1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst 4 * 5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 7 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 8 */ 9 #define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void))) 10 11 enum scx_consts { 12 SCX_SLICE_BYPASS = SCX_SLICE_DFL / 4, 13 SCX_DSP_DFL_MAX_BATCH = 32, 14 SCX_DSP_MAX_LOOPS = 32, 15 SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ, 16 17 SCX_EXIT_BT_LEN = 64, 18 SCX_EXIT_MSG_LEN = 1024, 19 SCX_EXIT_DUMP_DFL_LEN = 32768, 20 21 SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE, 22 }; 23 24 enum scx_exit_kind { 25 SCX_EXIT_NONE, 26 SCX_EXIT_DONE, 27 28 SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */ 29 SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */ 30 SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */ 31 SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */ 32 33 SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */ 34 SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */ 35 SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */ 36 }; 37 38 /* 39 * An exit code can be specified when exiting with scx_bpf_exit() or 40 * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN 41 * respectively. The codes are 64bit of the format: 42 * 43 * Bits: [63 .. 48 47 .. 32 31 .. 0] 44 * [ SYS ACT ] [ SYS RSN ] [ USR ] 45 * 46 * SYS ACT: System-defined exit actions 47 * SYS RSN: System-defined exit reasons 48 * USR : User-defined exit codes and reasons 49 * 50 * Using the above, users may communicate intention and context by ORing system 51 * actions and/or system reasons with a user-defined exit code. 52 */ 53 enum scx_exit_code { 54 /* Reasons */ 55 SCX_ECODE_RSN_HOTPLUG = 1LLU << 32, 56 57 /* Actions */ 58 SCX_ECODE_ACT_RESTART = 1LLU << 48, 59 }; 60 61 /* 62 * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is 63 * being disabled. 64 */ 65 struct scx_exit_info { 66 /* %SCX_EXIT_* - broad category of the exit reason */ 67 enum scx_exit_kind kind; 68 69 /* exit code if gracefully exiting */ 70 s64 exit_code; 71 72 /* textual representation of the above */ 73 const char *reason; 74 75 /* backtrace if exiting due to an error */ 76 unsigned long *bt; 77 u32 bt_len; 78 79 /* informational message */ 80 char *msg; 81 82 /* debug dump */ 83 char *dump; 84 }; 85 86 /* sched_ext_ops.flags */ 87 enum scx_ops_flags { 88 /* 89 * Keep built-in idle tracking even if ops.update_idle() is implemented. 90 */ 91 SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0, 92 93 /* 94 * By default, if there are no other task to run on the CPU, ext core 95 * keeps running the current task even after its slice expires. If this 96 * flag is specified, such tasks are passed to ops.enqueue() with 97 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info. 98 */ 99 SCX_OPS_ENQ_LAST = 1LLU << 1, 100 101 /* 102 * An exiting task may schedule after PF_EXITING is set. In such cases, 103 * bpf_task_from_pid() may not be able to find the task and if the BPF 104 * scheduler depends on pid lookup for dispatching, the task will be 105 * lost leading to various issues including RCU grace period stalls. 106 * 107 * To mask this problem, by default, unhashed tasks are automatically 108 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't 109 * depend on pid lookups and wants to handle these tasks directly, the 110 * following flag can be used. 111 */ 112 SCX_OPS_ENQ_EXITING = 1LLU << 2, 113 114 /* 115 * If set, only tasks with policy set to SCHED_EXT are attached to 116 * sched_ext. If clear, SCHED_NORMAL tasks are also included. 117 */ 118 SCX_OPS_SWITCH_PARTIAL = 1LLU << 3, 119 120 /* 121 * CPU cgroup support flags 122 */ 123 SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16, /* cpu.weight */ 124 125 SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE | 126 SCX_OPS_ENQ_LAST | 127 SCX_OPS_ENQ_EXITING | 128 SCX_OPS_SWITCH_PARTIAL | 129 SCX_OPS_HAS_CGROUP_WEIGHT, 130 }; 131 132 /* argument container for ops.init_task() */ 133 struct scx_init_task_args { 134 /* 135 * Set if ops.init_task() is being invoked on the fork path, as opposed 136 * to the scheduler transition path. 137 */ 138 bool fork; 139 #ifdef CONFIG_EXT_GROUP_SCHED 140 /* the cgroup the task is joining */ 141 struct cgroup *cgroup; 142 #endif 143 }; 144 145 /* argument container for ops.exit_task() */ 146 struct scx_exit_task_args { 147 /* Whether the task exited before running on sched_ext. */ 148 bool cancelled; 149 }; 150 151 /* argument container for ops->cgroup_init() */ 152 struct scx_cgroup_init_args { 153 /* the weight of the cgroup [1..10000] */ 154 u32 weight; 155 }; 156 157 enum scx_cpu_preempt_reason { 158 /* next task is being scheduled by &sched_class_rt */ 159 SCX_CPU_PREEMPT_RT, 160 /* next task is being scheduled by &sched_class_dl */ 161 SCX_CPU_PREEMPT_DL, 162 /* next task is being scheduled by &sched_class_stop */ 163 SCX_CPU_PREEMPT_STOP, 164 /* unknown reason for SCX being preempted */ 165 SCX_CPU_PREEMPT_UNKNOWN, 166 }; 167 168 /* 169 * Argument container for ops->cpu_acquire(). Currently empty, but may be 170 * expanded in the future. 171 */ 172 struct scx_cpu_acquire_args {}; 173 174 /* argument container for ops->cpu_release() */ 175 struct scx_cpu_release_args { 176 /* the reason the CPU was preempted */ 177 enum scx_cpu_preempt_reason reason; 178 179 /* the task that's going to be scheduled on the CPU */ 180 struct task_struct *task; 181 }; 182 183 /* 184 * Informational context provided to dump operations. 185 */ 186 struct scx_dump_ctx { 187 enum scx_exit_kind kind; 188 s64 exit_code; 189 const char *reason; 190 u64 at_ns; 191 u64 at_jiffies; 192 }; 193 194 /** 195 * struct sched_ext_ops - Operation table for BPF scheduler implementation 196 * 197 * Userland can implement an arbitrary scheduling policy by implementing and 198 * loading operations in this table. 199 */ 200 struct sched_ext_ops { 201 /** 202 * select_cpu - Pick the target CPU for a task which is being woken up 203 * @p: task being woken up 204 * @prev_cpu: the cpu @p was on before sleeping 205 * @wake_flags: SCX_WAKE_* 206 * 207 * Decision made here isn't final. @p may be moved to any CPU while it 208 * is getting dispatched for execution later. However, as @p is not on 209 * the rq at this point, getting the eventual execution CPU right here 210 * saves a small bit of overhead down the line. 211 * 212 * If an idle CPU is returned, the CPU is kicked and will try to 213 * dispatch. While an explicit custom mechanism can be added, 214 * select_cpu() serves as the default way to wake up idle CPUs. 215 * 216 * @p may be dispatched directly by calling scx_bpf_dispatch(). If @p 217 * is dispatched, the ops.enqueue() callback will be skipped. Finally, 218 * if @p is dispatched to SCX_DSQ_LOCAL, it will be dispatched to the 219 * local DSQ of whatever CPU is returned by this callback. 220 */ 221 s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags); 222 223 /** 224 * enqueue - Enqueue a task on the BPF scheduler 225 * @p: task being enqueued 226 * @enq_flags: %SCX_ENQ_* 227 * 228 * @p is ready to run. Dispatch directly by calling scx_bpf_dispatch() 229 * or enqueue on the BPF scheduler. If not directly dispatched, the bpf 230 * scheduler owns @p and if it fails to dispatch @p, the task will 231 * stall. 232 * 233 * If @p was dispatched from ops.select_cpu(), this callback is 234 * skipped. 235 */ 236 void (*enqueue)(struct task_struct *p, u64 enq_flags); 237 238 /** 239 * dequeue - Remove a task from the BPF scheduler 240 * @p: task being dequeued 241 * @deq_flags: %SCX_DEQ_* 242 * 243 * Remove @p from the BPF scheduler. This is usually called to isolate 244 * the task while updating its scheduling properties (e.g. priority). 245 * 246 * The ext core keeps track of whether the BPF side owns a given task or 247 * not and can gracefully ignore spurious dispatches from BPF side, 248 * which makes it safe to not implement this method. However, depending 249 * on the scheduling logic, this can lead to confusing behaviors - e.g. 250 * scheduling position not being updated across a priority change. 251 */ 252 void (*dequeue)(struct task_struct *p, u64 deq_flags); 253 254 /** 255 * dispatch - Dispatch tasks from the BPF scheduler and/or consume DSQs 256 * @cpu: CPU to dispatch tasks for 257 * @prev: previous task being switched out 258 * 259 * Called when a CPU's local dsq is empty. The operation should dispatch 260 * one or more tasks from the BPF scheduler into the DSQs using 261 * scx_bpf_dispatch() and/or consume user DSQs into the local DSQ using 262 * scx_bpf_consume(). 263 * 264 * The maximum number of times scx_bpf_dispatch() can be called without 265 * an intervening scx_bpf_consume() is specified by 266 * ops.dispatch_max_batch. See the comments on top of the two functions 267 * for more details. 268 * 269 * When not %NULL, @prev is an SCX task with its slice depleted. If 270 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in 271 * @prev->scx.flags, it is not enqueued yet and will be enqueued after 272 * ops.dispatch() returns. To keep executing @prev, return without 273 * dispatching or consuming any tasks. Also see %SCX_OPS_ENQ_LAST. 274 */ 275 void (*dispatch)(s32 cpu, struct task_struct *prev); 276 277 /** 278 * tick - Periodic tick 279 * @p: task running currently 280 * 281 * This operation is called every 1/HZ seconds on CPUs which are 282 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an 283 * immediate dispatch cycle on the CPU. 284 */ 285 void (*tick)(struct task_struct *p); 286 287 /** 288 * runnable - A task is becoming runnable on its associated CPU 289 * @p: task becoming runnable 290 * @enq_flags: %SCX_ENQ_* 291 * 292 * This and the following three functions can be used to track a task's 293 * execution state transitions. A task becomes ->runnable() on a CPU, 294 * and then goes through one or more ->running() and ->stopping() pairs 295 * as it runs on the CPU, and eventually becomes ->quiescent() when it's 296 * done running on the CPU. 297 * 298 * @p is becoming runnable on the CPU because it's 299 * 300 * - waking up (%SCX_ENQ_WAKEUP) 301 * - being moved from another CPU 302 * - being restored after temporarily taken off the queue for an 303 * attribute change. 304 * 305 * This and ->enqueue() are related but not coupled. This operation 306 * notifies @p's state transition and may not be followed by ->enqueue() 307 * e.g. when @p is being dispatched to a remote CPU, or when @p is 308 * being enqueued on a CPU experiencing a hotplug event. Likewise, a 309 * task may be ->enqueue()'d without being preceded by this operation 310 * e.g. after exhausting its slice. 311 */ 312 void (*runnable)(struct task_struct *p, u64 enq_flags); 313 314 /** 315 * running - A task is starting to run on its associated CPU 316 * @p: task starting to run 317 * 318 * See ->runnable() for explanation on the task state notifiers. 319 */ 320 void (*running)(struct task_struct *p); 321 322 /** 323 * stopping - A task is stopping execution 324 * @p: task stopping to run 325 * @runnable: is task @p still runnable? 326 * 327 * See ->runnable() for explanation on the task state notifiers. If 328 * !@runnable, ->quiescent() will be invoked after this operation 329 * returns. 330 */ 331 void (*stopping)(struct task_struct *p, bool runnable); 332 333 /** 334 * quiescent - A task is becoming not runnable on its associated CPU 335 * @p: task becoming not runnable 336 * @deq_flags: %SCX_DEQ_* 337 * 338 * See ->runnable() for explanation on the task state notifiers. 339 * 340 * @p is becoming quiescent on the CPU because it's 341 * 342 * - sleeping (%SCX_DEQ_SLEEP) 343 * - being moved to another CPU 344 * - being temporarily taken off the queue for an attribute change 345 * (%SCX_DEQ_SAVE) 346 * 347 * This and ->dequeue() are related but not coupled. This operation 348 * notifies @p's state transition and may not be preceded by ->dequeue() 349 * e.g. when @p is being dispatched to a remote CPU. 350 */ 351 void (*quiescent)(struct task_struct *p, u64 deq_flags); 352 353 /** 354 * yield - Yield CPU 355 * @from: yielding task 356 * @to: optional yield target task 357 * 358 * If @to is NULL, @from is yielding the CPU to other runnable tasks. 359 * The BPF scheduler should ensure that other available tasks are 360 * dispatched before the yielding task. Return value is ignored in this 361 * case. 362 * 363 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf 364 * scheduler can implement the request, return %true; otherwise, %false. 365 */ 366 bool (*yield)(struct task_struct *from, struct task_struct *to); 367 368 /** 369 * core_sched_before - Task ordering for core-sched 370 * @a: task A 371 * @b: task B 372 * 373 * Used by core-sched to determine the ordering between two tasks. See 374 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on 375 * core-sched. 376 * 377 * Both @a and @b are runnable and may or may not currently be queued on 378 * the BPF scheduler. Should return %true if @a should run before @b. 379 * %false if there's no required ordering or @b should run before @a. 380 * 381 * If not specified, the default is ordering them according to when they 382 * became runnable. 383 */ 384 bool (*core_sched_before)(struct task_struct *a, struct task_struct *b); 385 386 /** 387 * set_weight - Set task weight 388 * @p: task to set weight for 389 * @weight: new weight [1..10000] 390 * 391 * Update @p's weight to @weight. 392 */ 393 void (*set_weight)(struct task_struct *p, u32 weight); 394 395 /** 396 * set_cpumask - Set CPU affinity 397 * @p: task to set CPU affinity for 398 * @cpumask: cpumask of cpus that @p can run on 399 * 400 * Update @p's CPU affinity to @cpumask. 401 */ 402 void (*set_cpumask)(struct task_struct *p, 403 const struct cpumask *cpumask); 404 405 /** 406 * update_idle - Update the idle state of a CPU 407 * @cpu: CPU to udpate the idle state for 408 * @idle: whether entering or exiting the idle state 409 * 410 * This operation is called when @rq's CPU goes or leaves the idle 411 * state. By default, implementing this operation disables the built-in 412 * idle CPU tracking and the following helpers become unavailable: 413 * 414 * - scx_bpf_select_cpu_dfl() 415 * - scx_bpf_test_and_clear_cpu_idle() 416 * - scx_bpf_pick_idle_cpu() 417 * 418 * The user also must implement ops.select_cpu() as the default 419 * implementation relies on scx_bpf_select_cpu_dfl(). 420 * 421 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle 422 * tracking. 423 */ 424 void (*update_idle)(s32 cpu, bool idle); 425 426 /** 427 * cpu_acquire - A CPU is becoming available to the BPF scheduler 428 * @cpu: The CPU being acquired by the BPF scheduler. 429 * @args: Acquire arguments, see the struct definition. 430 * 431 * A CPU that was previously released from the BPF scheduler is now once 432 * again under its control. 433 */ 434 void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args); 435 436 /** 437 * cpu_release - A CPU is taken away from the BPF scheduler 438 * @cpu: The CPU being released by the BPF scheduler. 439 * @args: Release arguments, see the struct definition. 440 * 441 * The specified CPU is no longer under the control of the BPF 442 * scheduler. This could be because it was preempted by a higher 443 * priority sched_class, though there may be other reasons as well. The 444 * caller should consult @args->reason to determine the cause. 445 */ 446 void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args); 447 448 /** 449 * init_task - Initialize a task to run in a BPF scheduler 450 * @p: task to initialize for BPF scheduling 451 * @args: init arguments, see the struct definition 452 * 453 * Either we're loading a BPF scheduler or a new task is being forked. 454 * Initialize @p for BPF scheduling. This operation may block and can 455 * be used for allocations, and is called exactly once for a task. 456 * 457 * Return 0 for success, -errno for failure. An error return while 458 * loading will abort loading of the BPF scheduler. During a fork, it 459 * will abort that specific fork. 460 */ 461 s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args); 462 463 /** 464 * exit_task - Exit a previously-running task from the system 465 * @p: task to exit 466 * 467 * @p is exiting or the BPF scheduler is being unloaded. Perform any 468 * necessary cleanup for @p. 469 */ 470 void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args); 471 472 /** 473 * enable - Enable BPF scheduling for a task 474 * @p: task to enable BPF scheduling for 475 * 476 * Enable @p for BPF scheduling. enable() is called on @p any time it 477 * enters SCX, and is always paired with a matching disable(). 478 */ 479 void (*enable)(struct task_struct *p); 480 481 /** 482 * disable - Disable BPF scheduling for a task 483 * @p: task to disable BPF scheduling for 484 * 485 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded. 486 * Disable BPF scheduling for @p. A disable() call is always matched 487 * with a prior enable() call. 488 */ 489 void (*disable)(struct task_struct *p); 490 491 /** 492 * dump - Dump BPF scheduler state on error 493 * @ctx: debug dump context 494 * 495 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump. 496 */ 497 void (*dump)(struct scx_dump_ctx *ctx); 498 499 /** 500 * dump_cpu - Dump BPF scheduler state for a CPU on error 501 * @ctx: debug dump context 502 * @cpu: CPU to generate debug dump for 503 * @idle: @cpu is currently idle without any runnable tasks 504 * 505 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 506 * @cpu. If @idle is %true and this operation doesn't produce any 507 * output, @cpu is skipped for dump. 508 */ 509 void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle); 510 511 /** 512 * dump_task - Dump BPF scheduler state for a runnable task on error 513 * @ctx: debug dump context 514 * @p: runnable task to generate debug dump for 515 * 516 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 517 * @p. 518 */ 519 void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p); 520 521 #ifdef CONFIG_EXT_GROUP_SCHED 522 /** 523 * cgroup_init - Initialize a cgroup 524 * @cgrp: cgroup being initialized 525 * @args: init arguments, see the struct definition 526 * 527 * Either the BPF scheduler is being loaded or @cgrp created, initialize 528 * @cgrp for sched_ext. This operation may block. 529 * 530 * Return 0 for success, -errno for failure. An error return while 531 * loading will abort loading of the BPF scheduler. During cgroup 532 * creation, it will abort the specific cgroup creation. 533 */ 534 s32 (*cgroup_init)(struct cgroup *cgrp, 535 struct scx_cgroup_init_args *args); 536 537 /** 538 * cgroup_exit - Exit a cgroup 539 * @cgrp: cgroup being exited 540 * 541 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit 542 * @cgrp for sched_ext. This operation my block. 543 */ 544 void (*cgroup_exit)(struct cgroup *cgrp); 545 546 /** 547 * cgroup_prep_move - Prepare a task to be moved to a different cgroup 548 * @p: task being moved 549 * @from: cgroup @p is being moved from 550 * @to: cgroup @p is being moved to 551 * 552 * Prepare @p for move from cgroup @from to @to. This operation may 553 * block and can be used for allocations. 554 * 555 * Return 0 for success, -errno for failure. An error return aborts the 556 * migration. 557 */ 558 s32 (*cgroup_prep_move)(struct task_struct *p, 559 struct cgroup *from, struct cgroup *to); 560 561 /** 562 * cgroup_move - Commit cgroup move 563 * @p: task being moved 564 * @from: cgroup @p is being moved from 565 * @to: cgroup @p is being moved to 566 * 567 * Commit the move. @p is dequeued during this operation. 568 */ 569 void (*cgroup_move)(struct task_struct *p, 570 struct cgroup *from, struct cgroup *to); 571 572 /** 573 * cgroup_cancel_move - Cancel cgroup move 574 * @p: task whose cgroup move is being canceled 575 * @from: cgroup @p was being moved from 576 * @to: cgroup @p was being moved to 577 * 578 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move(). 579 * Undo the preparation. 580 */ 581 void (*cgroup_cancel_move)(struct task_struct *p, 582 struct cgroup *from, struct cgroup *to); 583 584 /** 585 * cgroup_set_weight - A cgroup's weight is being changed 586 * @cgrp: cgroup whose weight is being updated 587 * @weight: new weight [1..10000] 588 * 589 * Update @tg's weight to @weight. 590 */ 591 void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight); 592 #endif /* CONFIG_CGROUPS */ 593 594 /* 595 * All online ops must come before ops.cpu_online(). 596 */ 597 598 /** 599 * cpu_online - A CPU became online 600 * @cpu: CPU which just came up 601 * 602 * @cpu just came online. @cpu will not call ops.enqueue() or 603 * ops.dispatch(), nor run tasks associated with other CPUs beforehand. 604 */ 605 void (*cpu_online)(s32 cpu); 606 607 /** 608 * cpu_offline - A CPU is going offline 609 * @cpu: CPU which is going offline 610 * 611 * @cpu is going offline. @cpu will not call ops.enqueue() or 612 * ops.dispatch(), nor run tasks associated with other CPUs afterwards. 613 */ 614 void (*cpu_offline)(s32 cpu); 615 616 /* 617 * All CPU hotplug ops must come before ops.init(). 618 */ 619 620 /** 621 * init - Initialize the BPF scheduler 622 */ 623 s32 (*init)(void); 624 625 /** 626 * exit - Clean up after the BPF scheduler 627 * @info: Exit info 628 */ 629 void (*exit)(struct scx_exit_info *info); 630 631 /** 632 * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch 633 */ 634 u32 dispatch_max_batch; 635 636 /** 637 * flags - %SCX_OPS_* flags 638 */ 639 u64 flags; 640 641 /** 642 * timeout_ms - The maximum amount of time, in milliseconds, that a 643 * runnable task should be able to wait before being scheduled. The 644 * maximum timeout may not exceed the default timeout of 30 seconds. 645 * 646 * Defaults to the maximum allowed timeout value of 30 seconds. 647 */ 648 u32 timeout_ms; 649 650 /** 651 * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default 652 * value of 32768 is used. 653 */ 654 u32 exit_dump_len; 655 656 /** 657 * hotplug_seq - A sequence number that may be set by the scheduler to 658 * detect when a hotplug event has occurred during the loading process. 659 * If 0, no detection occurs. Otherwise, the scheduler will fail to 660 * load if the sequence number does not match @scx_hotplug_seq on the 661 * enable path. 662 */ 663 u64 hotplug_seq; 664 665 /** 666 * name - BPF scheduler's name 667 * 668 * Must be a non-zero valid BPF object name including only isalnum(), 669 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the 670 * BPF scheduler is enabled. 671 */ 672 char name[SCX_OPS_NAME_LEN]; 673 }; 674 675 enum scx_opi { 676 SCX_OPI_BEGIN = 0, 677 SCX_OPI_NORMAL_BEGIN = 0, 678 SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online), 679 SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online), 680 SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init), 681 SCX_OPI_END = SCX_OP_IDX(init), 682 }; 683 684 enum scx_wake_flags { 685 /* expose select WF_* flags as enums */ 686 SCX_WAKE_FORK = WF_FORK, 687 SCX_WAKE_TTWU = WF_TTWU, 688 SCX_WAKE_SYNC = WF_SYNC, 689 }; 690 691 enum scx_enq_flags { 692 /* expose select ENQUEUE_* flags as enums */ 693 SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP, 694 SCX_ENQ_HEAD = ENQUEUE_HEAD, 695 696 /* high 32bits are SCX specific */ 697 698 /* 699 * Set the following to trigger preemption when calling 700 * scx_bpf_dispatch() with a local dsq as the target. The slice of the 701 * current task is cleared to zero and the CPU is kicked into the 702 * scheduling path. Implies %SCX_ENQ_HEAD. 703 */ 704 SCX_ENQ_PREEMPT = 1LLU << 32, 705 706 /* 707 * The task being enqueued was previously enqueued on the current CPU's 708 * %SCX_DSQ_LOCAL, but was removed from it in a call to the 709 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was 710 * invoked in a ->cpu_release() callback, and the task is again 711 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the 712 * task will not be scheduled on the CPU until at least the next invocation 713 * of the ->cpu_acquire() callback. 714 */ 715 SCX_ENQ_REENQ = 1LLU << 40, 716 717 /* 718 * The task being enqueued is the only task available for the cpu. By 719 * default, ext core keeps executing such tasks but when 720 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the 721 * %SCX_ENQ_LAST flag set. 722 * 723 * The BPF scheduler is responsible for triggering a follow-up 724 * scheduling event. Otherwise, Execution may stall. 725 */ 726 SCX_ENQ_LAST = 1LLU << 41, 727 728 /* high 8 bits are internal */ 729 __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56, 730 731 SCX_ENQ_CLEAR_OPSS = 1LLU << 56, 732 SCX_ENQ_DSQ_PRIQ = 1LLU << 57, 733 }; 734 735 enum scx_deq_flags { 736 /* expose select DEQUEUE_* flags as enums */ 737 SCX_DEQ_SLEEP = DEQUEUE_SLEEP, 738 739 /* high 32bits are SCX specific */ 740 741 /* 742 * The generic core-sched layer decided to execute the task even though 743 * it hasn't been dispatched yet. Dequeue from the BPF side. 744 */ 745 SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32, 746 }; 747 748 enum scx_pick_idle_cpu_flags { 749 SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */ 750 }; 751 752 enum scx_kick_flags { 753 /* 754 * Kick the target CPU if idle. Guarantees that the target CPU goes 755 * through at least one full scheduling cycle before going idle. If the 756 * target CPU can be determined to be currently not idle and going to go 757 * through a scheduling cycle before going idle, noop. 758 */ 759 SCX_KICK_IDLE = 1LLU << 0, 760 761 /* 762 * Preempt the current task and execute the dispatch path. If the 763 * current task of the target CPU is an SCX task, its ->scx.slice is 764 * cleared to zero before the scheduling path is invoked so that the 765 * task expires and the dispatch path is invoked. 766 */ 767 SCX_KICK_PREEMPT = 1LLU << 1, 768 769 /* 770 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will 771 * return after the target CPU finishes picking the next task. 772 */ 773 SCX_KICK_WAIT = 1LLU << 2, 774 }; 775 776 enum scx_tg_flags { 777 SCX_TG_ONLINE = 1U << 0, 778 SCX_TG_INITED = 1U << 1, 779 }; 780 781 enum scx_ops_enable_state { 782 SCX_OPS_ENABLING, 783 SCX_OPS_ENABLED, 784 SCX_OPS_DISABLING, 785 SCX_OPS_DISABLED, 786 }; 787 788 static const char *scx_ops_enable_state_str[] = { 789 [SCX_OPS_ENABLING] = "enabling", 790 [SCX_OPS_ENABLED] = "enabled", 791 [SCX_OPS_DISABLING] = "disabling", 792 [SCX_OPS_DISABLED] = "disabled", 793 }; 794 795 /* 796 * sched_ext_entity->ops_state 797 * 798 * Used to track the task ownership between the SCX core and the BPF scheduler. 799 * State transitions look as follows: 800 * 801 * NONE -> QUEUEING -> QUEUED -> DISPATCHING 802 * ^ | | 803 * | v v 804 * \-------------------------------/ 805 * 806 * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call 807 * sites for explanations on the conditions being waited upon and why they are 808 * safe. Transitions out of them into NONE or QUEUED must store_release and the 809 * waiters should load_acquire. 810 * 811 * Tracking scx_ops_state enables sched_ext core to reliably determine whether 812 * any given task can be dispatched by the BPF scheduler at all times and thus 813 * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler 814 * to try to dispatch any task anytime regardless of its state as the SCX core 815 * can safely reject invalid dispatches. 816 */ 817 enum scx_ops_state { 818 SCX_OPSS_NONE, /* owned by the SCX core */ 819 SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */ 820 SCX_OPSS_QUEUED, /* owned by the BPF scheduler */ 821 SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */ 822 823 /* 824 * QSEQ brands each QUEUED instance so that, when dispatch races 825 * dequeue/requeue, the dispatcher can tell whether it still has a claim 826 * on the task being dispatched. 827 * 828 * As some 32bit archs can't do 64bit store_release/load_acquire, 829 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on 830 * 32bit machines. The dispatch race window QSEQ protects is very narrow 831 * and runs with IRQ disabled. 30 bits should be sufficient. 