1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst 4 * 5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 7 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 8 */ 9 #include <linux/btf_ids.h> 10 #include "ext_idle.h" 11 12 /* 13 * NOTE: sched_ext is in the process of growing multiple scheduler support and 14 * scx_root usage is in a transitional state. Naked dereferences are safe if the 15 * caller is one of the tasks attached to SCX and explicit RCU dereference is 16 * necessary otherwise. Naked scx_root dereferences trigger sparse warnings but 17 * are used as temporary markers to indicate that the dereferences need to be 18 * updated to point to the associated scheduler instances rather than scx_root. 19 */ 20 static struct scx_sched __rcu *scx_root; 21 22 /* 23 * During exit, a task may schedule after losing its PIDs. When disabling the 24 * BPF scheduler, we need to be able to iterate tasks in every state to 25 * guarantee system safety. Maintain a dedicated task list which contains every 26 * task between its fork and eventual free. 27 */ 28 static DEFINE_SPINLOCK(scx_tasks_lock); 29 static LIST_HEAD(scx_tasks); 30 31 /* ops enable/disable */ 32 static DEFINE_MUTEX(scx_enable_mutex); 33 DEFINE_STATIC_KEY_FALSE(__scx_enabled); 34 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 35 static atomic_t scx_enable_state_var = ATOMIC_INIT(SCX_DISABLED); 36 static unsigned long scx_in_softlockup; 37 static atomic_t scx_breather_depth = ATOMIC_INIT(0); 38 static int scx_bypass_depth; 39 static bool scx_init_task_enabled; 40 static bool scx_switching_all; 41 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 42 43 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 44 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); 45 46 /* 47 * A monotically increasing sequence number that is incremented every time a 48 * scheduler is enabled. This can be used by to check if any custom sched_ext 49 * scheduler has ever been used in the system. 50 */ 51 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0); 52 53 /* 54 * The maximum amount of time in jiffies that a task may be runnable without 55 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 56 * scx_error(). 57 */ 58 static unsigned long scx_watchdog_timeout; 59 60 /* 61 * The last time the delayed work was run. This delayed work relies on 62 * ksoftirqd being able to run to service timer interrupts, so it's possible 63 * that this work itself could get wedged. To account for this, we check that 64 * it's not stalled in the timer tick, and trigger an error if it is. 65 */ 66 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 67 68 static struct delayed_work scx_watchdog_work; 69 70 /* 71 * For %SCX_KICK_WAIT: Each CPU has a pointer to an array of kick_sync sequence 72 * numbers. The arrays are allocated with kvzalloc() as size can exceed percpu 73 * allocator limits on large machines. O(nr_cpu_ids^2) allocation, allocated 74 * lazily when enabling and freed when disabling to avoid waste when sched_ext 75 * isn't active. 76 */ 77 struct scx_kick_syncs { 78 struct rcu_head rcu; 79 unsigned long syncs[]; 80 }; 81 82 static DEFINE_PER_CPU(struct scx_kick_syncs __rcu *, scx_kick_syncs); 83 84 /* 85 * Direct dispatch marker. 86 * 87 * Non-NULL values are used for direct dispatch from enqueue path. A valid 88 * pointer points to the task currently being enqueued. An ERR_PTR value is used 89 * to indicate that direct dispatch has already happened. 90 */ 91 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 92 93 static const struct rhashtable_params dsq_hash_params = { 94 .key_len = sizeof_field(struct scx_dispatch_q, id), 95 .key_offset = offsetof(struct scx_dispatch_q, id), 96 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 97 }; 98 99 static LLIST_HEAD(dsqs_to_free); 100 101 /* dispatch buf */ 102 struct scx_dsp_buf_ent { 103 struct task_struct *task; 104 unsigned long qseq; 105 u64 dsq_id; 106 u64 enq_flags; 107 }; 108 109 static u32 scx_dsp_max_batch; 110 111 struct scx_dsp_ctx { 112 struct rq *rq; 113 u32 cursor; 114 u32 nr_tasks; 115 struct scx_dsp_buf_ent buf[]; 116 }; 117 118 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 119 120 /* string formatting from BPF */ 121 struct scx_bstr_buf { 122 u64 data[MAX_BPRINTF_VARARGS]; 123 char line[SCX_EXIT_MSG_LEN]; 124 }; 125 126 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 127 static struct scx_bstr_buf scx_exit_bstr_buf; 128 129 /* ops debug dump */ 130 struct scx_dump_data { 131 s32 cpu; 132 bool first; 133 s32 cursor; 134 struct seq_buf *s; 135 const char *prefix; 136 struct scx_bstr_buf buf; 137 }; 138 139 static struct scx_dump_data scx_dump_data = { 140 .cpu = -1, 141 }; 142 143 /* /sys/kernel/sched_ext interface */ 144 static struct kset *scx_kset; 145 146 #define CREATE_TRACE_POINTS 147 #include <trace/events/sched_ext.h> 148 149 static void process_ddsp_deferred_locals(struct rq *rq); 150 static u32 reenq_local(struct rq *rq); 151 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags); 152 static void scx_vexit(struct scx_sched *sch, enum scx_exit_kind kind, 153 s64 exit_code, const char *fmt, va_list args); 154 155 static __printf(4, 5) void scx_exit(struct scx_sched *sch, 156 enum scx_exit_kind kind, s64 exit_code, 157 const char *fmt, ...) 158 { 159 va_list args; 160 161 va_start(args, fmt); 162 scx_vexit(sch, kind, exit_code, fmt, args); 163 va_end(args); 164 } 165 166 #define scx_error(sch, fmt, args...) scx_exit((sch), SCX_EXIT_ERROR, 0, fmt, ##args) 167 168 #define SCX_HAS_OP(sch, op) test_bit(SCX_OP_IDX(op), (sch)->has_op) 169 170 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 171 { 172 if (time_after(at, now)) 173 return jiffies_to_msecs(at - now); 174 else 175 return -(long)jiffies_to_msecs(now - at); 176 } 177 178 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 179 static u32 higher_bits(u32 flags) 180 { 181 return ~((1 << fls(flags)) - 1); 182 } 183 184 /* return the mask with only the highest bit set */ 185 static u32 highest_bit(u32 flags) 186 { 187 int bit = fls(flags); 188 return ((u64)1 << bit) >> 1; 189 } 190 191 static bool u32_before(u32 a, u32 b) 192 { 193 return (s32)(a - b) < 0; 194 } 195 196 static struct scx_dispatch_q *find_global_dsq(struct scx_sched *sch, 197 struct task_struct *p) 198 { 199 return sch->global_dsqs[cpu_to_node(task_cpu(p))]; 200 } 201 202 static struct scx_dispatch_q *find_user_dsq(struct scx_sched *sch, u64 dsq_id) 203 { 204 return rhashtable_lookup(&sch->dsq_hash, &dsq_id, dsq_hash_params); 205 } 206 207 /* 208 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 209 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 210 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 211 * whether it's running from an allowed context. 212 * 213 * @mask is constant, always inline to cull the mask calculations. 214 */ 215 static __always_inline void scx_kf_allow(u32 mask) 216 { 217 /* nesting is allowed only in increasing scx_kf_mask order */ 218 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 219 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 220 current->scx.kf_mask, mask); 221 current->scx.kf_mask |= mask; 222 barrier(); 223 } 224 225 static void scx_kf_disallow(u32 mask) 226 { 227 barrier(); 228 current->scx.kf_mask &= ~mask; 229 } 230 231 /* 232 * Track the rq currently locked. 233 * 234 * This allows kfuncs to safely operate on rq from any scx ops callback, 235 * knowing which rq is already locked. 236 */ 237 DEFINE_PER_CPU(struct rq *, scx_locked_rq_state); 238 239 static inline void update_locked_rq(struct rq *rq) 240 { 241 /* 242 * Check whether @rq is actually locked. This can help expose bugs 243 * or incorrect assumptions about the context in which a kfunc or 244 * callback is executed. 245 */ 246 if (rq) 247 lockdep_assert_rq_held(rq); 248 __this_cpu_write(scx_locked_rq_state, rq); 249 } 250 251 #define SCX_CALL_OP(sch, mask, op, rq, args...) \ 252 do { \ 253 if (rq) \ 254 update_locked_rq(rq); \ 255 if (mask) { \ 256 scx_kf_allow(mask); \ 257 (sch)->ops.op(args); \ 258 scx_kf_disallow(mask); \ 259 } else { \ 260 (sch)->ops.op(args); \ 261 } \ 262 if (rq) \ 263 update_locked_rq(NULL); \ 264 } while (0) 265 266 #define SCX_CALL_OP_RET(sch, mask, op, rq, args...) \ 267 ({ \ 268 __typeof__((sch)->ops.op(args)) __ret; \ 269 \ 270 if (rq) \ 271 update_locked_rq(rq); \ 272 if (mask) { \ 273 scx_kf_allow(mask); \ 274 __ret = (sch)->ops.op(args); \ 275 scx_kf_disallow(mask); \ 276 } else { \ 277 __ret = (sch)->ops.op(args); \ 278 } \ 279 if (rq) \ 280 update_locked_rq(NULL); \ 281 __ret; \ 282 }) 283 284 /* 285 * Some kfuncs are allowed only on the tasks that are subjects of the 286 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 287 * restrictions, the following SCX_CALL_OP_*() variants should be used when 288 * invoking scx_ops operations that take task arguments. These can only be used 289 * for non-nesting operations due to the way the tasks are tracked. 290 * 291 * kfuncs which can only operate on such tasks can in turn use 292 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 293 * the specific task. 294 */ 295 #define SCX_CALL_OP_TASK(sch, mask, op, rq, task, args...) \ 296 do { \ 297 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 298 current->scx.kf_tasks[0] = task; \ 299 SCX_CALL_OP((sch), mask, op, rq, task, ##args); \ 300 current->scx.kf_tasks[0] = NULL; \ 301 } while (0) 302 303 #define SCX_CALL_OP_TASK_RET(sch, mask, op, rq, task, args...) \ 304 ({ \ 305 __typeof__((sch)->ops.op(task, ##args)) __ret; \ 306 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 307 current->scx.kf_tasks[0] = task; \ 308 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task, ##args); \ 309 current->scx.kf_tasks[0] = NULL; \ 310 __ret; \ 311 }) 312 313 #define SCX_CALL_OP_2TASKS_RET(sch, mask, op, rq, task0, task1, args...) \ 314 ({ \ 315 __typeof__((sch)->ops.op(task0, task1, ##args)) __ret; \ 316 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 317 current->scx.kf_tasks[0] = task0; \ 318 current->scx.kf_tasks[1] = task1; \ 319 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task0, task1, ##args); \ 320 current->scx.kf_tasks[0] = NULL; \ 321 current->scx.kf_tasks[1] = NULL; \ 322 __ret; \ 323 }) 324 325 /* @mask is constant, always inline to cull unnecessary branches */ 326 static __always_inline bool scx_kf_allowed(struct scx_sched *sch, u32 mask) 327 { 328 if (unlikely(!(current->scx.kf_mask & mask))) { 329 scx_error(sch, "kfunc with mask 0x%x called from an operation only allowing 0x%x", 330 mask, current->scx.kf_mask); 331 return false; 332 } 333 334 /* 335 * Enforce nesting boundaries. e.g. A kfunc which can be called from 336 * DISPATCH must not be called if we're running DEQUEUE which is nested 337 * inside ops.dispatch(). We don't need to check boundaries for any 338 * blocking kfuncs as the verifier ensures they're only called from 339 * sleepable progs. 340 */ 341 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 342 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 343 scx_error(sch, "cpu_release kfunc called from a nested operation"); 344 return false; 345 } 346 347 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 348 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 349 scx_error(sch, "dispatch kfunc called from a nested operation"); 350 return false; 351 } 352 353 return true; 354 } 355 356 /* see SCX_CALL_OP_TASK() */ 357 static __always_inline bool scx_kf_allowed_on_arg_tasks(struct scx_sched *sch, 358 u32 mask, 359 struct task_struct *p) 360 { 361 if (!scx_kf_allowed(sch, mask)) 362 return false; 363 364 if (unlikely((p != current->scx.kf_tasks[0] && 365 p != current->scx.kf_tasks[1]))) { 366 scx_error(sch, "called on a task not being operated on"); 367 return false; 368 } 369 370 return true; 371 } 372 373 /** 374 * nldsq_next_task - Iterate to the next task in a non-local DSQ 375 * @dsq: user dsq being iterated 376 * @cur: current position, %NULL to start iteration 377 * @rev: walk backwards 378 * 379 * Returns %NULL when iteration is finished. 380 */ 381 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, 382 struct task_struct *cur, bool rev) 383 { 384 struct list_head *list_node; 385 struct scx_dsq_list_node *dsq_lnode; 386 387 lockdep_assert_held(&dsq->lock); 388 389 if (cur) 390 list_node = &cur->scx.dsq_list.node; 391 else 392 list_node = &dsq->list; 393 394 /* find the next task, need to skip BPF iteration cursors */ 395 do { 396 if (rev) 397 list_node = list_node->prev; 398 else 399 list_node = list_node->next; 400 401 if (list_node == &dsq->list) 402 return NULL; 403 404 dsq_lnode = container_of(list_node, struct scx_dsq_list_node, 405 node); 406 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); 407 408 return container_of(dsq_lnode, struct task_struct, scx.dsq_list); 409 } 410 411 #define nldsq_for_each_task(p, dsq) \ 412 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ 413 (p) = nldsq_next_task((dsq), (p), false)) 414 415 416 /* 417 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] 418 * dispatch order. BPF-visible iterator is opaque and larger to allow future 419 * changes without breaking backward compatibility. Can be used with 420 * bpf_for_each(). See bpf_iter_scx_dsq_*(). 421 */ 422 enum scx_dsq_iter_flags { 423 /* iterate in the reverse dispatch order */ 424 SCX_DSQ_ITER_REV = 1U << 16, 425 426 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, 427 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, 428 429 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, 430 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | 431 __SCX_DSQ_ITER_HAS_SLICE | 432 __SCX_DSQ_ITER_HAS_VTIME, 433 }; 434 435 struct bpf_iter_scx_dsq_kern { 436 struct scx_dsq_list_node cursor; 437 struct scx_dispatch_q *dsq; 438 u64 slice; 439 u64 vtime; 440 } __attribute__((aligned(8))); 441 442 struct bpf_iter_scx_dsq { 443 u64 __opaque[6]; 444 } __attribute__((aligned(8))); 445 446 447 /* 448 * SCX task iterator. 449 */ 450 struct scx_task_iter { 451 struct sched_ext_entity cursor; 452 struct task_struct *locked_task; 453 struct rq *rq; 454 struct rq_flags rf; 455 u32 cnt; 456 bool list_locked; 457 }; 458 459 /** 460 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration 461 * @iter: iterator to init 462 * 463 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter 464 * must eventually be stopped with scx_task_iter_stop(). 465 * 466 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock() 467 * between this and the first next() call or between any two next() calls. If 468 * the locks are released between two next() calls, the caller is responsible 469 * for ensuring that the task being iterated remains accessible either through 470 * RCU read lock or obtaining a reference count. 471 * 472 * All tasks which existed when the iteration started are guaranteed to be 473 * visited as long as they still exist. 474 */ 475 static void scx_task_iter_start(struct scx_task_iter *iter) 476 { 477 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & 478 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); 479 480 spin_lock_irq(&scx_tasks_lock); 481 482 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 483 list_add(&iter->cursor.tasks_node, &scx_tasks); 484 iter->locked_task = NULL; 485 iter->cnt = 0; 486 iter->list_locked = true; 487 } 488 489 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter) 490 { 491 if (iter->locked_task) { 492 task_rq_unlock(iter->rq, iter->locked_task, &iter->rf); 493 iter->locked_task = NULL; 494 } 495 } 496 497 /** 498 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator 499 * @iter: iterator to unlock 500 * 501 * If @iter is in the middle of a locked iteration, it may be locking the rq of 502 * the task currently being visited in addition to scx_tasks_lock. Unlock both. 503 * This function can be safely called anytime during an iteration. The next 504 * iterator operation will automatically restore the necessary locking. 505 */ 506 static void scx_task_iter_unlock(struct scx_task_iter *iter) 507 { 508 __scx_task_iter_rq_unlock(iter); 509 if (iter->list_locked) { 510 iter->list_locked = false; 511 spin_unlock_irq(&scx_tasks_lock); 512 } 513 } 514 515 static void __scx_task_iter_maybe_relock(struct scx_task_iter *iter) 516 { 517 if (!iter->list_locked) { 518 spin_lock_irq(&scx_tasks_lock); 519 iter->list_locked = true; 520 } 521 } 522 523 /** 524 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock 525 * @iter: iterator to exit 526 * 527 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held 528 * which is released on return. If the iterator holds a task's rq lock, that rq 529 * lock is also released. See scx_task_iter_start() for details. 530 */ 531 static void scx_task_iter_stop(struct scx_task_iter *iter) 532 { 533 __scx_task_iter_maybe_relock(iter); 534 list_del_init(&iter->cursor.tasks_node); 535 scx_task_iter_unlock(iter); 536 } 537 538 /** 539 * scx_task_iter_next - Next task 540 * @iter: iterator to walk 541 * 542 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped 543 * and re-acquired every %SCX_TASK_ITER_BATCH iterations to avoid causing stalls 544 * by holding scx_tasks_lock for too long. 545 */ 546 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 547 { 548 struct list_head *cursor = &iter->cursor.tasks_node; 549 struct sched_ext_entity *pos; 550 551 __scx_task_iter_maybe_relock(iter); 552 553 if (!(++iter->cnt % SCX_TASK_ITER_BATCH)) { 554 scx_task_iter_unlock(iter); 555 cond_resched(); 556 __scx_task_iter_maybe_relock(iter); 557 } 558 559 list_for_each_entry(pos, cursor, tasks_node) { 560 if (&pos->tasks_node == &scx_tasks) 561 return NULL; 562 if (!(pos->flags & SCX_TASK_CURSOR)) { 563 list_move(cursor, &pos->tasks_node); 564 return container_of(pos, struct task_struct, scx); 565 } 566 } 567 568 /* can't happen, should always terminate at scx_tasks above */ 569 BUG(); 570 } 571 572 /** 573 * scx_task_iter_next_locked - Next non-idle task with its rq locked 574 * @iter: iterator to walk 575 * 576 * Visit the non-idle task with its rq lock held. Allows callers to specify 577 * whether they would like to filter out dead tasks. See scx_task_iter_start() 578 * for details. 579 */ 580 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) 581 { 582 struct task_struct *p; 583 584 __scx_task_iter_rq_unlock(iter); 585 586 while ((p = scx_task_iter_next(iter))) { 587 /* 588 * scx_task_iter is used to prepare and move tasks into SCX 589 * while loading the BPF scheduler and vice-versa while 590 * unloading. The init_tasks ("swappers") should be excluded 591 * from the iteration because: 592 * 593 * - It's unsafe to use __setschduler_prio() on an init_task to 594 * determine the sched_class to use as it won't preserve its 595 * idle_sched_class. 596 * 597 * - ops.init/exit_task() can easily be confused if called with 598 * init_tasks as they, e.g., share PID 0. 599 * 600 * As init_tasks are never scheduled through SCX, they can be 601 * skipped safely. Note that is_idle_task() which tests %PF_IDLE 602 * doesn't work here: 603 * 604 * - %PF_IDLE may not be set for an init_task whose CPU hasn't 605 * yet been onlined. 606 * 607 * - %PF_IDLE can be set on tasks that are not init_tasks. See 608 * play_idle_precise() used by CONFIG_IDLE_INJECT. 609 * 610 * Test for idle_sched_class as only init_tasks are on it. 611 */ 612 if (p->sched_class != &idle_sched_class) 613 break; 614 } 615 if (!p) 616 return NULL; 617 618 iter->rq = task_rq_lock(p, &iter->rf); 619 iter->locked_task = p; 620 621 return p; 622 } 623 624 /** 625 * scx_add_event - Increase an event counter for 'name' by 'cnt' 626 * @sch: scx_sched to account events for 627 * @name: an event name defined in struct scx_event_stats 628 * @cnt: the number of the event occurred 629 * 630 * This can be used when preemption is not disabled. 631 */ 632 #define scx_add_event(sch, name, cnt) do { \ 633 this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \ 634 trace_sched_ext_event(#name, (cnt)); \ 635 } while(0) 636 637 /** 638 * __scx_add_event - Increase an event counter for 'name' by 'cnt' 639 * @sch: scx_sched to account events for 640 * @name: an event name defined in struct scx_event_stats 641 * @cnt: the number of the event occurred 642 * 643 * This should be used only when preemption is disabled. 644 */ 645 #define __scx_add_event(sch, name, cnt) do { \ 646 __this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \ 647 trace_sched_ext_event(#name, cnt); \ 648 } while(0) 649 650 /** 651 * scx_agg_event - Aggregate an event counter 'kind' from 'src_e' to 'dst_e' 652 * @dst_e: destination event stats 653 * @src_e: source event stats 654 * @kind: a kind of event to be aggregated 655 */ 656 #define scx_agg_event(dst_e, src_e, kind) do { \ 657 (dst_e)->kind += READ_ONCE((src_e)->kind); \ 658 } while(0) 659 660 /** 661 * scx_dump_event - Dump an event 'kind' in 'events' to 's' 662 * @s: output seq_buf 663 * @events: event stats 664 * @kind: a kind of event to dump 665 */ 666 #define scx_dump_event(s, events, kind) do { \ 667 dump_line(&(s), "%40s: %16lld", #kind, (events)->kind); \ 668 } while (0) 669 670 671 static void scx_read_events(struct scx_sched *sch, 672 struct scx_event_stats *events); 673 674 static enum scx_enable_state scx_enable_state(void) 675 { 676 return atomic_read(&scx_enable_state_var); 677 } 678 679 static enum scx_enable_state scx_set_enable_state(enum scx_enable_state to) 680 { 681 return atomic_xchg(&scx_enable_state_var, to); 682 } 683 684 static bool scx_tryset_enable_state(enum scx_enable_state to, 685 enum scx_enable_state from) 686 { 687 int from_v = from; 688 689 return atomic_try_cmpxchg(&scx_enable_state_var, &from_v, to); 690 } 691 692 /** 693 * wait_ops_state - Busy-wait the specified ops state to end 694 * @p: target task 695 * @opss: state to wait the end of 696 * 697 * Busy-wait for @p to transition out of @opss. This can only be used when the 698 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 699 * has load_acquire semantics to ensure that the caller can see the updates made 700 * in the enqueueing and dispatching paths. 701 */ 702 static void wait_ops_state(struct task_struct *p, unsigned long opss) 703 { 704 do { 705 cpu_relax(); 706 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 707 } 708 709 static inline bool __cpu_valid(s32 cpu) 710 { 711 return likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu)); 712 } 713 714 /** 715 * ops_cpu_valid - Verify a cpu number, to be used on ops input args 716 * @sch: scx_sched to abort on error 717 * @cpu: cpu number which came from a BPF ops 718 * @where: extra information reported on error 719 * 720 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 721 * Verify that it is in range and one of the possible cpus. If invalid, trigger 722 * an ops error. 723 */ 724 static bool ops_cpu_valid(struct scx_sched *sch, s32 cpu, const char *where) 725 { 726 if (__cpu_valid(cpu)) { 727 return true; 728 } else { 729 scx_error(sch, "invalid CPU %d%s%s", cpu, where ? " " : "", where ?: ""); 730 return false; 731 } 732 } 733 734 /** 735 * ops_sanitize_err - Sanitize a -errno value 736 * @sch: scx_sched to error out on error 737 * @ops_name: operation to blame on failure 738 * @err: -errno value to sanitize 739 * 740 * Verify @err is a valid -errno. If not, trigger scx_error() and return 741 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 742 * cause misbehaviors. For an example, a large negative return from 743 * ops.init_task() triggers an oops when passed up the call chain because the 744 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 745 * handled as a pointer. 746 */ 747 static int ops_sanitize_err(struct scx_sched *sch, const char *ops_name, s32 err) 748 { 749 if (err < 0 && err >= -MAX_ERRNO) 750 return err; 751 752 scx_error(sch, "ops.%s() returned an invalid errno %d", ops_name, err); 753 return -EPROTO; 754 } 755 756 static void run_deferred(struct rq *rq) 757 { 758 process_ddsp_deferred_locals(rq); 759 760 if (local_read(&rq->scx.reenq_local_deferred)) { 761 local_set(&rq->scx.reenq_local_deferred, 0); 762 reenq_local(rq); 763 } 764 } 765 766 static void deferred_bal_cb_workfn(struct rq *rq) 767 { 768 run_deferred(rq); 769 } 770 771 static void deferred_irq_workfn(struct irq_work *irq_work) 772 { 773 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); 774 775 raw_spin_rq_lock(rq); 776 run_deferred(rq); 777 raw_spin_rq_unlock(rq); 778 } 779 780 /** 781 * schedule_deferred - Schedule execution of deferred actions on an rq 782 * @rq: target rq 783 * 784 * Schedule execution of deferred actions on @rq. Deferred actions are executed 785 * with @rq locked but unpinned, and thus can unlock @rq to e.g. migrate tasks 786 * to other rqs. 787 */ 788 static void schedule_deferred(struct rq *rq) 789 { 790 /* 791 * Queue an irq work. They are executed on IRQ re-enable which may take 792 * a bit longer than the scheduler hook in schedule_deferred_locked(). 793 */ 794 irq_work_queue(&rq->scx.deferred_irq_work); 795 } 796 797 /** 798 * schedule_deferred_locked - Schedule execution of deferred actions on an rq 799 * @rq: target rq 800 * 801 * Schedule execution of deferred actions on @rq. Equivalent to 802 * schedule_deferred() but requires @rq to be locked and can be more efficient. 803 */ 804 static void schedule_deferred_locked(struct rq *rq) 805 { 806 lockdep_assert_rq_held(rq); 807 808 /* 809 * If in the middle of waking up a task, task_woken_scx() will be called 810 * afterwards which will then run the deferred actions, no need to 811 * schedule anything. 812 */ 813 if (rq->scx.flags & SCX_RQ_IN_WAKEUP) 814 return; 815 816 /* Don't do anything if there already is a deferred operation. */ 817 if (rq->scx.flags & SCX_RQ_BAL_CB_PENDING) 818 return; 819 820 /* 821 * If in balance, the balance callbacks will be called before rq lock is 822 * released. Schedule one. 823 * 824 * 825 * We can't directly insert the callback into the 826 * rq's list: The call can drop its lock and make the pending balance 827 * callback visible to unrelated code paths that call rq_pin_lock(). 828 * 829 * Just let balance_one() know that it must do it itself. 830 */ 831 if (rq->scx.flags & SCX_RQ_IN_BALANCE) { 832 rq->scx.flags |= SCX_RQ_BAL_CB_PENDING; 833 return; 834 } 835 836 /* 837 * No scheduler hooks available. Use the generic irq_work path. The 838 * above WAKEUP and BALANCE paths should cover most of the cases and the 839 * time to IRQ re-enable shouldn't be long. 840 */ 841 schedule_deferred(rq); 842 } 843 844 /** 845 * touch_core_sched - Update timestamp used for core-sched task ordering 846 * @rq: rq to read clock from, must be locked 847 * @p: task to update the timestamp for 848 * 849 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to 850 * implement global or local-DSQ FIFO ordering for core-sched. Should be called 851 * when a task becomes runnable and its turn on the CPU ends (e.g. slice 852 * exhaustion). 853 */ 854 static void touch_core_sched(struct rq *rq, struct task_struct *p) 855 { 856 lockdep_assert_rq_held(rq); 857 858 #ifdef CONFIG_SCHED_CORE 859 /* 860 * It's okay to update the timestamp spuriously. Use 861 * sched_core_disabled() which is cheaper than enabled(). 862 * 863 * As this is used to determine ordering between tasks of sibling CPUs, 864 * it may be better to use per-core dispatch sequence instead. 