1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst 4 * 5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 7 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 8 */ 9 #include <linux/btf_ids.h> 10 #include "ext_idle.h" 11 12 /* 13 * NOTE: sched_ext is in the process of growing multiple scheduler support and 14 * scx_root usage is in a transitional state. Naked dereferences are safe if the 15 * caller is one of the tasks attached to SCX and explicit RCU dereference is 16 * necessary otherwise. Naked scx_root dereferences trigger sparse warnings but 17 * are used as temporary markers to indicate that the dereferences need to be 18 * updated to point to the associated scheduler instances rather than scx_root. 19 */ 20 static struct scx_sched __rcu *scx_root; 21 22 /* 23 * During exit, a task may schedule after losing its PIDs. When disabling the 24 * BPF scheduler, we need to be able to iterate tasks in every state to 25 * guarantee system safety. Maintain a dedicated task list which contains every 26 * task between its fork and eventual free. 27 */ 28 static DEFINE_RAW_SPINLOCK(scx_tasks_lock); 29 static LIST_HEAD(scx_tasks); 30 31 /* ops enable/disable */ 32 static DEFINE_MUTEX(scx_enable_mutex); 33 DEFINE_STATIC_KEY_FALSE(__scx_enabled); 34 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 35 static atomic_t scx_enable_state_var = ATOMIC_INIT(SCX_DISABLED); 36 static unsigned long scx_in_softlockup; 37 static atomic_t scx_breather_depth = ATOMIC_INIT(0); 38 static int scx_bypass_depth; 39 static bool scx_init_task_enabled; 40 static bool scx_switching_all; 41 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 42 43 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 44 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); 45 46 /* 47 * A monotically increasing sequence number that is incremented every time a 48 * scheduler is enabled. This can be used by to check if any custom sched_ext 49 * scheduler has ever been used in the system. 50 */ 51 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0); 52 53 /* 54 * The maximum amount of time in jiffies that a task may be runnable without 55 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 56 * scx_error(). 57 */ 58 static unsigned long scx_watchdog_timeout; 59 60 /* 61 * The last time the delayed work was run. This delayed work relies on 62 * ksoftirqd being able to run to service timer interrupts, so it's possible 63 * that this work itself could get wedged. To account for this, we check that 64 * it's not stalled in the timer tick, and trigger an error if it is. 65 */ 66 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 67 68 static struct delayed_work scx_watchdog_work; 69 70 /* 71 * For %SCX_KICK_WAIT: Each CPU has a pointer to an array of pick_task sequence 72 * numbers. The arrays are allocated with kvzalloc() as size can exceed percpu 73 * allocator limits on large machines. O(nr_cpu_ids^2) allocation, allocated 74 * lazily when enabling and freed when disabling to avoid waste when sched_ext 75 * isn't active. 76 */ 77 struct scx_kick_pseqs { 78 struct rcu_head rcu; 79 unsigned long seqs[]; 80 }; 81 82 static DEFINE_PER_CPU(struct scx_kick_pseqs __rcu *, scx_kick_pseqs); 83 84 /* 85 * Direct dispatch marker. 86 * 87 * Non-NULL values are used for direct dispatch from enqueue path. A valid 88 * pointer points to the task currently being enqueued. An ERR_PTR value is used 89 * to indicate that direct dispatch has already happened. 90 */ 91 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 92 93 static const struct rhashtable_params dsq_hash_params = { 94 .key_len = sizeof_field(struct scx_dispatch_q, id), 95 .key_offset = offsetof(struct scx_dispatch_q, id), 96 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 97 }; 98 99 static LLIST_HEAD(dsqs_to_free); 100 101 /* dispatch buf */ 102 struct scx_dsp_buf_ent { 103 struct task_struct *task; 104 unsigned long qseq; 105 u64 dsq_id; 106 u64 enq_flags; 107 }; 108 109 static u32 scx_dsp_max_batch; 110 111 struct scx_dsp_ctx { 112 struct rq *rq; 113 u32 cursor; 114 u32 nr_tasks; 115 struct scx_dsp_buf_ent buf[]; 116 }; 117 118 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 119 120 /* string formatting from BPF */ 121 struct scx_bstr_buf { 122 u64 data[MAX_BPRINTF_VARARGS]; 123 char line[SCX_EXIT_MSG_LEN]; 124 }; 125 126 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 127 static struct scx_bstr_buf scx_exit_bstr_buf; 128 129 /* ops debug dump */ 130 struct scx_dump_data { 131 s32 cpu; 132 bool first; 133 s32 cursor; 134 struct seq_buf *s; 135 const char *prefix; 136 struct scx_bstr_buf buf; 137 }; 138 139 static struct scx_dump_data scx_dump_data = { 140 .cpu = -1, 141 }; 142 143 /* /sys/kernel/sched_ext interface */ 144 static struct kset *scx_kset; 145 146 #define CREATE_TRACE_POINTS 147 #include <trace/events/sched_ext.h> 148 149 static void process_ddsp_deferred_locals(struct rq *rq); 150 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags); 151 static void scx_vexit(struct scx_sched *sch, enum scx_exit_kind kind, 152 s64 exit_code, const char *fmt, va_list args); 153 154 static __printf(4, 5) void scx_exit(struct scx_sched *sch, 155 enum scx_exit_kind kind, s64 exit_code, 156 const char *fmt, ...) 157 { 158 va_list args; 159 160 va_start(args, fmt); 161 scx_vexit(sch, kind, exit_code, fmt, args); 162 va_end(args); 163 } 164 165 #define scx_error(sch, fmt, args...) scx_exit((sch), SCX_EXIT_ERROR, 0, fmt, ##args) 166 167 #define SCX_HAS_OP(sch, op) test_bit(SCX_OP_IDX(op), (sch)->has_op) 168 169 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 170 { 171 if (time_after(at, now)) 172 return jiffies_to_msecs(at - now); 173 else 174 return -(long)jiffies_to_msecs(now - at); 175 } 176 177 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 178 static u32 higher_bits(u32 flags) 179 { 180 return ~((1 << fls(flags)) - 1); 181 } 182 183 /* return the mask with only the highest bit set */ 184 static u32 highest_bit(u32 flags) 185 { 186 int bit = fls(flags); 187 return ((u64)1 << bit) >> 1; 188 } 189 190 static bool u32_before(u32 a, u32 b) 191 { 192 return (s32)(a - b) < 0; 193 } 194 195 static struct scx_dispatch_q *find_global_dsq(struct scx_sched *sch, 196 struct task_struct *p) 197 { 198 return sch->global_dsqs[cpu_to_node(task_cpu(p))]; 199 } 200 201 static struct scx_dispatch_q *find_user_dsq(struct scx_sched *sch, u64 dsq_id) 202 { 203 return rhashtable_lookup_fast(&sch->dsq_hash, &dsq_id, dsq_hash_params); 204 } 205 206 /* 207 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 208 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 209 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 210 * whether it's running from an allowed context. 211 * 212 * @mask is constant, always inline to cull the mask calculations. 213 */ 214 static __always_inline void scx_kf_allow(u32 mask) 215 { 216 /* nesting is allowed only in increasing scx_kf_mask order */ 217 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 218 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 219 current->scx.kf_mask, mask); 220 current->scx.kf_mask |= mask; 221 barrier(); 222 } 223 224 static void scx_kf_disallow(u32 mask) 225 { 226 barrier(); 227 current->scx.kf_mask &= ~mask; 228 } 229 230 /* 231 * Track the rq currently locked. 232 * 233 * This allows kfuncs to safely operate on rq from any scx ops callback, 234 * knowing which rq is already locked. 235 */ 236 DEFINE_PER_CPU(struct rq *, scx_locked_rq_state); 237 238 static inline void update_locked_rq(struct rq *rq) 239 { 240 /* 241 * Check whether @rq is actually locked. This can help expose bugs 242 * or incorrect assumptions about the context in which a kfunc or 243 * callback is executed. 244 */ 245 if (rq) 246 lockdep_assert_rq_held(rq); 247 __this_cpu_write(scx_locked_rq_state, rq); 248 } 249 250 #define SCX_CALL_OP(sch, mask, op, rq, args...) \ 251 do { \ 252 if (rq) \ 253 update_locked_rq(rq); \ 254 if (mask) { \ 255 scx_kf_allow(mask); \ 256 (sch)->ops.op(args); \ 257 scx_kf_disallow(mask); \ 258 } else { \ 259 (sch)->ops.op(args); \ 260 } \ 261 if (rq) \ 262 update_locked_rq(NULL); \ 263 } while (0) 264 265 #define SCX_CALL_OP_RET(sch, mask, op, rq, args...) \ 266 ({ \ 267 __typeof__((sch)->ops.op(args)) __ret; \ 268 \ 269 if (rq) \ 270 update_locked_rq(rq); \ 271 if (mask) { \ 272 scx_kf_allow(mask); \ 273 __ret = (sch)->ops.op(args); \ 274 scx_kf_disallow(mask); \ 275 } else { \ 276 __ret = (sch)->ops.op(args); \ 277 } \ 278 if (rq) \ 279 update_locked_rq(NULL); \ 280 __ret; \ 281 }) 282 283 /* 284 * Some kfuncs are allowed only on the tasks that are subjects of the 285 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 286 * restrictions, the following SCX_CALL_OP_*() variants should be used when 287 * invoking scx_ops operations that take task arguments. These can only be used 288 * for non-nesting operations due to the way the tasks are tracked. 289 * 290 * kfuncs which can only operate on such tasks can in turn use 291 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 292 * the specific task. 293 */ 294 #define SCX_CALL_OP_TASK(sch, mask, op, rq, task, args...) \ 295 do { \ 296 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 297 current->scx.kf_tasks[0] = task; \ 298 SCX_CALL_OP((sch), mask, op, rq, task, ##args); \ 299 current->scx.kf_tasks[0] = NULL; \ 300 } while (0) 301 302 #define SCX_CALL_OP_TASK_RET(sch, mask, op, rq, task, args...) \ 303 ({ \ 304 __typeof__((sch)->ops.op(task, ##args)) __ret; \ 305 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 306 current->scx.kf_tasks[0] = task; \ 307 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task, ##args); \ 308 current->scx.kf_tasks[0] = NULL; \ 309 __ret; \ 310 }) 311 312 #define SCX_CALL_OP_2TASKS_RET(sch, mask, op, rq, task0, task1, args...) \ 313 ({ \ 314 __typeof__((sch)->ops.op(task0, task1, ##args)) __ret; \ 315 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 316 current->scx.kf_tasks[0] = task0; \ 317 current->scx.kf_tasks[1] = task1; \ 318 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task0, task1, ##args); \ 319 current->scx.kf_tasks[0] = NULL; \ 320 current->scx.kf_tasks[1] = NULL; \ 321 __ret; \ 322 }) 323 324 /* @mask is constant, always inline to cull unnecessary branches */ 325 static __always_inline bool scx_kf_allowed(struct scx_sched *sch, u32 mask) 326 { 327 if (unlikely(!(current->scx.kf_mask & mask))) { 328 scx_error(sch, "kfunc with mask 0x%x called from an operation only allowing 0x%x", 329 mask, current->scx.kf_mask); 330 return false; 331 } 332 333 /* 334 * Enforce nesting boundaries. e.g. A kfunc which can be called from 335 * DISPATCH must not be called if we're running DEQUEUE which is nested 336 * inside ops.dispatch(). We don't need to check boundaries for any 337 * blocking kfuncs as the verifier ensures they're only called from 338 * sleepable progs. 339 */ 340 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 341 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 342 scx_error(sch, "cpu_release kfunc called from a nested operation"); 343 return false; 344 } 345 346 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 347 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 348 scx_error(sch, "dispatch kfunc called from a nested operation"); 349 return false; 350 } 351 352 return true; 353 } 354 355 /* see SCX_CALL_OP_TASK() */ 356 static __always_inline bool scx_kf_allowed_on_arg_tasks(struct scx_sched *sch, 357 u32 mask, 358 struct task_struct *p) 359 { 360 if (!scx_kf_allowed(sch, mask)) 361 return false; 362 363 if (unlikely((p != current->scx.kf_tasks[0] && 364 p != current->scx.kf_tasks[1]))) { 365 scx_error(sch, "called on a task not being operated on"); 366 return false; 367 } 368 369 return true; 370 } 371 372 /** 373 * nldsq_next_task - Iterate to the next task in a non-local DSQ 374 * @dsq: user dsq being iterated 375 * @cur: current position, %NULL to start iteration 376 * @rev: walk backwards 377 * 378 * Returns %NULL when iteration is finished. 379 */ 380 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, 381 struct task_struct *cur, bool rev) 382 { 383 struct list_head *list_node; 384 struct scx_dsq_list_node *dsq_lnode; 385 386 lockdep_assert_held(&dsq->lock); 387 388 if (cur) 389 list_node = &cur->scx.dsq_list.node; 390 else 391 list_node = &dsq->list; 392 393 /* find the next task, need to skip BPF iteration cursors */ 394 do { 395 if (rev) 396 list_node = list_node->prev; 397 else 398 list_node = list_node->next; 399 400 if (list_node == &dsq->list) 401 return NULL; 402 403 dsq_lnode = container_of(list_node, struct scx_dsq_list_node, 404 node); 405 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); 406 407 return container_of(dsq_lnode, struct task_struct, scx.dsq_list); 408 } 409 410 #define nldsq_for_each_task(p, dsq) \ 411 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ 412 (p) = nldsq_next_task((dsq), (p), false)) 413 414 415 /* 416 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] 417 * dispatch order. BPF-visible iterator is opaque and larger to allow future 418 * changes without breaking backward compatibility. Can be used with 419 * bpf_for_each(). See bpf_iter_scx_dsq_*(). 420 */ 421 enum scx_dsq_iter_flags { 422 /* iterate in the reverse dispatch order */ 423 SCX_DSQ_ITER_REV = 1U << 16, 424 425 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, 426 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, 427 428 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, 429 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | 430 __SCX_DSQ_ITER_HAS_SLICE | 431 __SCX_DSQ_ITER_HAS_VTIME, 432 }; 433 434 struct bpf_iter_scx_dsq_kern { 435 struct scx_dsq_list_node cursor; 436 struct scx_dispatch_q *dsq; 437 u64 slice; 438 u64 vtime; 439 } __attribute__((aligned(8))); 440 441 struct bpf_iter_scx_dsq { 442 u64 __opaque[6]; 443 } __attribute__((aligned(8))); 444 445 446 /* 447 * SCX task iterator. 448 */ 449 struct scx_task_iter { 450 struct sched_ext_entity cursor; 451 struct task_struct *locked_task; 452 struct rq *rq; 453 struct rq_flags rf; 454 u32 cnt; 455 bool list_locked; 456 }; 457 458 /** 459 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration 460 * @iter: iterator to init 461 * 462 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter 463 * must eventually be stopped with scx_task_iter_stop(). 464 * 465 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock() 466 * between this and the first next() call or between any two next() calls. If 467 * the locks are released between two next() calls, the caller is responsible 468 * for ensuring that the task being iterated remains accessible either through 469 * RCU read lock or obtaining a reference count. 470 * 471 * All tasks which existed when the iteration started are guaranteed to be 472 * visited as long as they still exist. 473 */ 474 static void scx_task_iter_start(struct scx_task_iter *iter) 475 { 476 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & 477 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); 478 479 raw_spin_lock_irq(&scx_tasks_lock); 480 481 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 482 list_add(&iter->cursor.tasks_node, &scx_tasks); 483 iter->locked_task = NULL; 484 iter->cnt = 0; 485 iter->list_locked = true; 486 } 487 488 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter) 489 { 490 if (iter->locked_task) { 491 task_rq_unlock(iter->rq, iter->locked_task, &iter->rf); 492 iter->locked_task = NULL; 493 } 494 } 495 496 /** 497 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator 498 * @iter: iterator to unlock 499 * 500 * If @iter is in the middle of a locked iteration, it may be locking the rq of 501 * the task currently being visited in addition to scx_tasks_lock. Unlock both. 502 * This function can be safely called anytime during an iteration. The next 503 * iterator operation will automatically restore the necessary locking. 504 */ 505 static void scx_task_iter_unlock(struct scx_task_iter *iter) 506 { 507 __scx_task_iter_rq_unlock(iter); 508 if (iter->list_locked) { 509 iter->list_locked = false; 510 raw_spin_unlock_irq(&scx_tasks_lock); 511 } 512 } 513 514 static void __scx_task_iter_maybe_relock(struct scx_task_iter *iter) 515 { 516 if (!iter->list_locked) { 517 raw_spin_lock_irq(&scx_tasks_lock); 518 iter->list_locked = true; 519 } 520 } 521 522 /** 523 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock 524 * @iter: iterator to exit 525 * 526 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held 527 * which is released on return. If the iterator holds a task's rq lock, that rq 528 * lock is also released. See scx_task_iter_start() for details. 529 */ 530 static void scx_task_iter_stop(struct scx_task_iter *iter) 531 { 532 __scx_task_iter_maybe_relock(iter); 533 list_del_init(&iter->cursor.tasks_node); 534 scx_task_iter_unlock(iter); 535 } 536 537 /** 538 * scx_task_iter_next - Next task 539 * @iter: iterator to walk 540 * 541 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped 542 * and re-acquired every %SCX_TASK_ITER_BATCH iterations to avoid causing stalls 543 * by holding scx_tasks_lock for too long. 544 */ 545 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 546 { 547 struct list_head *cursor = &iter->cursor.tasks_node; 548 struct sched_ext_entity *pos; 549 550 __scx_task_iter_maybe_relock(iter); 551 552 if (!(++iter->cnt % SCX_TASK_ITER_BATCH)) { 553 scx_task_iter_unlock(iter); 554 cond_resched(); 555 __scx_task_iter_maybe_relock(iter); 556 } 557 558 list_for_each_entry(pos, cursor, tasks_node) { 559 if (&pos->tasks_node == &scx_tasks) 560 return NULL; 561 if (!(pos->flags & SCX_TASK_CURSOR)) { 562 list_move(cursor, &pos->tasks_node); 563 return container_of(pos, struct task_struct, scx); 564 } 565 } 566 567 /* can't happen, should always terminate at scx_tasks above */ 568 BUG(); 569 } 570 571 /** 572 * scx_task_iter_next_locked - Next non-idle task with its rq locked 573 * @iter: iterator to walk 574 * 575 * Visit the non-idle task with its rq lock held. Allows callers to specify 576 * whether they would like to filter out dead tasks. See scx_task_iter_start() 577 * for details. 578 */ 579 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) 580 { 581 struct task_struct *p; 582 583 __scx_task_iter_rq_unlock(iter); 584 585 while ((p = scx_task_iter_next(iter))) { 586 /* 587 * scx_task_iter is used to prepare and move tasks into SCX 588 * while loading the BPF scheduler and vice-versa while 589 * unloading. The init_tasks ("swappers") should be excluded 590 * from the iteration because: 591 * 592 * - It's unsafe to use __setschduler_prio() on an init_task to 593 * determine the sched_class to use as it won't preserve its 594 * idle_sched_class. 595 * 596 * - ops.init/exit_task() can easily be confused if called with 597 * init_tasks as they, e.g., share PID 0. 598 * 599 * As init_tasks are never scheduled through SCX, they can be 600 * skipped safely. Note that is_idle_task() which tests %PF_IDLE 601 * doesn't work here: 602 * 603 * - %PF_IDLE may not be set for an init_task whose CPU hasn't 604 * yet been onlined. 605 * 606 * - %PF_IDLE can be set on tasks that are not init_tasks. See 607 * play_idle_precise() used by CONFIG_IDLE_INJECT. 608 * 609 * Test for idle_sched_class as only init_tasks are on it. 610 */ 611 if (p->sched_class != &idle_sched_class) 612 break; 613 } 614 if (!p) 615 return NULL; 616 617 iter->rq = task_rq_lock(p, &iter->rf); 618 iter->locked_task = p; 619 620 return p; 621 } 622 623 /** 624 * scx_add_event - Increase an event counter for 'name' by 'cnt' 625 * @sch: scx_sched to account events for 626 * @name: an event name defined in struct scx_event_stats 627 * @cnt: the number of the event occurred 628 * 629 * This can be used when preemption is not disabled. 630 */ 631 #define scx_add_event(sch, name, cnt) do { \ 632 this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \ 633 trace_sched_ext_event(#name, (cnt)); \ 634 } while(0) 635 636 /** 637 * __scx_add_event - Increase an event counter for 'name' by 'cnt' 638 * @sch: scx_sched to account events for 639 * @name: an event name defined in struct scx_event_stats 640 * @cnt: the number of the event occurred 641 * 642 * This should be used only when preemption is disabled. 643 */ 644 #define __scx_add_event(sch, name, cnt) do { \ 645 __this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \ 646 trace_sched_ext_event(#name, cnt); \ 647 } while(0) 648 649 /** 650 * scx_agg_event - Aggregate an event counter 'kind' from 'src_e' to 'dst_e' 651 * @dst_e: destination event stats 652 * @src_e: source event stats 653 * @kind: a kind of event to be aggregated 654 */ 655 #define scx_agg_event(dst_e, src_e, kind) do { \ 656 (dst_e)->kind += READ_ONCE((src_e)->kind); \ 657 } while(0) 658 659 /** 660 * scx_dump_event - Dump an event 'kind' in 'events' to 's' 661 * @s: output seq_buf 662 * @events: event stats 663 * @kind: a kind of event to dump 664 */ 665 #define scx_dump_event(s, events, kind) do { \ 666 dump_line(&(s), "%40s: %16lld", #kind, (events)->kind); \ 667 } while (0) 668 669 670 static void scx_read_events(struct scx_sched *sch, 671 struct scx_event_stats *events); 672 673 static enum scx_enable_state scx_enable_state(void) 674 { 675 return atomic_read(&scx_enable_state_var); 676 } 677 678 static enum scx_enable_state scx_set_enable_state(enum scx_enable_state to) 679 { 680 return atomic_xchg(&scx_enable_state_var, to); 681 } 682 683 static bool scx_tryset_enable_state(enum scx_enable_state to, 684 enum scx_enable_state from) 685 { 686 int from_v = from; 687 688 return atomic_try_cmpxchg(&scx_enable_state_var, &from_v, to); 689 } 690 691 /** 692 * wait_ops_state - Busy-wait the specified ops state to end 693 * @p: target task 694 * @opss: state to wait the end of 695 * 696 * Busy-wait for @p to transition out of @opss. This can only be used when the 697 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 698 * has load_acquire semantics to ensure that the caller can see the updates made 699 * in the enqueueing and dispatching paths. 700 */ 701 static void wait_ops_state(struct task_struct *p, unsigned long opss) 702 { 703 do { 704 cpu_relax(); 705 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 706 } 707 708 static inline bool __cpu_valid(s32 cpu) 709 { 710 return likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu)); 711 } 712 713 /** 714 * ops_cpu_valid - Verify a cpu number, to be used on ops input args 715 * @sch: scx_sched to abort on error 716 * @cpu: cpu number which came from a BPF ops 717 * @where: extra information reported on error 718 * 719 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 720 * Verify that it is in range and one of the possible cpus. If invalid, trigger 721 * an ops error. 722 */ 723 static bool ops_cpu_valid(struct scx_sched *sch, s32 cpu, const char *where) 724 { 725 if (__cpu_valid(cpu)) { 726 return true; 727 } else { 728 scx_error(sch, "invalid CPU %d%s%s", cpu, where ? " " : "", where ?: ""); 729 return false; 730 } 731 } 732 733 /** 734 * ops_sanitize_err - Sanitize a -errno value 735 * @sch: scx_sched to error out on error 736 * @ops_name: operation to blame on failure 737 * @err: -errno value to sanitize 738 * 739 * Verify @err is a valid -errno. If not, trigger scx_error() and return 740 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 741 * cause misbehaviors. For an example, a large negative return from 742 * ops.init_task() triggers an oops when passed up the call chain because the 743 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 744 * handled as a pointer. 745 */ 746 static int ops_sanitize_err(struct scx_sched *sch, const char *ops_name, s32 err) 747 { 748 if (err < 0 && err >= -MAX_ERRNO) 749 return err; 750 751 scx_error(sch, "ops.%s() returned an invalid errno %d", ops_name, err); 752 return -EPROTO; 753 } 754 755 static void run_deferred(struct rq *rq) 756 { 757 process_ddsp_deferred_locals(rq); 758 } 759 760 static void deferred_bal_cb_workfn(struct rq *rq) 761 { 762 run_deferred(rq); 763 } 764 765 static void deferred_irq_workfn(struct irq_work *irq_work) 766 { 767 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); 768 769 raw_spin_rq_lock(rq); 770 run_deferred(rq); 771 raw_spin_rq_unlock(rq); 772 } 773 774 /** 775 * schedule_deferred - Schedule execution of deferred actions on an rq 776 * @rq: target rq 777 * 778 * Schedule execution of deferred actions on @rq. Must be called with @rq 779 * locked. Deferred actions are executed with @rq locked but unpinned, and thus 780 * can unlock @rq to e.g. migrate tasks to other rqs. 781 */ 782 static void schedule_deferred(struct rq *rq) 783 { 784 lockdep_assert_rq_held(rq); 785 786 /* 787 * If in the middle of waking up a task, task_woken_scx() will be called 788 * afterwards which will then run the deferred actions, no need to 789 * schedule anything. 790 */ 791 if (rq->scx.flags & SCX_RQ_IN_WAKEUP) 792 return; 793 794 /* Don't do anything if there already is a deferred operation. */ 795 if (rq->scx.flags & SCX_RQ_BAL_CB_PENDING) 796 return; 797 798 /* 799 * If in balance, the balance callbacks will be called before rq lock is 800 * released. Schedule one. 801 * 802 * 803 * We can't directly insert the callback into the 804 * rq's list: The call can drop its lock and make the pending balance 805 * callback visible to unrelated code paths that call rq_pin_lock(). 806 * 807 * Just let balance_one() know that it must do it itself. 808 */ 809 if (rq->scx.flags & SCX_RQ_IN_BALANCE) { 810 rq->scx.flags |= SCX_RQ_BAL_CB_PENDING; 811 return; 812 } 813 814 /* 815 * No scheduler hooks available. Queue an irq work. They are executed on 816 * IRQ re-enable which may take a bit longer than the scheduler hooks. 817 * The above WAKEUP and BALANCE paths should cover most of the cases and 818 * the time to IRQ re-enable shouldn't be long. 819 */ 820 irq_work_queue(&rq->scx.deferred_irq_work); 821 } 822 823 /** 824 * touch_core_sched - Update timestamp used for core-sched task ordering 825 * @rq: rq to read clock from, must be locked 826 * @p: task to update the timestamp for 827 * 828 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to 829 * implement global or local-DSQ FIFO ordering for core-sched. Should be called 830 * when a task becomes runnable and its turn on the CPU ends (e.g. slice 831 * exhaustion). 832 */ 833 static void touch_core_sched(struct rq *rq, struct task_struct *p) 834 { 835 lockdep_assert_rq_held(rq); 836 837 #ifdef CONFIG_SCHED_CORE 838 /* 839 * It's okay to update the timestamp spuriously. Use 840 * sched_core_disabled() which is cheaper than enabled(). 