1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 #include <linux/rbtree_augmented.h> 51 52 #include <asm/switch_to.h> 53 54 #include "sched.h" 55 #include "stats.h" 56 #include "autogroup.h" 57 58 /* 59 * The initial- and re-scaling of tunables is configurable 60 * 61 * Options are: 62 * 63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 64 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) 65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 66 * 67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 68 */ 69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 70 71 /* 72 * Minimal preemption granularity for CPU-bound tasks: 73 * 74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 75 */ 76 unsigned int sysctl_sched_base_slice = 750000ULL; 77 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 78 79 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 80 81 static int __init setup_sched_thermal_decay_shift(char *str) 82 { 83 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 84 return 1; 85 } 86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 87 88 #ifdef CONFIG_SMP 89 /* 90 * For asym packing, by default the lower numbered CPU has higher priority. 91 */ 92 int __weak arch_asym_cpu_priority(int cpu) 93 { 94 return -cpu; 95 } 96 97 /* 98 * The margin used when comparing utilization with CPU capacity. 99 * 100 * (default: ~20%) 101 */ 102 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 103 104 /* 105 * The margin used when comparing CPU capacities. 106 * is 'cap1' noticeably greater than 'cap2' 107 * 108 * (default: ~5%) 109 */ 110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 111 #endif 112 113 #ifdef CONFIG_CFS_BANDWIDTH 114 /* 115 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 116 * each time a cfs_rq requests quota. 117 * 118 * Note: in the case that the slice exceeds the runtime remaining (either due 119 * to consumption or the quota being specified to be smaller than the slice) 120 * we will always only issue the remaining available time. 121 * 122 * (default: 5 msec, units: microseconds) 123 */ 124 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 125 #endif 126 127 #ifdef CONFIG_NUMA_BALANCING 128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 129 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 130 #endif 131 132 #ifdef CONFIG_SYSCTL 133 static struct ctl_table sched_fair_sysctls[] = { 134 #ifdef CONFIG_CFS_BANDWIDTH 135 { 136 .procname = "sched_cfs_bandwidth_slice_us", 137 .data = &sysctl_sched_cfs_bandwidth_slice, 138 .maxlen = sizeof(unsigned int), 139 .mode = 0644, 140 .proc_handler = proc_dointvec_minmax, 141 .extra1 = SYSCTL_ONE, 142 }, 143 #endif 144 #ifdef CONFIG_NUMA_BALANCING 145 { 146 .procname = "numa_balancing_promote_rate_limit_MBps", 147 .data = &sysctl_numa_balancing_promote_rate_limit, 148 .maxlen = sizeof(unsigned int), 149 .mode = 0644, 150 .proc_handler = proc_dointvec_minmax, 151 .extra1 = SYSCTL_ZERO, 152 }, 153 #endif /* CONFIG_NUMA_BALANCING */ 154 }; 155 156 static int __init sched_fair_sysctl_init(void) 157 { 158 register_sysctl_init("kernel", sched_fair_sysctls); 159 return 0; 160 } 161 late_initcall(sched_fair_sysctl_init); 162 #endif 163 164 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 165 { 166 lw->weight += inc; 167 lw->inv_weight = 0; 168 } 169 170 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 171 { 172 lw->weight -= dec; 173 lw->inv_weight = 0; 174 } 175 176 static inline void update_load_set(struct load_weight *lw, unsigned long w) 177 { 178 lw->weight = w; 179 lw->inv_weight = 0; 180 } 181 182 /* 183 * Increase the granularity value when there are more CPUs, 184 * because with more CPUs the 'effective latency' as visible 185 * to users decreases. But the relationship is not linear, 186 * so pick a second-best guess by going with the log2 of the 187 * number of CPUs. 188 * 189 * This idea comes from the SD scheduler of Con Kolivas: 190 */ 191 static unsigned int get_update_sysctl_factor(void) 192 { 193 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 194 unsigned int factor; 195 196 switch (sysctl_sched_tunable_scaling) { 197 case SCHED_TUNABLESCALING_NONE: 198 factor = 1; 199 break; 200 case SCHED_TUNABLESCALING_LINEAR: 201 factor = cpus; 202 break; 203 case SCHED_TUNABLESCALING_LOG: 204 default: 205 factor = 1 + ilog2(cpus); 206 break; 207 } 208 209 return factor; 210 } 211 212 static void update_sysctl(void) 213 { 214 unsigned int factor = get_update_sysctl_factor(); 215 216 #define SET_SYSCTL(name) \ 217 (sysctl_##name = (factor) * normalized_sysctl_##name) 218 SET_SYSCTL(sched_base_slice); 219 #undef SET_SYSCTL 220 } 221 222 void __init sched_init_granularity(void) 223 { 224 update_sysctl(); 225 } 226 227 #define WMULT_CONST (~0U) 228 #define WMULT_SHIFT 32 229 230 static void __update_inv_weight(struct load_weight *lw) 231 { 232 unsigned long w; 233 234 if (likely(lw->inv_weight)) 235 return; 236 237 w = scale_load_down(lw->weight); 238 239 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 240 lw->inv_weight = 1; 241 else if (unlikely(!w)) 242 lw->inv_weight = WMULT_CONST; 243 else 244 lw->inv_weight = WMULT_CONST / w; 245 } 246 247 /* 248 * delta_exec * weight / lw.weight 249 * OR 250 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 251 * 252 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 253 * we're guaranteed shift stays positive because inv_weight is guaranteed to 254 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 255 * 256 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 257 * weight/lw.weight <= 1, and therefore our shift will also be positive. 258 */ 259 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 260 { 261 u64 fact = scale_load_down(weight); 262 u32 fact_hi = (u32)(fact >> 32); 263 int shift = WMULT_SHIFT; 264 int fs; 265 266 __update_inv_weight(lw); 267 268 if (unlikely(fact_hi)) { 269 fs = fls(fact_hi); 270 shift -= fs; 271 fact >>= fs; 272 } 273 274 fact = mul_u32_u32(fact, lw->inv_weight); 275 276 fact_hi = (u32)(fact >> 32); 277 if (fact_hi) { 278 fs = fls(fact_hi); 279 shift -= fs; 280 fact >>= fs; 281 } 282 283 return mul_u64_u32_shr(delta_exec, fact, shift); 284 } 285 286 /* 287 * delta /= w 288 */ 289 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 290 { 291 if (unlikely(se->load.weight != NICE_0_LOAD)) 292 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 293 294 return delta; 295 } 296 297 const struct sched_class fair_sched_class; 298 299 /************************************************************** 300 * CFS operations on generic schedulable entities: 301 */ 302 303 #ifdef CONFIG_FAIR_GROUP_SCHED 304 305 /* Walk up scheduling entities hierarchy */ 306 #define for_each_sched_entity(se) \ 307 for (; se; se = se->parent) 308 309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 310 { 311 struct rq *rq = rq_of(cfs_rq); 312 int cpu = cpu_of(rq); 313 314 if (cfs_rq->on_list) 315 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 316 317 cfs_rq->on_list = 1; 318 319 /* 320 * Ensure we either appear before our parent (if already 321 * enqueued) or force our parent to appear after us when it is 322 * enqueued. The fact that we always enqueue bottom-up 323 * reduces this to two cases and a special case for the root 324 * cfs_rq. Furthermore, it also means that we will always reset 325 * tmp_alone_branch either when the branch is connected 326 * to a tree or when we reach the top of the tree 327 */ 328 if (cfs_rq->tg->parent && 329 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 330 /* 331 * If parent is already on the list, we add the child 332 * just before. Thanks to circular linked property of 333 * the list, this means to put the child at the tail 334 * of the list that starts by parent. 335 */ 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 337 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 338 /* 339 * The branch is now connected to its tree so we can 340 * reset tmp_alone_branch to the beginning of the 341 * list. 342 */ 343 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 344 return true; 345 } 346 347 if (!cfs_rq->tg->parent) { 348 /* 349 * cfs rq without parent should be put 350 * at the tail of the list. 351 */ 352 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 353 &rq->leaf_cfs_rq_list); 354 /* 355 * We have reach the top of a tree so we can reset 356 * tmp_alone_branch to the beginning of the list. 357 */ 358 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 359 return true; 360 } 361 362 /* 363 * The parent has not already been added so we want to 364 * make sure that it will be put after us. 365 * tmp_alone_branch points to the begin of the branch 366 * where we will add parent. 367 */ 368 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 369 /* 370 * update tmp_alone_branch to points to the new begin 371 * of the branch 372 */ 373 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 374 return false; 375 } 376 377 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 378 { 379 if (cfs_rq->on_list) { 380 struct rq *rq = rq_of(cfs_rq); 381 382 /* 383 * With cfs_rq being unthrottled/throttled during an enqueue, 384 * it can happen the tmp_alone_branch points to the leaf that 385 * we finally want to delete. In this case, tmp_alone_branch moves 386 * to the prev element but it will point to rq->leaf_cfs_rq_list 387 * at the end of the enqueue. 388 */ 389 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 390 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 391 392 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 393 cfs_rq->on_list = 0; 394 } 395 } 396 397 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 398 { 399 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 400 } 401 402 /* Iterate through all leaf cfs_rq's on a runqueue */ 403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 404 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 405 leaf_cfs_rq_list) 406 407 /* Do the two (enqueued) entities belong to the same group ? */ 408 static inline struct cfs_rq * 409 is_same_group(struct sched_entity *se, struct sched_entity *pse) 410 { 411 if (se->cfs_rq == pse->cfs_rq) 412 return se->cfs_rq; 413 414 return NULL; 415 } 416 417 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 418 { 419 return se->parent; 420 } 421 422 static void 423 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 424 { 425 int se_depth, pse_depth; 426 427 /* 428 * preemption test can be made between sibling entities who are in the 429 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 430 * both tasks until we find their ancestors who are siblings of common 431 * parent. 432 */ 433 434 /* First walk up until both entities are at same depth */ 435 se_depth = (*se)->depth; 436 pse_depth = (*pse)->depth; 437 438 while (se_depth > pse_depth) { 439 se_depth--; 440 *se = parent_entity(*se); 441 } 442 443 while (pse_depth > se_depth) { 444 pse_depth--; 445 *pse = parent_entity(*pse); 446 } 447 448 while (!is_same_group(*se, *pse)) { 449 *se = parent_entity(*se); 450 *pse = parent_entity(*pse); 451 } 452 } 453 454 static int tg_is_idle(struct task_group *tg) 455 { 456 return tg->idle > 0; 457 } 458 459 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 460 { 461 return cfs_rq->idle > 0; 462 } 463 464 static int se_is_idle(struct sched_entity *se) 465 { 466 if (entity_is_task(se)) 467 return task_has_idle_policy(task_of(se)); 468 return cfs_rq_is_idle(group_cfs_rq(se)); 469 } 470 471 #else /* !CONFIG_FAIR_GROUP_SCHED */ 472 473 #define for_each_sched_entity(se) \ 474 for (; se; se = NULL) 475 476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 477 { 478 return true; 479 } 480 481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 482 { 483 } 484 485 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 486 { 487 } 488 489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 490 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 491 492 static inline struct sched_entity *parent_entity(struct sched_entity *se) 493 { 494 return NULL; 495 } 496 497 static inline void 498 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 499 { 500 } 501 502 static inline int tg_is_idle(struct task_group *tg) 503 { 504 return 0; 505 } 506 507 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 508 { 509 return 0; 510 } 511 512 static int se_is_idle(struct sched_entity *se) 513 { 514 return task_has_idle_policy(task_of(se)); 515 } 516 517 #endif /* CONFIG_FAIR_GROUP_SCHED */ 518 519 static __always_inline 520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 521 522 /************************************************************** 523 * Scheduling class tree data structure manipulation methods: 524 */ 525 526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 527 { 528 s64 delta = (s64)(vruntime - max_vruntime); 529 if (delta > 0) 530 max_vruntime = vruntime; 531 532 return max_vruntime; 533 } 534 535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 536 { 537 s64 delta = (s64)(vruntime - min_vruntime); 538 if (delta < 0) 539 min_vruntime = vruntime; 540 541 return min_vruntime; 542 } 543 544 static inline bool entity_before(const struct sched_entity *a, 545 const struct sched_entity *b) 546 { 547 /* 548 * Tiebreak on vruntime seems unnecessary since it can 549 * hardly happen. 550 */ 551 return (s64)(a->deadline - b->deadline) < 0; 552 } 553 554 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 555 { 556 return (s64)(se->vruntime - cfs_rq->min_vruntime); 557 } 558 559 #define __node_2_se(node) \ 560 rb_entry((node), struct sched_entity, run_node) 561 562 /* 563 * Compute virtual time from the per-task service numbers: 564 * 565 * Fair schedulers conserve lag: 566 * 567 * \Sum lag_i = 0 568 * 569 * Where lag_i is given by: 570 * 571 * lag_i = S - s_i = w_i * (V - v_i) 572 * 573 * Where S is the ideal service time and V is it's virtual time counterpart. 574 * Therefore: 575 * 576 * \Sum lag_i = 0 577 * \Sum w_i * (V - v_i) = 0 578 * \Sum w_i * V - w_i * v_i = 0 579 * 580 * From which we can solve an expression for V in v_i (which we have in 581 * se->vruntime): 582 * 583 * \Sum v_i * w_i \Sum v_i * w_i 584 * V = -------------- = -------------- 585 * \Sum w_i W 586 * 587 * Specifically, this is the weighted average of all entity virtual runtimes. 588 * 589 * [[ NOTE: this is only equal to the ideal scheduler under the condition 590 * that join/leave operations happen at lag_i = 0, otherwise the 591 * virtual time has non-contiguous motion equivalent to: 592 * 593 * V +-= lag_i / W 594 * 595 * Also see the comment in place_entity() that deals with this. ]] 596 * 597 * However, since v_i is u64, and the multiplication could easily overflow 598 * transform it into a relative form that uses smaller quantities: 599 * 600 * Substitute: v_i == (v_i - v0) + v0 601 * 602 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 603 * V = ---------------------------- = --------------------- + v0 604 * W W 605 * 606 * Which we track using: 607 * 608 * v0 := cfs_rq->min_vruntime 609 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 610 * \Sum w_i := cfs_rq->avg_load 611 * 612 * Since min_vruntime is a monotonic increasing variable that closely tracks 613 * the per-task service, these deltas: (v_i - v), will be in the order of the 614 * maximal (virtual) lag induced in the system due to quantisation. 615 * 616 * Also, we use scale_load_down() to reduce the size. 617 * 618 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 619 */ 620 static void 621 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 622 { 623 unsigned long weight = scale_load_down(se->load.weight); 624 s64 key = entity_key(cfs_rq, se); 625 626 cfs_rq->avg_vruntime += key * weight; 627 cfs_rq->avg_load += weight; 628 } 629 630 static void 631 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 632 { 633 unsigned long weight = scale_load_down(se->load.weight); 634 s64 key = entity_key(cfs_rq, se); 635 636 cfs_rq->avg_vruntime -= key * weight; 637 cfs_rq->avg_load -= weight; 638 } 639 640 static inline 641 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 642 { 643 /* 644 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 645 */ 646 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 647 } 648 649 /* 650 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 651 * For this to be so, the result of this function must have a left bias. 652 */ 653 u64 avg_vruntime(struct cfs_rq *cfs_rq) 654 { 655 struct sched_entity *curr = cfs_rq->curr; 656 s64 avg = cfs_rq->avg_vruntime; 657 long load = cfs_rq->avg_load; 658 659 if (curr && curr->on_rq) { 660 unsigned long weight = scale_load_down(curr->load.weight); 661 662 avg += entity_key(cfs_rq, curr) * weight; 663 load += weight; 664 } 665 666 if (load) { 667 /* sign flips effective floor / ceiling */ 668 if (avg < 0) 669 avg -= (load - 1); 670 avg = div_s64(avg, load); 671 } 672 673 return cfs_rq->min_vruntime + avg; 674 } 675 676 /* 677 * lag_i = S - s_i = w_i * (V - v_i) 678 * 679 * However, since V is approximated by the weighted average of all entities it 680 * is possible -- by addition/removal/reweight to the tree -- to move V around 681 * and end up with a larger lag than we started with. 682 * 683 * Limit this to either double the slice length with a minimum of TICK_NSEC 684 * since that is the timing granularity. 685 * 686 * EEVDF gives the following limit for a steady state system: 687 * 688 * -r_max < lag < max(r_max, q) 689 * 690 * XXX could add max_slice to the augmented data to track this. 691 */ 692 static s64 entity_lag(u64 avruntime, struct sched_entity *se) 693 { 694 s64 vlag, limit; 695 696 vlag = avruntime - se->vruntime; 697 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 698 699 return clamp(vlag, -limit, limit); 700 } 701 702 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 703 { 704 SCHED_WARN_ON(!se->on_rq); 705 706 se->vlag = entity_lag(avg_vruntime(cfs_rq), se); 707 } 708 709 /* 710 * Entity is eligible once it received less service than it ought to have, 711 * eg. lag >= 0. 712 * 713 * lag_i = S - s_i = w_i*(V - v_i) 714 * 715 * lag_i >= 0 -> V >= v_i 716 * 717 * \Sum (v_i - v)*w_i 718 * V = ------------------ + v 719 * \Sum w_i 720 * 721 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 722 * 723 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 724 * to the loss in precision caused by the division. 725 */ 726 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 727 { 728 struct sched_entity *curr = cfs_rq->curr; 729 s64 avg = cfs_rq->avg_vruntime; 730 long load = cfs_rq->avg_load; 731 732 if (curr && curr->on_rq) { 733 unsigned long weight = scale_load_down(curr->load.weight); 734 735 avg += entity_key(cfs_rq, curr) * weight; 736 load += weight; 737 } 738 739 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 740 } 741 742 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 743 { 744 return vruntime_eligible(cfs_rq, se->vruntime); 745 } 746 747 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 748 { 749 u64 min_vruntime = cfs_rq->min_vruntime; 750 /* 751 * open coded max_vruntime() to allow updating avg_vruntime 752 */ 753 s64 delta = (s64)(vruntime - min_vruntime); 754 if (delta > 0) { 755 avg_vruntime_update(cfs_rq, delta); 756 min_vruntime = vruntime; 757 } 758 return min_vruntime; 759 } 760 761 static void update_min_vruntime(struct cfs_rq *cfs_rq) 762 { 763 struct sched_entity *se = __pick_root_entity(cfs_rq); 764 struct sched_entity *curr = cfs_rq->curr; 765 u64 vruntime = cfs_rq->min_vruntime; 766 767 if (curr) { 768 if (curr->on_rq) 769 vruntime = curr->vruntime; 770 else 771 curr = NULL; 772 } 773 774 if (se) { 775 if (!curr) 776 vruntime = se->min_vruntime; 777 else 778 vruntime = min_vruntime(vruntime, se->min_vruntime); 779 } 780 781 /* ensure we never gain time by being placed backwards. */ 782 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime); 783 } 784 785 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) 786 { 787 struct sched_entity *root = __pick_root_entity(cfs_rq); 788 struct sched_entity *curr = cfs_rq->curr; 789 u64 min_slice = ~0ULL; 790 791 if (curr && curr->on_rq) 792 min_slice = curr->slice; 793 794 if (root) 795 min_slice = min(min_slice, root->min_slice); 796 797 return min_slice; 798 } 799 800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 801 { 802 return entity_before(__node_2_se(a), __node_2_se(b)); 803 } 804 805 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 806 807 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 808 { 809 if (node) { 810 struct sched_entity *rse = __node_2_se(node); 811 if (vruntime_gt(min_vruntime, se, rse)) 812 se->min_vruntime = rse->min_vruntime; 813 } 814 } 815 816 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) 817 { 818 if (node) { 819 struct sched_entity *rse = __node_2_se(node); 820 if (rse->min_slice < se->min_slice) 821 se->min_slice = rse->min_slice; 822 } 823 } 824 825 /* 826 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 827 */ 828 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 829 { 830 u64 old_min_vruntime = se->min_vruntime; 831 u64 old_min_slice = se->min_slice; 832 struct rb_node *node = &se->run_node; 833 834 se->min_vruntime = se->vruntime; 835 __min_vruntime_update(se, node->rb_right); 836 __min_vruntime_update(se, node->rb_left); 837 838 se->min_slice = se->slice; 839 __min_slice_update(se, node->rb_right); 840 __min_slice_update(se, node->rb_left); 841 842 return se->min_vruntime == old_min_vruntime && 843 se->min_slice == old_min_slice; 844 } 845 846 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 847 run_node, min_vruntime, min_vruntime_update); 848 849 /* 850 * Enqueue an entity into the rb-tree: 851 */ 852 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 853 { 854 avg_vruntime_add(cfs_rq, se); 855 se->min_vruntime = se->vruntime; 856 se->min_slice = se->slice; 857 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 858 __entity_less, &min_vruntime_cb); 859 } 860 861 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 862 { 863 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 864 &min_vruntime_cb); 865 avg_vruntime_sub(cfs_rq, se); 866 } 867 868 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 869 { 870 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 871 872 if (!root) 873 return NULL; 874 875 return __node_2_se(root); 876 } 877 878 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 879 { 880 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 881 882 if (!left) 883 return NULL; 884 885 return __node_2_se(left); 886 } 887 888 /* 889 * Earliest Eligible Virtual Deadline First 890 * 891 * In order to provide latency guarantees for different request sizes 892 * EEVDF selects the best runnable task from two criteria: 893 * 894 * 1) the task must be eligible (must be owed service) 895 * 896 * 2) from those tasks that meet 1), we select the one 897 * with the earliest virtual deadline. 898 * 899 * We can do this in O(log n) time due to an augmented RB-tree. The 900 * tree keeps the entries sorted on deadline, but also functions as a 901 * heap based on the vruntime by keeping: 902 * 903 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 904 * 905 * Which allows tree pruning through eligibility. 906 */ 907 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 908 { 909 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 910 struct sched_entity *se = __pick_first_entity(cfs_rq); 911 struct sched_entity *curr = cfs_rq->curr; 912 struct sched_entity *best = NULL; 913 914 /* 915 * We can safely skip eligibility check if there is only one entity 916 * in this cfs_rq, saving some cycles. 917 */ 918 if (cfs_rq->nr_running == 1) 919 return curr && curr->on_rq ? curr : se; 920 921 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 922 curr = NULL; 923 924 /* 925 * Once selected, run a task until it either becomes non-eligible or 926 * until it gets a new slice. See the HACK in set_next_entity(). 927 */ 928 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 929 return curr; 930 931 /* Pick the leftmost entity if it's eligible */ 932 if (se && entity_eligible(cfs_rq, se)) { 933 best = se; 934 goto found; 935 } 936 937 /* Heap search for the EEVD entity */ 938 while (node) { 939 struct rb_node *left = node->rb_left; 940 941 /* 942 * Eligible entities in left subtree are always better 943 * choices, since they have earlier deadlines. 944 */ 945 if (left && vruntime_eligible(cfs_rq, 946 __node_2_se(left)->min_vruntime)) { 947 node = left; 948 continue; 949 } 950 951 se = __node_2_se(node); 952 953 /* 954 * The left subtree either is empty or has no eligible 955 * entity, so check the current node since it is the one 956 * with earliest deadline that might be eligible. 957 */ 958 if (entity_eligible(cfs_rq, se)) { 959 best = se; 960 break; 961 } 962 963 node = node->rb_right; 964 } 965 found: 966 if (!best || (curr && entity_before(curr, best))) 967 best = curr; 968 969 return best; 970 } 971 972 #ifdef CONFIG_SCHED_DEBUG 973 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 974 { 975 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 976 977 if (!last) 978 return NULL; 979 980 return __node_2_se(last); 981 } 982 983 /************************************************************** 984 * Scheduling class statistics methods: 985 */ 986 #ifdef CONFIG_SMP 987 int sched_update_scaling(void) 988 { 989 unsigned int factor = get_update_sysctl_factor(); 990 991 #define WRT_SYSCTL(name) \ 992 (normalized_sysctl_##name = sysctl_##name / (factor)) 993 WRT_SYSCTL(sched_base_slice); 994 #undef WRT_SYSCTL 995 996 return 0; 997 } 998 #endif 999 #endif 1000 1001 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1002 1003 /* 1004 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1005 * this is probably good enough. 1006 */ 1007 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1008 { 1009 if ((s64)(se->vruntime - se->deadline) < 0) 1010 return false; 1011 1012 /* 1013 * For EEVDF the virtual time slope is determined by w_i (iow. 1014 * nice) while the request time r_i is determined by 1015 * sysctl_sched_base_slice. 1016 */ 1017 if (!se->custom_slice) 1018 se->slice = sysctl_sched_base_slice; 1019 1020 /* 1021 * EEVDF: vd_i = ve_i + r_i / w_i 1022 */ 1023 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1024 1025 /* 1026 * The task has consumed its request, reschedule. 1027 */ 1028 return true; 1029 } 1030 1031 #include "pelt.h" 1032 #ifdef CONFIG_SMP 1033 1034 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1035 static unsigned long task_h_load(struct task_struct *p); 1036 static unsigned long capacity_of(int cpu); 1037 1038 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1039 void init_entity_runnable_average(struct sched_entity *se) 1040 { 1041 struct sched_avg *sa = &se->avg; 1042 1043 memset(sa, 0, sizeof(*sa)); 1044 1045 /* 1046 * Tasks are initialized with full load to be seen as heavy tasks until 1047 * they get a chance to stabilize to their real load level. 1048 * Group entities are initialized with zero load to reflect the fact that 1049 * nothing has been attached to the task group yet. 1050 */ 1051 if (entity_is_task(se)) 1052 sa->load_avg = scale_load_down(se->load.weight); 1053 1054 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1055 } 1056 1057 /* 1058 * With new tasks being created, their initial util_avgs are extrapolated 1059 * based on the cfs_rq's current util_avg: 1060 * 1061 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1062 * * se_weight(se) 1063 * 1064 * However, in many cases, the above util_avg does not give a desired 1065 * value. Moreover, the sum of the util_avgs may be divergent, such 1066 * as when the series is a harmonic series. 1067 * 1068 * To solve this problem, we also cap the util_avg of successive tasks to 1069 * only 1/2 of the left utilization budget: 1070 * 1071 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1072 * 1073 * where n denotes the nth task and cpu_scale the CPU capacity. 1074 * 1075 * For example, for a CPU with 1024 of capacity, a simplest series from 1076 * the beginning would be like: 1077 * 1078 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1079 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1080 * 1081 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1082 * if util_avg > util_avg_cap. 1083 */ 1084 void post_init_entity_util_avg(struct task_struct *p) 1085 { 1086 struct sched_entity *se = &p->se; 1087 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1088 struct sched_avg *sa = &se->avg; 1089 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1090 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1091 1092 if (p->sched_class != &fair_sched_class) { 1093 /* 1094 * For !fair tasks do: 1095 * 1096 update_cfs_rq_load_avg(now, cfs_rq); 1097 attach_entity_load_avg(cfs_rq, se); 1098 switched_from_fair(rq, p); 1099 * 1100 * such that the next switched_to_fair() has the 1101 * expected state. 1102 */ 1103 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1104 return; 1105 } 1106 1107 if (cap > 0) { 1108 if (cfs_rq->avg.util_avg != 0) { 1109 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1110 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1111 1112 if (sa->util_avg > cap) 1113 sa->util_avg = cap; 1114 } else { 1115 sa->util_avg = cap; 1116 } 1117 } 1118 1119 sa->runnable_avg = sa->util_avg; 1120 } 1121 1122 #else /* !CONFIG_SMP */ 1123 void init_entity_runnable_average(struct sched_entity *se) 1124 { 1125 } 1126 void post_init_entity_util_avg(struct task_struct *p) 1127 { 1128 } 1129 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1130 { 1131 } 1132 #endif /* CONFIG_SMP */ 1133 1134 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1135 { 1136 u64 now = rq_clock_task(rq); 1137 s64 delta_exec; 1138 1139 delta_exec = now - curr->exec_start; 1140 if (unlikely(delta_exec <= 0)) 1141 return delta_exec; 1142 1143 curr->exec_start = now; 1144 curr->sum_exec_runtime += delta_exec; 1145 1146 if (schedstat_enabled()) { 1147 struct sched_statistics *stats; 1148 1149 stats = __schedstats_from_se(curr); 1150 __schedstat_set(stats->exec_max, 1151 max(delta_exec, stats->exec_max)); 1152 } 1153 1154 return delta_exec; 1155 } 1156 1157 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1158 { 1159 trace_sched_stat_runtime(p, delta_exec); 1160 account_group_exec_runtime(p, delta_exec); 1161 cgroup_account_cputime(p, delta_exec); 1162 if (p->dl_server) 1163 dl_server_update(p->dl_server, delta_exec); 1164 } 1165 1166 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1167 { 1168 if (!sched_feat(PREEMPT_SHORT)) 1169 return false; 1170 1171 if (curr->vlag == curr->deadline) 1172 return false; 1173 1174 return !entity_eligible(cfs_rq, curr); 1175 } 1176 1177 static inline bool do_preempt_short(struct cfs_rq *cfs_rq, 1178 struct sched_entity *pse, struct sched_entity *se) 1179 { 1180 if (!sched_feat(PREEMPT_SHORT)) 1181 return false; 1182 1183 if (pse->slice >= se->slice) 1184 return false; 1185 1186 if (!entity_eligible(cfs_rq, pse)) 1187 return false; 1188 1189 if (entity_before(pse, se)) 1190 return true; 1191 1192 if (!entity_eligible(cfs_rq, se)) 1193 return true; 1194 1195 return false; 1196 } 1197 1198 /* 1199 * Used by other classes to account runtime. 1200 */ 1201 s64 update_curr_common(struct rq *rq) 1202 { 1203 struct task_struct *curr = rq->curr; 1204 s64 delta_exec; 1205 1206 delta_exec = update_curr_se(rq, &curr->se); 1207 if (likely(delta_exec > 0)) 1208 update_curr_task(curr, delta_exec); 1209 1210 return delta_exec; 1211 } 1212 1213 /* 1214 * Update the current task's runtime statistics. 1215 */ 1216 static void update_curr(struct cfs_rq *cfs_rq) 1217 { 1218 struct sched_entity *curr = cfs_rq->curr; 1219 struct rq *rq = rq_of(cfs_rq); 1220 s64 delta_exec; 1221 bool resched; 1222 1223 if (unlikely(!curr)) 1224 return; 1225 1226 delta_exec = update_curr_se(rq, curr); 1227 if (unlikely(delta_exec <= 0)) 1228 return; 1229 1230 curr->vruntime += calc_delta_fair(delta_exec, curr); 1231 resched = update_deadline(cfs_rq, curr); 1232 update_min_vruntime(cfs_rq); 1233 1234 if (entity_is_task(curr)) { 1235 struct task_struct *p = task_of(curr); 1236 1237 update_curr_task(p, delta_exec); 1238 1239 /* 1240 * Any fair task that runs outside of fair_server should 1241 * account against fair_server such that it can account for 1242 * this time and possibly avoid running this period. 1243 */ 1244 if (p->dl_server != &rq->fair_server) 1245 dl_server_update(&rq->fair_server, delta_exec); 1246 } 1247 1248 account_cfs_rq_runtime(cfs_rq, delta_exec); 1249 1250 if (rq->nr_running == 1) 1251 return; 1252 1253 if (resched || did_preempt_short(cfs_rq, curr)) { 1254 resched_curr(rq); 1255 clear_buddies(cfs_rq, curr); 1256 } 1257 } 1258 1259 static void update_curr_fair(struct rq *rq) 1260 { 1261 update_curr(cfs_rq_of(&rq->curr->se)); 1262 } 1263 1264 static inline void 1265 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1266 { 1267 struct sched_statistics *stats; 1268 struct task_struct *p = NULL; 1269 1270 if (!schedstat_enabled()) 1271 return; 1272 1273 stats = __schedstats_from_se(se); 1274 1275 if (entity_is_task(se)) 1276 p = task_of(se); 1277 1278 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1279 } 1280 1281 static inline void 1282 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1283 { 1284 struct sched_statistics *stats; 1285 struct task_struct *p = NULL; 1286 1287 if (!schedstat_enabled()) 1288 return; 1289 1290 stats = __schedstats_from_se(se); 1291 1292 /* 1293 * When the sched_schedstat changes from 0 to 1, some sched se 1294 * maybe already in the runqueue, the se->statistics.wait_start 1295 * will be 0.So it will let the delta wrong. We need to avoid this 1296 * scenario. 1297 */ 1298 if (unlikely(!schedstat_val(stats->wait_start))) 1299 return; 1300 1301 if (entity_is_task(se)) 1302 p = task_of(se); 1303 1304 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1305 } 1306 1307 static inline void 1308 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1309 { 1310 struct sched_statistics *stats; 1311 struct task_struct *tsk = NULL; 1312 1313 if (!schedstat_enabled()) 1314 return; 1315 1316 stats = __schedstats_from_se(se); 1317 1318 if (entity_is_task(se)) 1319 tsk = task_of(se); 1320 1321 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1322 } 1323 1324 /* 1325 * Task is being enqueued - update stats: 1326 */ 1327 static inline void 1328 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1329 { 1330 if (!schedstat_enabled()) 1331 return; 1332 1333 /* 1334 * Are we enqueueing a waiting task? (for current tasks 1335 * a dequeue/enqueue event is a NOP) 1336 */ 1337 if (se != cfs_rq->curr) 1338 update_stats_wait_start_fair(cfs_rq, se); 1339 1340 if (flags & ENQUEUE_WAKEUP) 1341 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1342 } 1343 1344 static inline void 1345 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1346 { 1347 1348 if (!schedstat_enabled()) 1349 return; 1350 1351 /* 1352 * Mark the end of the wait period if dequeueing a 1353 * waiting task: 1354 */ 1355 if (se != cfs_rq->curr) 1356 update_stats_wait_end_fair(cfs_rq, se); 1357 1358 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1359 struct task_struct *tsk = task_of(se); 1360 unsigned int state; 1361 1362 /* XXX racy against TTWU */ 1363 state = READ_ONCE(tsk->__state); 1364 if (state & TASK_INTERRUPTIBLE) 1365 __schedstat_set(tsk->stats.sleep_start, 1366 rq_clock(rq_of(cfs_rq))); 1367 if (state & TASK_UNINTERRUPTIBLE) 1368 __schedstat_set(tsk->stats.block_start, 1369 rq_clock(rq_of(cfs_rq))); 1370 } 1371 } 1372 1373 /* 1374 * We are picking a new current task - update its stats: 1375 */ 1376 static inline void 1377 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1378 { 1379 /* 1380 * We are starting a new run period: 1381 */ 1382 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1383 } 1384 1385 /************************************************** 1386 * Scheduling class queueing methods: 1387 */ 1388 1389 static inline bool is_core_idle(int cpu) 1390 { 1391 #ifdef CONFIG_SCHED_SMT 1392 int sibling; 1393 1394 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1395 if (cpu == sibling) 1396 continue; 1397 1398 if (!idle_cpu(sibling)) 1399 return false; 1400 } 1401 #endif 1402 1403 return true; 1404 } 1405 1406 #ifdef CONFIG_NUMA 1407 #define NUMA_IMBALANCE_MIN 2 1408 1409 static inline long 1410 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1411 { 1412 /* 1413 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1414 * threshold. Above this threshold, individual tasks may be contending 1415 * for both memory bandwidth and any shared HT resources. This is an 1416 * approximation as the number of running tasks may not be related to 1417 * the number of busy CPUs due to sched_setaffinity. 1418 */ 1419 if (dst_running > imb_numa_nr) 1420 return imbalance; 1421 1422 /* 1423 * Allow a small imbalance based on a simple pair of communicating 1424 * tasks that remain local when the destination is lightly loaded. 1425 */ 1426 if (imbalance <= NUMA_IMBALANCE_MIN) 1427 return 0; 1428 1429 return imbalance; 1430 } 1431 #endif /* CONFIG_NUMA */ 1432 1433 #ifdef CONFIG_NUMA_BALANCING 1434 /* 1435 * Approximate time to scan a full NUMA task in ms. The task scan period is 1436 * calculated based on the tasks virtual memory size and 1437 * numa_balancing_scan_size. 1438 */ 1439 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1440 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1441 1442 /* Portion of address space to scan in MB */ 1443 unsigned int sysctl_numa_balancing_scan_size = 256; 1444 1445 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1446 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1447 1448 /* The page with hint page fault latency < threshold in ms is considered hot */ 1449 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1450 1451 struct numa_group { 1452 refcount_t refcount; 1453 1454 spinlock_t lock; /* nr_tasks, tasks */ 1455 int nr_tasks; 1456 pid_t gid; 1457 int active_nodes; 1458 1459 struct rcu_head rcu; 1460 unsigned long total_faults; 1461 unsigned long max_faults_cpu; 1462 /* 1463 * faults[] array is split into two regions: faults_mem and faults_cpu. 1464 * 1465 * Faults_cpu is used to decide whether memory should move 1466 * towards the CPU. As a consequence, these stats are weighted 1467 * more by CPU use than by memory faults. 1468 */ 1469 unsigned long faults[]; 1470 }; 1471 1472 /* 1473 * For functions that can be called in multiple contexts that permit reading 1474 * ->numa_group (see struct task_struct for locking rules). 1475 */ 1476 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1477 { 1478 return rcu_dereference_check(p->numa_group, p == current || 1479 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1480 } 1481 1482 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1483 { 1484 return rcu_dereference_protected(p->numa_group, p == current); 1485 } 1486 1487 static inline unsigned long group_faults_priv(struct numa_group *ng); 1488 static inline unsigned long group_faults_shared(struct numa_group *ng); 1489 1490 static unsigned int task_nr_scan_windows(struct task_struct *p) 1491 { 1492 unsigned long rss = 0; 1493 unsigned long nr_scan_pages; 1494 1495 /* 1496 * Calculations based on RSS as non-present and empty pages are skipped 1497 * by the PTE scanner and NUMA hinting faults should be trapped based 1498 * on resident pages 1499 */ 1500 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1501 rss = get_mm_rss(p->mm); 1502 if (!rss) 1503 rss = nr_scan_pages; 1504 1505 rss = round_up(rss, nr_scan_pages); 1506 return rss / nr_scan_pages; 1507 } 1508 1509 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1510 #define MAX_SCAN_WINDOW 2560 1511 1512 static unsigned int task_scan_min(struct task_struct *p) 1513 { 1514 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1515 unsigned int scan, floor; 1516 unsigned int windows = 1; 1517 1518 if (scan_size < MAX_SCAN_WINDOW) 1519 windows = MAX_SCAN_WINDOW / scan_size; 1520 floor = 1000 / windows; 1521 1522 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1523 return max_t(unsigned int, floor, scan); 1524 } 1525 1526 static unsigned int task_scan_start(struct task_struct *p) 1527 { 1528 unsigned long smin = task_scan_min(p); 1529 unsigned long period = smin; 1530 struct numa_group *ng; 1531 1532 /* Scale the maximum scan period with the amount of shared memory. */ 1533 rcu_read_lock(); 1534 ng = rcu_dereference(p->numa_group); 1535 if (ng) { 1536 unsigned long shared = group_faults_shared(ng); 1537 unsigned long private = group_faults_priv(ng); 1538 1539 period *= refcount_read(&ng->refcount); 1540 period *= shared + 1; 1541 period /= private + shared + 1; 1542 } 1543 rcu_read_unlock(); 1544 1545 return max(smin, period); 1546 } 1547 1548 static unsigned int task_scan_max(struct task_struct *p) 1549 { 1550 unsigned long smin = task_scan_min(p); 1551 unsigned long smax; 1552 struct numa_group *ng; 1553 1554 /* Watch for min being lower than max due to floor calculations */ 1555 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1556 1557 /* Scale the maximum scan period with the amount of shared memory. */ 1558 ng = deref_curr_numa_group(p); 1559 if (ng) { 1560 unsigned long shared = group_faults_shared(ng); 1561 unsigned long private = group_faults_priv(ng); 1562 unsigned long period = smax; 1563 1564 period *= refcount_read(&ng->refcount); 1565 period *= shared + 1; 1566 period /= private + shared + 1; 1567 1568 smax = max(smax, period); 1569 } 1570 1571 return max(smin, smax); 1572 } 1573 1574 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1575 { 1576 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1577 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1578 } 1579 1580 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1581 { 1582 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1583 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1584 } 1585 1586 /* Shared or private faults. */ 1587 #define NR_NUMA_HINT_FAULT_TYPES 2 1588 1589 /* Memory and CPU locality */ 1590 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1591 1592 /* Averaged statistics, and temporary buffers. */ 1593 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1594 1595 pid_t task_numa_group_id(struct task_struct *p) 1596 { 1597 struct numa_group *ng; 1598 pid_t gid = 0; 1599 1600 rcu_read_lock(); 1601 ng = rcu_dereference(p->numa_group); 1602 if (ng) 1603 gid = ng->gid; 1604 rcu_read_unlock(); 1605 1606 return gid; 1607 } 1608 1609 /* 1610 * The averaged statistics, shared & private, memory & CPU, 1611 * occupy the first half of the array. The second half of the 1612 * array is for current counters, which are averaged into the 1613 * first set by task_numa_placement. 1614 */ 1615 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1616 { 1617 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1618 } 1619 1620 static inline unsigned long task_faults(struct task_struct *p, int nid) 1621 { 1622 if (!p->numa_faults) 1623 return 0; 1624 1625 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1626 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1627 } 1628 1629 static inline unsigned long group_faults(struct task_struct *p, int nid) 1630 { 1631 struct numa_group *ng = deref_task_numa_group(p); 1632 1633 if (!ng) 1634 return 0; 1635 1636 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1637 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1638 } 1639 1640 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1641 { 1642 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1643 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1644 } 1645 1646 static inline unsigned long group_faults_priv(struct numa_group *ng) 1647 { 1648 unsigned long faults = 0; 1649 int node; 1650 1651 for_each_online_node(node) { 1652 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1653 } 1654 1655 return faults; 1656 } 1657 1658 static inline unsigned long group_faults_shared(struct numa_group *ng) 1659 { 1660 unsigned long faults = 0; 1661 int node; 1662 1663 for_each_online_node(node) { 1664 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1665 } 1666 1667 return faults; 1668 } 1669 1670 /* 1671 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1672 * considered part of a numa group's pseudo-interleaving set. Migrations 1673 * between these nodes are slowed down, to allow things to settle down. 1674 */ 1675 #define ACTIVE_NODE_FRACTION 3 1676 1677 static bool numa_is_active_node(int nid, struct numa_group *ng) 1678 { 1679 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1680 } 1681 1682 /* Handle placement on systems where not all nodes are directly connected. */ 1683 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1684 int lim_dist, bool task) 1685 { 1686 unsigned long score = 0; 1687 int node, max_dist; 1688 1689 /* 1690 * All nodes are directly connected, and the same distance 1691 * from each other. No need for fancy placement algorithms. 1692 */ 1693 if (sched_numa_topology_type == NUMA_DIRECT) 1694 return 0; 1695 1696 /* sched_max_numa_distance may be changed in parallel. */ 1697 max_dist = READ_ONCE(sched_max_numa_distance); 1698 /* 1699 * This code is called for each node, introducing N^2 complexity, 1700 * which should be OK given the number of nodes rarely exceeds 8. 1701 */ 1702 for_each_online_node(node) { 1703 unsigned long faults; 1704 int dist = node_distance(nid, node); 1705 1706 /* 1707 * The furthest away nodes in the system are not interesting 1708 * for placement; nid was already counted. 1709 */ 1710 if (dist >= max_dist || node == nid) 1711 continue; 1712 1713 /* 1714 * On systems with a backplane NUMA topology, compare groups 1715 * of nodes, and move tasks towards the group with the most 1716 * memory accesses. When comparing two nodes at distance 1717 * "hoplimit", only nodes closer by than "hoplimit" are part 1718 * of each group. Skip other nodes. 1719 */ 1720 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1721 continue; 1722 1723 /* Add up the faults from nearby nodes. */ 1724 if (task) 1725 faults = task_faults(p, node); 1726 else 1727 faults = group_faults(p, node); 1728 1729 /* 1730 * On systems with a glueless mesh NUMA topology, there are 1731 * no fixed "groups of nodes". Instead, nodes that are not 1732 * directly connected bounce traffic through intermediate 1733 * nodes; a numa_group can occupy any set of nodes. 1734 * The further away a node is, the less the faults count. 1735 * This seems to result in good task placement. 1736 */ 1737 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1738 faults *= (max_dist - dist); 1739 faults /= (max_dist - LOCAL_DISTANCE); 1740 } 1741 1742 score += faults; 1743 } 1744 1745 return score; 1746 } 1747 1748 /* 1749 * These return the fraction of accesses done by a particular task, or 1750 * task group, on a particular numa node. The group weight is given a 1751 * larger multiplier, in order to group tasks together that are almost 1752 * evenly spread out between numa nodes. 1753 */ 1754 static inline unsigned long task_weight(struct task_struct *p, int nid, 1755 int dist) 1756 { 1757 unsigned long faults, total_faults; 1758 1759 if (!p->numa_faults) 1760 return 0; 1761 1762 total_faults = p->total_numa_faults; 1763 1764 if (!total_faults) 1765 return 0; 1766 1767 faults = task_faults(p, nid); 1768 faults += score_nearby_nodes(p, nid, dist, true); 1769 1770 return 1000 * faults / total_faults; 1771 } 1772 1773 static inline unsigned long group_weight(struct task_struct *p, int nid, 1774 int dist) 1775 { 1776 struct numa_group *ng = deref_task_numa_group(p); 1777 unsigned long faults, total_faults; 1778 1779 if (!ng) 1780 return 0; 1781 1782 total_faults = ng->total_faults; 1783 1784 if (!total_faults) 1785 return 0; 1786 1787 faults = group_faults(p, nid); 1788 faults += score_nearby_nodes(p, nid, dist, false); 1789 1790 return 1000 * faults / total_faults; 1791 } 1792 1793 /* 1794 * If memory tiering mode is enabled, cpupid of slow memory page is 1795 * used to record scan time instead of CPU and PID. When tiering mode 1796 * is disabled at run time, the scan time (in cpupid) will be 1797 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1798 * access out of array bound. 1799 */ 1800 static inline bool cpupid_valid(int cpupid) 1801 { 1802 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1803 } 1804 1805 /* 1806 * For memory tiering mode, if there are enough free pages (more than 1807 * enough watermark defined here) in fast memory node, to take full 1808 * advantage of fast memory capacity, all recently accessed slow 1809 * memory pages will be migrated to fast memory node without 1810 * considering hot threshold. 1811 */ 1812 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1813 { 1814 int z; 1815 unsigned long enough_wmark; 1816 1817 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1818 pgdat->node_present_pages >> 4); 1819 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1820 struct zone *zone = pgdat->node_zones + z; 1821 1822 if (!populated_zone(zone)) 1823 continue; 1824 1825 if (zone_watermark_ok(zone, 0, 1826 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1827 ZONE_MOVABLE, 0)) 1828 return true; 1829 } 1830 return false; 1831 } 1832 1833 /* 1834 * For memory tiering mode, when page tables are scanned, the scan 1835 * time will be recorded in struct page in addition to make page 1836 * PROT_NONE for slow memory page. So when the page is accessed, in 1837 * hint page fault handler, the hint page fault latency is calculated 1838 * via, 1839 * 1840 * hint page fault latency = hint page fault time - scan time 1841 * 1842 * The smaller the hint page fault latency, the higher the possibility 1843 * for the page to be hot. 1844 */ 1845 static int numa_hint_fault_latency(struct folio *folio) 1846 { 1847 int last_time, time; 1848 1849 time = jiffies_to_msecs(jiffies); 1850 last_time = folio_xchg_access_time(folio, time); 1851 1852 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1853 } 1854 1855 /* 1856 * For memory tiering mode, too high promotion/demotion throughput may 1857 * hurt application latency. So we provide a mechanism to rate limit 1858 * the number of pages that are tried to be promoted. 