1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst 4 * 5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 7 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 8 */ 9 #define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void))) 10 11 enum scx_consts { 12 SCX_DSP_DFL_MAX_BATCH = 32, 13 SCX_DSP_MAX_LOOPS = 32, 14 SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ, 15 16 SCX_EXIT_BT_LEN = 64, 17 SCX_EXIT_MSG_LEN = 1024, 18 SCX_EXIT_DUMP_DFL_LEN = 32768, 19 20 SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE, 21 22 /* 23 * Iterating all tasks may take a while. Periodically drop 24 * scx_tasks_lock to avoid causing e.g. CSD and RCU stalls. 25 */ 26 SCX_OPS_TASK_ITER_BATCH = 32, 27 }; 28 29 enum scx_exit_kind { 30 SCX_EXIT_NONE, 31 SCX_EXIT_DONE, 32 33 SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */ 34 SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */ 35 SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */ 36 SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */ 37 38 SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */ 39 SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */ 40 SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */ 41 }; 42 43 /* 44 * An exit code can be specified when exiting with scx_bpf_exit() or 45 * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN 46 * respectively. The codes are 64bit of the format: 47 * 48 * Bits: [63 .. 48 47 .. 32 31 .. 0] 49 * [ SYS ACT ] [ SYS RSN ] [ USR ] 50 * 51 * SYS ACT: System-defined exit actions 52 * SYS RSN: System-defined exit reasons 53 * USR : User-defined exit codes and reasons 54 * 55 * Using the above, users may communicate intention and context by ORing system 56 * actions and/or system reasons with a user-defined exit code. 57 */ 58 enum scx_exit_code { 59 /* Reasons */ 60 SCX_ECODE_RSN_HOTPLUG = 1LLU << 32, 61 62 /* Actions */ 63 SCX_ECODE_ACT_RESTART = 1LLU << 48, 64 }; 65 66 /* 67 * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is 68 * being disabled. 69 */ 70 struct scx_exit_info { 71 /* %SCX_EXIT_* - broad category of the exit reason */ 72 enum scx_exit_kind kind; 73 74 /* exit code if gracefully exiting */ 75 s64 exit_code; 76 77 /* textual representation of the above */ 78 const char *reason; 79 80 /* backtrace if exiting due to an error */ 81 unsigned long *bt; 82 u32 bt_len; 83 84 /* informational message */ 85 char *msg; 86 87 /* debug dump */ 88 char *dump; 89 }; 90 91 /* sched_ext_ops.flags */ 92 enum scx_ops_flags { 93 /* 94 * Keep built-in idle tracking even if ops.update_idle() is implemented. 95 */ 96 SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0, 97 98 /* 99 * By default, if there are no other task to run on the CPU, ext core 100 * keeps running the current task even after its slice expires. If this 101 * flag is specified, such tasks are passed to ops.enqueue() with 102 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info. 103 */ 104 SCX_OPS_ENQ_LAST = 1LLU << 1, 105 106 /* 107 * An exiting task may schedule after PF_EXITING is set. In such cases, 108 * bpf_task_from_pid() may not be able to find the task and if the BPF 109 * scheduler depends on pid lookup for dispatching, the task will be 110 * lost leading to various issues including RCU grace period stalls. 111 * 112 * To mask this problem, by default, unhashed tasks are automatically 113 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't 114 * depend on pid lookups and wants to handle these tasks directly, the 115 * following flag can be used. 116 */ 117 SCX_OPS_ENQ_EXITING = 1LLU << 2, 118 119 /* 120 * If set, only tasks with policy set to SCHED_EXT are attached to 121 * sched_ext. If clear, SCHED_NORMAL tasks are also included. 122 */ 123 SCX_OPS_SWITCH_PARTIAL = 1LLU << 3, 124 125 /* 126 * CPU cgroup support flags 127 */ 128 SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16, /* cpu.weight */ 129 130 SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE | 131 SCX_OPS_ENQ_LAST | 132 SCX_OPS_ENQ_EXITING | 133 SCX_OPS_SWITCH_PARTIAL | 134 SCX_OPS_HAS_CGROUP_WEIGHT, 135 }; 136 137 /* argument container for ops.init_task() */ 138 struct scx_init_task_args { 139 /* 140 * Set if ops.init_task() is being invoked on the fork path, as opposed 141 * to the scheduler transition path. 142 */ 143 bool fork; 144 #ifdef CONFIG_EXT_GROUP_SCHED 145 /* the cgroup the task is joining */ 146 struct cgroup *cgroup; 147 #endif 148 }; 149 150 /* argument container for ops.exit_task() */ 151 struct scx_exit_task_args { 152 /* Whether the task exited before running on sched_ext. */ 153 bool cancelled; 154 }; 155 156 /* argument container for ops->cgroup_init() */ 157 struct scx_cgroup_init_args { 158 /* the weight of the cgroup [1..10000] */ 159 u32 weight; 160 }; 161 162 enum scx_cpu_preempt_reason { 163 /* next task is being scheduled by &sched_class_rt */ 164 SCX_CPU_PREEMPT_RT, 165 /* next task is being scheduled by &sched_class_dl */ 166 SCX_CPU_PREEMPT_DL, 167 /* next task is being scheduled by &sched_class_stop */ 168 SCX_CPU_PREEMPT_STOP, 169 /* unknown reason for SCX being preempted */ 170 SCX_CPU_PREEMPT_UNKNOWN, 171 }; 172 173 /* 174 * Argument container for ops->cpu_acquire(). Currently empty, but may be 175 * expanded in the future. 176 */ 177 struct scx_cpu_acquire_args {}; 178 179 /* argument container for ops->cpu_release() */ 180 struct scx_cpu_release_args { 181 /* the reason the CPU was preempted */ 182 enum scx_cpu_preempt_reason reason; 183 184 /* the task that's going to be scheduled on the CPU */ 185 struct task_struct *task; 186 }; 187 188 /* 189 * Informational context provided to dump operations. 190 */ 191 struct scx_dump_ctx { 192 enum scx_exit_kind kind; 193 s64 exit_code; 194 const char *reason; 195 u64 at_ns; 196 u64 at_jiffies; 197 }; 198 199 /** 200 * struct sched_ext_ops - Operation table for BPF scheduler implementation 201 * 202 * Userland can implement an arbitrary scheduling policy by implementing and 203 * loading operations in this table. 204 */ 205 struct sched_ext_ops { 206 /** 207 * select_cpu - Pick the target CPU for a task which is being woken up 208 * @p: task being woken up 209 * @prev_cpu: the cpu @p was on before sleeping 210 * @wake_flags: SCX_WAKE_* 211 * 212 * Decision made here isn't final. @p may be moved to any CPU while it 213 * is getting dispatched for execution later. However, as @p is not on 214 * the rq at this point, getting the eventual execution CPU right here 215 * saves a small bit of overhead down the line. 216 * 217 * If an idle CPU is returned, the CPU is kicked and will try to 218 * dispatch. While an explicit custom mechanism can be added, 219 * select_cpu() serves as the default way to wake up idle CPUs. 220 * 221 * @p may be dispatched directly by calling scx_bpf_dispatch(). If @p 222 * is dispatched, the ops.enqueue() callback will be skipped. Finally, 223 * if @p is dispatched to SCX_DSQ_LOCAL, it will be dispatched to the 224 * local DSQ of whatever CPU is returned by this callback. 225 */ 226 s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags); 227 228 /** 229 * enqueue - Enqueue a task on the BPF scheduler 230 * @p: task being enqueued 231 * @enq_flags: %SCX_ENQ_* 232 * 233 * @p is ready to run. Dispatch directly by calling scx_bpf_dispatch() 234 * or enqueue on the BPF scheduler. If not directly dispatched, the bpf 235 * scheduler owns @p and if it fails to dispatch @p, the task will 236 * stall. 237 * 238 * If @p was dispatched from ops.select_cpu(), this callback is 239 * skipped. 240 */ 241 void (*enqueue)(struct task_struct *p, u64 enq_flags); 242 243 /** 244 * dequeue - Remove a task from the BPF scheduler 245 * @p: task being dequeued 246 * @deq_flags: %SCX_DEQ_* 247 * 248 * Remove @p from the BPF scheduler. This is usually called to isolate 249 * the task while updating its scheduling properties (e.g. priority). 250 * 251 * The ext core keeps track of whether the BPF side owns a given task or 252 * not and can gracefully ignore spurious dispatches from BPF side, 253 * which makes it safe to not implement this method. However, depending 254 * on the scheduling logic, this can lead to confusing behaviors - e.g. 255 * scheduling position not being updated across a priority change. 256 */ 257 void (*dequeue)(struct task_struct *p, u64 deq_flags); 258 259 /** 260 * dispatch - Dispatch tasks from the BPF scheduler and/or consume DSQs 261 * @cpu: CPU to dispatch tasks for 262 * @prev: previous task being switched out 263 * 264 * Called when a CPU's local dsq is empty. The operation should dispatch 265 * one or more tasks from the BPF scheduler into the DSQs using 266 * scx_bpf_dispatch() and/or consume user DSQs into the local DSQ using 267 * scx_bpf_consume(). 268 * 269 * The maximum number of times scx_bpf_dispatch() can be called without 270 * an intervening scx_bpf_consume() is specified by 271 * ops.dispatch_max_batch. See the comments on top of the two functions 272 * for more details. 273 * 274 * When not %NULL, @prev is an SCX task with its slice depleted. If 275 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in 276 * @prev->scx.flags, it is not enqueued yet and will be enqueued after 277 * ops.dispatch() returns. To keep executing @prev, return without 278 * dispatching or consuming any tasks. Also see %SCX_OPS_ENQ_LAST. 279 */ 280 void (*dispatch)(s32 cpu, struct task_struct *prev); 281 282 /** 283 * tick - Periodic tick 284 * @p: task running currently 285 * 286 * This operation is called every 1/HZ seconds on CPUs which are 287 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an 288 * immediate dispatch cycle on the CPU. 289 */ 290 void (*tick)(struct task_struct *p); 291 292 /** 293 * runnable - A task is becoming runnable on its associated CPU 294 * @p: task becoming runnable 295 * @enq_flags: %SCX_ENQ_* 296 * 297 * This and the following three functions can be used to track a task's 298 * execution state transitions. A task becomes ->runnable() on a CPU, 299 * and then goes through one or more ->running() and ->stopping() pairs 300 * as it runs on the CPU, and eventually becomes ->quiescent() when it's 301 * done running on the CPU. 302 * 303 * @p is becoming runnable on the CPU because it's 304 * 305 * - waking up (%SCX_ENQ_WAKEUP) 306 * - being moved from another CPU 307 * - being restored after temporarily taken off the queue for an 308 * attribute change. 309 * 310 * This and ->enqueue() are related but not coupled. This operation 311 * notifies @p's state transition and may not be followed by ->enqueue() 312 * e.g. when @p is being dispatched to a remote CPU, or when @p is 313 * being enqueued on a CPU experiencing a hotplug event. Likewise, a 314 * task may be ->enqueue()'d without being preceded by this operation 315 * e.g. after exhausting its slice. 316 */ 317 void (*runnable)(struct task_struct *p, u64 enq_flags); 318 319 /** 320 * running - A task is starting to run on its associated CPU 321 * @p: task starting to run 322 * 323 * See ->runnable() for explanation on the task state notifiers. 324 */ 325 void (*running)(struct task_struct *p); 326 327 /** 328 * stopping - A task is stopping execution 329 * @p: task stopping to run 330 * @runnable: is task @p still runnable? 331 * 332 * See ->runnable() for explanation on the task state notifiers. If 333 * !@runnable, ->quiescent() will be invoked after this operation 334 * returns. 335 */ 336 void (*stopping)(struct task_struct *p, bool runnable); 337 338 /** 339 * quiescent - A task is becoming not runnable on its associated CPU 340 * @p: task becoming not runnable 341 * @deq_flags: %SCX_DEQ_* 342 * 343 * See ->runnable() for explanation on the task state notifiers. 344 * 345 * @p is becoming quiescent on the CPU because it's 346 * 347 * - sleeping (%SCX_DEQ_SLEEP) 348 * - being moved to another CPU 349 * - being temporarily taken off the queue for an attribute change 350 * (%SCX_DEQ_SAVE) 351 * 352 * This and ->dequeue() are related but not coupled. This operation 353 * notifies @p's state transition and may not be preceded by ->dequeue() 354 * e.g. when @p is being dispatched to a remote CPU. 355 */ 356 void (*quiescent)(struct task_struct *p, u64 deq_flags); 357 358 /** 359 * yield - Yield CPU 360 * @from: yielding task 361 * @to: optional yield target task 362 * 363 * If @to is NULL, @from is yielding the CPU to other runnable tasks. 364 * The BPF scheduler should ensure that other available tasks are 365 * dispatched before the yielding task. Return value is ignored in this 366 * case. 367 * 368 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf 369 * scheduler can implement the request, return %true; otherwise, %false. 370 */ 371 bool (*yield)(struct task_struct *from, struct task_struct *to); 372 373 /** 374 * core_sched_before - Task ordering for core-sched 375 * @a: task A 376 * @b: task B 377 * 378 * Used by core-sched to determine the ordering between two tasks. See 379 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on 380 * core-sched. 381 * 382 * Both @a and @b are runnable and may or may not currently be queued on 383 * the BPF scheduler. Should return %true if @a should run before @b. 384 * %false if there's no required ordering or @b should run before @a. 385 * 386 * If not specified, the default is ordering them according to when they 387 * became runnable. 388 */ 389 bool (*core_sched_before)(struct task_struct *a, struct task_struct *b); 390 391 /** 392 * set_weight - Set task weight 393 * @p: task to set weight for 394 * @weight: new weight [1..10000] 395 * 396 * Update @p's weight to @weight. 397 */ 398 void (*set_weight)(struct task_struct *p, u32 weight); 399 400 /** 401 * set_cpumask - Set CPU affinity 402 * @p: task to set CPU affinity for 403 * @cpumask: cpumask of cpus that @p can run on 404 * 405 * Update @p's CPU affinity to @cpumask. 406 */ 407 void (*set_cpumask)(struct task_struct *p, 408 const struct cpumask *cpumask); 409 410 /** 411 * update_idle - Update the idle state of a CPU 412 * @cpu: CPU to udpate the idle state for 413 * @idle: whether entering or exiting the idle state 414 * 415 * This operation is called when @rq's CPU goes or leaves the idle 416 * state. By default, implementing this operation disables the built-in 417 * idle CPU tracking and the following helpers become unavailable: 418 * 419 * - scx_bpf_select_cpu_dfl() 420 * - scx_bpf_test_and_clear_cpu_idle() 421 * - scx_bpf_pick_idle_cpu() 422 * 423 * The user also must implement ops.select_cpu() as the default 424 * implementation relies on scx_bpf_select_cpu_dfl(). 425 * 426 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle 427 * tracking. 428 */ 429 void (*update_idle)(s32 cpu, bool idle); 430 431 /** 432 * cpu_acquire - A CPU is becoming available to the BPF scheduler 433 * @cpu: The CPU being acquired by the BPF scheduler. 434 * @args: Acquire arguments, see the struct definition. 435 * 436 * A CPU that was previously released from the BPF scheduler is now once 437 * again under its control. 438 */ 439 void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args); 440 441 /** 442 * cpu_release - A CPU is taken away from the BPF scheduler 443 * @cpu: The CPU being released by the BPF scheduler. 444 * @args: Release arguments, see the struct definition. 445 * 446 * The specified CPU is no longer under the control of the BPF 447 * scheduler. This could be because it was preempted by a higher 448 * priority sched_class, though there may be other reasons as well. The 449 * caller should consult @args->reason to determine the cause. 450 */ 451 void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args); 452 453 /** 454 * init_task - Initialize a task to run in a BPF scheduler 455 * @p: task to initialize for BPF scheduling 456 * @args: init arguments, see the struct definition 457 * 458 * Either we're loading a BPF scheduler or a new task is being forked. 459 * Initialize @p for BPF scheduling. This operation may block and can 460 * be used for allocations, and is called exactly once for a task. 461 * 462 * Return 0 for success, -errno for failure. An error return while 463 * loading will abort loading of the BPF scheduler. During a fork, it 464 * will abort that specific fork. 465 */ 466 s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args); 467 468 /** 469 * exit_task - Exit a previously-running task from the system 470 * @p: task to exit 471 * 472 * @p is exiting or the BPF scheduler is being unloaded. Perform any 473 * necessary cleanup for @p. 474 */ 475 void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args); 476 477 /** 478 * enable - Enable BPF scheduling for a task 479 * @p: task to enable BPF scheduling for 480 * 481 * Enable @p for BPF scheduling. enable() is called on @p any time it 482 * enters SCX, and is always paired with a matching disable(). 483 */ 484 void (*enable)(struct task_struct *p); 485 486 /** 487 * disable - Disable BPF scheduling for a task 488 * @p: task to disable BPF scheduling for 489 * 490 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded. 491 * Disable BPF scheduling for @p. A disable() call is always matched 492 * with a prior enable() call. 493 */ 494 void (*disable)(struct task_struct *p); 495 496 /** 497 * dump - Dump BPF scheduler state on error 498 * @ctx: debug dump context 499 * 500 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump. 501 */ 502 void (*dump)(struct scx_dump_ctx *ctx); 503 504 /** 505 * dump_cpu - Dump BPF scheduler state for a CPU on error 506 * @ctx: debug dump context 507 * @cpu: CPU to generate debug dump for 508 * @idle: @cpu is currently idle without any runnable tasks 509 * 510 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 511 * @cpu. If @idle is %true and this operation doesn't produce any 512 * output, @cpu is skipped for dump. 513 */ 514 void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle); 515 516 /** 517 * dump_task - Dump BPF scheduler state for a runnable task on error 518 * @ctx: debug dump context 519 * @p: runnable task to generate debug dump for 520 * 521 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 522 * @p. 523 */ 524 void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p); 525 526 #ifdef CONFIG_EXT_GROUP_SCHED 527 /** 528 * cgroup_init - Initialize a cgroup 529 * @cgrp: cgroup being initialized 530 * @args: init arguments, see the struct definition 531 * 532 * Either the BPF scheduler is being loaded or @cgrp created, initialize 533 * @cgrp for sched_ext. This operation may block. 534 * 535 * Return 0 for success, -errno for failure. An error return while 536 * loading will abort loading of the BPF scheduler. During cgroup 537 * creation, it will abort the specific cgroup creation. 538 */ 539 s32 (*cgroup_init)(struct cgroup *cgrp, 540 struct scx_cgroup_init_args *args); 541 542 /** 543 * cgroup_exit - Exit a cgroup 544 * @cgrp: cgroup being exited 545 * 546 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit 547 * @cgrp for sched_ext. This operation my block. 548 */ 549 void (*cgroup_exit)(struct cgroup *cgrp); 550 551 /** 552 * cgroup_prep_move - Prepare a task to be moved to a different cgroup 553 * @p: task being moved 554 * @from: cgroup @p is being moved from 555 * @to: cgroup @p is being moved to 556 * 557 * Prepare @p for move from cgroup @from to @to. This operation may 558 * block and can be used for allocations. 559 * 560 * Return 0 for success, -errno for failure. An error return aborts the 561 * migration. 562 */ 563 s32 (*cgroup_prep_move)(struct task_struct *p, 564 struct cgroup *from, struct cgroup *to); 565 566 /** 567 * cgroup_move - Commit cgroup move 568 * @p: task being moved 569 * @from: cgroup @p is being moved from 570 * @to: cgroup @p is being moved to 571 * 572 * Commit the move. @p is dequeued during this operation. 573 */ 574 void (*cgroup_move)(struct task_struct *p, 575 struct cgroup *from, struct cgroup *to); 576 577 /** 578 * cgroup_cancel_move - Cancel cgroup move 579 * @p: task whose cgroup move is being canceled 580 * @from: cgroup @p was being moved from 581 * @to: cgroup @p was being moved to 582 * 583 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move(). 584 * Undo the preparation. 585 */ 586 void (*cgroup_cancel_move)(struct task_struct *p, 587 struct cgroup *from, struct cgroup *to); 588 589 /** 590 * cgroup_set_weight - A cgroup's weight is being changed 591 * @cgrp: cgroup whose weight is being updated 592 * @weight: new weight [1..10000] 593 * 594 * Update @tg's weight to @weight. 595 */ 596 void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight); 597 #endif /* CONFIG_CGROUPS */ 598 599 /* 600 * All online ops must come before ops.cpu_online(). 601 */ 602 603 /** 604 * cpu_online - A CPU became online 605 * @cpu: CPU which just came up 606 * 607 * @cpu just came online. @cpu will not call ops.enqueue() or 608 * ops.dispatch(), nor run tasks associated with other CPUs beforehand. 609 */ 610 void (*cpu_online)(s32 cpu); 611 612 /** 613 * cpu_offline - A CPU is going offline 614 * @cpu: CPU which is going offline 615 * 616 * @cpu is going offline. @cpu will not call ops.enqueue() or 617 * ops.dispatch(), nor run tasks associated with other CPUs afterwards. 618 */ 619 void (*cpu_offline)(s32 cpu); 620 621 /* 622 * All CPU hotplug ops must come before ops.init(). 623 */ 624 625 /** 626 * init - Initialize the BPF scheduler 627 */ 628 s32 (*init)(void); 629 630 /** 631 * exit - Clean up after the BPF scheduler 632 * @info: Exit info 633 * 634 * ops.exit() is also called on ops.init() failure, which is a bit 635 * unusual. This is to allow rich reporting through @info on how 636 * ops.init() failed. 637 */ 638 void (*exit)(struct scx_exit_info *info); 639 640 /** 641 * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch 642 */ 643 u32 dispatch_max_batch; 644 645 /** 646 * flags - %SCX_OPS_* flags 647 */ 648 u64 flags; 649 650 /** 651 * timeout_ms - The maximum amount of time, in milliseconds, that a 652 * runnable task should be able to wait before being scheduled. The 653 * maximum timeout may not exceed the default timeout of 30 seconds. 654 * 655 * Defaults to the maximum allowed timeout value of 30 seconds. 656 */ 657 u32 timeout_ms; 658 659 /** 660 * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default 661 * value of 32768 is used. 662 */ 663 u32 exit_dump_len; 664 665 /** 666 * hotplug_seq - A sequence number that may be set by the scheduler to 667 * detect when a hotplug event has occurred during the loading process. 668 * If 0, no detection occurs. Otherwise, the scheduler will fail to 669 * load if the sequence number does not match @scx_hotplug_seq on the 670 * enable path. 671 */ 672 u64 hotplug_seq; 673 674 /** 675 * name - BPF scheduler's name 676 * 677 * Must be a non-zero valid BPF object name including only isalnum(), 678 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the 679 * BPF scheduler is enabled. 680 */ 681 char name[SCX_OPS_NAME_LEN]; 682 }; 683 684 enum scx_opi { 685 SCX_OPI_BEGIN = 0, 686 SCX_OPI_NORMAL_BEGIN = 0, 687 SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online), 688 SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online), 689 SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init), 690 SCX_OPI_END = SCX_OP_IDX(init), 691 }; 692 693 enum scx_wake_flags { 694 /* expose select WF_* flags as enums */ 695 SCX_WAKE_FORK = WF_FORK, 696 SCX_WAKE_TTWU = WF_TTWU, 697 SCX_WAKE_SYNC = WF_SYNC, 698 }; 699 700 enum scx_enq_flags { 701 /* expose select ENQUEUE_* flags as enums */ 702 SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP, 703 SCX_ENQ_HEAD = ENQUEUE_HEAD, 704 SCX_ENQ_CPU_SELECTED = ENQUEUE_RQ_SELECTED, 705 706 /* high 32bits are SCX specific */ 707 708 /* 709 * Set the following to trigger preemption when calling 710 * scx_bpf_dispatch() with a local dsq as the target. The slice of the 711 * current task is cleared to zero and the CPU is kicked into the 712 * scheduling path. Implies %SCX_ENQ_HEAD. 713 */ 714 SCX_ENQ_PREEMPT = 1LLU << 32, 715 716 /* 717 * The task being enqueued was previously enqueued on the current CPU's 718 * %SCX_DSQ_LOCAL, but was removed from it in a call to the 719 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was 720 * invoked in a ->cpu_release() callback, and the task is again 721 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the 722 * task will not be scheduled on the CPU until at least the next invocation 723 * of the ->cpu_acquire() callback. 724 */ 725 SCX_ENQ_REENQ = 1LLU << 40, 726 727 /* 728 * The task being enqueued is the only task available for the cpu. By 729 * default, ext core keeps executing such tasks but when 730 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the 731 * %SCX_ENQ_LAST flag set. 732 * 733 * The BPF scheduler is responsible for triggering a follow-up 734 * scheduling event. Otherwise, Execution may stall. 735 */ 736 SCX_ENQ_LAST = 1LLU << 41, 737 738 /* high 8 bits are internal */ 739 __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56, 740 741 SCX_ENQ_CLEAR_OPSS = 1LLU << 56, 742 SCX_ENQ_DSQ_PRIQ = 1LLU << 57, 743 }; 744 745 enum scx_deq_flags { 746 /* expose select DEQUEUE_* flags as enums */ 747 SCX_DEQ_SLEEP = DEQUEUE_SLEEP, 748 749 /* high 32bits are SCX specific */ 750 751 /* 752 * The generic core-sched layer decided to execute the task even though 753 * it hasn't been dispatched yet. Dequeue from the BPF side. 754 */ 755 SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32, 756 }; 757 758 enum scx_pick_idle_cpu_flags { 759 SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */ 760 }; 761 762 enum scx_kick_flags { 763 /* 764 * Kick the target CPU if idle. Guarantees that the target CPU goes 765 * through at least one full scheduling cycle before going idle. If the 766 * target CPU can be determined to be currently not idle and going to go 767 * through a scheduling cycle before going idle, noop. 768 */ 769 SCX_KICK_IDLE = 1LLU << 0, 770 771 /* 772 * Preempt the current task and execute the dispatch path. If the 773 * current task of the target CPU is an SCX task, its ->scx.slice is 774 * cleared to zero before the scheduling path is invoked so that the 775 * task expires and the dispatch path is invoked. 776 */ 777 SCX_KICK_PREEMPT = 1LLU << 1, 778 779 /* 780 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will 781 * return after the target CPU finishes picking the next task. 782 */ 783 SCX_KICK_WAIT = 1LLU << 2, 784 }; 785 786 enum scx_tg_flags { 787 SCX_TG_ONLINE = 1U << 0, 788 SCX_TG_INITED = 1U << 1, 789 }; 790 791 enum scx_ops_enable_state { 792 SCX_OPS_ENABLING, 793 SCX_OPS_ENABLED, 794 SCX_OPS_DISABLING, 795 SCX_OPS_DISABLED, 796 }; 797 798 static const char *scx_ops_enable_state_str[] = { 799 [SCX_OPS_ENABLING] = "enabling", 800 [SCX_OPS_ENABLED] = "enabled", 801 [SCX_OPS_DISABLING] = "disabling", 802 [SCX_OPS_DISABLED] = "disabled", 803 }; 804 805 /* 806 * sched_ext_entity->ops_state 807 * 808 * Used to track the task ownership between the SCX core and the BPF scheduler. 809 * State transitions look as follows: 810 * 811 * NONE -> QUEUEING -> QUEUED -> DISPATCHING 812 * ^ | | 813 * | v v 814 * \-------------------------------/ 815 * 816 * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call 817 * sites for explanations on the conditions being waited upon and why they are 818 * safe. Transitions out of them into NONE or QUEUED must store_release and the 819 * waiters should load_acquire. 820 * 821 * Tracking scx_ops_state enables sched_ext core to reliably determine whether 822 * any given task can be dispatched by the BPF scheduler at all times and thus 823 * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler 824 * to try to dispatch any task anytime regardless of its state as the SCX core 825 * can safely reject invalid dispatches. 826 */ 827 enum scx_ops_state { 828 SCX_OPSS_NONE, /* owned by the SCX core */ 829 SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */ 830 SCX_OPSS_QUEUED, /* owned by the BPF scheduler */ 831 SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */ 832 833 /* 834 * QSEQ brands each QUEUED instance so that, when dispatch races 835 * dequeue/requeue, the dispatcher can tell whether it still has a claim 836 * on the task being dispatched. 837 * 838 * As some 32bit archs can't do 64bit store_release/load_acquire, 839 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on 840 * 32bit machines. The dispatch race window QSEQ protects is very narrow 841 * and runs with IRQ disabled. 30 bits should be sufficient. 