1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst 4 * 5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 7 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 8 */ 9 #include <linux/btf_ids.h> 10 #include "ext_idle.h" 11 12 #define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void))) 13 14 enum scx_consts { 15 SCX_DSP_DFL_MAX_BATCH = 32, 16 SCX_DSP_MAX_LOOPS = 32, 17 SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ, 18 19 SCX_EXIT_BT_LEN = 64, 20 SCX_EXIT_MSG_LEN = 1024, 21 SCX_EXIT_DUMP_DFL_LEN = 32768, 22 23 SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE, 24 25 /* 26 * Iterating all tasks may take a while. Periodically drop 27 * scx_tasks_lock to avoid causing e.g. CSD and RCU stalls. 28 */ 29 SCX_TASK_ITER_BATCH = 32, 30 }; 31 32 enum scx_exit_kind { 33 SCX_EXIT_NONE, 34 SCX_EXIT_DONE, 35 36 SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */ 37 SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */ 38 SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */ 39 SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */ 40 41 SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */ 42 SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */ 43 SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */ 44 }; 45 46 /* 47 * An exit code can be specified when exiting with scx_bpf_exit() or scx_exit(), 48 * corresponding to exit_kind UNREG_BPF and UNREG_KERN respectively. The codes 49 * are 64bit of the format: 50 * 51 * Bits: [63 .. 48 47 .. 32 31 .. 0] 52 * [ SYS ACT ] [ SYS RSN ] [ USR ] 53 * 54 * SYS ACT: System-defined exit actions 55 * SYS RSN: System-defined exit reasons 56 * USR : User-defined exit codes and reasons 57 * 58 * Using the above, users may communicate intention and context by ORing system 59 * actions and/or system reasons with a user-defined exit code. 60 */ 61 enum scx_exit_code { 62 /* Reasons */ 63 SCX_ECODE_RSN_HOTPLUG = 1LLU << 32, 64 65 /* Actions */ 66 SCX_ECODE_ACT_RESTART = 1LLU << 48, 67 }; 68 69 /* 70 * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is 71 * being disabled. 72 */ 73 struct scx_exit_info { 74 /* %SCX_EXIT_* - broad category of the exit reason */ 75 enum scx_exit_kind kind; 76 77 /* exit code if gracefully exiting */ 78 s64 exit_code; 79 80 /* textual representation of the above */ 81 const char *reason; 82 83 /* backtrace if exiting due to an error */ 84 unsigned long *bt; 85 u32 bt_len; 86 87 /* informational message */ 88 char *msg; 89 90 /* debug dump */ 91 char *dump; 92 }; 93 94 /* sched_ext_ops.flags */ 95 enum scx_ops_flags { 96 /* 97 * Keep built-in idle tracking even if ops.update_idle() is implemented. 98 */ 99 SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0, 100 101 /* 102 * By default, if there are no other task to run on the CPU, ext core 103 * keeps running the current task even after its slice expires. If this 104 * flag is specified, such tasks are passed to ops.enqueue() with 105 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info. 106 */ 107 SCX_OPS_ENQ_LAST = 1LLU << 1, 108 109 /* 110 * An exiting task may schedule after PF_EXITING is set. In such cases, 111 * bpf_task_from_pid() may not be able to find the task and if the BPF 112 * scheduler depends on pid lookup for dispatching, the task will be 113 * lost leading to various issues including RCU grace period stalls. 114 * 115 * To mask this problem, by default, unhashed tasks are automatically 116 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't 117 * depend on pid lookups and wants to handle these tasks directly, the 118 * following flag can be used. 119 */ 120 SCX_OPS_ENQ_EXITING = 1LLU << 2, 121 122 /* 123 * If set, only tasks with policy set to SCHED_EXT are attached to 124 * sched_ext. If clear, SCHED_NORMAL tasks are also included. 125 */ 126 SCX_OPS_SWITCH_PARTIAL = 1LLU << 3, 127 128 /* 129 * A migration disabled task can only execute on its current CPU. By 130 * default, such tasks are automatically put on the CPU's local DSQ with 131 * the default slice on enqueue. If this ops flag is set, they also go 132 * through ops.enqueue(). 133 * 134 * A migration disabled task never invokes ops.select_cpu() as it can 135 * only select the current CPU. Also, p->cpus_ptr will only contain its 136 * current CPU while p->nr_cpus_allowed keeps tracking p->user_cpus_ptr 137 * and thus may disagree with cpumask_weight(p->cpus_ptr). 138 */ 139 SCX_OPS_ENQ_MIGRATION_DISABLED = 1LLU << 4, 140 141 /* 142 * Queued wakeup (ttwu_queue) is a wakeup optimization that invokes 143 * ops.enqueue() on the ops.select_cpu() selected or the wakee's 144 * previous CPU via IPI (inter-processor interrupt) to reduce cacheline 145 * transfers. When this optimization is enabled, ops.select_cpu() is 146 * skipped in some cases (when racing against the wakee switching out). 147 * As the BPF scheduler may depend on ops.select_cpu() being invoked 148 * during wakeups, queued wakeup is disabled by default. 149 * 150 * If this ops flag is set, queued wakeup optimization is enabled and 151 * the BPF scheduler must be able to handle ops.enqueue() invoked on the 152 * wakee's CPU without preceding ops.select_cpu() even for tasks which 153 * may be executed on multiple CPUs. 154 */ 155 SCX_OPS_ALLOW_QUEUED_WAKEUP = 1LLU << 5, 156 157 /* 158 * If set, enable per-node idle cpumasks. If clear, use a single global 159 * flat idle cpumask. 160 */ 161 SCX_OPS_BUILTIN_IDLE_PER_NODE = 1LLU << 6, 162 163 /* 164 * CPU cgroup support flags 165 */ 166 SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16, /* DEPRECATED, will be removed on 6.18 */ 167 168 SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE | 169 SCX_OPS_ENQ_LAST | 170 SCX_OPS_ENQ_EXITING | 171 SCX_OPS_ENQ_MIGRATION_DISABLED | 172 SCX_OPS_ALLOW_QUEUED_WAKEUP | 173 SCX_OPS_SWITCH_PARTIAL | 174 SCX_OPS_BUILTIN_IDLE_PER_NODE | 175 SCX_OPS_HAS_CGROUP_WEIGHT, 176 177 /* high 8 bits are internal, don't include in SCX_OPS_ALL_FLAGS */ 178 __SCX_OPS_INTERNAL_MASK = 0xffLLU << 56, 179 180 SCX_OPS_HAS_CPU_PREEMPT = 1LLU << 56, 181 }; 182 183 /* argument container for ops.init_task() */ 184 struct scx_init_task_args { 185 /* 186 * Set if ops.init_task() is being invoked on the fork path, as opposed 187 * to the scheduler transition path. 188 */ 189 bool fork; 190 #ifdef CONFIG_EXT_GROUP_SCHED 191 /* the cgroup the task is joining */ 192 struct cgroup *cgroup; 193 #endif 194 }; 195 196 /* argument container for ops.exit_task() */ 197 struct scx_exit_task_args { 198 /* Whether the task exited before running on sched_ext. */ 199 bool cancelled; 200 }; 201 202 /* argument container for ops->cgroup_init() */ 203 struct scx_cgroup_init_args { 204 /* the weight of the cgroup [1..10000] */ 205 u32 weight; 206 207 /* bandwidth control parameters from cpu.max and cpu.max.burst */ 208 u64 bw_period_us; 209 u64 bw_quota_us; 210 u64 bw_burst_us; 211 }; 212 213 enum scx_cpu_preempt_reason { 214 /* next task is being scheduled by &sched_class_rt */ 215 SCX_CPU_PREEMPT_RT, 216 /* next task is being scheduled by &sched_class_dl */ 217 SCX_CPU_PREEMPT_DL, 218 /* next task is being scheduled by &sched_class_stop */ 219 SCX_CPU_PREEMPT_STOP, 220 /* unknown reason for SCX being preempted */ 221 SCX_CPU_PREEMPT_UNKNOWN, 222 }; 223 224 /* 225 * Argument container for ops->cpu_acquire(). Currently empty, but may be 226 * expanded in the future. 227 */ 228 struct scx_cpu_acquire_args {}; 229 230 /* argument container for ops->cpu_release() */ 231 struct scx_cpu_release_args { 232 /* the reason the CPU was preempted */ 233 enum scx_cpu_preempt_reason reason; 234 235 /* the task that's going to be scheduled on the CPU */ 236 struct task_struct *task; 237 }; 238 239 /* 240 * Informational context provided to dump operations. 241 */ 242 struct scx_dump_ctx { 243 enum scx_exit_kind kind; 244 s64 exit_code; 245 const char *reason; 246 u64 at_ns; 247 u64 at_jiffies; 248 }; 249 250 /** 251 * struct sched_ext_ops - Operation table for BPF scheduler implementation 252 * 253 * A BPF scheduler can implement an arbitrary scheduling policy by 254 * implementing and loading operations in this table. Note that a userland 255 * scheduling policy can also be implemented using the BPF scheduler 256 * as a shim layer. 257 */ 258 struct sched_ext_ops { 259 /** 260 * @select_cpu: Pick the target CPU for a task which is being woken up 261 * @p: task being woken up 262 * @prev_cpu: the cpu @p was on before sleeping 263 * @wake_flags: SCX_WAKE_* 264 * 265 * Decision made here isn't final. @p may be moved to any CPU while it 266 * is getting dispatched for execution later. However, as @p is not on 267 * the rq at this point, getting the eventual execution CPU right here 268 * saves a small bit of overhead down the line. 269 * 270 * If an idle CPU is returned, the CPU is kicked and will try to 271 * dispatch. While an explicit custom mechanism can be added, 272 * select_cpu() serves as the default way to wake up idle CPUs. 273 * 274 * @p may be inserted into a DSQ directly by calling 275 * scx_bpf_dsq_insert(). If so, the ops.enqueue() will be skipped. 276 * Directly inserting into %SCX_DSQ_LOCAL will put @p in the local DSQ 277 * of the CPU returned by this operation. 278 * 279 * Note that select_cpu() is never called for tasks that can only run 280 * on a single CPU or tasks with migration disabled, as they don't have 281 * the option to select a different CPU. See select_task_rq() for 282 * details. 283 */ 284 s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags); 285 286 /** 287 * @enqueue: Enqueue a task on the BPF scheduler 288 * @p: task being enqueued 289 * @enq_flags: %SCX_ENQ_* 290 * 291 * @p is ready to run. Insert directly into a DSQ by calling 292 * scx_bpf_dsq_insert() or enqueue on the BPF scheduler. If not directly 293 * inserted, the bpf scheduler owns @p and if it fails to dispatch @p, 294 * the task will stall. 295 * 296 * If @p was inserted into a DSQ from ops.select_cpu(), this callback is 297 * skipped. 298 */ 299 void (*enqueue)(struct task_struct *p, u64 enq_flags); 300 301 /** 302 * @dequeue: Remove a task from the BPF scheduler 303 * @p: task being dequeued 304 * @deq_flags: %SCX_DEQ_* 305 * 306 * Remove @p from the BPF scheduler. This is usually called to isolate 307 * the task while updating its scheduling properties (e.g. priority). 308 * 309 * The ext core keeps track of whether the BPF side owns a given task or 310 * not and can gracefully ignore spurious dispatches from BPF side, 311 * which makes it safe to not implement this method. However, depending 312 * on the scheduling logic, this can lead to confusing behaviors - e.g. 313 * scheduling position not being updated across a priority change. 314 */ 315 void (*dequeue)(struct task_struct *p, u64 deq_flags); 316 317 /** 318 * @dispatch: Dispatch tasks from the BPF scheduler and/or user DSQs 319 * @cpu: CPU to dispatch tasks for 320 * @prev: previous task being switched out 321 * 322 * Called when a CPU's local dsq is empty. The operation should dispatch 323 * one or more tasks from the BPF scheduler into the DSQs using 324 * scx_bpf_dsq_insert() and/or move from user DSQs into the local DSQ 325 * using scx_bpf_dsq_move_to_local(). 326 * 327 * The maximum number of times scx_bpf_dsq_insert() can be called 328 * without an intervening scx_bpf_dsq_move_to_local() is specified by 329 * ops.dispatch_max_batch. See the comments on top of the two functions 330 * for more details. 331 * 332 * When not %NULL, @prev is an SCX task with its slice depleted. If 333 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in 334 * @prev->scx.flags, it is not enqueued yet and will be enqueued after 335 * ops.dispatch() returns. To keep executing @prev, return without 336 * dispatching or moving any tasks. Also see %SCX_OPS_ENQ_LAST. 337 */ 338 void (*dispatch)(s32 cpu, struct task_struct *prev); 339 340 /** 341 * @tick: Periodic tick 342 * @p: task running currently 343 * 344 * This operation is called every 1/HZ seconds on CPUs which are 345 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an 346 * immediate dispatch cycle on the CPU. 347 */ 348 void (*tick)(struct task_struct *p); 349 350 /** 351 * @runnable: A task is becoming runnable on its associated CPU 352 * @p: task becoming runnable 353 * @enq_flags: %SCX_ENQ_* 354 * 355 * This and the following three functions can be used to track a task's 356 * execution state transitions. A task becomes ->runnable() on a CPU, 357 * and then goes through one or more ->running() and ->stopping() pairs 358 * as it runs on the CPU, and eventually becomes ->quiescent() when it's 359 * done running on the CPU. 360 * 361 * @p is becoming runnable on the CPU because it's 362 * 363 * - waking up (%SCX_ENQ_WAKEUP) 364 * - being moved from another CPU 365 * - being restored after temporarily taken off the queue for an 366 * attribute change. 367 * 368 * This and ->enqueue() are related but not coupled. This operation 369 * notifies @p's state transition and may not be followed by ->enqueue() 370 * e.g. when @p is being dispatched to a remote CPU, or when @p is 371 * being enqueued on a CPU experiencing a hotplug event. Likewise, a 372 * task may be ->enqueue()'d without being preceded by this operation 373 * e.g. after exhausting its slice. 374 */ 375 void (*runnable)(struct task_struct *p, u64 enq_flags); 376 377 /** 378 * @running: A task is starting to run on its associated CPU 379 * @p: task starting to run 380 * 381 * Note that this callback may be called from a CPU other than the 382 * one the task is going to run on. This can happen when a task 383 * property is changed (i.e., affinity), since scx_next_task_scx(), 384 * which triggers this callback, may run on a CPU different from 385 * the task's assigned CPU. 386 * 387 * Therefore, always use scx_bpf_task_cpu(@p) to determine the 388 * target CPU the task is going to use. 389 * 390 * See ->runnable() for explanation on the task state notifiers. 391 */ 392 void (*running)(struct task_struct *p); 393 394 /** 395 * @stopping: A task is stopping execution 396 * @p: task stopping to run 397 * @runnable: is task @p still runnable? 398 * 399 * Note that this callback may be called from a CPU other than the 400 * one the task was running on. This can happen when a task 401 * property is changed (i.e., affinity), since dequeue_task_scx(), 402 * which triggers this callback, may run on a CPU different from 403 * the task's assigned CPU. 404 * 405 * Therefore, always use scx_bpf_task_cpu(@p) to retrieve the CPU 406 * the task was running on. 407 * 408 * See ->runnable() for explanation on the task state notifiers. If 409 * !@runnable, ->quiescent() will be invoked after this operation 410 * returns. 411 */ 412 void (*stopping)(struct task_struct *p, bool runnable); 413 414 /** 415 * @quiescent: A task is becoming not runnable on its associated CPU 416 * @p: task becoming not runnable 417 * @deq_flags: %SCX_DEQ_* 418 * 419 * See ->runnable() for explanation on the task state notifiers. 420 * 421 * @p is becoming quiescent on the CPU because it's 422 * 423 * - sleeping (%SCX_DEQ_SLEEP) 424 * - being moved to another CPU 425 * - being temporarily taken off the queue for an attribute change 426 * (%SCX_DEQ_SAVE) 427 * 428 * This and ->dequeue() are related but not coupled. This operation 429 * notifies @p's state transition and may not be preceded by ->dequeue() 430 * e.g. when @p is being dispatched to a remote CPU. 431 */ 432 void (*quiescent)(struct task_struct *p, u64 deq_flags); 433 434 /** 435 * @yield: Yield CPU 436 * @from: yielding task 437 * @to: optional yield target task 438 * 439 * If @to is NULL, @from is yielding the CPU to other runnable tasks. 440 * The BPF scheduler should ensure that other available tasks are 441 * dispatched before the yielding task. Return value is ignored in this 442 * case. 443 * 444 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf 445 * scheduler can implement the request, return %true; otherwise, %false. 446 */ 447 bool (*yield)(struct task_struct *from, struct task_struct *to); 448 449 /** 450 * @core_sched_before: Task ordering for core-sched 451 * @a: task A 452 * @b: task B 453 * 454 * Used by core-sched to determine the ordering between two tasks. See 455 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on 456 * core-sched. 457 * 458 * Both @a and @b are runnable and may or may not currently be queued on 459 * the BPF scheduler. Should return %true if @a should run before @b. 460 * %false if there's no required ordering or @b should run before @a. 461 * 462 * If not specified, the default is ordering them according to when they 463 * became runnable. 464 */ 465 bool (*core_sched_before)(struct task_struct *a, struct task_struct *b); 466 467 /** 468 * @set_weight: Set task weight 469 * @p: task to set weight for 470 * @weight: new weight [1..10000] 471 * 472 * Update @p's weight to @weight. 473 */ 474 void (*set_weight)(struct task_struct *p, u32 weight); 475 476 /** 477 * @set_cpumask: Set CPU affinity 478 * @p: task to set CPU affinity for 479 * @cpumask: cpumask of cpus that @p can run on 480 * 481 * Update @p's CPU affinity to @cpumask. 482 */ 483 void (*set_cpumask)(struct task_struct *p, 484 const struct cpumask *cpumask); 485 486 /** 487 * @update_idle: Update the idle state of a CPU 488 * @cpu: CPU to update the idle state for 489 * @idle: whether entering or exiting the idle state 490 * 491 * This operation is called when @rq's CPU goes or leaves the idle 492 * state. By default, implementing this operation disables the built-in 493 * idle CPU tracking and the following helpers become unavailable: 494 * 495 * - scx_bpf_select_cpu_dfl() 496 * - scx_bpf_select_cpu_and() 497 * - scx_bpf_test_and_clear_cpu_idle() 498 * - scx_bpf_pick_idle_cpu() 499 * 500 * The user also must implement ops.select_cpu() as the default 501 * implementation relies on scx_bpf_select_cpu_dfl(). 502 * 503 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle 504 * tracking. 505 */ 506 void (*update_idle)(s32 cpu, bool idle); 507 508 /** 509 * @cpu_acquire: A CPU is becoming available to the BPF scheduler 510 * @cpu: The CPU being acquired by the BPF scheduler. 511 * @args: Acquire arguments, see the struct definition. 512 * 513 * A CPU that was previously released from the BPF scheduler is now once 514 * again under its control. 515 */ 516 void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args); 517 518 /** 519 * @cpu_release: A CPU is taken away from the BPF scheduler 520 * @cpu: The CPU being released by the BPF scheduler. 521 * @args: Release arguments, see the struct definition. 522 * 523 * The specified CPU is no longer under the control of the BPF 524 * scheduler. This could be because it was preempted by a higher 525 * priority sched_class, though there may be other reasons as well. The 526 * caller should consult @args->reason to determine the cause. 527 */ 528 void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args); 529 530 /** 531 * @init_task: Initialize a task to run in a BPF scheduler 532 * @p: task to initialize for BPF scheduling 533 * @args: init arguments, see the struct definition 534 * 535 * Either we're loading a BPF scheduler or a new task is being forked. 536 * Initialize @p for BPF scheduling. This operation may block and can 537 * be used for allocations, and is called exactly once for a task. 538 * 539 * Return 0 for success, -errno for failure. An error return while 540 * loading will abort loading of the BPF scheduler. During a fork, it 541 * will abort that specific fork. 542 */ 543 s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args); 544 545 /** 546 * @exit_task: Exit a previously-running task from the system 547 * @p: task to exit 548 * @args: exit arguments, see the struct definition 549 * 550 * @p is exiting or the BPF scheduler is being unloaded. Perform any 551 * necessary cleanup for @p. 552 */ 553 void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args); 554 555 /** 556 * @enable: Enable BPF scheduling for a task 557 * @p: task to enable BPF scheduling for 558 * 559 * Enable @p for BPF scheduling. enable() is called on @p any time it 560 * enters SCX, and is always paired with a matching disable(). 561 */ 562 void (*enable)(struct task_struct *p); 563 564 /** 565 * @disable: Disable BPF scheduling for a task 566 * @p: task to disable BPF scheduling for 567 * 568 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded. 569 * Disable BPF scheduling for @p. A disable() call is always matched 570 * with a prior enable() call. 571 */ 572 void (*disable)(struct task_struct *p); 573 574 /** 575 * @dump: Dump BPF scheduler state on error 576 * @ctx: debug dump context 577 * 578 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump. 579 */ 580 void (*dump)(struct scx_dump_ctx *ctx); 581 582 /** 583 * @dump_cpu: Dump BPF scheduler state for a CPU on error 584 * @ctx: debug dump context 585 * @cpu: CPU to generate debug dump for 586 * @idle: @cpu is currently idle without any runnable tasks 587 * 588 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 589 * @cpu. If @idle is %true and this operation doesn't produce any 590 * output, @cpu is skipped for dump. 591 */ 592 void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle); 593 594 /** 595 * @dump_task: Dump BPF scheduler state for a runnable task on error 596 * @ctx: debug dump context 597 * @p: runnable task to generate debug dump for 598 * 599 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 600 * @p. 601 */ 602 void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p); 603 604 #ifdef CONFIG_EXT_GROUP_SCHED 605 /** 606 * @cgroup_init: Initialize a cgroup 607 * @cgrp: cgroup being initialized 608 * @args: init arguments, see the struct definition 609 * 610 * Either the BPF scheduler is being loaded or @cgrp created, initialize 611 * @cgrp for sched_ext. This operation may block. 612 * 613 * Return 0 for success, -errno for failure. An error return while 614 * loading will abort loading of the BPF scheduler. During cgroup 615 * creation, it will abort the specific cgroup creation. 616 */ 617 s32 (*cgroup_init)(struct cgroup *cgrp, 618 struct scx_cgroup_init_args *args); 619 620 /** 621 * @cgroup_exit: Exit a cgroup 622 * @cgrp: cgroup being exited 623 * 624 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit 625 * @cgrp for sched_ext. This operation my block. 626 */ 627 void (*cgroup_exit)(struct cgroup *cgrp); 628 629 /** 630 * @cgroup_prep_move: Prepare a task to be moved to a different cgroup 631 * @p: task being moved 632 * @from: cgroup @p is being moved from 633 * @to: cgroup @p is being moved to 634 * 635 * Prepare @p for move from cgroup @from to @to. This operation may 636 * block and can be used for allocations. 637 * 638 * Return 0 for success, -errno for failure. An error return aborts the 639 * migration. 640 */ 641 s32 (*cgroup_prep_move)(struct task_struct *p, 642 struct cgroup *from, struct cgroup *to); 643 644 /** 645 * @cgroup_move: Commit cgroup move 646 * @p: task being moved 647 * @from: cgroup @p is being moved from 648 * @to: cgroup @p is being moved to 649 * 650 * Commit the move. @p is dequeued during this operation. 651 */ 652 void (*cgroup_move)(struct task_struct *p, 653 struct cgroup *from, struct cgroup *to); 654 655 /** 656 * @cgroup_cancel_move: Cancel cgroup move 657 * @p: task whose cgroup move is being canceled 658 * @from: cgroup @p was being moved from 659 * @to: cgroup @p was being moved to 660 * 661 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move(). 662 * Undo the preparation. 663 */ 664 void (*cgroup_cancel_move)(struct task_struct *p, 665 struct cgroup *from, struct cgroup *to); 666 667 /** 668 * @cgroup_set_weight: A cgroup's weight is being changed 669 * @cgrp: cgroup whose weight is being updated 670 * @weight: new weight [1..10000] 671 * 672 * Update @cgrp's weight to @weight. 673 */ 674 void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight); 675 676 /** 677 * @cgroup_set_bandwidth: A cgroup's bandwidth is being changed 678 * @cgrp: cgroup whose bandwidth is being updated 679 * @period_us: bandwidth control period 680 * @quota_us: bandwidth control quota 681 * @burst_us: bandwidth control burst 682 * 683 * Update @cgrp's bandwidth control parameters. This is from the cpu.max 684 * cgroup interface. 685 * 686 * @quota_us / @period_us determines the CPU bandwidth @cgrp is entitled 687 * to. For example, if @period_us is 1_000_000 and @quota_us is 688 * 2_500_000. @cgrp is entitled to 2.5 CPUs. @burst_us can be 689 * interpreted in the same fashion and specifies how much @cgrp can 690 * burst temporarily. The specific control mechanism and thus the 691 * interpretation of @period_us and burstiness is upto to the BPF 692 * scheduler. 693 */ 694 void (*cgroup_set_bandwidth)(struct cgroup *cgrp, 695 u64 period_us, u64 quota_us, u64 burst_us); 696 697 #endif /* CONFIG_EXT_GROUP_SCHED */ 698 699 /* 700 * All online ops must come before ops.cpu_online(). 701 */ 702 703 /** 704 * @cpu_online: A CPU became online 705 * @cpu: CPU which just came up 706 * 707 * @cpu just came online. @cpu will not call ops.enqueue() or 708 * ops.dispatch(), nor run tasks associated with other CPUs beforehand. 709 */ 710 void (*cpu_online)(s32 cpu); 711 712 /** 713 * @cpu_offline: A CPU is going offline 714 * @cpu: CPU which is going offline 715 * 716 * @cpu is going offline. @cpu will not call ops.enqueue() or 717 * ops.dispatch(), nor run tasks associated with other CPUs afterwards. 718 */ 719 void (*cpu_offline)(s32 cpu); 720 721 /* 722 * All CPU hotplug ops must come before ops.init(). 723 */ 724 725 /** 726 * @init: Initialize the BPF scheduler 727 */ 728 s32 (*init)(void); 729 730 /** 731 * @exit: Clean up after the BPF scheduler 732 * @info: Exit info 733 * 734 * ops.exit() is also called on ops.init() failure, which is a bit 735 * unusual. This is to allow rich reporting through @info on how 736 * ops.init() failed. 737 */ 738 void (*exit)(struct scx_exit_info *info); 739 740 /** 741 * @dispatch_max_batch: Max nr of tasks that dispatch() can dispatch 742 */ 743 u32 dispatch_max_batch; 744 745 /** 746 * @flags: %SCX_OPS_* flags 747 */ 748 u64 flags; 749 750 /** 751 * @timeout_ms: The maximum amount of time, in milliseconds, that a 752 * runnable task should be able to wait before being scheduled. The 753 * maximum timeout may not exceed the default timeout of 30 seconds. 754 * 755 * Defaults to the maximum allowed timeout value of 30 seconds. 756 */ 757 u32 timeout_ms; 758 759 /** 760 * @exit_dump_len: scx_exit_info.dump buffer length. If 0, the default 761 * value of 32768 is used. 762 */ 763 u32 exit_dump_len; 764 765 /** 766 * @hotplug_seq: A sequence number that may be set by the scheduler to 767 * detect when a hotplug event has occurred during the loading process. 768 * If 0, no detection occurs. Otherwise, the scheduler will fail to 769 * load if the sequence number does not match @scx_hotplug_seq on the 770 * enable path. 771 */ 772 u64 hotplug_seq; 773 774 /** 775 * @name: BPF scheduler's name 776 * 777 * Must be a non-zero valid BPF object name including only isalnum(), 778 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the 779 * BPF scheduler is enabled. 780 */ 781 char name[SCX_OPS_NAME_LEN]; 782 783 /* internal use only, must be NULL */ 784 void *priv; 785 }; 786 787 enum scx_opi { 788 SCX_OPI_BEGIN = 0, 789 SCX_OPI_NORMAL_BEGIN = 0, 790 SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online), 791 SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online), 792 SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init), 793 SCX_OPI_END = SCX_OP_IDX(init), 794 }; 795 796 /* 797 * Collection of event counters. Event types are placed in descending order. 798 */ 799 struct scx_event_stats { 800 /* 801 * If ops.select_cpu() returns a CPU which can't be used by the task, 802 * the core scheduler code silently picks a fallback CPU. 803 */ 804 s64 SCX_EV_SELECT_CPU_FALLBACK; 805 806 /* 807 * When dispatching to a local DSQ, the CPU may have gone offline in 808 * the meantime. In this case, the task is bounced to the global DSQ. 809 */ 810 s64 SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE; 811 812 /* 813 * If SCX_OPS_ENQ_LAST is not set, the number of times that a task 814 * continued to run because there were no other tasks on the CPU. 815 */ 816 s64 SCX_EV_DISPATCH_KEEP_LAST; 817 818 /* 819 * If SCX_OPS_ENQ_EXITING is not set, the number of times that a task 820 * is dispatched to a local DSQ when exiting. 821 */ 822 s64 SCX_EV_ENQ_SKIP_EXITING; 823 824 /* 825 * If SCX_OPS_ENQ_MIGRATION_DISABLED is not set, the number of times a 826 * migration disabled task skips ops.enqueue() and is dispatched to its 827 * local DSQ. 828 */ 829 s64 SCX_EV_ENQ_SKIP_MIGRATION_DISABLED; 830 831 /* 832 * Total number of times a task's time slice was refilled with the 833 * default value (SCX_SLICE_DFL). 834 */ 835 s64 SCX_EV_REFILL_SLICE_DFL; 836 837 /* 838 * The total duration of bypass modes in nanoseconds. 839 */ 840 s64 SCX_EV_BYPASS_DURATION; 841 842 /* 843 * The number of tasks dispatched in the bypassing mode. 844 */ 845 s64 SCX_EV_BYPASS_DISPATCH; 846 847 /* 848 * The number of times the bypassing mode has been activated. 849 */ 850 s64 SCX_EV_BYPASS_ACTIVATE; 851 }; 852 853 struct scx_sched { 854 struct sched_ext_ops ops; 855 DECLARE_BITMAP(has_op, SCX_OPI_END); 856 857 /* 858 * Dispatch queues. 859 * 860 * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. 861 * This is to avoid live-locking in bypass mode where all tasks are 862 * dispatched to %SCX_DSQ_GLOBAL and all CPUs consume from it. If 863 * per-node split isn't sufficient, it can be further split. 864 */ 865 struct rhashtable dsq_hash; 866 struct scx_dispatch_q **global_dsqs; 867 868 /* 869 * The event counters are in a per-CPU variable to minimize the 870 * accounting overhead. A system-wide view on the event counter is 871 * constructed when requested by scx_bpf_events(). 872 */ 873 struct scx_event_stats __percpu *event_stats_cpu; 874 875 bool warned_zero_slice; 876 877 atomic_t exit_kind; 878 struct scx_exit_info *exit_info; 879 880 struct kobject kobj; 881 882 struct kthread_worker *helper; 883 struct irq_work error_irq_work; 884 struct kthread_work disable_work; 885 struct rcu_work rcu_work; 886 }; 887 888 enum scx_wake_flags { 889 /* expose select WF_* flags as enums */ 890 SCX_WAKE_FORK = WF_FORK, 891 SCX_WAKE_TTWU = WF_TTWU, 892 SCX_WAKE_SYNC = WF_SYNC, 893 }; 894 895 enum scx_enq_flags { 896 /* expose select ENQUEUE_* flags as enums */ 897 SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP, 898 SCX_ENQ_HEAD = ENQUEUE_HEAD, 899 SCX_ENQ_CPU_SELECTED = ENQUEUE_RQ_SELECTED, 900 901 /* high 32bits are SCX specific */ 902 903 /* 904 * Set the following to trigger preemption when calling 905 * scx_bpf_dsq_insert() with a local dsq as the target. The slice of the 906 * current task is cleared to zero and the CPU is kicked into the 907 * scheduling path. Implies %SCX_ENQ_HEAD. 908 */ 909 SCX_ENQ_PREEMPT = 1LLU << 32, 910 911 /* 912 * The task being enqueued was previously enqueued on the current CPU's 913 * %SCX_DSQ_LOCAL, but was removed from it in a call to the 914 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was 915 * invoked in a ->cpu_release() callback, and the task is again 916 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the 917 * task will not be scheduled on the CPU until at least the next invocation 918 * of the ->cpu_acquire() callback. 