841 * 842 * As this is used to determine ordering between tasks of sibling CPUs, 843 * it may be better to use per-core dispatch sequence instead. 844 */ 845 if (!sched_core_disabled()) 846 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); 847 #endif 848 } 849 850 /** 851 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch 852 * @rq: rq to read clock from, must be locked 853 * @p: task being dispatched 854 * 855 * If the BPF scheduler implements custom core-sched ordering via 856 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO 857 * ordering within each local DSQ. This function is called from dispatch paths 858 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. 859 */ 860 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) 861 { 862 lockdep_assert_rq_held(rq); 863 864 #ifdef CONFIG_SCHED_CORE 865 if (unlikely(SCX_HAS_OP(scx_root, core_sched_before))) 866 touch_core_sched(rq, p); 867 #endif 868 } 869 870 static void update_curr_scx(struct rq *rq) 871 { 872 struct task_struct *curr = rq->curr; 873 s64 delta_exec; 874 875 delta_exec = update_curr_common(rq); 876 if (unlikely(delta_exec <= 0)) 877 return; 878 879 if (curr->scx.slice != SCX_SLICE_INF) { 880 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); 881 if (!curr->scx.slice) 882 touch_core_sched(rq, curr); 883 } 884 } 885 886 static bool scx_dsq_priq_less(struct rb_node *node_a, 887 const struct rb_node *node_b) 888 { 889 const struct task_struct *a = 890 container_of(node_a, struct task_struct, scx.dsq_priq); 891 const struct task_struct *b = 892 container_of(node_b, struct task_struct, scx.dsq_priq); 893 894 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); 895 } 896 897 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 898 { 899 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 900 WRITE_ONCE(dsq->nr, dsq->nr + delta); 901 } 902 903 static void refill_task_slice_dfl(struct scx_sched *sch, struct task_struct *p) 904 { 905 p->scx.slice = SCX_SLICE_DFL; 906 __scx_add_event(sch, SCX_EV_REFILL_SLICE_DFL, 1); 907 } 908 909 static void dispatch_enqueue(struct scx_sched *sch, struct scx_dispatch_q *dsq, 910 struct task_struct *p, u64 enq_flags) 911 { 912 bool is_local = dsq->id == SCX_DSQ_LOCAL; 913 914 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 915 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || 916 !RB_EMPTY_NODE(&p->scx.dsq_priq)); 917 918 if (!is_local) { 919 raw_spin_lock(&dsq->lock); 920 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 921 scx_error(sch, "attempting to dispatch to a destroyed dsq"); 922 /* fall back to the global dsq */ 923 raw_spin_unlock(&dsq->lock); 924 dsq = find_global_dsq(sch, p); 925 raw_spin_lock(&dsq->lock); 926 } 927 } 928 929 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && 930 (enq_flags & SCX_ENQ_DSQ_PRIQ))) { 931 /* 932 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from 933 * their FIFO queues. To avoid confusion and accidentally 934 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we 935 * disallow any internal DSQ from doing vtime ordering of 936 * tasks. 937 */ 938 scx_error(sch, "cannot use vtime ordering for built-in DSQs"); 939 enq_flags &= ~SCX_ENQ_DSQ_PRIQ; 940 } 941 942 if (enq_flags & SCX_ENQ_DSQ_PRIQ) { 943 struct rb_node *rbp; 944 945 /* 946 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are 947 * linked to both the rbtree and list on PRIQs, this can only be 948 * tested easily when adding the first task. 949 */ 950 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && 951 nldsq_next_task(dsq, NULL, false))) 952 scx_error(sch, "DSQ ID 0x%016llx already had FIFO-enqueued tasks", 953 dsq->id); 954 955 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; 956 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); 957 958 /* 959 * Find the previous task and insert after it on the list so 960 * that @dsq->list is vtime ordered. 961 */ 962 rbp = rb_prev(&p->scx.dsq_priq); 963 if (rbp) { 964 struct task_struct *prev = 965 container_of(rbp, struct task_struct, 966 scx.dsq_priq); 967 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); 968 } else { 969 list_add(&p->scx.dsq_list.node, &dsq->list); 970 } 971 } else { 972 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ 973 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) 974 scx_error(sch, "DSQ ID 0x%016llx already had PRIQ-enqueued tasks", 975 dsq->id); 976 977 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 978 list_add(&p->scx.dsq_list.node, &dsq->list); 979 else 980 list_add_tail(&p->scx.dsq_list.node, &dsq->list); 981 } 982 983 /* seq records the order tasks are queued, used by BPF DSQ iterator */ 984 dsq->seq++; 985 p->scx.dsq_seq = dsq->seq; 986 987 dsq_mod_nr(dsq, 1); 988 p->scx.dsq = dsq; 989 990 /* 991 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 992 * direct dispatch path, but we clear them here because the direct 993 * dispatch verdict may be overridden on the enqueue path during e.g. 994 * bypass. 995 */ 996 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 997 p->scx.ddsp_enq_flags = 0; 998 999 /* 1000 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 1001 * match waiters' load_acquire. 1002 */ 1003 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 1004 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1005 1006 if (is_local) { 1007 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 1008 bool preempt = false; 1009 1010 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 1011 rq->curr->sched_class == &ext_sched_class) { 1012 rq->curr->scx.slice = 0; 1013 preempt = true; 1014 } 1015 1016 if (preempt || sched_class_above(&ext_sched_class, 1017 rq->curr->sched_class)) 1018 resched_curr(rq); 1019 } else { 1020 raw_spin_unlock(&dsq->lock); 1021 } 1022 } 1023 1024 static void task_unlink_from_dsq(struct task_struct *p, 1025 struct scx_dispatch_q *dsq) 1026 { 1027 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); 1028 1029 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { 1030 rb_erase(&p->scx.dsq_priq, &dsq->priq); 1031 RB_CLEAR_NODE(&p->scx.dsq_priq); 1032 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; 1033 } 1034 1035 list_del_init(&p->scx.dsq_list.node); 1036 dsq_mod_nr(dsq, -1); 1037 } 1038 1039 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 1040 { 1041 struct scx_dispatch_q *dsq = p->scx.dsq; 1042 bool is_local = dsq == &rq->scx.local_dsq; 1043 1044 if (!dsq) { 1045 /* 1046 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. 1047 * Unlinking is all that's needed to cancel. 1048 */ 1049 if (unlikely(!list_empty(&p->scx.dsq_list.node))) 1050 list_del_init(&p->scx.dsq_list.node); 1051 1052 /* 1053 * When dispatching directly from the BPF scheduler to a local 1054 * DSQ, the task isn't associated with any DSQ but 1055 * @p->scx.holding_cpu may be set under the protection of 1056 * %SCX_OPSS_DISPATCHING. 1057 */ 1058 if (p->scx.holding_cpu >= 0) 1059 p->scx.holding_cpu = -1; 1060 1061 return; 1062 } 1063 1064 if (!is_local) 1065 raw_spin_lock(&dsq->lock); 1066 1067 /* 1068 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't 1069 * change underneath us. 1070 */ 1071 if (p->scx.holding_cpu < 0) { 1072 /* @p must still be on @dsq, dequeue */ 1073 task_unlink_from_dsq(p, dsq); 1074 } else { 1075 /* 1076 * We're racing against dispatch_to_local_dsq() which already 1077 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 1078 * holding_cpu which tells dispatch_to_local_dsq() that it lost 1079 * the race. 1080 */ 1081 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); 1082 p->scx.holding_cpu = -1; 1083 } 1084 p->scx.dsq = NULL; 1085 1086 if (!is_local) 1087 raw_spin_unlock(&dsq->lock); 1088 } 1089 1090 static struct scx_dispatch_q *find_dsq_for_dispatch(struct scx_sched *sch, 1091 struct rq *rq, u64 dsq_id, 1092 struct task_struct *p) 1093 { 1094 struct scx_dispatch_q *dsq; 1095 1096 if (dsq_id == SCX_DSQ_LOCAL) 1097 return &rq->scx.local_dsq; 1098 1099 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 1100 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 1101 1102 if (!ops_cpu_valid(sch, cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 1103 return find_global_dsq(sch, p); 1104 1105 return &cpu_rq(cpu)->scx.local_dsq; 1106 } 1107 1108 if (dsq_id == SCX_DSQ_GLOBAL) 1109 dsq = find_global_dsq(sch, p); 1110 else 1111 dsq = find_user_dsq(sch, dsq_id); 1112 1113 if (unlikely(!dsq)) { 1114 scx_error(sch, "non-existent DSQ 0x%llx for %s[%d]", 1115 dsq_id, p->comm, p->pid); 1116 return find_global_dsq(sch, p); 1117 } 1118 1119 return dsq; 1120 } 1121 1122 static void mark_direct_dispatch(struct scx_sched *sch, 1123 struct task_struct *ddsp_task, 1124 struct task_struct *p, u64 dsq_id, 1125 u64 enq_flags) 1126 { 1127 /* 1128 * Mark that dispatch already happened from ops.select_cpu() or 1129 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 1130 * which can never match a valid task pointer. 1131 */ 1132 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 1133 1134 /* @p must match the task on the enqueue path */ 1135 if (unlikely(p != ddsp_task)) { 1136 if (IS_ERR(ddsp_task)) 1137 scx_error(sch, "%s[%d] already direct-dispatched", 1138 p->comm, p->pid); 1139 else 1140 scx_error(sch, "scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 1141 ddsp_task->comm, ddsp_task->pid, 1142 p->comm, p->pid); 1143 return; 1144 } 1145 1146 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 1147 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 1148 1149 p->scx.ddsp_dsq_id = dsq_id; 1150 p->scx.ddsp_enq_flags = enq_flags; 1151 } 1152 1153 static void direct_dispatch(struct scx_sched *sch, struct task_struct *p, 1154 u64 enq_flags) 1155 { 1156 struct rq *rq = task_rq(p); 1157 struct scx_dispatch_q *dsq = 1158 find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p); 1159 1160 touch_core_sched_dispatch(rq, p); 1161 1162 p->scx.ddsp_enq_flags |= enq_flags; 1163 1164 /* 1165 * We are in the enqueue path with @rq locked and pinned, and thus can't 1166 * double lock a remote rq and enqueue to its local DSQ. For 1167 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer 1168 * the enqueue so that it's executed when @rq can be unlocked. 1169 */ 1170 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { 1171 unsigned long opss; 1172 1173 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; 1174 1175 switch (opss & SCX_OPSS_STATE_MASK) { 1176 case SCX_OPSS_NONE: 1177 break; 1178 case SCX_OPSS_QUEUEING: 1179 /* 1180 * As @p was never passed to the BPF side, _release is 1181 * not strictly necessary. Still do it for consistency. 1182 */ 1183 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1184 break; 1185 default: 1186 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", 1187 p->comm, p->pid, opss); 1188 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1189 break; 1190 } 1191 1192 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1193 list_add_tail(&p->scx.dsq_list.node, 1194 &rq->scx.ddsp_deferred_locals); 1195 schedule_deferred(rq); 1196 return; 1197 } 1198 1199 dispatch_enqueue(sch, dsq, p, 1200 p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 1201 } 1202 1203 static bool scx_rq_online(struct rq *rq) 1204 { 1205 /* 1206 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates 1207 * the online state as seen from the BPF scheduler. cpu_active() test 1208 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will 1209 * stay set until the current scheduling operation is complete even if 1210 * we aren't locking @rq. 1211 */ 1212 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); 1213 } 1214 1215 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 1216 int sticky_cpu) 1217 { 1218 struct scx_sched *sch = scx_root; 1219 struct task_struct **ddsp_taskp; 1220 unsigned long qseq; 1221 1222 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 1223 1224 /* rq migration */ 1225 if (sticky_cpu == cpu_of(rq)) 1226 goto local_norefill; 1227 1228 /* 1229 * If !scx_rq_online(), we already told the BPF scheduler that the CPU 1230 * is offline and are just running the hotplug path. Don't bother the 1231 * BPF scheduler. 1232 */ 1233 if (!scx_rq_online(rq)) 1234 goto local; 1235 1236 if (scx_rq_bypassing(rq)) { 1237 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1); 1238 goto global; 1239 } 1240 1241 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1242 goto direct; 1243 1244 /* see %SCX_OPS_ENQ_EXITING */ 1245 if (!(sch->ops.flags & SCX_OPS_ENQ_EXITING) && 1246 unlikely(p->flags & PF_EXITING)) { 1247 __scx_add_event(sch, SCX_EV_ENQ_SKIP_EXITING, 1); 1248 goto local; 1249 } 1250 1251 /* see %SCX_OPS_ENQ_MIGRATION_DISABLED */ 1252 if (!(sch->ops.flags & SCX_OPS_ENQ_MIGRATION_DISABLED) && 1253 is_migration_disabled(p)) { 1254 __scx_add_event(sch, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED, 1); 1255 goto local; 1256 } 1257 1258 if (unlikely(!SCX_HAS_OP(sch, enqueue))) 1259 goto global; 1260 1261 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 1262 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 1263 1264 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1265 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 1266 1267 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 1268 WARN_ON_ONCE(*ddsp_taskp); 1269 *ddsp_taskp = p; 1270 1271 SCX_CALL_OP_TASK(sch, SCX_KF_ENQUEUE, enqueue, rq, p, enq_flags); 1272 1273 *ddsp_taskp = NULL; 1274 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1275 goto direct; 1276 1277 /* 1278 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 1279 * dequeue may be waiting. The store_release matches their load_acquire. 1280 */ 1281 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 1282 return; 1283 1284 direct: 1285 direct_dispatch(sch, p, enq_flags); 1286 return; 1287 1288 local: 1289 /* 1290 * For task-ordering, slice refill must be treated as implying the end 1291 * of the current slice. Otherwise, the longer @p stays on the CPU, the 1292 * higher priority it becomes from scx_prio_less()'s POV. 1293 */ 1294 touch_core_sched(rq, p); 1295 refill_task_slice_dfl(sch, p); 1296 local_norefill: 1297 dispatch_enqueue(sch, &rq->scx.local_dsq, p, enq_flags); 1298 return; 1299 1300 global: 1301 touch_core_sched(rq, p); /* see the comment in local: */ 1302 refill_task_slice_dfl(sch, p); 1303 dispatch_enqueue(sch, find_global_dsq(sch, p), p, enq_flags); 1304 } 1305 1306 static bool task_runnable(const struct task_struct *p) 1307 { 1308 return !list_empty(&p->scx.runnable_node); 1309 } 1310 1311 static void set_task_runnable(struct rq *rq, struct task_struct *p) 1312 { 1313 lockdep_assert_rq_held(rq); 1314 1315 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 1316 p->scx.runnable_at = jiffies; 1317 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 1318 } 1319 1320 /* 1321 * list_add_tail() must be used. scx_bypass() depends on tasks being 1322 * appended to the runnable_list. 1323 */ 1324 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 1325 } 1326 1327 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 1328 { 1329 list_del_init(&p->scx.runnable_node); 1330 if (reset_runnable_at) 1331 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 1332 } 1333 1334 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 1335 { 1336 struct scx_sched *sch = scx_root; 1337 int sticky_cpu = p->scx.sticky_cpu; 1338 1339 if (enq_flags & ENQUEUE_WAKEUP) 1340 rq->scx.flags |= SCX_RQ_IN_WAKEUP; 1341 1342 enq_flags |= rq->scx.extra_enq_flags; 1343 1344 if (sticky_cpu >= 0) 1345 p->scx.sticky_cpu = -1; 1346 1347 /* 1348 * Restoring a running task will be immediately followed by 1349 * set_next_task_scx() which expects the task to not be on the BPF 1350 * scheduler as tasks can only start running through local DSQs. Force 1351 * direct-dispatch into the local DSQ by setting the sticky_cpu. 1352 */ 1353 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 1354 sticky_cpu = cpu_of(rq); 1355 1356 if (p->scx.flags & SCX_TASK_QUEUED) { 1357 WARN_ON_ONCE(!task_runnable(p)); 1358 goto out; 1359 } 1360 1361 set_task_runnable(rq, p); 1362 p->scx.flags |= SCX_TASK_QUEUED; 1363 rq->scx.nr_running++; 1364 add_nr_running(rq, 1); 1365 1366 if (SCX_HAS_OP(sch, runnable) && !task_on_rq_migrating(p)) 1367 SCX_CALL_OP_TASK(sch, SCX_KF_REST, runnable, rq, p, enq_flags); 1368 1369 if (enq_flags & SCX_ENQ_WAKEUP) 1370 touch_core_sched(rq, p); 1371 1372 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 1373 out: 1374 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; 1375 1376 if ((enq_flags & SCX_ENQ_CPU_SELECTED) && 1377 unlikely(cpu_of(rq) != p->scx.selected_cpu)) 1378 __scx_add_event(sch, SCX_EV_SELECT_CPU_FALLBACK, 1); 1379 } 1380 1381 static void ops_dequeue(struct rq *rq, struct task_struct *p, u64 deq_flags) 1382 { 1383 struct scx_sched *sch = scx_root; 1384 unsigned long opss; 1385 1386 /* dequeue is always temporary, don't reset runnable_at */ 1387 clr_task_runnable(p, false); 1388 1389 /* acquire ensures that we see the preceding updates on QUEUED */ 1390 opss = atomic_long_read_acquire(&p->scx.ops_state); 1391 1392 switch (opss & SCX_OPSS_STATE_MASK) { 1393 case SCX_OPSS_NONE: 1394 break; 1395 case SCX_OPSS_QUEUEING: 1396 /* 1397 * QUEUEING is started and finished while holding @p's rq lock. 1398 * As we're holding the rq lock now, we shouldn't see QUEUEING. 1399 */ 1400 BUG(); 1401 case SCX_OPSS_QUEUED: 1402 if (SCX_HAS_OP(sch, dequeue)) 1403 SCX_CALL_OP_TASK(sch, SCX_KF_REST, dequeue, rq, 1404 p, deq_flags); 1405 1406 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 1407 SCX_OPSS_NONE)) 1408 break; 1409 fallthrough; 1410 case SCX_OPSS_DISPATCHING: 1411 /* 1412 * If @p is being dispatched from the BPF scheduler to a DSQ, 1413 * wait for the transfer to complete so that @p doesn't get 1414 * added to its DSQ after dequeueing is complete. 1415 * 1416 * As we're waiting on DISPATCHING with the rq locked, the 1417 * dispatching side shouldn't try to lock the rq while 1418 * DISPATCHING is set. See dispatch_to_local_dsq(). 1419 * 1420 * DISPATCHING shouldn't have qseq set and control can reach 1421 * here with NONE @opss from the above QUEUED case block. 1422 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 1423 */ 1424 wait_ops_state(p, SCX_OPSS_DISPATCHING); 1425 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1426 break; 1427 } 1428 } 1429 1430 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 1431 { 1432 struct scx_sched *sch = scx_root; 1433 1434 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 1435 WARN_ON_ONCE(task_runnable(p)); 1436 return true; 1437 } 1438 1439 ops_dequeue(rq, p, deq_flags); 1440 1441 /* 1442 * A currently running task which is going off @rq first gets dequeued 1443 * and then stops running. As we want running <-> stopping transitions 1444 * to be contained within runnable <-> quiescent transitions, trigger 1445 * ->stopping() early here instead of in put_prev_task_scx(). 1446 * 1447 * @p may go through multiple stopping <-> running transitions between 1448 * here and put_prev_task_scx() if task attribute changes occur while 1449 * balance_scx() leaves @rq unlocked. However, they don't contain any 1450 * information meaningful to the BPF scheduler and can be suppressed by 1451 * skipping the callbacks if the task is !QUEUED. 1452 */ 1453 if (SCX_HAS_OP(sch, stopping) && task_current(rq, p)) { 1454 update_curr_scx(rq); 1455 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, false); 1456 } 1457 1458 if (SCX_HAS_OP(sch, quiescent) && !task_on_rq_migrating(p)) 1459 SCX_CALL_OP_TASK(sch, SCX_KF_REST, quiescent, rq, p, deq_flags); 1460 1461 if (deq_flags & SCX_DEQ_SLEEP) 1462 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 1463 else 1464 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 1465 1466 p->scx.flags &= ~SCX_TASK_QUEUED; 1467 rq->scx.nr_running--; 1468 sub_nr_running(rq, 1); 1469 1470 dispatch_dequeue(rq, p); 1471 return true; 1472 } 1473 1474 static void yield_task_scx(struct rq *rq) 1475 { 1476 struct scx_sched *sch = scx_root; 1477 struct task_struct *p = rq->donor; 1478 1479 if (SCX_HAS_OP(sch, yield)) 1480 SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, p, NULL); 1481 else 1482 p->scx.slice = 0; 1483 } 1484 1485 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 1486 { 1487 struct scx_sched *sch = scx_root; 1488 struct task_struct *from = rq->donor; 1489 1490 if (SCX_HAS_OP(sch, yield)) 1491 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, 1492 from, to); 1493 else 1494 return false; 1495 } 1496 1497 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 1498 struct scx_dispatch_q *src_dsq, 1499 struct rq *dst_rq) 1500 { 1501 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; 1502 1503 /* @dsq is locked and @p is on @dst_rq */ 1504 lockdep_assert_held(&src_dsq->lock); 1505 lockdep_assert_rq_held(dst_rq); 1506 1507 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 1508 1509 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 1510 list_add(&p->scx.dsq_list.node, &dst_dsq->list); 1511 else 1512 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); 1513 1514 dsq_mod_nr(dst_dsq, 1); 1515 p->scx.dsq = dst_dsq; 1516 } 1517 1518 /** 1519 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ 1520 * @p: task to move 1521 * @enq_flags: %SCX_ENQ_* 1522 * @src_rq: rq to move the task from, locked on entry, released on return 1523 * @dst_rq: rq to move the task into, locked on return 1524 * 1525 * Move @p which is currently on @src_rq to @dst_rq's local DSQ. 1526 */ 1527 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 1528 struct rq *src_rq, struct rq *dst_rq) 1529 { 1530 lockdep_assert_rq_held(src_rq); 1531 1532 /* the following marks @p MIGRATING which excludes dequeue */ 1533 deactivate_task(src_rq, p, 0); 1534 set_task_cpu(p, cpu_of(dst_rq)); 1535 p->scx.sticky_cpu = cpu_of(dst_rq); 1536 1537 raw_spin_rq_unlock(src_rq); 1538 raw_spin_rq_lock(dst_rq); 1539 1540 /* 1541 * We want to pass scx-specific enq_flags but activate_task() will 1542 * truncate the upper 32 bit. As we own @rq, we can pass them through 1543 * @rq->scx.extra_enq_flags instead. 1544 */ 1545 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); 1546 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); 1547 dst_rq->scx.extra_enq_flags = enq_flags; 1548 activate_task(dst_rq, p, 0); 1549 dst_rq->scx.extra_enq_flags = 0; 1550 } 1551 1552 /* 1553 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two 1554 * differences: 1555 * 1556 * - is_cpu_allowed() asks "Can this task run on this CPU?" while 1557 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to 1558 * this CPU?". 1559 * 1560 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task 1561 * must be allowed to finish on the CPU that it's currently on regardless of 1562 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the 1563 * BPF scheduler shouldn't attempt to migrate a task which has migration 1564 * disabled. 1565 * 1566 * - The BPF scheduler is bypassed while the rq is offline and we can always say 1567 * no to the BPF scheduler initiated migrations while offline. 1568 * 1569 * The caller must ensure that @p and @rq are on different CPUs. 1570 */ 1571 static bool task_can_run_on_remote_rq(struct scx_sched *sch, 1572 struct task_struct *p, struct rq *rq, 1573 bool enforce) 1574 { 1575 int cpu = cpu_of(rq); 1576 1577 WARN_ON_ONCE(task_cpu(p) == cpu); 1578 1579 /* 1580 * If @p has migration disabled, @p->cpus_ptr is updated to contain only 1581 * the pinned CPU in migrate_disable_switch() while @p is being switched 1582 * out. However, put_prev_task_scx() is called before @p->cpus_ptr is 1583 * updated and thus another CPU may see @p on a DSQ inbetween leading to 1584 * @p passing the below task_allowed_on_cpu() check while migration is 1585 * disabled. 1586 * 1587 * Test the migration disabled state first as the race window is narrow 1588 * and the BPF scheduler failing to check migration disabled state can 1589 * easily be masked if task_allowed_on_cpu() is done first. 1590 */ 1591 if (unlikely(is_migration_disabled(p))) { 1592 if (enforce) 1593 scx_error(sch, "SCX_DSQ_LOCAL[_ON] cannot move migration disabled %s[%d] from CPU %d to %d", 1594 p->comm, p->pid, task_cpu(p), cpu); 1595 return false; 1596 } 1597 1598 /* 1599 * We don't require the BPF scheduler to avoid dispatching to offline 1600 * CPUs mostly for convenience but also because CPUs can go offline 1601 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the 1602 * picked CPU is outside the allowed mask. 1603 */ 1604 if (!task_allowed_on_cpu(p, cpu)) { 1605 if (enforce) 1606 scx_error(sch, "SCX_DSQ_LOCAL[_ON] target CPU %d not allowed for %s[%d]", 1607 cpu, p->comm, p->pid); 1608 return false; 1609 } 1610 1611 if (!scx_rq_online(rq)) { 1612 if (enforce) 1613 __scx_add_event(sch, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE, 1); 1614 return false; 1615 } 1616 1617 return true; 1618 } 1619 1620 /** 1621 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq 1622 * @p: target task 1623 * @dsq: locked DSQ @p is currently on 1624 * @src_rq: rq @p is currently on, stable with @dsq locked 1625 * 1626 * Called with @dsq locked but no rq's locked. We want to move @p to a different 1627 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is 1628 * required when transferring into a local DSQ. Even when transferring into a 1629 * non-local DSQ, it's better to use the same mechanism to protect against 1630 * dequeues and maintain the invariant that @p->scx.dsq can only change while 1631 * @src_rq is locked, which e.g. scx_dump_task() depends on. 1632 * 1633 * We want to grab @src_rq but that can deadlock if we try while locking @dsq, 1634 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As 1635 * this may race with dequeue, which can't drop the rq lock or fail, do a little 1636 * dancing from our side. 1637 * 1638 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets 1639 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu 1640 * would be cleared to -1. While other cpus may have updated it to different 1641 * values afterwards, as this operation can't be preempted or recurse, the 1642 * holding_cpu can never become this CPU again before we're done. Thus, we can 1643 * tell whether we lost to dequeue by testing whether the holding_cpu still 1644 * points to this CPU. See dispatch_dequeue() for the counterpart. 1645 * 1646 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is 1647 * still valid. %false if lost to dequeue. 