1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 4 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 5 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 6 */ 7 #define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void))) 8 9 enum scx_consts { 10 SCX_DSP_DFL_MAX_BATCH = 32, 11 SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ, 12 13 SCX_EXIT_BT_LEN = 64, 14 SCX_EXIT_MSG_LEN = 1024, 15 SCX_EXIT_DUMP_DFL_LEN = 32768, 16 }; 17 18 enum scx_exit_kind { 19 SCX_EXIT_NONE, 20 SCX_EXIT_DONE, 21 22 SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */ 23 SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */ 24 SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */ 25 SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */ 26 27 SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */ 28 SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */ 29 SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */ 30 }; 31 32 /* 33 * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is 34 * being disabled. 35 */ 36 struct scx_exit_info { 37 /* %SCX_EXIT_* - broad category of the exit reason */ 38 enum scx_exit_kind kind; 39 40 /* exit code if gracefully exiting */ 41 s64 exit_code; 42 43 /* textual representation of the above */ 44 const char *reason; 45 46 /* backtrace if exiting due to an error */ 47 unsigned long *bt; 48 u32 bt_len; 49 50 /* informational message */ 51 char *msg; 52 53 /* debug dump */ 54 char *dump; 55 }; 56 57 /* sched_ext_ops.flags */ 58 enum scx_ops_flags { 59 /* 60 * Keep built-in idle tracking even if ops.update_idle() is implemented. 61 */ 62 SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0, 63 64 /* 65 * By default, if there are no other task to run on the CPU, ext core 66 * keeps running the current task even after its slice expires. If this 67 * flag is specified, such tasks are passed to ops.enqueue() with 68 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info. 69 */ 70 SCX_OPS_ENQ_LAST = 1LLU << 1, 71 72 /* 73 * An exiting task may schedule after PF_EXITING is set. In such cases, 74 * bpf_task_from_pid() may not be able to find the task and if the BPF 75 * scheduler depends on pid lookup for dispatching, the task will be 76 * lost leading to various issues including RCU grace period stalls. 77 * 78 * To mask this problem, by default, unhashed tasks are automatically 79 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't 80 * depend on pid lookups and wants to handle these tasks directly, the 81 * following flag can be used. 82 */ 83 SCX_OPS_ENQ_EXITING = 1LLU << 2, 84 85 /* 86 * If set, only tasks with policy set to SCHED_EXT are attached to 87 * sched_ext. If clear, SCHED_NORMAL tasks are also included. 88 */ 89 SCX_OPS_SWITCH_PARTIAL = 1LLU << 3, 90 91 SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE | 92 SCX_OPS_ENQ_LAST | 93 SCX_OPS_ENQ_EXITING | 94 SCX_OPS_SWITCH_PARTIAL, 95 }; 96 97 /* argument container for ops.init_task() */ 98 struct scx_init_task_args { 99 /* 100 * Set if ops.init_task() is being invoked on the fork path, as opposed 101 * to the scheduler transition path. 102 */ 103 bool fork; 104 }; 105 106 /* argument container for ops.exit_task() */ 107 struct scx_exit_task_args { 108 /* Whether the task exited before running on sched_ext. */ 109 bool cancelled; 110 }; 111 112 /* 113 * Informational context provided to dump operations. 114 */ 115 struct scx_dump_ctx { 116 enum scx_exit_kind kind; 117 s64 exit_code; 118 const char *reason; 119 u64 at_ns; 120 u64 at_jiffies; 121 }; 122 123 /** 124 * struct sched_ext_ops - Operation table for BPF scheduler implementation 125 * 126 * Userland can implement an arbitrary scheduling policy by implementing and 127 * loading operations in this table. 128 */ 129 struct sched_ext_ops { 130 /** 131 * select_cpu - Pick the target CPU for a task which is being woken up 132 * @p: task being woken up 133 * @prev_cpu: the cpu @p was on before sleeping 134 * @wake_flags: SCX_WAKE_* 135 * 136 * Decision made here isn't final. @p may be moved to any CPU while it 137 * is getting dispatched for execution later. However, as @p is not on 138 * the rq at this point, getting the eventual execution CPU right here 139 * saves a small bit of overhead down the line. 140 * 141 * If an idle CPU is returned, the CPU is kicked and will try to 142 * dispatch. While an explicit custom mechanism can be added, 143 * select_cpu() serves as the default way to wake up idle CPUs. 144 * 145 * @p may be dispatched directly by calling scx_bpf_dispatch(). If @p 146 * is dispatched, the ops.enqueue() callback will be skipped. Finally, 147 * if @p is dispatched to SCX_DSQ_LOCAL, it will be dispatched to the 148 * local DSQ of whatever CPU is returned by this callback. 149 */ 150 s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags); 151 152 /** 153 * enqueue - Enqueue a task on the BPF scheduler 154 * @p: task being enqueued 155 * @enq_flags: %SCX_ENQ_* 156 * 157 * @p is ready to run. Dispatch directly by calling scx_bpf_dispatch() 158 * or enqueue on the BPF scheduler. If not directly dispatched, the bpf 159 * scheduler owns @p and if it fails to dispatch @p, the task will 160 * stall. 161 * 162 * If @p was dispatched from ops.select_cpu(), this callback is 163 * skipped. 164 */ 165 void (*enqueue)(struct task_struct *p, u64 enq_flags); 166 167 /** 168 * dequeue - Remove a task from the BPF scheduler 169 * @p: task being dequeued 170 * @deq_flags: %SCX_DEQ_* 171 * 172 * Remove @p from the BPF scheduler. This is usually called to isolate 173 * the task while updating its scheduling properties (e.g. priority). 174 * 175 * The ext core keeps track of whether the BPF side owns a given task or 176 * not and can gracefully ignore spurious dispatches from BPF side, 177 * which makes it safe to not implement this method. However, depending 178 * on the scheduling logic, this can lead to confusing behaviors - e.g. 179 * scheduling position not being updated across a priority change. 180 */ 181 void (*dequeue)(struct task_struct *p, u64 deq_flags); 182 183 /** 184 * dispatch - Dispatch tasks from the BPF scheduler and/or consume DSQs 185 * @cpu: CPU to dispatch tasks for 186 * @prev: previous task being switched out 187 * 188 * Called when a CPU's local dsq is empty. The operation should dispatch 189 * one or more tasks from the BPF scheduler into the DSQs using 190 * scx_bpf_dispatch() and/or consume user DSQs into the local DSQ using 191 * scx_bpf_consume(). 192 * 193 * The maximum number of times scx_bpf_dispatch() can be called without 194 * an intervening scx_bpf_consume() is specified by 195 * ops.dispatch_max_batch. See the comments on top of the two functions 196 * for more details. 197 * 198 * When not %NULL, @prev is an SCX task with its slice depleted. If 199 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in 200 * @prev->scx.flags, it is not enqueued yet and will be enqueued after 201 * ops.dispatch() returns. To keep executing @prev, return without 202 * dispatching or consuming any tasks. Also see %SCX_OPS_ENQ_LAST. 203 */ 204 void (*dispatch)(s32 cpu, struct task_struct *prev); 205 206 /** 207 * tick - Periodic tick 208 * @p: task running currently 209 * 210 * This operation is called every 1/HZ seconds on CPUs which are 211 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an 212 * immediate dispatch cycle on the CPU. 213 */ 214 void (*tick)(struct task_struct *p); 215 216 /** 217 * yield - Yield CPU 218 * @from: yielding task 219 * @to: optional yield target task 220 * 221 * If @to is NULL, @from is yielding the CPU to other runnable tasks. 222 * The BPF scheduler should ensure that other available tasks are 223 * dispatched before the yielding task. Return value is ignored in this 224 * case. 225 * 226 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf 227 * scheduler can implement the request, return %true; otherwise, %false. 228 */ 229 bool (*yield)(struct task_struct *from, struct task_struct *to); 230 231 /** 232 * set_weight - Set task weight 233 * @p: task to set weight for 234 * @weight: new eight [1..10000] 235 * 236 * Update @p's weight to @weight. 237 */ 238 void (*set_weight)(struct task_struct *p, u32 weight); 239 240 /** 241 * set_cpumask - Set CPU affinity 242 * @p: task to set CPU affinity for 243 * @cpumask: cpumask of cpus that @p can run on 244 * 245 * Update @p's CPU affinity to @cpumask. 246 */ 247 void (*set_cpumask)(struct task_struct *p, 248 const struct cpumask *cpumask); 249 250 /** 251 * update_idle - Update the idle state of a CPU 252 * @cpu: CPU to udpate the idle state for 253 * @idle: whether entering or exiting the idle state 254 * 255 * This operation is called when @rq's CPU goes or leaves the idle 256 * state. By default, implementing this operation disables the built-in 257 * idle CPU tracking and the following helpers become unavailable: 258 * 259 * - scx_bpf_select_cpu_dfl() 260 * - scx_bpf_test_and_clear_cpu_idle() 261 * - scx_bpf_pick_idle_cpu() 262 * 263 * The user also must implement ops.select_cpu() as the default 264 * implementation relies on scx_bpf_select_cpu_dfl(). 265 * 266 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle 267 * tracking. 268 */ 269 void (*update_idle)(s32 cpu, bool idle); 270 271 /** 272 * init_task - Initialize a task to run in a BPF scheduler 273 * @p: task to initialize for BPF scheduling 274 * @args: init arguments, see the struct definition 275 * 276 * Either we're loading a BPF scheduler or a new task is being forked. 277 * Initialize @p for BPF scheduling. This operation may block and can 278 * be used for allocations, and is called exactly once for a task. 279 * 280 * Return 0 for success, -errno for failure. An error return while 281 * loading will abort loading of the BPF scheduler. During a fork, it 282 * will abort that specific fork. 283 */ 284 s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args); 285 286 /** 287 * exit_task - Exit a previously-running task from the system 288 * @p: task to exit 289 * 290 * @p is exiting or the BPF scheduler is being unloaded. Perform any 291 * necessary cleanup for @p. 292 */ 293 void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args); 294 295 /** 296 * enable - Enable BPF scheduling for a task 297 * @p: task to enable BPF scheduling for 298 * 299 * Enable @p for BPF scheduling. enable() is called on @p any time it 300 * enters SCX, and is always paired with a matching disable(). 301 */ 302 void (*enable)(struct task_struct *p); 303 304 /** 305 * disable - Disable BPF scheduling for a task 306 * @p: task to disable BPF scheduling for 307 * 308 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded. 309 * Disable BPF scheduling for @p. A disable() call is always matched 310 * with a prior enable() call. 311 */ 312 void (*disable)(struct task_struct *p); 313 314 /** 315 * dump - Dump BPF scheduler state on error 316 * @ctx: debug dump context 317 * 318 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump. 319 */ 320 void (*dump)(struct scx_dump_ctx *ctx); 321 322 /** 323 * dump_cpu - Dump BPF scheduler state for a CPU on error 324 * @ctx: debug dump context 325 * @cpu: CPU to generate debug dump for 326 * @idle: @cpu is currently idle without any runnable tasks 327 * 328 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 329 * @cpu. If @idle is %true and this operation doesn't produce any 330 * output, @cpu is skipped for dump. 331 */ 332 void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle); 333 334 /** 335 * dump_task - Dump BPF scheduler state for a runnable task on error 336 * @ctx: debug dump context 337 * @p: runnable task to generate debug dump for 338 * 339 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 340 * @p. 341 */ 342 void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p); 343 344 /* 345 * All online ops must come before ops.init(). 346 */ 347 348 /** 349 * init - Initialize the BPF scheduler 350 */ 351 s32 (*init)(void); 352 353 /** 354 * exit - Clean up after the BPF scheduler 355 * @info: Exit info 356 */ 357 void (*exit)(struct scx_exit_info *info); 358 359 /** 360 * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch 361 */ 362 u32 dispatch_max_batch; 363 364 /** 365 * flags - %SCX_OPS_* flags 366 */ 367 u64 flags; 368 369 /** 370 * timeout_ms - The maximum amount of time, in milliseconds, that a 371 * runnable task should be able to wait before being scheduled. The 372 * maximum timeout may not exceed the default timeout of 30 seconds. 373 * 374 * Defaults to the maximum allowed timeout value of 30 seconds. 375 */ 376 u32 timeout_ms; 377 378 /** 379 * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default 380 * value of 32768 is used. 381 */ 382 u32 exit_dump_len; 383 384 /** 385 * name - BPF scheduler's name 386 * 387 * Must be a non-zero valid BPF object name including only isalnum(), 388 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the 389 * BPF scheduler is enabled. 390 */ 391 char name[SCX_OPS_NAME_LEN]; 392 }; 393 394 enum scx_opi { 395 SCX_OPI_BEGIN = 0, 396 SCX_OPI_NORMAL_BEGIN = 0, 397 SCX_OPI_NORMAL_END = SCX_OP_IDX(init), 398 SCX_OPI_END = SCX_OP_IDX(init), 399 }; 400 401 enum scx_wake_flags { 402 /* expose select WF_* flags as enums */ 403 SCX_WAKE_FORK = WF_FORK, 404 SCX_WAKE_TTWU = WF_TTWU, 405 SCX_WAKE_SYNC = WF_SYNC, 406 }; 407 408 enum scx_enq_flags { 409 /* expose select ENQUEUE_* flags as enums */ 410 SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP, 411 SCX_ENQ_HEAD = ENQUEUE_HEAD, 412 413 /* high 32bits are SCX specific */ 414 415 /* 416 * Set the following to trigger preemption when calling 417 * scx_bpf_dispatch() with a local dsq as the target. The slice of the 418 * current task is cleared to zero and the CPU is kicked into the 419 * scheduling path. Implies %SCX_ENQ_HEAD. 420 */ 421 SCX_ENQ_PREEMPT = 1LLU << 32, 422 423 /* 424 * The task being enqueued is the only task available for the cpu. By 425 * default, ext core keeps executing such tasks but when 426 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the 427 * %SCX_ENQ_LAST flag set. 428 * 429 * If the BPF scheduler wants to continue executing the task, 430 * ops.enqueue() should dispatch the task to %SCX_DSQ_LOCAL immediately. 431 * If the task gets queued on a different dsq or the BPF side, the BPF 432 * scheduler is responsible for triggering a follow-up scheduling event. 433 * Otherwise, Execution may stall. 434 */ 435 SCX_ENQ_LAST = 1LLU << 41, 436 437 /* high 8 bits are internal */ 438 __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56, 439 440 SCX_ENQ_CLEAR_OPSS = 1LLU << 56, 441 }; 442 443 enum scx_deq_flags { 444 /* expose select DEQUEUE_* flags as enums */ 445 SCX_DEQ_SLEEP = DEQUEUE_SLEEP, 446 }; 447 448 enum scx_pick_idle_cpu_flags { 449 SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */ 450 }; 451 452 enum scx_kick_flags { 453 /* 454 * Kick the target CPU if idle. Guarantees that the target CPU goes 455 * through at least one full scheduling cycle before going idle. If the 456 * target CPU can be determined to be currently not idle and going to go 457 * through a scheduling cycle before going idle, noop. 458 */ 459 SCX_KICK_IDLE = 1LLU << 0, 460 461 /* 462 * Preempt the current task and execute the dispatch path. If the 463 * current task of the target CPU is an SCX task, its ->scx.slice is 464 * cleared to zero before the scheduling path is invoked so that the 465 * task expires and the dispatch path is invoked. 466 */ 467 SCX_KICK_PREEMPT = 1LLU << 1, 468 }; 469 470 enum scx_ops_enable_state { 471 SCX_OPS_PREPPING, 472 SCX_OPS_ENABLING, 473 SCX_OPS_ENABLED, 474 SCX_OPS_DISABLING, 475 SCX_OPS_DISABLED, 476 }; 477 478 static const char *scx_ops_enable_state_str[] = { 479 [SCX_OPS_PREPPING] = "prepping", 480 [SCX_OPS_ENABLING] = "enabling", 481 [SCX_OPS_ENABLED] = "enabled", 482 [SCX_OPS_DISABLING] = "disabling", 483 [SCX_OPS_DISABLED] = "disabled", 484 }; 485 486 /* 487 * sched_ext_entity->ops_state 488 * 489 * Used to track the task ownership between the SCX core and the BPF scheduler. 490 * State transitions look as follows: 491 * 492 * NONE -> QUEUEING -> QUEUED -> DISPATCHING 493 * ^ | | 494 * | v v 495 * \-------------------------------/ 496 * 497 * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call 498 * sites for explanations on the conditions being waited upon and why they are 499 * safe. Transitions out of them into NONE or QUEUED must store_release and the 500 * waiters should load_acquire. 501 * 502 * Tracking scx_ops_state enables sched_ext core to reliably determine whether 503 * any given task can be dispatched by the BPF scheduler at all times and thus 504 * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler 505 * to try to dispatch any task anytime regardless of its state as the SCX core 506 * can safely reject invalid dispatches. 507 */ 508 enum scx_ops_state { 509 SCX_OPSS_NONE, /* owned by the SCX core */ 510 SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */ 511 SCX_OPSS_QUEUED, /* owned by the BPF scheduler */ 512 SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */ 513 514 /* 515 * QSEQ brands each QUEUED instance so that, when dispatch races 516 * dequeue/requeue, the dispatcher can tell whether it still has a claim 517 * on the task being dispatched. 518 * 519 * As some 32bit archs can't do 64bit store_release/load_acquire, 520 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on 521 * 32bit machines. The dispatch race window QSEQ protects is very narrow 522 * and runs with IRQ disabled. 30 bits should be sufficient. 523 */ 524 SCX_OPSS_QSEQ_SHIFT = 2, 525 }; 526 527 /* Use macros to ensure that the type is unsigned long for the masks */ 528 #define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1) 529 #define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK) 530 531 /* 532 * During exit, a task may schedule after losing its PIDs. When disabling the 533 * BPF scheduler, we need to be able to iterate tasks in every state to 534 * guarantee system safety. Maintain a dedicated task list which contains every 535 * task between its fork and eventual free. 536 */ 537 static DEFINE_SPINLOCK(scx_tasks_lock); 538 static LIST_HEAD(scx_tasks); 539 540 /* ops enable/disable */ 541 static struct kthread_worker *scx_ops_helper; 542 static DEFINE_MUTEX(scx_ops_enable_mutex); 543 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled); 544 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 545 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED); 546 static atomic_t scx_ops_bypass_depth = ATOMIC_INIT(0); 547 static bool scx_switching_all; 548 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 549 550 static struct sched_ext_ops scx_ops; 551 static bool scx_warned_zero_slice; 552 553 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last); 554 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting); 555 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled); 556 557 struct static_key_false scx_has_op[SCX_OPI_END] = 558 { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT }; 559 560 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE); 561 static struct scx_exit_info *scx_exit_info; 562 563 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 564 565 /* 566 * The maximum amount of time in jiffies that a task may be runnable without 567 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 568 * scx_ops_error(). 