1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst 4 * 5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 7 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 8 */ 9 #define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void))) 10 11 enum scx_consts { 12 SCX_DSP_DFL_MAX_BATCH = 32, 13 SCX_DSP_MAX_LOOPS = 32, 14 SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ, 15 16 SCX_EXIT_BT_LEN = 64, 17 SCX_EXIT_MSG_LEN = 1024, 18 SCX_EXIT_DUMP_DFL_LEN = 32768, 19 20 SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE, 21 22 /* 23 * Iterating all tasks may take a while. Periodically drop 24 * scx_tasks_lock to avoid causing e.g. CSD and RCU stalls. 25 */ 26 SCX_OPS_TASK_ITER_BATCH = 32, 27 }; 28 29 enum scx_exit_kind { 30 SCX_EXIT_NONE, 31 SCX_EXIT_DONE, 32 33 SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */ 34 SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */ 35 SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */ 36 SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */ 37 38 SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */ 39 SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */ 40 SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */ 41 }; 42 43 /* 44 * An exit code can be specified when exiting with scx_bpf_exit() or 45 * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN 46 * respectively. The codes are 64bit of the format: 47 * 48 * Bits: [63 .. 48 47 .. 32 31 .. 0] 49 * [ SYS ACT ] [ SYS RSN ] [ USR ] 50 * 51 * SYS ACT: System-defined exit actions 52 * SYS RSN: System-defined exit reasons 53 * USR : User-defined exit codes and reasons 54 * 55 * Using the above, users may communicate intention and context by ORing system 56 * actions and/or system reasons with a user-defined exit code. 57 */ 58 enum scx_exit_code { 59 /* Reasons */ 60 SCX_ECODE_RSN_HOTPLUG = 1LLU << 32, 61 62 /* Actions */ 63 SCX_ECODE_ACT_RESTART = 1LLU << 48, 64 }; 65 66 /* 67 * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is 68 * being disabled. 69 */ 70 struct scx_exit_info { 71 /* %SCX_EXIT_* - broad category of the exit reason */ 72 enum scx_exit_kind kind; 73 74 /* exit code if gracefully exiting */ 75 s64 exit_code; 76 77 /* textual representation of the above */ 78 const char *reason; 79 80 /* backtrace if exiting due to an error */ 81 unsigned long *bt; 82 u32 bt_len; 83 84 /* informational message */ 85 char *msg; 86 87 /* debug dump */ 88 char *dump; 89 }; 90 91 /* sched_ext_ops.flags */ 92 enum scx_ops_flags { 93 /* 94 * Keep built-in idle tracking even if ops.update_idle() is implemented. 95 */ 96 SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0, 97 98 /* 99 * By default, if there are no other task to run on the CPU, ext core 100 * keeps running the current task even after its slice expires. If this 101 * flag is specified, such tasks are passed to ops.enqueue() with 102 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info. 103 */ 104 SCX_OPS_ENQ_LAST = 1LLU << 1, 105 106 /* 107 * An exiting task may schedule after PF_EXITING is set. In such cases, 108 * bpf_task_from_pid() may not be able to find the task and if the BPF 109 * scheduler depends on pid lookup for dispatching, the task will be 110 * lost leading to various issues including RCU grace period stalls. 111 * 112 * To mask this problem, by default, unhashed tasks are automatically 113 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't 114 * depend on pid lookups and wants to handle these tasks directly, the 115 * following flag can be used. 116 */ 117 SCX_OPS_ENQ_EXITING = 1LLU << 2, 118 119 /* 120 * If set, only tasks with policy set to SCHED_EXT are attached to 121 * sched_ext. If clear, SCHED_NORMAL tasks are also included. 122 */ 123 SCX_OPS_SWITCH_PARTIAL = 1LLU << 3, 124 125 /* 126 * CPU cgroup support flags 127 */ 128 SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16, /* cpu.weight */ 129 130 SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE | 131 SCX_OPS_ENQ_LAST | 132 SCX_OPS_ENQ_EXITING | 133 SCX_OPS_SWITCH_PARTIAL | 134 SCX_OPS_HAS_CGROUP_WEIGHT, 135 }; 136 137 /* argument container for ops.init_task() */ 138 struct scx_init_task_args { 139 /* 140 * Set if ops.init_task() is being invoked on the fork path, as opposed 141 * to the scheduler transition path. 142 */ 143 bool fork; 144 #ifdef CONFIG_EXT_GROUP_SCHED 145 /* the cgroup the task is joining */ 146 struct cgroup *cgroup; 147 #endif 148 }; 149 150 /* argument container for ops.exit_task() */ 151 struct scx_exit_task_args { 152 /* Whether the task exited before running on sched_ext. */ 153 bool cancelled; 154 }; 155 156 /* argument container for ops->cgroup_init() */ 157 struct scx_cgroup_init_args { 158 /* the weight of the cgroup [1..10000] */ 159 u32 weight; 160 }; 161 162 enum scx_cpu_preempt_reason { 163 /* next task is being scheduled by &sched_class_rt */ 164 SCX_CPU_PREEMPT_RT, 165 /* next task is being scheduled by &sched_class_dl */ 166 SCX_CPU_PREEMPT_DL, 167 /* next task is being scheduled by &sched_class_stop */ 168 SCX_CPU_PREEMPT_STOP, 169 /* unknown reason for SCX being preempted */ 170 SCX_CPU_PREEMPT_UNKNOWN, 171 }; 172 173 /* 174 * Argument container for ops->cpu_acquire(). Currently empty, but may be 175 * expanded in the future. 176 */ 177 struct scx_cpu_acquire_args {}; 178 179 /* argument container for ops->cpu_release() */ 180 struct scx_cpu_release_args { 181 /* the reason the CPU was preempted */ 182 enum scx_cpu_preempt_reason reason; 183 184 /* the task that's going to be scheduled on the CPU */ 185 struct task_struct *task; 186 }; 187 188 /* 189 * Informational context provided to dump operations. 190 */ 191 struct scx_dump_ctx { 192 enum scx_exit_kind kind; 193 s64 exit_code; 194 const char *reason; 195 u64 at_ns; 196 u64 at_jiffies; 197 }; 198 199 /** 200 * struct sched_ext_ops - Operation table for BPF scheduler implementation 201 * 202 * A BPF scheduler can implement an arbitrary scheduling policy by 203 * implementing and loading operations in this table. Note that a userland 204 * scheduling policy can also be implemented using the BPF scheduler 205 * as a shim layer. 206 */ 207 struct sched_ext_ops { 208 /** 209 * @select_cpu: Pick the target CPU for a task which is being woken up 210 * @p: task being woken up 211 * @prev_cpu: the cpu @p was on before sleeping 212 * @wake_flags: SCX_WAKE_* 213 * 214 * Decision made here isn't final. @p may be moved to any CPU while it 215 * is getting dispatched for execution later. However, as @p is not on 216 * the rq at this point, getting the eventual execution CPU right here 217 * saves a small bit of overhead down the line. 218 * 219 * If an idle CPU is returned, the CPU is kicked and will try to 220 * dispatch. While an explicit custom mechanism can be added, 221 * select_cpu() serves as the default way to wake up idle CPUs. 222 * 223 * @p may be inserted into a DSQ directly by calling 224 * scx_bpf_dsq_insert(). If so, the ops.enqueue() will be skipped. 225 * Directly inserting into %SCX_DSQ_LOCAL will put @p in the local DSQ 226 * of the CPU returned by this operation. 227 * 228 * Note that select_cpu() is never called for tasks that can only run 229 * on a single CPU or tasks with migration disabled, as they don't have 230 * the option to select a different CPU. See select_task_rq() for 231 * details. 232 */ 233 s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags); 234 235 /** 236 * @enqueue: Enqueue a task on the BPF scheduler 237 * @p: task being enqueued 238 * @enq_flags: %SCX_ENQ_* 239 * 240 * @p is ready to run. Insert directly into a DSQ by calling 241 * scx_bpf_dsq_insert() or enqueue on the BPF scheduler. If not directly 242 * inserted, the bpf scheduler owns @p and if it fails to dispatch @p, 243 * the task will stall. 244 * 245 * If @p was inserted into a DSQ from ops.select_cpu(), this callback is 246 * skipped. 247 */ 248 void (*enqueue)(struct task_struct *p, u64 enq_flags); 249 250 /** 251 * @dequeue: Remove a task from the BPF scheduler 252 * @p: task being dequeued 253 * @deq_flags: %SCX_DEQ_* 254 * 255 * Remove @p from the BPF scheduler. This is usually called to isolate 256 * the task while updating its scheduling properties (e.g. priority). 257 * 258 * The ext core keeps track of whether the BPF side owns a given task or 259 * not and can gracefully ignore spurious dispatches from BPF side, 260 * which makes it safe to not implement this method. However, depending 261 * on the scheduling logic, this can lead to confusing behaviors - e.g. 262 * scheduling position not being updated across a priority change. 263 */ 264 void (*dequeue)(struct task_struct *p, u64 deq_flags); 265 266 /** 267 * @dispatch: Dispatch tasks from the BPF scheduler and/or user DSQs 268 * @cpu: CPU to dispatch tasks for 269 * @prev: previous task being switched out 270 * 271 * Called when a CPU's local dsq is empty. The operation should dispatch 272 * one or more tasks from the BPF scheduler into the DSQs using 273 * scx_bpf_dsq_insert() and/or move from user DSQs into the local DSQ 274 * using scx_bpf_dsq_move_to_local(). 275 * 276 * The maximum number of times scx_bpf_dsq_insert() can be called 277 * without an intervening scx_bpf_dsq_move_to_local() is specified by 278 * ops.dispatch_max_batch. See the comments on top of the two functions 279 * for more details. 280 * 281 * When not %NULL, @prev is an SCX task with its slice depleted. If 282 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in 283 * @prev->scx.flags, it is not enqueued yet and will be enqueued after 284 * ops.dispatch() returns. To keep executing @prev, return without 285 * dispatching or moving any tasks. Also see %SCX_OPS_ENQ_LAST. 286 */ 287 void (*dispatch)(s32 cpu, struct task_struct *prev); 288 289 /** 290 * @tick: Periodic tick 291 * @p: task running currently 292 * 293 * This operation is called every 1/HZ seconds on CPUs which are 294 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an 295 * immediate dispatch cycle on the CPU. 296 */ 297 void (*tick)(struct task_struct *p); 298 299 /** 300 * @runnable: A task is becoming runnable on its associated CPU 301 * @p: task becoming runnable 302 * @enq_flags: %SCX_ENQ_* 303 * 304 * This and the following three functions can be used to track a task's 305 * execution state transitions. A task becomes ->runnable() on a CPU, 306 * and then goes through one or more ->running() and ->stopping() pairs 307 * as it runs on the CPU, and eventually becomes ->quiescent() when it's 308 * done running on the CPU. 309 * 310 * @p is becoming runnable on the CPU because it's 311 * 312 * - waking up (%SCX_ENQ_WAKEUP) 313 * - being moved from another CPU 314 * - being restored after temporarily taken off the queue for an 315 * attribute change. 316 * 317 * This and ->enqueue() are related but not coupled. This operation 318 * notifies @p's state transition and may not be followed by ->enqueue() 319 * e.g. when @p is being dispatched to a remote CPU, or when @p is 320 * being enqueued on a CPU experiencing a hotplug event. Likewise, a 321 * task may be ->enqueue()'d without being preceded by this operation 322 * e.g. after exhausting its slice. 323 */ 324 void (*runnable)(struct task_struct *p, u64 enq_flags); 325 326 /** 327 * @running: A task is starting to run on its associated CPU 328 * @p: task starting to run 329 * 330 * See ->runnable() for explanation on the task state notifiers. 331 */ 332 void (*running)(struct task_struct *p); 333 334 /** 335 * @stopping: A task is stopping execution 336 * @p: task stopping to run 337 * @runnable: is task @p still runnable? 338 * 339 * See ->runnable() for explanation on the task state notifiers. If 340 * !@runnable, ->quiescent() will be invoked after this operation 341 * returns. 342 */ 343 void (*stopping)(struct task_struct *p, bool runnable); 344 345 /** 346 * @quiescent: A task is becoming not runnable on its associated CPU 347 * @p: task becoming not runnable 348 * @deq_flags: %SCX_DEQ_* 349 * 350 * See ->runnable() for explanation on the task state notifiers. 351 * 352 * @p is becoming quiescent on the CPU because it's 353 * 354 * - sleeping (%SCX_DEQ_SLEEP) 355 * - being moved to another CPU 356 * - being temporarily taken off the queue for an attribute change 357 * (%SCX_DEQ_SAVE) 358 * 359 * This and ->dequeue() are related but not coupled. This operation 360 * notifies @p's state transition and may not be preceded by ->dequeue() 361 * e.g. when @p is being dispatched to a remote CPU. 362 */ 363 void (*quiescent)(struct task_struct *p, u64 deq_flags); 364 365 /** 366 * @yield: Yield CPU 367 * @from: yielding task 368 * @to: optional yield target task 369 * 370 * If @to is NULL, @from is yielding the CPU to other runnable tasks. 371 * The BPF scheduler should ensure that other available tasks are 372 * dispatched before the yielding task. Return value is ignored in this 373 * case. 374 * 375 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf 376 * scheduler can implement the request, return %true; otherwise, %false. 377 */ 378 bool (*yield)(struct task_struct *from, struct task_struct *to); 379 380 /** 381 * @core_sched_before: Task ordering for core-sched 382 * @a: task A 383 * @b: task B 384 * 385 * Used by core-sched to determine the ordering between two tasks. See 386 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on 387 * core-sched. 388 * 389 * Both @a and @b are runnable and may or may not currently be queued on 390 * the BPF scheduler. Should return %true if @a should run before @b. 391 * %false if there's no required ordering or @b should run before @a. 392 * 393 * If not specified, the default is ordering them according to when they 394 * became runnable. 395 */ 396 bool (*core_sched_before)(struct task_struct *a, struct task_struct *b); 397 398 /** 399 * @set_weight: Set task weight 400 * @p: task to set weight for 401 * @weight: new weight [1..10000] 402 * 403 * Update @p's weight to @weight. 404 */ 405 void (*set_weight)(struct task_struct *p, u32 weight); 406 407 /** 408 * @set_cpumask: Set CPU affinity 409 * @p: task to set CPU affinity for 410 * @cpumask: cpumask of cpus that @p can run on 411 * 412 * Update @p's CPU affinity to @cpumask. 413 */ 414 void (*set_cpumask)(struct task_struct *p, 415 const struct cpumask *cpumask); 416 417 /** 418 * @update_idle: Update the idle state of a CPU 419 * @cpu: CPU to udpate the idle state for 420 * @idle: whether entering or exiting the idle state 421 * 422 * This operation is called when @rq's CPU goes or leaves the idle 423 * state. By default, implementing this operation disables the built-in 424 * idle CPU tracking and the following helpers become unavailable: 425 * 426 * - scx_bpf_select_cpu_dfl() 427 * - scx_bpf_test_and_clear_cpu_idle() 428 * - scx_bpf_pick_idle_cpu() 429 * 430 * The user also must implement ops.select_cpu() as the default 431 * implementation relies on scx_bpf_select_cpu_dfl(). 432 * 433 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle 434 * tracking. 435 */ 436 void (*update_idle)(s32 cpu, bool idle); 437 438 /** 439 * @cpu_acquire: A CPU is becoming available to the BPF scheduler 440 * @cpu: The CPU being acquired by the BPF scheduler. 441 * @args: Acquire arguments, see the struct definition. 442 * 443 * A CPU that was previously released from the BPF scheduler is now once 444 * again under its control. 445 */ 446 void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args); 447 448 /** 449 * @cpu_release: A CPU is taken away from the BPF scheduler 450 * @cpu: The CPU being released by the BPF scheduler. 451 * @args: Release arguments, see the struct definition. 452 * 453 * The specified CPU is no longer under the control of the BPF 454 * scheduler. This could be because it was preempted by a higher 455 * priority sched_class, though there may be other reasons as well. The 456 * caller should consult @args->reason to determine the cause. 457 */ 458 void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args); 459 460 /** 461 * @init_task: Initialize a task to run in a BPF scheduler 462 * @p: task to initialize for BPF scheduling 463 * @args: init arguments, see the struct definition 464 * 465 * Either we're loading a BPF scheduler or a new task is being forked. 466 * Initialize @p for BPF scheduling. This operation may block and can 467 * be used for allocations, and is called exactly once for a task. 468 * 469 * Return 0 for success, -errno for failure. An error return while 470 * loading will abort loading of the BPF scheduler. During a fork, it 471 * will abort that specific fork. 472 */ 473 s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args); 474 475 /** 476 * @exit_task: Exit a previously-running task from the system 477 * @p: task to exit 478 * @args: exit arguments, see the struct definition 479 * 480 * @p is exiting or the BPF scheduler is being unloaded. Perform any 481 * necessary cleanup for @p. 482 */ 483 void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args); 484 485 /** 486 * @enable: Enable BPF scheduling for a task 487 * @p: task to enable BPF scheduling for 488 * 489 * Enable @p for BPF scheduling. enable() is called on @p any time it 490 * enters SCX, and is always paired with a matching disable(). 491 */ 492 void (*enable)(struct task_struct *p); 493 494 /** 495 * @disable: Disable BPF scheduling for a task 496 * @p: task to disable BPF scheduling for 497 * 498 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded. 499 * Disable BPF scheduling for @p. A disable() call is always matched 500 * with a prior enable() call. 501 */ 502 void (*disable)(struct task_struct *p); 503 504 /** 505 * @dump: Dump BPF scheduler state on error 506 * @ctx: debug dump context 507 * 508 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump. 509 */ 510 void (*dump)(struct scx_dump_ctx *ctx); 511 512 /** 513 * @dump_cpu: Dump BPF scheduler state for a CPU on error 514 * @ctx: debug dump context 515 * @cpu: CPU to generate debug dump for 516 * @idle: @cpu is currently idle without any runnable tasks 517 * 518 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 519 * @cpu. If @idle is %true and this operation doesn't produce any 520 * output, @cpu is skipped for dump. 521 */ 522 void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle); 523 524 /** 525 * @dump_task: Dump BPF scheduler state for a runnable task on error 526 * @ctx: debug dump context 527 * @p: runnable task to generate debug dump for 528 * 529 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 530 * @p. 531 */ 532 void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p); 533 534 #ifdef CONFIG_EXT_GROUP_SCHED 535 /** 536 * @cgroup_init: Initialize a cgroup 537 * @cgrp: cgroup being initialized 538 * @args: init arguments, see the struct definition 539 * 540 * Either the BPF scheduler is being loaded or @cgrp created, initialize 541 * @cgrp for sched_ext. This operation may block. 542 * 543 * Return 0 for success, -errno for failure. An error return while 544 * loading will abort loading of the BPF scheduler. During cgroup 545 * creation, it will abort the specific cgroup creation. 546 */ 547 s32 (*cgroup_init)(struct cgroup *cgrp, 548 struct scx_cgroup_init_args *args); 549 550 /** 551 * @cgroup_exit: Exit a cgroup 552 * @cgrp: cgroup being exited 553 * 554 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit 555 * @cgrp for sched_ext. This operation my block. 556 */ 557 void (*cgroup_exit)(struct cgroup *cgrp); 558 559 /** 560 * @cgroup_prep_move: Prepare a task to be moved to a different cgroup 561 * @p: task being moved 562 * @from: cgroup @p is being moved from 563 * @to: cgroup @p is being moved to 564 * 565 * Prepare @p for move from cgroup @from to @to. This operation may 566 * block and can be used for allocations. 567 * 568 * Return 0 for success, -errno for failure. An error return aborts the 569 * migration. 570 */ 571 s32 (*cgroup_prep_move)(struct task_struct *p, 572 struct cgroup *from, struct cgroup *to); 573 574 /** 575 * @cgroup_move: Commit cgroup move 576 * @p: task being moved 577 * @from: cgroup @p is being moved from 578 * @to: cgroup @p is being moved to 579 * 580 * Commit the move. @p is dequeued during this operation. 581 */ 582 void (*cgroup_move)(struct task_struct *p, 583 struct cgroup *from, struct cgroup *to); 584 585 /** 586 * @cgroup_cancel_move: Cancel cgroup move 587 * @p: task whose cgroup move is being canceled 588 * @from: cgroup @p was being moved from 589 * @to: cgroup @p was being moved to 590 * 591 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move(). 592 * Undo the preparation. 593 */ 594 void (*cgroup_cancel_move)(struct task_struct *p, 595 struct cgroup *from, struct cgroup *to); 596 597 /** 598 * @cgroup_set_weight: A cgroup's weight is being changed 599 * @cgrp: cgroup whose weight is being updated 600 * @weight: new weight [1..10000] 601 * 602 * Update @tg's weight to @weight. 603 */ 604 void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight); 605 #endif /* CONFIG_EXT_GROUP_SCHED */ 606 607 /* 608 * All online ops must come before ops.cpu_online(). 609 */ 610 611 /** 612 * @cpu_online: A CPU became online 613 * @cpu: CPU which just came up 614 * 615 * @cpu just came online. @cpu will not call ops.enqueue() or 616 * ops.dispatch(), nor run tasks associated with other CPUs beforehand. 617 */ 618 void (*cpu_online)(s32 cpu); 619 620 /** 621 * @cpu_offline: A CPU is going offline 622 * @cpu: CPU which is going offline 623 * 624 * @cpu is going offline. @cpu will not call ops.enqueue() or 625 * ops.dispatch(), nor run tasks associated with other CPUs afterwards. 626 */ 627 void (*cpu_offline)(s32 cpu); 628 629 /* 630 * All CPU hotplug ops must come before ops.init(). 631 */ 632 633 /** 634 * @init: Initialize the BPF scheduler 635 */ 636 s32 (*init)(void); 637 638 /** 639 * @exit: Clean up after the BPF scheduler 640 * @info: Exit info 641 * 642 * ops.exit() is also called on ops.init() failure, which is a bit 643 * unusual. This is to allow rich reporting through @info on how 644 * ops.init() failed. 645 */ 646 void (*exit)(struct scx_exit_info *info); 647 648 /** 649 * @dispatch_max_batch: Max nr of tasks that dispatch() can dispatch 650 */ 651 u32 dispatch_max_batch; 652 653 /** 654 * @flags: %SCX_OPS_* flags 655 */ 656 u64 flags; 657 658 /** 659 * @timeout_ms: The maximum amount of time, in milliseconds, that a 660 * runnable task should be able to wait before being scheduled. The 661 * maximum timeout may not exceed the default timeout of 30 seconds. 662 * 663 * Defaults to the maximum allowed timeout value of 30 seconds. 664 */ 665 u32 timeout_ms; 666 667 /** 668 * @exit_dump_len: scx_exit_info.dump buffer length. If 0, the default 669 * value of 32768 is used. 670 */ 671 u32 exit_dump_len; 672 673 /** 674 * @hotplug_seq: A sequence number that may be set by the scheduler to 675 * detect when a hotplug event has occurred during the loading process. 676 * If 0, no detection occurs. Otherwise, the scheduler will fail to 677 * load if the sequence number does not match @scx_hotplug_seq on the 678 * enable path. 679 */ 680 u64 hotplug_seq; 681 682 /** 683 * @name: BPF scheduler's name 684 * 685 * Must be a non-zero valid BPF object name including only isalnum(), 686 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the 687 * BPF scheduler is enabled. 688 */ 689 char name[SCX_OPS_NAME_LEN]; 690 }; 691 692 enum scx_opi { 693 SCX_OPI_BEGIN = 0, 694 SCX_OPI_NORMAL_BEGIN = 0, 695 SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online), 696 SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online), 697 SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init), 698 SCX_OPI_END = SCX_OP_IDX(init), 699 }; 700 701 enum scx_wake_flags { 702 /* expose select WF_* flags as enums */ 703 SCX_WAKE_FORK = WF_FORK, 704 SCX_WAKE_TTWU = WF_TTWU, 705 SCX_WAKE_SYNC = WF_SYNC, 706 }; 707 708 enum scx_enq_flags { 709 /* expose select ENQUEUE_* flags as enums */ 710 SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP, 711 SCX_ENQ_HEAD = ENQUEUE_HEAD, 712 SCX_ENQ_CPU_SELECTED = ENQUEUE_RQ_SELECTED, 713 714 /* high 32bits are SCX specific */ 715 716 /* 717 * Set the following to trigger preemption when calling 718 * scx_bpf_dsq_insert() with a local dsq as the target. The slice of the 719 * current task is cleared to zero and the CPU is kicked into the 720 * scheduling path. Implies %SCX_ENQ_HEAD. 721 */ 722 SCX_ENQ_PREEMPT = 1LLU << 32, 723 724 /* 725 * The task being enqueued was previously enqueued on the current CPU's 726 * %SCX_DSQ_LOCAL, but was removed from it in a call to the 727 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was 728 * invoked in a ->cpu_release() callback, and the task is again 729 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the 730 * task will not be scheduled on the CPU until at least the next invocation 731 * of the ->cpu_acquire() callback. 732 */ 733 SCX_ENQ_REENQ = 1LLU << 40, 734 735 /* 736 * The task being enqueued is the only task available for the cpu. By 737 * default, ext core keeps executing such tasks but when 738 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the 739 * %SCX_ENQ_LAST flag set. 740 * 741 * The BPF scheduler is responsible for triggering a follow-up 742 * scheduling event. Otherwise, Execution may stall. 743 */ 744 SCX_ENQ_LAST = 1LLU << 41, 745 746 /* high 8 bits are internal */ 747 __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56, 748 749 SCX_ENQ_CLEAR_OPSS = 1LLU << 56, 750 SCX_ENQ_DSQ_PRIQ = 1LLU << 57, 751 }; 752 753 enum scx_deq_flags { 754 /* expose select DEQUEUE_* flags as enums */ 755 SCX_DEQ_SLEEP = DEQUEUE_SLEEP, 756 757 /* high 32bits are SCX specific */ 758 759 /* 760 * The generic core-sched layer decided to execute the task even though 761 * it hasn't been dispatched yet. Dequeue from the BPF side. 762 */ 763 SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32, 764 }; 765 766 enum scx_pick_idle_cpu_flags { 767 SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */ 768 }; 769 770 enum scx_kick_flags { 771 /* 772 * Kick the target CPU if idle. Guarantees that the target CPU goes 773 * through at least one full scheduling cycle before going idle. If the 774 * target CPU can be determined to be currently not idle and going to go 775 * through a scheduling cycle before going idle, noop. 776 */ 777 SCX_KICK_IDLE = 1LLU << 0, 778 779 /* 780 * Preempt the current task and execute the dispatch path. If the 781 * current task of the target CPU is an SCX task, its ->scx.slice is 782 * cleared to zero before the scheduling path is invoked so that the 783 * task expires and the dispatch path is invoked. 784 */ 785 SCX_KICK_PREEMPT = 1LLU << 1, 786 787 /* 788 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will 789 * return after the target CPU finishes picking the next task. 790 */ 791 SCX_KICK_WAIT = 1LLU << 2, 792 }; 793 794 enum scx_tg_flags { 795 SCX_TG_ONLINE = 1U << 0, 796 SCX_TG_INITED = 1U << 1, 797 }; 798 799 enum scx_ops_enable_state { 800 SCX_OPS_ENABLING, 801 SCX_OPS_ENABLED, 802 SCX_OPS_DISABLING, 803 SCX_OPS_DISABLED, 804 }; 805 806 static const char *scx_ops_enable_state_str[] = { 807 [SCX_OPS_ENABLING] = "enabling", 808 [SCX_OPS_ENABLED] = "enabled", 809 [SCX_OPS_DISABLING] = "disabling", 810 [SCX_OPS_DISABLED] = "disabled", 811 }; 812 813 /* 814 * sched_ext_entity->ops_state 815 * 816 * Used to track the task ownership between the SCX core and the BPF scheduler. 817 * State transitions look as follows: 818 * 819 * NONE -> QUEUEING -> QUEUED -> DISPATCHING 820 * ^ | | 821 * | v v 822 * \-------------------------------/ 823 * 824 * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call 825 * sites for explanations on the conditions being waited upon and why they are 826 * safe. Transitions out of them into NONE or QUEUED must store_release and the 827 * waiters should load_acquire. 828 * 829 * Tracking scx_ops_state enables sched_ext core to reliably determine whether 830 * any given task can be dispatched by the BPF scheduler at all times and thus 831 * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler 832 * to try to dispatch any task anytime regardless of its state as the SCX core 833 * can safely reject invalid dispatches. 834 */ 835 enum scx_ops_state { 836 SCX_OPSS_NONE, /* owned by the SCX core */ 837 SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */ 838 SCX_OPSS_QUEUED, /* owned by the BPF scheduler */ 839 SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */ 840 841 /* 842 * QSEQ brands each QUEUED instance so that, when dispatch races 843 * dequeue/requeue, the dispatcher can tell whether it still has a claim 844 * on the task being dispatched. 845 * 846 * As some 32bit archs can't do 64bit store_release/load_acquire, 847 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on 848 * 32bit machines. The dispatch race window QSEQ protects is very narrow 849 * and runs with IRQ disabled. 30 bits should be sufficient. 850 */ 851 SCX_OPSS_QSEQ_SHIFT = 2, 852 }; 853 854 /* Use macros to ensure that the type is unsigned long for the masks */ 855 #define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1) 856 #define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK) 857 858 /* 859 * During exit, a task may schedule after losing its PIDs. When disabling the 860 * BPF scheduler, we need to be able to iterate tasks in every state to 861 * guarantee system safety. Maintain a dedicated task list which contains every 862 * task between its fork and eventual free. 863 */ 864 static DEFINE_SPINLOCK(scx_tasks_lock); 865 static LIST_HEAD(scx_tasks); 866 867 /* ops enable/disable */ 868 static struct kthread_worker *scx_ops_helper; 869 static DEFINE_MUTEX(scx_ops_enable_mutex); 870 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled); 871 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 872 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED); 873 static unsigned long scx_in_softlockup; 874 static atomic_t scx_ops_breather_depth = ATOMIC_INIT(0); 875 static int scx_ops_bypass_depth; 876 static bool scx_ops_init_task_enabled; 877 static bool scx_switching_all; 878 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 879 880 static struct sched_ext_ops scx_ops; 881 static bool scx_warned_zero_slice; 882 883 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last); 884 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting); 885 static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt); 886 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled); 887 888 #ifdef CONFIG_SMP 889 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc); 890 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa); 891 #endif 892 893 static struct static_key_false scx_has_op[SCX_OPI_END] = 894 { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT }; 895 896 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE); 897 static struct scx_exit_info *scx_exit_info; 898 899 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 900 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); 901 902 /* 903 * A monotically increasing sequence number that is incremented every time a 904 * scheduler is enabled. This can be used by to check if any custom sched_ext 905 * scheduler has ever been used in the system. 