1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/prio.h> 41 42 #include <linux/cpuidle.h> 43 #include <linux/interrupt.h> 44 #include <linux/memory-tiers.h> 45 #include <linux/mempolicy.h> 46 #include <linux/mutex_api.h> 47 #include <linux/profile.h> 48 #include <linux/psi.h> 49 #include <linux/ratelimit.h> 50 #include <linux/task_work.h> 51 #include <linux/rbtree_augmented.h> 52 53 #include <asm/switch_to.h> 54 55 #include <uapi/linux/sched/types.h> 56 57 #include "sched.h" 58 #include "stats.h" 59 #include "autogroup.h" 60 61 /* 62 * The initial- and re-scaling of tunables is configurable 63 * 64 * Options are: 65 * 66 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 67 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) 68 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 69 * 70 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 71 */ 72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 73 74 /* 75 * Minimal preemption granularity for CPU-bound tasks: 76 * 77 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 78 */ 79 unsigned int sysctl_sched_base_slice = 750000ULL; 80 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 81 82 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 83 84 static int __init setup_sched_thermal_decay_shift(char *str) 85 { 86 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 87 return 1; 88 } 89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 90 91 #ifdef CONFIG_SMP 92 /* 93 * For asym packing, by default the lower numbered CPU has higher priority. 94 */ 95 int __weak arch_asym_cpu_priority(int cpu) 96 { 97 return -cpu; 98 } 99 100 /* 101 * The margin used when comparing utilization with CPU capacity. 102 * 103 * (default: ~20%) 104 */ 105 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 106 107 /* 108 * The margin used when comparing CPU capacities. 109 * is 'cap1' noticeably greater than 'cap2' 110 * 111 * (default: ~5%) 112 */ 113 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 114 #endif 115 116 #ifdef CONFIG_CFS_BANDWIDTH 117 /* 118 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 119 * each time a cfs_rq requests quota. 120 * 121 * Note: in the case that the slice exceeds the runtime remaining (either due 122 * to consumption or the quota being specified to be smaller than the slice) 123 * we will always only issue the remaining available time. 124 * 125 * (default: 5 msec, units: microseconds) 126 */ 127 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 128 #endif 129 130 #ifdef CONFIG_NUMA_BALANCING 131 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 132 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 133 #endif 134 135 #ifdef CONFIG_SYSCTL 136 static const struct ctl_table sched_fair_sysctls[] = { 137 #ifdef CONFIG_CFS_BANDWIDTH 138 { 139 .procname = "sched_cfs_bandwidth_slice_us", 140 .data = &sysctl_sched_cfs_bandwidth_slice, 141 .maxlen = sizeof(unsigned int), 142 .mode = 0644, 143 .proc_handler = proc_dointvec_minmax, 144 .extra1 = SYSCTL_ONE, 145 }, 146 #endif 147 #ifdef CONFIG_NUMA_BALANCING 148 { 149 .procname = "numa_balancing_promote_rate_limit_MBps", 150 .data = &sysctl_numa_balancing_promote_rate_limit, 151 .maxlen = sizeof(unsigned int), 152 .mode = 0644, 153 .proc_handler = proc_dointvec_minmax, 154 .extra1 = SYSCTL_ZERO, 155 }, 156 #endif /* CONFIG_NUMA_BALANCING */ 157 }; 158 159 static int __init sched_fair_sysctl_init(void) 160 { 161 register_sysctl_init("kernel", sched_fair_sysctls); 162 return 0; 163 } 164 late_initcall(sched_fair_sysctl_init); 165 #endif 166 167 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 168 { 169 lw->weight += inc; 170 lw->inv_weight = 0; 171 } 172 173 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 174 { 175 lw->weight -= dec; 176 lw->inv_weight = 0; 177 } 178 179 static inline void update_load_set(struct load_weight *lw, unsigned long w) 180 { 181 lw->weight = w; 182 lw->inv_weight = 0; 183 } 184 185 /* 186 * Increase the granularity value when there are more CPUs, 187 * because with more CPUs the 'effective latency' as visible 188 * to users decreases. But the relationship is not linear, 189 * so pick a second-best guess by going with the log2 of the 190 * number of CPUs. 191 * 192 * This idea comes from the SD scheduler of Con Kolivas: 193 */ 194 static unsigned int get_update_sysctl_factor(void) 195 { 196 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 197 unsigned int factor; 198 199 switch (sysctl_sched_tunable_scaling) { 200 case SCHED_TUNABLESCALING_NONE: 201 factor = 1; 202 break; 203 case SCHED_TUNABLESCALING_LINEAR: 204 factor = cpus; 205 break; 206 case SCHED_TUNABLESCALING_LOG: 207 default: 208 factor = 1 + ilog2(cpus); 209 break; 210 } 211 212 return factor; 213 } 214 215 static void update_sysctl(void) 216 { 217 unsigned int factor = get_update_sysctl_factor(); 218 219 #define SET_SYSCTL(name) \ 220 (sysctl_##name = (factor) * normalized_sysctl_##name) 221 SET_SYSCTL(sched_base_slice); 222 #undef SET_SYSCTL 223 } 224 225 void __init sched_init_granularity(void) 226 { 227 update_sysctl(); 228 } 229 230 #define WMULT_CONST (~0U) 231 #define WMULT_SHIFT 32 232 233 static void __update_inv_weight(struct load_weight *lw) 234 { 235 unsigned long w; 236 237 if (likely(lw->inv_weight)) 238 return; 239 240 w = scale_load_down(lw->weight); 241 242 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 243 lw->inv_weight = 1; 244 else if (unlikely(!w)) 245 lw->inv_weight = WMULT_CONST; 246 else 247 lw->inv_weight = WMULT_CONST / w; 248 } 249 250 /* 251 * delta_exec * weight / lw.weight 252 * OR 253 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 254 * 255 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 256 * we're guaranteed shift stays positive because inv_weight is guaranteed to 257 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 258 * 259 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 260 * weight/lw.weight <= 1, and therefore our shift will also be positive. 261 */ 262 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 263 { 264 u64 fact = scale_load_down(weight); 265 u32 fact_hi = (u32)(fact >> 32); 266 int shift = WMULT_SHIFT; 267 int fs; 268 269 __update_inv_weight(lw); 270 271 if (unlikely(fact_hi)) { 272 fs = fls(fact_hi); 273 shift -= fs; 274 fact >>= fs; 275 } 276 277 fact = mul_u32_u32(fact, lw->inv_weight); 278 279 fact_hi = (u32)(fact >> 32); 280 if (fact_hi) { 281 fs = fls(fact_hi); 282 shift -= fs; 283 fact >>= fs; 284 } 285 286 return mul_u64_u32_shr(delta_exec, fact, shift); 287 } 288 289 /* 290 * delta /= w 291 */ 292 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 293 { 294 if (unlikely(se->load.weight != NICE_0_LOAD)) 295 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 296 297 return delta; 298 } 299 300 const struct sched_class fair_sched_class; 301 302 /************************************************************** 303 * CFS operations on generic schedulable entities: 304 */ 305 306 #ifdef CONFIG_FAIR_GROUP_SCHED 307 308 /* Walk up scheduling entities hierarchy */ 309 #define for_each_sched_entity(se) \ 310 for (; se; se = se->parent) 311 312 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 313 { 314 struct rq *rq = rq_of(cfs_rq); 315 int cpu = cpu_of(rq); 316 317 if (cfs_rq->on_list) 318 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 319 320 cfs_rq->on_list = 1; 321 322 /* 323 * Ensure we either appear before our parent (if already 324 * enqueued) or force our parent to appear after us when it is 325 * enqueued. The fact that we always enqueue bottom-up 326 * reduces this to two cases and a special case for the root 327 * cfs_rq. Furthermore, it also means that we will always reset 328 * tmp_alone_branch either when the branch is connected 329 * to a tree or when we reach the top of the tree 330 */ 331 if (cfs_rq->tg->parent && 332 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 333 /* 334 * If parent is already on the list, we add the child 335 * just before. Thanks to circular linked property of 336 * the list, this means to put the child at the tail 337 * of the list that starts by parent. 338 */ 339 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 340 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 341 /* 342 * The branch is now connected to its tree so we can 343 * reset tmp_alone_branch to the beginning of the 344 * list. 345 */ 346 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 347 return true; 348 } 349 350 if (!cfs_rq->tg->parent) { 351 /* 352 * cfs rq without parent should be put 353 * at the tail of the list. 354 */ 355 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 356 &rq->leaf_cfs_rq_list); 357 /* 358 * We have reach the top of a tree so we can reset 359 * tmp_alone_branch to the beginning of the list. 360 */ 361 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 362 return true; 363 } 364 365 /* 366 * The parent has not already been added so we want to 367 * make sure that it will be put after us. 368 * tmp_alone_branch points to the begin of the branch 369 * where we will add parent. 370 */ 371 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 372 /* 373 * update tmp_alone_branch to points to the new begin 374 * of the branch 375 */ 376 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 377 return false; 378 } 379 380 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 381 { 382 if (cfs_rq->on_list) { 383 struct rq *rq = rq_of(cfs_rq); 384 385 /* 386 * With cfs_rq being unthrottled/throttled during an enqueue, 387 * it can happen the tmp_alone_branch points to the leaf that 388 * we finally want to delete. In this case, tmp_alone_branch moves 389 * to the prev element but it will point to rq->leaf_cfs_rq_list 390 * at the end of the enqueue. 391 */ 392 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 393 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 394 395 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 396 cfs_rq->on_list = 0; 397 } 398 } 399 400 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 401 { 402 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 403 } 404 405 /* Iterate through all leaf cfs_rq's on a runqueue */ 406 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 407 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 408 leaf_cfs_rq_list) 409 410 /* Do the two (enqueued) entities belong to the same group ? */ 411 static inline struct cfs_rq * 412 is_same_group(struct sched_entity *se, struct sched_entity *pse) 413 { 414 if (se->cfs_rq == pse->cfs_rq) 415 return se->cfs_rq; 416 417 return NULL; 418 } 419 420 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 421 { 422 return se->parent; 423 } 424 425 static void 426 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 427 { 428 int se_depth, pse_depth; 429 430 /* 431 * preemption test can be made between sibling entities who are in the 432 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 433 * both tasks until we find their ancestors who are siblings of common 434 * parent. 435 */ 436 437 /* First walk up until both entities are at same depth */ 438 se_depth = (*se)->depth; 439 pse_depth = (*pse)->depth; 440 441 while (se_depth > pse_depth) { 442 se_depth--; 443 *se = parent_entity(*se); 444 } 445 446 while (pse_depth > se_depth) { 447 pse_depth--; 448 *pse = parent_entity(*pse); 449 } 450 451 while (!is_same_group(*se, *pse)) { 452 *se = parent_entity(*se); 453 *pse = parent_entity(*pse); 454 } 455 } 456 457 static int tg_is_idle(struct task_group *tg) 458 { 459 return tg->idle > 0; 460 } 461 462 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 463 { 464 return cfs_rq->idle > 0; 465 } 466 467 static int se_is_idle(struct sched_entity *se) 468 { 469 if (entity_is_task(se)) 470 return task_has_idle_policy(task_of(se)); 471 return cfs_rq_is_idle(group_cfs_rq(se)); 472 } 473 474 #else /* !CONFIG_FAIR_GROUP_SCHED */ 475 476 #define for_each_sched_entity(se) \ 477 for (; se; se = NULL) 478 479 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 480 { 481 return true; 482 } 483 484 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 485 { 486 } 487 488 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 489 { 490 } 491 492 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 493 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 494 495 static inline struct sched_entity *parent_entity(struct sched_entity *se) 496 { 497 return NULL; 498 } 499 500 static inline void 501 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 502 { 503 } 504 505 static inline int tg_is_idle(struct task_group *tg) 506 { 507 return 0; 508 } 509 510 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 511 { 512 return 0; 513 } 514 515 static int se_is_idle(struct sched_entity *se) 516 { 517 return task_has_idle_policy(task_of(se)); 518 } 519 520 #endif /* CONFIG_FAIR_GROUP_SCHED */ 521 522 static __always_inline 523 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 524 525 /************************************************************** 526 * Scheduling class tree data structure manipulation methods: 527 */ 528 529 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime) 530 { 531 s64 delta = (s64)(vruntime - max_vruntime); 532 if (delta > 0) 533 max_vruntime = vruntime; 534 535 return max_vruntime; 536 } 537 538 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime) 539 { 540 s64 delta = (s64)(vruntime - min_vruntime); 541 if (delta < 0) 542 min_vruntime = vruntime; 543 544 return min_vruntime; 545 } 546 547 static inline bool entity_before(const struct sched_entity *a, 548 const struct sched_entity *b) 549 { 550 /* 551 * Tiebreak on vruntime seems unnecessary since it can 552 * hardly happen. 553 */ 554 return (s64)(a->deadline - b->deadline) < 0; 555 } 556 557 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 558 { 559 return (s64)(se->vruntime - cfs_rq->min_vruntime); 560 } 561 562 #define __node_2_se(node) \ 563 rb_entry((node), struct sched_entity, run_node) 564 565 /* 566 * Compute virtual time from the per-task service numbers: 567 * 568 * Fair schedulers conserve lag: 569 * 570 * \Sum lag_i = 0 571 * 572 * Where lag_i is given by: 573 * 574 * lag_i = S - s_i = w_i * (V - v_i) 575 * 576 * Where S is the ideal service time and V is it's virtual time counterpart. 577 * Therefore: 578 * 579 * \Sum lag_i = 0 580 * \Sum w_i * (V - v_i) = 0 581 * \Sum w_i * V - w_i * v_i = 0 582 * 583 * From which we can solve an expression for V in v_i (which we have in 584 * se->vruntime): 585 * 586 * \Sum v_i * w_i \Sum v_i * w_i 587 * V = -------------- = -------------- 588 * \Sum w_i W 589 * 590 * Specifically, this is the weighted average of all entity virtual runtimes. 591 * 592 * [[ NOTE: this is only equal to the ideal scheduler under the condition 593 * that join/leave operations happen at lag_i = 0, otherwise the 594 * virtual time has non-contiguous motion equivalent to: 595 * 596 * V +-= lag_i / W 597 * 598 * Also see the comment in place_entity() that deals with this. ]] 599 * 600 * However, since v_i is u64, and the multiplication could easily overflow 601 * transform it into a relative form that uses smaller quantities: 602 * 603 * Substitute: v_i == (v_i - v0) + v0 604 * 605 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 606 * V = ---------------------------- = --------------------- + v0 607 * W W 608 * 609 * Which we track using: 610 * 611 * v0 := cfs_rq->min_vruntime 612 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 613 * \Sum w_i := cfs_rq->avg_load 614 * 615 * Since min_vruntime is a monotonic increasing variable that closely tracks 616 * the per-task service, these deltas: (v_i - v), will be in the order of the 617 * maximal (virtual) lag induced in the system due to quantisation. 618 * 619 * Also, we use scale_load_down() to reduce the size. 620 * 621 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 622 */ 623 static void 624 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 625 { 626 unsigned long weight = scale_load_down(se->load.weight); 627 s64 key = entity_key(cfs_rq, se); 628 629 cfs_rq->avg_vruntime += key * weight; 630 cfs_rq->avg_load += weight; 631 } 632 633 static void 634 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 635 { 636 unsigned long weight = scale_load_down(se->load.weight); 637 s64 key = entity_key(cfs_rq, se); 638 639 cfs_rq->avg_vruntime -= key * weight; 640 cfs_rq->avg_load -= weight; 641 } 642 643 static inline 644 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 645 { 646 /* 647 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 648 */ 649 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 650 } 651 652 /* 653 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 654 * For this to be so, the result of this function must have a left bias. 655 */ 656 u64 avg_vruntime(struct cfs_rq *cfs_rq) 657 { 658 struct sched_entity *curr = cfs_rq->curr; 659 s64 avg = cfs_rq->avg_vruntime; 660 long load = cfs_rq->avg_load; 661 662 if (curr && curr->on_rq) { 663 unsigned long weight = scale_load_down(curr->load.weight); 664 665 avg += entity_key(cfs_rq, curr) * weight; 666 load += weight; 667 } 668 669 if (load) { 670 /* sign flips effective floor / ceiling */ 671 if (avg < 0) 672 avg -= (load - 1); 673 avg = div_s64(avg, load); 674 } 675 676 return cfs_rq->min_vruntime + avg; 677 } 678 679 /* 680 * lag_i = S - s_i = w_i * (V - v_i) 681 * 682 * However, since V is approximated by the weighted average of all entities it 683 * is possible -- by addition/removal/reweight to the tree -- to move V around 684 * and end up with a larger lag than we started with. 685 * 686 * Limit this to either double the slice length with a minimum of TICK_NSEC 687 * since that is the timing granularity. 688 * 689 * EEVDF gives the following limit for a steady state system: 690 * 691 * -r_max < lag < max(r_max, q) 692 * 693 * XXX could add max_slice to the augmented data to track this. 694 */ 695 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 696 { 697 s64 vlag, limit; 698 699 SCHED_WARN_ON(!se->on_rq); 700 701 vlag = avg_vruntime(cfs_rq) - se->vruntime; 702 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 703 704 se->vlag = clamp(vlag, -limit, limit); 705 } 706 707 /* 708 * Entity is eligible once it received less service than it ought to have, 709 * eg. lag >= 0. 710 * 711 * lag_i = S - s_i = w_i*(V - v_i) 712 * 713 * lag_i >= 0 -> V >= v_i 714 * 715 * \Sum (v_i - v)*w_i 716 * V = ------------------ + v 717 * \Sum w_i 718 * 719 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 720 * 721 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 722 * to the loss in precision caused by the division. 723 */ 724 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 725 { 726 struct sched_entity *curr = cfs_rq->curr; 727 s64 avg = cfs_rq->avg_vruntime; 728 long load = cfs_rq->avg_load; 729 730 if (curr && curr->on_rq) { 731 unsigned long weight = scale_load_down(curr->load.weight); 732 733 avg += entity_key(cfs_rq, curr) * weight; 734 load += weight; 735 } 736 737 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 738 } 739 740 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 741 { 742 return vruntime_eligible(cfs_rq, se->vruntime); 743 } 744 745 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 746 { 747 u64 min_vruntime = cfs_rq->min_vruntime; 748 /* 749 * open coded max_vruntime() to allow updating avg_vruntime 750 */ 751 s64 delta = (s64)(vruntime - min_vruntime); 752 if (delta > 0) { 753 avg_vruntime_update(cfs_rq, delta); 754 min_vruntime = vruntime; 755 } 756 return min_vruntime; 757 } 758 759 static void update_min_vruntime(struct cfs_rq *cfs_rq) 760 { 761 struct sched_entity *se = __pick_root_entity(cfs_rq); 762 struct sched_entity *curr = cfs_rq->curr; 763 u64 vruntime = cfs_rq->min_vruntime; 764 765 if (curr) { 766 if (curr->on_rq) 767 vruntime = curr->vruntime; 768 else 769 curr = NULL; 770 } 771 772 if (se) { 773 if (!curr) 774 vruntime = se->min_vruntime; 775 else 776 vruntime = min_vruntime(vruntime, se->min_vruntime); 777 } 778 779 /* ensure we never gain time by being placed backwards. */ 780 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime); 781 } 782 783 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) 784 { 785 struct sched_entity *root = __pick_root_entity(cfs_rq); 786 struct sched_entity *curr = cfs_rq->curr; 787 u64 min_slice = ~0ULL; 788 789 if (curr && curr->on_rq) 790 min_slice = curr->slice; 791 792 if (root) 793 min_slice = min(min_slice, root->min_slice); 794 795 return min_slice; 796 } 797 798 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 799 { 800 return entity_before(__node_2_se(a), __node_2_se(b)); 801 } 802 803 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 804 805 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 806 { 807 if (node) { 808 struct sched_entity *rse = __node_2_se(node); 809 if (vruntime_gt(min_vruntime, se, rse)) 810 se->min_vruntime = rse->min_vruntime; 811 } 812 } 813 814 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) 815 { 816 if (node) { 817 struct sched_entity *rse = __node_2_se(node); 818 if (rse->min_slice < se->min_slice) 819 se->min_slice = rse->min_slice; 820 } 821 } 822 823 /* 824 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 825 */ 826 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 827 { 828 u64 old_min_vruntime = se->min_vruntime; 829 u64 old_min_slice = se->min_slice; 830 struct rb_node *node = &se->run_node; 831 832 se->min_vruntime = se->vruntime; 833 __min_vruntime_update(se, node->rb_right); 834 __min_vruntime_update(se, node->rb_left); 835 836 se->min_slice = se->slice; 837 __min_slice_update(se, node->rb_right); 838 __min_slice_update(se, node->rb_left); 839 840 return se->min_vruntime == old_min_vruntime && 841 se->min_slice == old_min_slice; 842 } 843 844 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 845 run_node, min_vruntime, min_vruntime_update); 846 847 /* 848 * Enqueue an entity into the rb-tree: 849 */ 850 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 851 { 852 avg_vruntime_add(cfs_rq, se); 853 se->min_vruntime = se->vruntime; 854 se->min_slice = se->slice; 855 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 856 __entity_less, &min_vruntime_cb); 857 } 858 859 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 860 { 861 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 862 &min_vruntime_cb); 863 avg_vruntime_sub(cfs_rq, se); 864 } 865 866 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 867 { 868 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 869 870 if (!root) 871 return NULL; 872 873 return __node_2_se(root); 874 } 875 876 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 877 { 878 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 879 880 if (!left) 881 return NULL; 882 883 return __node_2_se(left); 884 } 885 886 /* 887 * Earliest Eligible Virtual Deadline First 888 * 889 * In order to provide latency guarantees for different request sizes 890 * EEVDF selects the best runnable task from two criteria: 891 * 892 * 1) the task must be eligible (must be owed service) 893 * 894 * 2) from those tasks that meet 1), we select the one 895 * with the earliest virtual deadline. 896 * 897 * We can do this in O(log n) time due to an augmented RB-tree. The 898 * tree keeps the entries sorted on deadline, but also functions as a 899 * heap based on the vruntime by keeping: 900 * 901 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 902 * 903 * Which allows tree pruning through eligibility. 904 */ 905 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 906 { 907 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 908 struct sched_entity *se = __pick_first_entity(cfs_rq); 909 struct sched_entity *curr = cfs_rq->curr; 910 struct sched_entity *best = NULL; 911 912 /* 913 * We can safely skip eligibility check if there is only one entity 914 * in this cfs_rq, saving some cycles. 915 */ 916 if (cfs_rq->nr_queued == 1) 917 return curr && curr->on_rq ? curr : se; 918 919 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 920 curr = NULL; 921 922 /* 923 * Once selected, run a task until it either becomes non-eligible or 924 * until it gets a new slice. See the HACK in set_next_entity(). 925 */ 926 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 927 return curr; 928 929 /* Pick the leftmost entity if it's eligible */ 930 if (se && entity_eligible(cfs_rq, se)) { 931 best = se; 932 goto found; 933 } 934 935 /* Heap search for the EEVD entity */ 936 while (node) { 937 struct rb_node *left = node->rb_left; 938 939 /* 940 * Eligible entities in left subtree are always better 941 * choices, since they have earlier deadlines. 942 */ 943 if (left && vruntime_eligible(cfs_rq, 944 __node_2_se(left)->min_vruntime)) { 945 node = left; 946 continue; 947 } 948 949 se = __node_2_se(node); 950 951 /* 952 * The left subtree either is empty or has no eligible 953 * entity, so check the current node since it is the one 954 * with earliest deadline that might be eligible. 955 */ 956 if (entity_eligible(cfs_rq, se)) { 957 best = se; 958 break; 959 } 960 961 node = node->rb_right; 962 } 963 found: 964 if (!best || (curr && entity_before(curr, best))) 965 best = curr; 966 967 return best; 968 } 969 970 #ifdef CONFIG_SCHED_DEBUG 971 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 972 { 973 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 974 975 if (!last) 976 return NULL; 977 978 return __node_2_se(last); 979 } 980 981 /************************************************************** 982 * Scheduling class statistics methods: 983 */ 984 #ifdef CONFIG_SMP 985 int sched_update_scaling(void) 986 { 987 unsigned int factor = get_update_sysctl_factor(); 988 989 #define WRT_SYSCTL(name) \ 990 (normalized_sysctl_##name = sysctl_##name / (factor)) 991 WRT_SYSCTL(sched_base_slice); 992 #undef WRT_SYSCTL 993 994 return 0; 995 } 996 #endif 997 #endif 998 999 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1000 1001 /* 1002 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1003 * this is probably good enough. 1004 */ 1005 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1006 { 1007 if ((s64)(se->vruntime - se->deadline) < 0) 1008 return false; 1009 1010 /* 1011 * For EEVDF the virtual time slope is determined by w_i (iow. 1012 * nice) while the request time r_i is determined by 1013 * sysctl_sched_base_slice. 1014 */ 1015 if (!se->custom_slice) 1016 se->slice = sysctl_sched_base_slice; 1017 1018 /* 1019 * EEVDF: vd_i = ve_i + r_i / w_i 1020 */ 1021 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1022 1023 /* 1024 * The task has consumed its request, reschedule. 1025 */ 1026 return true; 1027 } 1028 1029 #include "pelt.h" 1030 #ifdef CONFIG_SMP 1031 1032 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1033 static unsigned long task_h_load(struct task_struct *p); 1034 static unsigned long capacity_of(int cpu); 1035 1036 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1037 void init_entity_runnable_average(struct sched_entity *se) 1038 { 1039 struct sched_avg *sa = &se->avg; 1040 1041 memset(sa, 0, sizeof(*sa)); 1042 1043 /* 1044 * Tasks are initialized with full load to be seen as heavy tasks until 1045 * they get a chance to stabilize to their real load level. 1046 * Group entities are initialized with zero load to reflect the fact that 1047 * nothing has been attached to the task group yet. 1048 */ 1049 if (entity_is_task(se)) 1050 sa->load_avg = scale_load_down(se->load.weight); 1051 1052 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1053 } 1054 1055 /* 1056 * With new tasks being created, their initial util_avgs are extrapolated 1057 * based on the cfs_rq's current util_avg: 1058 * 1059 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1060 * * se_weight(se) 1061 * 1062 * However, in many cases, the above util_avg does not give a desired 1063 * value. Moreover, the sum of the util_avgs may be divergent, such 1064 * as when the series is a harmonic series. 1065 * 1066 * To solve this problem, we also cap the util_avg of successive tasks to 1067 * only 1/2 of the left utilization budget: 1068 * 1069 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1070 * 1071 * where n denotes the nth task and cpu_scale the CPU capacity. 1072 * 1073 * For example, for a CPU with 1024 of capacity, a simplest series from 1074 * the beginning would be like: 1075 * 1076 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1077 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1078 * 1079 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1080 * if util_avg > util_avg_cap. 1081 */ 1082 void post_init_entity_util_avg(struct task_struct *p) 1083 { 1084 struct sched_entity *se = &p->se; 1085 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1086 struct sched_avg *sa = &se->avg; 1087 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1088 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1089 1090 if (p->sched_class != &fair_sched_class) { 1091 /* 1092 * For !fair tasks do: 1093 * 1094 update_cfs_rq_load_avg(now, cfs_rq); 1095 attach_entity_load_avg(cfs_rq, se); 1096 switched_from_fair(rq, p); 1097 * 1098 * such that the next switched_to_fair() has the 1099 * expected state. 1100 */ 1101 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1102 return; 1103 } 1104 1105 if (cap > 0) { 1106 if (cfs_rq->avg.util_avg != 0) { 1107 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1108 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1109 1110 if (sa->util_avg > cap) 1111 sa->util_avg = cap; 1112 } else { 1113 sa->util_avg = cap; 1114 } 1115 } 1116 1117 sa->runnable_avg = sa->util_avg; 1118 } 1119 1120 #else /* !CONFIG_SMP */ 1121 void init_entity_runnable_average(struct sched_entity *se) 1122 { 1123 } 1124 void post_init_entity_util_avg(struct task_struct *p) 1125 { 1126 } 1127 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1128 { 1129 } 1130 #endif /* CONFIG_SMP */ 1131 1132 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1133 { 1134 u64 now = rq_clock_task(rq); 1135 s64 delta_exec; 1136 1137 delta_exec = now - curr->exec_start; 1138 if (unlikely(delta_exec <= 0)) 1139 return delta_exec; 1140 1141 curr->exec_start = now; 1142 curr->sum_exec_runtime += delta_exec; 1143 1144 if (schedstat_enabled()) { 1145 struct sched_statistics *stats; 1146 1147 stats = __schedstats_from_se(curr); 1148 __schedstat_set(stats->exec_max, 1149 max(delta_exec, stats->exec_max)); 1150 } 1151 1152 return delta_exec; 1153 } 1154 1155 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1156 { 1157 trace_sched_stat_runtime(p, delta_exec); 1158 account_group_exec_runtime(p, delta_exec); 1159 cgroup_account_cputime(p, delta_exec); 1160 } 1161 1162 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1163 { 1164 if (!sched_feat(PREEMPT_SHORT)) 1165 return false; 1166 1167 if (curr->vlag == curr->deadline) 1168 return false; 1169 1170 return !entity_eligible(cfs_rq, curr); 1171 } 1172 1173 static inline bool do_preempt_short(struct cfs_rq *cfs_rq, 1174 struct sched_entity *pse, struct sched_entity *se) 1175 { 1176 if (!sched_feat(PREEMPT_SHORT)) 1177 return false; 1178 1179 if (pse->slice >= se->slice) 1180 return false; 1181 1182 if (!entity_eligible(cfs_rq, pse)) 1183 return false; 1184 1185 if (entity_before(pse, se)) 1186 return true; 1187 1188 if (!entity_eligible(cfs_rq, se)) 1189 return true; 1190 1191 return false; 1192 } 1193 1194 /* 1195 * Used by other classes to account runtime. 1196 */ 1197 s64 update_curr_common(struct rq *rq) 1198 { 1199 struct task_struct *donor = rq->donor; 1200 s64 delta_exec; 1201 1202 delta_exec = update_curr_se(rq, &donor->se); 1203 if (likely(delta_exec > 0)) 1204 update_curr_task(donor, delta_exec); 1205 1206 return delta_exec; 1207 } 1208 1209 /* 1210 * Update the current task's runtime statistics. 1211 */ 1212 static void update_curr(struct cfs_rq *cfs_rq) 1213 { 1214 struct sched_entity *curr = cfs_rq->curr; 1215 struct rq *rq = rq_of(cfs_rq); 1216 s64 delta_exec; 1217 bool resched; 1218 1219 if (unlikely(!curr)) 1220 return; 1221 1222 delta_exec = update_curr_se(rq, curr); 1223 if (unlikely(delta_exec <= 0)) 1224 return; 1225 1226 curr->vruntime += calc_delta_fair(delta_exec, curr); 1227 resched = update_deadline(cfs_rq, curr); 1228 update_min_vruntime(cfs_rq); 1229 1230 if (entity_is_task(curr)) { 1231 struct task_struct *p = task_of(curr); 1232 1233 update_curr_task(p, delta_exec); 1234 1235 /* 1236 * If the fair_server is active, we need to account for the 1237 * fair_server time whether or not the task is running on 1238 * behalf of fair_server or not: 1239 * - If the task is running on behalf of fair_server, we need 1240 * to limit its time based on the assigned runtime. 1241 * - Fair task that runs outside of fair_server should account 1242 * against fair_server such that it can account for this time 1243 * and possibly avoid running this period. 1244 */ 1245 if (dl_server_active(&rq->fair_server)) 1246 dl_server_update(&rq->fair_server, delta_exec); 1247 } 1248 1249 account_cfs_rq_runtime(cfs_rq, delta_exec); 1250 1251 if (cfs_rq->nr_queued == 1) 1252 return; 1253 1254 if (resched || did_preempt_short(cfs_rq, curr)) { 1255 resched_curr_lazy(rq); 1256 clear_buddies(cfs_rq, curr); 1257 } 1258 } 1259 1260 static void update_curr_fair(struct rq *rq) 1261 { 1262 update_curr(cfs_rq_of(&rq->donor->se)); 1263 } 1264 1265 static inline void 1266 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1267 { 1268 struct sched_statistics *stats; 1269 struct task_struct *p = NULL; 1270 1271 if (!schedstat_enabled()) 1272 return; 1273 1274 stats = __schedstats_from_se(se); 1275 1276 if (entity_is_task(se)) 1277 p = task_of(se); 1278 1279 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1280 } 1281 1282 static inline void 1283 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1284 { 1285 struct sched_statistics *stats; 1286 struct task_struct *p = NULL; 1287 1288 if (!schedstat_enabled()) 1289 return; 1290 1291 stats = __schedstats_from_se(se); 1292 1293 /* 1294 * When the sched_schedstat changes from 0 to 1, some sched se 1295 * maybe already in the runqueue, the se->statistics.wait_start 1296 * will be 0.So it will let the delta wrong. We need to avoid this 1297 * scenario. 1298 */ 1299 if (unlikely(!schedstat_val(stats->wait_start))) 1300 return; 1301 1302 if (entity_is_task(se)) 1303 p = task_of(se); 1304 1305 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1306 } 1307 1308 static inline void 1309 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1310 { 1311 struct sched_statistics *stats; 1312 struct task_struct *tsk = NULL; 1313 1314 if (!schedstat_enabled()) 1315 return; 1316 1317 stats = __schedstats_from_se(se); 1318 1319 if (entity_is_task(se)) 1320 tsk = task_of(se); 1321 1322 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1323 } 1324 1325 /* 1326 * Task is being enqueued - update stats: 1327 */ 1328 static inline void 1329 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1330 { 1331 if (!schedstat_enabled()) 1332 return; 1333 1334 /* 1335 * Are we enqueueing a waiting task? (for current tasks 1336 * a dequeue/enqueue event is a NOP) 1337 */ 1338 if (se != cfs_rq->curr) 1339 update_stats_wait_start_fair(cfs_rq, se); 1340 1341 if (flags & ENQUEUE_WAKEUP) 1342 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1343 } 1344 1345 static inline void 1346 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1347 { 1348 1349 if (!schedstat_enabled()) 1350 return; 1351 1352 /* 1353 * Mark the end of the wait period if dequeueing a 1354 * waiting task: 1355 */ 1356 if (se != cfs_rq->curr) 1357 update_stats_wait_end_fair(cfs_rq, se); 1358 1359 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1360 struct task_struct *tsk = task_of(se); 1361 unsigned int state; 1362 1363 /* XXX racy against TTWU */ 1364 state = READ_ONCE(tsk->__state); 1365 if (state & TASK_INTERRUPTIBLE) 1366 __schedstat_set(tsk->stats.sleep_start, 1367 rq_clock(rq_of(cfs_rq))); 1368 if (state & TASK_UNINTERRUPTIBLE) 1369 __schedstat_set(tsk->stats.block_start, 1370 rq_clock(rq_of(cfs_rq))); 1371 } 1372 } 1373 1374 /* 1375 * We are picking a new current task - update its stats: 1376 */ 1377 static inline void 1378 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1379 { 1380 /* 1381 * We are starting a new run period: 1382 */ 1383 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1384 } 1385 1386 /************************************************** 1387 * Scheduling class queueing methods: 1388 */ 1389 1390 static inline bool is_core_idle(int cpu) 1391 { 1392 #ifdef CONFIG_SCHED_SMT 1393 int sibling; 1394 1395 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1396 if (cpu == sibling) 1397 continue; 1398 1399 if (!idle_cpu(sibling)) 1400 return false; 1401 } 1402 #endif 1403 1404 return true; 1405 } 1406 1407 #ifdef CONFIG_NUMA 1408 #define NUMA_IMBALANCE_MIN 2 1409 1410 static inline long 1411 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1412 { 1413 /* 1414 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1415 * threshold. Above this threshold, individual tasks may be contending 1416 * for both memory bandwidth and any shared HT resources. This is an 1417 * approximation as the number of running tasks may not be related to 1418 * the number of busy CPUs due to sched_setaffinity. 1419 */ 1420 if (dst_running > imb_numa_nr) 1421 return imbalance; 1422 1423 /* 1424 * Allow a small imbalance based on a simple pair of communicating 1425 * tasks that remain local when the destination is lightly loaded. 1426 */ 1427 if (imbalance <= NUMA_IMBALANCE_MIN) 1428 return 0; 1429 1430 return imbalance; 1431 } 1432 #endif /* CONFIG_NUMA */ 1433 1434 #ifdef CONFIG_NUMA_BALANCING 1435 /* 1436 * Approximate time to scan a full NUMA task in ms. The task scan period is 1437 * calculated based on the tasks virtual memory size and 1438 * numa_balancing_scan_size. 1439 */ 1440 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1441 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1442 1443 /* Portion of address space to scan in MB */ 1444 unsigned int sysctl_numa_balancing_scan_size = 256; 1445 1446 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1447 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1448 1449 /* The page with hint page fault latency < threshold in ms is considered hot */ 1450 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1451 1452 struct numa_group { 1453 refcount_t refcount; 1454 1455 spinlock_t lock; /* nr_tasks, tasks */ 1456 int nr_tasks; 1457 pid_t gid; 1458 int active_nodes; 1459 1460 struct rcu_head rcu; 1461 unsigned long total_faults; 1462 unsigned long max_faults_cpu; 1463 /* 1464 * faults[] array is split into two regions: faults_mem and faults_cpu. 1465 * 1466 * Faults_cpu is used to decide whether memory should move 1467 * towards the CPU. As a consequence, these stats are weighted 1468 * more by CPU use than by memory faults. 1469 */ 1470 unsigned long faults[]; 1471 }; 1472 1473 /* 1474 * For functions that can be called in multiple contexts that permit reading 1475 * ->numa_group (see struct task_struct for locking rules). 1476 */ 1477 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1478 { 1479 return rcu_dereference_check(p->numa_group, p == current || 1480 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1481 } 1482 1483 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1484 { 1485 return rcu_dereference_protected(p->numa_group, p == current); 1486 } 1487 1488 static inline unsigned long group_faults_priv(struct numa_group *ng); 1489 static inline unsigned long group_faults_shared(struct numa_group *ng); 1490 1491 static unsigned int task_nr_scan_windows(struct task_struct *p) 1492 { 1493 unsigned long rss = 0; 1494 unsigned long nr_scan_pages; 1495 1496 /* 1497 * Calculations based on RSS as non-present and empty pages are skipped 1498 * by the PTE scanner and NUMA hinting faults should be trapped based 1499 * on resident pages 1500 */ 1501 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1502 rss = get_mm_rss(p->mm); 1503 if (!rss) 1504 rss = nr_scan_pages; 1505 1506 rss = round_up(rss, nr_scan_pages); 1507 return rss / nr_scan_pages; 1508 } 1509 1510 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1511 #define MAX_SCAN_WINDOW 2560 1512 1513 static unsigned int task_scan_min(struct task_struct *p) 1514 { 1515 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1516 unsigned int scan, floor; 1517 unsigned int windows = 1; 1518 1519 if (scan_size < MAX_SCAN_WINDOW) 1520 windows = MAX_SCAN_WINDOW / scan_size; 1521 floor = 1000 / windows; 1522 1523 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1524 return max_t(unsigned int, floor, scan); 1525 } 1526 1527 static unsigned int task_scan_start(struct task_struct *p) 1528 { 1529 unsigned long smin = task_scan_min(p); 1530 unsigned long period = smin; 1531 struct numa_group *ng; 1532 1533 /* Scale the maximum scan period with the amount of shared memory. */ 1534 rcu_read_lock(); 1535 ng = rcu_dereference(p->numa_group); 1536 if (ng) { 1537 unsigned long shared = group_faults_shared(ng); 1538 unsigned long private = group_faults_priv(ng); 1539 1540 period *= refcount_read(&ng->refcount); 1541 period *= shared + 1; 1542 period /= private + shared + 1; 1543 } 1544 rcu_read_unlock(); 1545 1546 return max(smin, period); 1547 } 1548 1549 static unsigned int task_scan_max(struct task_struct *p) 1550 { 1551 unsigned long smin = task_scan_min(p); 1552 unsigned long smax; 1553 struct numa_group *ng; 1554 1555 /* Watch for min being lower than max due to floor calculations */ 1556 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1557 1558 /* Scale the maximum scan period with the amount of shared memory. */ 1559 ng = deref_curr_numa_group(p); 1560 if (ng) { 1561 unsigned long shared = group_faults_shared(ng); 1562 unsigned long private = group_faults_priv(ng); 1563 unsigned long period = smax; 1564 1565 period *= refcount_read(&ng->refcount); 1566 period *= shared + 1; 1567 period /= private + shared + 1; 1568 1569 smax = max(smax, period); 1570 } 1571 1572 return max(smin, smax); 1573 } 1574 1575 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1576 { 1577 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1578 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1579 } 1580 1581 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1582 { 1583 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1584 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1585 } 1586 1587 /* Shared or private faults. */ 1588 #define NR_NUMA_HINT_FAULT_TYPES 2 1589 1590 /* Memory and CPU locality */ 1591 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1592 1593 /* Averaged statistics, and temporary buffers. */ 1594 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1595 1596 pid_t task_numa_group_id(struct task_struct *p) 1597 { 1598 struct numa_group *ng; 1599 pid_t gid = 0; 1600 1601 rcu_read_lock(); 1602 ng = rcu_dereference(p->numa_group); 1603 if (ng) 1604 gid = ng->gid; 1605 rcu_read_unlock(); 1606 1607 return gid; 1608 } 1609 1610 /* 1611 * The averaged statistics, shared & private, memory & CPU, 1612 * occupy the first half of the array. The second half of the 1613 * array is for current counters, which are averaged into the 1614 * first set by task_numa_placement. 1615 */ 1616 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1617 { 1618 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1619 } 1620 1621 static inline unsigned long task_faults(struct task_struct *p, int nid) 1622 { 1623 if (!p->numa_faults) 1624 return 0; 1625 1626 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1627 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1628 } 1629 1630 static inline unsigned long group_faults(struct task_struct *p, int nid) 1631 { 1632 struct numa_group *ng = deref_task_numa_group(p); 1633 1634 if (!ng) 1635 return 0; 1636 1637 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1638 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1639 } 1640 1641 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1642 { 1643 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1644 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1645 } 1646 1647 static inline unsigned long group_faults_priv(struct numa_group *ng) 1648 { 1649 unsigned long faults = 0; 1650 int node; 1651 1652 for_each_online_node(node) { 1653 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1654 } 1655 1656 return faults; 1657 } 1658 1659 static inline unsigned long group_faults_shared(struct numa_group *ng) 1660 { 1661 unsigned long faults = 0; 1662 int node; 1663 1664 for_each_online_node(node) { 1665 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1666 } 1667 1668 return faults; 1669 } 1670 1671 /* 1672 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1673 * considered part of a numa group's pseudo-interleaving set. Migrations 1674 * between these nodes are slowed down, to allow things to settle down. 1675 */ 1676 #define ACTIVE_NODE_FRACTION 3 1677 1678 static bool numa_is_active_node(int nid, struct numa_group *ng) 1679 { 1680 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1681 } 1682 1683 /* Handle placement on systems where not all nodes are directly connected. */ 1684 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1685 int lim_dist, bool task) 1686 { 1687 unsigned long score = 0; 1688 int node, max_dist; 1689 1690 /* 1691 * All nodes are directly connected, and the same distance 1692 * from each other. No need for fancy placement algorithms. 1693 */ 1694 if (sched_numa_topology_type == NUMA_DIRECT) 1695 return 0; 1696 1697 /* sched_max_numa_distance may be changed in parallel. */ 1698 max_dist = READ_ONCE(sched_max_numa_distance); 1699 /* 1700 * This code is called for each node, introducing N^2 complexity, 1701 * which should be OK given the number of nodes rarely exceeds 8. 1702 */ 1703 for_each_online_node(node) { 1704 unsigned long faults; 1705 int dist = node_distance(nid, node); 1706 1707 /* 1708 * The furthest away nodes in the system are not interesting 1709 * for placement; nid was already counted. 1710 */ 1711 if (dist >= max_dist || node == nid) 1712 continue; 1713 1714 /* 1715 * On systems with a backplane NUMA topology, compare groups 1716 * of nodes, and move tasks towards the group with the most 1717 * memory accesses. When comparing two nodes at distance 1718 * "hoplimit", only nodes closer by than "hoplimit" are part 1719 * of each group. Skip other nodes. 1720 */ 1721 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1722 continue; 1723 1724 /* Add up the faults from nearby nodes. */ 1725 if (task) 1726 faults = task_faults(p, node); 1727 else 1728 faults = group_faults(p, node); 1729 1730 /* 1731 * On systems with a glueless mesh NUMA topology, there are 1732 * no fixed "groups of nodes". Instead, nodes that are not 1733 * directly connected bounce traffic through intermediate 1734 * nodes; a numa_group can occupy any set of nodes. 1735 * The further away a node is, the less the faults count. 1736 * This seems to result in good task placement. 1737 */ 1738 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1739 faults *= (max_dist - dist); 1740 faults /= (max_dist - LOCAL_DISTANCE); 1741 } 1742 1743 score += faults; 1744 } 1745 1746 return score; 1747 } 1748 1749 /* 1750 * These return the fraction of accesses done by a particular task, or 1751 * task group, on a particular numa node. The group weight is given a 1752 * larger multiplier, in order to group tasks together that are almost 1753 * evenly spread out between numa nodes. 1754 */ 1755 static inline unsigned long task_weight(struct task_struct *p, int nid, 1756 int dist) 1757 { 1758 unsigned long faults, total_faults; 1759 1760 if (!p->numa_faults) 1761 return 0; 1762 1763 total_faults = p->total_numa_faults; 1764 1765 if (!total_faults) 1766 return 0; 1767 1768 faults = task_faults(p, nid); 1769 faults += score_nearby_nodes(p, nid, dist, true); 1770 1771 return 1000 * faults / total_faults; 1772 } 1773 1774 static inline unsigned long group_weight(struct task_struct *p, int nid, 1775 int dist) 1776 { 1777 struct numa_group *ng = deref_task_numa_group(p); 1778 unsigned long faults, total_faults; 1779 1780 if (!ng) 1781 return 0; 1782 1783 total_faults = ng->total_faults; 1784 1785 if (!total_faults) 1786 return 0; 1787 1788 faults = group_faults(p, nid); 1789 faults += score_nearby_nodes(p, nid, dist, false); 1790 1791 return 1000 * faults / total_faults; 1792 } 1793 1794 /* 1795 * If memory tiering mode is enabled, cpupid of slow memory page is 1796 * used to record scan time instead of CPU and PID. When tiering mode 1797 * is disabled at run time, the scan time (in cpupid) will be 1798 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1799 * access out of array bound. 1800 */ 1801 static inline bool cpupid_valid(int cpupid) 1802 { 1803 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1804 } 1805 1806 /* 1807 * For memory tiering mode, if there are enough free pages (more than 1808 * enough watermark defined here) in fast memory node, to take full 1809 * advantage of fast memory capacity, all recently accessed slow 1810 * memory pages will be migrated to fast memory node without 1811 * considering hot threshold. 1812 */ 1813 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1814 { 1815 int z; 1816 unsigned long enough_wmark; 1817 1818 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1819 pgdat->node_present_pages >> 4); 1820 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1821 struct zone *zone = pgdat->node_zones + z; 1822 1823 if (!populated_zone(zone)) 1824 continue; 1825 1826 if (zone_watermark_ok(zone, 0, 1827 promo_wmark_pages(zone) + enough_wmark, 1828 ZONE_MOVABLE, 0)) 1829 return true; 1830 } 1831 return false; 1832 } 1833 1834 /* 1835 * For memory tiering mode, when page tables are scanned, the scan 1836 * time will be recorded in struct page in addition to make page 1837 * PROT_NONE for slow memory page. So when the page is accessed, in 1838 * hint page fault handler, the hint page fault latency is calculated 1839 * via, 1840 * 1841 * hint page fault latency = hint page fault time - scan time 1842 * 1843 * The smaller the hint page fault latency, the higher the possibility 1844 * for the page to be hot. 1845 */ 1846 static int numa_hint_fault_latency(struct folio *folio) 1847 { 1848 int last_time, time; 1849 1850 time = jiffies_to_msecs(jiffies); 1851 last_time = folio_xchg_access_time(folio, time); 1852 1853 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1854 } 1855 1856 /* 1857 * For memory tiering mode, too high promotion/demotion throughput may 1858 * hurt application latency. So we provide a mechanism to rate limit 1859 * the number of pages that are tried to be promoted. 