842 */ 843 SCX_OPSS_QSEQ_SHIFT = 2, 844 }; 845 846 /* Use macros to ensure that the type is unsigned long for the masks */ 847 #define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1) 848 #define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK) 849 850 /* 851 * During exit, a task may schedule after losing its PIDs. When disabling the 852 * BPF scheduler, we need to be able to iterate tasks in every state to 853 * guarantee system safety. Maintain a dedicated task list which contains every 854 * task between its fork and eventual free. 855 */ 856 static DEFINE_SPINLOCK(scx_tasks_lock); 857 static LIST_HEAD(scx_tasks); 858 859 /* ops enable/disable */ 860 static struct kthread_worker *scx_ops_helper; 861 static DEFINE_MUTEX(scx_ops_enable_mutex); 862 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled); 863 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 864 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED); 865 static int scx_ops_bypass_depth; 866 static DEFINE_RAW_SPINLOCK(__scx_ops_bypass_lock); 867 static bool scx_ops_init_task_enabled; 868 static bool scx_switching_all; 869 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 870 871 static struct sched_ext_ops scx_ops; 872 static bool scx_warned_zero_slice; 873 874 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last); 875 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting); 876 static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt); 877 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled); 878 879 static struct static_key_false scx_has_op[SCX_OPI_END] = 880 { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT }; 881 882 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE); 883 static struct scx_exit_info *scx_exit_info; 884 885 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 886 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); 887 888 /* 889 * A monotically increasing sequence number that is incremented every time a 890 * scheduler is enabled. This can be used by to check if any custom sched_ext 891 * scheduler has ever been used in the system. 892 */ 893 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0); 894 895 /* 896 * The maximum amount of time in jiffies that a task may be runnable without 897 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 898 * scx_ops_error(). 899 */ 900 static unsigned long scx_watchdog_timeout; 901 902 /* 903 * The last time the delayed work was run. This delayed work relies on 904 * ksoftirqd being able to run to service timer interrupts, so it's possible 905 * that this work itself could get wedged. To account for this, we check that 906 * it's not stalled in the timer tick, and trigger an error if it is. 907 */ 908 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 909 910 static struct delayed_work scx_watchdog_work; 911 912 /* idle tracking */ 913 #ifdef CONFIG_SMP 914 #ifdef CONFIG_CPUMASK_OFFSTACK 915 #define CL_ALIGNED_IF_ONSTACK 916 #else 917 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp 918 #endif 919 920 static struct { 921 cpumask_var_t cpu; 922 cpumask_var_t smt; 923 } idle_masks CL_ALIGNED_IF_ONSTACK; 924 925 #endif /* CONFIG_SMP */ 926 927 /* for %SCX_KICK_WAIT */ 928 static unsigned long __percpu *scx_kick_cpus_pnt_seqs; 929 930 /* 931 * Direct dispatch marker. 932 * 933 * Non-NULL values are used for direct dispatch from enqueue path. A valid 934 * pointer points to the task currently being enqueued. An ERR_PTR value is used 935 * to indicate that direct dispatch has already happened. 936 */ 937 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 938 939 /* 940 * Dispatch queues. 941 * 942 * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is 943 * to avoid live-locking in bypass mode where all tasks are dispatched to 944 * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't 945 * sufficient, it can be further split. 946 */ 947 static struct scx_dispatch_q **global_dsqs; 948 949 static const struct rhashtable_params dsq_hash_params = { 950 .key_len = 8, 951 .key_offset = offsetof(struct scx_dispatch_q, id), 952 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 953 }; 954 955 static struct rhashtable dsq_hash; 956 static LLIST_HEAD(dsqs_to_free); 957 958 /* dispatch buf */ 959 struct scx_dsp_buf_ent { 960 struct task_struct *task; 961 unsigned long qseq; 962 u64 dsq_id; 963 u64 enq_flags; 964 }; 965 966 static u32 scx_dsp_max_batch; 967 968 struct scx_dsp_ctx { 969 struct rq *rq; 970 u32 cursor; 971 u32 nr_tasks; 972 struct scx_dsp_buf_ent buf[]; 973 }; 974 975 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 976 977 /* string formatting from BPF */ 978 struct scx_bstr_buf { 979 u64 data[MAX_BPRINTF_VARARGS]; 980 char line[SCX_EXIT_MSG_LEN]; 981 }; 982 983 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 984 static struct scx_bstr_buf scx_exit_bstr_buf; 985 986 /* ops debug dump */ 987 struct scx_dump_data { 988 s32 cpu; 989 bool first; 990 s32 cursor; 991 struct seq_buf *s; 992 const char *prefix; 993 struct scx_bstr_buf buf; 994 }; 995 996 static struct scx_dump_data scx_dump_data = { 997 .cpu = -1, 998 }; 999 1000 /* /sys/kernel/sched_ext interface */ 1001 static struct kset *scx_kset; 1002 static struct kobject *scx_root_kobj; 1003 1004 #define CREATE_TRACE_POINTS 1005 #include <trace/events/sched_ext.h> 1006 1007 static void process_ddsp_deferred_locals(struct rq *rq); 1008 static void scx_bpf_kick_cpu(s32 cpu, u64 flags); 1009 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 1010 s64 exit_code, 1011 const char *fmt, ...); 1012 1013 #define scx_ops_error_kind(err, fmt, args...) \ 1014 scx_ops_exit_kind((err), 0, fmt, ##args) 1015 1016 #define scx_ops_exit(code, fmt, args...) \ 1017 scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args) 1018 1019 #define scx_ops_error(fmt, args...) \ 1020 scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args) 1021 1022 #define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)]) 1023 1024 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 1025 { 1026 if (time_after(at, now)) 1027 return jiffies_to_msecs(at - now); 1028 else 1029 return -(long)jiffies_to_msecs(now - at); 1030 } 1031 1032 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 1033 static u32 higher_bits(u32 flags) 1034 { 1035 return ~((1 << fls(flags)) - 1); 1036 } 1037 1038 /* return the mask with only the highest bit set */ 1039 static u32 highest_bit(u32 flags) 1040 { 1041 int bit = fls(flags); 1042 return ((u64)1 << bit) >> 1; 1043 } 1044 1045 static bool u32_before(u32 a, u32 b) 1046 { 1047 return (s32)(a - b) < 0; 1048 } 1049 1050 static struct scx_dispatch_q *find_global_dsq(struct task_struct *p) 1051 { 1052 return global_dsqs[cpu_to_node(task_cpu(p))]; 1053 } 1054 1055 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id) 1056 { 1057 return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params); 1058 } 1059 1060 /* 1061 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 1062 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 1063 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 1064 * whether it's running from an allowed context. 1065 * 1066 * @mask is constant, always inline to cull the mask calculations. 1067 */ 1068 static __always_inline void scx_kf_allow(u32 mask) 1069 { 1070 /* nesting is allowed only in increasing scx_kf_mask order */ 1071 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 1072 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 1073 current->scx.kf_mask, mask); 1074 current->scx.kf_mask |= mask; 1075 barrier(); 1076 } 1077 1078 static void scx_kf_disallow(u32 mask) 1079 { 1080 barrier(); 1081 current->scx.kf_mask &= ~mask; 1082 } 1083 1084 #define SCX_CALL_OP(mask, op, args...) \ 1085 do { \ 1086 if (mask) { \ 1087 scx_kf_allow(mask); \ 1088 scx_ops.op(args); \ 1089 scx_kf_disallow(mask); \ 1090 } else { \ 1091 scx_ops.op(args); \ 1092 } \ 1093 } while (0) 1094 1095 #define SCX_CALL_OP_RET(mask, op, args...) \ 1096 ({ \ 1097 __typeof__(scx_ops.op(args)) __ret; \ 1098 if (mask) { \ 1099 scx_kf_allow(mask); \ 1100 __ret = scx_ops.op(args); \ 1101 scx_kf_disallow(mask); \ 1102 } else { \ 1103 __ret = scx_ops.op(args); \ 1104 } \ 1105 __ret; \ 1106 }) 1107 1108 /* 1109 * Some kfuncs are allowed only on the tasks that are subjects of the 1110 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 1111 * restrictions, the following SCX_CALL_OP_*() variants should be used when 1112 * invoking scx_ops operations that take task arguments. These can only be used 1113 * for non-nesting operations due to the way the tasks are tracked. 1114 * 1115 * kfuncs which can only operate on such tasks can in turn use 1116 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 1117 * the specific task. 1118 */ 1119 #define SCX_CALL_OP_TASK(mask, op, task, args...) \ 1120 do { \ 1121 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1122 current->scx.kf_tasks[0] = task; \ 1123 SCX_CALL_OP(mask, op, task, ##args); \ 1124 current->scx.kf_tasks[0] = NULL; \ 1125 } while (0) 1126 1127 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \ 1128 ({ \ 1129 __typeof__(scx_ops.op(task, ##args)) __ret; \ 1130 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1131 current->scx.kf_tasks[0] = task; \ 1132 __ret = SCX_CALL_OP_RET(mask, op, task, ##args); \ 1133 current->scx.kf_tasks[0] = NULL; \ 1134 __ret; \ 1135 }) 1136 1137 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \ 1138 ({ \ 1139 __typeof__(scx_ops.op(task0, task1, ##args)) __ret; \ 1140 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1141 current->scx.kf_tasks[0] = task0; \ 1142 current->scx.kf_tasks[1] = task1; \ 1143 __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \ 1144 current->scx.kf_tasks[0] = NULL; \ 1145 current->scx.kf_tasks[1] = NULL; \ 1146 __ret; \ 1147 }) 1148 1149 /* @mask is constant, always inline to cull unnecessary branches */ 1150 static __always_inline bool scx_kf_allowed(u32 mask) 1151 { 1152 if (unlikely(!(current->scx.kf_mask & mask))) { 1153 scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x", 1154 mask, current->scx.kf_mask); 1155 return false; 1156 } 1157 1158 /* 1159 * Enforce nesting boundaries. e.g. A kfunc which can be called from 1160 * DISPATCH must not be called if we're running DEQUEUE which is nested 1161 * inside ops.dispatch(). We don't need to check boundaries for any 1162 * blocking kfuncs as the verifier ensures they're only called from 1163 * sleepable progs. 1164 */ 1165 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 1166 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 1167 scx_ops_error("cpu_release kfunc called from a nested operation"); 1168 return false; 1169 } 1170 1171 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 1172 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 1173 scx_ops_error("dispatch kfunc called from a nested operation"); 1174 return false; 1175 } 1176 1177 return true; 1178 } 1179 1180 /* see SCX_CALL_OP_TASK() */ 1181 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask, 1182 struct task_struct *p) 1183 { 1184 if (!scx_kf_allowed(mask)) 1185 return false; 1186 1187 if (unlikely((p != current->scx.kf_tasks[0] && 1188 p != current->scx.kf_tasks[1]))) { 1189 scx_ops_error("called on a task not being operated on"); 1190 return false; 1191 } 1192 1193 return true; 1194 } 1195 1196 static bool scx_kf_allowed_if_unlocked(void) 1197 { 1198 return !current->scx.kf_mask; 1199 } 1200 1201 /** 1202 * nldsq_next_task - Iterate to the next task in a non-local DSQ 1203 * @dsq: user dsq being interated 1204 * @cur: current position, %NULL to start iteration 1205 * @rev: walk backwards 1206 * 1207 * Returns %NULL when iteration is finished. 1208 */ 1209 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, 1210 struct task_struct *cur, bool rev) 1211 { 1212 struct list_head *list_node; 1213 struct scx_dsq_list_node *dsq_lnode; 1214 1215 lockdep_assert_held(&dsq->lock); 1216 1217 if (cur) 1218 list_node = &cur->scx.dsq_list.node; 1219 else 1220 list_node = &dsq->list; 1221 1222 /* find the next task, need to skip BPF iteration cursors */ 1223 do { 1224 if (rev) 1225 list_node = list_node->prev; 1226 else 1227 list_node = list_node->next; 1228 1229 if (list_node == &dsq->list) 1230 return NULL; 1231 1232 dsq_lnode = container_of(list_node, struct scx_dsq_list_node, 1233 node); 1234 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); 1235 1236 return container_of(dsq_lnode, struct task_struct, scx.dsq_list); 1237 } 1238 1239 #define nldsq_for_each_task(p, dsq) \ 1240 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ 1241 (p) = nldsq_next_task((dsq), (p), false)) 1242 1243 1244 /* 1245 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] 1246 * dispatch order. BPF-visible iterator is opaque and larger to allow future 1247 * changes without breaking backward compatibility. Can be used with 1248 * bpf_for_each(). See bpf_iter_scx_dsq_*(). 1249 */ 1250 enum scx_dsq_iter_flags { 1251 /* iterate in the reverse dispatch order */ 1252 SCX_DSQ_ITER_REV = 1U << 16, 1253 1254 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, 1255 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, 1256 1257 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, 1258 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | 1259 __SCX_DSQ_ITER_HAS_SLICE | 1260 __SCX_DSQ_ITER_HAS_VTIME, 1261 }; 1262 1263 struct bpf_iter_scx_dsq_kern { 1264 struct scx_dsq_list_node cursor; 1265 struct scx_dispatch_q *dsq; 1266 u64 slice; 1267 u64 vtime; 1268 } __attribute__((aligned(8))); 1269 1270 struct bpf_iter_scx_dsq { 1271 u64 __opaque[6]; 1272 } __attribute__((aligned(8))); 1273 1274 1275 /* 1276 * SCX task iterator. 1277 */ 1278 struct scx_task_iter { 1279 struct sched_ext_entity cursor; 1280 struct task_struct *locked; 1281 struct rq *rq; 1282 struct rq_flags rf; 1283 u32 cnt; 1284 }; 1285 1286 /** 1287 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration 1288 * @iter: iterator to init 1289 * 1290 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter 1291 * must eventually be stopped with scx_task_iter_stop(). 1292 * 1293 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock() 1294 * between this and the first next() call or between any two next() calls. If 1295 * the locks are released between two next() calls, the caller is responsible 1296 * for ensuring that the task being iterated remains accessible either through 1297 * RCU read lock or obtaining a reference count. 1298 * 1299 * All tasks which existed when the iteration started are guaranteed to be 1300 * visited as long as they still exist. 1301 */ 1302 static void scx_task_iter_start(struct scx_task_iter *iter) 1303 { 1304 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & 1305 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); 1306 1307 spin_lock_irq(&scx_tasks_lock); 1308 1309 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 1310 list_add(&iter->cursor.tasks_node, &scx_tasks); 1311 iter->locked = NULL; 1312 iter->cnt = 0; 1313 } 1314 1315 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter) 1316 { 1317 if (iter->locked) { 1318 task_rq_unlock(iter->rq, iter->locked, &iter->rf); 1319 iter->locked = NULL; 1320 } 1321 } 1322 1323 /** 1324 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator 1325 * @iter: iterator to unlock 1326 * 1327 * If @iter is in the middle of a locked iteration, it may be locking the rq of 1328 * the task currently being visited in addition to scx_tasks_lock. Unlock both. 1329 * This function can be safely called anytime during an iteration. 1330 */ 1331 static void scx_task_iter_unlock(struct scx_task_iter *iter) 1332 { 1333 __scx_task_iter_rq_unlock(iter); 1334 spin_unlock_irq(&scx_tasks_lock); 1335 } 1336 1337 /** 1338 * scx_task_iter_relock - Lock scx_tasks_lock released by scx_task_iter_unlock() 1339 * @iter: iterator to re-lock 1340 * 1341 * Re-lock scx_tasks_lock unlocked by scx_task_iter_unlock(). Note that it 1342 * doesn't re-lock the rq lock. Must be called before other iterator operations. 1343 */ 1344 static void scx_task_iter_relock(struct scx_task_iter *iter) 1345 { 1346 spin_lock_irq(&scx_tasks_lock); 1347 } 1348 1349 /** 1350 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock 1351 * @iter: iterator to exit 1352 * 1353 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held 1354 * which is released on return. If the iterator holds a task's rq lock, that rq 1355 * lock is also released. See scx_task_iter_start() for details. 1356 */ 1357 static void scx_task_iter_stop(struct scx_task_iter *iter) 1358 { 1359 list_del_init(&iter->cursor.tasks_node); 1360 scx_task_iter_unlock(iter); 1361 } 1362 1363 /** 1364 * scx_task_iter_next - Next task 1365 * @iter: iterator to walk 1366 * 1367 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped 1368 * and re-acquired every %SCX_OPS_TASK_ITER_BATCH iterations to avoid causing 1369 * stalls by holding scx_tasks_lock for too long. 1370 */ 1371 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 1372 { 1373 struct list_head *cursor = &iter->cursor.tasks_node; 1374 struct sched_ext_entity *pos; 1375 1376 if (!(++iter->cnt % SCX_OPS_TASK_ITER_BATCH)) { 1377 scx_task_iter_unlock(iter); 1378 cond_resched(); 1379 scx_task_iter_relock(iter); 1380 } 1381 1382 list_for_each_entry(pos, cursor, tasks_node) { 1383 if (&pos->tasks_node == &scx_tasks) 1384 return NULL; 1385 if (!(pos->flags & SCX_TASK_CURSOR)) { 1386 list_move(cursor, &pos->tasks_node); 1387 return container_of(pos, struct task_struct, scx); 1388 } 1389 } 1390 1391 /* can't happen, should always terminate at scx_tasks above */ 1392 BUG(); 1393 } 1394 1395 /** 1396 * scx_task_iter_next_locked - Next non-idle task with its rq locked 1397 * @iter: iterator to walk 1398 * @include_dead: Whether we should include dead tasks in the iteration 1399 * 1400 * Visit the non-idle task with its rq lock held. Allows callers to specify 1401 * whether they would like to filter out dead tasks. See scx_task_iter_start() 1402 * for details. 1403 */ 1404 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) 1405 { 1406 struct task_struct *p; 1407 1408 __scx_task_iter_rq_unlock(iter); 1409 1410 while ((p = scx_task_iter_next(iter))) { 1411 /* 1412 * scx_task_iter is used to prepare and move tasks into SCX 1413 * while loading the BPF scheduler and vice-versa while 1414 * unloading. The init_tasks ("swappers") should be excluded 1415 * from the iteration because: 1416 * 1417 * - It's unsafe to use __setschduler_prio() on an init_task to 1418 * determine the sched_class to use as it won't preserve its 1419 * idle_sched_class. 1420 * 1421 * - ops.init/exit_task() can easily be confused if called with 1422 * init_tasks as they, e.g., share PID 0. 1423 * 1424 * As init_tasks are never scheduled through SCX, they can be 1425 * skipped safely. Note that is_idle_task() which tests %PF_IDLE 1426 * doesn't work here: 1427 * 1428 * - %PF_IDLE may not be set for an init_task whose CPU hasn't 1429 * yet been onlined. 1430 * 1431 * - %PF_IDLE can be set on tasks that are not init_tasks. See 1432 * play_idle_precise() used by CONFIG_IDLE_INJECT. 1433 * 1434 * Test for idle_sched_class as only init_tasks are on it. 1435 */ 1436 if (p->sched_class != &idle_sched_class) 1437 break; 1438 } 1439 if (!p) 1440 return NULL; 1441 1442 iter->rq = task_rq_lock(p, &iter->rf); 1443 iter->locked = p; 1444 1445 return p; 1446 } 1447 1448 static enum scx_ops_enable_state scx_ops_enable_state(void) 1449 { 1450 return atomic_read(&scx_ops_enable_state_var); 1451 } 1452 1453 static enum scx_ops_enable_state 1454 scx_ops_set_enable_state(enum scx_ops_enable_state to) 1455 { 1456 return atomic_xchg(&scx_ops_enable_state_var, to); 1457 } 1458 1459 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to, 1460 enum scx_ops_enable_state from) 1461 { 1462 int from_v = from; 1463 1464 return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to); 1465 } 1466 1467 static bool scx_rq_bypassing(struct rq *rq) 1468 { 1469 return unlikely(rq->scx.flags & SCX_RQ_BYPASSING); 1470 } 1471 1472 /** 1473 * wait_ops_state - Busy-wait the specified ops state to end 1474 * @p: target task 1475 * @opss: state to wait the end of 1476 * 1477 * Busy-wait for @p to transition out of @opss. This can only be used when the 1478 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 1479 * has load_acquire semantics to ensure that the caller can see the updates made 1480 * in the enqueueing and dispatching paths. 1481 */ 1482 static void wait_ops_state(struct task_struct *p, unsigned long opss) 1483 { 1484 do { 1485 cpu_relax(); 1486 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 1487 } 1488 1489 /** 1490 * ops_cpu_valid - Verify a cpu number 1491 * @cpu: cpu number which came from a BPF ops 1492 * @where: extra information reported on error 1493 * 1494 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 1495 * Verify that it is in range and one of the possible cpus. If invalid, trigger 1496 * an ops error. 1497 */ 1498 static bool ops_cpu_valid(s32 cpu, const char *where) 1499 { 1500 if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) { 1501 return true; 1502 } else { 1503 scx_ops_error("invalid CPU %d%s%s", cpu, 1504 where ? " " : "", where ?: ""); 1505 return false; 1506 } 1507 } 1508 1509 /** 1510 * ops_sanitize_err - Sanitize a -errno value 1511 * @ops_name: operation to blame on failure 1512 * @err: -errno value to sanitize 1513 * 1514 * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return 1515 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 1516 * cause misbehaviors. For an example, a large negative return from 1517 * ops.init_task() triggers an oops when passed up the call chain because the 1518 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 1519 * handled as a pointer. 1520 */ 1521 static int ops_sanitize_err(const char *ops_name, s32 err) 1522 { 1523 if (err < 0 && err >= -MAX_ERRNO) 1524 return err; 1525 1526 scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err); 1527 return -EPROTO; 1528 } 1529 1530 static void run_deferred(struct rq *rq) 1531 { 1532 process_ddsp_deferred_locals(rq); 1533 } 1534 1535 #ifdef CONFIG_SMP 1536 static void deferred_bal_cb_workfn(struct rq *rq) 1537 { 1538 run_deferred(rq); 1539 } 1540 #endif 1541 1542 static void deferred_irq_workfn(struct irq_work *irq_work) 1543 { 1544 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); 1545 1546 raw_spin_rq_lock(rq); 1547 run_deferred(rq); 1548 raw_spin_rq_unlock(rq); 1549 } 1550 1551 /** 1552 * schedule_deferred - Schedule execution of deferred actions on an rq 1553 * @rq: target rq 1554 * 1555 * Schedule execution of deferred actions on @rq. Must be called with @rq 1556 * locked. Deferred actions are executed with @rq locked but unpinned, and thus 1557 * can unlock @rq to e.g. migrate tasks to other rqs. 1558 */ 1559 static void schedule_deferred(struct rq *rq) 1560 { 1561 lockdep_assert_rq_held(rq); 1562 1563 #ifdef CONFIG_SMP 1564 /* 1565 * If in the middle of waking up a task, task_woken_scx() will be called 1566 * afterwards which will then run the deferred actions, no need to 1567 * schedule anything. 1568 */ 1569 if (rq->scx.flags & SCX_RQ_IN_WAKEUP) 1570 return; 1571 1572 /* 1573 * If in balance, the balance callbacks will be called before rq lock is 1574 * released. Schedule one. 1575 */ 1576 if (rq->scx.flags & SCX_RQ_IN_BALANCE) { 1577 queue_balance_callback(rq, &rq->scx.deferred_bal_cb, 1578 deferred_bal_cb_workfn); 1579 return; 1580 } 1581 #endif 1582 /* 1583 * No scheduler hooks available. Queue an irq work. They are executed on 1584 * IRQ re-enable which may take a bit longer than the scheduler hooks. 1585 * The above WAKEUP and BALANCE paths should cover most of the cases and 1586 * the time to IRQ re-enable shouldn't be long. 1587 */ 1588 irq_work_queue(&rq->scx.deferred_irq_work); 1589 } 1590 1591 /** 1592 * touch_core_sched - Update timestamp used for core-sched task ordering 1593 * @rq: rq to read clock from, must be locked 1594 * @p: task to update the timestamp for 1595 * 1596 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to 1597 * implement global or local-DSQ FIFO ordering for core-sched. Should be called 1598 * when a task becomes runnable and its turn on the CPU ends (e.g. slice 1599 * exhaustion). 1600 */ 1601 static void touch_core_sched(struct rq *rq, struct task_struct *p) 1602 { 1603 lockdep_assert_rq_held(rq); 1604 1605 #ifdef CONFIG_SCHED_CORE 1606 /* 1607 * It's okay to update the timestamp spuriously. Use 1608 * sched_core_disabled() which is cheaper than enabled(). 1609 * 1610 * As this is used to determine ordering between tasks of sibling CPUs, 1611 * it may be better to use per-core dispatch sequence instead. 1612 */ 1613 if (!sched_core_disabled()) 1614 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); 1615 #endif 1616 } 1617 1618 /** 1619 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch 1620 * @rq: rq to read clock from, must be locked 1621 * @p: task being dispatched 1622 * 1623 * If the BPF scheduler implements custom core-sched ordering via 1624 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO 1625 * ordering within each local DSQ. This function is called from dispatch paths 1626 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. 1627 */ 1628 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) 1629 { 1630 lockdep_assert_rq_held(rq); 1631 1632 #ifdef CONFIG_SCHED_CORE 1633 if (SCX_HAS_OP(core_sched_before)) 1634 touch_core_sched(rq, p); 1635 #endif 1636 } 1637 1638 static void update_curr_scx(struct rq *rq) 1639 { 1640 struct task_struct *curr = rq->curr; 1641 s64 delta_exec; 1642 1643 delta_exec = update_curr_common(rq); 1644 if (unlikely(delta_exec <= 0)) 1645 return; 1646 1647 if (curr->scx.slice != SCX_SLICE_INF) { 1648 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); 1649 if (!curr->scx.slice) 1650 touch_core_sched(rq, curr); 1651 } 1652 } 1653 1654 static bool scx_dsq_priq_less(struct rb_node *node_a, 1655 const struct rb_node *node_b) 1656 { 1657 const struct task_struct *a = 1658 container_of(node_a, struct task_struct, scx.dsq_priq); 1659 const struct task_struct *b = 1660 container_of(node_b, struct task_struct, scx.dsq_priq); 1661 1662 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); 1663 } 1664 1665 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 1666 { 1667 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 1668 WRITE_ONCE(dsq->nr, dsq->nr + delta); 1669 } 1670 1671 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p, 1672 u64 enq_flags) 1673 { 1674 bool is_local = dsq->id == SCX_DSQ_LOCAL; 1675 1676 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1677 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || 1678 !RB_EMPTY_NODE(&p->scx.dsq_priq)); 1679 1680 if (!is_local) { 1681 raw_spin_lock(&dsq->lock); 1682 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 1683 scx_ops_error("attempting to dispatch to a destroyed dsq"); 1684 /* fall back to the global dsq */ 1685 raw_spin_unlock(&dsq->lock); 1686 dsq = find_global_dsq(p); 1687 raw_spin_lock(&dsq->lock); 1688 } 1689 } 1690 1691 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && 1692 (enq_flags & SCX_ENQ_DSQ_PRIQ))) { 1693 /* 1694 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from 1695 * their FIFO queues. To avoid confusion and accidentally 1696 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we 1697 * disallow any internal DSQ from doing vtime ordering of 1698 * tasks. 1699 */ 1700 scx_ops_error("cannot use vtime ordering for built-in DSQs"); 1701 enq_flags &= ~SCX_ENQ_DSQ_PRIQ; 1702 } 1703 1704 if (enq_flags & SCX_ENQ_DSQ_PRIQ) { 1705 struct rb_node *rbp; 1706 1707 /* 1708 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are 1709 * linked to both the rbtree and list on PRIQs, this can only be 1710 * tested easily when adding the first task. 1711 */ 1712 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && 1713 nldsq_next_task(dsq, NULL, false))) 1714 scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks", 1715 dsq->id); 1716 1717 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; 1718 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); 1719 1720 /* 1721 * Find the previous task and insert after it on the list so 1722 * that @dsq->list is vtime ordered. 1723 */ 1724 rbp = rb_prev(&p->scx.dsq_priq); 1725 if (rbp) { 1726 struct task_struct *prev = 1727 container_of(rbp, struct task_struct, 1728 scx.dsq_priq); 1729 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); 1730 } else { 1731 list_add(&p->scx.dsq_list.node, &dsq->list); 1732 } 1733 } else { 1734 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ 1735 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) 1736 scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks", 1737 dsq->id); 1738 1739 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 1740 list_add(&p->scx.dsq_list.node, &dsq->list); 1741 else 1742 list_add_tail(&p->scx.dsq_list.node, &dsq->list); 1743 } 1744 1745 /* seq records the order tasks are queued, used by BPF DSQ iterator */ 1746 dsq->seq++; 1747 p->scx.dsq_seq = dsq->seq; 1748 1749 dsq_mod_nr(dsq, 1); 1750 p->scx.dsq = dsq; 1751 1752 /* 1753 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 1754 * direct dispatch path, but we clear them here because the direct 1755 * dispatch verdict may be overridden on the enqueue path during e.g. 1756 * bypass. 