xref: /linux/kernel/sched/ext.c (revision 8195136669661fdfe54e9a8923c33b31c92fc1da)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
4  *
5  * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
6  * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
7  * Copyright (c) 2022 David Vernet <dvernet@meta.com>
8  */
9 #define SCX_OP_IDX(op)		(offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void)))
10 
11 enum scx_consts {
12 	SCX_DSP_DFL_MAX_BATCH		= 32,
13 	SCX_DSP_MAX_LOOPS		= 32,
14 	SCX_WATCHDOG_MAX_TIMEOUT	= 30 * HZ,
15 
16 	SCX_EXIT_BT_LEN			= 64,
17 	SCX_EXIT_MSG_LEN		= 1024,
18 	SCX_EXIT_DUMP_DFL_LEN		= 32768,
19 
20 	SCX_CPUPERF_ONE			= SCHED_CAPACITY_SCALE,
21 };
22 
23 enum scx_exit_kind {
24 	SCX_EXIT_NONE,
25 	SCX_EXIT_DONE,
26 
27 	SCX_EXIT_UNREG = 64,	/* user-space initiated unregistration */
28 	SCX_EXIT_UNREG_BPF,	/* BPF-initiated unregistration */
29 	SCX_EXIT_UNREG_KERN,	/* kernel-initiated unregistration */
30 	SCX_EXIT_SYSRQ,		/* requested by 'S' sysrq */
31 
32 	SCX_EXIT_ERROR = 1024,	/* runtime error, error msg contains details */
33 	SCX_EXIT_ERROR_BPF,	/* ERROR but triggered through scx_bpf_error() */
34 	SCX_EXIT_ERROR_STALL,	/* watchdog detected stalled runnable tasks */
35 };
36 
37 /*
38  * An exit code can be specified when exiting with scx_bpf_exit() or
39  * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN
40  * respectively. The codes are 64bit of the format:
41  *
42  *   Bits: [63  ..  48 47   ..  32 31 .. 0]
43  *         [ SYS ACT ] [ SYS RSN ] [ USR  ]
44  *
45  *   SYS ACT: System-defined exit actions
46  *   SYS RSN: System-defined exit reasons
47  *   USR    : User-defined exit codes and reasons
48  *
49  * Using the above, users may communicate intention and context by ORing system
50  * actions and/or system reasons with a user-defined exit code.
51  */
52 enum scx_exit_code {
53 	/* Reasons */
54 	SCX_ECODE_RSN_HOTPLUG	= 1LLU << 32,
55 
56 	/* Actions */
57 	SCX_ECODE_ACT_RESTART	= 1LLU << 48,
58 };
59 
60 /*
61  * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is
62  * being disabled.
63  */
64 struct scx_exit_info {
65 	/* %SCX_EXIT_* - broad category of the exit reason */
66 	enum scx_exit_kind	kind;
67 
68 	/* exit code if gracefully exiting */
69 	s64			exit_code;
70 
71 	/* textual representation of the above */
72 	const char		*reason;
73 
74 	/* backtrace if exiting due to an error */
75 	unsigned long		*bt;
76 	u32			bt_len;
77 
78 	/* informational message */
79 	char			*msg;
80 
81 	/* debug dump */
82 	char			*dump;
83 };
84 
85 /* sched_ext_ops.flags */
86 enum scx_ops_flags {
87 	/*
88 	 * Keep built-in idle tracking even if ops.update_idle() is implemented.
89 	 */
90 	SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0,
91 
92 	/*
93 	 * By default, if there are no other task to run on the CPU, ext core
94 	 * keeps running the current task even after its slice expires. If this
95 	 * flag is specified, such tasks are passed to ops.enqueue() with
96 	 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info.
97 	 */
98 	SCX_OPS_ENQ_LAST	= 1LLU << 1,
99 
100 	/*
101 	 * An exiting task may schedule after PF_EXITING is set. In such cases,
102 	 * bpf_task_from_pid() may not be able to find the task and if the BPF
103 	 * scheduler depends on pid lookup for dispatching, the task will be
104 	 * lost leading to various issues including RCU grace period stalls.
105 	 *
106 	 * To mask this problem, by default, unhashed tasks are automatically
107 	 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't
108 	 * depend on pid lookups and wants to handle these tasks directly, the
109 	 * following flag can be used.
110 	 */
111 	SCX_OPS_ENQ_EXITING	= 1LLU << 2,
112 
113 	/*
114 	 * If set, only tasks with policy set to SCHED_EXT are attached to
115 	 * sched_ext. If clear, SCHED_NORMAL tasks are also included.
116 	 */
117 	SCX_OPS_SWITCH_PARTIAL	= 1LLU << 3,
118 
119 	/*
120 	 * CPU cgroup support flags
121 	 */
122 	SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16,	/* cpu.weight */
123 
124 	SCX_OPS_ALL_FLAGS	= SCX_OPS_KEEP_BUILTIN_IDLE |
125 				  SCX_OPS_ENQ_LAST |
126 				  SCX_OPS_ENQ_EXITING |
127 				  SCX_OPS_SWITCH_PARTIAL |
128 				  SCX_OPS_HAS_CGROUP_WEIGHT,
129 };
130 
131 /* argument container for ops.init_task() */
132 struct scx_init_task_args {
133 	/*
134 	 * Set if ops.init_task() is being invoked on the fork path, as opposed
135 	 * to the scheduler transition path.
136 	 */
137 	bool			fork;
138 #ifdef CONFIG_EXT_GROUP_SCHED
139 	/* the cgroup the task is joining */
140 	struct cgroup		*cgroup;
141 #endif
142 };
143 
144 /* argument container for ops.exit_task() */
145 struct scx_exit_task_args {
146 	/* Whether the task exited before running on sched_ext. */
147 	bool cancelled;
148 };
149 
150 /* argument container for ops->cgroup_init() */
151 struct scx_cgroup_init_args {
152 	/* the weight of the cgroup [1..10000] */
153 	u32			weight;
154 };
155 
156 enum scx_cpu_preempt_reason {
157 	/* next task is being scheduled by &sched_class_rt */
158 	SCX_CPU_PREEMPT_RT,
159 	/* next task is being scheduled by &sched_class_dl */
160 	SCX_CPU_PREEMPT_DL,
161 	/* next task is being scheduled by &sched_class_stop */
162 	SCX_CPU_PREEMPT_STOP,
163 	/* unknown reason for SCX being preempted */
164 	SCX_CPU_PREEMPT_UNKNOWN,
165 };
166 
167 /*
168  * Argument container for ops->cpu_acquire(). Currently empty, but may be
169  * expanded in the future.
170  */
171 struct scx_cpu_acquire_args {};
172 
173 /* argument container for ops->cpu_release() */
174 struct scx_cpu_release_args {
175 	/* the reason the CPU was preempted */
176 	enum scx_cpu_preempt_reason reason;
177 
178 	/* the task that's going to be scheduled on the CPU */
179 	struct task_struct	*task;
180 };
181 
182 /*
183  * Informational context provided to dump operations.
184  */
185 struct scx_dump_ctx {
186 	enum scx_exit_kind	kind;
187 	s64			exit_code;
188 	const char		*reason;
189 	u64			at_ns;
190 	u64			at_jiffies;
191 };
192 
193 /**
194  * struct sched_ext_ops - Operation table for BPF scheduler implementation
195  *
196  * Userland can implement an arbitrary scheduling policy by implementing and
197  * loading operations in this table.
198  */
199 struct sched_ext_ops {
200 	/**
201 	 * select_cpu - Pick the target CPU for a task which is being woken up
202 	 * @p: task being woken up
203 	 * @prev_cpu: the cpu @p was on before sleeping
204 	 * @wake_flags: SCX_WAKE_*
205 	 *
206 	 * Decision made here isn't final. @p may be moved to any CPU while it
207 	 * is getting dispatched for execution later. However, as @p is not on
208 	 * the rq at this point, getting the eventual execution CPU right here
209 	 * saves a small bit of overhead down the line.
210 	 *
211 	 * If an idle CPU is returned, the CPU is kicked and will try to
212 	 * dispatch. While an explicit custom mechanism can be added,
213 	 * select_cpu() serves as the default way to wake up idle CPUs.
214 	 *
215 	 * @p may be dispatched directly by calling scx_bpf_dispatch(). If @p
216 	 * is dispatched, the ops.enqueue() callback will be skipped. Finally,
217 	 * if @p is dispatched to SCX_DSQ_LOCAL, it will be dispatched to the
218 	 * local DSQ of whatever CPU is returned by this callback.
219 	 */
220 	s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags);
221 
222 	/**
223 	 * enqueue - Enqueue a task on the BPF scheduler
224 	 * @p: task being enqueued
225 	 * @enq_flags: %SCX_ENQ_*
226 	 *
227 	 * @p is ready to run. Dispatch directly by calling scx_bpf_dispatch()
228 	 * or enqueue on the BPF scheduler. If not directly dispatched, the bpf
229 	 * scheduler owns @p and if it fails to dispatch @p, the task will
230 	 * stall.
231 	 *
232 	 * If @p was dispatched from ops.select_cpu(), this callback is
233 	 * skipped.
234 	 */
235 	void (*enqueue)(struct task_struct *p, u64 enq_flags);
236 
237 	/**
238 	 * dequeue - Remove a task from the BPF scheduler
239 	 * @p: task being dequeued
240 	 * @deq_flags: %SCX_DEQ_*
241 	 *
242 	 * Remove @p from the BPF scheduler. This is usually called to isolate
243 	 * the task while updating its scheduling properties (e.g. priority).
244 	 *
245 	 * The ext core keeps track of whether the BPF side owns a given task or
246 	 * not and can gracefully ignore spurious dispatches from BPF side,
247 	 * which makes it safe to not implement this method. However, depending
248 	 * on the scheduling logic, this can lead to confusing behaviors - e.g.
249 	 * scheduling position not being updated across a priority change.
250 	 */
251 	void (*dequeue)(struct task_struct *p, u64 deq_flags);
252 
253 	/**
254 	 * dispatch - Dispatch tasks from the BPF scheduler and/or consume DSQs
255 	 * @cpu: CPU to dispatch tasks for
256 	 * @prev: previous task being switched out
257 	 *
258 	 * Called when a CPU's local dsq is empty. The operation should dispatch
259 	 * one or more tasks from the BPF scheduler into the DSQs using
260 	 * scx_bpf_dispatch() and/or consume user DSQs into the local DSQ using
261 	 * scx_bpf_consume().
262 	 *
263 	 * The maximum number of times scx_bpf_dispatch() can be called without
264 	 * an intervening scx_bpf_consume() is specified by
265 	 * ops.dispatch_max_batch. See the comments on top of the two functions
266 	 * for more details.
267 	 *
268 	 * When not %NULL, @prev is an SCX task with its slice depleted. If
269 	 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in
270 	 * @prev->scx.flags, it is not enqueued yet and will be enqueued after
271 	 * ops.dispatch() returns. To keep executing @prev, return without
272 	 * dispatching or consuming any tasks. Also see %SCX_OPS_ENQ_LAST.
273 	 */
274 	void (*dispatch)(s32 cpu, struct task_struct *prev);
275 
276 	/**
277 	 * tick - Periodic tick
278 	 * @p: task running currently
279 	 *
280 	 * This operation is called every 1/HZ seconds on CPUs which are
281 	 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an
282 	 * immediate dispatch cycle on the CPU.
283 	 */
284 	void (*tick)(struct task_struct *p);
285 
286 	/**
287 	 * runnable - A task is becoming runnable on its associated CPU
288 	 * @p: task becoming runnable
289 	 * @enq_flags: %SCX_ENQ_*
290 	 *
291 	 * This and the following three functions can be used to track a task's
292 	 * execution state transitions. A task becomes ->runnable() on a CPU,
293 	 * and then goes through one or more ->running() and ->stopping() pairs
294 	 * as it runs on the CPU, and eventually becomes ->quiescent() when it's
295 	 * done running on the CPU.
296 	 *
297 	 * @p is becoming runnable on the CPU because it's
298 	 *
299 	 * - waking up (%SCX_ENQ_WAKEUP)
300 	 * - being moved from another CPU
301 	 * - being restored after temporarily taken off the queue for an
302 	 *   attribute change.
303 	 *
304 	 * This and ->enqueue() are related but not coupled. This operation
305 	 * notifies @p's state transition and may not be followed by ->enqueue()
306 	 * e.g. when @p is being dispatched to a remote CPU, or when @p is
307 	 * being enqueued on a CPU experiencing a hotplug event. Likewise, a
308 	 * task may be ->enqueue()'d without being preceded by this operation
309 	 * e.g. after exhausting its slice.
310 	 */
311 	void (*runnable)(struct task_struct *p, u64 enq_flags);
312 
313 	/**
314 	 * running - A task is starting to run on its associated CPU
315 	 * @p: task starting to run
316 	 *
317 	 * See ->runnable() for explanation on the task state notifiers.
318 	 */
319 	void (*running)(struct task_struct *p);
320 
321 	/**
322 	 * stopping - A task is stopping execution
323 	 * @p: task stopping to run
324 	 * @runnable: is task @p still runnable?
325 	 *
326 	 * See ->runnable() for explanation on the task state notifiers. If
327 	 * !@runnable, ->quiescent() will be invoked after this operation
328 	 * returns.
329 	 */
330 	void (*stopping)(struct task_struct *p, bool runnable);
331 
332 	/**
333 	 * quiescent - A task is becoming not runnable on its associated CPU
334 	 * @p: task becoming not runnable
335 	 * @deq_flags: %SCX_DEQ_*
336 	 *
337 	 * See ->runnable() for explanation on the task state notifiers.
338 	 *
339 	 * @p is becoming quiescent on the CPU because it's
340 	 *
341 	 * - sleeping (%SCX_DEQ_SLEEP)
342 	 * - being moved to another CPU
343 	 * - being temporarily taken off the queue for an attribute change
344 	 *   (%SCX_DEQ_SAVE)
345 	 *
346 	 * This and ->dequeue() are related but not coupled. This operation
347 	 * notifies @p's state transition and may not be preceded by ->dequeue()
348 	 * e.g. when @p is being dispatched to a remote CPU.
349 	 */
350 	void (*quiescent)(struct task_struct *p, u64 deq_flags);
351 
352 	/**
353 	 * yield - Yield CPU
354 	 * @from: yielding task
355 	 * @to: optional yield target task
356 	 *
357 	 * If @to is NULL, @from is yielding the CPU to other runnable tasks.
358 	 * The BPF scheduler should ensure that other available tasks are
359 	 * dispatched before the yielding task. Return value is ignored in this
360 	 * case.
361 	 *
362 	 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf
363 	 * scheduler can implement the request, return %true; otherwise, %false.
364 	 */
365 	bool (*yield)(struct task_struct *from, struct task_struct *to);
366 
367 	/**
368 	 * core_sched_before - Task ordering for core-sched
369 	 * @a: task A
370 	 * @b: task B
371 	 *
372 	 * Used by core-sched to determine the ordering between two tasks. See
373 	 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on
374 	 * core-sched.
375 	 *
376 	 * Both @a and @b are runnable and may or may not currently be queued on
377 	 * the BPF scheduler. Should return %true if @a should run before @b.
378 	 * %false if there's no required ordering or @b should run before @a.
379 	 *
380 	 * If not specified, the default is ordering them according to when they
381 	 * became runnable.
382 	 */
383 	bool (*core_sched_before)(struct task_struct *a, struct task_struct *b);
384 
385 	/**
386 	 * set_weight - Set task weight
387 	 * @p: task to set weight for
388 	 * @weight: new weight [1..10000]
389 	 *
390 	 * Update @p's weight to @weight.
391 	 */
392 	void (*set_weight)(struct task_struct *p, u32 weight);
393 
394 	/**
395 	 * set_cpumask - Set CPU affinity
396 	 * @p: task to set CPU affinity for
397 	 * @cpumask: cpumask of cpus that @p can run on
398 	 *
399 	 * Update @p's CPU affinity to @cpumask.
400 	 */
401 	void (*set_cpumask)(struct task_struct *p,
402 			    const struct cpumask *cpumask);
403 
404 	/**
405 	 * update_idle - Update the idle state of a CPU
406 	 * @cpu: CPU to udpate the idle state for
407 	 * @idle: whether entering or exiting the idle state
408 	 *
409 	 * This operation is called when @rq's CPU goes or leaves the idle
410 	 * state. By default, implementing this operation disables the built-in
411 	 * idle CPU tracking and the following helpers become unavailable:
412 	 *
413 	 * - scx_bpf_select_cpu_dfl()
414 	 * - scx_bpf_test_and_clear_cpu_idle()
415 	 * - scx_bpf_pick_idle_cpu()
416 	 *
417 	 * The user also must implement ops.select_cpu() as the default
418 	 * implementation relies on scx_bpf_select_cpu_dfl().
419 	 *
420 	 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle
421 	 * tracking.
422 	 */
423 	void (*update_idle)(s32 cpu, bool idle);
424 
425 	/**
426 	 * cpu_acquire - A CPU is becoming available to the BPF scheduler
427 	 * @cpu: The CPU being acquired by the BPF scheduler.
428 	 * @args: Acquire arguments, see the struct definition.
429 	 *
430 	 * A CPU that was previously released from the BPF scheduler is now once
431 	 * again under its control.
432 	 */
433 	void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args);
434 
435 	/**
436 	 * cpu_release - A CPU is taken away from the BPF scheduler
437 	 * @cpu: The CPU being released by the BPF scheduler.
438 	 * @args: Release arguments, see the struct definition.
439 	 *
440 	 * The specified CPU is no longer under the control of the BPF
441 	 * scheduler. This could be because it was preempted by a higher
442 	 * priority sched_class, though there may be other reasons as well. The
443 	 * caller should consult @args->reason to determine the cause.
444 	 */
445 	void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args);
446 
447 	/**
448 	 * init_task - Initialize a task to run in a BPF scheduler
449 	 * @p: task to initialize for BPF scheduling
450 	 * @args: init arguments, see the struct definition
451 	 *
452 	 * Either we're loading a BPF scheduler or a new task is being forked.
453 	 * Initialize @p for BPF scheduling. This operation may block and can
454 	 * be used for allocations, and is called exactly once for a task.
455 	 *
456 	 * Return 0 for success, -errno for failure. An error return while
457 	 * loading will abort loading of the BPF scheduler. During a fork, it
458 	 * will abort that specific fork.
459 	 */
460 	s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args);
461 
462 	/**
463 	 * exit_task - Exit a previously-running task from the system
464 	 * @p: task to exit
465 	 *
466 	 * @p is exiting or the BPF scheduler is being unloaded. Perform any
467 	 * necessary cleanup for @p.
468 	 */
469 	void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args);
470 
471 	/**
472 	 * enable - Enable BPF scheduling for a task
473 	 * @p: task to enable BPF scheduling for
474 	 *
475 	 * Enable @p for BPF scheduling. enable() is called on @p any time it
476 	 * enters SCX, and is always paired with a matching disable().
477 	 */
478 	void (*enable)(struct task_struct *p);
479 
480 	/**
481 	 * disable - Disable BPF scheduling for a task
482 	 * @p: task to disable BPF scheduling for
483 	 *
484 	 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded.
485 	 * Disable BPF scheduling for @p. A disable() call is always matched
486 	 * with a prior enable() call.
487 	 */
488 	void (*disable)(struct task_struct *p);
489 
490 	/**
491 	 * dump - Dump BPF scheduler state on error
492 	 * @ctx: debug dump context
493 	 *
494 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump.
495 	 */
496 	void (*dump)(struct scx_dump_ctx *ctx);
497 
498 	/**
499 	 * dump_cpu - Dump BPF scheduler state for a CPU on error
500 	 * @ctx: debug dump context
501 	 * @cpu: CPU to generate debug dump for
502 	 * @idle: @cpu is currently idle without any runnable tasks
503 	 *
504 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
505 	 * @cpu. If @idle is %true and this operation doesn't produce any
506 	 * output, @cpu is skipped for dump.
507 	 */
508 	void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle);
509 
510 	/**
511 	 * dump_task - Dump BPF scheduler state for a runnable task on error
512 	 * @ctx: debug dump context
513 	 * @p: runnable task to generate debug dump for
514 	 *
515 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
516 	 * @p.
517 	 */
518 	void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p);
519 
520 #ifdef CONFIG_EXT_GROUP_SCHED
521 	/**
522 	 * cgroup_init - Initialize a cgroup
523 	 * @cgrp: cgroup being initialized
524 	 * @args: init arguments, see the struct definition
525 	 *
526 	 * Either the BPF scheduler is being loaded or @cgrp created, initialize
527 	 * @cgrp for sched_ext. This operation may block.
528 	 *
529 	 * Return 0 for success, -errno for failure. An error return while
530 	 * loading will abort loading of the BPF scheduler. During cgroup
531 	 * creation, it will abort the specific cgroup creation.
532 	 */
533 	s32 (*cgroup_init)(struct cgroup *cgrp,
534 			   struct scx_cgroup_init_args *args);
535 
536 	/**
537 	 * cgroup_exit - Exit a cgroup
538 	 * @cgrp: cgroup being exited
539 	 *
540 	 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit
541 	 * @cgrp for sched_ext. This operation my block.
542 	 */
543 	void (*cgroup_exit)(struct cgroup *cgrp);
544 
545 	/**
546 	 * cgroup_prep_move - Prepare a task to be moved to a different cgroup
547 	 * @p: task being moved
548 	 * @from: cgroup @p is being moved from
549 	 * @to: cgroup @p is being moved to
550 	 *
551 	 * Prepare @p for move from cgroup @from to @to. This operation may
552 	 * block and can be used for allocations.
553 	 *
554 	 * Return 0 for success, -errno for failure. An error return aborts the
555 	 * migration.
556 	 */
557 	s32 (*cgroup_prep_move)(struct task_struct *p,
558 				struct cgroup *from, struct cgroup *to);
559 
560 	/**
561 	 * cgroup_move - Commit cgroup move
562 	 * @p: task being moved
563 	 * @from: cgroup @p is being moved from
564 	 * @to: cgroup @p is being moved to
565 	 *
566 	 * Commit the move. @p is dequeued during this operation.
567 	 */
568 	void (*cgroup_move)(struct task_struct *p,
569 			    struct cgroup *from, struct cgroup *to);
570 
571 	/**
572 	 * cgroup_cancel_move - Cancel cgroup move
573 	 * @p: task whose cgroup move is being canceled
574 	 * @from: cgroup @p was being moved from
575 	 * @to: cgroup @p was being moved to
576 	 *
577 	 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move().
578 	 * Undo the preparation.
579 	 */
580 	void (*cgroup_cancel_move)(struct task_struct *p,
581 				   struct cgroup *from, struct cgroup *to);
582 
583 	/**
584 	 * cgroup_set_weight - A cgroup's weight is being changed
585 	 * @cgrp: cgroup whose weight is being updated
586 	 * @weight: new weight [1..10000]
587 	 *
588 	 * Update @tg's weight to @weight.
589 	 */
590 	void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight);
591 #endif	/* CONFIG_CGROUPS */
592 
593 	/*
594 	 * All online ops must come before ops.cpu_online().
595 	 */
596 
597 	/**
598 	 * cpu_online - A CPU became online
599 	 * @cpu: CPU which just came up
600 	 *
601 	 * @cpu just came online. @cpu will not call ops.enqueue() or
602 	 * ops.dispatch(), nor run tasks associated with other CPUs beforehand.
603 	 */
604 	void (*cpu_online)(s32 cpu);
605 
606 	/**
607 	 * cpu_offline - A CPU is going offline
608 	 * @cpu: CPU which is going offline
609 	 *
610 	 * @cpu is going offline. @cpu will not call ops.enqueue() or
611 	 * ops.dispatch(), nor run tasks associated with other CPUs afterwards.
612 	 */
613 	void (*cpu_offline)(s32 cpu);
614 
615 	/*
616 	 * All CPU hotplug ops must come before ops.init().
617 	 */
618 
619 	/**
620 	 * init - Initialize the BPF scheduler
621 	 */
622 	s32 (*init)(void);
623 
624 	/**
625 	 * exit - Clean up after the BPF scheduler
626 	 * @info: Exit info
627 	 */
628 	void (*exit)(struct scx_exit_info *info);
629 
630 	/**
631 	 * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch
632 	 */
633 	u32 dispatch_max_batch;
634 
635 	/**
636 	 * flags - %SCX_OPS_* flags
637 	 */
638 	u64 flags;
639 
640 	/**
641 	 * timeout_ms - The maximum amount of time, in milliseconds, that a
642 	 * runnable task should be able to wait before being scheduled. The
643 	 * maximum timeout may not exceed the default timeout of 30 seconds.
644 	 *
645 	 * Defaults to the maximum allowed timeout value of 30 seconds.
646 	 */
647 	u32 timeout_ms;
648 
649 	/**
650 	 * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default
651 	 * value of 32768 is used.
652 	 */
653 	u32 exit_dump_len;
654 
655 	/**
656 	 * hotplug_seq - A sequence number that may be set by the scheduler to
657 	 * detect when a hotplug event has occurred during the loading process.
658 	 * If 0, no detection occurs. Otherwise, the scheduler will fail to
659 	 * load if the sequence number does not match @scx_hotplug_seq on the
660 	 * enable path.
661 	 */
662 	u64 hotplug_seq;
663 
664 	/**
665 	 * name - BPF scheduler's name
666 	 *
667 	 * Must be a non-zero valid BPF object name including only isalnum(),
668 	 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the
669 	 * BPF scheduler is enabled.
670 	 */
671 	char name[SCX_OPS_NAME_LEN];
672 };
673 
674 enum scx_opi {
675 	SCX_OPI_BEGIN			= 0,
676 	SCX_OPI_NORMAL_BEGIN		= 0,
677 	SCX_OPI_NORMAL_END		= SCX_OP_IDX(cpu_online),
678 	SCX_OPI_CPU_HOTPLUG_BEGIN	= SCX_OP_IDX(cpu_online),
679 	SCX_OPI_CPU_HOTPLUG_END		= SCX_OP_IDX(init),
680 	SCX_OPI_END			= SCX_OP_IDX(init),
681 };
682 
683 enum scx_wake_flags {
684 	/* expose select WF_* flags as enums */
685 	SCX_WAKE_FORK		= WF_FORK,
686 	SCX_WAKE_TTWU		= WF_TTWU,
687 	SCX_WAKE_SYNC		= WF_SYNC,
688 };
689 
690 enum scx_enq_flags {
691 	/* expose select ENQUEUE_* flags as enums */
692 	SCX_ENQ_WAKEUP		= ENQUEUE_WAKEUP,
693 	SCX_ENQ_HEAD		= ENQUEUE_HEAD,
694 
695 	/* high 32bits are SCX specific */
696 
697 	/*
698 	 * Set the following to trigger preemption when calling
699 	 * scx_bpf_dispatch() with a local dsq as the target. The slice of the
700 	 * current task is cleared to zero and the CPU is kicked into the
701 	 * scheduling path. Implies %SCX_ENQ_HEAD.
702 	 */
703 	SCX_ENQ_PREEMPT		= 1LLU << 32,
704 
705 	/*
706 	 * The task being enqueued was previously enqueued on the current CPU's
707 	 * %SCX_DSQ_LOCAL, but was removed from it in a call to the
708 	 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was
709 	 * invoked in a ->cpu_release() callback, and the task is again
710 	 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the
711 	 * task will not be scheduled on the CPU until at least the next invocation
712 	 * of the ->cpu_acquire() callback.
713 	 */
714 	SCX_ENQ_REENQ		= 1LLU << 40,
715 
716 	/*
717 	 * The task being enqueued is the only task available for the cpu. By
718 	 * default, ext core keeps executing such tasks but when
719 	 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the
720 	 * %SCX_ENQ_LAST flag set.
721 	 *
722 	 * The BPF scheduler is responsible for triggering a follow-up
723 	 * scheduling event. Otherwise, Execution may stall.
724 	 */
725 	SCX_ENQ_LAST		= 1LLU << 41,
726 
727 	/* high 8 bits are internal */
728 	__SCX_ENQ_INTERNAL_MASK	= 0xffLLU << 56,
729 
730 	SCX_ENQ_CLEAR_OPSS	= 1LLU << 56,
731 	SCX_ENQ_DSQ_PRIQ	= 1LLU << 57,
732 };
733 
734 enum scx_deq_flags {
735 	/* expose select DEQUEUE_* flags as enums */
736 	SCX_DEQ_SLEEP		= DEQUEUE_SLEEP,
737 
738 	/* high 32bits are SCX specific */
739 
740 	/*
741 	 * The generic core-sched layer decided to execute the task even though
742 	 * it hasn't been dispatched yet. Dequeue from the BPF side.
743 	 */
744 	SCX_DEQ_CORE_SCHED_EXEC	= 1LLU << 32,
745 };
746 
747 enum scx_pick_idle_cpu_flags {
748 	SCX_PICK_IDLE_CORE	= 1LLU << 0,	/* pick a CPU whose SMT siblings are also idle */
749 };
750 
751 enum scx_kick_flags {
752 	/*
753 	 * Kick the target CPU if idle. Guarantees that the target CPU goes
754 	 * through at least one full scheduling cycle before going idle. If the
755 	 * target CPU can be determined to be currently not idle and going to go
756 	 * through a scheduling cycle before going idle, noop.
757 	 */
758 	SCX_KICK_IDLE		= 1LLU << 0,
759 
760 	/*
761 	 * Preempt the current task and execute the dispatch path. If the
762 	 * current task of the target CPU is an SCX task, its ->scx.slice is
763 	 * cleared to zero before the scheduling path is invoked so that the
764 	 * task expires and the dispatch path is invoked.
765 	 */
766 	SCX_KICK_PREEMPT	= 1LLU << 1,
767 
768 	/*
769 	 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will
770 	 * return after the target CPU finishes picking the next task.
771 	 */
772 	SCX_KICK_WAIT		= 1LLU << 2,
773 };
774 
775 enum scx_tg_flags {
776 	SCX_TG_ONLINE		= 1U << 0,
777 	SCX_TG_INITED		= 1U << 1,
778 };
779 
780 enum scx_ops_enable_state {
781 	SCX_OPS_PREPPING,
782 	SCX_OPS_ENABLING,
783 	SCX_OPS_ENABLED,
784 	SCX_OPS_DISABLING,
785 	SCX_OPS_DISABLED,
786 };
787 
788 static const char *scx_ops_enable_state_str[] = {
789 	[SCX_OPS_PREPPING]	= "prepping",
790 	[SCX_OPS_ENABLING]	= "enabling",
791 	[SCX_OPS_ENABLED]	= "enabled",
792 	[SCX_OPS_DISABLING]	= "disabling",
793 	[SCX_OPS_DISABLED]	= "disabled",
794 };
795 
796 /*
797  * sched_ext_entity->ops_state
798  *
799  * Used to track the task ownership between the SCX core and the BPF scheduler.
800  * State transitions look as follows:
801  *
802  * NONE -> QUEUEING -> QUEUED -> DISPATCHING
803  *   ^              |                 |
804  *   |              v                 v
805  *   \-------------------------------/
806  *
807  * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call
808  * sites for explanations on the conditions being waited upon and why they are
809  * safe. Transitions out of them into NONE or QUEUED must store_release and the
810  * waiters should load_acquire.