1860 */ 1861 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1862 unsigned long rate_limit, int nr) 1863 { 1864 unsigned long nr_cand; 1865 unsigned int now, start; 1866 1867 now = jiffies_to_msecs(jiffies); 1868 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1869 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1870 start = pgdat->nbp_rl_start; 1871 if (now - start > MSEC_PER_SEC && 1872 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1873 pgdat->nbp_rl_nr_cand = nr_cand; 1874 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1875 return true; 1876 return false; 1877 } 1878 1879 #define NUMA_MIGRATION_ADJUST_STEPS 16 1880 1881 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1882 unsigned long rate_limit, 1883 unsigned int ref_th) 1884 { 1885 unsigned int now, start, th_period, unit_th, th; 1886 unsigned long nr_cand, ref_cand, diff_cand; 1887 1888 now = jiffies_to_msecs(jiffies); 1889 th_period = sysctl_numa_balancing_scan_period_max; 1890 start = pgdat->nbp_th_start; 1891 if (now - start > th_period && 1892 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1893 ref_cand = rate_limit * 1894 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1895 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1896 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1897 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1898 th = pgdat->nbp_threshold ? : ref_th; 1899 if (diff_cand > ref_cand * 11 / 10) 1900 th = max(th - unit_th, unit_th); 1901 else if (diff_cand < ref_cand * 9 / 10) 1902 th = min(th + unit_th, ref_th * 2); 1903 pgdat->nbp_th_nr_cand = nr_cand; 1904 pgdat->nbp_threshold = th; 1905 } 1906 } 1907 1908 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1909 int src_nid, int dst_cpu) 1910 { 1911 struct numa_group *ng = deref_curr_numa_group(p); 1912 int dst_nid = cpu_to_node(dst_cpu); 1913 int last_cpupid, this_cpupid; 1914 1915 /* 1916 * Cannot migrate to memoryless nodes. 1917 */ 1918 if (!node_state(dst_nid, N_MEMORY)) 1919 return false; 1920 1921 /* 1922 * The pages in slow memory node should be migrated according 1923 * to hot/cold instead of private/shared. 1924 */ 1925 if (folio_use_access_time(folio)) { 1926 struct pglist_data *pgdat; 1927 unsigned long rate_limit; 1928 unsigned int latency, th, def_th; 1929 1930 pgdat = NODE_DATA(dst_nid); 1931 if (pgdat_free_space_enough(pgdat)) { 1932 /* workload changed, reset hot threshold */ 1933 pgdat->nbp_threshold = 0; 1934 return true; 1935 } 1936 1937 def_th = sysctl_numa_balancing_hot_threshold; 1938 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1939 (20 - PAGE_SHIFT); 1940 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1941 1942 th = pgdat->nbp_threshold ? : def_th; 1943 latency = numa_hint_fault_latency(folio); 1944 if (latency >= th) 1945 return false; 1946 1947 return !numa_promotion_rate_limit(pgdat, rate_limit, 1948 folio_nr_pages(folio)); 1949 } 1950 1951 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1952 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1953 1954 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1955 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1956 return false; 1957 1958 /* 1959 * Allow first faults or private faults to migrate immediately early in 1960 * the lifetime of a task. The magic number 4 is based on waiting for 1961 * two full passes of the "multi-stage node selection" test that is 1962 * executed below. 1963 */ 1964 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1965 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1966 return true; 1967 1968 /* 1969 * Multi-stage node selection is used in conjunction with a periodic 1970 * migration fault to build a temporal task<->page relation. By using 1971 * a two-stage filter we remove short/unlikely relations. 1972 * 1973 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1974 * a task's usage of a particular page (n_p) per total usage of this 1975 * page (n_t) (in a given time-span) to a probability. 1976 * 1977 * Our periodic faults will sample this probability and getting the 1978 * same result twice in a row, given these samples are fully 1979 * independent, is then given by P(n)^2, provided our sample period 1980 * is sufficiently short compared to the usage pattern. 1981 * 1982 * This quadric squishes small probabilities, making it less likely we 1983 * act on an unlikely task<->page relation. 1984 */ 1985 if (!cpupid_pid_unset(last_cpupid) && 1986 cpupid_to_nid(last_cpupid) != dst_nid) 1987 return false; 1988 1989 /* Always allow migrate on private faults */ 1990 if (cpupid_match_pid(p, last_cpupid)) 1991 return true; 1992 1993 /* A shared fault, but p->numa_group has not been set up yet. */ 1994 if (!ng) 1995 return true; 1996 1997 /* 1998 * Destination node is much more heavily used than the source 1999 * node? Allow migration. 2000 */ 2001 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 2002 ACTIVE_NODE_FRACTION) 2003 return true; 2004 2005 /* 2006 * Distribute memory according to CPU & memory use on each node, 2007 * with 3/4 hysteresis to avoid unnecessary memory migrations: 2008 * 2009 * faults_cpu(dst) 3 faults_cpu(src) 2010 * --------------- * - > --------------- 2011 * faults_mem(dst) 4 faults_mem(src) 2012 */ 2013 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 2014 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 2015 } 2016 2017 /* 2018 * 'numa_type' describes the node at the moment of load balancing. 2019 */ 2020 enum numa_type { 2021 /* The node has spare capacity that can be used to run more tasks. */ 2022 node_has_spare = 0, 2023 /* 2024 * The node is fully used and the tasks don't compete for more CPU 2025 * cycles. Nevertheless, some tasks might wait before running. 2026 */ 2027 node_fully_busy, 2028 /* 2029 * The node is overloaded and can't provide expected CPU cycles to all 2030 * tasks. 2031 */ 2032 node_overloaded 2033 }; 2034 2035 /* Cached statistics for all CPUs within a node */ 2036 struct numa_stats { 2037 unsigned long load; 2038 unsigned long runnable; 2039 unsigned long util; 2040 /* Total compute capacity of CPUs on a node */ 2041 unsigned long compute_capacity; 2042 unsigned int nr_running; 2043 unsigned int weight; 2044 enum numa_type node_type; 2045 int idle_cpu; 2046 }; 2047 2048 struct task_numa_env { 2049 struct task_struct *p; 2050 2051 int src_cpu, src_nid; 2052 int dst_cpu, dst_nid; 2053 int imb_numa_nr; 2054 2055 struct numa_stats src_stats, dst_stats; 2056 2057 int imbalance_pct; 2058 int dist; 2059 2060 struct task_struct *best_task; 2061 long best_imp; 2062 int best_cpu; 2063 }; 2064 2065 static unsigned long cpu_load(struct rq *rq); 2066 static unsigned long cpu_runnable(struct rq *rq); 2067 2068 static inline enum 2069 numa_type numa_classify(unsigned int imbalance_pct, 2070 struct numa_stats *ns) 2071 { 2072 if ((ns->nr_running > ns->weight) && 2073 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2074 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2075 return node_overloaded; 2076 2077 if ((ns->nr_running < ns->weight) || 2078 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2079 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2080 return node_has_spare; 2081 2082 return node_fully_busy; 2083 } 2084 2085 #ifdef CONFIG_SCHED_SMT 2086 /* Forward declarations of select_idle_sibling helpers */ 2087 static inline bool test_idle_cores(int cpu); 2088 static inline int numa_idle_core(int idle_core, int cpu) 2089 { 2090 if (!static_branch_likely(&sched_smt_present) || 2091 idle_core >= 0 || !test_idle_cores(cpu)) 2092 return idle_core; 2093 2094 /* 2095 * Prefer cores instead of packing HT siblings 2096 * and triggering future load balancing. 2097 */ 2098 if (is_core_idle(cpu)) 2099 idle_core = cpu; 2100 2101 return idle_core; 2102 } 2103 #else 2104 static inline int numa_idle_core(int idle_core, int cpu) 2105 { 2106 return idle_core; 2107 } 2108 #endif 2109 2110 /* 2111 * Gather all necessary information to make NUMA balancing placement 2112 * decisions that are compatible with standard load balancer. This 2113 * borrows code and logic from update_sg_lb_stats but sharing a 2114 * common implementation is impractical. 2115 */ 2116 static void update_numa_stats(struct task_numa_env *env, 2117 struct numa_stats *ns, int nid, 2118 bool find_idle) 2119 { 2120 int cpu, idle_core = -1; 2121 2122 memset(ns, 0, sizeof(*ns)); 2123 ns->idle_cpu = -1; 2124 2125 rcu_read_lock(); 2126 for_each_cpu(cpu, cpumask_of_node(nid)) { 2127 struct rq *rq = cpu_rq(cpu); 2128 2129 ns->load += cpu_load(rq); 2130 ns->runnable += cpu_runnable(rq); 2131 ns->util += cpu_util_cfs(cpu); 2132 ns->nr_running += rq->cfs.h_nr_runnable; 2133 ns->compute_capacity += capacity_of(cpu); 2134 2135 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2136 if (READ_ONCE(rq->numa_migrate_on) || 2137 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2138 continue; 2139 2140 if (ns->idle_cpu == -1) 2141 ns->idle_cpu = cpu; 2142 2143 idle_core = numa_idle_core(idle_core, cpu); 2144 } 2145 } 2146 rcu_read_unlock(); 2147 2148 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2149 2150 ns->node_type = numa_classify(env->imbalance_pct, ns); 2151 2152 if (idle_core >= 0) 2153 ns->idle_cpu = idle_core; 2154 } 2155 2156 static void task_numa_assign(struct task_numa_env *env, 2157 struct task_struct *p, long imp) 2158 { 2159 struct rq *rq = cpu_rq(env->dst_cpu); 2160 2161 /* Check if run-queue part of active NUMA balance. */ 2162 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2163 int cpu; 2164 int start = env->dst_cpu; 2165 2166 /* Find alternative idle CPU. */ 2167 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2168 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2169 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2170 continue; 2171 } 2172 2173 env->dst_cpu = cpu; 2174 rq = cpu_rq(env->dst_cpu); 2175 if (!xchg(&rq->numa_migrate_on, 1)) 2176 goto assign; 2177 } 2178 2179 /* Failed to find an alternative idle CPU */ 2180 return; 2181 } 2182 2183 assign: 2184 /* 2185 * Clear previous best_cpu/rq numa-migrate flag, since task now 2186 * found a better CPU to move/swap. 2187 */ 2188 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2189 rq = cpu_rq(env->best_cpu); 2190 WRITE_ONCE(rq->numa_migrate_on, 0); 2191 } 2192 2193 if (env->best_task) 2194 put_task_struct(env->best_task); 2195 if (p) 2196 get_task_struct(p); 2197 2198 env->best_task = p; 2199 env->best_imp = imp; 2200 env->best_cpu = env->dst_cpu; 2201 } 2202 2203 static bool load_too_imbalanced(long src_load, long dst_load, 2204 struct task_numa_env *env) 2205 { 2206 long imb, old_imb; 2207 long orig_src_load, orig_dst_load; 2208 long src_capacity, dst_capacity; 2209 2210 /* 2211 * The load is corrected for the CPU capacity available on each node. 2212 * 2213 * src_load dst_load 2214 * ------------ vs --------- 2215 * src_capacity dst_capacity 2216 */ 2217 src_capacity = env->src_stats.compute_capacity; 2218 dst_capacity = env->dst_stats.compute_capacity; 2219 2220 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2221 2222 orig_src_load = env->src_stats.load; 2223 orig_dst_load = env->dst_stats.load; 2224 2225 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2226 2227 /* Would this change make things worse? */ 2228 return (imb > old_imb); 2229 } 2230 2231 /* 2232 * Maximum NUMA importance can be 1998 (2*999); 2233 * SMALLIMP @ 30 would be close to 1998/64. 2234 * Used to deter task migration. 2235 */ 2236 #define SMALLIMP 30 2237 2238 /* 2239 * This checks if the overall compute and NUMA accesses of the system would 2240 * be improved if the source tasks was migrated to the target dst_cpu taking 2241 * into account that it might be best if task running on the dst_cpu should 2242 * be exchanged with the source task 2243 */ 2244 static bool task_numa_compare(struct task_numa_env *env, 2245 long taskimp, long groupimp, bool maymove) 2246 { 2247 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2248 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2249 long imp = p_ng ? groupimp : taskimp; 2250 struct task_struct *cur; 2251 long src_load, dst_load; 2252 int dist = env->dist; 2253 long moveimp = imp; 2254 long load; 2255 bool stopsearch = false; 2256 2257 if (READ_ONCE(dst_rq->numa_migrate_on)) 2258 return false; 2259 2260 rcu_read_lock(); 2261 cur = rcu_dereference(dst_rq->curr); 2262 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2263 cur = NULL; 2264 2265 /* 2266 * Because we have preemption enabled we can get migrated around and 2267 * end try selecting ourselves (current == env->p) as a swap candidate. 2268 */ 2269 if (cur == env->p) { 2270 stopsearch = true; 2271 goto unlock; 2272 } 2273 2274 if (!cur) { 2275 if (maymove && moveimp >= env->best_imp) 2276 goto assign; 2277 else 2278 goto unlock; 2279 } 2280 2281 /* Skip this swap candidate if cannot move to the source cpu. */ 2282 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2283 goto unlock; 2284 2285 /* 2286 * Skip this swap candidate if it is not moving to its preferred 2287 * node and the best task is. 2288 */ 2289 if (env->best_task && 2290 env->best_task->numa_preferred_nid == env->src_nid && 2291 cur->numa_preferred_nid != env->src_nid) { 2292 goto unlock; 2293 } 2294 2295 /* 2296 * "imp" is the fault differential for the source task between the 2297 * source and destination node. Calculate the total differential for 2298 * the source task and potential destination task. The more negative 2299 * the value is, the more remote accesses that would be expected to 2300 * be incurred if the tasks were swapped. 2301 * 2302 * If dst and source tasks are in the same NUMA group, or not 2303 * in any group then look only at task weights. 2304 */ 2305 cur_ng = rcu_dereference(cur->numa_group); 2306 if (cur_ng == p_ng) { 2307 /* 2308 * Do not swap within a group or between tasks that have 2309 * no group if there is spare capacity. Swapping does 2310 * not address the load imbalance and helps one task at 2311 * the cost of punishing another. 2312 */ 2313 if (env->dst_stats.node_type == node_has_spare) 2314 goto unlock; 2315 2316 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2317 task_weight(cur, env->dst_nid, dist); 2318 /* 2319 * Add some hysteresis to prevent swapping the 2320 * tasks within a group over tiny differences. 2321 */ 2322 if (cur_ng) 2323 imp -= imp / 16; 2324 } else { 2325 /* 2326 * Compare the group weights. If a task is all by itself 2327 * (not part of a group), use the task weight instead. 2328 */ 2329 if (cur_ng && p_ng) 2330 imp += group_weight(cur, env->src_nid, dist) - 2331 group_weight(cur, env->dst_nid, dist); 2332 else 2333 imp += task_weight(cur, env->src_nid, dist) - 2334 task_weight(cur, env->dst_nid, dist); 2335 } 2336 2337 /* Discourage picking a task already on its preferred node */ 2338 if (cur->numa_preferred_nid == env->dst_nid) 2339 imp -= imp / 16; 2340 2341 /* 2342 * Encourage picking a task that moves to its preferred node. 2343 * This potentially makes imp larger than it's maximum of 2344 * 1998 (see SMALLIMP and task_weight for why) but in this 2345 * case, it does not matter. 2346 */ 2347 if (cur->numa_preferred_nid == env->src_nid) 2348 imp += imp / 8; 2349 2350 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2351 imp = moveimp; 2352 cur = NULL; 2353 goto assign; 2354 } 2355 2356 /* 2357 * Prefer swapping with a task moving to its preferred node over a 2358 * task that is not. 2359 */ 2360 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2361 env->best_task->numa_preferred_nid != env->src_nid) { 2362 goto assign; 2363 } 2364 2365 /* 2366 * If the NUMA importance is less than SMALLIMP, 2367 * task migration might only result in ping pong 2368 * of tasks and also hurt performance due to cache 2369 * misses. 2370 */ 2371 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2372 goto unlock; 2373 2374 /* 2375 * In the overloaded case, try and keep the load balanced. 2376 */ 2377 load = task_h_load(env->p) - task_h_load(cur); 2378 if (!load) 2379 goto assign; 2380 2381 dst_load = env->dst_stats.load + load; 2382 src_load = env->src_stats.load - load; 2383 2384 if (load_too_imbalanced(src_load, dst_load, env)) 2385 goto unlock; 2386 2387 assign: 2388 /* Evaluate an idle CPU for a task numa move. */ 2389 if (!cur) { 2390 int cpu = env->dst_stats.idle_cpu; 2391 2392 /* Nothing cached so current CPU went idle since the search. */ 2393 if (cpu < 0) 2394 cpu = env->dst_cpu; 2395 2396 /* 2397 * If the CPU is no longer truly idle and the previous best CPU 2398 * is, keep using it. 2399 */ 2400 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2401 idle_cpu(env->best_cpu)) { 2402 cpu = env->best_cpu; 2403 } 2404 2405 env->dst_cpu = cpu; 2406 } 2407 2408 task_numa_assign(env, cur, imp); 2409 2410 /* 2411 * If a move to idle is allowed because there is capacity or load 2412 * balance improves then stop the search. While a better swap 2413 * candidate may exist, a search is not free. 2414 */ 2415 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2416 stopsearch = true; 2417 2418 /* 2419 * If a swap candidate must be identified and the current best task 2420 * moves its preferred node then stop the search. 2421 */ 2422 if (!maymove && env->best_task && 2423 env->best_task->numa_preferred_nid == env->src_nid) { 2424 stopsearch = true; 2425 } 2426 unlock: 2427 rcu_read_unlock(); 2428 2429 return stopsearch; 2430 } 2431 2432 static void task_numa_find_cpu(struct task_numa_env *env, 2433 long taskimp, long groupimp) 2434 { 2435 bool maymove = false; 2436 int cpu; 2437 2438 /* 2439 * If dst node has spare capacity, then check if there is an 2440 * imbalance that would be overruled by the load balancer. 2441 */ 2442 if (env->dst_stats.node_type == node_has_spare) { 2443 unsigned int imbalance; 2444 int src_running, dst_running; 2445 2446 /* 2447 * Would movement cause an imbalance? Note that if src has 2448 * more running tasks that the imbalance is ignored as the 2449 * move improves the imbalance from the perspective of the 2450 * CPU load balancer. 2451 * */ 2452 src_running = env->src_stats.nr_running - 1; 2453 dst_running = env->dst_stats.nr_running + 1; 2454 imbalance = max(0, dst_running - src_running); 2455 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2456 env->imb_numa_nr); 2457 2458 /* Use idle CPU if there is no imbalance */ 2459 if (!imbalance) { 2460 maymove = true; 2461 if (env->dst_stats.idle_cpu >= 0) { 2462 env->dst_cpu = env->dst_stats.idle_cpu; 2463 task_numa_assign(env, NULL, 0); 2464 return; 2465 } 2466 } 2467 } else { 2468 long src_load, dst_load, load; 2469 /* 2470 * If the improvement from just moving env->p direction is better 2471 * than swapping tasks around, check if a move is possible. 2472 */ 2473 load = task_h_load(env->p); 2474 dst_load = env->dst_stats.load + load; 2475 src_load = env->src_stats.load - load; 2476 maymove = !load_too_imbalanced(src_load, dst_load, env); 2477 } 2478 2479 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2480 /* Skip this CPU if the source task cannot migrate */ 2481 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2482 continue; 2483 2484 env->dst_cpu = cpu; 2485 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2486 break; 2487 } 2488 } 2489 2490 static int task_numa_migrate(struct task_struct *p) 2491 { 2492 struct task_numa_env env = { 2493 .p = p, 2494 2495 .src_cpu = task_cpu(p), 2496 .src_nid = task_node(p), 2497 2498 .imbalance_pct = 112, 2499 2500 .best_task = NULL, 2501 .best_imp = 0, 2502 .best_cpu = -1, 2503 }; 2504 unsigned long taskweight, groupweight; 2505 struct sched_domain *sd; 2506 long taskimp, groupimp; 2507 struct numa_group *ng; 2508 struct rq *best_rq; 2509 int nid, ret, dist; 2510 2511 /* 2512 * Pick the lowest SD_NUMA domain, as that would have the smallest 2513 * imbalance and would be the first to start moving tasks about. 2514 * 2515 * And we want to avoid any moving of tasks about, as that would create 2516 * random movement of tasks -- counter the numa conditions we're trying 2517 * to satisfy here. 2518 */ 2519 rcu_read_lock(); 2520 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2521 if (sd) { 2522 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2523 env.imb_numa_nr = sd->imb_numa_nr; 2524 } 2525 rcu_read_unlock(); 2526 2527 /* 2528 * Cpusets can break the scheduler domain tree into smaller 2529 * balance domains, some of which do not cross NUMA boundaries. 2530 * Tasks that are "trapped" in such domains cannot be migrated 2531 * elsewhere, so there is no point in (re)trying. 2532 */ 2533 if (unlikely(!sd)) { 2534 sched_setnuma(p, task_node(p)); 2535 return -EINVAL; 2536 } 2537 2538 env.dst_nid = p->numa_preferred_nid; 2539 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2540 taskweight = task_weight(p, env.src_nid, dist); 2541 groupweight = group_weight(p, env.src_nid, dist); 2542 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2543 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2544 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2545 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2546 2547 /* Try to find a spot on the preferred nid. */ 2548 task_numa_find_cpu(&env, taskimp, groupimp); 2549 2550 /* 2551 * Look at other nodes in these cases: 2552 * - there is no space available on the preferred_nid 2553 * - the task is part of a numa_group that is interleaved across 2554 * multiple NUMA nodes; in order to better consolidate the group, 2555 * we need to check other locations. 2556 */ 2557 ng = deref_curr_numa_group(p); 2558 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2559 for_each_node_state(nid, N_CPU) { 2560 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2561 continue; 2562 2563 dist = node_distance(env.src_nid, env.dst_nid); 2564 if (sched_numa_topology_type == NUMA_BACKPLANE && 2565 dist != env.dist) { 2566 taskweight = task_weight(p, env.src_nid, dist); 2567 groupweight = group_weight(p, env.src_nid, dist); 2568 } 2569 2570 /* Only consider nodes where both task and groups benefit */ 2571 taskimp = task_weight(p, nid, dist) - taskweight; 2572 groupimp = group_weight(p, nid, dist) - groupweight; 2573 if (taskimp < 0 && groupimp < 0) 2574 continue; 2575 2576 env.dist = dist; 2577 env.dst_nid = nid; 2578 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2579 task_numa_find_cpu(&env, taskimp, groupimp); 2580 } 2581 } 2582 2583 /* 2584 * If the task is part of a workload that spans multiple NUMA nodes, 2585 * and is migrating into one of the workload's active nodes, remember 2586 * this node as the task's preferred numa node, so the workload can 2587 * settle down. 2588 * A task that migrated to a second choice node will be better off 2589 * trying for a better one later. Do not set the preferred node here. 2590 */ 2591 if (ng) { 2592 if (env.best_cpu == -1) 2593 nid = env.src_nid; 2594 else 2595 nid = cpu_to_node(env.best_cpu); 2596 2597 if (nid != p->numa_preferred_nid) 2598 sched_setnuma(p, nid); 2599 } 2600 2601 /* No better CPU than the current one was found. */ 2602 if (env.best_cpu == -1) { 2603 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2604 return -EAGAIN; 2605 } 2606 2607 best_rq = cpu_rq(env.best_cpu); 2608 if (env.best_task == NULL) { 2609 ret = migrate_task_to(p, env.best_cpu); 2610 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2611 if (ret != 0) 2612 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2613 return ret; 2614 } 2615 2616 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2617 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2618 2619 if (ret != 0) 2620 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2621 put_task_struct(env.best_task); 2622 return ret; 2623 } 2624 2625 /* Attempt to migrate a task to a CPU on the preferred node. */ 2626 static void numa_migrate_preferred(struct task_struct *p) 2627 { 2628 unsigned long interval = HZ; 2629 2630 /* This task has no NUMA fault statistics yet */ 2631 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2632 return; 2633 2634 /* Periodically retry migrating the task to the preferred node */ 2635 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2636 p->numa_migrate_retry = jiffies + interval; 2637 2638 /* Success if task is already running on preferred CPU */ 2639 if (task_node(p) == p->numa_preferred_nid) 2640 return; 2641 2642 /* Otherwise, try migrate to a CPU on the preferred node */ 2643 task_numa_migrate(p); 2644 } 2645 2646 /* 2647 * Find out how many nodes the workload is actively running on. Do this by 2648 * tracking the nodes from which NUMA hinting faults are triggered. This can 2649 * be different from the set of nodes where the workload's memory is currently 2650 * located. 2651 */ 2652 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2653 { 2654 unsigned long faults, max_faults = 0; 2655 int nid, active_nodes = 0; 2656 2657 for_each_node_state(nid, N_CPU) { 2658 faults = group_faults_cpu(numa_group, nid); 2659 if (faults > max_faults) 2660 max_faults = faults; 2661 } 2662 2663 for_each_node_state(nid, N_CPU) { 2664 faults = group_faults_cpu(numa_group, nid); 2665 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2666 active_nodes++; 2667 } 2668 2669 numa_group->max_faults_cpu = max_faults; 2670 numa_group->active_nodes = active_nodes; 2671 } 2672 2673 /* 2674 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2675 * increments. The more local the fault statistics are, the higher the scan 2676 * period will be for the next scan window. If local/(local+remote) ratio is 2677 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2678 * the scan period will decrease. Aim for 70% local accesses. 2679 */ 2680 #define NUMA_PERIOD_SLOTS 10 2681 #define NUMA_PERIOD_THRESHOLD 7 2682 2683 /* 2684 * Increase the scan period (slow down scanning) if the majority of 2685 * our memory is already on our local node, or if the majority of 2686 * the page accesses are shared with other processes. 2687 * Otherwise, decrease the scan period. 2688 */ 2689 static void update_task_scan_period(struct task_struct *p, 2690 unsigned long shared, unsigned long private) 2691 { 2692 unsigned int period_slot; 2693 int lr_ratio, ps_ratio; 2694 int diff; 2695 2696 unsigned long remote = p->numa_faults_locality[0]; 2697 unsigned long local = p->numa_faults_locality[1]; 2698 2699 /* 2700 * If there were no record hinting faults then either the task is 2701 * completely idle or all activity is in areas that are not of interest 2702 * to automatic numa balancing. Related to that, if there were failed 2703 * migration then it implies we are migrating too quickly or the local 2704 * node is overloaded. In either case, scan slower 2705 */ 2706 if (local + shared == 0 || p->numa_faults_locality[2]) { 2707 p->numa_scan_period = min(p->numa_scan_period_max, 2708 p->numa_scan_period << 1); 2709 2710 p->mm->numa_next_scan = jiffies + 2711 msecs_to_jiffies(p->numa_scan_period); 2712 2713 return; 2714 } 2715 2716 /* 2717 * Prepare to scale scan period relative to the current period. 2718 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2719 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2720 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2721 */ 2722 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2723 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2724 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2725 2726 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2727 /* 2728 * Most memory accesses are local. There is no need to 2729 * do fast NUMA scanning, since memory is already local. 2730 */ 2731 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2732 if (!slot) 2733 slot = 1; 2734 diff = slot * period_slot; 2735 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2736 /* 2737 * Most memory accesses are shared with other tasks. 2738 * There is no point in continuing fast NUMA scanning, 2739 * since other tasks may just move the memory elsewhere. 2740 */ 2741 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2742 if (!slot) 2743 slot = 1; 2744 diff = slot * period_slot; 2745 } else { 2746 /* 2747 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2748 * yet they are not on the local NUMA node. Speed up 2749 * NUMA scanning to get the memory moved over. 2750 */ 2751 int ratio = max(lr_ratio, ps_ratio); 2752 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2753 } 2754 2755 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2756 task_scan_min(p), task_scan_max(p)); 2757 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2758 } 2759 2760 /* 2761 * Get the fraction of time the task has been running since the last 2762 * NUMA placement cycle. The scheduler keeps similar statistics, but 2763 * decays those on a 32ms period, which is orders of magnitude off 2764 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2765 * stats only if the task is so new there are no NUMA statistics yet. 2766 */ 2767 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2768 { 2769 u64 runtime, delta, now; 2770 /* Use the start of this time slice to avoid calculations. */ 2771 now = p->se.exec_start; 2772 runtime = p->se.sum_exec_runtime; 2773 2774 if (p->last_task_numa_placement) { 2775 delta = runtime - p->last_sum_exec_runtime; 2776 *period = now - p->last_task_numa_placement; 2777 2778 /* Avoid time going backwards, prevent potential divide error: */ 2779 if (unlikely((s64)*period < 0)) 2780 *period = 0; 2781 } else { 2782 delta = p->se.avg.load_sum; 2783 *period = LOAD_AVG_MAX; 2784 } 2785 2786 p->last_sum_exec_runtime = runtime; 2787 p->last_task_numa_placement = now; 2788 2789 return delta; 2790 } 2791 2792 /* 2793 * Determine the preferred nid for a task in a numa_group. This needs to 2794 * be done in a way that produces consistent results with group_weight, 2795 * otherwise workloads might not converge. 2796 */ 2797 static int preferred_group_nid(struct task_struct *p, int nid) 2798 { 2799 nodemask_t nodes; 2800 int dist; 2801 2802 /* Direct connections between all NUMA nodes. */ 2803 if (sched_numa_topology_type == NUMA_DIRECT) 2804 return nid; 2805 2806 /* 2807 * On a system with glueless mesh NUMA topology, group_weight 2808 * scores nodes according to the number of NUMA hinting faults on 2809 * both the node itself, and on nearby nodes. 2810 */ 2811 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2812 unsigned long score, max_score = 0; 2813 int node, max_node = nid; 2814 2815 dist = sched_max_numa_distance; 2816 2817 for_each_node_state(node, N_CPU) { 2818 score = group_weight(p, node, dist); 2819 if (score > max_score) { 2820 max_score = score; 2821 max_node = node; 2822 } 2823 } 2824 return max_node; 2825 } 2826 2827 /* 2828 * Finding the preferred nid in a system with NUMA backplane 2829 * interconnect topology is more involved. The goal is to locate 2830 * tasks from numa_groups near each other in the system, and 2831 * untangle workloads from different sides of the system. This requires 2832 * searching down the hierarchy of node groups, recursively searching 2833 * inside the highest scoring group of nodes. The nodemask tricks 2834 * keep the complexity of the search down. 2835 */ 2836 nodes = node_states[N_CPU]; 2837 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2838 unsigned long max_faults = 0; 2839 nodemask_t max_group = NODE_MASK_NONE; 2840 int a, b; 2841 2842 /* Are there nodes at this distance from each other? */ 2843 if (!find_numa_distance(dist)) 2844 continue; 2845 2846 for_each_node_mask(a, nodes) { 2847 unsigned long faults = 0; 2848 nodemask_t this_group; 2849 nodes_clear(this_group); 2850 2851 /* Sum group's NUMA faults; includes a==b case. */ 2852 for_each_node_mask(b, nodes) { 2853 if (node_distance(a, b) < dist) { 2854 faults += group_faults(p, b); 2855 node_set(b, this_group); 2856 node_clear(b, nodes); 2857 } 2858 } 2859 2860 /* Remember the top group. */ 2861 if (faults > max_faults) { 2862 max_faults = faults; 2863 max_group = this_group; 2864 /* 2865 * subtle: at the smallest distance there is 2866 * just one node left in each "group", the 2867 * winner is the preferred nid. 2868 */ 2869 nid = a; 2870 } 2871 } 2872 /* Next round, evaluate the nodes within max_group. */ 2873 if (!max_faults) 2874 break; 2875 nodes = max_group; 2876 } 2877 return nid; 2878 } 2879 2880 static void task_numa_placement(struct task_struct *p) 2881 { 2882 int seq, nid, max_nid = NUMA_NO_NODE; 2883 unsigned long max_faults = 0; 2884 unsigned long fault_types[2] = { 0, 0 }; 2885 unsigned long total_faults; 2886 u64 runtime, period; 2887 spinlock_t *group_lock = NULL; 2888 struct numa_group *ng; 2889 2890 /* 2891 * The p->mm->numa_scan_seq field gets updated without 2892 * exclusive access. Use READ_ONCE() here to ensure 2893 * that the field is read in a single access: 2894 */ 2895 seq = READ_ONCE(p->mm->numa_scan_seq); 2896 if (p->numa_scan_seq == seq) 2897 return; 2898 p->numa_scan_seq = seq; 2899 p->numa_scan_period_max = task_scan_max(p); 2900 2901 total_faults = p->numa_faults_locality[0] + 2902 p->numa_faults_locality[1]; 2903 runtime = numa_get_avg_runtime(p, &period); 2904 2905 /* If the task is part of a group prevent parallel updates to group stats */ 2906 ng = deref_curr_numa_group(p); 2907 if (ng) { 2908 group_lock = &ng->lock; 2909 spin_lock_irq(group_lock); 2910 } 2911 2912 /* Find the node with the highest number of faults */ 2913 for_each_online_node(nid) { 2914 /* Keep track of the offsets in numa_faults array */ 2915 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2916 unsigned long faults = 0, group_faults = 0; 2917 int priv; 2918 2919 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2920 long diff, f_diff, f_weight; 2921 2922 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2923 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2924 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2925 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2926 2927 /* Decay existing window, copy faults since last scan */ 2928 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2929 fault_types[priv] += p->numa_faults[membuf_idx]; 2930 p->numa_faults[membuf_idx] = 0; 2931 2932 /* 2933 * Normalize the faults_from, so all tasks in a group 2934 * count according to CPU use, instead of by the raw 2935 * number of faults. Tasks with little runtime have 2936 * little over-all impact on throughput, and thus their 2937 * faults are less important. 2938 */ 2939 f_weight = div64_u64(runtime << 16, period + 1); 2940 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2941 (total_faults + 1); 2942 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2943 p->numa_faults[cpubuf_idx] = 0; 2944 2945 p->numa_faults[mem_idx] += diff; 2946 p->numa_faults[cpu_idx] += f_diff; 2947 faults += p->numa_faults[mem_idx]; 2948 p->total_numa_faults += diff; 2949 if (ng) { 2950 /* 2951 * safe because we can only change our own group 2952 * 2953 * mem_idx represents the offset for a given 2954 * nid and priv in a specific region because it 2955 * is at the beginning of the numa_faults array. 2956 */ 2957 ng->faults[mem_idx] += diff; 2958 ng->faults[cpu_idx] += f_diff; 2959 ng->total_faults += diff; 2960 group_faults += ng->faults[mem_idx]; 2961 } 2962 } 2963 2964 if (!ng) { 2965 if (faults > max_faults) { 2966 max_faults = faults; 2967 max_nid = nid; 2968 } 2969 } else if (group_faults > max_faults) { 2970 max_faults = group_faults; 2971 max_nid = nid; 2972 } 2973 } 2974 2975 /* Cannot migrate task to CPU-less node */ 2976 max_nid = numa_nearest_node(max_nid, N_CPU); 2977 2978 if (ng) { 2979 numa_group_count_active_nodes(ng); 2980 spin_unlock_irq(group_lock); 2981 max_nid = preferred_group_nid(p, max_nid); 2982 } 2983 2984 if (max_faults) { 2985 /* Set the new preferred node */ 2986 if (max_nid != p->numa_preferred_nid) 2987 sched_setnuma(p, max_nid); 2988 } 2989 2990 update_task_scan_period(p, fault_types[0], fault_types[1]); 2991 } 2992 2993 static inline int get_numa_group(struct numa_group *grp) 2994 { 2995 return refcount_inc_not_zero(&grp->refcount); 2996 } 2997 2998 static inline void put_numa_group(struct numa_group *grp) 2999 { 3000 if (refcount_dec_and_test(&grp->refcount)) 3001 kfree_rcu(grp, rcu); 3002 } 3003 3004 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 3005 int *priv) 3006 { 3007 struct numa_group *grp, *my_grp; 3008 struct task_struct *tsk; 3009 bool join = false; 3010 int cpu = cpupid_to_cpu(cpupid); 3011 int i; 3012 3013 if (unlikely(!deref_curr_numa_group(p))) { 3014 unsigned int size = sizeof(struct numa_group) + 3015 NR_NUMA_HINT_FAULT_STATS * 3016 nr_node_ids * sizeof(unsigned long); 3017 3018 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 3019 if (!grp) 3020 return; 3021 3022 refcount_set(&grp->refcount, 1); 3023 grp->active_nodes = 1; 3024 grp->max_faults_cpu = 0; 3025 spin_lock_init(&grp->lock); 3026 grp->gid = p->pid; 3027 3028 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3029 grp->faults[i] = p->numa_faults[i]; 3030 3031 grp->total_faults = p->total_numa_faults; 3032 3033 grp->nr_tasks++; 3034 rcu_assign_pointer(p->numa_group, grp); 3035 } 3036 3037 rcu_read_lock(); 3038 tsk = READ_ONCE(cpu_rq(cpu)->curr); 3039 3040 if (!cpupid_match_pid(tsk, cpupid)) 3041 goto no_join; 3042 3043 grp = rcu_dereference(tsk->numa_group); 3044 if (!grp) 3045 goto no_join; 3046 3047 my_grp = deref_curr_numa_group(p); 3048 if (grp == my_grp) 3049 goto no_join; 3050 3051 /* 3052 * Only join the other group if its bigger; if we're the bigger group, 3053 * the other task will join us. 3054 */ 3055 if (my_grp->nr_tasks > grp->nr_tasks) 3056 goto no_join; 3057 3058 /* 3059 * Tie-break on the grp address. 3060 */ 3061 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3062 goto no_join; 3063 3064 /* Always join threads in the same process. */ 3065 if (tsk->mm == current->mm) 3066 join = true; 3067 3068 /* Simple filter to avoid false positives due to PID collisions */ 3069 if (flags & TNF_SHARED) 3070 join = true; 3071 3072 /* Update priv based on whether false sharing was detected */ 3073 *priv = !join; 3074 3075 if (join && !get_numa_group(grp)) 3076 goto no_join; 3077 3078 rcu_read_unlock(); 3079 3080 if (!join) 3081 return; 3082 3083 WARN_ON_ONCE(irqs_disabled()); 3084 double_lock_irq(&my_grp->lock, &grp->lock); 3085 3086 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3087 my_grp->faults[i] -= p->numa_faults[i]; 3088 grp->faults[i] += p->numa_faults[i]; 3089 } 3090 my_grp->total_faults -= p->total_numa_faults; 3091 grp->total_faults += p->total_numa_faults; 3092 3093 my_grp->nr_tasks--; 3094 grp->nr_tasks++; 3095 3096 spin_unlock(&my_grp->lock); 3097 spin_unlock_irq(&grp->lock); 3098 3099 rcu_assign_pointer(p->numa_group, grp); 3100 3101 put_numa_group(my_grp); 3102 return; 3103 3104 no_join: 3105 rcu_read_unlock(); 3106 return; 3107 } 3108 3109 /* 3110 * Get rid of NUMA statistics associated with a task (either current or dead). 3111 * If @final is set, the task is dead and has reached refcount zero, so we can 3112 * safely free all relevant data structures. Otherwise, there might be 3113 * concurrent reads from places like load balancing and procfs, and we should 3114 * reset the data back to default state without freeing ->numa_faults. 3115 */ 3116 void task_numa_free(struct task_struct *p, bool final) 3117 { 3118 /* safe: p either is current or is being freed by current */ 3119 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3120 unsigned long *numa_faults = p->numa_faults; 3121 unsigned long flags; 3122 int i; 3123 3124 if (!numa_faults) 3125 return; 3126 3127 if (grp) { 3128 spin_lock_irqsave(&grp->lock, flags); 3129 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3130 grp->faults[i] -= p->numa_faults[i]; 3131 grp->total_faults -= p->total_numa_faults; 3132 3133 grp->nr_tasks--; 3134 spin_unlock_irqrestore(&grp->lock, flags); 3135 RCU_INIT_POINTER(p->numa_group, NULL); 3136 put_numa_group(grp); 3137 } 3138 3139 if (final) { 3140 p->numa_faults = NULL; 3141 kfree(numa_faults); 3142 } else { 3143 p->total_numa_faults = 0; 3144 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3145 numa_faults[i] = 0; 3146 } 3147 } 3148 3149 /* 3150 * Got a PROT_NONE fault for a page on @node. 3151 */ 3152 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3153 { 3154 struct task_struct *p = current; 3155 bool migrated = flags & TNF_MIGRATED; 3156 int cpu_node = task_node(current); 3157 int local = !!(flags & TNF_FAULT_LOCAL); 3158 struct numa_group *ng; 3159 int priv; 3160 3161 if (!static_branch_likely(&sched_numa_balancing)) 3162 return; 3163 3164 /* for example, ksmd faulting in a user's mm */ 3165 if (!p->mm) 3166 return; 3167 3168 /* 3169 * NUMA faults statistics are unnecessary for the slow memory 3170 * node for memory tiering mode. 3171 */ 3172 if (!node_is_toptier(mem_node) && 3173 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3174 !cpupid_valid(last_cpupid))) 3175 return; 3176 3177 /* Allocate buffer to track faults on a per-node basis */ 3178 if (unlikely(!p->numa_faults)) { 3179 int size = sizeof(*p->numa_faults) * 3180 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3181 3182 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3183 if (!p->numa_faults) 3184 return; 3185 3186 p->total_numa_faults = 0; 3187 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3188 } 3189 3190 /* 3191 * First accesses are treated as private, otherwise consider accesses 3192 * to be private if the accessing pid has not changed 3193 */ 3194 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3195 priv = 1; 3196 } else { 3197 priv = cpupid_match_pid(p, last_cpupid); 3198 if (!priv && !(flags & TNF_NO_GROUP)) 3199 task_numa_group(p, last_cpupid, flags, &priv); 3200 } 3201 3202 /* 3203 * If a workload spans multiple NUMA nodes, a shared fault that 3204 * occurs wholly within the set of nodes that the workload is 3205 * actively using should be counted as local. This allows the 3206 * scan rate to slow down when a workload has settled down. 3207 */ 3208 ng = deref_curr_numa_group(p); 3209 if (!priv && !local && ng && ng->active_nodes > 1 && 3210 numa_is_active_node(cpu_node, ng) && 3211 numa_is_active_node(mem_node, ng)) 3212 local = 1; 3213 3214 /* 3215 * Retry to migrate task to preferred node periodically, in case it 3216 * previously failed, or the scheduler moved us. 3217 */ 3218 if (time_after(jiffies, p->numa_migrate_retry)) { 3219 task_numa_placement(p); 3220 numa_migrate_preferred(p); 3221 } 3222 3223 if (migrated) 3224 p->numa_pages_migrated += pages; 3225 if (flags & TNF_MIGRATE_FAIL) 3226 p->numa_faults_locality[2] += pages; 3227 3228 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3229 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3230 p->numa_faults_locality[local] += pages; 3231 } 3232 3233 static void reset_ptenuma_scan(struct task_struct *p) 3234 { 3235 /* 3236 * We only did a read acquisition of the mmap sem, so 3237 * p->mm->numa_scan_seq is written to without exclusive access 3238 * and the update is not guaranteed to be atomic. That's not 3239 * much of an issue though, since this is just used for 3240 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3241 * expensive, to avoid any form of compiler optimizations: 3242 */ 3243 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3244 p->mm->numa_scan_offset = 0; 3245 } 3246 3247 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3248 { 3249 unsigned long pids; 3250 /* 3251 * Allow unconditional access first two times, so that all the (pages) 3252 * of VMAs get prot_none fault introduced irrespective of accesses. 3253 * This is also done to avoid any side effect of task scanning 3254 * amplifying the unfairness of disjoint set of VMAs' access. 3255 */ 3256 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3257 return true; 3258 3259 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3260 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3261 return true; 3262 3263 /* 3264 * Complete a scan that has already started regardless of PID access, or 3265 * some VMAs may never be scanned in multi-threaded applications: 3266 */ 3267 if (mm->numa_scan_offset > vma->vm_start) { 3268 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3269 return true; 3270 } 3271 3272 /* 3273 * This vma has not been accessed for a while, and if the number 3274 * the threads in the same process is low, which means no other 3275 * threads can help scan this vma, force a vma scan. 3276 */ 3277 if (READ_ONCE(mm->numa_scan_seq) > 3278 (vma->numab_state->prev_scan_seq + get_nr_threads(current))) 3279 return true; 3280 3281 return false; 3282 } 3283 3284 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3285 3286 /* 3287 * The expensive part of numa migration is done from task_work context. 3288 * Triggered from task_tick_numa(). 3289 */ 3290 static void task_numa_work(struct callback_head *work) 3291 { 3292 unsigned long migrate, next_scan, now = jiffies; 3293 struct task_struct *p = current; 3294 struct mm_struct *mm = p->mm; 3295 u64 runtime = p->se.sum_exec_runtime; 3296 struct vm_area_struct *vma; 3297 unsigned long start, end; 3298 unsigned long nr_pte_updates = 0; 3299 long pages, virtpages; 3300 struct vma_iterator vmi; 3301 bool vma_pids_skipped; 3302 bool vma_pids_forced = false; 3303 3304 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3305 3306 work->next = work; 3307 /* 3308 * Who cares about NUMA placement when they're dying. 3309 * 3310 * NOTE: make sure not to dereference p->mm before this check, 3311 * exit_task_work() happens _after_ exit_mm() so we could be called 3312 * without p->mm even though we still had it when we enqueued this 3313 * work. 3314 */ 3315 if (p->flags & PF_EXITING) 3316 return; 3317 3318 if (!mm->numa_next_scan) { 3319 mm->numa_next_scan = now + 3320 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3321 } 3322 3323 /* 3324 * Enforce maximal scan/migration frequency.. 3325 */ 3326 migrate = mm->numa_next_scan; 3327 if (time_before(now, migrate)) 3328 return; 3329 3330 if (p->numa_scan_period == 0) { 3331 p->numa_scan_period_max = task_scan_max(p); 3332 p->numa_scan_period = task_scan_start(p); 3333 } 3334 3335 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3336 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3337 return; 3338 3339 /* 3340 * Delay this task enough that another task of this mm will likely win 3341 * the next time around. 3342 */ 3343 p->node_stamp += 2 * TICK_NSEC; 3344 3345 pages = sysctl_numa_balancing_scan_size; 3346 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3347 virtpages = pages * 8; /* Scan up to this much virtual space */ 3348 if (!pages) 3349 return; 3350 3351 3352 if (!mmap_read_trylock(mm)) 3353 return; 3354 3355 /* 3356 * VMAs are skipped if the current PID has not trapped a fault within 3357 * the VMA recently. Allow scanning to be forced if there is no 3358 * suitable VMA remaining. 3359 */ 3360 vma_pids_skipped = false; 3361 3362 retry_pids: 3363 start = mm->numa_scan_offset; 3364 vma_iter_init(&vmi, mm, start); 3365 vma = vma_next(&vmi); 3366 if (!vma) { 3367 reset_ptenuma_scan(p); 3368 start = 0; 3369 vma_iter_set(&vmi, start); 3370 vma = vma_next(&vmi); 3371 } 3372 3373 for (; vma; vma = vma_next(&vmi)) { 3374 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3375 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3376 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3377 continue; 3378 } 3379 3380 /* 3381 * Shared library pages mapped by multiple processes are not 3382 * migrated as it is expected they are cache replicated. Avoid 3383 * hinting faults in read-only file-backed mappings or the vDSO 3384 * as migrating the pages will be of marginal benefit. 3385 */ 3386 if (!vma->vm_mm || 3387 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3388 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3389 continue; 3390 } 3391 3392 /* 3393 * Skip inaccessible VMAs to avoid any confusion between 3394 * PROT_NONE and NUMA hinting PTEs 3395 */ 3396 if (!vma_is_accessible(vma)) { 3397 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3398 continue; 3399 } 3400 3401 /* Initialise new per-VMA NUMAB state. */ 3402 if (!vma->numab_state) { 3403 struct vma_numab_state *ptr; 3404 3405 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL); 3406 if (!ptr) 3407 continue; 3408 3409 if (cmpxchg(&vma->numab_state, NULL, ptr)) { 3410 kfree(ptr); 3411 continue; 3412 } 3413 3414 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3415 3416 vma->numab_state->next_scan = now + 3417 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3418 3419 /* Reset happens after 4 times scan delay of scan start */ 3420 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3421 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3422 3423 /* 3424 * Ensure prev_scan_seq does not match numa_scan_seq, 3425 * to prevent VMAs being skipped prematurely on the 3426 * first scan: 3427 */ 3428 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3429 } 3430 3431 /* 3432 * Scanning the VMAs of short lived tasks add more overhead. So 3433 * delay the scan for new VMAs. 3434 */ 3435 if (mm->numa_scan_seq && time_before(jiffies, 3436 vma->numab_state->next_scan)) { 3437 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3438 continue; 3439 } 3440 3441 /* RESET access PIDs regularly for old VMAs. */ 3442 if (mm->numa_scan_seq && 3443 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3444 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3445 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3446 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3447 vma->numab_state->pids_active[1] = 0; 3448 } 3449 3450 /* Do not rescan VMAs twice within the same sequence. */ 3451 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3452 mm->numa_scan_offset = vma->vm_end; 3453 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3454 continue; 3455 } 3456 3457 /* 3458 * Do not scan the VMA if task has not accessed it, unless no other 3459 * VMA candidate exists. 3460 */ 3461 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3462 vma_pids_skipped = true; 3463 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3464 continue; 3465 } 3466 3467 do { 3468 start = max(start, vma->vm_start); 3469 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3470 end = min(end, vma->vm_end); 3471 nr_pte_updates = change_prot_numa(vma, start, end); 3472 3473 /* 3474 * Try to scan sysctl_numa_balancing_size worth of 3475 * hpages that have at least one present PTE that 3476 * is not already PTE-numa. If the VMA contains 3477 * areas that are unused or already full of prot_numa 3478 * PTEs, scan up to virtpages, to skip through those 3479 * areas faster. 3480 */ 3481 if (nr_pte_updates) 3482 pages -= (end - start) >> PAGE_SHIFT; 3483 virtpages -= (end - start) >> PAGE_SHIFT; 3484 3485 start = end; 3486 if (pages <= 0 || virtpages <= 0) 3487 goto out; 3488 3489 cond_resched(); 3490 } while (end != vma->vm_end); 3491 3492 /* VMA scan is complete, do not scan until next sequence. */ 3493 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3494 3495 /* 3496 * Only force scan within one VMA at a time, to limit the 3497 * cost of scanning a potentially uninteresting VMA. 3498 */ 3499 if (vma_pids_forced) 3500 break; 3501 } 3502 3503 /* 3504 * If no VMAs are remaining and VMAs were skipped due to the PID 3505 * not accessing the VMA previously, then force a scan to ensure 3506 * forward progress: 3507 */ 3508 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3509 vma_pids_forced = true; 3510 goto retry_pids; 3511 } 3512 3513 out: 3514 /* 3515 * It is possible to reach the end of the VMA list but the last few 3516 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3517 * would find the !migratable VMA on the next scan but not reset the 3518 * scanner to the start so check it now. 3519 */ 3520 if (vma) 3521 mm->numa_scan_offset = start; 3522 else 3523 reset_ptenuma_scan(p); 3524 mmap_read_unlock(mm); 3525 3526 /* 3527 * Make sure tasks use at least 32x as much time to run other code 3528 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3529 * Usually update_task_scan_period slows down scanning enough; on an 3530 * overloaded system we need to limit overhead on a per task basis. 