1757 */ 1758 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 1759 p->scx.ddsp_enq_flags = 0; 1760 1761 /* 1762 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 1763 * match waiters' load_acquire. 1764 */ 1765 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 1766 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1767 1768 if (is_local) { 1769 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 1770 bool preempt = false; 1771 1772 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 1773 rq->curr->sched_class == &ext_sched_class) { 1774 rq->curr->scx.slice = 0; 1775 preempt = true; 1776 } 1777 1778 if (preempt || sched_class_above(&ext_sched_class, 1779 rq->curr->sched_class)) 1780 resched_curr(rq); 1781 } else { 1782 raw_spin_unlock(&dsq->lock); 1783 } 1784 } 1785 1786 static void task_unlink_from_dsq(struct task_struct *p, 1787 struct scx_dispatch_q *dsq) 1788 { 1789 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); 1790 1791 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { 1792 rb_erase(&p->scx.dsq_priq, &dsq->priq); 1793 RB_CLEAR_NODE(&p->scx.dsq_priq); 1794 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; 1795 } 1796 1797 list_del_init(&p->scx.dsq_list.node); 1798 dsq_mod_nr(dsq, -1); 1799 } 1800 1801 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 1802 { 1803 struct scx_dispatch_q *dsq = p->scx.dsq; 1804 bool is_local = dsq == &rq->scx.local_dsq; 1805 1806 if (!dsq) { 1807 /* 1808 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. 1809 * Unlinking is all that's needed to cancel. 1810 */ 1811 if (unlikely(!list_empty(&p->scx.dsq_list.node))) 1812 list_del_init(&p->scx.dsq_list.node); 1813 1814 /* 1815 * When dispatching directly from the BPF scheduler to a local 1816 * DSQ, the task isn't associated with any DSQ but 1817 * @p->scx.holding_cpu may be set under the protection of 1818 * %SCX_OPSS_DISPATCHING. 1819 */ 1820 if (p->scx.holding_cpu >= 0) 1821 p->scx.holding_cpu = -1; 1822 1823 return; 1824 } 1825 1826 if (!is_local) 1827 raw_spin_lock(&dsq->lock); 1828 1829 /* 1830 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't 1831 * change underneath us. 1832 */ 1833 if (p->scx.holding_cpu < 0) { 1834 /* @p must still be on @dsq, dequeue */ 1835 task_unlink_from_dsq(p, dsq); 1836 } else { 1837 /* 1838 * We're racing against dispatch_to_local_dsq() which already 1839 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 1840 * holding_cpu which tells dispatch_to_local_dsq() that it lost 1841 * the race. 1842 */ 1843 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); 1844 p->scx.holding_cpu = -1; 1845 } 1846 p->scx.dsq = NULL; 1847 1848 if (!is_local) 1849 raw_spin_unlock(&dsq->lock); 1850 } 1851 1852 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id, 1853 struct task_struct *p) 1854 { 1855 struct scx_dispatch_q *dsq; 1856 1857 if (dsq_id == SCX_DSQ_LOCAL) 1858 return &rq->scx.local_dsq; 1859 1860 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 1861 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 1862 1863 if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 1864 return find_global_dsq(p); 1865 1866 return &cpu_rq(cpu)->scx.local_dsq; 1867 } 1868 1869 if (dsq_id == SCX_DSQ_GLOBAL) 1870 dsq = find_global_dsq(p); 1871 else 1872 dsq = find_user_dsq(dsq_id); 1873 1874 if (unlikely(!dsq)) { 1875 scx_ops_error("non-existent DSQ 0x%llx for %s[%d]", 1876 dsq_id, p->comm, p->pid); 1877 return find_global_dsq(p); 1878 } 1879 1880 return dsq; 1881 } 1882 1883 static void mark_direct_dispatch(struct task_struct *ddsp_task, 1884 struct task_struct *p, u64 dsq_id, 1885 u64 enq_flags) 1886 { 1887 /* 1888 * Mark that dispatch already happened from ops.select_cpu() or 1889 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 1890 * which can never match a valid task pointer. 1891 */ 1892 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 1893 1894 /* @p must match the task on the enqueue path */ 1895 if (unlikely(p != ddsp_task)) { 1896 if (IS_ERR(ddsp_task)) 1897 scx_ops_error("%s[%d] already direct-dispatched", 1898 p->comm, p->pid); 1899 else 1900 scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 1901 ddsp_task->comm, ddsp_task->pid, 1902 p->comm, p->pid); 1903 return; 1904 } 1905 1906 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 1907 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 1908 1909 p->scx.ddsp_dsq_id = dsq_id; 1910 p->scx.ddsp_enq_flags = enq_flags; 1911 } 1912 1913 static void direct_dispatch(struct task_struct *p, u64 enq_flags) 1914 { 1915 struct rq *rq = task_rq(p); 1916 struct scx_dispatch_q *dsq = 1917 find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); 1918 1919 touch_core_sched_dispatch(rq, p); 1920 1921 p->scx.ddsp_enq_flags |= enq_flags; 1922 1923 /* 1924 * We are in the enqueue path with @rq locked and pinned, and thus can't 1925 * double lock a remote rq and enqueue to its local DSQ. For 1926 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer 1927 * the enqueue so that it's executed when @rq can be unlocked. 1928 */ 1929 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { 1930 unsigned long opss; 1931 1932 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; 1933 1934 switch (opss & SCX_OPSS_STATE_MASK) { 1935 case SCX_OPSS_NONE: 1936 break; 1937 case SCX_OPSS_QUEUEING: 1938 /* 1939 * As @p was never passed to the BPF side, _release is 1940 * not strictly necessary. Still do it for consistency. 1941 */ 1942 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1943 break; 1944 default: 1945 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", 1946 p->comm, p->pid, opss); 1947 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1948 break; 1949 } 1950 1951 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1952 list_add_tail(&p->scx.dsq_list.node, 1953 &rq->scx.ddsp_deferred_locals); 1954 schedule_deferred(rq); 1955 return; 1956 } 1957 1958 dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 1959 } 1960 1961 static bool scx_rq_online(struct rq *rq) 1962 { 1963 /* 1964 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates 1965 * the online state as seen from the BPF scheduler. cpu_active() test 1966 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will 1967 * stay set until the current scheduling operation is complete even if 1968 * we aren't locking @rq. 1969 */ 1970 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); 1971 } 1972 1973 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 1974 int sticky_cpu) 1975 { 1976 struct task_struct **ddsp_taskp; 1977 unsigned long qseq; 1978 1979 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 1980 1981 /* rq migration */ 1982 if (sticky_cpu == cpu_of(rq)) 1983 goto local_norefill; 1984 1985 /* 1986 * If !scx_rq_online(), we already told the BPF scheduler that the CPU 1987 * is offline and are just running the hotplug path. Don't bother the 1988 * BPF scheduler. 1989 */ 1990 if (!scx_rq_online(rq)) 1991 goto local; 1992 1993 if (scx_rq_bypassing(rq)) 1994 goto global; 1995 1996 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1997 goto direct; 1998 1999 /* see %SCX_OPS_ENQ_EXITING */ 2000 if (!static_branch_unlikely(&scx_ops_enq_exiting) && 2001 unlikely(p->flags & PF_EXITING)) 2002 goto local; 2003 2004 if (!SCX_HAS_OP(enqueue)) 2005 goto global; 2006 2007 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 2008 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 2009 2010 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2011 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 2012 2013 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 2014 WARN_ON_ONCE(*ddsp_taskp); 2015 *ddsp_taskp = p; 2016 2017 SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags); 2018 2019 *ddsp_taskp = NULL; 2020 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 2021 goto direct; 2022 2023 /* 2024 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 2025 * dequeue may be waiting. The store_release matches their load_acquire. 2026 */ 2027 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 2028 return; 2029 2030 direct: 2031 direct_dispatch(p, enq_flags); 2032 return; 2033 2034 local: 2035 /* 2036 * For task-ordering, slice refill must be treated as implying the end 2037 * of the current slice. Otherwise, the longer @p stays on the CPU, the 2038 * higher priority it becomes from scx_prio_less()'s POV. 2039 */ 2040 touch_core_sched(rq, p); 2041 p->scx.slice = SCX_SLICE_DFL; 2042 local_norefill: 2043 dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags); 2044 return; 2045 2046 global: 2047 touch_core_sched(rq, p); /* see the comment in local: */ 2048 p->scx.slice = SCX_SLICE_DFL; 2049 dispatch_enqueue(find_global_dsq(p), p, enq_flags); 2050 } 2051 2052 static bool task_runnable(const struct task_struct *p) 2053 { 2054 return !list_empty(&p->scx.runnable_node); 2055 } 2056 2057 static void set_task_runnable(struct rq *rq, struct task_struct *p) 2058 { 2059 lockdep_assert_rq_held(rq); 2060 2061 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 2062 p->scx.runnable_at = jiffies; 2063 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 2064 } 2065 2066 /* 2067 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being 2068 * appened to the runnable_list. 2069 */ 2070 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 2071 } 2072 2073 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 2074 { 2075 list_del_init(&p->scx.runnable_node); 2076 if (reset_runnable_at) 2077 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2078 } 2079 2080 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 2081 { 2082 int sticky_cpu = p->scx.sticky_cpu; 2083 2084 if (enq_flags & ENQUEUE_WAKEUP) 2085 rq->scx.flags |= SCX_RQ_IN_WAKEUP; 2086 2087 enq_flags |= rq->scx.extra_enq_flags; 2088 2089 if (sticky_cpu >= 0) 2090 p->scx.sticky_cpu = -1; 2091 2092 /* 2093 * Restoring a running task will be immediately followed by 2094 * set_next_task_scx() which expects the task to not be on the BPF 2095 * scheduler as tasks can only start running through local DSQs. Force 2096 * direct-dispatch into the local DSQ by setting the sticky_cpu. 2097 */ 2098 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 2099 sticky_cpu = cpu_of(rq); 2100 2101 if (p->scx.flags & SCX_TASK_QUEUED) { 2102 WARN_ON_ONCE(!task_runnable(p)); 2103 goto out; 2104 } 2105 2106 set_task_runnable(rq, p); 2107 p->scx.flags |= SCX_TASK_QUEUED; 2108 rq->scx.nr_running++; 2109 add_nr_running(rq, 1); 2110 2111 if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p)) 2112 SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags); 2113 2114 if (enq_flags & SCX_ENQ_WAKEUP) 2115 touch_core_sched(rq, p); 2116 2117 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 2118 out: 2119 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; 2120 } 2121 2122 static void ops_dequeue(struct task_struct *p, u64 deq_flags) 2123 { 2124 unsigned long opss; 2125 2126 /* dequeue is always temporary, don't reset runnable_at */ 2127 clr_task_runnable(p, false); 2128 2129 /* acquire ensures that we see the preceding updates on QUEUED */ 2130 opss = atomic_long_read_acquire(&p->scx.ops_state); 2131 2132 switch (opss & SCX_OPSS_STATE_MASK) { 2133 case SCX_OPSS_NONE: 2134 break; 2135 case SCX_OPSS_QUEUEING: 2136 /* 2137 * QUEUEING is started and finished while holding @p's rq lock. 2138 * As we're holding the rq lock now, we shouldn't see QUEUEING. 2139 */ 2140 BUG(); 2141 case SCX_OPSS_QUEUED: 2142 if (SCX_HAS_OP(dequeue)) 2143 SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags); 2144 2145 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2146 SCX_OPSS_NONE)) 2147 break; 2148 fallthrough; 2149 case SCX_OPSS_DISPATCHING: 2150 /* 2151 * If @p is being dispatched from the BPF scheduler to a DSQ, 2152 * wait for the transfer to complete so that @p doesn't get 2153 * added to its DSQ after dequeueing is complete. 2154 * 2155 * As we're waiting on DISPATCHING with the rq locked, the 2156 * dispatching side shouldn't try to lock the rq while 2157 * DISPATCHING is set. See dispatch_to_local_dsq(). 2158 * 2159 * DISPATCHING shouldn't have qseq set and control can reach 2160 * here with NONE @opss from the above QUEUED case block. 2161 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 2162 */ 2163 wait_ops_state(p, SCX_OPSS_DISPATCHING); 2164 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2165 break; 2166 } 2167 } 2168 2169 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 2170 { 2171 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 2172 WARN_ON_ONCE(task_runnable(p)); 2173 return true; 2174 } 2175 2176 ops_dequeue(p, deq_flags); 2177 2178 /* 2179 * A currently running task which is going off @rq first gets dequeued 2180 * and then stops running. As we want running <-> stopping transitions 2181 * to be contained within runnable <-> quiescent transitions, trigger 2182 * ->stopping() early here instead of in put_prev_task_scx(). 2183 * 2184 * @p may go through multiple stopping <-> running transitions between 2185 * here and put_prev_task_scx() if task attribute changes occur while 2186 * balance_scx() leaves @rq unlocked. However, they don't contain any 2187 * information meaningful to the BPF scheduler and can be suppressed by 2188 * skipping the callbacks if the task is !QUEUED. 2189 */ 2190 if (SCX_HAS_OP(stopping) && task_current(rq, p)) { 2191 update_curr_scx(rq); 2192 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false); 2193 } 2194 2195 if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p)) 2196 SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags); 2197 2198 if (deq_flags & SCX_DEQ_SLEEP) 2199 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 2200 else 2201 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 2202 2203 p->scx.flags &= ~SCX_TASK_QUEUED; 2204 rq->scx.nr_running--; 2205 sub_nr_running(rq, 1); 2206 2207 dispatch_dequeue(rq, p); 2208 return true; 2209 } 2210 2211 static void yield_task_scx(struct rq *rq) 2212 { 2213 struct task_struct *p = rq->curr; 2214 2215 if (SCX_HAS_OP(yield)) 2216 SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL); 2217 else 2218 p->scx.slice = 0; 2219 } 2220 2221 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 2222 { 2223 struct task_struct *from = rq->curr; 2224 2225 if (SCX_HAS_OP(yield)) 2226 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to); 2227 else 2228 return false; 2229 } 2230 2231 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2232 struct scx_dispatch_q *src_dsq, 2233 struct rq *dst_rq) 2234 { 2235 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; 2236 2237 /* @dsq is locked and @p is on @dst_rq */ 2238 lockdep_assert_held(&src_dsq->lock); 2239 lockdep_assert_rq_held(dst_rq); 2240 2241 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2242 2243 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 2244 list_add(&p->scx.dsq_list.node, &dst_dsq->list); 2245 else 2246 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); 2247 2248 dsq_mod_nr(dst_dsq, 1); 2249 p->scx.dsq = dst_dsq; 2250 } 2251 2252 #ifdef CONFIG_SMP 2253 /** 2254 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ 2255 * @p: task to move 2256 * @enq_flags: %SCX_ENQ_* 2257 * @src_rq: rq to move the task from, locked on entry, released on return 2258 * @dst_rq: rq to move the task into, locked on return 2259 * 2260 * Move @p which is currently on @src_rq to @dst_rq's local DSQ. 2261 */ 2262 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2263 struct rq *src_rq, struct rq *dst_rq) 2264 { 2265 lockdep_assert_rq_held(src_rq); 2266 2267 /* the following marks @p MIGRATING which excludes dequeue */ 2268 deactivate_task(src_rq, p, 0); 2269 set_task_cpu(p, cpu_of(dst_rq)); 2270 p->scx.sticky_cpu = cpu_of(dst_rq); 2271 2272 raw_spin_rq_unlock(src_rq); 2273 raw_spin_rq_lock(dst_rq); 2274 2275 /* 2276 * We want to pass scx-specific enq_flags but activate_task() will 2277 * truncate the upper 32 bit. As we own @rq, we can pass them through 2278 * @rq->scx.extra_enq_flags instead. 2279 */ 2280 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); 2281 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); 2282 dst_rq->scx.extra_enq_flags = enq_flags; 2283 activate_task(dst_rq, p, 0); 2284 dst_rq->scx.extra_enq_flags = 0; 2285 } 2286 2287 /* 2288 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two 2289 * differences: 2290 * 2291 * - is_cpu_allowed() asks "Can this task run on this CPU?" while 2292 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to 2293 * this CPU?". 2294 * 2295 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task 2296 * must be allowed to finish on the CPU that it's currently on regardless of 2297 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the 2298 * BPF scheduler shouldn't attempt to migrate a task which has migration 2299 * disabled. 2300 * 2301 * - The BPF scheduler is bypassed while the rq is offline and we can always say 2302 * no to the BPF scheduler initiated migrations while offline. 2303 */ 2304 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, 2305 bool trigger_error) 2306 { 2307 int cpu = cpu_of(rq); 2308 2309 /* 2310 * We don't require the BPF scheduler to avoid dispatching to offline 2311 * CPUs mostly for convenience but also because CPUs can go offline 2312 * between scx_bpf_dispatch() calls and here. Trigger error iff the 2313 * picked CPU is outside the allowed mask. 2314 */ 2315 if (!task_allowed_on_cpu(p, cpu)) { 2316 if (trigger_error) 2317 scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]", 2318 cpu_of(rq), p->comm, p->pid); 2319 return false; 2320 } 2321 2322 if (unlikely(is_migration_disabled(p))) 2323 return false; 2324 2325 if (!scx_rq_online(rq)) 2326 return false; 2327 2328 return true; 2329 } 2330 2331 /** 2332 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq 2333 * @p: target task 2334 * @dsq: locked DSQ @p is currently on 2335 * @src_rq: rq @p is currently on, stable with @dsq locked 2336 * 2337 * Called with @dsq locked but no rq's locked. We want to move @p to a different 2338 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is 2339 * required when transferring into a local DSQ. Even when transferring into a 2340 * non-local DSQ, it's better to use the same mechanism to protect against 2341 * dequeues and maintain the invariant that @p->scx.dsq can only change while 2342 * @src_rq is locked, which e.g. scx_dump_task() depends on. 2343 * 2344 * We want to grab @src_rq but that can deadlock if we try while locking @dsq, 2345 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As 2346 * this may race with dequeue, which can't drop the rq lock or fail, do a little 2347 * dancing from our side. 2348 * 2349 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets 2350 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu 2351 * would be cleared to -1. While other cpus may have updated it to different 2352 * values afterwards, as this operation can't be preempted or recurse, the 2353 * holding_cpu can never become this CPU again before we're done. Thus, we can 2354 * tell whether we lost to dequeue by testing whether the holding_cpu still 2355 * points to this CPU. See dispatch_dequeue() for the counterpart. 2356 * 2357 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is 2358 * still valid. %false if lost to dequeue. 2359 */ 2360 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, 2361 struct scx_dispatch_q *dsq, 2362 struct rq *src_rq) 2363 { 2364 s32 cpu = raw_smp_processor_id(); 2365 2366 lockdep_assert_held(&dsq->lock); 2367 2368 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2369 task_unlink_from_dsq(p, dsq); 2370 p->scx.holding_cpu = cpu; 2371 2372 raw_spin_unlock(&dsq->lock); 2373 raw_spin_rq_lock(src_rq); 2374 2375 /* task_rq couldn't have changed if we're still the holding cpu */ 2376 return likely(p->scx.holding_cpu == cpu) && 2377 !WARN_ON_ONCE(src_rq != task_rq(p)); 2378 } 2379 2380 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, 2381 struct scx_dispatch_q *dsq, struct rq *src_rq) 2382 { 2383 raw_spin_rq_unlock(this_rq); 2384 2385 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { 2386 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); 2387 return true; 2388 } else { 2389 raw_spin_rq_unlock(src_rq); 2390 raw_spin_rq_lock(this_rq); 2391 return false; 2392 } 2393 } 2394 #else /* CONFIG_SMP */ 2395 static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); } 2396 static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; } 2397 static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; } 2398 #endif /* CONFIG_SMP */ 2399 2400 static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq) 2401 { 2402 struct task_struct *p; 2403 retry: 2404 /* 2405 * The caller can't expect to successfully consume a task if the task's 2406 * addition to @dsq isn't guaranteed to be visible somehow. Test 2407 * @dsq->list without locking and skip if it seems empty. 2408 */ 2409 if (list_empty(&dsq->list)) 2410 return false; 2411 2412 raw_spin_lock(&dsq->lock); 2413 2414 nldsq_for_each_task(p, dsq) { 2415 struct rq *task_rq = task_rq(p); 2416 2417 if (rq == task_rq) { 2418 task_unlink_from_dsq(p, dsq); 2419 move_local_task_to_local_dsq(p, 0, dsq, rq); 2420 raw_spin_unlock(&dsq->lock); 2421 return true; 2422 } 2423 2424 if (task_can_run_on_remote_rq(p, rq, false)) { 2425 if (likely(consume_remote_task(rq, p, dsq, task_rq))) 2426 return true; 2427 goto retry; 2428 } 2429 } 2430 2431 raw_spin_unlock(&dsq->lock); 2432 return false; 2433 } 2434 2435 static bool consume_global_dsq(struct rq *rq) 2436 { 2437 int node = cpu_to_node(cpu_of(rq)); 2438 2439 return consume_dispatch_q(rq, global_dsqs[node]); 2440 } 2441 2442 /** 2443 * dispatch_to_local_dsq - Dispatch a task to a local dsq 2444 * @rq: current rq which is locked 2445 * @dst_dsq: destination DSQ 2446 * @p: task to dispatch 2447 * @enq_flags: %SCX_ENQ_* 2448 * 2449 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local 2450 * DSQ. This function performs all the synchronization dancing needed because 2451 * local DSQs are protected with rq locks. 2452 * 2453 * The caller must have exclusive ownership of @p (e.g. through 2454 * %SCX_OPSS_DISPATCHING). 2455 */ 2456 static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq, 2457 struct task_struct *p, u64 enq_flags) 2458 { 2459 struct rq *src_rq = task_rq(p); 2460 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 2461 2462 /* 2463 * We're synchronized against dequeue through DISPATCHING. As @p can't 2464 * be dequeued, its task_rq and cpus_allowed are stable too. 2465 * 2466 * If dispatching to @rq that @p is already on, no lock dancing needed. 2467 */ 2468 if (rq == src_rq && rq == dst_rq) { 2469 dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2470 return; 2471 } 2472 2473 #ifdef CONFIG_SMP 2474 if (unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) { 2475 dispatch_enqueue(find_global_dsq(p), p, 2476 enq_flags | SCX_ENQ_CLEAR_OPSS); 2477 return; 2478 } 2479 2480 /* 2481 * @p is on a possibly remote @src_rq which we need to lock to move the 2482 * task. If dequeue is in progress, it'd be locking @src_rq and waiting 2483 * on DISPATCHING, so we can't grab @src_rq lock while holding 2484 * DISPATCHING. 2485 * 2486 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that 2487 * we're moving from a DSQ and use the same mechanism - mark the task 2488 * under transfer with holding_cpu, release DISPATCHING and then follow 2489 * the same protocol. See unlink_dsq_and_lock_src_rq(). 2490 */ 2491 p->scx.holding_cpu = raw_smp_processor_id(); 2492 2493 /* store_release ensures that dequeue sees the above */ 2494 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 2495 2496 /* switch to @src_rq lock */ 2497 if (rq != src_rq) { 2498 raw_spin_rq_unlock(rq); 2499 raw_spin_rq_lock(src_rq); 2500 } 2501 2502 /* task_rq couldn't have changed if we're still the holding cpu */ 2503 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && 2504 !WARN_ON_ONCE(src_rq != task_rq(p))) { 2505 /* 2506 * If @p is staying on the same rq, there's no need to go 2507 * through the full deactivate/activate cycle. Optimize by 2508 * abbreviating move_remote_task_to_local_dsq(). 2509 */ 2510 if (src_rq == dst_rq) { 2511 p->scx.holding_cpu = -1; 2512 dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags); 2513 } else { 2514 move_remote_task_to_local_dsq(p, enq_flags, 2515 src_rq, dst_rq); 2516 } 2517 2518 /* if the destination CPU is idle, wake it up */ 2519 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) 2520 resched_curr(dst_rq); 2521 } 2522 2523 /* switch back to @rq lock */ 2524 if (rq != dst_rq) { 2525 raw_spin_rq_unlock(dst_rq); 2526 raw_spin_rq_lock(rq); 2527 } 2528 #else /* CONFIG_SMP */ 2529 BUG(); /* control can not reach here on UP */ 2530 #endif /* CONFIG_SMP */ 2531 } 2532 2533 /** 2534 * finish_dispatch - Asynchronously finish dispatching a task 2535 * @rq: current rq which is locked 2536 * @p: task to finish dispatching 2537 * @qseq_at_dispatch: qseq when @p started getting dispatched 2538 * @dsq_id: destination DSQ ID 2539 * @enq_flags: %SCX_ENQ_* 2540 * 2541 * Dispatching to local DSQs may need to wait for queueing to complete or 2542 * require rq lock dancing. As we don't wanna do either while inside 2543 * ops.dispatch() to avoid locking order inversion, we split dispatching into 2544 * two parts. scx_bpf_dispatch() which is called by ops.dispatch() records the 2545 * task and its qseq. Once ops.dispatch() returns, this function is called to 2546 * finish up. 2547 * 2548 * There is no guarantee that @p is still valid for dispatching or even that it 2549 * was valid in the first place. Make sure that the task is still owned by the 2550 * BPF scheduler and claim the ownership before dispatching. 2551 */ 2552 static void finish_dispatch(struct rq *rq, struct task_struct *p, 2553 unsigned long qseq_at_dispatch, 2554 u64 dsq_id, u64 enq_flags) 2555 { 2556 struct scx_dispatch_q *dsq; 2557 unsigned long opss; 2558 2559 touch_core_sched_dispatch(rq, p); 2560 retry: 2561 /* 2562 * No need for _acquire here. @p is accessed only after a successful 2563 * try_cmpxchg to DISPATCHING. 2564 */ 2565 opss = atomic_long_read(&p->scx.ops_state); 2566 2567 switch (opss & SCX_OPSS_STATE_MASK) { 2568 case SCX_OPSS_DISPATCHING: 2569 case SCX_OPSS_NONE: 2570 /* someone else already got to it */ 2571 return; 2572 case SCX_OPSS_QUEUED: 2573 /* 2574 * If qseq doesn't match, @p has gone through at least one 2575 * dispatch/dequeue and re-enqueue cycle between 2576 * scx_bpf_dispatch() and here and we have no claim on it. 2577 */ 2578 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 2579 return; 2580 2581 /* 2582 * While we know @p is accessible, we don't yet have a claim on 2583 * it - the BPF scheduler is allowed to dispatch tasks 2584 * spuriously and there can be a racing dequeue attempt. Let's 2585 * claim @p by atomically transitioning it from QUEUED to 2586 * DISPATCHING. 2587 */ 2588 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2589 SCX_OPSS_DISPATCHING))) 2590 break; 2591 goto retry; 2592 case SCX_OPSS_QUEUEING: 2593 /* 2594 * do_enqueue_task() is in the process of transferring the task 2595 * to the BPF scheduler while holding @p's rq lock. As we aren't 2596 * holding any kernel or BPF resource that the enqueue path may 2597 * depend upon, it's safe to wait. 2598 */ 2599 wait_ops_state(p, opss); 2600 goto retry; 2601 } 2602 2603 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 2604 2605 dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p); 2606 2607 if (dsq->id == SCX_DSQ_LOCAL) 2608 dispatch_to_local_dsq(rq, dsq, p, enq_flags); 2609 else 2610 dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2611 } 2612 2613 static void flush_dispatch_buf(struct rq *rq) 2614 { 2615 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2616 u32 u; 2617 2618 for (u = 0; u < dspc->cursor; u++) { 2619 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 2620 2621 finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id, 2622 ent->enq_flags); 2623 } 2624 2625 dspc->nr_tasks += dspc->cursor; 2626 dspc->cursor = 0; 2627 } 2628 2629 static int balance_one(struct rq *rq, struct task_struct *prev) 2630 { 2631 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2632 bool prev_on_scx = prev->sched_class == &ext_sched_class; 2633 int nr_loops = SCX_DSP_MAX_LOOPS; 2634 2635 lockdep_assert_rq_held(rq); 2636 rq->scx.flags |= SCX_RQ_IN_BALANCE; 2637 rq->scx.flags &= ~(SCX_RQ_BAL_PENDING | SCX_RQ_BAL_KEEP); 2638 2639 if (static_branch_unlikely(&scx_ops_cpu_preempt) && 2640 unlikely(rq->scx.cpu_released)) { 2641 /* 2642 * If the previous sched_class for the current CPU was not SCX, 2643 * notify the BPF scheduler that it again has control of the 2644 * core. This callback complements ->cpu_release(), which is 2645 * emitted in scx_next_task_picked(). 