865 */ 866 if (!sched_core_disabled()) 867 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); 868 #endif 869 } 870 871 /** 872 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch 873 * @rq: rq to read clock from, must be locked 874 * @p: task being dispatched 875 * 876 * If the BPF scheduler implements custom core-sched ordering via 877 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO 878 * ordering within each local DSQ. This function is called from dispatch paths 879 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. 880 */ 881 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) 882 { 883 lockdep_assert_rq_held(rq); 884 885 #ifdef CONFIG_SCHED_CORE 886 if (unlikely(SCX_HAS_OP(scx_root, core_sched_before))) 887 touch_core_sched(rq, p); 888 #endif 889 } 890 891 static void update_curr_scx(struct rq *rq) 892 { 893 struct task_struct *curr = rq->curr; 894 s64 delta_exec; 895 896 delta_exec = update_curr_common(rq); 897 if (unlikely(delta_exec <= 0)) 898 return; 899 900 if (curr->scx.slice != SCX_SLICE_INF) { 901 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); 902 if (!curr->scx.slice) 903 touch_core_sched(rq, curr); 904 } 905 } 906 907 static bool scx_dsq_priq_less(struct rb_node *node_a, 908 const struct rb_node *node_b) 909 { 910 const struct task_struct *a = 911 container_of(node_a, struct task_struct, scx.dsq_priq); 912 const struct task_struct *b = 913 container_of(node_b, struct task_struct, scx.dsq_priq); 914 915 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); 916 } 917 918 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 919 { 920 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 921 WRITE_ONCE(dsq->nr, dsq->nr + delta); 922 } 923 924 static void refill_task_slice_dfl(struct scx_sched *sch, struct task_struct *p) 925 { 926 p->scx.slice = SCX_SLICE_DFL; 927 __scx_add_event(sch, SCX_EV_REFILL_SLICE_DFL, 1); 928 } 929 930 static void dispatch_enqueue(struct scx_sched *sch, struct scx_dispatch_q *dsq, 931 struct task_struct *p, u64 enq_flags) 932 { 933 bool is_local = dsq->id == SCX_DSQ_LOCAL; 934 935 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 936 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || 937 !RB_EMPTY_NODE(&p->scx.dsq_priq)); 938 939 if (!is_local) { 940 raw_spin_lock(&dsq->lock); 941 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 942 scx_error(sch, "attempting to dispatch to a destroyed dsq"); 943 /* fall back to the global dsq */ 944 raw_spin_unlock(&dsq->lock); 945 dsq = find_global_dsq(sch, p); 946 raw_spin_lock(&dsq->lock); 947 } 948 } 949 950 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && 951 (enq_flags & SCX_ENQ_DSQ_PRIQ))) { 952 /* 953 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from 954 * their FIFO queues. To avoid confusion and accidentally 955 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we 956 * disallow any internal DSQ from doing vtime ordering of 957 * tasks. 958 */ 959 scx_error(sch, "cannot use vtime ordering for built-in DSQs"); 960 enq_flags &= ~SCX_ENQ_DSQ_PRIQ; 961 } 962 963 if (enq_flags & SCX_ENQ_DSQ_PRIQ) { 964 struct rb_node *rbp; 965 966 /* 967 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are 968 * linked to both the rbtree and list on PRIQs, this can only be 969 * tested easily when adding the first task. 970 */ 971 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && 972 nldsq_next_task(dsq, NULL, false))) 973 scx_error(sch, "DSQ ID 0x%016llx already had FIFO-enqueued tasks", 974 dsq->id); 975 976 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; 977 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); 978 979 /* 980 * Find the previous task and insert after it on the list so 981 * that @dsq->list is vtime ordered. 982 */ 983 rbp = rb_prev(&p->scx.dsq_priq); 984 if (rbp) { 985 struct task_struct *prev = 986 container_of(rbp, struct task_struct, 987 scx.dsq_priq); 988 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); 989 /* first task unchanged - no update needed */ 990 } else { 991 list_add(&p->scx.dsq_list.node, &dsq->list); 992 /* not builtin and new task is at head - use fastpath */ 993 rcu_assign_pointer(dsq->first_task, p); 994 } 995 } else { 996 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ 997 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) 998 scx_error(sch, "DSQ ID 0x%016llx already had PRIQ-enqueued tasks", 999 dsq->id); 1000 1001 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) { 1002 list_add(&p->scx.dsq_list.node, &dsq->list); 1003 /* new task inserted at head - use fastpath */ 1004 if (!(dsq->id & SCX_DSQ_FLAG_BUILTIN)) 1005 rcu_assign_pointer(dsq->first_task, p); 1006 } else { 1007 bool was_empty; 1008 1009 was_empty = list_empty(&dsq->list); 1010 list_add_tail(&p->scx.dsq_list.node, &dsq->list); 1011 if (was_empty && !(dsq->id & SCX_DSQ_FLAG_BUILTIN)) 1012 rcu_assign_pointer(dsq->first_task, p); 1013 } 1014 } 1015 1016 /* seq records the order tasks are queued, used by BPF DSQ iterator */ 1017 dsq->seq++; 1018 p->scx.dsq_seq = dsq->seq; 1019 1020 dsq_mod_nr(dsq, 1); 1021 p->scx.dsq = dsq; 1022 1023 /* 1024 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 1025 * direct dispatch path, but we clear them here because the direct 1026 * dispatch verdict may be overridden on the enqueue path during e.g. 1027 * bypass. 1028 */ 1029 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 1030 p->scx.ddsp_enq_flags = 0; 1031 1032 /* 1033 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 1034 * match waiters' load_acquire. 1035 */ 1036 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 1037 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1038 1039 if (is_local) { 1040 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 1041 bool preempt = false; 1042 1043 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 1044 rq->curr->sched_class == &ext_sched_class) { 1045 rq->curr->scx.slice = 0; 1046 preempt = true; 1047 } 1048 1049 if (preempt || sched_class_above(&ext_sched_class, 1050 rq->curr->sched_class)) 1051 resched_curr(rq); 1052 } else { 1053 raw_spin_unlock(&dsq->lock); 1054 } 1055 } 1056 1057 static void task_unlink_from_dsq(struct task_struct *p, 1058 struct scx_dispatch_q *dsq) 1059 { 1060 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); 1061 1062 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { 1063 rb_erase(&p->scx.dsq_priq, &dsq->priq); 1064 RB_CLEAR_NODE(&p->scx.dsq_priq); 1065 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; 1066 } 1067 1068 list_del_init(&p->scx.dsq_list.node); 1069 dsq_mod_nr(dsq, -1); 1070 1071 if (!(dsq->id & SCX_DSQ_FLAG_BUILTIN) && dsq->first_task == p) { 1072 struct task_struct *first_task; 1073 1074 first_task = nldsq_next_task(dsq, NULL, false); 1075 rcu_assign_pointer(dsq->first_task, first_task); 1076 } 1077 } 1078 1079 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 1080 { 1081 struct scx_dispatch_q *dsq = p->scx.dsq; 1082 bool is_local = dsq == &rq->scx.local_dsq; 1083 1084 if (!dsq) { 1085 /* 1086 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. 1087 * Unlinking is all that's needed to cancel. 1088 */ 1089 if (unlikely(!list_empty(&p->scx.dsq_list.node))) 1090 list_del_init(&p->scx.dsq_list.node); 1091 1092 /* 1093 * When dispatching directly from the BPF scheduler to a local 1094 * DSQ, the task isn't associated with any DSQ but 1095 * @p->scx.holding_cpu may be set under the protection of 1096 * %SCX_OPSS_DISPATCHING. 1097 */ 1098 if (p->scx.holding_cpu >= 0) 1099 p->scx.holding_cpu = -1; 1100 1101 return; 1102 } 1103 1104 if (!is_local) 1105 raw_spin_lock(&dsq->lock); 1106 1107 /* 1108 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't 1109 * change underneath us. 1110 */ 1111 if (p->scx.holding_cpu < 0) { 1112 /* @p must still be on @dsq, dequeue */ 1113 task_unlink_from_dsq(p, dsq); 1114 } else { 1115 /* 1116 * We're racing against dispatch_to_local_dsq() which already 1117 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 1118 * holding_cpu which tells dispatch_to_local_dsq() that it lost 1119 * the race. 1120 */ 1121 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); 1122 p->scx.holding_cpu = -1; 1123 } 1124 p->scx.dsq = NULL; 1125 1126 if (!is_local) 1127 raw_spin_unlock(&dsq->lock); 1128 } 1129 1130 static struct scx_dispatch_q *find_dsq_for_dispatch(struct scx_sched *sch, 1131 struct rq *rq, u64 dsq_id, 1132 struct task_struct *p) 1133 { 1134 struct scx_dispatch_q *dsq; 1135 1136 if (dsq_id == SCX_DSQ_LOCAL) 1137 return &rq->scx.local_dsq; 1138 1139 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 1140 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 1141 1142 if (!ops_cpu_valid(sch, cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 1143 return find_global_dsq(sch, p); 1144 1145 return &cpu_rq(cpu)->scx.local_dsq; 1146 } 1147 1148 if (dsq_id == SCX_DSQ_GLOBAL) 1149 dsq = find_global_dsq(sch, p); 1150 else 1151 dsq = find_user_dsq(sch, dsq_id); 1152 1153 if (unlikely(!dsq)) { 1154 scx_error(sch, "non-existent DSQ 0x%llx for %s[%d]", 1155 dsq_id, p->comm, p->pid); 1156 return find_global_dsq(sch, p); 1157 } 1158 1159 return dsq; 1160 } 1161 1162 static void mark_direct_dispatch(struct scx_sched *sch, 1163 struct task_struct *ddsp_task, 1164 struct task_struct *p, u64 dsq_id, 1165 u64 enq_flags) 1166 { 1167 /* 1168 * Mark that dispatch already happened from ops.select_cpu() or 1169 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 1170 * which can never match a valid task pointer. 1171 */ 1172 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 1173 1174 /* @p must match the task on the enqueue path */ 1175 if (unlikely(p != ddsp_task)) { 1176 if (IS_ERR(ddsp_task)) 1177 scx_error(sch, "%s[%d] already direct-dispatched", 1178 p->comm, p->pid); 1179 else 1180 scx_error(sch, "scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 1181 ddsp_task->comm, ddsp_task->pid, 1182 p->comm, p->pid); 1183 return; 1184 } 1185 1186 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 1187 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 1188 1189 p->scx.ddsp_dsq_id = dsq_id; 1190 p->scx.ddsp_enq_flags = enq_flags; 1191 } 1192 1193 static void direct_dispatch(struct scx_sched *sch, struct task_struct *p, 1194 u64 enq_flags) 1195 { 1196 struct rq *rq = task_rq(p); 1197 struct scx_dispatch_q *dsq = 1198 find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p); 1199 1200 touch_core_sched_dispatch(rq, p); 1201 1202 p->scx.ddsp_enq_flags |= enq_flags; 1203 1204 /* 1205 * We are in the enqueue path with @rq locked and pinned, and thus can't 1206 * double lock a remote rq and enqueue to its local DSQ. For 1207 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer 1208 * the enqueue so that it's executed when @rq can be unlocked. 1209 */ 1210 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { 1211 unsigned long opss; 1212 1213 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; 1214 1215 switch (opss & SCX_OPSS_STATE_MASK) { 1216 case SCX_OPSS_NONE: 1217 break; 1218 case SCX_OPSS_QUEUEING: 1219 /* 1220 * As @p was never passed to the BPF side, _release is 1221 * not strictly necessary. Still do it for consistency. 1222 */ 1223 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1224 break; 1225 default: 1226 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", 1227 p->comm, p->pid, opss); 1228 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1229 break; 1230 } 1231 1232 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1233 list_add_tail(&p->scx.dsq_list.node, 1234 &rq->scx.ddsp_deferred_locals); 1235 schedule_deferred_locked(rq); 1236 return; 1237 } 1238 1239 dispatch_enqueue(sch, dsq, p, 1240 p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 1241 } 1242 1243 static bool scx_rq_online(struct rq *rq) 1244 { 1245 /* 1246 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates 1247 * the online state as seen from the BPF scheduler. cpu_active() test 1248 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will 1249 * stay set until the current scheduling operation is complete even if 1250 * we aren't locking @rq. 1251 */ 1252 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); 1253 } 1254 1255 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 1256 int sticky_cpu) 1257 { 1258 struct scx_sched *sch = scx_root; 1259 struct task_struct **ddsp_taskp; 1260 unsigned long qseq; 1261 1262 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 1263 1264 /* rq migration */ 1265 if (sticky_cpu == cpu_of(rq)) 1266 goto local_norefill; 1267 1268 /* 1269 * If !scx_rq_online(), we already told the BPF scheduler that the CPU 1270 * is offline and are just running the hotplug path. Don't bother the 1271 * BPF scheduler. 1272 */ 1273 if (!scx_rq_online(rq)) 1274 goto local; 1275 1276 if (scx_rq_bypassing(rq)) { 1277 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1); 1278 goto global; 1279 } 1280 1281 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1282 goto direct; 1283 1284 /* see %SCX_OPS_ENQ_EXITING */ 1285 if (!(sch->ops.flags & SCX_OPS_ENQ_EXITING) && 1286 unlikely(p->flags & PF_EXITING)) { 1287 __scx_add_event(sch, SCX_EV_ENQ_SKIP_EXITING, 1); 1288 goto local; 1289 } 1290 1291 /* see %SCX_OPS_ENQ_MIGRATION_DISABLED */ 1292 if (!(sch->ops.flags & SCX_OPS_ENQ_MIGRATION_DISABLED) && 1293 is_migration_disabled(p)) { 1294 __scx_add_event(sch, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED, 1); 1295 goto local; 1296 } 1297 1298 if (unlikely(!SCX_HAS_OP(sch, enqueue))) 1299 goto global; 1300 1301 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 1302 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 1303 1304 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1305 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 1306 1307 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 1308 WARN_ON_ONCE(*ddsp_taskp); 1309 *ddsp_taskp = p; 1310 1311 SCX_CALL_OP_TASK(sch, SCX_KF_ENQUEUE, enqueue, rq, p, enq_flags); 1312 1313 *ddsp_taskp = NULL; 1314 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1315 goto direct; 1316 1317 /* 1318 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 1319 * dequeue may be waiting. The store_release matches their load_acquire. 1320 */ 1321 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 1322 return; 1323 1324 direct: 1325 direct_dispatch(sch, p, enq_flags); 1326 return; 1327 1328 local: 1329 /* 1330 * For task-ordering, slice refill must be treated as implying the end 1331 * of the current slice. Otherwise, the longer @p stays on the CPU, the 1332 * higher priority it becomes from scx_prio_less()'s POV. 1333 */ 1334 touch_core_sched(rq, p); 1335 refill_task_slice_dfl(sch, p); 1336 local_norefill: 1337 dispatch_enqueue(sch, &rq->scx.local_dsq, p, enq_flags); 1338 return; 1339 1340 global: 1341 touch_core_sched(rq, p); /* see the comment in local: */ 1342 refill_task_slice_dfl(sch, p); 1343 dispatch_enqueue(sch, find_global_dsq(sch, p), p, enq_flags); 1344 } 1345 1346 static bool task_runnable(const struct task_struct *p) 1347 { 1348 return !list_empty(&p->scx.runnable_node); 1349 } 1350 1351 static void set_task_runnable(struct rq *rq, struct task_struct *p) 1352 { 1353 lockdep_assert_rq_held(rq); 1354 1355 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 1356 p->scx.runnable_at = jiffies; 1357 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 1358 } 1359 1360 /* 1361 * list_add_tail() must be used. scx_bypass() depends on tasks being 1362 * appended to the runnable_list. 1363 */ 1364 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 1365 } 1366 1367 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 1368 { 1369 list_del_init(&p->scx.runnable_node); 1370 if (reset_runnable_at) 1371 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 1372 } 1373 1374 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 1375 { 1376 struct scx_sched *sch = scx_root; 1377 int sticky_cpu = p->scx.sticky_cpu; 1378 1379 if (enq_flags & ENQUEUE_WAKEUP) 1380 rq->scx.flags |= SCX_RQ_IN_WAKEUP; 1381 1382 enq_flags |= rq->scx.extra_enq_flags; 1383 1384 if (sticky_cpu >= 0) 1385 p->scx.sticky_cpu = -1; 1386 1387 /* 1388 * Restoring a running task will be immediately followed by 1389 * set_next_task_scx() which expects the task to not be on the BPF 1390 * scheduler as tasks can only start running through local DSQs. Force 1391 * direct-dispatch into the local DSQ by setting the sticky_cpu. 1392 */ 1393 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 1394 sticky_cpu = cpu_of(rq); 1395 1396 if (p->scx.flags & SCX_TASK_QUEUED) { 1397 WARN_ON_ONCE(!task_runnable(p)); 1398 goto out; 1399 } 1400 1401 set_task_runnable(rq, p); 1402 p->scx.flags |= SCX_TASK_QUEUED; 1403 rq->scx.nr_running++; 1404 add_nr_running(rq, 1); 1405 1406 if (SCX_HAS_OP(sch, runnable) && !task_on_rq_migrating(p)) 1407 SCX_CALL_OP_TASK(sch, SCX_KF_REST, runnable, rq, p, enq_flags); 1408 1409 if (enq_flags & SCX_ENQ_WAKEUP) 1410 touch_core_sched(rq, p); 1411 1412 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 1413 out: 1414 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; 1415 1416 if ((enq_flags & SCX_ENQ_CPU_SELECTED) && 1417 unlikely(cpu_of(rq) != p->scx.selected_cpu)) 1418 __scx_add_event(sch, SCX_EV_SELECT_CPU_FALLBACK, 1); 1419 } 1420 1421 static void ops_dequeue(struct rq *rq, struct task_struct *p, u64 deq_flags) 1422 { 1423 struct scx_sched *sch = scx_root; 1424 unsigned long opss; 1425 1426 /* dequeue is always temporary, don't reset runnable_at */ 1427 clr_task_runnable(p, false); 1428 1429 /* acquire ensures that we see the preceding updates on QUEUED */ 1430 opss = atomic_long_read_acquire(&p->scx.ops_state); 1431 1432 switch (opss & SCX_OPSS_STATE_MASK) { 1433 case SCX_OPSS_NONE: 1434 break; 1435 case SCX_OPSS_QUEUEING: 1436 /* 1437 * QUEUEING is started and finished while holding @p's rq lock. 1438 * As we're holding the rq lock now, we shouldn't see QUEUEING. 1439 */ 1440 BUG(); 1441 case SCX_OPSS_QUEUED: 1442 if (SCX_HAS_OP(sch, dequeue)) 1443 SCX_CALL_OP_TASK(sch, SCX_KF_REST, dequeue, rq, 1444 p, deq_flags); 1445 1446 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 1447 SCX_OPSS_NONE)) 1448 break; 1449 fallthrough; 1450 case SCX_OPSS_DISPATCHING: 1451 /* 1452 * If @p is being dispatched from the BPF scheduler to a DSQ, 1453 * wait for the transfer to complete so that @p doesn't get 1454 * added to its DSQ after dequeueing is complete. 1455 * 1456 * As we're waiting on DISPATCHING with the rq locked, the 1457 * dispatching side shouldn't try to lock the rq while 1458 * DISPATCHING is set. See dispatch_to_local_dsq(). 1459 * 1460 * DISPATCHING shouldn't have qseq set and control can reach 1461 * here with NONE @opss from the above QUEUED case block. 1462 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 1463 */ 1464 wait_ops_state(p, SCX_OPSS_DISPATCHING); 1465 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1466 break; 1467 } 1468 } 1469 1470 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 1471 { 1472 struct scx_sched *sch = scx_root; 1473 1474 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 1475 WARN_ON_ONCE(task_runnable(p)); 1476 return true; 1477 } 1478 1479 ops_dequeue(rq, p, deq_flags); 1480 1481 /* 1482 * A currently running task which is going off @rq first gets dequeued 1483 * and then stops running. As we want running <-> stopping transitions 1484 * to be contained within runnable <-> quiescent transitions, trigger 1485 * ->stopping() early here instead of in put_prev_task_scx(). 1486 * 1487 * @p may go through multiple stopping <-> running transitions between 1488 * here and put_prev_task_scx() if task attribute changes occur while 1489 * balance_scx() leaves @rq unlocked. However, they don't contain any 1490 * information meaningful to the BPF scheduler and can be suppressed by 1491 * skipping the callbacks if the task is !QUEUED. 1492 */ 1493 if (SCX_HAS_OP(sch, stopping) && task_current(rq, p)) { 1494 update_curr_scx(rq); 1495 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, false); 1496 } 1497 1498 if (SCX_HAS_OP(sch, quiescent) && !task_on_rq_migrating(p)) 1499 SCX_CALL_OP_TASK(sch, SCX_KF_REST, quiescent, rq, p, deq_flags); 1500 1501 if (deq_flags & SCX_DEQ_SLEEP) 1502 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 1503 else 1504 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 1505 1506 p->scx.flags &= ~SCX_TASK_QUEUED; 1507 rq->scx.nr_running--; 1508 sub_nr_running(rq, 1); 1509 1510 dispatch_dequeue(rq, p); 1511 return true; 1512 } 1513 1514 static void yield_task_scx(struct rq *rq) 1515 { 1516 struct scx_sched *sch = scx_root; 1517 struct task_struct *p = rq->curr; 1518 1519 if (SCX_HAS_OP(sch, yield)) 1520 SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, p, NULL); 1521 else 1522 p->scx.slice = 0; 1523 } 1524 1525 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 1526 { 1527 struct scx_sched *sch = scx_root; 1528 struct task_struct *from = rq->curr; 1529 1530 if (SCX_HAS_OP(sch, yield)) 1531 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, 1532 from, to); 1533 else 1534 return false; 1535 } 1536 1537 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 1538 struct scx_dispatch_q *src_dsq, 1539 struct rq *dst_rq) 1540 { 1541 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; 1542 1543 /* @dsq is locked and @p is on @dst_rq */ 1544 lockdep_assert_held(&src_dsq->lock); 1545 lockdep_assert_rq_held(dst_rq); 1546 1547 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 1548 1549 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 1550 list_add(&p->scx.dsq_list.node, &dst_dsq->list); 1551 else 1552 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); 1553 1554 dsq_mod_nr(dst_dsq, 1); 1555 p->scx.dsq = dst_dsq; 1556 } 1557 1558 /** 1559 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ 1560 * @p: task to move 1561 * @enq_flags: %SCX_ENQ_* 1562 * @src_rq: rq to move the task from, locked on entry, released on return 1563 * @dst_rq: rq to move the task into, locked on return 1564 * 1565 * Move @p which is currently on @src_rq to @dst_rq's local DSQ. 1566 */ 1567 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 1568 struct rq *src_rq, struct rq *dst_rq) 1569 { 1570 lockdep_assert_rq_held(src_rq); 1571 1572 /* the following marks @p MIGRATING which excludes dequeue */ 1573 deactivate_task(src_rq, p, 0); 1574 set_task_cpu(p, cpu_of(dst_rq)); 1575 p->scx.sticky_cpu = cpu_of(dst_rq); 1576 1577 raw_spin_rq_unlock(src_rq); 1578 raw_spin_rq_lock(dst_rq); 1579 1580 /* 1581 * We want to pass scx-specific enq_flags but activate_task() will 1582 * truncate the upper 32 bit. As we own @rq, we can pass them through 1583 * @rq->scx.extra_enq_flags instead. 1584 */ 1585 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); 1586 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); 1587 dst_rq->scx.extra_enq_flags = enq_flags; 1588 activate_task(dst_rq, p, 0); 1589 dst_rq->scx.extra_enq_flags = 0; 1590 } 1591 1592 /* 1593 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two 1594 * differences: 1595 * 1596 * - is_cpu_allowed() asks "Can this task run on this CPU?" while 1597 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to 1598 * this CPU?". 1599 * 1600 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task 1601 * must be allowed to finish on the CPU that it's currently on regardless of 1602 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the 1603 * BPF scheduler shouldn't attempt to migrate a task which has migration 1604 * disabled. 1605 * 1606 * - The BPF scheduler is bypassed while the rq is offline and we can always say 1607 * no to the BPF scheduler initiated migrations while offline. 1608 * 1609 * The caller must ensure that @p and @rq are on different CPUs. 1610 */ 1611 static bool task_can_run_on_remote_rq(struct scx_sched *sch, 1612 struct task_struct *p, struct rq *rq, 1613 bool enforce) 1614 { 1615 int cpu = cpu_of(rq); 1616 1617 WARN_ON_ONCE(task_cpu(p) == cpu); 1618 1619 /* 1620 * If @p has migration disabled, @p->cpus_ptr is updated to contain only 1621 * the pinned CPU in migrate_disable_switch() while @p is being switched 1622 * out. However, put_prev_task_scx() is called before @p->cpus_ptr is 1623 * updated and thus another CPU may see @p on a DSQ inbetween leading to 1624 * @p passing the below task_allowed_on_cpu() check while migration is 1625 * disabled. 1626 * 1627 * Test the migration disabled state first as the race window is narrow 1628 * and the BPF scheduler failing to check migration disabled state can 1629 * easily be masked if task_allowed_on_cpu() is done first. 1630 */ 1631 if (unlikely(is_migration_disabled(p))) { 1632 if (enforce) 1633 scx_error(sch, "SCX_DSQ_LOCAL[_ON] cannot move migration disabled %s[%d] from CPU %d to %d", 1634 p->comm, p->pid, task_cpu(p), cpu); 1635 return false; 1636 } 1637 1638 /* 1639 * We don't require the BPF scheduler to avoid dispatching to offline 1640 * CPUs mostly for convenience but also because CPUs can go offline 1641 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the 1642 * picked CPU is outside the allowed mask. 1643 */ 1644 if (!task_allowed_on_cpu(p, cpu)) { 1645 if (enforce) 1646 scx_error(sch, "SCX_DSQ_LOCAL[_ON] target CPU %d not allowed for %s[%d]", 1647 cpu, p->comm, p->pid); 1648 return false; 1649 } 1650 1651 if (!scx_rq_online(rq)) { 1652 if (enforce) 1653 __scx_add_event(sch, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE, 1); 1654 return false; 1655 } 1656 1657 return true; 1658 } 1659 1660 /** 1661 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq 1662 * @p: target task 1663 * @dsq: locked DSQ @p is currently on 1664 * @src_rq: rq @p is currently on, stable with @dsq locked 1665 * 1666 * Called with @dsq locked but no rq's locked. We want to move @p to a different 1667 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is 1668 * required when transferring into a local DSQ. Even when transferring into a 1669 * non-local DSQ, it's better to use the same mechanism to protect against 1670 * dequeues and maintain the invariant that @p->scx.dsq can only change while 1671 * @src_rq is locked, which e.g. scx_dump_task() depends on. 1672 * 1673 * We want to grab @src_rq but that can deadlock if we try while locking @dsq, 1674 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As 1675 * this may race with dequeue, which can't drop the rq lock or fail, do a little 1676 * dancing from our side. 1677 * 1678 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets 1679 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu 1680 * would be cleared to -1. While other cpus may have updated it to different 1681 * values afterwards, as this operation can't be preempted or recurse, the 1682 * holding_cpu can never become this CPU again before we're done. Thus, we can 1683 * tell whether we lost to dequeue by testing whether the holding_cpu still 1684 * points to this CPU. See dispatch_dequeue() for the counterpart. 1685 * 1686 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is 1687 * still valid. %false if lost to dequeue. 