919 */ 920 SCX_ENQ_REENQ = 1LLU << 40, 921 922 /* 923 * The task being enqueued is the only task available for the cpu. By 924 * default, ext core keeps executing such tasks but when 925 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the 926 * %SCX_ENQ_LAST flag set. 927 * 928 * The BPF scheduler is responsible for triggering a follow-up 929 * scheduling event. Otherwise, Execution may stall. 930 */ 931 SCX_ENQ_LAST = 1LLU << 41, 932 933 /* high 8 bits are internal */ 934 __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56, 935 936 SCX_ENQ_CLEAR_OPSS = 1LLU << 56, 937 SCX_ENQ_DSQ_PRIQ = 1LLU << 57, 938 }; 939 940 enum scx_deq_flags { 941 /* expose select DEQUEUE_* flags as enums */ 942 SCX_DEQ_SLEEP = DEQUEUE_SLEEP, 943 944 /* high 32bits are SCX specific */ 945 946 /* 947 * The generic core-sched layer decided to execute the task even though 948 * it hasn't been dispatched yet. Dequeue from the BPF side. 949 */ 950 SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32, 951 }; 952 953 enum scx_pick_idle_cpu_flags { 954 SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */ 955 SCX_PICK_IDLE_IN_NODE = 1LLU << 1, /* pick a CPU in the same target NUMA node */ 956 }; 957 958 enum scx_kick_flags { 959 /* 960 * Kick the target CPU if idle. Guarantees that the target CPU goes 961 * through at least one full scheduling cycle before going idle. If the 962 * target CPU can be determined to be currently not idle and going to go 963 * through a scheduling cycle before going idle, noop. 964 */ 965 SCX_KICK_IDLE = 1LLU << 0, 966 967 /* 968 * Preempt the current task and execute the dispatch path. If the 969 * current task of the target CPU is an SCX task, its ->scx.slice is 970 * cleared to zero before the scheduling path is invoked so that the 971 * task expires and the dispatch path is invoked. 972 */ 973 SCX_KICK_PREEMPT = 1LLU << 1, 974 975 /* 976 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will 977 * return after the target CPU finishes picking the next task. 978 */ 979 SCX_KICK_WAIT = 1LLU << 2, 980 }; 981 982 enum scx_tg_flags { 983 SCX_TG_ONLINE = 1U << 0, 984 SCX_TG_INITED = 1U << 1, 985 }; 986 987 enum scx_enable_state { 988 SCX_ENABLING, 989 SCX_ENABLED, 990 SCX_DISABLING, 991 SCX_DISABLED, 992 }; 993 994 static const char *scx_enable_state_str[] = { 995 [SCX_ENABLING] = "enabling", 996 [SCX_ENABLED] = "enabled", 997 [SCX_DISABLING] = "disabling", 998 [SCX_DISABLED] = "disabled", 999 }; 1000 1001 /* 1002 * sched_ext_entity->ops_state 1003 * 1004 * Used to track the task ownership between the SCX core and the BPF scheduler. 1005 * State transitions look as follows: 1006 * 1007 * NONE -> QUEUEING -> QUEUED -> DISPATCHING 1008 * ^ | | 1009 * | v v 1010 * \-------------------------------/ 1011 * 1012 * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call 1013 * sites for explanations on the conditions being waited upon and why they are 1014 * safe. Transitions out of them into NONE or QUEUED must store_release and the 1015 * waiters should load_acquire. 1016 * 1017 * Tracking scx_ops_state enables sched_ext core to reliably determine whether 1018 * any given task can be dispatched by the BPF scheduler at all times and thus 1019 * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler 1020 * to try to dispatch any task anytime regardless of its state as the SCX core 1021 * can safely reject invalid dispatches. 1022 */ 1023 enum scx_ops_state { 1024 SCX_OPSS_NONE, /* owned by the SCX core */ 1025 SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */ 1026 SCX_OPSS_QUEUED, /* owned by the BPF scheduler */ 1027 SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */ 1028 1029 /* 1030 * QSEQ brands each QUEUED instance so that, when dispatch races 1031 * dequeue/requeue, the dispatcher can tell whether it still has a claim 1032 * on the task being dispatched. 1033 * 1034 * As some 32bit archs can't do 64bit store_release/load_acquire, 1035 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on 1036 * 32bit machines. The dispatch race window QSEQ protects is very narrow 1037 * and runs with IRQ disabled. 30 bits should be sufficient. 1038 */ 1039 SCX_OPSS_QSEQ_SHIFT = 2, 1040 }; 1041 1042 /* Use macros to ensure that the type is unsigned long for the masks */ 1043 #define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1) 1044 #define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK) 1045 1046 /* 1047 * NOTE: sched_ext is in the process of growing multiple scheduler support and 1048 * scx_root usage is in a transitional state. Naked dereferences are safe if the 1049 * caller is one of the tasks attached to SCX and explicit RCU dereference is 1050 * necessary otherwise. Naked scx_root dereferences trigger sparse warnings but 1051 * are used as temporary markers to indicate that the dereferences need to be 1052 * updated to point to the associated scheduler instances rather than scx_root. 1053 */ 1054 static struct scx_sched __rcu *scx_root; 1055 1056 /* 1057 * During exit, a task may schedule after losing its PIDs. When disabling the 1058 * BPF scheduler, we need to be able to iterate tasks in every state to 1059 * guarantee system safety. Maintain a dedicated task list which contains every 1060 * task between its fork and eventual free. 1061 */ 1062 static DEFINE_SPINLOCK(scx_tasks_lock); 1063 static LIST_HEAD(scx_tasks); 1064 1065 /* ops enable/disable */ 1066 static DEFINE_MUTEX(scx_enable_mutex); 1067 DEFINE_STATIC_KEY_FALSE(__scx_enabled); 1068 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 1069 static atomic_t scx_enable_state_var = ATOMIC_INIT(SCX_DISABLED); 1070 static unsigned long scx_in_softlockup; 1071 static atomic_t scx_breather_depth = ATOMIC_INIT(0); 1072 static int scx_bypass_depth; 1073 static bool scx_init_task_enabled; 1074 static bool scx_switching_all; 1075 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 1076 1077 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 1078 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); 1079 1080 /* 1081 * A monotically increasing sequence number that is incremented every time a 1082 * scheduler is enabled. This can be used by to check if any custom sched_ext 1083 * scheduler has ever been used in the system. 1084 */ 1085 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0); 1086 1087 /* 1088 * The maximum amount of time in jiffies that a task may be runnable without 1089 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 1090 * scx_error(). 1091 */ 1092 static unsigned long scx_watchdog_timeout; 1093 1094 /* 1095 * The last time the delayed work was run. This delayed work relies on 1096 * ksoftirqd being able to run to service timer interrupts, so it's possible 1097 * that this work itself could get wedged. To account for this, we check that 1098 * it's not stalled in the timer tick, and trigger an error if it is. 1099 */ 1100 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 1101 1102 static struct delayed_work scx_watchdog_work; 1103 1104 /* for %SCX_KICK_WAIT */ 1105 static unsigned long __percpu *scx_kick_cpus_pnt_seqs; 1106 1107 /* 1108 * Direct dispatch marker. 1109 * 1110 * Non-NULL values are used for direct dispatch from enqueue path. A valid 1111 * pointer points to the task currently being enqueued. An ERR_PTR value is used 1112 * to indicate that direct dispatch has already happened. 1113 */ 1114 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 1115 1116 static const struct rhashtable_params dsq_hash_params = { 1117 .key_len = sizeof_field(struct scx_dispatch_q, id), 1118 .key_offset = offsetof(struct scx_dispatch_q, id), 1119 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 1120 }; 1121 1122 static LLIST_HEAD(dsqs_to_free); 1123 1124 /* dispatch buf */ 1125 struct scx_dsp_buf_ent { 1126 struct task_struct *task; 1127 unsigned long qseq; 1128 u64 dsq_id; 1129 u64 enq_flags; 1130 }; 1131 1132 static u32 scx_dsp_max_batch; 1133 1134 struct scx_dsp_ctx { 1135 struct rq *rq; 1136 u32 cursor; 1137 u32 nr_tasks; 1138 struct scx_dsp_buf_ent buf[]; 1139 }; 1140 1141 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 1142 1143 /* string formatting from BPF */ 1144 struct scx_bstr_buf { 1145 u64 data[MAX_BPRINTF_VARARGS]; 1146 char line[SCX_EXIT_MSG_LEN]; 1147 }; 1148 1149 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 1150 static struct scx_bstr_buf scx_exit_bstr_buf; 1151 1152 /* ops debug dump */ 1153 struct scx_dump_data { 1154 s32 cpu; 1155 bool first; 1156 s32 cursor; 1157 struct seq_buf *s; 1158 const char *prefix; 1159 struct scx_bstr_buf buf; 1160 }; 1161 1162 static struct scx_dump_data scx_dump_data = { 1163 .cpu = -1, 1164 }; 1165 1166 /* /sys/kernel/sched_ext interface */ 1167 static struct kset *scx_kset; 1168 1169 #define CREATE_TRACE_POINTS 1170 #include <trace/events/sched_ext.h> 1171 1172 static void process_ddsp_deferred_locals(struct rq *rq); 1173 static void scx_bpf_kick_cpu(s32 cpu, u64 flags); 1174 static void scx_vexit(struct scx_sched *sch, enum scx_exit_kind kind, 1175 s64 exit_code, const char *fmt, va_list args); 1176 1177 static __printf(4, 5) void scx_exit(struct scx_sched *sch, 1178 enum scx_exit_kind kind, s64 exit_code, 1179 const char *fmt, ...) 1180 { 1181 va_list args; 1182 1183 va_start(args, fmt); 1184 scx_vexit(sch, kind, exit_code, fmt, args); 1185 va_end(args); 1186 } 1187 1188 static __printf(3, 4) void scx_kf_exit(enum scx_exit_kind kind, s64 exit_code, 1189 const char *fmt, ...) 1190 { 1191 struct scx_sched *sch; 1192 va_list args; 1193 1194 rcu_read_lock(); 1195 sch = rcu_dereference(scx_root); 1196 if (sch) { 1197 va_start(args, fmt); 1198 scx_vexit(sch, kind, exit_code, fmt, args); 1199 va_end(args); 1200 } 1201 rcu_read_unlock(); 1202 } 1203 1204 #define scx_error(sch, fmt, args...) scx_exit((sch), SCX_EXIT_ERROR, 0, fmt, ##args) 1205 #define scx_kf_error(fmt, args...) scx_kf_exit(SCX_EXIT_ERROR, 0, fmt, ##args) 1206 1207 #define SCX_HAS_OP(sch, op) test_bit(SCX_OP_IDX(op), (sch)->has_op) 1208 1209 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 1210 { 1211 if (time_after(at, now)) 1212 return jiffies_to_msecs(at - now); 1213 else 1214 return -(long)jiffies_to_msecs(now - at); 1215 } 1216 1217 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 1218 static u32 higher_bits(u32 flags) 1219 { 1220 return ~((1 << fls(flags)) - 1); 1221 } 1222 1223 /* return the mask with only the highest bit set */ 1224 static u32 highest_bit(u32 flags) 1225 { 1226 int bit = fls(flags); 1227 return ((u64)1 << bit) >> 1; 1228 } 1229 1230 static bool u32_before(u32 a, u32 b) 1231 { 1232 return (s32)(a - b) < 0; 1233 } 1234 1235 static struct scx_dispatch_q *find_global_dsq(struct task_struct *p) 1236 { 1237 struct scx_sched *sch = scx_root; 1238 1239 return sch->global_dsqs[cpu_to_node(task_cpu(p))]; 1240 } 1241 1242 static struct scx_dispatch_q *find_user_dsq(struct scx_sched *sch, u64 dsq_id) 1243 { 1244 return rhashtable_lookup_fast(&sch->dsq_hash, &dsq_id, dsq_hash_params); 1245 } 1246 1247 /* 1248 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 1249 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 1250 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 1251 * whether it's running from an allowed context. 1252 * 1253 * @mask is constant, always inline to cull the mask calculations. 1254 */ 1255 static __always_inline void scx_kf_allow(u32 mask) 1256 { 1257 /* nesting is allowed only in increasing scx_kf_mask order */ 1258 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 1259 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 1260 current->scx.kf_mask, mask); 1261 current->scx.kf_mask |= mask; 1262 barrier(); 1263 } 1264 1265 static void scx_kf_disallow(u32 mask) 1266 { 1267 barrier(); 1268 current->scx.kf_mask &= ~mask; 1269 } 1270 1271 /* 1272 * Track the rq currently locked. 1273 * 1274 * This allows kfuncs to safely operate on rq from any scx ops callback, 1275 * knowing which rq is already locked. 1276 */ 1277 DEFINE_PER_CPU(struct rq *, scx_locked_rq_state); 1278 1279 static inline void update_locked_rq(struct rq *rq) 1280 { 1281 /* 1282 * Check whether @rq is actually locked. This can help expose bugs 1283 * or incorrect assumptions about the context in which a kfunc or 1284 * callback is executed. 1285 */ 1286 if (rq) 1287 lockdep_assert_rq_held(rq); 1288 __this_cpu_write(scx_locked_rq_state, rq); 1289 } 1290 1291 #define SCX_CALL_OP(sch, mask, op, rq, args...) \ 1292 do { \ 1293 update_locked_rq(rq); \ 1294 if (mask) { \ 1295 scx_kf_allow(mask); \ 1296 (sch)->ops.op(args); \ 1297 scx_kf_disallow(mask); \ 1298 } else { \ 1299 (sch)->ops.op(args); \ 1300 } \ 1301 update_locked_rq(NULL); \ 1302 } while (0) 1303 1304 #define SCX_CALL_OP_RET(sch, mask, op, rq, args...) \ 1305 ({ \ 1306 __typeof__((sch)->ops.op(args)) __ret; \ 1307 \ 1308 update_locked_rq(rq); \ 1309 if (mask) { \ 1310 scx_kf_allow(mask); \ 1311 __ret = (sch)->ops.op(args); \ 1312 scx_kf_disallow(mask); \ 1313 } else { \ 1314 __ret = (sch)->ops.op(args); \ 1315 } \ 1316 update_locked_rq(NULL); \ 1317 __ret; \ 1318 }) 1319 1320 /* 1321 * Some kfuncs are allowed only on the tasks that are subjects of the 1322 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 1323 * restrictions, the following SCX_CALL_OP_*() variants should be used when 1324 * invoking scx_ops operations that take task arguments. These can only be used 1325 * for non-nesting operations due to the way the tasks are tracked. 1326 * 1327 * kfuncs which can only operate on such tasks can in turn use 1328 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 1329 * the specific task. 1330 */ 1331 #define SCX_CALL_OP_TASK(sch, mask, op, rq, task, args...) \ 1332 do { \ 1333 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1334 current->scx.kf_tasks[0] = task; \ 1335 SCX_CALL_OP((sch), mask, op, rq, task, ##args); \ 1336 current->scx.kf_tasks[0] = NULL; \ 1337 } while (0) 1338 1339 #define SCX_CALL_OP_TASK_RET(sch, mask, op, rq, task, args...) \ 1340 ({ \ 1341 __typeof__((sch)->ops.op(task, ##args)) __ret; \ 1342 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1343 current->scx.kf_tasks[0] = task; \ 1344 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task, ##args); \ 1345 current->scx.kf_tasks[0] = NULL; \ 1346 __ret; \ 1347 }) 1348 1349 #define SCX_CALL_OP_2TASKS_RET(sch, mask, op, rq, task0, task1, args...) \ 1350 ({ \ 1351 __typeof__((sch)->ops.op(task0, task1, ##args)) __ret; \ 1352 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1353 current->scx.kf_tasks[0] = task0; \ 1354 current->scx.kf_tasks[1] = task1; \ 1355 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task0, task1, ##args); \ 1356 current->scx.kf_tasks[0] = NULL; \ 1357 current->scx.kf_tasks[1] = NULL; \ 1358 __ret; \ 1359 }) 1360 1361 /* @mask is constant, always inline to cull unnecessary branches */ 1362 static __always_inline bool scx_kf_allowed(u32 mask) 1363 { 1364 if (unlikely(!(current->scx.kf_mask & mask))) { 1365 scx_kf_error("kfunc with mask 0x%x called from an operation only allowing 0x%x", 1366 mask, current->scx.kf_mask); 1367 return false; 1368 } 1369 1370 /* 1371 * Enforce nesting boundaries. e.g. A kfunc which can be called from 1372 * DISPATCH must not be called if we're running DEQUEUE which is nested 1373 * inside ops.dispatch(). We don't need to check boundaries for any 1374 * blocking kfuncs as the verifier ensures they're only called from 1375 * sleepable progs. 1376 */ 1377 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 1378 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 1379 scx_kf_error("cpu_release kfunc called from a nested operation"); 1380 return false; 1381 } 1382 1383 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 1384 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 1385 scx_kf_error("dispatch kfunc called from a nested operation"); 1386 return false; 1387 } 1388 1389 return true; 1390 } 1391 1392 /* see SCX_CALL_OP_TASK() */ 1393 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask, 1394 struct task_struct *p) 1395 { 1396 if (!scx_kf_allowed(mask)) 1397 return false; 1398 1399 if (unlikely((p != current->scx.kf_tasks[0] && 1400 p != current->scx.kf_tasks[1]))) { 1401 scx_kf_error("called on a task not being operated on"); 1402 return false; 1403 } 1404 1405 return true; 1406 } 1407 1408 /** 1409 * nldsq_next_task - Iterate to the next task in a non-local DSQ 1410 * @dsq: user dsq being iterated 1411 * @cur: current position, %NULL to start iteration 1412 * @rev: walk backwards 1413 * 1414 * Returns %NULL when iteration is finished. 1415 */ 1416 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, 1417 struct task_struct *cur, bool rev) 1418 { 1419 struct list_head *list_node; 1420 struct scx_dsq_list_node *dsq_lnode; 1421 1422 lockdep_assert_held(&dsq->lock); 1423 1424 if (cur) 1425 list_node = &cur->scx.dsq_list.node; 1426 else 1427 list_node = &dsq->list; 1428 1429 /* find the next task, need to skip BPF iteration cursors */ 1430 do { 1431 if (rev) 1432 list_node = list_node->prev; 1433 else 1434 list_node = list_node->next; 1435 1436 if (list_node == &dsq->list) 1437 return NULL; 1438 1439 dsq_lnode = container_of(list_node, struct scx_dsq_list_node, 1440 node); 1441 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); 1442 1443 return container_of(dsq_lnode, struct task_struct, scx.dsq_list); 1444 } 1445 1446 #define nldsq_for_each_task(p, dsq) \ 1447 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ 1448 (p) = nldsq_next_task((dsq), (p), false)) 1449 1450 1451 /* 1452 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] 1453 * dispatch order. BPF-visible iterator is opaque and larger to allow future 1454 * changes without breaking backward compatibility. Can be used with 1455 * bpf_for_each(). See bpf_iter_scx_dsq_*(). 1456 */ 1457 enum scx_dsq_iter_flags { 1458 /* iterate in the reverse dispatch order */ 1459 SCX_DSQ_ITER_REV = 1U << 16, 1460 1461 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, 1462 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, 1463 1464 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, 1465 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | 1466 __SCX_DSQ_ITER_HAS_SLICE | 1467 __SCX_DSQ_ITER_HAS_VTIME, 1468 }; 1469 1470 struct bpf_iter_scx_dsq_kern { 1471 struct scx_dsq_list_node cursor; 1472 struct scx_dispatch_q *dsq; 1473 u64 slice; 1474 u64 vtime; 1475 } __attribute__((aligned(8))); 1476 1477 struct bpf_iter_scx_dsq { 1478 u64 __opaque[6]; 1479 } __attribute__((aligned(8))); 1480 1481 1482 /* 1483 * SCX task iterator. 1484 */ 1485 struct scx_task_iter { 1486 struct sched_ext_entity cursor; 1487 struct task_struct *locked; 1488 struct rq *rq; 1489 struct rq_flags rf; 1490 u32 cnt; 1491 }; 1492 1493 /** 1494 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration 1495 * @iter: iterator to init 1496 * 1497 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter 1498 * must eventually be stopped with scx_task_iter_stop(). 1499 * 1500 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock() 1501 * between this and the first next() call or between any two next() calls. If 1502 * the locks are released between two next() calls, the caller is responsible 1503 * for ensuring that the task being iterated remains accessible either through 1504 * RCU read lock or obtaining a reference count. 1505 * 1506 * All tasks which existed when the iteration started are guaranteed to be 1507 * visited as long as they still exist. 1508 */ 1509 static void scx_task_iter_start(struct scx_task_iter *iter) 1510 { 1511 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & 1512 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); 1513 1514 spin_lock_irq(&scx_tasks_lock); 1515 1516 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 1517 list_add(&iter->cursor.tasks_node, &scx_tasks); 1518 iter->locked = NULL; 1519 iter->cnt = 0; 1520 } 1521 1522 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter) 1523 { 1524 if (iter->locked) { 1525 task_rq_unlock(iter->rq, iter->locked, &iter->rf); 1526 iter->locked = NULL; 1527 } 1528 } 1529 1530 /** 1531 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator 1532 * @iter: iterator to unlock 1533 * 1534 * If @iter is in the middle of a locked iteration, it may be locking the rq of 1535 * the task currently being visited in addition to scx_tasks_lock. Unlock both. 1536 * This function can be safely called anytime during an iteration. 1537 */ 1538 static void scx_task_iter_unlock(struct scx_task_iter *iter) 1539 { 1540 __scx_task_iter_rq_unlock(iter); 1541 spin_unlock_irq(&scx_tasks_lock); 1542 } 1543 1544 /** 1545 * scx_task_iter_relock - Lock scx_tasks_lock released by scx_task_iter_unlock() 1546 * @iter: iterator to re-lock 1547 * 1548 * Re-lock scx_tasks_lock unlocked by scx_task_iter_unlock(). Note that it 1549 * doesn't re-lock the rq lock. Must be called before other iterator operations. 1550 */ 1551 static void scx_task_iter_relock(struct scx_task_iter *iter) 1552 { 1553 spin_lock_irq(&scx_tasks_lock); 1554 } 1555 1556 /** 1557 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock 1558 * @iter: iterator to exit 1559 * 1560 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held 1561 * which is released on return. If the iterator holds a task's rq lock, that rq 1562 * lock is also released. See scx_task_iter_start() for details. 1563 */ 1564 static void scx_task_iter_stop(struct scx_task_iter *iter) 1565 { 1566 list_del_init(&iter->cursor.tasks_node); 1567 scx_task_iter_unlock(iter); 1568 } 1569 1570 /** 1571 * scx_task_iter_next - Next task 1572 * @iter: iterator to walk 1573 * 1574 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped 1575 * and re-acquired every %SCX_TASK_ITER_BATCH iterations to avoid causing stalls 1576 * by holding scx_tasks_lock for too long. 1577 */ 1578 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 1579 { 1580 struct list_head *cursor = &iter->cursor.tasks_node; 1581 struct sched_ext_entity *pos; 1582 1583 if (!(++iter->cnt % SCX_TASK_ITER_BATCH)) { 1584 scx_task_iter_unlock(iter); 1585 cond_resched(); 1586 scx_task_iter_relock(iter); 1587 } 1588 1589 list_for_each_entry(pos, cursor, tasks_node) { 1590 if (&pos->tasks_node == &scx_tasks) 1591 return NULL; 1592 if (!(pos->flags & SCX_TASK_CURSOR)) { 1593 list_move(cursor, &pos->tasks_node); 1594 return container_of(pos, struct task_struct, scx); 1595 } 1596 } 1597 1598 /* can't happen, should always terminate at scx_tasks above */ 1599 BUG(); 1600 } 1601 1602 /** 1603 * scx_task_iter_next_locked - Next non-idle task with its rq locked 1604 * @iter: iterator to walk 1605 * 1606 * Visit the non-idle task with its rq lock held. Allows callers to specify 1607 * whether they would like to filter out dead tasks. See scx_task_iter_start() 1608 * for details. 1609 */ 1610 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) 1611 { 1612 struct task_struct *p; 1613 1614 __scx_task_iter_rq_unlock(iter); 1615 1616 while ((p = scx_task_iter_next(iter))) { 1617 /* 1618 * scx_task_iter is used to prepare and move tasks into SCX 1619 * while loading the BPF scheduler and vice-versa while 1620 * unloading. The init_tasks ("swappers") should be excluded 1621 * from the iteration because: 1622 * 1623 * - It's unsafe to use __setschduler_prio() on an init_task to 1624 * determine the sched_class to use as it won't preserve its 1625 * idle_sched_class. 1626 * 1627 * - ops.init/exit_task() can easily be confused if called with 1628 * init_tasks as they, e.g., share PID 0. 1629 * 1630 * As init_tasks are never scheduled through SCX, they can be 1631 * skipped safely. Note that is_idle_task() which tests %PF_IDLE 1632 * doesn't work here: 1633 * 1634 * - %PF_IDLE may not be set for an init_task whose CPU hasn't 1635 * yet been onlined. 1636 * 1637 * - %PF_IDLE can be set on tasks that are not init_tasks. See 1638 * play_idle_precise() used by CONFIG_IDLE_INJECT. 1639 * 1640 * Test for idle_sched_class as only init_tasks are on it. 1641 */ 1642 if (p->sched_class != &idle_sched_class) 1643 break; 1644 } 1645 if (!p) 1646 return NULL; 1647 1648 iter->rq = task_rq_lock(p, &iter->rf); 1649 iter->locked = p; 1650 1651 return p; 1652 } 1653 1654 /** 1655 * scx_add_event - Increase an event counter for 'name' by 'cnt' 1656 * @sch: scx_sched to account events for 1657 * @name: an event name defined in struct scx_event_stats 1658 * @cnt: the number of the event occured 1659 * 1660 * This can be used when preemption is not disabled. 1661 */ 1662 #define scx_add_event(sch, name, cnt) do { \ 1663 this_cpu_add((sch)->event_stats_cpu->name, (cnt)); \ 1664 trace_sched_ext_event(#name, (cnt)); \ 1665 } while(0) 1666 1667 /** 1668 * __scx_add_event - Increase an event counter for 'name' by 'cnt' 1669 * @sch: scx_sched to account events for 1670 * @name: an event name defined in struct scx_event_stats 1671 * @cnt: the number of the event occured 1672 * 1673 * This should be used only when preemption is disabled. 1674 */ 1675 #define __scx_add_event(sch, name, cnt) do { \ 1676 __this_cpu_add((sch)->event_stats_cpu->name, (cnt)); \ 1677 trace_sched_ext_event(#name, cnt); \ 1678 } while(0) 1679 1680 /** 1681 * scx_agg_event - Aggregate an event counter 'kind' from 'src_e' to 'dst_e' 1682 * @dst_e: destination event stats 1683 * @src_e: source event stats 1684 * @kind: a kind of event to be aggregated 1685 */ 1686 #define scx_agg_event(dst_e, src_e, kind) do { \ 1687 (dst_e)->kind += READ_ONCE((src_e)->kind); \ 1688 } while(0) 1689 1690 /** 1691 * scx_dump_event - Dump an event 'kind' in 'events' to 's' 1692 * @s: output seq_buf 1693 * @events: event stats 1694 * @kind: a kind of event to dump 1695 */ 1696 #define scx_dump_event(s, events, kind) do { \ 1697 dump_line(&(s), "%40s: %16lld", #kind, (events)->kind); \ 1698 } while (0) 1699 1700 1701 static void scx_read_events(struct scx_sched *sch, 1702 struct scx_event_stats *events); 1703 1704 static enum scx_enable_state scx_enable_state(void) 1705 { 1706 return atomic_read(&scx_enable_state_var); 1707 } 1708 1709 static enum scx_enable_state scx_set_enable_state(enum scx_enable_state to) 1710 { 1711 return atomic_xchg(&scx_enable_state_var, to); 1712 } 1713 1714 static bool scx_tryset_enable_state(enum scx_enable_state to, 1715 enum scx_enable_state from) 1716 { 1717 int from_v = from; 1718 1719 return atomic_try_cmpxchg(&scx_enable_state_var, &from_v, to); 1720 } 1721 1722 /** 1723 * wait_ops_state - Busy-wait the specified ops state to end 1724 * @p: target task 1725 * @opss: state to wait the end of 1726 * 1727 * Busy-wait for @p to transition out of @opss. This can only be used when the 1728 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 1729 * has load_acquire semantics to ensure that the caller can see the updates made 1730 * in the enqueueing and dispatching paths. 1731 */ 1732 static void wait_ops_state(struct task_struct *p, unsigned long opss) 1733 { 1734 do { 1735 cpu_relax(); 1736 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 1737 } 1738 1739 static inline bool __cpu_valid(s32 cpu) 1740 { 1741 return likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu)); 1742 } 1743 1744 /** 1745 * ops_cpu_valid - Verify a cpu number, to be used on ops input args 1746 * @sch: scx_sched to abort on error 1747 * @cpu: cpu number which came from a BPF ops 1748 * @where: extra information reported on error 1749 * 1750 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 1751 * Verify that it is in range and one of the possible cpus. If invalid, trigger 1752 * an ops error. 1753 */ 1754 static bool ops_cpu_valid(struct scx_sched *sch, s32 cpu, const char *where) 1755 { 1756 if (__cpu_valid(cpu)) { 1757 return true; 1758 } else { 1759 scx_error(sch, "invalid CPU %d%s%s", cpu, where ? " " : "", where ?: ""); 1760 return false; 1761 } 1762 } 1763 1764 /** 1765 * kf_cpu_valid - Verify a CPU number, to be used on kfunc input args 1766 * @cpu: cpu number which came from a BPF ops 1767 * @where: extra information reported on error 1768 * 1769 * The same as ops_cpu_valid() but @sch is implicit. 1770 */ 1771 static bool kf_cpu_valid(u32 cpu, const char *where) 1772 { 1773 if (__cpu_valid(cpu)) { 1774 return true; 1775 } else { 1776 scx_kf_error("invalid CPU %d%s%s", cpu, where ? " " : "", where ?: ""); 1777 return false; 1778 } 1779 } 1780 1781 /** 1782 * ops_sanitize_err - Sanitize a -errno value 1783 * @sch: scx_sched to error out on error 1784 * @ops_name: operation to blame on failure 1785 * @err: -errno value to sanitize 1786 * 1787 * Verify @err is a valid -errno. If not, trigger scx_error() and return 1788 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 1789 * cause misbehaviors. For an example, a large negative return from 1790 * ops.init_task() triggers an oops when passed up the call chain because the 1791 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 1792 * handled as a pointer. 1793 */ 1794 static int ops_sanitize_err(struct scx_sched *sch, const char *ops_name, s32 err) 1795 { 1796 if (err < 0 && err >= -MAX_ERRNO) 1797 return err; 1798 1799 scx_error(sch, "ops.%s() returned an invalid errno %d", ops_name, err); 1800 return -EPROTO; 1801 } 1802 1803 static void run_deferred(struct rq *rq) 1804 { 1805 process_ddsp_deferred_locals(rq); 1806 } 1807 1808 static void deferred_bal_cb_workfn(struct rq *rq) 1809 { 1810 run_deferred(rq); 1811 } 1812 1813 static void deferred_irq_workfn(struct irq_work *irq_work) 1814 { 1815 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); 1816 1817 raw_spin_rq_lock(rq); 1818 run_deferred(rq); 1819 raw_spin_rq_unlock(rq); 1820 } 1821 1822 /** 1823 * schedule_deferred - Schedule execution of deferred actions on an rq 1824 * @rq: target rq 1825 * 1826 * Schedule execution of deferred actions on @rq. Must be called with @rq 1827 * locked. Deferred actions are executed with @rq locked but unpinned, and thus 1828 * can unlock @rq to e.g. migrate tasks to other rqs. 1829 */ 1830 static void schedule_deferred(struct rq *rq) 1831 { 1832 lockdep_assert_rq_held(rq); 1833 1834 /* 1835 * If in the middle of waking up a task, task_woken_scx() will be called 1836 * afterwards which will then run the deferred actions, no need to 1837 * schedule anything. 1838 */ 1839 if (rq->scx.flags & SCX_RQ_IN_WAKEUP) 1840 return; 1841 1842 /* 1843 * If in balance, the balance callbacks will be called before rq lock is 1844 * released. Schedule one. 1845 */ 1846 if (rq->scx.flags & SCX_RQ_IN_BALANCE) { 1847 queue_balance_callback(rq, &rq->scx.deferred_bal_cb, 1848 deferred_bal_cb_workfn); 1849 return; 1850 } 1851 1852 /* 1853 * No scheduler hooks available. Queue an irq work. They are executed on 1854 * IRQ re-enable which may take a bit longer than the scheduler hooks. 