1648 */ 1649 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, 1650 struct scx_dispatch_q *dsq, 1651 struct rq *src_rq) 1652 { 1653 s32 cpu = raw_smp_processor_id(); 1654 1655 lockdep_assert_held(&dsq->lock); 1656 1657 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 1658 task_unlink_from_dsq(p, dsq); 1659 p->scx.holding_cpu = cpu; 1660 1661 raw_spin_unlock(&dsq->lock); 1662 raw_spin_rq_lock(src_rq); 1663 1664 /* task_rq couldn't have changed if we're still the holding cpu */ 1665 return likely(p->scx.holding_cpu == cpu) && 1666 !WARN_ON_ONCE(src_rq != task_rq(p)); 1667 } 1668 1669 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, 1670 struct scx_dispatch_q *dsq, struct rq *src_rq) 1671 { 1672 raw_spin_rq_unlock(this_rq); 1673 1674 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { 1675 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); 1676 return true; 1677 } else { 1678 raw_spin_rq_unlock(src_rq); 1679 raw_spin_rq_lock(this_rq); 1680 return false; 1681 } 1682 } 1683 1684 /** 1685 * move_task_between_dsqs() - Move a task from one DSQ to another 1686 * @sch: scx_sched being operated on 1687 * @p: target task 1688 * @enq_flags: %SCX_ENQ_* 1689 * @src_dsq: DSQ @p is currently on, must not be a local DSQ 1690 * @dst_dsq: DSQ @p is being moved to, can be any DSQ 1691 * 1692 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local 1693 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq 1694 * will change. As @p's task_rq is locked, this function doesn't need to use the 1695 * holding_cpu mechanism. 1696 * 1697 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the 1698 * return value, is locked. 1699 */ 1700 static struct rq *move_task_between_dsqs(struct scx_sched *sch, 1701 struct task_struct *p, u64 enq_flags, 1702 struct scx_dispatch_q *src_dsq, 1703 struct scx_dispatch_q *dst_dsq) 1704 { 1705 struct rq *src_rq = task_rq(p), *dst_rq; 1706 1707 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL); 1708 lockdep_assert_held(&src_dsq->lock); 1709 lockdep_assert_rq_held(src_rq); 1710 1711 if (dst_dsq->id == SCX_DSQ_LOCAL) { 1712 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 1713 if (src_rq != dst_rq && 1714 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) { 1715 dst_dsq = find_global_dsq(sch, p); 1716 dst_rq = src_rq; 1717 } 1718 } else { 1719 /* no need to migrate if destination is a non-local DSQ */ 1720 dst_rq = src_rq; 1721 } 1722 1723 /* 1724 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different 1725 * CPU, @p will be migrated. 1726 */ 1727 if (dst_dsq->id == SCX_DSQ_LOCAL) { 1728 /* @p is going from a non-local DSQ to a local DSQ */ 1729 if (src_rq == dst_rq) { 1730 task_unlink_from_dsq(p, src_dsq); 1731 move_local_task_to_local_dsq(p, enq_flags, 1732 src_dsq, dst_rq); 1733 raw_spin_unlock(&src_dsq->lock); 1734 } else { 1735 raw_spin_unlock(&src_dsq->lock); 1736 move_remote_task_to_local_dsq(p, enq_flags, 1737 src_rq, dst_rq); 1738 } 1739 } else { 1740 /* 1741 * @p is going from a non-local DSQ to a non-local DSQ. As 1742 * $src_dsq is already locked, do an abbreviated dequeue. 1743 */ 1744 task_unlink_from_dsq(p, src_dsq); 1745 p->scx.dsq = NULL; 1746 raw_spin_unlock(&src_dsq->lock); 1747 1748 dispatch_enqueue(sch, dst_dsq, p, enq_flags); 1749 } 1750 1751 return dst_rq; 1752 } 1753 1754 /* 1755 * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly 1756 * banging on the same DSQ on a large NUMA system to the point where switching 1757 * to the bypass mode can take a long time. Inject artificial delays while the 1758 * bypass mode is switching to guarantee timely completion. 1759 */ 1760 static void scx_breather(struct rq *rq) 1761 { 1762 u64 until; 1763 1764 lockdep_assert_rq_held(rq); 1765 1766 if (likely(!atomic_read(&scx_breather_depth))) 1767 return; 1768 1769 raw_spin_rq_unlock(rq); 1770 1771 until = ktime_get_ns() + NSEC_PER_MSEC; 1772 1773 do { 1774 int cnt = 1024; 1775 while (atomic_read(&scx_breather_depth) && --cnt) 1776 cpu_relax(); 1777 } while (atomic_read(&scx_breather_depth) && 1778 time_before64(ktime_get_ns(), until)); 1779 1780 raw_spin_rq_lock(rq); 1781 } 1782 1783 static bool consume_dispatch_q(struct scx_sched *sch, struct rq *rq, 1784 struct scx_dispatch_q *dsq) 1785 { 1786 struct task_struct *p; 1787 retry: 1788 /* 1789 * This retry loop can repeatedly race against scx_bypass() dequeueing 1790 * tasks from @dsq trying to put the system into the bypass mode. On 1791 * some multi-socket machines (e.g. 2x Intel 8480c), this can live-lock 1792 * the machine into soft lockups. Give a breather. 1793 */ 1794 scx_breather(rq); 1795 1796 /* 1797 * The caller can't expect to successfully consume a task if the task's 1798 * addition to @dsq isn't guaranteed to be visible somehow. Test 1799 * @dsq->list without locking and skip if it seems empty. 1800 */ 1801 if (list_empty(&dsq->list)) 1802 return false; 1803 1804 raw_spin_lock(&dsq->lock); 1805 1806 nldsq_for_each_task(p, dsq) { 1807 struct rq *task_rq = task_rq(p); 1808 1809 if (rq == task_rq) { 1810 task_unlink_from_dsq(p, dsq); 1811 move_local_task_to_local_dsq(p, 0, dsq, rq); 1812 raw_spin_unlock(&dsq->lock); 1813 return true; 1814 } 1815 1816 if (task_can_run_on_remote_rq(sch, p, rq, false)) { 1817 if (likely(consume_remote_task(rq, p, dsq, task_rq))) 1818 return true; 1819 goto retry; 1820 } 1821 } 1822 1823 raw_spin_unlock(&dsq->lock); 1824 return false; 1825 } 1826 1827 static bool consume_global_dsq(struct scx_sched *sch, struct rq *rq) 1828 { 1829 int node = cpu_to_node(cpu_of(rq)); 1830 1831 return consume_dispatch_q(sch, rq, sch->global_dsqs[node]); 1832 } 1833 1834 /** 1835 * dispatch_to_local_dsq - Dispatch a task to a local dsq 1836 * @sch: scx_sched being operated on 1837 * @rq: current rq which is locked 1838 * @dst_dsq: destination DSQ 1839 * @p: task to dispatch 1840 * @enq_flags: %SCX_ENQ_* 1841 * 1842 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local 1843 * DSQ. This function performs all the synchronization dancing needed because 1844 * local DSQs are protected with rq locks. 1845 * 1846 * The caller must have exclusive ownership of @p (e.g. through 1847 * %SCX_OPSS_DISPATCHING). 1848 */ 1849 static void dispatch_to_local_dsq(struct scx_sched *sch, struct rq *rq, 1850 struct scx_dispatch_q *dst_dsq, 1851 struct task_struct *p, u64 enq_flags) 1852 { 1853 struct rq *src_rq = task_rq(p); 1854 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 1855 struct rq *locked_rq = rq; 1856 1857 /* 1858 * We're synchronized against dequeue through DISPATCHING. As @p can't 1859 * be dequeued, its task_rq and cpus_allowed are stable too. 1860 * 1861 * If dispatching to @rq that @p is already on, no lock dancing needed. 1862 */ 1863 if (rq == src_rq && rq == dst_rq) { 1864 dispatch_enqueue(sch, dst_dsq, p, 1865 enq_flags | SCX_ENQ_CLEAR_OPSS); 1866 return; 1867 } 1868 1869 if (src_rq != dst_rq && 1870 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) { 1871 dispatch_enqueue(sch, find_global_dsq(sch, p), p, 1872 enq_flags | SCX_ENQ_CLEAR_OPSS); 1873 return; 1874 } 1875 1876 /* 1877 * @p is on a possibly remote @src_rq which we need to lock to move the 1878 * task. If dequeue is in progress, it'd be locking @src_rq and waiting 1879 * on DISPATCHING, so we can't grab @src_rq lock while holding 1880 * DISPATCHING. 1881 * 1882 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that 1883 * we're moving from a DSQ and use the same mechanism - mark the task 1884 * under transfer with holding_cpu, release DISPATCHING and then follow 1885 * the same protocol. See unlink_dsq_and_lock_src_rq(). 1886 */ 1887 p->scx.holding_cpu = raw_smp_processor_id(); 1888 1889 /* store_release ensures that dequeue sees the above */ 1890 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1891 1892 /* switch to @src_rq lock */ 1893 if (locked_rq != src_rq) { 1894 raw_spin_rq_unlock(locked_rq); 1895 locked_rq = src_rq; 1896 raw_spin_rq_lock(src_rq); 1897 } 1898 1899 /* task_rq couldn't have changed if we're still the holding cpu */ 1900 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && 1901 !WARN_ON_ONCE(src_rq != task_rq(p))) { 1902 /* 1903 * If @p is staying on the same rq, there's no need to go 1904 * through the full deactivate/activate cycle. Optimize by 1905 * abbreviating move_remote_task_to_local_dsq(). 1906 */ 1907 if (src_rq == dst_rq) { 1908 p->scx.holding_cpu = -1; 1909 dispatch_enqueue(sch, &dst_rq->scx.local_dsq, p, 1910 enq_flags); 1911 } else { 1912 move_remote_task_to_local_dsq(p, enq_flags, 1913 src_rq, dst_rq); 1914 /* task has been moved to dst_rq, which is now locked */ 1915 locked_rq = dst_rq; 1916 } 1917 1918 /* if the destination CPU is idle, wake it up */ 1919 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) 1920 resched_curr(dst_rq); 1921 } 1922 1923 /* switch back to @rq lock */ 1924 if (locked_rq != rq) { 1925 raw_spin_rq_unlock(locked_rq); 1926 raw_spin_rq_lock(rq); 1927 } 1928 } 1929 1930 /** 1931 * finish_dispatch - Asynchronously finish dispatching a task 1932 * @rq: current rq which is locked 1933 * @p: task to finish dispatching 1934 * @qseq_at_dispatch: qseq when @p started getting dispatched 1935 * @dsq_id: destination DSQ ID 1936 * @enq_flags: %SCX_ENQ_* 1937 * 1938 * Dispatching to local DSQs may need to wait for queueing to complete or 1939 * require rq lock dancing. As we don't wanna do either while inside 1940 * ops.dispatch() to avoid locking order inversion, we split dispatching into 1941 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the 1942 * task and its qseq. Once ops.dispatch() returns, this function is called to 1943 * finish up. 1944 * 1945 * There is no guarantee that @p is still valid for dispatching or even that it 1946 * was valid in the first place. Make sure that the task is still owned by the 1947 * BPF scheduler and claim the ownership before dispatching. 1948 */ 1949 static void finish_dispatch(struct scx_sched *sch, struct rq *rq, 1950 struct task_struct *p, 1951 unsigned long qseq_at_dispatch, 1952 u64 dsq_id, u64 enq_flags) 1953 { 1954 struct scx_dispatch_q *dsq; 1955 unsigned long opss; 1956 1957 touch_core_sched_dispatch(rq, p); 1958 retry: 1959 /* 1960 * No need for _acquire here. @p is accessed only after a successful 1961 * try_cmpxchg to DISPATCHING. 1962 */ 1963 opss = atomic_long_read(&p->scx.ops_state); 1964 1965 switch (opss & SCX_OPSS_STATE_MASK) { 1966 case SCX_OPSS_DISPATCHING: 1967 case SCX_OPSS_NONE: 1968 /* someone else already got to it */ 1969 return; 1970 case SCX_OPSS_QUEUED: 1971 /* 1972 * If qseq doesn't match, @p has gone through at least one 1973 * dispatch/dequeue and re-enqueue cycle between 1974 * scx_bpf_dsq_insert() and here and we have no claim on it. 1975 */ 1976 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 1977 return; 1978 1979 /* 1980 * While we know @p is accessible, we don't yet have a claim on 1981 * it - the BPF scheduler is allowed to dispatch tasks 1982 * spuriously and there can be a racing dequeue attempt. Let's 1983 * claim @p by atomically transitioning it from QUEUED to 1984 * DISPATCHING. 1985 */ 1986 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 1987 SCX_OPSS_DISPATCHING))) 1988 break; 1989 goto retry; 1990 case SCX_OPSS_QUEUEING: 1991 /* 1992 * do_enqueue_task() is in the process of transferring the task 1993 * to the BPF scheduler while holding @p's rq lock. As we aren't 1994 * holding any kernel or BPF resource that the enqueue path may 1995 * depend upon, it's safe to wait. 1996 */ 1997 wait_ops_state(p, opss); 1998 goto retry; 1999 } 2000 2001 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 2002 2003 dsq = find_dsq_for_dispatch(sch, this_rq(), dsq_id, p); 2004 2005 if (dsq->id == SCX_DSQ_LOCAL) 2006 dispatch_to_local_dsq(sch, rq, dsq, p, enq_flags); 2007 else 2008 dispatch_enqueue(sch, dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2009 } 2010 2011 static void flush_dispatch_buf(struct scx_sched *sch, struct rq *rq) 2012 { 2013 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2014 u32 u; 2015 2016 for (u = 0; u < dspc->cursor; u++) { 2017 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 2018 2019 finish_dispatch(sch, rq, ent->task, ent->qseq, ent->dsq_id, 2020 ent->enq_flags); 2021 } 2022 2023 dspc->nr_tasks += dspc->cursor; 2024 dspc->cursor = 0; 2025 } 2026 2027 static inline void maybe_queue_balance_callback(struct rq *rq) 2028 { 2029 lockdep_assert_rq_held(rq); 2030 2031 if (!(rq->scx.flags & SCX_RQ_BAL_CB_PENDING)) 2032 return; 2033 2034 queue_balance_callback(rq, &rq->scx.deferred_bal_cb, 2035 deferred_bal_cb_workfn); 2036 2037 rq->scx.flags &= ~SCX_RQ_BAL_CB_PENDING; 2038 } 2039 2040 static int balance_one(struct rq *rq, struct task_struct *prev) 2041 { 2042 struct scx_sched *sch = scx_root; 2043 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2044 bool prev_on_scx = prev->sched_class == &ext_sched_class; 2045 bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED; 2046 int nr_loops = SCX_DSP_MAX_LOOPS; 2047 2048 lockdep_assert_rq_held(rq); 2049 rq->scx.flags |= SCX_RQ_IN_BALANCE; 2050 rq->scx.flags &= ~SCX_RQ_BAL_KEEP; 2051 2052 if ((sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT) && 2053 unlikely(rq->scx.cpu_released)) { 2054 /* 2055 * If the previous sched_class for the current CPU was not SCX, 2056 * notify the BPF scheduler that it again has control of the 2057 * core. This callback complements ->cpu_release(), which is 2058 * emitted in switch_class(). 2059 */ 2060 if (SCX_HAS_OP(sch, cpu_acquire)) 2061 SCX_CALL_OP(sch, SCX_KF_REST, cpu_acquire, rq, 2062 cpu_of(rq), NULL); 2063 rq->scx.cpu_released = false; 2064 } 2065 2066 if (prev_on_scx) { 2067 update_curr_scx(rq); 2068 2069 /* 2070 * If @prev is runnable & has slice left, it has priority and 2071 * fetching more just increases latency for the fetched tasks. 2072 * Tell pick_task_scx() to keep running @prev. If the BPF 2073 * scheduler wants to handle this explicitly, it should 2074 * implement ->cpu_release(). 2075 * 2076 * See scx_disable_workfn() for the explanation on the bypassing 2077 * test. 2078 */ 2079 if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) { 2080 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2081 goto has_tasks; 2082 } 2083 } 2084 2085 /* if there already are tasks to run, nothing to do */ 2086 if (rq->scx.local_dsq.nr) 2087 goto has_tasks; 2088 2089 if (consume_global_dsq(sch, rq)) 2090 goto has_tasks; 2091 2092 if (unlikely(!SCX_HAS_OP(sch, dispatch)) || 2093 scx_rq_bypassing(rq) || !scx_rq_online(rq)) 2094 goto no_tasks; 2095 2096 dspc->rq = rq; 2097 2098 /* 2099 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 2100 * the local DSQ might still end up empty after a successful 2101 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 2102 * produced some tasks, retry. The BPF scheduler may depend on this 2103 * looping behavior to simplify its implementation. 2104 */ 2105 do { 2106 dspc->nr_tasks = 0; 2107 2108 SCX_CALL_OP(sch, SCX_KF_DISPATCH, dispatch, rq, 2109 cpu_of(rq), prev_on_scx ? prev : NULL); 2110 2111 flush_dispatch_buf(sch, rq); 2112 2113 if (prev_on_rq && prev->scx.slice) { 2114 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2115 goto has_tasks; 2116 } 2117 if (rq->scx.local_dsq.nr) 2118 goto has_tasks; 2119 if (consume_global_dsq(sch, rq)) 2120 goto has_tasks; 2121 2122 /* 2123 * ops.dispatch() can trap us in this loop by repeatedly 2124 * dispatching ineligible tasks. Break out once in a while to 2125 * allow the watchdog to run. As IRQ can't be enabled in 2126 * balance(), we want to complete this scheduling cycle and then 2127 * start a new one. IOW, we want to call resched_curr() on the 2128 * next, most likely idle, task, not the current one. Use 2129 * scx_kick_cpu() for deferred kicking. 2130 */ 2131 if (unlikely(!--nr_loops)) { 2132 scx_kick_cpu(sch, cpu_of(rq), 0); 2133 break; 2134 } 2135 } while (dspc->nr_tasks); 2136 2137 no_tasks: 2138 /* 2139 * Didn't find another task to run. Keep running @prev unless 2140 * %SCX_OPS_ENQ_LAST is in effect. 2141 */ 2142 if (prev_on_rq && 2143 (!(sch->ops.flags & SCX_OPS_ENQ_LAST) || scx_rq_bypassing(rq))) { 2144 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2145 __scx_add_event(sch, SCX_EV_DISPATCH_KEEP_LAST, 1); 2146 goto has_tasks; 2147 } 2148 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2149 return false; 2150 2151 has_tasks: 2152 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2153 return true; 2154 } 2155 2156 static void process_ddsp_deferred_locals(struct rq *rq) 2157 { 2158 struct task_struct *p; 2159 2160 lockdep_assert_rq_held(rq); 2161 2162 /* 2163 * Now that @rq can be unlocked, execute the deferred enqueueing of 2164 * tasks directly dispatched to the local DSQs of other CPUs. See 2165 * direct_dispatch(). Keep popping from the head instead of using 2166 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq 2167 * temporarily. 2168 */ 2169 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, 2170 struct task_struct, scx.dsq_list.node))) { 2171 struct scx_sched *sch = scx_root; 2172 struct scx_dispatch_q *dsq; 2173 2174 list_del_init(&p->scx.dsq_list.node); 2175 2176 dsq = find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p); 2177 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) 2178 dispatch_to_local_dsq(sch, rq, dsq, p, 2179 p->scx.ddsp_enq_flags); 2180 } 2181 } 2182 2183 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 2184 { 2185 struct scx_sched *sch = scx_root; 2186 2187 if (p->scx.flags & SCX_TASK_QUEUED) { 2188 /* 2189 * Core-sched might decide to execute @p before it is 2190 * dispatched. Call ops_dequeue() to notify the BPF scheduler. 2191 */ 2192 ops_dequeue(rq, p, SCX_DEQ_CORE_SCHED_EXEC); 2193 dispatch_dequeue(rq, p); 2194 } 2195 2196 p->se.exec_start = rq_clock_task(rq); 2197 2198 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2199 if (SCX_HAS_OP(sch, running) && (p->scx.flags & SCX_TASK_QUEUED)) 2200 SCX_CALL_OP_TASK(sch, SCX_KF_REST, running, rq, p); 2201 2202 clr_task_runnable(p, true); 2203 2204 /* 2205 * @p is getting newly scheduled or got kicked after someone updated its 2206 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 2207 */ 2208 if ((p->scx.slice == SCX_SLICE_INF) != 2209 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 2210 if (p->scx.slice == SCX_SLICE_INF) 2211 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 2212 else 2213 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 2214 2215 sched_update_tick_dependency(rq); 2216 2217 /* 2218 * For now, let's refresh the load_avgs just when transitioning 2219 * in and out of nohz. In the future, we might want to add a 2220 * mechanism which calls the following periodically on 2221 * tick-stopped CPUs. 2222 */ 2223 update_other_load_avgs(rq); 2224 } 2225 } 2226 2227 static enum scx_cpu_preempt_reason 2228 preempt_reason_from_class(const struct sched_class *class) 2229 { 2230 if (class == &stop_sched_class) 2231 return SCX_CPU_PREEMPT_STOP; 2232 if (class == &dl_sched_class) 2233 return SCX_CPU_PREEMPT_DL; 2234 if (class == &rt_sched_class) 2235 return SCX_CPU_PREEMPT_RT; 2236 return SCX_CPU_PREEMPT_UNKNOWN; 2237 } 2238 2239 static void switch_class(struct rq *rq, struct task_struct *next) 2240 { 2241 struct scx_sched *sch = scx_root; 2242 const struct sched_class *next_class = next->sched_class; 2243 2244 /* 2245 * Pairs with the smp_load_acquire() issued by a CPU in 2246 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a 2247 * resched. 2248 */ 2249 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); 2250 if (!(sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT)) 2251 return; 2252 2253 /* 2254 * The callback is conceptually meant to convey that the CPU is no 2255 * longer under the control of SCX. Therefore, don't invoke the callback 2256 * if the next class is below SCX (in which case the BPF scheduler has 2257 * actively decided not to schedule any tasks on the CPU). 2258 */ 2259 if (sched_class_above(&ext_sched_class, next_class)) 2260 return; 2261 2262 /* 2263 * At this point we know that SCX was preempted by a higher priority 2264 * sched_class, so invoke the ->cpu_release() callback if we have not 2265 * done so already. We only send the callback once between SCX being 2266 * preempted, and it regaining control of the CPU. 2267 * 2268 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 2269 * next time that balance_scx() is invoked. 2270 */ 2271 if (!rq->scx.cpu_released) { 2272 if (SCX_HAS_OP(sch, cpu_release)) { 2273 struct scx_cpu_release_args args = { 2274 .reason = preempt_reason_from_class(next_class), 2275 .task = next, 2276 }; 2277 2278 SCX_CALL_OP(sch, SCX_KF_CPU_RELEASE, cpu_release, rq, 2279 cpu_of(rq), &args); 2280 } 2281 rq->scx.cpu_released = true; 2282 } 2283 } 2284 2285 static void put_prev_task_scx(struct rq *rq, struct task_struct *p, 2286 struct task_struct *next) 2287 { 2288 struct scx_sched *sch = scx_root; 2289 update_curr_scx(rq); 2290 2291 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2292 if (SCX_HAS_OP(sch, stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 2293 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, true); 2294 2295 if (p->scx.flags & SCX_TASK_QUEUED) { 2296 set_task_runnable(rq, p); 2297 2298 /* 2299 * If @p has slice left and is being put, @p is getting 2300 * preempted by a higher priority scheduler class or core-sched 2301 * forcing a different task. Leave it at the head of the local 2302 * DSQ. 2303 */ 2304 if (p->scx.slice && !scx_rq_bypassing(rq)) { 2305 dispatch_enqueue(sch, &rq->scx.local_dsq, p, 2306 SCX_ENQ_HEAD); 2307 goto switch_class; 2308 } 2309 2310 /* 2311 * If @p is runnable but we're about to enter a lower 2312 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell 2313 * ops.enqueue() that @p is the only one available for this cpu, 2314 * which should trigger an explicit follow-up scheduling event. 2315 */ 2316 if (sched_class_above(&ext_sched_class, next->sched_class)) { 2317 WARN_ON_ONCE(!(sch->ops.flags & SCX_OPS_ENQ_LAST)); 2318 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 2319 } else { 2320 do_enqueue_task(rq, p, 0, -1); 2321 } 2322 } 2323 2324 switch_class: 2325 if (next && next->sched_class != &ext_sched_class) 2326 switch_class(rq, next); 2327 } 2328 2329 static struct task_struct *first_local_task(struct rq *rq) 2330 { 2331 return list_first_entry_or_null(&rq->scx.local_dsq.list, 2332 struct task_struct, scx.dsq_list.node); 2333 } 2334 2335 static struct task_struct *pick_task_scx(struct rq *rq, struct rq_flags *rf) 2336 { 2337 struct task_struct *prev = rq->curr; 2338 bool keep_prev, kick_idle = false; 2339 struct task_struct *p; 2340 2341 rq_modified_clear(rq); 2342 rq_unpin_lock(rq, rf); 2343 balance_one(rq, prev); 2344 rq_repin_lock(rq, rf); 2345 maybe_queue_balance_callback(rq); 2346 if (rq_modified_above(rq, &ext_sched_class)) 2347 return RETRY_TASK; 2348 2349 keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP; 2350 if (unlikely(keep_prev && 2351 prev->sched_class != &ext_sched_class)) { 2352 WARN_ON_ONCE(scx_enable_state() == SCX_ENABLED); 2353 keep_prev = false; 2354 } 2355 2356 /* 2357 * If balance_scx() is telling us to keep running @prev, replenish slice 2358 * if necessary and keep running @prev. Otherwise, pop the first one 2359 * from the local DSQ. 2360 */ 2361 if (keep_prev) { 2362 p = prev; 2363 if (!p->scx.slice) 2364 refill_task_slice_dfl(rcu_dereference_sched(scx_root), p); 2365 } else { 2366 p = first_local_task(rq); 2367 if (!p) { 2368 if (kick_idle) 2369 scx_kick_cpu(rcu_dereference_sched(scx_root), 2370 cpu_of(rq), SCX_KICK_IDLE); 2371 return NULL; 2372 } 2373 2374 if (unlikely(!p->scx.slice)) { 2375 struct scx_sched *sch = rcu_dereference_sched(scx_root); 2376 2377 if (!scx_rq_bypassing(rq) && !sch->warned_zero_slice) { 2378 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n", 2379 p->comm, p->pid, __func__); 2380 sch->warned_zero_slice = true; 2381 } 2382 refill_task_slice_dfl(sch, p); 2383 } 2384 } 2385 2386 return p; 2387 } 2388 2389 #ifdef CONFIG_SCHED_CORE 2390 /** 2391 * scx_prio_less - Task ordering for core-sched 2392 * @a: task A 2393 * @b: task B 2394 * @in_fi: in forced idle state 2395 * 2396 * Core-sched is implemented as an additional scheduling layer on top of the 2397 * usual sched_class'es and needs to find out the expected task ordering. For 2398 * SCX, core-sched calls this function to interrogate the task ordering. 2399 * 2400 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used 2401 * to implement the default task ordering. The older the timestamp, the higher 2402 * priority the task - the global FIFO ordering matching the default scheduling 2403 * behavior. 2404 * 2405 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to 2406 * implement FIFO ordering within each local DSQ. See pick_task_scx(). 2407 */ 2408 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, 2409 bool in_fi) 2410 { 2411 struct scx_sched *sch = scx_root; 2412 2413 /* 2414 * The const qualifiers are dropped from task_struct pointers when 2415 * calling ops.core_sched_before(). Accesses are controlled by the 2416 * verifier. 2417 */ 2418 if (SCX_HAS_OP(sch, core_sched_before) && 2419 !scx_rq_bypassing(task_rq(a))) 2420 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, core_sched_before, 2421 NULL, 2422 (struct task_struct *)a, 2423 (struct task_struct *)b); 2424 else 2425 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); 2426 } 2427 #endif /* CONFIG_SCHED_CORE */ 2428 2429 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 2430 { 2431 struct scx_sched *sch = scx_root; 2432 bool rq_bypass; 2433 2434 /* 2435 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 2436 * can be a good migration opportunity with low cache and memory 2437 * footprint. Returning a CPU different than @prev_cpu triggers 2438 * immediate rq migration. However, for SCX, as the current rq 2439 * association doesn't dictate where the task is going to run, this 2440 * doesn't fit well. If necessary, we can later add a dedicated method 2441 * which can decide to preempt self to force it through the regular 2442 * scheduling path. 2443 */ 2444 if (unlikely(wake_flags & WF_EXEC)) 2445 return prev_cpu; 2446 2447 rq_bypass = scx_rq_bypassing(task_rq(p)); 2448 if (likely(SCX_HAS_OP(sch, select_cpu)) && !rq_bypass) { 2449 s32 cpu; 2450 struct task_struct **ddsp_taskp; 2451 2452 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 2453 WARN_ON_ONCE(*ddsp_taskp); 2454 *ddsp_taskp = p; 2455 2456 cpu = SCX_CALL_OP_TASK_RET(sch, 2457 SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 2458 select_cpu, NULL, p, prev_cpu, 2459 wake_flags); 2460 p->scx.selected_cpu = cpu; 2461 *ddsp_taskp = NULL; 2462 if (ops_cpu_valid(sch, cpu, "from ops.select_cpu()")) 2463 return cpu; 2464 else 2465 return prev_cpu; 2466 } else { 2467 s32 cpu; 2468 2469 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, NULL, 0); 2470 if (cpu >= 0) { 2471 refill_task_slice_dfl(sch, p); 2472 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 2473 } else { 2474 cpu = prev_cpu; 2475 } 2476 p->scx.selected_cpu = cpu; 2477 2478 if (rq_bypass) 2479 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1); 2480 return cpu; 2481 } 2482 } 2483 2484 static void task_woken_scx(struct rq *rq, struct task_struct *p) 2485 { 2486 run_deferred(rq); 2487 } 2488 2489 static void set_cpus_allowed_scx(struct task_struct *p, 2490 struct affinity_context *ac) 2491 { 2492 struct scx_sched *sch = scx_root; 2493 2494 set_cpus_allowed_common(p, ac); 2495 2496 /* 2497 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 2498 * differ from the configured one in @p->cpus_mask. Always tell the bpf 2499 * scheduler the effective one. 2500 * 2501 * Fine-grained memory write control is enforced by BPF making the const 2502 * designation pointless. Cast it away when calling the operation. 