1859 */ 1860 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1861 unsigned long rate_limit, int nr) 1862 { 1863 unsigned long nr_cand; 1864 unsigned int now, start; 1865 1866 now = jiffies_to_msecs(jiffies); 1867 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1868 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1869 start = pgdat->nbp_rl_start; 1870 if (now - start > MSEC_PER_SEC && 1871 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1872 pgdat->nbp_rl_nr_cand = nr_cand; 1873 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1874 return true; 1875 return false; 1876 } 1877 1878 #define NUMA_MIGRATION_ADJUST_STEPS 16 1879 1880 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1881 unsigned long rate_limit, 1882 unsigned int ref_th) 1883 { 1884 unsigned int now, start, th_period, unit_th, th; 1885 unsigned long nr_cand, ref_cand, diff_cand; 1886 1887 now = jiffies_to_msecs(jiffies); 1888 th_period = sysctl_numa_balancing_scan_period_max; 1889 start = pgdat->nbp_th_start; 1890 if (now - start > th_period && 1891 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1892 ref_cand = rate_limit * 1893 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1894 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1895 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1896 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1897 th = pgdat->nbp_threshold ? : ref_th; 1898 if (diff_cand > ref_cand * 11 / 10) 1899 th = max(th - unit_th, unit_th); 1900 else if (diff_cand < ref_cand * 9 / 10) 1901 th = min(th + unit_th, ref_th * 2); 1902 pgdat->nbp_th_nr_cand = nr_cand; 1903 pgdat->nbp_threshold = th; 1904 } 1905 } 1906 1907 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1908 int src_nid, int dst_cpu) 1909 { 1910 struct numa_group *ng = deref_curr_numa_group(p); 1911 int dst_nid = cpu_to_node(dst_cpu); 1912 int last_cpupid, this_cpupid; 1913 1914 /* 1915 * Cannot migrate to memoryless nodes. 1916 */ 1917 if (!node_state(dst_nid, N_MEMORY)) 1918 return false; 1919 1920 /* 1921 * The pages in slow memory node should be migrated according 1922 * to hot/cold instead of private/shared. 1923 */ 1924 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1925 !node_is_toptier(src_nid)) { 1926 struct pglist_data *pgdat; 1927 unsigned long rate_limit; 1928 unsigned int latency, th, def_th; 1929 1930 pgdat = NODE_DATA(dst_nid); 1931 if (pgdat_free_space_enough(pgdat)) { 1932 /* workload changed, reset hot threshold */ 1933 pgdat->nbp_threshold = 0; 1934 return true; 1935 } 1936 1937 def_th = sysctl_numa_balancing_hot_threshold; 1938 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1939 (20 - PAGE_SHIFT); 1940 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1941 1942 th = pgdat->nbp_threshold ? : def_th; 1943 latency = numa_hint_fault_latency(folio); 1944 if (latency >= th) 1945 return false; 1946 1947 return !numa_promotion_rate_limit(pgdat, rate_limit, 1948 folio_nr_pages(folio)); 1949 } 1950 1951 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1952 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1953 1954 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1955 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1956 return false; 1957 1958 /* 1959 * Allow first faults or private faults to migrate immediately early in 1960 * the lifetime of a task. The magic number 4 is based on waiting for 1961 * two full passes of the "multi-stage node selection" test that is 1962 * executed below. 1963 */ 1964 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1965 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1966 return true; 1967 1968 /* 1969 * Multi-stage node selection is used in conjunction with a periodic 1970 * migration fault to build a temporal task<->page relation. By using 1971 * a two-stage filter we remove short/unlikely relations. 1972 * 1973 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1974 * a task's usage of a particular page (n_p) per total usage of this 1975 * page (n_t) (in a given time-span) to a probability. 1976 * 1977 * Our periodic faults will sample this probability and getting the 1978 * same result twice in a row, given these samples are fully 1979 * independent, is then given by P(n)^2, provided our sample period 1980 * is sufficiently short compared to the usage pattern. 1981 * 1982 * This quadric squishes small probabilities, making it less likely we 1983 * act on an unlikely task<->page relation. 1984 */ 1985 if (!cpupid_pid_unset(last_cpupid) && 1986 cpupid_to_nid(last_cpupid) != dst_nid) 1987 return false; 1988 1989 /* Always allow migrate on private faults */ 1990 if (cpupid_match_pid(p, last_cpupid)) 1991 return true; 1992 1993 /* A shared fault, but p->numa_group has not been set up yet. */ 1994 if (!ng) 1995 return true; 1996 1997 /* 1998 * Destination node is much more heavily used than the source 1999 * node? Allow migration. 2000 */ 2001 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 2002 ACTIVE_NODE_FRACTION) 2003 return true; 2004 2005 /* 2006 * Distribute memory according to CPU & memory use on each node, 2007 * with 3/4 hysteresis to avoid unnecessary memory migrations: 2008 * 2009 * faults_cpu(dst) 3 faults_cpu(src) 2010 * --------------- * - > --------------- 2011 * faults_mem(dst) 4 faults_mem(src) 2012 */ 2013 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 2014 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 2015 } 2016 2017 /* 2018 * 'numa_type' describes the node at the moment of load balancing. 2019 */ 2020 enum numa_type { 2021 /* The node has spare capacity that can be used to run more tasks. */ 2022 node_has_spare = 0, 2023 /* 2024 * The node is fully used and the tasks don't compete for more CPU 2025 * cycles. Nevertheless, some tasks might wait before running. 2026 */ 2027 node_fully_busy, 2028 /* 2029 * The node is overloaded and can't provide expected CPU cycles to all 2030 * tasks. 2031 */ 2032 node_overloaded 2033 }; 2034 2035 /* Cached statistics for all CPUs within a node */ 2036 struct numa_stats { 2037 unsigned long load; 2038 unsigned long runnable; 2039 unsigned long util; 2040 /* Total compute capacity of CPUs on a node */ 2041 unsigned long compute_capacity; 2042 unsigned int nr_running; 2043 unsigned int weight; 2044 enum numa_type node_type; 2045 int idle_cpu; 2046 }; 2047 2048 struct task_numa_env { 2049 struct task_struct *p; 2050 2051 int src_cpu, src_nid; 2052 int dst_cpu, dst_nid; 2053 int imb_numa_nr; 2054 2055 struct numa_stats src_stats, dst_stats; 2056 2057 int imbalance_pct; 2058 int dist; 2059 2060 struct task_struct *best_task; 2061 long best_imp; 2062 int best_cpu; 2063 }; 2064 2065 static unsigned long cpu_load(struct rq *rq); 2066 static unsigned long cpu_runnable(struct rq *rq); 2067 2068 static inline enum 2069 numa_type numa_classify(unsigned int imbalance_pct, 2070 struct numa_stats *ns) 2071 { 2072 if ((ns->nr_running > ns->weight) && 2073 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2074 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2075 return node_overloaded; 2076 2077 if ((ns->nr_running < ns->weight) || 2078 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2079 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2080 return node_has_spare; 2081 2082 return node_fully_busy; 2083 } 2084 2085 #ifdef CONFIG_SCHED_SMT 2086 /* Forward declarations of select_idle_sibling helpers */ 2087 static inline bool test_idle_cores(int cpu); 2088 static inline int numa_idle_core(int idle_core, int cpu) 2089 { 2090 if (!static_branch_likely(&sched_smt_present) || 2091 idle_core >= 0 || !test_idle_cores(cpu)) 2092 return idle_core; 2093 2094 /* 2095 * Prefer cores instead of packing HT siblings 2096 * and triggering future load balancing. 2097 */ 2098 if (is_core_idle(cpu)) 2099 idle_core = cpu; 2100 2101 return idle_core; 2102 } 2103 #else 2104 static inline int numa_idle_core(int idle_core, int cpu) 2105 { 2106 return idle_core; 2107 } 2108 #endif 2109 2110 /* 2111 * Gather all necessary information to make NUMA balancing placement 2112 * decisions that are compatible with standard load balancer. This 2113 * borrows code and logic from update_sg_lb_stats but sharing a 2114 * common implementation is impractical. 2115 */ 2116 static void update_numa_stats(struct task_numa_env *env, 2117 struct numa_stats *ns, int nid, 2118 bool find_idle) 2119 { 2120 int cpu, idle_core = -1; 2121 2122 memset(ns, 0, sizeof(*ns)); 2123 ns->idle_cpu = -1; 2124 2125 rcu_read_lock(); 2126 for_each_cpu(cpu, cpumask_of_node(nid)) { 2127 struct rq *rq = cpu_rq(cpu); 2128 2129 ns->load += cpu_load(rq); 2130 ns->runnable += cpu_runnable(rq); 2131 ns->util += cpu_util_cfs(cpu); 2132 ns->nr_running += rq->cfs.h_nr_running; 2133 ns->compute_capacity += capacity_of(cpu); 2134 2135 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2136 if (READ_ONCE(rq->numa_migrate_on) || 2137 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2138 continue; 2139 2140 if (ns->idle_cpu == -1) 2141 ns->idle_cpu = cpu; 2142 2143 idle_core = numa_idle_core(idle_core, cpu); 2144 } 2145 } 2146 rcu_read_unlock(); 2147 2148 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2149 2150 ns->node_type = numa_classify(env->imbalance_pct, ns); 2151 2152 if (idle_core >= 0) 2153 ns->idle_cpu = idle_core; 2154 } 2155 2156 static void task_numa_assign(struct task_numa_env *env, 2157 struct task_struct *p, long imp) 2158 { 2159 struct rq *rq = cpu_rq(env->dst_cpu); 2160 2161 /* Check if run-queue part of active NUMA balance. */ 2162 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2163 int cpu; 2164 int start = env->dst_cpu; 2165 2166 /* Find alternative idle CPU. */ 2167 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2168 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2169 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2170 continue; 2171 } 2172 2173 env->dst_cpu = cpu; 2174 rq = cpu_rq(env->dst_cpu); 2175 if (!xchg(&rq->numa_migrate_on, 1)) 2176 goto assign; 2177 } 2178 2179 /* Failed to find an alternative idle CPU */ 2180 return; 2181 } 2182 2183 assign: 2184 /* 2185 * Clear previous best_cpu/rq numa-migrate flag, since task now 2186 * found a better CPU to move/swap. 2187 */ 2188 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2189 rq = cpu_rq(env->best_cpu); 2190 WRITE_ONCE(rq->numa_migrate_on, 0); 2191 } 2192 2193 if (env->best_task) 2194 put_task_struct(env->best_task); 2195 if (p) 2196 get_task_struct(p); 2197 2198 env->best_task = p; 2199 env->best_imp = imp; 2200 env->best_cpu = env->dst_cpu; 2201 } 2202 2203 static bool load_too_imbalanced(long src_load, long dst_load, 2204 struct task_numa_env *env) 2205 { 2206 long imb, old_imb; 2207 long orig_src_load, orig_dst_load; 2208 long src_capacity, dst_capacity; 2209 2210 /* 2211 * The load is corrected for the CPU capacity available on each node. 2212 * 2213 * src_load dst_load 2214 * ------------ vs --------- 2215 * src_capacity dst_capacity 2216 */ 2217 src_capacity = env->src_stats.compute_capacity; 2218 dst_capacity = env->dst_stats.compute_capacity; 2219 2220 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2221 2222 orig_src_load = env->src_stats.load; 2223 orig_dst_load = env->dst_stats.load; 2224 2225 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2226 2227 /* Would this change make things worse? */ 2228 return (imb > old_imb); 2229 } 2230 2231 /* 2232 * Maximum NUMA importance can be 1998 (2*999); 2233 * SMALLIMP @ 30 would be close to 1998/64. 2234 * Used to deter task migration. 2235 */ 2236 #define SMALLIMP 30 2237 2238 /* 2239 * This checks if the overall compute and NUMA accesses of the system would 2240 * be improved if the source tasks was migrated to the target dst_cpu taking 2241 * into account that it might be best if task running on the dst_cpu should 2242 * be exchanged with the source task 2243 */ 2244 static bool task_numa_compare(struct task_numa_env *env, 2245 long taskimp, long groupimp, bool maymove) 2246 { 2247 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2248 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2249 long imp = p_ng ? groupimp : taskimp; 2250 struct task_struct *cur; 2251 long src_load, dst_load; 2252 int dist = env->dist; 2253 long moveimp = imp; 2254 long load; 2255 bool stopsearch = false; 2256 2257 if (READ_ONCE(dst_rq->numa_migrate_on)) 2258 return false; 2259 2260 rcu_read_lock(); 2261 cur = rcu_dereference(dst_rq->curr); 2262 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2263 cur = NULL; 2264 2265 /* 2266 * Because we have preemption enabled we can get migrated around and 2267 * end try selecting ourselves (current == env->p) as a swap candidate. 2268 */ 2269 if (cur == env->p) { 2270 stopsearch = true; 2271 goto unlock; 2272 } 2273 2274 if (!cur) { 2275 if (maymove && moveimp >= env->best_imp) 2276 goto assign; 2277 else 2278 goto unlock; 2279 } 2280 2281 /* Skip this swap candidate if cannot move to the source cpu. */ 2282 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2283 goto unlock; 2284 2285 /* 2286 * Skip this swap candidate if it is not moving to its preferred 2287 * node and the best task is. 2288 */ 2289 if (env->best_task && 2290 env->best_task->numa_preferred_nid == env->src_nid && 2291 cur->numa_preferred_nid != env->src_nid) { 2292 goto unlock; 2293 } 2294 2295 /* 2296 * "imp" is the fault differential for the source task between the 2297 * source and destination node. Calculate the total differential for 2298 * the source task and potential destination task. The more negative 2299 * the value is, the more remote accesses that would be expected to 2300 * be incurred if the tasks were swapped. 2301 * 2302 * If dst and source tasks are in the same NUMA group, or not 2303 * in any group then look only at task weights. 2304 */ 2305 cur_ng = rcu_dereference(cur->numa_group); 2306 if (cur_ng == p_ng) { 2307 /* 2308 * Do not swap within a group or between tasks that have 2309 * no group if there is spare capacity. Swapping does 2310 * not address the load imbalance and helps one task at 2311 * the cost of punishing another. 2312 */ 2313 if (env->dst_stats.node_type == node_has_spare) 2314 goto unlock; 2315 2316 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2317 task_weight(cur, env->dst_nid, dist); 2318 /* 2319 * Add some hysteresis to prevent swapping the 2320 * tasks within a group over tiny differences. 2321 */ 2322 if (cur_ng) 2323 imp -= imp / 16; 2324 } else { 2325 /* 2326 * Compare the group weights. If a task is all by itself 2327 * (not part of a group), use the task weight instead. 2328 */ 2329 if (cur_ng && p_ng) 2330 imp += group_weight(cur, env->src_nid, dist) - 2331 group_weight(cur, env->dst_nid, dist); 2332 else 2333 imp += task_weight(cur, env->src_nid, dist) - 2334 task_weight(cur, env->dst_nid, dist); 2335 } 2336 2337 /* Discourage picking a task already on its preferred node */ 2338 if (cur->numa_preferred_nid == env->dst_nid) 2339 imp -= imp / 16; 2340 2341 /* 2342 * Encourage picking a task that moves to its preferred node. 2343 * This potentially makes imp larger than it's maximum of 2344 * 1998 (see SMALLIMP and task_weight for why) but in this 2345 * case, it does not matter. 2346 */ 2347 if (cur->numa_preferred_nid == env->src_nid) 2348 imp += imp / 8; 2349 2350 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2351 imp = moveimp; 2352 cur = NULL; 2353 goto assign; 2354 } 2355 2356 /* 2357 * Prefer swapping with a task moving to its preferred node over a 2358 * task that is not. 2359 */ 2360 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2361 env->best_task->numa_preferred_nid != env->src_nid) { 2362 goto assign; 2363 } 2364 2365 /* 2366 * If the NUMA importance is less than SMALLIMP, 2367 * task migration might only result in ping pong 2368 * of tasks and also hurt performance due to cache 2369 * misses. 2370 */ 2371 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2372 goto unlock; 2373 2374 /* 2375 * In the overloaded case, try and keep the load balanced. 2376 */ 2377 load = task_h_load(env->p) - task_h_load(cur); 2378 if (!load) 2379 goto assign; 2380 2381 dst_load = env->dst_stats.load + load; 2382 src_load = env->src_stats.load - load; 2383 2384 if (load_too_imbalanced(src_load, dst_load, env)) 2385 goto unlock; 2386 2387 assign: 2388 /* Evaluate an idle CPU for a task numa move. */ 2389 if (!cur) { 2390 int cpu = env->dst_stats.idle_cpu; 2391 2392 /* Nothing cached so current CPU went idle since the search. */ 2393 if (cpu < 0) 2394 cpu = env->dst_cpu; 2395 2396 /* 2397 * If the CPU is no longer truly idle and the previous best CPU 2398 * is, keep using it. 2399 */ 2400 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2401 idle_cpu(env->best_cpu)) { 2402 cpu = env->best_cpu; 2403 } 2404 2405 env->dst_cpu = cpu; 2406 } 2407 2408 task_numa_assign(env, cur, imp); 2409 2410 /* 2411 * If a move to idle is allowed because there is capacity or load 2412 * balance improves then stop the search. While a better swap 2413 * candidate may exist, a search is not free. 2414 */ 2415 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2416 stopsearch = true; 2417 2418 /* 2419 * If a swap candidate must be identified and the current best task 2420 * moves its preferred node then stop the search. 2421 */ 2422 if (!maymove && env->best_task && 2423 env->best_task->numa_preferred_nid == env->src_nid) { 2424 stopsearch = true; 2425 } 2426 unlock: 2427 rcu_read_unlock(); 2428 2429 return stopsearch; 2430 } 2431 2432 static void task_numa_find_cpu(struct task_numa_env *env, 2433 long taskimp, long groupimp) 2434 { 2435 bool maymove = false; 2436 int cpu; 2437 2438 /* 2439 * If dst node has spare capacity, then check if there is an 2440 * imbalance that would be overruled by the load balancer. 2441 */ 2442 if (env->dst_stats.node_type == node_has_spare) { 2443 unsigned int imbalance; 2444 int src_running, dst_running; 2445 2446 /* 2447 * Would movement cause an imbalance? Note that if src has 2448 * more running tasks that the imbalance is ignored as the 2449 * move improves the imbalance from the perspective of the 2450 * CPU load balancer. 2451 * */ 2452 src_running = env->src_stats.nr_running - 1; 2453 dst_running = env->dst_stats.nr_running + 1; 2454 imbalance = max(0, dst_running - src_running); 2455 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2456 env->imb_numa_nr); 2457 2458 /* Use idle CPU if there is no imbalance */ 2459 if (!imbalance) { 2460 maymove = true; 2461 if (env->dst_stats.idle_cpu >= 0) { 2462 env->dst_cpu = env->dst_stats.idle_cpu; 2463 task_numa_assign(env, NULL, 0); 2464 return; 2465 } 2466 } 2467 } else { 2468 long src_load, dst_load, load; 2469 /* 2470 * If the improvement from just moving env->p direction is better 2471 * than swapping tasks around, check if a move is possible. 2472 */ 2473 load = task_h_load(env->p); 2474 dst_load = env->dst_stats.load + load; 2475 src_load = env->src_stats.load - load; 2476 maymove = !load_too_imbalanced(src_load, dst_load, env); 2477 } 2478 2479 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2480 /* Skip this CPU if the source task cannot migrate */ 2481 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2482 continue; 2483 2484 env->dst_cpu = cpu; 2485 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2486 break; 2487 } 2488 } 2489 2490 static int task_numa_migrate(struct task_struct *p) 2491 { 2492 struct task_numa_env env = { 2493 .p = p, 2494 2495 .src_cpu = task_cpu(p), 2496 .src_nid = task_node(p), 2497 2498 .imbalance_pct = 112, 2499 2500 .best_task = NULL, 2501 .best_imp = 0, 2502 .best_cpu = -1, 2503 }; 2504 unsigned long taskweight, groupweight; 2505 struct sched_domain *sd; 2506 long taskimp, groupimp; 2507 struct numa_group *ng; 2508 struct rq *best_rq; 2509 int nid, ret, dist; 2510 2511 /* 2512 * Pick the lowest SD_NUMA domain, as that would have the smallest 2513 * imbalance and would be the first to start moving tasks about. 2514 * 2515 * And we want to avoid any moving of tasks about, as that would create 2516 * random movement of tasks -- counter the numa conditions we're trying 2517 * to satisfy here. 2518 */ 2519 rcu_read_lock(); 2520 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2521 if (sd) { 2522 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2523 env.imb_numa_nr = sd->imb_numa_nr; 2524 } 2525 rcu_read_unlock(); 2526 2527 /* 2528 * Cpusets can break the scheduler domain tree into smaller 2529 * balance domains, some of which do not cross NUMA boundaries. 2530 * Tasks that are "trapped" in such domains cannot be migrated 2531 * elsewhere, so there is no point in (re)trying. 2532 */ 2533 if (unlikely(!sd)) { 2534 sched_setnuma(p, task_node(p)); 2535 return -EINVAL; 2536 } 2537 2538 env.dst_nid = p->numa_preferred_nid; 2539 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2540 taskweight = task_weight(p, env.src_nid, dist); 2541 groupweight = group_weight(p, env.src_nid, dist); 2542 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2543 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2544 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2545 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2546 2547 /* Try to find a spot on the preferred nid. */ 2548 task_numa_find_cpu(&env, taskimp, groupimp); 2549 2550 /* 2551 * Look at other nodes in these cases: 2552 * - there is no space available on the preferred_nid 2553 * - the task is part of a numa_group that is interleaved across 2554 * multiple NUMA nodes; in order to better consolidate the group, 2555 * we need to check other locations. 2556 */ 2557 ng = deref_curr_numa_group(p); 2558 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2559 for_each_node_state(nid, N_CPU) { 2560 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2561 continue; 2562 2563 dist = node_distance(env.src_nid, env.dst_nid); 2564 if (sched_numa_topology_type == NUMA_BACKPLANE && 2565 dist != env.dist) { 2566 taskweight = task_weight(p, env.src_nid, dist); 2567 groupweight = group_weight(p, env.src_nid, dist); 2568 } 2569 2570 /* Only consider nodes where both task and groups benefit */ 2571 taskimp = task_weight(p, nid, dist) - taskweight; 2572 groupimp = group_weight(p, nid, dist) - groupweight; 2573 if (taskimp < 0 && groupimp < 0) 2574 continue; 2575 2576 env.dist = dist; 2577 env.dst_nid = nid; 2578 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2579 task_numa_find_cpu(&env, taskimp, groupimp); 2580 } 2581 } 2582 2583 /* 2584 * If the task is part of a workload that spans multiple NUMA nodes, 2585 * and is migrating into one of the workload's active nodes, remember 2586 * this node as the task's preferred numa node, so the workload can 2587 * settle down. 2588 * A task that migrated to a second choice node will be better off 2589 * trying for a better one later. Do not set the preferred node here. 2590 */ 2591 if (ng) { 2592 if (env.best_cpu == -1) 2593 nid = env.src_nid; 2594 else 2595 nid = cpu_to_node(env.best_cpu); 2596 2597 if (nid != p->numa_preferred_nid) 2598 sched_setnuma(p, nid); 2599 } 2600 2601 /* No better CPU than the current one was found. */ 2602 if (env.best_cpu == -1) { 2603 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2604 return -EAGAIN; 2605 } 2606 2607 best_rq = cpu_rq(env.best_cpu); 2608 if (env.best_task == NULL) { 2609 ret = migrate_task_to(p, env.best_cpu); 2610 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2611 if (ret != 0) 2612 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2613 return ret; 2614 } 2615 2616 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2617 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2618 2619 if (ret != 0) 2620 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2621 put_task_struct(env.best_task); 2622 return ret; 2623 } 2624 2625 /* Attempt to migrate a task to a CPU on the preferred node. */ 2626 static void numa_migrate_preferred(struct task_struct *p) 2627 { 2628 unsigned long interval = HZ; 2629 2630 /* This task has no NUMA fault statistics yet */ 2631 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2632 return; 2633 2634 /* Periodically retry migrating the task to the preferred node */ 2635 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2636 p->numa_migrate_retry = jiffies + interval; 2637 2638 /* Success if task is already running on preferred CPU */ 2639 if (task_node(p) == p->numa_preferred_nid) 2640 return; 2641 2642 /* Otherwise, try migrate to a CPU on the preferred node */ 2643 task_numa_migrate(p); 2644 } 2645 2646 /* 2647 * Find out how many nodes the workload is actively running on. Do this by 2648 * tracking the nodes from which NUMA hinting faults are triggered. This can 2649 * be different from the set of nodes where the workload's memory is currently 2650 * located. 2651 */ 2652 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2653 { 2654 unsigned long faults, max_faults = 0; 2655 int nid, active_nodes = 0; 2656 2657 for_each_node_state(nid, N_CPU) { 2658 faults = group_faults_cpu(numa_group, nid); 2659 if (faults > max_faults) 2660 max_faults = faults; 2661 } 2662 2663 for_each_node_state(nid, N_CPU) { 2664 faults = group_faults_cpu(numa_group, nid); 2665 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2666 active_nodes++; 2667 } 2668 2669 numa_group->max_faults_cpu = max_faults; 2670 numa_group->active_nodes = active_nodes; 2671 } 2672 2673 /* 2674 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2675 * increments. The more local the fault statistics are, the higher the scan 2676 * period will be for the next scan window. If local/(local+remote) ratio is 2677 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2678 * the scan period will decrease. Aim for 70% local accesses. 2679 */ 2680 #define NUMA_PERIOD_SLOTS 10 2681 #define NUMA_PERIOD_THRESHOLD 7 2682 2683 /* 2684 * Increase the scan period (slow down scanning) if the majority of 2685 * our memory is already on our local node, or if the majority of 2686 * the page accesses are shared with other processes. 2687 * Otherwise, decrease the scan period. 2688 */ 2689 static void update_task_scan_period(struct task_struct *p, 2690 unsigned long shared, unsigned long private) 2691 { 2692 unsigned int period_slot; 2693 int lr_ratio, ps_ratio; 2694 int diff; 2695 2696 unsigned long remote = p->numa_faults_locality[0]; 2697 unsigned long local = p->numa_faults_locality[1]; 2698 2699 /* 2700 * If there were no record hinting faults then either the task is 2701 * completely idle or all activity is in areas that are not of interest 2702 * to automatic numa balancing. Related to that, if there were failed 2703 * migration then it implies we are migrating too quickly or the local 2704 * node is overloaded. In either case, scan slower 2705 */ 2706 if (local + shared == 0 || p->numa_faults_locality[2]) { 2707 p->numa_scan_period = min(p->numa_scan_period_max, 2708 p->numa_scan_period << 1); 2709 2710 p->mm->numa_next_scan = jiffies + 2711 msecs_to_jiffies(p->numa_scan_period); 2712 2713 return; 2714 } 2715 2716 /* 2717 * Prepare to scale scan period relative to the current period. 2718 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2719 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2720 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2721 */ 2722 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2723 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2724 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2725 2726 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2727 /* 2728 * Most memory accesses are local. There is no need to 2729 * do fast NUMA scanning, since memory is already local. 2730 */ 2731 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2732 if (!slot) 2733 slot = 1; 2734 diff = slot * period_slot; 2735 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2736 /* 2737 * Most memory accesses are shared with other tasks. 2738 * There is no point in continuing fast NUMA scanning, 2739 * since other tasks may just move the memory elsewhere. 2740 */ 2741 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2742 if (!slot) 2743 slot = 1; 2744 diff = slot * period_slot; 2745 } else { 2746 /* 2747 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2748 * yet they are not on the local NUMA node. Speed up 2749 * NUMA scanning to get the memory moved over. 2750 */ 2751 int ratio = max(lr_ratio, ps_ratio); 2752 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2753 } 2754 2755 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2756 task_scan_min(p), task_scan_max(p)); 2757 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2758 } 2759 2760 /* 2761 * Get the fraction of time the task has been running since the last 2762 * NUMA placement cycle. The scheduler keeps similar statistics, but 2763 * decays those on a 32ms period, which is orders of magnitude off 2764 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2765 * stats only if the task is so new there are no NUMA statistics yet. 2766 */ 2767 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2768 { 2769 u64 runtime, delta, now; 2770 /* Use the start of this time slice to avoid calculations. */ 2771 now = p->se.exec_start; 2772 runtime = p->se.sum_exec_runtime; 2773 2774 if (p->last_task_numa_placement) { 2775 delta = runtime - p->last_sum_exec_runtime; 2776 *period = now - p->last_task_numa_placement; 2777 2778 /* Avoid time going backwards, prevent potential divide error: */ 2779 if (unlikely((s64)*period < 0)) 2780 *period = 0; 2781 } else { 2782 delta = p->se.avg.load_sum; 2783 *period = LOAD_AVG_MAX; 2784 } 2785 2786 p->last_sum_exec_runtime = runtime; 2787 p->last_task_numa_placement = now; 2788 2789 return delta; 2790 } 2791 2792 /* 2793 * Determine the preferred nid for a task in a numa_group. This needs to 2794 * be done in a way that produces consistent results with group_weight, 2795 * otherwise workloads might not converge. 2796 */ 2797 static int preferred_group_nid(struct task_struct *p, int nid) 2798 { 2799 nodemask_t nodes; 2800 int dist; 2801 2802 /* Direct connections between all NUMA nodes. */ 2803 if (sched_numa_topology_type == NUMA_DIRECT) 2804 return nid; 2805 2806 /* 2807 * On a system with glueless mesh NUMA topology, group_weight 2808 * scores nodes according to the number of NUMA hinting faults on 2809 * both the node itself, and on nearby nodes. 2810 */ 2811 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2812 unsigned long score, max_score = 0; 2813 int node, max_node = nid; 2814 2815 dist = sched_max_numa_distance; 2816 2817 for_each_node_state(node, N_CPU) { 2818 score = group_weight(p, node, dist); 2819 if (score > max_score) { 2820 max_score = score; 2821 max_node = node; 2822 } 2823 } 2824 return max_node; 2825 } 2826 2827 /* 2828 * Finding the preferred nid in a system with NUMA backplane 2829 * interconnect topology is more involved. The goal is to locate 2830 * tasks from numa_groups near each other in the system, and 2831 * untangle workloads from different sides of the system. This requires 2832 * searching down the hierarchy of node groups, recursively searching 2833 * inside the highest scoring group of nodes. The nodemask tricks 2834 * keep the complexity of the search down. 2835 */ 2836 nodes = node_states[N_CPU]; 2837 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2838 unsigned long max_faults = 0; 2839 nodemask_t max_group = NODE_MASK_NONE; 2840 int a, b; 2841 2842 /* Are there nodes at this distance from each other? */ 2843 if (!find_numa_distance(dist)) 2844 continue; 2845 2846 for_each_node_mask(a, nodes) { 2847 unsigned long faults = 0; 2848 nodemask_t this_group; 2849 nodes_clear(this_group); 2850 2851 /* Sum group's NUMA faults; includes a==b case. */ 2852 for_each_node_mask(b, nodes) { 2853 if (node_distance(a, b) < dist) { 2854 faults += group_faults(p, b); 2855 node_set(b, this_group); 2856 node_clear(b, nodes); 2857 } 2858 } 2859 2860 /* Remember the top group. */ 2861 if (faults > max_faults) { 2862 max_faults = faults; 2863 max_group = this_group; 2864 /* 2865 * subtle: at the smallest distance there is 2866 * just one node left in each "group", the 2867 * winner is the preferred nid. 2868 */ 2869 nid = a; 2870 } 2871 } 2872 /* Next round, evaluate the nodes within max_group. */ 2873 if (!max_faults) 2874 break; 2875 nodes = max_group; 2876 } 2877 return nid; 2878 } 2879 2880 static void task_numa_placement(struct task_struct *p) 2881 { 2882 int seq, nid, max_nid = NUMA_NO_NODE; 2883 unsigned long max_faults = 0; 2884 unsigned long fault_types[2] = { 0, 0 }; 2885 unsigned long total_faults; 2886 u64 runtime, period; 2887 spinlock_t *group_lock = NULL; 2888 struct numa_group *ng; 2889 2890 /* 2891 * The p->mm->numa_scan_seq field gets updated without 2892 * exclusive access. Use READ_ONCE() here to ensure 2893 * that the field is read in a single access: 2894 */ 2895 seq = READ_ONCE(p->mm->numa_scan_seq); 2896 if (p->numa_scan_seq == seq) 2897 return; 2898 p->numa_scan_seq = seq; 2899 p->numa_scan_period_max = task_scan_max(p); 2900 2901 total_faults = p->numa_faults_locality[0] + 2902 p->numa_faults_locality[1]; 2903 runtime = numa_get_avg_runtime(p, &period); 2904 2905 /* If the task is part of a group prevent parallel updates to group stats */ 2906 ng = deref_curr_numa_group(p); 2907 if (ng) { 2908 group_lock = &ng->lock; 2909 spin_lock_irq(group_lock); 2910 } 2911 2912 /* Find the node with the highest number of faults */ 2913 for_each_online_node(nid) { 2914 /* Keep track of the offsets in numa_faults array */ 2915 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2916 unsigned long faults = 0, group_faults = 0; 2917 int priv; 2918 2919 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2920 long diff, f_diff, f_weight; 2921 2922 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2923 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2924 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2925 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2926 2927 /* Decay existing window, copy faults since last scan */ 2928 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2929 fault_types[priv] += p->numa_faults[membuf_idx]; 2930 p->numa_faults[membuf_idx] = 0; 2931 2932 /* 2933 * Normalize the faults_from, so all tasks in a group 2934 * count according to CPU use, instead of by the raw 2935 * number of faults. Tasks with little runtime have 2936 * little over-all impact on throughput, and thus their 2937 * faults are less important. 2938 */ 2939 f_weight = div64_u64(runtime << 16, period + 1); 2940 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2941 (total_faults + 1); 2942 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2943 p->numa_faults[cpubuf_idx] = 0; 2944 2945 p->numa_faults[mem_idx] += diff; 2946 p->numa_faults[cpu_idx] += f_diff; 2947 faults += p->numa_faults[mem_idx]; 2948 p->total_numa_faults += diff; 2949 if (ng) { 2950 /* 2951 * safe because we can only change our own group 2952 * 2953 * mem_idx represents the offset for a given 2954 * nid and priv in a specific region because it 2955 * is at the beginning of the numa_faults array. 2956 */ 2957 ng->faults[mem_idx] += diff; 2958 ng->faults[cpu_idx] += f_diff; 2959 ng->total_faults += diff; 2960 group_faults += ng->faults[mem_idx]; 2961 } 2962 } 2963 2964 if (!ng) { 2965 if (faults > max_faults) { 2966 max_faults = faults; 2967 max_nid = nid; 2968 } 2969 } else if (group_faults > max_faults) { 2970 max_faults = group_faults; 2971 max_nid = nid; 2972 } 2973 } 2974 2975 /* Cannot migrate task to CPU-less node */ 2976 max_nid = numa_nearest_node(max_nid, N_CPU); 2977 2978 if (ng) { 2979 numa_group_count_active_nodes(ng); 2980 spin_unlock_irq(group_lock); 2981 max_nid = preferred_group_nid(p, max_nid); 2982 } 2983 2984 if (max_faults) { 2985 /* Set the new preferred node */ 2986 if (max_nid != p->numa_preferred_nid) 2987 sched_setnuma(p, max_nid); 2988 } 2989 2990 update_task_scan_period(p, fault_types[0], fault_types[1]); 2991 } 2992 2993 static inline int get_numa_group(struct numa_group *grp) 2994 { 2995 return refcount_inc_not_zero(&grp->refcount); 2996 } 2997 2998 static inline void put_numa_group(struct numa_group *grp) 2999 { 3000 if (refcount_dec_and_test(&grp->refcount)) 3001 kfree_rcu(grp, rcu); 3002 } 3003 3004 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 3005 int *priv) 3006 { 3007 struct numa_group *grp, *my_grp; 3008 struct task_struct *tsk; 3009 bool join = false; 3010 int cpu = cpupid_to_cpu(cpupid); 3011 int i; 3012 3013 if (unlikely(!deref_curr_numa_group(p))) { 3014 unsigned int size = sizeof(struct numa_group) + 3015 NR_NUMA_HINT_FAULT_STATS * 3016 nr_node_ids * sizeof(unsigned long); 3017 3018 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 3019 if (!grp) 3020 return; 3021 3022 refcount_set(&grp->refcount, 1); 3023 grp->active_nodes = 1; 3024 grp->max_faults_cpu = 0; 3025 spin_lock_init(&grp->lock); 3026 grp->gid = p->pid; 3027 3028 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3029 grp->faults[i] = p->numa_faults[i]; 3030 3031 grp->total_faults = p->total_numa_faults; 3032 3033 grp->nr_tasks++; 3034 rcu_assign_pointer(p->numa_group, grp); 3035 } 3036 3037 rcu_read_lock(); 3038 tsk = READ_ONCE(cpu_rq(cpu)->curr); 3039 3040 if (!cpupid_match_pid(tsk, cpupid)) 3041 goto no_join; 3042 3043 grp = rcu_dereference(tsk->numa_group); 3044 if (!grp) 3045 goto no_join; 3046 3047 my_grp = deref_curr_numa_group(p); 3048 if (grp == my_grp) 3049 goto no_join; 3050 3051 /* 3052 * Only join the other group if its bigger; if we're the bigger group, 3053 * the other task will join us. 3054 */ 3055 if (my_grp->nr_tasks > grp->nr_tasks) 3056 goto no_join; 3057 3058 /* 3059 * Tie-break on the grp address. 3060 */ 3061 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3062 goto no_join; 3063 3064 /* Always join threads in the same process. */ 3065 if (tsk->mm == current->mm) 3066 join = true; 3067 3068 /* Simple filter to avoid false positives due to PID collisions */ 3069 if (flags & TNF_SHARED) 3070 join = true; 3071 3072 /* Update priv based on whether false sharing was detected */ 3073 *priv = !join; 3074 3075 if (join && !get_numa_group(grp)) 3076 goto no_join; 3077 3078 rcu_read_unlock(); 3079 3080 if (!join) 3081 return; 3082 3083 WARN_ON_ONCE(irqs_disabled()); 3084 double_lock_irq(&my_grp->lock, &grp->lock); 3085 3086 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3087 my_grp->faults[i] -= p->numa_faults[i]; 3088 grp->faults[i] += p->numa_faults[i]; 3089 } 3090 my_grp->total_faults -= p->total_numa_faults; 3091 grp->total_faults += p->total_numa_faults; 3092 3093 my_grp->nr_tasks--; 3094 grp->nr_tasks++; 3095 3096 spin_unlock(&my_grp->lock); 3097 spin_unlock_irq(&grp->lock); 3098 3099 rcu_assign_pointer(p->numa_group, grp); 3100 3101 put_numa_group(my_grp); 3102 return; 3103 3104 no_join: 3105 rcu_read_unlock(); 3106 return; 3107 } 3108 3109 /* 3110 * Get rid of NUMA statistics associated with a task (either current or dead). 3111 * If @final is set, the task is dead and has reached refcount zero, so we can 3112 * safely free all relevant data structures. Otherwise, there might be 3113 * concurrent reads from places like load balancing and procfs, and we should 3114 * reset the data back to default state without freeing ->numa_faults. 3115 */ 3116 void task_numa_free(struct task_struct *p, bool final) 3117 { 3118 /* safe: p either is current or is being freed by current */ 3119 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3120 unsigned long *numa_faults = p->numa_faults; 3121 unsigned long flags; 3122 int i; 3123 3124 if (!numa_faults) 3125 return; 3126 3127 if (grp) { 3128 spin_lock_irqsave(&grp->lock, flags); 3129 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3130 grp->faults[i] -= p->numa_faults[i]; 3131 grp->total_faults -= p->total_numa_faults; 3132 3133 grp->nr_tasks--; 3134 spin_unlock_irqrestore(&grp->lock, flags); 3135 RCU_INIT_POINTER(p->numa_group, NULL); 3136 put_numa_group(grp); 3137 } 3138 3139 if (final) { 3140 p->numa_faults = NULL; 3141 kfree(numa_faults); 3142 } else { 3143 p->total_numa_faults = 0; 3144 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3145 numa_faults[i] = 0; 3146 } 3147 } 3148 3149 /* 3150 * Got a PROT_NONE fault for a page on @node. 3151 */ 3152 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3153 { 3154 struct task_struct *p = current; 3155 bool migrated = flags & TNF_MIGRATED; 3156 int cpu_node = task_node(current); 3157 int local = !!(flags & TNF_FAULT_LOCAL); 3158 struct numa_group *ng; 3159 int priv; 3160 3161 if (!static_branch_likely(&sched_numa_balancing)) 3162 return; 3163 3164 /* for example, ksmd faulting in a user's mm */ 3165 if (!p->mm) 3166 return; 3167 3168 /* 3169 * NUMA faults statistics are unnecessary for the slow memory 3170 * node for memory tiering mode. 3171 */ 3172 if (!node_is_toptier(mem_node) && 3173 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3174 !cpupid_valid(last_cpupid))) 3175 return; 3176 3177 /* Allocate buffer to track faults on a per-node basis */ 3178 if (unlikely(!p->numa_faults)) { 3179 int size = sizeof(*p->numa_faults) * 3180 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3181 3182 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3183 if (!p->numa_faults) 3184 return; 3185 3186 p->total_numa_faults = 0; 3187 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3188 } 3189 3190 /* 3191 * First accesses are treated as private, otherwise consider accesses 3192 * to be private if the accessing pid has not changed 3193 */ 3194 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3195 priv = 1; 3196 } else { 3197 priv = cpupid_match_pid(p, last_cpupid); 3198 if (!priv && !(flags & TNF_NO_GROUP)) 3199 task_numa_group(p, last_cpupid, flags, &priv); 3200 } 3201 3202 /* 3203 * If a workload spans multiple NUMA nodes, a shared fault that 3204 * occurs wholly within the set of nodes that the workload is 3205 * actively using should be counted as local. This allows the 3206 * scan rate to slow down when a workload has settled down. 3207 */ 3208 ng = deref_curr_numa_group(p); 3209 if (!priv && !local && ng && ng->active_nodes > 1 && 3210 numa_is_active_node(cpu_node, ng) && 3211 numa_is_active_node(mem_node, ng)) 3212 local = 1; 3213 3214 /* 3215 * Retry to migrate task to preferred node periodically, in case it 3216 * previously failed, or the scheduler moved us. 3217 */ 3218 if (time_after(jiffies, p->numa_migrate_retry)) { 3219 task_numa_placement(p); 3220 numa_migrate_preferred(p); 3221 } 3222 3223 if (migrated) 3224 p->numa_pages_migrated += pages; 3225 if (flags & TNF_MIGRATE_FAIL) 3226 p->numa_faults_locality[2] += pages; 3227 3228 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3229 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3230 p->numa_faults_locality[local] += pages; 3231 } 3232 3233 static void reset_ptenuma_scan(struct task_struct *p) 3234 { 3235 /* 3236 * We only did a read acquisition of the mmap sem, so 3237 * p->mm->numa_scan_seq is written to without exclusive access 3238 * and the update is not guaranteed to be atomic. That's not 3239 * much of an issue though, since this is just used for 3240 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3241 * expensive, to avoid any form of compiler optimizations: 3242 */ 3243 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3244 p->mm->numa_scan_offset = 0; 3245 } 3246 3247 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3248 { 3249 unsigned long pids; 3250 /* 3251 * Allow unconditional access first two times, so that all the (pages) 3252 * of VMAs get prot_none fault introduced irrespective of accesses. 3253 * This is also done to avoid any side effect of task scanning 3254 * amplifying the unfairness of disjoint set of VMAs' access. 3255 */ 3256 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3257 return true; 3258 3259 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3260 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3261 return true; 3262 3263 /* 3264 * Complete a scan that has already started regardless of PID access, or 3265 * some VMAs may never be scanned in multi-threaded applications: 3266 */ 3267 if (mm->numa_scan_offset > vma->vm_start) { 3268 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3269 return true; 3270 } 3271 3272 return false; 3273 } 3274 3275 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3276 3277 /* 3278 * The expensive part of numa migration is done from task_work context. 3279 * Triggered from task_tick_numa(). 3280 */ 3281 static void task_numa_work(struct callback_head *work) 3282 { 3283 unsigned long migrate, next_scan, now = jiffies; 3284 struct task_struct *p = current; 3285 struct mm_struct *mm = p->mm; 3286 u64 runtime = p->se.sum_exec_runtime; 3287 struct vm_area_struct *vma; 3288 unsigned long start, end; 3289 unsigned long nr_pte_updates = 0; 3290 long pages, virtpages; 3291 struct vma_iterator vmi; 3292 bool vma_pids_skipped; 3293 bool vma_pids_forced = false; 3294 3295 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3296 3297 work->next = work; 3298 /* 3299 * Who cares about NUMA placement when they're dying. 3300 * 3301 * NOTE: make sure not to dereference p->mm before this check, 3302 * exit_task_work() happens _after_ exit_mm() so we could be called 3303 * without p->mm even though we still had it when we enqueued this 3304 * work. 3305 */ 3306 if (p->flags & PF_EXITING) 3307 return; 3308 3309 if (!mm->numa_next_scan) { 3310 mm->numa_next_scan = now + 3311 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3312 } 3313 3314 /* 3315 * Enforce maximal scan/migration frequency.. 3316 */ 3317 migrate = mm->numa_next_scan; 3318 if (time_before(now, migrate)) 3319 return; 3320 3321 if (p->numa_scan_period == 0) { 3322 p->numa_scan_period_max = task_scan_max(p); 3323 p->numa_scan_period = task_scan_start(p); 3324 } 3325 3326 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3327 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3328 return; 3329 3330 /* 3331 * Delay this task enough that another task of this mm will likely win 3332 * the next time around. 3333 */ 3334 p->node_stamp += 2 * TICK_NSEC; 3335 3336 pages = sysctl_numa_balancing_scan_size; 3337 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3338 virtpages = pages * 8; /* Scan up to this much virtual space */ 3339 if (!pages) 3340 return; 3341 3342 3343 if (!mmap_read_trylock(mm)) 3344 return; 3345 3346 /* 3347 * VMAs are skipped if the current PID has not trapped a fault within 3348 * the VMA recently. Allow scanning to be forced if there is no 3349 * suitable VMA remaining. 3350 */ 3351 vma_pids_skipped = false; 3352 3353 retry_pids: 3354 start = mm->numa_scan_offset; 3355 vma_iter_init(&vmi, mm, start); 3356 vma = vma_next(&vmi); 3357 if (!vma) { 3358 reset_ptenuma_scan(p); 3359 start = 0; 3360 vma_iter_set(&vmi, start); 3361 vma = vma_next(&vmi); 3362 } 3363 3364 do { 3365 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3366 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3367 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3368 continue; 3369 } 3370 3371 /* 3372 * Shared library pages mapped by multiple processes are not 3373 * migrated as it is expected they are cache replicated. Avoid 3374 * hinting faults in read-only file-backed mappings or the vDSO 3375 * as migrating the pages will be of marginal benefit. 3376 */ 3377 if (!vma->vm_mm || 3378 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3379 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3380 continue; 3381 } 3382 3383 /* 3384 * Skip inaccessible VMAs to avoid any confusion between 3385 * PROT_NONE and NUMA hinting PTEs 3386 */ 3387 if (!vma_is_accessible(vma)) { 3388 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3389 continue; 3390 } 3391 3392 /* Initialise new per-VMA NUMAB state. */ 3393 if (!vma->numab_state) { 3394 vma->numab_state = kzalloc(sizeof(struct vma_numab_state), 3395 GFP_KERNEL); 3396 if (!vma->numab_state) 3397 continue; 3398 3399 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3400 3401 vma->numab_state->next_scan = now + 3402 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3403 3404 /* Reset happens after 4 times scan delay of scan start */ 3405 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3406 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3407 3408 /* 3409 * Ensure prev_scan_seq does not match numa_scan_seq, 3410 * to prevent VMAs being skipped prematurely on the 3411 * first scan: 3412 */ 3413 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3414 } 3415 3416 /* 3417 * Scanning the VMAs of short lived tasks add more overhead. So 3418 * delay the scan for new VMAs. 3419 */ 3420 if (mm->numa_scan_seq && time_before(jiffies, 3421 vma->numab_state->next_scan)) { 3422 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3423 continue; 3424 } 3425 3426 /* RESET access PIDs regularly for old VMAs. */ 3427 if (mm->numa_scan_seq && 3428 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3429 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3430 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3431 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3432 vma->numab_state->pids_active[1] = 0; 3433 } 3434 3435 /* Do not rescan VMAs twice within the same sequence. */ 3436 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3437 mm->numa_scan_offset = vma->vm_end; 3438 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3439 continue; 3440 } 3441 3442 /* 3443 * Do not scan the VMA if task has not accessed it, unless no other 3444 * VMA candidate exists. 3445 */ 3446 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3447 vma_pids_skipped = true; 3448 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3449 continue; 3450 } 3451 3452 do { 3453 start = max(start, vma->vm_start); 3454 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3455 end = min(end, vma->vm_end); 3456 nr_pte_updates = change_prot_numa(vma, start, end); 3457 3458 /* 3459 * Try to scan sysctl_numa_balancing_size worth of 3460 * hpages that have at least one present PTE that 3461 * is not already PTE-numa. If the VMA contains 3462 * areas that are unused or already full of prot_numa 3463 * PTEs, scan up to virtpages, to skip through those 3464 * areas faster. 3465 */ 3466 if (nr_pte_updates) 3467 pages -= (end - start) >> PAGE_SHIFT; 3468 virtpages -= (end - start) >> PAGE_SHIFT; 3469 3470 start = end; 3471 if (pages <= 0 || virtpages <= 0) 3472 goto out; 3473 3474 cond_resched(); 3475 } while (end != vma->vm_end); 3476 3477 /* VMA scan is complete, do not scan until next sequence. */ 3478 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3479 3480 /* 3481 * Only force scan within one VMA at a time, to limit the 3482 * cost of scanning a potentially uninteresting VMA. 3483 */ 3484 if (vma_pids_forced) 3485 break; 3486 } for_each_vma(vmi, vma); 3487 3488 /* 3489 * If no VMAs are remaining and VMAs were skipped due to the PID 3490 * not accessing the VMA previously, then force a scan to ensure 3491 * forward progress: 3492 */ 3493 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3494 vma_pids_forced = true; 3495 goto retry_pids; 3496 } 3497 3498 out: 3499 /* 3500 * It is possible to reach the end of the VMA list but the last few 3501 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3502 * would find the !migratable VMA on the next scan but not reset the 3503 * scanner to the start so check it now. 3504 */ 3505 if (vma) 3506 mm->numa_scan_offset = start; 3507 else 3508 reset_ptenuma_scan(p); 3509 mmap_read_unlock(mm); 3510 3511 /* 3512 * Make sure tasks use at least 32x as much time to run other code 3513 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3514 * Usually update_task_scan_period slows down scanning enough; on an 3515 * overloaded system we need to limit overhead on a per task basis. 