1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst 4 * 5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 7 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 8 */ 9 #include <linux/btf_ids.h> 10 #include "ext_idle.h" 11 12 /* 13 * NOTE: sched_ext is in the process of growing multiple scheduler support and 14 * scx_root usage is in a transitional state. Naked dereferences are safe if the 15 * caller is one of the tasks attached to SCX and explicit RCU dereference is 16 * necessary otherwise. Naked scx_root dereferences trigger sparse warnings but 17 * are used as temporary markers to indicate that the dereferences need to be 18 * updated to point to the associated scheduler instances rather than scx_root. 19 */ 20 static struct scx_sched __rcu *scx_root; 21 22 /* 23 * During exit, a task may schedule after losing its PIDs. When disabling the 24 * BPF scheduler, we need to be able to iterate tasks in every state to 25 * guarantee system safety. Maintain a dedicated task list which contains every 26 * task between its fork and eventual free. 27 */ 28 static DEFINE_RAW_SPINLOCK(scx_tasks_lock); 29 static LIST_HEAD(scx_tasks); 30 31 /* ops enable/disable */ 32 static DEFINE_MUTEX(scx_enable_mutex); 33 DEFINE_STATIC_KEY_FALSE(__scx_enabled); 34 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 35 static atomic_t scx_enable_state_var = ATOMIC_INIT(SCX_DISABLED); 36 static int scx_bypass_depth; 37 static cpumask_var_t scx_bypass_lb_donee_cpumask; 38 static cpumask_var_t scx_bypass_lb_resched_cpumask; 39 static bool scx_aborting; 40 static bool scx_init_task_enabled; 41 static bool scx_switching_all; 42 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 43 44 /* 45 * Tracks whether scx_enable() called scx_bypass(true). Used to balance bypass 46 * depth on enable failure. Will be removed when bypass depth is moved into the 47 * sched instance. 48 */ 49 static bool scx_bypassed_for_enable; 50 51 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 52 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); 53 54 /* 55 * A monotically increasing sequence number that is incremented every time a 56 * scheduler is enabled. This can be used by to check if any custom sched_ext 57 * scheduler has ever been used in the system. 58 */ 59 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0); 60 61 /* 62 * The maximum amount of time in jiffies that a task may be runnable without 63 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 64 * scx_error(). 65 */ 66 static unsigned long scx_watchdog_timeout; 67 68 /* 69 * The last time the delayed work was run. This delayed work relies on 70 * ksoftirqd being able to run to service timer interrupts, so it's possible 71 * that this work itself could get wedged. To account for this, we check that 72 * it's not stalled in the timer tick, and trigger an error if it is. 73 */ 74 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 75 76 static struct delayed_work scx_watchdog_work; 77 78 /* 79 * For %SCX_KICK_WAIT: Each CPU has a pointer to an array of kick_sync sequence 80 * numbers. The arrays are allocated with kvzalloc() as size can exceed percpu 81 * allocator limits on large machines. O(nr_cpu_ids^2) allocation, allocated 82 * lazily when enabling and freed when disabling to avoid waste when sched_ext 83 * isn't active. 84 */ 85 struct scx_kick_syncs { 86 struct rcu_head rcu; 87 unsigned long syncs[]; 88 }; 89 90 static DEFINE_PER_CPU(struct scx_kick_syncs __rcu *, scx_kick_syncs); 91 92 /* 93 * Direct dispatch marker. 94 * 95 * Non-NULL values are used for direct dispatch from enqueue path. A valid 96 * pointer points to the task currently being enqueued. An ERR_PTR value is used 97 * to indicate that direct dispatch has already happened. 98 */ 99 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 100 101 static const struct rhashtable_params dsq_hash_params = { 102 .key_len = sizeof_field(struct scx_dispatch_q, id), 103 .key_offset = offsetof(struct scx_dispatch_q, id), 104 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 105 }; 106 107 static LLIST_HEAD(dsqs_to_free); 108 109 /* dispatch buf */ 110 struct scx_dsp_buf_ent { 111 struct task_struct *task; 112 unsigned long qseq; 113 u64 dsq_id; 114 u64 enq_flags; 115 }; 116 117 static u32 scx_dsp_max_batch; 118 119 struct scx_dsp_ctx { 120 struct rq *rq; 121 u32 cursor; 122 u32 nr_tasks; 123 struct scx_dsp_buf_ent buf[]; 124 }; 125 126 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 127 128 /* string formatting from BPF */ 129 struct scx_bstr_buf { 130 u64 data[MAX_BPRINTF_VARARGS]; 131 char line[SCX_EXIT_MSG_LEN]; 132 }; 133 134 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 135 static struct scx_bstr_buf scx_exit_bstr_buf; 136 137 /* ops debug dump */ 138 struct scx_dump_data { 139 s32 cpu; 140 bool first; 141 s32 cursor; 142 struct seq_buf *s; 143 const char *prefix; 144 struct scx_bstr_buf buf; 145 }; 146 147 static struct scx_dump_data scx_dump_data = { 148 .cpu = -1, 149 }; 150 151 /* /sys/kernel/sched_ext interface */ 152 static struct kset *scx_kset; 153 154 /* 155 * Parameters that can be adjusted through /sys/module/sched_ext/parameters. 156 * There usually is no reason to modify these as normal scheduler operation 157 * shouldn't be affected by them. The knobs are primarily for debugging. 158 */ 159 static u64 scx_slice_dfl = SCX_SLICE_DFL; 160 static unsigned int scx_slice_bypass_us = SCX_SLICE_BYPASS / NSEC_PER_USEC; 161 static unsigned int scx_bypass_lb_intv_us = SCX_BYPASS_LB_DFL_INTV_US; 162 163 static int set_slice_us(const char *val, const struct kernel_param *kp) 164 { 165 return param_set_uint_minmax(val, kp, 100, 100 * USEC_PER_MSEC); 166 } 167 168 static const struct kernel_param_ops slice_us_param_ops = { 169 .set = set_slice_us, 170 .get = param_get_uint, 171 }; 172 173 static int set_bypass_lb_intv_us(const char *val, const struct kernel_param *kp) 174 { 175 return param_set_uint_minmax(val, kp, 0, 10 * USEC_PER_SEC); 176 } 177 178 static const struct kernel_param_ops bypass_lb_intv_us_param_ops = { 179 .set = set_bypass_lb_intv_us, 180 .get = param_get_uint, 181 }; 182 183 #undef MODULE_PARAM_PREFIX 184 #define MODULE_PARAM_PREFIX "sched_ext." 185 186 module_param_cb(slice_bypass_us, &slice_us_param_ops, &scx_slice_bypass_us, 0600); 187 MODULE_PARM_DESC(slice_bypass_us, "bypass slice in microseconds, applied on [un]load (100us to 100ms)"); 188 module_param_cb(bypass_lb_intv_us, &bypass_lb_intv_us_param_ops, &scx_bypass_lb_intv_us, 0600); 189 MODULE_PARM_DESC(bypass_lb_intv_us, "bypass load balance interval in microseconds (0 (disable) to 10s)"); 190 191 #undef MODULE_PARAM_PREFIX 192 193 #define CREATE_TRACE_POINTS 194 #include <trace/events/sched_ext.h> 195 196 static void process_ddsp_deferred_locals(struct rq *rq); 197 static u32 reenq_local(struct rq *rq); 198 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags); 199 static bool scx_vexit(struct scx_sched *sch, enum scx_exit_kind kind, 200 s64 exit_code, const char *fmt, va_list args); 201 202 static __printf(4, 5) bool scx_exit(struct scx_sched *sch, 203 enum scx_exit_kind kind, s64 exit_code, 204 const char *fmt, ...) 205 { 206 va_list args; 207 bool ret; 208 209 va_start(args, fmt); 210 ret = scx_vexit(sch, kind, exit_code, fmt, args); 211 va_end(args); 212 213 return ret; 214 } 215 216 #define scx_error(sch, fmt, args...) scx_exit((sch), SCX_EXIT_ERROR, 0, fmt, ##args) 217 #define scx_verror(sch, fmt, args) scx_vexit((sch), SCX_EXIT_ERROR, 0, fmt, args) 218 219 #define SCX_HAS_OP(sch, op) test_bit(SCX_OP_IDX(op), (sch)->has_op) 220 221 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 222 { 223 if (time_after(at, now)) 224 return jiffies_to_msecs(at - now); 225 else 226 return -(long)jiffies_to_msecs(now - at); 227 } 228 229 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 230 static u32 higher_bits(u32 flags) 231 { 232 return ~((1 << fls(flags)) - 1); 233 } 234 235 /* return the mask with only the highest bit set */ 236 static u32 highest_bit(u32 flags) 237 { 238 int bit = fls(flags); 239 return ((u64)1 << bit) >> 1; 240 } 241 242 static bool u32_before(u32 a, u32 b) 243 { 244 return (s32)(a - b) < 0; 245 } 246 247 static struct scx_dispatch_q *find_global_dsq(struct scx_sched *sch, 248 struct task_struct *p) 249 { 250 return sch->global_dsqs[cpu_to_node(task_cpu(p))]; 251 } 252 253 static struct scx_dispatch_q *find_user_dsq(struct scx_sched *sch, u64 dsq_id) 254 { 255 return rhashtable_lookup(&sch->dsq_hash, &dsq_id, dsq_hash_params); 256 } 257 258 static const struct sched_class *scx_setscheduler_class(struct task_struct *p) 259 { 260 if (p->sched_class == &stop_sched_class) 261 return &stop_sched_class; 262 263 return __setscheduler_class(p->policy, p->prio); 264 } 265 266 /* 267 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 268 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 269 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 270 * whether it's running from an allowed context. 271 * 272 * @mask is constant, always inline to cull the mask calculations. 273 */ 274 static __always_inline void scx_kf_allow(u32 mask) 275 { 276 /* nesting is allowed only in increasing scx_kf_mask order */ 277 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 278 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 279 current->scx.kf_mask, mask); 280 current->scx.kf_mask |= mask; 281 barrier(); 282 } 283 284 static void scx_kf_disallow(u32 mask) 285 { 286 barrier(); 287 current->scx.kf_mask &= ~mask; 288 } 289 290 /* 291 * Track the rq currently locked. 292 * 293 * This allows kfuncs to safely operate on rq from any scx ops callback, 294 * knowing which rq is already locked. 295 */ 296 DEFINE_PER_CPU(struct rq *, scx_locked_rq_state); 297 298 static inline void update_locked_rq(struct rq *rq) 299 { 300 /* 301 * Check whether @rq is actually locked. This can help expose bugs 302 * or incorrect assumptions about the context in which a kfunc or 303 * callback is executed. 304 */ 305 if (rq) 306 lockdep_assert_rq_held(rq); 307 __this_cpu_write(scx_locked_rq_state, rq); 308 } 309 310 #define SCX_CALL_OP(sch, mask, op, rq, args...) \ 311 do { \ 312 if (rq) \ 313 update_locked_rq(rq); \ 314 if (mask) { \ 315 scx_kf_allow(mask); \ 316 (sch)->ops.op(args); \ 317 scx_kf_disallow(mask); \ 318 } else { \ 319 (sch)->ops.op(args); \ 320 } \ 321 if (rq) \ 322 update_locked_rq(NULL); \ 323 } while (0) 324 325 #define SCX_CALL_OP_RET(sch, mask, op, rq, args...) \ 326 ({ \ 327 __typeof__((sch)->ops.op(args)) __ret; \ 328 \ 329 if (rq) \ 330 update_locked_rq(rq); \ 331 if (mask) { \ 332 scx_kf_allow(mask); \ 333 __ret = (sch)->ops.op(args); \ 334 scx_kf_disallow(mask); \ 335 } else { \ 336 __ret = (sch)->ops.op(args); \ 337 } \ 338 if (rq) \ 339 update_locked_rq(NULL); \ 340 __ret; \ 341 }) 342 343 /* 344 * Some kfuncs are allowed only on the tasks that are subjects of the 345 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 346 * restrictions, the following SCX_CALL_OP_*() variants should be used when 347 * invoking scx_ops operations that take task arguments. These can only be used 348 * for non-nesting operations due to the way the tasks are tracked. 349 * 350 * kfuncs which can only operate on such tasks can in turn use 351 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 352 * the specific task. 353 */ 354 #define SCX_CALL_OP_TASK(sch, mask, op, rq, task, args...) \ 355 do { \ 356 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 357 current->scx.kf_tasks[0] = task; \ 358 SCX_CALL_OP((sch), mask, op, rq, task, ##args); \ 359 current->scx.kf_tasks[0] = NULL; \ 360 } while (0) 361 362 #define SCX_CALL_OP_TASK_RET(sch, mask, op, rq, task, args...) \ 363 ({ \ 364 __typeof__((sch)->ops.op(task, ##args)) __ret; \ 365 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 366 current->scx.kf_tasks[0] = task; \ 367 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task, ##args); \ 368 current->scx.kf_tasks[0] = NULL; \ 369 __ret; \ 370 }) 371 372 #define SCX_CALL_OP_2TASKS_RET(sch, mask, op, rq, task0, task1, args...) \ 373 ({ \ 374 __typeof__((sch)->ops.op(task0, task1, ##args)) __ret; \ 375 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 376 current->scx.kf_tasks[0] = task0; \ 377 current->scx.kf_tasks[1] = task1; \ 378 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task0, task1, ##args); \ 379 current->scx.kf_tasks[0] = NULL; \ 380 current->scx.kf_tasks[1] = NULL; \ 381 __ret; \ 382 }) 383 384 /* @mask is constant, always inline to cull unnecessary branches */ 385 static __always_inline bool scx_kf_allowed(struct scx_sched *sch, u32 mask) 386 { 387 if (unlikely(!(current->scx.kf_mask & mask))) { 388 scx_error(sch, "kfunc with mask 0x%x called from an operation only allowing 0x%x", 389 mask, current->scx.kf_mask); 390 return false; 391 } 392 393 /* 394 * Enforce nesting boundaries. e.g. A kfunc which can be called from 395 * DISPATCH must not be called if we're running DEQUEUE which is nested 396 * inside ops.dispatch(). We don't need to check boundaries for any 397 * blocking kfuncs as the verifier ensures they're only called from 398 * sleepable progs. 399 */ 400 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 401 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 402 scx_error(sch, "cpu_release kfunc called from a nested operation"); 403 return false; 404 } 405 406 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 407 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 408 scx_error(sch, "dispatch kfunc called from a nested operation"); 409 return false; 410 } 411 412 return true; 413 } 414 415 /* see SCX_CALL_OP_TASK() */ 416 static __always_inline bool scx_kf_allowed_on_arg_tasks(struct scx_sched *sch, 417 u32 mask, 418 struct task_struct *p) 419 { 420 if (!scx_kf_allowed(sch, mask)) 421 return false; 422 423 if (unlikely((p != current->scx.kf_tasks[0] && 424 p != current->scx.kf_tasks[1]))) { 425 scx_error(sch, "called on a task not being operated on"); 426 return false; 427 } 428 429 return true; 430 } 431 432 /** 433 * nldsq_next_task - Iterate to the next task in a non-local DSQ 434 * @dsq: user dsq being iterated 435 * @cur: current position, %NULL to start iteration 436 * @rev: walk backwards 437 * 438 * Returns %NULL when iteration is finished. 439 */ 440 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, 441 struct task_struct *cur, bool rev) 442 { 443 struct list_head *list_node; 444 struct scx_dsq_list_node *dsq_lnode; 445 446 lockdep_assert_held(&dsq->lock); 447 448 if (cur) 449 list_node = &cur->scx.dsq_list.node; 450 else 451 list_node = &dsq->list; 452 453 /* find the next task, need to skip BPF iteration cursors */ 454 do { 455 if (rev) 456 list_node = list_node->prev; 457 else 458 list_node = list_node->next; 459 460 if (list_node == &dsq->list) 461 return NULL; 462 463 dsq_lnode = container_of(list_node, struct scx_dsq_list_node, 464 node); 465 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); 466 467 return container_of(dsq_lnode, struct task_struct, scx.dsq_list); 468 } 469 470 #define nldsq_for_each_task(p, dsq) \ 471 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ 472 (p) = nldsq_next_task((dsq), (p), false)) 473 474 475 /* 476 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] 477 * dispatch order. BPF-visible iterator is opaque and larger to allow future 478 * changes without breaking backward compatibility. Can be used with 479 * bpf_for_each(). See bpf_iter_scx_dsq_*(). 480 */ 481 enum scx_dsq_iter_flags { 482 /* iterate in the reverse dispatch order */ 483 SCX_DSQ_ITER_REV = 1U << 16, 484 485 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, 486 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, 487 488 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, 489 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | 490 __SCX_DSQ_ITER_HAS_SLICE | 491 __SCX_DSQ_ITER_HAS_VTIME, 492 }; 493 494 struct bpf_iter_scx_dsq_kern { 495 struct scx_dsq_list_node cursor; 496 struct scx_dispatch_q *dsq; 497 u64 slice; 498 u64 vtime; 499 } __attribute__((aligned(8))); 500 501 struct bpf_iter_scx_dsq { 502 u64 __opaque[6]; 503 } __attribute__((aligned(8))); 504 505 506 /* 507 * SCX task iterator. 508 */ 509 struct scx_task_iter { 510 struct sched_ext_entity cursor; 511 struct task_struct *locked_task; 512 struct rq *rq; 513 struct rq_flags rf; 514 u32 cnt; 515 bool list_locked; 516 }; 517 518 /** 519 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration 520 * @iter: iterator to init 521 * 522 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter 523 * must eventually be stopped with scx_task_iter_stop(). 524 * 525 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock() 526 * between this and the first next() call or between any two next() calls. If 527 * the locks are released between two next() calls, the caller is responsible 528 * for ensuring that the task being iterated remains accessible either through 529 * RCU read lock or obtaining a reference count. 530 * 531 * All tasks which existed when the iteration started are guaranteed to be 532 * visited as long as they are not dead. 533 */ 534 static void scx_task_iter_start(struct scx_task_iter *iter) 535 { 536 memset(iter, 0, sizeof(*iter)); 537 538 raw_spin_lock_irq(&scx_tasks_lock); 539 540 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 541 list_add(&iter->cursor.tasks_node, &scx_tasks); 542 iter->list_locked = true; 543 } 544 545 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter) 546 { 547 if (iter->locked_task) { 548 task_rq_unlock(iter->rq, iter->locked_task, &iter->rf); 549 iter->locked_task = NULL; 550 } 551 } 552 553 /** 554 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator 555 * @iter: iterator to unlock 556 * 557 * If @iter is in the middle of a locked iteration, it may be locking the rq of 558 * the task currently being visited in addition to scx_tasks_lock. Unlock both. 559 * This function can be safely called anytime during an iteration. The next 560 * iterator operation will automatically restore the necessary locking. 561 */ 562 static void scx_task_iter_unlock(struct scx_task_iter *iter) 563 { 564 __scx_task_iter_rq_unlock(iter); 565 if (iter->list_locked) { 566 iter->list_locked = false; 567 raw_spin_unlock_irq(&scx_tasks_lock); 568 } 569 } 570 571 static void __scx_task_iter_maybe_relock(struct scx_task_iter *iter) 572 { 573 if (!iter->list_locked) { 574 raw_spin_lock_irq(&scx_tasks_lock); 575 iter->list_locked = true; 576 } 577 } 578 579 /** 580 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock 581 * @iter: iterator to exit 582 * 583 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held 584 * which is released on return. If the iterator holds a task's rq lock, that rq 585 * lock is also released. See scx_task_iter_start() for details. 586 */ 587 static void scx_task_iter_stop(struct scx_task_iter *iter) 588 { 589 __scx_task_iter_maybe_relock(iter); 590 list_del_init(&iter->cursor.tasks_node); 591 scx_task_iter_unlock(iter); 592 } 593 594 /** 595 * scx_task_iter_next - Next task 596 * @iter: iterator to walk 597 * 598 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped 599 * and re-acquired every %SCX_TASK_ITER_BATCH iterations to avoid causing stalls 600 * by holding scx_tasks_lock for too long. 601 */ 602 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 603 { 604 struct list_head *cursor = &iter->cursor.tasks_node; 605 struct sched_ext_entity *pos; 606 607 if (!(++iter->cnt % SCX_TASK_ITER_BATCH)) { 608 scx_task_iter_unlock(iter); 609 cond_resched(); 610 } 611 612 __scx_task_iter_maybe_relock(iter); 613 614 list_for_each_entry(pos, cursor, tasks_node) { 615 if (&pos->tasks_node == &scx_tasks) 616 return NULL; 617 if (!(pos->flags & SCX_TASK_CURSOR)) { 618 list_move(cursor, &pos->tasks_node); 619 return container_of(pos, struct task_struct, scx); 620 } 621 } 622 623 /* can't happen, should always terminate at scx_tasks above */ 624 BUG(); 625 } 626 627 /** 628 * scx_task_iter_next_locked - Next non-idle task with its rq locked 629 * @iter: iterator to walk 630 * 631 * Visit the non-idle task with its rq lock held. Allows callers to specify 632 * whether they would like to filter out dead tasks. See scx_task_iter_start() 633 * for details. 634 */ 635 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) 636 { 637 struct task_struct *p; 638 639 __scx_task_iter_rq_unlock(iter); 640 641 while ((p = scx_task_iter_next(iter))) { 642 /* 643 * scx_task_iter is used to prepare and move tasks into SCX 644 * while loading the BPF scheduler and vice-versa while 645 * unloading. The init_tasks ("swappers") should be excluded 646 * from the iteration because: 647 * 648 * - It's unsafe to use __setschduler_prio() on an init_task to 649 * determine the sched_class to use as it won't preserve its 650 * idle_sched_class. 651 * 652 * - ops.init/exit_task() can easily be confused if called with 653 * init_tasks as they, e.g., share PID 0. 654 * 655 * As init_tasks are never scheduled through SCX, they can be 656 * skipped safely. Note that is_idle_task() which tests %PF_IDLE 657 * doesn't work here: 658 * 659 * - %PF_IDLE may not be set for an init_task whose CPU hasn't 660 * yet been onlined. 661 * 662 * - %PF_IDLE can be set on tasks that are not init_tasks. See 663 * play_idle_precise() used by CONFIG_IDLE_INJECT. 664 * 665 * Test for idle_sched_class as only init_tasks are on it. 666 */ 667 if (p->sched_class != &idle_sched_class) 668 break; 669 } 670 if (!p) 671 return NULL; 672 673 iter->rq = task_rq_lock(p, &iter->rf); 674 iter->locked_task = p; 675 676 return p; 677 } 678 679 /** 680 * scx_add_event - Increase an event counter for 'name' by 'cnt' 681 * @sch: scx_sched to account events for 682 * @name: an event name defined in struct scx_event_stats 683 * @cnt: the number of the event occurred 684 * 685 * This can be used when preemption is not disabled. 686 */ 687 #define scx_add_event(sch, name, cnt) do { \ 688 this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \ 689 trace_sched_ext_event(#name, (cnt)); \ 690 } while(0) 691 692 /** 693 * __scx_add_event - Increase an event counter for 'name' by 'cnt' 694 * @sch: scx_sched to account events for 695 * @name: an event name defined in struct scx_event_stats 696 * @cnt: the number of the event occurred 697 * 698 * This should be used only when preemption is disabled. 699 */ 700 #define __scx_add_event(sch, name, cnt) do { \ 701 __this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \ 702 trace_sched_ext_event(#name, cnt); \ 703 } while(0) 704 705 /** 706 * scx_agg_event - Aggregate an event counter 'kind' from 'src_e' to 'dst_e' 707 * @dst_e: destination event stats 708 * @src_e: source event stats 709 * @kind: a kind of event to be aggregated 710 */ 711 #define scx_agg_event(dst_e, src_e, kind) do { \ 712 (dst_e)->kind += READ_ONCE((src_e)->kind); \ 713 } while(0) 714 715 /** 716 * scx_dump_event - Dump an event 'kind' in 'events' to 's' 717 * @s: output seq_buf 718 * @events: event stats 719 * @kind: a kind of event to dump 720 */ 721 #define scx_dump_event(s, events, kind) do { \ 722 dump_line(&(s), "%40s: %16lld", #kind, (events)->kind); \ 723 } while (0) 724 725 726 static void scx_read_events(struct scx_sched *sch, 727 struct scx_event_stats *events); 728 729 static enum scx_enable_state scx_enable_state(void) 730 { 731 return atomic_read(&scx_enable_state_var); 732 } 733 734 static enum scx_enable_state scx_set_enable_state(enum scx_enable_state to) 735 { 736 return atomic_xchg(&scx_enable_state_var, to); 737 } 738 739 static bool scx_tryset_enable_state(enum scx_enable_state to, 740 enum scx_enable_state from) 741 { 742 int from_v = from; 743 744 return atomic_try_cmpxchg(&scx_enable_state_var, &from_v, to); 745 } 746 747 /** 748 * wait_ops_state - Busy-wait the specified ops state to end 749 * @p: target task 750 * @opss: state to wait the end of 751 * 752 * Busy-wait for @p to transition out of @opss. This can only be used when the 753 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 754 * has load_acquire semantics to ensure that the caller can see the updates made 755 * in the enqueueing and dispatching paths. 756 */ 757 static void wait_ops_state(struct task_struct *p, unsigned long opss) 758 { 759 do { 760 cpu_relax(); 761 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 762 } 763 764 static inline bool __cpu_valid(s32 cpu) 765 { 766 return likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu)); 767 } 768 769 /** 770 * ops_cpu_valid - Verify a cpu number, to be used on ops input args 771 * @sch: scx_sched to abort on error 772 * @cpu: cpu number which came from a BPF ops 773 * @where: extra information reported on error 774 * 775 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 776 * Verify that it is in range and one of the possible cpus. If invalid, trigger 777 * an ops error. 778 */ 779 static bool ops_cpu_valid(struct scx_sched *sch, s32 cpu, const char *where) 780 { 781 if (__cpu_valid(cpu)) { 782 return true; 783 } else { 784 scx_error(sch, "invalid CPU %d%s%s", cpu, where ? " " : "", where ?: ""); 785 return false; 786 } 787 } 788 789 /** 790 * ops_sanitize_err - Sanitize a -errno value 791 * @sch: scx_sched to error out on error 792 * @ops_name: operation to blame on failure 793 * @err: -errno value to sanitize 794 * 795 * Verify @err is a valid -errno. If not, trigger scx_error() and return 796 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 797 * cause misbehaviors. For an example, a large negative return from 798 * ops.init_task() triggers an oops when passed up the call chain because the 799 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 800 * handled as a pointer. 801 */ 802 static int ops_sanitize_err(struct scx_sched *sch, const char *ops_name, s32 err) 803 { 804 if (err < 0 && err >= -MAX_ERRNO) 805 return err; 806 807 scx_error(sch, "ops.%s() returned an invalid errno %d", ops_name, err); 808 return -EPROTO; 809 } 810 811 static void run_deferred(struct rq *rq) 812 { 813 process_ddsp_deferred_locals(rq); 814 815 if (local_read(&rq->scx.reenq_local_deferred)) { 816 local_set(&rq->scx.reenq_local_deferred, 0); 817 reenq_local(rq); 818 } 819 } 820 821 static void deferred_bal_cb_workfn(struct rq *rq) 822 { 823 run_deferred(rq); 824 } 825 826 static void deferred_irq_workfn(struct irq_work *irq_work) 827 { 828 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); 829 830 raw_spin_rq_lock(rq); 831 run_deferred(rq); 832 raw_spin_rq_unlock(rq); 833 } 834 835 /** 836 * schedule_deferred - Schedule execution of deferred actions on an rq 837 * @rq: target rq 838 * 839 * Schedule execution of deferred actions on @rq. Deferred actions are executed 840 * with @rq locked but unpinned, and thus can unlock @rq to e.g. migrate tasks 841 * to other rqs. 842 */ 843 static void schedule_deferred(struct rq *rq) 844 { 845 /* 846 * Queue an irq work. They are executed on IRQ re-enable which may take 847 * a bit longer than the scheduler hook in schedule_deferred_locked(). 848 */ 849 irq_work_queue(&rq->scx.deferred_irq_work); 850 } 851 852 /** 853 * schedule_deferred_locked - Schedule execution of deferred actions on an rq 854 * @rq: target rq 855 * 856 * Schedule execution of deferred actions on @rq. Equivalent to 857 * schedule_deferred() but requires @rq to be locked and can be more efficient. 858 */ 859 static void schedule_deferred_locked(struct rq *rq) 860 { 861 lockdep_assert_rq_held(rq); 862 863 /* 864 * If in the middle of waking up a task, task_woken_scx() will be called 865 * afterwards which will then run the deferred actions, no need to 866 * schedule anything. 867 */ 868 if (rq->scx.flags & SCX_RQ_IN_WAKEUP) 869 return; 870 871 /* Don't do anything if there already is a deferred operation. */ 872 if (rq->scx.flags & SCX_RQ_BAL_CB_PENDING) 873 return; 874 875 /* 876 * If in balance, the balance callbacks will be called before rq lock is 877 * released. Schedule one. 878 * 879 * 880 * We can't directly insert the callback into the 881 * rq's list: The call can drop its lock and make the pending balance 882 * callback visible to unrelated code paths that call rq_pin_lock(). 883 * 884 * Just let balance_one() know that it must do it itself. 885 */ 886 if (rq->scx.flags & SCX_RQ_IN_BALANCE) { 887 rq->scx.flags |= SCX_RQ_BAL_CB_PENDING; 888 return; 889 } 890 891 /* 892 * No scheduler hooks available. Use the generic irq_work path. The 893 * above WAKEUP and BALANCE paths should cover most of the cases and the 894 * time to IRQ re-enable shouldn't be long. 895 */ 896 schedule_deferred(rq); 897 } 898 899 /** 900 * touch_core_sched - Update timestamp used for core-sched task ordering 901 * @rq: rq to read clock from, must be locked 902 * @p: task to update the timestamp for 903 * 904 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to 905 * implement global or local-DSQ FIFO ordering for core-sched. Should be called 906 * when a task becomes runnable and its turn on the CPU ends (e.g. slice 907 * exhaustion). 