for_each_sched_entity(se) {
5461 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5462 		if (cfs_rq->next != se)
5463 			break;
5464 
5465 		cfs_rq->next = NULL;
5466 	}
5467 }
5468 
5469 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5470 {
5471 	if (cfs_rq->next == se)
5472 		__clear_buddies_next(se);
5473 }
5474 
5475 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5476 
5477 static void set_delayed(struct sched_entity *se)
5478 {
5479 	se->sched_delayed = 1;
5480 	for_each_sched_entity(se) {
5481 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5482 
5483 		cfs_rq->h_nr_delayed++;
5484 		if (cfs_rq_throttled(cfs_rq))
5485 			break;
5486 	}
5487 }
5488 
5489 static void clear_delayed(struct sched_entity *se)
5490 {
5491 	se->sched_delayed = 0;
5492 	for_each_sched_entity(se) {
5493 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5494 
5495 		cfs_rq->h_nr_delayed--;
5496 		if (cfs_rq_throttled(cfs_rq))
5497 			break;
5498 	}
5499 }
5500 
5501 static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5502 {
5503 	clear_delayed(se);
5504 	if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5505 		se->vlag = 0;
5506 }
5507 
5508 static bool
5509 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5510 {
5511 	bool sleep = flags & DEQUEUE_SLEEP;
5512 
5513 	update_curr(cfs_rq);
5514 	clear_buddies(cfs_rq, se);
5515 
5516 	if (flags & DEQUEUE_DELAYED) {
5517 		SCHED_WARN_ON(!se->sched_delayed);
5518 	} else {
5519 		bool delay = sleep;
5520 		/*
5521 		 * DELAY_DEQUEUE relies on spurious wakeups, special task
5522 		 * states must not suffer spurious wakeups, excempt them.
5523 		 */
5524 		if (flags & DEQUEUE_SPECIAL)
5525 			delay = false;
5526 
5527 		SCHED_WARN_ON(delay && se->sched_delayed);
5528 
5529 		if (sched_feat(DELAY_DEQUEUE) && delay &&
5530 		    !entity_eligible(cfs_rq, se)) {
5531 			update_load_avg(cfs_rq, se, 0);
5532 			set_delayed(se);
5533 			return false;
5534 		}
5535 	}
5536 
5537 	int action = UPDATE_TG;
5538 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5539 		action |= DO_DETACH;
5540 
5541 	/*
5542 	 * When dequeuing a sched_entity, we must:
5543 	 *   - Update loads to have both entity and cfs_rq synced with now.
5544 	 *   - For group_entity, update its runnable_weight to reflect the new
5545 	 *     h_nr_running of its group cfs_rq.
5546 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5547 	 *   - For group entity, update its weight to reflect the new share
5548 	 *     of its group cfs_rq.
5549 	 */
5550 	update_load_avg(cfs_rq, se, action);
5551 	se_update_runnable(se);
5552 
5553 	update_stats_dequeue_fair(cfs_rq, se, flags);
5554 
5555 	update_entity_lag(cfs_rq, se);
5556 	if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5557 		se->deadline -= se->vruntime;
5558 		se->rel_deadline = 1;
5559 	}
5560 
5561 	if (se != cfs_rq->curr)
5562 		__dequeue_entity(cfs_rq, se);
5563 	se->on_rq = 0;
5564 	account_entity_dequeue(cfs_rq, se);
5565 
5566 	/* return excess runtime on last dequeue */
5567 	return_cfs_rq_runtime(cfs_rq);
5568 
5569 	update_cfs_group(se);
5570 
5571 	/*
5572 	 * Now advance min_vruntime if @se was the entity holding it back,
5573 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5574 	 * put back on, and if we advance min_vruntime, we'll be placed back
5575 	 * further than we started -- i.e. we'll be penalized.
5576 	 */
5577 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5578 		update_min_vruntime(cfs_rq);
5579 
5580 	if (flags & DEQUEUE_DELAYED)
5581 		finish_delayed_dequeue_entity(se);
5582 
5583 	if (cfs_rq->nr_running == 0)
5584 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5585 
5586 	return true;
5587 }
5588 
5589 static void
5590 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5591 {
5592 	clear_buddies(cfs_rq, se);
5593 
5594 	/* 'current' is not kept within the tree. */
5595 	if (se->on_rq) {
5596 		/*
5597 		 * Any task has to be enqueued before it get to execute on
5598 		 * a CPU. So account for the time it spent waiting on the
5599 		 * runqueue.
5600 		 */
5601 		update_stats_wait_end_fair(cfs_rq, se);
5602 		__dequeue_entity(cfs_rq, se);
5603 		update_load_avg(cfs_rq, se, UPDATE_TG);
5604 		/*
5605 		 * HACK, stash a copy of deadline at the point of pick in vlag,
5606 		 * which isn't used until dequeue.
5607 		 */
5608 		se->vlag = se->deadline;
5609 	}
5610 
5611 	update_stats_curr_start(cfs_rq, se);
5612 	SCHED_WARN_ON(cfs_rq->curr);
5613 	cfs_rq->curr = se;
5614 
5615 	/*
5616 	 * Track our maximum slice length, if the CPU's load is at
5617 	 * least twice that of our own weight (i.e. don't track it
5618 	 * when there are only lesser-weight tasks around):
5619 	 */
5620 	if (schedstat_enabled() &&
5621 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5622 		struct sched_statistics *stats;
5623 
5624 		stats = __schedstats_from_se(se);
5625 		__schedstat_set(stats->slice_max,
5626 				max((u64)stats->slice_max,
5627 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5628 	}
5629 
5630 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5631 }
5632 
5633 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5634 
5635 /*
5636  * Pick the next process, keeping these things in mind, in this order:
5637  * 1) keep things fair between processes/task groups
5638  * 2) pick the "next" process, since someone really wants that to run
5639  * 3) pick the "last" process, for cache locality
5640  * 4) do not run the "skip" process, if something else is available
5641  */
5642 static struct sched_entity *
5643 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5644 {
5645 	/*
5646 	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5647 	 */
5648 	if (sched_feat(NEXT_BUDDY) &&
5649 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
5650 		/* ->next will never be delayed */
5651 		SCHED_WARN_ON(cfs_rq->next->sched_delayed);
5652 		return cfs_rq->next;
5653 	}
5654 
5655 	struct sched_entity *se = pick_eevdf(cfs_rq);
5656 	if (se->sched_delayed) {
5657 		dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5658 		/*
5659 		 * Must not reference @se again, see __block_task().
5660 		 */
5661 		return NULL;
5662 	}
5663 	return se;
5664 }
5665 
5666 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5667 
5668 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5669 {
5670 	/*
5671 	 * If still on the runqueue then deactivate_task()
5672 	 * was not called and update_curr() has to be done:
5673 	 */
5674 	if (prev->on_rq)
5675 		update_curr(cfs_rq);
5676 
5677 	/* throttle cfs_rqs exceeding runtime */
5678 	check_cfs_rq_runtime(cfs_rq);
5679 
5680 	if (prev->on_rq) {
5681 		update_stats_wait_start_fair(cfs_rq, prev);
5682 		/* Put 'current' back into the tree. */
5683 		__enqueue_entity(cfs_rq, prev);
5684 		/* in !on_rq case, update occurred at dequeue */
5685 		update_load_avg(cfs_rq, prev, 0);
5686 	}
5687 	SCHED_WARN_ON(cfs_rq->curr != prev);
5688 	cfs_rq->curr = NULL;
5689 }
5690 
5691 static void
5692 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5693 {
5694 	/*
5695 	 * Update run-time statistics of the 'current'.
5696 	 */
5697 	update_curr(cfs_rq);
5698 
5699 	/*
5700 	 * Ensure that runnable average is periodically updated.
5701 	 */
5702 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5703 	update_cfs_group(curr);
5704 
5705 #ifdef CONFIG_SCHED_HRTICK
5706 	/*
5707 	 * queued ticks are scheduled to match the slice, so don't bother
5708 	 * validating it and just reschedule.
5709 	 */
5710 	if (queued) {
5711 		resched_curr_lazy(rq_of(cfs_rq));
5712 		return;
5713 	}
5714 #endif
5715 }
5716 
5717 
5718 /**************************************************
5719  * CFS bandwidth control machinery
5720  */
5721 
5722 #ifdef CONFIG_CFS_BANDWIDTH
5723 
5724 #ifdef CONFIG_JUMP_LABEL
5725 static struct static_key __cfs_bandwidth_used;
5726 
5727 static inline bool cfs_bandwidth_used(void)
5728 {
5729 	return static_key_false(&__cfs_bandwidth_used);
5730 }
5731 
5732 void cfs_bandwidth_usage_inc(void)
5733 {
5734 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5735 }
5736 
5737 void cfs_bandwidth_usage_dec(void)
5738 {
5739 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5740 }
5741 #else /* CONFIG_JUMP_LABEL */
5742 static bool cfs_bandwidth_used(void)
5743 {
5744 	return true;
5745 }
5746 
5747 void cfs_bandwidth_usage_inc(void) {}
5748 void cfs_bandwidth_usage_dec(void) {}
5749 #endif /* CONFIG_JUMP_LABEL */
5750 
5751 /*
5752  * default period for cfs group bandwidth.
5753  * default: 0.1s, units: nanoseconds
5754  */
5755 static inline u64 default_cfs_period(void)
5756 {
5757 	return 100000000ULL;
5758 }
5759 
5760 static inline u64 sched_cfs_bandwidth_slice(void)
5761 {
5762 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5763 }
5764 
5765 /*
5766  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5767  * directly instead of rq->clock to avoid adding additional synchronization
5768  * around rq->lock.
5769  *
5770  * requires cfs_b->lock
5771  */
5772 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5773 {
5774 	s64 runtime;
5775 
5776 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5777 		return;
5778 
5779 	cfs_b->runtime += cfs_b->quota;
5780 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5781 	if (runtime > 0) {
5782 		cfs_b->burst_time += runtime;
5783 		cfs_b->nr_burst++;
5784 	}
5785 
5786 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5787 	cfs_b->runtime_snap = cfs_b->runtime;
5788 }
5789 
5790 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5791 {
5792 	return &tg->cfs_bandwidth;
5793 }
5794 
5795 /* returns 0 on failure to allocate runtime */
5796 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5797 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5798 {
5799 	u64 min_amount, amount = 0;
5800 
5801 	lockdep_assert_held(&cfs_b->lock);
5802 
5803 	/* note: this is a positive sum as runtime_remaining <= 0 */
5804 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5805 
5806 	if (cfs_b->quota == RUNTIME_INF)
5807 		amount = min_amount;
5808 	else {
5809 		start_cfs_bandwidth(cfs_b);
5810 
5811 		if (cfs_b->runtime > 0) {
5812 			amount = min(cfs_b->runtime, min_amount);
5813 			cfs_b->runtime -= amount;
5814 			cfs_b->idle = 0;
5815 		}
5816 	}
5817 
5818 	cfs_rq->runtime_remaining += amount;
5819 
5820 	return cfs_rq->runtime_remaining > 0;
5821 }
5822 
5823 /* returns 0 on failure to allocate runtime */
5824 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5825 {
5826 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5827 	int ret;
5828 
5829 	raw_spin_lock(&cfs_b->lock);
5830 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5831 	raw_spin_unlock(&cfs_b->lock);
5832 
5833 	return ret;
5834 }
5835 
5836 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5837 {
5838 	/* dock delta_exec before expiring quota (as it could span periods) */
5839 	cfs_rq->runtime_remaining -= delta_exec;
5840 
5841 	if (likely(cfs_rq->runtime_remaining > 0))
5842 		return;
5843 
5844 	if (cfs_rq->throttled)
5845 		return;
5846 	/*
5847 	 * if we're unable to extend our runtime we resched so that the active
5848 	 * hierarchy can be throttled
5849 	 */
5850 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5851 		resched_curr(rq_of(cfs_rq));
5852 }
5853 
5854 static __always_inline
5855 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5856 {
5857 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5858 		return;
5859 
5860 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5861 }
5862 
5863 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5864 {
5865 	return cfs_bandwidth_used() && cfs_rq->throttled;
5866 }
5867 
5868 /* check whether cfs_rq, or any parent, is throttled */
5869 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5870 {
5871 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5872 }
5873 
5874 /*
5875  * Ensure that neither of the group entities corresponding to src_cpu or
5876  * dest_cpu are members of a throttled hierarchy when performing group
5877  * load-balance operations.
5878  */
5879 static inline int throttled_lb_pair(struct task_group *tg,
5880 				    int src_cpu, int dest_cpu)
5881 {
5882 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5883 
5884 	src_cfs_rq = tg->cfs_rq[src_cpu];
5885 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5886 
5887 	return throttled_hierarchy(src_cfs_rq) ||
5888 	       throttled_hierarchy(dest_cfs_rq);
5889 }
5890 
5891 static int tg_unthrottle_up(struct task_group *tg, void *data)
5892 {
5893 	struct rq *rq = data;
5894 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5895 
5896 	cfs_rq->throttle_count--;
5897 	if (!cfs_rq->throttle_count) {
5898 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5899 					     cfs_rq->throttled_clock_pelt;
5900 
5901 		/* Add cfs_rq with load or one or more already running entities to the list */
5902 		if (!cfs_rq_is_decayed(cfs_rq))
5903 			list_add_leaf_cfs_rq(cfs_rq);
5904 
5905 		if (cfs_rq->throttled_clock_self) {
5906 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5907 
5908 			cfs_rq->throttled_clock_self = 0;
5909 
5910 			if (SCHED_WARN_ON((s64)delta < 0))
5911 				delta = 0;
5912 
5913 			cfs_rq->throttled_clock_self_time += delta;
5914 		}
5915 	}
5916 
5917 	return 0;
5918 }
5919 
5920 static int tg_throttle_down(struct task_group *tg, void *data)
5921 {
5922 	struct rq *rq = data;
5923 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5924 
5925 	/* group is entering throttled state, stop time */
5926 	if (!cfs_rq->throttle_count) {
5927 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5928 		list_del_leaf_cfs_rq(cfs_rq);
5929 
5930 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5931 		if (cfs_rq->nr_running)
5932 			cfs_rq->throttled_clock_self = rq_clock(rq);
5933 	}
5934 	cfs_rq->throttle_count++;
5935 
5936 	return 0;
5937 }
5938 
5939 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5940 {
5941 	struct rq *rq = rq_of(cfs_rq);
5942 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5943 	struct sched_entity *se;
5944 	long task_delta, idle_task_delta, delayed_delta, dequeue = 1;
5945 	long rq_h_nr_running = rq->cfs.h_nr_running;
5946 
5947 	raw_spin_lock(&cfs_b->lock);
5948 	/* This will start the period timer if necessary */
5949 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5950 		/*
5951 		 * We have raced with bandwidth becoming available, and if we
5952 		 * actually throttled the timer might not unthrottle us for an
5953 		 * entire period. We additionally needed to make sure that any
5954 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5955 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5956 		 * for 1ns of runtime rather than just check cfs_b.
5957 		 */
5958 		dequeue = 0;
5959 	} else {
5960 		list_add_tail_rcu(&cfs_rq->throttled_list,
5961 				  &cfs_b->throttled_cfs_rq);
5962 	}
5963 	raw_spin_unlock(&cfs_b->lock);
5964 
5965 	if (!dequeue)
5966 		return false;  /* Throttle no longer required. */
5967 
5968 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5969 
5970 	/* freeze hierarchy runnable averages while throttled */
5971 	rcu_read_lock();
5972 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5973 	rcu_read_unlock();
5974 
5975 	task_delta = cfs_rq->h_nr_running;
5976 	idle_task_delta = cfs_rq->idle_h_nr_running;
5977 	delayed_delta = cfs_rq->h_nr_delayed;
5978 	for_each_sched_entity(se) {
5979 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5980 		int flags;
5981 
5982 		/* throttled entity or throttle-on-deactivate */
5983 		if (!se->on_rq)
5984 			goto done;
5985 
5986 		/*
5987 		 * Abuse SPECIAL to avoid delayed dequeue in this instance.
5988 		 * This avoids teaching dequeue_entities() about throttled
5989 		 * entities and keeps things relatively simple.
5990 		 */
5991 		flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
5992 		if (se->sched_delayed)
5993 			flags |= DEQUEUE_DELAYED;
5994 		dequeue_entity(qcfs_rq, se, flags);
5995 
5996 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5997 			idle_task_delta = cfs_rq->h_nr_running;
5998 
5999 		qcfs_rq->h_nr_running -= task_delta;
6000 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
6001 		qcfs_rq->h_nr_delayed -= delayed_delta;
6002 
6003 		if (qcfs_rq->load.weight) {
6004 			/* Avoid re-evaluating load for this entity: */
6005 			se = parent_entity(se);
6006 			break;
6007 		}
6008 	}
6009 
6010 	for_each_sched_entity(se) {
6011 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6012 		/* throttled entity or throttle-on-deactivate */
6013 		if (!se->on_rq)
6014 			goto done;
6015 
6016 		update_load_avg(qcfs_rq, se, 0);
6017 		se_update_runnable(se);
6018 
6019 		if (cfs_rq_is_idle(group_cfs_rq(se)))
6020 			idle_task_delta = cfs_rq->h_nr_running;
6021 
6022 		qcfs_rq->h_nr_running -= task_delta;
6023 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
6024 		qcfs_rq->h_nr_delayed -= delayed_delta;
6025 	}
6026 
6027 	/* At this point se is NULL and we are at root level*/
6028 	sub_nr_running(rq, task_delta);
6029 
6030 	/* Stop the fair server if throttling resulted in no runnable tasks */
6031 	if (rq_h_nr_running && !rq->cfs.h_nr_running)
6032 		dl_server_stop(&rq->fair_server);
6033 done:
6034 	/*
6035 	 * Note: distribution will already see us throttled via the
6036 	 * throttled-list.  rq->lock protects completion.
6037 	 */
6038 	cfs_rq->throttled = 1;
6039 	SCHED_WARN_ON(cfs_rq->throttled_clock);
6040 	if (cfs_rq->nr_running)
6041 		cfs_rq->throttled_clock = rq_clock(rq);
6042 	return true;
6043 }
6044 
6045 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
6046 {
6047 	struct rq *rq = rq_of(cfs_rq);
6048 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6049 	struct sched_entity *se;
6050 	long task_delta, idle_task_delta, delayed_delta;
6051 	long rq_h_nr_running = rq->cfs.h_nr_running;
6052 
6053 	se = cfs_rq->tg->se[cpu_of(rq)];
6054 
6055 	cfs_rq->throttled = 0;
6056 
6057 	update_rq_clock(rq);
6058 
6059 	raw_spin_lock(&cfs_b->lock);
6060 	if (cfs_rq->throttled_clock) {
6061 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
6062 		cfs_rq->throttled_clock = 0;
6063 	}
6064 	list_del_rcu(&cfs_rq->throttled_list);
6065 	raw_spin_unlock(&cfs_b->lock);
6066 
6067 	/* update hierarchical throttle state */
6068 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
6069 
6070 	if (!cfs_rq->load.weight) {
6071 		if (!cfs_rq->on_list)
6072 			return;
6073 		/*
6074 		 * Nothing to run but something to decay (on_list)?
6075 		 * Complete the branch.
6076 		 */
6077 		for_each_sched_entity(se) {
6078 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
6079 				break;
6080 		}
6081 		goto unthrottle_throttle;
6082 	}
6083 
6084 	task_delta = cfs_rq->h_nr_running;
6085 	idle_task_delta = cfs_rq->idle_h_nr_running;
6086 	delayed_delta = cfs_rq->h_nr_delayed;
6087 	for_each_sched_entity(se) {
6088 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6089 
6090 		/* Handle any unfinished DELAY_DEQUEUE business first. */
6091 		if (se->sched_delayed) {
6092 			int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED;
6093 
6094 			dequeue_entity(qcfs_rq, se, flags);
6095 		} else if (se->on_rq)
6096 			break;
6097 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
6098 
6099 		if (cfs_rq_is_idle(group_cfs_rq(se)))
6100 			idle_task_delta = cfs_rq->h_nr_running;
6101 
6102 		qcfs_rq->h_nr_running += task_delta;
6103 		qcfs_rq->idle_h_nr_running += idle_task_delta;
6104 		qcfs_rq->h_nr_delayed += delayed_delta;
6105 
6106 		/* end evaluation on encountering a throttled cfs_rq */
6107 		if (cfs_rq_throttled(qcfs_rq))
6108 			goto unthrottle_throttle;
6109 	}
6110 
6111 	for_each_sched_entity(se) {
6112 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6113 
6114 		update_load_avg(qcfs_rq, se, UPDATE_TG);
6115 		se_update_runnable(se);
6116 
6117 		if (cfs_rq_is_idle(group_cfs_rq(se)))
6118 			idle_task_delta = cfs_rq->h_nr_running;
6119 
6120 		qcfs_rq->h_nr_running += task_delta;
6121 		qcfs_rq->idle_h_nr_running += idle_task_delta;
6122 		qcfs_rq->h_nr_delayed += delayed_delta;
6123 
6124 		/* end evaluation on encountering a throttled cfs_rq */
6125 		if (cfs_rq_throttled(qcfs_rq))
6126 			goto unthrottle_throttle;
6127 	}
6128 
6129 	/* Start the fair server if un-throttling resulted in new runnable tasks */
6130 	if (!rq_h_nr_running && rq->cfs.h_nr_running)
6131 		dl_server_start(&rq->fair_server);
6132 
6133 	/* At this point se is NULL and we are at root level*/
6134 	add_nr_running(rq, task_delta);
6135 
6136 unthrottle_throttle:
6137 	assert_list_leaf_cfs_rq(rq);
6138 
6139 	/* Determine whether we need to wake up potentially idle CPU: */
6140 	if (rq->curr == rq->idle && rq->cfs.nr_running)
6141 		resched_curr(rq);
6142 }
6143 
6144 #ifdef CONFIG_SMP
6145 static void __cfsb_csd_unthrottle(void *arg)
6146 {
6147 	struct cfs_rq *cursor, *tmp;
6148 	struct rq *rq = arg;
6149 	struct rq_flags rf;
6150 
6151 	rq_lock(rq, &rf);
6152 
6153 	/*
6154 	 * Iterating over the list can trigger several call to
6155 	 * update_rq_clock() in unthrottle_cfs_rq().
6156 	 * Do it once and skip the potential next ones.
6157 	 */
6158 	update_rq_clock(rq);
6159 	rq_clock_start_loop_update(rq);
6160 
6161 	/*
6162 	 * Since we hold rq lock we're safe from concurrent manipulation of
6163 	 * the CSD list. However, this RCU critical section annotates the
6164 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
6165 	 * race with group being freed in the window between removing it
6166 	 * from the list and advancing to the next entry in the list.
6167 	 */
6168 	rcu_read_lock();
6169 
6170 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6171 				 throttled_csd_list) {
6172 		list_del_init(&cursor->throttled_csd_list);
6173 
6174 		if (cfs_rq_throttled(cursor))
6175 			unthrottle_cfs_rq(cursor);
6176 	}
6177 
6178 	rcu_read_unlock();
6179 
6180 	rq_clock_stop_loop_update(rq);
6181 	rq_unlock(rq, &rf);
6182 }
6183 
6184 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6185 {
6186 	struct rq *rq = rq_of(cfs_rq);
6187 	bool first;
6188 
6189 	if (rq == this_rq()) {
6190 		unthrottle_cfs_rq(cfs_rq);
6191 		return;
6192 	}
6193 
6194 	/* Already enqueued */
6195 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
6196 		return;
6197 
6198 	first = list_empty(&rq->cfsb_csd_list);
6199 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6200 	if (first)
6201 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6202 }
6203 #else
6204 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6205 {
6206 	unthrottle_cfs_rq(cfs_rq);
6207 }
6208 #endif
6209 
6210 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6211 {
6212 	lockdep_assert_rq_held(rq_of(cfs_rq));
6213 
6214 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
6215 	    cfs_rq->runtime_remaining <= 0))
6216 		return;
6217 
6218 	__unthrottle_cfs_rq_async(cfs_rq);
6219 }
6220 
6221 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6222 {
6223 	int this_cpu = smp_processor_id();
6224 	u64 runtime, remaining = 1;
6225 	bool throttled = false;
6226 	struct cfs_rq *cfs_rq, *tmp;
6227 	struct rq_flags rf;
6228 	struct rq *rq;
6229 	LIST_HEAD(local_unthrottle);
6230 
6231 	rcu_read_lock();
6232 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6233 				throttled_list) {
6234 		rq = rq_of(cfs_rq);
6235 
6236 		if (!remaining) {
6237 			throttled = true;
6238 			break;
6239 		}
6240 
6241 		rq_lock_irqsave(rq, &rf);
6242 		if (!cfs_rq_throttled(cfs_rq))
6243 			goto next;
6244 
6245 		/* Already queued for async unthrottle */
6246 		if (!list_empty(&cfs_rq->throttled_csd_list))
6247 			goto next;
6248 
6249 		/* By the above checks, this should never be true */
6250 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6251 
6252 		raw_spin_lock(&cfs_b->lock);
6253 		runtime = -cfs_rq->runtime_remaining + 1;
6254 		if (runtime > cfs_b->runtime)
6255 			runtime = cfs_b->runtime;
6256 		cfs_b->runtime -= runtime;
6257 		remaining = cfs_b->runtime;
6258 		raw_spin_unlock(&cfs_b->lock);
6259 
6260 		cfs_rq->runtime_remaining += runtime;
6261 
6262 		/* we check whether we're throttled above */
6263 		if (cfs_rq->runtime_remaining > 0) {
6264 			if (cpu_of(rq) != this_cpu) {
6265 				unthrottle_cfs_rq_async(cfs_rq);
6266 			} else {
6267 				/*
6268 				 * We currently only expect to be unthrottling
6269 				 * a single cfs_rq locally.
6270 				 */
6271 				SCHED_WARN_ON(!list_empty(&local_unthrottle));
6272 				list_add_tail(&cfs_rq->throttled_csd_list,
6273 					      &local_unthrottle);
6274 			}
6275 		} else {
6276 			throttled = true;
6277 		}
6278 
6279 next:
6280 		rq_unlock_irqrestore(rq, &rf);
6281 	}
6282 
6283 	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6284 				 throttled_csd_list) {
6285 		struct rq *rq = rq_of(cfs_rq);
6286 
6287 		rq_lock_irqsave(rq, &rf);
6288 
6289 		list_del_init(&cfs_rq->throttled_csd_list);
6290 
6291 		if (cfs_rq_throttled(cfs_rq))
6292 			unthrottle_cfs_rq(cfs_rq);
6293 
6294 		rq_unlock_irqrestore(rq, &rf);
6295 	}
6296 	SCHED_WARN_ON(!list_empty(&local_unthrottle));
6297 
6298 	rcu_read_unlock();
6299 
6300 	return throttled;
6301 }
6302 
6303 /*
6304  * Responsible for refilling a task_group's bandwidth and unthrottling its
6305  * cfs_rqs as appropriate. If there has been no activity within the last
6306  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6307  * used to track this state.
6308  */
6309 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6310 {
6311 	int throttled;
6312 
6313 	/* no need to continue the timer with no bandwidth constraint */
6314 	if (cfs_b->quota == RUNTIME_INF)
6315 		goto out_deactivate;
6316 
6317 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6318 	cfs_b->nr_periods += overrun;
6319 
6320 	/* Refill extra burst quota even if cfs_b->idle */
6321 	__refill_cfs_bandwidth_runtime(cfs_b);
6322 
6323 	/*
6324 	 * idle depends on !throttled (for the case of a large deficit), and if
6325 	 * we're going inactive then everything else can be deferred
6326 	 */
6327 	if (cfs_b->idle && !throttled)
6328 		goto out_deactivate;
6329 
6330 	if (!throttled) {
6331 		/* mark as potentially idle for the upcoming period */
6332 		cfs_b->idle = 1;
6333 		return 0;
6334 	}
6335 
6336 	/* account preceding periods in which throttling occurred */
6337 	cfs_b->nr_throttled += overrun;
6338 
6339 	/*
6340 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6341 	 */
6342 	while (throttled && cfs_b->runtime > 0) {
6343 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6344 		/* we can't nest cfs_b->lock while distributing bandwidth */
6345 		throttled = distribute_cfs_runtime(cfs_b);
6346 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6347 	}
6348 
6349 	/*
6350 	 * While we are ensured activity in the period following an
6351 	 * unthrottle, this also covers the case in which the new bandwidth is
6352 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6353 	 * timer to remain active while there are any throttled entities.)
6354 	 */
6355 	cfs_b->idle = 0;
6356 
6357 	return 0;
6358 
6359 out_deactivate:
6360 	return 1;
6361 }
6362 
6363 /* a cfs_rq won't donate quota below this amount */
6364 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6365 /* minimum remaining period time to redistribute slack quota */
6366 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6367 /* how long we wait to gather additional slack before distributing */
6368 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6369 
6370 /*
6371  * Are we near the end of the current quota period?
6372  *
6373  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6374  * hrtimer base being cleared by hrtimer_start. In the case of
6375  * migrate_hrtimers, base is never cleared, so we are fine.
6376  */
6377 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6378 {
6379 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6380 	s64 remaining;
6381 
6382 	/* if the call-back is running a quota refresh is already occurring */
6383 	if (hrtimer_callback_running(refresh_timer))
6384 		return 1;
6385 
6386 	/* is a quota refresh about to occur? */
6387 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6388 	if (remaining < (s64)min_expire)
6389 		return 1;
6390 
6391 	return 0;
6392 }
6393 
6394 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6395 {
6396 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6397 
6398 	/* if there's a quota refresh soon don't bother with slack */
6399 	if (runtime_refresh_within(cfs_b, min_left))
6400 		return;
6401 
6402 	/* don't push forwards an existing deferred unthrottle */
6403 	if (cfs_b->slack_started)
6404 		return;
6405 	cfs_b->slack_started = true;
6406 
6407 	hrtimer_start(&cfs_b->slack_timer,
6408 			ns_to_ktime(cfs_bandwidth_slack_period),
6409 			HRTIMER_MODE_REL);
6410 }
6411 
6412 /* we know any runtime found here is valid as update_curr() precedes return */
6413 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6414 {
6415 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6416 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6417 
6418 	if (slack_runtime <= 0)
6419 		return;
6420 
6421 	raw_spin_lock(&cfs_b->lock);
6422 	if (cfs_b->quota != RUNTIME_INF) {
6423 		cfs_b->runtime += slack_runtime;
6424 
6425 		/* we are under rq->lock, defer unthrottling using a timer */
6426 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6427 		    !list_empty(&cfs_b->throttled_cfs_rq))
6428 			start_cfs_slack_bandwidth(cfs_b);
6429 	}
6430 	raw_spin_unlock(&cfs_b->lock);
6431 
6432 	/* even if it's not valid for return we don't want to try again */
6433 	cfs_rq->runtime_remaining -= slack_runtime;
6434 }
6435 
6436 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6437 {
6438 	if (!cfs_bandwidth_used())
6439 		return;
6440 
6441 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6442 		return;
6443 
6444 	__return_cfs_rq_runtime(cfs_rq);
6445 }
6446 
6447 /*
6448  * This is done with a timer (instead of inline with bandwidth return) since
6449  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6450  */
6451 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6452 {
6453 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6454 	unsigned long flags;
6455 
6456 	/* confirm we're still not at a refresh boundary */
6457 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6458 	cfs_b->slack_started = false;
6459 
6460 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6461 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6462 		return;
6463 	}
6464 
6465 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6466 		runtime = cfs_b->runtime;
6467 
6468 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6469 
6470 	if (!runtime)
6471 		return;
6472 
6473 	distribute_cfs_runtime(cfs_b);
6474 }
6475 
6476 /*
6477  * When a group wakes up we want to make sure that its quota is not already
6478  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6479  * runtime as update_curr() throttling can not trigger until it's on-rq.