3516 */ 3517 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3518 u64 diff = p->se.sum_exec_runtime - runtime; 3519 p->node_stamp += 32 * diff; 3520 } 3521 } 3522 3523 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3524 { 3525 int mm_users = 0; 3526 struct mm_struct *mm = p->mm; 3527 3528 if (mm) { 3529 mm_users = atomic_read(&mm->mm_users); 3530 if (mm_users == 1) { 3531 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3532 mm->numa_scan_seq = 0; 3533 } 3534 } 3535 p->node_stamp = 0; 3536 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3537 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3538 p->numa_migrate_retry = 0; 3539 /* Protect against double add, see task_tick_numa and task_numa_work */ 3540 p->numa_work.next = &p->numa_work; 3541 p->numa_faults = NULL; 3542 p->numa_pages_migrated = 0; 3543 p->total_numa_faults = 0; 3544 RCU_INIT_POINTER(p->numa_group, NULL); 3545 p->last_task_numa_placement = 0; 3546 p->last_sum_exec_runtime = 0; 3547 3548 init_task_work(&p->numa_work, task_numa_work); 3549 3550 /* New address space, reset the preferred nid */ 3551 if (!(clone_flags & CLONE_VM)) { 3552 p->numa_preferred_nid = NUMA_NO_NODE; 3553 return; 3554 } 3555 3556 /* 3557 * New thread, keep existing numa_preferred_nid which should be copied 3558 * already by arch_dup_task_struct but stagger when scans start. 3559 */ 3560 if (mm) { 3561 unsigned int delay; 3562 3563 delay = min_t(unsigned int, task_scan_max(current), 3564 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3565 delay += 2 * TICK_NSEC; 3566 p->node_stamp = delay; 3567 } 3568 } 3569 3570 /* 3571 * Drive the periodic memory faults.. 3572 */ 3573 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3574 { 3575 struct callback_head *work = &curr->numa_work; 3576 u64 period, now; 3577 3578 /* 3579 * We don't care about NUMA placement if we don't have memory. 3580 */ 3581 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3582 return; 3583 3584 /* 3585 * Using runtime rather than walltime has the dual advantage that 3586 * we (mostly) drive the selection from busy threads and that the 3587 * task needs to have done some actual work before we bother with 3588 * NUMA placement. 3589 */ 3590 now = curr->se.sum_exec_runtime; 3591 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3592 3593 if (now > curr->node_stamp + period) { 3594 if (!curr->node_stamp) 3595 curr->numa_scan_period = task_scan_start(curr); 3596 curr->node_stamp += period; 3597 3598 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3599 task_work_add(curr, work, TWA_RESUME); 3600 } 3601 } 3602 3603 static void update_scan_period(struct task_struct *p, int new_cpu) 3604 { 3605 int src_nid = cpu_to_node(task_cpu(p)); 3606 int dst_nid = cpu_to_node(new_cpu); 3607 3608 if (!static_branch_likely(&sched_numa_balancing)) 3609 return; 3610 3611 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3612 return; 3613 3614 if (src_nid == dst_nid) 3615 return; 3616 3617 /* 3618 * Allow resets if faults have been trapped before one scan 3619 * has completed. This is most likely due to a new task that 3620 * is pulled cross-node due to wakeups or load balancing. 3621 */ 3622 if (p->numa_scan_seq) { 3623 /* 3624 * Avoid scan adjustments if moving to the preferred 3625 * node or if the task was not previously running on 3626 * the preferred node. 3627 */ 3628 if (dst_nid == p->numa_preferred_nid || 3629 (p->numa_preferred_nid != NUMA_NO_NODE && 3630 src_nid != p->numa_preferred_nid)) 3631 return; 3632 } 3633 3634 p->numa_scan_period = task_scan_start(p); 3635 } 3636 3637 #else 3638 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3639 { 3640 } 3641 3642 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3643 { 3644 } 3645 3646 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3647 { 3648 } 3649 3650 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3651 { 3652 } 3653 3654 #endif /* CONFIG_NUMA_BALANCING */ 3655 3656 static void 3657 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3658 { 3659 update_load_add(&cfs_rq->load, se->load.weight); 3660 #ifdef CONFIG_SMP 3661 if (entity_is_task(se)) { 3662 struct rq *rq = rq_of(cfs_rq); 3663 3664 account_numa_enqueue(rq, task_of(se)); 3665 list_add(&se->group_node, &rq->cfs_tasks); 3666 } 3667 #endif 3668 cfs_rq->nr_running++; 3669 if (se_is_idle(se)) 3670 cfs_rq->idle_nr_running++; 3671 } 3672 3673 static void 3674 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3675 { 3676 update_load_sub(&cfs_rq->load, se->load.weight); 3677 #ifdef CONFIG_SMP 3678 if (entity_is_task(se)) { 3679 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3680 list_del_init(&se->group_node); 3681 } 3682 #endif 3683 cfs_rq->nr_running--; 3684 if (se_is_idle(se)) 3685 cfs_rq->idle_nr_running--; 3686 } 3687 3688 /* 3689 * Signed add and clamp on underflow. 3690 * 3691 * Explicitly do a load-store to ensure the intermediate value never hits 3692 * memory. This allows lockless observations without ever seeing the negative 3693 * values. 3694 */ 3695 #define add_positive(_ptr, _val) do { \ 3696 typeof(_ptr) ptr = (_ptr); \ 3697 typeof(_val) val = (_val); \ 3698 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3699 \ 3700 res = var + val; \ 3701 \ 3702 if (val < 0 && res > var) \ 3703 res = 0; \ 3704 \ 3705 WRITE_ONCE(*ptr, res); \ 3706 } while (0) 3707 3708 /* 3709 * Unsigned subtract and clamp on underflow. 3710 * 3711 * Explicitly do a load-store to ensure the intermediate value never hits 3712 * memory. This allows lockless observations without ever seeing the negative 3713 * values. 3714 */ 3715 #define sub_positive(_ptr, _val) do { \ 3716 typeof(_ptr) ptr = (_ptr); \ 3717 typeof(*ptr) val = (_val); \ 3718 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3719 res = var - val; \ 3720 if (res > var) \ 3721 res = 0; \ 3722 WRITE_ONCE(*ptr, res); \ 3723 } while (0) 3724 3725 /* 3726 * Remove and clamp on negative, from a local variable. 3727 * 3728 * A variant of sub_positive(), which does not use explicit load-store 3729 * and is thus optimized for local variable updates. 3730 */ 3731 #define lsub_positive(_ptr, _val) do { \ 3732 typeof(_ptr) ptr = (_ptr); \ 3733 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3734 } while (0) 3735 3736 #ifdef CONFIG_SMP 3737 static inline void 3738 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3739 { 3740 cfs_rq->avg.load_avg += se->avg.load_avg; 3741 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3742 } 3743 3744 static inline void 3745 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3746 { 3747 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3748 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3749 /* See update_cfs_rq_load_avg() */ 3750 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3751 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3752 } 3753 #else 3754 static inline void 3755 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3756 static inline void 3757 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3758 #endif 3759 3760 static void reweight_eevdf(struct sched_entity *se, u64 avruntime, 3761 unsigned long weight) 3762 { 3763 unsigned long old_weight = se->load.weight; 3764 s64 vlag, vslice; 3765 3766 /* 3767 * VRUNTIME 3768 * -------- 3769 * 3770 * COROLLARY #1: The virtual runtime of the entity needs to be 3771 * adjusted if re-weight at !0-lag point. 3772 * 3773 * Proof: For contradiction assume this is not true, so we can 3774 * re-weight without changing vruntime at !0-lag point. 3775 * 3776 * Weight VRuntime Avg-VRuntime 3777 * before w v V 3778 * after w' v' V' 3779 * 3780 * Since lag needs to be preserved through re-weight: 3781 * 3782 * lag = (V - v)*w = (V'- v')*w', where v = v' 3783 * ==> V' = (V - v)*w/w' + v (1) 3784 * 3785 * Let W be the total weight of the entities before reweight, 3786 * since V' is the new weighted average of entities: 3787 * 3788 * V' = (WV + w'v - wv) / (W + w' - w) (2) 3789 * 3790 * by using (1) & (2) we obtain: 3791 * 3792 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v 3793 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v 3794 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v 3795 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3) 3796 * 3797 * Since we are doing at !0-lag point which means V != v, we 3798 * can simplify (3): 3799 * 3800 * ==> W / (W + w' - w) = w / w' 3801 * ==> Ww' = Ww + ww' - ww 3802 * ==> W * (w' - w) = w * (w' - w) 3803 * ==> W = w (re-weight indicates w' != w) 3804 * 3805 * So the cfs_rq contains only one entity, hence vruntime of 3806 * the entity @v should always equal to the cfs_rq's weighted 3807 * average vruntime @V, which means we will always re-weight 3808 * at 0-lag point, thus breach assumption. Proof completed. 3809 * 3810 * 3811 * COROLLARY #2: Re-weight does NOT affect weighted average 3812 * vruntime of all the entities. 3813 * 3814 * Proof: According to corollary #1, Eq. (1) should be: 3815 * 3816 * (V - v)*w = (V' - v')*w' 3817 * ==> v' = V' - (V - v)*w/w' (4) 3818 * 3819 * According to the weighted average formula, we have: 3820 * 3821 * V' = (WV - wv + w'v') / (W - w + w') 3822 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w') 3823 * = (WV - wv + w'V' - Vw + wv) / (W - w + w') 3824 * = (WV + w'V' - Vw) / (W - w + w') 3825 * 3826 * ==> V'*(W - w + w') = WV + w'V' - Vw 3827 * ==> V' * (W - w) = (W - w) * V (5) 3828 * 3829 * If the entity is the only one in the cfs_rq, then reweight 3830 * always occurs at 0-lag point, so V won't change. Or else 3831 * there are other entities, hence W != w, then Eq. (5) turns 3832 * into V' = V. So V won't change in either case, proof done. 3833 * 3834 * 3835 * So according to corollary #1 & #2, the effect of re-weight 3836 * on vruntime should be: 3837 * 3838 * v' = V' - (V - v) * w / w' (4) 3839 * = V - (V - v) * w / w' 3840 * = V - vl * w / w' 3841 * = V - vl' 3842 */ 3843 if (avruntime != se->vruntime) { 3844 vlag = entity_lag(avruntime, se); 3845 vlag = div_s64(vlag * old_weight, weight); 3846 se->vruntime = avruntime - vlag; 3847 } 3848 3849 /* 3850 * DEADLINE 3851 * -------- 3852 * 3853 * When the weight changes, the virtual time slope changes and 3854 * we should adjust the relative virtual deadline accordingly. 3855 * 3856 * d' = v' + (d - v)*w/w' 3857 * = V' - (V - v)*w/w' + (d - v)*w/w' 3858 * = V - (V - v)*w/w' + (d - v)*w/w' 3859 * = V + (d - V)*w/w' 3860 */ 3861 vslice = (s64)(se->deadline - avruntime); 3862 vslice = div_s64(vslice * old_weight, weight); 3863 se->deadline = avruntime + vslice; 3864 } 3865 3866 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3867 unsigned long weight) 3868 { 3869 bool curr = cfs_rq->curr == se; 3870 u64 avruntime; 3871 3872 if (se->on_rq) { 3873 /* commit outstanding execution time */ 3874 update_curr(cfs_rq); 3875 avruntime = avg_vruntime(cfs_rq); 3876 if (!curr) 3877 __dequeue_entity(cfs_rq, se); 3878 update_load_sub(&cfs_rq->load, se->load.weight); 3879 } 3880 dequeue_load_avg(cfs_rq, se); 3881 3882 if (se->on_rq) { 3883 reweight_eevdf(se, avruntime, weight); 3884 } else { 3885 /* 3886 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3887 * we need to scale se->vlag when w_i changes. 3888 */ 3889 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3890 } 3891 3892 update_load_set(&se->load, weight); 3893 3894 #ifdef CONFIG_SMP 3895 do { 3896 u32 divider = get_pelt_divider(&se->avg); 3897 3898 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3899 } while (0); 3900 #endif 3901 3902 enqueue_load_avg(cfs_rq, se); 3903 if (se->on_rq) { 3904 update_load_add(&cfs_rq->load, se->load.weight); 3905 if (!curr) 3906 __enqueue_entity(cfs_rq, se); 3907 3908 /* 3909 * The entity's vruntime has been adjusted, so let's check 3910 * whether the rq-wide min_vruntime needs updated too. Since 3911 * the calculations above require stable min_vruntime rather 3912 * than up-to-date one, we do the update at the end of the 3913 * reweight process. 3914 */ 3915 update_min_vruntime(cfs_rq); 3916 } 3917 } 3918 3919 void reweight_task(struct task_struct *p, const struct load_weight *lw) 3920 { 3921 struct sched_entity *se = &p->se; 3922 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3923 struct load_weight *load = &se->load; 3924 3925 reweight_entity(cfs_rq, se, lw->weight); 3926 load->inv_weight = lw->inv_weight; 3927 } 3928 3929 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3930 3931 #ifdef CONFIG_FAIR_GROUP_SCHED 3932 #ifdef CONFIG_SMP 3933 /* 3934 * All this does is approximate the hierarchical proportion which includes that 3935 * global sum we all love to hate. 3936 * 3937 * That is, the weight of a group entity, is the proportional share of the 3938 * group weight based on the group runqueue weights. That is: 3939 * 3940 * tg->weight * grq->load.weight 3941 * ge->load.weight = ----------------------------- (1) 3942 * \Sum grq->load.weight 3943 * 3944 * Now, because computing that sum is prohibitively expensive to compute (been 3945 * there, done that) we approximate it with this average stuff. The average 3946 * moves slower and therefore the approximation is cheaper and more stable. 3947 * 3948 * So instead of the above, we substitute: 3949 * 3950 * grq->load.weight -> grq->avg.load_avg (2) 3951 * 3952 * which yields the following: 3953 * 3954 * tg->weight * grq->avg.load_avg 3955 * ge->load.weight = ------------------------------ (3) 3956 * tg->load_avg 3957 * 3958 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3959 * 3960 * That is shares_avg, and it is right (given the approximation (2)). 3961 * 3962 * The problem with it is that because the average is slow -- it was designed 3963 * to be exactly that of course -- this leads to transients in boundary 3964 * conditions. In specific, the case where the group was idle and we start the 3965 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3966 * yielding bad latency etc.. 3967 * 3968 * Now, in that special case (1) reduces to: 3969 * 3970 * tg->weight * grq->load.weight 3971 * ge->load.weight = ----------------------------- = tg->weight (4) 3972 * grp->load.weight 3973 * 3974 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3975 * 3976 * So what we do is modify our approximation (3) to approach (4) in the (near) 3977 * UP case, like: 3978 * 3979 * ge->load.weight = 3980 * 3981 * tg->weight * grq->load.weight 3982 * --------------------------------------------------- (5) 3983 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3984 * 3985 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3986 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3987 * 3988 * 3989 * tg->weight * grq->load.weight 3990 * ge->load.weight = ----------------------------- (6) 3991 * tg_load_avg' 3992 * 3993 * Where: 3994 * 3995 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3996 * max(grq->load.weight, grq->avg.load_avg) 3997 * 3998 * And that is shares_weight and is icky. In the (near) UP case it approaches 3999 * (4) while in the normal case it approaches (3). It consistently 4000 * overestimates the ge->load.weight and therefore: 4001 * 4002 * \Sum ge->load.weight >= tg->weight 4003 * 4004 * hence icky! 4005 */ 4006 static long calc_group_shares(struct cfs_rq *cfs_rq) 4007 { 4008 long tg_weight, tg_shares, load, shares; 4009 struct task_group *tg = cfs_rq->tg; 4010 4011 tg_shares = READ_ONCE(tg->shares); 4012 4013 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 4014 4015 tg_weight = atomic_long_read(&tg->load_avg); 4016 4017 /* Ensure tg_weight >= load */ 4018 tg_weight -= cfs_rq->tg_load_avg_contrib; 4019 tg_weight += load; 4020 4021 shares = (tg_shares * load); 4022 if (tg_weight) 4023 shares /= tg_weight; 4024 4025 /* 4026 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 4027 * of a group with small tg->shares value. It is a floor value which is 4028 * assigned as a minimum load.weight to the sched_entity representing 4029 * the group on a CPU. 4030 * 4031 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 4032 * on an 8-core system with 8 tasks each runnable on one CPU shares has 4033 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 4034 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 4035 * instead of 0. 4036 */ 4037 return clamp_t(long, shares, MIN_SHARES, tg_shares); 4038 } 4039 #endif /* CONFIG_SMP */ 4040 4041 /* 4042 * Recomputes the group entity based on the current state of its group 4043 * runqueue. 4044 */ 4045 static void update_cfs_group(struct sched_entity *se) 4046 { 4047 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4048 long shares; 4049 4050 if (!gcfs_rq) 4051 return; 4052 4053 if (throttled_hierarchy(gcfs_rq)) 4054 return; 4055 4056 #ifndef CONFIG_SMP 4057 shares = READ_ONCE(gcfs_rq->tg->shares); 4058 #else 4059 shares = calc_group_shares(gcfs_rq); 4060 #endif 4061 if (unlikely(se->load.weight != shares)) 4062 reweight_entity(cfs_rq_of(se), se, shares); 4063 } 4064 4065 #else /* CONFIG_FAIR_GROUP_SCHED */ 4066 static inline void update_cfs_group(struct sched_entity *se) 4067 { 4068 } 4069 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4070 4071 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 4072 { 4073 struct rq *rq = rq_of(cfs_rq); 4074 4075 if (&rq->cfs == cfs_rq) { 4076 /* 4077 * There are a few boundary cases this might miss but it should 4078 * get called often enough that that should (hopefully) not be 4079 * a real problem. 4080 * 4081 * It will not get called when we go idle, because the idle 4082 * thread is a different class (!fair), nor will the utilization 4083 * number include things like RT tasks. 4084 * 4085 * As is, the util number is not freq-invariant (we'd have to 4086 * implement arch_scale_freq_capacity() for that). 4087 * 4088 * See cpu_util_cfs(). 4089 */ 4090 cpufreq_update_util(rq, flags); 4091 } 4092 } 4093 4094 #ifdef CONFIG_SMP 4095 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4096 { 4097 if (sa->load_sum) 4098 return false; 4099 4100 if (sa->util_sum) 4101 return false; 4102 4103 if (sa->runnable_sum) 4104 return false; 4105 4106 /* 4107 * _avg must be null when _sum are null because _avg = _sum / divider 4108 * Make sure that rounding and/or propagation of PELT values never 4109 * break this. 4110 */ 4111 SCHED_WARN_ON(sa->load_avg || 4112 sa->util_avg || 4113 sa->runnable_avg); 4114 4115 return true; 4116 } 4117 4118 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4119 { 4120 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4121 cfs_rq->last_update_time_copy); 4122 } 4123 #ifdef CONFIG_FAIR_GROUP_SCHED 4124 /* 4125 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4126 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4127 * bottom-up, we only have to test whether the cfs_rq before us on the list 4128 * is our child. 4129 * If cfs_rq is not on the list, test whether a child needs its to be added to 4130 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4131 */ 4132 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4133 { 4134 struct cfs_rq *prev_cfs_rq; 4135 struct list_head *prev; 4136 4137 if (cfs_rq->on_list) { 4138 prev = cfs_rq->leaf_cfs_rq_list.prev; 4139 } else { 4140 struct rq *rq = rq_of(cfs_rq); 4141 4142 prev = rq->tmp_alone_branch; 4143 } 4144 4145 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4146 4147 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4148 } 4149 4150 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4151 { 4152 if (cfs_rq->load.weight) 4153 return false; 4154 4155 if (!load_avg_is_decayed(&cfs_rq->avg)) 4156 return false; 4157 4158 if (child_cfs_rq_on_list(cfs_rq)) 4159 return false; 4160 4161 return true; 4162 } 4163 4164 /** 4165 * update_tg_load_avg - update the tg's load avg 4166 * @cfs_rq: the cfs_rq whose avg changed 4167 * 4168 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4169 * However, because tg->load_avg is a global value there are performance 4170 * considerations. 4171 * 4172 * In order to avoid having to look at the other cfs_rq's, we use a 4173 * differential update where we store the last value we propagated. This in 4174 * turn allows skipping updates if the differential is 'small'. 4175 * 4176 * Updating tg's load_avg is necessary before update_cfs_share(). 4177 */ 4178 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4179 { 4180 long delta; 4181 u64 now; 4182 4183 /* 4184 * No need to update load_avg for root_task_group as it is not used. 4185 */ 4186 if (cfs_rq->tg == &root_task_group) 4187 return; 4188 4189 /* rq has been offline and doesn't contribute to the share anymore: */ 4190 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4191 return; 4192 4193 /* 4194 * For migration heavy workloads, access to tg->load_avg can be 4195 * unbound. Limit the update rate to at most once per ms. 4196 */ 4197 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4198 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4199 return; 4200 4201 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4202 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4203 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4204 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4205 cfs_rq->last_update_tg_load_avg = now; 4206 } 4207 } 4208 4209 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4210 { 4211 long delta; 4212 u64 now; 4213 4214 /* 4215 * No need to update load_avg for root_task_group, as it is not used. 4216 */ 4217 if (cfs_rq->tg == &root_task_group) 4218 return; 4219 4220 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4221 delta = 0 - cfs_rq->tg_load_avg_contrib; 4222 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4223 cfs_rq->tg_load_avg_contrib = 0; 4224 cfs_rq->last_update_tg_load_avg = now; 4225 } 4226 4227 /* CPU offline callback: */ 4228 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4229 { 4230 struct task_group *tg; 4231 4232 lockdep_assert_rq_held(rq); 4233 4234 /* 4235 * The rq clock has already been updated in 4236 * set_rq_offline(), so we should skip updating 4237 * the rq clock again in unthrottle_cfs_rq(). 4238 */ 4239 rq_clock_start_loop_update(rq); 4240 4241 rcu_read_lock(); 4242 list_for_each_entry_rcu(tg, &task_groups, list) { 4243 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4244 4245 clear_tg_load_avg(cfs_rq); 4246 } 4247 rcu_read_unlock(); 4248 4249 rq_clock_stop_loop_update(rq); 4250 } 4251 4252 /* 4253 * Called within set_task_rq() right before setting a task's CPU. The 4254 * caller only guarantees p->pi_lock is held; no other assumptions, 4255 * including the state of rq->lock, should be made. 4256 */ 4257 void set_task_rq_fair(struct sched_entity *se, 4258 struct cfs_rq *prev, struct cfs_rq *next) 4259 { 4260 u64 p_last_update_time; 4261 u64 n_last_update_time; 4262 4263 if (!sched_feat(ATTACH_AGE_LOAD)) 4264 return; 4265 4266 /* 4267 * We are supposed to update the task to "current" time, then its up to 4268 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4269 * getting what current time is, so simply throw away the out-of-date 4270 * time. This will result in the wakee task is less decayed, but giving 4271 * the wakee more load sounds not bad. 4272 */ 4273 if (!(se->avg.last_update_time && prev)) 4274 return; 4275 4276 p_last_update_time = cfs_rq_last_update_time(prev); 4277 n_last_update_time = cfs_rq_last_update_time(next); 4278 4279 __update_load_avg_blocked_se(p_last_update_time, se); 4280 se->avg.last_update_time = n_last_update_time; 4281 } 4282 4283 /* 4284 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4285 * propagate its contribution. The key to this propagation is the invariant 4286 * that for each group: 4287 * 4288 * ge->avg == grq->avg (1) 4289 * 4290 * _IFF_ we look at the pure running and runnable sums. Because they 4291 * represent the very same entity, just at different points in the hierarchy. 4292 * 4293 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4294 * and simply copies the running/runnable sum over (but still wrong, because 4295 * the group entity and group rq do not have their PELT windows aligned). 4296 * 4297 * However, update_tg_cfs_load() is more complex. So we have: 4298 * 4299 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4300 * 4301 * And since, like util, the runnable part should be directly transferable, 4302 * the following would _appear_ to be the straight forward approach: 4303 * 4304 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4305 * 4306 * And per (1) we have: 4307 * 4308 * ge->avg.runnable_avg == grq->avg.runnable_avg 4309 * 4310 * Which gives: 4311 * 4312 * ge->load.weight * grq->avg.load_avg 4313 * ge->avg.load_avg = ----------------------------------- (4) 4314 * grq->load.weight 4315 * 4316 * Except that is wrong! 4317 * 4318 * Because while for entities historical weight is not important and we 4319 * really only care about our future and therefore can consider a pure 4320 * runnable sum, runqueues can NOT do this. 4321 * 4322 * We specifically want runqueues to have a load_avg that includes 4323 * historical weights. Those represent the blocked load, the load we expect 4324 * to (shortly) return to us. This only works by keeping the weights as 4325 * integral part of the sum. We therefore cannot decompose as per (3). 4326 * 4327 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4328 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4329 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4330 * runnable section of these tasks overlap (or not). If they were to perfectly 4331 * align the rq as a whole would be runnable 2/3 of the time. If however we 4332 * always have at least 1 runnable task, the rq as a whole is always runnable. 4333 * 4334 * So we'll have to approximate.. :/ 4335 * 4336 * Given the constraint: 4337 * 4338 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4339 * 4340 * We can construct a rule that adds runnable to a rq by assuming minimal 4341 * overlap. 4342 * 4343 * On removal, we'll assume each task is equally runnable; which yields: 4344 * 4345 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4346 * 4347 * XXX: only do this for the part of runnable > running ? 4348 * 4349 */ 4350 static inline void 4351 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4352 { 4353 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4354 u32 new_sum, divider; 4355 4356 /* Nothing to update */ 4357 if (!delta_avg) 4358 return; 4359 4360 /* 4361 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4362 * See ___update_load_avg() for details. 4363 */ 4364 divider = get_pelt_divider(&cfs_rq->avg); 4365 4366 4367 /* Set new sched_entity's utilization */ 4368 se->avg.util_avg = gcfs_rq->avg.util_avg; 4369 new_sum = se->avg.util_avg * divider; 4370 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4371 se->avg.util_sum = new_sum; 4372 4373 /* Update parent cfs_rq utilization */ 4374 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4375 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4376 4377 /* See update_cfs_rq_load_avg() */ 4378 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4379 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4380 } 4381 4382 static inline void 4383 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4384 { 4385 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4386 u32 new_sum, divider; 4387 4388 /* Nothing to update */ 4389 if (!delta_avg) 4390 return; 4391 4392 /* 4393 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4394 * See ___update_load_avg() for details. 4395 */ 4396 divider = get_pelt_divider(&cfs_rq->avg); 4397 4398 /* Set new sched_entity's runnable */ 4399 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4400 new_sum = se->avg.runnable_avg * divider; 4401 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4402 se->avg.runnable_sum = new_sum; 4403 4404 /* Update parent cfs_rq runnable */ 4405 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4406 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4407 /* See update_cfs_rq_load_avg() */ 4408 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4409 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4410 } 4411 4412 static inline void 4413 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4414 { 4415 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4416 unsigned long load_avg; 4417 u64 load_sum = 0; 4418 s64 delta_sum; 4419 u32 divider; 4420 4421 if (!runnable_sum) 4422 return; 4423 4424 gcfs_rq->prop_runnable_sum = 0; 4425 4426 /* 4427 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4428 * See ___update_load_avg() for details. 4429 */ 4430 divider = get_pelt_divider(&cfs_rq->avg); 4431 4432 if (runnable_sum >= 0) { 4433 /* 4434 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4435 * the CPU is saturated running == runnable. 4436 */ 4437 runnable_sum += se->avg.load_sum; 4438 runnable_sum = min_t(long, runnable_sum, divider); 4439 } else { 4440 /* 4441 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4442 * assuming all tasks are equally runnable. 4443 */ 4444 if (scale_load_down(gcfs_rq->load.weight)) { 4445 load_sum = div_u64(gcfs_rq->avg.load_sum, 4446 scale_load_down(gcfs_rq->load.weight)); 4447 } 4448 4449 /* But make sure to not inflate se's runnable */ 4450 runnable_sum = min(se->avg.load_sum, load_sum); 4451 } 4452 4453 /* 4454 * runnable_sum can't be lower than running_sum 4455 * Rescale running sum to be in the same range as runnable sum 4456 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4457 * runnable_sum is in [0 : LOAD_AVG_MAX] 4458 */ 4459 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4460 runnable_sum = max(runnable_sum, running_sum); 4461 4462 load_sum = se_weight(se) * runnable_sum; 4463 load_avg = div_u64(load_sum, divider); 4464 4465 delta_avg = load_avg - se->avg.load_avg; 4466 if (!delta_avg) 4467 return; 4468 4469 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4470 4471 se->avg.load_sum = runnable_sum; 4472 se->avg.load_avg = load_avg; 4473 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4474 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4475 /* See update_cfs_rq_load_avg() */ 4476 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4477 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4478 } 4479 4480 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4481 { 4482 cfs_rq->propagate = 1; 4483 cfs_rq->prop_runnable_sum += runnable_sum; 4484 } 4485 4486 /* Update task and its cfs_rq load average */ 4487 static inline int propagate_entity_load_avg(struct sched_entity *se) 4488 { 4489 struct cfs_rq *cfs_rq, *gcfs_rq; 4490 4491 if (entity_is_task(se)) 4492 return 0; 4493 4494 gcfs_rq = group_cfs_rq(se); 4495 if (!gcfs_rq->propagate) 4496 return 0; 4497 4498 gcfs_rq->propagate = 0; 4499 4500 cfs_rq = cfs_rq_of(se); 4501 4502 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4503 4504 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4505 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4506 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4507 4508 trace_pelt_cfs_tp(cfs_rq); 4509 trace_pelt_se_tp(se); 4510 4511 return 1; 4512 } 4513 4514 /* 4515 * Check if we need to update the load and the utilization of a blocked 4516 * group_entity: 4517 */ 4518 static inline bool skip_blocked_update(struct sched_entity *se) 4519 { 4520 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4521 4522 /* 4523 * If sched_entity still have not zero load or utilization, we have to 4524 * decay it: 4525 */ 4526 if (se->avg.load_avg || se->avg.util_avg) 4527 return false; 4528 4529 /* 4530 * If there is a pending propagation, we have to update the load and 4531 * the utilization of the sched_entity: 4532 */ 4533 if (gcfs_rq->propagate) 4534 return false; 4535 4536 /* 4537 * Otherwise, the load and the utilization of the sched_entity is 4538 * already zero and there is no pending propagation, so it will be a 4539 * waste of time to try to decay it: 4540 */ 4541 return true; 4542 } 4543 4544 #else /* CONFIG_FAIR_GROUP_SCHED */ 4545 4546 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4547 4548 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4549 4550 static inline int propagate_entity_load_avg(struct sched_entity *se) 4551 { 4552 return 0; 4553 } 4554 4555 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4556 4557 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4558 4559 #ifdef CONFIG_NO_HZ_COMMON 4560 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4561 { 4562 u64 throttled = 0, now, lut; 4563 struct cfs_rq *cfs_rq; 4564 struct rq *rq; 4565 bool is_idle; 4566 4567 if (load_avg_is_decayed(&se->avg)) 4568 return; 4569 4570 cfs_rq = cfs_rq_of(se); 4571 rq = rq_of(cfs_rq); 4572 4573 rcu_read_lock(); 4574 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4575 rcu_read_unlock(); 4576 4577 /* 4578 * The lag estimation comes with a cost we don't want to pay all the 4579 * time. Hence, limiting to the case where the source CPU is idle and 4580 * we know we are at the greatest risk to have an outdated clock. 4581 */ 4582 if (!is_idle) 4583 return; 4584 4585 /* 4586 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4587 * 4588 * last_update_time (the cfs_rq's last_update_time) 4589 * = cfs_rq_clock_pelt()@cfs_rq_idle 4590 * = rq_clock_pelt()@cfs_rq_idle 4591 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4592 * 4593 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4594 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4595 * 4596 * rq_idle_lag (delta between now and rq's update) 4597 * = sched_clock_cpu() - rq_clock()@rq_idle 4598 * 4599 * We can then write: 4600 * 4601 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4602 * sched_clock_cpu() - rq_clock()@rq_idle 4603 * Where: 4604 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4605 * rq_clock()@rq_idle is rq->clock_idle 4606 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4607 * is cfs_rq->throttled_pelt_idle 4608 */ 4609 4610 #ifdef CONFIG_CFS_BANDWIDTH 4611 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4612 /* The clock has been stopped for throttling */ 4613 if (throttled == U64_MAX) 4614 return; 4615 #endif 4616 now = u64_u32_load(rq->clock_pelt_idle); 4617 /* 4618 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4619 * is observed the old clock_pelt_idle value and the new clock_idle, 4620 * which lead to an underestimation. The opposite would lead to an 4621 * overestimation. 4622 */ 4623 smp_rmb(); 4624 lut = cfs_rq_last_update_time(cfs_rq); 4625 4626 now -= throttled; 4627 if (now < lut) 4628 /* 4629 * cfs_rq->avg.last_update_time is more recent than our 4630 * estimation, let's use it. 4631 */ 4632 now = lut; 4633 else 4634 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4635 4636 __update_load_avg_blocked_se(now, se); 4637 } 4638 #else 4639 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4640 #endif 4641 4642 /** 4643 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4644 * @now: current time, as per cfs_rq_clock_pelt() 4645 * @cfs_rq: cfs_rq to update 4646 * 4647 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4648 * avg. The immediate corollary is that all (fair) tasks must be attached. 4649 * 4650 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4651 * 4652 * Return: true if the load decayed or we removed load. 4653 * 4654 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4655 * call update_tg_load_avg() when this function returns true. 4656 */ 4657 static inline int 4658 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4659 { 4660 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4661 struct sched_avg *sa = &cfs_rq->avg; 4662 int decayed = 0; 4663 4664 if (cfs_rq->removed.nr) { 4665 unsigned long r; 4666 u32 divider = get_pelt_divider(&cfs_rq->avg); 4667 4668 raw_spin_lock(&cfs_rq->removed.lock); 4669 swap(cfs_rq->removed.util_avg, removed_util); 4670 swap(cfs_rq->removed.load_avg, removed_load); 4671 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4672 cfs_rq->removed.nr = 0; 4673 raw_spin_unlock(&cfs_rq->removed.lock); 4674 4675 r = removed_load; 4676 sub_positive(&sa->load_avg, r); 4677 sub_positive(&sa->load_sum, r * divider); 4678 /* See sa->util_sum below */ 4679 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4680 4681 r = removed_util; 4682 sub_positive(&sa->util_avg, r); 4683 sub_positive(&sa->util_sum, r * divider); 4684 /* 4685 * Because of rounding, se->util_sum might ends up being +1 more than 4686 * cfs->util_sum. Although this is not a problem by itself, detaching 4687 * a lot of tasks with the rounding problem between 2 updates of 4688 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4689 * cfs_util_avg is not. 4690 * Check that util_sum is still above its lower bound for the new 4691 * util_avg. Given that period_contrib might have moved since the last 4692 * sync, we are only sure that util_sum must be above or equal to 4693 * util_avg * minimum possible divider 4694 */ 4695 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4696 4697 r = removed_runnable; 4698 sub_positive(&sa->runnable_avg, r); 4699 sub_positive(&sa->runnable_sum, r * divider); 4700 /* See sa->util_sum above */ 4701 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4702 sa->runnable_avg * PELT_MIN_DIVIDER); 4703 4704 /* 4705 * removed_runnable is the unweighted version of removed_load so we 4706 * can use it to estimate removed_load_sum. 4707 */ 4708 add_tg_cfs_propagate(cfs_rq, 4709 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4710 4711 decayed = 1; 4712 } 4713 4714 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4715 u64_u32_store_copy(sa->last_update_time, 4716 cfs_rq->last_update_time_copy, 4717 sa->last_update_time); 4718 return decayed; 4719 } 4720 4721 /** 4722 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4723 * @cfs_rq: cfs_rq to attach to 4724 * @se: sched_entity to attach 4725 * 4726 * Must call update_cfs_rq_load_avg() before this, since we rely on 4727 * cfs_rq->avg.last_update_time being current. 4728 */ 4729 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4730 { 4731 /* 4732 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4733 * See ___update_load_avg() for details. 4734 */ 4735 u32 divider = get_pelt_divider(&cfs_rq->avg); 4736 4737 /* 4738 * When we attach the @se to the @cfs_rq, we must align the decay 4739 * window because without that, really weird and wonderful things can 4740 * happen. 4741 * 4742 * XXX illustrate 4743 */ 4744 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4745 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4746 4747 /* 4748 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4749 * period_contrib. This isn't strictly correct, but since we're 4750 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4751 * _sum a little. 4752 */ 4753 se->avg.util_sum = se->avg.util_avg * divider; 4754 4755 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4756 4757 se->avg.load_sum = se->avg.load_avg * divider; 4758 if (se_weight(se) < se->avg.load_sum) 4759 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4760 else 4761 se->avg.load_sum = 1; 4762 4763 enqueue_load_avg(cfs_rq, se); 4764 cfs_rq->avg.util_avg += se->avg.util_avg; 4765 cfs_rq->avg.util_sum += se->avg.util_sum; 4766 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4767 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4768 4769 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4770 4771 cfs_rq_util_change(cfs_rq, 0); 4772 4773 trace_pelt_cfs_tp(cfs_rq); 4774 } 4775 4776 /** 4777 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4778 * @cfs_rq: cfs_rq to detach from 4779 * @se: sched_entity to detach 4780 * 4781 * Must call update_cfs_rq_load_avg() before this, since we rely on 4782 * cfs_rq->avg.last_update_time being current. 4783 */ 4784 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4785 { 4786 dequeue_load_avg(cfs_rq, se); 4787 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4788 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4789 /* See update_cfs_rq_load_avg() */ 4790 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4791 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4792 4793 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4794 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4795 /* See update_cfs_rq_load_avg() */ 4796 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4797 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4798 4799 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4800 4801 cfs_rq_util_change(cfs_rq, 0); 4802 4803 trace_pelt_cfs_tp(cfs_rq); 4804 } 4805 4806 /* 4807 * Optional action to be done while updating the load average 4808 */ 4809 #define UPDATE_TG 0x1 4810 #define SKIP_AGE_LOAD 0x2 4811 #define DO_ATTACH 0x4 4812 #define DO_DETACH 0x8 4813 4814 /* Update task and its cfs_rq load average */ 4815 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4816 { 4817 u64 now = cfs_rq_clock_pelt(cfs_rq); 4818 int decayed; 4819 4820 /* 4821 * Track task load average for carrying it to new CPU after migrated, and 4822 * track group sched_entity load average for task_h_load calculation in migration 4823 */ 4824 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4825 __update_load_avg_se(now, cfs_rq, se); 4826 4827 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4828 decayed |= propagate_entity_load_avg(se); 4829 4830 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4831 4832 /* 4833 * DO_ATTACH means we're here from enqueue_entity(). 4834 * !last_update_time means we've passed through 4835 * migrate_task_rq_fair() indicating we migrated. 4836 * 4837 * IOW we're enqueueing a task on a new CPU. 4838 */ 4839 attach_entity_load_avg(cfs_rq, se); 4840 update_tg_load_avg(cfs_rq); 4841 4842 } else if (flags & DO_DETACH) { 4843 /* 4844 * DO_DETACH means we're here from dequeue_entity() 4845 * and we are migrating task out of the CPU. 4846 */ 4847 detach_entity_load_avg(cfs_rq, se); 4848 update_tg_load_avg(cfs_rq); 4849 } else if (decayed) { 4850 cfs_rq_util_change(cfs_rq, 0); 4851 4852 if (flags & UPDATE_TG) 4853 update_tg_load_avg(cfs_rq); 4854 } 4855 } 4856 4857 /* 4858 * Synchronize entity load avg of dequeued entity without locking 4859 * the previous rq. 4860 */ 4861 static void sync_entity_load_avg(struct sched_entity *se) 4862 { 4863 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4864 u64 last_update_time; 4865 4866 last_update_time = cfs_rq_last_update_time(cfs_rq); 4867 __update_load_avg_blocked_se(last_update_time, se); 4868 } 4869 4870 /* 4871 * Task first catches up with cfs_rq, and then subtract 4872 * itself from the cfs_rq (task must be off the queue now). 4873 */ 4874 static void remove_entity_load_avg(struct sched_entity *se) 4875 { 4876 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4877 unsigned long flags; 4878 4879 /* 4880 * tasks cannot exit without having gone through wake_up_new_task() -> 4881 * enqueue_task_fair() which will have added things to the cfs_rq, 4882 * so we can remove unconditionally. 4883 */ 4884 4885 sync_entity_load_avg(se); 4886 4887 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4888 ++cfs_rq->removed.nr; 4889 cfs_rq->removed.util_avg += se->avg.util_avg; 4890 cfs_rq->removed.load_avg += se->avg.load_avg; 4891 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4892 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4893 } 4894 4895 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4896 { 4897 return cfs_rq->avg.runnable_avg; 4898 } 4899 4900 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4901 { 4902 return cfs_rq->avg.load_avg; 4903 } 4904 4905 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4906 4907 static inline unsigned long task_util(struct task_struct *p) 4908 { 4909 return READ_ONCE(p->se.avg.util_avg); 4910 } 4911 4912 static inline unsigned long task_runnable(struct task_struct *p) 4913 { 4914 return READ_ONCE(p->se.avg.runnable_avg); 4915 } 4916 4917 static inline unsigned long _task_util_est(struct task_struct *p) 4918 { 4919 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4920 } 4921 4922 static inline unsigned long task_util_est(struct task_struct *p) 4923 { 4924 return max(task_util(p), _task_util_est(p)); 4925 } 4926 4927 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4928 struct task_struct *p) 4929 { 4930 unsigned int enqueued; 4931 4932 if (!sched_feat(UTIL_EST)) 4933 return; 4934 4935 /* Update root cfs_rq's estimated utilization */ 4936 enqueued = cfs_rq->avg.util_est; 4937 enqueued += _task_util_est(p); 4938 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4939 4940 trace_sched_util_est_cfs_tp(cfs_rq); 4941 } 4942 4943 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4944 struct task_struct *p) 4945 { 4946 unsigned int enqueued; 4947 4948 if (!sched_feat(UTIL_EST)) 4949 return; 4950 4951 /* Update root cfs_rq's estimated utilization */ 4952 enqueued = cfs_rq->avg.util_est; 4953 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4954 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4955 4956 trace_sched_util_est_cfs_tp(cfs_rq); 4957 } 4958 4959 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4960 4961 static inline void util_est_update(struct cfs_rq *cfs_rq, 4962 struct task_struct *p, 4963 bool task_sleep) 4964 { 4965 unsigned int ewma, dequeued, last_ewma_diff; 4966 4967 if (!sched_feat(UTIL_EST)) 4968 return; 4969 4970 /* 4971 * Skip update of task's estimated utilization when the task has not 4972 * yet completed an activation, e.g. being migrated. 4973 */ 4974 if (!task_sleep) 4975 return; 4976 4977 /* Get current estimate of utilization */ 4978 ewma = READ_ONCE(p->se.avg.util_est); 4979 4980 /* 4981 * If the PELT values haven't changed since enqueue time, 4982 * skip the util_est update. 4983 */ 4984 if (ewma & UTIL_AVG_UNCHANGED) 4985 return; 4986 4987 /* Get utilization at dequeue */ 4988 dequeued = task_util(p); 4989 4990 /* 4991 * Reset EWMA on utilization increases, the moving average is used only 4992 * to smooth utilization decreases. 4993 */ 4994 if (ewma <= dequeued) { 4995 ewma = dequeued; 4996 goto done; 4997 } 4998 4999 /* 5000 * Skip update of task's estimated utilization when its members are 5001 * already ~1% close to its last activation value. 5002 */ 5003 last_ewma_diff = ewma - dequeued; 5004 if (last_ewma_diff < UTIL_EST_MARGIN) 5005 goto done; 5006 5007 /* 5008 * To avoid overestimation of actual task utilization, skip updates if 5009 * we cannot grant there is idle time in this CPU. 5010 */ 5011 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)))) 5012 return; 5013 5014 /* 5015 * To avoid underestimate of task utilization, skip updates of EWMA if 5016 * we cannot grant that thread got all CPU time it wanted. 5017 */ 5018 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 5019 goto done; 5020 5021 5022 /* 5023 * Update Task's estimated utilization 5024 * 5025 * When *p completes an activation we can consolidate another sample 5026 * of the task size. This is done by using this value to update the 5027 * Exponential Weighted Moving Average (EWMA): 5028 * 5029 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 5030 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 5031 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 5032 * = w * ( -last_ewma_diff ) + ewma(t-1) 5033 * = w * (-last_ewma_diff + ewma(t-1) / w) 5034 * 5035 * Where 'w' is the weight of new samples, which is configured to be 5036 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 5037 */ 5038 ewma <<= UTIL_EST_WEIGHT_SHIFT; 5039 ewma -= last_ewma_diff; 5040 ewma >>= UTIL_EST_WEIGHT_SHIFT; 5041 done: 5042 ewma |= UTIL_AVG_UNCHANGED; 5043 WRITE_ONCE(p->se.avg.util_est, ewma); 5044 5045 trace_sched_util_est_se_tp(&p->se); 5046 } 5047 5048 static inline unsigned long get_actual_cpu_capacity(int cpu) 5049 { 5050 unsigned long capacity = arch_scale_cpu_capacity(cpu); 5051 5052 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 5053 5054 return capacity; 5055 } 5056 5057 static inline int util_fits_cpu(unsigned long util, 5058 unsigned long uclamp_min, 5059 unsigned long uclamp_max, 5060 int cpu) 5061 { 5062 unsigned long capacity = capacity_of(cpu); 5063 unsigned long capacity_orig; 5064 bool fits, uclamp_max_fits; 5065 5066 /* 5067 * Check if the real util fits without any uclamp boost/cap applied. 5068 */ 5069 fits = fits_capacity(util, capacity); 5070 5071 if (!uclamp_is_used()) 5072 return fits; 5073 5074 /* 5075 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 5076 * uclamp_max. We only care about capacity pressure (by using 5077 * capacity_of()) for comparing against the real util. 5078 * 5079 * If a task is boosted to 1024 for example, we don't want a tiny 5080 * pressure to skew the check whether it fits a CPU or not. 5081 * 5082 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 5083 * should fit a little cpu even if there's some pressure. 5084 * 5085 * Only exception is for HW or cpufreq pressure since it has a direct impact 5086 * on available OPP of the system. 5087 * 5088 * We honour it for uclamp_min only as a drop in performance level 5089 * could result in not getting the requested minimum performance level. 5090 * 5091 * For uclamp_max, we can tolerate a drop in performance level as the 5092 * goal is to cap the task. So it's okay if it's getting less. 5093 */ 5094 capacity_orig = arch_scale_cpu_capacity(cpu); 5095 5096 /* 5097 * We want to force a task to fit a cpu as implied by uclamp_max. 5098 * But we do have some corner cases to cater for.. 5099 * 5100 * 5101 * C=z 5102 * | ___ 5103 * | C=y | | 5104 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5105 * | C=x | | | | 5106 * | ___ | | | | 5107 * | | | | | | | (util somewhere in this region) 5108 * | | | | | | | 5109 * | | | | | | | 5110 * +---------------------------------------- 5111 * CPU0 CPU1 CPU2 5112 * 5113 * In the above example if a task is capped to a specific performance 5114 * point, y, then when: 5115 * 5116 * * util = 80% of x then it does not fit on CPU0 and should migrate 5117 * to CPU1 5118 * * util = 80% of y then it is forced to fit on CPU1 to honour 5119 * uclamp_max request. 5120 * 5121 * which is what we're enforcing here. A task always fits if 5122 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5123 * the normal upmigration rules should withhold still. 5124 * 5125 * Only exception is when we are on max capacity, then we need to be 5126 * careful not to block overutilized state. This is so because: 5127 * 5128 * 1. There's no concept of capping at max_capacity! We can't go 5129 * beyond this performance level anyway. 5130 * 2. The system is being saturated when we're operating near 5131 * max capacity, it doesn't make sense to block overutilized. 5132 */ 5133 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5134 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5135 fits = fits || uclamp_max_fits; 5136 5137 /* 5138 * 5139 * C=z 5140 * | ___ (region a, capped, util >= uclamp_max) 5141 * | C=y | | 5142 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5143 * | C=x | | | | 5144 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5145 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5146 * | | | | | | | 5147 * | | | | | | | (region c, boosted, util < uclamp_min) 5148 * +---------------------------------------- 5149 * CPU0 CPU1 CPU2 5150 * 5151 * a) If util > uclamp_max, then we're capped, we don't care about 5152 * actual fitness value here. We only care if uclamp_max fits 5153 * capacity without taking margin/pressure into account. 