1855 * The above WAKEUP and BALANCE paths should cover most of the cases and 1856 * the time to IRQ re-enable shouldn't be long. 1857 */ 1858 irq_work_queue(&rq->scx.deferred_irq_work); 1859 } 1860 1861 /** 1862 * touch_core_sched - Update timestamp used for core-sched task ordering 1863 * @rq: rq to read clock from, must be locked 1864 * @p: task to update the timestamp for 1865 * 1866 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to 1867 * implement global or local-DSQ FIFO ordering for core-sched. Should be called 1868 * when a task becomes runnable and its turn on the CPU ends (e.g. slice 1869 * exhaustion). 1870 */ 1871 static void touch_core_sched(struct rq *rq, struct task_struct *p) 1872 { 1873 lockdep_assert_rq_held(rq); 1874 1875 #ifdef CONFIG_SCHED_CORE 1876 /* 1877 * It's okay to update the timestamp spuriously. Use 1878 * sched_core_disabled() which is cheaper than enabled(). 1879 * 1880 * As this is used to determine ordering between tasks of sibling CPUs, 1881 * it may be better to use per-core dispatch sequence instead. 1882 */ 1883 if (!sched_core_disabled()) 1884 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); 1885 #endif 1886 } 1887 1888 /** 1889 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch 1890 * @rq: rq to read clock from, must be locked 1891 * @p: task being dispatched 1892 * 1893 * If the BPF scheduler implements custom core-sched ordering via 1894 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO 1895 * ordering within each local DSQ. This function is called from dispatch paths 1896 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. 1897 */ 1898 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) 1899 { 1900 lockdep_assert_rq_held(rq); 1901 1902 #ifdef CONFIG_SCHED_CORE 1903 if (unlikely(SCX_HAS_OP(scx_root, core_sched_before))) 1904 touch_core_sched(rq, p); 1905 #endif 1906 } 1907 1908 static void update_curr_scx(struct rq *rq) 1909 { 1910 struct task_struct *curr = rq->curr; 1911 s64 delta_exec; 1912 1913 delta_exec = update_curr_common(rq); 1914 if (unlikely(delta_exec <= 0)) 1915 return; 1916 1917 if (curr->scx.slice != SCX_SLICE_INF) { 1918 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); 1919 if (!curr->scx.slice) 1920 touch_core_sched(rq, curr); 1921 } 1922 } 1923 1924 static bool scx_dsq_priq_less(struct rb_node *node_a, 1925 const struct rb_node *node_b) 1926 { 1927 const struct task_struct *a = 1928 container_of(node_a, struct task_struct, scx.dsq_priq); 1929 const struct task_struct *b = 1930 container_of(node_b, struct task_struct, scx.dsq_priq); 1931 1932 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); 1933 } 1934 1935 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 1936 { 1937 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 1938 WRITE_ONCE(dsq->nr, dsq->nr + delta); 1939 } 1940 1941 static void refill_task_slice_dfl(struct task_struct *p) 1942 { 1943 p->scx.slice = SCX_SLICE_DFL; 1944 __scx_add_event(scx_root, SCX_EV_REFILL_SLICE_DFL, 1); 1945 } 1946 1947 static void dispatch_enqueue(struct scx_sched *sch, struct scx_dispatch_q *dsq, 1948 struct task_struct *p, u64 enq_flags) 1949 { 1950 bool is_local = dsq->id == SCX_DSQ_LOCAL; 1951 1952 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1953 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || 1954 !RB_EMPTY_NODE(&p->scx.dsq_priq)); 1955 1956 if (!is_local) { 1957 raw_spin_lock(&dsq->lock); 1958 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 1959 scx_error(sch, "attempting to dispatch to a destroyed dsq"); 1960 /* fall back to the global dsq */ 1961 raw_spin_unlock(&dsq->lock); 1962 dsq = find_global_dsq(p); 1963 raw_spin_lock(&dsq->lock); 1964 } 1965 } 1966 1967 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && 1968 (enq_flags & SCX_ENQ_DSQ_PRIQ))) { 1969 /* 1970 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from 1971 * their FIFO queues. To avoid confusion and accidentally 1972 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we 1973 * disallow any internal DSQ from doing vtime ordering of 1974 * tasks. 1975 */ 1976 scx_error(sch, "cannot use vtime ordering for built-in DSQs"); 1977 enq_flags &= ~SCX_ENQ_DSQ_PRIQ; 1978 } 1979 1980 if (enq_flags & SCX_ENQ_DSQ_PRIQ) { 1981 struct rb_node *rbp; 1982 1983 /* 1984 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are 1985 * linked to both the rbtree and list on PRIQs, this can only be 1986 * tested easily when adding the first task. 1987 */ 1988 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && 1989 nldsq_next_task(dsq, NULL, false))) 1990 scx_error(sch, "DSQ ID 0x%016llx already had FIFO-enqueued tasks", 1991 dsq->id); 1992 1993 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; 1994 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); 1995 1996 /* 1997 * Find the previous task and insert after it on the list so 1998 * that @dsq->list is vtime ordered. 1999 */ 2000 rbp = rb_prev(&p->scx.dsq_priq); 2001 if (rbp) { 2002 struct task_struct *prev = 2003 container_of(rbp, struct task_struct, 2004 scx.dsq_priq); 2005 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); 2006 } else { 2007 list_add(&p->scx.dsq_list.node, &dsq->list); 2008 } 2009 } else { 2010 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ 2011 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) 2012 scx_error(sch, "DSQ ID 0x%016llx already had PRIQ-enqueued tasks", 2013 dsq->id); 2014 2015 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 2016 list_add(&p->scx.dsq_list.node, &dsq->list); 2017 else 2018 list_add_tail(&p->scx.dsq_list.node, &dsq->list); 2019 } 2020 2021 /* seq records the order tasks are queued, used by BPF DSQ iterator */ 2022 dsq->seq++; 2023 p->scx.dsq_seq = dsq->seq; 2024 2025 dsq_mod_nr(dsq, 1); 2026 p->scx.dsq = dsq; 2027 2028 /* 2029 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 2030 * direct dispatch path, but we clear them here because the direct 2031 * dispatch verdict may be overridden on the enqueue path during e.g. 2032 * bypass. 2033 */ 2034 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 2035 p->scx.ddsp_enq_flags = 0; 2036 2037 /* 2038 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 2039 * match waiters' load_acquire. 2040 */ 2041 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 2042 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 2043 2044 if (is_local) { 2045 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 2046 bool preempt = false; 2047 2048 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 2049 rq->curr->sched_class == &ext_sched_class) { 2050 rq->curr->scx.slice = 0; 2051 preempt = true; 2052 } 2053 2054 if (preempt || sched_class_above(&ext_sched_class, 2055 rq->curr->sched_class)) 2056 resched_curr(rq); 2057 } else { 2058 raw_spin_unlock(&dsq->lock); 2059 } 2060 } 2061 2062 static void task_unlink_from_dsq(struct task_struct *p, 2063 struct scx_dispatch_q *dsq) 2064 { 2065 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); 2066 2067 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { 2068 rb_erase(&p->scx.dsq_priq, &dsq->priq); 2069 RB_CLEAR_NODE(&p->scx.dsq_priq); 2070 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; 2071 } 2072 2073 list_del_init(&p->scx.dsq_list.node); 2074 dsq_mod_nr(dsq, -1); 2075 } 2076 2077 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 2078 { 2079 struct scx_dispatch_q *dsq = p->scx.dsq; 2080 bool is_local = dsq == &rq->scx.local_dsq; 2081 2082 if (!dsq) { 2083 /* 2084 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. 2085 * Unlinking is all that's needed to cancel. 2086 */ 2087 if (unlikely(!list_empty(&p->scx.dsq_list.node))) 2088 list_del_init(&p->scx.dsq_list.node); 2089 2090 /* 2091 * When dispatching directly from the BPF scheduler to a local 2092 * DSQ, the task isn't associated with any DSQ but 2093 * @p->scx.holding_cpu may be set under the protection of 2094 * %SCX_OPSS_DISPATCHING. 2095 */ 2096 if (p->scx.holding_cpu >= 0) 2097 p->scx.holding_cpu = -1; 2098 2099 return; 2100 } 2101 2102 if (!is_local) 2103 raw_spin_lock(&dsq->lock); 2104 2105 /* 2106 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't 2107 * change underneath us. 2108 */ 2109 if (p->scx.holding_cpu < 0) { 2110 /* @p must still be on @dsq, dequeue */ 2111 task_unlink_from_dsq(p, dsq); 2112 } else { 2113 /* 2114 * We're racing against dispatch_to_local_dsq() which already 2115 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 2116 * holding_cpu which tells dispatch_to_local_dsq() that it lost 2117 * the race. 2118 */ 2119 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); 2120 p->scx.holding_cpu = -1; 2121 } 2122 p->scx.dsq = NULL; 2123 2124 if (!is_local) 2125 raw_spin_unlock(&dsq->lock); 2126 } 2127 2128 static struct scx_dispatch_q *find_dsq_for_dispatch(struct scx_sched *sch, 2129 struct rq *rq, u64 dsq_id, 2130 struct task_struct *p) 2131 { 2132 struct scx_dispatch_q *dsq; 2133 2134 if (dsq_id == SCX_DSQ_LOCAL) 2135 return &rq->scx.local_dsq; 2136 2137 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 2138 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 2139 2140 if (!ops_cpu_valid(sch, cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 2141 return find_global_dsq(p); 2142 2143 return &cpu_rq(cpu)->scx.local_dsq; 2144 } 2145 2146 if (dsq_id == SCX_DSQ_GLOBAL) 2147 dsq = find_global_dsq(p); 2148 else 2149 dsq = find_user_dsq(sch, dsq_id); 2150 2151 if (unlikely(!dsq)) { 2152 scx_error(sch, "non-existent DSQ 0x%llx for %s[%d]", 2153 dsq_id, p->comm, p->pid); 2154 return find_global_dsq(p); 2155 } 2156 2157 return dsq; 2158 } 2159 2160 static void mark_direct_dispatch(struct task_struct *ddsp_task, 2161 struct task_struct *p, u64 dsq_id, 2162 u64 enq_flags) 2163 { 2164 /* 2165 * Mark that dispatch already happened from ops.select_cpu() or 2166 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 2167 * which can never match a valid task pointer. 2168 */ 2169 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 2170 2171 /* @p must match the task on the enqueue path */ 2172 if (unlikely(p != ddsp_task)) { 2173 if (IS_ERR(ddsp_task)) 2174 scx_kf_error("%s[%d] already direct-dispatched", 2175 p->comm, p->pid); 2176 else 2177 scx_kf_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 2178 ddsp_task->comm, ddsp_task->pid, 2179 p->comm, p->pid); 2180 return; 2181 } 2182 2183 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 2184 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 2185 2186 p->scx.ddsp_dsq_id = dsq_id; 2187 p->scx.ddsp_enq_flags = enq_flags; 2188 } 2189 2190 static void direct_dispatch(struct scx_sched *sch, struct task_struct *p, 2191 u64 enq_flags) 2192 { 2193 struct rq *rq = task_rq(p); 2194 struct scx_dispatch_q *dsq = 2195 find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p); 2196 2197 touch_core_sched_dispatch(rq, p); 2198 2199 p->scx.ddsp_enq_flags |= enq_flags; 2200 2201 /* 2202 * We are in the enqueue path with @rq locked and pinned, and thus can't 2203 * double lock a remote rq and enqueue to its local DSQ. For 2204 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer 2205 * the enqueue so that it's executed when @rq can be unlocked. 2206 */ 2207 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { 2208 unsigned long opss; 2209 2210 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; 2211 2212 switch (opss & SCX_OPSS_STATE_MASK) { 2213 case SCX_OPSS_NONE: 2214 break; 2215 case SCX_OPSS_QUEUEING: 2216 /* 2217 * As @p was never passed to the BPF side, _release is 2218 * not strictly necessary. Still do it for consistency. 2219 */ 2220 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 2221 break; 2222 default: 2223 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", 2224 p->comm, p->pid, opss); 2225 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 2226 break; 2227 } 2228 2229 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 2230 list_add_tail(&p->scx.dsq_list.node, 2231 &rq->scx.ddsp_deferred_locals); 2232 schedule_deferred(rq); 2233 return; 2234 } 2235 2236 dispatch_enqueue(sch, dsq, p, 2237 p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 2238 } 2239 2240 static bool scx_rq_online(struct rq *rq) 2241 { 2242 /* 2243 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates 2244 * the online state as seen from the BPF scheduler. cpu_active() test 2245 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will 2246 * stay set until the current scheduling operation is complete even if 2247 * we aren't locking @rq. 2248 */ 2249 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); 2250 } 2251 2252 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 2253 int sticky_cpu) 2254 { 2255 struct scx_sched *sch = scx_root; 2256 struct task_struct **ddsp_taskp; 2257 unsigned long qseq; 2258 2259 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 2260 2261 /* rq migration */ 2262 if (sticky_cpu == cpu_of(rq)) 2263 goto local_norefill; 2264 2265 /* 2266 * If !scx_rq_online(), we already told the BPF scheduler that the CPU 2267 * is offline and are just running the hotplug path. Don't bother the 2268 * BPF scheduler. 2269 */ 2270 if (!scx_rq_online(rq)) 2271 goto local; 2272 2273 if (scx_rq_bypassing(rq)) { 2274 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1); 2275 goto global; 2276 } 2277 2278 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 2279 goto direct; 2280 2281 /* see %SCX_OPS_ENQ_EXITING */ 2282 if (!(sch->ops.flags & SCX_OPS_ENQ_EXITING) && 2283 unlikely(p->flags & PF_EXITING)) { 2284 __scx_add_event(sch, SCX_EV_ENQ_SKIP_EXITING, 1); 2285 goto local; 2286 } 2287 2288 /* see %SCX_OPS_ENQ_MIGRATION_DISABLED */ 2289 if (!(sch->ops.flags & SCX_OPS_ENQ_MIGRATION_DISABLED) && 2290 is_migration_disabled(p)) { 2291 __scx_add_event(sch, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED, 1); 2292 goto local; 2293 } 2294 2295 if (unlikely(!SCX_HAS_OP(sch, enqueue))) 2296 goto global; 2297 2298 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 2299 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 2300 2301 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2302 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 2303 2304 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 2305 WARN_ON_ONCE(*ddsp_taskp); 2306 *ddsp_taskp = p; 2307 2308 SCX_CALL_OP_TASK(sch, SCX_KF_ENQUEUE, enqueue, rq, p, enq_flags); 2309 2310 *ddsp_taskp = NULL; 2311 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 2312 goto direct; 2313 2314 /* 2315 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 2316 * dequeue may be waiting. The store_release matches their load_acquire. 2317 */ 2318 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 2319 return; 2320 2321 direct: 2322 direct_dispatch(sch, p, enq_flags); 2323 return; 2324 2325 local: 2326 /* 2327 * For task-ordering, slice refill must be treated as implying the end 2328 * of the current slice. Otherwise, the longer @p stays on the CPU, the 2329 * higher priority it becomes from scx_prio_less()'s POV. 2330 */ 2331 touch_core_sched(rq, p); 2332 refill_task_slice_dfl(p); 2333 local_norefill: 2334 dispatch_enqueue(sch, &rq->scx.local_dsq, p, enq_flags); 2335 return; 2336 2337 global: 2338 touch_core_sched(rq, p); /* see the comment in local: */ 2339 refill_task_slice_dfl(p); 2340 dispatch_enqueue(sch, find_global_dsq(p), p, enq_flags); 2341 } 2342 2343 static bool task_runnable(const struct task_struct *p) 2344 { 2345 return !list_empty(&p->scx.runnable_node); 2346 } 2347 2348 static void set_task_runnable(struct rq *rq, struct task_struct *p) 2349 { 2350 lockdep_assert_rq_held(rq); 2351 2352 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 2353 p->scx.runnable_at = jiffies; 2354 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 2355 } 2356 2357 /* 2358 * list_add_tail() must be used. scx_bypass() depends on tasks being 2359 * appended to the runnable_list. 2360 */ 2361 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 2362 } 2363 2364 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 2365 { 2366 list_del_init(&p->scx.runnable_node); 2367 if (reset_runnable_at) 2368 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2369 } 2370 2371 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 2372 { 2373 struct scx_sched *sch = scx_root; 2374 int sticky_cpu = p->scx.sticky_cpu; 2375 2376 if (enq_flags & ENQUEUE_WAKEUP) 2377 rq->scx.flags |= SCX_RQ_IN_WAKEUP; 2378 2379 enq_flags |= rq->scx.extra_enq_flags; 2380 2381 if (sticky_cpu >= 0) 2382 p->scx.sticky_cpu = -1; 2383 2384 /* 2385 * Restoring a running task will be immediately followed by 2386 * set_next_task_scx() which expects the task to not be on the BPF 2387 * scheduler as tasks can only start running through local DSQs. Force 2388 * direct-dispatch into the local DSQ by setting the sticky_cpu. 2389 */ 2390 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 2391 sticky_cpu = cpu_of(rq); 2392 2393 if (p->scx.flags & SCX_TASK_QUEUED) { 2394 WARN_ON_ONCE(!task_runnable(p)); 2395 goto out; 2396 } 2397 2398 set_task_runnable(rq, p); 2399 p->scx.flags |= SCX_TASK_QUEUED; 2400 rq->scx.nr_running++; 2401 add_nr_running(rq, 1); 2402 2403 if (SCX_HAS_OP(sch, runnable) && !task_on_rq_migrating(p)) 2404 SCX_CALL_OP_TASK(sch, SCX_KF_REST, runnable, rq, p, enq_flags); 2405 2406 if (enq_flags & SCX_ENQ_WAKEUP) 2407 touch_core_sched(rq, p); 2408 2409 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 2410 out: 2411 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; 2412 2413 if ((enq_flags & SCX_ENQ_CPU_SELECTED) && 2414 unlikely(cpu_of(rq) != p->scx.selected_cpu)) 2415 __scx_add_event(sch, SCX_EV_SELECT_CPU_FALLBACK, 1); 2416 } 2417 2418 static void ops_dequeue(struct rq *rq, struct task_struct *p, u64 deq_flags) 2419 { 2420 struct scx_sched *sch = scx_root; 2421 unsigned long opss; 2422 2423 /* dequeue is always temporary, don't reset runnable_at */ 2424 clr_task_runnable(p, false); 2425 2426 /* acquire ensures that we see the preceding updates on QUEUED */ 2427 opss = atomic_long_read_acquire(&p->scx.ops_state); 2428 2429 switch (opss & SCX_OPSS_STATE_MASK) { 2430 case SCX_OPSS_NONE: 2431 break; 2432 case SCX_OPSS_QUEUEING: 2433 /* 2434 * QUEUEING is started and finished while holding @p's rq lock. 2435 * As we're holding the rq lock now, we shouldn't see QUEUEING. 2436 */ 2437 BUG(); 2438 case SCX_OPSS_QUEUED: 2439 if (SCX_HAS_OP(sch, dequeue)) 2440 SCX_CALL_OP_TASK(sch, SCX_KF_REST, dequeue, rq, 2441 p, deq_flags); 2442 2443 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2444 SCX_OPSS_NONE)) 2445 break; 2446 fallthrough; 2447 case SCX_OPSS_DISPATCHING: 2448 /* 2449 * If @p is being dispatched from the BPF scheduler to a DSQ, 2450 * wait for the transfer to complete so that @p doesn't get 2451 * added to its DSQ after dequeueing is complete. 2452 * 2453 * As we're waiting on DISPATCHING with the rq locked, the 2454 * dispatching side shouldn't try to lock the rq while 2455 * DISPATCHING is set. See dispatch_to_local_dsq(). 2456 * 2457 * DISPATCHING shouldn't have qseq set and control can reach 2458 * here with NONE @opss from the above QUEUED case block. 2459 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 2460 */ 2461 wait_ops_state(p, SCX_OPSS_DISPATCHING); 2462 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2463 break; 2464 } 2465 } 2466 2467 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 2468 { 2469 struct scx_sched *sch = scx_root; 2470 2471 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 2472 WARN_ON_ONCE(task_runnable(p)); 2473 return true; 2474 } 2475 2476 ops_dequeue(rq, p, deq_flags); 2477 2478 /* 2479 * A currently running task which is going off @rq first gets dequeued 2480 * and then stops running. As we want running <-> stopping transitions 2481 * to be contained within runnable <-> quiescent transitions, trigger 2482 * ->stopping() early here instead of in put_prev_task_scx(). 2483 * 2484 * @p may go through multiple stopping <-> running transitions between 2485 * here and put_prev_task_scx() if task attribute changes occur while 2486 * balance_scx() leaves @rq unlocked. However, they don't contain any 2487 * information meaningful to the BPF scheduler and can be suppressed by 2488 * skipping the callbacks if the task is !QUEUED. 2489 */ 2490 if (SCX_HAS_OP(sch, stopping) && task_current(rq, p)) { 2491 update_curr_scx(rq); 2492 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, false); 2493 } 2494 2495 if (SCX_HAS_OP(sch, quiescent) && !task_on_rq_migrating(p)) 2496 SCX_CALL_OP_TASK(sch, SCX_KF_REST, quiescent, rq, p, deq_flags); 2497 2498 if (deq_flags & SCX_DEQ_SLEEP) 2499 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 2500 else 2501 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 2502 2503 p->scx.flags &= ~SCX_TASK_QUEUED; 2504 rq->scx.nr_running--; 2505 sub_nr_running(rq, 1); 2506 2507 dispatch_dequeue(rq, p); 2508 return true; 2509 } 2510 2511 static void yield_task_scx(struct rq *rq) 2512 { 2513 struct scx_sched *sch = scx_root; 2514 struct task_struct *p = rq->curr; 2515 2516 if (SCX_HAS_OP(sch, yield)) 2517 SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, p, NULL); 2518 else 2519 p->scx.slice = 0; 2520 } 2521 2522 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 2523 { 2524 struct scx_sched *sch = scx_root; 2525 struct task_struct *from = rq->curr; 2526 2527 if (SCX_HAS_OP(sch, yield)) 2528 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, 2529 from, to); 2530 else 2531 return false; 2532 } 2533 2534 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2535 struct scx_dispatch_q *src_dsq, 2536 struct rq *dst_rq) 2537 { 2538 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; 2539 2540 /* @dsq is locked and @p is on @dst_rq */ 2541 lockdep_assert_held(&src_dsq->lock); 2542 lockdep_assert_rq_held(dst_rq); 2543 2544 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2545 2546 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 2547 list_add(&p->scx.dsq_list.node, &dst_dsq->list); 2548 else 2549 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); 2550 2551 dsq_mod_nr(dst_dsq, 1); 2552 p->scx.dsq = dst_dsq; 2553 } 2554 2555 /** 2556 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ 2557 * @p: task to move 2558 * @enq_flags: %SCX_ENQ_* 2559 * @src_rq: rq to move the task from, locked on entry, released on return 2560 * @dst_rq: rq to move the task into, locked on return 2561 * 2562 * Move @p which is currently on @src_rq to @dst_rq's local DSQ. 2563 */ 2564 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2565 struct rq *src_rq, struct rq *dst_rq) 2566 { 2567 lockdep_assert_rq_held(src_rq); 2568 2569 /* the following marks @p MIGRATING which excludes dequeue */ 2570 deactivate_task(src_rq, p, 0); 2571 set_task_cpu(p, cpu_of(dst_rq)); 2572 p->scx.sticky_cpu = cpu_of(dst_rq); 2573 2574 raw_spin_rq_unlock(src_rq); 2575 raw_spin_rq_lock(dst_rq); 2576 2577 /* 2578 * We want to pass scx-specific enq_flags but activate_task() will 2579 * truncate the upper 32 bit. As we own @rq, we can pass them through 2580 * @rq->scx.extra_enq_flags instead. 2581 */ 2582 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); 2583 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); 2584 dst_rq->scx.extra_enq_flags = enq_flags; 2585 activate_task(dst_rq, p, 0); 2586 dst_rq->scx.extra_enq_flags = 0; 2587 } 2588 2589 /* 2590 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two 2591 * differences: 2592 * 2593 * - is_cpu_allowed() asks "Can this task run on this CPU?" while 2594 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to 2595 * this CPU?". 2596 * 2597 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task 2598 * must be allowed to finish on the CPU that it's currently on regardless of 2599 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the 2600 * BPF scheduler shouldn't attempt to migrate a task which has migration 2601 * disabled. 2602 * 2603 * - The BPF scheduler is bypassed while the rq is offline and we can always say 2604 * no to the BPF scheduler initiated migrations while offline. 2605 * 2606 * The caller must ensure that @p and @rq are on different CPUs. 2607 */ 2608 static bool task_can_run_on_remote_rq(struct scx_sched *sch, 2609 struct task_struct *p, struct rq *rq, 2610 bool enforce) 2611 { 2612 int cpu = cpu_of(rq); 2613 2614 WARN_ON_ONCE(task_cpu(p) == cpu); 2615 2616 /* 2617 * If @p has migration disabled, @p->cpus_ptr is updated to contain only 2618 * the pinned CPU in migrate_disable_switch() while @p is being switched 2619 * out. However, put_prev_task_scx() is called before @p->cpus_ptr is 2620 * updated and thus another CPU may see @p on a DSQ inbetween leading to 2621 * @p passing the below task_allowed_on_cpu() check while migration is 2622 * disabled. 2623 * 2624 * Test the migration disabled state first as the race window is narrow 2625 * and the BPF scheduler failing to check migration disabled state can 2626 * easily be masked if task_allowed_on_cpu() is done first. 2627 */ 2628 if (unlikely(is_migration_disabled(p))) { 2629 if (enforce) 2630 scx_error(sch, "SCX_DSQ_LOCAL[_ON] cannot move migration disabled %s[%d] from CPU %d to %d", 2631 p->comm, p->pid, task_cpu(p), cpu); 2632 return false; 2633 } 2634 2635 /* 2636 * We don't require the BPF scheduler to avoid dispatching to offline 2637 * CPUs mostly for convenience but also because CPUs can go offline 2638 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the 2639 * picked CPU is outside the allowed mask. 2640 */ 2641 if (!task_allowed_on_cpu(p, cpu)) { 2642 if (enforce) 2643 scx_error(sch, "SCX_DSQ_LOCAL[_ON] target CPU %d not allowed for %s[%d]", 2644 cpu, p->comm, p->pid); 2645 return false; 2646 } 2647 2648 if (!scx_rq_online(rq)) { 2649 if (enforce) 2650 __scx_add_event(scx_root, 2651 SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE, 1); 2652 return false; 2653 } 2654 2655 return true; 2656 } 2657 2658 /** 2659 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq 2660 * @p: target task 2661 * @dsq: locked DSQ @p is currently on 2662 * @src_rq: rq @p is currently on, stable with @dsq locked 2663 * 2664 * Called with @dsq locked but no rq's locked. We want to move @p to a different 2665 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is 2666 * required when transferring into a local DSQ. Even when transferring into a 2667 * non-local DSQ, it's better to use the same mechanism to protect against 2668 * dequeues and maintain the invariant that @p->scx.dsq can only change while 2669 * @src_rq is locked, which e.g. scx_dump_task() depends on. 2670 * 2671 * We want to grab @src_rq but that can deadlock if we try while locking @dsq, 2672 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As 2673 * this may race with dequeue, which can't drop the rq lock or fail, do a little 2674 * dancing from our side. 2675 * 2676 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets 2677 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu 2678 * would be cleared to -1. While other cpus may have updated it to different 2679 * values afterwards, as this operation can't be preempted or recurse, the 2680 * holding_cpu can never become this CPU again before we're done. Thus, we can 2681 * tell whether we lost to dequeue by testing whether the holding_cpu still 2682 * points to this CPU. See dispatch_dequeue() for the counterpart. 2683 * 2684 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is 2685 * still valid. %false if lost to dequeue. 2686 */ 2687 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, 2688 struct scx_dispatch_q *dsq, 2689 struct rq *src_rq) 2690 { 2691 s32 cpu = raw_smp_processor_id(); 2692 2693 lockdep_assert_held(&dsq->lock); 2694 2695 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2696 task_unlink_from_dsq(p, dsq); 2697 p->scx.holding_cpu = cpu; 2698 2699 raw_spin_unlock(&dsq->lock); 2700 raw_spin_rq_lock(src_rq); 2701 2702 /* task_rq couldn't have changed if we're still the holding cpu */ 2703 return likely(p->scx.holding_cpu == cpu) && 2704 !WARN_ON_ONCE(src_rq != task_rq(p)); 2705 } 2706 2707 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, 2708 struct scx_dispatch_q *dsq, struct rq *src_rq) 2709 { 2710 raw_spin_rq_unlock(this_rq); 2711 2712 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { 2713 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); 2714 return true; 2715 } else { 2716 raw_spin_rq_unlock(src_rq); 2717 raw_spin_rq_lock(this_rq); 2718 return false; 2719 } 2720 } 2721 2722 /** 2723 * move_task_between_dsqs() - Move a task from one DSQ to another 2724 * @sch: scx_sched being operated on 2725 * @p: target task 2726 * @enq_flags: %SCX_ENQ_* 2727 * @src_dsq: DSQ @p is currently on, must not be a local DSQ 2728 * @dst_dsq: DSQ @p is being moved to, can be any DSQ 2729 * 2730 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local 2731 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq 2732 * will change. As @p's task_rq is locked, this function doesn't need to use the 2733 * holding_cpu mechanism. 2734 * 2735 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the 2736 * return value, is locked. 2737 */ 2738 static struct rq *move_task_between_dsqs(struct scx_sched *sch, 2739 struct task_struct *p, u64 enq_flags, 2740 struct scx_dispatch_q *src_dsq, 2741 struct scx_dispatch_q *dst_dsq) 2742 { 2743 struct rq *src_rq = task_rq(p), *dst_rq; 2744 2745 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL); 2746 lockdep_assert_held(&src_dsq->lock); 2747 lockdep_assert_rq_held(src_rq); 2748 2749 if (dst_dsq->id == SCX_DSQ_LOCAL) { 2750 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 2751 if (src_rq != dst_rq && 2752 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) { 2753 dst_dsq = find_global_dsq(p); 2754 dst_rq = src_rq; 2755 } 2756 } else { 2757 /* no need to migrate if destination is a non-local DSQ */ 2758 dst_rq = src_rq; 2759 } 2760 2761 /* 2762 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different 2763 * CPU, @p will be migrated. 2764 */ 2765 if (dst_dsq->id == SCX_DSQ_LOCAL) { 2766 /* @p is going from a non-local DSQ to a local DSQ */ 2767 if (src_rq == dst_rq) { 2768 task_unlink_from_dsq(p, src_dsq); 2769 move_local_task_to_local_dsq(p, enq_flags, 2770 src_dsq, dst_rq); 2771 raw_spin_unlock(&src_dsq->lock); 2772 } else { 2773 raw_spin_unlock(&src_dsq->lock); 2774 move_remote_task_to_local_dsq(p, enq_flags, 2775 src_rq, dst_rq); 2776 } 2777 } else { 2778 /* 2779 * @p is going from a non-local DSQ to a non-local DSQ. As 2780 * $src_dsq is already locked, do an abbreviated dequeue. 2781 */ 2782 task_unlink_from_dsq(p, src_dsq); 2783 p->scx.dsq = NULL; 2784 raw_spin_unlock(&src_dsq->lock); 2785 2786 dispatch_enqueue(sch, dst_dsq, p, enq_flags); 2787 } 2788 2789 return dst_rq; 2790 } 2791 2792 /* 2793 * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly 2794 * banging on the same DSQ on a large NUMA system to the point where switching 2795 * to the bypass mode can take a long time. Inject artificial delays while the 2796 * bypass mode is switching to guarantee timely completion. 