908 */ 909 static void touch_core_sched(struct rq *rq, struct task_struct *p) 910 { 911 lockdep_assert_rq_held(rq); 912 913 #ifdef CONFIG_SCHED_CORE 914 /* 915 * It's okay to update the timestamp spuriously. Use 916 * sched_core_disabled() which is cheaper than enabled(). 917 * 918 * As this is used to determine ordering between tasks of sibling CPUs, 919 * it may be better to use per-core dispatch sequence instead. 920 */ 921 if (!sched_core_disabled()) 922 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); 923 #endif 924 } 925 926 /** 927 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch 928 * @rq: rq to read clock from, must be locked 929 * @p: task being dispatched 930 * 931 * If the BPF scheduler implements custom core-sched ordering via 932 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO 933 * ordering within each local DSQ. This function is called from dispatch paths 934 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. 935 */ 936 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) 937 { 938 lockdep_assert_rq_held(rq); 939 940 #ifdef CONFIG_SCHED_CORE 941 if (unlikely(SCX_HAS_OP(scx_root, core_sched_before))) 942 touch_core_sched(rq, p); 943 #endif 944 } 945 946 static void update_curr_scx(struct rq *rq) 947 { 948 struct task_struct *curr = rq->curr; 949 s64 delta_exec; 950 951 delta_exec = update_curr_common(rq); 952 if (unlikely(delta_exec <= 0)) 953 return; 954 955 if (curr->scx.slice != SCX_SLICE_INF) { 956 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); 957 if (!curr->scx.slice) 958 touch_core_sched(rq, curr); 959 } 960 } 961 962 static bool scx_dsq_priq_less(struct rb_node *node_a, 963 const struct rb_node *node_b) 964 { 965 const struct task_struct *a = 966 container_of(node_a, struct task_struct, scx.dsq_priq); 967 const struct task_struct *b = 968 container_of(node_b, struct task_struct, scx.dsq_priq); 969 970 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); 971 } 972 973 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 974 { 975 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 976 WRITE_ONCE(dsq->nr, dsq->nr + delta); 977 } 978 979 static void refill_task_slice_dfl(struct scx_sched *sch, struct task_struct *p) 980 { 981 p->scx.slice = READ_ONCE(scx_slice_dfl); 982 __scx_add_event(sch, SCX_EV_REFILL_SLICE_DFL, 1); 983 } 984 985 static void local_dsq_post_enq(struct scx_dispatch_q *dsq, struct task_struct *p, 986 u64 enq_flags) 987 { 988 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 989 bool preempt = false; 990 991 /* 992 * If @rq is in balance, the CPU is already vacant and looking for the 993 * next task to run. No need to preempt or trigger resched after moving 994 * @p into its local DSQ. 995 */ 996 if (rq->scx.flags & SCX_RQ_IN_BALANCE) 997 return; 998 999 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 1000 rq->curr->sched_class == &ext_sched_class) { 1001 rq->curr->scx.slice = 0; 1002 preempt = true; 1003 } 1004 1005 if (preempt || sched_class_above(&ext_sched_class, rq->curr->sched_class)) 1006 resched_curr(rq); 1007 } 1008 1009 static void dispatch_enqueue(struct scx_sched *sch, struct scx_dispatch_q *dsq, 1010 struct task_struct *p, u64 enq_flags) 1011 { 1012 bool is_local = dsq->id == SCX_DSQ_LOCAL; 1013 1014 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1015 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || 1016 !RB_EMPTY_NODE(&p->scx.dsq_priq)); 1017 1018 if (!is_local) { 1019 raw_spin_lock_nested(&dsq->lock, 1020 (enq_flags & SCX_ENQ_NESTED) ? SINGLE_DEPTH_NESTING : 0); 1021 1022 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 1023 scx_error(sch, "attempting to dispatch to a destroyed dsq"); 1024 /* fall back to the global dsq */ 1025 raw_spin_unlock(&dsq->lock); 1026 dsq = find_global_dsq(sch, p); 1027 raw_spin_lock(&dsq->lock); 1028 } 1029 } 1030 1031 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && 1032 (enq_flags & SCX_ENQ_DSQ_PRIQ))) { 1033 /* 1034 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from 1035 * their FIFO queues. To avoid confusion and accidentally 1036 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we 1037 * disallow any internal DSQ from doing vtime ordering of 1038 * tasks. 1039 */ 1040 scx_error(sch, "cannot use vtime ordering for built-in DSQs"); 1041 enq_flags &= ~SCX_ENQ_DSQ_PRIQ; 1042 } 1043 1044 if (enq_flags & SCX_ENQ_DSQ_PRIQ) { 1045 struct rb_node *rbp; 1046 1047 /* 1048 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are 1049 * linked to both the rbtree and list on PRIQs, this can only be 1050 * tested easily when adding the first task. 1051 */ 1052 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && 1053 nldsq_next_task(dsq, NULL, false))) 1054 scx_error(sch, "DSQ ID 0x%016llx already had FIFO-enqueued tasks", 1055 dsq->id); 1056 1057 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; 1058 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); 1059 1060 /* 1061 * Find the previous task and insert after it on the list so 1062 * that @dsq->list is vtime ordered. 1063 */ 1064 rbp = rb_prev(&p->scx.dsq_priq); 1065 if (rbp) { 1066 struct task_struct *prev = 1067 container_of(rbp, struct task_struct, 1068 scx.dsq_priq); 1069 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); 1070 /* first task unchanged - no update needed */ 1071 } else { 1072 list_add(&p->scx.dsq_list.node, &dsq->list); 1073 /* not builtin and new task is at head - use fastpath */ 1074 rcu_assign_pointer(dsq->first_task, p); 1075 } 1076 } else { 1077 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ 1078 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) 1079 scx_error(sch, "DSQ ID 0x%016llx already had PRIQ-enqueued tasks", 1080 dsq->id); 1081 1082 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) { 1083 list_add(&p->scx.dsq_list.node, &dsq->list); 1084 /* new task inserted at head - use fastpath */ 1085 if (!(dsq->id & SCX_DSQ_FLAG_BUILTIN)) 1086 rcu_assign_pointer(dsq->first_task, p); 1087 } else { 1088 bool was_empty; 1089 1090 was_empty = list_empty(&dsq->list); 1091 list_add_tail(&p->scx.dsq_list.node, &dsq->list); 1092 if (was_empty && !(dsq->id & SCX_DSQ_FLAG_BUILTIN)) 1093 rcu_assign_pointer(dsq->first_task, p); 1094 } 1095 } 1096 1097 /* seq records the order tasks are queued, used by BPF DSQ iterator */ 1098 dsq->seq++; 1099 p->scx.dsq_seq = dsq->seq; 1100 1101 dsq_mod_nr(dsq, 1); 1102 p->scx.dsq = dsq; 1103 1104 /* 1105 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 1106 * direct dispatch path, but we clear them here because the direct 1107 * dispatch verdict may be overridden on the enqueue path during e.g. 1108 * bypass. 1109 */ 1110 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 1111 p->scx.ddsp_enq_flags = 0; 1112 1113 /* 1114 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 1115 * match waiters' load_acquire. 1116 */ 1117 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 1118 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1119 1120 if (is_local) 1121 local_dsq_post_enq(dsq, p, enq_flags); 1122 else 1123 raw_spin_unlock(&dsq->lock); 1124 } 1125 1126 static void task_unlink_from_dsq(struct task_struct *p, 1127 struct scx_dispatch_q *dsq) 1128 { 1129 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); 1130 1131 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { 1132 rb_erase(&p->scx.dsq_priq, &dsq->priq); 1133 RB_CLEAR_NODE(&p->scx.dsq_priq); 1134 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; 1135 } 1136 1137 list_del_init(&p->scx.dsq_list.node); 1138 dsq_mod_nr(dsq, -1); 1139 1140 if (!(dsq->id & SCX_DSQ_FLAG_BUILTIN) && dsq->first_task == p) { 1141 struct task_struct *first_task; 1142 1143 first_task = nldsq_next_task(dsq, NULL, false); 1144 rcu_assign_pointer(dsq->first_task, first_task); 1145 } 1146 } 1147 1148 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 1149 { 1150 struct scx_dispatch_q *dsq = p->scx.dsq; 1151 bool is_local = dsq == &rq->scx.local_dsq; 1152 1153 lockdep_assert_rq_held(rq); 1154 1155 if (!dsq) { 1156 /* 1157 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. 1158 * Unlinking is all that's needed to cancel. 1159 */ 1160 if (unlikely(!list_empty(&p->scx.dsq_list.node))) 1161 list_del_init(&p->scx.dsq_list.node); 1162 1163 /* 1164 * When dispatching directly from the BPF scheduler to a local 1165 * DSQ, the task isn't associated with any DSQ but 1166 * @p->scx.holding_cpu may be set under the protection of 1167 * %SCX_OPSS_DISPATCHING. 1168 */ 1169 if (p->scx.holding_cpu >= 0) 1170 p->scx.holding_cpu = -1; 1171 1172 return; 1173 } 1174 1175 if (!is_local) 1176 raw_spin_lock(&dsq->lock); 1177 1178 /* 1179 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't 1180 * change underneath us. 1181 */ 1182 if (p->scx.holding_cpu < 0) { 1183 /* @p must still be on @dsq, dequeue */ 1184 task_unlink_from_dsq(p, dsq); 1185 } else { 1186 /* 1187 * We're racing against dispatch_to_local_dsq() which already 1188 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 1189 * holding_cpu which tells dispatch_to_local_dsq() that it lost 1190 * the race. 1191 */ 1192 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); 1193 p->scx.holding_cpu = -1; 1194 } 1195 p->scx.dsq = NULL; 1196 1197 if (!is_local) 1198 raw_spin_unlock(&dsq->lock); 1199 } 1200 1201 /* 1202 * Abbreviated version of dispatch_dequeue() that can be used when both @p's rq 1203 * and dsq are locked. 1204 */ 1205 static void dispatch_dequeue_locked(struct task_struct *p, 1206 struct scx_dispatch_q *dsq) 1207 { 1208 lockdep_assert_rq_held(task_rq(p)); 1209 lockdep_assert_held(&dsq->lock); 1210 1211 task_unlink_from_dsq(p, dsq); 1212 p->scx.dsq = NULL; 1213 } 1214 1215 static struct scx_dispatch_q *find_dsq_for_dispatch(struct scx_sched *sch, 1216 struct rq *rq, u64 dsq_id, 1217 struct task_struct *p) 1218 { 1219 struct scx_dispatch_q *dsq; 1220 1221 if (dsq_id == SCX_DSQ_LOCAL) 1222 return &rq->scx.local_dsq; 1223 1224 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 1225 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 1226 1227 if (!ops_cpu_valid(sch, cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 1228 return find_global_dsq(sch, p); 1229 1230 return &cpu_rq(cpu)->scx.local_dsq; 1231 } 1232 1233 if (dsq_id == SCX_DSQ_GLOBAL) 1234 dsq = find_global_dsq(sch, p); 1235 else 1236 dsq = find_user_dsq(sch, dsq_id); 1237 1238 if (unlikely(!dsq)) { 1239 scx_error(sch, "non-existent DSQ 0x%llx for %s[%d]", 1240 dsq_id, p->comm, p->pid); 1241 return find_global_dsq(sch, p); 1242 } 1243 1244 return dsq; 1245 } 1246 1247 static void mark_direct_dispatch(struct scx_sched *sch, 1248 struct task_struct *ddsp_task, 1249 struct task_struct *p, u64 dsq_id, 1250 u64 enq_flags) 1251 { 1252 /* 1253 * Mark that dispatch already happened from ops.select_cpu() or 1254 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 1255 * which can never match a valid task pointer. 1256 */ 1257 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 1258 1259 /* @p must match the task on the enqueue path */ 1260 if (unlikely(p != ddsp_task)) { 1261 if (IS_ERR(ddsp_task)) 1262 scx_error(sch, "%s[%d] already direct-dispatched", 1263 p->comm, p->pid); 1264 else 1265 scx_error(sch, "scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 1266 ddsp_task->comm, ddsp_task->pid, 1267 p->comm, p->pid); 1268 return; 1269 } 1270 1271 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 1272 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 1273 1274 p->scx.ddsp_dsq_id = dsq_id; 1275 p->scx.ddsp_enq_flags = enq_flags; 1276 } 1277 1278 static void direct_dispatch(struct scx_sched *sch, struct task_struct *p, 1279 u64 enq_flags) 1280 { 1281 struct rq *rq = task_rq(p); 1282 struct scx_dispatch_q *dsq = 1283 find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p); 1284 1285 touch_core_sched_dispatch(rq, p); 1286 1287 p->scx.ddsp_enq_flags |= enq_flags; 1288 1289 /* 1290 * We are in the enqueue path with @rq locked and pinned, and thus can't 1291 * double lock a remote rq and enqueue to its local DSQ. For 1292 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer 1293 * the enqueue so that it's executed when @rq can be unlocked. 1294 */ 1295 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { 1296 unsigned long opss; 1297 1298 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; 1299 1300 switch (opss & SCX_OPSS_STATE_MASK) { 1301 case SCX_OPSS_NONE: 1302 break; 1303 case SCX_OPSS_QUEUEING: 1304 /* 1305 * As @p was never passed to the BPF side, _release is 1306 * not strictly necessary. Still do it for consistency. 1307 */ 1308 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1309 break; 1310 default: 1311 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", 1312 p->comm, p->pid, opss); 1313 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1314 break; 1315 } 1316 1317 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1318 list_add_tail(&p->scx.dsq_list.node, 1319 &rq->scx.ddsp_deferred_locals); 1320 schedule_deferred_locked(rq); 1321 return; 1322 } 1323 1324 dispatch_enqueue(sch, dsq, p, 1325 p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 1326 } 1327 1328 static bool scx_rq_online(struct rq *rq) 1329 { 1330 /* 1331 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates 1332 * the online state as seen from the BPF scheduler. cpu_active() test 1333 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will 1334 * stay set until the current scheduling operation is complete even if 1335 * we aren't locking @rq. 1336 */ 1337 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); 1338 } 1339 1340 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 1341 int sticky_cpu) 1342 { 1343 struct scx_sched *sch = scx_root; 1344 struct task_struct **ddsp_taskp; 1345 struct scx_dispatch_q *dsq; 1346 unsigned long qseq; 1347 1348 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 1349 1350 /* rq migration */ 1351 if (sticky_cpu == cpu_of(rq)) 1352 goto local_norefill; 1353 1354 /* 1355 * If !scx_rq_online(), we already told the BPF scheduler that the CPU 1356 * is offline and are just running the hotplug path. Don't bother the 1357 * BPF scheduler. 1358 */ 1359 if (!scx_rq_online(rq)) 1360 goto local; 1361 1362 if (scx_rq_bypassing(rq)) { 1363 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1); 1364 goto bypass; 1365 } 1366 1367 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1368 goto direct; 1369 1370 /* see %SCX_OPS_ENQ_EXITING */ 1371 if (!(sch->ops.flags & SCX_OPS_ENQ_EXITING) && 1372 unlikely(p->flags & PF_EXITING)) { 1373 __scx_add_event(sch, SCX_EV_ENQ_SKIP_EXITING, 1); 1374 goto local; 1375 } 1376 1377 /* see %SCX_OPS_ENQ_MIGRATION_DISABLED */ 1378 if (!(sch->ops.flags & SCX_OPS_ENQ_MIGRATION_DISABLED) && 1379 is_migration_disabled(p)) { 1380 __scx_add_event(sch, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED, 1); 1381 goto local; 1382 } 1383 1384 if (unlikely(!SCX_HAS_OP(sch, enqueue))) 1385 goto global; 1386 1387 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 1388 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 1389 1390 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1391 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 1392 1393 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 1394 WARN_ON_ONCE(*ddsp_taskp); 1395 *ddsp_taskp = p; 1396 1397 SCX_CALL_OP_TASK(sch, SCX_KF_ENQUEUE, enqueue, rq, p, enq_flags); 1398 1399 *ddsp_taskp = NULL; 1400 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1401 goto direct; 1402 1403 /* 1404 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 1405 * dequeue may be waiting. The store_release matches their load_acquire. 1406 */ 1407 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 1408 return; 1409 1410 direct: 1411 direct_dispatch(sch, p, enq_flags); 1412 return; 1413 local_norefill: 1414 dispatch_enqueue(sch, &rq->scx.local_dsq, p, enq_flags); 1415 return; 1416 local: 1417 dsq = &rq->scx.local_dsq; 1418 goto enqueue; 1419 global: 1420 dsq = find_global_dsq(sch, p); 1421 goto enqueue; 1422 bypass: 1423 dsq = &task_rq(p)->scx.bypass_dsq; 1424 goto enqueue; 1425 1426 enqueue: 1427 /* 1428 * For task-ordering, slice refill must be treated as implying the end 1429 * of the current slice. Otherwise, the longer @p stays on the CPU, the 1430 * higher priority it becomes from scx_prio_less()'s POV. 1431 */ 1432 touch_core_sched(rq, p); 1433 refill_task_slice_dfl(sch, p); 1434 dispatch_enqueue(sch, dsq, p, enq_flags); 1435 } 1436 1437 static bool task_runnable(const struct task_struct *p) 1438 { 1439 return !list_empty(&p->scx.runnable_node); 1440 } 1441 1442 static void set_task_runnable(struct rq *rq, struct task_struct *p) 1443 { 1444 lockdep_assert_rq_held(rq); 1445 1446 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 1447 p->scx.runnable_at = jiffies; 1448 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 1449 } 1450 1451 /* 1452 * list_add_tail() must be used. scx_bypass() depends on tasks being 1453 * appended to the runnable_list. 1454 */ 1455 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 1456 } 1457 1458 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 1459 { 1460 list_del_init(&p->scx.runnable_node); 1461 if (reset_runnable_at) 1462 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 1463 } 1464 1465 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 1466 { 1467 struct scx_sched *sch = scx_root; 1468 int sticky_cpu = p->scx.sticky_cpu; 1469 1470 if (enq_flags & ENQUEUE_WAKEUP) 1471 rq->scx.flags |= SCX_RQ_IN_WAKEUP; 1472 1473 enq_flags |= rq->scx.extra_enq_flags; 1474 1475 if (sticky_cpu >= 0) 1476 p->scx.sticky_cpu = -1; 1477 1478 /* 1479 * Restoring a running task will be immediately followed by 1480 * set_next_task_scx() which expects the task to not be on the BPF 1481 * scheduler as tasks can only start running through local DSQs. Force 1482 * direct-dispatch into the local DSQ by setting the sticky_cpu. 1483 */ 1484 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 1485 sticky_cpu = cpu_of(rq); 1486 1487 if (p->scx.flags & SCX_TASK_QUEUED) { 1488 WARN_ON_ONCE(!task_runnable(p)); 1489 goto out; 1490 } 1491 1492 set_task_runnable(rq, p); 1493 p->scx.flags |= SCX_TASK_QUEUED; 1494 rq->scx.nr_running++; 1495 add_nr_running(rq, 1); 1496 1497 if (SCX_HAS_OP(sch, runnable) && !task_on_rq_migrating(p)) 1498 SCX_CALL_OP_TASK(sch, SCX_KF_REST, runnable, rq, p, enq_flags); 1499 1500 if (enq_flags & SCX_ENQ_WAKEUP) 1501 touch_core_sched(rq, p); 1502 1503 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 1504 out: 1505 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; 1506 1507 if ((enq_flags & SCX_ENQ_CPU_SELECTED) && 1508 unlikely(cpu_of(rq) != p->scx.selected_cpu)) 1509 __scx_add_event(sch, SCX_EV_SELECT_CPU_FALLBACK, 1); 1510 } 1511 1512 static void ops_dequeue(struct rq *rq, struct task_struct *p, u64 deq_flags) 1513 { 1514 struct scx_sched *sch = scx_root; 1515 unsigned long opss; 1516 1517 /* dequeue is always temporary, don't reset runnable_at */ 1518 clr_task_runnable(p, false); 1519 1520 /* acquire ensures that we see the preceding updates on QUEUED */ 1521 opss = atomic_long_read_acquire(&p->scx.ops_state); 1522 1523 switch (opss & SCX_OPSS_STATE_MASK) { 1524 case SCX_OPSS_NONE: 1525 break; 1526 case SCX_OPSS_QUEUEING: 1527 /* 1528 * QUEUEING is started and finished while holding @p's rq lock. 1529 * As we're holding the rq lock now, we shouldn't see QUEUEING. 1530 */ 1531 BUG(); 1532 case SCX_OPSS_QUEUED: 1533 if (SCX_HAS_OP(sch, dequeue)) 1534 SCX_CALL_OP_TASK(sch, SCX_KF_REST, dequeue, rq, 1535 p, deq_flags); 1536 1537 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 1538 SCX_OPSS_NONE)) 1539 break; 1540 fallthrough; 1541 case SCX_OPSS_DISPATCHING: 1542 /* 1543 * If @p is being dispatched from the BPF scheduler to a DSQ, 1544 * wait for the transfer to complete so that @p doesn't get 1545 * added to its DSQ after dequeueing is complete. 1546 * 1547 * As we're waiting on DISPATCHING with the rq locked, the 1548 * dispatching side shouldn't try to lock the rq while 1549 * DISPATCHING is set. See dispatch_to_local_dsq(). 1550 * 1551 * DISPATCHING shouldn't have qseq set and control can reach 1552 * here with NONE @opss from the above QUEUED case block. 1553 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 1554 */ 1555 wait_ops_state(p, SCX_OPSS_DISPATCHING); 1556 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1557 break; 1558 } 1559 } 1560 1561 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 1562 { 1563 struct scx_sched *sch = scx_root; 1564 1565 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 1566 WARN_ON_ONCE(task_runnable(p)); 1567 return true; 1568 } 1569 1570 ops_dequeue(rq, p, deq_flags); 1571 1572 /* 1573 * A currently running task which is going off @rq first gets dequeued 1574 * and then stops running. As we want running <-> stopping transitions 1575 * to be contained within runnable <-> quiescent transitions, trigger 1576 * ->stopping() early here instead of in put_prev_task_scx(). 1577 * 1578 * @p may go through multiple stopping <-> running transitions between 1579 * here and put_prev_task_scx() if task attribute changes occur while 1580 * balance_scx() leaves @rq unlocked. However, they don't contain any 1581 * information meaningful to the BPF scheduler and can be suppressed by 1582 * skipping the callbacks if the task is !QUEUED. 1583 */ 1584 if (SCX_HAS_OP(sch, stopping) && task_current(rq, p)) { 1585 update_curr_scx(rq); 1586 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, false); 1587 } 1588 1589 if (SCX_HAS_OP(sch, quiescent) && !task_on_rq_migrating(p)) 1590 SCX_CALL_OP_TASK(sch, SCX_KF_REST, quiescent, rq, p, deq_flags); 1591 1592 if (deq_flags & SCX_DEQ_SLEEP) 1593 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 1594 else 1595 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 1596 1597 p->scx.flags &= ~SCX_TASK_QUEUED; 1598 rq->scx.nr_running--; 1599 sub_nr_running(rq, 1); 1600 1601 dispatch_dequeue(rq, p); 1602 return true; 1603 } 1604 1605 static void yield_task_scx(struct rq *rq) 1606 { 1607 struct scx_sched *sch = scx_root; 1608 struct task_struct *p = rq->donor; 1609 1610 if (SCX_HAS_OP(sch, yield)) 1611 SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, p, NULL); 1612 else 1613 p->scx.slice = 0; 1614 } 1615 1616 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 1617 { 1618 struct scx_sched *sch = scx_root; 1619 struct task_struct *from = rq->donor; 1620 1621 if (SCX_HAS_OP(sch, yield)) 1622 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, 1623 from, to); 1624 else 1625 return false; 1626 } 1627 1628 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 1629 struct scx_dispatch_q *src_dsq, 1630 struct rq *dst_rq) 1631 { 1632 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; 1633 1634 /* @dsq is locked and @p is on @dst_rq */ 1635 lockdep_assert_held(&src_dsq->lock); 1636 lockdep_assert_rq_held(dst_rq); 1637 1638 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 1639 1640 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 1641 list_add(&p->scx.dsq_list.node, &dst_dsq->list); 1642 else 1643 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); 1644 1645 dsq_mod_nr(dst_dsq, 1); 1646 p->scx.dsq = dst_dsq; 1647 1648 local_dsq_post_enq(dst_dsq, p, enq_flags); 1649 } 1650 1651 /** 1652 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ 1653 * @p: task to move 1654 * @enq_flags: %SCX_ENQ_* 1655 * @src_rq: rq to move the task from, locked on entry, released on return 1656 * @dst_rq: rq to move the task into, locked on return 1657 * 1658 * Move @p which is currently on @src_rq to @dst_rq's local DSQ. 1659 */ 1660 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 1661 struct rq *src_rq, struct rq *dst_rq) 1662 { 1663 lockdep_assert_rq_held(src_rq); 1664 1665 /* the following marks @p MIGRATING which excludes dequeue */ 1666 deactivate_task(src_rq, p, 0); 1667 set_task_cpu(p, cpu_of(dst_rq)); 1668 p->scx.sticky_cpu = cpu_of(dst_rq); 1669 1670 raw_spin_rq_unlock(src_rq); 1671 raw_spin_rq_lock(dst_rq); 1672 1673 /* 1674 * We want to pass scx-specific enq_flags but activate_task() will 1675 * truncate the upper 32 bit. As we own @rq, we can pass them through 1676 * @rq->scx.extra_enq_flags instead. 1677 */ 1678 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); 1679 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); 1680 dst_rq->scx.extra_enq_flags = enq_flags; 1681 activate_task(dst_rq, p, 0); 1682 dst_rq->scx.extra_enq_flags = 0; 1683 } 1684 1685 /* 1686 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two 1687 * differences: 1688 * 1689 * - is_cpu_allowed() asks "Can this task run on this CPU?" while 1690 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to 1691 * this CPU?". 1692 * 1693 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task 1694 * must be allowed to finish on the CPU that it's currently on regardless of 1695 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the 1696 * BPF scheduler shouldn't attempt to migrate a task which has migration 1697 * disabled. 1698 * 1699 * - The BPF scheduler is bypassed while the rq is offline and we can always say 1700 * no to the BPF scheduler initiated migrations while offline. 1701 * 1702 * The caller must ensure that @p and @rq are on different CPUs. 1703 */ 1704 static bool task_can_run_on_remote_rq(struct scx_sched *sch, 1705 struct task_struct *p, struct rq *rq, 1706 bool enforce) 1707 { 1708 int cpu = cpu_of(rq); 1709 1710 WARN_ON_ONCE(task_cpu(p) == cpu); 1711 1712 /* 1713 * If @p has migration disabled, @p->cpus_ptr is updated to contain only 1714 * the pinned CPU in migrate_disable_switch() while @p is being switched 1715 * out. However, put_prev_task_scx() is called before @p->cpus_ptr is 1716 * updated and thus another CPU may see @p on a DSQ inbetween leading to 1717 * @p passing the below task_allowed_on_cpu() check while migration is 1718 * disabled. 1719 * 1720 * Test the migration disabled state first as the race window is narrow 1721 * and the BPF scheduler failing to check migration disabled state can 1722 * easily be masked if task_allowed_on_cpu() is done first. 1723 */ 1724 if (unlikely(is_migration_disabled(p))) { 1725 if (enforce) 1726 scx_error(sch, "SCX_DSQ_LOCAL[_ON] cannot move migration disabled %s[%d] from CPU %d to %d", 1727 p->comm, p->pid, task_cpu(p), cpu); 1728 return false; 1729 } 1730 1731 /* 1732 * We don't require the BPF scheduler to avoid dispatching to offline 1733 * CPUs mostly for convenience but also because CPUs can go offline 1734 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the 1735 * picked CPU is outside the allowed mask. 1736 */ 1737 if (!task_allowed_on_cpu(p, cpu)) { 1738 if (enforce) 1739 scx_error(sch, "SCX_DSQ_LOCAL[_ON] target CPU %d not allowed for %s[%d]", 1740 cpu, p->comm, p->pid); 1741 return false; 1742 } 1743 1744 if (!scx_rq_online(rq)) { 1745 if (enforce) 1746 __scx_add_event(sch, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE, 1); 1747 return false; 1748 } 1749 1750 return true; 1751 } 1752 1753 /** 1754 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq 1755 * @p: target task 1756 * @dsq: locked DSQ @p is currently on 1757 * @src_rq: rq @p is currently on, stable with @dsq locked 1758 * 1759 * Called with @dsq locked but no rq's locked. We want to move @p to a different 1760 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is 1761 * required when transferring into a local DSQ. Even when transferring into a 1762 * non-local DSQ, it's better to use the same mechanism to protect against 1763 * dequeues and maintain the invariant that @p->scx.dsq can only change while 1764 * @src_rq is locked, which e.g. scx_dump_task() depends on. 1765 * 1766 * We want to grab @src_rq but that can deadlock if we try while locking @dsq, 1767 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As 1768 * this may race with dequeue, which can't drop the rq lock or fail, do a little 1769 * dancing from our side. 1770 * 1771 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets 1772 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu 1773 * would be cleared to -1. While other cpus may have updated it to different 1774 * values afterwards, as this operation can't be preempted or recurse, the 1775 * holding_cpu can never become this CPU again before we're done. Thus, we can 1776 * tell whether we lost to dequeue by testing whether the holding_cpu still 1777 * points to this CPU. See dispatch_dequeue() for the counterpart. 