5154 * See comment above. 5155 * 5156 * b) If uclamp_min <= util <= uclamp_max, then the normal 5157 * fits_capacity() rules apply. Except we need to ensure that we 5158 * enforce we remain within uclamp_max, see comment above. 5159 * 5160 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5161 * need to take into account the boosted value fits the CPU without 5162 * taking margin/pressure into account. 5163 * 5164 * Cases (a) and (b) are handled in the 'fits' variable already. We 5165 * just need to consider an extra check for case (c) after ensuring we 5166 * handle the case uclamp_min > uclamp_max. 5167 */ 5168 uclamp_min = min(uclamp_min, uclamp_max); 5169 if (fits && (util < uclamp_min) && 5170 (uclamp_min > get_actual_cpu_capacity(cpu))) 5171 return -1; 5172 5173 return fits; 5174 } 5175 5176 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5177 { 5178 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5179 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5180 unsigned long util = task_util_est(p); 5181 /* 5182 * Return true only if the cpu fully fits the task requirements, which 5183 * include the utilization but also the performance hints. 5184 */ 5185 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5186 } 5187 5188 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5189 { 5190 int cpu = cpu_of(rq); 5191 5192 if (!sched_asym_cpucap_active()) 5193 return; 5194 5195 /* 5196 * Affinity allows us to go somewhere higher? Or are we on biggest 5197 * available CPU already? Or do we fit into this CPU ? 5198 */ 5199 if (!p || (p->nr_cpus_allowed == 1) || 5200 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5201 task_fits_cpu(p, cpu)) { 5202 5203 rq->misfit_task_load = 0; 5204 return; 5205 } 5206 5207 /* 5208 * Make sure that misfit_task_load will not be null even if 5209 * task_h_load() returns 0. 5210 */ 5211 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5212 } 5213 5214 #else /* CONFIG_SMP */ 5215 5216 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5217 { 5218 return !cfs_rq->nr_running; 5219 } 5220 5221 #define UPDATE_TG 0x0 5222 #define SKIP_AGE_LOAD 0x0 5223 #define DO_ATTACH 0x0 5224 #define DO_DETACH 0x0 5225 5226 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5227 { 5228 cfs_rq_util_change(cfs_rq, 0); 5229 } 5230 5231 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5232 5233 static inline void 5234 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5235 static inline void 5236 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5237 5238 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf) 5239 { 5240 return 0; 5241 } 5242 5243 static inline void 5244 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5245 5246 static inline void 5247 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5248 5249 static inline void 5250 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5251 bool task_sleep) {} 5252 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5253 5254 #endif /* CONFIG_SMP */ 5255 5256 static void 5257 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5258 { 5259 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5260 s64 lag = 0; 5261 5262 if (!se->custom_slice) 5263 se->slice = sysctl_sched_base_slice; 5264 vslice = calc_delta_fair(se->slice, se); 5265 5266 /* 5267 * Due to how V is constructed as the weighted average of entities, 5268 * adding tasks with positive lag, or removing tasks with negative lag 5269 * will move 'time' backwards, this can screw around with the lag of 5270 * other tasks. 5271 * 5272 * EEVDF: placement strategy #1 / #2 5273 */ 5274 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) { 5275 struct sched_entity *curr = cfs_rq->curr; 5276 unsigned long load; 5277 5278 lag = se->vlag; 5279 5280 /* 5281 * If we want to place a task and preserve lag, we have to 5282 * consider the effect of the new entity on the weighted 5283 * average and compensate for this, otherwise lag can quickly 5284 * evaporate. 5285 * 5286 * Lag is defined as: 5287 * 5288 * lag_i = S - s_i = w_i * (V - v_i) 5289 * 5290 * To avoid the 'w_i' term all over the place, we only track 5291 * the virtual lag: 5292 * 5293 * vl_i = V - v_i <=> v_i = V - vl_i 5294 * 5295 * And we take V to be the weighted average of all v: 5296 * 5297 * V = (\Sum w_j*v_j) / W 5298 * 5299 * Where W is: \Sum w_j 5300 * 5301 * Then, the weighted average after adding an entity with lag 5302 * vl_i is given by: 5303 * 5304 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5305 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5306 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5307 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5308 * = V - w_i*vl_i / (W + w_i) 5309 * 5310 * And the actual lag after adding an entity with vl_i is: 5311 * 5312 * vl'_i = V' - v_i 5313 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5314 * = vl_i - w_i*vl_i / (W + w_i) 5315 * 5316 * Which is strictly less than vl_i. So in order to preserve lag 5317 * we should inflate the lag before placement such that the 5318 * effective lag after placement comes out right. 5319 * 5320 * As such, invert the above relation for vl'_i to get the vl_i 5321 * we need to use such that the lag after placement is the lag 5322 * we computed before dequeue. 5323 * 5324 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5325 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5326 * 5327 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5328 * = W*vl_i 5329 * 5330 * vl_i = (W + w_i)*vl'_i / W 5331 */ 5332 load = cfs_rq->avg_load; 5333 if (curr && curr->on_rq) 5334 load += scale_load_down(curr->load.weight); 5335 5336 lag *= load + scale_load_down(se->load.weight); 5337 if (WARN_ON_ONCE(!load)) 5338 load = 1; 5339 lag = div_s64(lag, load); 5340 } 5341 5342 se->vruntime = vruntime - lag; 5343 5344 if (sched_feat(PLACE_REL_DEADLINE) && se->rel_deadline) { 5345 se->deadline += se->vruntime; 5346 se->rel_deadline = 0; 5347 return; 5348 } 5349 5350 /* 5351 * When joining the competition; the existing tasks will be, 5352 * on average, halfway through their slice, as such start tasks 5353 * off with half a slice to ease into the competition. 5354 */ 5355 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5356 vslice /= 2; 5357 5358 /* 5359 * EEVDF: vd_i = ve_i + r_i/w_i 5360 */ 5361 se->deadline = se->vruntime + vslice; 5362 } 5363 5364 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5365 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5366 5367 static inline bool cfs_bandwidth_used(void); 5368 5369 static void 5370 requeue_delayed_entity(struct sched_entity *se); 5371 5372 static void 5373 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5374 { 5375 bool curr = cfs_rq->curr == se; 5376 5377 /* 5378 * If we're the current task, we must renormalise before calling 5379 * update_curr(). 5380 */ 5381 if (curr) 5382 place_entity(cfs_rq, se, flags); 5383 5384 update_curr(cfs_rq); 5385 5386 /* 5387 * When enqueuing a sched_entity, we must: 5388 * - Update loads to have both entity and cfs_rq synced with now. 5389 * - For group_entity, update its runnable_weight to reflect the new 5390 * h_nr_running of its group cfs_rq. 5391 * - For group_entity, update its weight to reflect the new share of 5392 * its group cfs_rq 5393 * - Add its new weight to cfs_rq->load.weight 5394 */ 5395 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5396 se_update_runnable(se); 5397 /* 5398 * XXX update_load_avg() above will have attached us to the pelt sum; 5399 * but update_cfs_group() here will re-adjust the weight and have to 5400 * undo/redo all that. Seems wasteful. 5401 */ 5402 update_cfs_group(se); 5403 5404 /* 5405 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5406 * we can place the entity. 5407 */ 5408 if (!curr) 5409 place_entity(cfs_rq, se, flags); 5410 5411 account_entity_enqueue(cfs_rq, se); 5412 5413 /* Entity has migrated, no longer consider this task hot */ 5414 if (flags & ENQUEUE_MIGRATED) 5415 se->exec_start = 0; 5416 5417 check_schedstat_required(); 5418 update_stats_enqueue_fair(cfs_rq, se, flags); 5419 if (!curr) 5420 __enqueue_entity(cfs_rq, se); 5421 se->on_rq = 1; 5422 5423 if (cfs_rq->nr_running == 1) { 5424 check_enqueue_throttle(cfs_rq); 5425 if (!throttled_hierarchy(cfs_rq)) { 5426 list_add_leaf_cfs_rq(cfs_rq); 5427 } else { 5428 #ifdef CONFIG_CFS_BANDWIDTH 5429 struct rq *rq = rq_of(cfs_rq); 5430 5431 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5432 cfs_rq->throttled_clock = rq_clock(rq); 5433 if (!cfs_rq->throttled_clock_self) 5434 cfs_rq->throttled_clock_self = rq_clock(rq); 5435 #endif 5436 } 5437 } 5438 } 5439 5440 static void __clear_buddies_next(struct sched_entity *se) 5441 { 5442 for_each_sched_entity(se) { 5443 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5444 if (cfs_rq->next != se) 5445 break; 5446 5447 cfs_rq->next = NULL; 5448 } 5449 } 5450 5451 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5452 { 5453 if (cfs_rq->next == se) 5454 __clear_buddies_next(se); 5455 } 5456 5457 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5458 5459 static inline void finish_delayed_dequeue_entity(struct sched_entity *se) 5460 { 5461 se->sched_delayed = 0; 5462 if (sched_feat(DELAY_ZERO) && se->vlag > 0) 5463 se->vlag = 0; 5464 } 5465 5466 static bool 5467 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5468 { 5469 bool sleep = flags & DEQUEUE_SLEEP; 5470 5471 update_curr(cfs_rq); 5472 5473 if (flags & DEQUEUE_DELAYED) { 5474 SCHED_WARN_ON(!se->sched_delayed); 5475 } else { 5476 bool delay = sleep; 5477 /* 5478 * DELAY_DEQUEUE relies on spurious wakeups, special task 5479 * states must not suffer spurious wakeups, excempt them. 5480 */ 5481 if (flags & DEQUEUE_SPECIAL) 5482 delay = false; 5483 5484 SCHED_WARN_ON(delay && se->sched_delayed); 5485 5486 if (sched_feat(DELAY_DEQUEUE) && delay && 5487 !entity_eligible(cfs_rq, se)) { 5488 if (cfs_rq->next == se) 5489 cfs_rq->next = NULL; 5490 update_load_avg(cfs_rq, se, 0); 5491 se->sched_delayed = 1; 5492 return false; 5493 } 5494 } 5495 5496 int action = UPDATE_TG; 5497 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5498 action |= DO_DETACH; 5499 5500 /* 5501 * When dequeuing a sched_entity, we must: 5502 * - Update loads to have both entity and cfs_rq synced with now. 5503 * - For group_entity, update its runnable_weight to reflect the new 5504 * h_nr_running of its group cfs_rq. 5505 * - Subtract its previous weight from cfs_rq->load.weight. 5506 * - For group entity, update its weight to reflect the new share 5507 * of its group cfs_rq. 5508 */ 5509 update_load_avg(cfs_rq, se, action); 5510 se_update_runnable(se); 5511 5512 update_stats_dequeue_fair(cfs_rq, se, flags); 5513 5514 clear_buddies(cfs_rq, se); 5515 5516 update_entity_lag(cfs_rq, se); 5517 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { 5518 se->deadline -= se->vruntime; 5519 se->rel_deadline = 1; 5520 } 5521 5522 if (se != cfs_rq->curr) 5523 __dequeue_entity(cfs_rq, se); 5524 se->on_rq = 0; 5525 account_entity_dequeue(cfs_rq, se); 5526 5527 /* return excess runtime on last dequeue */ 5528 return_cfs_rq_runtime(cfs_rq); 5529 5530 update_cfs_group(se); 5531 5532 /* 5533 * Now advance min_vruntime if @se was the entity holding it back, 5534 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5535 * put back on, and if we advance min_vruntime, we'll be placed back 5536 * further than we started -- i.e. we'll be penalized. 5537 */ 5538 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5539 update_min_vruntime(cfs_rq); 5540 5541 if (flags & DEQUEUE_DELAYED) 5542 finish_delayed_dequeue_entity(se); 5543 5544 if (cfs_rq->nr_running == 0) 5545 update_idle_cfs_rq_clock_pelt(cfs_rq); 5546 5547 return true; 5548 } 5549 5550 static void 5551 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5552 { 5553 clear_buddies(cfs_rq, se); 5554 5555 /* 'current' is not kept within the tree. */ 5556 if (se->on_rq) { 5557 /* 5558 * Any task has to be enqueued before it get to execute on 5559 * a CPU. So account for the time it spent waiting on the 5560 * runqueue. 5561 */ 5562 update_stats_wait_end_fair(cfs_rq, se); 5563 __dequeue_entity(cfs_rq, se); 5564 update_load_avg(cfs_rq, se, UPDATE_TG); 5565 /* 5566 * HACK, stash a copy of deadline at the point of pick in vlag, 5567 * which isn't used until dequeue. 5568 */ 5569 se->vlag = se->deadline; 5570 } 5571 5572 update_stats_curr_start(cfs_rq, se); 5573 SCHED_WARN_ON(cfs_rq->curr); 5574 cfs_rq->curr = se; 5575 5576 /* 5577 * Track our maximum slice length, if the CPU's load is at 5578 * least twice that of our own weight (i.e. don't track it 5579 * when there are only lesser-weight tasks around): 5580 */ 5581 if (schedstat_enabled() && 5582 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5583 struct sched_statistics *stats; 5584 5585 stats = __schedstats_from_se(se); 5586 __schedstat_set(stats->slice_max, 5587 max((u64)stats->slice_max, 5588 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5589 } 5590 5591 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5592 } 5593 5594 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); 5595 5596 /* 5597 * Pick the next process, keeping these things in mind, in this order: 5598 * 1) keep things fair between processes/task groups 5599 * 2) pick the "next" process, since someone really wants that to run 5600 * 3) pick the "last" process, for cache locality 5601 * 4) do not run the "skip" process, if something else is available 5602 */ 5603 static struct sched_entity * 5604 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) 5605 { 5606 /* 5607 * Enabling NEXT_BUDDY will affect latency but not fairness. 5608 */ 5609 if (sched_feat(NEXT_BUDDY) && 5610 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { 5611 /* ->next will never be delayed */ 5612 SCHED_WARN_ON(cfs_rq->next->sched_delayed); 5613 return cfs_rq->next; 5614 } 5615 5616 struct sched_entity *se = pick_eevdf(cfs_rq); 5617 if (se->sched_delayed) { 5618 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5619 SCHED_WARN_ON(se->sched_delayed); 5620 SCHED_WARN_ON(se->on_rq); 5621 return NULL; 5622 } 5623 return se; 5624 } 5625 5626 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5627 5628 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5629 { 5630 /* 5631 * If still on the runqueue then deactivate_task() 5632 * was not called and update_curr() has to be done: 5633 */ 5634 if (prev->on_rq) 5635 update_curr(cfs_rq); 5636 5637 /* throttle cfs_rqs exceeding runtime */ 5638 check_cfs_rq_runtime(cfs_rq); 5639 5640 if (prev->on_rq) { 5641 update_stats_wait_start_fair(cfs_rq, prev); 5642 /* Put 'current' back into the tree. */ 5643 __enqueue_entity(cfs_rq, prev); 5644 /* in !on_rq case, update occurred at dequeue */ 5645 update_load_avg(cfs_rq, prev, 0); 5646 } 5647 SCHED_WARN_ON(cfs_rq->curr != prev); 5648 cfs_rq->curr = NULL; 5649 } 5650 5651 static void 5652 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5653 { 5654 /* 5655 * Update run-time statistics of the 'current'. 5656 */ 5657 update_curr(cfs_rq); 5658 5659 /* 5660 * Ensure that runnable average is periodically updated. 5661 */ 5662 update_load_avg(cfs_rq, curr, UPDATE_TG); 5663 update_cfs_group(curr); 5664 5665 #ifdef CONFIG_SCHED_HRTICK 5666 /* 5667 * queued ticks are scheduled to match the slice, so don't bother 5668 * validating it and just reschedule. 5669 */ 5670 if (queued) { 5671 resched_curr(rq_of(cfs_rq)); 5672 return; 5673 } 5674 /* 5675 * don't let the period tick interfere with the hrtick preemption 5676 */ 5677 if (!sched_feat(DOUBLE_TICK) && 5678 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5679 return; 5680 #endif 5681 } 5682 5683 5684 /************************************************** 5685 * CFS bandwidth control machinery 5686 */ 5687 5688 #ifdef CONFIG_CFS_BANDWIDTH 5689 5690 #ifdef CONFIG_JUMP_LABEL 5691 static struct static_key __cfs_bandwidth_used; 5692 5693 static inline bool cfs_bandwidth_used(void) 5694 { 5695 return static_key_false(&__cfs_bandwidth_used); 5696 } 5697 5698 void cfs_bandwidth_usage_inc(void) 5699 { 5700 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5701 } 5702 5703 void cfs_bandwidth_usage_dec(void) 5704 { 5705 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5706 } 5707 #else /* CONFIG_JUMP_LABEL */ 5708 static bool cfs_bandwidth_used(void) 5709 { 5710 return true; 5711 } 5712 5713 void cfs_bandwidth_usage_inc(void) {} 5714 void cfs_bandwidth_usage_dec(void) {} 5715 #endif /* CONFIG_JUMP_LABEL */ 5716 5717 /* 5718 * default period for cfs group bandwidth. 5719 * default: 0.1s, units: nanoseconds 5720 */ 5721 static inline u64 default_cfs_period(void) 5722 { 5723 return 100000000ULL; 5724 } 5725 5726 static inline u64 sched_cfs_bandwidth_slice(void) 5727 { 5728 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5729 } 5730 5731 /* 5732 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5733 * directly instead of rq->clock to avoid adding additional synchronization 5734 * around rq->lock. 5735 * 5736 * requires cfs_b->lock 5737 */ 5738 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5739 { 5740 s64 runtime; 5741 5742 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5743 return; 5744 5745 cfs_b->runtime += cfs_b->quota; 5746 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5747 if (runtime > 0) { 5748 cfs_b->burst_time += runtime; 5749 cfs_b->nr_burst++; 5750 } 5751 5752 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5753 cfs_b->runtime_snap = cfs_b->runtime; 5754 } 5755 5756 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5757 { 5758 return &tg->cfs_bandwidth; 5759 } 5760 5761 /* returns 0 on failure to allocate runtime */ 5762 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5763 struct cfs_rq *cfs_rq, u64 target_runtime) 5764 { 5765 u64 min_amount, amount = 0; 5766 5767 lockdep_assert_held(&cfs_b->lock); 5768 5769 /* note: this is a positive sum as runtime_remaining <= 0 */ 5770 min_amount = target_runtime - cfs_rq->runtime_remaining; 5771 5772 if (cfs_b->quota == RUNTIME_INF) 5773 amount = min_amount; 5774 else { 5775 start_cfs_bandwidth(cfs_b); 5776 5777 if (cfs_b->runtime > 0) { 5778 amount = min(cfs_b->runtime, min_amount); 5779 cfs_b->runtime -= amount; 5780 cfs_b->idle = 0; 5781 } 5782 } 5783 5784 cfs_rq->runtime_remaining += amount; 5785 5786 return cfs_rq->runtime_remaining > 0; 5787 } 5788 5789 /* returns 0 on failure to allocate runtime */ 5790 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5791 { 5792 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5793 int ret; 5794 5795 raw_spin_lock(&cfs_b->lock); 5796 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5797 raw_spin_unlock(&cfs_b->lock); 5798 5799 return ret; 5800 } 5801 5802 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5803 { 5804 /* dock delta_exec before expiring quota (as it could span periods) */ 5805 cfs_rq->runtime_remaining -= delta_exec; 5806 5807 if (likely(cfs_rq->runtime_remaining > 0)) 5808 return; 5809 5810 if (cfs_rq->throttled) 5811 return; 5812 /* 5813 * if we're unable to extend our runtime we resched so that the active 5814 * hierarchy can be throttled 5815 */ 5816 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5817 resched_curr(rq_of(cfs_rq)); 5818 } 5819 5820 static __always_inline 5821 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5822 { 5823 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5824 return; 5825 5826 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5827 } 5828 5829 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5830 { 5831 return cfs_bandwidth_used() && cfs_rq->throttled; 5832 } 5833 5834 /* check whether cfs_rq, or any parent, is throttled */ 5835 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5836 { 5837 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5838 } 5839 5840 /* 5841 * Ensure that neither of the group entities corresponding to src_cpu or 5842 * dest_cpu are members of a throttled hierarchy when performing group 5843 * load-balance operations. 5844 */ 5845 static inline int throttled_lb_pair(struct task_group *tg, 5846 int src_cpu, int dest_cpu) 5847 { 5848 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5849 5850 src_cfs_rq = tg->cfs_rq[src_cpu]; 5851 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5852 5853 return throttled_hierarchy(src_cfs_rq) || 5854 throttled_hierarchy(dest_cfs_rq); 5855 } 5856 5857 static int tg_unthrottle_up(struct task_group *tg, void *data) 5858 { 5859 struct rq *rq = data; 5860 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5861 5862 cfs_rq->throttle_count--; 5863 if (!cfs_rq->throttle_count) { 5864 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5865 cfs_rq->throttled_clock_pelt; 5866 5867 /* Add cfs_rq with load or one or more already running entities to the list */ 5868 if (!cfs_rq_is_decayed(cfs_rq)) 5869 list_add_leaf_cfs_rq(cfs_rq); 5870 5871 if (cfs_rq->throttled_clock_self) { 5872 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5873 5874 cfs_rq->throttled_clock_self = 0; 5875 5876 if (SCHED_WARN_ON((s64)delta < 0)) 5877 delta = 0; 5878 5879 cfs_rq->throttled_clock_self_time += delta; 5880 } 5881 } 5882 5883 return 0; 5884 } 5885 5886 static int tg_throttle_down(struct task_group *tg, void *data) 5887 { 5888 struct rq *rq = data; 5889 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5890 5891 /* group is entering throttled state, stop time */ 5892 if (!cfs_rq->throttle_count) { 5893 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5894 list_del_leaf_cfs_rq(cfs_rq); 5895 5896 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5897 if (cfs_rq->nr_running) 5898 cfs_rq->throttled_clock_self = rq_clock(rq); 5899 } 5900 cfs_rq->throttle_count++; 5901 5902 return 0; 5903 } 5904 5905 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5906 { 5907 struct rq *rq = rq_of(cfs_rq); 5908 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5909 struct sched_entity *se; 5910 long task_delta, idle_task_delta, dequeue = 1; 5911 long rq_h_nr_running = rq->cfs.h_nr_running; 5912 5913 raw_spin_lock(&cfs_b->lock); 5914 /* This will start the period timer if necessary */ 5915 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5916 /* 5917 * We have raced with bandwidth becoming available, and if we 5918 * actually throttled the timer might not unthrottle us for an 5919 * entire period. We additionally needed to make sure that any 5920 * subsequent check_cfs_rq_runtime calls agree not to throttle 5921 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5922 * for 1ns of runtime rather than just check cfs_b. 5923 */ 5924 dequeue = 0; 5925 } else { 5926 list_add_tail_rcu(&cfs_rq->throttled_list, 5927 &cfs_b->throttled_cfs_rq); 5928 } 5929 raw_spin_unlock(&cfs_b->lock); 5930 5931 if (!dequeue) 5932 return false; /* Throttle no longer required. */ 5933 5934 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5935 5936 /* freeze hierarchy runnable averages while throttled */ 5937 rcu_read_lock(); 5938 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5939 rcu_read_unlock(); 5940 5941 task_delta = cfs_rq->h_nr_running; 5942 idle_task_delta = cfs_rq->idle_h_nr_running; 5943 for_each_sched_entity(se) { 5944 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5945 int flags; 5946 5947 /* throttled entity or throttle-on-deactivate */ 5948 if (!se->on_rq) 5949 goto done; 5950 5951 /* 5952 * Abuse SPECIAL to avoid delayed dequeue in this instance. 5953 * This avoids teaching dequeue_entities() about throttled 5954 * entities and keeps things relatively simple. 5955 */ 5956 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL; 5957 if (se->sched_delayed) 5958 flags |= DEQUEUE_DELAYED; 5959 dequeue_entity(qcfs_rq, se, flags); 5960 5961 if (cfs_rq_is_idle(group_cfs_rq(se))) 5962 idle_task_delta = cfs_rq->h_nr_running; 5963 5964 qcfs_rq->h_nr_running -= task_delta; 5965 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5966 5967 if (qcfs_rq->load.weight) { 5968 /* Avoid re-evaluating load for this entity: */ 5969 se = parent_entity(se); 5970 break; 5971 } 5972 } 5973 5974 for_each_sched_entity(se) { 5975 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5976 /* throttled entity or throttle-on-deactivate */ 5977 if (!se->on_rq) 5978 goto done; 5979 5980 update_load_avg(qcfs_rq, se, 0); 5981 se_update_runnable(se); 5982 5983 if (cfs_rq_is_idle(group_cfs_rq(se))) 5984 idle_task_delta = cfs_rq->h_nr_running; 5985 5986 qcfs_rq->h_nr_running -= task_delta; 5987 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5988 } 5989 5990 /* At this point se is NULL and we are at root level*/ 5991 sub_nr_running(rq, task_delta); 5992 5993 /* Stop the fair server if throttling resulted in no runnable tasks */ 5994 if (rq_h_nr_running && !rq->cfs.h_nr_running) 5995 dl_server_stop(&rq->fair_server); 5996 done: 5997 /* 5998 * Note: distribution will already see us throttled via the 5999 * throttled-list. rq->lock protects completion. 6000 */ 6001 cfs_rq->throttled = 1; 6002 SCHED_WARN_ON(cfs_rq->throttled_clock); 6003 if (cfs_rq->nr_running) 6004 cfs_rq->throttled_clock = rq_clock(rq); 6005 return true; 6006 } 6007 6008 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 6009 { 6010 struct rq *rq = rq_of(cfs_rq); 6011 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6012 struct sched_entity *se; 6013 long task_delta, idle_task_delta; 6014 long rq_h_nr_running = rq->cfs.h_nr_running; 6015 6016 se = cfs_rq->tg->se[cpu_of(rq)]; 6017 6018 cfs_rq->throttled = 0; 6019 6020 update_rq_clock(rq); 6021 6022 raw_spin_lock(&cfs_b->lock); 6023 if (cfs_rq->throttled_clock) { 6024 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 6025 cfs_rq->throttled_clock = 0; 6026 } 6027 list_del_rcu(&cfs_rq->throttled_list); 6028 raw_spin_unlock(&cfs_b->lock); 6029 6030 /* update hierarchical throttle state */ 6031 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 6032 6033 if (!cfs_rq->load.weight) { 6034 if (!cfs_rq->on_list) 6035 return; 6036 /* 6037 * Nothing to run but something to decay (on_list)? 6038 * Complete the branch. 6039 */ 6040 for_each_sched_entity(se) { 6041 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 6042 break; 6043 } 6044 goto unthrottle_throttle; 6045 } 6046 6047 task_delta = cfs_rq->h_nr_running; 6048 idle_task_delta = cfs_rq->idle_h_nr_running; 6049 for_each_sched_entity(se) { 6050 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6051 6052 if (se->on_rq) { 6053 SCHED_WARN_ON(se->sched_delayed); 6054 break; 6055 } 6056 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 6057 6058 if (cfs_rq_is_idle(group_cfs_rq(se))) 6059 idle_task_delta = cfs_rq->h_nr_running; 6060 6061 qcfs_rq->h_nr_running += task_delta; 6062 qcfs_rq->idle_h_nr_running += idle_task_delta; 6063 6064 /* end evaluation on encountering a throttled cfs_rq */ 6065 if (cfs_rq_throttled(qcfs_rq)) 6066 goto unthrottle_throttle; 6067 } 6068 6069 for_each_sched_entity(se) { 6070 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6071 6072 update_load_avg(qcfs_rq, se, UPDATE_TG); 6073 se_update_runnable(se); 6074 6075 if (cfs_rq_is_idle(group_cfs_rq(se))) 6076 idle_task_delta = cfs_rq->h_nr_running; 6077 6078 qcfs_rq->h_nr_running += task_delta; 6079 qcfs_rq->idle_h_nr_running += idle_task_delta; 6080 6081 /* end evaluation on encountering a throttled cfs_rq */ 6082 if (cfs_rq_throttled(qcfs_rq)) 6083 goto unthrottle_throttle; 6084 } 6085 6086 /* Start the fair server if un-throttling resulted in new runnable tasks */ 6087 if (!rq_h_nr_running && rq->cfs.h_nr_running) 6088 dl_server_start(&rq->fair_server); 6089 6090 /* At this point se is NULL and we are at root level*/ 6091 add_nr_running(rq, task_delta); 6092 6093 unthrottle_throttle: 6094 assert_list_leaf_cfs_rq(rq); 6095 6096 /* Determine whether we need to wake up potentially idle CPU: */ 6097 if (rq->curr == rq->idle && rq->cfs.nr_running) 6098 resched_curr(rq); 6099 } 6100 6101 #ifdef CONFIG_SMP 6102 static void __cfsb_csd_unthrottle(void *arg) 6103 { 6104 struct cfs_rq *cursor, *tmp; 6105 struct rq *rq = arg; 6106 struct rq_flags rf; 6107 6108 rq_lock(rq, &rf); 6109 6110 /* 6111 * Iterating over the list can trigger several call to 6112 * update_rq_clock() in unthrottle_cfs_rq(). 6113 * Do it once and skip the potential next ones. 6114 */ 6115 update_rq_clock(rq); 6116 rq_clock_start_loop_update(rq); 6117 6118 /* 6119 * Since we hold rq lock we're safe from concurrent manipulation of 6120 * the CSD list. However, this RCU critical section annotates the 6121 * fact that we pair with sched_free_group_rcu(), so that we cannot 6122 * race with group being freed in the window between removing it 6123 * from the list and advancing to the next entry in the list. 6124 */ 6125 rcu_read_lock(); 6126 6127 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 6128 throttled_csd_list) { 6129 list_del_init(&cursor->throttled_csd_list); 6130 6131 if (cfs_rq_throttled(cursor)) 6132 unthrottle_cfs_rq(cursor); 6133 } 6134 6135 rcu_read_unlock(); 6136 6137 rq_clock_stop_loop_update(rq); 6138 rq_unlock(rq, &rf); 6139 } 6140 6141 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6142 { 6143 struct rq *rq = rq_of(cfs_rq); 6144 bool first; 6145 6146 if (rq == this_rq()) { 6147 unthrottle_cfs_rq(cfs_rq); 6148 return; 6149 } 6150 6151 /* Already enqueued */ 6152 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 6153 return; 6154 6155 first = list_empty(&rq->cfsb_csd_list); 6156 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 6157 if (first) 6158 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 6159 } 6160 #else 6161 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6162 { 6163 unthrottle_cfs_rq(cfs_rq); 6164 } 6165 #endif 6166 6167 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6168 { 6169 lockdep_assert_rq_held(rq_of(cfs_rq)); 6170 6171 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 6172 cfs_rq->runtime_remaining <= 0)) 6173 return; 6174 6175 __unthrottle_cfs_rq_async(cfs_rq); 6176 } 6177 6178 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6179 { 6180 int this_cpu = smp_processor_id(); 6181 u64 runtime, remaining = 1; 6182 bool throttled = false; 6183 struct cfs_rq *cfs_rq, *tmp; 6184 struct rq_flags rf; 6185 struct rq *rq; 6186 LIST_HEAD(local_unthrottle); 6187 6188 rcu_read_lock(); 6189 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6190 throttled_list) { 6191 rq = rq_of(cfs_rq); 6192 6193 if (!remaining) { 6194 throttled = true; 6195 break; 6196 } 6197 6198 rq_lock_irqsave(rq, &rf); 6199 if (!cfs_rq_throttled(cfs_rq)) 6200 goto next; 6201 6202 /* Already queued for async unthrottle */ 6203 if (!list_empty(&cfs_rq->throttled_csd_list)) 6204 goto next; 6205 6206 /* By the above checks, this should never be true */ 6207 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 6208 6209 raw_spin_lock(&cfs_b->lock); 6210 runtime = -cfs_rq->runtime_remaining + 1; 6211 if (runtime > cfs_b->runtime) 6212 runtime = cfs_b->runtime; 6213 cfs_b->runtime -= runtime; 6214 remaining = cfs_b->runtime; 6215 raw_spin_unlock(&cfs_b->lock); 6216 6217 cfs_rq->runtime_remaining += runtime; 6218 6219 /* we check whether we're throttled above */ 6220 if (cfs_rq->runtime_remaining > 0) { 6221 if (cpu_of(rq) != this_cpu) { 6222 unthrottle_cfs_rq_async(cfs_rq); 6223 } else { 6224 /* 6225 * We currently only expect to be unthrottling 6226 * a single cfs_rq locally. 6227 */ 6228 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6229 list_add_tail(&cfs_rq->throttled_csd_list, 6230 &local_unthrottle); 6231 } 6232 } else { 6233 throttled = true; 6234 } 6235 6236 next: 6237 rq_unlock_irqrestore(rq, &rf); 6238 } 6239 6240 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6241 throttled_csd_list) { 6242 struct rq *rq = rq_of(cfs_rq); 6243 6244 rq_lock_irqsave(rq, &rf); 6245 6246 list_del_init(&cfs_rq->throttled_csd_list); 6247 6248 if (cfs_rq_throttled(cfs_rq)) 6249 unthrottle_cfs_rq(cfs_rq); 6250 6251 rq_unlock_irqrestore(rq, &rf); 6252 } 6253 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6254 6255 rcu_read_unlock(); 6256 6257 return throttled; 6258 } 6259 6260 /* 6261 * Responsible for refilling a task_group's bandwidth and unthrottling its 6262 * cfs_rqs as appropriate. If there has been no activity within the last 6263 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6264 * used to track this state. 6265 */ 6266 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6267 { 6268 int throttled; 6269 6270 /* no need to continue the timer with no bandwidth constraint */ 6271 if (cfs_b->quota == RUNTIME_INF) 6272 goto out_deactivate; 6273 6274 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6275 cfs_b->nr_periods += overrun; 6276 6277 /* Refill extra burst quota even if cfs_b->idle */ 6278 __refill_cfs_bandwidth_runtime(cfs_b); 6279 6280 /* 6281 * idle depends on !throttled (for the case of a large deficit), and if 6282 * we're going inactive then everything else can be deferred 6283 */ 6284 if (cfs_b->idle && !throttled) 6285 goto out_deactivate; 6286 6287 if (!throttled) { 6288 /* mark as potentially idle for the upcoming period */ 6289 cfs_b->idle = 1; 6290 return 0; 6291 } 6292 6293 /* account preceding periods in which throttling occurred */ 6294 cfs_b->nr_throttled += overrun; 6295 6296 /* 6297 * This check is repeated as we release cfs_b->lock while we unthrottle. 6298 */ 6299 while (throttled && cfs_b->runtime > 0) { 6300 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6301 /* we can't nest cfs_b->lock while distributing bandwidth */ 6302 throttled = distribute_cfs_runtime(cfs_b); 6303 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6304 } 6305 6306 /* 6307 * While we are ensured activity in the period following an 6308 * unthrottle, this also covers the case in which the new bandwidth is 6309 * insufficient to cover the existing bandwidth deficit. (Forcing the 6310 * timer to remain active while there are any throttled entities.) 6311 */ 6312 cfs_b->idle = 0; 6313 6314 return 0; 6315 6316 out_deactivate: 6317 return 1; 6318 } 6319 6320 /* a cfs_rq won't donate quota below this amount */ 6321 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6322 /* minimum remaining period time to redistribute slack quota */ 6323 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6324 /* how long we wait to gather additional slack before distributing */ 6325 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6326 6327 /* 6328 * Are we near the end of the current quota period? 6329 * 6330 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6331 * hrtimer base being cleared by hrtimer_start. In the case of 6332 * migrate_hrtimers, base is never cleared, so we are fine. 6333 */ 6334 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6335 { 6336 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6337 s64 remaining; 6338 6339 /* if the call-back is running a quota refresh is already occurring */ 6340 if (hrtimer_callback_running(refresh_timer)) 6341 return 1; 6342 6343 /* is a quota refresh about to occur? */ 6344 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6345 if (remaining < (s64)min_expire) 6346 return 1; 6347 6348 return 0; 6349 } 6350 6351 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6352 { 6353 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6354 6355 /* if there's a quota refresh soon don't bother with slack */ 6356 if (runtime_refresh_within(cfs_b, min_left)) 6357 return; 6358 6359 /* don't push forwards an existing deferred unthrottle */ 6360 if (cfs_b->slack_started) 6361 return; 6362 cfs_b->slack_started = true; 6363 6364 hrtimer_start(&cfs_b->slack_timer, 6365 ns_to_ktime(cfs_bandwidth_slack_period), 6366 HRTIMER_MODE_REL); 6367 } 6368 6369 /* we know any runtime found here is valid as update_curr() precedes return */ 6370 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6371 { 6372 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6373 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6374 6375 if (slack_runtime <= 0) 6376 return; 6377 6378 raw_spin_lock(&cfs_b->lock); 6379 if (cfs_b->quota != RUNTIME_INF) { 6380 cfs_b->runtime += slack_runtime; 6381 6382 /* we are under rq->lock, defer unthrottling using a timer */ 6383 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6384 !list_empty(&cfs_b->throttled_cfs_rq)) 6385 start_cfs_slack_bandwidth(cfs_b); 6386 } 6387 raw_spin_unlock(&cfs_b->lock); 6388 6389 /* even if it's not valid for return we don't want to try again */ 6390 cfs_rq->runtime_remaining -= slack_runtime; 6391 } 6392 6393 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6394 { 6395 if (!cfs_bandwidth_used()) 6396 return; 6397 6398 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 6399 return; 6400 6401 __return_cfs_rq_runtime(cfs_rq); 6402 } 6403 6404 /* 6405 * This is done with a timer (instead of inline with bandwidth return) since 6406 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6407 */ 6408 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6409 { 6410 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6411 unsigned long flags; 6412 6413 /* confirm we're still not at a refresh boundary */ 6414 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6415 cfs_b->slack_started = false; 6416 6417 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6418 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6419 return; 6420 } 6421 6422 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6423 runtime = cfs_b->runtime; 6424 6425 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6426 6427 if (!runtime) 6428 return; 6429 6430 distribute_cfs_runtime(cfs_b); 6431 } 6432 6433 /* 6434 * When a group wakes up we want to make sure that its quota is not already 6435 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6436 * runtime as update_curr() throttling can not trigger until it's on-rq. 6437 */ 6438 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6439 { 6440 if (!cfs_bandwidth_used()) 6441 return; 6442 6443 /* an active group must be handled by the update_curr()->put() path */ 6444 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6445 return; 6446 6447 /* ensure the group is not already throttled */ 6448 if (cfs_rq_throttled(cfs_rq)) 6449 return; 6450 6451 /* update runtime allocation */ 6452 account_cfs_rq_runtime(cfs_rq, 0); 6453 if (cfs_rq->runtime_remaining <= 0) 6454 throttle_cfs_rq(cfs_rq); 6455 } 6456 6457 static void sync_throttle(struct task_group *tg, int cpu) 6458 { 6459 struct cfs_rq *pcfs_rq, *cfs_rq; 6460 6461 if (!cfs_bandwidth_used()) 6462 return; 6463 6464 if (!tg->parent) 6465 return; 6466 6467 cfs_rq = tg->cfs_rq[cpu]; 6468 pcfs_rq = tg->parent->cfs_rq[cpu]; 6469 6470 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6471 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6472 } 6473 6474 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6475 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6476 { 6477 if (!cfs_bandwidth_used()) 6478 return false; 6479 6480 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6481 return false; 6482 6483 /* 6484 * it's possible for a throttled entity to be forced into a running 6485 * state (e.g. set_curr_task), in this case we're finished. 6486 */ 6487 if (cfs_rq_throttled(cfs_rq)) 6488 return true; 6489 6490 return throttle_cfs_rq(cfs_rq); 6491 } 6492 6493 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6494 { 6495 struct cfs_bandwidth *cfs_b = 6496 container_of(timer, struct cfs_bandwidth, slack_timer); 6497 6498 do_sched_cfs_slack_timer(cfs_b); 6499 6500 return HRTIMER_NORESTART; 6501 } 6502 6503 extern const u64 max_cfs_quota_period; 6504 6505 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6506 { 6507 struct cfs_bandwidth *cfs_b = 6508 container_of(timer, struct cfs_bandwidth, period_timer); 6509 unsigned long flags; 6510 int overrun; 6511 int idle = 0; 6512 int count = 0; 6513 6514 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6515 for (;;) { 6516 overrun = hrtimer_forward_now(timer, cfs_b->period); 6517 if (!overrun) 6518 break; 6519 6520 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6521 6522 if (++count > 3) { 6523 u64 new, old = ktime_to_ns(cfs_b->period); 6524 6525 /* 6526 * Grow period by a factor of 2 to avoid losing precision. 6527 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6528 * to fail. 6529 */ 6530 new = old * 2; 6531 if (new < max_cfs_quota_period) { 6532 cfs_b->period = ns_to_ktime(new); 6533 cfs_b->quota *= 2; 6534 cfs_b->burst *= 2; 6535 6536 pr_warn_ratelimited( 6537 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6538 smp_processor_id(), 6539 div_u64(new, NSEC_PER_USEC), 6540 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6541 } else { 6542 pr_warn_ratelimited( 6543 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6544 smp_processor_id(), 6545 div_u64(old, NSEC_PER_USEC), 6546 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6547 } 6548 6549 /* reset count so we don't come right back in here */ 6550 count = 0; 6551 } 6552 } 6553 if (idle) 6554 cfs_b->period_active = 0; 6555 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6556 6557 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6558 } 6559 6560 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6561 { 6562 raw_spin_lock_init(&cfs_b->lock); 6563 cfs_b->runtime = 0; 6564 cfs_b->quota = RUNTIME_INF; 6565 cfs_b->period = ns_to_ktime(default_cfs_period()); 6566 cfs_b->burst = 0; 6567 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6568 6569 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6570 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6571 cfs_b->period_timer.function = sched_cfs_period_timer; 6572 6573 /* Add a random offset so that timers interleave */ 6574 hrtimer_set_expires(&cfs_b->period_timer, 6575 get_random_u32_below(cfs_b->period)); 6576 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6577 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6578 cfs_b->slack_started = false; 6579 } 6580 6581 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6582 { 6583 cfs_rq->runtime_enabled = 0; 6584 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6585 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6586 } 6587 6588 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6589 { 6590 lockdep_assert_held(&cfs_b->lock); 6591 6592 if (cfs_b->period_active) 6593 return; 6594 6595 cfs_b->period_active = 1; 6596 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6597 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6598 } 6599 6600 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6601 { 6602 int __maybe_unused i; 6603 6604 /* init_cfs_bandwidth() was not called */ 6605 if (!cfs_b->throttled_cfs_rq.next) 6606 return; 6607 6608 hrtimer_cancel(&cfs_b->period_timer); 6609 hrtimer_cancel(&cfs_b->slack_timer); 6610 6611 /* 6612 * It is possible that we still have some cfs_rq's pending on a CSD 6613 * list, though this race is very rare. In order for this to occur, we 6614 * must have raced with the last task leaving the group while there 6615 * exist throttled cfs_rq(s), and the period_timer must have queued the 6616 * CSD item but the remote cpu has not yet processed it. To handle this, 6617 * we can simply flush all pending CSD work inline here. We're 6618 * guaranteed at this point that no additional cfs_rq of this group can 6619 * join a CSD list. 6620 */ 6621 #ifdef CONFIG_SMP 6622 for_each_possible_cpu(i) { 6623 struct rq *rq = cpu_rq(i); 6624 unsigned long flags; 6625 6626 if (list_empty(&rq->cfsb_csd_list)) 6627 continue; 6628 6629 local_irq_save(flags); 6630 __cfsb_csd_unthrottle(rq); 6631 local_irq_restore(flags); 6632 } 6633 #endif 6634 } 6635 6636 /* 6637 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6638 * 6639 * The race is harmless, since modifying bandwidth settings of unhooked group 6640 * bits doesn't do much. 6641 */ 6642 6643 /* cpu online callback */ 6644 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6645 { 6646 struct task_group *tg; 6647 6648 lockdep_assert_rq_held(rq); 6649 6650 rcu_read_lock(); 6651 list_for_each_entry_rcu(tg, &task_groups, list) { 6652 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6653 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6654 6655 raw_spin_lock(&cfs_b->lock); 6656 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6657 raw_spin_unlock(&cfs_b->lock); 6658 } 6659 rcu_read_unlock(); 6660 } 6661 6662 /* cpu offline callback */ 6663 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6664 { 6665 struct task_group *tg; 6666 6667 lockdep_assert_rq_held(rq); 6668 6669 /* 6670 * The rq clock has already been updated in the 6671 * set_rq_offline(), so we should skip updating 6672 * the rq clock again in unthrottle_cfs_rq(). 6673 */ 6674 rq_clock_start_loop_update(rq); 6675 6676 rcu_read_lock(); 6677 list_for_each_entry_rcu(tg, &task_groups, list) { 6678 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6679 6680 if (!cfs_rq->runtime_enabled) 6681 continue; 6682 6683 /* 6684 * clock_task is not advancing so we just need to make sure 6685 * there's some valid quota amount 6686 */ 6687 cfs_rq->runtime_remaining = 1; 6688 /* 6689 * Offline rq is schedulable till CPU is completely disabled 6690 * in take_cpu_down(), so we prevent new cfs throttling here. 6691 */ 6692 cfs_rq->runtime_enabled = 0; 6693 6694 if (cfs_rq_throttled(cfs_rq)) 6695 unthrottle_cfs_rq(cfs_rq); 6696 } 6697 rcu_read_unlock(); 6698 6699 rq_clock_stop_loop_update(rq); 6700 } 6701 6702 bool cfs_task_bw_constrained(struct task_struct *p) 6703 { 6704 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6705 6706 if (!cfs_bandwidth_used()) 6707 return false; 6708 6709 if (cfs_rq->runtime_enabled || 6710 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6711 return true; 6712 6713 return false; 6714 } 6715 6716 #ifdef CONFIG_NO_HZ_FULL 6717 /* called from pick_next_task_fair() */ 6718 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6719 { 6720 int cpu = cpu_of(rq); 6721 6722 if (!cfs_bandwidth_used()) 6723 return; 6724 6725 if (!tick_nohz_full_cpu(cpu)) 6726 return; 6727 6728 if (rq->nr_running != 1) 6729 return; 6730 6731 /* 6732 * We know there is only one task runnable and we've just picked it. The 6733 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6734 * be otherwise able to stop the tick. Just need to check if we are using 6735 * bandwidth control. 6736 */ 6737 if (cfs_task_bw_constrained(p)) 6738 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6739 } 6740 #endif 6741 6742 #else /* CONFIG_CFS_BANDWIDTH */ 6743 6744 static inline bool cfs_bandwidth_used(void) 6745 { 6746 return false; 6747 } 6748 6749 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6750 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6751 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6752 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6753 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6754 6755 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6756 { 6757 return 0; 6758 } 6759 6760 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6761 { 6762 return 0; 6763 } 6764 6765 static inline int throttled_lb_pair(struct task_group *tg, 6766 int src_cpu, int dest_cpu) 6767 { 6768 return 0; 6769 } 6770 6771 #ifdef CONFIG_FAIR_GROUP_SCHED 6772 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6773 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6774 #endif 6775 6776 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6777 { 6778 return NULL; 6779 } 6780 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6781 static inline void update_runtime_enabled(struct rq *rq) {} 6782 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6783 #ifdef CONFIG_CGROUP_SCHED 6784 bool cfs_task_bw_constrained(struct task_struct *p) 6785 { 6786 return false; 6787 } 6788 #endif 6789 #endif /* CONFIG_CFS_BANDWIDTH */ 6790 6791 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6792 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6793 #endif 6794 6795 /************************************************** 6796 * CFS operations on tasks: 6797 */ 6798 6799 #ifdef CONFIG_SCHED_HRTICK 6800 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6801 { 6802 struct sched_entity *se = &p->se; 6803 6804 SCHED_WARN_ON(task_rq(p) != rq); 6805 6806 if (rq->cfs.h_nr_running > 1) { 6807 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6808 u64 slice = se->slice; 6809 s64 delta = slice - ran; 6810 6811 if (delta < 0) { 6812 if (task_current(rq, p)) 6813 resched_curr(rq); 6814 return; 6815 } 6816 hrtick_start(rq, delta); 6817 } 6818 } 6819 6820 /* 6821 * called from enqueue/dequeue and updates the hrtick when the 6822 * current task is from our class and nr_running is low enough 6823 * to matter. 6824 */ 6825 static void hrtick_update(struct rq *rq) 6826 { 6827 struct task_struct *curr = rq->curr; 6828 6829 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6830 return; 6831 6832 hrtick_start_fair(rq, curr); 6833 } 6834 #else /* !CONFIG_SCHED_HRTICK */ 6835 static inline void 6836 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6837 { 6838 } 6839 6840 static inline void hrtick_update(struct rq *rq) 6841 { 6842 } 6843 #endif 6844 6845 #ifdef CONFIG_SMP 6846 static inline bool cpu_overutilized(int cpu) 6847 { 6848 unsigned long rq_util_min, rq_util_max; 6849 6850 if (!sched_energy_enabled()) 6851 return false; 6852 6853 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6854 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6855 6856 /* Return true only if the utilization doesn't fit CPU's capacity */ 6857 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6858 } 6859 6860 /* 6861 * overutilized value make sense only if EAS is enabled 6862 */ 6863 static inline bool is_rd_overutilized(struct root_domain *rd) 6864 { 6865 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6866 } 6867 6868 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6869 { 6870 if (!sched_energy_enabled()) 6871 return; 6872 6873 WRITE_ONCE(rd->overutilized, flag); 6874 trace_sched_overutilized_tp(rd, flag); 6875 } 6876 6877 static inline void check_update_overutilized_status(struct rq *rq) 6878 { 6879 /* 6880 * overutilized field is used for load balancing decisions only 6881 * if energy aware scheduler is being used 6882 */ 6883 6884 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6885 set_rd_overutilized(rq->rd, 1); 6886 } 6887 #else 6888 static inline void check_update_overutilized_status(struct rq *rq) { } 6889 #endif 6890 6891 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6892 static int sched_idle_rq(struct rq *rq) 6893 { 6894 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6895 rq->nr_running); 6896 } 6897 6898 #ifdef CONFIG_SMP 6899 static int sched_idle_cpu(int cpu) 6900 { 6901 return sched_idle_rq(cpu_rq(cpu)); 6902 } 6903 #endif 6904 6905 static void 6906 requeue_delayed_entity(struct sched_entity *se) 6907 { 6908 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6909 6910 /* 6911 * se->sched_delayed should imply: se->on_rq == 1. 