569 */ 570 static unsigned long scx_watchdog_timeout; 571 572 /* 573 * The last time the delayed work was run. This delayed work relies on 574 * ksoftirqd being able to run to service timer interrupts, so it's possible 575 * that this work itself could get wedged. To account for this, we check that 576 * it's not stalled in the timer tick, and trigger an error if it is. 577 */ 578 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 579 580 static struct delayed_work scx_watchdog_work; 581 582 /* idle tracking */ 583 #ifdef CONFIG_SMP 584 #ifdef CONFIG_CPUMASK_OFFSTACK 585 #define CL_ALIGNED_IF_ONSTACK 586 #else 587 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp 588 #endif 589 590 static struct { 591 cpumask_var_t cpu; 592 cpumask_var_t smt; 593 } idle_masks CL_ALIGNED_IF_ONSTACK; 594 595 #endif /* CONFIG_SMP */ 596 597 /* 598 * Direct dispatch marker. 599 * 600 * Non-NULL values are used for direct dispatch from enqueue path. A valid 601 * pointer points to the task currently being enqueued. An ERR_PTR value is used 602 * to indicate that direct dispatch has already happened. 603 */ 604 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 605 606 /* dispatch queues */ 607 static struct scx_dispatch_q __cacheline_aligned_in_smp scx_dsq_global; 608 609 static const struct rhashtable_params dsq_hash_params = { 610 .key_len = 8, 611 .key_offset = offsetof(struct scx_dispatch_q, id), 612 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 613 }; 614 615 static struct rhashtable dsq_hash; 616 static LLIST_HEAD(dsqs_to_free); 617 618 /* dispatch buf */ 619 struct scx_dsp_buf_ent { 620 struct task_struct *task; 621 unsigned long qseq; 622 u64 dsq_id; 623 u64 enq_flags; 624 }; 625 626 static u32 scx_dsp_max_batch; 627 628 struct scx_dsp_ctx { 629 struct rq *rq; 630 struct rq_flags *rf; 631 u32 cursor; 632 u32 nr_tasks; 633 struct scx_dsp_buf_ent buf[]; 634 }; 635 636 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 637 638 /* string formatting from BPF */ 639 struct scx_bstr_buf { 640 u64 data[MAX_BPRINTF_VARARGS]; 641 char line[SCX_EXIT_MSG_LEN]; 642 }; 643 644 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 645 static struct scx_bstr_buf scx_exit_bstr_buf; 646 647 /* ops debug dump */ 648 struct scx_dump_data { 649 s32 cpu; 650 bool first; 651 s32 cursor; 652 struct seq_buf *s; 653 const char *prefix; 654 struct scx_bstr_buf buf; 655 }; 656 657 struct scx_dump_data scx_dump_data = { 658 .cpu = -1, 659 }; 660 661 /* /sys/kernel/sched_ext interface */ 662 static struct kset *scx_kset; 663 static struct kobject *scx_root_kobj; 664 665 #define CREATE_TRACE_POINTS 666 #include <trace/events/sched_ext.h> 667 668 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 669 s64 exit_code, 670 const char *fmt, ...); 671 672 #define scx_ops_error_kind(err, fmt, args...) \ 673 scx_ops_exit_kind((err), 0, fmt, ##args) 674 675 #define scx_ops_exit(code, fmt, args...) \ 676 scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args) 677 678 #define scx_ops_error(fmt, args...) \ 679 scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args) 680 681 #define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)]) 682 683 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 684 { 685 if (time_after(at, now)) 686 return jiffies_to_msecs(at - now); 687 else 688 return -(long)jiffies_to_msecs(now - at); 689 } 690 691 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 692 static u32 higher_bits(u32 flags) 693 { 694 return ~((1 << fls(flags)) - 1); 695 } 696 697 /* return the mask with only the highest bit set */ 698 static u32 highest_bit(u32 flags) 699 { 700 int bit = fls(flags); 701 return ((u64)1 << bit) >> 1; 702 } 703 704 /* 705 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 706 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 707 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 708 * whether it's running from an allowed context. 709 * 710 * @mask is constant, always inline to cull the mask calculations. 711 */ 712 static __always_inline void scx_kf_allow(u32 mask) 713 { 714 /* nesting is allowed only in increasing scx_kf_mask order */ 715 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 716 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 717 current->scx.kf_mask, mask); 718 current->scx.kf_mask |= mask; 719 barrier(); 720 } 721 722 static void scx_kf_disallow(u32 mask) 723 { 724 barrier(); 725 current->scx.kf_mask &= ~mask; 726 } 727 728 #define SCX_CALL_OP(mask, op, args...) \ 729 do { \ 730 if (mask) { \ 731 scx_kf_allow(mask); \ 732 scx_ops.op(args); \ 733 scx_kf_disallow(mask); \ 734 } else { \ 735 scx_ops.op(args); \ 736 } \ 737 } while (0) 738 739 #define SCX_CALL_OP_RET(mask, op, args...) \ 740 ({ \ 741 __typeof__(scx_ops.op(args)) __ret; \ 742 if (mask) { \ 743 scx_kf_allow(mask); \ 744 __ret = scx_ops.op(args); \ 745 scx_kf_disallow(mask); \ 746 } else { \ 747 __ret = scx_ops.op(args); \ 748 } \ 749 __ret; \ 750 }) 751 752 /* @mask is constant, always inline to cull unnecessary branches */ 753 static __always_inline bool scx_kf_allowed(u32 mask) 754 { 755 if (unlikely(!(current->scx.kf_mask & mask))) { 756 scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x", 757 mask, current->scx.kf_mask); 758 return false; 759 } 760 761 if (unlikely((mask & SCX_KF_SLEEPABLE) && in_interrupt())) { 762 scx_ops_error("sleepable kfunc called from non-sleepable context"); 763 return false; 764 } 765 766 /* 767 * Enforce nesting boundaries. e.g. A kfunc which can be called from 768 * DISPATCH must not be called if we're running DEQUEUE which is nested 769 * inside ops.dispatch(). We don't need to check the SCX_KF_SLEEPABLE 770 * boundary thanks to the above in_interrupt() check. 771 */ 772 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 773 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 774 scx_ops_error("dispatch kfunc called from a nested operation"); 775 return false; 776 } 777 778 return true; 779 } 780 781 782 /* 783 * SCX task iterator. 784 */ 785 struct scx_task_iter { 786 struct sched_ext_entity cursor; 787 struct task_struct *locked; 788 struct rq *rq; 789 struct rq_flags rf; 790 }; 791 792 /** 793 * scx_task_iter_init - Initialize a task iterator 794 * @iter: iterator to init 795 * 796 * Initialize @iter. Must be called with scx_tasks_lock held. Once initialized, 797 * @iter must eventually be exited with scx_task_iter_exit(). 798 * 799 * scx_tasks_lock may be released between this and the first next() call or 800 * between any two next() calls. If scx_tasks_lock is released between two 801 * next() calls, the caller is responsible for ensuring that the task being 802 * iterated remains accessible either through RCU read lock or obtaining a 803 * reference count. 804 * 805 * All tasks which existed when the iteration started are guaranteed to be 806 * visited as long as they still exist. 807 */ 808 static void scx_task_iter_init(struct scx_task_iter *iter) 809 { 810 lockdep_assert_held(&scx_tasks_lock); 811 812 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 813 list_add(&iter->cursor.tasks_node, &scx_tasks); 814 iter->locked = NULL; 815 } 816 817 /** 818 * scx_task_iter_rq_unlock - Unlock rq locked by a task iterator 819 * @iter: iterator to unlock rq for 820 * 821 * If @iter is in the middle of a locked iteration, it may be locking the rq of 822 * the task currently being visited. Unlock the rq if so. This function can be 823 * safely called anytime during an iteration. 824 * 825 * Returns %true if the rq @iter was locking is unlocked. %false if @iter was 826 * not locking an rq. 827 */ 828 static bool scx_task_iter_rq_unlock(struct scx_task_iter *iter) 829 { 830 if (iter->locked) { 831 task_rq_unlock(iter->rq, iter->locked, &iter->rf); 832 iter->locked = NULL; 833 return true; 834 } else { 835 return false; 836 } 837 } 838 839 /** 840 * scx_task_iter_exit - Exit a task iterator 841 * @iter: iterator to exit 842 * 843 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held. 844 * If the iterator holds a task's rq lock, that rq lock is released. See 845 * scx_task_iter_init() for details. 846 */ 847 static void scx_task_iter_exit(struct scx_task_iter *iter) 848 { 849 lockdep_assert_held(&scx_tasks_lock); 850 851 scx_task_iter_rq_unlock(iter); 852 list_del_init(&iter->cursor.tasks_node); 853 } 854 855 /** 856 * scx_task_iter_next - Next task 857 * @iter: iterator to walk 858 * 859 * Visit the next task. See scx_task_iter_init() for details. 860 */ 861 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 862 { 863 struct list_head *cursor = &iter->cursor.tasks_node; 864 struct sched_ext_entity *pos; 865 866 lockdep_assert_held(&scx_tasks_lock); 867 868 list_for_each_entry(pos, cursor, tasks_node) { 869 if (&pos->tasks_node == &scx_tasks) 870 return NULL; 871 if (!(pos->flags & SCX_TASK_CURSOR)) { 872 list_move(cursor, &pos->tasks_node); 873 return container_of(pos, struct task_struct, scx); 874 } 875 } 876 877 /* can't happen, should always terminate at scx_tasks above */ 878 BUG(); 879 } 880 881 /** 882 * scx_task_iter_next_locked - Next non-idle task with its rq locked 883 * @iter: iterator to walk 884 * @include_dead: Whether we should include dead tasks in the iteration 885 * 886 * Visit the non-idle task with its rq lock held. Allows callers to specify 887 * whether they would like to filter out dead tasks. See scx_task_iter_init() 888 * for details. 889 */ 890 static struct task_struct * 891 scx_task_iter_next_locked(struct scx_task_iter *iter, bool include_dead) 892 { 893 struct task_struct *p; 894 retry: 895 scx_task_iter_rq_unlock(iter); 896 897 while ((p = scx_task_iter_next(iter))) { 898 /* 899 * is_idle_task() tests %PF_IDLE which may not be set for CPUs 900 * which haven't yet been onlined. Test sched_class directly. 901 */ 902 if (p->sched_class != &idle_sched_class) 903 break; 904 } 905 if (!p) 906 return NULL; 907 908 iter->rq = task_rq_lock(p, &iter->rf); 909 iter->locked = p; 910 911 /* 912 * If we see %TASK_DEAD, @p already disabled preemption, is about to do 913 * the final __schedule(), won't ever need to be scheduled again and can 914 * thus be safely ignored. If we don't see %TASK_DEAD, @p can't enter 915 * the final __schedle() while we're locking its rq and thus will stay 916 * alive until the rq is unlocked. 917 */ 918 if (!include_dead && READ_ONCE(p->__state) == TASK_DEAD) 919 goto retry; 920 921 return p; 922 } 923 924 static enum scx_ops_enable_state scx_ops_enable_state(void) 925 { 926 return atomic_read(&scx_ops_enable_state_var); 927 } 928 929 static enum scx_ops_enable_state 930 scx_ops_set_enable_state(enum scx_ops_enable_state to) 931 { 932 return atomic_xchg(&scx_ops_enable_state_var, to); 933 } 934 935 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to, 936 enum scx_ops_enable_state from) 937 { 938 int from_v = from; 939 940 return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to); 941 } 942 943 static bool scx_ops_bypassing(void) 944 { 945 return unlikely(atomic_read(&scx_ops_bypass_depth)); 946 } 947 948 /** 949 * wait_ops_state - Busy-wait the specified ops state to end 950 * @p: target task 951 * @opss: state to wait the end of 952 * 953 * Busy-wait for @p to transition out of @opss. This can only be used when the 954 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 955 * has load_acquire semantics to ensure that the caller can see the updates made 956 * in the enqueueing and dispatching paths. 957 */ 958 static void wait_ops_state(struct task_struct *p, unsigned long opss) 959 { 960 do { 961 cpu_relax(); 962 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 963 } 964 965 /** 966 * ops_cpu_valid - Verify a cpu number 967 * @cpu: cpu number which came from a BPF ops 968 * @where: extra information reported on error 969 * 970 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 971 * Verify that it is in range and one of the possible cpus. If invalid, trigger 972 * an ops error. 973 */ 974 static bool ops_cpu_valid(s32 cpu, const char *where) 975 { 976 if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) { 977 return true; 978 } else { 979 scx_ops_error("invalid CPU %d%s%s", cpu, 980 where ? " " : "", where ?: ""); 981 return false; 982 } 983 } 984 985 /** 986 * ops_sanitize_err - Sanitize a -errno value 987 * @ops_name: operation to blame on failure 988 * @err: -errno value to sanitize 989 * 990 * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return 991 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 992 * cause misbehaviors. For an example, a large negative return from 993 * ops.init_task() triggers an oops when passed up the call chain because the 994 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 995 * handled as a pointer. 996 */ 997 static int ops_sanitize_err(const char *ops_name, s32 err) 998 { 999 if (err < 0 && err >= -MAX_ERRNO) 1000 return err; 1001 1002 scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err); 1003 return -EPROTO; 1004 } 1005 1006 static void update_curr_scx(struct rq *rq) 1007 { 1008 struct task_struct *curr = rq->curr; 1009 u64 now = rq_clock_task(rq); 1010 u64 delta_exec; 1011 1012 if (time_before_eq64(now, curr->se.exec_start)) 1013 return; 1014 1015 delta_exec = now - curr->se.exec_start; 1016 curr->se.exec_start = now; 1017 curr->se.sum_exec_runtime += delta_exec; 1018 account_group_exec_runtime(curr, delta_exec); 1019 cgroup_account_cputime(curr, delta_exec); 1020 1021 curr->scx.slice -= min(curr->scx.slice, delta_exec); 1022 } 1023 1024 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 1025 { 1026 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 1027 WRITE_ONCE(dsq->nr, dsq->nr + delta); 1028 } 1029 1030 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p, 1031 u64 enq_flags) 1032 { 1033 bool is_local = dsq->id == SCX_DSQ_LOCAL; 1034 1035 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_node)); 1036 1037 if (!is_local) { 1038 raw_spin_lock(&dsq->lock); 1039 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 1040 scx_ops_error("attempting to dispatch to a destroyed dsq"); 1041 /* fall back to the global dsq */ 1042 raw_spin_unlock(&dsq->lock); 1043 dsq = &scx_dsq_global; 1044 raw_spin_lock(&dsq->lock); 1045 } 1046 } 1047 1048 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 1049 list_add(&p->scx.dsq_node, &dsq->list); 1050 else 1051 list_add_tail(&p->scx.dsq_node, &dsq->list); 1052 1053 dsq_mod_nr(dsq, 1); 1054 p->scx.dsq = dsq; 1055 1056 /* 1057 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 1058 * direct dispatch path, but we clear them here because the direct 1059 * dispatch verdict may be overridden on the enqueue path during e.g. 1060 * bypass. 1061 */ 1062 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 1063 p->scx.ddsp_enq_flags = 0; 1064 1065 /* 1066 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 1067 * match waiters' load_acquire. 1068 */ 1069 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 1070 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1071 1072 if (is_local) { 1073 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 1074 bool preempt = false; 1075 1076 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 1077 rq->curr->sched_class == &ext_sched_class) { 1078 rq->curr->scx.slice = 0; 1079 preempt = true; 1080 } 1081 1082 if (preempt || sched_class_above(&ext_sched_class, 1083 rq->curr->sched_class)) 1084 resched_curr(rq); 1085 } else { 1086 raw_spin_unlock(&dsq->lock); 1087 } 1088 } 1089 1090 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 1091 { 1092 struct scx_dispatch_q *dsq = p->scx.dsq; 1093 bool is_local = dsq == &rq->scx.local_dsq; 1094 1095 if (!dsq) { 1096 WARN_ON_ONCE(!list_empty(&p->scx.dsq_node)); 1097 /* 1098 * When dispatching directly from the BPF scheduler to a local 1099 * DSQ, the task isn't associated with any DSQ but 1100 * @p->scx.holding_cpu may be set under the protection of 1101 * %SCX_OPSS_DISPATCHING. 1102 */ 1103 if (p->scx.holding_cpu >= 0) 1104 p->scx.holding_cpu = -1; 1105 return; 1106 } 1107 1108 if (!is_local) 1109 raw_spin_lock(&dsq->lock); 1110 1111 /* 1112 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_node 1113 * can't change underneath us. 1114 */ 1115 if (p->scx.holding_cpu < 0) { 1116 /* @p must still be on @dsq, dequeue */ 1117 WARN_ON_ONCE(list_empty(&p->scx.dsq_node)); 1118 list_del_init(&p->scx.dsq_node); 1119 dsq_mod_nr(dsq, -1); 1120 } else { 1121 /* 1122 * We're racing against dispatch_to_local_dsq() which already 1123 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 1124 * holding_cpu which tells dispatch_to_local_dsq() that it lost 1125 * the race. 1126 */ 1127 WARN_ON_ONCE(!list_empty(&p->scx.dsq_node)); 1128 p->scx.holding_cpu = -1; 1129 } 1130 p->scx.dsq = NULL; 1131 1132 if (!is_local) 1133 raw_spin_unlock(&dsq->lock); 1134 } 1135 1136 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id) 1137 { 1138 return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params); 1139 } 1140 1141 static struct scx_dispatch_q *find_non_local_dsq(u64 dsq_id) 1142 { 1143 lockdep_assert(rcu_read_lock_any_held()); 1144 1145 if (dsq_id == SCX_DSQ_GLOBAL) 1146 return &scx_dsq_global; 1147 else 1148 return find_user_dsq(dsq_id); 1149 } 1150 1151 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id, 1152 struct task_struct *p) 1153 { 1154 struct scx_dispatch_q *dsq; 1155 1156 if (dsq_id == SCX_DSQ_LOCAL) 1157 return &rq->scx.local_dsq; 1158 1159 dsq = find_non_local_dsq(dsq_id); 1160 if (unlikely(!dsq)) { 1161 scx_ops_error("non-existent DSQ 0x%llx for %s[%d]", 1162 dsq_id, p->comm, p->pid); 1163 return &scx_dsq_global; 1164 } 1165 1166 return dsq; 1167 } 1168 1169 static void mark_direct_dispatch(struct task_struct *ddsp_task, 1170 struct task_struct *p, u64 dsq_id, 1171 u64 enq_flags) 1172 { 1173 /* 1174 * Mark that dispatch already happened from ops.select_cpu() or 1175 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 1176 * which can never match a valid task pointer. 1177 */ 1178 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 1179 1180 /* @p must match the task on the enqueue path */ 1181 if (unlikely(p != ddsp_task)) { 1182 if (IS_ERR(ddsp_task)) 1183 scx_ops_error("%s[%d] already direct-dispatched", 1184 p->comm, p->pid); 1185 else 1186 scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 1187 ddsp_task->comm, ddsp_task->pid, 1188 p->comm, p->pid); 1189 return; 1190 } 1191 1192 /* 1193 * %SCX_DSQ_LOCAL_ON is not supported during direct dispatch because 1194 * dispatching to the local DSQ of a different CPU requires unlocking 1195 * the current rq which isn't allowed in the enqueue path. Use 1196 * ops.select_cpu() to be on the target CPU and then %SCX_DSQ_LOCAL. 1197 */ 1198 if (unlikely((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON)) { 1199 scx_ops_error("SCX_DSQ_LOCAL_ON can't be used for direct-dispatch"); 1200 return; 1201 } 1202 1203 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 1204 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 1205 1206 p->scx.ddsp_dsq_id = dsq_id; 1207 p->scx.ddsp_enq_flags = enq_flags; 1208 } 1209 1210 static void direct_dispatch(struct task_struct *p, u64 enq_flags) 1211 { 1212 struct scx_dispatch_q *dsq; 1213 1214 enq_flags |= (p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 1215 dsq = find_dsq_for_dispatch(task_rq(p), p->scx.ddsp_dsq_id, p); 1216 dispatch_enqueue(dsq, p, enq_flags); 1217 } 1218 1219 static bool scx_rq_online(struct rq *rq) 1220 { 1221 #ifdef CONFIG_SMP 1222 return likely(rq->online); 1223 #else 1224 return true; 1225 #endif 1226 } 1227 1228 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 1229 int sticky_cpu) 1230 { 1231 struct task_struct **ddsp_taskp; 1232 unsigned long qseq; 1233 1234 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 1235 1236 /* rq migration */ 1237 if (sticky_cpu == cpu_of(rq)) 1238 goto local_norefill; 1239 1240 if (!scx_rq_online(rq)) 1241 goto local; 1242 1243 if (scx_ops_bypassing()) { 1244 if (enq_flags & SCX_ENQ_LAST) 1245 goto local; 1246 else 1247 goto global; 1248 } 1249 1250 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1251 goto direct; 1252 1253 /* see %SCX_OPS_ENQ_EXITING */ 1254 if (!static_branch_unlikely(&scx_ops_enq_exiting) && 1255 unlikely(p->flags & PF_EXITING)) 1256 goto local; 1257 1258 /* see %SCX_OPS_ENQ_LAST */ 1259 if (!static_branch_unlikely(&scx_ops_enq_last) && 1260 (enq_flags & SCX_ENQ_LAST)) 1261 goto local; 1262 1263 if (!SCX_HAS_OP(enqueue)) 1264 goto global; 1265 1266 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 1267 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 1268 1269 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1270 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 1271 1272 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 1273 WARN_ON_ONCE(*ddsp_taskp); 1274 *ddsp_taskp = p; 1275 1276 SCX_CALL_OP(SCX_KF_ENQUEUE, enqueue, p, enq_flags); 1277 1278 *ddsp_taskp = NULL; 1279 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1280 goto direct; 1281 1282 /* 1283 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 1284 * dequeue may be waiting. The store_release matches their load_acquire. 