811  *
812  * Tracking scx_ops_state enables sched_ext core to reliably determine whether
813  * any given task can be dispatched by the BPF scheduler at all times and thus
814  * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler
815  * to try to dispatch any task anytime regardless of its state as the SCX core
816  * can safely reject invalid dispatches.
817  */
818 enum scx_ops_state {
819 	SCX_OPSS_NONE,		/* owned by the SCX core */
820 	SCX_OPSS_QUEUEING,	/* in transit to the BPF scheduler */
821 	SCX_OPSS_QUEUED,	/* owned by the BPF scheduler */
822 	SCX_OPSS_DISPATCHING,	/* in transit back to the SCX core */
823 
824 	/*
825 	 * QSEQ brands each QUEUED instance so that, when dispatch races
826 	 * dequeue/requeue, the dispatcher can tell whether it still has a claim
827 	 * on the task being dispatched.
828 	 *
829 	 * As some 32bit archs can't do 64bit store_release/load_acquire,
830 	 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on
831 	 * 32bit machines. The dispatch race window QSEQ protects is very narrow
832 	 * and runs with IRQ disabled. 30 bits should be sufficient.
833 	 */
834 	SCX_OPSS_QSEQ_SHIFT	= 2,
835 };
836 
837 /* Use macros to ensure that the type is unsigned long for the masks */
838 #define SCX_OPSS_STATE_MASK	((1LU << SCX_OPSS_QSEQ_SHIFT) - 1)
839 #define SCX_OPSS_QSEQ_MASK	(~SCX_OPSS_STATE_MASK)
840 
841 /*
842  * During exit, a task may schedule after losing its PIDs. When disabling the
843  * BPF scheduler, we need to be able to iterate tasks in every state to
844  * guarantee system safety. Maintain a dedicated task list which contains every
845  * task between its fork and eventual free.
846  */
847 static DEFINE_SPINLOCK(scx_tasks_lock);
848 static LIST_HEAD(scx_tasks);
849 
850 /* ops enable/disable */
851 static struct kthread_worker *scx_ops_helper;
852 static DEFINE_MUTEX(scx_ops_enable_mutex);
853 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled);
854 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
855 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED);
856 static atomic_t scx_ops_bypass_depth = ATOMIC_INIT(0);
857 static bool scx_switching_all;
858 DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
859 
860 static struct sched_ext_ops scx_ops;
861 static bool scx_warned_zero_slice;
862 
863 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last);
864 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting);
865 static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt);
866 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
867 
868 struct static_key_false scx_has_op[SCX_OPI_END] =
869 	{ [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT };
870 
871 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE);
872 static struct scx_exit_info *scx_exit_info;
873 
874 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0);
875 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0);
876 
877 /*
878  * The maximum amount of time in jiffies that a task may be runnable without
879  * being scheduled on a CPU. If this timeout is exceeded, it will trigger
880  * scx_ops_error().
881  */
882 static unsigned long scx_watchdog_timeout;
883 
884 /*
885  * The last time the delayed work was run. This delayed work relies on
886  * ksoftirqd being able to run to service timer interrupts, so it's possible
887  * that this work itself could get wedged. To account for this, we check that
888  * it's not stalled in the timer tick, and trigger an error if it is.
889  */
890 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES;
891 
892 static struct delayed_work scx_watchdog_work;
893 
894 /* idle tracking */
895 #ifdef CONFIG_SMP
896 #ifdef CONFIG_CPUMASK_OFFSTACK
897 #define CL_ALIGNED_IF_ONSTACK
898 #else
899 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp
900 #endif
901 
902 static struct {
903 	cpumask_var_t cpu;
904 	cpumask_var_t smt;
905 } idle_masks CL_ALIGNED_IF_ONSTACK;
906 
907 #endif	/* CONFIG_SMP */
908 
909 /* for %SCX_KICK_WAIT */
910 static unsigned long __percpu *scx_kick_cpus_pnt_seqs;
911 
912 /*
913  * Direct dispatch marker.
914  *
915  * Non-NULL values are used for direct dispatch from enqueue path. A valid
916  * pointer points to the task currently being enqueued. An ERR_PTR value is used
917  * to indicate that direct dispatch has already happened.
918  */
919 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task);
920 
921 /* dispatch queues */
922 static struct scx_dispatch_q __cacheline_aligned_in_smp scx_dsq_global;
923 
924 static const struct rhashtable_params dsq_hash_params = {
925 	.key_len		= 8,
926 	.key_offset		= offsetof(struct scx_dispatch_q, id),
927 	.head_offset		= offsetof(struct scx_dispatch_q, hash_node),
928 };
929 
930 static struct rhashtable dsq_hash;
931 static LLIST_HEAD(dsqs_to_free);
932 
933 /* dispatch buf */
934 struct scx_dsp_buf_ent {
935 	struct task_struct	*task;
936 	unsigned long		qseq;
937 	u64			dsq_id;
938 	u64			enq_flags;
939 };
940 
941 static u32 scx_dsp_max_batch;
942 
943 struct scx_dsp_ctx {
944 	struct rq		*rq;
945 	u32			cursor;
946 	u32			nr_tasks;
947 	struct scx_dsp_buf_ent	buf[];
948 };
949 
950 static struct scx_dsp_ctx __percpu *scx_dsp_ctx;
951 
952 /* string formatting from BPF */
953 struct scx_bstr_buf {
954 	u64			data[MAX_BPRINTF_VARARGS];
955 	char			line[SCX_EXIT_MSG_LEN];
956 };
957 
958 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock);
959 static struct scx_bstr_buf scx_exit_bstr_buf;
960 
961 /* ops debug dump */
962 struct scx_dump_data {
963 	s32			cpu;
964 	bool			first;
965 	s32			cursor;
966 	struct seq_buf		*s;
967 	const char		*prefix;
968 	struct scx_bstr_buf	buf;
969 };
970 
971 struct scx_dump_data scx_dump_data = {
972 	.cpu			= -1,
973 };
974 
975 /* /sys/kernel/sched_ext interface */
976 static struct kset *scx_kset;
977 static struct kobject *scx_root_kobj;
978 
979 #define CREATE_TRACE_POINTS
980 #include <trace/events/sched_ext.h>
981 
982 static void process_ddsp_deferred_locals(struct rq *rq);
983 static void scx_bpf_kick_cpu(s32 cpu, u64 flags);
984 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
985 					     s64 exit_code,
986 					     const char *fmt, ...);
987 
988 #define scx_ops_error_kind(err, fmt, args...)					\
989 	scx_ops_exit_kind((err), 0, fmt, ##args)
990 
991 #define scx_ops_exit(code, fmt, args...)					\
992 	scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args)
993 
994 #define scx_ops_error(fmt, args...)						\
995 	scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args)
996 
997 #define SCX_HAS_OP(op)	static_branch_likely(&scx_has_op[SCX_OP_IDX(op)])
998 
999 static long jiffies_delta_msecs(unsigned long at, unsigned long now)
1000 {
1001 	if (time_after(at, now))
1002 		return jiffies_to_msecs(at - now);
1003 	else
1004 		return -(long)jiffies_to_msecs(now - at);
1005 }
1006 
1007 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */
1008 static u32 higher_bits(u32 flags)
1009 {
1010 	return ~((1 << fls(flags)) - 1);
1011 }
1012 
1013 /* return the mask with only the highest bit set */
1014 static u32 highest_bit(u32 flags)
1015 {
1016 	int bit = fls(flags);
1017 	return ((u64)1 << bit) >> 1;
1018 }
1019 
1020 static bool u32_before(u32 a, u32 b)
1021 {
1022 	return (s32)(a - b) < 0;
1023 }
1024 
1025 /*
1026  * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX
1027  * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate
1028  * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check
1029  * whether it's running from an allowed context.
1030  *
1031  * @mask is constant, always inline to cull the mask calculations.
1032  */
1033 static __always_inline void scx_kf_allow(u32 mask)
1034 {
1035 	/* nesting is allowed only in increasing scx_kf_mask order */
1036 	WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask,
1037 		  "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n",
1038 		  current->scx.kf_mask, mask);
1039 	current->scx.kf_mask |= mask;
1040 	barrier();
1041 }
1042 
1043 static void scx_kf_disallow(u32 mask)
1044 {
1045 	barrier();
1046 	current->scx.kf_mask &= ~mask;
1047 }
1048 
1049 #define SCX_CALL_OP(mask, op, args...)						\
1050 do {										\
1051 	if (mask) {								\
1052 		scx_kf_allow(mask);						\
1053 		scx_ops.op(args);						\
1054 		scx_kf_disallow(mask);						\
1055 	} else {								\
1056 		scx_ops.op(args);						\
1057 	}									\
1058 } while (0)
1059 
1060 #define SCX_CALL_OP_RET(mask, op, args...)					\
1061 ({										\
1062 	__typeof__(scx_ops.op(args)) __ret;					\
1063 	if (mask) {								\
1064 		scx_kf_allow(mask);						\
1065 		__ret = scx_ops.op(args);					\
1066 		scx_kf_disallow(mask);						\
1067 	} else {								\
1068 		__ret = scx_ops.op(args);					\
1069 	}									\
1070 	__ret;									\
1071 })
1072 
1073 /*
1074  * Some kfuncs are allowed only on the tasks that are subjects of the
1075  * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such
1076  * restrictions, the following SCX_CALL_OP_*() variants should be used when
1077  * invoking scx_ops operations that take task arguments. These can only be used
1078  * for non-nesting operations due to the way the tasks are tracked.
1079  *
1080  * kfuncs which can only operate on such tasks can in turn use
1081  * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on
1082  * the specific task.
1083  */
1084 #define SCX_CALL_OP_TASK(mask, op, task, args...)				\
1085 do {										\
1086 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
1087 	current->scx.kf_tasks[0] = task;					\
1088 	SCX_CALL_OP(mask, op, task, ##args);					\
1089 	current->scx.kf_tasks[0] = NULL;					\
1090 } while (0)
1091 
1092 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...)				\
1093 ({										\
1094 	__typeof__(scx_ops.op(task, ##args)) __ret;				\
1095 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
1096 	current->scx.kf_tasks[0] = task;					\
1097 	__ret = SCX_CALL_OP_RET(mask, op, task, ##args);			\
1098 	current->scx.kf_tasks[0] = NULL;					\
1099 	__ret;									\
1100 })
1101 
1102 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...)			\
1103 ({										\
1104 	__typeof__(scx_ops.op(task0, task1, ##args)) __ret;			\
1105 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
1106 	current->scx.kf_tasks[0] = task0;					\
1107 	current->scx.kf_tasks[1] = task1;					\
1108 	__ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args);		\
1109 	current->scx.kf_tasks[0] = NULL;					\
1110 	current->scx.kf_tasks[1] = NULL;					\
1111 	__ret;									\
1112 })
1113 
1114 /* @mask is constant, always inline to cull unnecessary branches */
1115 static __always_inline bool scx_kf_allowed(u32 mask)
1116 {
1117 	if (unlikely(!(current->scx.kf_mask & mask))) {
1118 		scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x",
1119 			      mask, current->scx.kf_mask);
1120 		return false;
1121 	}
1122 
1123 	/*
1124 	 * Enforce nesting boundaries. e.g. A kfunc which can be called from
1125 	 * DISPATCH must not be called if we're running DEQUEUE which is nested
1126 	 * inside ops.dispatch(). We don't need to check boundaries for any
1127 	 * blocking kfuncs as the verifier ensures they're only called from
1128 	 * sleepable progs.
1129 	 */
1130 	if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE &&
1131 		     (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) {
1132 		scx_ops_error("cpu_release kfunc called from a nested operation");
1133 		return false;
1134 	}
1135 
1136 	if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH &&
1137 		     (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) {
1138 		scx_ops_error("dispatch kfunc called from a nested operation");
1139 		return false;
1140 	}
1141 
1142 	return true;
1143 }
1144 
1145 /* see SCX_CALL_OP_TASK() */
1146 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask,
1147 							struct task_struct *p)
1148 {
1149 	if (!scx_kf_allowed(mask))
1150 		return false;
1151 
1152 	if (unlikely((p != current->scx.kf_tasks[0] &&
1153 		      p != current->scx.kf_tasks[1]))) {
1154 		scx_ops_error("called on a task not being operated on");
1155 		return false;
1156 	}
1157 
1158 	return true;
1159 }
1160 
1161 /**
1162  * nldsq_next_task - Iterate to the next task in a non-local DSQ
1163  * @dsq: user dsq being interated
1164  * @cur: current position, %NULL to start iteration
1165  * @rev: walk backwards
1166  *
1167  * Returns %NULL when iteration is finished.
1168  */
1169 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq,
1170 					   struct task_struct *cur, bool rev)
1171 {
1172 	struct list_head *list_node;
1173 	struct scx_dsq_list_node *dsq_lnode;
1174 
1175 	lockdep_assert_held(&dsq->lock);
1176 
1177 	if (cur)
1178 		list_node = &cur->scx.dsq_list.node;
1179 	else
1180 		list_node = &dsq->list;
1181 
1182 	/* find the next task, need to skip BPF iteration cursors */
1183 	do {
1184 		if (rev)
1185 			list_node = list_node->prev;
1186 		else
1187 			list_node = list_node->next;
1188 
1189 		if (list_node == &dsq->list)
1190 			return NULL;
1191 
1192 		dsq_lnode = container_of(list_node, struct scx_dsq_list_node,
1193 					 node);
1194 	} while (dsq_lnode->is_bpf_iter_cursor);
1195 
1196 	return container_of(dsq_lnode, struct task_struct, scx.dsq_list);
1197 }
1198 
1199 #define nldsq_for_each_task(p, dsq)						\
1200 	for ((p) = nldsq_next_task((dsq), NULL, false); (p);			\
1201 	     (p) = nldsq_next_task((dsq), (p), false))
1202 
1203 
1204 /*
1205  * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse]
1206  * dispatch order. BPF-visible iterator is opaque and larger to allow future
1207  * changes without breaking backward compatibility. Can be used with
1208  * bpf_for_each(). See bpf_iter_scx_dsq_*().
1209  */
1210 enum scx_dsq_iter_flags {
1211 	/* iterate in the reverse dispatch order */
1212 	SCX_DSQ_ITER_REV		= 1U << 0,
1213 
1214 	__SCX_DSQ_ITER_ALL_FLAGS	= SCX_DSQ_ITER_REV,
1215 };
1216 
1217 struct bpf_iter_scx_dsq_kern {
1218 	struct scx_dsq_list_node	cursor;
1219 	struct scx_dispatch_q		*dsq;
1220 	u32				dsq_seq;
1221 	u32				flags;
1222 } __attribute__((aligned(8)));
1223 
1224 struct bpf_iter_scx_dsq {
1225 	u64				__opaque[6];
1226 } __attribute__((aligned(8)));
1227 
1228 
1229 /*
1230  * SCX task iterator.
1231  */
1232 struct scx_task_iter {
1233 	struct sched_ext_entity		cursor;
1234 	struct task_struct		*locked;
1235 	struct rq			*rq;
1236 	struct rq_flags			rf;
1237 };
1238 
1239 /**
1240  * scx_task_iter_init - Initialize a task iterator
1241  * @iter: iterator to init
1242  *
1243  * Initialize @iter. Must be called with scx_tasks_lock held. Once initialized,
1244  * @iter must eventually be exited with scx_task_iter_exit().
1245  *
1246  * scx_tasks_lock may be released between this and the first next() call or
1247  * between any two next() calls. If scx_tasks_lock is released between two
1248  * next() calls, the caller is responsible for ensuring that the task being
1249  * iterated remains accessible either through RCU read lock or obtaining a
1250  * reference count.
1251  *
1252  * All tasks which existed when the iteration started are guaranteed to be
1253  * visited as long as they still exist.
1254  */
1255 static void scx_task_iter_init(struct scx_task_iter *iter)
1256 {
1257 	lockdep_assert_held(&scx_tasks_lock);
1258 
1259 	iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR };
1260 	list_add(&iter->cursor.tasks_node, &scx_tasks);
1261 	iter->locked = NULL;
1262 }
1263 
1264 /**
1265  * scx_task_iter_rq_unlock - Unlock rq locked by a task iterator
1266  * @iter: iterator to unlock rq for
1267  *
1268  * If @iter is in the middle of a locked iteration, it may be locking the rq of
1269  * the task currently being visited. Unlock the rq if so. This function can be
1270  * safely called anytime during an iteration.
1271  *
1272  * Returns %true if the rq @iter was locking is unlocked. %false if @iter was
1273  * not locking an rq.
1274  */
1275 static bool scx_task_iter_rq_unlock(struct scx_task_iter *iter)
1276 {
1277 	if (iter->locked) {
1278 		task_rq_unlock(iter->rq, iter->locked, &iter->rf);
1279 		iter->locked = NULL;
1280 		return true;
1281 	} else {
1282 		return false;
1283 	}
1284 }
1285 
1286 /**
1287  * scx_task_iter_exit - Exit a task iterator
1288  * @iter: iterator to exit
1289  *
1290  * Exit a previously initialized @iter. Must be called with scx_tasks_lock held.
1291  * If the iterator holds a task's rq lock, that rq lock is released. See
1292  * scx_task_iter_init() for details.
1293  */
1294 static void scx_task_iter_exit(struct scx_task_iter *iter)
1295 {
1296 	lockdep_assert_held(&scx_tasks_lock);
1297 
1298 	scx_task_iter_rq_unlock(iter);
1299 	list_del_init(&iter->cursor.tasks_node);
1300 }
1301 
1302 /**
1303  * scx_task_iter_next - Next task
1304  * @iter: iterator to walk
1305  *
1306  * Visit the next task. See scx_task_iter_init() for details.
1307  */
1308 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
1309 {
1310 	struct list_head *cursor = &iter->cursor.tasks_node;
1311 	struct sched_ext_entity *pos;
1312 
1313 	lockdep_assert_held(&scx_tasks_lock);
1314 
1315 	list_for_each_entry(pos, cursor, tasks_node) {
1316 		if (&pos->tasks_node == &scx_tasks)
1317 			return NULL;
1318 		if (!(pos->flags & SCX_TASK_CURSOR)) {
1319 			list_move(cursor, &pos->tasks_node);
1320 			return container_of(pos, struct task_struct, scx);
1321 		}
1322 	}
1323 
1324 	/* can't happen, should always terminate at scx_tasks above */
1325 	BUG();
1326 }
1327 
1328 /**
1329  * scx_task_iter_next_locked - Next non-idle task with its rq locked
1330  * @iter: iterator to walk
1331  * @include_dead: Whether we should include dead tasks in the iteration
1332  *
1333  * Visit the non-idle task with its rq lock held. Allows callers to specify
1334  * whether they would like to filter out dead tasks. See scx_task_iter_init()
1335  * for details.
1336  */
1337 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter)
1338 {
1339 	struct task_struct *p;
1340 
1341 	scx_task_iter_rq_unlock(iter);
1342 
1343 	while ((p = scx_task_iter_next(iter))) {
1344 		/*
1345 		 * scx_task_iter is used to prepare and move tasks into SCX
1346 		 * while loading the BPF scheduler and vice-versa while
1347 		 * unloading. The init_tasks ("swappers") should be excluded
1348 		 * from the iteration because:
1349 		 *
1350 		 * - It's unsafe to use __setschduler_prio() on an init_task to
1351 		 *   determine the sched_class to use as it won't preserve its
1352 		 *   idle_sched_class.
1353 		 *
1354 		 * - ops.init/exit_task() can easily be confused if called with
1355 		 *   init_tasks as they, e.g., share PID 0.
1356 		 *
1357 		 * As init_tasks are never scheduled through SCX, they can be
1358 		 * skipped safely. Note that is_idle_task() which tests %PF_IDLE
1359 		 * doesn't work here:
1360 		 *
1361 		 * - %PF_IDLE may not be set for an init_task whose CPU hasn't
1362 		 *   yet been onlined.
1363 		 *
1364 		 * - %PF_IDLE can be set on tasks that are not init_tasks. See
1365 		 *   play_idle_precise() used by CONFIG_IDLE_INJECT.
1366 		 *
1367 		 * Test for idle_sched_class as only init_tasks are on it.
1368 		 */
1369 		if (p->sched_class != &idle_sched_class)
1370 			break;
1371 	}
1372 	if (!p)
1373 		return NULL;
1374 
1375 	iter->rq = task_rq_lock(p, &iter->rf);
1376 	iter->locked = p;
1377 
1378 	return p;
1379 }
1380 
1381 static enum scx_ops_enable_state scx_ops_enable_state(void)
1382 {
1383 	return atomic_read(&scx_ops_enable_state_var);
1384 }
1385 
1386 static enum scx_ops_enable_state
1387 scx_ops_set_enable_state(enum scx_ops_enable_state to)
1388 {
1389 	return atomic_xchg(&scx_ops_enable_state_var, to);
1390 }
1391 
1392 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to,
1393 					enum scx_ops_enable_state from)
1394 {
1395 	int from_v = from;
1396 
1397 	return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to);
1398 }
1399 
1400 static bool scx_ops_bypassing(void)
1401 {
1402 	return unlikely(atomic_read(&scx_ops_bypass_depth));
1403 }
1404 
1405 /**
1406  * wait_ops_state - Busy-wait the specified ops state to end
1407  * @p: target task
1408  * @opss: state to wait the end of
1409  *
1410  * Busy-wait for @p to transition out of @opss. This can only be used when the
1411  * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also
1412  * has load_acquire semantics to ensure that the caller can see the updates made
1413  * in the enqueueing and dispatching paths.
1414  */
1415 static void wait_ops_state(struct task_struct *p, unsigned long opss)
1416 {
1417 	do {
1418 		cpu_relax();
1419 	} while (atomic_long_read_acquire(&p->scx.ops_state) == opss);
1420 }
1421 
1422 /**
1423  * ops_cpu_valid - Verify a cpu number
1424  * @cpu: cpu number which came from a BPF ops
1425  * @where: extra information reported on error
1426  *
1427  * @cpu is a cpu number which came from the BPF scheduler and can be any value.
1428  * Verify that it is in range and one of the possible cpus. If invalid, trigger
1429  * an ops error.
1430  */
1431 static bool ops_cpu_valid(s32 cpu, const char *where)
1432 {
1433 	if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) {
1434 		return true;
1435 	} else {
1436 		scx_ops_error("invalid CPU %d%s%s", cpu,
1437 			      where ? " " : "", where ?: "");
1438 		return false;
1439 	}
1440 }
1441 
1442 /**
1443  * ops_sanitize_err - Sanitize a -errno value
1444  * @ops_name: operation to blame on failure
1445  * @err: -errno value to sanitize
1446  *
1447  * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return
1448  * -%EPROTO. This is necessary because returning a rogue -errno up the chain can
1449  * cause misbehaviors. For an example, a large negative return from
1450  * ops.init_task() triggers an oops when passed up the call chain because the
1451  * value fails IS_ERR() test after being encoded with ERR_PTR() and then is
1452  * handled as a pointer.
1453  */
1454 static int ops_sanitize_err(const char *ops_name, s32 err)
1455 {
1456 	if (err < 0 && err >= -MAX_ERRNO)
1457 		return err;
1458 
1459 	scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err);
1460 	return -EPROTO;
1461 }
1462 
1463 static void run_deferred(struct rq *rq)
1464 {
1465 	process_ddsp_deferred_locals(rq);
1466 }
1467 
1468 #ifdef CONFIG_SMP
1469 static void deferred_bal_cb_workfn(struct rq *rq)
1470 {
1471 	run_deferred(rq);
1472 }
1473 #endif
1474 
1475 static void deferred_irq_workfn(struct irq_work *irq_work)
1476 {
1477 	struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work);
1478 
1479 	raw_spin_rq_lock(rq);
1480 	run_deferred(rq);
1481 	raw_spin_rq_unlock(rq);
1482 }
1483 
1484 /**
1485  * schedule_deferred - Schedule execution of deferred actions on an rq
1486  * @rq: target rq
1487  *
1488  * Schedule execution of deferred actions on @rq. Must be called with @rq
1489  * locked. Deferred actions are executed with @rq locked but unpinned, and thus
1490  * can unlock @rq to e.g. migrate tasks to other rqs.
1491  */
1492 static void schedule_deferred(struct rq *rq)
1493 {
1494 	lockdep_assert_rq_held(rq);
1495 
1496 #ifdef CONFIG_SMP
1497 	/*
1498 	 * If in the middle of waking up a task, task_woken_scx() will be called
1499 	 * afterwards which will then run the deferred actions, no need to
1500 	 * schedule anything.
1501 	 */
1502 	if (rq->scx.flags & SCX_RQ_IN_WAKEUP)
1503 		return;
1504 
1505 	/*
1506 	 * If in balance, the balance callbacks will be called before rq lock is
1507 	 * released. Schedule one.
1508 	 */
1509 	if (rq->scx.flags & SCX_RQ_IN_BALANCE) {
1510 		queue_balance_callback(rq, &rq->scx.deferred_bal_cb,
1511 				       deferred_bal_cb_workfn);
1512 		return;
1513 	}
1514 #endif
1515 	/*
1516 	 * No scheduler hooks available. Queue an irq work. They are executed on
1517 	 * IRQ re-enable which may take a bit longer than the scheduler hooks.
1518 	 * The above WAKEUP and BALANCE paths should cover most of the cases and
1519 	 * the time to IRQ re-enable shouldn't be long.
1520 	 */
1521 	irq_work_queue(&rq->scx.deferred_irq_work);
1522 }
1523 
1524 /**
1525  * touch_core_sched - Update timestamp used for core-sched task ordering
1526  * @rq: rq to read clock from, must be locked
1527  * @p: task to update the timestamp for
1528  *
1529  * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to
1530  * implement global or local-DSQ FIFO ordering for core-sched. Should be called
1531  * when a task becomes runnable and its turn on the CPU ends (e.g. slice
1532  * exhaustion).
1533  */
1534 static void touch_core_sched(struct rq *rq, struct task_struct *p)
1535 {
1536 	lockdep_assert_rq_held(rq);
1537 
1538 #ifdef CONFIG_SCHED_CORE
1539 	/*
1540 	 * It's okay to update the timestamp spuriously. Use
1541 	 * sched_core_disabled() which is cheaper than enabled().
1542 	 *
1543 	 * As this is used to determine ordering between tasks of sibling CPUs,
1544 	 * it may be better to use per-core dispatch sequence instead.
1545 	 */
1546 	if (!sched_core_disabled())
1547 		p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq));
1548 #endif
1549 }
1550 
1551 /**
1552  * touch_core_sched_dispatch - Update core-sched timestamp on dispatch
1553  * @rq: rq to read clock from, must be locked
1554  * @p: task being dispatched
1555  *
1556  * If the BPF scheduler implements custom core-sched ordering via
1557  * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO
1558  * ordering within each local DSQ. This function is called from dispatch paths
1559  * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect.
1560  */
1561 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p)
1562 {
1563 	lockdep_assert_rq_held(rq);
1564 
1565 #ifdef CONFIG_SCHED_CORE
1566 	if (SCX_HAS_OP(core_sched_before))
1567 		touch_core_sched(rq, p);
1568 #endif
1569 }
1570 
1571 static void update_curr_scx(struct rq *rq)
1572 {
1573 	struct task_struct *curr = rq->curr;
1574 	s64 delta_exec;
1575 
1576 	delta_exec = update_curr_common(rq);
1577 	if (unlikely(delta_exec <= 0))
1578 		return;
1579 
1580 	if (curr->scx.slice != SCX_SLICE_INF) {
1581 		curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec);
1582 		if (!curr->scx.slice)
1583 			touch_core_sched(rq, curr);
1584 	}
1585 }
1586 
1587 static bool scx_dsq_priq_less(struct rb_node *node_a,
1588 			      const struct rb_node *node_b)
1589 {
1590 	const struct task_struct *a =
1591 		container_of(node_a, struct task_struct, scx.dsq_priq);
1592 	const struct task_struct *b =
1593 		container_of(node_b, struct task_struct, scx.dsq_priq);
1594 
1595 	return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime);
1596 }
1597 
1598 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta)
1599 {
1600 	/* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */
1601 	WRITE_ONCE(dsq->nr, dsq->nr + delta);
1602 }
1603 
1604 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p,
1605 			     u64 enq_flags)
1606 {
1607 	bool is_local = dsq->id == SCX_DSQ_LOCAL;
1608 
1609 	WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1610 	WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) ||
1611 		     !RB_EMPTY_NODE(&p->scx.dsq_priq));
1612 
1613 	if (!is_local) {
1614 		raw_spin_lock(&dsq->lock);
1615 		if (unlikely(dsq->id == SCX_DSQ_INVALID)) {
1616 			scx_ops_error("attempting to dispatch to a destroyed dsq");
1617 			/* fall back to the global dsq */
1618 			raw_spin_unlock(&dsq->lock);
1619 			dsq = &scx_dsq_global;
1620 			raw_spin_lock(&dsq->lock);
1621 		}
1622 	}
1623 
1624 	if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) &&
1625 		     (enq_flags & SCX_ENQ_DSQ_PRIQ))) {
1626 		/*
1627 		 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from
1628 		 * their FIFO queues. To avoid confusion and accidentally
1629 		 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we
1630 		 * disallow any internal DSQ from doing vtime ordering of
1631 		 * tasks.
1632 		 */
1633 		scx_ops_error("cannot use vtime ordering for built-in DSQs");
1634 		enq_flags &= ~SCX_ENQ_DSQ_PRIQ;
1635 	}
1636 
1637 	if (enq_flags & SCX_ENQ_DSQ_PRIQ) {
1638 		struct rb_node *rbp;
1639 
1640 		/*
1641 		 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are
1642 		 * linked to both the rbtree and list on PRIQs, this can only be
1643 		 * tested easily when adding the first task.
1644 		 */
1645 		if (unlikely(RB_EMPTY_ROOT(&dsq->priq) &&
1646 			     nldsq_next_task(dsq, NULL, false)))
1647 			scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks",
1648 				      dsq->id);
1649 
1650 		p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ;
1651 		rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less);
1652 
1653 		/*
1654 		 * Find the previous task and insert after it on the list so
1655 		 * that @dsq->list is vtime ordered.
1656 		 */
1657 		rbp = rb_prev(&p->scx.dsq_priq);
1658 		if (rbp) {
1659 			struct task_struct *prev =
1660 				container_of(rbp, struct task_struct,
1661 					     scx.dsq_priq);
1662 			list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node);
1663 		} else {
1664 			list_add(&p->scx.dsq_list.node, &dsq->list);
1665 		}
1666 	} else {
1667 		/* a FIFO DSQ shouldn't be using PRIQ enqueuing */
1668 		if (unlikely(!RB_EMPTY_ROOT(&dsq->priq)))
1669 			scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
1670 				      dsq->id);
1671 
1672 		if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
1673 			list_add(&p->scx.dsq_list.node, &dsq->list);
1674 		else
1675 			list_add_tail(&p->scx.dsq_list.node, &dsq->list);
1676 	}
1677 
1678 	/* seq records the order tasks are queued, used by BPF DSQ iterator */
1679 	dsq->seq++;
1680 	p->scx.dsq_seq = dsq->seq;
1681 
1682 	dsq_mod_nr(dsq, 1);
1683 	p->scx.dsq = dsq;
1684 
1685 	/*
1686 	 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the
1687 	 * direct dispatch path, but we clear them here because the direct
1688 	 * dispatch verdict may be overridden on the enqueue path during e.g.