1778 * 1779 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is 1780 * still valid. %false if lost to dequeue. 1781 */ 1782 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, 1783 struct scx_dispatch_q *dsq, 1784 struct rq *src_rq) 1785 { 1786 s32 cpu = raw_smp_processor_id(); 1787 1788 lockdep_assert_held(&dsq->lock); 1789 1790 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 1791 task_unlink_from_dsq(p, dsq); 1792 p->scx.holding_cpu = cpu; 1793 1794 raw_spin_unlock(&dsq->lock); 1795 raw_spin_rq_lock(src_rq); 1796 1797 /* task_rq couldn't have changed if we're still the holding cpu */ 1798 return likely(p->scx.holding_cpu == cpu) && 1799 !WARN_ON_ONCE(src_rq != task_rq(p)); 1800 } 1801 1802 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, 1803 struct scx_dispatch_q *dsq, struct rq *src_rq) 1804 { 1805 raw_spin_rq_unlock(this_rq); 1806 1807 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { 1808 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); 1809 return true; 1810 } else { 1811 raw_spin_rq_unlock(src_rq); 1812 raw_spin_rq_lock(this_rq); 1813 return false; 1814 } 1815 } 1816 1817 /** 1818 * move_task_between_dsqs() - Move a task from one DSQ to another 1819 * @sch: scx_sched being operated on 1820 * @p: target task 1821 * @enq_flags: %SCX_ENQ_* 1822 * @src_dsq: DSQ @p is currently on, must not be a local DSQ 1823 * @dst_dsq: DSQ @p is being moved to, can be any DSQ 1824 * 1825 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local 1826 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq 1827 * will change. As @p's task_rq is locked, this function doesn't need to use the 1828 * holding_cpu mechanism. 1829 * 1830 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the 1831 * return value, is locked. 1832 */ 1833 static struct rq *move_task_between_dsqs(struct scx_sched *sch, 1834 struct task_struct *p, u64 enq_flags, 1835 struct scx_dispatch_q *src_dsq, 1836 struct scx_dispatch_q *dst_dsq) 1837 { 1838 struct rq *src_rq = task_rq(p), *dst_rq; 1839 1840 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL); 1841 lockdep_assert_held(&src_dsq->lock); 1842 lockdep_assert_rq_held(src_rq); 1843 1844 if (dst_dsq->id == SCX_DSQ_LOCAL) { 1845 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 1846 if (src_rq != dst_rq && 1847 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) { 1848 dst_dsq = find_global_dsq(sch, p); 1849 dst_rq = src_rq; 1850 } 1851 } else { 1852 /* no need to migrate if destination is a non-local DSQ */ 1853 dst_rq = src_rq; 1854 } 1855 1856 /* 1857 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different 1858 * CPU, @p will be migrated. 1859 */ 1860 if (dst_dsq->id == SCX_DSQ_LOCAL) { 1861 /* @p is going from a non-local DSQ to a local DSQ */ 1862 if (src_rq == dst_rq) { 1863 task_unlink_from_dsq(p, src_dsq); 1864 move_local_task_to_local_dsq(p, enq_flags, 1865 src_dsq, dst_rq); 1866 raw_spin_unlock(&src_dsq->lock); 1867 } else { 1868 raw_spin_unlock(&src_dsq->lock); 1869 move_remote_task_to_local_dsq(p, enq_flags, 1870 src_rq, dst_rq); 1871 } 1872 } else { 1873 /* 1874 * @p is going from a non-local DSQ to a non-local DSQ. As 1875 * $src_dsq is already locked, do an abbreviated dequeue. 1876 */ 1877 dispatch_dequeue_locked(p, src_dsq); 1878 raw_spin_unlock(&src_dsq->lock); 1879 1880 dispatch_enqueue(sch, dst_dsq, p, enq_flags); 1881 } 1882 1883 return dst_rq; 1884 } 1885 1886 static bool consume_dispatch_q(struct scx_sched *sch, struct rq *rq, 1887 struct scx_dispatch_q *dsq) 1888 { 1889 struct task_struct *p; 1890 retry: 1891 /* 1892 * The caller can't expect to successfully consume a task if the task's 1893 * addition to @dsq isn't guaranteed to be visible somehow. Test 1894 * @dsq->list without locking and skip if it seems empty. 1895 */ 1896 if (list_empty(&dsq->list)) 1897 return false; 1898 1899 raw_spin_lock(&dsq->lock); 1900 1901 nldsq_for_each_task(p, dsq) { 1902 struct rq *task_rq = task_rq(p); 1903 1904 /* 1905 * This loop can lead to multiple lockup scenarios, e.g. the BPF 1906 * scheduler can put an enormous number of affinitized tasks into 1907 * a contended DSQ, or the outer retry loop can repeatedly race 1908 * against scx_bypass() dequeueing tasks from @dsq trying to put 1909 * the system into the bypass mode. This can easily live-lock the 1910 * machine. If aborting, exit from all non-bypass DSQs. 1911 */ 1912 if (unlikely(READ_ONCE(scx_aborting)) && dsq->id != SCX_DSQ_BYPASS) 1913 break; 1914 1915 if (rq == task_rq) { 1916 task_unlink_from_dsq(p, dsq); 1917 move_local_task_to_local_dsq(p, 0, dsq, rq); 1918 raw_spin_unlock(&dsq->lock); 1919 return true; 1920 } 1921 1922 if (task_can_run_on_remote_rq(sch, p, rq, false)) { 1923 if (likely(consume_remote_task(rq, p, dsq, task_rq))) 1924 return true; 1925 goto retry; 1926 } 1927 } 1928 1929 raw_spin_unlock(&dsq->lock); 1930 return false; 1931 } 1932 1933 static bool consume_global_dsq(struct scx_sched *sch, struct rq *rq) 1934 { 1935 int node = cpu_to_node(cpu_of(rq)); 1936 1937 return consume_dispatch_q(sch, rq, sch->global_dsqs[node]); 1938 } 1939 1940 /** 1941 * dispatch_to_local_dsq - Dispatch a task to a local dsq 1942 * @sch: scx_sched being operated on 1943 * @rq: current rq which is locked 1944 * @dst_dsq: destination DSQ 1945 * @p: task to dispatch 1946 * @enq_flags: %SCX_ENQ_* 1947 * 1948 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local 1949 * DSQ. This function performs all the synchronization dancing needed because 1950 * local DSQs are protected with rq locks. 1951 * 1952 * The caller must have exclusive ownership of @p (e.g. through 1953 * %SCX_OPSS_DISPATCHING). 1954 */ 1955 static void dispatch_to_local_dsq(struct scx_sched *sch, struct rq *rq, 1956 struct scx_dispatch_q *dst_dsq, 1957 struct task_struct *p, u64 enq_flags) 1958 { 1959 struct rq *src_rq = task_rq(p); 1960 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 1961 struct rq *locked_rq = rq; 1962 1963 /* 1964 * We're synchronized against dequeue through DISPATCHING. As @p can't 1965 * be dequeued, its task_rq and cpus_allowed are stable too. 1966 * 1967 * If dispatching to @rq that @p is already on, no lock dancing needed. 1968 */ 1969 if (rq == src_rq && rq == dst_rq) { 1970 dispatch_enqueue(sch, dst_dsq, p, 1971 enq_flags | SCX_ENQ_CLEAR_OPSS); 1972 return; 1973 } 1974 1975 if (src_rq != dst_rq && 1976 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) { 1977 dispatch_enqueue(sch, find_global_dsq(sch, p), p, 1978 enq_flags | SCX_ENQ_CLEAR_OPSS); 1979 return; 1980 } 1981 1982 /* 1983 * @p is on a possibly remote @src_rq which we need to lock to move the 1984 * task. If dequeue is in progress, it'd be locking @src_rq and waiting 1985 * on DISPATCHING, so we can't grab @src_rq lock while holding 1986 * DISPATCHING. 1987 * 1988 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that 1989 * we're moving from a DSQ and use the same mechanism - mark the task 1990 * under transfer with holding_cpu, release DISPATCHING and then follow 1991 * the same protocol. See unlink_dsq_and_lock_src_rq(). 1992 */ 1993 p->scx.holding_cpu = raw_smp_processor_id(); 1994 1995 /* store_release ensures that dequeue sees the above */ 1996 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1997 1998 /* switch to @src_rq lock */ 1999 if (locked_rq != src_rq) { 2000 raw_spin_rq_unlock(locked_rq); 2001 locked_rq = src_rq; 2002 raw_spin_rq_lock(src_rq); 2003 } 2004 2005 /* task_rq couldn't have changed if we're still the holding cpu */ 2006 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && 2007 !WARN_ON_ONCE(src_rq != task_rq(p))) { 2008 /* 2009 * If @p is staying on the same rq, there's no need to go 2010 * through the full deactivate/activate cycle. Optimize by 2011 * abbreviating move_remote_task_to_local_dsq(). 2012 */ 2013 if (src_rq == dst_rq) { 2014 p->scx.holding_cpu = -1; 2015 dispatch_enqueue(sch, &dst_rq->scx.local_dsq, p, 2016 enq_flags); 2017 } else { 2018 move_remote_task_to_local_dsq(p, enq_flags, 2019 src_rq, dst_rq); 2020 /* task has been moved to dst_rq, which is now locked */ 2021 locked_rq = dst_rq; 2022 } 2023 2024 /* if the destination CPU is idle, wake it up */ 2025 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) 2026 resched_curr(dst_rq); 2027 } 2028 2029 /* switch back to @rq lock */ 2030 if (locked_rq != rq) { 2031 raw_spin_rq_unlock(locked_rq); 2032 raw_spin_rq_lock(rq); 2033 } 2034 } 2035 2036 /** 2037 * finish_dispatch - Asynchronously finish dispatching a task 2038 * @rq: current rq which is locked 2039 * @p: task to finish dispatching 2040 * @qseq_at_dispatch: qseq when @p started getting dispatched 2041 * @dsq_id: destination DSQ ID 2042 * @enq_flags: %SCX_ENQ_* 2043 * 2044 * Dispatching to local DSQs may need to wait for queueing to complete or 2045 * require rq lock dancing. As we don't wanna do either while inside 2046 * ops.dispatch() to avoid locking order inversion, we split dispatching into 2047 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the 2048 * task and its qseq. Once ops.dispatch() returns, this function is called to 2049 * finish up. 2050 * 2051 * There is no guarantee that @p is still valid for dispatching or even that it 2052 * was valid in the first place. Make sure that the task is still owned by the 2053 * BPF scheduler and claim the ownership before dispatching. 2054 */ 2055 static void finish_dispatch(struct scx_sched *sch, struct rq *rq, 2056 struct task_struct *p, 2057 unsigned long qseq_at_dispatch, 2058 u64 dsq_id, u64 enq_flags) 2059 { 2060 struct scx_dispatch_q *dsq; 2061 unsigned long opss; 2062 2063 touch_core_sched_dispatch(rq, p); 2064 retry: 2065 /* 2066 * No need for _acquire here. @p is accessed only after a successful 2067 * try_cmpxchg to DISPATCHING. 2068 */ 2069 opss = atomic_long_read(&p->scx.ops_state); 2070 2071 switch (opss & SCX_OPSS_STATE_MASK) { 2072 case SCX_OPSS_DISPATCHING: 2073 case SCX_OPSS_NONE: 2074 /* someone else already got to it */ 2075 return; 2076 case SCX_OPSS_QUEUED: 2077 /* 2078 * If qseq doesn't match, @p has gone through at least one 2079 * dispatch/dequeue and re-enqueue cycle between 2080 * scx_bpf_dsq_insert() and here and we have no claim on it. 2081 */ 2082 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 2083 return; 2084 2085 /* 2086 * While we know @p is accessible, we don't yet have a claim on 2087 * it - the BPF scheduler is allowed to dispatch tasks 2088 * spuriously and there can be a racing dequeue attempt. Let's 2089 * claim @p by atomically transitioning it from QUEUED to 2090 * DISPATCHING. 2091 */ 2092 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2093 SCX_OPSS_DISPATCHING))) 2094 break; 2095 goto retry; 2096 case SCX_OPSS_QUEUEING: 2097 /* 2098 * do_enqueue_task() is in the process of transferring the task 2099 * to the BPF scheduler while holding @p's rq lock. As we aren't 2100 * holding any kernel or BPF resource that the enqueue path may 2101 * depend upon, it's safe to wait. 2102 */ 2103 wait_ops_state(p, opss); 2104 goto retry; 2105 } 2106 2107 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 2108 2109 dsq = find_dsq_for_dispatch(sch, this_rq(), dsq_id, p); 2110 2111 if (dsq->id == SCX_DSQ_LOCAL) 2112 dispatch_to_local_dsq(sch, rq, dsq, p, enq_flags); 2113 else 2114 dispatch_enqueue(sch, dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2115 } 2116 2117 static void flush_dispatch_buf(struct scx_sched *sch, struct rq *rq) 2118 { 2119 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2120 u32 u; 2121 2122 for (u = 0; u < dspc->cursor; u++) { 2123 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 2124 2125 finish_dispatch(sch, rq, ent->task, ent->qseq, ent->dsq_id, 2126 ent->enq_flags); 2127 } 2128 2129 dspc->nr_tasks += dspc->cursor; 2130 dspc->cursor = 0; 2131 } 2132 2133 static inline void maybe_queue_balance_callback(struct rq *rq) 2134 { 2135 lockdep_assert_rq_held(rq); 2136 2137 if (!(rq->scx.flags & SCX_RQ_BAL_CB_PENDING)) 2138 return; 2139 2140 queue_balance_callback(rq, &rq->scx.deferred_bal_cb, 2141 deferred_bal_cb_workfn); 2142 2143 rq->scx.flags &= ~SCX_RQ_BAL_CB_PENDING; 2144 } 2145 2146 static int balance_one(struct rq *rq, struct task_struct *prev) 2147 { 2148 struct scx_sched *sch = scx_root; 2149 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2150 bool prev_on_scx = prev->sched_class == &ext_sched_class; 2151 bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED; 2152 int nr_loops = SCX_DSP_MAX_LOOPS; 2153 2154 lockdep_assert_rq_held(rq); 2155 rq->scx.flags |= SCX_RQ_IN_BALANCE; 2156 rq->scx.flags &= ~SCX_RQ_BAL_KEEP; 2157 2158 if ((sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT) && 2159 unlikely(rq->scx.cpu_released)) { 2160 /* 2161 * If the previous sched_class for the current CPU was not SCX, 2162 * notify the BPF scheduler that it again has control of the 2163 * core. This callback complements ->cpu_release(), which is 2164 * emitted in switch_class(). 2165 */ 2166 if (SCX_HAS_OP(sch, cpu_acquire)) 2167 SCX_CALL_OP(sch, SCX_KF_REST, cpu_acquire, rq, 2168 cpu_of(rq), NULL); 2169 rq->scx.cpu_released = false; 2170 } 2171 2172 if (prev_on_scx) { 2173 update_curr_scx(rq); 2174 2175 /* 2176 * If @prev is runnable & has slice left, it has priority and 2177 * fetching more just increases latency for the fetched tasks. 2178 * Tell pick_task_scx() to keep running @prev. If the BPF 2179 * scheduler wants to handle this explicitly, it should 2180 * implement ->cpu_release(). 2181 * 2182 * See scx_disable_workfn() for the explanation on the bypassing 2183 * test. 2184 */ 2185 if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) { 2186 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2187 goto has_tasks; 2188 } 2189 } 2190 2191 /* if there already are tasks to run, nothing to do */ 2192 if (rq->scx.local_dsq.nr) 2193 goto has_tasks; 2194 2195 if (consume_global_dsq(sch, rq)) 2196 goto has_tasks; 2197 2198 if (scx_rq_bypassing(rq)) { 2199 if (consume_dispatch_q(sch, rq, &rq->scx.bypass_dsq)) 2200 goto has_tasks; 2201 else 2202 goto no_tasks; 2203 } 2204 2205 if (unlikely(!SCX_HAS_OP(sch, dispatch)) || !scx_rq_online(rq)) 2206 goto no_tasks; 2207 2208 dspc->rq = rq; 2209 2210 /* 2211 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 2212 * the local DSQ might still end up empty after a successful 2213 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 2214 * produced some tasks, retry. The BPF scheduler may depend on this 2215 * looping behavior to simplify its implementation. 2216 */ 2217 do { 2218 dspc->nr_tasks = 0; 2219 2220 SCX_CALL_OP(sch, SCX_KF_DISPATCH, dispatch, rq, 2221 cpu_of(rq), prev_on_scx ? prev : NULL); 2222 2223 flush_dispatch_buf(sch, rq); 2224 2225 if (prev_on_rq && prev->scx.slice) { 2226 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2227 goto has_tasks; 2228 } 2229 if (rq->scx.local_dsq.nr) 2230 goto has_tasks; 2231 if (consume_global_dsq(sch, rq)) 2232 goto has_tasks; 2233 2234 /* 2235 * ops.dispatch() can trap us in this loop by repeatedly 2236 * dispatching ineligible tasks. Break out once in a while to 2237 * allow the watchdog to run. As IRQ can't be enabled in 2238 * balance(), we want to complete this scheduling cycle and then 2239 * start a new one. IOW, we want to call resched_curr() on the 2240 * next, most likely idle, task, not the current one. Use 2241 * scx_kick_cpu() for deferred kicking. 2242 */ 2243 if (unlikely(!--nr_loops)) { 2244 scx_kick_cpu(sch, cpu_of(rq), 0); 2245 break; 2246 } 2247 } while (dspc->nr_tasks); 2248 2249 no_tasks: 2250 /* 2251 * Didn't find another task to run. Keep running @prev unless 2252 * %SCX_OPS_ENQ_LAST is in effect. 2253 */ 2254 if (prev_on_rq && 2255 (!(sch->ops.flags & SCX_OPS_ENQ_LAST) || scx_rq_bypassing(rq))) { 2256 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2257 __scx_add_event(sch, SCX_EV_DISPATCH_KEEP_LAST, 1); 2258 goto has_tasks; 2259 } 2260 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2261 return false; 2262 2263 has_tasks: 2264 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2265 return true; 2266 } 2267 2268 static void process_ddsp_deferred_locals(struct rq *rq) 2269 { 2270 struct task_struct *p; 2271 2272 lockdep_assert_rq_held(rq); 2273 2274 /* 2275 * Now that @rq can be unlocked, execute the deferred enqueueing of 2276 * tasks directly dispatched to the local DSQs of other CPUs. See 2277 * direct_dispatch(). Keep popping from the head instead of using 2278 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq 2279 * temporarily. 2280 */ 2281 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, 2282 struct task_struct, scx.dsq_list.node))) { 2283 struct scx_sched *sch = scx_root; 2284 struct scx_dispatch_q *dsq; 2285 2286 list_del_init(&p->scx.dsq_list.node); 2287 2288 dsq = find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p); 2289 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) 2290 dispatch_to_local_dsq(sch, rq, dsq, p, 2291 p->scx.ddsp_enq_flags); 2292 } 2293 } 2294 2295 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 2296 { 2297 struct scx_sched *sch = scx_root; 2298 2299 if (p->scx.flags & SCX_TASK_QUEUED) { 2300 /* 2301 * Core-sched might decide to execute @p before it is 2302 * dispatched. Call ops_dequeue() to notify the BPF scheduler. 2303 */ 2304 ops_dequeue(rq, p, SCX_DEQ_CORE_SCHED_EXEC); 2305 dispatch_dequeue(rq, p); 2306 } 2307 2308 p->se.exec_start = rq_clock_task(rq); 2309 2310 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2311 if (SCX_HAS_OP(sch, running) && (p->scx.flags & SCX_TASK_QUEUED)) 2312 SCX_CALL_OP_TASK(sch, SCX_KF_REST, running, rq, p); 2313 2314 clr_task_runnable(p, true); 2315 2316 /* 2317 * @p is getting newly scheduled or got kicked after someone updated its 2318 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 2319 */ 2320 if ((p->scx.slice == SCX_SLICE_INF) != 2321 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 2322 if (p->scx.slice == SCX_SLICE_INF) 2323 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 2324 else 2325 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 2326 2327 sched_update_tick_dependency(rq); 2328 2329 /* 2330 * For now, let's refresh the load_avgs just when transitioning 2331 * in and out of nohz. In the future, we might want to add a 2332 * mechanism which calls the following periodically on 2333 * tick-stopped CPUs. 2334 */ 2335 update_other_load_avgs(rq); 2336 } 2337 } 2338 2339 static enum scx_cpu_preempt_reason 2340 preempt_reason_from_class(const struct sched_class *class) 2341 { 2342 if (class == &stop_sched_class) 2343 return SCX_CPU_PREEMPT_STOP; 2344 if (class == &dl_sched_class) 2345 return SCX_CPU_PREEMPT_DL; 2346 if (class == &rt_sched_class) 2347 return SCX_CPU_PREEMPT_RT; 2348 return SCX_CPU_PREEMPT_UNKNOWN; 2349 } 2350 2351 static void switch_class(struct rq *rq, struct task_struct *next) 2352 { 2353 struct scx_sched *sch = scx_root; 2354 const struct sched_class *next_class = next->sched_class; 2355 2356 if (!(sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT)) 2357 return; 2358 2359 /* 2360 * The callback is conceptually meant to convey that the CPU is no 2361 * longer under the control of SCX. Therefore, don't invoke the callback 2362 * if the next class is below SCX (in which case the BPF scheduler has 2363 * actively decided not to schedule any tasks on the CPU). 2364 */ 2365 if (sched_class_above(&ext_sched_class, next_class)) 2366 return; 2367 2368 /* 2369 * At this point we know that SCX was preempted by a higher priority 2370 * sched_class, so invoke the ->cpu_release() callback if we have not 2371 * done so already. We only send the callback once between SCX being 2372 * preempted, and it regaining control of the CPU. 2373 * 2374 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 2375 * next time that balance_scx() is invoked. 2376 */ 2377 if (!rq->scx.cpu_released) { 2378 if (SCX_HAS_OP(sch, cpu_release)) { 2379 struct scx_cpu_release_args args = { 2380 .reason = preempt_reason_from_class(next_class), 2381 .task = next, 2382 }; 2383 2384 SCX_CALL_OP(sch, SCX_KF_CPU_RELEASE, cpu_release, rq, 2385 cpu_of(rq), &args); 2386 } 2387 rq->scx.cpu_released = true; 2388 } 2389 } 2390 2391 static void put_prev_task_scx(struct rq *rq, struct task_struct *p, 2392 struct task_struct *next) 2393 { 2394 struct scx_sched *sch = scx_root; 2395 2396 /* see kick_cpus_irq_workfn() */ 2397 smp_store_release(&rq->scx.kick_sync, rq->scx.kick_sync + 1); 2398 2399 update_curr_scx(rq); 2400 2401 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2402 if (SCX_HAS_OP(sch, stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 2403 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, true); 2404 2405 if (p->scx.flags & SCX_TASK_QUEUED) { 2406 set_task_runnable(rq, p); 2407 2408 /* 2409 * If @p has slice left and is being put, @p is getting 2410 * preempted by a higher priority scheduler class or core-sched 2411 * forcing a different task. Leave it at the head of the local 2412 * DSQ. 2413 */ 2414 if (p->scx.slice && !scx_rq_bypassing(rq)) { 2415 dispatch_enqueue(sch, &rq->scx.local_dsq, p, 2416 SCX_ENQ_HEAD); 2417 goto switch_class; 2418 } 2419 2420 /* 2421 * If @p is runnable but we're about to enter a lower 2422 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell 2423 * ops.enqueue() that @p is the only one available for this cpu, 2424 * which should trigger an explicit follow-up scheduling event. 2425 */ 2426 if (next && sched_class_above(&ext_sched_class, next->sched_class)) { 2427 WARN_ON_ONCE(!(sch->ops.flags & SCX_OPS_ENQ_LAST)); 2428 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 2429 } else { 2430 do_enqueue_task(rq, p, 0, -1); 2431 } 2432 } 2433 2434 switch_class: 2435 if (next && next->sched_class != &ext_sched_class) 2436 switch_class(rq, next); 2437 } 2438 2439 static struct task_struct *first_local_task(struct rq *rq) 2440 { 2441 return list_first_entry_or_null(&rq->scx.local_dsq.list, 2442 struct task_struct, scx.dsq_list.node); 2443 } 2444 2445 static struct task_struct * 2446 do_pick_task_scx(struct rq *rq, struct rq_flags *rf, bool force_scx) 2447 { 2448 struct task_struct *prev = rq->curr; 2449 bool keep_prev; 2450 struct task_struct *p; 2451 2452 /* see kick_cpus_irq_workfn() */ 2453 smp_store_release(&rq->scx.kick_sync, rq->scx.kick_sync + 1); 2454 2455 rq_modified_clear(rq); 2456 2457 rq_unpin_lock(rq, rf); 2458 balance_one(rq, prev); 2459 rq_repin_lock(rq, rf); 2460 maybe_queue_balance_callback(rq); 2461 2462 /* 2463 * If any higher-priority sched class enqueued a runnable task on 2464 * this rq during balance_one(), abort and return RETRY_TASK, so 2465 * that the scheduler loop can restart. 2466 * 2467 * If @force_scx is true, always try to pick a SCHED_EXT task, 2468 * regardless of any higher-priority sched classes activity. 2469 */ 2470 if (!force_scx && rq_modified_above(rq, &ext_sched_class)) 2471 return RETRY_TASK; 2472 2473 keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP; 2474 if (unlikely(keep_prev && 2475 prev->sched_class != &ext_sched_class)) { 2476 WARN_ON_ONCE(scx_enable_state() == SCX_ENABLED); 2477 keep_prev = false; 2478 } 2479 2480 /* 2481 * If balance_scx() is telling us to keep running @prev, replenish slice 2482 * if necessary and keep running @prev. Otherwise, pop the first one 2483 * from the local DSQ. 2484 */ 2485 if (keep_prev) { 2486 p = prev; 2487 if (!p->scx.slice) 2488 refill_task_slice_dfl(rcu_dereference_sched(scx_root), p); 2489 } else { 2490 p = first_local_task(rq); 2491 if (!p) 2492 return NULL; 2493 2494 if (unlikely(!p->scx.slice)) { 2495 struct scx_sched *sch = rcu_dereference_sched(scx_root); 2496 2497 if (!scx_rq_bypassing(rq) && !sch->warned_zero_slice) { 2498 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n", 2499 p->comm, p->pid, __func__); 2500 sch->warned_zero_slice = true; 2501 } 2502 refill_task_slice_dfl(sch, p); 2503 } 2504 } 2505 2506 return p; 2507 } 2508 2509 static struct task_struct *pick_task_scx(struct rq *rq, struct rq_flags *rf) 2510 { 2511 return do_pick_task_scx(rq, rf, false); 2512 } 2513 2514 #ifdef CONFIG_SCHED_CORE 2515 /** 2516 * scx_prio_less - Task ordering for core-sched 2517 * @a: task A 2518 * @b: task B 2519 * @in_fi: in forced idle state 2520 * 2521 * Core-sched is implemented as an additional scheduling layer on top of the 2522 * usual sched_class'es and needs to find out the expected task ordering. For 2523 * SCX, core-sched calls this function to interrogate the task ordering. 2524 * 2525 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used 2526 * to implement the default task ordering. The older the timestamp, the higher 2527 * priority the task - the global FIFO ordering matching the default scheduling 2528 * behavior. 2529 * 2530 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to 2531 * implement FIFO ordering within each local DSQ. See pick_task_scx(). 2532 */ 2533 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, 2534 bool in_fi) 2535 { 2536 struct scx_sched *sch = scx_root; 2537 2538 /* 2539 * The const qualifiers are dropped from task_struct pointers when 2540 * calling ops.core_sched_before(). Accesses are controlled by the 2541 * verifier. 2542 */ 2543 if (SCX_HAS_OP(sch, core_sched_before) && 2544 !scx_rq_bypassing(task_rq(a))) 2545 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, core_sched_before, 2546 NULL, 2547 (struct task_struct *)a, 2548 (struct task_struct *)b); 2549 else 2550 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); 2551 } 2552 #endif /* CONFIG_SCHED_CORE */ 2553 2554 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 2555 { 2556 struct scx_sched *sch = scx_root; 2557 bool rq_bypass; 2558 2559 /* 2560 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 2561 * can be a good migration opportunity with low cache and memory 2562 * footprint. Returning a CPU different than @prev_cpu triggers 2563 * immediate rq migration. However, for SCX, as the current rq 2564 * association doesn't dictate where the task is going to run, this 2565 * doesn't fit well. If necessary, we can later add a dedicated method 2566 * which can decide to preempt self to force it through the regular 2567 * scheduling path. 2568 */ 2569 if (unlikely(wake_flags & WF_EXEC)) 2570 return prev_cpu; 2571 2572 rq_bypass = scx_rq_bypassing(task_rq(p)); 2573 if (likely(SCX_HAS_OP(sch, select_cpu)) && !rq_bypass) { 2574 s32 cpu; 2575 struct task_struct **ddsp_taskp; 2576 2577 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 2578 WARN_ON_ONCE(*ddsp_taskp); 2579 *ddsp_taskp = p; 2580 2581 cpu = SCX_CALL_OP_TASK_RET(sch, 2582 SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 2583 select_cpu, NULL, p, prev_cpu, 2584 wake_flags); 2585 p->scx.selected_cpu = cpu; 2586 *ddsp_taskp = NULL; 2587 if (ops_cpu_valid(sch, cpu, "from ops.select_cpu()")) 2588 return cpu; 2589 else 2590 return prev_cpu; 2591 } else { 2592 s32 cpu; 2593 2594 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, NULL, 0); 2595 if (cpu >= 0) { 2596 refill_task_slice_dfl(sch, p); 2597 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 2598 } else { 2599 cpu = prev_cpu; 2600 } 2601 p->scx.selected_cpu = cpu; 2602 2603 if (rq_bypass) 2604 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1); 2605 return cpu; 2606 } 2607 } 2608 2609 static void task_woken_scx(struct rq *rq, struct task_struct *p) 2610 { 2611 run_deferred(rq); 2612 } 2613 2614 static void set_cpus_allowed_scx(struct task_struct *p, 2615 struct affinity_context *ac) 2616 { 2617 struct scx_sched *sch = scx_root; 2618 2619 set_cpus_allowed_common(p, ac); 2620 2621 /* 2622 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 2623 * differ from the configured one in @p->cpus_mask. Always tell the bpf 2624 * scheduler the effective one. 2625 * 2626 * Fine-grained memory write control is enforced by BPF making the const 2627 * designation pointless. Cast it away when calling the operation. 