2646 */ 2647 if (SCX_HAS_OP(cpu_acquire)) 2648 SCX_CALL_OP(SCX_KF_REST, cpu_acquire, cpu_of(rq), NULL); 2649 rq->scx.cpu_released = false; 2650 } 2651 2652 if (prev_on_scx) { 2653 update_curr_scx(rq); 2654 2655 /* 2656 * If @prev is runnable & has slice left, it has priority and 2657 * fetching more just increases latency for the fetched tasks. 2658 * Tell pick_task_scx() to keep running @prev. If the BPF 2659 * scheduler wants to handle this explicitly, it should 2660 * implement ->cpu_release(). 2661 * 2662 * See scx_ops_disable_workfn() for the explanation on the 2663 * bypassing test. 2664 */ 2665 if ((prev->scx.flags & SCX_TASK_QUEUED) && 2666 prev->scx.slice && !scx_rq_bypassing(rq)) { 2667 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2668 goto has_tasks; 2669 } 2670 } 2671 2672 /* if there already are tasks to run, nothing to do */ 2673 if (rq->scx.local_dsq.nr) 2674 goto has_tasks; 2675 2676 if (consume_global_dsq(rq)) 2677 goto has_tasks; 2678 2679 if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq)) 2680 goto no_tasks; 2681 2682 dspc->rq = rq; 2683 2684 /* 2685 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 2686 * the local DSQ might still end up empty after a successful 2687 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 2688 * produced some tasks, retry. The BPF scheduler may depend on this 2689 * looping behavior to simplify its implementation. 2690 */ 2691 do { 2692 dspc->nr_tasks = 0; 2693 2694 SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq), 2695 prev_on_scx ? prev : NULL); 2696 2697 flush_dispatch_buf(rq); 2698 2699 if (rq->scx.local_dsq.nr) 2700 goto has_tasks; 2701 if (consume_global_dsq(rq)) 2702 goto has_tasks; 2703 2704 /* 2705 * ops.dispatch() can trap us in this loop by repeatedly 2706 * dispatching ineligible tasks. Break out once in a while to 2707 * allow the watchdog to run. As IRQ can't be enabled in 2708 * balance(), we want to complete this scheduling cycle and then 2709 * start a new one. IOW, we want to call resched_curr() on the 2710 * next, most likely idle, task, not the current one. Use 2711 * scx_bpf_kick_cpu() for deferred kicking. 2712 */ 2713 if (unlikely(!--nr_loops)) { 2714 scx_bpf_kick_cpu(cpu_of(rq), 0); 2715 break; 2716 } 2717 } while (dspc->nr_tasks); 2718 2719 no_tasks: 2720 /* 2721 * Didn't find another task to run. Keep running @prev unless 2722 * %SCX_OPS_ENQ_LAST is in effect. 2723 */ 2724 if ((prev->scx.flags & SCX_TASK_QUEUED) && 2725 (!static_branch_unlikely(&scx_ops_enq_last) || 2726 scx_rq_bypassing(rq))) { 2727 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2728 goto has_tasks; 2729 } 2730 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2731 return false; 2732 2733 has_tasks: 2734 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2735 return true; 2736 } 2737 2738 static int balance_scx(struct rq *rq, struct task_struct *prev, 2739 struct rq_flags *rf) 2740 { 2741 int ret; 2742 2743 rq_unpin_lock(rq, rf); 2744 2745 ret = balance_one(rq, prev); 2746 2747 #ifdef CONFIG_SCHED_SMT 2748 /* 2749 * When core-sched is enabled, this ops.balance() call will be followed 2750 * by pick_task_scx() on this CPU and the SMT siblings. Balance the 2751 * siblings too. 2752 */ 2753 if (sched_core_enabled(rq)) { 2754 const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq)); 2755 int scpu; 2756 2757 for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) { 2758 struct rq *srq = cpu_rq(scpu); 2759 struct task_struct *sprev = srq->curr; 2760 2761 WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq)); 2762 update_rq_clock(srq); 2763 balance_one(srq, sprev); 2764 } 2765 } 2766 #endif 2767 rq_repin_lock(rq, rf); 2768 2769 return ret; 2770 } 2771 2772 static void process_ddsp_deferred_locals(struct rq *rq) 2773 { 2774 struct task_struct *p; 2775 2776 lockdep_assert_rq_held(rq); 2777 2778 /* 2779 * Now that @rq can be unlocked, execute the deferred enqueueing of 2780 * tasks directly dispatched to the local DSQs of other CPUs. See 2781 * direct_dispatch(). Keep popping from the head instead of using 2782 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq 2783 * temporarily. 2784 */ 2785 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, 2786 struct task_struct, scx.dsq_list.node))) { 2787 struct scx_dispatch_q *dsq; 2788 2789 list_del_init(&p->scx.dsq_list.node); 2790 2791 dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); 2792 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) 2793 dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags); 2794 } 2795 } 2796 2797 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 2798 { 2799 if (p->scx.flags & SCX_TASK_QUEUED) { 2800 /* 2801 * Core-sched might decide to execute @p before it is 2802 * dispatched. Call ops_dequeue() to notify the BPF scheduler. 2803 */ 2804 ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC); 2805 dispatch_dequeue(rq, p); 2806 } 2807 2808 p->se.exec_start = rq_clock_task(rq); 2809 2810 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2811 if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED)) 2812 SCX_CALL_OP_TASK(SCX_KF_REST, running, p); 2813 2814 clr_task_runnable(p, true); 2815 2816 /* 2817 * @p is getting newly scheduled or got kicked after someone updated its 2818 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 2819 */ 2820 if ((p->scx.slice == SCX_SLICE_INF) != 2821 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 2822 if (p->scx.slice == SCX_SLICE_INF) 2823 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 2824 else 2825 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 2826 2827 sched_update_tick_dependency(rq); 2828 2829 /* 2830 * For now, let's refresh the load_avgs just when transitioning 2831 * in and out of nohz. In the future, we might want to add a 2832 * mechanism which calls the following periodically on 2833 * tick-stopped CPUs. 2834 */ 2835 update_other_load_avgs(rq); 2836 } 2837 } 2838 2839 static enum scx_cpu_preempt_reason 2840 preempt_reason_from_class(const struct sched_class *class) 2841 { 2842 #ifdef CONFIG_SMP 2843 if (class == &stop_sched_class) 2844 return SCX_CPU_PREEMPT_STOP; 2845 #endif 2846 if (class == &dl_sched_class) 2847 return SCX_CPU_PREEMPT_DL; 2848 if (class == &rt_sched_class) 2849 return SCX_CPU_PREEMPT_RT; 2850 return SCX_CPU_PREEMPT_UNKNOWN; 2851 } 2852 2853 static void switch_class(struct rq *rq, struct task_struct *next) 2854 { 2855 const struct sched_class *next_class = next->sched_class; 2856 2857 #ifdef CONFIG_SMP 2858 /* 2859 * Pairs with the smp_load_acquire() issued by a CPU in 2860 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a 2861 * resched. 2862 */ 2863 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); 2864 #endif 2865 if (!static_branch_unlikely(&scx_ops_cpu_preempt)) 2866 return; 2867 2868 /* 2869 * The callback is conceptually meant to convey that the CPU is no 2870 * longer under the control of SCX. Therefore, don't invoke the callback 2871 * if the next class is below SCX (in which case the BPF scheduler has 2872 * actively decided not to schedule any tasks on the CPU). 2873 */ 2874 if (sched_class_above(&ext_sched_class, next_class)) 2875 return; 2876 2877 /* 2878 * At this point we know that SCX was preempted by a higher priority 2879 * sched_class, so invoke the ->cpu_release() callback if we have not 2880 * done so already. We only send the callback once between SCX being 2881 * preempted, and it regaining control of the CPU. 2882 * 2883 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 2884 * next time that balance_scx() is invoked. 2885 */ 2886 if (!rq->scx.cpu_released) { 2887 if (SCX_HAS_OP(cpu_release)) { 2888 struct scx_cpu_release_args args = { 2889 .reason = preempt_reason_from_class(next_class), 2890 .task = next, 2891 }; 2892 2893 SCX_CALL_OP(SCX_KF_CPU_RELEASE, 2894 cpu_release, cpu_of(rq), &args); 2895 } 2896 rq->scx.cpu_released = true; 2897 } 2898 } 2899 2900 static void put_prev_task_scx(struct rq *rq, struct task_struct *p, 2901 struct task_struct *next) 2902 { 2903 update_curr_scx(rq); 2904 2905 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2906 if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 2907 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true); 2908 2909 if (p->scx.flags & SCX_TASK_QUEUED) { 2910 set_task_runnable(rq, p); 2911 2912 /* 2913 * If @p has slice left and is being put, @p is getting 2914 * preempted by a higher priority scheduler class or core-sched 2915 * forcing a different task. Leave it at the head of the local 2916 * DSQ. 2917 */ 2918 if (p->scx.slice && !scx_rq_bypassing(rq)) { 2919 dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD); 2920 return; 2921 } 2922 2923 /* 2924 * If @p is runnable but we're about to enter a lower 2925 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell 2926 * ops.enqueue() that @p is the only one available for this cpu, 2927 * which should trigger an explicit follow-up scheduling event. 2928 */ 2929 if (sched_class_above(&ext_sched_class, next->sched_class)) { 2930 WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last)); 2931 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 2932 } else { 2933 do_enqueue_task(rq, p, 0, -1); 2934 } 2935 } 2936 2937 if (next && next->sched_class != &ext_sched_class) 2938 switch_class(rq, next); 2939 } 2940 2941 static struct task_struct *first_local_task(struct rq *rq) 2942 { 2943 return list_first_entry_or_null(&rq->scx.local_dsq.list, 2944 struct task_struct, scx.dsq_list.node); 2945 } 2946 2947 static struct task_struct *pick_task_scx(struct rq *rq) 2948 { 2949 struct task_struct *prev = rq->curr; 2950 struct task_struct *p; 2951 bool prev_on_scx = prev->sched_class == &ext_sched_class; 2952 bool keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP; 2953 bool kick_idle = false; 2954 2955 /* 2956 * WORKAROUND: 2957 * 2958 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just 2959 * have gone through balance_scx(). Unfortunately, there currently is a 2960 * bug where fair could say yes on balance() but no on pick_task(), 2961 * which then ends up calling pick_task_scx() without preceding 2962 * balance_scx(). 2963 * 2964 * Keep running @prev if possible and avoid stalling from entering idle 2965 * without balancing. 2966 * 2967 * Once fair is fixed, remove the workaround and trigger WARN_ON_ONCE() 2968 * if pick_task_scx() is called without preceding balance_scx(). 2969 */ 2970 if (unlikely(rq->scx.flags & SCX_RQ_BAL_PENDING)) { 2971 if (prev_on_scx) { 2972 keep_prev = true; 2973 } else { 2974 keep_prev = false; 2975 kick_idle = true; 2976 } 2977 } else if (unlikely(keep_prev && !prev_on_scx)) { 2978 /* only allowed during transitions */ 2979 WARN_ON_ONCE(scx_ops_enable_state() == SCX_OPS_ENABLED); 2980 keep_prev = false; 2981 } 2982 2983 /* 2984 * If balance_scx() is telling us to keep running @prev, replenish slice 2985 * if necessary and keep running @prev. Otherwise, pop the first one 2986 * from the local DSQ. 2987 */ 2988 if (keep_prev) { 2989 p = prev; 2990 if (!p->scx.slice) 2991 p->scx.slice = SCX_SLICE_DFL; 2992 } else { 2993 p = first_local_task(rq); 2994 if (!p) { 2995 if (kick_idle) 2996 scx_bpf_kick_cpu(cpu_of(rq), SCX_KICK_IDLE); 2997 return NULL; 2998 } 2999 3000 if (unlikely(!p->scx.slice)) { 3001 if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) { 3002 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n", 3003 p->comm, p->pid, __func__); 3004 scx_warned_zero_slice = true; 3005 } 3006 p->scx.slice = SCX_SLICE_DFL; 3007 } 3008 } 3009 3010 return p; 3011 } 3012 3013 #ifdef CONFIG_SCHED_CORE 3014 /** 3015 * scx_prio_less - Task ordering for core-sched 3016 * @a: task A 3017 * @b: task B 3018 * 3019 * Core-sched is implemented as an additional scheduling layer on top of the 3020 * usual sched_class'es and needs to find out the expected task ordering. For 3021 * SCX, core-sched calls this function to interrogate the task ordering. 3022 * 3023 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used 3024 * to implement the default task ordering. The older the timestamp, the higher 3025 * prority the task - the global FIFO ordering matching the default scheduling 3026 * behavior. 3027 * 3028 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to 3029 * implement FIFO ordering within each local DSQ. See pick_task_scx(). 3030 */ 3031 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, 3032 bool in_fi) 3033 { 3034 /* 3035 * The const qualifiers are dropped from task_struct pointers when 3036 * calling ops.core_sched_before(). Accesses are controlled by the 3037 * verifier. 3038 */ 3039 if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a))) 3040 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before, 3041 (struct task_struct *)a, 3042 (struct task_struct *)b); 3043 else 3044 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); 3045 } 3046 #endif /* CONFIG_SCHED_CORE */ 3047 3048 #ifdef CONFIG_SMP 3049 3050 static bool test_and_clear_cpu_idle(int cpu) 3051 { 3052 #ifdef CONFIG_SCHED_SMT 3053 /* 3054 * SMT mask should be cleared whether we can claim @cpu or not. The SMT 3055 * cluster is not wholly idle either way. This also prevents 3056 * scx_pick_idle_cpu() from getting caught in an infinite loop. 3057 */ 3058 if (sched_smt_active()) { 3059 const struct cpumask *smt = cpu_smt_mask(cpu); 3060 3061 /* 3062 * If offline, @cpu is not its own sibling and 3063 * scx_pick_idle_cpu() can get caught in an infinite loop as 3064 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu 3065 * is eventually cleared. 3066 */ 3067 if (cpumask_intersects(smt, idle_masks.smt)) 3068 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 3069 else if (cpumask_test_cpu(cpu, idle_masks.smt)) 3070 __cpumask_clear_cpu(cpu, idle_masks.smt); 3071 } 3072 #endif 3073 return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu); 3074 } 3075 3076 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) 3077 { 3078 int cpu; 3079 3080 retry: 3081 if (sched_smt_active()) { 3082 cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed); 3083 if (cpu < nr_cpu_ids) 3084 goto found; 3085 3086 if (flags & SCX_PICK_IDLE_CORE) 3087 return -EBUSY; 3088 } 3089 3090 cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed); 3091 if (cpu >= nr_cpu_ids) 3092 return -EBUSY; 3093 3094 found: 3095 if (test_and_clear_cpu_idle(cpu)) 3096 return cpu; 3097 else 3098 goto retry; 3099 } 3100 3101 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 3102 u64 wake_flags, bool *found) 3103 { 3104 s32 cpu; 3105 3106 *found = false; 3107 3108 /* 3109 * If WAKE_SYNC, the waker's local DSQ is empty, and the system is 3110 * under utilized, wake up @p to the local DSQ of the waker. Checking 3111 * only for an empty local DSQ is insufficient as it could give the 3112 * wakee an unfair advantage when the system is oversaturated. 3113 * Checking only for the presence of idle CPUs is also insufficient as 3114 * the local DSQ of the waker could have tasks piled up on it even if 3115 * there is an idle core elsewhere on the system. 3116 */ 3117 cpu = smp_processor_id(); 3118 if ((wake_flags & SCX_WAKE_SYNC) && 3119 !cpumask_empty(idle_masks.cpu) && !(current->flags & PF_EXITING) && 3120 cpu_rq(cpu)->scx.local_dsq.nr == 0) { 3121 if (cpumask_test_cpu(cpu, p->cpus_ptr)) 3122 goto cpu_found; 3123 } 3124 3125 /* 3126 * If CPU has SMT, any wholly idle CPU is likely a better pick than 3127 * partially idle @prev_cpu. 3128 */ 3129 if (sched_smt_active()) { 3130 if (cpumask_test_cpu(prev_cpu, idle_masks.smt) && 3131 test_and_clear_cpu_idle(prev_cpu)) { 3132 cpu = prev_cpu; 3133 goto cpu_found; 3134 } 3135 3136 cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE); 3137 if (cpu >= 0) 3138 goto cpu_found; 3139 } 3140 3141 if (test_and_clear_cpu_idle(prev_cpu)) { 3142 cpu = prev_cpu; 3143 goto cpu_found; 3144 } 3145 3146 cpu = scx_pick_idle_cpu(p->cpus_ptr, 0); 3147 if (cpu >= 0) 3148 goto cpu_found; 3149 3150 return prev_cpu; 3151 3152 cpu_found: 3153 *found = true; 3154 return cpu; 3155 } 3156 3157 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 3158 { 3159 /* 3160 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 3161 * can be a good migration opportunity with low cache and memory 3162 * footprint. Returning a CPU different than @prev_cpu triggers 3163 * immediate rq migration. However, for SCX, as the current rq 3164 * association doesn't dictate where the task is going to run, this 3165 * doesn't fit well. If necessary, we can later add a dedicated method 3166 * which can decide to preempt self to force it through the regular 3167 * scheduling path. 3168 */ 3169 if (unlikely(wake_flags & WF_EXEC)) 3170 return prev_cpu; 3171 3172 if (SCX_HAS_OP(select_cpu) && !scx_rq_bypassing(task_rq(p))) { 3173 s32 cpu; 3174 struct task_struct **ddsp_taskp; 3175 3176 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 3177 WARN_ON_ONCE(*ddsp_taskp); 3178 *ddsp_taskp = p; 3179 3180 cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 3181 select_cpu, p, prev_cpu, wake_flags); 3182 *ddsp_taskp = NULL; 3183 if (ops_cpu_valid(cpu, "from ops.select_cpu()")) 3184 return cpu; 3185 else 3186 return prev_cpu; 3187 } else { 3188 bool found; 3189 s32 cpu; 3190 3191 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found); 3192 if (found) { 3193 p->scx.slice = SCX_SLICE_DFL; 3194 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 3195 } 3196 return cpu; 3197 } 3198 } 3199 3200 static void task_woken_scx(struct rq *rq, struct task_struct *p) 3201 { 3202 run_deferred(rq); 3203 } 3204 3205 static void set_cpus_allowed_scx(struct task_struct *p, 3206 struct affinity_context *ac) 3207 { 3208 set_cpus_allowed_common(p, ac); 3209 3210 /* 3211 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 3212 * differ from the configured one in @p->cpus_mask. Always tell the bpf 3213 * scheduler the effective one. 3214 * 3215 * Fine-grained memory write control is enforced by BPF making the const 3216 * designation pointless. Cast it away when calling the operation. 3217 */ 3218 if (SCX_HAS_OP(set_cpumask)) 3219 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 3220 (struct cpumask *)p->cpus_ptr); 3221 } 3222 3223 static void reset_idle_masks(void) 3224 { 3225 /* 3226 * Consider all online cpus idle. Should converge to the actual state 3227 * quickly. 3228 */ 3229 cpumask_copy(idle_masks.cpu, cpu_online_mask); 3230 cpumask_copy(idle_masks.smt, cpu_online_mask); 3231 } 3232 3233 void __scx_update_idle(struct rq *rq, bool idle) 3234 { 3235 int cpu = cpu_of(rq); 3236 3237 if (SCX_HAS_OP(update_idle) && !scx_rq_bypassing(rq)) { 3238 SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle); 3239 if (!static_branch_unlikely(&scx_builtin_idle_enabled)) 3240 return; 3241 } 3242 3243 if (idle) 3244 cpumask_set_cpu(cpu, idle_masks.cpu); 3245 else 3246 cpumask_clear_cpu(cpu, idle_masks.cpu); 3247 3248 #ifdef CONFIG_SCHED_SMT 3249 if (sched_smt_active()) { 3250 const struct cpumask *smt = cpu_smt_mask(cpu); 3251 3252 if (idle) { 3253 /* 3254 * idle_masks.smt handling is racy but that's fine as 3255 * it's only for optimization and self-correcting. 3256 */ 3257 for_each_cpu(cpu, smt) { 3258 if (!cpumask_test_cpu(cpu, idle_masks.cpu)) 3259 return; 3260 } 3261 cpumask_or(idle_masks.smt, idle_masks.smt, smt); 3262 } else { 3263 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 3264 } 3265 } 3266 #endif 3267 } 3268 3269 static void handle_hotplug(struct rq *rq, bool online) 3270 { 3271 int cpu = cpu_of(rq); 3272 3273 atomic_long_inc(&scx_hotplug_seq); 3274 3275 if (online && SCX_HAS_OP(cpu_online)) 3276 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu); 3277 else if (!online && SCX_HAS_OP(cpu_offline)) 3278 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu); 3279 else 3280 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 3281 "cpu %d going %s, exiting scheduler", cpu, 3282 online ? "online" : "offline"); 3283 } 3284 3285 void scx_rq_activate(struct rq *rq) 3286 { 3287 handle_hotplug(rq, true); 3288 } 3289 3290 void scx_rq_deactivate(struct rq *rq) 3291 { 3292 handle_hotplug(rq, false); 3293 } 3294 3295 static void rq_online_scx(struct rq *rq) 3296 { 3297 rq->scx.flags |= SCX_RQ_ONLINE; 3298 } 3299 3300 static void rq_offline_scx(struct rq *rq) 3301 { 3302 rq->scx.flags &= ~SCX_RQ_ONLINE; 3303 } 3304 3305 #else /* CONFIG_SMP */ 3306 3307 static bool test_and_clear_cpu_idle(int cpu) { return false; } 3308 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; } 3309 static void reset_idle_masks(void) {} 3310 3311 #endif /* CONFIG_SMP */ 3312 3313 static bool check_rq_for_timeouts(struct rq *rq) 3314 { 3315 struct task_struct *p; 3316 struct rq_flags rf; 3317 bool timed_out = false; 3318 3319 rq_lock_irqsave(rq, &rf); 3320 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 3321 unsigned long last_runnable = p->scx.runnable_at; 3322 3323 if (unlikely(time_after(jiffies, 3324 last_runnable + scx_watchdog_timeout))) { 3325 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 3326 3327 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3328 "%s[%d] failed to run for %u.%03us", 3329 p->comm, p->pid, 3330 dur_ms / 1000, dur_ms % 1000); 3331 timed_out = true; 3332 break; 3333 } 3334 } 3335 rq_unlock_irqrestore(rq, &rf); 3336 3337 return timed_out; 3338 } 3339 3340 static void scx_watchdog_workfn(struct work_struct *work) 3341 { 3342 int cpu; 3343 3344 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 3345 3346 for_each_online_cpu(cpu) { 3347 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 3348 break; 3349 3350 cond_resched(); 3351 } 3352 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 3353 scx_watchdog_timeout / 2); 3354 } 3355 3356 void scx_tick(struct rq *rq) 3357 { 3358 unsigned long last_check; 3359 3360 if (!scx_enabled()) 3361 return; 3362 3363 last_check = READ_ONCE(scx_watchdog_timestamp); 3364 if (unlikely(time_after(jiffies, 3365 last_check + READ_ONCE(scx_watchdog_timeout)))) { 3366 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 3367 3368 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3369 "watchdog failed to check in for %u.%03us", 3370 dur_ms / 1000, dur_ms % 1000); 3371 } 3372 3373 update_other_load_avgs(rq); 3374 } 3375 3376 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 3377 { 3378 update_curr_scx(rq); 3379 3380 /* 3381 * While disabling, always resched and refresh core-sched timestamp as 3382 * we can't trust the slice management or ops.core_sched_before(). 3383 */ 3384 if (scx_rq_bypassing(rq)) { 3385 curr->scx.slice = 0; 3386 touch_core_sched(rq, curr); 3387 } else if (SCX_HAS_OP(tick)) { 3388 SCX_CALL_OP(SCX_KF_REST, tick, curr); 3389 } 3390 3391 if (!curr->scx.slice) 3392 resched_curr(rq); 3393 } 3394 3395 #ifdef CONFIG_EXT_GROUP_SCHED 3396 static struct cgroup *tg_cgrp(struct task_group *tg) 3397 { 3398 /* 3399 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, 3400 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the 3401 * root cgroup. 3402 */ 3403 if (tg && tg->css.cgroup) 3404 return tg->css.cgroup; 3405 else 3406 return &cgrp_dfl_root.cgrp; 3407 } 3408 3409 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), 3410 3411 #else /* CONFIG_EXT_GROUP_SCHED */ 3412 3413 #define SCX_INIT_TASK_ARGS_CGROUP(tg) 3414 3415 #endif /* CONFIG_EXT_GROUP_SCHED */ 3416 3417 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 3418 { 3419 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 3420 } 3421 3422 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 3423 { 3424 enum scx_task_state prev_state = scx_get_task_state(p); 3425 bool warn = false; 3426 3427 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 3428 3429 switch (state) { 3430 case SCX_TASK_NONE: 3431 break; 3432 case SCX_TASK_INIT: 3433 warn = prev_state != SCX_TASK_NONE; 3434 break; 3435 case SCX_TASK_READY: 3436 warn = prev_state == SCX_TASK_NONE; 3437 break; 3438 case SCX_TASK_ENABLED: 3439 warn = prev_state != SCX_TASK_READY; 3440 break; 3441 default: 3442 warn = true; 3443 return; 3444 } 3445 3446 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 3447 prev_state, state, p->comm, p->pid); 3448 3449 p->scx.flags &= ~SCX_TASK_STATE_MASK; 3450 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 3451 } 3452 3453 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork) 3454 { 3455 int ret; 3456 3457 p->scx.disallow = false; 3458 3459 if (SCX_HAS_OP(init_task)) { 3460 struct scx_init_task_args args = { 3461 SCX_INIT_TASK_ARGS_CGROUP(tg) 3462 .fork = fork, 3463 }; 3464 3465 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args); 3466 if (unlikely(ret)) { 3467 ret = ops_sanitize_err("init_task", ret); 3468 return ret; 3469 } 3470 } 3471 3472 scx_set_task_state(p, SCX_TASK_INIT); 3473 3474 if (p->scx.disallow) { 3475 if (!fork) { 3476 struct rq *rq; 3477 struct rq_flags rf; 3478 3479 rq = task_rq_lock(p, &rf); 3480 3481 /* 3482 * We're in the load path and @p->policy will be applied 3483 * right after. Reverting @p->policy here and rejecting 3484 * %SCHED_EXT transitions from scx_check_setscheduler() 3485 * guarantees that if ops.init_task() sets @p->disallow, 3486 * @p can never be in SCX. 3487 */ 3488 if (p->policy == SCHED_EXT) { 3489 p->policy = SCHED_NORMAL; 3490 atomic_long_inc(&scx_nr_rejected); 3491 } 3492 3493 task_rq_unlock(rq, p, &rf); 3494 } else if (p->policy == SCHED_EXT) { 3495 scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork", 3496 p->comm, p->pid); 3497 } 3498 } 3499 3500 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 3501 return 0; 3502 } 3503 3504 static void scx_ops_enable_task(struct task_struct *p) 3505 { 3506 u32 weight; 3507 3508 lockdep_assert_rq_held(task_rq(p)); 3509 3510 /* 3511 * Set the weight before calling ops.enable() so that the scheduler 3512 * doesn't see a stale value if they inspect the task struct. 3513 */ 3514 if (task_has_idle_policy(p)) 3515 weight = WEIGHT_IDLEPRIO; 3516 else 3517 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 3518 3519 p->scx.weight = sched_weight_to_cgroup(weight); 3520 3521 if (SCX_HAS_OP(enable)) 3522 SCX_CALL_OP_TASK(SCX_KF_REST, enable, p); 3523 scx_set_task_state(p, SCX_TASK_ENABLED); 3524 3525 if (SCX_HAS_OP(set_weight)) 3526 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 3527 } 3528 3529 static void scx_ops_disable_task(struct task_struct *p) 3530 { 3531 lockdep_assert_rq_held(task_rq(p)); 3532 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 3533 3534 if (SCX_HAS_OP(disable)) 3535 SCX_CALL_OP(SCX_KF_REST, disable, p); 3536 scx_set_task_state(p, SCX_TASK_READY); 3537 } 3538 3539 static void scx_ops_exit_task(struct task_struct *p) 3540 { 3541 struct scx_exit_task_args args = { 3542 .cancelled = false, 3543 }; 3544 3545 lockdep_assert_rq_held(task_rq(p)); 3546 3547 switch (scx_get_task_state(p)) { 3548 case SCX_TASK_NONE: 3549 return; 3550 case SCX_TASK_INIT: 3551 args.cancelled = true; 3552 break; 3553 case SCX_TASK_READY: 3554 break; 3555 case SCX_TASK_ENABLED: 3556 scx_ops_disable_task(p); 3557 break; 3558 default: 3559 WARN_ON_ONCE(true); 3560 return; 3561 } 3562 3563 if (SCX_HAS_OP(exit_task)) 3564 SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args); 3565 scx_set_task_state(p, SCX_TASK_NONE); 3566 } 3567 3568 void init_scx_entity(struct sched_ext_entity *scx) 3569 { 3570 /* 3571 * init_idle() calls this function again after fork sequence is 3572 * complete. Don't touch ->tasks_node as it's already linked. 3573 */ 3574 memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node)); 3575 3576 INIT_LIST_HEAD(&scx->dsq_list.node); 3577 RB_CLEAR_NODE(&scx->dsq_priq); 3578 scx->sticky_cpu = -1; 3579 scx->holding_cpu = -1; 3580 INIT_LIST_HEAD(&scx->runnable_node); 3581 scx->runnable_at = jiffies; 3582 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 3583 scx->slice = SCX_SLICE_DFL; 3584 } 3585 3586 void scx_pre_fork(struct task_struct *p) 3587 { 3588 /* 3589 * BPF scheduler enable/disable paths want to be able to iterate and 3590 * update all tasks which can become complex when racing forks. As 3591 * enable/disable are very cold paths, let's use a percpu_rwsem to 3592 * exclude forks. 