3531 */ 3532 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3533 u64 diff = p->se.sum_exec_runtime - runtime; 3534 p->node_stamp += 32 * diff; 3535 } 3536 } 3537 3538 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3539 { 3540 int mm_users = 0; 3541 struct mm_struct *mm = p->mm; 3542 3543 if (mm) { 3544 mm_users = atomic_read(&mm->mm_users); 3545 if (mm_users == 1) { 3546 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3547 mm->numa_scan_seq = 0; 3548 } 3549 } 3550 p->node_stamp = 0; 3551 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3552 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3553 p->numa_migrate_retry = 0; 3554 /* Protect against double add, see task_tick_numa and task_numa_work */ 3555 p->numa_work.next = &p->numa_work; 3556 p->numa_faults = NULL; 3557 p->numa_pages_migrated = 0; 3558 p->total_numa_faults = 0; 3559 RCU_INIT_POINTER(p->numa_group, NULL); 3560 p->last_task_numa_placement = 0; 3561 p->last_sum_exec_runtime = 0; 3562 3563 init_task_work(&p->numa_work, task_numa_work); 3564 3565 /* New address space, reset the preferred nid */ 3566 if (!(clone_flags & CLONE_VM)) { 3567 p->numa_preferred_nid = NUMA_NO_NODE; 3568 return; 3569 } 3570 3571 /* 3572 * New thread, keep existing numa_preferred_nid which should be copied 3573 * already by arch_dup_task_struct but stagger when scans start. 3574 */ 3575 if (mm) { 3576 unsigned int delay; 3577 3578 delay = min_t(unsigned int, task_scan_max(current), 3579 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3580 delay += 2 * TICK_NSEC; 3581 p->node_stamp = delay; 3582 } 3583 } 3584 3585 /* 3586 * Drive the periodic memory faults.. 3587 */ 3588 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3589 { 3590 struct callback_head *work = &curr->numa_work; 3591 u64 period, now; 3592 3593 /* 3594 * We don't care about NUMA placement if we don't have memory. 3595 */ 3596 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3597 return; 3598 3599 /* 3600 * Using runtime rather than walltime has the dual advantage that 3601 * we (mostly) drive the selection from busy threads and that the 3602 * task needs to have done some actual work before we bother with 3603 * NUMA placement. 3604 */ 3605 now = curr->se.sum_exec_runtime; 3606 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3607 3608 if (now > curr->node_stamp + period) { 3609 if (!curr->node_stamp) 3610 curr->numa_scan_period = task_scan_start(curr); 3611 curr->node_stamp += period; 3612 3613 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3614 task_work_add(curr, work, TWA_RESUME); 3615 } 3616 } 3617 3618 static void update_scan_period(struct task_struct *p, int new_cpu) 3619 { 3620 int src_nid = cpu_to_node(task_cpu(p)); 3621 int dst_nid = cpu_to_node(new_cpu); 3622 3623 if (!static_branch_likely(&sched_numa_balancing)) 3624 return; 3625 3626 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3627 return; 3628 3629 if (src_nid == dst_nid) 3630 return; 3631 3632 /* 3633 * Allow resets if faults have been trapped before one scan 3634 * has completed. This is most likely due to a new task that 3635 * is pulled cross-node due to wakeups or load balancing. 3636 */ 3637 if (p->numa_scan_seq) { 3638 /* 3639 * Avoid scan adjustments if moving to the preferred 3640 * node or if the task was not previously running on 3641 * the preferred node. 3642 */ 3643 if (dst_nid == p->numa_preferred_nid || 3644 (p->numa_preferred_nid != NUMA_NO_NODE && 3645 src_nid != p->numa_preferred_nid)) 3646 return; 3647 } 3648 3649 p->numa_scan_period = task_scan_start(p); 3650 } 3651 3652 #else 3653 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3654 { 3655 } 3656 3657 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3658 { 3659 } 3660 3661 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3662 { 3663 } 3664 3665 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3666 { 3667 } 3668 3669 #endif /* CONFIG_NUMA_BALANCING */ 3670 3671 static void 3672 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3673 { 3674 update_load_add(&cfs_rq->load, se->load.weight); 3675 #ifdef CONFIG_SMP 3676 if (entity_is_task(se)) { 3677 struct rq *rq = rq_of(cfs_rq); 3678 3679 account_numa_enqueue(rq, task_of(se)); 3680 list_add(&se->group_node, &rq->cfs_tasks); 3681 } 3682 #endif 3683 cfs_rq->nr_queued++; 3684 } 3685 3686 static void 3687 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3688 { 3689 update_load_sub(&cfs_rq->load, se->load.weight); 3690 #ifdef CONFIG_SMP 3691 if (entity_is_task(se)) { 3692 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3693 list_del_init(&se->group_node); 3694 } 3695 #endif 3696 cfs_rq->nr_queued--; 3697 } 3698 3699 /* 3700 * Signed add and clamp on underflow. 3701 * 3702 * Explicitly do a load-store to ensure the intermediate value never hits 3703 * memory. This allows lockless observations without ever seeing the negative 3704 * values. 3705 */ 3706 #define add_positive(_ptr, _val) do { \ 3707 typeof(_ptr) ptr = (_ptr); \ 3708 typeof(_val) val = (_val); \ 3709 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3710 \ 3711 res = var + val; \ 3712 \ 3713 if (val < 0 && res > var) \ 3714 res = 0; \ 3715 \ 3716 WRITE_ONCE(*ptr, res); \ 3717 } while (0) 3718 3719 /* 3720 * Unsigned subtract and clamp on underflow. 3721 * 3722 * Explicitly do a load-store to ensure the intermediate value never hits 3723 * memory. This allows lockless observations without ever seeing the negative 3724 * values. 3725 */ 3726 #define sub_positive(_ptr, _val) do { \ 3727 typeof(_ptr) ptr = (_ptr); \ 3728 typeof(*ptr) val = (_val); \ 3729 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3730 res = var - val; \ 3731 if (res > var) \ 3732 res = 0; \ 3733 WRITE_ONCE(*ptr, res); \ 3734 } while (0) 3735 3736 /* 3737 * Remove and clamp on negative, from a local variable. 3738 * 3739 * A variant of sub_positive(), which does not use explicit load-store 3740 * and is thus optimized for local variable updates. 3741 */ 3742 #define lsub_positive(_ptr, _val) do { \ 3743 typeof(_ptr) ptr = (_ptr); \ 3744 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3745 } while (0) 3746 3747 #ifdef CONFIG_SMP 3748 static inline void 3749 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3750 { 3751 cfs_rq->avg.load_avg += se->avg.load_avg; 3752 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3753 } 3754 3755 static inline void 3756 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3757 { 3758 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3759 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3760 /* See update_cfs_rq_load_avg() */ 3761 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3762 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3763 } 3764 #else 3765 static inline void 3766 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3767 static inline void 3768 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3769 #endif 3770 3771 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags); 3772 3773 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3774 unsigned long weight) 3775 { 3776 bool curr = cfs_rq->curr == se; 3777 3778 if (se->on_rq) { 3779 /* commit outstanding execution time */ 3780 update_curr(cfs_rq); 3781 update_entity_lag(cfs_rq, se); 3782 se->deadline -= se->vruntime; 3783 se->rel_deadline = 1; 3784 if (!curr) 3785 __dequeue_entity(cfs_rq, se); 3786 update_load_sub(&cfs_rq->load, se->load.weight); 3787 } 3788 dequeue_load_avg(cfs_rq, se); 3789 3790 /* 3791 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3792 * we need to scale se->vlag when w_i changes. 3793 */ 3794 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3795 if (se->rel_deadline) 3796 se->deadline = div_s64(se->deadline * se->load.weight, weight); 3797 3798 update_load_set(&se->load, weight); 3799 3800 #ifdef CONFIG_SMP 3801 do { 3802 u32 divider = get_pelt_divider(&se->avg); 3803 3804 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3805 } while (0); 3806 #endif 3807 3808 enqueue_load_avg(cfs_rq, se); 3809 if (se->on_rq) { 3810 update_load_add(&cfs_rq->load, se->load.weight); 3811 place_entity(cfs_rq, se, 0); 3812 if (!curr) 3813 __enqueue_entity(cfs_rq, se); 3814 3815 /* 3816 * The entity's vruntime has been adjusted, so let's check 3817 * whether the rq-wide min_vruntime needs updated too. Since 3818 * the calculations above require stable min_vruntime rather 3819 * than up-to-date one, we do the update at the end of the 3820 * reweight process. 3821 */ 3822 update_min_vruntime(cfs_rq); 3823 } 3824 } 3825 3826 static void reweight_task_fair(struct rq *rq, struct task_struct *p, 3827 const struct load_weight *lw) 3828 { 3829 struct sched_entity *se = &p->se; 3830 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3831 struct load_weight *load = &se->load; 3832 3833 reweight_entity(cfs_rq, se, lw->weight); 3834 load->inv_weight = lw->inv_weight; 3835 } 3836 3837 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3838 3839 #ifdef CONFIG_FAIR_GROUP_SCHED 3840 #ifdef CONFIG_SMP 3841 /* 3842 * All this does is approximate the hierarchical proportion which includes that 3843 * global sum we all love to hate. 3844 * 3845 * That is, the weight of a group entity, is the proportional share of the 3846 * group weight based on the group runqueue weights. That is: 3847 * 3848 * tg->weight * grq->load.weight 3849 * ge->load.weight = ----------------------------- (1) 3850 * \Sum grq->load.weight 3851 * 3852 * Now, because computing that sum is prohibitively expensive to compute (been 3853 * there, done that) we approximate it with this average stuff. The average 3854 * moves slower and therefore the approximation is cheaper and more stable. 3855 * 3856 * So instead of the above, we substitute: 3857 * 3858 * grq->load.weight -> grq->avg.load_avg (2) 3859 * 3860 * which yields the following: 3861 * 3862 * tg->weight * grq->avg.load_avg 3863 * ge->load.weight = ------------------------------ (3) 3864 * tg->load_avg 3865 * 3866 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3867 * 3868 * That is shares_avg, and it is right (given the approximation (2)). 3869 * 3870 * The problem with it is that because the average is slow -- it was designed 3871 * to be exactly that of course -- this leads to transients in boundary 3872 * conditions. In specific, the case where the group was idle and we start the 3873 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3874 * yielding bad latency etc.. 3875 * 3876 * Now, in that special case (1) reduces to: 3877 * 3878 * tg->weight * grq->load.weight 3879 * ge->load.weight = ----------------------------- = tg->weight (4) 3880 * grp->load.weight 3881 * 3882 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3883 * 3884 * So what we do is modify our approximation (3) to approach (4) in the (near) 3885 * UP case, like: 3886 * 3887 * ge->load.weight = 3888 * 3889 * tg->weight * grq->load.weight 3890 * --------------------------------------------------- (5) 3891 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3892 * 3893 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3894 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3895 * 3896 * 3897 * tg->weight * grq->load.weight 3898 * ge->load.weight = ----------------------------- (6) 3899 * tg_load_avg' 3900 * 3901 * Where: 3902 * 3903 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3904 * max(grq->load.weight, grq->avg.load_avg) 3905 * 3906 * And that is shares_weight and is icky. In the (near) UP case it approaches 3907 * (4) while in the normal case it approaches (3). It consistently 3908 * overestimates the ge->load.weight and therefore: 3909 * 3910 * \Sum ge->load.weight >= tg->weight 3911 * 3912 * hence icky! 3913 */ 3914 static long calc_group_shares(struct cfs_rq *cfs_rq) 3915 { 3916 long tg_weight, tg_shares, load, shares; 3917 struct task_group *tg = cfs_rq->tg; 3918 3919 tg_shares = READ_ONCE(tg->shares); 3920 3921 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3922 3923 tg_weight = atomic_long_read(&tg->load_avg); 3924 3925 /* Ensure tg_weight >= load */ 3926 tg_weight -= cfs_rq->tg_load_avg_contrib; 3927 tg_weight += load; 3928 3929 shares = (tg_shares * load); 3930 if (tg_weight) 3931 shares /= tg_weight; 3932 3933 /* 3934 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3935 * of a group with small tg->shares value. It is a floor value which is 3936 * assigned as a minimum load.weight to the sched_entity representing 3937 * the group on a CPU. 3938 * 3939 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3940 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3941 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3942 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3943 * instead of 0. 3944 */ 3945 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3946 } 3947 #endif /* CONFIG_SMP */ 3948 3949 /* 3950 * Recomputes the group entity based on the current state of its group 3951 * runqueue. 3952 */ 3953 static void update_cfs_group(struct sched_entity *se) 3954 { 3955 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3956 long shares; 3957 3958 /* 3959 * When a group becomes empty, preserve its weight. This matters for 3960 * DELAY_DEQUEUE. 3961 */ 3962 if (!gcfs_rq || !gcfs_rq->load.weight) 3963 return; 3964 3965 if (throttled_hierarchy(gcfs_rq)) 3966 return; 3967 3968 #ifndef CONFIG_SMP 3969 shares = READ_ONCE(gcfs_rq->tg->shares); 3970 #else 3971 shares = calc_group_shares(gcfs_rq); 3972 #endif 3973 if (unlikely(se->load.weight != shares)) 3974 reweight_entity(cfs_rq_of(se), se, shares); 3975 } 3976 3977 #else /* CONFIG_FAIR_GROUP_SCHED */ 3978 static inline void update_cfs_group(struct sched_entity *se) 3979 { 3980 } 3981 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3982 3983 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3984 { 3985 struct rq *rq = rq_of(cfs_rq); 3986 3987 if (&rq->cfs == cfs_rq) { 3988 /* 3989 * There are a few boundary cases this might miss but it should 3990 * get called often enough that that should (hopefully) not be 3991 * a real problem. 3992 * 3993 * It will not get called when we go idle, because the idle 3994 * thread is a different class (!fair), nor will the utilization 3995 * number include things like RT tasks. 3996 * 3997 * As is, the util number is not freq-invariant (we'd have to 3998 * implement arch_scale_freq_capacity() for that). 3999 * 4000 * See cpu_util_cfs(). 4001 */ 4002 cpufreq_update_util(rq, flags); 4003 } 4004 } 4005 4006 #ifdef CONFIG_SMP 4007 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4008 { 4009 if (sa->load_sum) 4010 return false; 4011 4012 if (sa->util_sum) 4013 return false; 4014 4015 if (sa->runnable_sum) 4016 return false; 4017 4018 /* 4019 * _avg must be null when _sum are null because _avg = _sum / divider 4020 * Make sure that rounding and/or propagation of PELT values never 4021 * break this. 4022 */ 4023 SCHED_WARN_ON(sa->load_avg || 4024 sa->util_avg || 4025 sa->runnable_avg); 4026 4027 return true; 4028 } 4029 4030 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4031 { 4032 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4033 cfs_rq->last_update_time_copy); 4034 } 4035 #ifdef CONFIG_FAIR_GROUP_SCHED 4036 /* 4037 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4038 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4039 * bottom-up, we only have to test whether the cfs_rq before us on the list 4040 * is our child. 4041 * If cfs_rq is not on the list, test whether a child needs its to be added to 4042 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4043 */ 4044 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4045 { 4046 struct cfs_rq *prev_cfs_rq; 4047 struct list_head *prev; 4048 struct rq *rq = rq_of(cfs_rq); 4049 4050 if (cfs_rq->on_list) { 4051 prev = cfs_rq->leaf_cfs_rq_list.prev; 4052 } else { 4053 prev = rq->tmp_alone_branch; 4054 } 4055 4056 if (prev == &rq->leaf_cfs_rq_list) 4057 return false; 4058 4059 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4060 4061 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4062 } 4063 4064 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4065 { 4066 if (cfs_rq->load.weight) 4067 return false; 4068 4069 if (!load_avg_is_decayed(&cfs_rq->avg)) 4070 return false; 4071 4072 if (child_cfs_rq_on_list(cfs_rq)) 4073 return false; 4074 4075 return true; 4076 } 4077 4078 /** 4079 * update_tg_load_avg - update the tg's load avg 4080 * @cfs_rq: the cfs_rq whose avg changed 4081 * 4082 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4083 * However, because tg->load_avg is a global value there are performance 4084 * considerations. 4085 * 4086 * In order to avoid having to look at the other cfs_rq's, we use a 4087 * differential update where we store the last value we propagated. This in 4088 * turn allows skipping updates if the differential is 'small'. 4089 * 4090 * Updating tg's load_avg is necessary before update_cfs_share(). 4091 */ 4092 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4093 { 4094 long delta; 4095 u64 now; 4096 4097 /* 4098 * No need to update load_avg for root_task_group as it is not used. 4099 */ 4100 if (cfs_rq->tg == &root_task_group) 4101 return; 4102 4103 /* rq has been offline and doesn't contribute to the share anymore: */ 4104 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4105 return; 4106 4107 /* 4108 * For migration heavy workloads, access to tg->load_avg can be 4109 * unbound. Limit the update rate to at most once per ms. 4110 */ 4111 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4112 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4113 return; 4114 4115 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4116 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4117 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4118 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4119 cfs_rq->last_update_tg_load_avg = now; 4120 } 4121 } 4122 4123 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4124 { 4125 long delta; 4126 u64 now; 4127 4128 /* 4129 * No need to update load_avg for root_task_group, as it is not used. 4130 */ 4131 if (cfs_rq->tg == &root_task_group) 4132 return; 4133 4134 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4135 delta = 0 - cfs_rq->tg_load_avg_contrib; 4136 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4137 cfs_rq->tg_load_avg_contrib = 0; 4138 cfs_rq->last_update_tg_load_avg = now; 4139 } 4140 4141 /* CPU offline callback: */ 4142 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4143 { 4144 struct task_group *tg; 4145 4146 lockdep_assert_rq_held(rq); 4147 4148 /* 4149 * The rq clock has already been updated in 4150 * set_rq_offline(), so we should skip updating 4151 * the rq clock again in unthrottle_cfs_rq(). 4152 */ 4153 rq_clock_start_loop_update(rq); 4154 4155 rcu_read_lock(); 4156 list_for_each_entry_rcu(tg, &task_groups, list) { 4157 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4158 4159 clear_tg_load_avg(cfs_rq); 4160 } 4161 rcu_read_unlock(); 4162 4163 rq_clock_stop_loop_update(rq); 4164 } 4165 4166 /* 4167 * Called within set_task_rq() right before setting a task's CPU. The 4168 * caller only guarantees p->pi_lock is held; no other assumptions, 4169 * including the state of rq->lock, should be made. 4170 */ 4171 void set_task_rq_fair(struct sched_entity *se, 4172 struct cfs_rq *prev, struct cfs_rq *next) 4173 { 4174 u64 p_last_update_time; 4175 u64 n_last_update_time; 4176 4177 if (!sched_feat(ATTACH_AGE_LOAD)) 4178 return; 4179 4180 /* 4181 * We are supposed to update the task to "current" time, then its up to 4182 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4183 * getting what current time is, so simply throw away the out-of-date 4184 * time. This will result in the wakee task is less decayed, but giving 4185 * the wakee more load sounds not bad. 4186 */ 4187 if (!(se->avg.last_update_time && prev)) 4188 return; 4189 4190 p_last_update_time = cfs_rq_last_update_time(prev); 4191 n_last_update_time = cfs_rq_last_update_time(next); 4192 4193 __update_load_avg_blocked_se(p_last_update_time, se); 4194 se->avg.last_update_time = n_last_update_time; 4195 } 4196 4197 /* 4198 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4199 * propagate its contribution. The key to this propagation is the invariant 4200 * that for each group: 4201 * 4202 * ge->avg == grq->avg (1) 4203 * 4204 * _IFF_ we look at the pure running and runnable sums. Because they 4205 * represent the very same entity, just at different points in the hierarchy. 4206 * 4207 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4208 * and simply copies the running/runnable sum over (but still wrong, because 4209 * the group entity and group rq do not have their PELT windows aligned). 4210 * 4211 * However, update_tg_cfs_load() is more complex. So we have: 4212 * 4213 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4214 * 4215 * And since, like util, the runnable part should be directly transferable, 4216 * the following would _appear_ to be the straight forward approach: 4217 * 4218 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4219 * 4220 * And per (1) we have: 4221 * 4222 * ge->avg.runnable_avg == grq->avg.runnable_avg 4223 * 4224 * Which gives: 4225 * 4226 * ge->load.weight * grq->avg.load_avg 4227 * ge->avg.load_avg = ----------------------------------- (4) 4228 * grq->load.weight 4229 * 4230 * Except that is wrong! 4231 * 4232 * Because while for entities historical weight is not important and we 4233 * really only care about our future and therefore can consider a pure 4234 * runnable sum, runqueues can NOT do this. 4235 * 4236 * We specifically want runqueues to have a load_avg that includes 4237 * historical weights. Those represent the blocked load, the load we expect 4238 * to (shortly) return to us. This only works by keeping the weights as 4239 * integral part of the sum. We therefore cannot decompose as per (3). 4240 * 4241 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4242 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4243 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4244 * runnable section of these tasks overlap (or not). If they were to perfectly 4245 * align the rq as a whole would be runnable 2/3 of the time. If however we 4246 * always have at least 1 runnable task, the rq as a whole is always runnable. 4247 * 4248 * So we'll have to approximate.. :/ 4249 * 4250 * Given the constraint: 4251 * 4252 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4253 * 4254 * We can construct a rule that adds runnable to a rq by assuming minimal 4255 * overlap. 4256 * 4257 * On removal, we'll assume each task is equally runnable; which yields: 4258 * 4259 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4260 * 4261 * XXX: only do this for the part of runnable > running ? 4262 * 4263 */ 4264 static inline void 4265 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4266 { 4267 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4268 u32 new_sum, divider; 4269 4270 /* Nothing to update */ 4271 if (!delta_avg) 4272 return; 4273 4274 /* 4275 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4276 * See ___update_load_avg() for details. 4277 */ 4278 divider = get_pelt_divider(&cfs_rq->avg); 4279 4280 4281 /* Set new sched_entity's utilization */ 4282 se->avg.util_avg = gcfs_rq->avg.util_avg; 4283 new_sum = se->avg.util_avg * divider; 4284 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4285 se->avg.util_sum = new_sum; 4286 4287 /* Update parent cfs_rq utilization */ 4288 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4289 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4290 4291 /* See update_cfs_rq_load_avg() */ 4292 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4293 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4294 } 4295 4296 static inline void 4297 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4298 { 4299 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4300 u32 new_sum, divider; 4301 4302 /* Nothing to update */ 4303 if (!delta_avg) 4304 return; 4305 4306 /* 4307 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4308 * See ___update_load_avg() for details. 4309 */ 4310 divider = get_pelt_divider(&cfs_rq->avg); 4311 4312 /* Set new sched_entity's runnable */ 4313 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4314 new_sum = se->avg.runnable_avg * divider; 4315 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4316 se->avg.runnable_sum = new_sum; 4317 4318 /* Update parent cfs_rq runnable */ 4319 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4320 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4321 /* See update_cfs_rq_load_avg() */ 4322 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4323 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4324 } 4325 4326 static inline void 4327 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4328 { 4329 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4330 unsigned long load_avg; 4331 u64 load_sum = 0; 4332 s64 delta_sum; 4333 u32 divider; 4334 4335 if (!runnable_sum) 4336 return; 4337 4338 gcfs_rq->prop_runnable_sum = 0; 4339 4340 /* 4341 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4342 * See ___update_load_avg() for details. 4343 */ 4344 divider = get_pelt_divider(&cfs_rq->avg); 4345 4346 if (runnable_sum >= 0) { 4347 /* 4348 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4349 * the CPU is saturated running == runnable. 4350 */ 4351 runnable_sum += se->avg.load_sum; 4352 runnable_sum = min_t(long, runnable_sum, divider); 4353 } else { 4354 /* 4355 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4356 * assuming all tasks are equally runnable. 4357 */ 4358 if (scale_load_down(gcfs_rq->load.weight)) { 4359 load_sum = div_u64(gcfs_rq->avg.load_sum, 4360 scale_load_down(gcfs_rq->load.weight)); 4361 } 4362 4363 /* But make sure to not inflate se's runnable */ 4364 runnable_sum = min(se->avg.load_sum, load_sum); 4365 } 4366 4367 /* 4368 * runnable_sum can't be lower than running_sum 4369 * Rescale running sum to be in the same range as runnable sum 4370 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4371 * runnable_sum is in [0 : LOAD_AVG_MAX] 4372 */ 4373 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4374 runnable_sum = max(runnable_sum, running_sum); 4375 4376 load_sum = se_weight(se) * runnable_sum; 4377 load_avg = div_u64(load_sum, divider); 4378 4379 delta_avg = load_avg - se->avg.load_avg; 4380 if (!delta_avg) 4381 return; 4382 4383 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4384 4385 se->avg.load_sum = runnable_sum; 4386 se->avg.load_avg = load_avg; 4387 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4388 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4389 /* See update_cfs_rq_load_avg() */ 4390 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4391 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4392 } 4393 4394 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4395 { 4396 cfs_rq->propagate = 1; 4397 cfs_rq->prop_runnable_sum += runnable_sum; 4398 } 4399 4400 /* Update task and its cfs_rq load average */ 4401 static inline int propagate_entity_load_avg(struct sched_entity *se) 4402 { 4403 struct cfs_rq *cfs_rq, *gcfs_rq; 4404 4405 if (entity_is_task(se)) 4406 return 0; 4407 4408 gcfs_rq = group_cfs_rq(se); 4409 if (!gcfs_rq->propagate) 4410 return 0; 4411 4412 gcfs_rq->propagate = 0; 4413 4414 cfs_rq = cfs_rq_of(se); 4415 4416 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4417 4418 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4419 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4420 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4421 4422 trace_pelt_cfs_tp(cfs_rq); 4423 trace_pelt_se_tp(se); 4424 4425 return 1; 4426 } 4427 4428 /* 4429 * Check if we need to update the load and the utilization of a blocked 4430 * group_entity: 4431 */ 4432 static inline bool skip_blocked_update(struct sched_entity *se) 4433 { 4434 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4435 4436 /* 4437 * If sched_entity still have not zero load or utilization, we have to 4438 * decay it: 4439 */ 4440 if (se->avg.load_avg || se->avg.util_avg) 4441 return false; 4442 4443 /* 4444 * If there is a pending propagation, we have to update the load and 4445 * the utilization of the sched_entity: 4446 */ 4447 if (gcfs_rq->propagate) 4448 return false; 4449 4450 /* 4451 * Otherwise, the load and the utilization of the sched_entity is 4452 * already zero and there is no pending propagation, so it will be a 4453 * waste of time to try to decay it: 4454 */ 4455 return true; 4456 } 4457 4458 #else /* CONFIG_FAIR_GROUP_SCHED */ 4459 4460 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4461 4462 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4463 4464 static inline int propagate_entity_load_avg(struct sched_entity *se) 4465 { 4466 return 0; 4467 } 4468 4469 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4470 4471 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4472 4473 #ifdef CONFIG_NO_HZ_COMMON 4474 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4475 { 4476 u64 throttled = 0, now, lut; 4477 struct cfs_rq *cfs_rq; 4478 struct rq *rq; 4479 bool is_idle; 4480 4481 if (load_avg_is_decayed(&se->avg)) 4482 return; 4483 4484 cfs_rq = cfs_rq_of(se); 4485 rq = rq_of(cfs_rq); 4486 4487 rcu_read_lock(); 4488 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4489 rcu_read_unlock(); 4490 4491 /* 4492 * The lag estimation comes with a cost we don't want to pay all the 4493 * time. Hence, limiting to the case where the source CPU is idle and 4494 * we know we are at the greatest risk to have an outdated clock. 4495 */ 4496 if (!is_idle) 4497 return; 4498 4499 /* 4500 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4501 * 4502 * last_update_time (the cfs_rq's last_update_time) 4503 * = cfs_rq_clock_pelt()@cfs_rq_idle 4504 * = rq_clock_pelt()@cfs_rq_idle 4505 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4506 * 4507 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4508 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4509 * 4510 * rq_idle_lag (delta between now and rq's update) 4511 * = sched_clock_cpu() - rq_clock()@rq_idle 4512 * 4513 * We can then write: 4514 * 4515 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4516 * sched_clock_cpu() - rq_clock()@rq_idle 4517 * Where: 4518 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4519 * rq_clock()@rq_idle is rq->clock_idle 4520 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4521 * is cfs_rq->throttled_pelt_idle 4522 */ 4523 4524 #ifdef CONFIG_CFS_BANDWIDTH 4525 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4526 /* The clock has been stopped for throttling */ 4527 if (throttled == U64_MAX) 4528 return; 4529 #endif 4530 now = u64_u32_load(rq->clock_pelt_idle); 4531 /* 4532 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4533 * is observed the old clock_pelt_idle value and the new clock_idle, 4534 * which lead to an underestimation. The opposite would lead to an 4535 * overestimation. 4536 */ 4537 smp_rmb(); 4538 lut = cfs_rq_last_update_time(cfs_rq); 4539 4540 now -= throttled; 4541 if (now < lut) 4542 /* 4543 * cfs_rq->avg.last_update_time is more recent than our 4544 * estimation, let's use it. 4545 */ 4546 now = lut; 4547 else 4548 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4549 4550 __update_load_avg_blocked_se(now, se); 4551 } 4552 #else 4553 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4554 #endif 4555 4556 /** 4557 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4558 * @now: current time, as per cfs_rq_clock_pelt() 4559 * @cfs_rq: cfs_rq to update 4560 * 4561 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4562 * avg. The immediate corollary is that all (fair) tasks must be attached. 4563 * 4564 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4565 * 4566 * Return: true if the load decayed or we removed load. 4567 * 4568 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4569 * call update_tg_load_avg() when this function returns true. 4570 */ 4571 static inline int 4572 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4573 { 4574 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4575 struct sched_avg *sa = &cfs_rq->avg; 4576 int decayed = 0; 4577 4578 if (cfs_rq->removed.nr) { 4579 unsigned long r; 4580 u32 divider = get_pelt_divider(&cfs_rq->avg); 4581 4582 raw_spin_lock(&cfs_rq->removed.lock); 4583 swap(cfs_rq->removed.util_avg, removed_util); 4584 swap(cfs_rq->removed.load_avg, removed_load); 4585 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4586 cfs_rq->removed.nr = 0; 4587 raw_spin_unlock(&cfs_rq->removed.lock); 4588 4589 r = removed_load; 4590 sub_positive(&sa->load_avg, r); 4591 sub_positive(&sa->load_sum, r * divider); 4592 /* See sa->util_sum below */ 4593 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4594 4595 r = removed_util; 4596 sub_positive(&sa->util_avg, r); 4597 sub_positive(&sa->util_sum, r * divider); 4598 /* 4599 * Because of rounding, se->util_sum might ends up being +1 more than 4600 * cfs->util_sum. Although this is not a problem by itself, detaching 4601 * a lot of tasks with the rounding problem between 2 updates of 4602 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4603 * cfs_util_avg is not. 4604 * Check that util_sum is still above its lower bound for the new 4605 * util_avg. Given that period_contrib might have moved since the last 4606 * sync, we are only sure that util_sum must be above or equal to 4607 * util_avg * minimum possible divider 4608 */ 4609 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4610 4611 r = removed_runnable; 4612 sub_positive(&sa->runnable_avg, r); 4613 sub_positive(&sa->runnable_sum, r * divider); 4614 /* See sa->util_sum above */ 4615 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4616 sa->runnable_avg * PELT_MIN_DIVIDER); 4617 4618 /* 4619 * removed_runnable is the unweighted version of removed_load so we 4620 * can use it to estimate removed_load_sum. 4621 */ 4622 add_tg_cfs_propagate(cfs_rq, 4623 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4624 4625 decayed = 1; 4626 } 4627 4628 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4629 u64_u32_store_copy(sa->last_update_time, 4630 cfs_rq->last_update_time_copy, 4631 sa->last_update_time); 4632 return decayed; 4633 } 4634 4635 /** 4636 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4637 * @cfs_rq: cfs_rq to attach to 4638 * @se: sched_entity to attach 4639 * 4640 * Must call update_cfs_rq_load_avg() before this, since we rely on 4641 * cfs_rq->avg.last_update_time being current. 4642 */ 4643 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4644 { 4645 /* 4646 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4647 * See ___update_load_avg() for details. 4648 */ 4649 u32 divider = get_pelt_divider(&cfs_rq->avg); 4650 4651 /* 4652 * When we attach the @se to the @cfs_rq, we must align the decay 4653 * window because without that, really weird and wonderful things can 4654 * happen. 4655 * 4656 * XXX illustrate 4657 */ 4658 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4659 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4660 4661 /* 4662 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4663 * period_contrib. This isn't strictly correct, but since we're 4664 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4665 * _sum a little. 4666 */ 4667 se->avg.util_sum = se->avg.util_avg * divider; 4668 4669 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4670 4671 se->avg.load_sum = se->avg.load_avg * divider; 4672 if (se_weight(se) < se->avg.load_sum) 4673 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4674 else 4675 se->avg.load_sum = 1; 4676 4677 enqueue_load_avg(cfs_rq, se); 4678 cfs_rq->avg.util_avg += se->avg.util_avg; 4679 cfs_rq->avg.util_sum += se->avg.util_sum; 4680 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4681 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4682 4683 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4684 4685 cfs_rq_util_change(cfs_rq, 0); 4686 4687 trace_pelt_cfs_tp(cfs_rq); 4688 } 4689 4690 /** 4691 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4692 * @cfs_rq: cfs_rq to detach from 4693 * @se: sched_entity to detach 4694 * 4695 * Must call update_cfs_rq_load_avg() before this, since we rely on 4696 * cfs_rq->avg.last_update_time being current. 4697 */ 4698 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4699 { 4700 dequeue_load_avg(cfs_rq, se); 4701 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4702 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4703 /* See update_cfs_rq_load_avg() */ 4704 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4705 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4706 4707 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4708 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4709 /* See update_cfs_rq_load_avg() */ 4710 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4711 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4712 4713 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4714 4715 cfs_rq_util_change(cfs_rq, 0); 4716 4717 trace_pelt_cfs_tp(cfs_rq); 4718 } 4719 4720 /* 4721 * Optional action to be done while updating the load average 4722 */ 4723 #define UPDATE_TG 0x1 4724 #define SKIP_AGE_LOAD 0x2 4725 #define DO_ATTACH 0x4 4726 #define DO_DETACH 0x8 4727 4728 /* Update task and its cfs_rq load average */ 4729 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4730 { 4731 u64 now = cfs_rq_clock_pelt(cfs_rq); 4732 int decayed; 4733 4734 /* 4735 * Track task load average for carrying it to new CPU after migrated, and 4736 * track group sched_entity load average for task_h_load calculation in migration 4737 */ 4738 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4739 __update_load_avg_se(now, cfs_rq, se); 4740 4741 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4742 decayed |= propagate_entity_load_avg(se); 4743 4744 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4745 4746 /* 4747 * DO_ATTACH means we're here from enqueue_entity(). 4748 * !last_update_time means we've passed through 4749 * migrate_task_rq_fair() indicating we migrated. 4750 * 4751 * IOW we're enqueueing a task on a new CPU. 4752 */ 4753 attach_entity_load_avg(cfs_rq, se); 4754 update_tg_load_avg(cfs_rq); 4755 4756 } else if (flags & DO_DETACH) { 4757 /* 4758 * DO_DETACH means we're here from dequeue_entity() 4759 * and we are migrating task out of the CPU. 4760 */ 4761 detach_entity_load_avg(cfs_rq, se); 4762 update_tg_load_avg(cfs_rq); 4763 } else if (decayed) { 4764 cfs_rq_util_change(cfs_rq, 0); 4765 4766 if (flags & UPDATE_TG) 4767 update_tg_load_avg(cfs_rq); 4768 } 4769 } 4770 4771 /* 4772 * Synchronize entity load avg of dequeued entity without locking 4773 * the previous rq. 4774 */ 4775 static void sync_entity_load_avg(struct sched_entity *se) 4776 { 4777 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4778 u64 last_update_time; 4779 4780 last_update_time = cfs_rq_last_update_time(cfs_rq); 4781 __update_load_avg_blocked_se(last_update_time, se); 4782 } 4783 4784 /* 4785 * Task first catches up with cfs_rq, and then subtract 4786 * itself from the cfs_rq (task must be off the queue now). 4787 */ 4788 static void remove_entity_load_avg(struct sched_entity *se) 4789 { 4790 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4791 unsigned long flags; 4792 4793 /* 4794 * tasks cannot exit without having gone through wake_up_new_task() -> 4795 * enqueue_task_fair() which will have added things to the cfs_rq, 4796 * so we can remove unconditionally. 4797 */ 4798 4799 sync_entity_load_avg(se); 4800 4801 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4802 ++cfs_rq->removed.nr; 4803 cfs_rq->removed.util_avg += se->avg.util_avg; 4804 cfs_rq->removed.load_avg += se->avg.load_avg; 4805 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4806 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4807 } 4808 4809 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4810 { 4811 return cfs_rq->avg.runnable_avg; 4812 } 4813 4814 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4815 { 4816 return cfs_rq->avg.load_avg; 4817 } 4818 4819 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4820 4821 static inline unsigned long task_util(struct task_struct *p) 4822 { 4823 return READ_ONCE(p->se.avg.util_avg); 4824 } 4825 4826 static inline unsigned long task_runnable(struct task_struct *p) 4827 { 4828 return READ_ONCE(p->se.avg.runnable_avg); 4829 } 4830 4831 static inline unsigned long _task_util_est(struct task_struct *p) 4832 { 4833 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4834 } 4835 4836 static inline unsigned long task_util_est(struct task_struct *p) 4837 { 4838 return max(task_util(p), _task_util_est(p)); 4839 } 4840 4841 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4842 struct task_struct *p) 4843 { 4844 unsigned int enqueued; 4845 4846 if (!sched_feat(UTIL_EST)) 4847 return; 4848 4849 /* Update root cfs_rq's estimated utilization */ 4850 enqueued = cfs_rq->avg.util_est; 4851 enqueued += _task_util_est(p); 4852 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4853 4854 trace_sched_util_est_cfs_tp(cfs_rq); 4855 } 4856 4857 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4858 struct task_struct *p) 4859 { 4860 unsigned int enqueued; 4861 4862 if (!sched_feat(UTIL_EST)) 4863 return; 4864 4865 /* Update root cfs_rq's estimated utilization */ 4866 enqueued = cfs_rq->avg.util_est; 4867 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4868 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4869 4870 trace_sched_util_est_cfs_tp(cfs_rq); 4871 } 4872 4873 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4874 4875 static inline void util_est_update(struct cfs_rq *cfs_rq, 4876 struct task_struct *p, 4877 bool task_sleep) 4878 { 4879 unsigned int ewma, dequeued, last_ewma_diff; 4880 4881 if (!sched_feat(UTIL_EST)) 4882 return; 4883 4884 /* 4885 * Skip update of task's estimated utilization when the task has not 4886 * yet completed an activation, e.g. being migrated. 4887 */ 4888 if (!task_sleep) 4889 return; 4890 4891 /* Get current estimate of utilization */ 4892 ewma = READ_ONCE(p->se.avg.util_est); 4893 4894 /* 4895 * If the PELT values haven't changed since enqueue time, 4896 * skip the util_est update. 4897 */ 4898 if (ewma & UTIL_AVG_UNCHANGED) 4899 return; 4900 4901 /* Get utilization at dequeue */ 4902 dequeued = task_util(p); 4903 4904 /* 4905 * Reset EWMA on utilization increases, the moving average is used only 4906 * to smooth utilization decreases. 4907 */ 4908 if (ewma <= dequeued) { 4909 ewma = dequeued; 4910 goto done; 4911 } 4912 4913 /* 4914 * Skip update of task's estimated utilization when its members are 4915 * already ~1% close to its last activation value. 4916 */ 4917 last_ewma_diff = ewma - dequeued; 4918 if (last_ewma_diff < UTIL_EST_MARGIN) 4919 goto done; 4920 4921 /* 4922 * To avoid overestimation of actual task utilization, skip updates if 4923 * we cannot grant there is idle time in this CPU. 4924 */ 4925 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)))) 4926 return; 4927 4928 /* 4929 * To avoid underestimate of task utilization, skip updates of EWMA if 4930 * we cannot grant that thread got all CPU time it wanted. 4931 */ 4932 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 4933 goto done; 4934 4935 4936 /* 4937 * Update Task's estimated utilization 4938 * 4939 * When *p completes an activation we can consolidate another sample 4940 * of the task size. This is done by using this value to update the 4941 * Exponential Weighted Moving Average (EWMA): 4942 * 4943 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4944 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4945 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4946 * = w * ( -last_ewma_diff ) + ewma(t-1) 4947 * = w * (-last_ewma_diff + ewma(t-1) / w) 4948 * 4949 * Where 'w' is the weight of new samples, which is configured to be 4950 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4951 */ 4952 ewma <<= UTIL_EST_WEIGHT_SHIFT; 4953 ewma -= last_ewma_diff; 4954 ewma >>= UTIL_EST_WEIGHT_SHIFT; 4955 done: 4956 ewma |= UTIL_AVG_UNCHANGED; 4957 WRITE_ONCE(p->se.avg.util_est, ewma); 4958 4959 trace_sched_util_est_se_tp(&p->se); 4960 } 4961 4962 static inline unsigned long get_actual_cpu_capacity(int cpu) 4963 { 4964 unsigned long capacity = arch_scale_cpu_capacity(cpu); 4965 4966 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 4967 4968 return capacity; 4969 } 4970 4971 static inline int util_fits_cpu(unsigned long util, 4972 unsigned long uclamp_min, 4973 unsigned long uclamp_max, 4974 int cpu) 4975 { 4976 unsigned long capacity = capacity_of(cpu); 4977 unsigned long capacity_orig; 4978 bool fits, uclamp_max_fits; 4979 4980 /* 4981 * Check if the real util fits without any uclamp boost/cap applied. 4982 */ 4983 fits = fits_capacity(util, capacity); 4984 4985 if (!uclamp_is_used()) 4986 return fits; 4987 4988 /* 4989 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 4990 * uclamp_max. We only care about capacity pressure (by using 4991 * capacity_of()) for comparing against the real util. 4992 * 4993 * If a task is boosted to 1024 for example, we don't want a tiny 4994 * pressure to skew the check whether it fits a CPU or not. 4995 * 4996 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 4997 * should fit a little cpu even if there's some pressure. 4998 * 4999 * Only exception is for HW or cpufreq pressure since it has a direct impact 5000 * on available OPP of the system. 5001 * 5002 * We honour it for uclamp_min only as a drop in performance level 5003 * could result in not getting the requested minimum performance level. 5004 * 5005 * For uclamp_max, we can tolerate a drop in performance level as the 5006 * goal is to cap the task. So it's okay if it's getting less. 5007 */ 5008 capacity_orig = arch_scale_cpu_capacity(cpu); 5009 5010 /* 5011 * We want to force a task to fit a cpu as implied by uclamp_max. 5012 * But we do have some corner cases to cater for.. 5013 * 5014 * 5015 * C=z 5016 * | ___ 5017 * | C=y | | 5018 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5019 * | C=x | | | | 5020 * | ___ | | | | 5021 * | | | | | | | (util somewhere in this region) 5022 * | | | | | | | 5023 * | | | | | | | 5024 * +---------------------------------------- 5025 * CPU0 CPU1 CPU2 5026 * 5027 * In the above example if a task is capped to a specific performance 5028 * point, y, then when: 5029 * 5030 * * util = 80% of x then it does not fit on CPU0 and should migrate 5031 * to CPU1 5032 * * util = 80% of y then it is forced to fit on CPU1 to honour 5033 * uclamp_max request. 5034 * 5035 * which is what we're enforcing here. A task always fits if 5036 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5037 * the normal upmigration rules should withhold still. 5038 * 5039 * Only exception is when we are on max capacity, then we need to be 5040 * careful not to block overutilized state. This is so because: 5041 * 5042 * 1. There's no concept of capping at max_capacity! We can't go 5043 * beyond this performance level anyway. 5044 * 2. The system is being saturated when we're operating near 5045 * max capacity, it doesn't make sense to block overutilized. 5046 */ 5047 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5048 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5049 fits = fits || uclamp_max_fits; 5050 5051 /* 5052 * 5053 * C=z 5054 * | ___ (region a, capped, util >= uclamp_max) 5055 * | C=y | | 5056 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5057 * | C=x | | | | 5058 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5059 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5060 * | | | | | | | 5061 * | | | | | | | (region c, boosted, util < uclamp_min) 5062 * +---------------------------------------- 5063 * CPU0 CPU1 CPU2 5064 * 5065 * a) If util > uclamp_max, then we're capped, we don't care about 5066 * actual fitness value here. We only care if uclamp_max fits 5067 * capacity without taking margin/pressure into account. 5068 * See comment above. 5069 * 5070 * b) If uclamp_min <= util <= uclamp_max, then the normal 5071 * fits_capacity() rules apply. Except we need to ensure that we 5072 * enforce we remain within uclamp_max, see comment above. 5073 * 5074 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5075 * need to take into account the boosted value fits the CPU without 5076 * taking margin/pressure into account. 5077 * 5078 * Cases (a) and (b) are handled in the 'fits' variable already. We 5079 * just need to consider an extra check for case (c) after ensuring we 5080 * handle the case uclamp_min > uclamp_max. 5081 */ 5082 uclamp_min = min(uclamp_min, uclamp_max); 5083 if (fits && (util < uclamp_min) && 5084 (uclamp_min > get_actual_cpu_capacity(cpu))) 5085 return -1; 5086 5087 return fits; 5088 } 5089 5090 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5091 { 5092 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5093 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5094 unsigned long util = task_util_est(p); 5095 /* 5096 * Return true only if the cpu fully fits the task requirements, which 5097 * include the utilization but also the performance hints. 5098 */ 5099 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5100 } 5101 5102 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5103 { 5104 int cpu = cpu_of(rq); 5105 5106 if (!sched_asym_cpucap_active()) 5107 return; 5108 5109 /* 5110 * Affinity allows us to go somewhere higher? Or are we on biggest 5111 * available CPU already? Or do we fit into this CPU ? 5112 */ 5113 if (!p || (p->nr_cpus_allowed == 1) || 5114 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5115 task_fits_cpu(p, cpu)) { 5116 5117 rq->misfit_task_load = 0; 5118 return; 5119 } 5120 5121 /* 5122 * Make sure that misfit_task_load will not be null even if 5123 * task_h_load() returns 0. 