1688 */ 1689 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, 1690 struct scx_dispatch_q *dsq, 1691 struct rq *src_rq) 1692 { 1693 s32 cpu = raw_smp_processor_id(); 1694 1695 lockdep_assert_held(&dsq->lock); 1696 1697 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 1698 task_unlink_from_dsq(p, dsq); 1699 p->scx.holding_cpu = cpu; 1700 1701 raw_spin_unlock(&dsq->lock); 1702 raw_spin_rq_lock(src_rq); 1703 1704 /* task_rq couldn't have changed if we're still the holding cpu */ 1705 return likely(p->scx.holding_cpu == cpu) && 1706 !WARN_ON_ONCE(src_rq != task_rq(p)); 1707 } 1708 1709 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, 1710 struct scx_dispatch_q *dsq, struct rq *src_rq) 1711 { 1712 raw_spin_rq_unlock(this_rq); 1713 1714 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { 1715 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); 1716 return true; 1717 } else { 1718 raw_spin_rq_unlock(src_rq); 1719 raw_spin_rq_lock(this_rq); 1720 return false; 1721 } 1722 } 1723 1724 /** 1725 * move_task_between_dsqs() - Move a task from one DSQ to another 1726 * @sch: scx_sched being operated on 1727 * @p: target task 1728 * @enq_flags: %SCX_ENQ_* 1729 * @src_dsq: DSQ @p is currently on, must not be a local DSQ 1730 * @dst_dsq: DSQ @p is being moved to, can be any DSQ 1731 * 1732 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local 1733 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq 1734 * will change. As @p's task_rq is locked, this function doesn't need to use the 1735 * holding_cpu mechanism. 1736 * 1737 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the 1738 * return value, is locked. 1739 */ 1740 static struct rq *move_task_between_dsqs(struct scx_sched *sch, 1741 struct task_struct *p, u64 enq_flags, 1742 struct scx_dispatch_q *src_dsq, 1743 struct scx_dispatch_q *dst_dsq) 1744 { 1745 struct rq *src_rq = task_rq(p), *dst_rq; 1746 1747 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL); 1748 lockdep_assert_held(&src_dsq->lock); 1749 lockdep_assert_rq_held(src_rq); 1750 1751 if (dst_dsq->id == SCX_DSQ_LOCAL) { 1752 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 1753 if (src_rq != dst_rq && 1754 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) { 1755 dst_dsq = find_global_dsq(sch, p); 1756 dst_rq = src_rq; 1757 } 1758 } else { 1759 /* no need to migrate if destination is a non-local DSQ */ 1760 dst_rq = src_rq; 1761 } 1762 1763 /* 1764 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different 1765 * CPU, @p will be migrated. 1766 */ 1767 if (dst_dsq->id == SCX_DSQ_LOCAL) { 1768 /* @p is going from a non-local DSQ to a local DSQ */ 1769 if (src_rq == dst_rq) { 1770 task_unlink_from_dsq(p, src_dsq); 1771 move_local_task_to_local_dsq(p, enq_flags, 1772 src_dsq, dst_rq); 1773 raw_spin_unlock(&src_dsq->lock); 1774 } else { 1775 raw_spin_unlock(&src_dsq->lock); 1776 move_remote_task_to_local_dsq(p, enq_flags, 1777 src_rq, dst_rq); 1778 } 1779 } else { 1780 /* 1781 * @p is going from a non-local DSQ to a non-local DSQ. As 1782 * $src_dsq is already locked, do an abbreviated dequeue. 1783 */ 1784 task_unlink_from_dsq(p, src_dsq); 1785 p->scx.dsq = NULL; 1786 raw_spin_unlock(&src_dsq->lock); 1787 1788 dispatch_enqueue(sch, dst_dsq, p, enq_flags); 1789 } 1790 1791 return dst_rq; 1792 } 1793 1794 /* 1795 * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly 1796 * banging on the same DSQ on a large NUMA system to the point where switching 1797 * to the bypass mode can take a long time. Inject artificial delays while the 1798 * bypass mode is switching to guarantee timely completion. 1799 */ 1800 static void scx_breather(struct rq *rq) 1801 { 1802 u64 until; 1803 1804 lockdep_assert_rq_held(rq); 1805 1806 if (likely(!atomic_read(&scx_breather_depth))) 1807 return; 1808 1809 raw_spin_rq_unlock(rq); 1810 1811 until = ktime_get_ns() + NSEC_PER_MSEC; 1812 1813 do { 1814 int cnt = 1024; 1815 while (atomic_read(&scx_breather_depth) && --cnt) 1816 cpu_relax(); 1817 } while (atomic_read(&scx_breather_depth) && 1818 time_before64(ktime_get_ns(), until)); 1819 1820 raw_spin_rq_lock(rq); 1821 } 1822 1823 static bool consume_dispatch_q(struct scx_sched *sch, struct rq *rq, 1824 struct scx_dispatch_q *dsq) 1825 { 1826 struct task_struct *p; 1827 retry: 1828 /* 1829 * This retry loop can repeatedly race against scx_bypass() dequeueing 1830 * tasks from @dsq trying to put the system into the bypass mode. On 1831 * some multi-socket machines (e.g. 2x Intel 8480c), this can live-lock 1832 * the machine into soft lockups. Give a breather. 1833 */ 1834 scx_breather(rq); 1835 1836 /* 1837 * The caller can't expect to successfully consume a task if the task's 1838 * addition to @dsq isn't guaranteed to be visible somehow. Test 1839 * @dsq->list without locking and skip if it seems empty. 1840 */ 1841 if (list_empty(&dsq->list)) 1842 return false; 1843 1844 raw_spin_lock(&dsq->lock); 1845 1846 nldsq_for_each_task(p, dsq) { 1847 struct rq *task_rq = task_rq(p); 1848 1849 if (rq == task_rq) { 1850 task_unlink_from_dsq(p, dsq); 1851 move_local_task_to_local_dsq(p, 0, dsq, rq); 1852 raw_spin_unlock(&dsq->lock); 1853 return true; 1854 } 1855 1856 if (task_can_run_on_remote_rq(sch, p, rq, false)) { 1857 if (likely(consume_remote_task(rq, p, dsq, task_rq))) 1858 return true; 1859 goto retry; 1860 } 1861 } 1862 1863 raw_spin_unlock(&dsq->lock); 1864 return false; 1865 } 1866 1867 static bool consume_global_dsq(struct scx_sched *sch, struct rq *rq) 1868 { 1869 int node = cpu_to_node(cpu_of(rq)); 1870 1871 return consume_dispatch_q(sch, rq, sch->global_dsqs[node]); 1872 } 1873 1874 /** 1875 * dispatch_to_local_dsq - Dispatch a task to a local dsq 1876 * @sch: scx_sched being operated on 1877 * @rq: current rq which is locked 1878 * @dst_dsq: destination DSQ 1879 * @p: task to dispatch 1880 * @enq_flags: %SCX_ENQ_* 1881 * 1882 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local 1883 * DSQ. This function performs all the synchronization dancing needed because 1884 * local DSQs are protected with rq locks. 1885 * 1886 * The caller must have exclusive ownership of @p (e.g. through 1887 * %SCX_OPSS_DISPATCHING). 1888 */ 1889 static void dispatch_to_local_dsq(struct scx_sched *sch, struct rq *rq, 1890 struct scx_dispatch_q *dst_dsq, 1891 struct task_struct *p, u64 enq_flags) 1892 { 1893 struct rq *src_rq = task_rq(p); 1894 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 1895 struct rq *locked_rq = rq; 1896 1897 /* 1898 * We're synchronized against dequeue through DISPATCHING. As @p can't 1899 * be dequeued, its task_rq and cpus_allowed are stable too. 1900 * 1901 * If dispatching to @rq that @p is already on, no lock dancing needed. 1902 */ 1903 if (rq == src_rq && rq == dst_rq) { 1904 dispatch_enqueue(sch, dst_dsq, p, 1905 enq_flags | SCX_ENQ_CLEAR_OPSS); 1906 return; 1907 } 1908 1909 if (src_rq != dst_rq && 1910 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) { 1911 dispatch_enqueue(sch, find_global_dsq(sch, p), p, 1912 enq_flags | SCX_ENQ_CLEAR_OPSS); 1913 return; 1914 } 1915 1916 /* 1917 * @p is on a possibly remote @src_rq which we need to lock to move the 1918 * task. If dequeue is in progress, it'd be locking @src_rq and waiting 1919 * on DISPATCHING, so we can't grab @src_rq lock while holding 1920 * DISPATCHING. 1921 * 1922 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that 1923 * we're moving from a DSQ and use the same mechanism - mark the task 1924 * under transfer with holding_cpu, release DISPATCHING and then follow 1925 * the same protocol. See unlink_dsq_and_lock_src_rq(). 1926 */ 1927 p->scx.holding_cpu = raw_smp_processor_id(); 1928 1929 /* store_release ensures that dequeue sees the above */ 1930 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1931 1932 /* switch to @src_rq lock */ 1933 if (locked_rq != src_rq) { 1934 raw_spin_rq_unlock(locked_rq); 1935 locked_rq = src_rq; 1936 raw_spin_rq_lock(src_rq); 1937 } 1938 1939 /* task_rq couldn't have changed if we're still the holding cpu */ 1940 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && 1941 !WARN_ON_ONCE(src_rq != task_rq(p))) { 1942 /* 1943 * If @p is staying on the same rq, there's no need to go 1944 * through the full deactivate/activate cycle. Optimize by 1945 * abbreviating move_remote_task_to_local_dsq(). 1946 */ 1947 if (src_rq == dst_rq) { 1948 p->scx.holding_cpu = -1; 1949 dispatch_enqueue(sch, &dst_rq->scx.local_dsq, p, 1950 enq_flags); 1951 } else { 1952 move_remote_task_to_local_dsq(p, enq_flags, 1953 src_rq, dst_rq); 1954 /* task has been moved to dst_rq, which is now locked */ 1955 locked_rq = dst_rq; 1956 } 1957 1958 /* if the destination CPU is idle, wake it up */ 1959 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) 1960 resched_curr(dst_rq); 1961 } 1962 1963 /* switch back to @rq lock */ 1964 if (locked_rq != rq) { 1965 raw_spin_rq_unlock(locked_rq); 1966 raw_spin_rq_lock(rq); 1967 } 1968 } 1969 1970 /** 1971 * finish_dispatch - Asynchronously finish dispatching a task 1972 * @rq: current rq which is locked 1973 * @p: task to finish dispatching 1974 * @qseq_at_dispatch: qseq when @p started getting dispatched 1975 * @dsq_id: destination DSQ ID 1976 * @enq_flags: %SCX_ENQ_* 1977 * 1978 * Dispatching to local DSQs may need to wait for queueing to complete or 1979 * require rq lock dancing. As we don't wanna do either while inside 1980 * ops.dispatch() to avoid locking order inversion, we split dispatching into 1981 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the 1982 * task and its qseq. Once ops.dispatch() returns, this function is called to 1983 * finish up. 1984 * 1985 * There is no guarantee that @p is still valid for dispatching or even that it 1986 * was valid in the first place. Make sure that the task is still owned by the 1987 * BPF scheduler and claim the ownership before dispatching. 1988 */ 1989 static void finish_dispatch(struct scx_sched *sch, struct rq *rq, 1990 struct task_struct *p, 1991 unsigned long qseq_at_dispatch, 1992 u64 dsq_id, u64 enq_flags) 1993 { 1994 struct scx_dispatch_q *dsq; 1995 unsigned long opss; 1996 1997 touch_core_sched_dispatch(rq, p); 1998 retry: 1999 /* 2000 * No need for _acquire here. @p is accessed only after a successful 2001 * try_cmpxchg to DISPATCHING. 2002 */ 2003 opss = atomic_long_read(&p->scx.ops_state); 2004 2005 switch (opss & SCX_OPSS_STATE_MASK) { 2006 case SCX_OPSS_DISPATCHING: 2007 case SCX_OPSS_NONE: 2008 /* someone else already got to it */ 2009 return; 2010 case SCX_OPSS_QUEUED: 2011 /* 2012 * If qseq doesn't match, @p has gone through at least one 2013 * dispatch/dequeue and re-enqueue cycle between 2014 * scx_bpf_dsq_insert() and here and we have no claim on it. 2015 */ 2016 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 2017 return; 2018 2019 /* 2020 * While we know @p is accessible, we don't yet have a claim on 2021 * it - the BPF scheduler is allowed to dispatch tasks 2022 * spuriously and there can be a racing dequeue attempt. Let's 2023 * claim @p by atomically transitioning it from QUEUED to 2024 * DISPATCHING. 2025 */ 2026 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2027 SCX_OPSS_DISPATCHING))) 2028 break; 2029 goto retry; 2030 case SCX_OPSS_QUEUEING: 2031 /* 2032 * do_enqueue_task() is in the process of transferring the task 2033 * to the BPF scheduler while holding @p's rq lock. As we aren't 2034 * holding any kernel or BPF resource that the enqueue path may 2035 * depend upon, it's safe to wait. 2036 */ 2037 wait_ops_state(p, opss); 2038 goto retry; 2039 } 2040 2041 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 2042 2043 dsq = find_dsq_for_dispatch(sch, this_rq(), dsq_id, p); 2044 2045 if (dsq->id == SCX_DSQ_LOCAL) 2046 dispatch_to_local_dsq(sch, rq, dsq, p, enq_flags); 2047 else 2048 dispatch_enqueue(sch, dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2049 } 2050 2051 static void flush_dispatch_buf(struct scx_sched *sch, struct rq *rq) 2052 { 2053 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2054 u32 u; 2055 2056 for (u = 0; u < dspc->cursor; u++) { 2057 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 2058 2059 finish_dispatch(sch, rq, ent->task, ent->qseq, ent->dsq_id, 2060 ent->enq_flags); 2061 } 2062 2063 dspc->nr_tasks += dspc->cursor; 2064 dspc->cursor = 0; 2065 } 2066 2067 static inline void maybe_queue_balance_callback(struct rq *rq) 2068 { 2069 lockdep_assert_rq_held(rq); 2070 2071 if (!(rq->scx.flags & SCX_RQ_BAL_CB_PENDING)) 2072 return; 2073 2074 queue_balance_callback(rq, &rq->scx.deferred_bal_cb, 2075 deferred_bal_cb_workfn); 2076 2077 rq->scx.flags &= ~SCX_RQ_BAL_CB_PENDING; 2078 } 2079 2080 static int balance_one(struct rq *rq, struct task_struct *prev) 2081 { 2082 struct scx_sched *sch = scx_root; 2083 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2084 bool prev_on_scx = prev->sched_class == &ext_sched_class; 2085 bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED; 2086 int nr_loops = SCX_DSP_MAX_LOOPS; 2087 2088 lockdep_assert_rq_held(rq); 2089 rq->scx.flags |= SCX_RQ_IN_BALANCE; 2090 rq->scx.flags &= ~SCX_RQ_BAL_KEEP; 2091 2092 if ((sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT) && 2093 unlikely(rq->scx.cpu_released)) { 2094 /* 2095 * If the previous sched_class for the current CPU was not SCX, 2096 * notify the BPF scheduler that it again has control of the 2097 * core. This callback complements ->cpu_release(), which is 2098 * emitted in switch_class(). 2099 */ 2100 if (SCX_HAS_OP(sch, cpu_acquire)) 2101 SCX_CALL_OP(sch, SCX_KF_REST, cpu_acquire, rq, 2102 cpu_of(rq), NULL); 2103 rq->scx.cpu_released = false; 2104 } 2105 2106 if (prev_on_scx) { 2107 update_curr_scx(rq); 2108 2109 /* 2110 * If @prev is runnable & has slice left, it has priority and 2111 * fetching more just increases latency for the fetched tasks. 2112 * Tell pick_task_scx() to keep running @prev. If the BPF 2113 * scheduler wants to handle this explicitly, it should 2114 * implement ->cpu_release(). 2115 * 2116 * See scx_disable_workfn() for the explanation on the bypassing 2117 * test. 2118 */ 2119 if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) { 2120 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2121 goto has_tasks; 2122 } 2123 } 2124 2125 /* if there already are tasks to run, nothing to do */ 2126 if (rq->scx.local_dsq.nr) 2127 goto has_tasks; 2128 2129 if (consume_global_dsq(sch, rq)) 2130 goto has_tasks; 2131 2132 if (unlikely(!SCX_HAS_OP(sch, dispatch)) || 2133 scx_rq_bypassing(rq) || !scx_rq_online(rq)) 2134 goto no_tasks; 2135 2136 dspc->rq = rq; 2137 2138 /* 2139 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 2140 * the local DSQ might still end up empty after a successful 2141 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 2142 * produced some tasks, retry. The BPF scheduler may depend on this 2143 * looping behavior to simplify its implementation. 2144 */ 2145 do { 2146 dspc->nr_tasks = 0; 2147 2148 SCX_CALL_OP(sch, SCX_KF_DISPATCH, dispatch, rq, 2149 cpu_of(rq), prev_on_scx ? prev : NULL); 2150 2151 flush_dispatch_buf(sch, rq); 2152 2153 if (prev_on_rq && prev->scx.slice) { 2154 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2155 goto has_tasks; 2156 } 2157 if (rq->scx.local_dsq.nr) 2158 goto has_tasks; 2159 if (consume_global_dsq(sch, rq)) 2160 goto has_tasks; 2161 2162 /* 2163 * ops.dispatch() can trap us in this loop by repeatedly 2164 * dispatching ineligible tasks. Break out once in a while to 2165 * allow the watchdog to run. As IRQ can't be enabled in 2166 * balance(), we want to complete this scheduling cycle and then 2167 * start a new one. IOW, we want to call resched_curr() on the 2168 * next, most likely idle, task, not the current one. Use 2169 * scx_kick_cpu() for deferred kicking. 2170 */ 2171 if (unlikely(!--nr_loops)) { 2172 scx_kick_cpu(sch, cpu_of(rq), 0); 2173 break; 2174 } 2175 } while (dspc->nr_tasks); 2176 2177 no_tasks: 2178 /* 2179 * Didn't find another task to run. Keep running @prev unless 2180 * %SCX_OPS_ENQ_LAST is in effect. 2181 */ 2182 if (prev_on_rq && 2183 (!(sch->ops.flags & SCX_OPS_ENQ_LAST) || scx_rq_bypassing(rq))) { 2184 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2185 __scx_add_event(sch, SCX_EV_DISPATCH_KEEP_LAST, 1); 2186 goto has_tasks; 2187 } 2188 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2189 return false; 2190 2191 has_tasks: 2192 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2193 return true; 2194 } 2195 2196 static void process_ddsp_deferred_locals(struct rq *rq) 2197 { 2198 struct task_struct *p; 2199 2200 lockdep_assert_rq_held(rq); 2201 2202 /* 2203 * Now that @rq can be unlocked, execute the deferred enqueueing of 2204 * tasks directly dispatched to the local DSQs of other CPUs. See 2205 * direct_dispatch(). Keep popping from the head instead of using 2206 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq 2207 * temporarily. 2208 */ 2209 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, 2210 struct task_struct, scx.dsq_list.node))) { 2211 struct scx_sched *sch = scx_root; 2212 struct scx_dispatch_q *dsq; 2213 2214 list_del_init(&p->scx.dsq_list.node); 2215 2216 dsq = find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p); 2217 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) 2218 dispatch_to_local_dsq(sch, rq, dsq, p, 2219 p->scx.ddsp_enq_flags); 2220 } 2221 } 2222 2223 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 2224 { 2225 struct scx_sched *sch = scx_root; 2226 2227 if (p->scx.flags & SCX_TASK_QUEUED) { 2228 /* 2229 * Core-sched might decide to execute @p before it is 2230 * dispatched. Call ops_dequeue() to notify the BPF scheduler. 2231 */ 2232 ops_dequeue(rq, p, SCX_DEQ_CORE_SCHED_EXEC); 2233 dispatch_dequeue(rq, p); 2234 } 2235 2236 p->se.exec_start = rq_clock_task(rq); 2237 2238 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2239 if (SCX_HAS_OP(sch, running) && (p->scx.flags & SCX_TASK_QUEUED)) 2240 SCX_CALL_OP_TASK(sch, SCX_KF_REST, running, rq, p); 2241 2242 clr_task_runnable(p, true); 2243 2244 /* 2245 * @p is getting newly scheduled or got kicked after someone updated its 2246 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 2247 */ 2248 if ((p->scx.slice == SCX_SLICE_INF) != 2249 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 2250 if (p->scx.slice == SCX_SLICE_INF) 2251 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 2252 else 2253 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 2254 2255 sched_update_tick_dependency(rq); 2256 2257 /* 2258 * For now, let's refresh the load_avgs just when transitioning 2259 * in and out of nohz. In the future, we might want to add a 2260 * mechanism which calls the following periodically on 2261 * tick-stopped CPUs. 2262 */ 2263 update_other_load_avgs(rq); 2264 } 2265 } 2266 2267 static enum scx_cpu_preempt_reason 2268 preempt_reason_from_class(const struct sched_class *class) 2269 { 2270 if (class == &stop_sched_class) 2271 return SCX_CPU_PREEMPT_STOP; 2272 if (class == &dl_sched_class) 2273 return SCX_CPU_PREEMPT_DL; 2274 if (class == &rt_sched_class) 2275 return SCX_CPU_PREEMPT_RT; 2276 return SCX_CPU_PREEMPT_UNKNOWN; 2277 } 2278 2279 static void switch_class(struct rq *rq, struct task_struct *next) 2280 { 2281 struct scx_sched *sch = scx_root; 2282 const struct sched_class *next_class = next->sched_class; 2283 2284 if (!(sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT)) 2285 return; 2286 2287 /* 2288 * The callback is conceptually meant to convey that the CPU is no 2289 * longer under the control of SCX. Therefore, don't invoke the callback 2290 * if the next class is below SCX (in which case the BPF scheduler has 2291 * actively decided not to schedule any tasks on the CPU). 2292 */ 2293 if (sched_class_above(&ext_sched_class, next_class)) 2294 return; 2295 2296 /* 2297 * At this point we know that SCX was preempted by a higher priority 2298 * sched_class, so invoke the ->cpu_release() callback if we have not 2299 * done so already. We only send the callback once between SCX being 2300 * preempted, and it regaining control of the CPU. 2301 * 2302 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 2303 * next time that balance_scx() is invoked. 2304 */ 2305 if (!rq->scx.cpu_released) { 2306 if (SCX_HAS_OP(sch, cpu_release)) { 2307 struct scx_cpu_release_args args = { 2308 .reason = preempt_reason_from_class(next_class), 2309 .task = next, 2310 }; 2311 2312 SCX_CALL_OP(sch, SCX_KF_CPU_RELEASE, cpu_release, rq, 2313 cpu_of(rq), &args); 2314 } 2315 rq->scx.cpu_released = true; 2316 } 2317 } 2318 2319 static void put_prev_task_scx(struct rq *rq, struct task_struct *p, 2320 struct task_struct *next) 2321 { 2322 struct scx_sched *sch = scx_root; 2323 2324 /* see kick_cpus_irq_workfn() */ 2325 smp_store_release(&rq->scx.kick_sync, rq->scx.kick_sync + 1); 2326 2327 update_curr_scx(rq); 2328 2329 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2330 if (SCX_HAS_OP(sch, stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 2331 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, true); 2332 2333 if (p->scx.flags & SCX_TASK_QUEUED) { 2334 set_task_runnable(rq, p); 2335 2336 /* 2337 * If @p has slice left and is being put, @p is getting 2338 * preempted by a higher priority scheduler class or core-sched 2339 * forcing a different task. Leave it at the head of the local 2340 * DSQ. 2341 */ 2342 if (p->scx.slice && !scx_rq_bypassing(rq)) { 2343 dispatch_enqueue(sch, &rq->scx.local_dsq, p, 2344 SCX_ENQ_HEAD); 2345 goto switch_class; 2346 } 2347 2348 /* 2349 * If @p is runnable but we're about to enter a lower 2350 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell 2351 * ops.enqueue() that @p is the only one available for this cpu, 2352 * which should trigger an explicit follow-up scheduling event. 2353 */ 2354 if (sched_class_above(&ext_sched_class, next->sched_class)) { 2355 WARN_ON_ONCE(!(sch->ops.flags & SCX_OPS_ENQ_LAST)); 2356 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 2357 } else { 2358 do_enqueue_task(rq, p, 0, -1); 2359 } 2360 } 2361 2362 switch_class: 2363 if (next && next->sched_class != &ext_sched_class) 2364 switch_class(rq, next); 2365 } 2366 2367 static struct task_struct *first_local_task(struct rq *rq) 2368 { 2369 return list_first_entry_or_null(&rq->scx.local_dsq.list, 2370 struct task_struct, scx.dsq_list.node); 2371 } 2372 2373 static struct task_struct * 2374 do_pick_task_scx(struct rq *rq, struct rq_flags *rf, bool force_scx) 2375 { 2376 struct task_struct *prev = rq->curr; 2377 bool keep_prev, kick_idle = false; 2378 struct task_struct *p; 2379 2380 /* see kick_cpus_irq_workfn() */ 2381 smp_store_release(&rq->scx.kick_sync, rq->scx.kick_sync + 1); 2382 2383 rq_modified_clear(rq); 2384 2385 rq_unpin_lock(rq, rf); 2386 balance_one(rq, prev); 2387 rq_repin_lock(rq, rf); 2388 2389 maybe_queue_balance_callback(rq); 2390 2391 /* 2392 * If any higher-priority sched class enqueued a runnable task on 2393 * this rq during balance_one(), abort and return RETRY_TASK, so 2394 * that the scheduler loop can restart. 2395 * 2396 * If @force_scx is true, always try to pick a SCHED_EXT task, 2397 * regardless of any higher-priority sched classes activity. 2398 */ 2399 if (!force_scx && rq_modified_above(rq, &ext_sched_class)) 2400 return RETRY_TASK; 2401 2402 keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP; 2403 if (unlikely(keep_prev && 2404 prev->sched_class != &ext_sched_class)) { 2405 WARN_ON_ONCE(scx_enable_state() == SCX_ENABLED); 2406 keep_prev = false; 2407 } 2408 2409 /* 2410 * If balance_scx() is telling us to keep running @prev, replenish slice 2411 * if necessary and keep running @prev. Otherwise, pop the first one 2412 * from the local DSQ. 2413 */ 2414 if (keep_prev) { 2415 p = prev; 2416 if (!p->scx.slice) 2417 refill_task_slice_dfl(rcu_dereference_sched(scx_root), p); 2418 } else { 2419 p = first_local_task(rq); 2420 if (!p) { 2421 if (kick_idle) 2422 scx_kick_cpu(rcu_dereference_sched(scx_root), 2423 cpu_of(rq), SCX_KICK_IDLE); 2424 return NULL; 2425 } 2426 2427 if (unlikely(!p->scx.slice)) { 2428 struct scx_sched *sch = rcu_dereference_sched(scx_root); 2429 2430 if (!scx_rq_bypassing(rq) && !sch->warned_zero_slice) { 2431 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n", 2432 p->comm, p->pid, __func__); 2433 sch->warned_zero_slice = true; 2434 } 2435 refill_task_slice_dfl(sch, p); 2436 } 2437 } 2438 2439 return p; 2440 } 2441 2442 static struct task_struct *pick_task_scx(struct rq *rq, struct rq_flags *rf) 2443 { 2444 return do_pick_task_scx(rq, rf, false); 2445 } 2446 2447 #ifdef CONFIG_SCHED_CORE 2448 /** 2449 * scx_prio_less - Task ordering for core-sched 2450 * @a: task A 2451 * @b: task B 2452 * @in_fi: in forced idle state 2453 * 2454 * Core-sched is implemented as an additional scheduling layer on top of the 2455 * usual sched_class'es and needs to find out the expected task ordering. For 2456 * SCX, core-sched calls this function to interrogate the task ordering. 2457 * 2458 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used 2459 * to implement the default task ordering. The older the timestamp, the higher 2460 * priority the task - the global FIFO ordering matching the default scheduling 2461 * behavior. 2462 * 2463 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to 2464 * implement FIFO ordering within each local DSQ. See pick_task_scx(). 2465 */ 2466 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, 2467 bool in_fi) 2468 { 2469 struct scx_sched *sch = scx_root; 2470 2471 /* 2472 * The const qualifiers are dropped from task_struct pointers when 2473 * calling ops.core_sched_before(). Accesses are controlled by the 2474 * verifier. 2475 */ 2476 if (SCX_HAS_OP(sch, core_sched_before) && 2477 !scx_rq_bypassing(task_rq(a))) 2478 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, core_sched_before, 2479 NULL, 2480 (struct task_struct *)a, 2481 (struct task_struct *)b); 2482 else 2483 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); 2484 } 2485 #endif /* CONFIG_SCHED_CORE */ 2486 2487 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 2488 { 2489 struct scx_sched *sch = scx_root; 2490 bool rq_bypass; 2491 2492 /* 2493 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 2494 * can be a good migration opportunity with low cache and memory 2495 * footprint. Returning a CPU different than @prev_cpu triggers 2496 * immediate rq migration. However, for SCX, as the current rq 2497 * association doesn't dictate where the task is going to run, this 2498 * doesn't fit well. If necessary, we can later add a dedicated method 2499 * which can decide to preempt self to force it through the regular 2500 * scheduling path. 2501 */ 2502 if (unlikely(wake_flags & WF_EXEC)) 2503 return prev_cpu; 2504 2505 rq_bypass = scx_rq_bypassing(task_rq(p)); 2506 if (likely(SCX_HAS_OP(sch, select_cpu)) && !rq_bypass) { 2507 s32 cpu; 2508 struct task_struct **ddsp_taskp; 2509 2510 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 2511 WARN_ON_ONCE(*ddsp_taskp); 2512 *ddsp_taskp = p; 2513 2514 cpu = SCX_CALL_OP_TASK_RET(sch, 2515 SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 2516 select_cpu, NULL, p, prev_cpu, 2517 wake_flags); 2518 p->scx.selected_cpu = cpu; 2519 *ddsp_taskp = NULL; 2520 if (ops_cpu_valid(sch, cpu, "from ops.select_cpu()")) 2521 return cpu; 2522 else 2523 return prev_cpu; 2524 } else { 2525 s32 cpu; 2526 2527 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, NULL, 0); 2528 if (cpu >= 0) { 2529 refill_task_slice_dfl(sch, p); 2530 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 2531 } else { 2532 cpu = prev_cpu; 2533 } 2534 p->scx.selected_cpu = cpu; 2535 2536 if (rq_bypass) 2537 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1); 2538 return cpu; 2539 } 2540 } 2541 2542 static void task_woken_scx(struct rq *rq, struct task_struct *p) 2543 { 2544 run_deferred(rq); 2545 } 2546 2547 static void set_cpus_allowed_scx(struct task_struct *p, 2548 struct affinity_context *ac) 2549 { 2550 struct scx_sched *sch = scx_root; 2551 2552 set_cpus_allowed_common(p, ac); 2553 2554 /* 2555 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 2556 * differ from the configured one in @p->cpus_mask. Always tell the bpf 2557 * scheduler the effective one. 2558 * 2559 * Fine-grained memory write control is enforced by BPF making the const 2560 * designation pointless. Cast it away when calling the operation. 