906 */ 907 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0); 908 909 /* 910 * The maximum amount of time in jiffies that a task may be runnable without 911 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 912 * scx_ops_error(). 913 */ 914 static unsigned long scx_watchdog_timeout; 915 916 /* 917 * The last time the delayed work was run. This delayed work relies on 918 * ksoftirqd being able to run to service timer interrupts, so it's possible 919 * that this work itself could get wedged. To account for this, we check that 920 * it's not stalled in the timer tick, and trigger an error if it is. 921 */ 922 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 923 924 static struct delayed_work scx_watchdog_work; 925 926 /* idle tracking */ 927 #ifdef CONFIG_SMP 928 #ifdef CONFIG_CPUMASK_OFFSTACK 929 #define CL_ALIGNED_IF_ONSTACK 930 #else 931 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp 932 #endif 933 934 static struct { 935 cpumask_var_t cpu; 936 cpumask_var_t smt; 937 } idle_masks CL_ALIGNED_IF_ONSTACK; 938 939 #endif /* CONFIG_SMP */ 940 941 /* for %SCX_KICK_WAIT */ 942 static unsigned long __percpu *scx_kick_cpus_pnt_seqs; 943 944 /* 945 * Direct dispatch marker. 946 * 947 * Non-NULL values are used for direct dispatch from enqueue path. A valid 948 * pointer points to the task currently being enqueued. An ERR_PTR value is used 949 * to indicate that direct dispatch has already happened. 950 */ 951 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 952 953 /* 954 * Dispatch queues. 955 * 956 * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is 957 * to avoid live-locking in bypass mode where all tasks are dispatched to 958 * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't 959 * sufficient, it can be further split. 960 */ 961 static struct scx_dispatch_q **global_dsqs; 962 963 static const struct rhashtable_params dsq_hash_params = { 964 .key_len = sizeof_field(struct scx_dispatch_q, id), 965 .key_offset = offsetof(struct scx_dispatch_q, id), 966 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 967 }; 968 969 static struct rhashtable dsq_hash; 970 static LLIST_HEAD(dsqs_to_free); 971 972 /* dispatch buf */ 973 struct scx_dsp_buf_ent { 974 struct task_struct *task; 975 unsigned long qseq; 976 u64 dsq_id; 977 u64 enq_flags; 978 }; 979 980 static u32 scx_dsp_max_batch; 981 982 struct scx_dsp_ctx { 983 struct rq *rq; 984 u32 cursor; 985 u32 nr_tasks; 986 struct scx_dsp_buf_ent buf[]; 987 }; 988 989 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 990 991 /* string formatting from BPF */ 992 struct scx_bstr_buf { 993 u64 data[MAX_BPRINTF_VARARGS]; 994 char line[SCX_EXIT_MSG_LEN]; 995 }; 996 997 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 998 static struct scx_bstr_buf scx_exit_bstr_buf; 999 1000 /* ops debug dump */ 1001 struct scx_dump_data { 1002 s32 cpu; 1003 bool first; 1004 s32 cursor; 1005 struct seq_buf *s; 1006 const char *prefix; 1007 struct scx_bstr_buf buf; 1008 }; 1009 1010 static struct scx_dump_data scx_dump_data = { 1011 .cpu = -1, 1012 }; 1013 1014 /* /sys/kernel/sched_ext interface */ 1015 static struct kset *scx_kset; 1016 static struct kobject *scx_root_kobj; 1017 1018 #define CREATE_TRACE_POINTS 1019 #include <trace/events/sched_ext.h> 1020 1021 static void process_ddsp_deferred_locals(struct rq *rq); 1022 static void scx_bpf_kick_cpu(s32 cpu, u64 flags); 1023 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 1024 s64 exit_code, 1025 const char *fmt, ...); 1026 1027 #define scx_ops_error_kind(err, fmt, args...) \ 1028 scx_ops_exit_kind((err), 0, fmt, ##args) 1029 1030 #define scx_ops_exit(code, fmt, args...) \ 1031 scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args) 1032 1033 #define scx_ops_error(fmt, args...) \ 1034 scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args) 1035 1036 #define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)]) 1037 1038 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 1039 { 1040 if (time_after(at, now)) 1041 return jiffies_to_msecs(at - now); 1042 else 1043 return -(long)jiffies_to_msecs(now - at); 1044 } 1045 1046 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 1047 static u32 higher_bits(u32 flags) 1048 { 1049 return ~((1 << fls(flags)) - 1); 1050 } 1051 1052 /* return the mask with only the highest bit set */ 1053 static u32 highest_bit(u32 flags) 1054 { 1055 int bit = fls(flags); 1056 return ((u64)1 << bit) >> 1; 1057 } 1058 1059 static bool u32_before(u32 a, u32 b) 1060 { 1061 return (s32)(a - b) < 0; 1062 } 1063 1064 static struct scx_dispatch_q *find_global_dsq(struct task_struct *p) 1065 { 1066 return global_dsqs[cpu_to_node(task_cpu(p))]; 1067 } 1068 1069 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id) 1070 { 1071 return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params); 1072 } 1073 1074 /* 1075 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 1076 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 1077 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 1078 * whether it's running from an allowed context. 1079 * 1080 * @mask is constant, always inline to cull the mask calculations. 1081 */ 1082 static __always_inline void scx_kf_allow(u32 mask) 1083 { 1084 /* nesting is allowed only in increasing scx_kf_mask order */ 1085 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 1086 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 1087 current->scx.kf_mask, mask); 1088 current->scx.kf_mask |= mask; 1089 barrier(); 1090 } 1091 1092 static void scx_kf_disallow(u32 mask) 1093 { 1094 barrier(); 1095 current->scx.kf_mask &= ~mask; 1096 } 1097 1098 #define SCX_CALL_OP(mask, op, args...) \ 1099 do { \ 1100 if (mask) { \ 1101 scx_kf_allow(mask); \ 1102 scx_ops.op(args); \ 1103 scx_kf_disallow(mask); \ 1104 } else { \ 1105 scx_ops.op(args); \ 1106 } \ 1107 } while (0) 1108 1109 #define SCX_CALL_OP_RET(mask, op, args...) \ 1110 ({ \ 1111 __typeof__(scx_ops.op(args)) __ret; \ 1112 if (mask) { \ 1113 scx_kf_allow(mask); \ 1114 __ret = scx_ops.op(args); \ 1115 scx_kf_disallow(mask); \ 1116 } else { \ 1117 __ret = scx_ops.op(args); \ 1118 } \ 1119 __ret; \ 1120 }) 1121 1122 /* 1123 * Some kfuncs are allowed only on the tasks that are subjects of the 1124 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 1125 * restrictions, the following SCX_CALL_OP_*() variants should be used when 1126 * invoking scx_ops operations that take task arguments. These can only be used 1127 * for non-nesting operations due to the way the tasks are tracked. 1128 * 1129 * kfuncs which can only operate on such tasks can in turn use 1130 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 1131 * the specific task. 1132 */ 1133 #define SCX_CALL_OP_TASK(mask, op, task, args...) \ 1134 do { \ 1135 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1136 current->scx.kf_tasks[0] = task; \ 1137 SCX_CALL_OP(mask, op, task, ##args); \ 1138 current->scx.kf_tasks[0] = NULL; \ 1139 } while (0) 1140 1141 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \ 1142 ({ \ 1143 __typeof__(scx_ops.op(task, ##args)) __ret; \ 1144 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1145 current->scx.kf_tasks[0] = task; \ 1146 __ret = SCX_CALL_OP_RET(mask, op, task, ##args); \ 1147 current->scx.kf_tasks[0] = NULL; \ 1148 __ret; \ 1149 }) 1150 1151 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \ 1152 ({ \ 1153 __typeof__(scx_ops.op(task0, task1, ##args)) __ret; \ 1154 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1155 current->scx.kf_tasks[0] = task0; \ 1156 current->scx.kf_tasks[1] = task1; \ 1157 __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \ 1158 current->scx.kf_tasks[0] = NULL; \ 1159 current->scx.kf_tasks[1] = NULL; \ 1160 __ret; \ 1161 }) 1162 1163 /* @mask is constant, always inline to cull unnecessary branches */ 1164 static __always_inline bool scx_kf_allowed(u32 mask) 1165 { 1166 if (unlikely(!(current->scx.kf_mask & mask))) { 1167 scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x", 1168 mask, current->scx.kf_mask); 1169 return false; 1170 } 1171 1172 /* 1173 * Enforce nesting boundaries. e.g. A kfunc which can be called from 1174 * DISPATCH must not be called if we're running DEQUEUE which is nested 1175 * inside ops.dispatch(). We don't need to check boundaries for any 1176 * blocking kfuncs as the verifier ensures they're only called from 1177 * sleepable progs. 1178 */ 1179 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 1180 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 1181 scx_ops_error("cpu_release kfunc called from a nested operation"); 1182 return false; 1183 } 1184 1185 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 1186 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 1187 scx_ops_error("dispatch kfunc called from a nested operation"); 1188 return false; 1189 } 1190 1191 return true; 1192 } 1193 1194 /* see SCX_CALL_OP_TASK() */ 1195 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask, 1196 struct task_struct *p) 1197 { 1198 if (!scx_kf_allowed(mask)) 1199 return false; 1200 1201 if (unlikely((p != current->scx.kf_tasks[0] && 1202 p != current->scx.kf_tasks[1]))) { 1203 scx_ops_error("called on a task not being operated on"); 1204 return false; 1205 } 1206 1207 return true; 1208 } 1209 1210 static bool scx_kf_allowed_if_unlocked(void) 1211 { 1212 return !current->scx.kf_mask; 1213 } 1214 1215 /** 1216 * nldsq_next_task - Iterate to the next task in a non-local DSQ 1217 * @dsq: user dsq being interated 1218 * @cur: current position, %NULL to start iteration 1219 * @rev: walk backwards 1220 * 1221 * Returns %NULL when iteration is finished. 1222 */ 1223 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, 1224 struct task_struct *cur, bool rev) 1225 { 1226 struct list_head *list_node; 1227 struct scx_dsq_list_node *dsq_lnode; 1228 1229 lockdep_assert_held(&dsq->lock); 1230 1231 if (cur) 1232 list_node = &cur->scx.dsq_list.node; 1233 else 1234 list_node = &dsq->list; 1235 1236 /* find the next task, need to skip BPF iteration cursors */ 1237 do { 1238 if (rev) 1239 list_node = list_node->prev; 1240 else 1241 list_node = list_node->next; 1242 1243 if (list_node == &dsq->list) 1244 return NULL; 1245 1246 dsq_lnode = container_of(list_node, struct scx_dsq_list_node, 1247 node); 1248 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); 1249 1250 return container_of(dsq_lnode, struct task_struct, scx.dsq_list); 1251 } 1252 1253 #define nldsq_for_each_task(p, dsq) \ 1254 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ 1255 (p) = nldsq_next_task((dsq), (p), false)) 1256 1257 1258 /* 1259 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] 1260 * dispatch order. BPF-visible iterator is opaque and larger to allow future 1261 * changes without breaking backward compatibility. Can be used with 1262 * bpf_for_each(). See bpf_iter_scx_dsq_*(). 1263 */ 1264 enum scx_dsq_iter_flags { 1265 /* iterate in the reverse dispatch order */ 1266 SCX_DSQ_ITER_REV = 1U << 16, 1267 1268 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, 1269 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, 1270 1271 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, 1272 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | 1273 __SCX_DSQ_ITER_HAS_SLICE | 1274 __SCX_DSQ_ITER_HAS_VTIME, 1275 }; 1276 1277 struct bpf_iter_scx_dsq_kern { 1278 struct scx_dsq_list_node cursor; 1279 struct scx_dispatch_q *dsq; 1280 u64 slice; 1281 u64 vtime; 1282 } __attribute__((aligned(8))); 1283 1284 struct bpf_iter_scx_dsq { 1285 u64 __opaque[6]; 1286 } __attribute__((aligned(8))); 1287 1288 1289 /* 1290 * SCX task iterator. 1291 */ 1292 struct scx_task_iter { 1293 struct sched_ext_entity cursor; 1294 struct task_struct *locked; 1295 struct rq *rq; 1296 struct rq_flags rf; 1297 u32 cnt; 1298 }; 1299 1300 /** 1301 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration 1302 * @iter: iterator to init 1303 * 1304 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter 1305 * must eventually be stopped with scx_task_iter_stop(). 1306 * 1307 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock() 1308 * between this and the first next() call or between any two next() calls. If 1309 * the locks are released between two next() calls, the caller is responsible 1310 * for ensuring that the task being iterated remains accessible either through 1311 * RCU read lock or obtaining a reference count. 1312 * 1313 * All tasks which existed when the iteration started are guaranteed to be 1314 * visited as long as they still exist. 1315 */ 1316 static void scx_task_iter_start(struct scx_task_iter *iter) 1317 { 1318 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & 1319 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); 1320 1321 spin_lock_irq(&scx_tasks_lock); 1322 1323 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 1324 list_add(&iter->cursor.tasks_node, &scx_tasks); 1325 iter->locked = NULL; 1326 iter->cnt = 0; 1327 } 1328 1329 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter) 1330 { 1331 if (iter->locked) { 1332 task_rq_unlock(iter->rq, iter->locked, &iter->rf); 1333 iter->locked = NULL; 1334 } 1335 } 1336 1337 /** 1338 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator 1339 * @iter: iterator to unlock 1340 * 1341 * If @iter is in the middle of a locked iteration, it may be locking the rq of 1342 * the task currently being visited in addition to scx_tasks_lock. Unlock both. 1343 * This function can be safely called anytime during an iteration. 1344 */ 1345 static void scx_task_iter_unlock(struct scx_task_iter *iter) 1346 { 1347 __scx_task_iter_rq_unlock(iter); 1348 spin_unlock_irq(&scx_tasks_lock); 1349 } 1350 1351 /** 1352 * scx_task_iter_relock - Lock scx_tasks_lock released by scx_task_iter_unlock() 1353 * @iter: iterator to re-lock 1354 * 1355 * Re-lock scx_tasks_lock unlocked by scx_task_iter_unlock(). Note that it 1356 * doesn't re-lock the rq lock. Must be called before other iterator operations. 1357 */ 1358 static void scx_task_iter_relock(struct scx_task_iter *iter) 1359 { 1360 spin_lock_irq(&scx_tasks_lock); 1361 } 1362 1363 /** 1364 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock 1365 * @iter: iterator to exit 1366 * 1367 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held 1368 * which is released on return. If the iterator holds a task's rq lock, that rq 1369 * lock is also released. See scx_task_iter_start() for details. 1370 */ 1371 static void scx_task_iter_stop(struct scx_task_iter *iter) 1372 { 1373 list_del_init(&iter->cursor.tasks_node); 1374 scx_task_iter_unlock(iter); 1375 } 1376 1377 /** 1378 * scx_task_iter_next - Next task 1379 * @iter: iterator to walk 1380 * 1381 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped 1382 * and re-acquired every %SCX_OPS_TASK_ITER_BATCH iterations to avoid causing 1383 * stalls by holding scx_tasks_lock for too long. 1384 */ 1385 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 1386 { 1387 struct list_head *cursor = &iter->cursor.tasks_node; 1388 struct sched_ext_entity *pos; 1389 1390 if (!(++iter->cnt % SCX_OPS_TASK_ITER_BATCH)) { 1391 scx_task_iter_unlock(iter); 1392 cond_resched(); 1393 scx_task_iter_relock(iter); 1394 } 1395 1396 list_for_each_entry(pos, cursor, tasks_node) { 1397 if (&pos->tasks_node == &scx_tasks) 1398 return NULL; 1399 if (!(pos->flags & SCX_TASK_CURSOR)) { 1400 list_move(cursor, &pos->tasks_node); 1401 return container_of(pos, struct task_struct, scx); 1402 } 1403 } 1404 1405 /* can't happen, should always terminate at scx_tasks above */ 1406 BUG(); 1407 } 1408 1409 /** 1410 * scx_task_iter_next_locked - Next non-idle task with its rq locked 1411 * @iter: iterator to walk 1412 * 1413 * Visit the non-idle task with its rq lock held. Allows callers to specify 1414 * whether they would like to filter out dead tasks. See scx_task_iter_start() 1415 * for details. 1416 */ 1417 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) 1418 { 1419 struct task_struct *p; 1420 1421 __scx_task_iter_rq_unlock(iter); 1422 1423 while ((p = scx_task_iter_next(iter))) { 1424 /* 1425 * scx_task_iter is used to prepare and move tasks into SCX 1426 * while loading the BPF scheduler and vice-versa while 1427 * unloading. The init_tasks ("swappers") should be excluded 1428 * from the iteration because: 1429 * 1430 * - It's unsafe to use __setschduler_prio() on an init_task to 1431 * determine the sched_class to use as it won't preserve its 1432 * idle_sched_class. 1433 * 1434 * - ops.init/exit_task() can easily be confused if called with 1435 * init_tasks as they, e.g., share PID 0. 1436 * 1437 * As init_tasks are never scheduled through SCX, they can be 1438 * skipped safely. Note that is_idle_task() which tests %PF_IDLE 1439 * doesn't work here: 1440 * 1441 * - %PF_IDLE may not be set for an init_task whose CPU hasn't 1442 * yet been onlined. 1443 * 1444 * - %PF_IDLE can be set on tasks that are not init_tasks. See 1445 * play_idle_precise() used by CONFIG_IDLE_INJECT. 1446 * 1447 * Test for idle_sched_class as only init_tasks are on it. 1448 */ 1449 if (p->sched_class != &idle_sched_class) 1450 break; 1451 } 1452 if (!p) 1453 return NULL; 1454 1455 iter->rq = task_rq_lock(p, &iter->rf); 1456 iter->locked = p; 1457 1458 return p; 1459 } 1460 1461 static enum scx_ops_enable_state scx_ops_enable_state(void) 1462 { 1463 return atomic_read(&scx_ops_enable_state_var); 1464 } 1465 1466 static enum scx_ops_enable_state 1467 scx_ops_set_enable_state(enum scx_ops_enable_state to) 1468 { 1469 return atomic_xchg(&scx_ops_enable_state_var, to); 1470 } 1471 1472 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to, 1473 enum scx_ops_enable_state from) 1474 { 1475 int from_v = from; 1476 1477 return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to); 1478 } 1479 1480 static bool scx_rq_bypassing(struct rq *rq) 1481 { 1482 return unlikely(rq->scx.flags & SCX_RQ_BYPASSING); 1483 } 1484 1485 /** 1486 * wait_ops_state - Busy-wait the specified ops state to end 1487 * @p: target task 1488 * @opss: state to wait the end of 1489 * 1490 * Busy-wait for @p to transition out of @opss. This can only be used when the 1491 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 1492 * has load_acquire semantics to ensure that the caller can see the updates made 1493 * in the enqueueing and dispatching paths. 1494 */ 1495 static void wait_ops_state(struct task_struct *p, unsigned long opss) 1496 { 1497 do { 1498 cpu_relax(); 1499 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 1500 } 1501 1502 /** 1503 * ops_cpu_valid - Verify a cpu number 1504 * @cpu: cpu number which came from a BPF ops 1505 * @where: extra information reported on error 1506 * 1507 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 1508 * Verify that it is in range and one of the possible cpus. If invalid, trigger 1509 * an ops error. 1510 */ 1511 static bool ops_cpu_valid(s32 cpu, const char *where) 1512 { 1513 if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) { 1514 return true; 1515 } else { 1516 scx_ops_error("invalid CPU %d%s%s", cpu, 1517 where ? " " : "", where ?: ""); 1518 return false; 1519 } 1520 } 1521 1522 /** 1523 * ops_sanitize_err - Sanitize a -errno value 1524 * @ops_name: operation to blame on failure 1525 * @err: -errno value to sanitize 1526 * 1527 * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return 1528 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 1529 * cause misbehaviors. For an example, a large negative return from 1530 * ops.init_task() triggers an oops when passed up the call chain because the 1531 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 1532 * handled as a pointer. 1533 */ 1534 static int ops_sanitize_err(const char *ops_name, s32 err) 1535 { 1536 if (err < 0 && err >= -MAX_ERRNO) 1537 return err; 1538 1539 scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err); 1540 return -EPROTO; 1541 } 1542 1543 static void run_deferred(struct rq *rq) 1544 { 1545 process_ddsp_deferred_locals(rq); 1546 } 1547 1548 #ifdef CONFIG_SMP 1549 static void deferred_bal_cb_workfn(struct rq *rq) 1550 { 1551 run_deferred(rq); 1552 } 1553 #endif 1554 1555 static void deferred_irq_workfn(struct irq_work *irq_work) 1556 { 1557 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); 1558 1559 raw_spin_rq_lock(rq); 1560 run_deferred(rq); 1561 raw_spin_rq_unlock(rq); 1562 } 1563 1564 /** 1565 * schedule_deferred - Schedule execution of deferred actions on an rq 1566 * @rq: target rq 1567 * 1568 * Schedule execution of deferred actions on @rq. Must be called with @rq 1569 * locked. Deferred actions are executed with @rq locked but unpinned, and thus 1570 * can unlock @rq to e.g. migrate tasks to other rqs. 1571 */ 1572 static void schedule_deferred(struct rq *rq) 1573 { 1574 lockdep_assert_rq_held(rq); 1575 1576 #ifdef CONFIG_SMP 1577 /* 1578 * If in the middle of waking up a task, task_woken_scx() will be called 1579 * afterwards which will then run the deferred actions, no need to 1580 * schedule anything. 1581 */ 1582 if (rq->scx.flags & SCX_RQ_IN_WAKEUP) 1583 return; 1584 1585 /* 1586 * If in balance, the balance callbacks will be called before rq lock is 1587 * released. Schedule one. 1588 */ 1589 if (rq->scx.flags & SCX_RQ_IN_BALANCE) { 1590 queue_balance_callback(rq, &rq->scx.deferred_bal_cb, 1591 deferred_bal_cb_workfn); 1592 return; 1593 } 1594 #endif 1595 /* 1596 * No scheduler hooks available. Queue an irq work. They are executed on 1597 * IRQ re-enable which may take a bit longer than the scheduler hooks. 1598 * The above WAKEUP and BALANCE paths should cover most of the cases and 1599 * the time to IRQ re-enable shouldn't be long. 1600 */ 1601 irq_work_queue(&rq->scx.deferred_irq_work); 1602 } 1603 1604 /** 1605 * touch_core_sched - Update timestamp used for core-sched task ordering 1606 * @rq: rq to read clock from, must be locked 1607 * @p: task to update the timestamp for 1608 * 1609 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to 1610 * implement global or local-DSQ FIFO ordering for core-sched. Should be called 1611 * when a task becomes runnable and its turn on the CPU ends (e.g. slice 1612 * exhaustion). 1613 */ 1614 static void touch_core_sched(struct rq *rq, struct task_struct *p) 1615 { 1616 lockdep_assert_rq_held(rq); 1617 1618 #ifdef CONFIG_SCHED_CORE 1619 /* 1620 * It's okay to update the timestamp spuriously. Use 1621 * sched_core_disabled() which is cheaper than enabled(). 1622 * 1623 * As this is used to determine ordering between tasks of sibling CPUs, 1624 * it may be better to use per-core dispatch sequence instead. 1625 */ 1626 if (!sched_core_disabled()) 1627 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); 1628 #endif 1629 } 1630 1631 /** 1632 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch 1633 * @rq: rq to read clock from, must be locked 1634 * @p: task being dispatched 1635 * 1636 * If the BPF scheduler implements custom core-sched ordering via 1637 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO 1638 * ordering within each local DSQ. This function is called from dispatch paths 1639 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. 1640 */ 1641 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) 1642 { 1643 lockdep_assert_rq_held(rq); 1644 1645 #ifdef CONFIG_SCHED_CORE 1646 if (SCX_HAS_OP(core_sched_before)) 1647 touch_core_sched(rq, p); 1648 #endif 1649 } 1650 1651 static void update_curr_scx(struct rq *rq) 1652 { 1653 struct task_struct *curr = rq->curr; 1654 s64 delta_exec; 1655 1656 delta_exec = update_curr_common(rq); 1657 if (unlikely(delta_exec <= 0)) 1658 return; 1659 1660 if (curr->scx.slice != SCX_SLICE_INF) { 1661 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); 1662 if (!curr->scx.slice) 1663 touch_core_sched(rq, curr); 1664 } 1665 } 1666 1667 static bool scx_dsq_priq_less(struct rb_node *node_a, 1668 const struct rb_node *node_b) 1669 { 1670 const struct task_struct *a = 1671 container_of(node_a, struct task_struct, scx.dsq_priq); 1672 const struct task_struct *b = 1673 container_of(node_b, struct task_struct, scx.dsq_priq); 1674 1675 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); 1676 } 1677 1678 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 1679 { 1680 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 1681 WRITE_ONCE(dsq->nr, dsq->nr + delta); 1682 } 1683 1684 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p, 1685 u64 enq_flags) 1686 { 1687 bool is_local = dsq->id == SCX_DSQ_LOCAL; 1688 1689 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1690 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || 1691 !RB_EMPTY_NODE(&p->scx.dsq_priq)); 1692 1693 if (!is_local) { 1694 raw_spin_lock(&dsq->lock); 1695 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 1696 scx_ops_error("attempting to dispatch to a destroyed dsq"); 1697 /* fall back to the global dsq */ 1698 raw_spin_unlock(&dsq->lock); 1699 dsq = find_global_dsq(p); 1700 raw_spin_lock(&dsq->lock); 1701 } 1702 } 1703 1704 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && 1705 (enq_flags & SCX_ENQ_DSQ_PRIQ))) { 1706 /* 1707 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from 1708 * their FIFO queues. To avoid confusion and accidentally 1709 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we 1710 * disallow any internal DSQ from doing vtime ordering of 1711 * tasks. 1712 */ 1713 scx_ops_error("cannot use vtime ordering for built-in DSQs"); 1714 enq_flags &= ~SCX_ENQ_DSQ_PRIQ; 1715 } 1716 1717 if (enq_flags & SCX_ENQ_DSQ_PRIQ) { 1718 struct rb_node *rbp; 1719 1720 /* 1721 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are 1722 * linked to both the rbtree and list on PRIQs, this can only be 1723 * tested easily when adding the first task. 1724 */ 1725 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && 1726 nldsq_next_task(dsq, NULL, false))) 1727 scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks", 1728 dsq->id); 1729 1730 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; 1731 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); 1732 1733 /* 1734 * Find the previous task and insert after it on the list so 1735 * that @dsq->list is vtime ordered. 1736 */ 1737 rbp = rb_prev(&p->scx.dsq_priq); 1738 if (rbp) { 1739 struct task_struct *prev = 1740 container_of(rbp, struct task_struct, 1741 scx.dsq_priq); 1742 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); 1743 } else { 1744 list_add(&p->scx.dsq_list.node, &dsq->list); 1745 } 1746 } else { 1747 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ 1748 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) 1749 scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks", 1750 dsq->id); 1751 1752 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 1753 list_add(&p->scx.dsq_list.node, &dsq->list); 1754 else 1755 list_add_tail(&p->scx.dsq_list.node, &dsq->list); 1756 } 1757 1758 /* seq records the order tasks are queued, used by BPF DSQ iterator */ 1759 dsq->seq++; 1760 p->scx.dsq_seq = dsq->seq; 1761 1762 dsq_mod_nr(dsq, 1); 1763 p->scx.dsq = dsq; 1764 1765 /* 1766 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 1767 * direct dispatch path, but we clear them here because the direct 1768 * dispatch verdict may be overridden on the enqueue path during e.g. 1769 * bypass. 1770 */ 1771 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 1772 p->scx.ddsp_enq_flags = 0; 1773 1774 /* 1775 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 1776 * match waiters' load_acquire. 1777 */ 1778 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 1779 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1780 1781 if (is_local) { 1782 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 1783 bool preempt = false; 1784 1785 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 1786 rq->curr->sched_class == &ext_sched_class) { 1787 rq->curr->scx.slice = 0; 1788 preempt = true; 1789 } 1790 1791 if (preempt || sched_class_above(&ext_sched_class, 1792 rq->curr->sched_class)) 1793 resched_curr(rq); 1794 } else { 1795 raw_spin_unlock(&dsq->lock); 1796 } 1797 } 1798 1799 static void task_unlink_from_dsq(struct task_struct *p, 1800 struct scx_dispatch_q *dsq) 1801 { 1802 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); 1803 1804 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { 1805 rb_erase(&p->scx.dsq_priq, &dsq->priq); 1806 RB_CLEAR_NODE(&p->scx.dsq_priq); 1807 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; 1808 } 1809 1810 list_del_init(&p->scx.dsq_list.node); 1811 dsq_mod_nr(dsq, -1); 1812 } 1813 1814 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 1815 { 1816 struct scx_dispatch_q *dsq = p->scx.dsq; 1817 bool is_local = dsq == &rq->scx.local_dsq; 1818 1819 if (!dsq) { 1820 /* 1821 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. 1822 * Unlinking is all that's needed to cancel. 1823 */ 1824 if (unlikely(!list_empty(&p->scx.dsq_list.node))) 1825 list_del_init(&p->scx.dsq_list.node); 1826 1827 /* 1828 * When dispatching directly from the BPF scheduler to a local 1829 * DSQ, the task isn't associated with any DSQ but 1830 * @p->scx.holding_cpu may be set under the protection of 1831 * %SCX_OPSS_DISPATCHING. 1832 */ 1833 if (p->scx.holding_cpu >= 0) 1834 p->scx.holding_cpu = -1; 1835 1836 return; 1837 } 1838 1839 if (!is_local) 1840 raw_spin_lock(&dsq->lock); 1841 1842 /* 1843 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't 1844 * change underneath us. 1845 */ 1846 if (p->scx.holding_cpu < 0) { 1847 /* @p must still be on @dsq, dequeue */ 1848 task_unlink_from_dsq(p, dsq); 1849 } else { 1850 /* 1851 * We're racing against dispatch_to_local_dsq() which already 1852 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 1853 * holding_cpu which tells dispatch_to_local_dsq() that it lost 1854 * the race. 1855 */ 1856 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); 1857 p->scx.holding_cpu = -1; 1858 } 1859 p->scx.dsq = NULL; 1860 1861 if (!is_local) 1862 raw_spin_unlock(&dsq->lock); 1863 } 1864 1865 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id, 1866 struct task_struct *p) 1867 { 1868 struct scx_dispatch_q *dsq; 1869 1870 if (dsq_id == SCX_DSQ_LOCAL) 1871 return &rq->scx.local_dsq; 1872 1873 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 1874 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 1875 1876 if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 1877 return find_global_dsq(p); 1878 1879 return &cpu_rq(cpu)->scx.local_dsq; 1880 } 1881 1882 if (dsq_id == SCX_DSQ_GLOBAL) 1883 dsq = find_global_dsq(p); 1884 else 1885 dsq = find_user_dsq(dsq_id); 1886 1887 if (unlikely(!dsq)) { 1888 scx_ops_error("non-existent DSQ 0x%llx for %s[%d]", 1889 dsq_id, p->comm, p->pid); 1890 return find_global_dsq(p); 1891 } 1892 1893 return dsq; 1894 } 1895 1896 static void mark_direct_dispatch(struct task_struct *ddsp_task, 1897 struct task_struct *p, u64 dsq_id, 1898 u64 enq_flags) 1899 { 1900 /* 1901 * Mark that dispatch already happened from ops.select_cpu() or 1902 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 1903 * which can never match a valid task pointer. 