1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst 4 * 5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 7 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 8 */ 9 #define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void))) 10 11 enum scx_consts { 12 SCX_DSP_DFL_MAX_BATCH = 32, 13 SCX_DSP_MAX_LOOPS = 32, 14 SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ, 15 16 SCX_EXIT_BT_LEN = 64, 17 SCX_EXIT_MSG_LEN = 1024, 18 SCX_EXIT_DUMP_DFL_LEN = 32768, 19 20 SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE, 21 }; 22 23 enum scx_exit_kind { 24 SCX_EXIT_NONE, 25 SCX_EXIT_DONE, 26 27 SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */ 28 SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */ 29 SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */ 30 SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */ 31 32 SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */ 33 SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */ 34 SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */ 35 }; 36 37 /* 38 * An exit code can be specified when exiting with scx_bpf_exit() or 39 * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN 40 * respectively. The codes are 64bit of the format: 41 * 42 * Bits: [63 .. 48 47 .. 32 31 .. 0] 43 * [ SYS ACT ] [ SYS RSN ] [ USR ] 44 * 45 * SYS ACT: System-defined exit actions 46 * SYS RSN: System-defined exit reasons 47 * USR : User-defined exit codes and reasons 48 * 49 * Using the above, users may communicate intention and context by ORing system 50 * actions and/or system reasons with a user-defined exit code. 51 */ 52 enum scx_exit_code { 53 /* Reasons */ 54 SCX_ECODE_RSN_HOTPLUG = 1LLU << 32, 55 56 /* Actions */ 57 SCX_ECODE_ACT_RESTART = 1LLU << 48, 58 }; 59 60 /* 61 * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is 62 * being disabled. 63 */ 64 struct scx_exit_info { 65 /* %SCX_EXIT_* - broad category of the exit reason */ 66 enum scx_exit_kind kind; 67 68 /* exit code if gracefully exiting */ 69 s64 exit_code; 70 71 /* textual representation of the above */ 72 const char *reason; 73 74 /* backtrace if exiting due to an error */ 75 unsigned long *bt; 76 u32 bt_len; 77 78 /* informational message */ 79 char *msg; 80 81 /* debug dump */ 82 char *dump; 83 }; 84 85 /* sched_ext_ops.flags */ 86 enum scx_ops_flags { 87 /* 88 * Keep built-in idle tracking even if ops.update_idle() is implemented. 89 */ 90 SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0, 91 92 /* 93 * By default, if there are no other task to run on the CPU, ext core 94 * keeps running the current task even after its slice expires. If this 95 * flag is specified, such tasks are passed to ops.enqueue() with 96 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info. 97 */ 98 SCX_OPS_ENQ_LAST = 1LLU << 1, 99 100 /* 101 * An exiting task may schedule after PF_EXITING is set. In such cases, 102 * bpf_task_from_pid() may not be able to find the task and if the BPF 103 * scheduler depends on pid lookup for dispatching, the task will be 104 * lost leading to various issues including RCU grace period stalls. 105 * 106 * To mask this problem, by default, unhashed tasks are automatically 107 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't 108 * depend on pid lookups and wants to handle these tasks directly, the 109 * following flag can be used. 110 */ 111 SCX_OPS_ENQ_EXITING = 1LLU << 2, 112 113 /* 114 * If set, only tasks with policy set to SCHED_EXT are attached to 115 * sched_ext. If clear, SCHED_NORMAL tasks are also included. 116 */ 117 SCX_OPS_SWITCH_PARTIAL = 1LLU << 3, 118 119 /* 120 * CPU cgroup support flags 121 */ 122 SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16, /* cpu.weight */ 123 124 SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE | 125 SCX_OPS_ENQ_LAST | 126 SCX_OPS_ENQ_EXITING | 127 SCX_OPS_SWITCH_PARTIAL | 128 SCX_OPS_HAS_CGROUP_WEIGHT, 129 }; 130 131 /* argument container for ops.init_task() */ 132 struct scx_init_task_args { 133 /* 134 * Set if ops.init_task() is being invoked on the fork path, as opposed 135 * to the scheduler transition path. 136 */ 137 bool fork; 138 #ifdef CONFIG_EXT_GROUP_SCHED 139 /* the cgroup the task is joining */ 140 struct cgroup *cgroup; 141 #endif 142 }; 143 144 /* argument container for ops.exit_task() */ 145 struct scx_exit_task_args { 146 /* Whether the task exited before running on sched_ext. */ 147 bool cancelled; 148 }; 149 150 /* argument container for ops->cgroup_init() */ 151 struct scx_cgroup_init_args { 152 /* the weight of the cgroup [1..10000] */ 153 u32 weight; 154 }; 155 156 enum scx_cpu_preempt_reason { 157 /* next task is being scheduled by &sched_class_rt */ 158 SCX_CPU_PREEMPT_RT, 159 /* next task is being scheduled by &sched_class_dl */ 160 SCX_CPU_PREEMPT_DL, 161 /* next task is being scheduled by &sched_class_stop */ 162 SCX_CPU_PREEMPT_STOP, 163 /* unknown reason for SCX being preempted */ 164 SCX_CPU_PREEMPT_UNKNOWN, 165 }; 166 167 /* 168 * Argument container for ops->cpu_acquire(). Currently empty, but may be 169 * expanded in the future. 170 */ 171 struct scx_cpu_acquire_args {}; 172 173 /* argument container for ops->cpu_release() */ 174 struct scx_cpu_release_args { 175 /* the reason the CPU was preempted */ 176 enum scx_cpu_preempt_reason reason; 177 178 /* the task that's going to be scheduled on the CPU */ 179 struct task_struct *task; 180 }; 181 182 /* 183 * Informational context provided to dump operations. 184 */ 185 struct scx_dump_ctx { 186 enum scx_exit_kind kind; 187 s64 exit_code; 188 const char *reason; 189 u64 at_ns; 190 u64 at_jiffies; 191 }; 192 193 /** 194 * struct sched_ext_ops - Operation table for BPF scheduler implementation 195 * 196 * Userland can implement an arbitrary scheduling policy by implementing and 197 * loading operations in this table. 198 */ 199 struct sched_ext_ops { 200 /** 201 * select_cpu - Pick the target CPU for a task which is being woken up 202 * @p: task being woken up 203 * @prev_cpu: the cpu @p was on before sleeping 204 * @wake_flags: SCX_WAKE_* 205 * 206 * Decision made here isn't final. @p may be moved to any CPU while it 207 * is getting dispatched for execution later. However, as @p is not on 208 * the rq at this point, getting the eventual execution CPU right here 209 * saves a small bit of overhead down the line. 210 * 211 * If an idle CPU is returned, the CPU is kicked and will try to 212 * dispatch. While an explicit custom mechanism can be added, 213 * select_cpu() serves as the default way to wake up idle CPUs. 214 * 215 * @p may be dispatched directly by calling scx_bpf_dispatch(). If @p 216 * is dispatched, the ops.enqueue() callback will be skipped. Finally, 217 * if @p is dispatched to SCX_DSQ_LOCAL, it will be dispatched to the 218 * local DSQ of whatever CPU is returned by this callback. 219 */ 220 s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags); 221 222 /** 223 * enqueue - Enqueue a task on the BPF scheduler 224 * @p: task being enqueued 225 * @enq_flags: %SCX_ENQ_* 226 * 227 * @p is ready to run. Dispatch directly by calling scx_bpf_dispatch() 228 * or enqueue on the BPF scheduler. If not directly dispatched, the bpf 229 * scheduler owns @p and if it fails to dispatch @p, the task will 230 * stall. 231 * 232 * If @p was dispatched from ops.select_cpu(), this callback is 233 * skipped. 234 */ 235 void (*enqueue)(struct task_struct *p, u64 enq_flags); 236 237 /** 238 * dequeue - Remove a task from the BPF scheduler 239 * @p: task being dequeued 240 * @deq_flags: %SCX_DEQ_* 241 * 242 * Remove @p from the BPF scheduler. This is usually called to isolate 243 * the task while updating its scheduling properties (e.g. priority). 244 * 245 * The ext core keeps track of whether the BPF side owns a given task or 246 * not and can gracefully ignore spurious dispatches from BPF side, 247 * which makes it safe to not implement this method. However, depending 248 * on the scheduling logic, this can lead to confusing behaviors - e.g. 249 * scheduling position not being updated across a priority change. 250 */ 251 void (*dequeue)(struct task_struct *p, u64 deq_flags); 252 253 /** 254 * dispatch - Dispatch tasks from the BPF scheduler and/or consume DSQs 255 * @cpu: CPU to dispatch tasks for 256 * @prev: previous task being switched out 257 * 258 * Called when a CPU's local dsq is empty. The operation should dispatch 259 * one or more tasks from the BPF scheduler into the DSQs using 260 * scx_bpf_dispatch() and/or consume user DSQs into the local DSQ using 261 * scx_bpf_consume(). 262 * 263 * The maximum number of times scx_bpf_dispatch() can be called without 264 * an intervening scx_bpf_consume() is specified by 265 * ops.dispatch_max_batch. See the comments on top of the two functions 266 * for more details. 267 * 268 * When not %NULL, @prev is an SCX task with its slice depleted. If 269 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in 270 * @prev->scx.flags, it is not enqueued yet and will be enqueued after 271 * ops.dispatch() returns. To keep executing @prev, return without 272 * dispatching or consuming any tasks. Also see %SCX_OPS_ENQ_LAST. 273 */ 274 void (*dispatch)(s32 cpu, struct task_struct *prev); 275 276 /** 277 * tick - Periodic tick 278 * @p: task running currently 279 * 280 * This operation is called every 1/HZ seconds on CPUs which are 281 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an 282 * immediate dispatch cycle on the CPU. 283 */ 284 void (*tick)(struct task_struct *p); 285 286 /** 287 * runnable - A task is becoming runnable on its associated CPU 288 * @p: task becoming runnable 289 * @enq_flags: %SCX_ENQ_* 290 * 291 * This and the following three functions can be used to track a task's 292 * execution state transitions. A task becomes ->runnable() on a CPU, 293 * and then goes through one or more ->running() and ->stopping() pairs 294 * as it runs on the CPU, and eventually becomes ->quiescent() when it's 295 * done running on the CPU. 296 * 297 * @p is becoming runnable on the CPU because it's 298 * 299 * - waking up (%SCX_ENQ_WAKEUP) 300 * - being moved from another CPU 301 * - being restored after temporarily taken off the queue for an 302 * attribute change. 303 * 304 * This and ->enqueue() are related but not coupled. This operation 305 * notifies @p's state transition and may not be followed by ->enqueue() 306 * e.g. when @p is being dispatched to a remote CPU, or when @p is 307 * being enqueued on a CPU experiencing a hotplug event. Likewise, a 308 * task may be ->enqueue()'d without being preceded by this operation 309 * e.g. after exhausting its slice. 310 */ 311 void (*runnable)(struct task_struct *p, u64 enq_flags); 312 313 /** 314 * running - A task is starting to run on its associated CPU 315 * @p: task starting to run 316 * 317 * See ->runnable() for explanation on the task state notifiers. 318 */ 319 void (*running)(struct task_struct *p); 320 321 /** 322 * stopping - A task is stopping execution 323 * @p: task stopping to run 324 * @runnable: is task @p still runnable? 325 * 326 * See ->runnable() for explanation on the task state notifiers. If 327 * !@runnable, ->quiescent() will be invoked after this operation 328 * returns. 329 */ 330 void (*stopping)(struct task_struct *p, bool runnable); 331 332 /** 333 * quiescent - A task is becoming not runnable on its associated CPU 334 * @p: task becoming not runnable 335 * @deq_flags: %SCX_DEQ_* 336 * 337 * See ->runnable() for explanation on the task state notifiers. 338 * 339 * @p is becoming quiescent on the CPU because it's 340 * 341 * - sleeping (%SCX_DEQ_SLEEP) 342 * - being moved to another CPU 343 * - being temporarily taken off the queue for an attribute change 344 * (%SCX_DEQ_SAVE) 345 * 346 * This and ->dequeue() are related but not coupled. This operation 347 * notifies @p's state transition and may not be preceded by ->dequeue() 348 * e.g. when @p is being dispatched to a remote CPU. 349 */ 350 void (*quiescent)(struct task_struct *p, u64 deq_flags); 351 352 /** 353 * yield - Yield CPU 354 * @from: yielding task 355 * @to: optional yield target task 356 * 357 * If @to is NULL, @from is yielding the CPU to other runnable tasks. 358 * The BPF scheduler should ensure that other available tasks are 359 * dispatched before the yielding task. Return value is ignored in this 360 * case. 361 * 362 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf 363 * scheduler can implement the request, return %true; otherwise, %false. 364 */ 365 bool (*yield)(struct task_struct *from, struct task_struct *to); 366 367 /** 368 * core_sched_before - Task ordering for core-sched 369 * @a: task A 370 * @b: task B 371 * 372 * Used by core-sched to determine the ordering between two tasks. See 373 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on 374 * core-sched. 375 * 376 * Both @a and @b are runnable and may or may not currently be queued on 377 * the BPF scheduler. Should return %true if @a should run before @b. 378 * %false if there's no required ordering or @b should run before @a. 379 * 380 * If not specified, the default is ordering them according to when they 381 * became runnable. 382 */ 383 bool (*core_sched_before)(struct task_struct *a, struct task_struct *b); 384 385 /** 386 * set_weight - Set task weight 387 * @p: task to set weight for 388 * @weight: new weight [1..10000] 389 * 390 * Update @p's weight to @weight. 391 */ 392 void (*set_weight)(struct task_struct *p, u32 weight); 393 394 /** 395 * set_cpumask - Set CPU affinity 396 * @p: task to set CPU affinity for 397 * @cpumask: cpumask of cpus that @p can run on 398 * 399 * Update @p's CPU affinity to @cpumask. 400 */ 401 void (*set_cpumask)(struct task_struct *p, 402 const struct cpumask *cpumask); 403 404 /** 405 * update_idle - Update the idle state of a CPU 406 * @cpu: CPU to udpate the idle state for 407 * @idle: whether entering or exiting the idle state 408 * 409 * This operation is called when @rq's CPU goes or leaves the idle 410 * state. By default, implementing this operation disables the built-in 411 * idle CPU tracking and the following helpers become unavailable: 412 * 413 * - scx_bpf_select_cpu_dfl() 414 * - scx_bpf_test_and_clear_cpu_idle() 415 * - scx_bpf_pick_idle_cpu() 416 * 417 * The user also must implement ops.select_cpu() as the default 418 * implementation relies on scx_bpf_select_cpu_dfl(). 419 * 420 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle 421 * tracking. 422 */ 423 void (*update_idle)(s32 cpu, bool idle); 424 425 /** 426 * cpu_acquire - A CPU is becoming available to the BPF scheduler 427 * @cpu: The CPU being acquired by the BPF scheduler. 428 * @args: Acquire arguments, see the struct definition. 429 * 430 * A CPU that was previously released from the BPF scheduler is now once 431 * again under its control. 432 */ 433 void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args); 434 435 /** 436 * cpu_release - A CPU is taken away from the BPF scheduler 437 * @cpu: The CPU being released by the BPF scheduler. 438 * @args: Release arguments, see the struct definition. 439 * 440 * The specified CPU is no longer under the control of the BPF 441 * scheduler. This could be because it was preempted by a higher 442 * priority sched_class, though there may be other reasons as well. The 443 * caller should consult @args->reason to determine the cause. 444 */ 445 void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args); 446 447 /** 448 * init_task - Initialize a task to run in a BPF scheduler 449 * @p: task to initialize for BPF scheduling 450 * @args: init arguments, see the struct definition 451 * 452 * Either we're loading a BPF scheduler or a new task is being forked. 453 * Initialize @p for BPF scheduling. This operation may block and can 454 * be used for allocations, and is called exactly once for a task. 455 * 456 * Return 0 for success, -errno for failure. An error return while 457 * loading will abort loading of the BPF scheduler. During a fork, it 458 * will abort that specific fork. 459 */ 460 s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args); 461 462 /** 463 * exit_task - Exit a previously-running task from the system 464 * @p: task to exit 465 * 466 * @p is exiting or the BPF scheduler is being unloaded. Perform any 467 * necessary cleanup for @p. 468 */ 469 void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args); 470 471 /** 472 * enable - Enable BPF scheduling for a task 473 * @p: task to enable BPF scheduling for 474 * 475 * Enable @p for BPF scheduling. enable() is called on @p any time it 476 * enters SCX, and is always paired with a matching disable(). 477 */ 478 void (*enable)(struct task_struct *p); 479 480 /** 481 * disable - Disable BPF scheduling for a task 482 * @p: task to disable BPF scheduling for 483 * 484 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded. 485 * Disable BPF scheduling for @p. A disable() call is always matched 486 * with a prior enable() call. 487 */ 488 void (*disable)(struct task_struct *p); 489 490 /** 491 * dump - Dump BPF scheduler state on error 492 * @ctx: debug dump context 493 * 494 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump. 495 */ 496 void (*dump)(struct scx_dump_ctx *ctx); 497 498 /** 499 * dump_cpu - Dump BPF scheduler state for a CPU on error 500 * @ctx: debug dump context 501 * @cpu: CPU to generate debug dump for 502 * @idle: @cpu is currently idle without any runnable tasks 503 * 504 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 505 * @cpu. If @idle is %true and this operation doesn't produce any 506 * output, @cpu is skipped for dump. 507 */ 508 void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle); 509 510 /** 511 * dump_task - Dump BPF scheduler state for a runnable task on error 512 * @ctx: debug dump context 513 * @p: runnable task to generate debug dump for 514 * 515 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 516 * @p. 517 */ 518 void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p); 519 520 #ifdef CONFIG_EXT_GROUP_SCHED 521 /** 522 * cgroup_init - Initialize a cgroup 523 * @cgrp: cgroup being initialized 524 * @args: init arguments, see the struct definition 525 * 526 * Either the BPF scheduler is being loaded or @cgrp created, initialize 527 * @cgrp for sched_ext. This operation may block. 528 * 529 * Return 0 for success, -errno for failure. An error return while 530 * loading will abort loading of the BPF scheduler. During cgroup 531 * creation, it will abort the specific cgroup creation. 532 */ 533 s32 (*cgroup_init)(struct cgroup *cgrp, 534 struct scx_cgroup_init_args *args); 535 536 /** 537 * cgroup_exit - Exit a cgroup 538 * @cgrp: cgroup being exited 539 * 540 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit 541 * @cgrp for sched_ext. This operation my block. 542 */ 543 void (*cgroup_exit)(struct cgroup *cgrp); 544 545 /** 546 * cgroup_prep_move - Prepare a task to be moved to a different cgroup 547 * @p: task being moved 548 * @from: cgroup @p is being moved from 549 * @to: cgroup @p is being moved to 550 * 551 * Prepare @p for move from cgroup @from to @to. This operation may 552 * block and can be used for allocations. 553 * 554 * Return 0 for success, -errno for failure. An error return aborts the 555 * migration. 556 */ 557 s32 (*cgroup_prep_move)(struct task_struct *p, 558 struct cgroup *from, struct cgroup *to); 559 560 /** 561 * cgroup_move - Commit cgroup move 562 * @p: task being moved 563 * @from: cgroup @p is being moved from 564 * @to: cgroup @p is being moved to 565 * 566 * Commit the move. @p is dequeued during this operation. 567 */ 568 void (*cgroup_move)(struct task_struct *p, 569 struct cgroup *from, struct cgroup *to); 570 571 /** 572 * cgroup_cancel_move - Cancel cgroup move 573 * @p: task whose cgroup move is being canceled 574 * @from: cgroup @p was being moved from 575 * @to: cgroup @p was being moved to 576 * 577 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move(). 578 * Undo the preparation. 579 */ 580 void (*cgroup_cancel_move)(struct task_struct *p, 581 struct cgroup *from, struct cgroup *to); 582 583 /** 584 * cgroup_set_weight - A cgroup's weight is being changed 585 * @cgrp: cgroup whose weight is being updated 586 * @weight: new weight [1..10000] 587 * 588 * Update @tg's weight to @weight. 589 */ 590 void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight); 591 #endif /* CONFIG_CGROUPS */ 592 593 /* 594 * All online ops must come before ops.cpu_online(). 595 */ 596 597 /** 598 * cpu_online - A CPU became online 599 * @cpu: CPU which just came up 600 * 601 * @cpu just came online. @cpu will not call ops.enqueue() or 602 * ops.dispatch(), nor run tasks associated with other CPUs beforehand. 603 */ 604 void (*cpu_online)(s32 cpu); 605 606 /** 607 * cpu_offline - A CPU is going offline 608 * @cpu: CPU which is going offline 609 * 610 * @cpu is going offline. @cpu will not call ops.enqueue() or 611 * ops.dispatch(), nor run tasks associated with other CPUs afterwards. 612 */ 613 void (*cpu_offline)(s32 cpu); 614 615 /* 616 * All CPU hotplug ops must come before ops.init(). 617 */ 618 619 /** 620 * init - Initialize the BPF scheduler 621 */ 622 s32 (*init)(void); 623 624 /** 625 * exit - Clean up after the BPF scheduler 626 * @info: Exit info 627 */ 628 void (*exit)(struct scx_exit_info *info); 629 630 /** 631 * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch 632 */ 633 u32 dispatch_max_batch; 634 635 /** 636 * flags - %SCX_OPS_* flags 637 */ 638 u64 flags; 639 640 /** 641 * timeout_ms - The maximum amount of time, in milliseconds, that a 642 * runnable task should be able to wait before being scheduled. The 643 * maximum timeout may not exceed the default timeout of 30 seconds. 644 * 645 * Defaults to the maximum allowed timeout value of 30 seconds. 646 */ 647 u32 timeout_ms; 648 649 /** 650 * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default 651 * value of 32768 is used. 652 */ 653 u32 exit_dump_len; 654 655 /** 656 * hotplug_seq - A sequence number that may be set by the scheduler to 657 * detect when a hotplug event has occurred during the loading process. 658 * If 0, no detection occurs. Otherwise, the scheduler will fail to 659 * load if the sequence number does not match @scx_hotplug_seq on the 660 * enable path. 661 */ 662 u64 hotplug_seq; 663 664 /** 665 * name - BPF scheduler's name 666 * 667 * Must be a non-zero valid BPF object name including only isalnum(), 668 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the 669 * BPF scheduler is enabled. 670 */ 671 char name[SCX_OPS_NAME_LEN]; 672 }; 673 674 enum scx_opi { 675 SCX_OPI_BEGIN = 0, 676 SCX_OPI_NORMAL_BEGIN = 0, 677 SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online), 678 SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online), 679 SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init), 680 SCX_OPI_END = SCX_OP_IDX(init), 681 }; 682 683 enum scx_wake_flags { 684 /* expose select WF_* flags as enums */ 685 SCX_WAKE_FORK = WF_FORK, 686 SCX_WAKE_TTWU = WF_TTWU, 687 SCX_WAKE_SYNC = WF_SYNC, 688 }; 689 690 enum scx_enq_flags { 691 /* expose select ENQUEUE_* flags as enums */ 692 SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP, 693 SCX_ENQ_HEAD = ENQUEUE_HEAD, 694 695 /* high 32bits are SCX specific */ 696 697 /* 698 * Set the following to trigger preemption when calling 699 * scx_bpf_dispatch() with a local dsq as the target. The slice of the 700 * current task is cleared to zero and the CPU is kicked into the 701 * scheduling path. Implies %SCX_ENQ_HEAD. 702 */ 703 SCX_ENQ_PREEMPT = 1LLU << 32, 704 705 /* 706 * The task being enqueued was previously enqueued on the current CPU's 707 * %SCX_DSQ_LOCAL, but was removed from it in a call to the 708 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was 709 * invoked in a ->cpu_release() callback, and the task is again 710 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the 711 * task will not be scheduled on the CPU until at least the next invocation 712 * of the ->cpu_acquire() callback. 713 */ 714 SCX_ENQ_REENQ = 1LLU << 40, 715 716 /* 717 * The task being enqueued is the only task available for the cpu. By 718 * default, ext core keeps executing such tasks but when 719 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the 720 * %SCX_ENQ_LAST flag set. 721 * 722 * The BPF scheduler is responsible for triggering a follow-up 723 * scheduling event. Otherwise, Execution may stall. 724 */ 725 SCX_ENQ_LAST = 1LLU << 41, 726 727 /* high 8 bits are internal */ 728 __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56, 729 730 SCX_ENQ_CLEAR_OPSS = 1LLU << 56, 731 SCX_ENQ_DSQ_PRIQ = 1LLU << 57, 732 }; 733 734 enum scx_deq_flags { 735 /* expose select DEQUEUE_* flags as enums */ 736 SCX_DEQ_SLEEP = DEQUEUE_SLEEP, 737 738 /* high 32bits are SCX specific */ 739 740 /* 741 * The generic core-sched layer decided to execute the task even though 742 * it hasn't been dispatched yet. Dequeue from the BPF side. 743 */ 744 SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32, 745 }; 746 747 enum scx_pick_idle_cpu_flags { 748 SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */ 749 }; 750 751 enum scx_kick_flags { 752 /* 753 * Kick the target CPU if idle. Guarantees that the target CPU goes 754 * through at least one full scheduling cycle before going idle. If the 755 * target CPU can be determined to be currently not idle and going to go 756 * through a scheduling cycle before going idle, noop. 757 */ 758 SCX_KICK_IDLE = 1LLU << 0, 759 760 /* 761 * Preempt the current task and execute the dispatch path. If the 762 * current task of the target CPU is an SCX task, its ->scx.slice is 763 * cleared to zero before the scheduling path is invoked so that the 764 * task expires and the dispatch path is invoked. 765 */ 766 SCX_KICK_PREEMPT = 1LLU << 1, 767 768 /* 769 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will 770 * return after the target CPU finishes picking the next task. 771 */ 772 SCX_KICK_WAIT = 1LLU << 2, 773 }; 774 775 enum scx_tg_flags { 776 SCX_TG_ONLINE = 1U << 0, 777 SCX_TG_INITED = 1U << 1, 778 }; 779 780 enum scx_ops_enable_state { 781 SCX_OPS_PREPPING, 782 SCX_OPS_ENABLING, 783 SCX_OPS_ENABLED, 784 SCX_OPS_DISABLING, 785 SCX_OPS_DISABLED, 786 }; 787 788 static const char *scx_ops_enable_state_str[] = { 789 [SCX_OPS_PREPPING] = "prepping", 790 [SCX_OPS_ENABLING] = "enabling", 791 [SCX_OPS_ENABLED] = "enabled", 792 [SCX_OPS_DISABLING] = "disabling", 793 [SCX_OPS_DISABLED] = "disabled", 794 }; 795 796 /* 797 * sched_ext_entity->ops_state 798 * 799 * Used to track the task ownership between the SCX core and the BPF scheduler. 800 * State transitions look as follows: 801 * 802 * NONE -> QUEUEING -> QUEUED -> DISPATCHING 803 * ^ | | 804 * | v v 805 * \-------------------------------/ 806 * 807 * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call 808 * sites for explanations on the conditions being waited upon and why they are 809 * safe. Transitions out of them into NONE or QUEUED must store_release and the 810 * waiters should load_acquire. 811 * 812 * Tracking scx_ops_state enables sched_ext core to reliably determine whether 813 * any given task can be dispatched by the BPF scheduler at all times and thus 814 * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler 815 * to try to dispatch any task anytime regardless of its state as the SCX core 816 * can safely reject invalid dispatches. 817 */ 818 enum scx_ops_state { 819 SCX_OPSS_NONE, /* owned by the SCX core */ 820 SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */ 821 SCX_OPSS_QUEUED, /* owned by the BPF scheduler */ 822 SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */ 823 824 /* 825 * QSEQ brands each QUEUED instance so that, when dispatch races 826 * dequeue/requeue, the dispatcher can tell whether it still has a claim 827 * on the task being dispatched. 828 * 829 * As some 32bit archs can't do 64bit store_release/load_acquire, 830 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on 831 * 32bit machines. The dispatch race window QSEQ protects is very narrow 832 * and runs with IRQ disabled. 30 bits should be sufficient. 