1689 	 * bypass.
1690 	 */
1691 	p->scx.ddsp_dsq_id = SCX_DSQ_INVALID;
1692 	p->scx.ddsp_enq_flags = 0;
1693 
1694 	/*
1695 	 * We're transitioning out of QUEUEING or DISPATCHING. store_release to
1696 	 * match waiters' load_acquire.
1697 	 */
1698 	if (enq_flags & SCX_ENQ_CLEAR_OPSS)
1699 		atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1700 
1701 	if (is_local) {
1702 		struct rq *rq = container_of(dsq, struct rq, scx.local_dsq);
1703 		bool preempt = false;
1704 
1705 		if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr &&
1706 		    rq->curr->sched_class == &ext_sched_class) {
1707 			rq->curr->scx.slice = 0;
1708 			preempt = true;
1709 		}
1710 
1711 		if (preempt || sched_class_above(&ext_sched_class,
1712 						 rq->curr->sched_class))
1713 			resched_curr(rq);
1714 	} else {
1715 		raw_spin_unlock(&dsq->lock);
1716 	}
1717 }
1718 
1719 static void task_unlink_from_dsq(struct task_struct *p,
1720 				 struct scx_dispatch_q *dsq)
1721 {
1722 	if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) {
1723 		rb_erase(&p->scx.dsq_priq, &dsq->priq);
1724 		RB_CLEAR_NODE(&p->scx.dsq_priq);
1725 		p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ;
1726 	}
1727 
1728 	list_del_init(&p->scx.dsq_list.node);
1729 }
1730 
1731 static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
1732 {
1733 	struct scx_dispatch_q *dsq = p->scx.dsq;
1734 	bool is_local = dsq == &rq->scx.local_dsq;
1735 
1736 	if (!dsq) {
1737 		/*
1738 		 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals.
1739 		 * Unlinking is all that's needed to cancel.
1740 		 */
1741 		if (unlikely(!list_empty(&p->scx.dsq_list.node)))
1742 			list_del_init(&p->scx.dsq_list.node);
1743 
1744 		/*
1745 		 * When dispatching directly from the BPF scheduler to a local
1746 		 * DSQ, the task isn't associated with any DSQ but
1747 		 * @p->scx.holding_cpu may be set under the protection of
1748 		 * %SCX_OPSS_DISPATCHING.
1749 		 */
1750 		if (p->scx.holding_cpu >= 0)
1751 			p->scx.holding_cpu = -1;
1752 
1753 		return;
1754 	}
1755 
1756 	if (!is_local)
1757 		raw_spin_lock(&dsq->lock);
1758 
1759 	/*
1760 	 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't
1761 	 * change underneath us.
1762 	*/
1763 	if (p->scx.holding_cpu < 0) {
1764 		/* @p must still be on @dsq, dequeue */
1765 		WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node));
1766 		task_unlink_from_dsq(p, dsq);
1767 		dsq_mod_nr(dsq, -1);
1768 	} else {
1769 		/*
1770 		 * We're racing against dispatch_to_local_dsq() which already
1771 		 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the
1772 		 * holding_cpu which tells dispatch_to_local_dsq() that it lost
1773 		 * the race.
1774 		 */
1775 		WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node));
1776 		p->scx.holding_cpu = -1;
1777 	}
1778 	p->scx.dsq = NULL;
1779 
1780 	if (!is_local)
1781 		raw_spin_unlock(&dsq->lock);
1782 }
1783 
1784 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id)
1785 {
1786 	return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params);
1787 }
1788 
1789 static struct scx_dispatch_q *find_non_local_dsq(u64 dsq_id)
1790 {
1791 	lockdep_assert(rcu_read_lock_any_held());
1792 
1793 	if (dsq_id == SCX_DSQ_GLOBAL)
1794 		return &scx_dsq_global;
1795 	else
1796 		return find_user_dsq(dsq_id);
1797 }
1798 
1799 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id,
1800 						    struct task_struct *p)
1801 {
1802 	struct scx_dispatch_q *dsq;
1803 
1804 	if (dsq_id == SCX_DSQ_LOCAL)
1805 		return &rq->scx.local_dsq;
1806 
1807 	dsq = find_non_local_dsq(dsq_id);
1808 	if (unlikely(!dsq)) {
1809 		scx_ops_error("non-existent DSQ 0x%llx for %s[%d]",
1810 			      dsq_id, p->comm, p->pid);
1811 		return &scx_dsq_global;
1812 	}
1813 
1814 	return dsq;
1815 }
1816 
1817 static void mark_direct_dispatch(struct task_struct *ddsp_task,
1818 				 struct task_struct *p, u64 dsq_id,
1819 				 u64 enq_flags)
1820 {
1821 	/*
1822 	 * Mark that dispatch already happened from ops.select_cpu() or
1823 	 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value
1824 	 * which can never match a valid task pointer.
1825 	 */
1826 	__this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH));
1827 
1828 	/* @p must match the task on the enqueue path */
1829 	if (unlikely(p != ddsp_task)) {
1830 		if (IS_ERR(ddsp_task))
1831 			scx_ops_error("%s[%d] already direct-dispatched",
1832 				      p->comm, p->pid);
1833 		else
1834 			scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
1835 				      ddsp_task->comm, ddsp_task->pid,
1836 				      p->comm, p->pid);
1837 		return;
1838 	}
1839 
1840 	WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID);
1841 	WARN_ON_ONCE(p->scx.ddsp_enq_flags);
1842 
1843 	p->scx.ddsp_dsq_id = dsq_id;
1844 	p->scx.ddsp_enq_flags = enq_flags;
1845 }
1846 
1847 static void direct_dispatch(struct task_struct *p, u64 enq_flags)
1848 {
1849 	struct rq *rq = task_rq(p);
1850 	struct scx_dispatch_q *dsq;
1851 	u64 dsq_id = p->scx.ddsp_dsq_id;
1852 
1853 	touch_core_sched_dispatch(rq, p);
1854 
1855 	p->scx.ddsp_enq_flags |= enq_flags;
1856 
1857 	/*
1858 	 * We are in the enqueue path with @rq locked and pinned, and thus can't
1859 	 * double lock a remote rq and enqueue to its local DSQ. For
1860 	 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer
1861 	 * the enqueue so that it's executed when @rq can be unlocked.
1862 	 */
1863 	if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
1864 		s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
1865 		unsigned long opss;
1866 
1867 		if (cpu == cpu_of(rq)) {
1868 			dsq_id = SCX_DSQ_LOCAL;
1869 			goto dispatch;
1870 		}
1871 
1872 		opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK;
1873 
1874 		switch (opss & SCX_OPSS_STATE_MASK) {
1875 		case SCX_OPSS_NONE:
1876 			break;
1877 		case SCX_OPSS_QUEUEING:
1878 			/*
1879 			 * As @p was never passed to the BPF side, _release is
1880 			 * not strictly necessary. Still do it for consistency.
1881 			 */
1882 			atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1883 			break;
1884 		default:
1885 			WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()",
1886 				  p->comm, p->pid, opss);
1887 			atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1888 			break;
1889 		}
1890 
1891 		WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1892 		list_add_tail(&p->scx.dsq_list.node,
1893 			      &rq->scx.ddsp_deferred_locals);
1894 		schedule_deferred(rq);
1895 		return;
1896 	}
1897 
1898 dispatch:
1899 	dsq = find_dsq_for_dispatch(rq, dsq_id, p);
1900 	dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
1901 }
1902 
1903 static bool scx_rq_online(struct rq *rq)
1904 {
1905 	/*
1906 	 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates
1907 	 * the online state as seen from the BPF scheduler. cpu_active() test
1908 	 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will
1909 	 * stay set until the current scheduling operation is complete even if
1910 	 * we aren't locking @rq.
1911 	 */
1912 	return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq)));
1913 }
1914 
1915 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
1916 			    int sticky_cpu)
1917 {
1918 	struct task_struct **ddsp_taskp;
1919 	unsigned long qseq;
1920 
1921 	WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED));
1922 
1923 	/* rq migration */
1924 	if (sticky_cpu == cpu_of(rq))
1925 		goto local_norefill;
1926 
1927 	/*
1928 	 * If !scx_rq_online(), we already told the BPF scheduler that the CPU
1929 	 * is offline and are just running the hotplug path. Don't bother the
1930 	 * BPF scheduler.
1931 	 */
1932 	if (!scx_rq_online(rq))
1933 		goto local;
1934 
1935 	if (scx_ops_bypassing())
1936 		goto global;
1937 
1938 	if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
1939 		goto direct;
1940 
1941 	/* see %SCX_OPS_ENQ_EXITING */
1942 	if (!static_branch_unlikely(&scx_ops_enq_exiting) &&
1943 	    unlikely(p->flags & PF_EXITING))
1944 		goto local;
1945 
1946 	if (!SCX_HAS_OP(enqueue))
1947 		goto global;
1948 
1949 	/* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
1950 	qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT;
1951 
1952 	WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
1953 	atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq);
1954 
1955 	ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
1956 	WARN_ON_ONCE(*ddsp_taskp);
1957 	*ddsp_taskp = p;
1958 
1959 	SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags);
1960 
1961 	*ddsp_taskp = NULL;
1962 	if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
1963 		goto direct;
1964 
1965 	/*
1966 	 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or
1967 	 * dequeue may be waiting. The store_release matches their load_acquire.
1968 	 */
1969 	atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq);
1970 	return;
1971 
1972 direct:
1973 	direct_dispatch(p, enq_flags);
1974 	return;
1975 
1976 local:
1977 	/*
1978 	 * For task-ordering, slice refill must be treated as implying the end
1979 	 * of the current slice. Otherwise, the longer @p stays on the CPU, the
1980 	 * higher priority it becomes from scx_prio_less()'s POV.
1981 	 */
1982 	touch_core_sched(rq, p);
1983 	p->scx.slice = SCX_SLICE_DFL;
1984 local_norefill:
1985 	dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags);
1986 	return;
1987 
1988 global:
1989 	touch_core_sched(rq, p);	/* see the comment in local: */
1990 	p->scx.slice = SCX_SLICE_DFL;
1991 	dispatch_enqueue(&scx_dsq_global, p, enq_flags);
1992 }
1993 
1994 static bool task_runnable(const struct task_struct *p)
1995 {
1996 	return !list_empty(&p->scx.runnable_node);
1997 }
1998 
1999 static void set_task_runnable(struct rq *rq, struct task_struct *p)
2000 {
2001 	lockdep_assert_rq_held(rq);
2002 
2003 	if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) {
2004 		p->scx.runnable_at = jiffies;
2005 		p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT;
2006 	}
2007 
2008 	/*
2009 	 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being
2010 	 * appened to the runnable_list.
2011 	 */
2012 	list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list);
2013 }
2014 
2015 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at)
2016 {
2017 	list_del_init(&p->scx.runnable_node);
2018 	if (reset_runnable_at)
2019 		p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
2020 }
2021 
2022 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags)
2023 {
2024 	int sticky_cpu = p->scx.sticky_cpu;
2025 
2026 	if (enq_flags & ENQUEUE_WAKEUP)
2027 		rq->scx.flags |= SCX_RQ_IN_WAKEUP;
2028 
2029 	enq_flags |= rq->scx.extra_enq_flags;
2030 
2031 	if (sticky_cpu >= 0)
2032 		p->scx.sticky_cpu = -1;
2033 
2034 	/*
2035 	 * Restoring a running task will be immediately followed by
2036 	 * set_next_task_scx() which expects the task to not be on the BPF
2037 	 * scheduler as tasks can only start running through local DSQs. Force
2038 	 * direct-dispatch into the local DSQ by setting the sticky_cpu.
2039 	 */
2040 	if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p))
2041 		sticky_cpu = cpu_of(rq);
2042 
2043 	if (p->scx.flags & SCX_TASK_QUEUED) {
2044 		WARN_ON_ONCE(!task_runnable(p));
2045 		goto out;
2046 	}
2047 
2048 	set_task_runnable(rq, p);
2049 	p->scx.flags |= SCX_TASK_QUEUED;
2050 	rq->scx.nr_running++;
2051 	add_nr_running(rq, 1);
2052 
2053 	if (SCX_HAS_OP(runnable))
2054 		SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags);
2055 
2056 	if (enq_flags & SCX_ENQ_WAKEUP)
2057 		touch_core_sched(rq, p);
2058 
2059 	do_enqueue_task(rq, p, enq_flags, sticky_cpu);
2060 out:
2061 	rq->scx.flags &= ~SCX_RQ_IN_WAKEUP;
2062 }
2063 
2064 static void ops_dequeue(struct task_struct *p, u64 deq_flags)
2065 {
2066 	unsigned long opss;
2067 
2068 	/* dequeue is always temporary, don't reset runnable_at */
2069 	clr_task_runnable(p, false);
2070 
2071 	/* acquire ensures that we see the preceding updates on QUEUED */
2072 	opss = atomic_long_read_acquire(&p->scx.ops_state);
2073 
2074 	switch (opss & SCX_OPSS_STATE_MASK) {
2075 	case SCX_OPSS_NONE:
2076 		break;
2077 	case SCX_OPSS_QUEUEING:
2078 		/*
2079 		 * QUEUEING is started and finished while holding @p's rq lock.
2080 		 * As we're holding the rq lock now, we shouldn't see QUEUEING.
2081 		 */
2082 		BUG();
2083 	case SCX_OPSS_QUEUED:
2084 		if (SCX_HAS_OP(dequeue))
2085 			SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags);
2086 
2087 		if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2088 					    SCX_OPSS_NONE))
2089 			break;
2090 		fallthrough;
2091 	case SCX_OPSS_DISPATCHING:
2092 		/*
2093 		 * If @p is being dispatched from the BPF scheduler to a DSQ,
2094 		 * wait for the transfer to complete so that @p doesn't get
2095 		 * added to its DSQ after dequeueing is complete.
2096 		 *
2097 		 * As we're waiting on DISPATCHING with the rq locked, the
2098 		 * dispatching side shouldn't try to lock the rq while
2099 		 * DISPATCHING is set. See dispatch_to_local_dsq().
2100 		 *
2101 		 * DISPATCHING shouldn't have qseq set and control can reach
2102 		 * here with NONE @opss from the above QUEUED case block.
2103 		 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss.
2104 		 */
2105 		wait_ops_state(p, SCX_OPSS_DISPATCHING);
2106 		BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
2107 		break;
2108 	}
2109 }
2110 
2111 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags)
2112 {
2113 	if (!(p->scx.flags & SCX_TASK_QUEUED)) {
2114 		WARN_ON_ONCE(task_runnable(p));
2115 		return true;
2116 	}
2117 
2118 	ops_dequeue(p, deq_flags);
2119 
2120 	/*
2121 	 * A currently running task which is going off @rq first gets dequeued
2122 	 * and then stops running. As we want running <-> stopping transitions
2123 	 * to be contained within runnable <-> quiescent transitions, trigger
2124 	 * ->stopping() early here instead of in put_prev_task_scx().
2125 	 *
2126 	 * @p may go through multiple stopping <-> running transitions between
2127 	 * here and put_prev_task_scx() if task attribute changes occur while
2128 	 * balance_scx() leaves @rq unlocked. However, they don't contain any
2129 	 * information meaningful to the BPF scheduler and can be suppressed by
2130 	 * skipping the callbacks if the task is !QUEUED.
2131 	 */
2132 	if (SCX_HAS_OP(stopping) && task_current(rq, p)) {
2133 		update_curr_scx(rq);
2134 		SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false);
2135 	}
2136 
2137 	if (SCX_HAS_OP(quiescent))
2138 		SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags);
2139 
2140 	if (deq_flags & SCX_DEQ_SLEEP)
2141 		p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP;
2142 	else
2143 		p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP;
2144 
2145 	p->scx.flags &= ~SCX_TASK_QUEUED;
2146 	rq->scx.nr_running--;
2147 	sub_nr_running(rq, 1);
2148 
2149 	dispatch_dequeue(rq, p);
2150 	return true;
2151 }
2152 
2153 static void yield_task_scx(struct rq *rq)
2154 {
2155 	struct task_struct *p = rq->curr;
2156 
2157 	if (SCX_HAS_OP(yield))
2158 		SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL);
2159 	else
2160 		p->scx.slice = 0;
2161 }
2162 
2163 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to)
2164 {
2165 	struct task_struct *from = rq->curr;
2166 
2167 	if (SCX_HAS_OP(yield))
2168 		return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to);
2169 	else
2170 		return false;
2171 }
2172 
2173 #ifdef CONFIG_SMP
2174 /**
2175  * move_task_to_local_dsq - Move a task from a different rq to a local DSQ
2176  * @p: task to move
2177  * @enq_flags: %SCX_ENQ_*
2178  * @src_rq: rq to move the task from, locked on entry, released on return
2179  * @dst_rq: rq to move the task into, locked on return
2180  *
2181  * Move @p which is currently on @src_rq to @dst_rq's local DSQ. The caller
2182  * must:
2183  *
2184  * 1. Start with exclusive access to @p either through its DSQ lock or
2185  *    %SCX_OPSS_DISPATCHING flag.
2186  *
2187  * 2. Set @p->scx.holding_cpu to raw_smp_processor_id().
2188  *
2189  * 3. Remember task_rq(@p) as @src_rq. Release the exclusive access so that we
2190  *    don't deadlock with dequeue.
2191  *
2192  * 4. Lock @src_rq from #3.
2193  *
2194  * 5. Call this function.
2195  *
2196  * Returns %true if @p was successfully moved. %false after racing dequeue and
2197  * losing. On return, @src_rq is unlocked and @dst_rq is locked.
2198  */
2199 static bool move_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
2200 				   struct rq *src_rq, struct rq *dst_rq)
2201 {
2202 	lockdep_assert_rq_held(src_rq);
2203 
2204 	/*
2205 	 * If dequeue got to @p while we were trying to lock @src_rq, it'd have
2206 	 * cleared @p->scx.holding_cpu to -1. While other cpus may have updated
2207 	 * it to different values afterwards, as this operation can't be
2208 	 * preempted or recurse, @p->scx.holding_cpu can never become
2209 	 * raw_smp_processor_id() again before we're done. Thus, we can tell
2210 	 * whether we lost to dequeue by testing whether @p->scx.holding_cpu is
2211 	 * still raw_smp_processor_id().
2212 	 *
2213 	 * @p->rq couldn't have changed if we're still the holding cpu.
2214 	 *
2215 	 * See dispatch_dequeue() for the counterpart.
2216 	 */
2217 	if (unlikely(p->scx.holding_cpu != raw_smp_processor_id()) ||
2218 	    WARN_ON_ONCE(src_rq != task_rq(p))) {
2219 		raw_spin_rq_unlock(src_rq);
2220 		raw_spin_rq_lock(dst_rq);
2221 		return false;
2222 	}
2223 
2224 	/* the following marks @p MIGRATING which excludes dequeue */
2225 	deactivate_task(src_rq, p, 0);
2226 	set_task_cpu(p, cpu_of(dst_rq));
2227 	p->scx.sticky_cpu = cpu_of(dst_rq);
2228 
2229 	raw_spin_rq_unlock(src_rq);
2230 	raw_spin_rq_lock(dst_rq);
2231 
2232 	/*
2233 	 * We want to pass scx-specific enq_flags but activate_task() will
2234 	 * truncate the upper 32 bit. As we own @rq, we can pass them through
2235 	 * @rq->scx.extra_enq_flags instead.
2236 	 */
2237 	WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr));
2238 	WARN_ON_ONCE(dst_rq->scx.extra_enq_flags);
2239 	dst_rq->scx.extra_enq_flags = enq_flags;
2240 	activate_task(dst_rq, p, 0);
2241 	dst_rq->scx.extra_enq_flags = 0;
2242 
2243 	return true;
2244 }
2245 
2246 #endif	/* CONFIG_SMP */
2247 
2248 static void consume_local_task(struct rq *rq, struct scx_dispatch_q *dsq,
2249 			       struct task_struct *p)
2250 {
2251 	lockdep_assert_held(&dsq->lock);	/* released on return */
2252 
2253 	/* @dsq is locked and @p is on this rq */
2254 	WARN_ON_ONCE(p->scx.holding_cpu >= 0);
2255 	task_unlink_from_dsq(p, dsq);
2256 	list_add_tail(&p->scx.dsq_list.node, &rq->scx.local_dsq.list);
2257 	dsq_mod_nr(dsq, -1);
2258 	dsq_mod_nr(&rq->scx.local_dsq, 1);
2259 	p->scx.dsq = &rq->scx.local_dsq;
2260 	raw_spin_unlock(&dsq->lock);
2261 }
2262 
2263 #ifdef CONFIG_SMP
2264 /*
2265  * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two
2266  * differences:
2267  *
2268  * - is_cpu_allowed() asks "Can this task run on this CPU?" while
2269  *   task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to
2270  *   this CPU?".
2271  *
2272  *   While migration is disabled, is_cpu_allowed() has to say "yes" as the task
2273  *   must be allowed to finish on the CPU that it's currently on regardless of
2274  *   the CPU state. However, task_can_run_on_remote_rq() must say "no" as the
2275  *   BPF scheduler shouldn't attempt to migrate a task which has migration
2276  *   disabled.
2277  *
2278  * - The BPF scheduler is bypassed while the rq is offline and we can always say
2279  *   no to the BPF scheduler initiated migrations while offline.
2280  */
2281 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq,
2282 				      bool trigger_error)
2283 {
2284 	int cpu = cpu_of(rq);
2285 
2286 	/*
2287 	 * We don't require the BPF scheduler to avoid dispatching to offline
2288 	 * CPUs mostly for convenience but also because CPUs can go offline
2289 	 * between scx_bpf_dispatch() calls and here. Trigger error iff the
2290 	 * picked CPU is outside the allowed mask.
2291 	 */
2292 	if (!task_allowed_on_cpu(p, cpu)) {
2293 		if (trigger_error)
2294 			scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]",
2295 				      cpu_of(rq), p->comm, p->pid);
2296 		return false;
2297 	}
2298 
2299 	if (unlikely(is_migration_disabled(p)))
2300 		return false;
2301 
2302 	if (!scx_rq_online(rq))
2303 		return false;
2304 
2305 	return true;
2306 }
2307 
2308 static bool consume_remote_task(struct rq *rq, struct scx_dispatch_q *dsq,
2309 				struct task_struct *p, struct rq *task_rq)
2310 {
2311 	lockdep_assert_held(&dsq->lock);	/* released on return */
2312 
2313 	/*
2314 	 * @dsq is locked and @p is on a remote rq. @p is currently protected by
2315 	 * @dsq->lock. We want to pull @p to @rq but may deadlock if we grab
2316 	 * @task_rq while holding @dsq and @rq locks. As dequeue can't drop the
2317 	 * rq lock or fail, do a little dancing from our side. See
2318 	 * move_task_to_local_dsq().
2319 	 */
2320 	WARN_ON_ONCE(p->scx.holding_cpu >= 0);
2321 	task_unlink_from_dsq(p, dsq);
2322 	dsq_mod_nr(dsq, -1);
2323 	p->scx.holding_cpu = raw_smp_processor_id();
2324 	raw_spin_unlock(&dsq->lock);
2325 
2326 	raw_spin_rq_unlock(rq);
2327 	raw_spin_rq_lock(task_rq);
2328 
2329 	return move_task_to_local_dsq(p, 0, task_rq, rq);
2330 }
2331 #else	/* CONFIG_SMP */
2332 static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; }
2333 static inline bool consume_remote_task(struct rq *rq, struct scx_dispatch_q *dsq, struct task_struct *p, struct rq *task_rq) { return false; }
2334 #endif	/* CONFIG_SMP */
2335 
2336 static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq)
2337 {
2338 	struct task_struct *p;
2339 retry:
2340 	/*
2341 	 * The caller can't expect to successfully consume a task if the task's
2342 	 * addition to @dsq isn't guaranteed to be visible somehow. Test
2343 	 * @dsq->list without locking and skip if it seems empty.
2344 	 */
2345 	if (list_empty(&dsq->list))
2346 		return false;
2347 
2348 	raw_spin_lock(&dsq->lock);
2349 
2350 	nldsq_for_each_task(p, dsq) {
2351 		struct rq *task_rq = task_rq(p);
2352 
2353 		if (rq == task_rq) {
2354 			consume_local_task(rq, dsq, p);
2355 			return true;
2356 		}
2357 
2358 		if (task_can_run_on_remote_rq(p, rq, false)) {
2359 			if (likely(consume_remote_task(rq, dsq, p, task_rq)))
2360 				return true;
2361 			goto retry;
2362 		}
2363 	}
2364 
2365 	raw_spin_unlock(&dsq->lock);
2366 	return false;
2367 }
2368 
2369 enum dispatch_to_local_dsq_ret {
2370 	DTL_DISPATCHED,		/* successfully dispatched */
2371 	DTL_LOST,		/* lost race to dequeue */
2372 	DTL_NOT_LOCAL,		/* destination is not a local DSQ */
2373 	DTL_INVALID,		/* invalid local dsq_id */
2374 };
2375 
2376 /**
2377  * dispatch_to_local_dsq - Dispatch a task to a local dsq
2378  * @rq: current rq which is locked
2379  * @dsq_id: destination dsq ID
2380  * @p: task to dispatch
2381  * @enq_flags: %SCX_ENQ_*
2382  *
2383  * We're holding @rq lock and want to dispatch @p to the local DSQ identified by
2384  * @dsq_id. This function performs all the synchronization dancing needed
2385  * because local DSQs are protected with rq locks.
2386  *
2387  * The caller must have exclusive ownership of @p (e.g. through
2388  * %SCX_OPSS_DISPATCHING).
2389  */
2390 static enum dispatch_to_local_dsq_ret
2391 dispatch_to_local_dsq(struct rq *rq, u64 dsq_id, struct task_struct *p,
2392 		      u64 enq_flags)
2393 {
2394 	struct rq *src_rq = task_rq(p);
2395 	struct rq *dst_rq;
2396 
2397 	/*
2398 	 * We're synchronized against dequeue through DISPATCHING. As @p can't
2399 	 * be dequeued, its task_rq and cpus_allowed are stable too.
2400 	 */
2401 	if (dsq_id == SCX_DSQ_LOCAL) {
2402 		dst_rq = rq;
2403 	} else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
2404 		s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
2405 
2406 		if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
2407 			return DTL_INVALID;
2408 		dst_rq = cpu_rq(cpu);
2409 	} else {
2410 		return DTL_NOT_LOCAL;
2411 	}
2412 
2413 	/* if dispatching to @rq that @p is already on, no lock dancing needed */
2414 	if (rq == src_rq && rq == dst_rq) {
2415 		dispatch_enqueue(&dst_rq->scx.local_dsq, p,
2416 				 enq_flags | SCX_ENQ_CLEAR_OPSS);
2417 		return DTL_DISPATCHED;
2418 	}
2419 
2420 #ifdef CONFIG_SMP
2421 	if (likely(task_can_run_on_remote_rq(p, dst_rq, true))) {
2422 		bool dsp;
2423 
2424 		/*
2425 		 * @p is on a possibly remote @src_rq which we need to lock to
2426 		 * move the task. If dequeue is in progress, it'd be locking
2427 		 * @src_rq and waiting on DISPATCHING, so we can't grab @src_rq
2428 		 * lock while holding DISPATCHING.
2429 		 *
2430 		 * As DISPATCHING guarantees that @p is wholly ours, we can
2431 		 * pretend that we're moving from a DSQ and use the same
2432 		 * mechanism - mark the task under transfer with holding_cpu,
2433 		 * release DISPATCHING and then follow the same protocol.
2434 		 */
2435 		p->scx.holding_cpu = raw_smp_processor_id();
2436 
2437 		/* store_release ensures that dequeue sees the above */
2438 		atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
2439 
2440 		/* switch to @src_rq lock */
2441 		if (rq != src_rq) {
2442 			raw_spin_rq_unlock(rq);
2443 			raw_spin_rq_lock(src_rq);
2444 		}
2445 
2446 		if (src_rq == dst_rq) {
2447 			/*
2448 			 * As @p is staying on the same rq, there's no need to
2449 			 * go through the full deactivate/activate cycle.
2450 			 * Optimize by abbreviating the operations in
2451 			 * move_task_to_local_dsq().
2452 			 */
2453 			dsp = p->scx.holding_cpu == raw_smp_processor_id();
2454 			if (likely(dsp)) {
2455 				p->scx.holding_cpu = -1;
2456 				dispatch_enqueue(&dst_rq->scx.local_dsq, p,
2457 						 enq_flags);
2458 			}
2459 		} else {
2460 			dsp = move_task_to_local_dsq(p, enq_flags,
2461 						     src_rq, dst_rq);
2462 		}
2463 
2464 		/* if the destination CPU is idle, wake it up */
2465 		if (dsp && sched_class_above(p->sched_class,
2466 					     dst_rq->curr->sched_class))
2467 			resched_curr(dst_rq);
2468 
2469 		/* switch back to @rq lock */
2470 		if (rq != dst_rq) {
2471 			raw_spin_rq_unlock(dst_rq);
2472 			raw_spin_rq_lock(rq);
2473 		}
2474 
2475 		return dsp ? DTL_DISPATCHED : DTL_LOST;
2476 	}
2477 #endif	/* CONFIG_SMP */
2478 
2479 	return DTL_INVALID;
2480 }
2481 
2482 /**
2483  * finish_dispatch - Asynchronously finish dispatching a task
2484  * @rq: current rq which is locked
2485  * @p: task to finish dispatching
2486  * @qseq_at_dispatch: qseq when @p started getting dispatched
2487  * @dsq_id: destination DSQ ID
2488  * @enq_flags: %SCX_ENQ_*
2489  *
2490  * Dispatching to local DSQs may need to wait for queueing to complete or
2491  * require rq lock dancing. As we don't wanna do either while inside
2492  * ops.dispatch() to avoid locking order inversion, we split dispatching into
2493  * two parts. scx_bpf_dispatch() which is called by ops.dispatch() records the
2494  * task and its qseq. Once ops.dispatch() returns, this function is called to
2495  * finish up.
2496  *
2497  * There is no guarantee that @p is still valid for dispatching or even that it
2498  * was valid in the first place. Make sure that the task is still owned by the
2499  * BPF scheduler and claim the ownership before dispatching.
2500  */
2501 static void finish_dispatch(struct rq *rq, struct task_struct *p,
2502 			    unsigned long qseq_at_dispatch,
2503 			    u64 dsq_id, u64 enq_flags)
2504 {
2505 	struct scx_dispatch_q *dsq;
2506 	unsigned long opss;
2507 
2508 	touch_core_sched_dispatch(rq, p);
2509 retry:
2510 	/*
2511 	 * No need for _acquire here. @p is accessed only after a successful
2512 	 * try_cmpxchg to DISPATCHING.