2628 */ 2629 if (SCX_HAS_OP(sch, set_cpumask)) 2630 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, NULL, 2631 p, (struct cpumask *)p->cpus_ptr); 2632 } 2633 2634 static void handle_hotplug(struct rq *rq, bool online) 2635 { 2636 struct scx_sched *sch = scx_root; 2637 int cpu = cpu_of(rq); 2638 2639 atomic_long_inc(&scx_hotplug_seq); 2640 2641 /* 2642 * scx_root updates are protected by cpus_read_lock() and will stay 2643 * stable here. Note that we can't depend on scx_enabled() test as the 2644 * hotplug ops need to be enabled before __scx_enabled is set. 2645 */ 2646 if (unlikely(!sch)) 2647 return; 2648 2649 if (scx_enabled()) 2650 scx_idle_update_selcpu_topology(&sch->ops); 2651 2652 if (online && SCX_HAS_OP(sch, cpu_online)) 2653 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_online, NULL, cpu); 2654 else if (!online && SCX_HAS_OP(sch, cpu_offline)) 2655 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_offline, NULL, cpu); 2656 else 2657 scx_exit(sch, SCX_EXIT_UNREG_KERN, 2658 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 2659 "cpu %d going %s, exiting scheduler", cpu, 2660 online ? "online" : "offline"); 2661 } 2662 2663 void scx_rq_activate(struct rq *rq) 2664 { 2665 handle_hotplug(rq, true); 2666 } 2667 2668 void scx_rq_deactivate(struct rq *rq) 2669 { 2670 handle_hotplug(rq, false); 2671 } 2672 2673 static void rq_online_scx(struct rq *rq) 2674 { 2675 rq->scx.flags |= SCX_RQ_ONLINE; 2676 } 2677 2678 static void rq_offline_scx(struct rq *rq) 2679 { 2680 rq->scx.flags &= ~SCX_RQ_ONLINE; 2681 } 2682 2683 2684 static bool check_rq_for_timeouts(struct rq *rq) 2685 { 2686 struct scx_sched *sch; 2687 struct task_struct *p; 2688 struct rq_flags rf; 2689 bool timed_out = false; 2690 2691 rq_lock_irqsave(rq, &rf); 2692 sch = rcu_dereference_bh(scx_root); 2693 if (unlikely(!sch)) 2694 goto out_unlock; 2695 2696 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 2697 unsigned long last_runnable = p->scx.runnable_at; 2698 2699 if (unlikely(time_after(jiffies, 2700 last_runnable + scx_watchdog_timeout))) { 2701 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 2702 2703 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0, 2704 "%s[%d] failed to run for %u.%03us", 2705 p->comm, p->pid, dur_ms / 1000, dur_ms % 1000); 2706 timed_out = true; 2707 break; 2708 } 2709 } 2710 out_unlock: 2711 rq_unlock_irqrestore(rq, &rf); 2712 return timed_out; 2713 } 2714 2715 static void scx_watchdog_workfn(struct work_struct *work) 2716 { 2717 int cpu; 2718 2719 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 2720 2721 for_each_online_cpu(cpu) { 2722 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 2723 break; 2724 2725 cond_resched(); 2726 } 2727 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 2728 scx_watchdog_timeout / 2); 2729 } 2730 2731 void scx_tick(struct rq *rq) 2732 { 2733 struct scx_sched *sch; 2734 unsigned long last_check; 2735 2736 if (!scx_enabled()) 2737 return; 2738 2739 sch = rcu_dereference_bh(scx_root); 2740 if (unlikely(!sch)) 2741 return; 2742 2743 last_check = READ_ONCE(scx_watchdog_timestamp); 2744 if (unlikely(time_after(jiffies, 2745 last_check + READ_ONCE(scx_watchdog_timeout)))) { 2746 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 2747 2748 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0, 2749 "watchdog failed to check in for %u.%03us", 2750 dur_ms / 1000, dur_ms % 1000); 2751 } 2752 2753 update_other_load_avgs(rq); 2754 } 2755 2756 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 2757 { 2758 struct scx_sched *sch = scx_root; 2759 2760 update_curr_scx(rq); 2761 2762 /* 2763 * While disabling, always resched and refresh core-sched timestamp as 2764 * we can't trust the slice management or ops.core_sched_before(). 2765 */ 2766 if (scx_rq_bypassing(rq)) { 2767 curr->scx.slice = 0; 2768 touch_core_sched(rq, curr); 2769 } else if (SCX_HAS_OP(sch, tick)) { 2770 SCX_CALL_OP_TASK(sch, SCX_KF_REST, tick, rq, curr); 2771 } 2772 2773 if (!curr->scx.slice) 2774 resched_curr(rq); 2775 } 2776 2777 #ifdef CONFIG_EXT_GROUP_SCHED 2778 static struct cgroup *tg_cgrp(struct task_group *tg) 2779 { 2780 /* 2781 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, 2782 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the 2783 * root cgroup. 2784 */ 2785 if (tg && tg->css.cgroup) 2786 return tg->css.cgroup; 2787 else 2788 return &cgrp_dfl_root.cgrp; 2789 } 2790 2791 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), 2792 2793 #else /* CONFIG_EXT_GROUP_SCHED */ 2794 2795 #define SCX_INIT_TASK_ARGS_CGROUP(tg) 2796 2797 #endif /* CONFIG_EXT_GROUP_SCHED */ 2798 2799 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 2800 { 2801 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 2802 } 2803 2804 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 2805 { 2806 enum scx_task_state prev_state = scx_get_task_state(p); 2807 bool warn = false; 2808 2809 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 2810 2811 switch (state) { 2812 case SCX_TASK_NONE: 2813 break; 2814 case SCX_TASK_INIT: 2815 warn = prev_state != SCX_TASK_NONE; 2816 break; 2817 case SCX_TASK_READY: 2818 warn = prev_state == SCX_TASK_NONE; 2819 break; 2820 case SCX_TASK_ENABLED: 2821 warn = prev_state != SCX_TASK_READY; 2822 break; 2823 default: 2824 warn = true; 2825 return; 2826 } 2827 2828 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 2829 prev_state, state, p->comm, p->pid); 2830 2831 p->scx.flags &= ~SCX_TASK_STATE_MASK; 2832 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 2833 } 2834 2835 static int scx_init_task(struct task_struct *p, struct task_group *tg, bool fork) 2836 { 2837 struct scx_sched *sch = scx_root; 2838 int ret; 2839 2840 p->scx.disallow = false; 2841 2842 if (SCX_HAS_OP(sch, init_task)) { 2843 struct scx_init_task_args args = { 2844 SCX_INIT_TASK_ARGS_CGROUP(tg) 2845 .fork = fork, 2846 }; 2847 2848 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init_task, NULL, 2849 p, &args); 2850 if (unlikely(ret)) { 2851 ret = ops_sanitize_err(sch, "init_task", ret); 2852 return ret; 2853 } 2854 } 2855 2856 scx_set_task_state(p, SCX_TASK_INIT); 2857 2858 if (p->scx.disallow) { 2859 if (!fork) { 2860 struct rq *rq; 2861 struct rq_flags rf; 2862 2863 rq = task_rq_lock(p, &rf); 2864 2865 /* 2866 * We're in the load path and @p->policy will be applied 2867 * right after. Reverting @p->policy here and rejecting 2868 * %SCHED_EXT transitions from scx_check_setscheduler() 2869 * guarantees that if ops.init_task() sets @p->disallow, 2870 * @p can never be in SCX. 2871 */ 2872 if (p->policy == SCHED_EXT) { 2873 p->policy = SCHED_NORMAL; 2874 atomic_long_inc(&scx_nr_rejected); 2875 } 2876 2877 task_rq_unlock(rq, p, &rf); 2878 } else if (p->policy == SCHED_EXT) { 2879 scx_error(sch, "ops.init_task() set task->scx.disallow for %s[%d] during fork", 2880 p->comm, p->pid); 2881 } 2882 } 2883 2884 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2885 return 0; 2886 } 2887 2888 static void scx_enable_task(struct task_struct *p) 2889 { 2890 struct scx_sched *sch = scx_root; 2891 struct rq *rq = task_rq(p); 2892 u32 weight; 2893 2894 lockdep_assert_rq_held(rq); 2895 2896 /* 2897 * Set the weight before calling ops.enable() so that the scheduler 2898 * doesn't see a stale value if they inspect the task struct. 2899 */ 2900 if (task_has_idle_policy(p)) 2901 weight = WEIGHT_IDLEPRIO; 2902 else 2903 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 2904 2905 p->scx.weight = sched_weight_to_cgroup(weight); 2906 2907 if (SCX_HAS_OP(sch, enable)) 2908 SCX_CALL_OP_TASK(sch, SCX_KF_REST, enable, rq, p); 2909 scx_set_task_state(p, SCX_TASK_ENABLED); 2910 2911 if (SCX_HAS_OP(sch, set_weight)) 2912 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq, 2913 p, p->scx.weight); 2914 } 2915 2916 static void scx_disable_task(struct task_struct *p) 2917 { 2918 struct scx_sched *sch = scx_root; 2919 struct rq *rq = task_rq(p); 2920 2921 lockdep_assert_rq_held(rq); 2922 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 2923 2924 if (SCX_HAS_OP(sch, disable)) 2925 SCX_CALL_OP_TASK(sch, SCX_KF_REST, disable, rq, p); 2926 scx_set_task_state(p, SCX_TASK_READY); 2927 } 2928 2929 static void scx_exit_task(struct task_struct *p) 2930 { 2931 struct scx_sched *sch = scx_root; 2932 struct scx_exit_task_args args = { 2933 .cancelled = false, 2934 }; 2935 2936 lockdep_assert_rq_held(task_rq(p)); 2937 2938 switch (scx_get_task_state(p)) { 2939 case SCX_TASK_NONE: 2940 return; 2941 case SCX_TASK_INIT: 2942 args.cancelled = true; 2943 break; 2944 case SCX_TASK_READY: 2945 break; 2946 case SCX_TASK_ENABLED: 2947 scx_disable_task(p); 2948 break; 2949 default: 2950 WARN_ON_ONCE(true); 2951 return; 2952 } 2953 2954 if (SCX_HAS_OP(sch, exit_task)) 2955 SCX_CALL_OP_TASK(sch, SCX_KF_REST, exit_task, task_rq(p), 2956 p, &args); 2957 scx_set_task_state(p, SCX_TASK_NONE); 2958 } 2959 2960 void init_scx_entity(struct sched_ext_entity *scx) 2961 { 2962 memset(scx, 0, sizeof(*scx)); 2963 INIT_LIST_HEAD(&scx->dsq_list.node); 2964 RB_CLEAR_NODE(&scx->dsq_priq); 2965 scx->sticky_cpu = -1; 2966 scx->holding_cpu = -1; 2967 INIT_LIST_HEAD(&scx->runnable_node); 2968 scx->runnable_at = jiffies; 2969 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 2970 scx->slice = READ_ONCE(scx_slice_dfl); 2971 } 2972 2973 void scx_pre_fork(struct task_struct *p) 2974 { 2975 /* 2976 * BPF scheduler enable/disable paths want to be able to iterate and 2977 * update all tasks which can become complex when racing forks. As 2978 * enable/disable are very cold paths, let's use a percpu_rwsem to 2979 * exclude forks. 2980 */ 2981 percpu_down_read(&scx_fork_rwsem); 2982 } 2983 2984 int scx_fork(struct task_struct *p) 2985 { 2986 percpu_rwsem_assert_held(&scx_fork_rwsem); 2987 2988 if (scx_init_task_enabled) 2989 return scx_init_task(p, task_group(p), true); 2990 else 2991 return 0; 2992 } 2993 2994 void scx_post_fork(struct task_struct *p) 2995 { 2996 if (scx_init_task_enabled) { 2997 scx_set_task_state(p, SCX_TASK_READY); 2998 2999 /* 3000 * Enable the task immediately if it's running on sched_ext. 3001 * Otherwise, it'll be enabled in switching_to_scx() if and 3002 * when it's ever configured to run with a SCHED_EXT policy. 3003 */ 3004 if (p->sched_class == &ext_sched_class) { 3005 struct rq_flags rf; 3006 struct rq *rq; 3007 3008 rq = task_rq_lock(p, &rf); 3009 scx_enable_task(p); 3010 task_rq_unlock(rq, p, &rf); 3011 } 3012 } 3013 3014 raw_spin_lock_irq(&scx_tasks_lock); 3015 list_add_tail(&p->scx.tasks_node, &scx_tasks); 3016 raw_spin_unlock_irq(&scx_tasks_lock); 3017 3018 percpu_up_read(&scx_fork_rwsem); 3019 } 3020 3021 void scx_cancel_fork(struct task_struct *p) 3022 { 3023 if (scx_enabled()) { 3024 struct rq *rq; 3025 struct rq_flags rf; 3026 3027 rq = task_rq_lock(p, &rf); 3028 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 3029 scx_exit_task(p); 3030 task_rq_unlock(rq, p, &rf); 3031 } 3032 3033 percpu_up_read(&scx_fork_rwsem); 3034 } 3035 3036 void sched_ext_dead(struct task_struct *p) 3037 { 3038 unsigned long flags; 3039 3040 raw_spin_lock_irqsave(&scx_tasks_lock, flags); 3041 list_del_init(&p->scx.tasks_node); 3042 raw_spin_unlock_irqrestore(&scx_tasks_lock, flags); 3043 3044 /* 3045 * @p is off scx_tasks and wholly ours. scx_enable()'s READY -> ENABLED 3046 * transitions can't race us. Disable ops for @p. 3047 */ 3048 if (scx_get_task_state(p) != SCX_TASK_NONE) { 3049 struct rq_flags rf; 3050 struct rq *rq; 3051 3052 rq = task_rq_lock(p, &rf); 3053 scx_exit_task(p); 3054 task_rq_unlock(rq, p, &rf); 3055 } 3056 } 3057 3058 static void reweight_task_scx(struct rq *rq, struct task_struct *p, 3059 const struct load_weight *lw) 3060 { 3061 struct scx_sched *sch = scx_root; 3062 3063 lockdep_assert_rq_held(task_rq(p)); 3064 3065 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); 3066 if (SCX_HAS_OP(sch, set_weight)) 3067 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq, 3068 p, p->scx.weight); 3069 } 3070 3071 static void prio_changed_scx(struct rq *rq, struct task_struct *p, u64 oldprio) 3072 { 3073 } 3074 3075 static void switching_to_scx(struct rq *rq, struct task_struct *p) 3076 { 3077 struct scx_sched *sch = scx_root; 3078 3079 scx_enable_task(p); 3080 3081 /* 3082 * set_cpus_allowed_scx() is not called while @p is associated with a 3083 * different scheduler class. Keep the BPF scheduler up-to-date. 3084 */ 3085 if (SCX_HAS_OP(sch, set_cpumask)) 3086 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, rq, 3087 p, (struct cpumask *)p->cpus_ptr); 3088 } 3089 3090 static void switched_from_scx(struct rq *rq, struct task_struct *p) 3091 { 3092 scx_disable_task(p); 3093 } 3094 3095 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 3096 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 3097 3098 int scx_check_setscheduler(struct task_struct *p, int policy) 3099 { 3100 lockdep_assert_rq_held(task_rq(p)); 3101 3102 /* if disallow, reject transitioning into SCX */ 3103 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 3104 p->policy != policy && policy == SCHED_EXT) 3105 return -EACCES; 3106 3107 return 0; 3108 } 3109 3110 #ifdef CONFIG_NO_HZ_FULL 3111 bool scx_can_stop_tick(struct rq *rq) 3112 { 3113 struct task_struct *p = rq->curr; 3114 3115 if (scx_rq_bypassing(rq)) 3116 return false; 3117 3118 if (p->sched_class != &ext_sched_class) 3119 return true; 3120 3121 /* 3122 * @rq can dispatch from different DSQs, so we can't tell whether it 3123 * needs the tick or not by looking at nr_running. Allow stopping ticks 3124 * iff the BPF scheduler indicated so. See set_next_task_scx(). 3125 */ 3126 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 3127 } 3128 #endif 3129 3130 #ifdef CONFIG_EXT_GROUP_SCHED 3131 3132 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_ops_rwsem); 3133 static bool scx_cgroup_enabled; 3134 3135 void scx_tg_init(struct task_group *tg) 3136 { 3137 tg->scx.weight = CGROUP_WEIGHT_DFL; 3138 tg->scx.bw_period_us = default_bw_period_us(); 3139 tg->scx.bw_quota_us = RUNTIME_INF; 3140 tg->scx.idle = false; 3141 } 3142 3143 int scx_tg_online(struct task_group *tg) 3144 { 3145 struct scx_sched *sch = scx_root; 3146 int ret = 0; 3147 3148 WARN_ON_ONCE(tg->scx.flags & (SCX_TG_ONLINE | SCX_TG_INITED)); 3149 3150 if (scx_cgroup_enabled) { 3151 if (SCX_HAS_OP(sch, cgroup_init)) { 3152 struct scx_cgroup_init_args args = 3153 { .weight = tg->scx.weight, 3154 .bw_period_us = tg->scx.bw_period_us, 3155 .bw_quota_us = tg->scx.bw_quota_us, 3156 .bw_burst_us = tg->scx.bw_burst_us }; 3157 3158 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, 3159 NULL, tg->css.cgroup, &args); 3160 if (ret) 3161 ret = ops_sanitize_err(sch, "cgroup_init", ret); 3162 } 3163 if (ret == 0) 3164 tg->scx.flags |= SCX_TG_ONLINE | SCX_TG_INITED; 3165 } else { 3166 tg->scx.flags |= SCX_TG_ONLINE; 3167 } 3168 3169 return ret; 3170 } 3171 3172 void scx_tg_offline(struct task_group *tg) 3173 { 3174 struct scx_sched *sch = scx_root; 3175 3176 WARN_ON_ONCE(!(tg->scx.flags & SCX_TG_ONLINE)); 3177 3178 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_exit) && 3179 (tg->scx.flags & SCX_TG_INITED)) 3180 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL, 3181 tg->css.cgroup); 3182 tg->scx.flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); 3183 } 3184 3185 int scx_cgroup_can_attach(struct cgroup_taskset *tset) 3186 { 3187 struct scx_sched *sch = scx_root; 3188 struct cgroup_subsys_state *css; 3189 struct task_struct *p; 3190 int ret; 3191 3192 if (!scx_cgroup_enabled) 3193 return 0; 3194 3195 cgroup_taskset_for_each(p, css, tset) { 3196 struct cgroup *from = tg_cgrp(task_group(p)); 3197 struct cgroup *to = tg_cgrp(css_tg(css)); 3198 3199 WARN_ON_ONCE(p->scx.cgrp_moving_from); 3200 3201 /* 3202 * sched_move_task() omits identity migrations. Let's match the 3203 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() 3204 * always match one-to-one. 3205 */ 3206 if (from == to) 3207 continue; 3208 3209 if (SCX_HAS_OP(sch, cgroup_prep_move)) { 3210 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, 3211 cgroup_prep_move, NULL, 3212 p, from, css->cgroup); 3213 if (ret) 3214 goto err; 3215 } 3216 3217 p->scx.cgrp_moving_from = from; 3218 } 3219 3220 return 0; 3221 3222 err: 3223 cgroup_taskset_for_each(p, css, tset) { 3224 if (SCX_HAS_OP(sch, cgroup_cancel_move) && 3225 p->scx.cgrp_moving_from) 3226 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL, 3227 p, p->scx.cgrp_moving_from, css->cgroup); 3228 p->scx.cgrp_moving_from = NULL; 3229 } 3230 3231 return ops_sanitize_err(sch, "cgroup_prep_move", ret); 3232 } 3233 3234 void scx_cgroup_move_task(struct task_struct *p) 3235 { 3236 struct scx_sched *sch = scx_root; 3237 3238 if (!scx_cgroup_enabled) 3239 return; 3240 3241 /* 3242 * @p must have ops.cgroup_prep_move() called on it and thus 3243 * cgrp_moving_from set. 3244 */ 3245 if (SCX_HAS_OP(sch, cgroup_move) && 3246 !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) 3247 SCX_CALL_OP_TASK(sch, SCX_KF_UNLOCKED, cgroup_move, NULL, 3248 p, p->scx.cgrp_moving_from, 3249 tg_cgrp(task_group(p))); 3250 p->scx.cgrp_moving_from = NULL; 3251 } 3252 3253 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) 3254 { 3255 struct scx_sched *sch = scx_root; 3256 struct cgroup_subsys_state *css; 3257 struct task_struct *p; 3258 3259 if (!scx_cgroup_enabled) 3260 return; 3261 3262 cgroup_taskset_for_each(p, css, tset) { 3263 if (SCX_HAS_OP(sch, cgroup_cancel_move) && 3264 p->scx.cgrp_moving_from) 3265 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL, 3266 p, p->scx.cgrp_moving_from, css->cgroup); 3267 p->scx.cgrp_moving_from = NULL; 3268 } 3269 } 3270 3271 void scx_group_set_weight(struct task_group *tg, unsigned long weight) 3272 { 3273 struct scx_sched *sch = scx_root; 3274 3275 percpu_down_read(&scx_cgroup_ops_rwsem); 3276 3277 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_weight) && 3278 tg->scx.weight != weight) 3279 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_weight, NULL, 3280 tg_cgrp(tg), weight); 3281 3282 tg->scx.weight = weight; 3283 3284 percpu_up_read(&scx_cgroup_ops_rwsem); 3285 } 3286 3287 void scx_group_set_idle(struct task_group *tg, bool idle) 3288 { 3289 struct scx_sched *sch = scx_root; 3290 3291 percpu_down_read(&scx_cgroup_ops_rwsem); 3292 3293 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_idle)) 3294 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_idle, NULL, 3295 tg_cgrp(tg), idle); 3296 3297 /* Update the task group's idle state */ 3298 tg->scx.idle = idle; 3299 3300 percpu_up_read(&scx_cgroup_ops_rwsem); 3301 } 3302 3303 void scx_group_set_bandwidth(struct task_group *tg, 3304 u64 period_us, u64 quota_us, u64 burst_us) 3305 { 3306 struct scx_sched *sch = scx_root; 3307 3308 percpu_down_read(&scx_cgroup_ops_rwsem); 3309 3310 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_bandwidth) && 3311 (tg->scx.bw_period_us != period_us || 3312 tg->scx.bw_quota_us != quota_us || 3313 tg->scx.bw_burst_us != burst_us)) 3314 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_bandwidth, NULL, 3315 tg_cgrp(tg), period_us, quota_us, burst_us); 3316 3317 tg->scx.bw_period_us = period_us; 3318 tg->scx.bw_quota_us = quota_us; 3319 tg->scx.bw_burst_us = burst_us; 3320 3321 percpu_up_read(&scx_cgroup_ops_rwsem); 3322 } 3323 3324 static void scx_cgroup_lock(void) 3325 { 3326 percpu_down_write(&scx_cgroup_ops_rwsem); 3327 cgroup_lock(); 3328 } 3329 3330 static void scx_cgroup_unlock(void) 3331 { 3332 cgroup_unlock(); 3333 percpu_up_write(&scx_cgroup_ops_rwsem); 3334 } 3335 3336 #else /* CONFIG_EXT_GROUP_SCHED */ 3337 3338 static void scx_cgroup_lock(void) {} 3339 static void scx_cgroup_unlock(void) {} 3340 3341 #endif /* CONFIG_EXT_GROUP_SCHED */ 3342 3343 /* 3344 * Omitted operations: 3345 * 3346 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 3347 * isn't tied to the CPU at that point. Preemption is implemented by resetting 3348 * the victim task's slice to 0 and triggering reschedule on the target CPU. 3349 * 3350 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 3351 * 3352 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 3353 * their current sched_class. Call them directly from sched core instead. 3354 */ 3355 DEFINE_SCHED_CLASS(ext) = { 3356 .queue_mask = 1, 3357 3358 .enqueue_task = enqueue_task_scx, 3359 .dequeue_task = dequeue_task_scx, 3360 .yield_task = yield_task_scx, 3361 .yield_to_task = yield_to_task_scx, 3362 3363 .wakeup_preempt = wakeup_preempt_scx, 3364 3365 .pick_task = pick_task_scx, 3366 3367 .put_prev_task = put_prev_task_scx, 3368 .set_next_task = set_next_task_scx, 3369 3370 .select_task_rq = select_task_rq_scx, 3371 .task_woken = task_woken_scx, 3372 .set_cpus_allowed = set_cpus_allowed_scx, 3373 3374 .rq_online = rq_online_scx, 3375 .rq_offline = rq_offline_scx, 3376 3377 .task_tick = task_tick_scx, 3378 3379 .switching_to = switching_to_scx, 3380 .switched_from = switched_from_scx, 3381 .switched_to = switched_to_scx, 3382 .reweight_task = reweight_task_scx, 3383 .prio_changed = prio_changed_scx, 3384 3385 .update_curr = update_curr_scx, 3386 3387 #ifdef CONFIG_UCLAMP_TASK 3388 .uclamp_enabled = 1, 3389 #endif 3390 }; 3391 3392 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 3393 { 3394 memset(dsq, 0, sizeof(*dsq)); 3395 3396 raw_spin_lock_init(&dsq->lock); 3397 INIT_LIST_HEAD(&dsq->list); 3398 dsq->id = dsq_id; 3399 } 3400 3401 static void free_dsq_irq_workfn(struct irq_work *irq_work) 3402 { 3403 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 3404 struct scx_dispatch_q *dsq, *tmp_dsq; 3405 3406 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 3407 kfree_rcu(dsq, rcu); 3408 } 3409 3410 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 3411 3412 static void destroy_dsq(struct scx_sched *sch, u64 dsq_id) 3413 { 3414 struct scx_dispatch_q *dsq; 3415 unsigned long flags; 3416 3417 rcu_read_lock(); 3418 3419 dsq = find_user_dsq(sch, dsq_id); 3420 if (!dsq) 3421 goto out_unlock_rcu; 3422 3423 raw_spin_lock_irqsave(&dsq->lock, flags); 3424 3425 if (dsq->nr) { 3426 scx_error(sch, "attempting to destroy in-use dsq 0x%016llx (nr=%u)", 3427 dsq->id, dsq->nr); 3428 goto out_unlock_dsq; 3429 } 3430 3431 if (rhashtable_remove_fast(&sch->dsq_hash, &dsq->hash_node, 3432 dsq_hash_params)) 3433 goto out_unlock_dsq; 3434 3435 /* 3436 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 3437 * queueing more tasks. As this function can be called from anywhere, 3438 * freeing is bounced through an irq work to avoid nesting RCU 3439 * operations inside scheduler locks. 3440 */ 3441 dsq->id = SCX_DSQ_INVALID; 3442 llist_add(&dsq->free_node, &dsqs_to_free); 3443 irq_work_queue(&free_dsq_irq_work); 3444 3445 out_unlock_dsq: 3446 raw_spin_unlock_irqrestore(&dsq->lock, flags); 3447 out_unlock_rcu: 3448 rcu_read_unlock(); 3449 } 3450 3451 #ifdef CONFIG_EXT_GROUP_SCHED 3452 static void scx_cgroup_exit(struct scx_sched *sch) 3453 { 3454 struct cgroup_subsys_state *css; 3455 3456 scx_cgroup_enabled = false; 3457 3458 /* 3459 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk 3460 * cgroups and exit all the inited ones, all online cgroups are exited. 3461 */ 3462 css_for_each_descendant_post(css, &root_task_group.css) { 3463 struct task_group *tg = css_tg(css); 3464 3465 if (!(tg->scx.flags & SCX_TG_INITED)) 3466 continue; 3467 tg->scx.flags &= ~SCX_TG_INITED; 3468 3469 if (!sch->ops.cgroup_exit) 3470 continue; 3471 3472 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL, 3473 css->cgroup); 3474 } 3475 } 3476 3477 static int scx_cgroup_init(struct scx_sched *sch) 3478 { 3479 struct cgroup_subsys_state *css; 3480 int ret; 3481 3482 /* 3483 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk 3484 * cgroups and init, all online cgroups are initialized. 3485 */ 3486 css_for_each_descendant_pre(css, &root_task_group.css) { 3487 struct task_group *tg = css_tg(css); 3488 struct scx_cgroup_init_args args = { 3489 .weight = tg->scx.weight, 3490 .bw_period_us = tg->scx.bw_period_us, 3491 .bw_quota_us = tg->scx.bw_quota_us, 3492 .bw_burst_us = tg->scx.bw_burst_us, 3493 }; 3494 3495 if ((tg->scx.flags & 3496 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) 3497 continue; 3498 3499 if (!sch->ops.cgroup_init) { 3500 tg->scx.flags |= SCX_TG_INITED; 3501 continue; 3502 } 3503 3504 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, NULL, 3505 css->cgroup, &args); 3506 if (ret) { 3507 css_put(css); 3508 scx_error(sch, "ops.cgroup_init() failed (%d)", ret); 3509 return ret; 3510 } 3511 tg->scx.flags |= SCX_TG_INITED; 3512 } 3513 3514 WARN_ON_ONCE(scx_cgroup_enabled); 3515 scx_cgroup_enabled = true; 3516 3517 return 0; 3518 } 3519 3520 #else 3521 static void scx_cgroup_exit(struct scx_sched *sch) {} 3522 static int scx_cgroup_init(struct scx_sched *sch) { return 0; } 3523 #endif 3524 3525 3526 /******************************************************************************** 3527 * Sysfs interface and ops enable/disable. 3528 */ 3529 3530 #define SCX_ATTR(_name) \ 3531 static struct kobj_attribute scx_attr_##_name = { \ 3532 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 3533 .show = scx_attr_##_name##_show, \ 3534 } 3535 3536 static ssize_t scx_attr_state_show(struct kobject *kobj, 3537 struct kobj_attribute *ka, char *buf) 3538 { 3539 return sysfs_emit(buf, "%s\n", scx_enable_state_str[scx_enable_state()]); 3540 } 3541 SCX_ATTR(state); 3542 3543 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 3544 struct kobj_attribute *ka, char *buf) 3545 { 3546 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 3547 } 3548 SCX_ATTR(switch_all); 3549 3550 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 3551 struct kobj_attribute *ka, char *buf) 3552 { 3553 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 3554 } 3555 SCX_ATTR(nr_rejected); 3556 3557 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, 3558 struct kobj_attribute *ka, char *buf) 3559 { 3560 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); 3561 } 3562 SCX_ATTR(hotplug_seq); 3563 3564 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj, 3565 struct kobj_attribute *ka, char *buf) 3566 { 3567 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq)); 3568 } 3569 SCX_ATTR(enable_seq); 3570 3571 static struct attribute *scx_global_attrs[] = { 3572 &scx_attr_state.attr, 3573 &scx_attr_switch_all.attr, 3574 &scx_attr_nr_rejected.attr, 3575 &scx_attr_hotplug_seq.attr, 3576 &scx_attr_enable_seq.attr, 3577 NULL, 3578 }; 3579 3580 static const struct attribute_group scx_global_attr_group = { 3581 .attrs = scx_global_attrs, 3582 }; 3583 3584 static void free_exit_info(struct scx_exit_info *ei); 3585 3586 static void scx_sched_free_rcu_work(struct work_struct *work) 3587 { 3588 struct rcu_work *rcu_work = to_rcu_work(work); 3589 struct scx_sched *sch = container_of(rcu_work, struct scx_sched, rcu_work); 3590 struct rhashtable_iter rht_iter; 3591 struct scx_dispatch_q *dsq; 3592 int node; 3593 3594 irq_work_sync(&sch->error_irq_work); 3595 kthread_destroy_worker(sch->helper); 3596 3597 free_percpu(sch->pcpu); 3598 3599 for_each_node_state(node, N_POSSIBLE) 3600 kfree(sch->global_dsqs[node]); 3601 kfree(sch->global_dsqs); 3602 3603 rhashtable_walk_enter(&sch->dsq_hash, &rht_iter); 3604 do { 3605 rhashtable_walk_start(&rht_iter); 3606 3607 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 3608 destroy_dsq(sch, dsq->id); 3609 3610 rhashtable_walk_stop(&rht_iter); 3611 } while (dsq == ERR_PTR(-EAGAIN)); 3612 rhashtable_walk_exit(&rht_iter); 3613 3614 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL); 3615 free_exit_info(sch->exit_info); 3616 kfree(sch); 3617 } 3618 3619 static void scx_kobj_release(struct kobject *kobj) 3620 { 3621 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj); 3622 3623 INIT_RCU_WORK(&sch->rcu_work, scx_sched_free_rcu_work); 3624 queue_rcu_work(system_unbound_wq, &sch->rcu_work); 3625 } 3626 3627 static ssize_t scx_attr_ops_show(struct kobject *kobj, 3628 struct kobj_attribute *ka, char *buf) 3629 { 3630 return sysfs_emit(buf, "%s\n", scx_root->ops.name); 3631 } 3632 SCX_ATTR(ops); 3633 3634 #define scx_attr_event_show(buf, at, events, kind) ({ \ 3635 sysfs_emit_at(buf, at, "%s %llu\n", #kind, (events)->kind); \ 3636 }) 3637 3638 static ssize_t scx_attr_events_show(struct kobject *kobj, 3639 struct kobj_attribute *ka, char *buf) 3640 { 3641 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj); 3642 struct scx_event_stats events; 3643 int at = 0; 3644 3645 scx_read_events(sch, &events); 3646 at += scx_attr_event_show(buf, at, &events, SCX_EV_SELECT_CPU_FALLBACK); 3647 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 3648 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_KEEP_LAST); 3649 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_EXITING); 3650 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 3651 at += scx_attr_event_show(buf, at, &events, SCX_EV_REFILL_SLICE_DFL); 3652 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DURATION); 3653 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DISPATCH); 3654 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_ACTIVATE); 3655 return at; 3656 } 3657 SCX_ATTR(events); 3658 3659 static struct attribute *scx_sched_attrs[] = { 3660 &scx_attr_ops.attr, 3661 &scx_attr_events.attr, 3662 NULL, 3663 }; 3664 ATTRIBUTE_GROUPS(scx_sched); 3665 3666 static const struct kobj_type scx_ktype = { 3667 .release = scx_kobj_release, 3668 .sysfs_ops = &kobj_sysfs_ops, 3669 .default_groups = scx_sched_groups, 3670 }; 3671 3672 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 3673 { 3674 return add_uevent_var(env, "SCXOPS=%s", scx_root->ops.name); 3675 } 3676 3677 static const struct kset_uevent_ops scx_uevent_ops = { 3678 .uevent = scx_uevent, 3679 }; 3680 3681 /* 3682 * Used by sched_fork() and __setscheduler_prio() to pick the matching 3683 * sched_class. dl/rt are already handled. 