1285 */ 1286 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 1287 return; 1288 1289 direct: 1290 direct_dispatch(p, enq_flags); 1291 return; 1292 1293 local: 1294 p->scx.slice = SCX_SLICE_DFL; 1295 local_norefill: 1296 dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags); 1297 return; 1298 1299 global: 1300 p->scx.slice = SCX_SLICE_DFL; 1301 dispatch_enqueue(&scx_dsq_global, p, enq_flags); 1302 } 1303 1304 static bool task_runnable(const struct task_struct *p) 1305 { 1306 return !list_empty(&p->scx.runnable_node); 1307 } 1308 1309 static void set_task_runnable(struct rq *rq, struct task_struct *p) 1310 { 1311 lockdep_assert_rq_held(rq); 1312 1313 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 1314 p->scx.runnable_at = jiffies; 1315 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 1316 } 1317 1318 /* 1319 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being 1320 * appened to the runnable_list. 1321 */ 1322 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 1323 } 1324 1325 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 1326 { 1327 list_del_init(&p->scx.runnable_node); 1328 if (reset_runnable_at) 1329 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 1330 } 1331 1332 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 1333 { 1334 int sticky_cpu = p->scx.sticky_cpu; 1335 1336 enq_flags |= rq->scx.extra_enq_flags; 1337 1338 if (sticky_cpu >= 0) 1339 p->scx.sticky_cpu = -1; 1340 1341 /* 1342 * Restoring a running task will be immediately followed by 1343 * set_next_task_scx() which expects the task to not be on the BPF 1344 * scheduler as tasks can only start running through local DSQs. Force 1345 * direct-dispatch into the local DSQ by setting the sticky_cpu. 1346 */ 1347 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 1348 sticky_cpu = cpu_of(rq); 1349 1350 if (p->scx.flags & SCX_TASK_QUEUED) { 1351 WARN_ON_ONCE(!task_runnable(p)); 1352 return; 1353 } 1354 1355 set_task_runnable(rq, p); 1356 p->scx.flags |= SCX_TASK_QUEUED; 1357 rq->scx.nr_running++; 1358 add_nr_running(rq, 1); 1359 1360 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 1361 } 1362 1363 static void ops_dequeue(struct task_struct *p, u64 deq_flags) 1364 { 1365 unsigned long opss; 1366 1367 /* dequeue is always temporary, don't reset runnable_at */ 1368 clr_task_runnable(p, false); 1369 1370 /* acquire ensures that we see the preceding updates on QUEUED */ 1371 opss = atomic_long_read_acquire(&p->scx.ops_state); 1372 1373 switch (opss & SCX_OPSS_STATE_MASK) { 1374 case SCX_OPSS_NONE: 1375 break; 1376 case SCX_OPSS_QUEUEING: 1377 /* 1378 * QUEUEING is started and finished while holding @p's rq lock. 1379 * As we're holding the rq lock now, we shouldn't see QUEUEING. 1380 */ 1381 BUG(); 1382 case SCX_OPSS_QUEUED: 1383 if (SCX_HAS_OP(dequeue)) 1384 SCX_CALL_OP(SCX_KF_REST, dequeue, p, deq_flags); 1385 1386 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 1387 SCX_OPSS_NONE)) 1388 break; 1389 fallthrough; 1390 case SCX_OPSS_DISPATCHING: 1391 /* 1392 * If @p is being dispatched from the BPF scheduler to a DSQ, 1393 * wait for the transfer to complete so that @p doesn't get 1394 * added to its DSQ after dequeueing is complete. 1395 * 1396 * As we're waiting on DISPATCHING with the rq locked, the 1397 * dispatching side shouldn't try to lock the rq while 1398 * DISPATCHING is set. See dispatch_to_local_dsq(). 1399 * 1400 * DISPATCHING shouldn't have qseq set and control can reach 1401 * here with NONE @opss from the above QUEUED case block. 1402 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 1403 */ 1404 wait_ops_state(p, SCX_OPSS_DISPATCHING); 1405 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1406 break; 1407 } 1408 } 1409 1410 static void dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 1411 { 1412 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 1413 WARN_ON_ONCE(task_runnable(p)); 1414 return; 1415 } 1416 1417 ops_dequeue(p, deq_flags); 1418 1419 if (deq_flags & SCX_DEQ_SLEEP) 1420 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 1421 else 1422 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 1423 1424 p->scx.flags &= ~SCX_TASK_QUEUED; 1425 rq->scx.nr_running--; 1426 sub_nr_running(rq, 1); 1427 1428 dispatch_dequeue(rq, p); 1429 } 1430 1431 static void yield_task_scx(struct rq *rq) 1432 { 1433 struct task_struct *p = rq->curr; 1434 1435 if (SCX_HAS_OP(yield)) 1436 SCX_CALL_OP_RET(SCX_KF_REST, yield, p, NULL); 1437 else 1438 p->scx.slice = 0; 1439 } 1440 1441 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 1442 { 1443 struct task_struct *from = rq->curr; 1444 1445 if (SCX_HAS_OP(yield)) 1446 return SCX_CALL_OP_RET(SCX_KF_REST, yield, from, to); 1447 else 1448 return false; 1449 } 1450 1451 #ifdef CONFIG_SMP 1452 /** 1453 * move_task_to_local_dsq - Move a task from a different rq to a local DSQ 1454 * @rq: rq to move the task into, currently locked 1455 * @p: task to move 1456 * @enq_flags: %SCX_ENQ_* 1457 * 1458 * Move @p which is currently on a different rq to @rq's local DSQ. The caller 1459 * must: 1460 * 1461 * 1. Start with exclusive access to @p either through its DSQ lock or 1462 * %SCX_OPSS_DISPATCHING flag. 1463 * 1464 * 2. Set @p->scx.holding_cpu to raw_smp_processor_id(). 1465 * 1466 * 3. Remember task_rq(@p). Release the exclusive access so that we don't 1467 * deadlock with dequeue. 1468 * 1469 * 4. Lock @rq and the task_rq from #3. 1470 * 1471 * 5. Call this function. 1472 * 1473 * Returns %true if @p was successfully moved. %false after racing dequeue and 1474 * losing. 1475 */ 1476 static bool move_task_to_local_dsq(struct rq *rq, struct task_struct *p, 1477 u64 enq_flags) 1478 { 1479 struct rq *task_rq; 1480 1481 lockdep_assert_rq_held(rq); 1482 1483 /* 1484 * If dequeue got to @p while we were trying to lock both rq's, it'd 1485 * have cleared @p->scx.holding_cpu to -1. While other cpus may have 1486 * updated it to different values afterwards, as this operation can't be 1487 * preempted or recurse, @p->scx.holding_cpu can never become 1488 * raw_smp_processor_id() again before we're done. Thus, we can tell 1489 * whether we lost to dequeue by testing whether @p->scx.holding_cpu is 1490 * still raw_smp_processor_id(). 1491 * 1492 * See dispatch_dequeue() for the counterpart. 1493 */ 1494 if (unlikely(p->scx.holding_cpu != raw_smp_processor_id())) 1495 return false; 1496 1497 /* @p->rq couldn't have changed if we're still the holding cpu */ 1498 task_rq = task_rq(p); 1499 lockdep_assert_rq_held(task_rq); 1500 1501 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(rq), p->cpus_ptr)); 1502 deactivate_task(task_rq, p, 0); 1503 set_task_cpu(p, cpu_of(rq)); 1504 p->scx.sticky_cpu = cpu_of(rq); 1505 1506 /* 1507 * We want to pass scx-specific enq_flags but activate_task() will 1508 * truncate the upper 32 bit. As we own @rq, we can pass them through 1509 * @rq->scx.extra_enq_flags instead. 1510 */ 1511 WARN_ON_ONCE(rq->scx.extra_enq_flags); 1512 rq->scx.extra_enq_flags = enq_flags; 1513 activate_task(rq, p, 0); 1514 rq->scx.extra_enq_flags = 0; 1515 1516 return true; 1517 } 1518 1519 /** 1520 * dispatch_to_local_dsq_lock - Ensure source and destination rq's are locked 1521 * @rq: current rq which is locked 1522 * @rf: rq_flags to use when unlocking @rq 1523 * @src_rq: rq to move task from 1524 * @dst_rq: rq to move task to 1525 * 1526 * We're holding @rq lock and trying to dispatch a task from @src_rq to 1527 * @dst_rq's local DSQ and thus need to lock both @src_rq and @dst_rq. Whether 1528 * @rq stays locked isn't important as long as the state is restored after 1529 * dispatch_to_local_dsq_unlock(). 1530 */ 1531 static void dispatch_to_local_dsq_lock(struct rq *rq, struct rq_flags *rf, 1532 struct rq *src_rq, struct rq *dst_rq) 1533 { 1534 rq_unpin_lock(rq, rf); 1535 1536 if (src_rq == dst_rq) { 1537 raw_spin_rq_unlock(rq); 1538 raw_spin_rq_lock(dst_rq); 1539 } else if (rq == src_rq) { 1540 double_lock_balance(rq, dst_rq); 1541 rq_repin_lock(rq, rf); 1542 } else if (rq == dst_rq) { 1543 double_lock_balance(rq, src_rq); 1544 rq_repin_lock(rq, rf); 1545 } else { 1546 raw_spin_rq_unlock(rq); 1547 double_rq_lock(src_rq, dst_rq); 1548 } 1549 } 1550 1551 /** 1552 * dispatch_to_local_dsq_unlock - Undo dispatch_to_local_dsq_lock() 1553 * @rq: current rq which is locked 1554 * @rf: rq_flags to use when unlocking @rq 1555 * @src_rq: rq to move task from 1556 * @dst_rq: rq to move task to 1557 * 1558 * Unlock @src_rq and @dst_rq and ensure that @rq is locked on return. 1559 */ 1560 static void dispatch_to_local_dsq_unlock(struct rq *rq, struct rq_flags *rf, 1561 struct rq *src_rq, struct rq *dst_rq) 1562 { 1563 if (src_rq == dst_rq) { 1564 raw_spin_rq_unlock(dst_rq); 1565 raw_spin_rq_lock(rq); 1566 rq_repin_lock(rq, rf); 1567 } else if (rq == src_rq) { 1568 double_unlock_balance(rq, dst_rq); 1569 } else if (rq == dst_rq) { 1570 double_unlock_balance(rq, src_rq); 1571 } else { 1572 double_rq_unlock(src_rq, dst_rq); 1573 raw_spin_rq_lock(rq); 1574 rq_repin_lock(rq, rf); 1575 } 1576 } 1577 #endif /* CONFIG_SMP */ 1578 1579 static void consume_local_task(struct rq *rq, struct scx_dispatch_q *dsq, 1580 struct task_struct *p) 1581 { 1582 lockdep_assert_held(&dsq->lock); /* released on return */ 1583 1584 /* @dsq is locked and @p is on this rq */ 1585 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 1586 list_move_tail(&p->scx.dsq_node, &rq->scx.local_dsq.list); 1587 dsq_mod_nr(dsq, -1); 1588 dsq_mod_nr(&rq->scx.local_dsq, 1); 1589 p->scx.dsq = &rq->scx.local_dsq; 1590 raw_spin_unlock(&dsq->lock); 1591 } 1592 1593 #ifdef CONFIG_SMP 1594 /* 1595 * Similar to kernel/sched/core.c::is_cpu_allowed() but we're testing whether @p 1596 * can be pulled to @rq. 1597 */ 1598 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq) 1599 { 1600 int cpu = cpu_of(rq); 1601 1602 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 1603 return false; 1604 if (unlikely(is_migration_disabled(p))) 1605 return false; 1606 if (!(p->flags & PF_KTHREAD) && unlikely(!task_cpu_possible(cpu, p))) 1607 return false; 1608 if (!scx_rq_online(rq)) 1609 return false; 1610 return true; 1611 } 1612 1613 static bool consume_remote_task(struct rq *rq, struct rq_flags *rf, 1614 struct scx_dispatch_q *dsq, 1615 struct task_struct *p, struct rq *task_rq) 1616 { 1617 bool moved = false; 1618 1619 lockdep_assert_held(&dsq->lock); /* released on return */ 1620 1621 /* 1622 * @dsq is locked and @p is on a remote rq. @p is currently protected by 1623 * @dsq->lock. We want to pull @p to @rq but may deadlock if we grab 1624 * @task_rq while holding @dsq and @rq locks. As dequeue can't drop the 1625 * rq lock or fail, do a little dancing from our side. See 1626 * move_task_to_local_dsq(). 1627 */ 1628 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 1629 list_del_init(&p->scx.dsq_node); 1630 dsq_mod_nr(dsq, -1); 1631 p->scx.holding_cpu = raw_smp_processor_id(); 1632 raw_spin_unlock(&dsq->lock); 1633 1634 rq_unpin_lock(rq, rf); 1635 double_lock_balance(rq, task_rq); 1636 rq_repin_lock(rq, rf); 1637 1638 moved = move_task_to_local_dsq(rq, p, 0); 1639 1640 double_unlock_balance(rq, task_rq); 1641 1642 return moved; 1643 } 1644 #else /* CONFIG_SMP */ 1645 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq) { return false; } 1646 static bool consume_remote_task(struct rq *rq, struct rq_flags *rf, 1647 struct scx_dispatch_q *dsq, 1648 struct task_struct *p, struct rq *task_rq) { return false; } 1649 #endif /* CONFIG_SMP */ 1650 1651 static bool consume_dispatch_q(struct rq *rq, struct rq_flags *rf, 1652 struct scx_dispatch_q *dsq) 1653 { 1654 struct task_struct *p; 1655 retry: 1656 if (list_empty(&dsq->list)) 1657 return false; 1658 1659 raw_spin_lock(&dsq->lock); 1660 1661 list_for_each_entry(p, &dsq->list, scx.dsq_node) { 1662 struct rq *task_rq = task_rq(p); 1663 1664 if (rq == task_rq) { 1665 consume_local_task(rq, dsq, p); 1666 return true; 1667 } 1668 1669 if (task_can_run_on_remote_rq(p, rq)) { 1670 if (likely(consume_remote_task(rq, rf, dsq, p, task_rq))) 1671 return true; 1672 goto retry; 1673 } 1674 } 1675 1676 raw_spin_unlock(&dsq->lock); 1677 return false; 1678 } 1679 1680 enum dispatch_to_local_dsq_ret { 1681 DTL_DISPATCHED, /* successfully dispatched */ 1682 DTL_LOST, /* lost race to dequeue */ 1683 DTL_NOT_LOCAL, /* destination is not a local DSQ */ 1684 DTL_INVALID, /* invalid local dsq_id */ 1685 }; 1686 1687 /** 1688 * dispatch_to_local_dsq - Dispatch a task to a local dsq 1689 * @rq: current rq which is locked 1690 * @rf: rq_flags to use when unlocking @rq 1691 * @dsq_id: destination dsq ID 1692 * @p: task to dispatch 1693 * @enq_flags: %SCX_ENQ_* 1694 * 1695 * We're holding @rq lock and want to dispatch @p to the local DSQ identified by 1696 * @dsq_id. This function performs all the synchronization dancing needed 1697 * because local DSQs are protected with rq locks. 1698 * 1699 * The caller must have exclusive ownership of @p (e.g. through 1700 * %SCX_OPSS_DISPATCHING). 1701 */ 1702 static enum dispatch_to_local_dsq_ret 1703 dispatch_to_local_dsq(struct rq *rq, struct rq_flags *rf, u64 dsq_id, 1704 struct task_struct *p, u64 enq_flags) 1705 { 1706 struct rq *src_rq = task_rq(p); 1707 struct rq *dst_rq; 1708 1709 /* 1710 * We're synchronized against dequeue through DISPATCHING. As @p can't 1711 * be dequeued, its task_rq and cpus_allowed are stable too. 1712 */ 1713 if (dsq_id == SCX_DSQ_LOCAL) { 1714 dst_rq = rq; 1715 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 1716 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 1717 1718 if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 1719 return DTL_INVALID; 1720 dst_rq = cpu_rq(cpu); 1721 } else { 1722 return DTL_NOT_LOCAL; 1723 } 1724 1725 /* if dispatching to @rq that @p is already on, no lock dancing needed */ 1726 if (rq == src_rq && rq == dst_rq) { 1727 dispatch_enqueue(&dst_rq->scx.local_dsq, p, 1728 enq_flags | SCX_ENQ_CLEAR_OPSS); 1729 return DTL_DISPATCHED; 1730 } 1731 1732 #ifdef CONFIG_SMP 1733 if (cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)) { 1734 struct rq *locked_dst_rq = dst_rq; 1735 bool dsp; 1736 1737 /* 1738 * @p is on a possibly remote @src_rq which we need to lock to 1739 * move the task. If dequeue is in progress, it'd be locking 1740 * @src_rq and waiting on DISPATCHING, so we can't grab @src_rq 1741 * lock while holding DISPATCHING. 1742 * 1743 * As DISPATCHING guarantees that @p is wholly ours, we can 1744 * pretend that we're moving from a DSQ and use the same 1745 * mechanism - mark the task under transfer with holding_cpu, 1746 * release DISPATCHING and then follow the same protocol. 1747 */ 1748 p->scx.holding_cpu = raw_smp_processor_id(); 1749 1750 /* store_release ensures that dequeue sees the above */ 1751 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1752 1753 dispatch_to_local_dsq_lock(rq, rf, src_rq, locked_dst_rq); 1754 1755 /* 1756 * We don't require the BPF scheduler to avoid dispatching to 1757 * offline CPUs mostly for convenience but also because CPUs can 1758 * go offline between scx_bpf_dispatch() calls and here. If @p 1759 * is destined to an offline CPU, queue it on its current CPU 1760 * instead, which should always be safe. As this is an allowed 1761 * behavior, don't trigger an ops error. 1762 */ 1763 if (!scx_rq_online(dst_rq)) 1764 dst_rq = src_rq; 1765 1766 if (src_rq == dst_rq) { 1767 /* 1768 * As @p is staying on the same rq, there's no need to 1769 * go through the full deactivate/activate cycle. 1770 * Optimize by abbreviating the operations in 1771 * move_task_to_local_dsq(). 1772 */ 1773 dsp = p->scx.holding_cpu == raw_smp_processor_id(); 1774 if (likely(dsp)) { 1775 p->scx.holding_cpu = -1; 1776 dispatch_enqueue(&dst_rq->scx.local_dsq, p, 1777 enq_flags); 1778 } 1779 } else { 1780 dsp = move_task_to_local_dsq(dst_rq, p, enq_flags); 1781 } 1782 1783 /* if the destination CPU is idle, wake it up */ 1784 if (dsp && sched_class_above(p->sched_class, 1785 dst_rq->curr->sched_class)) 1786 resched_curr(dst_rq); 1787 1788 dispatch_to_local_dsq_unlock(rq, rf, src_rq, locked_dst_rq); 1789 1790 return dsp ? DTL_DISPATCHED : DTL_LOST; 1791 } 1792 #endif /* CONFIG_SMP */ 1793 1794 scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]", 1795 cpu_of(dst_rq), p->comm, p->pid); 1796 return DTL_INVALID; 1797 } 1798 1799 /** 1800 * finish_dispatch - Asynchronously finish dispatching a task 1801 * @rq: current rq which is locked 1802 * @rf: rq_flags to use when unlocking @rq 1803 * @p: task to finish dispatching 1804 * @qseq_at_dispatch: qseq when @p started getting dispatched 1805 * @dsq_id: destination DSQ ID 1806 * @enq_flags: %SCX_ENQ_* 1807 * 1808 * Dispatching to local DSQs may need to wait for queueing to complete or 1809 * require rq lock dancing. As we don't wanna do either while inside 1810 * ops.dispatch() to avoid locking order inversion, we split dispatching into 1811 * two parts. scx_bpf_dispatch() which is called by ops.dispatch() records the 1812 * task and its qseq. Once ops.dispatch() returns, this function is called to 1813 * finish up. 1814 * 1815 * There is no guarantee that @p is still valid for dispatching or even that it 1816 * was valid in the first place. Make sure that the task is still owned by the 1817 * BPF scheduler and claim the ownership before dispatching. 1818 */ 1819 static void finish_dispatch(struct rq *rq, struct rq_flags *rf, 1820 struct task_struct *p, 1821 unsigned long qseq_at_dispatch, 1822 u64 dsq_id, u64 enq_flags) 1823 { 1824 struct scx_dispatch_q *dsq; 1825 unsigned long opss; 1826 1827 retry: 1828 /* 1829 * No need for _acquire here. @p is accessed only after a successful 1830 * try_cmpxchg to DISPATCHING. 1831 */ 1832 opss = atomic_long_read(&p->scx.ops_state); 1833 1834 switch (opss & SCX_OPSS_STATE_MASK) { 1835 case SCX_OPSS_DISPATCHING: 1836 case SCX_OPSS_NONE: 1837 /* someone else already got to it */ 1838 return; 1839 case SCX_OPSS_QUEUED: 1840 /* 1841 * If qseq doesn't match, @p has gone through at least one 1842 * dispatch/dequeue and re-enqueue cycle between 1843 * scx_bpf_dispatch() and here and we have no claim on it. 1844 */ 1845 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 1846 return; 1847 1848 /* 1849 * While we know @p is accessible, we don't yet have a claim on 1850 * it - the BPF scheduler is allowed to dispatch tasks 1851 * spuriously and there can be a racing dequeue attempt. Let's 1852 * claim @p by atomically transitioning it from QUEUED to 1853 * DISPATCHING. 