2513 	 */
2514 	opss = atomic_long_read(&p->scx.ops_state);
2515 
2516 	switch (opss & SCX_OPSS_STATE_MASK) {
2517 	case SCX_OPSS_DISPATCHING:
2518 	case SCX_OPSS_NONE:
2519 		/* someone else already got to it */
2520 		return;
2521 	case SCX_OPSS_QUEUED:
2522 		/*
2523 		 * If qseq doesn't match, @p has gone through at least one
2524 		 * dispatch/dequeue and re-enqueue cycle between
2525 		 * scx_bpf_dispatch() and here and we have no claim on it.
2526 		 */
2527 		if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch)
2528 			return;
2529 
2530 		/*
2531 		 * While we know @p is accessible, we don't yet have a claim on
2532 		 * it - the BPF scheduler is allowed to dispatch tasks
2533 		 * spuriously and there can be a racing dequeue attempt. Let's
2534 		 * claim @p by atomically transitioning it from QUEUED to
2535 		 * DISPATCHING.
2536 		 */
2537 		if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2538 						   SCX_OPSS_DISPATCHING)))
2539 			break;
2540 		goto retry;
2541 	case SCX_OPSS_QUEUEING:
2542 		/*
2543 		 * do_enqueue_task() is in the process of transferring the task
2544 		 * to the BPF scheduler while holding @p's rq lock. As we aren't
2545 		 * holding any kernel or BPF resource that the enqueue path may
2546 		 * depend upon, it's safe to wait.
2547 		 */
2548 		wait_ops_state(p, opss);
2549 		goto retry;
2550 	}
2551 
2552 	BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED));
2553 
2554 	switch (dispatch_to_local_dsq(rq, dsq_id, p, enq_flags)) {
2555 	case DTL_DISPATCHED:
2556 		break;
2557 	case DTL_LOST:
2558 		break;
2559 	case DTL_INVALID:
2560 		dsq_id = SCX_DSQ_GLOBAL;
2561 		fallthrough;
2562 	case DTL_NOT_LOCAL:
2563 		dsq = find_dsq_for_dispatch(cpu_rq(raw_smp_processor_id()),
2564 					    dsq_id, p);
2565 		dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2566 		break;
2567 	}
2568 }
2569 
2570 static void flush_dispatch_buf(struct rq *rq)
2571 {
2572 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2573 	u32 u;
2574 
2575 	for (u = 0; u < dspc->cursor; u++) {
2576 		struct scx_dsp_buf_ent *ent = &dspc->buf[u];
2577 
2578 		finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id,
2579 				ent->enq_flags);
2580 	}
2581 
2582 	dspc->nr_tasks += dspc->cursor;
2583 	dspc->cursor = 0;
2584 }
2585 
2586 static int balance_one(struct rq *rq, struct task_struct *prev)
2587 {
2588 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2589 	bool prev_on_scx = prev->sched_class == &ext_sched_class;
2590 	int nr_loops = SCX_DSP_MAX_LOOPS;
2591 
2592 	lockdep_assert_rq_held(rq);
2593 	rq->scx.flags |= SCX_RQ_IN_BALANCE;
2594 	rq->scx.flags &= ~SCX_RQ_BAL_KEEP;
2595 
2596 	if (static_branch_unlikely(&scx_ops_cpu_preempt) &&
2597 	    unlikely(rq->scx.cpu_released)) {
2598 		/*
2599 		 * If the previous sched_class for the current CPU was not SCX,
2600 		 * notify the BPF scheduler that it again has control of the
2601 		 * core. This callback complements ->cpu_release(), which is
2602 		 * emitted in scx_next_task_picked().
2603 		 */
2604 		if (SCX_HAS_OP(cpu_acquire))
2605 			SCX_CALL_OP(0, cpu_acquire, cpu_of(rq), NULL);
2606 		rq->scx.cpu_released = false;
2607 	}
2608 
2609 	if (prev_on_scx) {
2610 		update_curr_scx(rq);
2611 
2612 		/*
2613 		 * If @prev is runnable & has slice left, it has priority and
2614 		 * fetching more just increases latency for the fetched tasks.
2615 		 * Tell pick_task_scx() to keep running @prev. If the BPF
2616 		 * scheduler wants to handle this explicitly, it should
2617 		 * implement ->cpu_release().
2618 		 *
2619 		 * See scx_ops_disable_workfn() for the explanation on the
2620 		 * bypassing test.
2621 		 */
2622 		if ((prev->scx.flags & SCX_TASK_QUEUED) &&
2623 		    prev->scx.slice && !scx_ops_bypassing()) {
2624 			rq->scx.flags |= SCX_RQ_BAL_KEEP;
2625 			goto has_tasks;
2626 		}
2627 	}
2628 
2629 	/* if there already are tasks to run, nothing to do */
2630 	if (rq->scx.local_dsq.nr)
2631 		goto has_tasks;
2632 
2633 	if (consume_dispatch_q(rq, &scx_dsq_global))
2634 		goto has_tasks;
2635 
2636 	if (!SCX_HAS_OP(dispatch) || scx_ops_bypassing() || !scx_rq_online(rq))
2637 		goto no_tasks;
2638 
2639 	dspc->rq = rq;
2640 
2641 	/*
2642 	 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock,
2643 	 * the local DSQ might still end up empty after a successful
2644 	 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch()
2645 	 * produced some tasks, retry. The BPF scheduler may depend on this
2646 	 * looping behavior to simplify its implementation.
2647 	 */
2648 	do {
2649 		dspc->nr_tasks = 0;
2650 
2651 		SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq),
2652 			    prev_on_scx ? prev : NULL);
2653 
2654 		flush_dispatch_buf(rq);
2655 
2656 		if (rq->scx.local_dsq.nr)
2657 			goto has_tasks;
2658 		if (consume_dispatch_q(rq, &scx_dsq_global))
2659 			goto has_tasks;
2660 
2661 		/*
2662 		 * ops.dispatch() can trap us in this loop by repeatedly
2663 		 * dispatching ineligible tasks. Break out once in a while to
2664 		 * allow the watchdog to run. As IRQ can't be enabled in
2665 		 * balance(), we want to complete this scheduling cycle and then
2666 		 * start a new one. IOW, we want to call resched_curr() on the
2667 		 * next, most likely idle, task, not the current one. Use
2668 		 * scx_bpf_kick_cpu() for deferred kicking.
2669 		 */
2670 		if (unlikely(!--nr_loops)) {
2671 			scx_bpf_kick_cpu(cpu_of(rq), 0);
2672 			break;
2673 		}
2674 	} while (dspc->nr_tasks);
2675 
2676 no_tasks:
2677 	/*
2678 	 * Didn't find another task to run. Keep running @prev unless
2679 	 * %SCX_OPS_ENQ_LAST is in effect.
2680 	 */
2681 	if ((prev->scx.flags & SCX_TASK_QUEUED) &&
2682 	    (!static_branch_unlikely(&scx_ops_enq_last) || scx_ops_bypassing())) {
2683 		rq->scx.flags |= SCX_RQ_BAL_KEEP;
2684 		goto has_tasks;
2685 	}
2686 	rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2687 	return false;
2688 
2689 has_tasks:
2690 	rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2691 	return true;
2692 }
2693 
2694 static int balance_scx(struct rq *rq, struct task_struct *prev,
2695 		       struct rq_flags *rf)
2696 {
2697 	int ret;
2698 
2699 	rq_unpin_lock(rq, rf);
2700 
2701 	ret = balance_one(rq, prev);
2702 
2703 #ifdef CONFIG_SCHED_SMT
2704 	/*
2705 	 * When core-sched is enabled, this ops.balance() call will be followed
2706 	 * by pick_task_scx() on this CPU and the SMT siblings. Balance the
2707 	 * siblings too.
2708 	 */
2709 	if (sched_core_enabled(rq)) {
2710 		const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq));
2711 		int scpu;
2712 
2713 		for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) {
2714 			struct rq *srq = cpu_rq(scpu);
2715 			struct task_struct *sprev = srq->curr;
2716 
2717 			WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq));
2718 			update_rq_clock(srq);
2719 			balance_one(srq, sprev);
2720 		}
2721 	}
2722 #endif
2723 	rq_repin_lock(rq, rf);
2724 
2725 	return ret;
2726 }
2727 
2728 static void process_ddsp_deferred_locals(struct rq *rq)
2729 {
2730 	struct task_struct *p;
2731 
2732 	lockdep_assert_rq_held(rq);
2733 
2734 	/*
2735 	 * Now that @rq can be unlocked, execute the deferred enqueueing of
2736 	 * tasks directly dispatched to the local DSQs of other CPUs. See
2737 	 * direct_dispatch(). Keep popping from the head instead of using
2738 	 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq
2739 	 * temporarily.
2740 	 */
2741 	while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals,
2742 				struct task_struct, scx.dsq_list.node))) {
2743 		s32 ret;
2744 
2745 		list_del_init(&p->scx.dsq_list.node);
2746 
2747 		ret = dispatch_to_local_dsq(rq, p->scx.ddsp_dsq_id, p,
2748 					    p->scx.ddsp_enq_flags);
2749 		WARN_ON_ONCE(ret == DTL_NOT_LOCAL);
2750 	}
2751 }
2752 
2753 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
2754 {
2755 	if (p->scx.flags & SCX_TASK_QUEUED) {
2756 		/*
2757 		 * Core-sched might decide to execute @p before it is
2758 		 * dispatched. Call ops_dequeue() to notify the BPF scheduler.
2759 		 */
2760 		ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC);
2761 		dispatch_dequeue(rq, p);
2762 	}
2763 
2764 	p->se.exec_start = rq_clock_task(rq);
2765 
2766 	/* see dequeue_task_scx() on why we skip when !QUEUED */
2767 	if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED))
2768 		SCX_CALL_OP_TASK(SCX_KF_REST, running, p);
2769 
2770 	clr_task_runnable(p, true);
2771 
2772 	/*
2773 	 * @p is getting newly scheduled or got kicked after someone updated its
2774 	 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick().
2775 	 */
2776 	if ((p->scx.slice == SCX_SLICE_INF) !=
2777 	    (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) {
2778 		if (p->scx.slice == SCX_SLICE_INF)
2779 			rq->scx.flags |= SCX_RQ_CAN_STOP_TICK;
2780 		else
2781 			rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK;
2782 
2783 		sched_update_tick_dependency(rq);
2784 
2785 		/*
2786 		 * For now, let's refresh the load_avgs just when transitioning
2787 		 * in and out of nohz. In the future, we might want to add a
2788 		 * mechanism which calls the following periodically on
2789 		 * tick-stopped CPUs.
2790 		 */
2791 		update_other_load_avgs(rq);
2792 	}
2793 }
2794 
2795 static enum scx_cpu_preempt_reason
2796 preempt_reason_from_class(const struct sched_class *class)
2797 {
2798 #ifdef CONFIG_SMP
2799 	if (class == &stop_sched_class)
2800 		return SCX_CPU_PREEMPT_STOP;
2801 #endif
2802 	if (class == &dl_sched_class)
2803 		return SCX_CPU_PREEMPT_DL;
2804 	if (class == &rt_sched_class)
2805 		return SCX_CPU_PREEMPT_RT;
2806 	return SCX_CPU_PREEMPT_UNKNOWN;
2807 }
2808 
2809 static void switch_class(struct rq *rq, struct task_struct *next)
2810 {
2811 	const struct sched_class *next_class = next->sched_class;
2812 
2813 #ifdef CONFIG_SMP
2814 	/*
2815 	 * Pairs with the smp_load_acquire() issued by a CPU in
2816 	 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a
2817 	 * resched.
2818 	 */
2819 	smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1);
2820 #endif
2821 	if (!static_branch_unlikely(&scx_ops_cpu_preempt))
2822 		return;
2823 
2824 	/*
2825 	 * The callback is conceptually meant to convey that the CPU is no
2826 	 * longer under the control of SCX. Therefore, don't invoke the callback
2827 	 * if the next class is below SCX (in which case the BPF scheduler has
2828 	 * actively decided not to schedule any tasks on the CPU).
2829 	 */
2830 	if (sched_class_above(&ext_sched_class, next_class))
2831 		return;
2832 
2833 	/*
2834 	 * At this point we know that SCX was preempted by a higher priority
2835 	 * sched_class, so invoke the ->cpu_release() callback if we have not
2836 	 * done so already. We only send the callback once between SCX being
2837 	 * preempted, and it regaining control of the CPU.
2838 	 *
2839 	 * ->cpu_release() complements ->cpu_acquire(), which is emitted the
2840 	 *  next time that balance_scx() is invoked.
2841 	 */
2842 	if (!rq->scx.cpu_released) {
2843 		if (SCX_HAS_OP(cpu_release)) {
2844 			struct scx_cpu_release_args args = {
2845 				.reason = preempt_reason_from_class(next_class),
2846 				.task = next,
2847 			};
2848 
2849 			SCX_CALL_OP(SCX_KF_CPU_RELEASE,
2850 				    cpu_release, cpu_of(rq), &args);
2851 		}
2852 		rq->scx.cpu_released = true;
2853 	}
2854 }
2855 
2856 static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
2857 			      struct task_struct *next)
2858 {
2859 	update_curr_scx(rq);
2860 
2861 	/* see dequeue_task_scx() on why we skip when !QUEUED */
2862 	if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED))
2863 		SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true);
2864 
2865 	if (p->scx.flags & SCX_TASK_QUEUED) {
2866 		set_task_runnable(rq, p);
2867 
2868 		/*
2869 		 * If @p has slice left and is being put, @p is getting
2870 		 * preempted by a higher priority scheduler class or core-sched
2871 		 * forcing a different task. Leave it at the head of the local
2872 		 * DSQ.
2873 		 */
2874 		if (p->scx.slice && !scx_ops_bypassing()) {
2875 			dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD);
2876 			return;
2877 		}
2878 
2879 		/*
2880 		 * If @p is runnable but we're about to enter a lower
2881 		 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell
2882 		 * ops.enqueue() that @p is the only one available for this cpu,
2883 		 * which should trigger an explicit follow-up scheduling event.
2884 		 */
2885 		if (sched_class_above(&ext_sched_class, next->sched_class)) {
2886 			WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last));
2887 			do_enqueue_task(rq, p, SCX_ENQ_LAST, -1);
2888 		} else {
2889 			do_enqueue_task(rq, p, 0, -1);
2890 		}
2891 	}
2892 
2893 	if (next && next->sched_class != &ext_sched_class)
2894 		switch_class(rq, next);
2895 }
2896 
2897 static struct task_struct *first_local_task(struct rq *rq)
2898 {
2899 	return list_first_entry_or_null(&rq->scx.local_dsq.list,
2900 					struct task_struct, scx.dsq_list.node);
2901 }
2902 
2903 static struct task_struct *pick_task_scx(struct rq *rq)
2904 {
2905 	struct task_struct *prev = rq->curr;
2906 	struct task_struct *p;
2907 
2908 	/*
2909 	 * If balance_scx() is telling us to keep running @prev, replenish slice
2910 	 * if necessary and keep running @prev. Otherwise, pop the first one
2911 	 * from the local DSQ.
2912 	 */
2913 	if ((rq->scx.flags & SCX_RQ_BAL_KEEP) &&
2914 	    !WARN_ON_ONCE(prev->sched_class != &ext_sched_class)) {
2915 		p = prev;
2916 		if (!p->scx.slice)
2917 			p->scx.slice = SCX_SLICE_DFL;
2918 	} else {
2919 		p = first_local_task(rq);
2920 		if (!p)
2921 			return NULL;
2922 
2923 		if (unlikely(!p->scx.slice)) {
2924 			if (!scx_ops_bypassing() && !scx_warned_zero_slice) {
2925 				printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in pick_next_task_scx()\n",
2926 						p->comm, p->pid);
2927 				scx_warned_zero_slice = true;
2928 			}
2929 			p->scx.slice = SCX_SLICE_DFL;
2930 		}
2931 	}
2932 
2933 	return p;
2934 }
2935 
2936 #ifdef CONFIG_SCHED_CORE
2937 /**
2938  * scx_prio_less - Task ordering for core-sched
2939  * @a: task A
2940  * @b: task B
2941  *
2942  * Core-sched is implemented as an additional scheduling layer on top of the
2943  * usual sched_class'es and needs to find out the expected task ordering. For
2944  * SCX, core-sched calls this function to interrogate the task ordering.
2945  *
2946  * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used
2947  * to implement the default task ordering. The older the timestamp, the higher
2948  * prority the task - the global FIFO ordering matching the default scheduling
2949  * behavior.
2950  *
2951  * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to
2952  * implement FIFO ordering within each local DSQ. See pick_task_scx().
2953  */
2954 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b,
2955 		   bool in_fi)
2956 {
2957 	/*
2958 	 * The const qualifiers are dropped from task_struct pointers when
2959 	 * calling ops.core_sched_before(). Accesses are controlled by the
2960 	 * verifier.
2961 	 */
2962 	if (SCX_HAS_OP(core_sched_before) && !scx_ops_bypassing())
2963 		return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before,
2964 					      (struct task_struct *)a,
2965 					      (struct task_struct *)b);
2966 	else
2967 		return time_after64(a->scx.core_sched_at, b->scx.core_sched_at);
2968 }
2969 #endif	/* CONFIG_SCHED_CORE */
2970 
2971 #ifdef CONFIG_SMP
2972 
2973 static bool test_and_clear_cpu_idle(int cpu)
2974 {
2975 #ifdef CONFIG_SCHED_SMT
2976 	/*
2977 	 * SMT mask should be cleared whether we can claim @cpu or not. The SMT
2978 	 * cluster is not wholly idle either way. This also prevents
2979 	 * scx_pick_idle_cpu() from getting caught in an infinite loop.
2980 	 */
2981 	if (sched_smt_active()) {
2982 		const struct cpumask *smt = cpu_smt_mask(cpu);
2983 
2984 		/*
2985 		 * If offline, @cpu is not its own sibling and
2986 		 * scx_pick_idle_cpu() can get caught in an infinite loop as
2987 		 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu
2988 		 * is eventually cleared.
2989 		 */
2990 		if (cpumask_intersects(smt, idle_masks.smt))
2991 			cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
2992 		else if (cpumask_test_cpu(cpu, idle_masks.smt))
2993 			__cpumask_clear_cpu(cpu, idle_masks.smt);
2994 	}
2995 #endif
2996 	return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu);
2997 }
2998 
2999 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags)
3000 {
3001 	int cpu;
3002 
3003 retry:
3004 	if (sched_smt_active()) {
3005 		cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed);
3006 		if (cpu < nr_cpu_ids)
3007 			goto found;
3008 
3009 		if (flags & SCX_PICK_IDLE_CORE)
3010 			return -EBUSY;
3011 	}
3012 
3013 	cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed);
3014 	if (cpu >= nr_cpu_ids)
3015 		return -EBUSY;
3016 
3017 found:
3018 	if (test_and_clear_cpu_idle(cpu))
3019 		return cpu;
3020 	else
3021 		goto retry;
3022 }
3023 
3024 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
3025 			      u64 wake_flags, bool *found)
3026 {
3027 	s32 cpu;
3028 
3029 	*found = false;
3030 
3031 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
3032 		scx_ops_error("built-in idle tracking is disabled");
3033 		return prev_cpu;
3034 	}
3035 
3036 	/*
3037 	 * If WAKE_SYNC, the waker's local DSQ is empty, and the system is
3038 	 * under utilized, wake up @p to the local DSQ of the waker. Checking
3039 	 * only for an empty local DSQ is insufficient as it could give the
3040 	 * wakee an unfair advantage when the system is oversaturated.
3041 	 * Checking only for the presence of idle CPUs is also insufficient as
3042 	 * the local DSQ of the waker could have tasks piled up on it even if
3043 	 * there is an idle core elsewhere on the system.
3044 	 */
3045 	cpu = smp_processor_id();
3046 	if ((wake_flags & SCX_WAKE_SYNC) && p->nr_cpus_allowed > 1 &&
3047 	    !cpumask_empty(idle_masks.cpu) && !(current->flags & PF_EXITING) &&
3048 	    cpu_rq(cpu)->scx.local_dsq.nr == 0) {
3049 		if (cpumask_test_cpu(cpu, p->cpus_ptr))
3050 			goto cpu_found;
3051 	}
3052 
3053 	if (p->nr_cpus_allowed == 1) {
3054 		if (test_and_clear_cpu_idle(prev_cpu)) {
3055 			cpu = prev_cpu;
3056 			goto cpu_found;
3057 		} else {
3058 			return prev_cpu;
3059 		}
3060 	}
3061 
3062 	/*
3063 	 * If CPU has SMT, any wholly idle CPU is likely a better pick than
3064 	 * partially idle @prev_cpu.
3065 	 */
3066 	if (sched_smt_active()) {
3067 		if (cpumask_test_cpu(prev_cpu, idle_masks.smt) &&
3068 		    test_and_clear_cpu_idle(prev_cpu)) {
3069 			cpu = prev_cpu;
3070 			goto cpu_found;
3071 		}
3072 
3073 		cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE);
3074 		if (cpu >= 0)
3075 			goto cpu_found;
3076 	}
3077 
3078 	if (test_and_clear_cpu_idle(prev_cpu)) {
3079 		cpu = prev_cpu;
3080 		goto cpu_found;
3081 	}
3082 
3083 	cpu = scx_pick_idle_cpu(p->cpus_ptr, 0);
3084 	if (cpu >= 0)
3085 		goto cpu_found;
3086 
3087 	return prev_cpu;
3088 
3089 cpu_found:
3090 	*found = true;
3091 	return cpu;
3092 }
3093 
3094 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags)
3095 {
3096 	/*
3097 	 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
3098 	 * can be a good migration opportunity with low cache and memory
3099 	 * footprint. Returning a CPU different than @prev_cpu triggers
3100 	 * immediate rq migration. However, for SCX, as the current rq
3101 	 * association doesn't dictate where the task is going to run, this
3102 	 * doesn't fit well. If necessary, we can later add a dedicated method
3103 	 * which can decide to preempt self to force it through the regular
3104 	 * scheduling path.
3105 	 */
3106 	if (unlikely(wake_flags & WF_EXEC))
3107 		return prev_cpu;
3108 
3109 	if (SCX_HAS_OP(select_cpu)) {
3110 		s32 cpu;
3111 		struct task_struct **ddsp_taskp;
3112 
3113 		ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
3114 		WARN_ON_ONCE(*ddsp_taskp);
3115 		*ddsp_taskp = p;
3116 
3117 		cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
3118 					   select_cpu, p, prev_cpu, wake_flags);
3119 		*ddsp_taskp = NULL;
3120 		if (ops_cpu_valid(cpu, "from ops.select_cpu()"))
3121 			return cpu;
3122 		else
3123 			return prev_cpu;
3124 	} else {
3125 		bool found;
3126 		s32 cpu;
3127 
3128 		cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found);
3129 		if (found) {
3130 			p->scx.slice = SCX_SLICE_DFL;
3131 			p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL;
3132 		}
3133 		return cpu;
3134 	}
3135 }
3136 
3137 static void task_woken_scx(struct rq *rq, struct task_struct *p)
3138 {
3139 	run_deferred(rq);
3140 }
3141 
3142 static void set_cpus_allowed_scx(struct task_struct *p,
3143 				 struct affinity_context *ac)
3144 {
3145 	set_cpus_allowed_common(p, ac);
3146 
3147 	/*
3148 	 * The effective cpumask is stored in @p->cpus_ptr which may temporarily
3149 	 * differ from the configured one in @p->cpus_mask. Always tell the bpf
3150 	 * scheduler the effective one.
3151 	 *
3152 	 * Fine-grained memory write control is enforced by BPF making the const
3153 	 * designation pointless. Cast it away when calling the operation.
3154 	 */
3155 	if (SCX_HAS_OP(set_cpumask))
3156 		SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
3157 				 (struct cpumask *)p->cpus_ptr);
3158 }
3159 
3160 static void reset_idle_masks(void)
3161 {
3162 	/*
3163 	 * Consider all online cpus idle. Should converge to the actual state
3164 	 * quickly.
3165 	 */
3166 	cpumask_copy(idle_masks.cpu, cpu_online_mask);
3167 	cpumask_copy(idle_masks.smt, cpu_online_mask);
3168 }
3169 
3170 void __scx_update_idle(struct rq *rq, bool idle)
3171 {
3172 	int cpu = cpu_of(rq);
3173 
3174 	if (SCX_HAS_OP(update_idle)) {
3175 		SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle);
3176 		if (!static_branch_unlikely(&scx_builtin_idle_enabled))
3177 			return;
3178 	}
3179 
3180 	if (idle)
3181 		cpumask_set_cpu(cpu, idle_masks.cpu);
3182 	else
3183 		cpumask_clear_cpu(cpu, idle_masks.cpu);
3184 
3185 #ifdef CONFIG_SCHED_SMT
3186 	if (sched_smt_active()) {
3187 		const struct cpumask *smt = cpu_smt_mask(cpu);
3188 
3189 		if (idle) {
3190 			/*
3191 			 * idle_masks.smt handling is racy but that's fine as
3192 			 * it's only for optimization and self-correcting.
3193 			 */
3194 			for_each_cpu(cpu, smt) {
3195 				if (!cpumask_test_cpu(cpu, idle_masks.cpu))
3196 					return;
3197 			}
3198 			cpumask_or(idle_masks.smt, idle_masks.smt, smt);
3199 		} else {
3200 			cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
3201 		}
3202 	}
3203 #endif
3204 }
3205 
3206 static void handle_hotplug(struct rq *rq, bool online)
3207 {
3208 	int cpu = cpu_of(rq);
3209 
3210 	atomic_long_inc(&scx_hotplug_seq);
3211 
3212 	if (online && SCX_HAS_OP(cpu_online))
3213 		SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu);
3214 	else if (!online && SCX_HAS_OP(cpu_offline))
3215 		SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu);
3216 	else
3217 		scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
3218 			     "cpu %d going %s, exiting scheduler", cpu,
3219 			     online ? "online" : "offline");
3220 }
3221 
3222 void scx_rq_activate(struct rq *rq)
3223 {
3224 	handle_hotplug(rq, true);
3225 }
3226 
3227 void scx_rq_deactivate(struct rq *rq)
3228 {
3229 	handle_hotplug(rq, false);
3230 }
3231 
3232 static void rq_online_scx(struct rq *rq)
3233 {
3234 	rq->scx.flags |= SCX_RQ_ONLINE;
3235 }
3236 
3237 static void rq_offline_scx(struct rq *rq)
3238 {
3239 	rq->scx.flags &= ~SCX_RQ_ONLINE;
3240 }
3241 
3242 #else	/* CONFIG_SMP */
3243 
3244 static bool test_and_clear_cpu_idle(int cpu) { return false; }
3245 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; }
3246 static void reset_idle_masks(void) {}
3247 
3248 #endif	/* CONFIG_SMP */
3249 
3250 static bool check_rq_for_timeouts(struct rq *rq)
3251 {
3252 	struct task_struct *p;
3253 	struct rq_flags rf;
3254 	bool timed_out = false;
3255 
3256 	rq_lock_irqsave(rq, &rf);
3257 	list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) {
3258 		unsigned long last_runnable = p->scx.runnable_at;
3259 
3260 		if (unlikely(time_after(jiffies,
3261 					last_runnable + scx_watchdog_timeout))) {
3262 			u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable);
3263 
3264 			scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
3265 					   "%s[%d] failed to run for %u.%03us",
3266 					   p->comm, p->pid,
3267 					   dur_ms / 1000, dur_ms % 1000);
3268 			timed_out = true;
3269 			break;
3270 		}
3271 	}
3272 	rq_unlock_irqrestore(rq, &rf);
3273 
3274 	return timed_out;
3275 }
3276 
3277 static void scx_watchdog_workfn(struct work_struct *work)
3278 {
3279 	int cpu;
3280 
3281 	WRITE_ONCE(scx_watchdog_timestamp, jiffies);
3282 
3283 	for_each_online_cpu(cpu) {
3284 		if (unlikely(check_rq_for_timeouts(cpu_rq(cpu))))
3285 			break;
3286 
3287 		cond_resched();
3288 	}
3289 	queue_delayed_work(system_unbound_wq, to_delayed_work(work),
3290 			   scx_watchdog_timeout / 2);
3291 }
3292 
3293 void scx_tick(struct rq *rq)
3294 {
3295 	unsigned long last_check;
3296 
3297 	if (!scx_enabled())
3298 		return;
3299 
3300 	last_check = READ_ONCE(scx_watchdog_timestamp);
3301 	if (unlikely(time_after(jiffies,
3302 				last_check + READ_ONCE(scx_watchdog_timeout)))) {
3303 		u32 dur_ms = jiffies_to_msecs(jiffies - last_check);
3304 
3305 		scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
3306 				   "watchdog failed to check in for %u.%03us",
3307 				   dur_ms / 1000, dur_ms % 1000);
3308 	}
3309 
3310 	update_other_load_avgs(rq);
3311 }
3312 
3313 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
3314 {
3315 	update_curr_scx(rq);
3316 
3317 	/*
3318 	 * While disabling, always resched and refresh core-sched timestamp as
3319 	 * we can't trust the slice management or ops.core_sched_before().
3320 	 */
3321 	if (scx_ops_bypassing()) {
3322 		curr->scx.slice = 0;
3323 		touch_core_sched(rq, curr);
3324 	} else if (SCX_HAS_OP(tick)) {
3325 		SCX_CALL_OP(SCX_KF_REST, tick, curr);
3326 	}
3327 
3328 	if (!curr->scx.slice)
3329 		resched_curr(rq);
3330 }
3331 
3332 #ifdef CONFIG_EXT_GROUP_SCHED
3333 static struct cgroup *tg_cgrp(struct task_group *tg)
3334 {
3335 	/*
3336 	 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup,
3337 	 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the
3338 	 * root cgroup.