2797 */ 2798 static void scx_breather(struct rq *rq) 2799 { 2800 u64 until; 2801 2802 lockdep_assert_rq_held(rq); 2803 2804 if (likely(!atomic_read(&scx_breather_depth))) 2805 return; 2806 2807 raw_spin_rq_unlock(rq); 2808 2809 until = ktime_get_ns() + NSEC_PER_MSEC; 2810 2811 do { 2812 int cnt = 1024; 2813 while (atomic_read(&scx_breather_depth) && --cnt) 2814 cpu_relax(); 2815 } while (atomic_read(&scx_breather_depth) && 2816 time_before64(ktime_get_ns(), until)); 2817 2818 raw_spin_rq_lock(rq); 2819 } 2820 2821 static bool consume_dispatch_q(struct scx_sched *sch, struct rq *rq, 2822 struct scx_dispatch_q *dsq) 2823 { 2824 struct task_struct *p; 2825 retry: 2826 /* 2827 * This retry loop can repeatedly race against scx_bypass() dequeueing 2828 * tasks from @dsq trying to put the system into the bypass mode. On 2829 * some multi-socket machines (e.g. 2x Intel 8480c), this can live-lock 2830 * the machine into soft lockups. Give a breather. 2831 */ 2832 scx_breather(rq); 2833 2834 /* 2835 * The caller can't expect to successfully consume a task if the task's 2836 * addition to @dsq isn't guaranteed to be visible somehow. Test 2837 * @dsq->list without locking and skip if it seems empty. 2838 */ 2839 if (list_empty(&dsq->list)) 2840 return false; 2841 2842 raw_spin_lock(&dsq->lock); 2843 2844 nldsq_for_each_task(p, dsq) { 2845 struct rq *task_rq = task_rq(p); 2846 2847 if (rq == task_rq) { 2848 task_unlink_from_dsq(p, dsq); 2849 move_local_task_to_local_dsq(p, 0, dsq, rq); 2850 raw_spin_unlock(&dsq->lock); 2851 return true; 2852 } 2853 2854 if (task_can_run_on_remote_rq(sch, p, rq, false)) { 2855 if (likely(consume_remote_task(rq, p, dsq, task_rq))) 2856 return true; 2857 goto retry; 2858 } 2859 } 2860 2861 raw_spin_unlock(&dsq->lock); 2862 return false; 2863 } 2864 2865 static bool consume_global_dsq(struct scx_sched *sch, struct rq *rq) 2866 { 2867 int node = cpu_to_node(cpu_of(rq)); 2868 2869 return consume_dispatch_q(sch, rq, sch->global_dsqs[node]); 2870 } 2871 2872 /** 2873 * dispatch_to_local_dsq - Dispatch a task to a local dsq 2874 * @sch: scx_sched being operated on 2875 * @rq: current rq which is locked 2876 * @dst_dsq: destination DSQ 2877 * @p: task to dispatch 2878 * @enq_flags: %SCX_ENQ_* 2879 * 2880 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local 2881 * DSQ. This function performs all the synchronization dancing needed because 2882 * local DSQs are protected with rq locks. 2883 * 2884 * The caller must have exclusive ownership of @p (e.g. through 2885 * %SCX_OPSS_DISPATCHING). 2886 */ 2887 static void dispatch_to_local_dsq(struct scx_sched *sch, struct rq *rq, 2888 struct scx_dispatch_q *dst_dsq, 2889 struct task_struct *p, u64 enq_flags) 2890 { 2891 struct rq *src_rq = task_rq(p); 2892 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 2893 struct rq *locked_rq = rq; 2894 2895 /* 2896 * We're synchronized against dequeue through DISPATCHING. As @p can't 2897 * be dequeued, its task_rq and cpus_allowed are stable too. 2898 * 2899 * If dispatching to @rq that @p is already on, no lock dancing needed. 2900 */ 2901 if (rq == src_rq && rq == dst_rq) { 2902 dispatch_enqueue(sch, dst_dsq, p, 2903 enq_flags | SCX_ENQ_CLEAR_OPSS); 2904 return; 2905 } 2906 2907 if (src_rq != dst_rq && 2908 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) { 2909 dispatch_enqueue(sch, find_global_dsq(p), p, 2910 enq_flags | SCX_ENQ_CLEAR_OPSS); 2911 return; 2912 } 2913 2914 /* 2915 * @p is on a possibly remote @src_rq which we need to lock to move the 2916 * task. If dequeue is in progress, it'd be locking @src_rq and waiting 2917 * on DISPATCHING, so we can't grab @src_rq lock while holding 2918 * DISPATCHING. 2919 * 2920 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that 2921 * we're moving from a DSQ and use the same mechanism - mark the task 2922 * under transfer with holding_cpu, release DISPATCHING and then follow 2923 * the same protocol. See unlink_dsq_and_lock_src_rq(). 2924 */ 2925 p->scx.holding_cpu = raw_smp_processor_id(); 2926 2927 /* store_release ensures that dequeue sees the above */ 2928 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 2929 2930 /* switch to @src_rq lock */ 2931 if (locked_rq != src_rq) { 2932 raw_spin_rq_unlock(locked_rq); 2933 locked_rq = src_rq; 2934 raw_spin_rq_lock(src_rq); 2935 } 2936 2937 /* task_rq couldn't have changed if we're still the holding cpu */ 2938 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && 2939 !WARN_ON_ONCE(src_rq != task_rq(p))) { 2940 /* 2941 * If @p is staying on the same rq, there's no need to go 2942 * through the full deactivate/activate cycle. Optimize by 2943 * abbreviating move_remote_task_to_local_dsq(). 2944 */ 2945 if (src_rq == dst_rq) { 2946 p->scx.holding_cpu = -1; 2947 dispatch_enqueue(sch, &dst_rq->scx.local_dsq, p, 2948 enq_flags); 2949 } else { 2950 move_remote_task_to_local_dsq(p, enq_flags, 2951 src_rq, dst_rq); 2952 /* task has been moved to dst_rq, which is now locked */ 2953 locked_rq = dst_rq; 2954 } 2955 2956 /* if the destination CPU is idle, wake it up */ 2957 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) 2958 resched_curr(dst_rq); 2959 } 2960 2961 /* switch back to @rq lock */ 2962 if (locked_rq != rq) { 2963 raw_spin_rq_unlock(locked_rq); 2964 raw_spin_rq_lock(rq); 2965 } 2966 } 2967 2968 /** 2969 * finish_dispatch - Asynchronously finish dispatching a task 2970 * @rq: current rq which is locked 2971 * @p: task to finish dispatching 2972 * @qseq_at_dispatch: qseq when @p started getting dispatched 2973 * @dsq_id: destination DSQ ID 2974 * @enq_flags: %SCX_ENQ_* 2975 * 2976 * Dispatching to local DSQs may need to wait for queueing to complete or 2977 * require rq lock dancing. As we don't wanna do either while inside 2978 * ops.dispatch() to avoid locking order inversion, we split dispatching into 2979 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the 2980 * task and its qseq. Once ops.dispatch() returns, this function is called to 2981 * finish up. 2982 * 2983 * There is no guarantee that @p is still valid for dispatching or even that it 2984 * was valid in the first place. Make sure that the task is still owned by the 2985 * BPF scheduler and claim the ownership before dispatching. 2986 */ 2987 static void finish_dispatch(struct scx_sched *sch, struct rq *rq, 2988 struct task_struct *p, 2989 unsigned long qseq_at_dispatch, 2990 u64 dsq_id, u64 enq_flags) 2991 { 2992 struct scx_dispatch_q *dsq; 2993 unsigned long opss; 2994 2995 touch_core_sched_dispatch(rq, p); 2996 retry: 2997 /* 2998 * No need for _acquire here. @p is accessed only after a successful 2999 * try_cmpxchg to DISPATCHING. 3000 */ 3001 opss = atomic_long_read(&p->scx.ops_state); 3002 3003 switch (opss & SCX_OPSS_STATE_MASK) { 3004 case SCX_OPSS_DISPATCHING: 3005 case SCX_OPSS_NONE: 3006 /* someone else already got to it */ 3007 return; 3008 case SCX_OPSS_QUEUED: 3009 /* 3010 * If qseq doesn't match, @p has gone through at least one 3011 * dispatch/dequeue and re-enqueue cycle between 3012 * scx_bpf_dsq_insert() and here and we have no claim on it. 3013 */ 3014 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 3015 return; 3016 3017 /* 3018 * While we know @p is accessible, we don't yet have a claim on 3019 * it - the BPF scheduler is allowed to dispatch tasks 3020 * spuriously and there can be a racing dequeue attempt. Let's 3021 * claim @p by atomically transitioning it from QUEUED to 3022 * DISPATCHING. 3023 */ 3024 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 3025 SCX_OPSS_DISPATCHING))) 3026 break; 3027 goto retry; 3028 case SCX_OPSS_QUEUEING: 3029 /* 3030 * do_enqueue_task() is in the process of transferring the task 3031 * to the BPF scheduler while holding @p's rq lock. As we aren't 3032 * holding any kernel or BPF resource that the enqueue path may 3033 * depend upon, it's safe to wait. 3034 */ 3035 wait_ops_state(p, opss); 3036 goto retry; 3037 } 3038 3039 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 3040 3041 dsq = find_dsq_for_dispatch(sch, this_rq(), dsq_id, p); 3042 3043 if (dsq->id == SCX_DSQ_LOCAL) 3044 dispatch_to_local_dsq(sch, rq, dsq, p, enq_flags); 3045 else 3046 dispatch_enqueue(sch, dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 3047 } 3048 3049 static void flush_dispatch_buf(struct scx_sched *sch, struct rq *rq) 3050 { 3051 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 3052 u32 u; 3053 3054 for (u = 0; u < dspc->cursor; u++) { 3055 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 3056 3057 finish_dispatch(sch, rq, ent->task, ent->qseq, ent->dsq_id, 3058 ent->enq_flags); 3059 } 3060 3061 dspc->nr_tasks += dspc->cursor; 3062 dspc->cursor = 0; 3063 } 3064 3065 static int balance_one(struct rq *rq, struct task_struct *prev) 3066 { 3067 struct scx_sched *sch = scx_root; 3068 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 3069 bool prev_on_scx = prev->sched_class == &ext_sched_class; 3070 bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED; 3071 int nr_loops = SCX_DSP_MAX_LOOPS; 3072 3073 lockdep_assert_rq_held(rq); 3074 rq->scx.flags |= SCX_RQ_IN_BALANCE; 3075 rq->scx.flags &= ~(SCX_RQ_BAL_PENDING | SCX_RQ_BAL_KEEP); 3076 3077 if ((sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT) && 3078 unlikely(rq->scx.cpu_released)) { 3079 /* 3080 * If the previous sched_class for the current CPU was not SCX, 3081 * notify the BPF scheduler that it again has control of the 3082 * core. This callback complements ->cpu_release(), which is 3083 * emitted in switch_class(). 3084 */ 3085 if (SCX_HAS_OP(sch, cpu_acquire)) 3086 SCX_CALL_OP(sch, SCX_KF_REST, cpu_acquire, rq, 3087 cpu_of(rq), NULL); 3088 rq->scx.cpu_released = false; 3089 } 3090 3091 if (prev_on_scx) { 3092 update_curr_scx(rq); 3093 3094 /* 3095 * If @prev is runnable & has slice left, it has priority and 3096 * fetching more just increases latency for the fetched tasks. 3097 * Tell pick_task_scx() to keep running @prev. If the BPF 3098 * scheduler wants to handle this explicitly, it should 3099 * implement ->cpu_release(). 3100 * 3101 * See scx_disable_workfn() for the explanation on the bypassing 3102 * test. 3103 */ 3104 if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) { 3105 rq->scx.flags |= SCX_RQ_BAL_KEEP; 3106 goto has_tasks; 3107 } 3108 } 3109 3110 /* if there already are tasks to run, nothing to do */ 3111 if (rq->scx.local_dsq.nr) 3112 goto has_tasks; 3113 3114 if (consume_global_dsq(sch, rq)) 3115 goto has_tasks; 3116 3117 if (unlikely(!SCX_HAS_OP(sch, dispatch)) || 3118 scx_rq_bypassing(rq) || !scx_rq_online(rq)) 3119 goto no_tasks; 3120 3121 dspc->rq = rq; 3122 3123 /* 3124 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 3125 * the local DSQ might still end up empty after a successful 3126 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 3127 * produced some tasks, retry. The BPF scheduler may depend on this 3128 * looping behavior to simplify its implementation. 3129 */ 3130 do { 3131 dspc->nr_tasks = 0; 3132 3133 SCX_CALL_OP(sch, SCX_KF_DISPATCH, dispatch, rq, 3134 cpu_of(rq), prev_on_scx ? prev : NULL); 3135 3136 flush_dispatch_buf(sch, rq); 3137 3138 if (prev_on_rq && prev->scx.slice) { 3139 rq->scx.flags |= SCX_RQ_BAL_KEEP; 3140 goto has_tasks; 3141 } 3142 if (rq->scx.local_dsq.nr) 3143 goto has_tasks; 3144 if (consume_global_dsq(sch, rq)) 3145 goto has_tasks; 3146 3147 /* 3148 * ops.dispatch() can trap us in this loop by repeatedly 3149 * dispatching ineligible tasks. Break out once in a while to 3150 * allow the watchdog to run. As IRQ can't be enabled in 3151 * balance(), we want to complete this scheduling cycle and then 3152 * start a new one. IOW, we want to call resched_curr() on the 3153 * next, most likely idle, task, not the current one. Use 3154 * scx_bpf_kick_cpu() for deferred kicking. 3155 */ 3156 if (unlikely(!--nr_loops)) { 3157 scx_bpf_kick_cpu(cpu_of(rq), 0); 3158 break; 3159 } 3160 } while (dspc->nr_tasks); 3161 3162 no_tasks: 3163 /* 3164 * Didn't find another task to run. Keep running @prev unless 3165 * %SCX_OPS_ENQ_LAST is in effect. 3166 */ 3167 if (prev_on_rq && 3168 (!(sch->ops.flags & SCX_OPS_ENQ_LAST) || scx_rq_bypassing(rq))) { 3169 rq->scx.flags |= SCX_RQ_BAL_KEEP; 3170 __scx_add_event(sch, SCX_EV_DISPATCH_KEEP_LAST, 1); 3171 goto has_tasks; 3172 } 3173 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 3174 return false; 3175 3176 has_tasks: 3177 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 3178 return true; 3179 } 3180 3181 static int balance_scx(struct rq *rq, struct task_struct *prev, 3182 struct rq_flags *rf) 3183 { 3184 int ret; 3185 3186 rq_unpin_lock(rq, rf); 3187 3188 ret = balance_one(rq, prev); 3189 3190 #ifdef CONFIG_SCHED_SMT 3191 /* 3192 * When core-sched is enabled, this ops.balance() call will be followed 3193 * by pick_task_scx() on this CPU and the SMT siblings. Balance the 3194 * siblings too. 3195 */ 3196 if (sched_core_enabled(rq)) { 3197 const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq)); 3198 int scpu; 3199 3200 for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) { 3201 struct rq *srq = cpu_rq(scpu); 3202 struct task_struct *sprev = srq->curr; 3203 3204 WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq)); 3205 update_rq_clock(srq); 3206 balance_one(srq, sprev); 3207 } 3208 } 3209 #endif 3210 rq_repin_lock(rq, rf); 3211 3212 return ret; 3213 } 3214 3215 static void process_ddsp_deferred_locals(struct rq *rq) 3216 { 3217 struct task_struct *p; 3218 3219 lockdep_assert_rq_held(rq); 3220 3221 /* 3222 * Now that @rq can be unlocked, execute the deferred enqueueing of 3223 * tasks directly dispatched to the local DSQs of other CPUs. See 3224 * direct_dispatch(). Keep popping from the head instead of using 3225 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq 3226 * temporarily. 3227 */ 3228 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, 3229 struct task_struct, scx.dsq_list.node))) { 3230 struct scx_sched *sch = scx_root; 3231 struct scx_dispatch_q *dsq; 3232 3233 list_del_init(&p->scx.dsq_list.node); 3234 3235 dsq = find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p); 3236 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) 3237 dispatch_to_local_dsq(sch, rq, dsq, p, 3238 p->scx.ddsp_enq_flags); 3239 } 3240 } 3241 3242 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 3243 { 3244 struct scx_sched *sch = scx_root; 3245 3246 if (p->scx.flags & SCX_TASK_QUEUED) { 3247 /* 3248 * Core-sched might decide to execute @p before it is 3249 * dispatched. Call ops_dequeue() to notify the BPF scheduler. 3250 */ 3251 ops_dequeue(rq, p, SCX_DEQ_CORE_SCHED_EXEC); 3252 dispatch_dequeue(rq, p); 3253 } 3254 3255 p->se.exec_start = rq_clock_task(rq); 3256 3257 /* see dequeue_task_scx() on why we skip when !QUEUED */ 3258 if (SCX_HAS_OP(sch, running) && (p->scx.flags & SCX_TASK_QUEUED)) 3259 SCX_CALL_OP_TASK(sch, SCX_KF_REST, running, rq, p); 3260 3261 clr_task_runnable(p, true); 3262 3263 /* 3264 * @p is getting newly scheduled or got kicked after someone updated its 3265 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 3266 */ 3267 if ((p->scx.slice == SCX_SLICE_INF) != 3268 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 3269 if (p->scx.slice == SCX_SLICE_INF) 3270 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 3271 else 3272 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 3273 3274 sched_update_tick_dependency(rq); 3275 3276 /* 3277 * For now, let's refresh the load_avgs just when transitioning 3278 * in and out of nohz. In the future, we might want to add a 3279 * mechanism which calls the following periodically on 3280 * tick-stopped CPUs. 3281 */ 3282 update_other_load_avgs(rq); 3283 } 3284 } 3285 3286 static enum scx_cpu_preempt_reason 3287 preempt_reason_from_class(const struct sched_class *class) 3288 { 3289 if (class == &stop_sched_class) 3290 return SCX_CPU_PREEMPT_STOP; 3291 if (class == &dl_sched_class) 3292 return SCX_CPU_PREEMPT_DL; 3293 if (class == &rt_sched_class) 3294 return SCX_CPU_PREEMPT_RT; 3295 return SCX_CPU_PREEMPT_UNKNOWN; 3296 } 3297 3298 static void switch_class(struct rq *rq, struct task_struct *next) 3299 { 3300 struct scx_sched *sch = scx_root; 3301 const struct sched_class *next_class = next->sched_class; 3302 3303 /* 3304 * Pairs with the smp_load_acquire() issued by a CPU in 3305 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a 3306 * resched. 3307 */ 3308 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); 3309 if (!(sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT)) 3310 return; 3311 3312 /* 3313 * The callback is conceptually meant to convey that the CPU is no 3314 * longer under the control of SCX. Therefore, don't invoke the callback 3315 * if the next class is below SCX (in which case the BPF scheduler has 3316 * actively decided not to schedule any tasks on the CPU). 3317 */ 3318 if (sched_class_above(&ext_sched_class, next_class)) 3319 return; 3320 3321 /* 3322 * At this point we know that SCX was preempted by a higher priority 3323 * sched_class, so invoke the ->cpu_release() callback if we have not 3324 * done so already. We only send the callback once between SCX being 3325 * preempted, and it regaining control of the CPU. 3326 * 3327 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 3328 * next time that balance_scx() is invoked. 3329 */ 3330 if (!rq->scx.cpu_released) { 3331 if (SCX_HAS_OP(sch, cpu_release)) { 3332 struct scx_cpu_release_args args = { 3333 .reason = preempt_reason_from_class(next_class), 3334 .task = next, 3335 }; 3336 3337 SCX_CALL_OP(sch, SCX_KF_CPU_RELEASE, cpu_release, rq, 3338 cpu_of(rq), &args); 3339 } 3340 rq->scx.cpu_released = true; 3341 } 3342 } 3343 3344 static void put_prev_task_scx(struct rq *rq, struct task_struct *p, 3345 struct task_struct *next) 3346 { 3347 struct scx_sched *sch = scx_root; 3348 update_curr_scx(rq); 3349 3350 /* see dequeue_task_scx() on why we skip when !QUEUED */ 3351 if (SCX_HAS_OP(sch, stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 3352 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, true); 3353 3354 if (p->scx.flags & SCX_TASK_QUEUED) { 3355 set_task_runnable(rq, p); 3356 3357 /* 3358 * If @p has slice left and is being put, @p is getting 3359 * preempted by a higher priority scheduler class or core-sched 3360 * forcing a different task. Leave it at the head of the local 3361 * DSQ. 3362 */ 3363 if (p->scx.slice && !scx_rq_bypassing(rq)) { 3364 dispatch_enqueue(sch, &rq->scx.local_dsq, p, 3365 SCX_ENQ_HEAD); 3366 goto switch_class; 3367 } 3368 3369 /* 3370 * If @p is runnable but we're about to enter a lower 3371 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell 3372 * ops.enqueue() that @p is the only one available for this cpu, 3373 * which should trigger an explicit follow-up scheduling event. 3374 */ 3375 if (sched_class_above(&ext_sched_class, next->sched_class)) { 3376 WARN_ON_ONCE(!(sch->ops.flags & SCX_OPS_ENQ_LAST)); 3377 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 3378 } else { 3379 do_enqueue_task(rq, p, 0, -1); 3380 } 3381 } 3382 3383 switch_class: 3384 if (next && next->sched_class != &ext_sched_class) 3385 switch_class(rq, next); 3386 } 3387 3388 static struct task_struct *first_local_task(struct rq *rq) 3389 { 3390 return list_first_entry_or_null(&rq->scx.local_dsq.list, 3391 struct task_struct, scx.dsq_list.node); 3392 } 3393 3394 static struct task_struct *pick_task_scx(struct rq *rq) 3395 { 3396 struct task_struct *prev = rq->curr; 3397 struct task_struct *p; 3398 bool keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP; 3399 bool kick_idle = false; 3400 3401 /* 3402 * WORKAROUND: 3403 * 3404 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just 3405 * have gone through balance_scx(). Unfortunately, there currently is a 3406 * bug where fair could say yes on balance() but no on pick_task(), 3407 * which then ends up calling pick_task_scx() without preceding 3408 * balance_scx(). 3409 * 3410 * Keep running @prev if possible and avoid stalling from entering idle 3411 * without balancing. 3412 * 3413 * Once fair is fixed, remove the workaround and trigger WARN_ON_ONCE() 3414 * if pick_task_scx() is called without preceding balance_scx(). 3415 */ 3416 if (unlikely(rq->scx.flags & SCX_RQ_BAL_PENDING)) { 3417 if (prev->scx.flags & SCX_TASK_QUEUED) { 3418 keep_prev = true; 3419 } else { 3420 keep_prev = false; 3421 kick_idle = true; 3422 } 3423 } else if (unlikely(keep_prev && 3424 prev->sched_class != &ext_sched_class)) { 3425 /* 3426 * Can happen while enabling as SCX_RQ_BAL_PENDING assertion is 3427 * conditional on scx_enabled() and may have been skipped. 3428 */ 3429 WARN_ON_ONCE(scx_enable_state() == SCX_ENABLED); 3430 keep_prev = false; 3431 } 3432 3433 /* 3434 * If balance_scx() is telling us to keep running @prev, replenish slice 3435 * if necessary and keep running @prev. Otherwise, pop the first one 3436 * from the local DSQ. 3437 */ 3438 if (keep_prev) { 3439 p = prev; 3440 if (!p->scx.slice) 3441 refill_task_slice_dfl(p); 3442 } else { 3443 p = first_local_task(rq); 3444 if (!p) { 3445 if (kick_idle) 3446 scx_bpf_kick_cpu(cpu_of(rq), SCX_KICK_IDLE); 3447 return NULL; 3448 } 3449 3450 if (unlikely(!p->scx.slice)) { 3451 struct scx_sched *sch = scx_root; 3452 3453 if (!scx_rq_bypassing(rq) && !sch->warned_zero_slice) { 3454 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n", 3455 p->comm, p->pid, __func__); 3456 sch->warned_zero_slice = true; 3457 } 3458 refill_task_slice_dfl(p); 3459 } 3460 } 3461 3462 return p; 3463 } 3464 3465 #ifdef CONFIG_SCHED_CORE 3466 /** 3467 * scx_prio_less - Task ordering for core-sched 3468 * @a: task A 3469 * @b: task B 3470 * @in_fi: in forced idle state 3471 * 3472 * Core-sched is implemented as an additional scheduling layer on top of the 3473 * usual sched_class'es and needs to find out the expected task ordering. For 3474 * SCX, core-sched calls this function to interrogate the task ordering. 3475 * 3476 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used 3477 * to implement the default task ordering. The older the timestamp, the higher 3478 * priority the task - the global FIFO ordering matching the default scheduling 3479 * behavior. 3480 * 3481 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to 3482 * implement FIFO ordering within each local DSQ. See pick_task_scx(). 3483 */ 3484 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, 3485 bool in_fi) 3486 { 3487 struct scx_sched *sch = scx_root; 3488 3489 /* 3490 * The const qualifiers are dropped from task_struct pointers when 3491 * calling ops.core_sched_before(). Accesses are controlled by the 3492 * verifier. 3493 */ 3494 if (SCX_HAS_OP(sch, core_sched_before) && 3495 !scx_rq_bypassing(task_rq(a))) 3496 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, core_sched_before, 3497 NULL, 3498 (struct task_struct *)a, 3499 (struct task_struct *)b); 3500 else 3501 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); 3502 } 3503 #endif /* CONFIG_SCHED_CORE */ 3504 3505 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 3506 { 3507 struct scx_sched *sch = scx_root; 3508 bool rq_bypass; 3509 3510 /* 3511 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 3512 * can be a good migration opportunity with low cache and memory 3513 * footprint. Returning a CPU different than @prev_cpu triggers 3514 * immediate rq migration. However, for SCX, as the current rq 3515 * association doesn't dictate where the task is going to run, this 3516 * doesn't fit well. If necessary, we can later add a dedicated method 3517 * which can decide to preempt self to force it through the regular 3518 * scheduling path. 3519 */ 3520 if (unlikely(wake_flags & WF_EXEC)) 3521 return prev_cpu; 3522 3523 rq_bypass = scx_rq_bypassing(task_rq(p)); 3524 if (likely(SCX_HAS_OP(sch, select_cpu)) && !rq_bypass) { 3525 s32 cpu; 3526 struct task_struct **ddsp_taskp; 3527 3528 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 3529 WARN_ON_ONCE(*ddsp_taskp); 3530 *ddsp_taskp = p; 3531 3532 cpu = SCX_CALL_OP_TASK_RET(sch, 3533 SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 3534 select_cpu, NULL, p, prev_cpu, 3535 wake_flags); 3536 p->scx.selected_cpu = cpu; 3537 *ddsp_taskp = NULL; 3538 if (ops_cpu_valid(sch, cpu, "from ops.select_cpu()")) 3539 return cpu; 3540 else 3541 return prev_cpu; 3542 } else { 3543 s32 cpu; 3544 3545 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, NULL, 0); 3546 if (cpu >= 0) { 3547 refill_task_slice_dfl(p); 3548 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 3549 } else { 3550 cpu = prev_cpu; 3551 } 3552 p->scx.selected_cpu = cpu; 3553 3554 if (rq_bypass) 3555 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1); 3556 return cpu; 3557 } 3558 } 3559 3560 static void task_woken_scx(struct rq *rq, struct task_struct *p) 3561 { 3562 run_deferred(rq); 3563 } 3564 3565 static void set_cpus_allowed_scx(struct task_struct *p, 3566 struct affinity_context *ac) 3567 { 3568 struct scx_sched *sch = scx_root; 3569 3570 set_cpus_allowed_common(p, ac); 3571 3572 /* 3573 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 3574 * differ from the configured one in @p->cpus_mask. Always tell the bpf 3575 * scheduler the effective one. 3576 * 3577 * Fine-grained memory write control is enforced by BPF making the const 3578 * designation pointless. Cast it away when calling the operation. 3579 */ 3580 if (SCX_HAS_OP(sch, set_cpumask)) 3581 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, NULL, 3582 p, (struct cpumask *)p->cpus_ptr); 3583 } 3584 3585 static void handle_hotplug(struct rq *rq, bool online) 3586 { 3587 struct scx_sched *sch = scx_root; 3588 int cpu = cpu_of(rq); 3589 3590 atomic_long_inc(&scx_hotplug_seq); 3591 3592 /* 3593 * scx_root updates are protected by cpus_read_lock() and will stay 3594 * stable here. Note that we can't depend on scx_enabled() test as the 3595 * hotplug ops need to be enabled before __scx_enabled is set. 3596 */ 3597 if (unlikely(!sch)) 3598 return; 3599 3600 if (scx_enabled()) 3601 scx_idle_update_selcpu_topology(&sch->ops); 3602 3603 if (online && SCX_HAS_OP(sch, cpu_online)) 3604 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_online, NULL, cpu); 3605 else if (!online && SCX_HAS_OP(sch, cpu_offline)) 3606 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_offline, NULL, cpu); 3607 else 3608 scx_exit(sch, SCX_EXIT_UNREG_KERN, 3609 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 3610 "cpu %d going %s, exiting scheduler", cpu, 3611 online ? "online" : "offline"); 3612 } 3613 3614 void scx_rq_activate(struct rq *rq) 3615 { 3616 handle_hotplug(rq, true); 3617 } 3618 3619 void scx_rq_deactivate(struct rq *rq) 3620 { 3621 handle_hotplug(rq, false); 3622 } 3623 3624 static void rq_online_scx(struct rq *rq) 3625 { 3626 rq->scx.flags |= SCX_RQ_ONLINE; 3627 } 3628 3629 static void rq_offline_scx(struct rq *rq) 3630 { 3631 rq->scx.flags &= ~SCX_RQ_ONLINE; 3632 } 3633 3634 3635 static bool check_rq_for_timeouts(struct rq *rq) 3636 { 3637 struct scx_sched *sch; 3638 struct task_struct *p; 3639 struct rq_flags rf; 3640 bool timed_out = false; 3641 3642 rq_lock_irqsave(rq, &rf); 3643 sch = rcu_dereference_bh(scx_root); 3644 if (unlikely(!sch)) 3645 goto out_unlock; 3646 3647 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 3648 unsigned long last_runnable = p->scx.runnable_at; 3649 3650 if (unlikely(time_after(jiffies, 3651 last_runnable + scx_watchdog_timeout))) { 3652 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 3653 3654 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0, 3655 "%s[%d] failed to run for %u.%03us", 3656 p->comm, p->pid, dur_ms / 1000, dur_ms % 1000); 3657 timed_out = true; 3658 break; 3659 } 3660 } 3661 out_unlock: 3662 rq_unlock_irqrestore(rq, &rf); 3663 return timed_out; 3664 } 3665 3666 static void scx_watchdog_workfn(struct work_struct *work) 3667 { 3668 int cpu; 3669 3670 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 3671 3672 for_each_online_cpu(cpu) { 3673 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 3674 break; 3675 3676 cond_resched(); 3677 } 3678 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 3679 scx_watchdog_timeout / 2); 3680 } 3681 3682 void scx_tick(struct rq *rq) 3683 { 3684 struct scx_sched *sch; 3685 unsigned long last_check; 3686 3687 if (!scx_enabled()) 3688 return; 3689 3690 sch = rcu_dereference_bh(scx_root); 3691 if (unlikely(!sch)) 3692 return; 3693 3694 last_check = READ_ONCE(scx_watchdog_timestamp); 3695 if (unlikely(time_after(jiffies, 3696 last_check + READ_ONCE(scx_watchdog_timeout)))) { 3697 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 3698 3699 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0, 3700 "watchdog failed to check in for %u.%03us", 3701 dur_ms / 1000, dur_ms % 1000); 3702 } 3703 3704 update_other_load_avgs(rq); 3705 } 3706 3707 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 3708 { 3709 struct scx_sched *sch = scx_root; 3710 3711 update_curr_scx(rq); 3712 3713 /* 3714 * While disabling, always resched and refresh core-sched timestamp as 3715 * we can't trust the slice management or ops.core_sched_before(). 3716 */ 3717 if (scx_rq_bypassing(rq)) { 3718 curr->scx.slice = 0; 3719 touch_core_sched(rq, curr); 3720 } else if (SCX_HAS_OP(sch, tick)) { 3721 SCX_CALL_OP_TASK(sch, SCX_KF_REST, tick, rq, curr); 3722 } 3723 3724 if (!curr->scx.slice) 3725 resched_curr(rq); 3726 } 3727 3728 #ifdef CONFIG_EXT_GROUP_SCHED 3729 static struct cgroup *tg_cgrp(struct task_group *tg) 3730 { 3731 /* 3732 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, 3733 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the 3734 * root cgroup. 