1854 */ 1855 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 1856 SCX_OPSS_DISPATCHING))) 1857 break; 1858 goto retry; 1859 case SCX_OPSS_QUEUEING: 1860 /* 1861 * do_enqueue_task() is in the process of transferring the task 1862 * to the BPF scheduler while holding @p's rq lock. As we aren't 1863 * holding any kernel or BPF resource that the enqueue path may 1864 * depend upon, it's safe to wait. 1865 */ 1866 wait_ops_state(p, opss); 1867 goto retry; 1868 } 1869 1870 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 1871 1872 switch (dispatch_to_local_dsq(rq, rf, dsq_id, p, enq_flags)) { 1873 case DTL_DISPATCHED: 1874 break; 1875 case DTL_LOST: 1876 break; 1877 case DTL_INVALID: 1878 dsq_id = SCX_DSQ_GLOBAL; 1879 fallthrough; 1880 case DTL_NOT_LOCAL: 1881 dsq = find_dsq_for_dispatch(cpu_rq(raw_smp_processor_id()), 1882 dsq_id, p); 1883 dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 1884 break; 1885 } 1886 } 1887 1888 static void flush_dispatch_buf(struct rq *rq, struct rq_flags *rf) 1889 { 1890 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 1891 u32 u; 1892 1893 for (u = 0; u < dspc->cursor; u++) { 1894 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 1895 1896 finish_dispatch(rq, rf, ent->task, ent->qseq, ent->dsq_id, 1897 ent->enq_flags); 1898 } 1899 1900 dspc->nr_tasks += dspc->cursor; 1901 dspc->cursor = 0; 1902 } 1903 1904 static int balance_scx(struct rq *rq, struct task_struct *prev, 1905 struct rq_flags *rf) 1906 { 1907 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 1908 bool prev_on_scx = prev->sched_class == &ext_sched_class; 1909 bool has_tasks = false; 1910 1911 lockdep_assert_rq_held(rq); 1912 rq->scx.flags |= SCX_RQ_BALANCING; 1913 1914 if (prev_on_scx) { 1915 WARN_ON_ONCE(prev->scx.flags & SCX_TASK_BAL_KEEP); 1916 update_curr_scx(rq); 1917 1918 /* 1919 * If @prev is runnable & has slice left, it has priority and 1920 * fetching more just increases latency for the fetched tasks. 1921 * Tell put_prev_task_scx() to put @prev on local_dsq. 1922 * 1923 * See scx_ops_disable_workfn() for the explanation on the 1924 * bypassing test. 1925 */ 1926 if ((prev->scx.flags & SCX_TASK_QUEUED) && 1927 prev->scx.slice && !scx_ops_bypassing()) { 1928 prev->scx.flags |= SCX_TASK_BAL_KEEP; 1929 goto has_tasks; 1930 } 1931 } 1932 1933 /* if there already are tasks to run, nothing to do */ 1934 if (rq->scx.local_dsq.nr) 1935 goto has_tasks; 1936 1937 if (consume_dispatch_q(rq, rf, &scx_dsq_global)) 1938 goto has_tasks; 1939 1940 if (!SCX_HAS_OP(dispatch) || scx_ops_bypassing() || !scx_rq_online(rq)) 1941 goto out; 1942 1943 dspc->rq = rq; 1944 dspc->rf = rf; 1945 1946 /* 1947 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 1948 * the local DSQ might still end up empty after a successful 1949 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 1950 * produced some tasks, retry. The BPF scheduler may depend on this 1951 * looping behavior to simplify its implementation. 1952 */ 1953 do { 1954 dspc->nr_tasks = 0; 1955 1956 SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq), 1957 prev_on_scx ? prev : NULL); 1958 1959 flush_dispatch_buf(rq, rf); 1960 1961 if (rq->scx.local_dsq.nr) 1962 goto has_tasks; 1963 if (consume_dispatch_q(rq, rf, &scx_dsq_global)) 1964 goto has_tasks; 1965 } while (dspc->nr_tasks); 1966 1967 goto out; 1968 1969 has_tasks: 1970 has_tasks = true; 1971 out: 1972 rq->scx.flags &= ~SCX_RQ_BALANCING; 1973 return has_tasks; 1974 } 1975 1976 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 1977 { 1978 if (p->scx.flags & SCX_TASK_QUEUED) { 1979 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1980 dispatch_dequeue(rq, p); 1981 } 1982 1983 p->se.exec_start = rq_clock_task(rq); 1984 1985 clr_task_runnable(p, true); 1986 } 1987 1988 static void put_prev_task_scx(struct rq *rq, struct task_struct *p) 1989 { 1990 #ifndef CONFIG_SMP 1991 /* 1992 * UP workaround. 1993 * 1994 * Because SCX may transfer tasks across CPUs during dispatch, dispatch 1995 * is performed from its balance operation which isn't called in UP. 1996 * Let's work around by calling it from the operations which come right 1997 * after. 1998 * 1999 * 1. If the prev task is on SCX, pick_next_task() calls 2000 * .put_prev_task() right after. As .put_prev_task() is also called 2001 * from other places, we need to distinguish the calls which can be 2002 * done by looking at the previous task's state - if still queued or 2003 * dequeued with %SCX_DEQ_SLEEP, the caller must be pick_next_task(). 2004 * This case is handled here. 2005 * 2006 * 2. If the prev task is not on SCX, the first following call into SCX 2007 * will be .pick_next_task(), which is covered by calling 2008 * balance_scx() from pick_next_task_scx(). 2009 * 2010 * Note that we can't merge the first case into the second as 2011 * balance_scx() must be called before the previous SCX task goes 2012 * through put_prev_task_scx(). 2013 * 2014 * As UP doesn't transfer tasks around, balance_scx() doesn't need @rf. 2015 * Pass in %NULL. 2016 */ 2017 if (p->scx.flags & (SCX_TASK_QUEUED | SCX_TASK_DEQD_FOR_SLEEP)) 2018 balance_scx(rq, p, NULL); 2019 #endif 2020 2021 update_curr_scx(rq); 2022 2023 /* 2024 * If we're being called from put_prev_task_balance(), balance_scx() may 2025 * have decided that @p should keep running. 2026 */ 2027 if (p->scx.flags & SCX_TASK_BAL_KEEP) { 2028 p->scx.flags &= ~SCX_TASK_BAL_KEEP; 2029 set_task_runnable(rq, p); 2030 dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD); 2031 return; 2032 } 2033 2034 if (p->scx.flags & SCX_TASK_QUEUED) { 2035 set_task_runnable(rq, p); 2036 2037 /* 2038 * If @p has slice left and balance_scx() didn't tag it for 2039 * keeping, @p is getting preempted by a higher priority 2040 * scheduler class. Leave it at the head of the local DSQ. 2041 */ 2042 if (p->scx.slice && !scx_ops_bypassing()) { 2043 dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD); 2044 return; 2045 } 2046 2047 /* 2048 * If we're in the pick_next_task path, balance_scx() should 2049 * have already populated the local DSQ if there are any other 2050 * available tasks. If empty, tell ops.enqueue() that @p is the 2051 * only one available for this cpu. ops.enqueue() should put it 2052 * on the local DSQ so that the subsequent pick_next_task_scx() 2053 * can find the task unless it wants to trigger a separate 2054 * follow-up scheduling event. 2055 */ 2056 if (list_empty(&rq->scx.local_dsq.list)) 2057 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 2058 else 2059 do_enqueue_task(rq, p, 0, -1); 2060 } 2061 } 2062 2063 static struct task_struct *first_local_task(struct rq *rq) 2064 { 2065 return list_first_entry_or_null(&rq->scx.local_dsq.list, 2066 struct task_struct, scx.dsq_node); 2067 } 2068 2069 static struct task_struct *pick_next_task_scx(struct rq *rq) 2070 { 2071 struct task_struct *p; 2072 2073 #ifndef CONFIG_SMP 2074 /* UP workaround - see the comment at the head of put_prev_task_scx() */ 2075 if (unlikely(rq->curr->sched_class != &ext_sched_class)) 2076 balance_scx(rq, rq->curr, NULL); 2077 #endif 2078 2079 p = first_local_task(rq); 2080 if (!p) 2081 return NULL; 2082 2083 set_next_task_scx(rq, p, true); 2084 2085 if (unlikely(!p->scx.slice)) { 2086 if (!scx_ops_bypassing() && !scx_warned_zero_slice) { 2087 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in pick_next_task_scx()\n", 2088 p->comm, p->pid); 2089 scx_warned_zero_slice = true; 2090 } 2091 p->scx.slice = SCX_SLICE_DFL; 2092 } 2093 2094 return p; 2095 } 2096 2097 #ifdef CONFIG_SMP 2098 2099 static bool test_and_clear_cpu_idle(int cpu) 2100 { 2101 #ifdef CONFIG_SCHED_SMT 2102 /* 2103 * SMT mask should be cleared whether we can claim @cpu or not. The SMT 2104 * cluster is not wholly idle either way. This also prevents 2105 * scx_pick_idle_cpu() from getting caught in an infinite loop. 2106 */ 2107 if (sched_smt_active()) { 2108 const struct cpumask *smt = cpu_smt_mask(cpu); 2109 2110 /* 2111 * If offline, @cpu is not its own sibling and 2112 * scx_pick_idle_cpu() can get caught in an infinite loop as 2113 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu 2114 * is eventually cleared. 2115 */ 2116 if (cpumask_intersects(smt, idle_masks.smt)) 2117 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 2118 else if (cpumask_test_cpu(cpu, idle_masks.smt)) 2119 __cpumask_clear_cpu(cpu, idle_masks.smt); 2120 } 2121 #endif 2122 return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu); 2123 } 2124 2125 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) 2126 { 2127 int cpu; 2128 2129 retry: 2130 if (sched_smt_active()) { 2131 cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed); 2132 if (cpu < nr_cpu_ids) 2133 goto found; 2134 2135 if (flags & SCX_PICK_IDLE_CORE) 2136 return -EBUSY; 2137 } 2138 2139 cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed); 2140 if (cpu >= nr_cpu_ids) 2141 return -EBUSY; 2142 2143 found: 2144 if (test_and_clear_cpu_idle(cpu)) 2145 return cpu; 2146 else 2147 goto retry; 2148 } 2149 2150 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 2151 u64 wake_flags, bool *found) 2152 { 2153 s32 cpu; 2154 2155 *found = false; 2156 2157 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 2158 scx_ops_error("built-in idle tracking is disabled"); 2159 return prev_cpu; 2160 } 2161 2162 /* 2163 * If WAKE_SYNC, the waker's local DSQ is empty, and the system is 2164 * under utilized, wake up @p to the local DSQ of the waker. Checking 2165 * only for an empty local DSQ is insufficient as it could give the 2166 * wakee an unfair advantage when the system is oversaturated. 2167 * Checking only for the presence of idle CPUs is also insufficient as 2168 * the local DSQ of the waker could have tasks piled up on it even if 2169 * there is an idle core elsewhere on the system. 2170 */ 2171 cpu = smp_processor_id(); 2172 if ((wake_flags & SCX_WAKE_SYNC) && p->nr_cpus_allowed > 1 && 2173 !cpumask_empty(idle_masks.cpu) && !(current->flags & PF_EXITING) && 2174 cpu_rq(cpu)->scx.local_dsq.nr == 0) { 2175 if (cpumask_test_cpu(cpu, p->cpus_ptr)) 2176 goto cpu_found; 2177 } 2178 2179 if (p->nr_cpus_allowed == 1) { 2180 if (test_and_clear_cpu_idle(prev_cpu)) { 2181 cpu = prev_cpu; 2182 goto cpu_found; 2183 } else { 2184 return prev_cpu; 2185 } 2186 } 2187 2188 /* 2189 * If CPU has SMT, any wholly idle CPU is likely a better pick than 2190 * partially idle @prev_cpu. 2191 */ 2192 if (sched_smt_active()) { 2193 if (cpumask_test_cpu(prev_cpu, idle_masks.smt) && 2194 test_and_clear_cpu_idle(prev_cpu)) { 2195 cpu = prev_cpu; 2196 goto cpu_found; 2197 } 2198 2199 cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE); 2200 if (cpu >= 0) 2201 goto cpu_found; 2202 } 2203 2204 if (test_and_clear_cpu_idle(prev_cpu)) { 2205 cpu = prev_cpu; 2206 goto cpu_found; 2207 } 2208 2209 cpu = scx_pick_idle_cpu(p->cpus_ptr, 0); 2210 if (cpu >= 0) 2211 goto cpu_found; 2212 2213 return prev_cpu; 2214 2215 cpu_found: 2216 *found = true; 2217 return cpu; 2218 } 2219 2220 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 2221 { 2222 /* 2223 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 2224 * can be a good migration opportunity with low cache and memory 2225 * footprint. Returning a CPU different than @prev_cpu triggers 2226 * immediate rq migration. However, for SCX, as the current rq 2227 * association doesn't dictate where the task is going to run, this 2228 * doesn't fit well. If necessary, we can later add a dedicated method 2229 * which can decide to preempt self to force it through the regular 2230 * scheduling path. 2231 */ 2232 if (unlikely(wake_flags & WF_EXEC)) 2233 return prev_cpu; 2234 2235 if (SCX_HAS_OP(select_cpu)) { 2236 s32 cpu; 2237 struct task_struct **ddsp_taskp; 2238 2239 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 2240 WARN_ON_ONCE(*ddsp_taskp); 2241 *ddsp_taskp = p; 2242 2243 cpu = SCX_CALL_OP_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 2244 select_cpu, p, prev_cpu, wake_flags); 2245 *ddsp_taskp = NULL; 2246 if (ops_cpu_valid(cpu, "from ops.select_cpu()")) 2247 return cpu; 2248 else 2249 return prev_cpu; 2250 } else { 2251 bool found; 2252 s32 cpu; 2253 2254 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found); 2255 if (found) { 2256 p->scx.slice = SCX_SLICE_DFL; 2257 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 2258 } 2259 return cpu; 2260 } 2261 } 2262 2263 static void set_cpus_allowed_scx(struct task_struct *p, 2264 struct affinity_context *ac) 2265 { 2266 set_cpus_allowed_common(p, ac); 2267 2268 /* 2269 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 2270 * differ from the configured one in @p->cpus_mask. Always tell the bpf 2271 * scheduler the effective one. 2272 * 2273 * Fine-grained memory write control is enforced by BPF making the const 2274 * designation pointless. Cast it away when calling the operation. 2275 */ 2276 if (SCX_HAS_OP(set_cpumask)) 2277 SCX_CALL_OP(SCX_KF_REST, set_cpumask, p, 2278 (struct cpumask *)p->cpus_ptr); 2279 } 2280 2281 static void reset_idle_masks(void) 2282 { 2283 /* 2284 * Consider all online cpus idle. Should converge to the actual state 2285 * quickly. 2286 */ 2287 cpumask_copy(idle_masks.cpu, cpu_online_mask); 2288 cpumask_copy(idle_masks.smt, cpu_online_mask); 2289 } 2290 2291 void __scx_update_idle(struct rq *rq, bool idle) 2292 { 2293 int cpu = cpu_of(rq); 2294 2295 if (SCX_HAS_OP(update_idle)) { 2296 SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle); 2297 if (!static_branch_unlikely(&scx_builtin_idle_enabled)) 2298 return; 2299 } 2300 2301 if (idle) 2302 cpumask_set_cpu(cpu, idle_masks.cpu); 2303 else 2304 cpumask_clear_cpu(cpu, idle_masks.cpu); 2305 2306 #ifdef CONFIG_SCHED_SMT 2307 if (sched_smt_active()) { 2308 const struct cpumask *smt = cpu_smt_mask(cpu); 2309 2310 if (idle) { 2311 /* 2312 * idle_masks.smt handling is racy but that's fine as 2313 * it's only for optimization and self-correcting. 2314 */ 2315 for_each_cpu(cpu, smt) { 2316 if (!cpumask_test_cpu(cpu, idle_masks.cpu)) 2317 return; 2318 } 2319 cpumask_or(idle_masks.smt, idle_masks.smt, smt); 2320 } else { 2321 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 2322 } 2323 } 2324 #endif 2325 } 2326 2327 #else /* CONFIG_SMP */ 2328 2329 static bool test_and_clear_cpu_idle(int cpu) { return false; } 2330 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; } 2331 static void reset_idle_masks(void) {} 2332 2333 #endif /* CONFIG_SMP */ 2334 2335 static bool check_rq_for_timeouts(struct rq *rq) 2336 { 2337 struct task_struct *p; 2338 struct rq_flags rf; 2339 bool timed_out = false; 2340 2341 rq_lock_irqsave(rq, &rf); 2342 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 2343 unsigned long last_runnable = p->scx.runnable_at; 2344 2345 if (unlikely(time_after(jiffies, 2346 last_runnable + scx_watchdog_timeout))) { 2347 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 2348 2349 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 2350 "%s[%d] failed to run for %u.%03us", 2351 p->comm, p->pid, 2352 dur_ms / 1000, dur_ms % 1000); 2353 timed_out = true; 2354 break; 2355 } 2356 } 2357 rq_unlock_irqrestore(rq, &rf); 2358 2359 return timed_out; 2360 } 2361 2362 static void scx_watchdog_workfn(struct work_struct *work) 2363 { 2364 int cpu; 2365 2366 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 2367 2368 for_each_online_cpu(cpu) { 2369 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 2370 break; 2371 2372 cond_resched(); 2373 } 2374 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 2375 scx_watchdog_timeout / 2); 2376 } 2377 2378 void scx_tick(struct rq *rq) 2379 { 2380 unsigned long last_check; 2381 2382 if (!scx_enabled()) 2383 return; 2384 2385 last_check = READ_ONCE(scx_watchdog_timestamp); 2386 if (unlikely(time_after(jiffies, 2387 last_check + READ_ONCE(scx_watchdog_timeout)))) { 2388 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 2389 2390 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 2391 "watchdog failed to check in for %u.%03us", 2392 dur_ms / 1000, dur_ms % 1000); 2393 } 2394 2395 update_other_load_avgs(rq); 2396 } 2397 2398 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 2399 { 2400 update_curr_scx(rq); 2401 2402 /* 2403 * While bypassing, always resched as we can't trust the slice 2404 * management. 2405 */ 2406 if (scx_ops_bypassing()) 2407 curr->scx.slice = 0; 2408 else if (SCX_HAS_OP(tick)) 2409 SCX_CALL_OP(SCX_KF_REST, tick, curr); 2410 2411 if (!curr->scx.slice) 2412 resched_curr(rq); 2413 } 2414 2415 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 2416 { 2417 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 2418 } 2419 2420 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 2421 { 2422 enum scx_task_state prev_state = scx_get_task_state(p); 2423 bool warn = false; 2424 2425 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 2426 2427 switch (state) { 2428 case SCX_TASK_NONE: 2429 break; 2430 case SCX_TASK_INIT: 2431 warn = prev_state != SCX_TASK_NONE; 2432 break; 2433 case SCX_TASK_READY: 2434 warn = prev_state == SCX_TASK_NONE; 2435 break; 2436 case SCX_TASK_ENABLED: 2437 warn = prev_state != SCX_TASK_READY; 2438 break; 2439 default: 2440 warn = true; 2441 return; 2442 } 2443 2444 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 2445 prev_state, state, p->comm, p->pid); 2446 2447 p->scx.flags &= ~SCX_TASK_STATE_MASK; 2448 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 2449 } 2450 2451 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork) 2452 { 2453 int ret; 2454 2455 p->scx.disallow = false; 2456 2457 if (SCX_HAS_OP(init_task)) { 2458 struct scx_init_task_args args = { 2459 .fork = fork, 2460 }; 2461 2462 ret = SCX_CALL_OP_RET(SCX_KF_SLEEPABLE, init_task, p, &args); 2463 if (unlikely(ret)) { 2464 ret = ops_sanitize_err("init_task", ret); 2465 return ret; 2466 } 2467 } 2468 2469 scx_set_task_state(p, SCX_TASK_INIT); 2470 2471 if (p->scx.disallow) { 2472 struct rq *rq; 2473 struct rq_flags rf; 2474 2475 rq = task_rq_lock(p, &rf); 2476 2477 /* 2478 * We're either in fork or load path and @p->policy will be 2479 * applied right after. Reverting @p->policy here and rejecting 2480 * %SCHED_EXT transitions from scx_check_setscheduler() 2481 * guarantees that if ops.init_task() sets @p->disallow, @p can 2482 * never be in SCX. 2483 */ 2484 if (p->policy == SCHED_EXT) { 2485 p->policy = SCHED_NORMAL; 2486 atomic_long_inc(&scx_nr_rejected); 2487 } 2488 2489 task_rq_unlock(rq, p, &rf); 2490 } 2491 2492 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2493 return 0; 2494 } 2495 2496 static void set_task_scx_weight(struct task_struct *p) 2497 { 2498 u32 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 2499 2500 p->scx.weight = sched_weight_to_cgroup(weight); 2501 } 2502 2503 static void scx_ops_enable_task(struct task_struct *p) 2504 { 2505 lockdep_assert_rq_held(task_rq(p)); 2506 2507 /* 2508 * Set the weight before calling ops.enable() so that the scheduler 2509 * doesn't see a stale value if they inspect the task struct. 2510 */ 2511 set_task_scx_weight(p); 2512 if (SCX_HAS_OP(enable)) 2513 SCX_CALL_OP(SCX_KF_REST, enable, p); 2514 scx_set_task_state(p, SCX_TASK_ENABLED); 2515 2516 if (SCX_HAS_OP(set_weight)) 2517 SCX_CALL_OP(SCX_KF_REST, set_weight, p, p->scx.weight); 2518 } 2519 2520 static void scx_ops_disable_task(struct task_struct *p) 2521 { 2522 lockdep_assert_rq_held(task_rq(p)); 2523 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 2524 2525 if (SCX_HAS_OP(disable)) 2526 SCX_CALL_OP(SCX_KF_REST, disable, p); 2527 scx_set_task_state(p, SCX_TASK_READY); 2528 } 2529 2530 static void scx_ops_exit_task(struct task_struct *p) 2531 { 2532 struct scx_exit_task_args args = { 2533 .cancelled = false, 2534 }; 2535 2536 lockdep_assert_rq_held(task_rq(p)); 2537 2538 switch (scx_get_task_state(p)) { 2539 case SCX_TASK_NONE: 2540 return; 2541 case SCX_TASK_INIT: 2542 args.cancelled = true; 2543 break; 2544 case SCX_TASK_READY: 2545 break; 2546 case SCX_TASK_ENABLED: 2547 scx_ops_disable_task(p); 2548 break; 2549 default: 2550 WARN_ON_ONCE(true); 2551 return; 2552 } 2553 2554 if (SCX_HAS_OP(exit_task)) 2555 SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args); 2556 scx_set_task_state(p, SCX_TASK_NONE); 2557 } 2558 2559 void init_scx_entity(struct sched_ext_entity *scx) 2560 { 2561 /* 2562 * init_idle() calls this function again after fork sequence is 2563 * complete. Don't touch ->tasks_node as it's already linked. 