1904 */ 1905 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 1906 1907 /* @p must match the task on the enqueue path */ 1908 if (unlikely(p != ddsp_task)) { 1909 if (IS_ERR(ddsp_task)) 1910 scx_ops_error("%s[%d] already direct-dispatched", 1911 p->comm, p->pid); 1912 else 1913 scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 1914 ddsp_task->comm, ddsp_task->pid, 1915 p->comm, p->pid); 1916 return; 1917 } 1918 1919 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 1920 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 1921 1922 p->scx.ddsp_dsq_id = dsq_id; 1923 p->scx.ddsp_enq_flags = enq_flags; 1924 } 1925 1926 static void direct_dispatch(struct task_struct *p, u64 enq_flags) 1927 { 1928 struct rq *rq = task_rq(p); 1929 struct scx_dispatch_q *dsq = 1930 find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); 1931 1932 touch_core_sched_dispatch(rq, p); 1933 1934 p->scx.ddsp_enq_flags |= enq_flags; 1935 1936 /* 1937 * We are in the enqueue path with @rq locked and pinned, and thus can't 1938 * double lock a remote rq and enqueue to its local DSQ. For 1939 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer 1940 * the enqueue so that it's executed when @rq can be unlocked. 1941 */ 1942 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { 1943 unsigned long opss; 1944 1945 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; 1946 1947 switch (opss & SCX_OPSS_STATE_MASK) { 1948 case SCX_OPSS_NONE: 1949 break; 1950 case SCX_OPSS_QUEUEING: 1951 /* 1952 * As @p was never passed to the BPF side, _release is 1953 * not strictly necessary. Still do it for consistency. 1954 */ 1955 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1956 break; 1957 default: 1958 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", 1959 p->comm, p->pid, opss); 1960 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1961 break; 1962 } 1963 1964 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1965 list_add_tail(&p->scx.dsq_list.node, 1966 &rq->scx.ddsp_deferred_locals); 1967 schedule_deferred(rq); 1968 return; 1969 } 1970 1971 dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 1972 } 1973 1974 static bool scx_rq_online(struct rq *rq) 1975 { 1976 /* 1977 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates 1978 * the online state as seen from the BPF scheduler. cpu_active() test 1979 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will 1980 * stay set until the current scheduling operation is complete even if 1981 * we aren't locking @rq. 1982 */ 1983 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); 1984 } 1985 1986 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 1987 int sticky_cpu) 1988 { 1989 struct task_struct **ddsp_taskp; 1990 unsigned long qseq; 1991 1992 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 1993 1994 /* rq migration */ 1995 if (sticky_cpu == cpu_of(rq)) 1996 goto local_norefill; 1997 1998 /* 1999 * If !scx_rq_online(), we already told the BPF scheduler that the CPU 2000 * is offline and are just running the hotplug path. Don't bother the 2001 * BPF scheduler. 2002 */ 2003 if (!scx_rq_online(rq)) 2004 goto local; 2005 2006 if (scx_rq_bypassing(rq)) 2007 goto global; 2008 2009 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 2010 goto direct; 2011 2012 /* see %SCX_OPS_ENQ_EXITING */ 2013 if (!static_branch_unlikely(&scx_ops_enq_exiting) && 2014 unlikely(p->flags & PF_EXITING)) 2015 goto local; 2016 2017 if (!SCX_HAS_OP(enqueue)) 2018 goto global; 2019 2020 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 2021 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 2022 2023 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2024 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 2025 2026 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 2027 WARN_ON_ONCE(*ddsp_taskp); 2028 *ddsp_taskp = p; 2029 2030 SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags); 2031 2032 *ddsp_taskp = NULL; 2033 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 2034 goto direct; 2035 2036 /* 2037 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 2038 * dequeue may be waiting. The store_release matches their load_acquire. 2039 */ 2040 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 2041 return; 2042 2043 direct: 2044 direct_dispatch(p, enq_flags); 2045 return; 2046 2047 local: 2048 /* 2049 * For task-ordering, slice refill must be treated as implying the end 2050 * of the current slice. Otherwise, the longer @p stays on the CPU, the 2051 * higher priority it becomes from scx_prio_less()'s POV. 2052 */ 2053 touch_core_sched(rq, p); 2054 p->scx.slice = SCX_SLICE_DFL; 2055 local_norefill: 2056 dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags); 2057 return; 2058 2059 global: 2060 touch_core_sched(rq, p); /* see the comment in local: */ 2061 p->scx.slice = SCX_SLICE_DFL; 2062 dispatch_enqueue(find_global_dsq(p), p, enq_flags); 2063 } 2064 2065 static bool task_runnable(const struct task_struct *p) 2066 { 2067 return !list_empty(&p->scx.runnable_node); 2068 } 2069 2070 static void set_task_runnable(struct rq *rq, struct task_struct *p) 2071 { 2072 lockdep_assert_rq_held(rq); 2073 2074 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 2075 p->scx.runnable_at = jiffies; 2076 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 2077 } 2078 2079 /* 2080 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being 2081 * appened to the runnable_list. 2082 */ 2083 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 2084 } 2085 2086 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 2087 { 2088 list_del_init(&p->scx.runnable_node); 2089 if (reset_runnable_at) 2090 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2091 } 2092 2093 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 2094 { 2095 int sticky_cpu = p->scx.sticky_cpu; 2096 2097 if (enq_flags & ENQUEUE_WAKEUP) 2098 rq->scx.flags |= SCX_RQ_IN_WAKEUP; 2099 2100 enq_flags |= rq->scx.extra_enq_flags; 2101 2102 if (sticky_cpu >= 0) 2103 p->scx.sticky_cpu = -1; 2104 2105 /* 2106 * Restoring a running task will be immediately followed by 2107 * set_next_task_scx() which expects the task to not be on the BPF 2108 * scheduler as tasks can only start running through local DSQs. Force 2109 * direct-dispatch into the local DSQ by setting the sticky_cpu. 2110 */ 2111 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 2112 sticky_cpu = cpu_of(rq); 2113 2114 if (p->scx.flags & SCX_TASK_QUEUED) { 2115 WARN_ON_ONCE(!task_runnable(p)); 2116 goto out; 2117 } 2118 2119 set_task_runnable(rq, p); 2120 p->scx.flags |= SCX_TASK_QUEUED; 2121 rq->scx.nr_running++; 2122 add_nr_running(rq, 1); 2123 2124 if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p)) 2125 SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags); 2126 2127 if (enq_flags & SCX_ENQ_WAKEUP) 2128 touch_core_sched(rq, p); 2129 2130 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 2131 out: 2132 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; 2133 } 2134 2135 static void ops_dequeue(struct task_struct *p, u64 deq_flags) 2136 { 2137 unsigned long opss; 2138 2139 /* dequeue is always temporary, don't reset runnable_at */ 2140 clr_task_runnable(p, false); 2141 2142 /* acquire ensures that we see the preceding updates on QUEUED */ 2143 opss = atomic_long_read_acquire(&p->scx.ops_state); 2144 2145 switch (opss & SCX_OPSS_STATE_MASK) { 2146 case SCX_OPSS_NONE: 2147 break; 2148 case SCX_OPSS_QUEUEING: 2149 /* 2150 * QUEUEING is started and finished while holding @p's rq lock. 2151 * As we're holding the rq lock now, we shouldn't see QUEUEING. 2152 */ 2153 BUG(); 2154 case SCX_OPSS_QUEUED: 2155 if (SCX_HAS_OP(dequeue)) 2156 SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags); 2157 2158 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2159 SCX_OPSS_NONE)) 2160 break; 2161 fallthrough; 2162 case SCX_OPSS_DISPATCHING: 2163 /* 2164 * If @p is being dispatched from the BPF scheduler to a DSQ, 2165 * wait for the transfer to complete so that @p doesn't get 2166 * added to its DSQ after dequeueing is complete. 2167 * 2168 * As we're waiting on DISPATCHING with the rq locked, the 2169 * dispatching side shouldn't try to lock the rq while 2170 * DISPATCHING is set. See dispatch_to_local_dsq(). 2171 * 2172 * DISPATCHING shouldn't have qseq set and control can reach 2173 * here with NONE @opss from the above QUEUED case block. 2174 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 2175 */ 2176 wait_ops_state(p, SCX_OPSS_DISPATCHING); 2177 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2178 break; 2179 } 2180 } 2181 2182 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 2183 { 2184 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 2185 WARN_ON_ONCE(task_runnable(p)); 2186 return true; 2187 } 2188 2189 ops_dequeue(p, deq_flags); 2190 2191 /* 2192 * A currently running task which is going off @rq first gets dequeued 2193 * and then stops running. As we want running <-> stopping transitions 2194 * to be contained within runnable <-> quiescent transitions, trigger 2195 * ->stopping() early here instead of in put_prev_task_scx(). 2196 * 2197 * @p may go through multiple stopping <-> running transitions between 2198 * here and put_prev_task_scx() if task attribute changes occur while 2199 * balance_scx() leaves @rq unlocked. However, they don't contain any 2200 * information meaningful to the BPF scheduler and can be suppressed by 2201 * skipping the callbacks if the task is !QUEUED. 2202 */ 2203 if (SCX_HAS_OP(stopping) && task_current(rq, p)) { 2204 update_curr_scx(rq); 2205 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false); 2206 } 2207 2208 if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p)) 2209 SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags); 2210 2211 if (deq_flags & SCX_DEQ_SLEEP) 2212 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 2213 else 2214 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 2215 2216 p->scx.flags &= ~SCX_TASK_QUEUED; 2217 rq->scx.nr_running--; 2218 sub_nr_running(rq, 1); 2219 2220 dispatch_dequeue(rq, p); 2221 return true; 2222 } 2223 2224 static void yield_task_scx(struct rq *rq) 2225 { 2226 struct task_struct *p = rq->curr; 2227 2228 if (SCX_HAS_OP(yield)) 2229 SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL); 2230 else 2231 p->scx.slice = 0; 2232 } 2233 2234 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 2235 { 2236 struct task_struct *from = rq->curr; 2237 2238 if (SCX_HAS_OP(yield)) 2239 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to); 2240 else 2241 return false; 2242 } 2243 2244 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2245 struct scx_dispatch_q *src_dsq, 2246 struct rq *dst_rq) 2247 { 2248 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; 2249 2250 /* @dsq is locked and @p is on @dst_rq */ 2251 lockdep_assert_held(&src_dsq->lock); 2252 lockdep_assert_rq_held(dst_rq); 2253 2254 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2255 2256 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 2257 list_add(&p->scx.dsq_list.node, &dst_dsq->list); 2258 else 2259 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); 2260 2261 dsq_mod_nr(dst_dsq, 1); 2262 p->scx.dsq = dst_dsq; 2263 } 2264 2265 #ifdef CONFIG_SMP 2266 /** 2267 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ 2268 * @p: task to move 2269 * @enq_flags: %SCX_ENQ_* 2270 * @src_rq: rq to move the task from, locked on entry, released on return 2271 * @dst_rq: rq to move the task into, locked on return 2272 * 2273 * Move @p which is currently on @src_rq to @dst_rq's local DSQ. 2274 */ 2275 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2276 struct rq *src_rq, struct rq *dst_rq) 2277 { 2278 lockdep_assert_rq_held(src_rq); 2279 2280 /* the following marks @p MIGRATING which excludes dequeue */ 2281 deactivate_task(src_rq, p, 0); 2282 set_task_cpu(p, cpu_of(dst_rq)); 2283 p->scx.sticky_cpu = cpu_of(dst_rq); 2284 2285 raw_spin_rq_unlock(src_rq); 2286 raw_spin_rq_lock(dst_rq); 2287 2288 /* 2289 * We want to pass scx-specific enq_flags but activate_task() will 2290 * truncate the upper 32 bit. As we own @rq, we can pass them through 2291 * @rq->scx.extra_enq_flags instead. 2292 */ 2293 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); 2294 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); 2295 dst_rq->scx.extra_enq_flags = enq_flags; 2296 activate_task(dst_rq, p, 0); 2297 dst_rq->scx.extra_enq_flags = 0; 2298 } 2299 2300 /* 2301 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two 2302 * differences: 2303 * 2304 * - is_cpu_allowed() asks "Can this task run on this CPU?" while 2305 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to 2306 * this CPU?". 2307 * 2308 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task 2309 * must be allowed to finish on the CPU that it's currently on regardless of 2310 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the 2311 * BPF scheduler shouldn't attempt to migrate a task which has migration 2312 * disabled. 2313 * 2314 * - The BPF scheduler is bypassed while the rq is offline and we can always say 2315 * no to the BPF scheduler initiated migrations while offline. 2316 */ 2317 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, 2318 bool trigger_error) 2319 { 2320 int cpu = cpu_of(rq); 2321 2322 /* 2323 * We don't require the BPF scheduler to avoid dispatching to offline 2324 * CPUs mostly for convenience but also because CPUs can go offline 2325 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the 2326 * picked CPU is outside the allowed mask. 2327 */ 2328 if (!task_allowed_on_cpu(p, cpu)) { 2329 if (trigger_error) 2330 scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]", 2331 cpu_of(rq), p->comm, p->pid); 2332 return false; 2333 } 2334 2335 if (unlikely(is_migration_disabled(p))) 2336 return false; 2337 2338 if (!scx_rq_online(rq)) 2339 return false; 2340 2341 return true; 2342 } 2343 2344 /** 2345 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq 2346 * @p: target task 2347 * @dsq: locked DSQ @p is currently on 2348 * @src_rq: rq @p is currently on, stable with @dsq locked 2349 * 2350 * Called with @dsq locked but no rq's locked. We want to move @p to a different 2351 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is 2352 * required when transferring into a local DSQ. Even when transferring into a 2353 * non-local DSQ, it's better to use the same mechanism to protect against 2354 * dequeues and maintain the invariant that @p->scx.dsq can only change while 2355 * @src_rq is locked, which e.g. scx_dump_task() depends on. 2356 * 2357 * We want to grab @src_rq but that can deadlock if we try while locking @dsq, 2358 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As 2359 * this may race with dequeue, which can't drop the rq lock or fail, do a little 2360 * dancing from our side. 2361 * 2362 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets 2363 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu 2364 * would be cleared to -1. While other cpus may have updated it to different 2365 * values afterwards, as this operation can't be preempted or recurse, the 2366 * holding_cpu can never become this CPU again before we're done. Thus, we can 2367 * tell whether we lost to dequeue by testing whether the holding_cpu still 2368 * points to this CPU. See dispatch_dequeue() for the counterpart. 2369 * 2370 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is 2371 * still valid. %false if lost to dequeue. 2372 */ 2373 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, 2374 struct scx_dispatch_q *dsq, 2375 struct rq *src_rq) 2376 { 2377 s32 cpu = raw_smp_processor_id(); 2378 2379 lockdep_assert_held(&dsq->lock); 2380 2381 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2382 task_unlink_from_dsq(p, dsq); 2383 p->scx.holding_cpu = cpu; 2384 2385 raw_spin_unlock(&dsq->lock); 2386 raw_spin_rq_lock(src_rq); 2387 2388 /* task_rq couldn't have changed if we're still the holding cpu */ 2389 return likely(p->scx.holding_cpu == cpu) && 2390 !WARN_ON_ONCE(src_rq != task_rq(p)); 2391 } 2392 2393 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, 2394 struct scx_dispatch_q *dsq, struct rq *src_rq) 2395 { 2396 raw_spin_rq_unlock(this_rq); 2397 2398 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { 2399 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); 2400 return true; 2401 } else { 2402 raw_spin_rq_unlock(src_rq); 2403 raw_spin_rq_lock(this_rq); 2404 return false; 2405 } 2406 } 2407 #else /* CONFIG_SMP */ 2408 static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); } 2409 static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; } 2410 static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; } 2411 #endif /* CONFIG_SMP */ 2412 2413 /** 2414 * move_task_between_dsqs() - Move a task from one DSQ to another 2415 * @p: target task 2416 * @enq_flags: %SCX_ENQ_* 2417 * @src_dsq: DSQ @p is currently on, must not be a local DSQ 2418 * @dst_dsq: DSQ @p is being moved to, can be any DSQ 2419 * 2420 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local 2421 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq 2422 * will change. As @p's task_rq is locked, this function doesn't need to use the 2423 * holding_cpu mechanism. 2424 * 2425 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the 2426 * return value, is locked. 2427 */ 2428 static struct rq *move_task_between_dsqs(struct task_struct *p, u64 enq_flags, 2429 struct scx_dispatch_q *src_dsq, 2430 struct scx_dispatch_q *dst_dsq) 2431 { 2432 struct rq *src_rq = task_rq(p), *dst_rq; 2433 2434 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL); 2435 lockdep_assert_held(&src_dsq->lock); 2436 lockdep_assert_rq_held(src_rq); 2437 2438 if (dst_dsq->id == SCX_DSQ_LOCAL) { 2439 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 2440 if (!task_can_run_on_remote_rq(p, dst_rq, true)) { 2441 dst_dsq = find_global_dsq(p); 2442 dst_rq = src_rq; 2443 } 2444 } else { 2445 /* no need to migrate if destination is a non-local DSQ */ 2446 dst_rq = src_rq; 2447 } 2448 2449 /* 2450 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different 2451 * CPU, @p will be migrated. 2452 */ 2453 if (dst_dsq->id == SCX_DSQ_LOCAL) { 2454 /* @p is going from a non-local DSQ to a local DSQ */ 2455 if (src_rq == dst_rq) { 2456 task_unlink_from_dsq(p, src_dsq); 2457 move_local_task_to_local_dsq(p, enq_flags, 2458 src_dsq, dst_rq); 2459 raw_spin_unlock(&src_dsq->lock); 2460 } else { 2461 raw_spin_unlock(&src_dsq->lock); 2462 move_remote_task_to_local_dsq(p, enq_flags, 2463 src_rq, dst_rq); 2464 } 2465 } else { 2466 /* 2467 * @p is going from a non-local DSQ to a non-local DSQ. As 2468 * $src_dsq is already locked, do an abbreviated dequeue. 2469 */ 2470 task_unlink_from_dsq(p, src_dsq); 2471 p->scx.dsq = NULL; 2472 raw_spin_unlock(&src_dsq->lock); 2473 2474 dispatch_enqueue(dst_dsq, p, enq_flags); 2475 } 2476 2477 return dst_rq; 2478 } 2479 2480 /* 2481 * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly 2482 * banging on the same DSQ on a large NUMA system to the point where switching 2483 * to the bypass mode can take a long time. Inject artifical delays while the 2484 * bypass mode is switching to guarantee timely completion. 2485 */ 2486 static void scx_ops_breather(struct rq *rq) 2487 { 2488 u64 until; 2489 2490 lockdep_assert_rq_held(rq); 2491 2492 if (likely(!atomic_read(&scx_ops_breather_depth))) 2493 return; 2494 2495 raw_spin_rq_unlock(rq); 2496 2497 until = ktime_get_ns() + NSEC_PER_MSEC; 2498 2499 do { 2500 int cnt = 1024; 2501 while (atomic_read(&scx_ops_breather_depth) && --cnt) 2502 cpu_relax(); 2503 } while (atomic_read(&scx_ops_breather_depth) && 2504 time_before64(ktime_get_ns(), until)); 2505 2506 raw_spin_rq_lock(rq); 2507 } 2508 2509 static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq) 2510 { 2511 struct task_struct *p; 2512 retry: 2513 /* 2514 * This retry loop can repeatedly race against scx_ops_bypass() 2515 * dequeueing tasks from @dsq trying to put the system into the bypass 2516 * mode. On some multi-socket machines (e.g. 2x Intel 8480c), this can 2517 * live-lock the machine into soft lockups. Give a breather. 2518 */ 2519 scx_ops_breather(rq); 2520 2521 /* 2522 * The caller can't expect to successfully consume a task if the task's 2523 * addition to @dsq isn't guaranteed to be visible somehow. Test 2524 * @dsq->list without locking and skip if it seems empty. 2525 */ 2526 if (list_empty(&dsq->list)) 2527 return false; 2528 2529 raw_spin_lock(&dsq->lock); 2530 2531 nldsq_for_each_task(p, dsq) { 2532 struct rq *task_rq = task_rq(p); 2533 2534 if (rq == task_rq) { 2535 task_unlink_from_dsq(p, dsq); 2536 move_local_task_to_local_dsq(p, 0, dsq, rq); 2537 raw_spin_unlock(&dsq->lock); 2538 return true; 2539 } 2540 2541 if (task_can_run_on_remote_rq(p, rq, false)) { 2542 if (likely(consume_remote_task(rq, p, dsq, task_rq))) 2543 return true; 2544 goto retry; 2545 } 2546 } 2547 2548 raw_spin_unlock(&dsq->lock); 2549 return false; 2550 } 2551 2552 static bool consume_global_dsq(struct rq *rq) 2553 { 2554 int node = cpu_to_node(cpu_of(rq)); 2555 2556 return consume_dispatch_q(rq, global_dsqs[node]); 2557 } 2558 2559 /** 2560 * dispatch_to_local_dsq - Dispatch a task to a local dsq 2561 * @rq: current rq which is locked 2562 * @dst_dsq: destination DSQ 2563 * @p: task to dispatch 2564 * @enq_flags: %SCX_ENQ_* 2565 * 2566 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local 2567 * DSQ. This function performs all the synchronization dancing needed because 2568 * local DSQs are protected with rq locks. 2569 * 2570 * The caller must have exclusive ownership of @p (e.g. through 2571 * %SCX_OPSS_DISPATCHING). 2572 */ 2573 static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq, 2574 struct task_struct *p, u64 enq_flags) 2575 { 2576 struct rq *src_rq = task_rq(p); 2577 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 2578 2579 /* 2580 * We're synchronized against dequeue through DISPATCHING. As @p can't 2581 * be dequeued, its task_rq and cpus_allowed are stable too. 2582 * 2583 * If dispatching to @rq that @p is already on, no lock dancing needed. 2584 */ 2585 if (rq == src_rq && rq == dst_rq) { 2586 dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2587 return; 2588 } 2589 2590 #ifdef CONFIG_SMP 2591 if (unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) { 2592 dispatch_enqueue(find_global_dsq(p), p, 2593 enq_flags | SCX_ENQ_CLEAR_OPSS); 2594 return; 2595 } 2596 2597 /* 2598 * @p is on a possibly remote @src_rq which we need to lock to move the 2599 * task. If dequeue is in progress, it'd be locking @src_rq and waiting 2600 * on DISPATCHING, so we can't grab @src_rq lock while holding 2601 * DISPATCHING. 2602 * 2603 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that 2604 * we're moving from a DSQ and use the same mechanism - mark the task 2605 * under transfer with holding_cpu, release DISPATCHING and then follow 2606 * the same protocol. See unlink_dsq_and_lock_src_rq(). 2607 */ 2608 p->scx.holding_cpu = raw_smp_processor_id(); 2609 2610 /* store_release ensures that dequeue sees the above */ 2611 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 2612 2613 /* switch to @src_rq lock */ 2614 if (rq != src_rq) { 2615 raw_spin_rq_unlock(rq); 2616 raw_spin_rq_lock(src_rq); 2617 } 2618 2619 /* task_rq couldn't have changed if we're still the holding cpu */ 2620 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && 2621 !WARN_ON_ONCE(src_rq != task_rq(p))) { 2622 /* 2623 * If @p is staying on the same rq, there's no need to go 2624 * through the full deactivate/activate cycle. Optimize by 2625 * abbreviating move_remote_task_to_local_dsq(). 2626 */ 2627 if (src_rq == dst_rq) { 2628 p->scx.holding_cpu = -1; 2629 dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags); 2630 } else { 2631 move_remote_task_to_local_dsq(p, enq_flags, 2632 src_rq, dst_rq); 2633 } 2634 2635 /* if the destination CPU is idle, wake it up */ 2636 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) 2637 resched_curr(dst_rq); 2638 } 2639 2640 /* switch back to @rq lock */ 2641 if (rq != dst_rq) { 2642 raw_spin_rq_unlock(dst_rq); 2643 raw_spin_rq_lock(rq); 2644 } 2645 #else /* CONFIG_SMP */ 2646 BUG(); /* control can not reach here on UP */ 2647 #endif /* CONFIG_SMP */ 2648 } 2649 2650 /** 2651 * finish_dispatch - Asynchronously finish dispatching a task 2652 * @rq: current rq which is locked 2653 * @p: task to finish dispatching 2654 * @qseq_at_dispatch: qseq when @p started getting dispatched 2655 * @dsq_id: destination DSQ ID 2656 * @enq_flags: %SCX_ENQ_* 2657 * 2658 * Dispatching to local DSQs may need to wait for queueing to complete or 2659 * require rq lock dancing. As we don't wanna do either while inside 2660 * ops.dispatch() to avoid locking order inversion, we split dispatching into 2661 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the 2662 * task and its qseq. Once ops.dispatch() returns, this function is called to 2663 * finish up. 2664 * 2665 * There is no guarantee that @p is still valid for dispatching or even that it 2666 * was valid in the first place. Make sure that the task is still owned by the 2667 * BPF scheduler and claim the ownership before dispatching. 2668 */ 2669 static void finish_dispatch(struct rq *rq, struct task_struct *p, 2670 unsigned long qseq_at_dispatch, 2671 u64 dsq_id, u64 enq_flags) 2672 { 2673 struct scx_dispatch_q *dsq; 2674 unsigned long opss; 2675 2676 touch_core_sched_dispatch(rq, p); 2677 retry: 2678 /* 2679 * No need for _acquire here. @p is accessed only after a successful 2680 * try_cmpxchg to DISPATCHING. 2681 */ 2682 opss = atomic_long_read(&p->scx.ops_state); 2683 2684 switch (opss & SCX_OPSS_STATE_MASK) { 2685 case SCX_OPSS_DISPATCHING: 2686 case SCX_OPSS_NONE: 2687 /* someone else already got to it */ 2688 return; 2689 case SCX_OPSS_QUEUED: 2690 /* 2691 * If qseq doesn't match, @p has gone through at least one 2692 * dispatch/dequeue and re-enqueue cycle between 2693 * scx_bpf_dsq_insert() and here and we have no claim on it. 2694 */ 2695 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 2696 return; 2697 2698 /* 2699 * While we know @p is accessible, we don't yet have a claim on 2700 * it - the BPF scheduler is allowed to dispatch tasks 2701 * spuriously and there can be a racing dequeue attempt. Let's 2702 * claim @p by atomically transitioning it from QUEUED to 2703 * DISPATCHING. 2704 */ 2705 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2706 SCX_OPSS_DISPATCHING))) 2707 break; 2708 goto retry; 2709 case SCX_OPSS_QUEUEING: 2710 /* 2711 * do_enqueue_task() is in the process of transferring the task 2712 * to the BPF scheduler while holding @p's rq lock. As we aren't 2713 * holding any kernel or BPF resource that the enqueue path may 2714 * depend upon, it's safe to wait. 2715 */ 2716 wait_ops_state(p, opss); 2717 goto retry; 2718 } 2719 2720 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 2721 2722 dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p); 2723 2724 if (dsq->id == SCX_DSQ_LOCAL) 2725 dispatch_to_local_dsq(rq, dsq, p, enq_flags); 2726 else 2727 dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2728 } 2729 2730 static void flush_dispatch_buf(struct rq *rq) 2731 { 2732 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2733 u32 u; 2734 2735 for (u = 0; u < dspc->cursor; u++) { 2736 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 2737 2738 finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id, 2739 ent->enq_flags); 2740 } 2741 2742 dspc->nr_tasks += dspc->cursor; 2743 dspc->cursor = 0; 2744 } 2745 2746 static int balance_one(struct rq *rq, struct task_struct *prev) 2747 { 2748 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2749 bool prev_on_scx = prev->sched_class == &ext_sched_class; 2750 bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED; 2751 int nr_loops = SCX_DSP_MAX_LOOPS; 2752 2753 lockdep_assert_rq_held(rq); 2754 rq->scx.flags |= SCX_RQ_IN_BALANCE; 2755 rq->scx.flags &= ~(SCX_RQ_BAL_PENDING | SCX_RQ_BAL_KEEP); 2756 2757 if (static_branch_unlikely(&scx_ops_cpu_preempt) && 2758 unlikely(rq->scx.cpu_released)) { 2759 /* 2760 * If the previous sched_class for the current CPU was not SCX, 2761 * notify the BPF scheduler that it again has control of the 2762 * core. This callback complements ->cpu_release(), which is 2763 * emitted in switch_class(). 2764 */ 2765 if (SCX_HAS_OP(cpu_acquire)) 2766 SCX_CALL_OP(SCX_KF_REST, cpu_acquire, cpu_of(rq), NULL); 2767 rq->scx.cpu_released = false; 2768 } 2769 2770 if (prev_on_scx) { 2771 update_curr_scx(rq); 2772 2773 /* 2774 * If @prev is runnable & has slice left, it has priority and 2775 * fetching more just increases latency for the fetched tasks. 2776 * Tell pick_task_scx() to keep running @prev. If the BPF 2777 * scheduler wants to handle this explicitly, it should 2778 * implement ->cpu_release(). 2779 * 2780 * See scx_ops_disable_workfn() for the explanation on the 2781 * bypassing test. 2782 */ 2783 if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) { 2784 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2785 goto has_tasks; 2786 } 2787 } 2788 2789 /* if there already are tasks to run, nothing to do */ 2790 if (rq->scx.local_dsq.nr) 2791 goto has_tasks; 2792 2793 if (consume_global_dsq(rq)) 2794 goto has_tasks; 2795 2796 if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq)) 2797 goto no_tasks; 2798 2799 dspc->rq = rq; 2800 2801 /* 2802 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 2803 * the local DSQ might still end up empty after a successful 2804 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 2805 * produced some tasks, retry. The BPF scheduler may depend on this 2806 * looping behavior to simplify its implementation. 2807 */ 2808 do { 2809 dspc->nr_tasks = 0; 2810 2811 SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq), 2812 prev_on_scx ? prev : NULL); 2813 2814 flush_dispatch_buf(rq); 2815 2816 if (prev_on_rq && prev->scx.slice) { 2817 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2818 goto has_tasks; 2819 } 2820 if (rq->scx.local_dsq.nr) 2821 goto has_tasks; 2822 if (consume_global_dsq(rq)) 2823 goto has_tasks; 2824 2825 /* 2826 * ops.dispatch() can trap us in this loop by repeatedly 2827 * dispatching ineligible tasks. Break out once in a while to 2828 * allow the watchdog to run. As IRQ can't be enabled in 2829 * balance(), we want to complete this scheduling cycle and then 2830 * start a new one. IOW, we want to call resched_curr() on the 2831 * next, most likely idle, task, not the current one. Use 2832 * scx_bpf_kick_cpu() for deferred kicking. 2833 */ 2834 if (unlikely(!--nr_loops)) { 2835 scx_bpf_kick_cpu(cpu_of(rq), 0); 2836 break; 2837 } 2838 } while (dspc->nr_tasks); 2839 2840 no_tasks: 2841 /* 2842 * Didn't find another task to run. Keep running @prev unless 2843 * %SCX_OPS_ENQ_LAST is in effect. 