833 */ 834 SCX_OPSS_QSEQ_SHIFT = 2, 835 }; 836 837 /* Use macros to ensure that the type is unsigned long for the masks */ 838 #define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1) 839 #define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK) 840 841 /* 842 * During exit, a task may schedule after losing its PIDs. When disabling the 843 * BPF scheduler, we need to be able to iterate tasks in every state to 844 * guarantee system safety. Maintain a dedicated task list which contains every 845 * task between its fork and eventual free. 846 */ 847 static DEFINE_SPINLOCK(scx_tasks_lock); 848 static LIST_HEAD(scx_tasks); 849 850 /* ops enable/disable */ 851 static struct kthread_worker *scx_ops_helper; 852 static DEFINE_MUTEX(scx_ops_enable_mutex); 853 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled); 854 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 855 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED); 856 static atomic_t scx_ops_bypass_depth = ATOMIC_INIT(0); 857 static bool scx_switching_all; 858 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 859 860 static struct sched_ext_ops scx_ops; 861 static bool scx_warned_zero_slice; 862 863 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last); 864 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting); 865 static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt); 866 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled); 867 868 static struct static_key_false scx_has_op[SCX_OPI_END] = 869 { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT }; 870 871 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE); 872 static struct scx_exit_info *scx_exit_info; 873 874 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 875 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); 876 877 /* 878 * A monotically increasing sequence number that is incremented every time a 879 * scheduler is enabled. This can be used by to check if any custom sched_ext 880 * scheduler has ever been used in the system. 881 */ 882 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0); 883 884 /* 885 * The maximum amount of time in jiffies that a task may be runnable without 886 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 887 * scx_ops_error(). 888 */ 889 static unsigned long scx_watchdog_timeout; 890 891 /* 892 * The last time the delayed work was run. This delayed work relies on 893 * ksoftirqd being able to run to service timer interrupts, so it's possible 894 * that this work itself could get wedged. To account for this, we check that 895 * it's not stalled in the timer tick, and trigger an error if it is. 896 */ 897 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 898 899 static struct delayed_work scx_watchdog_work; 900 901 /* idle tracking */ 902 #ifdef CONFIG_SMP 903 #ifdef CONFIG_CPUMASK_OFFSTACK 904 #define CL_ALIGNED_IF_ONSTACK 905 #else 906 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp 907 #endif 908 909 static struct { 910 cpumask_var_t cpu; 911 cpumask_var_t smt; 912 } idle_masks CL_ALIGNED_IF_ONSTACK; 913 914 #endif /* CONFIG_SMP */ 915 916 /* for %SCX_KICK_WAIT */ 917 static unsigned long __percpu *scx_kick_cpus_pnt_seqs; 918 919 /* 920 * Direct dispatch marker. 921 * 922 * Non-NULL values are used for direct dispatch from enqueue path. A valid 923 * pointer points to the task currently being enqueued. An ERR_PTR value is used 924 * to indicate that direct dispatch has already happened. 925 */ 926 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 927 928 /* dispatch queues */ 929 static struct scx_dispatch_q __cacheline_aligned_in_smp scx_dsq_global; 930 931 static const struct rhashtable_params dsq_hash_params = { 932 .key_len = 8, 933 .key_offset = offsetof(struct scx_dispatch_q, id), 934 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 935 }; 936 937 static struct rhashtable dsq_hash; 938 static LLIST_HEAD(dsqs_to_free); 939 940 /* dispatch buf */ 941 struct scx_dsp_buf_ent { 942 struct task_struct *task; 943 unsigned long qseq; 944 u64 dsq_id; 945 u64 enq_flags; 946 }; 947 948 static u32 scx_dsp_max_batch; 949 950 struct scx_dsp_ctx { 951 struct rq *rq; 952 u32 cursor; 953 u32 nr_tasks; 954 struct scx_dsp_buf_ent buf[]; 955 }; 956 957 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 958 959 /* string formatting from BPF */ 960 struct scx_bstr_buf { 961 u64 data[MAX_BPRINTF_VARARGS]; 962 char line[SCX_EXIT_MSG_LEN]; 963 }; 964 965 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 966 static struct scx_bstr_buf scx_exit_bstr_buf; 967 968 /* ops debug dump */ 969 struct scx_dump_data { 970 s32 cpu; 971 bool first; 972 s32 cursor; 973 struct seq_buf *s; 974 const char *prefix; 975 struct scx_bstr_buf buf; 976 }; 977 978 static struct scx_dump_data scx_dump_data = { 979 .cpu = -1, 980 }; 981 982 /* /sys/kernel/sched_ext interface */ 983 static struct kset *scx_kset; 984 static struct kobject *scx_root_kobj; 985 986 #define CREATE_TRACE_POINTS 987 #include <trace/events/sched_ext.h> 988 989 static void process_ddsp_deferred_locals(struct rq *rq); 990 static void scx_bpf_kick_cpu(s32 cpu, u64 flags); 991 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 992 s64 exit_code, 993 const char *fmt, ...); 994 995 #define scx_ops_error_kind(err, fmt, args...) \ 996 scx_ops_exit_kind((err), 0, fmt, ##args) 997 998 #define scx_ops_exit(code, fmt, args...) \ 999 scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args) 1000 1001 #define scx_ops_error(fmt, args...) \ 1002 scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args) 1003 1004 #define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)]) 1005 1006 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 1007 { 1008 if (time_after(at, now)) 1009 return jiffies_to_msecs(at - now); 1010 else 1011 return -(long)jiffies_to_msecs(now - at); 1012 } 1013 1014 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 1015 static u32 higher_bits(u32 flags) 1016 { 1017 return ~((1 << fls(flags)) - 1); 1018 } 1019 1020 /* return the mask with only the highest bit set */ 1021 static u32 highest_bit(u32 flags) 1022 { 1023 int bit = fls(flags); 1024 return ((u64)1 << bit) >> 1; 1025 } 1026 1027 static bool u32_before(u32 a, u32 b) 1028 { 1029 return (s32)(a - b) < 0; 1030 } 1031 1032 /* 1033 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 1034 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 1035 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 1036 * whether it's running from an allowed context. 1037 * 1038 * @mask is constant, always inline to cull the mask calculations. 1039 */ 1040 static __always_inline void scx_kf_allow(u32 mask) 1041 { 1042 /* nesting is allowed only in increasing scx_kf_mask order */ 1043 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 1044 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 1045 current->scx.kf_mask, mask); 1046 current->scx.kf_mask |= mask; 1047 barrier(); 1048 } 1049 1050 static void scx_kf_disallow(u32 mask) 1051 { 1052 barrier(); 1053 current->scx.kf_mask &= ~mask; 1054 } 1055 1056 #define SCX_CALL_OP(mask, op, args...) \ 1057 do { \ 1058 if (mask) { \ 1059 scx_kf_allow(mask); \ 1060 scx_ops.op(args); \ 1061 scx_kf_disallow(mask); \ 1062 } else { \ 1063 scx_ops.op(args); \ 1064 } \ 1065 } while (0) 1066 1067 #define SCX_CALL_OP_RET(mask, op, args...) \ 1068 ({ \ 1069 __typeof__(scx_ops.op(args)) __ret; \ 1070 if (mask) { \ 1071 scx_kf_allow(mask); \ 1072 __ret = scx_ops.op(args); \ 1073 scx_kf_disallow(mask); \ 1074 } else { \ 1075 __ret = scx_ops.op(args); \ 1076 } \ 1077 __ret; \ 1078 }) 1079 1080 /* 1081 * Some kfuncs are allowed only on the tasks that are subjects of the 1082 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 1083 * restrictions, the following SCX_CALL_OP_*() variants should be used when 1084 * invoking scx_ops operations that take task arguments. These can only be used 1085 * for non-nesting operations due to the way the tasks are tracked. 1086 * 1087 * kfuncs which can only operate on such tasks can in turn use 1088 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 1089 * the specific task. 1090 */ 1091 #define SCX_CALL_OP_TASK(mask, op, task, args...) \ 1092 do { \ 1093 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1094 current->scx.kf_tasks[0] = task; \ 1095 SCX_CALL_OP(mask, op, task, ##args); \ 1096 current->scx.kf_tasks[0] = NULL; \ 1097 } while (0) 1098 1099 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \ 1100 ({ \ 1101 __typeof__(scx_ops.op(task, ##args)) __ret; \ 1102 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1103 current->scx.kf_tasks[0] = task; \ 1104 __ret = SCX_CALL_OP_RET(mask, op, task, ##args); \ 1105 current->scx.kf_tasks[0] = NULL; \ 1106 __ret; \ 1107 }) 1108 1109 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \ 1110 ({ \ 1111 __typeof__(scx_ops.op(task0, task1, ##args)) __ret; \ 1112 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1113 current->scx.kf_tasks[0] = task0; \ 1114 current->scx.kf_tasks[1] = task1; \ 1115 __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \ 1116 current->scx.kf_tasks[0] = NULL; \ 1117 current->scx.kf_tasks[1] = NULL; \ 1118 __ret; \ 1119 }) 1120 1121 /* @mask is constant, always inline to cull unnecessary branches */ 1122 static __always_inline bool scx_kf_allowed(u32 mask) 1123 { 1124 if (unlikely(!(current->scx.kf_mask & mask))) { 1125 scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x", 1126 mask, current->scx.kf_mask); 1127 return false; 1128 } 1129 1130 /* 1131 * Enforce nesting boundaries. e.g. A kfunc which can be called from 1132 * DISPATCH must not be called if we're running DEQUEUE which is nested 1133 * inside ops.dispatch(). We don't need to check boundaries for any 1134 * blocking kfuncs as the verifier ensures they're only called from 1135 * sleepable progs. 1136 */ 1137 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 1138 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 1139 scx_ops_error("cpu_release kfunc called from a nested operation"); 1140 return false; 1141 } 1142 1143 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 1144 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 1145 scx_ops_error("dispatch kfunc called from a nested operation"); 1146 return false; 1147 } 1148 1149 return true; 1150 } 1151 1152 /* see SCX_CALL_OP_TASK() */ 1153 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask, 1154 struct task_struct *p) 1155 { 1156 if (!scx_kf_allowed(mask)) 1157 return false; 1158 1159 if (unlikely((p != current->scx.kf_tasks[0] && 1160 p != current->scx.kf_tasks[1]))) { 1161 scx_ops_error("called on a task not being operated on"); 1162 return false; 1163 } 1164 1165 return true; 1166 } 1167 1168 static bool scx_kf_allowed_if_unlocked(void) 1169 { 1170 return !current->scx.kf_mask; 1171 } 1172 1173 /** 1174 * nldsq_next_task - Iterate to the next task in a non-local DSQ 1175 * @dsq: user dsq being interated 1176 * @cur: current position, %NULL to start iteration 1177 * @rev: walk backwards 1178 * 1179 * Returns %NULL when iteration is finished. 1180 */ 1181 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, 1182 struct task_struct *cur, bool rev) 1183 { 1184 struct list_head *list_node; 1185 struct scx_dsq_list_node *dsq_lnode; 1186 1187 lockdep_assert_held(&dsq->lock); 1188 1189 if (cur) 1190 list_node = &cur->scx.dsq_list.node; 1191 else 1192 list_node = &dsq->list; 1193 1194 /* find the next task, need to skip BPF iteration cursors */ 1195 do { 1196 if (rev) 1197 list_node = list_node->prev; 1198 else 1199 list_node = list_node->next; 1200 1201 if (list_node == &dsq->list) 1202 return NULL; 1203 1204 dsq_lnode = container_of(list_node, struct scx_dsq_list_node, 1205 node); 1206 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); 1207 1208 return container_of(dsq_lnode, struct task_struct, scx.dsq_list); 1209 } 1210 1211 #define nldsq_for_each_task(p, dsq) \ 1212 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ 1213 (p) = nldsq_next_task((dsq), (p), false)) 1214 1215 1216 /* 1217 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] 1218 * dispatch order. BPF-visible iterator is opaque and larger to allow future 1219 * changes without breaking backward compatibility. Can be used with 1220 * bpf_for_each(). See bpf_iter_scx_dsq_*(). 1221 */ 1222 enum scx_dsq_iter_flags { 1223 /* iterate in the reverse dispatch order */ 1224 SCX_DSQ_ITER_REV = 1U << 16, 1225 1226 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, 1227 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, 1228 1229 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, 1230 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | 1231 __SCX_DSQ_ITER_HAS_SLICE | 1232 __SCX_DSQ_ITER_HAS_VTIME, 1233 }; 1234 1235 struct bpf_iter_scx_dsq_kern { 1236 struct scx_dsq_list_node cursor; 1237 struct scx_dispatch_q *dsq; 1238 u64 slice; 1239 u64 vtime; 1240 } __attribute__((aligned(8))); 1241 1242 struct bpf_iter_scx_dsq { 1243 u64 __opaque[6]; 1244 } __attribute__((aligned(8))); 1245 1246 1247 /* 1248 * SCX task iterator. 1249 */ 1250 struct scx_task_iter { 1251 struct sched_ext_entity cursor; 1252 struct task_struct *locked; 1253 struct rq *rq; 1254 struct rq_flags rf; 1255 }; 1256 1257 /** 1258 * scx_task_iter_init - Initialize a task iterator 1259 * @iter: iterator to init 1260 * 1261 * Initialize @iter. Must be called with scx_tasks_lock held. Once initialized, 1262 * @iter must eventually be exited with scx_task_iter_exit(). 1263 * 1264 * scx_tasks_lock may be released between this and the first next() call or 1265 * between any two next() calls. If scx_tasks_lock is released between two 1266 * next() calls, the caller is responsible for ensuring that the task being 1267 * iterated remains accessible either through RCU read lock or obtaining a 1268 * reference count. 1269 * 1270 * All tasks which existed when the iteration started are guaranteed to be 1271 * visited as long as they still exist. 1272 */ 1273 static void scx_task_iter_init(struct scx_task_iter *iter) 1274 { 1275 lockdep_assert_held(&scx_tasks_lock); 1276 1277 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & 1278 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); 1279 1280 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 1281 list_add(&iter->cursor.tasks_node, &scx_tasks); 1282 iter->locked = NULL; 1283 } 1284 1285 /** 1286 * scx_task_iter_rq_unlock - Unlock rq locked by a task iterator 1287 * @iter: iterator to unlock rq for 1288 * 1289 * If @iter is in the middle of a locked iteration, it may be locking the rq of 1290 * the task currently being visited. Unlock the rq if so. This function can be 1291 * safely called anytime during an iteration. 1292 * 1293 * Returns %true if the rq @iter was locking is unlocked. %false if @iter was 1294 * not locking an rq. 1295 */ 1296 static bool scx_task_iter_rq_unlock(struct scx_task_iter *iter) 1297 { 1298 if (iter->locked) { 1299 task_rq_unlock(iter->rq, iter->locked, &iter->rf); 1300 iter->locked = NULL; 1301 return true; 1302 } else { 1303 return false; 1304 } 1305 } 1306 1307 /** 1308 * scx_task_iter_exit - Exit a task iterator 1309 * @iter: iterator to exit 1310 * 1311 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held. 1312 * If the iterator holds a task's rq lock, that rq lock is released. See 1313 * scx_task_iter_init() for details. 1314 */ 1315 static void scx_task_iter_exit(struct scx_task_iter *iter) 1316 { 1317 lockdep_assert_held(&scx_tasks_lock); 1318 1319 scx_task_iter_rq_unlock(iter); 1320 list_del_init(&iter->cursor.tasks_node); 1321 } 1322 1323 /** 1324 * scx_task_iter_next - Next task 1325 * @iter: iterator to walk 1326 * 1327 * Visit the next task. See scx_task_iter_init() for details. 1328 */ 1329 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 1330 { 1331 struct list_head *cursor = &iter->cursor.tasks_node; 1332 struct sched_ext_entity *pos; 1333 1334 lockdep_assert_held(&scx_tasks_lock); 1335 1336 list_for_each_entry(pos, cursor, tasks_node) { 1337 if (&pos->tasks_node == &scx_tasks) 1338 return NULL; 1339 if (!(pos->flags & SCX_TASK_CURSOR)) { 1340 list_move(cursor, &pos->tasks_node); 1341 return container_of(pos, struct task_struct, scx); 1342 } 1343 } 1344 1345 /* can't happen, should always terminate at scx_tasks above */ 1346 BUG(); 1347 } 1348 1349 /** 1350 * scx_task_iter_next_locked - Next non-idle task with its rq locked 1351 * @iter: iterator to walk 1352 * @include_dead: Whether we should include dead tasks in the iteration 1353 * 1354 * Visit the non-idle task with its rq lock held. Allows callers to specify 1355 * whether they would like to filter out dead tasks. See scx_task_iter_init() 1356 * for details. 1357 */ 1358 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) 1359 { 1360 struct task_struct *p; 1361 1362 scx_task_iter_rq_unlock(iter); 1363 1364 while ((p = scx_task_iter_next(iter))) { 1365 /* 1366 * scx_task_iter is used to prepare and move tasks into SCX 1367 * while loading the BPF scheduler and vice-versa while 1368 * unloading. The init_tasks ("swappers") should be excluded 1369 * from the iteration because: 1370 * 1371 * - It's unsafe to use __setschduler_prio() on an init_task to 1372 * determine the sched_class to use as it won't preserve its 1373 * idle_sched_class. 1374 * 1375 * - ops.init/exit_task() can easily be confused if called with 1376 * init_tasks as they, e.g., share PID 0. 1377 * 1378 * As init_tasks are never scheduled through SCX, they can be 1379 * skipped safely. Note that is_idle_task() which tests %PF_IDLE 1380 * doesn't work here: 1381 * 1382 * - %PF_IDLE may not be set for an init_task whose CPU hasn't 1383 * yet been onlined. 1384 * 1385 * - %PF_IDLE can be set on tasks that are not init_tasks. See 1386 * play_idle_precise() used by CONFIG_IDLE_INJECT. 1387 * 1388 * Test for idle_sched_class as only init_tasks are on it. 1389 */ 1390 if (p->sched_class != &idle_sched_class) 1391 break; 1392 } 1393 if (!p) 1394 return NULL; 1395 1396 iter->rq = task_rq_lock(p, &iter->rf); 1397 iter->locked = p; 1398 1399 return p; 1400 } 1401 1402 static enum scx_ops_enable_state scx_ops_enable_state(void) 1403 { 1404 return atomic_read(&scx_ops_enable_state_var); 1405 } 1406 1407 static enum scx_ops_enable_state 1408 scx_ops_set_enable_state(enum scx_ops_enable_state to) 1409 { 1410 return atomic_xchg(&scx_ops_enable_state_var, to); 1411 } 1412 1413 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to, 1414 enum scx_ops_enable_state from) 1415 { 1416 int from_v = from; 1417 1418 return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to); 1419 } 1420 1421 static bool scx_rq_bypassing(struct rq *rq) 1422 { 1423 return unlikely(rq->scx.flags & SCX_RQ_BYPASSING); 1424 } 1425 1426 /** 1427 * wait_ops_state - Busy-wait the specified ops state to end 1428 * @p: target task 1429 * @opss: state to wait the end of 1430 * 1431 * Busy-wait for @p to transition out of @opss. This can only be used when the 1432 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 1433 * has load_acquire semantics to ensure that the caller can see the updates made 1434 * in the enqueueing and dispatching paths. 1435 */ 1436 static void wait_ops_state(struct task_struct *p, unsigned long opss) 1437 { 1438 do { 1439 cpu_relax(); 1440 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 1441 } 1442 1443 /** 1444 * ops_cpu_valid - Verify a cpu number 1445 * @cpu: cpu number which came from a BPF ops 1446 * @where: extra information reported on error 1447 * 1448 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 1449 * Verify that it is in range and one of the possible cpus. If invalid, trigger 1450 * an ops error. 1451 */ 1452 static bool ops_cpu_valid(s32 cpu, const char *where) 1453 { 1454 if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) { 1455 return true; 1456 } else { 1457 scx_ops_error("invalid CPU %d%s%s", cpu, 1458 where ? " " : "", where ?: ""); 1459 return false; 1460 } 1461 } 1462 1463 /** 1464 * ops_sanitize_err - Sanitize a -errno value 1465 * @ops_name: operation to blame on failure 1466 * @err: -errno value to sanitize 1467 * 1468 * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return 1469 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 1470 * cause misbehaviors. For an example, a large negative return from 1471 * ops.init_task() triggers an oops when passed up the call chain because the 1472 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 1473 * handled as a pointer. 1474 */ 1475 static int ops_sanitize_err(const char *ops_name, s32 err) 1476 { 1477 if (err < 0 && err >= -MAX_ERRNO) 1478 return err; 1479 1480 scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err); 1481 return -EPROTO; 1482 } 1483 1484 static void run_deferred(struct rq *rq) 1485 { 1486 process_ddsp_deferred_locals(rq); 1487 } 1488 1489 #ifdef CONFIG_SMP 1490 static void deferred_bal_cb_workfn(struct rq *rq) 1491 { 1492 run_deferred(rq); 1493 } 1494 #endif 1495 1496 static void deferred_irq_workfn(struct irq_work *irq_work) 1497 { 1498 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); 1499 1500 raw_spin_rq_lock(rq); 1501 run_deferred(rq); 1502 raw_spin_rq_unlock(rq); 1503 } 1504 1505 /** 1506 * schedule_deferred - Schedule execution of deferred actions on an rq 1507 * @rq: target rq 1508 * 1509 * Schedule execution of deferred actions on @rq. Must be called with @rq 1510 * locked. Deferred actions are executed with @rq locked but unpinned, and thus 1511 * can unlock @rq to e.g. migrate tasks to other rqs. 1512 */ 1513 static void schedule_deferred(struct rq *rq) 1514 { 1515 lockdep_assert_rq_held(rq); 1516 1517 #ifdef CONFIG_SMP 1518 /* 1519 * If in the middle of waking up a task, task_woken_scx() will be called 1520 * afterwards which will then run the deferred actions, no need to 1521 * schedule anything. 1522 */ 1523 if (rq->scx.flags & SCX_RQ_IN_WAKEUP) 1524 return; 1525 1526 /* 1527 * If in balance, the balance callbacks will be called before rq lock is 1528 * released. Schedule one. 1529 */ 1530 if (rq->scx.flags & SCX_RQ_IN_BALANCE) { 1531 queue_balance_callback(rq, &rq->scx.deferred_bal_cb, 1532 deferred_bal_cb_workfn); 1533 return; 1534 } 1535 #endif 1536 /* 1537 * No scheduler hooks available. Queue an irq work. They are executed on 1538 * IRQ re-enable which may take a bit longer than the scheduler hooks. 1539 * The above WAKEUP and BALANCE paths should cover most of the cases and 1540 * the time to IRQ re-enable shouldn't be long. 1541 */ 1542 irq_work_queue(&rq->scx.deferred_irq_work); 1543 } 1544 1545 /** 1546 * touch_core_sched - Update timestamp used for core-sched task ordering 1547 * @rq: rq to read clock from, must be locked 1548 * @p: task to update the timestamp for 1549 * 1550 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to 1551 * implement global or local-DSQ FIFO ordering for core-sched. Should be called 1552 * when a task becomes runnable and its turn on the CPU ends (e.g. slice 1553 * exhaustion). 1554 */ 1555 static void touch_core_sched(struct rq *rq, struct task_struct *p) 1556 { 1557 lockdep_assert_rq_held(rq); 1558 1559 #ifdef CONFIG_SCHED_CORE 1560 /* 1561 * It's okay to update the timestamp spuriously. Use 1562 * sched_core_disabled() which is cheaper than enabled(). 1563 * 1564 * As this is used to determine ordering between tasks of sibling CPUs, 1565 * it may be better to use per-core dispatch sequence instead. 1566 */ 1567 if (!sched_core_disabled()) 1568 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); 1569 #endif 1570 } 1571 1572 /** 1573 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch 1574 * @rq: rq to read clock from, must be locked 1575 * @p: task being dispatched 1576 * 1577 * If the BPF scheduler implements custom core-sched ordering via 1578 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO 1579 * ordering within each local DSQ. This function is called from dispatch paths 1580 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. 1581 */ 1582 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) 1583 { 1584 lockdep_assert_rq_held(rq); 1585 1586 #ifdef CONFIG_SCHED_CORE 1587 if (SCX_HAS_OP(core_sched_before)) 1588 touch_core_sched(rq, p); 1589 #endif 1590 } 1591 1592 static void update_curr_scx(struct rq *rq) 1593 { 1594 struct task_struct *curr = rq->curr; 1595 s64 delta_exec; 1596 1597 delta_exec = update_curr_common(rq); 1598 if (unlikely(delta_exec <= 0)) 1599 return; 1600 1601 if (curr->scx.slice != SCX_SLICE_INF) { 1602 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); 1603 if (!curr->scx.slice) 1604 touch_core_sched(rq, curr); 1605 } 1606 } 1607 1608 static bool scx_dsq_priq_less(struct rb_node *node_a, 1609 const struct rb_node *node_b) 1610 { 1611 const struct task_struct *a = 1612 container_of(node_a, struct task_struct, scx.dsq_priq); 1613 const struct task_struct *b = 1614 container_of(node_b, struct task_struct, scx.dsq_priq); 1615 1616 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); 1617 } 1618 1619 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 1620 { 1621 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 1622 WRITE_ONCE(dsq->nr, dsq->nr + delta); 1623 } 1624 1625 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p, 1626 u64 enq_flags) 1627 { 1628 bool is_local = dsq->id == SCX_DSQ_LOCAL; 1629 1630 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1631 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || 1632 !RB_EMPTY_NODE(&p->scx.dsq_priq)); 1633 1634 if (!is_local) { 1635 raw_spin_lock(&dsq->lock); 1636 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 1637 scx_ops_error("attempting to dispatch to a destroyed dsq"); 1638 /* fall back to the global dsq */ 1639 raw_spin_unlock(&dsq->lock); 1640 dsq = &scx_dsq_global; 1641 raw_spin_lock(&dsq->lock); 1642 } 1643 } 1644 1645 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && 1646 (enq_flags & SCX_ENQ_DSQ_PRIQ))) { 1647 /* 1648 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from 1649 * their FIFO queues. To avoid confusion and accidentally 1650 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we 1651 * disallow any internal DSQ from doing vtime ordering of 1652 * tasks. 1653 */ 1654 scx_ops_error("cannot use vtime ordering for built-in DSQs"); 1655 enq_flags &= ~SCX_ENQ_DSQ_PRIQ; 1656 } 1657 1658 if (enq_flags & SCX_ENQ_DSQ_PRIQ) { 1659 struct rb_node *rbp; 1660 1661 /* 1662 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are 1663 * linked to both the rbtree and list on PRIQs, this can only be 1664 * tested easily when adding the first task. 1665 */ 1666 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && 1667 nldsq_next_task(dsq, NULL, false))) 1668 scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks", 1669 dsq->id); 1670 1671 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; 1672 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); 1673 1674 /* 1675 * Find the previous task and insert after it on the list so 1676 * that @dsq->list is vtime ordered. 1677 */ 1678 rbp = rb_prev(&p->scx.dsq_priq); 1679 if (rbp) { 1680 struct task_struct *prev = 1681 container_of(rbp, struct task_struct, 1682 scx.dsq_priq); 1683 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); 1684 } else { 1685 list_add(&p->scx.dsq_list.node, &dsq->list); 1686 } 1687 } else { 1688 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ 1689 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) 1690 scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks", 1691 dsq->id); 1692 1693 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 1694 list_add(&p->scx.dsq_list.node, &dsq->list); 1695 else 1696 list_add_tail(&p->scx.dsq_list.node, &dsq->list); 1697 } 1698 1699 /* seq records the order tasks are queued, used by BPF DSQ iterator */ 1700 dsq->seq++; 1701 p->scx.dsq_seq = dsq->seq; 1702 1703 dsq_mod_nr(dsq, 1); 1704 p->scx.dsq = dsq; 1705 1706 /* 1707 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 1708 * direct dispatch path, but we clear them here because the direct 1709 * dispatch verdict may be overridden on the enqueue path during e.g. 1710 * bypass. 1711 */ 1712 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 1713 p->scx.ddsp_enq_flags = 0; 1714 1715 /* 1716 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 1717 * match waiters' load_acquire. 