2564 */ 2565 memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node)); 2566 2567 INIT_LIST_HEAD(&scx->dsq_node); 2568 scx->sticky_cpu = -1; 2569 scx->holding_cpu = -1; 2570 INIT_LIST_HEAD(&scx->runnable_node); 2571 scx->runnable_at = jiffies; 2572 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 2573 scx->slice = SCX_SLICE_DFL; 2574 } 2575 2576 void scx_pre_fork(struct task_struct *p) 2577 { 2578 /* 2579 * BPF scheduler enable/disable paths want to be able to iterate and 2580 * update all tasks which can become complex when racing forks. As 2581 * enable/disable are very cold paths, let's use a percpu_rwsem to 2582 * exclude forks. 2583 */ 2584 percpu_down_read(&scx_fork_rwsem); 2585 } 2586 2587 int scx_fork(struct task_struct *p) 2588 { 2589 percpu_rwsem_assert_held(&scx_fork_rwsem); 2590 2591 if (scx_enabled()) 2592 return scx_ops_init_task(p, task_group(p), true); 2593 else 2594 return 0; 2595 } 2596 2597 void scx_post_fork(struct task_struct *p) 2598 { 2599 if (scx_enabled()) { 2600 scx_set_task_state(p, SCX_TASK_READY); 2601 2602 /* 2603 * Enable the task immediately if it's running on sched_ext. 2604 * Otherwise, it'll be enabled in switching_to_scx() if and 2605 * when it's ever configured to run with a SCHED_EXT policy. 2606 */ 2607 if (p->sched_class == &ext_sched_class) { 2608 struct rq_flags rf; 2609 struct rq *rq; 2610 2611 rq = task_rq_lock(p, &rf); 2612 scx_ops_enable_task(p); 2613 task_rq_unlock(rq, p, &rf); 2614 } 2615 } 2616 2617 spin_lock_irq(&scx_tasks_lock); 2618 list_add_tail(&p->scx.tasks_node, &scx_tasks); 2619 spin_unlock_irq(&scx_tasks_lock); 2620 2621 percpu_up_read(&scx_fork_rwsem); 2622 } 2623 2624 void scx_cancel_fork(struct task_struct *p) 2625 { 2626 if (scx_enabled()) { 2627 struct rq *rq; 2628 struct rq_flags rf; 2629 2630 rq = task_rq_lock(p, &rf); 2631 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 2632 scx_ops_exit_task(p); 2633 task_rq_unlock(rq, p, &rf); 2634 } 2635 2636 percpu_up_read(&scx_fork_rwsem); 2637 } 2638 2639 void sched_ext_free(struct task_struct *p) 2640 { 2641 unsigned long flags; 2642 2643 spin_lock_irqsave(&scx_tasks_lock, flags); 2644 list_del_init(&p->scx.tasks_node); 2645 spin_unlock_irqrestore(&scx_tasks_lock, flags); 2646 2647 /* 2648 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY -> 2649 * ENABLED transitions can't race us. Disable ops for @p. 2650 */ 2651 if (scx_get_task_state(p) != SCX_TASK_NONE) { 2652 struct rq_flags rf; 2653 struct rq *rq; 2654 2655 rq = task_rq_lock(p, &rf); 2656 scx_ops_exit_task(p); 2657 task_rq_unlock(rq, p, &rf); 2658 } 2659 } 2660 2661 static void reweight_task_scx(struct rq *rq, struct task_struct *p, int newprio) 2662 { 2663 lockdep_assert_rq_held(task_rq(p)); 2664 2665 set_task_scx_weight(p); 2666 if (SCX_HAS_OP(set_weight)) 2667 SCX_CALL_OP(SCX_KF_REST, set_weight, p, p->scx.weight); 2668 } 2669 2670 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio) 2671 { 2672 } 2673 2674 static void switching_to_scx(struct rq *rq, struct task_struct *p) 2675 { 2676 scx_ops_enable_task(p); 2677 2678 /* 2679 * set_cpus_allowed_scx() is not called while @p is associated with a 2680 * different scheduler class. Keep the BPF scheduler up-to-date. 2681 */ 2682 if (SCX_HAS_OP(set_cpumask)) 2683 SCX_CALL_OP(SCX_KF_REST, set_cpumask, p, 2684 (struct cpumask *)p->cpus_ptr); 2685 } 2686 2687 static void switched_from_scx(struct rq *rq, struct task_struct *p) 2688 { 2689 scx_ops_disable_task(p); 2690 } 2691 2692 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 2693 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 2694 2695 int scx_check_setscheduler(struct task_struct *p, int policy) 2696 { 2697 lockdep_assert_rq_held(task_rq(p)); 2698 2699 /* if disallow, reject transitioning into SCX */ 2700 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 2701 p->policy != policy && policy == SCHED_EXT) 2702 return -EACCES; 2703 2704 return 0; 2705 } 2706 2707 /* 2708 * Omitted operations: 2709 * 2710 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 2711 * isn't tied to the CPU at that point. Preemption is implemented by resetting 2712 * the victim task's slice to 0 and triggering reschedule on the target CPU. 2713 * 2714 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 2715 * 2716 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 2717 * their current sched_class. Call them directly from sched core instead. 2718 * 2719 * - task_woken: Unnecessary. 2720 */ 2721 DEFINE_SCHED_CLASS(ext) = { 2722 .enqueue_task = enqueue_task_scx, 2723 .dequeue_task = dequeue_task_scx, 2724 .yield_task = yield_task_scx, 2725 .yield_to_task = yield_to_task_scx, 2726 2727 .wakeup_preempt = wakeup_preempt_scx, 2728 2729 .pick_next_task = pick_next_task_scx, 2730 2731 .put_prev_task = put_prev_task_scx, 2732 .set_next_task = set_next_task_scx, 2733 2734 #ifdef CONFIG_SMP 2735 .balance = balance_scx, 2736 .select_task_rq = select_task_rq_scx, 2737 .set_cpus_allowed = set_cpus_allowed_scx, 2738 #endif 2739 2740 .task_tick = task_tick_scx, 2741 2742 .switching_to = switching_to_scx, 2743 .switched_from = switched_from_scx, 2744 .switched_to = switched_to_scx, 2745 .reweight_task = reweight_task_scx, 2746 .prio_changed = prio_changed_scx, 2747 2748 .update_curr = update_curr_scx, 2749 2750 #ifdef CONFIG_UCLAMP_TASK 2751 .uclamp_enabled = 0, 2752 #endif 2753 }; 2754 2755 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 2756 { 2757 memset(dsq, 0, sizeof(*dsq)); 2758 2759 raw_spin_lock_init(&dsq->lock); 2760 INIT_LIST_HEAD(&dsq->list); 2761 dsq->id = dsq_id; 2762 } 2763 2764 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node) 2765 { 2766 struct scx_dispatch_q *dsq; 2767 int ret; 2768 2769 if (dsq_id & SCX_DSQ_FLAG_BUILTIN) 2770 return ERR_PTR(-EINVAL); 2771 2772 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 2773 if (!dsq) 2774 return ERR_PTR(-ENOMEM); 2775 2776 init_dsq(dsq, dsq_id); 2777 2778 ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node, 2779 dsq_hash_params); 2780 if (ret) { 2781 kfree(dsq); 2782 return ERR_PTR(ret); 2783 } 2784 return dsq; 2785 } 2786 2787 static void free_dsq_irq_workfn(struct irq_work *irq_work) 2788 { 2789 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 2790 struct scx_dispatch_q *dsq, *tmp_dsq; 2791 2792 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 2793 kfree_rcu(dsq, rcu); 2794 } 2795 2796 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 2797 2798 static void destroy_dsq(u64 dsq_id) 2799 { 2800 struct scx_dispatch_q *dsq; 2801 unsigned long flags; 2802 2803 rcu_read_lock(); 2804 2805 dsq = find_user_dsq(dsq_id); 2806 if (!dsq) 2807 goto out_unlock_rcu; 2808 2809 raw_spin_lock_irqsave(&dsq->lock, flags); 2810 2811 if (dsq->nr) { 2812 scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)", 2813 dsq->id, dsq->nr); 2814 goto out_unlock_dsq; 2815 } 2816 2817 if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params)) 2818 goto out_unlock_dsq; 2819 2820 /* 2821 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 2822 * queueing more tasks. As this function can be called from anywhere, 2823 * freeing is bounced through an irq work to avoid nesting RCU 2824 * operations inside scheduler locks. 2825 */ 2826 dsq->id = SCX_DSQ_INVALID; 2827 llist_add(&dsq->free_node, &dsqs_to_free); 2828 irq_work_queue(&free_dsq_irq_work); 2829 2830 out_unlock_dsq: 2831 raw_spin_unlock_irqrestore(&dsq->lock, flags); 2832 out_unlock_rcu: 2833 rcu_read_unlock(); 2834 } 2835 2836 2837 /******************************************************************************** 2838 * Sysfs interface and ops enable/disable. 2839 */ 2840 2841 #define SCX_ATTR(_name) \ 2842 static struct kobj_attribute scx_attr_##_name = { \ 2843 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 2844 .show = scx_attr_##_name##_show, \ 2845 } 2846 2847 static ssize_t scx_attr_state_show(struct kobject *kobj, 2848 struct kobj_attribute *ka, char *buf) 2849 { 2850 return sysfs_emit(buf, "%s\n", 2851 scx_ops_enable_state_str[scx_ops_enable_state()]); 2852 } 2853 SCX_ATTR(state); 2854 2855 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 2856 struct kobj_attribute *ka, char *buf) 2857 { 2858 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 2859 } 2860 SCX_ATTR(switch_all); 2861 2862 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 2863 struct kobj_attribute *ka, char *buf) 2864 { 2865 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 2866 } 2867 SCX_ATTR(nr_rejected); 2868 2869 static struct attribute *scx_global_attrs[] = { 2870 &scx_attr_state.attr, 2871 &scx_attr_switch_all.attr, 2872 &scx_attr_nr_rejected.attr, 2873 NULL, 2874 }; 2875 2876 static const struct attribute_group scx_global_attr_group = { 2877 .attrs = scx_global_attrs, 2878 }; 2879 2880 static void scx_kobj_release(struct kobject *kobj) 2881 { 2882 kfree(kobj); 2883 } 2884 2885 static ssize_t scx_attr_ops_show(struct kobject *kobj, 2886 struct kobj_attribute *ka, char *buf) 2887 { 2888 return sysfs_emit(buf, "%s\n", scx_ops.name); 2889 } 2890 SCX_ATTR(ops); 2891 2892 static struct attribute *scx_sched_attrs[] = { 2893 &scx_attr_ops.attr, 2894 NULL, 2895 }; 2896 ATTRIBUTE_GROUPS(scx_sched); 2897 2898 static const struct kobj_type scx_ktype = { 2899 .release = scx_kobj_release, 2900 .sysfs_ops = &kobj_sysfs_ops, 2901 .default_groups = scx_sched_groups, 2902 }; 2903 2904 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 2905 { 2906 return add_uevent_var(env, "SCXOPS=%s", scx_ops.name); 2907 } 2908 2909 static const struct kset_uevent_ops scx_uevent_ops = { 2910 .uevent = scx_uevent, 2911 }; 2912 2913 /* 2914 * Used by sched_fork() and __setscheduler_prio() to pick the matching 2915 * sched_class. dl/rt are already handled. 2916 */ 2917 bool task_should_scx(struct task_struct *p) 2918 { 2919 if (!scx_enabled() || 2920 unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING)) 2921 return false; 2922 if (READ_ONCE(scx_switching_all)) 2923 return true; 2924 return p->policy == SCHED_EXT; 2925 } 2926 2927 /** 2928 * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress 2929 * 2930 * Bypassing guarantees that all runnable tasks make forward progress without 2931 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 2932 * be held by tasks that the BPF scheduler is forgetting to run, which 2933 * unfortunately also excludes toggling the static branches. 2934 * 2935 * Let's work around by overriding a couple ops and modifying behaviors based on 2936 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 2937 * to force global FIFO scheduling. 2938 * 2939 * a. ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 2940 * 2941 * b. ops.dispatch() is ignored. 2942 * 2943 * c. balance_scx() never sets %SCX_TASK_BAL_KEEP as the slice value can't be 2944 * trusted. Whenever a tick triggers, the running task is rotated to the tail 2945 * of the queue. 2946 * 2947 * d. pick_next_task() suppresses zero slice warning. 2948 * 2949 * e. scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM 2950 * operations. 2951 */ 2952 static void scx_ops_bypass(bool bypass) 2953 { 2954 int depth, cpu; 2955 2956 if (bypass) { 2957 depth = atomic_inc_return(&scx_ops_bypass_depth); 2958 WARN_ON_ONCE(depth <= 0); 2959 if (depth != 1) 2960 return; 2961 } else { 2962 depth = atomic_dec_return(&scx_ops_bypass_depth); 2963 WARN_ON_ONCE(depth < 0); 2964 if (depth != 0) 2965 return; 2966 } 2967 2968 /* 2969 * We need to guarantee that no tasks are on the BPF scheduler while 2970 * bypassing. Either we see enabled or the enable path sees the 2971 * increased bypass_depth before moving tasks to SCX. 2972 */ 2973 if (!scx_enabled()) 2974 return; 2975 2976 /* 2977 * No task property is changing. We just need to make sure all currently 2978 * queued tasks are re-queued according to the new scx_ops_bypassing() 2979 * state. As an optimization, walk each rq's runnable_list instead of 2980 * the scx_tasks list. 2981 * 2982 * This function can't trust the scheduler and thus can't use 2983 * cpus_read_lock(). Walk all possible CPUs instead of online. 2984 */ 2985 for_each_possible_cpu(cpu) { 2986 struct rq *rq = cpu_rq(cpu); 2987 struct rq_flags rf; 2988 struct task_struct *p, *n; 2989 2990 rq_lock_irqsave(rq, &rf); 2991 2992 /* 2993 * The use of list_for_each_entry_safe_reverse() is required 2994 * because each task is going to be removed from and added back 2995 * to the runnable_list during iteration. Because they're added 2996 * to the tail of the list, safe reverse iteration can still 2997 * visit all nodes. 2998 */ 2999 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 3000 scx.runnable_node) { 3001 struct sched_enq_and_set_ctx ctx; 3002 3003 /* cycling deq/enq is enough, see the function comment */ 3004 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 3005 sched_enq_and_set_task(&ctx); 3006 } 3007 3008 rq_unlock_irqrestore(rq, &rf); 3009 } 3010 } 3011 3012 static void free_exit_info(struct scx_exit_info *ei) 3013 { 3014 kfree(ei->dump); 3015 kfree(ei->msg); 3016 kfree(ei->bt); 3017 kfree(ei); 3018 } 3019 3020 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 3021 { 3022 struct scx_exit_info *ei; 3023 3024 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 3025 if (!ei) 3026 return NULL; 3027 3028 ei->bt = kcalloc(sizeof(ei->bt[0]), SCX_EXIT_BT_LEN, GFP_KERNEL); 3029 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 3030 ei->dump = kzalloc(exit_dump_len, GFP_KERNEL); 3031 3032 if (!ei->bt || !ei->msg || !ei->dump) { 3033 free_exit_info(ei); 3034 return NULL; 3035 } 3036 3037 return ei; 3038 } 3039 3040 static const char *scx_exit_reason(enum scx_exit_kind kind) 3041 { 3042 switch (kind) { 3043 case SCX_EXIT_UNREG: 3044 return "Scheduler unregistered from user space"; 3045 case SCX_EXIT_UNREG_BPF: 3046 return "Scheduler unregistered from BPF"; 3047 case SCX_EXIT_UNREG_KERN: 3048 return "Scheduler unregistered from the main kernel"; 3049 case SCX_EXIT_SYSRQ: 3050 return "disabled by sysrq-S"; 3051 case SCX_EXIT_ERROR: 3052 return "runtime error"; 3053 case SCX_EXIT_ERROR_BPF: 3054 return "scx_bpf_error"; 3055 case SCX_EXIT_ERROR_STALL: 3056 return "runnable task stall"; 3057 default: 3058 return "<UNKNOWN>"; 3059 } 3060 } 3061 3062 static void scx_ops_disable_workfn(struct kthread_work *work) 3063 { 3064 struct scx_exit_info *ei = scx_exit_info; 3065 struct scx_task_iter sti; 3066 struct task_struct *p; 3067 struct rhashtable_iter rht_iter; 3068 struct scx_dispatch_q *dsq; 3069 int i, kind; 3070 3071 kind = atomic_read(&scx_exit_kind); 3072 while (true) { 3073 /* 3074 * NONE indicates that a new scx_ops has been registered since 3075 * disable was scheduled - don't kill the new ops. DONE 3076 * indicates that the ops has already been disabled. 3077 */ 3078 if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE) 3079 return; 3080 if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE)) 3081 break; 3082 } 3083 ei->kind = kind; 3084 ei->reason = scx_exit_reason(ei->kind); 3085 3086 /* guarantee forward progress by bypassing scx_ops */ 3087 scx_ops_bypass(true); 3088 3089 switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) { 3090 case SCX_OPS_DISABLING: 3091 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 3092 break; 3093 case SCX_OPS_DISABLED: 3094 pr_warn("sched_ext: ops error detected without ops (%s)\n", 3095 scx_exit_info->msg); 3096 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 3097 SCX_OPS_DISABLING); 3098 goto done; 3099 default: 3100 break; 3101 } 3102 3103 /* 3104 * Here, every runnable task is guaranteed to make forward progress and 3105 * we can safely use blocking synchronization constructs. Actually 3106 * disable ops. 3107 */ 3108 mutex_lock(&scx_ops_enable_mutex); 3109 3110 static_branch_disable(&__scx_switched_all); 3111 WRITE_ONCE(scx_switching_all, false); 3112 3113 /* 3114 * Avoid racing against fork. See scx_ops_enable() for explanation on 3115 * the locking order. 3116 */ 3117 percpu_down_write(&scx_fork_rwsem); 3118 cpus_read_lock(); 3119 3120 spin_lock_irq(&scx_tasks_lock); 3121 scx_task_iter_init(&sti); 3122 /* 3123 * Invoke scx_ops_exit_task() on all non-idle tasks, including 3124 * TASK_DEAD tasks. Because dead tasks may have a nonzero refcount, 3125 * we may not have invoked sched_ext_free() on them by the time a 3126 * scheduler is disabled. We must therefore exit the task here, or we'd 3127 * fail to invoke ops.exit_task(), as the scheduler will have been 3128 * unloaded by the time the task is subsequently exited on the 3129 * sched_ext_free() path. 3130 */ 3131 while ((p = scx_task_iter_next_locked(&sti, true))) { 3132 const struct sched_class *old_class = p->sched_class; 3133 struct sched_enq_and_set_ctx ctx; 3134 3135 if (READ_ONCE(p->__state) != TASK_DEAD) { 3136 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, 3137 &ctx); 3138 3139 p->scx.slice = min_t(u64, p->scx.slice, SCX_SLICE_DFL); 3140 __setscheduler_prio(p, p->prio); 3141 check_class_changing(task_rq(p), p, old_class); 3142 3143 sched_enq_and_set_task(&ctx); 3144 3145 check_class_changed(task_rq(p), p, old_class, p->prio); 3146 } 3147 scx_ops_exit_task(p); 3148 } 3149 scx_task_iter_exit(&sti); 3150 spin_unlock_irq(&scx_tasks_lock); 3151 3152 /* no task is on scx, turn off all the switches and flush in-progress calls */ 3153 static_branch_disable_cpuslocked(&__scx_ops_enabled); 3154 for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++) 3155 static_branch_disable_cpuslocked(&scx_has_op[i]); 3156 static_branch_disable_cpuslocked(&scx_ops_enq_last); 3157 static_branch_disable_cpuslocked(&scx_ops_enq_exiting); 3158 static_branch_disable_cpuslocked(&scx_builtin_idle_enabled); 3159 synchronize_rcu(); 3160 3161 cpus_read_unlock(); 3162 percpu_up_write(&scx_fork_rwsem); 3163 3164 if (ei->kind >= SCX_EXIT_ERROR) { 3165 printk(KERN_ERR "sched_ext: BPF scheduler \"%s\" errored, disabling\n", scx_ops.name); 3166 3167 if (ei->msg[0] == '\0') 3168 printk(KERN_ERR "sched_ext: %s\n", ei->reason); 3169 else 3170 printk(KERN_ERR "sched_ext: %s (%s)\n", ei->reason, ei->msg); 3171 3172 stack_trace_print(ei->bt, ei->bt_len, 2); 3173 } 3174 3175 if (scx_ops.exit) 3176 SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei); 3177 3178 cancel_delayed_work_sync(&scx_watchdog_work); 3179 3180 /* 3181 * Delete the kobject from the hierarchy eagerly in addition to just 3182 * dropping a reference. Otherwise, if the object is deleted 3183 * asynchronously, sysfs could observe an object of the same name still 3184 * in the hierarchy when another scheduler is loaded. 