2844 */ 2845 if (prev_on_rq && (!static_branch_unlikely(&scx_ops_enq_last) || 2846 scx_rq_bypassing(rq))) { 2847 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2848 goto has_tasks; 2849 } 2850 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2851 return false; 2852 2853 has_tasks: 2854 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2855 return true; 2856 } 2857 2858 static int balance_scx(struct rq *rq, struct task_struct *prev, 2859 struct rq_flags *rf) 2860 { 2861 int ret; 2862 2863 rq_unpin_lock(rq, rf); 2864 2865 ret = balance_one(rq, prev); 2866 2867 #ifdef CONFIG_SCHED_SMT 2868 /* 2869 * When core-sched is enabled, this ops.balance() call will be followed 2870 * by pick_task_scx() on this CPU and the SMT siblings. Balance the 2871 * siblings too. 2872 */ 2873 if (sched_core_enabled(rq)) { 2874 const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq)); 2875 int scpu; 2876 2877 for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) { 2878 struct rq *srq = cpu_rq(scpu); 2879 struct task_struct *sprev = srq->curr; 2880 2881 WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq)); 2882 update_rq_clock(srq); 2883 balance_one(srq, sprev); 2884 } 2885 } 2886 #endif 2887 rq_repin_lock(rq, rf); 2888 2889 return ret; 2890 } 2891 2892 static void process_ddsp_deferred_locals(struct rq *rq) 2893 { 2894 struct task_struct *p; 2895 2896 lockdep_assert_rq_held(rq); 2897 2898 /* 2899 * Now that @rq can be unlocked, execute the deferred enqueueing of 2900 * tasks directly dispatched to the local DSQs of other CPUs. See 2901 * direct_dispatch(). Keep popping from the head instead of using 2902 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq 2903 * temporarily. 2904 */ 2905 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, 2906 struct task_struct, scx.dsq_list.node))) { 2907 struct scx_dispatch_q *dsq; 2908 2909 list_del_init(&p->scx.dsq_list.node); 2910 2911 dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); 2912 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) 2913 dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags); 2914 } 2915 } 2916 2917 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 2918 { 2919 if (p->scx.flags & SCX_TASK_QUEUED) { 2920 /* 2921 * Core-sched might decide to execute @p before it is 2922 * dispatched. Call ops_dequeue() to notify the BPF scheduler. 2923 */ 2924 ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC); 2925 dispatch_dequeue(rq, p); 2926 } 2927 2928 p->se.exec_start = rq_clock_task(rq); 2929 2930 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2931 if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED)) 2932 SCX_CALL_OP_TASK(SCX_KF_REST, running, p); 2933 2934 clr_task_runnable(p, true); 2935 2936 /* 2937 * @p is getting newly scheduled or got kicked after someone updated its 2938 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 2939 */ 2940 if ((p->scx.slice == SCX_SLICE_INF) != 2941 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 2942 if (p->scx.slice == SCX_SLICE_INF) 2943 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 2944 else 2945 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 2946 2947 sched_update_tick_dependency(rq); 2948 2949 /* 2950 * For now, let's refresh the load_avgs just when transitioning 2951 * in and out of nohz. In the future, we might want to add a 2952 * mechanism which calls the following periodically on 2953 * tick-stopped CPUs. 2954 */ 2955 update_other_load_avgs(rq); 2956 } 2957 } 2958 2959 static enum scx_cpu_preempt_reason 2960 preempt_reason_from_class(const struct sched_class *class) 2961 { 2962 #ifdef CONFIG_SMP 2963 if (class == &stop_sched_class) 2964 return SCX_CPU_PREEMPT_STOP; 2965 #endif 2966 if (class == &dl_sched_class) 2967 return SCX_CPU_PREEMPT_DL; 2968 if (class == &rt_sched_class) 2969 return SCX_CPU_PREEMPT_RT; 2970 return SCX_CPU_PREEMPT_UNKNOWN; 2971 } 2972 2973 static void switch_class(struct rq *rq, struct task_struct *next) 2974 { 2975 const struct sched_class *next_class = next->sched_class; 2976 2977 #ifdef CONFIG_SMP 2978 /* 2979 * Pairs with the smp_load_acquire() issued by a CPU in 2980 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a 2981 * resched. 2982 */ 2983 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); 2984 #endif 2985 if (!static_branch_unlikely(&scx_ops_cpu_preempt)) 2986 return; 2987 2988 /* 2989 * The callback is conceptually meant to convey that the CPU is no 2990 * longer under the control of SCX. Therefore, don't invoke the callback 2991 * if the next class is below SCX (in which case the BPF scheduler has 2992 * actively decided not to schedule any tasks on the CPU). 2993 */ 2994 if (sched_class_above(&ext_sched_class, next_class)) 2995 return; 2996 2997 /* 2998 * At this point we know that SCX was preempted by a higher priority 2999 * sched_class, so invoke the ->cpu_release() callback if we have not 3000 * done so already. We only send the callback once between SCX being 3001 * preempted, and it regaining control of the CPU. 3002 * 3003 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 3004 * next time that balance_scx() is invoked. 3005 */ 3006 if (!rq->scx.cpu_released) { 3007 if (SCX_HAS_OP(cpu_release)) { 3008 struct scx_cpu_release_args args = { 3009 .reason = preempt_reason_from_class(next_class), 3010 .task = next, 3011 }; 3012 3013 SCX_CALL_OP(SCX_KF_CPU_RELEASE, 3014 cpu_release, cpu_of(rq), &args); 3015 } 3016 rq->scx.cpu_released = true; 3017 } 3018 } 3019 3020 static void put_prev_task_scx(struct rq *rq, struct task_struct *p, 3021 struct task_struct *next) 3022 { 3023 update_curr_scx(rq); 3024 3025 /* see dequeue_task_scx() on why we skip when !QUEUED */ 3026 if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 3027 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true); 3028 3029 if (p->scx.flags & SCX_TASK_QUEUED) { 3030 set_task_runnable(rq, p); 3031 3032 /* 3033 * If @p has slice left and is being put, @p is getting 3034 * preempted by a higher priority scheduler class or core-sched 3035 * forcing a different task. Leave it at the head of the local 3036 * DSQ. 3037 */ 3038 if (p->scx.slice && !scx_rq_bypassing(rq)) { 3039 dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD); 3040 goto switch_class; 3041 } 3042 3043 /* 3044 * If @p is runnable but we're about to enter a lower 3045 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell 3046 * ops.enqueue() that @p is the only one available for this cpu, 3047 * which should trigger an explicit follow-up scheduling event. 3048 */ 3049 if (sched_class_above(&ext_sched_class, next->sched_class)) { 3050 WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last)); 3051 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 3052 } else { 3053 do_enqueue_task(rq, p, 0, -1); 3054 } 3055 } 3056 3057 switch_class: 3058 if (next && next->sched_class != &ext_sched_class) 3059 switch_class(rq, next); 3060 } 3061 3062 static struct task_struct *first_local_task(struct rq *rq) 3063 { 3064 return list_first_entry_or_null(&rq->scx.local_dsq.list, 3065 struct task_struct, scx.dsq_list.node); 3066 } 3067 3068 static struct task_struct *pick_task_scx(struct rq *rq) 3069 { 3070 struct task_struct *prev = rq->curr; 3071 struct task_struct *p; 3072 bool prev_on_scx = prev->sched_class == &ext_sched_class; 3073 bool keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP; 3074 bool kick_idle = false; 3075 3076 /* 3077 * WORKAROUND: 3078 * 3079 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just 3080 * have gone through balance_scx(). Unfortunately, there currently is a 3081 * bug where fair could say yes on balance() but no on pick_task(), 3082 * which then ends up calling pick_task_scx() without preceding 3083 * balance_scx(). 3084 * 3085 * Keep running @prev if possible and avoid stalling from entering idle 3086 * without balancing. 3087 * 3088 * Once fair is fixed, remove the workaround and trigger WARN_ON_ONCE() 3089 * if pick_task_scx() is called without preceding balance_scx(). 3090 */ 3091 if (unlikely(rq->scx.flags & SCX_RQ_BAL_PENDING)) { 3092 if (prev_on_scx) { 3093 keep_prev = true; 3094 } else { 3095 keep_prev = false; 3096 kick_idle = true; 3097 } 3098 } else if (unlikely(keep_prev && !prev_on_scx)) { 3099 /* only allowed during transitions */ 3100 WARN_ON_ONCE(scx_ops_enable_state() == SCX_OPS_ENABLED); 3101 keep_prev = false; 3102 } 3103 3104 /* 3105 * If balance_scx() is telling us to keep running @prev, replenish slice 3106 * if necessary and keep running @prev. Otherwise, pop the first one 3107 * from the local DSQ. 3108 */ 3109 if (keep_prev) { 3110 p = prev; 3111 if (!p->scx.slice) 3112 p->scx.slice = SCX_SLICE_DFL; 3113 } else { 3114 p = first_local_task(rq); 3115 if (!p) { 3116 if (kick_idle) 3117 scx_bpf_kick_cpu(cpu_of(rq), SCX_KICK_IDLE); 3118 return NULL; 3119 } 3120 3121 if (unlikely(!p->scx.slice)) { 3122 if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) { 3123 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n", 3124 p->comm, p->pid, __func__); 3125 scx_warned_zero_slice = true; 3126 } 3127 p->scx.slice = SCX_SLICE_DFL; 3128 } 3129 } 3130 3131 return p; 3132 } 3133 3134 #ifdef CONFIG_SCHED_CORE 3135 /** 3136 * scx_prio_less - Task ordering for core-sched 3137 * @a: task A 3138 * @b: task B 3139 * @in_fi: in forced idle state 3140 * 3141 * Core-sched is implemented as an additional scheduling layer on top of the 3142 * usual sched_class'es and needs to find out the expected task ordering. For 3143 * SCX, core-sched calls this function to interrogate the task ordering. 3144 * 3145 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used 3146 * to implement the default task ordering. The older the timestamp, the higher 3147 * prority the task - the global FIFO ordering matching the default scheduling 3148 * behavior. 3149 * 3150 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to 3151 * implement FIFO ordering within each local DSQ. See pick_task_scx(). 3152 */ 3153 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, 3154 bool in_fi) 3155 { 3156 /* 3157 * The const qualifiers are dropped from task_struct pointers when 3158 * calling ops.core_sched_before(). Accesses are controlled by the 3159 * verifier. 3160 */ 3161 if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a))) 3162 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before, 3163 (struct task_struct *)a, 3164 (struct task_struct *)b); 3165 else 3166 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); 3167 } 3168 #endif /* CONFIG_SCHED_CORE */ 3169 3170 #ifdef CONFIG_SMP 3171 3172 static bool test_and_clear_cpu_idle(int cpu) 3173 { 3174 #ifdef CONFIG_SCHED_SMT 3175 /* 3176 * SMT mask should be cleared whether we can claim @cpu or not. The SMT 3177 * cluster is not wholly idle either way. This also prevents 3178 * scx_pick_idle_cpu() from getting caught in an infinite loop. 3179 */ 3180 if (sched_smt_active()) { 3181 const struct cpumask *smt = cpu_smt_mask(cpu); 3182 3183 /* 3184 * If offline, @cpu is not its own sibling and 3185 * scx_pick_idle_cpu() can get caught in an infinite loop as 3186 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu 3187 * is eventually cleared. 3188 * 3189 * NOTE: Use cpumask_intersects() and cpumask_test_cpu() to 3190 * reduce memory writes, which may help alleviate cache 3191 * coherence pressure. 3192 */ 3193 if (cpumask_intersects(smt, idle_masks.smt)) 3194 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 3195 else if (cpumask_test_cpu(cpu, idle_masks.smt)) 3196 __cpumask_clear_cpu(cpu, idle_masks.smt); 3197 } 3198 #endif 3199 return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu); 3200 } 3201 3202 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) 3203 { 3204 int cpu; 3205 3206 retry: 3207 if (sched_smt_active()) { 3208 cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed); 3209 if (cpu < nr_cpu_ids) 3210 goto found; 3211 3212 if (flags & SCX_PICK_IDLE_CORE) 3213 return -EBUSY; 3214 } 3215 3216 cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed); 3217 if (cpu >= nr_cpu_ids) 3218 return -EBUSY; 3219 3220 found: 3221 if (test_and_clear_cpu_idle(cpu)) 3222 return cpu; 3223 else 3224 goto retry; 3225 } 3226 3227 /* 3228 * Return the amount of CPUs in the same LLC domain of @cpu (or zero if the LLC 3229 * domain is not defined). 3230 */ 3231 static unsigned int llc_weight(s32 cpu) 3232 { 3233 struct sched_domain *sd; 3234 3235 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 3236 if (!sd) 3237 return 0; 3238 3239 return sd->span_weight; 3240 } 3241 3242 /* 3243 * Return the cpumask representing the LLC domain of @cpu (or NULL if the LLC 3244 * domain is not defined). 3245 */ 3246 static struct cpumask *llc_span(s32 cpu) 3247 { 3248 struct sched_domain *sd; 3249 3250 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 3251 if (!sd) 3252 return 0; 3253 3254 return sched_domain_span(sd); 3255 } 3256 3257 /* 3258 * Return the amount of CPUs in the same NUMA domain of @cpu (or zero if the 3259 * NUMA domain is not defined). 3260 */ 3261 static unsigned int numa_weight(s32 cpu) 3262 { 3263 struct sched_domain *sd; 3264 struct sched_group *sg; 3265 3266 sd = rcu_dereference(per_cpu(sd_numa, cpu)); 3267 if (!sd) 3268 return 0; 3269 sg = sd->groups; 3270 if (!sg) 3271 return 0; 3272 3273 return sg->group_weight; 3274 } 3275 3276 /* 3277 * Return the cpumask representing the NUMA domain of @cpu (or NULL if the NUMA 3278 * domain is not defined). 3279 */ 3280 static struct cpumask *numa_span(s32 cpu) 3281 { 3282 struct sched_domain *sd; 3283 struct sched_group *sg; 3284 3285 sd = rcu_dereference(per_cpu(sd_numa, cpu)); 3286 if (!sd) 3287 return NULL; 3288 sg = sd->groups; 3289 if (!sg) 3290 return NULL; 3291 3292 return sched_group_span(sg); 3293 } 3294 3295 /* 3296 * Return true if the LLC domains do not perfectly overlap with the NUMA 3297 * domains, false otherwise. 3298 */ 3299 static bool llc_numa_mismatch(void) 3300 { 3301 int cpu; 3302 3303 /* 3304 * We need to scan all online CPUs to verify whether their scheduling 3305 * domains overlap. 3306 * 3307 * While it is rare to encounter architectures with asymmetric NUMA 3308 * topologies, CPU hotplugging or virtualized environments can result 3309 * in asymmetric configurations. 3310 * 3311 * For example: 3312 * 3313 * NUMA 0: 3314 * - LLC 0: cpu0..cpu7 3315 * - LLC 1: cpu8..cpu15 [offline] 3316 * 3317 * NUMA 1: 3318 * - LLC 0: cpu16..cpu23 3319 * - LLC 1: cpu24..cpu31 3320 * 3321 * In this case, if we only check the first online CPU (cpu0), we might 3322 * incorrectly assume that the LLC and NUMA domains are fully 3323 * overlapping, which is incorrect (as NUMA 1 has two distinct LLC 3324 * domains). 3325 */ 3326 for_each_online_cpu(cpu) 3327 if (llc_weight(cpu) != numa_weight(cpu)) 3328 return true; 3329 3330 return false; 3331 } 3332 3333 /* 3334 * Initialize topology-aware scheduling. 3335 * 3336 * Detect if the system has multiple LLC or multiple NUMA domains and enable 3337 * cache-aware / NUMA-aware scheduling optimizations in the default CPU idle 3338 * selection policy. 3339 * 3340 * Assumption: the kernel's internal topology representation assumes that each 3341 * CPU belongs to a single LLC domain, and that each LLC domain is entirely 3342 * contained within a single NUMA node. 3343 */ 3344 static void update_selcpu_topology(void) 3345 { 3346 bool enable_llc = false, enable_numa = false; 3347 unsigned int nr_cpus; 3348 s32 cpu = cpumask_first(cpu_online_mask); 3349 3350 /* 3351 * Enable LLC domain optimization only when there are multiple LLC 3352 * domains among the online CPUs. If all online CPUs are part of a 3353 * single LLC domain, the idle CPU selection logic can choose any 3354 * online CPU without bias. 3355 * 3356 * Note that it is sufficient to check the LLC domain of the first 3357 * online CPU to determine whether a single LLC domain includes all 3358 * CPUs. 3359 */ 3360 rcu_read_lock(); 3361 nr_cpus = llc_weight(cpu); 3362 if (nr_cpus > 0) { 3363 if (nr_cpus < num_online_cpus()) 3364 enable_llc = true; 3365 pr_debug("sched_ext: LLC=%*pb weight=%u\n", 3366 cpumask_pr_args(llc_span(cpu)), llc_weight(cpu)); 3367 } 3368 3369 /* 3370 * Enable NUMA optimization only when there are multiple NUMA domains 3371 * among the online CPUs and the NUMA domains don't perfectly overlaps 3372 * with the LLC domains. 3373 * 3374 * If all CPUs belong to the same NUMA node and the same LLC domain, 3375 * enabling both NUMA and LLC optimizations is unnecessary, as checking 3376 * for an idle CPU in the same domain twice is redundant. 3377 */ 3378 nr_cpus = numa_weight(cpu); 3379 if (nr_cpus > 0) { 3380 if (nr_cpus < num_online_cpus() && llc_numa_mismatch()) 3381 enable_numa = true; 3382 pr_debug("sched_ext: NUMA=%*pb weight=%u\n", 3383 cpumask_pr_args(numa_span(cpu)), numa_weight(cpu)); 3384 } 3385 rcu_read_unlock(); 3386 3387 pr_debug("sched_ext: LLC idle selection %s\n", 3388 str_enabled_disabled(enable_llc)); 3389 pr_debug("sched_ext: NUMA idle selection %s\n", 3390 str_enabled_disabled(enable_numa)); 3391 3392 if (enable_llc) 3393 static_branch_enable_cpuslocked(&scx_selcpu_topo_llc); 3394 else 3395 static_branch_disable_cpuslocked(&scx_selcpu_topo_llc); 3396 if (enable_numa) 3397 static_branch_enable_cpuslocked(&scx_selcpu_topo_numa); 3398 else 3399 static_branch_disable_cpuslocked(&scx_selcpu_topo_numa); 3400 } 3401 3402 /* 3403 * Built-in CPU idle selection policy: 3404 * 3405 * 1. Prioritize full-idle cores: 3406 * - always prioritize CPUs from fully idle cores (both logical CPUs are 3407 * idle) to avoid interference caused by SMT. 3408 * 3409 * 2. Reuse the same CPU: 3410 * - prefer the last used CPU to take advantage of cached data (L1, L2) and 3411 * branch prediction optimizations. 3412 * 3413 * 3. Pick a CPU within the same LLC (Last-Level Cache): 3414 * - if the above conditions aren't met, pick a CPU that shares the same LLC 3415 * to maintain cache locality. 3416 * 3417 * 4. Pick a CPU within the same NUMA node, if enabled: 3418 * - choose a CPU from the same NUMA node to reduce memory access latency. 3419 * 3420 * 5. Pick any idle CPU usable by the task. 3421 * 3422 * Step 3 and 4 are performed only if the system has, respectively, multiple 3423 * LLC domains / multiple NUMA nodes (see scx_selcpu_topo_llc and 3424 * scx_selcpu_topo_numa). 3425 * 3426 * NOTE: tasks that can only run on 1 CPU are excluded by this logic, because 3427 * we never call ops.select_cpu() for them, see select_task_rq(). 3428 */ 3429 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 3430 u64 wake_flags, bool *found) 3431 { 3432 const struct cpumask *llc_cpus = NULL; 3433 const struct cpumask *numa_cpus = NULL; 3434 s32 cpu; 3435 3436 *found = false; 3437 3438 /* 3439 * This is necessary to protect llc_cpus. 3440 */ 3441 rcu_read_lock(); 3442 3443 /* 3444 * Determine the scheduling domain only if the task is allowed to run 3445 * on all CPUs. 3446 * 3447 * This is done primarily for efficiency, as it avoids the overhead of 3448 * updating a cpumask every time we need to select an idle CPU (which 3449 * can be costly in large SMP systems), but it also aligns logically: 3450 * if a task's scheduling domain is restricted by user-space (through 3451 * CPU affinity), the task will simply use the flat scheduling domain 3452 * defined by user-space. 3453 */ 3454 if (p->nr_cpus_allowed >= num_possible_cpus()) { 3455 if (static_branch_maybe(CONFIG_NUMA, &scx_selcpu_topo_numa)) 3456 numa_cpus = numa_span(prev_cpu); 3457 3458 if (static_branch_maybe(CONFIG_SCHED_MC, &scx_selcpu_topo_llc)) 3459 llc_cpus = llc_span(prev_cpu); 3460 } 3461 3462 /* 3463 * If WAKE_SYNC, try to migrate the wakee to the waker's CPU. 3464 */ 3465 if (wake_flags & SCX_WAKE_SYNC) { 3466 cpu = smp_processor_id(); 3467 3468 /* 3469 * If the waker's CPU is cache affine and prev_cpu is idle, 3470 * then avoid a migration. 3471 */ 3472 if (cpus_share_cache(cpu, prev_cpu) && 3473 test_and_clear_cpu_idle(prev_cpu)) { 3474 cpu = prev_cpu; 3475 goto cpu_found; 3476 } 3477 3478 /* 3479 * If the waker's local DSQ is empty, and the system is under 3480 * utilized, try to wake up @p to the local DSQ of the waker. 3481 * 3482 * Checking only for an empty local DSQ is insufficient as it 3483 * could give the wakee an unfair advantage when the system is 3484 * oversaturated. 3485 * 3486 * Checking only for the presence of idle CPUs is also 3487 * insufficient as the local DSQ of the waker could have tasks 3488 * piled up on it even if there is an idle core elsewhere on 3489 * the system. 3490 */ 3491 if (!cpumask_empty(idle_masks.cpu) && 3492 !(current->flags & PF_EXITING) && 3493 cpu_rq(cpu)->scx.local_dsq.nr == 0) { 3494 if (cpumask_test_cpu(cpu, p->cpus_ptr)) 3495 goto cpu_found; 3496 } 3497 } 3498 3499 /* 3500 * If CPU has SMT, any wholly idle CPU is likely a better pick than 3501 * partially idle @prev_cpu. 3502 */ 3503 if (sched_smt_active()) { 3504 /* 3505 * Keep using @prev_cpu if it's part of a fully idle core. 3506 */ 3507 if (cpumask_test_cpu(prev_cpu, idle_masks.smt) && 3508 test_and_clear_cpu_idle(prev_cpu)) { 3509 cpu = prev_cpu; 3510 goto cpu_found; 3511 } 3512 3513 /* 3514 * Search for any fully idle core in the same LLC domain. 3515 */ 3516 if (llc_cpus) { 3517 cpu = scx_pick_idle_cpu(llc_cpus, SCX_PICK_IDLE_CORE); 3518 if (cpu >= 0) 3519 goto cpu_found; 3520 } 3521 3522 /* 3523 * Search for any fully idle core in the same NUMA node. 3524 */ 3525 if (numa_cpus) { 3526 cpu = scx_pick_idle_cpu(numa_cpus, SCX_PICK_IDLE_CORE); 3527 if (cpu >= 0) 3528 goto cpu_found; 3529 } 3530 3531 /* 3532 * Search for any full idle core usable by the task. 3533 */ 3534 cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE); 3535 if (cpu >= 0) 3536 goto cpu_found; 3537 } 3538 3539 /* 3540 * Use @prev_cpu if it's idle. 3541 */ 3542 if (test_and_clear_cpu_idle(prev_cpu)) { 3543 cpu = prev_cpu; 3544 goto cpu_found; 3545 } 3546 3547 /* 3548 * Search for any idle CPU in the same LLC domain. 3549 */ 3550 if (llc_cpus) { 3551 cpu = scx_pick_idle_cpu(llc_cpus, 0); 3552 if (cpu >= 0) 3553 goto cpu_found; 3554 } 3555 3556 /* 3557 * Search for any idle CPU in the same NUMA node. 3558 */ 3559 if (numa_cpus) { 3560 cpu = scx_pick_idle_cpu(numa_cpus, 0); 3561 if (cpu >= 0) 3562 goto cpu_found; 3563 } 3564 3565 /* 3566 * Search for any idle CPU usable by the task. 3567 */ 3568 cpu = scx_pick_idle_cpu(p->cpus_ptr, 0); 3569 if (cpu >= 0) 3570 goto cpu_found; 3571 3572 rcu_read_unlock(); 3573 return prev_cpu; 3574 3575 cpu_found: 3576 rcu_read_unlock(); 3577 3578 *found = true; 3579 return cpu; 3580 } 3581 3582 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 3583 { 3584 /* 3585 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 3586 * can be a good migration opportunity with low cache and memory 3587 * footprint. Returning a CPU different than @prev_cpu triggers 3588 * immediate rq migration. However, for SCX, as the current rq 3589 * association doesn't dictate where the task is going to run, this 3590 * doesn't fit well. If necessary, we can later add a dedicated method 3591 * which can decide to preempt self to force it through the regular 3592 * scheduling path. 3593 */ 3594 if (unlikely(wake_flags & WF_EXEC)) 3595 return prev_cpu; 3596 3597 if (SCX_HAS_OP(select_cpu) && !scx_rq_bypassing(task_rq(p))) { 3598 s32 cpu; 3599 struct task_struct **ddsp_taskp; 3600 3601 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 3602 WARN_ON_ONCE(*ddsp_taskp); 3603 *ddsp_taskp = p; 3604 3605 cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 3606 select_cpu, p, prev_cpu, wake_flags); 3607 *ddsp_taskp = NULL; 3608 if (ops_cpu_valid(cpu, "from ops.select_cpu()")) 3609 return cpu; 3610 else 3611 return prev_cpu; 3612 } else { 3613 bool found; 3614 s32 cpu; 3615 3616 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found); 3617 if (found) { 3618 p->scx.slice = SCX_SLICE_DFL; 3619 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 3620 } 3621 return cpu; 3622 } 3623 } 3624 3625 static void task_woken_scx(struct rq *rq, struct task_struct *p) 3626 { 3627 run_deferred(rq); 3628 } 3629 3630 static void set_cpus_allowed_scx(struct task_struct *p, 3631 struct affinity_context *ac) 3632 { 3633 set_cpus_allowed_common(p, ac); 3634 3635 /* 3636 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 3637 * differ from the configured one in @p->cpus_mask. Always tell the bpf 3638 * scheduler the effective one. 3639 * 3640 * Fine-grained memory write control is enforced by BPF making the const 3641 * designation pointless. Cast it away when calling the operation. 3642 */ 3643 if (SCX_HAS_OP(set_cpumask)) 3644 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 3645 (struct cpumask *)p->cpus_ptr); 3646 } 3647 3648 static void reset_idle_masks(void) 3649 { 3650 /* 3651 * Consider all online cpus idle. Should converge to the actual state 3652 * quickly. 3653 */ 3654 cpumask_copy(idle_masks.cpu, cpu_online_mask); 3655 cpumask_copy(idle_masks.smt, cpu_online_mask); 3656 } 3657 3658 static void update_builtin_idle(int cpu, bool idle) 3659 { 3660 assign_cpu(cpu, idle_masks.cpu, idle); 3661 3662 #ifdef CONFIG_SCHED_SMT 3663 if (sched_smt_active()) { 3664 const struct cpumask *smt = cpu_smt_mask(cpu); 3665 3666 if (idle) { 3667 /* 3668 * idle_masks.smt handling is racy but that's fine as 3669 * it's only for optimization and self-correcting. 3670 */ 3671 if (!cpumask_subset(smt, idle_masks.cpu)) 3672 return; 3673 cpumask_or(idle_masks.smt, idle_masks.smt, smt); 3674 } else { 3675 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 3676 } 3677 } 3678 #endif 3679 } 3680 3681 /* 3682 * Update the idle state of a CPU to @idle. 3683 * 3684 * If @do_notify is true, ops.update_idle() is invoked to notify the scx 3685 * scheduler of an actual idle state transition (idle to busy or vice 3686 * versa). If @do_notify is false, only the idle state in the idle masks is 3687 * refreshed without invoking ops.update_idle(). 3688 * 3689 * This distinction is necessary, because an idle CPU can be "reserved" and 3690 * awakened via scx_bpf_pick_idle_cpu() + scx_bpf_kick_cpu(), marking it as 3691 * busy even if no tasks are dispatched. In this case, the CPU may return 3692 * to idle without a true state transition. Refreshing the idle masks 3693 * without invoking ops.update_idle() ensures accurate idle state tracking 3694 * while avoiding unnecessary updates and maintaining balanced state 3695 * transitions. 3696 */ 3697 void __scx_update_idle(struct rq *rq, bool idle, bool do_notify) 3698 { 3699 int cpu = cpu_of(rq); 3700 3701 lockdep_assert_rq_held(rq); 3702 3703 /* 3704 * Trigger ops.update_idle() only when transitioning from a task to 3705 * the idle thread and vice versa. 3706 * 3707 * Idle transitions are indicated by do_notify being set to true, 3708 * managed by put_prev_task_idle()/set_next_task_idle(). 3709 */ 3710 if (SCX_HAS_OP(update_idle) && do_notify && !scx_rq_bypassing(rq)) 3711 SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle); 3712 3713 /* 3714 * Update the idle masks: 3715 * - for real idle transitions (do_notify == true) 3716 * - for idle-to-idle transitions (indicated by the previous task 3717 * being the idle thread, managed by pick_task_idle()) 3718 * 3719 * Skip updating idle masks if the previous task is not the idle 3720 * thread, since set_next_task_idle() has already handled it when 3721 * transitioning from a task to the idle thread (calling this 3722 * function with do_notify == true). 3723 * 3724 * In this way we can avoid updating the idle masks twice, 3725 * unnecessarily. 3726 */ 3727 if (static_branch_likely(&scx_builtin_idle_enabled)) 3728 if (do_notify || is_idle_task(rq->curr)) 3729 update_builtin_idle(cpu, idle); 3730 } 3731 3732 static void handle_hotplug(struct rq *rq, bool online) 3733 { 3734 int cpu = cpu_of(rq); 3735 3736 atomic_long_inc(&scx_hotplug_seq); 3737 3738 if (scx_enabled()) 3739 update_selcpu_topology(); 3740 3741 if (online && SCX_HAS_OP(cpu_online)) 3742 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu); 3743 else if (!online && SCX_HAS_OP(cpu_offline)) 3744 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu); 3745 else 3746 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 3747 "cpu %d going %s, exiting scheduler", cpu, 3748 online ? "online" : "offline"); 3749 } 3750 3751 void scx_rq_activate(struct rq *rq) 3752 { 3753 handle_hotplug(rq, true); 3754 } 3755 3756 void scx_rq_deactivate(struct rq *rq) 3757 { 3758 handle_hotplug(rq, false); 3759 } 3760 3761 static void rq_online_scx(struct rq *rq) 3762 { 3763 rq->scx.flags |= SCX_RQ_ONLINE; 3764 } 3765 3766 static void rq_offline_scx(struct rq *rq) 3767 { 3768 rq->scx.flags &= ~SCX_RQ_ONLINE; 3769 } 3770 3771 #else /* CONFIG_SMP */ 3772 3773 static bool test_and_clear_cpu_idle(int cpu) { return false; } 3774 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; } 3775 static void reset_idle_masks(void) {} 3776 3777 #endif /* CONFIG_SMP */ 3778 3779 static bool check_rq_for_timeouts(struct rq *rq) 3780 { 3781 struct task_struct *p; 3782 struct rq_flags rf; 3783 bool timed_out = false; 3784 3785 rq_lock_irqsave(rq, &rf); 3786 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 3787 unsigned long last_runnable = p->scx.runnable_at; 3788 3789 if (unlikely(time_after(jiffies, 3790 last_runnable + scx_watchdog_timeout))) { 3791 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 3792 3793 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3794 "%s[%d] failed to run for %u.%03us", 3795 p->comm, p->pid, 3796 dur_ms / 1000, dur_ms % 1000); 3797 timed_out = true; 3798 break; 3799 } 3800 } 3801 rq_unlock_irqrestore(rq, &rf); 3802 3803 return timed_out; 3804 } 3805 3806 static void scx_watchdog_workfn(struct work_struct *work) 3807 { 3808 int cpu; 3809 3810 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 3811 3812 for_each_online_cpu(cpu) { 3813 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 3814 break; 3815 3816 cond_resched(); 3817 } 3818 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 3819 scx_watchdog_timeout / 2); 3820 } 3821 3822 void scx_tick(struct rq *rq) 3823 { 3824 unsigned long last_check; 3825 3826 if (!scx_enabled()) 3827 return; 3828 3829 last_check = READ_ONCE(scx_watchdog_timestamp); 3830 if (unlikely(time_after(jiffies, 3831 last_check + READ_ONCE(scx_watchdog_timeout)))) { 3832 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 3833 3834 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3835 "watchdog failed to check in for %u.%03us", 3836 dur_ms / 1000, dur_ms % 1000); 3837 } 3838 3839 update_other_load_avgs(rq); 3840 } 3841 3842 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 3843 { 3844 update_curr_scx(rq); 3845 3846 /* 3847 * While disabling, always resched and refresh core-sched timestamp as 3848 * we can't trust the slice management or ops.core_sched_before(). 