3735 */ 3736 if (tg && tg->css.cgroup) 3737 return tg->css.cgroup; 3738 else 3739 return &cgrp_dfl_root.cgrp; 3740 } 3741 3742 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), 3743 3744 #else /* CONFIG_EXT_GROUP_SCHED */ 3745 3746 #define SCX_INIT_TASK_ARGS_CGROUP(tg) 3747 3748 #endif /* CONFIG_EXT_GROUP_SCHED */ 3749 3750 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 3751 { 3752 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 3753 } 3754 3755 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 3756 { 3757 enum scx_task_state prev_state = scx_get_task_state(p); 3758 bool warn = false; 3759 3760 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 3761 3762 switch (state) { 3763 case SCX_TASK_NONE: 3764 break; 3765 case SCX_TASK_INIT: 3766 warn = prev_state != SCX_TASK_NONE; 3767 break; 3768 case SCX_TASK_READY: 3769 warn = prev_state == SCX_TASK_NONE; 3770 break; 3771 case SCX_TASK_ENABLED: 3772 warn = prev_state != SCX_TASK_READY; 3773 break; 3774 default: 3775 warn = true; 3776 return; 3777 } 3778 3779 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 3780 prev_state, state, p->comm, p->pid); 3781 3782 p->scx.flags &= ~SCX_TASK_STATE_MASK; 3783 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 3784 } 3785 3786 static int scx_init_task(struct task_struct *p, struct task_group *tg, bool fork) 3787 { 3788 struct scx_sched *sch = scx_root; 3789 int ret; 3790 3791 p->scx.disallow = false; 3792 3793 if (SCX_HAS_OP(sch, init_task)) { 3794 struct scx_init_task_args args = { 3795 SCX_INIT_TASK_ARGS_CGROUP(tg) 3796 .fork = fork, 3797 }; 3798 3799 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init_task, NULL, 3800 p, &args); 3801 if (unlikely(ret)) { 3802 ret = ops_sanitize_err(sch, "init_task", ret); 3803 return ret; 3804 } 3805 } 3806 3807 scx_set_task_state(p, SCX_TASK_INIT); 3808 3809 if (p->scx.disallow) { 3810 if (!fork) { 3811 struct rq *rq; 3812 struct rq_flags rf; 3813 3814 rq = task_rq_lock(p, &rf); 3815 3816 /* 3817 * We're in the load path and @p->policy will be applied 3818 * right after. Reverting @p->policy here and rejecting 3819 * %SCHED_EXT transitions from scx_check_setscheduler() 3820 * guarantees that if ops.init_task() sets @p->disallow, 3821 * @p can never be in SCX. 3822 */ 3823 if (p->policy == SCHED_EXT) { 3824 p->policy = SCHED_NORMAL; 3825 atomic_long_inc(&scx_nr_rejected); 3826 } 3827 3828 task_rq_unlock(rq, p, &rf); 3829 } else if (p->policy == SCHED_EXT) { 3830 scx_error(sch, "ops.init_task() set task->scx.disallow for %s[%d] during fork", 3831 p->comm, p->pid); 3832 } 3833 } 3834 3835 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 3836 return 0; 3837 } 3838 3839 static void scx_enable_task(struct task_struct *p) 3840 { 3841 struct scx_sched *sch = scx_root; 3842 struct rq *rq = task_rq(p); 3843 u32 weight; 3844 3845 lockdep_assert_rq_held(rq); 3846 3847 /* 3848 * Set the weight before calling ops.enable() so that the scheduler 3849 * doesn't see a stale value if they inspect the task struct. 3850 */ 3851 if (task_has_idle_policy(p)) 3852 weight = WEIGHT_IDLEPRIO; 3853 else 3854 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 3855 3856 p->scx.weight = sched_weight_to_cgroup(weight); 3857 3858 if (SCX_HAS_OP(sch, enable)) 3859 SCX_CALL_OP_TASK(sch, SCX_KF_REST, enable, rq, p); 3860 scx_set_task_state(p, SCX_TASK_ENABLED); 3861 3862 if (SCX_HAS_OP(sch, set_weight)) 3863 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq, 3864 p, p->scx.weight); 3865 } 3866 3867 static void scx_disable_task(struct task_struct *p) 3868 { 3869 struct scx_sched *sch = scx_root; 3870 struct rq *rq = task_rq(p); 3871 3872 lockdep_assert_rq_held(rq); 3873 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 3874 3875 if (SCX_HAS_OP(sch, disable)) 3876 SCX_CALL_OP_TASK(sch, SCX_KF_REST, disable, rq, p); 3877 scx_set_task_state(p, SCX_TASK_READY); 3878 } 3879 3880 static void scx_exit_task(struct task_struct *p) 3881 { 3882 struct scx_sched *sch = scx_root; 3883 struct scx_exit_task_args args = { 3884 .cancelled = false, 3885 }; 3886 3887 lockdep_assert_rq_held(task_rq(p)); 3888 3889 switch (scx_get_task_state(p)) { 3890 case SCX_TASK_NONE: 3891 return; 3892 case SCX_TASK_INIT: 3893 args.cancelled = true; 3894 break; 3895 case SCX_TASK_READY: 3896 break; 3897 case SCX_TASK_ENABLED: 3898 scx_disable_task(p); 3899 break; 3900 default: 3901 WARN_ON_ONCE(true); 3902 return; 3903 } 3904 3905 if (SCX_HAS_OP(sch, exit_task)) 3906 SCX_CALL_OP_TASK(sch, SCX_KF_REST, exit_task, task_rq(p), 3907 p, &args); 3908 scx_set_task_state(p, SCX_TASK_NONE); 3909 } 3910 3911 void init_scx_entity(struct sched_ext_entity *scx) 3912 { 3913 memset(scx, 0, sizeof(*scx)); 3914 INIT_LIST_HEAD(&scx->dsq_list.node); 3915 RB_CLEAR_NODE(&scx->dsq_priq); 3916 scx->sticky_cpu = -1; 3917 scx->holding_cpu = -1; 3918 INIT_LIST_HEAD(&scx->runnable_node); 3919 scx->runnable_at = jiffies; 3920 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 3921 scx->slice = SCX_SLICE_DFL; 3922 } 3923 3924 void scx_pre_fork(struct task_struct *p) 3925 { 3926 /* 3927 * BPF scheduler enable/disable paths want to be able to iterate and 3928 * update all tasks which can become complex when racing forks. As 3929 * enable/disable are very cold paths, let's use a percpu_rwsem to 3930 * exclude forks. 3931 */ 3932 percpu_down_read(&scx_fork_rwsem); 3933 } 3934 3935 int scx_fork(struct task_struct *p) 3936 { 3937 percpu_rwsem_assert_held(&scx_fork_rwsem); 3938 3939 if (scx_init_task_enabled) 3940 return scx_init_task(p, task_group(p), true); 3941 else 3942 return 0; 3943 } 3944 3945 void scx_post_fork(struct task_struct *p) 3946 { 3947 if (scx_init_task_enabled) { 3948 scx_set_task_state(p, SCX_TASK_READY); 3949 3950 /* 3951 * Enable the task immediately if it's running on sched_ext. 3952 * Otherwise, it'll be enabled in switching_to_scx() if and 3953 * when it's ever configured to run with a SCHED_EXT policy. 3954 */ 3955 if (p->sched_class == &ext_sched_class) { 3956 struct rq_flags rf; 3957 struct rq *rq; 3958 3959 rq = task_rq_lock(p, &rf); 3960 scx_enable_task(p); 3961 task_rq_unlock(rq, p, &rf); 3962 } 3963 } 3964 3965 spin_lock_irq(&scx_tasks_lock); 3966 list_add_tail(&p->scx.tasks_node, &scx_tasks); 3967 spin_unlock_irq(&scx_tasks_lock); 3968 3969 percpu_up_read(&scx_fork_rwsem); 3970 } 3971 3972 void scx_cancel_fork(struct task_struct *p) 3973 { 3974 if (scx_enabled()) { 3975 struct rq *rq; 3976 struct rq_flags rf; 3977 3978 rq = task_rq_lock(p, &rf); 3979 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 3980 scx_exit_task(p); 3981 task_rq_unlock(rq, p, &rf); 3982 } 3983 3984 percpu_up_read(&scx_fork_rwsem); 3985 } 3986 3987 void sched_ext_free(struct task_struct *p) 3988 { 3989 unsigned long flags; 3990 3991 spin_lock_irqsave(&scx_tasks_lock, flags); 3992 list_del_init(&p->scx.tasks_node); 3993 spin_unlock_irqrestore(&scx_tasks_lock, flags); 3994 3995 /* 3996 * @p is off scx_tasks and wholly ours. scx_enable()'s READY -> ENABLED 3997 * transitions can't race us. Disable ops for @p. 3998 */ 3999 if (scx_get_task_state(p) != SCX_TASK_NONE) { 4000 struct rq_flags rf; 4001 struct rq *rq; 4002 4003 rq = task_rq_lock(p, &rf); 4004 scx_exit_task(p); 4005 task_rq_unlock(rq, p, &rf); 4006 } 4007 } 4008 4009 static void reweight_task_scx(struct rq *rq, struct task_struct *p, 4010 const struct load_weight *lw) 4011 { 4012 struct scx_sched *sch = scx_root; 4013 4014 lockdep_assert_rq_held(task_rq(p)); 4015 4016 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); 4017 if (SCX_HAS_OP(sch, set_weight)) 4018 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq, 4019 p, p->scx.weight); 4020 } 4021 4022 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio) 4023 { 4024 } 4025 4026 static void switching_to_scx(struct rq *rq, struct task_struct *p) 4027 { 4028 struct scx_sched *sch = scx_root; 4029 4030 scx_enable_task(p); 4031 4032 /* 4033 * set_cpus_allowed_scx() is not called while @p is associated with a 4034 * different scheduler class. Keep the BPF scheduler up-to-date. 4035 */ 4036 if (SCX_HAS_OP(sch, set_cpumask)) 4037 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, rq, 4038 p, (struct cpumask *)p->cpus_ptr); 4039 } 4040 4041 static void switched_from_scx(struct rq *rq, struct task_struct *p) 4042 { 4043 scx_disable_task(p); 4044 } 4045 4046 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 4047 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 4048 4049 int scx_check_setscheduler(struct task_struct *p, int policy) 4050 { 4051 lockdep_assert_rq_held(task_rq(p)); 4052 4053 /* if disallow, reject transitioning into SCX */ 4054 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 4055 p->policy != policy && policy == SCHED_EXT) 4056 return -EACCES; 4057 4058 return 0; 4059 } 4060 4061 #ifdef CONFIG_NO_HZ_FULL 4062 bool scx_can_stop_tick(struct rq *rq) 4063 { 4064 struct task_struct *p = rq->curr; 4065 4066 if (scx_rq_bypassing(rq)) 4067 return false; 4068 4069 if (p->sched_class != &ext_sched_class) 4070 return true; 4071 4072 /* 4073 * @rq can dispatch from different DSQs, so we can't tell whether it 4074 * needs the tick or not by looking at nr_running. Allow stopping ticks 4075 * iff the BPF scheduler indicated so. See set_next_task_scx(). 4076 */ 4077 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 4078 } 4079 #endif 4080 4081 #ifdef CONFIG_EXT_GROUP_SCHED 4082 4083 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem); 4084 static bool scx_cgroup_enabled; 4085 4086 void scx_tg_init(struct task_group *tg) 4087 { 4088 tg->scx.weight = CGROUP_WEIGHT_DFL; 4089 tg->scx.bw_period_us = default_bw_period_us(); 4090 tg->scx.bw_quota_us = RUNTIME_INF; 4091 } 4092 4093 int scx_tg_online(struct task_group *tg) 4094 { 4095 struct scx_sched *sch = scx_root; 4096 int ret = 0; 4097 4098 WARN_ON_ONCE(tg->scx.flags & (SCX_TG_ONLINE | SCX_TG_INITED)); 4099 4100 percpu_down_read(&scx_cgroup_rwsem); 4101 4102 if (scx_cgroup_enabled) { 4103 if (SCX_HAS_OP(sch, cgroup_init)) { 4104 struct scx_cgroup_init_args args = 4105 { .weight = tg->scx.weight, 4106 .bw_period_us = tg->scx.bw_period_us, 4107 .bw_quota_us = tg->scx.bw_quota_us, 4108 .bw_burst_us = tg->scx.bw_burst_us }; 4109 4110 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, 4111 NULL, tg->css.cgroup, &args); 4112 if (ret) 4113 ret = ops_sanitize_err(sch, "cgroup_init", ret); 4114 } 4115 if (ret == 0) 4116 tg->scx.flags |= SCX_TG_ONLINE | SCX_TG_INITED; 4117 } else { 4118 tg->scx.flags |= SCX_TG_ONLINE; 4119 } 4120 4121 percpu_up_read(&scx_cgroup_rwsem); 4122 return ret; 4123 } 4124 4125 void scx_tg_offline(struct task_group *tg) 4126 { 4127 struct scx_sched *sch = scx_root; 4128 4129 WARN_ON_ONCE(!(tg->scx.flags & SCX_TG_ONLINE)); 4130 4131 percpu_down_read(&scx_cgroup_rwsem); 4132 4133 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_exit) && 4134 (tg->scx.flags & SCX_TG_INITED)) 4135 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL, 4136 tg->css.cgroup); 4137 tg->scx.flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); 4138 4139 percpu_up_read(&scx_cgroup_rwsem); 4140 } 4141 4142 int scx_cgroup_can_attach(struct cgroup_taskset *tset) 4143 { 4144 struct scx_sched *sch = scx_root; 4145 struct cgroup_subsys_state *css; 4146 struct task_struct *p; 4147 int ret; 4148 4149 /* released in scx_finish/cancel_attach() */ 4150 percpu_down_read(&scx_cgroup_rwsem); 4151 4152 if (!scx_cgroup_enabled) 4153 return 0; 4154 4155 cgroup_taskset_for_each(p, css, tset) { 4156 struct cgroup *from = tg_cgrp(task_group(p)); 4157 struct cgroup *to = tg_cgrp(css_tg(css)); 4158 4159 WARN_ON_ONCE(p->scx.cgrp_moving_from); 4160 4161 /* 4162 * sched_move_task() omits identity migrations. Let's match the 4163 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() 4164 * always match one-to-one. 4165 */ 4166 if (from == to) 4167 continue; 4168 4169 if (SCX_HAS_OP(sch, cgroup_prep_move)) { 4170 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, 4171 cgroup_prep_move, NULL, 4172 p, from, css->cgroup); 4173 if (ret) 4174 goto err; 4175 } 4176 4177 p->scx.cgrp_moving_from = from; 4178 } 4179 4180 return 0; 4181 4182 err: 4183 cgroup_taskset_for_each(p, css, tset) { 4184 if (SCX_HAS_OP(sch, cgroup_cancel_move) && 4185 p->scx.cgrp_moving_from) 4186 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL, 4187 p, p->scx.cgrp_moving_from, css->cgroup); 4188 p->scx.cgrp_moving_from = NULL; 4189 } 4190 4191 percpu_up_read(&scx_cgroup_rwsem); 4192 return ops_sanitize_err(sch, "cgroup_prep_move", ret); 4193 } 4194 4195 void scx_cgroup_move_task(struct task_struct *p) 4196 { 4197 struct scx_sched *sch = scx_root; 4198 4199 if (!scx_cgroup_enabled) 4200 return; 4201 4202 /* 4203 * @p must have ops.cgroup_prep_move() called on it and thus 4204 * cgrp_moving_from set. 4205 */ 4206 if (SCX_HAS_OP(sch, cgroup_move) && 4207 !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) 4208 SCX_CALL_OP_TASK(sch, SCX_KF_UNLOCKED, cgroup_move, NULL, 4209 p, p->scx.cgrp_moving_from, 4210 tg_cgrp(task_group(p))); 4211 p->scx.cgrp_moving_from = NULL; 4212 } 4213 4214 void scx_cgroup_finish_attach(void) 4215 { 4216 percpu_up_read(&scx_cgroup_rwsem); 4217 } 4218 4219 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) 4220 { 4221 struct scx_sched *sch = scx_root; 4222 struct cgroup_subsys_state *css; 4223 struct task_struct *p; 4224 4225 if (!scx_cgroup_enabled) 4226 goto out_unlock; 4227 4228 cgroup_taskset_for_each(p, css, tset) { 4229 if (SCX_HAS_OP(sch, cgroup_cancel_move) && 4230 p->scx.cgrp_moving_from) 4231 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL, 4232 p, p->scx.cgrp_moving_from, css->cgroup); 4233 p->scx.cgrp_moving_from = NULL; 4234 } 4235 out_unlock: 4236 percpu_up_read(&scx_cgroup_rwsem); 4237 } 4238 4239 void scx_group_set_weight(struct task_group *tg, unsigned long weight) 4240 { 4241 struct scx_sched *sch = scx_root; 4242 4243 percpu_down_read(&scx_cgroup_rwsem); 4244 4245 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_weight) && 4246 tg->scx.weight != weight) 4247 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_weight, NULL, 4248 tg_cgrp(tg), weight); 4249 4250 tg->scx.weight = weight; 4251 4252 percpu_up_read(&scx_cgroup_rwsem); 4253 } 4254 4255 void scx_group_set_idle(struct task_group *tg, bool idle) 4256 { 4257 /* TODO: Implement ops->cgroup_set_idle() */ 4258 } 4259 4260 void scx_group_set_bandwidth(struct task_group *tg, 4261 u64 period_us, u64 quota_us, u64 burst_us) 4262 { 4263 struct scx_sched *sch = scx_root; 4264 4265 percpu_down_read(&scx_cgroup_rwsem); 4266 4267 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_bandwidth) && 4268 (tg->scx.bw_period_us != period_us || 4269 tg->scx.bw_quota_us != quota_us || 4270 tg->scx.bw_burst_us != burst_us)) 4271 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_bandwidth, NULL, 4272 tg_cgrp(tg), period_us, quota_us, burst_us); 4273 4274 tg->scx.bw_period_us = period_us; 4275 tg->scx.bw_quota_us = quota_us; 4276 tg->scx.bw_burst_us = burst_us; 4277 4278 percpu_up_read(&scx_cgroup_rwsem); 4279 } 4280 4281 static void scx_cgroup_lock(void) 4282 { 4283 percpu_down_write(&scx_cgroup_rwsem); 4284 } 4285 4286 static void scx_cgroup_unlock(void) 4287 { 4288 percpu_up_write(&scx_cgroup_rwsem); 4289 } 4290 4291 #else /* CONFIG_EXT_GROUP_SCHED */ 4292 4293 static inline void scx_cgroup_lock(void) {} 4294 static inline void scx_cgroup_unlock(void) {} 4295 4296 #endif /* CONFIG_EXT_GROUP_SCHED */ 4297 4298 /* 4299 * Omitted operations: 4300 * 4301 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 4302 * isn't tied to the CPU at that point. Preemption is implemented by resetting 4303 * the victim task's slice to 0 and triggering reschedule on the target CPU. 4304 * 4305 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 4306 * 4307 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 4308 * their current sched_class. Call them directly from sched core instead. 4309 */ 4310 DEFINE_SCHED_CLASS(ext) = { 4311 .enqueue_task = enqueue_task_scx, 4312 .dequeue_task = dequeue_task_scx, 4313 .yield_task = yield_task_scx, 4314 .yield_to_task = yield_to_task_scx, 4315 4316 .wakeup_preempt = wakeup_preempt_scx, 4317 4318 .balance = balance_scx, 4319 .pick_task = pick_task_scx, 4320 4321 .put_prev_task = put_prev_task_scx, 4322 .set_next_task = set_next_task_scx, 4323 4324 .select_task_rq = select_task_rq_scx, 4325 .task_woken = task_woken_scx, 4326 .set_cpus_allowed = set_cpus_allowed_scx, 4327 4328 .rq_online = rq_online_scx, 4329 .rq_offline = rq_offline_scx, 4330 4331 .task_tick = task_tick_scx, 4332 4333 .switching_to = switching_to_scx, 4334 .switched_from = switched_from_scx, 4335 .switched_to = switched_to_scx, 4336 .reweight_task = reweight_task_scx, 4337 .prio_changed = prio_changed_scx, 4338 4339 .update_curr = update_curr_scx, 4340 4341 #ifdef CONFIG_UCLAMP_TASK 4342 .uclamp_enabled = 1, 4343 #endif 4344 }; 4345 4346 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 4347 { 4348 memset(dsq, 0, sizeof(*dsq)); 4349 4350 raw_spin_lock_init(&dsq->lock); 4351 INIT_LIST_HEAD(&dsq->list); 4352 dsq->id = dsq_id; 4353 } 4354 4355 static void free_dsq_irq_workfn(struct irq_work *irq_work) 4356 { 4357 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 4358 struct scx_dispatch_q *dsq, *tmp_dsq; 4359 4360 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 4361 kfree_rcu(dsq, rcu); 4362 } 4363 4364 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 4365 4366 static void destroy_dsq(struct scx_sched *sch, u64 dsq_id) 4367 { 4368 struct scx_dispatch_q *dsq; 4369 unsigned long flags; 4370 4371 rcu_read_lock(); 4372 4373 dsq = find_user_dsq(sch, dsq_id); 4374 if (!dsq) 4375 goto out_unlock_rcu; 4376 4377 raw_spin_lock_irqsave(&dsq->lock, flags); 4378 4379 if (dsq->nr) { 4380 scx_error(sch, "attempting to destroy in-use dsq 0x%016llx (nr=%u)", 4381 dsq->id, dsq->nr); 4382 goto out_unlock_dsq; 4383 } 4384 4385 if (rhashtable_remove_fast(&sch->dsq_hash, &dsq->hash_node, 4386 dsq_hash_params)) 4387 goto out_unlock_dsq; 4388 4389 /* 4390 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 4391 * queueing more tasks. As this function can be called from anywhere, 4392 * freeing is bounced through an irq work to avoid nesting RCU 4393 * operations inside scheduler locks. 4394 */ 4395 dsq->id = SCX_DSQ_INVALID; 4396 llist_add(&dsq->free_node, &dsqs_to_free); 4397 irq_work_queue(&free_dsq_irq_work); 4398 4399 out_unlock_dsq: 4400 raw_spin_unlock_irqrestore(&dsq->lock, flags); 4401 out_unlock_rcu: 4402 rcu_read_unlock(); 4403 } 4404 4405 #ifdef CONFIG_EXT_GROUP_SCHED 4406 static void scx_cgroup_exit(struct scx_sched *sch) 4407 { 4408 struct cgroup_subsys_state *css; 4409 4410 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4411 4412 scx_cgroup_enabled = false; 4413 4414 /* 4415 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk 4416 * cgroups and exit all the inited ones, all online cgroups are exited. 4417 */ 4418 rcu_read_lock(); 4419 css_for_each_descendant_post(css, &root_task_group.css) { 4420 struct task_group *tg = css_tg(css); 4421 4422 if (!(tg->scx.flags & SCX_TG_INITED)) 4423 continue; 4424 tg->scx.flags &= ~SCX_TG_INITED; 4425 4426 if (!sch->ops.cgroup_exit) 4427 continue; 4428 4429 if (WARN_ON_ONCE(!css_tryget(css))) 4430 continue; 4431 rcu_read_unlock(); 4432 4433 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL, 4434 css->cgroup); 4435 4436 rcu_read_lock(); 4437 css_put(css); 4438 } 4439 rcu_read_unlock(); 4440 } 4441 4442 static int scx_cgroup_init(struct scx_sched *sch) 4443 { 4444 struct cgroup_subsys_state *css; 4445 int ret; 4446 4447 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4448 4449 /* 4450 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk 4451 * cgroups and init, all online cgroups are initialized. 4452 */ 4453 rcu_read_lock(); 4454 css_for_each_descendant_pre(css, &root_task_group.css) { 4455 struct task_group *tg = css_tg(css); 4456 struct scx_cgroup_init_args args = { 4457 .weight = tg->scx.weight, 4458 .bw_period_us = tg->scx.bw_period_us, 4459 .bw_quota_us = tg->scx.bw_quota_us, 4460 .bw_burst_us = tg->scx.bw_burst_us, 4461 }; 4462 4463 if ((tg->scx.flags & 4464 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) 4465 continue; 4466 4467 if (!sch->ops.cgroup_init) { 4468 tg->scx.flags |= SCX_TG_INITED; 4469 continue; 4470 } 4471 4472 if (WARN_ON_ONCE(!css_tryget(css))) 4473 continue; 4474 rcu_read_unlock(); 4475 4476 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, NULL, 4477 css->cgroup, &args); 4478 if (ret) { 4479 css_put(css); 4480 scx_error(sch, "ops.cgroup_init() failed (%d)", ret); 4481 return ret; 4482 } 4483 tg->scx.flags |= SCX_TG_INITED; 4484 4485 rcu_read_lock(); 4486 css_put(css); 4487 } 4488 rcu_read_unlock(); 4489 4490 WARN_ON_ONCE(scx_cgroup_enabled); 4491 scx_cgroup_enabled = true; 4492 4493 return 0; 4494 } 4495 4496 #else 4497 static void scx_cgroup_exit(struct scx_sched *sch) {} 4498 static int scx_cgroup_init(struct scx_sched *sch) { return 0; } 4499 #endif 4500 4501 4502 /******************************************************************************** 4503 * Sysfs interface and ops enable/disable. 4504 */ 4505 4506 #define SCX_ATTR(_name) \ 4507 static struct kobj_attribute scx_attr_##_name = { \ 4508 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 4509 .show = scx_attr_##_name##_show, \ 4510 } 4511 4512 static ssize_t scx_attr_state_show(struct kobject *kobj, 4513 struct kobj_attribute *ka, char *buf) 4514 { 4515 return sysfs_emit(buf, "%s\n", scx_enable_state_str[scx_enable_state()]); 4516 } 4517 SCX_ATTR(state); 4518 4519 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 4520 struct kobj_attribute *ka, char *buf) 4521 { 4522 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 4523 } 4524 SCX_ATTR(switch_all); 4525 4526 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 4527 struct kobj_attribute *ka, char *buf) 4528 { 4529 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 4530 } 4531 SCX_ATTR(nr_rejected); 4532 4533 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, 4534 struct kobj_attribute *ka, char *buf) 4535 { 4536 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); 4537 } 4538 SCX_ATTR(hotplug_seq); 4539 4540 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj, 4541 struct kobj_attribute *ka, char *buf) 4542 { 4543 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq)); 4544 } 4545 SCX_ATTR(enable_seq); 4546 4547 static struct attribute *scx_global_attrs[] = { 4548 &scx_attr_state.attr, 4549 &scx_attr_switch_all.attr, 4550 &scx_attr_nr_rejected.attr, 4551 &scx_attr_hotplug_seq.attr, 4552 &scx_attr_enable_seq.attr, 4553 NULL, 4554 }; 4555 4556 static const struct attribute_group scx_global_attr_group = { 4557 .attrs = scx_global_attrs, 4558 }; 4559 4560 static void free_exit_info(struct scx_exit_info *ei); 4561 4562 static void scx_sched_free_rcu_work(struct work_struct *work) 4563 { 4564 struct rcu_work *rcu_work = to_rcu_work(work); 4565 struct scx_sched *sch = container_of(rcu_work, struct scx_sched, rcu_work); 4566 struct rhashtable_iter rht_iter; 4567 struct scx_dispatch_q *dsq; 4568 int node; 4569 4570 kthread_stop(sch->helper->task); 4571 free_percpu(sch->event_stats_cpu); 4572 4573 for_each_node_state(node, N_POSSIBLE) 4574 kfree(sch->global_dsqs[node]); 4575 kfree(sch->global_dsqs); 4576 4577 rhashtable_walk_enter(&sch->dsq_hash, &rht_iter); 4578 do { 4579 rhashtable_walk_start(&rht_iter); 4580 4581 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 4582 destroy_dsq(sch, dsq->id); 4583 4584 rhashtable_walk_stop(&rht_iter); 4585 } while (dsq == ERR_PTR(-EAGAIN)); 4586 rhashtable_walk_exit(&rht_iter); 4587 4588 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL); 4589 free_exit_info(sch->exit_info); 4590 kfree(sch); 4591 } 4592 4593 static void scx_kobj_release(struct kobject *kobj) 4594 { 4595 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj); 4596 4597 INIT_RCU_WORK(&sch->rcu_work, scx_sched_free_rcu_work); 4598 queue_rcu_work(system_unbound_wq, &sch->rcu_work); 4599 } 4600 4601 static ssize_t scx_attr_ops_show(struct kobject *kobj, 4602 struct kobj_attribute *ka, char *buf) 4603 { 4604 return sysfs_emit(buf, "%s\n", scx_root->ops.name); 4605 } 4606 SCX_ATTR(ops); 4607 4608 #define scx_attr_event_show(buf, at, events, kind) ({ \ 4609 sysfs_emit_at(buf, at, "%s %llu\n", #kind, (events)->kind); \ 4610 }) 4611 4612 static ssize_t scx_attr_events_show(struct kobject *kobj, 4613 struct kobj_attribute *ka, char *buf) 4614 { 4615 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj); 4616 struct scx_event_stats events; 4617 int at = 0; 4618 4619 scx_read_events(sch, &events); 4620 at += scx_attr_event_show(buf, at, &events, SCX_EV_SELECT_CPU_FALLBACK); 4621 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 4622 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_KEEP_LAST); 4623 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_EXITING); 4624 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 4625 at += scx_attr_event_show(buf, at, &events, SCX_EV_REFILL_SLICE_DFL); 4626 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DURATION); 4627 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DISPATCH); 4628 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_ACTIVATE); 4629 return at; 4630 } 4631 SCX_ATTR(events); 4632 4633 static struct attribute *scx_sched_attrs[] = { 4634 &scx_attr_ops.attr, 4635 &scx_attr_events.attr, 4636 NULL, 4637 }; 4638 ATTRIBUTE_GROUPS(scx_sched); 4639 4640 static const struct kobj_type scx_ktype = { 4641 .release = scx_kobj_release, 4642 .sysfs_ops = &kobj_sysfs_ops, 4643 .default_groups = scx_sched_groups, 4644 }; 4645 4646 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 4647 { 4648 return add_uevent_var(env, "SCXOPS=%s", scx_root->ops.name); 4649 } 4650 4651 static const struct kset_uevent_ops scx_uevent_ops = { 4652 .uevent = scx_uevent, 4653 }; 4654 4655 /* 4656 * Used by sched_fork() and __setscheduler_prio() to pick the matching 4657 * sched_class. dl/rt are already handled. 4658 */ 4659 bool task_should_scx(int policy) 4660 { 4661 if (!scx_enabled() || unlikely(scx_enable_state() == SCX_DISABLING)) 4662 return false; 4663 if (READ_ONCE(scx_switching_all)) 4664 return true; 4665 return policy == SCHED_EXT; 4666 } 4667 4668 bool scx_allow_ttwu_queue(const struct task_struct *p) 4669 { 4670 return !scx_enabled() || 4671 (scx_root->ops.flags & SCX_OPS_ALLOW_QUEUED_WAKEUP) || 4672 p->sched_class != &ext_sched_class; 4673 } 4674 4675 /** 4676 * scx_softlockup - sched_ext softlockup handler 4677 * @dur_s: number of seconds of CPU stuck due to soft lockup 4678 * 4679 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can 4680 * live-lock the system by making many CPUs target the same DSQ to the point 4681 * where soft-lockup detection triggers. This function is called from 4682 * soft-lockup watchdog when the triggering point is close and tries to unjam 4683 * the system by enabling the breather and aborting the BPF scheduler. 4684 */ 4685 void scx_softlockup(u32 dur_s) 4686 { 4687 struct scx_sched *sch; 4688 4689 rcu_read_lock(); 4690 4691 sch = rcu_dereference(scx_root); 4692 if (unlikely(!sch)) 4693 goto out_unlock; 4694 4695 switch (scx_enable_state()) { 4696 case SCX_ENABLING: 4697 case SCX_ENABLED: 4698 break; 4699 default: 4700 goto out_unlock; 4701 } 4702 4703 /* allow only one instance, cleared at the end of scx_bypass() */ 4704 if (test_and_set_bit(0, &scx_in_softlockup)) 4705 goto out_unlock; 4706 4707 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n", 4708 smp_processor_id(), dur_s, scx_root->ops.name); 4709 4710 /* 4711 * Some CPUs may be trapped in the dispatch paths. Enable breather 4712 * immediately; otherwise, we might even be able to get to scx_bypass(). 4713 */ 4714 atomic_inc(&scx_breather_depth); 4715 4716 scx_error(sch, "soft lockup - CPU#%d stuck for %us", smp_processor_id(), dur_s); 4717 out_unlock: 4718 rcu_read_unlock(); 4719 } 4720 4721 static void scx_clear_softlockup(void) 4722 { 4723 if (test_and_clear_bit(0, &scx_in_softlockup)) 4724 atomic_dec(&scx_breather_depth); 4725 } 4726 4727 /** 4728 * scx_bypass - [Un]bypass scx_ops and guarantee forward progress 4729 * @bypass: true for bypass, false for unbypass 4730 * 4731 * Bypassing guarantees that all runnable tasks make forward progress without 4732 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 4733 * be held by tasks that the BPF scheduler is forgetting to run, which 4734 * unfortunately also excludes toggling the static branches. 4735 * 4736 * Let's work around by overriding a couple ops and modifying behaviors based on 4737 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 4738 * to force global FIFO scheduling. 4739 * 4740 * - ops.select_cpu() is ignored and the default select_cpu() is used. 4741 * 4742 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 4743 * %SCX_OPS_ENQ_LAST is also ignored. 4744 * 4745 * - ops.dispatch() is ignored. 4746 * 4747 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice 4748 * can't be trusted. Whenever a tick triggers, the running task is rotated to 4749 * the tail of the queue with core_sched_at touched. 4750 * 4751 * - pick_next_task() suppresses zero slice warning. 4752 * 4753 * - scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM 4754 * operations. 4755 * 4756 * - scx_prio_less() reverts to the default core_sched_at order. 4757 */ 4758 static void scx_bypass(bool bypass) 4759 { 4760 static DEFINE_RAW_SPINLOCK(bypass_lock); 4761 static unsigned long bypass_timestamp; 4762 struct scx_sched *sch; 4763 unsigned long flags; 4764 int cpu; 4765 4766 raw_spin_lock_irqsave(&bypass_lock, flags); 4767 sch = rcu_dereference_bh(scx_root); 4768 4769 if (bypass) { 4770 scx_bypass_depth++; 4771 WARN_ON_ONCE(scx_bypass_depth <= 0); 4772 if (scx_bypass_depth != 1) 4773 goto unlock; 4774 bypass_timestamp = ktime_get_ns(); 4775 if (sch) 4776 scx_add_event(sch, SCX_EV_BYPASS_ACTIVATE, 1); 4777 } else { 4778 scx_bypass_depth--; 4779 WARN_ON_ONCE(scx_bypass_depth < 0); 4780 if (scx_bypass_depth != 0) 4781 goto unlock; 4782 if (sch) 4783 scx_add_event(sch, SCX_EV_BYPASS_DURATION, 4784 ktime_get_ns() - bypass_timestamp); 4785 } 4786 4787 atomic_inc(&scx_breather_depth); 4788 4789 /* 4790 * No task property is changing. We just need to make sure all currently 4791 * queued tasks are re-queued according to the new scx_rq_bypassing() 4792 * state. As an optimization, walk each rq's runnable_list instead of 4793 * the scx_tasks list. 4794 * 4795 * This function can't trust the scheduler and thus can't use 4796 * cpus_read_lock(). Walk all possible CPUs instead of online. 4797 */ 4798 for_each_possible_cpu(cpu) { 4799 struct rq *rq = cpu_rq(cpu); 4800 struct task_struct *p, *n; 4801 4802 raw_spin_rq_lock(rq); 4803 4804 if (bypass) { 4805 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); 4806 rq->scx.flags |= SCX_RQ_BYPASSING; 4807 } else { 4808 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); 4809 rq->scx.flags &= ~SCX_RQ_BYPASSING; 4810 } 4811 4812 /* 4813 * We need to guarantee that no tasks are on the BPF scheduler 4814 * while bypassing. Either we see enabled or the enable path 4815 * sees scx_rq_bypassing() before moving tasks to SCX. 4816 */ 4817 if (!scx_enabled()) { 4818 raw_spin_rq_unlock(rq); 4819 continue; 4820 } 4821 4822 /* 4823 * The use of list_for_each_entry_safe_reverse() is required 4824 * because each task is going to be removed from and added back 4825 * to the runnable_list during iteration. Because they're added 4826 * to the tail of the list, safe reverse iteration can still 4827 * visit all nodes. 