6480  */
6481 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6482 {
6483 	if (!cfs_bandwidth_used())
6484 		return;
6485 
6486 	/* an active group must be handled by the update_curr()->put() path */
6487 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6488 		return;
6489 
6490 	/* ensure the group is not already throttled */
6491 	if (cfs_rq_throttled(cfs_rq))
6492 		return;
6493 
6494 	/* update runtime allocation */
6495 	account_cfs_rq_runtime(cfs_rq, 0);
6496 	if (cfs_rq->runtime_remaining <= 0)
6497 		throttle_cfs_rq(cfs_rq);
6498 }
6499 
6500 static void sync_throttle(struct task_group *tg, int cpu)
6501 {
6502 	struct cfs_rq *pcfs_rq, *cfs_rq;
6503 
6504 	if (!cfs_bandwidth_used())
6505 		return;
6506 
6507 	if (!tg->parent)
6508 		return;
6509 
6510 	cfs_rq = tg->cfs_rq[cpu];
6511 	pcfs_rq = tg->parent->cfs_rq[cpu];
6512 
6513 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6514 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6515 }
6516 
6517 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6518 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6519 {
6520 	if (!cfs_bandwidth_used())
6521 		return false;
6522 
6523 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6524 		return false;
6525 
6526 	/*
6527 	 * it's possible for a throttled entity to be forced into a running
6528 	 * state (e.g. set_curr_task), in this case we're finished.
6529 	 */
6530 	if (cfs_rq_throttled(cfs_rq))
6531 		return true;
6532 
6533 	return throttle_cfs_rq(cfs_rq);
6534 }
6535 
6536 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6537 {
6538 	struct cfs_bandwidth *cfs_b =
6539 		container_of(timer, struct cfs_bandwidth, slack_timer);
6540 
6541 	do_sched_cfs_slack_timer(cfs_b);
6542 
6543 	return HRTIMER_NORESTART;
6544 }
6545 
6546 extern const u64 max_cfs_quota_period;
6547 
6548 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6549 {
6550 	struct cfs_bandwidth *cfs_b =
6551 		container_of(timer, struct cfs_bandwidth, period_timer);
6552 	unsigned long flags;
6553 	int overrun;
6554 	int idle = 0;
6555 	int count = 0;
6556 
6557 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6558 	for (;;) {
6559 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6560 		if (!overrun)
6561 			break;
6562 
6563 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6564 
6565 		if (++count > 3) {
6566 			u64 new, old = ktime_to_ns(cfs_b->period);
6567 
6568 			/*
6569 			 * Grow period by a factor of 2 to avoid losing precision.
6570 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6571 			 * to fail.
6572 			 */
6573 			new = old * 2;
6574 			if (new < max_cfs_quota_period) {
6575 				cfs_b->period = ns_to_ktime(new);
6576 				cfs_b->quota *= 2;
6577 				cfs_b->burst *= 2;
6578 
6579 				pr_warn_ratelimited(
6580 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6581 					smp_processor_id(),
6582 					div_u64(new, NSEC_PER_USEC),
6583 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6584 			} else {
6585 				pr_warn_ratelimited(
6586 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6587 					smp_processor_id(),
6588 					div_u64(old, NSEC_PER_USEC),
6589 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6590 			}
6591 
6592 			/* reset count so we don't come right back in here */
6593 			count = 0;
6594 		}
6595 	}
6596 	if (idle)
6597 		cfs_b->period_active = 0;
6598 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6599 
6600 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6601 }
6602 
6603 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6604 {
6605 	raw_spin_lock_init(&cfs_b->lock);
6606 	cfs_b->runtime = 0;
6607 	cfs_b->quota = RUNTIME_INF;
6608 	cfs_b->period = ns_to_ktime(default_cfs_period());
6609 	cfs_b->burst = 0;
6610 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6611 
6612 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6613 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6614 	cfs_b->period_timer.function = sched_cfs_period_timer;
6615 
6616 	/* Add a random offset so that timers interleave */
6617 	hrtimer_set_expires(&cfs_b->period_timer,
6618 			    get_random_u32_below(cfs_b->period));
6619 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6620 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6621 	cfs_b->slack_started = false;
6622 }
6623 
6624 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6625 {
6626 	cfs_rq->runtime_enabled = 0;
6627 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6628 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6629 }
6630 
6631 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6632 {
6633 	lockdep_assert_held(&cfs_b->lock);
6634 
6635 	if (cfs_b->period_active)
6636 		return;
6637 
6638 	cfs_b->period_active = 1;
6639 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6640 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6641 }
6642 
6643 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6644 {
6645 	int __maybe_unused i;
6646 
6647 	/* init_cfs_bandwidth() was not called */
6648 	if (!cfs_b->throttled_cfs_rq.next)
6649 		return;
6650 
6651 	hrtimer_cancel(&cfs_b->period_timer);
6652 	hrtimer_cancel(&cfs_b->slack_timer);
6653 
6654 	/*
6655 	 * It is possible that we still have some cfs_rq's pending on a CSD
6656 	 * list, though this race is very rare. In order for this to occur, we
6657 	 * must have raced with the last task leaving the group while there
6658 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6659 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6660 	 * we can simply flush all pending CSD work inline here. We're
6661 	 * guaranteed at this point that no additional cfs_rq of this group can
6662 	 * join a CSD list.
6663 	 */
6664 #ifdef CONFIG_SMP
6665 	for_each_possible_cpu(i) {
6666 		struct rq *rq = cpu_rq(i);
6667 		unsigned long flags;
6668 
6669 		if (list_empty(&rq->cfsb_csd_list))
6670 			continue;
6671 
6672 		local_irq_save(flags);
6673 		__cfsb_csd_unthrottle(rq);
6674 		local_irq_restore(flags);
6675 	}
6676 #endif
6677 }
6678 
6679 /*
6680  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6681  *
6682  * The race is harmless, since modifying bandwidth settings of unhooked group
6683  * bits doesn't do much.
6684  */
6685 
6686 /* cpu online callback */
6687 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6688 {
6689 	struct task_group *tg;
6690 
6691 	lockdep_assert_rq_held(rq);
6692 
6693 	rcu_read_lock();
6694 	list_for_each_entry_rcu(tg, &task_groups, list) {
6695 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6696 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6697 
6698 		raw_spin_lock(&cfs_b->lock);
6699 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6700 		raw_spin_unlock(&cfs_b->lock);
6701 	}
6702 	rcu_read_unlock();
6703 }
6704 
6705 /* cpu offline callback */
6706 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6707 {
6708 	struct task_group *tg;
6709 
6710 	lockdep_assert_rq_held(rq);
6711 
6712 	/*
6713 	 * The rq clock has already been updated in the
6714 	 * set_rq_offline(), so we should skip updating
6715 	 * the rq clock again in unthrottle_cfs_rq().
6716 	 */
6717 	rq_clock_start_loop_update(rq);
6718 
6719 	rcu_read_lock();
6720 	list_for_each_entry_rcu(tg, &task_groups, list) {
6721 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6722 
6723 		if (!cfs_rq->runtime_enabled)
6724 			continue;
6725 
6726 		/*
6727 		 * clock_task is not advancing so we just need to make sure
6728 		 * there's some valid quota amount
6729 		 */
6730 		cfs_rq->runtime_remaining = 1;
6731 		/*
6732 		 * Offline rq is schedulable till CPU is completely disabled
6733 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6734 		 */
6735 		cfs_rq->runtime_enabled = 0;
6736 
6737 		if (cfs_rq_throttled(cfs_rq))
6738 			unthrottle_cfs_rq(cfs_rq);
6739 	}
6740 	rcu_read_unlock();
6741 
6742 	rq_clock_stop_loop_update(rq);
6743 }
6744 
6745 bool cfs_task_bw_constrained(struct task_struct *p)
6746 {
6747 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6748 
6749 	if (!cfs_bandwidth_used())
6750 		return false;
6751 
6752 	if (cfs_rq->runtime_enabled ||
6753 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6754 		return true;
6755 
6756 	return false;
6757 }
6758 
6759 #ifdef CONFIG_NO_HZ_FULL
6760 /* called from pick_next_task_fair() */
6761 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6762 {
6763 	int cpu = cpu_of(rq);
6764 
6765 	if (!cfs_bandwidth_used())
6766 		return;
6767 
6768 	if (!tick_nohz_full_cpu(cpu))
6769 		return;
6770 
6771 	if (rq->nr_running != 1)
6772 		return;
6773 
6774 	/*
6775 	 *  We know there is only one task runnable and we've just picked it. The
6776 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6777 	 *  be otherwise able to stop the tick. Just need to check if we are using
6778 	 *  bandwidth control.
6779 	 */
6780 	if (cfs_task_bw_constrained(p))
6781 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6782 }
6783 #endif
6784 
6785 #else /* CONFIG_CFS_BANDWIDTH */
6786 
6787 static inline bool cfs_bandwidth_used(void)
6788 {
6789 	return false;
6790 }
6791 
6792 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6793 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6794 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6795 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6796 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6797 
6798 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6799 {
6800 	return 0;
6801 }
6802 
6803 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6804 {
6805 	return 0;
6806 }
6807 
6808 static inline int throttled_lb_pair(struct task_group *tg,
6809 				    int src_cpu, int dest_cpu)
6810 {
6811 	return 0;
6812 }
6813 
6814 #ifdef CONFIG_FAIR_GROUP_SCHED
6815 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6816 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6817 #endif
6818 
6819 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6820 {
6821 	return NULL;
6822 }
6823 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6824 static inline void update_runtime_enabled(struct rq *rq) {}
6825 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6826 #ifdef CONFIG_CGROUP_SCHED
6827 bool cfs_task_bw_constrained(struct task_struct *p)
6828 {
6829 	return false;
6830 }
6831 #endif
6832 #endif /* CONFIG_CFS_BANDWIDTH */
6833 
6834 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6835 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6836 #endif
6837 
6838 /**************************************************
6839  * CFS operations on tasks:
6840  */
6841 
6842 #ifdef CONFIG_SCHED_HRTICK
6843 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6844 {
6845 	struct sched_entity *se = &p->se;
6846 
6847 	SCHED_WARN_ON(task_rq(p) != rq);
6848 
6849 	if (rq->cfs.h_nr_running > 1) {
6850 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6851 		u64 slice = se->slice;
6852 		s64 delta = slice - ran;
6853 
6854 		if (delta < 0) {
6855 			if (task_current_donor(rq, p))
6856 				resched_curr(rq);
6857 			return;
6858 		}
6859 		hrtick_start(rq, delta);
6860 	}
6861 }
6862 
6863 /*
6864  * called from enqueue/dequeue and updates the hrtick when the
6865  * current task is from our class and nr_running is low enough
6866  * to matter.
6867  */
6868 static void hrtick_update(struct rq *rq)
6869 {
6870 	struct task_struct *donor = rq->donor;
6871 
6872 	if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class)
6873 		return;
6874 
6875 	hrtick_start_fair(rq, donor);
6876 }
6877 #else /* !CONFIG_SCHED_HRTICK */
6878 static inline void
6879 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6880 {
6881 }
6882 
6883 static inline void hrtick_update(struct rq *rq)
6884 {
6885 }
6886 #endif
6887 
6888 #ifdef CONFIG_SMP
6889 static inline bool cpu_overutilized(int cpu)
6890 {
6891 	unsigned long  rq_util_min, rq_util_max;
6892 
6893 	if (!sched_energy_enabled())
6894 		return false;
6895 
6896 	rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6897 	rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6898 
6899 	/* Return true only if the utilization doesn't fit CPU's capacity */
6900 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6901 }
6902 
6903 /*
6904  * overutilized value make sense only if EAS is enabled
6905  */
6906 static inline bool is_rd_overutilized(struct root_domain *rd)
6907 {
6908 	return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6909 }
6910 
6911 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6912 {
6913 	if (!sched_energy_enabled())
6914 		return;
6915 
6916 	WRITE_ONCE(rd->overutilized, flag);
6917 	trace_sched_overutilized_tp(rd, flag);
6918 }
6919 
6920 static inline void check_update_overutilized_status(struct rq *rq)
6921 {
6922 	/*
6923 	 * overutilized field is used for load balancing decisions only
6924 	 * if energy aware scheduler is being used
6925 	 */
6926 
6927 	if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6928 		set_rd_overutilized(rq->rd, 1);
6929 }
6930 #else
6931 static inline void check_update_overutilized_status(struct rq *rq) { }
6932 #endif
6933 
6934 /* Runqueue only has SCHED_IDLE tasks enqueued */
6935 static int sched_idle_rq(struct rq *rq)
6936 {
6937 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6938 			rq->nr_running);
6939 }
6940 
6941 #ifdef CONFIG_SMP
6942 static int sched_idle_cpu(int cpu)
6943 {
6944 	return sched_idle_rq(cpu_rq(cpu));
6945 }
6946 #endif
6947 
6948 static void
6949 requeue_delayed_entity(struct sched_entity *se)
6950 {
6951 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
6952 
6953 	/*
6954 	 * se->sched_delayed should imply: se->on_rq == 1.
6955 	 * Because a delayed entity is one that is still on
6956 	 * the runqueue competing until elegibility.
6957 	 */
6958 	SCHED_WARN_ON(!se->sched_delayed);
6959 	SCHED_WARN_ON(!se->on_rq);
6960 
6961 	if (sched_feat(DELAY_ZERO)) {
6962 		update_entity_lag(cfs_rq, se);
6963 		if (se->vlag > 0) {
6964 			cfs_rq->nr_running--;
6965 			if (se != cfs_rq->curr)
6966 				__dequeue_entity(cfs_rq, se);
6967 			se->vlag = 0;
6968 			place_entity(cfs_rq, se, 0);
6969 			if (se != cfs_rq->curr)
6970 				__enqueue_entity(cfs_rq, se);
6971 			cfs_rq->nr_running++;
6972 		}
6973 	}
6974 
6975 	update_load_avg(cfs_rq, se, 0);
6976 	clear_delayed(se);
6977 }
6978 
6979 /*
6980  * The enqueue_task method is called before nr_running is
6981  * increased. Here we update the fair scheduling stats and
6982  * then put the task into the rbtree:
6983  */
6984 static void
6985 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6986 {
6987 	struct cfs_rq *cfs_rq;
6988 	struct sched_entity *se = &p->se;
6989 	int idle_h_nr_running = task_has_idle_policy(p);
6990 	int h_nr_delayed = 0;
6991 	int task_new = !(flags & ENQUEUE_WAKEUP);
6992 	int rq_h_nr_running = rq->cfs.h_nr_running;
6993 	u64 slice = 0;
6994 
6995 	/*
6996 	 * The code below (indirectly) updates schedutil which looks at
6997 	 * the cfs_rq utilization to select a frequency.
6998 	 * Let's add the task's estimated utilization to the cfs_rq's
6999 	 * estimated utilization, before we update schedutil.
7000 	 */
7001 	if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE))))
7002 		util_est_enqueue(&rq->cfs, p);
7003 
7004 	if (flags & ENQUEUE_DELAYED) {
7005 		requeue_delayed_entity(se);
7006 		return;
7007 	}
7008 
7009 	/*
7010 	 * If in_iowait is set, the code below may not trigger any cpufreq
7011 	 * utilization updates, so do it here explicitly with the IOWAIT flag
7012 	 * passed.
7013 	 */
7014 	if (p->in_iowait)
7015 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
7016 
7017 	if (task_new)
7018 		h_nr_delayed = !!se->sched_delayed;
7019 
7020 	for_each_sched_entity(se) {
7021 		if (se->on_rq) {
7022 			if (se->sched_delayed)
7023 				requeue_delayed_entity(se);
7024 			break;
7025 		}
7026 		cfs_rq = cfs_rq_of(se);
7027 
7028 		/*
7029 		 * Basically set the slice of group entries to the min_slice of
7030 		 * their respective cfs_rq. This ensures the group can service
7031 		 * its entities in the desired time-frame.
7032 		 */
7033 		if (slice) {
7034 			se->slice = slice;
7035 			se->custom_slice = 1;
7036 		}
7037 		enqueue_entity(cfs_rq, se, flags);
7038 		slice = cfs_rq_min_slice(cfs_rq);
7039 
7040 		cfs_rq->h_nr_running++;
7041 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
7042 		cfs_rq->h_nr_delayed += h_nr_delayed;
7043 
7044 		if (cfs_rq_is_idle(cfs_rq))
7045 			idle_h_nr_running = 1;
7046 
7047 		/* end evaluation on encountering a throttled cfs_rq */
7048 		if (cfs_rq_throttled(cfs_rq))
7049 			goto enqueue_throttle;
7050 
7051 		flags = ENQUEUE_WAKEUP;
7052 	}
7053 
7054 	for_each_sched_entity(se) {
7055 		cfs_rq = cfs_rq_of(se);
7056 
7057 		update_load_avg(cfs_rq, se, UPDATE_TG);
7058 		se_update_runnable(se);
7059 		update_cfs_group(se);
7060 
7061 		se->slice = slice;
7062 		slice = cfs_rq_min_slice(cfs_rq);
7063 
7064 		cfs_rq->h_nr_running++;
7065 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
7066 		cfs_rq->h_nr_delayed += h_nr_delayed;
7067 
7068 		if (cfs_rq_is_idle(cfs_rq))
7069 			idle_h_nr_running = 1;
7070 
7071 		/* end evaluation on encountering a throttled cfs_rq */
7072 		if (cfs_rq_throttled(cfs_rq))
7073 			goto enqueue_throttle;
7074 	}
7075 
7076 	if (!rq_h_nr_running && rq->cfs.h_nr_running) {
7077 		/* Account for idle runtime */
7078 		if (!rq->nr_running)
7079 			dl_server_update_idle_time(rq, rq->curr);
7080 		dl_server_start(&rq->fair_server);
7081 	}
7082 
7083 	/* At this point se is NULL and we are at root level*/
7084 	add_nr_running(rq, 1);
7085 
7086 	/*
7087 	 * Since new tasks are assigned an initial util_avg equal to
7088 	 * half of the spare capacity of their CPU, tiny tasks have the
7089 	 * ability to cross the overutilized threshold, which will
7090 	 * result in the load balancer ruining all the task placement
7091 	 * done by EAS. As a way to mitigate that effect, do not account
7092 	 * for the first enqueue operation of new tasks during the
7093 	 * overutilized flag detection.
7094 	 *
7095 	 * A better way of solving this problem would be to wait for
7096 	 * the PELT signals of tasks to converge before taking them
7097 	 * into account, but that is not straightforward to implement,
7098 	 * and the following generally works well enough in practice.
7099 	 */
7100 	if (!task_new)
7101 		check_update_overutilized_status(rq);
7102 
7103 enqueue_throttle:
7104 	assert_list_leaf_cfs_rq(rq);
7105 
7106 	hrtick_update(rq);
7107 }
7108 
7109 static void set_next_buddy(struct sched_entity *se);
7110 
7111 /*
7112  * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
7113  * failing half-way through and resume the dequeue later.
7114  *
7115  * Returns:
7116  * -1 - dequeue delayed
7117  *  0 - dequeue throttled
7118  *  1 - dequeue complete
7119  */
7120 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
7121 {
7122 	bool was_sched_idle = sched_idle_rq(rq);
7123 	int rq_h_nr_running = rq->cfs.h_nr_running;
7124 	bool task_sleep = flags & DEQUEUE_SLEEP;
7125 	bool task_delayed = flags & DEQUEUE_DELAYED;
7126 	struct task_struct *p = NULL;
7127 	int idle_h_nr_running = 0;
7128 	int h_nr_running = 0;
7129 	int h_nr_delayed = 0;
7130 	struct cfs_rq *cfs_rq;
7131 	u64 slice = 0;
7132 
7133 	if (entity_is_task(se)) {
7134 		p = task_of(se);
7135 		h_nr_running = 1;
7136 		idle_h_nr_running = task_has_idle_policy(p);
7137 		if (!task_sleep && !task_delayed)
7138 			h_nr_delayed = !!se->sched_delayed;
7139 	} else {
7140 		cfs_rq = group_cfs_rq(se);
7141 		slice = cfs_rq_min_slice(cfs_rq);
7142 	}
7143 
7144 	for_each_sched_entity(se) {
7145 		cfs_rq = cfs_rq_of(se);
7146 
7147 		if (!dequeue_entity(cfs_rq, se, flags)) {
7148 			if (p && &p->se == se)
7149 				return -1;
7150 
7151 			break;
7152 		}
7153 
7154 		cfs_rq->h_nr_running -= h_nr_running;
7155 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7156 		cfs_rq->h_nr_delayed -= h_nr_delayed;
7157 
7158 		if (cfs_rq_is_idle(cfs_rq))
7159 			idle_h_nr_running = h_nr_running;
7160 
7161 		/* end evaluation on encountering a throttled cfs_rq */
7162 		if (cfs_rq_throttled(cfs_rq))
7163 			return 0;
7164 
7165 		/* Don't dequeue parent if it has other entities besides us */
7166 		if (cfs_rq->load.weight) {
7167 			slice = cfs_rq_min_slice(cfs_rq);
7168 
7169 			/* Avoid re-evaluating load for this entity: */
7170 			se = parent_entity(se);
7171 			/*
7172 			 * Bias pick_next to pick a task from this cfs_rq, as
7173 			 * p is sleeping when it is within its sched_slice.
7174 			 */
7175 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
7176 				set_next_buddy(se);
7177 			break;
7178 		}
7179 		flags |= DEQUEUE_SLEEP;
7180 		flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7181 	}
7182 
7183 	for_each_sched_entity(se) {
7184 		cfs_rq = cfs_rq_of(se);
7185 
7186 		update_load_avg(cfs_rq, se, UPDATE_TG);
7187 		se_update_runnable(se);
7188 		update_cfs_group(se);
7189 
7190 		se->slice = slice;
7191 		slice = cfs_rq_min_slice(cfs_rq);
7192 
7193 		cfs_rq->h_nr_running -= h_nr_running;
7194 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7195 		cfs_rq->h_nr_delayed -= h_nr_delayed;
7196 
7197 		if (cfs_rq_is_idle(cfs_rq))
7198 			idle_h_nr_running = h_nr_running;
7199 
7200 		/* end evaluation on encountering a throttled cfs_rq */
7201 		if (cfs_rq_throttled(cfs_rq))
7202 			return 0;
7203 	}
7204 
7205 	sub_nr_running(rq, h_nr_running);
7206 
7207 	if (rq_h_nr_running && !rq->cfs.h_nr_running)
7208 		dl_server_stop(&rq->fair_server);
7209 
7210 	/* balance early to pull high priority tasks */
7211 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7212 		rq->next_balance = jiffies;
7213 
7214 	if (p && task_delayed) {
7215 		SCHED_WARN_ON(!task_sleep);
7216 		SCHED_WARN_ON(p->on_rq != 1);
7217 
7218 		/* Fix-up what dequeue_task_fair() skipped */
7219 		hrtick_update(rq);
7220 
7221 		/*
7222 		 * Fix-up what block_task() skipped.
7223 		 *
7224 		 * Must be last, @p might not be valid after this.
7225 		 */
7226 		__block_task(rq, p);
7227 	}
7228 
7229 	return 1;
7230 }
7231 
7232 /*
7233  * The dequeue_task method is called before nr_running is
7234  * decreased. We remove the task from the rbtree and
7235  * update the fair scheduling stats:
7236  */
7237 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7238 {
7239 	if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE))))
7240 		util_est_dequeue(&rq->cfs, p);
7241 
7242 	util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7243 	if (dequeue_entities(rq, &p->se, flags) < 0)
7244 		return false;
7245 
7246 	/*
7247 	 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
7248 	 */
7249 
7250 	hrtick_update(rq);
7251 	return true;
7252 }
7253 
7254 #ifdef CONFIG_SMP
7255 
7256 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7257 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7258 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7259 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7260 
7261 #ifdef CONFIG_NO_HZ_COMMON
7262 
7263 static struct {
7264 	cpumask_var_t idle_cpus_mask;
7265 	atomic_t nr_cpus;
7266 	int has_blocked;		/* Idle CPUS has blocked load */
7267 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
7268 	unsigned long next_balance;     /* in jiffy units */
7269 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
7270 } nohz ____cacheline_aligned;
7271 
7272 #endif /* CONFIG_NO_HZ_COMMON */
7273 
7274 static unsigned long cpu_load(struct rq *rq)
7275 {
7276 	return cfs_rq_load_avg(&rq->cfs);
7277 }
7278 
7279 /*
7280  * cpu_load_without - compute CPU load without any contributions from *p
7281  * @cpu: the CPU which load is requested
7282  * @p: the task which load should be discounted
7283  *
7284  * The load of a CPU is defined by the load of tasks currently enqueued on that
7285  * CPU as well as tasks which are currently sleeping after an execution on that
7286  * CPU.
7287  *
7288  * This method returns the load of the specified CPU by discounting the load of
7289  * the specified task, whenever the task is currently contributing to the CPU
7290  * load.
7291  */
7292 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7293 {
7294 	struct cfs_rq *cfs_rq;
7295 	unsigned int load;
7296 
7297 	/* Task has no contribution or is new */
7298 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7299 		return cpu_load(rq);
7300 
7301 	cfs_rq = &rq->cfs;
7302 	load = READ_ONCE(cfs_rq->avg.load_avg);
7303 
7304 	/* Discount task's util from CPU's util */
7305 	lsub_positive(&load, task_h_load(p));
7306 
7307 	return load;
7308 }
7309 
7310 static unsigned long cpu_runnable(struct rq *rq)
7311 {
7312 	return cfs_rq_runnable_avg(&rq->cfs);
7313 }
7314 
7315 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7316 {
7317 	struct cfs_rq *cfs_rq;
7318 	unsigned int runnable;
7319 
7320 	/* Task has no contribution or is new */
7321 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7322 		return cpu_runnable(rq);
7323 
7324 	cfs_rq = &rq->cfs;
7325 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7326 
7327 	/* Discount task's runnable from CPU's runnable */
7328 	lsub_positive(&runnable, p->se.avg.runnable_avg);
7329 
7330 	return runnable;
7331 }
7332 
7333 static unsigned long capacity_of(int cpu)
7334 {
7335 	return cpu_rq(cpu)->cpu_capacity;
7336 }
7337 
7338 static void record_wakee(struct task_struct *p)
7339 {
7340 	/*
7341 	 * Only decay a single time; tasks that have less then 1 wakeup per
7342 	 * jiffy will not have built up many flips.
7343 	 */
7344 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7345 		current->wakee_flips >>= 1;
7346 		current->wakee_flip_decay_ts = jiffies;
7347 	}
7348 
7349 	if (current->last_wakee != p) {
7350 		current->last_wakee = p;
7351 		current->wakee_flips++;
7352 	}
7353 }
7354 
7355 /*
7356  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7357  *
7358  * A waker of many should wake a different task than the one last awakened
7359  * at a frequency roughly N times higher than one of its wakees.
7360  *
7361  * In order to determine whether we should let the load spread vs consolidating
7362  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7363  * partner, and a factor of lls_size higher frequency in the other.
7364  *
7365  * With both conditions met, we can be relatively sure that the relationship is
7366  * non-monogamous, with partner count exceeding socket size.
7367  *
7368  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7369  * whatever is irrelevant, spread criteria is apparent partner count exceeds
7370  * socket size.
7371  */
7372 static int wake_wide(struct task_struct *p)
7373 {
7374 	unsigned int master = current->wakee_flips;
7375 	unsigned int slave = p->wakee_flips;
7376 	int factor = __this_cpu_read(sd_llc_size);
7377 
7378 	if (master < slave)
7379 		swap(master, slave);
7380 	if (slave < factor || master < slave * factor)
7381 		return 0;
7382 	return 1;
7383 }
7384 
7385 /*
7386  * The purpose of wake_affine() is to quickly determine on which CPU we can run
7387  * soonest. For the purpose of speed we only consider the waking and previous
7388  * CPU.
7389  *
7390  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7391  *			cache-affine and is (or	will be) idle.
7392  *
7393  * wake_affine_weight() - considers the weight to reflect the average
7394  *			  scheduling latency of the CPUs. This seems to work
7395  *			  for the overloaded case.
7396  */
7397 static int
7398 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7399 {
7400 	/*
7401 	 * If this_cpu is idle, it implies the wakeup is from interrupt
7402 	 * context. Only allow the move if cache is shared. Otherwise an
7403 	 * interrupt intensive workload could force all tasks onto one
7404 	 * node depending on the IO topology or IRQ affinity settings.
7405 	 *
7406 	 * If the prev_cpu is idle and cache affine then avoid a migration.
7407 	 * There is no guarantee that the cache hot data from an interrupt
7408 	 * is more important than cache hot data on the prev_cpu and from
7409 	 * a cpufreq perspective, it's better to have higher utilisation
7410 	 * on one CPU.
7411 	 */
7412 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7413 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7414 
7415 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
7416 		return this_cpu;
7417 
7418 	if (available_idle_cpu(prev_cpu))
7419 		return prev_cpu;
7420 
7421 	return nr_cpumask_bits;
7422 }
7423 
7424 static int
7425 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7426 		   int this_cpu, int prev_cpu, int sync)
7427 {
7428 	s64 this_eff_load, prev_eff_load;
7429 	unsigned long task_load;
7430 
7431 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7432 
7433 	if (sync) {
7434 		unsigned long current_load = task_h_load(current);
7435 
7436 		if (current_load > this_eff_load)
7437 			return this_cpu;
7438 
7439 		this_eff_load -= current_load;
7440 	}
7441 
7442 	task_load = task_h_load(p);
7443 
7444 	this_eff_load += task_load;
7445 	if (sched_feat(WA_BIAS))
7446 		this_eff_load *= 100;
7447 	this_eff_load *= capacity_of(prev_cpu);
7448 
7449 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7450 	prev_eff_load -= task_load;
7451 	if (sched_feat(WA_BIAS))
7452 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7453 	prev_eff_load *= capacity_of(this_cpu);
7454 
7455 	/*
7456 	 * If sync, adjust the weight of prev_eff_load such that if
7457 	 * prev_eff == this_eff that select_idle_sibling() will consider
7458 	 * stacking the wakee on top of the waker if no other CPU is
7459 	 * idle.
7460 	 */
7461 	if (sync)
7462 		prev_eff_load += 1;
7463 
7464 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7465 }
7466 
7467 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7468 		       int this_cpu, int prev_cpu, int sync)
7469 {
7470 	int target = nr_cpumask_bits;
7471 
7472 	if (sched_feat(WA_IDLE))
7473 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7474 
7475 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7476 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7477 
7478 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7479 	if (target != this_cpu)
7480 		return prev_cpu;
7481 
7482 	schedstat_inc(sd->ttwu_move_affine);
7483 	schedstat_inc(p->stats.nr_wakeups_affine);
7484 	return target;
7485 }
7486 
7487 static struct sched_group *
7488 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7489 
7490 /*
7491  * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7492  */
7493 static int
7494 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7495 {
7496 	unsigned long load, min_load = ULONG_MAX;
7497 	unsigned int min_exit_latency = UINT_MAX;
7498 	u64 latest_idle_timestamp = 0;
7499 	int least_loaded_cpu = this_cpu;
7500 	int shallowest_idle_cpu = -1;
7501 	int i;
7502 
7503 	/* Check if we have any choice: */
7504 	if (group->group_weight == 1)
7505 		return cpumask_first(sched_group_span(group));
7506 
7507 	/* Traverse only the allowed CPUs */
7508 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7509 		struct rq *rq = cpu_rq(i);
7510 
7511 		if (!sched_core_cookie_match(rq, p))
7512 			continue;
7513 
7514 		if (sched_idle_cpu(i))
7515 			return i;
7516 
7517 		if (available_idle_cpu(i)) {
7518 			struct cpuidle_state *idle = idle_get_state(rq);
7519 			if (idle && idle->exit_latency < min_exit_latency) {
7520 				/*
7521 				 * We give priority to a CPU whose idle state
7522 				 * has the smallest exit latency irrespective
7523 				 * of any idle timestamp.
7524 				 */
7525 				min_exit_latency = idle->exit_latency;
7526 				latest_idle_timestamp = rq->idle_stamp;
7527 				shallowest_idle_cpu = i;
7528 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7529 				   rq->idle_stamp > latest_idle_timestamp) {
7530 				/*
7531 				 * If equal or no active idle state, then
7532 				 * the most recently idled CPU might have
7533 				 * a warmer cache.