832 */ 833 SCX_OPSS_QSEQ_SHIFT = 2, 834 }; 835 836 /* Use macros to ensure that the type is unsigned long for the masks */ 837 #define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1) 838 #define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK) 839 840 /* 841 * During exit, a task may schedule after losing its PIDs. When disabling the 842 * BPF scheduler, we need to be able to iterate tasks in every state to 843 * guarantee system safety. Maintain a dedicated task list which contains every 844 * task between its fork and eventual free. 845 */ 846 static DEFINE_SPINLOCK(scx_tasks_lock); 847 static LIST_HEAD(scx_tasks); 848 849 /* ops enable/disable */ 850 static struct kthread_worker *scx_ops_helper; 851 static DEFINE_MUTEX(scx_ops_enable_mutex); 852 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled); 853 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 854 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED); 855 static atomic_t scx_ops_bypass_depth = ATOMIC_INIT(0); 856 static bool scx_ops_init_task_enabled; 857 static bool scx_switching_all; 858 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 859 860 static struct sched_ext_ops scx_ops; 861 static bool scx_warned_zero_slice; 862 863 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last); 864 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting); 865 static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt); 866 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled); 867 868 static struct static_key_false scx_has_op[SCX_OPI_END] = 869 { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT }; 870 871 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE); 872 static struct scx_exit_info *scx_exit_info; 873 874 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 875 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); 876 877 /* 878 * A monotically increasing sequence number that is incremented every time a 879 * scheduler is enabled. This can be used by to check if any custom sched_ext 880 * scheduler has ever been used in the system. 881 */ 882 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0); 883 884 /* 885 * The maximum amount of time in jiffies that a task may be runnable without 886 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 887 * scx_ops_error(). 888 */ 889 static unsigned long scx_watchdog_timeout; 890 891 /* 892 * The last time the delayed work was run. This delayed work relies on 893 * ksoftirqd being able to run to service timer interrupts, so it's possible 894 * that this work itself could get wedged. To account for this, we check that 895 * it's not stalled in the timer tick, and trigger an error if it is. 896 */ 897 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 898 899 static struct delayed_work scx_watchdog_work; 900 901 /* idle tracking */ 902 #ifdef CONFIG_SMP 903 #ifdef CONFIG_CPUMASK_OFFSTACK 904 #define CL_ALIGNED_IF_ONSTACK 905 #else 906 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp 907 #endif 908 909 static struct { 910 cpumask_var_t cpu; 911 cpumask_var_t smt; 912 } idle_masks CL_ALIGNED_IF_ONSTACK; 913 914 #endif /* CONFIG_SMP */ 915 916 /* for %SCX_KICK_WAIT */ 917 static unsigned long __percpu *scx_kick_cpus_pnt_seqs; 918 919 /* 920 * Direct dispatch marker. 921 * 922 * Non-NULL values are used for direct dispatch from enqueue path. A valid 923 * pointer points to the task currently being enqueued. An ERR_PTR value is used 924 * to indicate that direct dispatch has already happened. 925 */ 926 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 927 928 /* 929 * Dispatch queues. 930 * 931 * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is 932 * to avoid live-locking in bypass mode where all tasks are dispatched to 933 * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't 934 * sufficient, it can be further split. 935 */ 936 static struct scx_dispatch_q **global_dsqs; 937 938 static const struct rhashtable_params dsq_hash_params = { 939 .key_len = 8, 940 .key_offset = offsetof(struct scx_dispatch_q, id), 941 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 942 }; 943 944 static struct rhashtable dsq_hash; 945 static LLIST_HEAD(dsqs_to_free); 946 947 /* dispatch buf */ 948 struct scx_dsp_buf_ent { 949 struct task_struct *task; 950 unsigned long qseq; 951 u64 dsq_id; 952 u64 enq_flags; 953 }; 954 955 static u32 scx_dsp_max_batch; 956 957 struct scx_dsp_ctx { 958 struct rq *rq; 959 u32 cursor; 960 u32 nr_tasks; 961 struct scx_dsp_buf_ent buf[]; 962 }; 963 964 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 965 966 /* string formatting from BPF */ 967 struct scx_bstr_buf { 968 u64 data[MAX_BPRINTF_VARARGS]; 969 char line[SCX_EXIT_MSG_LEN]; 970 }; 971 972 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 973 static struct scx_bstr_buf scx_exit_bstr_buf; 974 975 /* ops debug dump */ 976 struct scx_dump_data { 977 s32 cpu; 978 bool first; 979 s32 cursor; 980 struct seq_buf *s; 981 const char *prefix; 982 struct scx_bstr_buf buf; 983 }; 984 985 static struct scx_dump_data scx_dump_data = { 986 .cpu = -1, 987 }; 988 989 /* /sys/kernel/sched_ext interface */ 990 static struct kset *scx_kset; 991 static struct kobject *scx_root_kobj; 992 993 #define CREATE_TRACE_POINTS 994 #include <trace/events/sched_ext.h> 995 996 static void process_ddsp_deferred_locals(struct rq *rq); 997 static void scx_bpf_kick_cpu(s32 cpu, u64 flags); 998 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 999 s64 exit_code, 1000 const char *fmt, ...); 1001 1002 #define scx_ops_error_kind(err, fmt, args...) \ 1003 scx_ops_exit_kind((err), 0, fmt, ##args) 1004 1005 #define scx_ops_exit(code, fmt, args...) \ 1006 scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args) 1007 1008 #define scx_ops_error(fmt, args...) \ 1009 scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args) 1010 1011 #define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)]) 1012 1013 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 1014 { 1015 if (time_after(at, now)) 1016 return jiffies_to_msecs(at - now); 1017 else 1018 return -(long)jiffies_to_msecs(now - at); 1019 } 1020 1021 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 1022 static u32 higher_bits(u32 flags) 1023 { 1024 return ~((1 << fls(flags)) - 1); 1025 } 1026 1027 /* return the mask with only the highest bit set */ 1028 static u32 highest_bit(u32 flags) 1029 { 1030 int bit = fls(flags); 1031 return ((u64)1 << bit) >> 1; 1032 } 1033 1034 static bool u32_before(u32 a, u32 b) 1035 { 1036 return (s32)(a - b) < 0; 1037 } 1038 1039 static struct scx_dispatch_q *find_global_dsq(struct task_struct *p) 1040 { 1041 return global_dsqs[cpu_to_node(task_cpu(p))]; 1042 } 1043 1044 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id) 1045 { 1046 return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params); 1047 } 1048 1049 /* 1050 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 1051 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 1052 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 1053 * whether it's running from an allowed context. 1054 * 1055 * @mask is constant, always inline to cull the mask calculations. 1056 */ 1057 static __always_inline void scx_kf_allow(u32 mask) 1058 { 1059 /* nesting is allowed only in increasing scx_kf_mask order */ 1060 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 1061 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 1062 current->scx.kf_mask, mask); 1063 current->scx.kf_mask |= mask; 1064 barrier(); 1065 } 1066 1067 static void scx_kf_disallow(u32 mask) 1068 { 1069 barrier(); 1070 current->scx.kf_mask &= ~mask; 1071 } 1072 1073 #define SCX_CALL_OP(mask, op, args...) \ 1074 do { \ 1075 if (mask) { \ 1076 scx_kf_allow(mask); \ 1077 scx_ops.op(args); \ 1078 scx_kf_disallow(mask); \ 1079 } else { \ 1080 scx_ops.op(args); \ 1081 } \ 1082 } while (0) 1083 1084 #define SCX_CALL_OP_RET(mask, op, args...) \ 1085 ({ \ 1086 __typeof__(scx_ops.op(args)) __ret; \ 1087 if (mask) { \ 1088 scx_kf_allow(mask); \ 1089 __ret = scx_ops.op(args); \ 1090 scx_kf_disallow(mask); \ 1091 } else { \ 1092 __ret = scx_ops.op(args); \ 1093 } \ 1094 __ret; \ 1095 }) 1096 1097 /* 1098 * Some kfuncs are allowed only on the tasks that are subjects of the 1099 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 1100 * restrictions, the following SCX_CALL_OP_*() variants should be used when 1101 * invoking scx_ops operations that take task arguments. These can only be used 1102 * for non-nesting operations due to the way the tasks are tracked. 1103 * 1104 * kfuncs which can only operate on such tasks can in turn use 1105 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 1106 * the specific task. 1107 */ 1108 #define SCX_CALL_OP_TASK(mask, op, task, args...) \ 1109 do { \ 1110 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1111 current->scx.kf_tasks[0] = task; \ 1112 SCX_CALL_OP(mask, op, task, ##args); \ 1113 current->scx.kf_tasks[0] = NULL; \ 1114 } while (0) 1115 1116 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \ 1117 ({ \ 1118 __typeof__(scx_ops.op(task, ##args)) __ret; \ 1119 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1120 current->scx.kf_tasks[0] = task; \ 1121 __ret = SCX_CALL_OP_RET(mask, op, task, ##args); \ 1122 current->scx.kf_tasks[0] = NULL; \ 1123 __ret; \ 1124 }) 1125 1126 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \ 1127 ({ \ 1128 __typeof__(scx_ops.op(task0, task1, ##args)) __ret; \ 1129 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1130 current->scx.kf_tasks[0] = task0; \ 1131 current->scx.kf_tasks[1] = task1; \ 1132 __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \ 1133 current->scx.kf_tasks[0] = NULL; \ 1134 current->scx.kf_tasks[1] = NULL; \ 1135 __ret; \ 1136 }) 1137 1138 /* @mask is constant, always inline to cull unnecessary branches */ 1139 static __always_inline bool scx_kf_allowed(u32 mask) 1140 { 1141 if (unlikely(!(current->scx.kf_mask & mask))) { 1142 scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x", 1143 mask, current->scx.kf_mask); 1144 return false; 1145 } 1146 1147 /* 1148 * Enforce nesting boundaries. e.g. A kfunc which can be called from 1149 * DISPATCH must not be called if we're running DEQUEUE which is nested 1150 * inside ops.dispatch(). We don't need to check boundaries for any 1151 * blocking kfuncs as the verifier ensures they're only called from 1152 * sleepable progs. 1153 */ 1154 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 1155 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 1156 scx_ops_error("cpu_release kfunc called from a nested operation"); 1157 return false; 1158 } 1159 1160 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 1161 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 1162 scx_ops_error("dispatch kfunc called from a nested operation"); 1163 return false; 1164 } 1165 1166 return true; 1167 } 1168 1169 /* see SCX_CALL_OP_TASK() */ 1170 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask, 1171 struct task_struct *p) 1172 { 1173 if (!scx_kf_allowed(mask)) 1174 return false; 1175 1176 if (unlikely((p != current->scx.kf_tasks[0] && 1177 p != current->scx.kf_tasks[1]))) { 1178 scx_ops_error("called on a task not being operated on"); 1179 return false; 1180 } 1181 1182 return true; 1183 } 1184 1185 static bool scx_kf_allowed_if_unlocked(void) 1186 { 1187 return !current->scx.kf_mask; 1188 } 1189 1190 /** 1191 * nldsq_next_task - Iterate to the next task in a non-local DSQ 1192 * @dsq: user dsq being interated 1193 * @cur: current position, %NULL to start iteration 1194 * @rev: walk backwards 1195 * 1196 * Returns %NULL when iteration is finished. 1197 */ 1198 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, 1199 struct task_struct *cur, bool rev) 1200 { 1201 struct list_head *list_node; 1202 struct scx_dsq_list_node *dsq_lnode; 1203 1204 lockdep_assert_held(&dsq->lock); 1205 1206 if (cur) 1207 list_node = &cur->scx.dsq_list.node; 1208 else 1209 list_node = &dsq->list; 1210 1211 /* find the next task, need to skip BPF iteration cursors */ 1212 do { 1213 if (rev) 1214 list_node = list_node->prev; 1215 else 1216 list_node = list_node->next; 1217 1218 if (list_node == &dsq->list) 1219 return NULL; 1220 1221 dsq_lnode = container_of(list_node, struct scx_dsq_list_node, 1222 node); 1223 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); 1224 1225 return container_of(dsq_lnode, struct task_struct, scx.dsq_list); 1226 } 1227 1228 #define nldsq_for_each_task(p, dsq) \ 1229 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ 1230 (p) = nldsq_next_task((dsq), (p), false)) 1231 1232 1233 /* 1234 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] 1235 * dispatch order. BPF-visible iterator is opaque and larger to allow future 1236 * changes without breaking backward compatibility. Can be used with 1237 * bpf_for_each(). See bpf_iter_scx_dsq_*(). 1238 */ 1239 enum scx_dsq_iter_flags { 1240 /* iterate in the reverse dispatch order */ 1241 SCX_DSQ_ITER_REV = 1U << 16, 1242 1243 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, 1244 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, 1245 1246 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, 1247 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | 1248 __SCX_DSQ_ITER_HAS_SLICE | 1249 __SCX_DSQ_ITER_HAS_VTIME, 1250 }; 1251 1252 struct bpf_iter_scx_dsq_kern { 1253 struct scx_dsq_list_node cursor; 1254 struct scx_dispatch_q *dsq; 1255 u64 slice; 1256 u64 vtime; 1257 } __attribute__((aligned(8))); 1258 1259 struct bpf_iter_scx_dsq { 1260 u64 __opaque[6]; 1261 } __attribute__((aligned(8))); 1262 1263 1264 /* 1265 * SCX task iterator. 1266 */ 1267 struct scx_task_iter { 1268 struct sched_ext_entity cursor; 1269 struct task_struct *locked; 1270 struct rq *rq; 1271 struct rq_flags rf; 1272 }; 1273 1274 /** 1275 * scx_task_iter_init - Initialize a task iterator 1276 * @iter: iterator to init 1277 * 1278 * Initialize @iter. Must be called with scx_tasks_lock held. Once initialized, 1279 * @iter must eventually be exited with scx_task_iter_exit(). 1280 * 1281 * scx_tasks_lock may be released between this and the first next() call or 1282 * between any two next() calls. If scx_tasks_lock is released between two 1283 * next() calls, the caller is responsible for ensuring that the task being 1284 * iterated remains accessible either through RCU read lock or obtaining a 1285 * reference count. 1286 * 1287 * All tasks which existed when the iteration started are guaranteed to be 1288 * visited as long as they still exist. 1289 */ 1290 static void scx_task_iter_init(struct scx_task_iter *iter) 1291 { 1292 lockdep_assert_held(&scx_tasks_lock); 1293 1294 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & 1295 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); 1296 1297 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 1298 list_add(&iter->cursor.tasks_node, &scx_tasks); 1299 iter->locked = NULL; 1300 } 1301 1302 /** 1303 * scx_task_iter_rq_unlock - Unlock rq locked by a task iterator 1304 * @iter: iterator to unlock rq for 1305 * 1306 * If @iter is in the middle of a locked iteration, it may be locking the rq of 1307 * the task currently being visited. Unlock the rq if so. This function can be 1308 * safely called anytime during an iteration. 1309 * 1310 * Returns %true if the rq @iter was locking is unlocked. %false if @iter was 1311 * not locking an rq. 1312 */ 1313 static bool scx_task_iter_rq_unlock(struct scx_task_iter *iter) 1314 { 1315 if (iter->locked) { 1316 task_rq_unlock(iter->rq, iter->locked, &iter->rf); 1317 iter->locked = NULL; 1318 return true; 1319 } else { 1320 return false; 1321 } 1322 } 1323 1324 /** 1325 * scx_task_iter_exit - Exit a task iterator 1326 * @iter: iterator to exit 1327 * 1328 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held. 1329 * If the iterator holds a task's rq lock, that rq lock is released. See 1330 * scx_task_iter_init() for details. 1331 */ 1332 static void scx_task_iter_exit(struct scx_task_iter *iter) 1333 { 1334 lockdep_assert_held(&scx_tasks_lock); 1335 1336 scx_task_iter_rq_unlock(iter); 1337 list_del_init(&iter->cursor.tasks_node); 1338 } 1339 1340 /** 1341 * scx_task_iter_next - Next task 1342 * @iter: iterator to walk 1343 * 1344 * Visit the next task. See scx_task_iter_init() for details. 1345 */ 1346 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 1347 { 1348 struct list_head *cursor = &iter->cursor.tasks_node; 1349 struct sched_ext_entity *pos; 1350 1351 lockdep_assert_held(&scx_tasks_lock); 1352 1353 list_for_each_entry(pos, cursor, tasks_node) { 1354 if (&pos->tasks_node == &scx_tasks) 1355 return NULL; 1356 if (!(pos->flags & SCX_TASK_CURSOR)) { 1357 list_move(cursor, &pos->tasks_node); 1358 return container_of(pos, struct task_struct, scx); 1359 } 1360 } 1361 1362 /* can't happen, should always terminate at scx_tasks above */ 1363 BUG(); 1364 } 1365 1366 /** 1367 * scx_task_iter_next_locked - Next non-idle task with its rq locked 1368 * @iter: iterator to walk 1369 * @include_dead: Whether we should include dead tasks in the iteration 1370 * 1371 * Visit the non-idle task with its rq lock held. Allows callers to specify 1372 * whether they would like to filter out dead tasks. See scx_task_iter_init() 1373 * for details. 1374 */ 1375 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) 1376 { 1377 struct task_struct *p; 1378 1379 scx_task_iter_rq_unlock(iter); 1380 1381 while ((p = scx_task_iter_next(iter))) { 1382 /* 1383 * scx_task_iter is used to prepare and move tasks into SCX 1384 * while loading the BPF scheduler and vice-versa while 1385 * unloading. The init_tasks ("swappers") should be excluded 1386 * from the iteration because: 1387 * 1388 * - It's unsafe to use __setschduler_prio() on an init_task to 1389 * determine the sched_class to use as it won't preserve its 1390 * idle_sched_class. 1391 * 1392 * - ops.init/exit_task() can easily be confused if called with 1393 * init_tasks as they, e.g., share PID 0. 1394 * 1395 * As init_tasks are never scheduled through SCX, they can be 1396 * skipped safely. Note that is_idle_task() which tests %PF_IDLE 1397 * doesn't work here: 1398 * 1399 * - %PF_IDLE may not be set for an init_task whose CPU hasn't 1400 * yet been onlined. 1401 * 1402 * - %PF_IDLE can be set on tasks that are not init_tasks. See 1403 * play_idle_precise() used by CONFIG_IDLE_INJECT. 1404 * 1405 * Test for idle_sched_class as only init_tasks are on it. 1406 */ 1407 if (p->sched_class != &idle_sched_class) 1408 break; 1409 } 1410 if (!p) 1411 return NULL; 1412 1413 iter->rq = task_rq_lock(p, &iter->rf); 1414 iter->locked = p; 1415 1416 return p; 1417 } 1418 1419 static enum scx_ops_enable_state scx_ops_enable_state(void) 1420 { 1421 return atomic_read(&scx_ops_enable_state_var); 1422 } 1423 1424 static enum scx_ops_enable_state 1425 scx_ops_set_enable_state(enum scx_ops_enable_state to) 1426 { 1427 return atomic_xchg(&scx_ops_enable_state_var, to); 1428 } 1429 1430 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to, 1431 enum scx_ops_enable_state from) 1432 { 1433 int from_v = from; 1434 1435 return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to); 1436 } 1437 1438 static bool scx_rq_bypassing(struct rq *rq) 1439 { 1440 return unlikely(rq->scx.flags & SCX_RQ_BYPASSING); 1441 } 1442 1443 /** 1444 * wait_ops_state - Busy-wait the specified ops state to end 1445 * @p: target task 1446 * @opss: state to wait the end of 1447 * 1448 * Busy-wait for @p to transition out of @opss. This can only be used when the 1449 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 1450 * has load_acquire semantics to ensure that the caller can see the updates made 1451 * in the enqueueing and dispatching paths. 1452 */ 1453 static void wait_ops_state(struct task_struct *p, unsigned long opss) 1454 { 1455 do { 1456 cpu_relax(); 1457 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 1458 } 1459 1460 /** 1461 * ops_cpu_valid - Verify a cpu number 1462 * @cpu: cpu number which came from a BPF ops 1463 * @where: extra information reported on error 1464 * 1465 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 1466 * Verify that it is in range and one of the possible cpus. If invalid, trigger 1467 * an ops error. 1468 */ 1469 static bool ops_cpu_valid(s32 cpu, const char *where) 1470 { 1471 if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) { 1472 return true; 1473 } else { 1474 scx_ops_error("invalid CPU %d%s%s", cpu, 1475 where ? " " : "", where ?: ""); 1476 return false; 1477 } 1478 } 1479 1480 /** 1481 * ops_sanitize_err - Sanitize a -errno value 1482 * @ops_name: operation to blame on failure 1483 * @err: -errno value to sanitize 1484 * 1485 * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return 1486 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 1487 * cause misbehaviors. For an example, a large negative return from 1488 * ops.init_task() triggers an oops when passed up the call chain because the 1489 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 1490 * handled as a pointer. 1491 */ 1492 static int ops_sanitize_err(const char *ops_name, s32 err) 1493 { 1494 if (err < 0 && err >= -MAX_ERRNO) 1495 return err; 1496 1497 scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err); 1498 return -EPROTO; 1499 } 1500 1501 static void run_deferred(struct rq *rq) 1502 { 1503 process_ddsp_deferred_locals(rq); 1504 } 1505 1506 #ifdef CONFIG_SMP 1507 static void deferred_bal_cb_workfn(struct rq *rq) 1508 { 1509 run_deferred(rq); 1510 } 1511 #endif 1512 1513 static void deferred_irq_workfn(struct irq_work *irq_work) 1514 { 1515 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); 1516 1517 raw_spin_rq_lock(rq); 1518 run_deferred(rq); 1519 raw_spin_rq_unlock(rq); 1520 } 1521 1522 /** 1523 * schedule_deferred - Schedule execution of deferred actions on an rq 1524 * @rq: target rq 1525 * 1526 * Schedule execution of deferred actions on @rq. Must be called with @rq 1527 * locked. Deferred actions are executed with @rq locked but unpinned, and thus 1528 * can unlock @rq to e.g. migrate tasks to other rqs. 1529 */ 1530 static void schedule_deferred(struct rq *rq) 1531 { 1532 lockdep_assert_rq_held(rq); 1533 1534 #ifdef CONFIG_SMP 1535 /* 1536 * If in the middle of waking up a task, task_woken_scx() will be called 1537 * afterwards which will then run the deferred actions, no need to 1538 * schedule anything. 1539 */ 1540 if (rq->scx.flags & SCX_RQ_IN_WAKEUP) 1541 return; 1542 1543 /* 1544 * If in balance, the balance callbacks will be called before rq lock is 1545 * released. Schedule one. 1546 */ 1547 if (rq->scx.flags & SCX_RQ_IN_BALANCE) { 1548 queue_balance_callback(rq, &rq->scx.deferred_bal_cb, 1549 deferred_bal_cb_workfn); 1550 return; 1551 } 1552 #endif 1553 /* 1554 * No scheduler hooks available. Queue an irq work. They are executed on 1555 * IRQ re-enable which may take a bit longer than the scheduler hooks. 1556 * The above WAKEUP and BALANCE paths should cover most of the cases and 1557 * the time to IRQ re-enable shouldn't be long. 1558 */ 1559 irq_work_queue(&rq->scx.deferred_irq_work); 1560 } 1561 1562 /** 1563 * touch_core_sched - Update timestamp used for core-sched task ordering 1564 * @rq: rq to read clock from, must be locked 1565 * @p: task to update the timestamp for 1566 * 1567 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to 1568 * implement global or local-DSQ FIFO ordering for core-sched. Should be called 1569 * when a task becomes runnable and its turn on the CPU ends (e.g. slice 1570 * exhaustion). 1571 */ 1572 static void touch_core_sched(struct rq *rq, struct task_struct *p) 1573 { 1574 lockdep_assert_rq_held(rq); 1575 1576 #ifdef CONFIG_SCHED_CORE 1577 /* 1578 * It's okay to update the timestamp spuriously. Use 1579 * sched_core_disabled() which is cheaper than enabled(). 1580 * 1581 * As this is used to determine ordering between tasks of sibling CPUs, 1582 * it may be better to use per-core dispatch sequence instead. 1583 */ 1584 if (!sched_core_disabled()) 1585 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); 1586 #endif 1587 } 1588 1589 /** 1590 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch 1591 * @rq: rq to read clock from, must be locked 1592 * @p: task being dispatched 1593 * 1594 * If the BPF scheduler implements custom core-sched ordering via 1595 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO 1596 * ordering within each local DSQ. This function is called from dispatch paths 1597 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. 1598 */ 1599 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) 1600 { 1601 lockdep_assert_rq_held(rq); 1602 1603 #ifdef CONFIG_SCHED_CORE 1604 if (SCX_HAS_OP(core_sched_before)) 1605 touch_core_sched(rq, p); 1606 #endif 1607 } 1608 1609 static void update_curr_scx(struct rq *rq) 1610 { 1611 struct task_struct *curr = rq->curr; 1612 s64 delta_exec; 1613 1614 delta_exec = update_curr_common(rq); 1615 if (unlikely(delta_exec <= 0)) 1616 return; 1617 1618 if (curr->scx.slice != SCX_SLICE_INF) { 1619 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); 1620 if (!curr->scx.slice) 1621 touch_core_sched(rq, curr); 1622 } 1623 } 1624 1625 static bool scx_dsq_priq_less(struct rb_node *node_a, 1626 const struct rb_node *node_b) 1627 { 1628 const struct task_struct *a = 1629 container_of(node_a, struct task_struct, scx.dsq_priq); 1630 const struct task_struct *b = 1631 container_of(node_b, struct task_struct, scx.dsq_priq); 1632 1633 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); 1634 } 1635 1636 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 1637 { 1638 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 1639 WRITE_ONCE(dsq->nr, dsq->nr + delta); 1640 } 1641 1642 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p, 1643 u64 enq_flags) 1644 { 1645 bool is_local = dsq->id == SCX_DSQ_LOCAL; 1646 1647 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1648 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || 1649 !RB_EMPTY_NODE(&p->scx.dsq_priq)); 1650 1651 if (!is_local) { 1652 raw_spin_lock(&dsq->lock); 1653 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 1654 scx_ops_error("attempting to dispatch to a destroyed dsq"); 1655 /* fall back to the global dsq */ 1656 raw_spin_unlock(&dsq->lock); 1657 dsq = find_global_dsq(p); 1658 raw_spin_lock(&dsq->lock); 1659 } 1660 } 1661 1662 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && 1663 (enq_flags & SCX_ENQ_DSQ_PRIQ))) { 1664 /* 1665 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from 1666 * their FIFO queues. To avoid confusion and accidentally 1667 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we 1668 * disallow any internal DSQ from doing vtime ordering of 1669 * tasks. 1670 */ 1671 scx_ops_error("cannot use vtime ordering for built-in DSQs"); 1672 enq_flags &= ~SCX_ENQ_DSQ_PRIQ; 1673 } 1674 1675 if (enq_flags & SCX_ENQ_DSQ_PRIQ) { 1676 struct rb_node *rbp; 1677 1678 /* 1679 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are 1680 * linked to both the rbtree and list on PRIQs, this can only be 1681 * tested easily when adding the first task. 1682 */ 1683 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && 1684 nldsq_next_task(dsq, NULL, false))) 1685 scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks", 1686 dsq->id); 1687 1688 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; 1689 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); 1690 1691 /* 1692 * Find the previous task and insert after it on the list so 1693 * that @dsq->list is vtime ordered. 1694 */ 1695 rbp = rb_prev(&p->scx.dsq_priq); 1696 if (rbp) { 1697 struct task_struct *prev = 1698 container_of(rbp, struct task_struct, 1699 scx.dsq_priq); 1700 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); 1701 } else { 1702 list_add(&p->scx.dsq_list.node, &dsq->list); 1703 } 1704 } else { 1705 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ 1706 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) 1707 scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks", 1708 dsq->id); 1709 1710 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 1711 list_add(&p->scx.dsq_list.node, &dsq->list); 1712 else 1713 list_add_tail(&p->scx.dsq_list.node, &dsq->list); 1714 } 1715 1716 /* seq records the order tasks are queued, used by BPF DSQ iterator */ 1717 dsq->seq++; 1718 p->scx.dsq_seq = dsq->seq; 1719 1720 dsq_mod_nr(dsq, 1); 1721 p->scx.dsq = dsq; 1722 1723 /* 1724 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 1725 * direct dispatch path, but we clear them here because the direct 1726 * dispatch verdict may be overridden on the enqueue path during e.g. 1727 * bypass. 1728 */ 1729 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 1730 p->scx.ddsp_enq_flags = 0; 1731 1732 /* 1733 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 1734 * match waiters' load_acquire. 