4828 */ 4829 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 4830 scx.runnable_node) { 4831 struct sched_enq_and_set_ctx ctx; 4832 4833 /* cycling deq/enq is enough, see the function comment */ 4834 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4835 sched_enq_and_set_task(&ctx); 4836 } 4837 4838 /* resched to restore ticks and idle state */ 4839 if (cpu_online(cpu) || cpu == smp_processor_id()) 4840 resched_curr(rq); 4841 4842 raw_spin_rq_unlock(rq); 4843 } 4844 4845 atomic_dec(&scx_breather_depth); 4846 unlock: 4847 raw_spin_unlock_irqrestore(&bypass_lock, flags); 4848 scx_clear_softlockup(); 4849 } 4850 4851 static void free_exit_info(struct scx_exit_info *ei) 4852 { 4853 kvfree(ei->dump); 4854 kfree(ei->msg); 4855 kfree(ei->bt); 4856 kfree(ei); 4857 } 4858 4859 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 4860 { 4861 struct scx_exit_info *ei; 4862 4863 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 4864 if (!ei) 4865 return NULL; 4866 4867 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); 4868 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 4869 ei->dump = kvzalloc(exit_dump_len, GFP_KERNEL); 4870 4871 if (!ei->bt || !ei->msg || !ei->dump) { 4872 free_exit_info(ei); 4873 return NULL; 4874 } 4875 4876 return ei; 4877 } 4878 4879 static const char *scx_exit_reason(enum scx_exit_kind kind) 4880 { 4881 switch (kind) { 4882 case SCX_EXIT_UNREG: 4883 return "unregistered from user space"; 4884 case SCX_EXIT_UNREG_BPF: 4885 return "unregistered from BPF"; 4886 case SCX_EXIT_UNREG_KERN: 4887 return "unregistered from the main kernel"; 4888 case SCX_EXIT_SYSRQ: 4889 return "disabled by sysrq-S"; 4890 case SCX_EXIT_ERROR: 4891 return "runtime error"; 4892 case SCX_EXIT_ERROR_BPF: 4893 return "scx_bpf_error"; 4894 case SCX_EXIT_ERROR_STALL: 4895 return "runnable task stall"; 4896 default: 4897 return "<UNKNOWN>"; 4898 } 4899 } 4900 4901 static void scx_disable_workfn(struct kthread_work *work) 4902 { 4903 struct scx_sched *sch = container_of(work, struct scx_sched, disable_work); 4904 struct scx_exit_info *ei = sch->exit_info; 4905 struct scx_task_iter sti; 4906 struct task_struct *p; 4907 int kind, cpu; 4908 4909 kind = atomic_read(&sch->exit_kind); 4910 while (true) { 4911 if (kind == SCX_EXIT_DONE) /* already disabled? */ 4912 return; 4913 WARN_ON_ONCE(kind == SCX_EXIT_NONE); 4914 if (atomic_try_cmpxchg(&sch->exit_kind, &kind, SCX_EXIT_DONE)) 4915 break; 4916 } 4917 ei->kind = kind; 4918 ei->reason = scx_exit_reason(ei->kind); 4919 4920 /* guarantee forward progress by bypassing scx_ops */ 4921 scx_bypass(true); 4922 4923 switch (scx_set_enable_state(SCX_DISABLING)) { 4924 case SCX_DISABLING: 4925 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 4926 break; 4927 case SCX_DISABLED: 4928 pr_warn("sched_ext: ops error detected without ops (%s)\n", 4929 sch->exit_info->msg); 4930 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING); 4931 goto done; 4932 default: 4933 break; 4934 } 4935 4936 /* 4937 * Here, every runnable task is guaranteed to make forward progress and 4938 * we can safely use blocking synchronization constructs. Actually 4939 * disable ops. 4940 */ 4941 mutex_lock(&scx_enable_mutex); 4942 4943 static_branch_disable(&__scx_switched_all); 4944 WRITE_ONCE(scx_switching_all, false); 4945 4946 /* 4947 * Shut down cgroup support before tasks so that the cgroup attach path 4948 * doesn't race against scx_exit_task(). 4949 */ 4950 scx_cgroup_lock(); 4951 scx_cgroup_exit(sch); 4952 scx_cgroup_unlock(); 4953 4954 /* 4955 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones 4956 * must be switched out and exited synchronously. 4957 */ 4958 percpu_down_write(&scx_fork_rwsem); 4959 4960 scx_init_task_enabled = false; 4961 4962 scx_task_iter_start(&sti); 4963 while ((p = scx_task_iter_next_locked(&sti))) { 4964 const struct sched_class *old_class = p->sched_class; 4965 const struct sched_class *new_class = 4966 __setscheduler_class(p->policy, p->prio); 4967 struct sched_enq_and_set_ctx ctx; 4968 4969 if (old_class != new_class && p->se.sched_delayed) 4970 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 4971 4972 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4973 4974 p->sched_class = new_class; 4975 check_class_changing(task_rq(p), p, old_class); 4976 4977 sched_enq_and_set_task(&ctx); 4978 4979 check_class_changed(task_rq(p), p, old_class, p->prio); 4980 scx_exit_task(p); 4981 } 4982 scx_task_iter_stop(&sti); 4983 percpu_up_write(&scx_fork_rwsem); 4984 4985 /* 4986 * Invalidate all the rq clocks to prevent getting outdated 4987 * rq clocks from a previous scx scheduler. 4988 */ 4989 for_each_possible_cpu(cpu) { 4990 struct rq *rq = cpu_rq(cpu); 4991 scx_rq_clock_invalidate(rq); 4992 } 4993 4994 /* no task is on scx, turn off all the switches and flush in-progress calls */ 4995 static_branch_disable(&__scx_enabled); 4996 bitmap_zero(sch->has_op, SCX_OPI_END); 4997 scx_idle_disable(); 4998 synchronize_rcu(); 4999 5000 if (ei->kind >= SCX_EXIT_ERROR) { 5001 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 5002 sch->ops.name, ei->reason); 5003 5004 if (ei->msg[0] != '\0') 5005 pr_err("sched_ext: %s: %s\n", sch->ops.name, ei->msg); 5006 #ifdef CONFIG_STACKTRACE 5007 stack_trace_print(ei->bt, ei->bt_len, 2); 5008 #endif 5009 } else { 5010 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 5011 sch->ops.name, ei->reason); 5012 } 5013 5014 if (sch->ops.exit) 5015 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, exit, NULL, ei); 5016 5017 cancel_delayed_work_sync(&scx_watchdog_work); 5018 5019 /* 5020 * scx_root clearing must be inside cpus_read_lock(). See 5021 * handle_hotplug(). 5022 */ 5023 cpus_read_lock(); 5024 RCU_INIT_POINTER(scx_root, NULL); 5025 cpus_read_unlock(); 5026 5027 /* 5028 * Delete the kobject from the hierarchy synchronously. Otherwise, sysfs 5029 * could observe an object of the same name still in the hierarchy when 5030 * the next scheduler is loaded. 5031 */ 5032 kobject_del(&sch->kobj); 5033 5034 free_percpu(scx_dsp_ctx); 5035 scx_dsp_ctx = NULL; 5036 scx_dsp_max_batch = 0; 5037 5038 mutex_unlock(&scx_enable_mutex); 5039 5040 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING); 5041 done: 5042 scx_bypass(false); 5043 } 5044 5045 static void scx_disable(enum scx_exit_kind kind) 5046 { 5047 int none = SCX_EXIT_NONE; 5048 struct scx_sched *sch; 5049 5050 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 5051 kind = SCX_EXIT_ERROR; 5052 5053 rcu_read_lock(); 5054 sch = rcu_dereference(scx_root); 5055 if (sch) { 5056 atomic_try_cmpxchg(&sch->exit_kind, &none, kind); 5057 kthread_queue_work(sch->helper, &sch->disable_work); 5058 } 5059 rcu_read_unlock(); 5060 } 5061 5062 static void dump_newline(struct seq_buf *s) 5063 { 5064 trace_sched_ext_dump(""); 5065 5066 /* @s may be zero sized and seq_buf triggers WARN if so */ 5067 if (s->size) 5068 seq_buf_putc(s, '\n'); 5069 } 5070 5071 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 5072 { 5073 va_list args; 5074 5075 #ifdef CONFIG_TRACEPOINTS 5076 if (trace_sched_ext_dump_enabled()) { 5077 /* protected by scx_dump_state()::dump_lock */ 5078 static char line_buf[SCX_EXIT_MSG_LEN]; 5079 5080 va_start(args, fmt); 5081 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 5082 va_end(args); 5083 5084 trace_sched_ext_dump(line_buf); 5085 } 5086 #endif 5087 /* @s may be zero sized and seq_buf triggers WARN if so */ 5088 if (s->size) { 5089 va_start(args, fmt); 5090 seq_buf_vprintf(s, fmt, args); 5091 va_end(args); 5092 5093 seq_buf_putc(s, '\n'); 5094 } 5095 } 5096 5097 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 5098 const unsigned long *bt, unsigned int len) 5099 { 5100 unsigned int i; 5101 5102 for (i = 0; i < len; i++) 5103 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 5104 } 5105 5106 static void ops_dump_init(struct seq_buf *s, const char *prefix) 5107 { 5108 struct scx_dump_data *dd = &scx_dump_data; 5109 5110 lockdep_assert_irqs_disabled(); 5111 5112 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 5113 dd->first = true; 5114 dd->cursor = 0; 5115 dd->s = s; 5116 dd->prefix = prefix; 5117 } 5118 5119 static void ops_dump_flush(void) 5120 { 5121 struct scx_dump_data *dd = &scx_dump_data; 5122 char *line = dd->buf.line; 5123 5124 if (!dd->cursor) 5125 return; 5126 5127 /* 5128 * There's something to flush and this is the first line. Insert a blank 5129 * line to distinguish ops dump. 5130 */ 5131 if (dd->first) { 5132 dump_newline(dd->s); 5133 dd->first = false; 5134 } 5135 5136 /* 5137 * There may be multiple lines in $line. Scan and emit each line 5138 * separately. 5139 */ 5140 while (true) { 5141 char *end = line; 5142 char c; 5143 5144 while (*end != '\n' && *end != '\0') 5145 end++; 5146 5147 /* 5148 * If $line overflowed, it may not have newline at the end. 5149 * Always emit with a newline. 5150 */ 5151 c = *end; 5152 *end = '\0'; 5153 dump_line(dd->s, "%s%s", dd->prefix, line); 5154 if (c == '\0') 5155 break; 5156 5157 /* move to the next line */ 5158 end++; 5159 if (*end == '\0') 5160 break; 5161 line = end; 5162 } 5163 5164 dd->cursor = 0; 5165 } 5166 5167 static void ops_dump_exit(void) 5168 { 5169 ops_dump_flush(); 5170 scx_dump_data.cpu = -1; 5171 } 5172 5173 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 5174 struct task_struct *p, char marker) 5175 { 5176 static unsigned long bt[SCX_EXIT_BT_LEN]; 5177 struct scx_sched *sch = scx_root; 5178 char dsq_id_buf[19] = "(n/a)"; 5179 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 5180 unsigned int bt_len = 0; 5181 5182 if (p->scx.dsq) 5183 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 5184 (unsigned long long)p->scx.dsq->id); 5185 5186 dump_newline(s); 5187 dump_line(s, " %c%c %s[%d] %+ldms", 5188 marker, task_state_to_char(p), p->comm, p->pid, 5189 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 5190 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", 5191 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 5192 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, 5193 ops_state >> SCX_OPSS_QSEQ_SHIFT); 5194 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s", 5195 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf); 5196 dump_line(s, " dsq_vtime=%llu slice=%llu weight=%u", 5197 p->scx.dsq_vtime, p->scx.slice, p->scx.weight); 5198 dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr)); 5199 5200 if (SCX_HAS_OP(sch, dump_task)) { 5201 ops_dump_init(s, " "); 5202 SCX_CALL_OP(sch, SCX_KF_REST, dump_task, NULL, dctx, p); 5203 ops_dump_exit(); 5204 } 5205 5206 #ifdef CONFIG_STACKTRACE 5207 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 5208 #endif 5209 if (bt_len) { 5210 dump_newline(s); 5211 dump_stack_trace(s, " ", bt, bt_len); 5212 } 5213 } 5214 5215 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 5216 { 5217 static DEFINE_SPINLOCK(dump_lock); 5218 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 5219 struct scx_sched *sch = scx_root; 5220 struct scx_dump_ctx dctx = { 5221 .kind = ei->kind, 5222 .exit_code = ei->exit_code, 5223 .reason = ei->reason, 5224 .at_ns = ktime_get_ns(), 5225 .at_jiffies = jiffies, 5226 }; 5227 struct seq_buf s; 5228 struct scx_event_stats events; 5229 unsigned long flags; 5230 char *buf; 5231 int cpu; 5232 5233 spin_lock_irqsave(&dump_lock, flags); 5234 5235 seq_buf_init(&s, ei->dump, dump_len); 5236 5237 if (ei->kind == SCX_EXIT_NONE) { 5238 dump_line(&s, "Debug dump triggered by %s", ei->reason); 5239 } else { 5240 dump_line(&s, "%s[%d] triggered exit kind %d:", 5241 current->comm, current->pid, ei->kind); 5242 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 5243 dump_newline(&s); 5244 dump_line(&s, "Backtrace:"); 5245 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 5246 } 5247 5248 if (SCX_HAS_OP(sch, dump)) { 5249 ops_dump_init(&s, ""); 5250 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, dump, NULL, &dctx); 5251 ops_dump_exit(); 5252 } 5253 5254 dump_newline(&s); 5255 dump_line(&s, "CPU states"); 5256 dump_line(&s, "----------"); 5257 5258 for_each_possible_cpu(cpu) { 5259 struct rq *rq = cpu_rq(cpu); 5260 struct rq_flags rf; 5261 struct task_struct *p; 5262 struct seq_buf ns; 5263 size_t avail, used; 5264 bool idle; 5265 5266 rq_lock(rq, &rf); 5267 5268 idle = list_empty(&rq->scx.runnable_list) && 5269 rq->curr->sched_class == &idle_sched_class; 5270 5271 if (idle && !SCX_HAS_OP(sch, dump_cpu)) 5272 goto next; 5273 5274 /* 5275 * We don't yet know whether ops.dump_cpu() will produce output 5276 * and we may want to skip the default CPU dump if it doesn't. 5277 * Use a nested seq_buf to generate the standard dump so that we 5278 * can decide whether to commit later. 5279 */ 5280 avail = seq_buf_get_buf(&s, &buf); 5281 seq_buf_init(&ns, buf, avail); 5282 5283 dump_newline(&ns); 5284 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", 5285 cpu, rq->scx.nr_running, rq->scx.flags, 5286 rq->scx.cpu_released, rq->scx.ops_qseq, 5287 rq->scx.pnt_seq); 5288 dump_line(&ns, " curr=%s[%d] class=%ps", 5289 rq->curr->comm, rq->curr->pid, 5290 rq->curr->sched_class); 5291 if (!cpumask_empty(rq->scx.cpus_to_kick)) 5292 dump_line(&ns, " cpus_to_kick : %*pb", 5293 cpumask_pr_args(rq->scx.cpus_to_kick)); 5294 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 5295 dump_line(&ns, " idle_to_kick : %*pb", 5296 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 5297 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 5298 dump_line(&ns, " cpus_to_preempt: %*pb", 5299 cpumask_pr_args(rq->scx.cpus_to_preempt)); 5300 if (!cpumask_empty(rq->scx.cpus_to_wait)) 5301 dump_line(&ns, " cpus_to_wait : %*pb", 5302 cpumask_pr_args(rq->scx.cpus_to_wait)); 5303 5304 used = seq_buf_used(&ns); 5305 if (SCX_HAS_OP(sch, dump_cpu)) { 5306 ops_dump_init(&ns, " "); 5307 SCX_CALL_OP(sch, SCX_KF_REST, dump_cpu, NULL, 5308 &dctx, cpu, idle); 5309 ops_dump_exit(); 5310 } 5311 5312 /* 5313 * If idle && nothing generated by ops.dump_cpu(), there's 5314 * nothing interesting. Skip. 5315 */ 5316 if (idle && used == seq_buf_used(&ns)) 5317 goto next; 5318 5319 /* 5320 * $s may already have overflowed when $ns was created. If so, 5321 * calling commit on it will trigger BUG. 5322 */ 5323 if (avail) { 5324 seq_buf_commit(&s, seq_buf_used(&ns)); 5325 if (seq_buf_has_overflowed(&ns)) 5326 seq_buf_set_overflow(&s); 5327 } 5328 5329 if (rq->curr->sched_class == &ext_sched_class) 5330 scx_dump_task(&s, &dctx, rq->curr, '*'); 5331 5332 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 5333 scx_dump_task(&s, &dctx, p, ' '); 5334 next: 5335 rq_unlock(rq, &rf); 5336 } 5337 5338 dump_newline(&s); 5339 dump_line(&s, "Event counters"); 5340 dump_line(&s, "--------------"); 5341 5342 scx_read_events(sch, &events); 5343 scx_dump_event(s, &events, SCX_EV_SELECT_CPU_FALLBACK); 5344 scx_dump_event(s, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 5345 scx_dump_event(s, &events, SCX_EV_DISPATCH_KEEP_LAST); 5346 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_EXITING); 5347 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 5348 scx_dump_event(s, &events, SCX_EV_REFILL_SLICE_DFL); 5349 scx_dump_event(s, &events, SCX_EV_BYPASS_DURATION); 5350 scx_dump_event(s, &events, SCX_EV_BYPASS_DISPATCH); 5351 scx_dump_event(s, &events, SCX_EV_BYPASS_ACTIVATE); 5352 5353 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 5354 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 5355 trunc_marker, sizeof(trunc_marker)); 5356 5357 spin_unlock_irqrestore(&dump_lock, flags); 5358 } 5359 5360 static void scx_error_irq_workfn(struct irq_work *irq_work) 5361 { 5362 struct scx_sched *sch = container_of(irq_work, struct scx_sched, error_irq_work); 5363 struct scx_exit_info *ei = sch->exit_info; 5364 5365 if (ei->kind >= SCX_EXIT_ERROR) 5366 scx_dump_state(ei, sch->ops.exit_dump_len); 5367 5368 kthread_queue_work(sch->helper, &sch->disable_work); 5369 } 5370 5371 static void scx_vexit(struct scx_sched *sch, 5372 enum scx_exit_kind kind, s64 exit_code, 5373 const char *fmt, va_list args) 5374 { 5375 struct scx_exit_info *ei = sch->exit_info; 5376 int none = SCX_EXIT_NONE; 5377 5378 if (!atomic_try_cmpxchg(&sch->exit_kind, &none, kind)) 5379 return; 5380 5381 ei->exit_code = exit_code; 5382 #ifdef CONFIG_STACKTRACE 5383 if (kind >= SCX_EXIT_ERROR) 5384 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 5385 #endif 5386 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 5387 5388 /* 5389 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 5390 * in scx_disable_workfn(). 5391 */ 5392 ei->kind = kind; 5393 ei->reason = scx_exit_reason(ei->kind); 5394 5395 irq_work_queue(&sch->error_irq_work); 5396 } 5397 5398 static struct scx_sched *scx_alloc_and_add_sched(struct sched_ext_ops *ops) 5399 { 5400 struct scx_sched *sch; 5401 int node, ret; 5402 5403 sch = kzalloc(sizeof(*sch), GFP_KERNEL); 5404 if (!sch) 5405 return ERR_PTR(-ENOMEM); 5406 5407 sch->exit_info = alloc_exit_info(ops->exit_dump_len); 5408 if (!sch->exit_info) { 5409 ret = -ENOMEM; 5410 goto err_free_sch; 5411 } 5412 5413 ret = rhashtable_init(&sch->dsq_hash, &dsq_hash_params); 5414 if (ret < 0) 5415 goto err_free_ei; 5416 5417 sch->global_dsqs = kcalloc(nr_node_ids, sizeof(sch->global_dsqs[0]), 5418 GFP_KERNEL); 5419 if (!sch->global_dsqs) { 5420 ret = -ENOMEM; 5421 goto err_free_hash; 5422 } 5423 5424 for_each_node_state(node, N_POSSIBLE) { 5425 struct scx_dispatch_q *dsq; 5426 5427 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node); 5428 if (!dsq) { 5429 ret = -ENOMEM; 5430 goto err_free_gdsqs; 5431 } 5432 5433 init_dsq(dsq, SCX_DSQ_GLOBAL); 5434 sch->global_dsqs[node] = dsq; 5435 } 5436 5437 sch->event_stats_cpu = alloc_percpu(struct scx_event_stats); 5438 if (!sch->event_stats_cpu) 5439 goto err_free_gdsqs; 5440 5441 sch->helper = kthread_run_worker(0, "sched_ext_helper"); 5442 if (!sch->helper) 5443 goto err_free_event_stats; 5444 sched_set_fifo(sch->helper->task); 5445 5446 atomic_set(&sch->exit_kind, SCX_EXIT_NONE); 5447 init_irq_work(&sch->error_irq_work, scx_error_irq_workfn); 5448 kthread_init_work(&sch->disable_work, scx_disable_workfn); 5449 sch->ops = *ops; 5450 ops->priv = sch; 5451 5452 sch->kobj.kset = scx_kset; 5453 ret = kobject_init_and_add(&sch->kobj, &scx_ktype, NULL, "root"); 5454 if (ret < 0) 5455 goto err_stop_helper; 5456 5457 return sch; 5458 5459 err_stop_helper: 5460 kthread_stop(sch->helper->task); 5461 err_free_event_stats: 5462 free_percpu(sch->event_stats_cpu); 5463 err_free_gdsqs: 5464 for_each_node_state(node, N_POSSIBLE) 5465 kfree(sch->global_dsqs[node]); 5466 kfree(sch->global_dsqs); 5467 err_free_hash: 5468 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL); 5469 err_free_ei: 5470 free_exit_info(sch->exit_info); 5471 err_free_sch: 5472 kfree(sch); 5473 return ERR_PTR(ret); 5474 } 5475 5476 static void check_hotplug_seq(struct scx_sched *sch, 5477 const struct sched_ext_ops *ops) 5478 { 5479 unsigned long long global_hotplug_seq; 5480 5481 /* 5482 * If a hotplug event has occurred between when a scheduler was 5483 * initialized, and when we were able to attach, exit and notify user 5484 * space about it. 5485 */ 5486 if (ops->hotplug_seq) { 5487 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); 5488 if (ops->hotplug_seq != global_hotplug_seq) { 5489 scx_exit(sch, SCX_EXIT_UNREG_KERN, 5490 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 5491 "expected hotplug seq %llu did not match actual %llu", 5492 ops->hotplug_seq, global_hotplug_seq); 5493 } 5494 } 5495 } 5496 5497 static int validate_ops(struct scx_sched *sch, const struct sched_ext_ops *ops) 5498 { 5499 /* 5500 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 5501 * ops.enqueue() callback isn't implemented. 5502 */ 5503 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 5504 scx_error(sch, "SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 5505 return -EINVAL; 5506 } 5507 5508 /* 5509 * SCX_OPS_BUILTIN_IDLE_PER_NODE requires built-in CPU idle 5510 * selection policy to be enabled. 5511 */ 5512 if ((ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE) && 5513 (ops->update_idle && !(ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))) { 5514 scx_error(sch, "SCX_OPS_BUILTIN_IDLE_PER_NODE requires CPU idle selection enabled"); 5515 return -EINVAL; 5516 } 5517 5518 if (ops->flags & SCX_OPS_HAS_CGROUP_WEIGHT) 5519 pr_warn("SCX_OPS_HAS_CGROUP_WEIGHT is deprecated and a noop\n"); 5520 5521 return 0; 5522 } 5523 5524 static int scx_enable(struct sched_ext_ops *ops, struct bpf_link *link) 5525 { 5526 struct scx_sched *sch; 5527 struct scx_task_iter sti; 5528 struct task_struct *p; 5529 unsigned long timeout; 5530 int i, cpu, ret; 5531 5532 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), 5533 cpu_possible_mask)) { 5534 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n"); 5535 return -EINVAL; 5536 } 5537 5538 mutex_lock(&scx_enable_mutex); 5539 5540 if (scx_enable_state() != SCX_DISABLED) { 5541 ret = -EBUSY; 5542 goto err_unlock; 5543 } 5544 5545 sch = scx_alloc_and_add_sched(ops); 5546 if (IS_ERR(sch)) { 5547 ret = PTR_ERR(sch); 5548 goto err_unlock; 5549 } 5550 5551 /* 5552 * Transition to ENABLING and clear exit info to arm the disable path. 5553 * Failure triggers full disabling from here on. 5554 */ 5555 WARN_ON_ONCE(scx_set_enable_state(SCX_ENABLING) != SCX_DISABLED); 5556 WARN_ON_ONCE(scx_root); 5557 5558 atomic_long_set(&scx_nr_rejected, 0); 5559 5560 for_each_possible_cpu(cpu) 5561 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; 5562 5563 /* 5564 * Keep CPUs stable during enable so that the BPF scheduler can track 5565 * online CPUs by watching ->on/offline_cpu() after ->init(). 5566 */ 5567 cpus_read_lock(); 5568 5569 /* 5570 * Make the scheduler instance visible. Must be inside cpus_read_lock(). 5571 * See handle_hotplug(). 5572 */ 5573 rcu_assign_pointer(scx_root, sch); 5574 5575 scx_idle_enable(ops); 5576 5577 if (sch->ops.init) { 5578 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init, NULL); 5579 if (ret) { 5580 ret = ops_sanitize_err(sch, "init", ret); 5581 cpus_read_unlock(); 5582 scx_error(sch, "ops.init() failed (%d)", ret); 5583 goto err_disable; 5584 } 5585 } 5586 5587 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) 5588 if (((void (**)(void))ops)[i]) 5589 set_bit(i, sch->has_op); 5590 5591 check_hotplug_seq(sch, ops); 5592 scx_idle_update_selcpu_topology(ops); 5593 5594 cpus_read_unlock(); 5595 5596 ret = validate_ops(sch, ops); 5597 if (ret) 5598 goto err_disable; 5599 5600 WARN_ON_ONCE(scx_dsp_ctx); 5601 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 5602 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 5603 scx_dsp_max_batch), 5604 __alignof__(struct scx_dsp_ctx)); 5605 if (!scx_dsp_ctx) { 5606 ret = -ENOMEM; 5607 goto err_disable; 5608 } 5609 5610 if (ops->timeout_ms) 5611 timeout = msecs_to_jiffies(ops->timeout_ms); 5612 else 5613 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 5614 5615 WRITE_ONCE(scx_watchdog_timeout, timeout); 5616 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 5617 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 5618 scx_watchdog_timeout / 2); 5619 5620 /* 5621 * Once __scx_enabled is set, %current can be switched to SCX anytime. 5622 * This can lead to stalls as some BPF schedulers (e.g. userspace 5623 * scheduling) may not function correctly before all tasks are switched. 5624 * Init in bypass mode to guarantee forward progress. 5625 */ 5626 scx_bypass(true); 5627 5628 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 5629 if (((void (**)(void))ops)[i]) 5630 set_bit(i, sch->has_op); 5631 5632 if (sch->ops.cpu_acquire || sch->ops.cpu_release) 5633 sch->ops.flags |= SCX_OPS_HAS_CPU_PREEMPT; 5634 5635 /* 5636 * Lock out forks, cgroup on/offlining and moves before opening the 5637 * floodgate so that they don't wander into the operations prematurely. 5638 */ 5639 percpu_down_write(&scx_fork_rwsem); 5640 5641 WARN_ON_ONCE(scx_init_task_enabled); 5642 scx_init_task_enabled = true; 5643 5644 /* 5645 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 5646 * preventing new tasks from being added. No need to exclude tasks 5647 * leaving as sched_ext_free() can handle both prepped and enabled 5648 * tasks. Prep all tasks first and then enable them with preemption 5649 * disabled. 5650 * 5651 * All cgroups should be initialized before scx_init_task() so that the 5652 * BPF scheduler can reliably track each task's cgroup membership from 5653 * scx_init_task(). Lock out cgroup on/offlining and task migrations 5654 * while tasks are being initialized so that scx_cgroup_can_attach() 5655 * never sees uninitialized tasks. 5656 */ 5657 scx_cgroup_lock(); 5658 ret = scx_cgroup_init(sch); 5659 if (ret) 5660 goto err_disable_unlock_all; 5661 5662 scx_task_iter_start(&sti); 5663 while ((p = scx_task_iter_next_locked(&sti))) { 5664 /* 5665 * @p may already be dead, have lost all its usages counts and 5666 * be waiting for RCU grace period before being freed. @p can't 5667 * be initialized for SCX in such cases and should be ignored. 5668 */ 5669 if (!tryget_task_struct(p)) 5670 continue; 5671 5672 scx_task_iter_unlock(&sti); 5673 5674 ret = scx_init_task(p, task_group(p), false); 5675 if (ret) { 5676 put_task_struct(p); 5677 scx_task_iter_relock(&sti); 5678 scx_task_iter_stop(&sti); 5679 scx_error(sch, "ops.init_task() failed (%d) for %s[%d]", 5680 ret, p->comm, p->pid); 5681 goto err_disable_unlock_all; 5682 } 5683 5684 scx_set_task_state(p, SCX_TASK_READY); 5685 5686 put_task_struct(p); 5687 scx_task_iter_relock(&sti); 5688 } 5689 scx_task_iter_stop(&sti); 5690 scx_cgroup_unlock(); 5691 percpu_up_write(&scx_fork_rwsem); 5692 5693 /* 5694 * All tasks are READY. It's safe to turn on scx_enabled() and switch 5695 * all eligible tasks. 5696 */ 5697 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 5698 static_branch_enable(&__scx_enabled); 5699 5700 /* 5701 * We're fully committed and can't fail. The task READY -> ENABLED 5702 * transitions here are synchronized against sched_ext_free() through 5703 * scx_tasks_lock. 5704 */ 5705 percpu_down_write(&scx_fork_rwsem); 5706 scx_task_iter_start(&sti); 5707 while ((p = scx_task_iter_next_locked(&sti))) { 5708 const struct sched_class *old_class = p->sched_class; 5709 const struct sched_class *new_class = 5710 __setscheduler_class(p->policy, p->prio); 5711 struct sched_enq_and_set_ctx ctx; 5712 5713 if (old_class != new_class && p->se.sched_delayed) 5714 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5715 5716 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 5717 5718 p->scx.slice = SCX_SLICE_DFL; 5719 p->sched_class = new_class; 5720 check_class_changing(task_rq(p), p, old_class); 5721 5722 sched_enq_and_set_task(&ctx); 5723 5724 check_class_changed(task_rq(p), p, old_class, p->prio); 5725 } 5726 scx_task_iter_stop(&sti); 5727 percpu_up_write(&scx_fork_rwsem); 5728 5729 scx_bypass(false); 5730 5731 if (!scx_tryset_enable_state(SCX_ENABLED, SCX_ENABLING)) { 5732 WARN_ON_ONCE(atomic_read(&sch->exit_kind) == SCX_EXIT_NONE); 5733 goto err_disable; 5734 } 5735 5736 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 5737 static_branch_enable(&__scx_switched_all); 5738 5739 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", 5740 sch->ops.name, scx_switched_all() ? "" : " (partial)"); 5741 kobject_uevent(&sch->kobj, KOBJ_ADD); 5742 mutex_unlock(&scx_enable_mutex); 5743 5744 atomic_long_inc(&scx_enable_seq); 5745 5746 return 0; 5747 5748 err_unlock: 5749 mutex_unlock(&scx_enable_mutex); 5750 return ret; 5751 5752 err_disable_unlock_all: 5753 scx_cgroup_unlock(); 5754 percpu_up_write(&scx_fork_rwsem); 5755 scx_bypass(false); 5756 err_disable: 5757 mutex_unlock(&scx_enable_mutex); 5758 /* 5759 * Returning an error code here would not pass all the error information 5760 * to userspace. Record errno using scx_error() for cases scx_error() 5761 * wasn't already invoked and exit indicating success so that the error 5762 * is notified through ops.exit() with all the details. 5763 * 5764 * Flush scx_disable_work to ensure that error is reported before init 5765 * completion. sch's base reference will be put by bpf_scx_unreg(). 5766 */ 5767 scx_error(sch, "scx_enable() failed (%d)", ret); 5768 kthread_flush_work(&sch->disable_work); 5769 return 0; 5770 } 5771 5772 5773 /******************************************************************************** 5774 * bpf_struct_ops plumbing. 5775 */ 5776 #include <linux/bpf_verifier.h> 5777 #include <linux/bpf.h> 5778 #include <linux/btf.h> 5779 5780 static const struct btf_type *task_struct_type; 5781 5782 static bool bpf_scx_is_valid_access(int off, int size, 5783 enum bpf_access_type type, 5784 const struct bpf_prog *prog, 5785 struct bpf_insn_access_aux *info) 5786 { 5787 if (type != BPF_READ) 5788 return false; 5789 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 5790 return false; 5791 if (off % size != 0) 5792 return false; 5793 5794 return btf_ctx_access(off, size, type, prog, info); 5795 } 5796 5797 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 5798 const struct bpf_reg_state *reg, int off, 5799 int size) 5800 { 5801 const struct btf_type *t; 5802 5803 t = btf_type_by_id(reg->btf, reg->btf_id); 5804 if (t == task_struct_type) { 5805 if (off >= offsetof(struct task_struct, scx.slice) && 5806 off + size <= offsetofend(struct task_struct, scx.slice)) 5807 return SCALAR_VALUE; 5808 if (off >= offsetof(struct task_struct, scx.dsq_vtime) && 5809 off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) 5810 return SCALAR_VALUE; 5811 if (off >= offsetof(struct task_struct, scx.disallow) && 5812 off + size <= offsetofend(struct task_struct, scx.disallow)) 5813 return SCALAR_VALUE; 5814 } 5815 5816 return -EACCES; 5817 } 5818 5819 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 5820 .get_func_proto = bpf_base_func_proto, 5821 .is_valid_access = bpf_scx_is_valid_access, 5822 .btf_struct_access = bpf_scx_btf_struct_access, 5823 }; 5824 5825 static int bpf_scx_init_member(const struct btf_type *t, 5826 const struct btf_member *member, 5827 void *kdata, const void *udata) 5828 { 5829 const struct sched_ext_ops *uops = udata; 5830 struct sched_ext_ops *ops = kdata; 5831 u32 moff = __btf_member_bit_offset(t, member) / 8; 5832 int ret; 5833 5834 switch (moff) { 5835 case offsetof(struct sched_ext_ops, dispatch_max_batch): 5836 if (*(u32 *)(udata + moff) > INT_MAX) 5837 return -E2BIG; 5838 ops->dispatch_max_batch = *(u32 *)(udata + moff); 5839 return 1; 5840 case offsetof(struct sched_ext_ops, flags): 5841 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 5842 return -EINVAL; 5843 ops->flags = *(u64 *)(udata + moff); 5844 return 1; 5845 case offsetof(struct sched_ext_ops, name): 5846 ret = bpf_obj_name_cpy(ops->name, uops->name, 5847 sizeof(ops->name)); 5848 if (ret < 0) 5849 return ret; 5850 if (ret == 0) 5851 return -EINVAL; 5852 return 1; 5853 case offsetof(struct sched_ext_ops, timeout_ms): 5854 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 5855 SCX_WATCHDOG_MAX_TIMEOUT) 5856 return -E2BIG; 5857 ops->timeout_ms = *(u32 *)(udata + moff); 5858 return 1; 5859 case offsetof(struct sched_ext_ops, exit_dump_len): 5860 ops->exit_dump_len = 5861 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 5862 return 1; 5863 case offsetof(struct sched_ext_ops, hotplug_seq): 5864 ops->hotplug_seq = *(u64 *)(udata + moff); 5865 return 1; 5866 } 5867 5868 return 0; 5869 } 5870 5871 static int bpf_scx_check_member(const struct btf_type *t, 5872 const struct btf_member *member, 5873 const struct bpf_prog *prog) 5874 { 5875 u32 moff = __btf_member_bit_offset(t, member) / 8; 5876 5877 switch (moff) { 5878 case offsetof(struct sched_ext_ops, init_task): 5879 #ifdef CONFIG_EXT_GROUP_SCHED 5880 case offsetof(struct sched_ext_ops, cgroup_init): 5881 case offsetof(struct sched_ext_ops, cgroup_exit): 5882 case offsetof(struct sched_ext_ops, cgroup_prep_move): 5883 #endif 5884 case offsetof(struct sched_ext_ops, cpu_online): 5885 case offsetof(struct sched_ext_ops, cpu_offline): 5886 case offsetof(struct sched_ext_ops, init): 5887 case offsetof(struct sched_ext_ops, exit): 5888 break; 5889 default: 5890 if (prog->sleepable) 5891 return -EINVAL; 5892 } 5893 5894 return 0; 5895 } 5896 5897 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 5898 { 5899 return scx_enable(kdata, link); 5900 } 5901 5902 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 5903 { 5904 struct sched_ext_ops *ops = kdata; 5905 struct scx_sched *sch = ops->priv; 5906 5907 scx_disable(SCX_EXIT_UNREG); 5908 kthread_flush_work(&sch->disable_work); 5909 kobject_put(&sch->kobj); 5910 } 5911 5912 static int bpf_scx_init(struct btf *btf) 5913 { 5914 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]); 5915 5916 return 0; 5917 } 5918 5919 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 5920 { 5921 /* 5922 * sched_ext does not support updating the actively-loaded BPF 5923 * scheduler, as registering a BPF scheduler can always fail if the 5924 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 5925 * etc. Similarly, we can always race with unregistration happening 5926 * elsewhere, such as with sysrq. 