7534 				 */
7535 				latest_idle_timestamp = rq->idle_stamp;
7536 				shallowest_idle_cpu = i;
7537 			}
7538 		} else if (shallowest_idle_cpu == -1) {
7539 			load = cpu_load(cpu_rq(i));
7540 			if (load < min_load) {
7541 				min_load = load;
7542 				least_loaded_cpu = i;
7543 			}
7544 		}
7545 	}
7546 
7547 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7548 }
7549 
7550 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7551 				  int cpu, int prev_cpu, int sd_flag)
7552 {
7553 	int new_cpu = cpu;
7554 
7555 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7556 		return prev_cpu;
7557 
7558 	/*
7559 	 * We need task's util for cpu_util_without, sync it up to
7560 	 * prev_cpu's last_update_time.
7561 	 */
7562 	if (!(sd_flag & SD_BALANCE_FORK))
7563 		sync_entity_load_avg(&p->se);
7564 
7565 	while (sd) {
7566 		struct sched_group *group;
7567 		struct sched_domain *tmp;
7568 		int weight;
7569 
7570 		if (!(sd->flags & sd_flag)) {
7571 			sd = sd->child;
7572 			continue;
7573 		}
7574 
7575 		group = sched_balance_find_dst_group(sd, p, cpu);
7576 		if (!group) {
7577 			sd = sd->child;
7578 			continue;
7579 		}
7580 
7581 		new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7582 		if (new_cpu == cpu) {
7583 			/* Now try balancing at a lower domain level of 'cpu': */
7584 			sd = sd->child;
7585 			continue;
7586 		}
7587 
7588 		/* Now try balancing at a lower domain level of 'new_cpu': */
7589 		cpu = new_cpu;
7590 		weight = sd->span_weight;
7591 		sd = NULL;
7592 		for_each_domain(cpu, tmp) {
7593 			if (weight <= tmp->span_weight)
7594 				break;
7595 			if (tmp->flags & sd_flag)
7596 				sd = tmp;
7597 		}
7598 	}
7599 
7600 	return new_cpu;
7601 }
7602 
7603 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7604 {
7605 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7606 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7607 		return cpu;
7608 
7609 	return -1;
7610 }
7611 
7612 #ifdef CONFIG_SCHED_SMT
7613 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7614 EXPORT_SYMBOL_GPL(sched_smt_present);
7615 
7616 static inline void set_idle_cores(int cpu, int val)
7617 {
7618 	struct sched_domain_shared *sds;
7619 
7620 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7621 	if (sds)
7622 		WRITE_ONCE(sds->has_idle_cores, val);
7623 }
7624 
7625 static inline bool test_idle_cores(int cpu)
7626 {
7627 	struct sched_domain_shared *sds;
7628 
7629 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7630 	if (sds)
7631 		return READ_ONCE(sds->has_idle_cores);
7632 
7633 	return false;
7634 }
7635 
7636 /*
7637  * Scans the local SMT mask to see if the entire core is idle, and records this
7638  * information in sd_llc_shared->has_idle_cores.
7639  *
7640  * Since SMT siblings share all cache levels, inspecting this limited remote
7641  * state should be fairly cheap.
7642  */
7643 void __update_idle_core(struct rq *rq)
7644 {
7645 	int core = cpu_of(rq);
7646 	int cpu;
7647 
7648 	rcu_read_lock();
7649 	if (test_idle_cores(core))
7650 		goto unlock;
7651 
7652 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7653 		if (cpu == core)
7654 			continue;
7655 
7656 		if (!available_idle_cpu(cpu))
7657 			goto unlock;
7658 	}
7659 
7660 	set_idle_cores(core, 1);
7661 unlock:
7662 	rcu_read_unlock();
7663 }
7664 
7665 /*
7666  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7667  * there are no idle cores left in the system; tracked through
7668  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7669  */
7670 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7671 {
7672 	bool idle = true;
7673 	int cpu;
7674 
7675 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7676 		if (!available_idle_cpu(cpu)) {
7677 			idle = false;
7678 			if (*idle_cpu == -1) {
7679 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7680 					*idle_cpu = cpu;
7681 					break;
7682 				}
7683 				continue;
7684 			}
7685 			break;
7686 		}
7687 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7688 			*idle_cpu = cpu;
7689 	}
7690 
7691 	if (idle)
7692 		return core;
7693 
7694 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7695 	return -1;
7696 }
7697 
7698 /*
7699  * Scan the local SMT mask for idle CPUs.
7700  */
7701 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7702 {
7703 	int cpu;
7704 
7705 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7706 		if (cpu == target)
7707 			continue;
7708 		/*
7709 		 * Check if the CPU is in the LLC scheduling domain of @target.
7710 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7711 		 */
7712 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7713 			continue;
7714 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7715 			return cpu;
7716 	}
7717 
7718 	return -1;
7719 }
7720 
7721 #else /* CONFIG_SCHED_SMT */
7722 
7723 static inline void set_idle_cores(int cpu, int val)
7724 {
7725 }
7726 
7727 static inline bool test_idle_cores(int cpu)
7728 {
7729 	return false;
7730 }
7731 
7732 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7733 {
7734 	return __select_idle_cpu(core, p);
7735 }
7736 
7737 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7738 {
7739 	return -1;
7740 }
7741 
7742 #endif /* CONFIG_SCHED_SMT */
7743 
7744 /*
7745  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7746  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7747  * average idle time for this rq (as found in rq->avg_idle).
7748  */
7749 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7750 {
7751 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7752 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7753 	struct sched_domain_shared *sd_share;
7754 
7755 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7756 
7757 	if (sched_feat(SIS_UTIL)) {
7758 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7759 		if (sd_share) {
7760 			/* because !--nr is the condition to stop scan */
7761 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7762 			/* overloaded LLC is unlikely to have idle cpu/core */
7763 			if (nr == 1)
7764 				return -1;
7765 		}
7766 	}
7767 
7768 	if (static_branch_unlikely(&sched_cluster_active)) {
7769 		struct sched_group *sg = sd->groups;
7770 
7771 		if (sg->flags & SD_CLUSTER) {
7772 			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7773 				if (!cpumask_test_cpu(cpu, cpus))
7774 					continue;
7775 
7776 				if (has_idle_core) {
7777 					i = select_idle_core(p, cpu, cpus, &idle_cpu);
7778 					if ((unsigned int)i < nr_cpumask_bits)
7779 						return i;
7780 				} else {
7781 					if (--nr <= 0)
7782 						return -1;
7783 					idle_cpu = __select_idle_cpu(cpu, p);
7784 					if ((unsigned int)idle_cpu < nr_cpumask_bits)
7785 						return idle_cpu;
7786 				}
7787 			}
7788 			cpumask_andnot(cpus, cpus, sched_group_span(sg));
7789 		}
7790 	}
7791 
7792 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7793 		if (has_idle_core) {
7794 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7795 			if ((unsigned int)i < nr_cpumask_bits)
7796 				return i;
7797 
7798 		} else {
7799 			if (--nr <= 0)
7800 				return -1;
7801 			idle_cpu = __select_idle_cpu(cpu, p);
7802 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7803 				break;
7804 		}
7805 	}
7806 
7807 	if (has_idle_core)
7808 		set_idle_cores(target, false);
7809 
7810 	return idle_cpu;
7811 }
7812 
7813 /*
7814  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7815  * the task fits. If no CPU is big enough, but there are idle ones, try to
7816  * maximize capacity.
7817  */
7818 static int
7819 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7820 {
7821 	unsigned long task_util, util_min, util_max, best_cap = 0;
7822 	int fits, best_fits = 0;
7823 	int cpu, best_cpu = -1;
7824 	struct cpumask *cpus;
7825 
7826 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7827 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7828 
7829 	task_util = task_util_est(p);
7830 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7831 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7832 
7833 	for_each_cpu_wrap(cpu, cpus, target) {
7834 		unsigned long cpu_cap = capacity_of(cpu);
7835 
7836 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7837 			continue;
7838 
7839 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7840 
7841 		/* This CPU fits with all requirements */
7842 		if (fits > 0)
7843 			return cpu;
7844 		/*
7845 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7846 		 * Look for the CPU with best capacity.
7847 		 */
7848 		else if (fits < 0)
7849 			cpu_cap = get_actual_cpu_capacity(cpu);
7850 
7851 		/*
7852 		 * First, select CPU which fits better (-1 being better than 0).
7853 		 * Then, select the one with best capacity at same level.
7854 		 */
7855 		if ((fits < best_fits) ||
7856 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7857 			best_cap = cpu_cap;
7858 			best_cpu = cpu;
7859 			best_fits = fits;
7860 		}
7861 	}
7862 
7863 	return best_cpu;
7864 }
7865 
7866 static inline bool asym_fits_cpu(unsigned long util,
7867 				 unsigned long util_min,
7868 				 unsigned long util_max,
7869 				 int cpu)
7870 {
7871 	if (sched_asym_cpucap_active())
7872 		/*
7873 		 * Return true only if the cpu fully fits the task requirements
7874 		 * which include the utilization and the performance hints.
7875 		 */
7876 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7877 
7878 	return true;
7879 }
7880 
7881 /*
7882  * Try and locate an idle core/thread in the LLC cache domain.
7883  */
7884 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7885 {
7886 	bool has_idle_core = false;
7887 	struct sched_domain *sd;
7888 	unsigned long task_util, util_min, util_max;
7889 	int i, recent_used_cpu, prev_aff = -1;
7890 
7891 	/*
7892 	 * On asymmetric system, update task utilization because we will check
7893 	 * that the task fits with CPU's capacity.
7894 	 */
7895 	if (sched_asym_cpucap_active()) {
7896 		sync_entity_load_avg(&p->se);
7897 		task_util = task_util_est(p);
7898 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7899 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7900 	}
7901 
7902 	/*
7903 	 * per-cpu select_rq_mask usage
7904 	 */
7905 	lockdep_assert_irqs_disabled();
7906 
7907 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7908 	    asym_fits_cpu(task_util, util_min, util_max, target))
7909 		return target;
7910 
7911 	/*
7912 	 * If the previous CPU is cache affine and idle, don't be stupid:
7913 	 */
7914 	if (prev != target && cpus_share_cache(prev, target) &&
7915 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7916 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7917 
7918 		if (!static_branch_unlikely(&sched_cluster_active) ||
7919 		    cpus_share_resources(prev, target))
7920 			return prev;
7921 
7922 		prev_aff = prev;
7923 	}
7924 
7925 	/*
7926 	 * Allow a per-cpu kthread to stack with the wakee if the
7927 	 * kworker thread and the tasks previous CPUs are the same.
7928 	 * The assumption is that the wakee queued work for the
7929 	 * per-cpu kthread that is now complete and the wakeup is
7930 	 * essentially a sync wakeup. An obvious example of this
7931 	 * pattern is IO completions.
7932 	 */
7933 	if (is_per_cpu_kthread(current) &&
7934 	    in_task() &&
7935 	    prev == smp_processor_id() &&
7936 	    this_rq()->nr_running <= 1 &&
7937 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7938 		return prev;
7939 	}
7940 
7941 	/* Check a recently used CPU as a potential idle candidate: */
7942 	recent_used_cpu = p->recent_used_cpu;
7943 	p->recent_used_cpu = prev;
7944 	if (recent_used_cpu != prev &&
7945 	    recent_used_cpu != target &&
7946 	    cpus_share_cache(recent_used_cpu, target) &&
7947 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7948 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7949 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7950 
7951 		if (!static_branch_unlikely(&sched_cluster_active) ||
7952 		    cpus_share_resources(recent_used_cpu, target))
7953 			return recent_used_cpu;
7954 
7955 	} else {
7956 		recent_used_cpu = -1;
7957 	}
7958 
7959 	/*
7960 	 * For asymmetric CPU capacity systems, our domain of interest is
7961 	 * sd_asym_cpucapacity rather than sd_llc.
7962 	 */
7963 	if (sched_asym_cpucap_active()) {
7964 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7965 		/*
7966 		 * On an asymmetric CPU capacity system where an exclusive
7967 		 * cpuset defines a symmetric island (i.e. one unique
7968 		 * capacity_orig value through the cpuset), the key will be set
7969 		 * but the CPUs within that cpuset will not have a domain with
7970 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7971 		 * capacity path.
7972 		 */
7973 		if (sd) {
7974 			i = select_idle_capacity(p, sd, target);
7975 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7976 		}
7977 	}
7978 
7979 	sd = rcu_dereference(per_cpu(sd_llc, target));
7980 	if (!sd)
7981 		return target;
7982 
7983 	if (sched_smt_active()) {
7984 		has_idle_core = test_idle_cores(target);
7985 
7986 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7987 			i = select_idle_smt(p, sd, prev);
7988 			if ((unsigned int)i < nr_cpumask_bits)
7989 				return i;
7990 		}
7991 	}
7992 
7993 	i = select_idle_cpu(p, sd, has_idle_core, target);
7994 	if ((unsigned)i < nr_cpumask_bits)
7995 		return i;
7996 
7997 	/*
7998 	 * For cluster machines which have lower sharing cache like L2 or
7999 	 * LLC Tag, we tend to find an idle CPU in the target's cluster
8000 	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
8001 	 * use them if possible when no idle CPU found in select_idle_cpu().
8002 	 */
8003 	if ((unsigned int)prev_aff < nr_cpumask_bits)
8004 		return prev_aff;
8005 	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
8006 		return recent_used_cpu;
8007 
8008 	return target;
8009 }
8010 
8011 /**
8012  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
8013  * @cpu: the CPU to get the utilization for
8014  * @p: task for which the CPU utilization should be predicted or NULL
8015  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
8016  * @boost: 1 to enable boosting, otherwise 0
8017  *
8018  * The unit of the return value must be the same as the one of CPU capacity
8019  * so that CPU utilization can be compared with CPU capacity.
8020  *
8021  * CPU utilization is the sum of running time of runnable tasks plus the
8022  * recent utilization of currently non-runnable tasks on that CPU.
8023  * It represents the amount of CPU capacity currently used by CFS tasks in
8024  * the range [0..max CPU capacity] with max CPU capacity being the CPU
8025  * capacity at f_max.
8026  *
8027  * The estimated CPU utilization is defined as the maximum between CPU
8028  * utilization and sum of the estimated utilization of the currently
8029  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
8030  * previously-executed tasks, which helps better deduce how busy a CPU will
8031  * be when a long-sleeping task wakes up. The contribution to CPU utilization
8032  * of such a task would be significantly decayed at this point of time.
8033  *
8034  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
8035  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
8036  * utilization. Boosting is implemented in cpu_util() so that internal
8037  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
8038  * latter via cpu_util_cfs_boost().
8039  *
8040  * CPU utilization can be higher than the current CPU capacity
8041  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
8042  * of rounding errors as well as task migrations or wakeups of new tasks.
8043  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
8044  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
8045  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
8046  * capacity. CPU utilization is allowed to overshoot current CPU capacity
8047  * though since this is useful for predicting the CPU capacity required
8048  * after task migrations (scheduler-driven DVFS).
8049  *
8050  * Return: (Boosted) (estimated) utilization for the specified CPU.
8051  */
8052 static unsigned long
8053 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
8054 {
8055 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
8056 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
8057 	unsigned long runnable;
8058 
8059 	if (boost) {
8060 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
8061 		util = max(util, runnable);
8062 	}
8063 
8064 	/*
8065 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
8066 	 * contribution. If @p migrates from another CPU to @cpu add its
8067 	 * contribution. In all the other cases @cpu is not impacted by the
8068 	 * migration so its util_avg is already correct.
8069 	 */
8070 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
8071 		lsub_positive(&util, task_util(p));
8072 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
8073 		util += task_util(p);
8074 
8075 	if (sched_feat(UTIL_EST)) {
8076 		unsigned long util_est;
8077 
8078 		util_est = READ_ONCE(cfs_rq->avg.util_est);
8079 
8080 		/*
8081 		 * During wake-up @p isn't enqueued yet and doesn't contribute
8082 		 * to any cpu_rq(cpu)->cfs.avg.util_est.
8083 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
8084 		 * has been enqueued.
8085 		 *
8086 		 * During exec (@dst_cpu = -1) @p is enqueued and does
8087 		 * contribute to cpu_rq(cpu)->cfs.util_est.
8088 		 * Remove it to "simulate" cpu_util without @p's contribution.
8089 		 *
8090 		 * Despite the task_on_rq_queued(@p) check there is still a
8091 		 * small window for a possible race when an exec
8092 		 * select_task_rq_fair() races with LB's detach_task().
8093 		 *
8094 		 *   detach_task()
8095 		 *     deactivate_task()
8096 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
8097 		 *       -------------------------------- A
8098 		 *       dequeue_task()                    \
8099 		 *         dequeue_task_fair()              + Race Time
8100 		 *           util_est_dequeue()            /
8101 		 *       -------------------------------- B
8102 		 *
8103 		 * The additional check "current == p" is required to further
8104 		 * reduce the race window.
8105 		 */
8106 		if (dst_cpu == cpu)
8107 			util_est += _task_util_est(p);
8108 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
8109 			lsub_positive(&util_est, _task_util_est(p));
8110 
8111 		util = max(util, util_est);
8112 	}
8113 
8114 	return min(util, arch_scale_cpu_capacity(cpu));
8115 }
8116 
8117 unsigned long cpu_util_cfs(int cpu)
8118 {
8119 	return cpu_util(cpu, NULL, -1, 0);
8120 }
8121 
8122 unsigned long cpu_util_cfs_boost(int cpu)
8123 {
8124 	return cpu_util(cpu, NULL, -1, 1);
8125 }
8126 
8127 /*
8128  * cpu_util_without: compute cpu utilization without any contributions from *p
8129  * @cpu: the CPU which utilization is requested
8130  * @p: the task which utilization should be discounted
8131  *
8132  * The utilization of a CPU is defined by the utilization of tasks currently
8133  * enqueued on that CPU as well as tasks which are currently sleeping after an
8134  * execution on that CPU.
8135  *
8136  * This method returns the utilization of the specified CPU by discounting the
8137  * utilization of the specified task, whenever the task is currently
8138  * contributing to the CPU utilization.
8139  */
8140 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
8141 {
8142 	/* Task has no contribution or is new */
8143 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8144 		p = NULL;
8145 
8146 	return cpu_util(cpu, p, -1, 0);
8147 }
8148 
8149 /*
8150  * This function computes an effective utilization for the given CPU, to be
8151  * used for frequency selection given the linear relation: f = u * f_max.
8152  *
8153  * The scheduler tracks the following metrics:
8154  *
8155  *   cpu_util_{cfs,rt,dl,irq}()
8156  *   cpu_bw_dl()
8157  *
8158  * Where the cfs,rt and dl util numbers are tracked with the same metric and
8159  * synchronized windows and are thus directly comparable.
8160  *
8161  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8162  * which excludes things like IRQ and steal-time. These latter are then accrued
8163  * in the IRQ utilization.
8164  *
8165  * The DL bandwidth number OTOH is not a measured metric but a value computed
8166  * based on the task model parameters and gives the minimal utilization
8167  * required to meet deadlines.
8168  */
8169 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
8170 				 unsigned long *min,
8171 				 unsigned long *max)
8172 {
8173 	unsigned long util, irq, scale;
8174 	struct rq *rq = cpu_rq(cpu);
8175 
8176 	scale = arch_scale_cpu_capacity(cpu);
8177 
8178 	/*
8179 	 * Early check to see if IRQ/steal time saturates the CPU, can be
8180 	 * because of inaccuracies in how we track these -- see
8181 	 * update_irq_load_avg().
8182 	 */
8183 	irq = cpu_util_irq(rq);
8184 	if (unlikely(irq >= scale)) {
8185 		if (min)
8186 			*min = scale;
8187 		if (max)
8188 			*max = scale;
8189 		return scale;
8190 	}
8191 
8192 	if (min) {
8193 		/*
8194 		 * The minimum utilization returns the highest level between:
8195 		 * - the computed DL bandwidth needed with the IRQ pressure which
8196 		 *   steals time to the deadline task.
8197 		 * - The minimum performance requirement for CFS and/or RT.
8198 		 */
8199 		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
8200 
8201 		/*
8202 		 * When an RT task is runnable and uclamp is not used, we must
8203 		 * ensure that the task will run at maximum compute capacity.
8204 		 */
8205 		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
8206 			*min = max(*min, scale);
8207 	}
8208 
8209 	/*
8210 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8211 	 * CFS tasks and we use the same metric to track the effective
8212 	 * utilization (PELT windows are synchronized) we can directly add them
8213 	 * to obtain the CPU's actual utilization.
8214 	 */
8215 	util = util_cfs + cpu_util_rt(rq);
8216 	util += cpu_util_dl(rq);
8217 
8218 	/*
8219 	 * The maximum hint is a soft bandwidth requirement, which can be lower
8220 	 * than the actual utilization because of uclamp_max requirements.
8221 	 */
8222 	if (max)
8223 		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
8224 
8225 	if (util >= scale)
8226 		return scale;
8227 
8228 	/*
8229 	 * There is still idle time; further improve the number by using the
8230 	 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8231 	 * need to scale the task numbers:
8232 	 *
8233 	 *              max - irq
8234 	 *   U' = irq + --------- * U
8235 	 *                 max
8236 	 */
8237 	util = scale_irq_capacity(util, irq, scale);
8238 	util += irq;
8239 
8240 	return min(scale, util);
8241 }
8242 
8243 unsigned long sched_cpu_util(int cpu)
8244 {
8245 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
8246 }
8247 
8248 /*
8249  * energy_env - Utilization landscape for energy estimation.
8250  * @task_busy_time: Utilization contribution by the task for which we test the
8251  *                  placement. Given by eenv_task_busy_time().
8252  * @pd_busy_time:   Utilization of the whole perf domain without the task
8253  *                  contribution. Given by eenv_pd_busy_time().
8254  * @cpu_cap:        Maximum CPU capacity for the perf domain.
8255  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8256  */
8257 struct energy_env {
8258 	unsigned long task_busy_time;
8259 	unsigned long pd_busy_time;
8260 	unsigned long cpu_cap;
8261 	unsigned long pd_cap;
8262 };
8263 
8264 /*
8265  * Compute the task busy time for compute_energy(). This time cannot be
8266  * injected directly into effective_cpu_util() because of the IRQ scaling.
8267  * The latter only makes sense with the most recent CPUs where the task has
8268  * run.
8269  */
8270 static inline void eenv_task_busy_time(struct energy_env *eenv,
8271 				       struct task_struct *p, int prev_cpu)
8272 {
8273 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8274 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8275 
8276 	if (unlikely(irq >= max_cap))
8277 		busy_time = max_cap;
8278 	else
8279 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8280 
8281 	eenv->task_busy_time = busy_time;
8282 }
8283 
8284 /*
8285  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8286  * utilization for each @pd_cpus, it however doesn't take into account
8287  * clamping since the ratio (utilization / cpu_capacity) is already enough to
8288  * scale the EM reported power consumption at the (eventually clamped)
8289  * cpu_capacity.
8290  *
8291  * The contribution of the task @p for which we want to estimate the
8292  * energy cost is removed (by cpu_util()) and must be calculated
8293  * separately (see eenv_task_busy_time). This ensures:
8294  *
8295  *   - A stable PD utilization, no matter which CPU of that PD we want to place
8296  *     the task on.
8297  *
8298  *   - A fair comparison between CPUs as the task contribution (task_util())
8299  *     will always be the same no matter which CPU utilization we rely on
8300  *     (util_avg or util_est).
8301  *
8302  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8303  * exceed @eenv->pd_cap.
8304  */
8305 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8306 				     struct cpumask *pd_cpus,
8307 				     struct task_struct *p)
8308 {
8309 	unsigned long busy_time = 0;
8310 	int cpu;
8311 
8312 	for_each_cpu(cpu, pd_cpus) {
8313 		unsigned long util = cpu_util(cpu, p, -1, 0);
8314 
8315 		busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8316 	}
8317 
8318 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8319 }
8320 
8321 /*
8322  * Compute the maximum utilization for compute_energy() when the task @p
8323  * is placed on the cpu @dst_cpu.
8324  *
8325  * Returns the maximum utilization among @eenv->cpus. This utilization can't
8326  * exceed @eenv->cpu_cap.
8327  */
8328 static inline unsigned long
8329 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8330 		 struct task_struct *p, int dst_cpu)
8331 {
8332 	unsigned long max_util = 0;
8333 	int cpu;
8334 
8335 	for_each_cpu(cpu, pd_cpus) {
8336 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8337 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8338 		unsigned long eff_util, min, max;
8339 
8340 		/*
8341 		 * Performance domain frequency: utilization clamping
8342 		 * must be considered since it affects the selection
8343 		 * of the performance domain frequency.
8344 		 * NOTE: in case RT tasks are running, by default the min
8345 		 * utilization can be max OPP.
8346 		 */
8347 		eff_util = effective_cpu_util(cpu, util, &min, &max);
8348 
8349 		/* Task's uclamp can modify min and max value */
8350 		if (tsk && uclamp_is_used()) {
8351 			min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8352 
8353 			/*
8354 			 * If there is no active max uclamp constraint,
8355 			 * directly use task's one, otherwise keep max.
8356 			 */
8357 			if (uclamp_rq_is_idle(cpu_rq(cpu)))
8358 				max = uclamp_eff_value(p, UCLAMP_MAX);
8359 			else
8360 				max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8361 		}
8362 
8363 		eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8364 		max_util = max(max_util, eff_util);
8365 	}
8366 
8367 	return min(max_util, eenv->cpu_cap);
8368 }
8369 
8370 /*
8371  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8372  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8373  * contribution is ignored.
8374  */
8375 static inline unsigned long
8376 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8377 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8378 {
8379 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8380 	unsigned long busy_time = eenv->pd_busy_time;
8381 	unsigned long energy;
8382 
8383 	if (dst_cpu >= 0)
8384 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8385 
8386 	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8387 
8388 	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8389 
8390 	return energy;
8391 }
8392 
8393 /*
8394  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8395  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8396  * spare capacity in each performance domain and uses it as a potential
8397  * candidate to execute the task. Then, it uses the Energy Model to figure
8398  * out which of the CPU candidates is the most energy-efficient.
8399  *
8400  * The rationale for this heuristic is as follows. In a performance domain,
8401  * all the most energy efficient CPU candidates (according to the Energy
8402  * Model) are those for which we'll request a low frequency. When there are
8403  * several CPUs for which the frequency request will be the same, we don't
8404  * have enough data to break the tie between them, because the Energy Model
8405  * only includes active power costs. With this model, if we assume that
8406  * frequency requests follow utilization (e.g. using schedutil), the CPU with
8407  * the maximum spare capacity in a performance domain is guaranteed to be among
8408  * the best candidates of the performance domain.
8409  *
8410  * In practice, it could be preferable from an energy standpoint to pack
8411  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8412  * but that could also hurt our chances to go cluster idle, and we have no
8413  * ways to tell with the current Energy Model if this is actually a good
8414  * idea or not. So, find_energy_efficient_cpu() basically favors
8415  * cluster-packing, and spreading inside a cluster. That should at least be
8416  * a good thing for latency, and this is consistent with the idea that most
8417  * of the energy savings of EAS come from the asymmetry of the system, and
8418  * not so much from breaking the tie between identical CPUs. That's also the
8419  * reason why EAS is enabled in the topology code only for systems where
8420  * SD_ASYM_CPUCAPACITY is set.
8421  *
8422  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8423  * they don't have any useful utilization data yet and it's not possible to
8424  * forecast their impact on energy consumption. Consequently, they will be
8425  * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8426  * to be energy-inefficient in some use-cases. The alternative would be to
8427  * bias new tasks towards specific types of CPUs first, or to try to infer
8428  * their util_avg from the parent task, but those heuristics could hurt
8429  * other use-cases too. So, until someone finds a better way to solve this,
8430  * let's keep things simple by re-using the existing slow path.
8431  */
8432 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8433 {
8434 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8435 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8436 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8437 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8438 	struct root_domain *rd = this_rq()->rd;
8439 	int cpu, best_energy_cpu, target = -1;
8440 	int prev_fits = -1, best_fits = -1;
8441 	unsigned long best_actual_cap = 0;
8442 	unsigned long prev_actual_cap = 0;
8443 	struct sched_domain *sd;
8444 	struct perf_domain *pd;
8445 	struct energy_env eenv;
8446 
8447 	rcu_read_lock();
8448 	pd = rcu_dereference(rd->pd);
8449 	if (!pd)
8450 		goto unlock;
8451 
8452 	/*
8453 	 * Energy-aware wake-up happens on the lowest sched_domain starting
8454 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8455 	 */
8456 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8457 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8458 		sd = sd->parent;
8459 	if (!sd)
8460 		goto unlock;
8461 
8462 	target = prev_cpu;
8463 
8464 	sync_entity_load_avg(&p->se);
8465 	if (!task_util_est(p) && p_util_min == 0)
8466 		goto unlock;
8467 
8468 	eenv_task_busy_time(&eenv, p, prev_cpu);
8469 
8470 	for (; pd; pd = pd->next) {
8471 		unsigned long util_min = p_util_min, util_max = p_util_max;
8472 		unsigned long cpu_cap, cpu_actual_cap, util;
8473 		long prev_spare_cap = -1, max_spare_cap = -1;
8474 		unsigned long rq_util_min, rq_util_max;
8475 		unsigned long cur_delta, base_energy;
8476 		int max_spare_cap_cpu = -1;
8477 		int fits, max_fits = -1;
8478 
8479 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8480 
8481 		if (cpumask_empty(cpus))
8482 			continue;
8483 
8484 		/* Account external pressure for the energy estimation */
8485 		cpu = cpumask_first(cpus);
8486 		cpu_actual_cap = get_actual_cpu_capacity(cpu);
8487 
8488 		eenv.cpu_cap = cpu_actual_cap;
8489 		eenv.pd_cap = 0;
8490 
8491 		for_each_cpu(cpu, cpus) {
8492 			struct rq *rq = cpu_rq(cpu);
8493 
8494 			eenv.pd_cap += cpu_actual_cap;
8495 
8496 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8497 				continue;
8498 
8499 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8500 				continue;
8501 
8502 			util = cpu_util(cpu, p, cpu, 0);
8503 			cpu_cap = capacity_of(cpu);
8504 
8505 			/*
8506 			 * Skip CPUs that cannot satisfy the capacity request.
8507 			 * IOW, placing the task there would make the CPU
8508 			 * overutilized. Take uclamp into account to see how
8509 			 * much capacity we can get out of the CPU; this is
8510 			 * aligned with sched_cpu_util().
8511 			 */
8512 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8513 				/*
8514 				 * Open code uclamp_rq_util_with() except for
8515 				 * the clamp() part. I.e.: apply max aggregation
8516 				 * only. util_fits_cpu() logic requires to
8517 				 * operate on non clamped util but must use the
8518 				 * max-aggregated uclamp_{min, max}.
8519 				 */
8520 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8521 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8522 
8523 				util_min = max(rq_util_min, p_util_min);
8524 				util_max = max(rq_util_max, p_util_max);
8525 			}
8526 
8527 			fits = util_fits_cpu(util, util_min, util_max, cpu);
8528 			if (!fits)
8529 				continue;
8530 
8531 			lsub_positive(&cpu_cap, util);
8532 
8533 			if (cpu == prev_cpu) {
8534 				/* Always use prev_cpu as a candidate. */
8535 				prev_spare_cap = cpu_cap;
8536 				prev_fits = fits;
8537 			} else if ((fits > max_fits) ||
8538 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8539 				/*
8540 				 * Find the CPU with the maximum spare capacity
8541 				 * among the remaining CPUs in the performance
8542 				 * domain.
8543 				 */
8544 				max_spare_cap = cpu_cap;
8545 				max_spare_cap_cpu = cpu;
8546 				max_fits = fits;
8547 			}
8548 		}
8549 
8550 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8551 			continue;
8552 
8553 		eenv_pd_busy_time(&eenv, cpus, p);
8554 		/* Compute the 'base' energy of the pd, without @p */
8555 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8556 
8557 		/* Evaluate the energy impact of using prev_cpu. */
8558 		if (prev_spare_cap > -1) {
8559 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8560 						    prev_cpu);
8561 			/* CPU utilization has changed */
8562 			if (prev_delta < base_energy)
8563 				goto unlock;
8564 			prev_delta -= base_energy;
8565 			prev_actual_cap = cpu_actual_cap;
8566 			best_delta = min(best_delta, prev_delta);
8567 		}
8568 
8569 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8570 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8571 			/* Current best energy cpu fits better */
8572 			if (max_fits < best_fits)
8573 				continue;
8574 
8575 			/*
8576 			 * Both don't fit performance hint (i.e. uclamp_min)
8577 			 * but best energy cpu has better capacity.