2503 */ 2504 if (SCX_HAS_OP(sch, set_cpumask)) 2505 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, NULL, 2506 p, (struct cpumask *)p->cpus_ptr); 2507 } 2508 2509 static void handle_hotplug(struct rq *rq, bool online) 2510 { 2511 struct scx_sched *sch = scx_root; 2512 int cpu = cpu_of(rq); 2513 2514 atomic_long_inc(&scx_hotplug_seq); 2515 2516 /* 2517 * scx_root updates are protected by cpus_read_lock() and will stay 2518 * stable here. Note that we can't depend on scx_enabled() test as the 2519 * hotplug ops need to be enabled before __scx_enabled is set. 2520 */ 2521 if (unlikely(!sch)) 2522 return; 2523 2524 if (scx_enabled()) 2525 scx_idle_update_selcpu_topology(&sch->ops); 2526 2527 if (online && SCX_HAS_OP(sch, cpu_online)) 2528 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_online, NULL, cpu); 2529 else if (!online && SCX_HAS_OP(sch, cpu_offline)) 2530 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_offline, NULL, cpu); 2531 else 2532 scx_exit(sch, SCX_EXIT_UNREG_KERN, 2533 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 2534 "cpu %d going %s, exiting scheduler", cpu, 2535 online ? "online" : "offline"); 2536 } 2537 2538 void scx_rq_activate(struct rq *rq) 2539 { 2540 handle_hotplug(rq, true); 2541 } 2542 2543 void scx_rq_deactivate(struct rq *rq) 2544 { 2545 handle_hotplug(rq, false); 2546 } 2547 2548 static void rq_online_scx(struct rq *rq) 2549 { 2550 rq->scx.flags |= SCX_RQ_ONLINE; 2551 } 2552 2553 static void rq_offline_scx(struct rq *rq) 2554 { 2555 rq->scx.flags &= ~SCX_RQ_ONLINE; 2556 } 2557 2558 2559 static bool check_rq_for_timeouts(struct rq *rq) 2560 { 2561 struct scx_sched *sch; 2562 struct task_struct *p; 2563 struct rq_flags rf; 2564 bool timed_out = false; 2565 2566 rq_lock_irqsave(rq, &rf); 2567 sch = rcu_dereference_bh(scx_root); 2568 if (unlikely(!sch)) 2569 goto out_unlock; 2570 2571 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 2572 unsigned long last_runnable = p->scx.runnable_at; 2573 2574 if (unlikely(time_after(jiffies, 2575 last_runnable + scx_watchdog_timeout))) { 2576 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 2577 2578 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0, 2579 "%s[%d] failed to run for %u.%03us", 2580 p->comm, p->pid, dur_ms / 1000, dur_ms % 1000); 2581 timed_out = true; 2582 break; 2583 } 2584 } 2585 out_unlock: 2586 rq_unlock_irqrestore(rq, &rf); 2587 return timed_out; 2588 } 2589 2590 static void scx_watchdog_workfn(struct work_struct *work) 2591 { 2592 int cpu; 2593 2594 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 2595 2596 for_each_online_cpu(cpu) { 2597 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 2598 break; 2599 2600 cond_resched(); 2601 } 2602 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 2603 scx_watchdog_timeout / 2); 2604 } 2605 2606 void scx_tick(struct rq *rq) 2607 { 2608 struct scx_sched *sch; 2609 unsigned long last_check; 2610 2611 if (!scx_enabled()) 2612 return; 2613 2614 sch = rcu_dereference_bh(scx_root); 2615 if (unlikely(!sch)) 2616 return; 2617 2618 last_check = READ_ONCE(scx_watchdog_timestamp); 2619 if (unlikely(time_after(jiffies, 2620 last_check + READ_ONCE(scx_watchdog_timeout)))) { 2621 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 2622 2623 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0, 2624 "watchdog failed to check in for %u.%03us", 2625 dur_ms / 1000, dur_ms % 1000); 2626 } 2627 2628 update_other_load_avgs(rq); 2629 } 2630 2631 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 2632 { 2633 struct scx_sched *sch = scx_root; 2634 2635 update_curr_scx(rq); 2636 2637 /* 2638 * While disabling, always resched and refresh core-sched timestamp as 2639 * we can't trust the slice management or ops.core_sched_before(). 2640 */ 2641 if (scx_rq_bypassing(rq)) { 2642 curr->scx.slice = 0; 2643 touch_core_sched(rq, curr); 2644 } else if (SCX_HAS_OP(sch, tick)) { 2645 SCX_CALL_OP_TASK(sch, SCX_KF_REST, tick, rq, curr); 2646 } 2647 2648 if (!curr->scx.slice) 2649 resched_curr(rq); 2650 } 2651 2652 #ifdef CONFIG_EXT_GROUP_SCHED 2653 static struct cgroup *tg_cgrp(struct task_group *tg) 2654 { 2655 /* 2656 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, 2657 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the 2658 * root cgroup. 2659 */ 2660 if (tg && tg->css.cgroup) 2661 return tg->css.cgroup; 2662 else 2663 return &cgrp_dfl_root.cgrp; 2664 } 2665 2666 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), 2667 2668 #else /* CONFIG_EXT_GROUP_SCHED */ 2669 2670 #define SCX_INIT_TASK_ARGS_CGROUP(tg) 2671 2672 #endif /* CONFIG_EXT_GROUP_SCHED */ 2673 2674 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 2675 { 2676 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 2677 } 2678 2679 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 2680 { 2681 enum scx_task_state prev_state = scx_get_task_state(p); 2682 bool warn = false; 2683 2684 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 2685 2686 switch (state) { 2687 case SCX_TASK_NONE: 2688 break; 2689 case SCX_TASK_INIT: 2690 warn = prev_state != SCX_TASK_NONE; 2691 break; 2692 case SCX_TASK_READY: 2693 warn = prev_state == SCX_TASK_NONE; 2694 break; 2695 case SCX_TASK_ENABLED: 2696 warn = prev_state != SCX_TASK_READY; 2697 break; 2698 default: 2699 warn = true; 2700 return; 2701 } 2702 2703 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 2704 prev_state, state, p->comm, p->pid); 2705 2706 p->scx.flags &= ~SCX_TASK_STATE_MASK; 2707 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 2708 } 2709 2710 static int scx_init_task(struct task_struct *p, struct task_group *tg, bool fork) 2711 { 2712 struct scx_sched *sch = scx_root; 2713 int ret; 2714 2715 p->scx.disallow = false; 2716 2717 if (SCX_HAS_OP(sch, init_task)) { 2718 struct scx_init_task_args args = { 2719 SCX_INIT_TASK_ARGS_CGROUP(tg) 2720 .fork = fork, 2721 }; 2722 2723 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init_task, NULL, 2724 p, &args); 2725 if (unlikely(ret)) { 2726 ret = ops_sanitize_err(sch, "init_task", ret); 2727 return ret; 2728 } 2729 } 2730 2731 scx_set_task_state(p, SCX_TASK_INIT); 2732 2733 if (p->scx.disallow) { 2734 if (!fork) { 2735 struct rq *rq; 2736 struct rq_flags rf; 2737 2738 rq = task_rq_lock(p, &rf); 2739 2740 /* 2741 * We're in the load path and @p->policy will be applied 2742 * right after. Reverting @p->policy here and rejecting 2743 * %SCHED_EXT transitions from scx_check_setscheduler() 2744 * guarantees that if ops.init_task() sets @p->disallow, 2745 * @p can never be in SCX. 2746 */ 2747 if (p->policy == SCHED_EXT) { 2748 p->policy = SCHED_NORMAL; 2749 atomic_long_inc(&scx_nr_rejected); 2750 } 2751 2752 task_rq_unlock(rq, p, &rf); 2753 } else if (p->policy == SCHED_EXT) { 2754 scx_error(sch, "ops.init_task() set task->scx.disallow for %s[%d] during fork", 2755 p->comm, p->pid); 2756 } 2757 } 2758 2759 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2760 return 0; 2761 } 2762 2763 static void scx_enable_task(struct task_struct *p) 2764 { 2765 struct scx_sched *sch = scx_root; 2766 struct rq *rq = task_rq(p); 2767 u32 weight; 2768 2769 lockdep_assert_rq_held(rq); 2770 2771 /* 2772 * Set the weight before calling ops.enable() so that the scheduler 2773 * doesn't see a stale value if they inspect the task struct. 2774 */ 2775 if (task_has_idle_policy(p)) 2776 weight = WEIGHT_IDLEPRIO; 2777 else 2778 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 2779 2780 p->scx.weight = sched_weight_to_cgroup(weight); 2781 2782 if (SCX_HAS_OP(sch, enable)) 2783 SCX_CALL_OP_TASK(sch, SCX_KF_REST, enable, rq, p); 2784 scx_set_task_state(p, SCX_TASK_ENABLED); 2785 2786 if (SCX_HAS_OP(sch, set_weight)) 2787 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq, 2788 p, p->scx.weight); 2789 } 2790 2791 static void scx_disable_task(struct task_struct *p) 2792 { 2793 struct scx_sched *sch = scx_root; 2794 struct rq *rq = task_rq(p); 2795 2796 lockdep_assert_rq_held(rq); 2797 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 2798 2799 if (SCX_HAS_OP(sch, disable)) 2800 SCX_CALL_OP_TASK(sch, SCX_KF_REST, disable, rq, p); 2801 scx_set_task_state(p, SCX_TASK_READY); 2802 } 2803 2804 static void scx_exit_task(struct task_struct *p) 2805 { 2806 struct scx_sched *sch = scx_root; 2807 struct scx_exit_task_args args = { 2808 .cancelled = false, 2809 }; 2810 2811 lockdep_assert_rq_held(task_rq(p)); 2812 2813 switch (scx_get_task_state(p)) { 2814 case SCX_TASK_NONE: 2815 return; 2816 case SCX_TASK_INIT: 2817 args.cancelled = true; 2818 break; 2819 case SCX_TASK_READY: 2820 break; 2821 case SCX_TASK_ENABLED: 2822 scx_disable_task(p); 2823 break; 2824 default: 2825 WARN_ON_ONCE(true); 2826 return; 2827 } 2828 2829 if (SCX_HAS_OP(sch, exit_task)) 2830 SCX_CALL_OP_TASK(sch, SCX_KF_REST, exit_task, task_rq(p), 2831 p, &args); 2832 scx_set_task_state(p, SCX_TASK_NONE); 2833 } 2834 2835 void init_scx_entity(struct sched_ext_entity *scx) 2836 { 2837 memset(scx, 0, sizeof(*scx)); 2838 INIT_LIST_HEAD(&scx->dsq_list.node); 2839 RB_CLEAR_NODE(&scx->dsq_priq); 2840 scx->sticky_cpu = -1; 2841 scx->holding_cpu = -1; 2842 INIT_LIST_HEAD(&scx->runnable_node); 2843 scx->runnable_at = jiffies; 2844 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 2845 scx->slice = SCX_SLICE_DFL; 2846 } 2847 2848 void scx_pre_fork(struct task_struct *p) 2849 { 2850 /* 2851 * BPF scheduler enable/disable paths want to be able to iterate and 2852 * update all tasks which can become complex when racing forks. As 2853 * enable/disable are very cold paths, let's use a percpu_rwsem to 2854 * exclude forks. 2855 */ 2856 percpu_down_read(&scx_fork_rwsem); 2857 } 2858 2859 int scx_fork(struct task_struct *p) 2860 { 2861 percpu_rwsem_assert_held(&scx_fork_rwsem); 2862 2863 if (scx_init_task_enabled) 2864 return scx_init_task(p, task_group(p), true); 2865 else 2866 return 0; 2867 } 2868 2869 void scx_post_fork(struct task_struct *p) 2870 { 2871 if (scx_init_task_enabled) { 2872 scx_set_task_state(p, SCX_TASK_READY); 2873 2874 /* 2875 * Enable the task immediately if it's running on sched_ext. 2876 * Otherwise, it'll be enabled in switching_to_scx() if and 2877 * when it's ever configured to run with a SCHED_EXT policy. 2878 */ 2879 if (p->sched_class == &ext_sched_class) { 2880 struct rq_flags rf; 2881 struct rq *rq; 2882 2883 rq = task_rq_lock(p, &rf); 2884 scx_enable_task(p); 2885 task_rq_unlock(rq, p, &rf); 2886 } 2887 } 2888 2889 raw_spin_lock_irq(&scx_tasks_lock); 2890 list_add_tail(&p->scx.tasks_node, &scx_tasks); 2891 raw_spin_unlock_irq(&scx_tasks_lock); 2892 2893 percpu_up_read(&scx_fork_rwsem); 2894 } 2895 2896 void scx_cancel_fork(struct task_struct *p) 2897 { 2898 if (scx_enabled()) { 2899 struct rq *rq; 2900 struct rq_flags rf; 2901 2902 rq = task_rq_lock(p, &rf); 2903 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 2904 scx_exit_task(p); 2905 task_rq_unlock(rq, p, &rf); 2906 } 2907 2908 percpu_up_read(&scx_fork_rwsem); 2909 } 2910 2911 void sched_ext_free(struct task_struct *p) 2912 { 2913 unsigned long flags; 2914 2915 raw_spin_lock_irqsave(&scx_tasks_lock, flags); 2916 list_del_init(&p->scx.tasks_node); 2917 raw_spin_unlock_irqrestore(&scx_tasks_lock, flags); 2918 2919 /* 2920 * @p is off scx_tasks and wholly ours. scx_enable()'s READY -> ENABLED 2921 * transitions can't race us. Disable ops for @p. 2922 */ 2923 if (scx_get_task_state(p) != SCX_TASK_NONE) { 2924 struct rq_flags rf; 2925 struct rq *rq; 2926 2927 rq = task_rq_lock(p, &rf); 2928 scx_exit_task(p); 2929 task_rq_unlock(rq, p, &rf); 2930 } 2931 } 2932 2933 static void reweight_task_scx(struct rq *rq, struct task_struct *p, 2934 const struct load_weight *lw) 2935 { 2936 struct scx_sched *sch = scx_root; 2937 2938 lockdep_assert_rq_held(task_rq(p)); 2939 2940 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); 2941 if (SCX_HAS_OP(sch, set_weight)) 2942 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq, 2943 p, p->scx.weight); 2944 } 2945 2946 static void prio_changed_scx(struct rq *rq, struct task_struct *p, u64 oldprio) 2947 { 2948 } 2949 2950 static void switching_to_scx(struct rq *rq, struct task_struct *p) 2951 { 2952 struct scx_sched *sch = scx_root; 2953 2954 scx_enable_task(p); 2955 2956 /* 2957 * set_cpus_allowed_scx() is not called while @p is associated with a 2958 * different scheduler class. Keep the BPF scheduler up-to-date. 2959 */ 2960 if (SCX_HAS_OP(sch, set_cpumask)) 2961 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, rq, 2962 p, (struct cpumask *)p->cpus_ptr); 2963 } 2964 2965 static void switched_from_scx(struct rq *rq, struct task_struct *p) 2966 { 2967 scx_disable_task(p); 2968 } 2969 2970 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 2971 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 2972 2973 int scx_check_setscheduler(struct task_struct *p, int policy) 2974 { 2975 lockdep_assert_rq_held(task_rq(p)); 2976 2977 /* if disallow, reject transitioning into SCX */ 2978 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 2979 p->policy != policy && policy == SCHED_EXT) 2980 return -EACCES; 2981 2982 return 0; 2983 } 2984 2985 #ifdef CONFIG_NO_HZ_FULL 2986 bool scx_can_stop_tick(struct rq *rq) 2987 { 2988 struct task_struct *p = rq->curr; 2989 2990 if (scx_rq_bypassing(rq)) 2991 return false; 2992 2993 if (p->sched_class != &ext_sched_class) 2994 return true; 2995 2996 /* 2997 * @rq can dispatch from different DSQs, so we can't tell whether it 2998 * needs the tick or not by looking at nr_running. Allow stopping ticks 2999 * iff the BPF scheduler indicated so. See set_next_task_scx(). 3000 */ 3001 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 3002 } 3003 #endif 3004 3005 #ifdef CONFIG_EXT_GROUP_SCHED 3006 3007 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_ops_rwsem); 3008 static bool scx_cgroup_enabled; 3009 3010 void scx_tg_init(struct task_group *tg) 3011 { 3012 tg->scx.weight = CGROUP_WEIGHT_DFL; 3013 tg->scx.bw_period_us = default_bw_period_us(); 3014 tg->scx.bw_quota_us = RUNTIME_INF; 3015 } 3016 3017 int scx_tg_online(struct task_group *tg) 3018 { 3019 struct scx_sched *sch = scx_root; 3020 int ret = 0; 3021 3022 WARN_ON_ONCE(tg->scx.flags & (SCX_TG_ONLINE | SCX_TG_INITED)); 3023 3024 if (scx_cgroup_enabled) { 3025 if (SCX_HAS_OP(sch, cgroup_init)) { 3026 struct scx_cgroup_init_args args = 3027 { .weight = tg->scx.weight, 3028 .bw_period_us = tg->scx.bw_period_us, 3029 .bw_quota_us = tg->scx.bw_quota_us, 3030 .bw_burst_us = tg->scx.bw_burst_us }; 3031 3032 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, 3033 NULL, tg->css.cgroup, &args); 3034 if (ret) 3035 ret = ops_sanitize_err(sch, "cgroup_init", ret); 3036 } 3037 if (ret == 0) 3038 tg->scx.flags |= SCX_TG_ONLINE | SCX_TG_INITED; 3039 } else { 3040 tg->scx.flags |= SCX_TG_ONLINE; 3041 } 3042 3043 return ret; 3044 } 3045 3046 void scx_tg_offline(struct task_group *tg) 3047 { 3048 struct scx_sched *sch = scx_root; 3049 3050 WARN_ON_ONCE(!(tg->scx.flags & SCX_TG_ONLINE)); 3051 3052 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_exit) && 3053 (tg->scx.flags & SCX_TG_INITED)) 3054 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL, 3055 tg->css.cgroup); 3056 tg->scx.flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); 3057 } 3058 3059 int scx_cgroup_can_attach(struct cgroup_taskset *tset) 3060 { 3061 struct scx_sched *sch = scx_root; 3062 struct cgroup_subsys_state *css; 3063 struct task_struct *p; 3064 int ret; 3065 3066 if (!scx_cgroup_enabled) 3067 return 0; 3068 3069 cgroup_taskset_for_each(p, css, tset) { 3070 struct cgroup *from = tg_cgrp(task_group(p)); 3071 struct cgroup *to = tg_cgrp(css_tg(css)); 3072 3073 WARN_ON_ONCE(p->scx.cgrp_moving_from); 3074 3075 /* 3076 * sched_move_task() omits identity migrations. Let's match the 3077 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() 3078 * always match one-to-one. 3079 */ 3080 if (from == to) 3081 continue; 3082 3083 if (SCX_HAS_OP(sch, cgroup_prep_move)) { 3084 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, 3085 cgroup_prep_move, NULL, 3086 p, from, css->cgroup); 3087 if (ret) 3088 goto err; 3089 } 3090 3091 p->scx.cgrp_moving_from = from; 3092 } 3093 3094 return 0; 3095 3096 err: 3097 cgroup_taskset_for_each(p, css, tset) { 3098 if (SCX_HAS_OP(sch, cgroup_cancel_move) && 3099 p->scx.cgrp_moving_from) 3100 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL, 3101 p, p->scx.cgrp_moving_from, css->cgroup); 3102 p->scx.cgrp_moving_from = NULL; 3103 } 3104 3105 return ops_sanitize_err(sch, "cgroup_prep_move", ret); 3106 } 3107 3108 void scx_cgroup_move_task(struct task_struct *p) 3109 { 3110 struct scx_sched *sch = scx_root; 3111 3112 if (!scx_cgroup_enabled) 3113 return; 3114 3115 /* 3116 * @p must have ops.cgroup_prep_move() called on it and thus 3117 * cgrp_moving_from set. 3118 */ 3119 if (SCX_HAS_OP(sch, cgroup_move) && 3120 !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) 3121 SCX_CALL_OP_TASK(sch, SCX_KF_UNLOCKED, cgroup_move, NULL, 3122 p, p->scx.cgrp_moving_from, 3123 tg_cgrp(task_group(p))); 3124 p->scx.cgrp_moving_from = NULL; 3125 } 3126 3127 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) 3128 { 3129 struct scx_sched *sch = scx_root; 3130 struct cgroup_subsys_state *css; 3131 struct task_struct *p; 3132 3133 if (!scx_cgroup_enabled) 3134 return; 3135 3136 cgroup_taskset_for_each(p, css, tset) { 3137 if (SCX_HAS_OP(sch, cgroup_cancel_move) && 3138 p->scx.cgrp_moving_from) 3139 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL, 3140 p, p->scx.cgrp_moving_from, css->cgroup); 3141 p->scx.cgrp_moving_from = NULL; 3142 } 3143 } 3144 3145 void scx_group_set_weight(struct task_group *tg, unsigned long weight) 3146 { 3147 struct scx_sched *sch = scx_root; 3148 3149 percpu_down_read(&scx_cgroup_ops_rwsem); 3150 3151 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_weight) && 3152 tg->scx.weight != weight) 3153 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_weight, NULL, 3154 tg_cgrp(tg), weight); 3155 3156 tg->scx.weight = weight; 3157 3158 percpu_up_read(&scx_cgroup_ops_rwsem); 3159 } 3160 3161 void scx_group_set_idle(struct task_group *tg, bool idle) 3162 { 3163 /* TODO: Implement ops->cgroup_set_idle() */ 3164 } 3165 3166 void scx_group_set_bandwidth(struct task_group *tg, 3167 u64 period_us, u64 quota_us, u64 burst_us) 3168 { 3169 struct scx_sched *sch = scx_root; 3170 3171 percpu_down_read(&scx_cgroup_ops_rwsem); 3172 3173 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_bandwidth) && 3174 (tg->scx.bw_period_us != period_us || 3175 tg->scx.bw_quota_us != quota_us || 3176 tg->scx.bw_burst_us != burst_us)) 3177 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_bandwidth, NULL, 3178 tg_cgrp(tg), period_us, quota_us, burst_us); 3179 3180 tg->scx.bw_period_us = period_us; 3181 tg->scx.bw_quota_us = quota_us; 3182 tg->scx.bw_burst_us = burst_us; 3183 3184 percpu_up_read(&scx_cgroup_ops_rwsem); 3185 } 3186 3187 static void scx_cgroup_lock(void) 3188 { 3189 percpu_down_write(&scx_cgroup_ops_rwsem); 3190 cgroup_lock(); 3191 } 3192 3193 static void scx_cgroup_unlock(void) 3194 { 3195 cgroup_unlock(); 3196 percpu_up_write(&scx_cgroup_ops_rwsem); 3197 } 3198 3199 #else /* CONFIG_EXT_GROUP_SCHED */ 3200 3201 static void scx_cgroup_lock(void) {} 3202 static void scx_cgroup_unlock(void) {} 3203 3204 #endif /* CONFIG_EXT_GROUP_SCHED */ 3205 3206 /* 3207 * Omitted operations: 3208 * 3209 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 3210 * isn't tied to the CPU at that point. Preemption is implemented by resetting 3211 * the victim task's slice to 0 and triggering reschedule on the target CPU. 3212 * 3213 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 3214 * 3215 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 3216 * their current sched_class. Call them directly from sched core instead. 3217 */ 3218 DEFINE_SCHED_CLASS(ext) = { 3219 .queue_mask = 1, 3220 3221 .enqueue_task = enqueue_task_scx, 3222 .dequeue_task = dequeue_task_scx, 3223 .yield_task = yield_task_scx, 3224 .yield_to_task = yield_to_task_scx, 3225 3226 .wakeup_preempt = wakeup_preempt_scx, 3227 3228 .pick_task = pick_task_scx, 3229 3230 .put_prev_task = put_prev_task_scx, 3231 .set_next_task = set_next_task_scx, 3232 3233 .select_task_rq = select_task_rq_scx, 3234 .task_woken = task_woken_scx, 3235 .set_cpus_allowed = set_cpus_allowed_scx, 3236 3237 .rq_online = rq_online_scx, 3238 .rq_offline = rq_offline_scx, 3239 3240 .task_tick = task_tick_scx, 3241 3242 .switching_to = switching_to_scx, 3243 .switched_from = switched_from_scx, 3244 .switched_to = switched_to_scx, 3245 .reweight_task = reweight_task_scx, 3246 .prio_changed = prio_changed_scx, 3247 3248 .update_curr = update_curr_scx, 3249 3250 #ifdef CONFIG_UCLAMP_TASK 3251 .uclamp_enabled = 1, 3252 #endif 3253 }; 3254 3255 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 3256 { 3257 memset(dsq, 0, sizeof(*dsq)); 3258 3259 raw_spin_lock_init(&dsq->lock); 3260 INIT_LIST_HEAD(&dsq->list); 3261 dsq->id = dsq_id; 3262 } 3263 3264 static void free_dsq_irq_workfn(struct irq_work *irq_work) 3265 { 3266 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 3267 struct scx_dispatch_q *dsq, *tmp_dsq; 3268 3269 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 3270 kfree_rcu(dsq, rcu); 3271 } 3272 3273 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 3274 3275 static void destroy_dsq(struct scx_sched *sch, u64 dsq_id) 3276 { 3277 struct scx_dispatch_q *dsq; 3278 unsigned long flags; 3279 3280 rcu_read_lock(); 3281 3282 dsq = find_user_dsq(sch, dsq_id); 3283 if (!dsq) 3284 goto out_unlock_rcu; 3285 3286 raw_spin_lock_irqsave(&dsq->lock, flags); 3287 3288 if (dsq->nr) { 3289 scx_error(sch, "attempting to destroy in-use dsq 0x%016llx (nr=%u)", 3290 dsq->id, dsq->nr); 3291 goto out_unlock_dsq; 3292 } 3293 3294 if (rhashtable_remove_fast(&sch->dsq_hash, &dsq->hash_node, 3295 dsq_hash_params)) 3296 goto out_unlock_dsq; 3297 3298 /* 3299 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 3300 * queueing more tasks. As this function can be called from anywhere, 3301 * freeing is bounced through an irq work to avoid nesting RCU 3302 * operations inside scheduler locks. 3303 */ 3304 dsq->id = SCX_DSQ_INVALID; 3305 llist_add(&dsq->free_node, &dsqs_to_free); 3306 irq_work_queue(&free_dsq_irq_work); 3307 3308 out_unlock_dsq: 3309 raw_spin_unlock_irqrestore(&dsq->lock, flags); 3310 out_unlock_rcu: 3311 rcu_read_unlock(); 3312 } 3313 3314 #ifdef CONFIG_EXT_GROUP_SCHED 3315 static void scx_cgroup_exit(struct scx_sched *sch) 3316 { 3317 struct cgroup_subsys_state *css; 3318 3319 scx_cgroup_enabled = false; 3320 3321 /* 3322 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk 3323 * cgroups and exit all the inited ones, all online cgroups are exited. 3324 */ 3325 css_for_each_descendant_post(css, &root_task_group.css) { 3326 struct task_group *tg = css_tg(css); 3327 3328 if (!(tg->scx.flags & SCX_TG_INITED)) 3329 continue; 3330 tg->scx.flags &= ~SCX_TG_INITED; 3331 3332 if (!sch->ops.cgroup_exit) 3333 continue; 3334 3335 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL, 3336 css->cgroup); 3337 } 3338 } 3339 3340 static int scx_cgroup_init(struct scx_sched *sch) 3341 { 3342 struct cgroup_subsys_state *css; 3343 int ret; 3344 3345 /* 3346 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk 3347 * cgroups and init, all online cgroups are initialized. 3348 */ 3349 css_for_each_descendant_pre(css, &root_task_group.css) { 3350 struct task_group *tg = css_tg(css); 3351 struct scx_cgroup_init_args args = { 3352 .weight = tg->scx.weight, 3353 .bw_period_us = tg->scx.bw_period_us, 3354 .bw_quota_us = tg->scx.bw_quota_us, 3355 .bw_burst_us = tg->scx.bw_burst_us, 3356 }; 3357 3358 if ((tg->scx.flags & 3359 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) 3360 continue; 3361 3362 if (!sch->ops.cgroup_init) { 3363 tg->scx.flags |= SCX_TG_INITED; 3364 continue; 3365 } 3366 3367 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, NULL, 3368 css->cgroup, &args); 3369 if (ret) { 3370 css_put(css); 3371 scx_error(sch, "ops.cgroup_init() failed (%d)", ret); 3372 return ret; 3373 } 3374 tg->scx.flags |= SCX_TG_INITED; 3375 } 3376 3377 WARN_ON_ONCE(scx_cgroup_enabled); 3378 scx_cgroup_enabled = true; 3379 3380 return 0; 3381 } 3382 3383 #else 3384 static void scx_cgroup_exit(struct scx_sched *sch) {} 3385 static int scx_cgroup_init(struct scx_sched *sch) { return 0; } 3386 #endif 3387 3388 3389 /******************************************************************************** 3390 * Sysfs interface and ops enable/disable. 