3593 */ 3594 percpu_down_read(&scx_fork_rwsem); 3595 } 3596 3597 int scx_fork(struct task_struct *p) 3598 { 3599 percpu_rwsem_assert_held(&scx_fork_rwsem); 3600 3601 if (scx_ops_init_task_enabled) 3602 return scx_ops_init_task(p, task_group(p), true); 3603 else 3604 return 0; 3605 } 3606 3607 void scx_post_fork(struct task_struct *p) 3608 { 3609 if (scx_ops_init_task_enabled) { 3610 scx_set_task_state(p, SCX_TASK_READY); 3611 3612 /* 3613 * Enable the task immediately if it's running on sched_ext. 3614 * Otherwise, it'll be enabled in switching_to_scx() if and 3615 * when it's ever configured to run with a SCHED_EXT policy. 3616 */ 3617 if (p->sched_class == &ext_sched_class) { 3618 struct rq_flags rf; 3619 struct rq *rq; 3620 3621 rq = task_rq_lock(p, &rf); 3622 scx_ops_enable_task(p); 3623 task_rq_unlock(rq, p, &rf); 3624 } 3625 } 3626 3627 spin_lock_irq(&scx_tasks_lock); 3628 list_add_tail(&p->scx.tasks_node, &scx_tasks); 3629 spin_unlock_irq(&scx_tasks_lock); 3630 3631 percpu_up_read(&scx_fork_rwsem); 3632 } 3633 3634 void scx_cancel_fork(struct task_struct *p) 3635 { 3636 if (scx_enabled()) { 3637 struct rq *rq; 3638 struct rq_flags rf; 3639 3640 rq = task_rq_lock(p, &rf); 3641 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 3642 scx_ops_exit_task(p); 3643 task_rq_unlock(rq, p, &rf); 3644 } 3645 3646 percpu_up_read(&scx_fork_rwsem); 3647 } 3648 3649 void sched_ext_free(struct task_struct *p) 3650 { 3651 unsigned long flags; 3652 3653 spin_lock_irqsave(&scx_tasks_lock, flags); 3654 list_del_init(&p->scx.tasks_node); 3655 spin_unlock_irqrestore(&scx_tasks_lock, flags); 3656 3657 /* 3658 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY -> 3659 * ENABLED transitions can't race us. Disable ops for @p. 3660 */ 3661 if (scx_get_task_state(p) != SCX_TASK_NONE) { 3662 struct rq_flags rf; 3663 struct rq *rq; 3664 3665 rq = task_rq_lock(p, &rf); 3666 scx_ops_exit_task(p); 3667 task_rq_unlock(rq, p, &rf); 3668 } 3669 } 3670 3671 static void reweight_task_scx(struct rq *rq, struct task_struct *p, 3672 const struct load_weight *lw) 3673 { 3674 lockdep_assert_rq_held(task_rq(p)); 3675 3676 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); 3677 if (SCX_HAS_OP(set_weight)) 3678 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 3679 } 3680 3681 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio) 3682 { 3683 } 3684 3685 static void switching_to_scx(struct rq *rq, struct task_struct *p) 3686 { 3687 scx_ops_enable_task(p); 3688 3689 /* 3690 * set_cpus_allowed_scx() is not called while @p is associated with a 3691 * different scheduler class. Keep the BPF scheduler up-to-date. 3692 */ 3693 if (SCX_HAS_OP(set_cpumask)) 3694 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 3695 (struct cpumask *)p->cpus_ptr); 3696 } 3697 3698 static void switched_from_scx(struct rq *rq, struct task_struct *p) 3699 { 3700 scx_ops_disable_task(p); 3701 } 3702 3703 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 3704 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 3705 3706 int scx_check_setscheduler(struct task_struct *p, int policy) 3707 { 3708 lockdep_assert_rq_held(task_rq(p)); 3709 3710 /* if disallow, reject transitioning into SCX */ 3711 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 3712 p->policy != policy && policy == SCHED_EXT) 3713 return -EACCES; 3714 3715 return 0; 3716 } 3717 3718 #ifdef CONFIG_NO_HZ_FULL 3719 bool scx_can_stop_tick(struct rq *rq) 3720 { 3721 struct task_struct *p = rq->curr; 3722 3723 if (scx_rq_bypassing(rq)) 3724 return false; 3725 3726 if (p->sched_class != &ext_sched_class) 3727 return true; 3728 3729 /* 3730 * @rq can dispatch from different DSQs, so we can't tell whether it 3731 * needs the tick or not by looking at nr_running. Allow stopping ticks 3732 * iff the BPF scheduler indicated so. See set_next_task_scx(). 3733 */ 3734 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 3735 } 3736 #endif 3737 3738 #ifdef CONFIG_EXT_GROUP_SCHED 3739 3740 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem); 3741 static bool scx_cgroup_enabled; 3742 static bool cgroup_warned_missing_weight; 3743 static bool cgroup_warned_missing_idle; 3744 3745 static void scx_cgroup_warn_missing_weight(struct task_group *tg) 3746 { 3747 if (scx_ops_enable_state() == SCX_OPS_DISABLED || 3748 cgroup_warned_missing_weight) 3749 return; 3750 3751 if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent) 3752 return; 3753 3754 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n", 3755 scx_ops.name); 3756 cgroup_warned_missing_weight = true; 3757 } 3758 3759 static void scx_cgroup_warn_missing_idle(struct task_group *tg) 3760 { 3761 if (!scx_cgroup_enabled || cgroup_warned_missing_idle) 3762 return; 3763 3764 if (!tg->idle) 3765 return; 3766 3767 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n", 3768 scx_ops.name); 3769 cgroup_warned_missing_idle = true; 3770 } 3771 3772 int scx_tg_online(struct task_group *tg) 3773 { 3774 int ret = 0; 3775 3776 WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED)); 3777 3778 percpu_down_read(&scx_cgroup_rwsem); 3779 3780 scx_cgroup_warn_missing_weight(tg); 3781 3782 if (scx_cgroup_enabled) { 3783 if (SCX_HAS_OP(cgroup_init)) { 3784 struct scx_cgroup_init_args args = 3785 { .weight = tg->scx_weight }; 3786 3787 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, 3788 tg->css.cgroup, &args); 3789 if (ret) 3790 ret = ops_sanitize_err("cgroup_init", ret); 3791 } 3792 if (ret == 0) 3793 tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED; 3794 } else { 3795 tg->scx_flags |= SCX_TG_ONLINE; 3796 } 3797 3798 percpu_up_read(&scx_cgroup_rwsem); 3799 return ret; 3800 } 3801 3802 void scx_tg_offline(struct task_group *tg) 3803 { 3804 WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE)); 3805 3806 percpu_down_read(&scx_cgroup_rwsem); 3807 3808 if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED)) 3809 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup); 3810 tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); 3811 3812 percpu_up_read(&scx_cgroup_rwsem); 3813 } 3814 3815 int scx_cgroup_can_attach(struct cgroup_taskset *tset) 3816 { 3817 struct cgroup_subsys_state *css; 3818 struct task_struct *p; 3819 int ret; 3820 3821 /* released in scx_finish/cancel_attach() */ 3822 percpu_down_read(&scx_cgroup_rwsem); 3823 3824 if (!scx_cgroup_enabled) 3825 return 0; 3826 3827 cgroup_taskset_for_each(p, css, tset) { 3828 struct cgroup *from = tg_cgrp(task_group(p)); 3829 struct cgroup *to = tg_cgrp(css_tg(css)); 3830 3831 WARN_ON_ONCE(p->scx.cgrp_moving_from); 3832 3833 /* 3834 * sched_move_task() omits identity migrations. Let's match the 3835 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() 3836 * always match one-to-one. 3837 */ 3838 if (from == to) 3839 continue; 3840 3841 if (SCX_HAS_OP(cgroup_prep_move)) { 3842 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move, 3843 p, from, css->cgroup); 3844 if (ret) 3845 goto err; 3846 } 3847 3848 p->scx.cgrp_moving_from = from; 3849 } 3850 3851 return 0; 3852 3853 err: 3854 cgroup_taskset_for_each(p, css, tset) { 3855 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) 3856 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, 3857 p->scx.cgrp_moving_from, css->cgroup); 3858 p->scx.cgrp_moving_from = NULL; 3859 } 3860 3861 percpu_up_read(&scx_cgroup_rwsem); 3862 return ops_sanitize_err("cgroup_prep_move", ret); 3863 } 3864 3865 void scx_move_task(struct task_struct *p) 3866 { 3867 if (!scx_cgroup_enabled) 3868 return; 3869 3870 /* 3871 * We're called from sched_move_task() which handles both cgroup and 3872 * autogroup moves. Ignore the latter. 3873 * 3874 * Also ignore exiting tasks, because in the exit path tasks transition 3875 * from the autogroup to the root group, so task_group_is_autogroup() 3876 * alone isn't able to catch exiting autogroup tasks. This is safe for 3877 * cgroup_move(), because cgroup migrations never happen for PF_EXITING 3878 * tasks. 3879 */ 3880 if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING)) 3881 return; 3882 3883 /* 3884 * @p must have ops.cgroup_prep_move() called on it and thus 3885 * cgrp_moving_from set. 3886 */ 3887 if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) 3888 SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p, 3889 p->scx.cgrp_moving_from, tg_cgrp(task_group(p))); 3890 p->scx.cgrp_moving_from = NULL; 3891 } 3892 3893 void scx_cgroup_finish_attach(void) 3894 { 3895 percpu_up_read(&scx_cgroup_rwsem); 3896 } 3897 3898 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) 3899 { 3900 struct cgroup_subsys_state *css; 3901 struct task_struct *p; 3902 3903 if (!scx_cgroup_enabled) 3904 goto out_unlock; 3905 3906 cgroup_taskset_for_each(p, css, tset) { 3907 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) 3908 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, 3909 p->scx.cgrp_moving_from, css->cgroup); 3910 p->scx.cgrp_moving_from = NULL; 3911 } 3912 out_unlock: 3913 percpu_up_read(&scx_cgroup_rwsem); 3914 } 3915 3916 void scx_group_set_weight(struct task_group *tg, unsigned long weight) 3917 { 3918 percpu_down_read(&scx_cgroup_rwsem); 3919 3920 if (scx_cgroup_enabled && tg->scx_weight != weight) { 3921 if (SCX_HAS_OP(cgroup_set_weight)) 3922 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight, 3923 tg_cgrp(tg), weight); 3924 tg->scx_weight = weight; 3925 } 3926 3927 percpu_up_read(&scx_cgroup_rwsem); 3928 } 3929 3930 void scx_group_set_idle(struct task_group *tg, bool idle) 3931 { 3932 percpu_down_read(&scx_cgroup_rwsem); 3933 scx_cgroup_warn_missing_idle(tg); 3934 percpu_up_read(&scx_cgroup_rwsem); 3935 } 3936 3937 static void scx_cgroup_lock(void) 3938 { 3939 percpu_down_write(&scx_cgroup_rwsem); 3940 } 3941 3942 static void scx_cgroup_unlock(void) 3943 { 3944 percpu_up_write(&scx_cgroup_rwsem); 3945 } 3946 3947 #else /* CONFIG_EXT_GROUP_SCHED */ 3948 3949 static inline void scx_cgroup_lock(void) {} 3950 static inline void scx_cgroup_unlock(void) {} 3951 3952 #endif /* CONFIG_EXT_GROUP_SCHED */ 3953 3954 /* 3955 * Omitted operations: 3956 * 3957 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 3958 * isn't tied to the CPU at that point. Preemption is implemented by resetting 3959 * the victim task's slice to 0 and triggering reschedule on the target CPU. 3960 * 3961 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 3962 * 3963 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 3964 * their current sched_class. Call them directly from sched core instead. 3965 */ 3966 DEFINE_SCHED_CLASS(ext) = { 3967 .enqueue_task = enqueue_task_scx, 3968 .dequeue_task = dequeue_task_scx, 3969 .yield_task = yield_task_scx, 3970 .yield_to_task = yield_to_task_scx, 3971 3972 .wakeup_preempt = wakeup_preempt_scx, 3973 3974 .balance = balance_scx, 3975 .pick_task = pick_task_scx, 3976 3977 .put_prev_task = put_prev_task_scx, 3978 .set_next_task = set_next_task_scx, 3979 3980 #ifdef CONFIG_SMP 3981 .select_task_rq = select_task_rq_scx, 3982 .task_woken = task_woken_scx, 3983 .set_cpus_allowed = set_cpus_allowed_scx, 3984 3985 .rq_online = rq_online_scx, 3986 .rq_offline = rq_offline_scx, 3987 #endif 3988 3989 .task_tick = task_tick_scx, 3990 3991 .switching_to = switching_to_scx, 3992 .switched_from = switched_from_scx, 3993 .switched_to = switched_to_scx, 3994 .reweight_task = reweight_task_scx, 3995 .prio_changed = prio_changed_scx, 3996 3997 .update_curr = update_curr_scx, 3998 3999 #ifdef CONFIG_UCLAMP_TASK 4000 .uclamp_enabled = 1, 4001 #endif 4002 }; 4003 4004 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 4005 { 4006 memset(dsq, 0, sizeof(*dsq)); 4007 4008 raw_spin_lock_init(&dsq->lock); 4009 INIT_LIST_HEAD(&dsq->list); 4010 dsq->id = dsq_id; 4011 } 4012 4013 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node) 4014 { 4015 struct scx_dispatch_q *dsq; 4016 int ret; 4017 4018 if (dsq_id & SCX_DSQ_FLAG_BUILTIN) 4019 return ERR_PTR(-EINVAL); 4020 4021 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 4022 if (!dsq) 4023 return ERR_PTR(-ENOMEM); 4024 4025 init_dsq(dsq, dsq_id); 4026 4027 ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node, 4028 dsq_hash_params); 4029 if (ret) { 4030 kfree(dsq); 4031 return ERR_PTR(ret); 4032 } 4033 return dsq; 4034 } 4035 4036 static void free_dsq_irq_workfn(struct irq_work *irq_work) 4037 { 4038 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 4039 struct scx_dispatch_q *dsq, *tmp_dsq; 4040 4041 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 4042 kfree_rcu(dsq, rcu); 4043 } 4044 4045 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 4046 4047 static void destroy_dsq(u64 dsq_id) 4048 { 4049 struct scx_dispatch_q *dsq; 4050 unsigned long flags; 4051 4052 rcu_read_lock(); 4053 4054 dsq = find_user_dsq(dsq_id); 4055 if (!dsq) 4056 goto out_unlock_rcu; 4057 4058 raw_spin_lock_irqsave(&dsq->lock, flags); 4059 4060 if (dsq->nr) { 4061 scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)", 4062 dsq->id, dsq->nr); 4063 goto out_unlock_dsq; 4064 } 4065 4066 if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params)) 4067 goto out_unlock_dsq; 4068 4069 /* 4070 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 4071 * queueing more tasks. As this function can be called from anywhere, 4072 * freeing is bounced through an irq work to avoid nesting RCU 4073 * operations inside scheduler locks. 4074 */ 4075 dsq->id = SCX_DSQ_INVALID; 4076 llist_add(&dsq->free_node, &dsqs_to_free); 4077 irq_work_queue(&free_dsq_irq_work); 4078 4079 out_unlock_dsq: 4080 raw_spin_unlock_irqrestore(&dsq->lock, flags); 4081 out_unlock_rcu: 4082 rcu_read_unlock(); 4083 } 4084 4085 #ifdef CONFIG_EXT_GROUP_SCHED 4086 static void scx_cgroup_exit(void) 4087 { 4088 struct cgroup_subsys_state *css; 4089 4090 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4091 4092 scx_cgroup_enabled = false; 4093 4094 /* 4095 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk 4096 * cgroups and exit all the inited ones, all online cgroups are exited. 4097 */ 4098 rcu_read_lock(); 4099 css_for_each_descendant_post(css, &root_task_group.css) { 4100 struct task_group *tg = css_tg(css); 4101 4102 if (!(tg->scx_flags & SCX_TG_INITED)) 4103 continue; 4104 tg->scx_flags &= ~SCX_TG_INITED; 4105 4106 if (!scx_ops.cgroup_exit) 4107 continue; 4108 4109 if (WARN_ON_ONCE(!css_tryget(css))) 4110 continue; 4111 rcu_read_unlock(); 4112 4113 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup); 4114 4115 rcu_read_lock(); 4116 css_put(css); 4117 } 4118 rcu_read_unlock(); 4119 } 4120 4121 static int scx_cgroup_init(void) 4122 { 4123 struct cgroup_subsys_state *css; 4124 int ret; 4125 4126 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4127 4128 cgroup_warned_missing_weight = false; 4129 cgroup_warned_missing_idle = false; 4130 4131 /* 4132 * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk 4133 * cgroups and init, all online cgroups are initialized. 4134 */ 4135 rcu_read_lock(); 4136 css_for_each_descendant_pre(css, &root_task_group.css) { 4137 struct task_group *tg = css_tg(css); 4138 struct scx_cgroup_init_args args = { .weight = tg->scx_weight }; 4139 4140 scx_cgroup_warn_missing_weight(tg); 4141 scx_cgroup_warn_missing_idle(tg); 4142 4143 if ((tg->scx_flags & 4144 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) 4145 continue; 4146 4147 if (!scx_ops.cgroup_init) { 4148 tg->scx_flags |= SCX_TG_INITED; 4149 continue; 4150 } 4151 4152 if (WARN_ON_ONCE(!css_tryget(css))) 4153 continue; 4154 rcu_read_unlock(); 4155 4156 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, 4157 css->cgroup, &args); 4158 if (ret) { 4159 css_put(css); 4160 scx_ops_error("ops.cgroup_init() failed (%d)", ret); 4161 return ret; 4162 } 4163 tg->scx_flags |= SCX_TG_INITED; 4164 4165 rcu_read_lock(); 4166 css_put(css); 4167 } 4168 rcu_read_unlock(); 4169 4170 WARN_ON_ONCE(scx_cgroup_enabled); 4171 scx_cgroup_enabled = true; 4172 4173 return 0; 4174 } 4175 4176 #else 4177 static void scx_cgroup_exit(void) {} 4178 static int scx_cgroup_init(void) { return 0; } 4179 #endif 4180 4181 4182 /******************************************************************************** 4183 * Sysfs interface and ops enable/disable. 4184 */ 4185 4186 #define SCX_ATTR(_name) \ 4187 static struct kobj_attribute scx_attr_##_name = { \ 4188 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 4189 .show = scx_attr_##_name##_show, \ 4190 } 4191 4192 static ssize_t scx_attr_state_show(struct kobject *kobj, 4193 struct kobj_attribute *ka, char *buf) 4194 { 4195 return sysfs_emit(buf, "%s\n", 4196 scx_ops_enable_state_str[scx_ops_enable_state()]); 4197 } 4198 SCX_ATTR(state); 4199 4200 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 4201 struct kobj_attribute *ka, char *buf) 4202 { 4203 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 4204 } 4205 SCX_ATTR(switch_all); 4206 4207 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 4208 struct kobj_attribute *ka, char *buf) 4209 { 4210 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 4211 } 4212 SCX_ATTR(nr_rejected); 4213 4214 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, 4215 struct kobj_attribute *ka, char *buf) 4216 { 4217 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); 4218 } 4219 SCX_ATTR(hotplug_seq); 4220 4221 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj, 4222 struct kobj_attribute *ka, char *buf) 4223 { 4224 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq)); 4225 } 4226 SCX_ATTR(enable_seq); 4227 4228 static struct attribute *scx_global_attrs[] = { 4229 &scx_attr_state.attr, 4230 &scx_attr_switch_all.attr, 4231 &scx_attr_nr_rejected.attr, 4232 &scx_attr_hotplug_seq.attr, 4233 &scx_attr_enable_seq.attr, 4234 NULL, 4235 }; 4236 4237 static const struct attribute_group scx_global_attr_group = { 4238 .attrs = scx_global_attrs, 4239 }; 4240 4241 static void scx_kobj_release(struct kobject *kobj) 4242 { 4243 kfree(kobj); 4244 } 4245 4246 static ssize_t scx_attr_ops_show(struct kobject *kobj, 4247 struct kobj_attribute *ka, char *buf) 4248 { 4249 return sysfs_emit(buf, "%s\n", scx_ops.name); 4250 } 4251 SCX_ATTR(ops); 4252 4253 static struct attribute *scx_sched_attrs[] = { 4254 &scx_attr_ops.attr, 4255 NULL, 4256 }; 4257 ATTRIBUTE_GROUPS(scx_sched); 4258 4259 static const struct kobj_type scx_ktype = { 4260 .release = scx_kobj_release, 4261 .sysfs_ops = &kobj_sysfs_ops, 4262 .default_groups = scx_sched_groups, 4263 }; 4264 4265 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 4266 { 4267 return add_uevent_var(env, "SCXOPS=%s", scx_ops.name); 4268 } 4269 4270 static const struct kset_uevent_ops scx_uevent_ops = { 4271 .uevent = scx_uevent, 4272 }; 4273 4274 /* 4275 * Used by sched_fork() and __setscheduler_prio() to pick the matching 4276 * sched_class. dl/rt are already handled. 4277 */ 4278 bool task_should_scx(int policy) 4279 { 4280 if (!scx_enabled() || 4281 unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING)) 4282 return false; 4283 if (READ_ONCE(scx_switching_all)) 4284 return true; 4285 return policy == SCHED_EXT; 4286 } 4287 4288 /** 4289 * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress 4290 * 4291 * Bypassing guarantees that all runnable tasks make forward progress without 4292 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 4293 * be held by tasks that the BPF scheduler is forgetting to run, which 4294 * unfortunately also excludes toggling the static branches. 4295 * 4296 * Let's work around by overriding a couple ops and modifying behaviors based on 4297 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 4298 * to force global FIFO scheduling. 4299 * 4300 * - ops.select_cpu() is ignored and the default select_cpu() is used. 4301 * 4302 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 4303 * %SCX_OPS_ENQ_LAST is also ignored. 4304 * 4305 * - ops.dispatch() is ignored. 4306 * 4307 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice 4308 * can't be trusted. Whenever a tick triggers, the running task is rotated to 4309 * the tail of the queue with core_sched_at touched. 4310 * 4311 * - pick_next_task() suppresses zero slice warning. 4312 * 4313 * - scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM 4314 * operations. 4315 * 4316 * - scx_prio_less() reverts to the default core_sched_at order. 4317 */ 4318 static void scx_ops_bypass(bool bypass) 4319 { 4320 int cpu; 4321 unsigned long flags; 4322 4323 raw_spin_lock_irqsave(&__scx_ops_bypass_lock, flags); 4324 if (bypass) { 4325 scx_ops_bypass_depth++; 4326 WARN_ON_ONCE(scx_ops_bypass_depth <= 0); 4327 if (scx_ops_bypass_depth != 1) 4328 goto unlock; 4329 } else { 4330 scx_ops_bypass_depth--; 4331 WARN_ON_ONCE(scx_ops_bypass_depth < 0); 4332 if (scx_ops_bypass_depth != 0) 4333 goto unlock; 4334 } 4335 4336 /* 4337 * No task property is changing. We just need to make sure all currently 4338 * queued tasks are re-queued according to the new scx_rq_bypassing() 4339 * state. As an optimization, walk each rq's runnable_list instead of 4340 * the scx_tasks list. 4341 * 4342 * This function can't trust the scheduler and thus can't use 4343 * cpus_read_lock(). Walk all possible CPUs instead of online. 4344 */ 4345 for_each_possible_cpu(cpu) { 4346 struct rq *rq = cpu_rq(cpu); 4347 struct rq_flags rf; 4348 struct task_struct *p, *n; 4349 4350 rq_lock(rq, &rf); 4351 4352 if (bypass) { 4353 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); 4354 rq->scx.flags |= SCX_RQ_BYPASSING; 4355 } else { 4356 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); 4357 rq->scx.flags &= ~SCX_RQ_BYPASSING; 4358 } 4359 4360 /* 4361 * We need to guarantee that no tasks are on the BPF scheduler 4362 * while bypassing. Either we see enabled or the enable path 4363 * sees scx_rq_bypassing() before moving tasks to SCX. 4364 */ 4365 if (!scx_enabled()) { 4366 rq_unlock_irqrestore(rq, &rf); 4367 continue; 4368 } 4369 4370 /* 4371 * The use of list_for_each_entry_safe_reverse() is required 4372 * because each task is going to be removed from and added back 4373 * to the runnable_list during iteration. Because they're added 4374 * to the tail of the list, safe reverse iteration can still 4375 * visit all nodes. 4376 */ 4377 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 4378 scx.runnable_node) { 4379 struct sched_enq_and_set_ctx ctx; 4380 4381 /* cycling deq/enq is enough, see the function comment */ 4382 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4383 sched_enq_and_set_task(&ctx); 4384 } 4385 4386 rq_unlock(rq, &rf); 4387 4388 /* resched to restore ticks and idle state */ 4389 resched_cpu(cpu); 4390 } 4391 unlock: 4392 raw_spin_unlock_irqrestore(&__scx_ops_bypass_lock, flags); 4393 } 4394 4395 static void free_exit_info(struct scx_exit_info *ei) 4396 { 4397 kfree(ei->dump); 4398 kfree(ei->msg); 4399 kfree(ei->bt); 4400 kfree(ei); 4401 } 4402 4403 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 4404 { 4405 struct scx_exit_info *ei; 4406 4407 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 4408 if (!ei) 4409 return NULL; 4410 4411 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); 4412 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 4413 ei->dump = kzalloc(exit_dump_len, GFP_KERNEL); 4414 4415 if (!ei->bt || !ei->msg || !ei->dump) { 4416 free_exit_info(ei); 4417 return NULL; 4418 } 4419 4420 return ei; 4421 } 4422 4423 static const char *scx_exit_reason(enum scx_exit_kind kind) 4424 { 4425 switch (kind) { 4426 case SCX_EXIT_UNREG: 4427 return "unregistered from user space"; 4428 case SCX_EXIT_UNREG_BPF: 4429 return "unregistered from BPF"; 4430 case SCX_EXIT_UNREG_KERN: 4431 return "unregistered from the main kernel"; 4432 case SCX_EXIT_SYSRQ: 4433 return "disabled by sysrq-S"; 4434 case SCX_EXIT_ERROR: 4435 return "runtime error"; 4436 case SCX_EXIT_ERROR_BPF: 4437 return "scx_bpf_error"; 4438 case SCX_EXIT_ERROR_STALL: 4439 return "runnable task stall"; 4440 default: 4441 return "<UNKNOWN>"; 4442 } 4443 } 4444 4445 static void scx_ops_disable_workfn(struct kthread_work *work) 4446 { 4447 struct scx_exit_info *ei = scx_exit_info; 4448 struct scx_task_iter sti; 4449 struct task_struct *p; 4450 struct rhashtable_iter rht_iter; 4451 struct scx_dispatch_q *dsq; 4452 int i, kind; 4453 4454 kind = atomic_read(&scx_exit_kind); 4455 while (true) { 4456 /* 4457 * NONE indicates that a new scx_ops has been registered since 4458 * disable was scheduled - don't kill the new ops. DONE 4459 * indicates that the ops has already been disabled. 4460 */ 4461 if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE) 4462 return; 4463 if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE)) 4464 break; 4465 } 4466 ei->kind = kind; 4467 ei->reason = scx_exit_reason(ei->kind); 4468 4469 /* guarantee forward progress by bypassing scx_ops */ 4470 scx_ops_bypass(true); 4471 4472 switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) { 4473 case SCX_OPS_DISABLING: 4474 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 4475 break; 4476 case SCX_OPS_DISABLED: 4477 pr_warn("sched_ext: ops error detected without ops (%s)\n", 4478 scx_exit_info->msg); 4479 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 4480 SCX_OPS_DISABLING); 4481 goto done; 4482 default: 4483 break; 4484 } 4485 4486 /* 4487 * Here, every runnable task is guaranteed to make forward progress and 4488 * we can safely use blocking synchronization constructs. Actually 4489 * disable ops. 4490 */ 4491 mutex_lock(&scx_ops_enable_mutex); 4492 4493 static_branch_disable(&__scx_switched_all); 4494 WRITE_ONCE(scx_switching_all, false); 4495 4496 /* 4497 * Shut down cgroup support before tasks so that the cgroup attach path 4498 * doesn't race against scx_ops_exit_task(). 4499 */ 4500 scx_cgroup_lock(); 4501 scx_cgroup_exit(); 4502 scx_cgroup_unlock(); 4503 4504 /* 4505 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones 4506 * must be switched out and exited synchronously. 4507 */ 4508 percpu_down_write(&scx_fork_rwsem); 4509 4510 scx_ops_init_task_enabled = false; 4511 4512 scx_task_iter_start(&sti); 4513 while ((p = scx_task_iter_next_locked(&sti))) { 4514 const struct sched_class *old_class = p->sched_class; 4515 const struct sched_class *new_class = 4516 __setscheduler_class(p->policy, p->prio); 4517 struct sched_enq_and_set_ctx ctx; 4518 4519 if (old_class != new_class && p->se.sched_delayed) 4520 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 4521 4522 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4523 4524 p->sched_class = new_class; 4525 check_class_changing(task_rq(p), p, old_class); 4526 4527 sched_enq_and_set_task(&ctx); 4528 4529 check_class_changed(task_rq(p), p, old_class, p->prio); 4530 scx_ops_exit_task(p); 4531 } 4532 scx_task_iter_stop(&sti); 4533 percpu_up_write(&scx_fork_rwsem); 4534 4535 /* no task is on scx, turn off all the switches and flush in-progress calls */ 4536 static_branch_disable(&__scx_ops_enabled); 4537 for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++) 4538 static_branch_disable(&scx_has_op[i]); 4539 static_branch_disable(&scx_ops_enq_last); 4540 static_branch_disable(&scx_ops_enq_exiting); 4541 static_branch_disable(&scx_ops_cpu_preempt); 4542 static_branch_disable(&scx_builtin_idle_enabled); 4543 synchronize_rcu(); 4544 4545 if (ei->kind >= SCX_EXIT_ERROR) { 4546 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4547 scx_ops.name, ei->reason); 4548 4549 if (ei->msg[0] != '\0') 4550 pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg); 4551 #ifdef CONFIG_STACKTRACE 4552 stack_trace_print(ei->bt, ei->bt_len, 2); 4553 #endif 4554 } else { 4555 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4556 scx_ops.name, ei->reason); 4557 } 4558 4559 if (scx_ops.exit) 4560 SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei); 4561 4562 cancel_delayed_work_sync(&scx_watchdog_work); 4563 4564 /* 4565 * Delete the kobject from the hierarchy eagerly in addition to just 4566 * dropping a reference. Otherwise, if the object is deleted 4567 * asynchronously, sysfs could observe an object of the same name still 4568 * in the hierarchy when another scheduler is loaded. 