1735 */ 1736 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 1737 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1738 1739 if (is_local) { 1740 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 1741 bool preempt = false; 1742 1743 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 1744 rq->curr->sched_class == &ext_sched_class) { 1745 rq->curr->scx.slice = 0; 1746 preempt = true; 1747 } 1748 1749 if (preempt || sched_class_above(&ext_sched_class, 1750 rq->curr->sched_class)) 1751 resched_curr(rq); 1752 } else { 1753 raw_spin_unlock(&dsq->lock); 1754 } 1755 } 1756 1757 static void task_unlink_from_dsq(struct task_struct *p, 1758 struct scx_dispatch_q *dsq) 1759 { 1760 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); 1761 1762 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { 1763 rb_erase(&p->scx.dsq_priq, &dsq->priq); 1764 RB_CLEAR_NODE(&p->scx.dsq_priq); 1765 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; 1766 } 1767 1768 list_del_init(&p->scx.dsq_list.node); 1769 dsq_mod_nr(dsq, -1); 1770 } 1771 1772 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 1773 { 1774 struct scx_dispatch_q *dsq = p->scx.dsq; 1775 bool is_local = dsq == &rq->scx.local_dsq; 1776 1777 if (!dsq) { 1778 /* 1779 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. 1780 * Unlinking is all that's needed to cancel. 1781 */ 1782 if (unlikely(!list_empty(&p->scx.dsq_list.node))) 1783 list_del_init(&p->scx.dsq_list.node); 1784 1785 /* 1786 * When dispatching directly from the BPF scheduler to a local 1787 * DSQ, the task isn't associated with any DSQ but 1788 * @p->scx.holding_cpu may be set under the protection of 1789 * %SCX_OPSS_DISPATCHING. 1790 */ 1791 if (p->scx.holding_cpu >= 0) 1792 p->scx.holding_cpu = -1; 1793 1794 return; 1795 } 1796 1797 if (!is_local) 1798 raw_spin_lock(&dsq->lock); 1799 1800 /* 1801 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't 1802 * change underneath us. 1803 */ 1804 if (p->scx.holding_cpu < 0) { 1805 /* @p must still be on @dsq, dequeue */ 1806 task_unlink_from_dsq(p, dsq); 1807 } else { 1808 /* 1809 * We're racing against dispatch_to_local_dsq() which already 1810 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 1811 * holding_cpu which tells dispatch_to_local_dsq() that it lost 1812 * the race. 1813 */ 1814 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); 1815 p->scx.holding_cpu = -1; 1816 } 1817 p->scx.dsq = NULL; 1818 1819 if (!is_local) 1820 raw_spin_unlock(&dsq->lock); 1821 } 1822 1823 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id, 1824 struct task_struct *p) 1825 { 1826 struct scx_dispatch_q *dsq; 1827 1828 if (dsq_id == SCX_DSQ_LOCAL) 1829 return &rq->scx.local_dsq; 1830 1831 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 1832 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 1833 1834 if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 1835 return find_global_dsq(p); 1836 1837 return &cpu_rq(cpu)->scx.local_dsq; 1838 } 1839 1840 if (dsq_id == SCX_DSQ_GLOBAL) 1841 dsq = find_global_dsq(p); 1842 else 1843 dsq = find_user_dsq(dsq_id); 1844 1845 if (unlikely(!dsq)) { 1846 scx_ops_error("non-existent DSQ 0x%llx for %s[%d]", 1847 dsq_id, p->comm, p->pid); 1848 return find_global_dsq(p); 1849 } 1850 1851 return dsq; 1852 } 1853 1854 static void mark_direct_dispatch(struct task_struct *ddsp_task, 1855 struct task_struct *p, u64 dsq_id, 1856 u64 enq_flags) 1857 { 1858 /* 1859 * Mark that dispatch already happened from ops.select_cpu() or 1860 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 1861 * which can never match a valid task pointer. 1862 */ 1863 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 1864 1865 /* @p must match the task on the enqueue path */ 1866 if (unlikely(p != ddsp_task)) { 1867 if (IS_ERR(ddsp_task)) 1868 scx_ops_error("%s[%d] already direct-dispatched", 1869 p->comm, p->pid); 1870 else 1871 scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 1872 ddsp_task->comm, ddsp_task->pid, 1873 p->comm, p->pid); 1874 return; 1875 } 1876 1877 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 1878 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 1879 1880 p->scx.ddsp_dsq_id = dsq_id; 1881 p->scx.ddsp_enq_flags = enq_flags; 1882 } 1883 1884 static void direct_dispatch(struct task_struct *p, u64 enq_flags) 1885 { 1886 struct rq *rq = task_rq(p); 1887 struct scx_dispatch_q *dsq = 1888 find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); 1889 1890 touch_core_sched_dispatch(rq, p); 1891 1892 p->scx.ddsp_enq_flags |= enq_flags; 1893 1894 /* 1895 * We are in the enqueue path with @rq locked and pinned, and thus can't 1896 * double lock a remote rq and enqueue to its local DSQ. For 1897 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer 1898 * the enqueue so that it's executed when @rq can be unlocked. 1899 */ 1900 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { 1901 unsigned long opss; 1902 1903 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; 1904 1905 switch (opss & SCX_OPSS_STATE_MASK) { 1906 case SCX_OPSS_NONE: 1907 break; 1908 case SCX_OPSS_QUEUEING: 1909 /* 1910 * As @p was never passed to the BPF side, _release is 1911 * not strictly necessary. Still do it for consistency. 1912 */ 1913 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1914 break; 1915 default: 1916 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", 1917 p->comm, p->pid, opss); 1918 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1919 break; 1920 } 1921 1922 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1923 list_add_tail(&p->scx.dsq_list.node, 1924 &rq->scx.ddsp_deferred_locals); 1925 schedule_deferred(rq); 1926 return; 1927 } 1928 1929 dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 1930 } 1931 1932 static bool scx_rq_online(struct rq *rq) 1933 { 1934 /* 1935 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates 1936 * the online state as seen from the BPF scheduler. cpu_active() test 1937 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will 1938 * stay set until the current scheduling operation is complete even if 1939 * we aren't locking @rq. 1940 */ 1941 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); 1942 } 1943 1944 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 1945 int sticky_cpu) 1946 { 1947 bool bypassing = scx_rq_bypassing(rq); 1948 struct task_struct **ddsp_taskp; 1949 unsigned long qseq; 1950 1951 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 1952 1953 /* rq migration */ 1954 if (sticky_cpu == cpu_of(rq)) 1955 goto local_norefill; 1956 1957 /* 1958 * If !scx_rq_online(), we already told the BPF scheduler that the CPU 1959 * is offline and are just running the hotplug path. Don't bother the 1960 * BPF scheduler. 1961 */ 1962 if (!scx_rq_online(rq)) 1963 goto local; 1964 1965 if (bypassing) 1966 goto global; 1967 1968 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1969 goto direct; 1970 1971 /* see %SCX_OPS_ENQ_EXITING */ 1972 if (!static_branch_unlikely(&scx_ops_enq_exiting) && 1973 unlikely(p->flags & PF_EXITING)) 1974 goto local; 1975 1976 if (!SCX_HAS_OP(enqueue)) 1977 goto global; 1978 1979 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 1980 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 1981 1982 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1983 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 1984 1985 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 1986 WARN_ON_ONCE(*ddsp_taskp); 1987 *ddsp_taskp = p; 1988 1989 SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags); 1990 1991 *ddsp_taskp = NULL; 1992 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1993 goto direct; 1994 1995 /* 1996 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 1997 * dequeue may be waiting. The store_release matches their load_acquire. 1998 */ 1999 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 2000 return; 2001 2002 direct: 2003 direct_dispatch(p, enq_flags); 2004 return; 2005 2006 local: 2007 /* 2008 * For task-ordering, slice refill must be treated as implying the end 2009 * of the current slice. Otherwise, the longer @p stays on the CPU, the 2010 * higher priority it becomes from scx_prio_less()'s POV. 2011 */ 2012 touch_core_sched(rq, p); 2013 p->scx.slice = SCX_SLICE_DFL; 2014 local_norefill: 2015 dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags); 2016 return; 2017 2018 global: 2019 touch_core_sched(rq, p); /* see the comment in local: */ 2020 p->scx.slice = bypassing ? SCX_SLICE_BYPASS : SCX_SLICE_DFL; 2021 dispatch_enqueue(find_global_dsq(p), p, enq_flags); 2022 } 2023 2024 static bool task_runnable(const struct task_struct *p) 2025 { 2026 return !list_empty(&p->scx.runnable_node); 2027 } 2028 2029 static void set_task_runnable(struct rq *rq, struct task_struct *p) 2030 { 2031 lockdep_assert_rq_held(rq); 2032 2033 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 2034 p->scx.runnable_at = jiffies; 2035 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 2036 } 2037 2038 /* 2039 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being 2040 * appened to the runnable_list. 2041 */ 2042 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 2043 } 2044 2045 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 2046 { 2047 list_del_init(&p->scx.runnable_node); 2048 if (reset_runnable_at) 2049 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2050 } 2051 2052 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 2053 { 2054 int sticky_cpu = p->scx.sticky_cpu; 2055 2056 if (enq_flags & ENQUEUE_WAKEUP) 2057 rq->scx.flags |= SCX_RQ_IN_WAKEUP; 2058 2059 enq_flags |= rq->scx.extra_enq_flags; 2060 2061 if (sticky_cpu >= 0) 2062 p->scx.sticky_cpu = -1; 2063 2064 /* 2065 * Restoring a running task will be immediately followed by 2066 * set_next_task_scx() which expects the task to not be on the BPF 2067 * scheduler as tasks can only start running through local DSQs. Force 2068 * direct-dispatch into the local DSQ by setting the sticky_cpu. 2069 */ 2070 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 2071 sticky_cpu = cpu_of(rq); 2072 2073 if (p->scx.flags & SCX_TASK_QUEUED) { 2074 WARN_ON_ONCE(!task_runnable(p)); 2075 goto out; 2076 } 2077 2078 set_task_runnable(rq, p); 2079 p->scx.flags |= SCX_TASK_QUEUED; 2080 rq->scx.nr_running++; 2081 add_nr_running(rq, 1); 2082 2083 if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p)) 2084 SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags); 2085 2086 if (enq_flags & SCX_ENQ_WAKEUP) 2087 touch_core_sched(rq, p); 2088 2089 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 2090 out: 2091 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; 2092 } 2093 2094 static void ops_dequeue(struct task_struct *p, u64 deq_flags) 2095 { 2096 unsigned long opss; 2097 2098 /* dequeue is always temporary, don't reset runnable_at */ 2099 clr_task_runnable(p, false); 2100 2101 /* acquire ensures that we see the preceding updates on QUEUED */ 2102 opss = atomic_long_read_acquire(&p->scx.ops_state); 2103 2104 switch (opss & SCX_OPSS_STATE_MASK) { 2105 case SCX_OPSS_NONE: 2106 break; 2107 case SCX_OPSS_QUEUEING: 2108 /* 2109 * QUEUEING is started and finished while holding @p's rq lock. 2110 * As we're holding the rq lock now, we shouldn't see QUEUEING. 2111 */ 2112 BUG(); 2113 case SCX_OPSS_QUEUED: 2114 if (SCX_HAS_OP(dequeue)) 2115 SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags); 2116 2117 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2118 SCX_OPSS_NONE)) 2119 break; 2120 fallthrough; 2121 case SCX_OPSS_DISPATCHING: 2122 /* 2123 * If @p is being dispatched from the BPF scheduler to a DSQ, 2124 * wait for the transfer to complete so that @p doesn't get 2125 * added to its DSQ after dequeueing is complete. 2126 * 2127 * As we're waiting on DISPATCHING with the rq locked, the 2128 * dispatching side shouldn't try to lock the rq while 2129 * DISPATCHING is set. See dispatch_to_local_dsq(). 2130 * 2131 * DISPATCHING shouldn't have qseq set and control can reach 2132 * here with NONE @opss from the above QUEUED case block. 2133 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 2134 */ 2135 wait_ops_state(p, SCX_OPSS_DISPATCHING); 2136 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2137 break; 2138 } 2139 } 2140 2141 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 2142 { 2143 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 2144 WARN_ON_ONCE(task_runnable(p)); 2145 return true; 2146 } 2147 2148 ops_dequeue(p, deq_flags); 2149 2150 /* 2151 * A currently running task which is going off @rq first gets dequeued 2152 * and then stops running. As we want running <-> stopping transitions 2153 * to be contained within runnable <-> quiescent transitions, trigger 2154 * ->stopping() early here instead of in put_prev_task_scx(). 2155 * 2156 * @p may go through multiple stopping <-> running transitions between 2157 * here and put_prev_task_scx() if task attribute changes occur while 2158 * balance_scx() leaves @rq unlocked. However, they don't contain any 2159 * information meaningful to the BPF scheduler and can be suppressed by 2160 * skipping the callbacks if the task is !QUEUED. 2161 */ 2162 if (SCX_HAS_OP(stopping) && task_current(rq, p)) { 2163 update_curr_scx(rq); 2164 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false); 2165 } 2166 2167 if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p)) 2168 SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags); 2169 2170 if (deq_flags & SCX_DEQ_SLEEP) 2171 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 2172 else 2173 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 2174 2175 p->scx.flags &= ~SCX_TASK_QUEUED; 2176 rq->scx.nr_running--; 2177 sub_nr_running(rq, 1); 2178 2179 dispatch_dequeue(rq, p); 2180 return true; 2181 } 2182 2183 static void yield_task_scx(struct rq *rq) 2184 { 2185 struct task_struct *p = rq->curr; 2186 2187 if (SCX_HAS_OP(yield)) 2188 SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL); 2189 else 2190 p->scx.slice = 0; 2191 } 2192 2193 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 2194 { 2195 struct task_struct *from = rq->curr; 2196 2197 if (SCX_HAS_OP(yield)) 2198 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to); 2199 else 2200 return false; 2201 } 2202 2203 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2204 struct scx_dispatch_q *src_dsq, 2205 struct rq *dst_rq) 2206 { 2207 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; 2208 2209 /* @dsq is locked and @p is on @dst_rq */ 2210 lockdep_assert_held(&src_dsq->lock); 2211 lockdep_assert_rq_held(dst_rq); 2212 2213 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2214 2215 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 2216 list_add(&p->scx.dsq_list.node, &dst_dsq->list); 2217 else 2218 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); 2219 2220 dsq_mod_nr(dst_dsq, 1); 2221 p->scx.dsq = dst_dsq; 2222 } 2223 2224 #ifdef CONFIG_SMP 2225 /** 2226 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ 2227 * @p: task to move 2228 * @enq_flags: %SCX_ENQ_* 2229 * @src_rq: rq to move the task from, locked on entry, released on return 2230 * @dst_rq: rq to move the task into, locked on return 2231 * 2232 * Move @p which is currently on @src_rq to @dst_rq's local DSQ. 2233 */ 2234 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2235 struct rq *src_rq, struct rq *dst_rq) 2236 { 2237 lockdep_assert_rq_held(src_rq); 2238 2239 /* the following marks @p MIGRATING which excludes dequeue */ 2240 deactivate_task(src_rq, p, 0); 2241 set_task_cpu(p, cpu_of(dst_rq)); 2242 p->scx.sticky_cpu = cpu_of(dst_rq); 2243 2244 raw_spin_rq_unlock(src_rq); 2245 raw_spin_rq_lock(dst_rq); 2246 2247 /* 2248 * We want to pass scx-specific enq_flags but activate_task() will 2249 * truncate the upper 32 bit. As we own @rq, we can pass them through 2250 * @rq->scx.extra_enq_flags instead. 2251 */ 2252 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); 2253 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); 2254 dst_rq->scx.extra_enq_flags = enq_flags; 2255 activate_task(dst_rq, p, 0); 2256 dst_rq->scx.extra_enq_flags = 0; 2257 } 2258 2259 /* 2260 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two 2261 * differences: 2262 * 2263 * - is_cpu_allowed() asks "Can this task run on this CPU?" while 2264 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to 2265 * this CPU?". 2266 * 2267 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task 2268 * must be allowed to finish on the CPU that it's currently on regardless of 2269 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the 2270 * BPF scheduler shouldn't attempt to migrate a task which has migration 2271 * disabled. 2272 * 2273 * - The BPF scheduler is bypassed while the rq is offline and we can always say 2274 * no to the BPF scheduler initiated migrations while offline. 2275 */ 2276 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, 2277 bool trigger_error) 2278 { 2279 int cpu = cpu_of(rq); 2280 2281 /* 2282 * We don't require the BPF scheduler to avoid dispatching to offline 2283 * CPUs mostly for convenience but also because CPUs can go offline 2284 * between scx_bpf_dispatch() calls and here. Trigger error iff the 2285 * picked CPU is outside the allowed mask. 2286 */ 2287 if (!task_allowed_on_cpu(p, cpu)) { 2288 if (trigger_error) 2289 scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]", 2290 cpu_of(rq), p->comm, p->pid); 2291 return false; 2292 } 2293 2294 if (unlikely(is_migration_disabled(p))) 2295 return false; 2296 2297 if (!scx_rq_online(rq)) 2298 return false; 2299 2300 return true; 2301 } 2302 2303 /** 2304 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq 2305 * @p: target task 2306 * @dsq: locked DSQ @p is currently on 2307 * @src_rq: rq @p is currently on, stable with @dsq locked 2308 * 2309 * Called with @dsq locked but no rq's locked. We want to move @p to a different 2310 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is 2311 * required when transferring into a local DSQ. Even when transferring into a 2312 * non-local DSQ, it's better to use the same mechanism to protect against 2313 * dequeues and maintain the invariant that @p->scx.dsq can only change while 2314 * @src_rq is locked, which e.g. scx_dump_task() depends on. 2315 * 2316 * We want to grab @src_rq but that can deadlock if we try while locking @dsq, 2317 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As 2318 * this may race with dequeue, which can't drop the rq lock or fail, do a little 2319 * dancing from our side. 2320 * 2321 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets 2322 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu 2323 * would be cleared to -1. While other cpus may have updated it to different 2324 * values afterwards, as this operation can't be preempted or recurse, the 2325 * holding_cpu can never become this CPU again before we're done. Thus, we can 2326 * tell whether we lost to dequeue by testing whether the holding_cpu still 2327 * points to this CPU. See dispatch_dequeue() for the counterpart. 2328 * 2329 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is 2330 * still valid. %false if lost to dequeue. 2331 */ 2332 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, 2333 struct scx_dispatch_q *dsq, 2334 struct rq *src_rq) 2335 { 2336 s32 cpu = raw_smp_processor_id(); 2337 2338 lockdep_assert_held(&dsq->lock); 2339 2340 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2341 task_unlink_from_dsq(p, dsq); 2342 p->scx.holding_cpu = cpu; 2343 2344 raw_spin_unlock(&dsq->lock); 2345 raw_spin_rq_lock(src_rq); 2346 2347 /* task_rq couldn't have changed if we're still the holding cpu */ 2348 return likely(p->scx.holding_cpu == cpu) && 2349 !WARN_ON_ONCE(src_rq != task_rq(p)); 2350 } 2351 2352 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, 2353 struct scx_dispatch_q *dsq, struct rq *src_rq) 2354 { 2355 raw_spin_rq_unlock(this_rq); 2356 2357 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { 2358 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); 2359 return true; 2360 } else { 2361 raw_spin_rq_unlock(src_rq); 2362 raw_spin_rq_lock(this_rq); 2363 return false; 2364 } 2365 } 2366 #else /* CONFIG_SMP */ 2367 static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); } 2368 static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; } 2369 static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; } 2370 #endif /* CONFIG_SMP */ 2371 2372 static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq) 2373 { 2374 struct task_struct *p; 2375 retry: 2376 /* 2377 * The caller can't expect to successfully consume a task if the task's 2378 * addition to @dsq isn't guaranteed to be visible somehow. Test 2379 * @dsq->list without locking and skip if it seems empty. 2380 */ 2381 if (list_empty(&dsq->list)) 2382 return false; 2383 2384 raw_spin_lock(&dsq->lock); 2385 2386 nldsq_for_each_task(p, dsq) { 2387 struct rq *task_rq = task_rq(p); 2388 2389 if (rq == task_rq) { 2390 task_unlink_from_dsq(p, dsq); 2391 move_local_task_to_local_dsq(p, 0, dsq, rq); 2392 raw_spin_unlock(&dsq->lock); 2393 return true; 2394 } 2395 2396 if (task_can_run_on_remote_rq(p, rq, false)) { 2397 if (likely(consume_remote_task(rq, p, dsq, task_rq))) 2398 return true; 2399 goto retry; 2400 } 2401 } 2402 2403 raw_spin_unlock(&dsq->lock); 2404 return false; 2405 } 2406 2407 static bool consume_global_dsq(struct rq *rq) 2408 { 2409 int node = cpu_to_node(cpu_of(rq)); 2410 2411 return consume_dispatch_q(rq, global_dsqs[node]); 2412 } 2413 2414 /** 2415 * dispatch_to_local_dsq - Dispatch a task to a local dsq 2416 * @rq: current rq which is locked 2417 * @dst_dsq: destination DSQ 2418 * @p: task to dispatch 2419 * @enq_flags: %SCX_ENQ_* 2420 * 2421 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local 2422 * DSQ. This function performs all the synchronization dancing needed because 2423 * local DSQs are protected with rq locks. 2424 * 2425 * The caller must have exclusive ownership of @p (e.g. through 2426 * %SCX_OPSS_DISPATCHING). 2427 */ 2428 static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq, 2429 struct task_struct *p, u64 enq_flags) 2430 { 2431 struct rq *src_rq = task_rq(p); 2432 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 2433 2434 /* 2435 * We're synchronized against dequeue through DISPATCHING. As @p can't 2436 * be dequeued, its task_rq and cpus_allowed are stable too. 2437 * 2438 * If dispatching to @rq that @p is already on, no lock dancing needed. 2439 */ 2440 if (rq == src_rq && rq == dst_rq) { 2441 dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2442 return; 2443 } 2444 2445 #ifdef CONFIG_SMP 2446 if (unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) { 2447 dispatch_enqueue(find_global_dsq(p), p, 2448 enq_flags | SCX_ENQ_CLEAR_OPSS); 2449 return; 2450 } 2451 2452 /* 2453 * @p is on a possibly remote @src_rq which we need to lock to move the 2454 * task. If dequeue is in progress, it'd be locking @src_rq and waiting 2455 * on DISPATCHING, so we can't grab @src_rq lock while holding 2456 * DISPATCHING. 2457 * 2458 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that 2459 * we're moving from a DSQ and use the same mechanism - mark the task 2460 * under transfer with holding_cpu, release DISPATCHING and then follow 2461 * the same protocol. See unlink_dsq_and_lock_src_rq(). 2462 */ 2463 p->scx.holding_cpu = raw_smp_processor_id(); 2464 2465 /* store_release ensures that dequeue sees the above */ 2466 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 2467 2468 /* switch to @src_rq lock */ 2469 if (rq != src_rq) { 2470 raw_spin_rq_unlock(rq); 2471 raw_spin_rq_lock(src_rq); 2472 } 2473 2474 /* task_rq couldn't have changed if we're still the holding cpu */ 2475 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && 2476 !WARN_ON_ONCE(src_rq != task_rq(p))) { 2477 /* 2478 * If @p is staying on the same rq, there's no need to go 2479 * through the full deactivate/activate cycle. Optimize by 2480 * abbreviating move_remote_task_to_local_dsq(). 2481 */ 2482 if (src_rq == dst_rq) { 2483 p->scx.holding_cpu = -1; 2484 dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags); 2485 } else { 2486 move_remote_task_to_local_dsq(p, enq_flags, 2487 src_rq, dst_rq); 2488 } 2489 2490 /* if the destination CPU is idle, wake it up */ 2491 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) 2492 resched_curr(dst_rq); 2493 } 2494 2495 /* switch back to @rq lock */ 2496 if (rq != dst_rq) { 2497 raw_spin_rq_unlock(dst_rq); 2498 raw_spin_rq_lock(rq); 2499 } 2500 #else /* CONFIG_SMP */ 2501 BUG(); /* control can not reach here on UP */ 2502 #endif /* CONFIG_SMP */ 2503 } 2504 2505 /** 2506 * finish_dispatch - Asynchronously finish dispatching a task 2507 * @rq: current rq which is locked 2508 * @p: task to finish dispatching 2509 * @qseq_at_dispatch: qseq when @p started getting dispatched 2510 * @dsq_id: destination DSQ ID 2511 * @enq_flags: %SCX_ENQ_* 2512 * 2513 * Dispatching to local DSQs may need to wait for queueing to complete or 2514 * require rq lock dancing. As we don't wanna do either while inside 2515 * ops.dispatch() to avoid locking order inversion, we split dispatching into 2516 * two parts. scx_bpf_dispatch() which is called by ops.dispatch() records the 2517 * task and its qseq. Once ops.dispatch() returns, this function is called to 2518 * finish up. 2519 * 2520 * There is no guarantee that @p is still valid for dispatching or even that it 2521 * was valid in the first place. Make sure that the task is still owned by the 2522 * BPF scheduler and claim the ownership before dispatching. 2523 */ 2524 static void finish_dispatch(struct rq *rq, struct task_struct *p, 2525 unsigned long qseq_at_dispatch, 2526 u64 dsq_id, u64 enq_flags) 2527 { 2528 struct scx_dispatch_q *dsq; 2529 unsigned long opss; 2530 2531 touch_core_sched_dispatch(rq, p); 2532 retry: 2533 /* 2534 * No need for _acquire here. @p is accessed only after a successful 2535 * try_cmpxchg to DISPATCHING. 2536 */ 2537 opss = atomic_long_read(&p->scx.ops_state); 2538 2539 switch (opss & SCX_OPSS_STATE_MASK) { 2540 case SCX_OPSS_DISPATCHING: 2541 case SCX_OPSS_NONE: 2542 /* someone else already got to it */ 2543 return; 2544 case SCX_OPSS_QUEUED: 2545 /* 2546 * If qseq doesn't match, @p has gone through at least one 2547 * dispatch/dequeue and re-enqueue cycle between 2548 * scx_bpf_dispatch() and here and we have no claim on it. 2549 */ 2550 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 2551 return; 2552 2553 /* 2554 * While we know @p is accessible, we don't yet have a claim on 2555 * it - the BPF scheduler is allowed to dispatch tasks 2556 * spuriously and there can be a racing dequeue attempt. Let's 2557 * claim @p by atomically transitioning it from QUEUED to 2558 * DISPATCHING. 2559 */ 2560 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2561 SCX_OPSS_DISPATCHING))) 2562 break; 2563 goto retry; 2564 case SCX_OPSS_QUEUEING: 2565 /* 2566 * do_enqueue_task() is in the process of transferring the task 2567 * to the BPF scheduler while holding @p's rq lock. As we aren't 2568 * holding any kernel or BPF resource that the enqueue path may 2569 * depend upon, it's safe to wait. 2570 */ 2571 wait_ops_state(p, opss); 2572 goto retry; 2573 } 2574 2575 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 2576 2577 dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p); 2578 2579 if (dsq->id == SCX_DSQ_LOCAL) 2580 dispatch_to_local_dsq(rq, dsq, p, enq_flags); 2581 else 2582 dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2583 } 2584 2585 static void flush_dispatch_buf(struct rq *rq) 2586 { 2587 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2588 u32 u; 2589 2590 for (u = 0; u < dspc->cursor; u++) { 2591 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 2592 2593 finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id, 2594 ent->enq_flags); 2595 } 2596 2597 dspc->nr_tasks += dspc->cursor; 2598 dspc->cursor = 0; 2599 } 2600 2601 static int balance_one(struct rq *rq, struct task_struct *prev) 2602 { 2603 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2604 bool prev_on_scx = prev->sched_class == &ext_sched_class; 2605 int nr_loops = SCX_DSP_MAX_LOOPS; 2606 2607 lockdep_assert_rq_held(rq); 2608 rq->scx.flags |= SCX_RQ_IN_BALANCE; 2609 rq->scx.flags &= ~SCX_RQ_BAL_KEEP; 2610 2611 if (static_branch_unlikely(&scx_ops_cpu_preempt) && 2612 unlikely(rq->scx.cpu_released)) { 2613 /* 2614 * If the previous sched_class for the current CPU was not SCX, 2615 * notify the BPF scheduler that it again has control of the 2616 * core. This callback complements ->cpu_release(), which is 2617 * emitted in scx_next_task_picked(). 