5927 */ 5928 return -EOPNOTSUPP; 5929 } 5930 5931 static int bpf_scx_validate(void *kdata) 5932 { 5933 return 0; 5934 } 5935 5936 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 5937 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {} 5938 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {} 5939 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {} 5940 static void sched_ext_ops__tick(struct task_struct *p) {} 5941 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {} 5942 static void sched_ext_ops__running(struct task_struct *p) {} 5943 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {} 5944 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {} 5945 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; } 5946 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; } 5947 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {} 5948 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {} 5949 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {} 5950 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {} 5951 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {} 5952 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 5953 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {} 5954 static void sched_ext_ops__enable(struct task_struct *p) {} 5955 static void sched_ext_ops__disable(struct task_struct *p) {} 5956 #ifdef CONFIG_EXT_GROUP_SCHED 5957 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } 5958 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {} 5959 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } 5960 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5961 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5962 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {} 5963 static void sched_ext_ops__cgroup_set_bandwidth(struct cgroup *cgrp, u64 period_us, u64 quota_us, u64 burst_us) {} 5964 #endif 5965 static void sched_ext_ops__cpu_online(s32 cpu) {} 5966 static void sched_ext_ops__cpu_offline(s32 cpu) {} 5967 static s32 sched_ext_ops__init(void) { return -EINVAL; } 5968 static void sched_ext_ops__exit(struct scx_exit_info *info) {} 5969 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {} 5970 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} 5971 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {} 5972 5973 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 5974 .select_cpu = sched_ext_ops__select_cpu, 5975 .enqueue = sched_ext_ops__enqueue, 5976 .dequeue = sched_ext_ops__dequeue, 5977 .dispatch = sched_ext_ops__dispatch, 5978 .tick = sched_ext_ops__tick, 5979 .runnable = sched_ext_ops__runnable, 5980 .running = sched_ext_ops__running, 5981 .stopping = sched_ext_ops__stopping, 5982 .quiescent = sched_ext_ops__quiescent, 5983 .yield = sched_ext_ops__yield, 5984 .core_sched_before = sched_ext_ops__core_sched_before, 5985 .set_weight = sched_ext_ops__set_weight, 5986 .set_cpumask = sched_ext_ops__set_cpumask, 5987 .update_idle = sched_ext_ops__update_idle, 5988 .cpu_acquire = sched_ext_ops__cpu_acquire, 5989 .cpu_release = sched_ext_ops__cpu_release, 5990 .init_task = sched_ext_ops__init_task, 5991 .exit_task = sched_ext_ops__exit_task, 5992 .enable = sched_ext_ops__enable, 5993 .disable = sched_ext_ops__disable, 5994 #ifdef CONFIG_EXT_GROUP_SCHED 5995 .cgroup_init = sched_ext_ops__cgroup_init, 5996 .cgroup_exit = sched_ext_ops__cgroup_exit, 5997 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move, 5998 .cgroup_move = sched_ext_ops__cgroup_move, 5999 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move, 6000 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight, 6001 .cgroup_set_bandwidth = sched_ext_ops__cgroup_set_bandwidth, 6002 #endif 6003 .cpu_online = sched_ext_ops__cpu_online, 6004 .cpu_offline = sched_ext_ops__cpu_offline, 6005 .init = sched_ext_ops__init, 6006 .exit = sched_ext_ops__exit, 6007 .dump = sched_ext_ops__dump, 6008 .dump_cpu = sched_ext_ops__dump_cpu, 6009 .dump_task = sched_ext_ops__dump_task, 6010 }; 6011 6012 static struct bpf_struct_ops bpf_sched_ext_ops = { 6013 .verifier_ops = &bpf_scx_verifier_ops, 6014 .reg = bpf_scx_reg, 6015 .unreg = bpf_scx_unreg, 6016 .check_member = bpf_scx_check_member, 6017 .init_member = bpf_scx_init_member, 6018 .init = bpf_scx_init, 6019 .update = bpf_scx_update, 6020 .validate = bpf_scx_validate, 6021 .name = "sched_ext_ops", 6022 .owner = THIS_MODULE, 6023 .cfi_stubs = &__bpf_ops_sched_ext_ops 6024 }; 6025 6026 6027 /******************************************************************************** 6028 * System integration and init. 6029 */ 6030 6031 static void sysrq_handle_sched_ext_reset(u8 key) 6032 { 6033 scx_disable(SCX_EXIT_SYSRQ); 6034 } 6035 6036 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 6037 .handler = sysrq_handle_sched_ext_reset, 6038 .help_msg = "reset-sched-ext(S)", 6039 .action_msg = "Disable sched_ext and revert all tasks to CFS", 6040 .enable_mask = SYSRQ_ENABLE_RTNICE, 6041 }; 6042 6043 static void sysrq_handle_sched_ext_dump(u8 key) 6044 { 6045 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 6046 6047 if (scx_enabled()) 6048 scx_dump_state(&ei, 0); 6049 } 6050 6051 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 6052 .handler = sysrq_handle_sched_ext_dump, 6053 .help_msg = "dump-sched-ext(D)", 6054 .action_msg = "Trigger sched_ext debug dump", 6055 .enable_mask = SYSRQ_ENABLE_RTNICE, 6056 }; 6057 6058 static bool can_skip_idle_kick(struct rq *rq) 6059 { 6060 lockdep_assert_rq_held(rq); 6061 6062 /* 6063 * We can skip idle kicking if @rq is going to go through at least one 6064 * full SCX scheduling cycle before going idle. Just checking whether 6065 * curr is not idle is insufficient because we could be racing 6066 * balance_one() trying to pull the next task from a remote rq, which 6067 * may fail, and @rq may become idle afterwards. 6068 * 6069 * The race window is small and we don't and can't guarantee that @rq is 6070 * only kicked while idle anyway. Skip only when sure. 6071 */ 6072 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); 6073 } 6074 6075 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) 6076 { 6077 struct rq *rq = cpu_rq(cpu); 6078 struct scx_rq *this_scx = &this_rq->scx; 6079 bool should_wait = false; 6080 unsigned long flags; 6081 6082 raw_spin_rq_lock_irqsave(rq, flags); 6083 6084 /* 6085 * During CPU hotplug, a CPU may depend on kicking itself to make 6086 * forward progress. Allow kicking self regardless of online state. 6087 */ 6088 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { 6089 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 6090 if (rq->curr->sched_class == &ext_sched_class) 6091 rq->curr->scx.slice = 0; 6092 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 6093 } 6094 6095 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 6096 pseqs[cpu] = rq->scx.pnt_seq; 6097 should_wait = true; 6098 } 6099 6100 resched_curr(rq); 6101 } else { 6102 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 6103 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 6104 } 6105 6106 raw_spin_rq_unlock_irqrestore(rq, flags); 6107 6108 return should_wait; 6109 } 6110 6111 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 6112 { 6113 struct rq *rq = cpu_rq(cpu); 6114 unsigned long flags; 6115 6116 raw_spin_rq_lock_irqsave(rq, flags); 6117 6118 if (!can_skip_idle_kick(rq) && 6119 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 6120 resched_curr(rq); 6121 6122 raw_spin_rq_unlock_irqrestore(rq, flags); 6123 } 6124 6125 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 6126 { 6127 struct rq *this_rq = this_rq(); 6128 struct scx_rq *this_scx = &this_rq->scx; 6129 unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs); 6130 bool should_wait = false; 6131 s32 cpu; 6132 6133 for_each_cpu(cpu, this_scx->cpus_to_kick) { 6134 should_wait |= kick_one_cpu(cpu, this_rq, pseqs); 6135 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 6136 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 6137 } 6138 6139 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 6140 kick_one_cpu_if_idle(cpu, this_rq); 6141 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 6142 } 6143 6144 if (!should_wait) 6145 return; 6146 6147 for_each_cpu(cpu, this_scx->cpus_to_wait) { 6148 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; 6149 6150 if (cpu != cpu_of(this_rq)) { 6151 /* 6152 * Pairs with smp_store_release() issued by this CPU in 6153 * switch_class() on the resched path. 6154 * 6155 * We busy-wait here to guarantee that no other task can 6156 * be scheduled on our core before the target CPU has 6157 * entered the resched path. 6158 */ 6159 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) 6160 cpu_relax(); 6161 } 6162 6163 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 6164 } 6165 } 6166 6167 /** 6168 * print_scx_info - print out sched_ext scheduler state 6169 * @log_lvl: the log level to use when printing 6170 * @p: target task 6171 * 6172 * If a sched_ext scheduler is enabled, print the name and state of the 6173 * scheduler. If @p is on sched_ext, print further information about the task. 6174 * 6175 * This function can be safely called on any task as long as the task_struct 6176 * itself is accessible. While safe, this function isn't synchronized and may 6177 * print out mixups or garbages of limited length. 6178 */ 6179 void print_scx_info(const char *log_lvl, struct task_struct *p) 6180 { 6181 struct scx_sched *sch = scx_root; 6182 enum scx_enable_state state = scx_enable_state(); 6183 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 6184 char runnable_at_buf[22] = "?"; 6185 struct sched_class *class; 6186 unsigned long runnable_at; 6187 6188 if (state == SCX_DISABLED) 6189 return; 6190 6191 /* 6192 * Carefully check if the task was running on sched_ext, and then 6193 * carefully copy the time it's been runnable, and its state. 6194 */ 6195 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 6196 class != &ext_sched_class) { 6197 printk("%sSched_ext: %s (%s%s)", log_lvl, sch->ops.name, 6198 scx_enable_state_str[state], all); 6199 return; 6200 } 6201 6202 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 6203 sizeof(runnable_at))) 6204 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 6205 jiffies_delta_msecs(runnable_at, jiffies)); 6206 6207 /* print everything onto one line to conserve console space */ 6208 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 6209 log_lvl, sch->ops.name, scx_enable_state_str[state], all, 6210 runnable_at_buf); 6211 } 6212 6213 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) 6214 { 6215 /* 6216 * SCX schedulers often have userspace components which are sometimes 6217 * involved in critial scheduling paths. PM operations involve freezing 6218 * userspace which can lead to scheduling misbehaviors including stalls. 6219 * Let's bypass while PM operations are in progress. 6220 */ 6221 switch (event) { 6222 case PM_HIBERNATION_PREPARE: 6223 case PM_SUSPEND_PREPARE: 6224 case PM_RESTORE_PREPARE: 6225 scx_bypass(true); 6226 break; 6227 case PM_POST_HIBERNATION: 6228 case PM_POST_SUSPEND: 6229 case PM_POST_RESTORE: 6230 scx_bypass(false); 6231 break; 6232 } 6233 6234 return NOTIFY_OK; 6235 } 6236 6237 static struct notifier_block scx_pm_notifier = { 6238 .notifier_call = scx_pm_handler, 6239 }; 6240 6241 void __init init_sched_ext_class(void) 6242 { 6243 s32 cpu, v; 6244 6245 /* 6246 * The following is to prevent the compiler from optimizing out the enum 6247 * definitions so that BPF scheduler implementations can use them 6248 * through the generated vmlinux.h. 6249 */ 6250 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | 6251 SCX_TG_ONLINE); 6252 6253 scx_idle_init_masks(); 6254 6255 scx_kick_cpus_pnt_seqs = 6256 __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids, 6257 __alignof__(scx_kick_cpus_pnt_seqs[0])); 6258 BUG_ON(!scx_kick_cpus_pnt_seqs); 6259 6260 for_each_possible_cpu(cpu) { 6261 struct rq *rq = cpu_rq(cpu); 6262 int n = cpu_to_node(cpu); 6263 6264 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 6265 INIT_LIST_HEAD(&rq->scx.runnable_list); 6266 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); 6267 6268 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick, GFP_KERNEL, n)); 6269 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL, n)); 6270 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_preempt, GFP_KERNEL, n)); 6271 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_wait, GFP_KERNEL, n)); 6272 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn); 6273 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); 6274 6275 if (cpu_online(cpu)) 6276 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; 6277 } 6278 6279 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 6280 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 6281 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 6282 } 6283 6284 6285 /******************************************************************************** 6286 * Helpers that can be called from the BPF scheduler. 6287 */ 6288 static bool scx_dsq_insert_preamble(struct task_struct *p, u64 enq_flags) 6289 { 6290 if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 6291 return false; 6292 6293 lockdep_assert_irqs_disabled(); 6294 6295 if (unlikely(!p)) { 6296 scx_kf_error("called with NULL task"); 6297 return false; 6298 } 6299 6300 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 6301 scx_kf_error("invalid enq_flags 0x%llx", enq_flags); 6302 return false; 6303 } 6304 6305 return true; 6306 } 6307 6308 static void scx_dsq_insert_commit(struct task_struct *p, u64 dsq_id, 6309 u64 enq_flags) 6310 { 6311 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6312 struct task_struct *ddsp_task; 6313 6314 ddsp_task = __this_cpu_read(direct_dispatch_task); 6315 if (ddsp_task) { 6316 mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags); 6317 return; 6318 } 6319 6320 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 6321 scx_kf_error("dispatch buffer overflow"); 6322 return; 6323 } 6324 6325 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 6326 .task = p, 6327 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 6328 .dsq_id = dsq_id, 6329 .enq_flags = enq_flags, 6330 }; 6331 } 6332 6333 __bpf_kfunc_start_defs(); 6334 6335 /** 6336 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ 6337 * @p: task_struct to insert 6338 * @dsq_id: DSQ to insert into 6339 * @slice: duration @p can run for in nsecs, 0 to keep the current value 6340 * @enq_flags: SCX_ENQ_* 6341 * 6342 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to 6343 * call this function spuriously. Can be called from ops.enqueue(), 6344 * ops.select_cpu(), and ops.dispatch(). 6345 * 6346 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 6347 * and @p must match the task being enqueued. 6348 * 6349 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 6350 * will be directly inserted into the corresponding dispatch queue after 6351 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be 6352 * inserted into the local DSQ of the CPU returned by ops.select_cpu(). 6353 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 6354 * task is inserted. 6355 * 6356 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 6357 * and this function can be called upto ops.dispatch_max_batch times to insert 6358 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 6359 * remaining slots. scx_bpf_consume() flushes the batch and resets the counter. 6360 * 6361 * This function doesn't have any locking restrictions and may be called under 6362 * BPF locks (in the future when BPF introduces more flexible locking). 6363 * 6364 * @p is allowed to run for @slice. The scheduling path is triggered on slice 6365 * exhaustion. If zero, the current residual slice is maintained. If 6366 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 6367 * scx_bpf_kick_cpu() to trigger scheduling. 6368 */ 6369 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice, 6370 u64 enq_flags) 6371 { 6372 if (!scx_dsq_insert_preamble(p, enq_flags)) 6373 return; 6374 6375 if (slice) 6376 p->scx.slice = slice; 6377 else 6378 p->scx.slice = p->scx.slice ?: 1; 6379 6380 scx_dsq_insert_commit(p, dsq_id, enq_flags); 6381 } 6382 6383 /* for backward compatibility, will be removed in v6.15 */ 6384 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice, 6385 u64 enq_flags) 6386 { 6387 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch() renamed to scx_bpf_dsq_insert()"); 6388 scx_bpf_dsq_insert(p, dsq_id, slice, enq_flags); 6389 } 6390 6391 /** 6392 * scx_bpf_dsq_insert_vtime - Insert a task into the vtime priority queue of a DSQ 6393 * @p: task_struct to insert 6394 * @dsq_id: DSQ to insert into 6395 * @slice: duration @p can run for in nsecs, 0 to keep the current value 6396 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ 6397 * @enq_flags: SCX_ENQ_* 6398 * 6399 * Insert @p into the vtime priority queue of the DSQ identified by @dsq_id. 6400 * Tasks queued into the priority queue are ordered by @vtime. All other aspects 6401 * are identical to scx_bpf_dsq_insert(). 6402 * 6403 * @vtime ordering is according to time_before64() which considers wrapping. A 6404 * numerically larger vtime may indicate an earlier position in the ordering and 6405 * vice-versa. 6406 * 6407 * A DSQ can only be used as a FIFO or priority queue at any given time and this 6408 * function must not be called on a DSQ which already has one or more FIFO tasks 6409 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and 6410 * SCX_DSQ_GLOBAL) cannot be used as priority queues. 6411 */ 6412 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id, 6413 u64 slice, u64 vtime, u64 enq_flags) 6414 { 6415 if (!scx_dsq_insert_preamble(p, enq_flags)) 6416 return; 6417 6418 if (slice) 6419 p->scx.slice = slice; 6420 else 6421 p->scx.slice = p->scx.slice ?: 1; 6422 6423 p->scx.dsq_vtime = vtime; 6424 6425 scx_dsq_insert_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6426 } 6427 6428 /* for backward compatibility, will be removed in v6.15 */ 6429 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id, 6430 u64 slice, u64 vtime, u64 enq_flags) 6431 { 6432 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_vtime() renamed to scx_bpf_dsq_insert_vtime()"); 6433 scx_bpf_dsq_insert_vtime(p, dsq_id, slice, vtime, enq_flags); 6434 } 6435 6436 __bpf_kfunc_end_defs(); 6437 6438 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 6439 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU) 6440 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU) 6441 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU) 6442 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU) 6443 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 6444 6445 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 6446 .owner = THIS_MODULE, 6447 .set = &scx_kfunc_ids_enqueue_dispatch, 6448 }; 6449 6450 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit, 6451 struct task_struct *p, u64 dsq_id, u64 enq_flags) 6452 { 6453 struct scx_sched *sch = scx_root; 6454 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; 6455 struct rq *this_rq, *src_rq, *locked_rq; 6456 bool dispatched = false; 6457 bool in_balance; 6458 unsigned long flags; 6459 6460 if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH)) 6461 return false; 6462 6463 /* 6464 * Can be called from either ops.dispatch() locking this_rq() or any 6465 * context where no rq lock is held. If latter, lock @p's task_rq which 6466 * we'll likely need anyway. 6467 */ 6468 src_rq = task_rq(p); 6469 6470 local_irq_save(flags); 6471 this_rq = this_rq(); 6472 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; 6473 6474 if (in_balance) { 6475 if (this_rq != src_rq) { 6476 raw_spin_rq_unlock(this_rq); 6477 raw_spin_rq_lock(src_rq); 6478 } 6479 } else { 6480 raw_spin_rq_lock(src_rq); 6481 } 6482 6483 /* 6484 * If the BPF scheduler keeps calling this function repeatedly, it can 6485 * cause similar live-lock conditions as consume_dispatch_q(). Insert a 6486 * breather if necessary. 6487 */ 6488 scx_breather(src_rq); 6489 6490 locked_rq = src_rq; 6491 raw_spin_lock(&src_dsq->lock); 6492 6493 /* 6494 * Did someone else get to it? @p could have already left $src_dsq, got 6495 * re-enqueud, or be in the process of being consumed by someone else. 6496 */ 6497 if (unlikely(p->scx.dsq != src_dsq || 6498 u32_before(kit->cursor.priv, p->scx.dsq_seq) || 6499 p->scx.holding_cpu >= 0) || 6500 WARN_ON_ONCE(src_rq != task_rq(p))) { 6501 raw_spin_unlock(&src_dsq->lock); 6502 goto out; 6503 } 6504 6505 /* @p is still on $src_dsq and stable, determine the destination */ 6506 dst_dsq = find_dsq_for_dispatch(sch, this_rq, dsq_id, p); 6507 6508 /* 6509 * Apply vtime and slice updates before moving so that the new time is 6510 * visible before inserting into $dst_dsq. @p is still on $src_dsq but 6511 * this is safe as we're locking it. 6512 */ 6513 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) 6514 p->scx.dsq_vtime = kit->vtime; 6515 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) 6516 p->scx.slice = kit->slice; 6517 6518 /* execute move */ 6519 locked_rq = move_task_between_dsqs(sch, p, enq_flags, src_dsq, dst_dsq); 6520 dispatched = true; 6521 out: 6522 if (in_balance) { 6523 if (this_rq != locked_rq) { 6524 raw_spin_rq_unlock(locked_rq); 6525 raw_spin_rq_lock(this_rq); 6526 } 6527 } else { 6528 raw_spin_rq_unlock_irqrestore(locked_rq, flags); 6529 } 6530 6531 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | 6532 __SCX_DSQ_ITER_HAS_VTIME); 6533 return dispatched; 6534 } 6535 6536 __bpf_kfunc_start_defs(); 6537 6538 /** 6539 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 6540 * 6541 * Can only be called from ops.dispatch(). 6542 */ 6543 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 6544 { 6545 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6546 return 0; 6547 6548 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 6549 } 6550 6551 /** 6552 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 6553 * 6554 * Cancel the latest dispatch. Can be called multiple times to cancel further 6555 * dispatches. Can only be called from ops.dispatch(). 6556 */ 6557 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 6558 { 6559 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6560 6561 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6562 return; 6563 6564 if (dspc->cursor > 0) 6565 dspc->cursor--; 6566 else 6567 scx_kf_error("dispatch buffer underflow"); 6568 } 6569 6570 /** 6571 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ 6572 * @dsq_id: DSQ to move task from 6573 * 6574 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's 6575 * local DSQ for execution. Can only be called from ops.dispatch(). 6576 * 6577 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert() 6578 * before trying to move from the specified DSQ. It may also grab rq locks and 6579 * thus can't be called under any BPF locks. 6580 * 6581 * Returns %true if a task has been moved, %false if there isn't any task to 6582 * move. 6583 */ 6584 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id) 6585 { 6586 struct scx_sched *sch = scx_root; 6587 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6588 struct scx_dispatch_q *dsq; 6589 6590 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6591 return false; 6592 6593 flush_dispatch_buf(sch, dspc->rq); 6594 6595 dsq = find_user_dsq(sch, dsq_id); 6596 if (unlikely(!dsq)) { 6597 scx_error(sch, "invalid DSQ ID 0x%016llx", dsq_id); 6598 return false; 6599 } 6600 6601 if (consume_dispatch_q(sch, dspc->rq, dsq)) { 6602 /* 6603 * A successfully consumed task can be dequeued before it starts 6604 * running while the CPU is trying to migrate other dispatched 6605 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 6606 * local DSQ. 6607 */ 6608 dspc->nr_tasks++; 6609 return true; 6610 } else { 6611 return false; 6612 } 6613 } 6614 6615 /* for backward compatibility, will be removed in v6.15 */ 6616 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id) 6617 { 6618 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_consume() renamed to scx_bpf_dsq_move_to_local()"); 6619 return scx_bpf_dsq_move_to_local(dsq_id); 6620 } 6621 6622 /** 6623 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs 6624 * @it__iter: DSQ iterator in progress 6625 * @slice: duration the moved task can run for in nsecs 6626 * 6627 * Override the slice of the next task that will be moved from @it__iter using 6628 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous 6629 * slice duration is kept. 6630 */ 6631 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, 6632 u64 slice) 6633 { 6634 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6635 6636 kit->slice = slice; 6637 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; 6638 } 6639 6640 /* for backward compatibility, will be removed in v6.15 */ 6641 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice( 6642 struct bpf_iter_scx_dsq *it__iter, u64 slice) 6643 { 6644 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_slice() renamed to scx_bpf_dsq_move_set_slice()"); 6645 scx_bpf_dsq_move_set_slice(it__iter, slice); 6646 } 6647 6648 /** 6649 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs 6650 * @it__iter: DSQ iterator in progress 6651 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ 6652 * 6653 * Override the vtime of the next task that will be moved from @it__iter using 6654 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice 6655 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the 6656 * override is ignored and cleared. 6657 */ 6658 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, 6659 u64 vtime) 6660 { 6661 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6662 6663 kit->vtime = vtime; 6664 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; 6665 } 6666 6667 /* for backward compatibility, will be removed in v6.15 */ 6668 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime( 6669 struct bpf_iter_scx_dsq *it__iter, u64 vtime) 6670 { 6671 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_vtime() renamed to scx_bpf_dsq_move_set_vtime()"); 6672 scx_bpf_dsq_move_set_vtime(it__iter, vtime); 6673 } 6674 6675 /** 6676 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ 6677 * @it__iter: DSQ iterator in progress 6678 * @p: task to transfer 6679 * @dsq_id: DSQ to move @p to 6680 * @enq_flags: SCX_ENQ_* 6681 * 6682 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ 6683 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can 6684 * be the destination. 6685 * 6686 * For the transfer to be successful, @p must still be on the DSQ and have been 6687 * queued before the DSQ iteration started. This function doesn't care whether 6688 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have 6689 * been queued before the iteration started. 6690 * 6691 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update. 6692 * 6693 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq 6694 * lock (e.g. BPF timers or SYSCALL programs). 6695 * 6696 * Returns %true if @p has been consumed, %false if @p had already been consumed 6697 * or dequeued. 6698 */ 6699 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, 6700 struct task_struct *p, u64 dsq_id, 6701 u64 enq_flags) 6702 { 6703 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 6704 p, dsq_id, enq_flags); 6705 } 6706 6707 /* for backward compatibility, will be removed in v6.15 */ 6708 __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6709 struct task_struct *p, u64 dsq_id, 6710 u64 enq_flags) 6711 { 6712 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq() renamed to scx_bpf_dsq_move()"); 6713 return scx_bpf_dsq_move(it__iter, p, dsq_id, enq_flags); 6714 } 6715 6716 /** 6717 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ 6718 * @it__iter: DSQ iterator in progress 6719 * @p: task to transfer 6720 * @dsq_id: DSQ to move @p to 6721 * @enq_flags: SCX_ENQ_* 6722 * 6723 * Transfer @p which is on the DSQ currently iterated by @it__iter to the 6724 * priority queue of the DSQ specified by @dsq_id. The destination must be a 6725 * user DSQ as only user DSQs support priority queue. 6726 * 6727 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice() 6728 * and scx_bpf_dsq_move_set_vtime() to update. 6729 * 6730 * All other aspects are identical to scx_bpf_dsq_move(). See 6731 * scx_bpf_dsq_insert_vtime() for more information on @vtime. 