3849 */ 3850 if (scx_rq_bypassing(rq)) { 3851 curr->scx.slice = 0; 3852 touch_core_sched(rq, curr); 3853 } else if (SCX_HAS_OP(tick)) { 3854 SCX_CALL_OP(SCX_KF_REST, tick, curr); 3855 } 3856 3857 if (!curr->scx.slice) 3858 resched_curr(rq); 3859 } 3860 3861 #ifdef CONFIG_EXT_GROUP_SCHED 3862 static struct cgroup *tg_cgrp(struct task_group *tg) 3863 { 3864 /* 3865 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, 3866 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the 3867 * root cgroup. 3868 */ 3869 if (tg && tg->css.cgroup) 3870 return tg->css.cgroup; 3871 else 3872 return &cgrp_dfl_root.cgrp; 3873 } 3874 3875 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), 3876 3877 #else /* CONFIG_EXT_GROUP_SCHED */ 3878 3879 #define SCX_INIT_TASK_ARGS_CGROUP(tg) 3880 3881 #endif /* CONFIG_EXT_GROUP_SCHED */ 3882 3883 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 3884 { 3885 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 3886 } 3887 3888 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 3889 { 3890 enum scx_task_state prev_state = scx_get_task_state(p); 3891 bool warn = false; 3892 3893 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 3894 3895 switch (state) { 3896 case SCX_TASK_NONE: 3897 break; 3898 case SCX_TASK_INIT: 3899 warn = prev_state != SCX_TASK_NONE; 3900 break; 3901 case SCX_TASK_READY: 3902 warn = prev_state == SCX_TASK_NONE; 3903 break; 3904 case SCX_TASK_ENABLED: 3905 warn = prev_state != SCX_TASK_READY; 3906 break; 3907 default: 3908 warn = true; 3909 return; 3910 } 3911 3912 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 3913 prev_state, state, p->comm, p->pid); 3914 3915 p->scx.flags &= ~SCX_TASK_STATE_MASK; 3916 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 3917 } 3918 3919 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork) 3920 { 3921 int ret; 3922 3923 p->scx.disallow = false; 3924 3925 if (SCX_HAS_OP(init_task)) { 3926 struct scx_init_task_args args = { 3927 SCX_INIT_TASK_ARGS_CGROUP(tg) 3928 .fork = fork, 3929 }; 3930 3931 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args); 3932 if (unlikely(ret)) { 3933 ret = ops_sanitize_err("init_task", ret); 3934 return ret; 3935 } 3936 } 3937 3938 scx_set_task_state(p, SCX_TASK_INIT); 3939 3940 if (p->scx.disallow) { 3941 if (!fork) { 3942 struct rq *rq; 3943 struct rq_flags rf; 3944 3945 rq = task_rq_lock(p, &rf); 3946 3947 /* 3948 * We're in the load path and @p->policy will be applied 3949 * right after. Reverting @p->policy here and rejecting 3950 * %SCHED_EXT transitions from scx_check_setscheduler() 3951 * guarantees that if ops.init_task() sets @p->disallow, 3952 * @p can never be in SCX. 3953 */ 3954 if (p->policy == SCHED_EXT) { 3955 p->policy = SCHED_NORMAL; 3956 atomic_long_inc(&scx_nr_rejected); 3957 } 3958 3959 task_rq_unlock(rq, p, &rf); 3960 } else if (p->policy == SCHED_EXT) { 3961 scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork", 3962 p->comm, p->pid); 3963 } 3964 } 3965 3966 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 3967 return 0; 3968 } 3969 3970 static void scx_ops_enable_task(struct task_struct *p) 3971 { 3972 u32 weight; 3973 3974 lockdep_assert_rq_held(task_rq(p)); 3975 3976 /* 3977 * Set the weight before calling ops.enable() so that the scheduler 3978 * doesn't see a stale value if they inspect the task struct. 3979 */ 3980 if (task_has_idle_policy(p)) 3981 weight = WEIGHT_IDLEPRIO; 3982 else 3983 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 3984 3985 p->scx.weight = sched_weight_to_cgroup(weight); 3986 3987 if (SCX_HAS_OP(enable)) 3988 SCX_CALL_OP_TASK(SCX_KF_REST, enable, p); 3989 scx_set_task_state(p, SCX_TASK_ENABLED); 3990 3991 if (SCX_HAS_OP(set_weight)) 3992 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 3993 } 3994 3995 static void scx_ops_disable_task(struct task_struct *p) 3996 { 3997 lockdep_assert_rq_held(task_rq(p)); 3998 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 3999 4000 if (SCX_HAS_OP(disable)) 4001 SCX_CALL_OP(SCX_KF_REST, disable, p); 4002 scx_set_task_state(p, SCX_TASK_READY); 4003 } 4004 4005 static void scx_ops_exit_task(struct task_struct *p) 4006 { 4007 struct scx_exit_task_args args = { 4008 .cancelled = false, 4009 }; 4010 4011 lockdep_assert_rq_held(task_rq(p)); 4012 4013 switch (scx_get_task_state(p)) { 4014 case SCX_TASK_NONE: 4015 return; 4016 case SCX_TASK_INIT: 4017 args.cancelled = true; 4018 break; 4019 case SCX_TASK_READY: 4020 break; 4021 case SCX_TASK_ENABLED: 4022 scx_ops_disable_task(p); 4023 break; 4024 default: 4025 WARN_ON_ONCE(true); 4026 return; 4027 } 4028 4029 if (SCX_HAS_OP(exit_task)) 4030 SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args); 4031 scx_set_task_state(p, SCX_TASK_NONE); 4032 } 4033 4034 void init_scx_entity(struct sched_ext_entity *scx) 4035 { 4036 memset(scx, 0, sizeof(*scx)); 4037 INIT_LIST_HEAD(&scx->dsq_list.node); 4038 RB_CLEAR_NODE(&scx->dsq_priq); 4039 scx->sticky_cpu = -1; 4040 scx->holding_cpu = -1; 4041 INIT_LIST_HEAD(&scx->runnable_node); 4042 scx->runnable_at = jiffies; 4043 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 4044 scx->slice = SCX_SLICE_DFL; 4045 } 4046 4047 void scx_pre_fork(struct task_struct *p) 4048 { 4049 /* 4050 * BPF scheduler enable/disable paths want to be able to iterate and 4051 * update all tasks which can become complex when racing forks. As 4052 * enable/disable are very cold paths, let's use a percpu_rwsem to 4053 * exclude forks. 4054 */ 4055 percpu_down_read(&scx_fork_rwsem); 4056 } 4057 4058 int scx_fork(struct task_struct *p) 4059 { 4060 percpu_rwsem_assert_held(&scx_fork_rwsem); 4061 4062 if (scx_ops_init_task_enabled) 4063 return scx_ops_init_task(p, task_group(p), true); 4064 else 4065 return 0; 4066 } 4067 4068 void scx_post_fork(struct task_struct *p) 4069 { 4070 if (scx_ops_init_task_enabled) { 4071 scx_set_task_state(p, SCX_TASK_READY); 4072 4073 /* 4074 * Enable the task immediately if it's running on sched_ext. 4075 * Otherwise, it'll be enabled in switching_to_scx() if and 4076 * when it's ever configured to run with a SCHED_EXT policy. 4077 */ 4078 if (p->sched_class == &ext_sched_class) { 4079 struct rq_flags rf; 4080 struct rq *rq; 4081 4082 rq = task_rq_lock(p, &rf); 4083 scx_ops_enable_task(p); 4084 task_rq_unlock(rq, p, &rf); 4085 } 4086 } 4087 4088 spin_lock_irq(&scx_tasks_lock); 4089 list_add_tail(&p->scx.tasks_node, &scx_tasks); 4090 spin_unlock_irq(&scx_tasks_lock); 4091 4092 percpu_up_read(&scx_fork_rwsem); 4093 } 4094 4095 void scx_cancel_fork(struct task_struct *p) 4096 { 4097 if (scx_enabled()) { 4098 struct rq *rq; 4099 struct rq_flags rf; 4100 4101 rq = task_rq_lock(p, &rf); 4102 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 4103 scx_ops_exit_task(p); 4104 task_rq_unlock(rq, p, &rf); 4105 } 4106 4107 percpu_up_read(&scx_fork_rwsem); 4108 } 4109 4110 void sched_ext_free(struct task_struct *p) 4111 { 4112 unsigned long flags; 4113 4114 spin_lock_irqsave(&scx_tasks_lock, flags); 4115 list_del_init(&p->scx.tasks_node); 4116 spin_unlock_irqrestore(&scx_tasks_lock, flags); 4117 4118 /* 4119 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY -> 4120 * ENABLED transitions can't race us. Disable ops for @p. 4121 */ 4122 if (scx_get_task_state(p) != SCX_TASK_NONE) { 4123 struct rq_flags rf; 4124 struct rq *rq; 4125 4126 rq = task_rq_lock(p, &rf); 4127 scx_ops_exit_task(p); 4128 task_rq_unlock(rq, p, &rf); 4129 } 4130 } 4131 4132 static void reweight_task_scx(struct rq *rq, struct task_struct *p, 4133 const struct load_weight *lw) 4134 { 4135 lockdep_assert_rq_held(task_rq(p)); 4136 4137 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); 4138 if (SCX_HAS_OP(set_weight)) 4139 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 4140 } 4141 4142 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio) 4143 { 4144 } 4145 4146 static void switching_to_scx(struct rq *rq, struct task_struct *p) 4147 { 4148 scx_ops_enable_task(p); 4149 4150 /* 4151 * set_cpus_allowed_scx() is not called while @p is associated with a 4152 * different scheduler class. Keep the BPF scheduler up-to-date. 4153 */ 4154 if (SCX_HAS_OP(set_cpumask)) 4155 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 4156 (struct cpumask *)p->cpus_ptr); 4157 } 4158 4159 static void switched_from_scx(struct rq *rq, struct task_struct *p) 4160 { 4161 scx_ops_disable_task(p); 4162 } 4163 4164 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 4165 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 4166 4167 int scx_check_setscheduler(struct task_struct *p, int policy) 4168 { 4169 lockdep_assert_rq_held(task_rq(p)); 4170 4171 /* if disallow, reject transitioning into SCX */ 4172 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 4173 p->policy != policy && policy == SCHED_EXT) 4174 return -EACCES; 4175 4176 return 0; 4177 } 4178 4179 #ifdef CONFIG_NO_HZ_FULL 4180 bool scx_can_stop_tick(struct rq *rq) 4181 { 4182 struct task_struct *p = rq->curr; 4183 4184 if (scx_rq_bypassing(rq)) 4185 return false; 4186 4187 if (p->sched_class != &ext_sched_class) 4188 return true; 4189 4190 /* 4191 * @rq can dispatch from different DSQs, so we can't tell whether it 4192 * needs the tick or not by looking at nr_running. Allow stopping ticks 4193 * iff the BPF scheduler indicated so. See set_next_task_scx(). 4194 */ 4195 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 4196 } 4197 #endif 4198 4199 #ifdef CONFIG_EXT_GROUP_SCHED 4200 4201 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem); 4202 static bool scx_cgroup_enabled; 4203 static bool cgroup_warned_missing_weight; 4204 static bool cgroup_warned_missing_idle; 4205 4206 static void scx_cgroup_warn_missing_weight(struct task_group *tg) 4207 { 4208 if (scx_ops_enable_state() == SCX_OPS_DISABLED || 4209 cgroup_warned_missing_weight) 4210 return; 4211 4212 if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent) 4213 return; 4214 4215 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n", 4216 scx_ops.name); 4217 cgroup_warned_missing_weight = true; 4218 } 4219 4220 static void scx_cgroup_warn_missing_idle(struct task_group *tg) 4221 { 4222 if (!scx_cgroup_enabled || cgroup_warned_missing_idle) 4223 return; 4224 4225 if (!tg->idle) 4226 return; 4227 4228 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n", 4229 scx_ops.name); 4230 cgroup_warned_missing_idle = true; 4231 } 4232 4233 int scx_tg_online(struct task_group *tg) 4234 { 4235 int ret = 0; 4236 4237 WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED)); 4238 4239 percpu_down_read(&scx_cgroup_rwsem); 4240 4241 scx_cgroup_warn_missing_weight(tg); 4242 4243 if (scx_cgroup_enabled) { 4244 if (SCX_HAS_OP(cgroup_init)) { 4245 struct scx_cgroup_init_args args = 4246 { .weight = tg->scx_weight }; 4247 4248 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, 4249 tg->css.cgroup, &args); 4250 if (ret) 4251 ret = ops_sanitize_err("cgroup_init", ret); 4252 } 4253 if (ret == 0) 4254 tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED; 4255 } else { 4256 tg->scx_flags |= SCX_TG_ONLINE; 4257 } 4258 4259 percpu_up_read(&scx_cgroup_rwsem); 4260 return ret; 4261 } 4262 4263 void scx_tg_offline(struct task_group *tg) 4264 { 4265 WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE)); 4266 4267 percpu_down_read(&scx_cgroup_rwsem); 4268 4269 if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED)) 4270 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup); 4271 tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); 4272 4273 percpu_up_read(&scx_cgroup_rwsem); 4274 } 4275 4276 int scx_cgroup_can_attach(struct cgroup_taskset *tset) 4277 { 4278 struct cgroup_subsys_state *css; 4279 struct task_struct *p; 4280 int ret; 4281 4282 /* released in scx_finish/cancel_attach() */ 4283 percpu_down_read(&scx_cgroup_rwsem); 4284 4285 if (!scx_cgroup_enabled) 4286 return 0; 4287 4288 cgroup_taskset_for_each(p, css, tset) { 4289 struct cgroup *from = tg_cgrp(task_group(p)); 4290 struct cgroup *to = tg_cgrp(css_tg(css)); 4291 4292 WARN_ON_ONCE(p->scx.cgrp_moving_from); 4293 4294 /* 4295 * sched_move_task() omits identity migrations. Let's match the 4296 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() 4297 * always match one-to-one. 4298 */ 4299 if (from == to) 4300 continue; 4301 4302 if (SCX_HAS_OP(cgroup_prep_move)) { 4303 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move, 4304 p, from, css->cgroup); 4305 if (ret) 4306 goto err; 4307 } 4308 4309 p->scx.cgrp_moving_from = from; 4310 } 4311 4312 return 0; 4313 4314 err: 4315 cgroup_taskset_for_each(p, css, tset) { 4316 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) 4317 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, 4318 p->scx.cgrp_moving_from, css->cgroup); 4319 p->scx.cgrp_moving_from = NULL; 4320 } 4321 4322 percpu_up_read(&scx_cgroup_rwsem); 4323 return ops_sanitize_err("cgroup_prep_move", ret); 4324 } 4325 4326 void scx_move_task(struct task_struct *p) 4327 { 4328 if (!scx_cgroup_enabled) 4329 return; 4330 4331 /* 4332 * We're called from sched_move_task() which handles both cgroup and 4333 * autogroup moves. Ignore the latter. 4334 * 4335 * Also ignore exiting tasks, because in the exit path tasks transition 4336 * from the autogroup to the root group, so task_group_is_autogroup() 4337 * alone isn't able to catch exiting autogroup tasks. This is safe for 4338 * cgroup_move(), because cgroup migrations never happen for PF_EXITING 4339 * tasks. 4340 */ 4341 if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING)) 4342 return; 4343 4344 /* 4345 * @p must have ops.cgroup_prep_move() called on it and thus 4346 * cgrp_moving_from set. 4347 */ 4348 if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) 4349 SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p, 4350 p->scx.cgrp_moving_from, tg_cgrp(task_group(p))); 4351 p->scx.cgrp_moving_from = NULL; 4352 } 4353 4354 void scx_cgroup_finish_attach(void) 4355 { 4356 percpu_up_read(&scx_cgroup_rwsem); 4357 } 4358 4359 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) 4360 { 4361 struct cgroup_subsys_state *css; 4362 struct task_struct *p; 4363 4364 if (!scx_cgroup_enabled) 4365 goto out_unlock; 4366 4367 cgroup_taskset_for_each(p, css, tset) { 4368 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) 4369 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, 4370 p->scx.cgrp_moving_from, css->cgroup); 4371 p->scx.cgrp_moving_from = NULL; 4372 } 4373 out_unlock: 4374 percpu_up_read(&scx_cgroup_rwsem); 4375 } 4376 4377 void scx_group_set_weight(struct task_group *tg, unsigned long weight) 4378 { 4379 percpu_down_read(&scx_cgroup_rwsem); 4380 4381 if (scx_cgroup_enabled && tg->scx_weight != weight) { 4382 if (SCX_HAS_OP(cgroup_set_weight)) 4383 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight, 4384 tg_cgrp(tg), weight); 4385 tg->scx_weight = weight; 4386 } 4387 4388 percpu_up_read(&scx_cgroup_rwsem); 4389 } 4390 4391 void scx_group_set_idle(struct task_group *tg, bool idle) 4392 { 4393 percpu_down_read(&scx_cgroup_rwsem); 4394 scx_cgroup_warn_missing_idle(tg); 4395 percpu_up_read(&scx_cgroup_rwsem); 4396 } 4397 4398 static void scx_cgroup_lock(void) 4399 { 4400 percpu_down_write(&scx_cgroup_rwsem); 4401 } 4402 4403 static void scx_cgroup_unlock(void) 4404 { 4405 percpu_up_write(&scx_cgroup_rwsem); 4406 } 4407 4408 #else /* CONFIG_EXT_GROUP_SCHED */ 4409 4410 static inline void scx_cgroup_lock(void) {} 4411 static inline void scx_cgroup_unlock(void) {} 4412 4413 #endif /* CONFIG_EXT_GROUP_SCHED */ 4414 4415 /* 4416 * Omitted operations: 4417 * 4418 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 4419 * isn't tied to the CPU at that point. Preemption is implemented by resetting 4420 * the victim task's slice to 0 and triggering reschedule on the target CPU. 4421 * 4422 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 4423 * 4424 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 4425 * their current sched_class. Call them directly from sched core instead. 4426 */ 4427 DEFINE_SCHED_CLASS(ext) = { 4428 .enqueue_task = enqueue_task_scx, 4429 .dequeue_task = dequeue_task_scx, 4430 .yield_task = yield_task_scx, 4431 .yield_to_task = yield_to_task_scx, 4432 4433 .wakeup_preempt = wakeup_preempt_scx, 4434 4435 .balance = balance_scx, 4436 .pick_task = pick_task_scx, 4437 4438 .put_prev_task = put_prev_task_scx, 4439 .set_next_task = set_next_task_scx, 4440 4441 #ifdef CONFIG_SMP 4442 .select_task_rq = select_task_rq_scx, 4443 .task_woken = task_woken_scx, 4444 .set_cpus_allowed = set_cpus_allowed_scx, 4445 4446 .rq_online = rq_online_scx, 4447 .rq_offline = rq_offline_scx, 4448 #endif 4449 4450 .task_tick = task_tick_scx, 4451 4452 .switching_to = switching_to_scx, 4453 .switched_from = switched_from_scx, 4454 .switched_to = switched_to_scx, 4455 .reweight_task = reweight_task_scx, 4456 .prio_changed = prio_changed_scx, 4457 4458 .update_curr = update_curr_scx, 4459 4460 #ifdef CONFIG_UCLAMP_TASK 4461 .uclamp_enabled = 1, 4462 #endif 4463 }; 4464 4465 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 4466 { 4467 memset(dsq, 0, sizeof(*dsq)); 4468 4469 raw_spin_lock_init(&dsq->lock); 4470 INIT_LIST_HEAD(&dsq->list); 4471 dsq->id = dsq_id; 4472 } 4473 4474 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node) 4475 { 4476 struct scx_dispatch_q *dsq; 4477 int ret; 4478 4479 if (dsq_id & SCX_DSQ_FLAG_BUILTIN) 4480 return ERR_PTR(-EINVAL); 4481 4482 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 4483 if (!dsq) 4484 return ERR_PTR(-ENOMEM); 4485 4486 init_dsq(dsq, dsq_id); 4487 4488 ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node, 4489 dsq_hash_params); 4490 if (ret) { 4491 kfree(dsq); 4492 return ERR_PTR(ret); 4493 } 4494 return dsq; 4495 } 4496 4497 static void free_dsq_irq_workfn(struct irq_work *irq_work) 4498 { 4499 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 4500 struct scx_dispatch_q *dsq, *tmp_dsq; 4501 4502 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 4503 kfree_rcu(dsq, rcu); 4504 } 4505 4506 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 4507 4508 static void destroy_dsq(u64 dsq_id) 4509 { 4510 struct scx_dispatch_q *dsq; 4511 unsigned long flags; 4512 4513 rcu_read_lock(); 4514 4515 dsq = find_user_dsq(dsq_id); 4516 if (!dsq) 4517 goto out_unlock_rcu; 4518 4519 raw_spin_lock_irqsave(&dsq->lock, flags); 4520 4521 if (dsq->nr) { 4522 scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)", 4523 dsq->id, dsq->nr); 4524 goto out_unlock_dsq; 4525 } 4526 4527 if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params)) 4528 goto out_unlock_dsq; 4529 4530 /* 4531 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 4532 * queueing more tasks. As this function can be called from anywhere, 4533 * freeing is bounced through an irq work to avoid nesting RCU 4534 * operations inside scheduler locks. 4535 */ 4536 dsq->id = SCX_DSQ_INVALID; 4537 llist_add(&dsq->free_node, &dsqs_to_free); 4538 irq_work_queue(&free_dsq_irq_work); 4539 4540 out_unlock_dsq: 4541 raw_spin_unlock_irqrestore(&dsq->lock, flags); 4542 out_unlock_rcu: 4543 rcu_read_unlock(); 4544 } 4545 4546 #ifdef CONFIG_EXT_GROUP_SCHED 4547 static void scx_cgroup_exit(void) 4548 { 4549 struct cgroup_subsys_state *css; 4550 4551 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4552 4553 scx_cgroup_enabled = false; 4554 4555 /* 4556 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk 4557 * cgroups and exit all the inited ones, all online cgroups are exited. 4558 */ 4559 rcu_read_lock(); 4560 css_for_each_descendant_post(css, &root_task_group.css) { 4561 struct task_group *tg = css_tg(css); 4562 4563 if (!(tg->scx_flags & SCX_TG_INITED)) 4564 continue; 4565 tg->scx_flags &= ~SCX_TG_INITED; 4566 4567 if (!scx_ops.cgroup_exit) 4568 continue; 4569 4570 if (WARN_ON_ONCE(!css_tryget(css))) 4571 continue; 4572 rcu_read_unlock(); 4573 4574 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup); 4575 4576 rcu_read_lock(); 4577 css_put(css); 4578 } 4579 rcu_read_unlock(); 4580 } 4581 4582 static int scx_cgroup_init(void) 4583 { 4584 struct cgroup_subsys_state *css; 4585 int ret; 4586 4587 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4588 4589 cgroup_warned_missing_weight = false; 4590 cgroup_warned_missing_idle = false; 4591 4592 /* 4593 * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk 4594 * cgroups and init, all online cgroups are initialized. 4595 */ 4596 rcu_read_lock(); 4597 css_for_each_descendant_pre(css, &root_task_group.css) { 4598 struct task_group *tg = css_tg(css); 4599 struct scx_cgroup_init_args args = { .weight = tg->scx_weight }; 4600 4601 scx_cgroup_warn_missing_weight(tg); 4602 scx_cgroup_warn_missing_idle(tg); 4603 4604 if ((tg->scx_flags & 4605 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) 4606 continue; 4607 4608 if (!scx_ops.cgroup_init) { 4609 tg->scx_flags |= SCX_TG_INITED; 4610 continue; 4611 } 4612 4613 if (WARN_ON_ONCE(!css_tryget(css))) 4614 continue; 4615 rcu_read_unlock(); 4616 4617 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, 4618 css->cgroup, &args); 4619 if (ret) { 4620 css_put(css); 4621 scx_ops_error("ops.cgroup_init() failed (%d)", ret); 4622 return ret; 4623 } 4624 tg->scx_flags |= SCX_TG_INITED; 4625 4626 rcu_read_lock(); 4627 css_put(css); 4628 } 4629 rcu_read_unlock(); 4630 4631 WARN_ON_ONCE(scx_cgroup_enabled); 4632 scx_cgroup_enabled = true; 4633 4634 return 0; 4635 } 4636 4637 #else 4638 static void scx_cgroup_exit(void) {} 4639 static int scx_cgroup_init(void) { return 0; } 4640 #endif 4641 4642 4643 /******************************************************************************** 4644 * Sysfs interface and ops enable/disable. 4645 */ 4646 4647 #define SCX_ATTR(_name) \ 4648 static struct kobj_attribute scx_attr_##_name = { \ 4649 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 4650 .show = scx_attr_##_name##_show, \ 4651 } 4652 4653 static ssize_t scx_attr_state_show(struct kobject *kobj, 4654 struct kobj_attribute *ka, char *buf) 4655 { 4656 return sysfs_emit(buf, "%s\n", 4657 scx_ops_enable_state_str[scx_ops_enable_state()]); 4658 } 4659 SCX_ATTR(state); 4660 4661 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 4662 struct kobj_attribute *ka, char *buf) 4663 { 4664 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 4665 } 4666 SCX_ATTR(switch_all); 4667 4668 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 4669 struct kobj_attribute *ka, char *buf) 4670 { 4671 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 4672 } 4673 SCX_ATTR(nr_rejected); 4674 4675 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, 4676 struct kobj_attribute *ka, char *buf) 4677 { 4678 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); 4679 } 4680 SCX_ATTR(hotplug_seq); 4681 4682 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj, 4683 struct kobj_attribute *ka, char *buf) 4684 { 4685 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq)); 4686 } 4687 SCX_ATTR(enable_seq); 4688 4689 static struct attribute *scx_global_attrs[] = { 4690 &scx_attr_state.attr, 4691 &scx_attr_switch_all.attr, 4692 &scx_attr_nr_rejected.attr, 4693 &scx_attr_hotplug_seq.attr, 4694 &scx_attr_enable_seq.attr, 4695 NULL, 4696 }; 4697 4698 static const struct attribute_group scx_global_attr_group = { 4699 .attrs = scx_global_attrs, 4700 }; 4701 4702 static void scx_kobj_release(struct kobject *kobj) 4703 { 4704 kfree(kobj); 4705 } 4706 4707 static ssize_t scx_attr_ops_show(struct kobject *kobj, 4708 struct kobj_attribute *ka, char *buf) 4709 { 4710 return sysfs_emit(buf, "%s\n", scx_ops.name); 4711 } 4712 SCX_ATTR(ops); 4713 4714 static struct attribute *scx_sched_attrs[] = { 4715 &scx_attr_ops.attr, 4716 NULL, 4717 }; 4718 ATTRIBUTE_GROUPS(scx_sched); 4719 4720 static const struct kobj_type scx_ktype = { 4721 .release = scx_kobj_release, 4722 .sysfs_ops = &kobj_sysfs_ops, 4723 .default_groups = scx_sched_groups, 4724 }; 4725 4726 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 4727 { 4728 return add_uevent_var(env, "SCXOPS=%s", scx_ops.name); 4729 } 4730 4731 static const struct kset_uevent_ops scx_uevent_ops = { 4732 .uevent = scx_uevent, 4733 }; 4734 4735 /* 4736 * Used by sched_fork() and __setscheduler_prio() to pick the matching 4737 * sched_class. dl/rt are already handled. 4738 */ 4739 bool task_should_scx(int policy) 4740 { 4741 if (!scx_enabled() || 4742 unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING)) 4743 return false; 4744 if (READ_ONCE(scx_switching_all)) 4745 return true; 4746 return policy == SCHED_EXT; 4747 } 4748 4749 /** 4750 * scx_softlockup - sched_ext softlockup handler 4751 * @dur_s: number of seconds of CPU stuck due to soft lockup 4752 * 4753 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can 4754 * live-lock the system by making many CPUs target the same DSQ to the point 4755 * where soft-lockup detection triggers. This function is called from 4756 * soft-lockup watchdog when the triggering point is close and tries to unjam 4757 * the system by enabling the breather and aborting the BPF scheduler. 4758 */ 4759 void scx_softlockup(u32 dur_s) 4760 { 4761 switch (scx_ops_enable_state()) { 4762 case SCX_OPS_ENABLING: 4763 case SCX_OPS_ENABLED: 4764 break; 4765 default: 4766 return; 4767 } 4768 4769 /* allow only one instance, cleared at the end of scx_ops_bypass() */ 4770 if (test_and_set_bit(0, &scx_in_softlockup)) 4771 return; 4772 4773 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n", 4774 smp_processor_id(), dur_s, scx_ops.name); 4775 4776 /* 4777 * Some CPUs may be trapped in the dispatch paths. Enable breather 4778 * immediately; otherwise, we might even be able to get to 4779 * scx_ops_bypass(). 4780 */ 4781 atomic_inc(&scx_ops_breather_depth); 4782 4783 scx_ops_error("soft lockup - CPU#%d stuck for %us", 4784 smp_processor_id(), dur_s); 4785 } 4786 4787 static void scx_clear_softlockup(void) 4788 { 4789 if (test_and_clear_bit(0, &scx_in_softlockup)) 4790 atomic_dec(&scx_ops_breather_depth); 4791 } 4792 4793 /** 4794 * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress 4795 * @bypass: true for bypass, false for unbypass 4796 * 4797 * Bypassing guarantees that all runnable tasks make forward progress without 4798 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 4799 * be held by tasks that the BPF scheduler is forgetting to run, which 4800 * unfortunately also excludes toggling the static branches. 4801 * 4802 * Let's work around by overriding a couple ops and modifying behaviors based on 4803 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 4804 * to force global FIFO scheduling. 4805 * 4806 * - ops.select_cpu() is ignored and the default select_cpu() is used. 4807 * 4808 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 4809 * %SCX_OPS_ENQ_LAST is also ignored. 4810 * 4811 * - ops.dispatch() is ignored. 4812 * 4813 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice 4814 * can't be trusted. Whenever a tick triggers, the running task is rotated to 4815 * the tail of the queue with core_sched_at touched. 4816 * 4817 * - pick_next_task() suppresses zero slice warning. 4818 * 4819 * - scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM 4820 * operations. 4821 * 4822 * - scx_prio_less() reverts to the default core_sched_at order. 4823 */ 4824 static void scx_ops_bypass(bool bypass) 4825 { 4826 static DEFINE_RAW_SPINLOCK(bypass_lock); 4827 int cpu; 4828 unsigned long flags; 4829 4830 raw_spin_lock_irqsave(&bypass_lock, flags); 4831 if (bypass) { 4832 scx_ops_bypass_depth++; 4833 WARN_ON_ONCE(scx_ops_bypass_depth <= 0); 4834 if (scx_ops_bypass_depth != 1) 4835 goto unlock; 4836 } else { 4837 scx_ops_bypass_depth--; 4838 WARN_ON_ONCE(scx_ops_bypass_depth < 0); 4839 if (scx_ops_bypass_depth != 0) 4840 goto unlock; 4841 } 4842 4843 atomic_inc(&scx_ops_breather_depth); 4844 4845 /* 4846 * No task property is changing. We just need to make sure all currently 4847 * queued tasks are re-queued according to the new scx_rq_bypassing() 4848 * state. As an optimization, walk each rq's runnable_list instead of 4849 * the scx_tasks list. 4850 * 4851 * This function can't trust the scheduler and thus can't use 4852 * cpus_read_lock(). Walk all possible CPUs instead of online. 4853 */ 4854 for_each_possible_cpu(cpu) { 4855 struct rq *rq = cpu_rq(cpu); 4856 struct task_struct *p, *n; 4857 4858 raw_spin_rq_lock(rq); 4859 4860 if (bypass) { 4861 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); 4862 rq->scx.flags |= SCX_RQ_BYPASSING; 4863 } else { 4864 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); 4865 rq->scx.flags &= ~SCX_RQ_BYPASSING; 4866 } 4867 4868 /* 4869 * We need to guarantee that no tasks are on the BPF scheduler 4870 * while bypassing. Either we see enabled or the enable path 4871 * sees scx_rq_bypassing() before moving tasks to SCX. 4872 */ 4873 if (!scx_enabled()) { 4874 raw_spin_rq_unlock(rq); 4875 continue; 4876 } 4877 4878 /* 4879 * The use of list_for_each_entry_safe_reverse() is required 4880 * because each task is going to be removed from and added back 4881 * to the runnable_list during iteration. Because they're added 4882 * to the tail of the list, safe reverse iteration can still 4883 * visit all nodes. 4884 */ 4885 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 4886 scx.runnable_node) { 4887 struct sched_enq_and_set_ctx ctx; 4888 4889 /* cycling deq/enq is enough, see the function comment */ 4890 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4891 sched_enq_and_set_task(&ctx); 4892 } 4893 4894 /* resched to restore ticks and idle state */ 4895 if (cpu_online(cpu) || cpu == smp_processor_id()) 4896 resched_curr(rq); 4897 4898 raw_spin_rq_unlock(rq); 4899 } 4900 4901 atomic_dec(&scx_ops_breather_depth); 4902 unlock: 4903 raw_spin_unlock_irqrestore(&bypass_lock, flags); 4904 scx_clear_softlockup(); 4905 } 4906 4907 static void free_exit_info(struct scx_exit_info *ei) 4908 { 4909 kfree(ei->dump); 4910 kfree(ei->msg); 4911 kfree(ei->bt); 4912 kfree(ei); 4913 } 4914 4915 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 4916 { 4917 struct scx_exit_info *ei; 4918 4919 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 4920 if (!ei) 4921 return NULL; 4922 4923 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); 4924 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 4925 ei->dump = kzalloc(exit_dump_len, GFP_KERNEL); 4926 4927 if (!ei->bt || !ei->msg || !ei->dump) { 4928 free_exit_info(ei); 4929 return NULL; 4930 } 4931 4932 return ei; 4933 } 4934 4935 static const char *scx_exit_reason(enum scx_exit_kind kind) 4936 { 4937 switch (kind) { 4938 case SCX_EXIT_UNREG: 4939 return "unregistered from user space"; 4940 case SCX_EXIT_UNREG_BPF: 4941 return "unregistered from BPF"; 4942 case SCX_EXIT_UNREG_KERN: 4943 return "unregistered from the main kernel"; 4944 case SCX_EXIT_SYSRQ: 4945 return "disabled by sysrq-S"; 4946 case SCX_EXIT_ERROR: 4947 return "runtime error"; 4948 case SCX_EXIT_ERROR_BPF: 4949 return "scx_bpf_error"; 4950 case SCX_EXIT_ERROR_STALL: 4951 return "runnable task stall"; 4952 default: 4953 return "<UNKNOWN>"; 4954 } 4955 } 4956 4957 static void scx_ops_disable_workfn(struct kthread_work *work) 4958 { 4959 struct scx_exit_info *ei = scx_exit_info; 4960 struct scx_task_iter sti; 4961 struct task_struct *p; 4962 struct rhashtable_iter rht_iter; 4963 struct scx_dispatch_q *dsq; 4964 int i, kind, cpu; 4965 4966 kind = atomic_read(&scx_exit_kind); 4967 while (true) { 4968 /* 4969 * NONE indicates that a new scx_ops has been registered since 4970 * disable was scheduled - don't kill the new ops. DONE 4971 * indicates that the ops has already been disabled. 