3684 */ 3685 bool task_should_scx(int policy) 3686 { 3687 if (!scx_enabled() || unlikely(scx_enable_state() == SCX_DISABLING)) 3688 return false; 3689 if (READ_ONCE(scx_switching_all)) 3690 return true; 3691 return policy == SCHED_EXT; 3692 } 3693 3694 bool scx_allow_ttwu_queue(const struct task_struct *p) 3695 { 3696 struct scx_sched *sch; 3697 3698 if (!scx_enabled()) 3699 return true; 3700 3701 sch = rcu_dereference_sched(scx_root); 3702 if (unlikely(!sch)) 3703 return true; 3704 3705 if (sch->ops.flags & SCX_OPS_ALLOW_QUEUED_WAKEUP) 3706 return true; 3707 3708 if (unlikely(p->sched_class != &ext_sched_class)) 3709 return true; 3710 3711 return false; 3712 } 3713 3714 /** 3715 * handle_lockup - sched_ext common lockup handler 3716 * @fmt: format string 3717 * 3718 * Called on system stall or lockup condition and initiates abort of sched_ext 3719 * if enabled, which may resolve the reported lockup. 3720 * 3721 * Returns %true if sched_ext is enabled and abort was initiated, which may 3722 * resolve the lockup. %false if sched_ext is not enabled or abort was already 3723 * initiated by someone else. 3724 */ 3725 static __printf(1, 2) bool handle_lockup(const char *fmt, ...) 3726 { 3727 struct scx_sched *sch; 3728 va_list args; 3729 bool ret; 3730 3731 guard(rcu)(); 3732 3733 sch = rcu_dereference(scx_root); 3734 if (unlikely(!sch)) 3735 return false; 3736 3737 switch (scx_enable_state()) { 3738 case SCX_ENABLING: 3739 case SCX_ENABLED: 3740 va_start(args, fmt); 3741 ret = scx_verror(sch, fmt, args); 3742 va_end(args); 3743 return ret; 3744 default: 3745 return false; 3746 } 3747 } 3748 3749 /** 3750 * scx_rcu_cpu_stall - sched_ext RCU CPU stall handler 3751 * 3752 * While there are various reasons why RCU CPU stalls can occur on a system 3753 * that may not be caused by the current BPF scheduler, try kicking out the 3754 * current scheduler in an attempt to recover the system to a good state before 3755 * issuing panics. 3756 * 3757 * Returns %true if sched_ext is enabled and abort was initiated, which may 3758 * resolve the reported RCU stall. %false if sched_ext is not enabled or someone 3759 * else already initiated abort. 3760 */ 3761 bool scx_rcu_cpu_stall(void) 3762 { 3763 return handle_lockup("RCU CPU stall detected!"); 3764 } 3765 3766 /** 3767 * scx_softlockup - sched_ext softlockup handler 3768 * @dur_s: number of seconds of CPU stuck due to soft lockup 3769 * 3770 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can 3771 * live-lock the system by making many CPUs target the same DSQ to the point 3772 * where soft-lockup detection triggers. This function is called from 3773 * soft-lockup watchdog when the triggering point is close and tries to unjam 3774 * the system and aborting the BPF scheduler. 3775 */ 3776 void scx_softlockup(u32 dur_s) 3777 { 3778 if (!handle_lockup("soft lockup - CPU %d stuck for %us", smp_processor_id(), dur_s)) 3779 return; 3780 3781 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU %d stuck for %us, disabling BPF scheduler\n", 3782 smp_processor_id(), dur_s); 3783 } 3784 3785 /** 3786 * scx_hardlockup - sched_ext hardlockup handler 3787 * 3788 * A poorly behaving BPF scheduler can trigger hard lockup by e.g. putting 3789 * numerous affinitized tasks in a single queue and directing all CPUs at it. 3790 * Try kicking out the current scheduler in an attempt to recover the system to 3791 * a good state before taking more drastic actions. 3792 * 3793 * Returns %true if sched_ext is enabled and abort was initiated, which may 3794 * resolve the reported hardlockdup. %false if sched_ext is not enabled or 3795 * someone else already initiated abort. 3796 */ 3797 bool scx_hardlockup(int cpu) 3798 { 3799 if (!handle_lockup("hard lockup - CPU %d", cpu)) 3800 return false; 3801 3802 printk_deferred(KERN_ERR "sched_ext: Hard lockup - CPU %d, disabling BPF scheduler\n", 3803 cpu); 3804 return true; 3805 } 3806 3807 static u32 bypass_lb_cpu(struct scx_sched *sch, struct rq *rq, 3808 struct cpumask *donee_mask, struct cpumask *resched_mask, 3809 u32 nr_donor_target, u32 nr_donee_target) 3810 { 3811 struct scx_dispatch_q *donor_dsq = &rq->scx.bypass_dsq; 3812 struct task_struct *p, *n; 3813 struct scx_dsq_list_node cursor = INIT_DSQ_LIST_CURSOR(cursor, 0, 0); 3814 s32 delta = READ_ONCE(donor_dsq->nr) - nr_donor_target; 3815 u32 nr_balanced = 0, min_delta_us; 3816 3817 /* 3818 * All we want to guarantee is reasonable forward progress. No reason to 3819 * fine tune. Assuming every task on @donor_dsq runs their full slice, 3820 * consider offloading iff the total queued duration is over the 3821 * threshold. 3822 */ 3823 min_delta_us = scx_bypass_lb_intv_us / SCX_BYPASS_LB_MIN_DELTA_DIV; 3824 if (delta < DIV_ROUND_UP(min_delta_us, scx_slice_bypass_us)) 3825 return 0; 3826 3827 raw_spin_rq_lock_irq(rq); 3828 raw_spin_lock(&donor_dsq->lock); 3829 list_add(&cursor.node, &donor_dsq->list); 3830 resume: 3831 n = container_of(&cursor, struct task_struct, scx.dsq_list); 3832 n = nldsq_next_task(donor_dsq, n, false); 3833 3834 while ((p = n)) { 3835 struct rq *donee_rq; 3836 struct scx_dispatch_q *donee_dsq; 3837 int donee; 3838 3839 n = nldsq_next_task(donor_dsq, n, false); 3840 3841 if (donor_dsq->nr <= nr_donor_target) 3842 break; 3843 3844 if (cpumask_empty(donee_mask)) 3845 break; 3846 3847 donee = cpumask_any_and_distribute(donee_mask, p->cpus_ptr); 3848 if (donee >= nr_cpu_ids) 3849 continue; 3850 3851 donee_rq = cpu_rq(donee); 3852 donee_dsq = &donee_rq->scx.bypass_dsq; 3853 3854 /* 3855 * $p's rq is not locked but $p's DSQ lock protects its 3856 * scheduling properties making this test safe. 3857 */ 3858 if (!task_can_run_on_remote_rq(sch, p, donee_rq, false)) 3859 continue; 3860 3861 /* 3862 * Moving $p from one non-local DSQ to another. The source rq 3863 * and DSQ are already locked. Do an abbreviated dequeue and 3864 * then perform enqueue without unlocking $donor_dsq. 3865 * 3866 * We don't want to drop and reacquire the lock on each 3867 * iteration as @donor_dsq can be very long and potentially 3868 * highly contended. Donee DSQs are less likely to be contended. 3869 * The nested locking is safe as only this LB moves tasks 3870 * between bypass DSQs. 3871 */ 3872 dispatch_dequeue_locked(p, donor_dsq); 3873 dispatch_enqueue(sch, donee_dsq, p, SCX_ENQ_NESTED); 3874 3875 /* 3876 * $donee might have been idle and need to be woken up. No need 3877 * to be clever. Kick every CPU that receives tasks. 3878 */ 3879 cpumask_set_cpu(donee, resched_mask); 3880 3881 if (READ_ONCE(donee_dsq->nr) >= nr_donee_target) 3882 cpumask_clear_cpu(donee, donee_mask); 3883 3884 nr_balanced++; 3885 if (!(nr_balanced % SCX_BYPASS_LB_BATCH) && n) { 3886 list_move_tail(&cursor.node, &n->scx.dsq_list.node); 3887 raw_spin_unlock(&donor_dsq->lock); 3888 raw_spin_rq_unlock_irq(rq); 3889 cpu_relax(); 3890 raw_spin_rq_lock_irq(rq); 3891 raw_spin_lock(&donor_dsq->lock); 3892 goto resume; 3893 } 3894 } 3895 3896 list_del_init(&cursor.node); 3897 raw_spin_unlock(&donor_dsq->lock); 3898 raw_spin_rq_unlock_irq(rq); 3899 3900 return nr_balanced; 3901 } 3902 3903 static void bypass_lb_node(struct scx_sched *sch, int node) 3904 { 3905 const struct cpumask *node_mask = cpumask_of_node(node); 3906 struct cpumask *donee_mask = scx_bypass_lb_donee_cpumask; 3907 struct cpumask *resched_mask = scx_bypass_lb_resched_cpumask; 3908 u32 nr_tasks = 0, nr_cpus = 0, nr_balanced = 0; 3909 u32 nr_target, nr_donor_target; 3910 u32 before_min = U32_MAX, before_max = 0; 3911 u32 after_min = U32_MAX, after_max = 0; 3912 int cpu; 3913 3914 /* count the target tasks and CPUs */ 3915 for_each_cpu_and(cpu, cpu_online_mask, node_mask) { 3916 u32 nr = READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr); 3917 3918 nr_tasks += nr; 3919 nr_cpus++; 3920 3921 before_min = min(nr, before_min); 3922 before_max = max(nr, before_max); 3923 } 3924 3925 if (!nr_cpus) 3926 return; 3927 3928 /* 3929 * We don't want CPUs to have more than $nr_donor_target tasks and 3930 * balancing to fill donee CPUs upto $nr_target. Once targets are 3931 * calculated, find the donee CPUs. 3932 */ 3933 nr_target = DIV_ROUND_UP(nr_tasks, nr_cpus); 3934 nr_donor_target = DIV_ROUND_UP(nr_target * SCX_BYPASS_LB_DONOR_PCT, 100); 3935 3936 cpumask_clear(donee_mask); 3937 for_each_cpu_and(cpu, cpu_online_mask, node_mask) { 3938 if (READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr) < nr_target) 3939 cpumask_set_cpu(cpu, donee_mask); 3940 } 3941 3942 /* iterate !donee CPUs and see if they should be offloaded */ 3943 cpumask_clear(resched_mask); 3944 for_each_cpu_and(cpu, cpu_online_mask, node_mask) { 3945 struct rq *rq = cpu_rq(cpu); 3946 struct scx_dispatch_q *donor_dsq = &rq->scx.bypass_dsq; 3947 3948 if (cpumask_empty(donee_mask)) 3949 break; 3950 if (cpumask_test_cpu(cpu, donee_mask)) 3951 continue; 3952 if (READ_ONCE(donor_dsq->nr) <= nr_donor_target) 3953 continue; 3954 3955 nr_balanced += bypass_lb_cpu(sch, rq, donee_mask, resched_mask, 3956 nr_donor_target, nr_target); 3957 } 3958 3959 for_each_cpu(cpu, resched_mask) { 3960 struct rq *rq = cpu_rq(cpu); 3961 3962 raw_spin_rq_lock_irq(rq); 3963 resched_curr(rq); 3964 raw_spin_rq_unlock_irq(rq); 3965 } 3966 3967 for_each_cpu_and(cpu, cpu_online_mask, node_mask) { 3968 u32 nr = READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr); 3969 3970 after_min = min(nr, after_min); 3971 after_max = max(nr, after_max); 3972 3973 } 3974 3975 trace_sched_ext_bypass_lb(node, nr_cpus, nr_tasks, nr_balanced, 3976 before_min, before_max, after_min, after_max); 3977 } 3978 3979 /* 3980 * In bypass mode, all tasks are put on the per-CPU bypass DSQs. If the machine 3981 * is over-saturated and the BPF scheduler skewed tasks into few CPUs, some 3982 * bypass DSQs can be overloaded. If there are enough tasks to saturate other 3983 * lightly loaded CPUs, such imbalance can lead to very high execution latency 3984 * on the overloaded CPUs and thus to hung tasks and RCU stalls. To avoid such 3985 * outcomes, a simple load balancing mechanism is implemented by the following 3986 * timer which runs periodically while bypass mode is in effect. 3987 */ 3988 static void scx_bypass_lb_timerfn(struct timer_list *timer) 3989 { 3990 struct scx_sched *sch; 3991 int node; 3992 u32 intv_us; 3993 3994 sch = rcu_dereference_all(scx_root); 3995 if (unlikely(!sch) || !READ_ONCE(scx_bypass_depth)) 3996 return; 3997 3998 for_each_node_with_cpus(node) 3999 bypass_lb_node(sch, node); 4000 4001 intv_us = READ_ONCE(scx_bypass_lb_intv_us); 4002 if (intv_us) 4003 mod_timer(timer, jiffies + usecs_to_jiffies(intv_us)); 4004 } 4005 4006 static DEFINE_TIMER(scx_bypass_lb_timer, scx_bypass_lb_timerfn); 4007 4008 /** 4009 * scx_bypass - [Un]bypass scx_ops and guarantee forward progress 4010 * @bypass: true for bypass, false for unbypass 4011 * 4012 * Bypassing guarantees that all runnable tasks make forward progress without 4013 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 4014 * be held by tasks that the BPF scheduler is forgetting to run, which 4015 * unfortunately also excludes toggling the static branches. 4016 * 4017 * Let's work around by overriding a couple ops and modifying behaviors based on 4018 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 4019 * to force global FIFO scheduling. 4020 * 4021 * - ops.select_cpu() is ignored and the default select_cpu() is used. 4022 * 4023 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 4024 * %SCX_OPS_ENQ_LAST is also ignored. 4025 * 4026 * - ops.dispatch() is ignored. 4027 * 4028 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice 4029 * can't be trusted. Whenever a tick triggers, the running task is rotated to 4030 * the tail of the queue with core_sched_at touched. 4031 * 4032 * - pick_next_task() suppresses zero slice warning. 4033 * 4034 * - scx_kick_cpu() is disabled to avoid irq_work malfunction during PM 4035 * operations. 4036 * 4037 * - scx_prio_less() reverts to the default core_sched_at order. 4038 */ 4039 static void scx_bypass(bool bypass) 4040 { 4041 static DEFINE_RAW_SPINLOCK(bypass_lock); 4042 static unsigned long bypass_timestamp; 4043 struct scx_sched *sch; 4044 unsigned long flags; 4045 int cpu; 4046 4047 raw_spin_lock_irqsave(&bypass_lock, flags); 4048 sch = rcu_dereference_bh(scx_root); 4049 4050 if (bypass) { 4051 u32 intv_us; 4052 4053 WRITE_ONCE(scx_bypass_depth, scx_bypass_depth + 1); 4054 WARN_ON_ONCE(scx_bypass_depth <= 0); 4055 if (scx_bypass_depth != 1) 4056 goto unlock; 4057 WRITE_ONCE(scx_slice_dfl, scx_slice_bypass_us * NSEC_PER_USEC); 4058 bypass_timestamp = ktime_get_ns(); 4059 if (sch) 4060 scx_add_event(sch, SCX_EV_BYPASS_ACTIVATE, 1); 4061 4062 intv_us = READ_ONCE(scx_bypass_lb_intv_us); 4063 if (intv_us && !timer_pending(&scx_bypass_lb_timer)) { 4064 scx_bypass_lb_timer.expires = 4065 jiffies + usecs_to_jiffies(intv_us); 4066 add_timer_global(&scx_bypass_lb_timer); 4067 } 4068 } else { 4069 WRITE_ONCE(scx_bypass_depth, scx_bypass_depth - 1); 4070 WARN_ON_ONCE(scx_bypass_depth < 0); 4071 if (scx_bypass_depth != 0) 4072 goto unlock; 4073 WRITE_ONCE(scx_slice_dfl, SCX_SLICE_DFL); 4074 if (sch) 4075 scx_add_event(sch, SCX_EV_BYPASS_DURATION, 4076 ktime_get_ns() - bypass_timestamp); 4077 } 4078 4079 /* 4080 * No task property is changing. We just need to make sure all currently 4081 * queued tasks are re-queued according to the new scx_rq_bypassing() 4082 * state. As an optimization, walk each rq's runnable_list instead of 4083 * the scx_tasks list. 4084 * 4085 * This function can't trust the scheduler and thus can't use 4086 * cpus_read_lock(). Walk all possible CPUs instead of online. 4087 */ 4088 for_each_possible_cpu(cpu) { 4089 struct rq *rq = cpu_rq(cpu); 4090 struct task_struct *p, *n; 4091 4092 raw_spin_rq_lock(rq); 4093 4094 if (bypass) { 4095 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); 4096 rq->scx.flags |= SCX_RQ_BYPASSING; 4097 } else { 4098 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); 4099 rq->scx.flags &= ~SCX_RQ_BYPASSING; 4100 } 4101 4102 /* 4103 * We need to guarantee that no tasks are on the BPF scheduler 4104 * while bypassing. Either we see enabled or the enable path 4105 * sees scx_rq_bypassing() before moving tasks to SCX. 4106 */ 4107 if (!scx_enabled()) { 4108 raw_spin_rq_unlock(rq); 4109 continue; 4110 } 4111 4112 /* 4113 * The use of list_for_each_entry_safe_reverse() is required 4114 * because each task is going to be removed from and added back 4115 * to the runnable_list during iteration. Because they're added 4116 * to the tail of the list, safe reverse iteration can still 4117 * visit all nodes. 4118 */ 4119 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 4120 scx.runnable_node) { 4121 /* cycling deq/enq is enough, see the function comment */ 4122 scoped_guard (sched_change, p, DEQUEUE_SAVE | DEQUEUE_MOVE) { 4123 /* nothing */ ; 4124 } 4125 } 4126 4127 /* resched to restore ticks and idle state */ 4128 if (cpu_online(cpu) || cpu == smp_processor_id()) 4129 resched_curr(rq); 4130 4131 raw_spin_rq_unlock(rq); 4132 } 4133 4134 unlock: 4135 raw_spin_unlock_irqrestore(&bypass_lock, flags); 4136 } 4137 4138 static void free_exit_info(struct scx_exit_info *ei) 4139 { 4140 kvfree(ei->dump); 4141 kfree(ei->msg); 4142 kfree(ei->bt); 4143 kfree(ei); 4144 } 4145 4146 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 4147 { 4148 struct scx_exit_info *ei; 4149 4150 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 4151 if (!ei) 4152 return NULL; 4153 4154 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); 4155 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 4156 ei->dump = kvzalloc(exit_dump_len, GFP_KERNEL); 4157 4158 if (!ei->bt || !ei->msg || !ei->dump) { 4159 free_exit_info(ei); 4160 return NULL; 4161 } 4162 4163 return ei; 4164 } 4165 4166 static const char *scx_exit_reason(enum scx_exit_kind kind) 4167 { 4168 switch (kind) { 4169 case SCX_EXIT_UNREG: 4170 return "unregistered from user space"; 4171 case SCX_EXIT_UNREG_BPF: 4172 return "unregistered from BPF"; 4173 case SCX_EXIT_UNREG_KERN: 4174 return "unregistered from the main kernel"; 4175 case SCX_EXIT_SYSRQ: 4176 return "disabled by sysrq-S"; 4177 case SCX_EXIT_ERROR: 4178 return "runtime error"; 4179 case SCX_EXIT_ERROR_BPF: 4180 return "scx_bpf_error"; 4181 case SCX_EXIT_ERROR_STALL: 4182 return "runnable task stall"; 4183 default: 4184 return "<UNKNOWN>"; 4185 } 4186 } 4187 4188 static void free_kick_syncs(void) 4189 { 4190 int cpu; 4191 4192 for_each_possible_cpu(cpu) { 4193 struct scx_kick_syncs **ksyncs = per_cpu_ptr(&scx_kick_syncs, cpu); 4194 struct scx_kick_syncs *to_free; 4195 4196 to_free = rcu_replace_pointer(*ksyncs, NULL, true); 4197 if (to_free) 4198 kvfree_rcu(to_free, rcu); 4199 } 4200 } 4201 4202 static void scx_disable_workfn(struct kthread_work *work) 4203 { 4204 struct scx_sched *sch = container_of(work, struct scx_sched, disable_work); 4205 struct scx_exit_info *ei = sch->exit_info; 4206 struct scx_task_iter sti; 4207 struct task_struct *p; 4208 int kind, cpu; 4209 4210 kind = atomic_read(&sch->exit_kind); 4211 while (true) { 4212 if (kind == SCX_EXIT_DONE) /* already disabled? */ 4213 return; 4214 WARN_ON_ONCE(kind == SCX_EXIT_NONE); 4215 if (atomic_try_cmpxchg(&sch->exit_kind, &kind, SCX_EXIT_DONE)) 4216 break; 4217 } 4218 ei->kind = kind; 4219 ei->reason = scx_exit_reason(ei->kind); 4220 4221 /* guarantee forward progress by bypassing scx_ops */ 4222 scx_bypass(true); 4223 WRITE_ONCE(scx_aborting, false); 4224 4225 switch (scx_set_enable_state(SCX_DISABLING)) { 4226 case SCX_DISABLING: 4227 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 4228 break; 4229 case SCX_DISABLED: 4230 pr_warn("sched_ext: ops error detected without ops (%s)\n", 4231 sch->exit_info->msg); 4232 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING); 4233 goto done; 4234 default: 4235 break; 4236 } 4237 4238 /* 4239 * Here, every runnable task is guaranteed to make forward progress and 4240 * we can safely use blocking synchronization constructs. Actually 4241 * disable ops. 4242 */ 4243 mutex_lock(&scx_enable_mutex); 4244 4245 static_branch_disable(&__scx_switched_all); 4246 WRITE_ONCE(scx_switching_all, false); 4247 4248 /* 4249 * Shut down cgroup support before tasks so that the cgroup attach path 4250 * doesn't race against scx_exit_task(). 4251 */ 4252 scx_cgroup_lock(); 4253 scx_cgroup_exit(sch); 4254 scx_cgroup_unlock(); 4255 4256 /* 4257 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones 4258 * must be switched out and exited synchronously. 4259 */ 4260 percpu_down_write(&scx_fork_rwsem); 4261 4262 scx_init_task_enabled = false; 4263 4264 scx_task_iter_start(&sti); 4265 while ((p = scx_task_iter_next_locked(&sti))) { 4266 unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4267 const struct sched_class *old_class = p->sched_class; 4268 const struct sched_class *new_class = scx_setscheduler_class(p); 4269 4270 update_rq_clock(task_rq(p)); 4271 4272 if (old_class != new_class) 4273 queue_flags |= DEQUEUE_CLASS; 4274 4275 scoped_guard (sched_change, p, queue_flags) { 4276 p->sched_class = new_class; 4277 } 4278 4279 scx_exit_task(p); 4280 } 4281 scx_task_iter_stop(&sti); 4282 percpu_up_write(&scx_fork_rwsem); 4283 4284 /* 4285 * Invalidate all the rq clocks to prevent getting outdated 4286 * rq clocks from a previous scx scheduler. 4287 */ 4288 for_each_possible_cpu(cpu) { 4289 struct rq *rq = cpu_rq(cpu); 4290 scx_rq_clock_invalidate(rq); 4291 } 4292 4293 /* no task is on scx, turn off all the switches and flush in-progress calls */ 4294 static_branch_disable(&__scx_enabled); 4295 bitmap_zero(sch->has_op, SCX_OPI_END); 4296 scx_idle_disable(); 4297 synchronize_rcu(); 4298 4299 if (ei->kind >= SCX_EXIT_ERROR) { 4300 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4301 sch->ops.name, ei->reason); 4302 4303 if (ei->msg[0] != '\0') 4304 pr_err("sched_ext: %s: %s\n", sch->ops.name, ei->msg); 4305 #ifdef CONFIG_STACKTRACE 4306 stack_trace_print(ei->bt, ei->bt_len, 2); 4307 #endif 4308 } else { 4309 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4310 sch->ops.name, ei->reason); 4311 } 4312 4313 if (sch->ops.exit) 4314 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, exit, NULL, ei); 4315 4316 cancel_delayed_work_sync(&scx_watchdog_work); 4317 4318 /* 4319 * scx_root clearing must be inside cpus_read_lock(). See 4320 * handle_hotplug(). 4321 */ 4322 cpus_read_lock(); 4323 RCU_INIT_POINTER(scx_root, NULL); 4324 cpus_read_unlock(); 4325 4326 /* 4327 * Delete the kobject from the hierarchy synchronously. Otherwise, sysfs 4328 * could observe an object of the same name still in the hierarchy when 4329 * the next scheduler is loaded. 4330 */ 4331 kobject_del(&sch->kobj); 4332 4333 free_percpu(scx_dsp_ctx); 4334 scx_dsp_ctx = NULL; 4335 scx_dsp_max_batch = 0; 4336 free_kick_syncs(); 4337 4338 if (scx_bypassed_for_enable) { 4339 scx_bypassed_for_enable = false; 4340 scx_bypass(false); 4341 } 4342 4343 mutex_unlock(&scx_enable_mutex); 4344 4345 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING); 4346 done: 4347 scx_bypass(false); 4348 } 4349 4350 static bool scx_claim_exit(struct scx_sched *sch, enum scx_exit_kind kind) 4351 { 4352 int none = SCX_EXIT_NONE; 4353 4354 if (!atomic_try_cmpxchg(&sch->exit_kind, &none, kind)) 4355 return false; 4356 4357 /* 4358 * Some CPUs may be trapped in the dispatch paths. Set the aborting 4359 * flag to break potential live-lock scenarios, ensuring we can 4360 * successfully reach scx_bypass(). 4361 */ 4362 WRITE_ONCE(scx_aborting, true); 4363 return true; 4364 } 4365 4366 static void scx_disable(enum scx_exit_kind kind) 4367 { 4368 struct scx_sched *sch; 4369 4370 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 4371 kind = SCX_EXIT_ERROR; 4372 4373 rcu_read_lock(); 4374 sch = rcu_dereference(scx_root); 4375 if (sch) { 4376 scx_claim_exit(sch, kind); 4377 kthread_queue_work(sch->helper, &sch->disable_work); 4378 } 4379 rcu_read_unlock(); 4380 } 4381 4382 static void dump_newline(struct seq_buf *s) 4383 { 4384 trace_sched_ext_dump(""); 4385 4386 /* @s may be zero sized and seq_buf triggers WARN if so */ 4387 if (s->size) 4388 seq_buf_putc(s, '\n'); 4389 } 4390 4391 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 4392 { 4393 va_list args; 4394 4395 #ifdef CONFIG_TRACEPOINTS 4396 if (trace_sched_ext_dump_enabled()) { 4397 /* protected by scx_dump_state()::dump_lock */ 4398 static char line_buf[SCX_EXIT_MSG_LEN]; 4399 4400 va_start(args, fmt); 4401 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 4402 va_end(args); 4403 4404 trace_sched_ext_dump(line_buf); 4405 } 4406 #endif 4407 /* @s may be zero sized and seq_buf triggers WARN if so */ 4408 if (s->size) { 4409 va_start(args, fmt); 4410 seq_buf_vprintf(s, fmt, args); 4411 va_end(args); 4412 4413 seq_buf_putc(s, '\n'); 4414 } 4415 } 4416 4417 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 4418 const unsigned long *bt, unsigned int len) 4419 { 4420 unsigned int i; 4421 4422 for (i = 0; i < len; i++) 4423 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 4424 } 4425 4426 static void ops_dump_init(struct seq_buf *s, const char *prefix) 4427 { 4428 struct scx_dump_data *dd = &scx_dump_data; 4429 4430 lockdep_assert_irqs_disabled(); 4431 4432 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 4433 dd->first = true; 4434 dd->cursor = 0; 4435 dd->s = s; 4436 dd->prefix = prefix; 4437 } 4438 4439 static void ops_dump_flush(void) 4440 { 4441 struct scx_dump_data *dd = &scx_dump_data; 4442 char *line = dd->buf.line; 4443 4444 if (!dd->cursor) 4445 return; 4446 4447 /* 4448 * There's something to flush and this is the first line. Insert a blank 4449 * line to distinguish ops dump. 4450 */ 4451 if (dd->first) { 4452 dump_newline(dd->s); 4453 dd->first = false; 4454 } 4455 4456 /* 4457 * There may be multiple lines in $line. Scan and emit each line 4458 * separately. 4459 */ 4460 while (true) { 4461 char *end = line; 4462 char c; 4463 4464 while (*end != '\n' && *end != '\0') 4465 end++; 4466 4467 /* 4468 * If $line overflowed, it may not have newline at the end. 4469 * Always emit with a newline. 4470 */ 4471 c = *end; 4472 *end = '\0'; 4473 dump_line(dd->s, "%s%s", dd->prefix, line); 4474 if (c == '\0') 4475 break; 4476 4477 /* move to the next line */ 4478 end++; 4479 if (*end == '\0') 4480 break; 4481 line = end; 4482 } 4483 4484 dd->cursor = 0; 4485 } 4486 4487 static void ops_dump_exit(void) 4488 { 4489 ops_dump_flush(); 4490 scx_dump_data.cpu = -1; 4491 } 4492 4493 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 4494 struct task_struct *p, char marker) 4495 { 4496 static unsigned long bt[SCX_EXIT_BT_LEN]; 4497 struct scx_sched *sch = scx_root; 4498 char dsq_id_buf[19] = "(n/a)"; 4499 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 4500 unsigned int bt_len = 0; 4501 4502 if (p->scx.dsq) 4503 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 4504 (unsigned long long)p->scx.dsq->id); 4505 4506 dump_newline(s); 4507 dump_line(s, " %c%c %s[%d] %+ldms", 4508 marker, task_state_to_char(p), p->comm, p->pid, 4509 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 4510 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", 4511 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 4512 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, 4513 ops_state >> SCX_OPSS_QSEQ_SHIFT); 4514 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s", 4515 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf); 4516 dump_line(s, " dsq_vtime=%llu slice=%llu weight=%u", 4517 p->scx.dsq_vtime, p->scx.slice, p->scx.weight); 4518 dump_line(s, " cpus=%*pb no_mig=%u", cpumask_pr_args(p->cpus_ptr), 4519 p->migration_disabled); 4520 4521 if (SCX_HAS_OP(sch, dump_task)) { 4522 ops_dump_init(s, " "); 4523 SCX_CALL_OP(sch, SCX_KF_REST, dump_task, NULL, dctx, p); 4524 ops_dump_exit(); 4525 } 4526 4527 #ifdef CONFIG_STACKTRACE 4528 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 4529 #endif 4530 if (bt_len) { 4531 dump_newline(s); 4532 dump_stack_trace(s, " ", bt, bt_len); 4533 } 4534 } 4535 4536 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 4537 { 4538 static DEFINE_SPINLOCK(dump_lock); 4539 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 4540 struct scx_sched *sch = scx_root; 4541 struct scx_dump_ctx dctx = { 4542 .kind = ei->kind, 4543 .exit_code = ei->exit_code, 4544 .reason = ei->reason, 4545 .at_ns = ktime_get_ns(), 4546 .at_jiffies = jiffies, 4547 }; 4548 struct seq_buf s; 4549 struct scx_event_stats events; 4550 unsigned long flags; 4551 char *buf; 4552 int cpu; 4553 4554 spin_lock_irqsave(&dump_lock, flags); 4555 4556 seq_buf_init(&s, ei->dump, dump_len); 4557 4558 if (ei->kind == SCX_EXIT_NONE) { 4559 dump_line(&s, "Debug dump triggered by %s", ei->reason); 4560 } else { 4561 dump_line(&s, "%s[%d] triggered exit kind %d:", 4562 current->comm, current->pid, ei->kind); 4563 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 4564 dump_newline(&s); 4565 dump_line(&s, "Backtrace:"); 4566 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 4567 } 4568 4569 if (SCX_HAS_OP(sch, dump)) { 4570 ops_dump_init(&s, ""); 4571 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, dump, NULL, &dctx); 4572 ops_dump_exit(); 4573 } 4574 4575 dump_newline(&s); 4576 dump_line(&s, "CPU states"); 4577 dump_line(&s, "----------"); 4578 4579 for_each_possible_cpu(cpu) { 4580 struct rq *rq = cpu_rq(cpu); 4581 struct rq_flags rf; 4582 struct task_struct *p; 4583 struct seq_buf ns; 4584 size_t avail, used; 4585 bool idle; 4586 4587 rq_lock_irqsave(rq, &rf); 4588 4589 idle = list_empty(&rq->scx.runnable_list) && 4590 rq->curr->sched_class == &idle_sched_class; 4591 4592 if (idle && !SCX_HAS_OP(sch, dump_cpu)) 4593 goto next; 4594 4595 /* 4596 * We don't yet know whether ops.dump_cpu() will produce output 4597 * and we may want to skip the default CPU dump if it doesn't. 4598 * Use a nested seq_buf to generate the standard dump so that we 4599 * can decide whether to commit later. 