3391 */ 3392 3393 #define SCX_ATTR(_name) \ 3394 static struct kobj_attribute scx_attr_##_name = { \ 3395 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 3396 .show = scx_attr_##_name##_show, \ 3397 } 3398 3399 static ssize_t scx_attr_state_show(struct kobject *kobj, 3400 struct kobj_attribute *ka, char *buf) 3401 { 3402 return sysfs_emit(buf, "%s\n", scx_enable_state_str[scx_enable_state()]); 3403 } 3404 SCX_ATTR(state); 3405 3406 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 3407 struct kobj_attribute *ka, char *buf) 3408 { 3409 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 3410 } 3411 SCX_ATTR(switch_all); 3412 3413 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 3414 struct kobj_attribute *ka, char *buf) 3415 { 3416 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 3417 } 3418 SCX_ATTR(nr_rejected); 3419 3420 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, 3421 struct kobj_attribute *ka, char *buf) 3422 { 3423 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); 3424 } 3425 SCX_ATTR(hotplug_seq); 3426 3427 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj, 3428 struct kobj_attribute *ka, char *buf) 3429 { 3430 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq)); 3431 } 3432 SCX_ATTR(enable_seq); 3433 3434 static struct attribute *scx_global_attrs[] = { 3435 &scx_attr_state.attr, 3436 &scx_attr_switch_all.attr, 3437 &scx_attr_nr_rejected.attr, 3438 &scx_attr_hotplug_seq.attr, 3439 &scx_attr_enable_seq.attr, 3440 NULL, 3441 }; 3442 3443 static const struct attribute_group scx_global_attr_group = { 3444 .attrs = scx_global_attrs, 3445 }; 3446 3447 static void free_exit_info(struct scx_exit_info *ei); 3448 3449 static void scx_sched_free_rcu_work(struct work_struct *work) 3450 { 3451 struct rcu_work *rcu_work = to_rcu_work(work); 3452 struct scx_sched *sch = container_of(rcu_work, struct scx_sched, rcu_work); 3453 struct rhashtable_iter rht_iter; 3454 struct scx_dispatch_q *dsq; 3455 int node; 3456 3457 irq_work_sync(&sch->error_irq_work); 3458 kthread_stop(sch->helper->task); 3459 3460 free_percpu(sch->pcpu); 3461 3462 for_each_node_state(node, N_POSSIBLE) 3463 kfree(sch->global_dsqs[node]); 3464 kfree(sch->global_dsqs); 3465 3466 rhashtable_walk_enter(&sch->dsq_hash, &rht_iter); 3467 do { 3468 rhashtable_walk_start(&rht_iter); 3469 3470 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 3471 destroy_dsq(sch, dsq->id); 3472 3473 rhashtable_walk_stop(&rht_iter); 3474 } while (dsq == ERR_PTR(-EAGAIN)); 3475 rhashtable_walk_exit(&rht_iter); 3476 3477 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL); 3478 free_exit_info(sch->exit_info); 3479 kfree(sch); 3480 } 3481 3482 static void scx_kobj_release(struct kobject *kobj) 3483 { 3484 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj); 3485 3486 INIT_RCU_WORK(&sch->rcu_work, scx_sched_free_rcu_work); 3487 queue_rcu_work(system_unbound_wq, &sch->rcu_work); 3488 } 3489 3490 static ssize_t scx_attr_ops_show(struct kobject *kobj, 3491 struct kobj_attribute *ka, char *buf) 3492 { 3493 return sysfs_emit(buf, "%s\n", scx_root->ops.name); 3494 } 3495 SCX_ATTR(ops); 3496 3497 #define scx_attr_event_show(buf, at, events, kind) ({ \ 3498 sysfs_emit_at(buf, at, "%s %llu\n", #kind, (events)->kind); \ 3499 }) 3500 3501 static ssize_t scx_attr_events_show(struct kobject *kobj, 3502 struct kobj_attribute *ka, char *buf) 3503 { 3504 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj); 3505 struct scx_event_stats events; 3506 int at = 0; 3507 3508 scx_read_events(sch, &events); 3509 at += scx_attr_event_show(buf, at, &events, SCX_EV_SELECT_CPU_FALLBACK); 3510 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 3511 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_KEEP_LAST); 3512 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_EXITING); 3513 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 3514 at += scx_attr_event_show(buf, at, &events, SCX_EV_REFILL_SLICE_DFL); 3515 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DURATION); 3516 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DISPATCH); 3517 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_ACTIVATE); 3518 return at; 3519 } 3520 SCX_ATTR(events); 3521 3522 static struct attribute *scx_sched_attrs[] = { 3523 &scx_attr_ops.attr, 3524 &scx_attr_events.attr, 3525 NULL, 3526 }; 3527 ATTRIBUTE_GROUPS(scx_sched); 3528 3529 static const struct kobj_type scx_ktype = { 3530 .release = scx_kobj_release, 3531 .sysfs_ops = &kobj_sysfs_ops, 3532 .default_groups = scx_sched_groups, 3533 }; 3534 3535 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 3536 { 3537 return add_uevent_var(env, "SCXOPS=%s", scx_root->ops.name); 3538 } 3539 3540 static const struct kset_uevent_ops scx_uevent_ops = { 3541 .uevent = scx_uevent, 3542 }; 3543 3544 /* 3545 * Used by sched_fork() and __setscheduler_prio() to pick the matching 3546 * sched_class. dl/rt are already handled. 3547 */ 3548 bool task_should_scx(int policy) 3549 { 3550 if (!scx_enabled() || unlikely(scx_enable_state() == SCX_DISABLING)) 3551 return false; 3552 if (READ_ONCE(scx_switching_all)) 3553 return true; 3554 return policy == SCHED_EXT; 3555 } 3556 3557 bool scx_allow_ttwu_queue(const struct task_struct *p) 3558 { 3559 struct scx_sched *sch; 3560 3561 if (!scx_enabled()) 3562 return true; 3563 3564 sch = rcu_dereference_sched(scx_root); 3565 if (unlikely(!sch)) 3566 return true; 3567 3568 if (sch->ops.flags & SCX_OPS_ALLOW_QUEUED_WAKEUP) 3569 return true; 3570 3571 if (unlikely(p->sched_class != &ext_sched_class)) 3572 return true; 3573 3574 return false; 3575 } 3576 3577 /** 3578 * scx_rcu_cpu_stall - sched_ext RCU CPU stall handler 3579 * 3580 * While there are various reasons why RCU CPU stalls can occur on a system 3581 * that may not be caused by the current BPF scheduler, try kicking out the 3582 * current scheduler in an attempt to recover the system to a good state before 3583 * issuing panics. 3584 */ 3585 bool scx_rcu_cpu_stall(void) 3586 { 3587 struct scx_sched *sch; 3588 3589 rcu_read_lock(); 3590 3591 sch = rcu_dereference(scx_root); 3592 if (unlikely(!sch)) { 3593 rcu_read_unlock(); 3594 return false; 3595 } 3596 3597 switch (scx_enable_state()) { 3598 case SCX_ENABLING: 3599 case SCX_ENABLED: 3600 break; 3601 default: 3602 rcu_read_unlock(); 3603 return false; 3604 } 3605 3606 scx_error(sch, "RCU CPU stall detected!"); 3607 rcu_read_unlock(); 3608 3609 return true; 3610 } 3611 3612 /** 3613 * scx_softlockup - sched_ext softlockup handler 3614 * @dur_s: number of seconds of CPU stuck due to soft lockup 3615 * 3616 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can 3617 * live-lock the system by making many CPUs target the same DSQ to the point 3618 * where soft-lockup detection triggers. This function is called from 3619 * soft-lockup watchdog when the triggering point is close and tries to unjam 3620 * the system by enabling the breather and aborting the BPF scheduler. 3621 */ 3622 void scx_softlockup(u32 dur_s) 3623 { 3624 struct scx_sched *sch; 3625 3626 rcu_read_lock(); 3627 3628 sch = rcu_dereference(scx_root); 3629 if (unlikely(!sch)) 3630 goto out_unlock; 3631 3632 switch (scx_enable_state()) { 3633 case SCX_ENABLING: 3634 case SCX_ENABLED: 3635 break; 3636 default: 3637 goto out_unlock; 3638 } 3639 3640 /* allow only one instance, cleared at the end of scx_bypass() */ 3641 if (test_and_set_bit(0, &scx_in_softlockup)) 3642 goto out_unlock; 3643 3644 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n", 3645 smp_processor_id(), dur_s, scx_root->ops.name); 3646 3647 /* 3648 * Some CPUs may be trapped in the dispatch paths. Enable breather 3649 * immediately; otherwise, we might even be able to get to scx_bypass(). 3650 */ 3651 atomic_inc(&scx_breather_depth); 3652 3653 scx_error(sch, "soft lockup - CPU#%d stuck for %us", smp_processor_id(), dur_s); 3654 out_unlock: 3655 rcu_read_unlock(); 3656 } 3657 3658 static void scx_clear_softlockup(void) 3659 { 3660 if (test_and_clear_bit(0, &scx_in_softlockup)) 3661 atomic_dec(&scx_breather_depth); 3662 } 3663 3664 /** 3665 * scx_bypass - [Un]bypass scx_ops and guarantee forward progress 3666 * @bypass: true for bypass, false for unbypass 3667 * 3668 * Bypassing guarantees that all runnable tasks make forward progress without 3669 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 3670 * be held by tasks that the BPF scheduler is forgetting to run, which 3671 * unfortunately also excludes toggling the static branches. 3672 * 3673 * Let's work around by overriding a couple ops and modifying behaviors based on 3674 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 3675 * to force global FIFO scheduling. 3676 * 3677 * - ops.select_cpu() is ignored and the default select_cpu() is used. 3678 * 3679 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 3680 * %SCX_OPS_ENQ_LAST is also ignored. 3681 * 3682 * - ops.dispatch() is ignored. 3683 * 3684 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice 3685 * can't be trusted. Whenever a tick triggers, the running task is rotated to 3686 * the tail of the queue with core_sched_at touched. 3687 * 3688 * - pick_next_task() suppresses zero slice warning. 3689 * 3690 * - scx_kick_cpu() is disabled to avoid irq_work malfunction during PM 3691 * operations. 3692 * 3693 * - scx_prio_less() reverts to the default core_sched_at order. 3694 */ 3695 static void scx_bypass(bool bypass) 3696 { 3697 static DEFINE_RAW_SPINLOCK(bypass_lock); 3698 static unsigned long bypass_timestamp; 3699 struct scx_sched *sch; 3700 unsigned long flags; 3701 int cpu; 3702 3703 raw_spin_lock_irqsave(&bypass_lock, flags); 3704 sch = rcu_dereference_bh(scx_root); 3705 3706 if (bypass) { 3707 scx_bypass_depth++; 3708 WARN_ON_ONCE(scx_bypass_depth <= 0); 3709 if (scx_bypass_depth != 1) 3710 goto unlock; 3711 bypass_timestamp = ktime_get_ns(); 3712 if (sch) 3713 scx_add_event(sch, SCX_EV_BYPASS_ACTIVATE, 1); 3714 } else { 3715 scx_bypass_depth--; 3716 WARN_ON_ONCE(scx_bypass_depth < 0); 3717 if (scx_bypass_depth != 0) 3718 goto unlock; 3719 if (sch) 3720 scx_add_event(sch, SCX_EV_BYPASS_DURATION, 3721 ktime_get_ns() - bypass_timestamp); 3722 } 3723 3724 atomic_inc(&scx_breather_depth); 3725 3726 /* 3727 * No task property is changing. We just need to make sure all currently 3728 * queued tasks are re-queued according to the new scx_rq_bypassing() 3729 * state. As an optimization, walk each rq's runnable_list instead of 3730 * the scx_tasks list. 3731 * 3732 * This function can't trust the scheduler and thus can't use 3733 * cpus_read_lock(). Walk all possible CPUs instead of online. 3734 */ 3735 for_each_possible_cpu(cpu) { 3736 struct rq *rq = cpu_rq(cpu); 3737 struct task_struct *p, *n; 3738 3739 raw_spin_rq_lock(rq); 3740 3741 if (bypass) { 3742 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); 3743 rq->scx.flags |= SCX_RQ_BYPASSING; 3744 } else { 3745 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); 3746 rq->scx.flags &= ~SCX_RQ_BYPASSING; 3747 } 3748 3749 /* 3750 * We need to guarantee that no tasks are on the BPF scheduler 3751 * while bypassing. Either we see enabled or the enable path 3752 * sees scx_rq_bypassing() before moving tasks to SCX. 3753 */ 3754 if (!scx_enabled()) { 3755 raw_spin_rq_unlock(rq); 3756 continue; 3757 } 3758 3759 /* 3760 * The use of list_for_each_entry_safe_reverse() is required 3761 * because each task is going to be removed from and added back 3762 * to the runnable_list during iteration. Because they're added 3763 * to the tail of the list, safe reverse iteration can still 3764 * visit all nodes. 3765 */ 3766 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 3767 scx.runnable_node) { 3768 /* cycling deq/enq is enough, see the function comment */ 3769 scoped_guard (sched_change, p, DEQUEUE_SAVE | DEQUEUE_MOVE) { 3770 /* nothing */ ; 3771 } 3772 } 3773 3774 /* resched to restore ticks and idle state */ 3775 if (cpu_online(cpu) || cpu == smp_processor_id()) 3776 resched_curr(rq); 3777 3778 raw_spin_rq_unlock(rq); 3779 } 3780 3781 atomic_dec(&scx_breather_depth); 3782 unlock: 3783 raw_spin_unlock_irqrestore(&bypass_lock, flags); 3784 scx_clear_softlockup(); 3785 } 3786 3787 static void free_exit_info(struct scx_exit_info *ei) 3788 { 3789 kvfree(ei->dump); 3790 kfree(ei->msg); 3791 kfree(ei->bt); 3792 kfree(ei); 3793 } 3794 3795 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 3796 { 3797 struct scx_exit_info *ei; 3798 3799 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 3800 if (!ei) 3801 return NULL; 3802 3803 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); 3804 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 3805 ei->dump = kvzalloc(exit_dump_len, GFP_KERNEL); 3806 3807 if (!ei->bt || !ei->msg || !ei->dump) { 3808 free_exit_info(ei); 3809 return NULL; 3810 } 3811 3812 return ei; 3813 } 3814 3815 static const char *scx_exit_reason(enum scx_exit_kind kind) 3816 { 3817 switch (kind) { 3818 case SCX_EXIT_UNREG: 3819 return "unregistered from user space"; 3820 case SCX_EXIT_UNREG_BPF: 3821 return "unregistered from BPF"; 3822 case SCX_EXIT_UNREG_KERN: 3823 return "unregistered from the main kernel"; 3824 case SCX_EXIT_SYSRQ: 3825 return "disabled by sysrq-S"; 3826 case SCX_EXIT_ERROR: 3827 return "runtime error"; 3828 case SCX_EXIT_ERROR_BPF: 3829 return "scx_bpf_error"; 3830 case SCX_EXIT_ERROR_STALL: 3831 return "runnable task stall"; 3832 default: 3833 return "<UNKNOWN>"; 3834 } 3835 } 3836 3837 static void free_kick_pseqs_rcu(struct rcu_head *rcu) 3838 { 3839 struct scx_kick_pseqs *pseqs = container_of(rcu, struct scx_kick_pseqs, rcu); 3840 3841 kvfree(pseqs); 3842 } 3843 3844 static void free_kick_pseqs(void) 3845 { 3846 int cpu; 3847 3848 for_each_possible_cpu(cpu) { 3849 struct scx_kick_pseqs **pseqs = per_cpu_ptr(&scx_kick_pseqs, cpu); 3850 struct scx_kick_pseqs *to_free; 3851 3852 to_free = rcu_replace_pointer(*pseqs, NULL, true); 3853 if (to_free) 3854 call_rcu(&to_free->rcu, free_kick_pseqs_rcu); 3855 } 3856 } 3857 3858 static void scx_disable_workfn(struct kthread_work *work) 3859 { 3860 struct scx_sched *sch = container_of(work, struct scx_sched, disable_work); 3861 struct scx_exit_info *ei = sch->exit_info; 3862 struct scx_task_iter sti; 3863 struct task_struct *p; 3864 int kind, cpu; 3865 3866 kind = atomic_read(&sch->exit_kind); 3867 while (true) { 3868 if (kind == SCX_EXIT_DONE) /* already disabled? */ 3869 return; 3870 WARN_ON_ONCE(kind == SCX_EXIT_NONE); 3871 if (atomic_try_cmpxchg(&sch->exit_kind, &kind, SCX_EXIT_DONE)) 3872 break; 3873 } 3874 ei->kind = kind; 3875 ei->reason = scx_exit_reason(ei->kind); 3876 3877 /* guarantee forward progress by bypassing scx_ops */ 3878 scx_bypass(true); 3879 3880 switch (scx_set_enable_state(SCX_DISABLING)) { 3881 case SCX_DISABLING: 3882 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 3883 break; 3884 case SCX_DISABLED: 3885 pr_warn("sched_ext: ops error detected without ops (%s)\n", 3886 sch->exit_info->msg); 3887 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING); 3888 goto done; 3889 default: 3890 break; 3891 } 3892 3893 /* 3894 * Here, every runnable task is guaranteed to make forward progress and 3895 * we can safely use blocking synchronization constructs. Actually 3896 * disable ops. 3897 */ 3898 mutex_lock(&scx_enable_mutex); 3899 3900 static_branch_disable(&__scx_switched_all); 3901 WRITE_ONCE(scx_switching_all, false); 3902 3903 /* 3904 * Shut down cgroup support before tasks so that the cgroup attach path 3905 * doesn't race against scx_exit_task(). 3906 */ 3907 scx_cgroup_lock(); 3908 scx_cgroup_exit(sch); 3909 scx_cgroup_unlock(); 3910 3911 /* 3912 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones 3913 * must be switched out and exited synchronously. 3914 */ 3915 percpu_down_write(&scx_fork_rwsem); 3916 3917 scx_init_task_enabled = false; 3918 3919 scx_task_iter_start(&sti); 3920 while ((p = scx_task_iter_next_locked(&sti))) { 3921 unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3922 const struct sched_class *old_class = p->sched_class; 3923 const struct sched_class *new_class = 3924 __setscheduler_class(p->policy, p->prio); 3925 3926 update_rq_clock(task_rq(p)); 3927 3928 if (old_class != new_class) 3929 queue_flags |= DEQUEUE_CLASS; 3930 3931 scoped_guard (sched_change, p, queue_flags) { 3932 p->sched_class = new_class; 3933 } 3934 3935 scx_exit_task(p); 3936 } 3937 scx_task_iter_stop(&sti); 3938 percpu_up_write(&scx_fork_rwsem); 3939 3940 /* 3941 * Invalidate all the rq clocks to prevent getting outdated 3942 * rq clocks from a previous scx scheduler. 3943 */ 3944 for_each_possible_cpu(cpu) { 3945 struct rq *rq = cpu_rq(cpu); 3946 scx_rq_clock_invalidate(rq); 3947 } 3948 3949 /* no task is on scx, turn off all the switches and flush in-progress calls */ 3950 static_branch_disable(&__scx_enabled); 3951 bitmap_zero(sch->has_op, SCX_OPI_END); 3952 scx_idle_disable(); 3953 synchronize_rcu(); 3954 3955 if (ei->kind >= SCX_EXIT_ERROR) { 3956 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 3957 sch->ops.name, ei->reason); 3958 3959 if (ei->msg[0] != '\0') 3960 pr_err("sched_ext: %s: %s\n", sch->ops.name, ei->msg); 3961 #ifdef CONFIG_STACKTRACE 3962 stack_trace_print(ei->bt, ei->bt_len, 2); 3963 #endif 3964 } else { 3965 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 3966 sch->ops.name, ei->reason); 3967 } 3968 3969 if (sch->ops.exit) 3970 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, exit, NULL, ei); 3971 3972 cancel_delayed_work_sync(&scx_watchdog_work); 3973 3974 /* 3975 * scx_root clearing must be inside cpus_read_lock(). See 3976 * handle_hotplug(). 3977 */ 3978 cpus_read_lock(); 3979 RCU_INIT_POINTER(scx_root, NULL); 3980 cpus_read_unlock(); 3981 3982 /* 3983 * Delete the kobject from the hierarchy synchronously. Otherwise, sysfs 3984 * could observe an object of the same name still in the hierarchy when 3985 * the next scheduler is loaded. 3986 */ 3987 kobject_del(&sch->kobj); 3988 3989 free_percpu(scx_dsp_ctx); 3990 scx_dsp_ctx = NULL; 3991 scx_dsp_max_batch = 0; 3992 free_kick_pseqs(); 3993 3994 mutex_unlock(&scx_enable_mutex); 3995 3996 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING); 3997 done: 3998 scx_bypass(false); 3999 } 4000 4001 static void scx_disable(enum scx_exit_kind kind) 4002 { 4003 int none = SCX_EXIT_NONE; 4004 struct scx_sched *sch; 4005 4006 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 4007 kind = SCX_EXIT_ERROR; 4008 4009 rcu_read_lock(); 4010 sch = rcu_dereference(scx_root); 4011 if (sch) { 4012 atomic_try_cmpxchg(&sch->exit_kind, &none, kind); 4013 kthread_queue_work(sch->helper, &sch->disable_work); 4014 } 4015 rcu_read_unlock(); 4016 } 4017 4018 static void dump_newline(struct seq_buf *s) 4019 { 4020 trace_sched_ext_dump(""); 4021 4022 /* @s may be zero sized and seq_buf triggers WARN if so */ 4023 if (s->size) 4024 seq_buf_putc(s, '\n'); 4025 } 4026 4027 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 4028 { 4029 va_list args; 4030 4031 #ifdef CONFIG_TRACEPOINTS 4032 if (trace_sched_ext_dump_enabled()) { 4033 /* protected by scx_dump_state()::dump_lock */ 4034 static char line_buf[SCX_EXIT_MSG_LEN]; 4035 4036 va_start(args, fmt); 4037 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 4038 va_end(args); 4039 4040 trace_sched_ext_dump(line_buf); 4041 } 4042 #endif 4043 /* @s may be zero sized and seq_buf triggers WARN if so */ 4044 if (s->size) { 4045 va_start(args, fmt); 4046 seq_buf_vprintf(s, fmt, args); 4047 va_end(args); 4048 4049 seq_buf_putc(s, '\n'); 4050 } 4051 } 4052 4053 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 4054 const unsigned long *bt, unsigned int len) 4055 { 4056 unsigned int i; 4057 4058 for (i = 0; i < len; i++) 4059 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 4060 } 4061 4062 static void ops_dump_init(struct seq_buf *s, const char *prefix) 4063 { 4064 struct scx_dump_data *dd = &scx_dump_data; 4065 4066 lockdep_assert_irqs_disabled(); 4067 4068 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 4069 dd->first = true; 4070 dd->cursor = 0; 4071 dd->s = s; 4072 dd->prefix = prefix; 4073 } 4074 4075 static void ops_dump_flush(void) 4076 { 4077 struct scx_dump_data *dd = &scx_dump_data; 4078 char *line = dd->buf.line; 4079 4080 if (!dd->cursor) 4081 return; 4082 4083 /* 4084 * There's something to flush and this is the first line. Insert a blank 4085 * line to distinguish ops dump. 4086 */ 4087 if (dd->first) { 4088 dump_newline(dd->s); 4089 dd->first = false; 4090 } 4091 4092 /* 4093 * There may be multiple lines in $line. Scan and emit each line 4094 * separately. 4095 */ 4096 while (true) { 4097 char *end = line; 4098 char c; 4099 4100 while (*end != '\n' && *end != '\0') 4101 end++; 4102 4103 /* 4104 * If $line overflowed, it may not have newline at the end. 4105 * Always emit with a newline. 4106 */ 4107 c = *end; 4108 *end = '\0'; 4109 dump_line(dd->s, "%s%s", dd->prefix, line); 4110 if (c == '\0') 4111 break; 4112 4113 /* move to the next line */ 4114 end++; 4115 if (*end == '\0') 4116 break; 4117 line = end; 4118 } 4119 4120 dd->cursor = 0; 4121 } 4122 4123 static void ops_dump_exit(void) 4124 { 4125 ops_dump_flush(); 4126 scx_dump_data.cpu = -1; 4127 } 4128 4129 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 4130 struct task_struct *p, char marker) 4131 { 4132 static unsigned long bt[SCX_EXIT_BT_LEN]; 4133 struct scx_sched *sch = scx_root; 4134 char dsq_id_buf[19] = "(n/a)"; 4135 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 4136 unsigned int bt_len = 0; 4137 4138 if (p->scx.dsq) 4139 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 4140 (unsigned long long)p->scx.dsq->id); 4141 4142 dump_newline(s); 4143 dump_line(s, " %c%c %s[%d] %+ldms", 4144 marker, task_state_to_char(p), p->comm, p->pid, 4145 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 4146 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", 4147 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 4148 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, 4149 ops_state >> SCX_OPSS_QSEQ_SHIFT); 4150 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s", 4151 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf); 4152 dump_line(s, " dsq_vtime=%llu slice=%llu weight=%u", 4153 p->scx.dsq_vtime, p->scx.slice, p->scx.weight); 4154 dump_line(s, " cpus=%*pb no_mig=%u", cpumask_pr_args(p->cpus_ptr), 4155 p->migration_disabled); 4156 4157 if (SCX_HAS_OP(sch, dump_task)) { 4158 ops_dump_init(s, " "); 4159 SCX_CALL_OP(sch, SCX_KF_REST, dump_task, NULL, dctx, p); 4160 ops_dump_exit(); 4161 } 4162 4163 #ifdef CONFIG_STACKTRACE 4164 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 4165 #endif 4166 if (bt_len) { 4167 dump_newline(s); 4168 dump_stack_trace(s, " ", bt, bt_len); 4169 } 4170 } 4171 4172 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 4173 { 4174 static DEFINE_SPINLOCK(dump_lock); 4175 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 4176 struct scx_sched *sch = scx_root; 4177 struct scx_dump_ctx dctx = { 4178 .kind = ei->kind, 4179 .exit_code = ei->exit_code, 4180 .reason = ei->reason, 4181 .at_ns = ktime_get_ns(), 4182 .at_jiffies = jiffies, 4183 }; 4184 struct seq_buf s; 4185 struct scx_event_stats events; 4186 unsigned long flags; 4187 char *buf; 4188 int cpu; 4189 4190 spin_lock_irqsave(&dump_lock, flags); 4191 4192 seq_buf_init(&s, ei->dump, dump_len); 4193 4194 if (ei->kind == SCX_EXIT_NONE) { 4195 dump_line(&s, "Debug dump triggered by %s", ei->reason); 4196 } else { 4197 dump_line(&s, "%s[%d] triggered exit kind %d:", 4198 current->comm, current->pid, ei->kind); 4199 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 4200 dump_newline(&s); 4201 dump_line(&s, "Backtrace:"); 4202 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 4203 } 4204 4205 if (SCX_HAS_OP(sch, dump)) { 4206 ops_dump_init(&s, ""); 4207 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, dump, NULL, &dctx); 4208 ops_dump_exit(); 4209 } 4210 4211 dump_newline(&s); 4212 dump_line(&s, "CPU states"); 4213 dump_line(&s, "----------"); 4214 4215 for_each_possible_cpu(cpu) { 4216 struct rq *rq = cpu_rq(cpu); 4217 struct rq_flags rf; 4218 struct task_struct *p; 4219 struct seq_buf ns; 4220 size_t avail, used; 4221 bool idle; 4222 4223 rq_lock_irqsave(rq, &rf); 4224 4225 idle = list_empty(&rq->scx.runnable_list) && 4226 rq->curr->sched_class == &idle_sched_class; 4227 4228 if (idle && !SCX_HAS_OP(sch, dump_cpu)) 4229 goto next; 4230 4231 /* 4232 * We don't yet know whether ops.dump_cpu() will produce output 4233 * and we may want to skip the default CPU dump if it doesn't. 4234 * Use a nested seq_buf to generate the standard dump so that we 4235 * can decide whether to commit later. 4236 */ 4237 avail = seq_buf_get_buf(&s, &buf); 4238 seq_buf_init(&ns, buf, avail); 4239 4240 dump_newline(&ns); 4241 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", 4242 cpu, rq->scx.nr_running, rq->scx.flags, 4243 rq->scx.cpu_released, rq->scx.ops_qseq, 4244 rq->scx.pnt_seq); 4245 dump_line(&ns, " curr=%s[%d] class=%ps", 4246 rq->curr->comm, rq->curr->pid, 4247 rq->curr->sched_class); 4248 if (!cpumask_empty(rq->scx.cpus_to_kick)) 4249 dump_line(&ns, " cpus_to_kick : %*pb", 4250 cpumask_pr_args(rq->scx.cpus_to_kick)); 4251 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 4252 dump_line(&ns, " idle_to_kick : %*pb", 4253 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 4254 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 4255 dump_line(&ns, " cpus_to_preempt: %*pb", 4256 cpumask_pr_args(rq->scx.cpus_to_preempt)); 4257 if (!cpumask_empty(rq->scx.cpus_to_wait)) 4258 dump_line(&ns, " cpus_to_wait : %*pb", 4259 cpumask_pr_args(rq->scx.cpus_to_wait)); 4260 4261 used = seq_buf_used(&ns); 4262 if (SCX_HAS_OP(sch, dump_cpu)) { 4263 ops_dump_init(&ns, " "); 4264 SCX_CALL_OP(sch, SCX_KF_REST, dump_cpu, NULL, 4265 &dctx, cpu, idle); 4266 ops_dump_exit(); 4267 } 4268 4269 /* 4270 * If idle && nothing generated by ops.dump_cpu(), there's 4271 * nothing interesting. Skip. 4272 */ 4273 if (idle && used == seq_buf_used(&ns)) 4274 goto next; 4275 4276 /* 4277 * $s may already have overflowed when $ns was created. If so, 4278 * calling commit on it will trigger BUG. 4279 */ 4280 if (avail) { 4281 seq_buf_commit(&s, seq_buf_used(&ns)); 4282 if (seq_buf_has_overflowed(&ns)) 4283 seq_buf_set_overflow(&s); 4284 } 4285 4286 if (rq->curr->sched_class == &ext_sched_class) 4287 scx_dump_task(&s, &dctx, rq->curr, '*'); 4288 4289 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 4290 scx_dump_task(&s, &dctx, p, ' '); 4291 next: 4292 rq_unlock_irqrestore(rq, &rf); 4293 } 4294 4295 dump_newline(&s); 4296 dump_line(&s, "Event counters"); 4297 dump_line(&s, "--------------"); 4298 4299 scx_read_events(sch, &events); 4300 scx_dump_event(s, &events, SCX_EV_SELECT_CPU_FALLBACK); 4301 scx_dump_event(s, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 4302 scx_dump_event(s, &events, SCX_EV_DISPATCH_KEEP_LAST); 4303 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_EXITING); 4304 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 4305 scx_dump_event(s, &events, SCX_EV_REFILL_SLICE_DFL); 4306 scx_dump_event(s, &events, SCX_EV_BYPASS_DURATION); 4307 scx_dump_event(s, &events, SCX_EV_BYPASS_DISPATCH); 4308 scx_dump_event(s, &events, SCX_EV_BYPASS_ACTIVATE); 4309 4310 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 4311 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 4312 trunc_marker, sizeof(trunc_marker)); 4313 4314 spin_unlock_irqrestore(&dump_lock, flags); 4315 } 4316 4317 static void scx_error_irq_workfn(struct irq_work *irq_work) 4318 { 4319 struct scx_sched *sch = container_of(irq_work, struct scx_sched, error_irq_work); 4320 struct scx_exit_info *ei = sch->exit_info; 4321 4322 if (ei->kind >= SCX_EXIT_ERROR) 4323 scx_dump_state(ei, sch->ops.exit_dump_len); 4324 4325 kthread_queue_work(sch->helper, &sch->disable_work); 4326 } 4327 4328 static void scx_vexit(struct scx_sched *sch, 4329 enum scx_exit_kind kind, s64 exit_code, 4330 const char *fmt, va_list args) 4331 { 4332 struct scx_exit_info *ei = sch->exit_info; 4333 int none = SCX_EXIT_NONE; 4334 4335 if (!atomic_try_cmpxchg(&sch->exit_kind, &none, kind)) 4336 return; 4337 4338 ei->exit_code = exit_code; 4339 #ifdef CONFIG_STACKTRACE 4340 if (kind >= SCX_EXIT_ERROR) 4341 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 4342 #endif 4343 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 4344 4345 /* 4346 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 4347 * in scx_disable_workfn(). 