2618 */ 2619 if (SCX_HAS_OP(cpu_acquire)) 2620 SCX_CALL_OP(0, cpu_acquire, cpu_of(rq), NULL); 2621 rq->scx.cpu_released = false; 2622 } 2623 2624 if (prev_on_scx) { 2625 update_curr_scx(rq); 2626 2627 /* 2628 * If @prev is runnable & has slice left, it has priority and 2629 * fetching more just increases latency for the fetched tasks. 2630 * Tell pick_task_scx() to keep running @prev. If the BPF 2631 * scheduler wants to handle this explicitly, it should 2632 * implement ->cpu_release(). 2633 * 2634 * See scx_ops_disable_workfn() for the explanation on the 2635 * bypassing test. 2636 */ 2637 if ((prev->scx.flags & SCX_TASK_QUEUED) && 2638 prev->scx.slice && !scx_rq_bypassing(rq)) { 2639 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2640 goto has_tasks; 2641 } 2642 } 2643 2644 /* if there already are tasks to run, nothing to do */ 2645 if (rq->scx.local_dsq.nr) 2646 goto has_tasks; 2647 2648 if (consume_global_dsq(rq)) 2649 goto has_tasks; 2650 2651 if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq)) 2652 goto no_tasks; 2653 2654 dspc->rq = rq; 2655 2656 /* 2657 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 2658 * the local DSQ might still end up empty after a successful 2659 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 2660 * produced some tasks, retry. The BPF scheduler may depend on this 2661 * looping behavior to simplify its implementation. 2662 */ 2663 do { 2664 dspc->nr_tasks = 0; 2665 2666 SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq), 2667 prev_on_scx ? prev : NULL); 2668 2669 flush_dispatch_buf(rq); 2670 2671 if (rq->scx.local_dsq.nr) 2672 goto has_tasks; 2673 if (consume_global_dsq(rq)) 2674 goto has_tasks; 2675 2676 /* 2677 * ops.dispatch() can trap us in this loop by repeatedly 2678 * dispatching ineligible tasks. Break out once in a while to 2679 * allow the watchdog to run. As IRQ can't be enabled in 2680 * balance(), we want to complete this scheduling cycle and then 2681 * start a new one. IOW, we want to call resched_curr() on the 2682 * next, most likely idle, task, not the current one. Use 2683 * scx_bpf_kick_cpu() for deferred kicking. 2684 */ 2685 if (unlikely(!--nr_loops)) { 2686 scx_bpf_kick_cpu(cpu_of(rq), 0); 2687 break; 2688 } 2689 } while (dspc->nr_tasks); 2690 2691 no_tasks: 2692 /* 2693 * Didn't find another task to run. Keep running @prev unless 2694 * %SCX_OPS_ENQ_LAST is in effect. 2695 */ 2696 if ((prev->scx.flags & SCX_TASK_QUEUED) && 2697 (!static_branch_unlikely(&scx_ops_enq_last) || 2698 scx_rq_bypassing(rq))) { 2699 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2700 goto has_tasks; 2701 } 2702 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2703 return false; 2704 2705 has_tasks: 2706 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2707 return true; 2708 } 2709 2710 static int balance_scx(struct rq *rq, struct task_struct *prev, 2711 struct rq_flags *rf) 2712 { 2713 int ret; 2714 2715 rq_unpin_lock(rq, rf); 2716 2717 ret = balance_one(rq, prev); 2718 2719 #ifdef CONFIG_SCHED_SMT 2720 /* 2721 * When core-sched is enabled, this ops.balance() call will be followed 2722 * by pick_task_scx() on this CPU and the SMT siblings. Balance the 2723 * siblings too. 2724 */ 2725 if (sched_core_enabled(rq)) { 2726 const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq)); 2727 int scpu; 2728 2729 for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) { 2730 struct rq *srq = cpu_rq(scpu); 2731 struct task_struct *sprev = srq->curr; 2732 2733 WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq)); 2734 update_rq_clock(srq); 2735 balance_one(srq, sprev); 2736 } 2737 } 2738 #endif 2739 rq_repin_lock(rq, rf); 2740 2741 return ret; 2742 } 2743 2744 static void process_ddsp_deferred_locals(struct rq *rq) 2745 { 2746 struct task_struct *p; 2747 2748 lockdep_assert_rq_held(rq); 2749 2750 /* 2751 * Now that @rq can be unlocked, execute the deferred enqueueing of 2752 * tasks directly dispatched to the local DSQs of other CPUs. See 2753 * direct_dispatch(). Keep popping from the head instead of using 2754 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq 2755 * temporarily. 2756 */ 2757 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, 2758 struct task_struct, scx.dsq_list.node))) { 2759 struct scx_dispatch_q *dsq; 2760 2761 list_del_init(&p->scx.dsq_list.node); 2762 2763 dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); 2764 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) 2765 dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags); 2766 } 2767 } 2768 2769 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 2770 { 2771 if (p->scx.flags & SCX_TASK_QUEUED) { 2772 /* 2773 * Core-sched might decide to execute @p before it is 2774 * dispatched. Call ops_dequeue() to notify the BPF scheduler. 2775 */ 2776 ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC); 2777 dispatch_dequeue(rq, p); 2778 } 2779 2780 p->se.exec_start = rq_clock_task(rq); 2781 2782 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2783 if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED)) 2784 SCX_CALL_OP_TASK(SCX_KF_REST, running, p); 2785 2786 clr_task_runnable(p, true); 2787 2788 /* 2789 * @p is getting newly scheduled or got kicked after someone updated its 2790 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 2791 */ 2792 if ((p->scx.slice == SCX_SLICE_INF) != 2793 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 2794 if (p->scx.slice == SCX_SLICE_INF) 2795 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 2796 else 2797 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 2798 2799 sched_update_tick_dependency(rq); 2800 2801 /* 2802 * For now, let's refresh the load_avgs just when transitioning 2803 * in and out of nohz. In the future, we might want to add a 2804 * mechanism which calls the following periodically on 2805 * tick-stopped CPUs. 2806 */ 2807 update_other_load_avgs(rq); 2808 } 2809 } 2810 2811 static enum scx_cpu_preempt_reason 2812 preempt_reason_from_class(const struct sched_class *class) 2813 { 2814 #ifdef CONFIG_SMP 2815 if (class == &stop_sched_class) 2816 return SCX_CPU_PREEMPT_STOP; 2817 #endif 2818 if (class == &dl_sched_class) 2819 return SCX_CPU_PREEMPT_DL; 2820 if (class == &rt_sched_class) 2821 return SCX_CPU_PREEMPT_RT; 2822 return SCX_CPU_PREEMPT_UNKNOWN; 2823 } 2824 2825 static void switch_class(struct rq *rq, struct task_struct *next) 2826 { 2827 const struct sched_class *next_class = next->sched_class; 2828 2829 #ifdef CONFIG_SMP 2830 /* 2831 * Pairs with the smp_load_acquire() issued by a CPU in 2832 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a 2833 * resched. 2834 */ 2835 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); 2836 #endif 2837 if (!static_branch_unlikely(&scx_ops_cpu_preempt)) 2838 return; 2839 2840 /* 2841 * The callback is conceptually meant to convey that the CPU is no 2842 * longer under the control of SCX. Therefore, don't invoke the callback 2843 * if the next class is below SCX (in which case the BPF scheduler has 2844 * actively decided not to schedule any tasks on the CPU). 2845 */ 2846 if (sched_class_above(&ext_sched_class, next_class)) 2847 return; 2848 2849 /* 2850 * At this point we know that SCX was preempted by a higher priority 2851 * sched_class, so invoke the ->cpu_release() callback if we have not 2852 * done so already. We only send the callback once between SCX being 2853 * preempted, and it regaining control of the CPU. 2854 * 2855 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 2856 * next time that balance_scx() is invoked. 2857 */ 2858 if (!rq->scx.cpu_released) { 2859 if (SCX_HAS_OP(cpu_release)) { 2860 struct scx_cpu_release_args args = { 2861 .reason = preempt_reason_from_class(next_class), 2862 .task = next, 2863 }; 2864 2865 SCX_CALL_OP(SCX_KF_CPU_RELEASE, 2866 cpu_release, cpu_of(rq), &args); 2867 } 2868 rq->scx.cpu_released = true; 2869 } 2870 } 2871 2872 static void put_prev_task_scx(struct rq *rq, struct task_struct *p, 2873 struct task_struct *next) 2874 { 2875 update_curr_scx(rq); 2876 2877 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2878 if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 2879 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true); 2880 2881 if (p->scx.flags & SCX_TASK_QUEUED) { 2882 set_task_runnable(rq, p); 2883 2884 /* 2885 * If @p has slice left and is being put, @p is getting 2886 * preempted by a higher priority scheduler class or core-sched 2887 * forcing a different task. Leave it at the head of the local 2888 * DSQ. 2889 */ 2890 if (p->scx.slice && !scx_rq_bypassing(rq)) { 2891 dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD); 2892 return; 2893 } 2894 2895 /* 2896 * If @p is runnable but we're about to enter a lower 2897 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell 2898 * ops.enqueue() that @p is the only one available for this cpu, 2899 * which should trigger an explicit follow-up scheduling event. 2900 */ 2901 if (sched_class_above(&ext_sched_class, next->sched_class)) { 2902 WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last)); 2903 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 2904 } else { 2905 do_enqueue_task(rq, p, 0, -1); 2906 } 2907 } 2908 2909 if (next && next->sched_class != &ext_sched_class) 2910 switch_class(rq, next); 2911 } 2912 2913 static struct task_struct *first_local_task(struct rq *rq) 2914 { 2915 return list_first_entry_or_null(&rq->scx.local_dsq.list, 2916 struct task_struct, scx.dsq_list.node); 2917 } 2918 2919 static struct task_struct *pick_task_scx(struct rq *rq) 2920 { 2921 struct task_struct *prev = rq->curr; 2922 struct task_struct *p; 2923 2924 /* 2925 * If balance_scx() is telling us to keep running @prev, replenish slice 2926 * if necessary and keep running @prev. Otherwise, pop the first one 2927 * from the local DSQ. 2928 * 2929 * WORKAROUND: 2930 * 2931 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just 2932 * have gone through balance_scx(). Unfortunately, there currently is a 2933 * bug where fair could say yes on balance() but no on pick_task(), 2934 * which then ends up calling pick_task_scx() without preceding 2935 * balance_scx(). 2936 * 2937 * For now, ignore cases where $prev is not on SCX. This isn't great and 2938 * can theoretically lead to stalls. However, for switch_all cases, this 2939 * happens only while a BPF scheduler is being loaded or unloaded, and, 2940 * for partial cases, fair will likely keep triggering this CPU. 2941 * 2942 * Once fair is fixed, restore WARN_ON_ONCE(). 2943 */ 2944 if ((rq->scx.flags & SCX_RQ_BAL_KEEP) && 2945 prev->sched_class == &ext_sched_class) { 2946 p = prev; 2947 if (!p->scx.slice) 2948 p->scx.slice = SCX_SLICE_DFL; 2949 } else { 2950 p = first_local_task(rq); 2951 if (!p) 2952 return NULL; 2953 2954 if (unlikely(!p->scx.slice)) { 2955 if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) { 2956 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in pick_next_task_scx()\n", 2957 p->comm, p->pid); 2958 scx_warned_zero_slice = true; 2959 } 2960 p->scx.slice = SCX_SLICE_DFL; 2961 } 2962 } 2963 2964 return p; 2965 } 2966 2967 #ifdef CONFIG_SCHED_CORE 2968 /** 2969 * scx_prio_less - Task ordering for core-sched 2970 * @a: task A 2971 * @b: task B 2972 * 2973 * Core-sched is implemented as an additional scheduling layer on top of the 2974 * usual sched_class'es and needs to find out the expected task ordering. For 2975 * SCX, core-sched calls this function to interrogate the task ordering. 2976 * 2977 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used 2978 * to implement the default task ordering. The older the timestamp, the higher 2979 * prority the task - the global FIFO ordering matching the default scheduling 2980 * behavior. 2981 * 2982 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to 2983 * implement FIFO ordering within each local DSQ. See pick_task_scx(). 2984 */ 2985 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, 2986 bool in_fi) 2987 { 2988 /* 2989 * The const qualifiers are dropped from task_struct pointers when 2990 * calling ops.core_sched_before(). Accesses are controlled by the 2991 * verifier. 2992 */ 2993 if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a))) 2994 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before, 2995 (struct task_struct *)a, 2996 (struct task_struct *)b); 2997 else 2998 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); 2999 } 3000 #endif /* CONFIG_SCHED_CORE */ 3001 3002 #ifdef CONFIG_SMP 3003 3004 static bool test_and_clear_cpu_idle(int cpu) 3005 { 3006 #ifdef CONFIG_SCHED_SMT 3007 /* 3008 * SMT mask should be cleared whether we can claim @cpu or not. The SMT 3009 * cluster is not wholly idle either way. This also prevents 3010 * scx_pick_idle_cpu() from getting caught in an infinite loop. 3011 */ 3012 if (sched_smt_active()) { 3013 const struct cpumask *smt = cpu_smt_mask(cpu); 3014 3015 /* 3016 * If offline, @cpu is not its own sibling and 3017 * scx_pick_idle_cpu() can get caught in an infinite loop as 3018 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu 3019 * is eventually cleared. 3020 */ 3021 if (cpumask_intersects(smt, idle_masks.smt)) 3022 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 3023 else if (cpumask_test_cpu(cpu, idle_masks.smt)) 3024 __cpumask_clear_cpu(cpu, idle_masks.smt); 3025 } 3026 #endif 3027 return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu); 3028 } 3029 3030 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) 3031 { 3032 int cpu; 3033 3034 retry: 3035 if (sched_smt_active()) { 3036 cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed); 3037 if (cpu < nr_cpu_ids) 3038 goto found; 3039 3040 if (flags & SCX_PICK_IDLE_CORE) 3041 return -EBUSY; 3042 } 3043 3044 cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed); 3045 if (cpu >= nr_cpu_ids) 3046 return -EBUSY; 3047 3048 found: 3049 if (test_and_clear_cpu_idle(cpu)) 3050 return cpu; 3051 else 3052 goto retry; 3053 } 3054 3055 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 3056 u64 wake_flags, bool *found) 3057 { 3058 s32 cpu; 3059 3060 *found = false; 3061 3062 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 3063 scx_ops_error("built-in idle tracking is disabled"); 3064 return prev_cpu; 3065 } 3066 3067 /* 3068 * If WAKE_SYNC, the waker's local DSQ is empty, and the system is 3069 * under utilized, wake up @p to the local DSQ of the waker. Checking 3070 * only for an empty local DSQ is insufficient as it could give the 3071 * wakee an unfair advantage when the system is oversaturated. 3072 * Checking only for the presence of idle CPUs is also insufficient as 3073 * the local DSQ of the waker could have tasks piled up on it even if 3074 * there is an idle core elsewhere on the system. 3075 */ 3076 cpu = smp_processor_id(); 3077 if ((wake_flags & SCX_WAKE_SYNC) && 3078 !cpumask_empty(idle_masks.cpu) && !(current->flags & PF_EXITING) && 3079 cpu_rq(cpu)->scx.local_dsq.nr == 0) { 3080 if (cpumask_test_cpu(cpu, p->cpus_ptr)) 3081 goto cpu_found; 3082 } 3083 3084 /* 3085 * If CPU has SMT, any wholly idle CPU is likely a better pick than 3086 * partially idle @prev_cpu. 3087 */ 3088 if (sched_smt_active()) { 3089 if (cpumask_test_cpu(prev_cpu, idle_masks.smt) && 3090 test_and_clear_cpu_idle(prev_cpu)) { 3091 cpu = prev_cpu; 3092 goto cpu_found; 3093 } 3094 3095 cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE); 3096 if (cpu >= 0) 3097 goto cpu_found; 3098 } 3099 3100 if (test_and_clear_cpu_idle(prev_cpu)) { 3101 cpu = prev_cpu; 3102 goto cpu_found; 3103 } 3104 3105 cpu = scx_pick_idle_cpu(p->cpus_ptr, 0); 3106 if (cpu >= 0) 3107 goto cpu_found; 3108 3109 return prev_cpu; 3110 3111 cpu_found: 3112 *found = true; 3113 return cpu; 3114 } 3115 3116 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 3117 { 3118 /* 3119 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 3120 * can be a good migration opportunity with low cache and memory 3121 * footprint. Returning a CPU different than @prev_cpu triggers 3122 * immediate rq migration. However, for SCX, as the current rq 3123 * association doesn't dictate where the task is going to run, this 3124 * doesn't fit well. If necessary, we can later add a dedicated method 3125 * which can decide to preempt self to force it through the regular 3126 * scheduling path. 3127 */ 3128 if (unlikely(wake_flags & WF_EXEC)) 3129 return prev_cpu; 3130 3131 if (SCX_HAS_OP(select_cpu)) { 3132 s32 cpu; 3133 struct task_struct **ddsp_taskp; 3134 3135 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 3136 WARN_ON_ONCE(*ddsp_taskp); 3137 *ddsp_taskp = p; 3138 3139 cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 3140 select_cpu, p, prev_cpu, wake_flags); 3141 *ddsp_taskp = NULL; 3142 if (ops_cpu_valid(cpu, "from ops.select_cpu()")) 3143 return cpu; 3144 else 3145 return prev_cpu; 3146 } else { 3147 bool found; 3148 s32 cpu; 3149 3150 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found); 3151 if (found) { 3152 p->scx.slice = SCX_SLICE_DFL; 3153 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 3154 } 3155 return cpu; 3156 } 3157 } 3158 3159 static void task_woken_scx(struct rq *rq, struct task_struct *p) 3160 { 3161 run_deferred(rq); 3162 } 3163 3164 static void set_cpus_allowed_scx(struct task_struct *p, 3165 struct affinity_context *ac) 3166 { 3167 set_cpus_allowed_common(p, ac); 3168 3169 /* 3170 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 3171 * differ from the configured one in @p->cpus_mask. Always tell the bpf 3172 * scheduler the effective one. 3173 * 3174 * Fine-grained memory write control is enforced by BPF making the const 3175 * designation pointless. Cast it away when calling the operation. 3176 */ 3177 if (SCX_HAS_OP(set_cpumask)) 3178 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 3179 (struct cpumask *)p->cpus_ptr); 3180 } 3181 3182 static void reset_idle_masks(void) 3183 { 3184 /* 3185 * Consider all online cpus idle. Should converge to the actual state 3186 * quickly. 3187 */ 3188 cpumask_copy(idle_masks.cpu, cpu_online_mask); 3189 cpumask_copy(idle_masks.smt, cpu_online_mask); 3190 } 3191 3192 void __scx_update_idle(struct rq *rq, bool idle) 3193 { 3194 int cpu = cpu_of(rq); 3195 3196 if (SCX_HAS_OP(update_idle)) { 3197 SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle); 3198 if (!static_branch_unlikely(&scx_builtin_idle_enabled)) 3199 return; 3200 } 3201 3202 if (idle) 3203 cpumask_set_cpu(cpu, idle_masks.cpu); 3204 else 3205 cpumask_clear_cpu(cpu, idle_masks.cpu); 3206 3207 #ifdef CONFIG_SCHED_SMT 3208 if (sched_smt_active()) { 3209 const struct cpumask *smt = cpu_smt_mask(cpu); 3210 3211 if (idle) { 3212 /* 3213 * idle_masks.smt handling is racy but that's fine as 3214 * it's only for optimization and self-correcting. 3215 */ 3216 for_each_cpu(cpu, smt) { 3217 if (!cpumask_test_cpu(cpu, idle_masks.cpu)) 3218 return; 3219 } 3220 cpumask_or(idle_masks.smt, idle_masks.smt, smt); 3221 } else { 3222 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 3223 } 3224 } 3225 #endif 3226 } 3227 3228 static void handle_hotplug(struct rq *rq, bool online) 3229 { 3230 int cpu = cpu_of(rq); 3231 3232 atomic_long_inc(&scx_hotplug_seq); 3233 3234 if (online && SCX_HAS_OP(cpu_online)) 3235 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu); 3236 else if (!online && SCX_HAS_OP(cpu_offline)) 3237 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu); 3238 else 3239 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 3240 "cpu %d going %s, exiting scheduler", cpu, 3241 online ? "online" : "offline"); 3242 } 3243 3244 void scx_rq_activate(struct rq *rq) 3245 { 3246 handle_hotplug(rq, true); 3247 } 3248 3249 void scx_rq_deactivate(struct rq *rq) 3250 { 3251 handle_hotplug(rq, false); 3252 } 3253 3254 static void rq_online_scx(struct rq *rq) 3255 { 3256 rq->scx.flags |= SCX_RQ_ONLINE; 3257 } 3258 3259 static void rq_offline_scx(struct rq *rq) 3260 { 3261 rq->scx.flags &= ~SCX_RQ_ONLINE; 3262 } 3263 3264 #else /* CONFIG_SMP */ 3265 3266 static bool test_and_clear_cpu_idle(int cpu) { return false; } 3267 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; } 3268 static void reset_idle_masks(void) {} 3269 3270 #endif /* CONFIG_SMP */ 3271 3272 static bool check_rq_for_timeouts(struct rq *rq) 3273 { 3274 struct task_struct *p; 3275 struct rq_flags rf; 3276 bool timed_out = false; 3277 3278 rq_lock_irqsave(rq, &rf); 3279 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 3280 unsigned long last_runnable = p->scx.runnable_at; 3281 3282 if (unlikely(time_after(jiffies, 3283 last_runnable + scx_watchdog_timeout))) { 3284 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 3285 3286 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3287 "%s[%d] failed to run for %u.%03us", 3288 p->comm, p->pid, 3289 dur_ms / 1000, dur_ms % 1000); 3290 timed_out = true; 3291 break; 3292 } 3293 } 3294 rq_unlock_irqrestore(rq, &rf); 3295 3296 return timed_out; 3297 } 3298 3299 static void scx_watchdog_workfn(struct work_struct *work) 3300 { 3301 int cpu; 3302 3303 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 3304 3305 for_each_online_cpu(cpu) { 3306 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 3307 break; 3308 3309 cond_resched(); 3310 } 3311 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 3312 scx_watchdog_timeout / 2); 3313 } 3314 3315 void scx_tick(struct rq *rq) 3316 { 3317 unsigned long last_check; 3318 3319 if (!scx_enabled()) 3320 return; 3321 3322 last_check = READ_ONCE(scx_watchdog_timestamp); 3323 if (unlikely(time_after(jiffies, 3324 last_check + READ_ONCE(scx_watchdog_timeout)))) { 3325 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 3326 3327 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3328 "watchdog failed to check in for %u.%03us", 3329 dur_ms / 1000, dur_ms % 1000); 3330 } 3331 3332 update_other_load_avgs(rq); 3333 } 3334 3335 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 3336 { 3337 update_curr_scx(rq); 3338 3339 /* 3340 * While disabling, always resched and refresh core-sched timestamp as 3341 * we can't trust the slice management or ops.core_sched_before(). 3342 */ 3343 if (scx_rq_bypassing(rq)) { 3344 curr->scx.slice = 0; 3345 touch_core_sched(rq, curr); 3346 } else if (SCX_HAS_OP(tick)) { 3347 SCX_CALL_OP(SCX_KF_REST, tick, curr); 3348 } 3349 3350 if (!curr->scx.slice) 3351 resched_curr(rq); 3352 } 3353 3354 #ifdef CONFIG_EXT_GROUP_SCHED 3355 static struct cgroup *tg_cgrp(struct task_group *tg) 3356 { 3357 /* 3358 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, 3359 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the 3360 * root cgroup. 3361 */ 3362 if (tg && tg->css.cgroup) 3363 return tg->css.cgroup; 3364 else 3365 return &cgrp_dfl_root.cgrp; 3366 } 3367 3368 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), 3369 3370 #else /* CONFIG_EXT_GROUP_SCHED */ 3371 3372 #define SCX_INIT_TASK_ARGS_CGROUP(tg) 3373 3374 #endif /* CONFIG_EXT_GROUP_SCHED */ 3375 3376 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 3377 { 3378 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 3379 } 3380 3381 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 3382 { 3383 enum scx_task_state prev_state = scx_get_task_state(p); 3384 bool warn = false; 3385 3386 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 3387 3388 switch (state) { 3389 case SCX_TASK_NONE: 3390 break; 3391 case SCX_TASK_INIT: 3392 warn = prev_state != SCX_TASK_NONE; 3393 break; 3394 case SCX_TASK_READY: 3395 warn = prev_state == SCX_TASK_NONE; 3396 break; 3397 case SCX_TASK_ENABLED: 3398 warn = prev_state != SCX_TASK_READY; 3399 break; 3400 default: 3401 warn = true; 3402 return; 3403 } 3404 3405 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 3406 prev_state, state, p->comm, p->pid); 3407 3408 p->scx.flags &= ~SCX_TASK_STATE_MASK; 3409 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 3410 } 3411 3412 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork) 3413 { 3414 int ret; 3415 3416 p->scx.disallow = false; 3417 3418 if (SCX_HAS_OP(init_task)) { 3419 struct scx_init_task_args args = { 3420 SCX_INIT_TASK_ARGS_CGROUP(tg) 3421 .fork = fork, 3422 }; 3423 3424 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args); 3425 if (unlikely(ret)) { 3426 ret = ops_sanitize_err("init_task", ret); 3427 return ret; 3428 } 3429 } 3430 3431 scx_set_task_state(p, SCX_TASK_INIT); 3432 3433 if (p->scx.disallow) { 3434 if (!fork) { 3435 struct rq *rq; 3436 struct rq_flags rf; 3437 3438 rq = task_rq_lock(p, &rf); 3439 3440 /* 3441 * We're in the load path and @p->policy will be applied 3442 * right after. Reverting @p->policy here and rejecting 3443 * %SCHED_EXT transitions from scx_check_setscheduler() 3444 * guarantees that if ops.init_task() sets @p->disallow, 3445 * @p can never be in SCX. 3446 */ 3447 if (p->policy == SCHED_EXT) { 3448 p->policy = SCHED_NORMAL; 3449 atomic_long_inc(&scx_nr_rejected); 3450 } 3451 3452 task_rq_unlock(rq, p, &rf); 3453 } else if (p->policy == SCHED_EXT) { 3454 scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork", 3455 p->comm, p->pid); 3456 } 3457 } 3458 3459 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 3460 return 0; 3461 } 3462 3463 static void scx_ops_enable_task(struct task_struct *p) 3464 { 3465 u32 weight; 3466 3467 lockdep_assert_rq_held(task_rq(p)); 3468 3469 /* 3470 * Set the weight before calling ops.enable() so that the scheduler 3471 * doesn't see a stale value if they inspect the task struct. 3472 */ 3473 if (task_has_idle_policy(p)) 3474 weight = WEIGHT_IDLEPRIO; 3475 else 3476 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 3477 3478 p->scx.weight = sched_weight_to_cgroup(weight); 3479 3480 if (SCX_HAS_OP(enable)) 3481 SCX_CALL_OP_TASK(SCX_KF_REST, enable, p); 3482 scx_set_task_state(p, SCX_TASK_ENABLED); 3483 3484 if (SCX_HAS_OP(set_weight)) 3485 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 3486 } 3487 3488 static void scx_ops_disable_task(struct task_struct *p) 3489 { 3490 lockdep_assert_rq_held(task_rq(p)); 3491 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 3492 3493 if (SCX_HAS_OP(disable)) 3494 SCX_CALL_OP(SCX_KF_REST, disable, p); 3495 scx_set_task_state(p, SCX_TASK_READY); 3496 } 3497 3498 static void scx_ops_exit_task(struct task_struct *p) 3499 { 3500 struct scx_exit_task_args args = { 3501 .cancelled = false, 3502 }; 3503 3504 lockdep_assert_rq_held(task_rq(p)); 3505 3506 switch (scx_get_task_state(p)) { 3507 case SCX_TASK_NONE: 3508 return; 3509 case SCX_TASK_INIT: 3510 args.cancelled = true; 3511 break; 3512 case SCX_TASK_READY: 3513 break; 3514 case SCX_TASK_ENABLED: 3515 scx_ops_disable_task(p); 3516 break; 3517 default: 3518 WARN_ON_ONCE(true); 3519 return; 3520 } 3521 3522 if (SCX_HAS_OP(exit_task)) 3523 SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args); 3524 scx_set_task_state(p, SCX_TASK_NONE); 3525 } 3526 3527 void init_scx_entity(struct sched_ext_entity *scx) 3528 { 3529 /* 3530 * init_idle() calls this function again after fork sequence is 3531 * complete. Don't touch ->tasks_node as it's already linked. 3532 */ 3533 memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node)); 3534 3535 INIT_LIST_HEAD(&scx->dsq_list.node); 3536 RB_CLEAR_NODE(&scx->dsq_priq); 3537 scx->sticky_cpu = -1; 3538 scx->holding_cpu = -1; 3539 INIT_LIST_HEAD(&scx->runnable_node); 3540 scx->runnable_at = jiffies; 3541 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 3542 scx->slice = SCX_SLICE_DFL; 3543 } 3544 3545 void scx_pre_fork(struct task_struct *p) 3546 { 3547 /* 3548 * BPF scheduler enable/disable paths want to be able to iterate and 3549 * update all tasks which can become complex when racing forks. As 3550 * enable/disable are very cold paths, let's use a percpu_rwsem to 3551 * exclude forks. 3552 */ 3553 percpu_down_read(&scx_fork_rwsem); 3554 } 3555 3556 int scx_fork(struct task_struct *p) 3557 { 3558 percpu_rwsem_assert_held(&scx_fork_rwsem); 3559 3560 if (scx_ops_init_task_enabled) 3561 return scx_ops_init_task(p, task_group(p), true); 3562 else 3563 return 0; 3564 } 3565 3566 void scx_post_fork(struct task_struct *p) 3567 { 3568 if (scx_ops_init_task_enabled) { 3569 scx_set_task_state(p, SCX_TASK_READY); 3570 3571 /* 3572 * Enable the task immediately if it's running on sched_ext. 3573 * Otherwise, it'll be enabled in switching_to_scx() if and 3574 * when it's ever configured to run with a SCHED_EXT policy. 