4600 */ 4601 avail = seq_buf_get_buf(&s, &buf); 4602 seq_buf_init(&ns, buf, avail); 4603 4604 dump_newline(&ns); 4605 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu ksync=%lu", 4606 cpu, rq->scx.nr_running, rq->scx.flags, 4607 rq->scx.cpu_released, rq->scx.ops_qseq, 4608 rq->scx.kick_sync); 4609 dump_line(&ns, " curr=%s[%d] class=%ps", 4610 rq->curr->comm, rq->curr->pid, 4611 rq->curr->sched_class); 4612 if (!cpumask_empty(rq->scx.cpus_to_kick)) 4613 dump_line(&ns, " cpus_to_kick : %*pb", 4614 cpumask_pr_args(rq->scx.cpus_to_kick)); 4615 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 4616 dump_line(&ns, " idle_to_kick : %*pb", 4617 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 4618 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 4619 dump_line(&ns, " cpus_to_preempt: %*pb", 4620 cpumask_pr_args(rq->scx.cpus_to_preempt)); 4621 if (!cpumask_empty(rq->scx.cpus_to_wait)) 4622 dump_line(&ns, " cpus_to_wait : %*pb", 4623 cpumask_pr_args(rq->scx.cpus_to_wait)); 4624 4625 used = seq_buf_used(&ns); 4626 if (SCX_HAS_OP(sch, dump_cpu)) { 4627 ops_dump_init(&ns, " "); 4628 SCX_CALL_OP(sch, SCX_KF_REST, dump_cpu, NULL, 4629 &dctx, cpu, idle); 4630 ops_dump_exit(); 4631 } 4632 4633 /* 4634 * If idle && nothing generated by ops.dump_cpu(), there's 4635 * nothing interesting. Skip. 4636 */ 4637 if (idle && used == seq_buf_used(&ns)) 4638 goto next; 4639 4640 /* 4641 * $s may already have overflowed when $ns was created. If so, 4642 * calling commit on it will trigger BUG. 4643 */ 4644 if (avail) { 4645 seq_buf_commit(&s, seq_buf_used(&ns)); 4646 if (seq_buf_has_overflowed(&ns)) 4647 seq_buf_set_overflow(&s); 4648 } 4649 4650 if (rq->curr->sched_class == &ext_sched_class) 4651 scx_dump_task(&s, &dctx, rq->curr, '*'); 4652 4653 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 4654 scx_dump_task(&s, &dctx, p, ' '); 4655 next: 4656 rq_unlock_irqrestore(rq, &rf); 4657 } 4658 4659 dump_newline(&s); 4660 dump_line(&s, "Event counters"); 4661 dump_line(&s, "--------------"); 4662 4663 scx_read_events(sch, &events); 4664 scx_dump_event(s, &events, SCX_EV_SELECT_CPU_FALLBACK); 4665 scx_dump_event(s, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 4666 scx_dump_event(s, &events, SCX_EV_DISPATCH_KEEP_LAST); 4667 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_EXITING); 4668 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 4669 scx_dump_event(s, &events, SCX_EV_REFILL_SLICE_DFL); 4670 scx_dump_event(s, &events, SCX_EV_BYPASS_DURATION); 4671 scx_dump_event(s, &events, SCX_EV_BYPASS_DISPATCH); 4672 scx_dump_event(s, &events, SCX_EV_BYPASS_ACTIVATE); 4673 4674 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 4675 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 4676 trunc_marker, sizeof(trunc_marker)); 4677 4678 spin_unlock_irqrestore(&dump_lock, flags); 4679 } 4680 4681 static void scx_error_irq_workfn(struct irq_work *irq_work) 4682 { 4683 struct scx_sched *sch = container_of(irq_work, struct scx_sched, error_irq_work); 4684 struct scx_exit_info *ei = sch->exit_info; 4685 4686 if (ei->kind >= SCX_EXIT_ERROR) 4687 scx_dump_state(ei, sch->ops.exit_dump_len); 4688 4689 kthread_queue_work(sch->helper, &sch->disable_work); 4690 } 4691 4692 static bool scx_vexit(struct scx_sched *sch, 4693 enum scx_exit_kind kind, s64 exit_code, 4694 const char *fmt, va_list args) 4695 { 4696 struct scx_exit_info *ei = sch->exit_info; 4697 4698 if (!scx_claim_exit(sch, kind)) 4699 return false; 4700 4701 ei->exit_code = exit_code; 4702 #ifdef CONFIG_STACKTRACE 4703 if (kind >= SCX_EXIT_ERROR) 4704 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 4705 #endif 4706 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 4707 4708 /* 4709 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 4710 * in scx_disable_workfn(). 4711 */ 4712 ei->kind = kind; 4713 ei->reason = scx_exit_reason(ei->kind); 4714 4715 irq_work_queue(&sch->error_irq_work); 4716 return true; 4717 } 4718 4719 static int alloc_kick_syncs(void) 4720 { 4721 int cpu; 4722 4723 /* 4724 * Allocate per-CPU arrays sized by nr_cpu_ids. Use kvzalloc as size 4725 * can exceed percpu allocator limits on large machines. 4726 */ 4727 for_each_possible_cpu(cpu) { 4728 struct scx_kick_syncs **ksyncs = per_cpu_ptr(&scx_kick_syncs, cpu); 4729 struct scx_kick_syncs *new_ksyncs; 4730 4731 WARN_ON_ONCE(rcu_access_pointer(*ksyncs)); 4732 4733 new_ksyncs = kvzalloc_node(struct_size(new_ksyncs, syncs, nr_cpu_ids), 4734 GFP_KERNEL, cpu_to_node(cpu)); 4735 if (!new_ksyncs) { 4736 free_kick_syncs(); 4737 return -ENOMEM; 4738 } 4739 4740 rcu_assign_pointer(*ksyncs, new_ksyncs); 4741 } 4742 4743 return 0; 4744 } 4745 4746 static struct scx_sched *scx_alloc_and_add_sched(struct sched_ext_ops *ops) 4747 { 4748 struct scx_sched *sch; 4749 int node, ret; 4750 4751 sch = kzalloc(sizeof(*sch), GFP_KERNEL); 4752 if (!sch) 4753 return ERR_PTR(-ENOMEM); 4754 4755 sch->exit_info = alloc_exit_info(ops->exit_dump_len); 4756 if (!sch->exit_info) { 4757 ret = -ENOMEM; 4758 goto err_free_sch; 4759 } 4760 4761 ret = rhashtable_init(&sch->dsq_hash, &dsq_hash_params); 4762 if (ret < 0) 4763 goto err_free_ei; 4764 4765 sch->global_dsqs = kcalloc(nr_node_ids, sizeof(sch->global_dsqs[0]), 4766 GFP_KERNEL); 4767 if (!sch->global_dsqs) { 4768 ret = -ENOMEM; 4769 goto err_free_hash; 4770 } 4771 4772 for_each_node_state(node, N_POSSIBLE) { 4773 struct scx_dispatch_q *dsq; 4774 4775 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node); 4776 if (!dsq) { 4777 ret = -ENOMEM; 4778 goto err_free_gdsqs; 4779 } 4780 4781 init_dsq(dsq, SCX_DSQ_GLOBAL); 4782 sch->global_dsqs[node] = dsq; 4783 } 4784 4785 sch->pcpu = alloc_percpu(struct scx_sched_pcpu); 4786 if (!sch->pcpu) 4787 goto err_free_gdsqs; 4788 4789 sch->helper = kthread_run_worker(0, "sched_ext_helper"); 4790 if (IS_ERR(sch->helper)) { 4791 ret = PTR_ERR(sch->helper); 4792 goto err_free_pcpu; 4793 } 4794 4795 sched_set_fifo(sch->helper->task); 4796 4797 atomic_set(&sch->exit_kind, SCX_EXIT_NONE); 4798 init_irq_work(&sch->error_irq_work, scx_error_irq_workfn); 4799 kthread_init_work(&sch->disable_work, scx_disable_workfn); 4800 sch->ops = *ops; 4801 ops->priv = sch; 4802 4803 sch->kobj.kset = scx_kset; 4804 ret = kobject_init_and_add(&sch->kobj, &scx_ktype, NULL, "root"); 4805 if (ret < 0) 4806 goto err_stop_helper; 4807 4808 return sch; 4809 4810 err_stop_helper: 4811 kthread_destroy_worker(sch->helper); 4812 err_free_pcpu: 4813 free_percpu(sch->pcpu); 4814 err_free_gdsqs: 4815 for_each_node_state(node, N_POSSIBLE) 4816 kfree(sch->global_dsqs[node]); 4817 kfree(sch->global_dsqs); 4818 err_free_hash: 4819 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL); 4820 err_free_ei: 4821 free_exit_info(sch->exit_info); 4822 err_free_sch: 4823 kfree(sch); 4824 return ERR_PTR(ret); 4825 } 4826 4827 static int check_hotplug_seq(struct scx_sched *sch, 4828 const struct sched_ext_ops *ops) 4829 { 4830 unsigned long long global_hotplug_seq; 4831 4832 /* 4833 * If a hotplug event has occurred between when a scheduler was 4834 * initialized, and when we were able to attach, exit and notify user 4835 * space about it. 4836 */ 4837 if (ops->hotplug_seq) { 4838 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); 4839 if (ops->hotplug_seq != global_hotplug_seq) { 4840 scx_exit(sch, SCX_EXIT_UNREG_KERN, 4841 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 4842 "expected hotplug seq %llu did not match actual %llu", 4843 ops->hotplug_seq, global_hotplug_seq); 4844 return -EBUSY; 4845 } 4846 } 4847 4848 return 0; 4849 } 4850 4851 static int validate_ops(struct scx_sched *sch, const struct sched_ext_ops *ops) 4852 { 4853 /* 4854 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 4855 * ops.enqueue() callback isn't implemented. 4856 */ 4857 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 4858 scx_error(sch, "SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 4859 return -EINVAL; 4860 } 4861 4862 /* 4863 * SCX_OPS_BUILTIN_IDLE_PER_NODE requires built-in CPU idle 4864 * selection policy to be enabled. 4865 */ 4866 if ((ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE) && 4867 (ops->update_idle && !(ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))) { 4868 scx_error(sch, "SCX_OPS_BUILTIN_IDLE_PER_NODE requires CPU idle selection enabled"); 4869 return -EINVAL; 4870 } 4871 4872 if (ops->flags & SCX_OPS_HAS_CGROUP_WEIGHT) 4873 pr_warn("SCX_OPS_HAS_CGROUP_WEIGHT is deprecated and a noop\n"); 4874 4875 if (ops->cpu_acquire || ops->cpu_release) 4876 pr_warn("ops->cpu_acquire/release() are deprecated, use sched_switch TP instead\n"); 4877 4878 return 0; 4879 } 4880 4881 static int scx_enable(struct sched_ext_ops *ops, struct bpf_link *link) 4882 { 4883 struct scx_sched *sch; 4884 struct scx_task_iter sti; 4885 struct task_struct *p; 4886 unsigned long timeout; 4887 int i, cpu, ret; 4888 4889 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), 4890 cpu_possible_mask)) { 4891 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n"); 4892 return -EINVAL; 4893 } 4894 4895 mutex_lock(&scx_enable_mutex); 4896 4897 if (scx_enable_state() != SCX_DISABLED) { 4898 ret = -EBUSY; 4899 goto err_unlock; 4900 } 4901 4902 ret = alloc_kick_syncs(); 4903 if (ret) 4904 goto err_unlock; 4905 4906 sch = scx_alloc_and_add_sched(ops); 4907 if (IS_ERR(sch)) { 4908 ret = PTR_ERR(sch); 4909 goto err_free_ksyncs; 4910 } 4911 4912 /* 4913 * Transition to ENABLING and clear exit info to arm the disable path. 4914 * Failure triggers full disabling from here on. 4915 */ 4916 WARN_ON_ONCE(scx_set_enable_state(SCX_ENABLING) != SCX_DISABLED); 4917 WARN_ON_ONCE(scx_root); 4918 if (WARN_ON_ONCE(READ_ONCE(scx_aborting))) 4919 WRITE_ONCE(scx_aborting, false); 4920 4921 atomic_long_set(&scx_nr_rejected, 0); 4922 4923 for_each_possible_cpu(cpu) 4924 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; 4925 4926 /* 4927 * Keep CPUs stable during enable so that the BPF scheduler can track 4928 * online CPUs by watching ->on/offline_cpu() after ->init(). 4929 */ 4930 cpus_read_lock(); 4931 4932 /* 4933 * Make the scheduler instance visible. Must be inside cpus_read_lock(). 4934 * See handle_hotplug(). 4935 */ 4936 rcu_assign_pointer(scx_root, sch); 4937 4938 scx_idle_enable(ops); 4939 4940 if (sch->ops.init) { 4941 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init, NULL); 4942 if (ret) { 4943 ret = ops_sanitize_err(sch, "init", ret); 4944 cpus_read_unlock(); 4945 scx_error(sch, "ops.init() failed (%d)", ret); 4946 goto err_disable; 4947 } 4948 sch->exit_info->flags |= SCX_EFLAG_INITIALIZED; 4949 } 4950 4951 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) 4952 if (((void (**)(void))ops)[i]) 4953 set_bit(i, sch->has_op); 4954 4955 ret = check_hotplug_seq(sch, ops); 4956 if (ret) { 4957 cpus_read_unlock(); 4958 goto err_disable; 4959 } 4960 scx_idle_update_selcpu_topology(ops); 4961 4962 cpus_read_unlock(); 4963 4964 ret = validate_ops(sch, ops); 4965 if (ret) 4966 goto err_disable; 4967 4968 WARN_ON_ONCE(scx_dsp_ctx); 4969 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 4970 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 4971 scx_dsp_max_batch), 4972 __alignof__(struct scx_dsp_ctx)); 4973 if (!scx_dsp_ctx) { 4974 ret = -ENOMEM; 4975 goto err_disable; 4976 } 4977 4978 if (ops->timeout_ms) 4979 timeout = msecs_to_jiffies(ops->timeout_ms); 4980 else 4981 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 4982 4983 WRITE_ONCE(scx_watchdog_timeout, timeout); 4984 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 4985 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 4986 scx_watchdog_timeout / 2); 4987 4988 /* 4989 * Once __scx_enabled is set, %current can be switched to SCX anytime. 4990 * This can lead to stalls as some BPF schedulers (e.g. userspace 4991 * scheduling) may not function correctly before all tasks are switched. 4992 * Init in bypass mode to guarantee forward progress. 4993 */ 4994 scx_bypass(true); 4995 scx_bypassed_for_enable = true; 4996 4997 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 4998 if (((void (**)(void))ops)[i]) 4999 set_bit(i, sch->has_op); 5000 5001 if (sch->ops.cpu_acquire || sch->ops.cpu_release) 5002 sch->ops.flags |= SCX_OPS_HAS_CPU_PREEMPT; 5003 5004 /* 5005 * Lock out forks, cgroup on/offlining and moves before opening the 5006 * floodgate so that they don't wander into the operations prematurely. 5007 */ 5008 percpu_down_write(&scx_fork_rwsem); 5009 5010 WARN_ON_ONCE(scx_init_task_enabled); 5011 scx_init_task_enabled = true; 5012 5013 /* 5014 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 5015 * preventing new tasks from being added. No need to exclude tasks 5016 * leaving as sched_ext_free() can handle both prepped and enabled 5017 * tasks. Prep all tasks first and then enable them with preemption 5018 * disabled. 5019 * 5020 * All cgroups should be initialized before scx_init_task() so that the 5021 * BPF scheduler can reliably track each task's cgroup membership from 5022 * scx_init_task(). Lock out cgroup on/offlining and task migrations 5023 * while tasks are being initialized so that scx_cgroup_can_attach() 5024 * never sees uninitialized tasks. 5025 */ 5026 scx_cgroup_lock(); 5027 ret = scx_cgroup_init(sch); 5028 if (ret) 5029 goto err_disable_unlock_all; 5030 5031 scx_task_iter_start(&sti); 5032 while ((p = scx_task_iter_next_locked(&sti))) { 5033 /* 5034 * @p may already be dead, have lost all its usages counts and 5035 * be waiting for RCU grace period before being freed. @p can't 5036 * be initialized for SCX in such cases and should be ignored. 5037 */ 5038 if (!tryget_task_struct(p)) 5039 continue; 5040 5041 scx_task_iter_unlock(&sti); 5042 5043 ret = scx_init_task(p, task_group(p), false); 5044 if (ret) { 5045 put_task_struct(p); 5046 scx_task_iter_stop(&sti); 5047 scx_error(sch, "ops.init_task() failed (%d) for %s[%d]", 5048 ret, p->comm, p->pid); 5049 goto err_disable_unlock_all; 5050 } 5051 5052 scx_set_task_state(p, SCX_TASK_READY); 5053 5054 put_task_struct(p); 5055 } 5056 scx_task_iter_stop(&sti); 5057 scx_cgroup_unlock(); 5058 percpu_up_write(&scx_fork_rwsem); 5059 5060 /* 5061 * All tasks are READY. It's safe to turn on scx_enabled() and switch 5062 * all eligible tasks. 5063 */ 5064 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 5065 static_branch_enable(&__scx_enabled); 5066 5067 /* 5068 * We're fully committed and can't fail. The task READY -> ENABLED 5069 * transitions here are synchronized against sched_ext_free() through 5070 * scx_tasks_lock. 5071 */ 5072 percpu_down_write(&scx_fork_rwsem); 5073 scx_task_iter_start(&sti); 5074 while ((p = scx_task_iter_next_locked(&sti))) { 5075 unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE; 5076 const struct sched_class *old_class = p->sched_class; 5077 const struct sched_class *new_class = scx_setscheduler_class(p); 5078 5079 if (scx_get_task_state(p) != SCX_TASK_READY) 5080 continue; 5081 5082 if (old_class != new_class) 5083 queue_flags |= DEQUEUE_CLASS; 5084 5085 scoped_guard (sched_change, p, queue_flags) { 5086 p->scx.slice = READ_ONCE(scx_slice_dfl); 5087 p->sched_class = new_class; 5088 } 5089 } 5090 scx_task_iter_stop(&sti); 5091 percpu_up_write(&scx_fork_rwsem); 5092 5093 scx_bypassed_for_enable = false; 5094 scx_bypass(false); 5095 5096 if (!scx_tryset_enable_state(SCX_ENABLED, SCX_ENABLING)) { 5097 WARN_ON_ONCE(atomic_read(&sch->exit_kind) == SCX_EXIT_NONE); 5098 goto err_disable; 5099 } 5100 5101 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 5102 static_branch_enable(&__scx_switched_all); 5103 5104 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", 5105 sch->ops.name, scx_switched_all() ? "" : " (partial)"); 5106 kobject_uevent(&sch->kobj, KOBJ_ADD); 5107 mutex_unlock(&scx_enable_mutex); 5108 5109 atomic_long_inc(&scx_enable_seq); 5110 5111 return 0; 5112 5113 err_free_ksyncs: 5114 free_kick_syncs(); 5115 err_unlock: 5116 mutex_unlock(&scx_enable_mutex); 5117 return ret; 5118 5119 err_disable_unlock_all: 5120 scx_cgroup_unlock(); 5121 percpu_up_write(&scx_fork_rwsem); 5122 /* we'll soon enter disable path, keep bypass on */ 5123 err_disable: 5124 mutex_unlock(&scx_enable_mutex); 5125 /* 5126 * Returning an error code here would not pass all the error information 5127 * to userspace. Record errno using scx_error() for cases scx_error() 5128 * wasn't already invoked and exit indicating success so that the error 5129 * is notified through ops.exit() with all the details. 5130 * 5131 * Flush scx_disable_work to ensure that error is reported before init 5132 * completion. sch's base reference will be put by bpf_scx_unreg(). 5133 */ 5134 scx_error(sch, "scx_enable() failed (%d)", ret); 5135 kthread_flush_work(&sch->disable_work); 5136 return 0; 5137 } 5138 5139 5140 /******************************************************************************** 5141 * bpf_struct_ops plumbing. 5142 */ 5143 #include <linux/bpf_verifier.h> 5144 #include <linux/bpf.h> 5145 #include <linux/btf.h> 5146 5147 static const struct btf_type *task_struct_type; 5148 5149 static bool bpf_scx_is_valid_access(int off, int size, 5150 enum bpf_access_type type, 5151 const struct bpf_prog *prog, 5152 struct bpf_insn_access_aux *info) 5153 { 5154 if (type != BPF_READ) 5155 return false; 5156 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 5157 return false; 5158 if (off % size != 0) 5159 return false; 5160 5161 return btf_ctx_access(off, size, type, prog, info); 5162 } 5163 5164 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 5165 const struct bpf_reg_state *reg, int off, 5166 int size) 5167 { 5168 const struct btf_type *t; 5169 5170 t = btf_type_by_id(reg->btf, reg->btf_id); 5171 if (t == task_struct_type) { 5172 if (off >= offsetof(struct task_struct, scx.slice) && 5173 off + size <= offsetofend(struct task_struct, scx.slice)) 5174 return SCALAR_VALUE; 5175 if (off >= offsetof(struct task_struct, scx.dsq_vtime) && 5176 off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) 5177 return SCALAR_VALUE; 5178 if (off >= offsetof(struct task_struct, scx.disallow) && 5179 off + size <= offsetofend(struct task_struct, scx.disallow)) 5180 return SCALAR_VALUE; 5181 } 5182 5183 return -EACCES; 5184 } 5185 5186 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 5187 .get_func_proto = bpf_base_func_proto, 5188 .is_valid_access = bpf_scx_is_valid_access, 5189 .btf_struct_access = bpf_scx_btf_struct_access, 5190 }; 5191 5192 static int bpf_scx_init_member(const struct btf_type *t, 5193 const struct btf_member *member, 5194 void *kdata, const void *udata) 5195 { 5196 const struct sched_ext_ops *uops = udata; 5197 struct sched_ext_ops *ops = kdata; 5198 u32 moff = __btf_member_bit_offset(t, member) / 8; 5199 int ret; 5200 5201 switch (moff) { 5202 case offsetof(struct sched_ext_ops, dispatch_max_batch): 5203 if (*(u32 *)(udata + moff) > INT_MAX) 5204 return -E2BIG; 5205 ops->dispatch_max_batch = *(u32 *)(udata + moff); 5206 return 1; 5207 case offsetof(struct sched_ext_ops, flags): 5208 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 5209 return -EINVAL; 5210 ops->flags = *(u64 *)(udata + moff); 5211 return 1; 5212 case offsetof(struct sched_ext_ops, name): 5213 ret = bpf_obj_name_cpy(ops->name, uops->name, 5214 sizeof(ops->name)); 5215 if (ret < 0) 5216 return ret; 5217 if (ret == 0) 5218 return -EINVAL; 5219 return 1; 5220 case offsetof(struct sched_ext_ops, timeout_ms): 5221 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 5222 SCX_WATCHDOG_MAX_TIMEOUT) 5223 return -E2BIG; 5224 ops->timeout_ms = *(u32 *)(udata + moff); 5225 return 1; 5226 case offsetof(struct sched_ext_ops, exit_dump_len): 5227 ops->exit_dump_len = 5228 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 5229 return 1; 5230 case offsetof(struct sched_ext_ops, hotplug_seq): 5231 ops->hotplug_seq = *(u64 *)(udata + moff); 5232 return 1; 5233 } 5234 5235 return 0; 5236 } 5237 5238 static int bpf_scx_check_member(const struct btf_type *t, 5239 const struct btf_member *member, 5240 const struct bpf_prog *prog) 5241 { 5242 u32 moff = __btf_member_bit_offset(t, member) / 8; 5243 5244 switch (moff) { 5245 case offsetof(struct sched_ext_ops, init_task): 5246 #ifdef CONFIG_EXT_GROUP_SCHED 5247 case offsetof(struct sched_ext_ops, cgroup_init): 5248 case offsetof(struct sched_ext_ops, cgroup_exit): 5249 case offsetof(struct sched_ext_ops, cgroup_prep_move): 5250 #endif 5251 case offsetof(struct sched_ext_ops, cpu_online): 5252 case offsetof(struct sched_ext_ops, cpu_offline): 5253 case offsetof(struct sched_ext_ops, init): 5254 case offsetof(struct sched_ext_ops, exit): 5255 break; 5256 default: 5257 if (prog->sleepable) 5258 return -EINVAL; 5259 } 5260 5261 return 0; 5262 } 5263 5264 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 5265 { 5266 return scx_enable(kdata, link); 5267 } 5268 5269 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 5270 { 5271 struct sched_ext_ops *ops = kdata; 5272 struct scx_sched *sch = ops->priv; 5273 5274 scx_disable(SCX_EXIT_UNREG); 5275 kthread_flush_work(&sch->disable_work); 5276 kobject_put(&sch->kobj); 5277 } 5278 5279 static int bpf_scx_init(struct btf *btf) 5280 { 5281 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]); 5282 5283 return 0; 5284 } 5285 5286 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 5287 { 5288 /* 5289 * sched_ext does not support updating the actively-loaded BPF 5290 * scheduler, as registering a BPF scheduler can always fail if the 5291 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 5292 * etc. Similarly, we can always race with unregistration happening 5293 * elsewhere, such as with sysrq. 5294 */ 5295 return -EOPNOTSUPP; 5296 } 5297 5298 static int bpf_scx_validate(void *kdata) 5299 { 5300 return 0; 5301 } 5302 5303 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 5304 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {} 5305 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {} 5306 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {} 5307 static void sched_ext_ops__tick(struct task_struct *p) {} 5308 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {} 5309 static void sched_ext_ops__running(struct task_struct *p) {} 5310 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {} 5311 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {} 5312 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; } 5313 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; } 5314 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {} 5315 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {} 5316 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {} 5317 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {} 5318 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {} 5319 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 5320 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {} 5321 static void sched_ext_ops__enable(struct task_struct *p) {} 5322 static void sched_ext_ops__disable(struct task_struct *p) {} 5323 #ifdef CONFIG_EXT_GROUP_SCHED 5324 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } 5325 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {} 5326 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } 5327 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5328 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5329 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {} 5330 static void sched_ext_ops__cgroup_set_bandwidth(struct cgroup *cgrp, u64 period_us, u64 quota_us, u64 burst_us) {} 5331 static void sched_ext_ops__cgroup_set_idle(struct cgroup *cgrp, bool idle) {} 5332 #endif 5333 static void sched_ext_ops__cpu_online(s32 cpu) {} 5334 static void sched_ext_ops__cpu_offline(s32 cpu) {} 5335 static s32 sched_ext_ops__init(void) { return -EINVAL; } 5336 static void sched_ext_ops__exit(struct scx_exit_info *info) {} 5337 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {} 5338 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} 5339 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {} 5340 5341 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 5342 .select_cpu = sched_ext_ops__select_cpu, 5343 .enqueue = sched_ext_ops__enqueue, 5344 .dequeue = sched_ext_ops__dequeue, 5345 .dispatch = sched_ext_ops__dispatch, 5346 .tick = sched_ext_ops__tick, 5347 .runnable = sched_ext_ops__runnable, 5348 .running = sched_ext_ops__running, 5349 .stopping = sched_ext_ops__stopping, 5350 .quiescent = sched_ext_ops__quiescent, 5351 .yield = sched_ext_ops__yield, 5352 .core_sched_before = sched_ext_ops__core_sched_before, 5353 .set_weight = sched_ext_ops__set_weight, 5354 .set_cpumask = sched_ext_ops__set_cpumask, 5355 .update_idle = sched_ext_ops__update_idle, 5356 .cpu_acquire = sched_ext_ops__cpu_acquire, 5357 .cpu_release = sched_ext_ops__cpu_release, 5358 .init_task = sched_ext_ops__init_task, 5359 .exit_task = sched_ext_ops__exit_task, 5360 .enable = sched_ext_ops__enable, 5361 .disable = sched_ext_ops__disable, 5362 #ifdef CONFIG_EXT_GROUP_SCHED 5363 .cgroup_init = sched_ext_ops__cgroup_init, 5364 .cgroup_exit = sched_ext_ops__cgroup_exit, 5365 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move, 5366 .cgroup_move = sched_ext_ops__cgroup_move, 5367 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move, 5368 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight, 5369 .cgroup_set_bandwidth = sched_ext_ops__cgroup_set_bandwidth, 5370 .cgroup_set_idle = sched_ext_ops__cgroup_set_idle, 5371 #endif 5372 .cpu_online = sched_ext_ops__cpu_online, 5373 .cpu_offline = sched_ext_ops__cpu_offline, 5374 .init = sched_ext_ops__init, 5375 .exit = sched_ext_ops__exit, 5376 .dump = sched_ext_ops__dump, 5377 .dump_cpu = sched_ext_ops__dump_cpu, 5378 .dump_task = sched_ext_ops__dump_task, 5379 }; 5380 5381 static struct bpf_struct_ops bpf_sched_ext_ops = { 5382 .verifier_ops = &bpf_scx_verifier_ops, 5383 .reg = bpf_scx_reg, 5384 .unreg = bpf_scx_unreg, 5385 .check_member = bpf_scx_check_member, 5386 .init_member = bpf_scx_init_member, 5387 .init = bpf_scx_init, 5388 .update = bpf_scx_update, 5389 .validate = bpf_scx_validate, 5390 .name = "sched_ext_ops", 5391 .owner = THIS_MODULE, 5392 .cfi_stubs = &__bpf_ops_sched_ext_ops 5393 }; 5394 5395 5396 /******************************************************************************** 5397 * System integration and init. 5398 */ 5399 5400 static void sysrq_handle_sched_ext_reset(u8 key) 5401 { 5402 scx_disable(SCX_EXIT_SYSRQ); 5403 } 5404 5405 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 5406 .handler = sysrq_handle_sched_ext_reset, 5407 .help_msg = "reset-sched-ext(S)", 5408 .action_msg = "Disable sched_ext and revert all tasks to CFS", 5409 .enable_mask = SYSRQ_ENABLE_RTNICE, 5410 }; 5411 5412 static void sysrq_handle_sched_ext_dump(u8 key) 5413 { 5414 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 5415 5416 if (scx_enabled()) 5417 scx_dump_state(&ei, 0); 5418 } 5419 5420 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 5421 .handler = sysrq_handle_sched_ext_dump, 5422 .help_msg = "dump-sched-ext(D)", 5423 .action_msg = "Trigger sched_ext debug dump", 5424 .enable_mask = SYSRQ_ENABLE_RTNICE, 5425 }; 5426 5427 static bool can_skip_idle_kick(struct rq *rq) 5428 { 5429 lockdep_assert_rq_held(rq); 5430 5431 /* 5432 * We can skip idle kicking if @rq is going to go through at least one 5433 * full SCX scheduling cycle before going idle. Just checking whether 5434 * curr is not idle is insufficient because we could be racing 5435 * balance_one() trying to pull the next task from a remote rq, which 5436 * may fail, and @rq may become idle afterwards. 5437 * 5438 * The race window is small and we don't and can't guarantee that @rq is 5439 * only kicked while idle anyway. Skip only when sure. 5440 */ 5441 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); 5442 } 5443 5444 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *ksyncs) 5445 { 5446 struct rq *rq = cpu_rq(cpu); 5447 struct scx_rq *this_scx = &this_rq->scx; 5448 const struct sched_class *cur_class; 5449 bool should_wait = false; 5450 unsigned long flags; 5451 5452 raw_spin_rq_lock_irqsave(rq, flags); 5453 cur_class = rq->curr->sched_class; 5454 5455 /* 5456 * During CPU hotplug, a CPU may depend on kicking itself to make 5457 * forward progress. Allow kicking self regardless of online state. If 5458 * @cpu is running a higher class task, we have no control over @cpu. 5459 * Skip kicking. 