4348 */ 4349 ei->kind = kind; 4350 ei->reason = scx_exit_reason(ei->kind); 4351 4352 irq_work_queue(&sch->error_irq_work); 4353 } 4354 4355 static int alloc_kick_pseqs(void) 4356 { 4357 int cpu; 4358 4359 /* 4360 * Allocate per-CPU arrays sized by nr_cpu_ids. Use kvzalloc as size 4361 * can exceed percpu allocator limits on large machines. 4362 */ 4363 for_each_possible_cpu(cpu) { 4364 struct scx_kick_pseqs **pseqs = per_cpu_ptr(&scx_kick_pseqs, cpu); 4365 struct scx_kick_pseqs *new_pseqs; 4366 4367 WARN_ON_ONCE(rcu_access_pointer(*pseqs)); 4368 4369 new_pseqs = kvzalloc_node(struct_size(new_pseqs, seqs, nr_cpu_ids), 4370 GFP_KERNEL, cpu_to_node(cpu)); 4371 if (!new_pseqs) { 4372 free_kick_pseqs(); 4373 return -ENOMEM; 4374 } 4375 4376 rcu_assign_pointer(*pseqs, new_pseqs); 4377 } 4378 4379 return 0; 4380 } 4381 4382 static struct scx_sched *scx_alloc_and_add_sched(struct sched_ext_ops *ops) 4383 { 4384 struct scx_sched *sch; 4385 int node, ret; 4386 4387 sch = kzalloc(sizeof(*sch), GFP_KERNEL); 4388 if (!sch) 4389 return ERR_PTR(-ENOMEM); 4390 4391 sch->exit_info = alloc_exit_info(ops->exit_dump_len); 4392 if (!sch->exit_info) { 4393 ret = -ENOMEM; 4394 goto err_free_sch; 4395 } 4396 4397 ret = rhashtable_init(&sch->dsq_hash, &dsq_hash_params); 4398 if (ret < 0) 4399 goto err_free_ei; 4400 4401 sch->global_dsqs = kcalloc(nr_node_ids, sizeof(sch->global_dsqs[0]), 4402 GFP_KERNEL); 4403 if (!sch->global_dsqs) { 4404 ret = -ENOMEM; 4405 goto err_free_hash; 4406 } 4407 4408 for_each_node_state(node, N_POSSIBLE) { 4409 struct scx_dispatch_q *dsq; 4410 4411 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node); 4412 if (!dsq) { 4413 ret = -ENOMEM; 4414 goto err_free_gdsqs; 4415 } 4416 4417 init_dsq(dsq, SCX_DSQ_GLOBAL); 4418 sch->global_dsqs[node] = dsq; 4419 } 4420 4421 sch->pcpu = alloc_percpu(struct scx_sched_pcpu); 4422 if (!sch->pcpu) 4423 goto err_free_gdsqs; 4424 4425 sch->helper = kthread_run_worker(0, "sched_ext_helper"); 4426 if (IS_ERR(sch->helper)) { 4427 ret = PTR_ERR(sch->helper); 4428 goto err_free_pcpu; 4429 } 4430 4431 sched_set_fifo(sch->helper->task); 4432 4433 atomic_set(&sch->exit_kind, SCX_EXIT_NONE); 4434 init_irq_work(&sch->error_irq_work, scx_error_irq_workfn); 4435 kthread_init_work(&sch->disable_work, scx_disable_workfn); 4436 sch->ops = *ops; 4437 ops->priv = sch; 4438 4439 sch->kobj.kset = scx_kset; 4440 ret = kobject_init_and_add(&sch->kobj, &scx_ktype, NULL, "root"); 4441 if (ret < 0) 4442 goto err_stop_helper; 4443 4444 return sch; 4445 4446 err_stop_helper: 4447 kthread_stop(sch->helper->task); 4448 err_free_pcpu: 4449 free_percpu(sch->pcpu); 4450 err_free_gdsqs: 4451 for_each_node_state(node, N_POSSIBLE) 4452 kfree(sch->global_dsqs[node]); 4453 kfree(sch->global_dsqs); 4454 err_free_hash: 4455 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL); 4456 err_free_ei: 4457 free_exit_info(sch->exit_info); 4458 err_free_sch: 4459 kfree(sch); 4460 return ERR_PTR(ret); 4461 } 4462 4463 static void check_hotplug_seq(struct scx_sched *sch, 4464 const struct sched_ext_ops *ops) 4465 { 4466 unsigned long long global_hotplug_seq; 4467 4468 /* 4469 * If a hotplug event has occurred between when a scheduler was 4470 * initialized, and when we were able to attach, exit and notify user 4471 * space about it. 4472 */ 4473 if (ops->hotplug_seq) { 4474 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); 4475 if (ops->hotplug_seq != global_hotplug_seq) { 4476 scx_exit(sch, SCX_EXIT_UNREG_KERN, 4477 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 4478 "expected hotplug seq %llu did not match actual %llu", 4479 ops->hotplug_seq, global_hotplug_seq); 4480 } 4481 } 4482 } 4483 4484 static int validate_ops(struct scx_sched *sch, const struct sched_ext_ops *ops) 4485 { 4486 /* 4487 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 4488 * ops.enqueue() callback isn't implemented. 4489 */ 4490 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 4491 scx_error(sch, "SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 4492 return -EINVAL; 4493 } 4494 4495 /* 4496 * SCX_OPS_BUILTIN_IDLE_PER_NODE requires built-in CPU idle 4497 * selection policy to be enabled. 4498 */ 4499 if ((ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE) && 4500 (ops->update_idle && !(ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))) { 4501 scx_error(sch, "SCX_OPS_BUILTIN_IDLE_PER_NODE requires CPU idle selection enabled"); 4502 return -EINVAL; 4503 } 4504 4505 if (ops->flags & SCX_OPS_HAS_CGROUP_WEIGHT) 4506 pr_warn("SCX_OPS_HAS_CGROUP_WEIGHT is deprecated and a noop\n"); 4507 4508 return 0; 4509 } 4510 4511 static int scx_enable(struct sched_ext_ops *ops, struct bpf_link *link) 4512 { 4513 struct scx_sched *sch; 4514 struct scx_task_iter sti; 4515 struct task_struct *p; 4516 unsigned long timeout; 4517 int i, cpu, ret; 4518 4519 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), 4520 cpu_possible_mask)) { 4521 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n"); 4522 return -EINVAL; 4523 } 4524 4525 mutex_lock(&scx_enable_mutex); 4526 4527 if (scx_enable_state() != SCX_DISABLED) { 4528 ret = -EBUSY; 4529 goto err_unlock; 4530 } 4531 4532 ret = alloc_kick_pseqs(); 4533 if (ret) 4534 goto err_unlock; 4535 4536 sch = scx_alloc_and_add_sched(ops); 4537 if (IS_ERR(sch)) { 4538 ret = PTR_ERR(sch); 4539 goto err_free_pseqs; 4540 } 4541 4542 /* 4543 * Transition to ENABLING and clear exit info to arm the disable path. 4544 * Failure triggers full disabling from here on. 4545 */ 4546 WARN_ON_ONCE(scx_set_enable_state(SCX_ENABLING) != SCX_DISABLED); 4547 WARN_ON_ONCE(scx_root); 4548 4549 atomic_long_set(&scx_nr_rejected, 0); 4550 4551 for_each_possible_cpu(cpu) 4552 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; 4553 4554 /* 4555 * Keep CPUs stable during enable so that the BPF scheduler can track 4556 * online CPUs by watching ->on/offline_cpu() after ->init(). 4557 */ 4558 cpus_read_lock(); 4559 4560 /* 4561 * Make the scheduler instance visible. Must be inside cpus_read_lock(). 4562 * See handle_hotplug(). 4563 */ 4564 rcu_assign_pointer(scx_root, sch); 4565 4566 scx_idle_enable(ops); 4567 4568 if (sch->ops.init) { 4569 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init, NULL); 4570 if (ret) { 4571 ret = ops_sanitize_err(sch, "init", ret); 4572 cpus_read_unlock(); 4573 scx_error(sch, "ops.init() failed (%d)", ret); 4574 goto err_disable; 4575 } 4576 sch->exit_info->flags |= SCX_EFLAG_INITIALIZED; 4577 } 4578 4579 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) 4580 if (((void (**)(void))ops)[i]) 4581 set_bit(i, sch->has_op); 4582 4583 check_hotplug_seq(sch, ops); 4584 scx_idle_update_selcpu_topology(ops); 4585 4586 cpus_read_unlock(); 4587 4588 ret = validate_ops(sch, ops); 4589 if (ret) 4590 goto err_disable; 4591 4592 WARN_ON_ONCE(scx_dsp_ctx); 4593 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 4594 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 4595 scx_dsp_max_batch), 4596 __alignof__(struct scx_dsp_ctx)); 4597 if (!scx_dsp_ctx) { 4598 ret = -ENOMEM; 4599 goto err_disable; 4600 } 4601 4602 if (ops->timeout_ms) 4603 timeout = msecs_to_jiffies(ops->timeout_ms); 4604 else 4605 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 4606 4607 WRITE_ONCE(scx_watchdog_timeout, timeout); 4608 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 4609 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 4610 scx_watchdog_timeout / 2); 4611 4612 /* 4613 * Once __scx_enabled is set, %current can be switched to SCX anytime. 4614 * This can lead to stalls as some BPF schedulers (e.g. userspace 4615 * scheduling) may not function correctly before all tasks are switched. 4616 * Init in bypass mode to guarantee forward progress. 4617 */ 4618 scx_bypass(true); 4619 4620 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 4621 if (((void (**)(void))ops)[i]) 4622 set_bit(i, sch->has_op); 4623 4624 if (sch->ops.cpu_acquire || sch->ops.cpu_release) 4625 sch->ops.flags |= SCX_OPS_HAS_CPU_PREEMPT; 4626 4627 /* 4628 * Lock out forks, cgroup on/offlining and moves before opening the 4629 * floodgate so that they don't wander into the operations prematurely. 4630 */ 4631 percpu_down_write(&scx_fork_rwsem); 4632 4633 WARN_ON_ONCE(scx_init_task_enabled); 4634 scx_init_task_enabled = true; 4635 4636 /* 4637 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 4638 * preventing new tasks from being added. No need to exclude tasks 4639 * leaving as sched_ext_free() can handle both prepped and enabled 4640 * tasks. Prep all tasks first and then enable them with preemption 4641 * disabled. 4642 * 4643 * All cgroups should be initialized before scx_init_task() so that the 4644 * BPF scheduler can reliably track each task's cgroup membership from 4645 * scx_init_task(). Lock out cgroup on/offlining and task migrations 4646 * while tasks are being initialized so that scx_cgroup_can_attach() 4647 * never sees uninitialized tasks. 4648 */ 4649 scx_cgroup_lock(); 4650 ret = scx_cgroup_init(sch); 4651 if (ret) 4652 goto err_disable_unlock_all; 4653 4654 scx_task_iter_start(&sti); 4655 while ((p = scx_task_iter_next_locked(&sti))) { 4656 /* 4657 * @p may already be dead, have lost all its usages counts and 4658 * be waiting for RCU grace period before being freed. @p can't 4659 * be initialized for SCX in such cases and should be ignored. 4660 */ 4661 if (!tryget_task_struct(p)) 4662 continue; 4663 4664 scx_task_iter_unlock(&sti); 4665 4666 ret = scx_init_task(p, task_group(p), false); 4667 if (ret) { 4668 put_task_struct(p); 4669 scx_task_iter_stop(&sti); 4670 scx_error(sch, "ops.init_task() failed (%d) for %s[%d]", 4671 ret, p->comm, p->pid); 4672 goto err_disable_unlock_all; 4673 } 4674 4675 scx_set_task_state(p, SCX_TASK_READY); 4676 4677 put_task_struct(p); 4678 } 4679 scx_task_iter_stop(&sti); 4680 scx_cgroup_unlock(); 4681 percpu_up_write(&scx_fork_rwsem); 4682 4683 /* 4684 * All tasks are READY. It's safe to turn on scx_enabled() and switch 4685 * all eligible tasks. 4686 */ 4687 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 4688 static_branch_enable(&__scx_enabled); 4689 4690 /* 4691 * We're fully committed and can't fail. The task READY -> ENABLED 4692 * transitions here are synchronized against sched_ext_free() through 4693 * scx_tasks_lock. 4694 */ 4695 percpu_down_write(&scx_fork_rwsem); 4696 scx_task_iter_start(&sti); 4697 while ((p = scx_task_iter_next_locked(&sti))) { 4698 unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE; 4699 const struct sched_class *old_class = p->sched_class; 4700 const struct sched_class *new_class = 4701 __setscheduler_class(p->policy, p->prio); 4702 4703 if (!tryget_task_struct(p)) 4704 continue; 4705 4706 if (old_class != new_class) 4707 queue_flags |= DEQUEUE_CLASS; 4708 4709 scoped_guard (sched_change, p, queue_flags) { 4710 p->scx.slice = SCX_SLICE_DFL; 4711 p->sched_class = new_class; 4712 } 4713 4714 put_task_struct(p); 4715 } 4716 scx_task_iter_stop(&sti); 4717 percpu_up_write(&scx_fork_rwsem); 4718 4719 scx_bypass(false); 4720 4721 if (!scx_tryset_enable_state(SCX_ENABLED, SCX_ENABLING)) { 4722 WARN_ON_ONCE(atomic_read(&sch->exit_kind) == SCX_EXIT_NONE); 4723 goto err_disable; 4724 } 4725 4726 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 4727 static_branch_enable(&__scx_switched_all); 4728 4729 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", 4730 sch->ops.name, scx_switched_all() ? "" : " (partial)"); 4731 kobject_uevent(&sch->kobj, KOBJ_ADD); 4732 mutex_unlock(&scx_enable_mutex); 4733 4734 atomic_long_inc(&scx_enable_seq); 4735 4736 return 0; 4737 4738 err_free_pseqs: 4739 free_kick_pseqs(); 4740 err_unlock: 4741 mutex_unlock(&scx_enable_mutex); 4742 return ret; 4743 4744 err_disable_unlock_all: 4745 scx_cgroup_unlock(); 4746 percpu_up_write(&scx_fork_rwsem); 4747 /* we'll soon enter disable path, keep bypass on */ 4748 err_disable: 4749 mutex_unlock(&scx_enable_mutex); 4750 /* 4751 * Returning an error code here would not pass all the error information 4752 * to userspace. Record errno using scx_error() for cases scx_error() 4753 * wasn't already invoked and exit indicating success so that the error 4754 * is notified through ops.exit() with all the details. 4755 * 4756 * Flush scx_disable_work to ensure that error is reported before init 4757 * completion. sch's base reference will be put by bpf_scx_unreg(). 4758 */ 4759 scx_error(sch, "scx_enable() failed (%d)", ret); 4760 kthread_flush_work(&sch->disable_work); 4761 return 0; 4762 } 4763 4764 4765 /******************************************************************************** 4766 * bpf_struct_ops plumbing. 4767 */ 4768 #include <linux/bpf_verifier.h> 4769 #include <linux/bpf.h> 4770 #include <linux/btf.h> 4771 4772 static const struct btf_type *task_struct_type; 4773 4774 static bool bpf_scx_is_valid_access(int off, int size, 4775 enum bpf_access_type type, 4776 const struct bpf_prog *prog, 4777 struct bpf_insn_access_aux *info) 4778 { 4779 if (type != BPF_READ) 4780 return false; 4781 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 4782 return false; 4783 if (off % size != 0) 4784 return false; 4785 4786 return btf_ctx_access(off, size, type, prog, info); 4787 } 4788 4789 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 4790 const struct bpf_reg_state *reg, int off, 4791 int size) 4792 { 4793 const struct btf_type *t; 4794 4795 t = btf_type_by_id(reg->btf, reg->btf_id); 4796 if (t == task_struct_type) { 4797 if (off >= offsetof(struct task_struct, scx.slice) && 4798 off + size <= offsetofend(struct task_struct, scx.slice)) 4799 return SCALAR_VALUE; 4800 if (off >= offsetof(struct task_struct, scx.dsq_vtime) && 4801 off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) 4802 return SCALAR_VALUE; 4803 if (off >= offsetof(struct task_struct, scx.disallow) && 4804 off + size <= offsetofend(struct task_struct, scx.disallow)) 4805 return SCALAR_VALUE; 4806 } 4807 4808 return -EACCES; 4809 } 4810 4811 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 4812 .get_func_proto = bpf_base_func_proto, 4813 .is_valid_access = bpf_scx_is_valid_access, 4814 .btf_struct_access = bpf_scx_btf_struct_access, 4815 }; 4816 4817 static int bpf_scx_init_member(const struct btf_type *t, 4818 const struct btf_member *member, 4819 void *kdata, const void *udata) 4820 { 4821 const struct sched_ext_ops *uops = udata; 4822 struct sched_ext_ops *ops = kdata; 4823 u32 moff = __btf_member_bit_offset(t, member) / 8; 4824 int ret; 4825 4826 switch (moff) { 4827 case offsetof(struct sched_ext_ops, dispatch_max_batch): 4828 if (*(u32 *)(udata + moff) > INT_MAX) 4829 return -E2BIG; 4830 ops->dispatch_max_batch = *(u32 *)(udata + moff); 4831 return 1; 4832 case offsetof(struct sched_ext_ops, flags): 4833 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 4834 return -EINVAL; 4835 ops->flags = *(u64 *)(udata + moff); 4836 return 1; 4837 case offsetof(struct sched_ext_ops, name): 4838 ret = bpf_obj_name_cpy(ops->name, uops->name, 4839 sizeof(ops->name)); 4840 if (ret < 0) 4841 return ret; 4842 if (ret == 0) 4843 return -EINVAL; 4844 return 1; 4845 case offsetof(struct sched_ext_ops, timeout_ms): 4846 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 4847 SCX_WATCHDOG_MAX_TIMEOUT) 4848 return -E2BIG; 4849 ops->timeout_ms = *(u32 *)(udata + moff); 4850 return 1; 4851 case offsetof(struct sched_ext_ops, exit_dump_len): 4852 ops->exit_dump_len = 4853 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 4854 return 1; 4855 case offsetof(struct sched_ext_ops, hotplug_seq): 4856 ops->hotplug_seq = *(u64 *)(udata + moff); 4857 return 1; 4858 } 4859 4860 return 0; 4861 } 4862 4863 static int bpf_scx_check_member(const struct btf_type *t, 4864 const struct btf_member *member, 4865 const struct bpf_prog *prog) 4866 { 4867 u32 moff = __btf_member_bit_offset(t, member) / 8; 4868 4869 switch (moff) { 4870 case offsetof(struct sched_ext_ops, init_task): 4871 #ifdef CONFIG_EXT_GROUP_SCHED 4872 case offsetof(struct sched_ext_ops, cgroup_init): 4873 case offsetof(struct sched_ext_ops, cgroup_exit): 4874 case offsetof(struct sched_ext_ops, cgroup_prep_move): 4875 #endif 4876 case offsetof(struct sched_ext_ops, cpu_online): 4877 case offsetof(struct sched_ext_ops, cpu_offline): 4878 case offsetof(struct sched_ext_ops, init): 4879 case offsetof(struct sched_ext_ops, exit): 4880 break; 4881 default: 4882 if (prog->sleepable) 4883 return -EINVAL; 4884 } 4885 4886 return 0; 4887 } 4888 4889 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 4890 { 4891 return scx_enable(kdata, link); 4892 } 4893 4894 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 4895 { 4896 struct sched_ext_ops *ops = kdata; 4897 struct scx_sched *sch = ops->priv; 4898 4899 scx_disable(SCX_EXIT_UNREG); 4900 kthread_flush_work(&sch->disable_work); 4901 kobject_put(&sch->kobj); 4902 } 4903 4904 static int bpf_scx_init(struct btf *btf) 4905 { 4906 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]); 4907 4908 return 0; 4909 } 4910 4911 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 4912 { 4913 /* 4914 * sched_ext does not support updating the actively-loaded BPF 4915 * scheduler, as registering a BPF scheduler can always fail if the 4916 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 4917 * etc. Similarly, we can always race with unregistration happening 4918 * elsewhere, such as with sysrq. 4919 */ 4920 return -EOPNOTSUPP; 4921 } 4922 4923 static int bpf_scx_validate(void *kdata) 4924 { 4925 return 0; 4926 } 4927 4928 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 4929 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {} 4930 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {} 4931 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {} 4932 static void sched_ext_ops__tick(struct task_struct *p) {} 4933 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {} 4934 static void sched_ext_ops__running(struct task_struct *p) {} 4935 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {} 4936 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {} 4937 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; } 4938 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; } 4939 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {} 4940 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {} 4941 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {} 4942 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {} 4943 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {} 4944 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 4945 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {} 4946 static void sched_ext_ops__enable(struct task_struct *p) {} 4947 static void sched_ext_ops__disable(struct task_struct *p) {} 4948 #ifdef CONFIG_EXT_GROUP_SCHED 4949 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } 4950 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {} 4951 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } 4952 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 4953 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 4954 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {} 4955 static void sched_ext_ops__cgroup_set_bandwidth(struct cgroup *cgrp, u64 period_us, u64 quota_us, u64 burst_us) {} 4956 #endif 4957 static void sched_ext_ops__cpu_online(s32 cpu) {} 4958 static void sched_ext_ops__cpu_offline(s32 cpu) {} 4959 static s32 sched_ext_ops__init(void) { return -EINVAL; } 4960 static void sched_ext_ops__exit(struct scx_exit_info *info) {} 4961 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {} 4962 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} 4963 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {} 4964 4965 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 4966 .select_cpu = sched_ext_ops__select_cpu, 4967 .enqueue = sched_ext_ops__enqueue, 4968 .dequeue = sched_ext_ops__dequeue, 4969 .dispatch = sched_ext_ops__dispatch, 4970 .tick = sched_ext_ops__tick, 4971 .runnable = sched_ext_ops__runnable, 4972 .running = sched_ext_ops__running, 4973 .stopping = sched_ext_ops__stopping, 4974 .quiescent = sched_ext_ops__quiescent, 4975 .yield = sched_ext_ops__yield, 4976 .core_sched_before = sched_ext_ops__core_sched_before, 4977 .set_weight = sched_ext_ops__set_weight, 4978 .set_cpumask = sched_ext_ops__set_cpumask, 4979 .update_idle = sched_ext_ops__update_idle, 4980 .cpu_acquire = sched_ext_ops__cpu_acquire, 4981 .cpu_release = sched_ext_ops__cpu_release, 4982 .init_task = sched_ext_ops__init_task, 4983 .exit_task = sched_ext_ops__exit_task, 4984 .enable = sched_ext_ops__enable, 4985 .disable = sched_ext_ops__disable, 4986 #ifdef CONFIG_EXT_GROUP_SCHED 4987 .cgroup_init = sched_ext_ops__cgroup_init, 4988 .cgroup_exit = sched_ext_ops__cgroup_exit, 4989 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move, 4990 .cgroup_move = sched_ext_ops__cgroup_move, 4991 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move, 4992 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight, 4993 .cgroup_set_bandwidth = sched_ext_ops__cgroup_set_bandwidth, 4994 #endif 4995 .cpu_online = sched_ext_ops__cpu_online, 4996 .cpu_offline = sched_ext_ops__cpu_offline, 4997 .init = sched_ext_ops__init, 4998 .exit = sched_ext_ops__exit, 4999 .dump = sched_ext_ops__dump, 5000 .dump_cpu = sched_ext_ops__dump_cpu, 5001 .dump_task = sched_ext_ops__dump_task, 5002 }; 5003 5004 static struct bpf_struct_ops bpf_sched_ext_ops = { 5005 .verifier_ops = &bpf_scx_verifier_ops, 5006 .reg = bpf_scx_reg, 5007 .unreg = bpf_scx_unreg, 5008 .check_member = bpf_scx_check_member, 5009 .init_member = bpf_scx_init_member, 5010 .init = bpf_scx_init, 5011 .update = bpf_scx_update, 5012 .validate = bpf_scx_validate, 5013 .name = "sched_ext_ops", 5014 .owner = THIS_MODULE, 5015 .cfi_stubs = &__bpf_ops_sched_ext_ops 5016 }; 5017 5018 5019 /******************************************************************************** 5020 * System integration and init. 5021 */ 5022 5023 static void sysrq_handle_sched_ext_reset(u8 key) 5024 { 5025 scx_disable(SCX_EXIT_SYSRQ); 5026 } 5027 5028 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 5029 .handler = sysrq_handle_sched_ext_reset, 5030 .help_msg = "reset-sched-ext(S)", 5031 .action_msg = "Disable sched_ext and revert all tasks to CFS", 5032 .enable_mask = SYSRQ_ENABLE_RTNICE, 5033 }; 5034 5035 static void sysrq_handle_sched_ext_dump(u8 key) 5036 { 5037 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 5038 5039 if (scx_enabled()) 5040 scx_dump_state(&ei, 0); 5041 } 5042 5043 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 5044 .handler = sysrq_handle_sched_ext_dump, 5045 .help_msg = "dump-sched-ext(D)", 5046 .action_msg = "Trigger sched_ext debug dump", 5047 .enable_mask = SYSRQ_ENABLE_RTNICE, 5048 }; 5049 5050 static bool can_skip_idle_kick(struct rq *rq) 5051 { 5052 lockdep_assert_rq_held(rq); 5053 5054 /* 5055 * We can skip idle kicking if @rq is going to go through at least one 5056 * full SCX scheduling cycle before going idle. Just checking whether 5057 * curr is not idle is insufficient because we could be racing 5058 * balance_one() trying to pull the next task from a remote rq, which 5059 * may fail, and @rq may become idle afterwards. 5060 * 5061 * The race window is small and we don't and can't guarantee that @rq is 5062 * only kicked while idle anyway. Skip only when sure. 5063 */ 5064 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); 5065 } 5066 5067 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) 5068 { 5069 struct rq *rq = cpu_rq(cpu); 5070 struct scx_rq *this_scx = &this_rq->scx; 5071 bool should_wait = false; 5072 unsigned long flags; 5073 5074 raw_spin_rq_lock_irqsave(rq, flags); 5075 5076 /* 5077 * During CPU hotplug, a CPU may depend on kicking itself to make 5078 * forward progress. Allow kicking self regardless of online state. 