1718 */ 1719 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 1720 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1721 1722 if (is_local) { 1723 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 1724 bool preempt = false; 1725 1726 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 1727 rq->curr->sched_class == &ext_sched_class) { 1728 rq->curr->scx.slice = 0; 1729 preempt = true; 1730 } 1731 1732 if (preempt || sched_class_above(&ext_sched_class, 1733 rq->curr->sched_class)) 1734 resched_curr(rq); 1735 } else { 1736 raw_spin_unlock(&dsq->lock); 1737 } 1738 } 1739 1740 static void task_unlink_from_dsq(struct task_struct *p, 1741 struct scx_dispatch_q *dsq) 1742 { 1743 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); 1744 1745 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { 1746 rb_erase(&p->scx.dsq_priq, &dsq->priq); 1747 RB_CLEAR_NODE(&p->scx.dsq_priq); 1748 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; 1749 } 1750 1751 list_del_init(&p->scx.dsq_list.node); 1752 dsq_mod_nr(dsq, -1); 1753 } 1754 1755 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 1756 { 1757 struct scx_dispatch_q *dsq = p->scx.dsq; 1758 bool is_local = dsq == &rq->scx.local_dsq; 1759 1760 if (!dsq) { 1761 /* 1762 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. 1763 * Unlinking is all that's needed to cancel. 1764 */ 1765 if (unlikely(!list_empty(&p->scx.dsq_list.node))) 1766 list_del_init(&p->scx.dsq_list.node); 1767 1768 /* 1769 * When dispatching directly from the BPF scheduler to a local 1770 * DSQ, the task isn't associated with any DSQ but 1771 * @p->scx.holding_cpu may be set under the protection of 1772 * %SCX_OPSS_DISPATCHING. 1773 */ 1774 if (p->scx.holding_cpu >= 0) 1775 p->scx.holding_cpu = -1; 1776 1777 return; 1778 } 1779 1780 if (!is_local) 1781 raw_spin_lock(&dsq->lock); 1782 1783 /* 1784 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't 1785 * change underneath us. 1786 */ 1787 if (p->scx.holding_cpu < 0) { 1788 /* @p must still be on @dsq, dequeue */ 1789 task_unlink_from_dsq(p, dsq); 1790 } else { 1791 /* 1792 * We're racing against dispatch_to_local_dsq() which already 1793 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 1794 * holding_cpu which tells dispatch_to_local_dsq() that it lost 1795 * the race. 1796 */ 1797 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); 1798 p->scx.holding_cpu = -1; 1799 } 1800 p->scx.dsq = NULL; 1801 1802 if (!is_local) 1803 raw_spin_unlock(&dsq->lock); 1804 } 1805 1806 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id) 1807 { 1808 return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params); 1809 } 1810 1811 static struct scx_dispatch_q *find_non_local_dsq(u64 dsq_id) 1812 { 1813 lockdep_assert(rcu_read_lock_any_held()); 1814 1815 if (dsq_id == SCX_DSQ_GLOBAL) 1816 return &scx_dsq_global; 1817 else 1818 return find_user_dsq(dsq_id); 1819 } 1820 1821 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id, 1822 struct task_struct *p) 1823 { 1824 struct scx_dispatch_q *dsq; 1825 1826 if (dsq_id == SCX_DSQ_LOCAL) 1827 return &rq->scx.local_dsq; 1828 1829 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 1830 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 1831 1832 if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 1833 return &scx_dsq_global; 1834 1835 return &cpu_rq(cpu)->scx.local_dsq; 1836 } 1837 1838 dsq = find_non_local_dsq(dsq_id); 1839 if (unlikely(!dsq)) { 1840 scx_ops_error("non-existent DSQ 0x%llx for %s[%d]", 1841 dsq_id, p->comm, p->pid); 1842 return &scx_dsq_global; 1843 } 1844 1845 return dsq; 1846 } 1847 1848 static void mark_direct_dispatch(struct task_struct *ddsp_task, 1849 struct task_struct *p, u64 dsq_id, 1850 u64 enq_flags) 1851 { 1852 /* 1853 * Mark that dispatch already happened from ops.select_cpu() or 1854 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 1855 * which can never match a valid task pointer. 1856 */ 1857 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 1858 1859 /* @p must match the task on the enqueue path */ 1860 if (unlikely(p != ddsp_task)) { 1861 if (IS_ERR(ddsp_task)) 1862 scx_ops_error("%s[%d] already direct-dispatched", 1863 p->comm, p->pid); 1864 else 1865 scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 1866 ddsp_task->comm, ddsp_task->pid, 1867 p->comm, p->pid); 1868 return; 1869 } 1870 1871 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 1872 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 1873 1874 p->scx.ddsp_dsq_id = dsq_id; 1875 p->scx.ddsp_enq_flags = enq_flags; 1876 } 1877 1878 static void direct_dispatch(struct task_struct *p, u64 enq_flags) 1879 { 1880 struct rq *rq = task_rq(p); 1881 struct scx_dispatch_q *dsq = 1882 find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); 1883 1884 touch_core_sched_dispatch(rq, p); 1885 1886 p->scx.ddsp_enq_flags |= enq_flags; 1887 1888 /* 1889 * We are in the enqueue path with @rq locked and pinned, and thus can't 1890 * double lock a remote rq and enqueue to its local DSQ. For 1891 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer 1892 * the enqueue so that it's executed when @rq can be unlocked. 1893 */ 1894 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { 1895 unsigned long opss; 1896 1897 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; 1898 1899 switch (opss & SCX_OPSS_STATE_MASK) { 1900 case SCX_OPSS_NONE: 1901 break; 1902 case SCX_OPSS_QUEUEING: 1903 /* 1904 * As @p was never passed to the BPF side, _release is 1905 * not strictly necessary. Still do it for consistency. 1906 */ 1907 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1908 break; 1909 default: 1910 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", 1911 p->comm, p->pid, opss); 1912 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1913 break; 1914 } 1915 1916 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1917 list_add_tail(&p->scx.dsq_list.node, 1918 &rq->scx.ddsp_deferred_locals); 1919 schedule_deferred(rq); 1920 return; 1921 } 1922 1923 dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 1924 } 1925 1926 static bool scx_rq_online(struct rq *rq) 1927 { 1928 /* 1929 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates 1930 * the online state as seen from the BPF scheduler. cpu_active() test 1931 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will 1932 * stay set until the current scheduling operation is complete even if 1933 * we aren't locking @rq. 1934 */ 1935 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); 1936 } 1937 1938 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 1939 int sticky_cpu) 1940 { 1941 struct task_struct **ddsp_taskp; 1942 unsigned long qseq; 1943 1944 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 1945 1946 /* rq migration */ 1947 if (sticky_cpu == cpu_of(rq)) 1948 goto local_norefill; 1949 1950 /* 1951 * If !scx_rq_online(), we already told the BPF scheduler that the CPU 1952 * is offline and are just running the hotplug path. Don't bother the 1953 * BPF scheduler. 1954 */ 1955 if (!scx_rq_online(rq)) 1956 goto local; 1957 1958 if (scx_rq_bypassing(rq)) 1959 goto global; 1960 1961 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1962 goto direct; 1963 1964 /* see %SCX_OPS_ENQ_EXITING */ 1965 if (!static_branch_unlikely(&scx_ops_enq_exiting) && 1966 unlikely(p->flags & PF_EXITING)) 1967 goto local; 1968 1969 if (!SCX_HAS_OP(enqueue)) 1970 goto global; 1971 1972 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 1973 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 1974 1975 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1976 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 1977 1978 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 1979 WARN_ON_ONCE(*ddsp_taskp); 1980 *ddsp_taskp = p; 1981 1982 SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags); 1983 1984 *ddsp_taskp = NULL; 1985 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1986 goto direct; 1987 1988 /* 1989 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 1990 * dequeue may be waiting. The store_release matches their load_acquire. 1991 */ 1992 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 1993 return; 1994 1995 direct: 1996 direct_dispatch(p, enq_flags); 1997 return; 1998 1999 local: 2000 /* 2001 * For task-ordering, slice refill must be treated as implying the end 2002 * of the current slice. Otherwise, the longer @p stays on the CPU, the 2003 * higher priority it becomes from scx_prio_less()'s POV. 2004 */ 2005 touch_core_sched(rq, p); 2006 p->scx.slice = SCX_SLICE_DFL; 2007 local_norefill: 2008 dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags); 2009 return; 2010 2011 global: 2012 touch_core_sched(rq, p); /* see the comment in local: */ 2013 p->scx.slice = SCX_SLICE_DFL; 2014 dispatch_enqueue(&scx_dsq_global, p, enq_flags); 2015 } 2016 2017 static bool task_runnable(const struct task_struct *p) 2018 { 2019 return !list_empty(&p->scx.runnable_node); 2020 } 2021 2022 static void set_task_runnable(struct rq *rq, struct task_struct *p) 2023 { 2024 lockdep_assert_rq_held(rq); 2025 2026 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 2027 p->scx.runnable_at = jiffies; 2028 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 2029 } 2030 2031 /* 2032 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being 2033 * appened to the runnable_list. 2034 */ 2035 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 2036 } 2037 2038 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 2039 { 2040 list_del_init(&p->scx.runnable_node); 2041 if (reset_runnable_at) 2042 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2043 } 2044 2045 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 2046 { 2047 int sticky_cpu = p->scx.sticky_cpu; 2048 2049 if (enq_flags & ENQUEUE_WAKEUP) 2050 rq->scx.flags |= SCX_RQ_IN_WAKEUP; 2051 2052 enq_flags |= rq->scx.extra_enq_flags; 2053 2054 if (sticky_cpu >= 0) 2055 p->scx.sticky_cpu = -1; 2056 2057 /* 2058 * Restoring a running task will be immediately followed by 2059 * set_next_task_scx() which expects the task to not be on the BPF 2060 * scheduler as tasks can only start running through local DSQs. Force 2061 * direct-dispatch into the local DSQ by setting the sticky_cpu. 2062 */ 2063 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 2064 sticky_cpu = cpu_of(rq); 2065 2066 if (p->scx.flags & SCX_TASK_QUEUED) { 2067 WARN_ON_ONCE(!task_runnable(p)); 2068 goto out; 2069 } 2070 2071 set_task_runnable(rq, p); 2072 p->scx.flags |= SCX_TASK_QUEUED; 2073 rq->scx.nr_running++; 2074 add_nr_running(rq, 1); 2075 2076 if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p)) 2077 SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags); 2078 2079 if (enq_flags & SCX_ENQ_WAKEUP) 2080 touch_core_sched(rq, p); 2081 2082 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 2083 out: 2084 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; 2085 } 2086 2087 static void ops_dequeue(struct task_struct *p, u64 deq_flags) 2088 { 2089 unsigned long opss; 2090 2091 /* dequeue is always temporary, don't reset runnable_at */ 2092 clr_task_runnable(p, false); 2093 2094 /* acquire ensures that we see the preceding updates on QUEUED */ 2095 opss = atomic_long_read_acquire(&p->scx.ops_state); 2096 2097 switch (opss & SCX_OPSS_STATE_MASK) { 2098 case SCX_OPSS_NONE: 2099 break; 2100 case SCX_OPSS_QUEUEING: 2101 /* 2102 * QUEUEING is started and finished while holding @p's rq lock. 2103 * As we're holding the rq lock now, we shouldn't see QUEUEING. 2104 */ 2105 BUG(); 2106 case SCX_OPSS_QUEUED: 2107 if (SCX_HAS_OP(dequeue)) 2108 SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags); 2109 2110 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2111 SCX_OPSS_NONE)) 2112 break; 2113 fallthrough; 2114 case SCX_OPSS_DISPATCHING: 2115 /* 2116 * If @p is being dispatched from the BPF scheduler to a DSQ, 2117 * wait for the transfer to complete so that @p doesn't get 2118 * added to its DSQ after dequeueing is complete. 2119 * 2120 * As we're waiting on DISPATCHING with the rq locked, the 2121 * dispatching side shouldn't try to lock the rq while 2122 * DISPATCHING is set. See dispatch_to_local_dsq(). 2123 * 2124 * DISPATCHING shouldn't have qseq set and control can reach 2125 * here with NONE @opss from the above QUEUED case block. 2126 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 2127 */ 2128 wait_ops_state(p, SCX_OPSS_DISPATCHING); 2129 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2130 break; 2131 } 2132 } 2133 2134 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 2135 { 2136 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 2137 WARN_ON_ONCE(task_runnable(p)); 2138 return true; 2139 } 2140 2141 ops_dequeue(p, deq_flags); 2142 2143 /* 2144 * A currently running task which is going off @rq first gets dequeued 2145 * and then stops running. As we want running <-> stopping transitions 2146 * to be contained within runnable <-> quiescent transitions, trigger 2147 * ->stopping() early here instead of in put_prev_task_scx(). 2148 * 2149 * @p may go through multiple stopping <-> running transitions between 2150 * here and put_prev_task_scx() if task attribute changes occur while 2151 * balance_scx() leaves @rq unlocked. However, they don't contain any 2152 * information meaningful to the BPF scheduler and can be suppressed by 2153 * skipping the callbacks if the task is !QUEUED. 2154 */ 2155 if (SCX_HAS_OP(stopping) && task_current(rq, p)) { 2156 update_curr_scx(rq); 2157 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false); 2158 } 2159 2160 if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p)) 2161 SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags); 2162 2163 if (deq_flags & SCX_DEQ_SLEEP) 2164 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 2165 else 2166 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 2167 2168 p->scx.flags &= ~SCX_TASK_QUEUED; 2169 rq->scx.nr_running--; 2170 sub_nr_running(rq, 1); 2171 2172 dispatch_dequeue(rq, p); 2173 return true; 2174 } 2175 2176 static void yield_task_scx(struct rq *rq) 2177 { 2178 struct task_struct *p = rq->curr; 2179 2180 if (SCX_HAS_OP(yield)) 2181 SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL); 2182 else 2183 p->scx.slice = 0; 2184 } 2185 2186 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 2187 { 2188 struct task_struct *from = rq->curr; 2189 2190 if (SCX_HAS_OP(yield)) 2191 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to); 2192 else 2193 return false; 2194 } 2195 2196 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2197 struct scx_dispatch_q *src_dsq, 2198 struct rq *dst_rq) 2199 { 2200 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; 2201 2202 /* @dsq is locked and @p is on @dst_rq */ 2203 lockdep_assert_held(&src_dsq->lock); 2204 lockdep_assert_rq_held(dst_rq); 2205 2206 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2207 2208 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 2209 list_add(&p->scx.dsq_list.node, &dst_dsq->list); 2210 else 2211 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); 2212 2213 dsq_mod_nr(dst_dsq, 1); 2214 p->scx.dsq = dst_dsq; 2215 } 2216 2217 #ifdef CONFIG_SMP 2218 /** 2219 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ 2220 * @p: task to move 2221 * @enq_flags: %SCX_ENQ_* 2222 * @src_rq: rq to move the task from, locked on entry, released on return 2223 * @dst_rq: rq to move the task into, locked on return 2224 * 2225 * Move @p which is currently on @src_rq to @dst_rq's local DSQ. 2226 */ 2227 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2228 struct rq *src_rq, struct rq *dst_rq) 2229 { 2230 lockdep_assert_rq_held(src_rq); 2231 2232 /* the following marks @p MIGRATING which excludes dequeue */ 2233 deactivate_task(src_rq, p, 0); 2234 set_task_cpu(p, cpu_of(dst_rq)); 2235 p->scx.sticky_cpu = cpu_of(dst_rq); 2236 2237 raw_spin_rq_unlock(src_rq); 2238 raw_spin_rq_lock(dst_rq); 2239 2240 /* 2241 * We want to pass scx-specific enq_flags but activate_task() will 2242 * truncate the upper 32 bit. As we own @rq, we can pass them through 2243 * @rq->scx.extra_enq_flags instead. 2244 */ 2245 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); 2246 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); 2247 dst_rq->scx.extra_enq_flags = enq_flags; 2248 activate_task(dst_rq, p, 0); 2249 dst_rq->scx.extra_enq_flags = 0; 2250 } 2251 2252 /* 2253 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two 2254 * differences: 2255 * 2256 * - is_cpu_allowed() asks "Can this task run on this CPU?" while 2257 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to 2258 * this CPU?". 2259 * 2260 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task 2261 * must be allowed to finish on the CPU that it's currently on regardless of 2262 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the 2263 * BPF scheduler shouldn't attempt to migrate a task which has migration 2264 * disabled. 2265 * 2266 * - The BPF scheduler is bypassed while the rq is offline and we can always say 2267 * no to the BPF scheduler initiated migrations while offline. 2268 */ 2269 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, 2270 bool trigger_error) 2271 { 2272 int cpu = cpu_of(rq); 2273 2274 /* 2275 * We don't require the BPF scheduler to avoid dispatching to offline 2276 * CPUs mostly for convenience but also because CPUs can go offline 2277 * between scx_bpf_dispatch() calls and here. Trigger error iff the 2278 * picked CPU is outside the allowed mask. 2279 */ 2280 if (!task_allowed_on_cpu(p, cpu)) { 2281 if (trigger_error) 2282 scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]", 2283 cpu_of(rq), p->comm, p->pid); 2284 return false; 2285 } 2286 2287 if (unlikely(is_migration_disabled(p))) 2288 return false; 2289 2290 if (!scx_rq_online(rq)) 2291 return false; 2292 2293 return true; 2294 } 2295 2296 /** 2297 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq 2298 * @p: target task 2299 * @dsq: locked DSQ @p is currently on 2300 * @src_rq: rq @p is currently on, stable with @dsq locked 2301 * 2302 * Called with @dsq locked but no rq's locked. We want to move @p to a different 2303 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is 2304 * required when transferring into a local DSQ. Even when transferring into a 2305 * non-local DSQ, it's better to use the same mechanism to protect against 2306 * dequeues and maintain the invariant that @p->scx.dsq can only change while 2307 * @src_rq is locked, which e.g. scx_dump_task() depends on. 2308 * 2309 * We want to grab @src_rq but that can deadlock if we try while locking @dsq, 2310 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As 2311 * this may race with dequeue, which can't drop the rq lock or fail, do a little 2312 * dancing from our side. 2313 * 2314 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets 2315 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu 2316 * would be cleared to -1. While other cpus may have updated it to different 2317 * values afterwards, as this operation can't be preempted or recurse, the 2318 * holding_cpu can never become this CPU again before we're done. Thus, we can 2319 * tell whether we lost to dequeue by testing whether the holding_cpu still 2320 * points to this CPU. See dispatch_dequeue() for the counterpart. 2321 * 2322 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is 2323 * still valid. %false if lost to dequeue. 2324 */ 2325 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, 2326 struct scx_dispatch_q *dsq, 2327 struct rq *src_rq) 2328 { 2329 s32 cpu = raw_smp_processor_id(); 2330 2331 lockdep_assert_held(&dsq->lock); 2332 2333 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2334 task_unlink_from_dsq(p, dsq); 2335 p->scx.holding_cpu = cpu; 2336 2337 raw_spin_unlock(&dsq->lock); 2338 raw_spin_rq_lock(src_rq); 2339 2340 /* task_rq couldn't have changed if we're still the holding cpu */ 2341 return likely(p->scx.holding_cpu == cpu) && 2342 !WARN_ON_ONCE(src_rq != task_rq(p)); 2343 } 2344 2345 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, 2346 struct scx_dispatch_q *dsq, struct rq *src_rq) 2347 { 2348 raw_spin_rq_unlock(this_rq); 2349 2350 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { 2351 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); 2352 return true; 2353 } else { 2354 raw_spin_rq_unlock(src_rq); 2355 raw_spin_rq_lock(this_rq); 2356 return false; 2357 } 2358 } 2359 #else /* CONFIG_SMP */ 2360 static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; } 2361 static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; } 2362 #endif /* CONFIG_SMP */ 2363 2364 static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq) 2365 { 2366 struct task_struct *p; 2367 retry: 2368 /* 2369 * The caller can't expect to successfully consume a task if the task's 2370 * addition to @dsq isn't guaranteed to be visible somehow. Test 2371 * @dsq->list without locking and skip if it seems empty. 2372 */ 2373 if (list_empty(&dsq->list)) 2374 return false; 2375 2376 raw_spin_lock(&dsq->lock); 2377 2378 nldsq_for_each_task(p, dsq) { 2379 struct rq *task_rq = task_rq(p); 2380 2381 if (rq == task_rq) { 2382 task_unlink_from_dsq(p, dsq); 2383 move_local_task_to_local_dsq(p, 0, dsq, rq); 2384 raw_spin_unlock(&dsq->lock); 2385 return true; 2386 } 2387 2388 if (task_can_run_on_remote_rq(p, rq, false)) { 2389 if (likely(consume_remote_task(rq, p, dsq, task_rq))) 2390 return true; 2391 goto retry; 2392 } 2393 } 2394 2395 raw_spin_unlock(&dsq->lock); 2396 return false; 2397 } 2398 2399 /** 2400 * dispatch_to_local_dsq - Dispatch a task to a local dsq 2401 * @rq: current rq which is locked 2402 * @dst_dsq: destination DSQ 2403 * @p: task to dispatch 2404 * @enq_flags: %SCX_ENQ_* 2405 * 2406 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local 2407 * DSQ. This function performs all the synchronization dancing needed because 2408 * local DSQs are protected with rq locks. 2409 * 2410 * The caller must have exclusive ownership of @p (e.g. through 2411 * %SCX_OPSS_DISPATCHING). 2412 */ 2413 static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq, 2414 struct task_struct *p, u64 enq_flags) 2415 { 2416 struct rq *src_rq = task_rq(p); 2417 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 2418 2419 /* 2420 * We're synchronized against dequeue through DISPATCHING. As @p can't 2421 * be dequeued, its task_rq and cpus_allowed are stable too. 2422 * 2423 * If dispatching to @rq that @p is already on, no lock dancing needed. 2424 */ 2425 if (rq == src_rq && rq == dst_rq) { 2426 dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2427 return; 2428 } 2429 2430 #ifdef CONFIG_SMP 2431 if (unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) { 2432 dispatch_enqueue(&scx_dsq_global, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2433 return; 2434 } 2435 2436 /* 2437 * @p is on a possibly remote @src_rq which we need to lock to move the 2438 * task. If dequeue is in progress, it'd be locking @src_rq and waiting 2439 * on DISPATCHING, so we can't grab @src_rq lock while holding 2440 * DISPATCHING. 2441 * 2442 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that 2443 * we're moving from a DSQ and use the same mechanism - mark the task 2444 * under transfer with holding_cpu, release DISPATCHING and then follow 2445 * the same protocol. See unlink_dsq_and_lock_src_rq(). 2446 */ 2447 p->scx.holding_cpu = raw_smp_processor_id(); 2448 2449 /* store_release ensures that dequeue sees the above */ 2450 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 2451 2452 /* switch to @src_rq lock */ 2453 if (rq != src_rq) { 2454 raw_spin_rq_unlock(rq); 2455 raw_spin_rq_lock(src_rq); 2456 } 2457 2458 /* task_rq couldn't have changed if we're still the holding cpu */ 2459 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && 2460 !WARN_ON_ONCE(src_rq != task_rq(p))) { 2461 /* 2462 * If @p is staying on the same rq, there's no need to go 2463 * through the full deactivate/activate cycle. Optimize by 2464 * abbreviating move_remote_task_to_local_dsq(). 2465 */ 2466 if (src_rq == dst_rq) { 2467 p->scx.holding_cpu = -1; 2468 dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags); 2469 } else { 2470 move_remote_task_to_local_dsq(p, enq_flags, 2471 src_rq, dst_rq); 2472 } 2473 2474 /* if the destination CPU is idle, wake it up */ 2475 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) 2476 resched_curr(dst_rq); 2477 } 2478 2479 /* switch back to @rq lock */ 2480 if (rq != dst_rq) { 2481 raw_spin_rq_unlock(dst_rq); 2482 raw_spin_rq_lock(rq); 2483 } 2484 #else /* CONFIG_SMP */ 2485 BUG(); /* control can not reach here on UP */ 2486 #endif /* CONFIG_SMP */ 2487 } 2488 2489 /** 2490 * finish_dispatch - Asynchronously finish dispatching a task 2491 * @rq: current rq which is locked 2492 * @p: task to finish dispatching 2493 * @qseq_at_dispatch: qseq when @p started getting dispatched 2494 * @dsq_id: destination DSQ ID 2495 * @enq_flags: %SCX_ENQ_* 2496 * 2497 * Dispatching to local DSQs may need to wait for queueing to complete or 2498 * require rq lock dancing. As we don't wanna do either while inside 2499 * ops.dispatch() to avoid locking order inversion, we split dispatching into 2500 * two parts. scx_bpf_dispatch() which is called by ops.dispatch() records the 2501 * task and its qseq. Once ops.dispatch() returns, this function is called to 2502 * finish up. 2503 * 2504 * There is no guarantee that @p is still valid for dispatching or even that it 2505 * was valid in the first place. Make sure that the task is still owned by the 2506 * BPF scheduler and claim the ownership before dispatching. 2507 */ 2508 static void finish_dispatch(struct rq *rq, struct task_struct *p, 2509 unsigned long qseq_at_dispatch, 2510 u64 dsq_id, u64 enq_flags) 2511 { 2512 struct scx_dispatch_q *dsq; 2513 unsigned long opss; 2514 2515 touch_core_sched_dispatch(rq, p); 2516 retry: 2517 /* 2518 * No need for _acquire here. @p is accessed only after a successful 2519 * try_cmpxchg to DISPATCHING. 2520 */ 2521 opss = atomic_long_read(&p->scx.ops_state); 2522 2523 switch (opss & SCX_OPSS_STATE_MASK) { 2524 case SCX_OPSS_DISPATCHING: 2525 case SCX_OPSS_NONE: 2526 /* someone else already got to it */ 2527 return; 2528 case SCX_OPSS_QUEUED: 2529 /* 2530 * If qseq doesn't match, @p has gone through at least one 2531 * dispatch/dequeue and re-enqueue cycle between 2532 * scx_bpf_dispatch() and here and we have no claim on it. 2533 */ 2534 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 2535 return; 2536 2537 /* 2538 * While we know @p is accessible, we don't yet have a claim on 2539 * it - the BPF scheduler is allowed to dispatch tasks 2540 * spuriously and there can be a racing dequeue attempt. Let's 2541 * claim @p by atomically transitioning it from QUEUED to 2542 * DISPATCHING. 2543 */ 2544 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2545 SCX_OPSS_DISPATCHING))) 2546 break; 2547 goto retry; 2548 case SCX_OPSS_QUEUEING: 2549 /* 2550 * do_enqueue_task() is in the process of transferring the task 2551 * to the BPF scheduler while holding @p's rq lock. As we aren't 2552 * holding any kernel or BPF resource that the enqueue path may 2553 * depend upon, it's safe to wait. 2554 */ 2555 wait_ops_state(p, opss); 2556 goto retry; 2557 } 2558 2559 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 2560 2561 dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p); 2562 2563 if (dsq->id == SCX_DSQ_LOCAL) 2564 dispatch_to_local_dsq(rq, dsq, p, enq_flags); 2565 else 2566 dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2567 } 2568 2569 static void flush_dispatch_buf(struct rq *rq) 2570 { 2571 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2572 u32 u; 2573 2574 for (u = 0; u < dspc->cursor; u++) { 2575 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 2576 2577 finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id, 2578 ent->enq_flags); 2579 } 2580 2581 dspc->nr_tasks += dspc->cursor; 2582 dspc->cursor = 0; 2583 } 2584 2585 static int balance_one(struct rq *rq, struct task_struct *prev) 2586 { 2587 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2588 bool prev_on_scx = prev->sched_class == &ext_sched_class; 2589 int nr_loops = SCX_DSP_MAX_LOOPS; 2590 2591 lockdep_assert_rq_held(rq); 2592 rq->scx.flags |= SCX_RQ_IN_BALANCE; 2593 rq->scx.flags &= ~SCX_RQ_BAL_KEEP; 2594 2595 if (static_branch_unlikely(&scx_ops_cpu_preempt) && 2596 unlikely(rq->scx.cpu_released)) { 2597 /* 2598 * If the previous sched_class for the current CPU was not SCX, 2599 * notify the BPF scheduler that it again has control of the 2600 * core. This callback complements ->cpu_release(), which is 2601 * emitted in scx_next_task_picked(). 2602 */ 2603 if (SCX_HAS_OP(cpu_acquire)) 2604 SCX_CALL_OP(0, cpu_acquire, cpu_of(rq), NULL); 2605 rq->scx.cpu_released = false; 2606 } 2607 2608 if (prev_on_scx) { 2609 update_curr_scx(rq); 2610 2611 /* 2612 * If @prev is runnable & has slice left, it has priority and 2613 * fetching more just increases latency for the fetched tasks. 