6912 * Because a delayed entity is one that is still on 6913 * the runqueue competing until elegibility. 6914 */ 6915 SCHED_WARN_ON(!se->sched_delayed); 6916 SCHED_WARN_ON(!se->on_rq); 6917 6918 if (sched_feat(DELAY_ZERO)) { 6919 update_entity_lag(cfs_rq, se); 6920 if (se->vlag > 0) { 6921 cfs_rq->nr_running--; 6922 if (se != cfs_rq->curr) 6923 __dequeue_entity(cfs_rq, se); 6924 se->vlag = 0; 6925 place_entity(cfs_rq, se, 0); 6926 if (se != cfs_rq->curr) 6927 __enqueue_entity(cfs_rq, se); 6928 cfs_rq->nr_running++; 6929 } 6930 } 6931 6932 update_load_avg(cfs_rq, se, 0); 6933 se->sched_delayed = 0; 6934 } 6935 6936 /* 6937 * The enqueue_task method is called before nr_running is 6938 * increased. Here we update the fair scheduling stats and 6939 * then put the task into the rbtree: 6940 */ 6941 static void 6942 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6943 { 6944 struct cfs_rq *cfs_rq; 6945 struct sched_entity *se = &p->se; 6946 int idle_h_nr_running = task_has_idle_policy(p); 6947 int task_new = !(flags & ENQUEUE_WAKEUP); 6948 int rq_h_nr_running = rq->cfs.h_nr_running; 6949 u64 slice = 0; 6950 6951 /* 6952 * The code below (indirectly) updates schedutil which looks at 6953 * the cfs_rq utilization to select a frequency. 6954 * Let's add the task's estimated utilization to the cfs_rq's 6955 * estimated utilization, before we update schedutil. 6956 */ 6957 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE)))) 6958 util_est_enqueue(&rq->cfs, p); 6959 6960 if (flags & ENQUEUE_DELAYED) { 6961 requeue_delayed_entity(se); 6962 return; 6963 } 6964 6965 /* 6966 * If in_iowait is set, the code below may not trigger any cpufreq 6967 * utilization updates, so do it here explicitly with the IOWAIT flag 6968 * passed. 6969 */ 6970 if (p->in_iowait) 6971 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6972 6973 for_each_sched_entity(se) { 6974 if (se->on_rq) { 6975 if (se->sched_delayed) 6976 requeue_delayed_entity(se); 6977 break; 6978 } 6979 cfs_rq = cfs_rq_of(se); 6980 6981 /* 6982 * Basically set the slice of group entries to the min_slice of 6983 * their respective cfs_rq. This ensures the group can service 6984 * its entities in the desired time-frame. 6985 */ 6986 if (slice) { 6987 se->slice = slice; 6988 se->custom_slice = 1; 6989 } 6990 enqueue_entity(cfs_rq, se, flags); 6991 slice = cfs_rq_min_slice(cfs_rq); 6992 6993 cfs_rq->h_nr_running++; 6994 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6995 6996 if (cfs_rq_is_idle(cfs_rq)) 6997 idle_h_nr_running = 1; 6998 6999 /* end evaluation on encountering a throttled cfs_rq */ 7000 if (cfs_rq_throttled(cfs_rq)) 7001 goto enqueue_throttle; 7002 7003 flags = ENQUEUE_WAKEUP; 7004 } 7005 7006 for_each_sched_entity(se) { 7007 cfs_rq = cfs_rq_of(se); 7008 7009 update_load_avg(cfs_rq, se, UPDATE_TG); 7010 se_update_runnable(se); 7011 update_cfs_group(se); 7012 7013 se->slice = slice; 7014 slice = cfs_rq_min_slice(cfs_rq); 7015 7016 cfs_rq->h_nr_running++; 7017 cfs_rq->idle_h_nr_running += idle_h_nr_running; 7018 7019 if (cfs_rq_is_idle(cfs_rq)) 7020 idle_h_nr_running = 1; 7021 7022 /* end evaluation on encountering a throttled cfs_rq */ 7023 if (cfs_rq_throttled(cfs_rq)) 7024 goto enqueue_throttle; 7025 } 7026 7027 if (!rq_h_nr_running && rq->cfs.h_nr_running) { 7028 /* Account for idle runtime */ 7029 if (!rq->nr_running) 7030 dl_server_update_idle_time(rq, rq->curr); 7031 dl_server_start(&rq->fair_server); 7032 } 7033 7034 /* At this point se is NULL and we are at root level*/ 7035 add_nr_running(rq, 1); 7036 7037 /* 7038 * Since new tasks are assigned an initial util_avg equal to 7039 * half of the spare capacity of their CPU, tiny tasks have the 7040 * ability to cross the overutilized threshold, which will 7041 * result in the load balancer ruining all the task placement 7042 * done by EAS. As a way to mitigate that effect, do not account 7043 * for the first enqueue operation of new tasks during the 7044 * overutilized flag detection. 7045 * 7046 * A better way of solving this problem would be to wait for 7047 * the PELT signals of tasks to converge before taking them 7048 * into account, but that is not straightforward to implement, 7049 * and the following generally works well enough in practice. 7050 */ 7051 if (!task_new) 7052 check_update_overutilized_status(rq); 7053 7054 enqueue_throttle: 7055 assert_list_leaf_cfs_rq(rq); 7056 7057 hrtick_update(rq); 7058 } 7059 7060 static void set_next_buddy(struct sched_entity *se); 7061 7062 /* 7063 * Basically dequeue_task_fair(), except it can deal with dequeue_entity() 7064 * failing half-way through and resume the dequeue later. 7065 * 7066 * Returns: 7067 * -1 - dequeue delayed 7068 * 0 - dequeue throttled 7069 * 1 - dequeue complete 7070 */ 7071 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) 7072 { 7073 bool was_sched_idle = sched_idle_rq(rq); 7074 int rq_h_nr_running = rq->cfs.h_nr_running; 7075 bool task_sleep = flags & DEQUEUE_SLEEP; 7076 bool task_delayed = flags & DEQUEUE_DELAYED; 7077 struct task_struct *p = NULL; 7078 int idle_h_nr_running = 0; 7079 int h_nr_running = 0; 7080 struct cfs_rq *cfs_rq; 7081 u64 slice = 0; 7082 7083 if (entity_is_task(se)) { 7084 p = task_of(se); 7085 h_nr_running = 1; 7086 idle_h_nr_running = task_has_idle_policy(p); 7087 } else { 7088 cfs_rq = group_cfs_rq(se); 7089 slice = cfs_rq_min_slice(cfs_rq); 7090 } 7091 7092 for_each_sched_entity(se) { 7093 cfs_rq = cfs_rq_of(se); 7094 7095 if (!dequeue_entity(cfs_rq, se, flags)) { 7096 if (p && &p->se == se) 7097 return -1; 7098 7099 break; 7100 } 7101 7102 cfs_rq->h_nr_running -= h_nr_running; 7103 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 7104 7105 if (cfs_rq_is_idle(cfs_rq)) 7106 idle_h_nr_running = h_nr_running; 7107 7108 /* end evaluation on encountering a throttled cfs_rq */ 7109 if (cfs_rq_throttled(cfs_rq)) 7110 return 0; 7111 7112 /* Don't dequeue parent if it has other entities besides us */ 7113 if (cfs_rq->load.weight) { 7114 slice = cfs_rq_min_slice(cfs_rq); 7115 7116 /* Avoid re-evaluating load for this entity: */ 7117 se = parent_entity(se); 7118 /* 7119 * Bias pick_next to pick a task from this cfs_rq, as 7120 * p is sleeping when it is within its sched_slice. 7121 */ 7122 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 7123 set_next_buddy(se); 7124 break; 7125 } 7126 flags |= DEQUEUE_SLEEP; 7127 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); 7128 } 7129 7130 for_each_sched_entity(se) { 7131 cfs_rq = cfs_rq_of(se); 7132 7133 update_load_avg(cfs_rq, se, UPDATE_TG); 7134 se_update_runnable(se); 7135 update_cfs_group(se); 7136 7137 se->slice = slice; 7138 slice = cfs_rq_min_slice(cfs_rq); 7139 7140 cfs_rq->h_nr_running -= h_nr_running; 7141 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 7142 7143 if (cfs_rq_is_idle(cfs_rq)) 7144 idle_h_nr_running = h_nr_running; 7145 7146 /* end evaluation on encountering a throttled cfs_rq */ 7147 if (cfs_rq_throttled(cfs_rq)) 7148 return 0; 7149 } 7150 7151 sub_nr_running(rq, h_nr_running); 7152 7153 if (rq_h_nr_running && !rq->cfs.h_nr_running) 7154 dl_server_stop(&rq->fair_server); 7155 7156 /* balance early to pull high priority tasks */ 7157 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 7158 rq->next_balance = jiffies; 7159 7160 if (p && task_delayed) { 7161 SCHED_WARN_ON(!task_sleep); 7162 SCHED_WARN_ON(p->on_rq != 1); 7163 7164 /* Fix-up what dequeue_task_fair() skipped */ 7165 hrtick_update(rq); 7166 7167 /* Fix-up what block_task() skipped. */ 7168 __block_task(rq, p); 7169 } 7170 7171 return 1; 7172 } 7173 7174 /* 7175 * The dequeue_task method is called before nr_running is 7176 * decreased. We remove the task from the rbtree and 7177 * update the fair scheduling stats: 7178 */ 7179 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 7180 { 7181 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE)))) 7182 util_est_dequeue(&rq->cfs, p); 7183 7184 if (dequeue_entities(rq, &p->se, flags) < 0) { 7185 util_est_update(&rq->cfs, p, DEQUEUE_SLEEP); 7186 return false; 7187 } 7188 7189 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); 7190 hrtick_update(rq); 7191 return true; 7192 } 7193 7194 #ifdef CONFIG_SMP 7195 7196 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 7197 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7198 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 7199 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 7200 7201 #ifdef CONFIG_NO_HZ_COMMON 7202 7203 static struct { 7204 cpumask_var_t idle_cpus_mask; 7205 atomic_t nr_cpus; 7206 int has_blocked; /* Idle CPUS has blocked load */ 7207 int needs_update; /* Newly idle CPUs need their next_balance collated */ 7208 unsigned long next_balance; /* in jiffy units */ 7209 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 7210 } nohz ____cacheline_aligned; 7211 7212 #endif /* CONFIG_NO_HZ_COMMON */ 7213 7214 static unsigned long cpu_load(struct rq *rq) 7215 { 7216 return cfs_rq_load_avg(&rq->cfs); 7217 } 7218 7219 /* 7220 * cpu_load_without - compute CPU load without any contributions from *p 7221 * @cpu: the CPU which load is requested 7222 * @p: the task which load should be discounted 7223 * 7224 * The load of a CPU is defined by the load of tasks currently enqueued on that 7225 * CPU as well as tasks which are currently sleeping after an execution on that 7226 * CPU. 7227 * 7228 * This method returns the load of the specified CPU by discounting the load of 7229 * the specified task, whenever the task is currently contributing to the CPU 7230 * load. 7231 */ 7232 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 7233 { 7234 struct cfs_rq *cfs_rq; 7235 unsigned int load; 7236 7237 /* Task has no contribution or is new */ 7238 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7239 return cpu_load(rq); 7240 7241 cfs_rq = &rq->cfs; 7242 load = READ_ONCE(cfs_rq->avg.load_avg); 7243 7244 /* Discount task's util from CPU's util */ 7245 lsub_positive(&load, task_h_load(p)); 7246 7247 return load; 7248 } 7249 7250 static unsigned long cpu_runnable(struct rq *rq) 7251 { 7252 return cfs_rq_runnable_avg(&rq->cfs); 7253 } 7254 7255 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 7256 { 7257 struct cfs_rq *cfs_rq; 7258 unsigned int runnable; 7259 7260 /* Task has no contribution or is new */ 7261 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7262 return cpu_runnable(rq); 7263 7264 cfs_rq = &rq->cfs; 7265 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7266 7267 /* Discount task's runnable from CPU's runnable */ 7268 lsub_positive(&runnable, p->se.avg.runnable_avg); 7269 7270 return runnable; 7271 } 7272 7273 static unsigned long capacity_of(int cpu) 7274 { 7275 return cpu_rq(cpu)->cpu_capacity; 7276 } 7277 7278 static void record_wakee(struct task_struct *p) 7279 { 7280 /* 7281 * Only decay a single time; tasks that have less then 1 wakeup per 7282 * jiffy will not have built up many flips. 7283 */ 7284 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7285 current->wakee_flips >>= 1; 7286 current->wakee_flip_decay_ts = jiffies; 7287 } 7288 7289 if (current->last_wakee != p) { 7290 current->last_wakee = p; 7291 current->wakee_flips++; 7292 } 7293 } 7294 7295 /* 7296 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7297 * 7298 * A waker of many should wake a different task than the one last awakened 7299 * at a frequency roughly N times higher than one of its wakees. 7300 * 7301 * In order to determine whether we should let the load spread vs consolidating 7302 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7303 * partner, and a factor of lls_size higher frequency in the other. 7304 * 7305 * With both conditions met, we can be relatively sure that the relationship is 7306 * non-monogamous, with partner count exceeding socket size. 7307 * 7308 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7309 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7310 * socket size. 7311 */ 7312 static int wake_wide(struct task_struct *p) 7313 { 7314 unsigned int master = current->wakee_flips; 7315 unsigned int slave = p->wakee_flips; 7316 int factor = __this_cpu_read(sd_llc_size); 7317 7318 if (master < slave) 7319 swap(master, slave); 7320 if (slave < factor || master < slave * factor) 7321 return 0; 7322 return 1; 7323 } 7324 7325 /* 7326 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7327 * soonest. For the purpose of speed we only consider the waking and previous 7328 * CPU. 7329 * 7330 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7331 * cache-affine and is (or will be) idle. 7332 * 7333 * wake_affine_weight() - considers the weight to reflect the average 7334 * scheduling latency of the CPUs. This seems to work 7335 * for the overloaded case. 7336 */ 7337 static int 7338 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7339 { 7340 /* 7341 * If this_cpu is idle, it implies the wakeup is from interrupt 7342 * context. Only allow the move if cache is shared. Otherwise an 7343 * interrupt intensive workload could force all tasks onto one 7344 * node depending on the IO topology or IRQ affinity settings. 7345 * 7346 * If the prev_cpu is idle and cache affine then avoid a migration. 7347 * There is no guarantee that the cache hot data from an interrupt 7348 * is more important than cache hot data on the prev_cpu and from 7349 * a cpufreq perspective, it's better to have higher utilisation 7350 * on one CPU. 7351 */ 7352 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7353 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7354 7355 if (sync && cpu_rq(this_cpu)->nr_running == 1) 7356 return this_cpu; 7357 7358 if (available_idle_cpu(prev_cpu)) 7359 return prev_cpu; 7360 7361 return nr_cpumask_bits; 7362 } 7363 7364 static int 7365 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7366 int this_cpu, int prev_cpu, int sync) 7367 { 7368 s64 this_eff_load, prev_eff_load; 7369 unsigned long task_load; 7370 7371 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7372 7373 if (sync) { 7374 unsigned long current_load = task_h_load(current); 7375 7376 if (current_load > this_eff_load) 7377 return this_cpu; 7378 7379 this_eff_load -= current_load; 7380 } 7381 7382 task_load = task_h_load(p); 7383 7384 this_eff_load += task_load; 7385 if (sched_feat(WA_BIAS)) 7386 this_eff_load *= 100; 7387 this_eff_load *= capacity_of(prev_cpu); 7388 7389 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7390 prev_eff_load -= task_load; 7391 if (sched_feat(WA_BIAS)) 7392 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7393 prev_eff_load *= capacity_of(this_cpu); 7394 7395 /* 7396 * If sync, adjust the weight of prev_eff_load such that if 7397 * prev_eff == this_eff that select_idle_sibling() will consider 7398 * stacking the wakee on top of the waker if no other CPU is 7399 * idle. 7400 */ 7401 if (sync) 7402 prev_eff_load += 1; 7403 7404 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7405 } 7406 7407 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7408 int this_cpu, int prev_cpu, int sync) 7409 { 7410 int target = nr_cpumask_bits; 7411 7412 if (sched_feat(WA_IDLE)) 7413 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7414 7415 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7416 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7417 7418 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7419 if (target != this_cpu) 7420 return prev_cpu; 7421 7422 schedstat_inc(sd->ttwu_move_affine); 7423 schedstat_inc(p->stats.nr_wakeups_affine); 7424 return target; 7425 } 7426 7427 static struct sched_group * 7428 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7429 7430 /* 7431 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7432 */ 7433 static int 7434 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7435 { 7436 unsigned long load, min_load = ULONG_MAX; 7437 unsigned int min_exit_latency = UINT_MAX; 7438 u64 latest_idle_timestamp = 0; 7439 int least_loaded_cpu = this_cpu; 7440 int shallowest_idle_cpu = -1; 7441 int i; 7442 7443 /* Check if we have any choice: */ 7444 if (group->group_weight == 1) 7445 return cpumask_first(sched_group_span(group)); 7446 7447 /* Traverse only the allowed CPUs */ 7448 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7449 struct rq *rq = cpu_rq(i); 7450 7451 if (!sched_core_cookie_match(rq, p)) 7452 continue; 7453 7454 if (sched_idle_cpu(i)) 7455 return i; 7456 7457 if (available_idle_cpu(i)) { 7458 struct cpuidle_state *idle = idle_get_state(rq); 7459 if (idle && idle->exit_latency < min_exit_latency) { 7460 /* 7461 * We give priority to a CPU whose idle state 7462 * has the smallest exit latency irrespective 7463 * of any idle timestamp. 7464 */ 7465 min_exit_latency = idle->exit_latency; 7466 latest_idle_timestamp = rq->idle_stamp; 7467 shallowest_idle_cpu = i; 7468 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7469 rq->idle_stamp > latest_idle_timestamp) { 7470 /* 7471 * If equal or no active idle state, then 7472 * the most recently idled CPU might have 7473 * a warmer cache. 7474 */ 7475 latest_idle_timestamp = rq->idle_stamp; 7476 shallowest_idle_cpu = i; 7477 } 7478 } else if (shallowest_idle_cpu == -1) { 7479 load = cpu_load(cpu_rq(i)); 7480 if (load < min_load) { 7481 min_load = load; 7482 least_loaded_cpu = i; 7483 } 7484 } 7485 } 7486 7487 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7488 } 7489 7490 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7491 int cpu, int prev_cpu, int sd_flag) 7492 { 7493 int new_cpu = cpu; 7494 7495 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7496 return prev_cpu; 7497 7498 /* 7499 * We need task's util for cpu_util_without, sync it up to 7500 * prev_cpu's last_update_time. 7501 */ 7502 if (!(sd_flag & SD_BALANCE_FORK)) 7503 sync_entity_load_avg(&p->se); 7504 7505 while (sd) { 7506 struct sched_group *group; 7507 struct sched_domain *tmp; 7508 int weight; 7509 7510 if (!(sd->flags & sd_flag)) { 7511 sd = sd->child; 7512 continue; 7513 } 7514 7515 group = sched_balance_find_dst_group(sd, p, cpu); 7516 if (!group) { 7517 sd = sd->child; 7518 continue; 7519 } 7520 7521 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7522 if (new_cpu == cpu) { 7523 /* Now try balancing at a lower domain level of 'cpu': */ 7524 sd = sd->child; 7525 continue; 7526 } 7527 7528 /* Now try balancing at a lower domain level of 'new_cpu': */ 7529 cpu = new_cpu; 7530 weight = sd->span_weight; 7531 sd = NULL; 7532 for_each_domain(cpu, tmp) { 7533 if (weight <= tmp->span_weight) 7534 break; 7535 if (tmp->flags & sd_flag) 7536 sd = tmp; 7537 } 7538 } 7539 7540 return new_cpu; 7541 } 7542 7543 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7544 { 7545 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7546 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7547 return cpu; 7548 7549 return -1; 7550 } 7551 7552 #ifdef CONFIG_SCHED_SMT 7553 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7554 EXPORT_SYMBOL_GPL(sched_smt_present); 7555 7556 static inline void set_idle_cores(int cpu, int val) 7557 { 7558 struct sched_domain_shared *sds; 7559 7560 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7561 if (sds) 7562 WRITE_ONCE(sds->has_idle_cores, val); 7563 } 7564 7565 static inline bool test_idle_cores(int cpu) 7566 { 7567 struct sched_domain_shared *sds; 7568 7569 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7570 if (sds) 7571 return READ_ONCE(sds->has_idle_cores); 7572 7573 return false; 7574 } 7575 7576 /* 7577 * Scans the local SMT mask to see if the entire core is idle, and records this 7578 * information in sd_llc_shared->has_idle_cores. 7579 * 7580 * Since SMT siblings share all cache levels, inspecting this limited remote 7581 * state should be fairly cheap. 7582 */ 7583 void __update_idle_core(struct rq *rq) 7584 { 7585 int core = cpu_of(rq); 7586 int cpu; 7587 7588 rcu_read_lock(); 7589 if (test_idle_cores(core)) 7590 goto unlock; 7591 7592 for_each_cpu(cpu, cpu_smt_mask(core)) { 7593 if (cpu == core) 7594 continue; 7595 7596 if (!available_idle_cpu(cpu)) 7597 goto unlock; 7598 } 7599 7600 set_idle_cores(core, 1); 7601 unlock: 7602 rcu_read_unlock(); 7603 } 7604 7605 /* 7606 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7607 * there are no idle cores left in the system; tracked through 7608 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7609 */ 7610 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7611 { 7612 bool idle = true; 7613 int cpu; 7614 7615 for_each_cpu(cpu, cpu_smt_mask(core)) { 7616 if (!available_idle_cpu(cpu)) { 7617 idle = false; 7618 if (*idle_cpu == -1) { 7619 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7620 *idle_cpu = cpu; 7621 break; 7622 } 7623 continue; 7624 } 7625 break; 7626 } 7627 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7628 *idle_cpu = cpu; 7629 } 7630 7631 if (idle) 7632 return core; 7633 7634 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7635 return -1; 7636 } 7637 7638 /* 7639 * Scan the local SMT mask for idle CPUs. 7640 */ 7641 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7642 { 7643 int cpu; 7644 7645 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7646 if (cpu == target) 7647 continue; 7648 /* 7649 * Check if the CPU is in the LLC scheduling domain of @target. 7650 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7651 */ 7652 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7653 continue; 7654 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7655 return cpu; 7656 } 7657 7658 return -1; 7659 } 7660 7661 #else /* CONFIG_SCHED_SMT */ 7662 7663 static inline void set_idle_cores(int cpu, int val) 7664 { 7665 } 7666 7667 static inline bool test_idle_cores(int cpu) 7668 { 7669 return false; 7670 } 7671 7672 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7673 { 7674 return __select_idle_cpu(core, p); 7675 } 7676 7677 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7678 { 7679 return -1; 7680 } 7681 7682 #endif /* CONFIG_SCHED_SMT */ 7683 7684 /* 7685 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7686 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7687 * average idle time for this rq (as found in rq->avg_idle). 7688 */ 7689 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7690 { 7691 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7692 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7693 struct sched_domain_shared *sd_share; 7694 7695 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7696 7697 if (sched_feat(SIS_UTIL)) { 7698 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7699 if (sd_share) { 7700 /* because !--nr is the condition to stop scan */ 7701 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7702 /* overloaded LLC is unlikely to have idle cpu/core */ 7703 if (nr == 1) 7704 return -1; 7705 } 7706 } 7707 7708 if (static_branch_unlikely(&sched_cluster_active)) { 7709 struct sched_group *sg = sd->groups; 7710 7711 if (sg->flags & SD_CLUSTER) { 7712 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7713 if (!cpumask_test_cpu(cpu, cpus)) 7714 continue; 7715 7716 if (has_idle_core) { 7717 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7718 if ((unsigned int)i < nr_cpumask_bits) 7719 return i; 7720 } else { 7721 if (--nr <= 0) 7722 return -1; 7723 idle_cpu = __select_idle_cpu(cpu, p); 7724 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7725 return idle_cpu; 7726 } 7727 } 7728 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7729 } 7730 } 7731 7732 for_each_cpu_wrap(cpu, cpus, target + 1) { 7733 if (has_idle_core) { 7734 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7735 if ((unsigned int)i < nr_cpumask_bits) 7736 return i; 7737 7738 } else { 7739 if (--nr <= 0) 7740 return -1; 7741 idle_cpu = __select_idle_cpu(cpu, p); 7742 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7743 break; 7744 } 7745 } 7746 7747 if (has_idle_core) 7748 set_idle_cores(target, false); 7749 7750 return idle_cpu; 7751 } 7752 7753 /* 7754 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7755 * the task fits. If no CPU is big enough, but there are idle ones, try to 7756 * maximize capacity. 7757 */ 7758 static int 7759 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7760 { 7761 unsigned long task_util, util_min, util_max, best_cap = 0; 7762 int fits, best_fits = 0; 7763 int cpu, best_cpu = -1; 7764 struct cpumask *cpus; 7765 7766 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7767 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7768 7769 task_util = task_util_est(p); 7770 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7771 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7772 7773 for_each_cpu_wrap(cpu, cpus, target) { 7774 unsigned long cpu_cap = capacity_of(cpu); 7775 7776 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7777 continue; 7778 7779 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7780 7781 /* This CPU fits with all requirements */ 7782 if (fits > 0) 7783 return cpu; 7784 /* 7785 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7786 * Look for the CPU with best capacity. 7787 */ 7788 else if (fits < 0) 7789 cpu_cap = get_actual_cpu_capacity(cpu); 7790 7791 /* 7792 * First, select CPU which fits better (-1 being better than 0). 7793 * Then, select the one with best capacity at same level. 7794 */ 7795 if ((fits < best_fits) || 7796 ((fits == best_fits) && (cpu_cap > best_cap))) { 7797 best_cap = cpu_cap; 7798 best_cpu = cpu; 7799 best_fits = fits; 7800 } 7801 } 7802 7803 return best_cpu; 7804 } 7805 7806 static inline bool asym_fits_cpu(unsigned long util, 7807 unsigned long util_min, 7808 unsigned long util_max, 7809 int cpu) 7810 { 7811 if (sched_asym_cpucap_active()) 7812 /* 7813 * Return true only if the cpu fully fits the task requirements 7814 * which include the utilization and the performance hints. 7815 */ 7816 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7817 7818 return true; 7819 } 7820 7821 /* 7822 * Try and locate an idle core/thread in the LLC cache domain. 7823 */ 7824 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7825 { 7826 bool has_idle_core = false; 7827 struct sched_domain *sd; 7828 unsigned long task_util, util_min, util_max; 7829 int i, recent_used_cpu, prev_aff = -1; 7830 7831 /* 7832 * On asymmetric system, update task utilization because we will check 7833 * that the task fits with CPU's capacity. 7834 */ 7835 if (sched_asym_cpucap_active()) { 7836 sync_entity_load_avg(&p->se); 7837 task_util = task_util_est(p); 7838 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7839 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7840 } 7841 7842 /* 7843 * per-cpu select_rq_mask usage 7844 */ 7845 lockdep_assert_irqs_disabled(); 7846 7847 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7848 asym_fits_cpu(task_util, util_min, util_max, target)) 7849 return target; 7850 7851 /* 7852 * If the previous CPU is cache affine and idle, don't be stupid: 7853 */ 7854 if (prev != target && cpus_share_cache(prev, target) && 7855 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7856 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7857 7858 if (!static_branch_unlikely(&sched_cluster_active) || 7859 cpus_share_resources(prev, target)) 7860 return prev; 7861 7862 prev_aff = prev; 7863 } 7864 7865 /* 7866 * Allow a per-cpu kthread to stack with the wakee if the 7867 * kworker thread and the tasks previous CPUs are the same. 7868 * The assumption is that the wakee queued work for the 7869 * per-cpu kthread that is now complete and the wakeup is 7870 * essentially a sync wakeup. An obvious example of this 7871 * pattern is IO completions. 7872 */ 7873 if (is_per_cpu_kthread(current) && 7874 in_task() && 7875 prev == smp_processor_id() && 7876 this_rq()->nr_running <= 1 && 7877 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7878 return prev; 7879 } 7880 7881 /* Check a recently used CPU as a potential idle candidate: */ 7882 recent_used_cpu = p->recent_used_cpu; 7883 p->recent_used_cpu = prev; 7884 if (recent_used_cpu != prev && 7885 recent_used_cpu != target && 7886 cpus_share_cache(recent_used_cpu, target) && 7887 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7888 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7889 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7890 7891 if (!static_branch_unlikely(&sched_cluster_active) || 7892 cpus_share_resources(recent_used_cpu, target)) 7893 return recent_used_cpu; 7894 7895 } else { 7896 recent_used_cpu = -1; 7897 } 7898 7899 /* 7900 * For asymmetric CPU capacity systems, our domain of interest is 7901 * sd_asym_cpucapacity rather than sd_llc. 7902 */ 7903 if (sched_asym_cpucap_active()) { 7904 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7905 /* 7906 * On an asymmetric CPU capacity system where an exclusive 7907 * cpuset defines a symmetric island (i.e. one unique 7908 * capacity_orig value through the cpuset), the key will be set 7909 * but the CPUs within that cpuset will not have a domain with 7910 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7911 * capacity path. 7912 */ 7913 if (sd) { 7914 i = select_idle_capacity(p, sd, target); 7915 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7916 } 7917 } 7918 7919 sd = rcu_dereference(per_cpu(sd_llc, target)); 7920 if (!sd) 7921 return target; 7922 7923 if (sched_smt_active()) { 7924 has_idle_core = test_idle_cores(target); 7925 7926 if (!has_idle_core && cpus_share_cache(prev, target)) { 7927 i = select_idle_smt(p, sd, prev); 7928 if ((unsigned int)i < nr_cpumask_bits) 7929 return i; 7930 } 7931 } 7932 7933 i = select_idle_cpu(p, sd, has_idle_core, target); 7934 if ((unsigned)i < nr_cpumask_bits) 7935 return i; 7936 7937 /* 7938 * For cluster machines which have lower sharing cache like L2 or 7939 * LLC Tag, we tend to find an idle CPU in the target's cluster 7940 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7941 * use them if possible when no idle CPU found in select_idle_cpu(). 7942 */ 7943 if ((unsigned int)prev_aff < nr_cpumask_bits) 7944 return prev_aff; 7945 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7946 return recent_used_cpu; 7947 7948 return target; 7949 } 7950 7951 /** 7952 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7953 * @cpu: the CPU to get the utilization for 7954 * @p: task for which the CPU utilization should be predicted or NULL 7955 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7956 * @boost: 1 to enable boosting, otherwise 0 7957 * 7958 * The unit of the return value must be the same as the one of CPU capacity 7959 * so that CPU utilization can be compared with CPU capacity. 7960 * 7961 * CPU utilization is the sum of running time of runnable tasks plus the 7962 * recent utilization of currently non-runnable tasks on that CPU. 7963 * It represents the amount of CPU capacity currently used by CFS tasks in 7964 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7965 * capacity at f_max. 7966 * 7967 * The estimated CPU utilization is defined as the maximum between CPU 7968 * utilization and sum of the estimated utilization of the currently 7969 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7970 * previously-executed tasks, which helps better deduce how busy a CPU will 7971 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7972 * of such a task would be significantly decayed at this point of time. 7973 * 7974 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7975 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7976 * utilization. Boosting is implemented in cpu_util() so that internal 7977 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7978 * latter via cpu_util_cfs_boost(). 7979 * 7980 * CPU utilization can be higher than the current CPU capacity 7981 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7982 * of rounding errors as well as task migrations or wakeups of new tasks. 7983 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7984 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7985 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7986 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7987 * though since this is useful for predicting the CPU capacity required 7988 * after task migrations (scheduler-driven DVFS). 7989 * 7990 * Return: (Boosted) (estimated) utilization for the specified CPU. 7991 */ 7992 static unsigned long 7993 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7994 { 7995 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7996 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7997 unsigned long runnable; 7998 7999 if (boost) { 8000 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 8001 util = max(util, runnable); 8002 } 8003 8004 /* 8005 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 8006 * contribution. If @p migrates from another CPU to @cpu add its 8007 * contribution. In all the other cases @cpu is not impacted by the 8008 * migration so its util_avg is already correct. 8009 */ 8010 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 8011 lsub_positive(&util, task_util(p)); 8012 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 8013 util += task_util(p); 8014 8015 if (sched_feat(UTIL_EST)) { 8016 unsigned long util_est; 8017 8018 util_est = READ_ONCE(cfs_rq->avg.util_est); 8019 8020 /* 8021 * During wake-up @p isn't enqueued yet and doesn't contribute 8022 * to any cpu_rq(cpu)->cfs.avg.util_est. 8023 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 8024 * has been enqueued. 8025 * 8026 * During exec (@dst_cpu = -1) @p is enqueued and does 8027 * contribute to cpu_rq(cpu)->cfs.util_est. 8028 * Remove it to "simulate" cpu_util without @p's contribution. 8029 * 8030 * Despite the task_on_rq_queued(@p) check there is still a 8031 * small window for a possible race when an exec 8032 * select_task_rq_fair() races with LB's detach_task(). 8033 * 8034 * detach_task() 8035 * deactivate_task() 8036 * p->on_rq = TASK_ON_RQ_MIGRATING; 8037 * -------------------------------- A 8038 * dequeue_task() \ 8039 * dequeue_task_fair() + Race Time 8040 * util_est_dequeue() / 8041 * -------------------------------- B 8042 * 8043 * The additional check "current == p" is required to further 8044 * reduce the race window. 8045 */ 8046 if (dst_cpu == cpu) 8047 util_est += _task_util_est(p); 8048 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 8049 lsub_positive(&util_est, _task_util_est(p)); 8050 8051 util = max(util, util_est); 8052 } 8053 8054 return min(util, arch_scale_cpu_capacity(cpu)); 8055 } 8056 8057 unsigned long cpu_util_cfs(int cpu) 8058 { 8059 return cpu_util(cpu, NULL, -1, 0); 8060 } 8061 8062 unsigned long cpu_util_cfs_boost(int cpu) 8063 { 8064 return cpu_util(cpu, NULL, -1, 1); 8065 } 8066 8067 /* 8068 * cpu_util_without: compute cpu utilization without any contributions from *p 8069 * @cpu: the CPU which utilization is requested 8070 * @p: the task which utilization should be discounted 8071 * 8072 * The utilization of a CPU is defined by the utilization of tasks currently 8073 * enqueued on that CPU as well as tasks which are currently sleeping after an 8074 * execution on that CPU. 8075 * 8076 * This method returns the utilization of the specified CPU by discounting the 8077 * utilization of the specified task, whenever the task is currently 8078 * contributing to the CPU utilization. 8079 */ 8080 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 8081 { 8082 /* Task has no contribution or is new */ 8083 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8084 p = NULL; 8085 8086 return cpu_util(cpu, p, -1, 0); 8087 } 8088 8089 /* 8090 * This function computes an effective utilization for the given CPU, to be 8091 * used for frequency selection given the linear relation: f = u * f_max. 8092 * 8093 * The scheduler tracks the following metrics: 8094 * 8095 * cpu_util_{cfs,rt,dl,irq}() 8096 * cpu_bw_dl() 8097 * 8098 * Where the cfs,rt and dl util numbers are tracked with the same metric and 8099 * synchronized windows and are thus directly comparable. 8100 * 8101 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 8102 * which excludes things like IRQ and steal-time. These latter are then accrued 8103 * in the IRQ utilization. 8104 * 8105 * The DL bandwidth number OTOH is not a measured metric but a value computed 8106 * based on the task model parameters and gives the minimal utilization 8107 * required to meet deadlines. 8108 */ 8109 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 8110 unsigned long *min, 8111 unsigned long *max) 8112 { 8113 unsigned long util, irq, scale; 8114 struct rq *rq = cpu_rq(cpu); 8115 8116 scale = arch_scale_cpu_capacity(cpu); 8117 8118 /* 8119 * Early check to see if IRQ/steal time saturates the CPU, can be 8120 * because of inaccuracies in how we track these -- see 8121 * update_irq_load_avg(). 8122 */ 8123 irq = cpu_util_irq(rq); 8124 if (unlikely(irq >= scale)) { 8125 if (min) 8126 *min = scale; 8127 if (max) 8128 *max = scale; 8129 return scale; 8130 } 8131 8132 if (min) { 8133 /* 8134 * The minimum utilization returns the highest level between: 8135 * - the computed DL bandwidth needed with the IRQ pressure which 8136 * steals time to the deadline task. 8137 * - The minimum performance requirement for CFS and/or RT. 8138 */ 8139 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); 8140 8141 /* 8142 * When an RT task is runnable and uclamp is not used, we must 8143 * ensure that the task will run at maximum compute capacity. 8144 */ 8145 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) 8146 *min = max(*min, scale); 8147 } 8148 8149 /* 8150 * Because the time spend on RT/DL tasks is visible as 'lost' time to 8151 * CFS tasks and we use the same metric to track the effective 8152 * utilization (PELT windows are synchronized) we can directly add them 8153 * to obtain the CPU's actual utilization. 8154 */ 8155 util = util_cfs + cpu_util_rt(rq); 8156 util += cpu_util_dl(rq); 8157 8158 /* 8159 * The maximum hint is a soft bandwidth requirement, which can be lower 8160 * than the actual utilization because of uclamp_max requirements. 8161 */ 8162 if (max) 8163 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); 8164 8165 if (util >= scale) 8166 return scale; 8167 8168 /* 8169 * There is still idle time; further improve the number by using the 8170 * IRQ metric. Because IRQ/steal time is hidden from the task clock we 8171 * need to scale the task numbers: 8172 * 8173 * max - irq 8174 * U' = irq + --------- * U 8175 * max 8176 */ 8177 util = scale_irq_capacity(util, irq, scale); 8178 util += irq; 8179 8180 return min(scale, util); 8181 } 8182 8183 unsigned long sched_cpu_util(int cpu) 8184 { 8185 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); 8186 } 8187 8188 /* 8189 * energy_env - Utilization landscape for energy estimation. 8190 * @task_busy_time: Utilization contribution by the task for which we test the 8191 * placement. Given by eenv_task_busy_time(). 8192 * @pd_busy_time: Utilization of the whole perf domain without the task 8193 * contribution. Given by eenv_pd_busy_time(). 8194 * @cpu_cap: Maximum CPU capacity for the perf domain. 8195 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 8196 */ 8197 struct energy_env { 8198 unsigned long task_busy_time; 8199 unsigned long pd_busy_time; 8200 unsigned long cpu_cap; 8201 unsigned long pd_cap; 8202 }; 8203 8204 /* 8205 * Compute the task busy time for compute_energy(). This time cannot be 8206 * injected directly into effective_cpu_util() because of the IRQ scaling. 8207 * The latter only makes sense with the most recent CPUs where the task has 8208 * run. 8209 */ 8210 static inline void eenv_task_busy_time(struct energy_env *eenv, 8211 struct task_struct *p, int prev_cpu) 8212 { 8213 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 8214 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 8215 8216 if (unlikely(irq >= max_cap)) 8217 busy_time = max_cap; 8218 else 8219 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 8220 8221 eenv->task_busy_time = busy_time; 8222 } 8223 8224 /* 8225 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 8226 * utilization for each @pd_cpus, it however doesn't take into account 8227 * clamping since the ratio (utilization / cpu_capacity) is already enough to 8228 * scale the EM reported power consumption at the (eventually clamped) 8229 * cpu_capacity. 8230 * 8231 * The contribution of the task @p for which we want to estimate the 8232 * energy cost is removed (by cpu_util()) and must be calculated 8233 * separately (see eenv_task_busy_time). This ensures: 8234 * 8235 * - A stable PD utilization, no matter which CPU of that PD we want to place 8236 * the task on. 8237 * 8238 * - A fair comparison between CPUs as the task contribution (task_util()) 8239 * will always be the same no matter which CPU utilization we rely on 8240 * (util_avg or util_est). 8241 * 8242 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 8243 * exceed @eenv->pd_cap. 8244 */ 8245 static inline void eenv_pd_busy_time(struct energy_env *eenv, 8246 struct cpumask *pd_cpus, 8247 struct task_struct *p) 8248 { 8249 unsigned long busy_time = 0; 8250 int cpu; 8251 8252 for_each_cpu(cpu, pd_cpus) { 8253 unsigned long util = cpu_util(cpu, p, -1, 0); 8254 8255 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 8256 } 8257 8258 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 8259 } 8260 8261 /* 8262 * Compute the maximum utilization for compute_energy() when the task @p 8263 * is placed on the cpu @dst_cpu. 8264 * 8265 * Returns the maximum utilization among @eenv->cpus. This utilization can't 8266 * exceed @eenv->cpu_cap. 8267 */ 8268 static inline unsigned long 8269 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 8270 struct task_struct *p, int dst_cpu) 8271 { 8272 unsigned long max_util = 0; 8273 int cpu; 8274 8275 for_each_cpu(cpu, pd_cpus) { 8276 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 8277 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 8278 unsigned long eff_util, min, max; 8279 8280 /* 8281 * Performance domain frequency: utilization clamping 8282 * must be considered since it affects the selection 8283 * of the performance domain frequency. 8284 * NOTE: in case RT tasks are running, by default the min 8285 * utilization can be max OPP. 8286 */ 8287 eff_util = effective_cpu_util(cpu, util, &min, &max); 8288 8289 /* Task's uclamp can modify min and max value */ 8290 if (tsk && uclamp_is_used()) { 8291 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 8292 8293 /* 8294 * If there is no active max uclamp constraint, 8295 * directly use task's one, otherwise keep max. 8296 */ 8297 if (uclamp_rq_is_idle(cpu_rq(cpu))) 8298 max = uclamp_eff_value(p, UCLAMP_MAX); 8299 else 8300 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 8301 } 8302 8303 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 8304 max_util = max(max_util, eff_util); 8305 } 8306 8307 return min(max_util, eenv->cpu_cap); 8308 } 8309 8310 /* 8311 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 8312 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 8313 * contribution is ignored. 8314 */ 8315 static inline unsigned long 8316 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 8317 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 8318 { 8319 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 8320 unsigned long busy_time = eenv->pd_busy_time; 8321 unsigned long energy; 8322 8323 if (dst_cpu >= 0) 8324 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 8325 8326 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 8327 8328 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 8329 8330 return energy; 8331 } 8332 8333 /* 8334 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 8335 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 8336 * spare capacity in each performance domain and uses it as a potential 8337 * candidate to execute the task. Then, it uses the Energy Model to figure 8338 * out which of the CPU candidates is the most energy-efficient. 8339 * 8340 * The rationale for this heuristic is as follows. In a performance domain, 8341 * all the most energy efficient CPU candidates (according to the Energy 8342 * Model) are those for which we'll request a low frequency. When there are 8343 * several CPUs for which the frequency request will be the same, we don't 8344 * have enough data to break the tie between them, because the Energy Model 8345 * only includes active power costs. With this model, if we assume that 8346 * frequency requests follow utilization (e.g. using schedutil), the CPU with 8347 * the maximum spare capacity in a performance domain is guaranteed to be among 8348 * the best candidates of the performance domain. 8349 * 8350 * In practice, it could be preferable from an energy standpoint to pack 8351 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 8352 * but that could also hurt our chances to go cluster idle, and we have no 8353 * ways to tell with the current Energy Model if this is actually a good 8354 * idea or not. So, find_energy_efficient_cpu() basically favors 8355 * cluster-packing, and spreading inside a cluster. That should at least be 8356 * a good thing for latency, and this is consistent with the idea that most 8357 * of the energy savings of EAS come from the asymmetry of the system, and 8358 * not so much from breaking the tie between identical CPUs. That's also the 8359 * reason why EAS is enabled in the topology code only for systems where 8360 * SD_ASYM_CPUCAPACITY is set. 8361 * 8362 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 8363 * they don't have any useful utilization data yet and it's not possible to 8364 * forecast their impact on energy consumption. Consequently, they will be 8365 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 8366 * to be energy-inefficient in some use-cases. The alternative would be to 8367 * bias new tasks towards specific types of CPUs first, or to try to infer 8368 * their util_avg from the parent task, but those heuristics could hurt 8369 * other use-cases too. So, until someone finds a better way to solve this, 8370 * let's keep things simple by re-using the existing slow path. 8371 */ 8372 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 8373 { 8374 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 8375 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 8376 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 8377 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 8378 struct root_domain *rd = this_rq()->rd; 8379 int cpu, best_energy_cpu, target = -1; 8380 int prev_fits = -1, best_fits = -1; 8381 unsigned long best_actual_cap = 0; 8382 unsigned long prev_actual_cap = 0; 8383 struct sched_domain *sd; 8384 struct perf_domain *pd; 8385 struct energy_env eenv; 8386 8387 rcu_read_lock(); 8388 pd = rcu_dereference(rd->pd); 8389 if (!pd) 8390 goto unlock; 8391 8392 /* 8393 * Energy-aware wake-up happens on the lowest sched_domain starting 8394 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8395 */ 8396 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 8397 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8398 sd = sd->parent; 8399 if (!sd) 8400 goto unlock; 8401 8402 target = prev_cpu; 8403 8404 sync_entity_load_avg(&p->se); 8405 if (!task_util_est(p) && p_util_min == 0) 8406 goto unlock; 8407 8408 eenv_task_busy_time(&eenv, p, prev_cpu); 8409 8410 for (; pd; pd = pd->next) { 8411 unsigned long util_min = p_util_min, util_max = p_util_max; 8412 unsigned long cpu_cap, cpu_actual_cap, util; 8413 long prev_spare_cap = -1, max_spare_cap = -1; 8414 unsigned long rq_util_min, rq_util_max; 8415 unsigned long cur_delta, base_energy; 8416 int max_spare_cap_cpu = -1; 8417 int fits, max_fits = -1; 8418 8419 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8420 8421 if (cpumask_empty(cpus)) 8422 continue; 8423 8424 /* Account external pressure for the energy estimation */ 8425 cpu = cpumask_first(cpus); 8426 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8427 8428 eenv.cpu_cap = cpu_actual_cap; 8429 eenv.pd_cap = 0; 8430 8431 for_each_cpu(cpu, cpus) { 8432 struct rq *rq = cpu_rq(cpu); 8433 8434 eenv.pd_cap += cpu_actual_cap; 8435 8436 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8437 continue; 8438 8439 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8440 continue; 8441 8442 util = cpu_util(cpu, p, cpu, 0); 8443 cpu_cap = capacity_of(cpu); 8444 8445 /* 8446 * Skip CPUs that cannot satisfy the capacity request. 8447 * IOW, placing the task there would make the CPU 8448 * overutilized. Take uclamp into account to see how 8449 * much capacity we can get out of the CPU; this is 8450 * aligned with sched_cpu_util(). 8451 */ 8452 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8453 /* 8454 * Open code uclamp_rq_util_with() except for 8455 * the clamp() part. I.e.: apply max aggregation 8456 * only. util_fits_cpu() logic requires to 8457 * operate on non clamped util but must use the 8458 * max-aggregated uclamp_{min, max}. 8459 */ 8460 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8461 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8462 8463 util_min = max(rq_util_min, p_util_min); 8464 util_max = max(rq_util_max, p_util_max); 8465 } 8466 8467 fits = util_fits_cpu(util, util_min, util_max, cpu); 8468 if (!fits) 8469 continue; 8470 8471 lsub_positive(&cpu_cap, util); 8472 8473 if (cpu == prev_cpu) { 8474 /* Always use prev_cpu as a candidate. */ 8475 prev_spare_cap = cpu_cap; 8476 prev_fits = fits; 8477 } else if ((fits > max_fits) || 8478 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8479 /* 8480 * Find the CPU with the maximum spare capacity 8481 * among the remaining CPUs in the performance 8482 * domain. 8483 */ 8484 max_spare_cap = cpu_cap; 8485 max_spare_cap_cpu = cpu; 8486 max_fits = fits; 8487 } 8488 } 8489 8490 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8491 continue; 8492 8493 eenv_pd_busy_time(&eenv, cpus, p); 8494 /* Compute the 'base' energy of the pd, without @p */ 8495 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8496 8497 /* Evaluate the energy impact of using prev_cpu. */ 8498 if (prev_spare_cap > -1) { 8499 prev_delta = compute_energy(&eenv, pd, cpus, p, 8500 prev_cpu); 8501 /* CPU utilization has changed */ 8502 if (prev_delta < base_energy) 8503 goto unlock; 8504 prev_delta -= base_energy; 8505 prev_actual_cap = cpu_actual_cap; 8506 best_delta = min(best_delta, prev_delta); 8507 } 8508 8509 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8510 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8511 /* Current best energy cpu fits better */ 8512 if (max_fits < best_fits) 8513 continue; 8514 8515 /* 8516 * Both don't fit performance hint (i.e. uclamp_min) 8517 * but best energy cpu has better capacity. 