4569 */ 4570 kobject_del(scx_root_kobj); 4571 kobject_put(scx_root_kobj); 4572 scx_root_kobj = NULL; 4573 4574 memset(&scx_ops, 0, sizeof(scx_ops)); 4575 4576 rhashtable_walk_enter(&dsq_hash, &rht_iter); 4577 do { 4578 rhashtable_walk_start(&rht_iter); 4579 4580 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 4581 destroy_dsq(dsq->id); 4582 4583 rhashtable_walk_stop(&rht_iter); 4584 } while (dsq == ERR_PTR(-EAGAIN)); 4585 rhashtable_walk_exit(&rht_iter); 4586 4587 free_percpu(scx_dsp_ctx); 4588 scx_dsp_ctx = NULL; 4589 scx_dsp_max_batch = 0; 4590 4591 free_exit_info(scx_exit_info); 4592 scx_exit_info = NULL; 4593 4594 mutex_unlock(&scx_ops_enable_mutex); 4595 4596 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 4597 SCX_OPS_DISABLING); 4598 done: 4599 scx_ops_bypass(false); 4600 } 4601 4602 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn); 4603 4604 static void schedule_scx_ops_disable_work(void) 4605 { 4606 struct kthread_worker *helper = READ_ONCE(scx_ops_helper); 4607 4608 /* 4609 * We may be called spuriously before the first bpf_sched_ext_reg(). If 4610 * scx_ops_helper isn't set up yet, there's nothing to do. 4611 */ 4612 if (helper) 4613 kthread_queue_work(helper, &scx_ops_disable_work); 4614 } 4615 4616 static void scx_ops_disable(enum scx_exit_kind kind) 4617 { 4618 int none = SCX_EXIT_NONE; 4619 4620 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 4621 kind = SCX_EXIT_ERROR; 4622 4623 atomic_try_cmpxchg(&scx_exit_kind, &none, kind); 4624 4625 schedule_scx_ops_disable_work(); 4626 } 4627 4628 static void dump_newline(struct seq_buf *s) 4629 { 4630 trace_sched_ext_dump(""); 4631 4632 /* @s may be zero sized and seq_buf triggers WARN if so */ 4633 if (s->size) 4634 seq_buf_putc(s, '\n'); 4635 } 4636 4637 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 4638 { 4639 va_list args; 4640 4641 #ifdef CONFIG_TRACEPOINTS 4642 if (trace_sched_ext_dump_enabled()) { 4643 /* protected by scx_dump_state()::dump_lock */ 4644 static char line_buf[SCX_EXIT_MSG_LEN]; 4645 4646 va_start(args, fmt); 4647 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 4648 va_end(args); 4649 4650 trace_sched_ext_dump(line_buf); 4651 } 4652 #endif 4653 /* @s may be zero sized and seq_buf triggers WARN if so */ 4654 if (s->size) { 4655 va_start(args, fmt); 4656 seq_buf_vprintf(s, fmt, args); 4657 va_end(args); 4658 4659 seq_buf_putc(s, '\n'); 4660 } 4661 } 4662 4663 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 4664 const unsigned long *bt, unsigned int len) 4665 { 4666 unsigned int i; 4667 4668 for (i = 0; i < len; i++) 4669 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 4670 } 4671 4672 static void ops_dump_init(struct seq_buf *s, const char *prefix) 4673 { 4674 struct scx_dump_data *dd = &scx_dump_data; 4675 4676 lockdep_assert_irqs_disabled(); 4677 4678 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 4679 dd->first = true; 4680 dd->cursor = 0; 4681 dd->s = s; 4682 dd->prefix = prefix; 4683 } 4684 4685 static void ops_dump_flush(void) 4686 { 4687 struct scx_dump_data *dd = &scx_dump_data; 4688 char *line = dd->buf.line; 4689 4690 if (!dd->cursor) 4691 return; 4692 4693 /* 4694 * There's something to flush and this is the first line. Insert a blank 4695 * line to distinguish ops dump. 4696 */ 4697 if (dd->first) { 4698 dump_newline(dd->s); 4699 dd->first = false; 4700 } 4701 4702 /* 4703 * There may be multiple lines in $line. Scan and emit each line 4704 * separately. 4705 */ 4706 while (true) { 4707 char *end = line; 4708 char c; 4709 4710 while (*end != '\n' && *end != '\0') 4711 end++; 4712 4713 /* 4714 * If $line overflowed, it may not have newline at the end. 4715 * Always emit with a newline. 4716 */ 4717 c = *end; 4718 *end = '\0'; 4719 dump_line(dd->s, "%s%s", dd->prefix, line); 4720 if (c == '\0') 4721 break; 4722 4723 /* move to the next line */ 4724 end++; 4725 if (*end == '\0') 4726 break; 4727 line = end; 4728 } 4729 4730 dd->cursor = 0; 4731 } 4732 4733 static void ops_dump_exit(void) 4734 { 4735 ops_dump_flush(); 4736 scx_dump_data.cpu = -1; 4737 } 4738 4739 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 4740 struct task_struct *p, char marker) 4741 { 4742 static unsigned long bt[SCX_EXIT_BT_LEN]; 4743 char dsq_id_buf[19] = "(n/a)"; 4744 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 4745 unsigned int bt_len = 0; 4746 4747 if (p->scx.dsq) 4748 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 4749 (unsigned long long)p->scx.dsq->id); 4750 4751 dump_newline(s); 4752 dump_line(s, " %c%c %s[%d] %+ldms", 4753 marker, task_state_to_char(p), p->comm, p->pid, 4754 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 4755 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", 4756 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 4757 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, 4758 ops_state >> SCX_OPSS_QSEQ_SHIFT); 4759 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu", 4760 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf, 4761 p->scx.dsq_vtime); 4762 dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr)); 4763 4764 if (SCX_HAS_OP(dump_task)) { 4765 ops_dump_init(s, " "); 4766 SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p); 4767 ops_dump_exit(); 4768 } 4769 4770 #ifdef CONFIG_STACKTRACE 4771 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 4772 #endif 4773 if (bt_len) { 4774 dump_newline(s); 4775 dump_stack_trace(s, " ", bt, bt_len); 4776 } 4777 } 4778 4779 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 4780 { 4781 static DEFINE_SPINLOCK(dump_lock); 4782 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 4783 struct scx_dump_ctx dctx = { 4784 .kind = ei->kind, 4785 .exit_code = ei->exit_code, 4786 .reason = ei->reason, 4787 .at_ns = ktime_get_ns(), 4788 .at_jiffies = jiffies, 4789 }; 4790 struct seq_buf s; 4791 unsigned long flags; 4792 char *buf; 4793 int cpu; 4794 4795 spin_lock_irqsave(&dump_lock, flags); 4796 4797 seq_buf_init(&s, ei->dump, dump_len); 4798 4799 if (ei->kind == SCX_EXIT_NONE) { 4800 dump_line(&s, "Debug dump triggered by %s", ei->reason); 4801 } else { 4802 dump_line(&s, "%s[%d] triggered exit kind %d:", 4803 current->comm, current->pid, ei->kind); 4804 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 4805 dump_newline(&s); 4806 dump_line(&s, "Backtrace:"); 4807 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 4808 } 4809 4810 if (SCX_HAS_OP(dump)) { 4811 ops_dump_init(&s, ""); 4812 SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx); 4813 ops_dump_exit(); 4814 } 4815 4816 dump_newline(&s); 4817 dump_line(&s, "CPU states"); 4818 dump_line(&s, "----------"); 4819 4820 for_each_possible_cpu(cpu) { 4821 struct rq *rq = cpu_rq(cpu); 4822 struct rq_flags rf; 4823 struct task_struct *p; 4824 struct seq_buf ns; 4825 size_t avail, used; 4826 bool idle; 4827 4828 rq_lock(rq, &rf); 4829 4830 idle = list_empty(&rq->scx.runnable_list) && 4831 rq->curr->sched_class == &idle_sched_class; 4832 4833 if (idle && !SCX_HAS_OP(dump_cpu)) 4834 goto next; 4835 4836 /* 4837 * We don't yet know whether ops.dump_cpu() will produce output 4838 * and we may want to skip the default CPU dump if it doesn't. 4839 * Use a nested seq_buf to generate the standard dump so that we 4840 * can decide whether to commit later. 4841 */ 4842 avail = seq_buf_get_buf(&s, &buf); 4843 seq_buf_init(&ns, buf, avail); 4844 4845 dump_newline(&ns); 4846 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", 4847 cpu, rq->scx.nr_running, rq->scx.flags, 4848 rq->scx.cpu_released, rq->scx.ops_qseq, 4849 rq->scx.pnt_seq); 4850 dump_line(&ns, " curr=%s[%d] class=%ps", 4851 rq->curr->comm, rq->curr->pid, 4852 rq->curr->sched_class); 4853 if (!cpumask_empty(rq->scx.cpus_to_kick)) 4854 dump_line(&ns, " cpus_to_kick : %*pb", 4855 cpumask_pr_args(rq->scx.cpus_to_kick)); 4856 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 4857 dump_line(&ns, " idle_to_kick : %*pb", 4858 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 4859 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 4860 dump_line(&ns, " cpus_to_preempt: %*pb", 4861 cpumask_pr_args(rq->scx.cpus_to_preempt)); 4862 if (!cpumask_empty(rq->scx.cpus_to_wait)) 4863 dump_line(&ns, " cpus_to_wait : %*pb", 4864 cpumask_pr_args(rq->scx.cpus_to_wait)); 4865 4866 used = seq_buf_used(&ns); 4867 if (SCX_HAS_OP(dump_cpu)) { 4868 ops_dump_init(&ns, " "); 4869 SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle); 4870 ops_dump_exit(); 4871 } 4872 4873 /* 4874 * If idle && nothing generated by ops.dump_cpu(), there's 4875 * nothing interesting. Skip. 4876 */ 4877 if (idle && used == seq_buf_used(&ns)) 4878 goto next; 4879 4880 /* 4881 * $s may already have overflowed when $ns was created. If so, 4882 * calling commit on it will trigger BUG. 4883 */ 4884 if (avail) { 4885 seq_buf_commit(&s, seq_buf_used(&ns)); 4886 if (seq_buf_has_overflowed(&ns)) 4887 seq_buf_set_overflow(&s); 4888 } 4889 4890 if (rq->curr->sched_class == &ext_sched_class) 4891 scx_dump_task(&s, &dctx, rq->curr, '*'); 4892 4893 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 4894 scx_dump_task(&s, &dctx, p, ' '); 4895 next: 4896 rq_unlock(rq, &rf); 4897 } 4898 4899 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 4900 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 4901 trunc_marker, sizeof(trunc_marker)); 4902 4903 spin_unlock_irqrestore(&dump_lock, flags); 4904 } 4905 4906 static void scx_ops_error_irq_workfn(struct irq_work *irq_work) 4907 { 4908 struct scx_exit_info *ei = scx_exit_info; 4909 4910 if (ei->kind >= SCX_EXIT_ERROR) 4911 scx_dump_state(ei, scx_ops.exit_dump_len); 4912 4913 schedule_scx_ops_disable_work(); 4914 } 4915 4916 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn); 4917 4918 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 4919 s64 exit_code, 4920 const char *fmt, ...) 4921 { 4922 struct scx_exit_info *ei = scx_exit_info; 4923 int none = SCX_EXIT_NONE; 4924 va_list args; 4925 4926 if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind)) 4927 return; 4928 4929 ei->exit_code = exit_code; 4930 #ifdef CONFIG_STACKTRACE 4931 if (kind >= SCX_EXIT_ERROR) 4932 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 4933 #endif 4934 va_start(args, fmt); 4935 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 4936 va_end(args); 4937 4938 /* 4939 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 4940 * in scx_ops_disable_workfn(). 4941 */ 4942 ei->kind = kind; 4943 ei->reason = scx_exit_reason(ei->kind); 4944 4945 irq_work_queue(&scx_ops_error_irq_work); 4946 } 4947 4948 static struct kthread_worker *scx_create_rt_helper(const char *name) 4949 { 4950 struct kthread_worker *helper; 4951 4952 helper = kthread_create_worker(0, name); 4953 if (helper) 4954 sched_set_fifo(helper->task); 4955 return helper; 4956 } 4957 4958 static void check_hotplug_seq(const struct sched_ext_ops *ops) 4959 { 4960 unsigned long long global_hotplug_seq; 4961 4962 /* 4963 * If a hotplug event has occurred between when a scheduler was 4964 * initialized, and when we were able to attach, exit and notify user 4965 * space about it. 4966 */ 4967 if (ops->hotplug_seq) { 4968 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); 4969 if (ops->hotplug_seq != global_hotplug_seq) { 4970 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 4971 "expected hotplug seq %llu did not match actual %llu", 4972 ops->hotplug_seq, global_hotplug_seq); 4973 } 4974 } 4975 } 4976 4977 static int validate_ops(const struct sched_ext_ops *ops) 4978 { 4979 /* 4980 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 4981 * ops.enqueue() callback isn't implemented. 4982 */ 4983 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 4984 scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 4985 return -EINVAL; 4986 } 4987 4988 return 0; 4989 } 4990 4991 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link) 4992 { 4993 struct scx_task_iter sti; 4994 struct task_struct *p; 4995 unsigned long timeout; 4996 int i, cpu, node, ret; 4997 4998 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), 4999 cpu_possible_mask)) { 5000 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n"); 5001 return -EINVAL; 5002 } 5003 5004 mutex_lock(&scx_ops_enable_mutex); 5005 5006 if (!scx_ops_helper) { 5007 WRITE_ONCE(scx_ops_helper, 5008 scx_create_rt_helper("sched_ext_ops_helper")); 5009 if (!scx_ops_helper) { 5010 ret = -ENOMEM; 5011 goto err_unlock; 5012 } 5013 } 5014 5015 if (!global_dsqs) { 5016 struct scx_dispatch_q **dsqs; 5017 5018 dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL); 5019 if (!dsqs) { 5020 ret = -ENOMEM; 5021 goto err_unlock; 5022 } 5023 5024 for_each_node_state(node, N_POSSIBLE) { 5025 struct scx_dispatch_q *dsq; 5026 5027 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node); 5028 if (!dsq) { 5029 for_each_node_state(node, N_POSSIBLE) 5030 kfree(dsqs[node]); 5031 kfree(dsqs); 5032 ret = -ENOMEM; 5033 goto err_unlock; 5034 } 5035 5036 init_dsq(dsq, SCX_DSQ_GLOBAL); 5037 dsqs[node] = dsq; 5038 } 5039 5040 global_dsqs = dsqs; 5041 } 5042 5043 if (scx_ops_enable_state() != SCX_OPS_DISABLED) { 5044 ret = -EBUSY; 5045 goto err_unlock; 5046 } 5047 5048 scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL); 5049 if (!scx_root_kobj) { 5050 ret = -ENOMEM; 5051 goto err_unlock; 5052 } 5053 5054 scx_root_kobj->kset = scx_kset; 5055 ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root"); 5056 if (ret < 0) 5057 goto err; 5058 5059 scx_exit_info = alloc_exit_info(ops->exit_dump_len); 5060 if (!scx_exit_info) { 5061 ret = -ENOMEM; 5062 goto err_del; 5063 } 5064 5065 /* 5066 * Set scx_ops, transition to ENABLING and clear exit info to arm the 5067 * disable path. Failure triggers full disabling from here on. 5068 */ 5069 scx_ops = *ops; 5070 5071 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) != 5072 SCX_OPS_DISABLED); 5073 5074 atomic_set(&scx_exit_kind, SCX_EXIT_NONE); 5075 scx_warned_zero_slice = false; 5076 5077 atomic_long_set(&scx_nr_rejected, 0); 5078 5079 for_each_possible_cpu(cpu) 5080 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; 5081 5082 /* 5083 * Keep CPUs stable during enable so that the BPF scheduler can track 5084 * online CPUs by watching ->on/offline_cpu() after ->init(). 5085 */ 5086 cpus_read_lock(); 5087 5088 if (scx_ops.init) { 5089 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init); 5090 if (ret) { 5091 ret = ops_sanitize_err("init", ret); 5092 cpus_read_unlock(); 5093 scx_ops_error("ops.init() failed (%d)", ret); 5094 goto err_disable; 5095 } 5096 } 5097 5098 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) 5099 if (((void (**)(void))ops)[i]) 5100 static_branch_enable_cpuslocked(&scx_has_op[i]); 5101 5102 check_hotplug_seq(ops); 5103 cpus_read_unlock(); 5104 5105 ret = validate_ops(ops); 5106 if (ret) 5107 goto err_disable; 5108 5109 WARN_ON_ONCE(scx_dsp_ctx); 5110 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 5111 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 5112 scx_dsp_max_batch), 5113 __alignof__(struct scx_dsp_ctx)); 5114 if (!scx_dsp_ctx) { 5115 ret = -ENOMEM; 5116 goto err_disable; 5117 } 5118 5119 if (ops->timeout_ms) 5120 timeout = msecs_to_jiffies(ops->timeout_ms); 5121 else 5122 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 5123 5124 WRITE_ONCE(scx_watchdog_timeout, timeout); 5125 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 5126 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 5127 scx_watchdog_timeout / 2); 5128 5129 /* 5130 * Once __scx_ops_enabled is set, %current can be switched to SCX 5131 * anytime. This can lead to stalls as some BPF schedulers (e.g. 5132 * userspace scheduling) may not function correctly before all tasks are 5133 * switched. Init in bypass mode to guarantee forward progress. 5134 */ 5135 scx_ops_bypass(true); 5136 5137 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 5138 if (((void (**)(void))ops)[i]) 5139 static_branch_enable(&scx_has_op[i]); 5140 5141 if (ops->flags & SCX_OPS_ENQ_LAST) 5142 static_branch_enable(&scx_ops_enq_last); 5143 5144 if (ops->flags & SCX_OPS_ENQ_EXITING) 5145 static_branch_enable(&scx_ops_enq_exiting); 5146 if (scx_ops.cpu_acquire || scx_ops.cpu_release) 5147 static_branch_enable(&scx_ops_cpu_preempt); 5148 5149 if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) { 5150 reset_idle_masks(); 5151 static_branch_enable(&scx_builtin_idle_enabled); 5152 } else { 5153 static_branch_disable(&scx_builtin_idle_enabled); 5154 } 5155 5156 /* 5157 * Lock out forks, cgroup on/offlining and moves before opening the 5158 * floodgate so that they don't wander into the operations prematurely. 5159 */ 5160 percpu_down_write(&scx_fork_rwsem); 5161 5162 WARN_ON_ONCE(scx_ops_init_task_enabled); 5163 scx_ops_init_task_enabled = true; 5164 5165 /* 5166 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 5167 * preventing new tasks from being added. No need to exclude tasks 5168 * leaving as sched_ext_free() can handle both prepped and enabled 5169 * tasks. Prep all tasks first and then enable them with preemption 5170 * disabled. 5171 * 5172 * All cgroups should be initialized before scx_ops_init_task() so that 5173 * the BPF scheduler can reliably track each task's cgroup membership 5174 * from scx_ops_init_task(). Lock out cgroup on/offlining and task 5175 * migrations while tasks are being initialized so that 5176 * scx_cgroup_can_attach() never sees uninitialized tasks. 5177 */ 5178 scx_cgroup_lock(); 5179 ret = scx_cgroup_init(); 5180 if (ret) 5181 goto err_disable_unlock_all; 5182 5183 scx_task_iter_start(&sti); 5184 while ((p = scx_task_iter_next_locked(&sti))) { 5185 /* 5186 * @p may already be dead, have lost all its usages counts and 5187 * be waiting for RCU grace period before being freed. @p can't 5188 * be initialized for SCX in such cases and should be ignored. 5189 */ 5190 if (!tryget_task_struct(p)) 5191 continue; 5192 5193 scx_task_iter_unlock(&sti); 5194 5195 ret = scx_ops_init_task(p, task_group(p), false); 5196 if (ret) { 5197 put_task_struct(p); 5198 scx_task_iter_relock(&sti); 5199 scx_task_iter_stop(&sti); 5200 scx_ops_error("ops.init_task() failed (%d) for %s[%d]", 5201 ret, p->comm, p->pid); 5202 goto err_disable_unlock_all; 5203 } 5204 5205 scx_set_task_state(p, SCX_TASK_READY); 5206 5207 put_task_struct(p); 5208 scx_task_iter_relock(&sti); 5209 } 5210 scx_task_iter_stop(&sti); 5211 scx_cgroup_unlock(); 5212 percpu_up_write(&scx_fork_rwsem); 5213 5214 /* 5215 * All tasks are READY. It's safe to turn on scx_enabled() and switch 5216 * all eligible tasks. 5217 */ 5218 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 5219 static_branch_enable(&__scx_ops_enabled); 5220 5221 /* 5222 * We're fully committed and can't fail. The task READY -> ENABLED 5223 * transitions here are synchronized against sched_ext_free() through 5224 * scx_tasks_lock. 5225 */ 5226 percpu_down_write(&scx_fork_rwsem); 5227 scx_task_iter_start(&sti); 5228 while ((p = scx_task_iter_next_locked(&sti))) { 5229 const struct sched_class *old_class = p->sched_class; 5230 const struct sched_class *new_class = 5231 __setscheduler_class(p->policy, p->prio); 5232 struct sched_enq_and_set_ctx ctx; 5233 5234 if (old_class != new_class && p->se.sched_delayed) 5235 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5236 5237 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 5238 5239 p->scx.slice = SCX_SLICE_DFL; 5240 p->sched_class = new_class; 5241 check_class_changing(task_rq(p), p, old_class); 5242 5243 sched_enq_and_set_task(&ctx); 5244 5245 check_class_changed(task_rq(p), p, old_class, p->prio); 5246 } 5247 scx_task_iter_stop(&sti); 5248 percpu_up_write(&scx_fork_rwsem); 5249 5250 scx_ops_bypass(false); 5251 5252 if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) { 5253 WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); 5254 goto err_disable; 5255 } 5256 5257 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 5258 static_branch_enable(&__scx_switched_all); 5259 5260 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", 5261 scx_ops.name, scx_switched_all() ? "" : " (partial)"); 5262 kobject_uevent(scx_root_kobj, KOBJ_ADD); 5263 mutex_unlock(&scx_ops_enable_mutex); 5264 5265 atomic_long_inc(&scx_enable_seq); 5266 5267 return 0; 5268 5269 err_del: 5270 kobject_del(scx_root_kobj); 5271 err: 5272 kobject_put(scx_root_kobj); 5273 scx_root_kobj = NULL; 5274 if (scx_exit_info) { 5275 free_exit_info(scx_exit_info); 5276 scx_exit_info = NULL; 5277 } 5278 err_unlock: 5279 mutex_unlock(&scx_ops_enable_mutex); 5280 return ret; 5281 5282 err_disable_unlock_all: 5283 scx_cgroup_unlock(); 5284 percpu_up_write(&scx_fork_rwsem); 5285 scx_ops_bypass(false); 5286 err_disable: 5287 mutex_unlock(&scx_ops_enable_mutex); 5288 /* 5289 * Returning an error code here would not pass all the error information 5290 * to userspace. Record errno using scx_ops_error() for cases 5291 * scx_ops_error() wasn't already invoked and exit indicating success so 5292 * that the error is notified through ops.exit() with all the details. 5293 * 5294 * Flush scx_ops_disable_work to ensure that error is reported before 5295 * init completion. 5296 */ 5297 scx_ops_error("scx_ops_enable() failed (%d)", ret); 5298 kthread_flush_work(&scx_ops_disable_work); 5299 return 0; 5300 } 5301 5302 5303 /******************************************************************************** 5304 * bpf_struct_ops plumbing. 5305 */ 5306 #include <linux/bpf_verifier.h> 5307 #include <linux/bpf.h> 5308 #include <linux/btf.h> 5309 5310 extern struct btf *btf_vmlinux; 5311 static const struct btf_type *task_struct_type; 5312 static u32 task_struct_type_id; 5313 5314 static bool set_arg_maybe_null(const char *op, int arg_n, int off, int size, 5315 enum bpf_access_type type, 5316 const struct bpf_prog *prog, 5317 struct bpf_insn_access_aux *info) 5318 { 5319 struct btf *btf = bpf_get_btf_vmlinux(); 5320 const struct bpf_struct_ops_desc *st_ops_desc; 5321 const struct btf_member *member; 5322 const struct btf_type *t; 5323 u32 btf_id, member_idx; 5324 const char *mname; 5325 5326 /* struct_ops op args are all sequential, 64-bit numbers */ 5327 if (off != arg_n * sizeof(__u64)) 5328 return false; 5329 5330 /* btf_id should be the type id of struct sched_ext_ops */ 5331 btf_id = prog->aux->attach_btf_id; 5332 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 5333 if (!st_ops_desc) 5334 return false; 5335 5336 /* BTF type of struct sched_ext_ops */ 5337 t = st_ops_desc->type; 5338 5339 member_idx = prog->expected_attach_type; 5340 if (member_idx >= btf_type_vlen(t)) 5341 return false; 5342 5343 /* 5344 * Get the member name of this struct_ops program, which corresponds to 5345 * a field in struct sched_ext_ops. For example, the member name of the 5346 * dispatch struct_ops program (callback) is "dispatch". 5347 */ 5348 member = &btf_type_member(t)[member_idx]; 5349 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 5350 5351 if (!strcmp(mname, op)) { 5352 /* 5353 * The value is a pointer to a type (struct task_struct) given 5354 * by a BTF ID (PTR_TO_BTF_ID). It is trusted (PTR_TRUSTED), 5355 * however, can be a NULL (PTR_MAYBE_NULL). The BPF program 5356 * should check the pointer to make sure it is not NULL before 5357 * using it, or the verifier will reject the program. 5358 * 5359 * Longer term, this is something that should be addressed by 5360 * BTF, and be fully contained within the verifier. 5361 */ 5362 info->reg_type = PTR_MAYBE_NULL | PTR_TO_BTF_ID | PTR_TRUSTED; 5363 info->btf = btf_vmlinux; 5364 info->btf_id = task_struct_type_id; 5365 5366 return true; 5367 } 5368 5369 return false; 5370 } 5371 5372 static bool bpf_scx_is_valid_access(int off, int size, 5373 enum bpf_access_type type, 5374 const struct bpf_prog *prog, 5375 struct bpf_insn_access_aux *info) 5376 { 5377 if (type != BPF_READ) 5378 return false; 5379 if (set_arg_maybe_null("dispatch", 1, off, size, type, prog, info) || 5380 set_arg_maybe_null("yield", 1, off, size, type, prog, info)) 5381 return true; 5382 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 5383 return false; 5384 if (off % size != 0) 5385 return false; 5386 5387 return btf_ctx_access(off, size, type, prog, info); 5388 } 5389 5390 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 5391 const struct bpf_reg_state *reg, int off, 5392 int size) 5393 { 5394 const struct btf_type *t; 5395 5396 t = btf_type_by_id(reg->btf, reg->btf_id); 5397 if (t == task_struct_type) { 5398 if (off >= offsetof(struct task_struct, scx.slice) && 5399 off + size <= offsetofend(struct task_struct, scx.slice)) 5400 return SCALAR_VALUE; 5401 if (off >= offsetof(struct task_struct, scx.dsq_vtime) && 5402 off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) 5403 return SCALAR_VALUE; 5404 if (off >= offsetof(struct task_struct, scx.disallow) && 5405 off + size <= offsetofend(struct task_struct, scx.disallow)) 5406 return SCALAR_VALUE; 5407 } 5408 5409 return -EACCES; 5410 } 5411 5412 static const struct bpf_func_proto * 5413 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 5414 { 5415 switch (func_id) { 5416 case BPF_FUNC_task_storage_get: 5417 return &bpf_task_storage_get_proto; 5418 case BPF_FUNC_task_storage_delete: 5419 return &bpf_task_storage_delete_proto; 5420 default: 5421 return bpf_base_func_proto(func_id, prog); 5422 } 5423 } 5424 5425 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 5426 .get_func_proto = bpf_scx_get_func_proto, 5427 .is_valid_access = bpf_scx_is_valid_access, 5428 .btf_struct_access = bpf_scx_btf_struct_access, 5429 }; 5430 5431 static int bpf_scx_init_member(const struct btf_type *t, 5432 const struct btf_member *member, 5433 void *kdata, const void *udata) 5434 { 5435 const struct sched_ext_ops *uops = udata; 5436 struct sched_ext_ops *ops = kdata; 5437 u32 moff = __btf_member_bit_offset(t, member) / 8; 5438 int ret; 5439 5440 switch (moff) { 5441 case offsetof(struct sched_ext_ops, dispatch_max_batch): 5442 if (*(u32 *)(udata + moff) > INT_MAX) 5443 return -E2BIG; 5444 ops->dispatch_max_batch = *(u32 *)(udata + moff); 5445 return 1; 5446 case offsetof(struct sched_ext_ops, flags): 5447 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 5448 return -EINVAL; 5449 ops->flags = *(u64 *)(udata + moff); 5450 return 1; 5451 case offsetof(struct sched_ext_ops, name): 5452 ret = bpf_obj_name_cpy(ops->name, uops->name, 5453 sizeof(ops->name)); 5454 if (ret < 0) 5455 return ret; 5456 if (ret == 0) 5457 return -EINVAL; 5458 return 1; 5459 case offsetof(struct sched_ext_ops, timeout_ms): 5460 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 5461 SCX_WATCHDOG_MAX_TIMEOUT) 5462 return -E2BIG; 5463 ops->timeout_ms = *(u32 *)(udata + moff); 5464 return 1; 5465 case offsetof(struct sched_ext_ops, exit_dump_len): 5466 ops->exit_dump_len = 5467 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 5468 return 1; 5469 case offsetof(struct sched_ext_ops, hotplug_seq): 5470 ops->hotplug_seq = *(u64 *)(udata + moff); 5471 return 1; 5472 } 5473 5474 return 0; 5475 } 5476 5477 static int bpf_scx_check_member(const struct btf_type *t, 5478 const struct btf_member *member, 5479 const struct bpf_prog *prog) 5480 { 5481 u32 moff = __btf_member_bit_offset(t, member) / 8; 5482 5483 switch (moff) { 5484 case offsetof(struct sched_ext_ops, init_task): 5485 #ifdef CONFIG_EXT_GROUP_SCHED 5486 case offsetof(struct sched_ext_ops, cgroup_init): 5487 case offsetof(struct sched_ext_ops, cgroup_exit): 5488 case offsetof(struct sched_ext_ops, cgroup_prep_move): 5489 #endif 5490 case offsetof(struct sched_ext_ops, cpu_online): 5491 case offsetof(struct sched_ext_ops, cpu_offline): 5492 case offsetof(struct sched_ext_ops, init): 5493 case offsetof(struct sched_ext_ops, exit): 5494 break; 5495 default: 5496 if (prog->sleepable) 5497 return -EINVAL; 5498 } 5499 5500 return 0; 5501 } 5502 5503 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 5504 { 5505 return scx_ops_enable(kdata, link); 5506 } 5507 5508 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 5509 { 5510 scx_ops_disable(SCX_EXIT_UNREG); 5511 kthread_flush_work(&scx_ops_disable_work); 5512 } 5513 5514 static int bpf_scx_init(struct btf *btf) 5515 { 5516 s32 type_id; 5517 5518 type_id = btf_find_by_name_kind(btf, "task_struct", BTF_KIND_STRUCT); 5519 if (type_id < 0) 5520 return -EINVAL; 5521 task_struct_type = btf_type_by_id(btf, type_id); 5522 task_struct_type_id = type_id; 5523 5524 return 0; 5525 } 5526 5527 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 5528 { 5529 /* 5530 * sched_ext does not support updating the actively-loaded BPF 5531 * scheduler, as registering a BPF scheduler can always fail if the 5532 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 5533 * etc. Similarly, we can always race with unregistration happening 5534 * elsewhere, such as with sysrq. 