2614 * Tell pick_task_scx() to keep running @prev. If the BPF 2615 * scheduler wants to handle this explicitly, it should 2616 * implement ->cpu_release(). 2617 * 2618 * See scx_ops_disable_workfn() for the explanation on the 2619 * bypassing test. 2620 */ 2621 if ((prev->scx.flags & SCX_TASK_QUEUED) && 2622 prev->scx.slice && !scx_rq_bypassing(rq)) { 2623 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2624 goto has_tasks; 2625 } 2626 } 2627 2628 /* if there already are tasks to run, nothing to do */ 2629 if (rq->scx.local_dsq.nr) 2630 goto has_tasks; 2631 2632 if (consume_dispatch_q(rq, &scx_dsq_global)) 2633 goto has_tasks; 2634 2635 if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq)) 2636 goto no_tasks; 2637 2638 dspc->rq = rq; 2639 2640 /* 2641 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 2642 * the local DSQ might still end up empty after a successful 2643 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 2644 * produced some tasks, retry. The BPF scheduler may depend on this 2645 * looping behavior to simplify its implementation. 2646 */ 2647 do { 2648 dspc->nr_tasks = 0; 2649 2650 SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq), 2651 prev_on_scx ? prev : NULL); 2652 2653 flush_dispatch_buf(rq); 2654 2655 if (rq->scx.local_dsq.nr) 2656 goto has_tasks; 2657 if (consume_dispatch_q(rq, &scx_dsq_global)) 2658 goto has_tasks; 2659 2660 /* 2661 * ops.dispatch() can trap us in this loop by repeatedly 2662 * dispatching ineligible tasks. Break out once in a while to 2663 * allow the watchdog to run. As IRQ can't be enabled in 2664 * balance(), we want to complete this scheduling cycle and then 2665 * start a new one. IOW, we want to call resched_curr() on the 2666 * next, most likely idle, task, not the current one. Use 2667 * scx_bpf_kick_cpu() for deferred kicking. 2668 */ 2669 if (unlikely(!--nr_loops)) { 2670 scx_bpf_kick_cpu(cpu_of(rq), 0); 2671 break; 2672 } 2673 } while (dspc->nr_tasks); 2674 2675 no_tasks: 2676 /* 2677 * Didn't find another task to run. Keep running @prev unless 2678 * %SCX_OPS_ENQ_LAST is in effect. 2679 */ 2680 if ((prev->scx.flags & SCX_TASK_QUEUED) && 2681 (!static_branch_unlikely(&scx_ops_enq_last) || 2682 scx_rq_bypassing(rq))) { 2683 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2684 goto has_tasks; 2685 } 2686 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2687 return false; 2688 2689 has_tasks: 2690 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2691 return true; 2692 } 2693 2694 static int balance_scx(struct rq *rq, struct task_struct *prev, 2695 struct rq_flags *rf) 2696 { 2697 int ret; 2698 2699 rq_unpin_lock(rq, rf); 2700 2701 ret = balance_one(rq, prev); 2702 2703 #ifdef CONFIG_SCHED_SMT 2704 /* 2705 * When core-sched is enabled, this ops.balance() call will be followed 2706 * by pick_task_scx() on this CPU and the SMT siblings. Balance the 2707 * siblings too. 2708 */ 2709 if (sched_core_enabled(rq)) { 2710 const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq)); 2711 int scpu; 2712 2713 for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) { 2714 struct rq *srq = cpu_rq(scpu); 2715 struct task_struct *sprev = srq->curr; 2716 2717 WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq)); 2718 update_rq_clock(srq); 2719 balance_one(srq, sprev); 2720 } 2721 } 2722 #endif 2723 rq_repin_lock(rq, rf); 2724 2725 return ret; 2726 } 2727 2728 static void process_ddsp_deferred_locals(struct rq *rq) 2729 { 2730 struct task_struct *p; 2731 2732 lockdep_assert_rq_held(rq); 2733 2734 /* 2735 * Now that @rq can be unlocked, execute the deferred enqueueing of 2736 * tasks directly dispatched to the local DSQs of other CPUs. See 2737 * direct_dispatch(). Keep popping from the head instead of using 2738 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq 2739 * temporarily. 2740 */ 2741 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, 2742 struct task_struct, scx.dsq_list.node))) { 2743 struct scx_dispatch_q *dsq; 2744 2745 list_del_init(&p->scx.dsq_list.node); 2746 2747 dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); 2748 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) 2749 dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags); 2750 } 2751 } 2752 2753 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 2754 { 2755 if (p->scx.flags & SCX_TASK_QUEUED) { 2756 /* 2757 * Core-sched might decide to execute @p before it is 2758 * dispatched. Call ops_dequeue() to notify the BPF scheduler. 2759 */ 2760 ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC); 2761 dispatch_dequeue(rq, p); 2762 } 2763 2764 p->se.exec_start = rq_clock_task(rq); 2765 2766 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2767 if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED)) 2768 SCX_CALL_OP_TASK(SCX_KF_REST, running, p); 2769 2770 clr_task_runnable(p, true); 2771 2772 /* 2773 * @p is getting newly scheduled or got kicked after someone updated its 2774 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 2775 */ 2776 if ((p->scx.slice == SCX_SLICE_INF) != 2777 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 2778 if (p->scx.slice == SCX_SLICE_INF) 2779 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 2780 else 2781 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 2782 2783 sched_update_tick_dependency(rq); 2784 2785 /* 2786 * For now, let's refresh the load_avgs just when transitioning 2787 * in and out of nohz. In the future, we might want to add a 2788 * mechanism which calls the following periodically on 2789 * tick-stopped CPUs. 2790 */ 2791 update_other_load_avgs(rq); 2792 } 2793 } 2794 2795 static enum scx_cpu_preempt_reason 2796 preempt_reason_from_class(const struct sched_class *class) 2797 { 2798 #ifdef CONFIG_SMP 2799 if (class == &stop_sched_class) 2800 return SCX_CPU_PREEMPT_STOP; 2801 #endif 2802 if (class == &dl_sched_class) 2803 return SCX_CPU_PREEMPT_DL; 2804 if (class == &rt_sched_class) 2805 return SCX_CPU_PREEMPT_RT; 2806 return SCX_CPU_PREEMPT_UNKNOWN; 2807 } 2808 2809 static void switch_class(struct rq *rq, struct task_struct *next) 2810 { 2811 const struct sched_class *next_class = next->sched_class; 2812 2813 #ifdef CONFIG_SMP 2814 /* 2815 * Pairs with the smp_load_acquire() issued by a CPU in 2816 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a 2817 * resched. 2818 */ 2819 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); 2820 #endif 2821 if (!static_branch_unlikely(&scx_ops_cpu_preempt)) 2822 return; 2823 2824 /* 2825 * The callback is conceptually meant to convey that the CPU is no 2826 * longer under the control of SCX. Therefore, don't invoke the callback 2827 * if the next class is below SCX (in which case the BPF scheduler has 2828 * actively decided not to schedule any tasks on the CPU). 2829 */ 2830 if (sched_class_above(&ext_sched_class, next_class)) 2831 return; 2832 2833 /* 2834 * At this point we know that SCX was preempted by a higher priority 2835 * sched_class, so invoke the ->cpu_release() callback if we have not 2836 * done so already. We only send the callback once between SCX being 2837 * preempted, and it regaining control of the CPU. 2838 * 2839 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 2840 * next time that balance_scx() is invoked. 2841 */ 2842 if (!rq->scx.cpu_released) { 2843 if (SCX_HAS_OP(cpu_release)) { 2844 struct scx_cpu_release_args args = { 2845 .reason = preempt_reason_from_class(next_class), 2846 .task = next, 2847 }; 2848 2849 SCX_CALL_OP(SCX_KF_CPU_RELEASE, 2850 cpu_release, cpu_of(rq), &args); 2851 } 2852 rq->scx.cpu_released = true; 2853 } 2854 } 2855 2856 static void put_prev_task_scx(struct rq *rq, struct task_struct *p, 2857 struct task_struct *next) 2858 { 2859 update_curr_scx(rq); 2860 2861 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2862 if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 2863 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true); 2864 2865 if (p->scx.flags & SCX_TASK_QUEUED) { 2866 set_task_runnable(rq, p); 2867 2868 /* 2869 * If @p has slice left and is being put, @p is getting 2870 * preempted by a higher priority scheduler class or core-sched 2871 * forcing a different task. Leave it at the head of the local 2872 * DSQ. 2873 */ 2874 if (p->scx.slice && !scx_rq_bypassing(rq)) { 2875 dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD); 2876 return; 2877 } 2878 2879 /* 2880 * If @p is runnable but we're about to enter a lower 2881 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell 2882 * ops.enqueue() that @p is the only one available for this cpu, 2883 * which should trigger an explicit follow-up scheduling event. 2884 */ 2885 if (sched_class_above(&ext_sched_class, next->sched_class)) { 2886 WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last)); 2887 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 2888 } else { 2889 do_enqueue_task(rq, p, 0, -1); 2890 } 2891 } 2892 2893 if (next && next->sched_class != &ext_sched_class) 2894 switch_class(rq, next); 2895 } 2896 2897 static struct task_struct *first_local_task(struct rq *rq) 2898 { 2899 return list_first_entry_or_null(&rq->scx.local_dsq.list, 2900 struct task_struct, scx.dsq_list.node); 2901 } 2902 2903 static struct task_struct *pick_task_scx(struct rq *rq) 2904 { 2905 struct task_struct *prev = rq->curr; 2906 struct task_struct *p; 2907 2908 /* 2909 * If balance_scx() is telling us to keep running @prev, replenish slice 2910 * if necessary and keep running @prev. Otherwise, pop the first one 2911 * from the local DSQ. 2912 * 2913 * WORKAROUND: 2914 * 2915 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just 2916 * have gone through balance_scx(). Unfortunately, there currently is a 2917 * bug where fair could say yes on balance() but no on pick_task(), 2918 * which then ends up calling pick_task_scx() without preceding 2919 * balance_scx(). 2920 * 2921 * For now, ignore cases where $prev is not on SCX. This isn't great and 2922 * can theoretically lead to stalls. However, for switch_all cases, this 2923 * happens only while a BPF scheduler is being loaded or unloaded, and, 2924 * for partial cases, fair will likely keep triggering this CPU. 2925 * 2926 * Once fair is fixed, restore WARN_ON_ONCE(). 2927 */ 2928 if ((rq->scx.flags & SCX_RQ_BAL_KEEP) && 2929 prev->sched_class == &ext_sched_class) { 2930 p = prev; 2931 if (!p->scx.slice) 2932 p->scx.slice = SCX_SLICE_DFL; 2933 } else { 2934 p = first_local_task(rq); 2935 if (!p) 2936 return NULL; 2937 2938 if (unlikely(!p->scx.slice)) { 2939 if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) { 2940 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in pick_next_task_scx()\n", 2941 p->comm, p->pid); 2942 scx_warned_zero_slice = true; 2943 } 2944 p->scx.slice = SCX_SLICE_DFL; 2945 } 2946 } 2947 2948 return p; 2949 } 2950 2951 #ifdef CONFIG_SCHED_CORE 2952 /** 2953 * scx_prio_less - Task ordering for core-sched 2954 * @a: task A 2955 * @b: task B 2956 * 2957 * Core-sched is implemented as an additional scheduling layer on top of the 2958 * usual sched_class'es and needs to find out the expected task ordering. For 2959 * SCX, core-sched calls this function to interrogate the task ordering. 2960 * 2961 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used 2962 * to implement the default task ordering. The older the timestamp, the higher 2963 * prority the task - the global FIFO ordering matching the default scheduling 2964 * behavior. 2965 * 2966 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to 2967 * implement FIFO ordering within each local DSQ. See pick_task_scx(). 2968 */ 2969 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, 2970 bool in_fi) 2971 { 2972 /* 2973 * The const qualifiers are dropped from task_struct pointers when 2974 * calling ops.core_sched_before(). Accesses are controlled by the 2975 * verifier. 2976 */ 2977 if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a))) 2978 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before, 2979 (struct task_struct *)a, 2980 (struct task_struct *)b); 2981 else 2982 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); 2983 } 2984 #endif /* CONFIG_SCHED_CORE */ 2985 2986 #ifdef CONFIG_SMP 2987 2988 static bool test_and_clear_cpu_idle(int cpu) 2989 { 2990 #ifdef CONFIG_SCHED_SMT 2991 /* 2992 * SMT mask should be cleared whether we can claim @cpu or not. The SMT 2993 * cluster is not wholly idle either way. This also prevents 2994 * scx_pick_idle_cpu() from getting caught in an infinite loop. 2995 */ 2996 if (sched_smt_active()) { 2997 const struct cpumask *smt = cpu_smt_mask(cpu); 2998 2999 /* 3000 * If offline, @cpu is not its own sibling and 3001 * scx_pick_idle_cpu() can get caught in an infinite loop as 3002 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu 3003 * is eventually cleared. 3004 */ 3005 if (cpumask_intersects(smt, idle_masks.smt)) 3006 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 3007 else if (cpumask_test_cpu(cpu, idle_masks.smt)) 3008 __cpumask_clear_cpu(cpu, idle_masks.smt); 3009 } 3010 #endif 3011 return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu); 3012 } 3013 3014 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) 3015 { 3016 int cpu; 3017 3018 retry: 3019 if (sched_smt_active()) { 3020 cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed); 3021 if (cpu < nr_cpu_ids) 3022 goto found; 3023 3024 if (flags & SCX_PICK_IDLE_CORE) 3025 return -EBUSY; 3026 } 3027 3028 cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed); 3029 if (cpu >= nr_cpu_ids) 3030 return -EBUSY; 3031 3032 found: 3033 if (test_and_clear_cpu_idle(cpu)) 3034 return cpu; 3035 else 3036 goto retry; 3037 } 3038 3039 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 3040 u64 wake_flags, bool *found) 3041 { 3042 s32 cpu; 3043 3044 *found = false; 3045 3046 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 3047 scx_ops_error("built-in idle tracking is disabled"); 3048 return prev_cpu; 3049 } 3050 3051 /* 3052 * If WAKE_SYNC, the waker's local DSQ is empty, and the system is 3053 * under utilized, wake up @p to the local DSQ of the waker. Checking 3054 * only for an empty local DSQ is insufficient as it could give the 3055 * wakee an unfair advantage when the system is oversaturated. 3056 * Checking only for the presence of idle CPUs is also insufficient as 3057 * the local DSQ of the waker could have tasks piled up on it even if 3058 * there is an idle core elsewhere on the system. 3059 */ 3060 cpu = smp_processor_id(); 3061 if ((wake_flags & SCX_WAKE_SYNC) && p->nr_cpus_allowed > 1 && 3062 !cpumask_empty(idle_masks.cpu) && !(current->flags & PF_EXITING) && 3063 cpu_rq(cpu)->scx.local_dsq.nr == 0) { 3064 if (cpumask_test_cpu(cpu, p->cpus_ptr)) 3065 goto cpu_found; 3066 } 3067 3068 if (p->nr_cpus_allowed == 1) { 3069 if (test_and_clear_cpu_idle(prev_cpu)) { 3070 cpu = prev_cpu; 3071 goto cpu_found; 3072 } else { 3073 return prev_cpu; 3074 } 3075 } 3076 3077 /* 3078 * If CPU has SMT, any wholly idle CPU is likely a better pick than 3079 * partially idle @prev_cpu. 3080 */ 3081 if (sched_smt_active()) { 3082 if (cpumask_test_cpu(prev_cpu, idle_masks.smt) && 3083 test_and_clear_cpu_idle(prev_cpu)) { 3084 cpu = prev_cpu; 3085 goto cpu_found; 3086 } 3087 3088 cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE); 3089 if (cpu >= 0) 3090 goto cpu_found; 3091 } 3092 3093 if (test_and_clear_cpu_idle(prev_cpu)) { 3094 cpu = prev_cpu; 3095 goto cpu_found; 3096 } 3097 3098 cpu = scx_pick_idle_cpu(p->cpus_ptr, 0); 3099 if (cpu >= 0) 3100 goto cpu_found; 3101 3102 return prev_cpu; 3103 3104 cpu_found: 3105 *found = true; 3106 return cpu; 3107 } 3108 3109 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 3110 { 3111 /* 3112 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 3113 * can be a good migration opportunity with low cache and memory 3114 * footprint. Returning a CPU different than @prev_cpu triggers 3115 * immediate rq migration. However, for SCX, as the current rq 3116 * association doesn't dictate where the task is going to run, this 3117 * doesn't fit well. If necessary, we can later add a dedicated method 3118 * which can decide to preempt self to force it through the regular 3119 * scheduling path. 3120 */ 3121 if (unlikely(wake_flags & WF_EXEC)) 3122 return prev_cpu; 3123 3124 if (SCX_HAS_OP(select_cpu)) { 3125 s32 cpu; 3126 struct task_struct **ddsp_taskp; 3127 3128 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 3129 WARN_ON_ONCE(*ddsp_taskp); 3130 *ddsp_taskp = p; 3131 3132 cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 3133 select_cpu, p, prev_cpu, wake_flags); 3134 *ddsp_taskp = NULL; 3135 if (ops_cpu_valid(cpu, "from ops.select_cpu()")) 3136 return cpu; 3137 else 3138 return prev_cpu; 3139 } else { 3140 bool found; 3141 s32 cpu; 3142 3143 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found); 3144 if (found) { 3145 p->scx.slice = SCX_SLICE_DFL; 3146 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 3147 } 3148 return cpu; 3149 } 3150 } 3151 3152 static void task_woken_scx(struct rq *rq, struct task_struct *p) 3153 { 3154 run_deferred(rq); 3155 } 3156 3157 static void set_cpus_allowed_scx(struct task_struct *p, 3158 struct affinity_context *ac) 3159 { 3160 set_cpus_allowed_common(p, ac); 3161 3162 /* 3163 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 3164 * differ from the configured one in @p->cpus_mask. Always tell the bpf 3165 * scheduler the effective one. 3166 * 3167 * Fine-grained memory write control is enforced by BPF making the const 3168 * designation pointless. Cast it away when calling the operation. 3169 */ 3170 if (SCX_HAS_OP(set_cpumask)) 3171 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 3172 (struct cpumask *)p->cpus_ptr); 3173 } 3174 3175 static void reset_idle_masks(void) 3176 { 3177 /* 3178 * Consider all online cpus idle. Should converge to the actual state 3179 * quickly. 3180 */ 3181 cpumask_copy(idle_masks.cpu, cpu_online_mask); 3182 cpumask_copy(idle_masks.smt, cpu_online_mask); 3183 } 3184 3185 void __scx_update_idle(struct rq *rq, bool idle) 3186 { 3187 int cpu = cpu_of(rq); 3188 3189 if (SCX_HAS_OP(update_idle)) { 3190 SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle); 3191 if (!static_branch_unlikely(&scx_builtin_idle_enabled)) 3192 return; 3193 } 3194 3195 if (idle) 3196 cpumask_set_cpu(cpu, idle_masks.cpu); 3197 else 3198 cpumask_clear_cpu(cpu, idle_masks.cpu); 3199 3200 #ifdef CONFIG_SCHED_SMT 3201 if (sched_smt_active()) { 3202 const struct cpumask *smt = cpu_smt_mask(cpu); 3203 3204 if (idle) { 3205 /* 3206 * idle_masks.smt handling is racy but that's fine as 3207 * it's only for optimization and self-correcting. 3208 */ 3209 for_each_cpu(cpu, smt) { 3210 if (!cpumask_test_cpu(cpu, idle_masks.cpu)) 3211 return; 3212 } 3213 cpumask_or(idle_masks.smt, idle_masks.smt, smt); 3214 } else { 3215 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 3216 } 3217 } 3218 #endif 3219 } 3220 3221 static void handle_hotplug(struct rq *rq, bool online) 3222 { 3223 int cpu = cpu_of(rq); 3224 3225 atomic_long_inc(&scx_hotplug_seq); 3226 3227 if (online && SCX_HAS_OP(cpu_online)) 3228 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu); 3229 else if (!online && SCX_HAS_OP(cpu_offline)) 3230 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu); 3231 else 3232 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 3233 "cpu %d going %s, exiting scheduler", cpu, 3234 online ? "online" : "offline"); 3235 } 3236 3237 void scx_rq_activate(struct rq *rq) 3238 { 3239 handle_hotplug(rq, true); 3240 } 3241 3242 void scx_rq_deactivate(struct rq *rq) 3243 { 3244 handle_hotplug(rq, false); 3245 } 3246 3247 static void rq_online_scx(struct rq *rq) 3248 { 3249 rq->scx.flags |= SCX_RQ_ONLINE; 3250 } 3251 3252 static void rq_offline_scx(struct rq *rq) 3253 { 3254 rq->scx.flags &= ~SCX_RQ_ONLINE; 3255 } 3256 3257 #else /* CONFIG_SMP */ 3258 3259 static bool test_and_clear_cpu_idle(int cpu) { return false; } 3260 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; } 3261 static void reset_idle_masks(void) {} 3262 3263 #endif /* CONFIG_SMP */ 3264 3265 static bool check_rq_for_timeouts(struct rq *rq) 3266 { 3267 struct task_struct *p; 3268 struct rq_flags rf; 3269 bool timed_out = false; 3270 3271 rq_lock_irqsave(rq, &rf); 3272 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 3273 unsigned long last_runnable = p->scx.runnable_at; 3274 3275 if (unlikely(time_after(jiffies, 3276 last_runnable + scx_watchdog_timeout))) { 3277 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 3278 3279 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3280 "%s[%d] failed to run for %u.%03us", 3281 p->comm, p->pid, 3282 dur_ms / 1000, dur_ms % 1000); 3283 timed_out = true; 3284 break; 3285 } 3286 } 3287 rq_unlock_irqrestore(rq, &rf); 3288 3289 return timed_out; 3290 } 3291 3292 static void scx_watchdog_workfn(struct work_struct *work) 3293 { 3294 int cpu; 3295 3296 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 3297 3298 for_each_online_cpu(cpu) { 3299 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 3300 break; 3301 3302 cond_resched(); 3303 } 3304 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 3305 scx_watchdog_timeout / 2); 3306 } 3307 3308 void scx_tick(struct rq *rq) 3309 { 3310 unsigned long last_check; 3311 3312 if (!scx_enabled()) 3313 return; 3314 3315 last_check = READ_ONCE(scx_watchdog_timestamp); 3316 if (unlikely(time_after(jiffies, 3317 last_check + READ_ONCE(scx_watchdog_timeout)))) { 3318 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 3319 3320 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3321 "watchdog failed to check in for %u.%03us", 3322 dur_ms / 1000, dur_ms % 1000); 3323 } 3324 3325 update_other_load_avgs(rq); 3326 } 3327 3328 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 3329 { 3330 update_curr_scx(rq); 3331 3332 /* 3333 * While disabling, always resched and refresh core-sched timestamp as 3334 * we can't trust the slice management or ops.core_sched_before(). 3335 */ 3336 if (scx_rq_bypassing(rq)) { 3337 curr->scx.slice = 0; 3338 touch_core_sched(rq, curr); 3339 } else if (SCX_HAS_OP(tick)) { 3340 SCX_CALL_OP(SCX_KF_REST, tick, curr); 3341 } 3342 3343 if (!curr->scx.slice) 3344 resched_curr(rq); 3345 } 3346 3347 #ifdef CONFIG_EXT_GROUP_SCHED 3348 static struct cgroup *tg_cgrp(struct task_group *tg) 3349 { 3350 /* 3351 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, 3352 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the 3353 * root cgroup. 3354 */ 3355 if (tg && tg->css.cgroup) 3356 return tg->css.cgroup; 3357 else 3358 return &cgrp_dfl_root.cgrp; 3359 } 3360 3361 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), 3362 3363 #else /* CONFIG_EXT_GROUP_SCHED */ 3364 3365 #define SCX_INIT_TASK_ARGS_CGROUP(tg) 3366 3367 #endif /* CONFIG_EXT_GROUP_SCHED */ 3368 3369 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 3370 { 3371 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 3372 } 3373 3374 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 3375 { 3376 enum scx_task_state prev_state = scx_get_task_state(p); 3377 bool warn = false; 3378 3379 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 3380 3381 switch (state) { 3382 case SCX_TASK_NONE: 3383 break; 3384 case SCX_TASK_INIT: 3385 warn = prev_state != SCX_TASK_NONE; 3386 break; 3387 case SCX_TASK_READY: 3388 warn = prev_state == SCX_TASK_NONE; 3389 break; 3390 case SCX_TASK_ENABLED: 3391 warn = prev_state != SCX_TASK_READY; 3392 break; 3393 default: 3394 warn = true; 3395 return; 3396 } 3397 3398 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 3399 prev_state, state, p->comm, p->pid); 3400 3401 p->scx.flags &= ~SCX_TASK_STATE_MASK; 3402 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 3403 } 3404 3405 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork) 3406 { 3407 int ret; 3408 3409 p->scx.disallow = false; 3410 3411 if (SCX_HAS_OP(init_task)) { 3412 struct scx_init_task_args args = { 3413 SCX_INIT_TASK_ARGS_CGROUP(tg) 3414 .fork = fork, 3415 }; 3416 3417 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args); 3418 if (unlikely(ret)) { 3419 ret = ops_sanitize_err("init_task", ret); 3420 return ret; 3421 } 3422 } 3423 3424 scx_set_task_state(p, SCX_TASK_INIT); 3425 3426 if (p->scx.disallow) { 3427 if (!fork) { 3428 struct rq *rq; 3429 struct rq_flags rf; 3430 3431 rq = task_rq_lock(p, &rf); 3432 3433 /* 3434 * We're in the load path and @p->policy will be applied 3435 * right after. Reverting @p->policy here and rejecting 3436 * %SCHED_EXT transitions from scx_check_setscheduler() 3437 * guarantees that if ops.init_task() sets @p->disallow, 3438 * @p can never be in SCX. 3439 */ 3440 if (p->policy == SCHED_EXT) { 3441 p->policy = SCHED_NORMAL; 3442 atomic_long_inc(&scx_nr_rejected); 3443 } 3444 3445 task_rq_unlock(rq, p, &rf); 3446 } else if (p->policy == SCHED_EXT) { 3447 scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork", 3448 p->comm, p->pid); 3449 } 3450 } 3451 3452 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 3453 return 0; 3454 } 3455 3456 static void scx_ops_enable_task(struct task_struct *p) 3457 { 3458 u32 weight; 3459 3460 lockdep_assert_rq_held(task_rq(p)); 3461 3462 /* 3463 * Set the weight before calling ops.enable() so that the scheduler 3464 * doesn't see a stale value if they inspect the task struct. 3465 */ 3466 if (task_has_idle_policy(p)) 3467 weight = WEIGHT_IDLEPRIO; 3468 else 3469 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 3470 3471 p->scx.weight = sched_weight_to_cgroup(weight); 3472 3473 if (SCX_HAS_OP(enable)) 3474 SCX_CALL_OP_TASK(SCX_KF_REST, enable, p); 3475 scx_set_task_state(p, SCX_TASK_ENABLED); 3476 3477 if (SCX_HAS_OP(set_weight)) 3478 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 3479 } 3480 3481 static void scx_ops_disable_task(struct task_struct *p) 3482 { 3483 lockdep_assert_rq_held(task_rq(p)); 3484 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 3485 3486 if (SCX_HAS_OP(disable)) 3487 SCX_CALL_OP(SCX_KF_REST, disable, p); 3488 scx_set_task_state(p, SCX_TASK_READY); 3489 } 3490 3491 static void scx_ops_exit_task(struct task_struct *p) 3492 { 3493 struct scx_exit_task_args args = { 3494 .cancelled = false, 3495 }; 3496 3497 lockdep_assert_rq_held(task_rq(p)); 3498 3499 switch (scx_get_task_state(p)) { 3500 case SCX_TASK_NONE: 3501 return; 3502 case SCX_TASK_INIT: 3503 args.cancelled = true; 3504 break; 3505 case SCX_TASK_READY: 3506 break; 3507 case SCX_TASK_ENABLED: 3508 scx_ops_disable_task(p); 3509 break; 3510 default: 3511 WARN_ON_ONCE(true); 3512 return; 3513 } 3514 3515 if (SCX_HAS_OP(exit_task)) 3516 SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args); 3517 scx_set_task_state(p, SCX_TASK_NONE); 3518 } 3519 3520 void init_scx_entity(struct sched_ext_entity *scx) 3521 { 3522 /* 3523 * init_idle() calls this function again after fork sequence is 3524 * complete. Don't touch ->tasks_node as it's already linked. 3525 */ 3526 memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node)); 3527 3528 INIT_LIST_HEAD(&scx->dsq_list.node); 3529 RB_CLEAR_NODE(&scx->dsq_priq); 3530 scx->sticky_cpu = -1; 3531 scx->holding_cpu = -1; 3532 INIT_LIST_HEAD(&scx->runnable_node); 3533 scx->runnable_at = jiffies; 3534 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 3535 scx->slice = SCX_SLICE_DFL; 3536 } 3537 3538 void scx_pre_fork(struct task_struct *p) 3539 { 3540 /* 3541 * BPF scheduler enable/disable paths want to be able to iterate and 3542 * update all tasks which can become complex when racing forks. As 3543 * enable/disable are very cold paths, let's use a percpu_rwsem to 3544 * exclude forks. 3545 */ 3546 percpu_down_read(&scx_fork_rwsem); 3547 } 3548 3549 int scx_fork(struct task_struct *p) 3550 { 3551 percpu_rwsem_assert_held(&scx_fork_rwsem); 3552 3553 if (scx_enabled()) 3554 return scx_ops_init_task(p, task_group(p), true); 3555 else 3556 return 0; 3557 } 3558 3559 void scx_post_fork(struct task_struct *p) 3560 { 3561 if (scx_enabled()) { 3562 scx_set_task_state(p, SCX_TASK_READY); 3563 3564 /* 3565 * Enable the task immediately if it's running on sched_ext. 3566 * Otherwise, it'll be enabled in switching_to_scx() if and 3567 * when it's ever configured to run with a SCHED_EXT policy. 