8518 */ 8519 if ((max_fits < 0) && 8520 (cpu_actual_cap <= best_actual_cap)) 8521 continue; 8522 8523 cur_delta = compute_energy(&eenv, pd, cpus, p, 8524 max_spare_cap_cpu); 8525 /* CPU utilization has changed */ 8526 if (cur_delta < base_energy) 8527 goto unlock; 8528 cur_delta -= base_energy; 8529 8530 /* 8531 * Both fit for the task but best energy cpu has lower 8532 * energy impact. 8533 */ 8534 if ((max_fits > 0) && (best_fits > 0) && 8535 (cur_delta >= best_delta)) 8536 continue; 8537 8538 best_delta = cur_delta; 8539 best_energy_cpu = max_spare_cap_cpu; 8540 best_fits = max_fits; 8541 best_actual_cap = cpu_actual_cap; 8542 } 8543 } 8544 rcu_read_unlock(); 8545 8546 if ((best_fits > prev_fits) || 8547 ((best_fits > 0) && (best_delta < prev_delta)) || 8548 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8549 target = best_energy_cpu; 8550 8551 return target; 8552 8553 unlock: 8554 rcu_read_unlock(); 8555 8556 return target; 8557 } 8558 8559 /* 8560 * select_task_rq_fair: Select target runqueue for the waking task in domains 8561 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8562 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8563 * 8564 * Balances load by selecting the idlest CPU in the idlest group, or under 8565 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8566 * 8567 * Returns the target CPU number. 8568 */ 8569 static int 8570 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8571 { 8572 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8573 struct sched_domain *tmp, *sd = NULL; 8574 int cpu = smp_processor_id(); 8575 int new_cpu = prev_cpu; 8576 int want_affine = 0; 8577 /* SD_flags and WF_flags share the first nibble */ 8578 int sd_flag = wake_flags & 0xF; 8579 8580 /* 8581 * required for stable ->cpus_allowed 8582 */ 8583 lockdep_assert_held(&p->pi_lock); 8584 if (wake_flags & WF_TTWU) { 8585 record_wakee(p); 8586 8587 if ((wake_flags & WF_CURRENT_CPU) && 8588 cpumask_test_cpu(cpu, p->cpus_ptr)) 8589 return cpu; 8590 8591 if (!is_rd_overutilized(this_rq()->rd)) { 8592 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8593 if (new_cpu >= 0) 8594 return new_cpu; 8595 new_cpu = prev_cpu; 8596 } 8597 8598 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8599 } 8600 8601 rcu_read_lock(); 8602 for_each_domain(cpu, tmp) { 8603 /* 8604 * If both 'cpu' and 'prev_cpu' are part of this domain, 8605 * cpu is a valid SD_WAKE_AFFINE target. 8606 */ 8607 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8608 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8609 if (cpu != prev_cpu) 8610 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8611 8612 sd = NULL; /* Prefer wake_affine over balance flags */ 8613 break; 8614 } 8615 8616 /* 8617 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8618 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8619 * will usually go to the fast path. 8620 */ 8621 if (tmp->flags & sd_flag) 8622 sd = tmp; 8623 else if (!want_affine) 8624 break; 8625 } 8626 8627 if (unlikely(sd)) { 8628 /* Slow path */ 8629 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8630 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8631 /* Fast path */ 8632 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8633 } 8634 rcu_read_unlock(); 8635 8636 return new_cpu; 8637 } 8638 8639 /* 8640 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8641 * cfs_rq_of(p) references at time of call are still valid and identify the 8642 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8643 */ 8644 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8645 { 8646 struct sched_entity *se = &p->se; 8647 8648 if (!task_on_rq_migrating(p)) { 8649 remove_entity_load_avg(se); 8650 8651 /* 8652 * Here, the task's PELT values have been updated according to 8653 * the current rq's clock. But if that clock hasn't been 8654 * updated in a while, a substantial idle time will be missed, 8655 * leading to an inflation after wake-up on the new rq. 8656 * 8657 * Estimate the missing time from the cfs_rq last_update_time 8658 * and update sched_avg to improve the PELT continuity after 8659 * migration. 8660 */ 8661 migrate_se_pelt_lag(se); 8662 } 8663 8664 /* Tell new CPU we are migrated */ 8665 se->avg.last_update_time = 0; 8666 8667 update_scan_period(p, new_cpu); 8668 } 8669 8670 static void task_dead_fair(struct task_struct *p) 8671 { 8672 struct sched_entity *se = &p->se; 8673 8674 if (se->sched_delayed) { 8675 struct rq_flags rf; 8676 struct rq *rq; 8677 8678 rq = task_rq_lock(p, &rf); 8679 if (se->sched_delayed) { 8680 update_rq_clock(rq); 8681 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 8682 } 8683 task_rq_unlock(rq, p, &rf); 8684 } 8685 8686 remove_entity_load_avg(se); 8687 } 8688 8689 /* 8690 * Set the max capacity the task is allowed to run at for misfit detection. 8691 */ 8692 static void set_task_max_allowed_capacity(struct task_struct *p) 8693 { 8694 struct asym_cap_data *entry; 8695 8696 if (!sched_asym_cpucap_active()) 8697 return; 8698 8699 rcu_read_lock(); 8700 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8701 cpumask_t *cpumask; 8702 8703 cpumask = cpu_capacity_span(entry); 8704 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8705 continue; 8706 8707 p->max_allowed_capacity = entry->capacity; 8708 break; 8709 } 8710 rcu_read_unlock(); 8711 } 8712 8713 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8714 { 8715 set_cpus_allowed_common(p, ctx); 8716 set_task_max_allowed_capacity(p); 8717 } 8718 8719 static int 8720 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8721 { 8722 if (sched_fair_runnable(rq)) 8723 return 1; 8724 8725 return sched_balance_newidle(rq, rf) != 0; 8726 } 8727 #else 8728 static inline void set_task_max_allowed_capacity(struct task_struct *p) {} 8729 #endif /* CONFIG_SMP */ 8730 8731 static void set_next_buddy(struct sched_entity *se) 8732 { 8733 for_each_sched_entity(se) { 8734 if (SCHED_WARN_ON(!se->on_rq)) 8735 return; 8736 if (se_is_idle(se)) 8737 return; 8738 cfs_rq_of(se)->next = se; 8739 } 8740 } 8741 8742 /* 8743 * Preempt the current task with a newly woken task if needed: 8744 */ 8745 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8746 { 8747 struct task_struct *curr = rq->curr; 8748 struct sched_entity *se = &curr->se, *pse = &p->se; 8749 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8750 int cse_is_idle, pse_is_idle; 8751 8752 if (unlikely(se == pse)) 8753 return; 8754 8755 /* 8756 * This is possible from callers such as attach_tasks(), in which we 8757 * unconditionally wakeup_preempt() after an enqueue (which may have 8758 * lead to a throttle). This both saves work and prevents false 8759 * next-buddy nomination below. 8760 */ 8761 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8762 return; 8763 8764 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { 8765 set_next_buddy(pse); 8766 } 8767 8768 /* 8769 * We can come here with TIF_NEED_RESCHED already set from new task 8770 * wake up path. 8771 * 8772 * Note: this also catches the edge-case of curr being in a throttled 8773 * group (e.g. via set_curr_task), since update_curr() (in the 8774 * enqueue of curr) will have resulted in resched being set. This 8775 * prevents us from potentially nominating it as a false LAST_BUDDY 8776 * below. 8777 */ 8778 if (test_tsk_need_resched(curr)) 8779 return; 8780 8781 if (!sched_feat(WAKEUP_PREEMPTION)) 8782 return; 8783 8784 find_matching_se(&se, &pse); 8785 WARN_ON_ONCE(!pse); 8786 8787 cse_is_idle = se_is_idle(se); 8788 pse_is_idle = se_is_idle(pse); 8789 8790 /* 8791 * Preempt an idle entity in favor of a non-idle entity (and don't preempt 8792 * in the inverse case). 8793 */ 8794 if (cse_is_idle && !pse_is_idle) 8795 goto preempt; 8796 if (cse_is_idle != pse_is_idle) 8797 return; 8798 8799 /* 8800 * BATCH and IDLE tasks do not preempt others. 8801 */ 8802 if (unlikely(p->policy != SCHED_NORMAL)) 8803 return; 8804 8805 cfs_rq = cfs_rq_of(se); 8806 update_curr(cfs_rq); 8807 /* 8808 * If @p has a shorter slice than current and @p is eligible, override 8809 * current's slice protection in order to allow preemption. 8810 * 8811 * Note that even if @p does not turn out to be the most eligible 8812 * task at this moment, current's slice protection will be lost. 8813 */ 8814 if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline) 8815 se->vlag = se->deadline + 1; 8816 8817 /* 8818 * If @p has become the most eligible task, force preemption. 8819 */ 8820 if (pick_eevdf(cfs_rq) == pse) 8821 goto preempt; 8822 8823 return; 8824 8825 preempt: 8826 resched_curr(rq); 8827 } 8828 8829 static struct task_struct *pick_task_fair(struct rq *rq) 8830 { 8831 struct sched_entity *se; 8832 struct cfs_rq *cfs_rq; 8833 8834 again: 8835 cfs_rq = &rq->cfs; 8836 if (!cfs_rq->nr_running) 8837 return NULL; 8838 8839 do { 8840 /* Might not have done put_prev_entity() */ 8841 if (cfs_rq->curr && cfs_rq->curr->on_rq) 8842 update_curr(cfs_rq); 8843 8844 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8845 goto again; 8846 8847 se = pick_next_entity(rq, cfs_rq); 8848 if (!se) 8849 goto again; 8850 cfs_rq = group_cfs_rq(se); 8851 } while (cfs_rq); 8852 8853 return task_of(se); 8854 } 8855 8856 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8857 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8858 8859 struct task_struct * 8860 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8861 { 8862 struct sched_entity *se; 8863 struct task_struct *p; 8864 int new_tasks; 8865 8866 again: 8867 p = pick_task_fair(rq); 8868 if (!p) 8869 goto idle; 8870 se = &p->se; 8871 8872 #ifdef CONFIG_FAIR_GROUP_SCHED 8873 if (prev->sched_class != &fair_sched_class) 8874 goto simple; 8875 8876 __put_prev_set_next_dl_server(rq, prev, p); 8877 8878 /* 8879 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8880 * likely that a next task is from the same cgroup as the current. 8881 * 8882 * Therefore attempt to avoid putting and setting the entire cgroup 8883 * hierarchy, only change the part that actually changes. 8884 * 8885 * Since we haven't yet done put_prev_entity and if the selected task 8886 * is a different task than we started out with, try and touch the 8887 * least amount of cfs_rqs. 8888 */ 8889 if (prev != p) { 8890 struct sched_entity *pse = &prev->se; 8891 struct cfs_rq *cfs_rq; 8892 8893 while (!(cfs_rq = is_same_group(se, pse))) { 8894 int se_depth = se->depth; 8895 int pse_depth = pse->depth; 8896 8897 if (se_depth <= pse_depth) { 8898 put_prev_entity(cfs_rq_of(pse), pse); 8899 pse = parent_entity(pse); 8900 } 8901 if (se_depth >= pse_depth) { 8902 set_next_entity(cfs_rq_of(se), se); 8903 se = parent_entity(se); 8904 } 8905 } 8906 8907 put_prev_entity(cfs_rq, pse); 8908 set_next_entity(cfs_rq, se); 8909 8910 __set_next_task_fair(rq, p, true); 8911 } 8912 8913 return p; 8914 8915 simple: 8916 #endif 8917 put_prev_set_next_task(rq, prev, p); 8918 return p; 8919 8920 idle: 8921 if (!rf) 8922 return NULL; 8923 8924 new_tasks = sched_balance_newidle(rq, rf); 8925 8926 /* 8927 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is 8928 * possible for any higher priority task to appear. In that case we 8929 * must re-start the pick_next_entity() loop. 8930 */ 8931 if (new_tasks < 0) 8932 return RETRY_TASK; 8933 8934 if (new_tasks > 0) 8935 goto again; 8936 8937 /* 8938 * rq is about to be idle, check if we need to update the 8939 * lost_idle_time of clock_pelt 8940 */ 8941 update_idle_rq_clock_pelt(rq); 8942 8943 return NULL; 8944 } 8945 8946 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev) 8947 { 8948 return pick_next_task_fair(rq, prev, NULL); 8949 } 8950 8951 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se) 8952 { 8953 return !!dl_se->rq->cfs.nr_running; 8954 } 8955 8956 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se) 8957 { 8958 return pick_task_fair(dl_se->rq); 8959 } 8960 8961 void fair_server_init(struct rq *rq) 8962 { 8963 struct sched_dl_entity *dl_se = &rq->fair_server; 8964 8965 init_dl_entity(dl_se); 8966 8967 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task); 8968 } 8969 8970 /* 8971 * Account for a descheduled task: 8972 */ 8973 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) 8974 { 8975 struct sched_entity *se = &prev->se; 8976 struct cfs_rq *cfs_rq; 8977 8978 for_each_sched_entity(se) { 8979 cfs_rq = cfs_rq_of(se); 8980 put_prev_entity(cfs_rq, se); 8981 } 8982 } 8983 8984 /* 8985 * sched_yield() is very simple 8986 */ 8987 static void yield_task_fair(struct rq *rq) 8988 { 8989 struct task_struct *curr = rq->curr; 8990 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8991 struct sched_entity *se = &curr->se; 8992 8993 /* 8994 * Are we the only task in the tree? 8995 */ 8996 if (unlikely(rq->nr_running == 1)) 8997 return; 8998 8999 clear_buddies(cfs_rq, se); 9000 9001 update_rq_clock(rq); 9002 /* 9003 * Update run-time statistics of the 'current'. 9004 */ 9005 update_curr(cfs_rq); 9006 /* 9007 * Tell update_rq_clock() that we've just updated, 9008 * so we don't do microscopic update in schedule() 9009 * and double the fastpath cost. 9010 */ 9011 rq_clock_skip_update(rq); 9012 9013 se->deadline += calc_delta_fair(se->slice, se); 9014 } 9015 9016 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 9017 { 9018 struct sched_entity *se = &p->se; 9019 9020 /* throttled hierarchies are not runnable */ 9021 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 9022 return false; 9023 9024 /* Tell the scheduler that we'd really like se to run next. */ 9025 set_next_buddy(se); 9026 9027 yield_task_fair(rq); 9028 9029 return true; 9030 } 9031 9032 #ifdef CONFIG_SMP 9033 /************************************************** 9034 * Fair scheduling class load-balancing methods. 9035 * 9036 * BASICS 9037 * 9038 * The purpose of load-balancing is to achieve the same basic fairness the 9039 * per-CPU scheduler provides, namely provide a proportional amount of compute 9040 * time to each task. This is expressed in the following equation: 9041 * 9042 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 9043 * 9044 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 9045 * W_i,0 is defined as: 9046 * 9047 * W_i,0 = \Sum_j w_i,j (2) 9048 * 9049 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 9050 * is derived from the nice value as per sched_prio_to_weight[]. 9051 * 9052 * The weight average is an exponential decay average of the instantaneous 9053 * weight: 9054 * 9055 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 9056 * 9057 * C_i is the compute capacity of CPU i, typically it is the 9058 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 9059 * can also include other factors [XXX]. 9060 * 9061 * To achieve this balance we define a measure of imbalance which follows 9062 * directly from (1): 9063 * 9064 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 9065 * 9066 * We them move tasks around to minimize the imbalance. In the continuous 9067 * function space it is obvious this converges, in the discrete case we get 9068 * a few fun cases generally called infeasible weight scenarios. 9069 * 9070 * [XXX expand on: 9071 * - infeasible weights; 9072 * - local vs global optima in the discrete case. ] 9073 * 9074 * 9075 * SCHED DOMAINS 9076 * 9077 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 9078 * for all i,j solution, we create a tree of CPUs that follows the hardware 9079 * topology where each level pairs two lower groups (or better). This results 9080 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 9081 * tree to only the first of the previous level and we decrease the frequency 9082 * of load-balance at each level inversely proportional to the number of CPUs in 9083 * the groups. 9084 * 9085 * This yields: 9086 * 9087 * log_2 n 1 n 9088 * \Sum { --- * --- * 2^i } = O(n) (5) 9089 * i = 0 2^i 2^i 9090 * `- size of each group 9091 * | | `- number of CPUs doing load-balance 9092 * | `- freq 9093 * `- sum over all levels 9094 * 9095 * Coupled with a limit on how many tasks we can migrate every balance pass, 9096 * this makes (5) the runtime complexity of the balancer. 9097 * 9098 * An important property here is that each CPU is still (indirectly) connected 9099 * to every other CPU in at most O(log n) steps: 9100 * 9101 * The adjacency matrix of the resulting graph is given by: 9102 * 9103 * log_2 n 9104 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 9105 * k = 0 9106 * 9107 * And you'll find that: 9108 * 9109 * A^(log_2 n)_i,j != 0 for all i,j (7) 9110 * 9111 * Showing there's indeed a path between every CPU in at most O(log n) steps. 9112 * The task movement gives a factor of O(m), giving a convergence complexity 9113 * of: 9114 * 9115 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 9116 * 9117 * 9118 * WORK CONSERVING 9119 * 9120 * In order to avoid CPUs going idle while there's still work to do, new idle 9121 * balancing is more aggressive and has the newly idle CPU iterate up the domain 9122 * tree itself instead of relying on other CPUs to bring it work. 9123 * 9124 * This adds some complexity to both (5) and (8) but it reduces the total idle 9125 * time. 9126 * 9127 * [XXX more?] 9128 * 9129 * 9130 * CGROUPS 9131 * 9132 * Cgroups make a horror show out of (2), instead of a simple sum we get: 9133 * 9134 * s_k,i 9135 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 9136 * S_k 9137 * 9138 * Where 9139 * 9140 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 9141 * 9142 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 9143 * 9144 * The big problem is S_k, its a global sum needed to compute a local (W_i) 9145 * property. 9146 * 9147 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 9148 * rewrite all of this once again.] 9149 */ 9150 9151 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 9152 9153 enum fbq_type { regular, remote, all }; 9154 9155 /* 9156 * 'group_type' describes the group of CPUs at the moment of load balancing. 9157 * 9158 * The enum is ordered by pulling priority, with the group with lowest priority 9159 * first so the group_type can simply be compared when selecting the busiest 9160 * group. See update_sd_pick_busiest(). 9161 */ 9162 enum group_type { 9163 /* The group has spare capacity that can be used to run more tasks. */ 9164 group_has_spare = 0, 9165 /* 9166 * The group is fully used and the tasks don't compete for more CPU 9167 * cycles. Nevertheless, some tasks might wait before running. 9168 */ 9169 group_fully_busy, 9170 /* 9171 * One task doesn't fit with CPU's capacity and must be migrated to a 9172 * more powerful CPU. 9173 */ 9174 group_misfit_task, 9175 /* 9176 * Balance SMT group that's fully busy. Can benefit from migration 9177 * a task on SMT with busy sibling to another CPU on idle core. 9178 */ 9179 group_smt_balance, 9180 /* 9181 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 9182 * and the task should be migrated to it instead of running on the 9183 * current CPU. 9184 */ 9185 group_asym_packing, 9186 /* 9187 * The tasks' affinity constraints previously prevented the scheduler 9188 * from balancing the load across the system. 9189 */ 9190 group_imbalanced, 9191 /* 9192 * The CPU is overloaded and can't provide expected CPU cycles to all 9193 * tasks. 9194 */ 9195 group_overloaded 9196 }; 9197 9198 enum migration_type { 9199 migrate_load = 0, 9200 migrate_util, 9201 migrate_task, 9202 migrate_misfit 9203 }; 9204 9205 #define LBF_ALL_PINNED 0x01 9206 #define LBF_NEED_BREAK 0x02 9207 #define LBF_DST_PINNED 0x04 9208 #define LBF_SOME_PINNED 0x08 9209 #define LBF_ACTIVE_LB 0x10 9210 9211 struct lb_env { 9212 struct sched_domain *sd; 9213 9214 struct rq *src_rq; 9215 int src_cpu; 9216 9217 int dst_cpu; 9218 struct rq *dst_rq; 9219 9220 struct cpumask *dst_grpmask; 9221 int new_dst_cpu; 9222 enum cpu_idle_type idle; 9223 long imbalance; 9224 /* The set of CPUs under consideration for load-balancing */ 9225 struct cpumask *cpus; 9226 9227 unsigned int flags; 9228 9229 unsigned int loop; 9230 unsigned int loop_break; 9231 unsigned int loop_max; 9232 9233 enum fbq_type fbq_type; 9234 enum migration_type migration_type; 9235 struct list_head tasks; 9236 }; 9237 9238 /* 9239 * Is this task likely cache-hot: 9240 */ 9241 static int task_hot(struct task_struct *p, struct lb_env *env) 9242 { 9243 s64 delta; 9244 9245 lockdep_assert_rq_held(env->src_rq); 9246 9247 if (p->sched_class != &fair_sched_class) 9248 return 0; 9249 9250 if (unlikely(task_has_idle_policy(p))) 9251 return 0; 9252 9253 /* SMT siblings share cache */ 9254 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 9255 return 0; 9256 9257 /* 9258 * Buddy candidates are cache hot: 9259 */ 9260 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 9261 (&p->se == cfs_rq_of(&p->se)->next)) 9262 return 1; 9263 9264 if (sysctl_sched_migration_cost == -1) 9265 return 1; 9266 9267 /* 9268 * Don't migrate task if the task's cookie does not match 9269 * with the destination CPU's core cookie. 9270 */ 9271 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 9272 return 1; 9273 9274 if (sysctl_sched_migration_cost == 0) 9275 return 0; 9276 9277 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 9278 9279 return delta < (s64)sysctl_sched_migration_cost; 9280 } 9281 9282 #ifdef CONFIG_NUMA_BALANCING 9283 /* 9284 * Returns 1, if task migration degrades locality 9285 * Returns 0, if task migration improves locality i.e migration preferred. 9286 * Returns -1, if task migration is not affected by locality. 9287 */ 9288 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 9289 { 9290 struct numa_group *numa_group = rcu_dereference(p->numa_group); 9291 unsigned long src_weight, dst_weight; 9292 int src_nid, dst_nid, dist; 9293 9294 if (!static_branch_likely(&sched_numa_balancing)) 9295 return -1; 9296 9297 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 9298 return -1; 9299 9300 src_nid = cpu_to_node(env->src_cpu); 9301 dst_nid = cpu_to_node(env->dst_cpu); 9302 9303 if (src_nid == dst_nid) 9304 return -1; 9305 9306 /* Migrating away from the preferred node is always bad. */ 9307 if (src_nid == p->numa_preferred_nid) { 9308 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 9309 return 1; 9310 else 9311 return -1; 9312 } 9313 9314 /* Encourage migration to the preferred node. */ 9315 if (dst_nid == p->numa_preferred_nid) 9316 return 0; 9317 9318 /* Leaving a core idle is often worse than degrading locality. */ 9319 if (env->idle == CPU_IDLE) 9320 return -1; 9321 9322 dist = node_distance(src_nid, dst_nid); 9323 if (numa_group) { 9324 src_weight = group_weight(p, src_nid, dist); 9325 dst_weight = group_weight(p, dst_nid, dist); 9326 } else { 9327 src_weight = task_weight(p, src_nid, dist); 9328 dst_weight = task_weight(p, dst_nid, dist); 9329 } 9330 9331 return dst_weight < src_weight; 9332 } 9333 9334 #else 9335 static inline int migrate_degrades_locality(struct task_struct *p, 9336 struct lb_env *env) 9337 { 9338 return -1; 9339 } 9340 #endif 9341 9342 /* 9343 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 9344 */ 9345 static 9346 int can_migrate_task(struct task_struct *p, struct lb_env *env) 9347 { 9348 int tsk_cache_hot; 9349 9350 lockdep_assert_rq_held(env->src_rq); 9351 9352 /* 9353 * We do not migrate tasks that are: 9354 * 1) throttled_lb_pair, or 9355 * 2) cannot be migrated to this CPU due to cpus_ptr, or 9356 * 3) running (obviously), or 9357 * 4) are cache-hot on their current CPU. 9358 */ 9359 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 9360 return 0; 9361 9362 /* Disregard percpu kthreads; they are where they need to be. */ 9363 if (kthread_is_per_cpu(p)) 9364 return 0; 9365 9366 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9367 int cpu; 9368 9369 schedstat_inc(p->stats.nr_failed_migrations_affine); 9370 9371 env->flags |= LBF_SOME_PINNED; 9372 9373 /* 9374 * Remember if this task can be migrated to any other CPU in 9375 * our sched_group. We may want to revisit it if we couldn't 9376 * meet load balance goals by pulling other tasks on src_cpu. 9377 * 9378 * Avoid computing new_dst_cpu 9379 * - for NEWLY_IDLE 9380 * - if we have already computed one in current iteration 9381 * - if it's an active balance 9382 */ 9383 if (env->idle == CPU_NEWLY_IDLE || 9384 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9385 return 0; 9386 9387 /* Prevent to re-select dst_cpu via env's CPUs: */ 9388 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 9389 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 9390 env->flags |= LBF_DST_PINNED; 9391 env->new_dst_cpu = cpu; 9392 break; 9393 } 9394 } 9395 9396 return 0; 9397 } 9398 9399 /* Record that we found at least one task that could run on dst_cpu */ 9400 env->flags &= ~LBF_ALL_PINNED; 9401 9402 if (task_on_cpu(env->src_rq, p)) { 9403 schedstat_inc(p->stats.nr_failed_migrations_running); 9404 return 0; 9405 } 9406 9407 /* 9408 * Aggressive migration if: 9409 * 1) active balance 9410 * 2) destination numa is preferred 9411 * 3) task is cache cold, or 9412 * 4) too many balance attempts have failed. 9413 */ 9414 if (env->flags & LBF_ACTIVE_LB) 9415 return 1; 9416 9417 tsk_cache_hot = migrate_degrades_locality(p, env); 9418 if (tsk_cache_hot == -1) 9419 tsk_cache_hot = task_hot(p, env); 9420 9421 if (tsk_cache_hot <= 0 || 9422 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9423 if (tsk_cache_hot == 1) { 9424 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9425 schedstat_inc(p->stats.nr_forced_migrations); 9426 } 9427 return 1; 9428 } 9429 9430 schedstat_inc(p->stats.nr_failed_migrations_hot); 9431 return 0; 9432 } 9433 9434 /* 9435 * detach_task() -- detach the task for the migration specified in env 9436 */ 9437 static void detach_task(struct task_struct *p, struct lb_env *env) 9438 { 9439 lockdep_assert_rq_held(env->src_rq); 9440 9441 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9442 set_task_cpu(p, env->dst_cpu); 9443 } 9444 9445 /* 9446 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9447 * part of active balancing operations within "domain". 9448 * 9449 * Returns a task if successful and NULL otherwise. 9450 */ 9451 static struct task_struct *detach_one_task(struct lb_env *env) 9452 { 9453 struct task_struct *p; 9454 9455 lockdep_assert_rq_held(env->src_rq); 9456 9457 list_for_each_entry_reverse(p, 9458 &env->src_rq->cfs_tasks, se.group_node) { 9459 if (!can_migrate_task(p, env)) 9460 continue; 9461 9462 detach_task(p, env); 9463 9464 /* 9465 * Right now, this is only the second place where 9466 * lb_gained[env->idle] is updated (other is detach_tasks) 9467 * so we can safely collect stats here rather than 9468 * inside detach_tasks(). 9469 */ 9470 schedstat_inc(env->sd->lb_gained[env->idle]); 9471 return p; 9472 } 9473 return NULL; 9474 } 9475 9476 /* 9477 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9478 * busiest_rq, as part of a balancing operation within domain "sd". 9479 * 9480 * Returns number of detached tasks if successful and 0 otherwise. 9481 */ 9482 static int detach_tasks(struct lb_env *env) 9483 { 9484 struct list_head *tasks = &env->src_rq->cfs_tasks; 9485 unsigned long util, load; 9486 struct task_struct *p; 9487 int detached = 0; 9488 9489 lockdep_assert_rq_held(env->src_rq); 9490 9491 /* 9492 * Source run queue has been emptied by another CPU, clear 9493 * LBF_ALL_PINNED flag as we will not test any task. 9494 */ 9495 if (env->src_rq->nr_running <= 1) { 9496 env->flags &= ~LBF_ALL_PINNED; 9497 return 0; 9498 } 9499 9500 if (env->imbalance <= 0) 9501 return 0; 9502 9503 while (!list_empty(tasks)) { 9504 /* 9505 * We don't want to steal all, otherwise we may be treated likewise, 9506 * which could at worst lead to a livelock crash. 9507 */ 9508 if (env->idle && env->src_rq->nr_running <= 1) 9509 break; 9510 9511 env->loop++; 9512 /* We've more or less seen every task there is, call it quits */ 9513 if (env->loop > env->loop_max) 9514 break; 9515 9516 /* take a breather every nr_migrate tasks */ 9517 if (env->loop > env->loop_break) { 9518 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9519 env->flags |= LBF_NEED_BREAK; 9520 break; 9521 } 9522 9523 p = list_last_entry(tasks, struct task_struct, se.group_node); 9524 9525 if (!can_migrate_task(p, env)) 9526 goto next; 9527 9528 switch (env->migration_type) { 9529 case migrate_load: 9530 /* 9531 * Depending of the number of CPUs and tasks and the 9532 * cgroup hierarchy, task_h_load() can return a null 9533 * value. Make sure that env->imbalance decreases 9534 * otherwise detach_tasks() will stop only after 9535 * detaching up to loop_max tasks. 9536 */ 9537 load = max_t(unsigned long, task_h_load(p), 1); 9538 9539 if (sched_feat(LB_MIN) && 9540 load < 16 && !env->sd->nr_balance_failed) 9541 goto next; 9542 9543 /* 9544 * Make sure that we don't migrate too much load. 9545 * Nevertheless, let relax the constraint if 9546 * scheduler fails to find a good waiting task to 9547 * migrate. 9548 */ 9549 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9550 goto next; 9551 9552 env->imbalance -= load; 9553 break; 9554 9555 case migrate_util: 9556 util = task_util_est(p); 9557 9558 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9559 goto next; 9560 9561 env->imbalance -= util; 9562 break; 9563 9564 case migrate_task: 9565 env->imbalance--; 9566 break; 9567 9568 case migrate_misfit: 9569 /* This is not a misfit task */ 9570 if (task_fits_cpu(p, env->src_cpu)) 9571 goto next; 9572 9573 env->imbalance = 0; 9574 break; 9575 } 9576 9577 detach_task(p, env); 9578 list_add(&p->se.group_node, &env->tasks); 9579 9580 detached++; 9581 9582 #ifdef CONFIG_PREEMPTION 9583 /* 9584 * NEWIDLE balancing is a source of latency, so preemptible 9585 * kernels will stop after the first task is detached to minimize 9586 * the critical section. 9587 */ 9588 if (env->idle == CPU_NEWLY_IDLE) 9589 break; 9590 #endif 9591 9592 /* 9593 * We only want to steal up to the prescribed amount of 9594 * load/util/tasks. 9595 */ 9596 if (env->imbalance <= 0) 9597 break; 9598 9599 continue; 9600 next: 9601 list_move(&p->se.group_node, tasks); 9602 } 9603 9604 /* 9605 * Right now, this is one of only two places we collect this stat 9606 * so we can safely collect detach_one_task() stats here rather 9607 * than inside detach_one_task(). 9608 */ 9609 schedstat_add(env->sd->lb_gained[env->idle], detached); 9610 9611 return detached; 9612 } 9613 9614 /* 9615 * attach_task() -- attach the task detached by detach_task() to its new rq. 9616 */ 9617 static void attach_task(struct rq *rq, struct task_struct *p) 9618 { 9619 lockdep_assert_rq_held(rq); 9620 9621 WARN_ON_ONCE(task_rq(p) != rq); 9622 activate_task(rq, p, ENQUEUE_NOCLOCK); 9623 wakeup_preempt(rq, p, 0); 9624 } 9625 9626 /* 9627 * attach_one_task() -- attaches the task returned from detach_one_task() to 9628 * its new rq. 9629 */ 9630 static void attach_one_task(struct rq *rq, struct task_struct *p) 9631 { 9632 struct rq_flags rf; 9633 9634 rq_lock(rq, &rf); 9635 update_rq_clock(rq); 9636 attach_task(rq, p); 9637 rq_unlock(rq, &rf); 9638 } 9639 9640 /* 9641 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9642 * new rq. 9643 */ 9644 static void attach_tasks(struct lb_env *env) 9645 { 9646 struct list_head *tasks = &env->tasks; 9647 struct task_struct *p; 9648 struct rq_flags rf; 9649 9650 rq_lock(env->dst_rq, &rf); 9651 update_rq_clock(env->dst_rq); 9652 9653 while (!list_empty(tasks)) { 9654 p = list_first_entry(tasks, struct task_struct, se.group_node); 9655 list_del_init(&p->se.group_node); 9656 9657 attach_task(env->dst_rq, p); 9658 } 9659 9660 rq_unlock(env->dst_rq, &rf); 9661 } 9662 9663 #ifdef CONFIG_NO_HZ_COMMON 9664 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9665 { 9666 if (cfs_rq->avg.load_avg) 9667 return true; 9668 9669 if (cfs_rq->avg.util_avg) 9670 return true; 9671 9672 return false; 9673 } 9674 9675 static inline bool others_have_blocked(struct rq *rq) 9676 { 9677 if (cpu_util_rt(rq)) 9678 return true; 9679 9680 if (cpu_util_dl(rq)) 9681 return true; 9682 9683 if (hw_load_avg(rq)) 9684 return true; 9685 9686 if (cpu_util_irq(rq)) 9687 return true; 9688 9689 return false; 9690 } 9691 9692 static inline void update_blocked_load_tick(struct rq *rq) 9693 { 9694 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9695 } 9696 9697 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9698 { 9699 if (!has_blocked) 9700 rq->has_blocked_load = 0; 9701 } 9702 #else 9703 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9704 static inline bool others_have_blocked(struct rq *rq) { return false; } 9705 static inline void update_blocked_load_tick(struct rq *rq) {} 9706 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9707 #endif 9708 9709 static bool __update_blocked_others(struct rq *rq, bool *done) 9710 { 9711 const struct sched_class *curr_class; 9712 u64 now = rq_clock_pelt(rq); 9713 unsigned long hw_pressure; 9714 bool decayed; 9715 9716 /* 9717 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9718 * DL and IRQ signals have been updated before updating CFS. 9719 */ 9720 curr_class = rq->curr->sched_class; 9721 9722 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 9723 9724 /* hw_pressure doesn't care about invariance */ 9725 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 9726 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 9727 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure) | 9728 update_irq_load_avg(rq, 0); 9729 9730 if (others_have_blocked(rq)) 9731 *done = false; 9732 9733 return decayed; 9734 } 9735 9736 #ifdef CONFIG_FAIR_GROUP_SCHED 9737 9738 static bool __update_blocked_fair(struct rq *rq, bool *done) 9739 { 9740 struct cfs_rq *cfs_rq, *pos; 9741 bool decayed = false; 9742 int cpu = cpu_of(rq); 9743 9744 /* 9745 * Iterates the task_group tree in a bottom up fashion, see 9746 * list_add_leaf_cfs_rq() for details. 9747 */ 9748 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9749 struct sched_entity *se; 9750 9751 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9752 update_tg_load_avg(cfs_rq); 9753 9754 if (cfs_rq->nr_running == 0) 9755 update_idle_cfs_rq_clock_pelt(cfs_rq); 9756 9757 if (cfs_rq == &rq->cfs) 9758 decayed = true; 9759 } 9760 9761 /* Propagate pending load changes to the parent, if any: */ 9762 se = cfs_rq->tg->se[cpu]; 9763 if (se && !skip_blocked_update(se)) 9764 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9765 9766 /* 9767 * There can be a lot of idle CPU cgroups. Don't let fully 9768 * decayed cfs_rqs linger on the list. 9769 */ 9770 if (cfs_rq_is_decayed(cfs_rq)) 9771 list_del_leaf_cfs_rq(cfs_rq); 9772 9773 /* Don't need periodic decay once load/util_avg are null */ 9774 if (cfs_rq_has_blocked(cfs_rq)) 9775 *done = false; 9776 } 9777 9778 return decayed; 9779 } 9780 9781 /* 9782 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9783 * This needs to be done in a top-down fashion because the load of a child 9784 * group is a fraction of its parents load. 9785 */ 9786 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9787 { 9788 struct rq *rq = rq_of(cfs_rq); 9789 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9790 unsigned long now = jiffies; 9791 unsigned long load; 9792 9793 if (cfs_rq->last_h_load_update == now) 9794 return; 9795 9796 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9797 for_each_sched_entity(se) { 9798 cfs_rq = cfs_rq_of(se); 9799 WRITE_ONCE(cfs_rq->h_load_next, se); 9800 if (cfs_rq->last_h_load_update == now) 9801 break; 9802 } 9803 9804 if (!se) { 9805 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9806 cfs_rq->last_h_load_update = now; 9807 } 9808 9809 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9810 load = cfs_rq->h_load; 9811 load = div64_ul(load * se->avg.load_avg, 9812 cfs_rq_load_avg(cfs_rq) + 1); 9813 cfs_rq = group_cfs_rq(se); 9814 cfs_rq->h_load = load; 9815 cfs_rq->last_h_load_update = now; 9816 } 9817 } 9818 9819 static unsigned long task_h_load(struct task_struct *p) 9820 { 9821 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9822 9823 update_cfs_rq_h_load(cfs_rq); 9824 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9825 cfs_rq_load_avg(cfs_rq) + 1); 9826 } 9827 #else 9828 static bool __update_blocked_fair(struct rq *rq, bool *done) 9829 { 9830 struct cfs_rq *cfs_rq = &rq->cfs; 9831 bool decayed; 9832 9833 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9834 if (cfs_rq_has_blocked(cfs_rq)) 9835 *done = false; 9836 9837 return decayed; 9838 } 9839 9840 static unsigned long task_h_load(struct task_struct *p) 9841 { 9842 return p->se.avg.load_avg; 9843 } 9844 #endif 9845 9846 static void sched_balance_update_blocked_averages(int cpu) 9847 { 9848 bool decayed = false, done = true; 9849 struct rq *rq = cpu_rq(cpu); 9850 struct rq_flags rf; 9851 9852 rq_lock_irqsave(rq, &rf); 9853 update_blocked_load_tick(rq); 9854 update_rq_clock(rq); 9855 9856 decayed |= __update_blocked_others(rq, &done); 9857 decayed |= __update_blocked_fair(rq, &done); 9858 9859 update_blocked_load_status(rq, !done); 9860 if (decayed) 9861 cpufreq_update_util(rq, 0); 9862 rq_unlock_irqrestore(rq, &rf); 9863 } 9864 9865 /********** Helpers for sched_balance_find_src_group ************************/ 9866 9867 /* 9868 * sg_lb_stats - stats of a sched_group required for load-balancing: 9869 */ 9870 struct sg_lb_stats { 9871 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9872 unsigned long group_load; /* Total load over the CPUs of the group */ 9873 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9874 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9875 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9876 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9877 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9878 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9879 unsigned int group_weight; 9880 enum group_type group_type; 9881 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9882 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9883 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9884 #ifdef CONFIG_NUMA_BALANCING 9885 unsigned int nr_numa_running; 9886 unsigned int nr_preferred_running; 9887 #endif 9888 }; 9889 9890 /* 9891 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9892 */ 9893 struct sd_lb_stats { 9894 struct sched_group *busiest; /* Busiest group in this sd */ 9895 struct sched_group *local; /* Local group in this sd */ 9896 unsigned long total_load; /* Total load of all groups in sd */ 9897 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9898 unsigned long avg_load; /* Average load across all groups in sd */ 9899 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 9900 9901 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 9902 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9903 }; 9904 9905 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9906 { 9907 /* 9908 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9909 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9910 * We must however set busiest_stat::group_type and 9911 * busiest_stat::idle_cpus to the worst busiest group because 9912 * update_sd_pick_busiest() reads these before assignment. 9913 */ 9914 *sds = (struct sd_lb_stats){ 9915 .busiest = NULL, 9916 .local = NULL, 9917 .total_load = 0UL, 9918 .total_capacity = 0UL, 9919 .busiest_stat = { 9920 .idle_cpus = UINT_MAX, 9921 .group_type = group_has_spare, 9922 }, 9923 }; 9924 } 9925 9926 static unsigned long scale_rt_capacity(int cpu) 9927 { 9928 unsigned long max = get_actual_cpu_capacity(cpu); 9929 struct rq *rq = cpu_rq(cpu); 9930 unsigned long used, free; 9931 unsigned long irq; 9932 9933 irq = cpu_util_irq(rq); 9934 9935 if (unlikely(irq >= max)) 9936 return 1; 9937 9938 /* 9939 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9940 * (running and not running) with weights 0 and 1024 respectively. 9941 */ 9942 used = cpu_util_rt(rq); 9943 used += cpu_util_dl(rq); 9944 9945 if (unlikely(used >= max)) 9946 return 1; 9947 9948 free = max - used; 9949 9950 return scale_irq_capacity(free, irq, max); 9951 } 9952 9953 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9954 { 9955 unsigned long capacity = scale_rt_capacity(cpu); 9956 struct sched_group *sdg = sd->groups; 9957 9958 if (!capacity) 9959 capacity = 1; 9960 9961 cpu_rq(cpu)->cpu_capacity = capacity; 9962 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9963 9964 sdg->sgc->capacity = capacity; 9965 sdg->sgc->min_capacity = capacity; 9966 sdg->sgc->max_capacity = capacity; 9967 } 9968 9969 void update_group_capacity(struct sched_domain *sd, int cpu) 9970 { 9971 struct sched_domain *child = sd->child; 9972 struct sched_group *group, *sdg = sd->groups; 9973 unsigned long capacity, min_capacity, max_capacity; 9974 unsigned long interval; 9975 9976 interval = msecs_to_jiffies(sd->balance_interval); 9977 interval = clamp(interval, 1UL, max_load_balance_interval); 9978 sdg->sgc->next_update = jiffies + interval; 9979 9980 if (!child) { 9981 update_cpu_capacity(sd, cpu); 9982 return; 9983 } 9984 9985 capacity = 0; 9986 min_capacity = ULONG_MAX; 9987 max_capacity = 0; 9988 9989 if (child->flags & SD_OVERLAP) { 9990 /* 9991 * SD_OVERLAP domains cannot assume that child groups 9992 * span the current group. 9993 */ 9994 9995 for_each_cpu(cpu, sched_group_span(sdg)) { 9996 unsigned long cpu_cap = capacity_of(cpu); 9997 9998 capacity += cpu_cap; 9999 min_capacity = min(cpu_cap, min_capacity); 10000 max_capacity = max(cpu_cap, max_capacity); 10001 } 10002 } else { 10003 /* 10004 * !SD_OVERLAP domains can assume that child groups 10005 * span the current group. 10006 */ 10007 10008 group = child->groups; 10009 do { 10010 struct sched_group_capacity *sgc = group->sgc; 10011 10012 capacity += sgc->capacity; 10013 min_capacity = min(sgc->min_capacity, min_capacity); 10014 max_capacity = max(sgc->max_capacity, max_capacity); 10015 group = group->next; 10016 } while (group != child->groups); 10017 } 10018 10019 sdg->sgc->capacity = capacity; 10020 sdg->sgc->min_capacity = min_capacity; 10021 sdg->sgc->max_capacity = max_capacity; 10022 } 10023 10024 /* 10025 * Check whether the capacity of the rq has been noticeably reduced by side 10026 * activity. The imbalance_pct is used for the threshold. 10027 * Return true is the capacity is reduced 10028 */ 10029 static inline int 10030 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 10031 { 10032 return ((rq->cpu_capacity * sd->imbalance_pct) < 10033 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 10034 } 10035 10036 /* Check if the rq has a misfit task */ 10037 static inline bool check_misfit_status(struct rq *rq) 10038 { 10039 return rq->misfit_task_load; 10040 } 10041 10042 /* 10043 * Group imbalance indicates (and tries to solve) the problem where balancing 10044 * groups is inadequate due to ->cpus_ptr constraints. 10045 * 10046 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 10047 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 10048 * Something like: 10049 * 10050 * { 0 1 2 3 } { 4 5 6 7 } 10051 * * * * * 10052 * 10053 * If we were to balance group-wise we'd place two tasks in the first group and 10054 * two tasks in the second group. Clearly this is undesired as it will overload 10055 * cpu 3 and leave one of the CPUs in the second group unused. 10056 * 10057 * The current solution to this issue is detecting the skew in the first group 10058 * by noticing the lower domain failed to reach balance and had difficulty 10059 * moving tasks due to affinity constraints. 10060 * 10061 * When this is so detected; this group becomes a candidate for busiest; see 10062 * update_sd_pick_busiest(). And calculate_imbalance() and 10063 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 10064 * to create an effective group imbalance. 10065 * 10066 * This is a somewhat tricky proposition since the next run might not find the 10067 * group imbalance and decide the groups need to be balanced again. A most 10068 * subtle and fragile situation. 10069 */ 10070 10071 static inline int sg_imbalanced(struct sched_group *group) 10072 { 10073 return group->sgc->imbalance; 10074 } 10075 10076 /* 10077 * group_has_capacity returns true if the group has spare capacity that could 10078 * be used by some tasks. 10079 * We consider that a group has spare capacity if the number of task is 10080 * smaller than the number of CPUs or if the utilization is lower than the 10081 * available capacity for CFS tasks. 10082 * For the latter, we use a threshold to stabilize the state, to take into 10083 * account the variance of the tasks' load and to return true if the available 10084 * capacity in meaningful for the load balancer. 10085 * As an example, an available capacity of 1% can appear but it doesn't make 10086 * any benefit for the load balance. 10087 */ 10088 static inline bool 10089 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10090 { 10091 if (sgs->sum_nr_running < sgs->group_weight) 10092 return true; 10093 10094 if ((sgs->group_capacity * imbalance_pct) < 10095 (sgs->group_runnable * 100)) 10096 return false; 10097 10098 if ((sgs->group_capacity * 100) > 10099 (sgs->group_util * imbalance_pct)) 10100 return true; 10101 10102 return false; 10103 } 10104 10105 /* 10106 * group_is_overloaded returns true if the group has more tasks than it can 10107 * handle. 10108 * group_is_overloaded is not equals to !group_has_capacity because a group 10109 * with the exact right number of tasks, has no more spare capacity but is not 10110 * overloaded so both group_has_capacity and group_is_overloaded return 10111 * false. 10112 */ 10113 static inline bool 10114 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10115 { 10116 if (sgs->sum_nr_running <= sgs->group_weight) 10117 return false; 10118 10119 if ((sgs->group_capacity * 100) < 10120 (sgs->group_util * imbalance_pct)) 10121 return true; 10122 10123 if ((sgs->group_capacity * imbalance_pct) < 10124 (sgs->group_runnable * 100)) 10125 return true; 10126 10127 return false; 10128 } 10129 10130 static inline enum 10131 group_type group_classify(unsigned int imbalance_pct, 10132 struct sched_group *group, 10133 struct sg_lb_stats *sgs) 10134 { 10135 if (group_is_overloaded(imbalance_pct, sgs)) 10136 return group_overloaded; 10137 10138 if (sg_imbalanced(group)) 10139 return group_imbalanced; 10140 10141 if (sgs->group_asym_packing) 10142 return group_asym_packing; 10143 10144 if (sgs->group_smt_balance) 10145 return group_smt_balance; 10146 10147 if (sgs->group_misfit_task_load) 10148 return group_misfit_task; 10149 10150 if (!group_has_capacity(imbalance_pct, sgs)) 10151 return group_fully_busy; 10152 10153 return group_has_spare; 10154 } 10155 10156 /** 10157 * sched_use_asym_prio - Check whether asym_packing priority must be used 10158 * @sd: The scheduling domain of the load balancing 10159 * @cpu: A CPU 10160 * 10161 * Always use CPU priority when balancing load between SMT siblings. When 10162 * balancing load between cores, it is not sufficient that @cpu is idle. Only 10163 * use CPU priority if the whole core is idle. 10164 * 10165 * Returns: True if the priority of @cpu must be followed. False otherwise. 10166 */ 10167 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 10168 { 10169 if (!(sd->flags & SD_ASYM_PACKING)) 10170 return false; 10171 10172 if (!sched_smt_active()) 10173 return true; 10174 10175 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 10176 } 10177 10178 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 10179 { 10180 /* 10181 * First check if @dst_cpu can do asym_packing load balance. Only do it 10182 * if it has higher priority than @src_cpu. 10183 */ 10184 return sched_use_asym_prio(sd, dst_cpu) && 10185 sched_asym_prefer(dst_cpu, src_cpu); 10186 } 10187 10188 /** 10189 * sched_group_asym - Check if the destination CPU can do asym_packing balance 10190 * @env: The load balancing environment 10191 * @sgs: Load-balancing statistics of the candidate busiest group 10192 * @group: The candidate busiest group 10193 * 10194 * @env::dst_cpu can do asym_packing if it has higher priority than the 10195 * preferred CPU of @group. 10196 * 10197 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 10198 * otherwise. 10199 */ 10200 static inline bool 10201 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 10202 { 10203 /* 10204 * CPU priorities do not make sense for SMT cores with more than one 10205 * busy sibling. 10206 */ 10207 if ((group->flags & SD_SHARE_CPUCAPACITY) && 10208 (sgs->group_weight - sgs->idle_cpus != 1)) 10209 return false; 10210 10211 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu); 10212 } 10213 10214 /* One group has more than one SMT CPU while the other group does not */ 10215 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 10216 struct sched_group *sg2) 10217 { 10218 if (!sg1 || !sg2) 10219 return false; 10220 10221 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 10222 (sg2->flags & SD_SHARE_CPUCAPACITY); 10223 } 10224 10225 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 10226 struct sched_group *group) 10227 { 10228 if (!env->idle) 10229 return false; 10230 10231 /* 10232 * For SMT source group, it is better to move a task 10233 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 10234 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 10235 * will not be on. 10236 */ 10237 if (group->flags & SD_SHARE_CPUCAPACITY && 10238 sgs->sum_h_nr_running > 1) 10239 return true; 10240 10241 return false; 10242 } 10243 10244 static inline long sibling_imbalance(struct lb_env *env, 10245 struct sd_lb_stats *sds, 10246 struct sg_lb_stats *busiest, 10247 struct sg_lb_stats *local) 10248 { 10249 int ncores_busiest, ncores_local; 10250 long imbalance; 10251 10252 if (!env->idle || !busiest->sum_nr_running) 10253 return 0; 10254 10255 ncores_busiest = sds->busiest->cores; 10256 ncores_local = sds->local->cores; 10257 10258 if (ncores_busiest == ncores_local) { 10259 imbalance = busiest->sum_nr_running; 10260 lsub_positive(&imbalance, local->sum_nr_running); 10261 return imbalance; 10262 } 10263 10264 /* Balance such that nr_running/ncores ratio are same on both groups */ 10265 imbalance = ncores_local * busiest->sum_nr_running; 10266 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 10267 /* Normalize imbalance and do rounding on normalization */ 10268 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 10269 imbalance /= ncores_local + ncores_busiest; 10270 10271 /* Take advantage of resource in an empty sched group */ 10272 if (imbalance <= 1 && local->sum_nr_running == 0 && 10273 busiest->sum_nr_running > 1) 10274 imbalance = 2; 10275 10276 return imbalance; 10277 } 10278 10279 static inline bool 10280 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 10281 { 10282 /* 10283 * When there is more than 1 task, the group_overloaded case already 10284 * takes care of cpu with reduced capacity 10285 */ 10286 if (rq->cfs.h_nr_running != 1) 10287 return false; 10288 10289 return check_cpu_capacity(rq, sd); 10290 } 10291 10292 /** 10293 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 10294 * @env: The load balancing environment. 10295 * @sds: Load-balancing data with statistics of the local group. 