3575 */ 3576 if (p->sched_class == &ext_sched_class) { 3577 struct rq_flags rf; 3578 struct rq *rq; 3579 3580 rq = task_rq_lock(p, &rf); 3581 scx_ops_enable_task(p); 3582 task_rq_unlock(rq, p, &rf); 3583 } 3584 } 3585 3586 spin_lock_irq(&scx_tasks_lock); 3587 list_add_tail(&p->scx.tasks_node, &scx_tasks); 3588 spin_unlock_irq(&scx_tasks_lock); 3589 3590 percpu_up_read(&scx_fork_rwsem); 3591 } 3592 3593 void scx_cancel_fork(struct task_struct *p) 3594 { 3595 if (scx_enabled()) { 3596 struct rq *rq; 3597 struct rq_flags rf; 3598 3599 rq = task_rq_lock(p, &rf); 3600 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 3601 scx_ops_exit_task(p); 3602 task_rq_unlock(rq, p, &rf); 3603 } 3604 3605 percpu_up_read(&scx_fork_rwsem); 3606 } 3607 3608 void sched_ext_free(struct task_struct *p) 3609 { 3610 unsigned long flags; 3611 3612 spin_lock_irqsave(&scx_tasks_lock, flags); 3613 list_del_init(&p->scx.tasks_node); 3614 spin_unlock_irqrestore(&scx_tasks_lock, flags); 3615 3616 /* 3617 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY -> 3618 * ENABLED transitions can't race us. Disable ops for @p. 3619 */ 3620 if (scx_get_task_state(p) != SCX_TASK_NONE) { 3621 struct rq_flags rf; 3622 struct rq *rq; 3623 3624 rq = task_rq_lock(p, &rf); 3625 scx_ops_exit_task(p); 3626 task_rq_unlock(rq, p, &rf); 3627 } 3628 } 3629 3630 static void reweight_task_scx(struct rq *rq, struct task_struct *p, 3631 const struct load_weight *lw) 3632 { 3633 lockdep_assert_rq_held(task_rq(p)); 3634 3635 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); 3636 if (SCX_HAS_OP(set_weight)) 3637 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 3638 } 3639 3640 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio) 3641 { 3642 } 3643 3644 static void switching_to_scx(struct rq *rq, struct task_struct *p) 3645 { 3646 scx_ops_enable_task(p); 3647 3648 /* 3649 * set_cpus_allowed_scx() is not called while @p is associated with a 3650 * different scheduler class. Keep the BPF scheduler up-to-date. 3651 */ 3652 if (SCX_HAS_OP(set_cpumask)) 3653 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 3654 (struct cpumask *)p->cpus_ptr); 3655 } 3656 3657 static void switched_from_scx(struct rq *rq, struct task_struct *p) 3658 { 3659 scx_ops_disable_task(p); 3660 } 3661 3662 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 3663 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 3664 3665 int scx_check_setscheduler(struct task_struct *p, int policy) 3666 { 3667 lockdep_assert_rq_held(task_rq(p)); 3668 3669 /* if disallow, reject transitioning into SCX */ 3670 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 3671 p->policy != policy && policy == SCHED_EXT) 3672 return -EACCES; 3673 3674 return 0; 3675 } 3676 3677 #ifdef CONFIG_NO_HZ_FULL 3678 bool scx_can_stop_tick(struct rq *rq) 3679 { 3680 struct task_struct *p = rq->curr; 3681 3682 if (scx_rq_bypassing(rq)) 3683 return false; 3684 3685 if (p->sched_class != &ext_sched_class) 3686 return true; 3687 3688 /* 3689 * @rq can dispatch from different DSQs, so we can't tell whether it 3690 * needs the tick or not by looking at nr_running. Allow stopping ticks 3691 * iff the BPF scheduler indicated so. See set_next_task_scx(). 3692 */ 3693 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 3694 } 3695 #endif 3696 3697 #ifdef CONFIG_EXT_GROUP_SCHED 3698 3699 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem); 3700 static bool scx_cgroup_enabled; 3701 static bool cgroup_warned_missing_weight; 3702 static bool cgroup_warned_missing_idle; 3703 3704 static void scx_cgroup_warn_missing_weight(struct task_group *tg) 3705 { 3706 if (scx_ops_enable_state() == SCX_OPS_DISABLED || 3707 cgroup_warned_missing_weight) 3708 return; 3709 3710 if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent) 3711 return; 3712 3713 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n", 3714 scx_ops.name); 3715 cgroup_warned_missing_weight = true; 3716 } 3717 3718 static void scx_cgroup_warn_missing_idle(struct task_group *tg) 3719 { 3720 if (!scx_cgroup_enabled || cgroup_warned_missing_idle) 3721 return; 3722 3723 if (!tg->idle) 3724 return; 3725 3726 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n", 3727 scx_ops.name); 3728 cgroup_warned_missing_idle = true; 3729 } 3730 3731 int scx_tg_online(struct task_group *tg) 3732 { 3733 int ret = 0; 3734 3735 WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED)); 3736 3737 percpu_down_read(&scx_cgroup_rwsem); 3738 3739 scx_cgroup_warn_missing_weight(tg); 3740 3741 if (scx_cgroup_enabled) { 3742 if (SCX_HAS_OP(cgroup_init)) { 3743 struct scx_cgroup_init_args args = 3744 { .weight = tg->scx_weight }; 3745 3746 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, 3747 tg->css.cgroup, &args); 3748 if (ret) 3749 ret = ops_sanitize_err("cgroup_init", ret); 3750 } 3751 if (ret == 0) 3752 tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED; 3753 } else { 3754 tg->scx_flags |= SCX_TG_ONLINE; 3755 } 3756 3757 percpu_up_read(&scx_cgroup_rwsem); 3758 return ret; 3759 } 3760 3761 void scx_tg_offline(struct task_group *tg) 3762 { 3763 WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE)); 3764 3765 percpu_down_read(&scx_cgroup_rwsem); 3766 3767 if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED)) 3768 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup); 3769 tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); 3770 3771 percpu_up_read(&scx_cgroup_rwsem); 3772 } 3773 3774 int scx_cgroup_can_attach(struct cgroup_taskset *tset) 3775 { 3776 struct cgroup_subsys_state *css; 3777 struct task_struct *p; 3778 int ret; 3779 3780 /* released in scx_finish/cancel_attach() */ 3781 percpu_down_read(&scx_cgroup_rwsem); 3782 3783 if (!scx_cgroup_enabled) 3784 return 0; 3785 3786 cgroup_taskset_for_each(p, css, tset) { 3787 struct cgroup *from = tg_cgrp(task_group(p)); 3788 struct cgroup *to = tg_cgrp(css_tg(css)); 3789 3790 WARN_ON_ONCE(p->scx.cgrp_moving_from); 3791 3792 /* 3793 * sched_move_task() omits identity migrations. Let's match the 3794 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() 3795 * always match one-to-one. 3796 */ 3797 if (from == to) 3798 continue; 3799 3800 if (SCX_HAS_OP(cgroup_prep_move)) { 3801 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move, 3802 p, from, css->cgroup); 3803 if (ret) 3804 goto err; 3805 } 3806 3807 p->scx.cgrp_moving_from = from; 3808 } 3809 3810 return 0; 3811 3812 err: 3813 cgroup_taskset_for_each(p, css, tset) { 3814 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) 3815 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, 3816 p->scx.cgrp_moving_from, css->cgroup); 3817 p->scx.cgrp_moving_from = NULL; 3818 } 3819 3820 percpu_up_read(&scx_cgroup_rwsem); 3821 return ops_sanitize_err("cgroup_prep_move", ret); 3822 } 3823 3824 void scx_move_task(struct task_struct *p) 3825 { 3826 if (!scx_cgroup_enabled) 3827 return; 3828 3829 /* 3830 * We're called from sched_move_task() which handles both cgroup and 3831 * autogroup moves. Ignore the latter. 3832 * 3833 * Also ignore exiting tasks, because in the exit path tasks transition 3834 * from the autogroup to the root group, so task_group_is_autogroup() 3835 * alone isn't able to catch exiting autogroup tasks. This is safe for 3836 * cgroup_move(), because cgroup migrations never happen for PF_EXITING 3837 * tasks. 3838 */ 3839 if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING)) 3840 return; 3841 3842 /* 3843 * @p must have ops.cgroup_prep_move() called on it and thus 3844 * cgrp_moving_from set. 3845 */ 3846 if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) 3847 SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p, 3848 p->scx.cgrp_moving_from, tg_cgrp(task_group(p))); 3849 p->scx.cgrp_moving_from = NULL; 3850 } 3851 3852 void scx_cgroup_finish_attach(void) 3853 { 3854 percpu_up_read(&scx_cgroup_rwsem); 3855 } 3856 3857 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) 3858 { 3859 struct cgroup_subsys_state *css; 3860 struct task_struct *p; 3861 3862 if (!scx_cgroup_enabled) 3863 goto out_unlock; 3864 3865 cgroup_taskset_for_each(p, css, tset) { 3866 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) 3867 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, 3868 p->scx.cgrp_moving_from, css->cgroup); 3869 p->scx.cgrp_moving_from = NULL; 3870 } 3871 out_unlock: 3872 percpu_up_read(&scx_cgroup_rwsem); 3873 } 3874 3875 void scx_group_set_weight(struct task_group *tg, unsigned long weight) 3876 { 3877 percpu_down_read(&scx_cgroup_rwsem); 3878 3879 if (scx_cgroup_enabled && tg->scx_weight != weight) { 3880 if (SCX_HAS_OP(cgroup_set_weight)) 3881 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight, 3882 tg_cgrp(tg), weight); 3883 tg->scx_weight = weight; 3884 } 3885 3886 percpu_up_read(&scx_cgroup_rwsem); 3887 } 3888 3889 void scx_group_set_idle(struct task_group *tg, bool idle) 3890 { 3891 percpu_down_read(&scx_cgroup_rwsem); 3892 scx_cgroup_warn_missing_idle(tg); 3893 percpu_up_read(&scx_cgroup_rwsem); 3894 } 3895 3896 static void scx_cgroup_lock(void) 3897 { 3898 percpu_down_write(&scx_cgroup_rwsem); 3899 } 3900 3901 static void scx_cgroup_unlock(void) 3902 { 3903 percpu_up_write(&scx_cgroup_rwsem); 3904 } 3905 3906 #else /* CONFIG_EXT_GROUP_SCHED */ 3907 3908 static inline void scx_cgroup_lock(void) {} 3909 static inline void scx_cgroup_unlock(void) {} 3910 3911 #endif /* CONFIG_EXT_GROUP_SCHED */ 3912 3913 /* 3914 * Omitted operations: 3915 * 3916 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 3917 * isn't tied to the CPU at that point. Preemption is implemented by resetting 3918 * the victim task's slice to 0 and triggering reschedule on the target CPU. 3919 * 3920 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 3921 * 3922 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 3923 * their current sched_class. Call them directly from sched core instead. 3924 */ 3925 DEFINE_SCHED_CLASS(ext) = { 3926 .enqueue_task = enqueue_task_scx, 3927 .dequeue_task = dequeue_task_scx, 3928 .yield_task = yield_task_scx, 3929 .yield_to_task = yield_to_task_scx, 3930 3931 .wakeup_preempt = wakeup_preempt_scx, 3932 3933 .balance = balance_scx, 3934 .pick_task = pick_task_scx, 3935 3936 .put_prev_task = put_prev_task_scx, 3937 .set_next_task = set_next_task_scx, 3938 3939 #ifdef CONFIG_SMP 3940 .select_task_rq = select_task_rq_scx, 3941 .task_woken = task_woken_scx, 3942 .set_cpus_allowed = set_cpus_allowed_scx, 3943 3944 .rq_online = rq_online_scx, 3945 .rq_offline = rq_offline_scx, 3946 #endif 3947 3948 .task_tick = task_tick_scx, 3949 3950 .switching_to = switching_to_scx, 3951 .switched_from = switched_from_scx, 3952 .switched_to = switched_to_scx, 3953 .reweight_task = reweight_task_scx, 3954 .prio_changed = prio_changed_scx, 3955 3956 .update_curr = update_curr_scx, 3957 3958 #ifdef CONFIG_UCLAMP_TASK 3959 .uclamp_enabled = 1, 3960 #endif 3961 }; 3962 3963 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 3964 { 3965 memset(dsq, 0, sizeof(*dsq)); 3966 3967 raw_spin_lock_init(&dsq->lock); 3968 INIT_LIST_HEAD(&dsq->list); 3969 dsq->id = dsq_id; 3970 } 3971 3972 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node) 3973 { 3974 struct scx_dispatch_q *dsq; 3975 int ret; 3976 3977 if (dsq_id & SCX_DSQ_FLAG_BUILTIN) 3978 return ERR_PTR(-EINVAL); 3979 3980 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 3981 if (!dsq) 3982 return ERR_PTR(-ENOMEM); 3983 3984 init_dsq(dsq, dsq_id); 3985 3986 ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node, 3987 dsq_hash_params); 3988 if (ret) { 3989 kfree(dsq); 3990 return ERR_PTR(ret); 3991 } 3992 return dsq; 3993 } 3994 3995 static void free_dsq_irq_workfn(struct irq_work *irq_work) 3996 { 3997 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 3998 struct scx_dispatch_q *dsq, *tmp_dsq; 3999 4000 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 4001 kfree_rcu(dsq, rcu); 4002 } 4003 4004 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 4005 4006 static void destroy_dsq(u64 dsq_id) 4007 { 4008 struct scx_dispatch_q *dsq; 4009 unsigned long flags; 4010 4011 rcu_read_lock(); 4012 4013 dsq = find_user_dsq(dsq_id); 4014 if (!dsq) 4015 goto out_unlock_rcu; 4016 4017 raw_spin_lock_irqsave(&dsq->lock, flags); 4018 4019 if (dsq->nr) { 4020 scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)", 4021 dsq->id, dsq->nr); 4022 goto out_unlock_dsq; 4023 } 4024 4025 if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params)) 4026 goto out_unlock_dsq; 4027 4028 /* 4029 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 4030 * queueing more tasks. As this function can be called from anywhere, 4031 * freeing is bounced through an irq work to avoid nesting RCU 4032 * operations inside scheduler locks. 4033 */ 4034 dsq->id = SCX_DSQ_INVALID; 4035 llist_add(&dsq->free_node, &dsqs_to_free); 4036 irq_work_queue(&free_dsq_irq_work); 4037 4038 out_unlock_dsq: 4039 raw_spin_unlock_irqrestore(&dsq->lock, flags); 4040 out_unlock_rcu: 4041 rcu_read_unlock(); 4042 } 4043 4044 #ifdef CONFIG_EXT_GROUP_SCHED 4045 static void scx_cgroup_exit(void) 4046 { 4047 struct cgroup_subsys_state *css; 4048 4049 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4050 4051 WARN_ON_ONCE(!scx_cgroup_enabled); 4052 scx_cgroup_enabled = false; 4053 4054 /* 4055 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk 4056 * cgroups and exit all the inited ones, all online cgroups are exited. 4057 */ 4058 rcu_read_lock(); 4059 css_for_each_descendant_post(css, &root_task_group.css) { 4060 struct task_group *tg = css_tg(css); 4061 4062 if (!(tg->scx_flags & SCX_TG_INITED)) 4063 continue; 4064 tg->scx_flags &= ~SCX_TG_INITED; 4065 4066 if (!scx_ops.cgroup_exit) 4067 continue; 4068 4069 if (WARN_ON_ONCE(!css_tryget(css))) 4070 continue; 4071 rcu_read_unlock(); 4072 4073 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup); 4074 4075 rcu_read_lock(); 4076 css_put(css); 4077 } 4078 rcu_read_unlock(); 4079 } 4080 4081 static int scx_cgroup_init(void) 4082 { 4083 struct cgroup_subsys_state *css; 4084 int ret; 4085 4086 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4087 4088 cgroup_warned_missing_weight = false; 4089 cgroup_warned_missing_idle = false; 4090 4091 /* 4092 * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk 4093 * cgroups and init, all online cgroups are initialized. 4094 */ 4095 rcu_read_lock(); 4096 css_for_each_descendant_pre(css, &root_task_group.css) { 4097 struct task_group *tg = css_tg(css); 4098 struct scx_cgroup_init_args args = { .weight = tg->scx_weight }; 4099 4100 scx_cgroup_warn_missing_weight(tg); 4101 scx_cgroup_warn_missing_idle(tg); 4102 4103 if ((tg->scx_flags & 4104 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) 4105 continue; 4106 4107 if (!scx_ops.cgroup_init) { 4108 tg->scx_flags |= SCX_TG_INITED; 4109 continue; 4110 } 4111 4112 if (WARN_ON_ONCE(!css_tryget(css))) 4113 continue; 4114 rcu_read_unlock(); 4115 4116 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, 4117 css->cgroup, &args); 4118 if (ret) { 4119 css_put(css); 4120 return ret; 4121 } 4122 tg->scx_flags |= SCX_TG_INITED; 4123 4124 rcu_read_lock(); 4125 css_put(css); 4126 } 4127 rcu_read_unlock(); 4128 4129 WARN_ON_ONCE(scx_cgroup_enabled); 4130 scx_cgroup_enabled = true; 4131 4132 return 0; 4133 } 4134 4135 #else 4136 static void scx_cgroup_exit(void) {} 4137 static int scx_cgroup_init(void) { return 0; } 4138 #endif 4139 4140 4141 /******************************************************************************** 4142 * Sysfs interface and ops enable/disable. 4143 */ 4144 4145 #define SCX_ATTR(_name) \ 4146 static struct kobj_attribute scx_attr_##_name = { \ 4147 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 4148 .show = scx_attr_##_name##_show, \ 4149 } 4150 4151 static ssize_t scx_attr_state_show(struct kobject *kobj, 4152 struct kobj_attribute *ka, char *buf) 4153 { 4154 return sysfs_emit(buf, "%s\n", 4155 scx_ops_enable_state_str[scx_ops_enable_state()]); 4156 } 4157 SCX_ATTR(state); 4158 4159 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 4160 struct kobj_attribute *ka, char *buf) 4161 { 4162 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 4163 } 4164 SCX_ATTR(switch_all); 4165 4166 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 4167 struct kobj_attribute *ka, char *buf) 4168 { 4169 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 4170 } 4171 SCX_ATTR(nr_rejected); 4172 4173 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, 4174 struct kobj_attribute *ka, char *buf) 4175 { 4176 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); 4177 } 4178 SCX_ATTR(hotplug_seq); 4179 4180 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj, 4181 struct kobj_attribute *ka, char *buf) 4182 { 4183 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq)); 4184 } 4185 SCX_ATTR(enable_seq); 4186 4187 static struct attribute *scx_global_attrs[] = { 4188 &scx_attr_state.attr, 4189 &scx_attr_switch_all.attr, 4190 &scx_attr_nr_rejected.attr, 4191 &scx_attr_hotplug_seq.attr, 4192 &scx_attr_enable_seq.attr, 4193 NULL, 4194 }; 4195 4196 static const struct attribute_group scx_global_attr_group = { 4197 .attrs = scx_global_attrs, 4198 }; 4199 4200 static void scx_kobj_release(struct kobject *kobj) 4201 { 4202 kfree(kobj); 4203 } 4204 4205 static ssize_t scx_attr_ops_show(struct kobject *kobj, 4206 struct kobj_attribute *ka, char *buf) 4207 { 4208 return sysfs_emit(buf, "%s\n", scx_ops.name); 4209 } 4210 SCX_ATTR(ops); 4211 4212 static struct attribute *scx_sched_attrs[] = { 4213 &scx_attr_ops.attr, 4214 NULL, 4215 }; 4216 ATTRIBUTE_GROUPS(scx_sched); 4217 4218 static const struct kobj_type scx_ktype = { 4219 .release = scx_kobj_release, 4220 .sysfs_ops = &kobj_sysfs_ops, 4221 .default_groups = scx_sched_groups, 4222 }; 4223 4224 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 4225 { 4226 return add_uevent_var(env, "SCXOPS=%s", scx_ops.name); 4227 } 4228 4229 static const struct kset_uevent_ops scx_uevent_ops = { 4230 .uevent = scx_uevent, 4231 }; 4232 4233 /* 4234 * Used by sched_fork() and __setscheduler_prio() to pick the matching 4235 * sched_class. dl/rt are already handled. 4236 */ 4237 bool task_should_scx(struct task_struct *p) 4238 { 4239 if (!scx_enabled() || 4240 unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING)) 4241 return false; 4242 if (READ_ONCE(scx_switching_all)) 4243 return true; 4244 return p->policy == SCHED_EXT; 4245 } 4246 4247 /** 4248 * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress 4249 * 4250 * Bypassing guarantees that all runnable tasks make forward progress without 4251 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 4252 * be held by tasks that the BPF scheduler is forgetting to run, which 4253 * unfortunately also excludes toggling the static branches. 4254 * 4255 * Let's work around by overriding a couple ops and modifying behaviors based on 4256 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 4257 * to force global FIFO scheduling. 4258 * 4259 * a. ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 4260 * %SCX_OPS_ENQ_LAST is also ignored. 4261 * 4262 * b. ops.dispatch() is ignored. 4263 * 4264 * c. balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice 4265 * can't be trusted. Whenever a tick triggers, the running task is rotated to 4266 * the tail of the queue with core_sched_at touched. 4267 * 4268 * d. pick_next_task() suppresses zero slice warning. 4269 * 4270 * e. scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM 4271 * operations. 4272 * 4273 * f. scx_prio_less() reverts to the default core_sched_at order. 4274 */ 4275 static void scx_ops_bypass(bool bypass) 4276 { 4277 int depth, cpu; 4278 4279 if (bypass) { 4280 depth = atomic_inc_return(&scx_ops_bypass_depth); 4281 WARN_ON_ONCE(depth <= 0); 4282 if (depth != 1) 4283 return; 4284 } else { 4285 depth = atomic_dec_return(&scx_ops_bypass_depth); 4286 WARN_ON_ONCE(depth < 0); 4287 if (depth != 0) 4288 return; 4289 } 4290 4291 /* 4292 * No task property is changing. We just need to make sure all currently 4293 * queued tasks are re-queued according to the new scx_rq_bypassing() 4294 * state. As an optimization, walk each rq's runnable_list instead of 4295 * the scx_tasks list. 4296 * 4297 * This function can't trust the scheduler and thus can't use 4298 * cpus_read_lock(). Walk all possible CPUs instead of online. 4299 */ 4300 for_each_possible_cpu(cpu) { 4301 struct rq *rq = cpu_rq(cpu); 4302 struct rq_flags rf; 4303 struct task_struct *p, *n; 4304 4305 rq_lock_irqsave(rq, &rf); 4306 4307 if (bypass) { 4308 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); 4309 rq->scx.flags |= SCX_RQ_BYPASSING; 4310 } else { 4311 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); 4312 rq->scx.flags &= ~SCX_RQ_BYPASSING; 4313 } 4314 4315 /* 4316 * We need to guarantee that no tasks are on the BPF scheduler 4317 * while bypassing. Either we see enabled or the enable path 4318 * sees scx_rq_bypassing() before moving tasks to SCX. 4319 */ 4320 if (!scx_enabled()) { 4321 rq_unlock_irqrestore(rq, &rf); 4322 continue; 4323 } 4324 4325 /* 4326 * The use of list_for_each_entry_safe_reverse() is required 4327 * because each task is going to be removed from and added back 4328 * to the runnable_list during iteration. Because they're added 4329 * to the tail of the list, safe reverse iteration can still 4330 * visit all nodes. 4331 */ 4332 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 4333 scx.runnable_node) { 4334 struct sched_enq_and_set_ctx ctx; 4335 4336 /* cycling deq/enq is enough, see the function comment */ 4337 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4338 sched_enq_and_set_task(&ctx); 4339 } 4340 4341 rq_unlock_irqrestore(rq, &rf); 4342 4343 /* kick to restore ticks */ 4344 resched_cpu(cpu); 4345 } 4346 } 4347 4348 static void free_exit_info(struct scx_exit_info *ei) 4349 { 4350 kfree(ei->dump); 4351 kfree(ei->msg); 4352 kfree(ei->bt); 4353 kfree(ei); 4354 } 4355 4356 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 4357 { 4358 struct scx_exit_info *ei; 4359 4360 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 4361 if (!ei) 4362 return NULL; 4363 4364 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); 4365 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 4366 ei->dump = kzalloc(exit_dump_len, GFP_KERNEL); 4367 4368 if (!ei->bt || !ei->msg || !ei->dump) { 4369 free_exit_info(ei); 4370 return NULL; 4371 } 4372 4373 return ei; 4374 } 4375 4376 static const char *scx_exit_reason(enum scx_exit_kind kind) 4377 { 4378 switch (kind) { 4379 case SCX_EXIT_UNREG: 4380 return "unregistered from user space"; 4381 case SCX_EXIT_UNREG_BPF: 4382 return "unregistered from BPF"; 4383 case SCX_EXIT_UNREG_KERN: 4384 return "unregistered from the main kernel"; 4385 case SCX_EXIT_SYSRQ: 4386 return "disabled by sysrq-S"; 4387 case SCX_EXIT_ERROR: 4388 return "runtime error"; 4389 case SCX_EXIT_ERROR_BPF: 4390 return "scx_bpf_error"; 4391 case SCX_EXIT_ERROR_STALL: 4392 return "runnable task stall"; 4393 default: 4394 return "<UNKNOWN>"; 4395 } 4396 } 4397 4398 static void scx_ops_disable_workfn(struct kthread_work *work) 4399 { 4400 struct scx_exit_info *ei = scx_exit_info; 4401 struct scx_task_iter sti; 4402 struct task_struct *p; 4403 struct rhashtable_iter rht_iter; 4404 struct scx_dispatch_q *dsq; 4405 int i, kind; 4406 4407 kind = atomic_read(&scx_exit_kind); 4408 while (true) { 4409 /* 4410 * NONE indicates that a new scx_ops has been registered since 4411 * disable was scheduled - don't kill the new ops. DONE 4412 * indicates that the ops has already been disabled. 4413 */ 4414 if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE) 4415 return; 4416 if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE)) 4417 break; 4418 } 4419 ei->kind = kind; 4420 ei->reason = scx_exit_reason(ei->kind); 4421 4422 /* guarantee forward progress by bypassing scx_ops */ 4423 scx_ops_bypass(true); 4424 4425 switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) { 4426 case SCX_OPS_DISABLING: 4427 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 4428 break; 4429 case SCX_OPS_DISABLED: 4430 pr_warn("sched_ext: ops error detected without ops (%s)\n", 4431 scx_exit_info->msg); 4432 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 4433 SCX_OPS_DISABLING); 4434 goto done; 4435 default: 4436 break; 4437 } 4438 4439 /* 4440 * Here, every runnable task is guaranteed to make forward progress and 4441 * we can safely use blocking synchronization constructs. Actually 4442 * disable ops. 4443 */ 4444 mutex_lock(&scx_ops_enable_mutex); 4445 4446 static_branch_disable(&__scx_switched_all); 4447 WRITE_ONCE(scx_switching_all, false); 4448 4449 /* 4450 * Shut down cgroup support before tasks so that the cgroup attach path 4451 * doesn't race against scx_ops_exit_task(). 4452 */ 4453 scx_cgroup_lock(); 4454 scx_cgroup_exit(); 4455 scx_cgroup_unlock(); 4456 4457 /* 4458 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones 4459 * must be switched out and exited synchronously. 4460 */ 4461 percpu_down_write(&scx_fork_rwsem); 4462 4463 scx_ops_init_task_enabled = false; 4464 4465 spin_lock_irq(&scx_tasks_lock); 4466 scx_task_iter_init(&sti); 4467 while ((p = scx_task_iter_next_locked(&sti))) { 4468 const struct sched_class *old_class = p->sched_class; 4469 struct sched_enq_and_set_ctx ctx; 4470 4471 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4472 4473 p->scx.slice = min_t(u64, p->scx.slice, SCX_SLICE_DFL); 4474 __setscheduler_prio(p, p->prio); 4475 check_class_changing(task_rq(p), p, old_class); 4476 4477 sched_enq_and_set_task(&ctx); 4478 4479 check_class_changed(task_rq(p), p, old_class, p->prio); 4480 scx_ops_exit_task(p); 4481 } 4482 scx_task_iter_exit(&sti); 4483 spin_unlock_irq(&scx_tasks_lock); 4484 percpu_up_write(&scx_fork_rwsem); 4485 4486 /* no task is on scx, turn off all the switches and flush in-progress calls */ 4487 static_branch_disable(&__scx_ops_enabled); 4488 for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++) 4489 static_branch_disable(&scx_has_op[i]); 4490 static_branch_disable(&scx_ops_enq_last); 4491 static_branch_disable(&scx_ops_enq_exiting); 4492 static_branch_disable(&scx_ops_cpu_preempt); 4493 static_branch_disable(&scx_builtin_idle_enabled); 4494 synchronize_rcu(); 4495 4496 if (ei->kind >= SCX_EXIT_ERROR) { 4497 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4498 scx_ops.name, ei->reason); 4499 4500 if (ei->msg[0] != '\0') 4501 pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg); 4502 #ifdef CONFIG_STACKTRACE 4503 stack_trace_print(ei->bt, ei->bt_len, 2); 4504 #endif 4505 } else { 4506 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4507 scx_ops.name, ei->reason); 4508 } 4509 4510 if (scx_ops.exit) 4511 SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei); 4512 4513 cancel_delayed_work_sync(&scx_watchdog_work); 4514 4515 /* 4516 * Delete the kobject from the hierarchy eagerly in addition to just 4517 * dropping a reference. Otherwise, if the object is deleted 4518 * asynchronously, sysfs could observe an object of the same name still 4519 * in the hierarchy when another scheduler is loaded. 