3568 */ 3569 if (p->sched_class == &ext_sched_class) { 3570 struct rq_flags rf; 3571 struct rq *rq; 3572 3573 rq = task_rq_lock(p, &rf); 3574 scx_ops_enable_task(p); 3575 task_rq_unlock(rq, p, &rf); 3576 } 3577 } 3578 3579 spin_lock_irq(&scx_tasks_lock); 3580 list_add_tail(&p->scx.tasks_node, &scx_tasks); 3581 spin_unlock_irq(&scx_tasks_lock); 3582 3583 percpu_up_read(&scx_fork_rwsem); 3584 } 3585 3586 void scx_cancel_fork(struct task_struct *p) 3587 { 3588 if (scx_enabled()) { 3589 struct rq *rq; 3590 struct rq_flags rf; 3591 3592 rq = task_rq_lock(p, &rf); 3593 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 3594 scx_ops_exit_task(p); 3595 task_rq_unlock(rq, p, &rf); 3596 } 3597 3598 percpu_up_read(&scx_fork_rwsem); 3599 } 3600 3601 void sched_ext_free(struct task_struct *p) 3602 { 3603 unsigned long flags; 3604 3605 spin_lock_irqsave(&scx_tasks_lock, flags); 3606 list_del_init(&p->scx.tasks_node); 3607 spin_unlock_irqrestore(&scx_tasks_lock, flags); 3608 3609 /* 3610 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY -> 3611 * ENABLED transitions can't race us. Disable ops for @p. 3612 */ 3613 if (scx_get_task_state(p) != SCX_TASK_NONE) { 3614 struct rq_flags rf; 3615 struct rq *rq; 3616 3617 rq = task_rq_lock(p, &rf); 3618 scx_ops_exit_task(p); 3619 task_rq_unlock(rq, p, &rf); 3620 } 3621 } 3622 3623 static void reweight_task_scx(struct rq *rq, struct task_struct *p, 3624 const struct load_weight *lw) 3625 { 3626 lockdep_assert_rq_held(task_rq(p)); 3627 3628 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); 3629 if (SCX_HAS_OP(set_weight)) 3630 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 3631 } 3632 3633 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio) 3634 { 3635 } 3636 3637 static void switching_to_scx(struct rq *rq, struct task_struct *p) 3638 { 3639 scx_ops_enable_task(p); 3640 3641 /* 3642 * set_cpus_allowed_scx() is not called while @p is associated with a 3643 * different scheduler class. Keep the BPF scheduler up-to-date. 3644 */ 3645 if (SCX_HAS_OP(set_cpumask)) 3646 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 3647 (struct cpumask *)p->cpus_ptr); 3648 } 3649 3650 static void switched_from_scx(struct rq *rq, struct task_struct *p) 3651 { 3652 scx_ops_disable_task(p); 3653 } 3654 3655 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 3656 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 3657 3658 int scx_check_setscheduler(struct task_struct *p, int policy) 3659 { 3660 lockdep_assert_rq_held(task_rq(p)); 3661 3662 /* if disallow, reject transitioning into SCX */ 3663 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 3664 p->policy != policy && policy == SCHED_EXT) 3665 return -EACCES; 3666 3667 return 0; 3668 } 3669 3670 #ifdef CONFIG_NO_HZ_FULL 3671 bool scx_can_stop_tick(struct rq *rq) 3672 { 3673 struct task_struct *p = rq->curr; 3674 3675 if (scx_rq_bypassing(rq)) 3676 return false; 3677 3678 if (p->sched_class != &ext_sched_class) 3679 return true; 3680 3681 /* 3682 * @rq can dispatch from different DSQs, so we can't tell whether it 3683 * needs the tick or not by looking at nr_running. Allow stopping ticks 3684 * iff the BPF scheduler indicated so. See set_next_task_scx(). 3685 */ 3686 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 3687 } 3688 #endif 3689 3690 #ifdef CONFIG_EXT_GROUP_SCHED 3691 3692 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem); 3693 static bool cgroup_warned_missing_weight; 3694 static bool cgroup_warned_missing_idle; 3695 3696 static void scx_cgroup_warn_missing_weight(struct task_group *tg) 3697 { 3698 if (scx_ops_enable_state() == SCX_OPS_DISABLED || 3699 cgroup_warned_missing_weight) 3700 return; 3701 3702 if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent) 3703 return; 3704 3705 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n", 3706 scx_ops.name); 3707 cgroup_warned_missing_weight = true; 3708 } 3709 3710 static void scx_cgroup_warn_missing_idle(struct task_group *tg) 3711 { 3712 if (scx_ops_enable_state() == SCX_OPS_DISABLED || 3713 cgroup_warned_missing_idle) 3714 return; 3715 3716 if (!tg->idle) 3717 return; 3718 3719 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n", 3720 scx_ops.name); 3721 cgroup_warned_missing_idle = true; 3722 } 3723 3724 int scx_tg_online(struct task_group *tg) 3725 { 3726 int ret = 0; 3727 3728 WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED)); 3729 3730 percpu_down_read(&scx_cgroup_rwsem); 3731 3732 scx_cgroup_warn_missing_weight(tg); 3733 3734 if (SCX_HAS_OP(cgroup_init)) { 3735 struct scx_cgroup_init_args args = { .weight = tg->scx_weight }; 3736 3737 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, 3738 tg->css.cgroup, &args); 3739 if (!ret) 3740 tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED; 3741 else 3742 ret = ops_sanitize_err("cgroup_init", ret); 3743 } else { 3744 tg->scx_flags |= SCX_TG_ONLINE; 3745 } 3746 3747 percpu_up_read(&scx_cgroup_rwsem); 3748 return ret; 3749 } 3750 3751 void scx_tg_offline(struct task_group *tg) 3752 { 3753 WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE)); 3754 3755 percpu_down_read(&scx_cgroup_rwsem); 3756 3757 if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED)) 3758 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup); 3759 tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); 3760 3761 percpu_up_read(&scx_cgroup_rwsem); 3762 } 3763 3764 int scx_cgroup_can_attach(struct cgroup_taskset *tset) 3765 { 3766 struct cgroup_subsys_state *css; 3767 struct task_struct *p; 3768 int ret; 3769 3770 /* released in scx_finish/cancel_attach() */ 3771 percpu_down_read(&scx_cgroup_rwsem); 3772 3773 if (!scx_enabled()) 3774 return 0; 3775 3776 cgroup_taskset_for_each(p, css, tset) { 3777 struct cgroup *from = tg_cgrp(task_group(p)); 3778 struct cgroup *to = tg_cgrp(css_tg(css)); 3779 3780 WARN_ON_ONCE(p->scx.cgrp_moving_from); 3781 3782 /* 3783 * sched_move_task() omits identity migrations. Let's match the 3784 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() 3785 * always match one-to-one. 3786 */ 3787 if (from == to) 3788 continue; 3789 3790 if (SCX_HAS_OP(cgroup_prep_move)) { 3791 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move, 3792 p, from, css->cgroup); 3793 if (ret) 3794 goto err; 3795 } 3796 3797 p->scx.cgrp_moving_from = from; 3798 } 3799 3800 return 0; 3801 3802 err: 3803 cgroup_taskset_for_each(p, css, tset) { 3804 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) 3805 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, 3806 p->scx.cgrp_moving_from, css->cgroup); 3807 p->scx.cgrp_moving_from = NULL; 3808 } 3809 3810 percpu_up_read(&scx_cgroup_rwsem); 3811 return ops_sanitize_err("cgroup_prep_move", ret); 3812 } 3813 3814 void scx_move_task(struct task_struct *p) 3815 { 3816 if (!scx_enabled()) 3817 return; 3818 3819 /* 3820 * We're called from sched_move_task() which handles both cgroup and 3821 * autogroup moves. Ignore the latter. 3822 * 3823 * Also ignore exiting tasks, because in the exit path tasks transition 3824 * from the autogroup to the root group, so task_group_is_autogroup() 3825 * alone isn't able to catch exiting autogroup tasks. This is safe for 3826 * cgroup_move(), because cgroup migrations never happen for PF_EXITING 3827 * tasks. 3828 */ 3829 if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING)) 3830 return; 3831 3832 /* 3833 * @p must have ops.cgroup_prep_move() called on it and thus 3834 * cgrp_moving_from set. 3835 */ 3836 if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) 3837 SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p, 3838 p->scx.cgrp_moving_from, tg_cgrp(task_group(p))); 3839 p->scx.cgrp_moving_from = NULL; 3840 } 3841 3842 void scx_cgroup_finish_attach(void) 3843 { 3844 percpu_up_read(&scx_cgroup_rwsem); 3845 } 3846 3847 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) 3848 { 3849 struct cgroup_subsys_state *css; 3850 struct task_struct *p; 3851 3852 if (!scx_enabled()) 3853 goto out_unlock; 3854 3855 cgroup_taskset_for_each(p, css, tset) { 3856 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) 3857 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, 3858 p->scx.cgrp_moving_from, css->cgroup); 3859 p->scx.cgrp_moving_from = NULL; 3860 } 3861 out_unlock: 3862 percpu_up_read(&scx_cgroup_rwsem); 3863 } 3864 3865 void scx_group_set_weight(struct task_group *tg, unsigned long weight) 3866 { 3867 percpu_down_read(&scx_cgroup_rwsem); 3868 3869 if (tg->scx_weight != weight) { 3870 if (SCX_HAS_OP(cgroup_set_weight)) 3871 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight, 3872 tg_cgrp(tg), weight); 3873 tg->scx_weight = weight; 3874 } 3875 3876 percpu_up_read(&scx_cgroup_rwsem); 3877 } 3878 3879 void scx_group_set_idle(struct task_group *tg, bool idle) 3880 { 3881 percpu_down_read(&scx_cgroup_rwsem); 3882 scx_cgroup_warn_missing_idle(tg); 3883 percpu_up_read(&scx_cgroup_rwsem); 3884 } 3885 3886 static void scx_cgroup_lock(void) 3887 { 3888 percpu_down_write(&scx_cgroup_rwsem); 3889 } 3890 3891 static void scx_cgroup_unlock(void) 3892 { 3893 percpu_up_write(&scx_cgroup_rwsem); 3894 } 3895 3896 #else /* CONFIG_EXT_GROUP_SCHED */ 3897 3898 static inline void scx_cgroup_lock(void) {} 3899 static inline void scx_cgroup_unlock(void) {} 3900 3901 #endif /* CONFIG_EXT_GROUP_SCHED */ 3902 3903 /* 3904 * Omitted operations: 3905 * 3906 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 3907 * isn't tied to the CPU at that point. Preemption is implemented by resetting 3908 * the victim task's slice to 0 and triggering reschedule on the target CPU. 3909 * 3910 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 3911 * 3912 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 3913 * their current sched_class. Call them directly from sched core instead. 3914 */ 3915 DEFINE_SCHED_CLASS(ext) = { 3916 .enqueue_task = enqueue_task_scx, 3917 .dequeue_task = dequeue_task_scx, 3918 .yield_task = yield_task_scx, 3919 .yield_to_task = yield_to_task_scx, 3920 3921 .wakeup_preempt = wakeup_preempt_scx, 3922 3923 .balance = balance_scx, 3924 .pick_task = pick_task_scx, 3925 3926 .put_prev_task = put_prev_task_scx, 3927 .set_next_task = set_next_task_scx, 3928 3929 #ifdef CONFIG_SMP 3930 .select_task_rq = select_task_rq_scx, 3931 .task_woken = task_woken_scx, 3932 .set_cpus_allowed = set_cpus_allowed_scx, 3933 3934 .rq_online = rq_online_scx, 3935 .rq_offline = rq_offline_scx, 3936 #endif 3937 3938 .task_tick = task_tick_scx, 3939 3940 .switching_to = switching_to_scx, 3941 .switched_from = switched_from_scx, 3942 .switched_to = switched_to_scx, 3943 .reweight_task = reweight_task_scx, 3944 .prio_changed = prio_changed_scx, 3945 3946 .update_curr = update_curr_scx, 3947 3948 #ifdef CONFIG_UCLAMP_TASK 3949 .uclamp_enabled = 1, 3950 #endif 3951 }; 3952 3953 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 3954 { 3955 memset(dsq, 0, sizeof(*dsq)); 3956 3957 raw_spin_lock_init(&dsq->lock); 3958 INIT_LIST_HEAD(&dsq->list); 3959 dsq->id = dsq_id; 3960 } 3961 3962 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node) 3963 { 3964 struct scx_dispatch_q *dsq; 3965 int ret; 3966 3967 if (dsq_id & SCX_DSQ_FLAG_BUILTIN) 3968 return ERR_PTR(-EINVAL); 3969 3970 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 3971 if (!dsq) 3972 return ERR_PTR(-ENOMEM); 3973 3974 init_dsq(dsq, dsq_id); 3975 3976 ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node, 3977 dsq_hash_params); 3978 if (ret) { 3979 kfree(dsq); 3980 return ERR_PTR(ret); 3981 } 3982 return dsq; 3983 } 3984 3985 static void free_dsq_irq_workfn(struct irq_work *irq_work) 3986 { 3987 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 3988 struct scx_dispatch_q *dsq, *tmp_dsq; 3989 3990 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 3991 kfree_rcu(dsq, rcu); 3992 } 3993 3994 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 3995 3996 static void destroy_dsq(u64 dsq_id) 3997 { 3998 struct scx_dispatch_q *dsq; 3999 unsigned long flags; 4000 4001 rcu_read_lock(); 4002 4003 dsq = find_user_dsq(dsq_id); 4004 if (!dsq) 4005 goto out_unlock_rcu; 4006 4007 raw_spin_lock_irqsave(&dsq->lock, flags); 4008 4009 if (dsq->nr) { 4010 scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)", 4011 dsq->id, dsq->nr); 4012 goto out_unlock_dsq; 4013 } 4014 4015 if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params)) 4016 goto out_unlock_dsq; 4017 4018 /* 4019 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 4020 * queueing more tasks. As this function can be called from anywhere, 4021 * freeing is bounced through an irq work to avoid nesting RCU 4022 * operations inside scheduler locks. 4023 */ 4024 dsq->id = SCX_DSQ_INVALID; 4025 llist_add(&dsq->free_node, &dsqs_to_free); 4026 irq_work_queue(&free_dsq_irq_work); 4027 4028 out_unlock_dsq: 4029 raw_spin_unlock_irqrestore(&dsq->lock, flags); 4030 out_unlock_rcu: 4031 rcu_read_unlock(); 4032 } 4033 4034 #ifdef CONFIG_EXT_GROUP_SCHED 4035 static void scx_cgroup_exit(void) 4036 { 4037 struct cgroup_subsys_state *css; 4038 4039 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4040 4041 /* 4042 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk 4043 * cgroups and exit all the inited ones, all online cgroups are exited. 4044 */ 4045 rcu_read_lock(); 4046 css_for_each_descendant_post(css, &root_task_group.css) { 4047 struct task_group *tg = css_tg(css); 4048 4049 if (!(tg->scx_flags & SCX_TG_INITED)) 4050 continue; 4051 tg->scx_flags &= ~SCX_TG_INITED; 4052 4053 if (!scx_ops.cgroup_exit) 4054 continue; 4055 4056 if (WARN_ON_ONCE(!css_tryget(css))) 4057 continue; 4058 rcu_read_unlock(); 4059 4060 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup); 4061 4062 rcu_read_lock(); 4063 css_put(css); 4064 } 4065 rcu_read_unlock(); 4066 } 4067 4068 static int scx_cgroup_init(void) 4069 { 4070 struct cgroup_subsys_state *css; 4071 int ret; 4072 4073 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4074 4075 cgroup_warned_missing_weight = false; 4076 cgroup_warned_missing_idle = false; 4077 4078 /* 4079 * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk 4080 * cgroups and init, all online cgroups are initialized. 4081 */ 4082 rcu_read_lock(); 4083 css_for_each_descendant_pre(css, &root_task_group.css) { 4084 struct task_group *tg = css_tg(css); 4085 struct scx_cgroup_init_args args = { .weight = tg->scx_weight }; 4086 4087 scx_cgroup_warn_missing_weight(tg); 4088 scx_cgroup_warn_missing_idle(tg); 4089 4090 if ((tg->scx_flags & 4091 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) 4092 continue; 4093 4094 if (!scx_ops.cgroup_init) { 4095 tg->scx_flags |= SCX_TG_INITED; 4096 continue; 4097 } 4098 4099 if (WARN_ON_ONCE(!css_tryget(css))) 4100 continue; 4101 rcu_read_unlock(); 4102 4103 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, 4104 css->cgroup, &args); 4105 if (ret) { 4106 css_put(css); 4107 return ret; 4108 } 4109 tg->scx_flags |= SCX_TG_INITED; 4110 4111 rcu_read_lock(); 4112 css_put(css); 4113 } 4114 rcu_read_unlock(); 4115 4116 return 0; 4117 } 4118 4119 #else 4120 static void scx_cgroup_exit(void) {} 4121 static int scx_cgroup_init(void) { return 0; } 4122 #endif 4123 4124 4125 /******************************************************************************** 4126 * Sysfs interface and ops enable/disable. 4127 */ 4128 4129 #define SCX_ATTR(_name) \ 4130 static struct kobj_attribute scx_attr_##_name = { \ 4131 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 4132 .show = scx_attr_##_name##_show, \ 4133 } 4134 4135 static ssize_t scx_attr_state_show(struct kobject *kobj, 4136 struct kobj_attribute *ka, char *buf) 4137 { 4138 return sysfs_emit(buf, "%s\n", 4139 scx_ops_enable_state_str[scx_ops_enable_state()]); 4140 } 4141 SCX_ATTR(state); 4142 4143 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 4144 struct kobj_attribute *ka, char *buf) 4145 { 4146 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 4147 } 4148 SCX_ATTR(switch_all); 4149 4150 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 4151 struct kobj_attribute *ka, char *buf) 4152 { 4153 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 4154 } 4155 SCX_ATTR(nr_rejected); 4156 4157 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, 4158 struct kobj_attribute *ka, char *buf) 4159 { 4160 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); 4161 } 4162 SCX_ATTR(hotplug_seq); 4163 4164 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj, 4165 struct kobj_attribute *ka, char *buf) 4166 { 4167 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq)); 4168 } 4169 SCX_ATTR(enable_seq); 4170 4171 static struct attribute *scx_global_attrs[] = { 4172 &scx_attr_state.attr, 4173 &scx_attr_switch_all.attr, 4174 &scx_attr_nr_rejected.attr, 4175 &scx_attr_hotplug_seq.attr, 4176 &scx_attr_enable_seq.attr, 4177 NULL, 4178 }; 4179 4180 static const struct attribute_group scx_global_attr_group = { 4181 .attrs = scx_global_attrs, 4182 }; 4183 4184 static void scx_kobj_release(struct kobject *kobj) 4185 { 4186 kfree(kobj); 4187 } 4188 4189 static ssize_t scx_attr_ops_show(struct kobject *kobj, 4190 struct kobj_attribute *ka, char *buf) 4191 { 4192 return sysfs_emit(buf, "%s\n", scx_ops.name); 4193 } 4194 SCX_ATTR(ops); 4195 4196 static struct attribute *scx_sched_attrs[] = { 4197 &scx_attr_ops.attr, 4198 NULL, 4199 }; 4200 ATTRIBUTE_GROUPS(scx_sched); 4201 4202 static const struct kobj_type scx_ktype = { 4203 .release = scx_kobj_release, 4204 .sysfs_ops = &kobj_sysfs_ops, 4205 .default_groups = scx_sched_groups, 4206 }; 4207 4208 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 4209 { 4210 return add_uevent_var(env, "SCXOPS=%s", scx_ops.name); 4211 } 4212 4213 static const struct kset_uevent_ops scx_uevent_ops = { 4214 .uevent = scx_uevent, 4215 }; 4216 4217 /* 4218 * Used by sched_fork() and __setscheduler_prio() to pick the matching 4219 * sched_class. dl/rt are already handled. 4220 */ 4221 bool task_should_scx(struct task_struct *p) 4222 { 4223 if (!scx_enabled() || 4224 unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING)) 4225 return false; 4226 if (READ_ONCE(scx_switching_all)) 4227 return true; 4228 return p->policy == SCHED_EXT; 4229 } 4230 4231 /** 4232 * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress 4233 * 4234 * Bypassing guarantees that all runnable tasks make forward progress without 4235 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 4236 * be held by tasks that the BPF scheduler is forgetting to run, which 4237 * unfortunately also excludes toggling the static branches. 4238 * 4239 * Let's work around by overriding a couple ops and modifying behaviors based on 4240 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 4241 * to force global FIFO scheduling. 4242 * 4243 * a. ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 4244 * %SCX_OPS_ENQ_LAST is also ignored. 4245 * 4246 * b. ops.dispatch() is ignored. 4247 * 4248 * c. balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice 4249 * can't be trusted. Whenever a tick triggers, the running task is rotated to 4250 * the tail of the queue with core_sched_at touched. 4251 * 4252 * d. pick_next_task() suppresses zero slice warning. 4253 * 4254 * e. scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM 4255 * operations. 4256 * 4257 * f. scx_prio_less() reverts to the default core_sched_at order. 4258 */ 4259 static void scx_ops_bypass(bool bypass) 4260 { 4261 int depth, cpu; 4262 4263 if (bypass) { 4264 depth = atomic_inc_return(&scx_ops_bypass_depth); 4265 WARN_ON_ONCE(depth <= 0); 4266 if (depth != 1) 4267 return; 4268 } else { 4269 depth = atomic_dec_return(&scx_ops_bypass_depth); 4270 WARN_ON_ONCE(depth < 0); 4271 if (depth != 0) 4272 return; 4273 } 4274 4275 /* 4276 * No task property is changing. We just need to make sure all currently 4277 * queued tasks are re-queued according to the new scx_rq_bypassing() 4278 * state. As an optimization, walk each rq's runnable_list instead of 4279 * the scx_tasks list. 4280 * 4281 * This function can't trust the scheduler and thus can't use 4282 * cpus_read_lock(). Walk all possible CPUs instead of online. 4283 */ 4284 for_each_possible_cpu(cpu) { 4285 struct rq *rq = cpu_rq(cpu); 4286 struct rq_flags rf; 4287 struct task_struct *p, *n; 4288 4289 rq_lock_irqsave(rq, &rf); 4290 4291 if (bypass) { 4292 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); 4293 rq->scx.flags |= SCX_RQ_BYPASSING; 4294 } else { 4295 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); 4296 rq->scx.flags &= ~SCX_RQ_BYPASSING; 4297 } 4298 4299 /* 4300 * We need to guarantee that no tasks are on the BPF scheduler 4301 * while bypassing. Either we see enabled or the enable path 4302 * sees scx_rq_bypassing() before moving tasks to SCX. 4303 */ 4304 if (!scx_enabled()) { 4305 rq_unlock_irqrestore(rq, &rf); 4306 continue; 4307 } 4308 4309 /* 4310 * The use of list_for_each_entry_safe_reverse() is required 4311 * because each task is going to be removed from and added back 4312 * to the runnable_list during iteration. Because they're added 4313 * to the tail of the list, safe reverse iteration can still 4314 * visit all nodes. 4315 */ 4316 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 4317 scx.runnable_node) { 4318 struct sched_enq_and_set_ctx ctx; 4319 4320 /* cycling deq/enq is enough, see the function comment */ 4321 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4322 sched_enq_and_set_task(&ctx); 4323 } 4324 4325 rq_unlock_irqrestore(rq, &rf); 4326 4327 /* kick to restore ticks */ 4328 resched_cpu(cpu); 4329 } 4330 } 4331 4332 static void free_exit_info(struct scx_exit_info *ei) 4333 { 4334 kfree(ei->dump); 4335 kfree(ei->msg); 4336 kfree(ei->bt); 4337 kfree(ei); 4338 } 4339 4340 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 4341 { 4342 struct scx_exit_info *ei; 4343 4344 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 4345 if (!ei) 4346 return NULL; 4347 4348 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); 4349 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 4350 ei->dump = kzalloc(exit_dump_len, GFP_KERNEL); 4351 4352 if (!ei->bt || !ei->msg || !ei->dump) { 4353 free_exit_info(ei); 4354 return NULL; 4355 } 4356 4357 return ei; 4358 } 4359 4360 static const char *scx_exit_reason(enum scx_exit_kind kind) 4361 { 4362 switch (kind) { 4363 case SCX_EXIT_UNREG: 4364 return "unregistered from user space"; 4365 case SCX_EXIT_UNREG_BPF: 4366 return "unregistered from BPF"; 4367 case SCX_EXIT_UNREG_KERN: 4368 return "unregistered from the main kernel"; 4369 case SCX_EXIT_SYSRQ: 4370 return "disabled by sysrq-S"; 4371 case SCX_EXIT_ERROR: 4372 return "runtime error"; 4373 case SCX_EXIT_ERROR_BPF: 4374 return "scx_bpf_error"; 4375 case SCX_EXIT_ERROR_STALL: 4376 return "runnable task stall"; 4377 default: 4378 return "<UNKNOWN>"; 4379 } 4380 } 4381 4382 static void scx_ops_disable_workfn(struct kthread_work *work) 4383 { 4384 struct scx_exit_info *ei = scx_exit_info; 4385 struct scx_task_iter sti; 4386 struct task_struct *p; 4387 struct rhashtable_iter rht_iter; 4388 struct scx_dispatch_q *dsq; 4389 int i, kind; 4390 4391 kind = atomic_read(&scx_exit_kind); 4392 while (true) { 4393 /* 4394 * NONE indicates that a new scx_ops has been registered since 4395 * disable was scheduled - don't kill the new ops. DONE 4396 * indicates that the ops has already been disabled. 4397 */ 4398 if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE) 4399 return; 4400 if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE)) 4401 break; 4402 } 4403 ei->kind = kind; 4404 ei->reason = scx_exit_reason(ei->kind); 4405 4406 /* guarantee forward progress by bypassing scx_ops */ 4407 scx_ops_bypass(true); 4408 4409 switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) { 4410 case SCX_OPS_DISABLING: 4411 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 4412 break; 4413 case SCX_OPS_DISABLED: 4414 pr_warn("sched_ext: ops error detected without ops (%s)\n", 4415 scx_exit_info->msg); 4416 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 4417 SCX_OPS_DISABLING); 4418 goto done; 4419 default: 4420 break; 4421 } 4422 4423 /* 4424 * Here, every runnable task is guaranteed to make forward progress and 4425 * we can safely use blocking synchronization constructs. Actually 4426 * disable ops. 4427 */ 4428 mutex_lock(&scx_ops_enable_mutex); 4429 4430 static_branch_disable(&__scx_switched_all); 4431 WRITE_ONCE(scx_switching_all, false); 4432 4433 /* 4434 * Avoid racing against fork and cgroup changes. See scx_ops_enable() 4435 * for explanation on the locking order. 4436 */ 4437 percpu_down_write(&scx_fork_rwsem); 4438 cpus_read_lock(); 4439 scx_cgroup_lock(); 4440 4441 spin_lock_irq(&scx_tasks_lock); 4442 scx_task_iter_init(&sti); 4443 /* 4444 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones 4445 * must be switched out and exited synchronously. 4446 */ 4447 while ((p = scx_task_iter_next_locked(&sti))) { 4448 const struct sched_class *old_class = p->sched_class; 4449 struct sched_enq_and_set_ctx ctx; 4450 4451 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4452 4453 p->scx.slice = min_t(u64, p->scx.slice, SCX_SLICE_DFL); 4454 __setscheduler_prio(p, p->prio); 4455 check_class_changing(task_rq(p), p, old_class); 4456 4457 sched_enq_and_set_task(&ctx); 4458 4459 check_class_changed(task_rq(p), p, old_class, p->prio); 4460 scx_ops_exit_task(p); 4461 } 4462 scx_task_iter_exit(&sti); 4463 spin_unlock_irq(&scx_tasks_lock); 4464 4465 /* no task is on scx, turn off all the switches and flush in-progress calls */ 4466 static_branch_disable_cpuslocked(&__scx_ops_enabled); 4467 for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++) 4468 static_branch_disable_cpuslocked(&scx_has_op[i]); 4469 static_branch_disable_cpuslocked(&scx_ops_enq_last); 4470 static_branch_disable_cpuslocked(&scx_ops_enq_exiting); 4471 static_branch_disable_cpuslocked(&scx_ops_cpu_preempt); 4472 static_branch_disable_cpuslocked(&scx_builtin_idle_enabled); 4473 synchronize_rcu(); 4474 4475 scx_cgroup_exit(); 4476 4477 scx_cgroup_unlock(); 4478 cpus_read_unlock(); 4479 percpu_up_write(&scx_fork_rwsem); 4480 4481 if (ei->kind >= SCX_EXIT_ERROR) { 4482 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4483 scx_ops.name, ei->reason); 4484 4485 if (ei->msg[0] != '\0') 4486 pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg); 4487 #ifdef CONFIG_STACKTRACE 4488 stack_trace_print(ei->bt, ei->bt_len, 2); 4489 #endif 4490 } else { 4491 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4492 scx_ops.name, ei->reason); 4493 } 4494 4495 if (scx_ops.exit) 4496 SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei); 4497 4498 cancel_delayed_work_sync(&scx_watchdog_work); 4499 4500 /* 4501 * Delete the kobject from the hierarchy eagerly in addition to just 4502 * dropping a reference. Otherwise, if the object is deleted 4503 * asynchronously, sysfs could observe an object of the same name still 4504 * in the hierarchy when another scheduler is loaded. 