5535 */ 5536 return -EOPNOTSUPP; 5537 } 5538 5539 static int bpf_scx_validate(void *kdata) 5540 { 5541 return 0; 5542 } 5543 5544 static s32 select_cpu_stub(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 5545 static void enqueue_stub(struct task_struct *p, u64 enq_flags) {} 5546 static void dequeue_stub(struct task_struct *p, u64 enq_flags) {} 5547 static void dispatch_stub(s32 prev_cpu, struct task_struct *p) {} 5548 static void tick_stub(struct task_struct *p) {} 5549 static void runnable_stub(struct task_struct *p, u64 enq_flags) {} 5550 static void running_stub(struct task_struct *p) {} 5551 static void stopping_stub(struct task_struct *p, bool runnable) {} 5552 static void quiescent_stub(struct task_struct *p, u64 deq_flags) {} 5553 static bool yield_stub(struct task_struct *from, struct task_struct *to) { return false; } 5554 static bool core_sched_before_stub(struct task_struct *a, struct task_struct *b) { return false; } 5555 static void set_weight_stub(struct task_struct *p, u32 weight) {} 5556 static void set_cpumask_stub(struct task_struct *p, const struct cpumask *mask) {} 5557 static void update_idle_stub(s32 cpu, bool idle) {} 5558 static void cpu_acquire_stub(s32 cpu, struct scx_cpu_acquire_args *args) {} 5559 static void cpu_release_stub(s32 cpu, struct scx_cpu_release_args *args) {} 5560 static s32 init_task_stub(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 5561 static void exit_task_stub(struct task_struct *p, struct scx_exit_task_args *args) {} 5562 static void enable_stub(struct task_struct *p) {} 5563 static void disable_stub(struct task_struct *p) {} 5564 #ifdef CONFIG_EXT_GROUP_SCHED 5565 static s32 cgroup_init_stub(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } 5566 static void cgroup_exit_stub(struct cgroup *cgrp) {} 5567 static s32 cgroup_prep_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } 5568 static void cgroup_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5569 static void cgroup_cancel_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5570 static void cgroup_set_weight_stub(struct cgroup *cgrp, u32 weight) {} 5571 #endif 5572 static void cpu_online_stub(s32 cpu) {} 5573 static void cpu_offline_stub(s32 cpu) {} 5574 static s32 init_stub(void) { return -EINVAL; } 5575 static void exit_stub(struct scx_exit_info *info) {} 5576 static void dump_stub(struct scx_dump_ctx *ctx) {} 5577 static void dump_cpu_stub(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} 5578 static void dump_task_stub(struct scx_dump_ctx *ctx, struct task_struct *p) {} 5579 5580 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 5581 .select_cpu = select_cpu_stub, 5582 .enqueue = enqueue_stub, 5583 .dequeue = dequeue_stub, 5584 .dispatch = dispatch_stub, 5585 .tick = tick_stub, 5586 .runnable = runnable_stub, 5587 .running = running_stub, 5588 .stopping = stopping_stub, 5589 .quiescent = quiescent_stub, 5590 .yield = yield_stub, 5591 .core_sched_before = core_sched_before_stub, 5592 .set_weight = set_weight_stub, 5593 .set_cpumask = set_cpumask_stub, 5594 .update_idle = update_idle_stub, 5595 .cpu_acquire = cpu_acquire_stub, 5596 .cpu_release = cpu_release_stub, 5597 .init_task = init_task_stub, 5598 .exit_task = exit_task_stub, 5599 .enable = enable_stub, 5600 .disable = disable_stub, 5601 #ifdef CONFIG_EXT_GROUP_SCHED 5602 .cgroup_init = cgroup_init_stub, 5603 .cgroup_exit = cgroup_exit_stub, 5604 .cgroup_prep_move = cgroup_prep_move_stub, 5605 .cgroup_move = cgroup_move_stub, 5606 .cgroup_cancel_move = cgroup_cancel_move_stub, 5607 .cgroup_set_weight = cgroup_set_weight_stub, 5608 #endif 5609 .cpu_online = cpu_online_stub, 5610 .cpu_offline = cpu_offline_stub, 5611 .init = init_stub, 5612 .exit = exit_stub, 5613 .dump = dump_stub, 5614 .dump_cpu = dump_cpu_stub, 5615 .dump_task = dump_task_stub, 5616 }; 5617 5618 static struct bpf_struct_ops bpf_sched_ext_ops = { 5619 .verifier_ops = &bpf_scx_verifier_ops, 5620 .reg = bpf_scx_reg, 5621 .unreg = bpf_scx_unreg, 5622 .check_member = bpf_scx_check_member, 5623 .init_member = bpf_scx_init_member, 5624 .init = bpf_scx_init, 5625 .update = bpf_scx_update, 5626 .validate = bpf_scx_validate, 5627 .name = "sched_ext_ops", 5628 .owner = THIS_MODULE, 5629 .cfi_stubs = &__bpf_ops_sched_ext_ops 5630 }; 5631 5632 5633 /******************************************************************************** 5634 * System integration and init. 5635 */ 5636 5637 static void sysrq_handle_sched_ext_reset(u8 key) 5638 { 5639 if (scx_ops_helper) 5640 scx_ops_disable(SCX_EXIT_SYSRQ); 5641 else 5642 pr_info("sched_ext: BPF scheduler not yet used\n"); 5643 } 5644 5645 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 5646 .handler = sysrq_handle_sched_ext_reset, 5647 .help_msg = "reset-sched-ext(S)", 5648 .action_msg = "Disable sched_ext and revert all tasks to CFS", 5649 .enable_mask = SYSRQ_ENABLE_RTNICE, 5650 }; 5651 5652 static void sysrq_handle_sched_ext_dump(u8 key) 5653 { 5654 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 5655 5656 if (scx_enabled()) 5657 scx_dump_state(&ei, 0); 5658 } 5659 5660 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 5661 .handler = sysrq_handle_sched_ext_dump, 5662 .help_msg = "dump-sched-ext(D)", 5663 .action_msg = "Trigger sched_ext debug dump", 5664 .enable_mask = SYSRQ_ENABLE_RTNICE, 5665 }; 5666 5667 static bool can_skip_idle_kick(struct rq *rq) 5668 { 5669 lockdep_assert_rq_held(rq); 5670 5671 /* 5672 * We can skip idle kicking if @rq is going to go through at least one 5673 * full SCX scheduling cycle before going idle. Just checking whether 5674 * curr is not idle is insufficient because we could be racing 5675 * balance_one() trying to pull the next task from a remote rq, which 5676 * may fail, and @rq may become idle afterwards. 5677 * 5678 * The race window is small and we don't and can't guarantee that @rq is 5679 * only kicked while idle anyway. Skip only when sure. 5680 */ 5681 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); 5682 } 5683 5684 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) 5685 { 5686 struct rq *rq = cpu_rq(cpu); 5687 struct scx_rq *this_scx = &this_rq->scx; 5688 bool should_wait = false; 5689 unsigned long flags; 5690 5691 raw_spin_rq_lock_irqsave(rq, flags); 5692 5693 /* 5694 * During CPU hotplug, a CPU may depend on kicking itself to make 5695 * forward progress. Allow kicking self regardless of online state. 5696 */ 5697 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { 5698 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 5699 if (rq->curr->sched_class == &ext_sched_class) 5700 rq->curr->scx.slice = 0; 5701 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5702 } 5703 5704 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 5705 pseqs[cpu] = rq->scx.pnt_seq; 5706 should_wait = true; 5707 } 5708 5709 resched_curr(rq); 5710 } else { 5711 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5712 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5713 } 5714 5715 raw_spin_rq_unlock_irqrestore(rq, flags); 5716 5717 return should_wait; 5718 } 5719 5720 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 5721 { 5722 struct rq *rq = cpu_rq(cpu); 5723 unsigned long flags; 5724 5725 raw_spin_rq_lock_irqsave(rq, flags); 5726 5727 if (!can_skip_idle_kick(rq) && 5728 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 5729 resched_curr(rq); 5730 5731 raw_spin_rq_unlock_irqrestore(rq, flags); 5732 } 5733 5734 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 5735 { 5736 struct rq *this_rq = this_rq(); 5737 struct scx_rq *this_scx = &this_rq->scx; 5738 unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs); 5739 bool should_wait = false; 5740 s32 cpu; 5741 5742 for_each_cpu(cpu, this_scx->cpus_to_kick) { 5743 should_wait |= kick_one_cpu(cpu, this_rq, pseqs); 5744 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 5745 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5746 } 5747 5748 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 5749 kick_one_cpu_if_idle(cpu, this_rq); 5750 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5751 } 5752 5753 if (!should_wait) 5754 return; 5755 5756 for_each_cpu(cpu, this_scx->cpus_to_wait) { 5757 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; 5758 5759 if (cpu != cpu_of(this_rq)) { 5760 /* 5761 * Pairs with smp_store_release() issued by this CPU in 5762 * scx_next_task_picked() on the resched path. 5763 * 5764 * We busy-wait here to guarantee that no other task can 5765 * be scheduled on our core before the target CPU has 5766 * entered the resched path. 5767 */ 5768 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) 5769 cpu_relax(); 5770 } 5771 5772 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5773 } 5774 } 5775 5776 /** 5777 * print_scx_info - print out sched_ext scheduler state 5778 * @log_lvl: the log level to use when printing 5779 * @p: target task 5780 * 5781 * If a sched_ext scheduler is enabled, print the name and state of the 5782 * scheduler. If @p is on sched_ext, print further information about the task. 5783 * 5784 * This function can be safely called on any task as long as the task_struct 5785 * itself is accessible. While safe, this function isn't synchronized and may 5786 * print out mixups or garbages of limited length. 5787 */ 5788 void print_scx_info(const char *log_lvl, struct task_struct *p) 5789 { 5790 enum scx_ops_enable_state state = scx_ops_enable_state(); 5791 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 5792 char runnable_at_buf[22] = "?"; 5793 struct sched_class *class; 5794 unsigned long runnable_at; 5795 5796 if (state == SCX_OPS_DISABLED) 5797 return; 5798 5799 /* 5800 * Carefully check if the task was running on sched_ext, and then 5801 * carefully copy the time it's been runnable, and its state. 5802 */ 5803 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 5804 class != &ext_sched_class) { 5805 printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name, 5806 scx_ops_enable_state_str[state], all); 5807 return; 5808 } 5809 5810 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 5811 sizeof(runnable_at))) 5812 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 5813 jiffies_delta_msecs(runnable_at, jiffies)); 5814 5815 /* print everything onto one line to conserve console space */ 5816 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 5817 log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all, 5818 runnable_at_buf); 5819 } 5820 5821 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) 5822 { 5823 /* 5824 * SCX schedulers often have userspace components which are sometimes 5825 * involved in critial scheduling paths. PM operations involve freezing 5826 * userspace which can lead to scheduling misbehaviors including stalls. 5827 * Let's bypass while PM operations are in progress. 5828 */ 5829 switch (event) { 5830 case PM_HIBERNATION_PREPARE: 5831 case PM_SUSPEND_PREPARE: 5832 case PM_RESTORE_PREPARE: 5833 scx_ops_bypass(true); 5834 break; 5835 case PM_POST_HIBERNATION: 5836 case PM_POST_SUSPEND: 5837 case PM_POST_RESTORE: 5838 scx_ops_bypass(false); 5839 break; 5840 } 5841 5842 return NOTIFY_OK; 5843 } 5844 5845 static struct notifier_block scx_pm_notifier = { 5846 .notifier_call = scx_pm_handler, 5847 }; 5848 5849 void __init init_sched_ext_class(void) 5850 { 5851 s32 cpu, v; 5852 5853 /* 5854 * The following is to prevent the compiler from optimizing out the enum 5855 * definitions so that BPF scheduler implementations can use them 5856 * through the generated vmlinux.h. 5857 */ 5858 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | 5859 SCX_TG_ONLINE); 5860 5861 BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params)); 5862 #ifdef CONFIG_SMP 5863 BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL)); 5864 BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL)); 5865 #endif 5866 scx_kick_cpus_pnt_seqs = 5867 __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids, 5868 __alignof__(scx_kick_cpus_pnt_seqs[0])); 5869 BUG_ON(!scx_kick_cpus_pnt_seqs); 5870 5871 for_each_possible_cpu(cpu) { 5872 struct rq *rq = cpu_rq(cpu); 5873 5874 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 5875 INIT_LIST_HEAD(&rq->scx.runnable_list); 5876 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); 5877 5878 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL)); 5879 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL)); 5880 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL)); 5881 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL)); 5882 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn); 5883 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); 5884 5885 if (cpu_online(cpu)) 5886 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; 5887 } 5888 5889 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 5890 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 5891 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 5892 } 5893 5894 5895 /******************************************************************************** 5896 * Helpers that can be called from the BPF scheduler. 5897 */ 5898 #include <linux/btf_ids.h> 5899 5900 __bpf_kfunc_start_defs(); 5901 5902 /** 5903 * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu() 5904 * @p: task_struct to select a CPU for 5905 * @prev_cpu: CPU @p was on previously 5906 * @wake_flags: %SCX_WAKE_* flags 5907 * @is_idle: out parameter indicating whether the returned CPU is idle 5908 * 5909 * Can only be called from ops.select_cpu() if the built-in CPU selection is 5910 * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set. 5911 * @p, @prev_cpu and @wake_flags match ops.select_cpu(). 5912 * 5913 * Returns the picked CPU with *@is_idle indicating whether the picked CPU is 5914 * currently idle and thus a good candidate for direct dispatching. 5915 */ 5916 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 5917 u64 wake_flags, bool *is_idle) 5918 { 5919 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 5920 scx_ops_error("built-in idle tracking is disabled"); 5921 goto prev_cpu; 5922 } 5923 5924 if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) 5925 goto prev_cpu; 5926 5927 #ifdef CONFIG_SMP 5928 return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle); 5929 #endif 5930 5931 prev_cpu: 5932 *is_idle = false; 5933 return prev_cpu; 5934 } 5935 5936 __bpf_kfunc_end_defs(); 5937 5938 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu) 5939 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU) 5940 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu) 5941 5942 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = { 5943 .owner = THIS_MODULE, 5944 .set = &scx_kfunc_ids_select_cpu, 5945 }; 5946 5947 static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags) 5948 { 5949 if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 5950 return false; 5951 5952 lockdep_assert_irqs_disabled(); 5953 5954 if (unlikely(!p)) { 5955 scx_ops_error("called with NULL task"); 5956 return false; 5957 } 5958 5959 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 5960 scx_ops_error("invalid enq_flags 0x%llx", enq_flags); 5961 return false; 5962 } 5963 5964 return true; 5965 } 5966 5967 static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags) 5968 { 5969 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5970 struct task_struct *ddsp_task; 5971 5972 ddsp_task = __this_cpu_read(direct_dispatch_task); 5973 if (ddsp_task) { 5974 mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags); 5975 return; 5976 } 5977 5978 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 5979 scx_ops_error("dispatch buffer overflow"); 5980 return; 5981 } 5982 5983 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 5984 .task = p, 5985 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 5986 .dsq_id = dsq_id, 5987 .enq_flags = enq_flags, 5988 }; 5989 } 5990 5991 __bpf_kfunc_start_defs(); 5992 5993 /** 5994 * scx_bpf_dispatch - Dispatch a task into the FIFO queue of a DSQ 5995 * @p: task_struct to dispatch 5996 * @dsq_id: DSQ to dispatch to 5997 * @slice: duration @p can run for in nsecs, 0 to keep the current value 5998 * @enq_flags: SCX_ENQ_* 5999 * 6000 * Dispatch @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe 6001 * to call this function spuriously. Can be called from ops.enqueue(), 6002 * ops.select_cpu(), and ops.dispatch(). 6003 * 6004 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 6005 * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be 6006 * used to target the local DSQ of a CPU other than the enqueueing one. Use 6007 * ops.select_cpu() to be on the target CPU in the first place. 6008 * 6009 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 6010 * will be directly dispatched to the corresponding dispatch queue after 6011 * ops.select_cpu() returns. If @p is dispatched to SCX_DSQ_LOCAL, it will be 6012 * dispatched to the local DSQ of the CPU returned by ops.select_cpu(). 6013 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 6014 * task is dispatched. 6015 * 6016 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 6017 * and this function can be called upto ops.dispatch_max_batch times to dispatch 6018 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 6019 * remaining slots. scx_bpf_consume() flushes the batch and resets the counter. 6020 * 6021 * This function doesn't have any locking restrictions and may be called under 6022 * BPF locks (in the future when BPF introduces more flexible locking). 6023 * 6024 * @p is allowed to run for @slice. The scheduling path is triggered on slice 6025 * exhaustion. If zero, the current residual slice is maintained. If 6026 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 6027 * scx_bpf_kick_cpu() to trigger scheduling. 6028 */ 6029 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice, 6030 u64 enq_flags) 6031 { 6032 if (!scx_dispatch_preamble(p, enq_flags)) 6033 return; 6034 6035 if (slice) 6036 p->scx.slice = slice; 6037 else 6038 p->scx.slice = p->scx.slice ?: 1; 6039 6040 scx_dispatch_commit(p, dsq_id, enq_flags); 6041 } 6042 6043 /** 6044 * scx_bpf_dispatch_vtime - Dispatch a task into the vtime priority queue of a DSQ 6045 * @p: task_struct to dispatch 6046 * @dsq_id: DSQ to dispatch to 6047 * @slice: duration @p can run for in nsecs, 0 to keep the current value 6048 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ 6049 * @enq_flags: SCX_ENQ_* 6050 * 6051 * Dispatch @p into the vtime priority queue of the DSQ identified by @dsq_id. 6052 * Tasks queued into the priority queue are ordered by @vtime and always 6053 * consumed after the tasks in the FIFO queue. All other aspects are identical 6054 * to scx_bpf_dispatch(). 6055 * 6056 * @vtime ordering is according to time_before64() which considers wrapping. A 6057 * numerically larger vtime may indicate an earlier position in the ordering and 6058 * vice-versa. 6059 */ 6060 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id, 6061 u64 slice, u64 vtime, u64 enq_flags) 6062 { 6063 if (!scx_dispatch_preamble(p, enq_flags)) 6064 return; 6065 6066 if (slice) 6067 p->scx.slice = slice; 6068 else 6069 p->scx.slice = p->scx.slice ?: 1; 6070 6071 p->scx.dsq_vtime = vtime; 6072 6073 scx_dispatch_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6074 } 6075 6076 __bpf_kfunc_end_defs(); 6077 6078 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 6079 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU) 6080 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU) 6081 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 6082 6083 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 6084 .owner = THIS_MODULE, 6085 .set = &scx_kfunc_ids_enqueue_dispatch, 6086 }; 6087 6088 static bool scx_dispatch_from_dsq(struct bpf_iter_scx_dsq_kern *kit, 6089 struct task_struct *p, u64 dsq_id, 6090 u64 enq_flags) 6091 { 6092 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; 6093 struct rq *this_rq, *src_rq, *dst_rq, *locked_rq; 6094 bool dispatched = false; 6095 bool in_balance; 6096 unsigned long flags; 6097 6098 if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH)) 6099 return false; 6100 6101 /* 6102 * Can be called from either ops.dispatch() locking this_rq() or any 6103 * context where no rq lock is held. If latter, lock @p's task_rq which 6104 * we'll likely need anyway. 6105 */ 6106 src_rq = task_rq(p); 6107 6108 local_irq_save(flags); 6109 this_rq = this_rq(); 6110 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; 6111 6112 if (in_balance) { 6113 if (this_rq != src_rq) { 6114 raw_spin_rq_unlock(this_rq); 6115 raw_spin_rq_lock(src_rq); 6116 } 6117 } else { 6118 raw_spin_rq_lock(src_rq); 6119 } 6120 6121 locked_rq = src_rq; 6122 raw_spin_lock(&src_dsq->lock); 6123 6124 /* 6125 * Did someone else get to it? @p could have already left $src_dsq, got 6126 * re-enqueud, or be in the process of being consumed by someone else. 6127 */ 6128 if (unlikely(p->scx.dsq != src_dsq || 6129 u32_before(kit->cursor.priv, p->scx.dsq_seq) || 6130 p->scx.holding_cpu >= 0) || 6131 WARN_ON_ONCE(src_rq != task_rq(p))) { 6132 raw_spin_unlock(&src_dsq->lock); 6133 goto out; 6134 } 6135 6136 /* @p is still on $src_dsq and stable, determine the destination */ 6137 dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p); 6138 6139 if (dst_dsq->id == SCX_DSQ_LOCAL) { 6140 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 6141 if (!task_can_run_on_remote_rq(p, dst_rq, true)) { 6142 dst_dsq = find_global_dsq(p); 6143 dst_rq = src_rq; 6144 } 6145 } else { 6146 /* no need to migrate if destination is a non-local DSQ */ 6147 dst_rq = src_rq; 6148 } 6149 6150 /* 6151 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different 6152 * CPU, @p will be migrated. 6153 */ 6154 if (dst_dsq->id == SCX_DSQ_LOCAL) { 6155 /* @p is going from a non-local DSQ to a local DSQ */ 6156 if (src_rq == dst_rq) { 6157 task_unlink_from_dsq(p, src_dsq); 6158 move_local_task_to_local_dsq(p, enq_flags, 6159 src_dsq, dst_rq); 6160 raw_spin_unlock(&src_dsq->lock); 6161 } else { 6162 raw_spin_unlock(&src_dsq->lock); 6163 move_remote_task_to_local_dsq(p, enq_flags, 6164 src_rq, dst_rq); 6165 locked_rq = dst_rq; 6166 } 6167 } else { 6168 /* 6169 * @p is going from a non-local DSQ to a non-local DSQ. As 6170 * $src_dsq is already locked, do an abbreviated dequeue. 6171 */ 6172 task_unlink_from_dsq(p, src_dsq); 6173 p->scx.dsq = NULL; 6174 raw_spin_unlock(&src_dsq->lock); 6175 6176 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) 6177 p->scx.dsq_vtime = kit->vtime; 6178 dispatch_enqueue(dst_dsq, p, enq_flags); 6179 } 6180 6181 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) 6182 p->scx.slice = kit->slice; 6183 6184 dispatched = true; 6185 out: 6186 if (in_balance) { 6187 if (this_rq != locked_rq) { 6188 raw_spin_rq_unlock(locked_rq); 6189 raw_spin_rq_lock(this_rq); 6190 } 6191 } else { 6192 raw_spin_rq_unlock_irqrestore(locked_rq, flags); 6193 } 6194 6195 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | 6196 __SCX_DSQ_ITER_HAS_VTIME); 6197 return dispatched; 6198 } 6199 6200 __bpf_kfunc_start_defs(); 6201 6202 /** 6203 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 6204 * 6205 * Can only be called from ops.dispatch(). 6206 */ 6207 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 6208 { 6209 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6210 return 0; 6211 6212 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 6213 } 6214 6215 /** 6216 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 6217 * 6218 * Cancel the latest dispatch. Can be called multiple times to cancel further 6219 * dispatches. Can only be called from ops.dispatch(). 6220 */ 6221 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 6222 { 6223 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6224 6225 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6226 return; 6227 6228 if (dspc->cursor > 0) 6229 dspc->cursor--; 6230 else 6231 scx_ops_error("dispatch buffer underflow"); 6232 } 6233 6234 /** 6235 * scx_bpf_consume - Transfer a task from a DSQ to the current CPU's local DSQ 6236 * @dsq_id: DSQ to consume 6237 * 6238 * Consume a task from the non-local DSQ identified by @dsq_id and transfer it 6239 * to the current CPU's local DSQ for execution. Can only be called from 6240 * ops.dispatch(). 6241 * 6242 * This function flushes the in-flight dispatches from scx_bpf_dispatch() before 6243 * trying to consume the specified DSQ. It may also grab rq locks and thus can't 6244 * be called under any BPF locks. 6245 * 6246 * Returns %true if a task has been consumed, %false if there isn't any task to 6247 * consume. 6248 */ 6249 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id) 6250 { 6251 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6252 struct scx_dispatch_q *dsq; 6253 6254 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6255 return false; 6256 6257 flush_dispatch_buf(dspc->rq); 6258 6259 dsq = find_user_dsq(dsq_id); 6260 if (unlikely(!dsq)) { 6261 scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id); 6262 return false; 6263 } 6264 6265 if (consume_dispatch_q(dspc->rq, dsq)) { 6266 /* 6267 * A successfully consumed task can be dequeued before it starts 6268 * running while the CPU is trying to migrate other dispatched 6269 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 6270 * local DSQ. 6271 */ 6272 dspc->nr_tasks++; 6273 return true; 6274 } else { 6275 return false; 6276 } 6277 } 6278 6279 /** 6280 * scx_bpf_dispatch_from_dsq_set_slice - Override slice when dispatching from DSQ 6281 * @it__iter: DSQ iterator in progress 6282 * @slice: duration the dispatched task can run for in nsecs 6283 * 6284 * Override the slice of the next task that will be dispatched from @it__iter 6285 * using scx_bpf_dispatch_from_dsq[_vtime](). If this function is not called, 6286 * the previous slice duration is kept. 6287 */ 6288 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice( 6289 struct bpf_iter_scx_dsq *it__iter, u64 slice) 6290 { 6291 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6292 6293 kit->slice = slice; 6294 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; 6295 } 6296 6297 /** 6298 * scx_bpf_dispatch_from_dsq_set_vtime - Override vtime when dispatching from DSQ 6299 * @it__iter: DSQ iterator in progress 6300 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ 6301 * 6302 * Override the vtime of the next task that will be dispatched from @it__iter 6303 * using scx_bpf_dispatch_from_dsq_vtime(). If this function is not called, the 6304 * previous slice vtime is kept. If scx_bpf_dispatch_from_dsq() is used to 6305 * dispatch the next task, the override is ignored and cleared. 6306 */ 6307 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime( 6308 struct bpf_iter_scx_dsq *it__iter, u64 vtime) 6309 { 6310 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6311 6312 kit->vtime = vtime; 6313 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; 6314 } 6315 6316 /** 6317 * scx_bpf_dispatch_from_dsq - Move a task from DSQ iteration to a DSQ 6318 * @it__iter: DSQ iterator in progress 6319 * @p: task to transfer 6320 * @dsq_id: DSQ to move @p to 6321 * @enq_flags: SCX_ENQ_* 6322 * 6323 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ 6324 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can 6325 * be the destination. 6326 * 6327 * For the transfer to be successful, @p must still be on the DSQ and have been 6328 * queued before the DSQ iteration started. This function doesn't care whether 6329 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have 6330 * been queued before the iteration started. 6331 * 6332 * @p's slice is kept by default. Use scx_bpf_dispatch_from_dsq_set_slice() to 6333 * update. 6334 * 6335 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq 6336 * lock (e.g. BPF timers or SYSCALL programs). 6337 * 6338 * Returns %true if @p has been consumed, %false if @p had already been consumed 6339 * or dequeued. 6340 */ 6341 __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6342 struct task_struct *p, u64 dsq_id, 6343 u64 enq_flags) 6344 { 6345 return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter, 6346 p, dsq_id, enq_flags); 6347 } 6348 6349 /** 6350 * scx_bpf_dispatch_vtime_from_dsq - Move a task from DSQ iteration to a PRIQ DSQ 6351 * @it__iter: DSQ iterator in progress 6352 * @p: task to transfer 6353 * @dsq_id: DSQ to move @p to 6354 * @enq_flags: SCX_ENQ_* 6355 * 6356 * Transfer @p which is on the DSQ currently iterated by @it__iter to the 6357 * priority queue of the DSQ specified by @dsq_id. The destination must be a 6358 * user DSQ as only user DSQs support priority queue. 6359 * 6360 * @p's slice and vtime are kept by default. Use 6361 * scx_bpf_dispatch_from_dsq_set_slice() and 6362 * scx_bpf_dispatch_from_dsq_set_vtime() to update. 6363 * 6364 * All other aspects are identical to scx_bpf_dispatch_from_dsq(). See 6365 * scx_bpf_dispatch_vtime() for more information on @vtime. 