3185 */ 3186 kobject_del(scx_root_kobj); 3187 kobject_put(scx_root_kobj); 3188 scx_root_kobj = NULL; 3189 3190 memset(&scx_ops, 0, sizeof(scx_ops)); 3191 3192 rhashtable_walk_enter(&dsq_hash, &rht_iter); 3193 do { 3194 rhashtable_walk_start(&rht_iter); 3195 3196 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 3197 destroy_dsq(dsq->id); 3198 3199 rhashtable_walk_stop(&rht_iter); 3200 } while (dsq == ERR_PTR(-EAGAIN)); 3201 rhashtable_walk_exit(&rht_iter); 3202 3203 free_percpu(scx_dsp_ctx); 3204 scx_dsp_ctx = NULL; 3205 scx_dsp_max_batch = 0; 3206 3207 free_exit_info(scx_exit_info); 3208 scx_exit_info = NULL; 3209 3210 mutex_unlock(&scx_ops_enable_mutex); 3211 3212 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 3213 SCX_OPS_DISABLING); 3214 done: 3215 scx_ops_bypass(false); 3216 } 3217 3218 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn); 3219 3220 static void schedule_scx_ops_disable_work(void) 3221 { 3222 struct kthread_worker *helper = READ_ONCE(scx_ops_helper); 3223 3224 /* 3225 * We may be called spuriously before the first bpf_sched_ext_reg(). If 3226 * scx_ops_helper isn't set up yet, there's nothing to do. 3227 */ 3228 if (helper) 3229 kthread_queue_work(helper, &scx_ops_disable_work); 3230 } 3231 3232 static void scx_ops_disable(enum scx_exit_kind kind) 3233 { 3234 int none = SCX_EXIT_NONE; 3235 3236 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 3237 kind = SCX_EXIT_ERROR; 3238 3239 atomic_try_cmpxchg(&scx_exit_kind, &none, kind); 3240 3241 schedule_scx_ops_disable_work(); 3242 } 3243 3244 static void dump_newline(struct seq_buf *s) 3245 { 3246 trace_sched_ext_dump(""); 3247 3248 /* @s may be zero sized and seq_buf triggers WARN if so */ 3249 if (s->size) 3250 seq_buf_putc(s, '\n'); 3251 } 3252 3253 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 3254 { 3255 va_list args; 3256 3257 #ifdef CONFIG_TRACEPOINTS 3258 if (trace_sched_ext_dump_enabled()) { 3259 /* protected by scx_dump_state()::dump_lock */ 3260 static char line_buf[SCX_EXIT_MSG_LEN]; 3261 3262 va_start(args, fmt); 3263 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 3264 va_end(args); 3265 3266 trace_sched_ext_dump(line_buf); 3267 } 3268 #endif 3269 /* @s may be zero sized and seq_buf triggers WARN if so */ 3270 if (s->size) { 3271 va_start(args, fmt); 3272 seq_buf_vprintf(s, fmt, args); 3273 va_end(args); 3274 3275 seq_buf_putc(s, '\n'); 3276 } 3277 } 3278 3279 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 3280 const unsigned long *bt, unsigned int len) 3281 { 3282 unsigned int i; 3283 3284 for (i = 0; i < len; i++) 3285 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 3286 } 3287 3288 static void ops_dump_init(struct seq_buf *s, const char *prefix) 3289 { 3290 struct scx_dump_data *dd = &scx_dump_data; 3291 3292 lockdep_assert_irqs_disabled(); 3293 3294 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 3295 dd->first = true; 3296 dd->cursor = 0; 3297 dd->s = s; 3298 dd->prefix = prefix; 3299 } 3300 3301 static void ops_dump_flush(void) 3302 { 3303 struct scx_dump_data *dd = &scx_dump_data; 3304 char *line = dd->buf.line; 3305 3306 if (!dd->cursor) 3307 return; 3308 3309 /* 3310 * There's something to flush and this is the first line. Insert a blank 3311 * line to distinguish ops dump. 3312 */ 3313 if (dd->first) { 3314 dump_newline(dd->s); 3315 dd->first = false; 3316 } 3317 3318 /* 3319 * There may be multiple lines in $line. Scan and emit each line 3320 * separately. 3321 */ 3322 while (true) { 3323 char *end = line; 3324 char c; 3325 3326 while (*end != '\n' && *end != '\0') 3327 end++; 3328 3329 /* 3330 * If $line overflowed, it may not have newline at the end. 3331 * Always emit with a newline. 3332 */ 3333 c = *end; 3334 *end = '\0'; 3335 dump_line(dd->s, "%s%s", dd->prefix, line); 3336 if (c == '\0') 3337 break; 3338 3339 /* move to the next line */ 3340 end++; 3341 if (*end == '\0') 3342 break; 3343 line = end; 3344 } 3345 3346 dd->cursor = 0; 3347 } 3348 3349 static void ops_dump_exit(void) 3350 { 3351 ops_dump_flush(); 3352 scx_dump_data.cpu = -1; 3353 } 3354 3355 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 3356 struct task_struct *p, char marker) 3357 { 3358 static unsigned long bt[SCX_EXIT_BT_LEN]; 3359 char dsq_id_buf[19] = "(n/a)"; 3360 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 3361 unsigned int bt_len; 3362 3363 if (p->scx.dsq) 3364 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 3365 (unsigned long long)p->scx.dsq->id); 3366 3367 dump_newline(s); 3368 dump_line(s, " %c%c %s[%d] %+ldms", 3369 marker, task_state_to_char(p), p->comm, p->pid, 3370 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 3371 dump_line(s, " scx_state/flags=%u/0x%x ops_state/qseq=%lu/%lu", 3372 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 3373 ops_state & SCX_OPSS_STATE_MASK, 3374 ops_state >> SCX_OPSS_QSEQ_SHIFT); 3375 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s", 3376 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf); 3377 dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr)); 3378 3379 if (SCX_HAS_OP(dump_task)) { 3380 ops_dump_init(s, " "); 3381 SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p); 3382 ops_dump_exit(); 3383 } 3384 3385 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 3386 if (bt_len) { 3387 dump_newline(s); 3388 dump_stack_trace(s, " ", bt, bt_len); 3389 } 3390 } 3391 3392 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 3393 { 3394 static DEFINE_SPINLOCK(dump_lock); 3395 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 3396 struct scx_dump_ctx dctx = { 3397 .kind = ei->kind, 3398 .exit_code = ei->exit_code, 3399 .reason = ei->reason, 3400 .at_ns = ktime_get_ns(), 3401 .at_jiffies = jiffies, 3402 }; 3403 struct seq_buf s; 3404 unsigned long flags; 3405 char *buf; 3406 int cpu; 3407 3408 spin_lock_irqsave(&dump_lock, flags); 3409 3410 seq_buf_init(&s, ei->dump, dump_len); 3411 3412 if (ei->kind == SCX_EXIT_NONE) { 3413 dump_line(&s, "Debug dump triggered by %s", ei->reason); 3414 } else { 3415 dump_line(&s, "%s[%d] triggered exit kind %d:", 3416 current->comm, current->pid, ei->kind); 3417 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 3418 dump_newline(&s); 3419 dump_line(&s, "Backtrace:"); 3420 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 3421 } 3422 3423 if (SCX_HAS_OP(dump)) { 3424 ops_dump_init(&s, ""); 3425 SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx); 3426 ops_dump_exit(); 3427 } 3428 3429 dump_newline(&s); 3430 dump_line(&s, "CPU states"); 3431 dump_line(&s, "----------"); 3432 3433 for_each_possible_cpu(cpu) { 3434 struct rq *rq = cpu_rq(cpu); 3435 struct rq_flags rf; 3436 struct task_struct *p; 3437 struct seq_buf ns; 3438 size_t avail, used; 3439 bool idle; 3440 3441 rq_lock(rq, &rf); 3442 3443 idle = list_empty(&rq->scx.runnable_list) && 3444 rq->curr->sched_class == &idle_sched_class; 3445 3446 if (idle && !SCX_HAS_OP(dump_cpu)) 3447 goto next; 3448 3449 /* 3450 * We don't yet know whether ops.dump_cpu() will produce output 3451 * and we may want to skip the default CPU dump if it doesn't. 3452 * Use a nested seq_buf to generate the standard dump so that we 3453 * can decide whether to commit later. 3454 */ 3455 avail = seq_buf_get_buf(&s, &buf); 3456 seq_buf_init(&ns, buf, avail); 3457 3458 dump_newline(&ns); 3459 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x ops_qseq=%lu", 3460 cpu, rq->scx.nr_running, rq->scx.flags, 3461 rq->scx.ops_qseq); 3462 dump_line(&ns, " curr=%s[%d] class=%ps", 3463 rq->curr->comm, rq->curr->pid, 3464 rq->curr->sched_class); 3465 if (!cpumask_empty(rq->scx.cpus_to_kick)) 3466 dump_line(&ns, " cpus_to_kick : %*pb", 3467 cpumask_pr_args(rq->scx.cpus_to_kick)); 3468 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 3469 dump_line(&ns, " idle_to_kick : %*pb", 3470 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 3471 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 3472 dump_line(&ns, " cpus_to_preempt: %*pb", 3473 cpumask_pr_args(rq->scx.cpus_to_preempt)); 3474 3475 used = seq_buf_used(&ns); 3476 if (SCX_HAS_OP(dump_cpu)) { 3477 ops_dump_init(&ns, " "); 3478 SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle); 3479 ops_dump_exit(); 3480 } 3481 3482 /* 3483 * If idle && nothing generated by ops.dump_cpu(), there's 3484 * nothing interesting. Skip. 3485 */ 3486 if (idle && used == seq_buf_used(&ns)) 3487 goto next; 3488 3489 /* 3490 * $s may already have overflowed when $ns was created. If so, 3491 * calling commit on it will trigger BUG. 3492 */ 3493 if (avail) { 3494 seq_buf_commit(&s, seq_buf_used(&ns)); 3495 if (seq_buf_has_overflowed(&ns)) 3496 seq_buf_set_overflow(&s); 3497 } 3498 3499 if (rq->curr->sched_class == &ext_sched_class) 3500 scx_dump_task(&s, &dctx, rq->curr, '*'); 3501 3502 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 3503 scx_dump_task(&s, &dctx, p, ' '); 3504 next: 3505 rq_unlock(rq, &rf); 3506 } 3507 3508 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 3509 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 3510 trunc_marker, sizeof(trunc_marker)); 3511 3512 spin_unlock_irqrestore(&dump_lock, flags); 3513 } 3514 3515 static void scx_ops_error_irq_workfn(struct irq_work *irq_work) 3516 { 3517 struct scx_exit_info *ei = scx_exit_info; 3518 3519 if (ei->kind >= SCX_EXIT_ERROR) 3520 scx_dump_state(ei, scx_ops.exit_dump_len); 3521 3522 schedule_scx_ops_disable_work(); 3523 } 3524 3525 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn); 3526 3527 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 3528 s64 exit_code, 3529 const char *fmt, ...) 3530 { 3531 struct scx_exit_info *ei = scx_exit_info; 3532 int none = SCX_EXIT_NONE; 3533 va_list args; 3534 3535 if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind)) 3536 return; 3537 3538 ei->exit_code = exit_code; 3539 3540 if (kind >= SCX_EXIT_ERROR) 3541 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 3542 3543 va_start(args, fmt); 3544 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 3545 va_end(args); 3546 3547 /* 3548 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 3549 * in scx_ops_disable_workfn(). 3550 */ 3551 ei->kind = kind; 3552 ei->reason = scx_exit_reason(ei->kind); 3553 3554 irq_work_queue(&scx_ops_error_irq_work); 3555 } 3556 3557 static struct kthread_worker *scx_create_rt_helper(const char *name) 3558 { 3559 struct kthread_worker *helper; 3560 3561 helper = kthread_create_worker(0, name); 3562 if (helper) 3563 sched_set_fifo(helper->task); 3564 return helper; 3565 } 3566 3567 static int validate_ops(const struct sched_ext_ops *ops) 3568 { 3569 /* 3570 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 3571 * ops.enqueue() callback isn't implemented. 3572 */ 3573 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 3574 scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 3575 return -EINVAL; 3576 } 3577 3578 return 0; 3579 } 3580 3581 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link) 3582 { 3583 struct scx_task_iter sti; 3584 struct task_struct *p; 3585 unsigned long timeout; 3586 int i, ret; 3587 3588 mutex_lock(&scx_ops_enable_mutex); 3589 3590 if (!scx_ops_helper) { 3591 WRITE_ONCE(scx_ops_helper, 3592 scx_create_rt_helper("sched_ext_ops_helper")); 3593 if (!scx_ops_helper) { 3594 ret = -ENOMEM; 3595 goto err_unlock; 3596 } 3597 } 3598 3599 if (scx_ops_enable_state() != SCX_OPS_DISABLED) { 3600 ret = -EBUSY; 3601 goto err_unlock; 3602 } 3603 3604 scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL); 3605 if (!scx_root_kobj) { 3606 ret = -ENOMEM; 3607 goto err_unlock; 3608 } 3609 3610 scx_root_kobj->kset = scx_kset; 3611 ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root"); 3612 if (ret < 0) 3613 goto err; 3614 3615 scx_exit_info = alloc_exit_info(ops->exit_dump_len); 3616 if (!scx_exit_info) { 3617 ret = -ENOMEM; 3618 goto err_del; 3619 } 3620 3621 /* 3622 * Set scx_ops, transition to PREPPING and clear exit info to arm the 3623 * disable path. Failure triggers full disabling from here on. 3624 */ 3625 scx_ops = *ops; 3626 3627 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_PREPPING) != 3628 SCX_OPS_DISABLED); 3629 3630 atomic_set(&scx_exit_kind, SCX_EXIT_NONE); 3631 scx_warned_zero_slice = false; 3632 3633 atomic_long_set(&scx_nr_rejected, 0); 3634 3635 /* 3636 * Keep CPUs stable during enable so that the BPF scheduler can track 3637 * online CPUs by watching ->on/offline_cpu() after ->init(). 3638 */ 3639 cpus_read_lock(); 3640 3641 if (scx_ops.init) { 3642 ret = SCX_CALL_OP_RET(SCX_KF_SLEEPABLE, init); 3643 if (ret) { 3644 ret = ops_sanitize_err("init", ret); 3645 goto err_disable_unlock_cpus; 3646 } 3647 } 3648 3649 cpus_read_unlock(); 3650 3651 ret = validate_ops(ops); 3652 if (ret) 3653 goto err_disable; 3654 3655 WARN_ON_ONCE(scx_dsp_ctx); 3656 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 3657 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 3658 scx_dsp_max_batch), 3659 __alignof__(struct scx_dsp_ctx)); 3660 if (!scx_dsp_ctx) { 3661 ret = -ENOMEM; 3662 goto err_disable; 3663 } 3664 3665 if (ops->timeout_ms) 3666 timeout = msecs_to_jiffies(ops->timeout_ms); 3667 else 3668 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 3669 3670 WRITE_ONCE(scx_watchdog_timeout, timeout); 3671 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 3672 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 3673 scx_watchdog_timeout / 2); 3674 3675 /* 3676 * Lock out forks before opening the floodgate so that they don't wander 3677 * into the operations prematurely. 3678 * 3679 * We don't need to keep the CPUs stable but grab cpus_read_lock() to 3680 * ease future locking changes for cgroup suport. 3681 * 3682 * Note that cpu_hotplug_lock must nest inside scx_fork_rwsem due to the 3683 * following dependency chain: 3684 * 3685 * scx_fork_rwsem --> pernet_ops_rwsem --> cpu_hotplug_lock 3686 */ 3687 percpu_down_write(&scx_fork_rwsem); 3688 cpus_read_lock(); 3689 3690 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 3691 if (((void (**)(void))ops)[i]) 3692 static_branch_enable_cpuslocked(&scx_has_op[i]); 3693 3694 if (ops->flags & SCX_OPS_ENQ_LAST) 3695 static_branch_enable_cpuslocked(&scx_ops_enq_last); 3696 3697 if (ops->flags & SCX_OPS_ENQ_EXITING) 3698 static_branch_enable_cpuslocked(&scx_ops_enq_exiting); 3699 3700 if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) { 3701 reset_idle_masks(); 3702 static_branch_enable_cpuslocked(&scx_builtin_idle_enabled); 3703 } else { 3704 static_branch_disable_cpuslocked(&scx_builtin_idle_enabled); 3705 } 3706 3707 static_branch_enable_cpuslocked(&__scx_ops_enabled); 3708 3709 /* 3710 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 3711 * preventing new tasks from being added. No need to exclude tasks 3712 * leaving as sched_ext_free() can handle both prepped and enabled 3713 * tasks. Prep all tasks first and then enable them with preemption 3714 * disabled. 3715 */ 3716 spin_lock_irq(&scx_tasks_lock); 3717 3718 scx_task_iter_init(&sti); 3719 while ((p = scx_task_iter_next_locked(&sti, false))) { 3720 get_task_struct(p); 3721 scx_task_iter_rq_unlock(&sti); 3722 spin_unlock_irq(&scx_tasks_lock); 3723 3724 ret = scx_ops_init_task(p, task_group(p), false); 3725 if (ret) { 3726 put_task_struct(p); 3727 spin_lock_irq(&scx_tasks_lock); 3728 scx_task_iter_exit(&sti); 3729 spin_unlock_irq(&scx_tasks_lock); 3730 pr_err("sched_ext: ops.init_task() failed (%d) for %s[%d] while loading\n", 3731 ret, p->comm, p->pid); 3732 goto err_disable_unlock_all; 3733 } 3734 3735 put_task_struct(p); 3736 spin_lock_irq(&scx_tasks_lock); 3737 } 3738 scx_task_iter_exit(&sti); 3739 3740 /* 3741 * All tasks are prepped but are still ops-disabled. Ensure that 3742 * %current can't be scheduled out and switch everyone. 3743 * preempt_disable() is necessary because we can't guarantee that 3744 * %current won't be starved if scheduled out while switching. 3745 */ 3746 preempt_disable(); 3747 3748 /* 3749 * From here on, the disable path must assume that tasks have ops 3750 * enabled and need to be recovered. 3751 * 3752 * Transition to ENABLING fails iff the BPF scheduler has already 3753 * triggered scx_bpf_error(). Returning an error code here would lose 3754 * the recorded error information. Exit indicating success so that the 3755 * error is notified through ops.exit() with all the details. 3756 */ 3757 if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLING, SCX_OPS_PREPPING)) { 3758 preempt_enable(); 3759 spin_unlock_irq(&scx_tasks_lock); 3760 WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); 3761 ret = 0; 3762 goto err_disable_unlock_all; 3763 } 3764 3765 /* 3766 * We're fully committed and can't fail. The PREPPED -> ENABLED 3767 * transitions here are synchronized against sched_ext_free() through 3768 * scx_tasks_lock. 3769 */ 3770 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 3771 3772 scx_task_iter_init(&sti); 3773 while ((p = scx_task_iter_next_locked(&sti, false))) { 3774 const struct sched_class *old_class = p->sched_class; 3775 struct sched_enq_and_set_ctx ctx; 3776 3777 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 3778 3779 scx_set_task_state(p, SCX_TASK_READY); 3780 __setscheduler_prio(p, p->prio); 3781 check_class_changing(task_rq(p), p, old_class); 3782 3783 sched_enq_and_set_task(&ctx); 3784 3785 check_class_changed(task_rq(p), p, old_class, p->prio); 3786 } 3787 scx_task_iter_exit(&sti); 3788 3789 spin_unlock_irq(&scx_tasks_lock); 3790 preempt_enable(); 3791 cpus_read_unlock(); 3792 percpu_up_write(&scx_fork_rwsem); 3793 3794 /* see above ENABLING transition for the explanation on exiting with 0 */ 3795 if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) { 3796 WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); 3797 ret = 0; 3798 goto err_disable; 3799 } 3800 3801 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 3802 static_branch_enable(&__scx_switched_all); 3803 3804 kobject_uevent(scx_root_kobj, KOBJ_ADD); 3805 mutex_unlock(&scx_ops_enable_mutex); 3806 3807 return 0; 3808 3809 err_del: 3810 kobject_del(scx_root_kobj); 3811 err: 3812 kobject_put(scx_root_kobj); 3813 scx_root_kobj = NULL; 3814 if (scx_exit_info) { 3815 free_exit_info(scx_exit_info); 3816 scx_exit_info = NULL; 3817 } 3818 err_unlock: 3819 mutex_unlock(&scx_ops_enable_mutex); 3820 return ret; 3821 3822 err_disable_unlock_all: 3823 percpu_up_write(&scx_fork_rwsem); 3824 err_disable_unlock_cpus: 3825 cpus_read_unlock(); 3826 err_disable: 3827 mutex_unlock(&scx_ops_enable_mutex); 3828 /* must be fully disabled before returning */ 3829 scx_ops_disable(SCX_EXIT_ERROR); 3830 kthread_flush_work(&scx_ops_disable_work); 3831 return ret; 3832 } 3833 3834 3835 /******************************************************************************** 3836 * bpf_struct_ops plumbing. 3837 */ 3838 #include <linux/bpf_verifier.h> 3839 #include <linux/bpf.h> 3840 #include <linux/btf.h> 3841 3842 extern struct btf *btf_vmlinux; 3843 static const struct btf_type *task_struct_type; 3844 static u32 task_struct_type_id; 3845 3846 static bool set_arg_maybe_null(const char *op, int arg_n, int off, int size, 3847 enum bpf_access_type type, 3848 const struct bpf_prog *prog, 3849 struct bpf_insn_access_aux *info) 3850 { 3851 struct btf *btf = bpf_get_btf_vmlinux(); 3852 const struct bpf_struct_ops_desc *st_ops_desc; 3853 const struct btf_member *member; 3854 const struct btf_type *t; 3855 u32 btf_id, member_idx; 3856 const char *mname; 3857 3858 /* struct_ops op args are all sequential, 64-bit numbers */ 3859 if (off != arg_n * sizeof(__u64)) 3860 return false; 3861 3862 /* btf_id should be the type id of struct sched_ext_ops */ 3863 btf_id = prog->aux->attach_btf_id; 3864 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 3865 if (!st_ops_desc) 3866 return false; 3867 3868 /* BTF type of struct sched_ext_ops */ 3869 t = st_ops_desc->type; 3870 3871 member_idx = prog->expected_attach_type; 3872 if (member_idx >= btf_type_vlen(t)) 3873 return false; 3874 3875 /* 3876 * Get the member name of this struct_ops program, which corresponds to 3877 * a field in struct sched_ext_ops. For example, the member name of the 3878 * dispatch struct_ops program (callback) is "dispatch". 3879 */ 3880 member = &btf_type_member(t)[member_idx]; 3881 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 3882 3883 if (!strcmp(mname, op)) { 3884 /* 3885 * The value is a pointer to a type (struct task_struct) given 3886 * by a BTF ID (PTR_TO_BTF_ID). It is trusted (PTR_TRUSTED), 3887 * however, can be a NULL (PTR_MAYBE_NULL). The BPF program 3888 * should check the pointer to make sure it is not NULL before 3889 * using it, or the verifier will reject the program. 3890 * 3891 * Longer term, this is something that should be addressed by 3892 * BTF, and be fully contained within the verifier. 