4520 */ 4521 kobject_del(scx_root_kobj); 4522 kobject_put(scx_root_kobj); 4523 scx_root_kobj = NULL; 4524 4525 memset(&scx_ops, 0, sizeof(scx_ops)); 4526 4527 rhashtable_walk_enter(&dsq_hash, &rht_iter); 4528 do { 4529 rhashtable_walk_start(&rht_iter); 4530 4531 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 4532 destroy_dsq(dsq->id); 4533 4534 rhashtable_walk_stop(&rht_iter); 4535 } while (dsq == ERR_PTR(-EAGAIN)); 4536 rhashtable_walk_exit(&rht_iter); 4537 4538 free_percpu(scx_dsp_ctx); 4539 scx_dsp_ctx = NULL; 4540 scx_dsp_max_batch = 0; 4541 4542 free_exit_info(scx_exit_info); 4543 scx_exit_info = NULL; 4544 4545 mutex_unlock(&scx_ops_enable_mutex); 4546 4547 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 4548 SCX_OPS_DISABLING); 4549 done: 4550 scx_ops_bypass(false); 4551 } 4552 4553 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn); 4554 4555 static void schedule_scx_ops_disable_work(void) 4556 { 4557 struct kthread_worker *helper = READ_ONCE(scx_ops_helper); 4558 4559 /* 4560 * We may be called spuriously before the first bpf_sched_ext_reg(). If 4561 * scx_ops_helper isn't set up yet, there's nothing to do. 4562 */ 4563 if (helper) 4564 kthread_queue_work(helper, &scx_ops_disable_work); 4565 } 4566 4567 static void scx_ops_disable(enum scx_exit_kind kind) 4568 { 4569 int none = SCX_EXIT_NONE; 4570 4571 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 4572 kind = SCX_EXIT_ERROR; 4573 4574 atomic_try_cmpxchg(&scx_exit_kind, &none, kind); 4575 4576 schedule_scx_ops_disable_work(); 4577 } 4578 4579 static void dump_newline(struct seq_buf *s) 4580 { 4581 trace_sched_ext_dump(""); 4582 4583 /* @s may be zero sized and seq_buf triggers WARN if so */ 4584 if (s->size) 4585 seq_buf_putc(s, '\n'); 4586 } 4587 4588 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 4589 { 4590 va_list args; 4591 4592 #ifdef CONFIG_TRACEPOINTS 4593 if (trace_sched_ext_dump_enabled()) { 4594 /* protected by scx_dump_state()::dump_lock */ 4595 static char line_buf[SCX_EXIT_MSG_LEN]; 4596 4597 va_start(args, fmt); 4598 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 4599 va_end(args); 4600 4601 trace_sched_ext_dump(line_buf); 4602 } 4603 #endif 4604 /* @s may be zero sized and seq_buf triggers WARN if so */ 4605 if (s->size) { 4606 va_start(args, fmt); 4607 seq_buf_vprintf(s, fmt, args); 4608 va_end(args); 4609 4610 seq_buf_putc(s, '\n'); 4611 } 4612 } 4613 4614 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 4615 const unsigned long *bt, unsigned int len) 4616 { 4617 unsigned int i; 4618 4619 for (i = 0; i < len; i++) 4620 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 4621 } 4622 4623 static void ops_dump_init(struct seq_buf *s, const char *prefix) 4624 { 4625 struct scx_dump_data *dd = &scx_dump_data; 4626 4627 lockdep_assert_irqs_disabled(); 4628 4629 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 4630 dd->first = true; 4631 dd->cursor = 0; 4632 dd->s = s; 4633 dd->prefix = prefix; 4634 } 4635 4636 static void ops_dump_flush(void) 4637 { 4638 struct scx_dump_data *dd = &scx_dump_data; 4639 char *line = dd->buf.line; 4640 4641 if (!dd->cursor) 4642 return; 4643 4644 /* 4645 * There's something to flush and this is the first line. Insert a blank 4646 * line to distinguish ops dump. 4647 */ 4648 if (dd->first) { 4649 dump_newline(dd->s); 4650 dd->first = false; 4651 } 4652 4653 /* 4654 * There may be multiple lines in $line. Scan and emit each line 4655 * separately. 4656 */ 4657 while (true) { 4658 char *end = line; 4659 char c; 4660 4661 while (*end != '\n' && *end != '\0') 4662 end++; 4663 4664 /* 4665 * If $line overflowed, it may not have newline at the end. 4666 * Always emit with a newline. 4667 */ 4668 c = *end; 4669 *end = '\0'; 4670 dump_line(dd->s, "%s%s", dd->prefix, line); 4671 if (c == '\0') 4672 break; 4673 4674 /* move to the next line */ 4675 end++; 4676 if (*end == '\0') 4677 break; 4678 line = end; 4679 } 4680 4681 dd->cursor = 0; 4682 } 4683 4684 static void ops_dump_exit(void) 4685 { 4686 ops_dump_flush(); 4687 scx_dump_data.cpu = -1; 4688 } 4689 4690 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 4691 struct task_struct *p, char marker) 4692 { 4693 static unsigned long bt[SCX_EXIT_BT_LEN]; 4694 char dsq_id_buf[19] = "(n/a)"; 4695 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 4696 unsigned int bt_len = 0; 4697 4698 if (p->scx.dsq) 4699 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 4700 (unsigned long long)p->scx.dsq->id); 4701 4702 dump_newline(s); 4703 dump_line(s, " %c%c %s[%d] %+ldms", 4704 marker, task_state_to_char(p), p->comm, p->pid, 4705 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 4706 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", 4707 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 4708 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, 4709 ops_state >> SCX_OPSS_QSEQ_SHIFT); 4710 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu", 4711 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf, 4712 p->scx.dsq_vtime); 4713 dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr)); 4714 4715 if (SCX_HAS_OP(dump_task)) { 4716 ops_dump_init(s, " "); 4717 SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p); 4718 ops_dump_exit(); 4719 } 4720 4721 #ifdef CONFIG_STACKTRACE 4722 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 4723 #endif 4724 if (bt_len) { 4725 dump_newline(s); 4726 dump_stack_trace(s, " ", bt, bt_len); 4727 } 4728 } 4729 4730 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 4731 { 4732 static DEFINE_SPINLOCK(dump_lock); 4733 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 4734 struct scx_dump_ctx dctx = { 4735 .kind = ei->kind, 4736 .exit_code = ei->exit_code, 4737 .reason = ei->reason, 4738 .at_ns = ktime_get_ns(), 4739 .at_jiffies = jiffies, 4740 }; 4741 struct seq_buf s; 4742 unsigned long flags; 4743 char *buf; 4744 int cpu; 4745 4746 spin_lock_irqsave(&dump_lock, flags); 4747 4748 seq_buf_init(&s, ei->dump, dump_len); 4749 4750 if (ei->kind == SCX_EXIT_NONE) { 4751 dump_line(&s, "Debug dump triggered by %s", ei->reason); 4752 } else { 4753 dump_line(&s, "%s[%d] triggered exit kind %d:", 4754 current->comm, current->pid, ei->kind); 4755 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 4756 dump_newline(&s); 4757 dump_line(&s, "Backtrace:"); 4758 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 4759 } 4760 4761 if (SCX_HAS_OP(dump)) { 4762 ops_dump_init(&s, ""); 4763 SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx); 4764 ops_dump_exit(); 4765 } 4766 4767 dump_newline(&s); 4768 dump_line(&s, "CPU states"); 4769 dump_line(&s, "----------"); 4770 4771 for_each_possible_cpu(cpu) { 4772 struct rq *rq = cpu_rq(cpu); 4773 struct rq_flags rf; 4774 struct task_struct *p; 4775 struct seq_buf ns; 4776 size_t avail, used; 4777 bool idle; 4778 4779 rq_lock(rq, &rf); 4780 4781 idle = list_empty(&rq->scx.runnable_list) && 4782 rq->curr->sched_class == &idle_sched_class; 4783 4784 if (idle && !SCX_HAS_OP(dump_cpu)) 4785 goto next; 4786 4787 /* 4788 * We don't yet know whether ops.dump_cpu() will produce output 4789 * and we may want to skip the default CPU dump if it doesn't. 4790 * Use a nested seq_buf to generate the standard dump so that we 4791 * can decide whether to commit later. 4792 */ 4793 avail = seq_buf_get_buf(&s, &buf); 4794 seq_buf_init(&ns, buf, avail); 4795 4796 dump_newline(&ns); 4797 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", 4798 cpu, rq->scx.nr_running, rq->scx.flags, 4799 rq->scx.cpu_released, rq->scx.ops_qseq, 4800 rq->scx.pnt_seq); 4801 dump_line(&ns, " curr=%s[%d] class=%ps", 4802 rq->curr->comm, rq->curr->pid, 4803 rq->curr->sched_class); 4804 if (!cpumask_empty(rq->scx.cpus_to_kick)) 4805 dump_line(&ns, " cpus_to_kick : %*pb", 4806 cpumask_pr_args(rq->scx.cpus_to_kick)); 4807 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 4808 dump_line(&ns, " idle_to_kick : %*pb", 4809 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 4810 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 4811 dump_line(&ns, " cpus_to_preempt: %*pb", 4812 cpumask_pr_args(rq->scx.cpus_to_preempt)); 4813 if (!cpumask_empty(rq->scx.cpus_to_wait)) 4814 dump_line(&ns, " cpus_to_wait : %*pb", 4815 cpumask_pr_args(rq->scx.cpus_to_wait)); 4816 4817 used = seq_buf_used(&ns); 4818 if (SCX_HAS_OP(dump_cpu)) { 4819 ops_dump_init(&ns, " "); 4820 SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle); 4821 ops_dump_exit(); 4822 } 4823 4824 /* 4825 * If idle && nothing generated by ops.dump_cpu(), there's 4826 * nothing interesting. Skip. 4827 */ 4828 if (idle && used == seq_buf_used(&ns)) 4829 goto next; 4830 4831 /* 4832 * $s may already have overflowed when $ns was created. If so, 4833 * calling commit on it will trigger BUG. 4834 */ 4835 if (avail) { 4836 seq_buf_commit(&s, seq_buf_used(&ns)); 4837 if (seq_buf_has_overflowed(&ns)) 4838 seq_buf_set_overflow(&s); 4839 } 4840 4841 if (rq->curr->sched_class == &ext_sched_class) 4842 scx_dump_task(&s, &dctx, rq->curr, '*'); 4843 4844 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 4845 scx_dump_task(&s, &dctx, p, ' '); 4846 next: 4847 rq_unlock(rq, &rf); 4848 } 4849 4850 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 4851 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 4852 trunc_marker, sizeof(trunc_marker)); 4853 4854 spin_unlock_irqrestore(&dump_lock, flags); 4855 } 4856 4857 static void scx_ops_error_irq_workfn(struct irq_work *irq_work) 4858 { 4859 struct scx_exit_info *ei = scx_exit_info; 4860 4861 if (ei->kind >= SCX_EXIT_ERROR) 4862 scx_dump_state(ei, scx_ops.exit_dump_len); 4863 4864 schedule_scx_ops_disable_work(); 4865 } 4866 4867 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn); 4868 4869 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 4870 s64 exit_code, 4871 const char *fmt, ...) 4872 { 4873 struct scx_exit_info *ei = scx_exit_info; 4874 int none = SCX_EXIT_NONE; 4875 va_list args; 4876 4877 if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind)) 4878 return; 4879 4880 ei->exit_code = exit_code; 4881 #ifdef CONFIG_STACKTRACE 4882 if (kind >= SCX_EXIT_ERROR) 4883 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 4884 #endif 4885 va_start(args, fmt); 4886 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 4887 va_end(args); 4888 4889 /* 4890 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 4891 * in scx_ops_disable_workfn(). 4892 */ 4893 ei->kind = kind; 4894 ei->reason = scx_exit_reason(ei->kind); 4895 4896 irq_work_queue(&scx_ops_error_irq_work); 4897 } 4898 4899 static struct kthread_worker *scx_create_rt_helper(const char *name) 4900 { 4901 struct kthread_worker *helper; 4902 4903 helper = kthread_create_worker(0, name); 4904 if (helper) 4905 sched_set_fifo(helper->task); 4906 return helper; 4907 } 4908 4909 static void check_hotplug_seq(const struct sched_ext_ops *ops) 4910 { 4911 unsigned long long global_hotplug_seq; 4912 4913 /* 4914 * If a hotplug event has occurred between when a scheduler was 4915 * initialized, and when we were able to attach, exit and notify user 4916 * space about it. 4917 */ 4918 if (ops->hotplug_seq) { 4919 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); 4920 if (ops->hotplug_seq != global_hotplug_seq) { 4921 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 4922 "expected hotplug seq %llu did not match actual %llu", 4923 ops->hotplug_seq, global_hotplug_seq); 4924 } 4925 } 4926 } 4927 4928 static int validate_ops(const struct sched_ext_ops *ops) 4929 { 4930 /* 4931 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 4932 * ops.enqueue() callback isn't implemented. 4933 */ 4934 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 4935 scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 4936 return -EINVAL; 4937 } 4938 4939 return 0; 4940 } 4941 4942 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link) 4943 { 4944 struct scx_task_iter sti; 4945 struct task_struct *p; 4946 unsigned long timeout; 4947 int i, cpu, node, ret; 4948 4949 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), 4950 cpu_possible_mask)) { 4951 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation"); 4952 return -EINVAL; 4953 } 4954 4955 mutex_lock(&scx_ops_enable_mutex); 4956 4957 if (!scx_ops_helper) { 4958 WRITE_ONCE(scx_ops_helper, 4959 scx_create_rt_helper("sched_ext_ops_helper")); 4960 if (!scx_ops_helper) { 4961 ret = -ENOMEM; 4962 goto err_unlock; 4963 } 4964 } 4965 4966 if (!global_dsqs) { 4967 struct scx_dispatch_q **dsqs; 4968 4969 dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL); 4970 if (!dsqs) { 4971 ret = -ENOMEM; 4972 goto err_unlock; 4973 } 4974 4975 for_each_node_state(node, N_POSSIBLE) { 4976 struct scx_dispatch_q *dsq; 4977 4978 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node); 4979 if (!dsq) { 4980 for_each_node_state(node, N_POSSIBLE) 4981 kfree(dsqs[node]); 4982 kfree(dsqs); 4983 ret = -ENOMEM; 4984 goto err_unlock; 4985 } 4986 4987 init_dsq(dsq, SCX_DSQ_GLOBAL); 4988 dsqs[node] = dsq; 4989 } 4990 4991 global_dsqs = dsqs; 4992 } 4993 4994 if (scx_ops_enable_state() != SCX_OPS_DISABLED) { 4995 ret = -EBUSY; 4996 goto err_unlock; 4997 } 4998 4999 scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL); 5000 if (!scx_root_kobj) { 5001 ret = -ENOMEM; 5002 goto err_unlock; 5003 } 5004 5005 scx_root_kobj->kset = scx_kset; 5006 ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root"); 5007 if (ret < 0) 5008 goto err; 5009 5010 scx_exit_info = alloc_exit_info(ops->exit_dump_len); 5011 if (!scx_exit_info) { 5012 ret = -ENOMEM; 5013 goto err_del; 5014 } 5015 5016 /* 5017 * Set scx_ops, transition to ENABLING and clear exit info to arm the 5018 * disable path. Failure triggers full disabling from here on. 5019 */ 5020 scx_ops = *ops; 5021 5022 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) != 5023 SCX_OPS_DISABLED); 5024 5025 atomic_set(&scx_exit_kind, SCX_EXIT_NONE); 5026 scx_warned_zero_slice = false; 5027 5028 atomic_long_set(&scx_nr_rejected, 0); 5029 5030 for_each_possible_cpu(cpu) 5031 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; 5032 5033 /* 5034 * Keep CPUs stable during enable so that the BPF scheduler can track 5035 * online CPUs by watching ->on/offline_cpu() after ->init(). 5036 */ 5037 cpus_read_lock(); 5038 5039 if (scx_ops.init) { 5040 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init); 5041 if (ret) { 5042 ret = ops_sanitize_err("init", ret); 5043 cpus_read_unlock(); 5044 goto err_disable; 5045 } 5046 } 5047 5048 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) 5049 if (((void (**)(void))ops)[i]) 5050 static_branch_enable_cpuslocked(&scx_has_op[i]); 5051 5052 check_hotplug_seq(ops); 5053 cpus_read_unlock(); 5054 5055 ret = validate_ops(ops); 5056 if (ret) 5057 goto err_disable; 5058 5059 WARN_ON_ONCE(scx_dsp_ctx); 5060 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 5061 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 5062 scx_dsp_max_batch), 5063 __alignof__(struct scx_dsp_ctx)); 5064 if (!scx_dsp_ctx) { 5065 ret = -ENOMEM; 5066 goto err_disable; 5067 } 5068 5069 if (ops->timeout_ms) 5070 timeout = msecs_to_jiffies(ops->timeout_ms); 5071 else 5072 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 5073 5074 WRITE_ONCE(scx_watchdog_timeout, timeout); 5075 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 5076 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 5077 scx_watchdog_timeout / 2); 5078 5079 /* 5080 * Once __scx_ops_enabled is set, %current can be switched to SCX 5081 * anytime. This can lead to stalls as some BPF schedulers (e.g. 5082 * userspace scheduling) may not function correctly before all tasks are 5083 * switched. Init in bypass mode to guarantee forward progress. 5084 */ 5085 scx_ops_bypass(true); 5086 5087 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 5088 if (((void (**)(void))ops)[i]) 5089 static_branch_enable(&scx_has_op[i]); 5090 5091 if (ops->flags & SCX_OPS_ENQ_LAST) 5092 static_branch_enable(&scx_ops_enq_last); 5093 5094 if (ops->flags & SCX_OPS_ENQ_EXITING) 5095 static_branch_enable(&scx_ops_enq_exiting); 5096 if (scx_ops.cpu_acquire || scx_ops.cpu_release) 5097 static_branch_enable(&scx_ops_cpu_preempt); 5098 5099 if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) { 5100 reset_idle_masks(); 5101 static_branch_enable(&scx_builtin_idle_enabled); 5102 } else { 5103 static_branch_disable(&scx_builtin_idle_enabled); 5104 } 5105 5106 /* 5107 * Lock out forks, cgroup on/offlining and moves before opening the 5108 * floodgate so that they don't wander into the operations prematurely. 5109 */ 5110 percpu_down_write(&scx_fork_rwsem); 5111 5112 WARN_ON_ONCE(scx_ops_init_task_enabled); 5113 scx_ops_init_task_enabled = true; 5114 5115 /* 5116 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 5117 * preventing new tasks from being added. No need to exclude tasks 5118 * leaving as sched_ext_free() can handle both prepped and enabled 5119 * tasks. Prep all tasks first and then enable them with preemption 5120 * disabled. 5121 * 5122 * All cgroups should be initialized before scx_ops_init_task() so that 5123 * the BPF scheduler can reliably track each task's cgroup membership 5124 * from scx_ops_init_task(). Lock out cgroup on/offlining and task 5125 * migrations while tasks are being initialized so that 5126 * scx_cgroup_can_attach() never sees uninitialized tasks. 5127 */ 5128 scx_cgroup_lock(); 5129 ret = scx_cgroup_init(); 5130 if (ret) 5131 goto err_disable_unlock_all; 5132 5133 spin_lock_irq(&scx_tasks_lock); 5134 scx_task_iter_init(&sti); 5135 while ((p = scx_task_iter_next_locked(&sti))) { 5136 /* 5137 * @p may already be dead, have lost all its usages counts and 5138 * be waiting for RCU grace period before being freed. @p can't 5139 * be initialized for SCX in such cases and should be ignored. 5140 */ 5141 if (!tryget_task_struct(p)) 5142 continue; 5143 5144 scx_task_iter_rq_unlock(&sti); 5145 spin_unlock_irq(&scx_tasks_lock); 5146 5147 ret = scx_ops_init_task(p, task_group(p), false); 5148 if (ret) { 5149 put_task_struct(p); 5150 spin_lock_irq(&scx_tasks_lock); 5151 scx_task_iter_exit(&sti); 5152 spin_unlock_irq(&scx_tasks_lock); 5153 pr_err("sched_ext: ops.init_task() failed (%d) for %s[%d] while loading\n", 5154 ret, p->comm, p->pid); 5155 goto err_disable_unlock_all; 5156 } 5157 5158 scx_set_task_state(p, SCX_TASK_READY); 5159 5160 put_task_struct(p); 5161 spin_lock_irq(&scx_tasks_lock); 5162 } 5163 scx_task_iter_exit(&sti); 5164 spin_unlock_irq(&scx_tasks_lock); 5165 scx_cgroup_unlock(); 5166 percpu_up_write(&scx_fork_rwsem); 5167 5168 /* 5169 * All tasks are READY. It's safe to turn on scx_enabled() and switch 5170 * all eligible tasks. 5171 */ 5172 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 5173 static_branch_enable(&__scx_ops_enabled); 5174 5175 /* 5176 * We're fully committed and can't fail. The task READY -> ENABLED 5177 * transitions here are synchronized against sched_ext_free() through 5178 * scx_tasks_lock. 5179 */ 5180 percpu_down_write(&scx_fork_rwsem); 5181 spin_lock_irq(&scx_tasks_lock); 5182 scx_task_iter_init(&sti); 5183 while ((p = scx_task_iter_next_locked(&sti))) { 5184 const struct sched_class *old_class = p->sched_class; 5185 struct sched_enq_and_set_ctx ctx; 5186 5187 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 5188 5189 __setscheduler_prio(p, p->prio); 5190 check_class_changing(task_rq(p), p, old_class); 5191 5192 sched_enq_and_set_task(&ctx); 5193 5194 check_class_changed(task_rq(p), p, old_class, p->prio); 5195 } 5196 scx_task_iter_exit(&sti); 5197 spin_unlock_irq(&scx_tasks_lock); 5198 percpu_up_write(&scx_fork_rwsem); 5199 5200 scx_ops_bypass(false); 5201 5202 /* 5203 * Returning an error code here would lose the recorded error 5204 * information. Exit indicating success so that the error is notified 5205 * through ops.exit() with all the details. 5206 */ 5207 if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) { 5208 WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); 5209 ret = 0; 5210 goto err_disable; 5211 } 5212 5213 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 5214 static_branch_enable(&__scx_switched_all); 5215 5216 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", 5217 scx_ops.name, scx_switched_all() ? "" : " (partial)"); 5218 kobject_uevent(scx_root_kobj, KOBJ_ADD); 5219 mutex_unlock(&scx_ops_enable_mutex); 5220 5221 atomic_long_inc(&scx_enable_seq); 5222 5223 return 0; 5224 5225 err_del: 5226 kobject_del(scx_root_kobj); 5227 err: 5228 kobject_put(scx_root_kobj); 5229 scx_root_kobj = NULL; 5230 if (scx_exit_info) { 5231 free_exit_info(scx_exit_info); 5232 scx_exit_info = NULL; 5233 } 5234 err_unlock: 5235 mutex_unlock(&scx_ops_enable_mutex); 5236 return ret; 5237 5238 err_disable_unlock_all: 5239 scx_cgroup_unlock(); 5240 percpu_up_write(&scx_fork_rwsem); 5241 scx_ops_bypass(false); 5242 err_disable: 5243 mutex_unlock(&scx_ops_enable_mutex); 5244 /* must be fully disabled before returning */ 5245 scx_ops_disable(SCX_EXIT_ERROR); 5246 kthread_flush_work(&scx_ops_disable_work); 5247 return ret; 5248 } 5249 5250 5251 /******************************************************************************** 5252 * bpf_struct_ops plumbing. 5253 */ 5254 #include <linux/bpf_verifier.h> 5255 #include <linux/bpf.h> 5256 #include <linux/btf.h> 5257 5258 extern struct btf *btf_vmlinux; 5259 static const struct btf_type *task_struct_type; 5260 static u32 task_struct_type_id; 5261 5262 static bool set_arg_maybe_null(const char *op, int arg_n, int off, int size, 5263 enum bpf_access_type type, 5264 const struct bpf_prog *prog, 5265 struct bpf_insn_access_aux *info) 5266 { 5267 struct btf *btf = bpf_get_btf_vmlinux(); 5268 const struct bpf_struct_ops_desc *st_ops_desc; 5269 const struct btf_member *member; 5270 const struct btf_type *t; 5271 u32 btf_id, member_idx; 5272 const char *mname; 5273 5274 /* struct_ops op args are all sequential, 64-bit numbers */ 5275 if (off != arg_n * sizeof(__u64)) 5276 return false; 5277 5278 /* btf_id should be the type id of struct sched_ext_ops */ 5279 btf_id = prog->aux->attach_btf_id; 5280 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 5281 if (!st_ops_desc) 5282 return false; 5283 5284 /* BTF type of struct sched_ext_ops */ 5285 t = st_ops_desc->type; 5286 5287 member_idx = prog->expected_attach_type; 5288 if (member_idx >= btf_type_vlen(t)) 5289 return false; 5290 5291 /* 5292 * Get the member name of this struct_ops program, which corresponds to 5293 * a field in struct sched_ext_ops. For example, the member name of the 5294 * dispatch struct_ops program (callback) is "dispatch". 5295 */ 5296 member = &btf_type_member(t)[member_idx]; 5297 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 5298 5299 if (!strcmp(mname, op)) { 5300 /* 5301 * The value is a pointer to a type (struct task_struct) given 5302 * by a BTF ID (PTR_TO_BTF_ID). It is trusted (PTR_TRUSTED), 5303 * however, can be a NULL (PTR_MAYBE_NULL). The BPF program 5304 * should check the pointer to make sure it is not NULL before 5305 * using it, or the verifier will reject the program. 5306 * 5307 * Longer term, this is something that should be addressed by 5308 * BTF, and be fully contained within the verifier. 5309 */ 5310 info->reg_type = PTR_MAYBE_NULL | PTR_TO_BTF_ID | PTR_TRUSTED; 5311 info->btf = btf_vmlinux; 5312 info->btf_id = task_struct_type_id; 5313 5314 return true; 5315 } 5316 5317 return false; 5318 } 5319 5320 static bool bpf_scx_is_valid_access(int off, int size, 5321 enum bpf_access_type type, 5322 const struct bpf_prog *prog, 5323 struct bpf_insn_access_aux *info) 5324 { 5325 if (type != BPF_READ) 5326 return false; 5327 if (set_arg_maybe_null("dispatch", 1, off, size, type, prog, info) || 5328 set_arg_maybe_null("yield", 1, off, size, type, prog, info)) 5329 return true; 5330 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 5331 return false; 5332 if (off % size != 0) 5333 return false; 5334 5335 return btf_ctx_access(off, size, type, prog, info); 5336 } 5337 5338 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 5339 const struct bpf_reg_state *reg, int off, 5340 int size) 5341 { 5342 const struct btf_type *t; 5343 5344 t = btf_type_by_id(reg->btf, reg->btf_id); 5345 if (t == task_struct_type) { 5346 if (off >= offsetof(struct task_struct, scx.slice) && 5347 off + size <= offsetofend(struct task_struct, scx.slice)) 5348 return SCALAR_VALUE; 5349 if (off >= offsetof(struct task_struct, scx.dsq_vtime) && 5350 off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) 5351 return SCALAR_VALUE; 5352 if (off >= offsetof(struct task_struct, scx.disallow) && 5353 off + size <= offsetofend(struct task_struct, scx.disallow)) 5354 return SCALAR_VALUE; 5355 } 5356 5357 return -EACCES; 5358 } 5359 5360 static const struct bpf_func_proto * 5361 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 5362 { 5363 switch (func_id) { 5364 case BPF_FUNC_task_storage_get: 5365 return &bpf_task_storage_get_proto; 5366 case BPF_FUNC_task_storage_delete: 5367 return &bpf_task_storage_delete_proto; 5368 default: 5369 return bpf_base_func_proto(func_id, prog); 5370 } 5371 } 5372 5373 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 5374 .get_func_proto = bpf_scx_get_func_proto, 5375 .is_valid_access = bpf_scx_is_valid_access, 5376 .btf_struct_access = bpf_scx_btf_struct_access, 5377 }; 5378 5379 static int bpf_scx_init_member(const struct btf_type *t, 5380 const struct btf_member *member, 5381 void *kdata, const void *udata) 5382 { 5383 const struct sched_ext_ops *uops = udata; 5384 struct sched_ext_ops *ops = kdata; 5385 u32 moff = __btf_member_bit_offset(t, member) / 8; 5386 int ret; 5387 5388 switch (moff) { 5389 case offsetof(struct sched_ext_ops, dispatch_max_batch): 5390 if (*(u32 *)(udata + moff) > INT_MAX) 5391 return -E2BIG; 5392 ops->dispatch_max_batch = *(u32 *)(udata + moff); 5393 return 1; 5394 case offsetof(struct sched_ext_ops, flags): 5395 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 5396 return -EINVAL; 5397 ops->flags = *(u64 *)(udata + moff); 5398 return 1; 5399 case offsetof(struct sched_ext_ops, name): 5400 ret = bpf_obj_name_cpy(ops->name, uops->name, 5401 sizeof(ops->name)); 5402 if (ret < 0) 5403 return ret; 5404 if (ret == 0) 5405 return -EINVAL; 5406 return 1; 5407 case offsetof(struct sched_ext_ops, timeout_ms): 5408 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 5409 SCX_WATCHDOG_MAX_TIMEOUT) 5410 return -E2BIG; 5411 ops->timeout_ms = *(u32 *)(udata + moff); 5412 return 1; 5413 case offsetof(struct sched_ext_ops, exit_dump_len): 5414 ops->exit_dump_len = 5415 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 5416 return 1; 5417 case offsetof(struct sched_ext_ops, hotplug_seq): 5418 ops->hotplug_seq = *(u64 *)(udata + moff); 5419 return 1; 5420 } 5421 5422 return 0; 5423 } 5424 5425 static int bpf_scx_check_member(const struct btf_type *t, 5426 const struct btf_member *member, 5427 const struct bpf_prog *prog) 5428 { 5429 u32 moff = __btf_member_bit_offset(t, member) / 8; 5430 5431 switch (moff) { 5432 case offsetof(struct sched_ext_ops, init_task): 5433 #ifdef CONFIG_EXT_GROUP_SCHED 5434 case offsetof(struct sched_ext_ops, cgroup_init): 5435 case offsetof(struct sched_ext_ops, cgroup_exit): 5436 case offsetof(struct sched_ext_ops, cgroup_prep_move): 5437 #endif 5438 case offsetof(struct sched_ext_ops, cpu_online): 5439 case offsetof(struct sched_ext_ops, cpu_offline): 5440 case offsetof(struct sched_ext_ops, init): 5441 case offsetof(struct sched_ext_ops, exit): 5442 break; 5443 default: 5444 if (prog->sleepable) 5445 return -EINVAL; 5446 } 5447 5448 return 0; 5449 } 5450 5451 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 5452 { 5453 return scx_ops_enable(kdata, link); 5454 } 5455 5456 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 5457 { 5458 scx_ops_disable(SCX_EXIT_UNREG); 5459 kthread_flush_work(&scx_ops_disable_work); 5460 } 5461 5462 static int bpf_scx_init(struct btf *btf) 5463 { 5464 s32 type_id; 5465 5466 type_id = btf_find_by_name_kind(btf, "task_struct", BTF_KIND_STRUCT); 5467 if (type_id < 0) 5468 return -EINVAL; 5469 task_struct_type = btf_type_by_id(btf, type_id); 5470 task_struct_type_id = type_id; 5471 5472 return 0; 5473 } 5474 5475 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 5476 { 5477 /* 5478 * sched_ext does not support updating the actively-loaded BPF 5479 * scheduler, as registering a BPF scheduler can always fail if the 5480 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 5481 * etc. Similarly, we can always race with unregistration happening 5482 * elsewhere, such as with sysrq. 