2561 */ 2562 if (SCX_HAS_OP(sch, set_cpumask)) 2563 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, NULL, 2564 p, (struct cpumask *)p->cpus_ptr); 2565 } 2566 2567 static void handle_hotplug(struct rq *rq, bool online) 2568 { 2569 struct scx_sched *sch = scx_root; 2570 int cpu = cpu_of(rq); 2571 2572 atomic_long_inc(&scx_hotplug_seq); 2573 2574 /* 2575 * scx_root updates are protected by cpus_read_lock() and will stay 2576 * stable here. Note that we can't depend on scx_enabled() test as the 2577 * hotplug ops need to be enabled before __scx_enabled is set. 2578 */ 2579 if (unlikely(!sch)) 2580 return; 2581 2582 if (scx_enabled()) 2583 scx_idle_update_selcpu_topology(&sch->ops); 2584 2585 if (online && SCX_HAS_OP(sch, cpu_online)) 2586 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_online, NULL, cpu); 2587 else if (!online && SCX_HAS_OP(sch, cpu_offline)) 2588 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_offline, NULL, cpu); 2589 else 2590 scx_exit(sch, SCX_EXIT_UNREG_KERN, 2591 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 2592 "cpu %d going %s, exiting scheduler", cpu, 2593 online ? "online" : "offline"); 2594 } 2595 2596 void scx_rq_activate(struct rq *rq) 2597 { 2598 handle_hotplug(rq, true); 2599 } 2600 2601 void scx_rq_deactivate(struct rq *rq) 2602 { 2603 handle_hotplug(rq, false); 2604 } 2605 2606 static void rq_online_scx(struct rq *rq) 2607 { 2608 rq->scx.flags |= SCX_RQ_ONLINE; 2609 } 2610 2611 static void rq_offline_scx(struct rq *rq) 2612 { 2613 rq->scx.flags &= ~SCX_RQ_ONLINE; 2614 } 2615 2616 2617 static bool check_rq_for_timeouts(struct rq *rq) 2618 { 2619 struct scx_sched *sch; 2620 struct task_struct *p; 2621 struct rq_flags rf; 2622 bool timed_out = false; 2623 2624 rq_lock_irqsave(rq, &rf); 2625 sch = rcu_dereference_bh(scx_root); 2626 if (unlikely(!sch)) 2627 goto out_unlock; 2628 2629 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 2630 unsigned long last_runnable = p->scx.runnable_at; 2631 2632 if (unlikely(time_after(jiffies, 2633 last_runnable + scx_watchdog_timeout))) { 2634 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 2635 2636 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0, 2637 "%s[%d] failed to run for %u.%03us", 2638 p->comm, p->pid, dur_ms / 1000, dur_ms % 1000); 2639 timed_out = true; 2640 break; 2641 } 2642 } 2643 out_unlock: 2644 rq_unlock_irqrestore(rq, &rf); 2645 return timed_out; 2646 } 2647 2648 static void scx_watchdog_workfn(struct work_struct *work) 2649 { 2650 int cpu; 2651 2652 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 2653 2654 for_each_online_cpu(cpu) { 2655 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 2656 break; 2657 2658 cond_resched(); 2659 } 2660 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 2661 scx_watchdog_timeout / 2); 2662 } 2663 2664 void scx_tick(struct rq *rq) 2665 { 2666 struct scx_sched *sch; 2667 unsigned long last_check; 2668 2669 if (!scx_enabled()) 2670 return; 2671 2672 sch = rcu_dereference_bh(scx_root); 2673 if (unlikely(!sch)) 2674 return; 2675 2676 last_check = READ_ONCE(scx_watchdog_timestamp); 2677 if (unlikely(time_after(jiffies, 2678 last_check + READ_ONCE(scx_watchdog_timeout)))) { 2679 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 2680 2681 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0, 2682 "watchdog failed to check in for %u.%03us", 2683 dur_ms / 1000, dur_ms % 1000); 2684 } 2685 2686 update_other_load_avgs(rq); 2687 } 2688 2689 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 2690 { 2691 struct scx_sched *sch = scx_root; 2692 2693 update_curr_scx(rq); 2694 2695 /* 2696 * While disabling, always resched and refresh core-sched timestamp as 2697 * we can't trust the slice management or ops.core_sched_before(). 2698 */ 2699 if (scx_rq_bypassing(rq)) { 2700 curr->scx.slice = 0; 2701 touch_core_sched(rq, curr); 2702 } else if (SCX_HAS_OP(sch, tick)) { 2703 SCX_CALL_OP_TASK(sch, SCX_KF_REST, tick, rq, curr); 2704 } 2705 2706 if (!curr->scx.slice) 2707 resched_curr(rq); 2708 } 2709 2710 #ifdef CONFIG_EXT_GROUP_SCHED 2711 static struct cgroup *tg_cgrp(struct task_group *tg) 2712 { 2713 /* 2714 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, 2715 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the 2716 * root cgroup. 2717 */ 2718 if (tg && tg->css.cgroup) 2719 return tg->css.cgroup; 2720 else 2721 return &cgrp_dfl_root.cgrp; 2722 } 2723 2724 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), 2725 2726 #else /* CONFIG_EXT_GROUP_SCHED */ 2727 2728 #define SCX_INIT_TASK_ARGS_CGROUP(tg) 2729 2730 #endif /* CONFIG_EXT_GROUP_SCHED */ 2731 2732 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 2733 { 2734 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 2735 } 2736 2737 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 2738 { 2739 enum scx_task_state prev_state = scx_get_task_state(p); 2740 bool warn = false; 2741 2742 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 2743 2744 switch (state) { 2745 case SCX_TASK_NONE: 2746 break; 2747 case SCX_TASK_INIT: 2748 warn = prev_state != SCX_TASK_NONE; 2749 break; 2750 case SCX_TASK_READY: 2751 warn = prev_state == SCX_TASK_NONE; 2752 break; 2753 case SCX_TASK_ENABLED: 2754 warn = prev_state != SCX_TASK_READY; 2755 break; 2756 default: 2757 warn = true; 2758 return; 2759 } 2760 2761 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 2762 prev_state, state, p->comm, p->pid); 2763 2764 p->scx.flags &= ~SCX_TASK_STATE_MASK; 2765 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 2766 } 2767 2768 static int scx_init_task(struct task_struct *p, struct task_group *tg, bool fork) 2769 { 2770 struct scx_sched *sch = scx_root; 2771 int ret; 2772 2773 p->scx.disallow = false; 2774 2775 if (SCX_HAS_OP(sch, init_task)) { 2776 struct scx_init_task_args args = { 2777 SCX_INIT_TASK_ARGS_CGROUP(tg) 2778 .fork = fork, 2779 }; 2780 2781 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init_task, NULL, 2782 p, &args); 2783 if (unlikely(ret)) { 2784 ret = ops_sanitize_err(sch, "init_task", ret); 2785 return ret; 2786 } 2787 } 2788 2789 scx_set_task_state(p, SCX_TASK_INIT); 2790 2791 if (p->scx.disallow) { 2792 if (!fork) { 2793 struct rq *rq; 2794 struct rq_flags rf; 2795 2796 rq = task_rq_lock(p, &rf); 2797 2798 /* 2799 * We're in the load path and @p->policy will be applied 2800 * right after. Reverting @p->policy here and rejecting 2801 * %SCHED_EXT transitions from scx_check_setscheduler() 2802 * guarantees that if ops.init_task() sets @p->disallow, 2803 * @p can never be in SCX. 2804 */ 2805 if (p->policy == SCHED_EXT) { 2806 p->policy = SCHED_NORMAL; 2807 atomic_long_inc(&scx_nr_rejected); 2808 } 2809 2810 task_rq_unlock(rq, p, &rf); 2811 } else if (p->policy == SCHED_EXT) { 2812 scx_error(sch, "ops.init_task() set task->scx.disallow for %s[%d] during fork", 2813 p->comm, p->pid); 2814 } 2815 } 2816 2817 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2818 return 0; 2819 } 2820 2821 static void scx_enable_task(struct task_struct *p) 2822 { 2823 struct scx_sched *sch = scx_root; 2824 struct rq *rq = task_rq(p); 2825 u32 weight; 2826 2827 lockdep_assert_rq_held(rq); 2828 2829 /* 2830 * Set the weight before calling ops.enable() so that the scheduler 2831 * doesn't see a stale value if they inspect the task struct. 2832 */ 2833 if (task_has_idle_policy(p)) 2834 weight = WEIGHT_IDLEPRIO; 2835 else 2836 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 2837 2838 p->scx.weight = sched_weight_to_cgroup(weight); 2839 2840 if (SCX_HAS_OP(sch, enable)) 2841 SCX_CALL_OP_TASK(sch, SCX_KF_REST, enable, rq, p); 2842 scx_set_task_state(p, SCX_TASK_ENABLED); 2843 2844 if (SCX_HAS_OP(sch, set_weight)) 2845 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq, 2846 p, p->scx.weight); 2847 } 2848 2849 static void scx_disable_task(struct task_struct *p) 2850 { 2851 struct scx_sched *sch = scx_root; 2852 struct rq *rq = task_rq(p); 2853 2854 lockdep_assert_rq_held(rq); 2855 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 2856 2857 if (SCX_HAS_OP(sch, disable)) 2858 SCX_CALL_OP_TASK(sch, SCX_KF_REST, disable, rq, p); 2859 scx_set_task_state(p, SCX_TASK_READY); 2860 } 2861 2862 static void scx_exit_task(struct task_struct *p) 2863 { 2864 struct scx_sched *sch = scx_root; 2865 struct scx_exit_task_args args = { 2866 .cancelled = false, 2867 }; 2868 2869 lockdep_assert_rq_held(task_rq(p)); 2870 2871 switch (scx_get_task_state(p)) { 2872 case SCX_TASK_NONE: 2873 return; 2874 case SCX_TASK_INIT: 2875 args.cancelled = true; 2876 break; 2877 case SCX_TASK_READY: 2878 break; 2879 case SCX_TASK_ENABLED: 2880 scx_disable_task(p); 2881 break; 2882 default: 2883 WARN_ON_ONCE(true); 2884 return; 2885 } 2886 2887 if (SCX_HAS_OP(sch, exit_task)) 2888 SCX_CALL_OP_TASK(sch, SCX_KF_REST, exit_task, task_rq(p), 2889 p, &args); 2890 scx_set_task_state(p, SCX_TASK_NONE); 2891 } 2892 2893 void init_scx_entity(struct sched_ext_entity *scx) 2894 { 2895 memset(scx, 0, sizeof(*scx)); 2896 INIT_LIST_HEAD(&scx->dsq_list.node); 2897 RB_CLEAR_NODE(&scx->dsq_priq); 2898 scx->sticky_cpu = -1; 2899 scx->holding_cpu = -1; 2900 INIT_LIST_HEAD(&scx->runnable_node); 2901 scx->runnable_at = jiffies; 2902 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 2903 scx->slice = SCX_SLICE_DFL; 2904 } 2905 2906 void scx_pre_fork(struct task_struct *p) 2907 { 2908 /* 2909 * BPF scheduler enable/disable paths want to be able to iterate and 2910 * update all tasks which can become complex when racing forks. As 2911 * enable/disable are very cold paths, let's use a percpu_rwsem to 2912 * exclude forks. 2913 */ 2914 percpu_down_read(&scx_fork_rwsem); 2915 } 2916 2917 int scx_fork(struct task_struct *p) 2918 { 2919 percpu_rwsem_assert_held(&scx_fork_rwsem); 2920 2921 if (scx_init_task_enabled) 2922 return scx_init_task(p, task_group(p), true); 2923 else 2924 return 0; 2925 } 2926 2927 void scx_post_fork(struct task_struct *p) 2928 { 2929 if (scx_init_task_enabled) { 2930 scx_set_task_state(p, SCX_TASK_READY); 2931 2932 /* 2933 * Enable the task immediately if it's running on sched_ext. 2934 * Otherwise, it'll be enabled in switching_to_scx() if and 2935 * when it's ever configured to run with a SCHED_EXT policy. 2936 */ 2937 if (p->sched_class == &ext_sched_class) { 2938 struct rq_flags rf; 2939 struct rq *rq; 2940 2941 rq = task_rq_lock(p, &rf); 2942 scx_enable_task(p); 2943 task_rq_unlock(rq, p, &rf); 2944 } 2945 } 2946 2947 spin_lock_irq(&scx_tasks_lock); 2948 list_add_tail(&p->scx.tasks_node, &scx_tasks); 2949 spin_unlock_irq(&scx_tasks_lock); 2950 2951 percpu_up_read(&scx_fork_rwsem); 2952 } 2953 2954 void scx_cancel_fork(struct task_struct *p) 2955 { 2956 if (scx_enabled()) { 2957 struct rq *rq; 2958 struct rq_flags rf; 2959 2960 rq = task_rq_lock(p, &rf); 2961 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 2962 scx_exit_task(p); 2963 task_rq_unlock(rq, p, &rf); 2964 } 2965 2966 percpu_up_read(&scx_fork_rwsem); 2967 } 2968 2969 void sched_ext_free(struct task_struct *p) 2970 { 2971 unsigned long flags; 2972 2973 spin_lock_irqsave(&scx_tasks_lock, flags); 2974 list_del_init(&p->scx.tasks_node); 2975 spin_unlock_irqrestore(&scx_tasks_lock, flags); 2976 2977 /* 2978 * @p is off scx_tasks and wholly ours. scx_enable()'s READY -> ENABLED 2979 * transitions can't race us. Disable ops for @p. 2980 */ 2981 if (scx_get_task_state(p) != SCX_TASK_NONE) { 2982 struct rq_flags rf; 2983 struct rq *rq; 2984 2985 rq = task_rq_lock(p, &rf); 2986 scx_exit_task(p); 2987 task_rq_unlock(rq, p, &rf); 2988 } 2989 } 2990 2991 static void reweight_task_scx(struct rq *rq, struct task_struct *p, 2992 const struct load_weight *lw) 2993 { 2994 struct scx_sched *sch = scx_root; 2995 2996 lockdep_assert_rq_held(task_rq(p)); 2997 2998 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); 2999 if (SCX_HAS_OP(sch, set_weight)) 3000 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq, 3001 p, p->scx.weight); 3002 } 3003 3004 static void prio_changed_scx(struct rq *rq, struct task_struct *p, u64 oldprio) 3005 { 3006 } 3007 3008 static void switching_to_scx(struct rq *rq, struct task_struct *p) 3009 { 3010 struct scx_sched *sch = scx_root; 3011 3012 scx_enable_task(p); 3013 3014 /* 3015 * set_cpus_allowed_scx() is not called while @p is associated with a 3016 * different scheduler class. Keep the BPF scheduler up-to-date. 3017 */ 3018 if (SCX_HAS_OP(sch, set_cpumask)) 3019 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, rq, 3020 p, (struct cpumask *)p->cpus_ptr); 3021 } 3022 3023 static void switched_from_scx(struct rq *rq, struct task_struct *p) 3024 { 3025 scx_disable_task(p); 3026 } 3027 3028 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 3029 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 3030 3031 int scx_check_setscheduler(struct task_struct *p, int policy) 3032 { 3033 lockdep_assert_rq_held(task_rq(p)); 3034 3035 /* if disallow, reject transitioning into SCX */ 3036 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 3037 p->policy != policy && policy == SCHED_EXT) 3038 return -EACCES; 3039 3040 return 0; 3041 } 3042 3043 #ifdef CONFIG_NO_HZ_FULL 3044 bool scx_can_stop_tick(struct rq *rq) 3045 { 3046 struct task_struct *p = rq->curr; 3047 3048 if (scx_rq_bypassing(rq)) 3049 return false; 3050 3051 if (p->sched_class != &ext_sched_class) 3052 return true; 3053 3054 /* 3055 * @rq can dispatch from different DSQs, so we can't tell whether it 3056 * needs the tick or not by looking at nr_running. Allow stopping ticks 3057 * iff the BPF scheduler indicated so. See set_next_task_scx(). 3058 */ 3059 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 3060 } 3061 #endif 3062 3063 #ifdef CONFIG_EXT_GROUP_SCHED 3064 3065 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_ops_rwsem); 3066 static bool scx_cgroup_enabled; 3067 3068 void scx_tg_init(struct task_group *tg) 3069 { 3070 tg->scx.weight = CGROUP_WEIGHT_DFL; 3071 tg->scx.bw_period_us = default_bw_period_us(); 3072 tg->scx.bw_quota_us = RUNTIME_INF; 3073 tg->scx.idle = false; 3074 } 3075 3076 int scx_tg_online(struct task_group *tg) 3077 { 3078 struct scx_sched *sch = scx_root; 3079 int ret = 0; 3080 3081 WARN_ON_ONCE(tg->scx.flags & (SCX_TG_ONLINE | SCX_TG_INITED)); 3082 3083 if (scx_cgroup_enabled) { 3084 if (SCX_HAS_OP(sch, cgroup_init)) { 3085 struct scx_cgroup_init_args args = 3086 { .weight = tg->scx.weight, 3087 .bw_period_us = tg->scx.bw_period_us, 3088 .bw_quota_us = tg->scx.bw_quota_us, 3089 .bw_burst_us = tg->scx.bw_burst_us }; 3090 3091 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, 3092 NULL, tg->css.cgroup, &args); 3093 if (ret) 3094 ret = ops_sanitize_err(sch, "cgroup_init", ret); 3095 } 3096 if (ret == 0) 3097 tg->scx.flags |= SCX_TG_ONLINE | SCX_TG_INITED; 3098 } else { 3099 tg->scx.flags |= SCX_TG_ONLINE; 3100 } 3101 3102 return ret; 3103 } 3104 3105 void scx_tg_offline(struct task_group *tg) 3106 { 3107 struct scx_sched *sch = scx_root; 3108 3109 WARN_ON_ONCE(!(tg->scx.flags & SCX_TG_ONLINE)); 3110 3111 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_exit) && 3112 (tg->scx.flags & SCX_TG_INITED)) 3113 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL, 3114 tg->css.cgroup); 3115 tg->scx.flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); 3116 } 3117 3118 int scx_cgroup_can_attach(struct cgroup_taskset *tset) 3119 { 3120 struct scx_sched *sch = scx_root; 3121 struct cgroup_subsys_state *css; 3122 struct task_struct *p; 3123 int ret; 3124 3125 if (!scx_cgroup_enabled) 3126 return 0; 3127 3128 cgroup_taskset_for_each(p, css, tset) { 3129 struct cgroup *from = tg_cgrp(task_group(p)); 3130 struct cgroup *to = tg_cgrp(css_tg(css)); 3131 3132 WARN_ON_ONCE(p->scx.cgrp_moving_from); 3133 3134 /* 3135 * sched_move_task() omits identity migrations. Let's match the 3136 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() 3137 * always match one-to-one. 3138 */ 3139 if (from == to) 3140 continue; 3141 3142 if (SCX_HAS_OP(sch, cgroup_prep_move)) { 3143 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, 3144 cgroup_prep_move, NULL, 3145 p, from, css->cgroup); 3146 if (ret) 3147 goto err; 3148 } 3149 3150 p->scx.cgrp_moving_from = from; 3151 } 3152 3153 return 0; 3154 3155 err: 3156 cgroup_taskset_for_each(p, css, tset) { 3157 if (SCX_HAS_OP(sch, cgroup_cancel_move) && 3158 p->scx.cgrp_moving_from) 3159 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL, 3160 p, p->scx.cgrp_moving_from, css->cgroup); 3161 p->scx.cgrp_moving_from = NULL; 3162 } 3163 3164 return ops_sanitize_err(sch, "cgroup_prep_move", ret); 3165 } 3166 3167 void scx_cgroup_move_task(struct task_struct *p) 3168 { 3169 struct scx_sched *sch = scx_root; 3170 3171 if (!scx_cgroup_enabled) 3172 return; 3173 3174 /* 3175 * @p must have ops.cgroup_prep_move() called on it and thus 3176 * cgrp_moving_from set. 3177 */ 3178 if (SCX_HAS_OP(sch, cgroup_move) && 3179 !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) 3180 SCX_CALL_OP_TASK(sch, SCX_KF_UNLOCKED, cgroup_move, NULL, 3181 p, p->scx.cgrp_moving_from, 3182 tg_cgrp(task_group(p))); 3183 p->scx.cgrp_moving_from = NULL; 3184 } 3185 3186 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) 3187 { 3188 struct scx_sched *sch = scx_root; 3189 struct cgroup_subsys_state *css; 3190 struct task_struct *p; 3191 3192 if (!scx_cgroup_enabled) 3193 return; 3194 3195 cgroup_taskset_for_each(p, css, tset) { 3196 if (SCX_HAS_OP(sch, cgroup_cancel_move) && 3197 p->scx.cgrp_moving_from) 3198 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL, 3199 p, p->scx.cgrp_moving_from, css->cgroup); 3200 p->scx.cgrp_moving_from = NULL; 3201 } 3202 } 3203 3204 void scx_group_set_weight(struct task_group *tg, unsigned long weight) 3205 { 3206 struct scx_sched *sch = scx_root; 3207 3208 percpu_down_read(&scx_cgroup_ops_rwsem); 3209 3210 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_weight) && 3211 tg->scx.weight != weight) 3212 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_weight, NULL, 3213 tg_cgrp(tg), weight); 3214 3215 tg->scx.weight = weight; 3216 3217 percpu_up_read(&scx_cgroup_ops_rwsem); 3218 } 3219 3220 void scx_group_set_idle(struct task_group *tg, bool idle) 3221 { 3222 struct scx_sched *sch = scx_root; 3223 3224 percpu_down_read(&scx_cgroup_ops_rwsem); 3225 3226 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_idle)) 3227 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_idle, NULL, 3228 tg_cgrp(tg), idle); 3229 3230 /* Update the task group's idle state */ 3231 tg->scx.idle = idle; 3232 3233 percpu_up_read(&scx_cgroup_ops_rwsem); 3234 } 3235 3236 void scx_group_set_bandwidth(struct task_group *tg, 3237 u64 period_us, u64 quota_us, u64 burst_us) 3238 { 3239 struct scx_sched *sch = scx_root; 3240 3241 percpu_down_read(&scx_cgroup_ops_rwsem); 3242 3243 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_bandwidth) && 3244 (tg->scx.bw_period_us != period_us || 3245 tg->scx.bw_quota_us != quota_us || 3246 tg->scx.bw_burst_us != burst_us)) 3247 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_bandwidth, NULL, 3248 tg_cgrp(tg), period_us, quota_us, burst_us); 3249 3250 tg->scx.bw_period_us = period_us; 3251 tg->scx.bw_quota_us = quota_us; 3252 tg->scx.bw_burst_us = burst_us; 3253 3254 percpu_up_read(&scx_cgroup_ops_rwsem); 3255 } 3256 3257 static void scx_cgroup_lock(void) 3258 { 3259 percpu_down_write(&scx_cgroup_ops_rwsem); 3260 cgroup_lock(); 3261 } 3262 3263 static void scx_cgroup_unlock(void) 3264 { 3265 cgroup_unlock(); 3266 percpu_up_write(&scx_cgroup_ops_rwsem); 3267 } 3268 3269 #else /* CONFIG_EXT_GROUP_SCHED */ 3270 3271 static void scx_cgroup_lock(void) {} 3272 static void scx_cgroup_unlock(void) {} 3273 3274 #endif /* CONFIG_EXT_GROUP_SCHED */ 3275 3276 /* 3277 * Omitted operations: 3278 * 3279 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 3280 * isn't tied to the CPU at that point. Preemption is implemented by resetting 3281 * the victim task's slice to 0 and triggering reschedule on the target CPU. 3282 * 3283 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 3284 * 3285 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 3286 * their current sched_class. Call them directly from sched core instead. 3287 */ 3288 DEFINE_SCHED_CLASS(ext) = { 3289 .queue_mask = 1, 3290 3291 .enqueue_task = enqueue_task_scx, 3292 .dequeue_task = dequeue_task_scx, 3293 .yield_task = yield_task_scx, 3294 .yield_to_task = yield_to_task_scx, 3295 3296 .wakeup_preempt = wakeup_preempt_scx, 3297 3298 .pick_task = pick_task_scx, 3299 3300 .put_prev_task = put_prev_task_scx, 3301 .set_next_task = set_next_task_scx, 3302 3303 .select_task_rq = select_task_rq_scx, 3304 .task_woken = task_woken_scx, 3305 .set_cpus_allowed = set_cpus_allowed_scx, 3306 3307 .rq_online = rq_online_scx, 3308 .rq_offline = rq_offline_scx, 3309 3310 .task_tick = task_tick_scx, 3311 3312 .switching_to = switching_to_scx, 3313 .switched_from = switched_from_scx, 3314 .switched_to = switched_to_scx, 3315 .reweight_task = reweight_task_scx, 3316 .prio_changed = prio_changed_scx, 3317 3318 .update_curr = update_curr_scx, 3319 3320 #ifdef CONFIG_UCLAMP_TASK 3321 .uclamp_enabled = 1, 3322 #endif 3323 }; 3324 3325 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 3326 { 3327 memset(dsq, 0, sizeof(*dsq)); 3328 3329 raw_spin_lock_init(&dsq->lock); 3330 INIT_LIST_HEAD(&dsq->list); 3331 dsq->id = dsq_id; 3332 } 3333 3334 static void free_dsq_irq_workfn(struct irq_work *irq_work) 3335 { 3336 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 3337 struct scx_dispatch_q *dsq, *tmp_dsq; 3338 3339 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 3340 kfree_rcu(dsq, rcu); 3341 } 3342 3343 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 3344 3345 static void destroy_dsq(struct scx_sched *sch, u64 dsq_id) 3346 { 3347 struct scx_dispatch_q *dsq; 3348 unsigned long flags; 3349 3350 rcu_read_lock(); 3351 3352 dsq = find_user_dsq(sch, dsq_id); 3353 if (!dsq) 3354 goto out_unlock_rcu; 3355 3356 raw_spin_lock_irqsave(&dsq->lock, flags); 3357 3358 if (dsq->nr) { 3359 scx_error(sch, "attempting to destroy in-use dsq 0x%016llx (nr=%u)", 3360 dsq->id, dsq->nr); 3361 goto out_unlock_dsq; 3362 } 3363 3364 if (rhashtable_remove_fast(&sch->dsq_hash, &dsq->hash_node, 3365 dsq_hash_params)) 3366 goto out_unlock_dsq; 3367 3368 /* 3369 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 3370 * queueing more tasks. As this function can be called from anywhere, 3371 * freeing is bounced through an irq work to avoid nesting RCU 3372 * operations inside scheduler locks. 3373 */ 3374 dsq->id = SCX_DSQ_INVALID; 3375 llist_add(&dsq->free_node, &dsqs_to_free); 3376 irq_work_queue(&free_dsq_irq_work); 3377 3378 out_unlock_dsq: 3379 raw_spin_unlock_irqrestore(&dsq->lock, flags); 3380 out_unlock_rcu: 3381 rcu_read_unlock(); 3382 } 3383 3384 #ifdef CONFIG_EXT_GROUP_SCHED 3385 static void scx_cgroup_exit(struct scx_sched *sch) 3386 { 3387 struct cgroup_subsys_state *css; 3388 3389 scx_cgroup_enabled = false; 3390 3391 /* 3392 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk 3393 * cgroups and exit all the inited ones, all online cgroups are exited. 3394 */ 3395 css_for_each_descendant_post(css, &root_task_group.css) { 3396 struct task_group *tg = css_tg(css); 3397 3398 if (!(tg->scx.flags & SCX_TG_INITED)) 3399 continue; 3400 tg->scx.flags &= ~SCX_TG_INITED; 3401 3402 if (!sch->ops.cgroup_exit) 3403 continue; 3404 3405 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL, 3406 css->cgroup); 3407 } 3408 } 3409 3410 static int scx_cgroup_init(struct scx_sched *sch) 3411 { 3412 struct cgroup_subsys_state *css; 3413 int ret; 3414 3415 /* 3416 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk 3417 * cgroups and init, all online cgroups are initialized. 3418 */ 3419 css_for_each_descendant_pre(css, &root_task_group.css) { 3420 struct task_group *tg = css_tg(css); 3421 struct scx_cgroup_init_args args = { 3422 .weight = tg->scx.weight, 3423 .bw_period_us = tg->scx.bw_period_us, 3424 .bw_quota_us = tg->scx.bw_quota_us, 3425 .bw_burst_us = tg->scx.bw_burst_us, 3426 }; 3427 3428 if ((tg->scx.flags & 3429 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) 3430 continue; 3431 3432 if (!sch->ops.cgroup_init) { 3433 tg->scx.flags |= SCX_TG_INITED; 3434 continue; 3435 } 3436 3437 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, NULL, 3438 css->cgroup, &args); 3439 if (ret) { 3440 css_put(css); 3441 scx_error(sch, "ops.cgroup_init() failed (%d)", ret); 3442 return ret; 3443 } 3444 tg->scx.flags |= SCX_TG_INITED; 3445 } 3446 3447 WARN_ON_ONCE(scx_cgroup_enabled); 3448 scx_cgroup_enabled = true; 3449 3450 return 0; 3451 } 3452 3453 #else 3454 static void scx_cgroup_exit(struct scx_sched *sch) {} 3455 static int scx_cgroup_init(struct scx_sched *sch) { return 0; } 3456 #endif 3457 3458 3459 /******************************************************************************** 3460 * Sysfs interface and ops enable/disable. 3461 */ 3462 3463 #define SCX_ATTR(_name) \ 3464 static struct kobj_attribute scx_attr_##_name = { \ 3465 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 3466 .show = scx_attr_##_name##_show, \ 3467 } 3468 3469 static ssize_t scx_attr_state_show(struct kobject *kobj, 3470 struct kobj_attribute *ka, char *buf) 3471 { 3472 return sysfs_emit(buf, "%s\n", scx_enable_state_str[scx_enable_state()]); 3473 } 3474 SCX_ATTR(state); 3475 3476 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 3477 struct kobj_attribute *ka, char *buf) 3478 { 3479 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 3480 } 3481 SCX_ATTR(switch_all); 3482 3483 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 3484 struct kobj_attribute *ka, char *buf) 3485 { 3486 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 3487 } 3488 SCX_ATTR(nr_rejected); 3489 3490 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, 3491 struct kobj_attribute *ka, char *buf) 3492 { 3493 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); 3494 } 3495 SCX_ATTR(hotplug_seq); 3496 3497 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj, 3498 struct kobj_attribute *ka, char *buf) 3499 { 3500 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq)); 3501 } 3502 SCX_ATTR(enable_seq); 3503 3504 static struct attribute *scx_global_attrs[] = { 3505 &scx_attr_state.attr, 3506 &scx_attr_switch_all.attr, 3507 &scx_attr_nr_rejected.attr, 3508 &scx_attr_hotplug_seq.attr, 3509 &scx_attr_enable_seq.attr, 3510 NULL, 3511 }; 3512 3513 static const struct attribute_group scx_global_attr_group = { 3514 .attrs = scx_global_attrs, 3515 }; 3516 3517 static void free_exit_info(struct scx_exit_info *ei); 3518 3519 static void scx_sched_free_rcu_work(struct work_struct *work) 3520 { 3521 struct rcu_work *rcu_work = to_rcu_work(work); 3522 struct scx_sched *sch = container_of(rcu_work, struct scx_sched, rcu_work); 3523 struct rhashtable_iter rht_iter; 3524 struct scx_dispatch_q *dsq; 3525 int node; 3526 3527 irq_work_sync(&sch->error_irq_work); 3528 kthread_stop(sch->helper->task); 3529 3530 free_percpu(sch->pcpu); 3531 3532 for_each_node_state(node, N_POSSIBLE) 3533 kfree(sch->global_dsqs[node]); 3534 kfree(sch->global_dsqs); 3535 3536 rhashtable_walk_enter(&sch->dsq_hash, &rht_iter); 3537 do { 3538 rhashtable_walk_start(&rht_iter); 3539 3540 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 3541 destroy_dsq(sch, dsq->id); 3542 3543 rhashtable_walk_stop(&rht_iter); 3544 } while (dsq == ERR_PTR(-EAGAIN)); 3545 rhashtable_walk_exit(&rht_iter); 3546 3547 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL); 3548 free_exit_info(sch->exit_info); 3549 kfree(sch); 3550 } 3551 3552 static void scx_kobj_release(struct kobject *kobj) 3553 { 3554 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj); 3555 3556 INIT_RCU_WORK(&sch->rcu_work, scx_sched_free_rcu_work); 3557 queue_rcu_work(system_unbound_wq, &sch->rcu_work); 3558 } 3559 3560 static ssize_t scx_attr_ops_show(struct kobject *kobj, 3561 struct kobj_attribute *ka, char *buf) 3562 { 3563 return sysfs_emit(buf, "%s\n", scx_root->ops.name); 3564 } 3565 SCX_ATTR(ops); 3566 3567 #define scx_attr_event_show(buf, at, events, kind) ({ \ 3568 sysfs_emit_at(buf, at, "%s %llu\n", #kind, (events)->kind); \ 3569 }) 3570 3571 static ssize_t scx_attr_events_show(struct kobject *kobj, 3572 struct kobj_attribute *ka, char *buf) 3573 { 3574 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj); 3575 struct scx_event_stats events; 3576 int at = 0; 3577 3578 scx_read_events(sch, &events); 3579 at += scx_attr_event_show(buf, at, &events, SCX_EV_SELECT_CPU_FALLBACK); 3580 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 3581 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_KEEP_LAST); 3582 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_EXITING); 3583 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 3584 at += scx_attr_event_show(buf, at, &events, SCX_EV_REFILL_SLICE_DFL); 3585 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DURATION); 3586 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DISPATCH); 3587 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_ACTIVATE); 3588 return at; 3589 } 3590 SCX_ATTR(events); 3591 3592 static struct attribute *scx_sched_attrs[] = { 3593 &scx_attr_ops.attr, 3594 &scx_attr_events.attr, 3595 NULL, 3596 }; 3597 ATTRIBUTE_GROUPS(scx_sched); 3598 3599 static const struct kobj_type scx_ktype = { 3600 .release = scx_kobj_release, 3601 .sysfs_ops = &kobj_sysfs_ops, 3602 .default_groups = scx_sched_groups, 3603 }; 3604 3605 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 3606 { 3607 return add_uevent_var(env, "SCXOPS=%s", scx_root->ops.name); 3608 } 3609 3610 static const struct kset_uevent_ops scx_uevent_ops = { 3611 .uevent = scx_uevent, 3612 }; 3613 3614 /* 3615 * Used by sched_fork() and __setscheduler_prio() to pick the matching 3616 * sched_class. dl/rt are already handled. 