3893 */ 3894 info->reg_type = PTR_MAYBE_NULL | PTR_TO_BTF_ID | PTR_TRUSTED; 3895 info->btf = btf_vmlinux; 3896 info->btf_id = task_struct_type_id; 3897 3898 return true; 3899 } 3900 3901 return false; 3902 } 3903 3904 static bool bpf_scx_is_valid_access(int off, int size, 3905 enum bpf_access_type type, 3906 const struct bpf_prog *prog, 3907 struct bpf_insn_access_aux *info) 3908 { 3909 if (type != BPF_READ) 3910 return false; 3911 if (set_arg_maybe_null("dispatch", 1, off, size, type, prog, info) || 3912 set_arg_maybe_null("yield", 1, off, size, type, prog, info)) 3913 return true; 3914 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 3915 return false; 3916 if (off % size != 0) 3917 return false; 3918 3919 return btf_ctx_access(off, size, type, prog, info); 3920 } 3921 3922 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 3923 const struct bpf_reg_state *reg, int off, 3924 int size) 3925 { 3926 const struct btf_type *t; 3927 3928 t = btf_type_by_id(reg->btf, reg->btf_id); 3929 if (t == task_struct_type) { 3930 if (off >= offsetof(struct task_struct, scx.slice) && 3931 off + size <= offsetofend(struct task_struct, scx.slice)) 3932 return SCALAR_VALUE; 3933 if (off >= offsetof(struct task_struct, scx.disallow) && 3934 off + size <= offsetofend(struct task_struct, scx.disallow)) 3935 return SCALAR_VALUE; 3936 } 3937 3938 return -EACCES; 3939 } 3940 3941 static const struct bpf_func_proto * 3942 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 3943 { 3944 switch (func_id) { 3945 case BPF_FUNC_task_storage_get: 3946 return &bpf_task_storage_get_proto; 3947 case BPF_FUNC_task_storage_delete: 3948 return &bpf_task_storage_delete_proto; 3949 default: 3950 return bpf_base_func_proto(func_id, prog); 3951 } 3952 } 3953 3954 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 3955 .get_func_proto = bpf_scx_get_func_proto, 3956 .is_valid_access = bpf_scx_is_valid_access, 3957 .btf_struct_access = bpf_scx_btf_struct_access, 3958 }; 3959 3960 static int bpf_scx_init_member(const struct btf_type *t, 3961 const struct btf_member *member, 3962 void *kdata, const void *udata) 3963 { 3964 const struct sched_ext_ops *uops = udata; 3965 struct sched_ext_ops *ops = kdata; 3966 u32 moff = __btf_member_bit_offset(t, member) / 8; 3967 int ret; 3968 3969 switch (moff) { 3970 case offsetof(struct sched_ext_ops, dispatch_max_batch): 3971 if (*(u32 *)(udata + moff) > INT_MAX) 3972 return -E2BIG; 3973 ops->dispatch_max_batch = *(u32 *)(udata + moff); 3974 return 1; 3975 case offsetof(struct sched_ext_ops, flags): 3976 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 3977 return -EINVAL; 3978 ops->flags = *(u64 *)(udata + moff); 3979 return 1; 3980 case offsetof(struct sched_ext_ops, name): 3981 ret = bpf_obj_name_cpy(ops->name, uops->name, 3982 sizeof(ops->name)); 3983 if (ret < 0) 3984 return ret; 3985 if (ret == 0) 3986 return -EINVAL; 3987 return 1; 3988 case offsetof(struct sched_ext_ops, timeout_ms): 3989 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 3990 SCX_WATCHDOG_MAX_TIMEOUT) 3991 return -E2BIG; 3992 ops->timeout_ms = *(u32 *)(udata + moff); 3993 return 1; 3994 case offsetof(struct sched_ext_ops, exit_dump_len): 3995 ops->exit_dump_len = 3996 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 3997 return 1; 3998 } 3999 4000 return 0; 4001 } 4002 4003 static int bpf_scx_check_member(const struct btf_type *t, 4004 const struct btf_member *member, 4005 const struct bpf_prog *prog) 4006 { 4007 u32 moff = __btf_member_bit_offset(t, member) / 8; 4008 4009 switch (moff) { 4010 case offsetof(struct sched_ext_ops, init_task): 4011 case offsetof(struct sched_ext_ops, init): 4012 case offsetof(struct sched_ext_ops, exit): 4013 break; 4014 default: 4015 if (prog->sleepable) 4016 return -EINVAL; 4017 } 4018 4019 return 0; 4020 } 4021 4022 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 4023 { 4024 return scx_ops_enable(kdata, link); 4025 } 4026 4027 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 4028 { 4029 scx_ops_disable(SCX_EXIT_UNREG); 4030 kthread_flush_work(&scx_ops_disable_work); 4031 } 4032 4033 static int bpf_scx_init(struct btf *btf) 4034 { 4035 u32 type_id; 4036 4037 type_id = btf_find_by_name_kind(btf, "task_struct", BTF_KIND_STRUCT); 4038 if (type_id < 0) 4039 return -EINVAL; 4040 task_struct_type = btf_type_by_id(btf, type_id); 4041 task_struct_type_id = type_id; 4042 4043 return 0; 4044 } 4045 4046 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 4047 { 4048 /* 4049 * sched_ext does not support updating the actively-loaded BPF 4050 * scheduler, as registering a BPF scheduler can always fail if the 4051 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 4052 * etc. Similarly, we can always race with unregistration happening 4053 * elsewhere, such as with sysrq. 4054 */ 4055 return -EOPNOTSUPP; 4056 } 4057 4058 static int bpf_scx_validate(void *kdata) 4059 { 4060 return 0; 4061 } 4062 4063 static s32 select_cpu_stub(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 4064 static void enqueue_stub(struct task_struct *p, u64 enq_flags) {} 4065 static void dequeue_stub(struct task_struct *p, u64 enq_flags) {} 4066 static void dispatch_stub(s32 prev_cpu, struct task_struct *p) {} 4067 static bool yield_stub(struct task_struct *from, struct task_struct *to) { return false; } 4068 static void set_weight_stub(struct task_struct *p, u32 weight) {} 4069 static void set_cpumask_stub(struct task_struct *p, const struct cpumask *mask) {} 4070 static void update_idle_stub(s32 cpu, bool idle) {} 4071 static s32 init_task_stub(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 4072 static void exit_task_stub(struct task_struct *p, struct scx_exit_task_args *args) {} 4073 static void enable_stub(struct task_struct *p) {} 4074 static void disable_stub(struct task_struct *p) {} 4075 static s32 init_stub(void) { return -EINVAL; } 4076 static void exit_stub(struct scx_exit_info *info) {} 4077 4078 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 4079 .select_cpu = select_cpu_stub, 4080 .enqueue = enqueue_stub, 4081 .dequeue = dequeue_stub, 4082 .dispatch = dispatch_stub, 4083 .yield = yield_stub, 4084 .set_weight = set_weight_stub, 4085 .set_cpumask = set_cpumask_stub, 4086 .update_idle = update_idle_stub, 4087 .init_task = init_task_stub, 4088 .exit_task = exit_task_stub, 4089 .enable = enable_stub, 4090 .disable = disable_stub, 4091 .init = init_stub, 4092 .exit = exit_stub, 4093 }; 4094 4095 static struct bpf_struct_ops bpf_sched_ext_ops = { 4096 .verifier_ops = &bpf_scx_verifier_ops, 4097 .reg = bpf_scx_reg, 4098 .unreg = bpf_scx_unreg, 4099 .check_member = bpf_scx_check_member, 4100 .init_member = bpf_scx_init_member, 4101 .init = bpf_scx_init, 4102 .update = bpf_scx_update, 4103 .validate = bpf_scx_validate, 4104 .name = "sched_ext_ops", 4105 .owner = THIS_MODULE, 4106 .cfi_stubs = &__bpf_ops_sched_ext_ops 4107 }; 4108 4109 4110 /******************************************************************************** 4111 * System integration and init. 4112 */ 4113 4114 static void sysrq_handle_sched_ext_reset(u8 key) 4115 { 4116 if (scx_ops_helper) 4117 scx_ops_disable(SCX_EXIT_SYSRQ); 4118 else 4119 pr_info("sched_ext: BPF scheduler not yet used\n"); 4120 } 4121 4122 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 4123 .handler = sysrq_handle_sched_ext_reset, 4124 .help_msg = "reset-sched-ext(S)", 4125 .action_msg = "Disable sched_ext and revert all tasks to CFS", 4126 .enable_mask = SYSRQ_ENABLE_RTNICE, 4127 }; 4128 4129 static void sysrq_handle_sched_ext_dump(u8 key) 4130 { 4131 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 4132 4133 if (scx_enabled()) 4134 scx_dump_state(&ei, 0); 4135 } 4136 4137 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 4138 .handler = sysrq_handle_sched_ext_dump, 4139 .help_msg = "dump-sched-ext(D)", 4140 .action_msg = "Trigger sched_ext debug dump", 4141 .enable_mask = SYSRQ_ENABLE_RTNICE, 4142 }; 4143 4144 static bool can_skip_idle_kick(struct rq *rq) 4145 { 4146 lockdep_assert_rq_held(rq); 4147 4148 /* 4149 * We can skip idle kicking if @rq is going to go through at least one 4150 * full SCX scheduling cycle before going idle. Just checking whether 4151 * curr is not idle is insufficient because we could be racing 4152 * balance_one() trying to pull the next task from a remote rq, which 4153 * may fail, and @rq may become idle afterwards. 4154 * 4155 * The race window is small and we don't and can't guarantee that @rq is 4156 * only kicked while idle anyway. Skip only when sure. 4157 */ 4158 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_BALANCING); 4159 } 4160 4161 static void kick_one_cpu(s32 cpu, struct rq *this_rq) 4162 { 4163 struct rq *rq = cpu_rq(cpu); 4164 struct scx_rq *this_scx = &this_rq->scx; 4165 unsigned long flags; 4166 4167 raw_spin_rq_lock_irqsave(rq, flags); 4168 4169 /* 4170 * During CPU hotplug, a CPU may depend on kicking itself to make 4171 * forward progress. Allow kicking self regardless of online state. 4172 */ 4173 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { 4174 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 4175 if (rq->curr->sched_class == &ext_sched_class) 4176 rq->curr->scx.slice = 0; 4177 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 4178 } 4179 4180 resched_curr(rq); 4181 } else { 4182 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 4183 } 4184 4185 raw_spin_rq_unlock_irqrestore(rq, flags); 4186 } 4187 4188 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 4189 { 4190 struct rq *rq = cpu_rq(cpu); 4191 unsigned long flags; 4192 4193 raw_spin_rq_lock_irqsave(rq, flags); 4194 4195 if (!can_skip_idle_kick(rq) && 4196 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 4197 resched_curr(rq); 4198 4199 raw_spin_rq_unlock_irqrestore(rq, flags); 4200 } 4201 4202 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 4203 { 4204 struct rq *this_rq = this_rq(); 4205 struct scx_rq *this_scx = &this_rq->scx; 4206 s32 cpu; 4207 4208 for_each_cpu(cpu, this_scx->cpus_to_kick) { 4209 kick_one_cpu(cpu, this_rq); 4210 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 4211 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 4212 } 4213 4214 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 4215 kick_one_cpu_if_idle(cpu, this_rq); 4216 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 4217 } 4218 } 4219 4220 /** 4221 * print_scx_info - print out sched_ext scheduler state 4222 * @log_lvl: the log level to use when printing 4223 * @p: target task 4224 * 4225 * If a sched_ext scheduler is enabled, print the name and state of the 4226 * scheduler. If @p is on sched_ext, print further information about the task. 4227 * 4228 * This function can be safely called on any task as long as the task_struct 4229 * itself is accessible. While safe, this function isn't synchronized and may 4230 * print out mixups or garbages of limited length. 4231 */ 4232 void print_scx_info(const char *log_lvl, struct task_struct *p) 4233 { 4234 enum scx_ops_enable_state state = scx_ops_enable_state(); 4235 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 4236 char runnable_at_buf[22] = "?"; 4237 struct sched_class *class; 4238 unsigned long runnable_at; 4239 4240 if (state == SCX_OPS_DISABLED) 4241 return; 4242 4243 /* 4244 * Carefully check if the task was running on sched_ext, and then 4245 * carefully copy the time it's been runnable, and its state. 4246 */ 4247 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 4248 class != &ext_sched_class) { 4249 printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name, 4250 scx_ops_enable_state_str[state], all); 4251 return; 4252 } 4253 4254 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 4255 sizeof(runnable_at))) 4256 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 4257 jiffies_delta_msecs(runnable_at, jiffies)); 4258 4259 /* print everything onto one line to conserve console space */ 4260 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 4261 log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all, 4262 runnable_at_buf); 4263 } 4264 4265 void __init init_sched_ext_class(void) 4266 { 4267 s32 cpu, v; 4268 4269 /* 4270 * The following is to prevent the compiler from optimizing out the enum 4271 * definitions so that BPF scheduler implementations can use them 4272 * through the generated vmlinux.h. 4273 */ 4274 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT); 4275 4276 BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params)); 4277 init_dsq(&scx_dsq_global, SCX_DSQ_GLOBAL); 4278 #ifdef CONFIG_SMP 4279 BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL)); 4280 BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL)); 4281 #endif 4282 for_each_possible_cpu(cpu) { 4283 struct rq *rq = cpu_rq(cpu); 4284 4285 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 4286 INIT_LIST_HEAD(&rq->scx.runnable_list); 4287 4288 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL)); 4289 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL)); 4290 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL)); 4291 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); 4292 } 4293 4294 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 4295 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 4296 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 4297 } 4298 4299 4300 /******************************************************************************** 4301 * Helpers that can be called from the BPF scheduler. 4302 */ 4303 #include <linux/btf_ids.h> 4304 4305 __bpf_kfunc_start_defs(); 4306 4307 /** 4308 * scx_bpf_create_dsq - Create a custom DSQ 4309 * @dsq_id: DSQ to create 4310 * @node: NUMA node to allocate from 4311 * 4312 * Create a custom DSQ identified by @dsq_id. Can be called from ops.init() and 4313 * ops.init_task(). 4314 */ 4315 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 4316 { 4317 if (!scx_kf_allowed(SCX_KF_SLEEPABLE)) 4318 return -EINVAL; 4319 4320 if (unlikely(node >= (int)nr_node_ids || 4321 (node < 0 && node != NUMA_NO_NODE))) 4322 return -EINVAL; 4323 return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node)); 4324 } 4325 4326 __bpf_kfunc_end_defs(); 4327 4328 BTF_KFUNCS_START(scx_kfunc_ids_sleepable) 4329 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 4330 BTF_KFUNCS_END(scx_kfunc_ids_sleepable) 4331 4332 static const struct btf_kfunc_id_set scx_kfunc_set_sleepable = { 4333 .owner = THIS_MODULE, 4334 .set = &scx_kfunc_ids_sleepable, 4335 }; 4336 4337 __bpf_kfunc_start_defs(); 4338 4339 /** 4340 * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu() 4341 * @p: task_struct to select a CPU for 4342 * @prev_cpu: CPU @p was on previously 4343 * @wake_flags: %SCX_WAKE_* flags 4344 * @is_idle: out parameter indicating whether the returned CPU is idle 4345 * 4346 * Can only be called from ops.select_cpu() if the built-in CPU selection is 4347 * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set. 4348 * @p, @prev_cpu and @wake_flags match ops.select_cpu(). 4349 * 4350 * Returns the picked CPU with *@is_idle indicating whether the picked CPU is 4351 * currently idle and thus a good candidate for direct dispatching. 4352 */ 4353 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 4354 u64 wake_flags, bool *is_idle) 4355 { 4356 if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) { 4357 *is_idle = false; 4358 return prev_cpu; 4359 } 4360 #ifdef CONFIG_SMP 4361 return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle); 4362 #else 4363 *is_idle = false; 4364 return prev_cpu; 4365 #endif 4366 } 4367 4368 __bpf_kfunc_end_defs(); 4369 4370 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu) 4371 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU) 4372 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu) 4373 4374 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = { 4375 .owner = THIS_MODULE, 4376 .set = &scx_kfunc_ids_select_cpu, 4377 }; 4378 4379 static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags) 4380 { 4381 if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 4382 return false; 4383 4384 lockdep_assert_irqs_disabled(); 4385 4386 if (unlikely(!p)) { 4387 scx_ops_error("called with NULL task"); 4388 return false; 4389 } 4390 4391 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 4392 scx_ops_error("invalid enq_flags 0x%llx", enq_flags); 4393 return false; 4394 } 4395 4396 return true; 4397 } 4398 4399 static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags) 4400 { 4401 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 4402 struct task_struct *ddsp_task; 4403 4404 ddsp_task = __this_cpu_read(direct_dispatch_task); 4405 if (ddsp_task) { 4406 mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags); 4407 return; 4408 } 4409 4410 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 4411 scx_ops_error("dispatch buffer overflow"); 4412 return; 4413 } 4414 4415 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 4416 .task = p, 4417 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 4418 .dsq_id = dsq_id, 4419 .enq_flags = enq_flags, 4420 }; 4421 } 4422 4423 __bpf_kfunc_start_defs(); 4424 4425 /** 4426 * scx_bpf_dispatch - Dispatch a task into the FIFO queue of a DSQ 4427 * @p: task_struct to dispatch 4428 * @dsq_id: DSQ to dispatch to 4429 * @slice: duration @p can run for in nsecs 4430 * @enq_flags: SCX_ENQ_* 4431 * 4432 * Dispatch @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe 4433 * to call this function spuriously. Can be called from ops.enqueue(), 4434 * ops.select_cpu(), and ops.dispatch(). 4435 * 4436 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 4437 * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be 4438 * used to target the local DSQ of a CPU other than the enqueueing one. Use 4439 * ops.select_cpu() to be on the target CPU in the first place. 4440 * 4441 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 4442 * will be directly dispatched to the corresponding dispatch queue after 4443 * ops.select_cpu() returns. If @p is dispatched to SCX_DSQ_LOCAL, it will be 4444 * dispatched to the local DSQ of the CPU returned by ops.select_cpu(). 4445 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 4446 * task is dispatched. 4447 * 4448 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 4449 * and this function can be called upto ops.dispatch_max_batch times to dispatch 4450 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 4451 * remaining slots. scx_bpf_consume() flushes the batch and resets the counter. 4452 * 4453 * This function doesn't have any locking restrictions and may be called under 4454 * BPF locks (in the future when BPF introduces more flexible locking). 4455 * 4456 * @p is allowed to run for @slice. The scheduling path is triggered on slice 4457 * exhaustion. If zero, the current residual slice is maintained. 4458 */ 4459 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice, 4460 u64 enq_flags) 4461 { 4462 if (!scx_dispatch_preamble(p, enq_flags)) 4463 return; 4464 4465 if (slice) 4466 p->scx.slice = slice; 4467 else 4468 p->scx.slice = p->scx.slice ?: 1; 4469 4470 scx_dispatch_commit(p, dsq_id, enq_flags); 4471 } 4472 4473 __bpf_kfunc_end_defs(); 4474 4475 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 4476 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU) 4477 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 4478 4479 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 4480 .owner = THIS_MODULE, 4481 .set = &scx_kfunc_ids_enqueue_dispatch, 4482 }; 4483 4484 __bpf_kfunc_start_defs(); 4485 4486 /** 4487 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 4488 * 4489 * Can only be called from ops.dispatch(). 4490 */ 4491 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 4492 { 4493 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 4494 return 0; 4495 4496 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 4497 } 4498 4499 /** 4500 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 4501 * 4502 * Cancel the latest dispatch. Can be called multiple times to cancel further 4503 * dispatches. Can only be called from ops.dispatch(). 