4505 */ 4506 kobject_del(scx_root_kobj); 4507 kobject_put(scx_root_kobj); 4508 scx_root_kobj = NULL; 4509 4510 memset(&scx_ops, 0, sizeof(scx_ops)); 4511 4512 rhashtable_walk_enter(&dsq_hash, &rht_iter); 4513 do { 4514 rhashtable_walk_start(&rht_iter); 4515 4516 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 4517 destroy_dsq(dsq->id); 4518 4519 rhashtable_walk_stop(&rht_iter); 4520 } while (dsq == ERR_PTR(-EAGAIN)); 4521 rhashtable_walk_exit(&rht_iter); 4522 4523 free_percpu(scx_dsp_ctx); 4524 scx_dsp_ctx = NULL; 4525 scx_dsp_max_batch = 0; 4526 4527 free_exit_info(scx_exit_info); 4528 scx_exit_info = NULL; 4529 4530 mutex_unlock(&scx_ops_enable_mutex); 4531 4532 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 4533 SCX_OPS_DISABLING); 4534 done: 4535 scx_ops_bypass(false); 4536 } 4537 4538 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn); 4539 4540 static void schedule_scx_ops_disable_work(void) 4541 { 4542 struct kthread_worker *helper = READ_ONCE(scx_ops_helper); 4543 4544 /* 4545 * We may be called spuriously before the first bpf_sched_ext_reg(). If 4546 * scx_ops_helper isn't set up yet, there's nothing to do. 4547 */ 4548 if (helper) 4549 kthread_queue_work(helper, &scx_ops_disable_work); 4550 } 4551 4552 static void scx_ops_disable(enum scx_exit_kind kind) 4553 { 4554 int none = SCX_EXIT_NONE; 4555 4556 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 4557 kind = SCX_EXIT_ERROR; 4558 4559 atomic_try_cmpxchg(&scx_exit_kind, &none, kind); 4560 4561 schedule_scx_ops_disable_work(); 4562 } 4563 4564 static void dump_newline(struct seq_buf *s) 4565 { 4566 trace_sched_ext_dump(""); 4567 4568 /* @s may be zero sized and seq_buf triggers WARN if so */ 4569 if (s->size) 4570 seq_buf_putc(s, '\n'); 4571 } 4572 4573 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 4574 { 4575 va_list args; 4576 4577 #ifdef CONFIG_TRACEPOINTS 4578 if (trace_sched_ext_dump_enabled()) { 4579 /* protected by scx_dump_state()::dump_lock */ 4580 static char line_buf[SCX_EXIT_MSG_LEN]; 4581 4582 va_start(args, fmt); 4583 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 4584 va_end(args); 4585 4586 trace_sched_ext_dump(line_buf); 4587 } 4588 #endif 4589 /* @s may be zero sized and seq_buf triggers WARN if so */ 4590 if (s->size) { 4591 va_start(args, fmt); 4592 seq_buf_vprintf(s, fmt, args); 4593 va_end(args); 4594 4595 seq_buf_putc(s, '\n'); 4596 } 4597 } 4598 4599 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 4600 const unsigned long *bt, unsigned int len) 4601 { 4602 unsigned int i; 4603 4604 for (i = 0; i < len; i++) 4605 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 4606 } 4607 4608 static void ops_dump_init(struct seq_buf *s, const char *prefix) 4609 { 4610 struct scx_dump_data *dd = &scx_dump_data; 4611 4612 lockdep_assert_irqs_disabled(); 4613 4614 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 4615 dd->first = true; 4616 dd->cursor = 0; 4617 dd->s = s; 4618 dd->prefix = prefix; 4619 } 4620 4621 static void ops_dump_flush(void) 4622 { 4623 struct scx_dump_data *dd = &scx_dump_data; 4624 char *line = dd->buf.line; 4625 4626 if (!dd->cursor) 4627 return; 4628 4629 /* 4630 * There's something to flush and this is the first line. Insert a blank 4631 * line to distinguish ops dump. 4632 */ 4633 if (dd->first) { 4634 dump_newline(dd->s); 4635 dd->first = false; 4636 } 4637 4638 /* 4639 * There may be multiple lines in $line. Scan and emit each line 4640 * separately. 4641 */ 4642 while (true) { 4643 char *end = line; 4644 char c; 4645 4646 while (*end != '\n' && *end != '\0') 4647 end++; 4648 4649 /* 4650 * If $line overflowed, it may not have newline at the end. 4651 * Always emit with a newline. 4652 */ 4653 c = *end; 4654 *end = '\0'; 4655 dump_line(dd->s, "%s%s", dd->prefix, line); 4656 if (c == '\0') 4657 break; 4658 4659 /* move to the next line */ 4660 end++; 4661 if (*end == '\0') 4662 break; 4663 line = end; 4664 } 4665 4666 dd->cursor = 0; 4667 } 4668 4669 static void ops_dump_exit(void) 4670 { 4671 ops_dump_flush(); 4672 scx_dump_data.cpu = -1; 4673 } 4674 4675 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 4676 struct task_struct *p, char marker) 4677 { 4678 static unsigned long bt[SCX_EXIT_BT_LEN]; 4679 char dsq_id_buf[19] = "(n/a)"; 4680 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 4681 unsigned int bt_len = 0; 4682 4683 if (p->scx.dsq) 4684 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 4685 (unsigned long long)p->scx.dsq->id); 4686 4687 dump_newline(s); 4688 dump_line(s, " %c%c %s[%d] %+ldms", 4689 marker, task_state_to_char(p), p->comm, p->pid, 4690 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 4691 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", 4692 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 4693 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, 4694 ops_state >> SCX_OPSS_QSEQ_SHIFT); 4695 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu", 4696 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf, 4697 p->scx.dsq_vtime); 4698 dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr)); 4699 4700 if (SCX_HAS_OP(dump_task)) { 4701 ops_dump_init(s, " "); 4702 SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p); 4703 ops_dump_exit(); 4704 } 4705 4706 #ifdef CONFIG_STACKTRACE 4707 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 4708 #endif 4709 if (bt_len) { 4710 dump_newline(s); 4711 dump_stack_trace(s, " ", bt, bt_len); 4712 } 4713 } 4714 4715 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 4716 { 4717 static DEFINE_SPINLOCK(dump_lock); 4718 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 4719 struct scx_dump_ctx dctx = { 4720 .kind = ei->kind, 4721 .exit_code = ei->exit_code, 4722 .reason = ei->reason, 4723 .at_ns = ktime_get_ns(), 4724 .at_jiffies = jiffies, 4725 }; 4726 struct seq_buf s; 4727 unsigned long flags; 4728 char *buf; 4729 int cpu; 4730 4731 spin_lock_irqsave(&dump_lock, flags); 4732 4733 seq_buf_init(&s, ei->dump, dump_len); 4734 4735 if (ei->kind == SCX_EXIT_NONE) { 4736 dump_line(&s, "Debug dump triggered by %s", ei->reason); 4737 } else { 4738 dump_line(&s, "%s[%d] triggered exit kind %d:", 4739 current->comm, current->pid, ei->kind); 4740 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 4741 dump_newline(&s); 4742 dump_line(&s, "Backtrace:"); 4743 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 4744 } 4745 4746 if (SCX_HAS_OP(dump)) { 4747 ops_dump_init(&s, ""); 4748 SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx); 4749 ops_dump_exit(); 4750 } 4751 4752 dump_newline(&s); 4753 dump_line(&s, "CPU states"); 4754 dump_line(&s, "----------"); 4755 4756 for_each_possible_cpu(cpu) { 4757 struct rq *rq = cpu_rq(cpu); 4758 struct rq_flags rf; 4759 struct task_struct *p; 4760 struct seq_buf ns; 4761 size_t avail, used; 4762 bool idle; 4763 4764 rq_lock(rq, &rf); 4765 4766 idle = list_empty(&rq->scx.runnable_list) && 4767 rq->curr->sched_class == &idle_sched_class; 4768 4769 if (idle && !SCX_HAS_OP(dump_cpu)) 4770 goto next; 4771 4772 /* 4773 * We don't yet know whether ops.dump_cpu() will produce output 4774 * and we may want to skip the default CPU dump if it doesn't. 4775 * Use a nested seq_buf to generate the standard dump so that we 4776 * can decide whether to commit later. 4777 */ 4778 avail = seq_buf_get_buf(&s, &buf); 4779 seq_buf_init(&ns, buf, avail); 4780 4781 dump_newline(&ns); 4782 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", 4783 cpu, rq->scx.nr_running, rq->scx.flags, 4784 rq->scx.cpu_released, rq->scx.ops_qseq, 4785 rq->scx.pnt_seq); 4786 dump_line(&ns, " curr=%s[%d] class=%ps", 4787 rq->curr->comm, rq->curr->pid, 4788 rq->curr->sched_class); 4789 if (!cpumask_empty(rq->scx.cpus_to_kick)) 4790 dump_line(&ns, " cpus_to_kick : %*pb", 4791 cpumask_pr_args(rq->scx.cpus_to_kick)); 4792 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 4793 dump_line(&ns, " idle_to_kick : %*pb", 4794 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 4795 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 4796 dump_line(&ns, " cpus_to_preempt: %*pb", 4797 cpumask_pr_args(rq->scx.cpus_to_preempt)); 4798 if (!cpumask_empty(rq->scx.cpus_to_wait)) 4799 dump_line(&ns, " cpus_to_wait : %*pb", 4800 cpumask_pr_args(rq->scx.cpus_to_wait)); 4801 4802 used = seq_buf_used(&ns); 4803 if (SCX_HAS_OP(dump_cpu)) { 4804 ops_dump_init(&ns, " "); 4805 SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle); 4806 ops_dump_exit(); 4807 } 4808 4809 /* 4810 * If idle && nothing generated by ops.dump_cpu(), there's 4811 * nothing interesting. Skip. 4812 */ 4813 if (idle && used == seq_buf_used(&ns)) 4814 goto next; 4815 4816 /* 4817 * $s may already have overflowed when $ns was created. If so, 4818 * calling commit on it will trigger BUG. 4819 */ 4820 if (avail) { 4821 seq_buf_commit(&s, seq_buf_used(&ns)); 4822 if (seq_buf_has_overflowed(&ns)) 4823 seq_buf_set_overflow(&s); 4824 } 4825 4826 if (rq->curr->sched_class == &ext_sched_class) 4827 scx_dump_task(&s, &dctx, rq->curr, '*'); 4828 4829 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 4830 scx_dump_task(&s, &dctx, p, ' '); 4831 next: 4832 rq_unlock(rq, &rf); 4833 } 4834 4835 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 4836 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 4837 trunc_marker, sizeof(trunc_marker)); 4838 4839 spin_unlock_irqrestore(&dump_lock, flags); 4840 } 4841 4842 static void scx_ops_error_irq_workfn(struct irq_work *irq_work) 4843 { 4844 struct scx_exit_info *ei = scx_exit_info; 4845 4846 if (ei->kind >= SCX_EXIT_ERROR) 4847 scx_dump_state(ei, scx_ops.exit_dump_len); 4848 4849 schedule_scx_ops_disable_work(); 4850 } 4851 4852 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn); 4853 4854 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 4855 s64 exit_code, 4856 const char *fmt, ...) 4857 { 4858 struct scx_exit_info *ei = scx_exit_info; 4859 int none = SCX_EXIT_NONE; 4860 va_list args; 4861 4862 if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind)) 4863 return; 4864 4865 ei->exit_code = exit_code; 4866 #ifdef CONFIG_STACKTRACE 4867 if (kind >= SCX_EXIT_ERROR) 4868 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 4869 #endif 4870 va_start(args, fmt); 4871 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 4872 va_end(args); 4873 4874 /* 4875 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 4876 * in scx_ops_disable_workfn(). 4877 */ 4878 ei->kind = kind; 4879 ei->reason = scx_exit_reason(ei->kind); 4880 4881 irq_work_queue(&scx_ops_error_irq_work); 4882 } 4883 4884 static struct kthread_worker *scx_create_rt_helper(const char *name) 4885 { 4886 struct kthread_worker *helper; 4887 4888 helper = kthread_create_worker(0, name); 4889 if (helper) 4890 sched_set_fifo(helper->task); 4891 return helper; 4892 } 4893 4894 static void check_hotplug_seq(const struct sched_ext_ops *ops) 4895 { 4896 unsigned long long global_hotplug_seq; 4897 4898 /* 4899 * If a hotplug event has occurred between when a scheduler was 4900 * initialized, and when we were able to attach, exit and notify user 4901 * space about it. 4902 */ 4903 if (ops->hotplug_seq) { 4904 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); 4905 if (ops->hotplug_seq != global_hotplug_seq) { 4906 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 4907 "expected hotplug seq %llu did not match actual %llu", 4908 ops->hotplug_seq, global_hotplug_seq); 4909 } 4910 } 4911 } 4912 4913 static int validate_ops(const struct sched_ext_ops *ops) 4914 { 4915 /* 4916 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 4917 * ops.enqueue() callback isn't implemented. 4918 */ 4919 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 4920 scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 4921 return -EINVAL; 4922 } 4923 4924 return 0; 4925 } 4926 4927 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link) 4928 { 4929 struct scx_task_iter sti; 4930 struct task_struct *p; 4931 unsigned long timeout; 4932 int i, cpu, ret; 4933 4934 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), 4935 cpu_possible_mask)) { 4936 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation"); 4937 return -EINVAL; 4938 } 4939 4940 mutex_lock(&scx_ops_enable_mutex); 4941 4942 if (!scx_ops_helper) { 4943 WRITE_ONCE(scx_ops_helper, 4944 scx_create_rt_helper("sched_ext_ops_helper")); 4945 if (!scx_ops_helper) { 4946 ret = -ENOMEM; 4947 goto err_unlock; 4948 } 4949 } 4950 4951 if (scx_ops_enable_state() != SCX_OPS_DISABLED) { 4952 ret = -EBUSY; 4953 goto err_unlock; 4954 } 4955 4956 scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL); 4957 if (!scx_root_kobj) { 4958 ret = -ENOMEM; 4959 goto err_unlock; 4960 } 4961 4962 scx_root_kobj->kset = scx_kset; 4963 ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root"); 4964 if (ret < 0) 4965 goto err; 4966 4967 scx_exit_info = alloc_exit_info(ops->exit_dump_len); 4968 if (!scx_exit_info) { 4969 ret = -ENOMEM; 4970 goto err_del; 4971 } 4972 4973 /* 4974 * Set scx_ops, transition to PREPPING and clear exit info to arm the 4975 * disable path. Failure triggers full disabling from here on. 4976 */ 4977 scx_ops = *ops; 4978 4979 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_PREPPING) != 4980 SCX_OPS_DISABLED); 4981 4982 atomic_set(&scx_exit_kind, SCX_EXIT_NONE); 4983 scx_warned_zero_slice = false; 4984 4985 atomic_long_set(&scx_nr_rejected, 0); 4986 4987 for_each_possible_cpu(cpu) 4988 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; 4989 4990 /* 4991 * Keep CPUs stable during enable so that the BPF scheduler can track 4992 * online CPUs by watching ->on/offline_cpu() after ->init(). 4993 */ 4994 cpus_read_lock(); 4995 4996 if (scx_ops.init) { 4997 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init); 4998 if (ret) { 4999 ret = ops_sanitize_err("init", ret); 5000 goto err_disable_unlock_cpus; 5001 } 5002 } 5003 5004 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) 5005 if (((void (**)(void))ops)[i]) 5006 static_branch_enable_cpuslocked(&scx_has_op[i]); 5007 5008 cpus_read_unlock(); 5009 5010 ret = validate_ops(ops); 5011 if (ret) 5012 goto err_disable; 5013 5014 WARN_ON_ONCE(scx_dsp_ctx); 5015 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 5016 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 5017 scx_dsp_max_batch), 5018 __alignof__(struct scx_dsp_ctx)); 5019 if (!scx_dsp_ctx) { 5020 ret = -ENOMEM; 5021 goto err_disable; 5022 } 5023 5024 if (ops->timeout_ms) 5025 timeout = msecs_to_jiffies(ops->timeout_ms); 5026 else 5027 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 5028 5029 WRITE_ONCE(scx_watchdog_timeout, timeout); 5030 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 5031 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 5032 scx_watchdog_timeout / 2); 5033 5034 /* 5035 * Lock out forks, cgroup on/offlining and moves before opening the 5036 * floodgate so that they don't wander into the operations prematurely. 5037 * 5038 * We don't need to keep the CPUs stable but static_branch_*() requires 5039 * cpus_read_lock() and scx_cgroup_rwsem must nest inside 5040 * cpu_hotplug_lock because of the following dependency chain: 5041 * 5042 * cpu_hotplug_lock --> cgroup_threadgroup_rwsem --> scx_cgroup_rwsem 5043 * 5044 * So, we need to do cpus_read_lock() before scx_cgroup_lock() and use 5045 * static_branch_*_cpuslocked(). 5046 * 5047 * Note that cpu_hotplug_lock must nest inside scx_fork_rwsem due to the 5048 * following dependency chain: 5049 * 5050 * scx_fork_rwsem --> pernet_ops_rwsem --> cpu_hotplug_lock 5051 */ 5052 percpu_down_write(&scx_fork_rwsem); 5053 cpus_read_lock(); 5054 scx_cgroup_lock(); 5055 5056 check_hotplug_seq(ops); 5057 5058 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 5059 if (((void (**)(void))ops)[i]) 5060 static_branch_enable_cpuslocked(&scx_has_op[i]); 5061 5062 if (ops->flags & SCX_OPS_ENQ_LAST) 5063 static_branch_enable_cpuslocked(&scx_ops_enq_last); 5064 5065 if (ops->flags & SCX_OPS_ENQ_EXITING) 5066 static_branch_enable_cpuslocked(&scx_ops_enq_exiting); 5067 if (scx_ops.cpu_acquire || scx_ops.cpu_release) 5068 static_branch_enable_cpuslocked(&scx_ops_cpu_preempt); 5069 5070 if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) { 5071 reset_idle_masks(); 5072 static_branch_enable_cpuslocked(&scx_builtin_idle_enabled); 5073 } else { 5074 static_branch_disable_cpuslocked(&scx_builtin_idle_enabled); 5075 } 5076 5077 /* 5078 * All cgroups should be initialized before letting in tasks. cgroup 5079 * on/offlining and task migrations are already locked out. 5080 */ 5081 ret = scx_cgroup_init(); 5082 if (ret) 5083 goto err_disable_unlock_all; 5084 5085 static_branch_enable_cpuslocked(&__scx_ops_enabled); 5086 5087 /* 5088 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 5089 * preventing new tasks from being added. No need to exclude tasks 5090 * leaving as sched_ext_free() can handle both prepped and enabled 5091 * tasks. Prep all tasks first and then enable them with preemption 5092 * disabled. 5093 */ 5094 spin_lock_irq(&scx_tasks_lock); 5095 5096 scx_task_iter_init(&sti); 5097 while ((p = scx_task_iter_next_locked(&sti))) { 5098 /* 5099 * @p may already be dead, have lost all its usages counts and 5100 * be waiting for RCU grace period before being freed. @p can't 5101 * be initialized for SCX in such cases and should be ignored. 5102 */ 5103 if (!tryget_task_struct(p)) 5104 continue; 5105 5106 scx_task_iter_rq_unlock(&sti); 5107 spin_unlock_irq(&scx_tasks_lock); 5108 5109 ret = scx_ops_init_task(p, task_group(p), false); 5110 if (ret) { 5111 put_task_struct(p); 5112 spin_lock_irq(&scx_tasks_lock); 5113 scx_task_iter_exit(&sti); 5114 spin_unlock_irq(&scx_tasks_lock); 5115 pr_err("sched_ext: ops.init_task() failed (%d) for %s[%d] while loading\n", 5116 ret, p->comm, p->pid); 5117 goto err_disable_unlock_all; 5118 } 5119 5120 put_task_struct(p); 5121 spin_lock_irq(&scx_tasks_lock); 5122 } 5123 scx_task_iter_exit(&sti); 5124 5125 /* 5126 * All tasks are prepped but are still ops-disabled. Ensure that 5127 * %current can't be scheduled out and switch everyone. 5128 * preempt_disable() is necessary because we can't guarantee that 5129 * %current won't be starved if scheduled out while switching. 5130 */ 5131 preempt_disable(); 5132 5133 /* 5134 * From here on, the disable path must assume that tasks have ops 5135 * enabled and need to be recovered. 5136 * 5137 * Transition to ENABLING fails iff the BPF scheduler has already 5138 * triggered scx_bpf_error(). Returning an error code here would lose 5139 * the recorded error information. Exit indicating success so that the 5140 * error is notified through ops.exit() with all the details. 5141 */ 5142 if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLING, SCX_OPS_PREPPING)) { 5143 preempt_enable(); 5144 spin_unlock_irq(&scx_tasks_lock); 5145 WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); 5146 ret = 0; 5147 goto err_disable_unlock_all; 5148 } 5149 5150 /* 5151 * We're fully committed and can't fail. The PREPPED -> ENABLED 5152 * transitions here are synchronized against sched_ext_free() through 5153 * scx_tasks_lock. 5154 */ 5155 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 5156 5157 scx_task_iter_init(&sti); 5158 while ((p = scx_task_iter_next_locked(&sti))) { 5159 const struct sched_class *old_class = p->sched_class; 5160 struct sched_enq_and_set_ctx ctx; 5161 5162 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 5163 5164 scx_set_task_state(p, SCX_TASK_READY); 5165 __setscheduler_prio(p, p->prio); 5166 check_class_changing(task_rq(p), p, old_class); 5167 5168 sched_enq_and_set_task(&ctx); 5169 5170 check_class_changed(task_rq(p), p, old_class, p->prio); 5171 } 5172 scx_task_iter_exit(&sti); 5173 5174 spin_unlock_irq(&scx_tasks_lock); 5175 preempt_enable(); 5176 scx_cgroup_unlock(); 5177 cpus_read_unlock(); 5178 percpu_up_write(&scx_fork_rwsem); 5179 5180 /* see above ENABLING transition for the explanation on exiting with 0 */ 5181 if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) { 5182 WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); 5183 ret = 0; 5184 goto err_disable; 5185 } 5186 5187 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 5188 static_branch_enable(&__scx_switched_all); 5189 5190 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", 5191 scx_ops.name, scx_switched_all() ? "" : " (partial)"); 5192 kobject_uevent(scx_root_kobj, KOBJ_ADD); 5193 mutex_unlock(&scx_ops_enable_mutex); 5194 5195 atomic_long_inc(&scx_enable_seq); 5196 5197 return 0; 5198 5199 err_del: 5200 kobject_del(scx_root_kobj); 5201 err: 5202 kobject_put(scx_root_kobj); 5203 scx_root_kobj = NULL; 5204 if (scx_exit_info) { 5205 free_exit_info(scx_exit_info); 5206 scx_exit_info = NULL; 5207 } 5208 err_unlock: 5209 mutex_unlock(&scx_ops_enable_mutex); 5210 return ret; 5211 5212 err_disable_unlock_all: 5213 scx_cgroup_unlock(); 5214 percpu_up_write(&scx_fork_rwsem); 5215 err_disable_unlock_cpus: 5216 cpus_read_unlock(); 5217 err_disable: 5218 mutex_unlock(&scx_ops_enable_mutex); 5219 /* must be fully disabled before returning */ 5220 scx_ops_disable(SCX_EXIT_ERROR); 5221 kthread_flush_work(&scx_ops_disable_work); 5222 return ret; 5223 } 5224 5225 5226 /******************************************************************************** 5227 * bpf_struct_ops plumbing. 5228 */ 5229 #include <linux/bpf_verifier.h> 5230 #include <linux/bpf.h> 5231 #include <linux/btf.h> 5232 5233 extern struct btf *btf_vmlinux; 5234 static const struct btf_type *task_struct_type; 5235 static u32 task_struct_type_id; 5236 5237 static bool set_arg_maybe_null(const char *op, int arg_n, int off, int size, 5238 enum bpf_access_type type, 5239 const struct bpf_prog *prog, 5240 struct bpf_insn_access_aux *info) 5241 { 5242 struct btf *btf = bpf_get_btf_vmlinux(); 5243 const struct bpf_struct_ops_desc *st_ops_desc; 5244 const struct btf_member *member; 5245 const struct btf_type *t; 5246 u32 btf_id, member_idx; 5247 const char *mname; 5248 5249 /* struct_ops op args are all sequential, 64-bit numbers */ 5250 if (off != arg_n * sizeof(__u64)) 5251 return false; 5252 5253 /* btf_id should be the type id of struct sched_ext_ops */ 5254 btf_id = prog->aux->attach_btf_id; 5255 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 5256 if (!st_ops_desc) 5257 return false; 5258 5259 /* BTF type of struct sched_ext_ops */ 5260 t = st_ops_desc->type; 5261 5262 member_idx = prog->expected_attach_type; 5263 if (member_idx >= btf_type_vlen(t)) 5264 return false; 5265 5266 /* 5267 * Get the member name of this struct_ops program, which corresponds to 5268 * a field in struct sched_ext_ops. For example, the member name of the 5269 * dispatch struct_ops program (callback) is "dispatch". 5270 */ 5271 member = &btf_type_member(t)[member_idx]; 5272 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 5273 5274 if (!strcmp(mname, op)) { 5275 /* 5276 * The value is a pointer to a type (struct task_struct) given 5277 * by a BTF ID (PTR_TO_BTF_ID). It is trusted (PTR_TRUSTED), 5278 * however, can be a NULL (PTR_MAYBE_NULL). The BPF program 5279 * should check the pointer to make sure it is not NULL before 5280 * using it, or the verifier will reject the program. 5281 * 5282 * Longer term, this is something that should be addressed by 5283 * BTF, and be fully contained within the verifier. 5284 */ 5285 info->reg_type = PTR_MAYBE_NULL | PTR_TO_BTF_ID | PTR_TRUSTED; 5286 info->btf = btf_vmlinux; 5287 info->btf_id = task_struct_type_id; 5288 5289 return true; 5290 } 5291 5292 return false; 5293 } 5294 5295 static bool bpf_scx_is_valid_access(int off, int size, 5296 enum bpf_access_type type, 5297 const struct bpf_prog *prog, 5298 struct bpf_insn_access_aux *info) 5299 { 5300 if (type != BPF_READ) 5301 return false; 5302 if (set_arg_maybe_null("dispatch", 1, off, size, type, prog, info) || 5303 set_arg_maybe_null("yield", 1, off, size, type, prog, info)) 5304 return true; 5305 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 5306 return false; 5307 if (off % size != 0) 5308 return false; 5309 5310 return btf_ctx_access(off, size, type, prog, info); 5311 } 5312 5313 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 5314 const struct bpf_reg_state *reg, int off, 5315 int size) 5316 { 5317 const struct btf_type *t; 5318 5319 t = btf_type_by_id(reg->btf, reg->btf_id); 5320 if (t == task_struct_type) { 5321 if (off >= offsetof(struct task_struct, scx.slice) && 5322 off + size <= offsetofend(struct task_struct, scx.slice)) 5323 return SCALAR_VALUE; 5324 if (off >= offsetof(struct task_struct, scx.dsq_vtime) && 5325 off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) 5326 return SCALAR_VALUE; 5327 if (off >= offsetof(struct task_struct, scx.disallow) && 5328 off + size <= offsetofend(struct task_struct, scx.disallow)) 5329 return SCALAR_VALUE; 5330 } 5331 5332 return -EACCES; 5333 } 5334 5335 static const struct bpf_func_proto * 5336 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 5337 { 5338 switch (func_id) { 5339 case BPF_FUNC_task_storage_get: 5340 return &bpf_task_storage_get_proto; 5341 case BPF_FUNC_task_storage_delete: 5342 return &bpf_task_storage_delete_proto; 5343 default: 5344 return bpf_base_func_proto(func_id, prog); 5345 } 5346 } 5347 5348 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 5349 .get_func_proto = bpf_scx_get_func_proto, 5350 .is_valid_access = bpf_scx_is_valid_access, 5351 .btf_struct_access = bpf_scx_btf_struct_access, 5352 }; 5353 5354 static int bpf_scx_init_member(const struct btf_type *t, 5355 const struct btf_member *member, 5356 void *kdata, const void *udata) 5357 { 5358 const struct sched_ext_ops *uops = udata; 5359 struct sched_ext_ops *ops = kdata; 5360 u32 moff = __btf_member_bit_offset(t, member) / 8; 5361 int ret; 5362 5363 switch (moff) { 5364 case offsetof(struct sched_ext_ops, dispatch_max_batch): 5365 if (*(u32 *)(udata + moff) > INT_MAX) 5366 return -E2BIG; 5367 ops->dispatch_max_batch = *(u32 *)(udata + moff); 5368 return 1; 5369 case offsetof(struct sched_ext_ops, flags): 5370 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 5371 return -EINVAL; 5372 ops->flags = *(u64 *)(udata + moff); 5373 return 1; 5374 case offsetof(struct sched_ext_ops, name): 5375 ret = bpf_obj_name_cpy(ops->name, uops->name, 5376 sizeof(ops->name)); 5377 if (ret < 0) 5378 return ret; 5379 if (ret == 0) 5380 return -EINVAL; 5381 return 1; 5382 case offsetof(struct sched_ext_ops, timeout_ms): 5383 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 5384 SCX_WATCHDOG_MAX_TIMEOUT) 5385 return -E2BIG; 5386 ops->timeout_ms = *(u32 *)(udata + moff); 5387 return 1; 5388 case offsetof(struct sched_ext_ops, exit_dump_len): 5389 ops->exit_dump_len = 5390 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 5391 return 1; 5392 case offsetof(struct sched_ext_ops, hotplug_seq): 5393 ops->hotplug_seq = *(u64 *)(udata + moff); 5394 return 1; 5395 } 5396 5397 return 0; 5398 } 5399 5400 static int bpf_scx_check_member(const struct btf_type *t, 5401 const struct btf_member *member, 5402 const struct bpf_prog *prog) 5403 { 5404 u32 moff = __btf_member_bit_offset(t, member) / 8; 5405 5406 switch (moff) { 5407 case offsetof(struct sched_ext_ops, init_task): 5408 #ifdef CONFIG_EXT_GROUP_SCHED 5409 case offsetof(struct sched_ext_ops, cgroup_init): 5410 case offsetof(struct sched_ext_ops, cgroup_exit): 5411 case offsetof(struct sched_ext_ops, cgroup_prep_move): 5412 #endif 5413 case offsetof(struct sched_ext_ops, cpu_online): 5414 case offsetof(struct sched_ext_ops, cpu_offline): 5415 case offsetof(struct sched_ext_ops, init): 5416 case offsetof(struct sched_ext_ops, exit): 5417 break; 5418 default: 5419 if (prog->sleepable) 5420 return -EINVAL; 5421 } 5422 5423 return 0; 5424 } 5425 5426 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 5427 { 5428 return scx_ops_enable(kdata, link); 5429 } 5430 5431 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 5432 { 5433 scx_ops_disable(SCX_EXIT_UNREG); 5434 kthread_flush_work(&scx_ops_disable_work); 5435 } 5436 5437 static int bpf_scx_init(struct btf *btf) 5438 { 5439 s32 type_id; 5440 5441 type_id = btf_find_by_name_kind(btf, "task_struct", BTF_KIND_STRUCT); 5442 if (type_id < 0) 5443 return -EINVAL; 5444 task_struct_type = btf_type_by_id(btf, type_id); 5445 task_struct_type_id = type_id; 5446 5447 return 0; 5448 } 5449 5450 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 5451 { 5452 /* 5453 * sched_ext does not support updating the actively-loaded BPF 5454 * scheduler, as registering a BPF scheduler can always fail if the 5455 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 5456 * etc. Similarly, we can always race with unregistration happening 5457 * elsewhere, such as with sysrq. 