3339 	 */
3340 	if (tg && tg->css.cgroup)
3341 		return tg->css.cgroup;
3342 	else
3343 		return &cgrp_dfl_root.cgrp;
3344 }
3345 
3346 #define SCX_INIT_TASK_ARGS_CGROUP(tg)		.cgroup = tg_cgrp(tg),
3347 
3348 #else	/* CONFIG_EXT_GROUP_SCHED */
3349 
3350 #define SCX_INIT_TASK_ARGS_CGROUP(tg)
3351 
3352 #endif	/* CONFIG_EXT_GROUP_SCHED */
3353 
3354 static enum scx_task_state scx_get_task_state(const struct task_struct *p)
3355 {
3356 	return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT;
3357 }
3358 
3359 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state)
3360 {
3361 	enum scx_task_state prev_state = scx_get_task_state(p);
3362 	bool warn = false;
3363 
3364 	BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS));
3365 
3366 	switch (state) {
3367 	case SCX_TASK_NONE:
3368 		break;
3369 	case SCX_TASK_INIT:
3370 		warn = prev_state != SCX_TASK_NONE;
3371 		break;
3372 	case SCX_TASK_READY:
3373 		warn = prev_state == SCX_TASK_NONE;
3374 		break;
3375 	case SCX_TASK_ENABLED:
3376 		warn = prev_state != SCX_TASK_READY;
3377 		break;
3378 	default:
3379 		warn = true;
3380 		return;
3381 	}
3382 
3383 	WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]",
3384 		  prev_state, state, p->comm, p->pid);
3385 
3386 	p->scx.flags &= ~SCX_TASK_STATE_MASK;
3387 	p->scx.flags |= state << SCX_TASK_STATE_SHIFT;
3388 }
3389 
3390 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork)
3391 {
3392 	int ret;
3393 
3394 	p->scx.disallow = false;
3395 
3396 	if (SCX_HAS_OP(init_task)) {
3397 		struct scx_init_task_args args = {
3398 			SCX_INIT_TASK_ARGS_CGROUP(tg)
3399 			.fork = fork,
3400 		};
3401 
3402 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args);
3403 		if (unlikely(ret)) {
3404 			ret = ops_sanitize_err("init_task", ret);
3405 			return ret;
3406 		}
3407 	}
3408 
3409 	scx_set_task_state(p, SCX_TASK_INIT);
3410 
3411 	if (p->scx.disallow) {
3412 		if (!fork) {
3413 			struct rq *rq;
3414 			struct rq_flags rf;
3415 
3416 			rq = task_rq_lock(p, &rf);
3417 
3418 			/*
3419 			 * We're in the load path and @p->policy will be applied
3420 			 * right after. Reverting @p->policy here and rejecting
3421 			 * %SCHED_EXT transitions from scx_check_setscheduler()
3422 			 * guarantees that if ops.init_task() sets @p->disallow,
3423 			 * @p can never be in SCX.
3424 			 */
3425 			if (p->policy == SCHED_EXT) {
3426 				p->policy = SCHED_NORMAL;
3427 				atomic_long_inc(&scx_nr_rejected);
3428 			}
3429 
3430 			task_rq_unlock(rq, p, &rf);
3431 		} else if (p->policy == SCHED_EXT) {
3432 			scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork",
3433 				      p->comm, p->pid);
3434 		}
3435 	}
3436 
3437 	p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
3438 	return 0;
3439 }
3440 
3441 static void scx_ops_enable_task(struct task_struct *p)
3442 {
3443 	u32 weight;
3444 
3445 	lockdep_assert_rq_held(task_rq(p));
3446 
3447 	/*
3448 	 * Set the weight before calling ops.enable() so that the scheduler
3449 	 * doesn't see a stale value if they inspect the task struct.
3450 	 */
3451 	if (task_has_idle_policy(p))
3452 		weight = WEIGHT_IDLEPRIO;
3453 	else
3454 		weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO];
3455 
3456 	p->scx.weight = sched_weight_to_cgroup(weight);
3457 
3458 	if (SCX_HAS_OP(enable))
3459 		SCX_CALL_OP_TASK(SCX_KF_REST, enable, p);
3460 	scx_set_task_state(p, SCX_TASK_ENABLED);
3461 
3462 	if (SCX_HAS_OP(set_weight))
3463 		SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
3464 }
3465 
3466 static void scx_ops_disable_task(struct task_struct *p)
3467 {
3468 	lockdep_assert_rq_held(task_rq(p));
3469 	WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED);
3470 
3471 	if (SCX_HAS_OP(disable))
3472 		SCX_CALL_OP(SCX_KF_REST, disable, p);
3473 	scx_set_task_state(p, SCX_TASK_READY);
3474 }
3475 
3476 static void scx_ops_exit_task(struct task_struct *p)
3477 {
3478 	struct scx_exit_task_args args = {
3479 		.cancelled = false,
3480 	};
3481 
3482 	lockdep_assert_rq_held(task_rq(p));
3483 
3484 	switch (scx_get_task_state(p)) {
3485 	case SCX_TASK_NONE:
3486 		return;
3487 	case SCX_TASK_INIT:
3488 		args.cancelled = true;
3489 		break;
3490 	case SCX_TASK_READY:
3491 		break;
3492 	case SCX_TASK_ENABLED:
3493 		scx_ops_disable_task(p);
3494 		break;
3495 	default:
3496 		WARN_ON_ONCE(true);
3497 		return;
3498 	}
3499 
3500 	if (SCX_HAS_OP(exit_task))
3501 		SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args);
3502 	scx_set_task_state(p, SCX_TASK_NONE);
3503 }
3504 
3505 void init_scx_entity(struct sched_ext_entity *scx)
3506 {
3507 	/*
3508 	 * init_idle() calls this function again after fork sequence is
3509 	 * complete. Don't touch ->tasks_node as it's already linked.
3510 	 */
3511 	memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node));
3512 
3513 	INIT_LIST_HEAD(&scx->dsq_list.node);
3514 	RB_CLEAR_NODE(&scx->dsq_priq);
3515 	scx->sticky_cpu = -1;
3516 	scx->holding_cpu = -1;
3517 	INIT_LIST_HEAD(&scx->runnable_node);
3518 	scx->runnable_at = jiffies;
3519 	scx->ddsp_dsq_id = SCX_DSQ_INVALID;
3520 	scx->slice = SCX_SLICE_DFL;
3521 }
3522 
3523 void scx_pre_fork(struct task_struct *p)
3524 {
3525 	/*
3526 	 * BPF scheduler enable/disable paths want to be able to iterate and
3527 	 * update all tasks which can become complex when racing forks. As
3528 	 * enable/disable are very cold paths, let's use a percpu_rwsem to
3529 	 * exclude forks.
3530 	 */
3531 	percpu_down_read(&scx_fork_rwsem);
3532 }
3533 
3534 int scx_fork(struct task_struct *p)
3535 {
3536 	percpu_rwsem_assert_held(&scx_fork_rwsem);
3537 
3538 	if (scx_enabled())
3539 		return scx_ops_init_task(p, task_group(p), true);
3540 	else
3541 		return 0;
3542 }
3543 
3544 void scx_post_fork(struct task_struct *p)
3545 {
3546 	if (scx_enabled()) {
3547 		scx_set_task_state(p, SCX_TASK_READY);
3548 
3549 		/*
3550 		 * Enable the task immediately if it's running on sched_ext.
3551 		 * Otherwise, it'll be enabled in switching_to_scx() if and
3552 		 * when it's ever configured to run with a SCHED_EXT policy.
3553 		 */
3554 		if (p->sched_class == &ext_sched_class) {
3555 			struct rq_flags rf;
3556 			struct rq *rq;
3557 
3558 			rq = task_rq_lock(p, &rf);
3559 			scx_ops_enable_task(p);
3560 			task_rq_unlock(rq, p, &rf);
3561 		}
3562 	}
3563 
3564 	spin_lock_irq(&scx_tasks_lock);
3565 	list_add_tail(&p->scx.tasks_node, &scx_tasks);
3566 	spin_unlock_irq(&scx_tasks_lock);
3567 
3568 	percpu_up_read(&scx_fork_rwsem);
3569 }
3570 
3571 void scx_cancel_fork(struct task_struct *p)
3572 {
3573 	if (scx_enabled()) {
3574 		struct rq *rq;
3575 		struct rq_flags rf;
3576 
3577 		rq = task_rq_lock(p, &rf);
3578 		WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY);
3579 		scx_ops_exit_task(p);
3580 		task_rq_unlock(rq, p, &rf);
3581 	}
3582 
3583 	percpu_up_read(&scx_fork_rwsem);
3584 }
3585 
3586 void sched_ext_free(struct task_struct *p)
3587 {
3588 	unsigned long flags;
3589 
3590 	spin_lock_irqsave(&scx_tasks_lock, flags);
3591 	list_del_init(&p->scx.tasks_node);
3592 	spin_unlock_irqrestore(&scx_tasks_lock, flags);
3593 
3594 	/*
3595 	 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY ->
3596 	 * ENABLED transitions can't race us. Disable ops for @p.
3597 	 */
3598 	if (scx_get_task_state(p) != SCX_TASK_NONE) {
3599 		struct rq_flags rf;
3600 		struct rq *rq;
3601 
3602 		rq = task_rq_lock(p, &rf);
3603 		scx_ops_exit_task(p);
3604 		task_rq_unlock(rq, p, &rf);
3605 	}
3606 }
3607 
3608 static void reweight_task_scx(struct rq *rq, struct task_struct *p,
3609 			      const struct load_weight *lw)
3610 {
3611 	lockdep_assert_rq_held(task_rq(p));
3612 
3613 	p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight));
3614 	if (SCX_HAS_OP(set_weight))
3615 		SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
3616 }
3617 
3618 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio)
3619 {
3620 }
3621 
3622 static void switching_to_scx(struct rq *rq, struct task_struct *p)
3623 {
3624 	scx_ops_enable_task(p);
3625 
3626 	/*
3627 	 * set_cpus_allowed_scx() is not called while @p is associated with a
3628 	 * different scheduler class. Keep the BPF scheduler up-to-date.
3629 	 */
3630 	if (SCX_HAS_OP(set_cpumask))
3631 		SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
3632 				 (struct cpumask *)p->cpus_ptr);
3633 }
3634 
3635 static void switched_from_scx(struct rq *rq, struct task_struct *p)
3636 {
3637 	scx_ops_disable_task(p);
3638 }
3639 
3640 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {}
3641 static void switched_to_scx(struct rq *rq, struct task_struct *p) {}
3642 
3643 int scx_check_setscheduler(struct task_struct *p, int policy)
3644 {
3645 	lockdep_assert_rq_held(task_rq(p));
3646 
3647 	/* if disallow, reject transitioning into SCX */
3648 	if (scx_enabled() && READ_ONCE(p->scx.disallow) &&
3649 	    p->policy != policy && policy == SCHED_EXT)
3650 		return -EACCES;
3651 
3652 	return 0;
3653 }
3654 
3655 #ifdef CONFIG_NO_HZ_FULL
3656 bool scx_can_stop_tick(struct rq *rq)
3657 {
3658 	struct task_struct *p = rq->curr;
3659 
3660 	if (scx_ops_bypassing())
3661 		return false;
3662 
3663 	if (p->sched_class != &ext_sched_class)
3664 		return true;
3665 
3666 	/*
3667 	 * @rq can dispatch from different DSQs, so we can't tell whether it
3668 	 * needs the tick or not by looking at nr_running. Allow stopping ticks
3669 	 * iff the BPF scheduler indicated so. See set_next_task_scx().
3670 	 */
3671 	return rq->scx.flags & SCX_RQ_CAN_STOP_TICK;
3672 }
3673 #endif
3674 
3675 #ifdef CONFIG_EXT_GROUP_SCHED
3676 
3677 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem);
3678 static bool cgroup_warned_missing_weight;
3679 static bool cgroup_warned_missing_idle;
3680 
3681 static void scx_cgroup_warn_missing_weight(struct task_group *tg)
3682 {
3683 	if (scx_ops_enable_state() == SCX_OPS_DISABLED ||
3684 	    cgroup_warned_missing_weight)
3685 		return;
3686 
3687 	if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent)
3688 		return;
3689 
3690 	pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n",
3691 		scx_ops.name);
3692 	cgroup_warned_missing_weight = true;
3693 }
3694 
3695 static void scx_cgroup_warn_missing_idle(struct task_group *tg)
3696 {
3697 	if (scx_ops_enable_state() == SCX_OPS_DISABLED ||
3698 	    cgroup_warned_missing_idle)
3699 		return;
3700 
3701 	if (!tg->idle)
3702 		return;
3703 
3704 	pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n",
3705 		scx_ops.name);
3706 	cgroup_warned_missing_idle = true;
3707 }
3708 
3709 int scx_tg_online(struct task_group *tg)
3710 {
3711 	int ret = 0;
3712 
3713 	WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED));
3714 
3715 	percpu_down_read(&scx_cgroup_rwsem);
3716 
3717 	scx_cgroup_warn_missing_weight(tg);
3718 
3719 	if (SCX_HAS_OP(cgroup_init)) {
3720 		struct scx_cgroup_init_args args = { .weight = tg->scx_weight };
3721 
3722 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
3723 				      tg->css.cgroup, &args);
3724 		if (!ret)
3725 			tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED;
3726 		else
3727 			ret = ops_sanitize_err("cgroup_init", ret);
3728 	} else {
3729 		tg->scx_flags |= SCX_TG_ONLINE;
3730 	}
3731 
3732 	percpu_up_read(&scx_cgroup_rwsem);
3733 	return ret;
3734 }
3735 
3736 void scx_tg_offline(struct task_group *tg)
3737 {
3738 	WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE));
3739 
3740 	percpu_down_read(&scx_cgroup_rwsem);
3741 
3742 	if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED))
3743 		SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup);
3744 	tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED);
3745 
3746 	percpu_up_read(&scx_cgroup_rwsem);
3747 }
3748 
3749 int scx_cgroup_can_attach(struct cgroup_taskset *tset)
3750 {
3751 	struct cgroup_subsys_state *css;
3752 	struct task_struct *p;
3753 	int ret;
3754 
3755 	/* released in scx_finish/cancel_attach() */
3756 	percpu_down_read(&scx_cgroup_rwsem);
3757 
3758 	if (!scx_enabled())
3759 		return 0;
3760 
3761 	cgroup_taskset_for_each(p, css, tset) {
3762 		struct cgroup *from = tg_cgrp(task_group(p));
3763 		struct cgroup *to = tg_cgrp(css_tg(css));
3764 
3765 		WARN_ON_ONCE(p->scx.cgrp_moving_from);
3766 
3767 		/*
3768 		 * sched_move_task() omits identity migrations. Let's match the
3769 		 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move()
3770 		 * always match one-to-one.
3771 		 */
3772 		if (from == to)
3773 			continue;
3774 
3775 		if (SCX_HAS_OP(cgroup_prep_move)) {
3776 			ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move,
3777 					      p, from, css->cgroup);
3778 			if (ret)
3779 				goto err;
3780 		}
3781 
3782 		p->scx.cgrp_moving_from = from;
3783 	}
3784 
3785 	return 0;
3786 
3787 err:
3788 	cgroup_taskset_for_each(p, css, tset) {
3789 		if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
3790 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
3791 				    p->scx.cgrp_moving_from, css->cgroup);
3792 		p->scx.cgrp_moving_from = NULL;
3793 	}
3794 
3795 	percpu_up_read(&scx_cgroup_rwsem);
3796 	return ops_sanitize_err("cgroup_prep_move", ret);
3797 }
3798 
3799 void scx_move_task(struct task_struct *p)
3800 {
3801 	if (!scx_enabled())
3802 		return;
3803 
3804 	/*
3805 	 * We're called from sched_move_task() which handles both cgroup and
3806 	 * autogroup moves. Ignore the latter.
3807 	 *
3808 	 * Also ignore exiting tasks, because in the exit path tasks transition
3809 	 * from the autogroup to the root group, so task_group_is_autogroup()
3810 	 * alone isn't able to catch exiting autogroup tasks. This is safe for
3811 	 * cgroup_move(), because cgroup migrations never happen for PF_EXITING
3812 	 * tasks.
3813 	 */
3814 	if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING))
3815 		return;
3816 
3817 	/*
3818 	 * @p must have ops.cgroup_prep_move() called on it and thus
3819 	 * cgrp_moving_from set.
3820 	 */
3821 	if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from))
3822 		SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p,
3823 			p->scx.cgrp_moving_from, tg_cgrp(task_group(p)));
3824 	p->scx.cgrp_moving_from = NULL;
3825 }
3826 
3827 void scx_cgroup_finish_attach(void)
3828 {
3829 	percpu_up_read(&scx_cgroup_rwsem);
3830 }
3831 
3832 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset)
3833 {
3834 	struct cgroup_subsys_state *css;
3835 	struct task_struct *p;
3836 
3837 	if (!scx_enabled())
3838 		goto out_unlock;
3839 
3840 	cgroup_taskset_for_each(p, css, tset) {
3841 		if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
3842 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
3843 				    p->scx.cgrp_moving_from, css->cgroup);
3844 		p->scx.cgrp_moving_from = NULL;
3845 	}
3846 out_unlock:
3847 	percpu_up_read(&scx_cgroup_rwsem);
3848 }
3849 
3850 void scx_group_set_weight(struct task_group *tg, unsigned long weight)
3851 {
3852 	percpu_down_read(&scx_cgroup_rwsem);
3853 
3854 	if (tg->scx_weight != weight) {
3855 		if (SCX_HAS_OP(cgroup_set_weight))
3856 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight,
3857 				    tg_cgrp(tg), weight);
3858 		tg->scx_weight = weight;
3859 	}
3860 
3861 	percpu_up_read(&scx_cgroup_rwsem);
3862 }
3863 
3864 void scx_group_set_idle(struct task_group *tg, bool idle)
3865 {
3866 	percpu_down_read(&scx_cgroup_rwsem);
3867 	scx_cgroup_warn_missing_idle(tg);
3868 	percpu_up_read(&scx_cgroup_rwsem);
3869 }
3870 
3871 static void scx_cgroup_lock(void)
3872 {
3873 	percpu_down_write(&scx_cgroup_rwsem);
3874 }
3875 
3876 static void scx_cgroup_unlock(void)
3877 {
3878 	percpu_up_write(&scx_cgroup_rwsem);
3879 }
3880 
3881 #else	/* CONFIG_EXT_GROUP_SCHED */
3882 
3883 static inline void scx_cgroup_lock(void) {}
3884 static inline void scx_cgroup_unlock(void) {}
3885 
3886 #endif	/* CONFIG_EXT_GROUP_SCHED */
3887 
3888 /*
3889  * Omitted operations:
3890  *
3891  * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task
3892  *   isn't tied to the CPU at that point. Preemption is implemented by resetting
3893  *   the victim task's slice to 0 and triggering reschedule on the target CPU.
3894  *
3895  * - migrate_task_rq: Unnecessary as task to cpu mapping is transient.
3896  *
3897  * - task_fork/dead: We need fork/dead notifications for all tasks regardless of
3898  *   their current sched_class. Call them directly from sched core instead.
3899  */
3900 DEFINE_SCHED_CLASS(ext) = {
3901 	.enqueue_task		= enqueue_task_scx,
3902 	.dequeue_task		= dequeue_task_scx,
3903 	.yield_task		= yield_task_scx,
3904 	.yield_to_task		= yield_to_task_scx,
3905 
3906 	.wakeup_preempt		= wakeup_preempt_scx,
3907 
3908 	.balance		= balance_scx,
3909 	.pick_task		= pick_task_scx,
3910 
3911 	.put_prev_task		= put_prev_task_scx,
3912 	.set_next_task		= set_next_task_scx,
3913 
3914 #ifdef CONFIG_SMP
3915 	.select_task_rq		= select_task_rq_scx,
3916 	.task_woken		= task_woken_scx,
3917 	.set_cpus_allowed	= set_cpus_allowed_scx,
3918 
3919 	.rq_online		= rq_online_scx,
3920 	.rq_offline		= rq_offline_scx,
3921 #endif
3922 
3923 	.task_tick		= task_tick_scx,
3924 
3925 	.switching_to		= switching_to_scx,
3926 	.switched_from		= switched_from_scx,
3927 	.switched_to		= switched_to_scx,
3928 	.reweight_task		= reweight_task_scx,
3929 	.prio_changed		= prio_changed_scx,
3930 
3931 	.update_curr		= update_curr_scx,
3932 
3933 #ifdef CONFIG_UCLAMP_TASK
3934 	.uclamp_enabled		= 1,
3935 #endif
3936 };
3937 
3938 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id)
3939 {
3940 	memset(dsq, 0, sizeof(*dsq));
3941 
3942 	raw_spin_lock_init(&dsq->lock);
3943 	INIT_LIST_HEAD(&dsq->list);
3944 	dsq->id = dsq_id;
3945 }
3946 
3947 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node)
3948 {
3949 	struct scx_dispatch_q *dsq;
3950 	int ret;
3951 
3952 	if (dsq_id & SCX_DSQ_FLAG_BUILTIN)
3953 		return ERR_PTR(-EINVAL);
3954 
3955 	dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
3956 	if (!dsq)
3957 		return ERR_PTR(-ENOMEM);
3958 
3959 	init_dsq(dsq, dsq_id);
3960 
3961 	ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node,
3962 				     dsq_hash_params);
3963 	if (ret) {
3964 		kfree(dsq);
3965 		return ERR_PTR(ret);
3966 	}
3967 	return dsq;
3968 }
3969 
3970 static void free_dsq_irq_workfn(struct irq_work *irq_work)
3971 {
3972 	struct llist_node *to_free = llist_del_all(&dsqs_to_free);
3973 	struct scx_dispatch_q *dsq, *tmp_dsq;
3974 
3975 	llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node)
3976 		kfree_rcu(dsq, rcu);
3977 }
3978 
3979 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn);
3980 
3981 static void destroy_dsq(u64 dsq_id)
3982 {
3983 	struct scx_dispatch_q *dsq;
3984 	unsigned long flags;
3985 
3986 	rcu_read_lock();
3987 
3988 	dsq = find_user_dsq(dsq_id);
3989 	if (!dsq)
3990 		goto out_unlock_rcu;
3991 
3992 	raw_spin_lock_irqsave(&dsq->lock, flags);
3993 
3994 	if (dsq->nr) {
3995 		scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)",
3996 			      dsq->id, dsq->nr);
3997 		goto out_unlock_dsq;
3998 	}
3999 
4000 	if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params))
4001 		goto out_unlock_dsq;
4002 
4003 	/*
4004 	 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from
4005 	 * queueing more tasks. As this function can be called from anywhere,
4006 	 * freeing is bounced through an irq work to avoid nesting RCU
4007 	 * operations inside scheduler locks.
4008 	 */
4009 	dsq->id = SCX_DSQ_INVALID;
4010 	llist_add(&dsq->free_node, &dsqs_to_free);
4011 	irq_work_queue(&free_dsq_irq_work);
4012 
4013 out_unlock_dsq:
4014 	raw_spin_unlock_irqrestore(&dsq->lock, flags);
4015 out_unlock_rcu:
4016 	rcu_read_unlock();
4017 }
4018 
4019 #ifdef CONFIG_EXT_GROUP_SCHED
4020 static void scx_cgroup_exit(void)
4021 {
4022 	struct cgroup_subsys_state *css;
4023 
4024 	percpu_rwsem_assert_held(&scx_cgroup_rwsem);
4025 
4026 	/*
4027 	 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk
4028 	 * cgroups and exit all the inited ones, all online cgroups are exited.
4029 	 */
4030 	rcu_read_lock();
4031 	css_for_each_descendant_post(css, &root_task_group.css) {
4032 		struct task_group *tg = css_tg(css);
4033 
4034 		if (!(tg->scx_flags & SCX_TG_INITED))
4035 			continue;
4036 		tg->scx_flags &= ~SCX_TG_INITED;
4037 
4038 		if (!scx_ops.cgroup_exit)
4039 			continue;
4040 
4041 		if (WARN_ON_ONCE(!css_tryget(css)))
4042 			continue;
4043 		rcu_read_unlock();
4044 
4045 		SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup);
4046 
4047 		rcu_read_lock();
4048 		css_put(css);
4049 	}
4050 	rcu_read_unlock();
4051 }
4052 
4053 static int scx_cgroup_init(void)
4054 {
4055 	struct cgroup_subsys_state *css;
4056 	int ret;
4057 
4058 	percpu_rwsem_assert_held(&scx_cgroup_rwsem);
4059 
4060 	cgroup_warned_missing_weight = false;
4061 	cgroup_warned_missing_idle = false;
4062 
4063 	/*
4064 	 * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk
4065 	 * cgroups and init, all online cgroups are initialized.
4066 	 */
4067 	rcu_read_lock();
4068 	css_for_each_descendant_pre(css, &root_task_group.css) {
4069 		struct task_group *tg = css_tg(css);
4070 		struct scx_cgroup_init_args args = { .weight = tg->scx_weight };
4071 
4072 		scx_cgroup_warn_missing_weight(tg);
4073 		scx_cgroup_warn_missing_idle(tg);
4074 
4075 		if ((tg->scx_flags &
4076 		     (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE)
4077 			continue;
4078 
4079 		if (!scx_ops.cgroup_init) {
4080 			tg->scx_flags |= SCX_TG_INITED;
4081 			continue;
4082 		}
4083 
4084 		if (WARN_ON_ONCE(!css_tryget(css)))
4085 			continue;
4086 		rcu_read_unlock();
4087 
4088 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
4089 				      css->cgroup, &args);
4090 		if (ret) {
4091 			css_put(css);
4092 			return ret;
4093 		}
4094 		tg->scx_flags |= SCX_TG_INITED;
4095 
4096 		rcu_read_lock();
4097 		css_put(css);
4098 	}
4099 	rcu_read_unlock();
4100 
4101 	return 0;
4102 }
4103 
4104 #else
4105 static void scx_cgroup_exit(void) {}
4106 static int scx_cgroup_init(void) { return 0; }
4107 #endif
4108 
4109 
4110 /********************************************************************************
4111  * Sysfs interface and ops enable/disable.
4112  */
4113 
4114 #define SCX_ATTR(_name)								\
4115 	static struct kobj_attribute scx_attr_##_name = {			\
4116 		.attr = { .name = __stringify(_name), .mode = 0444 },		\
4117 		.show = scx_attr_##_name##_show,				\
4118 	}
4119 
4120 static ssize_t scx_attr_state_show(struct kobject *kobj,
4121 				   struct kobj_attribute *ka, char *buf)
4122 {
4123 	return sysfs_emit(buf, "%s\n",
4124 			  scx_ops_enable_state_str[scx_ops_enable_state()]);
4125 }
4126 SCX_ATTR(state);
4127 
4128 static ssize_t scx_attr_switch_all_show(struct kobject *kobj,
4129 					struct kobj_attribute *ka, char *buf)
4130 {
4131 	return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all));
4132 }
4133 SCX_ATTR(switch_all);
4134 
4135 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj,
4136 					 struct kobj_attribute *ka, char *buf)
4137 {
4138 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected));
4139 }
4140 SCX_ATTR(nr_rejected);
4141 
4142 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj,
4143 					 struct kobj_attribute *ka, char *buf)
4144 {
4145 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq));
4146 }
4147 SCX_ATTR(hotplug_seq);
4148 
4149 static struct attribute *scx_global_attrs[] = {
4150 	&scx_attr_state.attr,
4151 	&scx_attr_switch_all.attr,
4152 	&scx_attr_nr_rejected.attr,
4153 	&scx_attr_hotplug_seq.attr,
4154 	NULL,
4155 };
4156 
4157 static const struct attribute_group scx_global_attr_group = {
4158 	.attrs = scx_global_attrs,
4159 };
4160 
4161 static void scx_kobj_release(struct kobject *kobj)
4162 {
4163 	kfree(kobj);
4164 }
4165 
4166 static ssize_t scx_attr_ops_show(struct kobject *kobj,
4167 				 struct kobj_attribute *ka, char *buf)
4168 {
4169 	return sysfs_emit(buf, "%s\n", scx_ops.name);
4170 }
4171 SCX_ATTR(ops);
4172 
4173 static struct attribute *scx_sched_attrs[] = {
4174 	&scx_attr_ops.attr,
4175 	NULL,
4176 };
4177 ATTRIBUTE_GROUPS(scx_sched);
4178 
4179 static const struct kobj_type scx_ktype = {
4180 	.release = scx_kobj_release,
4181 	.sysfs_ops = &kobj_sysfs_ops,
4182 	.default_groups = scx_sched_groups,
4183 };
4184 
4185 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
4186 {
4187 	return add_uevent_var(env, "SCXOPS=%s", scx_ops.name);
4188 }
4189 
4190 static const struct kset_uevent_ops scx_uevent_ops = {
4191 	.uevent = scx_uevent,
4192 };
4193 
4194 /*
4195  * Used by sched_fork() and __setscheduler_prio() to pick the matching
4196  * sched_class. dl/rt are already handled.
4197  */
4198 bool task_should_scx(struct task_struct *p)
4199 {
4200 	if (!scx_enabled() ||
4201 	    unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING))
4202 		return false;
4203 	if (READ_ONCE(scx_switching_all))
4204 		return true;
4205 	return p->policy == SCHED_EXT;
4206 }
4207 
4208 /**
4209  * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress
4210  *
4211  * Bypassing guarantees that all runnable tasks make forward progress without
4212  * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
4213  * be held by tasks that the BPF scheduler is forgetting to run, which
4214  * unfortunately also excludes toggling the static branches.
4215  *
4216  * Let's work around by overriding a couple ops and modifying behaviors based on
4217  * the DISABLING state and then cycling the queued tasks through dequeue/enqueue
4218  * to force global FIFO scheduling.
4219  *
4220  * a. ops.enqueue() is ignored and tasks are queued in simple global FIFO order.
4221  *    %SCX_OPS_ENQ_LAST is also ignored.
4222  *
4223  * b. ops.dispatch() is ignored.
4224  *
4225  * c. balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice
4226  *    can't be trusted. Whenever a tick triggers, the running task is rotated to
4227  *    the tail of the queue with core_sched_at touched.
4228  *
4229  * d. pick_next_task() suppresses zero slice warning.
4230  *
4231  * e. scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM
4232  *    operations.
4233  *
4234  * f. scx_prio_less() reverts to the default core_sched_at order.
4235  */
4236 static void scx_ops_bypass(bool bypass)
4237 {
4238 	int depth, cpu;
4239 
4240 	if (bypass) {
4241 		depth = atomic_inc_return(&scx_ops_bypass_depth);
4242 		WARN_ON_ONCE(depth <= 0);
4243 		if (depth != 1)
4244 			return;
4245 	} else {
4246 		depth = atomic_dec_return(&scx_ops_bypass_depth);
4247 		WARN_ON_ONCE(depth < 0);
4248 		if (depth != 0)
4249 			return;
4250 	}
4251 
4252 	/*
4253 	 * We need to guarantee that no tasks are on the BPF scheduler while
4254 	 * bypassing. Either we see enabled or the enable path sees the
4255 	 * increased bypass_depth before moving tasks to SCX.
4256 	 */
4257 	if (!scx_enabled())
4258 		return;
4259 
4260 	/*
4261 	 * No task property is changing. We just need to make sure all currently
4262 	 * queued tasks are re-queued according to the new scx_ops_bypassing()
4263 	 * state. As an optimization, walk each rq's runnable_list instead of
4264 	 * the scx_tasks list.
4265 	 *
4266 	 * This function can't trust the scheduler and thus can't use
4267 	 * cpus_read_lock(). Walk all possible CPUs instead of online.
4268 	 */
4269 	for_each_possible_cpu(cpu) {
4270 		struct rq *rq = cpu_rq(cpu);
4271 		struct rq_flags rf;
4272 		struct task_struct *p, *n;
4273 
4274 		rq_lock_irqsave(rq, &rf);
4275 
4276 		/*
4277 		 * The use of list_for_each_entry_safe_reverse() is required
4278 		 * because each task is going to be removed from and added back
4279 		 * to the runnable_list during iteration. Because they're added
4280 		 * to the tail of the list, safe reverse iteration can still
4281 		 * visit all nodes.