4504 */ 4505 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 4506 { 4507 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 4508 4509 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 4510 return; 4511 4512 if (dspc->cursor > 0) 4513 dspc->cursor--; 4514 else 4515 scx_ops_error("dispatch buffer underflow"); 4516 } 4517 4518 /** 4519 * scx_bpf_consume - Transfer a task from a DSQ to the current CPU's local DSQ 4520 * @dsq_id: DSQ to consume 4521 * 4522 * Consume a task from the non-local DSQ identified by @dsq_id and transfer it 4523 * to the current CPU's local DSQ for execution. Can only be called from 4524 * ops.dispatch(). 4525 * 4526 * This function flushes the in-flight dispatches from scx_bpf_dispatch() before 4527 * trying to consume the specified DSQ. It may also grab rq locks and thus can't 4528 * be called under any BPF locks. 4529 * 4530 * Returns %true if a task has been consumed, %false if there isn't any task to 4531 * consume. 4532 */ 4533 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id) 4534 { 4535 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 4536 struct scx_dispatch_q *dsq; 4537 4538 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 4539 return false; 4540 4541 flush_dispatch_buf(dspc->rq, dspc->rf); 4542 4543 dsq = find_non_local_dsq(dsq_id); 4544 if (unlikely(!dsq)) { 4545 scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id); 4546 return false; 4547 } 4548 4549 if (consume_dispatch_q(dspc->rq, dspc->rf, dsq)) { 4550 /* 4551 * A successfully consumed task can be dequeued before it starts 4552 * running while the CPU is trying to migrate other dispatched 4553 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 4554 * local DSQ. 4555 */ 4556 dspc->nr_tasks++; 4557 return true; 4558 } else { 4559 return false; 4560 } 4561 } 4562 4563 __bpf_kfunc_end_defs(); 4564 4565 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 4566 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 4567 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 4568 BTF_ID_FLAGS(func, scx_bpf_consume) 4569 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 4570 4571 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 4572 .owner = THIS_MODULE, 4573 .set = &scx_kfunc_ids_dispatch, 4574 }; 4575 4576 __bpf_kfunc_start_defs(); 4577 4578 /** 4579 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 4580 * @cpu: cpu to kick 4581 * @flags: %SCX_KICK_* flags 4582 * 4583 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 4584 * trigger rescheduling on a busy CPU. This can be called from any online 4585 * scx_ops operation and the actual kicking is performed asynchronously through 4586 * an irq work. 4587 */ 4588 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 4589 { 4590 struct rq *this_rq; 4591 unsigned long irq_flags; 4592 4593 if (!ops_cpu_valid(cpu, NULL)) 4594 return; 4595 4596 /* 4597 * While bypassing for PM ops, IRQ handling may not be online which can 4598 * lead to irq_work_queue() malfunction such as infinite busy wait for 4599 * IRQ status update. Suppress kicking. 4600 */ 4601 if (scx_ops_bypassing()) 4602 return; 4603 4604 local_irq_save(irq_flags); 4605 4606 this_rq = this_rq(); 4607 4608 /* 4609 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 4610 * rq locks. We can probably be smarter and avoid bouncing if called 4611 * from ops which don't hold a rq lock. 4612 */ 4613 if (flags & SCX_KICK_IDLE) { 4614 struct rq *target_rq = cpu_rq(cpu); 4615 4616 if (unlikely(flags & SCX_KICK_PREEMPT)) 4617 scx_ops_error("PREEMPT cannot be used with SCX_KICK_IDLE"); 4618 4619 if (raw_spin_rq_trylock(target_rq)) { 4620 if (can_skip_idle_kick(target_rq)) { 4621 raw_spin_rq_unlock(target_rq); 4622 goto out; 4623 } 4624 raw_spin_rq_unlock(target_rq); 4625 } 4626 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 4627 } else { 4628 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 4629 4630 if (flags & SCX_KICK_PREEMPT) 4631 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 4632 } 4633 4634 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 4635 out: 4636 local_irq_restore(irq_flags); 4637 } 4638 4639 /** 4640 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 4641 * @dsq_id: id of the DSQ 4642 * 4643 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 4644 * -%ENOENT is returned. 4645 */ 4646 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 4647 { 4648 struct scx_dispatch_q *dsq; 4649 s32 ret; 4650 4651 preempt_disable(); 4652 4653 if (dsq_id == SCX_DSQ_LOCAL) { 4654 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 4655 goto out; 4656 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 4657 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 4658 4659 if (ops_cpu_valid(cpu, NULL)) { 4660 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 4661 goto out; 4662 } 4663 } else { 4664 dsq = find_non_local_dsq(dsq_id); 4665 if (dsq) { 4666 ret = READ_ONCE(dsq->nr); 4667 goto out; 4668 } 4669 } 4670 ret = -ENOENT; 4671 out: 4672 preempt_enable(); 4673 return ret; 4674 } 4675 4676 /** 4677 * scx_bpf_destroy_dsq - Destroy a custom DSQ 4678 * @dsq_id: DSQ to destroy 4679 * 4680 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 4681 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 4682 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 4683 * which doesn't exist. Can be called from any online scx_ops operations. 4684 */ 4685 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 4686 { 4687 destroy_dsq(dsq_id); 4688 } 4689 4690 __bpf_kfunc_end_defs(); 4691 4692 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size, 4693 char *fmt, unsigned long long *data, u32 data__sz) 4694 { 4695 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 4696 s32 ret; 4697 4698 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 4699 (data__sz && !data)) { 4700 scx_ops_error("invalid data=%p and data__sz=%u", 4701 (void *)data, data__sz); 4702 return -EINVAL; 4703 } 4704 4705 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 4706 if (ret < 0) { 4707 scx_ops_error("failed to read data fields (%d)", ret); 4708 return ret; 4709 } 4710 4711 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 4712 &bprintf_data); 4713 if (ret < 0) { 4714 scx_ops_error("format preparation failed (%d)", ret); 4715 return ret; 4716 } 4717 4718 ret = bstr_printf(line_buf, line_size, fmt, 4719 bprintf_data.bin_args); 4720 bpf_bprintf_cleanup(&bprintf_data); 4721 if (ret < 0) { 4722 scx_ops_error("(\"%s\", %p, %u) failed to format", 4723 fmt, data, data__sz); 4724 return ret; 4725 } 4726 4727 return ret; 4728 } 4729 4730 static s32 bstr_format(struct scx_bstr_buf *buf, 4731 char *fmt, unsigned long long *data, u32 data__sz) 4732 { 4733 return __bstr_format(buf->data, buf->line, sizeof(buf->line), 4734 fmt, data, data__sz); 4735 } 4736 4737 __bpf_kfunc_start_defs(); 4738 4739 /** 4740 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 4741 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 4742 * @fmt: error message format string 4743 * @data: format string parameters packaged using ___bpf_fill() macro 4744 * @data__sz: @data len, must end in '__sz' for the verifier 4745 * 4746 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 4747 * disabling. 4748 */ 4749 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 4750 unsigned long long *data, u32 data__sz) 4751 { 4752 unsigned long flags; 4753 4754 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 4755 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 4756 scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s", 4757 scx_exit_bstr_buf.line); 4758 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 4759 } 4760 4761 /** 4762 * scx_bpf_error_bstr - Indicate fatal error 4763 * @fmt: error message format string 4764 * @data: format string parameters packaged using ___bpf_fill() macro 4765 * @data__sz: @data len, must end in '__sz' for the verifier 4766 * 4767 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 4768 * disabling. 4769 */ 4770 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 4771 u32 data__sz) 4772 { 4773 unsigned long flags; 4774 4775 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 4776 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 4777 scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s", 4778 scx_exit_bstr_buf.line); 4779 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 4780 } 4781 4782 /** 4783 * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler 4784 * @fmt: format string 4785 * @data: format string parameters packaged using ___bpf_fill() macro 4786 * @data__sz: @data len, must end in '__sz' for the verifier 4787 * 4788 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 4789 * dump_task() to generate extra debug dump specific to the BPF scheduler. 4790 * 4791 * The extra dump may be multiple lines. A single line may be split over 4792 * multiple calls. The last line is automatically terminated. 4793 */ 4794 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 4795 u32 data__sz) 4796 { 4797 struct scx_dump_data *dd = &scx_dump_data; 4798 struct scx_bstr_buf *buf = &dd->buf; 4799 s32 ret; 4800 4801 if (raw_smp_processor_id() != dd->cpu) { 4802 scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends"); 4803 return; 4804 } 4805 4806 /* append the formatted string to the line buf */ 4807 ret = __bstr_format(buf->data, buf->line + dd->cursor, 4808 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 4809 if (ret < 0) { 4810 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 4811 dd->prefix, fmt, data, data__sz, ret); 4812 return; 4813 } 4814 4815 dd->cursor += ret; 4816 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 4817 4818 if (!dd->cursor) 4819 return; 4820 4821 /* 4822 * If the line buf overflowed or ends in a newline, flush it into the 4823 * dump. This is to allow the caller to generate a single line over 4824 * multiple calls. As ops_dump_flush() can also handle multiple lines in 4825 * the line buf, the only case which can lead to an unexpected 4826 * truncation is when the caller keeps generating newlines in the middle 4827 * instead of the end consecutively. Don't do that. 4828 */ 4829 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 4830 ops_dump_flush(); 4831 } 4832 4833 /** 4834 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 4835 * 4836 * All valid CPU IDs in the system are smaller than the returned value. 4837 */ 4838 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 4839 { 4840 return nr_cpu_ids; 4841 } 4842 4843 /** 4844 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 4845 */ 4846 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 4847 { 4848 return cpu_possible_mask; 4849 } 4850 4851 /** 4852 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 4853 */ 4854 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 4855 { 4856 return cpu_online_mask; 4857 } 4858 4859 /** 4860 * scx_bpf_put_cpumask - Release a possible/online cpumask 4861 * @cpumask: cpumask to release 4862 */ 4863 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 4864 { 4865 /* 4866 * Empty function body because we aren't actually acquiring or releasing 4867 * a reference to a global cpumask, which is read-only in the caller and 4868 * is never released. The acquire / release semantics here are just used 4869 * to make the cpumask is a trusted pointer in the caller. 4870 */ 4871 } 4872 4873 /** 4874 * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking 4875 * per-CPU cpumask. 4876 * 4877 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 4878 */ 4879 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void) 4880 { 4881 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 4882 scx_ops_error("built-in idle tracking is disabled"); 4883 return cpu_none_mask; 4884 } 4885 4886 #ifdef CONFIG_SMP 4887 return idle_masks.cpu; 4888 #else 4889 return cpu_none_mask; 4890 #endif 4891 } 4892 4893 /** 4894 * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking, 4895 * per-physical-core cpumask. Can be used to determine if an entire physical 4896 * core is free. 4897 * 4898 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 4899 */ 4900 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void) 4901 { 4902 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 4903 scx_ops_error("built-in idle tracking is disabled"); 4904 return cpu_none_mask; 4905 } 4906 4907 #ifdef CONFIG_SMP 4908 if (sched_smt_active()) 4909 return idle_masks.smt; 4910 else 4911 return idle_masks.cpu; 4912 #else 4913 return cpu_none_mask; 4914 #endif 4915 } 4916 4917 /** 4918 * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to 4919 * either the percpu, or SMT idle-tracking cpumask. 4920 */ 4921 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask) 4922 { 4923 /* 4924 * Empty function body because we aren't actually acquiring or releasing 4925 * a reference to a global idle cpumask, which is read-only in the 4926 * caller and is never released. The acquire / release semantics here 4927 * are just used to make the cpumask a trusted pointer in the caller. 4928 */ 4929 } 4930 4931 /** 4932 * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state 4933 * @cpu: cpu to test and clear idle for 4934 * 4935 * Returns %true if @cpu was idle and its idle state was successfully cleared. 4936 * %false otherwise. 4937 * 4938 * Unavailable if ops.update_idle() is implemented and 4939 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 4940 */ 4941 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) 4942 { 4943 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 4944 scx_ops_error("built-in idle tracking is disabled"); 4945 return false; 4946 } 4947 4948 if (ops_cpu_valid(cpu, NULL)) 4949 return test_and_clear_cpu_idle(cpu); 4950 else 4951 return false; 4952 } 4953 4954 /** 4955 * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu 4956 * @cpus_allowed: Allowed cpumask 4957 * @flags: %SCX_PICK_IDLE_CPU_* flags 4958 * 4959 * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu 4960 * number on success. -%EBUSY if no matching cpu was found. 4961 * 4962 * Idle CPU tracking may race against CPU scheduling state transitions. For 4963 * example, this function may return -%EBUSY as CPUs are transitioning into the 4964 * idle state. If the caller then assumes that there will be dispatch events on 4965 * the CPUs as they were all busy, the scheduler may end up stalling with CPUs 4966 * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and 4967 * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch 4968 * event in the near future. 4969 * 4970 * Unavailable if ops.update_idle() is implemented and 4971 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 4972 */ 4973 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed, 4974 u64 flags) 4975 { 4976 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 4977 scx_ops_error("built-in idle tracking is disabled"); 4978 return -EBUSY; 4979 } 4980 4981 return scx_pick_idle_cpu(cpus_allowed, flags); 4982 } 4983 4984 /** 4985 * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU 4986 * @cpus_allowed: Allowed cpumask 4987 * @flags: %SCX_PICK_IDLE_CPU_* flags 4988 * 4989 * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any 4990 * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu 4991 * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is 4992 * empty. 4993 * 4994 * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not 4995 * set, this function can't tell which CPUs are idle and will always pick any 4996 * CPU. 4997 */ 4998 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed, 4999 u64 flags) 5000 { 5001 s32 cpu; 5002 5003 if (static_branch_likely(&scx_builtin_idle_enabled)) { 5004 cpu = scx_pick_idle_cpu(cpus_allowed, flags); 5005 if (cpu >= 0) 5006 return cpu; 5007 } 5008 5009 cpu = cpumask_any_distribute(cpus_allowed); 5010 if (cpu < nr_cpu_ids) 5011 return cpu; 5012 else 5013 return -EBUSY; 5014 } 5015 5016 /** 5017 * scx_bpf_task_running - Is task currently running? 5018 * @p: task of interest 5019 */ 5020 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 5021 { 5022 return task_rq(p)->curr == p; 5023 } 5024 5025 /** 5026 * scx_bpf_task_cpu - CPU a task is currently associated with 5027 * @p: task of interest 5028 */ 5029 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 5030 { 5031 return task_cpu(p); 5032 } 5033 5034 __bpf_kfunc_end_defs(); 5035 5036 BTF_KFUNCS_START(scx_kfunc_ids_any) 5037 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 5038 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 5039 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 5040 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 5041 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 5042 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 5043 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 5044 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 5045 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 5046 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 5047 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE) 5048 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE) 5049 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE) 5050 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle) 5051 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU) 5052 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU) 5053 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 5054 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 5055 BTF_KFUNCS_END(scx_kfunc_ids_any) 5056 5057 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 5058 .owner = THIS_MODULE, 5059 .set = &scx_kfunc_ids_any, 5060 }; 5061 5062 static int __init scx_init(void) 5063 { 5064 int ret; 5065 5066 /* 5067 * kfunc registration can't be done from init_sched_ext_class() as 5068 * register_btf_kfunc_id_set() needs most of the system to be up. 5069 * 5070 * Some kfuncs are context-sensitive and can only be called from 5071 * specific SCX ops. They are grouped into BTF sets accordingly. 5072 * Unfortunately, BPF currently doesn't have a way of enforcing such 5073 * restrictions. Eventually, the verifier should be able to enforce 5074 * them. For now, register them the same and make each kfunc explicitly 5075 * check using scx_kf_allowed(). 5076 */ 5077 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 5078 &scx_kfunc_set_sleepable)) || 5079 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 5080 &scx_kfunc_set_select_cpu)) || 5081 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 5082 &scx_kfunc_set_enqueue_dispatch)) || 5083 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 5084 &scx_kfunc_set_dispatch)) || 5085 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 5086 &scx_kfunc_set_any)) || 5087 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 5088 &scx_kfunc_set_any)) || 5089 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 5090 &scx_kfunc_set_any))) { 5091 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 5092 return ret; 5093 } 5094 5095 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 5096 if (ret) { 5097 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 5098 return ret; 5099 } 5100 5101 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 5102 if (!scx_kset) { 5103 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 5104 return -ENOMEM; 5105 } 5106 5107 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 5108 if (ret < 0) { 5109 pr_err("sched_ext: Failed to add global attributes\n"); 5110 return ret; 5111 } 5112 5113 return 0; 5114 } 5115 __initcall(scx_init); 5116