8578 			 */
8579 			if ((max_fits < 0) &&
8580 			    (cpu_actual_cap <= best_actual_cap))
8581 				continue;
8582 
8583 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8584 						   max_spare_cap_cpu);
8585 			/* CPU utilization has changed */
8586 			if (cur_delta < base_energy)
8587 				goto unlock;
8588 			cur_delta -= base_energy;
8589 
8590 			/*
8591 			 * Both fit for the task but best energy cpu has lower
8592 			 * energy impact.
8593 			 */
8594 			if ((max_fits > 0) && (best_fits > 0) &&
8595 			    (cur_delta >= best_delta))
8596 				continue;
8597 
8598 			best_delta = cur_delta;
8599 			best_energy_cpu = max_spare_cap_cpu;
8600 			best_fits = max_fits;
8601 			best_actual_cap = cpu_actual_cap;
8602 		}
8603 	}
8604 	rcu_read_unlock();
8605 
8606 	if ((best_fits > prev_fits) ||
8607 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8608 	    ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8609 		target = best_energy_cpu;
8610 
8611 	return target;
8612 
8613 unlock:
8614 	rcu_read_unlock();
8615 
8616 	return target;
8617 }
8618 
8619 /*
8620  * select_task_rq_fair: Select target runqueue for the waking task in domains
8621  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8622  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8623  *
8624  * Balances load by selecting the idlest CPU in the idlest group, or under
8625  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8626  *
8627  * Returns the target CPU number.
8628  */
8629 static int
8630 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8631 {
8632 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8633 	struct sched_domain *tmp, *sd = NULL;
8634 	int cpu = smp_processor_id();
8635 	int new_cpu = prev_cpu;
8636 	int want_affine = 0;
8637 	/* SD_flags and WF_flags share the first nibble */
8638 	int sd_flag = wake_flags & 0xF;
8639 
8640 	/*
8641 	 * required for stable ->cpus_allowed
8642 	 */
8643 	lockdep_assert_held(&p->pi_lock);
8644 	if (wake_flags & WF_TTWU) {
8645 		record_wakee(p);
8646 
8647 		if ((wake_flags & WF_CURRENT_CPU) &&
8648 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8649 			return cpu;
8650 
8651 		if (!is_rd_overutilized(this_rq()->rd)) {
8652 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8653 			if (new_cpu >= 0)
8654 				return new_cpu;
8655 			new_cpu = prev_cpu;
8656 		}
8657 
8658 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8659 	}
8660 
8661 	rcu_read_lock();
8662 	for_each_domain(cpu, tmp) {
8663 		/*
8664 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8665 		 * cpu is a valid SD_WAKE_AFFINE target.
8666 		 */
8667 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8668 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8669 			if (cpu != prev_cpu)
8670 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8671 
8672 			sd = NULL; /* Prefer wake_affine over balance flags */
8673 			break;
8674 		}
8675 
8676 		/*
8677 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8678 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8679 		 * will usually go to the fast path.
8680 		 */
8681 		if (tmp->flags & sd_flag)
8682 			sd = tmp;
8683 		else if (!want_affine)
8684 			break;
8685 	}
8686 
8687 	if (unlikely(sd)) {
8688 		/* Slow path */
8689 		new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8690 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8691 		/* Fast path */
8692 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8693 	}
8694 	rcu_read_unlock();
8695 
8696 	return new_cpu;
8697 }
8698 
8699 /*
8700  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8701  * cfs_rq_of(p) references at time of call are still valid and identify the
8702  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8703  */
8704 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8705 {
8706 	struct sched_entity *se = &p->se;
8707 
8708 	if (!task_on_rq_migrating(p)) {
8709 		remove_entity_load_avg(se);
8710 
8711 		/*
8712 		 * Here, the task's PELT values have been updated according to
8713 		 * the current rq's clock. But if that clock hasn't been
8714 		 * updated in a while, a substantial idle time will be missed,
8715 		 * leading to an inflation after wake-up on the new rq.
8716 		 *
8717 		 * Estimate the missing time from the cfs_rq last_update_time
8718 		 * and update sched_avg to improve the PELT continuity after
8719 		 * migration.
8720 		 */
8721 		migrate_se_pelt_lag(se);
8722 	}
8723 
8724 	/* Tell new CPU we are migrated */
8725 	se->avg.last_update_time = 0;
8726 
8727 	update_scan_period(p, new_cpu);
8728 }
8729 
8730 static void task_dead_fair(struct task_struct *p)
8731 {
8732 	struct sched_entity *se = &p->se;
8733 
8734 	if (se->sched_delayed) {
8735 		struct rq_flags rf;
8736 		struct rq *rq;
8737 
8738 		rq = task_rq_lock(p, &rf);
8739 		if (se->sched_delayed) {
8740 			update_rq_clock(rq);
8741 			dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8742 		}
8743 		task_rq_unlock(rq, p, &rf);
8744 	}
8745 
8746 	remove_entity_load_avg(se);
8747 }
8748 
8749 /*
8750  * Set the max capacity the task is allowed to run at for misfit detection.
8751  */
8752 static void set_task_max_allowed_capacity(struct task_struct *p)
8753 {
8754 	struct asym_cap_data *entry;
8755 
8756 	if (!sched_asym_cpucap_active())
8757 		return;
8758 
8759 	rcu_read_lock();
8760 	list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8761 		cpumask_t *cpumask;
8762 
8763 		cpumask = cpu_capacity_span(entry);
8764 		if (!cpumask_intersects(p->cpus_ptr, cpumask))
8765 			continue;
8766 
8767 		p->max_allowed_capacity = entry->capacity;
8768 		break;
8769 	}
8770 	rcu_read_unlock();
8771 }
8772 
8773 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8774 {
8775 	set_cpus_allowed_common(p, ctx);
8776 	set_task_max_allowed_capacity(p);
8777 }
8778 
8779 static int
8780 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8781 {
8782 	if (sched_fair_runnable(rq))
8783 		return 1;
8784 
8785 	return sched_balance_newidle(rq, rf) != 0;
8786 }
8787 #else
8788 static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
8789 #endif /* CONFIG_SMP */
8790 
8791 static void set_next_buddy(struct sched_entity *se)
8792 {
8793 	for_each_sched_entity(se) {
8794 		if (SCHED_WARN_ON(!se->on_rq))
8795 			return;
8796 		if (se_is_idle(se))
8797 			return;
8798 		cfs_rq_of(se)->next = se;
8799 	}
8800 }
8801 
8802 /*
8803  * Preempt the current task with a newly woken task if needed:
8804  */
8805 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8806 {
8807 	struct task_struct *donor = rq->donor;
8808 	struct sched_entity *se = &donor->se, *pse = &p->se;
8809 	struct cfs_rq *cfs_rq = task_cfs_rq(donor);
8810 	int cse_is_idle, pse_is_idle;
8811 
8812 	if (unlikely(se == pse))
8813 		return;
8814 
8815 	/*
8816 	 * This is possible from callers such as attach_tasks(), in which we
8817 	 * unconditionally wakeup_preempt() after an enqueue (which may have
8818 	 * lead to a throttle).  This both saves work and prevents false
8819 	 * next-buddy nomination below.
8820 	 */
8821 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8822 		return;
8823 
8824 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) {
8825 		set_next_buddy(pse);
8826 	}
8827 
8828 	/*
8829 	 * We can come here with TIF_NEED_RESCHED already set from new task
8830 	 * wake up path.
8831 	 *
8832 	 * Note: this also catches the edge-case of curr being in a throttled
8833 	 * group (e.g. via set_curr_task), since update_curr() (in the
8834 	 * enqueue of curr) will have resulted in resched being set.  This
8835 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8836 	 * below.
8837 	 */
8838 	if (test_tsk_need_resched(rq->curr))
8839 		return;
8840 
8841 	if (!sched_feat(WAKEUP_PREEMPTION))
8842 		return;
8843 
8844 	find_matching_se(&se, &pse);
8845 	WARN_ON_ONCE(!pse);
8846 
8847 	cse_is_idle = se_is_idle(se);
8848 	pse_is_idle = se_is_idle(pse);
8849 
8850 	/*
8851 	 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8852 	 * in the inverse case).
8853 	 */
8854 	if (cse_is_idle && !pse_is_idle)
8855 		goto preempt;
8856 	if (cse_is_idle != pse_is_idle)
8857 		return;
8858 
8859 	/*
8860 	 * BATCH and IDLE tasks do not preempt others.
8861 	 */
8862 	if (unlikely(!normal_policy(p->policy)))
8863 		return;
8864 
8865 	cfs_rq = cfs_rq_of(se);
8866 	update_curr(cfs_rq);
8867 	/*
8868 	 * If @p has a shorter slice than current and @p is eligible, override
8869 	 * current's slice protection in order to allow preemption.
8870 	 *
8871 	 * Note that even if @p does not turn out to be the most eligible
8872 	 * task at this moment, current's slice protection will be lost.
8873 	 */
8874 	if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline)
8875 		se->vlag = se->deadline + 1;
8876 
8877 	/*
8878 	 * If @p has become the most eligible task, force preemption.
8879 	 */
8880 	if (pick_eevdf(cfs_rq) == pse)
8881 		goto preempt;
8882 
8883 	return;
8884 
8885 preempt:
8886 	resched_curr_lazy(rq);
8887 }
8888 
8889 static struct task_struct *pick_task_fair(struct rq *rq)
8890 {
8891 	struct sched_entity *se;
8892 	struct cfs_rq *cfs_rq;
8893 
8894 again:
8895 	cfs_rq = &rq->cfs;
8896 	if (!cfs_rq->nr_running)
8897 		return NULL;
8898 
8899 	do {
8900 		/* Might not have done put_prev_entity() */
8901 		if (cfs_rq->curr && cfs_rq->curr->on_rq)
8902 			update_curr(cfs_rq);
8903 
8904 		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8905 			goto again;
8906 
8907 		se = pick_next_entity(rq, cfs_rq);
8908 		if (!se)
8909 			goto again;
8910 		cfs_rq = group_cfs_rq(se);
8911 	} while (cfs_rq);
8912 
8913 	return task_of(se);
8914 }
8915 
8916 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8917 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8918 
8919 struct task_struct *
8920 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8921 {
8922 	struct sched_entity *se;
8923 	struct task_struct *p;
8924 	int new_tasks;
8925 
8926 again:
8927 	p = pick_task_fair(rq);
8928 	if (!p)
8929 		goto idle;
8930 	se = &p->se;
8931 
8932 #ifdef CONFIG_FAIR_GROUP_SCHED
8933 	if (prev->sched_class != &fair_sched_class)
8934 		goto simple;
8935 
8936 	__put_prev_set_next_dl_server(rq, prev, p);
8937 
8938 	/*
8939 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8940 	 * likely that a next task is from the same cgroup as the current.
8941 	 *
8942 	 * Therefore attempt to avoid putting and setting the entire cgroup
8943 	 * hierarchy, only change the part that actually changes.
8944 	 *
8945 	 * Since we haven't yet done put_prev_entity and if the selected task
8946 	 * is a different task than we started out with, try and touch the
8947 	 * least amount of cfs_rqs.
8948 	 */
8949 	if (prev != p) {
8950 		struct sched_entity *pse = &prev->se;
8951 		struct cfs_rq *cfs_rq;
8952 
8953 		while (!(cfs_rq = is_same_group(se, pse))) {
8954 			int se_depth = se->depth;
8955 			int pse_depth = pse->depth;
8956 
8957 			if (se_depth <= pse_depth) {
8958 				put_prev_entity(cfs_rq_of(pse), pse);
8959 				pse = parent_entity(pse);
8960 			}
8961 			if (se_depth >= pse_depth) {
8962 				set_next_entity(cfs_rq_of(se), se);
8963 				se = parent_entity(se);
8964 			}
8965 		}
8966 
8967 		put_prev_entity(cfs_rq, pse);
8968 		set_next_entity(cfs_rq, se);
8969 
8970 		__set_next_task_fair(rq, p, true);
8971 	}
8972 
8973 	return p;
8974 
8975 simple:
8976 #endif
8977 	put_prev_set_next_task(rq, prev, p);
8978 	return p;
8979 
8980 idle:
8981 	if (!rf)
8982 		return NULL;
8983 
8984 	new_tasks = sched_balance_newidle(rq, rf);
8985 
8986 	/*
8987 	 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8988 	 * possible for any higher priority task to appear. In that case we
8989 	 * must re-start the pick_next_entity() loop.
8990 	 */
8991 	if (new_tasks < 0)
8992 		return RETRY_TASK;
8993 
8994 	if (new_tasks > 0)
8995 		goto again;
8996 
8997 	/*
8998 	 * rq is about to be idle, check if we need to update the
8999 	 * lost_idle_time of clock_pelt
9000 	 */
9001 	update_idle_rq_clock_pelt(rq);
9002 
9003 	return NULL;
9004 }
9005 
9006 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
9007 {
9008 	return pick_next_task_fair(rq, prev, NULL);
9009 }
9010 
9011 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se)
9012 {
9013 	return !!dl_se->rq->cfs.nr_running;
9014 }
9015 
9016 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
9017 {
9018 	return pick_task_fair(dl_se->rq);
9019 }
9020 
9021 void fair_server_init(struct rq *rq)
9022 {
9023 	struct sched_dl_entity *dl_se = &rq->fair_server;
9024 
9025 	init_dl_entity(dl_se);
9026 
9027 	dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task);
9028 }
9029 
9030 /*
9031  * Account for a descheduled task:
9032  */
9033 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
9034 {
9035 	struct sched_entity *se = &prev->se;
9036 	struct cfs_rq *cfs_rq;
9037 
9038 	for_each_sched_entity(se) {
9039 		cfs_rq = cfs_rq_of(se);
9040 		put_prev_entity(cfs_rq, se);
9041 	}
9042 }
9043 
9044 /*
9045  * sched_yield() is very simple
9046  */
9047 static void yield_task_fair(struct rq *rq)
9048 {
9049 	struct task_struct *curr = rq->curr;
9050 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
9051 	struct sched_entity *se = &curr->se;
9052 
9053 	/*
9054 	 * Are we the only task in the tree?
9055 	 */
9056 	if (unlikely(rq->nr_running == 1))
9057 		return;
9058 
9059 	clear_buddies(cfs_rq, se);
9060 
9061 	update_rq_clock(rq);
9062 	/*
9063 	 * Update run-time statistics of the 'current'.
9064 	 */
9065 	update_curr(cfs_rq);
9066 	/*
9067 	 * Tell update_rq_clock() that we've just updated,
9068 	 * so we don't do microscopic update in schedule()
9069 	 * and double the fastpath cost.
9070 	 */
9071 	rq_clock_skip_update(rq);
9072 
9073 	se->deadline += calc_delta_fair(se->slice, se);
9074 }
9075 
9076 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
9077 {
9078 	struct sched_entity *se = &p->se;
9079 
9080 	/* throttled hierarchies are not runnable */
9081 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
9082 		return false;
9083 
9084 	/* Tell the scheduler that we'd really like se to run next. */
9085 	set_next_buddy(se);
9086 
9087 	yield_task_fair(rq);
9088 
9089 	return true;
9090 }
9091 
9092 #ifdef CONFIG_SMP
9093 /**************************************************
9094  * Fair scheduling class load-balancing methods.
9095  *
9096  * BASICS
9097  *
9098  * The purpose of load-balancing is to achieve the same basic fairness the
9099  * per-CPU scheduler provides, namely provide a proportional amount of compute
9100  * time to each task. This is expressed in the following equation:
9101  *
9102  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
9103  *
9104  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
9105  * W_i,0 is defined as:
9106  *
9107  *   W_i,0 = \Sum_j w_i,j                                             (2)
9108  *
9109  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
9110  * is derived from the nice value as per sched_prio_to_weight[].
9111  *
9112  * The weight average is an exponential decay average of the instantaneous
9113  * weight:
9114  *
9115  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
9116  *
9117  * C_i is the compute capacity of CPU i, typically it is the
9118  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
9119  * can also include other factors [XXX].
9120  *
9121  * To achieve this balance we define a measure of imbalance which follows
9122  * directly from (1):
9123  *
9124  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
9125  *
9126  * We them move tasks around to minimize the imbalance. In the continuous
9127  * function space it is obvious this converges, in the discrete case we get
9128  * a few fun cases generally called infeasible weight scenarios.
9129  *
9130  * [XXX expand on:
9131  *     - infeasible weights;
9132  *     - local vs global optima in the discrete case. ]
9133  *
9134  *
9135  * SCHED DOMAINS
9136  *
9137  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
9138  * for all i,j solution, we create a tree of CPUs that follows the hardware
9139  * topology where each level pairs two lower groups (or better). This results
9140  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
9141  * tree to only the first of the previous level and we decrease the frequency
9142  * of load-balance at each level inversely proportional to the number of CPUs in
9143  * the groups.
9144  *
9145  * This yields:
9146  *
9147  *     log_2 n     1     n
9148  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
9149  *     i = 0      2^i   2^i
9150  *                               `- size of each group
9151  *         |         |     `- number of CPUs doing load-balance
9152  *         |         `- freq
9153  *         `- sum over all levels
9154  *
9155  * Coupled with a limit on how many tasks we can migrate every balance pass,
9156  * this makes (5) the runtime complexity of the balancer.
9157  *
9158  * An important property here is that each CPU is still (indirectly) connected
9159  * to every other CPU in at most O(log n) steps:
9160  *
9161  * The adjacency matrix of the resulting graph is given by:
9162  *
9163  *             log_2 n
9164  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
9165  *             k = 0
9166  *
9167  * And you'll find that:
9168  *
9169  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
9170  *
9171  * Showing there's indeed a path between every CPU in at most O(log n) steps.
9172  * The task movement gives a factor of O(m), giving a convergence complexity
9173  * of:
9174  *
9175  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
9176  *
9177  *
9178  * WORK CONSERVING
9179  *
9180  * In order to avoid CPUs going idle while there's still work to do, new idle
9181  * balancing is more aggressive and has the newly idle CPU iterate up the domain
9182  * tree itself instead of relying on other CPUs to bring it work.
9183  *
9184  * This adds some complexity to both (5) and (8) but it reduces the total idle
9185  * time.
9186  *
9187  * [XXX more?]
9188  *
9189  *
9190  * CGROUPS
9191  *
9192  * Cgroups make a horror show out of (2), instead of a simple sum we get:
9193  *
9194  *                                s_k,i
9195  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
9196  *                                 S_k
9197  *
9198  * Where
9199  *
9200  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
9201  *
9202  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9203  *
9204  * The big problem is S_k, its a global sum needed to compute a local (W_i)
9205  * property.
9206  *
9207  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9208  *      rewrite all of this once again.]
9209  */
9210 
9211 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9212 
9213 enum fbq_type { regular, remote, all };
9214 
9215 /*
9216  * 'group_type' describes the group of CPUs at the moment of load balancing.
9217  *
9218  * The enum is ordered by pulling priority, with the group with lowest priority
9219  * first so the group_type can simply be compared when selecting the busiest
9220  * group. See update_sd_pick_busiest().
9221  */
9222 enum group_type {
9223 	/* The group has spare capacity that can be used to run more tasks.  */
9224 	group_has_spare = 0,
9225 	/*
9226 	 * The group is fully used and the tasks don't compete for more CPU
9227 	 * cycles. Nevertheless, some tasks might wait before running.
9228 	 */
9229 	group_fully_busy,
9230 	/*
9231 	 * One task doesn't fit with CPU's capacity and must be migrated to a
9232 	 * more powerful CPU.
9233 	 */
9234 	group_misfit_task,
9235 	/*
9236 	 * Balance SMT group that's fully busy. Can benefit from migration
9237 	 * a task on SMT with busy sibling to another CPU on idle core.
9238 	 */
9239 	group_smt_balance,
9240 	/*
9241 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9242 	 * and the task should be migrated to it instead of running on the
9243 	 * current CPU.
9244 	 */
9245 	group_asym_packing,
9246 	/*
9247 	 * The tasks' affinity constraints previously prevented the scheduler
9248 	 * from balancing the load across the system.
9249 	 */
9250 	group_imbalanced,
9251 	/*
9252 	 * The CPU is overloaded and can't provide expected CPU cycles to all
9253 	 * tasks.
9254 	 */
9255 	group_overloaded
9256 };
9257 
9258 enum migration_type {
9259 	migrate_load = 0,
9260 	migrate_util,
9261 	migrate_task,
9262 	migrate_misfit
9263 };
9264 
9265 #define LBF_ALL_PINNED	0x01
9266 #define LBF_NEED_BREAK	0x02
9267 #define LBF_DST_PINNED  0x04
9268 #define LBF_SOME_PINNED	0x08
9269 #define LBF_ACTIVE_LB	0x10
9270 
9271 struct lb_env {
9272 	struct sched_domain	*sd;
9273 
9274 	struct rq		*src_rq;
9275 	int			src_cpu;
9276 
9277 	int			dst_cpu;
9278 	struct rq		*dst_rq;
9279 
9280 	struct cpumask		*dst_grpmask;
9281 	int			new_dst_cpu;
9282 	enum cpu_idle_type	idle;
9283 	long			imbalance;
9284 	/* The set of CPUs under consideration for load-balancing */
9285 	struct cpumask		*cpus;
9286 
9287 	unsigned int		flags;
9288 
9289 	unsigned int		loop;
9290 	unsigned int		loop_break;
9291 	unsigned int		loop_max;
9292 
9293 	enum fbq_type		fbq_type;
9294 	enum migration_type	migration_type;
9295 	struct list_head	tasks;
9296 };
9297 
9298 /*
9299  * Is this task likely cache-hot:
9300  */
9301 static int task_hot(struct task_struct *p, struct lb_env *env)
9302 {
9303 	s64 delta;
9304 
9305 	lockdep_assert_rq_held(env->src_rq);
9306 
9307 	if (p->sched_class != &fair_sched_class)
9308 		return 0;
9309 
9310 	if (unlikely(task_has_idle_policy(p)))
9311 		return 0;
9312 
9313 	/* SMT siblings share cache */
9314 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9315 		return 0;
9316 
9317 	/*
9318 	 * Buddy candidates are cache hot:
9319 	 */
9320 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9321 	    (&p->se == cfs_rq_of(&p->se)->next))
9322 		return 1;
9323 
9324 	if (sysctl_sched_migration_cost == -1)
9325 		return 1;
9326 
9327 	/*
9328 	 * Don't migrate task if the task's cookie does not match
9329 	 * with the destination CPU's core cookie.
9330 	 */
9331 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9332 		return 1;
9333 
9334 	if (sysctl_sched_migration_cost == 0)
9335 		return 0;
9336 
9337 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9338 
9339 	return delta < (s64)sysctl_sched_migration_cost;
9340 }
9341 
9342 #ifdef CONFIG_NUMA_BALANCING
9343 /*
9344  * Returns 1, if task migration degrades locality
9345  * Returns 0, if task migration improves locality i.e migration preferred.
9346  * Returns -1, if task migration is not affected by locality.
9347  */
9348 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9349 {
9350 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
9351 	unsigned long src_weight, dst_weight;
9352 	int src_nid, dst_nid, dist;
9353 
9354 	if (!static_branch_likely(&sched_numa_balancing))
9355 		return -1;
9356 
9357 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9358 		return -1;
9359 
9360 	src_nid = cpu_to_node(env->src_cpu);
9361 	dst_nid = cpu_to_node(env->dst_cpu);
9362 
9363 	if (src_nid == dst_nid)
9364 		return -1;
9365 
9366 	/* Migrating away from the preferred node is always bad. */
9367 	if (src_nid == p->numa_preferred_nid) {
9368 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9369 			return 1;
9370 		else
9371 			return -1;
9372 	}
9373 
9374 	/* Encourage migration to the preferred node. */
9375 	if (dst_nid == p->numa_preferred_nid)
9376 		return 0;
9377 
9378 	/* Leaving a core idle is often worse than degrading locality. */
9379 	if (env->idle == CPU_IDLE)
9380 		return -1;
9381 
9382 	dist = node_distance(src_nid, dst_nid);
9383 	if (numa_group) {
9384 		src_weight = group_weight(p, src_nid, dist);
9385 		dst_weight = group_weight(p, dst_nid, dist);
9386 	} else {
9387 		src_weight = task_weight(p, src_nid, dist);
9388 		dst_weight = task_weight(p, dst_nid, dist);
9389 	}
9390 
9391 	return dst_weight < src_weight;
9392 }
9393 
9394 #else
9395 static inline int migrate_degrades_locality(struct task_struct *p,
9396 					     struct lb_env *env)
9397 {
9398 	return -1;
9399 }
9400 #endif
9401 
9402 /*
9403  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9404  */
9405 static
9406 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9407 {
9408 	int tsk_cache_hot;
9409 
9410 	lockdep_assert_rq_held(env->src_rq);
9411 
9412 	/*
9413 	 * We do not migrate tasks that are:
9414 	 * 1) throttled_lb_pair, or
9415 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
9416 	 * 3) running (obviously), or
9417 	 * 4) are cache-hot on their current CPU.
9418 	 */
9419 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
9420 		return 0;
9421 
9422 	/* Disregard percpu kthreads; they are where they need to be. */
9423 	if (kthread_is_per_cpu(p))
9424 		return 0;
9425 
9426 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9427 		int cpu;
9428 
9429 		schedstat_inc(p->stats.nr_failed_migrations_affine);
9430 
9431 		env->flags |= LBF_SOME_PINNED;
9432 
9433 		/*
9434 		 * Remember if this task can be migrated to any other CPU in
9435 		 * our sched_group. We may want to revisit it if we couldn't
9436 		 * meet load balance goals by pulling other tasks on src_cpu.
9437 		 *
9438 		 * Avoid computing new_dst_cpu
9439 		 * - for NEWLY_IDLE
9440 		 * - if we have already computed one in current iteration
9441 		 * - if it's an active balance
9442 		 */
9443 		if (env->idle == CPU_NEWLY_IDLE ||
9444 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9445 			return 0;
9446 
9447 		/* Prevent to re-select dst_cpu via env's CPUs: */
9448 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
9449 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
9450 				env->flags |= LBF_DST_PINNED;
9451 				env->new_dst_cpu = cpu;
9452 				break;
9453 			}
9454 		}
9455 
9456 		return 0;
9457 	}
9458 
9459 	/* Record that we found at least one task that could run on dst_cpu */
9460 	env->flags &= ~LBF_ALL_PINNED;
9461 
9462 	if (task_on_cpu(env->src_rq, p)) {
9463 		schedstat_inc(p->stats.nr_failed_migrations_running);
9464 		return 0;
9465 	}
9466 
9467 	/*
9468 	 * Aggressive migration if:
9469 	 * 1) active balance
9470 	 * 2) destination numa is preferred
9471 	 * 3) task is cache cold, or
9472 	 * 4) too many balance attempts have failed.
9473 	 */
9474 	if (env->flags & LBF_ACTIVE_LB)
9475 		return 1;
9476 
9477 	tsk_cache_hot = migrate_degrades_locality(p, env);
9478 	if (tsk_cache_hot == -1)
9479 		tsk_cache_hot = task_hot(p, env);
9480 
9481 	if (tsk_cache_hot <= 0 ||
9482 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9483 		if (tsk_cache_hot == 1) {
9484 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9485 			schedstat_inc(p->stats.nr_forced_migrations);
9486 		}
9487 		return 1;
9488 	}
9489 
9490 	schedstat_inc(p->stats.nr_failed_migrations_hot);
9491 	return 0;
9492 }
9493 
9494 /*
9495  * detach_task() -- detach the task for the migration specified in env
9496  */
9497 static void detach_task(struct task_struct *p, struct lb_env *env)
9498 {
9499 	lockdep_assert_rq_held(env->src_rq);
9500 
9501 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9502 	set_task_cpu(p, env->dst_cpu);
9503 }
9504 
9505 /*
9506  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9507  * part of active balancing operations within "domain".
9508  *
9509  * Returns a task if successful and NULL otherwise.
9510  */
9511 static struct task_struct *detach_one_task(struct lb_env *env)
9512 {
9513 	struct task_struct *p;
9514 
9515 	lockdep_assert_rq_held(env->src_rq);
9516 
9517 	list_for_each_entry_reverse(p,
9518 			&env->src_rq->cfs_tasks, se.group_node) {
9519 		if (!can_migrate_task(p, env))
9520 			continue;
9521 
9522 		detach_task(p, env);
9523 
9524 		/*
9525 		 * Right now, this is only the second place where
9526 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9527 		 * so we can safely collect stats here rather than
9528 		 * inside detach_tasks().
9529 		 */
9530 		schedstat_inc(env->sd->lb_gained[env->idle]);
9531 		return p;
9532 	}
9533 	return NULL;
9534 }
9535 
9536 /*
9537  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9538  * busiest_rq, as part of a balancing operation within domain "sd".
9539  *
9540  * Returns number of detached tasks if successful and 0 otherwise.
9541  */
9542 static int detach_tasks(struct lb_env *env)
9543 {
9544 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9545 	unsigned long util, load;
9546 	struct task_struct *p;
9547 	int detached = 0;
9548 
9549 	lockdep_assert_rq_held(env->src_rq);
9550 
9551 	/*
9552 	 * Source run queue has been emptied by another CPU, clear
9553 	 * LBF_ALL_PINNED flag as we will not test any task.
9554 	 */
9555 	if (env->src_rq->nr_running <= 1) {
9556 		env->flags &= ~LBF_ALL_PINNED;
9557 		return 0;
9558 	}
9559 
9560 	if (env->imbalance <= 0)
9561 		return 0;
9562 
9563 	while (!list_empty(tasks)) {
9564 		/*
9565 		 * We don't want to steal all, otherwise we may be treated likewise,
9566 		 * which could at worst lead to a livelock crash.
9567 		 */
9568 		if (env->idle && env->src_rq->nr_running <= 1)
9569 			break;
9570 
9571 		env->loop++;
9572 		/* We've more or less seen every task there is, call it quits */
9573 		if (env->loop > env->loop_max)
9574 			break;
9575 
9576 		/* take a breather every nr_migrate tasks */
9577 		if (env->loop > env->loop_break) {
9578 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9579 			env->flags |= LBF_NEED_BREAK;
9580 			break;
9581 		}
9582 
9583 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9584 
9585 		if (!can_migrate_task(p, env))
9586 			goto next;
9587 
9588 		switch (env->migration_type) {
9589 		case migrate_load:
9590 			/*
9591 			 * Depending of the number of CPUs and tasks and the
9592 			 * cgroup hierarchy, task_h_load() can return a null
9593 			 * value. Make sure that env->imbalance decreases
9594 			 * otherwise detach_tasks() will stop only after
9595 			 * detaching up to loop_max tasks.
9596 			 */
9597 			load = max_t(unsigned long, task_h_load(p), 1);
9598 
9599 			if (sched_feat(LB_MIN) &&
9600 			    load < 16 && !env->sd->nr_balance_failed)
9601 				goto next;
9602 
9603 			/*
9604 			 * Make sure that we don't migrate too much load.
9605 			 * Nevertheless, let relax the constraint if
9606 			 * scheduler fails to find a good waiting task to
9607 			 * migrate.
9608 			 */
9609 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9610 				goto next;
9611 
9612 			env->imbalance -= load;
9613 			break;
9614 
9615 		case migrate_util:
9616 			util = task_util_est(p);
9617 
9618 			if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9619 				goto next;
9620 
9621 			env->imbalance -= util;
9622 			break;
9623 
9624 		case migrate_task:
9625 			env->imbalance--;
9626 			break;
9627 
9628 		case migrate_misfit:
9629 			/* This is not a misfit task */
9630 			if (task_fits_cpu(p, env->src_cpu))
9631 				goto next;
9632 
9633 			env->imbalance = 0;
9634 			break;
9635 		}
9636 
9637 		detach_task(p, env);
9638 		list_add(&p->se.group_node, &env->tasks);
9639 
9640 		detached++;
9641 
9642 #ifdef CONFIG_PREEMPTION
9643 		/*
9644 		 * NEWIDLE balancing is a source of latency, so preemptible
9645 		 * kernels will stop after the first task is detached to minimize
9646 		 * the critical section.