5483 */ 5484 return -EOPNOTSUPP; 5485 } 5486 5487 static int bpf_scx_validate(void *kdata) 5488 { 5489 return 0; 5490 } 5491 5492 static s32 select_cpu_stub(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 5493 static void enqueue_stub(struct task_struct *p, u64 enq_flags) {} 5494 static void dequeue_stub(struct task_struct *p, u64 enq_flags) {} 5495 static void dispatch_stub(s32 prev_cpu, struct task_struct *p) {} 5496 static void tick_stub(struct task_struct *p) {} 5497 static void runnable_stub(struct task_struct *p, u64 enq_flags) {} 5498 static void running_stub(struct task_struct *p) {} 5499 static void stopping_stub(struct task_struct *p, bool runnable) {} 5500 static void quiescent_stub(struct task_struct *p, u64 deq_flags) {} 5501 static bool yield_stub(struct task_struct *from, struct task_struct *to) { return false; } 5502 static bool core_sched_before_stub(struct task_struct *a, struct task_struct *b) { return false; } 5503 static void set_weight_stub(struct task_struct *p, u32 weight) {} 5504 static void set_cpumask_stub(struct task_struct *p, const struct cpumask *mask) {} 5505 static void update_idle_stub(s32 cpu, bool idle) {} 5506 static void cpu_acquire_stub(s32 cpu, struct scx_cpu_acquire_args *args) {} 5507 static void cpu_release_stub(s32 cpu, struct scx_cpu_release_args *args) {} 5508 static s32 init_task_stub(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 5509 static void exit_task_stub(struct task_struct *p, struct scx_exit_task_args *args) {} 5510 static void enable_stub(struct task_struct *p) {} 5511 static void disable_stub(struct task_struct *p) {} 5512 #ifdef CONFIG_EXT_GROUP_SCHED 5513 static s32 cgroup_init_stub(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } 5514 static void cgroup_exit_stub(struct cgroup *cgrp) {} 5515 static s32 cgroup_prep_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } 5516 static void cgroup_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5517 static void cgroup_cancel_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5518 static void cgroup_set_weight_stub(struct cgroup *cgrp, u32 weight) {} 5519 #endif 5520 static void cpu_online_stub(s32 cpu) {} 5521 static void cpu_offline_stub(s32 cpu) {} 5522 static s32 init_stub(void) { return -EINVAL; } 5523 static void exit_stub(struct scx_exit_info *info) {} 5524 static void dump_stub(struct scx_dump_ctx *ctx) {} 5525 static void dump_cpu_stub(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} 5526 static void dump_task_stub(struct scx_dump_ctx *ctx, struct task_struct *p) {} 5527 5528 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 5529 .select_cpu = select_cpu_stub, 5530 .enqueue = enqueue_stub, 5531 .dequeue = dequeue_stub, 5532 .dispatch = dispatch_stub, 5533 .tick = tick_stub, 5534 .runnable = runnable_stub, 5535 .running = running_stub, 5536 .stopping = stopping_stub, 5537 .quiescent = quiescent_stub, 5538 .yield = yield_stub, 5539 .core_sched_before = core_sched_before_stub, 5540 .set_weight = set_weight_stub, 5541 .set_cpumask = set_cpumask_stub, 5542 .update_idle = update_idle_stub, 5543 .cpu_acquire = cpu_acquire_stub, 5544 .cpu_release = cpu_release_stub, 5545 .init_task = init_task_stub, 5546 .exit_task = exit_task_stub, 5547 .enable = enable_stub, 5548 .disable = disable_stub, 5549 #ifdef CONFIG_EXT_GROUP_SCHED 5550 .cgroup_init = cgroup_init_stub, 5551 .cgroup_exit = cgroup_exit_stub, 5552 .cgroup_prep_move = cgroup_prep_move_stub, 5553 .cgroup_move = cgroup_move_stub, 5554 .cgroup_cancel_move = cgroup_cancel_move_stub, 5555 .cgroup_set_weight = cgroup_set_weight_stub, 5556 #endif 5557 .cpu_online = cpu_online_stub, 5558 .cpu_offline = cpu_offline_stub, 5559 .init = init_stub, 5560 .exit = exit_stub, 5561 .dump = dump_stub, 5562 .dump_cpu = dump_cpu_stub, 5563 .dump_task = dump_task_stub, 5564 }; 5565 5566 static struct bpf_struct_ops bpf_sched_ext_ops = { 5567 .verifier_ops = &bpf_scx_verifier_ops, 5568 .reg = bpf_scx_reg, 5569 .unreg = bpf_scx_unreg, 5570 .check_member = bpf_scx_check_member, 5571 .init_member = bpf_scx_init_member, 5572 .init = bpf_scx_init, 5573 .update = bpf_scx_update, 5574 .validate = bpf_scx_validate, 5575 .name = "sched_ext_ops", 5576 .owner = THIS_MODULE, 5577 .cfi_stubs = &__bpf_ops_sched_ext_ops 5578 }; 5579 5580 5581 /******************************************************************************** 5582 * System integration and init. 5583 */ 5584 5585 static void sysrq_handle_sched_ext_reset(u8 key) 5586 { 5587 if (scx_ops_helper) 5588 scx_ops_disable(SCX_EXIT_SYSRQ); 5589 else 5590 pr_info("sched_ext: BPF scheduler not yet used\n"); 5591 } 5592 5593 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 5594 .handler = sysrq_handle_sched_ext_reset, 5595 .help_msg = "reset-sched-ext(S)", 5596 .action_msg = "Disable sched_ext and revert all tasks to CFS", 5597 .enable_mask = SYSRQ_ENABLE_RTNICE, 5598 }; 5599 5600 static void sysrq_handle_sched_ext_dump(u8 key) 5601 { 5602 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 5603 5604 if (scx_enabled()) 5605 scx_dump_state(&ei, 0); 5606 } 5607 5608 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 5609 .handler = sysrq_handle_sched_ext_dump, 5610 .help_msg = "dump-sched-ext(D)", 5611 .action_msg = "Trigger sched_ext debug dump", 5612 .enable_mask = SYSRQ_ENABLE_RTNICE, 5613 }; 5614 5615 static bool can_skip_idle_kick(struct rq *rq) 5616 { 5617 lockdep_assert_rq_held(rq); 5618 5619 /* 5620 * We can skip idle kicking if @rq is going to go through at least one 5621 * full SCX scheduling cycle before going idle. Just checking whether 5622 * curr is not idle is insufficient because we could be racing 5623 * balance_one() trying to pull the next task from a remote rq, which 5624 * may fail, and @rq may become idle afterwards. 5625 * 5626 * The race window is small and we don't and can't guarantee that @rq is 5627 * only kicked while idle anyway. Skip only when sure. 5628 */ 5629 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); 5630 } 5631 5632 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) 5633 { 5634 struct rq *rq = cpu_rq(cpu); 5635 struct scx_rq *this_scx = &this_rq->scx; 5636 bool should_wait = false; 5637 unsigned long flags; 5638 5639 raw_spin_rq_lock_irqsave(rq, flags); 5640 5641 /* 5642 * During CPU hotplug, a CPU may depend on kicking itself to make 5643 * forward progress. Allow kicking self regardless of online state. 5644 */ 5645 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { 5646 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 5647 if (rq->curr->sched_class == &ext_sched_class) 5648 rq->curr->scx.slice = 0; 5649 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5650 } 5651 5652 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 5653 pseqs[cpu] = rq->scx.pnt_seq; 5654 should_wait = true; 5655 } 5656 5657 resched_curr(rq); 5658 } else { 5659 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5660 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5661 } 5662 5663 raw_spin_rq_unlock_irqrestore(rq, flags); 5664 5665 return should_wait; 5666 } 5667 5668 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 5669 { 5670 struct rq *rq = cpu_rq(cpu); 5671 unsigned long flags; 5672 5673 raw_spin_rq_lock_irqsave(rq, flags); 5674 5675 if (!can_skip_idle_kick(rq) && 5676 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 5677 resched_curr(rq); 5678 5679 raw_spin_rq_unlock_irqrestore(rq, flags); 5680 } 5681 5682 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 5683 { 5684 struct rq *this_rq = this_rq(); 5685 struct scx_rq *this_scx = &this_rq->scx; 5686 unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs); 5687 bool should_wait = false; 5688 s32 cpu; 5689 5690 for_each_cpu(cpu, this_scx->cpus_to_kick) { 5691 should_wait |= kick_one_cpu(cpu, this_rq, pseqs); 5692 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 5693 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5694 } 5695 5696 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 5697 kick_one_cpu_if_idle(cpu, this_rq); 5698 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5699 } 5700 5701 if (!should_wait) 5702 return; 5703 5704 for_each_cpu(cpu, this_scx->cpus_to_wait) { 5705 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; 5706 5707 if (cpu != cpu_of(this_rq)) { 5708 /* 5709 * Pairs with smp_store_release() issued by this CPU in 5710 * scx_next_task_picked() on the resched path. 5711 * 5712 * We busy-wait here to guarantee that no other task can 5713 * be scheduled on our core before the target CPU has 5714 * entered the resched path. 5715 */ 5716 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) 5717 cpu_relax(); 5718 } 5719 5720 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5721 } 5722 } 5723 5724 /** 5725 * print_scx_info - print out sched_ext scheduler state 5726 * @log_lvl: the log level to use when printing 5727 * @p: target task 5728 * 5729 * If a sched_ext scheduler is enabled, print the name and state of the 5730 * scheduler. If @p is on sched_ext, print further information about the task. 5731 * 5732 * This function can be safely called on any task as long as the task_struct 5733 * itself is accessible. While safe, this function isn't synchronized and may 5734 * print out mixups or garbages of limited length. 5735 */ 5736 void print_scx_info(const char *log_lvl, struct task_struct *p) 5737 { 5738 enum scx_ops_enable_state state = scx_ops_enable_state(); 5739 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 5740 char runnable_at_buf[22] = "?"; 5741 struct sched_class *class; 5742 unsigned long runnable_at; 5743 5744 if (state == SCX_OPS_DISABLED) 5745 return; 5746 5747 /* 5748 * Carefully check if the task was running on sched_ext, and then 5749 * carefully copy the time it's been runnable, and its state. 5750 */ 5751 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 5752 class != &ext_sched_class) { 5753 printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name, 5754 scx_ops_enable_state_str[state], all); 5755 return; 5756 } 5757 5758 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 5759 sizeof(runnable_at))) 5760 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 5761 jiffies_delta_msecs(runnable_at, jiffies)); 5762 5763 /* print everything onto one line to conserve console space */ 5764 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 5765 log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all, 5766 runnable_at_buf); 5767 } 5768 5769 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) 5770 { 5771 /* 5772 * SCX schedulers often have userspace components which are sometimes 5773 * involved in critial scheduling paths. PM operations involve freezing 5774 * userspace which can lead to scheduling misbehaviors including stalls. 5775 * Let's bypass while PM operations are in progress. 5776 */ 5777 switch (event) { 5778 case PM_HIBERNATION_PREPARE: 5779 case PM_SUSPEND_PREPARE: 5780 case PM_RESTORE_PREPARE: 5781 scx_ops_bypass(true); 5782 break; 5783 case PM_POST_HIBERNATION: 5784 case PM_POST_SUSPEND: 5785 case PM_POST_RESTORE: 5786 scx_ops_bypass(false); 5787 break; 5788 } 5789 5790 return NOTIFY_OK; 5791 } 5792 5793 static struct notifier_block scx_pm_notifier = { 5794 .notifier_call = scx_pm_handler, 5795 }; 5796 5797 void __init init_sched_ext_class(void) 5798 { 5799 s32 cpu, v; 5800 5801 /* 5802 * The following is to prevent the compiler from optimizing out the enum 5803 * definitions so that BPF scheduler implementations can use them 5804 * through the generated vmlinux.h. 5805 */ 5806 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | 5807 SCX_TG_ONLINE); 5808 5809 BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params)); 5810 #ifdef CONFIG_SMP 5811 BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL)); 5812 BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL)); 5813 #endif 5814 scx_kick_cpus_pnt_seqs = 5815 __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids, 5816 __alignof__(scx_kick_cpus_pnt_seqs[0])); 5817 BUG_ON(!scx_kick_cpus_pnt_seqs); 5818 5819 for_each_possible_cpu(cpu) { 5820 struct rq *rq = cpu_rq(cpu); 5821 5822 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 5823 INIT_LIST_HEAD(&rq->scx.runnable_list); 5824 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); 5825 5826 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL)); 5827 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL)); 5828 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL)); 5829 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL)); 5830 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn); 5831 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); 5832 5833 if (cpu_online(cpu)) 5834 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; 5835 } 5836 5837 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 5838 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 5839 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 5840 } 5841 5842 5843 /******************************************************************************** 5844 * Helpers that can be called from the BPF scheduler. 5845 */ 5846 #include <linux/btf_ids.h> 5847 5848 __bpf_kfunc_start_defs(); 5849 5850 /** 5851 * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu() 5852 * @p: task_struct to select a CPU for 5853 * @prev_cpu: CPU @p was on previously 5854 * @wake_flags: %SCX_WAKE_* flags 5855 * @is_idle: out parameter indicating whether the returned CPU is idle 5856 * 5857 * Can only be called from ops.select_cpu() if the built-in CPU selection is 5858 * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set. 5859 * @p, @prev_cpu and @wake_flags match ops.select_cpu(). 5860 * 5861 * Returns the picked CPU with *@is_idle indicating whether the picked CPU is 5862 * currently idle and thus a good candidate for direct dispatching. 5863 */ 5864 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 5865 u64 wake_flags, bool *is_idle) 5866 { 5867 if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) { 5868 *is_idle = false; 5869 return prev_cpu; 5870 } 5871 #ifdef CONFIG_SMP 5872 return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle); 5873 #else 5874 *is_idle = false; 5875 return prev_cpu; 5876 #endif 5877 } 5878 5879 __bpf_kfunc_end_defs(); 5880 5881 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu) 5882 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU) 5883 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu) 5884 5885 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = { 5886 .owner = THIS_MODULE, 5887 .set = &scx_kfunc_ids_select_cpu, 5888 }; 5889 5890 static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags) 5891 { 5892 if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 5893 return false; 5894 5895 lockdep_assert_irqs_disabled(); 5896 5897 if (unlikely(!p)) { 5898 scx_ops_error("called with NULL task"); 5899 return false; 5900 } 5901 5902 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 5903 scx_ops_error("invalid enq_flags 0x%llx", enq_flags); 5904 return false; 5905 } 5906 5907 return true; 5908 } 5909 5910 static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags) 5911 { 5912 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5913 struct task_struct *ddsp_task; 5914 5915 ddsp_task = __this_cpu_read(direct_dispatch_task); 5916 if (ddsp_task) { 5917 mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags); 5918 return; 5919 } 5920 5921 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 5922 scx_ops_error("dispatch buffer overflow"); 5923 return; 5924 } 5925 5926 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 5927 .task = p, 5928 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 5929 .dsq_id = dsq_id, 5930 .enq_flags = enq_flags, 5931 }; 5932 } 5933 5934 __bpf_kfunc_start_defs(); 5935 5936 /** 5937 * scx_bpf_dispatch - Dispatch a task into the FIFO queue of a DSQ 5938 * @p: task_struct to dispatch 5939 * @dsq_id: DSQ to dispatch to 5940 * @slice: duration @p can run for in nsecs, 0 to keep the current value 5941 * @enq_flags: SCX_ENQ_* 5942 * 5943 * Dispatch @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe 5944 * to call this function spuriously. Can be called from ops.enqueue(), 5945 * ops.select_cpu(), and ops.dispatch(). 5946 * 5947 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 5948 * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be 5949 * used to target the local DSQ of a CPU other than the enqueueing one. Use 5950 * ops.select_cpu() to be on the target CPU in the first place. 5951 * 5952 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 5953 * will be directly dispatched to the corresponding dispatch queue after 5954 * ops.select_cpu() returns. If @p is dispatched to SCX_DSQ_LOCAL, it will be 5955 * dispatched to the local DSQ of the CPU returned by ops.select_cpu(). 5956 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 5957 * task is dispatched. 5958 * 5959 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 5960 * and this function can be called upto ops.dispatch_max_batch times to dispatch 5961 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 5962 * remaining slots. scx_bpf_consume() flushes the batch and resets the counter. 5963 * 5964 * This function doesn't have any locking restrictions and may be called under 5965 * BPF locks (in the future when BPF introduces more flexible locking). 5966 * 5967 * @p is allowed to run for @slice. The scheduling path is triggered on slice 5968 * exhaustion. If zero, the current residual slice is maintained. If 5969 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 5970 * scx_bpf_kick_cpu() to trigger scheduling. 5971 */ 5972 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice, 5973 u64 enq_flags) 5974 { 5975 if (!scx_dispatch_preamble(p, enq_flags)) 5976 return; 5977 5978 if (slice) 5979 p->scx.slice = slice; 5980 else 5981 p->scx.slice = p->scx.slice ?: 1; 5982 5983 scx_dispatch_commit(p, dsq_id, enq_flags); 5984 } 5985 5986 /** 5987 * scx_bpf_dispatch_vtime - Dispatch a task into the vtime priority queue of a DSQ 5988 * @p: task_struct to dispatch 5989 * @dsq_id: DSQ to dispatch to 5990 * @slice: duration @p can run for in nsecs, 0 to keep the current value 5991 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ 5992 * @enq_flags: SCX_ENQ_* 5993 * 5994 * Dispatch @p into the vtime priority queue of the DSQ identified by @dsq_id. 5995 * Tasks queued into the priority queue are ordered by @vtime and always 5996 * consumed after the tasks in the FIFO queue. All other aspects are identical 5997 * to scx_bpf_dispatch(). 5998 * 5999 * @vtime ordering is according to time_before64() which considers wrapping. A 6000 * numerically larger vtime may indicate an earlier position in the ordering and 6001 * vice-versa. 6002 */ 6003 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id, 6004 u64 slice, u64 vtime, u64 enq_flags) 6005 { 6006 if (!scx_dispatch_preamble(p, enq_flags)) 6007 return; 6008 6009 if (slice) 6010 p->scx.slice = slice; 6011 else 6012 p->scx.slice = p->scx.slice ?: 1; 6013 6014 p->scx.dsq_vtime = vtime; 6015 6016 scx_dispatch_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6017 } 6018 6019 __bpf_kfunc_end_defs(); 6020 6021 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 6022 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU) 6023 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU) 6024 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 6025 6026 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 6027 .owner = THIS_MODULE, 6028 .set = &scx_kfunc_ids_enqueue_dispatch, 6029 }; 6030 6031 static bool scx_dispatch_from_dsq(struct bpf_iter_scx_dsq_kern *kit, 6032 struct task_struct *p, u64 dsq_id, 6033 u64 enq_flags) 6034 { 6035 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; 6036 struct rq *this_rq, *src_rq, *dst_rq, *locked_rq; 6037 bool dispatched = false; 6038 bool in_balance; 6039 unsigned long flags; 6040 6041 if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH)) 6042 return false; 6043 6044 /* 6045 * Can be called from either ops.dispatch() locking this_rq() or any 6046 * context where no rq lock is held. If latter, lock @p's task_rq which 6047 * we'll likely need anyway. 6048 */ 6049 src_rq = task_rq(p); 6050 6051 local_irq_save(flags); 6052 this_rq = this_rq(); 6053 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; 6054 6055 if (in_balance) { 6056 if (this_rq != src_rq) { 6057 raw_spin_rq_unlock(this_rq); 6058 raw_spin_rq_lock(src_rq); 6059 } 6060 } else { 6061 raw_spin_rq_lock(src_rq); 6062 } 6063 6064 locked_rq = src_rq; 6065 raw_spin_lock(&src_dsq->lock); 6066 6067 /* 6068 * Did someone else get to it? @p could have already left $src_dsq, got 6069 * re-enqueud, or be in the process of being consumed by someone else. 6070 */ 6071 if (unlikely(p->scx.dsq != src_dsq || 6072 u32_before(kit->cursor.priv, p->scx.dsq_seq) || 6073 p->scx.holding_cpu >= 0) || 6074 WARN_ON_ONCE(src_rq != task_rq(p))) { 6075 raw_spin_unlock(&src_dsq->lock); 6076 goto out; 6077 } 6078 6079 /* @p is still on $src_dsq and stable, determine the destination */ 6080 dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p); 6081 6082 if (dst_dsq->id == SCX_DSQ_LOCAL) { 6083 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 6084 if (!task_can_run_on_remote_rq(p, dst_rq, true)) { 6085 dst_dsq = find_global_dsq(p); 6086 dst_rq = src_rq; 6087 } 6088 } else { 6089 /* no need to migrate if destination is a non-local DSQ */ 6090 dst_rq = src_rq; 6091 } 6092 6093 /* 6094 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different 6095 * CPU, @p will be migrated. 6096 */ 6097 if (dst_dsq->id == SCX_DSQ_LOCAL) { 6098 /* @p is going from a non-local DSQ to a local DSQ */ 6099 if (src_rq == dst_rq) { 6100 task_unlink_from_dsq(p, src_dsq); 6101 move_local_task_to_local_dsq(p, enq_flags, 6102 src_dsq, dst_rq); 6103 raw_spin_unlock(&src_dsq->lock); 6104 } else { 6105 raw_spin_unlock(&src_dsq->lock); 6106 move_remote_task_to_local_dsq(p, enq_flags, 6107 src_rq, dst_rq); 6108 locked_rq = dst_rq; 6109 } 6110 } else { 6111 /* 6112 * @p is going from a non-local DSQ to a non-local DSQ. As 6113 * $src_dsq is already locked, do an abbreviated dequeue. 6114 */ 6115 task_unlink_from_dsq(p, src_dsq); 6116 p->scx.dsq = NULL; 6117 raw_spin_unlock(&src_dsq->lock); 6118 6119 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) 6120 p->scx.dsq_vtime = kit->vtime; 6121 dispatch_enqueue(dst_dsq, p, enq_flags); 6122 } 6123 6124 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) 6125 p->scx.slice = kit->slice; 6126 6127 dispatched = true; 6128 out: 6129 if (in_balance) { 6130 if (this_rq != locked_rq) { 6131 raw_spin_rq_unlock(locked_rq); 6132 raw_spin_rq_lock(this_rq); 6133 } 6134 } else { 6135 raw_spin_rq_unlock_irqrestore(locked_rq, flags); 6136 } 6137 6138 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | 6139 __SCX_DSQ_ITER_HAS_VTIME); 6140 return dispatched; 6141 } 6142 6143 __bpf_kfunc_start_defs(); 6144 6145 /** 6146 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 6147 * 6148 * Can only be called from ops.dispatch(). 6149 */ 6150 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 6151 { 6152 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6153 return 0; 6154 6155 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 6156 } 6157 6158 /** 6159 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 6160 * 6161 * Cancel the latest dispatch. Can be called multiple times to cancel further 6162 * dispatches. Can only be called from ops.dispatch(). 6163 */ 6164 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 6165 { 6166 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6167 6168 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6169 return; 6170 6171 if (dspc->cursor > 0) 6172 dspc->cursor--; 6173 else 6174 scx_ops_error("dispatch buffer underflow"); 6175 } 6176 6177 /** 6178 * scx_bpf_consume - Transfer a task from a DSQ to the current CPU's local DSQ 6179 * @dsq_id: DSQ to consume 6180 * 6181 * Consume a task from the non-local DSQ identified by @dsq_id and transfer it 6182 * to the current CPU's local DSQ for execution. Can only be called from 6183 * ops.dispatch(). 6184 * 6185 * This function flushes the in-flight dispatches from scx_bpf_dispatch() before 6186 * trying to consume the specified DSQ. It may also grab rq locks and thus can't 6187 * be called under any BPF locks. 6188 * 6189 * Returns %true if a task has been consumed, %false if there isn't any task to 6190 * consume. 6191 */ 6192 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id) 6193 { 6194 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6195 struct scx_dispatch_q *dsq; 6196 6197 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6198 return false; 6199 6200 flush_dispatch_buf(dspc->rq); 6201 6202 dsq = find_user_dsq(dsq_id); 6203 if (unlikely(!dsq)) { 6204 scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id); 6205 return false; 6206 } 6207 6208 if (consume_dispatch_q(dspc->rq, dsq)) { 6209 /* 6210 * A successfully consumed task can be dequeued before it starts 6211 * running while the CPU is trying to migrate other dispatched 6212 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 6213 * local DSQ. 6214 */ 6215 dspc->nr_tasks++; 6216 return true; 6217 } else { 6218 return false; 6219 } 6220 } 6221 6222 /** 6223 * scx_bpf_dispatch_from_dsq_set_slice - Override slice when dispatching from DSQ 6224 * @it__iter: DSQ iterator in progress 6225 * @slice: duration the dispatched task can run for in nsecs 6226 * 6227 * Override the slice of the next task that will be dispatched from @it__iter 6228 * using scx_bpf_dispatch_from_dsq[_vtime](). If this function is not called, 6229 * the previous slice duration is kept. 6230 */ 6231 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice( 6232 struct bpf_iter_scx_dsq *it__iter, u64 slice) 6233 { 6234 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6235 6236 kit->slice = slice; 6237 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; 6238 } 6239 6240 /** 6241 * scx_bpf_dispatch_from_dsq_set_vtime - Override vtime when dispatching from DSQ 6242 * @it__iter: DSQ iterator in progress 6243 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ 6244 * 6245 * Override the vtime of the next task that will be dispatched from @it__iter 6246 * using scx_bpf_dispatch_from_dsq_vtime(). If this function is not called, the 6247 * previous slice vtime is kept. If scx_bpf_dispatch_from_dsq() is used to 6248 * dispatch the next task, the override is ignored and cleared. 6249 */ 6250 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime( 6251 struct bpf_iter_scx_dsq *it__iter, u64 vtime) 6252 { 6253 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6254 6255 kit->vtime = vtime; 6256 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; 6257 } 6258 6259 /** 6260 * scx_bpf_dispatch_from_dsq - Move a task from DSQ iteration to a DSQ 6261 * @it__iter: DSQ iterator in progress 6262 * @p: task to transfer 6263 * @dsq_id: DSQ to move @p to 6264 * @enq_flags: SCX_ENQ_* 6265 * 6266 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ 6267 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can 6268 * be the destination. 6269 * 6270 * For the transfer to be successful, @p must still be on the DSQ and have been 6271 * queued before the DSQ iteration started. This function doesn't care whether 6272 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have 6273 * been queued before the iteration started. 6274 * 6275 * @p's slice is kept by default. Use scx_bpf_dispatch_from_dsq_set_slice() to 6276 * update. 6277 * 6278 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq 6279 * lock (e.g. BPF timers or SYSCALL programs). 6280 * 6281 * Returns %true if @p has been consumed, %false if @p had already been consumed 6282 * or dequeued. 6283 */ 6284 __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6285 struct task_struct *p, u64 dsq_id, 6286 u64 enq_flags) 6287 { 6288 return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter, 6289 p, dsq_id, enq_flags); 6290 } 6291 6292 /** 6293 * scx_bpf_dispatch_vtime_from_dsq - Move a task from DSQ iteration to a PRIQ DSQ 6294 * @it__iter: DSQ iterator in progress 6295 * @p: task to transfer 6296 * @dsq_id: DSQ to move @p to 6297 * @enq_flags: SCX_ENQ_* 6298 * 6299 * Transfer @p which is on the DSQ currently iterated by @it__iter to the 6300 * priority queue of the DSQ specified by @dsq_id. The destination must be a 6301 * user DSQ as only user DSQs support priority queue. 6302 * 6303 * @p's slice and vtime are kept by default. Use 6304 * scx_bpf_dispatch_from_dsq_set_slice() and 6305 * scx_bpf_dispatch_from_dsq_set_vtime() to update. 6306 * 6307 * All other aspects are identical to scx_bpf_dispatch_from_dsq(). See 6308 * scx_bpf_dispatch_vtime() for more information on @vtime. 6309 */ 6310 __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6311 struct task_struct *p, u64 dsq_id, 6312 u64 enq_flags) 6313 { 6314 return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter, 6315 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6316 } 6317 6318 __bpf_kfunc_end_defs(); 6319 6320 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 6321 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 6322 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 6323 BTF_ID_FLAGS(func, scx_bpf_consume) 6324 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) 6325 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) 6326 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6327 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6328 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 6329 6330 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 6331 .owner = THIS_MODULE, 6332 .set = &scx_kfunc_ids_dispatch, 6333 }; 6334 6335 __bpf_kfunc_start_defs(); 6336 6337 /** 6338 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 6339 * 6340 * Iterate over all of the tasks currently enqueued on the local DSQ of the 6341 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 6342 * processed tasks. Can only be called from ops.cpu_release(). 