6732 */ 6733 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, 6734 struct task_struct *p, u64 dsq_id, 6735 u64 enq_flags) 6736 { 6737 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 6738 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6739 } 6740 6741 /* for backward compatibility, will be removed in v6.15 */ 6742 __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6743 struct task_struct *p, u64 dsq_id, 6744 u64 enq_flags) 6745 { 6746 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_vtime() renamed to scx_bpf_dsq_move_vtime()"); 6747 return scx_bpf_dsq_move_vtime(it__iter, p, dsq_id, enq_flags); 6748 } 6749 6750 __bpf_kfunc_end_defs(); 6751 6752 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 6753 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 6754 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 6755 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local) 6756 BTF_ID_FLAGS(func, scx_bpf_consume) 6757 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice) 6758 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime) 6759 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 6760 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 6761 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) 6762 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) 6763 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6764 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6765 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 6766 6767 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 6768 .owner = THIS_MODULE, 6769 .set = &scx_kfunc_ids_dispatch, 6770 }; 6771 6772 __bpf_kfunc_start_defs(); 6773 6774 /** 6775 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 6776 * 6777 * Iterate over all of the tasks currently enqueued on the local DSQ of the 6778 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 6779 * processed tasks. Can only be called from ops.cpu_release(). 6780 */ 6781 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 6782 { 6783 LIST_HEAD(tasks); 6784 u32 nr_enqueued = 0; 6785 struct rq *rq; 6786 struct task_struct *p, *n; 6787 6788 if (!scx_kf_allowed(SCX_KF_CPU_RELEASE)) 6789 return 0; 6790 6791 rq = cpu_rq(smp_processor_id()); 6792 lockdep_assert_rq_held(rq); 6793 6794 /* 6795 * The BPF scheduler may choose to dispatch tasks back to 6796 * @rq->scx.local_dsq. Move all candidate tasks off to a private list 6797 * first to avoid processing the same tasks repeatedly. 6798 */ 6799 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, 6800 scx.dsq_list.node) { 6801 /* 6802 * If @p is being migrated, @p's current CPU may not agree with 6803 * its allowed CPUs and the migration_cpu_stop is about to 6804 * deactivate and re-activate @p anyway. Skip re-enqueueing. 6805 * 6806 * While racing sched property changes may also dequeue and 6807 * re-enqueue a migrating task while its current CPU and allowed 6808 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to 6809 * the current local DSQ for running tasks and thus are not 6810 * visible to the BPF scheduler. 6811 * 6812 * Also skip re-enqueueing tasks that can only run on this 6813 * CPU, as they would just be re-added to the same local 6814 * DSQ without any benefit. 6815 */ 6816 if (p->migration_pending || is_migration_disabled(p) || p->nr_cpus_allowed == 1) 6817 continue; 6818 6819 dispatch_dequeue(rq, p); 6820 list_add_tail(&p->scx.dsq_list.node, &tasks); 6821 } 6822 6823 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { 6824 list_del_init(&p->scx.dsq_list.node); 6825 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 6826 nr_enqueued++; 6827 } 6828 6829 return nr_enqueued; 6830 } 6831 6832 __bpf_kfunc_end_defs(); 6833 6834 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 6835 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 6836 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 6837 6838 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 6839 .owner = THIS_MODULE, 6840 .set = &scx_kfunc_ids_cpu_release, 6841 }; 6842 6843 __bpf_kfunc_start_defs(); 6844 6845 /** 6846 * scx_bpf_create_dsq - Create a custom DSQ 6847 * @dsq_id: DSQ to create 6848 * @node: NUMA node to allocate from 6849 * 6850 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable 6851 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. 6852 */ 6853 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 6854 { 6855 struct scx_dispatch_q *dsq; 6856 struct scx_sched *sch; 6857 s32 ret; 6858 6859 if (unlikely(node >= (int)nr_node_ids || 6860 (node < 0 && node != NUMA_NO_NODE))) 6861 return -EINVAL; 6862 6863 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN)) 6864 return -EINVAL; 6865 6866 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 6867 if (!dsq) 6868 return -ENOMEM; 6869 6870 init_dsq(dsq, dsq_id); 6871 6872 rcu_read_lock(); 6873 6874 sch = rcu_dereference(scx_root); 6875 if (sch) 6876 ret = rhashtable_lookup_insert_fast(&sch->dsq_hash, &dsq->hash_node, 6877 dsq_hash_params); 6878 else 6879 ret = -ENODEV; 6880 6881 rcu_read_unlock(); 6882 if (ret) 6883 kfree(dsq); 6884 return ret; 6885 } 6886 6887 __bpf_kfunc_end_defs(); 6888 6889 BTF_KFUNCS_START(scx_kfunc_ids_unlocked) 6890 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 6891 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice) 6892 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime) 6893 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 6894 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 6895 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) 6896 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) 6897 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6898 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6899 BTF_KFUNCS_END(scx_kfunc_ids_unlocked) 6900 6901 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { 6902 .owner = THIS_MODULE, 6903 .set = &scx_kfunc_ids_unlocked, 6904 }; 6905 6906 __bpf_kfunc_start_defs(); 6907 6908 /** 6909 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 6910 * @cpu: cpu to kick 6911 * @flags: %SCX_KICK_* flags 6912 * 6913 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 6914 * trigger rescheduling on a busy CPU. This can be called from any online 6915 * scx_ops operation and the actual kicking is performed asynchronously through 6916 * an irq work. 6917 */ 6918 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 6919 { 6920 struct rq *this_rq; 6921 unsigned long irq_flags; 6922 6923 if (!kf_cpu_valid(cpu, NULL)) 6924 return; 6925 6926 local_irq_save(irq_flags); 6927 6928 this_rq = this_rq(); 6929 6930 /* 6931 * While bypassing for PM ops, IRQ handling may not be online which can 6932 * lead to irq_work_queue() malfunction such as infinite busy wait for 6933 * IRQ status update. Suppress kicking. 6934 */ 6935 if (scx_rq_bypassing(this_rq)) 6936 goto out; 6937 6938 /* 6939 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 6940 * rq locks. We can probably be smarter and avoid bouncing if called 6941 * from ops which don't hold a rq lock. 6942 */ 6943 if (flags & SCX_KICK_IDLE) { 6944 struct rq *target_rq = cpu_rq(cpu); 6945 6946 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 6947 scx_kf_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 6948 6949 if (raw_spin_rq_trylock(target_rq)) { 6950 if (can_skip_idle_kick(target_rq)) { 6951 raw_spin_rq_unlock(target_rq); 6952 goto out; 6953 } 6954 raw_spin_rq_unlock(target_rq); 6955 } 6956 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 6957 } else { 6958 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 6959 6960 if (flags & SCX_KICK_PREEMPT) 6961 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 6962 if (flags & SCX_KICK_WAIT) 6963 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 6964 } 6965 6966 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 6967 out: 6968 local_irq_restore(irq_flags); 6969 } 6970 6971 /** 6972 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 6973 * @dsq_id: id of the DSQ 6974 * 6975 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 6976 * -%ENOENT is returned. 6977 */ 6978 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 6979 { 6980 struct scx_sched *sch; 6981 struct scx_dispatch_q *dsq; 6982 s32 ret; 6983 6984 preempt_disable(); 6985 6986 sch = rcu_dereference_sched(scx_root); 6987 if (unlikely(!sch)) { 6988 ret = -ENODEV; 6989 goto out; 6990 } 6991 6992 if (dsq_id == SCX_DSQ_LOCAL) { 6993 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 6994 goto out; 6995 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 6996 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 6997 6998 if (ops_cpu_valid(sch, cpu, NULL)) { 6999 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 7000 goto out; 7001 } 7002 } else { 7003 dsq = find_user_dsq(sch, dsq_id); 7004 if (dsq) { 7005 ret = READ_ONCE(dsq->nr); 7006 goto out; 7007 } 7008 } 7009 ret = -ENOENT; 7010 out: 7011 preempt_enable(); 7012 return ret; 7013 } 7014 7015 /** 7016 * scx_bpf_destroy_dsq - Destroy a custom DSQ 7017 * @dsq_id: DSQ to destroy 7018 * 7019 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 7020 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 7021 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 7022 * which doesn't exist. Can be called from any online scx_ops operations. 7023 */ 7024 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 7025 { 7026 struct scx_sched *sch; 7027 7028 rcu_read_lock(); 7029 sch = rcu_dereference(scx_root); 7030 if (sch) 7031 destroy_dsq(sch, dsq_id); 7032 rcu_read_unlock(); 7033 } 7034 7035 /** 7036 * bpf_iter_scx_dsq_new - Create a DSQ iterator 7037 * @it: iterator to initialize 7038 * @dsq_id: DSQ to iterate 7039 * @flags: %SCX_DSQ_ITER_* 7040 * 7041 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk 7042 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes 7043 * tasks which are already queued when this function is invoked. 7044 */ 7045 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, 7046 u64 flags) 7047 { 7048 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 7049 struct scx_sched *sch; 7050 7051 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > 7052 sizeof(struct bpf_iter_scx_dsq)); 7053 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != 7054 __alignof__(struct bpf_iter_scx_dsq)); 7055 7056 /* 7057 * next() and destroy() will be called regardless of the return value. 7058 * Always clear $kit->dsq. 7059 */ 7060 kit->dsq = NULL; 7061 7062 sch = rcu_dereference_check(scx_root, rcu_read_lock_bh_held()); 7063 if (unlikely(!sch)) 7064 return -ENODEV; 7065 7066 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) 7067 return -EINVAL; 7068 7069 kit->dsq = find_user_dsq(sch, dsq_id); 7070 if (!kit->dsq) 7071 return -ENOENT; 7072 7073 INIT_LIST_HEAD(&kit->cursor.node); 7074 kit->cursor.flags = SCX_DSQ_LNODE_ITER_CURSOR | flags; 7075 kit->cursor.priv = READ_ONCE(kit->dsq->seq); 7076 7077 return 0; 7078 } 7079 7080 /** 7081 * bpf_iter_scx_dsq_next - Progress a DSQ iterator 7082 * @it: iterator to progress 7083 * 7084 * Return the next task. See bpf_iter_scx_dsq_new(). 7085 */ 7086 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) 7087 { 7088 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 7089 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; 7090 struct task_struct *p; 7091 unsigned long flags; 7092 7093 if (!kit->dsq) 7094 return NULL; 7095 7096 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 7097 7098 if (list_empty(&kit->cursor.node)) 7099 p = NULL; 7100 else 7101 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); 7102 7103 /* 7104 * Only tasks which were queued before the iteration started are 7105 * visible. This bounds BPF iterations and guarantees that vtime never 7106 * jumps in the other direction while iterating. 7107 */ 7108 do { 7109 p = nldsq_next_task(kit->dsq, p, rev); 7110 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); 7111 7112 if (p) { 7113 if (rev) 7114 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); 7115 else 7116 list_move(&kit->cursor.node, &p->scx.dsq_list.node); 7117 } else { 7118 list_del_init(&kit->cursor.node); 7119 } 7120 7121 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 7122 7123 return p; 7124 } 7125 7126 /** 7127 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator 7128 * @it: iterator to destroy 7129 * 7130 * Undo scx_iter_scx_dsq_new(). 7131 */ 7132 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) 7133 { 7134 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 7135 7136 if (!kit->dsq) 7137 return; 7138 7139 if (!list_empty(&kit->cursor.node)) { 7140 unsigned long flags; 7141 7142 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 7143 list_del_init(&kit->cursor.node); 7144 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 7145 } 7146 kit->dsq = NULL; 7147 } 7148 7149 __bpf_kfunc_end_defs(); 7150 7151 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size, 7152 char *fmt, unsigned long long *data, u32 data__sz) 7153 { 7154 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 7155 s32 ret; 7156 7157 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 7158 (data__sz && !data)) { 7159 scx_kf_error("invalid data=%p and data__sz=%u", (void *)data, data__sz); 7160 return -EINVAL; 7161 } 7162 7163 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 7164 if (ret < 0) { 7165 scx_kf_error("failed to read data fields (%d)", ret); 7166 return ret; 7167 } 7168 7169 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 7170 &bprintf_data); 7171 if (ret < 0) { 7172 scx_kf_error("format preparation failed (%d)", ret); 7173 return ret; 7174 } 7175 7176 ret = bstr_printf(line_buf, line_size, fmt, 7177 bprintf_data.bin_args); 7178 bpf_bprintf_cleanup(&bprintf_data); 7179 if (ret < 0) { 7180 scx_kf_error("(\"%s\", %p, %u) failed to format", fmt, data, data__sz); 7181 return ret; 7182 } 7183 7184 return ret; 7185 } 7186 7187 static s32 bstr_format(struct scx_bstr_buf *buf, 7188 char *fmt, unsigned long long *data, u32 data__sz) 7189 { 7190 return __bstr_format(buf->data, buf->line, sizeof(buf->line), 7191 fmt, data, data__sz); 7192 } 7193 7194 __bpf_kfunc_start_defs(); 7195 7196 /** 7197 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 7198 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 7199 * @fmt: error message format string 7200 * @data: format string parameters packaged using ___bpf_fill() macro 7201 * @data__sz: @data len, must end in '__sz' for the verifier 7202 * 7203 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 7204 * disabling. 7205 */ 7206 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 7207 unsigned long long *data, u32 data__sz) 7208 { 7209 unsigned long flags; 7210 7211 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 7212 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 7213 scx_kf_exit(SCX_EXIT_UNREG_BPF, exit_code, "%s", scx_exit_bstr_buf.line); 7214 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 7215 } 7216 7217 /** 7218 * scx_bpf_error_bstr - Indicate fatal error 7219 * @fmt: error message format string 7220 * @data: format string parameters packaged using ___bpf_fill() macro 7221 * @data__sz: @data len, must end in '__sz' for the verifier 7222 * 7223 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 7224 * disabling. 7225 */ 7226 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 7227 u32 data__sz) 7228 { 7229 unsigned long flags; 7230 7231 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 7232 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 7233 scx_kf_exit(SCX_EXIT_ERROR_BPF, 0, "%s", scx_exit_bstr_buf.line); 7234 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 7235 } 7236 7237 /** 7238 * scx_bpf_dump_bstr - Generate extra debug dump specific to the BPF scheduler 7239 * @fmt: format string 7240 * @data: format string parameters packaged using ___bpf_fill() macro 7241 * @data__sz: @data len, must end in '__sz' for the verifier 7242 * 7243 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 7244 * dump_task() to generate extra debug dump specific to the BPF scheduler. 7245 * 7246 * The extra dump may be multiple lines. A single line may be split over 7247 * multiple calls. The last line is automatically terminated. 7248 */ 7249 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 7250 u32 data__sz) 7251 { 7252 struct scx_dump_data *dd = &scx_dump_data; 7253 struct scx_bstr_buf *buf = &dd->buf; 7254 s32 ret; 7255 7256 if (raw_smp_processor_id() != dd->cpu) { 7257 scx_kf_error("scx_bpf_dump() must only be called from ops.dump() and friends"); 7258 return; 7259 } 7260 7261 /* append the formatted string to the line buf */ 7262 ret = __bstr_format(buf->data, buf->line + dd->cursor, 7263 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 7264 if (ret < 0) { 7265 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 7266 dd->prefix, fmt, data, data__sz, ret); 7267 return; 7268 } 7269 7270 dd->cursor += ret; 7271 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 7272 7273 if (!dd->cursor) 7274 return; 7275 7276 /* 7277 * If the line buf overflowed or ends in a newline, flush it into the 7278 * dump. This is to allow the caller to generate a single line over 7279 * multiple calls. As ops_dump_flush() can also handle multiple lines in 7280 * the line buf, the only case which can lead to an unexpected 7281 * truncation is when the caller keeps generating newlines in the middle 7282 * instead of the end consecutively. Don't do that. 7283 */ 7284 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 7285 ops_dump_flush(); 7286 } 7287 7288 /** 7289 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU 7290 * @cpu: CPU of interest 7291 * 7292 * Return the maximum relative capacity of @cpu in relation to the most 7293 * performant CPU in the system. The return value is in the range [1, 7294 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). 7295 */ 7296 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) 7297 { 7298 if (kf_cpu_valid(cpu, NULL)) 7299 return arch_scale_cpu_capacity(cpu); 7300 else 7301 return SCX_CPUPERF_ONE; 7302 } 7303 7304 /** 7305 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU 7306 * @cpu: CPU of interest 7307 * 7308 * Return the current relative performance of @cpu in relation to its maximum. 7309 * The return value is in the range [1, %SCX_CPUPERF_ONE]. 7310 * 7311 * The current performance level of a CPU in relation to the maximum performance 7312 * available in the system can be calculated as follows: 7313 * 7314 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE 7315 * 7316 * The result is in the range [1, %SCX_CPUPERF_ONE]. 7317 */ 7318 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) 7319 { 7320 if (kf_cpu_valid(cpu, NULL)) 7321 return arch_scale_freq_capacity(cpu); 7322 else 7323 return SCX_CPUPERF_ONE; 7324 } 7325 7326 /** 7327 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU 7328 * @cpu: CPU of interest 7329 * @perf: target performance level [0, %SCX_CPUPERF_ONE] 7330 * 7331 * Set the target performance level of @cpu to @perf. @perf is in linear 7332 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the 7333 * schedutil cpufreq governor chooses the target frequency. 7334 * 7335 * The actual performance level chosen, CPU grouping, and the overhead and 7336 * latency of the operations are dependent on the hardware and cpufreq driver in 7337 * use. Consult hardware and cpufreq documentation for more information. The 7338 * current performance level can be monitored using scx_bpf_cpuperf_cur(). 7339 */ 7340 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) 7341 { 7342 if (unlikely(perf > SCX_CPUPERF_ONE)) { 7343 scx_kf_error("Invalid cpuperf target %u for CPU %d", perf, cpu); 7344 return; 7345 } 7346 7347 if (kf_cpu_valid(cpu, NULL)) { 7348 struct rq *rq = cpu_rq(cpu), *locked_rq = scx_locked_rq(); 7349 struct rq_flags rf; 7350 7351 /* 7352 * When called with an rq lock held, restrict the operation 7353 * to the corresponding CPU to prevent ABBA deadlocks. 7354 */ 7355 if (locked_rq && rq != locked_rq) { 7356 scx_kf_error("Invalid target CPU %d", cpu); 7357 return; 7358 } 7359 7360 /* 7361 * If no rq lock is held, allow to operate on any CPU by 7362 * acquiring the corresponding rq lock. 7363 */ 7364 if (!locked_rq) { 7365 rq_lock_irqsave(rq, &rf); 7366 update_rq_clock(rq); 7367 } 7368 7369 rq->scx.cpuperf_target = perf; 7370 cpufreq_update_util(rq, 0); 7371 7372 if (!locked_rq) 7373 rq_unlock_irqrestore(rq, &rf); 7374 } 7375 } 7376 7377 /** 7378 * scx_bpf_nr_node_ids - Return the number of possible node IDs 7379 * 7380 * All valid node IDs in the system are smaller than the returned value. 7381 */ 7382 __bpf_kfunc u32 scx_bpf_nr_node_ids(void) 7383 { 7384 return nr_node_ids; 7385 } 7386 7387 /** 7388 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 7389 * 7390 * All valid CPU IDs in the system are smaller than the returned value. 7391 */ 7392 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 7393 { 7394 return nr_cpu_ids; 7395 } 7396 7397 /** 7398 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 7399 */ 7400 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 7401 { 7402 return cpu_possible_mask; 7403 } 7404 7405 /** 7406 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 7407 */ 7408 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 7409 { 7410 return cpu_online_mask; 7411 } 7412 7413 /** 7414 * scx_bpf_put_cpumask - Release a possible/online cpumask 7415 * @cpumask: cpumask to release 7416 */ 7417 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 7418 { 7419 /* 7420 * Empty function body because we aren't actually acquiring or releasing 7421 * a reference to a global cpumask, which is read-only in the caller and 7422 * is never released. The acquire / release semantics here are just used 7423 * to make the cpumask is a trusted pointer in the caller. 7424 */ 7425 } 7426 7427 /** 7428 * scx_bpf_task_running - Is task currently running? 7429 * @p: task of interest 7430 */ 7431 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 7432 { 7433 return task_rq(p)->curr == p; 7434 } 7435 7436 /** 7437 * scx_bpf_task_cpu - CPU a task is currently associated with 7438 * @p: task of interest 7439 */ 7440 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 7441 { 7442 return task_cpu(p); 7443 } 7444 7445 /** 7446 * scx_bpf_cpu_rq - Fetch the rq of a CPU 7447 * @cpu: CPU of the rq 7448 */ 7449 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) 7450 { 7451 if (!kf_cpu_valid(cpu, NULL)) 7452 return NULL; 7453 7454 return cpu_rq(cpu); 7455 } 7456 7457 /** 7458 * scx_bpf_task_cgroup - Return the sched cgroup of a task 7459 * @p: task of interest 7460 * 7461 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with 7462 * from the scheduler's POV. SCX operations should use this function to 7463 * determine @p's current cgroup as, unlike following @p->cgroups, 7464 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all 7465 * rq-locked operations. Can be called on the parameter tasks of rq-locked 7466 * operations. The restriction guarantees that @p's rq is locked by the caller. 7467 */ 7468 #ifdef CONFIG_CGROUP_SCHED 7469 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) 7470 { 7471 struct task_group *tg = p->sched_task_group; 7472 struct cgroup *cgrp = &cgrp_dfl_root.cgrp; 7473 7474 if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p)) 7475 goto out; 7476 7477 cgrp = tg_cgrp(tg); 7478 7479 out: 7480 cgroup_get(cgrp); 7481 return cgrp; 7482 } 7483 #endif 7484 7485 /** 7486 * scx_bpf_now - Returns a high-performance monotonically non-decreasing 7487 * clock for the current CPU. The clock returned is in nanoseconds. 7488 * 7489 * It provides the following properties: 7490 * 7491 * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently 7492 * to account for execution time and track tasks' runtime properties. 7493 * Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which 7494 * eventually reads a hardware timestamp counter -- is neither performant nor 7495 * scalable. scx_bpf_now() aims to provide a high-performance clock by 7496 * using the rq clock in the scheduler core whenever possible. 7497 * 7498 * 2) High enough resolution for the BPF scheduler use cases: In most BPF 7499 * scheduler use cases, the required clock resolution is lower than the most 7500 * accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically 7501 * uses the rq clock in the scheduler core whenever it is valid. It considers 7502 * that the rq clock is valid from the time the rq clock is updated 7503 * (update_rq_clock) until the rq is unlocked (rq_unpin_lock). 7504 * 7505 * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now() 7506 * guarantees the clock never goes backward when comparing them in the same 7507 * CPU. On the other hand, when comparing clocks in different CPUs, there 7508 * is no such guarantee -- the clock can go backward. It provides a 7509 * monotonically *non-decreasing* clock so that it would provide the same 7510 * clock values in two different scx_bpf_now() calls in the same CPU 7511 * during the same period of when the rq clock is valid. 7512 */ 7513 __bpf_kfunc u64 scx_bpf_now(void) 7514 { 7515 struct rq *rq; 7516 u64 clock; 7517 7518 preempt_disable(); 7519 7520 rq = this_rq(); 7521 if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) { 7522 /* 7523 * If the rq clock is valid, use the cached rq clock. 7524 * 7525 * Note that scx_bpf_now() is re-entrant between a process 7526 * context and an interrupt context (e.g., timer interrupt). 7527 * However, we don't need to consider the race between them 7528 * because such race is not observable from a caller. 7529 */ 7530 clock = READ_ONCE(rq->scx.clock); 7531 } else { 7532 /* 7533 * Otherwise, return a fresh rq clock. 7534 * 7535 * The rq clock is updated outside of the rq lock. 7536 * In this case, keep the updated rq clock invalid so the next 7537 * kfunc call outside the rq lock gets a fresh rq clock. 7538 */ 7539 clock = sched_clock_cpu(cpu_of(rq)); 7540 } 7541 7542 preempt_enable(); 7543 7544 return clock; 7545 } 7546 7547 static void scx_read_events(struct scx_sched *sch, struct scx_event_stats *events) 7548 { 7549 struct scx_event_stats *e_cpu; 7550 int cpu; 7551 7552 /* Aggregate per-CPU event counters into @events. */ 7553 memset(events, 0, sizeof(*events)); 7554 for_each_possible_cpu(cpu) { 7555 e_cpu = per_cpu_ptr(sch->event_stats_cpu, cpu); 7556 scx_agg_event(events, e_cpu, SCX_EV_SELECT_CPU_FALLBACK); 7557 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 7558 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_KEEP_LAST); 7559 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_EXITING); 7560 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 7561 scx_agg_event(events, e_cpu, SCX_EV_REFILL_SLICE_DFL); 7562 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DURATION); 7563 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DISPATCH); 7564 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_ACTIVATE); 7565 } 7566 } 7567 7568 /* 7569 * scx_bpf_events - Get a system-wide event counter to 7570 * @events: output buffer from a BPF program 7571 * @events__sz: @events len, must end in '__sz'' for the verifier 7572 */ 7573 __bpf_kfunc void scx_bpf_events(struct scx_event_stats *events, 7574 size_t events__sz) 7575 { 7576 struct scx_sched *sch; 7577 struct scx_event_stats e_sys; 7578 7579 rcu_read_lock(); 7580 sch = rcu_dereference(scx_root); 7581 if (sch) 7582 scx_read_events(sch, &e_sys); 7583 else 7584 memset(&e_sys, 0, sizeof(e_sys)); 7585 rcu_read_unlock(); 7586 7587 /* 7588 * We cannot entirely trust a BPF-provided size since a BPF program 7589 * might be compiled against a different vmlinux.h, of which 7590 * scx_event_stats would be larger (a newer vmlinux.h) or smaller 7591 * (an older vmlinux.h). Hence, we use the smaller size to avoid 7592 * memory corruption. 7593 */ 7594 events__sz = min(events__sz, sizeof(*events)); 7595 memcpy(events, &e_sys, events__sz); 7596 } 7597 7598 __bpf_kfunc_end_defs(); 7599 7600 BTF_KFUNCS_START(scx_kfunc_ids_any) 7601 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 7602 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 7603 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 7604 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) 7605 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) 7606 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) 7607 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 7608 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 7609 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 7610 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) 7611 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) 7612 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) 7613 BTF_ID_FLAGS(func, scx_bpf_nr_node_ids) 7614 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 7615 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 7616 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 7617 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 7618 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 7619 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 7620 BTF_ID_FLAGS(func, scx_bpf_cpu_rq) 7621 #ifdef CONFIG_CGROUP_SCHED 7622 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) 7623 #endif 7624 BTF_ID_FLAGS(func, scx_bpf_now) 7625 BTF_ID_FLAGS(func, scx_bpf_events, KF_TRUSTED_ARGS) 7626 BTF_KFUNCS_END(scx_kfunc_ids_any) 7627 7628 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 7629 .owner = THIS_MODULE, 7630 .set = &scx_kfunc_ids_any, 7631 }; 7632 7633 static int __init scx_init(void) 7634 { 7635 int ret; 7636 7637 /* 7638 * kfunc registration can't be done from init_sched_ext_class() as 7639 * register_btf_kfunc_id_set() needs most of the system to be up. 7640 * 7641 * Some kfuncs are context-sensitive and can only be called from 7642 * specific SCX ops. They are grouped into BTF sets accordingly. 7643 * Unfortunately, BPF currently doesn't have a way of enforcing such 7644 * restrictions. Eventually, the verifier should be able to enforce 7645 * them. For now, register them the same and make each kfunc explicitly 7646 * check using scx_kf_allowed(). 7647 */ 7648 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7649 &scx_kfunc_set_enqueue_dispatch)) || 7650 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7651 &scx_kfunc_set_dispatch)) || 7652 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7653 &scx_kfunc_set_cpu_release)) || 7654 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7655 &scx_kfunc_set_unlocked)) || 7656 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7657 &scx_kfunc_set_unlocked)) || 7658 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7659 &scx_kfunc_set_any)) || 7660 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 7661 &scx_kfunc_set_any)) || 7662 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7663 &scx_kfunc_set_any))) { 7664 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 7665 return ret; 7666 } 7667 7668 ret = scx_idle_init(); 7669 if (ret) { 7670 pr_err("sched_ext: Failed to initialize idle tracking (%d)\n", ret); 7671 return ret; 7672 } 7673 7674 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 7675 if (ret) { 7676 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 7677 return ret; 7678 } 7679 7680 ret = register_pm_notifier(&scx_pm_notifier); 7681 if (ret) { 7682 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); 7683 return ret; 7684 } 7685 7686 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 7687 if (!scx_kset) { 7688 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 7689 return -ENOMEM; 7690 } 7691 7692 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 7693 if (ret < 0) { 7694 pr_err("sched_ext: Failed to add global attributes\n"); 7695 return ret; 7696 } 7697 7698 return 0; 7699 } 7700 __initcall(scx_init); 7701