3617 */ 3618 bool task_should_scx(int policy) 3619 { 3620 if (!scx_enabled() || unlikely(scx_enable_state() == SCX_DISABLING)) 3621 return false; 3622 if (READ_ONCE(scx_switching_all)) 3623 return true; 3624 return policy == SCHED_EXT; 3625 } 3626 3627 bool scx_allow_ttwu_queue(const struct task_struct *p) 3628 { 3629 struct scx_sched *sch; 3630 3631 if (!scx_enabled()) 3632 return true; 3633 3634 sch = rcu_dereference_sched(scx_root); 3635 if (unlikely(!sch)) 3636 return true; 3637 3638 if (sch->ops.flags & SCX_OPS_ALLOW_QUEUED_WAKEUP) 3639 return true; 3640 3641 if (unlikely(p->sched_class != &ext_sched_class)) 3642 return true; 3643 3644 return false; 3645 } 3646 3647 /** 3648 * scx_rcu_cpu_stall - sched_ext RCU CPU stall handler 3649 * 3650 * While there are various reasons why RCU CPU stalls can occur on a system 3651 * that may not be caused by the current BPF scheduler, try kicking out the 3652 * current scheduler in an attempt to recover the system to a good state before 3653 * issuing panics. 3654 */ 3655 bool scx_rcu_cpu_stall(void) 3656 { 3657 struct scx_sched *sch; 3658 3659 rcu_read_lock(); 3660 3661 sch = rcu_dereference(scx_root); 3662 if (unlikely(!sch)) { 3663 rcu_read_unlock(); 3664 return false; 3665 } 3666 3667 switch (scx_enable_state()) { 3668 case SCX_ENABLING: 3669 case SCX_ENABLED: 3670 break; 3671 default: 3672 rcu_read_unlock(); 3673 return false; 3674 } 3675 3676 scx_error(sch, "RCU CPU stall detected!"); 3677 rcu_read_unlock(); 3678 3679 return true; 3680 } 3681 3682 /** 3683 * scx_softlockup - sched_ext softlockup handler 3684 * @dur_s: number of seconds of CPU stuck due to soft lockup 3685 * 3686 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can 3687 * live-lock the system by making many CPUs target the same DSQ to the point 3688 * where soft-lockup detection triggers. This function is called from 3689 * soft-lockup watchdog when the triggering point is close and tries to unjam 3690 * the system by enabling the breather and aborting the BPF scheduler. 3691 */ 3692 void scx_softlockup(u32 dur_s) 3693 { 3694 struct scx_sched *sch; 3695 3696 rcu_read_lock(); 3697 3698 sch = rcu_dereference(scx_root); 3699 if (unlikely(!sch)) 3700 goto out_unlock; 3701 3702 switch (scx_enable_state()) { 3703 case SCX_ENABLING: 3704 case SCX_ENABLED: 3705 break; 3706 default: 3707 goto out_unlock; 3708 } 3709 3710 /* allow only one instance, cleared at the end of scx_bypass() */ 3711 if (test_and_set_bit(0, &scx_in_softlockup)) 3712 goto out_unlock; 3713 3714 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n", 3715 smp_processor_id(), dur_s, scx_root->ops.name); 3716 3717 /* 3718 * Some CPUs may be trapped in the dispatch paths. Enable breather 3719 * immediately; otherwise, we might even be able to get to scx_bypass(). 3720 */ 3721 atomic_inc(&scx_breather_depth); 3722 3723 scx_error(sch, "soft lockup - CPU#%d stuck for %us", smp_processor_id(), dur_s); 3724 out_unlock: 3725 rcu_read_unlock(); 3726 } 3727 3728 static void scx_clear_softlockup(void) 3729 { 3730 if (test_and_clear_bit(0, &scx_in_softlockup)) 3731 atomic_dec(&scx_breather_depth); 3732 } 3733 3734 /** 3735 * scx_bypass - [Un]bypass scx_ops and guarantee forward progress 3736 * @bypass: true for bypass, false for unbypass 3737 * 3738 * Bypassing guarantees that all runnable tasks make forward progress without 3739 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 3740 * be held by tasks that the BPF scheduler is forgetting to run, which 3741 * unfortunately also excludes toggling the static branches. 3742 * 3743 * Let's work around by overriding a couple ops and modifying behaviors based on 3744 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 3745 * to force global FIFO scheduling. 3746 * 3747 * - ops.select_cpu() is ignored and the default select_cpu() is used. 3748 * 3749 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 3750 * %SCX_OPS_ENQ_LAST is also ignored. 3751 * 3752 * - ops.dispatch() is ignored. 3753 * 3754 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice 3755 * can't be trusted. Whenever a tick triggers, the running task is rotated to 3756 * the tail of the queue with core_sched_at touched. 3757 * 3758 * - pick_next_task() suppresses zero slice warning. 3759 * 3760 * - scx_kick_cpu() is disabled to avoid irq_work malfunction during PM 3761 * operations. 3762 * 3763 * - scx_prio_less() reverts to the default core_sched_at order. 3764 */ 3765 static void scx_bypass(bool bypass) 3766 { 3767 static DEFINE_RAW_SPINLOCK(bypass_lock); 3768 static unsigned long bypass_timestamp; 3769 struct scx_sched *sch; 3770 unsigned long flags; 3771 int cpu; 3772 3773 raw_spin_lock_irqsave(&bypass_lock, flags); 3774 sch = rcu_dereference_bh(scx_root); 3775 3776 if (bypass) { 3777 scx_bypass_depth++; 3778 WARN_ON_ONCE(scx_bypass_depth <= 0); 3779 if (scx_bypass_depth != 1) 3780 goto unlock; 3781 bypass_timestamp = ktime_get_ns(); 3782 if (sch) 3783 scx_add_event(sch, SCX_EV_BYPASS_ACTIVATE, 1); 3784 } else { 3785 scx_bypass_depth--; 3786 WARN_ON_ONCE(scx_bypass_depth < 0); 3787 if (scx_bypass_depth != 0) 3788 goto unlock; 3789 if (sch) 3790 scx_add_event(sch, SCX_EV_BYPASS_DURATION, 3791 ktime_get_ns() - bypass_timestamp); 3792 } 3793 3794 atomic_inc(&scx_breather_depth); 3795 3796 /* 3797 * No task property is changing. We just need to make sure all currently 3798 * queued tasks are re-queued according to the new scx_rq_bypassing() 3799 * state. As an optimization, walk each rq's runnable_list instead of 3800 * the scx_tasks list. 3801 * 3802 * This function can't trust the scheduler and thus can't use 3803 * cpus_read_lock(). Walk all possible CPUs instead of online. 3804 */ 3805 for_each_possible_cpu(cpu) { 3806 struct rq *rq = cpu_rq(cpu); 3807 struct task_struct *p, *n; 3808 3809 raw_spin_rq_lock(rq); 3810 3811 if (bypass) { 3812 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); 3813 rq->scx.flags |= SCX_RQ_BYPASSING; 3814 } else { 3815 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); 3816 rq->scx.flags &= ~SCX_RQ_BYPASSING; 3817 } 3818 3819 /* 3820 * We need to guarantee that no tasks are on the BPF scheduler 3821 * while bypassing. Either we see enabled or the enable path 3822 * sees scx_rq_bypassing() before moving tasks to SCX. 3823 */ 3824 if (!scx_enabled()) { 3825 raw_spin_rq_unlock(rq); 3826 continue; 3827 } 3828 3829 /* 3830 * The use of list_for_each_entry_safe_reverse() is required 3831 * because each task is going to be removed from and added back 3832 * to the runnable_list during iteration. Because they're added 3833 * to the tail of the list, safe reverse iteration can still 3834 * visit all nodes. 3835 */ 3836 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 3837 scx.runnable_node) { 3838 /* cycling deq/enq is enough, see the function comment */ 3839 scoped_guard (sched_change, p, DEQUEUE_SAVE | DEQUEUE_MOVE) { 3840 /* nothing */ ; 3841 } 3842 } 3843 3844 /* resched to restore ticks and idle state */ 3845 if (cpu_online(cpu) || cpu == smp_processor_id()) 3846 resched_curr(rq); 3847 3848 raw_spin_rq_unlock(rq); 3849 } 3850 3851 atomic_dec(&scx_breather_depth); 3852 unlock: 3853 raw_spin_unlock_irqrestore(&bypass_lock, flags); 3854 scx_clear_softlockup(); 3855 } 3856 3857 static void free_exit_info(struct scx_exit_info *ei) 3858 { 3859 kvfree(ei->dump); 3860 kfree(ei->msg); 3861 kfree(ei->bt); 3862 kfree(ei); 3863 } 3864 3865 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 3866 { 3867 struct scx_exit_info *ei; 3868 3869 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 3870 if (!ei) 3871 return NULL; 3872 3873 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); 3874 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 3875 ei->dump = kvzalloc(exit_dump_len, GFP_KERNEL); 3876 3877 if (!ei->bt || !ei->msg || !ei->dump) { 3878 free_exit_info(ei); 3879 return NULL; 3880 } 3881 3882 return ei; 3883 } 3884 3885 static const char *scx_exit_reason(enum scx_exit_kind kind) 3886 { 3887 switch (kind) { 3888 case SCX_EXIT_UNREG: 3889 return "unregistered from user space"; 3890 case SCX_EXIT_UNREG_BPF: 3891 return "unregistered from BPF"; 3892 case SCX_EXIT_UNREG_KERN: 3893 return "unregistered from the main kernel"; 3894 case SCX_EXIT_SYSRQ: 3895 return "disabled by sysrq-S"; 3896 case SCX_EXIT_ERROR: 3897 return "runtime error"; 3898 case SCX_EXIT_ERROR_BPF: 3899 return "scx_bpf_error"; 3900 case SCX_EXIT_ERROR_STALL: 3901 return "runnable task stall"; 3902 default: 3903 return "<UNKNOWN>"; 3904 } 3905 } 3906 3907 static void free_kick_syncs_rcu(struct rcu_head *rcu) 3908 { 3909 struct scx_kick_syncs *ksyncs = container_of(rcu, struct scx_kick_syncs, rcu); 3910 3911 kvfree(ksyncs); 3912 } 3913 3914 static void free_kick_syncs(void) 3915 { 3916 int cpu; 3917 3918 for_each_possible_cpu(cpu) { 3919 struct scx_kick_syncs **ksyncs = per_cpu_ptr(&scx_kick_syncs, cpu); 3920 struct scx_kick_syncs *to_free; 3921 3922 to_free = rcu_replace_pointer(*ksyncs, NULL, true); 3923 if (to_free) 3924 call_rcu(&to_free->rcu, free_kick_syncs_rcu); 3925 } 3926 } 3927 3928 static void scx_disable_workfn(struct kthread_work *work) 3929 { 3930 struct scx_sched *sch = container_of(work, struct scx_sched, disable_work); 3931 struct scx_exit_info *ei = sch->exit_info; 3932 struct scx_task_iter sti; 3933 struct task_struct *p; 3934 int kind, cpu; 3935 3936 kind = atomic_read(&sch->exit_kind); 3937 while (true) { 3938 if (kind == SCX_EXIT_DONE) /* already disabled? */ 3939 return; 3940 WARN_ON_ONCE(kind == SCX_EXIT_NONE); 3941 if (atomic_try_cmpxchg(&sch->exit_kind, &kind, SCX_EXIT_DONE)) 3942 break; 3943 } 3944 ei->kind = kind; 3945 ei->reason = scx_exit_reason(ei->kind); 3946 3947 /* guarantee forward progress by bypassing scx_ops */ 3948 scx_bypass(true); 3949 3950 switch (scx_set_enable_state(SCX_DISABLING)) { 3951 case SCX_DISABLING: 3952 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 3953 break; 3954 case SCX_DISABLED: 3955 pr_warn("sched_ext: ops error detected without ops (%s)\n", 3956 sch->exit_info->msg); 3957 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING); 3958 goto done; 3959 default: 3960 break; 3961 } 3962 3963 /* 3964 * Here, every runnable task is guaranteed to make forward progress and 3965 * we can safely use blocking synchronization constructs. Actually 3966 * disable ops. 3967 */ 3968 mutex_lock(&scx_enable_mutex); 3969 3970 static_branch_disable(&__scx_switched_all); 3971 WRITE_ONCE(scx_switching_all, false); 3972 3973 /* 3974 * Shut down cgroup support before tasks so that the cgroup attach path 3975 * doesn't race against scx_exit_task(). 3976 */ 3977 scx_cgroup_lock(); 3978 scx_cgroup_exit(sch); 3979 scx_cgroup_unlock(); 3980 3981 /* 3982 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones 3983 * must be switched out and exited synchronously. 3984 */ 3985 percpu_down_write(&scx_fork_rwsem); 3986 3987 scx_init_task_enabled = false; 3988 3989 scx_task_iter_start(&sti); 3990 while ((p = scx_task_iter_next_locked(&sti))) { 3991 unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3992 const struct sched_class *old_class = p->sched_class; 3993 const struct sched_class *new_class = 3994 __setscheduler_class(p->policy, p->prio); 3995 3996 update_rq_clock(task_rq(p)); 3997 3998 if (old_class != new_class) 3999 queue_flags |= DEQUEUE_CLASS; 4000 4001 scoped_guard (sched_change, p, queue_flags) { 4002 p->sched_class = new_class; 4003 } 4004 4005 scx_exit_task(p); 4006 } 4007 scx_task_iter_stop(&sti); 4008 percpu_up_write(&scx_fork_rwsem); 4009 4010 /* 4011 * Invalidate all the rq clocks to prevent getting outdated 4012 * rq clocks from a previous scx scheduler. 4013 */ 4014 for_each_possible_cpu(cpu) { 4015 struct rq *rq = cpu_rq(cpu); 4016 scx_rq_clock_invalidate(rq); 4017 } 4018 4019 /* no task is on scx, turn off all the switches and flush in-progress calls */ 4020 static_branch_disable(&__scx_enabled); 4021 bitmap_zero(sch->has_op, SCX_OPI_END); 4022 scx_idle_disable(); 4023 synchronize_rcu(); 4024 4025 if (ei->kind >= SCX_EXIT_ERROR) { 4026 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4027 sch->ops.name, ei->reason); 4028 4029 if (ei->msg[0] != '\0') 4030 pr_err("sched_ext: %s: %s\n", sch->ops.name, ei->msg); 4031 #ifdef CONFIG_STACKTRACE 4032 stack_trace_print(ei->bt, ei->bt_len, 2); 4033 #endif 4034 } else { 4035 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4036 sch->ops.name, ei->reason); 4037 } 4038 4039 if (sch->ops.exit) 4040 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, exit, NULL, ei); 4041 4042 cancel_delayed_work_sync(&scx_watchdog_work); 4043 4044 /* 4045 * scx_root clearing must be inside cpus_read_lock(). See 4046 * handle_hotplug(). 4047 */ 4048 cpus_read_lock(); 4049 RCU_INIT_POINTER(scx_root, NULL); 4050 cpus_read_unlock(); 4051 4052 /* 4053 * Delete the kobject from the hierarchy synchronously. Otherwise, sysfs 4054 * could observe an object of the same name still in the hierarchy when 4055 * the next scheduler is loaded. 4056 */ 4057 kobject_del(&sch->kobj); 4058 4059 free_percpu(scx_dsp_ctx); 4060 scx_dsp_ctx = NULL; 4061 scx_dsp_max_batch = 0; 4062 free_kick_syncs(); 4063 4064 mutex_unlock(&scx_enable_mutex); 4065 4066 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING); 4067 done: 4068 scx_bypass(false); 4069 } 4070 4071 static void scx_disable(enum scx_exit_kind kind) 4072 { 4073 int none = SCX_EXIT_NONE; 4074 struct scx_sched *sch; 4075 4076 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 4077 kind = SCX_EXIT_ERROR; 4078 4079 rcu_read_lock(); 4080 sch = rcu_dereference(scx_root); 4081 if (sch) { 4082 atomic_try_cmpxchg(&sch->exit_kind, &none, kind); 4083 kthread_queue_work(sch->helper, &sch->disable_work); 4084 } 4085 rcu_read_unlock(); 4086 } 4087 4088 static void dump_newline(struct seq_buf *s) 4089 { 4090 trace_sched_ext_dump(""); 4091 4092 /* @s may be zero sized and seq_buf triggers WARN if so */ 4093 if (s->size) 4094 seq_buf_putc(s, '\n'); 4095 } 4096 4097 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 4098 { 4099 va_list args; 4100 4101 #ifdef CONFIG_TRACEPOINTS 4102 if (trace_sched_ext_dump_enabled()) { 4103 /* protected by scx_dump_state()::dump_lock */ 4104 static char line_buf[SCX_EXIT_MSG_LEN]; 4105 4106 va_start(args, fmt); 4107 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 4108 va_end(args); 4109 4110 trace_sched_ext_dump(line_buf); 4111 } 4112 #endif 4113 /* @s may be zero sized and seq_buf triggers WARN if so */ 4114 if (s->size) { 4115 va_start(args, fmt); 4116 seq_buf_vprintf(s, fmt, args); 4117 va_end(args); 4118 4119 seq_buf_putc(s, '\n'); 4120 } 4121 } 4122 4123 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 4124 const unsigned long *bt, unsigned int len) 4125 { 4126 unsigned int i; 4127 4128 for (i = 0; i < len; i++) 4129 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 4130 } 4131 4132 static void ops_dump_init(struct seq_buf *s, const char *prefix) 4133 { 4134 struct scx_dump_data *dd = &scx_dump_data; 4135 4136 lockdep_assert_irqs_disabled(); 4137 4138 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 4139 dd->first = true; 4140 dd->cursor = 0; 4141 dd->s = s; 4142 dd->prefix = prefix; 4143 } 4144 4145 static void ops_dump_flush(void) 4146 { 4147 struct scx_dump_data *dd = &scx_dump_data; 4148 char *line = dd->buf.line; 4149 4150 if (!dd->cursor) 4151 return; 4152 4153 /* 4154 * There's something to flush and this is the first line. Insert a blank 4155 * line to distinguish ops dump. 4156 */ 4157 if (dd->first) { 4158 dump_newline(dd->s); 4159 dd->first = false; 4160 } 4161 4162 /* 4163 * There may be multiple lines in $line. Scan and emit each line 4164 * separately. 4165 */ 4166 while (true) { 4167 char *end = line; 4168 char c; 4169 4170 while (*end != '\n' && *end != '\0') 4171 end++; 4172 4173 /* 4174 * If $line overflowed, it may not have newline at the end. 4175 * Always emit with a newline. 4176 */ 4177 c = *end; 4178 *end = '\0'; 4179 dump_line(dd->s, "%s%s", dd->prefix, line); 4180 if (c == '\0') 4181 break; 4182 4183 /* move to the next line */ 4184 end++; 4185 if (*end == '\0') 4186 break; 4187 line = end; 4188 } 4189 4190 dd->cursor = 0; 4191 } 4192 4193 static void ops_dump_exit(void) 4194 { 4195 ops_dump_flush(); 4196 scx_dump_data.cpu = -1; 4197 } 4198 4199 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 4200 struct task_struct *p, char marker) 4201 { 4202 static unsigned long bt[SCX_EXIT_BT_LEN]; 4203 struct scx_sched *sch = scx_root; 4204 char dsq_id_buf[19] = "(n/a)"; 4205 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 4206 unsigned int bt_len = 0; 4207 4208 if (p->scx.dsq) 4209 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 4210 (unsigned long long)p->scx.dsq->id); 4211 4212 dump_newline(s); 4213 dump_line(s, " %c%c %s[%d] %+ldms", 4214 marker, task_state_to_char(p), p->comm, p->pid, 4215 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 4216 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", 4217 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 4218 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, 4219 ops_state >> SCX_OPSS_QSEQ_SHIFT); 4220 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s", 4221 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf); 4222 dump_line(s, " dsq_vtime=%llu slice=%llu weight=%u", 4223 p->scx.dsq_vtime, p->scx.slice, p->scx.weight); 4224 dump_line(s, " cpus=%*pb no_mig=%u", cpumask_pr_args(p->cpus_ptr), 4225 p->migration_disabled); 4226 4227 if (SCX_HAS_OP(sch, dump_task)) { 4228 ops_dump_init(s, " "); 4229 SCX_CALL_OP(sch, SCX_KF_REST, dump_task, NULL, dctx, p); 4230 ops_dump_exit(); 4231 } 4232 4233 #ifdef CONFIG_STACKTRACE 4234 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 4235 #endif 4236 if (bt_len) { 4237 dump_newline(s); 4238 dump_stack_trace(s, " ", bt, bt_len); 4239 } 4240 } 4241 4242 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 4243 { 4244 static DEFINE_SPINLOCK(dump_lock); 4245 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 4246 struct scx_sched *sch = scx_root; 4247 struct scx_dump_ctx dctx = { 4248 .kind = ei->kind, 4249 .exit_code = ei->exit_code, 4250 .reason = ei->reason, 4251 .at_ns = ktime_get_ns(), 4252 .at_jiffies = jiffies, 4253 }; 4254 struct seq_buf s; 4255 struct scx_event_stats events; 4256 unsigned long flags; 4257 char *buf; 4258 int cpu; 4259 4260 spin_lock_irqsave(&dump_lock, flags); 4261 4262 seq_buf_init(&s, ei->dump, dump_len); 4263 4264 if (ei->kind == SCX_EXIT_NONE) { 4265 dump_line(&s, "Debug dump triggered by %s", ei->reason); 4266 } else { 4267 dump_line(&s, "%s[%d] triggered exit kind %d:", 4268 current->comm, current->pid, ei->kind); 4269 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 4270 dump_newline(&s); 4271 dump_line(&s, "Backtrace:"); 4272 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 4273 } 4274 4275 if (SCX_HAS_OP(sch, dump)) { 4276 ops_dump_init(&s, ""); 4277 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, dump, NULL, &dctx); 4278 ops_dump_exit(); 4279 } 4280 4281 dump_newline(&s); 4282 dump_line(&s, "CPU states"); 4283 dump_line(&s, "----------"); 4284 4285 for_each_possible_cpu(cpu) { 4286 struct rq *rq = cpu_rq(cpu); 4287 struct rq_flags rf; 4288 struct task_struct *p; 4289 struct seq_buf ns; 4290 size_t avail, used; 4291 bool idle; 4292 4293 rq_lock(rq, &rf); 4294 4295 idle = list_empty(&rq->scx.runnable_list) && 4296 rq->curr->sched_class == &idle_sched_class; 4297 4298 if (idle && !SCX_HAS_OP(sch, dump_cpu)) 4299 goto next; 4300 4301 /* 4302 * We don't yet know whether ops.dump_cpu() will produce output 4303 * and we may want to skip the default CPU dump if it doesn't. 4304 * Use a nested seq_buf to generate the standard dump so that we 4305 * can decide whether to commit later. 4306 */ 4307 avail = seq_buf_get_buf(&s, &buf); 4308 seq_buf_init(&ns, buf, avail); 4309 4310 dump_newline(&ns); 4311 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu ksync=%lu", 4312 cpu, rq->scx.nr_running, rq->scx.flags, 4313 rq->scx.cpu_released, rq->scx.ops_qseq, 4314 rq->scx.kick_sync); 4315 dump_line(&ns, " curr=%s[%d] class=%ps", 4316 rq->curr->comm, rq->curr->pid, 4317 rq->curr->sched_class); 4318 if (!cpumask_empty(rq->scx.cpus_to_kick)) 4319 dump_line(&ns, " cpus_to_kick : %*pb", 4320 cpumask_pr_args(rq->scx.cpus_to_kick)); 4321 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 4322 dump_line(&ns, " idle_to_kick : %*pb", 4323 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 4324 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 4325 dump_line(&ns, " cpus_to_preempt: %*pb", 4326 cpumask_pr_args(rq->scx.cpus_to_preempt)); 4327 if (!cpumask_empty(rq->scx.cpus_to_wait)) 4328 dump_line(&ns, " cpus_to_wait : %*pb", 4329 cpumask_pr_args(rq->scx.cpus_to_wait)); 4330 4331 used = seq_buf_used(&ns); 4332 if (SCX_HAS_OP(sch, dump_cpu)) { 4333 ops_dump_init(&ns, " "); 4334 SCX_CALL_OP(sch, SCX_KF_REST, dump_cpu, NULL, 4335 &dctx, cpu, idle); 4336 ops_dump_exit(); 4337 } 4338 4339 /* 4340 * If idle && nothing generated by ops.dump_cpu(), there's 4341 * nothing interesting. Skip. 4342 */ 4343 if (idle && used == seq_buf_used(&ns)) 4344 goto next; 4345 4346 /* 4347 * $s may already have overflowed when $ns was created. If so, 4348 * calling commit on it will trigger BUG. 4349 */ 4350 if (avail) { 4351 seq_buf_commit(&s, seq_buf_used(&ns)); 4352 if (seq_buf_has_overflowed(&ns)) 4353 seq_buf_set_overflow(&s); 4354 } 4355 4356 if (rq->curr->sched_class == &ext_sched_class) 4357 scx_dump_task(&s, &dctx, rq->curr, '*'); 4358 4359 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 4360 scx_dump_task(&s, &dctx, p, ' '); 4361 next: 4362 rq_unlock(rq, &rf); 4363 } 4364 4365 dump_newline(&s); 4366 dump_line(&s, "Event counters"); 4367 dump_line(&s, "--------------"); 4368 4369 scx_read_events(sch, &events); 4370 scx_dump_event(s, &events, SCX_EV_SELECT_CPU_FALLBACK); 4371 scx_dump_event(s, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 4372 scx_dump_event(s, &events, SCX_EV_DISPATCH_KEEP_LAST); 4373 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_EXITING); 4374 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 4375 scx_dump_event(s, &events, SCX_EV_REFILL_SLICE_DFL); 4376 scx_dump_event(s, &events, SCX_EV_BYPASS_DURATION); 4377 scx_dump_event(s, &events, SCX_EV_BYPASS_DISPATCH); 4378 scx_dump_event(s, &events, SCX_EV_BYPASS_ACTIVATE); 4379 4380 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 4381 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 4382 trunc_marker, sizeof(trunc_marker)); 4383 4384 spin_unlock_irqrestore(&dump_lock, flags); 4385 } 4386 4387 static void scx_error_irq_workfn(struct irq_work *irq_work) 4388 { 4389 struct scx_sched *sch = container_of(irq_work, struct scx_sched, error_irq_work); 4390 struct scx_exit_info *ei = sch->exit_info; 4391 4392 if (ei->kind >= SCX_EXIT_ERROR) 4393 scx_dump_state(ei, sch->ops.exit_dump_len); 4394 4395 kthread_queue_work(sch->helper, &sch->disable_work); 4396 } 4397 4398 static void scx_vexit(struct scx_sched *sch, 4399 enum scx_exit_kind kind, s64 exit_code, 4400 const char *fmt, va_list args) 4401 { 4402 struct scx_exit_info *ei = sch->exit_info; 4403 int none = SCX_EXIT_NONE; 4404 4405 if (!atomic_try_cmpxchg(&sch->exit_kind, &none, kind)) 4406 return; 4407 4408 ei->exit_code = exit_code; 4409 #ifdef CONFIG_STACKTRACE 4410 if (kind >= SCX_EXIT_ERROR) 4411 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 4412 #endif 4413 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 4414 4415 /* 4416 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 4417 * in scx_disable_workfn(). 4418 */ 4419 ei->kind = kind; 4420 ei->reason = scx_exit_reason(ei->kind); 4421 4422 irq_work_queue(&sch->error_irq_work); 4423 } 4424 4425 static int alloc_kick_syncs(void) 4426 { 4427 int cpu; 4428 4429 /* 4430 * Allocate per-CPU arrays sized by nr_cpu_ids. Use kvzalloc as size 4431 * can exceed percpu allocator limits on large machines. 