5458 */ 5459 return -EOPNOTSUPP; 5460 } 5461 5462 static int bpf_scx_validate(void *kdata) 5463 { 5464 return 0; 5465 } 5466 5467 static s32 select_cpu_stub(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 5468 static void enqueue_stub(struct task_struct *p, u64 enq_flags) {} 5469 static void dequeue_stub(struct task_struct *p, u64 enq_flags) {} 5470 static void dispatch_stub(s32 prev_cpu, struct task_struct *p) {} 5471 static void tick_stub(struct task_struct *p) {} 5472 static void runnable_stub(struct task_struct *p, u64 enq_flags) {} 5473 static void running_stub(struct task_struct *p) {} 5474 static void stopping_stub(struct task_struct *p, bool runnable) {} 5475 static void quiescent_stub(struct task_struct *p, u64 deq_flags) {} 5476 static bool yield_stub(struct task_struct *from, struct task_struct *to) { return false; } 5477 static bool core_sched_before_stub(struct task_struct *a, struct task_struct *b) { return false; } 5478 static void set_weight_stub(struct task_struct *p, u32 weight) {} 5479 static void set_cpumask_stub(struct task_struct *p, const struct cpumask *mask) {} 5480 static void update_idle_stub(s32 cpu, bool idle) {} 5481 static void cpu_acquire_stub(s32 cpu, struct scx_cpu_acquire_args *args) {} 5482 static void cpu_release_stub(s32 cpu, struct scx_cpu_release_args *args) {} 5483 static s32 init_task_stub(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 5484 static void exit_task_stub(struct task_struct *p, struct scx_exit_task_args *args) {} 5485 static void enable_stub(struct task_struct *p) {} 5486 static void disable_stub(struct task_struct *p) {} 5487 #ifdef CONFIG_EXT_GROUP_SCHED 5488 static s32 cgroup_init_stub(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } 5489 static void cgroup_exit_stub(struct cgroup *cgrp) {} 5490 static s32 cgroup_prep_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } 5491 static void cgroup_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5492 static void cgroup_cancel_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5493 static void cgroup_set_weight_stub(struct cgroup *cgrp, u32 weight) {} 5494 #endif 5495 static void cpu_online_stub(s32 cpu) {} 5496 static void cpu_offline_stub(s32 cpu) {} 5497 static s32 init_stub(void) { return -EINVAL; } 5498 static void exit_stub(struct scx_exit_info *info) {} 5499 static void dump_stub(struct scx_dump_ctx *ctx) {} 5500 static void dump_cpu_stub(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} 5501 static void dump_task_stub(struct scx_dump_ctx *ctx, struct task_struct *p) {} 5502 5503 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 5504 .select_cpu = select_cpu_stub, 5505 .enqueue = enqueue_stub, 5506 .dequeue = dequeue_stub, 5507 .dispatch = dispatch_stub, 5508 .tick = tick_stub, 5509 .runnable = runnable_stub, 5510 .running = running_stub, 5511 .stopping = stopping_stub, 5512 .quiescent = quiescent_stub, 5513 .yield = yield_stub, 5514 .core_sched_before = core_sched_before_stub, 5515 .set_weight = set_weight_stub, 5516 .set_cpumask = set_cpumask_stub, 5517 .update_idle = update_idle_stub, 5518 .cpu_acquire = cpu_acquire_stub, 5519 .cpu_release = cpu_release_stub, 5520 .init_task = init_task_stub, 5521 .exit_task = exit_task_stub, 5522 .enable = enable_stub, 5523 .disable = disable_stub, 5524 #ifdef CONFIG_EXT_GROUP_SCHED 5525 .cgroup_init = cgroup_init_stub, 5526 .cgroup_exit = cgroup_exit_stub, 5527 .cgroup_prep_move = cgroup_prep_move_stub, 5528 .cgroup_move = cgroup_move_stub, 5529 .cgroup_cancel_move = cgroup_cancel_move_stub, 5530 .cgroup_set_weight = cgroup_set_weight_stub, 5531 #endif 5532 .cpu_online = cpu_online_stub, 5533 .cpu_offline = cpu_offline_stub, 5534 .init = init_stub, 5535 .exit = exit_stub, 5536 .dump = dump_stub, 5537 .dump_cpu = dump_cpu_stub, 5538 .dump_task = dump_task_stub, 5539 }; 5540 5541 static struct bpf_struct_ops bpf_sched_ext_ops = { 5542 .verifier_ops = &bpf_scx_verifier_ops, 5543 .reg = bpf_scx_reg, 5544 .unreg = bpf_scx_unreg, 5545 .check_member = bpf_scx_check_member, 5546 .init_member = bpf_scx_init_member, 5547 .init = bpf_scx_init, 5548 .update = bpf_scx_update, 5549 .validate = bpf_scx_validate, 5550 .name = "sched_ext_ops", 5551 .owner = THIS_MODULE, 5552 .cfi_stubs = &__bpf_ops_sched_ext_ops 5553 }; 5554 5555 5556 /******************************************************************************** 5557 * System integration and init. 5558 */ 5559 5560 static void sysrq_handle_sched_ext_reset(u8 key) 5561 { 5562 if (scx_ops_helper) 5563 scx_ops_disable(SCX_EXIT_SYSRQ); 5564 else 5565 pr_info("sched_ext: BPF scheduler not yet used\n"); 5566 } 5567 5568 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 5569 .handler = sysrq_handle_sched_ext_reset, 5570 .help_msg = "reset-sched-ext(S)", 5571 .action_msg = "Disable sched_ext and revert all tasks to CFS", 5572 .enable_mask = SYSRQ_ENABLE_RTNICE, 5573 }; 5574 5575 static void sysrq_handle_sched_ext_dump(u8 key) 5576 { 5577 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 5578 5579 if (scx_enabled()) 5580 scx_dump_state(&ei, 0); 5581 } 5582 5583 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 5584 .handler = sysrq_handle_sched_ext_dump, 5585 .help_msg = "dump-sched-ext(D)", 5586 .action_msg = "Trigger sched_ext debug dump", 5587 .enable_mask = SYSRQ_ENABLE_RTNICE, 5588 }; 5589 5590 static bool can_skip_idle_kick(struct rq *rq) 5591 { 5592 lockdep_assert_rq_held(rq); 5593 5594 /* 5595 * We can skip idle kicking if @rq is going to go through at least one 5596 * full SCX scheduling cycle before going idle. Just checking whether 5597 * curr is not idle is insufficient because we could be racing 5598 * balance_one() trying to pull the next task from a remote rq, which 5599 * may fail, and @rq may become idle afterwards. 5600 * 5601 * The race window is small and we don't and can't guarantee that @rq is 5602 * only kicked while idle anyway. Skip only when sure. 5603 */ 5604 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); 5605 } 5606 5607 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) 5608 { 5609 struct rq *rq = cpu_rq(cpu); 5610 struct scx_rq *this_scx = &this_rq->scx; 5611 bool should_wait = false; 5612 unsigned long flags; 5613 5614 raw_spin_rq_lock_irqsave(rq, flags); 5615 5616 /* 5617 * During CPU hotplug, a CPU may depend on kicking itself to make 5618 * forward progress. Allow kicking self regardless of online state. 5619 */ 5620 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { 5621 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 5622 if (rq->curr->sched_class == &ext_sched_class) 5623 rq->curr->scx.slice = 0; 5624 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5625 } 5626 5627 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 5628 pseqs[cpu] = rq->scx.pnt_seq; 5629 should_wait = true; 5630 } 5631 5632 resched_curr(rq); 5633 } else { 5634 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5635 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5636 } 5637 5638 raw_spin_rq_unlock_irqrestore(rq, flags); 5639 5640 return should_wait; 5641 } 5642 5643 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 5644 { 5645 struct rq *rq = cpu_rq(cpu); 5646 unsigned long flags; 5647 5648 raw_spin_rq_lock_irqsave(rq, flags); 5649 5650 if (!can_skip_idle_kick(rq) && 5651 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 5652 resched_curr(rq); 5653 5654 raw_spin_rq_unlock_irqrestore(rq, flags); 5655 } 5656 5657 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 5658 { 5659 struct rq *this_rq = this_rq(); 5660 struct scx_rq *this_scx = &this_rq->scx; 5661 unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs); 5662 bool should_wait = false; 5663 s32 cpu; 5664 5665 for_each_cpu(cpu, this_scx->cpus_to_kick) { 5666 should_wait |= kick_one_cpu(cpu, this_rq, pseqs); 5667 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 5668 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5669 } 5670 5671 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 5672 kick_one_cpu_if_idle(cpu, this_rq); 5673 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5674 } 5675 5676 if (!should_wait) 5677 return; 5678 5679 for_each_cpu(cpu, this_scx->cpus_to_wait) { 5680 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; 5681 5682 if (cpu != cpu_of(this_rq)) { 5683 /* 5684 * Pairs with smp_store_release() issued by this CPU in 5685 * scx_next_task_picked() on the resched path. 5686 * 5687 * We busy-wait here to guarantee that no other task can 5688 * be scheduled on our core before the target CPU has 5689 * entered the resched path. 5690 */ 5691 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) 5692 cpu_relax(); 5693 } 5694 5695 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5696 } 5697 } 5698 5699 /** 5700 * print_scx_info - print out sched_ext scheduler state 5701 * @log_lvl: the log level to use when printing 5702 * @p: target task 5703 * 5704 * If a sched_ext scheduler is enabled, print the name and state of the 5705 * scheduler. If @p is on sched_ext, print further information about the task. 5706 * 5707 * This function can be safely called on any task as long as the task_struct 5708 * itself is accessible. While safe, this function isn't synchronized and may 5709 * print out mixups or garbages of limited length. 5710 */ 5711 void print_scx_info(const char *log_lvl, struct task_struct *p) 5712 { 5713 enum scx_ops_enable_state state = scx_ops_enable_state(); 5714 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 5715 char runnable_at_buf[22] = "?"; 5716 struct sched_class *class; 5717 unsigned long runnable_at; 5718 5719 if (state == SCX_OPS_DISABLED) 5720 return; 5721 5722 /* 5723 * Carefully check if the task was running on sched_ext, and then 5724 * carefully copy the time it's been runnable, and its state. 5725 */ 5726 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 5727 class != &ext_sched_class) { 5728 printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name, 5729 scx_ops_enable_state_str[state], all); 5730 return; 5731 } 5732 5733 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 5734 sizeof(runnable_at))) 5735 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 5736 jiffies_delta_msecs(runnable_at, jiffies)); 5737 5738 /* print everything onto one line to conserve console space */ 5739 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 5740 log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all, 5741 runnable_at_buf); 5742 } 5743 5744 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) 5745 { 5746 /* 5747 * SCX schedulers often have userspace components which are sometimes 5748 * involved in critial scheduling paths. PM operations involve freezing 5749 * userspace which can lead to scheduling misbehaviors including stalls. 5750 * Let's bypass while PM operations are in progress. 5751 */ 5752 switch (event) { 5753 case PM_HIBERNATION_PREPARE: 5754 case PM_SUSPEND_PREPARE: 5755 case PM_RESTORE_PREPARE: 5756 scx_ops_bypass(true); 5757 break; 5758 case PM_POST_HIBERNATION: 5759 case PM_POST_SUSPEND: 5760 case PM_POST_RESTORE: 5761 scx_ops_bypass(false); 5762 break; 5763 } 5764 5765 return NOTIFY_OK; 5766 } 5767 5768 static struct notifier_block scx_pm_notifier = { 5769 .notifier_call = scx_pm_handler, 5770 }; 5771 5772 void __init init_sched_ext_class(void) 5773 { 5774 s32 cpu, v; 5775 5776 /* 5777 * The following is to prevent the compiler from optimizing out the enum 5778 * definitions so that BPF scheduler implementations can use them 5779 * through the generated vmlinux.h. 5780 */ 5781 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | 5782 SCX_TG_ONLINE); 5783 5784 BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params)); 5785 init_dsq(&scx_dsq_global, SCX_DSQ_GLOBAL); 5786 #ifdef CONFIG_SMP 5787 BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL)); 5788 BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL)); 5789 #endif 5790 scx_kick_cpus_pnt_seqs = 5791 __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids, 5792 __alignof__(scx_kick_cpus_pnt_seqs[0])); 5793 BUG_ON(!scx_kick_cpus_pnt_seqs); 5794 5795 for_each_possible_cpu(cpu) { 5796 struct rq *rq = cpu_rq(cpu); 5797 5798 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 5799 INIT_LIST_HEAD(&rq->scx.runnable_list); 5800 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); 5801 5802 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL)); 5803 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL)); 5804 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL)); 5805 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL)); 5806 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn); 5807 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); 5808 5809 if (cpu_online(cpu)) 5810 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; 5811 } 5812 5813 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 5814 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 5815 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 5816 } 5817 5818 5819 /******************************************************************************** 5820 * Helpers that can be called from the BPF scheduler. 5821 */ 5822 #include <linux/btf_ids.h> 5823 5824 __bpf_kfunc_start_defs(); 5825 5826 /** 5827 * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu() 5828 * @p: task_struct to select a CPU for 5829 * @prev_cpu: CPU @p was on previously 5830 * @wake_flags: %SCX_WAKE_* flags 5831 * @is_idle: out parameter indicating whether the returned CPU is idle 5832 * 5833 * Can only be called from ops.select_cpu() if the built-in CPU selection is 5834 * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set. 5835 * @p, @prev_cpu and @wake_flags match ops.select_cpu(). 5836 * 5837 * Returns the picked CPU with *@is_idle indicating whether the picked CPU is 5838 * currently idle and thus a good candidate for direct dispatching. 5839 */ 5840 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 5841 u64 wake_flags, bool *is_idle) 5842 { 5843 if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) { 5844 *is_idle = false; 5845 return prev_cpu; 5846 } 5847 #ifdef CONFIG_SMP 5848 return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle); 5849 #else 5850 *is_idle = false; 5851 return prev_cpu; 5852 #endif 5853 } 5854 5855 __bpf_kfunc_end_defs(); 5856 5857 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu) 5858 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU) 5859 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu) 5860 5861 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = { 5862 .owner = THIS_MODULE, 5863 .set = &scx_kfunc_ids_select_cpu, 5864 }; 5865 5866 static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags) 5867 { 5868 if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 5869 return false; 5870 5871 lockdep_assert_irqs_disabled(); 5872 5873 if (unlikely(!p)) { 5874 scx_ops_error("called with NULL task"); 5875 return false; 5876 } 5877 5878 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 5879 scx_ops_error("invalid enq_flags 0x%llx", enq_flags); 5880 return false; 5881 } 5882 5883 return true; 5884 } 5885 5886 static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags) 5887 { 5888 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5889 struct task_struct *ddsp_task; 5890 5891 ddsp_task = __this_cpu_read(direct_dispatch_task); 5892 if (ddsp_task) { 5893 mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags); 5894 return; 5895 } 5896 5897 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 5898 scx_ops_error("dispatch buffer overflow"); 5899 return; 5900 } 5901 5902 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 5903 .task = p, 5904 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 5905 .dsq_id = dsq_id, 5906 .enq_flags = enq_flags, 5907 }; 5908 } 5909 5910 __bpf_kfunc_start_defs(); 5911 5912 /** 5913 * scx_bpf_dispatch - Dispatch a task into the FIFO queue of a DSQ 5914 * @p: task_struct to dispatch 5915 * @dsq_id: DSQ to dispatch to 5916 * @slice: duration @p can run for in nsecs, 0 to keep the current value 5917 * @enq_flags: SCX_ENQ_* 5918 * 5919 * Dispatch @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe 5920 * to call this function spuriously. Can be called from ops.enqueue(), 5921 * ops.select_cpu(), and ops.dispatch(). 5922 * 5923 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 5924 * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be 5925 * used to target the local DSQ of a CPU other than the enqueueing one. Use 5926 * ops.select_cpu() to be on the target CPU in the first place. 5927 * 5928 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 5929 * will be directly dispatched to the corresponding dispatch queue after 5930 * ops.select_cpu() returns. If @p is dispatched to SCX_DSQ_LOCAL, it will be 5931 * dispatched to the local DSQ of the CPU returned by ops.select_cpu(). 5932 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 5933 * task is dispatched. 5934 * 5935 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 5936 * and this function can be called upto ops.dispatch_max_batch times to dispatch 5937 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 5938 * remaining slots. scx_bpf_consume() flushes the batch and resets the counter. 5939 * 5940 * This function doesn't have any locking restrictions and may be called under 5941 * BPF locks (in the future when BPF introduces more flexible locking). 5942 * 5943 * @p is allowed to run for @slice. The scheduling path is triggered on slice 5944 * exhaustion. If zero, the current residual slice is maintained. If 5945 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 5946 * scx_bpf_kick_cpu() to trigger scheduling. 5947 */ 5948 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice, 5949 u64 enq_flags) 5950 { 5951 if (!scx_dispatch_preamble(p, enq_flags)) 5952 return; 5953 5954 if (slice) 5955 p->scx.slice = slice; 5956 else 5957 p->scx.slice = p->scx.slice ?: 1; 5958 5959 scx_dispatch_commit(p, dsq_id, enq_flags); 5960 } 5961 5962 /** 5963 * scx_bpf_dispatch_vtime - Dispatch a task into the vtime priority queue of a DSQ 5964 * @p: task_struct to dispatch 5965 * @dsq_id: DSQ to dispatch to 5966 * @slice: duration @p can run for in nsecs, 0 to keep the current value 5967 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ 5968 * @enq_flags: SCX_ENQ_* 5969 * 5970 * Dispatch @p into the vtime priority queue of the DSQ identified by @dsq_id. 5971 * Tasks queued into the priority queue are ordered by @vtime and always 5972 * consumed after the tasks in the FIFO queue. All other aspects are identical 5973 * to scx_bpf_dispatch(). 5974 * 5975 * @vtime ordering is according to time_before64() which considers wrapping. A 5976 * numerically larger vtime may indicate an earlier position in the ordering and 5977 * vice-versa. 5978 */ 5979 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id, 5980 u64 slice, u64 vtime, u64 enq_flags) 5981 { 5982 if (!scx_dispatch_preamble(p, enq_flags)) 5983 return; 5984 5985 if (slice) 5986 p->scx.slice = slice; 5987 else 5988 p->scx.slice = p->scx.slice ?: 1; 5989 5990 p->scx.dsq_vtime = vtime; 5991 5992 scx_dispatch_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 5993 } 5994 5995 __bpf_kfunc_end_defs(); 5996 5997 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 5998 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU) 5999 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU) 6000 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 6001 6002 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 6003 .owner = THIS_MODULE, 6004 .set = &scx_kfunc_ids_enqueue_dispatch, 6005 }; 6006 6007 static bool scx_dispatch_from_dsq(struct bpf_iter_scx_dsq_kern *kit, 6008 struct task_struct *p, u64 dsq_id, 6009 u64 enq_flags) 6010 { 6011 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; 6012 struct rq *this_rq, *src_rq, *dst_rq, *locked_rq; 6013 bool dispatched = false; 6014 bool in_balance; 6015 unsigned long flags; 6016 6017 if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH)) 6018 return false; 6019 6020 /* 6021 * Can be called from either ops.dispatch() locking this_rq() or any 6022 * context where no rq lock is held. If latter, lock @p's task_rq which 6023 * we'll likely need anyway. 6024 */ 6025 src_rq = task_rq(p); 6026 6027 local_irq_save(flags); 6028 this_rq = this_rq(); 6029 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; 6030 6031 if (in_balance) { 6032 if (this_rq != src_rq) { 6033 raw_spin_rq_unlock(this_rq); 6034 raw_spin_rq_lock(src_rq); 6035 } 6036 } else { 6037 raw_spin_rq_lock(src_rq); 6038 } 6039 6040 locked_rq = src_rq; 6041 raw_spin_lock(&src_dsq->lock); 6042 6043 /* 6044 * Did someone else get to it? @p could have already left $src_dsq, got 6045 * re-enqueud, or be in the process of being consumed by someone else. 6046 */ 6047 if (unlikely(p->scx.dsq != src_dsq || 6048 u32_before(kit->cursor.priv, p->scx.dsq_seq) || 6049 p->scx.holding_cpu >= 0) || 6050 WARN_ON_ONCE(src_rq != task_rq(p))) { 6051 raw_spin_unlock(&src_dsq->lock); 6052 goto out; 6053 } 6054 6055 /* @p is still on $src_dsq and stable, determine the destination */ 6056 dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p); 6057 6058 if (dst_dsq->id == SCX_DSQ_LOCAL) { 6059 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 6060 if (!task_can_run_on_remote_rq(p, dst_rq, true)) { 6061 dst_dsq = &scx_dsq_global; 6062 dst_rq = src_rq; 6063 } 6064 } else { 6065 /* no need to migrate if destination is a non-local DSQ */ 6066 dst_rq = src_rq; 6067 } 6068 6069 /* 6070 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different 6071 * CPU, @p will be migrated. 6072 */ 6073 if (dst_dsq->id == SCX_DSQ_LOCAL) { 6074 /* @p is going from a non-local DSQ to a local DSQ */ 6075 if (src_rq == dst_rq) { 6076 task_unlink_from_dsq(p, src_dsq); 6077 move_local_task_to_local_dsq(p, enq_flags, 6078 src_dsq, dst_rq); 6079 raw_spin_unlock(&src_dsq->lock); 6080 } else { 6081 raw_spin_unlock(&src_dsq->lock); 6082 move_remote_task_to_local_dsq(p, enq_flags, 6083 src_rq, dst_rq); 6084 locked_rq = dst_rq; 6085 } 6086 } else { 6087 /* 6088 * @p is going from a non-local DSQ to a non-local DSQ. As 6089 * $src_dsq is already locked, do an abbreviated dequeue. 6090 */ 6091 task_unlink_from_dsq(p, src_dsq); 6092 p->scx.dsq = NULL; 6093 raw_spin_unlock(&src_dsq->lock); 6094 6095 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) 6096 p->scx.dsq_vtime = kit->vtime; 6097 dispatch_enqueue(dst_dsq, p, enq_flags); 6098 } 6099 6100 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) 6101 p->scx.slice = kit->slice; 6102 6103 dispatched = true; 6104 out: 6105 if (in_balance) { 6106 if (this_rq != locked_rq) { 6107 raw_spin_rq_unlock(locked_rq); 6108 raw_spin_rq_lock(this_rq); 6109 } 6110 } else { 6111 raw_spin_rq_unlock_irqrestore(locked_rq, flags); 6112 } 6113 6114 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | 6115 __SCX_DSQ_ITER_HAS_VTIME); 6116 return dispatched; 6117 } 6118 6119 __bpf_kfunc_start_defs(); 6120 6121 /** 6122 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 6123 * 6124 * Can only be called from ops.dispatch(). 6125 */ 6126 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 6127 { 6128 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6129 return 0; 6130 6131 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 6132 } 6133 6134 /** 6135 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 6136 * 6137 * Cancel the latest dispatch. Can be called multiple times to cancel further 6138 * dispatches. Can only be called from ops.dispatch(). 6139 */ 6140 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 6141 { 6142 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6143 6144 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6145 return; 6146 6147 if (dspc->cursor > 0) 6148 dspc->cursor--; 6149 else 6150 scx_ops_error("dispatch buffer underflow"); 6151 } 6152 6153 /** 6154 * scx_bpf_consume - Transfer a task from a DSQ to the current CPU's local DSQ 6155 * @dsq_id: DSQ to consume 6156 * 6157 * Consume a task from the non-local DSQ identified by @dsq_id and transfer it 6158 * to the current CPU's local DSQ for execution. Can only be called from 6159 * ops.dispatch(). 6160 * 6161 * This function flushes the in-flight dispatches from scx_bpf_dispatch() before 6162 * trying to consume the specified DSQ. It may also grab rq locks and thus can't 6163 * be called under any BPF locks. 6164 * 6165 * Returns %true if a task has been consumed, %false if there isn't any task to 6166 * consume. 6167 */ 6168 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id) 6169 { 6170 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6171 struct scx_dispatch_q *dsq; 6172 6173 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6174 return false; 6175 6176 flush_dispatch_buf(dspc->rq); 6177 6178 dsq = find_non_local_dsq(dsq_id); 6179 if (unlikely(!dsq)) { 6180 scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id); 6181 return false; 6182 } 6183 6184 if (consume_dispatch_q(dspc->rq, dsq)) { 6185 /* 6186 * A successfully consumed task can be dequeued before it starts 6187 * running while the CPU is trying to migrate other dispatched 6188 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 6189 * local DSQ. 6190 */ 6191 dspc->nr_tasks++; 6192 return true; 6193 } else { 6194 return false; 6195 } 6196 } 6197 6198 /** 6199 * scx_bpf_dispatch_from_dsq_set_slice - Override slice when dispatching from DSQ 6200 * @it__iter: DSQ iterator in progress 6201 * @slice: duration the dispatched task can run for in nsecs 6202 * 6203 * Override the slice of the next task that will be dispatched from @it__iter 6204 * using scx_bpf_dispatch_from_dsq[_vtime](). If this function is not called, 6205 * the previous slice duration is kept. 6206 */ 6207 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice( 6208 struct bpf_iter_scx_dsq *it__iter, u64 slice) 6209 { 6210 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6211 6212 kit->slice = slice; 6213 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; 6214 } 6215 6216 /** 6217 * scx_bpf_dispatch_from_dsq_set_vtime - Override vtime when dispatching from DSQ 6218 * @it__iter: DSQ iterator in progress 6219 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ 6220 * 6221 * Override the vtime of the next task that will be dispatched from @it__iter 6222 * using scx_bpf_dispatch_from_dsq_vtime(). If this function is not called, the 6223 * previous slice vtime is kept. If scx_bpf_dispatch_from_dsq() is used to 6224 * dispatch the next task, the override is ignored and cleared. 6225 */ 6226 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime( 6227 struct bpf_iter_scx_dsq *it__iter, u64 vtime) 6228 { 6229 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6230 6231 kit->vtime = vtime; 6232 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; 6233 } 6234 6235 /** 6236 * scx_bpf_dispatch_from_dsq - Move a task from DSQ iteration to a DSQ 6237 * @it__iter: DSQ iterator in progress 6238 * @p: task to transfer 6239 * @dsq_id: DSQ to move @p to 6240 * @enq_flags: SCX_ENQ_* 6241 * 6242 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ 6243 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can 6244 * be the destination. 6245 * 6246 * For the transfer to be successful, @p must still be on the DSQ and have been 6247 * queued before the DSQ iteration started. This function doesn't care whether 6248 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have 6249 * been queued before the iteration started. 6250 * 6251 * @p's slice is kept by default. Use scx_bpf_dispatch_from_dsq_set_slice() to 6252 * update. 6253 * 6254 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq 6255 * lock (e.g. BPF timers or SYSCALL programs). 6256 * 6257 * Returns %true if @p has been consumed, %false if @p had already been consumed 6258 * or dequeued. 6259 */ 6260 __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6261 struct task_struct *p, u64 dsq_id, 6262 u64 enq_flags) 6263 { 6264 return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter, 6265 p, dsq_id, enq_flags); 6266 } 6267 6268 /** 6269 * scx_bpf_dispatch_vtime_from_dsq - Move a task from DSQ iteration to a PRIQ DSQ 6270 * @it__iter: DSQ iterator in progress 6271 * @p: task to transfer 6272 * @dsq_id: DSQ to move @p to 6273 * @enq_flags: SCX_ENQ_* 6274 * 6275 * Transfer @p which is on the DSQ currently iterated by @it__iter to the 6276 * priority queue of the DSQ specified by @dsq_id. The destination must be a 6277 * user DSQ as only user DSQs support priority queue. 6278 * 6279 * @p's slice and vtime are kept by default. Use 6280 * scx_bpf_dispatch_from_dsq_set_slice() and 6281 * scx_bpf_dispatch_from_dsq_set_vtime() to update. 6282 * 6283 * All other aspects are identical to scx_bpf_dispatch_from_dsq(). See 6284 * scx_bpf_dispatch_vtime() for more information on @vtime. 6285 */ 6286 __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6287 struct task_struct *p, u64 dsq_id, 6288 u64 enq_flags) 6289 { 6290 return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter, 6291 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6292 } 6293 6294 __bpf_kfunc_end_defs(); 6295 6296 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 6297 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 6298 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 6299 BTF_ID_FLAGS(func, scx_bpf_consume) 6300 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) 6301 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) 6302 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6303 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6304 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 6305 6306 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 6307 .owner = THIS_MODULE, 6308 .set = &scx_kfunc_ids_dispatch, 6309 }; 6310 6311 __bpf_kfunc_start_defs(); 6312 6313 /** 6314 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 6315 * 6316 * Iterate over all of the tasks currently enqueued on the local DSQ of the 6317 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 6318 * processed tasks. Can only be called from ops.cpu_release(). 