9647 		 */
9648 		if (env->idle == CPU_NEWLY_IDLE)
9649 			break;
9650 #endif
9651 
9652 		/*
9653 		 * We only want to steal up to the prescribed amount of
9654 		 * load/util/tasks.
9655 		 */
9656 		if (env->imbalance <= 0)
9657 			break;
9658 
9659 		continue;
9660 next:
9661 		list_move(&p->se.group_node, tasks);
9662 	}
9663 
9664 	/*
9665 	 * Right now, this is one of only two places we collect this stat
9666 	 * so we can safely collect detach_one_task() stats here rather
9667 	 * than inside detach_one_task().
9668 	 */
9669 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9670 
9671 	return detached;
9672 }
9673 
9674 /*
9675  * attach_task() -- attach the task detached by detach_task() to its new rq.
9676  */
9677 static void attach_task(struct rq *rq, struct task_struct *p)
9678 {
9679 	lockdep_assert_rq_held(rq);
9680 
9681 	WARN_ON_ONCE(task_rq(p) != rq);
9682 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9683 	wakeup_preempt(rq, p, 0);
9684 }
9685 
9686 /*
9687  * attach_one_task() -- attaches the task returned from detach_one_task() to
9688  * its new rq.
9689  */
9690 static void attach_one_task(struct rq *rq, struct task_struct *p)
9691 {
9692 	struct rq_flags rf;
9693 
9694 	rq_lock(rq, &rf);
9695 	update_rq_clock(rq);
9696 	attach_task(rq, p);
9697 	rq_unlock(rq, &rf);
9698 }
9699 
9700 /*
9701  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9702  * new rq.
9703  */
9704 static void attach_tasks(struct lb_env *env)
9705 {
9706 	struct list_head *tasks = &env->tasks;
9707 	struct task_struct *p;
9708 	struct rq_flags rf;
9709 
9710 	rq_lock(env->dst_rq, &rf);
9711 	update_rq_clock(env->dst_rq);
9712 
9713 	while (!list_empty(tasks)) {
9714 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9715 		list_del_init(&p->se.group_node);
9716 
9717 		attach_task(env->dst_rq, p);
9718 	}
9719 
9720 	rq_unlock(env->dst_rq, &rf);
9721 }
9722 
9723 #ifdef CONFIG_NO_HZ_COMMON
9724 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9725 {
9726 	if (cfs_rq->avg.load_avg)
9727 		return true;
9728 
9729 	if (cfs_rq->avg.util_avg)
9730 		return true;
9731 
9732 	return false;
9733 }
9734 
9735 static inline bool others_have_blocked(struct rq *rq)
9736 {
9737 	if (cpu_util_rt(rq))
9738 		return true;
9739 
9740 	if (cpu_util_dl(rq))
9741 		return true;
9742 
9743 	if (hw_load_avg(rq))
9744 		return true;
9745 
9746 	if (cpu_util_irq(rq))
9747 		return true;
9748 
9749 	return false;
9750 }
9751 
9752 static inline void update_blocked_load_tick(struct rq *rq)
9753 {
9754 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9755 }
9756 
9757 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9758 {
9759 	if (!has_blocked)
9760 		rq->has_blocked_load = 0;
9761 }
9762 #else
9763 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9764 static inline bool others_have_blocked(struct rq *rq) { return false; }
9765 static inline void update_blocked_load_tick(struct rq *rq) {}
9766 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9767 #endif
9768 
9769 static bool __update_blocked_others(struct rq *rq, bool *done)
9770 {
9771 	bool updated;
9772 
9773 	/*
9774 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9775 	 * DL and IRQ signals have been updated before updating CFS.
9776 	 */
9777 	updated = update_other_load_avgs(rq);
9778 
9779 	if (others_have_blocked(rq))
9780 		*done = false;
9781 
9782 	return updated;
9783 }
9784 
9785 #ifdef CONFIG_FAIR_GROUP_SCHED
9786 
9787 static bool __update_blocked_fair(struct rq *rq, bool *done)
9788 {
9789 	struct cfs_rq *cfs_rq, *pos;
9790 	bool decayed = false;
9791 	int cpu = cpu_of(rq);
9792 
9793 	/*
9794 	 * Iterates the task_group tree in a bottom up fashion, see
9795 	 * list_add_leaf_cfs_rq() for details.
9796 	 */
9797 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9798 		struct sched_entity *se;
9799 
9800 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9801 			update_tg_load_avg(cfs_rq);
9802 
9803 			if (cfs_rq->nr_running == 0)
9804 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9805 
9806 			if (cfs_rq == &rq->cfs)
9807 				decayed = true;
9808 		}
9809 
9810 		/* Propagate pending load changes to the parent, if any: */
9811 		se = cfs_rq->tg->se[cpu];
9812 		if (se && !skip_blocked_update(se))
9813 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9814 
9815 		/*
9816 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9817 		 * decayed cfs_rqs linger on the list.
9818 		 */
9819 		if (cfs_rq_is_decayed(cfs_rq))
9820 			list_del_leaf_cfs_rq(cfs_rq);
9821 
9822 		/* Don't need periodic decay once load/util_avg are null */
9823 		if (cfs_rq_has_blocked(cfs_rq))
9824 			*done = false;
9825 	}
9826 
9827 	return decayed;
9828 }
9829 
9830 /*
9831  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9832  * This needs to be done in a top-down fashion because the load of a child
9833  * group is a fraction of its parents load.
9834  */
9835 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9836 {
9837 	struct rq *rq = rq_of(cfs_rq);
9838 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9839 	unsigned long now = jiffies;
9840 	unsigned long load;
9841 
9842 	if (cfs_rq->last_h_load_update == now)
9843 		return;
9844 
9845 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9846 	for_each_sched_entity(se) {
9847 		cfs_rq = cfs_rq_of(se);
9848 		WRITE_ONCE(cfs_rq->h_load_next, se);
9849 		if (cfs_rq->last_h_load_update == now)
9850 			break;
9851 	}
9852 
9853 	if (!se) {
9854 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9855 		cfs_rq->last_h_load_update = now;
9856 	}
9857 
9858 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9859 		load = cfs_rq->h_load;
9860 		load = div64_ul(load * se->avg.load_avg,
9861 			cfs_rq_load_avg(cfs_rq) + 1);
9862 		cfs_rq = group_cfs_rq(se);
9863 		cfs_rq->h_load = load;
9864 		cfs_rq->last_h_load_update = now;
9865 	}
9866 }
9867 
9868 static unsigned long task_h_load(struct task_struct *p)
9869 {
9870 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9871 
9872 	update_cfs_rq_h_load(cfs_rq);
9873 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9874 			cfs_rq_load_avg(cfs_rq) + 1);
9875 }
9876 #else
9877 static bool __update_blocked_fair(struct rq *rq, bool *done)
9878 {
9879 	struct cfs_rq *cfs_rq = &rq->cfs;
9880 	bool decayed;
9881 
9882 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9883 	if (cfs_rq_has_blocked(cfs_rq))
9884 		*done = false;
9885 
9886 	return decayed;
9887 }
9888 
9889 static unsigned long task_h_load(struct task_struct *p)
9890 {
9891 	return p->se.avg.load_avg;
9892 }
9893 #endif
9894 
9895 static void sched_balance_update_blocked_averages(int cpu)
9896 {
9897 	bool decayed = false, done = true;
9898 	struct rq *rq = cpu_rq(cpu);
9899 	struct rq_flags rf;
9900 
9901 	rq_lock_irqsave(rq, &rf);
9902 	update_blocked_load_tick(rq);
9903 	update_rq_clock(rq);
9904 
9905 	decayed |= __update_blocked_others(rq, &done);
9906 	decayed |= __update_blocked_fair(rq, &done);
9907 
9908 	update_blocked_load_status(rq, !done);
9909 	if (decayed)
9910 		cpufreq_update_util(rq, 0);
9911 	rq_unlock_irqrestore(rq, &rf);
9912 }
9913 
9914 /********** Helpers for sched_balance_find_src_group ************************/
9915 
9916 /*
9917  * sg_lb_stats - stats of a sched_group required for load-balancing:
9918  */
9919 struct sg_lb_stats {
9920 	unsigned long avg_load;			/* Avg load            over the CPUs of the group */
9921 	unsigned long group_load;		/* Total load          over the CPUs of the group */
9922 	unsigned long group_capacity;		/* Capacity            over the CPUs of the group */
9923 	unsigned long group_util;		/* Total utilization   over the CPUs of the group */
9924 	unsigned long group_runnable;		/* Total runnable time over the CPUs of the group */
9925 	unsigned int sum_nr_running;		/* Nr of all tasks running in the group */
9926 	unsigned int sum_h_nr_running;		/* Nr of CFS tasks running in the group */
9927 	unsigned int idle_cpus;                 /* Nr of idle CPUs         in the group */
9928 	unsigned int group_weight;
9929 	enum group_type group_type;
9930 	unsigned int group_asym_packing;	/* Tasks should be moved to preferred CPU */
9931 	unsigned int group_smt_balance;		/* Task on busy SMT be moved */
9932 	unsigned long group_misfit_task_load;	/* A CPU has a task too big for its capacity */
9933 #ifdef CONFIG_NUMA_BALANCING
9934 	unsigned int nr_numa_running;
9935 	unsigned int nr_preferred_running;
9936 #endif
9937 };
9938 
9939 /*
9940  * sd_lb_stats - stats of a sched_domain required for load-balancing:
9941  */
9942 struct sd_lb_stats {
9943 	struct sched_group *busiest;		/* Busiest group in this sd */
9944 	struct sched_group *local;		/* Local group in this sd */
9945 	unsigned long total_load;		/* Total load of all groups in sd */
9946 	unsigned long total_capacity;		/* Total capacity of all groups in sd */
9947 	unsigned long avg_load;			/* Average load across all groups in sd */
9948 	unsigned int prefer_sibling;		/* Tasks should go to sibling first */
9949 
9950 	struct sg_lb_stats busiest_stat;	/* Statistics of the busiest group */
9951 	struct sg_lb_stats local_stat;		/* Statistics of the local group */
9952 };
9953 
9954 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9955 {
9956 	/*
9957 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9958 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9959 	 * We must however set busiest_stat::group_type and
9960 	 * busiest_stat::idle_cpus to the worst busiest group because
9961 	 * update_sd_pick_busiest() reads these before assignment.
9962 	 */
9963 	*sds = (struct sd_lb_stats){
9964 		.busiest = NULL,
9965 		.local = NULL,
9966 		.total_load = 0UL,
9967 		.total_capacity = 0UL,
9968 		.busiest_stat = {
9969 			.idle_cpus = UINT_MAX,
9970 			.group_type = group_has_spare,
9971 		},
9972 	};
9973 }
9974 
9975 static unsigned long scale_rt_capacity(int cpu)
9976 {
9977 	unsigned long max = get_actual_cpu_capacity(cpu);
9978 	struct rq *rq = cpu_rq(cpu);
9979 	unsigned long used, free;
9980 	unsigned long irq;
9981 
9982 	irq = cpu_util_irq(rq);
9983 
9984 	if (unlikely(irq >= max))
9985 		return 1;
9986 
9987 	/*
9988 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9989 	 * (running and not running) with weights 0 and 1024 respectively.
9990 	 */
9991 	used = cpu_util_rt(rq);
9992 	used += cpu_util_dl(rq);
9993 
9994 	if (unlikely(used >= max))
9995 		return 1;
9996 
9997 	free = max - used;
9998 
9999 	return scale_irq_capacity(free, irq, max);
10000 }
10001 
10002 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
10003 {
10004 	unsigned long capacity = scale_rt_capacity(cpu);
10005 	struct sched_group *sdg = sd->groups;
10006 
10007 	if (!capacity)
10008 		capacity = 1;
10009 
10010 	cpu_rq(cpu)->cpu_capacity = capacity;
10011 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
10012 
10013 	sdg->sgc->capacity = capacity;
10014 	sdg->sgc->min_capacity = capacity;
10015 	sdg->sgc->max_capacity = capacity;
10016 }
10017 
10018 void update_group_capacity(struct sched_domain *sd, int cpu)
10019 {
10020 	struct sched_domain *child = sd->child;
10021 	struct sched_group *group, *sdg = sd->groups;
10022 	unsigned long capacity, min_capacity, max_capacity;
10023 	unsigned long interval;
10024 
10025 	interval = msecs_to_jiffies(sd->balance_interval);
10026 	interval = clamp(interval, 1UL, max_load_balance_interval);
10027 	sdg->sgc->next_update = jiffies + interval;
10028 
10029 	if (!child) {
10030 		update_cpu_capacity(sd, cpu);
10031 		return;
10032 	}
10033 
10034 	capacity = 0;
10035 	min_capacity = ULONG_MAX;
10036 	max_capacity = 0;
10037 
10038 	if (child->flags & SD_OVERLAP) {
10039 		/*
10040 		 * SD_OVERLAP domains cannot assume that child groups
10041 		 * span the current group.
10042 		 */
10043 
10044 		for_each_cpu(cpu, sched_group_span(sdg)) {
10045 			unsigned long cpu_cap = capacity_of(cpu);
10046 
10047 			capacity += cpu_cap;
10048 			min_capacity = min(cpu_cap, min_capacity);
10049 			max_capacity = max(cpu_cap, max_capacity);
10050 		}
10051 	} else  {
10052 		/*
10053 		 * !SD_OVERLAP domains can assume that child groups
10054 		 * span the current group.
10055 		 */
10056 
10057 		group = child->groups;
10058 		do {
10059 			struct sched_group_capacity *sgc = group->sgc;
10060 
10061 			capacity += sgc->capacity;
10062 			min_capacity = min(sgc->min_capacity, min_capacity);
10063 			max_capacity = max(sgc->max_capacity, max_capacity);
10064 			group = group->next;
10065 		} while (group != child->groups);
10066 	}
10067 
10068 	sdg->sgc->capacity = capacity;
10069 	sdg->sgc->min_capacity = min_capacity;
10070 	sdg->sgc->max_capacity = max_capacity;
10071 }
10072 
10073 /*
10074  * Check whether the capacity of the rq has been noticeably reduced by side
10075  * activity. The imbalance_pct is used for the threshold.
10076  * Return true is the capacity is reduced
10077  */
10078 static inline int
10079 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
10080 {
10081 	return ((rq->cpu_capacity * sd->imbalance_pct) <
10082 				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
10083 }
10084 
10085 /* Check if the rq has a misfit task */
10086 static inline bool check_misfit_status(struct rq *rq)
10087 {
10088 	return rq->misfit_task_load;
10089 }
10090 
10091 /*
10092  * Group imbalance indicates (and tries to solve) the problem where balancing
10093  * groups is inadequate due to ->cpus_ptr constraints.
10094  *
10095  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
10096  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
10097  * Something like:
10098  *
10099  *	{ 0 1 2 3 } { 4 5 6 7 }
10100  *	        *     * * *
10101  *
10102  * If we were to balance group-wise we'd place two tasks in the first group and
10103  * two tasks in the second group. Clearly this is undesired as it will overload
10104  * cpu 3 and leave one of the CPUs in the second group unused.
10105  *
10106  * The current solution to this issue is detecting the skew in the first group
10107  * by noticing the lower domain failed to reach balance and had difficulty
10108  * moving tasks due to affinity constraints.
10109  *
10110  * When this is so detected; this group becomes a candidate for busiest; see
10111  * update_sd_pick_busiest(). And calculate_imbalance() and
10112  * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10113  * to create an effective group imbalance.
10114  *
10115  * This is a somewhat tricky proposition since the next run might not find the
10116  * group imbalance and decide the groups need to be balanced again. A most
10117  * subtle and fragile situation.
10118  */
10119 
10120 static inline int sg_imbalanced(struct sched_group *group)
10121 {
10122 	return group->sgc->imbalance;
10123 }
10124 
10125 /*
10126  * group_has_capacity returns true if the group has spare capacity that could
10127  * be used by some tasks.
10128  * We consider that a group has spare capacity if the number of task is
10129  * smaller than the number of CPUs or if the utilization is lower than the
10130  * available capacity for CFS tasks.
10131  * For the latter, we use a threshold to stabilize the state, to take into
10132  * account the variance of the tasks' load and to return true if the available
10133  * capacity in meaningful for the load balancer.
10134  * As an example, an available capacity of 1% can appear but it doesn't make
10135  * any benefit for the load balance.
10136  */
10137 static inline bool
10138 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10139 {
10140 	if (sgs->sum_nr_running < sgs->group_weight)
10141 		return true;
10142 
10143 	if ((sgs->group_capacity * imbalance_pct) <
10144 			(sgs->group_runnable * 100))
10145 		return false;
10146 
10147 	if ((sgs->group_capacity * 100) >
10148 			(sgs->group_util * imbalance_pct))
10149 		return true;
10150 
10151 	return false;
10152 }
10153 
10154 /*
10155  *  group_is_overloaded returns true if the group has more tasks than it can
10156  *  handle.
10157  *  group_is_overloaded is not equals to !group_has_capacity because a group
10158  *  with the exact right number of tasks, has no more spare capacity but is not
10159  *  overloaded so both group_has_capacity and group_is_overloaded return
10160  *  false.
10161  */
10162 static inline bool
10163 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10164 {
10165 	if (sgs->sum_nr_running <= sgs->group_weight)
10166 		return false;
10167 
10168 	if ((sgs->group_capacity * 100) <
10169 			(sgs->group_util * imbalance_pct))
10170 		return true;
10171 
10172 	if ((sgs->group_capacity * imbalance_pct) <
10173 			(sgs->group_runnable * 100))
10174 		return true;
10175 
10176 	return false;
10177 }
10178 
10179 static inline enum
10180 group_type group_classify(unsigned int imbalance_pct,
10181 			  struct sched_group *group,
10182 			  struct sg_lb_stats *sgs)
10183 {
10184 	if (group_is_overloaded(imbalance_pct, sgs))
10185 		return group_overloaded;
10186 
10187 	if (sg_imbalanced(group))
10188 		return group_imbalanced;
10189 
10190 	if (sgs->group_asym_packing)
10191 		return group_asym_packing;
10192 
10193 	if (sgs->group_smt_balance)
10194 		return group_smt_balance;
10195 
10196 	if (sgs->group_misfit_task_load)
10197 		return group_misfit_task;
10198 
10199 	if (!group_has_capacity(imbalance_pct, sgs))
10200 		return group_fully_busy;
10201 
10202 	return group_has_spare;
10203 }
10204 
10205 /**
10206  * sched_use_asym_prio - Check whether asym_packing priority must be used
10207  * @sd:		The scheduling domain of the load balancing
10208  * @cpu:	A CPU
10209  *
10210  * Always use CPU priority when balancing load between SMT siblings. When
10211  * balancing load between cores, it is not sufficient that @cpu is idle. Only
10212  * use CPU priority if the whole core is idle.
10213  *
10214  * Returns: True if the priority of @cpu must be followed. False otherwise.
10215  */
10216 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10217 {
10218 	if (!(sd->flags & SD_ASYM_PACKING))
10219 		return false;
10220 
10221 	if (!sched_smt_active())
10222 		return true;
10223 
10224 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10225 }
10226 
10227 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10228 {
10229 	/*
10230 	 * First check if @dst_cpu can do asym_packing load balance. Only do it
10231 	 * if it has higher priority than @src_cpu.
10232 	 */
10233 	return sched_use_asym_prio(sd, dst_cpu) &&
10234 		sched_asym_prefer(dst_cpu, src_cpu);
10235 }
10236 
10237 /**
10238  * sched_group_asym - Check if the destination CPU can do asym_packing balance
10239  * @env:	The load balancing environment
10240  * @sgs:	Load-balancing statistics of the candidate busiest group
10241  * @group:	The candidate busiest group
10242  *
10243  * @env::dst_cpu can do asym_packing if it has higher priority than the
10244  * preferred CPU of @group.
10245  *
10246  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10247  * otherwise.
10248  */
10249 static inline bool
10250 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10251 {
10252 	/*
10253 	 * CPU priorities do not make sense for SMT cores with more than one
10254 	 * busy sibling.
10255 	 */
10256 	if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10257 	    (sgs->group_weight - sgs->idle_cpus != 1))
10258 		return false;
10259 
10260 	return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
10261 }
10262 
10263 /* One group has more than one SMT CPU while the other group does not */
10264 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10265 				    struct sched_group *sg2)
10266 {
10267 	if (!sg1 || !sg2)
10268 		return false;
10269 
10270 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10271 		(sg2->flags & SD_SHARE_CPUCAPACITY);
10272 }
10273 
10274 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10275 			       struct sched_group *group)
10276 {
10277 	if (!env->idle)
10278 		return false;
10279 
10280 	/*
10281 	 * For SMT source group, it is better to move a task
10282 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10283 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10284 	 * will not be on.
10285 	 */
10286 	if (group->flags & SD_SHARE_CPUCAPACITY &&
10287 	    sgs->sum_h_nr_running > 1)
10288 		return true;
10289 
10290 	return false;
10291 }
10292 
10293 static inline long sibling_imbalance(struct lb_env *env,
10294 				    struct sd_lb_stats *sds,
10295 				    struct sg_lb_stats *busiest,
10296 				    struct sg_lb_stats *local)
10297 {
10298 	int ncores_busiest, ncores_local;
10299 	long imbalance;
10300 
10301 	if (!env->idle || !busiest->sum_nr_running)
10302 		return 0;
10303 
10304 	ncores_busiest = sds->busiest->cores;
10305 	ncores_local = sds->local->cores;
10306 
10307 	if (ncores_busiest == ncores_local) {
10308 		imbalance = busiest->sum_nr_running;
10309 		lsub_positive(&imbalance, local->sum_nr_running);
10310 		return imbalance;
10311 	}
10312 
10313 	/* Balance such that nr_running/ncores ratio are same on both groups */
10314 	imbalance = ncores_local * busiest->sum_nr_running;
10315 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10316 	/* Normalize imbalance and do rounding on normalization */
10317 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10318 	imbalance /= ncores_local + ncores_busiest;
10319 
10320 	/* Take advantage of resource in an empty sched group */
10321 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
10322 	    busiest->sum_nr_running > 1)
10323 		imbalance = 2;
10324 
10325 	return imbalance;
10326 }
10327 
10328 static inline bool
10329 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10330 {
10331 	/*
10332 	 * When there is more than 1 task, the group_overloaded case already
10333 	 * takes care of cpu with reduced capacity
10334 	 */
10335 	if (rq->cfs.h_nr_running != 1)
10336 		return false;
10337 
10338 	return check_cpu_capacity(rq, sd);
10339 }
10340 
10341 /**
10342  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10343  * @env: The load balancing environment.
10344  * @sds: Load-balancing data with statistics of the local group.
10345  * @group: sched_group whose statistics are to be updated.
10346  * @sgs: variable to hold the statistics for this group.
10347  * @sg_overloaded: sched_group is overloaded
10348  * @sg_overutilized: sched_group is overutilized
10349  */
10350 static inline void update_sg_lb_stats(struct lb_env *env,
10351 				      struct sd_lb_stats *sds,
10352 				      struct sched_group *group,
10353 				      struct sg_lb_stats *sgs,
10354 				      bool *sg_overloaded,
10355 				      bool *sg_overutilized)
10356 {
10357 	int i, nr_running, local_group;
10358 
10359 	memset(sgs, 0, sizeof(*sgs));
10360 
10361 	local_group = group == sds->local;
10362 
10363 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10364 		struct rq *rq = cpu_rq(i);
10365 		unsigned long load = cpu_load(rq);
10366 
10367 		sgs->group_load += load;
10368 		sgs->group_util += cpu_util_cfs(i);
10369 		sgs->group_runnable += cpu_runnable(rq);
10370 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
10371 
10372 		nr_running = rq->nr_running;
10373 		sgs->sum_nr_running += nr_running;
10374 
10375 		if (nr_running > 1)
10376 			*sg_overloaded = 1;
10377 
10378 		if (cpu_overutilized(i))
10379 			*sg_overutilized = 1;
10380 
10381 #ifdef CONFIG_NUMA_BALANCING
10382 		sgs->nr_numa_running += rq->nr_numa_running;
10383 		sgs->nr_preferred_running += rq->nr_preferred_running;
10384 #endif
10385 		/*
10386 		 * No need to call idle_cpu() if nr_running is not 0
10387 		 */
10388 		if (!nr_running && idle_cpu(i)) {
10389 			sgs->idle_cpus++;
10390 			/* Idle cpu can't have misfit task */
10391 			continue;
10392 		}
10393 
10394 		if (local_group)
10395 			continue;
10396 
10397 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10398 			/* Check for a misfit task on the cpu */
10399 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10400 				sgs->group_misfit_task_load = rq->misfit_task_load;
10401 				*sg_overloaded = 1;
10402 			}
10403 		} else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10404 			/* Check for a task running on a CPU with reduced capacity */
10405 			if (sgs->group_misfit_task_load < load)
10406 				sgs->group_misfit_task_load = load;
10407 		}
10408 	}
10409 
10410 	sgs->group_capacity = group->sgc->capacity;
10411 
10412 	sgs->group_weight = group->group_weight;
10413 
10414 	/* Check if dst CPU is idle and preferred to this group */
10415 	if (!local_group && env->idle && sgs->sum_h_nr_running &&
10416 	    sched_group_asym(env, sgs, group))
10417 		sgs->group_asym_packing = 1;
10418 
10419 	/* Check for loaded SMT group to be balanced to dst CPU */
10420 	if (!local_group && smt_balance(env, sgs, group))
10421 		sgs->group_smt_balance = 1;
10422 
10423 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10424 
10425 	/* Computing avg_load makes sense only when group is overloaded */
10426 	if (sgs->group_type == group_overloaded)
10427 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10428 				sgs->group_capacity;
10429 }
10430 
10431 /**
10432  * update_sd_pick_busiest - return 1 on busiest group
10433  * @env: The load balancing environment.
10434  * @sds: sched_domain statistics
10435  * @sg: sched_group candidate to be checked for being the busiest
10436  * @sgs: sched_group statistics
10437  *
10438  * Determine if @sg is a busier group than the previously selected
10439  * busiest group.
10440  *
10441  * Return: %true if @sg is a busier group than the previously selected
10442  * busiest group. %false otherwise.
10443  */
10444 static bool update_sd_pick_busiest(struct lb_env *env,
10445 				   struct sd_lb_stats *sds,
10446 				   struct sched_group *sg,
10447 				   struct sg_lb_stats *sgs)
10448 {
10449 	struct sg_lb_stats *busiest = &sds->busiest_stat;
10450 
10451 	/* Make sure that there is at least one task to pull */
10452 	if (!sgs->sum_h_nr_running)
10453 		return false;
10454 
10455 	/*
10456 	 * Don't try to pull misfit tasks we can't help.
10457 	 * We can use max_capacity here as reduction in capacity on some
10458 	 * CPUs in the group should either be possible to resolve
10459 	 * internally or be covered by avg_load imbalance (eventually).
10460 	 */
10461 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10462 	    (sgs->group_type == group_misfit_task) &&
10463 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10464 	     sds->local_stat.group_type != group_has_spare))
10465 		return false;
10466 
10467 	if (sgs->group_type > busiest->group_type)
10468 		return true;
10469 
10470 	if (sgs->group_type < busiest->group_type)
10471 		return false;
10472 
10473 	/*
10474 	 * The candidate and the current busiest group are the same type of
10475 	 * group. Let check which one is the busiest according to the type.
10476 	 */
10477 
10478 	switch (sgs->group_type) {
10479 	case group_overloaded:
10480 		/* Select the overloaded group with highest avg_load. */
10481 		return sgs->avg_load > busiest->avg_load;
10482 
10483 	case group_imbalanced:
10484 		/*
10485 		 * Select the 1st imbalanced group as we don't have any way to
10486 		 * choose one more than another.
10487 		 */
10488 		return false;
10489 
10490 	case group_asym_packing:
10491 		/* Prefer to move from lowest priority CPU's work */
10492 		return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
10493 
10494 	case group_misfit_task:
10495 		/*
10496 		 * If we have more than one misfit sg go with the biggest
10497 		 * misfit.
10498 		 */
10499 		return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10500 
10501 	case group_smt_balance:
10502 		/*
10503 		 * Check if we have spare CPUs on either SMT group to
10504 		 * choose has spare or fully busy handling.
10505 		 */
10506 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10507 			goto has_spare;
10508 
10509 		fallthrough;
10510 
10511 	case group_fully_busy:
10512 		/*
10513 		 * Select the fully busy group with highest avg_load. In
10514 		 * theory, there is no need to pull task from such kind of
10515 		 * group because tasks have all compute capacity that they need
10516 		 * but we can still improve the overall throughput by reducing
10517 		 * contention when accessing shared HW resources.
10518 		 *
10519 		 * XXX for now avg_load is not computed and always 0 so we
10520 		 * select the 1st one, except if @sg is composed of SMT
10521 		 * siblings.
10522 		 */
10523 
10524 		if (sgs->avg_load < busiest->avg_load)
10525 			return false;
10526 
10527 		if (sgs->avg_load == busiest->avg_load) {
10528 			/*
10529 			 * SMT sched groups need more help than non-SMT groups.
10530 			 * If @sg happens to also be SMT, either choice is good.
10531 			 */
10532 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10533 				return false;
10534 		}
10535 
10536 		break;
10537 
10538 	case group_has_spare:
10539 		/*
10540 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10541 		 * as we do not want to pull task off SMT core with one task
10542 		 * and make the core idle.
10543 		 */
10544 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10545 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10546 				return false;
10547 			else
10548 				return true;
10549 		}
10550 has_spare:
10551 
10552 		/*
10553 		 * Select not overloaded group with lowest number of idle CPUs
10554 		 * and highest number of running tasks. We could also compare
10555 		 * the spare capacity which is more stable but it can end up
10556 		 * that the group has less spare capacity but finally more idle
10557 		 * CPUs which means less opportunity to pull tasks.
10558 		 */
10559 		if (sgs->idle_cpus > busiest->idle_cpus)
10560 			return false;
10561 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10562 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10563 			return false;
10564 
10565 		break;
10566 	}
10567 
10568 	/*
10569 	 * Candidate sg has no more than one task per CPU and has higher
10570 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10571 	 * throughput. Maximize throughput, power/energy consequences are not
10572 	 * considered.
10573 	 */
10574 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10575 	    (sgs->group_type <= group_fully_busy) &&
10576 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10577 		return false;
10578 
10579 	return true;
10580 }
10581 
10582 #ifdef CONFIG_NUMA_BALANCING
10583 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10584 {
10585 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10586 		return regular;
10587 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10588 		return remote;
10589 	return all;
10590 }
10591 
10592 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10593 {
10594 	if (rq->nr_running > rq->nr_numa_running)
10595 		return regular;
10596 	if (rq->nr_running > rq->nr_preferred_running)
10597 		return remote;
10598 	return all;
10599 }
10600 #else
10601 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10602 {
10603 	return all;
10604 }
10605 
10606 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10607 {
10608 	return regular;
10609 }
10610 #endif /* CONFIG_NUMA_BALANCING */
10611 
10612 
10613 struct sg_lb_stats;
10614 
10615 /*
10616  * task_running_on_cpu - return 1 if @p is running on @cpu.
10617  */
10618 
10619 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10620 {
10621 	/* Task has no contribution or is new */
10622 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10623 		return 0;
10624 
10625 	if (task_on_rq_queued(p))
10626 		return 1;
10627 
10628 	return 0;
10629 }
10630 
10631 /**
10632  * idle_cpu_without - would a given CPU be idle without p ?
10633  * @cpu: the processor on which idleness is tested.
10634  * @p: task which should be ignored.
10635  *
10636  * Return: 1 if the CPU would be idle. 0 otherwise.
10637  */
10638 static int idle_cpu_without(int cpu, struct task_struct *p)
10639 {
10640 	struct rq *rq = cpu_rq(cpu);
10641 
10642 	if (rq->curr != rq->idle && rq->curr != p)
10643 		return 0;
10644 
10645 	/*
10646 	 * rq->nr_running can't be used but an updated version without the
10647 	 * impact of p on cpu must be used instead. The updated nr_running
10648 	 * be computed and tested before calling idle_cpu_without().
10649 	 */
10650 
10651 	if (rq->ttwu_pending)
10652 		return 0;
10653 
10654 	return 1;
10655 }
10656 
10657 /*
10658  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10659  * @sd: The sched_domain level to look for idlest group.