4282 		 */
4283 		list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list,
4284 						 scx.runnable_node) {
4285 			struct sched_enq_and_set_ctx ctx;
4286 
4287 			/* cycling deq/enq is enough, see the function comment */
4288 			sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4289 			sched_enq_and_set_task(&ctx);
4290 		}
4291 
4292 		rq_unlock_irqrestore(rq, &rf);
4293 
4294 		/* kick to restore ticks */
4295 		resched_cpu(cpu);
4296 	}
4297 }
4298 
4299 static void free_exit_info(struct scx_exit_info *ei)
4300 {
4301 	kfree(ei->dump);
4302 	kfree(ei->msg);
4303 	kfree(ei->bt);
4304 	kfree(ei);
4305 }
4306 
4307 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len)
4308 {
4309 	struct scx_exit_info *ei;
4310 
4311 	ei = kzalloc(sizeof(*ei), GFP_KERNEL);
4312 	if (!ei)
4313 		return NULL;
4314 
4315 	ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL);
4316 	ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL);
4317 	ei->dump = kzalloc(exit_dump_len, GFP_KERNEL);
4318 
4319 	if (!ei->bt || !ei->msg || !ei->dump) {
4320 		free_exit_info(ei);
4321 		return NULL;
4322 	}
4323 
4324 	return ei;
4325 }
4326 
4327 static const char *scx_exit_reason(enum scx_exit_kind kind)
4328 {
4329 	switch (kind) {
4330 	case SCX_EXIT_UNREG:
4331 		return "unregistered from user space";
4332 	case SCX_EXIT_UNREG_BPF:
4333 		return "unregistered from BPF";
4334 	case SCX_EXIT_UNREG_KERN:
4335 		return "unregistered from the main kernel";
4336 	case SCX_EXIT_SYSRQ:
4337 		return "disabled by sysrq-S";
4338 	case SCX_EXIT_ERROR:
4339 		return "runtime error";
4340 	case SCX_EXIT_ERROR_BPF:
4341 		return "scx_bpf_error";
4342 	case SCX_EXIT_ERROR_STALL:
4343 		return "runnable task stall";
4344 	default:
4345 		return "<UNKNOWN>";
4346 	}
4347 }
4348 
4349 static void scx_ops_disable_workfn(struct kthread_work *work)
4350 {
4351 	struct scx_exit_info *ei = scx_exit_info;
4352 	struct scx_task_iter sti;
4353 	struct task_struct *p;
4354 	struct rhashtable_iter rht_iter;
4355 	struct scx_dispatch_q *dsq;
4356 	int i, kind;
4357 
4358 	kind = atomic_read(&scx_exit_kind);
4359 	while (true) {
4360 		/*
4361 		 * NONE indicates that a new scx_ops has been registered since
4362 		 * disable was scheduled - don't kill the new ops. DONE
4363 		 * indicates that the ops has already been disabled.
4364 		 */
4365 		if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)
4366 			return;
4367 		if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE))
4368 			break;
4369 	}
4370 	ei->kind = kind;
4371 	ei->reason = scx_exit_reason(ei->kind);
4372 
4373 	/* guarantee forward progress by bypassing scx_ops */
4374 	scx_ops_bypass(true);
4375 
4376 	switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) {
4377 	case SCX_OPS_DISABLING:
4378 		WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
4379 		break;
4380 	case SCX_OPS_DISABLED:
4381 		pr_warn("sched_ext: ops error detected without ops (%s)\n",
4382 			scx_exit_info->msg);
4383 		WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
4384 			     SCX_OPS_DISABLING);
4385 		goto done;
4386 	default:
4387 		break;
4388 	}
4389 
4390 	/*
4391 	 * Here, every runnable task is guaranteed to make forward progress and
4392 	 * we can safely use blocking synchronization constructs. Actually
4393 	 * disable ops.
4394 	 */
4395 	mutex_lock(&scx_ops_enable_mutex);
4396 
4397 	static_branch_disable(&__scx_switched_all);
4398 	WRITE_ONCE(scx_switching_all, false);
4399 
4400 	/*
4401 	 * Avoid racing against fork and cgroup changes. See scx_ops_enable()
4402 	 * for explanation on the locking order.
4403 	 */
4404 	percpu_down_write(&scx_fork_rwsem);
4405 	cpus_read_lock();
4406 	scx_cgroup_lock();
4407 
4408 	spin_lock_irq(&scx_tasks_lock);
4409 	scx_task_iter_init(&sti);
4410 	/*
4411 	 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones
4412 	 * must be switched out and exited synchronously.
4413 	 */
4414 	while ((p = scx_task_iter_next_locked(&sti))) {
4415 		const struct sched_class *old_class = p->sched_class;
4416 		struct sched_enq_and_set_ctx ctx;
4417 
4418 		sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4419 
4420 		p->scx.slice = min_t(u64, p->scx.slice, SCX_SLICE_DFL);
4421 		__setscheduler_prio(p, p->prio);
4422 		check_class_changing(task_rq(p), p, old_class);
4423 
4424 		sched_enq_and_set_task(&ctx);
4425 
4426 		check_class_changed(task_rq(p), p, old_class, p->prio);
4427 		scx_ops_exit_task(p);
4428 	}
4429 	scx_task_iter_exit(&sti);
4430 	spin_unlock_irq(&scx_tasks_lock);
4431 
4432 	/* no task is on scx, turn off all the switches and flush in-progress calls */
4433 	static_branch_disable_cpuslocked(&__scx_ops_enabled);
4434 	for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++)
4435 		static_branch_disable_cpuslocked(&scx_has_op[i]);
4436 	static_branch_disable_cpuslocked(&scx_ops_enq_last);
4437 	static_branch_disable_cpuslocked(&scx_ops_enq_exiting);
4438 	static_branch_disable_cpuslocked(&scx_ops_cpu_preempt);
4439 	static_branch_disable_cpuslocked(&scx_builtin_idle_enabled);
4440 	synchronize_rcu();
4441 
4442 	scx_cgroup_exit();
4443 
4444 	scx_cgroup_unlock();
4445 	cpus_read_unlock();
4446 	percpu_up_write(&scx_fork_rwsem);
4447 
4448 	if (ei->kind >= SCX_EXIT_ERROR) {
4449 		pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4450 		       scx_ops.name, ei->reason);
4451 
4452 		if (ei->msg[0] != '\0')
4453 			pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg);
4454 
4455 		stack_trace_print(ei->bt, ei->bt_len, 2);
4456 	} else {
4457 		pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4458 			scx_ops.name, ei->reason);
4459 	}
4460 
4461 	if (scx_ops.exit)
4462 		SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei);
4463 
4464 	cancel_delayed_work_sync(&scx_watchdog_work);
4465 
4466 	/*
4467 	 * Delete the kobject from the hierarchy eagerly in addition to just
4468 	 * dropping a reference. Otherwise, if the object is deleted
4469 	 * asynchronously, sysfs could observe an object of the same name still
4470 	 * in the hierarchy when another scheduler is loaded.
4471 	 */
4472 	kobject_del(scx_root_kobj);
4473 	kobject_put(scx_root_kobj);
4474 	scx_root_kobj = NULL;
4475 
4476 	memset(&scx_ops, 0, sizeof(scx_ops));
4477 
4478 	rhashtable_walk_enter(&dsq_hash, &rht_iter);
4479 	do {
4480 		rhashtable_walk_start(&rht_iter);
4481 
4482 		while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
4483 			destroy_dsq(dsq->id);
4484 
4485 		rhashtable_walk_stop(&rht_iter);
4486 	} while (dsq == ERR_PTR(-EAGAIN));
4487 	rhashtable_walk_exit(&rht_iter);
4488 
4489 	free_percpu(scx_dsp_ctx);
4490 	scx_dsp_ctx = NULL;
4491 	scx_dsp_max_batch = 0;
4492 
4493 	free_exit_info(scx_exit_info);
4494 	scx_exit_info = NULL;
4495 
4496 	mutex_unlock(&scx_ops_enable_mutex);
4497 
4498 	WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
4499 		     SCX_OPS_DISABLING);
4500 done:
4501 	scx_ops_bypass(false);
4502 }
4503 
4504 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn);
4505 
4506 static void schedule_scx_ops_disable_work(void)
4507 {
4508 	struct kthread_worker *helper = READ_ONCE(scx_ops_helper);
4509 
4510 	/*
4511 	 * We may be called spuriously before the first bpf_sched_ext_reg(). If
4512 	 * scx_ops_helper isn't set up yet, there's nothing to do.
4513 	 */
4514 	if (helper)
4515 		kthread_queue_work(helper, &scx_ops_disable_work);
4516 }
4517 
4518 static void scx_ops_disable(enum scx_exit_kind kind)
4519 {
4520 	int none = SCX_EXIT_NONE;
4521 
4522 	if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE))
4523 		kind = SCX_EXIT_ERROR;
4524 
4525 	atomic_try_cmpxchg(&scx_exit_kind, &none, kind);
4526 
4527 	schedule_scx_ops_disable_work();
4528 }
4529 
4530 static void dump_newline(struct seq_buf *s)
4531 {
4532 	trace_sched_ext_dump("");
4533 
4534 	/* @s may be zero sized and seq_buf triggers WARN if so */
4535 	if (s->size)
4536 		seq_buf_putc(s, '\n');
4537 }
4538 
4539 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...)
4540 {
4541 	va_list args;
4542 
4543 #ifdef CONFIG_TRACEPOINTS
4544 	if (trace_sched_ext_dump_enabled()) {
4545 		/* protected by scx_dump_state()::dump_lock */
4546 		static char line_buf[SCX_EXIT_MSG_LEN];
4547 
4548 		va_start(args, fmt);
4549 		vscnprintf(line_buf, sizeof(line_buf), fmt, args);
4550 		va_end(args);
4551 
4552 		trace_sched_ext_dump(line_buf);
4553 	}
4554 #endif
4555 	/* @s may be zero sized and seq_buf triggers WARN if so */
4556 	if (s->size) {
4557 		va_start(args, fmt);
4558 		seq_buf_vprintf(s, fmt, args);
4559 		va_end(args);
4560 
4561 		seq_buf_putc(s, '\n');
4562 	}
4563 }
4564 
4565 static void dump_stack_trace(struct seq_buf *s, const char *prefix,
4566 			     const unsigned long *bt, unsigned int len)
4567 {
4568 	unsigned int i;
4569 
4570 	for (i = 0; i < len; i++)
4571 		dump_line(s, "%s%pS", prefix, (void *)bt[i]);
4572 }
4573 
4574 static void ops_dump_init(struct seq_buf *s, const char *prefix)
4575 {
4576 	struct scx_dump_data *dd = &scx_dump_data;
4577 
4578 	lockdep_assert_irqs_disabled();
4579 
4580 	dd->cpu = smp_processor_id();		/* allow scx_bpf_dump() */
4581 	dd->first = true;
4582 	dd->cursor = 0;
4583 	dd->s = s;
4584 	dd->prefix = prefix;
4585 }
4586 
4587 static void ops_dump_flush(void)
4588 {
4589 	struct scx_dump_data *dd = &scx_dump_data;
4590 	char *line = dd->buf.line;
4591 
4592 	if (!dd->cursor)
4593 		return;
4594 
4595 	/*
4596 	 * There's something to flush and this is the first line. Insert a blank
4597 	 * line to distinguish ops dump.
4598 	 */
4599 	if (dd->first) {
4600 		dump_newline(dd->s);
4601 		dd->first = false;
4602 	}
4603 
4604 	/*
4605 	 * There may be multiple lines in $line. Scan and emit each line
4606 	 * separately.
4607 	 */
4608 	while (true) {
4609 		char *end = line;
4610 		char c;
4611 
4612 		while (*end != '\n' && *end != '\0')
4613 			end++;
4614 
4615 		/*
4616 		 * If $line overflowed, it may not have newline at the end.
4617 		 * Always emit with a newline.
4618 		 */
4619 		c = *end;
4620 		*end = '\0';
4621 		dump_line(dd->s, "%s%s", dd->prefix, line);
4622 		if (c == '\0')
4623 			break;
4624 
4625 		/* move to the next line */
4626 		end++;
4627 		if (*end == '\0')
4628 			break;
4629 		line = end;
4630 	}
4631 
4632 	dd->cursor = 0;
4633 }
4634 
4635 static void ops_dump_exit(void)
4636 {
4637 	ops_dump_flush();
4638 	scx_dump_data.cpu = -1;
4639 }
4640 
4641 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx,
4642 			  struct task_struct *p, char marker)
4643 {
4644 	static unsigned long bt[SCX_EXIT_BT_LEN];
4645 	char dsq_id_buf[19] = "(n/a)";
4646 	unsigned long ops_state = atomic_long_read(&p->scx.ops_state);
4647 	unsigned int bt_len = 0;
4648 
4649 	if (p->scx.dsq)
4650 		scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx",
4651 			  (unsigned long long)p->scx.dsq->id);
4652 
4653 	dump_newline(s);
4654 	dump_line(s, " %c%c %s[%d] %+ldms",
4655 		  marker, task_state_to_char(p), p->comm, p->pid,
4656 		  jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies));
4657 	dump_line(s, "      scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu",
4658 		  scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK,
4659 		  p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK,
4660 		  ops_state >> SCX_OPSS_QSEQ_SHIFT);
4661 	dump_line(s, "      sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu",
4662 		  p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf,
4663 		  p->scx.dsq_vtime);
4664 	dump_line(s, "      cpus=%*pb", cpumask_pr_args(p->cpus_ptr));
4665 
4666 	if (SCX_HAS_OP(dump_task)) {
4667 		ops_dump_init(s, "    ");
4668 		SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p);
4669 		ops_dump_exit();
4670 	}
4671 
4672 #ifdef CONFIG_STACKTRACE
4673 	bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1);
4674 #endif
4675 	if (bt_len) {
4676 		dump_newline(s);
4677 		dump_stack_trace(s, "    ", bt, bt_len);
4678 	}
4679 }
4680 
4681 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
4682 {
4683 	static DEFINE_SPINLOCK(dump_lock);
4684 	static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n";
4685 	struct scx_dump_ctx dctx = {
4686 		.kind = ei->kind,
4687 		.exit_code = ei->exit_code,
4688 		.reason = ei->reason,
4689 		.at_ns = ktime_get_ns(),
4690 		.at_jiffies = jiffies,
4691 	};
4692 	struct seq_buf s;
4693 	unsigned long flags;
4694 	char *buf;
4695 	int cpu;
4696 
4697 	spin_lock_irqsave(&dump_lock, flags);
4698 
4699 	seq_buf_init(&s, ei->dump, dump_len);
4700 
4701 	if (ei->kind == SCX_EXIT_NONE) {
4702 		dump_line(&s, "Debug dump triggered by %s", ei->reason);
4703 	} else {
4704 		dump_line(&s, "%s[%d] triggered exit kind %d:",
4705 			  current->comm, current->pid, ei->kind);
4706 		dump_line(&s, "  %s (%s)", ei->reason, ei->msg);
4707 		dump_newline(&s);
4708 		dump_line(&s, "Backtrace:");
4709 		dump_stack_trace(&s, "  ", ei->bt, ei->bt_len);
4710 	}
4711 
4712 	if (SCX_HAS_OP(dump)) {
4713 		ops_dump_init(&s, "");
4714 		SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx);
4715 		ops_dump_exit();
4716 	}
4717 
4718 	dump_newline(&s);
4719 	dump_line(&s, "CPU states");
4720 	dump_line(&s, "----------");
4721 
4722 	for_each_possible_cpu(cpu) {
4723 		struct rq *rq = cpu_rq(cpu);
4724 		struct rq_flags rf;
4725 		struct task_struct *p;
4726 		struct seq_buf ns;
4727 		size_t avail, used;
4728 		bool idle;
4729 
4730 		rq_lock(rq, &rf);
4731 
4732 		idle = list_empty(&rq->scx.runnable_list) &&
4733 			rq->curr->sched_class == &idle_sched_class;
4734 
4735 		if (idle && !SCX_HAS_OP(dump_cpu))
4736 			goto next;
4737 
4738 		/*
4739 		 * We don't yet know whether ops.dump_cpu() will produce output
4740 		 * and we may want to skip the default CPU dump if it doesn't.
4741 		 * Use a nested seq_buf to generate the standard dump so that we
4742 		 * can decide whether to commit later.
4743 		 */
4744 		avail = seq_buf_get_buf(&s, &buf);
4745 		seq_buf_init(&ns, buf, avail);
4746 
4747 		dump_newline(&ns);
4748 		dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu",
4749 			  cpu, rq->scx.nr_running, rq->scx.flags,
4750 			  rq->scx.cpu_released, rq->scx.ops_qseq,
4751 			  rq->scx.pnt_seq);
4752 		dump_line(&ns, "          curr=%s[%d] class=%ps",
4753 			  rq->curr->comm, rq->curr->pid,
4754 			  rq->curr->sched_class);
4755 		if (!cpumask_empty(rq->scx.cpus_to_kick))
4756 			dump_line(&ns, "  cpus_to_kick   : %*pb",
4757 				  cpumask_pr_args(rq->scx.cpus_to_kick));
4758 		if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle))
4759 			dump_line(&ns, "  idle_to_kick   : %*pb",
4760 				  cpumask_pr_args(rq->scx.cpus_to_kick_if_idle));
4761 		if (!cpumask_empty(rq->scx.cpus_to_preempt))
4762 			dump_line(&ns, "  cpus_to_preempt: %*pb",
4763 				  cpumask_pr_args(rq->scx.cpus_to_preempt));
4764 		if (!cpumask_empty(rq->scx.cpus_to_wait))
4765 			dump_line(&ns, "  cpus_to_wait   : %*pb",
4766 				  cpumask_pr_args(rq->scx.cpus_to_wait));
4767 
4768 		used = seq_buf_used(&ns);
4769 		if (SCX_HAS_OP(dump_cpu)) {
4770 			ops_dump_init(&ns, "  ");
4771 			SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle);
4772 			ops_dump_exit();
4773 		}
4774 
4775 		/*
4776 		 * If idle && nothing generated by ops.dump_cpu(), there's
4777 		 * nothing interesting. Skip.
4778 		 */
4779 		if (idle && used == seq_buf_used(&ns))
4780 			goto next;
4781 
4782 		/*
4783 		 * $s may already have overflowed when $ns was created. If so,
4784 		 * calling commit on it will trigger BUG.
4785 		 */
4786 		if (avail) {
4787 			seq_buf_commit(&s, seq_buf_used(&ns));
4788 			if (seq_buf_has_overflowed(&ns))
4789 				seq_buf_set_overflow(&s);
4790 		}
4791 
4792 		if (rq->curr->sched_class == &ext_sched_class)
4793 			scx_dump_task(&s, &dctx, rq->curr, '*');
4794 
4795 		list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node)
4796 			scx_dump_task(&s, &dctx, p, ' ');
4797 	next:
4798 		rq_unlock(rq, &rf);
4799 	}
4800 
4801 	if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker))
4802 		memcpy(ei->dump + dump_len - sizeof(trunc_marker),
4803 		       trunc_marker, sizeof(trunc_marker));
4804 
4805 	spin_unlock_irqrestore(&dump_lock, flags);
4806 }
4807 
4808 static void scx_ops_error_irq_workfn(struct irq_work *irq_work)
4809 {
4810 	struct scx_exit_info *ei = scx_exit_info;
4811 
4812 	if (ei->kind >= SCX_EXIT_ERROR)
4813 		scx_dump_state(ei, scx_ops.exit_dump_len);
4814 
4815 	schedule_scx_ops_disable_work();
4816 }
4817 
4818 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn);
4819 
4820 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
4821 					     s64 exit_code,
4822 					     const char *fmt, ...)
4823 {
4824 	struct scx_exit_info *ei = scx_exit_info;
4825 	int none = SCX_EXIT_NONE;
4826 	va_list args;
4827 
4828 	if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind))
4829 		return;
4830 
4831 	ei->exit_code = exit_code;
4832 
4833 	if (kind >= SCX_EXIT_ERROR)
4834 		ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1);
4835 
4836 	va_start(args, fmt);
4837 	vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args);
4838 	va_end(args);
4839 
4840 	/*
4841 	 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again
4842 	 * in scx_ops_disable_workfn().
4843 	 */
4844 	ei->kind = kind;
4845 	ei->reason = scx_exit_reason(ei->kind);
4846 
4847 	irq_work_queue(&scx_ops_error_irq_work);
4848 }
4849 
4850 static struct kthread_worker *scx_create_rt_helper(const char *name)
4851 {
4852 	struct kthread_worker *helper;
4853 
4854 	helper = kthread_create_worker(0, name);
4855 	if (helper)
4856 		sched_set_fifo(helper->task);
4857 	return helper;
4858 }
4859 
4860 static void check_hotplug_seq(const struct sched_ext_ops *ops)
4861 {
4862 	unsigned long long global_hotplug_seq;
4863 
4864 	/*
4865 	 * If a hotplug event has occurred between when a scheduler was
4866 	 * initialized, and when we were able to attach, exit and notify user
4867 	 * space about it.
4868 	 */
4869 	if (ops->hotplug_seq) {
4870 		global_hotplug_seq = atomic_long_read(&scx_hotplug_seq);
4871 		if (ops->hotplug_seq != global_hotplug_seq) {
4872 			scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
4873 				     "expected hotplug seq %llu did not match actual %llu",
4874 				     ops->hotplug_seq, global_hotplug_seq);
4875 		}
4876 	}
4877 }
4878 
4879 static int validate_ops(const struct sched_ext_ops *ops)
4880 {
4881 	/*
4882 	 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
4883 	 * ops.enqueue() callback isn't implemented.
4884 	 */
4885 	if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) {
4886 		scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
4887 		return -EINVAL;
4888 	}
4889 
4890 	return 0;
4891 }
4892 
4893 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
4894 {
4895 	struct scx_task_iter sti;
4896 	struct task_struct *p;
4897 	unsigned long timeout;
4898 	int i, cpu, ret;
4899 
4900 	if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN),
4901 			   cpu_possible_mask)) {
4902 		pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation");
4903 		return -EINVAL;
4904 	}
4905 
4906 	mutex_lock(&scx_ops_enable_mutex);
4907 
4908 	if (!scx_ops_helper) {
4909 		WRITE_ONCE(scx_ops_helper,
4910 			   scx_create_rt_helper("sched_ext_ops_helper"));
4911 		if (!scx_ops_helper) {
4912 			ret = -ENOMEM;
4913 			goto err_unlock;
4914 		}
4915 	}
4916 
4917 	if (scx_ops_enable_state() != SCX_OPS_DISABLED) {
4918 		ret = -EBUSY;
4919 		goto err_unlock;
4920 	}
4921 
4922 	scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL);
4923 	if (!scx_root_kobj) {
4924 		ret = -ENOMEM;
4925 		goto err_unlock;
4926 	}
4927 
4928 	scx_root_kobj->kset = scx_kset;
4929 	ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root");
4930 	if (ret < 0)
4931 		goto err;
4932 
4933 	scx_exit_info = alloc_exit_info(ops->exit_dump_len);
4934 	if (!scx_exit_info) {
4935 		ret = -ENOMEM;
4936 		goto err_del;
4937 	}
4938 
4939 	/*
4940 	 * Set scx_ops, transition to PREPPING and clear exit info to arm the
4941 	 * disable path. Failure triggers full disabling from here on.
4942 	 */
4943 	scx_ops = *ops;
4944 
4945 	WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_PREPPING) !=
4946 		     SCX_OPS_DISABLED);
4947 
4948 	atomic_set(&scx_exit_kind, SCX_EXIT_NONE);
4949 	scx_warned_zero_slice = false;
4950 
4951 	atomic_long_set(&scx_nr_rejected, 0);
4952 
4953 	for_each_possible_cpu(cpu)
4954 		cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE;
4955 
4956 	/*
4957 	 * Keep CPUs stable during enable so that the BPF scheduler can track
4958 	 * online CPUs by watching ->on/offline_cpu() after ->init().
4959 	 */
4960 	cpus_read_lock();
4961 
4962 	if (scx_ops.init) {
4963 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init);
4964 		if (ret) {
4965 			ret = ops_sanitize_err("init", ret);
4966 			goto err_disable_unlock_cpus;
4967 		}
4968 	}
4969 
4970 	for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++)
4971 		if (((void (**)(void))ops)[i])
4972 			static_branch_enable_cpuslocked(&scx_has_op[i]);
4973 
4974 	cpus_read_unlock();
4975 
4976 	ret = validate_ops(ops);
4977 	if (ret)
4978 		goto err_disable;
4979 
4980 	WARN_ON_ONCE(scx_dsp_ctx);
4981 	scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH;
4982 	scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf,
4983 						   scx_dsp_max_batch),
4984 				     __alignof__(struct scx_dsp_ctx));
4985 	if (!scx_dsp_ctx) {
4986 		ret = -ENOMEM;
4987 		goto err_disable;
4988 	}
4989 
4990 	if (ops->timeout_ms)
4991 		timeout = msecs_to_jiffies(ops->timeout_ms);
4992 	else
4993 		timeout = SCX_WATCHDOG_MAX_TIMEOUT;
4994 
4995 	WRITE_ONCE(scx_watchdog_timeout, timeout);
4996 	WRITE_ONCE(scx_watchdog_timestamp, jiffies);
4997 	queue_delayed_work(system_unbound_wq, &scx_watchdog_work,
4998 			   scx_watchdog_timeout / 2);
4999 
5000 	/*
5001 	 * Lock out forks, cgroup on/offlining and moves before opening the
5002 	 * floodgate so that they don't wander into the operations prematurely.
5003 	 *
5004 	 * We don't need to keep the CPUs stable but static_branch_*() requires
5005 	 * cpus_read_lock() and scx_cgroup_rwsem must nest inside
5006 	 * cpu_hotplug_lock because of the following dependency chain:
5007 	 *
5008 	 *   cpu_hotplug_lock --> cgroup_threadgroup_rwsem --> scx_cgroup_rwsem
5009 	 *
5010 	 * So, we need to do cpus_read_lock() before scx_cgroup_lock() and use
5011 	 * static_branch_*_cpuslocked().
5012 	 *
5013 	 * Note that cpu_hotplug_lock must nest inside scx_fork_rwsem due to the
5014 	 * following dependency chain:
5015 	 *
5016 	 *   scx_fork_rwsem --> pernet_ops_rwsem --> cpu_hotplug_lock
5017 	 */
5018 	percpu_down_write(&scx_fork_rwsem);
5019 	cpus_read_lock();
5020 	scx_cgroup_lock();
5021 
5022 	check_hotplug_seq(ops);
5023 
5024 	for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++)
5025 		if (((void (**)(void))ops)[i])
5026 			static_branch_enable_cpuslocked(&scx_has_op[i]);
5027 
5028 	if (ops->flags & SCX_OPS_ENQ_LAST)
5029 		static_branch_enable_cpuslocked(&scx_ops_enq_last);
5030 
5031 	if (ops->flags & SCX_OPS_ENQ_EXITING)
5032 		static_branch_enable_cpuslocked(&scx_ops_enq_exiting);
5033 	if (scx_ops.cpu_acquire || scx_ops.cpu_release)
5034 		static_branch_enable_cpuslocked(&scx_ops_cpu_preempt);
5035 
5036 	if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) {
5037 		reset_idle_masks();
5038 		static_branch_enable_cpuslocked(&scx_builtin_idle_enabled);
5039 	} else {
5040 		static_branch_disable_cpuslocked(&scx_builtin_idle_enabled);
5041 	}
5042 
5043 	/*
5044 	 * All cgroups should be initialized before letting in tasks. cgroup
5045 	 * on/offlining and task migrations are already locked out.
5046 	 */
5047 	ret = scx_cgroup_init();
5048 	if (ret)
5049 		goto err_disable_unlock_all;
5050 
5051 	static_branch_enable_cpuslocked(&__scx_ops_enabled);
5052 
5053 	/*
5054 	 * Enable ops for every task. Fork is excluded by scx_fork_rwsem
5055 	 * preventing new tasks from being added. No need to exclude tasks
5056 	 * leaving as sched_ext_free() can handle both prepped and enabled
5057 	 * tasks. Prep all tasks first and then enable them with preemption
5058 	 * disabled.
5059 	 */
5060 	spin_lock_irq(&scx_tasks_lock);
5061 
5062 	scx_task_iter_init(&sti);
5063 	while ((p = scx_task_iter_next_locked(&sti))) {
5064 		/*
5065 		 * @p may already be dead, have lost all its usages counts and
5066 		 * be waiting for RCU grace period before being freed. @p can't
5067 		 * be initialized for SCX in such cases and should be ignored.
5068 		 */
5069 		if (!tryget_task_struct(p))
5070 			continue;
5071 
5072 		scx_task_iter_rq_unlock(&sti);
5073 		spin_unlock_irq(&scx_tasks_lock);
5074 
5075 		ret = scx_ops_init_task(p, task_group(p), false);
5076 		if (ret) {
5077 			put_task_struct(p);
5078 			spin_lock_irq(&scx_tasks_lock);
5079 			scx_task_iter_exit(&sti);
5080 			spin_unlock_irq(&scx_tasks_lock);
5081 			pr_err("sched_ext: ops.init_task() failed (%d) for %s[%d] while loading\n",
5082 			       ret, p->comm, p->pid);
5083 			goto err_disable_unlock_all;
5084 		}
5085 
5086 		put_task_struct(p);
5087 		spin_lock_irq(&scx_tasks_lock);
5088 	}
5089 	scx_task_iter_exit(&sti);
5090 
5091 	/*
5092 	 * All tasks are prepped but are still ops-disabled. Ensure that
5093 	 * %current can't be scheduled out and switch everyone.
5094 	 * preempt_disable() is necessary because we can't guarantee that
5095 	 * %current won't be starved if scheduled out while switching.
5096 	 */
5097 	preempt_disable();
5098 
5099 	/*
5100 	 * From here on, the disable path must assume that tasks have ops
5101 	 * enabled and need to be recovered.
5102 	 *
5103 	 * Transition to ENABLING fails iff the BPF scheduler has already
5104 	 * triggered scx_bpf_error(). Returning an error code here would lose
5105 	 * the recorded error information. Exit indicating success so that the
5106 	 * error is notified through ops.exit() with all the details.
5107 	 */
5108 	if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLING, SCX_OPS_PREPPING)) {
5109 		preempt_enable();
5110 		spin_unlock_irq(&scx_tasks_lock);
5111 		WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE);
5112 		ret = 0;
5113 		goto err_disable_unlock_all;
5114 	}
5115 
5116 	/*
5117 	 * We're fully committed and can't fail. The PREPPED -> ENABLED
5118 	 * transitions here are synchronized against sched_ext_free() through
5119 	 * scx_tasks_lock.