5124 */ 5125 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5126 } 5127 5128 #else /* CONFIG_SMP */ 5129 5130 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5131 { 5132 return !cfs_rq->nr_queued; 5133 } 5134 5135 #define UPDATE_TG 0x0 5136 #define SKIP_AGE_LOAD 0x0 5137 #define DO_ATTACH 0x0 5138 #define DO_DETACH 0x0 5139 5140 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5141 { 5142 cfs_rq_util_change(cfs_rq, 0); 5143 } 5144 5145 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5146 5147 static inline void 5148 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5149 static inline void 5150 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5151 5152 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf) 5153 { 5154 return 0; 5155 } 5156 5157 static inline void 5158 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5159 5160 static inline void 5161 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5162 5163 static inline void 5164 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5165 bool task_sleep) {} 5166 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5167 5168 #endif /* CONFIG_SMP */ 5169 5170 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr) 5171 { 5172 struct sched_entity *se = &p->se; 5173 5174 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 5175 if (attr->sched_runtime) { 5176 se->custom_slice = 1; 5177 se->slice = clamp_t(u64, attr->sched_runtime, 5178 NSEC_PER_MSEC/10, /* HZ=1000 * 10 */ 5179 NSEC_PER_MSEC*100); /* HZ=100 / 10 */ 5180 } else { 5181 se->custom_slice = 0; 5182 se->slice = sysctl_sched_base_slice; 5183 } 5184 } 5185 5186 static void 5187 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5188 { 5189 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5190 s64 lag = 0; 5191 5192 if (!se->custom_slice) 5193 se->slice = sysctl_sched_base_slice; 5194 vslice = calc_delta_fair(se->slice, se); 5195 5196 /* 5197 * Due to how V is constructed as the weighted average of entities, 5198 * adding tasks with positive lag, or removing tasks with negative lag 5199 * will move 'time' backwards, this can screw around with the lag of 5200 * other tasks. 5201 * 5202 * EEVDF: placement strategy #1 / #2 5203 */ 5204 if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) { 5205 struct sched_entity *curr = cfs_rq->curr; 5206 unsigned long load; 5207 5208 lag = se->vlag; 5209 5210 /* 5211 * If we want to place a task and preserve lag, we have to 5212 * consider the effect of the new entity on the weighted 5213 * average and compensate for this, otherwise lag can quickly 5214 * evaporate. 5215 * 5216 * Lag is defined as: 5217 * 5218 * lag_i = S - s_i = w_i * (V - v_i) 5219 * 5220 * To avoid the 'w_i' term all over the place, we only track 5221 * the virtual lag: 5222 * 5223 * vl_i = V - v_i <=> v_i = V - vl_i 5224 * 5225 * And we take V to be the weighted average of all v: 5226 * 5227 * V = (\Sum w_j*v_j) / W 5228 * 5229 * Where W is: \Sum w_j 5230 * 5231 * Then, the weighted average after adding an entity with lag 5232 * vl_i is given by: 5233 * 5234 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5235 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5236 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5237 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5238 * = V - w_i*vl_i / (W + w_i) 5239 * 5240 * And the actual lag after adding an entity with vl_i is: 5241 * 5242 * vl'_i = V' - v_i 5243 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5244 * = vl_i - w_i*vl_i / (W + w_i) 5245 * 5246 * Which is strictly less than vl_i. So in order to preserve lag 5247 * we should inflate the lag before placement such that the 5248 * effective lag after placement comes out right. 5249 * 5250 * As such, invert the above relation for vl'_i to get the vl_i 5251 * we need to use such that the lag after placement is the lag 5252 * we computed before dequeue. 5253 * 5254 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5255 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5256 * 5257 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5258 * = W*vl_i 5259 * 5260 * vl_i = (W + w_i)*vl'_i / W 5261 */ 5262 load = cfs_rq->avg_load; 5263 if (curr && curr->on_rq) 5264 load += scale_load_down(curr->load.weight); 5265 5266 lag *= load + scale_load_down(se->load.weight); 5267 if (WARN_ON_ONCE(!load)) 5268 load = 1; 5269 lag = div_s64(lag, load); 5270 } 5271 5272 se->vruntime = vruntime - lag; 5273 5274 if (se->rel_deadline) { 5275 se->deadline += se->vruntime; 5276 se->rel_deadline = 0; 5277 return; 5278 } 5279 5280 /* 5281 * When joining the competition; the existing tasks will be, 5282 * on average, halfway through their slice, as such start tasks 5283 * off with half a slice to ease into the competition. 5284 */ 5285 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5286 vslice /= 2; 5287 5288 /* 5289 * EEVDF: vd_i = ve_i + r_i/w_i 5290 */ 5291 se->deadline = se->vruntime + vslice; 5292 } 5293 5294 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5295 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5296 5297 static void 5298 requeue_delayed_entity(struct sched_entity *se); 5299 5300 static void 5301 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5302 { 5303 bool curr = cfs_rq->curr == se; 5304 5305 /* 5306 * If we're the current task, we must renormalise before calling 5307 * update_curr(). 5308 */ 5309 if (curr) 5310 place_entity(cfs_rq, se, flags); 5311 5312 update_curr(cfs_rq); 5313 5314 /* 5315 * When enqueuing a sched_entity, we must: 5316 * - Update loads to have both entity and cfs_rq synced with now. 5317 * - For group_entity, update its runnable_weight to reflect the new 5318 * h_nr_runnable of its group cfs_rq. 5319 * - For group_entity, update its weight to reflect the new share of 5320 * its group cfs_rq 5321 * - Add its new weight to cfs_rq->load.weight 5322 */ 5323 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5324 se_update_runnable(se); 5325 /* 5326 * XXX update_load_avg() above will have attached us to the pelt sum; 5327 * but update_cfs_group() here will re-adjust the weight and have to 5328 * undo/redo all that. Seems wasteful. 5329 */ 5330 update_cfs_group(se); 5331 5332 /* 5333 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5334 * we can place the entity. 5335 */ 5336 if (!curr) 5337 place_entity(cfs_rq, se, flags); 5338 5339 account_entity_enqueue(cfs_rq, se); 5340 5341 /* Entity has migrated, no longer consider this task hot */ 5342 if (flags & ENQUEUE_MIGRATED) 5343 se->exec_start = 0; 5344 5345 check_schedstat_required(); 5346 update_stats_enqueue_fair(cfs_rq, se, flags); 5347 if (!curr) 5348 __enqueue_entity(cfs_rq, se); 5349 se->on_rq = 1; 5350 5351 if (cfs_rq->nr_queued == 1) { 5352 check_enqueue_throttle(cfs_rq); 5353 if (!throttled_hierarchy(cfs_rq)) { 5354 list_add_leaf_cfs_rq(cfs_rq); 5355 } else { 5356 #ifdef CONFIG_CFS_BANDWIDTH 5357 struct rq *rq = rq_of(cfs_rq); 5358 5359 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5360 cfs_rq->throttled_clock = rq_clock(rq); 5361 if (!cfs_rq->throttled_clock_self) 5362 cfs_rq->throttled_clock_self = rq_clock(rq); 5363 #endif 5364 } 5365 } 5366 } 5367 5368 static void __clear_buddies_next(struct sched_entity *se) 5369 { 5370 for_each_sched_entity(se) { 5371 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5372 if (cfs_rq->next != se) 5373 break; 5374 5375 cfs_rq->next = NULL; 5376 } 5377 } 5378 5379 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5380 { 5381 if (cfs_rq->next == se) 5382 __clear_buddies_next(se); 5383 } 5384 5385 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5386 5387 static void set_delayed(struct sched_entity *se) 5388 { 5389 se->sched_delayed = 1; 5390 5391 /* 5392 * Delayed se of cfs_rq have no tasks queued on them. 5393 * Do not adjust h_nr_runnable since dequeue_entities() 5394 * will account it for blocked tasks. 5395 */ 5396 if (!entity_is_task(se)) 5397 return; 5398 5399 for_each_sched_entity(se) { 5400 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5401 5402 cfs_rq->h_nr_runnable--; 5403 if (cfs_rq_throttled(cfs_rq)) 5404 break; 5405 } 5406 } 5407 5408 static void clear_delayed(struct sched_entity *se) 5409 { 5410 se->sched_delayed = 0; 5411 5412 /* 5413 * Delayed se of cfs_rq have no tasks queued on them. 5414 * Do not adjust h_nr_runnable since a dequeue has 5415 * already accounted for it or an enqueue of a task 5416 * below it will account for it in enqueue_task_fair(). 5417 */ 5418 if (!entity_is_task(se)) 5419 return; 5420 5421 for_each_sched_entity(se) { 5422 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5423 5424 cfs_rq->h_nr_runnable++; 5425 if (cfs_rq_throttled(cfs_rq)) 5426 break; 5427 } 5428 } 5429 5430 static inline void finish_delayed_dequeue_entity(struct sched_entity *se) 5431 { 5432 clear_delayed(se); 5433 if (sched_feat(DELAY_ZERO) && se->vlag > 0) 5434 se->vlag = 0; 5435 } 5436 5437 static bool 5438 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5439 { 5440 bool sleep = flags & DEQUEUE_SLEEP; 5441 int action = UPDATE_TG; 5442 5443 update_curr(cfs_rq); 5444 clear_buddies(cfs_rq, se); 5445 5446 if (flags & DEQUEUE_DELAYED) { 5447 SCHED_WARN_ON(!se->sched_delayed); 5448 } else { 5449 bool delay = sleep; 5450 /* 5451 * DELAY_DEQUEUE relies on spurious wakeups, special task 5452 * states must not suffer spurious wakeups, excempt them. 5453 */ 5454 if (flags & DEQUEUE_SPECIAL) 5455 delay = false; 5456 5457 SCHED_WARN_ON(delay && se->sched_delayed); 5458 5459 if (sched_feat(DELAY_DEQUEUE) && delay && 5460 !entity_eligible(cfs_rq, se)) { 5461 update_load_avg(cfs_rq, se, 0); 5462 set_delayed(se); 5463 return false; 5464 } 5465 } 5466 5467 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5468 action |= DO_DETACH; 5469 5470 /* 5471 * When dequeuing a sched_entity, we must: 5472 * - Update loads to have both entity and cfs_rq synced with now. 5473 * - For group_entity, update its runnable_weight to reflect the new 5474 * h_nr_runnable of its group cfs_rq. 5475 * - Subtract its previous weight from cfs_rq->load.weight. 5476 * - For group entity, update its weight to reflect the new share 5477 * of its group cfs_rq. 5478 */ 5479 update_load_avg(cfs_rq, se, action); 5480 se_update_runnable(se); 5481 5482 update_stats_dequeue_fair(cfs_rq, se, flags); 5483 5484 update_entity_lag(cfs_rq, se); 5485 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { 5486 se->deadline -= se->vruntime; 5487 se->rel_deadline = 1; 5488 } 5489 5490 if (se != cfs_rq->curr) 5491 __dequeue_entity(cfs_rq, se); 5492 se->on_rq = 0; 5493 account_entity_dequeue(cfs_rq, se); 5494 5495 /* return excess runtime on last dequeue */ 5496 return_cfs_rq_runtime(cfs_rq); 5497 5498 update_cfs_group(se); 5499 5500 /* 5501 * Now advance min_vruntime if @se was the entity holding it back, 5502 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5503 * put back on, and if we advance min_vruntime, we'll be placed back 5504 * further than we started -- i.e. we'll be penalized. 5505 */ 5506 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5507 update_min_vruntime(cfs_rq); 5508 5509 if (flags & DEQUEUE_DELAYED) 5510 finish_delayed_dequeue_entity(se); 5511 5512 if (cfs_rq->nr_queued == 0) 5513 update_idle_cfs_rq_clock_pelt(cfs_rq); 5514 5515 return true; 5516 } 5517 5518 static void 5519 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5520 { 5521 clear_buddies(cfs_rq, se); 5522 5523 /* 'current' is not kept within the tree. */ 5524 if (se->on_rq) { 5525 /* 5526 * Any task has to be enqueued before it get to execute on 5527 * a CPU. So account for the time it spent waiting on the 5528 * runqueue. 5529 */ 5530 update_stats_wait_end_fair(cfs_rq, se); 5531 __dequeue_entity(cfs_rq, se); 5532 update_load_avg(cfs_rq, se, UPDATE_TG); 5533 /* 5534 * HACK, stash a copy of deadline at the point of pick in vlag, 5535 * which isn't used until dequeue. 5536 */ 5537 se->vlag = se->deadline; 5538 } 5539 5540 update_stats_curr_start(cfs_rq, se); 5541 SCHED_WARN_ON(cfs_rq->curr); 5542 cfs_rq->curr = se; 5543 5544 /* 5545 * Track our maximum slice length, if the CPU's load is at 5546 * least twice that of our own weight (i.e. don't track it 5547 * when there are only lesser-weight tasks around): 5548 */ 5549 if (schedstat_enabled() && 5550 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5551 struct sched_statistics *stats; 5552 5553 stats = __schedstats_from_se(se); 5554 __schedstat_set(stats->slice_max, 5555 max((u64)stats->slice_max, 5556 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5557 } 5558 5559 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5560 } 5561 5562 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); 5563 5564 /* 5565 * Pick the next process, keeping these things in mind, in this order: 5566 * 1) keep things fair between processes/task groups 5567 * 2) pick the "next" process, since someone really wants that to run 5568 * 3) pick the "last" process, for cache locality 5569 * 4) do not run the "skip" process, if something else is available 5570 */ 5571 static struct sched_entity * 5572 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) 5573 { 5574 struct sched_entity *se; 5575 5576 /* 5577 * Picking the ->next buddy will affect latency but not fairness. 5578 */ 5579 if (sched_feat(PICK_BUDDY) && 5580 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { 5581 /* ->next will never be delayed */ 5582 SCHED_WARN_ON(cfs_rq->next->sched_delayed); 5583 return cfs_rq->next; 5584 } 5585 5586 se = pick_eevdf(cfs_rq); 5587 if (se->sched_delayed) { 5588 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5589 /* 5590 * Must not reference @se again, see __block_task(). 5591 */ 5592 return NULL; 5593 } 5594 return se; 5595 } 5596 5597 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5598 5599 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5600 { 5601 /* 5602 * If still on the runqueue then deactivate_task() 5603 * was not called and update_curr() has to be done: 5604 */ 5605 if (prev->on_rq) 5606 update_curr(cfs_rq); 5607 5608 /* throttle cfs_rqs exceeding runtime */ 5609 check_cfs_rq_runtime(cfs_rq); 5610 5611 if (prev->on_rq) { 5612 update_stats_wait_start_fair(cfs_rq, prev); 5613 /* Put 'current' back into the tree. */ 5614 __enqueue_entity(cfs_rq, prev); 5615 /* in !on_rq case, update occurred at dequeue */ 5616 update_load_avg(cfs_rq, prev, 0); 5617 } 5618 SCHED_WARN_ON(cfs_rq->curr != prev); 5619 cfs_rq->curr = NULL; 5620 } 5621 5622 static void 5623 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5624 { 5625 /* 5626 * Update run-time statistics of the 'current'. 5627 */ 5628 update_curr(cfs_rq); 5629 5630 /* 5631 * Ensure that runnable average is periodically updated. 5632 */ 5633 update_load_avg(cfs_rq, curr, UPDATE_TG); 5634 update_cfs_group(curr); 5635 5636 #ifdef CONFIG_SCHED_HRTICK 5637 /* 5638 * queued ticks are scheduled to match the slice, so don't bother 5639 * validating it and just reschedule. 5640 */ 5641 if (queued) { 5642 resched_curr_lazy(rq_of(cfs_rq)); 5643 return; 5644 } 5645 #endif 5646 } 5647 5648 5649 /************************************************** 5650 * CFS bandwidth control machinery 5651 */ 5652 5653 #ifdef CONFIG_CFS_BANDWIDTH 5654 5655 #ifdef CONFIG_JUMP_LABEL 5656 static struct static_key __cfs_bandwidth_used; 5657 5658 static inline bool cfs_bandwidth_used(void) 5659 { 5660 return static_key_false(&__cfs_bandwidth_used); 5661 } 5662 5663 void cfs_bandwidth_usage_inc(void) 5664 { 5665 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5666 } 5667 5668 void cfs_bandwidth_usage_dec(void) 5669 { 5670 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5671 } 5672 #else /* CONFIG_JUMP_LABEL */ 5673 static bool cfs_bandwidth_used(void) 5674 { 5675 return true; 5676 } 5677 5678 void cfs_bandwidth_usage_inc(void) {} 5679 void cfs_bandwidth_usage_dec(void) {} 5680 #endif /* CONFIG_JUMP_LABEL */ 5681 5682 /* 5683 * default period for cfs group bandwidth. 5684 * default: 0.1s, units: nanoseconds 5685 */ 5686 static inline u64 default_cfs_period(void) 5687 { 5688 return 100000000ULL; 5689 } 5690 5691 static inline u64 sched_cfs_bandwidth_slice(void) 5692 { 5693 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5694 } 5695 5696 /* 5697 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5698 * directly instead of rq->clock to avoid adding additional synchronization 5699 * around rq->lock. 5700 * 5701 * requires cfs_b->lock 5702 */ 5703 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5704 { 5705 s64 runtime; 5706 5707 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5708 return; 5709 5710 cfs_b->runtime += cfs_b->quota; 5711 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5712 if (runtime > 0) { 5713 cfs_b->burst_time += runtime; 5714 cfs_b->nr_burst++; 5715 } 5716 5717 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5718 cfs_b->runtime_snap = cfs_b->runtime; 5719 } 5720 5721 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5722 { 5723 return &tg->cfs_bandwidth; 5724 } 5725 5726 /* returns 0 on failure to allocate runtime */ 5727 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5728 struct cfs_rq *cfs_rq, u64 target_runtime) 5729 { 5730 u64 min_amount, amount = 0; 5731 5732 lockdep_assert_held(&cfs_b->lock); 5733 5734 /* note: this is a positive sum as runtime_remaining <= 0 */ 5735 min_amount = target_runtime - cfs_rq->runtime_remaining; 5736 5737 if (cfs_b->quota == RUNTIME_INF) 5738 amount = min_amount; 5739 else { 5740 start_cfs_bandwidth(cfs_b); 5741 5742 if (cfs_b->runtime > 0) { 5743 amount = min(cfs_b->runtime, min_amount); 5744 cfs_b->runtime -= amount; 5745 cfs_b->idle = 0; 5746 } 5747 } 5748 5749 cfs_rq->runtime_remaining += amount; 5750 5751 return cfs_rq->runtime_remaining > 0; 5752 } 5753 5754 /* returns 0 on failure to allocate runtime */ 5755 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5756 { 5757 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5758 int ret; 5759 5760 raw_spin_lock(&cfs_b->lock); 5761 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5762 raw_spin_unlock(&cfs_b->lock); 5763 5764 return ret; 5765 } 5766 5767 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5768 { 5769 /* dock delta_exec before expiring quota (as it could span periods) */ 5770 cfs_rq->runtime_remaining -= delta_exec; 5771 5772 if (likely(cfs_rq->runtime_remaining > 0)) 5773 return; 5774 5775 if (cfs_rq->throttled) 5776 return; 5777 /* 5778 * if we're unable to extend our runtime we resched so that the active 5779 * hierarchy can be throttled 5780 */ 5781 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5782 resched_curr(rq_of(cfs_rq)); 5783 } 5784 5785 static __always_inline 5786 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5787 { 5788 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5789 return; 5790 5791 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5792 } 5793 5794 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5795 { 5796 return cfs_bandwidth_used() && cfs_rq->throttled; 5797 } 5798 5799 /* check whether cfs_rq, or any parent, is throttled */ 5800 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5801 { 5802 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5803 } 5804 5805 /* 5806 * Ensure that neither of the group entities corresponding to src_cpu or 5807 * dest_cpu are members of a throttled hierarchy when performing group 5808 * load-balance operations. 5809 */ 5810 static inline int throttled_lb_pair(struct task_group *tg, 5811 int src_cpu, int dest_cpu) 5812 { 5813 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5814 5815 src_cfs_rq = tg->cfs_rq[src_cpu]; 5816 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5817 5818 return throttled_hierarchy(src_cfs_rq) || 5819 throttled_hierarchy(dest_cfs_rq); 5820 } 5821 5822 static int tg_unthrottle_up(struct task_group *tg, void *data) 5823 { 5824 struct rq *rq = data; 5825 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5826 5827 cfs_rq->throttle_count--; 5828 if (!cfs_rq->throttle_count) { 5829 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5830 cfs_rq->throttled_clock_pelt; 5831 5832 /* Add cfs_rq with load or one or more already running entities to the list */ 5833 if (!cfs_rq_is_decayed(cfs_rq)) 5834 list_add_leaf_cfs_rq(cfs_rq); 5835 5836 if (cfs_rq->throttled_clock_self) { 5837 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5838 5839 cfs_rq->throttled_clock_self = 0; 5840 5841 if (SCHED_WARN_ON((s64)delta < 0)) 5842 delta = 0; 5843 5844 cfs_rq->throttled_clock_self_time += delta; 5845 } 5846 } 5847 5848 return 0; 5849 } 5850 5851 static int tg_throttle_down(struct task_group *tg, void *data) 5852 { 5853 struct rq *rq = data; 5854 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5855 5856 /* group is entering throttled state, stop time */ 5857 if (!cfs_rq->throttle_count) { 5858 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5859 list_del_leaf_cfs_rq(cfs_rq); 5860 5861 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5862 if (cfs_rq->nr_queued) 5863 cfs_rq->throttled_clock_self = rq_clock(rq); 5864 } 5865 cfs_rq->throttle_count++; 5866 5867 return 0; 5868 } 5869 5870 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5871 { 5872 struct rq *rq = rq_of(cfs_rq); 5873 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5874 struct sched_entity *se; 5875 long queued_delta, runnable_delta, idle_delta, dequeue = 1; 5876 long rq_h_nr_queued = rq->cfs.h_nr_queued; 5877 5878 raw_spin_lock(&cfs_b->lock); 5879 /* This will start the period timer if necessary */ 5880 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5881 /* 5882 * We have raced with bandwidth becoming available, and if we 5883 * actually throttled the timer might not unthrottle us for an 5884 * entire period. We additionally needed to make sure that any 5885 * subsequent check_cfs_rq_runtime calls agree not to throttle 5886 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5887 * for 1ns of runtime rather than just check cfs_b. 5888 */ 5889 dequeue = 0; 5890 } else { 5891 list_add_tail_rcu(&cfs_rq->throttled_list, 5892 &cfs_b->throttled_cfs_rq); 5893 } 5894 raw_spin_unlock(&cfs_b->lock); 5895 5896 if (!dequeue) 5897 return false; /* Throttle no longer required. */ 5898 5899 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5900 5901 /* freeze hierarchy runnable averages while throttled */ 5902 rcu_read_lock(); 5903 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5904 rcu_read_unlock(); 5905 5906 queued_delta = cfs_rq->h_nr_queued; 5907 runnable_delta = cfs_rq->h_nr_runnable; 5908 idle_delta = cfs_rq->h_nr_idle; 5909 for_each_sched_entity(se) { 5910 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5911 int flags; 5912 5913 /* throttled entity or throttle-on-deactivate */ 5914 if (!se->on_rq) 5915 goto done; 5916 5917 /* 5918 * Abuse SPECIAL to avoid delayed dequeue in this instance. 5919 * This avoids teaching dequeue_entities() about throttled 5920 * entities and keeps things relatively simple. 5921 */ 5922 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL; 5923 if (se->sched_delayed) 5924 flags |= DEQUEUE_DELAYED; 5925 dequeue_entity(qcfs_rq, se, flags); 5926 5927 if (cfs_rq_is_idle(group_cfs_rq(se))) 5928 idle_delta = cfs_rq->h_nr_queued; 5929 5930 qcfs_rq->h_nr_queued -= queued_delta; 5931 qcfs_rq->h_nr_runnable -= runnable_delta; 5932 qcfs_rq->h_nr_idle -= idle_delta; 5933 5934 if (qcfs_rq->load.weight) { 5935 /* Avoid re-evaluating load for this entity: */ 5936 se = parent_entity(se); 5937 break; 5938 } 5939 } 5940 5941 for_each_sched_entity(se) { 5942 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5943 /* throttled entity or throttle-on-deactivate */ 5944 if (!se->on_rq) 5945 goto done; 5946 5947 update_load_avg(qcfs_rq, se, 0); 5948 se_update_runnable(se); 5949 5950 if (cfs_rq_is_idle(group_cfs_rq(se))) 5951 idle_delta = cfs_rq->h_nr_queued; 5952 5953 qcfs_rq->h_nr_queued -= queued_delta; 5954 qcfs_rq->h_nr_runnable -= runnable_delta; 5955 qcfs_rq->h_nr_idle -= idle_delta; 5956 } 5957 5958 /* At this point se is NULL and we are at root level*/ 5959 sub_nr_running(rq, queued_delta); 5960 5961 /* Stop the fair server if throttling resulted in no runnable tasks */ 5962 if (rq_h_nr_queued && !rq->cfs.h_nr_queued) 5963 dl_server_stop(&rq->fair_server); 5964 done: 5965 /* 5966 * Note: distribution will already see us throttled via the 5967 * throttled-list. rq->lock protects completion. 5968 */ 5969 cfs_rq->throttled = 1; 5970 SCHED_WARN_ON(cfs_rq->throttled_clock); 5971 if (cfs_rq->nr_queued) 5972 cfs_rq->throttled_clock = rq_clock(rq); 5973 return true; 5974 } 5975 5976 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5977 { 5978 struct rq *rq = rq_of(cfs_rq); 5979 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5980 struct sched_entity *se; 5981 long queued_delta, runnable_delta, idle_delta; 5982 long rq_h_nr_queued = rq->cfs.h_nr_queued; 5983 5984 se = cfs_rq->tg->se[cpu_of(rq)]; 5985 5986 cfs_rq->throttled = 0; 5987 5988 update_rq_clock(rq); 5989 5990 raw_spin_lock(&cfs_b->lock); 5991 if (cfs_rq->throttled_clock) { 5992 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5993 cfs_rq->throttled_clock = 0; 5994 } 5995 list_del_rcu(&cfs_rq->throttled_list); 5996 raw_spin_unlock(&cfs_b->lock); 5997 5998 /* update hierarchical throttle state */ 5999 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 6000 6001 if (!cfs_rq->load.weight) { 6002 if (!cfs_rq->on_list) 6003 return; 6004 /* 6005 * Nothing to run but something to decay (on_list)? 6006 * Complete the branch. 6007 */ 6008 for_each_sched_entity(se) { 6009 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 6010 break; 6011 } 6012 goto unthrottle_throttle; 6013 } 6014 6015 queued_delta = cfs_rq->h_nr_queued; 6016 runnable_delta = cfs_rq->h_nr_runnable; 6017 idle_delta = cfs_rq->h_nr_idle; 6018 for_each_sched_entity(se) { 6019 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6020 6021 /* Handle any unfinished DELAY_DEQUEUE business first. */ 6022 if (se->sched_delayed) { 6023 int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED; 6024 6025 dequeue_entity(qcfs_rq, se, flags); 6026 } else if (se->on_rq) 6027 break; 6028 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 6029 6030 if (cfs_rq_is_idle(group_cfs_rq(se))) 6031 idle_delta = cfs_rq->h_nr_queued; 6032 6033 qcfs_rq->h_nr_queued += queued_delta; 6034 qcfs_rq->h_nr_runnable += runnable_delta; 6035 qcfs_rq->h_nr_idle += idle_delta; 6036 6037 /* end evaluation on encountering a throttled cfs_rq */ 6038 if (cfs_rq_throttled(qcfs_rq)) 6039 goto unthrottle_throttle; 6040 } 6041 6042 for_each_sched_entity(se) { 6043 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6044 6045 update_load_avg(qcfs_rq, se, UPDATE_TG); 6046 se_update_runnable(se); 6047 6048 if (cfs_rq_is_idle(group_cfs_rq(se))) 6049 idle_delta = cfs_rq->h_nr_queued; 6050 6051 qcfs_rq->h_nr_queued += queued_delta; 6052 qcfs_rq->h_nr_runnable += runnable_delta; 6053 qcfs_rq->h_nr_idle += idle_delta; 6054 6055 /* end evaluation on encountering a throttled cfs_rq */ 6056 if (cfs_rq_throttled(qcfs_rq)) 6057 goto unthrottle_throttle; 6058 } 6059 6060 /* Start the fair server if un-throttling resulted in new runnable tasks */ 6061 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) 6062 dl_server_start(&rq->fair_server); 6063 6064 /* At this point se is NULL and we are at root level*/ 6065 add_nr_running(rq, queued_delta); 6066 6067 unthrottle_throttle: 6068 assert_list_leaf_cfs_rq(rq); 6069 6070 /* Determine whether we need to wake up potentially idle CPU: */ 6071 if (rq->curr == rq->idle && rq->cfs.nr_queued) 6072 resched_curr(rq); 6073 } 6074 6075 #ifdef CONFIG_SMP 6076 static void __cfsb_csd_unthrottle(void *arg) 6077 { 6078 struct cfs_rq *cursor, *tmp; 6079 struct rq *rq = arg; 6080 struct rq_flags rf; 6081 6082 rq_lock(rq, &rf); 6083 6084 /* 6085 * Iterating over the list can trigger several call to 6086 * update_rq_clock() in unthrottle_cfs_rq(). 6087 * Do it once and skip the potential next ones. 6088 */ 6089 update_rq_clock(rq); 6090 rq_clock_start_loop_update(rq); 6091 6092 /* 6093 * Since we hold rq lock we're safe from concurrent manipulation of 6094 * the CSD list. However, this RCU critical section annotates the 6095 * fact that we pair with sched_free_group_rcu(), so that we cannot 6096 * race with group being freed in the window between removing it 6097 * from the list and advancing to the next entry in the list. 6098 */ 6099 rcu_read_lock(); 6100 6101 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 6102 throttled_csd_list) { 6103 list_del_init(&cursor->throttled_csd_list); 6104 6105 if (cfs_rq_throttled(cursor)) 6106 unthrottle_cfs_rq(cursor); 6107 } 6108 6109 rcu_read_unlock(); 6110 6111 rq_clock_stop_loop_update(rq); 6112 rq_unlock(rq, &rf); 6113 } 6114 6115 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6116 { 6117 struct rq *rq = rq_of(cfs_rq); 6118 bool first; 6119 6120 if (rq == this_rq()) { 6121 unthrottle_cfs_rq(cfs_rq); 6122 return; 6123 } 6124 6125 /* Already enqueued */ 6126 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 6127 return; 6128 6129 first = list_empty(&rq->cfsb_csd_list); 6130 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 6131 if (first) 6132 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 6133 } 6134 #else 6135 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6136 { 6137 unthrottle_cfs_rq(cfs_rq); 6138 } 6139 #endif 6140 6141 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6142 { 6143 lockdep_assert_rq_held(rq_of(cfs_rq)); 6144 6145 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 6146 cfs_rq->runtime_remaining <= 0)) 6147 return; 6148 6149 __unthrottle_cfs_rq_async(cfs_rq); 6150 } 6151 6152 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6153 { 6154 int this_cpu = smp_processor_id(); 6155 u64 runtime, remaining = 1; 6156 bool throttled = false; 6157 struct cfs_rq *cfs_rq, *tmp; 6158 struct rq_flags rf; 6159 struct rq *rq; 6160 LIST_HEAD(local_unthrottle); 6161 6162 rcu_read_lock(); 6163 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6164 throttled_list) { 6165 rq = rq_of(cfs_rq); 6166 6167 if (!remaining) { 6168 throttled = true; 6169 break; 6170 } 6171 6172 rq_lock_irqsave(rq, &rf); 6173 if (!cfs_rq_throttled(cfs_rq)) 6174 goto next; 6175 6176 /* Already queued for async unthrottle */ 6177 if (!list_empty(&cfs_rq->throttled_csd_list)) 6178 goto next; 6179 6180 /* By the above checks, this should never be true */ 6181 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 6182 6183 raw_spin_lock(&cfs_b->lock); 6184 runtime = -cfs_rq->runtime_remaining + 1; 6185 if (runtime > cfs_b->runtime) 6186 runtime = cfs_b->runtime; 6187 cfs_b->runtime -= runtime; 6188 remaining = cfs_b->runtime; 6189 raw_spin_unlock(&cfs_b->lock); 6190 6191 cfs_rq->runtime_remaining += runtime; 6192 6193 /* we check whether we're throttled above */ 6194 if (cfs_rq->runtime_remaining > 0) { 6195 if (cpu_of(rq) != this_cpu) { 6196 unthrottle_cfs_rq_async(cfs_rq); 6197 } else { 6198 /* 6199 * We currently only expect to be unthrottling 6200 * a single cfs_rq locally. 6201 */ 6202 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6203 list_add_tail(&cfs_rq->throttled_csd_list, 6204 &local_unthrottle); 6205 } 6206 } else { 6207 throttled = true; 6208 } 6209 6210 next: 6211 rq_unlock_irqrestore(rq, &rf); 6212 } 6213 6214 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6215 throttled_csd_list) { 6216 struct rq *rq = rq_of(cfs_rq); 6217 6218 rq_lock_irqsave(rq, &rf); 6219 6220 list_del_init(&cfs_rq->throttled_csd_list); 6221 6222 if (cfs_rq_throttled(cfs_rq)) 6223 unthrottle_cfs_rq(cfs_rq); 6224 6225 rq_unlock_irqrestore(rq, &rf); 6226 } 6227 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6228 6229 rcu_read_unlock(); 6230 6231 return throttled; 6232 } 6233 6234 /* 6235 * Responsible for refilling a task_group's bandwidth and unthrottling its 6236 * cfs_rqs as appropriate. If there has been no activity within the last 6237 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6238 * used to track this state. 6239 */ 6240 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6241 { 6242 int throttled; 6243 6244 /* no need to continue the timer with no bandwidth constraint */ 6245 if (cfs_b->quota == RUNTIME_INF) 6246 goto out_deactivate; 6247 6248 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6249 cfs_b->nr_periods += overrun; 6250 6251 /* Refill extra burst quota even if cfs_b->idle */ 6252 __refill_cfs_bandwidth_runtime(cfs_b); 6253 6254 /* 6255 * idle depends on !throttled (for the case of a large deficit), and if 6256 * we're going inactive then everything else can be deferred 6257 */ 6258 if (cfs_b->idle && !throttled) 6259 goto out_deactivate; 6260 6261 if (!throttled) { 6262 /* mark as potentially idle for the upcoming period */ 6263 cfs_b->idle = 1; 6264 return 0; 6265 } 6266 6267 /* account preceding periods in which throttling occurred */ 6268 cfs_b->nr_throttled += overrun; 6269 6270 /* 6271 * This check is repeated as we release cfs_b->lock while we unthrottle. 6272 */ 6273 while (throttled && cfs_b->runtime > 0) { 6274 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6275 /* we can't nest cfs_b->lock while distributing bandwidth */ 6276 throttled = distribute_cfs_runtime(cfs_b); 6277 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6278 } 6279 6280 /* 6281 * While we are ensured activity in the period following an 6282 * unthrottle, this also covers the case in which the new bandwidth is 6283 * insufficient to cover the existing bandwidth deficit. (Forcing the 6284 * timer to remain active while there are any throttled entities.) 6285 */ 6286 cfs_b->idle = 0; 6287 6288 return 0; 6289 6290 out_deactivate: 6291 return 1; 6292 } 6293 6294 /* a cfs_rq won't donate quota below this amount */ 6295 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6296 /* minimum remaining period time to redistribute slack quota */ 6297 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6298 /* how long we wait to gather additional slack before distributing */ 6299 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6300 6301 /* 6302 * Are we near the end of the current quota period? 6303 * 6304 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6305 * hrtimer base being cleared by hrtimer_start. In the case of 6306 * migrate_hrtimers, base is never cleared, so we are fine. 6307 */ 6308 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6309 { 6310 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6311 s64 remaining; 6312 6313 /* if the call-back is running a quota refresh is already occurring */ 6314 if (hrtimer_callback_running(refresh_timer)) 6315 return 1; 6316 6317 /* is a quota refresh about to occur? */ 6318 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6319 if (remaining < (s64)min_expire) 6320 return 1; 6321 6322 return 0; 6323 } 6324 6325 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6326 { 6327 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6328 6329 /* if there's a quota refresh soon don't bother with slack */ 6330 if (runtime_refresh_within(cfs_b, min_left)) 6331 return; 6332 6333 /* don't push forwards an existing deferred unthrottle */ 6334 if (cfs_b->slack_started) 6335 return; 6336 cfs_b->slack_started = true; 6337 6338 hrtimer_start(&cfs_b->slack_timer, 6339 ns_to_ktime(cfs_bandwidth_slack_period), 6340 HRTIMER_MODE_REL); 6341 } 6342 6343 /* we know any runtime found here is valid as update_curr() precedes return */ 6344 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6345 { 6346 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6347 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6348 6349 if (slack_runtime <= 0) 6350 return; 6351 6352 raw_spin_lock(&cfs_b->lock); 6353 if (cfs_b->quota != RUNTIME_INF) { 6354 cfs_b->runtime += slack_runtime; 6355 6356 /* we are under rq->lock, defer unthrottling using a timer */ 6357 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6358 !list_empty(&cfs_b->throttled_cfs_rq)) 6359 start_cfs_slack_bandwidth(cfs_b); 6360 } 6361 raw_spin_unlock(&cfs_b->lock); 6362 6363 /* even if it's not valid for return we don't want to try again */ 6364 cfs_rq->runtime_remaining -= slack_runtime; 6365 } 6366 6367 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6368 { 6369 if (!cfs_bandwidth_used()) 6370 return; 6371 6372 if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued) 6373 return; 6374 6375 __return_cfs_rq_runtime(cfs_rq); 6376 } 6377 6378 /* 6379 * This is done with a timer (instead of inline with bandwidth return) since 6380 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6381 */ 6382 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6383 { 6384 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6385 unsigned long flags; 6386 6387 /* confirm we're still not at a refresh boundary */ 6388 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6389 cfs_b->slack_started = false; 6390 6391 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6392 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6393 return; 6394 } 6395 6396 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6397 runtime = cfs_b->runtime; 6398 6399 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6400 6401 if (!runtime) 6402 return; 6403 6404 distribute_cfs_runtime(cfs_b); 6405 } 6406 6407 /* 6408 * When a group wakes up we want to make sure that its quota is not already 6409 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6410 * runtime as update_curr() throttling can not trigger until it's on-rq. 6411 */ 6412 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6413 { 6414 if (!cfs_bandwidth_used()) 6415 return; 6416 6417 /* an active group must be handled by the update_curr()->put() path */ 6418 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6419 return; 6420 6421 /* ensure the group is not already throttled */ 6422 if (cfs_rq_throttled(cfs_rq)) 6423 return; 6424 6425 /* update runtime allocation */ 6426 account_cfs_rq_runtime(cfs_rq, 0); 6427 if (cfs_rq->runtime_remaining <= 0) 6428 throttle_cfs_rq(cfs_rq); 6429 } 6430 6431 static void sync_throttle(struct task_group *tg, int cpu) 6432 { 6433 struct cfs_rq *pcfs_rq, *cfs_rq; 6434 6435 if (!cfs_bandwidth_used()) 6436 return; 6437 6438 if (!tg->parent) 6439 return; 6440 6441 cfs_rq = tg->cfs_rq[cpu]; 6442 pcfs_rq = tg->parent->cfs_rq[cpu]; 6443 6444 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6445 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6446 } 6447 6448 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6449 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6450 { 6451 if (!cfs_bandwidth_used()) 6452 return false; 6453 6454 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6455 return false; 6456 6457 /* 6458 * it's possible for a throttled entity to be forced into a running 6459 * state (e.g. set_curr_task), in this case we're finished. 6460 */ 6461 if (cfs_rq_throttled(cfs_rq)) 6462 return true; 6463 6464 return throttle_cfs_rq(cfs_rq); 6465 } 6466 6467 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6468 { 6469 struct cfs_bandwidth *cfs_b = 6470 container_of(timer, struct cfs_bandwidth, slack_timer); 6471 6472 do_sched_cfs_slack_timer(cfs_b); 6473 6474 return HRTIMER_NORESTART; 6475 } 6476 6477 extern const u64 max_cfs_quota_period; 6478 6479 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6480 { 6481 struct cfs_bandwidth *cfs_b = 6482 container_of(timer, struct cfs_bandwidth, period_timer); 6483 unsigned long flags; 6484 int overrun; 6485 int idle = 0; 6486 int count = 0; 6487 6488 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6489 for (;;) { 6490 overrun = hrtimer_forward_now(timer, cfs_b->period); 6491 if (!overrun) 6492 break; 6493 6494 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6495 6496 if (++count > 3) { 6497 u64 new, old = ktime_to_ns(cfs_b->period); 6498 6499 /* 6500 * Grow period by a factor of 2 to avoid losing precision. 6501 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6502 * to fail. 6503 */ 6504 new = old * 2; 6505 if (new < max_cfs_quota_period) { 6506 cfs_b->period = ns_to_ktime(new); 6507 cfs_b->quota *= 2; 6508 cfs_b->burst *= 2; 6509 6510 pr_warn_ratelimited( 6511 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6512 smp_processor_id(), 6513 div_u64(new, NSEC_PER_USEC), 6514 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6515 } else { 6516 pr_warn_ratelimited( 6517 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6518 smp_processor_id(), 6519 div_u64(old, NSEC_PER_USEC), 6520 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6521 } 6522 6523 /* reset count so we don't come right back in here */ 6524 count = 0; 6525 } 6526 } 6527 if (idle) 6528 cfs_b->period_active = 0; 6529 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6530 6531 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6532 } 6533 6534 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6535 { 6536 raw_spin_lock_init(&cfs_b->lock); 6537 cfs_b->runtime = 0; 6538 cfs_b->quota = RUNTIME_INF; 6539 cfs_b->period = ns_to_ktime(default_cfs_period()); 6540 cfs_b->burst = 0; 6541 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6542 6543 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6544 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6545 cfs_b->period_timer.function = sched_cfs_period_timer; 6546 6547 /* Add a random offset so that timers interleave */ 6548 hrtimer_set_expires(&cfs_b->period_timer, 6549 get_random_u32_below(cfs_b->period)); 6550 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6551 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6552 cfs_b->slack_started = false; 6553 } 6554 6555 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6556 { 6557 cfs_rq->runtime_enabled = 0; 6558 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6559 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6560 } 6561 6562 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6563 { 6564 lockdep_assert_held(&cfs_b->lock); 6565 6566 if (cfs_b->period_active) 6567 return; 6568 6569 cfs_b->period_active = 1; 6570 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6571 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6572 } 6573 6574 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6575 { 6576 int __maybe_unused i; 6577 6578 /* init_cfs_bandwidth() was not called */ 6579 if (!cfs_b->throttled_cfs_rq.next) 6580 return; 6581 6582 hrtimer_cancel(&cfs_b->period_timer); 6583 hrtimer_cancel(&cfs_b->slack_timer); 6584 6585 /* 6586 * It is possible that we still have some cfs_rq's pending on a CSD 6587 * list, though this race is very rare. In order for this to occur, we 6588 * must have raced with the last task leaving the group while there 6589 * exist throttled cfs_rq(s), and the period_timer must have queued the 6590 * CSD item but the remote cpu has not yet processed it. To handle this, 6591 * we can simply flush all pending CSD work inline here. We're 6592 * guaranteed at this point that no additional cfs_rq of this group can 6593 * join a CSD list. 6594 */ 6595 #ifdef CONFIG_SMP 6596 for_each_possible_cpu(i) { 6597 struct rq *rq = cpu_rq(i); 6598 unsigned long flags; 6599 6600 if (list_empty(&rq->cfsb_csd_list)) 6601 continue; 6602 6603 local_irq_save(flags); 6604 __cfsb_csd_unthrottle(rq); 6605 local_irq_restore(flags); 6606 } 6607 #endif 6608 } 6609 6610 /* 6611 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6612 * 6613 * The race is harmless, since modifying bandwidth settings of unhooked group 6614 * bits doesn't do much. 6615 */ 6616 6617 /* cpu online callback */ 6618 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6619 { 6620 struct task_group *tg; 6621 6622 lockdep_assert_rq_held(rq); 6623 6624 rcu_read_lock(); 6625 list_for_each_entry_rcu(tg, &task_groups, list) { 6626 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6627 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6628 6629 raw_spin_lock(&cfs_b->lock); 6630 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6631 raw_spin_unlock(&cfs_b->lock); 6632 } 6633 rcu_read_unlock(); 6634 } 6635 6636 /* cpu offline callback */ 6637 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6638 { 6639 struct task_group *tg; 6640 6641 lockdep_assert_rq_held(rq); 6642 6643 // Do not unthrottle for an active CPU 6644 if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask)) 6645 return; 6646 6647 /* 6648 * The rq clock has already been updated in the 6649 * set_rq_offline(), so we should skip updating 6650 * the rq clock again in unthrottle_cfs_rq(). 6651 */ 6652 rq_clock_start_loop_update(rq); 6653 6654 rcu_read_lock(); 6655 list_for_each_entry_rcu(tg, &task_groups, list) { 6656 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6657 6658 if (!cfs_rq->runtime_enabled) 6659 continue; 6660 6661 /* 6662 * Offline rq is schedulable till CPU is completely disabled 6663 * in take_cpu_down(), so we prevent new cfs throttling here. 6664 */ 6665 cfs_rq->runtime_enabled = 0; 6666 6667 if (!cfs_rq_throttled(cfs_rq)) 6668 continue; 6669 6670 /* 6671 * clock_task is not advancing so we just need to make sure 6672 * there's some valid quota amount 6673 */ 6674 cfs_rq->runtime_remaining = 1; 6675 unthrottle_cfs_rq(cfs_rq); 6676 } 6677 rcu_read_unlock(); 6678 6679 rq_clock_stop_loop_update(rq); 6680 } 6681 6682 bool cfs_task_bw_constrained(struct task_struct *p) 6683 { 6684 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6685 6686 if (!cfs_bandwidth_used()) 6687 return false; 6688 6689 if (cfs_rq->runtime_enabled || 6690 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6691 return true; 6692 6693 return false; 6694 } 6695 6696 #ifdef CONFIG_NO_HZ_FULL 6697 /* called from pick_next_task_fair() */ 6698 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6699 { 6700 int cpu = cpu_of(rq); 6701 6702 if (!cfs_bandwidth_used()) 6703 return; 6704 6705 if (!tick_nohz_full_cpu(cpu)) 6706 return; 6707 6708 if (rq->nr_running != 1) 6709 return; 6710 6711 /* 6712 * We know there is only one task runnable and we've just picked it. The 6713 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6714 * be otherwise able to stop the tick. Just need to check if we are using 6715 * bandwidth control. 6716 */ 6717 if (cfs_task_bw_constrained(p)) 6718 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6719 } 6720 #endif 6721 6722 #else /* CONFIG_CFS_BANDWIDTH */ 6723 6724 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6725 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6726 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6727 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6728 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6729 6730 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6731 { 6732 return 0; 6733 } 6734 6735 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6736 { 6737 return 0; 6738 } 6739 6740 static inline int throttled_lb_pair(struct task_group *tg, 6741 int src_cpu, int dest_cpu) 6742 { 6743 return 0; 6744 } 6745 6746 #ifdef CONFIG_FAIR_GROUP_SCHED 6747 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6748 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6749 #endif 6750 6751 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6752 { 6753 return NULL; 6754 } 6755 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6756 static inline void update_runtime_enabled(struct rq *rq) {} 6757 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6758 #ifdef CONFIG_CGROUP_SCHED 6759 bool cfs_task_bw_constrained(struct task_struct *p) 6760 { 6761 return false; 6762 } 6763 #endif 6764 #endif /* CONFIG_CFS_BANDWIDTH */ 6765 6766 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6767 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6768 #endif 6769 6770 /************************************************** 6771 * CFS operations on tasks: 6772 */ 6773 6774 #ifdef CONFIG_SCHED_HRTICK 6775 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6776 { 6777 struct sched_entity *se = &p->se; 6778 6779 SCHED_WARN_ON(task_rq(p) != rq); 6780 6781 if (rq->cfs.h_nr_queued > 1) { 6782 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6783 u64 slice = se->slice; 6784 s64 delta = slice - ran; 6785 6786 if (delta < 0) { 6787 if (task_current_donor(rq, p)) 6788 resched_curr(rq); 6789 return; 6790 } 6791 hrtick_start(rq, delta); 6792 } 6793 } 6794 6795 /* 6796 * called from enqueue/dequeue and updates the hrtick when the 6797 * current task is from our class and nr_running is low enough 6798 * to matter. 6799 */ 6800 static void hrtick_update(struct rq *rq) 6801 { 6802 struct task_struct *donor = rq->donor; 6803 6804 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class) 6805 return; 6806 6807 hrtick_start_fair(rq, donor); 6808 } 6809 #else /* !CONFIG_SCHED_HRTICK */ 6810 static inline void 6811 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6812 { 6813 } 6814 6815 static inline void hrtick_update(struct rq *rq) 6816 { 6817 } 6818 #endif 6819 6820 #ifdef CONFIG_SMP 6821 static inline bool cpu_overutilized(int cpu) 6822 { 6823 unsigned long rq_util_min, rq_util_max; 6824 6825 if (!sched_energy_enabled()) 6826 return false; 6827 6828 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6829 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6830 6831 /* Return true only if the utilization doesn't fit CPU's capacity */ 6832 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6833 } 6834 6835 /* 6836 * overutilized value make sense only if EAS is enabled 6837 */ 6838 static inline bool is_rd_overutilized(struct root_domain *rd) 6839 { 6840 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6841 } 6842 6843 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6844 { 6845 if (!sched_energy_enabled()) 6846 return; 6847 6848 WRITE_ONCE(rd->overutilized, flag); 6849 trace_sched_overutilized_tp(rd, flag); 6850 } 6851 6852 static inline void check_update_overutilized_status(struct rq *rq) 6853 { 6854 /* 6855 * overutilized field is used for load balancing decisions only 6856 * if energy aware scheduler is being used 6857 */ 6858 6859 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6860 set_rd_overutilized(rq->rd, 1); 6861 } 6862 #else 6863 static inline void check_update_overutilized_status(struct rq *rq) { } 6864 #endif 6865 6866 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6867 static int sched_idle_rq(struct rq *rq) 6868 { 6869 return unlikely(rq->nr_running == rq->cfs.h_nr_idle && 6870 rq->nr_running); 6871 } 6872 6873 #ifdef CONFIG_SMP 6874 static int sched_idle_cpu(int cpu) 6875 { 6876 return sched_idle_rq(cpu_rq(cpu)); 6877 } 6878 #endif 6879 6880 static void 6881 requeue_delayed_entity(struct sched_entity *se) 6882 { 6883 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6884 6885 /* 6886 * se->sched_delayed should imply: se->on_rq == 1. 6887 * Because a delayed entity is one that is still on 6888 * the runqueue competing until elegibility. 6889 */ 6890 SCHED_WARN_ON(!se->sched_delayed); 6891 SCHED_WARN_ON(!se->on_rq); 6892 6893 if (sched_feat(DELAY_ZERO)) { 6894 update_entity_lag(cfs_rq, se); 6895 if (se->vlag > 0) { 6896 cfs_rq->nr_queued--; 6897 if (se != cfs_rq->curr) 6898 __dequeue_entity(cfs_rq, se); 6899 se->vlag = 0; 6900 place_entity(cfs_rq, se, 0); 6901 if (se != cfs_rq->curr) 6902 __enqueue_entity(cfs_rq, se); 6903 cfs_rq->nr_queued++; 6904 } 6905 } 6906 6907 update_load_avg(cfs_rq, se, 0); 6908 clear_delayed(se); 6909 } 6910 6911 /* 6912 * The enqueue_task method is called before nr_running is 6913 * increased. Here we update the fair scheduling stats and 6914 * then put the task into the rbtree: 6915 */ 6916 static void 6917 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6918 { 6919 struct cfs_rq *cfs_rq; 6920 struct sched_entity *se = &p->se; 6921 int h_nr_idle = task_has_idle_policy(p); 6922 int h_nr_runnable = 1; 6923 int task_new = !