6343 */ 6344 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 6345 { 6346 LIST_HEAD(tasks); 6347 u32 nr_enqueued = 0; 6348 struct rq *rq; 6349 struct task_struct *p, *n; 6350 6351 if (!scx_kf_allowed(SCX_KF_CPU_RELEASE)) 6352 return 0; 6353 6354 rq = cpu_rq(smp_processor_id()); 6355 lockdep_assert_rq_held(rq); 6356 6357 /* 6358 * The BPF scheduler may choose to dispatch tasks back to 6359 * @rq->scx.local_dsq. Move all candidate tasks off to a private list 6360 * first to avoid processing the same tasks repeatedly. 6361 */ 6362 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, 6363 scx.dsq_list.node) { 6364 /* 6365 * If @p is being migrated, @p's current CPU may not agree with 6366 * its allowed CPUs and the migration_cpu_stop is about to 6367 * deactivate and re-activate @p anyway. Skip re-enqueueing. 6368 * 6369 * While racing sched property changes may also dequeue and 6370 * re-enqueue a migrating task while its current CPU and allowed 6371 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to 6372 * the current local DSQ for running tasks and thus are not 6373 * visible to the BPF scheduler. 6374 */ 6375 if (p->migration_pending) 6376 continue; 6377 6378 dispatch_dequeue(rq, p); 6379 list_add_tail(&p->scx.dsq_list.node, &tasks); 6380 } 6381 6382 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { 6383 list_del_init(&p->scx.dsq_list.node); 6384 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 6385 nr_enqueued++; 6386 } 6387 6388 return nr_enqueued; 6389 } 6390 6391 __bpf_kfunc_end_defs(); 6392 6393 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 6394 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 6395 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 6396 6397 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 6398 .owner = THIS_MODULE, 6399 .set = &scx_kfunc_ids_cpu_release, 6400 }; 6401 6402 __bpf_kfunc_start_defs(); 6403 6404 /** 6405 * scx_bpf_create_dsq - Create a custom DSQ 6406 * @dsq_id: DSQ to create 6407 * @node: NUMA node to allocate from 6408 * 6409 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable 6410 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. 6411 */ 6412 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 6413 { 6414 if (unlikely(node >= (int)nr_node_ids || 6415 (node < 0 && node != NUMA_NO_NODE))) 6416 return -EINVAL; 6417 return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node)); 6418 } 6419 6420 __bpf_kfunc_end_defs(); 6421 6422 BTF_KFUNCS_START(scx_kfunc_ids_unlocked) 6423 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 6424 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6425 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6426 BTF_KFUNCS_END(scx_kfunc_ids_unlocked) 6427 6428 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { 6429 .owner = THIS_MODULE, 6430 .set = &scx_kfunc_ids_unlocked, 6431 }; 6432 6433 __bpf_kfunc_start_defs(); 6434 6435 /** 6436 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 6437 * @cpu: cpu to kick 6438 * @flags: %SCX_KICK_* flags 6439 * 6440 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 6441 * trigger rescheduling on a busy CPU. This can be called from any online 6442 * scx_ops operation and the actual kicking is performed asynchronously through 6443 * an irq work. 6444 */ 6445 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 6446 { 6447 struct rq *this_rq; 6448 unsigned long irq_flags; 6449 6450 if (!ops_cpu_valid(cpu, NULL)) 6451 return; 6452 6453 local_irq_save(irq_flags); 6454 6455 this_rq = this_rq(); 6456 6457 /* 6458 * While bypassing for PM ops, IRQ handling may not be online which can 6459 * lead to irq_work_queue() malfunction such as infinite busy wait for 6460 * IRQ status update. Suppress kicking. 6461 */ 6462 if (scx_rq_bypassing(this_rq)) 6463 goto out; 6464 6465 /* 6466 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 6467 * rq locks. We can probably be smarter and avoid bouncing if called 6468 * from ops which don't hold a rq lock. 6469 */ 6470 if (flags & SCX_KICK_IDLE) { 6471 struct rq *target_rq = cpu_rq(cpu); 6472 6473 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 6474 scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 6475 6476 if (raw_spin_rq_trylock(target_rq)) { 6477 if (can_skip_idle_kick(target_rq)) { 6478 raw_spin_rq_unlock(target_rq); 6479 goto out; 6480 } 6481 raw_spin_rq_unlock(target_rq); 6482 } 6483 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 6484 } else { 6485 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 6486 6487 if (flags & SCX_KICK_PREEMPT) 6488 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 6489 if (flags & SCX_KICK_WAIT) 6490 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 6491 } 6492 6493 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 6494 out: 6495 local_irq_restore(irq_flags); 6496 } 6497 6498 /** 6499 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 6500 * @dsq_id: id of the DSQ 6501 * 6502 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 6503 * -%ENOENT is returned. 6504 */ 6505 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 6506 { 6507 struct scx_dispatch_q *dsq; 6508 s32 ret; 6509 6510 preempt_disable(); 6511 6512 if (dsq_id == SCX_DSQ_LOCAL) { 6513 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 6514 goto out; 6515 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 6516 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 6517 6518 if (ops_cpu_valid(cpu, NULL)) { 6519 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 6520 goto out; 6521 } 6522 } else { 6523 dsq = find_user_dsq(dsq_id); 6524 if (dsq) { 6525 ret = READ_ONCE(dsq->nr); 6526 goto out; 6527 } 6528 } 6529 ret = -ENOENT; 6530 out: 6531 preempt_enable(); 6532 return ret; 6533 } 6534 6535 /** 6536 * scx_bpf_destroy_dsq - Destroy a custom DSQ 6537 * @dsq_id: DSQ to destroy 6538 * 6539 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 6540 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 6541 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 6542 * which doesn't exist. Can be called from any online scx_ops operations. 6543 */ 6544 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 6545 { 6546 destroy_dsq(dsq_id); 6547 } 6548 6549 /** 6550 * bpf_iter_scx_dsq_new - Create a DSQ iterator 6551 * @it: iterator to initialize 6552 * @dsq_id: DSQ to iterate 6553 * @flags: %SCX_DSQ_ITER_* 6554 * 6555 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk 6556 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes 6557 * tasks which are already queued when this function is invoked. 6558 */ 6559 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, 6560 u64 flags) 6561 { 6562 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6563 6564 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > 6565 sizeof(struct bpf_iter_scx_dsq)); 6566 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != 6567 __alignof__(struct bpf_iter_scx_dsq)); 6568 6569 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) 6570 return -EINVAL; 6571 6572 kit->dsq = find_user_dsq(dsq_id); 6573 if (!kit->dsq) 6574 return -ENOENT; 6575 6576 INIT_LIST_HEAD(&kit->cursor.node); 6577 kit->cursor.flags |= SCX_DSQ_LNODE_ITER_CURSOR | flags; 6578 kit->cursor.priv = READ_ONCE(kit->dsq->seq); 6579 6580 return 0; 6581 } 6582 6583 /** 6584 * bpf_iter_scx_dsq_next - Progress a DSQ iterator 6585 * @it: iterator to progress 6586 * 6587 * Return the next task. See bpf_iter_scx_dsq_new(). 6588 */ 6589 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) 6590 { 6591 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6592 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; 6593 struct task_struct *p; 6594 unsigned long flags; 6595 6596 if (!kit->dsq) 6597 return NULL; 6598 6599 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6600 6601 if (list_empty(&kit->cursor.node)) 6602 p = NULL; 6603 else 6604 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); 6605 6606 /* 6607 * Only tasks which were queued before the iteration started are 6608 * visible. This bounds BPF iterations and guarantees that vtime never 6609 * jumps in the other direction while iterating. 6610 */ 6611 do { 6612 p = nldsq_next_task(kit->dsq, p, rev); 6613 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); 6614 6615 if (p) { 6616 if (rev) 6617 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); 6618 else 6619 list_move(&kit->cursor.node, &p->scx.dsq_list.node); 6620 } else { 6621 list_del_init(&kit->cursor.node); 6622 } 6623 6624 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6625 6626 return p; 6627 } 6628 6629 /** 6630 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator 6631 * @it: iterator to destroy 6632 * 6633 * Undo scx_iter_scx_dsq_new(). 6634 */ 6635 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) 6636 { 6637 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6638 6639 if (!kit->dsq) 6640 return; 6641 6642 if (!list_empty(&kit->cursor.node)) { 6643 unsigned long flags; 6644 6645 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6646 list_del_init(&kit->cursor.node); 6647 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6648 } 6649 kit->dsq = NULL; 6650 } 6651 6652 __bpf_kfunc_end_defs(); 6653 6654 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size, 6655 char *fmt, unsigned long long *data, u32 data__sz) 6656 { 6657 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 6658 s32 ret; 6659 6660 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 6661 (data__sz && !data)) { 6662 scx_ops_error("invalid data=%p and data__sz=%u", 6663 (void *)data, data__sz); 6664 return -EINVAL; 6665 } 6666 6667 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 6668 if (ret < 0) { 6669 scx_ops_error("failed to read data fields (%d)", ret); 6670 return ret; 6671 } 6672 6673 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 6674 &bprintf_data); 6675 if (ret < 0) { 6676 scx_ops_error("format preparation failed (%d)", ret); 6677 return ret; 6678 } 6679 6680 ret = bstr_printf(line_buf, line_size, fmt, 6681 bprintf_data.bin_args); 6682 bpf_bprintf_cleanup(&bprintf_data); 6683 if (ret < 0) { 6684 scx_ops_error("(\"%s\", %p, %u) failed to format", 6685 fmt, data, data__sz); 6686 return ret; 6687 } 6688 6689 return ret; 6690 } 6691 6692 static s32 bstr_format(struct scx_bstr_buf *buf, 6693 char *fmt, unsigned long long *data, u32 data__sz) 6694 { 6695 return __bstr_format(buf->data, buf->line, sizeof(buf->line), 6696 fmt, data, data__sz); 6697 } 6698 6699 __bpf_kfunc_start_defs(); 6700 6701 /** 6702 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 6703 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 6704 * @fmt: error message format string 6705 * @data: format string parameters packaged using ___bpf_fill() macro 6706 * @data__sz: @data len, must end in '__sz' for the verifier 6707 * 6708 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 6709 * disabling. 6710 */ 6711 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 6712 unsigned long long *data, u32 data__sz) 6713 { 6714 unsigned long flags; 6715 6716 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6717 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6718 scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s", 6719 scx_exit_bstr_buf.line); 6720 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6721 } 6722 6723 /** 6724 * scx_bpf_error_bstr - Indicate fatal error 6725 * @fmt: error message format string 6726 * @data: format string parameters packaged using ___bpf_fill() macro 6727 * @data__sz: @data len, must end in '__sz' for the verifier 6728 * 6729 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 6730 * disabling. 6731 */ 6732 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 6733 u32 data__sz) 6734 { 6735 unsigned long flags; 6736 6737 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6738 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6739 scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s", 6740 scx_exit_bstr_buf.line); 6741 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6742 } 6743 6744 /** 6745 * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler 6746 * @fmt: format string 6747 * @data: format string parameters packaged using ___bpf_fill() macro 6748 * @data__sz: @data len, must end in '__sz' for the verifier 6749 * 6750 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 6751 * dump_task() to generate extra debug dump specific to the BPF scheduler. 6752 * 6753 * The extra dump may be multiple lines. A single line may be split over 6754 * multiple calls. The last line is automatically terminated. 6755 */ 6756 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 6757 u32 data__sz) 6758 { 6759 struct scx_dump_data *dd = &scx_dump_data; 6760 struct scx_bstr_buf *buf = &dd->buf; 6761 s32 ret; 6762 6763 if (raw_smp_processor_id() != dd->cpu) { 6764 scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends"); 6765 return; 6766 } 6767 6768 /* append the formatted string to the line buf */ 6769 ret = __bstr_format(buf->data, buf->line + dd->cursor, 6770 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 6771 if (ret < 0) { 6772 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 6773 dd->prefix, fmt, data, data__sz, ret); 6774 return; 6775 } 6776 6777 dd->cursor += ret; 6778 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 6779 6780 if (!dd->cursor) 6781 return; 6782 6783 /* 6784 * If the line buf overflowed or ends in a newline, flush it into the 6785 * dump. This is to allow the caller to generate a single line over 6786 * multiple calls. As ops_dump_flush() can also handle multiple lines in 6787 * the line buf, the only case which can lead to an unexpected 6788 * truncation is when the caller keeps generating newlines in the middle 6789 * instead of the end consecutively. Don't do that. 6790 */ 6791 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 6792 ops_dump_flush(); 6793 } 6794 6795 /** 6796 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU 6797 * @cpu: CPU of interest 6798 * 6799 * Return the maximum relative capacity of @cpu in relation to the most 6800 * performant CPU in the system. The return value is in the range [1, 6801 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). 6802 */ 6803 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) 6804 { 6805 if (ops_cpu_valid(cpu, NULL)) 6806 return arch_scale_cpu_capacity(cpu); 6807 else 6808 return SCX_CPUPERF_ONE; 6809 } 6810 6811 /** 6812 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU 6813 * @cpu: CPU of interest 6814 * 6815 * Return the current relative performance of @cpu in relation to its maximum. 6816 * The return value is in the range [1, %SCX_CPUPERF_ONE]. 6817 * 6818 * The current performance level of a CPU in relation to the maximum performance 6819 * available in the system can be calculated as follows: 6820 * 6821 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE 6822 * 6823 * The result is in the range [1, %SCX_CPUPERF_ONE]. 6824 */ 6825 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) 6826 { 6827 if (ops_cpu_valid(cpu, NULL)) 6828 return arch_scale_freq_capacity(cpu); 6829 else 6830 return SCX_CPUPERF_ONE; 6831 } 6832 6833 /** 6834 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU 6835 * @cpu: CPU of interest 6836 * @perf: target performance level [0, %SCX_CPUPERF_ONE] 6837 * @flags: %SCX_CPUPERF_* flags 6838 * 6839 * Set the target performance level of @cpu to @perf. @perf is in linear 6840 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the 6841 * schedutil cpufreq governor chooses the target frequency. 6842 * 6843 * The actual performance level chosen, CPU grouping, and the overhead and 6844 * latency of the operations are dependent on the hardware and cpufreq driver in 6845 * use. Consult hardware and cpufreq documentation for more information. The 6846 * current performance level can be monitored using scx_bpf_cpuperf_cur(). 6847 */ 6848 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) 6849 { 6850 if (unlikely(perf > SCX_CPUPERF_ONE)) { 6851 scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu); 6852 return; 6853 } 6854 6855 if (ops_cpu_valid(cpu, NULL)) { 6856 struct rq *rq = cpu_rq(cpu); 6857 6858 rq->scx.cpuperf_target = perf; 6859 6860 rcu_read_lock_sched_notrace(); 6861 cpufreq_update_util(cpu_rq(cpu), 0); 6862 rcu_read_unlock_sched_notrace(); 6863 } 6864 } 6865 6866 /** 6867 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 6868 * 6869 * All valid CPU IDs in the system are smaller than the returned value. 6870 */ 6871 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 6872 { 6873 return nr_cpu_ids; 6874 } 6875 6876 /** 6877 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 6878 */ 6879 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 6880 { 6881 return cpu_possible_mask; 6882 } 6883 6884 /** 6885 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 6886 */ 6887 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 6888 { 6889 return cpu_online_mask; 6890 } 6891 6892 /** 6893 * scx_bpf_put_cpumask - Release a possible/online cpumask 6894 * @cpumask: cpumask to release 6895 */ 6896 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 6897 { 6898 /* 6899 * Empty function body because we aren't actually acquiring or releasing 6900 * a reference to a global cpumask, which is read-only in the caller and 6901 * is never released. The acquire / release semantics here are just used 6902 * to make the cpumask is a trusted pointer in the caller. 6903 */ 6904 } 6905 6906 /** 6907 * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking 6908 * per-CPU cpumask. 6909 * 6910 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 6911 */ 6912 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void) 6913 { 6914 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 6915 scx_ops_error("built-in idle tracking is disabled"); 6916 return cpu_none_mask; 6917 } 6918 6919 #ifdef CONFIG_SMP 6920 return idle_masks.cpu; 6921 #else 6922 return cpu_none_mask; 6923 #endif 6924 } 6925 6926 /** 6927 * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking, 6928 * per-physical-core cpumask. Can be used to determine if an entire physical 6929 * core is free. 6930 * 6931 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 6932 */ 6933 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void) 6934 { 6935 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 6936 scx_ops_error("built-in idle tracking is disabled"); 6937 return cpu_none_mask; 6938 } 6939 6940 #ifdef CONFIG_SMP 6941 if (sched_smt_active()) 6942 return idle_masks.smt; 6943 else 6944 return idle_masks.cpu; 6945 #else 6946 return cpu_none_mask; 6947 #endif 6948 } 6949 6950 /** 6951 * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to 6952 * either the percpu, or SMT idle-tracking cpumask. 6953 */ 6954 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask) 6955 { 6956 /* 6957 * Empty function body because we aren't actually acquiring or releasing 6958 * a reference to a global idle cpumask, which is read-only in the 6959 * caller and is never released. The acquire / release semantics here 6960 * are just used to make the cpumask a trusted pointer in the caller. 6961 */ 6962 } 6963 6964 /** 6965 * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state 6966 * @cpu: cpu to test and clear idle for 6967 * 6968 * Returns %true if @cpu was idle and its idle state was successfully cleared. 6969 * %false otherwise. 6970 * 6971 * Unavailable if ops.update_idle() is implemented and 6972 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 6973 */ 6974 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) 6975 { 6976 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 6977 scx_ops_error("built-in idle tracking is disabled"); 6978 return false; 6979 } 6980 6981 if (ops_cpu_valid(cpu, NULL)) 6982 return test_and_clear_cpu_idle(cpu); 6983 else 6984 return false; 6985 } 6986 6987 /** 6988 * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu 6989 * @cpus_allowed: Allowed cpumask 6990 * @flags: %SCX_PICK_IDLE_CPU_* flags 6991 * 6992 * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu 6993 * number on success. -%EBUSY if no matching cpu was found. 6994 * 6995 * Idle CPU tracking may race against CPU scheduling state transitions. For 6996 * example, this function may return -%EBUSY as CPUs are transitioning into the 6997 * idle state. If the caller then assumes that there will be dispatch events on 6998 * the CPUs as they were all busy, the scheduler may end up stalling with CPUs 6999 * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and 7000 * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch 7001 * event in the near future. 7002 * 7003 * Unavailable if ops.update_idle() is implemented and 7004 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 7005 */ 7006 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed, 7007 u64 flags) 7008 { 7009 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 7010 scx_ops_error("built-in idle tracking is disabled"); 7011 return -EBUSY; 7012 } 7013 7014 return scx_pick_idle_cpu(cpus_allowed, flags); 7015 } 7016 7017 /** 7018 * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU 7019 * @cpus_allowed: Allowed cpumask 7020 * @flags: %SCX_PICK_IDLE_CPU_* flags 7021 * 7022 * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any 7023 * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu 7024 * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is 7025 * empty. 7026 * 7027 * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not 7028 * set, this function can't tell which CPUs are idle and will always pick any 7029 * CPU. 7030 */ 7031 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed, 7032 u64 flags) 7033 { 7034 s32 cpu; 7035 7036 if (static_branch_likely(&scx_builtin_idle_enabled)) { 7037 cpu = scx_pick_idle_cpu(cpus_allowed, flags); 7038 if (cpu >= 0) 7039 return cpu; 7040 } 7041 7042 cpu = cpumask_any_distribute(cpus_allowed); 7043 if (cpu < nr_cpu_ids) 7044 return cpu; 7045 else 7046 return -EBUSY; 7047 } 7048 7049 /** 7050 * scx_bpf_task_running - Is task currently running? 7051 * @p: task of interest 7052 */ 7053 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 7054 { 7055 return task_rq(p)->curr == p; 7056 } 7057 7058 /** 7059 * scx_bpf_task_cpu - CPU a task is currently associated with 7060 * @p: task of interest 7061 */ 7062 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 7063 { 7064 return task_cpu(p); 7065 } 7066 7067 /** 7068 * scx_bpf_cpu_rq - Fetch the rq of a CPU 7069 * @cpu: CPU of the rq 7070 */ 7071 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) 7072 { 7073 if (!ops_cpu_valid(cpu, NULL)) 7074 return NULL; 7075 7076 return cpu_rq(cpu); 7077 } 7078 7079 /** 7080 * scx_bpf_task_cgroup - Return the sched cgroup of a task 7081 * @p: task of interest 7082 * 7083 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with 7084 * from the scheduler's POV. SCX operations should use this function to 7085 * determine @p's current cgroup as, unlike following @p->cgroups, 7086 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all 7087 * rq-locked operations. Can be called on the parameter tasks of rq-locked 7088 * operations. The restriction guarantees that @p's rq is locked by the caller. 7089 */ 7090 #ifdef CONFIG_CGROUP_SCHED 7091 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) 7092 { 7093 struct task_group *tg = p->sched_task_group; 7094 struct cgroup *cgrp = &cgrp_dfl_root.cgrp; 7095 7096 if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p)) 7097 goto out; 7098 7099 /* 7100 * A task_group may either be a cgroup or an autogroup. In the latter 7101 * case, @tg->css.cgroup is %NULL. A task_group can't become the other 7102 * kind once created. 7103 */ 7104 if (tg && tg->css.cgroup) 7105 cgrp = tg->css.cgroup; 7106 else 7107 cgrp = &cgrp_dfl_root.cgrp; 7108 out: 7109 cgroup_get(cgrp); 7110 return cgrp; 7111 } 7112 #endif 7113 7114 __bpf_kfunc_end_defs(); 7115 7116 BTF_KFUNCS_START(scx_kfunc_ids_any) 7117 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 7118 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 7119 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 7120 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) 7121 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) 7122 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) 7123 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 7124 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 7125 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 7126 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) 7127 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) 7128 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) 7129 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 7130 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 7131 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 7132 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 7133 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE) 7134 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE) 7135 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE) 7136 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle) 7137 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU) 7138 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU) 7139 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 7140 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 7141 BTF_ID_FLAGS(func, scx_bpf_cpu_rq) 7142 #ifdef CONFIG_CGROUP_SCHED 7143 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) 7144 #endif 7145 BTF_KFUNCS_END(scx_kfunc_ids_any) 7146 7147 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 7148 .owner = THIS_MODULE, 7149 .set = &scx_kfunc_ids_any, 7150 }; 7151 7152 static int __init scx_init(void) 7153 { 7154 int ret; 7155 7156 /* 7157 * kfunc registration can't be done from init_sched_ext_class() as 7158 * register_btf_kfunc_id_set() needs most of the system to be up. 7159 * 7160 * Some kfuncs are context-sensitive and can only be called from 7161 * specific SCX ops. They are grouped into BTF sets accordingly. 7162 * Unfortunately, BPF currently doesn't have a way of enforcing such 7163 * restrictions. Eventually, the verifier should be able to enforce 7164 * them. For now, register them the same and make each kfunc explicitly 7165 * check using scx_kf_allowed(). 7166 */ 7167 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7168 &scx_kfunc_set_select_cpu)) || 7169 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7170 &scx_kfunc_set_enqueue_dispatch)) || 7171 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7172 &scx_kfunc_set_dispatch)) || 7173 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7174 &scx_kfunc_set_cpu_release)) || 7175 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7176 &scx_kfunc_set_unlocked)) || 7177 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7178 &scx_kfunc_set_unlocked)) || 7179 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7180 &scx_kfunc_set_any)) || 7181 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 7182 &scx_kfunc_set_any)) || 7183 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7184 &scx_kfunc_set_any))) { 7185 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 7186 return ret; 7187 } 7188 7189 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 7190 if (ret) { 7191 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 7192 return ret; 7193 } 7194 7195 ret = register_pm_notifier(&scx_pm_notifier); 7196 if (ret) { 7197 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); 7198 return ret; 7199 } 7200 7201 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 7202 if (!scx_kset) { 7203 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 7204 return -ENOMEM; 7205 } 7206 7207 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 7208 if (ret < 0) { 7209 pr_err("sched_ext: Failed to add global attributes\n"); 7210 return ret; 7211 } 7212 7213 return 0; 7214 } 7215 __initcall(scx_init); 7216