10660  * @group: sched_group whose statistics are to be updated.
10661  * @sgs: variable to hold the statistics for this group.
10662  * @p: The task for which we look for the idlest group/CPU.
10663  */
10664 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10665 					  struct sched_group *group,
10666 					  struct sg_lb_stats *sgs,
10667 					  struct task_struct *p)
10668 {
10669 	int i, nr_running;
10670 
10671 	memset(sgs, 0, sizeof(*sgs));
10672 
10673 	/* Assume that task can't fit any CPU of the group */
10674 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10675 		sgs->group_misfit_task_load = 1;
10676 
10677 	for_each_cpu(i, sched_group_span(group)) {
10678 		struct rq *rq = cpu_rq(i);
10679 		unsigned int local;
10680 
10681 		sgs->group_load += cpu_load_without(rq, p);
10682 		sgs->group_util += cpu_util_without(i, p);
10683 		sgs->group_runnable += cpu_runnable_without(rq, p);
10684 		local = task_running_on_cpu(i, p);
10685 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10686 
10687 		nr_running = rq->nr_running - local;
10688 		sgs->sum_nr_running += nr_running;
10689 
10690 		/*
10691 		 * No need to call idle_cpu_without() if nr_running is not 0
10692 		 */
10693 		if (!nr_running && idle_cpu_without(i, p))
10694 			sgs->idle_cpus++;
10695 
10696 		/* Check if task fits in the CPU */
10697 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10698 		    sgs->group_misfit_task_load &&
10699 		    task_fits_cpu(p, i))
10700 			sgs->group_misfit_task_load = 0;
10701 
10702 	}
10703 
10704 	sgs->group_capacity = group->sgc->capacity;
10705 
10706 	sgs->group_weight = group->group_weight;
10707 
10708 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10709 
10710 	/*
10711 	 * Computing avg_load makes sense only when group is fully busy or
10712 	 * overloaded
10713 	 */
10714 	if (sgs->group_type == group_fully_busy ||
10715 		sgs->group_type == group_overloaded)
10716 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10717 				sgs->group_capacity;
10718 }
10719 
10720 static bool update_pick_idlest(struct sched_group *idlest,
10721 			       struct sg_lb_stats *idlest_sgs,
10722 			       struct sched_group *group,
10723 			       struct sg_lb_stats *sgs)
10724 {
10725 	if (sgs->group_type < idlest_sgs->group_type)
10726 		return true;
10727 
10728 	if (sgs->group_type > idlest_sgs->group_type)
10729 		return false;
10730 
10731 	/*
10732 	 * The candidate and the current idlest group are the same type of
10733 	 * group. Let check which one is the idlest according to the type.
10734 	 */
10735 
10736 	switch (sgs->group_type) {
10737 	case group_overloaded:
10738 	case group_fully_busy:
10739 		/* Select the group with lowest avg_load. */
10740 		if (idlest_sgs->avg_load <= sgs->avg_load)
10741 			return false;
10742 		break;
10743 
10744 	case group_imbalanced:
10745 	case group_asym_packing:
10746 	case group_smt_balance:
10747 		/* Those types are not used in the slow wakeup path */
10748 		return false;
10749 
10750 	case group_misfit_task:
10751 		/* Select group with the highest max capacity */
10752 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10753 			return false;
10754 		break;
10755 
10756 	case group_has_spare:
10757 		/* Select group with most idle CPUs */
10758 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10759 			return false;
10760 
10761 		/* Select group with lowest group_util */
10762 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10763 			idlest_sgs->group_util <= sgs->group_util)
10764 			return false;
10765 
10766 		break;
10767 	}
10768 
10769 	return true;
10770 }
10771 
10772 /*
10773  * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10774  * domain.
10775  *
10776  * Assumes p is allowed on at least one CPU in sd.
10777  */
10778 static struct sched_group *
10779 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10780 {
10781 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10782 	struct sg_lb_stats local_sgs, tmp_sgs;
10783 	struct sg_lb_stats *sgs;
10784 	unsigned long imbalance;
10785 	struct sg_lb_stats idlest_sgs = {
10786 			.avg_load = UINT_MAX,
10787 			.group_type = group_overloaded,
10788 	};
10789 
10790 	do {
10791 		int local_group;
10792 
10793 		/* Skip over this group if it has no CPUs allowed */
10794 		if (!cpumask_intersects(sched_group_span(group),
10795 					p->cpus_ptr))
10796 			continue;
10797 
10798 		/* Skip over this group if no cookie matched */
10799 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10800 			continue;
10801 
10802 		local_group = cpumask_test_cpu(this_cpu,
10803 					       sched_group_span(group));
10804 
10805 		if (local_group) {
10806 			sgs = &local_sgs;
10807 			local = group;
10808 		} else {
10809 			sgs = &tmp_sgs;
10810 		}
10811 
10812 		update_sg_wakeup_stats(sd, group, sgs, p);
10813 
10814 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10815 			idlest = group;
10816 			idlest_sgs = *sgs;
10817 		}
10818 
10819 	} while (group = group->next, group != sd->groups);
10820 
10821 
10822 	/* There is no idlest group to push tasks to */
10823 	if (!idlest)
10824 		return NULL;
10825 
10826 	/* The local group has been skipped because of CPU affinity */
10827 	if (!local)
10828 		return idlest;
10829 
10830 	/*
10831 	 * If the local group is idler than the selected idlest group
10832 	 * don't try and push the task.
10833 	 */
10834 	if (local_sgs.group_type < idlest_sgs.group_type)
10835 		return NULL;
10836 
10837 	/*
10838 	 * If the local group is busier than the selected idlest group
10839 	 * try and push the task.
10840 	 */
10841 	if (local_sgs.group_type > idlest_sgs.group_type)
10842 		return idlest;
10843 
10844 	switch (local_sgs.group_type) {
10845 	case group_overloaded:
10846 	case group_fully_busy:
10847 
10848 		/* Calculate allowed imbalance based on load */
10849 		imbalance = scale_load_down(NICE_0_LOAD) *
10850 				(sd->imbalance_pct-100) / 100;
10851 
10852 		/*
10853 		 * When comparing groups across NUMA domains, it's possible for
10854 		 * the local domain to be very lightly loaded relative to the
10855 		 * remote domains but "imbalance" skews the comparison making
10856 		 * remote CPUs look much more favourable. When considering
10857 		 * cross-domain, add imbalance to the load on the remote node
10858 		 * and consider staying local.
10859 		 */
10860 
10861 		if ((sd->flags & SD_NUMA) &&
10862 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10863 			return NULL;
10864 
10865 		/*
10866 		 * If the local group is less loaded than the selected
10867 		 * idlest group don't try and push any tasks.
10868 		 */
10869 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10870 			return NULL;
10871 
10872 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10873 			return NULL;
10874 		break;
10875 
10876 	case group_imbalanced:
10877 	case group_asym_packing:
10878 	case group_smt_balance:
10879 		/* Those type are not used in the slow wakeup path */
10880 		return NULL;
10881 
10882 	case group_misfit_task:
10883 		/* Select group with the highest max capacity */
10884 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10885 			return NULL;
10886 		break;
10887 
10888 	case group_has_spare:
10889 #ifdef CONFIG_NUMA
10890 		if (sd->flags & SD_NUMA) {
10891 			int imb_numa_nr = sd->imb_numa_nr;
10892 #ifdef CONFIG_NUMA_BALANCING
10893 			int idlest_cpu;
10894 			/*
10895 			 * If there is spare capacity at NUMA, try to select
10896 			 * the preferred node
10897 			 */
10898 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10899 				return NULL;
10900 
10901 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10902 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10903 				return idlest;
10904 #endif /* CONFIG_NUMA_BALANCING */
10905 			/*
10906 			 * Otherwise, keep the task close to the wakeup source
10907 			 * and improve locality if the number of running tasks
10908 			 * would remain below threshold where an imbalance is
10909 			 * allowed while accounting for the possibility the
10910 			 * task is pinned to a subset of CPUs. If there is a
10911 			 * real need of migration, periodic load balance will
10912 			 * take care of it.
10913 			 */
10914 			if (p->nr_cpus_allowed != NR_CPUS) {
10915 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10916 
10917 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10918 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10919 			}
10920 
10921 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10922 			if (!adjust_numa_imbalance(imbalance,
10923 						   local_sgs.sum_nr_running + 1,
10924 						   imb_numa_nr)) {
10925 				return NULL;
10926 			}
10927 		}
10928 #endif /* CONFIG_NUMA */
10929 
10930 		/*
10931 		 * Select group with highest number of idle CPUs. We could also
10932 		 * compare the utilization which is more stable but it can end
10933 		 * up that the group has less spare capacity but finally more
10934 		 * idle CPUs which means more opportunity to run task.
10935 		 */
10936 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10937 			return NULL;
10938 		break;
10939 	}
10940 
10941 	return idlest;
10942 }
10943 
10944 static void update_idle_cpu_scan(struct lb_env *env,
10945 				 unsigned long sum_util)
10946 {
10947 	struct sched_domain_shared *sd_share;
10948 	int llc_weight, pct;
10949 	u64 x, y, tmp;
10950 	/*
10951 	 * Update the number of CPUs to scan in LLC domain, which could
10952 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10953 	 * could be expensive because it is within a shared cache line.
10954 	 * So the write of this hint only occurs during periodic load
10955 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10956 	 * can fire way more frequently than the former.
10957 	 */
10958 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10959 		return;
10960 
10961 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10962 	if (env->sd->span_weight != llc_weight)
10963 		return;
10964 
10965 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10966 	if (!sd_share)
10967 		return;
10968 
10969 	/*
10970 	 * The number of CPUs to search drops as sum_util increases, when
10971 	 * sum_util hits 85% or above, the scan stops.
10972 	 * The reason to choose 85% as the threshold is because this is the
10973 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10974 	 *
10975 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10976 	 * and y'= y / SCHED_CAPACITY_SCALE
10977 	 *
10978 	 * x is the ratio of sum_util compared to the CPU capacity:
10979 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10980 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10981 	 * and the number of CPUs to scan is calculated by:
10982 	 *
10983 	 * nr_scan = llc_weight * y'                                    [2]
10984 	 *
10985 	 * When x hits the threshold of overloaded, AKA, when
10986 	 * x = 100 / pct, y drops to 0. According to [1],
10987 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10988 	 *
10989 	 * Scale x by SCHED_CAPACITY_SCALE:
10990 	 * x' = sum_util / llc_weight;                                  [3]
10991 	 *
10992 	 * and finally [1] becomes:
10993 	 * y = SCHED_CAPACITY_SCALE -
10994 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10995 	 *
10996 	 */
10997 	/* equation [3] */
10998 	x = sum_util;
10999 	do_div(x, llc_weight);
11000 
11001 	/* equation [4] */
11002 	pct = env->sd->imbalance_pct;
11003 	tmp = x * x * pct * pct;
11004 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
11005 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
11006 	y = SCHED_CAPACITY_SCALE - tmp;
11007 
11008 	/* equation [2] */
11009 	y *= llc_weight;
11010 	do_div(y, SCHED_CAPACITY_SCALE);
11011 	if ((int)y != sd_share->nr_idle_scan)
11012 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
11013 }
11014 
11015 /**
11016  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
11017  * @env: The load balancing environment.
11018  * @sds: variable to hold the statistics for this sched_domain.
11019  */
11020 
11021 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
11022 {
11023 	struct sched_group *sg = env->sd->groups;
11024 	struct sg_lb_stats *local = &sds->local_stat;
11025 	struct sg_lb_stats tmp_sgs;
11026 	unsigned long sum_util = 0;
11027 	bool sg_overloaded = 0, sg_overutilized = 0;
11028 
11029 	do {
11030 		struct sg_lb_stats *sgs = &tmp_sgs;
11031 		int local_group;
11032 
11033 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
11034 		if (local_group) {
11035 			sds->local = sg;
11036 			sgs = local;
11037 
11038 			if (env->idle != CPU_NEWLY_IDLE ||
11039 			    time_after_eq(jiffies, sg->sgc->next_update))
11040 				update_group_capacity(env->sd, env->dst_cpu);
11041 		}
11042 
11043 		update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
11044 
11045 		if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
11046 			sds->busiest = sg;
11047 			sds->busiest_stat = *sgs;
11048 		}
11049 
11050 		/* Now, start updating sd_lb_stats */
11051 		sds->total_load += sgs->group_load;
11052 		sds->total_capacity += sgs->group_capacity;
11053 
11054 		sum_util += sgs->group_util;
11055 		sg = sg->next;
11056 	} while (sg != env->sd->groups);
11057 
11058 	/*
11059 	 * Indicate that the child domain of the busiest group prefers tasks
11060 	 * go to a child's sibling domains first. NB the flags of a sched group
11061 	 * are those of the child domain.
11062 	 */
11063 	if (sds->busiest)
11064 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
11065 
11066 
11067 	if (env->sd->flags & SD_NUMA)
11068 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
11069 
11070 	if (!env->sd->parent) {
11071 		/* update overload indicator if we are at root domain */
11072 		set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
11073 
11074 		/* Update over-utilization (tipping point, U >= 0) indicator */
11075 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11076 	} else if (sg_overutilized) {
11077 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11078 	}
11079 
11080 	update_idle_cpu_scan(env, sum_util);
11081 }
11082 
11083 /**
11084  * calculate_imbalance - Calculate the amount of imbalance present within the
11085  *			 groups of a given sched_domain during load balance.
11086  * @env: load balance environment
11087  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
11088  */
11089 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
11090 {
11091 	struct sg_lb_stats *local, *busiest;
11092 
11093 	local = &sds->local_stat;
11094 	busiest = &sds->busiest_stat;
11095 
11096 	if (busiest->group_type == group_misfit_task) {
11097 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
11098 			/* Set imbalance to allow misfit tasks to be balanced. */
11099 			env->migration_type = migrate_misfit;
11100 			env->imbalance = 1;
11101 		} else {
11102 			/*
11103 			 * Set load imbalance to allow moving task from cpu
11104 			 * with reduced capacity.
11105 			 */
11106 			env->migration_type = migrate_load;
11107 			env->imbalance = busiest->group_misfit_task_load;
11108 		}
11109 		return;
11110 	}
11111 
11112 	if (busiest->group_type == group_asym_packing) {
11113 		/*
11114 		 * In case of asym capacity, we will try to migrate all load to
11115 		 * the preferred CPU.
11116 		 */
11117 		env->migration_type = migrate_task;
11118 		env->imbalance = busiest->sum_h_nr_running;
11119 		return;
11120 	}
11121 
11122 	if (busiest->group_type == group_smt_balance) {
11123 		/* Reduce number of tasks sharing CPU capacity */
11124 		env->migration_type = migrate_task;
11125 		env->imbalance = 1;
11126 		return;
11127 	}
11128 
11129 	if (busiest->group_type == group_imbalanced) {
11130 		/*
11131 		 * In the group_imb case we cannot rely on group-wide averages
11132 		 * to ensure CPU-load equilibrium, try to move any task to fix
11133 		 * the imbalance. The next load balance will take care of
11134 		 * balancing back the system.
11135 		 */
11136 		env->migration_type = migrate_task;
11137 		env->imbalance = 1;
11138 		return;
11139 	}
11140 
11141 	/*
11142 	 * Try to use spare capacity of local group without overloading it or
11143 	 * emptying busiest.
11144 	 */
11145 	if (local->group_type == group_has_spare) {
11146 		if ((busiest->group_type > group_fully_busy) &&
11147 		    !(env->sd->flags & SD_SHARE_LLC)) {
11148 			/*
11149 			 * If busiest is overloaded, try to fill spare
11150 			 * capacity. This might end up creating spare capacity
11151 			 * in busiest or busiest still being overloaded but
11152 			 * there is no simple way to directly compute the
11153 			 * amount of load to migrate in order to balance the
11154 			 * system.
11155 			 */
11156 			env->migration_type = migrate_util;
11157 			env->imbalance = max(local->group_capacity, local->group_util) -
11158 					 local->group_util;
11159 
11160 			/*
11161 			 * In some cases, the group's utilization is max or even
11162 			 * higher than capacity because of migrations but the
11163 			 * local CPU is (newly) idle. There is at least one
11164 			 * waiting task in this overloaded busiest group. Let's
11165 			 * try to pull it.
11166 			 */
11167 			if (env->idle && env->imbalance == 0) {
11168 				env->migration_type = migrate_task;
11169 				env->imbalance = 1;
11170 			}
11171 
11172 			return;
11173 		}
11174 
11175 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
11176 			/*
11177 			 * When prefer sibling, evenly spread running tasks on
11178 			 * groups.
11179 			 */
11180 			env->migration_type = migrate_task;
11181 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
11182 		} else {
11183 
11184 			/*
11185 			 * If there is no overload, we just want to even the number of
11186 			 * idle CPUs.
11187 			 */
11188 			env->migration_type = migrate_task;
11189 			env->imbalance = max_t(long, 0,
11190 					       (local->idle_cpus - busiest->idle_cpus));
11191 		}
11192 
11193 #ifdef CONFIG_NUMA
11194 		/* Consider allowing a small imbalance between NUMA groups */
11195 		if (env->sd->flags & SD_NUMA) {
11196 			env->imbalance = adjust_numa_imbalance(env->imbalance,
11197 							       local->sum_nr_running + 1,
11198 							       env->sd->imb_numa_nr);
11199 		}
11200 #endif
11201 
11202 		/* Number of tasks to move to restore balance */
11203 		env->imbalance >>= 1;
11204 
11205 		return;
11206 	}
11207 
11208 	/*
11209 	 * Local is fully busy but has to take more load to relieve the
11210 	 * busiest group
11211 	 */
11212 	if (local->group_type < group_overloaded) {
11213 		/*
11214 		 * Local will become overloaded so the avg_load metrics are
11215 		 * finally needed.
11216 		 */
11217 
11218 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11219 				  local->group_capacity;
11220 
11221 		/*
11222 		 * If the local group is more loaded than the selected
11223 		 * busiest group don't try to pull any tasks.
11224 		 */
11225 		if (local->avg_load >= busiest->avg_load) {
11226 			env->imbalance = 0;
11227 			return;
11228 		}
11229 
11230 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11231 				sds->total_capacity;
11232 
11233 		/*
11234 		 * If the local group is more loaded than the average system
11235 		 * load, don't try to pull any tasks.
11236 		 */
11237 		if (local->avg_load >= sds->avg_load) {
11238 			env->imbalance = 0;
11239 			return;
11240 		}
11241 
11242 	}
11243 
11244 	/*
11245 	 * Both group are or will become overloaded and we're trying to get all
11246 	 * the CPUs to the average_load, so we don't want to push ourselves
11247 	 * above the average load, nor do we wish to reduce the max loaded CPU
11248 	 * below the average load. At the same time, we also don't want to
11249 	 * reduce the group load below the group capacity. Thus we look for
11250 	 * the minimum possible imbalance.
11251 	 */
11252 	env->migration_type = migrate_load;
11253 	env->imbalance = min(
11254 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11255 		(sds->avg_load - local->avg_load) * local->group_capacity
11256 	) / SCHED_CAPACITY_SCALE;
11257 }
11258 
11259 /******* sched_balance_find_src_group() helpers end here *********************/
11260 
11261 /*
11262  * Decision matrix according to the local and busiest group type:
11263  *
11264  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11265  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
11266  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
11267  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
11268  * asym_packing     force     force      N/A    N/A  force      force
11269  * imbalanced       force     force      N/A    N/A  force      force
11270  * overloaded       force     force      N/A    N/A  force      avg_load
11271  *
11272  * N/A :      Not Applicable because already filtered while updating
11273  *            statistics.
11274  * balanced : The system is balanced for these 2 groups.
11275  * force :    Calculate the imbalance as load migration is probably needed.
11276  * avg_load : Only if imbalance is significant enough.
11277  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
11278  *            different in groups.
11279  */
11280 
11281 /**
11282  * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11283  * if there is an imbalance.
11284  * @env: The load balancing environment.
11285  *
11286  * Also calculates the amount of runnable load which should be moved
11287  * to restore balance.
11288  *
11289  * Return:	- The busiest group if imbalance exists.
11290  */
11291 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11292 {
11293 	struct sg_lb_stats *local, *busiest;
11294 	struct sd_lb_stats sds;
11295 
11296 	init_sd_lb_stats(&sds);
11297 
11298 	/*
11299 	 * Compute the various statistics relevant for load balancing at
11300 	 * this level.
11301 	 */
11302 	update_sd_lb_stats(env, &sds);
11303 
11304 	/* There is no busy sibling group to pull tasks from */
11305 	if (!sds.busiest)
11306 		goto out_balanced;
11307 
11308 	busiest = &sds.busiest_stat;
11309 
11310 	/* Misfit tasks should be dealt with regardless of the avg load */
11311 	if (busiest->group_type == group_misfit_task)
11312 		goto force_balance;
11313 
11314 	if (!is_rd_overutilized(env->dst_rq->rd) &&
11315 	    rcu_dereference(env->dst_rq->rd->pd))
11316 		goto out_balanced;
11317 
11318 	/* ASYM feature bypasses nice load balance check */
11319 	if (busiest->group_type == group_asym_packing)
11320 		goto force_balance;
11321 
11322 	/*
11323 	 * If the busiest group is imbalanced the below checks don't
11324 	 * work because they assume all things are equal, which typically
11325 	 * isn't true due to cpus_ptr constraints and the like.
11326 	 */
11327 	if (busiest->group_type == group_imbalanced)
11328 		goto force_balance;
11329 
11330 	local = &sds.local_stat;
11331 	/*
11332 	 * If the local group is busier than the selected busiest group
11333 	 * don't try and pull any tasks.
11334 	 */
11335 	if (local->group_type > busiest->group_type)
11336 		goto out_balanced;
11337 
11338 	/*
11339 	 * When groups are overloaded, use the avg_load to ensure fairness
11340 	 * between tasks.
11341 	 */
11342 	if (local->group_type == group_overloaded) {
11343 		/*
11344 		 * If the local group is more loaded than the selected
11345 		 * busiest group don't try to pull any tasks.
11346 		 */
11347 		if (local->avg_load >= busiest->avg_load)
11348 			goto out_balanced;
11349 
11350 		/* XXX broken for overlapping NUMA groups */
11351 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11352 				sds.total_capacity;
11353 
11354 		/*
11355 		 * Don't pull any tasks if this group is already above the
11356 		 * domain average load.
11357 		 */
11358 		if (local->avg_load >= sds.avg_load)
11359 			goto out_balanced;
11360 
11361 		/*
11362 		 * If the busiest group is more loaded, use imbalance_pct to be
11363 		 * conservative.
11364 		 */
11365 		if (100 * busiest->avg_load <=
11366 				env->sd->imbalance_pct * local->avg_load)
11367 			goto out_balanced;
11368 	}
11369 
11370 	/*
11371 	 * Try to move all excess tasks to a sibling domain of the busiest
11372 	 * group's child domain.
11373 	 */
11374 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
11375 	    sibling_imbalance(env, &sds, busiest, local) > 1)
11376 		goto force_balance;
11377 
11378 	if (busiest->group_type != group_overloaded) {
11379 		if (!env->idle) {
11380 			/*
11381 			 * If the busiest group is not overloaded (and as a
11382 			 * result the local one too) but this CPU is already
11383 			 * busy, let another idle CPU try to pull task.
11384 			 */
11385 			goto out_balanced;
11386 		}
11387 
11388 		if (busiest->group_type == group_smt_balance &&
11389 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11390 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
11391 			goto force_balance;
11392 		}
11393 
11394 		if (busiest->group_weight > 1 &&
11395 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
11396 			/*
11397 			 * If the busiest group is not overloaded
11398 			 * and there is no imbalance between this and busiest
11399 			 * group wrt idle CPUs, it is balanced. The imbalance
11400 			 * becomes significant if the diff is greater than 1
11401 			 * otherwise we might end up to just move the imbalance
11402 			 * on another group. Of course this applies only if
11403 			 * there is more than 1 CPU per group.
11404 			 */
11405 			goto out_balanced;
11406 		}
11407 
11408 		if (busiest->sum_h_nr_running == 1) {
11409 			/*
11410 			 * busiest doesn't have any tasks waiting to run
11411 			 */
11412 			goto out_balanced;
11413 		}
11414 	}
11415 
11416 force_balance:
11417 	/* Looks like there is an imbalance. Compute it */
11418 	calculate_imbalance(env, &sds);
11419 	return env->imbalance ? sds.busiest : NULL;
11420 
11421 out_balanced:
11422 	env->imbalance = 0;
11423 	return NULL;
11424 }
11425 
11426 /*
11427  * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11428  */
11429 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11430 				     struct sched_group *group)
11431 {
11432 	struct rq *busiest = NULL, *rq;
11433 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11434 	unsigned int busiest_nr = 0;
11435 	int i;
11436 
11437 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11438 		unsigned long capacity, load, util;
11439 		unsigned int nr_running;
11440 		enum fbq_type rt;
11441 
11442 		rq = cpu_rq(i);
11443 		rt = fbq_classify_rq(rq);
11444 
11445 		/*
11446 		 * We classify groups/runqueues into three groups:
11447 		 *  - regular: there are !numa tasks
11448 		 *  - remote:  there are numa tasks that run on the 'wrong' node
11449 		 *  - all:     there is no distinction
11450 		 *
11451 		 * In order to avoid migrating ideally placed numa tasks,
11452 		 * ignore those when there's better options.
11453 		 *
11454 		 * If we ignore the actual busiest queue to migrate another
11455 		 * task, the next balance pass can still reduce the busiest
11456 		 * queue by moving tasks around inside the node.
11457 		 *
11458 		 * If we cannot move enough load due to this classification
11459 		 * the next pass will adjust the group classification and
11460 		 * allow migration of more tasks.
11461 		 *
11462 		 * Both cases only affect the total convergence complexity.
11463 		 */
11464 		if (rt > env->fbq_type)
11465 			continue;
11466 
11467 		nr_running = rq->cfs.h_nr_running;
11468 		if (!nr_running)
11469 			continue;
11470 
11471 		capacity = capacity_of(i);
11472 
11473 		/*
11474 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11475 		 * eventually lead to active_balancing high->low capacity.
11476 		 * Higher per-CPU capacity is considered better than balancing
11477 		 * average load.
11478 		 */
11479 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11480 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11481 		    nr_running == 1)
11482 			continue;
11483 
11484 		/*
11485 		 * Make sure we only pull tasks from a CPU of lower priority
11486 		 * when balancing between SMT siblings.
11487 		 *
11488 		 * If balancing between cores, let lower priority CPUs help
11489 		 * SMT cores with more than one busy sibling.
11490 		 */
11491 		if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11492 			continue;
11493 
11494 		switch (env->migration_type) {
11495 		case migrate_load:
11496 			/*
11497 			 * When comparing with load imbalance, use cpu_load()
11498 			 * which is not scaled with the CPU capacity.
11499 			 */
11500 			load = cpu_load(rq);
11501 
11502 			if (nr_running == 1 && load > env->imbalance &&
11503 			    !check_cpu_capacity(rq, env->sd))
11504 				break;
11505 
11506 			/*
11507 			 * For the load comparisons with the other CPUs,
11508 			 * consider the cpu_load() scaled with the CPU
11509 			 * capacity, so that the load can be moved away
11510 			 * from the CPU that is potentially running at a
11511 			 * lower capacity.
11512 			 *
11513 			 * Thus we're looking for max(load_i / capacity_i),
11514 			 * crosswise multiplication to rid ourselves of the
11515 			 * division works out to:
11516 			 * load_i * capacity_j > load_j * capacity_i;
11517 			 * where j is our previous maximum.
11518 			 */
11519 			if (load * busiest_capacity > busiest_load * capacity) {
11520 				busiest_load = load;
11521 				busiest_capacity = capacity;
11522 				busiest = rq;
11523 			}
11524 			break;
11525 
11526 		case migrate_util:
11527 			util = cpu_util_cfs_boost(i);
11528 
11529 			/*
11530 			 * Don't try to pull utilization from a CPU with one
11531 			 * running task. Whatever its utilization, we will fail
11532 			 * detach the task.
11533 			 */
11534 			if (nr_running <= 1)
11535 				continue;
11536 
11537 			if (busiest_util < util) {
11538 				busiest_util = util;
11539 				busiest = rq;
11540 			}
11541 			break;
11542 
11543 		case migrate_task:
11544 			if (busiest_nr < nr_running) {
11545 				busiest_nr = nr_running;
11546 				busiest = rq;
11547 			}
11548 			break;
11549 
11550 		case migrate_misfit:
11551 			/*
11552 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11553 			 * simply seek the "biggest" misfit task.
11554 			 */
11555 			if (rq->misfit_task_load > busiest_load) {
11556 				busiest_load = rq->misfit_task_load;
11557 				busiest = rq;
11558 			}
11559 
11560 			break;
11561 
11562 		}
11563 	}
11564 
11565 	return busiest;
11566 }
11567 
11568 /*
11569  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11570  * so long as it is large enough.
11571  */
11572 #define MAX_PINNED_INTERVAL	512
11573 
11574 static inline bool
11575 asym_active_balance(struct lb_env *env)
11576 {
11577 	/*
11578 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11579 	 * priority CPUs in order to pack all tasks in the highest priority
11580 	 * CPUs. When done between cores, do it only if the whole core if the
11581 	 * whole core is idle.
11582 	 *
11583 	 * If @env::src_cpu is an SMT core with busy siblings, let
11584 	 * the lower priority @env::dst_cpu help it. Do not follow
11585 	 * CPU priority.
11586 	 */
11587 	return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11588 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11589 		!sched_use_asym_prio(env->sd, env->src_cpu));
11590 }
11591 
11592 static inline bool
11593 imbalanced_active_balance(struct lb_env *env)
11594 {
11595 	struct sched_domain *sd = env->sd;
11596 
11597 	/*
11598 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11599 	 * distribution of the load on the system but also the even distribution of the
11600 	 * threads on a system with spare capacity
11601 	 */
11602 	if ((env->migration_type == migrate_task) &&
11603 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11604 		return 1;
11605 
11606 	return 0;
11607 }
11608 
11609 static int need_active_balance(struct lb_env *env)
11610 {
11611 	struct sched_domain *sd = env->sd;
11612 
11613 	if (asym_active_balance(env))
11614 		return 1;
11615 
11616 	if (imbalanced_active_balance(env))
11617 		return 1;
11618 
11619 	/*
11620 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11621 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11622 	 * because of other sched_class or IRQs if more capacity stays
11623 	 * available on dst_cpu.
11624 	 */
11625 	if (env->idle &&
11626 	    (env->src_rq->cfs.h_nr_running == 1)) {
11627 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11628 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11629 			return 1;
11630 	}
11631 
11632 	if (env->migration_type == migrate_misfit)
11633 		return 1;
11634 
11635 	return 0;
11636 }
11637 
11638 static int active_load_balance_cpu_stop(void *data);
11639 
11640 static int should_we_balance(struct lb_env *env)
11641 {
11642 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11643 	struct sched_group *sg = env->sd->groups;
11644 	int cpu, idle_smt = -1;
11645 
11646 	/*
11647 	 * Ensure the balancing environment is consistent; can happen
11648 	 * when the softirq triggers 'during' hotplug.
11649 	 */
11650 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11651 		return 0;
11652 
11653 	/*
11654 	 * In the newly idle case, we will allow all the CPUs
11655 	 * to do the newly idle load balance.
11656 	 *
11657 	 * However, we bail out if we already have tasks or a wakeup pending,
11658 	 * to optimize wakeup latency.
11659 	 */
11660 	if (env->idle == CPU_NEWLY_IDLE) {
11661 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11662 			return 0;
11663 		return 1;
11664 	}
11665 
11666 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11667 	/* Try to find first idle CPU */
11668 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11669 		if (!idle_cpu(cpu))
11670 			continue;
11671 
11672 		/*
11673 		 * Don't balance to idle SMT in busy core right away when
11674 		 * balancing cores, but remember the first idle SMT CPU for
11675 		 * later consideration.  Find CPU on an idle core first.