4432 */ 4433 for_each_possible_cpu(cpu) { 4434 struct scx_kick_syncs **ksyncs = per_cpu_ptr(&scx_kick_syncs, cpu); 4435 struct scx_kick_syncs *new_ksyncs; 4436 4437 WARN_ON_ONCE(rcu_access_pointer(*ksyncs)); 4438 4439 new_ksyncs = kvzalloc_node(struct_size(new_ksyncs, syncs, nr_cpu_ids), 4440 GFP_KERNEL, cpu_to_node(cpu)); 4441 if (!new_ksyncs) { 4442 free_kick_syncs(); 4443 return -ENOMEM; 4444 } 4445 4446 rcu_assign_pointer(*ksyncs, new_ksyncs); 4447 } 4448 4449 return 0; 4450 } 4451 4452 static struct scx_sched *scx_alloc_and_add_sched(struct sched_ext_ops *ops) 4453 { 4454 struct scx_sched *sch; 4455 int node, ret; 4456 4457 sch = kzalloc(sizeof(*sch), GFP_KERNEL); 4458 if (!sch) 4459 return ERR_PTR(-ENOMEM); 4460 4461 sch->exit_info = alloc_exit_info(ops->exit_dump_len); 4462 if (!sch->exit_info) { 4463 ret = -ENOMEM; 4464 goto err_free_sch; 4465 } 4466 4467 ret = rhashtable_init(&sch->dsq_hash, &dsq_hash_params); 4468 if (ret < 0) 4469 goto err_free_ei; 4470 4471 sch->global_dsqs = kcalloc(nr_node_ids, sizeof(sch->global_dsqs[0]), 4472 GFP_KERNEL); 4473 if (!sch->global_dsqs) { 4474 ret = -ENOMEM; 4475 goto err_free_hash; 4476 } 4477 4478 for_each_node_state(node, N_POSSIBLE) { 4479 struct scx_dispatch_q *dsq; 4480 4481 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node); 4482 if (!dsq) { 4483 ret = -ENOMEM; 4484 goto err_free_gdsqs; 4485 } 4486 4487 init_dsq(dsq, SCX_DSQ_GLOBAL); 4488 sch->global_dsqs[node] = dsq; 4489 } 4490 4491 sch->pcpu = alloc_percpu(struct scx_sched_pcpu); 4492 if (!sch->pcpu) 4493 goto err_free_gdsqs; 4494 4495 sch->helper = kthread_run_worker(0, "sched_ext_helper"); 4496 if (!sch->helper) 4497 goto err_free_pcpu; 4498 sched_set_fifo(sch->helper->task); 4499 4500 atomic_set(&sch->exit_kind, SCX_EXIT_NONE); 4501 init_irq_work(&sch->error_irq_work, scx_error_irq_workfn); 4502 kthread_init_work(&sch->disable_work, scx_disable_workfn); 4503 sch->ops = *ops; 4504 ops->priv = sch; 4505 4506 sch->kobj.kset = scx_kset; 4507 ret = kobject_init_and_add(&sch->kobj, &scx_ktype, NULL, "root"); 4508 if (ret < 0) 4509 goto err_stop_helper; 4510 4511 return sch; 4512 4513 err_stop_helper: 4514 kthread_stop(sch->helper->task); 4515 err_free_pcpu: 4516 free_percpu(sch->pcpu); 4517 err_free_gdsqs: 4518 for_each_node_state(node, N_POSSIBLE) 4519 kfree(sch->global_dsqs[node]); 4520 kfree(sch->global_dsqs); 4521 err_free_hash: 4522 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL); 4523 err_free_ei: 4524 free_exit_info(sch->exit_info); 4525 err_free_sch: 4526 kfree(sch); 4527 return ERR_PTR(ret); 4528 } 4529 4530 static int check_hotplug_seq(struct scx_sched *sch, 4531 const struct sched_ext_ops *ops) 4532 { 4533 unsigned long long global_hotplug_seq; 4534 4535 /* 4536 * If a hotplug event has occurred between when a scheduler was 4537 * initialized, and when we were able to attach, exit and notify user 4538 * space about it. 4539 */ 4540 if (ops->hotplug_seq) { 4541 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); 4542 if (ops->hotplug_seq != global_hotplug_seq) { 4543 scx_exit(sch, SCX_EXIT_UNREG_KERN, 4544 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 4545 "expected hotplug seq %llu did not match actual %llu", 4546 ops->hotplug_seq, global_hotplug_seq); 4547 return -EBUSY; 4548 } 4549 } 4550 4551 return 0; 4552 } 4553 4554 static int validate_ops(struct scx_sched *sch, const struct sched_ext_ops *ops) 4555 { 4556 /* 4557 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 4558 * ops.enqueue() callback isn't implemented. 4559 */ 4560 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 4561 scx_error(sch, "SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 4562 return -EINVAL; 4563 } 4564 4565 /* 4566 * SCX_OPS_BUILTIN_IDLE_PER_NODE requires built-in CPU idle 4567 * selection policy to be enabled. 4568 */ 4569 if ((ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE) && 4570 (ops->update_idle && !(ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))) { 4571 scx_error(sch, "SCX_OPS_BUILTIN_IDLE_PER_NODE requires CPU idle selection enabled"); 4572 return -EINVAL; 4573 } 4574 4575 if (ops->flags & SCX_OPS_HAS_CGROUP_WEIGHT) 4576 pr_warn("SCX_OPS_HAS_CGROUP_WEIGHT is deprecated and a noop\n"); 4577 4578 if (ops->cpu_acquire || ops->cpu_release) 4579 pr_warn("ops->cpu_acquire/release() are deprecated, use sched_switch TP instead\n"); 4580 4581 return 0; 4582 } 4583 4584 static int scx_enable(struct sched_ext_ops *ops, struct bpf_link *link) 4585 { 4586 struct scx_sched *sch; 4587 struct scx_task_iter sti; 4588 struct task_struct *p; 4589 unsigned long timeout; 4590 int i, cpu, ret; 4591 4592 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), 4593 cpu_possible_mask)) { 4594 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n"); 4595 return -EINVAL; 4596 } 4597 4598 mutex_lock(&scx_enable_mutex); 4599 4600 if (scx_enable_state() != SCX_DISABLED) { 4601 ret = -EBUSY; 4602 goto err_unlock; 4603 } 4604 4605 ret = alloc_kick_syncs(); 4606 if (ret) 4607 goto err_unlock; 4608 4609 sch = scx_alloc_and_add_sched(ops); 4610 if (IS_ERR(sch)) { 4611 ret = PTR_ERR(sch); 4612 goto err_free_ksyncs; 4613 } 4614 4615 /* 4616 * Transition to ENABLING and clear exit info to arm the disable path. 4617 * Failure triggers full disabling from here on. 4618 */ 4619 WARN_ON_ONCE(scx_set_enable_state(SCX_ENABLING) != SCX_DISABLED); 4620 WARN_ON_ONCE(scx_root); 4621 4622 atomic_long_set(&scx_nr_rejected, 0); 4623 4624 for_each_possible_cpu(cpu) 4625 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; 4626 4627 /* 4628 * Keep CPUs stable during enable so that the BPF scheduler can track 4629 * online CPUs by watching ->on/offline_cpu() after ->init(). 4630 */ 4631 cpus_read_lock(); 4632 4633 /* 4634 * Make the scheduler instance visible. Must be inside cpus_read_lock(). 4635 * See handle_hotplug(). 4636 */ 4637 rcu_assign_pointer(scx_root, sch); 4638 4639 scx_idle_enable(ops); 4640 4641 if (sch->ops.init) { 4642 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init, NULL); 4643 if (ret) { 4644 ret = ops_sanitize_err(sch, "init", ret); 4645 cpus_read_unlock(); 4646 scx_error(sch, "ops.init() failed (%d)", ret); 4647 goto err_disable; 4648 } 4649 sch->exit_info->flags |= SCX_EFLAG_INITIALIZED; 4650 } 4651 4652 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) 4653 if (((void (**)(void))ops)[i]) 4654 set_bit(i, sch->has_op); 4655 4656 ret = check_hotplug_seq(sch, ops); 4657 if (ret) { 4658 cpus_read_unlock(); 4659 goto err_disable; 4660 } 4661 scx_idle_update_selcpu_topology(ops); 4662 4663 cpus_read_unlock(); 4664 4665 ret = validate_ops(sch, ops); 4666 if (ret) 4667 goto err_disable; 4668 4669 WARN_ON_ONCE(scx_dsp_ctx); 4670 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 4671 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 4672 scx_dsp_max_batch), 4673 __alignof__(struct scx_dsp_ctx)); 4674 if (!scx_dsp_ctx) { 4675 ret = -ENOMEM; 4676 goto err_disable; 4677 } 4678 4679 if (ops->timeout_ms) 4680 timeout = msecs_to_jiffies(ops->timeout_ms); 4681 else 4682 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 4683 4684 WRITE_ONCE(scx_watchdog_timeout, timeout); 4685 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 4686 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 4687 scx_watchdog_timeout / 2); 4688 4689 /* 4690 * Once __scx_enabled is set, %current can be switched to SCX anytime. 4691 * This can lead to stalls as some BPF schedulers (e.g. userspace 4692 * scheduling) may not function correctly before all tasks are switched. 4693 * Init in bypass mode to guarantee forward progress. 4694 */ 4695 scx_bypass(true); 4696 4697 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 4698 if (((void (**)(void))ops)[i]) 4699 set_bit(i, sch->has_op); 4700 4701 if (sch->ops.cpu_acquire || sch->ops.cpu_release) 4702 sch->ops.flags |= SCX_OPS_HAS_CPU_PREEMPT; 4703 4704 /* 4705 * Lock out forks, cgroup on/offlining and moves before opening the 4706 * floodgate so that they don't wander into the operations prematurely. 4707 */ 4708 percpu_down_write(&scx_fork_rwsem); 4709 4710 WARN_ON_ONCE(scx_init_task_enabled); 4711 scx_init_task_enabled = true; 4712 4713 /* 4714 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 4715 * preventing new tasks from being added. No need to exclude tasks 4716 * leaving as sched_ext_free() can handle both prepped and enabled 4717 * tasks. Prep all tasks first and then enable them with preemption 4718 * disabled. 4719 * 4720 * All cgroups should be initialized before scx_init_task() so that the 4721 * BPF scheduler can reliably track each task's cgroup membership from 4722 * scx_init_task(). Lock out cgroup on/offlining and task migrations 4723 * while tasks are being initialized so that scx_cgroup_can_attach() 4724 * never sees uninitialized tasks. 4725 */ 4726 scx_cgroup_lock(); 4727 ret = scx_cgroup_init(sch); 4728 if (ret) 4729 goto err_disable_unlock_all; 4730 4731 scx_task_iter_start(&sti); 4732 while ((p = scx_task_iter_next_locked(&sti))) { 4733 /* 4734 * @p may already be dead, have lost all its usages counts and 4735 * be waiting for RCU grace period before being freed. @p can't 4736 * be initialized for SCX in such cases and should be ignored. 4737 */ 4738 if (!tryget_task_struct(p)) 4739 continue; 4740 4741 scx_task_iter_unlock(&sti); 4742 4743 ret = scx_init_task(p, task_group(p), false); 4744 if (ret) { 4745 put_task_struct(p); 4746 scx_task_iter_stop(&sti); 4747 scx_error(sch, "ops.init_task() failed (%d) for %s[%d]", 4748 ret, p->comm, p->pid); 4749 goto err_disable_unlock_all; 4750 } 4751 4752 scx_set_task_state(p, SCX_TASK_READY); 4753 4754 put_task_struct(p); 4755 } 4756 scx_task_iter_stop(&sti); 4757 scx_cgroup_unlock(); 4758 percpu_up_write(&scx_fork_rwsem); 4759 4760 /* 4761 * All tasks are READY. It's safe to turn on scx_enabled() and switch 4762 * all eligible tasks. 4763 */ 4764 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 4765 static_branch_enable(&__scx_enabled); 4766 4767 /* 4768 * We're fully committed and can't fail. The task READY -> ENABLED 4769 * transitions here are synchronized against sched_ext_free() through 4770 * scx_tasks_lock. 4771 */ 4772 percpu_down_write(&scx_fork_rwsem); 4773 scx_task_iter_start(&sti); 4774 while ((p = scx_task_iter_next_locked(&sti))) { 4775 unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE; 4776 const struct sched_class *old_class = p->sched_class; 4777 const struct sched_class *new_class = 4778 __setscheduler_class(p->policy, p->prio); 4779 4780 if (scx_get_task_state(p) != SCX_TASK_READY) 4781 continue; 4782 4783 if (old_class != new_class) 4784 queue_flags |= DEQUEUE_CLASS; 4785 4786 scoped_guard (sched_change, p, queue_flags) { 4787 p->scx.slice = SCX_SLICE_DFL; 4788 p->sched_class = new_class; 4789 } 4790 } 4791 scx_task_iter_stop(&sti); 4792 percpu_up_write(&scx_fork_rwsem); 4793 4794 scx_bypass(false); 4795 4796 if (!scx_tryset_enable_state(SCX_ENABLED, SCX_ENABLING)) { 4797 WARN_ON_ONCE(atomic_read(&sch->exit_kind) == SCX_EXIT_NONE); 4798 goto err_disable; 4799 } 4800 4801 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 4802 static_branch_enable(&__scx_switched_all); 4803 4804 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", 4805 sch->ops.name, scx_switched_all() ? "" : " (partial)"); 4806 kobject_uevent(&sch->kobj, KOBJ_ADD); 4807 mutex_unlock(&scx_enable_mutex); 4808 4809 atomic_long_inc(&scx_enable_seq); 4810 4811 return 0; 4812 4813 err_free_ksyncs: 4814 free_kick_syncs(); 4815 err_unlock: 4816 mutex_unlock(&scx_enable_mutex); 4817 return ret; 4818 4819 err_disable_unlock_all: 4820 scx_cgroup_unlock(); 4821 percpu_up_write(&scx_fork_rwsem); 4822 /* we'll soon enter disable path, keep bypass on */ 4823 err_disable: 4824 mutex_unlock(&scx_enable_mutex); 4825 /* 4826 * Returning an error code here would not pass all the error information 4827 * to userspace. Record errno using scx_error() for cases scx_error() 4828 * wasn't already invoked and exit indicating success so that the error 4829 * is notified through ops.exit() with all the details. 4830 * 4831 * Flush scx_disable_work to ensure that error is reported before init 4832 * completion. sch's base reference will be put by bpf_scx_unreg(). 4833 */ 4834 scx_error(sch, "scx_enable() failed (%d)", ret); 4835 kthread_flush_work(&sch->disable_work); 4836 return 0; 4837 } 4838 4839 4840 /******************************************************************************** 4841 * bpf_struct_ops plumbing. 4842 */ 4843 #include <linux/bpf_verifier.h> 4844 #include <linux/bpf.h> 4845 #include <linux/btf.h> 4846 4847 static const struct btf_type *task_struct_type; 4848 4849 static bool bpf_scx_is_valid_access(int off, int size, 4850 enum bpf_access_type type, 4851 const struct bpf_prog *prog, 4852 struct bpf_insn_access_aux *info) 4853 { 4854 if (type != BPF_READ) 4855 return false; 4856 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 4857 return false; 4858 if (off % size != 0) 4859 return false; 4860 4861 return btf_ctx_access(off, size, type, prog, info); 4862 } 4863 4864 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 4865 const struct bpf_reg_state *reg, int off, 4866 int size) 4867 { 4868 const struct btf_type *t; 4869 4870 t = btf_type_by_id(reg->btf, reg->btf_id); 4871 if (t == task_struct_type) { 4872 if (off >= offsetof(struct task_struct, scx.slice) && 4873 off + size <= offsetofend(struct task_struct, scx.slice)) 4874 return SCALAR_VALUE; 4875 if (off >= offsetof(struct task_struct, scx.dsq_vtime) && 4876 off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) 4877 return SCALAR_VALUE; 4878 if (off >= offsetof(struct task_struct, scx.disallow) && 4879 off + size <= offsetofend(struct task_struct, scx.disallow)) 4880 return SCALAR_VALUE; 4881 } 4882 4883 return -EACCES; 4884 } 4885 4886 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 4887 .get_func_proto = bpf_base_func_proto, 4888 .is_valid_access = bpf_scx_is_valid_access, 4889 .btf_struct_access = bpf_scx_btf_struct_access, 4890 }; 4891 4892 static int bpf_scx_init_member(const struct btf_type *t, 4893 const struct btf_member *member, 4894 void *kdata, const void *udata) 4895 { 4896 const struct sched_ext_ops *uops = udata; 4897 struct sched_ext_ops *ops = kdata; 4898 u32 moff = __btf_member_bit_offset(t, member) / 8; 4899 int ret; 4900 4901 switch (moff) { 4902 case offsetof(struct sched_ext_ops, dispatch_max_batch): 4903 if (*(u32 *)(udata + moff) > INT_MAX) 4904 return -E2BIG; 4905 ops->dispatch_max_batch = *(u32 *)(udata + moff); 4906 return 1; 4907 case offsetof(struct sched_ext_ops, flags): 4908 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 4909 return -EINVAL; 4910 ops->flags = *(u64 *)(udata + moff); 4911 return 1; 4912 case offsetof(struct sched_ext_ops, name): 4913 ret = bpf_obj_name_cpy(ops->name, uops->name, 4914 sizeof(ops->name)); 4915 if (ret < 0) 4916 return ret; 4917 if (ret == 0) 4918 return -EINVAL; 4919 return 1; 4920 case offsetof(struct sched_ext_ops, timeout_ms): 4921 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 4922 SCX_WATCHDOG_MAX_TIMEOUT) 4923 return -E2BIG; 4924 ops->timeout_ms = *(u32 *)(udata + moff); 4925 return 1; 4926 case offsetof(struct sched_ext_ops, exit_dump_len): 4927 ops->exit_dump_len = 4928 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 4929 return 1; 4930 case offsetof(struct sched_ext_ops, hotplug_seq): 4931 ops->hotplug_seq = *(u64 *)(udata + moff); 4932 return 1; 4933 } 4934 4935 return 0; 4936 } 4937 4938 static int bpf_scx_check_member(const struct btf_type *t, 4939 const struct btf_member *member, 4940 const struct bpf_prog *prog) 4941 { 4942 u32 moff = __btf_member_bit_offset(t, member) / 8; 4943 4944 switch (moff) { 4945 case offsetof(struct sched_ext_ops, init_task): 4946 #ifdef CONFIG_EXT_GROUP_SCHED 4947 case offsetof(struct sched_ext_ops, cgroup_init): 4948 case offsetof(struct sched_ext_ops, cgroup_exit): 4949 case offsetof(struct sched_ext_ops, cgroup_prep_move): 4950 #endif 4951 case offsetof(struct sched_ext_ops, cpu_online): 4952 case offsetof(struct sched_ext_ops, cpu_offline): 4953 case offsetof(struct sched_ext_ops, init): 4954 case offsetof(struct sched_ext_ops, exit): 4955 break; 4956 default: 4957 if (prog->sleepable) 4958 return -EINVAL; 4959 } 4960 4961 return 0; 4962 } 4963 4964 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 4965 { 4966 return scx_enable(kdata, link); 4967 } 4968 4969 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 4970 { 4971 struct sched_ext_ops *ops = kdata; 4972 struct scx_sched *sch = ops->priv; 4973 4974 scx_disable(SCX_EXIT_UNREG); 4975 kthread_flush_work(&sch->disable_work); 4976 kobject_put(&sch->kobj); 4977 } 4978 4979 static int bpf_scx_init(struct btf *btf) 4980 { 4981 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]); 4982 4983 return 0; 4984 } 4985 4986 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 4987 { 4988 /* 4989 * sched_ext does not support updating the actively-loaded BPF 4990 * scheduler, as registering a BPF scheduler can always fail if the 4991 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 4992 * etc. Similarly, we can always race with unregistration happening 4993 * elsewhere, such as with sysrq. 4994 */ 4995 return -EOPNOTSUPP; 4996 } 4997 4998 static int bpf_scx_validate(void *kdata) 4999 { 5000 return 0; 5001 } 5002 5003 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 5004 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {} 5005 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {} 5006 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {} 5007 static void sched_ext_ops__tick(struct task_struct *p) {} 5008 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {} 5009 static void sched_ext_ops__running(struct task_struct *p) {} 5010 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {} 5011 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {} 5012 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; } 5013 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; } 5014 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {} 5015 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {} 5016 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {} 5017 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {} 5018 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {} 5019 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 5020 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {} 5021 static void sched_ext_ops__enable(struct task_struct *p) {} 5022 static void sched_ext_ops__disable(struct task_struct *p) {} 5023 #ifdef CONFIG_EXT_GROUP_SCHED 5024 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } 5025 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {} 5026 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } 5027 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5028 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5029 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {} 5030 static void sched_ext_ops__cgroup_set_bandwidth(struct cgroup *cgrp, u64 period_us, u64 quota_us, u64 burst_us) {} 5031 static void sched_ext_ops__cgroup_set_idle(struct cgroup *cgrp, bool idle) {} 5032 #endif 5033 static void sched_ext_ops__cpu_online(s32 cpu) {} 5034 static void sched_ext_ops__cpu_offline(s32 cpu) {} 5035 static s32 sched_ext_ops__init(void) { return -EINVAL; } 5036 static void sched_ext_ops__exit(struct scx_exit_info *info) {} 5037 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {} 5038 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} 5039 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {} 5040 5041 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 5042 .select_cpu = sched_ext_ops__select_cpu, 5043 .enqueue = sched_ext_ops__enqueue, 5044 .dequeue = sched_ext_ops__dequeue, 5045 .dispatch = sched_ext_ops__dispatch, 5046 .tick = sched_ext_ops__tick, 5047 .runnable = sched_ext_ops__runnable, 5048 .running = sched_ext_ops__running, 5049 .stopping = sched_ext_ops__stopping, 5050 .quiescent = sched_ext_ops__quiescent, 5051 .yield = sched_ext_ops__yield, 5052 .core_sched_before = sched_ext_ops__core_sched_before, 5053 .set_weight = sched_ext_ops__set_weight, 5054 .set_cpumask = sched_ext_ops__set_cpumask, 5055 .update_idle = sched_ext_ops__update_idle, 5056 .cpu_acquire = sched_ext_ops__cpu_acquire, 5057 .cpu_release = sched_ext_ops__cpu_release, 5058 .init_task = sched_ext_ops__init_task, 5059 .exit_task = sched_ext_ops__exit_task, 5060 .enable = sched_ext_ops__enable, 5061 .disable = sched_ext_ops__disable, 5062 #ifdef CONFIG_EXT_GROUP_SCHED 5063 .cgroup_init = sched_ext_ops__cgroup_init, 5064 .cgroup_exit = sched_ext_ops__cgroup_exit, 5065 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move, 5066 .cgroup_move = sched_ext_ops__cgroup_move, 5067 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move, 5068 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight, 5069 .cgroup_set_bandwidth = sched_ext_ops__cgroup_set_bandwidth, 5070 .cgroup_set_idle = sched_ext_ops__cgroup_set_idle, 5071 #endif 5072 .cpu_online = sched_ext_ops__cpu_online, 5073 .cpu_offline = sched_ext_ops__cpu_offline, 5074 .init = sched_ext_ops__init, 5075 .exit = sched_ext_ops__exit, 5076 .dump = sched_ext_ops__dump, 5077 .dump_cpu = sched_ext_ops__dump_cpu, 5078 .dump_task = sched_ext_ops__dump_task, 5079 }; 5080 5081 static struct bpf_struct_ops bpf_sched_ext_ops = { 5082 .verifier_ops = &bpf_scx_verifier_ops, 5083 .reg = bpf_scx_reg, 5084 .unreg = bpf_scx_unreg, 5085 .check_member = bpf_scx_check_member, 5086 .init_member = bpf_scx_init_member, 5087 .init = bpf_scx_init, 5088 .update = bpf_scx_update, 5089 .validate = bpf_scx_validate, 5090 .name = "sched_ext_ops", 5091 .owner = THIS_MODULE, 5092 .cfi_stubs = &__bpf_ops_sched_ext_ops 5093 }; 5094 5095 5096 /******************************************************************************** 5097 * System integration and init. 5098 */ 5099 5100 static void sysrq_handle_sched_ext_reset(u8 key) 5101 { 5102 scx_disable(SCX_EXIT_SYSRQ); 5103 } 5104 5105 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 5106 .handler = sysrq_handle_sched_ext_reset, 5107 .help_msg = "reset-sched-ext(S)", 5108 .action_msg = "Disable sched_ext and revert all tasks to CFS", 5109 .enable_mask = SYSRQ_ENABLE_RTNICE, 5110 }; 5111 5112 static void sysrq_handle_sched_ext_dump(u8 key) 5113 { 5114 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 5115 5116 if (scx_enabled()) 5117 scx_dump_state(&ei, 0); 5118 } 5119 5120 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 5121 .handler = sysrq_handle_sched_ext_dump, 5122 .help_msg = "dump-sched-ext(D)", 5123 .action_msg = "Trigger sched_ext debug dump", 5124 .enable_mask = SYSRQ_ENABLE_RTNICE, 5125 }; 5126 5127 static bool can_skip_idle_kick(struct rq *rq) 5128 { 5129 lockdep_assert_rq_held(rq); 5130 5131 /* 5132 * We can skip idle kicking if @rq is going to go through at least one 5133 * full SCX scheduling cycle before going idle. Just checking whether 5134 * curr is not idle is insufficient because we could be racing 5135 * balance_one() trying to pull the next task from a remote rq, which 5136 * may fail, and @rq may become idle afterwards. 5137 * 5138 * The race window is small and we don't and can't guarantee that @rq is 5139 * only kicked while idle anyway. Skip only when sure. 5140 */ 5141 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); 5142 } 5143 5144 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *ksyncs) 5145 { 5146 struct rq *rq = cpu_rq(cpu); 5147 struct scx_rq *this_scx = &this_rq->scx; 5148 const struct sched_class *cur_class; 5149 bool should_wait = false; 5150 unsigned long flags; 5151 5152 raw_spin_rq_lock_irqsave(rq, flags); 5153 cur_class = rq->curr->sched_class; 5154 5155 /* 5156 * During CPU hotplug, a CPU may depend on kicking itself to make 5157 * forward progress. Allow kicking self regardless of online state. If 5158 * @cpu is running a higher class task, we have no control over @cpu. 5159 * Skip kicking. 5160 */ 5161 if ((cpu_online(cpu) || cpu == cpu_of(this_rq)) && 5162 !sched_class_above(cur_class, &ext_sched_class)) { 5163 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 5164 if (cur_class == &ext_sched_class) 5165 rq->curr->scx.slice = 0; 5166 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5167 } 5168 5169 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 5170 if (cur_class == &ext_sched_class) { 5171 ksyncs[cpu] = rq->scx.kick_sync; 5172 should_wait = true; 5173 } else { 5174 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5175 } 5176 } 5177 5178 resched_curr(rq); 5179 } else { 5180 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5181 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5182 } 5183 5184 raw_spin_rq_unlock_irqrestore(rq, flags); 5185 5186 return should_wait; 5187 } 5188 5189 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 5190 { 5191 struct rq *rq = cpu_rq(cpu); 5192 unsigned long flags; 5193 5194 raw_spin_rq_lock_irqsave(rq, flags); 5195 5196 if (!can_skip_idle_kick(rq) && 5197 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 5198 resched_curr(rq); 5199 5200 raw_spin_rq_unlock_irqrestore(rq, flags); 5201 } 5202 5203 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 5204 { 5205 struct rq *this_rq = this_rq(); 5206 struct scx_rq *this_scx = &this_rq->scx; 5207 struct scx_kick_syncs __rcu *ksyncs_pcpu = __this_cpu_read(scx_kick_syncs); 5208 bool should_wait = false; 5209 unsigned long *ksyncs; 5210 s32 cpu; 5211 5212 if (unlikely(!ksyncs_pcpu)) { 5213 pr_warn_once("kick_cpus_irq_workfn() called with NULL scx_kick_syncs"); 5214 return; 5215 } 5216 5217 ksyncs = rcu_dereference_bh(ksyncs_pcpu)->syncs; 5218 5219 for_each_cpu(cpu, this_scx->cpus_to_kick) { 5220 should_wait |= kick_one_cpu(cpu, this_rq, ksyncs); 5221 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 5222 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5223 } 5224 5225 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 5226 kick_one_cpu_if_idle(cpu, this_rq); 5227 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5228 } 5229 5230 if (!should_wait) 5231 return; 5232 5233 for_each_cpu(cpu, this_scx->cpus_to_wait) { 5234 unsigned long *wait_kick_sync = &cpu_rq(cpu)->scx.kick_sync; 5235 5236 /* 5237 * Busy-wait until the task running at the time of kicking is no 5238 * longer running. This can be used to implement e.g. core 5239 * scheduling. 5240 * 5241 * smp_cond_load_acquire() pairs with store_releases in 5242 * pick_task_scx() and put_prev_task_scx(). The former breaks 5243 * the wait if SCX's scheduling path is entered even if the same 5244 * task is picked subsequently. The latter is necessary to break 5245 * the wait when $cpu is taken by a higher sched class. 5246 */ 5247 if (cpu != cpu_of(this_rq)) 5248 smp_cond_load_acquire(wait_kick_sync, VAL != ksyncs[cpu]); 5249 5250 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5251 } 5252 } 5253 5254 /** 5255 * print_scx_info - print out sched_ext scheduler state 5256 * @log_lvl: the log level to use when printing 5257 * @p: target task 5258 * 5259 * If a sched_ext scheduler is enabled, print the name and state of the 5260 * scheduler. If @p is on sched_ext, print further information about the task. 5261 * 5262 * This function can be safely called on any task as long as the task_struct 5263 * itself is accessible. While safe, this function isn't synchronized and may 5264 * print out mixups or garbages of limited length. 5265 */ 5266 void print_scx_info(const char *log_lvl, struct task_struct *p) 5267 { 5268 struct scx_sched *sch = scx_root; 5269 enum scx_enable_state state = scx_enable_state(); 5270 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 5271 char runnable_at_buf[22] = "?"; 5272 struct sched_class *class; 5273 unsigned long runnable_at; 5274 5275 if (state == SCX_DISABLED) 5276 return; 5277 5278 /* 5279 * Carefully check if the task was running on sched_ext, and then 5280 * carefully copy the time it's been runnable, and its state. 5281 */ 5282 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 5283 class != &ext_sched_class) { 5284 printk("%sSched_ext: %s (%s%s)", log_lvl, sch->ops.name, 5285 scx_enable_state_str[state], all); 5286 return; 5287 } 5288 5289 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 5290 sizeof(runnable_at))) 5291 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 5292 jiffies_delta_msecs(runnable_at, jiffies)); 5293 5294 /* print everything onto one line to conserve console space */ 5295 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 5296 log_lvl, sch->ops.name, scx_enable_state_str[state], all, 5297 runnable_at_buf); 5298 } 5299 5300 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) 5301 { 5302 /* 5303 * SCX schedulers often have userspace components which are sometimes 5304 * involved in critial scheduling paths. PM operations involve freezing 5305 * userspace which can lead to scheduling misbehaviors including stalls. 