5079 */ 5080 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { 5081 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 5082 if (rq->curr->sched_class == &ext_sched_class) 5083 rq->curr->scx.slice = 0; 5084 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5085 } 5086 5087 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 5088 pseqs[cpu] = rq->scx.pnt_seq; 5089 should_wait = true; 5090 } 5091 5092 resched_curr(rq); 5093 } else { 5094 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5095 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5096 } 5097 5098 raw_spin_rq_unlock_irqrestore(rq, flags); 5099 5100 return should_wait; 5101 } 5102 5103 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 5104 { 5105 struct rq *rq = cpu_rq(cpu); 5106 unsigned long flags; 5107 5108 raw_spin_rq_lock_irqsave(rq, flags); 5109 5110 if (!can_skip_idle_kick(rq) && 5111 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 5112 resched_curr(rq); 5113 5114 raw_spin_rq_unlock_irqrestore(rq, flags); 5115 } 5116 5117 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 5118 { 5119 struct rq *this_rq = this_rq(); 5120 struct scx_rq *this_scx = &this_rq->scx; 5121 struct scx_kick_pseqs __rcu *pseqs_pcpu = __this_cpu_read(scx_kick_pseqs); 5122 bool should_wait = false; 5123 unsigned long *pseqs; 5124 s32 cpu; 5125 5126 if (unlikely(!pseqs_pcpu)) { 5127 pr_warn_once("kick_cpus_irq_workfn() called with NULL scx_kick_pseqs"); 5128 return; 5129 } 5130 5131 pseqs = rcu_dereference_bh(pseqs_pcpu)->seqs; 5132 5133 for_each_cpu(cpu, this_scx->cpus_to_kick) { 5134 should_wait |= kick_one_cpu(cpu, this_rq, pseqs); 5135 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 5136 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5137 } 5138 5139 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 5140 kick_one_cpu_if_idle(cpu, this_rq); 5141 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5142 } 5143 5144 if (!should_wait) 5145 return; 5146 5147 for_each_cpu(cpu, this_scx->cpus_to_wait) { 5148 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; 5149 5150 if (cpu != cpu_of(this_rq)) { 5151 /* 5152 * Pairs with smp_store_release() issued by this CPU in 5153 * switch_class() on the resched path. 5154 * 5155 * We busy-wait here to guarantee that no other task can 5156 * be scheduled on our core before the target CPU has 5157 * entered the resched path. 5158 */ 5159 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) 5160 cpu_relax(); 5161 } 5162 5163 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5164 } 5165 } 5166 5167 /** 5168 * print_scx_info - print out sched_ext scheduler state 5169 * @log_lvl: the log level to use when printing 5170 * @p: target task 5171 * 5172 * If a sched_ext scheduler is enabled, print the name and state of the 5173 * scheduler. If @p is on sched_ext, print further information about the task. 5174 * 5175 * This function can be safely called on any task as long as the task_struct 5176 * itself is accessible. While safe, this function isn't synchronized and may 5177 * print out mixups or garbages of limited length. 5178 */ 5179 void print_scx_info(const char *log_lvl, struct task_struct *p) 5180 { 5181 struct scx_sched *sch = scx_root; 5182 enum scx_enable_state state = scx_enable_state(); 5183 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 5184 char runnable_at_buf[22] = "?"; 5185 struct sched_class *class; 5186 unsigned long runnable_at; 5187 5188 if (state == SCX_DISABLED) 5189 return; 5190 5191 /* 5192 * Carefully check if the task was running on sched_ext, and then 5193 * carefully copy the time it's been runnable, and its state. 5194 */ 5195 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 5196 class != &ext_sched_class) { 5197 printk("%sSched_ext: %s (%s%s)", log_lvl, sch->ops.name, 5198 scx_enable_state_str[state], all); 5199 return; 5200 } 5201 5202 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 5203 sizeof(runnable_at))) 5204 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 5205 jiffies_delta_msecs(runnable_at, jiffies)); 5206 5207 /* print everything onto one line to conserve console space */ 5208 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 5209 log_lvl, sch->ops.name, scx_enable_state_str[state], all, 5210 runnable_at_buf); 5211 } 5212 5213 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) 5214 { 5215 /* 5216 * SCX schedulers often have userspace components which are sometimes 5217 * involved in critial scheduling paths. PM operations involve freezing 5218 * userspace which can lead to scheduling misbehaviors including stalls. 5219 * Let's bypass while PM operations are in progress. 5220 */ 5221 switch (event) { 5222 case PM_HIBERNATION_PREPARE: 5223 case PM_SUSPEND_PREPARE: 5224 case PM_RESTORE_PREPARE: 5225 scx_bypass(true); 5226 break; 5227 case PM_POST_HIBERNATION: 5228 case PM_POST_SUSPEND: 5229 case PM_POST_RESTORE: 5230 scx_bypass(false); 5231 break; 5232 } 5233 5234 return NOTIFY_OK; 5235 } 5236 5237 static struct notifier_block scx_pm_notifier = { 5238 .notifier_call = scx_pm_handler, 5239 }; 5240 5241 void __init init_sched_ext_class(void) 5242 { 5243 s32 cpu, v; 5244 5245 /* 5246 * The following is to prevent the compiler from optimizing out the enum 5247 * definitions so that BPF scheduler implementations can use them 5248 * through the generated vmlinux.h. 5249 */ 5250 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | 5251 SCX_TG_ONLINE); 5252 5253 scx_idle_init_masks(); 5254 5255 for_each_possible_cpu(cpu) { 5256 struct rq *rq = cpu_rq(cpu); 5257 int n = cpu_to_node(cpu); 5258 5259 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 5260 INIT_LIST_HEAD(&rq->scx.runnable_list); 5261 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); 5262 5263 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick, GFP_KERNEL, n)); 5264 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL, n)); 5265 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_preempt, GFP_KERNEL, n)); 5266 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_wait, GFP_KERNEL, n)); 5267 rq->scx.deferred_irq_work = IRQ_WORK_INIT_HARD(deferred_irq_workfn); 5268 rq->scx.kick_cpus_irq_work = IRQ_WORK_INIT_HARD(kick_cpus_irq_workfn); 5269 5270 if (cpu_online(cpu)) 5271 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; 5272 } 5273 5274 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 5275 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 5276 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 5277 } 5278 5279 5280 /******************************************************************************** 5281 * Helpers that can be called from the BPF scheduler. 5282 */ 5283 static bool scx_dsq_insert_preamble(struct scx_sched *sch, struct task_struct *p, 5284 u64 enq_flags) 5285 { 5286 if (!scx_kf_allowed(sch, SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 5287 return false; 5288 5289 lockdep_assert_irqs_disabled(); 5290 5291 if (unlikely(!p)) { 5292 scx_error(sch, "called with NULL task"); 5293 return false; 5294 } 5295 5296 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 5297 scx_error(sch, "invalid enq_flags 0x%llx", enq_flags); 5298 return false; 5299 } 5300 5301 return true; 5302 } 5303 5304 static void scx_dsq_insert_commit(struct scx_sched *sch, struct task_struct *p, 5305 u64 dsq_id, u64 enq_flags) 5306 { 5307 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5308 struct task_struct *ddsp_task; 5309 5310 ddsp_task = __this_cpu_read(direct_dispatch_task); 5311 if (ddsp_task) { 5312 mark_direct_dispatch(sch, ddsp_task, p, dsq_id, enq_flags); 5313 return; 5314 } 5315 5316 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 5317 scx_error(sch, "dispatch buffer overflow"); 5318 return; 5319 } 5320 5321 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 5322 .task = p, 5323 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 5324 .dsq_id = dsq_id, 5325 .enq_flags = enq_flags, 5326 }; 5327 } 5328 5329 __bpf_kfunc_start_defs(); 5330 5331 /** 5332 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ 5333 * @p: task_struct to insert 5334 * @dsq_id: DSQ to insert into 5335 * @slice: duration @p can run for in nsecs, 0 to keep the current value 5336 * @enq_flags: SCX_ENQ_* 5337 * 5338 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to 5339 * call this function spuriously. Can be called from ops.enqueue(), 5340 * ops.select_cpu(), and ops.dispatch(). 5341 * 5342 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 5343 * and @p must match the task being enqueued. 5344 * 5345 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 5346 * will be directly inserted into the corresponding dispatch queue after 5347 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be 5348 * inserted into the local DSQ of the CPU returned by ops.select_cpu(). 5349 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 5350 * task is inserted. 5351 * 5352 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 5353 * and this function can be called upto ops.dispatch_max_batch times to insert 5354 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 5355 * remaining slots. scx_bpf_dsq_move_to_local() flushes the batch and resets the 5356 * counter. 5357 * 5358 * This function doesn't have any locking restrictions and may be called under 5359 * BPF locks (in the future when BPF introduces more flexible locking). 5360 * 5361 * @p is allowed to run for @slice. The scheduling path is triggered on slice 5362 * exhaustion. If zero, the current residual slice is maintained. If 5363 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 5364 * scx_bpf_kick_cpu() to trigger scheduling. 5365 */ 5366 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice, 5367 u64 enq_flags) 5368 { 5369 struct scx_sched *sch; 5370 5371 guard(rcu)(); 5372 sch = rcu_dereference(scx_root); 5373 if (unlikely(!sch)) 5374 return; 5375 5376 if (!scx_dsq_insert_preamble(sch, p, enq_flags)) 5377 return; 5378 5379 if (slice) 5380 p->scx.slice = slice; 5381 else 5382 p->scx.slice = p->scx.slice ?: 1; 5383 5384 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags); 5385 } 5386 5387 /** 5388 * scx_bpf_dsq_insert_vtime - Insert a task into the vtime priority queue of a DSQ 5389 * @p: task_struct to insert 5390 * @dsq_id: DSQ to insert into 5391 * @slice: duration @p can run for in nsecs, 0 to keep the current value 5392 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ 5393 * @enq_flags: SCX_ENQ_* 5394 * 5395 * Insert @p into the vtime priority queue of the DSQ identified by @dsq_id. 5396 * Tasks queued into the priority queue are ordered by @vtime. All other aspects 5397 * are identical to scx_bpf_dsq_insert(). 5398 * 5399 * @vtime ordering is according to time_before64() which considers wrapping. A 5400 * numerically larger vtime may indicate an earlier position in the ordering and 5401 * vice-versa. 5402 * 5403 * A DSQ can only be used as a FIFO or priority queue at any given time and this 5404 * function must not be called on a DSQ which already has one or more FIFO tasks 5405 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and 5406 * SCX_DSQ_GLOBAL) cannot be used as priority queues. 5407 */ 5408 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id, 5409 u64 slice, u64 vtime, u64 enq_flags) 5410 { 5411 struct scx_sched *sch; 5412 5413 guard(rcu)(); 5414 sch = rcu_dereference(scx_root); 5415 if (unlikely(!sch)) 5416 return; 5417 5418 if (!scx_dsq_insert_preamble(sch, p, enq_flags)) 5419 return; 5420 5421 if (slice) 5422 p->scx.slice = slice; 5423 else 5424 p->scx.slice = p->scx.slice ?: 1; 5425 5426 p->scx.dsq_vtime = vtime; 5427 5428 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 5429 } 5430 5431 __bpf_kfunc_end_defs(); 5432 5433 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 5434 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU) 5435 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU) 5436 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 5437 5438 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 5439 .owner = THIS_MODULE, 5440 .set = &scx_kfunc_ids_enqueue_dispatch, 5441 }; 5442 5443 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit, 5444 struct task_struct *p, u64 dsq_id, u64 enq_flags) 5445 { 5446 struct scx_sched *sch = scx_root; 5447 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; 5448 struct rq *this_rq, *src_rq, *locked_rq; 5449 bool dispatched = false; 5450 bool in_balance; 5451 unsigned long flags; 5452 5453 if (!scx_kf_allowed_if_unlocked() && 5454 !scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5455 return false; 5456 5457 /* 5458 * Can be called from either ops.dispatch() locking this_rq() or any 5459 * context where no rq lock is held. If latter, lock @p's task_rq which 5460 * we'll likely need anyway. 5461 */ 5462 src_rq = task_rq(p); 5463 5464 local_irq_save(flags); 5465 this_rq = this_rq(); 5466 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; 5467 5468 if (in_balance) { 5469 if (this_rq != src_rq) { 5470 raw_spin_rq_unlock(this_rq); 5471 raw_spin_rq_lock(src_rq); 5472 } 5473 } else { 5474 raw_spin_rq_lock(src_rq); 5475 } 5476 5477 /* 5478 * If the BPF scheduler keeps calling this function repeatedly, it can 5479 * cause similar live-lock conditions as consume_dispatch_q(). Insert a 5480 * breather if necessary. 5481 */ 5482 scx_breather(src_rq); 5483 5484 locked_rq = src_rq; 5485 raw_spin_lock(&src_dsq->lock); 5486 5487 /* 5488 * Did someone else get to it? @p could have already left $src_dsq, got 5489 * re-enqueud, or be in the process of being consumed by someone else. 5490 */ 5491 if (unlikely(p->scx.dsq != src_dsq || 5492 u32_before(kit->cursor.priv, p->scx.dsq_seq) || 5493 p->scx.holding_cpu >= 0) || 5494 WARN_ON_ONCE(src_rq != task_rq(p))) { 5495 raw_spin_unlock(&src_dsq->lock); 5496 goto out; 5497 } 5498 5499 /* @p is still on $src_dsq and stable, determine the destination */ 5500 dst_dsq = find_dsq_for_dispatch(sch, this_rq, dsq_id, p); 5501 5502 /* 5503 * Apply vtime and slice updates before moving so that the new time is 5504 * visible before inserting into $dst_dsq. @p is still on $src_dsq but 5505 * this is safe as we're locking it. 5506 */ 5507 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) 5508 p->scx.dsq_vtime = kit->vtime; 5509 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) 5510 p->scx.slice = kit->slice; 5511 5512 /* execute move */ 5513 locked_rq = move_task_between_dsqs(sch, p, enq_flags, src_dsq, dst_dsq); 5514 dispatched = true; 5515 out: 5516 if (in_balance) { 5517 if (this_rq != locked_rq) { 5518 raw_spin_rq_unlock(locked_rq); 5519 raw_spin_rq_lock(this_rq); 5520 } 5521 } else { 5522 raw_spin_rq_unlock_irqrestore(locked_rq, flags); 5523 } 5524 5525 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | 5526 __SCX_DSQ_ITER_HAS_VTIME); 5527 return dispatched; 5528 } 5529 5530 __bpf_kfunc_start_defs(); 5531 5532 /** 5533 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 5534 * 5535 * Can only be called from ops.dispatch(). 5536 */ 5537 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 5538 { 5539 struct scx_sched *sch; 5540 5541 guard(rcu)(); 5542 5543 sch = rcu_dereference(scx_root); 5544 if (unlikely(!sch)) 5545 return 0; 5546 5547 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5548 return 0; 5549 5550 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 5551 } 5552 5553 /** 5554 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 5555 * 5556 * Cancel the latest dispatch. Can be called multiple times to cancel further 5557 * dispatches. Can only be called from ops.dispatch(). 5558 */ 5559 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 5560 { 5561 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5562 struct scx_sched *sch; 5563 5564 guard(rcu)(); 5565 5566 sch = rcu_dereference(scx_root); 5567 if (unlikely(!sch)) 5568 return; 5569 5570 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5571 return; 5572 5573 if (dspc->cursor > 0) 5574 dspc->cursor--; 5575 else 5576 scx_error(sch, "dispatch buffer underflow"); 5577 } 5578 5579 /** 5580 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ 5581 * @dsq_id: DSQ to move task from 5582 * 5583 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's 5584 * local DSQ for execution. Can only be called from ops.dispatch(). 5585 * 5586 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert() 5587 * before trying to move from the specified DSQ. It may also grab rq locks and 5588 * thus can't be called under any BPF locks. 5589 * 5590 * Returns %true if a task has been moved, %false if there isn't any task to 5591 * move. 5592 */ 5593 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id) 5594 { 5595 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5596 struct scx_dispatch_q *dsq; 5597 struct scx_sched *sch; 5598 5599 guard(rcu)(); 5600 5601 sch = rcu_dereference(scx_root); 5602 if (unlikely(!sch)) 5603 return false; 5604 5605 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5606 return false; 5607 5608 flush_dispatch_buf(sch, dspc->rq); 5609 5610 dsq = find_user_dsq(sch, dsq_id); 5611 if (unlikely(!dsq)) { 5612 scx_error(sch, "invalid DSQ ID 0x%016llx", dsq_id); 5613 return false; 5614 } 5615 5616 if (consume_dispatch_q(sch, dspc->rq, dsq)) { 5617 /* 5618 * A successfully consumed task can be dequeued before it starts 5619 * running while the CPU is trying to migrate other dispatched 5620 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 5621 * local DSQ. 5622 */ 5623 dspc->nr_tasks++; 5624 return true; 5625 } else { 5626 return false; 5627 } 5628 } 5629 5630 /** 5631 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs 5632 * @it__iter: DSQ iterator in progress 5633 * @slice: duration the moved task can run for in nsecs 5634 * 5635 * Override the slice of the next task that will be moved from @it__iter using 5636 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous 5637 * slice duration is kept. 5638 */ 5639 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, 5640 u64 slice) 5641 { 5642 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 5643 5644 kit->slice = slice; 5645 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; 5646 } 5647 5648 /** 5649 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs 5650 * @it__iter: DSQ iterator in progress 5651 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ 5652 * 5653 * Override the vtime of the next task that will be moved from @it__iter using 5654 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice 5655 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the 5656 * override is ignored and cleared. 5657 */ 5658 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, 5659 u64 vtime) 5660 { 5661 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 5662 5663 kit->vtime = vtime; 5664 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; 5665 } 5666 5667 /** 5668 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ 5669 * @it__iter: DSQ iterator in progress 5670 * @p: task to transfer 5671 * @dsq_id: DSQ to move @p to 5672 * @enq_flags: SCX_ENQ_* 5673 * 5674 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ 5675 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can 5676 * be the destination. 5677 * 5678 * For the transfer to be successful, @p must still be on the DSQ and have been 5679 * queued before the DSQ iteration started. This function doesn't care whether 5680 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have 5681 * been queued before the iteration started. 5682 * 5683 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update. 5684 * 5685 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq 5686 * lock (e.g. BPF timers or SYSCALL programs). 5687 * 5688 * Returns %true if @p has been consumed, %false if @p had already been consumed 5689 * or dequeued. 5690 */ 5691 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, 5692 struct task_struct *p, u64 dsq_id, 5693 u64 enq_flags) 5694 { 5695 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 5696 p, dsq_id, enq_flags); 5697 } 5698 5699 /** 5700 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ 5701 * @it__iter: DSQ iterator in progress 5702 * @p: task to transfer 5703 * @dsq_id: DSQ to move @p to 5704 * @enq_flags: SCX_ENQ_* 5705 * 5706 * Transfer @p which is on the DSQ currently iterated by @it__iter to the 5707 * priority queue of the DSQ specified by @dsq_id. The destination must be a 5708 * user DSQ as only user DSQs support priority queue. 5709 * 5710 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice() 5711 * and scx_bpf_dsq_move_set_vtime() to update. 5712 * 5713 * All other aspects are identical to scx_bpf_dsq_move(). See 5714 * scx_bpf_dsq_insert_vtime() for more information on @vtime. 5715 */ 5716 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, 5717 struct task_struct *p, u64 dsq_id, 5718 u64 enq_flags) 5719 { 5720 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 5721 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 5722 } 5723 5724 __bpf_kfunc_end_defs(); 5725 5726 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 5727 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 5728 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 5729 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local) 5730 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU) 5731 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU) 5732 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 5733 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 5734 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 5735 5736 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 5737 .owner = THIS_MODULE, 5738 .set = &scx_kfunc_ids_dispatch, 5739 }; 5740 5741 __bpf_kfunc_start_defs(); 5742 5743 /** 5744 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 5745 * 5746 * Iterate over all of the tasks currently enqueued on the local DSQ of the 5747 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 5748 * processed tasks. Can only be called from ops.cpu_release(). 5749 */ 5750 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 5751 { 5752 struct scx_sched *sch; 5753 LIST_HEAD(tasks); 5754 u32 nr_enqueued = 0; 5755 struct rq *rq; 5756 struct task_struct *p, *n; 5757 5758 guard(rcu)(); 5759 sch = rcu_dereference(scx_root); 5760 if (unlikely(!sch)) 5761 return 0; 5762 5763 if (!scx_kf_allowed(sch, SCX_KF_CPU_RELEASE)) 5764 return 0; 5765 5766 rq = cpu_rq(smp_processor_id()); 5767 lockdep_assert_rq_held(rq); 5768 5769 /* 5770 * The BPF scheduler may choose to dispatch tasks back to 5771 * @rq->scx.local_dsq. Move all candidate tasks off to a private list 5772 * first to avoid processing the same tasks repeatedly. 5773 */ 5774 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, 5775 scx.dsq_list.node) { 5776 /* 5777 * If @p is being migrated, @p's current CPU may not agree with 5778 * its allowed CPUs and the migration_cpu_stop is about to 5779 * deactivate and re-activate @p anyway. Skip re-enqueueing. 5780 * 5781 * While racing sched property changes may also dequeue and 5782 * re-enqueue a migrating task while its current CPU and allowed 5783 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to 5784 * the current local DSQ for running tasks and thus are not 5785 * visible to the BPF scheduler. 5786 */ 5787 if (p->migration_pending) 5788 continue; 5789 5790 dispatch_dequeue(rq, p); 5791 list_add_tail(&p->scx.dsq_list.node, &tasks); 5792 } 5793 5794 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { 5795 list_del_init(&p->scx.dsq_list.node); 5796 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 5797 nr_enqueued++; 5798 } 5799 5800 return nr_enqueued; 5801 } 5802 5803 __bpf_kfunc_end_defs(); 5804 5805 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 5806 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 5807 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 5808 5809 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 5810 .owner = THIS_MODULE, 5811 .set = &scx_kfunc_ids_cpu_release, 5812 }; 5813 5814 __bpf_kfunc_start_defs(); 5815 5816 /** 5817 * scx_bpf_create_dsq - Create a custom DSQ 5818 * @dsq_id: DSQ to create 5819 * @node: NUMA node to allocate from 5820 * 5821 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable 5822 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. 5823 */ 5824 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 5825 { 5826 struct scx_dispatch_q *dsq; 5827 struct scx_sched *sch; 5828 s32 ret; 5829 5830 if (unlikely(node >= (int)nr_node_ids || 5831 (node < 0 && node != NUMA_NO_NODE))) 5832 return -EINVAL; 5833 5834 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN)) 5835 return -EINVAL; 5836 5837 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 5838 if (!dsq) 5839 return -ENOMEM; 5840 5841 init_dsq(dsq, dsq_id); 5842 5843 rcu_read_lock(); 5844 5845 sch = rcu_dereference(scx_root); 5846 if (sch) 5847 ret = rhashtable_lookup_insert_fast(&sch->dsq_hash, &dsq->hash_node, 5848 dsq_hash_params); 5849 else 5850 ret = -ENODEV; 5851 5852 rcu_read_unlock(); 5853 if (ret) 5854 kfree(dsq); 5855 return ret; 5856 } 5857 5858 __bpf_kfunc_end_defs(); 5859 5860 BTF_KFUNCS_START(scx_kfunc_ids_unlocked) 5861 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 5862 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU) 5863 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU) 5864 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 5865 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 5866 BTF_KFUNCS_END(scx_kfunc_ids_unlocked) 5867 5868 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { 5869 .owner = THIS_MODULE, 5870 .set = &scx_kfunc_ids_unlocked, 5871 }; 5872 5873 __bpf_kfunc_start_defs(); 5874 5875 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags) 5876 { 5877 struct rq *this_rq; 5878 unsigned long irq_flags; 5879 5880 if (!ops_cpu_valid(sch, cpu, NULL)) 5881 return; 5882 5883 local_irq_save(irq_flags); 5884 5885 this_rq = this_rq(); 5886 5887 /* 5888 * While bypassing for PM ops, IRQ handling may not be online which can 5889 * lead to irq_work_queue() malfunction such as infinite busy wait for 5890 * IRQ status update. Suppress kicking. 5891 */ 5892 if (scx_rq_bypassing(this_rq)) 5893 goto out; 5894 5895 /* 5896 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 5897 * rq locks. We can probably be smarter and avoid bouncing if called 5898 * from ops which don't hold a rq lock. 5899 */ 5900 if (flags & SCX_KICK_IDLE) { 5901 struct rq *target_rq = cpu_rq(cpu); 5902 5903 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 5904 scx_error(sch, "PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 5905 5906 if (raw_spin_rq_trylock(target_rq)) { 5907 if (can_skip_idle_kick(target_rq)) { 5908 raw_spin_rq_unlock(target_rq); 5909 goto out; 5910 } 5911 raw_spin_rq_unlock(target_rq); 5912 } 5913 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 5914 } else { 5915 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 5916 5917 if (flags & SCX_KICK_PREEMPT) 5918 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 5919 if (flags & SCX_KICK_WAIT) 5920 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 5921 } 5922 5923 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 5924 out: 5925 local_irq_restore(irq_flags); 5926 } 5927 5928 /** 5929 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 5930 * @cpu: cpu to kick 5931 * @flags: %SCX_KICK_* flags 5932 * 5933 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 5934 * trigger rescheduling on a busy CPU. This can be called from any online 5935 * scx_ops operation and the actual kicking is performed asynchronously through 5936 * an irq work. 5937 */ 5938 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 5939 { 5940 struct scx_sched *sch; 5941 5942 guard(rcu)(); 5943 sch = rcu_dereference(scx_root); 5944 if (likely(sch)) 5945 scx_kick_cpu(sch, cpu, flags); 5946 } 5947 5948 /** 5949 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 5950 * @dsq_id: id of the DSQ 5951 * 5952 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 5953 * -%ENOENT is returned. 