4972 */ 4973 if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE) 4974 return; 4975 if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE)) 4976 break; 4977 } 4978 ei->kind = kind; 4979 ei->reason = scx_exit_reason(ei->kind); 4980 4981 /* guarantee forward progress by bypassing scx_ops */ 4982 scx_ops_bypass(true); 4983 4984 switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) { 4985 case SCX_OPS_DISABLING: 4986 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 4987 break; 4988 case SCX_OPS_DISABLED: 4989 pr_warn("sched_ext: ops error detected without ops (%s)\n", 4990 scx_exit_info->msg); 4991 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 4992 SCX_OPS_DISABLING); 4993 goto done; 4994 default: 4995 break; 4996 } 4997 4998 /* 4999 * Here, every runnable task is guaranteed to make forward progress and 5000 * we can safely use blocking synchronization constructs. Actually 5001 * disable ops. 5002 */ 5003 mutex_lock(&scx_ops_enable_mutex); 5004 5005 static_branch_disable(&__scx_switched_all); 5006 WRITE_ONCE(scx_switching_all, false); 5007 5008 /* 5009 * Shut down cgroup support before tasks so that the cgroup attach path 5010 * doesn't race against scx_ops_exit_task(). 5011 */ 5012 scx_cgroup_lock(); 5013 scx_cgroup_exit(); 5014 scx_cgroup_unlock(); 5015 5016 /* 5017 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones 5018 * must be switched out and exited synchronously. 5019 */ 5020 percpu_down_write(&scx_fork_rwsem); 5021 5022 scx_ops_init_task_enabled = false; 5023 5024 scx_task_iter_start(&sti); 5025 while ((p = scx_task_iter_next_locked(&sti))) { 5026 const struct sched_class *old_class = p->sched_class; 5027 const struct sched_class *new_class = 5028 __setscheduler_class(p->policy, p->prio); 5029 struct sched_enq_and_set_ctx ctx; 5030 5031 if (old_class != new_class && p->se.sched_delayed) 5032 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5033 5034 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 5035 5036 p->sched_class = new_class; 5037 check_class_changing(task_rq(p), p, old_class); 5038 5039 sched_enq_and_set_task(&ctx); 5040 5041 check_class_changed(task_rq(p), p, old_class, p->prio); 5042 scx_ops_exit_task(p); 5043 } 5044 scx_task_iter_stop(&sti); 5045 percpu_up_write(&scx_fork_rwsem); 5046 5047 /* 5048 * Invalidate all the rq clocks to prevent getting outdated 5049 * rq clocks from a previous scx scheduler. 5050 */ 5051 for_each_possible_cpu(cpu) { 5052 struct rq *rq = cpu_rq(cpu); 5053 scx_rq_clock_invalidate(rq); 5054 } 5055 5056 /* no task is on scx, turn off all the switches and flush in-progress calls */ 5057 static_branch_disable(&__scx_ops_enabled); 5058 for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++) 5059 static_branch_disable(&scx_has_op[i]); 5060 static_branch_disable(&scx_ops_enq_last); 5061 static_branch_disable(&scx_ops_enq_exiting); 5062 static_branch_disable(&scx_ops_cpu_preempt); 5063 static_branch_disable(&scx_builtin_idle_enabled); 5064 synchronize_rcu(); 5065 5066 if (ei->kind >= SCX_EXIT_ERROR) { 5067 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 5068 scx_ops.name, ei->reason); 5069 5070 if (ei->msg[0] != '\0') 5071 pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg); 5072 #ifdef CONFIG_STACKTRACE 5073 stack_trace_print(ei->bt, ei->bt_len, 2); 5074 #endif 5075 } else { 5076 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 5077 scx_ops.name, ei->reason); 5078 } 5079 5080 if (scx_ops.exit) 5081 SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei); 5082 5083 cancel_delayed_work_sync(&scx_watchdog_work); 5084 5085 /* 5086 * Delete the kobject from the hierarchy eagerly in addition to just 5087 * dropping a reference. Otherwise, if the object is deleted 5088 * asynchronously, sysfs could observe an object of the same name still 5089 * in the hierarchy when another scheduler is loaded. 5090 */ 5091 kobject_del(scx_root_kobj); 5092 kobject_put(scx_root_kobj); 5093 scx_root_kobj = NULL; 5094 5095 memset(&scx_ops, 0, sizeof(scx_ops)); 5096 5097 rhashtable_walk_enter(&dsq_hash, &rht_iter); 5098 do { 5099 rhashtable_walk_start(&rht_iter); 5100 5101 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 5102 destroy_dsq(dsq->id); 5103 5104 rhashtable_walk_stop(&rht_iter); 5105 } while (dsq == ERR_PTR(-EAGAIN)); 5106 rhashtable_walk_exit(&rht_iter); 5107 5108 free_percpu(scx_dsp_ctx); 5109 scx_dsp_ctx = NULL; 5110 scx_dsp_max_batch = 0; 5111 5112 free_exit_info(scx_exit_info); 5113 scx_exit_info = NULL; 5114 5115 mutex_unlock(&scx_ops_enable_mutex); 5116 5117 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 5118 SCX_OPS_DISABLING); 5119 done: 5120 scx_ops_bypass(false); 5121 } 5122 5123 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn); 5124 5125 static void schedule_scx_ops_disable_work(void) 5126 { 5127 struct kthread_worker *helper = READ_ONCE(scx_ops_helper); 5128 5129 /* 5130 * We may be called spuriously before the first bpf_sched_ext_reg(). If 5131 * scx_ops_helper isn't set up yet, there's nothing to do. 5132 */ 5133 if (helper) 5134 kthread_queue_work(helper, &scx_ops_disable_work); 5135 } 5136 5137 static void scx_ops_disable(enum scx_exit_kind kind) 5138 { 5139 int none = SCX_EXIT_NONE; 5140 5141 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 5142 kind = SCX_EXIT_ERROR; 5143 5144 atomic_try_cmpxchg(&scx_exit_kind, &none, kind); 5145 5146 schedule_scx_ops_disable_work(); 5147 } 5148 5149 static void dump_newline(struct seq_buf *s) 5150 { 5151 trace_sched_ext_dump(""); 5152 5153 /* @s may be zero sized and seq_buf triggers WARN if so */ 5154 if (s->size) 5155 seq_buf_putc(s, '\n'); 5156 } 5157 5158 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 5159 { 5160 va_list args; 5161 5162 #ifdef CONFIG_TRACEPOINTS 5163 if (trace_sched_ext_dump_enabled()) { 5164 /* protected by scx_dump_state()::dump_lock */ 5165 static char line_buf[SCX_EXIT_MSG_LEN]; 5166 5167 va_start(args, fmt); 5168 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 5169 va_end(args); 5170 5171 trace_sched_ext_dump(line_buf); 5172 } 5173 #endif 5174 /* @s may be zero sized and seq_buf triggers WARN if so */ 5175 if (s->size) { 5176 va_start(args, fmt); 5177 seq_buf_vprintf(s, fmt, args); 5178 va_end(args); 5179 5180 seq_buf_putc(s, '\n'); 5181 } 5182 } 5183 5184 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 5185 const unsigned long *bt, unsigned int len) 5186 { 5187 unsigned int i; 5188 5189 for (i = 0; i < len; i++) 5190 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 5191 } 5192 5193 static void ops_dump_init(struct seq_buf *s, const char *prefix) 5194 { 5195 struct scx_dump_data *dd = &scx_dump_data; 5196 5197 lockdep_assert_irqs_disabled(); 5198 5199 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 5200 dd->first = true; 5201 dd->cursor = 0; 5202 dd->s = s; 5203 dd->prefix = prefix; 5204 } 5205 5206 static void ops_dump_flush(void) 5207 { 5208 struct scx_dump_data *dd = &scx_dump_data; 5209 char *line = dd->buf.line; 5210 5211 if (!dd->cursor) 5212 return; 5213 5214 /* 5215 * There's something to flush and this is the first line. Insert a blank 5216 * line to distinguish ops dump. 5217 */ 5218 if (dd->first) { 5219 dump_newline(dd->s); 5220 dd->first = false; 5221 } 5222 5223 /* 5224 * There may be multiple lines in $line. Scan and emit each line 5225 * separately. 5226 */ 5227 while (true) { 5228 char *end = line; 5229 char c; 5230 5231 while (*end != '\n' && *end != '\0') 5232 end++; 5233 5234 /* 5235 * If $line overflowed, it may not have newline at the end. 5236 * Always emit with a newline. 5237 */ 5238 c = *end; 5239 *end = '\0'; 5240 dump_line(dd->s, "%s%s", dd->prefix, line); 5241 if (c == '\0') 5242 break; 5243 5244 /* move to the next line */ 5245 end++; 5246 if (*end == '\0') 5247 break; 5248 line = end; 5249 } 5250 5251 dd->cursor = 0; 5252 } 5253 5254 static void ops_dump_exit(void) 5255 { 5256 ops_dump_flush(); 5257 scx_dump_data.cpu = -1; 5258 } 5259 5260 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 5261 struct task_struct *p, char marker) 5262 { 5263 static unsigned long bt[SCX_EXIT_BT_LEN]; 5264 char dsq_id_buf[19] = "(n/a)"; 5265 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 5266 unsigned int bt_len = 0; 5267 5268 if (p->scx.dsq) 5269 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 5270 (unsigned long long)p->scx.dsq->id); 5271 5272 dump_newline(s); 5273 dump_line(s, " %c%c %s[%d] %+ldms", 5274 marker, task_state_to_char(p), p->comm, p->pid, 5275 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 5276 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", 5277 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 5278 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, 5279 ops_state >> SCX_OPSS_QSEQ_SHIFT); 5280 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu slice=%llu", 5281 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf, 5282 p->scx.dsq_vtime, p->scx.slice); 5283 dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr)); 5284 5285 if (SCX_HAS_OP(dump_task)) { 5286 ops_dump_init(s, " "); 5287 SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p); 5288 ops_dump_exit(); 5289 } 5290 5291 #ifdef CONFIG_STACKTRACE 5292 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 5293 #endif 5294 if (bt_len) { 5295 dump_newline(s); 5296 dump_stack_trace(s, " ", bt, bt_len); 5297 } 5298 } 5299 5300 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 5301 { 5302 static DEFINE_SPINLOCK(dump_lock); 5303 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 5304 struct scx_dump_ctx dctx = { 5305 .kind = ei->kind, 5306 .exit_code = ei->exit_code, 5307 .reason = ei->reason, 5308 .at_ns = ktime_get_ns(), 5309 .at_jiffies = jiffies, 5310 }; 5311 struct seq_buf s; 5312 unsigned long flags; 5313 char *buf; 5314 int cpu; 5315 5316 spin_lock_irqsave(&dump_lock, flags); 5317 5318 seq_buf_init(&s, ei->dump, dump_len); 5319 5320 if (ei->kind == SCX_EXIT_NONE) { 5321 dump_line(&s, "Debug dump triggered by %s", ei->reason); 5322 } else { 5323 dump_line(&s, "%s[%d] triggered exit kind %d:", 5324 current->comm, current->pid, ei->kind); 5325 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 5326 dump_newline(&s); 5327 dump_line(&s, "Backtrace:"); 5328 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 5329 } 5330 5331 if (SCX_HAS_OP(dump)) { 5332 ops_dump_init(&s, ""); 5333 SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx); 5334 ops_dump_exit(); 5335 } 5336 5337 dump_newline(&s); 5338 dump_line(&s, "CPU states"); 5339 dump_line(&s, "----------"); 5340 5341 for_each_possible_cpu(cpu) { 5342 struct rq *rq = cpu_rq(cpu); 5343 struct rq_flags rf; 5344 struct task_struct *p; 5345 struct seq_buf ns; 5346 size_t avail, used; 5347 bool idle; 5348 5349 rq_lock(rq, &rf); 5350 5351 idle = list_empty(&rq->scx.runnable_list) && 5352 rq->curr->sched_class == &idle_sched_class; 5353 5354 if (idle && !SCX_HAS_OP(dump_cpu)) 5355 goto next; 5356 5357 /* 5358 * We don't yet know whether ops.dump_cpu() will produce output 5359 * and we may want to skip the default CPU dump if it doesn't. 5360 * Use a nested seq_buf to generate the standard dump so that we 5361 * can decide whether to commit later. 5362 */ 5363 avail = seq_buf_get_buf(&s, &buf); 5364 seq_buf_init(&ns, buf, avail); 5365 5366 dump_newline(&ns); 5367 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", 5368 cpu, rq->scx.nr_running, rq->scx.flags, 5369 rq->scx.cpu_released, rq->scx.ops_qseq, 5370 rq->scx.pnt_seq); 5371 dump_line(&ns, " curr=%s[%d] class=%ps", 5372 rq->curr->comm, rq->curr->pid, 5373 rq->curr->sched_class); 5374 if (!cpumask_empty(rq->scx.cpus_to_kick)) 5375 dump_line(&ns, " cpus_to_kick : %*pb", 5376 cpumask_pr_args(rq->scx.cpus_to_kick)); 5377 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 5378 dump_line(&ns, " idle_to_kick : %*pb", 5379 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 5380 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 5381 dump_line(&ns, " cpus_to_preempt: %*pb", 5382 cpumask_pr_args(rq->scx.cpus_to_preempt)); 5383 if (!cpumask_empty(rq->scx.cpus_to_wait)) 5384 dump_line(&ns, " cpus_to_wait : %*pb", 5385 cpumask_pr_args(rq->scx.cpus_to_wait)); 5386 5387 used = seq_buf_used(&ns); 5388 if (SCX_HAS_OP(dump_cpu)) { 5389 ops_dump_init(&ns, " "); 5390 SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle); 5391 ops_dump_exit(); 5392 } 5393 5394 /* 5395 * If idle && nothing generated by ops.dump_cpu(), there's 5396 * nothing interesting. Skip. 5397 */ 5398 if (idle && used == seq_buf_used(&ns)) 5399 goto next; 5400 5401 /* 5402 * $s may already have overflowed when $ns was created. If so, 5403 * calling commit on it will trigger BUG. 5404 */ 5405 if (avail) { 5406 seq_buf_commit(&s, seq_buf_used(&ns)); 5407 if (seq_buf_has_overflowed(&ns)) 5408 seq_buf_set_overflow(&s); 5409 } 5410 5411 if (rq->curr->sched_class == &ext_sched_class) 5412 scx_dump_task(&s, &dctx, rq->curr, '*'); 5413 5414 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 5415 scx_dump_task(&s, &dctx, p, ' '); 5416 next: 5417 rq_unlock(rq, &rf); 5418 } 5419 5420 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 5421 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 5422 trunc_marker, sizeof(trunc_marker)); 5423 5424 spin_unlock_irqrestore(&dump_lock, flags); 5425 } 5426 5427 static void scx_ops_error_irq_workfn(struct irq_work *irq_work) 5428 { 5429 struct scx_exit_info *ei = scx_exit_info; 5430 5431 if (ei->kind >= SCX_EXIT_ERROR) 5432 scx_dump_state(ei, scx_ops.exit_dump_len); 5433 5434 schedule_scx_ops_disable_work(); 5435 } 5436 5437 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn); 5438 5439 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 5440 s64 exit_code, 5441 const char *fmt, ...) 5442 { 5443 struct scx_exit_info *ei = scx_exit_info; 5444 int none = SCX_EXIT_NONE; 5445 va_list args; 5446 5447 if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind)) 5448 return; 5449 5450 ei->exit_code = exit_code; 5451 #ifdef CONFIG_STACKTRACE 5452 if (kind >= SCX_EXIT_ERROR) 5453 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 5454 #endif 5455 va_start(args, fmt); 5456 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 5457 va_end(args); 5458 5459 /* 5460 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 5461 * in scx_ops_disable_workfn(). 5462 */ 5463 ei->kind = kind; 5464 ei->reason = scx_exit_reason(ei->kind); 5465 5466 irq_work_queue(&scx_ops_error_irq_work); 5467 } 5468 5469 static struct kthread_worker *scx_create_rt_helper(const char *name) 5470 { 5471 struct kthread_worker *helper; 5472 5473 helper = kthread_run_worker(0, name); 5474 if (helper) 5475 sched_set_fifo(helper->task); 5476 return helper; 5477 } 5478 5479 static void check_hotplug_seq(const struct sched_ext_ops *ops) 5480 { 5481 unsigned long long global_hotplug_seq; 5482 5483 /* 5484 * If a hotplug event has occurred between when a scheduler was 5485 * initialized, and when we were able to attach, exit and notify user 5486 * space about it. 5487 */ 5488 if (ops->hotplug_seq) { 5489 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); 5490 if (ops->hotplug_seq != global_hotplug_seq) { 5491 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 5492 "expected hotplug seq %llu did not match actual %llu", 5493 ops->hotplug_seq, global_hotplug_seq); 5494 } 5495 } 5496 } 5497 5498 static int validate_ops(const struct sched_ext_ops *ops) 5499 { 5500 /* 5501 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 5502 * ops.enqueue() callback isn't implemented. 5503 */ 5504 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 5505 scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 5506 return -EINVAL; 5507 } 5508 5509 return 0; 5510 } 5511 5512 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link) 5513 { 5514 struct scx_task_iter sti; 5515 struct task_struct *p; 5516 unsigned long timeout; 5517 int i, cpu, node, ret; 5518 5519 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), 5520 cpu_possible_mask)) { 5521 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n"); 5522 return -EINVAL; 5523 } 5524 5525 mutex_lock(&scx_ops_enable_mutex); 5526 5527 if (!scx_ops_helper) { 5528 WRITE_ONCE(scx_ops_helper, 5529 scx_create_rt_helper("sched_ext_ops_helper")); 5530 if (!scx_ops_helper) { 5531 ret = -ENOMEM; 5532 goto err_unlock; 5533 } 5534 } 5535 5536 if (!global_dsqs) { 5537 struct scx_dispatch_q **dsqs; 5538 5539 dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL); 5540 if (!dsqs) { 5541 ret = -ENOMEM; 5542 goto err_unlock; 5543 } 5544 5545 for_each_node_state(node, N_POSSIBLE) { 5546 struct scx_dispatch_q *dsq; 5547 5548 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node); 5549 if (!dsq) { 5550 for_each_node_state(node, N_POSSIBLE) 5551 kfree(dsqs[node]); 5552 kfree(dsqs); 5553 ret = -ENOMEM; 5554 goto err_unlock; 5555 } 5556 5557 init_dsq(dsq, SCX_DSQ_GLOBAL); 5558 dsqs[node] = dsq; 5559 } 5560 5561 global_dsqs = dsqs; 5562 } 5563 5564 if (scx_ops_enable_state() != SCX_OPS_DISABLED) { 5565 ret = -EBUSY; 5566 goto err_unlock; 5567 } 5568 5569 scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL); 5570 if (!scx_root_kobj) { 5571 ret = -ENOMEM; 5572 goto err_unlock; 5573 } 5574 5575 scx_root_kobj->kset = scx_kset; 5576 ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root"); 5577 if (ret < 0) 5578 goto err; 5579 5580 scx_exit_info = alloc_exit_info(ops->exit_dump_len); 5581 if (!scx_exit_info) { 5582 ret = -ENOMEM; 5583 goto err_del; 5584 } 5585 5586 /* 5587 * Set scx_ops, transition to ENABLING and clear exit info to arm the 5588 * disable path. Failure triggers full disabling from here on. 5589 */ 5590 scx_ops = *ops; 5591 5592 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) != 5593 SCX_OPS_DISABLED); 5594 5595 atomic_set(&scx_exit_kind, SCX_EXIT_NONE); 5596 scx_warned_zero_slice = false; 5597 5598 atomic_long_set(&scx_nr_rejected, 0); 5599 5600 for_each_possible_cpu(cpu) 5601 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; 5602 5603 /* 5604 * Keep CPUs stable during enable so that the BPF scheduler can track 5605 * online CPUs by watching ->on/offline_cpu() after ->init(). 5606 */ 5607 cpus_read_lock(); 5608 5609 if (scx_ops.init) { 5610 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init); 5611 if (ret) { 5612 ret = ops_sanitize_err("init", ret); 5613 cpus_read_unlock(); 5614 scx_ops_error("ops.init() failed (%d)", ret); 5615 goto err_disable; 5616 } 5617 } 5618 5619 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) 5620 if (((void (**)(void))ops)[i]) 5621 static_branch_enable_cpuslocked(&scx_has_op[i]); 5622 5623 check_hotplug_seq(ops); 5624 #ifdef CONFIG_SMP 5625 update_selcpu_topology(); 5626 #endif 5627 cpus_read_unlock(); 5628 5629 ret = validate_ops(ops); 5630 if (ret) 5631 goto err_disable; 5632 5633 WARN_ON_ONCE(scx_dsp_ctx); 5634 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 5635 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 5636 scx_dsp_max_batch), 5637 __alignof__(struct scx_dsp_ctx)); 5638 if (!scx_dsp_ctx) { 5639 ret = -ENOMEM; 5640 goto err_disable; 5641 } 5642 5643 if (ops->timeout_ms) 5644 timeout = msecs_to_jiffies(ops->timeout_ms); 5645 else 5646 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 5647 5648 WRITE_ONCE(scx_watchdog_timeout, timeout); 5649 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 5650 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 5651 scx_watchdog_timeout / 2); 5652 5653 /* 5654 * Once __scx_ops_enabled is set, %current can be switched to SCX 5655 * anytime. This can lead to stalls as some BPF schedulers (e.g. 5656 * userspace scheduling) may not function correctly before all tasks are 5657 * switched. Init in bypass mode to guarantee forward progress. 5658 */ 5659 scx_ops_bypass(true); 5660 5661 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 5662 if (((void (**)(void))ops)[i]) 5663 static_branch_enable(&scx_has_op[i]); 5664 5665 if (ops->flags & SCX_OPS_ENQ_LAST) 5666 static_branch_enable(&scx_ops_enq_last); 5667 5668 if (ops->flags & SCX_OPS_ENQ_EXITING) 5669 static_branch_enable(&scx_ops_enq_exiting); 5670 if (scx_ops.cpu_acquire || scx_ops.cpu_release) 5671 static_branch_enable(&scx_ops_cpu_preempt); 5672 5673 if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) { 5674 reset_idle_masks(); 5675 static_branch_enable(&scx_builtin_idle_enabled); 5676 } else { 5677 static_branch_disable(&scx_builtin_idle_enabled); 5678 } 5679 5680 /* 5681 * Lock out forks, cgroup on/offlining and moves before opening the 5682 * floodgate so that they don't wander into the operations prematurely. 5683 */ 5684 percpu_down_write(&scx_fork_rwsem); 5685 5686 WARN_ON_ONCE(scx_ops_init_task_enabled); 5687 scx_ops_init_task_enabled = true; 5688 5689 /* 5690 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 5691 * preventing new tasks from being added. No need to exclude tasks 5692 * leaving as sched_ext_free() can handle both prepped and enabled 5693 * tasks. Prep all tasks first and then enable them with preemption 5694 * disabled. 5695 * 5696 * All cgroups should be initialized before scx_ops_init_task() so that 5697 * the BPF scheduler can reliably track each task's cgroup membership 5698 * from scx_ops_init_task(). Lock out cgroup on/offlining and task 5699 * migrations while tasks are being initialized so that 5700 * scx_cgroup_can_attach() never sees uninitialized tasks. 5701 */ 5702 scx_cgroup_lock(); 5703 ret = scx_cgroup_init(); 5704 if (ret) 5705 goto err_disable_unlock_all; 5706 5707 scx_task_iter_start(&sti); 5708 while ((p = scx_task_iter_next_locked(&sti))) { 5709 /* 5710 * @p may already be dead, have lost all its usages counts and 5711 * be waiting for RCU grace period before being freed. @p can't 5712 * be initialized for SCX in such cases and should be ignored. 5713 */ 5714 if (!tryget_task_struct(p)) 5715 continue; 5716 5717 scx_task_iter_unlock(&sti); 5718 5719 ret = scx_ops_init_task(p, task_group(p), false); 5720 if (ret) { 5721 put_task_struct(p); 5722 scx_task_iter_relock(&sti); 5723 scx_task_iter_stop(&sti); 5724 scx_ops_error("ops.init_task() failed (%d) for %s[%d]", 5725 ret, p->comm, p->pid); 5726 goto err_disable_unlock_all; 5727 } 5728 5729 scx_set_task_state(p, SCX_TASK_READY); 5730 5731 put_task_struct(p); 5732 scx_task_iter_relock(&sti); 5733 } 5734 scx_task_iter_stop(&sti); 5735 scx_cgroup_unlock(); 5736 percpu_up_write(&scx_fork_rwsem); 5737 5738 /* 5739 * All tasks are READY. It's safe to turn on scx_enabled() and switch 5740 * all eligible tasks. 5741 */ 5742 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 5743 static_branch_enable(&__scx_ops_enabled); 5744 5745 /* 5746 * We're fully committed and can't fail. The task READY -> ENABLED 5747 * transitions here are synchronized against sched_ext_free() through 5748 * scx_tasks_lock. 5749 */ 5750 percpu_down_write(&scx_fork_rwsem); 5751 scx_task_iter_start(&sti); 5752 while ((p = scx_task_iter_next_locked(&sti))) { 5753 const struct sched_class *old_class = p->sched_class; 5754 const struct sched_class *new_class = 5755 __setscheduler_class(p->policy, p->prio); 5756 struct sched_enq_and_set_ctx ctx; 5757 5758 if (old_class != new_class && p->se.sched_delayed) 5759 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5760 5761 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 5762 5763 p->scx.slice = SCX_SLICE_DFL; 5764 p->sched_class = new_class; 5765 check_class_changing(task_rq(p), p, old_class); 5766 5767 sched_enq_and_set_task(&ctx); 5768 5769 check_class_changed(task_rq(p), p, old_class, p->prio); 5770 } 5771 scx_task_iter_stop(&sti); 5772 percpu_up_write(&scx_fork_rwsem); 5773 5774 scx_ops_bypass(false); 5775 5776 if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) { 5777 WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); 5778 goto err_disable; 5779 } 5780 5781 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 5782 static_branch_enable(&__scx_switched_all); 5783 5784 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", 5785 scx_ops.name, scx_switched_all() ? "" : " (partial)"); 5786 kobject_uevent(scx_root_kobj, KOBJ_ADD); 5787 mutex_unlock(&scx_ops_enable_mutex); 5788 5789 atomic_long_inc(&scx_enable_seq); 5790 5791 return 0; 5792 5793 err_del: 5794 kobject_del(scx_root_kobj); 5795 err: 5796 kobject_put(scx_root_kobj); 5797 scx_root_kobj = NULL; 5798 if (scx_exit_info) { 5799 free_exit_info(scx_exit_info); 5800 scx_exit_info = NULL; 5801 } 5802 err_unlock: 5803 mutex_unlock(&scx_ops_enable_mutex); 5804 return ret; 5805 5806 err_disable_unlock_all: 5807 scx_cgroup_unlock(); 5808 percpu_up_write(&scx_fork_rwsem); 5809 scx_ops_bypass(false); 5810 err_disable: 5811 mutex_unlock(&scx_ops_enable_mutex); 5812 /* 5813 * Returning an error code here would not pass all the error information 5814 * to userspace. Record errno using scx_ops_error() for cases 5815 * scx_ops_error() wasn't already invoked and exit indicating success so 5816 * that the error is notified through ops.exit() with all the details. 5817 * 5818 * Flush scx_ops_disable_work to ensure that error is reported before 5819 * init completion. 5820 */ 5821 scx_ops_error("scx_ops_enable() failed (%d)", ret); 5822 kthread_flush_work(&scx_ops_disable_work); 5823 return 0; 5824 } 5825 5826 5827 /******************************************************************************** 5828 * bpf_struct_ops plumbing. 5829 */ 5830 #include <linux/bpf_verifier.h> 5831 #include <linux/bpf.h> 5832 #include <linux/btf.h> 5833 5834 static const struct btf_type *task_struct_type; 5835 5836 static bool bpf_scx_is_valid_access(int off, int size, 5837 enum bpf_access_type type, 5838 const struct bpf_prog *prog, 5839 struct bpf_insn_access_aux *info) 5840 { 5841 if (type != BPF_READ) 5842 return false; 5843 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 5844 return false; 5845 if (off % size != 0) 5846 return false; 5847 5848 return btf_ctx_access(off, size, type, prog, info); 5849 } 5850 5851 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 5852 const struct bpf_reg_state *reg, int off, 5853 int size) 5854 { 5855 const struct btf_type *t; 5856 5857 t = btf_type_by_id(reg->btf, reg->btf_id); 5858 if (t == task_struct_type) { 5859 if (off >= offsetof(struct task_struct, scx.slice) && 5860 off + size <= offsetofend(struct task_struct, scx.slice)) 5861 return SCALAR_VALUE; 5862 if (off >= offsetof(struct task_struct, scx.dsq_vtime) && 5863 off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) 5864 return SCALAR_VALUE; 5865 if (off >= offsetof(struct task_struct, scx.disallow) && 5866 off + size <= offsetofend(struct task_struct, scx.disallow)) 5867 return SCALAR_VALUE; 5868 } 5869 5870 return -EACCES; 5871 } 5872 5873 static const struct bpf_func_proto * 5874 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 5875 { 5876 switch (func_id) { 5877 case BPF_FUNC_task_storage_get: 5878 return &bpf_task_storage_get_proto; 5879 case BPF_FUNC_task_storage_delete: 5880 return &bpf_task_storage_delete_proto; 5881 default: 5882 return bpf_base_func_proto(func_id, prog); 5883 } 5884 } 5885 5886 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 5887 .get_func_proto = bpf_scx_get_func_proto, 5888 .is_valid_access = bpf_scx_is_valid_access, 5889 .btf_struct_access = bpf_scx_btf_struct_access, 5890 }; 5891 5892 static int bpf_scx_init_member(const struct btf_type *t, 5893 const struct btf_member *member, 5894 void *kdata, const void *udata) 5895 { 5896 const struct sched_ext_ops *uops = udata; 5897 struct sched_ext_ops *ops = kdata; 5898 u32 moff = __btf_member_bit_offset(t, member) / 8; 5899 int ret; 5900 5901 switch (moff) { 5902 case offsetof(struct sched_ext_ops, dispatch_max_batch): 5903 if (*(u32 *)(udata + moff) > INT_MAX) 5904 return -E2BIG; 5905 ops->dispatch_max_batch = *(u32 *)(udata + moff); 5906 return 1; 5907 case offsetof(struct sched_ext_ops, flags): 5908 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 5909 return -EINVAL; 5910 ops->flags = *(u64 *)(udata + moff); 5911 return 1; 5912 case offsetof(struct sched_ext_ops, name): 5913 ret = bpf_obj_name_cpy(ops->name, uops->name, 5914 sizeof(ops->name)); 5915 if (ret < 0) 5916 return ret; 5917 if (ret == 0) 5918 return -EINVAL; 5919 return 1; 5920 case offsetof(struct sched_ext_ops, timeout_ms): 5921 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 5922 SCX_WATCHDOG_MAX_TIMEOUT) 5923 return -E2BIG; 5924 ops->timeout_ms = *(u32 *)(udata + moff); 5925 return 1; 5926 case offsetof(struct sched_ext_ops, exit_dump_len): 5927 ops->exit_dump_len = 5928 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 5929 return 1; 5930 case offsetof(struct sched_ext_ops, hotplug_seq): 5931 ops->hotplug_seq = *(u64 *)(udata + moff); 5932 return 1; 5933 } 5934 5935 return 0; 5936 } 5937 5938 static int bpf_scx_check_member(const struct btf_type *t, 5939 const struct btf_member *member, 5940 const struct bpf_prog *prog) 5941 { 5942 u32 moff = __btf_member_bit_offset(t, member) / 8; 5943 5944 switch (moff) { 5945 case offsetof(struct sched_ext_ops, init_task): 5946 #ifdef CONFIG_EXT_GROUP_SCHED 5947 case offsetof(struct sched_ext_ops, cgroup_init): 5948 case offsetof(struct sched_ext_ops, cgroup_exit): 5949 case offsetof(struct sched_ext_ops, cgroup_prep_move): 5950 #endif 5951 case offsetof(struct sched_ext_ops, cpu_online): 5952 case offsetof(struct sched_ext_ops, cpu_offline): 5953 case offsetof(struct sched_ext_ops, init): 5954 case offsetof(struct sched_ext_ops, exit): 5955 break; 5956 default: 5957 if (prog->sleepable) 5958 return -EINVAL; 5959 } 5960 5961 return 0; 5962 } 5963 5964 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 5965 { 5966 return scx_ops_enable(kdata, link); 5967 } 5968 5969 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 5970 { 5971 scx_ops_disable(SCX_EXIT_UNREG); 5972 kthread_flush_work(&scx_ops_disable_work); 5973 } 5974 5975 static int bpf_scx_init(struct btf *btf) 5976 { 5977 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]); 5978 5979 return 0; 5980 } 5981 5982 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 5983 { 5984 /* 5985 * sched_ext does not support updating the actively-loaded BPF 5986 * scheduler, as registering a BPF scheduler can always fail if the 5987 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 5988 * etc. Similarly, we can always race with unregistration happening 5989 * elsewhere, such as with sysrq. 