6366 */ 6367 __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6368 struct task_struct *p, u64 dsq_id, 6369 u64 enq_flags) 6370 { 6371 return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter, 6372 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6373 } 6374 6375 __bpf_kfunc_end_defs(); 6376 6377 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 6378 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 6379 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 6380 BTF_ID_FLAGS(func, scx_bpf_consume) 6381 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) 6382 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) 6383 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6384 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6385 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 6386 6387 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 6388 .owner = THIS_MODULE, 6389 .set = &scx_kfunc_ids_dispatch, 6390 }; 6391 6392 __bpf_kfunc_start_defs(); 6393 6394 /** 6395 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 6396 * 6397 * Iterate over all of the tasks currently enqueued on the local DSQ of the 6398 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 6399 * processed tasks. Can only be called from ops.cpu_release(). 6400 */ 6401 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 6402 { 6403 LIST_HEAD(tasks); 6404 u32 nr_enqueued = 0; 6405 struct rq *rq; 6406 struct task_struct *p, *n; 6407 6408 if (!scx_kf_allowed(SCX_KF_CPU_RELEASE)) 6409 return 0; 6410 6411 rq = cpu_rq(smp_processor_id()); 6412 lockdep_assert_rq_held(rq); 6413 6414 /* 6415 * The BPF scheduler may choose to dispatch tasks back to 6416 * @rq->scx.local_dsq. Move all candidate tasks off to a private list 6417 * first to avoid processing the same tasks repeatedly. 6418 */ 6419 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, 6420 scx.dsq_list.node) { 6421 /* 6422 * If @p is being migrated, @p's current CPU may not agree with 6423 * its allowed CPUs and the migration_cpu_stop is about to 6424 * deactivate and re-activate @p anyway. Skip re-enqueueing. 6425 * 6426 * While racing sched property changes may also dequeue and 6427 * re-enqueue a migrating task while its current CPU and allowed 6428 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to 6429 * the current local DSQ for running tasks and thus are not 6430 * visible to the BPF scheduler. 6431 */ 6432 if (p->migration_pending) 6433 continue; 6434 6435 dispatch_dequeue(rq, p); 6436 list_add_tail(&p->scx.dsq_list.node, &tasks); 6437 } 6438 6439 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { 6440 list_del_init(&p->scx.dsq_list.node); 6441 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 6442 nr_enqueued++; 6443 } 6444 6445 return nr_enqueued; 6446 } 6447 6448 __bpf_kfunc_end_defs(); 6449 6450 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 6451 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 6452 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 6453 6454 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 6455 .owner = THIS_MODULE, 6456 .set = &scx_kfunc_ids_cpu_release, 6457 }; 6458 6459 __bpf_kfunc_start_defs(); 6460 6461 /** 6462 * scx_bpf_create_dsq - Create a custom DSQ 6463 * @dsq_id: DSQ to create 6464 * @node: NUMA node to allocate from 6465 * 6466 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable 6467 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. 6468 */ 6469 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 6470 { 6471 if (unlikely(node >= (int)nr_node_ids || 6472 (node < 0 && node != NUMA_NO_NODE))) 6473 return -EINVAL; 6474 return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node)); 6475 } 6476 6477 __bpf_kfunc_end_defs(); 6478 6479 BTF_KFUNCS_START(scx_kfunc_ids_unlocked) 6480 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 6481 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6482 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6483 BTF_KFUNCS_END(scx_kfunc_ids_unlocked) 6484 6485 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { 6486 .owner = THIS_MODULE, 6487 .set = &scx_kfunc_ids_unlocked, 6488 }; 6489 6490 __bpf_kfunc_start_defs(); 6491 6492 /** 6493 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 6494 * @cpu: cpu to kick 6495 * @flags: %SCX_KICK_* flags 6496 * 6497 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 6498 * trigger rescheduling on a busy CPU. This can be called from any online 6499 * scx_ops operation and the actual kicking is performed asynchronously through 6500 * an irq work. 6501 */ 6502 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 6503 { 6504 struct rq *this_rq; 6505 unsigned long irq_flags; 6506 6507 if (!ops_cpu_valid(cpu, NULL)) 6508 return; 6509 6510 local_irq_save(irq_flags); 6511 6512 this_rq = this_rq(); 6513 6514 /* 6515 * While bypassing for PM ops, IRQ handling may not be online which can 6516 * lead to irq_work_queue() malfunction such as infinite busy wait for 6517 * IRQ status update. Suppress kicking. 6518 */ 6519 if (scx_rq_bypassing(this_rq)) 6520 goto out; 6521 6522 /* 6523 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 6524 * rq locks. We can probably be smarter and avoid bouncing if called 6525 * from ops which don't hold a rq lock. 6526 */ 6527 if (flags & SCX_KICK_IDLE) { 6528 struct rq *target_rq = cpu_rq(cpu); 6529 6530 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 6531 scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 6532 6533 if (raw_spin_rq_trylock(target_rq)) { 6534 if (can_skip_idle_kick(target_rq)) { 6535 raw_spin_rq_unlock(target_rq); 6536 goto out; 6537 } 6538 raw_spin_rq_unlock(target_rq); 6539 } 6540 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 6541 } else { 6542 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 6543 6544 if (flags & SCX_KICK_PREEMPT) 6545 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 6546 if (flags & SCX_KICK_WAIT) 6547 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 6548 } 6549 6550 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 6551 out: 6552 local_irq_restore(irq_flags); 6553 } 6554 6555 /** 6556 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 6557 * @dsq_id: id of the DSQ 6558 * 6559 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 6560 * -%ENOENT is returned. 6561 */ 6562 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 6563 { 6564 struct scx_dispatch_q *dsq; 6565 s32 ret; 6566 6567 preempt_disable(); 6568 6569 if (dsq_id == SCX_DSQ_LOCAL) { 6570 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 6571 goto out; 6572 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 6573 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 6574 6575 if (ops_cpu_valid(cpu, NULL)) { 6576 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 6577 goto out; 6578 } 6579 } else { 6580 dsq = find_user_dsq(dsq_id); 6581 if (dsq) { 6582 ret = READ_ONCE(dsq->nr); 6583 goto out; 6584 } 6585 } 6586 ret = -ENOENT; 6587 out: 6588 preempt_enable(); 6589 return ret; 6590 } 6591 6592 /** 6593 * scx_bpf_destroy_dsq - Destroy a custom DSQ 6594 * @dsq_id: DSQ to destroy 6595 * 6596 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 6597 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 6598 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 6599 * which doesn't exist. Can be called from any online scx_ops operations. 6600 */ 6601 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 6602 { 6603 destroy_dsq(dsq_id); 6604 } 6605 6606 /** 6607 * bpf_iter_scx_dsq_new - Create a DSQ iterator 6608 * @it: iterator to initialize 6609 * @dsq_id: DSQ to iterate 6610 * @flags: %SCX_DSQ_ITER_* 6611 * 6612 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk 6613 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes 6614 * tasks which are already queued when this function is invoked. 6615 */ 6616 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, 6617 u64 flags) 6618 { 6619 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6620 6621 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > 6622 sizeof(struct bpf_iter_scx_dsq)); 6623 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != 6624 __alignof__(struct bpf_iter_scx_dsq)); 6625 6626 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) 6627 return -EINVAL; 6628 6629 kit->dsq = find_user_dsq(dsq_id); 6630 if (!kit->dsq) 6631 return -ENOENT; 6632 6633 INIT_LIST_HEAD(&kit->cursor.node); 6634 kit->cursor.flags |= SCX_DSQ_LNODE_ITER_CURSOR | flags; 6635 kit->cursor.priv = READ_ONCE(kit->dsq->seq); 6636 6637 return 0; 6638 } 6639 6640 /** 6641 * bpf_iter_scx_dsq_next - Progress a DSQ iterator 6642 * @it: iterator to progress 6643 * 6644 * Return the next task. See bpf_iter_scx_dsq_new(). 6645 */ 6646 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) 6647 { 6648 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6649 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; 6650 struct task_struct *p; 6651 unsigned long flags; 6652 6653 if (!kit->dsq) 6654 return NULL; 6655 6656 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6657 6658 if (list_empty(&kit->cursor.node)) 6659 p = NULL; 6660 else 6661 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); 6662 6663 /* 6664 * Only tasks which were queued before the iteration started are 6665 * visible. This bounds BPF iterations and guarantees that vtime never 6666 * jumps in the other direction while iterating. 6667 */ 6668 do { 6669 p = nldsq_next_task(kit->dsq, p, rev); 6670 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); 6671 6672 if (p) { 6673 if (rev) 6674 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); 6675 else 6676 list_move(&kit->cursor.node, &p->scx.dsq_list.node); 6677 } else { 6678 list_del_init(&kit->cursor.node); 6679 } 6680 6681 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6682 6683 return p; 6684 } 6685 6686 /** 6687 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator 6688 * @it: iterator to destroy 6689 * 6690 * Undo scx_iter_scx_dsq_new(). 6691 */ 6692 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) 6693 { 6694 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6695 6696 if (!kit->dsq) 6697 return; 6698 6699 if (!list_empty(&kit->cursor.node)) { 6700 unsigned long flags; 6701 6702 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6703 list_del_init(&kit->cursor.node); 6704 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6705 } 6706 kit->dsq = NULL; 6707 } 6708 6709 __bpf_kfunc_end_defs(); 6710 6711 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size, 6712 char *fmt, unsigned long long *data, u32 data__sz) 6713 { 6714 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 6715 s32 ret; 6716 6717 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 6718 (data__sz && !data)) { 6719 scx_ops_error("invalid data=%p and data__sz=%u", 6720 (void *)data, data__sz); 6721 return -EINVAL; 6722 } 6723 6724 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 6725 if (ret < 0) { 6726 scx_ops_error("failed to read data fields (%d)", ret); 6727 return ret; 6728 } 6729 6730 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 6731 &bprintf_data); 6732 if (ret < 0) { 6733 scx_ops_error("format preparation failed (%d)", ret); 6734 return ret; 6735 } 6736 6737 ret = bstr_printf(line_buf, line_size, fmt, 6738 bprintf_data.bin_args); 6739 bpf_bprintf_cleanup(&bprintf_data); 6740 if (ret < 0) { 6741 scx_ops_error("(\"%s\", %p, %u) failed to format", 6742 fmt, data, data__sz); 6743 return ret; 6744 } 6745 6746 return ret; 6747 } 6748 6749 static s32 bstr_format(struct scx_bstr_buf *buf, 6750 char *fmt, unsigned long long *data, u32 data__sz) 6751 { 6752 return __bstr_format(buf->data, buf->line, sizeof(buf->line), 6753 fmt, data, data__sz); 6754 } 6755 6756 __bpf_kfunc_start_defs(); 6757 6758 /** 6759 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 6760 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 6761 * @fmt: error message format string 6762 * @data: format string parameters packaged using ___bpf_fill() macro 6763 * @data__sz: @data len, must end in '__sz' for the verifier 6764 * 6765 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 6766 * disabling. 6767 */ 6768 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 6769 unsigned long long *data, u32 data__sz) 6770 { 6771 unsigned long flags; 6772 6773 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6774 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6775 scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s", 6776 scx_exit_bstr_buf.line); 6777 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6778 } 6779 6780 /** 6781 * scx_bpf_error_bstr - Indicate fatal error 6782 * @fmt: error message format string 6783 * @data: format string parameters packaged using ___bpf_fill() macro 6784 * @data__sz: @data len, must end in '__sz' for the verifier 6785 * 6786 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 6787 * disabling. 6788 */ 6789 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 6790 u32 data__sz) 6791 { 6792 unsigned long flags; 6793 6794 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6795 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6796 scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s", 6797 scx_exit_bstr_buf.line); 6798 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6799 } 6800 6801 /** 6802 * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler 6803 * @fmt: format string 6804 * @data: format string parameters packaged using ___bpf_fill() macro 6805 * @data__sz: @data len, must end in '__sz' for the verifier 6806 * 6807 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 6808 * dump_task() to generate extra debug dump specific to the BPF scheduler. 6809 * 6810 * The extra dump may be multiple lines. A single line may be split over 6811 * multiple calls. The last line is automatically terminated. 6812 */ 6813 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 6814 u32 data__sz) 6815 { 6816 struct scx_dump_data *dd = &scx_dump_data; 6817 struct scx_bstr_buf *buf = &dd->buf; 6818 s32 ret; 6819 6820 if (raw_smp_processor_id() != dd->cpu) { 6821 scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends"); 6822 return; 6823 } 6824 6825 /* append the formatted string to the line buf */ 6826 ret = __bstr_format(buf->data, buf->line + dd->cursor, 6827 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 6828 if (ret < 0) { 6829 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 6830 dd->prefix, fmt, data, data__sz, ret); 6831 return; 6832 } 6833 6834 dd->cursor += ret; 6835 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 6836 6837 if (!dd->cursor) 6838 return; 6839 6840 /* 6841 * If the line buf overflowed or ends in a newline, flush it into the 6842 * dump. This is to allow the caller to generate a single line over 6843 * multiple calls. As ops_dump_flush() can also handle multiple lines in 6844 * the line buf, the only case which can lead to an unexpected 6845 * truncation is when the caller keeps generating newlines in the middle 6846 * instead of the end consecutively. Don't do that. 6847 */ 6848 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 6849 ops_dump_flush(); 6850 } 6851 6852 /** 6853 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU 6854 * @cpu: CPU of interest 6855 * 6856 * Return the maximum relative capacity of @cpu in relation to the most 6857 * performant CPU in the system. The return value is in the range [1, 6858 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). 6859 */ 6860 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) 6861 { 6862 if (ops_cpu_valid(cpu, NULL)) 6863 return arch_scale_cpu_capacity(cpu); 6864 else 6865 return SCX_CPUPERF_ONE; 6866 } 6867 6868 /** 6869 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU 6870 * @cpu: CPU of interest 6871 * 6872 * Return the current relative performance of @cpu in relation to its maximum. 6873 * The return value is in the range [1, %SCX_CPUPERF_ONE]. 6874 * 6875 * The current performance level of a CPU in relation to the maximum performance 6876 * available in the system can be calculated as follows: 6877 * 6878 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE 6879 * 6880 * The result is in the range [1, %SCX_CPUPERF_ONE]. 6881 */ 6882 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) 6883 { 6884 if (ops_cpu_valid(cpu, NULL)) 6885 return arch_scale_freq_capacity(cpu); 6886 else 6887 return SCX_CPUPERF_ONE; 6888 } 6889 6890 /** 6891 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU 6892 * @cpu: CPU of interest 6893 * @perf: target performance level [0, %SCX_CPUPERF_ONE] 6894 * @flags: %SCX_CPUPERF_* flags 6895 * 6896 * Set the target performance level of @cpu to @perf. @perf is in linear 6897 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the 6898 * schedutil cpufreq governor chooses the target frequency. 6899 * 6900 * The actual performance level chosen, CPU grouping, and the overhead and 6901 * latency of the operations are dependent on the hardware and cpufreq driver in 6902 * use. Consult hardware and cpufreq documentation for more information. The 6903 * current performance level can be monitored using scx_bpf_cpuperf_cur(). 6904 */ 6905 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) 6906 { 6907 if (unlikely(perf > SCX_CPUPERF_ONE)) { 6908 scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu); 6909 return; 6910 } 6911 6912 if (ops_cpu_valid(cpu, NULL)) { 6913 struct rq *rq = cpu_rq(cpu); 6914 6915 rq->scx.cpuperf_target = perf; 6916 6917 rcu_read_lock_sched_notrace(); 6918 cpufreq_update_util(cpu_rq(cpu), 0); 6919 rcu_read_unlock_sched_notrace(); 6920 } 6921 } 6922 6923 /** 6924 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 6925 * 6926 * All valid CPU IDs in the system are smaller than the returned value. 6927 */ 6928 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 6929 { 6930 return nr_cpu_ids; 6931 } 6932 6933 /** 6934 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 6935 */ 6936 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 6937 { 6938 return cpu_possible_mask; 6939 } 6940 6941 /** 6942 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 6943 */ 6944 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 6945 { 6946 return cpu_online_mask; 6947 } 6948 6949 /** 6950 * scx_bpf_put_cpumask - Release a possible/online cpumask 6951 * @cpumask: cpumask to release 6952 */ 6953 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 6954 { 6955 /* 6956 * Empty function body because we aren't actually acquiring or releasing 6957 * a reference to a global cpumask, which is read-only in the caller and 6958 * is never released. The acquire / release semantics here are just used 6959 * to make the cpumask is a trusted pointer in the caller. 6960 */ 6961 } 6962 6963 /** 6964 * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking 6965 * per-CPU cpumask. 6966 * 6967 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 6968 */ 6969 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void) 6970 { 6971 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 6972 scx_ops_error("built-in idle tracking is disabled"); 6973 return cpu_none_mask; 6974 } 6975 6976 #ifdef CONFIG_SMP 6977 return idle_masks.cpu; 6978 #else 6979 return cpu_none_mask; 6980 #endif 6981 } 6982 6983 /** 6984 * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking, 6985 * per-physical-core cpumask. Can be used to determine if an entire physical 6986 * core is free. 6987 * 6988 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 6989 */ 6990 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void) 6991 { 6992 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 6993 scx_ops_error("built-in idle tracking is disabled"); 6994 return cpu_none_mask; 6995 } 6996 6997 #ifdef CONFIG_SMP 6998 if (sched_smt_active()) 6999 return idle_masks.smt; 7000 else 7001 return idle_masks.cpu; 7002 #else 7003 return cpu_none_mask; 7004 #endif 7005 } 7006 7007 /** 7008 * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to 7009 * either the percpu, or SMT idle-tracking cpumask. 7010 */ 7011 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask) 7012 { 7013 /* 7014 * Empty function body because we aren't actually acquiring or releasing 7015 * a reference to a global idle cpumask, which is read-only in the 7016 * caller and is never released. The acquire / release semantics here 7017 * are just used to make the cpumask a trusted pointer in the caller. 7018 */ 7019 } 7020 7021 /** 7022 * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state 7023 * @cpu: cpu to test and clear idle for 7024 * 7025 * Returns %true if @cpu was idle and its idle state was successfully cleared. 7026 * %false otherwise. 7027 * 7028 * Unavailable if ops.update_idle() is implemented and 7029 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 7030 */ 7031 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) 7032 { 7033 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 7034 scx_ops_error("built-in idle tracking is disabled"); 7035 return false; 7036 } 7037 7038 if (ops_cpu_valid(cpu, NULL)) 7039 return test_and_clear_cpu_idle(cpu); 7040 else 7041 return false; 7042 } 7043 7044 /** 7045 * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu 7046 * @cpus_allowed: Allowed cpumask 7047 * @flags: %SCX_PICK_IDLE_CPU_* flags 7048 * 7049 * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu 7050 * number on success. -%EBUSY if no matching cpu was found. 7051 * 7052 * Idle CPU tracking may race against CPU scheduling state transitions. For 7053 * example, this function may return -%EBUSY as CPUs are transitioning into the 7054 * idle state. If the caller then assumes that there will be dispatch events on 7055 * the CPUs as they were all busy, the scheduler may end up stalling with CPUs 7056 * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and 7057 * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch 7058 * event in the near future. 7059 * 7060 * Unavailable if ops.update_idle() is implemented and 7061 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 7062 */ 7063 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed, 7064 u64 flags) 7065 { 7066 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 7067 scx_ops_error("built-in idle tracking is disabled"); 7068 return -EBUSY; 7069 } 7070 7071 return scx_pick_idle_cpu(cpus_allowed, flags); 7072 } 7073 7074 /** 7075 * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU 7076 * @cpus_allowed: Allowed cpumask 7077 * @flags: %SCX_PICK_IDLE_CPU_* flags 7078 * 7079 * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any 7080 * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu 7081 * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is 7082 * empty. 7083 * 7084 * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not 7085 * set, this function can't tell which CPUs are idle and will always pick any 7086 * CPU. 7087 */ 7088 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed, 7089 u64 flags) 7090 { 7091 s32 cpu; 7092 7093 if (static_branch_likely(&scx_builtin_idle_enabled)) { 7094 cpu = scx_pick_idle_cpu(cpus_allowed, flags); 7095 if (cpu >= 0) 7096 return cpu; 7097 } 7098 7099 cpu = cpumask_any_distribute(cpus_allowed); 7100 if (cpu < nr_cpu_ids) 7101 return cpu; 7102 else 7103 return -EBUSY; 7104 } 7105 7106 /** 7107 * scx_bpf_task_running - Is task currently running? 7108 * @p: task of interest 7109 */ 7110 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 7111 { 7112 return task_rq(p)->curr == p; 7113 } 7114 7115 /** 7116 * scx_bpf_task_cpu - CPU a task is currently associated with 7117 * @p: task of interest 7118 */ 7119 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 7120 { 7121 return task_cpu(p); 7122 } 7123 7124 /** 7125 * scx_bpf_cpu_rq - Fetch the rq of a CPU 7126 * @cpu: CPU of the rq 7127 */ 7128 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) 7129 { 7130 if (!ops_cpu_valid(cpu, NULL)) 7131 return NULL; 7132 7133 return cpu_rq(cpu); 7134 } 7135 7136 /** 7137 * scx_bpf_task_cgroup - Return the sched cgroup of a task 7138 * @p: task of interest 7139 * 7140 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with 7141 * from the scheduler's POV. SCX operations should use this function to 7142 * determine @p's current cgroup as, unlike following @p->cgroups, 7143 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all 7144 * rq-locked operations. Can be called on the parameter tasks of rq-locked 7145 * operations. The restriction guarantees that @p's rq is locked by the caller. 7146 */ 7147 #ifdef CONFIG_CGROUP_SCHED 7148 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) 7149 { 7150 struct task_group *tg = p->sched_task_group; 7151 struct cgroup *cgrp = &cgrp_dfl_root.cgrp; 7152 7153 if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p)) 7154 goto out; 7155 7156 /* 7157 * A task_group may either be a cgroup or an autogroup. In the latter 7158 * case, @tg->css.cgroup is %NULL. A task_group can't become the other 7159 * kind once created. 7160 */ 7161 if (tg && tg->css.cgroup) 7162 cgrp = tg->css.cgroup; 7163 else 7164 cgrp = &cgrp_dfl_root.cgrp; 7165 out: 7166 cgroup_get(cgrp); 7167 return cgrp; 7168 } 7169 #endif 7170 7171 __bpf_kfunc_end_defs(); 7172 7173 BTF_KFUNCS_START(scx_kfunc_ids_any) 7174 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 7175 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 7176 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 7177 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) 7178 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) 7179 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) 7180 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 7181 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 7182 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 7183 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) 7184 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) 7185 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) 7186 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 7187 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 7188 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 7189 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 7190 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE) 7191 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE) 7192 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE) 7193 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle) 7194 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU) 7195 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU) 7196 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 7197 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 7198 BTF_ID_FLAGS(func, scx_bpf_cpu_rq) 7199 #ifdef CONFIG_CGROUP_SCHED 7200 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) 7201 #endif 7202 BTF_KFUNCS_END(scx_kfunc_ids_any) 7203 7204 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 7205 .owner = THIS_MODULE, 7206 .set = &scx_kfunc_ids_any, 7207 }; 7208 7209 static int __init scx_init(void) 7210 { 7211 int ret; 7212 7213 /* 7214 * kfunc registration can't be done from init_sched_ext_class() as 7215 * register_btf_kfunc_id_set() needs most of the system to be up. 7216 * 7217 * Some kfuncs are context-sensitive and can only be called from 7218 * specific SCX ops. They are grouped into BTF sets accordingly. 7219 * Unfortunately, BPF currently doesn't have a way of enforcing such 7220 * restrictions. Eventually, the verifier should be able to enforce 7221 * them. For now, register them the same and make each kfunc explicitly 7222 * check using scx_kf_allowed(). 7223 */ 7224 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7225 &scx_kfunc_set_select_cpu)) || 7226 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7227 &scx_kfunc_set_enqueue_dispatch)) || 7228 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7229 &scx_kfunc_set_dispatch)) || 7230 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7231 &scx_kfunc_set_cpu_release)) || 7232 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7233 &scx_kfunc_set_unlocked)) || 7234 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7235 &scx_kfunc_set_unlocked)) || 7236 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7237 &scx_kfunc_set_any)) || 7238 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 7239 &scx_kfunc_set_any)) || 7240 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7241 &scx_kfunc_set_any))) { 7242 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 7243 return ret; 7244 } 7245 7246 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 7247 if (ret) { 7248 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 7249 return ret; 7250 } 7251 7252 ret = register_pm_notifier(&scx_pm_notifier); 7253 if (ret) { 7254 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); 7255 return ret; 7256 } 7257 7258 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 7259 if (!scx_kset) { 7260 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 7261 return -ENOMEM; 7262 } 7263 7264 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 7265 if (ret < 0) { 7266 pr_err("sched_ext: Failed to add global attributes\n"); 7267 return ret; 7268 } 7269 7270 return 0; 7271 } 7272 __initcall(scx_init); 7273