6319 */ 6320 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 6321 { 6322 LIST_HEAD(tasks); 6323 u32 nr_enqueued = 0; 6324 struct rq *rq; 6325 struct task_struct *p, *n; 6326 6327 if (!scx_kf_allowed(SCX_KF_CPU_RELEASE)) 6328 return 0; 6329 6330 rq = cpu_rq(smp_processor_id()); 6331 lockdep_assert_rq_held(rq); 6332 6333 /* 6334 * The BPF scheduler may choose to dispatch tasks back to 6335 * @rq->scx.local_dsq. Move all candidate tasks off to a private list 6336 * first to avoid processing the same tasks repeatedly. 6337 */ 6338 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, 6339 scx.dsq_list.node) { 6340 /* 6341 * If @p is being migrated, @p's current CPU may not agree with 6342 * its allowed CPUs and the migration_cpu_stop is about to 6343 * deactivate and re-activate @p anyway. Skip re-enqueueing. 6344 * 6345 * While racing sched property changes may also dequeue and 6346 * re-enqueue a migrating task while its current CPU and allowed 6347 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to 6348 * the current local DSQ for running tasks and thus are not 6349 * visible to the BPF scheduler. 6350 */ 6351 if (p->migration_pending) 6352 continue; 6353 6354 dispatch_dequeue(rq, p); 6355 list_add_tail(&p->scx.dsq_list.node, &tasks); 6356 } 6357 6358 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { 6359 list_del_init(&p->scx.dsq_list.node); 6360 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 6361 nr_enqueued++; 6362 } 6363 6364 return nr_enqueued; 6365 } 6366 6367 __bpf_kfunc_end_defs(); 6368 6369 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 6370 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 6371 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 6372 6373 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 6374 .owner = THIS_MODULE, 6375 .set = &scx_kfunc_ids_cpu_release, 6376 }; 6377 6378 __bpf_kfunc_start_defs(); 6379 6380 /** 6381 * scx_bpf_create_dsq - Create a custom DSQ 6382 * @dsq_id: DSQ to create 6383 * @node: NUMA node to allocate from 6384 * 6385 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable 6386 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. 6387 */ 6388 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 6389 { 6390 if (unlikely(node >= (int)nr_node_ids || 6391 (node < 0 && node != NUMA_NO_NODE))) 6392 return -EINVAL; 6393 return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node)); 6394 } 6395 6396 __bpf_kfunc_end_defs(); 6397 6398 BTF_KFUNCS_START(scx_kfunc_ids_unlocked) 6399 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 6400 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6401 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6402 BTF_KFUNCS_END(scx_kfunc_ids_unlocked) 6403 6404 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { 6405 .owner = THIS_MODULE, 6406 .set = &scx_kfunc_ids_unlocked, 6407 }; 6408 6409 __bpf_kfunc_start_defs(); 6410 6411 /** 6412 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 6413 * @cpu: cpu to kick 6414 * @flags: %SCX_KICK_* flags 6415 * 6416 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 6417 * trigger rescheduling on a busy CPU. This can be called from any online 6418 * scx_ops operation and the actual kicking is performed asynchronously through 6419 * an irq work. 6420 */ 6421 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 6422 { 6423 struct rq *this_rq; 6424 unsigned long irq_flags; 6425 6426 if (!ops_cpu_valid(cpu, NULL)) 6427 return; 6428 6429 local_irq_save(irq_flags); 6430 6431 this_rq = this_rq(); 6432 6433 /* 6434 * While bypassing for PM ops, IRQ handling may not be online which can 6435 * lead to irq_work_queue() malfunction such as infinite busy wait for 6436 * IRQ status update. Suppress kicking. 6437 */ 6438 if (scx_rq_bypassing(this_rq)) 6439 goto out; 6440 6441 /* 6442 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 6443 * rq locks. We can probably be smarter and avoid bouncing if called 6444 * from ops which don't hold a rq lock. 6445 */ 6446 if (flags & SCX_KICK_IDLE) { 6447 struct rq *target_rq = cpu_rq(cpu); 6448 6449 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 6450 scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 6451 6452 if (raw_spin_rq_trylock(target_rq)) { 6453 if (can_skip_idle_kick(target_rq)) { 6454 raw_spin_rq_unlock(target_rq); 6455 goto out; 6456 } 6457 raw_spin_rq_unlock(target_rq); 6458 } 6459 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 6460 } else { 6461 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 6462 6463 if (flags & SCX_KICK_PREEMPT) 6464 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 6465 if (flags & SCX_KICK_WAIT) 6466 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 6467 } 6468 6469 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 6470 out: 6471 local_irq_restore(irq_flags); 6472 } 6473 6474 /** 6475 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 6476 * @dsq_id: id of the DSQ 6477 * 6478 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 6479 * -%ENOENT is returned. 6480 */ 6481 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 6482 { 6483 struct scx_dispatch_q *dsq; 6484 s32 ret; 6485 6486 preempt_disable(); 6487 6488 if (dsq_id == SCX_DSQ_LOCAL) { 6489 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 6490 goto out; 6491 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 6492 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 6493 6494 if (ops_cpu_valid(cpu, NULL)) { 6495 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 6496 goto out; 6497 } 6498 } else { 6499 dsq = find_non_local_dsq(dsq_id); 6500 if (dsq) { 6501 ret = READ_ONCE(dsq->nr); 6502 goto out; 6503 } 6504 } 6505 ret = -ENOENT; 6506 out: 6507 preempt_enable(); 6508 return ret; 6509 } 6510 6511 /** 6512 * scx_bpf_destroy_dsq - Destroy a custom DSQ 6513 * @dsq_id: DSQ to destroy 6514 * 6515 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 6516 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 6517 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 6518 * which doesn't exist. Can be called from any online scx_ops operations. 6519 */ 6520 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 6521 { 6522 destroy_dsq(dsq_id); 6523 } 6524 6525 /** 6526 * bpf_iter_scx_dsq_new - Create a DSQ iterator 6527 * @it: iterator to initialize 6528 * @dsq_id: DSQ to iterate 6529 * @flags: %SCX_DSQ_ITER_* 6530 * 6531 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk 6532 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes 6533 * tasks which are already queued when this function is invoked. 6534 */ 6535 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, 6536 u64 flags) 6537 { 6538 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6539 6540 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > 6541 sizeof(struct bpf_iter_scx_dsq)); 6542 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != 6543 __alignof__(struct bpf_iter_scx_dsq)); 6544 6545 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) 6546 return -EINVAL; 6547 6548 kit->dsq = find_non_local_dsq(dsq_id); 6549 if (!kit->dsq) 6550 return -ENOENT; 6551 6552 INIT_LIST_HEAD(&kit->cursor.node); 6553 kit->cursor.flags |= SCX_DSQ_LNODE_ITER_CURSOR | flags; 6554 kit->cursor.priv = READ_ONCE(kit->dsq->seq); 6555 6556 return 0; 6557 } 6558 6559 /** 6560 * bpf_iter_scx_dsq_next - Progress a DSQ iterator 6561 * @it: iterator to progress 6562 * 6563 * Return the next task. See bpf_iter_scx_dsq_new(). 6564 */ 6565 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) 6566 { 6567 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6568 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; 6569 struct task_struct *p; 6570 unsigned long flags; 6571 6572 if (!kit->dsq) 6573 return NULL; 6574 6575 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6576 6577 if (list_empty(&kit->cursor.node)) 6578 p = NULL; 6579 else 6580 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); 6581 6582 /* 6583 * Only tasks which were queued before the iteration started are 6584 * visible. This bounds BPF iterations and guarantees that vtime never 6585 * jumps in the other direction while iterating. 6586 */ 6587 do { 6588 p = nldsq_next_task(kit->dsq, p, rev); 6589 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); 6590 6591 if (p) { 6592 if (rev) 6593 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); 6594 else 6595 list_move(&kit->cursor.node, &p->scx.dsq_list.node); 6596 } else { 6597 list_del_init(&kit->cursor.node); 6598 } 6599 6600 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6601 6602 return p; 6603 } 6604 6605 /** 6606 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator 6607 * @it: iterator to destroy 6608 * 6609 * Undo scx_iter_scx_dsq_new(). 6610 */ 6611 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) 6612 { 6613 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6614 6615 if (!kit->dsq) 6616 return; 6617 6618 if (!list_empty(&kit->cursor.node)) { 6619 unsigned long flags; 6620 6621 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6622 list_del_init(&kit->cursor.node); 6623 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6624 } 6625 kit->dsq = NULL; 6626 } 6627 6628 __bpf_kfunc_end_defs(); 6629 6630 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size, 6631 char *fmt, unsigned long long *data, u32 data__sz) 6632 { 6633 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 6634 s32 ret; 6635 6636 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 6637 (data__sz && !data)) { 6638 scx_ops_error("invalid data=%p and data__sz=%u", 6639 (void *)data, data__sz); 6640 return -EINVAL; 6641 } 6642 6643 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 6644 if (ret < 0) { 6645 scx_ops_error("failed to read data fields (%d)", ret); 6646 return ret; 6647 } 6648 6649 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 6650 &bprintf_data); 6651 if (ret < 0) { 6652 scx_ops_error("format preparation failed (%d)", ret); 6653 return ret; 6654 } 6655 6656 ret = bstr_printf(line_buf, line_size, fmt, 6657 bprintf_data.bin_args); 6658 bpf_bprintf_cleanup(&bprintf_data); 6659 if (ret < 0) { 6660 scx_ops_error("(\"%s\", %p, %u) failed to format", 6661 fmt, data, data__sz); 6662 return ret; 6663 } 6664 6665 return ret; 6666 } 6667 6668 static s32 bstr_format(struct scx_bstr_buf *buf, 6669 char *fmt, unsigned long long *data, u32 data__sz) 6670 { 6671 return __bstr_format(buf->data, buf->line, sizeof(buf->line), 6672 fmt, data, data__sz); 6673 } 6674 6675 __bpf_kfunc_start_defs(); 6676 6677 /** 6678 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 6679 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 6680 * @fmt: error message format string 6681 * @data: format string parameters packaged using ___bpf_fill() macro 6682 * @data__sz: @data len, must end in '__sz' for the verifier 6683 * 6684 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 6685 * disabling. 6686 */ 6687 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 6688 unsigned long long *data, u32 data__sz) 6689 { 6690 unsigned long flags; 6691 6692 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6693 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6694 scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s", 6695 scx_exit_bstr_buf.line); 6696 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6697 } 6698 6699 /** 6700 * scx_bpf_error_bstr - Indicate fatal error 6701 * @fmt: error message format string 6702 * @data: format string parameters packaged using ___bpf_fill() macro 6703 * @data__sz: @data len, must end in '__sz' for the verifier 6704 * 6705 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 6706 * disabling. 6707 */ 6708 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 6709 u32 data__sz) 6710 { 6711 unsigned long flags; 6712 6713 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6714 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6715 scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s", 6716 scx_exit_bstr_buf.line); 6717 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6718 } 6719 6720 /** 6721 * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler 6722 * @fmt: format string 6723 * @data: format string parameters packaged using ___bpf_fill() macro 6724 * @data__sz: @data len, must end in '__sz' for the verifier 6725 * 6726 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 6727 * dump_task() to generate extra debug dump specific to the BPF scheduler. 6728 * 6729 * The extra dump may be multiple lines. A single line may be split over 6730 * multiple calls. The last line is automatically terminated. 6731 */ 6732 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 6733 u32 data__sz) 6734 { 6735 struct scx_dump_data *dd = &scx_dump_data; 6736 struct scx_bstr_buf *buf = &dd->buf; 6737 s32 ret; 6738 6739 if (raw_smp_processor_id() != dd->cpu) { 6740 scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends"); 6741 return; 6742 } 6743 6744 /* append the formatted string to the line buf */ 6745 ret = __bstr_format(buf->data, buf->line + dd->cursor, 6746 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 6747 if (ret < 0) { 6748 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 6749 dd->prefix, fmt, data, data__sz, ret); 6750 return; 6751 } 6752 6753 dd->cursor += ret; 6754 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 6755 6756 if (!dd->cursor) 6757 return; 6758 6759 /* 6760 * If the line buf overflowed or ends in a newline, flush it into the 6761 * dump. This is to allow the caller to generate a single line over 6762 * multiple calls. As ops_dump_flush() can also handle multiple lines in 6763 * the line buf, the only case which can lead to an unexpected 6764 * truncation is when the caller keeps generating newlines in the middle 6765 * instead of the end consecutively. Don't do that. 6766 */ 6767 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 6768 ops_dump_flush(); 6769 } 6770 6771 /** 6772 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU 6773 * @cpu: CPU of interest 6774 * 6775 * Return the maximum relative capacity of @cpu in relation to the most 6776 * performant CPU in the system. The return value is in the range [1, 6777 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). 6778 */ 6779 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) 6780 { 6781 if (ops_cpu_valid(cpu, NULL)) 6782 return arch_scale_cpu_capacity(cpu); 6783 else 6784 return SCX_CPUPERF_ONE; 6785 } 6786 6787 /** 6788 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU 6789 * @cpu: CPU of interest 6790 * 6791 * Return the current relative performance of @cpu in relation to its maximum. 6792 * The return value is in the range [1, %SCX_CPUPERF_ONE]. 6793 * 6794 * The current performance level of a CPU in relation to the maximum performance 6795 * available in the system can be calculated as follows: 6796 * 6797 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE 6798 * 6799 * The result is in the range [1, %SCX_CPUPERF_ONE]. 6800 */ 6801 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) 6802 { 6803 if (ops_cpu_valid(cpu, NULL)) 6804 return arch_scale_freq_capacity(cpu); 6805 else 6806 return SCX_CPUPERF_ONE; 6807 } 6808 6809 /** 6810 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU 6811 * @cpu: CPU of interest 6812 * @perf: target performance level [0, %SCX_CPUPERF_ONE] 6813 * @flags: %SCX_CPUPERF_* flags 6814 * 6815 * Set the target performance level of @cpu to @perf. @perf is in linear 6816 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the 6817 * schedutil cpufreq governor chooses the target frequency. 6818 * 6819 * The actual performance level chosen, CPU grouping, and the overhead and 6820 * latency of the operations are dependent on the hardware and cpufreq driver in 6821 * use. Consult hardware and cpufreq documentation for more information. The 6822 * current performance level can be monitored using scx_bpf_cpuperf_cur(). 6823 */ 6824 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) 6825 { 6826 if (unlikely(perf > SCX_CPUPERF_ONE)) { 6827 scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu); 6828 return; 6829 } 6830 6831 if (ops_cpu_valid(cpu, NULL)) { 6832 struct rq *rq = cpu_rq(cpu); 6833 6834 rq->scx.cpuperf_target = perf; 6835 6836 rcu_read_lock_sched_notrace(); 6837 cpufreq_update_util(cpu_rq(cpu), 0); 6838 rcu_read_unlock_sched_notrace(); 6839 } 6840 } 6841 6842 /** 6843 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 6844 * 6845 * All valid CPU IDs in the system are smaller than the returned value. 6846 */ 6847 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 6848 { 6849 return nr_cpu_ids; 6850 } 6851 6852 /** 6853 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 6854 */ 6855 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 6856 { 6857 return cpu_possible_mask; 6858 } 6859 6860 /** 6861 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 6862 */ 6863 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 6864 { 6865 return cpu_online_mask; 6866 } 6867 6868 /** 6869 * scx_bpf_put_cpumask - Release a possible/online cpumask 6870 * @cpumask: cpumask to release 6871 */ 6872 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 6873 { 6874 /* 6875 * Empty function body because we aren't actually acquiring or releasing 6876 * a reference to a global cpumask, which is read-only in the caller and 6877 * is never released. The acquire / release semantics here are just used 6878 * to make the cpumask is a trusted pointer in the caller. 6879 */ 6880 } 6881 6882 /** 6883 * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking 6884 * per-CPU cpumask. 6885 * 6886 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 6887 */ 6888 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void) 6889 { 6890 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 6891 scx_ops_error("built-in idle tracking is disabled"); 6892 return cpu_none_mask; 6893 } 6894 6895 #ifdef CONFIG_SMP 6896 return idle_masks.cpu; 6897 #else 6898 return cpu_none_mask; 6899 #endif 6900 } 6901 6902 /** 6903 * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking, 6904 * per-physical-core cpumask. Can be used to determine if an entire physical 6905 * core is free. 6906 * 6907 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 6908 */ 6909 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void) 6910 { 6911 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 6912 scx_ops_error("built-in idle tracking is disabled"); 6913 return cpu_none_mask; 6914 } 6915 6916 #ifdef CONFIG_SMP 6917 if (sched_smt_active()) 6918 return idle_masks.smt; 6919 else 6920 return idle_masks.cpu; 6921 #else 6922 return cpu_none_mask; 6923 #endif 6924 } 6925 6926 /** 6927 * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to 6928 * either the percpu, or SMT idle-tracking cpumask. 6929 */ 6930 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask) 6931 { 6932 /* 6933 * Empty function body because we aren't actually acquiring or releasing 6934 * a reference to a global idle cpumask, which is read-only in the 6935 * caller and is never released. The acquire / release semantics here 6936 * are just used to make the cpumask a trusted pointer in the caller. 6937 */ 6938 } 6939 6940 /** 6941 * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state 6942 * @cpu: cpu to test and clear idle for 6943 * 6944 * Returns %true if @cpu was idle and its idle state was successfully cleared. 6945 * %false otherwise. 6946 * 6947 * Unavailable if ops.update_idle() is implemented and 6948 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 6949 */ 6950 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) 6951 { 6952 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 6953 scx_ops_error("built-in idle tracking is disabled"); 6954 return false; 6955 } 6956 6957 if (ops_cpu_valid(cpu, NULL)) 6958 return test_and_clear_cpu_idle(cpu); 6959 else 6960 return false; 6961 } 6962 6963 /** 6964 * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu 6965 * @cpus_allowed: Allowed cpumask 6966 * @flags: %SCX_PICK_IDLE_CPU_* flags 6967 * 6968 * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu 6969 * number on success. -%EBUSY if no matching cpu was found. 6970 * 6971 * Idle CPU tracking may race against CPU scheduling state transitions. For 6972 * example, this function may return -%EBUSY as CPUs are transitioning into the 6973 * idle state. If the caller then assumes that there will be dispatch events on 6974 * the CPUs as they were all busy, the scheduler may end up stalling with CPUs 6975 * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and 6976 * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch 6977 * event in the near future. 6978 * 6979 * Unavailable if ops.update_idle() is implemented and 6980 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 6981 */ 6982 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed, 6983 u64 flags) 6984 { 6985 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 6986 scx_ops_error("built-in idle tracking is disabled"); 6987 return -EBUSY; 6988 } 6989 6990 return scx_pick_idle_cpu(cpus_allowed, flags); 6991 } 6992 6993 /** 6994 * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU 6995 * @cpus_allowed: Allowed cpumask 6996 * @flags: %SCX_PICK_IDLE_CPU_* flags 6997 * 6998 * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any 6999 * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu 7000 * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is 7001 * empty. 7002 * 7003 * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not 7004 * set, this function can't tell which CPUs are idle and will always pick any 7005 * CPU. 7006 */ 7007 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed, 7008 u64 flags) 7009 { 7010 s32 cpu; 7011 7012 if (static_branch_likely(&scx_builtin_idle_enabled)) { 7013 cpu = scx_pick_idle_cpu(cpus_allowed, flags); 7014 if (cpu >= 0) 7015 return cpu; 7016 } 7017 7018 cpu = cpumask_any_distribute(cpus_allowed); 7019 if (cpu < nr_cpu_ids) 7020 return cpu; 7021 else 7022 return -EBUSY; 7023 } 7024 7025 /** 7026 * scx_bpf_task_running - Is task currently running? 7027 * @p: task of interest 7028 */ 7029 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 7030 { 7031 return task_rq(p)->curr == p; 7032 } 7033 7034 /** 7035 * scx_bpf_task_cpu - CPU a task is currently associated with 7036 * @p: task of interest 7037 */ 7038 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 7039 { 7040 return task_cpu(p); 7041 } 7042 7043 /** 7044 * scx_bpf_cpu_rq - Fetch the rq of a CPU 7045 * @cpu: CPU of the rq 7046 */ 7047 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) 7048 { 7049 if (!ops_cpu_valid(cpu, NULL)) 7050 return NULL; 7051 7052 return cpu_rq(cpu); 7053 } 7054 7055 /** 7056 * scx_bpf_task_cgroup - Return the sched cgroup of a task 7057 * @p: task of interest 7058 * 7059 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with 7060 * from the scheduler's POV. SCX operations should use this function to 7061 * determine @p's current cgroup as, unlike following @p->cgroups, 7062 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all 7063 * rq-locked operations. Can be called on the parameter tasks of rq-locked 7064 * operations. The restriction guarantees that @p's rq is locked by the caller. 7065 */ 7066 #ifdef CONFIG_CGROUP_SCHED 7067 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) 7068 { 7069 struct task_group *tg = p->sched_task_group; 7070 struct cgroup *cgrp = &cgrp_dfl_root.cgrp; 7071 7072 if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p)) 7073 goto out; 7074 7075 /* 7076 * A task_group may either be a cgroup or an autogroup. In the latter 7077 * case, @tg->css.cgroup is %NULL. A task_group can't become the other 7078 * kind once created. 7079 */ 7080 if (tg && tg->css.cgroup) 7081 cgrp = tg->css.cgroup; 7082 else 7083 cgrp = &cgrp_dfl_root.cgrp; 7084 out: 7085 cgroup_get(cgrp); 7086 return cgrp; 7087 } 7088 #endif 7089 7090 __bpf_kfunc_end_defs(); 7091 7092 BTF_KFUNCS_START(scx_kfunc_ids_any) 7093 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 7094 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 7095 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 7096 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) 7097 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) 7098 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) 7099 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 7100 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 7101 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 7102 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) 7103 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) 7104 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) 7105 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 7106 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 7107 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 7108 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 7109 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE) 7110 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE) 7111 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE) 7112 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle) 7113 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU) 7114 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU) 7115 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 7116 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 7117 BTF_ID_FLAGS(func, scx_bpf_cpu_rq) 7118 #ifdef CONFIG_CGROUP_SCHED 7119 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) 7120 #endif 7121 BTF_KFUNCS_END(scx_kfunc_ids_any) 7122 7123 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 7124 .owner = THIS_MODULE, 7125 .set = &scx_kfunc_ids_any, 7126 }; 7127 7128 static int __init scx_init(void) 7129 { 7130 int ret; 7131 7132 /* 7133 * kfunc registration can't be done from init_sched_ext_class() as 7134 * register_btf_kfunc_id_set() needs most of the system to be up. 7135 * 7136 * Some kfuncs are context-sensitive and can only be called from 7137 * specific SCX ops. They are grouped into BTF sets accordingly. 7138 * Unfortunately, BPF currently doesn't have a way of enforcing such 7139 * restrictions. Eventually, the verifier should be able to enforce 7140 * them. For now, register them the same and make each kfunc explicitly 7141 * check using scx_kf_allowed(). 7142 */ 7143 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7144 &scx_kfunc_set_select_cpu)) || 7145 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7146 &scx_kfunc_set_enqueue_dispatch)) || 7147 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7148 &scx_kfunc_set_dispatch)) || 7149 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7150 &scx_kfunc_set_cpu_release)) || 7151 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7152 &scx_kfunc_set_unlocked)) || 7153 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7154 &scx_kfunc_set_unlocked)) || 7155 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7156 &scx_kfunc_set_any)) || 7157 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 7158 &scx_kfunc_set_any)) || 7159 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7160 &scx_kfunc_set_any))) { 7161 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 7162 return ret; 7163 } 7164 7165 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 7166 if (ret) { 7167 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 7168 return ret; 7169 } 7170 7171 ret = register_pm_notifier(&scx_pm_notifier); 7172 if (ret) { 7173 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); 7174 return ret; 7175 } 7176 7177 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 7178 if (!scx_kset) { 7179 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 7180 return -ENOMEM; 7181 } 7182 7183 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 7184 if (ret < 0) { 7185 pr_err("sched_ext: Failed to add global attributes\n"); 7186 return ret; 7187 } 7188 7189 return 0; 7190 } 7191 __initcall(scx_init); 7192