11676 		 */
11677 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11678 			if (idle_smt == -1)
11679 				idle_smt = cpu;
11680 			/*
11681 			 * If the core is not idle, and first SMT sibling which is
11682 			 * idle has been found, then its not needed to check other
11683 			 * SMT siblings for idleness:
11684 			 */
11685 #ifdef CONFIG_SCHED_SMT
11686 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11687 #endif
11688 			continue;
11689 		}
11690 
11691 		/*
11692 		 * Are we the first idle core in a non-SMT domain or higher,
11693 		 * or the first idle CPU in a SMT domain?
11694 		 */
11695 		return cpu == env->dst_cpu;
11696 	}
11697 
11698 	/* Are we the first idle CPU with busy siblings? */
11699 	if (idle_smt != -1)
11700 		return idle_smt == env->dst_cpu;
11701 
11702 	/* Are we the first CPU of this group ? */
11703 	return group_balance_cpu(sg) == env->dst_cpu;
11704 }
11705 
11706 /*
11707  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11708  * tasks if there is an imbalance.
11709  */
11710 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11711 			struct sched_domain *sd, enum cpu_idle_type idle,
11712 			int *continue_balancing)
11713 {
11714 	int ld_moved, cur_ld_moved, active_balance = 0;
11715 	struct sched_domain *sd_parent = sd->parent;
11716 	struct sched_group *group;
11717 	struct rq *busiest;
11718 	struct rq_flags rf;
11719 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11720 	struct lb_env env = {
11721 		.sd		= sd,
11722 		.dst_cpu	= this_cpu,
11723 		.dst_rq		= this_rq,
11724 		.dst_grpmask    = group_balance_mask(sd->groups),
11725 		.idle		= idle,
11726 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11727 		.cpus		= cpus,
11728 		.fbq_type	= all,
11729 		.tasks		= LIST_HEAD_INIT(env.tasks),
11730 	};
11731 
11732 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11733 
11734 	schedstat_inc(sd->lb_count[idle]);
11735 
11736 redo:
11737 	if (!should_we_balance(&env)) {
11738 		*continue_balancing = 0;
11739 		goto out_balanced;
11740 	}
11741 
11742 	group = sched_balance_find_src_group(&env);
11743 	if (!group) {
11744 		schedstat_inc(sd->lb_nobusyg[idle]);
11745 		goto out_balanced;
11746 	}
11747 
11748 	busiest = sched_balance_find_src_rq(&env, group);
11749 	if (!busiest) {
11750 		schedstat_inc(sd->lb_nobusyq[idle]);
11751 		goto out_balanced;
11752 	}
11753 
11754 	WARN_ON_ONCE(busiest == env.dst_rq);
11755 
11756 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11757 
11758 	env.src_cpu = busiest->cpu;
11759 	env.src_rq = busiest;
11760 
11761 	ld_moved = 0;
11762 	/* Clear this flag as soon as we find a pullable task */
11763 	env.flags |= LBF_ALL_PINNED;
11764 	if (busiest->nr_running > 1) {
11765 		/*
11766 		 * Attempt to move tasks. If sched_balance_find_src_group has found
11767 		 * an imbalance but busiest->nr_running <= 1, the group is
11768 		 * still unbalanced. ld_moved simply stays zero, so it is
11769 		 * correctly treated as an imbalance.
11770 		 */
11771 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11772 
11773 more_balance:
11774 		rq_lock_irqsave(busiest, &rf);
11775 		update_rq_clock(busiest);
11776 
11777 		/*
11778 		 * cur_ld_moved - load moved in current iteration
11779 		 * ld_moved     - cumulative load moved across iterations
11780 		 */
11781 		cur_ld_moved = detach_tasks(&env);
11782 
11783 		/*
11784 		 * We've detached some tasks from busiest_rq. Every
11785 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11786 		 * unlock busiest->lock, and we are able to be sure
11787 		 * that nobody can manipulate the tasks in parallel.
11788 		 * See task_rq_lock() family for the details.
11789 		 */
11790 
11791 		rq_unlock(busiest, &rf);
11792 
11793 		if (cur_ld_moved) {
11794 			attach_tasks(&env);
11795 			ld_moved += cur_ld_moved;
11796 		}
11797 
11798 		local_irq_restore(rf.flags);
11799 
11800 		if (env.flags & LBF_NEED_BREAK) {
11801 			env.flags &= ~LBF_NEED_BREAK;
11802 			goto more_balance;
11803 		}
11804 
11805 		/*
11806 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11807 		 * us and move them to an alternate dst_cpu in our sched_group
11808 		 * where they can run. The upper limit on how many times we
11809 		 * iterate on same src_cpu is dependent on number of CPUs in our
11810 		 * sched_group.
11811 		 *
11812 		 * This changes load balance semantics a bit on who can move
11813 		 * load to a given_cpu. In addition to the given_cpu itself
11814 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11815 		 * nohz-idle), we now have balance_cpu in a position to move
11816 		 * load to given_cpu. In rare situations, this may cause
11817 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11818 		 * _independently_ and at _same_ time to move some load to
11819 		 * given_cpu) causing excess load to be moved to given_cpu.
11820 		 * This however should not happen so much in practice and
11821 		 * moreover subsequent load balance cycles should correct the
11822 		 * excess load moved.
11823 		 */
11824 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11825 
11826 			/* Prevent to re-select dst_cpu via env's CPUs */
11827 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11828 
11829 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11830 			env.dst_cpu	 = env.new_dst_cpu;
11831 			env.flags	&= ~LBF_DST_PINNED;
11832 			env.loop	 = 0;
11833 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11834 
11835 			/*
11836 			 * Go back to "more_balance" rather than "redo" since we
11837 			 * need to continue with same src_cpu.
11838 			 */
11839 			goto more_balance;
11840 		}
11841 
11842 		/*
11843 		 * We failed to reach balance because of affinity.
11844 		 */
11845 		if (sd_parent) {
11846 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11847 
11848 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11849 				*group_imbalance = 1;
11850 		}
11851 
11852 		/* All tasks on this runqueue were pinned by CPU affinity */
11853 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11854 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11855 			/*
11856 			 * Attempting to continue load balancing at the current
11857 			 * sched_domain level only makes sense if there are
11858 			 * active CPUs remaining as possible busiest CPUs to
11859 			 * pull load from which are not contained within the
11860 			 * destination group that is receiving any migrated
11861 			 * load.
11862 			 */
11863 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11864 				env.loop = 0;
11865 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11866 				goto redo;
11867 			}
11868 			goto out_all_pinned;
11869 		}
11870 	}
11871 
11872 	if (!ld_moved) {
11873 		schedstat_inc(sd->lb_failed[idle]);
11874 		/*
11875 		 * Increment the failure counter only on periodic balance.
11876 		 * We do not want newidle balance, which can be very
11877 		 * frequent, pollute the failure counter causing
11878 		 * excessive cache_hot migrations and active balances.
11879 		 *
11880 		 * Similarly for migration_misfit which is not related to
11881 		 * load/util migration, don't pollute nr_balance_failed.
11882 		 */
11883 		if (idle != CPU_NEWLY_IDLE &&
11884 		    env.migration_type != migrate_misfit)
11885 			sd->nr_balance_failed++;
11886 
11887 		if (need_active_balance(&env)) {
11888 			unsigned long flags;
11889 
11890 			raw_spin_rq_lock_irqsave(busiest, flags);
11891 
11892 			/*
11893 			 * Don't kick the active_load_balance_cpu_stop,
11894 			 * if the curr task on busiest CPU can't be
11895 			 * moved to this_cpu:
11896 			 */
11897 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11898 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11899 				goto out_one_pinned;
11900 			}
11901 
11902 			/* Record that we found at least one task that could run on this_cpu */
11903 			env.flags &= ~LBF_ALL_PINNED;
11904 
11905 			/*
11906 			 * ->active_balance synchronizes accesses to
11907 			 * ->active_balance_work.  Once set, it's cleared
11908 			 * only after active load balance is finished.
11909 			 */
11910 			if (!busiest->active_balance) {
11911 				busiest->active_balance = 1;
11912 				busiest->push_cpu = this_cpu;
11913 				active_balance = 1;
11914 			}
11915 
11916 			preempt_disable();
11917 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11918 			if (active_balance) {
11919 				stop_one_cpu_nowait(cpu_of(busiest),
11920 					active_load_balance_cpu_stop, busiest,
11921 					&busiest->active_balance_work);
11922 			}
11923 			preempt_enable();
11924 		}
11925 	} else {
11926 		sd->nr_balance_failed = 0;
11927 	}
11928 
11929 	if (likely(!active_balance) || need_active_balance(&env)) {
11930 		/* We were unbalanced, so reset the balancing interval */
11931 		sd->balance_interval = sd->min_interval;
11932 	}
11933 
11934 	goto out;
11935 
11936 out_balanced:
11937 	/*
11938 	 * We reach balance although we may have faced some affinity
11939 	 * constraints. Clear the imbalance flag only if other tasks got
11940 	 * a chance to move and fix the imbalance.
11941 	 */
11942 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11943 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11944 
11945 		if (*group_imbalance)
11946 			*group_imbalance = 0;
11947 	}
11948 
11949 out_all_pinned:
11950 	/*
11951 	 * We reach balance because all tasks are pinned at this level so
11952 	 * we can't migrate them. Let the imbalance flag set so parent level
11953 	 * can try to migrate them.
11954 	 */
11955 	schedstat_inc(sd->lb_balanced[idle]);
11956 
11957 	sd->nr_balance_failed = 0;
11958 
11959 out_one_pinned:
11960 	ld_moved = 0;
11961 
11962 	/*
11963 	 * sched_balance_newidle() disregards balance intervals, so we could
11964 	 * repeatedly reach this code, which would lead to balance_interval
11965 	 * skyrocketing in a short amount of time. Skip the balance_interval
11966 	 * increase logic to avoid that.
11967 	 *
11968 	 * Similarly misfit migration which is not necessarily an indication of
11969 	 * the system being busy and requires lb to backoff to let it settle
11970 	 * down.
11971 	 */
11972 	if (env.idle == CPU_NEWLY_IDLE ||
11973 	    env.migration_type == migrate_misfit)
11974 		goto out;
11975 
11976 	/* tune up the balancing interval */
11977 	if ((env.flags & LBF_ALL_PINNED &&
11978 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11979 	    sd->balance_interval < sd->max_interval)
11980 		sd->balance_interval *= 2;
11981 out:
11982 	return ld_moved;
11983 }
11984 
11985 static inline unsigned long
11986 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11987 {
11988 	unsigned long interval = sd->balance_interval;
11989 
11990 	if (cpu_busy)
11991 		interval *= sd->busy_factor;
11992 
11993 	/* scale ms to jiffies */
11994 	interval = msecs_to_jiffies(interval);
11995 
11996 	/*
11997 	 * Reduce likelihood of busy balancing at higher domains racing with
11998 	 * balancing at lower domains by preventing their balancing periods
11999 	 * from being multiples of each other.
12000 	 */
12001 	if (cpu_busy)
12002 		interval -= 1;
12003 
12004 	interval = clamp(interval, 1UL, max_load_balance_interval);
12005 
12006 	return interval;
12007 }
12008 
12009 static inline void
12010 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
12011 {
12012 	unsigned long interval, next;
12013 
12014 	/* used by idle balance, so cpu_busy = 0 */
12015 	interval = get_sd_balance_interval(sd, 0);
12016 	next = sd->last_balance + interval;
12017 
12018 	if (time_after(*next_balance, next))
12019 		*next_balance = next;
12020 }
12021 
12022 /*
12023  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
12024  * running tasks off the busiest CPU onto idle CPUs. It requires at
12025  * least 1 task to be running on each physical CPU where possible, and
12026  * avoids physical / logical imbalances.
12027  */
12028 static int active_load_balance_cpu_stop(void *data)
12029 {
12030 	struct rq *busiest_rq = data;
12031 	int busiest_cpu = cpu_of(busiest_rq);
12032 	int target_cpu = busiest_rq->push_cpu;
12033 	struct rq *target_rq = cpu_rq(target_cpu);
12034 	struct sched_domain *sd;
12035 	struct task_struct *p = NULL;
12036 	struct rq_flags rf;
12037 
12038 	rq_lock_irq(busiest_rq, &rf);
12039 	/*
12040 	 * Between queueing the stop-work and running it is a hole in which
12041 	 * CPUs can become inactive. We should not move tasks from or to
12042 	 * inactive CPUs.
12043 	 */
12044 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
12045 		goto out_unlock;
12046 
12047 	/* Make sure the requested CPU hasn't gone down in the meantime: */
12048 	if (unlikely(busiest_cpu != smp_processor_id() ||
12049 		     !busiest_rq->active_balance))
12050 		goto out_unlock;
12051 
12052 	/* Is there any task to move? */
12053 	if (busiest_rq->nr_running <= 1)
12054 		goto out_unlock;
12055 
12056 	/*
12057 	 * This condition is "impossible", if it occurs
12058 	 * we need to fix it. Originally reported by
12059 	 * Bjorn Helgaas on a 128-CPU setup.
12060 	 */
12061 	WARN_ON_ONCE(busiest_rq == target_rq);
12062 
12063 	/* Search for an sd spanning us and the target CPU. */
12064 	rcu_read_lock();
12065 	for_each_domain(target_cpu, sd) {
12066 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
12067 			break;
12068 	}
12069 
12070 	if (likely(sd)) {
12071 		struct lb_env env = {
12072 			.sd		= sd,
12073 			.dst_cpu	= target_cpu,
12074 			.dst_rq		= target_rq,
12075 			.src_cpu	= busiest_rq->cpu,
12076 			.src_rq		= busiest_rq,
12077 			.idle		= CPU_IDLE,
12078 			.flags		= LBF_ACTIVE_LB,
12079 		};
12080 
12081 		schedstat_inc(sd->alb_count);
12082 		update_rq_clock(busiest_rq);
12083 
12084 		p = detach_one_task(&env);
12085 		if (p) {
12086 			schedstat_inc(sd->alb_pushed);
12087 			/* Active balancing done, reset the failure counter. */
12088 			sd->nr_balance_failed = 0;
12089 		} else {
12090 			schedstat_inc(sd->alb_failed);
12091 		}
12092 	}
12093 	rcu_read_unlock();
12094 out_unlock:
12095 	busiest_rq->active_balance = 0;
12096 	rq_unlock(busiest_rq, &rf);
12097 
12098 	if (p)
12099 		attach_one_task(target_rq, p);
12100 
12101 	local_irq_enable();
12102 
12103 	return 0;
12104 }
12105 
12106 /*
12107  * This flag serializes load-balancing passes over large domains
12108  * (above the NODE topology level) - only one load-balancing instance
12109  * may run at a time, to reduce overhead on very large systems with
12110  * lots of CPUs and large NUMA distances.
12111  *
12112  * - Note that load-balancing passes triggered while another one
12113  *   is executing are skipped and not re-tried.
12114  *
12115  * - Also note that this does not serialize rebalance_domains()
12116  *   execution, as non-SD_SERIALIZE domains will still be
12117  *   load-balanced in parallel.
12118  */
12119 static atomic_t sched_balance_running = ATOMIC_INIT(0);
12120 
12121 /*
12122  * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12123  * This trades load-balance latency on larger machines for less cross talk.
12124  */
12125 void update_max_interval(void)
12126 {
12127 	max_load_balance_interval = HZ*num_online_cpus()/10;
12128 }
12129 
12130 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
12131 {
12132 	if (cost > sd->max_newidle_lb_cost) {
12133 		/*
12134 		 * Track max cost of a domain to make sure to not delay the
12135 		 * next wakeup on the CPU.
12136 		 */
12137 		sd->max_newidle_lb_cost = cost;
12138 		sd->last_decay_max_lb_cost = jiffies;
12139 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
12140 		/*
12141 		 * Decay the newidle max times by ~1% per second to ensure that
12142 		 * it is not outdated and the current max cost is actually
12143 		 * shorter.
12144 		 */
12145 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12146 		sd->last_decay_max_lb_cost = jiffies;
12147 
12148 		return true;
12149 	}
12150 
12151 	return false;
12152 }
12153 
12154 /*
12155  * It checks each scheduling domain to see if it is due to be balanced,
12156  * and initiates a balancing operation if so.
12157  *
12158  * Balancing parameters are set up in init_sched_domains.
12159  */
12160 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12161 {
12162 	int continue_balancing = 1;
12163 	int cpu = rq->cpu;
12164 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12165 	unsigned long interval;
12166 	struct sched_domain *sd;
12167 	/* Earliest time when we have to do rebalance again */
12168 	unsigned long next_balance = jiffies + 60*HZ;
12169 	int update_next_balance = 0;
12170 	int need_serialize, need_decay = 0;
12171 	u64 max_cost = 0;
12172 
12173 	rcu_read_lock();
12174 	for_each_domain(cpu, sd) {
12175 		/*
12176 		 * Decay the newidle max times here because this is a regular
12177 		 * visit to all the domains.
12178 		 */
12179 		need_decay = update_newidle_cost(sd, 0);
12180 		max_cost += sd->max_newidle_lb_cost;
12181 
12182 		/*
12183 		 * Stop the load balance at this level. There is another
12184 		 * CPU in our sched group which is doing load balancing more
12185 		 * actively.
12186 		 */
12187 		if (!continue_balancing) {
12188 			if (need_decay)
12189 				continue;
12190 			break;
12191 		}
12192 
12193 		interval = get_sd_balance_interval(sd, busy);
12194 
12195 		need_serialize = sd->flags & SD_SERIALIZE;
12196 		if (need_serialize) {
12197 			if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
12198 				goto out;
12199 		}
12200 
12201 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
12202 			if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12203 				/*
12204 				 * The LBF_DST_PINNED logic could have changed
12205 				 * env->dst_cpu, so we can't know our idle
12206 				 * state even if we migrated tasks. Update it.
12207 				 */
12208 				idle = idle_cpu(cpu);
12209 				busy = !idle && !sched_idle_cpu(cpu);
12210 			}
12211 			sd->last_balance = jiffies;
12212 			interval = get_sd_balance_interval(sd, busy);
12213 		}
12214 		if (need_serialize)
12215 			atomic_set_release(&sched_balance_running, 0);
12216 out:
12217 		if (time_after(next_balance, sd->last_balance + interval)) {
12218 			next_balance = sd->last_balance + interval;
12219 			update_next_balance = 1;
12220 		}
12221 	}
12222 	if (need_decay) {
12223 		/*
12224 		 * Ensure the rq-wide value also decays but keep it at a
12225 		 * reasonable floor to avoid funnies with rq->avg_idle.
12226 		 */
12227 		rq->max_idle_balance_cost =
12228 			max((u64)sysctl_sched_migration_cost, max_cost);
12229 	}
12230 	rcu_read_unlock();
12231 
12232 	/*
12233 	 * next_balance will be updated only when there is a need.
12234 	 * When the cpu is attached to null domain for ex, it will not be
12235 	 * updated.
12236 	 */
12237 	if (likely(update_next_balance))
12238 		rq->next_balance = next_balance;
12239 
12240 }
12241 
12242 static inline int on_null_domain(struct rq *rq)
12243 {
12244 	return unlikely(!rcu_dereference_sched(rq->sd));
12245 }
12246 
12247 #ifdef CONFIG_NO_HZ_COMMON
12248 /*
12249  * NOHZ idle load balancing (ILB) details:
12250  *
12251  * - When one of the busy CPUs notices that there may be an idle rebalancing
12252  *   needed, they will kick the idle load balancer, which then does idle
12253  *   load balancing for all the idle CPUs.
12254  *
12255  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
12256  *   anywhere yet.
12257  */
12258 static inline int find_new_ilb(void)
12259 {
12260 	const struct cpumask *hk_mask;
12261 	int ilb_cpu;
12262 
12263 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
12264 
12265 	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12266 
12267 		if (ilb_cpu == smp_processor_id())
12268 			continue;
12269 
12270 		if (idle_cpu(ilb_cpu))
12271 			return ilb_cpu;
12272 	}
12273 
12274 	return -1;
12275 }
12276 
12277 /*
12278  * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12279  * SMP function call (IPI).
12280  *
12281  * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
12282  */
12283 static void kick_ilb(unsigned int flags)
12284 {
12285 	int ilb_cpu;
12286 
12287 	/*
12288 	 * Increase nohz.next_balance only when if full ilb is triggered but
12289 	 * not if we only update stats.
12290 	 */
12291 	if (flags & NOHZ_BALANCE_KICK)
12292 		nohz.next_balance = jiffies+1;
12293 
12294 	ilb_cpu = find_new_ilb();
12295 	if (ilb_cpu < 0)
12296 		return;
12297 
12298 	/*
12299 	 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12300 	 * i.e. all bits in flags are already set in ilb_cpu.
12301 	 */
12302 	if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12303 		return;
12304 
12305 	/*
12306 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12307 	 * the first flag owns it; cleared by nohz_csd_func().
12308 	 */
12309 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12310 	if (flags & NOHZ_KICK_MASK)
12311 		return;
12312 
12313 	/*
12314 	 * This way we generate an IPI on the target CPU which
12315 	 * is idle, and the softirq performing NOHZ idle load balancing
12316 	 * will be run before returning from the IPI.
12317 	 */
12318 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12319 }
12320 
12321 /*
12322  * Current decision point for kicking the idle load balancer in the presence
12323  * of idle CPUs in the system.
12324  */
12325 static void nohz_balancer_kick(struct rq *rq)
12326 {
12327 	unsigned long now = jiffies;
12328 	struct sched_domain_shared *sds;
12329 	struct sched_domain *sd;
12330 	int nr_busy, i, cpu = rq->cpu;
12331 	unsigned int flags = 0;
12332 
12333 	if (unlikely(rq->idle_balance))
12334 		return;
12335 
12336 	/*
12337 	 * We may be recently in ticked or tickless idle mode. At the first
12338 	 * busy tick after returning from idle, we will update the busy stats.
12339 	 */
12340 	nohz_balance_exit_idle(rq);
12341 
12342 	/*
12343 	 * None are in tickless mode and hence no need for NOHZ idle load
12344 	 * balancing:
12345 	 */
12346 	if (likely(!atomic_read(&nohz.nr_cpus)))
12347 		return;
12348 
12349 	if (READ_ONCE(nohz.has_blocked) &&
12350 	    time_after(now, READ_ONCE(nohz.next_blocked)))
12351 		flags = NOHZ_STATS_KICK;
12352 
12353 	if (time_before(now, nohz.next_balance))
12354 		goto out;
12355 
12356 	if (rq->nr_running >= 2) {
12357 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12358 		goto out;
12359 	}
12360 
12361 	rcu_read_lock();
12362 
12363 	sd = rcu_dereference(rq->sd);
12364 	if (sd) {
12365 		/*
12366 		 * If there's a runnable CFS task and the current CPU has reduced
12367 		 * capacity, kick the ILB to see if there's a better CPU to run on:
12368 		 */
12369 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
12370 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12371 			goto unlock;
12372 		}
12373 	}
12374 
12375 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12376 	if (sd) {
12377 		/*
12378 		 * When ASYM_PACKING; see if there's a more preferred CPU
12379 		 * currently idle; in which case, kick the ILB to move tasks
12380 		 * around.
12381 		 *
12382 		 * When balancing between cores, all the SMT siblings of the
12383 		 * preferred CPU must be idle.
12384 		 */
12385 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12386 			if (sched_asym(sd, i, cpu)) {
12387 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12388 				goto unlock;
12389 			}
12390 		}
12391 	}
12392 
12393 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12394 	if (sd) {
12395 		/*
12396 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12397 		 * to run the misfit task on.
12398 		 */
12399 		if (check_misfit_status(rq)) {
12400 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12401 			goto unlock;
12402 		}
12403 
12404 		/*
12405 		 * For asymmetric systems, we do not want to nicely balance
12406 		 * cache use, instead we want to embrace asymmetry and only
12407 		 * ensure tasks have enough CPU capacity.
12408 		 *
12409 		 * Skip the LLC logic because it's not relevant in that case.
12410 		 */
12411 		goto unlock;
12412 	}
12413 
12414 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12415 	if (sds) {
12416 		/*
12417 		 * If there is an imbalance between LLC domains (IOW we could
12418 		 * increase the overall cache utilization), we need a less-loaded LLC
12419 		 * domain to pull some load from. Likewise, we may need to spread
12420 		 * load within the current LLC domain (e.g. packed SMT cores but
12421 		 * other CPUs are idle). We can't really know from here how busy
12422 		 * the others are - so just get a NOHZ balance going if it looks
12423 		 * like this LLC domain has tasks we could move.
12424 		 */
12425 		nr_busy = atomic_read(&sds->nr_busy_cpus);
12426 		if (nr_busy > 1) {
12427 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12428 			goto unlock;
12429 		}
12430 	}
12431 unlock:
12432 	rcu_read_unlock();
12433 out:
12434 	if (READ_ONCE(nohz.needs_update))
12435 		flags |= NOHZ_NEXT_KICK;
12436 
12437 	if (flags)
12438 		kick_ilb(flags);
12439 }
12440 
12441 static void set_cpu_sd_state_busy(int cpu)
12442 {
12443 	struct sched_domain *sd;
12444 
12445 	rcu_read_lock();
12446 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12447 
12448 	if (!sd || !sd->nohz_idle)
12449 		goto unlock;
12450 	sd->nohz_idle = 0;
12451 
12452 	atomic_inc(&sd->shared->nr_busy_cpus);
12453 unlock:
12454 	rcu_read_unlock();
12455 }
12456 
12457 void nohz_balance_exit_idle(struct rq *rq)
12458 {
12459 	SCHED_WARN_ON(rq != this_rq());
12460 
12461 	if (likely(!rq->nohz_tick_stopped))
12462 		return;
12463 
12464 	rq->nohz_tick_stopped = 0;
12465 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12466 	atomic_dec(&nohz.nr_cpus);
12467 
12468 	set_cpu_sd_state_busy(rq->cpu);
12469 }
12470 
12471 static void set_cpu_sd_state_idle(int cpu)
12472 {
12473 	struct sched_domain *sd;
12474 
12475 	rcu_read_lock();
12476 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12477 
12478 	if (!sd || sd->nohz_idle)
12479 		goto unlock;
12480 	sd->nohz_idle = 1;
12481 
12482 	atomic_dec(&sd->shared->nr_busy_cpus);
12483 unlock:
12484 	rcu_read_unlock();
12485 }
12486 
12487 /*
12488  * This routine will record that the CPU is going idle with tick stopped.
12489  * This info will be used in performing idle load balancing in the future.
12490  */
12491 void nohz_balance_enter_idle(int cpu)
12492 {
12493 	struct rq *rq = cpu_rq(cpu);
12494 
12495 	SCHED_WARN_ON(cpu != smp_processor_id());
12496 
12497 	/* If this CPU is going down, then nothing needs to be done: */
12498 	if (!cpu_active(cpu))
12499 		return;
12500 
12501 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
12502 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12503 		return;
12504 
12505 	/*
12506 	 * Can be set safely without rq->lock held
12507 	 * If a clear happens, it will have evaluated last additions because
12508 	 * rq->lock is held during the check and the clear
12509 	 */
12510 	rq->has_blocked_load = 1;
12511 
12512 	/*
12513 	 * The tick is still stopped but load could have been added in the
12514 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12515 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12516 	 * of nohz.has_blocked can only happen after checking the new load
12517 	 */
12518 	if (rq->nohz_tick_stopped)
12519 		goto out;
12520 
12521 	/* If we're a completely isolated CPU, we don't play: */
12522 	if (on_null_domain(rq))
12523 		return;
12524 
12525 	rq->nohz_tick_stopped = 1;
12526 
12527 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12528 	atomic_inc(&nohz.nr_cpus);
12529 
12530 	/*
12531 	 * Ensures that if nohz_idle_balance() fails to observe our
12532 	 * @idle_cpus_mask store, it must observe the @has_blocked
12533 	 * and @needs_update stores.
12534 	 */
12535 	smp_mb__after_atomic();
12536 
12537 	set_cpu_sd_state_idle(cpu);
12538 
12539 	WRITE_ONCE(nohz.needs_update, 1);
12540 out:
12541 	/*
12542 	 * Each time a cpu enter idle, we assume that it has blocked load and
12543 	 * enable the periodic update of the load of idle CPUs
12544 	 */
12545 	WRITE_ONCE(nohz.has_blocked, 1);
12546 }
12547 
12548 static bool update_nohz_stats(struct rq *rq)
12549 {
12550 	unsigned int cpu = rq->cpu;
12551 
12552 	if (!rq->has_blocked_load)
12553 		return false;
12554 
12555 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12556 		return false;
12557 
12558 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12559 		return true;
12560 
12561 	sched_balance_update_blocked_averages(cpu);
12562 
12563 	return rq->has_blocked_load;
12564 }
12565 
12566 /*
12567  * Internal function that runs load balance for all idle CPUs. The load balance
12568  * can be a simple update of blocked load or a complete load balance with
12569  * tasks movement depending of flags.
12570  */
12571 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12572 {
12573 	/* Earliest time when we have to do rebalance again */
12574 	unsigned long now = jiffies;
12575 	unsigned long next_balance = now + 60*HZ;
12576 	bool has_blocked_load = false;
12577 	int update_next_balance = 0;
12578 	int this_cpu = this_rq->cpu;
12579 	int balance_cpu;
12580 	struct rq *rq;
12581 
12582 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12583 
12584 	/*
12585 	 * We assume there will be no idle load after this update and clear
12586 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12587 	 * set the has_blocked flag and trigger another update of idle load.
12588 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12589 	 * setting the flag, we are sure to not clear the state and not
12590 	 * check the load of an idle cpu.
12591 	 *
12592 	 * Same applies to idle_cpus_mask vs needs_update.
12593 	 */
12594 	if (flags & NOHZ_STATS_KICK)
12595 		WRITE_ONCE(nohz.has_blocked, 0);
12596 	if (flags & NOHZ_NEXT_KICK)
12597 		WRITE_ONCE(nohz.needs_update, 0);
12598 
12599 	/*
12600 	 * Ensures that if we miss the CPU, we must see the has_blocked
12601 	 * store from nohz_balance_enter_idle().
12602 	 */
12603 	smp_mb();
12604 
12605 	/*
12606 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12607 	 * chance for other idle cpu to pull load.
12608 	 */
12609 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12610 		if (!idle_cpu(balance_cpu))
12611 			continue;
12612 
12613 		/*
12614 		 * If this CPU gets work to do, stop the load balancing
12615 		 * work being done for other CPUs. Next load
12616 		 * balancing owner will pick it up.
12617 		 */
12618 		if (!idle_cpu(this_cpu) && need_resched()) {
12619 			if (flags & NOHZ_STATS_KICK)
12620 				has_blocked_load = true;
12621 			if (flags & NOHZ_NEXT_KICK)
12622 				WRITE_ONCE(nohz.needs_update, 1);
12623 			goto abort;
12624 		}
12625 
12626 		rq = cpu_rq(balance_cpu);
12627 
12628 		if (flags & NOHZ_STATS_KICK)
12629 			has_blocked_load |= update_nohz_stats(rq);
12630 
12631 		/*
12632 		 * If time for next balance is due,
12633 		 * do the balance.
12634 		 */
12635 		if (time_after_eq(jiffies, rq->next_balance)) {
12636 			struct rq_flags rf;
12637 
12638 			rq_lock_irqsave(rq, &rf);
12639 			update_rq_clock(rq);
12640 			rq_unlock_irqrestore(rq, &rf);
12641 
12642 			if (flags & NOHZ_BALANCE_KICK)
12643 				sched_balance_domains(rq, CPU_IDLE);
12644 		}
12645 
12646 		if (time_after(next_balance, rq->next_balance)) {
12647 			next_balance = rq->next_balance;
12648 			update_next_balance = 1;
12649 		}
12650 	}
12651 
12652 	/*
12653 	 * next_balance will be updated only when there is a need.
12654 	 * When the CPU is attached to null domain for ex, it will not be
12655 	 * updated.