5306 * Let's bypass while PM operations are in progress. 5307 */ 5308 switch (event) { 5309 case PM_HIBERNATION_PREPARE: 5310 case PM_SUSPEND_PREPARE: 5311 case PM_RESTORE_PREPARE: 5312 scx_bypass(true); 5313 break; 5314 case PM_POST_HIBERNATION: 5315 case PM_POST_SUSPEND: 5316 case PM_POST_RESTORE: 5317 scx_bypass(false); 5318 break; 5319 } 5320 5321 return NOTIFY_OK; 5322 } 5323 5324 static struct notifier_block scx_pm_notifier = { 5325 .notifier_call = scx_pm_handler, 5326 }; 5327 5328 void __init init_sched_ext_class(void) 5329 { 5330 s32 cpu, v; 5331 5332 /* 5333 * The following is to prevent the compiler from optimizing out the enum 5334 * definitions so that BPF scheduler implementations can use them 5335 * through the generated vmlinux.h. 5336 */ 5337 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | 5338 SCX_TG_ONLINE); 5339 5340 scx_idle_init_masks(); 5341 5342 for_each_possible_cpu(cpu) { 5343 struct rq *rq = cpu_rq(cpu); 5344 int n = cpu_to_node(cpu); 5345 5346 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 5347 INIT_LIST_HEAD(&rq->scx.runnable_list); 5348 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); 5349 5350 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick, GFP_KERNEL, n)); 5351 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL, n)); 5352 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_preempt, GFP_KERNEL, n)); 5353 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_wait, GFP_KERNEL, n)); 5354 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn); 5355 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); 5356 5357 if (cpu_online(cpu)) 5358 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; 5359 } 5360 5361 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 5362 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 5363 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 5364 } 5365 5366 5367 /******************************************************************************** 5368 * Helpers that can be called from the BPF scheduler. 5369 */ 5370 static bool scx_dsq_insert_preamble(struct scx_sched *sch, struct task_struct *p, 5371 u64 enq_flags) 5372 { 5373 if (!scx_kf_allowed(sch, SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 5374 return false; 5375 5376 lockdep_assert_irqs_disabled(); 5377 5378 if (unlikely(!p)) { 5379 scx_error(sch, "called with NULL task"); 5380 return false; 5381 } 5382 5383 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 5384 scx_error(sch, "invalid enq_flags 0x%llx", enq_flags); 5385 return false; 5386 } 5387 5388 return true; 5389 } 5390 5391 static void scx_dsq_insert_commit(struct scx_sched *sch, struct task_struct *p, 5392 u64 dsq_id, u64 enq_flags) 5393 { 5394 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5395 struct task_struct *ddsp_task; 5396 5397 ddsp_task = __this_cpu_read(direct_dispatch_task); 5398 if (ddsp_task) { 5399 mark_direct_dispatch(sch, ddsp_task, p, dsq_id, enq_flags); 5400 return; 5401 } 5402 5403 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 5404 scx_error(sch, "dispatch buffer overflow"); 5405 return; 5406 } 5407 5408 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 5409 .task = p, 5410 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 5411 .dsq_id = dsq_id, 5412 .enq_flags = enq_flags, 5413 }; 5414 } 5415 5416 __bpf_kfunc_start_defs(); 5417 5418 /** 5419 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ 5420 * @p: task_struct to insert 5421 * @dsq_id: DSQ to insert into 5422 * @slice: duration @p can run for in nsecs, 0 to keep the current value 5423 * @enq_flags: SCX_ENQ_* 5424 * 5425 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to 5426 * call this function spuriously. Can be called from ops.enqueue(), 5427 * ops.select_cpu(), and ops.dispatch(). 5428 * 5429 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 5430 * and @p must match the task being enqueued. 5431 * 5432 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 5433 * will be directly inserted into the corresponding dispatch queue after 5434 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be 5435 * inserted into the local DSQ of the CPU returned by ops.select_cpu(). 5436 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 5437 * task is inserted. 5438 * 5439 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 5440 * and this function can be called upto ops.dispatch_max_batch times to insert 5441 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 5442 * remaining slots. scx_bpf_dsq_move_to_local() flushes the batch and resets the 5443 * counter. 5444 * 5445 * This function doesn't have any locking restrictions and may be called under 5446 * BPF locks (in the future when BPF introduces more flexible locking). 5447 * 5448 * @p is allowed to run for @slice. The scheduling path is triggered on slice 5449 * exhaustion. If zero, the current residual slice is maintained. If 5450 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 5451 * scx_bpf_kick_cpu() to trigger scheduling. 5452 * 5453 * Returns %true on successful insertion, %false on failure. On the root 5454 * scheduler, %false return triggers scheduler abort and the caller doesn't need 5455 * to check the return value. 5456 */ 5457 __bpf_kfunc bool scx_bpf_dsq_insert___v2(struct task_struct *p, u64 dsq_id, 5458 u64 slice, u64 enq_flags) 5459 { 5460 struct scx_sched *sch; 5461 5462 guard(rcu)(); 5463 sch = rcu_dereference(scx_root); 5464 if (unlikely(!sch)) 5465 return false; 5466 5467 if (!scx_dsq_insert_preamble(sch, p, enq_flags)) 5468 return false; 5469 5470 if (slice) 5471 p->scx.slice = slice; 5472 else 5473 p->scx.slice = p->scx.slice ?: 1; 5474 5475 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags); 5476 5477 return true; 5478 } 5479 5480 /* 5481 * COMPAT: Will be removed in v6.23 along with the ___v2 suffix. 5482 */ 5483 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, 5484 u64 slice, u64 enq_flags) 5485 { 5486 scx_bpf_dsq_insert___v2(p, dsq_id, slice, enq_flags); 5487 } 5488 5489 static bool scx_dsq_insert_vtime(struct scx_sched *sch, struct task_struct *p, 5490 u64 dsq_id, u64 slice, u64 vtime, u64 enq_flags) 5491 { 5492 if (!scx_dsq_insert_preamble(sch, p, enq_flags)) 5493 return false; 5494 5495 if (slice) 5496 p->scx.slice = slice; 5497 else 5498 p->scx.slice = p->scx.slice ?: 1; 5499 5500 p->scx.dsq_vtime = vtime; 5501 5502 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 5503 5504 return true; 5505 } 5506 5507 struct scx_bpf_dsq_insert_vtime_args { 5508 /* @p can't be packed together as KF_RCU is not transitive */ 5509 u64 dsq_id; 5510 u64 slice; 5511 u64 vtime; 5512 u64 enq_flags; 5513 }; 5514 5515 /** 5516 * __scx_bpf_dsq_insert_vtime - Arg-wrapped vtime DSQ insertion 5517 * @p: task_struct to insert 5518 * @args: struct containing the rest of the arguments 5519 * @args->dsq_id: DSQ to insert into 5520 * @args->slice: duration @p can run for in nsecs, 0 to keep the current value 5521 * @args->vtime: @p's ordering inside the vtime-sorted queue of the target DSQ 5522 * @args->enq_flags: SCX_ENQ_* 5523 * 5524 * Wrapper kfunc that takes arguments via struct to work around BPF's 5 argument 5525 * limit. BPF programs should use scx_bpf_dsq_insert_vtime() which is provided 5526 * as an inline wrapper in common.bpf.h. 5527 * 5528 * Insert @p into the vtime priority queue of the DSQ identified by 5529 * @args->dsq_id. Tasks queued into the priority queue are ordered by 5530 * @args->vtime. All other aspects are identical to scx_bpf_dsq_insert(). 5531 * 5532 * @args->vtime ordering is according to time_before64() which considers 5533 * wrapping. A numerically larger vtime may indicate an earlier position in the 5534 * ordering and vice-versa. 5535 * 5536 * A DSQ can only be used as a FIFO or priority queue at any given time and this 5537 * function must not be called on a DSQ which already has one or more FIFO tasks 5538 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and 5539 * SCX_DSQ_GLOBAL) cannot be used as priority queues. 5540 * 5541 * Returns %true on successful insertion, %false on failure. On the root 5542 * scheduler, %false return triggers scheduler abort and the caller doesn't need 5543 * to check the return value. 5544 */ 5545 __bpf_kfunc bool 5546 __scx_bpf_dsq_insert_vtime(struct task_struct *p, 5547 struct scx_bpf_dsq_insert_vtime_args *args) 5548 { 5549 struct scx_sched *sch; 5550 5551 guard(rcu)(); 5552 5553 sch = rcu_dereference(scx_root); 5554 if (unlikely(!sch)) 5555 return false; 5556 5557 return scx_dsq_insert_vtime(sch, p, args->dsq_id, args->slice, 5558 args->vtime, args->enq_flags); 5559 } 5560 5561 /* 5562 * COMPAT: Will be removed in v6.23. 5563 */ 5564 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id, 5565 u64 slice, u64 vtime, u64 enq_flags) 5566 { 5567 struct scx_sched *sch; 5568 5569 guard(rcu)(); 5570 5571 sch = rcu_dereference(scx_root); 5572 if (unlikely(!sch)) 5573 return; 5574 5575 scx_dsq_insert_vtime(sch, p, dsq_id, slice, vtime, enq_flags); 5576 } 5577 5578 __bpf_kfunc_end_defs(); 5579 5580 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 5581 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU) 5582 BTF_ID_FLAGS(func, scx_bpf_dsq_insert___v2, KF_RCU) 5583 BTF_ID_FLAGS(func, __scx_bpf_dsq_insert_vtime, KF_RCU) 5584 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU) 5585 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 5586 5587 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 5588 .owner = THIS_MODULE, 5589 .set = &scx_kfunc_ids_enqueue_dispatch, 5590 }; 5591 5592 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit, 5593 struct task_struct *p, u64 dsq_id, u64 enq_flags) 5594 { 5595 struct scx_sched *sch = scx_root; 5596 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; 5597 struct rq *this_rq, *src_rq, *locked_rq; 5598 bool dispatched = false; 5599 bool in_balance; 5600 unsigned long flags; 5601 5602 if (!scx_kf_allowed_if_unlocked() && 5603 !scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5604 return false; 5605 5606 /* 5607 * Can be called from either ops.dispatch() locking this_rq() or any 5608 * context where no rq lock is held. If latter, lock @p's task_rq which 5609 * we'll likely need anyway. 5610 */ 5611 src_rq = task_rq(p); 5612 5613 local_irq_save(flags); 5614 this_rq = this_rq(); 5615 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; 5616 5617 if (in_balance) { 5618 if (this_rq != src_rq) { 5619 raw_spin_rq_unlock(this_rq); 5620 raw_spin_rq_lock(src_rq); 5621 } 5622 } else { 5623 raw_spin_rq_lock(src_rq); 5624 } 5625 5626 /* 5627 * If the BPF scheduler keeps calling this function repeatedly, it can 5628 * cause similar live-lock conditions as consume_dispatch_q(). Insert a 5629 * breather if necessary. 5630 */ 5631 scx_breather(src_rq); 5632 5633 locked_rq = src_rq; 5634 raw_spin_lock(&src_dsq->lock); 5635 5636 /* 5637 * Did someone else get to it? @p could have already left $src_dsq, got 5638 * re-enqueud, or be in the process of being consumed by someone else. 5639 */ 5640 if (unlikely(p->scx.dsq != src_dsq || 5641 u32_before(kit->cursor.priv, p->scx.dsq_seq) || 5642 p->scx.holding_cpu >= 0) || 5643 WARN_ON_ONCE(src_rq != task_rq(p))) { 5644 raw_spin_unlock(&src_dsq->lock); 5645 goto out; 5646 } 5647 5648 /* @p is still on $src_dsq and stable, determine the destination */ 5649 dst_dsq = find_dsq_for_dispatch(sch, this_rq, dsq_id, p); 5650 5651 /* 5652 * Apply vtime and slice updates before moving so that the new time is 5653 * visible before inserting into $dst_dsq. @p is still on $src_dsq but 5654 * this is safe as we're locking it. 5655 */ 5656 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) 5657 p->scx.dsq_vtime = kit->vtime; 5658 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) 5659 p->scx.slice = kit->slice; 5660 5661 /* execute move */ 5662 locked_rq = move_task_between_dsqs(sch, p, enq_flags, src_dsq, dst_dsq); 5663 dispatched = true; 5664 out: 5665 if (in_balance) { 5666 if (this_rq != locked_rq) { 5667 raw_spin_rq_unlock(locked_rq); 5668 raw_spin_rq_lock(this_rq); 5669 } 5670 } else { 5671 raw_spin_rq_unlock_irqrestore(locked_rq, flags); 5672 } 5673 5674 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | 5675 __SCX_DSQ_ITER_HAS_VTIME); 5676 return dispatched; 5677 } 5678 5679 __bpf_kfunc_start_defs(); 5680 5681 /** 5682 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 5683 * 5684 * Can only be called from ops.dispatch(). 5685 */ 5686 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 5687 { 5688 struct scx_sched *sch; 5689 5690 guard(rcu)(); 5691 5692 sch = rcu_dereference(scx_root); 5693 if (unlikely(!sch)) 5694 return 0; 5695 5696 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5697 return 0; 5698 5699 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 5700 } 5701 5702 /** 5703 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 5704 * 5705 * Cancel the latest dispatch. Can be called multiple times to cancel further 5706 * dispatches. Can only be called from ops.dispatch(). 5707 */ 5708 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 5709 { 5710 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5711 struct scx_sched *sch; 5712 5713 guard(rcu)(); 5714 5715 sch = rcu_dereference(scx_root); 5716 if (unlikely(!sch)) 5717 return; 5718 5719 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5720 return; 5721 5722 if (dspc->cursor > 0) 5723 dspc->cursor--; 5724 else 5725 scx_error(sch, "dispatch buffer underflow"); 5726 } 5727 5728 /** 5729 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ 5730 * @dsq_id: DSQ to move task from 5731 * 5732 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's 5733 * local DSQ for execution. Can only be called from ops.dispatch(). 5734 * 5735 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert() 5736 * before trying to move from the specified DSQ. It may also grab rq locks and 5737 * thus can't be called under any BPF locks. 5738 * 5739 * Returns %true if a task has been moved, %false if there isn't any task to 5740 * move. 5741 */ 5742 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id) 5743 { 5744 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5745 struct scx_dispatch_q *dsq; 5746 struct scx_sched *sch; 5747 5748 guard(rcu)(); 5749 5750 sch = rcu_dereference(scx_root); 5751 if (unlikely(!sch)) 5752 return false; 5753 5754 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5755 return false; 5756 5757 flush_dispatch_buf(sch, dspc->rq); 5758 5759 dsq = find_user_dsq(sch, dsq_id); 5760 if (unlikely(!dsq)) { 5761 scx_error(sch, "invalid DSQ ID 0x%016llx", dsq_id); 5762 return false; 5763 } 5764 5765 if (consume_dispatch_q(sch, dspc->rq, dsq)) { 5766 /* 5767 * A successfully consumed task can be dequeued before it starts 5768 * running while the CPU is trying to migrate other dispatched 5769 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 5770 * local DSQ. 5771 */ 5772 dspc->nr_tasks++; 5773 return true; 5774 } else { 5775 return false; 5776 } 5777 } 5778 5779 /** 5780 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs 5781 * @it__iter: DSQ iterator in progress 5782 * @slice: duration the moved task can run for in nsecs 5783 * 5784 * Override the slice of the next task that will be moved from @it__iter using 5785 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous 5786 * slice duration is kept. 5787 */ 5788 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, 5789 u64 slice) 5790 { 5791 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 5792 5793 kit->slice = slice; 5794 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; 5795 } 5796 5797 /** 5798 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs 5799 * @it__iter: DSQ iterator in progress 5800 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ 5801 * 5802 * Override the vtime of the next task that will be moved from @it__iter using 5803 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice 5804 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the 5805 * override is ignored and cleared. 5806 */ 5807 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, 5808 u64 vtime) 5809 { 5810 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 5811 5812 kit->vtime = vtime; 5813 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; 5814 } 5815 5816 /** 5817 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ 5818 * @it__iter: DSQ iterator in progress 5819 * @p: task to transfer 5820 * @dsq_id: DSQ to move @p to 5821 * @enq_flags: SCX_ENQ_* 5822 * 5823 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ 5824 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can 5825 * be the destination. 5826 * 5827 * For the transfer to be successful, @p must still be on the DSQ and have been 5828 * queued before the DSQ iteration started. This function doesn't care whether 5829 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have 5830 * been queued before the iteration started. 5831 * 5832 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update. 5833 * 5834 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq 5835 * lock (e.g. BPF timers or SYSCALL programs). 5836 * 5837 * Returns %true if @p has been consumed, %false if @p had already been 5838 * consumed, dequeued, or, for sub-scheds, @dsq_id points to a disallowed local 5839 * DSQ. 5840 */ 5841 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, 5842 struct task_struct *p, u64 dsq_id, 5843 u64 enq_flags) 5844 { 5845 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 5846 p, dsq_id, enq_flags); 5847 } 5848 5849 /** 5850 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ 5851 * @it__iter: DSQ iterator in progress 5852 * @p: task to transfer 5853 * @dsq_id: DSQ to move @p to 5854 * @enq_flags: SCX_ENQ_* 5855 * 5856 * Transfer @p which is on the DSQ currently iterated by @it__iter to the 5857 * priority queue of the DSQ specified by @dsq_id. The destination must be a 5858 * user DSQ as only user DSQs support priority queue. 5859 * 5860 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice() 5861 * and scx_bpf_dsq_move_set_vtime() to update. 5862 * 5863 * All other aspects are identical to scx_bpf_dsq_move(). See 5864 * scx_bpf_dsq_insert_vtime() for more information on @vtime. 5865 */ 5866 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, 5867 struct task_struct *p, u64 dsq_id, 5868 u64 enq_flags) 5869 { 5870 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 5871 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 5872 } 5873 5874 __bpf_kfunc_end_defs(); 5875 5876 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 5877 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 5878 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 5879 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local) 5880 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU) 5881 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU) 5882 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 5883 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 5884 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 5885 5886 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 5887 .owner = THIS_MODULE, 5888 .set = &scx_kfunc_ids_dispatch, 5889 }; 5890 5891 static u32 reenq_local(struct rq *rq) 5892 { 5893 LIST_HEAD(tasks); 5894 u32 nr_enqueued = 0; 5895 struct task_struct *p, *n; 5896 5897 lockdep_assert_rq_held(rq); 5898 5899 /* 5900 * The BPF scheduler may choose to dispatch tasks back to 5901 * @rq->scx.local_dsq. Move all candidate tasks off to a private list 5902 * first to avoid processing the same tasks repeatedly. 5903 */ 5904 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, 5905 scx.dsq_list.node) { 5906 /* 5907 * If @p is being migrated, @p's current CPU may not agree with 5908 * its allowed CPUs and the migration_cpu_stop is about to 5909 * deactivate and re-activate @p anyway. Skip re-enqueueing. 5910 * 5911 * While racing sched property changes may also dequeue and 5912 * re-enqueue a migrating task while its current CPU and allowed 5913 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to 5914 * the current local DSQ for running tasks and thus are not 5915 * visible to the BPF scheduler. 5916 */ 5917 if (p->migration_pending) 5918 continue; 5919 5920 dispatch_dequeue(rq, p); 5921 list_add_tail(&p->scx.dsq_list.node, &tasks); 5922 } 5923 5924 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { 5925 list_del_init(&p->scx.dsq_list.node); 5926 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 5927 nr_enqueued++; 5928 } 5929 5930 return nr_enqueued; 5931 } 5932 5933 __bpf_kfunc_start_defs(); 5934 5935 /** 5936 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 5937 * 5938 * Iterate over all of the tasks currently enqueued on the local DSQ of the 5939 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 5940 * processed tasks. Can only be called from ops.cpu_release(). 5941 * 5942 * COMPAT: Will be removed in v6.23 along with the ___v2 suffix on the void 5943 * returning variant that can be called from anywhere. 5944 */ 5945 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 5946 { 5947 struct scx_sched *sch; 5948 struct rq *rq; 5949 5950 guard(rcu)(); 5951 sch = rcu_dereference(scx_root); 5952 if (unlikely(!sch)) 5953 return 0; 5954 5955 if (!scx_kf_allowed(sch, SCX_KF_CPU_RELEASE)) 5956 return 0; 5957 5958 rq = cpu_rq(smp_processor_id()); 5959 lockdep_assert_rq_held(rq); 5960 5961 return reenq_local(rq); 5962 } 5963 5964 __bpf_kfunc_end_defs(); 5965 5966 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 5967 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 5968 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 5969 5970 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 5971 .owner = THIS_MODULE, 5972 .set = &scx_kfunc_ids_cpu_release, 5973 }; 5974 5975 __bpf_kfunc_start_defs(); 5976 5977 /** 5978 * scx_bpf_create_dsq - Create a custom DSQ 5979 * @dsq_id: DSQ to create 5980 * @node: NUMA node to allocate from 5981 * 5982 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable 5983 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. 5984 */ 5985 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 5986 { 5987 struct scx_dispatch_q *dsq; 5988 struct scx_sched *sch; 5989 s32 ret; 5990 5991 if (unlikely(node >= (int)nr_node_ids || 5992 (node < 0 && node != NUMA_NO_NODE))) 5993 return -EINVAL; 5994 5995 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN)) 5996 return -EINVAL; 5997 5998 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 5999 if (!dsq) 6000 return -ENOMEM; 6001 6002 init_dsq(dsq, dsq_id); 6003 6004 rcu_read_lock(); 6005 6006 sch = rcu_dereference(scx_root); 6007 if (sch) 6008 ret = rhashtable_lookup_insert_fast(&sch->dsq_hash, &dsq->hash_node, 6009 dsq_hash_params); 6010 else 6011 ret = -ENODEV; 6012 6013 rcu_read_unlock(); 6014 if (ret) 6015 kfree(dsq); 6016 return ret; 6017 } 6018 6019 __bpf_kfunc_end_defs(); 6020 6021 BTF_KFUNCS_START(scx_kfunc_ids_unlocked) 6022 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 6023 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU) 6024 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU) 6025 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 6026 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 6027 BTF_KFUNCS_END(scx_kfunc_ids_unlocked) 6028 6029 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { 6030 .owner = THIS_MODULE, 6031 .set = &scx_kfunc_ids_unlocked, 6032 }; 6033 6034 __bpf_kfunc_start_defs(); 6035 6036 /** 6037 * scx_bpf_task_set_slice - Set task's time slice 6038 * @p: task of interest 6039 * @slice: time slice to set in nsecs 6040 * 6041 * Set @p's time slice to @slice. Returns %true on success, %false if the 6042 * calling scheduler doesn't have authority over @p. 6043 */ 6044 __bpf_kfunc bool scx_bpf_task_set_slice(struct task_struct *p, u64 slice) 6045 { 6046 p->scx.slice = slice; 6047 return true; 6048 } 6049 6050 /** 6051 * scx_bpf_task_set_dsq_vtime - Set task's virtual time for DSQ ordering 6052 * @p: task of interest 6053 * @vtime: virtual time to set 6054 * 6055 * Set @p's virtual time to @vtime. Returns %true on success, %false if the 6056 * calling scheduler doesn't have authority over @p. 6057 */ 6058 __bpf_kfunc bool scx_bpf_task_set_dsq_vtime(struct task_struct *p, u64 vtime) 6059 { 6060 p->scx.dsq_vtime = vtime; 6061 return true; 6062 } 6063 6064 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags) 6065 { 6066 struct rq *this_rq; 6067 unsigned long irq_flags; 6068 6069 if (!ops_cpu_valid(sch, cpu, NULL)) 6070 return; 6071 6072 local_irq_save(irq_flags); 6073 6074 this_rq = this_rq(); 6075 6076 /* 6077 * While bypassing for PM ops, IRQ handling may not be online which can 6078 * lead to irq_work_queue() malfunction such as infinite busy wait for 6079 * IRQ status update. Suppress kicking. 6080 */ 6081 if (scx_rq_bypassing(this_rq)) 6082 goto out; 6083 6084 /* 6085 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 6086 * rq locks. We can probably be smarter and avoid bouncing if called 6087 * from ops which don't hold a rq lock. 6088 */ 6089 if (flags & SCX_KICK_IDLE) { 6090 struct rq *target_rq = cpu_rq(cpu); 6091 6092 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 6093 scx_error(sch, "PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 6094 6095 if (raw_spin_rq_trylock(target_rq)) { 6096 if (can_skip_idle_kick(target_rq)) { 6097 raw_spin_rq_unlock(target_rq); 6098 goto out; 6099 } 6100 raw_spin_rq_unlock(target_rq); 6101 } 6102 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 6103 } else { 6104 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 6105 6106 if (flags & SCX_KICK_PREEMPT) 6107 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 6108 if (flags & SCX_KICK_WAIT) 6109 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 6110 } 6111 6112 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 6113 out: 6114 local_irq_restore(irq_flags); 6115 } 6116 6117 /** 6118 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 6119 * @cpu: cpu to kick 6120 * @flags: %SCX_KICK_* flags 6121 * 6122 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 6123 * trigger rescheduling on a busy CPU. This can be called from any online 6124 * scx_ops operation and the actual kicking is performed asynchronously through 6125 * an irq work. 6126 */ 6127 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 6128 { 6129 struct scx_sched *sch; 6130 6131 guard(rcu)(); 6132 sch = rcu_dereference(scx_root); 6133 if (likely(sch)) 6134 scx_kick_cpu(sch, cpu, flags); 6135 } 6136 6137 /** 6138 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 6139 * @dsq_id: id of the DSQ 6140 * 6141 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 6142 * -%ENOENT is returned. 6143 */ 6144 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 6145 { 6146 struct scx_sched *sch; 6147 struct scx_dispatch_q *dsq; 6148 s32 ret; 6149 6150 preempt_disable(); 6151 6152 sch = rcu_dereference_sched(scx_root); 6153 if (unlikely(!sch)) { 6154 ret = -ENODEV; 6155 goto out; 6156 } 6157 6158 if (dsq_id == SCX_DSQ_LOCAL) { 6159 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 6160 goto out; 6161 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 6162 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 6163 6164 if (ops_cpu_valid(sch, cpu, NULL)) { 6165 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 6166 goto out; 6167 } 6168 } else { 6169 dsq = find_user_dsq(sch, dsq_id); 6170 if (dsq) { 6171 ret = READ_ONCE(dsq->nr); 6172 goto out; 6173 } 6174 } 6175 ret = -ENOENT; 6176 out: 6177 preempt_enable(); 6178 return ret; 6179 } 6180 6181 /** 6182 * scx_bpf_destroy_dsq - Destroy a custom DSQ 6183 * @dsq_id: DSQ to destroy 6184 * 6185 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 6186 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 6187 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 6188 * which doesn't exist. Can be called from any online scx_ops operations. 