5120 	 */
5121 	WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL));
5122 
5123 	scx_task_iter_init(&sti);
5124 	while ((p = scx_task_iter_next_locked(&sti))) {
5125 		const struct sched_class *old_class = p->sched_class;
5126 		struct sched_enq_and_set_ctx ctx;
5127 
5128 		sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
5129 
5130 		scx_set_task_state(p, SCX_TASK_READY);
5131 		__setscheduler_prio(p, p->prio);
5132 		check_class_changing(task_rq(p), p, old_class);
5133 
5134 		sched_enq_and_set_task(&ctx);
5135 
5136 		check_class_changed(task_rq(p), p, old_class, p->prio);
5137 	}
5138 	scx_task_iter_exit(&sti);
5139 
5140 	spin_unlock_irq(&scx_tasks_lock);
5141 	preempt_enable();
5142 	scx_cgroup_unlock();
5143 	cpus_read_unlock();
5144 	percpu_up_write(&scx_fork_rwsem);
5145 
5146 	/* see above ENABLING transition for the explanation on exiting with 0 */
5147 	if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) {
5148 		WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE);
5149 		ret = 0;
5150 		goto err_disable;
5151 	}
5152 
5153 	if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL))
5154 		static_branch_enable(&__scx_switched_all);
5155 
5156 	pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n",
5157 		scx_ops.name, scx_switched_all() ? "" : " (partial)");
5158 	kobject_uevent(scx_root_kobj, KOBJ_ADD);
5159 	mutex_unlock(&scx_ops_enable_mutex);
5160 
5161 	return 0;
5162 
5163 err_del:
5164 	kobject_del(scx_root_kobj);
5165 err:
5166 	kobject_put(scx_root_kobj);
5167 	scx_root_kobj = NULL;
5168 	if (scx_exit_info) {
5169 		free_exit_info(scx_exit_info);
5170 		scx_exit_info = NULL;
5171 	}
5172 err_unlock:
5173 	mutex_unlock(&scx_ops_enable_mutex);
5174 	return ret;
5175 
5176 err_disable_unlock_all:
5177 	scx_cgroup_unlock();
5178 	percpu_up_write(&scx_fork_rwsem);
5179 err_disable_unlock_cpus:
5180 	cpus_read_unlock();
5181 err_disable:
5182 	mutex_unlock(&scx_ops_enable_mutex);
5183 	/* must be fully disabled before returning */
5184 	scx_ops_disable(SCX_EXIT_ERROR);
5185 	kthread_flush_work(&scx_ops_disable_work);
5186 	return ret;
5187 }
5188 
5189 
5190 /********************************************************************************
5191  * bpf_struct_ops plumbing.
5192  */
5193 #include <linux/bpf_verifier.h>
5194 #include <linux/bpf.h>
5195 #include <linux/btf.h>
5196 
5197 extern struct btf *btf_vmlinux;
5198 static const struct btf_type *task_struct_type;
5199 static u32 task_struct_type_id;
5200 
5201 static bool set_arg_maybe_null(const char *op, int arg_n, int off, int size,
5202 			       enum bpf_access_type type,
5203 			       const struct bpf_prog *prog,
5204 			       struct bpf_insn_access_aux *info)
5205 {
5206 	struct btf *btf = bpf_get_btf_vmlinux();
5207 	const struct bpf_struct_ops_desc *st_ops_desc;
5208 	const struct btf_member *member;
5209 	const struct btf_type *t;
5210 	u32 btf_id, member_idx;
5211 	const char *mname;
5212 
5213 	/* struct_ops op args are all sequential, 64-bit numbers */
5214 	if (off != arg_n * sizeof(__u64))
5215 		return false;
5216 
5217 	/* btf_id should be the type id of struct sched_ext_ops */
5218 	btf_id = prog->aux->attach_btf_id;
5219 	st_ops_desc = bpf_struct_ops_find(btf, btf_id);
5220 	if (!st_ops_desc)
5221 		return false;
5222 
5223 	/* BTF type of struct sched_ext_ops */
5224 	t = st_ops_desc->type;
5225 
5226 	member_idx = prog->expected_attach_type;
5227 	if (member_idx >= btf_type_vlen(t))
5228 		return false;
5229 
5230 	/*
5231 	 * Get the member name of this struct_ops program, which corresponds to
5232 	 * a field in struct sched_ext_ops. For example, the member name of the
5233 	 * dispatch struct_ops program (callback) is "dispatch".
5234 	 */
5235 	member = &btf_type_member(t)[member_idx];
5236 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
5237 
5238 	if (!strcmp(mname, op)) {
5239 		/*
5240 		 * The value is a pointer to a type (struct task_struct) given
5241 		 * by a BTF ID (PTR_TO_BTF_ID). It is trusted (PTR_TRUSTED),
5242 		 * however, can be a NULL (PTR_MAYBE_NULL). The BPF program
5243 		 * should check the pointer to make sure it is not NULL before
5244 		 * using it, or the verifier will reject the program.
5245 		 *
5246 		 * Longer term, this is something that should be addressed by
5247 		 * BTF, and be fully contained within the verifier.
5248 		 */
5249 		info->reg_type = PTR_MAYBE_NULL | PTR_TO_BTF_ID | PTR_TRUSTED;
5250 		info->btf = btf_vmlinux;
5251 		info->btf_id = task_struct_type_id;
5252 
5253 		return true;
5254 	}
5255 
5256 	return false;
5257 }
5258 
5259 static bool bpf_scx_is_valid_access(int off, int size,
5260 				    enum bpf_access_type type,
5261 				    const struct bpf_prog *prog,
5262 				    struct bpf_insn_access_aux *info)
5263 {
5264 	if (type != BPF_READ)
5265 		return false;
5266 	if (set_arg_maybe_null("dispatch", 1, off, size, type, prog, info) ||
5267 	    set_arg_maybe_null("yield", 1, off, size, type, prog, info))
5268 		return true;
5269 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
5270 		return false;
5271 	if (off % size != 0)
5272 		return false;
5273 
5274 	return btf_ctx_access(off, size, type, prog, info);
5275 }
5276 
5277 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log,
5278 				     const struct bpf_reg_state *reg, int off,
5279 				     int size)
5280 {
5281 	const struct btf_type *t;
5282 
5283 	t = btf_type_by_id(reg->btf, reg->btf_id);
5284 	if (t == task_struct_type) {
5285 		if (off >= offsetof(struct task_struct, scx.slice) &&
5286 		    off + size <= offsetofend(struct task_struct, scx.slice))
5287 			return SCALAR_VALUE;
5288 		if (off >= offsetof(struct task_struct, scx.dsq_vtime) &&
5289 		    off + size <= offsetofend(struct task_struct, scx.dsq_vtime))
5290 			return SCALAR_VALUE;
5291 		if (off >= offsetof(struct task_struct, scx.disallow) &&
5292 		    off + size <= offsetofend(struct task_struct, scx.disallow))
5293 			return SCALAR_VALUE;
5294 	}
5295 
5296 	return -EACCES;
5297 }
5298 
5299 static const struct bpf_func_proto *
5300 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5301 {
5302 	switch (func_id) {
5303 	case BPF_FUNC_task_storage_get:
5304 		return &bpf_task_storage_get_proto;
5305 	case BPF_FUNC_task_storage_delete:
5306 		return &bpf_task_storage_delete_proto;
5307 	default:
5308 		return bpf_base_func_proto(func_id, prog);
5309 	}
5310 }
5311 
5312 static const struct bpf_verifier_ops bpf_scx_verifier_ops = {
5313 	.get_func_proto = bpf_scx_get_func_proto,
5314 	.is_valid_access = bpf_scx_is_valid_access,
5315 	.btf_struct_access = bpf_scx_btf_struct_access,
5316 };
5317 
5318 static int bpf_scx_init_member(const struct btf_type *t,
5319 			       const struct btf_member *member,
5320 			       void *kdata, const void *udata)
5321 {
5322 	const struct sched_ext_ops *uops = udata;
5323 	struct sched_ext_ops *ops = kdata;
5324 	u32 moff = __btf_member_bit_offset(t, member) / 8;
5325 	int ret;
5326 
5327 	switch (moff) {
5328 	case offsetof(struct sched_ext_ops, dispatch_max_batch):
5329 		if (*(u32 *)(udata + moff) > INT_MAX)
5330 			return -E2BIG;
5331 		ops->dispatch_max_batch = *(u32 *)(udata + moff);
5332 		return 1;
5333 	case offsetof(struct sched_ext_ops, flags):
5334 		if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS)
5335 			return -EINVAL;
5336 		ops->flags = *(u64 *)(udata + moff);
5337 		return 1;
5338 	case offsetof(struct sched_ext_ops, name):
5339 		ret = bpf_obj_name_cpy(ops->name, uops->name,
5340 				       sizeof(ops->name));
5341 		if (ret < 0)
5342 			return ret;
5343 		if (ret == 0)
5344 			return -EINVAL;
5345 		return 1;
5346 	case offsetof(struct sched_ext_ops, timeout_ms):
5347 		if (msecs_to_jiffies(*(u32 *)(udata + moff)) >
5348 		    SCX_WATCHDOG_MAX_TIMEOUT)
5349 			return -E2BIG;
5350 		ops->timeout_ms = *(u32 *)(udata + moff);
5351 		return 1;
5352 	case offsetof(struct sched_ext_ops, exit_dump_len):
5353 		ops->exit_dump_len =
5354 			*(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN;
5355 		return 1;
5356 	case offsetof(struct sched_ext_ops, hotplug_seq):
5357 		ops->hotplug_seq = *(u64 *)(udata + moff);
5358 		return 1;
5359 	}
5360 
5361 	return 0;
5362 }
5363 
5364 static int bpf_scx_check_member(const struct btf_type *t,
5365 				const struct btf_member *member,
5366 				const struct bpf_prog *prog)
5367 {
5368 	u32 moff = __btf_member_bit_offset(t, member) / 8;
5369 
5370 	switch (moff) {
5371 	case offsetof(struct sched_ext_ops, init_task):
5372 #ifdef CONFIG_EXT_GROUP_SCHED
5373 	case offsetof(struct sched_ext_ops, cgroup_init):
5374 	case offsetof(struct sched_ext_ops, cgroup_exit):
5375 	case offsetof(struct sched_ext_ops, cgroup_prep_move):
5376 #endif
5377 	case offsetof(struct sched_ext_ops, cpu_online):
5378 	case offsetof(struct sched_ext_ops, cpu_offline):
5379 	case offsetof(struct sched_ext_ops, init):
5380 	case offsetof(struct sched_ext_ops, exit):
5381 		break;
5382 	default:
5383 		if (prog->sleepable)
5384 			return -EINVAL;
5385 	}
5386 
5387 	return 0;
5388 }
5389 
5390 static int bpf_scx_reg(void *kdata, struct bpf_link *link)
5391 {
5392 	return scx_ops_enable(kdata, link);
5393 }
5394 
5395 static void bpf_scx_unreg(void *kdata, struct bpf_link *link)
5396 {
5397 	scx_ops_disable(SCX_EXIT_UNREG);
5398 	kthread_flush_work(&scx_ops_disable_work);
5399 }
5400 
5401 static int bpf_scx_init(struct btf *btf)
5402 {
5403 	s32 type_id;
5404 
5405 	type_id = btf_find_by_name_kind(btf, "task_struct", BTF_KIND_STRUCT);
5406 	if (type_id < 0)
5407 		return -EINVAL;
5408 	task_struct_type = btf_type_by_id(btf, type_id);
5409 	task_struct_type_id = type_id;
5410 
5411 	return 0;
5412 }
5413 
5414 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link)
5415 {
5416 	/*
5417 	 * sched_ext does not support updating the actively-loaded BPF
5418 	 * scheduler, as registering a BPF scheduler can always fail if the
5419 	 * scheduler returns an error code for e.g. ops.init(), ops.init_task(),
5420 	 * etc. Similarly, we can always race with unregistration happening
5421 	 * elsewhere, such as with sysrq.
5422 	 */
5423 	return -EOPNOTSUPP;
5424 }
5425 
5426 static int bpf_scx_validate(void *kdata)
5427 {
5428 	return 0;
5429 }
5430 
5431 static s32 select_cpu_stub(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
5432 static void enqueue_stub(struct task_struct *p, u64 enq_flags) {}
5433 static void dequeue_stub(struct task_struct *p, u64 enq_flags) {}
5434 static void dispatch_stub(s32 prev_cpu, struct task_struct *p) {}
5435 static void tick_stub(struct task_struct *p) {}
5436 static void runnable_stub(struct task_struct *p, u64 enq_flags) {}
5437 static void running_stub(struct task_struct *p) {}
5438 static void stopping_stub(struct task_struct *p, bool runnable) {}
5439 static void quiescent_stub(struct task_struct *p, u64 deq_flags) {}
5440 static bool yield_stub(struct task_struct *from, struct task_struct *to) { return false; }
5441 static bool core_sched_before_stub(struct task_struct *a, struct task_struct *b) { return false; }
5442 static void set_weight_stub(struct task_struct *p, u32 weight) {}
5443 static void set_cpumask_stub(struct task_struct *p, const struct cpumask *mask) {}
5444 static void update_idle_stub(s32 cpu, bool idle) {}
5445 static void cpu_acquire_stub(s32 cpu, struct scx_cpu_acquire_args *args) {}
5446 static void cpu_release_stub(s32 cpu, struct scx_cpu_release_args *args) {}
5447 static s32 init_task_stub(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
5448 static void exit_task_stub(struct task_struct *p, struct scx_exit_task_args *args) {}
5449 static void enable_stub(struct task_struct *p) {}
5450 static void disable_stub(struct task_struct *p) {}
5451 #ifdef CONFIG_EXT_GROUP_SCHED
5452 static s32 cgroup_init_stub(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; }
5453 static void cgroup_exit_stub(struct cgroup *cgrp) {}
5454 static s32 cgroup_prep_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; }
5455 static void cgroup_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
5456 static void cgroup_cancel_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
5457 static void cgroup_set_weight_stub(struct cgroup *cgrp, u32 weight) {}
5458 #endif
5459 static void cpu_online_stub(s32 cpu) {}
5460 static void cpu_offline_stub(s32 cpu) {}
5461 static s32 init_stub(void) { return -EINVAL; }
5462 static void exit_stub(struct scx_exit_info *info) {}
5463 static void dump_stub(struct scx_dump_ctx *ctx) {}
5464 static void dump_cpu_stub(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {}
5465 static void dump_task_stub(struct scx_dump_ctx *ctx, struct task_struct *p) {}
5466 
5467 static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
5468 	.select_cpu = select_cpu_stub,
5469 	.enqueue = enqueue_stub,
5470 	.dequeue = dequeue_stub,
5471 	.dispatch = dispatch_stub,
5472 	.tick = tick_stub,
5473 	.runnable = runnable_stub,
5474 	.running = running_stub,
5475 	.stopping = stopping_stub,
5476 	.quiescent = quiescent_stub,
5477 	.yield = yield_stub,
5478 	.core_sched_before = core_sched_before_stub,
5479 	.set_weight = set_weight_stub,
5480 	.set_cpumask = set_cpumask_stub,
5481 	.update_idle = update_idle_stub,
5482 	.cpu_acquire = cpu_acquire_stub,
5483 	.cpu_release = cpu_release_stub,
5484 	.init_task = init_task_stub,
5485 	.exit_task = exit_task_stub,
5486 	.enable = enable_stub,
5487 	.disable = disable_stub,
5488 #ifdef CONFIG_EXT_GROUP_SCHED
5489 	.cgroup_init = cgroup_init_stub,
5490 	.cgroup_exit = cgroup_exit_stub,
5491 	.cgroup_prep_move = cgroup_prep_move_stub,
5492 	.cgroup_move = cgroup_move_stub,
5493 	.cgroup_cancel_move = cgroup_cancel_move_stub,
5494 	.cgroup_set_weight = cgroup_set_weight_stub,
5495 #endif
5496 	.cpu_online = cpu_online_stub,
5497 	.cpu_offline = cpu_offline_stub,
5498 	.init = init_stub,
5499 	.exit = exit_stub,
5500 	.dump = dump_stub,
5501 	.dump_cpu = dump_cpu_stub,
5502 	.dump_task = dump_task_stub,
5503 };
5504 
5505 static struct bpf_struct_ops bpf_sched_ext_ops = {
5506 	.verifier_ops = &bpf_scx_verifier_ops,
5507 	.reg = bpf_scx_reg,
5508 	.unreg = bpf_scx_unreg,
5509 	.check_member = bpf_scx_check_member,
5510 	.init_member = bpf_scx_init_member,
5511 	.init = bpf_scx_init,
5512 	.update = bpf_scx_update,
5513 	.validate = bpf_scx_validate,
5514 	.name = "sched_ext_ops",
5515 	.owner = THIS_MODULE,
5516 	.cfi_stubs = &__bpf_ops_sched_ext_ops
5517 };
5518 
5519 
5520 /********************************************************************************
5521  * System integration and init.
5522  */
5523 
5524 static void sysrq_handle_sched_ext_reset(u8 key)
5525 {
5526 	if (scx_ops_helper)
5527 		scx_ops_disable(SCX_EXIT_SYSRQ);
5528 	else
5529 		pr_info("sched_ext: BPF scheduler not yet used\n");
5530 }
5531 
5532 static const struct sysrq_key_op sysrq_sched_ext_reset_op = {
5533 	.handler	= sysrq_handle_sched_ext_reset,
5534 	.help_msg	= "reset-sched-ext(S)",
5535 	.action_msg	= "Disable sched_ext and revert all tasks to CFS",
5536 	.enable_mask	= SYSRQ_ENABLE_RTNICE,
5537 };
5538 
5539 static void sysrq_handle_sched_ext_dump(u8 key)
5540 {
5541 	struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" };
5542 
5543 	if (scx_enabled())
5544 		scx_dump_state(&ei, 0);
5545 }
5546 
5547 static const struct sysrq_key_op sysrq_sched_ext_dump_op = {
5548 	.handler	= sysrq_handle_sched_ext_dump,
5549 	.help_msg	= "dump-sched-ext(D)",
5550 	.action_msg	= "Trigger sched_ext debug dump",
5551 	.enable_mask	= SYSRQ_ENABLE_RTNICE,
5552 };
5553 
5554 static bool can_skip_idle_kick(struct rq *rq)
5555 {
5556 	lockdep_assert_rq_held(rq);
5557 
5558 	/*
5559 	 * We can skip idle kicking if @rq is going to go through at least one
5560 	 * full SCX scheduling cycle before going idle. Just checking whether
5561 	 * curr is not idle is insufficient because we could be racing
5562 	 * balance_one() trying to pull the next task from a remote rq, which
5563 	 * may fail, and @rq may become idle afterwards.
5564 	 *
5565 	 * The race window is small and we don't and can't guarantee that @rq is
5566 	 * only kicked while idle anyway. Skip only when sure.
5567 	 */
5568 	return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE);
5569 }
5570 
5571 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs)
5572 {
5573 	struct rq *rq = cpu_rq(cpu);
5574 	struct scx_rq *this_scx = &this_rq->scx;
5575 	bool should_wait = false;
5576 	unsigned long flags;
5577 
5578 	raw_spin_rq_lock_irqsave(rq, flags);
5579 
5580 	/*
5581 	 * During CPU hotplug, a CPU may depend on kicking itself to make
5582 	 * forward progress. Allow kicking self regardless of online state.
5583 	 */
5584 	if (cpu_online(cpu) || cpu == cpu_of(this_rq)) {
5585 		if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) {
5586 			if (rq->curr->sched_class == &ext_sched_class)
5587 				rq->curr->scx.slice = 0;
5588 			cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5589 		}
5590 
5591 		if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) {
5592 			pseqs[cpu] = rq->scx.pnt_seq;
5593 			should_wait = true;
5594 		}
5595 
5596 		resched_curr(rq);
5597 	} else {
5598 		cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5599 		cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5600 	}
5601 
5602 	raw_spin_rq_unlock_irqrestore(rq, flags);
5603 
5604 	return should_wait;
5605 }
5606 
5607 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq)
5608 {
5609 	struct rq *rq = cpu_rq(cpu);
5610 	unsigned long flags;
5611 
5612 	raw_spin_rq_lock_irqsave(rq, flags);
5613 
5614 	if (!can_skip_idle_kick(rq) &&
5615 	    (cpu_online(cpu) || cpu == cpu_of(this_rq)))
5616 		resched_curr(rq);
5617 
5618 	raw_spin_rq_unlock_irqrestore(rq, flags);
5619 }
5620 
5621 static void kick_cpus_irq_workfn(struct irq_work *irq_work)
5622 {
5623 	struct rq *this_rq = this_rq();
5624 	struct scx_rq *this_scx = &this_rq->scx;
5625 	unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs);
5626 	bool should_wait = false;
5627 	s32 cpu;
5628 
5629 	for_each_cpu(cpu, this_scx->cpus_to_kick) {
5630 		should_wait |= kick_one_cpu(cpu, this_rq, pseqs);
5631 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick);
5632 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5633 	}
5634 
5635 	for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) {
5636 		kick_one_cpu_if_idle(cpu, this_rq);
5637 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5638 	}
5639 
5640 	if (!should_wait)
5641 		return;
5642 
5643 	for_each_cpu(cpu, this_scx->cpus_to_wait) {
5644 		unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq;
5645 
5646 		if (cpu != cpu_of(this_rq)) {
5647 			/*
5648 			 * Pairs with smp_store_release() issued by this CPU in
5649 			 * scx_next_task_picked() on the resched path.
5650 			 *
5651 			 * We busy-wait here to guarantee that no other task can
5652 			 * be scheduled on our core before the target CPU has
5653 			 * entered the resched path.
5654 			 */
5655 			while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu])
5656 				cpu_relax();
5657 		}
5658 
5659 		cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5660 	}
5661 }
5662 
5663 /**
5664  * print_scx_info - print out sched_ext scheduler state
5665  * @log_lvl: the log level to use when printing
5666  * @p: target task
5667  *
5668  * If a sched_ext scheduler is enabled, print the name and state of the
5669  * scheduler. If @p is on sched_ext, print further information about the task.
5670  *
5671  * This function can be safely called on any task as long as the task_struct
5672  * itself is accessible. While safe, this function isn't synchronized and may
5673  * print out mixups or garbages of limited length.
5674  */
5675 void print_scx_info(const char *log_lvl, struct task_struct *p)
5676 {
5677 	enum scx_ops_enable_state state = scx_ops_enable_state();
5678 	const char *all = READ_ONCE(scx_switching_all) ? "+all" : "";
5679 	char runnable_at_buf[22] = "?";
5680 	struct sched_class *class;
5681 	unsigned long runnable_at;
5682 
5683 	if (state == SCX_OPS_DISABLED)
5684 		return;
5685 
5686 	/*
5687 	 * Carefully check if the task was running on sched_ext, and then
5688 	 * carefully copy the time it's been runnable, and its state.
5689 	 */
5690 	if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) ||
5691 	    class != &ext_sched_class) {
5692 		printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name,
5693 		       scx_ops_enable_state_str[state], all);
5694 		return;
5695 	}
5696 
5697 	if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at,
5698 				      sizeof(runnable_at)))
5699 		scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms",
5700 			  jiffies_delta_msecs(runnable_at, jiffies));
5701 
5702 	/* print everything onto one line to conserve console space */
5703 	printk("%sSched_ext: %s (%s%s), task: runnable_at=%s",
5704 	       log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all,
5705 	       runnable_at_buf);
5706 }
5707 
5708 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr)
5709 {
5710 	/*
5711 	 * SCX schedulers often have userspace components which are sometimes
5712 	 * involved in critial scheduling paths. PM operations involve freezing
5713 	 * userspace which can lead to scheduling misbehaviors including stalls.
5714 	 * Let's bypass while PM operations are in progress.
5715 	 */
5716 	switch (event) {
5717 	case PM_HIBERNATION_PREPARE:
5718 	case PM_SUSPEND_PREPARE:
5719 	case PM_RESTORE_PREPARE:
5720 		scx_ops_bypass(true);
5721 		break;
5722 	case PM_POST_HIBERNATION:
5723 	case PM_POST_SUSPEND:
5724 	case PM_POST_RESTORE:
5725 		scx_ops_bypass(false);
5726 		break;
5727 	}
5728 
5729 	return NOTIFY_OK;
5730 }
5731 
5732 static struct notifier_block scx_pm_notifier = {
5733 	.notifier_call = scx_pm_handler,
5734 };
5735 
5736 void __init init_sched_ext_class(void)
5737 {
5738 	s32 cpu, v;
5739 
5740 	/*
5741 	 * The following is to prevent the compiler from optimizing out the enum
5742 	 * definitions so that BPF scheduler implementations can use them
5743 	 * through the generated vmlinux.h.
5744 	 */
5745 	WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT |
5746 		   SCX_TG_ONLINE);
5747 
5748 	BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params));
5749 	init_dsq(&scx_dsq_global, SCX_DSQ_GLOBAL);
5750 #ifdef CONFIG_SMP
5751 	BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL));
5752 	BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL));
5753 #endif
5754 	scx_kick_cpus_pnt_seqs =
5755 		__alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids,
5756 			       __alignof__(scx_kick_cpus_pnt_seqs[0]));
5757 	BUG_ON(!scx_kick_cpus_pnt_seqs);
5758 
5759 	for_each_possible_cpu(cpu) {
5760 		struct rq *rq = cpu_rq(cpu);
5761 
5762 		init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL);
5763 		INIT_LIST_HEAD(&rq->scx.runnable_list);
5764 		INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals);
5765 
5766 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL));
5767 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL));
5768 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL));
5769 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL));
5770 		init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn);
5771 		init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn);
5772 
5773 		if (cpu_online(cpu))
5774 			cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE;
5775 	}
5776 
5777 	register_sysrq_key('S', &sysrq_sched_ext_reset_op);
5778 	register_sysrq_key('D', &sysrq_sched_ext_dump_op);
5779 	INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn);
5780 }
5781 
5782 
5783 /********************************************************************************
5784  * Helpers that can be called from the BPF scheduler.
5785  */
5786 #include <linux/btf_ids.h>
5787 
5788 __bpf_kfunc_start_defs();
5789 
5790 /**
5791  * scx_bpf_create_dsq - Create a custom DSQ
5792  * @dsq_id: DSQ to create
5793  * @node: NUMA node to allocate from
5794  *
5795  * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable
5796  * scx callback, and any BPF_PROG_TYPE_SYSCALL prog.
5797  */
5798 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node)
5799 {
5800 	if (unlikely(node >= (int)nr_node_ids ||
5801 		     (node < 0 && node != NUMA_NO_NODE)))
5802 		return -EINVAL;
5803 	return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node));
5804 }
5805 
5806 __bpf_kfunc_end_defs();
5807 
5808 BTF_KFUNCS_START(scx_kfunc_ids_sleepable)
5809 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
5810 BTF_KFUNCS_END(scx_kfunc_ids_sleepable)
5811 
5812 static const struct btf_kfunc_id_set scx_kfunc_set_sleepable = {
5813 	.owner			= THIS_MODULE,
5814 	.set			= &scx_kfunc_ids_sleepable,
5815 };
5816 
5817 __bpf_kfunc_start_defs();
5818 
5819 /**
5820  * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
5821  * @p: task_struct to select a CPU for
5822  * @prev_cpu: CPU @p was on previously
5823  * @wake_flags: %SCX_WAKE_* flags
5824  * @is_idle: out parameter indicating whether the returned CPU is idle
5825  *
5826  * Can only be called from ops.select_cpu() if the built-in CPU selection is
5827  * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set.
5828  * @p, @prev_cpu and @wake_flags match ops.select_cpu().
5829  *
5830  * Returns the picked CPU with *@is_idle indicating whether the picked CPU is
5831  * currently idle and thus a good candidate for direct dispatching.
5832  */
5833 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
5834 				       u64 wake_flags, bool *is_idle)
5835 {
5836 	if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) {
5837 		*is_idle = false;
5838 		return prev_cpu;
5839 	}
5840 #ifdef CONFIG_SMP
5841 	return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle);
5842 #else
5843 	*is_idle = false;
5844 	return prev_cpu;
5845 #endif
5846 }
5847 
5848 __bpf_kfunc_end_defs();
5849 
5850 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu)
5851 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
5852 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu)
5853 
5854 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = {
5855 	.owner			= THIS_MODULE,
5856 	.set			= &scx_kfunc_ids_select_cpu,
5857 };
5858 
5859 static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags)
5860 {
5861 	if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
5862 		return false;
5863 
5864 	lockdep_assert_irqs_disabled();
5865 
5866 	if (unlikely(!p)) {
5867 		scx_ops_error("called with NULL task");
5868 		return false;
5869 	}
5870 
5871 	if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) {
5872 		scx_ops_error("invalid enq_flags 0x%llx", enq_flags);
5873 		return false;
5874 	}
5875 
5876 	return true;
5877 }
5878 
5879 static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags)
5880 {
5881 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
5882 	struct task_struct *ddsp_task;
5883 
5884 	ddsp_task = __this_cpu_read(direct_dispatch_task);
5885 	if (ddsp_task) {
5886 		mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags);
5887 		return;
5888 	}
5889 
5890 	if (unlikely(dspc->cursor >= scx_dsp_max_batch)) {
5891 		scx_ops_error("dispatch buffer overflow");
5892 		return;
5893 	}
5894 
5895 	dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){
5896 		.task = p,
5897 		.qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK,
5898 		.dsq_id = dsq_id,
5899 		.enq_flags = enq_flags,
5900 	};
5901 }
5902 
5903 __bpf_kfunc_start_defs();
5904 
5905 /**
5906  * scx_bpf_dispatch - Dispatch a task into the FIFO queue of a DSQ
5907  * @p: task_struct to dispatch
5908  * @dsq_id: DSQ to dispatch to
5909  * @slice: duration @p can run for in nsecs
5910  * @enq_flags: SCX_ENQ_*
5911  *
5912  * Dispatch @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe
5913  * to call this function spuriously. Can be called from ops.enqueue(),
5914  * ops.select_cpu(), and ops.dispatch().
5915  *
5916  * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
5917  * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be
5918  * used to target the local DSQ of a CPU other than the enqueueing one. Use
5919  * ops.select_cpu() to be on the target CPU in the first place.
5920  *
5921  * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
5922  * will be directly dispatched to the corresponding dispatch queue after
5923  * ops.select_cpu() returns. If @p is dispatched to SCX_DSQ_LOCAL, it will be
5924  * dispatched to the local DSQ of the CPU returned by ops.select_cpu().
5925  * @enq_flags are OR'd with the enqueue flags on the enqueue path before the
5926  * task is dispatched.
5927  *
5928  * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
5929  * and this function can be called upto ops.dispatch_max_batch times to dispatch
5930  * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
5931  * remaining slots. scx_bpf_consume() flushes the batch and resets the counter.
5932  *
5933  * This function doesn't have any locking restrictions and may be called under
5934  * BPF locks (in the future when BPF introduces more flexible locking).
5935  *
5936  * @p is allowed to run for @slice. The scheduling path is triggered on slice
5937  * exhaustion. If zero, the current residual slice is maintained. If
5938  * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
5939  * scx_bpf_kick_cpu() to trigger scheduling.