(flags & ENQUEUE_WAKEUP); 6924 int rq_h_nr_queued = rq->cfs.h_nr_queued; 6925 u64 slice = 0; 6926 6927 /* 6928 * The code below (indirectly) updates schedutil which looks at 6929 * the cfs_rq utilization to select a frequency. 6930 * Let's add the task's estimated utilization to the cfs_rq's 6931 * estimated utilization, before we update schedutil. 6932 */ 6933 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE)))) 6934 util_est_enqueue(&rq->cfs, p); 6935 6936 if (flags & ENQUEUE_DELAYED) { 6937 requeue_delayed_entity(se); 6938 return; 6939 } 6940 6941 /* 6942 * If in_iowait is set, the code below may not trigger any cpufreq 6943 * utilization updates, so do it here explicitly with the IOWAIT flag 6944 * passed. 6945 */ 6946 if (p->in_iowait) 6947 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6948 6949 if (task_new && se->sched_delayed) 6950 h_nr_runnable = 0; 6951 6952 for_each_sched_entity(se) { 6953 if (se->on_rq) { 6954 if (se->sched_delayed) 6955 requeue_delayed_entity(se); 6956 break; 6957 } 6958 cfs_rq = cfs_rq_of(se); 6959 6960 /* 6961 * Basically set the slice of group entries to the min_slice of 6962 * their respective cfs_rq. This ensures the group can service 6963 * its entities in the desired time-frame. 6964 */ 6965 if (slice) { 6966 se->slice = slice; 6967 se->custom_slice = 1; 6968 } 6969 enqueue_entity(cfs_rq, se, flags); 6970 slice = cfs_rq_min_slice(cfs_rq); 6971 6972 cfs_rq->h_nr_runnable += h_nr_runnable; 6973 cfs_rq->h_nr_queued++; 6974 cfs_rq->h_nr_idle += h_nr_idle; 6975 6976 if (cfs_rq_is_idle(cfs_rq)) 6977 h_nr_idle = 1; 6978 6979 /* end evaluation on encountering a throttled cfs_rq */ 6980 if (cfs_rq_throttled(cfs_rq)) 6981 goto enqueue_throttle; 6982 6983 flags = ENQUEUE_WAKEUP; 6984 } 6985 6986 for_each_sched_entity(se) { 6987 cfs_rq = cfs_rq_of(se); 6988 6989 update_load_avg(cfs_rq, se, UPDATE_TG); 6990 se_update_runnable(se); 6991 update_cfs_group(se); 6992 6993 se->slice = slice; 6994 slice = cfs_rq_min_slice(cfs_rq); 6995 6996 cfs_rq->h_nr_runnable += h_nr_runnable; 6997 cfs_rq->h_nr_queued++; 6998 cfs_rq->h_nr_idle += h_nr_idle; 6999 7000 if (cfs_rq_is_idle(cfs_rq)) 7001 h_nr_idle = 1; 7002 7003 /* end evaluation on encountering a throttled cfs_rq */ 7004 if (cfs_rq_throttled(cfs_rq)) 7005 goto enqueue_throttle; 7006 } 7007 7008 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) { 7009 /* Account for idle runtime */ 7010 if (!rq->nr_running) 7011 dl_server_update_idle_time(rq, rq->curr); 7012 dl_server_start(&rq->fair_server); 7013 } 7014 7015 /* At this point se is NULL and we are at root level*/ 7016 add_nr_running(rq, 1); 7017 7018 /* 7019 * Since new tasks are assigned an initial util_avg equal to 7020 * half of the spare capacity of their CPU, tiny tasks have the 7021 * ability to cross the overutilized threshold, which will 7022 * result in the load balancer ruining all the task placement 7023 * done by EAS. As a way to mitigate that effect, do not account 7024 * for the first enqueue operation of new tasks during the 7025 * overutilized flag detection. 7026 * 7027 * A better way of solving this problem would be to wait for 7028 * the PELT signals of tasks to converge before taking them 7029 * into account, but that is not straightforward to implement, 7030 * and the following generally works well enough in practice. 7031 */ 7032 if (!task_new) 7033 check_update_overutilized_status(rq); 7034 7035 enqueue_throttle: 7036 assert_list_leaf_cfs_rq(rq); 7037 7038 hrtick_update(rq); 7039 } 7040 7041 static void set_next_buddy(struct sched_entity *se); 7042 7043 /* 7044 * Basically dequeue_task_fair(), except it can deal with dequeue_entity() 7045 * failing half-way through and resume the dequeue later. 7046 * 7047 * Returns: 7048 * -1 - dequeue delayed 7049 * 0 - dequeue throttled 7050 * 1 - dequeue complete 7051 */ 7052 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) 7053 { 7054 bool was_sched_idle = sched_idle_rq(rq); 7055 int rq_h_nr_queued = rq->cfs.h_nr_queued; 7056 bool task_sleep = flags & DEQUEUE_SLEEP; 7057 bool task_delayed = flags & DEQUEUE_DELAYED; 7058 struct task_struct *p = NULL; 7059 int h_nr_idle = 0; 7060 int h_nr_queued = 0; 7061 int h_nr_runnable = 0; 7062 struct cfs_rq *cfs_rq; 7063 u64 slice = 0; 7064 7065 if (entity_is_task(se)) { 7066 p = task_of(se); 7067 h_nr_queued = 1; 7068 h_nr_idle = task_has_idle_policy(p); 7069 if (task_sleep || task_delayed || !se->sched_delayed) 7070 h_nr_runnable = 1; 7071 } else { 7072 cfs_rq = group_cfs_rq(se); 7073 slice = cfs_rq_min_slice(cfs_rq); 7074 } 7075 7076 for_each_sched_entity(se) { 7077 cfs_rq = cfs_rq_of(se); 7078 7079 if (!dequeue_entity(cfs_rq, se, flags)) { 7080 if (p && &p->se == se) 7081 return -1; 7082 7083 break; 7084 } 7085 7086 cfs_rq->h_nr_runnable -= h_nr_runnable; 7087 cfs_rq->h_nr_queued -= h_nr_queued; 7088 cfs_rq->h_nr_idle -= h_nr_idle; 7089 7090 if (cfs_rq_is_idle(cfs_rq)) 7091 h_nr_idle = h_nr_queued; 7092 7093 /* end evaluation on encountering a throttled cfs_rq */ 7094 if (cfs_rq_throttled(cfs_rq)) 7095 return 0; 7096 7097 /* Don't dequeue parent if it has other entities besides us */ 7098 if (cfs_rq->load.weight) { 7099 slice = cfs_rq_min_slice(cfs_rq); 7100 7101 /* Avoid re-evaluating load for this entity: */ 7102 se = parent_entity(se); 7103 /* 7104 * Bias pick_next to pick a task from this cfs_rq, as 7105 * p is sleeping when it is within its sched_slice. 7106 */ 7107 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 7108 set_next_buddy(se); 7109 break; 7110 } 7111 flags |= DEQUEUE_SLEEP; 7112 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); 7113 } 7114 7115 for_each_sched_entity(se) { 7116 cfs_rq = cfs_rq_of(se); 7117 7118 update_load_avg(cfs_rq, se, UPDATE_TG); 7119 se_update_runnable(se); 7120 update_cfs_group(se); 7121 7122 se->slice = slice; 7123 slice = cfs_rq_min_slice(cfs_rq); 7124 7125 cfs_rq->h_nr_runnable -= h_nr_runnable; 7126 cfs_rq->h_nr_queued -= h_nr_queued; 7127 cfs_rq->h_nr_idle -= h_nr_idle; 7128 7129 if (cfs_rq_is_idle(cfs_rq)) 7130 h_nr_idle = h_nr_queued; 7131 7132 /* end evaluation on encountering a throttled cfs_rq */ 7133 if (cfs_rq_throttled(cfs_rq)) 7134 return 0; 7135 } 7136 7137 sub_nr_running(rq, h_nr_queued); 7138 7139 if (rq_h_nr_queued && !rq->cfs.h_nr_queued) 7140 dl_server_stop(&rq->fair_server); 7141 7142 /* balance early to pull high priority tasks */ 7143 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 7144 rq->next_balance = jiffies; 7145 7146 if (p && task_delayed) { 7147 SCHED_WARN_ON(!task_sleep); 7148 SCHED_WARN_ON(p->on_rq != 1); 7149 7150 /* Fix-up what dequeue_task_fair() skipped */ 7151 hrtick_update(rq); 7152 7153 /* 7154 * Fix-up what block_task() skipped. 7155 * 7156 * Must be last, @p might not be valid after this. 7157 */ 7158 __block_task(rq, p); 7159 } 7160 7161 return 1; 7162 } 7163 7164 /* 7165 * The dequeue_task method is called before nr_running is 7166 * decreased. We remove the task from the rbtree and 7167 * update the fair scheduling stats: 7168 */ 7169 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 7170 { 7171 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE)))) 7172 util_est_dequeue(&rq->cfs, p); 7173 7174 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); 7175 if (dequeue_entities(rq, &p->se, flags) < 0) 7176 return false; 7177 7178 /* 7179 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED). 7180 */ 7181 7182 hrtick_update(rq); 7183 return true; 7184 } 7185 7186 #ifdef CONFIG_SMP 7187 7188 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 7189 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7190 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 7191 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 7192 7193 #ifdef CONFIG_NO_HZ_COMMON 7194 7195 static struct { 7196 cpumask_var_t idle_cpus_mask; 7197 atomic_t nr_cpus; 7198 int has_blocked; /* Idle CPUS has blocked load */ 7199 int needs_update; /* Newly idle CPUs need their next_balance collated */ 7200 unsigned long next_balance; /* in jiffy units */ 7201 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 7202 } nohz ____cacheline_aligned; 7203 7204 #endif /* CONFIG_NO_HZ_COMMON */ 7205 7206 static unsigned long cpu_load(struct rq *rq) 7207 { 7208 return cfs_rq_load_avg(&rq->cfs); 7209 } 7210 7211 /* 7212 * cpu_load_without - compute CPU load without any contributions from *p 7213 * @cpu: the CPU which load is requested 7214 * @p: the task which load should be discounted 7215 * 7216 * The load of a CPU is defined by the load of tasks currently enqueued on that 7217 * CPU as well as tasks which are currently sleeping after an execution on that 7218 * CPU. 7219 * 7220 * This method returns the load of the specified CPU by discounting the load of 7221 * the specified task, whenever the task is currently contributing to the CPU 7222 * load. 7223 */ 7224 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 7225 { 7226 struct cfs_rq *cfs_rq; 7227 unsigned int load; 7228 7229 /* Task has no contribution or is new */ 7230 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7231 return cpu_load(rq); 7232 7233 cfs_rq = &rq->cfs; 7234 load = READ_ONCE(cfs_rq->avg.load_avg); 7235 7236 /* Discount task's util from CPU's util */ 7237 lsub_positive(&load, task_h_load(p)); 7238 7239 return load; 7240 } 7241 7242 static unsigned long cpu_runnable(struct rq *rq) 7243 { 7244 return cfs_rq_runnable_avg(&rq->cfs); 7245 } 7246 7247 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 7248 { 7249 struct cfs_rq *cfs_rq; 7250 unsigned int runnable; 7251 7252 /* Task has no contribution or is new */ 7253 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7254 return cpu_runnable(rq); 7255 7256 cfs_rq = &rq->cfs; 7257 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7258 7259 /* Discount task's runnable from CPU's runnable */ 7260 lsub_positive(&runnable, p->se.avg.runnable_avg); 7261 7262 return runnable; 7263 } 7264 7265 static unsigned long capacity_of(int cpu) 7266 { 7267 return cpu_rq(cpu)->cpu_capacity; 7268 } 7269 7270 static void record_wakee(struct task_struct *p) 7271 { 7272 /* 7273 * Only decay a single time; tasks that have less then 1 wakeup per 7274 * jiffy will not have built up many flips. 7275 */ 7276 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7277 current->wakee_flips >>= 1; 7278 current->wakee_flip_decay_ts = jiffies; 7279 } 7280 7281 if (current->last_wakee != p) { 7282 current->last_wakee = p; 7283 current->wakee_flips++; 7284 } 7285 } 7286 7287 /* 7288 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7289 * 7290 * A waker of many should wake a different task than the one last awakened 7291 * at a frequency roughly N times higher than one of its wakees. 7292 * 7293 * In order to determine whether we should let the load spread vs consolidating 7294 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7295 * partner, and a factor of lls_size higher frequency in the other. 7296 * 7297 * With both conditions met, we can be relatively sure that the relationship is 7298 * non-monogamous, with partner count exceeding socket size. 7299 * 7300 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7301 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7302 * socket size. 7303 */ 7304 static int wake_wide(struct task_struct *p) 7305 { 7306 unsigned int master = current->wakee_flips; 7307 unsigned int slave = p->wakee_flips; 7308 int factor = __this_cpu_read(sd_llc_size); 7309 7310 if (master < slave) 7311 swap(master, slave); 7312 if (slave < factor || master < slave * factor) 7313 return 0; 7314 return 1; 7315 } 7316 7317 /* 7318 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7319 * soonest. For the purpose of speed we only consider the waking and previous 7320 * CPU. 7321 * 7322 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7323 * cache-affine and is (or will be) idle. 7324 * 7325 * wake_affine_weight() - considers the weight to reflect the average 7326 * scheduling latency of the CPUs. This seems to work 7327 * for the overloaded case. 7328 */ 7329 static int 7330 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7331 { 7332 /* 7333 * If this_cpu is idle, it implies the wakeup is from interrupt 7334 * context. Only allow the move if cache is shared. Otherwise an 7335 * interrupt intensive workload could force all tasks onto one 7336 * node depending on the IO topology or IRQ affinity settings. 7337 * 7338 * If the prev_cpu is idle and cache affine then avoid a migration. 7339 * There is no guarantee that the cache hot data from an interrupt 7340 * is more important than cache hot data on the prev_cpu and from 7341 * a cpufreq perspective, it's better to have higher utilisation 7342 * on one CPU. 7343 */ 7344 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7345 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7346 7347 if (sync && cpu_rq(this_cpu)->nr_running == 1) 7348 return this_cpu; 7349 7350 if (available_idle_cpu(prev_cpu)) 7351 return prev_cpu; 7352 7353 return nr_cpumask_bits; 7354 } 7355 7356 static int 7357 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7358 int this_cpu, int prev_cpu, int sync) 7359 { 7360 s64 this_eff_load, prev_eff_load; 7361 unsigned long task_load; 7362 7363 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7364 7365 if (sync) { 7366 unsigned long current_load = task_h_load(current); 7367 7368 if (current_load > this_eff_load) 7369 return this_cpu; 7370 7371 this_eff_load -= current_load; 7372 } 7373 7374 task_load = task_h_load(p); 7375 7376 this_eff_load += task_load; 7377 if (sched_feat(WA_BIAS)) 7378 this_eff_load *= 100; 7379 this_eff_load *= capacity_of(prev_cpu); 7380 7381 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7382 prev_eff_load -= task_load; 7383 if (sched_feat(WA_BIAS)) 7384 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7385 prev_eff_load *= capacity_of(this_cpu); 7386 7387 /* 7388 * If sync, adjust the weight of prev_eff_load such that if 7389 * prev_eff == this_eff that select_idle_sibling() will consider 7390 * stacking the wakee on top of the waker if no other CPU is 7391 * idle. 7392 */ 7393 if (sync) 7394 prev_eff_load += 1; 7395 7396 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7397 } 7398 7399 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7400 int this_cpu, int prev_cpu, int sync) 7401 { 7402 int target = nr_cpumask_bits; 7403 7404 if (sched_feat(WA_IDLE)) 7405 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7406 7407 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7408 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7409 7410 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7411 if (target != this_cpu) 7412 return prev_cpu; 7413 7414 schedstat_inc(sd->ttwu_move_affine); 7415 schedstat_inc(p->stats.nr_wakeups_affine); 7416 return target; 7417 } 7418 7419 static struct sched_group * 7420 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7421 7422 /* 7423 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7424 */ 7425 static int 7426 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7427 { 7428 unsigned long load, min_load = ULONG_MAX; 7429 unsigned int min_exit_latency = UINT_MAX; 7430 u64 latest_idle_timestamp = 0; 7431 int least_loaded_cpu = this_cpu; 7432 int shallowest_idle_cpu = -1; 7433 int i; 7434 7435 /* Check if we have any choice: */ 7436 if (group->group_weight == 1) 7437 return cpumask_first(sched_group_span(group)); 7438 7439 /* Traverse only the allowed CPUs */ 7440 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7441 struct rq *rq = cpu_rq(i); 7442 7443 if (!sched_core_cookie_match(rq, p)) 7444 continue; 7445 7446 if (sched_idle_cpu(i)) 7447 return i; 7448 7449 if (available_idle_cpu(i)) { 7450 struct cpuidle_state *idle = idle_get_state(rq); 7451 if (idle && idle->exit_latency < min_exit_latency) { 7452 /* 7453 * We give priority to a CPU whose idle state 7454 * has the smallest exit latency irrespective 7455 * of any idle timestamp. 7456 */ 7457 min_exit_latency = idle->exit_latency; 7458 latest_idle_timestamp = rq->idle_stamp; 7459 shallowest_idle_cpu = i; 7460 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7461 rq->idle_stamp > latest_idle_timestamp) { 7462 /* 7463 * If equal or no active idle state, then 7464 * the most recently idled CPU might have 7465 * a warmer cache. 7466 */ 7467 latest_idle_timestamp = rq->idle_stamp; 7468 shallowest_idle_cpu = i; 7469 } 7470 } else if (shallowest_idle_cpu == -1) { 7471 load = cpu_load(cpu_rq(i)); 7472 if (load < min_load) { 7473 min_load = load; 7474 least_loaded_cpu = i; 7475 } 7476 } 7477 } 7478 7479 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7480 } 7481 7482 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7483 int cpu, int prev_cpu, int sd_flag) 7484 { 7485 int new_cpu = cpu; 7486 7487 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7488 return prev_cpu; 7489 7490 /* 7491 * We need task's util for cpu_util_without, sync it up to 7492 * prev_cpu's last_update_time. 7493 */ 7494 if (!(sd_flag & SD_BALANCE_FORK)) 7495 sync_entity_load_avg(&p->se); 7496 7497 while (sd) { 7498 struct sched_group *group; 7499 struct sched_domain *tmp; 7500 int weight; 7501 7502 if (!(sd->flags & sd_flag)) { 7503 sd = sd->child; 7504 continue; 7505 } 7506 7507 group = sched_balance_find_dst_group(sd, p, cpu); 7508 if (!group) { 7509 sd = sd->child; 7510 continue; 7511 } 7512 7513 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7514 if (new_cpu == cpu) { 7515 /* Now try balancing at a lower domain level of 'cpu': */ 7516 sd = sd->child; 7517 continue; 7518 } 7519 7520 /* Now try balancing at a lower domain level of 'new_cpu': */ 7521 cpu = new_cpu; 7522 weight = sd->span_weight; 7523 sd = NULL; 7524 for_each_domain(cpu, tmp) { 7525 if (weight <= tmp->span_weight) 7526 break; 7527 if (tmp->flags & sd_flag) 7528 sd = tmp; 7529 } 7530 } 7531 7532 return new_cpu; 7533 } 7534 7535 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7536 { 7537 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7538 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7539 return cpu; 7540 7541 return -1; 7542 } 7543 7544 #ifdef CONFIG_SCHED_SMT 7545 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7546 EXPORT_SYMBOL_GPL(sched_smt_present); 7547 7548 static inline void set_idle_cores(int cpu, int val) 7549 { 7550 struct sched_domain_shared *sds; 7551 7552 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7553 if (sds) 7554 WRITE_ONCE(sds->has_idle_cores, val); 7555 } 7556 7557 static inline bool test_idle_cores(int cpu) 7558 { 7559 struct sched_domain_shared *sds; 7560 7561 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7562 if (sds) 7563 return READ_ONCE(sds->has_idle_cores); 7564 7565 return false; 7566 } 7567 7568 /* 7569 * Scans the local SMT mask to see if the entire core is idle, and records this 7570 * information in sd_llc_shared->has_idle_cores. 7571 * 7572 * Since SMT siblings share all cache levels, inspecting this limited remote 7573 * state should be fairly cheap. 7574 */ 7575 void __update_idle_core(struct rq *rq) 7576 { 7577 int core = cpu_of(rq); 7578 int cpu; 7579 7580 rcu_read_lock(); 7581 if (test_idle_cores(core)) 7582 goto unlock; 7583 7584 for_each_cpu(cpu, cpu_smt_mask(core)) { 7585 if (cpu == core) 7586 continue; 7587 7588 if (!available_idle_cpu(cpu)) 7589 goto unlock; 7590 } 7591 7592 set_idle_cores(core, 1); 7593 unlock: 7594 rcu_read_unlock(); 7595 } 7596 7597 /* 7598 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7599 * there are no idle cores left in the system; tracked through 7600 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7601 */ 7602 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7603 { 7604 bool idle = true; 7605 int cpu; 7606 7607 for_each_cpu(cpu, cpu_smt_mask(core)) { 7608 if (!available_idle_cpu(cpu)) { 7609 idle = false; 7610 if (*idle_cpu == -1) { 7611 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7612 *idle_cpu = cpu; 7613 break; 7614 } 7615 continue; 7616 } 7617 break; 7618 } 7619 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7620 *idle_cpu = cpu; 7621 } 7622 7623 if (idle) 7624 return core; 7625 7626 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7627 return -1; 7628 } 7629 7630 /* 7631 * Scan the local SMT mask for idle CPUs. 7632 */ 7633 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7634 { 7635 int cpu; 7636 7637 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7638 if (cpu == target) 7639 continue; 7640 /* 7641 * Check if the CPU is in the LLC scheduling domain of @target. 7642 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7643 */ 7644 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7645 continue; 7646 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7647 return cpu; 7648 } 7649 7650 return -1; 7651 } 7652 7653 #else /* CONFIG_SCHED_SMT */ 7654 7655 static inline void set_idle_cores(int cpu, int val) 7656 { 7657 } 7658 7659 static inline bool test_idle_cores(int cpu) 7660 { 7661 return false; 7662 } 7663 7664 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7665 { 7666 return __select_idle_cpu(core, p); 7667 } 7668 7669 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7670 { 7671 return -1; 7672 } 7673 7674 #endif /* CONFIG_SCHED_SMT */ 7675 7676 /* 7677 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7678 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7679 * average idle time for this rq (as found in rq->avg_idle). 7680 */ 7681 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7682 { 7683 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7684 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7685 struct sched_domain_shared *sd_share; 7686 7687 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7688 7689 if (sched_feat(SIS_UTIL)) { 7690 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7691 if (sd_share) { 7692 /* because !--nr is the condition to stop scan */ 7693 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7694 /* overloaded LLC is unlikely to have idle cpu/core */ 7695 if (nr == 1) 7696 return -1; 7697 } 7698 } 7699 7700 if (static_branch_unlikely(&sched_cluster_active)) { 7701 struct sched_group *sg = sd->groups; 7702 7703 if (sg->flags & SD_CLUSTER) { 7704 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7705 if (!cpumask_test_cpu(cpu, cpus)) 7706 continue; 7707 7708 if (has_idle_core) { 7709 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7710 if ((unsigned int)i < nr_cpumask_bits) 7711 return i; 7712 } else { 7713 if (--nr <= 0) 7714 return -1; 7715 idle_cpu = __select_idle_cpu(cpu, p); 7716 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7717 return idle_cpu; 7718 } 7719 } 7720 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7721 } 7722 } 7723 7724 for_each_cpu_wrap(cpu, cpus, target + 1) { 7725 if (has_idle_core) { 7726 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7727 if ((unsigned int)i < nr_cpumask_bits) 7728 return i; 7729 7730 } else { 7731 if (--nr <= 0) 7732 return -1; 7733 idle_cpu = __select_idle_cpu(cpu, p); 7734 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7735 break; 7736 } 7737 } 7738 7739 if (has_idle_core) 7740 set_idle_cores(target, false); 7741 7742 return idle_cpu; 7743 } 7744 7745 /* 7746 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7747 * the task fits. If no CPU is big enough, but there are idle ones, try to 7748 * maximize capacity. 7749 */ 7750 static int 7751 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7752 { 7753 unsigned long task_util, util_min, util_max, best_cap = 0; 7754 int fits, best_fits = 0; 7755 int cpu, best_cpu = -1; 7756 struct cpumask *cpus; 7757 7758 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7759 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7760 7761 task_util = task_util_est(p); 7762 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7763 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7764 7765 for_each_cpu_wrap(cpu, cpus, target) { 7766 unsigned long cpu_cap = capacity_of(cpu); 7767 7768 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7769 continue; 7770 7771 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7772 7773 /* This CPU fits with all requirements */ 7774 if (fits > 0) 7775 return cpu; 7776 /* 7777 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7778 * Look for the CPU with best capacity. 7779 */ 7780 else if (fits < 0) 7781 cpu_cap = get_actual_cpu_capacity(cpu); 7782 7783 /* 7784 * First, select CPU which fits better (-1 being better than 0). 7785 * Then, select the one with best capacity at same level. 7786 */ 7787 if ((fits < best_fits) || 7788 ((fits == best_fits) && (cpu_cap > best_cap))) { 7789 best_cap = cpu_cap; 7790 best_cpu = cpu; 7791 best_fits = fits; 7792 } 7793 } 7794 7795 return best_cpu; 7796 } 7797 7798 static inline bool asym_fits_cpu(unsigned long util, 7799 unsigned long util_min, 7800 unsigned long util_max, 7801 int cpu) 7802 { 7803 if (sched_asym_cpucap_active()) 7804 /* 7805 * Return true only if the cpu fully fits the task requirements 7806 * which include the utilization and the performance hints. 7807 */ 7808 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7809 7810 return true; 7811 } 7812 7813 /* 7814 * Try and locate an idle core/thread in the LLC cache domain. 7815 */ 7816 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7817 { 7818 bool has_idle_core = false; 7819 struct sched_domain *sd; 7820 unsigned long task_util, util_min, util_max; 7821 int i, recent_used_cpu, prev_aff = -1; 7822 7823 /* 7824 * On asymmetric system, update task utilization because we will check 7825 * that the task fits with CPU's capacity. 7826 */ 7827 if (sched_asym_cpucap_active()) { 7828 sync_entity_load_avg(&p->se); 7829 task_util = task_util_est(p); 7830 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7831 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7832 } 7833 7834 /* 7835 * per-cpu select_rq_mask usage 7836 */ 7837 lockdep_assert_irqs_disabled(); 7838 7839 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7840 asym_fits_cpu(task_util, util_min, util_max, target)) 7841 return target; 7842 7843 /* 7844 * If the previous CPU is cache affine and idle, don't be stupid: 7845 */ 7846 if (prev != target && cpus_share_cache(prev, target) && 7847 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7848 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7849 7850 if (!static_branch_unlikely(&sched_cluster_active) || 7851 cpus_share_resources(prev, target)) 7852 return prev; 7853 7854 prev_aff = prev; 7855 } 7856 7857 /* 7858 * Allow a per-cpu kthread to stack with the wakee if the 7859 * kworker thread and the tasks previous CPUs are the same. 7860 * The assumption is that the wakee queued work for the 7861 * per-cpu kthread that is now complete and the wakeup is 7862 * essentially a sync wakeup. An obvious example of this 7863 * pattern is IO completions. 7864 */ 7865 if (is_per_cpu_kthread(current) && 7866 in_task() && 7867 prev == smp_processor_id() && 7868 this_rq()->nr_running <= 1 && 7869 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7870 return prev; 7871 } 7872 7873 /* Check a recently used CPU as a potential idle candidate: */ 7874 recent_used_cpu = p->recent_used_cpu; 7875 p->recent_used_cpu = prev; 7876 if (recent_used_cpu != prev && 7877 recent_used_cpu != target && 7878 cpus_share_cache(recent_used_cpu, target) && 7879 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7880 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7881 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7882 7883 if (!static_branch_unlikely(&sched_cluster_active) || 7884 cpus_share_resources(recent_used_cpu, target)) 7885 return recent_used_cpu; 7886 7887 } else { 7888 recent_used_cpu = -1; 7889 } 7890 7891 /* 7892 * For asymmetric CPU capacity systems, our domain of interest is 7893 * sd_asym_cpucapacity rather than sd_llc. 7894 */ 7895 if (sched_asym_cpucap_active()) { 7896 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7897 /* 7898 * On an asymmetric CPU capacity system where an exclusive 7899 * cpuset defines a symmetric island (i.e. one unique 7900 * capacity_orig value through the cpuset), the key will be set 7901 * but the CPUs within that cpuset will not have a domain with 7902 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7903 * capacity path. 7904 */ 7905 if (sd) { 7906 i = select_idle_capacity(p, sd, target); 7907 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7908 } 7909 } 7910 7911 sd = rcu_dereference(per_cpu(sd_llc, target)); 7912 if (!sd) 7913 return target; 7914 7915 if (sched_smt_active()) { 7916 has_idle_core = test_idle_cores(target); 7917 7918 if (!has_idle_core && cpus_share_cache(prev, target)) { 7919 i = select_idle_smt(p, sd, prev); 7920 if ((unsigned int)i < nr_cpumask_bits) 7921 return i; 7922 } 7923 } 7924 7925 i = select_idle_cpu(p, sd, has_idle_core, target); 7926 if ((unsigned)i < nr_cpumask_bits) 7927 return i; 7928 7929 /* 7930 * For cluster machines which have lower sharing cache like L2 or 7931 * LLC Tag, we tend to find an idle CPU in the target's cluster 7932 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7933 * use them if possible when no idle CPU found in select_idle_cpu(). 7934 */ 7935 if ((unsigned int)prev_aff < nr_cpumask_bits) 7936 return prev_aff; 7937 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7938 return recent_used_cpu; 7939 7940 return target; 7941 } 7942 7943 /** 7944 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7945 * @cpu: the CPU to get the utilization for 7946 * @p: task for which the CPU utilization should be predicted or NULL 7947 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7948 * @boost: 1 to enable boosting, otherwise 0 7949 * 7950 * The unit of the return value must be the same as the one of CPU capacity 7951 * so that CPU utilization can be compared with CPU capacity. 7952 * 7953 * CPU utilization is the sum of running time of runnable tasks plus the 7954 * recent utilization of currently non-runnable tasks on that CPU. 7955 * It represents the amount of CPU capacity currently used by CFS tasks in 7956 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7957 * capacity at f_max. 7958 * 7959 * The estimated CPU utilization is defined as the maximum between CPU 7960 * utilization and sum of the estimated utilization of the currently 7961 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7962 * previously-executed tasks, which helps better deduce how busy a CPU will 7963 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7964 * of such a task would be significantly decayed at this point of time. 7965 * 7966 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7967 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7968 * utilization. Boosting is implemented in cpu_util() so that internal 7969 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7970 * latter via cpu_util_cfs_boost(). 7971 * 7972 * CPU utilization can be higher than the current CPU capacity 7973 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7974 * of rounding errors as well as task migrations or wakeups of new tasks. 7975 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7976 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7977 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7978 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7979 * though since this is useful for predicting the CPU capacity required 7980 * after task migrations (scheduler-driven DVFS). 7981 * 7982 * Return: (Boosted) (estimated) utilization for the specified CPU. 7983 */ 7984 static unsigned long 7985 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7986 { 7987 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7988 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7989 unsigned long runnable; 7990 7991 if (boost) { 7992 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7993 util = max(util, runnable); 7994 } 7995 7996 /* 7997 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7998 * contribution. If @p migrates from another CPU to @cpu add its 7999 * contribution. In all the other cases @cpu is not impacted by the 8000 * migration so its util_avg is already correct. 8001 */ 8002 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 8003 lsub_positive(&util, task_util(p)); 8004 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 8005 util += task_util(p); 8006 8007 if (sched_feat(UTIL_EST)) { 8008 unsigned long util_est; 8009 8010 util_est = READ_ONCE(cfs_rq->avg.util_est); 8011 8012 /* 8013 * During wake-up @p isn't enqueued yet and doesn't contribute 8014 * to any cpu_rq(cpu)->cfs.avg.util_est. 8015 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 8016 * has been enqueued. 8017 * 8018 * During exec (@dst_cpu = -1) @p is enqueued and does 8019 * contribute to cpu_rq(cpu)->cfs.util_est. 8020 * Remove it to "simulate" cpu_util without @p's contribution. 8021 * 8022 * Despite the task_on_rq_queued(@p) check there is still a 8023 * small window for a possible race when an exec 8024 * select_task_rq_fair() races with LB's detach_task(). 8025 * 8026 * detach_task() 8027 * deactivate_task() 8028 * p->on_rq = TASK_ON_RQ_MIGRATING; 8029 * -------------------------------- A 8030 * dequeue_task() \ 8031 * dequeue_task_fair() + Race Time 8032 * util_est_dequeue() / 8033 * -------------------------------- B 8034 * 8035 * The additional check "current == p" is required to further 8036 * reduce the race window. 8037 */ 8038 if (dst_cpu == cpu) 8039 util_est += _task_util_est(p); 8040 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 8041 lsub_positive(&util_est, _task_util_est(p)); 8042 8043 util = max(util, util_est); 8044 } 8045 8046 return min(util, arch_scale_cpu_capacity(cpu)); 8047 } 8048 8049 unsigned long cpu_util_cfs(int cpu) 8050 { 8051 return cpu_util(cpu, NULL, -1, 0); 8052 } 8053 8054 unsigned long cpu_util_cfs_boost(int cpu) 8055 { 8056 return cpu_util(cpu, NULL, -1, 1); 8057 } 8058 8059 /* 8060 * cpu_util_without: compute cpu utilization without any contributions from *p 8061 * @cpu: the CPU which utilization is requested 8062 * @p: the task which utilization should be discounted 8063 * 8064 * The utilization of a CPU is defined by the utilization of tasks currently 8065 * enqueued on that CPU as well as tasks which are currently sleeping after an 8066 * execution on that CPU. 8067 * 8068 * This method returns the utilization of the specified CPU by discounting the 8069 * utilization of the specified task, whenever the task is currently 8070 * contributing to the CPU utilization. 8071 */ 8072 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 8073 { 8074 /* Task has no contribution or is new */ 8075 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8076 p = NULL; 8077 8078 return cpu_util(cpu, p, -1, 0); 8079 } 8080 8081 /* 8082 * This function computes an effective utilization for the given CPU, to be 8083 * used for frequency selection given the linear relation: f = u * f_max. 8084 * 8085 * The scheduler tracks the following metrics: 8086 * 8087 * cpu_util_{cfs,rt,dl,irq}() 8088 * cpu_bw_dl() 8089 * 8090 * Where the cfs,rt and dl util numbers are tracked with the same metric and 8091 * synchronized windows and are thus directly comparable. 8092 * 8093 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 8094 * which excludes things like IRQ and steal-time. These latter are then accrued 8095 * in the IRQ utilization. 8096 * 8097 * The DL bandwidth number OTOH is not a measured metric but a value computed 8098 * based on the task model parameters and gives the minimal utilization 8099 * required to meet deadlines. 8100 */ 8101 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 8102 unsigned long *min, 8103 unsigned long *max) 8104 { 8105 unsigned long util, irq, scale; 8106 struct rq *rq = cpu_rq(cpu); 8107 8108 scale = arch_scale_cpu_capacity(cpu); 8109 8110 /* 8111 * Early check to see if IRQ/steal time saturates the CPU, can be 8112 * because of inaccuracies in how we track these -- see 8113 * update_irq_load_avg(). 8114 */ 8115 irq = cpu_util_irq(rq); 8116 if (unlikely(irq >= scale)) { 8117 if (min) 8118 *min = scale; 8119 if (max) 8120 *max = scale; 8121 return scale; 8122 } 8123 8124 if (min) { 8125 /* 8126 * The minimum utilization returns the highest level between: 8127 * - the computed DL bandwidth needed with the IRQ pressure which 8128 * steals time to the deadline task. 8129 * - The minimum performance requirement for CFS and/or RT. 8130 */ 8131 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); 8132 8133 /* 8134 * When an RT task is runnable and uclamp is not used, we must 8135 * ensure that the task will run at maximum compute capacity. 8136 */ 8137 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) 8138 *min = max(*min, scale); 8139 } 8140 8141 /* 8142 * Because the time spend on RT/DL tasks is visible as 'lost' time to 8143 * CFS tasks and we use the same metric to track the effective 8144 * utilization (PELT windows are synchronized) we can directly add them 8145 * to obtain the CPU's actual utilization. 8146 */ 8147 util = util_cfs + cpu_util_rt(rq); 8148 util += cpu_util_dl(rq); 8149 8150 /* 8151 * The maximum hint is a soft bandwidth requirement, which can be lower 8152 * than the actual utilization because of uclamp_max requirements. 8153 */ 8154 if (max) 8155 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); 8156 8157 if (util >= scale) 8158 return scale; 8159 8160 /* 8161 * There is still idle time; further improve the number by using the 8162 * IRQ metric. Because IRQ/steal time is hidden from the task clock we 8163 * need to scale the task numbers: 8164 * 8165 * max - irq 8166 * U' = irq + --------- * U 8167 * max 8168 */ 8169 util = scale_irq_capacity(util, irq, scale); 8170 util += irq; 8171 8172 return min(scale, util); 8173 } 8174 8175 unsigned long sched_cpu_util(int cpu) 8176 { 8177 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); 8178 } 8179 8180 /* 8181 * energy_env - Utilization landscape for energy estimation. 8182 * @task_busy_time: Utilization contribution by the task for which we test the 8183 * placement. Given by eenv_task_busy_time(). 8184 * @pd_busy_time: Utilization of the whole perf domain without the task 8185 * contribution. Given by eenv_pd_busy_time(). 8186 * @cpu_cap: Maximum CPU capacity for the perf domain. 8187 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 8188 */ 8189 struct energy_env { 8190 unsigned long task_busy_time; 8191 unsigned long pd_busy_time; 8192 unsigned long cpu_cap; 8193 unsigned long pd_cap; 8194 }; 8195 8196 /* 8197 * Compute the task busy time for compute_energy(). This time cannot be 8198 * injected directly into effective_cpu_util() because of the IRQ scaling. 8199 * The latter only makes sense with the most recent CPUs where the task has 8200 * run. 8201 */ 8202 static inline void eenv_task_busy_time(struct energy_env *eenv, 8203 struct task_struct *p, int prev_cpu) 8204 { 8205 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 8206 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 8207 8208 if (unlikely(irq >= max_cap)) 8209 busy_time = max_cap; 8210 else 8211 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 8212 8213 eenv->task_busy_time = busy_time; 8214 } 8215 8216 /* 8217 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 8218 * utilization for each @pd_cpus, it however doesn't take into account 8219 * clamping since the ratio (utilization / cpu_capacity) is already enough to 8220 * scale the EM reported power consumption at the (eventually clamped) 8221 * cpu_capacity. 8222 * 8223 * The contribution of the task @p for which we want to estimate the 8224 * energy cost is removed (by cpu_util()) and must be calculated 8225 * separately (see eenv_task_busy_time). This ensures: 8226 * 8227 * - A stable PD utilization, no matter which CPU of that PD we want to place 8228 * the task on. 8229 * 8230 * - A fair comparison between CPUs as the task contribution (task_util()) 8231 * will always be the same no matter which CPU utilization we rely on 8232 * (util_avg or util_est). 8233 * 8234 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 8235 * exceed @eenv->pd_cap. 8236 */ 8237 static inline void eenv_pd_busy_time(struct energy_env *eenv, 8238 struct cpumask *pd_cpus, 8239 struct task_struct *p) 8240 { 8241 unsigned long busy_time = 0; 8242 int cpu; 8243 8244 for_each_cpu(cpu, pd_cpus) { 8245 unsigned long util = cpu_util(cpu, p, -1, 0); 8246 8247 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 8248 } 8249 8250 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 8251 } 8252 8253 /* 8254 * Compute the maximum utilization for compute_energy() when the task @p 8255 * is placed on the cpu @dst_cpu. 8256 * 8257 * Returns the maximum utilization among @eenv->cpus. This utilization can't 8258 * exceed @eenv->cpu_cap. 8259 */ 8260 static inline unsigned long 8261 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 8262 struct task_struct *p, int dst_cpu) 8263 { 8264 unsigned long max_util = 0; 8265 int cpu; 8266 8267 for_each_cpu(cpu, pd_cpus) { 8268 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 8269 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 8270 unsigned long eff_util, min, max; 8271 8272 /* 8273 * Performance domain frequency: utilization clamping 8274 * must be considered since it affects the selection 8275 * of the performance domain frequency. 8276 * NOTE: in case RT tasks are running, by default the min 8277 * utilization can be max OPP. 8278 */ 8279 eff_util = effective_cpu_util(cpu, util, &min, &max); 8280 8281 /* Task's uclamp can modify min and max value */ 8282 if (tsk && uclamp_is_used()) { 8283 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 8284 8285 /* 8286 * If there is no active max uclamp constraint, 8287 * directly use task's one, otherwise keep max. 8288 */ 8289 if (uclamp_rq_is_idle(cpu_rq(cpu))) 8290 max = uclamp_eff_value(p, UCLAMP_MAX); 8291 else 8292 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 8293 } 8294 8295 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 8296 max_util = max(max_util, eff_util); 8297 } 8298 8299 return min(max_util, eenv->cpu_cap); 8300 } 8301 8302 /* 8303 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 8304 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 8305 * contribution is ignored. 8306 */ 8307 static inline unsigned long 8308 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 8309 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 8310 { 8311 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 8312 unsigned long busy_time = eenv->pd_busy_time; 8313 unsigned long energy; 8314 8315 if (dst_cpu >= 0) 8316 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 8317 8318 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 8319 8320 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 8321 8322 return energy; 8323 } 8324 8325 /* 8326 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 8327 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 8328 * spare capacity in each performance domain and uses it as a potential 8329 * candidate to execute the task. Then, it uses the Energy Model to figure 8330 * out which of the CPU candidates is the most energy-efficient. 8331 * 8332 * The rationale for this heuristic is as follows. In a performance domain, 8333 * all the most energy efficient CPU candidates (according to the Energy 8334 * Model) are those for which we'll request a low frequency. When there are 8335 * several CPUs for which the frequency request will be the same, we don't 8336 * have enough data to break the tie between them, because the Energy Model 8337 * only includes active power costs. With this model, if we assume that 8338 * frequency requests follow utilization (e.g. using schedutil), the CPU with 8339 * the maximum spare capacity in a performance domain is guaranteed to be among 8340 * the best candidates of the performance domain. 8341 * 8342 * In practice, it could be preferable from an energy standpoint to pack 8343 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 8344 * but that could also hurt our chances to go cluster idle, and we have no 8345 * ways to tell with the current Energy Model if this is actually a good 8346 * idea or not. So, find_energy_efficient_cpu() basically favors 8347 * cluster-packing, and spreading inside a cluster. That should at least be 8348 * a good thing for latency, and this is consistent with the idea that most 8349 * of the energy savings of EAS come from the asymmetry of the system, and 8350 * not so much from breaking the tie between identical CPUs. That's also the 8351 * reason why EAS is enabled in the topology code only for systems where 8352 * SD_ASYM_CPUCAPACITY is set. 8353 * 8354 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 8355 * they don't have any useful utilization data yet and it's not possible to 8356 * forecast their impact on energy consumption. Consequently, they will be 8357 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 8358 * to be energy-inefficient in some use-cases. The alternative would be to 8359 * bias new tasks towards specific types of CPUs first, or to try to infer 8360 * their util_avg from the parent task, but those heuristics could hurt 8361 * other use-cases too. So, until someone finds a better way to solve this, 8362 * let's keep things simple by re-using the existing slow path. 8363 */ 8364 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 8365 { 8366 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 8367 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 8368 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 8369 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 8370 struct root_domain *rd = this_rq()->rd; 8371 int cpu, best_energy_cpu, target = -1; 8372 int prev_fits = -1, best_fits = -1; 8373 unsigned long best_actual_cap = 0; 8374 unsigned long prev_actual_cap = 0; 8375 struct sched_domain *sd; 8376 struct perf_domain *pd; 8377 struct energy_env eenv; 8378 8379 rcu_read_lock(); 8380 pd = rcu_dereference(rd->pd); 8381 if (!pd) 8382 goto unlock; 8383 8384 /* 8385 * Energy-aware wake-up happens on the lowest sched_domain starting 8386 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8387 */ 8388 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 8389 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8390 sd = sd->parent; 8391 if (!sd) 8392 goto unlock; 8393 8394 target = prev_cpu; 8395 8396 sync_entity_load_avg(&p->se); 8397 if (!task_util_est(p) && p_util_min == 0) 8398 goto unlock; 8399 8400 eenv_task_busy_time(&eenv, p, prev_cpu); 8401 8402 for (; pd; pd = pd->next) { 8403 unsigned long util_min = p_util_min, util_max = p_util_max; 8404 unsigned long cpu_cap, cpu_actual_cap, util; 8405 long prev_spare_cap = -1, max_spare_cap = -1; 8406 unsigned long rq_util_min, rq_util_max; 8407 unsigned long cur_delta, base_energy; 8408 int max_spare_cap_cpu = -1; 8409 int fits, max_fits = -1; 8410 8411 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8412 8413 if (cpumask_empty(cpus)) 8414 continue; 8415 8416 /* Account external pressure for the energy estimation */ 8417 cpu = cpumask_first(cpus); 8418 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8419 8420 eenv.cpu_cap = cpu_actual_cap; 8421 eenv.pd_cap = 0; 8422 8423 for_each_cpu(cpu, cpus) { 8424 struct rq *rq = cpu_rq(cpu); 8425 8426 eenv.pd_cap += cpu_actual_cap; 8427 8428 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8429 continue; 8430 8431 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8432 continue; 8433 8434 util = cpu_util(cpu, p, cpu, 0); 8435 cpu_cap = capacity_of(cpu); 8436 8437 /* 8438 * Skip CPUs that cannot satisfy the capacity request. 8439 * IOW, placing the task there would make the CPU 8440 * overutilized. Take uclamp into account to see how 8441 * much capacity we can get out of the CPU; this is 8442 * aligned with sched_cpu_util(). 8443 */ 8444 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8445 /* 8446 * Open code uclamp_rq_util_with() except for 8447 * the clamp() part. I.e.: apply max aggregation 8448 * only. util_fits_cpu() logic requires to 8449 * operate on non clamped util but must use the 8450 * max-aggregated uclamp_{min, max}. 8451 */ 8452 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8453 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8454 8455 util_min = max(rq_util_min, p_util_min); 8456 util_max = max(rq_util_max, p_util_max); 8457 } 8458 8459 fits = util_fits_cpu(util, util_min, util_max, cpu); 8460 if (!fits) 8461 continue; 8462 8463 lsub_positive(&cpu_cap, util); 8464 8465 if (cpu == prev_cpu) { 8466 /* Always use prev_cpu as a candidate. */ 8467 prev_spare_cap = cpu_cap; 8468 prev_fits = fits; 8469 } else if ((fits > max_fits) || 8470 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8471 /* 8472 * Find the CPU with the maximum spare capacity 8473 * among the remaining CPUs in the performance 8474 * domain. 8475 */ 8476 max_spare_cap = cpu_cap; 8477 max_spare_cap_cpu = cpu; 8478 max_fits = fits; 8479 } 8480 } 8481 8482 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8483 continue; 8484 8485 eenv_pd_busy_time(&eenv, cpus, p); 8486 /* Compute the 'base' energy of the pd, without @p */ 8487 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8488 8489 /* Evaluate the energy impact of using prev_cpu. */ 8490 if (prev_spare_cap > -1) { 8491 prev_delta = compute_energy(&eenv, pd, cpus, p, 8492 prev_cpu); 8493 /* CPU utilization has changed */ 8494 if (prev_delta < base_energy) 8495 goto unlock; 8496 prev_delta -= base_energy; 8497 prev_actual_cap = cpu_actual_cap; 8498 best_delta = min(best_delta, prev_delta); 8499 } 8500 8501 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8502 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8503 /* Current best energy cpu fits better */ 8504 if (max_fits < best_fits) 8505 continue; 8506 8507 /* 8508 * Both don't fit performance hint (i.e. uclamp_min) 8509 * but best energy cpu has better capacity. 8510 */ 8511 if ((max_fits < 0) && 8512 (cpu_actual_cap <= best_actual_cap)) 8513 continue; 8514 8515 cur_delta = compute_energy(&eenv, pd, cpus, p, 8516 max_spare_cap_cpu); 8517 /* CPU utilization has changed */ 8518 if (cur_delta < base_energy) 8519 goto unlock; 8520 cur_delta -= base_energy; 8521 8522 /* 8523 * Both fit for the task but best energy cpu has lower 8524 * energy impact. 