10296 * @group: sched_group whose statistics are to be updated. 10297 * @sgs: variable to hold the statistics for this group. 10298 * @sg_overloaded: sched_group is overloaded 10299 * @sg_overutilized: sched_group is overutilized 10300 */ 10301 static inline void update_sg_lb_stats(struct lb_env *env, 10302 struct sd_lb_stats *sds, 10303 struct sched_group *group, 10304 struct sg_lb_stats *sgs, 10305 bool *sg_overloaded, 10306 bool *sg_overutilized) 10307 { 10308 int i, nr_running, local_group; 10309 10310 memset(sgs, 0, sizeof(*sgs)); 10311 10312 local_group = group == sds->local; 10313 10314 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10315 struct rq *rq = cpu_rq(i); 10316 unsigned long load = cpu_load(rq); 10317 10318 sgs->group_load += load; 10319 sgs->group_util += cpu_util_cfs(i); 10320 sgs->group_runnable += cpu_runnable(rq); 10321 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 10322 10323 nr_running = rq->nr_running; 10324 sgs->sum_nr_running += nr_running; 10325 10326 if (nr_running > 1) 10327 *sg_overloaded = 1; 10328 10329 if (cpu_overutilized(i)) 10330 *sg_overutilized = 1; 10331 10332 #ifdef CONFIG_NUMA_BALANCING 10333 sgs->nr_numa_running += rq->nr_numa_running; 10334 sgs->nr_preferred_running += rq->nr_preferred_running; 10335 #endif 10336 /* 10337 * No need to call idle_cpu() if nr_running is not 0 10338 */ 10339 if (!nr_running && idle_cpu(i)) { 10340 sgs->idle_cpus++; 10341 /* Idle cpu can't have misfit task */ 10342 continue; 10343 } 10344 10345 if (local_group) 10346 continue; 10347 10348 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10349 /* Check for a misfit task on the cpu */ 10350 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 10351 sgs->group_misfit_task_load = rq->misfit_task_load; 10352 *sg_overloaded = 1; 10353 } 10354 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 10355 /* Check for a task running on a CPU with reduced capacity */ 10356 if (sgs->group_misfit_task_load < load) 10357 sgs->group_misfit_task_load = load; 10358 } 10359 } 10360 10361 sgs->group_capacity = group->sgc->capacity; 10362 10363 sgs->group_weight = group->group_weight; 10364 10365 /* Check if dst CPU is idle and preferred to this group */ 10366 if (!local_group && env->idle && sgs->sum_h_nr_running && 10367 sched_group_asym(env, sgs, group)) 10368 sgs->group_asym_packing = 1; 10369 10370 /* Check for loaded SMT group to be balanced to dst CPU */ 10371 if (!local_group && smt_balance(env, sgs, group)) 10372 sgs->group_smt_balance = 1; 10373 10374 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10375 10376 /* Computing avg_load makes sense only when group is overloaded */ 10377 if (sgs->group_type == group_overloaded) 10378 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10379 sgs->group_capacity; 10380 } 10381 10382 /** 10383 * update_sd_pick_busiest - return 1 on busiest group 10384 * @env: The load balancing environment. 10385 * @sds: sched_domain statistics 10386 * @sg: sched_group candidate to be checked for being the busiest 10387 * @sgs: sched_group statistics 10388 * 10389 * Determine if @sg is a busier group than the previously selected 10390 * busiest group. 10391 * 10392 * Return: %true if @sg is a busier group than the previously selected 10393 * busiest group. %false otherwise. 10394 */ 10395 static bool update_sd_pick_busiest(struct lb_env *env, 10396 struct sd_lb_stats *sds, 10397 struct sched_group *sg, 10398 struct sg_lb_stats *sgs) 10399 { 10400 struct sg_lb_stats *busiest = &sds->busiest_stat; 10401 10402 /* Make sure that there is at least one task to pull */ 10403 if (!sgs->sum_h_nr_running) 10404 return false; 10405 10406 /* 10407 * Don't try to pull misfit tasks we can't help. 10408 * We can use max_capacity here as reduction in capacity on some 10409 * CPUs in the group should either be possible to resolve 10410 * internally or be covered by avg_load imbalance (eventually). 10411 */ 10412 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10413 (sgs->group_type == group_misfit_task) && 10414 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10415 sds->local_stat.group_type != group_has_spare)) 10416 return false; 10417 10418 if (sgs->group_type > busiest->group_type) 10419 return true; 10420 10421 if (sgs->group_type < busiest->group_type) 10422 return false; 10423 10424 /* 10425 * The candidate and the current busiest group are the same type of 10426 * group. Let check which one is the busiest according to the type. 10427 */ 10428 10429 switch (sgs->group_type) { 10430 case group_overloaded: 10431 /* Select the overloaded group with highest avg_load. */ 10432 return sgs->avg_load > busiest->avg_load; 10433 10434 case group_imbalanced: 10435 /* 10436 * Select the 1st imbalanced group as we don't have any way to 10437 * choose one more than another. 10438 */ 10439 return false; 10440 10441 case group_asym_packing: 10442 /* Prefer to move from lowest priority CPU's work */ 10443 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu); 10444 10445 case group_misfit_task: 10446 /* 10447 * If we have more than one misfit sg go with the biggest 10448 * misfit. 10449 */ 10450 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10451 10452 case group_smt_balance: 10453 /* 10454 * Check if we have spare CPUs on either SMT group to 10455 * choose has spare or fully busy handling. 10456 */ 10457 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10458 goto has_spare; 10459 10460 fallthrough; 10461 10462 case group_fully_busy: 10463 /* 10464 * Select the fully busy group with highest avg_load. In 10465 * theory, there is no need to pull task from such kind of 10466 * group because tasks have all compute capacity that they need 10467 * but we can still improve the overall throughput by reducing 10468 * contention when accessing shared HW resources. 10469 * 10470 * XXX for now avg_load is not computed and always 0 so we 10471 * select the 1st one, except if @sg is composed of SMT 10472 * siblings. 10473 */ 10474 10475 if (sgs->avg_load < busiest->avg_load) 10476 return false; 10477 10478 if (sgs->avg_load == busiest->avg_load) { 10479 /* 10480 * SMT sched groups need more help than non-SMT groups. 10481 * If @sg happens to also be SMT, either choice is good. 10482 */ 10483 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10484 return false; 10485 } 10486 10487 break; 10488 10489 case group_has_spare: 10490 /* 10491 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10492 * as we do not want to pull task off SMT core with one task 10493 * and make the core idle. 10494 */ 10495 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10496 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10497 return false; 10498 else 10499 return true; 10500 } 10501 has_spare: 10502 10503 /* 10504 * Select not overloaded group with lowest number of idle CPUs 10505 * and highest number of running tasks. We could also compare 10506 * the spare capacity which is more stable but it can end up 10507 * that the group has less spare capacity but finally more idle 10508 * CPUs which means less opportunity to pull tasks. 10509 */ 10510 if (sgs->idle_cpus > busiest->idle_cpus) 10511 return false; 10512 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10513 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10514 return false; 10515 10516 break; 10517 } 10518 10519 /* 10520 * Candidate sg has no more than one task per CPU and has higher 10521 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10522 * throughput. Maximize throughput, power/energy consequences are not 10523 * considered. 10524 */ 10525 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10526 (sgs->group_type <= group_fully_busy) && 10527 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10528 return false; 10529 10530 return true; 10531 } 10532 10533 #ifdef CONFIG_NUMA_BALANCING 10534 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10535 { 10536 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10537 return regular; 10538 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10539 return remote; 10540 return all; 10541 } 10542 10543 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10544 { 10545 if (rq->nr_running > rq->nr_numa_running) 10546 return regular; 10547 if (rq->nr_running > rq->nr_preferred_running) 10548 return remote; 10549 return all; 10550 } 10551 #else 10552 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10553 { 10554 return all; 10555 } 10556 10557 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10558 { 10559 return regular; 10560 } 10561 #endif /* CONFIG_NUMA_BALANCING */ 10562 10563 10564 struct sg_lb_stats; 10565 10566 /* 10567 * task_running_on_cpu - return 1 if @p is running on @cpu. 10568 */ 10569 10570 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10571 { 10572 /* Task has no contribution or is new */ 10573 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10574 return 0; 10575 10576 if (task_on_rq_queued(p)) 10577 return 1; 10578 10579 return 0; 10580 } 10581 10582 /** 10583 * idle_cpu_without - would a given CPU be idle without p ? 10584 * @cpu: the processor on which idleness is tested. 10585 * @p: task which should be ignored. 10586 * 10587 * Return: 1 if the CPU would be idle. 0 otherwise. 10588 */ 10589 static int idle_cpu_without(int cpu, struct task_struct *p) 10590 { 10591 struct rq *rq = cpu_rq(cpu); 10592 10593 if (rq->curr != rq->idle && rq->curr != p) 10594 return 0; 10595 10596 /* 10597 * rq->nr_running can't be used but an updated version without the 10598 * impact of p on cpu must be used instead. The updated nr_running 10599 * be computed and tested before calling idle_cpu_without(). 10600 */ 10601 10602 if (rq->ttwu_pending) 10603 return 0; 10604 10605 return 1; 10606 } 10607 10608 /* 10609 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10610 * @sd: The sched_domain level to look for idlest group. 10611 * @group: sched_group whose statistics are to be updated. 10612 * @sgs: variable to hold the statistics for this group. 10613 * @p: The task for which we look for the idlest group/CPU. 10614 */ 10615 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10616 struct sched_group *group, 10617 struct sg_lb_stats *sgs, 10618 struct task_struct *p) 10619 { 10620 int i, nr_running; 10621 10622 memset(sgs, 0, sizeof(*sgs)); 10623 10624 /* Assume that task can't fit any CPU of the group */ 10625 if (sd->flags & SD_ASYM_CPUCAPACITY) 10626 sgs->group_misfit_task_load = 1; 10627 10628 for_each_cpu(i, sched_group_span(group)) { 10629 struct rq *rq = cpu_rq(i); 10630 unsigned int local; 10631 10632 sgs->group_load += cpu_load_without(rq, p); 10633 sgs->group_util += cpu_util_without(i, p); 10634 sgs->group_runnable += cpu_runnable_without(rq, p); 10635 local = task_running_on_cpu(i, p); 10636 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 10637 10638 nr_running = rq->nr_running - local; 10639 sgs->sum_nr_running += nr_running; 10640 10641 /* 10642 * No need to call idle_cpu_without() if nr_running is not 0 10643 */ 10644 if (!nr_running && idle_cpu_without(i, p)) 10645 sgs->idle_cpus++; 10646 10647 /* Check if task fits in the CPU */ 10648 if (sd->flags & SD_ASYM_CPUCAPACITY && 10649 sgs->group_misfit_task_load && 10650 task_fits_cpu(p, i)) 10651 sgs->group_misfit_task_load = 0; 10652 10653 } 10654 10655 sgs->group_capacity = group->sgc->capacity; 10656 10657 sgs->group_weight = group->group_weight; 10658 10659 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10660 10661 /* 10662 * Computing avg_load makes sense only when group is fully busy or 10663 * overloaded 10664 */ 10665 if (sgs->group_type == group_fully_busy || 10666 sgs->group_type == group_overloaded) 10667 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10668 sgs->group_capacity; 10669 } 10670 10671 static bool update_pick_idlest(struct sched_group *idlest, 10672 struct sg_lb_stats *idlest_sgs, 10673 struct sched_group *group, 10674 struct sg_lb_stats *sgs) 10675 { 10676 if (sgs->group_type < idlest_sgs->group_type) 10677 return true; 10678 10679 if (sgs->group_type > idlest_sgs->group_type) 10680 return false; 10681 10682 /* 10683 * The candidate and the current idlest group are the same type of 10684 * group. Let check which one is the idlest according to the type. 10685 */ 10686 10687 switch (sgs->group_type) { 10688 case group_overloaded: 10689 case group_fully_busy: 10690 /* Select the group with lowest avg_load. */ 10691 if (idlest_sgs->avg_load <= sgs->avg_load) 10692 return false; 10693 break; 10694 10695 case group_imbalanced: 10696 case group_asym_packing: 10697 case group_smt_balance: 10698 /* Those types are not used in the slow wakeup path */ 10699 return false; 10700 10701 case group_misfit_task: 10702 /* Select group with the highest max capacity */ 10703 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10704 return false; 10705 break; 10706 10707 case group_has_spare: 10708 /* Select group with most idle CPUs */ 10709 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10710 return false; 10711 10712 /* Select group with lowest group_util */ 10713 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10714 idlest_sgs->group_util <= sgs->group_util) 10715 return false; 10716 10717 break; 10718 } 10719 10720 return true; 10721 } 10722 10723 /* 10724 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10725 * domain. 10726 * 10727 * Assumes p is allowed on at least one CPU in sd. 10728 */ 10729 static struct sched_group * 10730 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10731 { 10732 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10733 struct sg_lb_stats local_sgs, tmp_sgs; 10734 struct sg_lb_stats *sgs; 10735 unsigned long imbalance; 10736 struct sg_lb_stats idlest_sgs = { 10737 .avg_load = UINT_MAX, 10738 .group_type = group_overloaded, 10739 }; 10740 10741 do { 10742 int local_group; 10743 10744 /* Skip over this group if it has no CPUs allowed */ 10745 if (!cpumask_intersects(sched_group_span(group), 10746 p->cpus_ptr)) 10747 continue; 10748 10749 /* Skip over this group if no cookie matched */ 10750 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10751 continue; 10752 10753 local_group = cpumask_test_cpu(this_cpu, 10754 sched_group_span(group)); 10755 10756 if (local_group) { 10757 sgs = &local_sgs; 10758 local = group; 10759 } else { 10760 sgs = &tmp_sgs; 10761 } 10762 10763 update_sg_wakeup_stats(sd, group, sgs, p); 10764 10765 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10766 idlest = group; 10767 idlest_sgs = *sgs; 10768 } 10769 10770 } while (group = group->next, group != sd->groups); 10771 10772 10773 /* There is no idlest group to push tasks to */ 10774 if (!idlest) 10775 return NULL; 10776 10777 /* The local group has been skipped because of CPU affinity */ 10778 if (!local) 10779 return idlest; 10780 10781 /* 10782 * If the local group is idler than the selected idlest group 10783 * don't try and push the task. 10784 */ 10785 if (local_sgs.group_type < idlest_sgs.group_type) 10786 return NULL; 10787 10788 /* 10789 * If the local group is busier than the selected idlest group 10790 * try and push the task. 10791 */ 10792 if (local_sgs.group_type > idlest_sgs.group_type) 10793 return idlest; 10794 10795 switch (local_sgs.group_type) { 10796 case group_overloaded: 10797 case group_fully_busy: 10798 10799 /* Calculate allowed imbalance based on load */ 10800 imbalance = scale_load_down(NICE_0_LOAD) * 10801 (sd->imbalance_pct-100) / 100; 10802 10803 /* 10804 * When comparing groups across NUMA domains, it's possible for 10805 * the local domain to be very lightly loaded relative to the 10806 * remote domains but "imbalance" skews the comparison making 10807 * remote CPUs look much more favourable. When considering 10808 * cross-domain, add imbalance to the load on the remote node 10809 * and consider staying local. 10810 */ 10811 10812 if ((sd->flags & SD_NUMA) && 10813 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10814 return NULL; 10815 10816 /* 10817 * If the local group is less loaded than the selected 10818 * idlest group don't try and push any tasks. 10819 */ 10820 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10821 return NULL; 10822 10823 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10824 return NULL; 10825 break; 10826 10827 case group_imbalanced: 10828 case group_asym_packing: 10829 case group_smt_balance: 10830 /* Those type are not used in the slow wakeup path */ 10831 return NULL; 10832 10833 case group_misfit_task: 10834 /* Select group with the highest max capacity */ 10835 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10836 return NULL; 10837 break; 10838 10839 case group_has_spare: 10840 #ifdef CONFIG_NUMA 10841 if (sd->flags & SD_NUMA) { 10842 int imb_numa_nr = sd->imb_numa_nr; 10843 #ifdef CONFIG_NUMA_BALANCING 10844 int idlest_cpu; 10845 /* 10846 * If there is spare capacity at NUMA, try to select 10847 * the preferred node 10848 */ 10849 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10850 return NULL; 10851 10852 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10853 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10854 return idlest; 10855 #endif /* CONFIG_NUMA_BALANCING */ 10856 /* 10857 * Otherwise, keep the task close to the wakeup source 10858 * and improve locality if the number of running tasks 10859 * would remain below threshold where an imbalance is 10860 * allowed while accounting for the possibility the 10861 * task is pinned to a subset of CPUs. If there is a 10862 * real need of migration, periodic load balance will 10863 * take care of it. 10864 */ 10865 if (p->nr_cpus_allowed != NR_CPUS) { 10866 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10867 10868 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10869 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10870 } 10871 10872 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10873 if (!adjust_numa_imbalance(imbalance, 10874 local_sgs.sum_nr_running + 1, 10875 imb_numa_nr)) { 10876 return NULL; 10877 } 10878 } 10879 #endif /* CONFIG_NUMA */ 10880 10881 /* 10882 * Select group with highest number of idle CPUs. We could also 10883 * compare the utilization which is more stable but it can end 10884 * up that the group has less spare capacity but finally more 10885 * idle CPUs which means more opportunity to run task. 10886 */ 10887 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10888 return NULL; 10889 break; 10890 } 10891 10892 return idlest; 10893 } 10894 10895 static void update_idle_cpu_scan(struct lb_env *env, 10896 unsigned long sum_util) 10897 { 10898 struct sched_domain_shared *sd_share; 10899 int llc_weight, pct; 10900 u64 x, y, tmp; 10901 /* 10902 * Update the number of CPUs to scan in LLC domain, which could 10903 * be used as a hint in select_idle_cpu(). The update of sd_share 10904 * could be expensive because it is within a shared cache line. 10905 * So the write of this hint only occurs during periodic load 10906 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10907 * can fire way more frequently than the former. 10908 */ 10909 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10910 return; 10911 10912 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10913 if (env->sd->span_weight != llc_weight) 10914 return; 10915 10916 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10917 if (!sd_share) 10918 return; 10919 10920 /* 10921 * The number of CPUs to search drops as sum_util increases, when 10922 * sum_util hits 85% or above, the scan stops. 10923 * The reason to choose 85% as the threshold is because this is the 10924 * imbalance_pct(117) when a LLC sched group is overloaded. 10925 * 10926 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10927 * and y'= y / SCHED_CAPACITY_SCALE 10928 * 10929 * x is the ratio of sum_util compared to the CPU capacity: 10930 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10931 * y' is the ratio of CPUs to be scanned in the LLC domain, 10932 * and the number of CPUs to scan is calculated by: 10933 * 10934 * nr_scan = llc_weight * y' [2] 10935 * 10936 * When x hits the threshold of overloaded, AKA, when 10937 * x = 100 / pct, y drops to 0. According to [1], 10938 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10939 * 10940 * Scale x by SCHED_CAPACITY_SCALE: 10941 * x' = sum_util / llc_weight; [3] 10942 * 10943 * and finally [1] becomes: 10944 * y = SCHED_CAPACITY_SCALE - 10945 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10946 * 10947 */ 10948 /* equation [3] */ 10949 x = sum_util; 10950 do_div(x, llc_weight); 10951 10952 /* equation [4] */ 10953 pct = env->sd->imbalance_pct; 10954 tmp = x * x * pct * pct; 10955 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10956 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10957 y = SCHED_CAPACITY_SCALE - tmp; 10958 10959 /* equation [2] */ 10960 y *= llc_weight; 10961 do_div(y, SCHED_CAPACITY_SCALE); 10962 if ((int)y != sd_share->nr_idle_scan) 10963 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10964 } 10965 10966 /** 10967 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10968 * @env: The load balancing environment. 10969 * @sds: variable to hold the statistics for this sched_domain. 10970 */ 10971 10972 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10973 { 10974 struct sched_group *sg = env->sd->groups; 10975 struct sg_lb_stats *local = &sds->local_stat; 10976 struct sg_lb_stats tmp_sgs; 10977 unsigned long sum_util = 0; 10978 bool sg_overloaded = 0, sg_overutilized = 0; 10979 10980 do { 10981 struct sg_lb_stats *sgs = &tmp_sgs; 10982 int local_group; 10983 10984 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10985 if (local_group) { 10986 sds->local = sg; 10987 sgs = local; 10988 10989 if (env->idle != CPU_NEWLY_IDLE || 10990 time_after_eq(jiffies, sg->sgc->next_update)) 10991 update_group_capacity(env->sd, env->dst_cpu); 10992 } 10993 10994 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 10995 10996 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 10997 sds->busiest = sg; 10998 sds->busiest_stat = *sgs; 10999 } 11000 11001 /* Now, start updating sd_lb_stats */ 11002 sds->total_load += sgs->group_load; 11003 sds->total_capacity += sgs->group_capacity; 11004 11005 sum_util += sgs->group_util; 11006 sg = sg->next; 11007 } while (sg != env->sd->groups); 11008 11009 /* 11010 * Indicate that the child domain of the busiest group prefers tasks 11011 * go to a child's sibling domains first. NB the flags of a sched group 11012 * are those of the child domain. 11013 */ 11014 if (sds->busiest) 11015 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 11016 11017 11018 if (env->sd->flags & SD_NUMA) 11019 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 11020 11021 if (!env->sd->parent) { 11022 /* update overload indicator if we are at root domain */ 11023 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 11024 11025 /* Update over-utilization (tipping point, U >= 0) indicator */ 11026 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11027 } else if (sg_overutilized) { 11028 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11029 } 11030 11031 update_idle_cpu_scan(env, sum_util); 11032 } 11033 11034 /** 11035 * calculate_imbalance - Calculate the amount of imbalance present within the 11036 * groups of a given sched_domain during load balance. 11037 * @env: load balance environment 11038 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 11039 */ 11040 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 11041 { 11042 struct sg_lb_stats *local, *busiest; 11043 11044 local = &sds->local_stat; 11045 busiest = &sds->busiest_stat; 11046 11047 if (busiest->group_type == group_misfit_task) { 11048 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 11049 /* Set imbalance to allow misfit tasks to be balanced. */ 11050 env->migration_type = migrate_misfit; 11051 env->imbalance = 1; 11052 } else { 11053 /* 11054 * Set load imbalance to allow moving task from cpu 11055 * with reduced capacity. 11056 */ 11057 env->migration_type = migrate_load; 11058 env->imbalance = busiest->group_misfit_task_load; 11059 } 11060 return; 11061 } 11062 11063 if (busiest->group_type == group_asym_packing) { 11064 /* 11065 * In case of asym capacity, we will try to migrate all load to 11066 * the preferred CPU. 11067 */ 11068 env->migration_type = migrate_task; 11069 env->imbalance = busiest->sum_h_nr_running; 11070 return; 11071 } 11072 11073 if (busiest->group_type == group_smt_balance) { 11074 /* Reduce number of tasks sharing CPU capacity */ 11075 env->migration_type = migrate_task; 11076 env->imbalance = 1; 11077 return; 11078 } 11079 11080 if (busiest->group_type == group_imbalanced) { 11081 /* 11082 * In the group_imb case we cannot rely on group-wide averages 11083 * to ensure CPU-load equilibrium, try to move any task to fix 11084 * the imbalance. The next load balance will take care of 11085 * balancing back the system. 11086 */ 11087 env->migration_type = migrate_task; 11088 env->imbalance = 1; 11089 return; 11090 } 11091 11092 /* 11093 * Try to use spare capacity of local group without overloading it or 11094 * emptying busiest. 11095 */ 11096 if (local->group_type == group_has_spare) { 11097 if ((busiest->group_type > group_fully_busy) && 11098 !(env->sd->flags & SD_SHARE_LLC)) { 11099 /* 11100 * If busiest is overloaded, try to fill spare 11101 * capacity. This might end up creating spare capacity 11102 * in busiest or busiest still being overloaded but 11103 * there is no simple way to directly compute the 11104 * amount of load to migrate in order to balance the 11105 * system. 11106 */ 11107 env->migration_type = migrate_util; 11108 env->imbalance = max(local->group_capacity, local->group_util) - 11109 local->group_util; 11110 11111 /* 11112 * In some cases, the group's utilization is max or even 11113 * higher than capacity because of migrations but the 11114 * local CPU is (newly) idle. There is at least one 11115 * waiting task in this overloaded busiest group. Let's 11116 * try to pull it. 11117 */ 11118 if (env->idle && env->imbalance == 0) { 11119 env->migration_type = migrate_task; 11120 env->imbalance = 1; 11121 } 11122 11123 return; 11124 } 11125 11126 if (busiest->group_weight == 1 || sds->prefer_sibling) { 11127 /* 11128 * When prefer sibling, evenly spread running tasks on 11129 * groups. 11130 */ 11131 env->migration_type = migrate_task; 11132 env->imbalance = sibling_imbalance(env, sds, busiest, local); 11133 } else { 11134 11135 /* 11136 * If there is no overload, we just want to even the number of 11137 * idle CPUs. 11138 */ 11139 env->migration_type = migrate_task; 11140 env->imbalance = max_t(long, 0, 11141 (local->idle_cpus - busiest->idle_cpus)); 11142 } 11143 11144 #ifdef CONFIG_NUMA 11145 /* Consider allowing a small imbalance between NUMA groups */ 11146 if (env->sd->flags & SD_NUMA) { 11147 env->imbalance = adjust_numa_imbalance(env->imbalance, 11148 local->sum_nr_running + 1, 11149 env->sd->imb_numa_nr); 11150 } 11151 #endif 11152 11153 /* Number of tasks to move to restore balance */ 11154 env->imbalance >>= 1; 11155 11156 return; 11157 } 11158 11159 /* 11160 * Local is fully busy but has to take more load to relieve the 11161 * busiest group 11162 */ 11163 if (local->group_type < group_overloaded) { 11164 /* 11165 * Local will become overloaded so the avg_load metrics are 11166 * finally needed. 11167 */ 11168 11169 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 11170 local->group_capacity; 11171 11172 /* 11173 * If the local group is more loaded than the selected 11174 * busiest group don't try to pull any tasks. 11175 */ 11176 if (local->avg_load >= busiest->avg_load) { 11177 env->imbalance = 0; 11178 return; 11179 } 11180 11181 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 11182 sds->total_capacity; 11183 11184 /* 11185 * If the local group is more loaded than the average system 11186 * load, don't try to pull any tasks. 11187 */ 11188 if (local->avg_load >= sds->avg_load) { 11189 env->imbalance = 0; 11190 return; 11191 } 11192 11193 } 11194 11195 /* 11196 * Both group are or will become overloaded and we're trying to get all 11197 * the CPUs to the average_load, so we don't want to push ourselves 11198 * above the average load, nor do we wish to reduce the max loaded CPU 11199 * below the average load. At the same time, we also don't want to 11200 * reduce the group load below the group capacity. Thus we look for 11201 * the minimum possible imbalance. 11202 */ 11203 env->migration_type = migrate_load; 11204 env->imbalance = min( 11205 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 11206 (sds->avg_load - local->avg_load) * local->group_capacity 11207 ) / SCHED_CAPACITY_SCALE; 11208 } 11209 11210 /******* sched_balance_find_src_group() helpers end here *********************/ 11211 11212 /* 11213 * Decision matrix according to the local and busiest group type: 11214 * 11215 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 11216 * has_spare nr_idle balanced N/A N/A balanced balanced 11217 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 11218 * misfit_task force N/A N/A N/A N/A N/A 11219 * asym_packing force force N/A N/A force force 11220 * imbalanced force force N/A N/A force force 11221 * overloaded force force N/A N/A force avg_load 11222 * 11223 * N/A : Not Applicable because already filtered while updating 11224 * statistics. 11225 * balanced : The system is balanced for these 2 groups. 11226 * force : Calculate the imbalance as load migration is probably needed. 11227 * avg_load : Only if imbalance is significant enough. 11228 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 11229 * different in groups. 11230 */ 11231 11232 /** 11233 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 11234 * if there is an imbalance. 11235 * @env: The load balancing environment. 11236 * 11237 * Also calculates the amount of runnable load which should be moved 11238 * to restore balance. 11239 * 11240 * Return: - The busiest group if imbalance exists. 11241 */ 11242 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 11243 { 11244 struct sg_lb_stats *local, *busiest; 11245 struct sd_lb_stats sds; 11246 11247 init_sd_lb_stats(&sds); 11248 11249 /* 11250 * Compute the various statistics relevant for load balancing at 11251 * this level. 11252 */ 11253 update_sd_lb_stats(env, &sds); 11254 11255 /* There is no busy sibling group to pull tasks from */ 11256 if (!sds.busiest) 11257 goto out_balanced; 11258 11259 busiest = &sds.busiest_stat; 11260 11261 /* Misfit tasks should be dealt with regardless of the avg load */ 11262 if (busiest->group_type == group_misfit_task) 11263 goto force_balance; 11264 11265 if (!is_rd_overutilized(env->dst_rq->rd) && 11266 rcu_dereference(env->dst_rq->rd->pd)) 11267 goto out_balanced; 11268 11269 /* ASYM feature bypasses nice load balance check */ 11270 if (busiest->group_type == group_asym_packing) 11271 goto force_balance; 11272 11273 /* 11274 * If the busiest group is imbalanced the below checks don't 11275 * work because they assume all things are equal, which typically 11276 * isn't true due to cpus_ptr constraints and the like. 11277 */ 11278 if (busiest->group_type == group_imbalanced) 11279 goto force_balance; 11280 11281 local = &sds.local_stat; 11282 /* 11283 * If the local group is busier than the selected busiest group 11284 * don't try and pull any tasks. 11285 */ 11286 if (local->group_type > busiest->group_type) 11287 goto out_balanced; 11288 11289 /* 11290 * When groups are overloaded, use the avg_load to ensure fairness 11291 * between tasks. 11292 */ 11293 if (local->group_type == group_overloaded) { 11294 /* 11295 * If the local group is more loaded than the selected 11296 * busiest group don't try to pull any tasks. 11297 */ 11298 if (local->avg_load >= busiest->avg_load) 11299 goto out_balanced; 11300 11301 /* XXX broken for overlapping NUMA groups */ 11302 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 11303 sds.total_capacity; 11304 11305 /* 11306 * Don't pull any tasks if this group is already above the 11307 * domain average load. 11308 */ 11309 if (local->avg_load >= sds.avg_load) 11310 goto out_balanced; 11311 11312 /* 11313 * If the busiest group is more loaded, use imbalance_pct to be 11314 * conservative. 11315 */ 11316 if (100 * busiest->avg_load <= 11317 env->sd->imbalance_pct * local->avg_load) 11318 goto out_balanced; 11319 } 11320 11321 /* 11322 * Try to move all excess tasks to a sibling domain of the busiest 11323 * group's child domain. 11324 */ 11325 if (sds.prefer_sibling && local->group_type == group_has_spare && 11326 sibling_imbalance(env, &sds, busiest, local) > 1) 11327 goto force_balance; 11328 11329 if (busiest->group_type != group_overloaded) { 11330 if (!env->idle) { 11331 /* 11332 * If the busiest group is not overloaded (and as a 11333 * result the local one too) but this CPU is already 11334 * busy, let another idle CPU try to pull task. 11335 */ 11336 goto out_balanced; 11337 } 11338 11339 if (busiest->group_type == group_smt_balance && 11340 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 11341 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 11342 goto force_balance; 11343 } 11344 11345 if (busiest->group_weight > 1 && 11346 local->idle_cpus <= (busiest->idle_cpus + 1)) { 11347 /* 11348 * If the busiest group is not overloaded 11349 * and there is no imbalance between this and busiest 11350 * group wrt idle CPUs, it is balanced. The imbalance 11351 * becomes significant if the diff is greater than 1 11352 * otherwise we might end up to just move the imbalance 11353 * on another group. Of course this applies only if 11354 * there is more than 1 CPU per group. 11355 */ 11356 goto out_balanced; 11357 } 11358 11359 if (busiest->sum_h_nr_running == 1) { 11360 /* 11361 * busiest doesn't have any tasks waiting to run 11362 */ 11363 goto out_balanced; 11364 } 11365 } 11366 11367 force_balance: 11368 /* Looks like there is an imbalance. Compute it */ 11369 calculate_imbalance(env, &sds); 11370 return env->imbalance ? sds.busiest : NULL; 11371 11372 out_balanced: 11373 env->imbalance = 0; 11374 return NULL; 11375 } 11376 11377 /* 11378 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11379 */ 11380 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11381 struct sched_group *group) 11382 { 11383 struct rq *busiest = NULL, *rq; 11384 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11385 unsigned int busiest_nr = 0; 11386 int i; 11387 11388 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11389 unsigned long capacity, load, util; 11390 unsigned int nr_running; 11391 enum fbq_type rt; 11392 11393 rq = cpu_rq(i); 11394 rt = fbq_classify_rq(rq); 11395 11396 /* 11397 * We classify groups/runqueues into three groups: 11398 * - regular: there are !numa tasks 11399 * - remote: there are numa tasks that run on the 'wrong' node 11400 * - all: there is no distinction 11401 * 11402 * In order to avoid migrating ideally placed numa tasks, 11403 * ignore those when there's better options. 11404 * 11405 * If we ignore the actual busiest queue to migrate another 11406 * task, the next balance pass can still reduce the busiest 11407 * queue by moving tasks around inside the node. 11408 * 11409 * If we cannot move enough load due to this classification 11410 * the next pass will adjust the group classification and 11411 * allow migration of more tasks. 11412 * 11413 * Both cases only affect the total convergence complexity. 11414 */ 11415 if (rt > env->fbq_type) 11416 continue; 11417 11418 nr_running = rq->cfs.h_nr_running; 11419 if (!nr_running) 11420 continue; 11421 11422 capacity = capacity_of(i); 11423 11424 /* 11425 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11426 * eventually lead to active_balancing high->low capacity. 11427 * Higher per-CPU capacity is considered better than balancing 11428 * average load. 11429 */ 11430 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11431 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11432 nr_running == 1) 11433 continue; 11434 11435 /* 11436 * Make sure we only pull tasks from a CPU of lower priority 11437 * when balancing between SMT siblings. 11438 * 11439 * If balancing between cores, let lower priority CPUs help 11440 * SMT cores with more than one busy sibling. 11441 */ 11442 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11443 continue; 11444 11445 switch (env->migration_type) { 11446 case migrate_load: 11447 /* 11448 * When comparing with load imbalance, use cpu_load() 11449 * which is not scaled with the CPU capacity. 11450 */ 11451 load = cpu_load(rq); 11452 11453 if (nr_running == 1 && load > env->imbalance && 11454 !check_cpu_capacity(rq, env->sd)) 11455 break; 11456 11457 /* 11458 * For the load comparisons with the other CPUs, 11459 * consider the cpu_load() scaled with the CPU 11460 * capacity, so that the load can be moved away 11461 * from the CPU that is potentially running at a 11462 * lower capacity. 11463 * 11464 * Thus we're looking for max(load_i / capacity_i), 11465 * crosswise multiplication to rid ourselves of the 11466 * division works out to: 11467 * load_i * capacity_j > load_j * capacity_i; 11468 * where j is our previous maximum. 11469 */ 11470 if (load * busiest_capacity > busiest_load * capacity) { 11471 busiest_load = load; 11472 busiest_capacity = capacity; 11473 busiest = rq; 11474 } 11475 break; 11476 11477 case migrate_util: 11478 util = cpu_util_cfs_boost(i); 11479 11480 /* 11481 * Don't try to pull utilization from a CPU with one 11482 * running task. Whatever its utilization, we will fail 11483 * detach the task. 11484 */ 11485 if (nr_running <= 1) 11486 continue; 11487 11488 if (busiest_util < util) { 11489 busiest_util = util; 11490 busiest = rq; 11491 } 11492 break; 11493 11494 case migrate_task: 11495 if (busiest_nr < nr_running) { 11496 busiest_nr = nr_running; 11497 busiest = rq; 11498 } 11499 break; 11500 11501 case migrate_misfit: 11502 /* 11503 * For ASYM_CPUCAPACITY domains with misfit tasks we 11504 * simply seek the "biggest" misfit task. 11505 */ 11506 if (rq->misfit_task_load > busiest_load) { 11507 busiest_load = rq->misfit_task_load; 11508 busiest = rq; 11509 } 11510 11511 break; 11512 11513 } 11514 } 11515 11516 return busiest; 11517 } 11518 11519 /* 11520 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11521 * so long as it is large enough. 11522 */ 11523 #define MAX_PINNED_INTERVAL 512 11524 11525 static inline bool 11526 asym_active_balance(struct lb_env *env) 11527 { 11528 /* 11529 * ASYM_PACKING needs to force migrate tasks from busy but lower 11530 * priority CPUs in order to pack all tasks in the highest priority 11531 * CPUs. When done between cores, do it only if the whole core if the 11532 * whole core is idle. 11533 * 11534 * If @env::src_cpu is an SMT core with busy siblings, let 11535 * the lower priority @env::dst_cpu help it. Do not follow 11536 * CPU priority. 11537 */ 11538 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11539 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11540 !sched_use_asym_prio(env->sd, env->src_cpu)); 11541 } 11542 11543 static inline bool 11544 imbalanced_active_balance(struct lb_env *env) 11545 { 11546 struct sched_domain *sd = env->sd; 11547 11548 /* 11549 * The imbalanced case includes the case of pinned tasks preventing a fair 11550 * distribution of the load on the system but also the even distribution of the 11551 * threads on a system with spare capacity 11552 */ 11553 if ((env->migration_type == migrate_task) && 11554 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11555 return 1; 11556 11557 return 0; 11558 } 11559 11560 static int need_active_balance(struct lb_env *env) 11561 { 11562 struct sched_domain *sd = env->sd; 11563 11564 if (asym_active_balance(env)) 11565 return 1; 11566 11567 if (imbalanced_active_balance(env)) 11568 return 1; 11569 11570 /* 11571 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11572 * It's worth migrating the task if the src_cpu's capacity is reduced 11573 * because of other sched_class or IRQs if more capacity stays 11574 * available on dst_cpu. 11575 */ 11576 if (env->idle && 11577 (env->src_rq->cfs.h_nr_running == 1)) { 11578 if ((check_cpu_capacity(env->src_rq, sd)) && 11579 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11580 return 1; 11581 } 11582 11583 if (env->migration_type == migrate_misfit) 11584 return 1; 11585 11586 return 0; 11587 } 11588 11589 static int active_load_balance_cpu_stop(void *data); 11590 11591 static int should_we_balance(struct lb_env *env) 11592 { 11593 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11594 struct sched_group *sg = env->sd->groups; 11595 int cpu, idle_smt = -1; 11596 11597 /* 11598 * Ensure the balancing environment is consistent; can happen 11599 * when the softirq triggers 'during' hotplug. 11600 */ 11601 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11602 return 0; 11603 11604 /* 11605 * In the newly idle case, we will allow all the CPUs 11606 * to do the newly idle load balance. 11607 * 11608 * However, we bail out if we already have tasks or a wakeup pending, 11609 * to optimize wakeup latency. 11610 */ 11611 if (env->idle == CPU_NEWLY_IDLE) { 11612 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11613 return 0; 11614 return 1; 11615 } 11616 11617 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11618 /* Try to find first idle CPU */ 11619 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11620 if (!idle_cpu(cpu)) 11621 continue; 11622 11623 /* 11624 * Don't balance to idle SMT in busy core right away when 11625 * balancing cores, but remember the first idle SMT CPU for 11626 * later consideration. Find CPU on an idle core first. 11627 */ 11628 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11629 if (idle_smt == -1) 11630 idle_smt = cpu; 11631 /* 11632 * If the core is not idle, and first SMT sibling which is 11633 * idle has been found, then its not needed to check other 11634 * SMT siblings for idleness: 11635 */ 11636 #ifdef CONFIG_SCHED_SMT 11637 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11638 #endif 11639 continue; 11640 } 11641 11642 /* 11643 * Are we the first idle core in a non-SMT domain or higher, 11644 * or the first idle CPU in a SMT domain? 11645 */ 11646 return cpu == env->dst_cpu; 11647 } 11648 11649 /* Are we the first idle CPU with busy siblings? */ 11650 if (idle_smt != -1) 11651 return idle_smt == env->dst_cpu; 11652 11653 /* Are we the first CPU of this group ? */ 11654 return group_balance_cpu(sg) == env->dst_cpu; 11655 } 11656 11657 /* 11658 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11659 * tasks if there is an imbalance. 11660 */ 11661 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11662 struct sched_domain *sd, enum cpu_idle_type idle, 11663 int *continue_balancing) 11664 { 11665 int ld_moved, cur_ld_moved, active_balance = 0; 11666 struct sched_domain *sd_parent = sd->parent; 11667 struct sched_group *group; 11668 struct rq *busiest; 11669 struct rq_flags rf; 11670 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11671 struct lb_env env = { 11672 .sd = sd, 11673 .dst_cpu = this_cpu, 11674 .dst_rq = this_rq, 11675 .dst_grpmask = group_balance_mask(sd->groups), 11676 .idle = idle, 11677 .loop_break = SCHED_NR_MIGRATE_BREAK, 11678 .cpus = cpus, 11679 .fbq_type = all, 11680 .tasks = LIST_HEAD_INIT(env.tasks), 11681 }; 11682 11683 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11684 11685 schedstat_inc(sd->lb_count[idle]); 11686 11687 redo: 11688 if (!should_we_balance(&env)) { 11689 *continue_balancing = 0; 11690 goto out_balanced; 11691 } 11692 11693 group = sched_balance_find_src_group(&env); 11694 if (!group) { 11695 schedstat_inc(sd->lb_nobusyg[idle]); 11696 goto out_balanced; 11697 } 11698 11699 busiest = sched_balance_find_src_rq(&env, group); 11700 if (!busiest) { 11701 schedstat_inc(sd->lb_nobusyq[idle]); 11702 goto out_balanced; 11703 } 11704 11705 WARN_ON_ONCE(busiest == env.dst_rq); 11706 11707 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 11708 11709 env.src_cpu = busiest->cpu; 11710 env.src_rq = busiest; 11711 11712 ld_moved = 0; 11713 /* Clear this flag as soon as we find a pullable task */ 11714 env.flags |= LBF_ALL_PINNED; 11715 if (busiest->nr_running > 1) { 11716 /* 11717 * Attempt to move tasks. If sched_balance_find_src_group has found 11718 * an imbalance but busiest->nr_running <= 1, the group is 11719 * still unbalanced. ld_moved simply stays zero, so it is 11720 * correctly treated as an imbalance. 11721 */ 11722 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11723 11724 more_balance: 11725 rq_lock_irqsave(busiest, &rf); 11726 update_rq_clock(busiest); 11727 11728 /* 11729 * cur_ld_moved - load moved in current iteration 11730 * ld_moved - cumulative load moved across iterations 11731 */ 11732 cur_ld_moved = detach_tasks(&env); 11733 11734 /* 11735 * We've detached some tasks from busiest_rq. Every 11736 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11737 * unlock busiest->lock, and we are able to be sure 11738 * that nobody can manipulate the tasks in parallel. 11739 * See task_rq_lock() family for the details. 11740 */ 11741 11742 rq_unlock(busiest, &rf); 11743 11744 if (cur_ld_moved) { 11745 attach_tasks(&env); 11746 ld_moved += cur_ld_moved; 11747 } 11748 11749 local_irq_restore(rf.flags); 11750 11751 if (env.flags & LBF_NEED_BREAK) { 11752 env.flags &= ~LBF_NEED_BREAK; 11753 goto more_balance; 11754 } 11755 11756 /* 11757 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11758 * us and move them to an alternate dst_cpu in our sched_group 11759 * where they can run. The upper limit on how many times we 11760 * iterate on same src_cpu is dependent on number of CPUs in our 11761 * sched_group. 11762 * 11763 * This changes load balance semantics a bit on who can move 11764 * load to a given_cpu. In addition to the given_cpu itself 11765 * (or a ilb_cpu acting on its behalf where given_cpu is 11766 * nohz-idle), we now have balance_cpu in a position to move 11767 * load to given_cpu. In rare situations, this may cause 11768 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11769 * _independently_ and at _same_ time to move some load to 11770 * given_cpu) causing excess load to be moved to given_cpu. 11771 * This however should not happen so much in practice and 11772 * moreover subsequent load balance cycles should correct the 11773 * excess load moved. 11774 */ 11775 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11776 11777 /* Prevent to re-select dst_cpu via env's CPUs */ 11778 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11779 11780 env.dst_rq = cpu_rq(env.new_dst_cpu); 11781 env.dst_cpu = env.new_dst_cpu; 11782 env.flags &= ~LBF_DST_PINNED; 11783 env.loop = 0; 11784 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11785 11786 /* 11787 * Go back to "more_balance" rather than "redo" since we 11788 * need to continue with same src_cpu. 11789 */ 11790 goto more_balance; 11791 } 11792 11793 /* 11794 * We failed to reach balance because of affinity. 11795 */ 11796 if (sd_parent) { 11797 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11798 11799 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11800 *group_imbalance = 1; 11801 } 11802 11803 /* All tasks on this runqueue were pinned by CPU affinity */ 11804 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11805 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11806 /* 11807 * Attempting to continue load balancing at the current 11808 * sched_domain level only makes sense if there are 11809 * active CPUs remaining as possible busiest CPUs to 11810 * pull load from which are not contained within the 11811 * destination group that is receiving any migrated 11812 * load. 11813 */ 11814 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11815 env.loop = 0; 11816 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11817 goto redo; 11818 } 11819 goto out_all_pinned; 11820 } 11821 } 11822 11823 if (!ld_moved) { 11824 schedstat_inc(sd->lb_failed[idle]); 11825 /* 11826 * Increment the failure counter only on periodic balance. 11827 * We do not want newidle balance, which can be very 11828 * frequent, pollute the failure counter causing 11829 * excessive cache_hot migrations and active balances. 11830 * 11831 * Similarly for migration_misfit which is not related to 11832 * load/util migration, don't pollute nr_balance_failed. 11833 */ 11834 if (idle != CPU_NEWLY_IDLE && 11835 env.migration_type != migrate_misfit) 11836 sd->nr_balance_failed++; 11837 11838 if (need_active_balance(&env)) { 11839 unsigned long flags; 11840 11841 raw_spin_rq_lock_irqsave(busiest, flags); 11842 11843 /* 11844 * Don't kick the active_load_balance_cpu_stop, 11845 * if the curr task on busiest CPU can't be 11846 * moved to this_cpu: 11847 */ 11848 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11849 raw_spin_rq_unlock_irqrestore(busiest, flags); 11850 goto out_one_pinned; 11851 } 11852 11853 /* Record that we found at least one task that could run on this_cpu */ 11854 env.flags &= ~LBF_ALL_PINNED; 11855 11856 /* 11857 * ->active_balance synchronizes accesses to 11858 * ->active_balance_work. Once set, it's cleared 11859 * only after active load balance is finished. 11860 */ 11861 if (!busiest->active_balance) { 11862 busiest->active_balance = 1; 11863 busiest->push_cpu = this_cpu; 11864 active_balance = 1; 11865 } 11866 11867 preempt_disable(); 11868 raw_spin_rq_unlock_irqrestore(busiest, flags); 11869 if (active_balance) { 11870 stop_one_cpu_nowait(cpu_of(busiest), 11871 active_load_balance_cpu_stop, busiest, 11872 &busiest->active_balance_work); 11873 } 11874 preempt_enable(); 11875 } 11876 } else { 11877 sd->nr_balance_failed = 0; 11878 } 11879 11880 if (likely(!active_balance) || need_active_balance(&env)) { 11881 /* We were unbalanced, so reset the balancing interval */ 11882 sd->balance_interval = sd->min_interval; 11883 } 11884 11885 goto out; 11886 11887 out_balanced: 11888 /* 11889 * We reach balance although we may have faced some affinity 11890 * constraints. Clear the imbalance flag only if other tasks got 11891 * a chance to move and fix the imbalance. 