5460 */ 5461 if ((cpu_online(cpu) || cpu == cpu_of(this_rq)) && 5462 !sched_class_above(cur_class, &ext_sched_class)) { 5463 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 5464 if (cur_class == &ext_sched_class) 5465 rq->curr->scx.slice = 0; 5466 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5467 } 5468 5469 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 5470 if (cur_class == &ext_sched_class) { 5471 ksyncs[cpu] = rq->scx.kick_sync; 5472 should_wait = true; 5473 } else { 5474 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5475 } 5476 } 5477 5478 resched_curr(rq); 5479 } else { 5480 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5481 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5482 } 5483 5484 raw_spin_rq_unlock_irqrestore(rq, flags); 5485 5486 return should_wait; 5487 } 5488 5489 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 5490 { 5491 struct rq *rq = cpu_rq(cpu); 5492 unsigned long flags; 5493 5494 raw_spin_rq_lock_irqsave(rq, flags); 5495 5496 if (!can_skip_idle_kick(rq) && 5497 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 5498 resched_curr(rq); 5499 5500 raw_spin_rq_unlock_irqrestore(rq, flags); 5501 } 5502 5503 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 5504 { 5505 struct rq *this_rq = this_rq(); 5506 struct scx_rq *this_scx = &this_rq->scx; 5507 struct scx_kick_syncs __rcu *ksyncs_pcpu = __this_cpu_read(scx_kick_syncs); 5508 bool should_wait = false; 5509 unsigned long *ksyncs; 5510 s32 cpu; 5511 5512 if (unlikely(!ksyncs_pcpu)) { 5513 pr_warn_once("kick_cpus_irq_workfn() called with NULL scx_kick_syncs"); 5514 return; 5515 } 5516 5517 ksyncs = rcu_dereference_bh(ksyncs_pcpu)->syncs; 5518 5519 for_each_cpu(cpu, this_scx->cpus_to_kick) { 5520 should_wait |= kick_one_cpu(cpu, this_rq, ksyncs); 5521 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 5522 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5523 } 5524 5525 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 5526 kick_one_cpu_if_idle(cpu, this_rq); 5527 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5528 } 5529 5530 if (!should_wait) 5531 return; 5532 5533 for_each_cpu(cpu, this_scx->cpus_to_wait) { 5534 unsigned long *wait_kick_sync = &cpu_rq(cpu)->scx.kick_sync; 5535 5536 /* 5537 * Busy-wait until the task running at the time of kicking is no 5538 * longer running. This can be used to implement e.g. core 5539 * scheduling. 5540 * 5541 * smp_cond_load_acquire() pairs with store_releases in 5542 * pick_task_scx() and put_prev_task_scx(). The former breaks 5543 * the wait if SCX's scheduling path is entered even if the same 5544 * task is picked subsequently. The latter is necessary to break 5545 * the wait when $cpu is taken by a higher sched class. 5546 */ 5547 if (cpu != cpu_of(this_rq)) 5548 smp_cond_load_acquire(wait_kick_sync, VAL != ksyncs[cpu]); 5549 5550 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5551 } 5552 } 5553 5554 /** 5555 * print_scx_info - print out sched_ext scheduler state 5556 * @log_lvl: the log level to use when printing 5557 * @p: target task 5558 * 5559 * If a sched_ext scheduler is enabled, print the name and state of the 5560 * scheduler. If @p is on sched_ext, print further information about the task. 5561 * 5562 * This function can be safely called on any task as long as the task_struct 5563 * itself is accessible. While safe, this function isn't synchronized and may 5564 * print out mixups or garbages of limited length. 5565 */ 5566 void print_scx_info(const char *log_lvl, struct task_struct *p) 5567 { 5568 struct scx_sched *sch = scx_root; 5569 enum scx_enable_state state = scx_enable_state(); 5570 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 5571 char runnable_at_buf[22] = "?"; 5572 struct sched_class *class; 5573 unsigned long runnable_at; 5574 5575 if (state == SCX_DISABLED) 5576 return; 5577 5578 /* 5579 * Carefully check if the task was running on sched_ext, and then 5580 * carefully copy the time it's been runnable, and its state. 5581 */ 5582 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 5583 class != &ext_sched_class) { 5584 printk("%sSched_ext: %s (%s%s)", log_lvl, sch->ops.name, 5585 scx_enable_state_str[state], all); 5586 return; 5587 } 5588 5589 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 5590 sizeof(runnable_at))) 5591 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 5592 jiffies_delta_msecs(runnable_at, jiffies)); 5593 5594 /* print everything onto one line to conserve console space */ 5595 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 5596 log_lvl, sch->ops.name, scx_enable_state_str[state], all, 5597 runnable_at_buf); 5598 } 5599 5600 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) 5601 { 5602 /* 5603 * SCX schedulers often have userspace components which are sometimes 5604 * involved in critial scheduling paths. PM operations involve freezing 5605 * userspace which can lead to scheduling misbehaviors including stalls. 5606 * Let's bypass while PM operations are in progress. 5607 */ 5608 switch (event) { 5609 case PM_HIBERNATION_PREPARE: 5610 case PM_SUSPEND_PREPARE: 5611 case PM_RESTORE_PREPARE: 5612 scx_bypass(true); 5613 break; 5614 case PM_POST_HIBERNATION: 5615 case PM_POST_SUSPEND: 5616 case PM_POST_RESTORE: 5617 scx_bypass(false); 5618 break; 5619 } 5620 5621 return NOTIFY_OK; 5622 } 5623 5624 static struct notifier_block scx_pm_notifier = { 5625 .notifier_call = scx_pm_handler, 5626 }; 5627 5628 void __init init_sched_ext_class(void) 5629 { 5630 s32 cpu, v; 5631 5632 /* 5633 * The following is to prevent the compiler from optimizing out the enum 5634 * definitions so that BPF scheduler implementations can use them 5635 * through the generated vmlinux.h. 5636 */ 5637 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | 5638 SCX_TG_ONLINE); 5639 5640 scx_idle_init_masks(); 5641 5642 for_each_possible_cpu(cpu) { 5643 struct rq *rq = cpu_rq(cpu); 5644 int n = cpu_to_node(cpu); 5645 5646 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 5647 init_dsq(&rq->scx.bypass_dsq, SCX_DSQ_BYPASS); 5648 INIT_LIST_HEAD(&rq->scx.runnable_list); 5649 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); 5650 5651 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick, GFP_KERNEL, n)); 5652 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL, n)); 5653 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_preempt, GFP_KERNEL, n)); 5654 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_wait, GFP_KERNEL, n)); 5655 rq->scx.deferred_irq_work = IRQ_WORK_INIT_HARD(deferred_irq_workfn); 5656 rq->scx.kick_cpus_irq_work = IRQ_WORK_INIT_HARD(kick_cpus_irq_workfn); 5657 5658 if (cpu_online(cpu)) 5659 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; 5660 } 5661 5662 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 5663 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 5664 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 5665 } 5666 5667 5668 /******************************************************************************** 5669 * Helpers that can be called from the BPF scheduler. 5670 */ 5671 static bool scx_dsq_insert_preamble(struct scx_sched *sch, struct task_struct *p, 5672 u64 enq_flags) 5673 { 5674 if (!scx_kf_allowed(sch, SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 5675 return false; 5676 5677 lockdep_assert_irqs_disabled(); 5678 5679 if (unlikely(!p)) { 5680 scx_error(sch, "called with NULL task"); 5681 return false; 5682 } 5683 5684 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 5685 scx_error(sch, "invalid enq_flags 0x%llx", enq_flags); 5686 return false; 5687 } 5688 5689 return true; 5690 } 5691 5692 static void scx_dsq_insert_commit(struct scx_sched *sch, struct task_struct *p, 5693 u64 dsq_id, u64 enq_flags) 5694 { 5695 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5696 struct task_struct *ddsp_task; 5697 5698 ddsp_task = __this_cpu_read(direct_dispatch_task); 5699 if (ddsp_task) { 5700 mark_direct_dispatch(sch, ddsp_task, p, dsq_id, enq_flags); 5701 return; 5702 } 5703 5704 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 5705 scx_error(sch, "dispatch buffer overflow"); 5706 return; 5707 } 5708 5709 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 5710 .task = p, 5711 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 5712 .dsq_id = dsq_id, 5713 .enq_flags = enq_flags, 5714 }; 5715 } 5716 5717 __bpf_kfunc_start_defs(); 5718 5719 /** 5720 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ 5721 * @p: task_struct to insert 5722 * @dsq_id: DSQ to insert into 5723 * @slice: duration @p can run for in nsecs, 0 to keep the current value 5724 * @enq_flags: SCX_ENQ_* 5725 * 5726 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to 5727 * call this function spuriously. Can be called from ops.enqueue(), 5728 * ops.select_cpu(), and ops.dispatch(). 5729 * 5730 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 5731 * and @p must match the task being enqueued. 5732 * 5733 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 5734 * will be directly inserted into the corresponding dispatch queue after 5735 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be 5736 * inserted into the local DSQ of the CPU returned by ops.select_cpu(). 5737 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 5738 * task is inserted. 5739 * 5740 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 5741 * and this function can be called upto ops.dispatch_max_batch times to insert 5742 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 5743 * remaining slots. scx_bpf_dsq_move_to_local() flushes the batch and resets the 5744 * counter. 5745 * 5746 * This function doesn't have any locking restrictions and may be called under 5747 * BPF locks (in the future when BPF introduces more flexible locking). 5748 * 5749 * @p is allowed to run for @slice. The scheduling path is triggered on slice 5750 * exhaustion. If zero, the current residual slice is maintained. If 5751 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 5752 * scx_bpf_kick_cpu() to trigger scheduling. 5753 * 5754 * Returns %true on successful insertion, %false on failure. On the root 5755 * scheduler, %false return triggers scheduler abort and the caller doesn't need 5756 * to check the return value. 5757 */ 5758 __bpf_kfunc bool scx_bpf_dsq_insert___v2(struct task_struct *p, u64 dsq_id, 5759 u64 slice, u64 enq_flags) 5760 { 5761 struct scx_sched *sch; 5762 5763 guard(rcu)(); 5764 sch = rcu_dereference(scx_root); 5765 if (unlikely(!sch)) 5766 return false; 5767 5768 if (!scx_dsq_insert_preamble(sch, p, enq_flags)) 5769 return false; 5770 5771 if (slice) 5772 p->scx.slice = slice; 5773 else 5774 p->scx.slice = p->scx.slice ?: 1; 5775 5776 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags); 5777 5778 return true; 5779 } 5780 5781 /* 5782 * COMPAT: Will be removed in v6.23 along with the ___v2 suffix. 5783 */ 5784 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, 5785 u64 slice, u64 enq_flags) 5786 { 5787 scx_bpf_dsq_insert___v2(p, dsq_id, slice, enq_flags); 5788 } 5789 5790 static bool scx_dsq_insert_vtime(struct scx_sched *sch, struct task_struct *p, 5791 u64 dsq_id, u64 slice, u64 vtime, u64 enq_flags) 5792 { 5793 if (!scx_dsq_insert_preamble(sch, p, enq_flags)) 5794 return false; 5795 5796 if (slice) 5797 p->scx.slice = slice; 5798 else 5799 p->scx.slice = p->scx.slice ?: 1; 5800 5801 p->scx.dsq_vtime = vtime; 5802 5803 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 5804 5805 return true; 5806 } 5807 5808 struct scx_bpf_dsq_insert_vtime_args { 5809 /* @p can't be packed together as KF_RCU is not transitive */ 5810 u64 dsq_id; 5811 u64 slice; 5812 u64 vtime; 5813 u64 enq_flags; 5814 }; 5815 5816 /** 5817 * __scx_bpf_dsq_insert_vtime - Arg-wrapped vtime DSQ insertion 5818 * @p: task_struct to insert 5819 * @args: struct containing the rest of the arguments 5820 * @args->dsq_id: DSQ to insert into 5821 * @args->slice: duration @p can run for in nsecs, 0 to keep the current value 5822 * @args->vtime: @p's ordering inside the vtime-sorted queue of the target DSQ 5823 * @args->enq_flags: SCX_ENQ_* 5824 * 5825 * Wrapper kfunc that takes arguments via struct to work around BPF's 5 argument 5826 * limit. BPF programs should use scx_bpf_dsq_insert_vtime() which is provided 5827 * as an inline wrapper in common.bpf.h. 5828 * 5829 * Insert @p into the vtime priority queue of the DSQ identified by 5830 * @args->dsq_id. Tasks queued into the priority queue are ordered by 5831 * @args->vtime. All other aspects are identical to scx_bpf_dsq_insert(). 5832 * 5833 * @args->vtime ordering is according to time_before64() which considers 5834 * wrapping. A numerically larger vtime may indicate an earlier position in the 5835 * ordering and vice-versa. 5836 * 5837 * A DSQ can only be used as a FIFO or priority queue at any given time and this 5838 * function must not be called on a DSQ which already has one or more FIFO tasks 5839 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and 5840 * SCX_DSQ_GLOBAL) cannot be used as priority queues. 5841 * 5842 * Returns %true on successful insertion, %false on failure. On the root 5843 * scheduler, %false return triggers scheduler abort and the caller doesn't need 5844 * to check the return value. 5845 */ 5846 __bpf_kfunc bool 5847 __scx_bpf_dsq_insert_vtime(struct task_struct *p, 5848 struct scx_bpf_dsq_insert_vtime_args *args) 5849 { 5850 struct scx_sched *sch; 5851 5852 guard(rcu)(); 5853 5854 sch = rcu_dereference(scx_root); 5855 if (unlikely(!sch)) 5856 return false; 5857 5858 return scx_dsq_insert_vtime(sch, p, args->dsq_id, args->slice, 5859 args->vtime, args->enq_flags); 5860 } 5861 5862 /* 5863 * COMPAT: Will be removed in v6.23. 5864 */ 5865 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id, 5866 u64 slice, u64 vtime, u64 enq_flags) 5867 { 5868 struct scx_sched *sch; 5869 5870 guard(rcu)(); 5871 5872 sch = rcu_dereference(scx_root); 5873 if (unlikely(!sch)) 5874 return; 5875 5876 scx_dsq_insert_vtime(sch, p, dsq_id, slice, vtime, enq_flags); 5877 } 5878 5879 __bpf_kfunc_end_defs(); 5880 5881 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 5882 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU) 5883 BTF_ID_FLAGS(func, scx_bpf_dsq_insert___v2, KF_RCU) 5884 BTF_ID_FLAGS(func, __scx_bpf_dsq_insert_vtime, KF_RCU) 5885 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU) 5886 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 5887 5888 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 5889 .owner = THIS_MODULE, 5890 .set = &scx_kfunc_ids_enqueue_dispatch, 5891 }; 5892 5893 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit, 5894 struct task_struct *p, u64 dsq_id, u64 enq_flags) 5895 { 5896 struct scx_sched *sch = scx_root; 5897 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; 5898 struct rq *this_rq, *src_rq, *locked_rq; 5899 bool dispatched = false; 5900 bool in_balance; 5901 unsigned long flags; 5902 5903 if (!scx_kf_allowed_if_unlocked() && 5904 !scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5905 return false; 5906 5907 /* 5908 * If the BPF scheduler keeps calling this function repeatedly, it can 5909 * cause similar live-lock conditions as consume_dispatch_q(). 5910 */ 5911 if (unlikely(READ_ONCE(scx_aborting))) 5912 return false; 5913 5914 /* 5915 * Can be called from either ops.dispatch() locking this_rq() or any 5916 * context where no rq lock is held. If latter, lock @p's task_rq which 5917 * we'll likely need anyway. 5918 */ 5919 src_rq = task_rq(p); 5920 5921 local_irq_save(flags); 5922 this_rq = this_rq(); 5923 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; 5924 5925 if (in_balance) { 5926 if (this_rq != src_rq) { 5927 raw_spin_rq_unlock(this_rq); 5928 raw_spin_rq_lock(src_rq); 5929 } 5930 } else { 5931 raw_spin_rq_lock(src_rq); 5932 } 5933 5934 locked_rq = src_rq; 5935 raw_spin_lock(&src_dsq->lock); 5936 5937 /* 5938 * Did someone else get to it? @p could have already left $src_dsq, got 5939 * re-enqueud, or be in the process of being consumed by someone else. 5940 */ 5941 if (unlikely(p->scx.dsq != src_dsq || 5942 u32_before(kit->cursor.priv, p->scx.dsq_seq) || 5943 p->scx.holding_cpu >= 0) || 5944 WARN_ON_ONCE(src_rq != task_rq(p))) { 5945 raw_spin_unlock(&src_dsq->lock); 5946 goto out; 5947 } 5948 5949 /* @p is still on $src_dsq and stable, determine the destination */ 5950 dst_dsq = find_dsq_for_dispatch(sch, this_rq, dsq_id, p); 5951 5952 /* 5953 * Apply vtime and slice updates before moving so that the new time is 5954 * visible before inserting into $dst_dsq. @p is still on $src_dsq but 5955 * this is safe as we're locking it. 5956 */ 5957 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) 5958 p->scx.dsq_vtime = kit->vtime; 5959 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) 5960 p->scx.slice = kit->slice; 5961 5962 /* execute move */ 5963 locked_rq = move_task_between_dsqs(sch, p, enq_flags, src_dsq, dst_dsq); 5964 dispatched = true; 5965 out: 5966 if (in_balance) { 5967 if (this_rq != locked_rq) { 5968 raw_spin_rq_unlock(locked_rq); 5969 raw_spin_rq_lock(this_rq); 5970 } 5971 } else { 5972 raw_spin_rq_unlock_irqrestore(locked_rq, flags); 5973 } 5974 5975 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | 5976 __SCX_DSQ_ITER_HAS_VTIME); 5977 return dispatched; 5978 } 5979 5980 __bpf_kfunc_start_defs(); 5981 5982 /** 5983 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 5984 * 5985 * Can only be called from ops.dispatch(). 5986 */ 5987 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 5988 { 5989 struct scx_sched *sch; 5990 5991 guard(rcu)(); 5992 5993 sch = rcu_dereference(scx_root); 5994 if (unlikely(!sch)) 5995 return 0; 5996 5997 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5998 return 0; 5999 6000 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 6001 } 6002 6003 /** 6004 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 6005 * 6006 * Cancel the latest dispatch. Can be called multiple times to cancel further 6007 * dispatches. Can only be called from ops.dispatch(). 6008 */ 6009 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 6010 { 6011 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6012 struct scx_sched *sch; 6013 6014 guard(rcu)(); 6015 6016 sch = rcu_dereference(scx_root); 6017 if (unlikely(!sch)) 6018 return; 6019 6020 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 6021 return; 6022 6023 if (dspc->cursor > 0) 6024 dspc->cursor--; 6025 else 6026 scx_error(sch, "dispatch buffer underflow"); 6027 } 6028 6029 /** 6030 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ 6031 * @dsq_id: DSQ to move task from 6032 * 6033 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's 6034 * local DSQ for execution. Can only be called from ops.dispatch(). 6035 * 6036 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert() 6037 * before trying to move from the specified DSQ. It may also grab rq locks and 6038 * thus can't be called under any BPF locks. 6039 * 6040 * Returns %true if a task has been moved, %false if there isn't any task to 6041 * move. 6042 */ 6043 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id) 6044 { 6045 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6046 struct scx_dispatch_q *dsq; 6047 struct scx_sched *sch; 6048 6049 guard(rcu)(); 6050 6051 sch = rcu_dereference(scx_root); 6052 if (unlikely(!sch)) 6053 return false; 6054 6055 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 6056 return false; 6057 6058 flush_dispatch_buf(sch, dspc->rq); 6059 6060 dsq = find_user_dsq(sch, dsq_id); 6061 if (unlikely(!dsq)) { 6062 scx_error(sch, "invalid DSQ ID 0x%016llx", dsq_id); 6063 return false; 6064 } 6065 6066 if (consume_dispatch_q(sch, dspc->rq, dsq)) { 6067 /* 6068 * A successfully consumed task can be dequeued before it starts 6069 * running while the CPU is trying to migrate other dispatched 6070 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 6071 * local DSQ. 6072 */ 6073 dspc->nr_tasks++; 6074 return true; 6075 } else { 6076 return false; 6077 } 6078 } 6079 6080 /** 6081 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs 6082 * @it__iter: DSQ iterator in progress 6083 * @slice: duration the moved task can run for in nsecs 6084 * 6085 * Override the slice of the next task that will be moved from @it__iter using 6086 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous 6087 * slice duration is kept. 6088 */ 6089 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, 6090 u64 slice) 6091 { 6092 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6093 6094 kit->slice = slice; 6095 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; 6096 } 6097 6098 /** 6099 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs 6100 * @it__iter: DSQ iterator in progress 6101 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ 6102 * 6103 * Override the vtime of the next task that will be moved from @it__iter using 6104 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice 6105 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the 6106 * override is ignored and cleared. 6107 */ 6108 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, 6109 u64 vtime) 6110 { 6111 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6112 6113 kit->vtime = vtime; 6114 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; 6115 } 6116 6117 /** 6118 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ 6119 * @it__iter: DSQ iterator in progress 6120 * @p: task to transfer 6121 * @dsq_id: DSQ to move @p to 6122 * @enq_flags: SCX_ENQ_* 6123 * 6124 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ 6125 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can 6126 * be the destination. 6127 * 6128 * For the transfer to be successful, @p must still be on the DSQ and have been 6129 * queued before the DSQ iteration started. This function doesn't care whether 6130 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have 6131 * been queued before the iteration started. 6132 * 6133 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update. 6134 * 6135 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq 6136 * lock (e.g. BPF timers or SYSCALL programs). 6137 * 6138 * Returns %true if @p has been consumed, %false if @p had already been 6139 * consumed, dequeued, or, for sub-scheds, @dsq_id points to a disallowed local 6140 * DSQ. 6141 */ 6142 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, 6143 struct task_struct *p, u64 dsq_id, 6144 u64 enq_flags) 6145 { 6146 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 6147 p, dsq_id, enq_flags); 6148 } 6149 6150 /** 6151 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ 6152 * @it__iter: DSQ iterator in progress 6153 * @p: task to transfer 6154 * @dsq_id: DSQ to move @p to 6155 * @enq_flags: SCX_ENQ_* 6156 * 6157 * Transfer @p which is on the DSQ currently iterated by @it__iter to the 6158 * priority queue of the DSQ specified by @dsq_id. The destination must be a 6159 * user DSQ as only user DSQs support priority queue. 6160 * 6161 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice() 6162 * and scx_bpf_dsq_move_set_vtime() to update. 6163 * 6164 * All other aspects are identical to scx_bpf_dsq_move(). See 6165 * scx_bpf_dsq_insert_vtime() for more information on @vtime. 6166 */ 6167 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, 6168 struct task_struct *p, u64 dsq_id, 6169 u64 enq_flags) 6170 { 6171 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 6172 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6173 } 6174 6175 __bpf_kfunc_end_defs(); 6176 6177 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 6178 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 6179 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 6180 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local) 6181 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU) 6182 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU) 6183 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 6184 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 6185 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 6186 6187 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 6188 .owner = THIS_MODULE, 6189 .set = &scx_kfunc_ids_dispatch, 6190 }; 6191 6192 static u32 reenq_local(struct rq *rq) 6193 { 6194 LIST_HEAD(tasks); 6195 u32 nr_enqueued = 0; 6196 struct task_struct *p, *n; 6197 6198 lockdep_assert_rq_held(rq); 6199 6200 /* 6201 * The BPF scheduler may choose to dispatch tasks back to 6202 * @rq->scx.local_dsq. Move all candidate tasks off to a private list 6203 * first to avoid processing the same tasks repeatedly. 6204 */ 6205 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, 6206 scx.dsq_list.node) { 6207 /* 6208 * If @p is being migrated, @p's current CPU may not agree with 6209 * its allowed CPUs and the migration_cpu_stop is about to 6210 * deactivate and re-activate @p anyway. Skip re-enqueueing. 6211 * 6212 * While racing sched property changes may also dequeue and 6213 * re-enqueue a migrating task while its current CPU and allowed 6214 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to 6215 * the current local DSQ for running tasks and thus are not 6216 * visible to the BPF scheduler. 6217 */ 6218 if (p->migration_pending) 6219 continue; 6220 6221 dispatch_dequeue(rq, p); 6222 list_add_tail(&p->scx.dsq_list.node, &tasks); 6223 } 6224 6225 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { 6226 list_del_init(&p->scx.dsq_list.node); 6227 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 6228 nr_enqueued++; 6229 } 6230 6231 return nr_enqueued; 6232 } 6233 6234 __bpf_kfunc_start_defs(); 6235 6236 /** 6237 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 6238 * 6239 * Iterate over all of the tasks currently enqueued on the local DSQ of the 6240 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 6241 * processed tasks. Can only be called from ops.cpu_release(). 6242 * 6243 * COMPAT: Will be removed in v6.23 along with the ___v2 suffix on the void 6244 * returning variant that can be called from anywhere. 6245 */ 6246 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 6247 { 6248 struct scx_sched *sch; 6249 struct rq *rq; 6250 6251 guard(rcu)(); 6252 sch = rcu_dereference(scx_root); 6253 if (unlikely(!sch)) 6254 return 0; 6255 6256 if (!scx_kf_allowed(sch, SCX_KF_CPU_RELEASE)) 6257 return 0; 6258 6259 rq = cpu_rq(smp_processor_id()); 6260 lockdep_assert_rq_held(rq); 6261 6262 return reenq_local(rq); 6263 } 6264 6265 __bpf_kfunc_end_defs(); 6266 6267 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 6268 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 6269 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 6270 6271 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 6272 .owner = THIS_MODULE, 6273 .set = &scx_kfunc_ids_cpu_release, 6274 }; 6275 6276 __bpf_kfunc_start_defs(); 6277 6278 /** 6279 * scx_bpf_create_dsq - Create a custom DSQ 6280 * @dsq_id: DSQ to create 6281 * @node: NUMA node to allocate from 6282 * 6283 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable 6284 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. 6285 */ 6286 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 6287 { 6288 struct scx_dispatch_q *dsq; 6289 struct scx_sched *sch; 6290 s32 ret; 6291 6292 if (unlikely(node >= (int)nr_node_ids || 6293 (node < 0 && node != NUMA_NO_NODE))) 6294 return -EINVAL; 6295 6296 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN)) 6297 return -EINVAL; 6298 6299 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 6300 if (!dsq) 6301 return -ENOMEM; 6302 6303 init_dsq(dsq, dsq_id); 6304 6305 rcu_read_lock(); 6306 6307 sch = rcu_dereference(scx_root); 6308 if (sch) 6309 ret = rhashtable_lookup_insert_fast(&sch->dsq_hash, &dsq->hash_node, 6310 dsq_hash_params); 6311 else 6312 ret = -ENODEV; 6313 6314 rcu_read_unlock(); 6315 if (ret) 6316 kfree(dsq); 6317 return ret; 6318 } 6319 6320 __bpf_kfunc_end_defs(); 6321 6322 BTF_KFUNCS_START(scx_kfunc_ids_unlocked) 6323 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 6324 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU) 6325 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU) 6326 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 6327 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 6328 BTF_KFUNCS_END(scx_kfunc_ids_unlocked) 6329 6330 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { 6331 .owner = THIS_MODULE, 6332 .set = &scx_kfunc_ids_unlocked, 6333 }; 6334 6335 __bpf_kfunc_start_defs(); 6336 6337 /** 6338 * scx_bpf_task_set_slice - Set task's time slice 6339 * @p: task of interest 6340 * @slice: time slice to set in nsecs 6341 * 6342 * Set @p's time slice to @slice. Returns %true on success, %false if the 6343 * calling scheduler doesn't have authority over @p. 6344 */ 6345 __bpf_kfunc bool scx_bpf_task_set_slice(struct task_struct *p, u64 slice) 6346 { 6347 p->scx.slice = slice; 6348 return true; 6349 } 6350 6351 /** 6352 * scx_bpf_task_set_dsq_vtime - Set task's virtual time for DSQ ordering 6353 * @p: task of interest 6354 * @vtime: virtual time to set 6355 * 6356 * Set @p's virtual time to @vtime. Returns %true on success, %false if the 6357 * calling scheduler doesn't have authority over @p. 6358 */ 6359 __bpf_kfunc bool scx_bpf_task_set_dsq_vtime(struct task_struct *p, u64 vtime) 6360 { 6361 p->scx.dsq_vtime = vtime; 6362 return true; 6363 } 6364 6365 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags) 6366 { 6367 struct rq *this_rq; 6368 unsigned long irq_flags; 6369 6370 if (!ops_cpu_valid(sch, cpu, NULL)) 6371 return; 6372 6373 local_irq_save(irq_flags); 6374 6375 this_rq = this_rq(); 6376 6377 /* 6378 * While bypassing for PM ops, IRQ handling may not be online which can 6379 * lead to irq_work_queue() malfunction such as infinite busy wait for 6380 * IRQ status update. Suppress kicking. 