8525 */ 8526 if ((max_fits > 0) && (best_fits > 0) && 8527 (cur_delta >= best_delta)) 8528 continue; 8529 8530 best_delta = cur_delta; 8531 best_energy_cpu = max_spare_cap_cpu; 8532 best_fits = max_fits; 8533 best_actual_cap = cpu_actual_cap; 8534 } 8535 } 8536 rcu_read_unlock(); 8537 8538 if ((best_fits > prev_fits) || 8539 ((best_fits > 0) && (best_delta < prev_delta)) || 8540 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8541 target = best_energy_cpu; 8542 8543 return target; 8544 8545 unlock: 8546 rcu_read_unlock(); 8547 8548 return target; 8549 } 8550 8551 /* 8552 * select_task_rq_fair: Select target runqueue for the waking task in domains 8553 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8554 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8555 * 8556 * Balances load by selecting the idlest CPU in the idlest group, or under 8557 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8558 * 8559 * Returns the target CPU number. 8560 */ 8561 static int 8562 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8563 { 8564 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8565 struct sched_domain *tmp, *sd = NULL; 8566 int cpu = smp_processor_id(); 8567 int new_cpu = prev_cpu; 8568 int want_affine = 0; 8569 /* SD_flags and WF_flags share the first nibble */ 8570 int sd_flag = wake_flags & 0xF; 8571 8572 /* 8573 * required for stable ->cpus_allowed 8574 */ 8575 lockdep_assert_held(&p->pi_lock); 8576 if (wake_flags & WF_TTWU) { 8577 record_wakee(p); 8578 8579 if ((wake_flags & WF_CURRENT_CPU) && 8580 cpumask_test_cpu(cpu, p->cpus_ptr)) 8581 return cpu; 8582 8583 if (!is_rd_overutilized(this_rq()->rd)) { 8584 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8585 if (new_cpu >= 0) 8586 return new_cpu; 8587 new_cpu = prev_cpu; 8588 } 8589 8590 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8591 } 8592 8593 rcu_read_lock(); 8594 for_each_domain(cpu, tmp) { 8595 /* 8596 * If both 'cpu' and 'prev_cpu' are part of this domain, 8597 * cpu is a valid SD_WAKE_AFFINE target. 8598 */ 8599 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8600 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8601 if (cpu != prev_cpu) 8602 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8603 8604 sd = NULL; /* Prefer wake_affine over balance flags */ 8605 break; 8606 } 8607 8608 /* 8609 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8610 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8611 * will usually go to the fast path. 8612 */ 8613 if (tmp->flags & sd_flag) 8614 sd = tmp; 8615 else if (!want_affine) 8616 break; 8617 } 8618 8619 if (unlikely(sd)) { 8620 /* Slow path */ 8621 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8622 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8623 /* Fast path */ 8624 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8625 } 8626 rcu_read_unlock(); 8627 8628 return new_cpu; 8629 } 8630 8631 /* 8632 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8633 * cfs_rq_of(p) references at time of call are still valid and identify the 8634 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8635 */ 8636 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8637 { 8638 struct sched_entity *se = &p->se; 8639 8640 if (!task_on_rq_migrating(p)) { 8641 remove_entity_load_avg(se); 8642 8643 /* 8644 * Here, the task's PELT values have been updated according to 8645 * the current rq's clock. But if that clock hasn't been 8646 * updated in a while, a substantial idle time will be missed, 8647 * leading to an inflation after wake-up on the new rq. 8648 * 8649 * Estimate the missing time from the cfs_rq last_update_time 8650 * and update sched_avg to improve the PELT continuity after 8651 * migration. 8652 */ 8653 migrate_se_pelt_lag(se); 8654 } 8655 8656 /* Tell new CPU we are migrated */ 8657 se->avg.last_update_time = 0; 8658 8659 update_scan_period(p, new_cpu); 8660 } 8661 8662 static void task_dead_fair(struct task_struct *p) 8663 { 8664 struct sched_entity *se = &p->se; 8665 8666 if (se->sched_delayed) { 8667 struct rq_flags rf; 8668 struct rq *rq; 8669 8670 rq = task_rq_lock(p, &rf); 8671 if (se->sched_delayed) { 8672 update_rq_clock(rq); 8673 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 8674 } 8675 task_rq_unlock(rq, p, &rf); 8676 } 8677 8678 remove_entity_load_avg(se); 8679 } 8680 8681 /* 8682 * Set the max capacity the task is allowed to run at for misfit detection. 8683 */ 8684 static void set_task_max_allowed_capacity(struct task_struct *p) 8685 { 8686 struct asym_cap_data *entry; 8687 8688 if (!sched_asym_cpucap_active()) 8689 return; 8690 8691 rcu_read_lock(); 8692 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8693 cpumask_t *cpumask; 8694 8695 cpumask = cpu_capacity_span(entry); 8696 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8697 continue; 8698 8699 p->max_allowed_capacity = entry->capacity; 8700 break; 8701 } 8702 rcu_read_unlock(); 8703 } 8704 8705 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8706 { 8707 set_cpus_allowed_common(p, ctx); 8708 set_task_max_allowed_capacity(p); 8709 } 8710 8711 static int 8712 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8713 { 8714 if (sched_fair_runnable(rq)) 8715 return 1; 8716 8717 return sched_balance_newidle(rq, rf) != 0; 8718 } 8719 #else 8720 static inline void set_task_max_allowed_capacity(struct task_struct *p) {} 8721 #endif /* CONFIG_SMP */ 8722 8723 static void set_next_buddy(struct sched_entity *se) 8724 { 8725 for_each_sched_entity(se) { 8726 if (SCHED_WARN_ON(!se->on_rq)) 8727 return; 8728 if (se_is_idle(se)) 8729 return; 8730 cfs_rq_of(se)->next = se; 8731 } 8732 } 8733 8734 /* 8735 * Preempt the current task with a newly woken task if needed: 8736 */ 8737 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8738 { 8739 struct task_struct *donor = rq->donor; 8740 struct sched_entity *se = &donor->se, *pse = &p->se; 8741 struct cfs_rq *cfs_rq = task_cfs_rq(donor); 8742 int cse_is_idle, pse_is_idle; 8743 8744 if (unlikely(se == pse)) 8745 return; 8746 8747 /* 8748 * This is possible from callers such as attach_tasks(), in which we 8749 * unconditionally wakeup_preempt() after an enqueue (which may have 8750 * lead to a throttle). This both saves work and prevents false 8751 * next-buddy nomination below. 8752 */ 8753 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8754 return; 8755 8756 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) { 8757 set_next_buddy(pse); 8758 } 8759 8760 /* 8761 * We can come here with TIF_NEED_RESCHED already set from new task 8762 * wake up path. 8763 * 8764 * Note: this also catches the edge-case of curr being in a throttled 8765 * group (e.g. via set_curr_task), since update_curr() (in the 8766 * enqueue of curr) will have resulted in resched being set. This 8767 * prevents us from potentially nominating it as a false LAST_BUDDY 8768 * below. 8769 */ 8770 if (test_tsk_need_resched(rq->curr)) 8771 return; 8772 8773 if (!sched_feat(WAKEUP_PREEMPTION)) 8774 return; 8775 8776 find_matching_se(&se, &pse); 8777 WARN_ON_ONCE(!pse); 8778 8779 cse_is_idle = se_is_idle(se); 8780 pse_is_idle = se_is_idle(pse); 8781 8782 /* 8783 * Preempt an idle entity in favor of a non-idle entity (and don't preempt 8784 * in the inverse case). 8785 */ 8786 if (cse_is_idle && !pse_is_idle) 8787 goto preempt; 8788 if (cse_is_idle != pse_is_idle) 8789 return; 8790 8791 /* 8792 * BATCH and IDLE tasks do not preempt others. 8793 */ 8794 if (unlikely(!normal_policy(p->policy))) 8795 return; 8796 8797 cfs_rq = cfs_rq_of(se); 8798 update_curr(cfs_rq); 8799 /* 8800 * If @p has a shorter slice than current and @p is eligible, override 8801 * current's slice protection in order to allow preemption. 8802 * 8803 * Note that even if @p does not turn out to be the most eligible 8804 * task at this moment, current's slice protection will be lost. 8805 */ 8806 if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline) 8807 se->vlag = se->deadline + 1; 8808 8809 /* 8810 * If @p has become the most eligible task, force preemption. 8811 */ 8812 if (pick_eevdf(cfs_rq) == pse) 8813 goto preempt; 8814 8815 return; 8816 8817 preempt: 8818 resched_curr_lazy(rq); 8819 } 8820 8821 static struct task_struct *pick_task_fair(struct rq *rq) 8822 { 8823 struct sched_entity *se; 8824 struct cfs_rq *cfs_rq; 8825 8826 again: 8827 cfs_rq = &rq->cfs; 8828 if (!cfs_rq->nr_queued) 8829 return NULL; 8830 8831 do { 8832 /* Might not have done put_prev_entity() */ 8833 if (cfs_rq->curr && cfs_rq->curr->on_rq) 8834 update_curr(cfs_rq); 8835 8836 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8837 goto again; 8838 8839 se = pick_next_entity(rq, cfs_rq); 8840 if (!se) 8841 goto again; 8842 cfs_rq = group_cfs_rq(se); 8843 } while (cfs_rq); 8844 8845 return task_of(se); 8846 } 8847 8848 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8849 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8850 8851 struct task_struct * 8852 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8853 { 8854 struct sched_entity *se; 8855 struct task_struct *p; 8856 int new_tasks; 8857 8858 again: 8859 p = pick_task_fair(rq); 8860 if (!p) 8861 goto idle; 8862 se = &p->se; 8863 8864 #ifdef CONFIG_FAIR_GROUP_SCHED 8865 if (prev->sched_class != &fair_sched_class) 8866 goto simple; 8867 8868 __put_prev_set_next_dl_server(rq, prev, p); 8869 8870 /* 8871 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8872 * likely that a next task is from the same cgroup as the current. 8873 * 8874 * Therefore attempt to avoid putting and setting the entire cgroup 8875 * hierarchy, only change the part that actually changes. 8876 * 8877 * Since we haven't yet done put_prev_entity and if the selected task 8878 * is a different task than we started out with, try and touch the 8879 * least amount of cfs_rqs. 8880 */ 8881 if (prev != p) { 8882 struct sched_entity *pse = &prev->se; 8883 struct cfs_rq *cfs_rq; 8884 8885 while (!(cfs_rq = is_same_group(se, pse))) { 8886 int se_depth = se->depth; 8887 int pse_depth = pse->depth; 8888 8889 if (se_depth <= pse_depth) { 8890 put_prev_entity(cfs_rq_of(pse), pse); 8891 pse = parent_entity(pse); 8892 } 8893 if (se_depth >= pse_depth) { 8894 set_next_entity(cfs_rq_of(se), se); 8895 se = parent_entity(se); 8896 } 8897 } 8898 8899 put_prev_entity(cfs_rq, pse); 8900 set_next_entity(cfs_rq, se); 8901 8902 __set_next_task_fair(rq, p, true); 8903 } 8904 8905 return p; 8906 8907 simple: 8908 #endif 8909 put_prev_set_next_task(rq, prev, p); 8910 return p; 8911 8912 idle: 8913 if (!rf) 8914 return NULL; 8915 8916 new_tasks = sched_balance_newidle(rq, rf); 8917 8918 /* 8919 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is 8920 * possible for any higher priority task to appear. In that case we 8921 * must re-start the pick_next_entity() loop. 8922 */ 8923 if (new_tasks < 0) 8924 return RETRY_TASK; 8925 8926 if (new_tasks > 0) 8927 goto again; 8928 8929 /* 8930 * rq is about to be idle, check if we need to update the 8931 * lost_idle_time of clock_pelt 8932 */ 8933 update_idle_rq_clock_pelt(rq); 8934 8935 return NULL; 8936 } 8937 8938 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev) 8939 { 8940 return pick_next_task_fair(rq, prev, NULL); 8941 } 8942 8943 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se) 8944 { 8945 return !!dl_se->rq->cfs.nr_queued; 8946 } 8947 8948 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se) 8949 { 8950 return pick_task_fair(dl_se->rq); 8951 } 8952 8953 void fair_server_init(struct rq *rq) 8954 { 8955 struct sched_dl_entity *dl_se = &rq->fair_server; 8956 8957 init_dl_entity(dl_se); 8958 8959 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task); 8960 } 8961 8962 /* 8963 * Account for a descheduled task: 8964 */ 8965 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) 8966 { 8967 struct sched_entity *se = &prev->se; 8968 struct cfs_rq *cfs_rq; 8969 8970 for_each_sched_entity(se) { 8971 cfs_rq = cfs_rq_of(se); 8972 put_prev_entity(cfs_rq, se); 8973 } 8974 } 8975 8976 /* 8977 * sched_yield() is very simple 8978 */ 8979 static void yield_task_fair(struct rq *rq) 8980 { 8981 struct task_struct *curr = rq->curr; 8982 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8983 struct sched_entity *se = &curr->se; 8984 8985 /* 8986 * Are we the only task in the tree? 8987 */ 8988 if (unlikely(rq->nr_running == 1)) 8989 return; 8990 8991 clear_buddies(cfs_rq, se); 8992 8993 update_rq_clock(rq); 8994 /* 8995 * Update run-time statistics of the 'current'. 8996 */ 8997 update_curr(cfs_rq); 8998 /* 8999 * Tell update_rq_clock() that we've just updated, 9000 * so we don't do microscopic update in schedule() 9001 * and double the fastpath cost. 9002 */ 9003 rq_clock_skip_update(rq); 9004 9005 se->deadline += calc_delta_fair(se->slice, se); 9006 } 9007 9008 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 9009 { 9010 struct sched_entity *se = &p->se; 9011 9012 /* throttled hierarchies are not runnable */ 9013 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 9014 return false; 9015 9016 /* Tell the scheduler that we'd really like se to run next. */ 9017 set_next_buddy(se); 9018 9019 yield_task_fair(rq); 9020 9021 return true; 9022 } 9023 9024 #ifdef CONFIG_SMP 9025 /************************************************** 9026 * Fair scheduling class load-balancing methods. 9027 * 9028 * BASICS 9029 * 9030 * The purpose of load-balancing is to achieve the same basic fairness the 9031 * per-CPU scheduler provides, namely provide a proportional amount of compute 9032 * time to each task. This is expressed in the following equation: 9033 * 9034 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 9035 * 9036 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 9037 * W_i,0 is defined as: 9038 * 9039 * W_i,0 = \Sum_j w_i,j (2) 9040 * 9041 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 9042 * is derived from the nice value as per sched_prio_to_weight[]. 9043 * 9044 * The weight average is an exponential decay average of the instantaneous 9045 * weight: 9046 * 9047 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 9048 * 9049 * C_i is the compute capacity of CPU i, typically it is the 9050 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 9051 * can also include other factors [XXX]. 9052 * 9053 * To achieve this balance we define a measure of imbalance which follows 9054 * directly from (1): 9055 * 9056 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 9057 * 9058 * We them move tasks around to minimize the imbalance. In the continuous 9059 * function space it is obvious this converges, in the discrete case we get 9060 * a few fun cases generally called infeasible weight scenarios. 9061 * 9062 * [XXX expand on: 9063 * - infeasible weights; 9064 * - local vs global optima in the discrete case. ] 9065 * 9066 * 9067 * SCHED DOMAINS 9068 * 9069 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 9070 * for all i,j solution, we create a tree of CPUs that follows the hardware 9071 * topology where each level pairs two lower groups (or better). This results 9072 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 9073 * tree to only the first of the previous level and we decrease the frequency 9074 * of load-balance at each level inversely proportional to the number of CPUs in 9075 * the groups. 9076 * 9077 * This yields: 9078 * 9079 * log_2 n 1 n 9080 * \Sum { --- * --- * 2^i } = O(n) (5) 9081 * i = 0 2^i 2^i 9082 * `- size of each group 9083 * | | `- number of CPUs doing load-balance 9084 * | `- freq 9085 * `- sum over all levels 9086 * 9087 * Coupled with a limit on how many tasks we can migrate every balance pass, 9088 * this makes (5) the runtime complexity of the balancer. 9089 * 9090 * An important property here is that each CPU is still (indirectly) connected 9091 * to every other CPU in at most O(log n) steps: 9092 * 9093 * The adjacency matrix of the resulting graph is given by: 9094 * 9095 * log_2 n 9096 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 9097 * k = 0 9098 * 9099 * And you'll find that: 9100 * 9101 * A^(log_2 n)_i,j != 0 for all i,j (7) 9102 * 9103 * Showing there's indeed a path between every CPU in at most O(log n) steps. 9104 * The task movement gives a factor of O(m), giving a convergence complexity 9105 * of: 9106 * 9107 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 9108 * 9109 * 9110 * WORK CONSERVING 9111 * 9112 * In order to avoid CPUs going idle while there's still work to do, new idle 9113 * balancing is more aggressive and has the newly idle CPU iterate up the domain 9114 * tree itself instead of relying on other CPUs to bring it work. 9115 * 9116 * This adds some complexity to both (5) and (8) but it reduces the total idle 9117 * time. 9118 * 9119 * [XXX more?] 9120 * 9121 * 9122 * CGROUPS 9123 * 9124 * Cgroups make a horror show out of (2), instead of a simple sum we get: 9125 * 9126 * s_k,i 9127 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 9128 * S_k 9129 * 9130 * Where 9131 * 9132 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 9133 * 9134 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 9135 * 9136 * The big problem is S_k, its a global sum needed to compute a local (W_i) 9137 * property. 9138 * 9139 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 9140 * rewrite all of this once again.] 9141 */ 9142 9143 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 9144 9145 enum fbq_type { regular, remote, all }; 9146 9147 /* 9148 * 'group_type' describes the group of CPUs at the moment of load balancing. 9149 * 9150 * The enum is ordered by pulling priority, with the group with lowest priority 9151 * first so the group_type can simply be compared when selecting the busiest 9152 * group. See update_sd_pick_busiest(). 9153 */ 9154 enum group_type { 9155 /* The group has spare capacity that can be used to run more tasks. */ 9156 group_has_spare = 0, 9157 /* 9158 * The group is fully used and the tasks don't compete for more CPU 9159 * cycles. Nevertheless, some tasks might wait before running. 9160 */ 9161 group_fully_busy, 9162 /* 9163 * One task doesn't fit with CPU's capacity and must be migrated to a 9164 * more powerful CPU. 9165 */ 9166 group_misfit_task, 9167 /* 9168 * Balance SMT group that's fully busy. Can benefit from migration 9169 * a task on SMT with busy sibling to another CPU on idle core. 9170 */ 9171 group_smt_balance, 9172 /* 9173 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 9174 * and the task should be migrated to it instead of running on the 9175 * current CPU. 9176 */ 9177 group_asym_packing, 9178 /* 9179 * The tasks' affinity constraints previously prevented the scheduler 9180 * from balancing the load across the system. 9181 */ 9182 group_imbalanced, 9183 /* 9184 * The CPU is overloaded and can't provide expected CPU cycles to all 9185 * tasks. 9186 */ 9187 group_overloaded 9188 }; 9189 9190 enum migration_type { 9191 migrate_load = 0, 9192 migrate_util, 9193 migrate_task, 9194 migrate_misfit 9195 }; 9196 9197 #define LBF_ALL_PINNED 0x01 9198 #define LBF_NEED_BREAK 0x02 9199 #define LBF_DST_PINNED 0x04 9200 #define LBF_SOME_PINNED 0x08 9201 #define LBF_ACTIVE_LB 0x10 9202 9203 struct lb_env { 9204 struct sched_domain *sd; 9205 9206 struct rq *src_rq; 9207 int src_cpu; 9208 9209 int dst_cpu; 9210 struct rq *dst_rq; 9211 9212 struct cpumask *dst_grpmask; 9213 int new_dst_cpu; 9214 enum cpu_idle_type idle; 9215 long imbalance; 9216 /* The set of CPUs under consideration for load-balancing */ 9217 struct cpumask *cpus; 9218 9219 unsigned int flags; 9220 9221 unsigned int loop; 9222 unsigned int loop_break; 9223 unsigned int loop_max; 9224 9225 enum fbq_type fbq_type; 9226 enum migration_type migration_type; 9227 struct list_head tasks; 9228 }; 9229 9230 /* 9231 * Is this task likely cache-hot: 9232 */ 9233 static int task_hot(struct task_struct *p, struct lb_env *env) 9234 { 9235 s64 delta; 9236 9237 lockdep_assert_rq_held(env->src_rq); 9238 9239 if (p->sched_class != &fair_sched_class) 9240 return 0; 9241 9242 if (unlikely(task_has_idle_policy(p))) 9243 return 0; 9244 9245 /* SMT siblings share cache */ 9246 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 9247 return 0; 9248 9249 /* 9250 * Buddy candidates are cache hot: 9251 */ 9252 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 9253 (&p->se == cfs_rq_of(&p->se)->next)) 9254 return 1; 9255 9256 if (sysctl_sched_migration_cost == -1) 9257 return 1; 9258 9259 /* 9260 * Don't migrate task if the task's cookie does not match 9261 * with the destination CPU's core cookie. 9262 */ 9263 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 9264 return 1; 9265 9266 if (sysctl_sched_migration_cost == 0) 9267 return 0; 9268 9269 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 9270 9271 return delta < (s64)sysctl_sched_migration_cost; 9272 } 9273 9274 #ifdef CONFIG_NUMA_BALANCING 9275 /* 9276 * Returns a positive value, if task migration degrades locality. 9277 * Returns 0, if task migration is not affected by locality. 9278 * Returns a negative value, if task migration improves locality i.e migration preferred. 9279 */ 9280 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 9281 { 9282 struct numa_group *numa_group = rcu_dereference(p->numa_group); 9283 unsigned long src_weight, dst_weight; 9284 int src_nid, dst_nid, dist; 9285 9286 if (!static_branch_likely(&sched_numa_balancing)) 9287 return 0; 9288 9289 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 9290 return 0; 9291 9292 src_nid = cpu_to_node(env->src_cpu); 9293 dst_nid = cpu_to_node(env->dst_cpu); 9294 9295 if (src_nid == dst_nid) 9296 return 0; 9297 9298 /* Migrating away from the preferred node is always bad. */ 9299 if (src_nid == p->numa_preferred_nid) { 9300 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 9301 return 1; 9302 else 9303 return 0; 9304 } 9305 9306 /* Encourage migration to the preferred node. */ 9307 if (dst_nid == p->numa_preferred_nid) 9308 return -1; 9309 9310 /* Leaving a core idle is often worse than degrading locality. */ 9311 if (env->idle == CPU_IDLE) 9312 return 0; 9313 9314 dist = node_distance(src_nid, dst_nid); 9315 if (numa_group) { 9316 src_weight = group_weight(p, src_nid, dist); 9317 dst_weight = group_weight(p, dst_nid, dist); 9318 } else { 9319 src_weight = task_weight(p, src_nid, dist); 9320 dst_weight = task_weight(p, dst_nid, dist); 9321 } 9322 9323 return src_weight - dst_weight; 9324 } 9325 9326 #else 9327 static inline long migrate_degrades_locality(struct task_struct *p, 9328 struct lb_env *env) 9329 { 9330 return 0; 9331 } 9332 #endif 9333 9334 /* 9335 * Check whether the task is ineligible on the destination cpu 9336 * 9337 * When the PLACE_LAG scheduling feature is enabled and 9338 * dst_cfs_rq->nr_queued is greater than 1, if the task 9339 * is ineligible, it will also be ineligible when 9340 * it is migrated to the destination cpu. 9341 */ 9342 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu) 9343 { 9344 struct cfs_rq *dst_cfs_rq; 9345 9346 #ifdef CONFIG_FAIR_GROUP_SCHED 9347 dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu]; 9348 #else 9349 dst_cfs_rq = &cpu_rq(dest_cpu)->cfs; 9350 #endif 9351 if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued && 9352 !entity_eligible(task_cfs_rq(p), &p->se)) 9353 return 1; 9354 9355 return 0; 9356 } 9357 9358 /* 9359 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 9360 */ 9361 static 9362 int can_migrate_task(struct task_struct *p, struct lb_env *env) 9363 { 9364 long degrades, hot; 9365 9366 lockdep_assert_rq_held(env->src_rq); 9367 if (p->sched_task_hot) 9368 p->sched_task_hot = 0; 9369 9370 /* 9371 * We do not migrate tasks that are: 9372 * 1) delayed dequeued unless we migrate load, or 9373 * 2) throttled_lb_pair, or 9374 * 3) cannot be migrated to this CPU due to cpus_ptr, or 9375 * 4) running (obviously), or 9376 * 5) are cache-hot on their current CPU. 9377 */ 9378 if ((p->se.sched_delayed) && (env->migration_type != migrate_load)) 9379 return 0; 9380 9381 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 9382 return 0; 9383 9384 /* 9385 * We want to prioritize the migration of eligible tasks. 9386 * For ineligible tasks we soft-limit them and only allow 9387 * them to migrate when nr_balance_failed is non-zero to 9388 * avoid load-balancing trying very hard to balance the load. 9389 */ 9390 if (!env->sd->nr_balance_failed && 9391 task_is_ineligible_on_dst_cpu(p, env->dst_cpu)) 9392 return 0; 9393 9394 /* Disregard percpu kthreads; they are where they need to be. */ 9395 if (kthread_is_per_cpu(p)) 9396 return 0; 9397 9398 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9399 int cpu; 9400 9401 schedstat_inc(p->stats.nr_failed_migrations_affine); 9402 9403 env->flags |= LBF_SOME_PINNED; 9404 9405 /* 9406 * Remember if this task can be migrated to any other CPU in 9407 * our sched_group. We may want to revisit it if we couldn't 9408 * meet load balance goals by pulling other tasks on src_cpu. 9409 * 9410 * Avoid computing new_dst_cpu 9411 * - for NEWLY_IDLE 9412 * - if we have already computed one in current iteration 9413 * - if it's an active balance 9414 */ 9415 if (env->idle == CPU_NEWLY_IDLE || 9416 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9417 return 0; 9418 9419 /* Prevent to re-select dst_cpu via env's CPUs: */ 9420 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 9421 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 9422 env->flags |= LBF_DST_PINNED; 9423 env->new_dst_cpu = cpu; 9424 break; 9425 } 9426 } 9427 9428 return 0; 9429 } 9430 9431 /* Record that we found at least one task that could run on dst_cpu */ 9432 env->flags &= ~LBF_ALL_PINNED; 9433 9434 if (task_on_cpu(env->src_rq, p)) { 9435 schedstat_inc(p->stats.nr_failed_migrations_running); 9436 return 0; 9437 } 9438 9439 /* 9440 * Aggressive migration if: 9441 * 1) active balance 9442 * 2) destination numa is preferred 9443 * 3) task is cache cold, or 9444 * 4) too many balance attempts have failed. 9445 */ 9446 if (env->flags & LBF_ACTIVE_LB) 9447 return 1; 9448 9449 degrades = migrate_degrades_locality(p, env); 9450 if (!degrades) 9451 hot = task_hot(p, env); 9452 else 9453 hot = degrades > 0; 9454 9455 if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9456 if (hot) 9457 p->sched_task_hot = 1; 9458 return 1; 9459 } 9460 9461 schedstat_inc(p->stats.nr_failed_migrations_hot); 9462 return 0; 9463 } 9464 9465 /* 9466 * detach_task() -- detach the task for the migration specified in env 9467 */ 9468 static void detach_task(struct task_struct *p, struct lb_env *env) 9469 { 9470 lockdep_assert_rq_held(env->src_rq); 9471 9472 if (p->sched_task_hot) { 9473 p->sched_task_hot = 0; 9474 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9475 schedstat_inc(p->stats.nr_forced_migrations); 9476 } 9477 9478 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9479 set_task_cpu(p, env->dst_cpu); 9480 } 9481 9482 /* 9483 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9484 * part of active balancing operations within "domain". 9485 * 9486 * Returns a task if successful and NULL otherwise. 9487 */ 9488 static struct task_struct *detach_one_task(struct lb_env *env) 9489 { 9490 struct task_struct *p; 9491 9492 lockdep_assert_rq_held(env->src_rq); 9493 9494 list_for_each_entry_reverse(p, 9495 &env->src_rq->cfs_tasks, se.group_node) { 9496 if (!can_migrate_task(p, env)) 9497 continue; 9498 9499 detach_task(p, env); 9500 9501 /* 9502 * Right now, this is only the second place where 9503 * lb_gained[env->idle] is updated (other is detach_tasks) 9504 * so we can safely collect stats here rather than 9505 * inside detach_tasks(). 9506 */ 9507 schedstat_inc(env->sd->lb_gained[env->idle]); 9508 return p; 9509 } 9510 return NULL; 9511 } 9512 9513 /* 9514 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9515 * busiest_rq, as part of a balancing operation within domain "sd". 9516 * 9517 * Returns number of detached tasks if successful and 0 otherwise. 9518 */ 9519 static int detach_tasks(struct lb_env *env) 9520 { 9521 struct list_head *tasks = &env->src_rq->cfs_tasks; 9522 unsigned long util, load; 9523 struct task_struct *p; 9524 int detached = 0; 9525 9526 lockdep_assert_rq_held(env->src_rq); 9527 9528 /* 9529 * Source run queue has been emptied by another CPU, clear 9530 * LBF_ALL_PINNED flag as we will not test any task. 9531 */ 9532 if (env->src_rq->nr_running <= 1) { 9533 env->flags &= ~LBF_ALL_PINNED; 9534 return 0; 9535 } 9536 9537 if (env->imbalance <= 0) 9538 return 0; 9539 9540 while (!list_empty(tasks)) { 9541 /* 9542 * We don't want to steal all, otherwise we may be treated likewise, 9543 * which could at worst lead to a livelock crash. 9544 */ 9545 if (env->idle && env->src_rq->nr_running <= 1) 9546 break; 9547 9548 env->loop++; 9549 /* We've more or less seen every task there is, call it quits */ 9550 if (env->loop > env->loop_max) 9551 break; 9552 9553 /* take a breather every nr_migrate tasks */ 9554 if (env->loop > env->loop_break) { 9555 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9556 env->flags |= LBF_NEED_BREAK; 9557 break; 9558 } 9559 9560 p = list_last_entry(tasks, struct task_struct, se.group_node); 9561 9562 if (!can_migrate_task(p, env)) 9563 goto next; 9564 9565 switch (env->migration_type) { 9566 case migrate_load: 9567 /* 9568 * Depending of the number of CPUs and tasks and the 9569 * cgroup hierarchy, task_h_load() can return a null 9570 * value. Make sure that env->imbalance decreases 9571 * otherwise detach_tasks() will stop only after 9572 * detaching up to loop_max tasks. 9573 */ 9574 load = max_t(unsigned long, task_h_load(p), 1); 9575 9576 if (sched_feat(LB_MIN) && 9577 load < 16 && !env->sd->nr_balance_failed) 9578 goto next; 9579 9580 /* 9581 * Make sure that we don't migrate too much load. 9582 * Nevertheless, let relax the constraint if 9583 * scheduler fails to find a good waiting task to 9584 * migrate. 9585 */ 9586 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9587 goto next; 9588 9589 env->imbalance -= load; 9590 break; 9591 9592 case migrate_util: 9593 util = task_util_est(p); 9594 9595 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9596 goto next; 9597 9598 env->imbalance -= util; 9599 break; 9600 9601 case migrate_task: 9602 env->imbalance--; 9603 break; 9604 9605 case migrate_misfit: 9606 /* This is not a misfit task */ 9607 if (task_fits_cpu(p, env->src_cpu)) 9608 goto next; 9609 9610 env->imbalance = 0; 9611 break; 9612 } 9613 9614 detach_task(p, env); 9615 list_add(&p->se.group_node, &env->tasks); 9616 9617 detached++; 9618 9619 #ifdef CONFIG_PREEMPTION 9620 /* 9621 * NEWIDLE balancing is a source of latency, so preemptible 9622 * kernels will stop after the first task is detached to minimize 9623 * the critical section. 9624 */ 9625 if (env->idle == CPU_NEWLY_IDLE) 9626 break; 9627 #endif 9628 9629 /* 9630 * We only want to steal up to the prescribed amount of 9631 * load/util/tasks. 9632 */ 9633 if (env->imbalance <= 0) 9634 break; 9635 9636 continue; 9637 next: 9638 if (p->sched_task_hot) 9639 schedstat_inc(p->stats.nr_failed_migrations_hot); 9640 9641 list_move(&p->se.group_node, tasks); 9642 } 9643 9644 /* 9645 * Right now, this is one of only two places we collect this stat 9646 * so we can safely collect detach_one_task() stats here rather 9647 * than inside detach_one_task(). 9648 */ 9649 schedstat_add(env->sd->lb_gained[env->idle], detached); 9650 9651 return detached; 9652 } 9653 9654 /* 9655 * attach_task() -- attach the task detached by detach_task() to its new rq. 9656 */ 9657 static void attach_task(struct rq *rq, struct task_struct *p) 9658 { 9659 lockdep_assert_rq_held(rq); 9660 9661 WARN_ON_ONCE(task_rq(p) != rq); 9662 activate_task(rq, p, ENQUEUE_NOCLOCK); 9663 wakeup_preempt(rq, p, 0); 9664 } 9665 9666 /* 9667 * attach_one_task() -- attaches the task returned from detach_one_task() to 9668 * its new rq. 9669 */ 9670 static void attach_one_task(struct rq *rq, struct task_struct *p) 9671 { 9672 struct rq_flags rf; 9673 9674 rq_lock(rq, &rf); 9675 update_rq_clock(rq); 9676 attach_task(rq, p); 9677 rq_unlock(rq, &rf); 9678 } 9679 9680 /* 9681 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9682 * new rq. 9683 */ 9684 static void attach_tasks(struct lb_env *env) 9685 { 9686 struct list_head *tasks = &env->tasks; 9687 struct task_struct *p; 9688 struct rq_flags rf; 9689 9690 rq_lock(env->dst_rq, &rf); 9691 update_rq_clock(env->dst_rq); 9692 9693 while (!list_empty(tasks)) { 9694 p = list_first_entry(tasks, struct task_struct, se.group_node); 9695 list_del_init(&p->se.group_node); 9696 9697 attach_task(env->dst_rq, p); 9698 } 9699 9700 rq_unlock(env->dst_rq, &rf); 9701 } 9702 9703 #ifdef CONFIG_NO_HZ_COMMON 9704 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9705 { 9706 if (cfs_rq->avg.load_avg) 9707 return true; 9708 9709 if (cfs_rq->avg.util_avg) 9710 return true; 9711 9712 return false; 9713 } 9714 9715 static inline bool others_have_blocked(struct rq *rq) 9716 { 9717 if (cpu_util_rt(rq)) 9718 return true; 9719 9720 if (cpu_util_dl(rq)) 9721 return true; 9722 9723 if (hw_load_avg(rq)) 9724 return true; 9725 9726 if (cpu_util_irq(rq)) 9727 return true; 9728 9729 return false; 9730 } 9731 9732 static inline void update_blocked_load_tick(struct rq *rq) 9733 { 9734 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9735 } 9736 9737 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9738 { 9739 if (!has_blocked) 9740 rq->has_blocked_load = 0; 9741 } 9742 #else 9743 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9744 static inline bool others_have_blocked(struct rq *rq) { return false; } 9745 static inline void update_blocked_load_tick(struct rq *rq) {} 9746 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9747 #endif 9748 9749 static bool __update_blocked_others(struct rq *rq, bool *done) 9750 { 9751 bool updated; 9752 9753 /* 9754 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9755 * DL and IRQ signals have been updated before updating CFS. 9756 */ 9757 updated = update_other_load_avgs(rq); 9758 9759 if (others_have_blocked(rq)) 9760 *done = false; 9761 9762 return updated; 9763 } 9764 9765 #ifdef CONFIG_FAIR_GROUP_SCHED 9766 9767 static bool __update_blocked_fair(struct rq *rq, bool *done) 9768 { 9769 struct cfs_rq *cfs_rq, *pos; 9770 bool decayed = false; 9771 int cpu = cpu_of(rq); 9772 9773 /* 9774 * Iterates the task_group tree in a bottom up fashion, see 9775 * list_add_leaf_cfs_rq() for details. 9776 */ 9777 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9778 struct sched_entity *se; 9779 9780 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9781 update_tg_load_avg(cfs_rq); 9782 9783 if (cfs_rq->nr_queued == 0) 9784 update_idle_cfs_rq_clock_pelt(cfs_rq); 9785 9786 if (cfs_rq == &rq->cfs) 9787 decayed = true; 9788 } 9789 9790 /* Propagate pending load changes to the parent, if any: */ 9791 se = cfs_rq->tg->se[cpu]; 9792 if (se && !skip_blocked_update(se)) 9793 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9794 9795 /* 9796 * There can be a lot of idle CPU cgroups. Don't let fully 9797 * decayed cfs_rqs linger on the list. 9798 */ 9799 if (cfs_rq_is_decayed(cfs_rq)) 9800 list_del_leaf_cfs_rq(cfs_rq); 9801 9802 /* Don't need periodic decay once load/util_avg are null */ 9803 if (cfs_rq_has_blocked(cfs_rq)) 9804 *done = false; 9805 } 9806 9807 return decayed; 9808 } 9809 9810 /* 9811 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9812 * This needs to be done in a top-down fashion because the load of a child 9813 * group is a fraction of its parents load. 9814 */ 9815 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9816 { 9817 struct rq *rq = rq_of(cfs_rq); 9818 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9819 unsigned long now = jiffies; 9820 unsigned long load; 9821 9822 if (cfs_rq->last_h_load_update == now) 9823 return; 9824 9825 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9826 for_each_sched_entity(se) { 9827 cfs_rq = cfs_rq_of(se); 9828 WRITE_ONCE(cfs_rq->h_load_next, se); 9829 if (cfs_rq->last_h_load_update == now) 9830 break; 9831 } 9832 9833 if (!se) { 9834 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9835 cfs_rq->last_h_load_update = now; 9836 } 9837 9838 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9839 load = cfs_rq->h_load; 9840 load = div64_ul(load * se->avg.load_avg, 9841 cfs_rq_load_avg(cfs_rq) + 1); 9842 cfs_rq = group_cfs_rq(se); 9843 cfs_rq->h_load = load; 9844 cfs_rq->last_h_load_update = now; 9845 } 9846 } 9847 9848 static unsigned long task_h_load(struct task_struct *p) 9849 { 9850 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9851 9852 update_cfs_rq_h_load(cfs_rq); 9853 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9854 cfs_rq_load_avg(cfs_rq) + 1); 9855 } 9856 #else 9857 static bool __update_blocked_fair(struct rq *rq, bool *done) 9858 { 9859 struct cfs_rq *cfs_rq = &rq->cfs; 9860 bool decayed; 9861 9862 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9863 if (cfs_rq_has_blocked(cfs_rq)) 9864 *done = false; 9865 9866 return decayed; 9867 } 9868 9869 static unsigned long task_h_load(struct task_struct *p) 9870 { 9871 return p->se.avg.load_avg; 9872 } 9873 #endif 9874 9875 static void sched_balance_update_blocked_averages(int cpu) 9876 { 9877 bool decayed = false, done = true; 9878 struct rq *rq = cpu_rq(cpu); 9879 struct rq_flags rf; 9880 9881 rq_lock_irqsave(rq, &rf); 9882 update_blocked_load_tick(rq); 9883 update_rq_clock(rq); 9884 9885 decayed |= __update_blocked_others(rq, &done); 9886 decayed |= __update_blocked_fair(rq, &done); 9887 9888 update_blocked_load_status(rq, !done); 9889 if (decayed) 9890 cpufreq_update_util(rq, 0); 9891 rq_unlock_irqrestore(rq, &rf); 9892 } 9893 9894 /********** Helpers for sched_balance_find_src_group ************************/ 9895 9896 /* 9897 * sg_lb_stats - stats of a sched_group required for load-balancing: 9898 */ 9899 struct sg_lb_stats { 9900 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9901 unsigned long group_load; /* Total load over the CPUs of the group */ 9902 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9903 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9904 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9905 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9906 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9907 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9908 unsigned int group_weight; 9909 enum group_type group_type; 9910 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9911 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9912 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9913 #ifdef CONFIG_NUMA_BALANCING 9914 unsigned int nr_numa_running; 9915 unsigned int nr_preferred_running; 9916 #endif 9917 }; 9918 9919 /* 9920 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9921 */ 9922 struct sd_lb_stats { 9923 struct sched_group *busiest; /* Busiest group in this sd */ 9924 struct sched_group *local; /* Local group in this sd */ 9925 unsigned long total_load; /* Total load of all groups in sd */ 9926 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9927 unsigned long avg_load; /* Average load across all groups in sd */ 9928 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 9929 9930 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 9931 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9932 }; 9933 9934 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9935 { 9936 /* 9937 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9938 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9939 * We must however set busiest_stat::group_type and 9940 * busiest_stat::idle_cpus to the worst busiest group because 9941 * update_sd_pick_busiest() reads these before assignment. 9942 */ 9943 *sds = (struct sd_lb_stats){ 9944 .busiest = NULL, 9945 .local = NULL, 9946 .total_load = 0UL, 9947 .total_capacity = 0UL, 9948 .busiest_stat = { 9949 .idle_cpus = UINT_MAX, 9950 .group_type = group_has_spare, 9951 }, 9952 }; 9953 } 9954 9955 static unsigned long scale_rt_capacity(int cpu) 9956 { 9957 unsigned long max = get_actual_cpu_capacity(cpu); 9958 struct rq *rq = cpu_rq(cpu); 9959 unsigned long used, free; 9960 unsigned long irq; 9961 9962 irq = cpu_util_irq(rq); 9963 9964 if (unlikely(irq >= max)) 9965 return 1; 9966 9967 /* 9968 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9969 * (running and not running) with weights 0 and 1024 respectively. 9970 */ 9971 used = cpu_util_rt(rq); 9972 used += cpu_util_dl(rq); 9973 9974 if (unlikely(used >= max)) 9975 return 1; 9976 9977 free = max - used; 9978 9979 return scale_irq_capacity(free, irq, max); 9980 } 9981 9982 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9983 { 9984 unsigned long capacity = scale_rt_capacity(cpu); 9985 struct sched_group *sdg = sd->groups; 9986 9987 if (!capacity) 9988 capacity = 1; 9989 9990 cpu_rq(cpu)->cpu_capacity = capacity; 9991 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9992 9993 sdg->sgc->capacity = capacity; 9994 sdg->sgc->min_capacity = capacity; 9995 sdg->sgc->max_capacity = capacity; 9996 } 9997 9998 void update_group_capacity(struct sched_domain *sd, int cpu) 9999 { 10000 struct sched_domain *child = sd->child; 10001 struct sched_group *group, *sdg = sd->groups; 10002 unsigned long capacity, min_capacity, max_capacity; 10003 unsigned long interval; 10004 10005 interval = msecs_to_jiffies(sd->balance_interval); 10006 interval = clamp(interval, 1UL, max_load_balance_interval); 10007 sdg->sgc->next_update = jiffies + interval; 10008 10009 if (!child) { 10010 update_cpu_capacity(sd, cpu); 10011 return; 10012 } 10013 10014 capacity = 0; 10015 min_capacity = ULONG_MAX; 10016 max_capacity = 0; 10017 10018 if (child->flags & SD_OVERLAP) { 10019 /* 10020 * SD_OVERLAP domains cannot assume that child groups 10021 * span the current group. 10022 */ 10023 10024 for_each_cpu(cpu, sched_group_span(sdg)) { 10025 unsigned long cpu_cap = capacity_of(cpu); 10026 10027 capacity += cpu_cap; 10028 min_capacity = min(cpu_cap, min_capacity); 10029 max_capacity = max(cpu_cap, max_capacity); 10030 } 10031 } else { 10032 /* 10033 * !SD_OVERLAP domains can assume that child groups 10034 * span the current group. 10035 */ 10036 10037 group = child->groups; 10038 do { 10039 struct sched_group_capacity *sgc = group->sgc; 10040 10041 capacity += sgc->capacity; 10042 min_capacity = min(sgc->min_capacity, min_capacity); 10043 max_capacity = max(sgc->max_capacity, max_capacity); 10044 group = group->next; 10045 } while (group != child->groups); 10046 } 10047 10048 sdg->sgc->capacity = capacity; 10049 sdg->sgc->min_capacity = min_capacity; 10050 sdg->sgc->max_capacity = max_capacity; 10051 } 10052 10053 /* 10054 * Check whether the capacity of the rq has been noticeably reduced by side 10055 * activity. The imbalance_pct is used for the threshold. 10056 * Return true is the capacity is reduced 10057 */ 10058 static inline int 10059 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 10060 { 10061 return ((rq->cpu_capacity * sd->imbalance_pct) < 10062 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 10063 } 10064 10065 /* Check if the rq has a misfit task */ 10066 static inline bool check_misfit_status(struct rq *rq) 10067 { 10068 return rq->misfit_task_load; 10069 } 10070 10071 /* 10072 * Group imbalance indicates (and tries to solve) the problem where balancing 10073 * groups is inadequate due to ->cpus_ptr constraints. 10074 * 10075 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 10076 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 10077 * Something like: 10078 * 10079 * { 0 1 2 3 } { 4 5 6 7 } 10080 * * * * * 10081 * 10082 * If we were to balance group-wise we'd place two tasks in the first group and 10083 * two tasks in the second group. Clearly this is undesired as it will overload 10084 * cpu 3 and leave one of the CPUs in the second group unused. 10085 * 10086 * The current solution to this issue is detecting the skew in the first group 10087 * by noticing the lower domain failed to reach balance and had difficulty 10088 * moving tasks due to affinity constraints. 10089 * 10090 * When this is so detected; this group becomes a candidate for busiest; see 10091 * update_sd_pick_busiest(). And calculate_imbalance() and 10092 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 10093 * to create an effective group imbalance. 10094 * 10095 * This is a somewhat tricky proposition since the next run might not find the 10096 * group imbalance and decide the groups need to be balanced again. A most 10097 * subtle and fragile situation. 10098 */ 10099 10100 static inline int sg_imbalanced(struct sched_group *group) 10101 { 10102 return group->sgc->imbalance; 10103 } 10104 10105 /* 10106 * group_has_capacity returns true if the group has spare capacity that could 10107 * be used by some tasks. 10108 * We consider that a group has spare capacity if the number of task is 10109 * smaller than the number of CPUs or if the utilization is lower than the 10110 * available capacity for CFS tasks. 10111 * For the latter, we use a threshold to stabilize the state, to take into 10112 * account the variance of the tasks' load and to return true if the available 10113 * capacity in meaningful for the load balancer. 10114 * As an example, an available capacity of 1% can appear but it doesn't make 10115 * any benefit for the load balance. 10116 */ 10117 static inline bool 10118 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10119 { 10120 if (sgs->sum_nr_running < sgs->group_weight) 10121 return true; 10122 10123 if ((sgs->group_capacity * imbalance_pct) < 10124 (sgs->group_runnable * 100)) 10125 return false; 10126 10127 if ((sgs->group_capacity * 100) > 10128 (sgs->group_util * imbalance_pct)) 10129 return true; 10130 10131 return false; 10132 } 10133 10134 /* 10135 * group_is_overloaded returns true if the group has more tasks than it can 10136 * handle. 10137 * group_is_overloaded is not equals to !group_has_capacity because a group 10138 * with the exact right number of tasks, has no more spare capacity but is not 10139 * overloaded so both group_has_capacity and group_is_overloaded return 10140 * false. 10141 */ 10142 static inline bool 10143 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10144 { 10145 if (sgs->sum_nr_running <= sgs->group_weight) 10146 return false; 10147 10148 if ((sgs->group_capacity * 100) < 10149 (sgs->group_util * imbalance_pct)) 10150 return true; 10151 10152 if ((sgs->group_capacity * imbalance_pct) < 10153 (sgs->group_runnable * 100)) 10154 return true; 10155 10156 return false; 10157 } 10158 10159 static inline enum 10160 group_type group_classify(unsigned int imbalance_pct, 10161 struct sched_group *group, 10162 struct sg_lb_stats *sgs) 10163 { 10164 if (group_is_overloaded(imbalance_pct, sgs)) 10165 return group_overloaded; 10166 10167 if (sg_imbalanced(group)) 10168 return group_imbalanced; 10169 10170 if (sgs->group_asym_packing) 10171 return group_asym_packing; 10172 10173 if (sgs->group_smt_balance) 10174 return group_smt_balance; 10175 10176 if (sgs->group_misfit_task_load) 10177 return group_misfit_task; 10178 10179 if (!group_has_capacity(imbalance_pct, sgs)) 10180 return group_fully_busy; 10181 10182 return group_has_spare; 10183 } 10184 10185 /** 10186 * sched_use_asym_prio - Check whether asym_packing priority must be used 10187 * @sd: The scheduling domain of the load balancing 10188 * @cpu: A CPU 10189 * 10190 * Always use CPU priority when balancing load between SMT siblings. When 10191 * balancing load between cores, it is not sufficient that @cpu is idle. Only 10192 * use CPU priority if the whole core is idle. 10193 * 10194 * Returns: True if the priority of @cpu must be followed. False otherwise. 10195 */ 10196 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 10197 { 10198 if (!(sd->flags & SD_ASYM_PACKING)) 10199 return false; 10200 10201 if (!sched_smt_active()) 10202 return true; 10203 10204 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 10205 } 10206 10207 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 10208 { 10209 /* 10210 * First check if @dst_cpu can do asym_packing load balance. Only do it 10211 * if it has higher priority than @src_cpu. 10212 */ 10213 return sched_use_asym_prio(sd, dst_cpu) && 10214 sched_asym_prefer(dst_cpu, src_cpu); 10215 } 10216 10217 /** 10218 * sched_group_asym - Check if the destination CPU can do asym_packing balance 10219 * @env: The load balancing environment 10220 * @sgs: Load-balancing statistics of the candidate busiest group 10221 * @group: The candidate busiest group 10222 * 10223 * @env::dst_cpu can do asym_packing if it has higher priority than the 10224 * preferred CPU of @group. 10225 * 10226 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 10227 * otherwise. 10228 */ 10229 static inline bool 10230 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 10231 { 10232 /* 10233 * CPU priorities do not make sense for SMT cores with more than one 10234 * busy sibling. 10235 */ 10236 if ((group->flags & SD_SHARE_CPUCAPACITY) && 10237 (sgs->group_weight - sgs->idle_cpus != 1)) 10238 return false; 10239 10240 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu); 10241 } 10242 10243 /* One group has more than one SMT CPU while the other group does not */ 10244 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 10245 struct sched_group *sg2) 10246 { 10247 if (!sg1 || !sg2) 10248 return false; 10249 10250 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 10251 (sg2->flags & SD_SHARE_CPUCAPACITY); 10252 } 10253 10254 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 10255 struct sched_group *group) 10256 { 10257 if (!env->idle) 10258 return false; 10259 10260 /* 10261 * For SMT source group, it is better to move a task 10262 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 10263 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 10264 * will not be on. 10265 */ 10266 if (group->flags & SD_SHARE_CPUCAPACITY && 10267 sgs->sum_h_nr_running > 1) 10268 return true; 10269 10270 return false; 10271 } 10272 10273 static inline long sibling_imbalance(struct lb_env *env, 10274 struct sd_lb_stats *sds, 10275 struct sg_lb_stats *busiest, 10276 struct sg_lb_stats *local) 10277 { 10278 int ncores_busiest, ncores_local; 10279 long imbalance; 10280 10281 if (!env->idle || !busiest->sum_nr_running) 10282 return 0; 10283 10284 ncores_busiest = sds->busiest->cores; 10285 ncores_local = sds->local->cores; 10286 10287 if (ncores_busiest == ncores_local) { 10288 imbalance = busiest->sum_nr_running; 10289 lsub_positive(&imbalance, local->sum_nr_running); 10290 return imbalance; 10291 } 10292 10293 /* Balance such that nr_running/ncores ratio are same on both groups */ 10294 imbalance = ncores_local * busiest->sum_nr_running; 10295 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 10296 /* Normalize imbalance and do rounding on normalization */ 10297 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 10298 imbalance /= ncores_local + ncores_busiest; 10299 10300 /* Take advantage of resource in an empty sched group */ 10301 if (imbalance <= 1 && local->sum_nr_running == 0 && 10302 busiest->sum_nr_running > 1) 10303 imbalance = 2; 10304 10305 return imbalance; 10306 } 10307 10308 static inline bool 10309 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 10310 { 10311 /* 10312 * When there is more than 1 task, the group_overloaded case already 10313 * takes care of cpu with reduced capacity 10314 */ 10315 if (rq->cfs.h_nr_runnable != 1) 10316 return false; 10317 10318 return check_cpu_capacity(rq, sd); 10319 } 10320 10321 /** 10322 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 10323 * @env: The load balancing environment. 