11892 */ 11893 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11894 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11895 11896 if (*group_imbalance) 11897 *group_imbalance = 0; 11898 } 11899 11900 out_all_pinned: 11901 /* 11902 * We reach balance because all tasks are pinned at this level so 11903 * we can't migrate them. Let the imbalance flag set so parent level 11904 * can try to migrate them. 11905 */ 11906 schedstat_inc(sd->lb_balanced[idle]); 11907 11908 sd->nr_balance_failed = 0; 11909 11910 out_one_pinned: 11911 ld_moved = 0; 11912 11913 /* 11914 * sched_balance_newidle() disregards balance intervals, so we could 11915 * repeatedly reach this code, which would lead to balance_interval 11916 * skyrocketing in a short amount of time. Skip the balance_interval 11917 * increase logic to avoid that. 11918 * 11919 * Similarly misfit migration which is not necessarily an indication of 11920 * the system being busy and requires lb to backoff to let it settle 11921 * down. 11922 */ 11923 if (env.idle == CPU_NEWLY_IDLE || 11924 env.migration_type == migrate_misfit) 11925 goto out; 11926 11927 /* tune up the balancing interval */ 11928 if ((env.flags & LBF_ALL_PINNED && 11929 sd->balance_interval < MAX_PINNED_INTERVAL) || 11930 sd->balance_interval < sd->max_interval) 11931 sd->balance_interval *= 2; 11932 out: 11933 return ld_moved; 11934 } 11935 11936 static inline unsigned long 11937 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11938 { 11939 unsigned long interval = sd->balance_interval; 11940 11941 if (cpu_busy) 11942 interval *= sd->busy_factor; 11943 11944 /* scale ms to jiffies */ 11945 interval = msecs_to_jiffies(interval); 11946 11947 /* 11948 * Reduce likelihood of busy balancing at higher domains racing with 11949 * balancing at lower domains by preventing their balancing periods 11950 * from being multiples of each other. 11951 */ 11952 if (cpu_busy) 11953 interval -= 1; 11954 11955 interval = clamp(interval, 1UL, max_load_balance_interval); 11956 11957 return interval; 11958 } 11959 11960 static inline void 11961 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11962 { 11963 unsigned long interval, next; 11964 11965 /* used by idle balance, so cpu_busy = 0 */ 11966 interval = get_sd_balance_interval(sd, 0); 11967 next = sd->last_balance + interval; 11968 11969 if (time_after(*next_balance, next)) 11970 *next_balance = next; 11971 } 11972 11973 /* 11974 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11975 * running tasks off the busiest CPU onto idle CPUs. It requires at 11976 * least 1 task to be running on each physical CPU where possible, and 11977 * avoids physical / logical imbalances. 11978 */ 11979 static int active_load_balance_cpu_stop(void *data) 11980 { 11981 struct rq *busiest_rq = data; 11982 int busiest_cpu = cpu_of(busiest_rq); 11983 int target_cpu = busiest_rq->push_cpu; 11984 struct rq *target_rq = cpu_rq(target_cpu); 11985 struct sched_domain *sd; 11986 struct task_struct *p = NULL; 11987 struct rq_flags rf; 11988 11989 rq_lock_irq(busiest_rq, &rf); 11990 /* 11991 * Between queueing the stop-work and running it is a hole in which 11992 * CPUs can become inactive. We should not move tasks from or to 11993 * inactive CPUs. 11994 */ 11995 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 11996 goto out_unlock; 11997 11998 /* Make sure the requested CPU hasn't gone down in the meantime: */ 11999 if (unlikely(busiest_cpu != smp_processor_id() || 12000 !busiest_rq->active_balance)) 12001 goto out_unlock; 12002 12003 /* Is there any task to move? */ 12004 if (busiest_rq->nr_running <= 1) 12005 goto out_unlock; 12006 12007 /* 12008 * This condition is "impossible", if it occurs 12009 * we need to fix it. Originally reported by 12010 * Bjorn Helgaas on a 128-CPU setup. 12011 */ 12012 WARN_ON_ONCE(busiest_rq == target_rq); 12013 12014 /* Search for an sd spanning us and the target CPU. */ 12015 rcu_read_lock(); 12016 for_each_domain(target_cpu, sd) { 12017 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 12018 break; 12019 } 12020 12021 if (likely(sd)) { 12022 struct lb_env env = { 12023 .sd = sd, 12024 .dst_cpu = target_cpu, 12025 .dst_rq = target_rq, 12026 .src_cpu = busiest_rq->cpu, 12027 .src_rq = busiest_rq, 12028 .idle = CPU_IDLE, 12029 .flags = LBF_ACTIVE_LB, 12030 }; 12031 12032 schedstat_inc(sd->alb_count); 12033 update_rq_clock(busiest_rq); 12034 12035 p = detach_one_task(&env); 12036 if (p) { 12037 schedstat_inc(sd->alb_pushed); 12038 /* Active balancing done, reset the failure counter. */ 12039 sd->nr_balance_failed = 0; 12040 } else { 12041 schedstat_inc(sd->alb_failed); 12042 } 12043 } 12044 rcu_read_unlock(); 12045 out_unlock: 12046 busiest_rq->active_balance = 0; 12047 rq_unlock(busiest_rq, &rf); 12048 12049 if (p) 12050 attach_one_task(target_rq, p); 12051 12052 local_irq_enable(); 12053 12054 return 0; 12055 } 12056 12057 /* 12058 * This flag serializes load-balancing passes over large domains 12059 * (above the NODE topology level) - only one load-balancing instance 12060 * may run at a time, to reduce overhead on very large systems with 12061 * lots of CPUs and large NUMA distances. 12062 * 12063 * - Note that load-balancing passes triggered while another one 12064 * is executing are skipped and not re-tried. 12065 * 12066 * - Also note that this does not serialize rebalance_domains() 12067 * execution, as non-SD_SERIALIZE domains will still be 12068 * load-balanced in parallel. 12069 */ 12070 static atomic_t sched_balance_running = ATOMIC_INIT(0); 12071 12072 /* 12073 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 12074 * This trades load-balance latency on larger machines for less cross talk. 12075 */ 12076 void update_max_interval(void) 12077 { 12078 max_load_balance_interval = HZ*num_online_cpus()/10; 12079 } 12080 12081 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 12082 { 12083 if (cost > sd->max_newidle_lb_cost) { 12084 /* 12085 * Track max cost of a domain to make sure to not delay the 12086 * next wakeup on the CPU. 12087 */ 12088 sd->max_newidle_lb_cost = cost; 12089 sd->last_decay_max_lb_cost = jiffies; 12090 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 12091 /* 12092 * Decay the newidle max times by ~1% per second to ensure that 12093 * it is not outdated and the current max cost is actually 12094 * shorter. 12095 */ 12096 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 12097 sd->last_decay_max_lb_cost = jiffies; 12098 12099 return true; 12100 } 12101 12102 return false; 12103 } 12104 12105 /* 12106 * It checks each scheduling domain to see if it is due to be balanced, 12107 * and initiates a balancing operation if so. 12108 * 12109 * Balancing parameters are set up in init_sched_domains. 12110 */ 12111 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 12112 { 12113 int continue_balancing = 1; 12114 int cpu = rq->cpu; 12115 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 12116 unsigned long interval; 12117 struct sched_domain *sd; 12118 /* Earliest time when we have to do rebalance again */ 12119 unsigned long next_balance = jiffies + 60*HZ; 12120 int update_next_balance = 0; 12121 int need_serialize, need_decay = 0; 12122 u64 max_cost = 0; 12123 12124 rcu_read_lock(); 12125 for_each_domain(cpu, sd) { 12126 /* 12127 * Decay the newidle max times here because this is a regular 12128 * visit to all the domains. 12129 */ 12130 need_decay = update_newidle_cost(sd, 0); 12131 max_cost += sd->max_newidle_lb_cost; 12132 12133 /* 12134 * Stop the load balance at this level. There is another 12135 * CPU in our sched group which is doing load balancing more 12136 * actively. 12137 */ 12138 if (!continue_balancing) { 12139 if (need_decay) 12140 continue; 12141 break; 12142 } 12143 12144 interval = get_sd_balance_interval(sd, busy); 12145 12146 need_serialize = sd->flags & SD_SERIALIZE; 12147 if (need_serialize) { 12148 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) 12149 goto out; 12150 } 12151 12152 if (time_after_eq(jiffies, sd->last_balance + interval)) { 12153 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 12154 /* 12155 * The LBF_DST_PINNED logic could have changed 12156 * env->dst_cpu, so we can't know our idle 12157 * state even if we migrated tasks. Update it. 12158 */ 12159 idle = idle_cpu(cpu); 12160 busy = !idle && !sched_idle_cpu(cpu); 12161 } 12162 sd->last_balance = jiffies; 12163 interval = get_sd_balance_interval(sd, busy); 12164 } 12165 if (need_serialize) 12166 atomic_set_release(&sched_balance_running, 0); 12167 out: 12168 if (time_after(next_balance, sd->last_balance + interval)) { 12169 next_balance = sd->last_balance + interval; 12170 update_next_balance = 1; 12171 } 12172 } 12173 if (need_decay) { 12174 /* 12175 * Ensure the rq-wide value also decays but keep it at a 12176 * reasonable floor to avoid funnies with rq->avg_idle. 12177 */ 12178 rq->max_idle_balance_cost = 12179 max((u64)sysctl_sched_migration_cost, max_cost); 12180 } 12181 rcu_read_unlock(); 12182 12183 /* 12184 * next_balance will be updated only when there is a need. 12185 * When the cpu is attached to null domain for ex, it will not be 12186 * updated. 12187 */ 12188 if (likely(update_next_balance)) 12189 rq->next_balance = next_balance; 12190 12191 } 12192 12193 static inline int on_null_domain(struct rq *rq) 12194 { 12195 return unlikely(!rcu_dereference_sched(rq->sd)); 12196 } 12197 12198 #ifdef CONFIG_NO_HZ_COMMON 12199 /* 12200 * NOHZ idle load balancing (ILB) details: 12201 * 12202 * - When one of the busy CPUs notices that there may be an idle rebalancing 12203 * needed, they will kick the idle load balancer, which then does idle 12204 * load balancing for all the idle CPUs. 12205 * 12206 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set 12207 * anywhere yet. 12208 */ 12209 static inline int find_new_ilb(void) 12210 { 12211 const struct cpumask *hk_mask; 12212 int ilb_cpu; 12213 12214 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 12215 12216 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 12217 12218 if (ilb_cpu == smp_processor_id()) 12219 continue; 12220 12221 if (idle_cpu(ilb_cpu)) 12222 return ilb_cpu; 12223 } 12224 12225 return -1; 12226 } 12227 12228 /* 12229 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 12230 * SMP function call (IPI). 12231 * 12232 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 12233 */ 12234 static void kick_ilb(unsigned int flags) 12235 { 12236 int ilb_cpu; 12237 12238 /* 12239 * Increase nohz.next_balance only when if full ilb is triggered but 12240 * not if we only update stats. 12241 */ 12242 if (flags & NOHZ_BALANCE_KICK) 12243 nohz.next_balance = jiffies+1; 12244 12245 ilb_cpu = find_new_ilb(); 12246 if (ilb_cpu < 0) 12247 return; 12248 12249 /* 12250 * Don't bother if no new NOHZ balance work items for ilb_cpu, 12251 * i.e. all bits in flags are already set in ilb_cpu. 12252 */ 12253 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) 12254 return; 12255 12256 /* 12257 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 12258 * the first flag owns it; cleared by nohz_csd_func(). 12259 */ 12260 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 12261 if (flags & NOHZ_KICK_MASK) 12262 return; 12263 12264 /* 12265 * This way we generate an IPI on the target CPU which 12266 * is idle, and the softirq performing NOHZ idle load balancing 12267 * will be run before returning from the IPI. 12268 */ 12269 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 12270 } 12271 12272 /* 12273 * Current decision point for kicking the idle load balancer in the presence 12274 * of idle CPUs in the system. 12275 */ 12276 static void nohz_balancer_kick(struct rq *rq) 12277 { 12278 unsigned long now = jiffies; 12279 struct sched_domain_shared *sds; 12280 struct sched_domain *sd; 12281 int nr_busy, i, cpu = rq->cpu; 12282 unsigned int flags = 0; 12283 12284 if (unlikely(rq->idle_balance)) 12285 return; 12286 12287 /* 12288 * We may be recently in ticked or tickless idle mode. At the first 12289 * busy tick after returning from idle, we will update the busy stats. 12290 */ 12291 nohz_balance_exit_idle(rq); 12292 12293 /* 12294 * None are in tickless mode and hence no need for NOHZ idle load 12295 * balancing: 12296 */ 12297 if (likely(!atomic_read(&nohz.nr_cpus))) 12298 return; 12299 12300 if (READ_ONCE(nohz.has_blocked) && 12301 time_after(now, READ_ONCE(nohz.next_blocked))) 12302 flags = NOHZ_STATS_KICK; 12303 12304 if (time_before(now, nohz.next_balance)) 12305 goto out; 12306 12307 if (rq->nr_running >= 2) { 12308 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12309 goto out; 12310 } 12311 12312 rcu_read_lock(); 12313 12314 sd = rcu_dereference(rq->sd); 12315 if (sd) { 12316 /* 12317 * If there's a runnable CFS task and the current CPU has reduced 12318 * capacity, kick the ILB to see if there's a better CPU to run on: 12319 */ 12320 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 12321 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12322 goto unlock; 12323 } 12324 } 12325 12326 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 12327 if (sd) { 12328 /* 12329 * When ASYM_PACKING; see if there's a more preferred CPU 12330 * currently idle; in which case, kick the ILB to move tasks 12331 * around. 12332 * 12333 * When balancing between cores, all the SMT siblings of the 12334 * preferred CPU must be idle. 12335 */ 12336 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 12337 if (sched_asym(sd, i, cpu)) { 12338 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12339 goto unlock; 12340 } 12341 } 12342 } 12343 12344 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 12345 if (sd) { 12346 /* 12347 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 12348 * to run the misfit task on. 12349 */ 12350 if (check_misfit_status(rq)) { 12351 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12352 goto unlock; 12353 } 12354 12355 /* 12356 * For asymmetric systems, we do not want to nicely balance 12357 * cache use, instead we want to embrace asymmetry and only 12358 * ensure tasks have enough CPU capacity. 12359 * 12360 * Skip the LLC logic because it's not relevant in that case. 12361 */ 12362 goto unlock; 12363 } 12364 12365 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 12366 if (sds) { 12367 /* 12368 * If there is an imbalance between LLC domains (IOW we could 12369 * increase the overall cache utilization), we need a less-loaded LLC 12370 * domain to pull some load from. Likewise, we may need to spread 12371 * load within the current LLC domain (e.g. packed SMT cores but 12372 * other CPUs are idle). We can't really know from here how busy 12373 * the others are - so just get a NOHZ balance going if it looks 12374 * like this LLC domain has tasks we could move. 12375 */ 12376 nr_busy = atomic_read(&sds->nr_busy_cpus); 12377 if (nr_busy > 1) { 12378 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12379 goto unlock; 12380 } 12381 } 12382 unlock: 12383 rcu_read_unlock(); 12384 out: 12385 if (READ_ONCE(nohz.needs_update)) 12386 flags |= NOHZ_NEXT_KICK; 12387 12388 if (flags) 12389 kick_ilb(flags); 12390 } 12391 12392 static void set_cpu_sd_state_busy(int cpu) 12393 { 12394 struct sched_domain *sd; 12395 12396 rcu_read_lock(); 12397 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12398 12399 if (!sd || !sd->nohz_idle) 12400 goto unlock; 12401 sd->nohz_idle = 0; 12402 12403 atomic_inc(&sd->shared->nr_busy_cpus); 12404 unlock: 12405 rcu_read_unlock(); 12406 } 12407 12408 void nohz_balance_exit_idle(struct rq *rq) 12409 { 12410 SCHED_WARN_ON(rq != this_rq()); 12411 12412 if (likely(!rq->nohz_tick_stopped)) 12413 return; 12414 12415 rq->nohz_tick_stopped = 0; 12416 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12417 atomic_dec(&nohz.nr_cpus); 12418 12419 set_cpu_sd_state_busy(rq->cpu); 12420 } 12421 12422 static void set_cpu_sd_state_idle(int cpu) 12423 { 12424 struct sched_domain *sd; 12425 12426 rcu_read_lock(); 12427 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12428 12429 if (!sd || sd->nohz_idle) 12430 goto unlock; 12431 sd->nohz_idle = 1; 12432 12433 atomic_dec(&sd->shared->nr_busy_cpus); 12434 unlock: 12435 rcu_read_unlock(); 12436 } 12437 12438 /* 12439 * This routine will record that the CPU is going idle with tick stopped. 12440 * This info will be used in performing idle load balancing in the future. 12441 */ 12442 void nohz_balance_enter_idle(int cpu) 12443 { 12444 struct rq *rq = cpu_rq(cpu); 12445 12446 SCHED_WARN_ON(cpu != smp_processor_id()); 12447 12448 /* If this CPU is going down, then nothing needs to be done: */ 12449 if (!cpu_active(cpu)) 12450 return; 12451 12452 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 12453 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 12454 return; 12455 12456 /* 12457 * Can be set safely without rq->lock held 12458 * If a clear happens, it will have evaluated last additions because 12459 * rq->lock is held during the check and the clear 12460 */ 12461 rq->has_blocked_load = 1; 12462 12463 /* 12464 * The tick is still stopped but load could have been added in the 12465 * meantime. We set the nohz.has_blocked flag to trig a check of the 12466 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12467 * of nohz.has_blocked can only happen after checking the new load 12468 */ 12469 if (rq->nohz_tick_stopped) 12470 goto out; 12471 12472 /* If we're a completely isolated CPU, we don't play: */ 12473 if (on_null_domain(rq)) 12474 return; 12475 12476 rq->nohz_tick_stopped = 1; 12477 12478 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12479 atomic_inc(&nohz.nr_cpus); 12480 12481 /* 12482 * Ensures that if nohz_idle_balance() fails to observe our 12483 * @idle_cpus_mask store, it must observe the @has_blocked 12484 * and @needs_update stores. 12485 */ 12486 smp_mb__after_atomic(); 12487 12488 set_cpu_sd_state_idle(cpu); 12489 12490 WRITE_ONCE(nohz.needs_update, 1); 12491 out: 12492 /* 12493 * Each time a cpu enter idle, we assume that it has blocked load and 12494 * enable the periodic update of the load of idle CPUs 12495 */ 12496 WRITE_ONCE(nohz.has_blocked, 1); 12497 } 12498 12499 static bool update_nohz_stats(struct rq *rq) 12500 { 12501 unsigned int cpu = rq->cpu; 12502 12503 if (!rq->has_blocked_load) 12504 return false; 12505 12506 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12507 return false; 12508 12509 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12510 return true; 12511 12512 sched_balance_update_blocked_averages(cpu); 12513 12514 return rq->has_blocked_load; 12515 } 12516 12517 /* 12518 * Internal function that runs load balance for all idle CPUs. The load balance 12519 * can be a simple update of blocked load or a complete load balance with 12520 * tasks movement depending of flags. 12521 */ 12522 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12523 { 12524 /* Earliest time when we have to do rebalance again */ 12525 unsigned long now = jiffies; 12526 unsigned long next_balance = now + 60*HZ; 12527 bool has_blocked_load = false; 12528 int update_next_balance = 0; 12529 int this_cpu = this_rq->cpu; 12530 int balance_cpu; 12531 struct rq *rq; 12532 12533 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12534 12535 /* 12536 * We assume there will be no idle load after this update and clear 12537 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12538 * set the has_blocked flag and trigger another update of idle load. 12539 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12540 * setting the flag, we are sure to not clear the state and not 12541 * check the load of an idle cpu. 12542 * 12543 * Same applies to idle_cpus_mask vs needs_update. 12544 */ 12545 if (flags & NOHZ_STATS_KICK) 12546 WRITE_ONCE(nohz.has_blocked, 0); 12547 if (flags & NOHZ_NEXT_KICK) 12548 WRITE_ONCE(nohz.needs_update, 0); 12549 12550 /* 12551 * Ensures that if we miss the CPU, we must see the has_blocked 12552 * store from nohz_balance_enter_idle(). 12553 */ 12554 smp_mb(); 12555 12556 /* 12557 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12558 * chance for other idle cpu to pull load. 12559 */ 12560 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12561 if (!idle_cpu(balance_cpu)) 12562 continue; 12563 12564 /* 12565 * If this CPU gets work to do, stop the load balancing 12566 * work being done for other CPUs. Next load 12567 * balancing owner will pick it up. 12568 */ 12569 if (need_resched()) { 12570 if (flags & NOHZ_STATS_KICK) 12571 has_blocked_load = true; 12572 if (flags & NOHZ_NEXT_KICK) 12573 WRITE_ONCE(nohz.needs_update, 1); 12574 goto abort; 12575 } 12576 12577 rq = cpu_rq(balance_cpu); 12578 12579 if (flags & NOHZ_STATS_KICK) 12580 has_blocked_load |= update_nohz_stats(rq); 12581 12582 /* 12583 * If time for next balance is due, 12584 * do the balance. 12585 */ 12586 if (time_after_eq(jiffies, rq->next_balance)) { 12587 struct rq_flags rf; 12588 12589 rq_lock_irqsave(rq, &rf); 12590 update_rq_clock(rq); 12591 rq_unlock_irqrestore(rq, &rf); 12592 12593 if (flags & NOHZ_BALANCE_KICK) 12594 sched_balance_domains(rq, CPU_IDLE); 12595 } 12596 12597 if (time_after(next_balance, rq->next_balance)) { 12598 next_balance = rq->next_balance; 12599 update_next_balance = 1; 12600 } 12601 } 12602 12603 /* 12604 * next_balance will be updated only when there is a need. 12605 * When the CPU is attached to null domain for ex, it will not be 12606 * updated. 12607 */ 12608 if (likely(update_next_balance)) 12609 nohz.next_balance = next_balance; 12610 12611 if (flags & NOHZ_STATS_KICK) 12612 WRITE_ONCE(nohz.next_blocked, 12613 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12614 12615 abort: 12616 /* There is still blocked load, enable periodic update */ 12617 if (has_blocked_load) 12618 WRITE_ONCE(nohz.has_blocked, 1); 12619 } 12620 12621 /* 12622 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12623 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12624 */ 12625 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12626 { 12627 unsigned int flags = this_rq->nohz_idle_balance; 12628 12629 if (!flags) 12630 return false; 12631 12632 this_rq->nohz_idle_balance = 0; 12633 12634 if (idle != CPU_IDLE) 12635 return false; 12636 12637 _nohz_idle_balance(this_rq, flags); 12638 12639 return true; 12640 } 12641 12642 /* 12643 * Check if we need to directly run the ILB for updating blocked load before 12644 * entering idle state. Here we run ILB directly without issuing IPIs. 12645 * 12646 * Note that when this function is called, the tick may not yet be stopped on 12647 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12648 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12649 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12650 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12651 * called from this function on (this) CPU that's not yet in the mask. That's 12652 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12653 * updating the blocked load of already idle CPUs without waking up one of 12654 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12655 * cpu about to enter idle, because it can take a long time. 12656 */ 12657 void nohz_run_idle_balance(int cpu) 12658 { 12659 unsigned int flags; 12660 12661 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12662 12663 /* 12664 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12665 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12666 */ 12667 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12668 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12669 } 12670 12671 static void nohz_newidle_balance(struct rq *this_rq) 12672 { 12673 int this_cpu = this_rq->cpu; 12674 12675 /* 12676 * This CPU doesn't want to be disturbed by scheduler 12677 * housekeeping 12678 */ 12679 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 12680 return; 12681 12682 /* Will wake up very soon. No time for doing anything else*/ 12683 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12684 return; 12685 12686 /* Don't need to update blocked load of idle CPUs*/ 12687 if (!READ_ONCE(nohz.has_blocked) || 12688 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12689 return; 12690 12691 /* 12692 * Set the need to trigger ILB in order to update blocked load 12693 * before entering idle state. 12694 */ 12695 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12696 } 12697 12698 #else /* !CONFIG_NO_HZ_COMMON */ 12699 static inline void nohz_balancer_kick(struct rq *rq) { } 12700 12701 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12702 { 12703 return false; 12704 } 12705 12706 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12707 #endif /* CONFIG_NO_HZ_COMMON */ 12708 12709 /* 12710 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12711 * idle. Attempts to pull tasks from other CPUs. 12712 * 12713 * Returns: 12714 * < 0 - we released the lock and there are !fair tasks present 12715 * 0 - failed, no new tasks 12716 * > 0 - success, new (fair) tasks present 12717 */ 12718 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12719 { 12720 unsigned long next_balance = jiffies + HZ; 12721 int this_cpu = this_rq->cpu; 12722 int continue_balancing = 1; 12723 u64 t0, t1, curr_cost = 0; 12724 struct sched_domain *sd; 12725 int pulled_task = 0; 12726 12727 update_misfit_status(NULL, this_rq); 12728 12729 /* 12730 * There is a task waiting to run. No need to search for one. 12731 * Return 0; the task will be enqueued when switching to idle. 12732 */ 12733 if (this_rq->ttwu_pending) 12734 return 0; 12735 12736 /* 12737 * We must set idle_stamp _before_ calling sched_balance_rq() 12738 * for CPU_NEWLY_IDLE, such that we measure the this duration 12739 * as idle time. 12740 */ 12741 this_rq->idle_stamp = rq_clock(this_rq); 12742 12743 /* 12744 * Do not pull tasks towards !active CPUs... 12745 */ 12746 if (!cpu_active(this_cpu)) 12747 return 0; 12748 12749 /* 12750 * This is OK, because current is on_cpu, which avoids it being picked 12751 * for load-balance and preemption/IRQs are still disabled avoiding 12752 * further scheduler activity on it and we're being very careful to 12753 * re-start the picking loop. 12754 */ 12755 rq_unpin_lock(this_rq, rf); 12756 12757 rcu_read_lock(); 12758 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12759 12760 if (!get_rd_overloaded(this_rq->rd) || 12761 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12762 12763 if (sd) 12764 update_next_balance(sd, &next_balance); 12765 rcu_read_unlock(); 12766 12767 goto out; 12768 } 12769 rcu_read_unlock(); 12770 12771 raw_spin_rq_unlock(this_rq); 12772 12773 t0 = sched_clock_cpu(this_cpu); 12774 sched_balance_update_blocked_averages(this_cpu); 12775 12776 rcu_read_lock(); 12777 for_each_domain(this_cpu, sd) { 12778 u64 domain_cost; 12779 12780 update_next_balance(sd, &next_balance); 12781 12782 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12783 break; 12784 12785 if (sd->flags & SD_BALANCE_NEWIDLE) { 12786 12787 pulled_task = sched_balance_rq(this_cpu, this_rq, 12788 sd, CPU_NEWLY_IDLE, 12789 &continue_balancing); 12790 12791 t1 = sched_clock_cpu(this_cpu); 12792 domain_cost = t1 - t0; 12793 update_newidle_cost(sd, domain_cost); 12794 12795 curr_cost += domain_cost; 12796 t0 = t1; 12797 } 12798 12799 /* 12800 * Stop searching for tasks to pull if there are 12801 * now runnable tasks on this rq. 12802 */ 12803 if (pulled_task || !continue_balancing) 12804 break; 12805 } 12806 rcu_read_unlock(); 12807 12808 raw_spin_rq_lock(this_rq); 12809 12810 if (curr_cost > this_rq->max_idle_balance_cost) 12811 this_rq->max_idle_balance_cost = curr_cost; 12812 12813 /* 12814 * While browsing the domains, we released the rq lock, a task could 12815 * have been enqueued in the meantime. Since we're not going idle, 12816 * pretend we pulled a task. 12817 */ 12818 if (this_rq->cfs.h_nr_running && !pulled_task) 12819 pulled_task = 1; 12820 12821 /* Is there a task of a high priority class? */ 12822 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 12823 pulled_task = -1; 12824 12825 out: 12826 /* Move the next balance forward */ 12827 if (time_after(this_rq->next_balance, next_balance)) 12828 this_rq->next_balance = next_balance; 12829 12830 if (pulled_task) 12831 this_rq->idle_stamp = 0; 12832 else 12833 nohz_newidle_balance(this_rq); 12834 12835 rq_repin_lock(this_rq, rf); 12836 12837 return pulled_task; 12838 } 12839 12840 /* 12841 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 12842 * 12843 * - directly from the local scheduler_tick() for periodic load balancing 12844 * 12845 * - indirectly from a remote scheduler_tick() for NOHZ idle balancing 12846 * through the SMP cross-call nohz_csd_func() 12847 */ 12848 static __latent_entropy void sched_balance_softirq(void) 12849 { 12850 struct rq *this_rq = this_rq(); 12851 enum cpu_idle_type idle = this_rq->idle_balance; 12852 /* 12853 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 12854 * balancing on behalf of the other idle CPUs whose ticks are 12855 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 12856 * give the idle CPUs a chance to load balance. Else we may 12857 * load balance only within the local sched_domain hierarchy 12858 * and abort nohz_idle_balance altogether if we pull some load. 12859 */ 12860 if (nohz_idle_balance(this_rq, idle)) 12861 return; 12862 12863 /* normal load balance */ 12864 sched_balance_update_blocked_averages(this_rq->cpu); 12865 sched_balance_domains(this_rq, idle); 12866 } 12867 12868 /* 12869 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12870 */ 12871 void sched_balance_trigger(struct rq *rq) 12872 { 12873 /* 12874 * Don't need to rebalance while attached to NULL domain or 12875 * runqueue CPU is not active 12876 */ 12877 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12878 return; 12879 12880 if (time_after_eq(jiffies, rq->next_balance)) 12881 raise_softirq(SCHED_SOFTIRQ); 12882 12883 nohz_balancer_kick(rq); 12884 } 12885 12886 static void rq_online_fair(struct rq *rq) 12887 { 12888 update_sysctl(); 12889 12890 update_runtime_enabled(rq); 12891 } 12892 12893 static void rq_offline_fair(struct rq *rq) 12894 { 12895 update_sysctl(); 12896 12897 /* Ensure any throttled groups are reachable by pick_next_task */ 12898 unthrottle_offline_cfs_rqs(rq); 12899 12900 /* Ensure that we remove rq contribution to group share: */ 12901 clear_tg_offline_cfs_rqs(rq); 12902 } 12903 12904 #endif /* CONFIG_SMP */ 12905 12906 #ifdef CONFIG_SCHED_CORE 12907 static inline bool 12908 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12909 { 12910 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12911 u64 slice = se->slice; 12912 12913 return (rtime * min_nr_tasks > slice); 12914 } 12915 12916 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12917 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12918 { 12919 if (!sched_core_enabled(rq)) 12920 return; 12921 12922 /* 12923 * If runqueue has only one task which used up its slice and 12924 * if the sibling is forced idle, then trigger schedule to 12925 * give forced idle task a chance. 12926 * 12927 * sched_slice() considers only this active rq and it gets the 12928 * whole slice. But during force idle, we have siblings acting 12929 * like a single runqueue and hence we need to consider runnable 12930 * tasks on this CPU and the forced idle CPU. Ideally, we should 12931 * go through the forced idle rq, but that would be a perf hit. 12932 * We can assume that the forced idle CPU has at least 12933 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12934 * if we need to give up the CPU. 12935 */ 12936 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 12937 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12938 resched_curr(rq); 12939 } 12940 12941 /* 12942 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12943 */ 12944 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12945 bool forceidle) 12946 { 12947 for_each_sched_entity(se) { 12948 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12949 12950 if (forceidle) { 12951 if (cfs_rq->forceidle_seq == fi_seq) 12952 break; 12953 cfs_rq->forceidle_seq = fi_seq; 12954 } 12955 12956 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12957 } 12958 } 12959 12960 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12961 { 12962 struct sched_entity *se = &p->se; 12963 12964 if (p->sched_class != &fair_sched_class) 12965 return; 12966 12967 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12968 } 12969 12970 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12971 bool in_fi) 12972 { 12973 struct rq *rq = task_rq(a); 12974 const struct sched_entity *sea = &a->se; 12975 const struct sched_entity *seb = &b->se; 12976 struct cfs_rq *cfs_rqa; 12977 struct cfs_rq *cfs_rqb; 12978 s64 delta; 12979 12980 SCHED_WARN_ON(task_rq(b)->core != rq->core); 12981 12982 #ifdef CONFIG_FAIR_GROUP_SCHED 12983 /* 12984 * Find an se in the hierarchy for tasks a and b, such that the se's 12985 * are immediate siblings. 12986 */ 12987 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12988 int sea_depth = sea->depth; 12989 int seb_depth = seb->depth; 12990 12991 if (sea_depth >= seb_depth) 12992 sea = parent_entity(sea); 12993 if (sea_depth <= seb_depth) 12994 seb = parent_entity(seb); 12995 } 12996 12997 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 12998 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 12999 13000 cfs_rqa = sea->cfs_rq; 13001 cfs_rqb = seb->cfs_rq; 13002 #else 13003 cfs_rqa = &task_rq(a)->cfs; 13004 cfs_rqb = &task_rq(b)->cfs; 13005 #endif 13006 13007 /* 13008 * Find delta after normalizing se's vruntime with its cfs_rq's 13009 * min_vruntime_fi, which would have been updated in prior calls 13010 * to se_fi_update(). 13011 */ 13012 delta = (s64)(sea->vruntime - seb->vruntime) + 13013 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 13014 13015 return delta > 0; 13016 } 13017 13018 static int task_is_throttled_fair(struct task_struct *p, int cpu) 13019 { 13020 struct cfs_rq *cfs_rq; 13021 13022 #ifdef CONFIG_FAIR_GROUP_SCHED 13023 cfs_rq = task_group(p)->cfs_rq[cpu]; 13024 #else 13025 cfs_rq = &cpu_rq(cpu)->cfs; 13026 #endif 13027 return throttled_hierarchy(cfs_rq); 13028 } 13029 #else 13030 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 13031 #endif 13032 13033 /* 13034 * scheduler tick hitting a task of our scheduling class. 13035 * 13036 * NOTE: This function can be called remotely by the tick offload that 13037 * goes along full dynticks. Therefore no local assumption can be made 13038 * and everything must be accessed through the @rq and @curr passed in 13039 * parameters. 13040 */ 13041 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 13042 { 13043 struct cfs_rq *cfs_rq; 13044 struct sched_entity *se = &curr->se; 13045 13046 for_each_sched_entity(se) { 13047 cfs_rq = cfs_rq_of(se); 13048 entity_tick(cfs_rq, se, queued); 13049 } 13050 13051 if (static_branch_unlikely(&sched_numa_balancing)) 13052 task_tick_numa(rq, curr); 13053 13054 update_misfit_status(curr, rq); 13055 check_update_overutilized_status(task_rq(curr)); 13056 13057 task_tick_core(rq, curr); 13058 } 13059 13060 /* 13061 * called on fork with the child task as argument from the parent's context 13062 * - child not yet on the tasklist 13063 * - preemption disabled 13064 */ 13065 static void task_fork_fair(struct task_struct *p) 13066 { 13067 set_task_max_allowed_capacity(p); 13068 } 13069 13070 /* 13071 * Priority of the task has changed. Check to see if we preempt 13072 * the current task. 13073 */ 13074 static void 13075 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 13076 { 13077 if (!task_on_rq_queued(p)) 13078 return; 13079 13080 if (rq->cfs.nr_running == 1) 13081 return; 13082 13083 /* 13084 * Reschedule if we are currently running on this runqueue and 13085 * our priority decreased, or if we are not currently running on 13086 * this runqueue and our priority is higher than the current's 13087 */ 13088 if (task_current(rq, p)) { 13089 if (p->prio > oldprio) 13090 resched_curr(rq); 13091 } else 13092 wakeup_preempt(rq, p, 0); 13093 } 13094 13095 #ifdef CONFIG_FAIR_GROUP_SCHED 13096 /* 13097 * Propagate the changes of the sched_entity across the tg tree to make it 13098 * visible to the root 13099 */ 13100 static void propagate_entity_cfs_rq(struct sched_entity *se) 13101 { 13102 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13103 13104 if (cfs_rq_throttled(cfs_rq)) 13105 return; 13106 13107 if (!throttled_hierarchy(cfs_rq)) 13108 list_add_leaf_cfs_rq(cfs_rq); 13109 13110 /* Start to propagate at parent */ 13111 se = se->parent; 13112 13113 for_each_sched_entity(se) { 13114 cfs_rq = cfs_rq_of(se); 13115 13116 update_load_avg(cfs_rq, se, UPDATE_TG); 13117 13118 if (cfs_rq_throttled(cfs_rq)) 13119 break; 13120 13121 if (!throttled_hierarchy(cfs_rq)) 13122 list_add_leaf_cfs_rq(cfs_rq); 13123 } 13124 } 13125 #else 13126 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 13127 #endif 13128 13129 static void detach_entity_cfs_rq(struct sched_entity *se) 13130 { 13131 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13132 13133 #ifdef CONFIG_SMP 13134 /* 13135 * In case the task sched_avg hasn't been attached: 13136 * - A forked task which hasn't been woken up by wake_up_new_task(). 13137 * - A task which has been woken up by try_to_wake_up() but is 13138 * waiting for actually being woken up by sched_ttwu_pending(). 13139 */ 13140 if (!se->avg.last_update_time) 13141 return; 13142 #endif 13143 13144 /* Catch up with the cfs_rq and remove our load when we leave */ 13145 update_load_avg(cfs_rq, se, 0); 13146 detach_entity_load_avg(cfs_rq, se); 13147 update_tg_load_avg(cfs_rq); 13148 propagate_entity_cfs_rq(se); 13149 } 13150 13151 static void attach_entity_cfs_rq(struct sched_entity *se) 13152 { 13153 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13154 13155 /* Synchronize entity with its cfs_rq */ 13156 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 13157 attach_entity_load_avg(cfs_rq, se); 13158 update_tg_load_avg(cfs_rq); 13159 propagate_entity_cfs_rq(se); 13160 } 13161 13162 static void detach_task_cfs_rq(struct task_struct *p) 13163 { 13164 struct sched_entity *se = &p->se; 13165 13166 detach_entity_cfs_rq(se); 13167 } 13168 13169 static void attach_task_cfs_rq(struct task_struct *p) 13170 { 13171 struct sched_entity *se = &p->se; 13172 13173 attach_entity_cfs_rq(se); 13174 } 13175 13176 static void switched_from_fair(struct rq *rq, struct task_struct *p) 13177 { 13178 detach_task_cfs_rq(p); 13179 /* 13180 * Since this is called after changing class, this is a little weird 13181 * and we cannot use DEQUEUE_DELAYED. 13182 */ 13183 if (p->se.sched_delayed) { 13184 /* First, dequeue it from its new class' structures */ 13185 dequeue_task(rq, p, DEQUEUE_NOCLOCK | DEQUEUE_SLEEP); 13186 /* 13187 * Now, clean up the fair_sched_class side of things 13188 * related to sched_delayed being true and that wasn't done 13189 * due to the generic dequeue not using DEQUEUE_DELAYED. 13190 */ 13191 finish_delayed_dequeue_entity(&p->se); 13192 p->se.rel_deadline = 0; 13193 __block_task(rq, p); 13194 } 13195 } 13196 13197 static void switched_to_fair(struct rq *rq, struct task_struct *p) 13198 { 13199 SCHED_WARN_ON(p->se.sched_delayed); 13200 13201 attach_task_cfs_rq(p); 13202 13203 set_task_max_allowed_capacity(p); 13204 13205 if (task_on_rq_queued(p)) { 13206 /* 13207 * We were most likely switched from sched_rt, so 13208 * kick off the schedule if running, otherwise just see 13209 * if we can still preempt the current task. 13210 */ 13211 if (task_current(rq, p)) 13212 resched_curr(rq); 13213 else 13214 wakeup_preempt(rq, p, 0); 13215 } 13216 } 13217 13218 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13219 { 13220 struct sched_entity *se = &p->se; 13221 13222 #ifdef CONFIG_SMP 13223 if (task_on_rq_queued(p)) { 13224 /* 13225 * Move the next running task to the front of the list, so our 13226 * cfs_tasks list becomes MRU one. 13227 */ 13228 list_move(&se->group_node, &rq->cfs_tasks); 13229 } 13230 #endif 13231 if (!first) 13232 return; 13233 13234 SCHED_WARN_ON(se->sched_delayed); 13235 13236 if (hrtick_enabled_fair(rq)) 13237 hrtick_start_fair(rq, p); 13238 13239 update_misfit_status(p, rq); 13240 sched_fair_update_stop_tick(rq, p); 13241 } 13242 13243 /* 13244 * Account for a task changing its policy or group. 13245 * 13246 * This routine is mostly called to set cfs_rq->curr field when a task 13247 * migrates between groups/classes. 13248 */ 13249 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13250 { 13251 struct sched_entity *se = &p->se; 13252 13253 for_each_sched_entity(se) { 13254 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13255 13256 set_next_entity(cfs_rq, se); 13257 /* ensure bandwidth has been allocated on our new cfs_rq */ 13258 account_cfs_rq_runtime(cfs_rq, 0); 13259 } 13260 13261 __set_next_task_fair(rq, p, first); 13262 } 13263 13264 void init_cfs_rq(struct cfs_rq *cfs_rq) 13265 { 13266 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 13267 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 13268 #ifdef CONFIG_SMP 13269 raw_spin_lock_init(&cfs_rq->removed.lock); 13270 #endif 13271 } 13272 13273 #ifdef CONFIG_FAIR_GROUP_SCHED 13274 static void task_change_group_fair(struct task_struct *p) 13275 { 13276 /* 13277 * We couldn't detach or attach a forked task which 13278 * hasn't been woken up by wake_up_new_task(). 13279 */ 13280 if (READ_ONCE(p->__state) == TASK_NEW) 13281 return; 13282 13283 detach_task_cfs_rq(p); 13284 13285 #ifdef CONFIG_SMP 13286 /* Tell se's cfs_rq has been changed -- migrated */ 13287 p->se.avg.last_update_time = 0; 13288 #endif 13289 set_task_rq(p, task_cpu(p)); 13290 attach_task_cfs_rq(p); 13291 } 13292 13293 void free_fair_sched_group(struct task_group *tg) 13294 { 13295 int i; 13296 13297 for_each_possible_cpu(i) { 13298 if (tg->cfs_rq) 13299 kfree(tg->cfs_rq[i]); 13300 if (tg->se) 13301 kfree(tg->se[i]); 13302 } 13303 13304 kfree(tg->cfs_rq); 13305 kfree(tg->se); 13306 } 13307 13308 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 13309 { 13310 struct sched_entity *se; 13311 struct cfs_rq *cfs_rq; 13312 int i; 13313 13314 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 13315 if (!tg->cfs_rq) 13316 goto err; 13317 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 13318 if (!tg->se) 13319 goto err; 13320 13321 tg->shares = NICE_0_LOAD; 13322 13323 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 13324 13325 for_each_possible_cpu(i) { 13326 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 13327 GFP_KERNEL, cpu_to_node(i)); 13328 if (!cfs_rq) 13329 goto err; 13330 13331 se = kzalloc_node(sizeof(struct sched_entity_stats), 13332 GFP_KERNEL, cpu_to_node(i)); 13333 if (!se) 13334 goto err_free_rq; 13335 13336 init_cfs_rq(cfs_rq); 13337 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 13338 init_entity_runnable_average(se); 13339 } 13340 13341 return 1; 13342 13343 err_free_rq: 13344 kfree(cfs_rq); 13345 err: 13346 return 0; 13347 } 13348 13349 void online_fair_sched_group(struct task_group *tg) 13350 { 13351 struct sched_entity *se; 13352 struct rq_flags rf; 13353 struct rq *rq; 13354 int i; 13355 13356 for_each_possible_cpu(i) { 13357 rq = cpu_rq(i); 13358 se = tg->se[i]; 13359 rq_lock_irq(rq, &rf); 13360 update_rq_clock(rq); 13361 attach_entity_cfs_rq(se); 13362 sync_throttle(tg, i); 13363 rq_unlock_irq(rq, &rf); 13364 } 13365 } 13366 13367 void unregister_fair_sched_group(struct task_group *tg) 13368 { 13369 int cpu; 13370 13371 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 13372 13373 for_each_possible_cpu(cpu) { 13374 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 13375 struct sched_entity *se = tg->se[cpu]; 13376 struct rq *rq = cpu_rq(cpu); 13377 13378 if (se) { 13379 if (se->sched_delayed) { 13380 guard(rq_lock_irqsave)(rq); 13381 if (se->sched_delayed) { 13382 update_rq_clock(rq); 13383 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 13384 } 13385 list_del_leaf_cfs_rq(cfs_rq); 13386 } 13387 remove_entity_load_avg(se); 13388 } 13389 13390 /* 13391 * Only empty task groups can be destroyed; so we can speculatively 13392 * check on_list without danger of it being re-added. 13393 */ 13394 if (cfs_rq->on_list) { 13395 guard(rq_lock_irqsave)(rq); 13396 list_del_leaf_cfs_rq(cfs_rq); 13397 } 13398 } 13399 } 13400 13401 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13402 struct sched_entity *se, int cpu, 13403 struct sched_entity *parent) 13404 { 13405 struct rq *rq = cpu_rq(cpu); 13406 13407 cfs_rq->tg = tg; 13408 cfs_rq->rq = rq; 13409 init_cfs_rq_runtime(cfs_rq); 13410 13411 tg->cfs_rq[cpu] = cfs_rq; 13412 tg->se[cpu] = se; 13413 13414 /* se could be NULL for root_task_group */ 13415 if (!se) 13416 return; 13417 13418 if (!parent) { 13419 se->cfs_rq = &rq->cfs; 13420 se->depth = 0; 13421 } else { 13422 se->cfs_rq = parent->my_q; 13423 se->depth = parent->depth + 1; 13424 } 13425 13426 se->my_q = cfs_rq; 13427 /* guarantee group entities always have weight */ 13428 update_load_set(&se->load, NICE_0_LOAD); 13429 se->parent = parent; 13430 } 13431 13432 static DEFINE_MUTEX(shares_mutex); 13433 13434 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13435 { 13436 int i; 13437 13438 lockdep_assert_held(&shares_mutex); 13439 13440 /* 13441 * We can't change the weight of the root cgroup. 13442 */ 13443 if (!tg->se[0]) 13444 return -EINVAL; 13445 13446 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13447 13448 if (tg->shares == shares) 13449 return 0; 13450 13451 tg->shares = shares; 13452 for_each_possible_cpu(i) { 13453 struct rq *rq = cpu_rq(i); 13454 struct sched_entity *se = tg->se[i]; 13455 struct rq_flags rf; 13456 13457 /* Propagate contribution to hierarchy */ 13458 rq_lock_irqsave(rq, &rf); 13459 update_rq_clock(rq); 13460 for_each_sched_entity(se) { 13461 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13462 update_cfs_group(se); 13463 } 13464 rq_unlock_irqrestore(rq, &rf); 13465 } 13466 13467 return 0; 13468 } 13469 13470 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13471 { 13472 int ret; 13473 13474 mutex_lock(&shares_mutex); 13475 if (tg_is_idle(tg)) 13476 ret = -EINVAL; 13477 else 13478 ret = __sched_group_set_shares(tg, shares); 13479 mutex_unlock(&shares_mutex); 13480 13481 return ret; 13482 } 13483 13484 int sched_group_set_idle(struct task_group *tg, long idle) 13485 { 13486 int i; 13487 13488 if (tg == &root_task_group) 13489 return -EINVAL; 13490 13491 if (idle < 0 || idle > 1) 13492 return -EINVAL; 13493 13494 mutex_lock(&shares_mutex); 13495 13496 if (tg->idle == idle) { 13497 mutex_unlock(&shares_mutex); 13498 return 0; 13499 } 13500 13501 tg->idle = idle; 13502 13503 for_each_possible_cpu(i) { 13504 struct rq *rq = cpu_rq(i); 13505 struct sched_entity *se = tg->se[i]; 13506 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 13507 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13508 long idle_task_delta; 13509 struct rq_flags rf; 13510 13511 rq_lock_irqsave(rq, &rf); 13512 13513 grp_cfs_rq->idle = idle; 13514 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13515 goto next_cpu; 13516 13517 if (se->on_rq) { 13518 parent_cfs_rq = cfs_rq_of(se); 13519 if (cfs_rq_is_idle(grp_cfs_rq)) 13520 parent_cfs_rq->idle_nr_running++; 13521 else 13522 parent_cfs_rq->idle_nr_running--; 13523 } 13524 13525 idle_task_delta = grp_cfs_rq->h_nr_running - 13526 grp_cfs_rq->idle_h_nr_running; 13527 if (!cfs_rq_is_idle(grp_cfs_rq)) 13528 idle_task_delta *= -1; 13529 13530 for_each_sched_entity(se) { 13531 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13532 13533 if (!se->on_rq) 13534 break; 13535 13536 cfs_rq->idle_h_nr_running += idle_task_delta; 13537 13538 /* Already accounted at parent level and above. */ 13539 if (cfs_rq_is_idle(cfs_rq)) 13540 break; 13541 } 13542 13543 next_cpu: 13544 rq_unlock_irqrestore(rq, &rf); 13545 } 13546 13547 /* Idle groups have minimum weight. */ 13548 if (tg_is_idle(tg)) 13549 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13550 else 13551 __sched_group_set_shares(tg, NICE_0_LOAD); 13552 13553 mutex_unlock(&shares_mutex); 13554 return 0; 13555 } 13556 13557 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13558 13559 13560 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13561 { 13562 struct sched_entity *se = &task->se; 13563 unsigned int rr_interval = 0; 13564 13565 /* 13566 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13567 * idle runqueue: 13568 */ 13569 if (rq->cfs.load.weight) 13570 rr_interval = NS_TO_JIFFIES(se->slice); 13571 13572 return rr_interval; 13573 } 13574 13575 /* 13576 * All the scheduling class methods: 13577 */ 13578 DEFINE_SCHED_CLASS(fair) = { 13579 13580 .enqueue_task = enqueue_task_fair, 13581 .dequeue_task = dequeue_task_fair, 13582 .yield_task = yield_task_fair, 13583 .yield_to_task = yield_to_task_fair, 13584 13585 .wakeup_preempt = check_preempt_wakeup_fair, 13586 13587 .pick_task = pick_task_fair, 13588 .pick_next_task = __pick_next_task_fair, 13589 .put_prev_task = put_prev_task_fair, 13590 .set_next_task = set_next_task_fair, 13591 13592 #ifdef CONFIG_SMP 13593 .balance = balance_fair, 13594 .select_task_rq = select_task_rq_fair, 13595 .migrate_task_rq = migrate_task_rq_fair, 13596 13597 .rq_online = rq_online_fair, 13598 .rq_offline = rq_offline_fair, 13599 13600 .task_dead = task_dead_fair, 13601 .set_cpus_allowed = set_cpus_allowed_fair, 13602 #endif 13603 13604 .task_tick = task_tick_fair, 13605 .task_fork = task_fork_fair, 13606 13607 .prio_changed = prio_changed_fair, 13608 .switched_from = switched_from_fair, 13609 .switched_to = switched_to_fair, 13610 13611 .get_rr_interval = get_rr_interval_fair, 13612 13613 .update_curr = update_curr_fair, 13614 13615 #ifdef CONFIG_FAIR_GROUP_SCHED 13616 .task_change_group = task_change_group_fair, 13617 #endif 13618 13619 #ifdef CONFIG_SCHED_CORE 13620 .task_is_throttled = task_is_throttled_fair, 13621 #endif 13622 13623 #ifdef CONFIG_UCLAMP_TASK 13624 .uclamp_enabled = 1, 13625 #endif 13626 }; 13627 13628 #ifdef CONFIG_SCHED_DEBUG 13629 void print_cfs_stats(struct seq_file *m, int cpu) 13630 { 13631 struct cfs_rq *cfs_rq, *pos; 13632 13633 rcu_read_lock(); 13634 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13635 print_cfs_rq(m, cpu, cfs_rq); 13636 rcu_read_unlock(); 13637 } 13638 13639 #ifdef CONFIG_NUMA_BALANCING 13640 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13641 { 13642 int node; 13643 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13644 struct numa_group *ng; 13645 13646 rcu_read_lock(); 13647 ng = rcu_dereference(p->numa_group); 13648 for_each_online_node(node) { 13649 if (p->numa_faults) { 13650 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13651 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13652 } 13653 if (ng) { 13654 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13655 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13656 } 13657 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13658 } 13659 rcu_read_unlock(); 13660 } 13661 #endif /* CONFIG_NUMA_BALANCING */ 13662 #endif /* CONFIG_SCHED_DEBUG */ 13663 13664 __init void init_sched_fair_class(void) 13665 { 13666 #ifdef CONFIG_SMP 13667 int i; 13668 13669 for_each_possible_cpu(i) { 13670 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13671 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13672 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13673 GFP_KERNEL, cpu_to_node(i)); 13674 13675 #ifdef CONFIG_CFS_BANDWIDTH 13676 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13677 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13678 #endif 13679 } 13680 13681 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13682 13683 #ifdef CONFIG_NO_HZ_COMMON 13684 nohz.next_balance = jiffies; 13685 nohz.next_blocked = jiffies; 13686 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13687 #endif 13688 #endif /* SMP */ 13689 13690 } 13691