12656 	 */
12657 	if (likely(update_next_balance))
12658 		nohz.next_balance = next_balance;
12659 
12660 	if (flags & NOHZ_STATS_KICK)
12661 		WRITE_ONCE(nohz.next_blocked,
12662 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12663 
12664 abort:
12665 	/* There is still blocked load, enable periodic update */
12666 	if (has_blocked_load)
12667 		WRITE_ONCE(nohz.has_blocked, 1);
12668 }
12669 
12670 /*
12671  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12672  * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12673  */
12674 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12675 {
12676 	unsigned int flags = this_rq->nohz_idle_balance;
12677 
12678 	if (!flags)
12679 		return false;
12680 
12681 	this_rq->nohz_idle_balance = 0;
12682 
12683 	if (idle != CPU_IDLE)
12684 		return false;
12685 
12686 	_nohz_idle_balance(this_rq, flags);
12687 
12688 	return true;
12689 }
12690 
12691 /*
12692  * Check if we need to directly run the ILB for updating blocked load before
12693  * entering idle state. Here we run ILB directly without issuing IPIs.
12694  *
12695  * Note that when this function is called, the tick may not yet be stopped on
12696  * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12697  * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12698  * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12699  * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12700  * called from this function on (this) CPU that's not yet in the mask. That's
12701  * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12702  * updating the blocked load of already idle CPUs without waking up one of
12703  * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12704  * cpu about to enter idle, because it can take a long time.
12705  */
12706 void nohz_run_idle_balance(int cpu)
12707 {
12708 	unsigned int flags;
12709 
12710 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12711 
12712 	/*
12713 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12714 	 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12715 	 */
12716 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12717 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12718 }
12719 
12720 static void nohz_newidle_balance(struct rq *this_rq)
12721 {
12722 	int this_cpu = this_rq->cpu;
12723 
12724 	/*
12725 	 * This CPU doesn't want to be disturbed by scheduler
12726 	 * housekeeping
12727 	 */
12728 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12729 		return;
12730 
12731 	/* Will wake up very soon. No time for doing anything else*/
12732 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12733 		return;
12734 
12735 	/* Don't need to update blocked load of idle CPUs*/
12736 	if (!READ_ONCE(nohz.has_blocked) ||
12737 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12738 		return;
12739 
12740 	/*
12741 	 * Set the need to trigger ILB in order to update blocked load
12742 	 * before entering idle state.
12743 	 */
12744 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12745 }
12746 
12747 #else /* !CONFIG_NO_HZ_COMMON */
12748 static inline void nohz_balancer_kick(struct rq *rq) { }
12749 
12750 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12751 {
12752 	return false;
12753 }
12754 
12755 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12756 #endif /* CONFIG_NO_HZ_COMMON */
12757 
12758 /*
12759  * sched_balance_newidle is called by schedule() if this_cpu is about to become
12760  * idle. Attempts to pull tasks from other CPUs.
12761  *
12762  * Returns:
12763  *   < 0 - we released the lock and there are !fair tasks present
12764  *     0 - failed, no new tasks
12765  *   > 0 - success, new (fair) tasks present
12766  */
12767 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12768 {
12769 	unsigned long next_balance = jiffies + HZ;
12770 	int this_cpu = this_rq->cpu;
12771 	int continue_balancing = 1;
12772 	u64 t0, t1, curr_cost = 0;
12773 	struct sched_domain *sd;
12774 	int pulled_task = 0;
12775 
12776 	update_misfit_status(NULL, this_rq);
12777 
12778 	/*
12779 	 * There is a task waiting to run. No need to search for one.
12780 	 * Return 0; the task will be enqueued when switching to idle.
12781 	 */
12782 	if (this_rq->ttwu_pending)
12783 		return 0;
12784 
12785 	/*
12786 	 * We must set idle_stamp _before_ calling sched_balance_rq()
12787 	 * for CPU_NEWLY_IDLE, such that we measure the this duration
12788 	 * as idle time.
12789 	 */
12790 	this_rq->idle_stamp = rq_clock(this_rq);
12791 
12792 	/*
12793 	 * Do not pull tasks towards !active CPUs...
12794 	 */
12795 	if (!cpu_active(this_cpu))
12796 		return 0;
12797 
12798 	/*
12799 	 * This is OK, because current is on_cpu, which avoids it being picked
12800 	 * for load-balance and preemption/IRQs are still disabled avoiding
12801 	 * further scheduler activity on it and we're being very careful to
12802 	 * re-start the picking loop.
12803 	 */
12804 	rq_unpin_lock(this_rq, rf);
12805 
12806 	rcu_read_lock();
12807 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12808 
12809 	if (!get_rd_overloaded(this_rq->rd) ||
12810 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12811 
12812 		if (sd)
12813 			update_next_balance(sd, &next_balance);
12814 		rcu_read_unlock();
12815 
12816 		goto out;
12817 	}
12818 	rcu_read_unlock();
12819 
12820 	raw_spin_rq_unlock(this_rq);
12821 
12822 	t0 = sched_clock_cpu(this_cpu);
12823 	sched_balance_update_blocked_averages(this_cpu);
12824 
12825 	rcu_read_lock();
12826 	for_each_domain(this_cpu, sd) {
12827 		u64 domain_cost;
12828 
12829 		update_next_balance(sd, &next_balance);
12830 
12831 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12832 			break;
12833 
12834 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12835 
12836 			pulled_task = sched_balance_rq(this_cpu, this_rq,
12837 						   sd, CPU_NEWLY_IDLE,
12838 						   &continue_balancing);
12839 
12840 			t1 = sched_clock_cpu(this_cpu);
12841 			domain_cost = t1 - t0;
12842 			update_newidle_cost(sd, domain_cost);
12843 
12844 			curr_cost += domain_cost;
12845 			t0 = t1;
12846 		}
12847 
12848 		/*
12849 		 * Stop searching for tasks to pull if there are
12850 		 * now runnable tasks on this rq.
12851 		 */
12852 		if (pulled_task || !continue_balancing)
12853 			break;
12854 	}
12855 	rcu_read_unlock();
12856 
12857 	raw_spin_rq_lock(this_rq);
12858 
12859 	if (curr_cost > this_rq->max_idle_balance_cost)
12860 		this_rq->max_idle_balance_cost = curr_cost;
12861 
12862 	/*
12863 	 * While browsing the domains, we released the rq lock, a task could
12864 	 * have been enqueued in the meantime. Since we're not going idle,
12865 	 * pretend we pulled a task.
12866 	 */
12867 	if (this_rq->cfs.h_nr_running && !pulled_task)
12868 		pulled_task = 1;
12869 
12870 	/* Is there a task of a high priority class? */
12871 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12872 		pulled_task = -1;
12873 
12874 out:
12875 	/* Move the next balance forward */
12876 	if (time_after(this_rq->next_balance, next_balance))
12877 		this_rq->next_balance = next_balance;
12878 
12879 	if (pulled_task)
12880 		this_rq->idle_stamp = 0;
12881 	else
12882 		nohz_newidle_balance(this_rq);
12883 
12884 	rq_repin_lock(this_rq, rf);
12885 
12886 	return pulled_task;
12887 }
12888 
12889 /*
12890  * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12891  *
12892  * - directly from the local scheduler_tick() for periodic load balancing
12893  *
12894  * - indirectly from a remote scheduler_tick() for NOHZ idle balancing
12895  *   through the SMP cross-call nohz_csd_func()
12896  */
12897 static __latent_entropy void sched_balance_softirq(void)
12898 {
12899 	struct rq *this_rq = this_rq();
12900 	enum cpu_idle_type idle = this_rq->idle_balance;
12901 	/*
12902 	 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12903 	 * balancing on behalf of the other idle CPUs whose ticks are
12904 	 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12905 	 * give the idle CPUs a chance to load balance. Else we may
12906 	 * load balance only within the local sched_domain hierarchy
12907 	 * and abort nohz_idle_balance altogether if we pull some load.
12908 	 */
12909 	if (nohz_idle_balance(this_rq, idle))
12910 		return;
12911 
12912 	/* normal load balance */
12913 	sched_balance_update_blocked_averages(this_rq->cpu);
12914 	sched_balance_domains(this_rq, idle);
12915 }
12916 
12917 /*
12918  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12919  */
12920 void sched_balance_trigger(struct rq *rq)
12921 {
12922 	/*
12923 	 * Don't need to rebalance while attached to NULL domain or
12924 	 * runqueue CPU is not active
12925 	 */
12926 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12927 		return;
12928 
12929 	if (time_after_eq(jiffies, rq->next_balance))
12930 		raise_softirq(SCHED_SOFTIRQ);
12931 
12932 	nohz_balancer_kick(rq);
12933 }
12934 
12935 static void rq_online_fair(struct rq *rq)
12936 {
12937 	update_sysctl();
12938 
12939 	update_runtime_enabled(rq);
12940 }
12941 
12942 static void rq_offline_fair(struct rq *rq)
12943 {
12944 	update_sysctl();
12945 
12946 	/* Ensure any throttled groups are reachable by pick_next_task */
12947 	unthrottle_offline_cfs_rqs(rq);
12948 
12949 	/* Ensure that we remove rq contribution to group share: */
12950 	clear_tg_offline_cfs_rqs(rq);
12951 }
12952 
12953 #endif /* CONFIG_SMP */
12954 
12955 #ifdef CONFIG_SCHED_CORE
12956 static inline bool
12957 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12958 {
12959 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12960 	u64 slice = se->slice;
12961 
12962 	return (rtime * min_nr_tasks > slice);
12963 }
12964 
12965 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
12966 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12967 {
12968 	if (!sched_core_enabled(rq))
12969 		return;
12970 
12971 	/*
12972 	 * If runqueue has only one task which used up its slice and
12973 	 * if the sibling is forced idle, then trigger schedule to
12974 	 * give forced idle task a chance.
12975 	 *
12976 	 * sched_slice() considers only this active rq and it gets the
12977 	 * whole slice. But during force idle, we have siblings acting
12978 	 * like a single runqueue and hence we need to consider runnable
12979 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12980 	 * go through the forced idle rq, but that would be a perf hit.
12981 	 * We can assume that the forced idle CPU has at least
12982 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12983 	 * if we need to give up the CPU.
12984 	 */
12985 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12986 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12987 		resched_curr(rq);
12988 }
12989 
12990 /*
12991  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12992  */
12993 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12994 			 bool forceidle)
12995 {
12996 	for_each_sched_entity(se) {
12997 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12998 
12999 		if (forceidle) {
13000 			if (cfs_rq->forceidle_seq == fi_seq)
13001 				break;
13002 			cfs_rq->forceidle_seq = fi_seq;
13003 		}
13004 
13005 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
13006 	}
13007 }
13008 
13009 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
13010 {
13011 	struct sched_entity *se = &p->se;
13012 
13013 	if (p->sched_class != &fair_sched_class)
13014 		return;
13015 
13016 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
13017 }
13018 
13019 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
13020 			bool in_fi)
13021 {
13022 	struct rq *rq = task_rq(a);
13023 	const struct sched_entity *sea = &a->se;
13024 	const struct sched_entity *seb = &b->se;
13025 	struct cfs_rq *cfs_rqa;
13026 	struct cfs_rq *cfs_rqb;
13027 	s64 delta;
13028 
13029 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
13030 
13031 #ifdef CONFIG_FAIR_GROUP_SCHED
13032 	/*
13033 	 * Find an se in the hierarchy for tasks a and b, such that the se's
13034 	 * are immediate siblings.
13035 	 */
13036 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
13037 		int sea_depth = sea->depth;
13038 		int seb_depth = seb->depth;
13039 
13040 		if (sea_depth >= seb_depth)
13041 			sea = parent_entity(sea);
13042 		if (sea_depth <= seb_depth)
13043 			seb = parent_entity(seb);
13044 	}
13045 
13046 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
13047 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
13048 
13049 	cfs_rqa = sea->cfs_rq;
13050 	cfs_rqb = seb->cfs_rq;
13051 #else
13052 	cfs_rqa = &task_rq(a)->cfs;
13053 	cfs_rqb = &task_rq(b)->cfs;
13054 #endif
13055 
13056 	/*
13057 	 * Find delta after normalizing se's vruntime with its cfs_rq's
13058 	 * min_vruntime_fi, which would have been updated in prior calls
13059 	 * to se_fi_update().
13060 	 */
13061 	delta = (s64)(sea->vruntime - seb->vruntime) +
13062 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
13063 
13064 	return delta > 0;
13065 }
13066 
13067 static int task_is_throttled_fair(struct task_struct *p, int cpu)
13068 {
13069 	struct cfs_rq *cfs_rq;
13070 
13071 #ifdef CONFIG_FAIR_GROUP_SCHED
13072 	cfs_rq = task_group(p)->cfs_rq[cpu];
13073 #else
13074 	cfs_rq = &cpu_rq(cpu)->cfs;
13075 #endif
13076 	return throttled_hierarchy(cfs_rq);
13077 }
13078 #else
13079 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
13080 #endif
13081 
13082 /*
13083  * scheduler tick hitting a task of our scheduling class.
13084  *
13085  * NOTE: This function can be called remotely by the tick offload that
13086  * goes along full dynticks. Therefore no local assumption can be made
13087  * and everything must be accessed through the @rq and @curr passed in
13088  * parameters.
13089  */
13090 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13091 {
13092 	struct cfs_rq *cfs_rq;
13093 	struct sched_entity *se = &curr->se;
13094 
13095 	for_each_sched_entity(se) {
13096 		cfs_rq = cfs_rq_of(se);
13097 		entity_tick(cfs_rq, se, queued);
13098 	}
13099 
13100 	if (static_branch_unlikely(&sched_numa_balancing))
13101 		task_tick_numa(rq, curr);
13102 
13103 	update_misfit_status(curr, rq);
13104 	check_update_overutilized_status(task_rq(curr));
13105 
13106 	task_tick_core(rq, curr);
13107 }
13108 
13109 /*
13110  * called on fork with the child task as argument from the parent's context
13111  *  - child not yet on the tasklist
13112  *  - preemption disabled
13113  */
13114 static void task_fork_fair(struct task_struct *p)
13115 {
13116 	set_task_max_allowed_capacity(p);
13117 }
13118 
13119 /*
13120  * Priority of the task has changed. Check to see if we preempt
13121  * the current task.
13122  */
13123 static void
13124 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
13125 {
13126 	if (!task_on_rq_queued(p))
13127 		return;
13128 
13129 	if (rq->cfs.nr_running == 1)
13130 		return;
13131 
13132 	/*
13133 	 * Reschedule if we are currently running on this runqueue and
13134 	 * our priority decreased, or if we are not currently running on
13135 	 * this runqueue and our priority is higher than the current's
13136 	 */
13137 	if (task_current_donor(rq, p)) {
13138 		if (p->prio > oldprio)
13139 			resched_curr(rq);
13140 	} else
13141 		wakeup_preempt(rq, p, 0);
13142 }
13143 
13144 #ifdef CONFIG_FAIR_GROUP_SCHED
13145 /*
13146  * Propagate the changes of the sched_entity across the tg tree to make it
13147  * visible to the root
13148  */
13149 static void propagate_entity_cfs_rq(struct sched_entity *se)
13150 {
13151 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13152 
13153 	if (cfs_rq_throttled(cfs_rq))
13154 		return;
13155 
13156 	if (!throttled_hierarchy(cfs_rq))
13157 		list_add_leaf_cfs_rq(cfs_rq);
13158 
13159 	/* Start to propagate at parent */
13160 	se = se->parent;
13161 
13162 	for_each_sched_entity(se) {
13163 		cfs_rq = cfs_rq_of(se);
13164 
13165 		update_load_avg(cfs_rq, se, UPDATE_TG);
13166 
13167 		if (cfs_rq_throttled(cfs_rq))
13168 			break;
13169 
13170 		if (!throttled_hierarchy(cfs_rq))
13171 			list_add_leaf_cfs_rq(cfs_rq);
13172 	}
13173 }
13174 #else
13175 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13176 #endif
13177 
13178 static void detach_entity_cfs_rq(struct sched_entity *se)
13179 {
13180 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13181 
13182 #ifdef CONFIG_SMP
13183 	/*
13184 	 * In case the task sched_avg hasn't been attached:
13185 	 * - A forked task which hasn't been woken up by wake_up_new_task().
13186 	 * - A task which has been woken up by try_to_wake_up() but is
13187 	 *   waiting for actually being woken up by sched_ttwu_pending().
13188 	 */
13189 	if (!se->avg.last_update_time)
13190 		return;
13191 #endif
13192 
13193 	/* Catch up with the cfs_rq and remove our load when we leave */
13194 	update_load_avg(cfs_rq, se, 0);
13195 	detach_entity_load_avg(cfs_rq, se);
13196 	update_tg_load_avg(cfs_rq);
13197 	propagate_entity_cfs_rq(se);
13198 }
13199 
13200 static void attach_entity_cfs_rq(struct sched_entity *se)
13201 {
13202 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13203 
13204 	/* Synchronize entity with its cfs_rq */
13205 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13206 	attach_entity_load_avg(cfs_rq, se);
13207 	update_tg_load_avg(cfs_rq);
13208 	propagate_entity_cfs_rq(se);
13209 }
13210 
13211 static void detach_task_cfs_rq(struct task_struct *p)
13212 {
13213 	struct sched_entity *se = &p->se;
13214 
13215 	detach_entity_cfs_rq(se);
13216 }
13217 
13218 static void attach_task_cfs_rq(struct task_struct *p)
13219 {
13220 	struct sched_entity *se = &p->se;
13221 
13222 	attach_entity_cfs_rq(se);
13223 }
13224 
13225 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13226 {
13227 	detach_task_cfs_rq(p);
13228 }
13229 
13230 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13231 {
13232 	SCHED_WARN_ON(p->se.sched_delayed);
13233 
13234 	attach_task_cfs_rq(p);
13235 
13236 	set_task_max_allowed_capacity(p);
13237 
13238 	if (task_on_rq_queued(p)) {
13239 		/*
13240 		 * We were most likely switched from sched_rt, so
13241 		 * kick off the schedule if running, otherwise just see
13242 		 * if we can still preempt the current task.
13243 		 */
13244 		if (task_current_donor(rq, p))
13245 			resched_curr(rq);
13246 		else
13247 			wakeup_preempt(rq, p, 0);
13248 	}
13249 }
13250 
13251 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13252 {
13253 	struct sched_entity *se = &p->se;
13254 
13255 #ifdef CONFIG_SMP
13256 	if (task_on_rq_queued(p)) {
13257 		/*
13258 		 * Move the next running task to the front of the list, so our
13259 		 * cfs_tasks list becomes MRU one.
13260 		 */
13261 		list_move(&se->group_node, &rq->cfs_tasks);
13262 	}
13263 #endif
13264 	if (!first)
13265 		return;
13266 
13267 	SCHED_WARN_ON(se->sched_delayed);
13268 
13269 	if (hrtick_enabled_fair(rq))
13270 		hrtick_start_fair(rq, p);
13271 
13272 	update_misfit_status(p, rq);
13273 	sched_fair_update_stop_tick(rq, p);
13274 }
13275 
13276 /*
13277  * Account for a task changing its policy or group.
13278  *
13279  * This routine is mostly called to set cfs_rq->curr field when a task
13280  * migrates between groups/classes.
13281  */
13282 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13283 {
13284 	struct sched_entity *se = &p->se;
13285 
13286 	for_each_sched_entity(se) {
13287 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
13288 
13289 		set_next_entity(cfs_rq, se);
13290 		/* ensure bandwidth has been allocated on our new cfs_rq */
13291 		account_cfs_rq_runtime(cfs_rq, 0);
13292 	}
13293 
13294 	__set_next_task_fair(rq, p, first);
13295 }
13296 
13297 void init_cfs_rq(struct cfs_rq *cfs_rq)
13298 {
13299 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13300 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
13301 #ifdef CONFIG_SMP
13302 	raw_spin_lock_init(&cfs_rq->removed.lock);
13303 #endif
13304 }
13305 
13306 #ifdef CONFIG_FAIR_GROUP_SCHED
13307 static void task_change_group_fair(struct task_struct *p)
13308 {
13309 	/*
13310 	 * We couldn't detach or attach a forked task which
13311 	 * hasn't been woken up by wake_up_new_task().
13312 	 */
13313 	if (READ_ONCE(p->__state) == TASK_NEW)
13314 		return;
13315 
13316 	detach_task_cfs_rq(p);
13317 
13318 #ifdef CONFIG_SMP
13319 	/* Tell se's cfs_rq has been changed -- migrated */
13320 	p->se.avg.last_update_time = 0;
13321 #endif
13322 	set_task_rq(p, task_cpu(p));
13323 	attach_task_cfs_rq(p);
13324 }
13325 
13326 void free_fair_sched_group(struct task_group *tg)
13327 {
13328 	int i;
13329 
13330 	for_each_possible_cpu(i) {
13331 		if (tg->cfs_rq)
13332 			kfree(tg->cfs_rq[i]);
13333 		if (tg->se)
13334 			kfree(tg->se[i]);
13335 	}
13336 
13337 	kfree(tg->cfs_rq);
13338 	kfree(tg->se);
13339 }
13340 
13341 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13342 {
13343 	struct sched_entity *se;
13344 	struct cfs_rq *cfs_rq;
13345 	int i;
13346 
13347 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13348 	if (!tg->cfs_rq)
13349 		goto err;
13350 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13351 	if (!tg->se)
13352 		goto err;
13353 
13354 	tg->shares = NICE_0_LOAD;
13355 
13356 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13357 
13358 	for_each_possible_cpu(i) {
13359 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13360 				      GFP_KERNEL, cpu_to_node(i));
13361 		if (!cfs_rq)
13362 			goto err;
13363 
13364 		se = kzalloc_node(sizeof(struct sched_entity_stats),
13365 				  GFP_KERNEL, cpu_to_node(i));
13366 		if (!se)
13367 			goto err_free_rq;
13368 
13369 		init_cfs_rq(cfs_rq);
13370 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13371 		init_entity_runnable_average(se);
13372 	}
13373 
13374 	return 1;
13375 
13376 err_free_rq:
13377 	kfree(cfs_rq);
13378 err:
13379 	return 0;
13380 }
13381 
13382 void online_fair_sched_group(struct task_group *tg)
13383 {
13384 	struct sched_entity *se;
13385 	struct rq_flags rf;
13386 	struct rq *rq;
13387 	int i;
13388 
13389 	for_each_possible_cpu(i) {
13390 		rq = cpu_rq(i);
13391 		se = tg->se[i];
13392 		rq_lock_irq(rq, &rf);
13393 		update_rq_clock(rq);
13394 		attach_entity_cfs_rq(se);
13395 		sync_throttle(tg, i);
13396 		rq_unlock_irq(rq, &rf);
13397 	}
13398 }
13399 
13400 void unregister_fair_sched_group(struct task_group *tg)
13401 {
13402 	int cpu;
13403 
13404 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13405 
13406 	for_each_possible_cpu(cpu) {
13407 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13408 		struct sched_entity *se = tg->se[cpu];
13409 		struct rq *rq = cpu_rq(cpu);
13410 
13411 		if (se) {
13412 			if (se->sched_delayed) {
13413 				guard(rq_lock_irqsave)(rq);
13414 				if (se->sched_delayed) {
13415 					update_rq_clock(rq);
13416 					dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13417 				}
13418 				list_del_leaf_cfs_rq(cfs_rq);
13419 			}
13420 			remove_entity_load_avg(se);
13421 		}
13422 
13423 		/*
13424 		 * Only empty task groups can be destroyed; so we can speculatively
13425 		 * check on_list without danger of it being re-added.
13426 		 */
13427 		if (cfs_rq->on_list) {
13428 			guard(rq_lock_irqsave)(rq);
13429 			list_del_leaf_cfs_rq(cfs_rq);
13430 		}
13431 	}
13432 }
13433 
13434 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13435 			struct sched_entity *se, int cpu,
13436 			struct sched_entity *parent)
13437 {
13438 	struct rq *rq = cpu_rq(cpu);
13439 
13440 	cfs_rq->tg = tg;
13441 	cfs_rq->rq = rq;
13442 	init_cfs_rq_runtime(cfs_rq);
13443 
13444 	tg->cfs_rq[cpu] = cfs_rq;
13445 	tg->se[cpu] = se;
13446 
13447 	/* se could be NULL for root_task_group */
13448 	if (!se)
13449 		return;
13450 
13451 	if (!parent) {
13452 		se->cfs_rq = &rq->cfs;
13453 		se->depth = 0;
13454 	} else {
13455 		se->cfs_rq = parent->my_q;
13456 		se->depth = parent->depth + 1;
13457 	}
13458 
13459 	se->my_q = cfs_rq;
13460 	/* guarantee group entities always have weight */
13461 	update_load_set(&se->load, NICE_0_LOAD);
13462 	se->parent = parent;
13463 }
13464 
13465 static DEFINE_MUTEX(shares_mutex);
13466 
13467 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13468 {
13469 	int i;
13470 
13471 	lockdep_assert_held(&shares_mutex);
13472 
13473 	/*
13474 	 * We can't change the weight of the root cgroup.
13475 	 */
13476 	if (!tg->se[0])
13477 		return -EINVAL;
13478 
13479 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13480 
13481 	if (tg->shares == shares)
13482 		return 0;
13483 
13484 	tg->shares = shares;
13485 	for_each_possible_cpu(i) {
13486 		struct rq *rq = cpu_rq(i);
13487 		struct sched_entity *se = tg->se[i];
13488 		struct rq_flags rf;
13489 
13490 		/* Propagate contribution to hierarchy */
13491 		rq_lock_irqsave(rq, &rf);
13492 		update_rq_clock(rq);
13493 		for_each_sched_entity(se) {
13494 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13495 			update_cfs_group(se);
13496 		}
13497 		rq_unlock_irqrestore(rq, &rf);
13498 	}
13499 
13500 	return 0;
13501 }
13502 
13503 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13504 {
13505 	int ret;
13506 
13507 	mutex_lock(&shares_mutex);
13508 	if (tg_is_idle(tg))
13509 		ret = -EINVAL;
13510 	else
13511 		ret = __sched_group_set_shares(tg, shares);
13512 	mutex_unlock(&shares_mutex);
13513 
13514 	return ret;
13515 }
13516 
13517 int sched_group_set_idle(struct task_group *tg, long idle)
13518 {
13519 	int i;
13520 
13521 	if (tg == &root_task_group)
13522 		return -EINVAL;
13523 
13524 	if (idle < 0 || idle > 1)
13525 		return -EINVAL;
13526 
13527 	mutex_lock(&shares_mutex);
13528 
13529 	if (tg->idle == idle) {
13530 		mutex_unlock(&shares_mutex);
13531 		return 0;
13532 	}
13533 
13534 	tg->idle = idle;
13535 
13536 	for_each_possible_cpu(i) {
13537 		struct rq *rq = cpu_rq(i);
13538 		struct sched_entity *se = tg->se[i];
13539 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13540 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13541 		long idle_task_delta;
13542 		struct rq_flags rf;
13543 
13544 		rq_lock_irqsave(rq, &rf);
13545 
13546 		grp_cfs_rq->idle = idle;
13547 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13548 			goto next_cpu;
13549 
13550 		if (se->on_rq) {
13551 			parent_cfs_rq = cfs_rq_of(se);
13552 			if (cfs_rq_is_idle(grp_cfs_rq))
13553 				parent_cfs_rq->idle_nr_running++;
13554 			else
13555 				parent_cfs_rq->idle_nr_running--;
13556 		}
13557 
13558 		idle_task_delta = grp_cfs_rq->h_nr_running -
13559 				  grp_cfs_rq->idle_h_nr_running;
13560 		if (!cfs_rq_is_idle(grp_cfs_rq))
13561 			idle_task_delta *= -1;
13562 
13563 		for_each_sched_entity(se) {
13564 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13565 
13566 			if (!se->on_rq)
13567 				break;
13568 
13569 			cfs_rq->idle_h_nr_running += idle_task_delta;
13570 
13571 			/* Already accounted at parent level and above. */
13572 			if (cfs_rq_is_idle(cfs_rq))
13573 				break;
13574 		}
13575 
13576 next_cpu:
13577 		rq_unlock_irqrestore(rq, &rf);
13578 	}
13579 
13580 	/* Idle groups have minimum weight. */
13581 	if (tg_is_idle(tg))
13582 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13583 	else
13584 		__sched_group_set_shares(tg, NICE_0_LOAD);
13585 
13586 	mutex_unlock(&shares_mutex);
13587 	return 0;
13588 }
13589 
13590 #endif /* CONFIG_FAIR_GROUP_SCHED */
13591 
13592 
13593 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13594 {
13595 	struct sched_entity *se = &task->se;
13596 	unsigned int rr_interval = 0;
13597 
13598 	/*
13599 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13600 	 * idle runqueue:
13601 	 */
13602 	if (rq->cfs.load.weight)
13603 		rr_interval = NS_TO_JIFFIES(se->slice);
13604 
13605 	return rr_interval;
13606 }
13607 
13608 /*
13609  * All the scheduling class methods:
13610  */
13611 DEFINE_SCHED_CLASS(fair) = {
13612 
13613 	.enqueue_task		= enqueue_task_fair,
13614 	.dequeue_task		= dequeue_task_fair,
13615 	.yield_task		= yield_task_fair,
13616 	.yield_to_task		= yield_to_task_fair,
13617 
13618 	.wakeup_preempt		= check_preempt_wakeup_fair,
13619 
13620 	.pick_task		= pick_task_fair,
13621 	.pick_next_task		= __pick_next_task_fair,
13622 	.put_prev_task		= put_prev_task_fair,
13623 	.set_next_task          = set_next_task_fair,
13624 
13625 #ifdef CONFIG_SMP
13626 	.balance		= balance_fair,
13627 	.select_task_rq		= select_task_rq_fair,
13628 	.migrate_task_rq	= migrate_task_rq_fair,
13629 
13630 	.rq_online		= rq_online_fair,
13631 	.rq_offline		= rq_offline_fair,
13632 
13633 	.task_dead		= task_dead_fair,
13634 	.set_cpus_allowed	= set_cpus_allowed_fair,
13635 #endif
13636 
13637 	.task_tick		= task_tick_fair,
13638 	.task_fork		= task_fork_fair,
13639 
13640 	.reweight_task		= reweight_task_fair,
13641 	.prio_changed		= prio_changed_fair,
13642 	.switched_from		= switched_from_fair,
13643 	.switched_to		= switched_to_fair,
13644 
13645 	.get_rr_interval	= get_rr_interval_fair,
13646 
13647 	.update_curr		= update_curr_fair,
13648 
13649 #ifdef CONFIG_FAIR_GROUP_SCHED
13650 	.task_change_group	= task_change_group_fair,
13651 #endif
13652 
13653 #ifdef CONFIG_SCHED_CORE
13654 	.task_is_throttled	= task_is_throttled_fair,
13655 #endif
13656 
13657 #ifdef CONFIG_UCLAMP_TASK
13658 	.uclamp_enabled		= 1,
13659 #endif
13660 };
13661 
13662 #ifdef CONFIG_SCHED_DEBUG
13663 void print_cfs_stats(struct seq_file *m, int cpu)
13664 {
13665 	struct cfs_rq *cfs_rq, *pos;
13666 
13667 	rcu_read_lock();
13668 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13669 		print_cfs_rq(m, cpu, cfs_rq);
13670 	rcu_read_unlock();
13671 }
13672 
13673 #ifdef CONFIG_NUMA_BALANCING
13674 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13675 {
13676 	int node;
13677 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13678 	struct numa_group *ng;
13679 
13680 	rcu_read_lock();
13681 	ng = rcu_dereference(p->numa_group);
13682 	for_each_online_node(node) {
13683 		if (p->numa_faults) {
13684 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13685 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13686 		}
13687 		if (ng) {
13688 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13689 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13690 		}
13691 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13692 	}
13693 	rcu_read_unlock();
13694 }
13695 #endif /* CONFIG_NUMA_BALANCING */
13696 #endif /* CONFIG_SCHED_DEBUG */
13697 
13698 __init void init_sched_fair_class(void)
13699 {
13700 #ifdef CONFIG_SMP
13701 	int i;
13702 
13703 	for_each_possible_cpu(i) {
13704 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13705 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13706 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13707 					GFP_KERNEL, cpu_to_node(i));
13708 
13709 #ifdef CONFIG_CFS_BANDWIDTH
13710 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13711 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13712 #endif
13713 	}
13714 
13715 	open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13716 
13717 #ifdef CONFIG_NO_HZ_COMMON
13718 	nohz.next_balance = jiffies;
13719 	nohz.next_blocked = jiffies;
13720 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13721 #endif
13722 #endif /* SMP */
13723 
13724 }
13725