10324 * @sds: Load-balancing data with statistics of the local group. 10325 * @group: sched_group whose statistics are to be updated. 10326 * @sgs: variable to hold the statistics for this group. 10327 * @sg_overloaded: sched_group is overloaded 10328 * @sg_overutilized: sched_group is overutilized 10329 */ 10330 static inline void update_sg_lb_stats(struct lb_env *env, 10331 struct sd_lb_stats *sds, 10332 struct sched_group *group, 10333 struct sg_lb_stats *sgs, 10334 bool *sg_overloaded, 10335 bool *sg_overutilized) 10336 { 10337 int i, nr_running, local_group, sd_flags = env->sd->flags; 10338 bool balancing_at_rd = !env->sd->parent; 10339 10340 memset(sgs, 0, sizeof(*sgs)); 10341 10342 local_group = group == sds->local; 10343 10344 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10345 struct rq *rq = cpu_rq(i); 10346 unsigned long load = cpu_load(rq); 10347 10348 sgs->group_load += load; 10349 sgs->group_util += cpu_util_cfs(i); 10350 sgs->group_runnable += cpu_runnable(rq); 10351 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable; 10352 10353 nr_running = rq->nr_running; 10354 sgs->sum_nr_running += nr_running; 10355 10356 if (cpu_overutilized(i)) 10357 *sg_overutilized = 1; 10358 10359 /* 10360 * No need to call idle_cpu() if nr_running is not 0 10361 */ 10362 if (!nr_running && idle_cpu(i)) { 10363 sgs->idle_cpus++; 10364 /* Idle cpu can't have misfit task */ 10365 continue; 10366 } 10367 10368 /* Overload indicator is only updated at root domain */ 10369 if (balancing_at_rd && nr_running > 1) 10370 *sg_overloaded = 1; 10371 10372 #ifdef CONFIG_NUMA_BALANCING 10373 /* Only fbq_classify_group() uses this to classify NUMA groups */ 10374 if (sd_flags & SD_NUMA) { 10375 sgs->nr_numa_running += rq->nr_numa_running; 10376 sgs->nr_preferred_running += rq->nr_preferred_running; 10377 } 10378 #endif 10379 if (local_group) 10380 continue; 10381 10382 if (sd_flags & SD_ASYM_CPUCAPACITY) { 10383 /* Check for a misfit task on the cpu */ 10384 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 10385 sgs->group_misfit_task_load = rq->misfit_task_load; 10386 *sg_overloaded = 1; 10387 } 10388 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 10389 /* Check for a task running on a CPU with reduced capacity */ 10390 if (sgs->group_misfit_task_load < load) 10391 sgs->group_misfit_task_load = load; 10392 } 10393 } 10394 10395 sgs->group_capacity = group->sgc->capacity; 10396 10397 sgs->group_weight = group->group_weight; 10398 10399 /* Check if dst CPU is idle and preferred to this group */ 10400 if (!local_group && env->idle && sgs->sum_h_nr_running && 10401 sched_group_asym(env, sgs, group)) 10402 sgs->group_asym_packing = 1; 10403 10404 /* Check for loaded SMT group to be balanced to dst CPU */ 10405 if (!local_group && smt_balance(env, sgs, group)) 10406 sgs->group_smt_balance = 1; 10407 10408 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10409 10410 /* Computing avg_load makes sense only when group is overloaded */ 10411 if (sgs->group_type == group_overloaded) 10412 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10413 sgs->group_capacity; 10414 } 10415 10416 /** 10417 * update_sd_pick_busiest - return 1 on busiest group 10418 * @env: The load balancing environment. 10419 * @sds: sched_domain statistics 10420 * @sg: sched_group candidate to be checked for being the busiest 10421 * @sgs: sched_group statistics 10422 * 10423 * Determine if @sg is a busier group than the previously selected 10424 * busiest group. 10425 * 10426 * Return: %true if @sg is a busier group than the previously selected 10427 * busiest group. %false otherwise. 10428 */ 10429 static bool update_sd_pick_busiest(struct lb_env *env, 10430 struct sd_lb_stats *sds, 10431 struct sched_group *sg, 10432 struct sg_lb_stats *sgs) 10433 { 10434 struct sg_lb_stats *busiest = &sds->busiest_stat; 10435 10436 /* Make sure that there is at least one task to pull */ 10437 if (!sgs->sum_h_nr_running) 10438 return false; 10439 10440 /* 10441 * Don't try to pull misfit tasks we can't help. 10442 * We can use max_capacity here as reduction in capacity on some 10443 * CPUs in the group should either be possible to resolve 10444 * internally or be covered by avg_load imbalance (eventually). 10445 */ 10446 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10447 (sgs->group_type == group_misfit_task) && 10448 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10449 sds->local_stat.group_type != group_has_spare)) 10450 return false; 10451 10452 if (sgs->group_type > busiest->group_type) 10453 return true; 10454 10455 if (sgs->group_type < busiest->group_type) 10456 return false; 10457 10458 /* 10459 * The candidate and the current busiest group are the same type of 10460 * group. Let check which one is the busiest according to the type. 10461 */ 10462 10463 switch (sgs->group_type) { 10464 case group_overloaded: 10465 /* Select the overloaded group with highest avg_load. */ 10466 return sgs->avg_load > busiest->avg_load; 10467 10468 case group_imbalanced: 10469 /* 10470 * Select the 1st imbalanced group as we don't have any way to 10471 * choose one more than another. 10472 */ 10473 return false; 10474 10475 case group_asym_packing: 10476 /* Prefer to move from lowest priority CPU's work */ 10477 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu); 10478 10479 case group_misfit_task: 10480 /* 10481 * If we have more than one misfit sg go with the biggest 10482 * misfit. 10483 */ 10484 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10485 10486 case group_smt_balance: 10487 /* 10488 * Check if we have spare CPUs on either SMT group to 10489 * choose has spare or fully busy handling. 10490 */ 10491 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10492 goto has_spare; 10493 10494 fallthrough; 10495 10496 case group_fully_busy: 10497 /* 10498 * Select the fully busy group with highest avg_load. In 10499 * theory, there is no need to pull task from such kind of 10500 * group because tasks have all compute capacity that they need 10501 * but we can still improve the overall throughput by reducing 10502 * contention when accessing shared HW resources. 10503 * 10504 * XXX for now avg_load is not computed and always 0 so we 10505 * select the 1st one, except if @sg is composed of SMT 10506 * siblings. 10507 */ 10508 10509 if (sgs->avg_load < busiest->avg_load) 10510 return false; 10511 10512 if (sgs->avg_load == busiest->avg_load) { 10513 /* 10514 * SMT sched groups need more help than non-SMT groups. 10515 * If @sg happens to also be SMT, either choice is good. 10516 */ 10517 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10518 return false; 10519 } 10520 10521 break; 10522 10523 case group_has_spare: 10524 /* 10525 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10526 * as we do not want to pull task off SMT core with one task 10527 * and make the core idle. 10528 */ 10529 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10530 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10531 return false; 10532 else 10533 return true; 10534 } 10535 has_spare: 10536 10537 /* 10538 * Select not overloaded group with lowest number of idle CPUs 10539 * and highest number of running tasks. We could also compare 10540 * the spare capacity which is more stable but it can end up 10541 * that the group has less spare capacity but finally more idle 10542 * CPUs which means less opportunity to pull tasks. 10543 */ 10544 if (sgs->idle_cpus > busiest->idle_cpus) 10545 return false; 10546 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10547 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10548 return false; 10549 10550 break; 10551 } 10552 10553 /* 10554 * Candidate sg has no more than one task per CPU and has higher 10555 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10556 * throughput. Maximize throughput, power/energy consequences are not 10557 * considered. 10558 */ 10559 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10560 (sgs->group_type <= group_fully_busy) && 10561 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10562 return false; 10563 10564 return true; 10565 } 10566 10567 #ifdef CONFIG_NUMA_BALANCING 10568 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10569 { 10570 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10571 return regular; 10572 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10573 return remote; 10574 return all; 10575 } 10576 10577 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10578 { 10579 if (rq->nr_running > rq->nr_numa_running) 10580 return regular; 10581 if (rq->nr_running > rq->nr_preferred_running) 10582 return remote; 10583 return all; 10584 } 10585 #else 10586 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10587 { 10588 return all; 10589 } 10590 10591 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10592 { 10593 return regular; 10594 } 10595 #endif /* CONFIG_NUMA_BALANCING */ 10596 10597 10598 struct sg_lb_stats; 10599 10600 /* 10601 * task_running_on_cpu - return 1 if @p is running on @cpu. 10602 */ 10603 10604 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10605 { 10606 /* Task has no contribution or is new */ 10607 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10608 return 0; 10609 10610 if (task_on_rq_queued(p)) 10611 return 1; 10612 10613 return 0; 10614 } 10615 10616 /** 10617 * idle_cpu_without - would a given CPU be idle without p ? 10618 * @cpu: the processor on which idleness is tested. 10619 * @p: task which should be ignored. 10620 * 10621 * Return: 1 if the CPU would be idle. 0 otherwise. 10622 */ 10623 static int idle_cpu_without(int cpu, struct task_struct *p) 10624 { 10625 struct rq *rq = cpu_rq(cpu); 10626 10627 if (rq->curr != rq->idle && rq->curr != p) 10628 return 0; 10629 10630 /* 10631 * rq->nr_running can't be used but an updated version without the 10632 * impact of p on cpu must be used instead. The updated nr_running 10633 * be computed and tested before calling idle_cpu_without(). 10634 */ 10635 10636 if (rq->ttwu_pending) 10637 return 0; 10638 10639 return 1; 10640 } 10641 10642 /* 10643 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10644 * @sd: The sched_domain level to look for idlest group. 10645 * @group: sched_group whose statistics are to be updated. 10646 * @sgs: variable to hold the statistics for this group. 10647 * @p: The task for which we look for the idlest group/CPU. 10648 */ 10649 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10650 struct sched_group *group, 10651 struct sg_lb_stats *sgs, 10652 struct task_struct *p) 10653 { 10654 int i, nr_running; 10655 10656 memset(sgs, 0, sizeof(*sgs)); 10657 10658 /* Assume that task can't fit any CPU of the group */ 10659 if (sd->flags & SD_ASYM_CPUCAPACITY) 10660 sgs->group_misfit_task_load = 1; 10661 10662 for_each_cpu(i, sched_group_span(group)) { 10663 struct rq *rq = cpu_rq(i); 10664 unsigned int local; 10665 10666 sgs->group_load += cpu_load_without(rq, p); 10667 sgs->group_util += cpu_util_without(i, p); 10668 sgs->group_runnable += cpu_runnable_without(rq, p); 10669 local = task_running_on_cpu(i, p); 10670 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local; 10671 10672 nr_running = rq->nr_running - local; 10673 sgs->sum_nr_running += nr_running; 10674 10675 /* 10676 * No need to call idle_cpu_without() if nr_running is not 0 10677 */ 10678 if (!nr_running && idle_cpu_without(i, p)) 10679 sgs->idle_cpus++; 10680 10681 /* Check if task fits in the CPU */ 10682 if (sd->flags & SD_ASYM_CPUCAPACITY && 10683 sgs->group_misfit_task_load && 10684 task_fits_cpu(p, i)) 10685 sgs->group_misfit_task_load = 0; 10686 10687 } 10688 10689 sgs->group_capacity = group->sgc->capacity; 10690 10691 sgs->group_weight = group->group_weight; 10692 10693 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10694 10695 /* 10696 * Computing avg_load makes sense only when group is fully busy or 10697 * overloaded 10698 */ 10699 if (sgs->group_type == group_fully_busy || 10700 sgs->group_type == group_overloaded) 10701 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10702 sgs->group_capacity; 10703 } 10704 10705 static bool update_pick_idlest(struct sched_group *idlest, 10706 struct sg_lb_stats *idlest_sgs, 10707 struct sched_group *group, 10708 struct sg_lb_stats *sgs) 10709 { 10710 if (sgs->group_type < idlest_sgs->group_type) 10711 return true; 10712 10713 if (sgs->group_type > idlest_sgs->group_type) 10714 return false; 10715 10716 /* 10717 * The candidate and the current idlest group are the same type of 10718 * group. Let check which one is the idlest according to the type. 10719 */ 10720 10721 switch (sgs->group_type) { 10722 case group_overloaded: 10723 case group_fully_busy: 10724 /* Select the group with lowest avg_load. */ 10725 if (idlest_sgs->avg_load <= sgs->avg_load) 10726 return false; 10727 break; 10728 10729 case group_imbalanced: 10730 case group_asym_packing: 10731 case group_smt_balance: 10732 /* Those types are not used in the slow wakeup path */ 10733 return false; 10734 10735 case group_misfit_task: 10736 /* Select group with the highest max capacity */ 10737 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10738 return false; 10739 break; 10740 10741 case group_has_spare: 10742 /* Select group with most idle CPUs */ 10743 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10744 return false; 10745 10746 /* Select group with lowest group_util */ 10747 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10748 idlest_sgs->group_util <= sgs->group_util) 10749 return false; 10750 10751 break; 10752 } 10753 10754 return true; 10755 } 10756 10757 /* 10758 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10759 * domain. 10760 * 10761 * Assumes p is allowed on at least one CPU in sd. 10762 */ 10763 static struct sched_group * 10764 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10765 { 10766 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10767 struct sg_lb_stats local_sgs, tmp_sgs; 10768 struct sg_lb_stats *sgs; 10769 unsigned long imbalance; 10770 struct sg_lb_stats idlest_sgs = { 10771 .avg_load = UINT_MAX, 10772 .group_type = group_overloaded, 10773 }; 10774 10775 do { 10776 int local_group; 10777 10778 /* Skip over this group if it has no CPUs allowed */ 10779 if (!cpumask_intersects(sched_group_span(group), 10780 p->cpus_ptr)) 10781 continue; 10782 10783 /* Skip over this group if no cookie matched */ 10784 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10785 continue; 10786 10787 local_group = cpumask_test_cpu(this_cpu, 10788 sched_group_span(group)); 10789 10790 if (local_group) { 10791 sgs = &local_sgs; 10792 local = group; 10793 } else { 10794 sgs = &tmp_sgs; 10795 } 10796 10797 update_sg_wakeup_stats(sd, group, sgs, p); 10798 10799 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10800 idlest = group; 10801 idlest_sgs = *sgs; 10802 } 10803 10804 } while (group = group->next, group != sd->groups); 10805 10806 10807 /* There is no idlest group to push tasks to */ 10808 if (!idlest) 10809 return NULL; 10810 10811 /* The local group has been skipped because of CPU affinity */ 10812 if (!local) 10813 return idlest; 10814 10815 /* 10816 * If the local group is idler than the selected idlest group 10817 * don't try and push the task. 10818 */ 10819 if (local_sgs.group_type < idlest_sgs.group_type) 10820 return NULL; 10821 10822 /* 10823 * If the local group is busier than the selected idlest group 10824 * try and push the task. 10825 */ 10826 if (local_sgs.group_type > idlest_sgs.group_type) 10827 return idlest; 10828 10829 switch (local_sgs.group_type) { 10830 case group_overloaded: 10831 case group_fully_busy: 10832 10833 /* Calculate allowed imbalance based on load */ 10834 imbalance = scale_load_down(NICE_0_LOAD) * 10835 (sd->imbalance_pct-100) / 100; 10836 10837 /* 10838 * When comparing groups across NUMA domains, it's possible for 10839 * the local domain to be very lightly loaded relative to the 10840 * remote domains but "imbalance" skews the comparison making 10841 * remote CPUs look much more favourable. When considering 10842 * cross-domain, add imbalance to the load on the remote node 10843 * and consider staying local. 10844 */ 10845 10846 if ((sd->flags & SD_NUMA) && 10847 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10848 return NULL; 10849 10850 /* 10851 * If the local group is less loaded than the selected 10852 * idlest group don't try and push any tasks. 10853 */ 10854 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10855 return NULL; 10856 10857 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10858 return NULL; 10859 break; 10860 10861 case group_imbalanced: 10862 case group_asym_packing: 10863 case group_smt_balance: 10864 /* Those type are not used in the slow wakeup path */ 10865 return NULL; 10866 10867 case group_misfit_task: 10868 /* Select group with the highest max capacity */ 10869 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10870 return NULL; 10871 break; 10872 10873 case group_has_spare: 10874 #ifdef CONFIG_NUMA 10875 if (sd->flags & SD_NUMA) { 10876 int imb_numa_nr = sd->imb_numa_nr; 10877 #ifdef CONFIG_NUMA_BALANCING 10878 int idlest_cpu; 10879 /* 10880 * If there is spare capacity at NUMA, try to select 10881 * the preferred node 10882 */ 10883 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10884 return NULL; 10885 10886 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10887 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10888 return idlest; 10889 #endif /* CONFIG_NUMA_BALANCING */ 10890 /* 10891 * Otherwise, keep the task close to the wakeup source 10892 * and improve locality if the number of running tasks 10893 * would remain below threshold where an imbalance is 10894 * allowed while accounting for the possibility the 10895 * task is pinned to a subset of CPUs. If there is a 10896 * real need of migration, periodic load balance will 10897 * take care of it. 10898 */ 10899 if (p->nr_cpus_allowed != NR_CPUS) { 10900 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10901 10902 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10903 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10904 } 10905 10906 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10907 if (!adjust_numa_imbalance(imbalance, 10908 local_sgs.sum_nr_running + 1, 10909 imb_numa_nr)) { 10910 return NULL; 10911 } 10912 } 10913 #endif /* CONFIG_NUMA */ 10914 10915 /* 10916 * Select group with highest number of idle CPUs. We could also 10917 * compare the utilization which is more stable but it can end 10918 * up that the group has less spare capacity but finally more 10919 * idle CPUs which means more opportunity to run task. 10920 */ 10921 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10922 return NULL; 10923 break; 10924 } 10925 10926 return idlest; 10927 } 10928 10929 static void update_idle_cpu_scan(struct lb_env *env, 10930 unsigned long sum_util) 10931 { 10932 struct sched_domain_shared *sd_share; 10933 int llc_weight, pct; 10934 u64 x, y, tmp; 10935 /* 10936 * Update the number of CPUs to scan in LLC domain, which could 10937 * be used as a hint in select_idle_cpu(). The update of sd_share 10938 * could be expensive because it is within a shared cache line. 10939 * So the write of this hint only occurs during periodic load 10940 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10941 * can fire way more frequently than the former. 10942 */ 10943 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10944 return; 10945 10946 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10947 if (env->sd->span_weight != llc_weight) 10948 return; 10949 10950 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10951 if (!sd_share) 10952 return; 10953 10954 /* 10955 * The number of CPUs to search drops as sum_util increases, when 10956 * sum_util hits 85% or above, the scan stops. 10957 * The reason to choose 85% as the threshold is because this is the 10958 * imbalance_pct(117) when a LLC sched group is overloaded. 10959 * 10960 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10961 * and y'= y / SCHED_CAPACITY_SCALE 10962 * 10963 * x is the ratio of sum_util compared to the CPU capacity: 10964 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10965 * y' is the ratio of CPUs to be scanned in the LLC domain, 10966 * and the number of CPUs to scan is calculated by: 10967 * 10968 * nr_scan = llc_weight * y' [2] 10969 * 10970 * When x hits the threshold of overloaded, AKA, when 10971 * x = 100 / pct, y drops to 0. According to [1], 10972 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10973 * 10974 * Scale x by SCHED_CAPACITY_SCALE: 10975 * x' = sum_util / llc_weight; [3] 10976 * 10977 * and finally [1] becomes: 10978 * y = SCHED_CAPACITY_SCALE - 10979 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10980 * 10981 */ 10982 /* equation [3] */ 10983 x = sum_util; 10984 do_div(x, llc_weight); 10985 10986 /* equation [4] */ 10987 pct = env->sd->imbalance_pct; 10988 tmp = x * x * pct * pct; 10989 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10990 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10991 y = SCHED_CAPACITY_SCALE - tmp; 10992 10993 /* equation [2] */ 10994 y *= llc_weight; 10995 do_div(y, SCHED_CAPACITY_SCALE); 10996 if ((int)y != sd_share->nr_idle_scan) 10997 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10998 } 10999 11000 /** 11001 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 11002 * @env: The load balancing environment. 11003 * @sds: variable to hold the statistics for this sched_domain. 11004 */ 11005 11006 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 11007 { 11008 struct sched_group *sg = env->sd->groups; 11009 struct sg_lb_stats *local = &sds->local_stat; 11010 struct sg_lb_stats tmp_sgs; 11011 unsigned long sum_util = 0; 11012 bool sg_overloaded = 0, sg_overutilized = 0; 11013 11014 do { 11015 struct sg_lb_stats *sgs = &tmp_sgs; 11016 int local_group; 11017 11018 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 11019 if (local_group) { 11020 sds->local = sg; 11021 sgs = local; 11022 11023 if (env->idle != CPU_NEWLY_IDLE || 11024 time_after_eq(jiffies, sg->sgc->next_update)) 11025 update_group_capacity(env->sd, env->dst_cpu); 11026 } 11027 11028 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 11029 11030 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 11031 sds->busiest = sg; 11032 sds->busiest_stat = *sgs; 11033 } 11034 11035 /* Now, start updating sd_lb_stats */ 11036 sds->total_load += sgs->group_load; 11037 sds->total_capacity += sgs->group_capacity; 11038 11039 sum_util += sgs->group_util; 11040 sg = sg->next; 11041 } while (sg != env->sd->groups); 11042 11043 /* 11044 * Indicate that the child domain of the busiest group prefers tasks 11045 * go to a child's sibling domains first. NB the flags of a sched group 11046 * are those of the child domain. 11047 */ 11048 if (sds->busiest) 11049 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 11050 11051 11052 if (env->sd->flags & SD_NUMA) 11053 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 11054 11055 if (!env->sd->parent) { 11056 /* update overload indicator if we are at root domain */ 11057 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 11058 11059 /* Update over-utilization (tipping point, U >= 0) indicator */ 11060 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11061 } else if (sg_overutilized) { 11062 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11063 } 11064 11065 update_idle_cpu_scan(env, sum_util); 11066 } 11067 11068 /** 11069 * calculate_imbalance - Calculate the amount of imbalance present within the 11070 * groups of a given sched_domain during load balance. 11071 * @env: load balance environment 11072 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 11073 */ 11074 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 11075 { 11076 struct sg_lb_stats *local, *busiest; 11077 11078 local = &sds->local_stat; 11079 busiest = &sds->busiest_stat; 11080 11081 if (busiest->group_type == group_misfit_task) { 11082 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 11083 /* Set imbalance to allow misfit tasks to be balanced. */ 11084 env->migration_type = migrate_misfit; 11085 env->imbalance = 1; 11086 } else { 11087 /* 11088 * Set load imbalance to allow moving task from cpu 11089 * with reduced capacity. 11090 */ 11091 env->migration_type = migrate_load; 11092 env->imbalance = busiest->group_misfit_task_load; 11093 } 11094 return; 11095 } 11096 11097 if (busiest->group_type == group_asym_packing) { 11098 /* 11099 * In case of asym capacity, we will try to migrate all load to 11100 * the preferred CPU. 11101 */ 11102 env->migration_type = migrate_task; 11103 env->imbalance = busiest->sum_h_nr_running; 11104 return; 11105 } 11106 11107 if (busiest->group_type == group_smt_balance) { 11108 /* Reduce number of tasks sharing CPU capacity */ 11109 env->migration_type = migrate_task; 11110 env->imbalance = 1; 11111 return; 11112 } 11113 11114 if (busiest->group_type == group_imbalanced) { 11115 /* 11116 * In the group_imb case we cannot rely on group-wide averages 11117 * to ensure CPU-load equilibrium, try to move any task to fix 11118 * the imbalance. The next load balance will take care of 11119 * balancing back the system. 11120 */ 11121 env->migration_type = migrate_task; 11122 env->imbalance = 1; 11123 return; 11124 } 11125 11126 /* 11127 * Try to use spare capacity of local group without overloading it or 11128 * emptying busiest. 11129 */ 11130 if (local->group_type == group_has_spare) { 11131 if ((busiest->group_type > group_fully_busy) && 11132 !(env->sd->flags & SD_SHARE_LLC)) { 11133 /* 11134 * If busiest is overloaded, try to fill spare 11135 * capacity. This might end up creating spare capacity 11136 * in busiest or busiest still being overloaded but 11137 * there is no simple way to directly compute the 11138 * amount of load to migrate in order to balance the 11139 * system. 11140 */ 11141 env->migration_type = migrate_util; 11142 env->imbalance = max(local->group_capacity, local->group_util) - 11143 local->group_util; 11144 11145 /* 11146 * In some cases, the group's utilization is max or even 11147 * higher than capacity because of migrations but the 11148 * local CPU is (newly) idle. There is at least one 11149 * waiting task in this overloaded busiest group. Let's 11150 * try to pull it. 11151 */ 11152 if (env->idle && env->imbalance == 0) { 11153 env->migration_type = migrate_task; 11154 env->imbalance = 1; 11155 } 11156 11157 return; 11158 } 11159 11160 if (busiest->group_weight == 1 || sds->prefer_sibling) { 11161 /* 11162 * When prefer sibling, evenly spread running tasks on 11163 * groups. 11164 */ 11165 env->migration_type = migrate_task; 11166 env->imbalance = sibling_imbalance(env, sds, busiest, local); 11167 } else { 11168 11169 /* 11170 * If there is no overload, we just want to even the number of 11171 * idle CPUs. 11172 */ 11173 env->migration_type = migrate_task; 11174 env->imbalance = max_t(long, 0, 11175 (local->idle_cpus - busiest->idle_cpus)); 11176 } 11177 11178 #ifdef CONFIG_NUMA 11179 /* Consider allowing a small imbalance between NUMA groups */ 11180 if (env->sd->flags & SD_NUMA) { 11181 env->imbalance = adjust_numa_imbalance(env->imbalance, 11182 local->sum_nr_running + 1, 11183 env->sd->imb_numa_nr); 11184 } 11185 #endif 11186 11187 /* Number of tasks to move to restore balance */ 11188 env->imbalance >>= 1; 11189 11190 return; 11191 } 11192 11193 /* 11194 * Local is fully busy but has to take more load to relieve the 11195 * busiest group 11196 */ 11197 if (local->group_type < group_overloaded) { 11198 /* 11199 * Local will become overloaded so the avg_load metrics are 11200 * finally needed. 11201 */ 11202 11203 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 11204 local->group_capacity; 11205 11206 /* 11207 * If the local group is more loaded than the selected 11208 * busiest group don't try to pull any tasks. 11209 */ 11210 if (local->avg_load >= busiest->avg_load) { 11211 env->imbalance = 0; 11212 return; 11213 } 11214 11215 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 11216 sds->total_capacity; 11217 11218 /* 11219 * If the local group is more loaded than the average system 11220 * load, don't try to pull any tasks. 11221 */ 11222 if (local->avg_load >= sds->avg_load) { 11223 env->imbalance = 0; 11224 return; 11225 } 11226 11227 } 11228 11229 /* 11230 * Both group are or will become overloaded and we're trying to get all 11231 * the CPUs to the average_load, so we don't want to push ourselves 11232 * above the average load, nor do we wish to reduce the max loaded CPU 11233 * below the average load. At the same time, we also don't want to 11234 * reduce the group load below the group capacity. Thus we look for 11235 * the minimum possible imbalance. 11236 */ 11237 env->migration_type = migrate_load; 11238 env->imbalance = min( 11239 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 11240 (sds->avg_load - local->avg_load) * local->group_capacity 11241 ) / SCHED_CAPACITY_SCALE; 11242 } 11243 11244 /******* sched_balance_find_src_group() helpers end here *********************/ 11245 11246 /* 11247 * Decision matrix according to the local and busiest group type: 11248 * 11249 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 11250 * has_spare nr_idle balanced N/A N/A balanced balanced 11251 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 11252 * misfit_task force N/A N/A N/A N/A N/A 11253 * asym_packing force force N/A N/A force force 11254 * imbalanced force force N/A N/A force force 11255 * overloaded force force N/A N/A force avg_load 11256 * 11257 * N/A : Not Applicable because already filtered while updating 11258 * statistics. 11259 * balanced : The system is balanced for these 2 groups. 11260 * force : Calculate the imbalance as load migration is probably needed. 11261 * avg_load : Only if imbalance is significant enough. 11262 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 11263 * different in groups. 11264 */ 11265 11266 /** 11267 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 11268 * if there is an imbalance. 11269 * @env: The load balancing environment. 11270 * 11271 * Also calculates the amount of runnable load which should be moved 11272 * to restore balance. 11273 * 11274 * Return: - The busiest group if imbalance exists. 11275 */ 11276 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 11277 { 11278 struct sg_lb_stats *local, *busiest; 11279 struct sd_lb_stats sds; 11280 11281 init_sd_lb_stats(&sds); 11282 11283 /* 11284 * Compute the various statistics relevant for load balancing at 11285 * this level. 11286 */ 11287 update_sd_lb_stats(env, &sds); 11288 11289 /* There is no busy sibling group to pull tasks from */ 11290 if (!sds.busiest) 11291 goto out_balanced; 11292 11293 busiest = &sds.busiest_stat; 11294 11295 /* Misfit tasks should be dealt with regardless of the avg load */ 11296 if (busiest->group_type == group_misfit_task) 11297 goto force_balance; 11298 11299 if (!is_rd_overutilized(env->dst_rq->rd) && 11300 rcu_dereference(env->dst_rq->rd->pd)) 11301 goto out_balanced; 11302 11303 /* ASYM feature bypasses nice load balance check */ 11304 if (busiest->group_type == group_asym_packing) 11305 goto force_balance; 11306 11307 /* 11308 * If the busiest group is imbalanced the below checks don't 11309 * work because they assume all things are equal, which typically 11310 * isn't true due to cpus_ptr constraints and the like. 11311 */ 11312 if (busiest->group_type == group_imbalanced) 11313 goto force_balance; 11314 11315 local = &sds.local_stat; 11316 /* 11317 * If the local group is busier than the selected busiest group 11318 * don't try and pull any tasks. 11319 */ 11320 if (local->group_type > busiest->group_type) 11321 goto out_balanced; 11322 11323 /* 11324 * When groups are overloaded, use the avg_load to ensure fairness 11325 * between tasks. 11326 */ 11327 if (local->group_type == group_overloaded) { 11328 /* 11329 * If the local group is more loaded than the selected 11330 * busiest group don't try to pull any tasks. 11331 */ 11332 if (local->avg_load >= busiest->avg_load) 11333 goto out_balanced; 11334 11335 /* XXX broken for overlapping NUMA groups */ 11336 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 11337 sds.total_capacity; 11338 11339 /* 11340 * Don't pull any tasks if this group is already above the 11341 * domain average load. 11342 */ 11343 if (local->avg_load >= sds.avg_load) 11344 goto out_balanced; 11345 11346 /* 11347 * If the busiest group is more loaded, use imbalance_pct to be 11348 * conservative. 11349 */ 11350 if (100 * busiest->avg_load <= 11351 env->sd->imbalance_pct * local->avg_load) 11352 goto out_balanced; 11353 } 11354 11355 /* 11356 * Try to move all excess tasks to a sibling domain of the busiest 11357 * group's child domain. 11358 */ 11359 if (sds.prefer_sibling && local->group_type == group_has_spare && 11360 sibling_imbalance(env, &sds, busiest, local) > 1) 11361 goto force_balance; 11362 11363 if (busiest->group_type != group_overloaded) { 11364 if (!env->idle) { 11365 /* 11366 * If the busiest group is not overloaded (and as a 11367 * result the local one too) but this CPU is already 11368 * busy, let another idle CPU try to pull task. 11369 */ 11370 goto out_balanced; 11371 } 11372 11373 if (busiest->group_type == group_smt_balance && 11374 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 11375 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 11376 goto force_balance; 11377 } 11378 11379 if (busiest->group_weight > 1 && 11380 local->idle_cpus <= (busiest->idle_cpus + 1)) { 11381 /* 11382 * If the busiest group is not overloaded 11383 * and there is no imbalance between this and busiest 11384 * group wrt idle CPUs, it is balanced. The imbalance 11385 * becomes significant if the diff is greater than 1 11386 * otherwise we might end up to just move the imbalance 11387 * on another group. Of course this applies only if 11388 * there is more than 1 CPU per group. 11389 */ 11390 goto out_balanced; 11391 } 11392 11393 if (busiest->sum_h_nr_running == 1) { 11394 /* 11395 * busiest doesn't have any tasks waiting to run 11396 */ 11397 goto out_balanced; 11398 } 11399 } 11400 11401 force_balance: 11402 /* Looks like there is an imbalance. Compute it */ 11403 calculate_imbalance(env, &sds); 11404 return env->imbalance ? sds.busiest : NULL; 11405 11406 out_balanced: 11407 env->imbalance = 0; 11408 return NULL; 11409 } 11410 11411 /* 11412 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11413 */ 11414 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11415 struct sched_group *group) 11416 { 11417 struct rq *busiest = NULL, *rq; 11418 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11419 unsigned int busiest_nr = 0; 11420 int i; 11421 11422 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11423 unsigned long capacity, load, util; 11424 unsigned int nr_running; 11425 enum fbq_type rt; 11426 11427 rq = cpu_rq(i); 11428 rt = fbq_classify_rq(rq); 11429 11430 /* 11431 * We classify groups/runqueues into three groups: 11432 * - regular: there are !numa tasks 11433 * - remote: there are numa tasks that run on the 'wrong' node 11434 * - all: there is no distinction 11435 * 11436 * In order to avoid migrating ideally placed numa tasks, 11437 * ignore those when there's better options. 11438 * 11439 * If we ignore the actual busiest queue to migrate another 11440 * task, the next balance pass can still reduce the busiest 11441 * queue by moving tasks around inside the node. 11442 * 11443 * If we cannot move enough load due to this classification 11444 * the next pass will adjust the group classification and 11445 * allow migration of more tasks. 11446 * 11447 * Both cases only affect the total convergence complexity. 11448 */ 11449 if (rt > env->fbq_type) 11450 continue; 11451 11452 nr_running = rq->cfs.h_nr_runnable; 11453 if (!nr_running) 11454 continue; 11455 11456 capacity = capacity_of(i); 11457 11458 /* 11459 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11460 * eventually lead to active_balancing high->low capacity. 11461 * Higher per-CPU capacity is considered better than balancing 11462 * average load. 11463 */ 11464 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11465 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11466 nr_running == 1) 11467 continue; 11468 11469 /* 11470 * Make sure we only pull tasks from a CPU of lower priority 11471 * when balancing between SMT siblings. 11472 * 11473 * If balancing between cores, let lower priority CPUs help 11474 * SMT cores with more than one busy sibling. 11475 */ 11476 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11477 continue; 11478 11479 switch (env->migration_type) { 11480 case migrate_load: 11481 /* 11482 * When comparing with load imbalance, use cpu_load() 11483 * which is not scaled with the CPU capacity. 11484 */ 11485 load = cpu_load(rq); 11486 11487 if (nr_running == 1 && load > env->imbalance && 11488 !check_cpu_capacity(rq, env->sd)) 11489 break; 11490 11491 /* 11492 * For the load comparisons with the other CPUs, 11493 * consider the cpu_load() scaled with the CPU 11494 * capacity, so that the load can be moved away 11495 * from the CPU that is potentially running at a 11496 * lower capacity. 11497 * 11498 * Thus we're looking for max(load_i / capacity_i), 11499 * crosswise multiplication to rid ourselves of the 11500 * division works out to: 11501 * load_i * capacity_j > load_j * capacity_i; 11502 * where j is our previous maximum. 11503 */ 11504 if (load * busiest_capacity > busiest_load * capacity) { 11505 busiest_load = load; 11506 busiest_capacity = capacity; 11507 busiest = rq; 11508 } 11509 break; 11510 11511 case migrate_util: 11512 util = cpu_util_cfs_boost(i); 11513 11514 /* 11515 * Don't try to pull utilization from a CPU with one 11516 * running task. Whatever its utilization, we will fail 11517 * detach the task. 11518 */ 11519 if (nr_running <= 1) 11520 continue; 11521 11522 if (busiest_util < util) { 11523 busiest_util = util; 11524 busiest = rq; 11525 } 11526 break; 11527 11528 case migrate_task: 11529 if (busiest_nr < nr_running) { 11530 busiest_nr = nr_running; 11531 busiest = rq; 11532 } 11533 break; 11534 11535 case migrate_misfit: 11536 /* 11537 * For ASYM_CPUCAPACITY domains with misfit tasks we 11538 * simply seek the "biggest" misfit task. 11539 */ 11540 if (rq->misfit_task_load > busiest_load) { 11541 busiest_load = rq->misfit_task_load; 11542 busiest = rq; 11543 } 11544 11545 break; 11546 11547 } 11548 } 11549 11550 return busiest; 11551 } 11552 11553 /* 11554 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11555 * so long as it is large enough. 11556 */ 11557 #define MAX_PINNED_INTERVAL 512 11558 11559 static inline bool 11560 asym_active_balance(struct lb_env *env) 11561 { 11562 /* 11563 * ASYM_PACKING needs to force migrate tasks from busy but lower 11564 * priority CPUs in order to pack all tasks in the highest priority 11565 * CPUs. When done between cores, do it only if the whole core if the 11566 * whole core is idle. 11567 * 11568 * If @env::src_cpu is an SMT core with busy siblings, let 11569 * the lower priority @env::dst_cpu help it. Do not follow 11570 * CPU priority. 11571 */ 11572 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11573 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11574 !sched_use_asym_prio(env->sd, env->src_cpu)); 11575 } 11576 11577 static inline bool 11578 imbalanced_active_balance(struct lb_env *env) 11579 { 11580 struct sched_domain *sd = env->sd; 11581 11582 /* 11583 * The imbalanced case includes the case of pinned tasks preventing a fair 11584 * distribution of the load on the system but also the even distribution of the 11585 * threads on a system with spare capacity 11586 */ 11587 if ((env->migration_type == migrate_task) && 11588 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11589 return 1; 11590 11591 return 0; 11592 } 11593 11594 static int need_active_balance(struct lb_env *env) 11595 { 11596 struct sched_domain *sd = env->sd; 11597 11598 if (asym_active_balance(env)) 11599 return 1; 11600 11601 if (imbalanced_active_balance(env)) 11602 return 1; 11603 11604 /* 11605 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11606 * It's worth migrating the task if the src_cpu's capacity is reduced 11607 * because of other sched_class or IRQs if more capacity stays 11608 * available on dst_cpu. 11609 */ 11610 if (env->idle && 11611 (env->src_rq->cfs.h_nr_runnable == 1)) { 11612 if ((check_cpu_capacity(env->src_rq, sd)) && 11613 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11614 return 1; 11615 } 11616 11617 if (env->migration_type == migrate_misfit) 11618 return 1; 11619 11620 return 0; 11621 } 11622 11623 static int active_load_balance_cpu_stop(void *data); 11624 11625 static int should_we_balance(struct lb_env *env) 11626 { 11627 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11628 struct sched_group *sg = env->sd->groups; 11629 int cpu, idle_smt = -1; 11630 11631 /* 11632 * Ensure the balancing environment is consistent; can happen 11633 * when the softirq triggers 'during' hotplug. 11634 */ 11635 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11636 return 0; 11637 11638 /* 11639 * In the newly idle case, we will allow all the CPUs 11640 * to do the newly idle load balance. 11641 * 11642 * However, we bail out if we already have tasks or a wakeup pending, 11643 * to optimize wakeup latency. 11644 */ 11645 if (env->idle == CPU_NEWLY_IDLE) { 11646 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11647 return 0; 11648 return 1; 11649 } 11650 11651 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11652 /* Try to find first idle CPU */ 11653 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11654 if (!idle_cpu(cpu)) 11655 continue; 11656 11657 /* 11658 * Don't balance to idle SMT in busy core right away when 11659 * balancing cores, but remember the first idle SMT CPU for 11660 * later consideration. Find CPU on an idle core first. 11661 */ 11662 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11663 if (idle_smt == -1) 11664 idle_smt = cpu; 11665 /* 11666 * If the core is not idle, and first SMT sibling which is 11667 * idle has been found, then its not needed to check other 11668 * SMT siblings for idleness: 11669 */ 11670 #ifdef CONFIG_SCHED_SMT 11671 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11672 #endif 11673 continue; 11674 } 11675 11676 /* 11677 * Are we the first idle core in a non-SMT domain or higher, 11678 * or the first idle CPU in a SMT domain? 11679 */ 11680 return cpu == env->dst_cpu; 11681 } 11682 11683 /* Are we the first idle CPU with busy siblings? */ 11684 if (idle_smt != -1) 11685 return idle_smt == env->dst_cpu; 11686 11687 /* Are we the first CPU of this group ? */ 11688 return group_balance_cpu(sg) == env->dst_cpu; 11689 } 11690 11691 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd, 11692 enum cpu_idle_type idle) 11693 { 11694 if (!schedstat_enabled()) 11695 return; 11696 11697 switch (env->migration_type) { 11698 case migrate_load: 11699 __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance); 11700 break; 11701 case migrate_util: 11702 __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance); 11703 break; 11704 case migrate_task: 11705 __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance); 11706 break; 11707 case migrate_misfit: 11708 __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance); 11709 break; 11710 } 11711 } 11712 11713 /* 11714 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11715 * tasks if there is an imbalance. 11716 */ 11717 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11718 struct sched_domain *sd, enum cpu_idle_type idle, 11719 int *continue_balancing) 11720 { 11721 int ld_moved, cur_ld_moved, active_balance = 0; 11722 struct sched_domain *sd_parent = sd->parent; 11723 struct sched_group *group; 11724 struct rq *busiest; 11725 struct rq_flags rf; 11726 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11727 struct lb_env env = { 11728 .sd = sd, 11729 .dst_cpu = this_cpu, 11730 .dst_rq = this_rq, 11731 .dst_grpmask = group_balance_mask(sd->groups), 11732 .idle = idle, 11733 .loop_break = SCHED_NR_MIGRATE_BREAK, 11734 .cpus = cpus, 11735 .fbq_type = all, 11736 .tasks = LIST_HEAD_INIT(env.tasks), 11737 }; 11738 11739 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11740 11741 schedstat_inc(sd->lb_count[idle]); 11742 11743 redo: 11744 if (!should_we_balance(&env)) { 11745 *continue_balancing = 0; 11746 goto out_balanced; 11747 } 11748 11749 group = sched_balance_find_src_group(&env); 11750 if (!group) { 11751 schedstat_inc(sd->lb_nobusyg[idle]); 11752 goto out_balanced; 11753 } 11754 11755 busiest = sched_balance_find_src_rq(&env, group); 11756 if (!busiest) { 11757 schedstat_inc(sd->lb_nobusyq[idle]); 11758 goto out_balanced; 11759 } 11760 11761 WARN_ON_ONCE(busiest == env.dst_rq); 11762 11763 update_lb_imbalance_stat(&env, sd, idle); 11764 11765 env.src_cpu = busiest->cpu; 11766 env.src_rq = busiest; 11767 11768 ld_moved = 0; 11769 /* Clear this flag as soon as we find a pullable task */ 11770 env.flags |= LBF_ALL_PINNED; 11771 if (busiest->nr_running > 1) { 11772 /* 11773 * Attempt to move tasks. If sched_balance_find_src_group has found 11774 * an imbalance but busiest->nr_running <= 1, the group is 11775 * still unbalanced. ld_moved simply stays zero, so it is 11776 * correctly treated as an imbalance. 11777 */ 11778 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11779 11780 more_balance: 11781 rq_lock_irqsave(busiest, &rf); 11782 update_rq_clock(busiest); 11783 11784 /* 11785 * cur_ld_moved - load moved in current iteration 11786 * ld_moved - cumulative load moved across iterations 11787 */ 11788 cur_ld_moved = detach_tasks(&env); 11789 11790 /* 11791 * We've detached some tasks from busiest_rq. Every 11792 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11793 * unlock busiest->lock, and we are able to be sure 11794 * that nobody can manipulate the tasks in parallel. 11795 * See task_rq_lock() family for the details. 11796 */ 11797 11798 rq_unlock(busiest, &rf); 11799 11800 if (cur_ld_moved) { 11801 attach_tasks(&env); 11802 ld_moved += cur_ld_moved; 11803 } 11804 11805 local_irq_restore(rf.flags); 11806 11807 if (env.flags & LBF_NEED_BREAK) { 11808 env.flags &= ~LBF_NEED_BREAK; 11809 goto more_balance; 11810 } 11811 11812 /* 11813 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11814 * us and move them to an alternate dst_cpu in our sched_group 11815 * where they can run. The upper limit on how many times we 11816 * iterate on same src_cpu is dependent on number of CPUs in our 11817 * sched_group. 11818 * 11819 * This changes load balance semantics a bit on who can move 11820 * load to a given_cpu. In addition to the given_cpu itself 11821 * (or a ilb_cpu acting on its behalf where given_cpu is 11822 * nohz-idle), we now have balance_cpu in a position to move 11823 * load to given_cpu. In rare situations, this may cause 11824 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11825 * _independently_ and at _same_ time to move some load to 11826 * given_cpu) causing excess load to be moved to given_cpu. 11827 * This however should not happen so much in practice and 11828 * moreover subsequent load balance cycles should correct the 11829 * excess load moved. 11830 */ 11831 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11832 11833 /* Prevent to re-select dst_cpu via env's CPUs */ 11834 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11835 11836 env.dst_rq = cpu_rq(env.new_dst_cpu); 11837 env.dst_cpu = env.new_dst_cpu; 11838 env.flags &= ~LBF_DST_PINNED; 11839 env.loop = 0; 11840 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11841 11842 /* 11843 * Go back to "more_balance" rather than "redo" since we 11844 * need to continue with same src_cpu. 11845 */ 11846 goto more_balance; 11847 } 11848 11849 /* 11850 * We failed to reach balance because of affinity. 11851 */ 11852 if (sd_parent) { 11853 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11854 11855 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11856 *group_imbalance = 1; 11857 } 11858 11859 /* All tasks on this runqueue were pinned by CPU affinity */ 11860 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11861 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11862 /* 11863 * Attempting to continue load balancing at the current 11864 * sched_domain level only makes sense if there are 11865 * active CPUs remaining as possible busiest CPUs to 11866 * pull load from which are not contained within the 11867 * destination group that is receiving any migrated 11868 * load. 11869 */ 11870 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11871 env.loop = 0; 11872 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11873 goto redo; 11874 } 11875 goto out_all_pinned; 11876 } 11877 } 11878 11879 if (!ld_moved) { 11880 schedstat_inc(sd->lb_failed[idle]); 11881 /* 11882 * Increment the failure counter only on periodic balance. 11883 * We do not want newidle balance, which can be very 11884 * frequent, pollute the failure counter causing 11885 * excessive cache_hot migrations and active balances. 11886 * 11887 * Similarly for migration_misfit which is not related to 11888 * load/util migration, don't pollute nr_balance_failed. 11889 */ 11890 if (idle != CPU_NEWLY_IDLE && 11891 env.migration_type != migrate_misfit) 11892 sd->nr_balance_failed++; 11893 11894 if (need_active_balance(&env)) { 11895 unsigned long flags; 11896 11897 raw_spin_rq_lock_irqsave(busiest, flags); 11898 11899 /* 11900 * Don't kick the active_load_balance_cpu_stop, 11901 * if the curr task on busiest CPU can't be 11902 * moved to this_cpu: 11903 */ 11904 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11905 raw_spin_rq_unlock_irqrestore(busiest, flags); 11906 goto out_one_pinned; 11907 } 11908 11909 /* Record that we found at least one task that could run on this_cpu */ 11910 env.flags &= ~LBF_ALL_PINNED; 11911 11912 /* 11913 * ->active_balance synchronizes accesses to 11914 * ->active_balance_work. Once set, it's cleared 11915 * only after active load balance is finished. 11916 */ 11917 if (!busiest->active_balance) { 11918 busiest->active_balance = 1; 11919 busiest->push_cpu = this_cpu; 11920 active_balance = 1; 11921 } 11922 11923 preempt_disable(); 11924 raw_spin_rq_unlock_irqrestore(busiest, flags); 11925 if (active_balance) { 11926 stop_one_cpu_nowait(cpu_of(busiest), 11927 active_load_balance_cpu_stop, busiest, 11928 &busiest->active_balance_work); 11929 } 11930 preempt_enable(); 11931 } 11932 } else { 11933 sd->nr_balance_failed = 0; 11934 } 11935 11936 if (likely(!active_balance) || need_active_balance(&env)) { 11937 /* We were unbalanced, so reset the balancing interval */ 11938 sd->balance_interval = sd->min_interval; 11939 } 11940 11941 goto out; 11942 11943 out_balanced: 11944 /* 11945 * We reach balance although we may have faced some affinity 11946 * constraints. Clear the imbalance flag only if other tasks got 11947 * a chance to move and fix the imbalance. 