6189 */ 6190 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 6191 { 6192 struct scx_sched *sch; 6193 6194 rcu_read_lock(); 6195 sch = rcu_dereference(scx_root); 6196 if (sch) 6197 destroy_dsq(sch, dsq_id); 6198 rcu_read_unlock(); 6199 } 6200 6201 /** 6202 * bpf_iter_scx_dsq_new - Create a DSQ iterator 6203 * @it: iterator to initialize 6204 * @dsq_id: DSQ to iterate 6205 * @flags: %SCX_DSQ_ITER_* 6206 * 6207 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk 6208 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes 6209 * tasks which are already queued when this function is invoked. 6210 */ 6211 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, 6212 u64 flags) 6213 { 6214 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6215 struct scx_sched *sch; 6216 6217 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > 6218 sizeof(struct bpf_iter_scx_dsq)); 6219 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != 6220 __alignof__(struct bpf_iter_scx_dsq)); 6221 6222 /* 6223 * next() and destroy() will be called regardless of the return value. 6224 * Always clear $kit->dsq. 6225 */ 6226 kit->dsq = NULL; 6227 6228 sch = rcu_dereference_check(scx_root, rcu_read_lock_bh_held()); 6229 if (unlikely(!sch)) 6230 return -ENODEV; 6231 6232 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) 6233 return -EINVAL; 6234 6235 kit->dsq = find_user_dsq(sch, dsq_id); 6236 if (!kit->dsq) 6237 return -ENOENT; 6238 6239 INIT_LIST_HEAD(&kit->cursor.node); 6240 kit->cursor.flags = SCX_DSQ_LNODE_ITER_CURSOR | flags; 6241 kit->cursor.priv = READ_ONCE(kit->dsq->seq); 6242 6243 return 0; 6244 } 6245 6246 /** 6247 * bpf_iter_scx_dsq_next - Progress a DSQ iterator 6248 * @it: iterator to progress 6249 * 6250 * Return the next task. See bpf_iter_scx_dsq_new(). 6251 */ 6252 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) 6253 { 6254 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6255 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; 6256 struct task_struct *p; 6257 unsigned long flags; 6258 6259 if (!kit->dsq) 6260 return NULL; 6261 6262 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6263 6264 if (list_empty(&kit->cursor.node)) 6265 p = NULL; 6266 else 6267 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); 6268 6269 /* 6270 * Only tasks which were queued before the iteration started are 6271 * visible. This bounds BPF iterations and guarantees that vtime never 6272 * jumps in the other direction while iterating. 6273 */ 6274 do { 6275 p = nldsq_next_task(kit->dsq, p, rev); 6276 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); 6277 6278 if (p) { 6279 if (rev) 6280 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); 6281 else 6282 list_move(&kit->cursor.node, &p->scx.dsq_list.node); 6283 } else { 6284 list_del_init(&kit->cursor.node); 6285 } 6286 6287 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6288 6289 return p; 6290 } 6291 6292 /** 6293 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator 6294 * @it: iterator to destroy 6295 * 6296 * Undo scx_iter_scx_dsq_new(). 6297 */ 6298 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) 6299 { 6300 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6301 6302 if (!kit->dsq) 6303 return; 6304 6305 if (!list_empty(&kit->cursor.node)) { 6306 unsigned long flags; 6307 6308 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6309 list_del_init(&kit->cursor.node); 6310 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6311 } 6312 kit->dsq = NULL; 6313 } 6314 6315 /** 6316 * scx_bpf_dsq_peek - Lockless peek at the first element. 6317 * @dsq_id: DSQ to examine. 6318 * 6319 * Read the first element in the DSQ. This is semantically equivalent to using 6320 * the DSQ iterator, but is lockfree. Of course, like any lockless operation, 6321 * this provides only a point-in-time snapshot, and the contents may change 6322 * by the time any subsequent locking operation reads the queue. 6323 * 6324 * Returns the pointer, or NULL indicates an empty queue OR internal error. 6325 */ 6326 __bpf_kfunc struct task_struct *scx_bpf_dsq_peek(u64 dsq_id) 6327 { 6328 struct scx_sched *sch; 6329 struct scx_dispatch_q *dsq; 6330 6331 sch = rcu_dereference(scx_root); 6332 if (unlikely(!sch)) 6333 return NULL; 6334 6335 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN)) { 6336 scx_error(sch, "peek disallowed on builtin DSQ 0x%llx", dsq_id); 6337 return NULL; 6338 } 6339 6340 dsq = find_user_dsq(sch, dsq_id); 6341 if (unlikely(!dsq)) { 6342 scx_error(sch, "peek on non-existent DSQ 0x%llx", dsq_id); 6343 return NULL; 6344 } 6345 6346 return rcu_dereference(dsq->first_task); 6347 } 6348 6349 __bpf_kfunc_end_defs(); 6350 6351 static s32 __bstr_format(struct scx_sched *sch, u64 *data_buf, char *line_buf, 6352 size_t line_size, char *fmt, unsigned long long *data, 6353 u32 data__sz) 6354 { 6355 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 6356 s32 ret; 6357 6358 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 6359 (data__sz && !data)) { 6360 scx_error(sch, "invalid data=%p and data__sz=%u", (void *)data, data__sz); 6361 return -EINVAL; 6362 } 6363 6364 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 6365 if (ret < 0) { 6366 scx_error(sch, "failed to read data fields (%d)", ret); 6367 return ret; 6368 } 6369 6370 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 6371 &bprintf_data); 6372 if (ret < 0) { 6373 scx_error(sch, "format preparation failed (%d)", ret); 6374 return ret; 6375 } 6376 6377 ret = bstr_printf(line_buf, line_size, fmt, 6378 bprintf_data.bin_args); 6379 bpf_bprintf_cleanup(&bprintf_data); 6380 if (ret < 0) { 6381 scx_error(sch, "(\"%s\", %p, %u) failed to format", fmt, data, data__sz); 6382 return ret; 6383 } 6384 6385 return ret; 6386 } 6387 6388 static s32 bstr_format(struct scx_sched *sch, struct scx_bstr_buf *buf, 6389 char *fmt, unsigned long long *data, u32 data__sz) 6390 { 6391 return __bstr_format(sch, buf->data, buf->line, sizeof(buf->line), 6392 fmt, data, data__sz); 6393 } 6394 6395 __bpf_kfunc_start_defs(); 6396 6397 /** 6398 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 6399 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 6400 * @fmt: error message format string 6401 * @data: format string parameters packaged using ___bpf_fill() macro 6402 * @data__sz: @data len, must end in '__sz' for the verifier 6403 * 6404 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 6405 * disabling. 6406 */ 6407 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 6408 unsigned long long *data, u32 data__sz) 6409 { 6410 struct scx_sched *sch; 6411 unsigned long flags; 6412 6413 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6414 sch = rcu_dereference_bh(scx_root); 6415 if (likely(sch) && 6416 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6417 scx_exit(sch, SCX_EXIT_UNREG_BPF, exit_code, "%s", scx_exit_bstr_buf.line); 6418 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6419 } 6420 6421 /** 6422 * scx_bpf_error_bstr - Indicate fatal error 6423 * @fmt: error message format string 6424 * @data: format string parameters packaged using ___bpf_fill() macro 6425 * @data__sz: @data len, must end in '__sz' for the verifier 6426 * 6427 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 6428 * disabling. 6429 */ 6430 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 6431 u32 data__sz) 6432 { 6433 struct scx_sched *sch; 6434 unsigned long flags; 6435 6436 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6437 sch = rcu_dereference_bh(scx_root); 6438 if (likely(sch) && 6439 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6440 scx_exit(sch, SCX_EXIT_ERROR_BPF, 0, "%s", scx_exit_bstr_buf.line); 6441 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6442 } 6443 6444 /** 6445 * scx_bpf_dump_bstr - Generate extra debug dump specific to the BPF scheduler 6446 * @fmt: format string 6447 * @data: format string parameters packaged using ___bpf_fill() macro 6448 * @data__sz: @data len, must end in '__sz' for the verifier 6449 * 6450 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 6451 * dump_task() to generate extra debug dump specific to the BPF scheduler. 6452 * 6453 * The extra dump may be multiple lines. A single line may be split over 6454 * multiple calls. The last line is automatically terminated. 6455 */ 6456 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 6457 u32 data__sz) 6458 { 6459 struct scx_sched *sch; 6460 struct scx_dump_data *dd = &scx_dump_data; 6461 struct scx_bstr_buf *buf = &dd->buf; 6462 s32 ret; 6463 6464 guard(rcu)(); 6465 6466 sch = rcu_dereference(scx_root); 6467 if (unlikely(!sch)) 6468 return; 6469 6470 if (raw_smp_processor_id() != dd->cpu) { 6471 scx_error(sch, "scx_bpf_dump() must only be called from ops.dump() and friends"); 6472 return; 6473 } 6474 6475 /* append the formatted string to the line buf */ 6476 ret = __bstr_format(sch, buf->data, buf->line + dd->cursor, 6477 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 6478 if (ret < 0) { 6479 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 6480 dd->prefix, fmt, data, data__sz, ret); 6481 return; 6482 } 6483 6484 dd->cursor += ret; 6485 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 6486 6487 if (!dd->cursor) 6488 return; 6489 6490 /* 6491 * If the line buf overflowed or ends in a newline, flush it into the 6492 * dump. This is to allow the caller to generate a single line over 6493 * multiple calls. As ops_dump_flush() can also handle multiple lines in 6494 * the line buf, the only case which can lead to an unexpected 6495 * truncation is when the caller keeps generating newlines in the middle 6496 * instead of the end consecutively. Don't do that. 6497 */ 6498 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 6499 ops_dump_flush(); 6500 } 6501 6502 /** 6503 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 6504 * 6505 * Iterate over all of the tasks currently enqueued on the local DSQ of the 6506 * caller's CPU, and re-enqueue them in the BPF scheduler. Can be called from 6507 * anywhere. 6508 */ 6509 __bpf_kfunc void scx_bpf_reenqueue_local___v2(void) 6510 { 6511 struct rq *rq; 6512 6513 guard(preempt)(); 6514 6515 rq = this_rq(); 6516 local_set(&rq->scx.reenq_local_deferred, 1); 6517 schedule_deferred(rq); 6518 } 6519 6520 /** 6521 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU 6522 * @cpu: CPU of interest 6523 * 6524 * Return the maximum relative capacity of @cpu in relation to the most 6525 * performant CPU in the system. The return value is in the range [1, 6526 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). 6527 */ 6528 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) 6529 { 6530 struct scx_sched *sch; 6531 6532 guard(rcu)(); 6533 6534 sch = rcu_dereference(scx_root); 6535 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL)) 6536 return arch_scale_cpu_capacity(cpu); 6537 else 6538 return SCX_CPUPERF_ONE; 6539 } 6540 6541 /** 6542 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU 6543 * @cpu: CPU of interest 6544 * 6545 * Return the current relative performance of @cpu in relation to its maximum. 6546 * The return value is in the range [1, %SCX_CPUPERF_ONE]. 6547 * 6548 * The current performance level of a CPU in relation to the maximum performance 6549 * available in the system can be calculated as follows: 6550 * 6551 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE 6552 * 6553 * The result is in the range [1, %SCX_CPUPERF_ONE]. 6554 */ 6555 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) 6556 { 6557 struct scx_sched *sch; 6558 6559 guard(rcu)(); 6560 6561 sch = rcu_dereference(scx_root); 6562 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL)) 6563 return arch_scale_freq_capacity(cpu); 6564 else 6565 return SCX_CPUPERF_ONE; 6566 } 6567 6568 /** 6569 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU 6570 * @cpu: CPU of interest 6571 * @perf: target performance level [0, %SCX_CPUPERF_ONE] 6572 * 6573 * Set the target performance level of @cpu to @perf. @perf is in linear 6574 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the 6575 * schedutil cpufreq governor chooses the target frequency. 6576 * 6577 * The actual performance level chosen, CPU grouping, and the overhead and 6578 * latency of the operations are dependent on the hardware and cpufreq driver in 6579 * use. Consult hardware and cpufreq documentation for more information. The 6580 * current performance level can be monitored using scx_bpf_cpuperf_cur(). 6581 */ 6582 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) 6583 { 6584 struct scx_sched *sch; 6585 6586 guard(rcu)(); 6587 6588 sch = rcu_dereference(scx_root); 6589 if (unlikely(!sch)) 6590 return; 6591 6592 if (unlikely(perf > SCX_CPUPERF_ONE)) { 6593 scx_error(sch, "Invalid cpuperf target %u for CPU %d", perf, cpu); 6594 return; 6595 } 6596 6597 if (ops_cpu_valid(sch, cpu, NULL)) { 6598 struct rq *rq = cpu_rq(cpu), *locked_rq = scx_locked_rq(); 6599 struct rq_flags rf; 6600 6601 /* 6602 * When called with an rq lock held, restrict the operation 6603 * to the corresponding CPU to prevent ABBA deadlocks. 6604 */ 6605 if (locked_rq && rq != locked_rq) { 6606 scx_error(sch, "Invalid target CPU %d", cpu); 6607 return; 6608 } 6609 6610 /* 6611 * If no rq lock is held, allow to operate on any CPU by 6612 * acquiring the corresponding rq lock. 6613 */ 6614 if (!locked_rq) { 6615 rq_lock_irqsave(rq, &rf); 6616 update_rq_clock(rq); 6617 } 6618 6619 rq->scx.cpuperf_target = perf; 6620 cpufreq_update_util(rq, 0); 6621 6622 if (!locked_rq) 6623 rq_unlock_irqrestore(rq, &rf); 6624 } 6625 } 6626 6627 /** 6628 * scx_bpf_nr_node_ids - Return the number of possible node IDs 6629 * 6630 * All valid node IDs in the system are smaller than the returned value. 6631 */ 6632 __bpf_kfunc u32 scx_bpf_nr_node_ids(void) 6633 { 6634 return nr_node_ids; 6635 } 6636 6637 /** 6638 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 6639 * 6640 * All valid CPU IDs in the system are smaller than the returned value. 6641 */ 6642 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 6643 { 6644 return nr_cpu_ids; 6645 } 6646 6647 /** 6648 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 6649 */ 6650 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 6651 { 6652 return cpu_possible_mask; 6653 } 6654 6655 /** 6656 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 6657 */ 6658 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 6659 { 6660 return cpu_online_mask; 6661 } 6662 6663 /** 6664 * scx_bpf_put_cpumask - Release a possible/online cpumask 6665 * @cpumask: cpumask to release 6666 */ 6667 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 6668 { 6669 /* 6670 * Empty function body because we aren't actually acquiring or releasing 6671 * a reference to a global cpumask, which is read-only in the caller and 6672 * is never released. The acquire / release semantics here are just used 6673 * to make the cpumask is a trusted pointer in the caller. 6674 */ 6675 } 6676 6677 /** 6678 * scx_bpf_task_running - Is task currently running? 6679 * @p: task of interest 6680 */ 6681 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 6682 { 6683 return task_rq(p)->curr == p; 6684 } 6685 6686 /** 6687 * scx_bpf_task_cpu - CPU a task is currently associated with 6688 * @p: task of interest 6689 */ 6690 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 6691 { 6692 return task_cpu(p); 6693 } 6694 6695 /** 6696 * scx_bpf_cpu_rq - Fetch the rq of a CPU 6697 * @cpu: CPU of the rq 6698 */ 6699 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) 6700 { 6701 struct scx_sched *sch; 6702 6703 guard(rcu)(); 6704 6705 sch = rcu_dereference(scx_root); 6706 if (unlikely(!sch)) 6707 return NULL; 6708 6709 if (!ops_cpu_valid(sch, cpu, NULL)) 6710 return NULL; 6711 6712 if (!sch->warned_deprecated_rq) { 6713 printk_deferred(KERN_WARNING "sched_ext: %s() is deprecated; " 6714 "use scx_bpf_locked_rq() when holding rq lock " 6715 "or scx_bpf_cpu_curr() to read remote curr safely.\n", __func__); 6716 sch->warned_deprecated_rq = true; 6717 } 6718 6719 return cpu_rq(cpu); 6720 } 6721 6722 /** 6723 * scx_bpf_locked_rq - Return the rq currently locked by SCX 6724 * 6725 * Returns the rq if a rq lock is currently held by SCX. 6726 * Otherwise emits an error and returns NULL. 6727 */ 6728 __bpf_kfunc struct rq *scx_bpf_locked_rq(void) 6729 { 6730 struct scx_sched *sch; 6731 struct rq *rq; 6732 6733 guard(preempt)(); 6734 6735 sch = rcu_dereference_sched(scx_root); 6736 if (unlikely(!sch)) 6737 return NULL; 6738 6739 rq = scx_locked_rq(); 6740 if (!rq) { 6741 scx_error(sch, "accessing rq without holding rq lock"); 6742 return NULL; 6743 } 6744 6745 return rq; 6746 } 6747 6748 /** 6749 * scx_bpf_cpu_curr - Return remote CPU's curr task 6750 * @cpu: CPU of interest 6751 * 6752 * Callers must hold RCU read lock (KF_RCU). 6753 */ 6754 __bpf_kfunc struct task_struct *scx_bpf_cpu_curr(s32 cpu) 6755 { 6756 struct scx_sched *sch; 6757 6758 guard(rcu)(); 6759 6760 sch = rcu_dereference(scx_root); 6761 if (unlikely(!sch)) 6762 return NULL; 6763 6764 if (!ops_cpu_valid(sch, cpu, NULL)) 6765 return NULL; 6766 6767 return rcu_dereference(cpu_rq(cpu)->curr); 6768 } 6769 6770 /** 6771 * scx_bpf_task_cgroup - Return the sched cgroup of a task 6772 * @p: task of interest 6773 * 6774 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with 6775 * from the scheduler's POV. SCX operations should use this function to 6776 * determine @p's current cgroup as, unlike following @p->cgroups, 6777 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all 6778 * rq-locked operations. Can be called on the parameter tasks of rq-locked 6779 * operations. The restriction guarantees that @p's rq is locked by the caller. 6780 */ 6781 #ifdef CONFIG_CGROUP_SCHED 6782 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) 6783 { 6784 struct task_group *tg = p->sched_task_group; 6785 struct cgroup *cgrp = &cgrp_dfl_root.cgrp; 6786 struct scx_sched *sch; 6787 6788 guard(rcu)(); 6789 6790 sch = rcu_dereference(scx_root); 6791 if (unlikely(!sch)) 6792 goto out; 6793 6794 if (!scx_kf_allowed_on_arg_tasks(sch, __SCX_KF_RQ_LOCKED, p)) 6795 goto out; 6796 6797 cgrp = tg_cgrp(tg); 6798 6799 out: 6800 cgroup_get(cgrp); 6801 return cgrp; 6802 } 6803 #endif 6804 6805 /** 6806 * scx_bpf_now - Returns a high-performance monotonically non-decreasing 6807 * clock for the current CPU. The clock returned is in nanoseconds. 6808 * 6809 * It provides the following properties: 6810 * 6811 * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently 6812 * to account for execution time and track tasks' runtime properties. 6813 * Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which 6814 * eventually reads a hardware timestamp counter -- is neither performant nor 6815 * scalable. scx_bpf_now() aims to provide a high-performance clock by 6816 * using the rq clock in the scheduler core whenever possible. 6817 * 6818 * 2) High enough resolution for the BPF scheduler use cases: In most BPF 6819 * scheduler use cases, the required clock resolution is lower than the most 6820 * accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically 6821 * uses the rq clock in the scheduler core whenever it is valid. It considers 6822 * that the rq clock is valid from the time the rq clock is updated 6823 * (update_rq_clock) until the rq is unlocked (rq_unpin_lock). 6824 * 6825 * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now() 6826 * guarantees the clock never goes backward when comparing them in the same 6827 * CPU. On the other hand, when comparing clocks in different CPUs, there 6828 * is no such guarantee -- the clock can go backward. It provides a 6829 * monotonically *non-decreasing* clock so that it would provide the same 6830 * clock values in two different scx_bpf_now() calls in the same CPU 6831 * during the same period of when the rq clock is valid. 6832 */ 6833 __bpf_kfunc u64 scx_bpf_now(void) 6834 { 6835 struct rq *rq; 6836 u64 clock; 6837 6838 preempt_disable(); 6839 6840 rq = this_rq(); 6841 if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) { 6842 /* 6843 * If the rq clock is valid, use the cached rq clock. 6844 * 6845 * Note that scx_bpf_now() is re-entrant between a process 6846 * context and an interrupt context (e.g., timer interrupt). 6847 * However, we don't need to consider the race between them 6848 * because such race is not observable from a caller. 6849 */ 6850 clock = READ_ONCE(rq->scx.clock); 6851 } else { 6852 /* 6853 * Otherwise, return a fresh rq clock. 6854 * 6855 * The rq clock is updated outside of the rq lock. 6856 * In this case, keep the updated rq clock invalid so the next 6857 * kfunc call outside the rq lock gets a fresh rq clock. 6858 */ 6859 clock = sched_clock_cpu(cpu_of(rq)); 6860 } 6861 6862 preempt_enable(); 6863 6864 return clock; 6865 } 6866 6867 static void scx_read_events(struct scx_sched *sch, struct scx_event_stats *events) 6868 { 6869 struct scx_event_stats *e_cpu; 6870 int cpu; 6871 6872 /* Aggregate per-CPU event counters into @events. */ 6873 memset(events, 0, sizeof(*events)); 6874 for_each_possible_cpu(cpu) { 6875 e_cpu = &per_cpu_ptr(sch->pcpu, cpu)->event_stats; 6876 scx_agg_event(events, e_cpu, SCX_EV_SELECT_CPU_FALLBACK); 6877 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 6878 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_KEEP_LAST); 6879 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_EXITING); 6880 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 6881 scx_agg_event(events, e_cpu, SCX_EV_REFILL_SLICE_DFL); 6882 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DURATION); 6883 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DISPATCH); 6884 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_ACTIVATE); 6885 } 6886 } 6887 6888 /* 6889 * scx_bpf_events - Get a system-wide event counter to 6890 * @events: output buffer from a BPF program 6891 * @events__sz: @events len, must end in '__sz'' for the verifier 6892 */ 6893 __bpf_kfunc void scx_bpf_events(struct scx_event_stats *events, 6894 size_t events__sz) 6895 { 6896 struct scx_sched *sch; 6897 struct scx_event_stats e_sys; 6898 6899 rcu_read_lock(); 6900 sch = rcu_dereference(scx_root); 6901 if (sch) 6902 scx_read_events(sch, &e_sys); 6903 else 6904 memset(&e_sys, 0, sizeof(e_sys)); 6905 rcu_read_unlock(); 6906 6907 /* 6908 * We cannot entirely trust a BPF-provided size since a BPF program 6909 * might be compiled against a different vmlinux.h, of which 6910 * scx_event_stats would be larger (a newer vmlinux.h) or smaller 6911 * (an older vmlinux.h). Hence, we use the smaller size to avoid 6912 * memory corruption. 6913 */ 6914 events__sz = min(events__sz, sizeof(*events)); 6915 memcpy(events, &e_sys, events__sz); 6916 } 6917 6918 __bpf_kfunc_end_defs(); 6919 6920 BTF_KFUNCS_START(scx_kfunc_ids_any) 6921 BTF_ID_FLAGS(func, scx_bpf_task_set_slice, KF_RCU); 6922 BTF_ID_FLAGS(func, scx_bpf_task_set_dsq_vtime, KF_RCU); 6923 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 6924 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 6925 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 6926 BTF_ID_FLAGS(func, scx_bpf_dsq_peek, KF_RCU_PROTECTED | KF_RET_NULL) 6927 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) 6928 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) 6929 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) 6930 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 6931 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 6932 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 6933 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local___v2) 6934 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) 6935 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) 6936 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) 6937 BTF_ID_FLAGS(func, scx_bpf_nr_node_ids) 6938 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 6939 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 6940 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 6941 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 6942 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 6943 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 6944 BTF_ID_FLAGS(func, scx_bpf_cpu_rq) 6945 BTF_ID_FLAGS(func, scx_bpf_locked_rq, KF_RET_NULL) 6946 BTF_ID_FLAGS(func, scx_bpf_cpu_curr, KF_RET_NULL | KF_RCU_PROTECTED) 6947 #ifdef CONFIG_CGROUP_SCHED 6948 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) 6949 #endif 6950 BTF_ID_FLAGS(func, scx_bpf_now) 6951 BTF_ID_FLAGS(func, scx_bpf_events, KF_TRUSTED_ARGS) 6952 BTF_KFUNCS_END(scx_kfunc_ids_any) 6953 6954 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 6955 .owner = THIS_MODULE, 6956 .set = &scx_kfunc_ids_any, 6957 }; 6958 6959 static int __init scx_init(void) 6960 { 6961 int ret; 6962 6963 /* 6964 * kfunc registration can't be done from init_sched_ext_class() as 6965 * register_btf_kfunc_id_set() needs most of the system to be up. 6966 * 6967 * Some kfuncs are context-sensitive and can only be called from 6968 * specific SCX ops. They are grouped into BTF sets accordingly. 6969 * Unfortunately, BPF currently doesn't have a way of enforcing such 6970 * restrictions. Eventually, the verifier should be able to enforce 6971 * them. For now, register them the same and make each kfunc explicitly 6972 * check using scx_kf_allowed(). 6973 */ 6974 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6975 &scx_kfunc_set_enqueue_dispatch)) || 6976 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6977 &scx_kfunc_set_dispatch)) || 6978 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6979 &scx_kfunc_set_cpu_release)) || 6980 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6981 &scx_kfunc_set_unlocked)) || 6982 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 6983 &scx_kfunc_set_unlocked)) || 6984 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6985 &scx_kfunc_set_any)) || 6986 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 6987 &scx_kfunc_set_any)) || 6988 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 6989 &scx_kfunc_set_any))) { 6990 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 6991 return ret; 6992 } 6993 6994 ret = scx_idle_init(); 6995 if (ret) { 6996 pr_err("sched_ext: Failed to initialize idle tracking (%d)\n", ret); 6997 return ret; 6998 } 6999 7000 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 7001 if (ret) { 7002 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 7003 return ret; 7004 } 7005 7006 ret = register_pm_notifier(&scx_pm_notifier); 7007 if (ret) { 7008 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); 7009 return ret; 7010 } 7011 7012 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 7013 if (!scx_kset) { 7014 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 7015 return -ENOMEM; 7016 } 7017 7018 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 7019 if (ret < 0) { 7020 pr_err("sched_ext: Failed to add global attributes\n"); 7021 return ret; 7022 } 7023 7024 return 0; 7025 } 7026 __initcall(scx_init); 7027