5990 */ 5991 return -EOPNOTSUPP; 5992 } 5993 5994 static int bpf_scx_validate(void *kdata) 5995 { 5996 return 0; 5997 } 5998 5999 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 6000 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {} 6001 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {} 6002 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {} 6003 static void sched_ext_ops__tick(struct task_struct *p) {} 6004 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {} 6005 static void sched_ext_ops__running(struct task_struct *p) {} 6006 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {} 6007 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {} 6008 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; } 6009 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; } 6010 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {} 6011 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {} 6012 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {} 6013 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {} 6014 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {} 6015 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 6016 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {} 6017 static void sched_ext_ops__enable(struct task_struct *p) {} 6018 static void sched_ext_ops__disable(struct task_struct *p) {} 6019 #ifdef CONFIG_EXT_GROUP_SCHED 6020 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } 6021 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {} 6022 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } 6023 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 6024 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 6025 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {} 6026 #endif 6027 static void sched_ext_ops__cpu_online(s32 cpu) {} 6028 static void sched_ext_ops__cpu_offline(s32 cpu) {} 6029 static s32 sched_ext_ops__init(void) { return -EINVAL; } 6030 static void sched_ext_ops__exit(struct scx_exit_info *info) {} 6031 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {} 6032 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} 6033 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {} 6034 6035 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 6036 .select_cpu = sched_ext_ops__select_cpu, 6037 .enqueue = sched_ext_ops__enqueue, 6038 .dequeue = sched_ext_ops__dequeue, 6039 .dispatch = sched_ext_ops__dispatch, 6040 .tick = sched_ext_ops__tick, 6041 .runnable = sched_ext_ops__runnable, 6042 .running = sched_ext_ops__running, 6043 .stopping = sched_ext_ops__stopping, 6044 .quiescent = sched_ext_ops__quiescent, 6045 .yield = sched_ext_ops__yield, 6046 .core_sched_before = sched_ext_ops__core_sched_before, 6047 .set_weight = sched_ext_ops__set_weight, 6048 .set_cpumask = sched_ext_ops__set_cpumask, 6049 .update_idle = sched_ext_ops__update_idle, 6050 .cpu_acquire = sched_ext_ops__cpu_acquire, 6051 .cpu_release = sched_ext_ops__cpu_release, 6052 .init_task = sched_ext_ops__init_task, 6053 .exit_task = sched_ext_ops__exit_task, 6054 .enable = sched_ext_ops__enable, 6055 .disable = sched_ext_ops__disable, 6056 #ifdef CONFIG_EXT_GROUP_SCHED 6057 .cgroup_init = sched_ext_ops__cgroup_init, 6058 .cgroup_exit = sched_ext_ops__cgroup_exit, 6059 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move, 6060 .cgroup_move = sched_ext_ops__cgroup_move, 6061 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move, 6062 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight, 6063 #endif 6064 .cpu_online = sched_ext_ops__cpu_online, 6065 .cpu_offline = sched_ext_ops__cpu_offline, 6066 .init = sched_ext_ops__init, 6067 .exit = sched_ext_ops__exit, 6068 .dump = sched_ext_ops__dump, 6069 .dump_cpu = sched_ext_ops__dump_cpu, 6070 .dump_task = sched_ext_ops__dump_task, 6071 }; 6072 6073 static struct bpf_struct_ops bpf_sched_ext_ops = { 6074 .verifier_ops = &bpf_scx_verifier_ops, 6075 .reg = bpf_scx_reg, 6076 .unreg = bpf_scx_unreg, 6077 .check_member = bpf_scx_check_member, 6078 .init_member = bpf_scx_init_member, 6079 .init = bpf_scx_init, 6080 .update = bpf_scx_update, 6081 .validate = bpf_scx_validate, 6082 .name = "sched_ext_ops", 6083 .owner = THIS_MODULE, 6084 .cfi_stubs = &__bpf_ops_sched_ext_ops 6085 }; 6086 6087 6088 /******************************************************************************** 6089 * System integration and init. 6090 */ 6091 6092 static void sysrq_handle_sched_ext_reset(u8 key) 6093 { 6094 if (scx_ops_helper) 6095 scx_ops_disable(SCX_EXIT_SYSRQ); 6096 else 6097 pr_info("sched_ext: BPF scheduler not yet used\n"); 6098 } 6099 6100 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 6101 .handler = sysrq_handle_sched_ext_reset, 6102 .help_msg = "reset-sched-ext(S)", 6103 .action_msg = "Disable sched_ext and revert all tasks to CFS", 6104 .enable_mask = SYSRQ_ENABLE_RTNICE, 6105 }; 6106 6107 static void sysrq_handle_sched_ext_dump(u8 key) 6108 { 6109 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 6110 6111 if (scx_enabled()) 6112 scx_dump_state(&ei, 0); 6113 } 6114 6115 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 6116 .handler = sysrq_handle_sched_ext_dump, 6117 .help_msg = "dump-sched-ext(D)", 6118 .action_msg = "Trigger sched_ext debug dump", 6119 .enable_mask = SYSRQ_ENABLE_RTNICE, 6120 }; 6121 6122 static bool can_skip_idle_kick(struct rq *rq) 6123 { 6124 lockdep_assert_rq_held(rq); 6125 6126 /* 6127 * We can skip idle kicking if @rq is going to go through at least one 6128 * full SCX scheduling cycle before going idle. Just checking whether 6129 * curr is not idle is insufficient because we could be racing 6130 * balance_one() trying to pull the next task from a remote rq, which 6131 * may fail, and @rq may become idle afterwards. 6132 * 6133 * The race window is small and we don't and can't guarantee that @rq is 6134 * only kicked while idle anyway. Skip only when sure. 6135 */ 6136 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); 6137 } 6138 6139 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) 6140 { 6141 struct rq *rq = cpu_rq(cpu); 6142 struct scx_rq *this_scx = &this_rq->scx; 6143 bool should_wait = false; 6144 unsigned long flags; 6145 6146 raw_spin_rq_lock_irqsave(rq, flags); 6147 6148 /* 6149 * During CPU hotplug, a CPU may depend on kicking itself to make 6150 * forward progress. Allow kicking self regardless of online state. 6151 */ 6152 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { 6153 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 6154 if (rq->curr->sched_class == &ext_sched_class) 6155 rq->curr->scx.slice = 0; 6156 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 6157 } 6158 6159 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 6160 pseqs[cpu] = rq->scx.pnt_seq; 6161 should_wait = true; 6162 } 6163 6164 resched_curr(rq); 6165 } else { 6166 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 6167 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 6168 } 6169 6170 raw_spin_rq_unlock_irqrestore(rq, flags); 6171 6172 return should_wait; 6173 } 6174 6175 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 6176 { 6177 struct rq *rq = cpu_rq(cpu); 6178 unsigned long flags; 6179 6180 raw_spin_rq_lock_irqsave(rq, flags); 6181 6182 if (!can_skip_idle_kick(rq) && 6183 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 6184 resched_curr(rq); 6185 6186 raw_spin_rq_unlock_irqrestore(rq, flags); 6187 } 6188 6189 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 6190 { 6191 struct rq *this_rq = this_rq(); 6192 struct scx_rq *this_scx = &this_rq->scx; 6193 unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs); 6194 bool should_wait = false; 6195 s32 cpu; 6196 6197 for_each_cpu(cpu, this_scx->cpus_to_kick) { 6198 should_wait |= kick_one_cpu(cpu, this_rq, pseqs); 6199 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 6200 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 6201 } 6202 6203 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 6204 kick_one_cpu_if_idle(cpu, this_rq); 6205 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 6206 } 6207 6208 if (!should_wait) 6209 return; 6210 6211 for_each_cpu(cpu, this_scx->cpus_to_wait) { 6212 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; 6213 6214 if (cpu != cpu_of(this_rq)) { 6215 /* 6216 * Pairs with smp_store_release() issued by this CPU in 6217 * switch_class() on the resched path. 6218 * 6219 * We busy-wait here to guarantee that no other task can 6220 * be scheduled on our core before the target CPU has 6221 * entered the resched path. 6222 */ 6223 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) 6224 cpu_relax(); 6225 } 6226 6227 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 6228 } 6229 } 6230 6231 /** 6232 * print_scx_info - print out sched_ext scheduler state 6233 * @log_lvl: the log level to use when printing 6234 * @p: target task 6235 * 6236 * If a sched_ext scheduler is enabled, print the name and state of the 6237 * scheduler. If @p is on sched_ext, print further information about the task. 6238 * 6239 * This function can be safely called on any task as long as the task_struct 6240 * itself is accessible. While safe, this function isn't synchronized and may 6241 * print out mixups or garbages of limited length. 6242 */ 6243 void print_scx_info(const char *log_lvl, struct task_struct *p) 6244 { 6245 enum scx_ops_enable_state state = scx_ops_enable_state(); 6246 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 6247 char runnable_at_buf[22] = "?"; 6248 struct sched_class *class; 6249 unsigned long runnable_at; 6250 6251 if (state == SCX_OPS_DISABLED) 6252 return; 6253 6254 /* 6255 * Carefully check if the task was running on sched_ext, and then 6256 * carefully copy the time it's been runnable, and its state. 6257 */ 6258 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 6259 class != &ext_sched_class) { 6260 printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name, 6261 scx_ops_enable_state_str[state], all); 6262 return; 6263 } 6264 6265 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 6266 sizeof(runnable_at))) 6267 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 6268 jiffies_delta_msecs(runnable_at, jiffies)); 6269 6270 /* print everything onto one line to conserve console space */ 6271 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 6272 log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all, 6273 runnable_at_buf); 6274 } 6275 6276 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) 6277 { 6278 /* 6279 * SCX schedulers often have userspace components which are sometimes 6280 * involved in critial scheduling paths. PM operations involve freezing 6281 * userspace which can lead to scheduling misbehaviors including stalls. 6282 * Let's bypass while PM operations are in progress. 6283 */ 6284 switch (event) { 6285 case PM_HIBERNATION_PREPARE: 6286 case PM_SUSPEND_PREPARE: 6287 case PM_RESTORE_PREPARE: 6288 scx_ops_bypass(true); 6289 break; 6290 case PM_POST_HIBERNATION: 6291 case PM_POST_SUSPEND: 6292 case PM_POST_RESTORE: 6293 scx_ops_bypass(false); 6294 break; 6295 } 6296 6297 return NOTIFY_OK; 6298 } 6299 6300 static struct notifier_block scx_pm_notifier = { 6301 .notifier_call = scx_pm_handler, 6302 }; 6303 6304 void __init init_sched_ext_class(void) 6305 { 6306 s32 cpu, v; 6307 6308 /* 6309 * The following is to prevent the compiler from optimizing out the enum 6310 * definitions so that BPF scheduler implementations can use them 6311 * through the generated vmlinux.h. 6312 */ 6313 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | 6314 SCX_TG_ONLINE); 6315 6316 BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params)); 6317 #ifdef CONFIG_SMP 6318 BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL)); 6319 BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL)); 6320 #endif 6321 scx_kick_cpus_pnt_seqs = 6322 __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids, 6323 __alignof__(scx_kick_cpus_pnt_seqs[0])); 6324 BUG_ON(!scx_kick_cpus_pnt_seqs); 6325 6326 for_each_possible_cpu(cpu) { 6327 struct rq *rq = cpu_rq(cpu); 6328 6329 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 6330 INIT_LIST_HEAD(&rq->scx.runnable_list); 6331 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); 6332 6333 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL)); 6334 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL)); 6335 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL)); 6336 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL)); 6337 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn); 6338 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); 6339 6340 if (cpu_online(cpu)) 6341 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; 6342 } 6343 6344 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 6345 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 6346 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 6347 } 6348 6349 6350 /******************************************************************************** 6351 * Helpers that can be called from the BPF scheduler. 6352 */ 6353 #include <linux/btf_ids.h> 6354 6355 __bpf_kfunc_start_defs(); 6356 6357 static bool check_builtin_idle_enabled(void) 6358 { 6359 if (static_branch_likely(&scx_builtin_idle_enabled)) 6360 return true; 6361 6362 scx_ops_error("built-in idle tracking is disabled"); 6363 return false; 6364 } 6365 6366 /** 6367 * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu() 6368 * @p: task_struct to select a CPU for 6369 * @prev_cpu: CPU @p was on previously 6370 * @wake_flags: %SCX_WAKE_* flags 6371 * @is_idle: out parameter indicating whether the returned CPU is idle 6372 * 6373 * Can only be called from ops.select_cpu() if the built-in CPU selection is 6374 * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set. 6375 * @p, @prev_cpu and @wake_flags match ops.select_cpu(). 6376 * 6377 * Returns the picked CPU with *@is_idle indicating whether the picked CPU is 6378 * currently idle and thus a good candidate for direct dispatching. 6379 */ 6380 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 6381 u64 wake_flags, bool *is_idle) 6382 { 6383 if (!check_builtin_idle_enabled()) 6384 goto prev_cpu; 6385 6386 if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) 6387 goto prev_cpu; 6388 6389 #ifdef CONFIG_SMP 6390 return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle); 6391 #endif 6392 6393 prev_cpu: 6394 *is_idle = false; 6395 return prev_cpu; 6396 } 6397 6398 __bpf_kfunc_end_defs(); 6399 6400 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu) 6401 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU) 6402 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu) 6403 6404 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = { 6405 .owner = THIS_MODULE, 6406 .set = &scx_kfunc_ids_select_cpu, 6407 }; 6408 6409 static bool scx_dsq_insert_preamble(struct task_struct *p, u64 enq_flags) 6410 { 6411 if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 6412 return false; 6413 6414 lockdep_assert_irqs_disabled(); 6415 6416 if (unlikely(!p)) { 6417 scx_ops_error("called with NULL task"); 6418 return false; 6419 } 6420 6421 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 6422 scx_ops_error("invalid enq_flags 0x%llx", enq_flags); 6423 return false; 6424 } 6425 6426 return true; 6427 } 6428 6429 static void scx_dsq_insert_commit(struct task_struct *p, u64 dsq_id, 6430 u64 enq_flags) 6431 { 6432 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6433 struct task_struct *ddsp_task; 6434 6435 ddsp_task = __this_cpu_read(direct_dispatch_task); 6436 if (ddsp_task) { 6437 mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags); 6438 return; 6439 } 6440 6441 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 6442 scx_ops_error("dispatch buffer overflow"); 6443 return; 6444 } 6445 6446 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 6447 .task = p, 6448 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 6449 .dsq_id = dsq_id, 6450 .enq_flags = enq_flags, 6451 }; 6452 } 6453 6454 __bpf_kfunc_start_defs(); 6455 6456 /** 6457 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ 6458 * @p: task_struct to insert 6459 * @dsq_id: DSQ to insert into 6460 * @slice: duration @p can run for in nsecs, 0 to keep the current value 6461 * @enq_flags: SCX_ENQ_* 6462 * 6463 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to 6464 * call this function spuriously. Can be called from ops.enqueue(), 6465 * ops.select_cpu(), and ops.dispatch(). 6466 * 6467 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 6468 * and @p must match the task being enqueued. 6469 * 6470 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 6471 * will be directly inserted into the corresponding dispatch queue after 6472 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be 6473 * inserted into the local DSQ of the CPU returned by ops.select_cpu(). 6474 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 6475 * task is inserted. 6476 * 6477 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 6478 * and this function can be called upto ops.dispatch_max_batch times to insert 6479 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 6480 * remaining slots. scx_bpf_consume() flushes the batch and resets the counter. 6481 * 6482 * This function doesn't have any locking restrictions and may be called under 6483 * BPF locks (in the future when BPF introduces more flexible locking). 6484 * 6485 * @p is allowed to run for @slice. The scheduling path is triggered on slice 6486 * exhaustion. If zero, the current residual slice is maintained. If 6487 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 6488 * scx_bpf_kick_cpu() to trigger scheduling. 6489 */ 6490 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice, 6491 u64 enq_flags) 6492 { 6493 if (!scx_dsq_insert_preamble(p, enq_flags)) 6494 return; 6495 6496 if (slice) 6497 p->scx.slice = slice; 6498 else 6499 p->scx.slice = p->scx.slice ?: 1; 6500 6501 scx_dsq_insert_commit(p, dsq_id, enq_flags); 6502 } 6503 6504 /* for backward compatibility, will be removed in v6.15 */ 6505 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice, 6506 u64 enq_flags) 6507 { 6508 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch() renamed to scx_bpf_dsq_insert()"); 6509 scx_bpf_dsq_insert(p, dsq_id, slice, enq_flags); 6510 } 6511 6512 /** 6513 * scx_bpf_dsq_insert_vtime - Insert a task into the vtime priority queue of a DSQ 6514 * @p: task_struct to insert 6515 * @dsq_id: DSQ to insert into 6516 * @slice: duration @p can run for in nsecs, 0 to keep the current value 6517 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ 6518 * @enq_flags: SCX_ENQ_* 6519 * 6520 * Insert @p into the vtime priority queue of the DSQ identified by @dsq_id. 6521 * Tasks queued into the priority queue are ordered by @vtime. All other aspects 6522 * are identical to scx_bpf_dsq_insert(). 6523 * 6524 * @vtime ordering is according to time_before64() which considers wrapping. A 6525 * numerically larger vtime may indicate an earlier position in the ordering and 6526 * vice-versa. 6527 * 6528 * A DSQ can only be used as a FIFO or priority queue at any given time and this 6529 * function must not be called on a DSQ which already has one or more FIFO tasks 6530 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and 6531 * SCX_DSQ_GLOBAL) cannot be used as priority queues. 6532 */ 6533 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id, 6534 u64 slice, u64 vtime, u64 enq_flags) 6535 { 6536 if (!scx_dsq_insert_preamble(p, enq_flags)) 6537 return; 6538 6539 if (slice) 6540 p->scx.slice = slice; 6541 else 6542 p->scx.slice = p->scx.slice ?: 1; 6543 6544 p->scx.dsq_vtime = vtime; 6545 6546 scx_dsq_insert_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6547 } 6548 6549 /* for backward compatibility, will be removed in v6.15 */ 6550 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id, 6551 u64 slice, u64 vtime, u64 enq_flags) 6552 { 6553 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_vtime() renamed to scx_bpf_dsq_insert_vtime()"); 6554 scx_bpf_dsq_insert_vtime(p, dsq_id, slice, vtime, enq_flags); 6555 } 6556 6557 __bpf_kfunc_end_defs(); 6558 6559 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 6560 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU) 6561 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU) 6562 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU) 6563 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU) 6564 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 6565 6566 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 6567 .owner = THIS_MODULE, 6568 .set = &scx_kfunc_ids_enqueue_dispatch, 6569 }; 6570 6571 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit, 6572 struct task_struct *p, u64 dsq_id, u64 enq_flags) 6573 { 6574 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; 6575 struct rq *this_rq, *src_rq, *locked_rq; 6576 bool dispatched = false; 6577 bool in_balance; 6578 unsigned long flags; 6579 6580 if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH)) 6581 return false; 6582 6583 /* 6584 * Can be called from either ops.dispatch() locking this_rq() or any 6585 * context where no rq lock is held. If latter, lock @p's task_rq which 6586 * we'll likely need anyway. 6587 */ 6588 src_rq = task_rq(p); 6589 6590 local_irq_save(flags); 6591 this_rq = this_rq(); 6592 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; 6593 6594 if (in_balance) { 6595 if (this_rq != src_rq) { 6596 raw_spin_rq_unlock(this_rq); 6597 raw_spin_rq_lock(src_rq); 6598 } 6599 } else { 6600 raw_spin_rq_lock(src_rq); 6601 } 6602 6603 /* 6604 * If the BPF scheduler keeps calling this function repeatedly, it can 6605 * cause similar live-lock conditions as consume_dispatch_q(). Insert a 6606 * breather if necessary. 6607 */ 6608 scx_ops_breather(src_rq); 6609 6610 locked_rq = src_rq; 6611 raw_spin_lock(&src_dsq->lock); 6612 6613 /* 6614 * Did someone else get to it? @p could have already left $src_dsq, got 6615 * re-enqueud, or be in the process of being consumed by someone else. 6616 */ 6617 if (unlikely(p->scx.dsq != src_dsq || 6618 u32_before(kit->cursor.priv, p->scx.dsq_seq) || 6619 p->scx.holding_cpu >= 0) || 6620 WARN_ON_ONCE(src_rq != task_rq(p))) { 6621 raw_spin_unlock(&src_dsq->lock); 6622 goto out; 6623 } 6624 6625 /* @p is still on $src_dsq and stable, determine the destination */ 6626 dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p); 6627 6628 /* 6629 * Apply vtime and slice updates before moving so that the new time is 6630 * visible before inserting into $dst_dsq. @p is still on $src_dsq but 6631 * this is safe as we're locking it. 6632 */ 6633 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) 6634 p->scx.dsq_vtime = kit->vtime; 6635 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) 6636 p->scx.slice = kit->slice; 6637 6638 /* execute move */ 6639 locked_rq = move_task_between_dsqs(p, enq_flags, src_dsq, dst_dsq); 6640 dispatched = true; 6641 out: 6642 if (in_balance) { 6643 if (this_rq != locked_rq) { 6644 raw_spin_rq_unlock(locked_rq); 6645 raw_spin_rq_lock(this_rq); 6646 } 6647 } else { 6648 raw_spin_rq_unlock_irqrestore(locked_rq, flags); 6649 } 6650 6651 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | 6652 __SCX_DSQ_ITER_HAS_VTIME); 6653 return dispatched; 6654 } 6655 6656 __bpf_kfunc_start_defs(); 6657 6658 /** 6659 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 6660 * 6661 * Can only be called from ops.dispatch(). 6662 */ 6663 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 6664 { 6665 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6666 return 0; 6667 6668 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 6669 } 6670 6671 /** 6672 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 6673 * 6674 * Cancel the latest dispatch. Can be called multiple times to cancel further 6675 * dispatches. Can only be called from ops.dispatch(). 6676 */ 6677 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 6678 { 6679 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6680 6681 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6682 return; 6683 6684 if (dspc->cursor > 0) 6685 dspc->cursor--; 6686 else 6687 scx_ops_error("dispatch buffer underflow"); 6688 } 6689 6690 /** 6691 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ 6692 * @dsq_id: DSQ to move task from 6693 * 6694 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's 6695 * local DSQ for execution. Can only be called from ops.dispatch(). 6696 * 6697 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert() 6698 * before trying to move from the specified DSQ. It may also grab rq locks and 6699 * thus can't be called under any BPF locks. 6700 * 6701 * Returns %true if a task has been moved, %false if there isn't any task to 6702 * move. 6703 */ 6704 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id) 6705 { 6706 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6707 struct scx_dispatch_q *dsq; 6708 6709 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6710 return false; 6711 6712 flush_dispatch_buf(dspc->rq); 6713 6714 dsq = find_user_dsq(dsq_id); 6715 if (unlikely(!dsq)) { 6716 scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id); 6717 return false; 6718 } 6719 6720 if (consume_dispatch_q(dspc->rq, dsq)) { 6721 /* 6722 * A successfully consumed task can be dequeued before it starts 6723 * running while the CPU is trying to migrate other dispatched 6724 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 6725 * local DSQ. 6726 */ 6727 dspc->nr_tasks++; 6728 return true; 6729 } else { 6730 return false; 6731 } 6732 } 6733 6734 /* for backward compatibility, will be removed in v6.15 */ 6735 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id) 6736 { 6737 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_consume() renamed to scx_bpf_dsq_move_to_local()"); 6738 return scx_bpf_dsq_move_to_local(dsq_id); 6739 } 6740 6741 /** 6742 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs 6743 * @it__iter: DSQ iterator in progress 6744 * @slice: duration the moved task can run for in nsecs 6745 * 6746 * Override the slice of the next task that will be moved from @it__iter using 6747 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous 6748 * slice duration is kept. 6749 */ 6750 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, 6751 u64 slice) 6752 { 6753 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6754 6755 kit->slice = slice; 6756 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; 6757 } 6758 6759 /* for backward compatibility, will be removed in v6.15 */ 6760 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice( 6761 struct bpf_iter_scx_dsq *it__iter, u64 slice) 6762 { 6763 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_slice() renamed to scx_bpf_dsq_move_set_slice()"); 6764 scx_bpf_dsq_move_set_slice(it__iter, slice); 6765 } 6766 6767 /** 6768 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs 6769 * @it__iter: DSQ iterator in progress 6770 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ 6771 * 6772 * Override the vtime of the next task that will be moved from @it__iter using 6773 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice 6774 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the 6775 * override is ignored and cleared. 6776 */ 6777 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, 6778 u64 vtime) 6779 { 6780 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6781 6782 kit->vtime = vtime; 6783 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; 6784 } 6785 6786 /* for backward compatibility, will be removed in v6.15 */ 6787 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime( 6788 struct bpf_iter_scx_dsq *it__iter, u64 vtime) 6789 { 6790 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_vtime() renamed to scx_bpf_dsq_move_set_vtime()"); 6791 scx_bpf_dsq_move_set_vtime(it__iter, vtime); 6792 } 6793 6794 /** 6795 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ 6796 * @it__iter: DSQ iterator in progress 6797 * @p: task to transfer 6798 * @dsq_id: DSQ to move @p to 6799 * @enq_flags: SCX_ENQ_* 6800 * 6801 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ 6802 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can 6803 * be the destination. 6804 * 6805 * For the transfer to be successful, @p must still be on the DSQ and have been 6806 * queued before the DSQ iteration started. This function doesn't care whether 6807 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have 6808 * been queued before the iteration started. 6809 * 6810 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update. 6811 * 6812 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq 6813 * lock (e.g. BPF timers or SYSCALL programs). 6814 * 6815 * Returns %true if @p has been consumed, %false if @p had already been consumed 6816 * or dequeued. 6817 */ 6818 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, 6819 struct task_struct *p, u64 dsq_id, 6820 u64 enq_flags) 6821 { 6822 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 6823 p, dsq_id, enq_flags); 6824 } 6825 6826 /* for backward compatibility, will be removed in v6.15 */ 6827 __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6828 struct task_struct *p, u64 dsq_id, 6829 u64 enq_flags) 6830 { 6831 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq() renamed to scx_bpf_dsq_move()"); 6832 return scx_bpf_dsq_move(it__iter, p, dsq_id, enq_flags); 6833 } 6834 6835 /** 6836 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ 6837 * @it__iter: DSQ iterator in progress 6838 * @p: task to transfer 6839 * @dsq_id: DSQ to move @p to 6840 * @enq_flags: SCX_ENQ_* 6841 * 6842 * Transfer @p which is on the DSQ currently iterated by @it__iter to the 6843 * priority queue of the DSQ specified by @dsq_id. The destination must be a 6844 * user DSQ as only user DSQs support priority queue. 6845 * 6846 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice() 6847 * and scx_bpf_dsq_move_set_vtime() to update. 6848 * 6849 * All other aspects are identical to scx_bpf_dsq_move(). See 6850 * scx_bpf_dsq_insert_vtime() for more information on @vtime. 6851 */ 6852 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, 6853 struct task_struct *p, u64 dsq_id, 6854 u64 enq_flags) 6855 { 6856 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 6857 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6858 } 6859 6860 /* for backward compatibility, will be removed in v6.15 */ 6861 __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6862 struct task_struct *p, u64 dsq_id, 6863 u64 enq_flags) 6864 { 6865 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_vtime() renamed to scx_bpf_dsq_move_vtime()"); 6866 return scx_bpf_dsq_move_vtime(it__iter, p, dsq_id, enq_flags); 6867 } 6868 6869 __bpf_kfunc_end_defs(); 6870 6871 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 6872 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 6873 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 6874 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local) 6875 BTF_ID_FLAGS(func, scx_bpf_consume) 6876 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice) 6877 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime) 6878 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 6879 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 6880 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) 6881 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) 6882 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6883 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6884 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 6885 6886 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 6887 .owner = THIS_MODULE, 6888 .set = &scx_kfunc_ids_dispatch, 6889 }; 6890 6891 __bpf_kfunc_start_defs(); 6892 6893 /** 6894 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 6895 * 6896 * Iterate over all of the tasks currently enqueued on the local DSQ of the 6897 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 6898 * processed tasks. Can only be called from ops.cpu_release(). 