5954 */ 5955 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 5956 { 5957 struct scx_sched *sch; 5958 struct scx_dispatch_q *dsq; 5959 s32 ret; 5960 5961 preempt_disable(); 5962 5963 sch = rcu_dereference_sched(scx_root); 5964 if (unlikely(!sch)) { 5965 ret = -ENODEV; 5966 goto out; 5967 } 5968 5969 if (dsq_id == SCX_DSQ_LOCAL) { 5970 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 5971 goto out; 5972 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 5973 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 5974 5975 if (ops_cpu_valid(sch, cpu, NULL)) { 5976 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 5977 goto out; 5978 } 5979 } else { 5980 dsq = find_user_dsq(sch, dsq_id); 5981 if (dsq) { 5982 ret = READ_ONCE(dsq->nr); 5983 goto out; 5984 } 5985 } 5986 ret = -ENOENT; 5987 out: 5988 preempt_enable(); 5989 return ret; 5990 } 5991 5992 /** 5993 * scx_bpf_destroy_dsq - Destroy a custom DSQ 5994 * @dsq_id: DSQ to destroy 5995 * 5996 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 5997 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 5998 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 5999 * which doesn't exist. Can be called from any online scx_ops operations. 6000 */ 6001 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 6002 { 6003 struct scx_sched *sch; 6004 6005 rcu_read_lock(); 6006 sch = rcu_dereference(scx_root); 6007 if (sch) 6008 destroy_dsq(sch, dsq_id); 6009 rcu_read_unlock(); 6010 } 6011 6012 /** 6013 * bpf_iter_scx_dsq_new - Create a DSQ iterator 6014 * @it: iterator to initialize 6015 * @dsq_id: DSQ to iterate 6016 * @flags: %SCX_DSQ_ITER_* 6017 * 6018 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk 6019 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes 6020 * tasks which are already queued when this function is invoked. 6021 */ 6022 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, 6023 u64 flags) 6024 { 6025 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6026 struct scx_sched *sch; 6027 6028 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > 6029 sizeof(struct bpf_iter_scx_dsq)); 6030 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != 6031 __alignof__(struct bpf_iter_scx_dsq)); 6032 6033 /* 6034 * next() and destroy() will be called regardless of the return value. 6035 * Always clear $kit->dsq. 6036 */ 6037 kit->dsq = NULL; 6038 6039 sch = rcu_dereference_check(scx_root, rcu_read_lock_bh_held()); 6040 if (unlikely(!sch)) 6041 return -ENODEV; 6042 6043 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) 6044 return -EINVAL; 6045 6046 kit->dsq = find_user_dsq(sch, dsq_id); 6047 if (!kit->dsq) 6048 return -ENOENT; 6049 6050 INIT_LIST_HEAD(&kit->cursor.node); 6051 kit->cursor.flags = SCX_DSQ_LNODE_ITER_CURSOR | flags; 6052 kit->cursor.priv = READ_ONCE(kit->dsq->seq); 6053 6054 return 0; 6055 } 6056 6057 /** 6058 * bpf_iter_scx_dsq_next - Progress a DSQ iterator 6059 * @it: iterator to progress 6060 * 6061 * Return the next task. See bpf_iter_scx_dsq_new(). 6062 */ 6063 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) 6064 { 6065 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6066 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; 6067 struct task_struct *p; 6068 unsigned long flags; 6069 6070 if (!kit->dsq) 6071 return NULL; 6072 6073 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6074 6075 if (list_empty(&kit->cursor.node)) 6076 p = NULL; 6077 else 6078 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); 6079 6080 /* 6081 * Only tasks which were queued before the iteration started are 6082 * visible. This bounds BPF iterations and guarantees that vtime never 6083 * jumps in the other direction while iterating. 6084 */ 6085 do { 6086 p = nldsq_next_task(kit->dsq, p, rev); 6087 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); 6088 6089 if (p) { 6090 if (rev) 6091 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); 6092 else 6093 list_move(&kit->cursor.node, &p->scx.dsq_list.node); 6094 } else { 6095 list_del_init(&kit->cursor.node); 6096 } 6097 6098 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6099 6100 return p; 6101 } 6102 6103 /** 6104 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator 6105 * @it: iterator to destroy 6106 * 6107 * Undo scx_iter_scx_dsq_new(). 6108 */ 6109 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) 6110 { 6111 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6112 6113 if (!kit->dsq) 6114 return; 6115 6116 if (!list_empty(&kit->cursor.node)) { 6117 unsigned long flags; 6118 6119 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6120 list_del_init(&kit->cursor.node); 6121 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6122 } 6123 kit->dsq = NULL; 6124 } 6125 6126 __bpf_kfunc_end_defs(); 6127 6128 static s32 __bstr_format(struct scx_sched *sch, u64 *data_buf, char *line_buf, 6129 size_t line_size, char *fmt, unsigned long long *data, 6130 u32 data__sz) 6131 { 6132 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 6133 s32 ret; 6134 6135 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 6136 (data__sz && !data)) { 6137 scx_error(sch, "invalid data=%p and data__sz=%u", (void *)data, data__sz); 6138 return -EINVAL; 6139 } 6140 6141 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 6142 if (ret < 0) { 6143 scx_error(sch, "failed to read data fields (%d)", ret); 6144 return ret; 6145 } 6146 6147 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 6148 &bprintf_data); 6149 if (ret < 0) { 6150 scx_error(sch, "format preparation failed (%d)", ret); 6151 return ret; 6152 } 6153 6154 ret = bstr_printf(line_buf, line_size, fmt, 6155 bprintf_data.bin_args); 6156 bpf_bprintf_cleanup(&bprintf_data); 6157 if (ret < 0) { 6158 scx_error(sch, "(\"%s\", %p, %u) failed to format", fmt, data, data__sz); 6159 return ret; 6160 } 6161 6162 return ret; 6163 } 6164 6165 static s32 bstr_format(struct scx_sched *sch, struct scx_bstr_buf *buf, 6166 char *fmt, unsigned long long *data, u32 data__sz) 6167 { 6168 return __bstr_format(sch, buf->data, buf->line, sizeof(buf->line), 6169 fmt, data, data__sz); 6170 } 6171 6172 __bpf_kfunc_start_defs(); 6173 6174 /** 6175 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 6176 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 6177 * @fmt: error message format string 6178 * @data: format string parameters packaged using ___bpf_fill() macro 6179 * @data__sz: @data len, must end in '__sz' for the verifier 6180 * 6181 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 6182 * disabling. 6183 */ 6184 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 6185 unsigned long long *data, u32 data__sz) 6186 { 6187 struct scx_sched *sch; 6188 unsigned long flags; 6189 6190 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6191 sch = rcu_dereference_bh(scx_root); 6192 if (likely(sch) && 6193 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6194 scx_exit(sch, SCX_EXIT_UNREG_BPF, exit_code, "%s", scx_exit_bstr_buf.line); 6195 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6196 } 6197 6198 /** 6199 * scx_bpf_error_bstr - Indicate fatal error 6200 * @fmt: error message format string 6201 * @data: format string parameters packaged using ___bpf_fill() macro 6202 * @data__sz: @data len, must end in '__sz' for the verifier 6203 * 6204 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 6205 * disabling. 6206 */ 6207 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 6208 u32 data__sz) 6209 { 6210 struct scx_sched *sch; 6211 unsigned long flags; 6212 6213 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6214 sch = rcu_dereference_bh(scx_root); 6215 if (likely(sch) && 6216 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6217 scx_exit(sch, SCX_EXIT_ERROR_BPF, 0, "%s", scx_exit_bstr_buf.line); 6218 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6219 } 6220 6221 /** 6222 * scx_bpf_dump_bstr - Generate extra debug dump specific to the BPF scheduler 6223 * @fmt: format string 6224 * @data: format string parameters packaged using ___bpf_fill() macro 6225 * @data__sz: @data len, must end in '__sz' for the verifier 6226 * 6227 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 6228 * dump_task() to generate extra debug dump specific to the BPF scheduler. 6229 * 6230 * The extra dump may be multiple lines. A single line may be split over 6231 * multiple calls. The last line is automatically terminated. 6232 */ 6233 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 6234 u32 data__sz) 6235 { 6236 struct scx_sched *sch; 6237 struct scx_dump_data *dd = &scx_dump_data; 6238 struct scx_bstr_buf *buf = &dd->buf; 6239 s32 ret; 6240 6241 guard(rcu)(); 6242 6243 sch = rcu_dereference(scx_root); 6244 if (unlikely(!sch)) 6245 return; 6246 6247 if (raw_smp_processor_id() != dd->cpu) { 6248 scx_error(sch, "scx_bpf_dump() must only be called from ops.dump() and friends"); 6249 return; 6250 } 6251 6252 /* append the formatted string to the line buf */ 6253 ret = __bstr_format(sch, buf->data, buf->line + dd->cursor, 6254 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 6255 if (ret < 0) { 6256 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 6257 dd->prefix, fmt, data, data__sz, ret); 6258 return; 6259 } 6260 6261 dd->cursor += ret; 6262 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 6263 6264 if (!dd->cursor) 6265 return; 6266 6267 /* 6268 * If the line buf overflowed or ends in a newline, flush it into the 6269 * dump. This is to allow the caller to generate a single line over 6270 * multiple calls. As ops_dump_flush() can also handle multiple lines in 6271 * the line buf, the only case which can lead to an unexpected 6272 * truncation is when the caller keeps generating newlines in the middle 6273 * instead of the end consecutively. Don't do that. 6274 */ 6275 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 6276 ops_dump_flush(); 6277 } 6278 6279 /** 6280 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU 6281 * @cpu: CPU of interest 6282 * 6283 * Return the maximum relative capacity of @cpu in relation to the most 6284 * performant CPU in the system. The return value is in the range [1, 6285 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). 6286 */ 6287 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) 6288 { 6289 struct scx_sched *sch; 6290 6291 guard(rcu)(); 6292 6293 sch = rcu_dereference(scx_root); 6294 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL)) 6295 return arch_scale_cpu_capacity(cpu); 6296 else 6297 return SCX_CPUPERF_ONE; 6298 } 6299 6300 /** 6301 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU 6302 * @cpu: CPU of interest 6303 * 6304 * Return the current relative performance of @cpu in relation to its maximum. 6305 * The return value is in the range [1, %SCX_CPUPERF_ONE]. 6306 * 6307 * The current performance level of a CPU in relation to the maximum performance 6308 * available in the system can be calculated as follows: 6309 * 6310 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE 6311 * 6312 * The result is in the range [1, %SCX_CPUPERF_ONE]. 6313 */ 6314 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) 6315 { 6316 struct scx_sched *sch; 6317 6318 guard(rcu)(); 6319 6320 sch = rcu_dereference(scx_root); 6321 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL)) 6322 return arch_scale_freq_capacity(cpu); 6323 else 6324 return SCX_CPUPERF_ONE; 6325 } 6326 6327 /** 6328 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU 6329 * @cpu: CPU of interest 6330 * @perf: target performance level [0, %SCX_CPUPERF_ONE] 6331 * 6332 * Set the target performance level of @cpu to @perf. @perf is in linear 6333 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the 6334 * schedutil cpufreq governor chooses the target frequency. 6335 * 6336 * The actual performance level chosen, CPU grouping, and the overhead and 6337 * latency of the operations are dependent on the hardware and cpufreq driver in 6338 * use. Consult hardware and cpufreq documentation for more information. The 6339 * current performance level can be monitored using scx_bpf_cpuperf_cur(). 6340 */ 6341 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) 6342 { 6343 struct scx_sched *sch; 6344 6345 guard(rcu)(); 6346 6347 sch = rcu_dereference(scx_root); 6348 if (unlikely(!sch)) 6349 return; 6350 6351 if (unlikely(perf > SCX_CPUPERF_ONE)) { 6352 scx_error(sch, "Invalid cpuperf target %u for CPU %d", perf, cpu); 6353 return; 6354 } 6355 6356 if (ops_cpu_valid(sch, cpu, NULL)) { 6357 struct rq *rq = cpu_rq(cpu), *locked_rq = scx_locked_rq(); 6358 struct rq_flags rf; 6359 6360 /* 6361 * When called with an rq lock held, restrict the operation 6362 * to the corresponding CPU to prevent ABBA deadlocks. 6363 */ 6364 if (locked_rq && rq != locked_rq) { 6365 scx_error(sch, "Invalid target CPU %d", cpu); 6366 return; 6367 } 6368 6369 /* 6370 * If no rq lock is held, allow to operate on any CPU by 6371 * acquiring the corresponding rq lock. 6372 */ 6373 if (!locked_rq) { 6374 rq_lock_irqsave(rq, &rf); 6375 update_rq_clock(rq); 6376 } 6377 6378 rq->scx.cpuperf_target = perf; 6379 cpufreq_update_util(rq, 0); 6380 6381 if (!locked_rq) 6382 rq_unlock_irqrestore(rq, &rf); 6383 } 6384 } 6385 6386 /** 6387 * scx_bpf_nr_node_ids - Return the number of possible node IDs 6388 * 6389 * All valid node IDs in the system are smaller than the returned value. 6390 */ 6391 __bpf_kfunc u32 scx_bpf_nr_node_ids(void) 6392 { 6393 return nr_node_ids; 6394 } 6395 6396 /** 6397 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 6398 * 6399 * All valid CPU IDs in the system are smaller than the returned value. 6400 */ 6401 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 6402 { 6403 return nr_cpu_ids; 6404 } 6405 6406 /** 6407 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 6408 */ 6409 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 6410 { 6411 return cpu_possible_mask; 6412 } 6413 6414 /** 6415 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 6416 */ 6417 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 6418 { 6419 return cpu_online_mask; 6420 } 6421 6422 /** 6423 * scx_bpf_put_cpumask - Release a possible/online cpumask 6424 * @cpumask: cpumask to release 6425 */ 6426 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 6427 { 6428 /* 6429 * Empty function body because we aren't actually acquiring or releasing 6430 * a reference to a global cpumask, which is read-only in the caller and 6431 * is never released. The acquire / release semantics here are just used 6432 * to make the cpumask is a trusted pointer in the caller. 6433 */ 6434 } 6435 6436 /** 6437 * scx_bpf_task_running - Is task currently running? 6438 * @p: task of interest 6439 */ 6440 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 6441 { 6442 return task_rq(p)->curr == p; 6443 } 6444 6445 /** 6446 * scx_bpf_task_cpu - CPU a task is currently associated with 6447 * @p: task of interest 6448 */ 6449 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 6450 { 6451 return task_cpu(p); 6452 } 6453 6454 /** 6455 * scx_bpf_cpu_rq - Fetch the rq of a CPU 6456 * @cpu: CPU of the rq 6457 */ 6458 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) 6459 { 6460 struct scx_sched *sch; 6461 6462 guard(rcu)(); 6463 6464 sch = rcu_dereference(scx_root); 6465 if (unlikely(!sch)) 6466 return NULL; 6467 6468 if (!ops_cpu_valid(sch, cpu, NULL)) 6469 return NULL; 6470 6471 if (!sch->warned_deprecated_rq) { 6472 printk_deferred(KERN_WARNING "sched_ext: %s() is deprecated; " 6473 "use scx_bpf_locked_rq() when holding rq lock " 6474 "or scx_bpf_cpu_curr() to read remote curr safely.\n", __func__); 6475 sch->warned_deprecated_rq = true; 6476 } 6477 6478 return cpu_rq(cpu); 6479 } 6480 6481 /** 6482 * scx_bpf_locked_rq - Return the rq currently locked by SCX 6483 * 6484 * Returns the rq if a rq lock is currently held by SCX. 6485 * Otherwise emits an error and returns NULL. 6486 */ 6487 __bpf_kfunc struct rq *scx_bpf_locked_rq(void) 6488 { 6489 struct scx_sched *sch; 6490 struct rq *rq; 6491 6492 guard(preempt)(); 6493 6494 sch = rcu_dereference_sched(scx_root); 6495 if (unlikely(!sch)) 6496 return NULL; 6497 6498 rq = scx_locked_rq(); 6499 if (!rq) { 6500 scx_error(sch, "accessing rq without holding rq lock"); 6501 return NULL; 6502 } 6503 6504 return rq; 6505 } 6506 6507 /** 6508 * scx_bpf_cpu_curr - Return remote CPU's curr task 6509 * @cpu: CPU of interest 6510 * 6511 * Callers must hold RCU read lock (KF_RCU). 6512 */ 6513 __bpf_kfunc struct task_struct *scx_bpf_cpu_curr(s32 cpu) 6514 { 6515 struct scx_sched *sch; 6516 6517 guard(rcu)(); 6518 6519 sch = rcu_dereference(scx_root); 6520 if (unlikely(!sch)) 6521 return NULL; 6522 6523 if (!ops_cpu_valid(sch, cpu, NULL)) 6524 return NULL; 6525 6526 return rcu_dereference(cpu_rq(cpu)->curr); 6527 } 6528 6529 /** 6530 * scx_bpf_task_cgroup - Return the sched cgroup of a task 6531 * @p: task of interest 6532 * 6533 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with 6534 * from the scheduler's POV. SCX operations should use this function to 6535 * determine @p's current cgroup as, unlike following @p->cgroups, 6536 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all 6537 * rq-locked operations. Can be called on the parameter tasks of rq-locked 6538 * operations. The restriction guarantees that @p's rq is locked by the caller. 6539 */ 6540 #ifdef CONFIG_CGROUP_SCHED 6541 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) 6542 { 6543 struct task_group *tg = p->sched_task_group; 6544 struct cgroup *cgrp = &cgrp_dfl_root.cgrp; 6545 struct scx_sched *sch; 6546 6547 guard(rcu)(); 6548 6549 sch = rcu_dereference(scx_root); 6550 if (unlikely(!sch)) 6551 goto out; 6552 6553 if (!scx_kf_allowed_on_arg_tasks(sch, __SCX_KF_RQ_LOCKED, p)) 6554 goto out; 6555 6556 cgrp = tg_cgrp(tg); 6557 6558 out: 6559 cgroup_get(cgrp); 6560 return cgrp; 6561 } 6562 #endif 6563 6564 /** 6565 * scx_bpf_now - Returns a high-performance monotonically non-decreasing 6566 * clock for the current CPU. The clock returned is in nanoseconds. 6567 * 6568 * It provides the following properties: 6569 * 6570 * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently 6571 * to account for execution time and track tasks' runtime properties. 6572 * Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which 6573 * eventually reads a hardware timestamp counter -- is neither performant nor 6574 * scalable. scx_bpf_now() aims to provide a high-performance clock by 6575 * using the rq clock in the scheduler core whenever possible. 6576 * 6577 * 2) High enough resolution for the BPF scheduler use cases: In most BPF 6578 * scheduler use cases, the required clock resolution is lower than the most 6579 * accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically 6580 * uses the rq clock in the scheduler core whenever it is valid. It considers 6581 * that the rq clock is valid from the time the rq clock is updated 6582 * (update_rq_clock) until the rq is unlocked (rq_unpin_lock). 6583 * 6584 * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now() 6585 * guarantees the clock never goes backward when comparing them in the same 6586 * CPU. On the other hand, when comparing clocks in different CPUs, there 6587 * is no such guarantee -- the clock can go backward. It provides a 6588 * monotonically *non-decreasing* clock so that it would provide the same 6589 * clock values in two different scx_bpf_now() calls in the same CPU 6590 * during the same period of when the rq clock is valid. 6591 */ 6592 __bpf_kfunc u64 scx_bpf_now(void) 6593 { 6594 struct rq *rq; 6595 u64 clock; 6596 6597 preempt_disable(); 6598 6599 rq = this_rq(); 6600 if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) { 6601 /* 6602 * If the rq clock is valid, use the cached rq clock. 6603 * 6604 * Note that scx_bpf_now() is re-entrant between a process 6605 * context and an interrupt context (e.g., timer interrupt). 6606 * However, we don't need to consider the race between them 6607 * because such race is not observable from a caller. 6608 */ 6609 clock = READ_ONCE(rq->scx.clock); 6610 } else { 6611 /* 6612 * Otherwise, return a fresh rq clock. 6613 * 6614 * The rq clock is updated outside of the rq lock. 6615 * In this case, keep the updated rq clock invalid so the next 6616 * kfunc call outside the rq lock gets a fresh rq clock. 6617 */ 6618 clock = sched_clock_cpu(cpu_of(rq)); 6619 } 6620 6621 preempt_enable(); 6622 6623 return clock; 6624 } 6625 6626 static void scx_read_events(struct scx_sched *sch, struct scx_event_stats *events) 6627 { 6628 struct scx_event_stats *e_cpu; 6629 int cpu; 6630 6631 /* Aggregate per-CPU event counters into @events. */ 6632 memset(events, 0, sizeof(*events)); 6633 for_each_possible_cpu(cpu) { 6634 e_cpu = &per_cpu_ptr(sch->pcpu, cpu)->event_stats; 6635 scx_agg_event(events, e_cpu, SCX_EV_SELECT_CPU_FALLBACK); 6636 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 6637 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_KEEP_LAST); 6638 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_EXITING); 6639 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 6640 scx_agg_event(events, e_cpu, SCX_EV_REFILL_SLICE_DFL); 6641 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DURATION); 6642 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DISPATCH); 6643 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_ACTIVATE); 6644 } 6645 } 6646 6647 /* 6648 * scx_bpf_events - Get a system-wide event counter to 6649 * @events: output buffer from a BPF program 6650 * @events__sz: @events len, must end in '__sz'' for the verifier 6651 */ 6652 __bpf_kfunc void scx_bpf_events(struct scx_event_stats *events, 6653 size_t events__sz) 6654 { 6655 struct scx_sched *sch; 6656 struct scx_event_stats e_sys; 6657 6658 rcu_read_lock(); 6659 sch = rcu_dereference(scx_root); 6660 if (sch) 6661 scx_read_events(sch, &e_sys); 6662 else 6663 memset(&e_sys, 0, sizeof(e_sys)); 6664 rcu_read_unlock(); 6665 6666 /* 6667 * We cannot entirely trust a BPF-provided size since a BPF program 6668 * might be compiled against a different vmlinux.h, of which 6669 * scx_event_stats would be larger (a newer vmlinux.h) or smaller 6670 * (an older vmlinux.h). Hence, we use the smaller size to avoid 6671 * memory corruption. 6672 */ 6673 events__sz = min(events__sz, sizeof(*events)); 6674 memcpy(events, &e_sys, events__sz); 6675 } 6676 6677 __bpf_kfunc_end_defs(); 6678 6679 BTF_KFUNCS_START(scx_kfunc_ids_any) 6680 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 6681 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 6682 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 6683 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) 6684 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) 6685 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) 6686 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 6687 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 6688 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 6689 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) 6690 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) 6691 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) 6692 BTF_ID_FLAGS(func, scx_bpf_nr_node_ids) 6693 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 6694 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 6695 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 6696 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 6697 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 6698 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 6699 BTF_ID_FLAGS(func, scx_bpf_cpu_rq) 6700 BTF_ID_FLAGS(func, scx_bpf_locked_rq, KF_RET_NULL) 6701 BTF_ID_FLAGS(func, scx_bpf_cpu_curr, KF_RET_NULL | KF_RCU_PROTECTED) 6702 #ifdef CONFIG_CGROUP_SCHED 6703 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) 6704 #endif 6705 BTF_ID_FLAGS(func, scx_bpf_now) 6706 BTF_ID_FLAGS(func, scx_bpf_events, KF_TRUSTED_ARGS) 6707 BTF_KFUNCS_END(scx_kfunc_ids_any) 6708 6709 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 6710 .owner = THIS_MODULE, 6711 .set = &scx_kfunc_ids_any, 6712 }; 6713 6714 static int __init scx_init(void) 6715 { 6716 int ret; 6717 6718 /* 6719 * kfunc registration can't be done from init_sched_ext_class() as 6720 * register_btf_kfunc_id_set() needs most of the system to be up. 6721 * 6722 * Some kfuncs are context-sensitive and can only be called from 6723 * specific SCX ops. They are grouped into BTF sets accordingly. 6724 * Unfortunately, BPF currently doesn't have a way of enforcing such 6725 * restrictions. Eventually, the verifier should be able to enforce 6726 * them. For now, register them the same and make each kfunc explicitly 6727 * check using scx_kf_allowed(). 6728 */ 6729 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6730 &scx_kfunc_set_enqueue_dispatch)) || 6731 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6732 &scx_kfunc_set_dispatch)) || 6733 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6734 &scx_kfunc_set_cpu_release)) || 6735 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6736 &scx_kfunc_set_unlocked)) || 6737 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 6738 &scx_kfunc_set_unlocked)) || 6739 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6740 &scx_kfunc_set_any)) || 6741 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 6742 &scx_kfunc_set_any)) || 6743 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 6744 &scx_kfunc_set_any))) { 6745 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 6746 return ret; 6747 } 6748 6749 ret = scx_idle_init(); 6750 if (ret) { 6751 pr_err("sched_ext: Failed to initialize idle tracking (%d)\n", ret); 6752 return ret; 6753 } 6754 6755 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 6756 if (ret) { 6757 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 6758 return ret; 6759 } 6760 6761 ret = register_pm_notifier(&scx_pm_notifier); 6762 if (ret) { 6763 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); 6764 return ret; 6765 } 6766 6767 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 6768 if (!scx_kset) { 6769 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 6770 return -ENOMEM; 6771 } 6772 6773 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 6774 if (ret < 0) { 6775 pr_err("sched_ext: Failed to add global attributes\n"); 6776 return ret; 6777 } 6778 6779 return 0; 6780 } 6781 __initcall(scx_init); 6782