5940  */
5941 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice,
5942 				  u64 enq_flags)
5943 {
5944 	if (!scx_dispatch_preamble(p, enq_flags))
5945 		return;
5946 
5947 	if (slice)
5948 		p->scx.slice = slice;
5949 	else
5950 		p->scx.slice = p->scx.slice ?: 1;
5951 
5952 	scx_dispatch_commit(p, dsq_id, enq_flags);
5953 }
5954 
5955 /**
5956  * scx_bpf_dispatch_vtime - Dispatch a task into the vtime priority queue of a DSQ
5957  * @p: task_struct to dispatch
5958  * @dsq_id: DSQ to dispatch to
5959  * @slice: duration @p can run for in nsecs
5960  * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
5961  * @enq_flags: SCX_ENQ_*
5962  *
5963  * Dispatch @p into the vtime priority queue of the DSQ identified by @dsq_id.
5964  * Tasks queued into the priority queue are ordered by @vtime and always
5965  * consumed after the tasks in the FIFO queue. All other aspects are identical
5966  * to scx_bpf_dispatch().
5967  *
5968  * @vtime ordering is according to time_before64() which considers wrapping. A
5969  * numerically larger vtime may indicate an earlier position in the ordering and
5970  * vice-versa.
5971  */
5972 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id,
5973 					u64 slice, u64 vtime, u64 enq_flags)
5974 {
5975 	if (!scx_dispatch_preamble(p, enq_flags))
5976 		return;
5977 
5978 	if (slice)
5979 		p->scx.slice = slice;
5980 	else
5981 		p->scx.slice = p->scx.slice ?: 1;
5982 
5983 	p->scx.dsq_vtime = vtime;
5984 
5985 	scx_dispatch_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
5986 }
5987 
5988 __bpf_kfunc_end_defs();
5989 
5990 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
5991 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU)
5992 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU)
5993 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
5994 
5995 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
5996 	.owner			= THIS_MODULE,
5997 	.set			= &scx_kfunc_ids_enqueue_dispatch,
5998 };
5999 
6000 __bpf_kfunc_start_defs();
6001 
6002 /**
6003  * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots
6004  *
6005  * Can only be called from ops.dispatch().
6006  */
6007 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
6008 {
6009 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
6010 		return 0;
6011 
6012 	return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor);
6013 }
6014 
6015 /**
6016  * scx_bpf_dispatch_cancel - Cancel the latest dispatch
6017  *
6018  * Cancel the latest dispatch. Can be called multiple times to cancel further
6019  * dispatches. Can only be called from ops.dispatch().
6020  */
6021 __bpf_kfunc void scx_bpf_dispatch_cancel(void)
6022 {
6023 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6024 
6025 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
6026 		return;
6027 
6028 	if (dspc->cursor > 0)
6029 		dspc->cursor--;
6030 	else
6031 		scx_ops_error("dispatch buffer underflow");
6032 }
6033 
6034 /**
6035  * scx_bpf_consume - Transfer a task from a DSQ to the current CPU's local DSQ
6036  * @dsq_id: DSQ to consume
6037  *
6038  * Consume a task from the non-local DSQ identified by @dsq_id and transfer it
6039  * to the current CPU's local DSQ for execution. Can only be called from
6040  * ops.dispatch().
6041  *
6042  * This function flushes the in-flight dispatches from scx_bpf_dispatch() before
6043  * trying to consume the specified DSQ. It may also grab rq locks and thus can't
6044  * be called under any BPF locks.
6045  *
6046  * Returns %true if a task has been consumed, %false if there isn't any task to
6047  * consume.
6048  */
6049 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id)
6050 {
6051 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6052 	struct scx_dispatch_q *dsq;
6053 
6054 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
6055 		return false;
6056 
6057 	flush_dispatch_buf(dspc->rq);
6058 
6059 	dsq = find_non_local_dsq(dsq_id);
6060 	if (unlikely(!dsq)) {
6061 		scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id);
6062 		return false;
6063 	}
6064 
6065 	if (consume_dispatch_q(dspc->rq, dsq)) {
6066 		/*
6067 		 * A successfully consumed task can be dequeued before it starts
6068 		 * running while the CPU is trying to migrate other dispatched
6069 		 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty
6070 		 * local DSQ.
6071 		 */
6072 		dspc->nr_tasks++;
6073 		return true;
6074 	} else {
6075 		return false;
6076 	}
6077 }
6078 
6079 __bpf_kfunc_end_defs();
6080 
6081 BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
6082 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
6083 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
6084 BTF_ID_FLAGS(func, scx_bpf_consume)
6085 BTF_KFUNCS_END(scx_kfunc_ids_dispatch)
6086 
6087 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
6088 	.owner			= THIS_MODULE,
6089 	.set			= &scx_kfunc_ids_dispatch,
6090 };
6091 
6092 __bpf_kfunc_start_defs();
6093 
6094 /**
6095  * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
6096  *
6097  * Iterate over all of the tasks currently enqueued on the local DSQ of the
6098  * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
6099  * processed tasks. Can only be called from ops.cpu_release().
6100  */
6101 __bpf_kfunc u32 scx_bpf_reenqueue_local(void)
6102 {
6103 	LIST_HEAD(tasks);
6104 	u32 nr_enqueued = 0;
6105 	struct rq *rq;
6106 	struct task_struct *p, *n;
6107 
6108 	if (!scx_kf_allowed(SCX_KF_CPU_RELEASE))
6109 		return 0;
6110 
6111 	rq = cpu_rq(smp_processor_id());
6112 	lockdep_assert_rq_held(rq);
6113 
6114 	/*
6115 	 * The BPF scheduler may choose to dispatch tasks back to
6116 	 * @rq->scx.local_dsq. Move all candidate tasks off to a private list
6117 	 * first to avoid processing the same tasks repeatedly.
6118 	 */
6119 	list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list,
6120 				 scx.dsq_list.node) {
6121 		/*
6122 		 * If @p is being migrated, @p's current CPU may not agree with
6123 		 * its allowed CPUs and the migration_cpu_stop is about to
6124 		 * deactivate and re-activate @p anyway. Skip re-enqueueing.
6125 		 *
6126 		 * While racing sched property changes may also dequeue and
6127 		 * re-enqueue a migrating task while its current CPU and allowed
6128 		 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to
6129 		 * the current local DSQ for running tasks and thus are not
6130 		 * visible to the BPF scheduler.
6131 		 */
6132 		if (p->migration_pending)
6133 			continue;
6134 
6135 		dispatch_dequeue(rq, p);
6136 		list_add_tail(&p->scx.dsq_list.node, &tasks);
6137 	}
6138 
6139 	list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) {
6140 		list_del_init(&p->scx.dsq_list.node);
6141 		do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1);
6142 		nr_enqueued++;
6143 	}
6144 
6145 	return nr_enqueued;
6146 }
6147 
6148 __bpf_kfunc_end_defs();
6149 
6150 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release)
6151 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local)
6152 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release)
6153 
6154 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = {
6155 	.owner			= THIS_MODULE,
6156 	.set			= &scx_kfunc_ids_cpu_release,
6157 };
6158 
6159 __bpf_kfunc_start_defs();
6160 
6161 /**
6162  * scx_bpf_kick_cpu - Trigger reschedule on a CPU
6163  * @cpu: cpu to kick
6164  * @flags: %SCX_KICK_* flags
6165  *
6166  * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
6167  * trigger rescheduling on a busy CPU. This can be called from any online
6168  * scx_ops operation and the actual kicking is performed asynchronously through
6169  * an irq work.
6170  */
6171 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
6172 {
6173 	struct rq *this_rq;
6174 	unsigned long irq_flags;
6175 
6176 	if (!ops_cpu_valid(cpu, NULL))
6177 		return;
6178 
6179 	/*
6180 	 * While bypassing for PM ops, IRQ handling may not be online which can
6181 	 * lead to irq_work_queue() malfunction such as infinite busy wait for
6182 	 * IRQ status update. Suppress kicking.
6183 	 */
6184 	if (scx_ops_bypassing())
6185 		return;
6186 
6187 	local_irq_save(irq_flags);
6188 
6189 	this_rq = this_rq();
6190 
6191 	/*
6192 	 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting
6193 	 * rq locks. We can probably be smarter and avoid bouncing if called
6194 	 * from ops which don't hold a rq lock.
6195 	 */
6196 	if (flags & SCX_KICK_IDLE) {
6197 		struct rq *target_rq = cpu_rq(cpu);
6198 
6199 		if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT)))
6200 			scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
6201 
6202 		if (raw_spin_rq_trylock(target_rq)) {
6203 			if (can_skip_idle_kick(target_rq)) {
6204 				raw_spin_rq_unlock(target_rq);
6205 				goto out;
6206 			}
6207 			raw_spin_rq_unlock(target_rq);
6208 		}
6209 		cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle);
6210 	} else {
6211 		cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick);
6212 
6213 		if (flags & SCX_KICK_PREEMPT)
6214 			cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt);
6215 		if (flags & SCX_KICK_WAIT)
6216 			cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait);
6217 	}
6218 
6219 	irq_work_queue(&this_rq->scx.kick_cpus_irq_work);
6220 out:
6221 	local_irq_restore(irq_flags);
6222 }
6223 
6224 /**
6225  * scx_bpf_dsq_nr_queued - Return the number of queued tasks
6226  * @dsq_id: id of the DSQ
6227  *
6228  * Return the number of tasks in the DSQ matching @dsq_id. If not found,
6229  * -%ENOENT is returned.
6230  */
6231 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id)
6232 {
6233 	struct scx_dispatch_q *dsq;
6234 	s32 ret;
6235 
6236 	preempt_disable();
6237 
6238 	if (dsq_id == SCX_DSQ_LOCAL) {
6239 		ret = READ_ONCE(this_rq()->scx.local_dsq.nr);
6240 		goto out;
6241 	} else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
6242 		s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
6243 
6244 		if (ops_cpu_valid(cpu, NULL)) {
6245 			ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr);
6246 			goto out;
6247 		}
6248 	} else {
6249 		dsq = find_non_local_dsq(dsq_id);
6250 		if (dsq) {
6251 			ret = READ_ONCE(dsq->nr);
6252 			goto out;
6253 		}
6254 	}
6255 	ret = -ENOENT;
6256 out:
6257 	preempt_enable();
6258 	return ret;
6259 }
6260 
6261 /**
6262  * scx_bpf_destroy_dsq - Destroy a custom DSQ
6263  * @dsq_id: DSQ to destroy
6264  *
6265  * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with
6266  * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is
6267  * empty and no further tasks are dispatched to it. Ignored if called on a DSQ
6268  * which doesn't exist. Can be called from any online scx_ops operations.
6269  */
6270 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id)
6271 {
6272 	destroy_dsq(dsq_id);
6273 }
6274 
6275 /**
6276  * bpf_iter_scx_dsq_new - Create a DSQ iterator
6277  * @it: iterator to initialize
6278  * @dsq_id: DSQ to iterate
6279  * @flags: %SCX_DSQ_ITER_*
6280  *
6281  * Initialize BPF iterator @it which can be used with bpf_for_each() to walk
6282  * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes
6283  * tasks which are already queued when this function is invoked.
6284  */
6285 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id,
6286 				     u64 flags)
6287 {
6288 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6289 
6290 	BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) >
6291 		     sizeof(struct bpf_iter_scx_dsq));
6292 	BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) !=
6293 		     __alignof__(struct bpf_iter_scx_dsq));
6294 
6295 	if (flags & ~__SCX_DSQ_ITER_ALL_FLAGS)
6296 		return -EINVAL;
6297 
6298 	kit->dsq = find_non_local_dsq(dsq_id);
6299 	if (!kit->dsq)
6300 		return -ENOENT;
6301 
6302 	INIT_LIST_HEAD(&kit->cursor.node);
6303 	kit->cursor.is_bpf_iter_cursor = true;
6304 	kit->dsq_seq = READ_ONCE(kit->dsq->seq);
6305 	kit->flags = flags;
6306 
6307 	return 0;
6308 }
6309 
6310 /**
6311  * bpf_iter_scx_dsq_next - Progress a DSQ iterator
6312  * @it: iterator to progress
6313  *
6314  * Return the next task. See bpf_iter_scx_dsq_new().
6315  */
6316 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it)
6317 {
6318 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6319 	bool rev = kit->flags & SCX_DSQ_ITER_REV;
6320 	struct task_struct *p;
6321 	unsigned long flags;
6322 
6323 	if (!kit->dsq)
6324 		return NULL;
6325 
6326 	raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6327 
6328 	if (list_empty(&kit->cursor.node))
6329 		p = NULL;
6330 	else
6331 		p = container_of(&kit->cursor, struct task_struct, scx.dsq_list);
6332 
6333 	/*
6334 	 * Only tasks which were queued before the iteration started are
6335 	 * visible. This bounds BPF iterations and guarantees that vtime never
6336 	 * jumps in the other direction while iterating.
6337 	 */
6338 	do {
6339 		p = nldsq_next_task(kit->dsq, p, rev);
6340 	} while (p && unlikely(u32_before(kit->dsq_seq, p->scx.dsq_seq)));
6341 
6342 	if (p) {
6343 		if (rev)
6344 			list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node);
6345 		else
6346 			list_move(&kit->cursor.node, &p->scx.dsq_list.node);
6347 	} else {
6348 		list_del_init(&kit->cursor.node);
6349 	}
6350 
6351 	raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6352 
6353 	return p;
6354 }
6355 
6356 /**
6357  * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator
6358  * @it: iterator to destroy
6359  *
6360  * Undo scx_iter_scx_dsq_new().
6361  */
6362 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it)
6363 {
6364 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6365 
6366 	if (!kit->dsq)
6367 		return;
6368 
6369 	if (!list_empty(&kit->cursor.node)) {
6370 		unsigned long flags;
6371 
6372 		raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6373 		list_del_init(&kit->cursor.node);
6374 		raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6375 	}
6376 	kit->dsq = NULL;
6377 }
6378 
6379 __bpf_kfunc_end_defs();
6380 
6381 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size,
6382 			 char *fmt, unsigned long long *data, u32 data__sz)
6383 {
6384 	struct bpf_bprintf_data bprintf_data = { .get_bin_args = true };
6385 	s32 ret;
6386 
6387 	if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 ||
6388 	    (data__sz && !data)) {
6389 		scx_ops_error("invalid data=%p and data__sz=%u",
6390 			      (void *)data, data__sz);
6391 		return -EINVAL;
6392 	}
6393 
6394 	ret = copy_from_kernel_nofault(data_buf, data, data__sz);
6395 	if (ret < 0) {
6396 		scx_ops_error("failed to read data fields (%d)", ret);
6397 		return ret;
6398 	}
6399 
6400 	ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8,
6401 				  &bprintf_data);
6402 	if (ret < 0) {
6403 		scx_ops_error("format preparation failed (%d)", ret);
6404 		return ret;
6405 	}
6406 
6407 	ret = bstr_printf(line_buf, line_size, fmt,
6408 			  bprintf_data.bin_args);
6409 	bpf_bprintf_cleanup(&bprintf_data);
6410 	if (ret < 0) {
6411 		scx_ops_error("(\"%s\", %p, %u) failed to format",
6412 			      fmt, data, data__sz);
6413 		return ret;
6414 	}
6415 
6416 	return ret;
6417 }
6418 
6419 static s32 bstr_format(struct scx_bstr_buf *buf,
6420 		       char *fmt, unsigned long long *data, u32 data__sz)
6421 {
6422 	return __bstr_format(buf->data, buf->line, sizeof(buf->line),
6423 			     fmt, data, data__sz);
6424 }
6425 
6426 __bpf_kfunc_start_defs();
6427 
6428 /**
6429  * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler.
6430  * @exit_code: Exit value to pass to user space via struct scx_exit_info.
6431  * @fmt: error message format string
6432  * @data: format string parameters packaged using ___bpf_fill() macro
6433  * @data__sz: @data len, must end in '__sz' for the verifier
6434  *
6435  * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops
6436  * disabling.
6437  */
6438 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
6439 				   unsigned long long *data, u32 data__sz)
6440 {
6441 	unsigned long flags;
6442 
6443 	raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6444 	if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6445 		scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s",
6446 				  scx_exit_bstr_buf.line);
6447 	raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6448 }
6449 
6450 /**
6451  * scx_bpf_error_bstr - Indicate fatal error
6452  * @fmt: error message format string
6453  * @data: format string parameters packaged using ___bpf_fill() macro
6454  * @data__sz: @data len, must end in '__sz' for the verifier
6455  *
6456  * Indicate that the BPF scheduler encountered a fatal error and initiate ops
6457  * disabling.
6458  */
6459 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
6460 				    u32 data__sz)
6461 {
6462 	unsigned long flags;
6463 
6464 	raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6465 	if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6466 		scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s",
6467 				  scx_exit_bstr_buf.line);
6468 	raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6469 }
6470 
6471 /**
6472  * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler
6473  * @fmt: format string
6474  * @data: format string parameters packaged using ___bpf_fill() macro
6475  * @data__sz: @data len, must end in '__sz' for the verifier
6476  *
6477  * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and
6478  * dump_task() to generate extra debug dump specific to the BPF scheduler.
6479  *
6480  * The extra dump may be multiple lines. A single line may be split over
6481  * multiple calls. The last line is automatically terminated.
6482  */
6483 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
6484 				   u32 data__sz)
6485 {
6486 	struct scx_dump_data *dd = &scx_dump_data;
6487 	struct scx_bstr_buf *buf = &dd->buf;
6488 	s32 ret;
6489 
6490 	if (raw_smp_processor_id() != dd->cpu) {
6491 		scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends");
6492 		return;
6493 	}
6494 
6495 	/* append the formatted string to the line buf */
6496 	ret = __bstr_format(buf->data, buf->line + dd->cursor,
6497 			    sizeof(buf->line) - dd->cursor, fmt, data, data__sz);
6498 	if (ret < 0) {
6499 		dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)",
6500 			  dd->prefix, fmt, data, data__sz, ret);
6501 		return;
6502 	}
6503 
6504 	dd->cursor += ret;
6505 	dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line));
6506 
6507 	if (!dd->cursor)
6508 		return;
6509 
6510 	/*
6511 	 * If the line buf overflowed or ends in a newline, flush it into the
6512 	 * dump. This is to allow the caller to generate a single line over
6513 	 * multiple calls. As ops_dump_flush() can also handle multiple lines in
6514 	 * the line buf, the only case which can lead to an unexpected
6515 	 * truncation is when the caller keeps generating newlines in the middle
6516 	 * instead of the end consecutively. Don't do that.
6517 	 */
6518 	if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n')
6519 		ops_dump_flush();
6520 }
6521 
6522 /**
6523  * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU
6524  * @cpu: CPU of interest
6525  *
6526  * Return the maximum relative capacity of @cpu in relation to the most
6527  * performant CPU in the system. The return value is in the range [1,
6528  * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur().
6529  */
6530 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu)
6531 {
6532 	if (ops_cpu_valid(cpu, NULL))
6533 		return arch_scale_cpu_capacity(cpu);
6534 	else
6535 		return SCX_CPUPERF_ONE;
6536 }
6537 
6538 /**
6539  * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU
6540  * @cpu: CPU of interest
6541  *
6542  * Return the current relative performance of @cpu in relation to its maximum.
6543  * The return value is in the range [1, %SCX_CPUPERF_ONE].
6544  *
6545  * The current performance level of a CPU in relation to the maximum performance
6546  * available in the system can be calculated as follows:
6547  *
6548  *   scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE
6549  *
6550  * The result is in the range [1, %SCX_CPUPERF_ONE].
6551  */
6552 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
6553 {
6554 	if (ops_cpu_valid(cpu, NULL))
6555 		return arch_scale_freq_capacity(cpu);
6556 	else
6557 		return SCX_CPUPERF_ONE;
6558 }
6559 
6560 /**
6561  * scx_bpf_cpuperf_set - Set the relative performance target of a CPU
6562  * @cpu: CPU of interest
6563  * @perf: target performance level [0, %SCX_CPUPERF_ONE]
6564  * @flags: %SCX_CPUPERF_* flags
6565  *
6566  * Set the target performance level of @cpu to @perf. @perf is in linear
6567  * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the
6568  * schedutil cpufreq governor chooses the target frequency.
6569  *
6570  * The actual performance level chosen, CPU grouping, and the overhead and
6571  * latency of the operations are dependent on the hardware and cpufreq driver in
6572  * use. Consult hardware and cpufreq documentation for more information. The
6573  * current performance level can be monitored using scx_bpf_cpuperf_cur().
6574  */
6575 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf)
6576 {
6577 	if (unlikely(perf > SCX_CPUPERF_ONE)) {
6578 		scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu);
6579 		return;
6580 	}
6581 
6582 	if (ops_cpu_valid(cpu, NULL)) {
6583 		struct rq *rq = cpu_rq(cpu);
6584 
6585 		rq->scx.cpuperf_target = perf;
6586 
6587 		rcu_read_lock_sched_notrace();
6588 		cpufreq_update_util(cpu_rq(cpu), 0);
6589 		rcu_read_unlock_sched_notrace();
6590 	}
6591 }
6592 
6593 /**
6594  * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
6595  *
6596  * All valid CPU IDs in the system are smaller than the returned value.
6597  */
6598 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void)
6599 {
6600 	return nr_cpu_ids;
6601 }
6602 
6603 /**
6604  * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask
6605  */
6606 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void)
6607 {
6608 	return cpu_possible_mask;
6609 }
6610 
6611 /**
6612  * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask
6613  */
6614 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void)
6615 {
6616 	return cpu_online_mask;
6617 }
6618 
6619 /**
6620  * scx_bpf_put_cpumask - Release a possible/online cpumask
6621  * @cpumask: cpumask to release
6622  */
6623 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask)
6624 {
6625 	/*
6626 	 * Empty function body because we aren't actually acquiring or releasing
6627 	 * a reference to a global cpumask, which is read-only in the caller and
6628 	 * is never released. The acquire / release semantics here are just used
6629 	 * to make the cpumask is a trusted pointer in the caller.
6630 	 */
6631 }
6632 
6633 /**
6634  * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
6635  * per-CPU cpumask.
6636  *
6637  * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
6638  */
6639 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
6640 {
6641 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
6642 		scx_ops_error("built-in idle tracking is disabled");
6643 		return cpu_none_mask;
6644 	}
6645 
6646 #ifdef CONFIG_SMP
6647 	return idle_masks.cpu;
6648 #else
6649 	return cpu_none_mask;
6650 #endif
6651 }
6652 
6653 /**
6654  * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
6655  * per-physical-core cpumask. Can be used to determine if an entire physical
6656  * core is free.
6657  *
6658  * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
6659  */
6660 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
6661 {
6662 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
6663 		scx_ops_error("built-in idle tracking is disabled");
6664 		return cpu_none_mask;
6665 	}
6666 
6667 #ifdef CONFIG_SMP
6668 	if (sched_smt_active())
6669 		return idle_masks.smt;
6670 	else
6671 		return idle_masks.cpu;
6672 #else
6673 	return cpu_none_mask;
6674 #endif
6675 }
6676 
6677 /**
6678  * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
6679  * either the percpu, or SMT idle-tracking cpumask.
6680  */
6681 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
6682 {
6683 	/*
6684 	 * Empty function body because we aren't actually acquiring or releasing
6685 	 * a reference to a global idle cpumask, which is read-only in the
6686 	 * caller and is never released. The acquire / release semantics here
6687 	 * are just used to make the cpumask a trusted pointer in the caller.
6688 	 */
6689 }
6690 
6691 /**
6692  * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
6693  * @cpu: cpu to test and clear idle for
6694  *
6695  * Returns %true if @cpu was idle and its idle state was successfully cleared.
6696  * %false otherwise.
6697  *
6698  * Unavailable if ops.update_idle() is implemented and
6699  * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
6700  */
6701 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
6702 {
6703 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
6704 		scx_ops_error("built-in idle tracking is disabled");
6705 		return false;
6706 	}
6707 
6708 	if (ops_cpu_valid(cpu, NULL))
6709 		return test_and_clear_cpu_idle(cpu);
6710 	else
6711 		return false;
6712 }
6713 
6714 /**
6715  * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
6716  * @cpus_allowed: Allowed cpumask
6717  * @flags: %SCX_PICK_IDLE_CPU_* flags
6718  *
6719  * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
6720  * number on success. -%EBUSY if no matching cpu was found.
6721  *
6722  * Idle CPU tracking may race against CPU scheduling state transitions. For
6723  * example, this function may return -%EBUSY as CPUs are transitioning into the
6724  * idle state. If the caller then assumes that there will be dispatch events on
6725  * the CPUs as they were all busy, the scheduler may end up stalling with CPUs
6726  * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
6727  * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
6728  * event in the near future.
6729  *
6730  * Unavailable if ops.update_idle() is implemented and
6731  * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
6732  */
6733 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
6734 				      u64 flags)
6735 {
6736 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
6737 		scx_ops_error("built-in idle tracking is disabled");
6738 		return -EBUSY;
6739 	}
6740 
6741 	return scx_pick_idle_cpu(cpus_allowed, flags);
6742 }
6743 
6744 /**
6745  * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
6746  * @cpus_allowed: Allowed cpumask
6747  * @flags: %SCX_PICK_IDLE_CPU_* flags
6748  *
6749  * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
6750  * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
6751  * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
6752  * empty.
6753  *
6754  * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
6755  * set, this function can't tell which CPUs are idle and will always pick any
6756  * CPU.
6757  */
6758 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
6759 				     u64 flags)
6760 {
6761 	s32 cpu;
6762 
6763 	if (static_branch_likely(&scx_builtin_idle_enabled)) {
6764 		cpu = scx_pick_idle_cpu(cpus_allowed, flags);
6765 		if (cpu >= 0)
6766 			return cpu;
6767 	}
6768 
6769 	cpu = cpumask_any_distribute(cpus_allowed);
6770 	if (cpu < nr_cpu_ids)
6771 		return cpu;
6772 	else
6773 		return -EBUSY;
6774 }
6775 
6776 /**
6777  * scx_bpf_task_running - Is task currently running?
6778  * @p: task of interest
6779  */
6780 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
6781 {
6782 	return task_rq(p)->curr == p;
6783 }
6784 
6785 /**
6786  * scx_bpf_task_cpu - CPU a task is currently associated with
6787  * @p: task of interest
6788  */
6789 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
6790 {
6791 	return task_cpu(p);
6792 }
6793 
6794 /**
6795  * scx_bpf_cpu_rq - Fetch the rq of a CPU
6796  * @cpu: CPU of the rq
6797  */
6798 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu)
6799 {
6800 	if (!ops_cpu_valid(cpu, NULL))
6801 		return NULL;
6802 
6803 	return cpu_rq(cpu);
6804 }
6805 
6806 /**
6807  * scx_bpf_task_cgroup - Return the sched cgroup of a task
6808  * @p: task of interest
6809  *
6810  * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with
6811  * from the scheduler's POV. SCX operations should use this function to
6812  * determine @p's current cgroup as, unlike following @p->cgroups,
6813  * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all
6814  * rq-locked operations. Can be called on the parameter tasks of rq-locked
6815  * operations. The restriction guarantees that @p's rq is locked by the caller.
6816  */
6817 #ifdef CONFIG_CGROUP_SCHED
6818 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p)
6819 {
6820 	struct task_group *tg = p->sched_task_group;
6821 	struct cgroup *cgrp = &cgrp_dfl_root.cgrp;
6822 
6823 	if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p))
6824 		goto out;
6825 
6826 	/*
6827 	 * A task_group may either be a cgroup or an autogroup. In the latter
6828 	 * case, @tg->css.cgroup is %NULL. A task_group can't become the other
6829 	 * kind once created.
6830 	 */
6831 	if (tg && tg->css.cgroup)
6832 		cgrp = tg->css.cgroup;
6833 	else
6834 		cgrp = &cgrp_dfl_root.cgrp;
6835 out:
6836 	cgroup_get(cgrp);
6837 	return cgrp;
6838 }
6839 #endif
6840 
6841 __bpf_kfunc_end_defs();
6842 
6843 BTF_KFUNCS_START(scx_kfunc_ids_any)
6844 BTF_ID_FLAGS(func, scx_bpf_kick_cpu)
6845 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued)
6846 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq)
6847 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED)
6848 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL)
6849 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY)
6850 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS)
6851 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS)
6852 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS)
6853 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap)
6854 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur)
6855 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set)
6856 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids)
6857 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE)
6858 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE)
6859 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE)
6860 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
6861 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
6862 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
6863 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
6864 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
6865 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
6866 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU)
6867 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU)
6868 BTF_ID_FLAGS(func, scx_bpf_cpu_rq)
6869 #ifdef CONFIG_CGROUP_SCHED
6870 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE)
6871 #endif
6872 BTF_KFUNCS_END(scx_kfunc_ids_any)
6873 
6874 static const struct btf_kfunc_id_set scx_kfunc_set_any = {
6875 	.owner			= THIS_MODULE,
6876 	.set			= &scx_kfunc_ids_any,
6877 };
6878 
6879 static int __init scx_init(void)
6880 {
6881 	int ret;
6882 
6883 	/*
6884 	 * kfunc registration can't be done from init_sched_ext_class() as
6885 	 * register_btf_kfunc_id_set() needs most of the system to be up.
6886 	 *
6887 	 * Some kfuncs are context-sensitive and can only be called from
6888 	 * specific SCX ops. They are grouped into BTF sets accordingly.
6889 	 * Unfortunately, BPF currently doesn't have a way of enforcing such
6890 	 * restrictions. Eventually, the verifier should be able to enforce
6891 	 * them. For now, register them the same and make each kfunc explicitly
6892 	 * check using scx_kf_allowed().
6893 	 */
6894 	if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
6895 					     &scx_kfunc_set_sleepable)) ||
6896 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
6897 					     &scx_kfunc_set_sleepable)) ||
6898 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
6899 					     &scx_kfunc_set_select_cpu)) ||
6900 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
6901 					     &scx_kfunc_set_enqueue_dispatch)) ||
6902 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
6903 					     &scx_kfunc_set_dispatch)) ||
6904 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
6905 					     &scx_kfunc_set_cpu_release)) ||
6906 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
6907 					     &scx_kfunc_set_any)) ||
6908 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
6909 					     &scx_kfunc_set_any)) ||
6910 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
6911 					     &scx_kfunc_set_any))) {
6912 		pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret);
6913 		return ret;
6914 	}
6915 
6916 	ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops);
6917 	if (ret) {
6918 		pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret);
6919 		return ret;
6920 	}
6921 
6922 	ret = register_pm_notifier(&scx_pm_notifier);
6923 	if (ret) {
6924 		pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret);
6925 		return ret;
6926 	}
6927 
6928 	scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj);
6929 	if (!scx_kset) {
6930 		pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n");
6931 		return -ENOMEM;
6932 	}
6933 
6934 	ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group);
6935 	if (ret < 0) {
6936 		pr_err("sched_ext: Failed to add global attributes\n");
6937 		return ret;
6938 	}
6939 
6940 	return 0;
6941 }
6942 __initcall(scx_init);
6943