6899 */ 6900 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 6901 { 6902 LIST_HEAD(tasks); 6903 u32 nr_enqueued = 0; 6904 struct rq *rq; 6905 struct task_struct *p, *n; 6906 6907 if (!scx_kf_allowed(SCX_KF_CPU_RELEASE)) 6908 return 0; 6909 6910 rq = cpu_rq(smp_processor_id()); 6911 lockdep_assert_rq_held(rq); 6912 6913 /* 6914 * The BPF scheduler may choose to dispatch tasks back to 6915 * @rq->scx.local_dsq. Move all candidate tasks off to a private list 6916 * first to avoid processing the same tasks repeatedly. 6917 */ 6918 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, 6919 scx.dsq_list.node) { 6920 /* 6921 * If @p is being migrated, @p's current CPU may not agree with 6922 * its allowed CPUs and the migration_cpu_stop is about to 6923 * deactivate and re-activate @p anyway. Skip re-enqueueing. 6924 * 6925 * While racing sched property changes may also dequeue and 6926 * re-enqueue a migrating task while its current CPU and allowed 6927 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to 6928 * the current local DSQ for running tasks and thus are not 6929 * visible to the BPF scheduler. 6930 */ 6931 if (p->migration_pending) 6932 continue; 6933 6934 dispatch_dequeue(rq, p); 6935 list_add_tail(&p->scx.dsq_list.node, &tasks); 6936 } 6937 6938 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { 6939 list_del_init(&p->scx.dsq_list.node); 6940 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 6941 nr_enqueued++; 6942 } 6943 6944 return nr_enqueued; 6945 } 6946 6947 __bpf_kfunc_end_defs(); 6948 6949 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 6950 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 6951 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 6952 6953 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 6954 .owner = THIS_MODULE, 6955 .set = &scx_kfunc_ids_cpu_release, 6956 }; 6957 6958 __bpf_kfunc_start_defs(); 6959 6960 /** 6961 * scx_bpf_create_dsq - Create a custom DSQ 6962 * @dsq_id: DSQ to create 6963 * @node: NUMA node to allocate from 6964 * 6965 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable 6966 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. 6967 */ 6968 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 6969 { 6970 if (unlikely(node >= (int)nr_node_ids || 6971 (node < 0 && node != NUMA_NO_NODE))) 6972 return -EINVAL; 6973 return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node)); 6974 } 6975 6976 __bpf_kfunc_end_defs(); 6977 6978 BTF_KFUNCS_START(scx_kfunc_ids_unlocked) 6979 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 6980 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice) 6981 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime) 6982 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 6983 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 6984 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) 6985 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) 6986 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6987 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6988 BTF_KFUNCS_END(scx_kfunc_ids_unlocked) 6989 6990 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { 6991 .owner = THIS_MODULE, 6992 .set = &scx_kfunc_ids_unlocked, 6993 }; 6994 6995 __bpf_kfunc_start_defs(); 6996 6997 /** 6998 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 6999 * @cpu: cpu to kick 7000 * @flags: %SCX_KICK_* flags 7001 * 7002 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 7003 * trigger rescheduling on a busy CPU. This can be called from any online 7004 * scx_ops operation and the actual kicking is performed asynchronously through 7005 * an irq work. 7006 */ 7007 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 7008 { 7009 struct rq *this_rq; 7010 unsigned long irq_flags; 7011 7012 if (!ops_cpu_valid(cpu, NULL)) 7013 return; 7014 7015 local_irq_save(irq_flags); 7016 7017 this_rq = this_rq(); 7018 7019 /* 7020 * While bypassing for PM ops, IRQ handling may not be online which can 7021 * lead to irq_work_queue() malfunction such as infinite busy wait for 7022 * IRQ status update. Suppress kicking. 7023 */ 7024 if (scx_rq_bypassing(this_rq)) 7025 goto out; 7026 7027 /* 7028 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 7029 * rq locks. We can probably be smarter and avoid bouncing if called 7030 * from ops which don't hold a rq lock. 7031 */ 7032 if (flags & SCX_KICK_IDLE) { 7033 struct rq *target_rq = cpu_rq(cpu); 7034 7035 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 7036 scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 7037 7038 if (raw_spin_rq_trylock(target_rq)) { 7039 if (can_skip_idle_kick(target_rq)) { 7040 raw_spin_rq_unlock(target_rq); 7041 goto out; 7042 } 7043 raw_spin_rq_unlock(target_rq); 7044 } 7045 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 7046 } else { 7047 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 7048 7049 if (flags & SCX_KICK_PREEMPT) 7050 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 7051 if (flags & SCX_KICK_WAIT) 7052 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 7053 } 7054 7055 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 7056 out: 7057 local_irq_restore(irq_flags); 7058 } 7059 7060 /** 7061 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 7062 * @dsq_id: id of the DSQ 7063 * 7064 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 7065 * -%ENOENT is returned. 7066 */ 7067 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 7068 { 7069 struct scx_dispatch_q *dsq; 7070 s32 ret; 7071 7072 preempt_disable(); 7073 7074 if (dsq_id == SCX_DSQ_LOCAL) { 7075 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 7076 goto out; 7077 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 7078 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 7079 7080 if (ops_cpu_valid(cpu, NULL)) { 7081 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 7082 goto out; 7083 } 7084 } else { 7085 dsq = find_user_dsq(dsq_id); 7086 if (dsq) { 7087 ret = READ_ONCE(dsq->nr); 7088 goto out; 7089 } 7090 } 7091 ret = -ENOENT; 7092 out: 7093 preempt_enable(); 7094 return ret; 7095 } 7096 7097 /** 7098 * scx_bpf_destroy_dsq - Destroy a custom DSQ 7099 * @dsq_id: DSQ to destroy 7100 * 7101 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 7102 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 7103 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 7104 * which doesn't exist. Can be called from any online scx_ops operations. 7105 */ 7106 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 7107 { 7108 destroy_dsq(dsq_id); 7109 } 7110 7111 /** 7112 * bpf_iter_scx_dsq_new - Create a DSQ iterator 7113 * @it: iterator to initialize 7114 * @dsq_id: DSQ to iterate 7115 * @flags: %SCX_DSQ_ITER_* 7116 * 7117 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk 7118 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes 7119 * tasks which are already queued when this function is invoked. 7120 */ 7121 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, 7122 u64 flags) 7123 { 7124 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 7125 7126 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > 7127 sizeof(struct bpf_iter_scx_dsq)); 7128 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != 7129 __alignof__(struct bpf_iter_scx_dsq)); 7130 7131 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) 7132 return -EINVAL; 7133 7134 kit->dsq = find_user_dsq(dsq_id); 7135 if (!kit->dsq) 7136 return -ENOENT; 7137 7138 INIT_LIST_HEAD(&kit->cursor.node); 7139 kit->cursor.flags = SCX_DSQ_LNODE_ITER_CURSOR | flags; 7140 kit->cursor.priv = READ_ONCE(kit->dsq->seq); 7141 7142 return 0; 7143 } 7144 7145 /** 7146 * bpf_iter_scx_dsq_next - Progress a DSQ iterator 7147 * @it: iterator to progress 7148 * 7149 * Return the next task. See bpf_iter_scx_dsq_new(). 7150 */ 7151 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) 7152 { 7153 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 7154 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; 7155 struct task_struct *p; 7156 unsigned long flags; 7157 7158 if (!kit->dsq) 7159 return NULL; 7160 7161 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 7162 7163 if (list_empty(&kit->cursor.node)) 7164 p = NULL; 7165 else 7166 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); 7167 7168 /* 7169 * Only tasks which were queued before the iteration started are 7170 * visible. This bounds BPF iterations and guarantees that vtime never 7171 * jumps in the other direction while iterating. 7172 */ 7173 do { 7174 p = nldsq_next_task(kit->dsq, p, rev); 7175 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); 7176 7177 if (p) { 7178 if (rev) 7179 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); 7180 else 7181 list_move(&kit->cursor.node, &p->scx.dsq_list.node); 7182 } else { 7183 list_del_init(&kit->cursor.node); 7184 } 7185 7186 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 7187 7188 return p; 7189 } 7190 7191 /** 7192 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator 7193 * @it: iterator to destroy 7194 * 7195 * Undo scx_iter_scx_dsq_new(). 7196 */ 7197 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) 7198 { 7199 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 7200 7201 if (!kit->dsq) 7202 return; 7203 7204 if (!list_empty(&kit->cursor.node)) { 7205 unsigned long flags; 7206 7207 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 7208 list_del_init(&kit->cursor.node); 7209 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 7210 } 7211 kit->dsq = NULL; 7212 } 7213 7214 __bpf_kfunc_end_defs(); 7215 7216 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size, 7217 char *fmt, unsigned long long *data, u32 data__sz) 7218 { 7219 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 7220 s32 ret; 7221 7222 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 7223 (data__sz && !data)) { 7224 scx_ops_error("invalid data=%p and data__sz=%u", 7225 (void *)data, data__sz); 7226 return -EINVAL; 7227 } 7228 7229 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 7230 if (ret < 0) { 7231 scx_ops_error("failed to read data fields (%d)", ret); 7232 return ret; 7233 } 7234 7235 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 7236 &bprintf_data); 7237 if (ret < 0) { 7238 scx_ops_error("format preparation failed (%d)", ret); 7239 return ret; 7240 } 7241 7242 ret = bstr_printf(line_buf, line_size, fmt, 7243 bprintf_data.bin_args); 7244 bpf_bprintf_cleanup(&bprintf_data); 7245 if (ret < 0) { 7246 scx_ops_error("(\"%s\", %p, %u) failed to format", 7247 fmt, data, data__sz); 7248 return ret; 7249 } 7250 7251 return ret; 7252 } 7253 7254 static s32 bstr_format(struct scx_bstr_buf *buf, 7255 char *fmt, unsigned long long *data, u32 data__sz) 7256 { 7257 return __bstr_format(buf->data, buf->line, sizeof(buf->line), 7258 fmt, data, data__sz); 7259 } 7260 7261 __bpf_kfunc_start_defs(); 7262 7263 /** 7264 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 7265 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 7266 * @fmt: error message format string 7267 * @data: format string parameters packaged using ___bpf_fill() macro 7268 * @data__sz: @data len, must end in '__sz' for the verifier 7269 * 7270 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 7271 * disabling. 7272 */ 7273 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 7274 unsigned long long *data, u32 data__sz) 7275 { 7276 unsigned long flags; 7277 7278 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 7279 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 7280 scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s", 7281 scx_exit_bstr_buf.line); 7282 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 7283 } 7284 7285 /** 7286 * scx_bpf_error_bstr - Indicate fatal error 7287 * @fmt: error message format string 7288 * @data: format string parameters packaged using ___bpf_fill() macro 7289 * @data__sz: @data len, must end in '__sz' for the verifier 7290 * 7291 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 7292 * disabling. 7293 */ 7294 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 7295 u32 data__sz) 7296 { 7297 unsigned long flags; 7298 7299 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 7300 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 7301 scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s", 7302 scx_exit_bstr_buf.line); 7303 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 7304 } 7305 7306 /** 7307 * scx_bpf_dump_bstr - Generate extra debug dump specific to the BPF scheduler 7308 * @fmt: format string 7309 * @data: format string parameters packaged using ___bpf_fill() macro 7310 * @data__sz: @data len, must end in '__sz' for the verifier 7311 * 7312 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 7313 * dump_task() to generate extra debug dump specific to the BPF scheduler. 7314 * 7315 * The extra dump may be multiple lines. A single line may be split over 7316 * multiple calls. The last line is automatically terminated. 7317 */ 7318 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 7319 u32 data__sz) 7320 { 7321 struct scx_dump_data *dd = &scx_dump_data; 7322 struct scx_bstr_buf *buf = &dd->buf; 7323 s32 ret; 7324 7325 if (raw_smp_processor_id() != dd->cpu) { 7326 scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends"); 7327 return; 7328 } 7329 7330 /* append the formatted string to the line buf */ 7331 ret = __bstr_format(buf->data, buf->line + dd->cursor, 7332 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 7333 if (ret < 0) { 7334 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 7335 dd->prefix, fmt, data, data__sz, ret); 7336 return; 7337 } 7338 7339 dd->cursor += ret; 7340 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 7341 7342 if (!dd->cursor) 7343 return; 7344 7345 /* 7346 * If the line buf overflowed or ends in a newline, flush it into the 7347 * dump. This is to allow the caller to generate a single line over 7348 * multiple calls. As ops_dump_flush() can also handle multiple lines in 7349 * the line buf, the only case which can lead to an unexpected 7350 * truncation is when the caller keeps generating newlines in the middle 7351 * instead of the end consecutively. Don't do that. 7352 */ 7353 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 7354 ops_dump_flush(); 7355 } 7356 7357 /** 7358 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU 7359 * @cpu: CPU of interest 7360 * 7361 * Return the maximum relative capacity of @cpu in relation to the most 7362 * performant CPU in the system. The return value is in the range [1, 7363 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). 7364 */ 7365 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) 7366 { 7367 if (ops_cpu_valid(cpu, NULL)) 7368 return arch_scale_cpu_capacity(cpu); 7369 else 7370 return SCX_CPUPERF_ONE; 7371 } 7372 7373 /** 7374 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU 7375 * @cpu: CPU of interest 7376 * 7377 * Return the current relative performance of @cpu in relation to its maximum. 7378 * The return value is in the range [1, %SCX_CPUPERF_ONE]. 7379 * 7380 * The current performance level of a CPU in relation to the maximum performance 7381 * available in the system can be calculated as follows: 7382 * 7383 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE 7384 * 7385 * The result is in the range [1, %SCX_CPUPERF_ONE]. 7386 */ 7387 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) 7388 { 7389 if (ops_cpu_valid(cpu, NULL)) 7390 return arch_scale_freq_capacity(cpu); 7391 else 7392 return SCX_CPUPERF_ONE; 7393 } 7394 7395 /** 7396 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU 7397 * @cpu: CPU of interest 7398 * @perf: target performance level [0, %SCX_CPUPERF_ONE] 7399 * 7400 * Set the target performance level of @cpu to @perf. @perf is in linear 7401 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the 7402 * schedutil cpufreq governor chooses the target frequency. 7403 * 7404 * The actual performance level chosen, CPU grouping, and the overhead and 7405 * latency of the operations are dependent on the hardware and cpufreq driver in 7406 * use. Consult hardware and cpufreq documentation for more information. The 7407 * current performance level can be monitored using scx_bpf_cpuperf_cur(). 7408 */ 7409 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) 7410 { 7411 if (unlikely(perf > SCX_CPUPERF_ONE)) { 7412 scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu); 7413 return; 7414 } 7415 7416 if (ops_cpu_valid(cpu, NULL)) { 7417 struct rq *rq = cpu_rq(cpu); 7418 7419 rq->scx.cpuperf_target = perf; 7420 7421 rcu_read_lock_sched_notrace(); 7422 cpufreq_update_util(cpu_rq(cpu), 0); 7423 rcu_read_unlock_sched_notrace(); 7424 } 7425 } 7426 7427 /** 7428 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 7429 * 7430 * All valid CPU IDs in the system are smaller than the returned value. 7431 */ 7432 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 7433 { 7434 return nr_cpu_ids; 7435 } 7436 7437 /** 7438 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 7439 */ 7440 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 7441 { 7442 return cpu_possible_mask; 7443 } 7444 7445 /** 7446 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 7447 */ 7448 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 7449 { 7450 return cpu_online_mask; 7451 } 7452 7453 /** 7454 * scx_bpf_put_cpumask - Release a possible/online cpumask 7455 * @cpumask: cpumask to release 7456 */ 7457 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 7458 { 7459 /* 7460 * Empty function body because we aren't actually acquiring or releasing 7461 * a reference to a global cpumask, which is read-only in the caller and 7462 * is never released. The acquire / release semantics here are just used 7463 * to make the cpumask is a trusted pointer in the caller. 7464 */ 7465 } 7466 7467 /** 7468 * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking 7469 * per-CPU cpumask. 7470 * 7471 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 7472 */ 7473 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void) 7474 { 7475 if (!check_builtin_idle_enabled()) 7476 return cpu_none_mask; 7477 7478 #ifdef CONFIG_SMP 7479 return idle_masks.cpu; 7480 #else 7481 return cpu_none_mask; 7482 #endif 7483 } 7484 7485 /** 7486 * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking, 7487 * per-physical-core cpumask. Can be used to determine if an entire physical 7488 * core is free. 7489 * 7490 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 7491 */ 7492 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void) 7493 { 7494 if (!check_builtin_idle_enabled()) 7495 return cpu_none_mask; 7496 7497 #ifdef CONFIG_SMP 7498 if (sched_smt_active()) 7499 return idle_masks.smt; 7500 else 7501 return idle_masks.cpu; 7502 #else 7503 return cpu_none_mask; 7504 #endif 7505 } 7506 7507 /** 7508 * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to 7509 * either the percpu, or SMT idle-tracking cpumask. 7510 * @idle_mask: &cpumask to use 7511 */ 7512 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask) 7513 { 7514 /* 7515 * Empty function body because we aren't actually acquiring or releasing 7516 * a reference to a global idle cpumask, which is read-only in the 7517 * caller and is never released. The acquire / release semantics here 7518 * are just used to make the cpumask a trusted pointer in the caller. 7519 */ 7520 } 7521 7522 /** 7523 * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state 7524 * @cpu: cpu to test and clear idle for 7525 * 7526 * Returns %true if @cpu was idle and its idle state was successfully cleared. 7527 * %false otherwise. 7528 * 7529 * Unavailable if ops.update_idle() is implemented and 7530 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 7531 */ 7532 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) 7533 { 7534 if (!check_builtin_idle_enabled()) 7535 return false; 7536 7537 if (ops_cpu_valid(cpu, NULL)) 7538 return test_and_clear_cpu_idle(cpu); 7539 else 7540 return false; 7541 } 7542 7543 /** 7544 * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu 7545 * @cpus_allowed: Allowed cpumask 7546 * @flags: %SCX_PICK_IDLE_CPU_* flags 7547 * 7548 * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu 7549 * number on success. -%EBUSY if no matching cpu was found. 7550 * 7551 * Idle CPU tracking may race against CPU scheduling state transitions. For 7552 * example, this function may return -%EBUSY as CPUs are transitioning into the 7553 * idle state. If the caller then assumes that there will be dispatch events on 7554 * the CPUs as they were all busy, the scheduler may end up stalling with CPUs 7555 * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and 7556 * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch 7557 * event in the near future. 7558 * 7559 * Unavailable if ops.update_idle() is implemented and 7560 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 7561 */ 7562 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed, 7563 u64 flags) 7564 { 7565 if (!check_builtin_idle_enabled()) 7566 return -EBUSY; 7567 7568 return scx_pick_idle_cpu(cpus_allowed, flags); 7569 } 7570 7571 /** 7572 * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU 7573 * @cpus_allowed: Allowed cpumask 7574 * @flags: %SCX_PICK_IDLE_CPU_* flags 7575 * 7576 * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any 7577 * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu 7578 * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is 7579 * empty. 7580 * 7581 * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not 7582 * set, this function can't tell which CPUs are idle and will always pick any 7583 * CPU. 7584 */ 7585 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed, 7586 u64 flags) 7587 { 7588 s32 cpu; 7589 7590 if (static_branch_likely(&scx_builtin_idle_enabled)) { 7591 cpu = scx_pick_idle_cpu(cpus_allowed, flags); 7592 if (cpu >= 0) 7593 return cpu; 7594 } 7595 7596 cpu = cpumask_any_distribute(cpus_allowed); 7597 if (cpu < nr_cpu_ids) 7598 return cpu; 7599 else 7600 return -EBUSY; 7601 } 7602 7603 /** 7604 * scx_bpf_task_running - Is task currently running? 7605 * @p: task of interest 7606 */ 7607 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 7608 { 7609 return task_rq(p)->curr == p; 7610 } 7611 7612 /** 7613 * scx_bpf_task_cpu - CPU a task is currently associated with 7614 * @p: task of interest 7615 */ 7616 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 7617 { 7618 return task_cpu(p); 7619 } 7620 7621 /** 7622 * scx_bpf_cpu_rq - Fetch the rq of a CPU 7623 * @cpu: CPU of the rq 7624 */ 7625 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) 7626 { 7627 if (!ops_cpu_valid(cpu, NULL)) 7628 return NULL; 7629 7630 return cpu_rq(cpu); 7631 } 7632 7633 /** 7634 * scx_bpf_task_cgroup - Return the sched cgroup of a task 7635 * @p: task of interest 7636 * 7637 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with 7638 * from the scheduler's POV. SCX operations should use this function to 7639 * determine @p's current cgroup as, unlike following @p->cgroups, 7640 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all 7641 * rq-locked operations. Can be called on the parameter tasks of rq-locked 7642 * operations. The restriction guarantees that @p's rq is locked by the caller. 7643 */ 7644 #ifdef CONFIG_CGROUP_SCHED 7645 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) 7646 { 7647 struct task_group *tg = p->sched_task_group; 7648 struct cgroup *cgrp = &cgrp_dfl_root.cgrp; 7649 7650 if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p)) 7651 goto out; 7652 7653 cgrp = tg_cgrp(tg); 7654 7655 out: 7656 cgroup_get(cgrp); 7657 return cgrp; 7658 } 7659 #endif 7660 7661 /** 7662 * scx_bpf_now - Returns a high-performance monotonically non-decreasing 7663 * clock for the current CPU. The clock returned is in nanoseconds. 7664 * 7665 * It provides the following properties: 7666 * 7667 * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently 7668 * to account for execution time and track tasks' runtime properties. 7669 * Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which 7670 * eventually reads a hardware timestamp counter -- is neither performant nor 7671 * scalable. scx_bpf_now() aims to provide a high-performance clock by 7672 * using the rq clock in the scheduler core whenever possible. 7673 * 7674 * 2) High enough resolution for the BPF scheduler use cases: In most BPF 7675 * scheduler use cases, the required clock resolution is lower than the most 7676 * accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically 7677 * uses the rq clock in the scheduler core whenever it is valid. It considers 7678 * that the rq clock is valid from the time the rq clock is updated 7679 * (update_rq_clock) until the rq is unlocked (rq_unpin_lock). 7680 * 7681 * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now() 7682 * guarantees the clock never goes backward when comparing them in the same 7683 * CPU. On the other hand, when comparing clocks in different CPUs, there 7684 * is no such guarantee -- the clock can go backward. It provides a 7685 * monotonically *non-decreasing* clock so that it would provide the same 7686 * clock values in two different scx_bpf_now() calls in the same CPU 7687 * during the same period of when the rq clock is valid. 7688 */ 7689 __bpf_kfunc u64 scx_bpf_now(void) 7690 { 7691 struct rq *rq; 7692 u64 clock; 7693 7694 preempt_disable(); 7695 7696 rq = this_rq(); 7697 if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) { 7698 /* 7699 * If the rq clock is valid, use the cached rq clock. 7700 * 7701 * Note that scx_bpf_now() is re-entrant between a process 7702 * context and an interrupt context (e.g., timer interrupt). 7703 * However, we don't need to consider the race between them 7704 * because such race is not observable from a caller. 7705 */ 7706 clock = READ_ONCE(rq->scx.clock); 7707 } else { 7708 /* 7709 * Otherwise, return a fresh rq clock. 7710 * 7711 * The rq clock is updated outside of the rq lock. 7712 * In this case, keep the updated rq clock invalid so the next 7713 * kfunc call outside the rq lock gets a fresh rq clock. 7714 */ 7715 clock = sched_clock_cpu(cpu_of(rq)); 7716 } 7717 7718 preempt_enable(); 7719 7720 return clock; 7721 } 7722 7723 __bpf_kfunc_end_defs(); 7724 7725 BTF_KFUNCS_START(scx_kfunc_ids_any) 7726 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 7727 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 7728 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 7729 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) 7730 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) 7731 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) 7732 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 7733 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 7734 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 7735 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) 7736 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) 7737 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) 7738 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 7739 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 7740 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 7741 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 7742 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE) 7743 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE) 7744 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE) 7745 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle) 7746 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU) 7747 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU) 7748 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 7749 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 7750 BTF_ID_FLAGS(func, scx_bpf_cpu_rq) 7751 #ifdef CONFIG_CGROUP_SCHED 7752 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) 7753 #endif 7754 BTF_ID_FLAGS(func, scx_bpf_now) 7755 BTF_KFUNCS_END(scx_kfunc_ids_any) 7756 7757 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 7758 .owner = THIS_MODULE, 7759 .set = &scx_kfunc_ids_any, 7760 }; 7761 7762 static int __init scx_init(void) 7763 { 7764 int ret; 7765 7766 /* 7767 * kfunc registration can't be done from init_sched_ext_class() as 7768 * register_btf_kfunc_id_set() needs most of the system to be up. 7769 * 7770 * Some kfuncs are context-sensitive and can only be called from 7771 * specific SCX ops. They are grouped into BTF sets accordingly. 7772 * Unfortunately, BPF currently doesn't have a way of enforcing such 7773 * restrictions. Eventually, the verifier should be able to enforce 7774 * them. For now, register them the same and make each kfunc explicitly 7775 * check using scx_kf_allowed(). 7776 */ 7777 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7778 &scx_kfunc_set_select_cpu)) || 7779 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7780 &scx_kfunc_set_enqueue_dispatch)) || 7781 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7782 &scx_kfunc_set_dispatch)) || 7783 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7784 &scx_kfunc_set_cpu_release)) || 7785 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7786 &scx_kfunc_set_unlocked)) || 7787 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7788 &scx_kfunc_set_unlocked)) || 7789 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7790 &scx_kfunc_set_any)) || 7791 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 7792 &scx_kfunc_set_any)) || 7793 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7794 &scx_kfunc_set_any))) { 7795 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 7796 return ret; 7797 } 7798 7799 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 7800 if (ret) { 7801 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 7802 return ret; 7803 } 7804 7805 ret = register_pm_notifier(&scx_pm_notifier); 7806 if (ret) { 7807 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); 7808 return ret; 7809 } 7810 7811 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 7812 if (!scx_kset) { 7813 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 7814 return -ENOMEM; 7815 } 7816 7817 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 7818 if (ret < 0) { 7819 pr_err("sched_ext: Failed to add global attributes\n"); 7820 return ret; 7821 } 7822 7823 return 0; 7824 } 7825 __initcall(scx_init); 7826