11948 */ 11949 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11950 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11951 11952 if (*group_imbalance) 11953 *group_imbalance = 0; 11954 } 11955 11956 out_all_pinned: 11957 /* 11958 * We reach balance because all tasks are pinned at this level so 11959 * we can't migrate them. Let the imbalance flag set so parent level 11960 * can try to migrate them. 11961 */ 11962 schedstat_inc(sd->lb_balanced[idle]); 11963 11964 sd->nr_balance_failed = 0; 11965 11966 out_one_pinned: 11967 ld_moved = 0; 11968 11969 /* 11970 * sched_balance_newidle() disregards balance intervals, so we could 11971 * repeatedly reach this code, which would lead to balance_interval 11972 * skyrocketing in a short amount of time. Skip the balance_interval 11973 * increase logic to avoid that. 11974 * 11975 * Similarly misfit migration which is not necessarily an indication of 11976 * the system being busy and requires lb to backoff to let it settle 11977 * down. 11978 */ 11979 if (env.idle == CPU_NEWLY_IDLE || 11980 env.migration_type == migrate_misfit) 11981 goto out; 11982 11983 /* tune up the balancing interval */ 11984 if ((env.flags & LBF_ALL_PINNED && 11985 sd->balance_interval < MAX_PINNED_INTERVAL) || 11986 sd->balance_interval < sd->max_interval) 11987 sd->balance_interval *= 2; 11988 out: 11989 return ld_moved; 11990 } 11991 11992 static inline unsigned long 11993 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11994 { 11995 unsigned long interval = sd->balance_interval; 11996 11997 if (cpu_busy) 11998 interval *= sd->busy_factor; 11999 12000 /* scale ms to jiffies */ 12001 interval = msecs_to_jiffies(interval); 12002 12003 /* 12004 * Reduce likelihood of busy balancing at higher domains racing with 12005 * balancing at lower domains by preventing their balancing periods 12006 * from being multiples of each other. 12007 */ 12008 if (cpu_busy) 12009 interval -= 1; 12010 12011 interval = clamp(interval, 1UL, max_load_balance_interval); 12012 12013 return interval; 12014 } 12015 12016 static inline void 12017 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 12018 { 12019 unsigned long interval, next; 12020 12021 /* used by idle balance, so cpu_busy = 0 */ 12022 interval = get_sd_balance_interval(sd, 0); 12023 next = sd->last_balance + interval; 12024 12025 if (time_after(*next_balance, next)) 12026 *next_balance = next; 12027 } 12028 12029 /* 12030 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 12031 * running tasks off the busiest CPU onto idle CPUs. It requires at 12032 * least 1 task to be running on each physical CPU where possible, and 12033 * avoids physical / logical imbalances. 12034 */ 12035 static int active_load_balance_cpu_stop(void *data) 12036 { 12037 struct rq *busiest_rq = data; 12038 int busiest_cpu = cpu_of(busiest_rq); 12039 int target_cpu = busiest_rq->push_cpu; 12040 struct rq *target_rq = cpu_rq(target_cpu); 12041 struct sched_domain *sd; 12042 struct task_struct *p = NULL; 12043 struct rq_flags rf; 12044 12045 rq_lock_irq(busiest_rq, &rf); 12046 /* 12047 * Between queueing the stop-work and running it is a hole in which 12048 * CPUs can become inactive. We should not move tasks from or to 12049 * inactive CPUs. 12050 */ 12051 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 12052 goto out_unlock; 12053 12054 /* Make sure the requested CPU hasn't gone down in the meantime: */ 12055 if (unlikely(busiest_cpu != smp_processor_id() || 12056 !busiest_rq->active_balance)) 12057 goto out_unlock; 12058 12059 /* Is there any task to move? */ 12060 if (busiest_rq->nr_running <= 1) 12061 goto out_unlock; 12062 12063 /* 12064 * This condition is "impossible", if it occurs 12065 * we need to fix it. Originally reported by 12066 * Bjorn Helgaas on a 128-CPU setup. 12067 */ 12068 WARN_ON_ONCE(busiest_rq == target_rq); 12069 12070 /* Search for an sd spanning us and the target CPU. */ 12071 rcu_read_lock(); 12072 for_each_domain(target_cpu, sd) { 12073 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 12074 break; 12075 } 12076 12077 if (likely(sd)) { 12078 struct lb_env env = { 12079 .sd = sd, 12080 .dst_cpu = target_cpu, 12081 .dst_rq = target_rq, 12082 .src_cpu = busiest_rq->cpu, 12083 .src_rq = busiest_rq, 12084 .idle = CPU_IDLE, 12085 .flags = LBF_ACTIVE_LB, 12086 }; 12087 12088 schedstat_inc(sd->alb_count); 12089 update_rq_clock(busiest_rq); 12090 12091 p = detach_one_task(&env); 12092 if (p) { 12093 schedstat_inc(sd->alb_pushed); 12094 /* Active balancing done, reset the failure counter. */ 12095 sd->nr_balance_failed = 0; 12096 } else { 12097 schedstat_inc(sd->alb_failed); 12098 } 12099 } 12100 rcu_read_unlock(); 12101 out_unlock: 12102 busiest_rq->active_balance = 0; 12103 rq_unlock(busiest_rq, &rf); 12104 12105 if (p) 12106 attach_one_task(target_rq, p); 12107 12108 local_irq_enable(); 12109 12110 return 0; 12111 } 12112 12113 /* 12114 * This flag serializes load-balancing passes over large domains 12115 * (above the NODE topology level) - only one load-balancing instance 12116 * may run at a time, to reduce overhead on very large systems with 12117 * lots of CPUs and large NUMA distances. 12118 * 12119 * - Note that load-balancing passes triggered while another one 12120 * is executing are skipped and not re-tried. 12121 * 12122 * - Also note that this does not serialize rebalance_domains() 12123 * execution, as non-SD_SERIALIZE domains will still be 12124 * load-balanced in parallel. 12125 */ 12126 static atomic_t sched_balance_running = ATOMIC_INIT(0); 12127 12128 /* 12129 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 12130 * This trades load-balance latency on larger machines for less cross talk. 12131 */ 12132 void update_max_interval(void) 12133 { 12134 max_load_balance_interval = HZ*num_online_cpus()/10; 12135 } 12136 12137 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 12138 { 12139 if (cost > sd->max_newidle_lb_cost) { 12140 /* 12141 * Track max cost of a domain to make sure to not delay the 12142 * next wakeup on the CPU. 12143 */ 12144 sd->max_newidle_lb_cost = cost; 12145 sd->last_decay_max_lb_cost = jiffies; 12146 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 12147 /* 12148 * Decay the newidle max times by ~1% per second to ensure that 12149 * it is not outdated and the current max cost is actually 12150 * shorter. 12151 */ 12152 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 12153 sd->last_decay_max_lb_cost = jiffies; 12154 12155 return true; 12156 } 12157 12158 return false; 12159 } 12160 12161 /* 12162 * It checks each scheduling domain to see if it is due to be balanced, 12163 * and initiates a balancing operation if so. 12164 * 12165 * Balancing parameters are set up in init_sched_domains. 12166 */ 12167 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 12168 { 12169 int continue_balancing = 1; 12170 int cpu = rq->cpu; 12171 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 12172 unsigned long interval; 12173 struct sched_domain *sd; 12174 /* Earliest time when we have to do rebalance again */ 12175 unsigned long next_balance = jiffies + 60*HZ; 12176 int update_next_balance = 0; 12177 int need_serialize, need_decay = 0; 12178 u64 max_cost = 0; 12179 12180 rcu_read_lock(); 12181 for_each_domain(cpu, sd) { 12182 /* 12183 * Decay the newidle max times here because this is a regular 12184 * visit to all the domains. 12185 */ 12186 need_decay = update_newidle_cost(sd, 0); 12187 max_cost += sd->max_newidle_lb_cost; 12188 12189 /* 12190 * Stop the load balance at this level. There is another 12191 * CPU in our sched group which is doing load balancing more 12192 * actively. 12193 */ 12194 if (!continue_balancing) { 12195 if (need_decay) 12196 continue; 12197 break; 12198 } 12199 12200 interval = get_sd_balance_interval(sd, busy); 12201 12202 need_serialize = sd->flags & SD_SERIALIZE; 12203 if (need_serialize) { 12204 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) 12205 goto out; 12206 } 12207 12208 if (time_after_eq(jiffies, sd->last_balance + interval)) { 12209 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 12210 /* 12211 * The LBF_DST_PINNED logic could have changed 12212 * env->dst_cpu, so we can't know our idle 12213 * state even if we migrated tasks. Update it. 12214 */ 12215 idle = idle_cpu(cpu); 12216 busy = !idle && !sched_idle_cpu(cpu); 12217 } 12218 sd->last_balance = jiffies; 12219 interval = get_sd_balance_interval(sd, busy); 12220 } 12221 if (need_serialize) 12222 atomic_set_release(&sched_balance_running, 0); 12223 out: 12224 if (time_after(next_balance, sd->last_balance + interval)) { 12225 next_balance = sd->last_balance + interval; 12226 update_next_balance = 1; 12227 } 12228 } 12229 if (need_decay) { 12230 /* 12231 * Ensure the rq-wide value also decays but keep it at a 12232 * reasonable floor to avoid funnies with rq->avg_idle. 12233 */ 12234 rq->max_idle_balance_cost = 12235 max((u64)sysctl_sched_migration_cost, max_cost); 12236 } 12237 rcu_read_unlock(); 12238 12239 /* 12240 * next_balance will be updated only when there is a need. 12241 * When the cpu is attached to null domain for ex, it will not be 12242 * updated. 12243 */ 12244 if (likely(update_next_balance)) 12245 rq->next_balance = next_balance; 12246 12247 } 12248 12249 static inline int on_null_domain(struct rq *rq) 12250 { 12251 return unlikely(!rcu_dereference_sched(rq->sd)); 12252 } 12253 12254 #ifdef CONFIG_NO_HZ_COMMON 12255 /* 12256 * NOHZ idle load balancing (ILB) details: 12257 * 12258 * - When one of the busy CPUs notices that there may be an idle rebalancing 12259 * needed, they will kick the idle load balancer, which then does idle 12260 * load balancing for all the idle CPUs. 12261 */ 12262 static inline int find_new_ilb(void) 12263 { 12264 const struct cpumask *hk_mask; 12265 int ilb_cpu; 12266 12267 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 12268 12269 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 12270 12271 if (ilb_cpu == smp_processor_id()) 12272 continue; 12273 12274 if (idle_cpu(ilb_cpu)) 12275 return ilb_cpu; 12276 } 12277 12278 return -1; 12279 } 12280 12281 /* 12282 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 12283 * SMP function call (IPI). 12284 * 12285 * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set 12286 * (if there is one). 12287 */ 12288 static void kick_ilb(unsigned int flags) 12289 { 12290 int ilb_cpu; 12291 12292 /* 12293 * Increase nohz.next_balance only when if full ilb is triggered but 12294 * not if we only update stats. 12295 */ 12296 if (flags & NOHZ_BALANCE_KICK) 12297 nohz.next_balance = jiffies+1; 12298 12299 ilb_cpu = find_new_ilb(); 12300 if (ilb_cpu < 0) 12301 return; 12302 12303 /* 12304 * Don't bother if no new NOHZ balance work items for ilb_cpu, 12305 * i.e. all bits in flags are already set in ilb_cpu. 12306 */ 12307 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) 12308 return; 12309 12310 /* 12311 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 12312 * the first flag owns it; cleared by nohz_csd_func(). 12313 */ 12314 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 12315 if (flags & NOHZ_KICK_MASK) 12316 return; 12317 12318 /* 12319 * This way we generate an IPI on the target CPU which 12320 * is idle, and the softirq performing NOHZ idle load balancing 12321 * will be run before returning from the IPI. 12322 */ 12323 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 12324 } 12325 12326 /* 12327 * Current decision point for kicking the idle load balancer in the presence 12328 * of idle CPUs in the system. 12329 */ 12330 static void nohz_balancer_kick(struct rq *rq) 12331 { 12332 unsigned long now = jiffies; 12333 struct sched_domain_shared *sds; 12334 struct sched_domain *sd; 12335 int nr_busy, i, cpu = rq->cpu; 12336 unsigned int flags = 0; 12337 12338 if (unlikely(rq->idle_balance)) 12339 return; 12340 12341 /* 12342 * We may be recently in ticked or tickless idle mode. At the first 12343 * busy tick after returning from idle, we will update the busy stats. 12344 */ 12345 nohz_balance_exit_idle(rq); 12346 12347 /* 12348 * None are in tickless mode and hence no need for NOHZ idle load 12349 * balancing: 12350 */ 12351 if (likely(!atomic_read(&nohz.nr_cpus))) 12352 return; 12353 12354 if (READ_ONCE(nohz.has_blocked) && 12355 time_after(now, READ_ONCE(nohz.next_blocked))) 12356 flags = NOHZ_STATS_KICK; 12357 12358 if (time_before(now, nohz.next_balance)) 12359 goto out; 12360 12361 if (rq->nr_running >= 2) { 12362 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12363 goto out; 12364 } 12365 12366 rcu_read_lock(); 12367 12368 sd = rcu_dereference(rq->sd); 12369 if (sd) { 12370 /* 12371 * If there's a runnable CFS task and the current CPU has reduced 12372 * capacity, kick the ILB to see if there's a better CPU to run on: 12373 */ 12374 if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) { 12375 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12376 goto unlock; 12377 } 12378 } 12379 12380 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 12381 if (sd) { 12382 /* 12383 * When ASYM_PACKING; see if there's a more preferred CPU 12384 * currently idle; in which case, kick the ILB to move tasks 12385 * around. 12386 * 12387 * When balancing between cores, all the SMT siblings of the 12388 * preferred CPU must be idle. 12389 */ 12390 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 12391 if (sched_asym(sd, i, cpu)) { 12392 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12393 goto unlock; 12394 } 12395 } 12396 } 12397 12398 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 12399 if (sd) { 12400 /* 12401 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 12402 * to run the misfit task on. 12403 */ 12404 if (check_misfit_status(rq)) { 12405 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12406 goto unlock; 12407 } 12408 12409 /* 12410 * For asymmetric systems, we do not want to nicely balance 12411 * cache use, instead we want to embrace asymmetry and only 12412 * ensure tasks have enough CPU capacity. 12413 * 12414 * Skip the LLC logic because it's not relevant in that case. 12415 */ 12416 goto unlock; 12417 } 12418 12419 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 12420 if (sds) { 12421 /* 12422 * If there is an imbalance between LLC domains (IOW we could 12423 * increase the overall cache utilization), we need a less-loaded LLC 12424 * domain to pull some load from. Likewise, we may need to spread 12425 * load within the current LLC domain (e.g. packed SMT cores but 12426 * other CPUs are idle). We can't really know from here how busy 12427 * the others are - so just get a NOHZ balance going if it looks 12428 * like this LLC domain has tasks we could move. 12429 */ 12430 nr_busy = atomic_read(&sds->nr_busy_cpus); 12431 if (nr_busy > 1) { 12432 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12433 goto unlock; 12434 } 12435 } 12436 unlock: 12437 rcu_read_unlock(); 12438 out: 12439 if (READ_ONCE(nohz.needs_update)) 12440 flags |= NOHZ_NEXT_KICK; 12441 12442 if (flags) 12443 kick_ilb(flags); 12444 } 12445 12446 static void set_cpu_sd_state_busy(int cpu) 12447 { 12448 struct sched_domain *sd; 12449 12450 rcu_read_lock(); 12451 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12452 12453 if (!sd || !sd->nohz_idle) 12454 goto unlock; 12455 sd->nohz_idle = 0; 12456 12457 atomic_inc(&sd->shared->nr_busy_cpus); 12458 unlock: 12459 rcu_read_unlock(); 12460 } 12461 12462 void nohz_balance_exit_idle(struct rq *rq) 12463 { 12464 SCHED_WARN_ON(rq != this_rq()); 12465 12466 if (likely(!rq->nohz_tick_stopped)) 12467 return; 12468 12469 rq->nohz_tick_stopped = 0; 12470 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12471 atomic_dec(&nohz.nr_cpus); 12472 12473 set_cpu_sd_state_busy(rq->cpu); 12474 } 12475 12476 static void set_cpu_sd_state_idle(int cpu) 12477 { 12478 struct sched_domain *sd; 12479 12480 rcu_read_lock(); 12481 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12482 12483 if (!sd || sd->nohz_idle) 12484 goto unlock; 12485 sd->nohz_idle = 1; 12486 12487 atomic_dec(&sd->shared->nr_busy_cpus); 12488 unlock: 12489 rcu_read_unlock(); 12490 } 12491 12492 /* 12493 * This routine will record that the CPU is going idle with tick stopped. 12494 * This info will be used in performing idle load balancing in the future. 12495 */ 12496 void nohz_balance_enter_idle(int cpu) 12497 { 12498 struct rq *rq = cpu_rq(cpu); 12499 12500 SCHED_WARN_ON(cpu != smp_processor_id()); 12501 12502 /* If this CPU is going down, then nothing needs to be done: */ 12503 if (!cpu_active(cpu)) 12504 return; 12505 12506 /* 12507 * Can be set safely without rq->lock held 12508 * If a clear happens, it will have evaluated last additions because 12509 * rq->lock is held during the check and the clear 12510 */ 12511 rq->has_blocked_load = 1; 12512 12513 /* 12514 * The tick is still stopped but load could have been added in the 12515 * meantime. We set the nohz.has_blocked flag to trig a check of the 12516 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12517 * of nohz.has_blocked can only happen after checking the new load 12518 */ 12519 if (rq->nohz_tick_stopped) 12520 goto out; 12521 12522 /* If we're a completely isolated CPU, we don't play: */ 12523 if (on_null_domain(rq)) 12524 return; 12525 12526 rq->nohz_tick_stopped = 1; 12527 12528 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12529 atomic_inc(&nohz.nr_cpus); 12530 12531 /* 12532 * Ensures that if nohz_idle_balance() fails to observe our 12533 * @idle_cpus_mask store, it must observe the @has_blocked 12534 * and @needs_update stores. 12535 */ 12536 smp_mb__after_atomic(); 12537 12538 set_cpu_sd_state_idle(cpu); 12539 12540 WRITE_ONCE(nohz.needs_update, 1); 12541 out: 12542 /* 12543 * Each time a cpu enter idle, we assume that it has blocked load and 12544 * enable the periodic update of the load of idle CPUs 12545 */ 12546 WRITE_ONCE(nohz.has_blocked, 1); 12547 } 12548 12549 static bool update_nohz_stats(struct rq *rq) 12550 { 12551 unsigned int cpu = rq->cpu; 12552 12553 if (!rq->has_blocked_load) 12554 return false; 12555 12556 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12557 return false; 12558 12559 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12560 return true; 12561 12562 sched_balance_update_blocked_averages(cpu); 12563 12564 return rq->has_blocked_load; 12565 } 12566 12567 /* 12568 * Internal function that runs load balance for all idle CPUs. The load balance 12569 * can be a simple update of blocked load or a complete load balance with 12570 * tasks movement depending of flags. 12571 */ 12572 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12573 { 12574 /* Earliest time when we have to do rebalance again */ 12575 unsigned long now = jiffies; 12576 unsigned long next_balance = now + 60*HZ; 12577 bool has_blocked_load = false; 12578 int update_next_balance = 0; 12579 int this_cpu = this_rq->cpu; 12580 int balance_cpu; 12581 struct rq *rq; 12582 12583 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12584 12585 /* 12586 * We assume there will be no idle load after this update and clear 12587 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12588 * set the has_blocked flag and trigger another update of idle load. 12589 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12590 * setting the flag, we are sure to not clear the state and not 12591 * check the load of an idle cpu. 12592 * 12593 * Same applies to idle_cpus_mask vs needs_update. 12594 */ 12595 if (flags & NOHZ_STATS_KICK) 12596 WRITE_ONCE(nohz.has_blocked, 0); 12597 if (flags & NOHZ_NEXT_KICK) 12598 WRITE_ONCE(nohz.needs_update, 0); 12599 12600 /* 12601 * Ensures that if we miss the CPU, we must see the has_blocked 12602 * store from nohz_balance_enter_idle(). 12603 */ 12604 smp_mb(); 12605 12606 /* 12607 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12608 * chance for other idle cpu to pull load. 12609 */ 12610 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12611 if (!idle_cpu(balance_cpu)) 12612 continue; 12613 12614 /* 12615 * If this CPU gets work to do, stop the load balancing 12616 * work being done for other CPUs. Next load 12617 * balancing owner will pick it up. 12618 */ 12619 if (!idle_cpu(this_cpu) && need_resched()) { 12620 if (flags & NOHZ_STATS_KICK) 12621 has_blocked_load = true; 12622 if (flags & NOHZ_NEXT_KICK) 12623 WRITE_ONCE(nohz.needs_update, 1); 12624 goto abort; 12625 } 12626 12627 rq = cpu_rq(balance_cpu); 12628 12629 if (flags & NOHZ_STATS_KICK) 12630 has_blocked_load |= update_nohz_stats(rq); 12631 12632 /* 12633 * If time for next balance is due, 12634 * do the balance. 12635 */ 12636 if (time_after_eq(jiffies, rq->next_balance)) { 12637 struct rq_flags rf; 12638 12639 rq_lock_irqsave(rq, &rf); 12640 update_rq_clock(rq); 12641 rq_unlock_irqrestore(rq, &rf); 12642 12643 if (flags & NOHZ_BALANCE_KICK) 12644 sched_balance_domains(rq, CPU_IDLE); 12645 } 12646 12647 if (time_after(next_balance, rq->next_balance)) { 12648 next_balance = rq->next_balance; 12649 update_next_balance = 1; 12650 } 12651 } 12652 12653 /* 12654 * next_balance will be updated only when there is a need. 12655 * When the CPU is attached to null domain for ex, it will not be 12656 * updated. 12657 */ 12658 if (likely(update_next_balance)) 12659 nohz.next_balance = next_balance; 12660 12661 if (flags & NOHZ_STATS_KICK) 12662 WRITE_ONCE(nohz.next_blocked, 12663 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12664 12665 abort: 12666 /* There is still blocked load, enable periodic update */ 12667 if (has_blocked_load) 12668 WRITE_ONCE(nohz.has_blocked, 1); 12669 } 12670 12671 /* 12672 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12673 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12674 */ 12675 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12676 { 12677 unsigned int flags = this_rq->nohz_idle_balance; 12678 12679 if (!flags) 12680 return false; 12681 12682 this_rq->nohz_idle_balance = 0; 12683 12684 if (idle != CPU_IDLE) 12685 return false; 12686 12687 _nohz_idle_balance(this_rq, flags); 12688 12689 return true; 12690 } 12691 12692 /* 12693 * Check if we need to directly run the ILB for updating blocked load before 12694 * entering idle state. Here we run ILB directly without issuing IPIs. 12695 * 12696 * Note that when this function is called, the tick may not yet be stopped on 12697 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12698 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12699 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12700 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12701 * called from this function on (this) CPU that's not yet in the mask. That's 12702 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12703 * updating the blocked load of already idle CPUs without waking up one of 12704 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12705 * cpu about to enter idle, because it can take a long time. 12706 */ 12707 void nohz_run_idle_balance(int cpu) 12708 { 12709 unsigned int flags; 12710 12711 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12712 12713 /* 12714 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12715 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12716 */ 12717 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12718 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12719 } 12720 12721 static void nohz_newidle_balance(struct rq *this_rq) 12722 { 12723 int this_cpu = this_rq->cpu; 12724 12725 /* Will wake up very soon. No time for doing anything else*/ 12726 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12727 return; 12728 12729 /* Don't need to update blocked load of idle CPUs*/ 12730 if (!READ_ONCE(nohz.has_blocked) || 12731 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12732 return; 12733 12734 /* 12735 * Set the need to trigger ILB in order to update blocked load 12736 * before entering idle state. 12737 */ 12738 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12739 } 12740 12741 #else /* !CONFIG_NO_HZ_COMMON */ 12742 static inline void nohz_balancer_kick(struct rq *rq) { } 12743 12744 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12745 { 12746 return false; 12747 } 12748 12749 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12750 #endif /* CONFIG_NO_HZ_COMMON */ 12751 12752 /* 12753 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12754 * idle. Attempts to pull tasks from other CPUs. 12755 * 12756 * Returns: 12757 * < 0 - we released the lock and there are !fair tasks present 12758 * 0 - failed, no new tasks 12759 * > 0 - success, new (fair) tasks present 12760 */ 12761 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12762 { 12763 unsigned long next_balance = jiffies + HZ; 12764 int this_cpu = this_rq->cpu; 12765 int continue_balancing = 1; 12766 u64 t0, t1, curr_cost = 0; 12767 struct sched_domain *sd; 12768 int pulled_task = 0; 12769 12770 update_misfit_status(NULL, this_rq); 12771 12772 /* 12773 * There is a task waiting to run. No need to search for one. 12774 * Return 0; the task will be enqueued when switching to idle. 12775 */ 12776 if (this_rq->ttwu_pending) 12777 return 0; 12778 12779 /* 12780 * We must set idle_stamp _before_ calling sched_balance_rq() 12781 * for CPU_NEWLY_IDLE, such that we measure the this duration 12782 * as idle time. 12783 */ 12784 this_rq->idle_stamp = rq_clock(this_rq); 12785 12786 /* 12787 * Do not pull tasks towards !active CPUs... 12788 */ 12789 if (!cpu_active(this_cpu)) 12790 return 0; 12791 12792 /* 12793 * This is OK, because current is on_cpu, which avoids it being picked 12794 * for load-balance and preemption/IRQs are still disabled avoiding 12795 * further scheduler activity on it and we're being very careful to 12796 * re-start the picking loop. 12797 */ 12798 rq_unpin_lock(this_rq, rf); 12799 12800 rcu_read_lock(); 12801 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12802 12803 if (!get_rd_overloaded(this_rq->rd) || 12804 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12805 12806 if (sd) 12807 update_next_balance(sd, &next_balance); 12808 rcu_read_unlock(); 12809 12810 goto out; 12811 } 12812 rcu_read_unlock(); 12813 12814 raw_spin_rq_unlock(this_rq); 12815 12816 t0 = sched_clock_cpu(this_cpu); 12817 sched_balance_update_blocked_averages(this_cpu); 12818 12819 rcu_read_lock(); 12820 for_each_domain(this_cpu, sd) { 12821 u64 domain_cost; 12822 12823 update_next_balance(sd, &next_balance); 12824 12825 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12826 break; 12827 12828 if (sd->flags & SD_BALANCE_NEWIDLE) { 12829 12830 pulled_task = sched_balance_rq(this_cpu, this_rq, 12831 sd, CPU_NEWLY_IDLE, 12832 &continue_balancing); 12833 12834 t1 = sched_clock_cpu(this_cpu); 12835 domain_cost = t1 - t0; 12836 update_newidle_cost(sd, domain_cost); 12837 12838 curr_cost += domain_cost; 12839 t0 = t1; 12840 } 12841 12842 /* 12843 * Stop searching for tasks to pull if there are 12844 * now runnable tasks on this rq. 12845 */ 12846 if (pulled_task || !continue_balancing) 12847 break; 12848 } 12849 rcu_read_unlock(); 12850 12851 raw_spin_rq_lock(this_rq); 12852 12853 if (curr_cost > this_rq->max_idle_balance_cost) 12854 this_rq->max_idle_balance_cost = curr_cost; 12855 12856 /* 12857 * While browsing the domains, we released the rq lock, a task could 12858 * have been enqueued in the meantime. Since we're not going idle, 12859 * pretend we pulled a task. 12860 */ 12861 if (this_rq->cfs.h_nr_queued && !pulled_task) 12862 pulled_task = 1; 12863 12864 /* Is there a task of a high priority class? */ 12865 if (this_rq->nr_running != this_rq->cfs.h_nr_queued) 12866 pulled_task = -1; 12867 12868 out: 12869 /* Move the next balance forward */ 12870 if (time_after(this_rq->next_balance, next_balance)) 12871 this_rq->next_balance = next_balance; 12872 12873 if (pulled_task) 12874 this_rq->idle_stamp = 0; 12875 else 12876 nohz_newidle_balance(this_rq); 12877 12878 rq_repin_lock(this_rq, rf); 12879 12880 return pulled_task; 12881 } 12882 12883 /* 12884 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 12885 * 12886 * - directly from the local sched_tick() for periodic load balancing 12887 * 12888 * - indirectly from a remote sched_tick() for NOHZ idle balancing 12889 * through the SMP cross-call nohz_csd_func() 12890 */ 12891 static __latent_entropy void sched_balance_softirq(void) 12892 { 12893 struct rq *this_rq = this_rq(); 12894 enum cpu_idle_type idle = this_rq->idle_balance; 12895 /* 12896 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 12897 * balancing on behalf of the other idle CPUs whose ticks are 12898 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 12899 * give the idle CPUs a chance to load balance. Else we may 12900 * load balance only within the local sched_domain hierarchy 12901 * and abort nohz_idle_balance altogether if we pull some load. 12902 */ 12903 if (nohz_idle_balance(this_rq, idle)) 12904 return; 12905 12906 /* normal load balance */ 12907 sched_balance_update_blocked_averages(this_rq->cpu); 12908 sched_balance_domains(this_rq, idle); 12909 } 12910 12911 /* 12912 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12913 */ 12914 void sched_balance_trigger(struct rq *rq) 12915 { 12916 /* 12917 * Don't need to rebalance while attached to NULL domain or 12918 * runqueue CPU is not active 12919 */ 12920 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12921 return; 12922 12923 if (time_after_eq(jiffies, rq->next_balance)) 12924 raise_softirq(SCHED_SOFTIRQ); 12925 12926 nohz_balancer_kick(rq); 12927 } 12928 12929 static void rq_online_fair(struct rq *rq) 12930 { 12931 update_sysctl(); 12932 12933 update_runtime_enabled(rq); 12934 } 12935 12936 static void rq_offline_fair(struct rq *rq) 12937 { 12938 update_sysctl(); 12939 12940 /* Ensure any throttled groups are reachable by pick_next_task */ 12941 unthrottle_offline_cfs_rqs(rq); 12942 12943 /* Ensure that we remove rq contribution to group share: */ 12944 clear_tg_offline_cfs_rqs(rq); 12945 } 12946 12947 #endif /* CONFIG_SMP */ 12948 12949 #ifdef CONFIG_SCHED_CORE 12950 static inline bool 12951 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12952 { 12953 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12954 u64 slice = se->slice; 12955 12956 return (rtime * min_nr_tasks > slice); 12957 } 12958 12959 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12960 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12961 { 12962 if (!sched_core_enabled(rq)) 12963 return; 12964 12965 /* 12966 * If runqueue has only one task which used up its slice and 12967 * if the sibling is forced idle, then trigger schedule to 12968 * give forced idle task a chance. 12969 * 12970 * sched_slice() considers only this active rq and it gets the 12971 * whole slice. But during force idle, we have siblings acting 12972 * like a single runqueue and hence we need to consider runnable 12973 * tasks on this CPU and the forced idle CPU. Ideally, we should 12974 * go through the forced idle rq, but that would be a perf hit. 12975 * We can assume that the forced idle CPU has at least 12976 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12977 * if we need to give up the CPU. 12978 */ 12979 if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 && 12980 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12981 resched_curr(rq); 12982 } 12983 12984 /* 12985 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12986 */ 12987 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12988 bool forceidle) 12989 { 12990 for_each_sched_entity(se) { 12991 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12992 12993 if (forceidle) { 12994 if (cfs_rq->forceidle_seq == fi_seq) 12995 break; 12996 cfs_rq->forceidle_seq = fi_seq; 12997 } 12998 12999 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 13000 } 13001 } 13002 13003 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 13004 { 13005 struct sched_entity *se = &p->se; 13006 13007 if (p->sched_class != &fair_sched_class) 13008 return; 13009 13010 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 13011 } 13012 13013 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 13014 bool in_fi) 13015 { 13016 struct rq *rq = task_rq(a); 13017 const struct sched_entity *sea = &a->se; 13018 const struct sched_entity *seb = &b->se; 13019 struct cfs_rq *cfs_rqa; 13020 struct cfs_rq *cfs_rqb; 13021 s64 delta; 13022 13023 SCHED_WARN_ON(task_rq(b)->core != rq->core); 13024 13025 #ifdef CONFIG_FAIR_GROUP_SCHED 13026 /* 13027 * Find an se in the hierarchy for tasks a and b, such that the se's 13028 * are immediate siblings. 13029 */ 13030 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 13031 int sea_depth = sea->depth; 13032 int seb_depth = seb->depth; 13033 13034 if (sea_depth >= seb_depth) 13035 sea = parent_entity(sea); 13036 if (sea_depth <= seb_depth) 13037 seb = parent_entity(seb); 13038 } 13039 13040 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 13041 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 13042 13043 cfs_rqa = sea->cfs_rq; 13044 cfs_rqb = seb->cfs_rq; 13045 #else 13046 cfs_rqa = &task_rq(a)->cfs; 13047 cfs_rqb = &task_rq(b)->cfs; 13048 #endif 13049 13050 /* 13051 * Find delta after normalizing se's vruntime with its cfs_rq's 13052 * min_vruntime_fi, which would have been updated in prior calls 13053 * to se_fi_update(). 13054 */ 13055 delta = (s64)(sea->vruntime - seb->vruntime) + 13056 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 13057 13058 return delta > 0; 13059 } 13060 13061 static int task_is_throttled_fair(struct task_struct *p, int cpu) 13062 { 13063 struct cfs_rq *cfs_rq; 13064 13065 #ifdef CONFIG_FAIR_GROUP_SCHED 13066 cfs_rq = task_group(p)->cfs_rq[cpu]; 13067 #else 13068 cfs_rq = &cpu_rq(cpu)->cfs; 13069 #endif 13070 return throttled_hierarchy(cfs_rq); 13071 } 13072 #else 13073 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 13074 #endif 13075 13076 /* 13077 * scheduler tick hitting a task of our scheduling class. 13078 * 13079 * NOTE: This function can be called remotely by the tick offload that 13080 * goes along full dynticks. Therefore no local assumption can be made 13081 * and everything must be accessed through the @rq and @curr passed in 13082 * parameters. 13083 */ 13084 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 13085 { 13086 struct cfs_rq *cfs_rq; 13087 struct sched_entity *se = &curr->se; 13088 13089 for_each_sched_entity(se) { 13090 cfs_rq = cfs_rq_of(se); 13091 entity_tick(cfs_rq, se, queued); 13092 } 13093 13094 if (static_branch_unlikely(&sched_numa_balancing)) 13095 task_tick_numa(rq, curr); 13096 13097 update_misfit_status(curr, rq); 13098 check_update_overutilized_status(task_rq(curr)); 13099 13100 task_tick_core(rq, curr); 13101 } 13102 13103 /* 13104 * called on fork with the child task as argument from the parent's context 13105 * - child not yet on the tasklist 13106 * - preemption disabled 13107 */ 13108 static void task_fork_fair(struct task_struct *p) 13109 { 13110 set_task_max_allowed_capacity(p); 13111 } 13112 13113 /* 13114 * Priority of the task has changed. Check to see if we preempt 13115 * the current task. 13116 */ 13117 static void 13118 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 13119 { 13120 if (!task_on_rq_queued(p)) 13121 return; 13122 13123 if (rq->cfs.nr_queued == 1) 13124 return; 13125 13126 /* 13127 * Reschedule if we are currently running on this runqueue and 13128 * our priority decreased, or if we are not currently running on 13129 * this runqueue and our priority is higher than the current's 13130 */ 13131 if (task_current_donor(rq, p)) { 13132 if (p->prio > oldprio) 13133 resched_curr(rq); 13134 } else 13135 wakeup_preempt(rq, p, 0); 13136 } 13137 13138 #ifdef CONFIG_FAIR_GROUP_SCHED 13139 /* 13140 * Propagate the changes of the sched_entity across the tg tree to make it 13141 * visible to the root 13142 */ 13143 static void propagate_entity_cfs_rq(struct sched_entity *se) 13144 { 13145 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13146 13147 if (cfs_rq_throttled(cfs_rq)) 13148 return; 13149 13150 if (!throttled_hierarchy(cfs_rq)) 13151 list_add_leaf_cfs_rq(cfs_rq); 13152 13153 /* Start to propagate at parent */ 13154 se = se->parent; 13155 13156 for_each_sched_entity(se) { 13157 cfs_rq = cfs_rq_of(se); 13158 13159 update_load_avg(cfs_rq, se, UPDATE_TG); 13160 13161 if (cfs_rq_throttled(cfs_rq)) 13162 break; 13163 13164 if (!throttled_hierarchy(cfs_rq)) 13165 list_add_leaf_cfs_rq(cfs_rq); 13166 } 13167 } 13168 #else 13169 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 13170 #endif 13171 13172 static void detach_entity_cfs_rq(struct sched_entity *se) 13173 { 13174 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13175 13176 #ifdef CONFIG_SMP 13177 /* 13178 * In case the task sched_avg hasn't been attached: 13179 * - A forked task which hasn't been woken up by wake_up_new_task(). 13180 * - A task which has been woken up by try_to_wake_up() but is 13181 * waiting for actually being woken up by sched_ttwu_pending(). 13182 */ 13183 if (!se->avg.last_update_time) 13184 return; 13185 #endif 13186 13187 /* Catch up with the cfs_rq and remove our load when we leave */ 13188 update_load_avg(cfs_rq, se, 0); 13189 detach_entity_load_avg(cfs_rq, se); 13190 update_tg_load_avg(cfs_rq); 13191 propagate_entity_cfs_rq(se); 13192 } 13193 13194 static void attach_entity_cfs_rq(struct sched_entity *se) 13195 { 13196 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13197 13198 /* Synchronize entity with its cfs_rq */ 13199 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 13200 attach_entity_load_avg(cfs_rq, se); 13201 update_tg_load_avg(cfs_rq); 13202 propagate_entity_cfs_rq(se); 13203 } 13204 13205 static void detach_task_cfs_rq(struct task_struct *p) 13206 { 13207 struct sched_entity *se = &p->se; 13208 13209 detach_entity_cfs_rq(se); 13210 } 13211 13212 static void attach_task_cfs_rq(struct task_struct *p) 13213 { 13214 struct sched_entity *se = &p->se; 13215 13216 attach_entity_cfs_rq(se); 13217 } 13218 13219 static void switched_from_fair(struct rq *rq, struct task_struct *p) 13220 { 13221 detach_task_cfs_rq(p); 13222 } 13223 13224 static void switched_to_fair(struct rq *rq, struct task_struct *p) 13225 { 13226 SCHED_WARN_ON(p->se.sched_delayed); 13227 13228 attach_task_cfs_rq(p); 13229 13230 set_task_max_allowed_capacity(p); 13231 13232 if (task_on_rq_queued(p)) { 13233 /* 13234 * We were most likely switched from sched_rt, so 13235 * kick off the schedule if running, otherwise just see 13236 * if we can still preempt the current task. 13237 */ 13238 if (task_current_donor(rq, p)) 13239 resched_curr(rq); 13240 else 13241 wakeup_preempt(rq, p, 0); 13242 } 13243 } 13244 13245 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13246 { 13247 struct sched_entity *se = &p->se; 13248 13249 #ifdef CONFIG_SMP 13250 if (task_on_rq_queued(p)) { 13251 /* 13252 * Move the next running task to the front of the list, so our 13253 * cfs_tasks list becomes MRU one. 13254 */ 13255 list_move(&se->group_node, &rq->cfs_tasks); 13256 } 13257 #endif 13258 if (!first) 13259 return; 13260 13261 SCHED_WARN_ON(se->sched_delayed); 13262 13263 if (hrtick_enabled_fair(rq)) 13264 hrtick_start_fair(rq, p); 13265 13266 update_misfit_status(p, rq); 13267 sched_fair_update_stop_tick(rq, p); 13268 } 13269 13270 /* 13271 * Account for a task changing its policy or group. 13272 * 13273 * This routine is mostly called to set cfs_rq->curr field when a task 13274 * migrates between groups/classes. 13275 */ 13276 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13277 { 13278 struct sched_entity *se = &p->se; 13279 13280 for_each_sched_entity(se) { 13281 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13282 13283 set_next_entity(cfs_rq, se); 13284 /* ensure bandwidth has been allocated on our new cfs_rq */ 13285 account_cfs_rq_runtime(cfs_rq, 0); 13286 } 13287 13288 __set_next_task_fair(rq, p, first); 13289 } 13290 13291 void init_cfs_rq(struct cfs_rq *cfs_rq) 13292 { 13293 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 13294 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 13295 #ifdef CONFIG_SMP 13296 raw_spin_lock_init(&cfs_rq->removed.lock); 13297 #endif 13298 } 13299 13300 #ifdef CONFIG_FAIR_GROUP_SCHED 13301 static void task_change_group_fair(struct task_struct *p) 13302 { 13303 /* 13304 * We couldn't detach or attach a forked task which 13305 * hasn't been woken up by wake_up_new_task(). 13306 */ 13307 if (READ_ONCE(p->__state) == TASK_NEW) 13308 return; 13309 13310 detach_task_cfs_rq(p); 13311 13312 #ifdef CONFIG_SMP 13313 /* Tell se's cfs_rq has been changed -- migrated */ 13314 p->se.avg.last_update_time = 0; 13315 #endif 13316 set_task_rq(p, task_cpu(p)); 13317 attach_task_cfs_rq(p); 13318 } 13319 13320 void free_fair_sched_group(struct task_group *tg) 13321 { 13322 int i; 13323 13324 for_each_possible_cpu(i) { 13325 if (tg->cfs_rq) 13326 kfree(tg->cfs_rq[i]); 13327 if (tg->se) 13328 kfree(tg->se[i]); 13329 } 13330 13331 kfree(tg->cfs_rq); 13332 kfree(tg->se); 13333 } 13334 13335 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 13336 { 13337 struct sched_entity *se; 13338 struct cfs_rq *cfs_rq; 13339 int i; 13340 13341 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 13342 if (!tg->cfs_rq) 13343 goto err; 13344 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 13345 if (!tg->se) 13346 goto err; 13347 13348 tg->shares = NICE_0_LOAD; 13349 13350 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 13351 13352 for_each_possible_cpu(i) { 13353 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 13354 GFP_KERNEL, cpu_to_node(i)); 13355 if (!cfs_rq) 13356 goto err; 13357 13358 se = kzalloc_node(sizeof(struct sched_entity_stats), 13359 GFP_KERNEL, cpu_to_node(i)); 13360 if (!se) 13361 goto err_free_rq; 13362 13363 init_cfs_rq(cfs_rq); 13364 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 13365 init_entity_runnable_average(se); 13366 } 13367 13368 return 1; 13369 13370 err_free_rq: 13371 kfree(cfs_rq); 13372 err: 13373 return 0; 13374 } 13375 13376 void online_fair_sched_group(struct task_group *tg) 13377 { 13378 struct sched_entity *se; 13379 struct rq_flags rf; 13380 struct rq *rq; 13381 int i; 13382 13383 for_each_possible_cpu(i) { 13384 rq = cpu_rq(i); 13385 se = tg->se[i]; 13386 rq_lock_irq(rq, &rf); 13387 update_rq_clock(rq); 13388 attach_entity_cfs_rq(se); 13389 sync_throttle(tg, i); 13390 rq_unlock_irq(rq, &rf); 13391 } 13392 } 13393 13394 void unregister_fair_sched_group(struct task_group *tg) 13395 { 13396 int cpu; 13397 13398 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 13399 13400 for_each_possible_cpu(cpu) { 13401 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 13402 struct sched_entity *se = tg->se[cpu]; 13403 struct rq *rq = cpu_rq(cpu); 13404 13405 if (se) { 13406 if (se->sched_delayed) { 13407 guard(rq_lock_irqsave)(rq); 13408 if (se->sched_delayed) { 13409 update_rq_clock(rq); 13410 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 13411 } 13412 list_del_leaf_cfs_rq(cfs_rq); 13413 } 13414 remove_entity_load_avg(se); 13415 } 13416 13417 /* 13418 * Only empty task groups can be destroyed; so we can speculatively 13419 * check on_list without danger of it being re-added. 13420 */ 13421 if (cfs_rq->on_list) { 13422 guard(rq_lock_irqsave)(rq); 13423 list_del_leaf_cfs_rq(cfs_rq); 13424 } 13425 } 13426 } 13427 13428 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13429 struct sched_entity *se, int cpu, 13430 struct sched_entity *parent) 13431 { 13432 struct rq *rq = cpu_rq(cpu); 13433 13434 cfs_rq->tg = tg; 13435 cfs_rq->rq = rq; 13436 init_cfs_rq_runtime(cfs_rq); 13437 13438 tg->cfs_rq[cpu] = cfs_rq; 13439 tg->se[cpu] = se; 13440 13441 /* se could be NULL for root_task_group */ 13442 if (!se) 13443 return; 13444 13445 if (!parent) { 13446 se->cfs_rq = &rq->cfs; 13447 se->depth = 0; 13448 } else { 13449 se->cfs_rq = parent->my_q; 13450 se->depth = parent->depth + 1; 13451 } 13452 13453 se->my_q = cfs_rq; 13454 /* guarantee group entities always have weight */ 13455 update_load_set(&se->load, NICE_0_LOAD); 13456 se->parent = parent; 13457 } 13458 13459 static DEFINE_MUTEX(shares_mutex); 13460 13461 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13462 { 13463 int i; 13464 13465 lockdep_assert_held(&shares_mutex); 13466 13467 /* 13468 * We can't change the weight of the root cgroup. 13469 */ 13470 if (!tg->se[0]) 13471 return -EINVAL; 13472 13473 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13474 13475 if (tg->shares == shares) 13476 return 0; 13477 13478 tg->shares = shares; 13479 for_each_possible_cpu(i) { 13480 struct rq *rq = cpu_rq(i); 13481 struct sched_entity *se = tg->se[i]; 13482 struct rq_flags rf; 13483 13484 /* Propagate contribution to hierarchy */ 13485 rq_lock_irqsave(rq, &rf); 13486 update_rq_clock(rq); 13487 for_each_sched_entity(se) { 13488 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13489 update_cfs_group(se); 13490 } 13491 rq_unlock_irqrestore(rq, &rf); 13492 } 13493 13494 return 0; 13495 } 13496 13497 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13498 { 13499 int ret; 13500 13501 mutex_lock(&shares_mutex); 13502 if (tg_is_idle(tg)) 13503 ret = -EINVAL; 13504 else 13505 ret = __sched_group_set_shares(tg, shares); 13506 mutex_unlock(&shares_mutex); 13507 13508 return ret; 13509 } 13510 13511 int sched_group_set_idle(struct task_group *tg, long idle) 13512 { 13513 int i; 13514 13515 if (tg == &root_task_group) 13516 return -EINVAL; 13517 13518 if (idle < 0 || idle > 1) 13519 return -EINVAL; 13520 13521 mutex_lock(&shares_mutex); 13522 13523 if (tg->idle == idle) { 13524 mutex_unlock(&shares_mutex); 13525 return 0; 13526 } 13527 13528 tg->idle = idle; 13529 13530 for_each_possible_cpu(i) { 13531 struct rq *rq = cpu_rq(i); 13532 struct sched_entity *se = tg->se[i]; 13533 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i]; 13534 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13535 long idle_task_delta; 13536 struct rq_flags rf; 13537 13538 rq_lock_irqsave(rq, &rf); 13539 13540 grp_cfs_rq->idle = idle; 13541 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13542 goto next_cpu; 13543 13544 idle_task_delta = grp_cfs_rq->h_nr_queued - 13545 grp_cfs_rq->h_nr_idle; 13546 if (!cfs_rq_is_idle(grp_cfs_rq)) 13547 idle_task_delta *= -1; 13548 13549 for_each_sched_entity(se) { 13550 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13551 13552 if (!se->on_rq) 13553 break; 13554 13555 cfs_rq->h_nr_idle += idle_task_delta; 13556 13557 /* Already accounted at parent level and above. */ 13558 if (cfs_rq_is_idle(cfs_rq)) 13559 break; 13560 } 13561 13562 next_cpu: 13563 rq_unlock_irqrestore(rq, &rf); 13564 } 13565 13566 /* Idle groups have minimum weight. */ 13567 if (tg_is_idle(tg)) 13568 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13569 else 13570 __sched_group_set_shares(tg, NICE_0_LOAD); 13571 13572 mutex_unlock(&shares_mutex); 13573 return 0; 13574 } 13575 13576 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13577 13578 13579 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13580 { 13581 struct sched_entity *se = &task->se; 13582 unsigned int rr_interval = 0; 13583 13584 /* 13585 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13586 * idle runqueue: 13587 */ 13588 if (rq->cfs.load.weight) 13589 rr_interval = NS_TO_JIFFIES(se->slice); 13590 13591 return rr_interval; 13592 } 13593 13594 /* 13595 * All the scheduling class methods: 13596 */ 13597 DEFINE_SCHED_CLASS(fair) = { 13598 13599 .enqueue_task = enqueue_task_fair, 13600 .dequeue_task = dequeue_task_fair, 13601 .yield_task = yield_task_fair, 13602 .yield_to_task = yield_to_task_fair, 13603 13604 .wakeup_preempt = check_preempt_wakeup_fair, 13605 13606 .pick_task = pick_task_fair, 13607 .pick_next_task = __pick_next_task_fair, 13608 .put_prev_task = put_prev_task_fair, 13609 .set_next_task = set_next_task_fair, 13610 13611 #ifdef CONFIG_SMP 13612 .balance = balance_fair, 13613 .select_task_rq = select_task_rq_fair, 13614 .migrate_task_rq = migrate_task_rq_fair, 13615 13616 .rq_online = rq_online_fair, 13617 .rq_offline = rq_offline_fair, 13618 13619 .task_dead = task_dead_fair, 13620 .set_cpus_allowed = set_cpus_allowed_fair, 13621 #endif 13622 13623 .task_tick = task_tick_fair, 13624 .task_fork = task_fork_fair, 13625 13626 .reweight_task = reweight_task_fair, 13627 .prio_changed = prio_changed_fair, 13628 .switched_from = switched_from_fair, 13629 .switched_to = switched_to_fair, 13630 13631 .get_rr_interval = get_rr_interval_fair, 13632 13633 .update_curr = update_curr_fair, 13634 13635 #ifdef CONFIG_FAIR_GROUP_SCHED 13636 .task_change_group = task_change_group_fair, 13637 #endif 13638 13639 #ifdef CONFIG_SCHED_CORE 13640 .task_is_throttled = task_is_throttled_fair, 13641 #endif 13642 13643 #ifdef CONFIG_UCLAMP_TASK 13644 .uclamp_enabled = 1, 13645 #endif 13646 }; 13647 13648 #ifdef CONFIG_SCHED_DEBUG 13649 void print_cfs_stats(struct seq_file *m, int cpu) 13650 { 13651 struct cfs_rq *cfs_rq, *pos; 13652 13653 rcu_read_lock(); 13654 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13655 print_cfs_rq(m, cpu, cfs_rq); 13656 rcu_read_unlock(); 13657 } 13658 13659 #ifdef CONFIG_NUMA_BALANCING 13660 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13661 { 13662 int node; 13663 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13664 struct numa_group *ng; 13665 13666 rcu_read_lock(); 13667 ng = rcu_dereference(p->numa_group); 13668 for_each_online_node(node) { 13669 if (p->numa_faults) { 13670 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13671 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13672 } 13673 if (ng) { 13674 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13675 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13676 } 13677 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13678 } 13679 rcu_read_unlock(); 13680 } 13681 #endif /* CONFIG_NUMA_BALANCING */ 13682 #endif /* CONFIG_SCHED_DEBUG */ 13683 13684 __init void init_sched_fair_class(void) 13685 { 13686 #ifdef CONFIG_SMP 13687 int i; 13688 13689 for_each_possible_cpu(i) { 13690 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13691 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13692 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13693 GFP_KERNEL, cpu_to_node(i)); 13694 13695 #ifdef CONFIG_CFS_BANDWIDTH 13696 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13697 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13698 #endif 13699 } 13700 13701 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13702 13703 #ifdef CONFIG_NO_HZ_COMMON 13704 nohz.next_balance = jiffies; 13705 nohz.next_blocked = jiffies; 13706 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13707 #endif 13708 #endif /* SMP */ 13709 13710 } 13711