6381 */ 6382 if (scx_rq_bypassing(this_rq)) 6383 goto out; 6384 6385 /* 6386 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 6387 * rq locks. We can probably be smarter and avoid bouncing if called 6388 * from ops which don't hold a rq lock. 6389 */ 6390 if (flags & SCX_KICK_IDLE) { 6391 struct rq *target_rq = cpu_rq(cpu); 6392 6393 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 6394 scx_error(sch, "PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 6395 6396 if (raw_spin_rq_trylock(target_rq)) { 6397 if (can_skip_idle_kick(target_rq)) { 6398 raw_spin_rq_unlock(target_rq); 6399 goto out; 6400 } 6401 raw_spin_rq_unlock(target_rq); 6402 } 6403 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 6404 } else { 6405 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 6406 6407 if (flags & SCX_KICK_PREEMPT) 6408 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 6409 if (flags & SCX_KICK_WAIT) 6410 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 6411 } 6412 6413 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 6414 out: 6415 local_irq_restore(irq_flags); 6416 } 6417 6418 /** 6419 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 6420 * @cpu: cpu to kick 6421 * @flags: %SCX_KICK_* flags 6422 * 6423 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 6424 * trigger rescheduling on a busy CPU. This can be called from any online 6425 * scx_ops operation and the actual kicking is performed asynchronously through 6426 * an irq work. 6427 */ 6428 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 6429 { 6430 struct scx_sched *sch; 6431 6432 guard(rcu)(); 6433 sch = rcu_dereference(scx_root); 6434 if (likely(sch)) 6435 scx_kick_cpu(sch, cpu, flags); 6436 } 6437 6438 /** 6439 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 6440 * @dsq_id: id of the DSQ 6441 * 6442 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 6443 * -%ENOENT is returned. 6444 */ 6445 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 6446 { 6447 struct scx_sched *sch; 6448 struct scx_dispatch_q *dsq; 6449 s32 ret; 6450 6451 preempt_disable(); 6452 6453 sch = rcu_dereference_sched(scx_root); 6454 if (unlikely(!sch)) { 6455 ret = -ENODEV; 6456 goto out; 6457 } 6458 6459 if (dsq_id == SCX_DSQ_LOCAL) { 6460 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 6461 goto out; 6462 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 6463 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 6464 6465 if (ops_cpu_valid(sch, cpu, NULL)) { 6466 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 6467 goto out; 6468 } 6469 } else { 6470 dsq = find_user_dsq(sch, dsq_id); 6471 if (dsq) { 6472 ret = READ_ONCE(dsq->nr); 6473 goto out; 6474 } 6475 } 6476 ret = -ENOENT; 6477 out: 6478 preempt_enable(); 6479 return ret; 6480 } 6481 6482 /** 6483 * scx_bpf_destroy_dsq - Destroy a custom DSQ 6484 * @dsq_id: DSQ to destroy 6485 * 6486 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 6487 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 6488 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 6489 * which doesn't exist. Can be called from any online scx_ops operations. 6490 */ 6491 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 6492 { 6493 struct scx_sched *sch; 6494 6495 rcu_read_lock(); 6496 sch = rcu_dereference(scx_root); 6497 if (sch) 6498 destroy_dsq(sch, dsq_id); 6499 rcu_read_unlock(); 6500 } 6501 6502 /** 6503 * bpf_iter_scx_dsq_new - Create a DSQ iterator 6504 * @it: iterator to initialize 6505 * @dsq_id: DSQ to iterate 6506 * @flags: %SCX_DSQ_ITER_* 6507 * 6508 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk 6509 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes 6510 * tasks which are already queued when this function is invoked. 6511 */ 6512 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, 6513 u64 flags) 6514 { 6515 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6516 struct scx_sched *sch; 6517 6518 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > 6519 sizeof(struct bpf_iter_scx_dsq)); 6520 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != 6521 __alignof__(struct bpf_iter_scx_dsq)); 6522 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & 6523 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); 6524 6525 /* 6526 * next() and destroy() will be called regardless of the return value. 6527 * Always clear $kit->dsq. 6528 */ 6529 kit->dsq = NULL; 6530 6531 sch = rcu_dereference_check(scx_root, rcu_read_lock_bh_held()); 6532 if (unlikely(!sch)) 6533 return -ENODEV; 6534 6535 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) 6536 return -EINVAL; 6537 6538 kit->dsq = find_user_dsq(sch, dsq_id); 6539 if (!kit->dsq) 6540 return -ENOENT; 6541 6542 kit->cursor = INIT_DSQ_LIST_CURSOR(kit->cursor, flags, 6543 READ_ONCE(kit->dsq->seq)); 6544 6545 return 0; 6546 } 6547 6548 /** 6549 * bpf_iter_scx_dsq_next - Progress a DSQ iterator 6550 * @it: iterator to progress 6551 * 6552 * Return the next task. See bpf_iter_scx_dsq_new(). 6553 */ 6554 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) 6555 { 6556 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6557 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; 6558 struct task_struct *p; 6559 unsigned long flags; 6560 6561 if (!kit->dsq) 6562 return NULL; 6563 6564 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6565 6566 if (list_empty(&kit->cursor.node)) 6567 p = NULL; 6568 else 6569 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); 6570 6571 /* 6572 * Only tasks which were queued before the iteration started are 6573 * visible. This bounds BPF iterations and guarantees that vtime never 6574 * jumps in the other direction while iterating. 6575 */ 6576 do { 6577 p = nldsq_next_task(kit->dsq, p, rev); 6578 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); 6579 6580 if (p) { 6581 if (rev) 6582 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); 6583 else 6584 list_move(&kit->cursor.node, &p->scx.dsq_list.node); 6585 } else { 6586 list_del_init(&kit->cursor.node); 6587 } 6588 6589 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6590 6591 return p; 6592 } 6593 6594 /** 6595 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator 6596 * @it: iterator to destroy 6597 * 6598 * Undo scx_iter_scx_dsq_new(). 6599 */ 6600 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) 6601 { 6602 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6603 6604 if (!kit->dsq) 6605 return; 6606 6607 if (!list_empty(&kit->cursor.node)) { 6608 unsigned long flags; 6609 6610 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6611 list_del_init(&kit->cursor.node); 6612 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6613 } 6614 kit->dsq = NULL; 6615 } 6616 6617 /** 6618 * scx_bpf_dsq_peek - Lockless peek at the first element. 6619 * @dsq_id: DSQ to examine. 6620 * 6621 * Read the first element in the DSQ. This is semantically equivalent to using 6622 * the DSQ iterator, but is lockfree. Of course, like any lockless operation, 6623 * this provides only a point-in-time snapshot, and the contents may change 6624 * by the time any subsequent locking operation reads the queue. 6625 * 6626 * Returns the pointer, or NULL indicates an empty queue OR internal error. 6627 */ 6628 __bpf_kfunc struct task_struct *scx_bpf_dsq_peek(u64 dsq_id) 6629 { 6630 struct scx_sched *sch; 6631 struct scx_dispatch_q *dsq; 6632 6633 sch = rcu_dereference(scx_root); 6634 if (unlikely(!sch)) 6635 return NULL; 6636 6637 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN)) { 6638 scx_error(sch, "peek disallowed on builtin DSQ 0x%llx", dsq_id); 6639 return NULL; 6640 } 6641 6642 dsq = find_user_dsq(sch, dsq_id); 6643 if (unlikely(!dsq)) { 6644 scx_error(sch, "peek on non-existent DSQ 0x%llx", dsq_id); 6645 return NULL; 6646 } 6647 6648 return rcu_dereference(dsq->first_task); 6649 } 6650 6651 __bpf_kfunc_end_defs(); 6652 6653 static s32 __bstr_format(struct scx_sched *sch, u64 *data_buf, char *line_buf, 6654 size_t line_size, char *fmt, unsigned long long *data, 6655 u32 data__sz) 6656 { 6657 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 6658 s32 ret; 6659 6660 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 6661 (data__sz && !data)) { 6662 scx_error(sch, "invalid data=%p and data__sz=%u", (void *)data, data__sz); 6663 return -EINVAL; 6664 } 6665 6666 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 6667 if (ret < 0) { 6668 scx_error(sch, "failed to read data fields (%d)", ret); 6669 return ret; 6670 } 6671 6672 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 6673 &bprintf_data); 6674 if (ret < 0) { 6675 scx_error(sch, "format preparation failed (%d)", ret); 6676 return ret; 6677 } 6678 6679 ret = bstr_printf(line_buf, line_size, fmt, 6680 bprintf_data.bin_args); 6681 bpf_bprintf_cleanup(&bprintf_data); 6682 if (ret < 0) { 6683 scx_error(sch, "(\"%s\", %p, %u) failed to format", fmt, data, data__sz); 6684 return ret; 6685 } 6686 6687 return ret; 6688 } 6689 6690 static s32 bstr_format(struct scx_sched *sch, struct scx_bstr_buf *buf, 6691 char *fmt, unsigned long long *data, u32 data__sz) 6692 { 6693 return __bstr_format(sch, buf->data, buf->line, sizeof(buf->line), 6694 fmt, data, data__sz); 6695 } 6696 6697 __bpf_kfunc_start_defs(); 6698 6699 /** 6700 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 6701 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 6702 * @fmt: error message format string 6703 * @data: format string parameters packaged using ___bpf_fill() macro 6704 * @data__sz: @data len, must end in '__sz' for the verifier 6705 * 6706 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 6707 * disabling. 6708 */ 6709 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 6710 unsigned long long *data, u32 data__sz) 6711 { 6712 struct scx_sched *sch; 6713 unsigned long flags; 6714 6715 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6716 sch = rcu_dereference_bh(scx_root); 6717 if (likely(sch) && 6718 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6719 scx_exit(sch, SCX_EXIT_UNREG_BPF, exit_code, "%s", scx_exit_bstr_buf.line); 6720 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6721 } 6722 6723 /** 6724 * scx_bpf_error_bstr - Indicate fatal error 6725 * @fmt: error message format string 6726 * @data: format string parameters packaged using ___bpf_fill() macro 6727 * @data__sz: @data len, must end in '__sz' for the verifier 6728 * 6729 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 6730 * disabling. 6731 */ 6732 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 6733 u32 data__sz) 6734 { 6735 struct scx_sched *sch; 6736 unsigned long flags; 6737 6738 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6739 sch = rcu_dereference_bh(scx_root); 6740 if (likely(sch) && 6741 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6742 scx_exit(sch, SCX_EXIT_ERROR_BPF, 0, "%s", scx_exit_bstr_buf.line); 6743 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6744 } 6745 6746 /** 6747 * scx_bpf_dump_bstr - Generate extra debug dump specific to the BPF scheduler 6748 * @fmt: format string 6749 * @data: format string parameters packaged using ___bpf_fill() macro 6750 * @data__sz: @data len, must end in '__sz' for the verifier 6751 * 6752 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 6753 * dump_task() to generate extra debug dump specific to the BPF scheduler. 6754 * 6755 * The extra dump may be multiple lines. A single line may be split over 6756 * multiple calls. The last line is automatically terminated. 6757 */ 6758 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 6759 u32 data__sz) 6760 { 6761 struct scx_sched *sch; 6762 struct scx_dump_data *dd = &scx_dump_data; 6763 struct scx_bstr_buf *buf = &dd->buf; 6764 s32 ret; 6765 6766 guard(rcu)(); 6767 6768 sch = rcu_dereference(scx_root); 6769 if (unlikely(!sch)) 6770 return; 6771 6772 if (raw_smp_processor_id() != dd->cpu) { 6773 scx_error(sch, "scx_bpf_dump() must only be called from ops.dump() and friends"); 6774 return; 6775 } 6776 6777 /* append the formatted string to the line buf */ 6778 ret = __bstr_format(sch, buf->data, buf->line + dd->cursor, 6779 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 6780 if (ret < 0) { 6781 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 6782 dd->prefix, fmt, data, data__sz, ret); 6783 return; 6784 } 6785 6786 dd->cursor += ret; 6787 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 6788 6789 if (!dd->cursor) 6790 return; 6791 6792 /* 6793 * If the line buf overflowed or ends in a newline, flush it into the 6794 * dump. This is to allow the caller to generate a single line over 6795 * multiple calls. As ops_dump_flush() can also handle multiple lines in 6796 * the line buf, the only case which can lead to an unexpected 6797 * truncation is when the caller keeps generating newlines in the middle 6798 * instead of the end consecutively. Don't do that. 6799 */ 6800 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 6801 ops_dump_flush(); 6802 } 6803 6804 /** 6805 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 6806 * 6807 * Iterate over all of the tasks currently enqueued on the local DSQ of the 6808 * caller's CPU, and re-enqueue them in the BPF scheduler. Can be called from 6809 * anywhere. 6810 */ 6811 __bpf_kfunc void scx_bpf_reenqueue_local___v2(void) 6812 { 6813 struct rq *rq; 6814 6815 guard(preempt)(); 6816 6817 rq = this_rq(); 6818 local_set(&rq->scx.reenq_local_deferred, 1); 6819 schedule_deferred(rq); 6820 } 6821 6822 /** 6823 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU 6824 * @cpu: CPU of interest 6825 * 6826 * Return the maximum relative capacity of @cpu in relation to the most 6827 * performant CPU in the system. The return value is in the range [1, 6828 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). 6829 */ 6830 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) 6831 { 6832 struct scx_sched *sch; 6833 6834 guard(rcu)(); 6835 6836 sch = rcu_dereference(scx_root); 6837 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL)) 6838 return arch_scale_cpu_capacity(cpu); 6839 else 6840 return SCX_CPUPERF_ONE; 6841 } 6842 6843 /** 6844 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU 6845 * @cpu: CPU of interest 6846 * 6847 * Return the current relative performance of @cpu in relation to its maximum. 6848 * The return value is in the range [1, %SCX_CPUPERF_ONE]. 6849 * 6850 * The current performance level of a CPU in relation to the maximum performance 6851 * available in the system can be calculated as follows: 6852 * 6853 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE 6854 * 6855 * The result is in the range [1, %SCX_CPUPERF_ONE]. 6856 */ 6857 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) 6858 { 6859 struct scx_sched *sch; 6860 6861 guard(rcu)(); 6862 6863 sch = rcu_dereference(scx_root); 6864 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL)) 6865 return arch_scale_freq_capacity(cpu); 6866 else 6867 return SCX_CPUPERF_ONE; 6868 } 6869 6870 /** 6871 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU 6872 * @cpu: CPU of interest 6873 * @perf: target performance level [0, %SCX_CPUPERF_ONE] 6874 * 6875 * Set the target performance level of @cpu to @perf. @perf is in linear 6876 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the 6877 * schedutil cpufreq governor chooses the target frequency. 6878 * 6879 * The actual performance level chosen, CPU grouping, and the overhead and 6880 * latency of the operations are dependent on the hardware and cpufreq driver in 6881 * use. Consult hardware and cpufreq documentation for more information. The 6882 * current performance level can be monitored using scx_bpf_cpuperf_cur(). 6883 */ 6884 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) 6885 { 6886 struct scx_sched *sch; 6887 6888 guard(rcu)(); 6889 6890 sch = rcu_dereference(scx_root); 6891 if (unlikely(!sch)) 6892 return; 6893 6894 if (unlikely(perf > SCX_CPUPERF_ONE)) { 6895 scx_error(sch, "Invalid cpuperf target %u for CPU %d", perf, cpu); 6896 return; 6897 } 6898 6899 if (ops_cpu_valid(sch, cpu, NULL)) { 6900 struct rq *rq = cpu_rq(cpu), *locked_rq = scx_locked_rq(); 6901 struct rq_flags rf; 6902 6903 /* 6904 * When called with an rq lock held, restrict the operation 6905 * to the corresponding CPU to prevent ABBA deadlocks. 6906 */ 6907 if (locked_rq && rq != locked_rq) { 6908 scx_error(sch, "Invalid target CPU %d", cpu); 6909 return; 6910 } 6911 6912 /* 6913 * If no rq lock is held, allow to operate on any CPU by 6914 * acquiring the corresponding rq lock. 6915 */ 6916 if (!locked_rq) { 6917 rq_lock_irqsave(rq, &rf); 6918 update_rq_clock(rq); 6919 } 6920 6921 rq->scx.cpuperf_target = perf; 6922 cpufreq_update_util(rq, 0); 6923 6924 if (!locked_rq) 6925 rq_unlock_irqrestore(rq, &rf); 6926 } 6927 } 6928 6929 /** 6930 * scx_bpf_nr_node_ids - Return the number of possible node IDs 6931 * 6932 * All valid node IDs in the system are smaller than the returned value. 6933 */ 6934 __bpf_kfunc u32 scx_bpf_nr_node_ids(void) 6935 { 6936 return nr_node_ids; 6937 } 6938 6939 /** 6940 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 6941 * 6942 * All valid CPU IDs in the system are smaller than the returned value. 6943 */ 6944 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 6945 { 6946 return nr_cpu_ids; 6947 } 6948 6949 /** 6950 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 6951 */ 6952 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 6953 { 6954 return cpu_possible_mask; 6955 } 6956 6957 /** 6958 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 6959 */ 6960 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 6961 { 6962 return cpu_online_mask; 6963 } 6964 6965 /** 6966 * scx_bpf_put_cpumask - Release a possible/online cpumask 6967 * @cpumask: cpumask to release 6968 */ 6969 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 6970 { 6971 /* 6972 * Empty function body because we aren't actually acquiring or releasing 6973 * a reference to a global cpumask, which is read-only in the caller and 6974 * is never released. The acquire / release semantics here are just used 6975 * to make the cpumask is a trusted pointer in the caller. 6976 */ 6977 } 6978 6979 /** 6980 * scx_bpf_task_running - Is task currently running? 6981 * @p: task of interest 6982 */ 6983 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 6984 { 6985 return task_rq(p)->curr == p; 6986 } 6987 6988 /** 6989 * scx_bpf_task_cpu - CPU a task is currently associated with 6990 * @p: task of interest 6991 */ 6992 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 6993 { 6994 return task_cpu(p); 6995 } 6996 6997 /** 6998 * scx_bpf_cpu_rq - Fetch the rq of a CPU 6999 * @cpu: CPU of the rq 7000 */ 7001 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) 7002 { 7003 struct scx_sched *sch; 7004 7005 guard(rcu)(); 7006 7007 sch = rcu_dereference(scx_root); 7008 if (unlikely(!sch)) 7009 return NULL; 7010 7011 if (!ops_cpu_valid(sch, cpu, NULL)) 7012 return NULL; 7013 7014 if (!sch->warned_deprecated_rq) { 7015 printk_deferred(KERN_WARNING "sched_ext: %s() is deprecated; " 7016 "use scx_bpf_locked_rq() when holding rq lock " 7017 "or scx_bpf_cpu_curr() to read remote curr safely.\n", __func__); 7018 sch->warned_deprecated_rq = true; 7019 } 7020 7021 return cpu_rq(cpu); 7022 } 7023 7024 /** 7025 * scx_bpf_locked_rq - Return the rq currently locked by SCX 7026 * 7027 * Returns the rq if a rq lock is currently held by SCX. 7028 * Otherwise emits an error and returns NULL. 7029 */ 7030 __bpf_kfunc struct rq *scx_bpf_locked_rq(void) 7031 { 7032 struct scx_sched *sch; 7033 struct rq *rq; 7034 7035 guard(preempt)(); 7036 7037 sch = rcu_dereference_sched(scx_root); 7038 if (unlikely(!sch)) 7039 return NULL; 7040 7041 rq = scx_locked_rq(); 7042 if (!rq) { 7043 scx_error(sch, "accessing rq without holding rq lock"); 7044 return NULL; 7045 } 7046 7047 return rq; 7048 } 7049 7050 /** 7051 * scx_bpf_cpu_curr - Return remote CPU's curr task 7052 * @cpu: CPU of interest 7053 * 7054 * Callers must hold RCU read lock (KF_RCU). 7055 */ 7056 __bpf_kfunc struct task_struct *scx_bpf_cpu_curr(s32 cpu) 7057 { 7058 struct scx_sched *sch; 7059 7060 guard(rcu)(); 7061 7062 sch = rcu_dereference(scx_root); 7063 if (unlikely(!sch)) 7064 return NULL; 7065 7066 if (!ops_cpu_valid(sch, cpu, NULL)) 7067 return NULL; 7068 7069 return rcu_dereference(cpu_rq(cpu)->curr); 7070 } 7071 7072 /** 7073 * scx_bpf_task_cgroup - Return the sched cgroup of a task 7074 * @p: task of interest 7075 * 7076 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with 7077 * from the scheduler's POV. SCX operations should use this function to 7078 * determine @p's current cgroup as, unlike following @p->cgroups, 7079 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all 7080 * rq-locked operations. Can be called on the parameter tasks of rq-locked 7081 * operations. The restriction guarantees that @p's rq is locked by the caller. 7082 */ 7083 #ifdef CONFIG_CGROUP_SCHED 7084 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) 7085 { 7086 struct task_group *tg = p->sched_task_group; 7087 struct cgroup *cgrp = &cgrp_dfl_root.cgrp; 7088 struct scx_sched *sch; 7089 7090 guard(rcu)(); 7091 7092 sch = rcu_dereference(scx_root); 7093 if (unlikely(!sch)) 7094 goto out; 7095 7096 if (!scx_kf_allowed_on_arg_tasks(sch, __SCX_KF_RQ_LOCKED, p)) 7097 goto out; 7098 7099 cgrp = tg_cgrp(tg); 7100 7101 out: 7102 cgroup_get(cgrp); 7103 return cgrp; 7104 } 7105 #endif 7106 7107 /** 7108 * scx_bpf_now - Returns a high-performance monotonically non-decreasing 7109 * clock for the current CPU. The clock returned is in nanoseconds. 7110 * 7111 * It provides the following properties: 7112 * 7113 * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently 7114 * to account for execution time and track tasks' runtime properties. 7115 * Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which 7116 * eventually reads a hardware timestamp counter -- is neither performant nor 7117 * scalable. scx_bpf_now() aims to provide a high-performance clock by 7118 * using the rq clock in the scheduler core whenever possible. 7119 * 7120 * 2) High enough resolution for the BPF scheduler use cases: In most BPF 7121 * scheduler use cases, the required clock resolution is lower than the most 7122 * accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically 7123 * uses the rq clock in the scheduler core whenever it is valid. It considers 7124 * that the rq clock is valid from the time the rq clock is updated 7125 * (update_rq_clock) until the rq is unlocked (rq_unpin_lock). 7126 * 7127 * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now() 7128 * guarantees the clock never goes backward when comparing them in the same 7129 * CPU. On the other hand, when comparing clocks in different CPUs, there 7130 * is no such guarantee -- the clock can go backward. It provides a 7131 * monotonically *non-decreasing* clock so that it would provide the same 7132 * clock values in two different scx_bpf_now() calls in the same CPU 7133 * during the same period of when the rq clock is valid. 7134 */ 7135 __bpf_kfunc u64 scx_bpf_now(void) 7136 { 7137 struct rq *rq; 7138 u64 clock; 7139 7140 preempt_disable(); 7141 7142 rq = this_rq(); 7143 if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) { 7144 /* 7145 * If the rq clock is valid, use the cached rq clock. 7146 * 7147 * Note that scx_bpf_now() is re-entrant between a process 7148 * context and an interrupt context (e.g., timer interrupt). 7149 * However, we don't need to consider the race between them 7150 * because such race is not observable from a caller. 7151 */ 7152 clock = READ_ONCE(rq->scx.clock); 7153 } else { 7154 /* 7155 * Otherwise, return a fresh rq clock. 7156 * 7157 * The rq clock is updated outside of the rq lock. 7158 * In this case, keep the updated rq clock invalid so the next 7159 * kfunc call outside the rq lock gets a fresh rq clock. 7160 */ 7161 clock = sched_clock_cpu(cpu_of(rq)); 7162 } 7163 7164 preempt_enable(); 7165 7166 return clock; 7167 } 7168 7169 static void scx_read_events(struct scx_sched *sch, struct scx_event_stats *events) 7170 { 7171 struct scx_event_stats *e_cpu; 7172 int cpu; 7173 7174 /* Aggregate per-CPU event counters into @events. */ 7175 memset(events, 0, sizeof(*events)); 7176 for_each_possible_cpu(cpu) { 7177 e_cpu = &per_cpu_ptr(sch->pcpu, cpu)->event_stats; 7178 scx_agg_event(events, e_cpu, SCX_EV_SELECT_CPU_FALLBACK); 7179 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 7180 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_KEEP_LAST); 7181 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_EXITING); 7182 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 7183 scx_agg_event(events, e_cpu, SCX_EV_REFILL_SLICE_DFL); 7184 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DURATION); 7185 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DISPATCH); 7186 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_ACTIVATE); 7187 } 7188 } 7189 7190 /* 7191 * scx_bpf_events - Get a system-wide event counter to 7192 * @events: output buffer from a BPF program 7193 * @events__sz: @events len, must end in '__sz'' for the verifier 7194 */ 7195 __bpf_kfunc void scx_bpf_events(struct scx_event_stats *events, 7196 size_t events__sz) 7197 { 7198 struct scx_sched *sch; 7199 struct scx_event_stats e_sys; 7200 7201 rcu_read_lock(); 7202 sch = rcu_dereference(scx_root); 7203 if (sch) 7204 scx_read_events(sch, &e_sys); 7205 else 7206 memset(&e_sys, 0, sizeof(e_sys)); 7207 rcu_read_unlock(); 7208 7209 /* 7210 * We cannot entirely trust a BPF-provided size since a BPF program 7211 * might be compiled against a different vmlinux.h, of which 7212 * scx_event_stats would be larger (a newer vmlinux.h) or smaller 7213 * (an older vmlinux.h). Hence, we use the smaller size to avoid 7214 * memory corruption. 7215 */ 7216 events__sz = min(events__sz, sizeof(*events)); 7217 memcpy(events, &e_sys, events__sz); 7218 } 7219 7220 __bpf_kfunc_end_defs(); 7221 7222 BTF_KFUNCS_START(scx_kfunc_ids_any) 7223 BTF_ID_FLAGS(func, scx_bpf_task_set_slice, KF_RCU); 7224 BTF_ID_FLAGS(func, scx_bpf_task_set_dsq_vtime, KF_RCU); 7225 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 7226 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 7227 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 7228 BTF_ID_FLAGS(func, scx_bpf_dsq_peek, KF_RCU_PROTECTED | KF_RET_NULL) 7229 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) 7230 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) 7231 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) 7232 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 7233 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 7234 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 7235 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local___v2) 7236 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) 7237 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) 7238 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) 7239 BTF_ID_FLAGS(func, scx_bpf_nr_node_ids) 7240 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 7241 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 7242 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 7243 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 7244 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 7245 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 7246 BTF_ID_FLAGS(func, scx_bpf_cpu_rq) 7247 BTF_ID_FLAGS(func, scx_bpf_locked_rq, KF_RET_NULL) 7248 BTF_ID_FLAGS(func, scx_bpf_cpu_curr, KF_RET_NULL | KF_RCU_PROTECTED) 7249 #ifdef CONFIG_CGROUP_SCHED 7250 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) 7251 #endif 7252 BTF_ID_FLAGS(func, scx_bpf_now) 7253 BTF_ID_FLAGS(func, scx_bpf_events, KF_TRUSTED_ARGS) 7254 BTF_KFUNCS_END(scx_kfunc_ids_any) 7255 7256 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 7257 .owner = THIS_MODULE, 7258 .set = &scx_kfunc_ids_any, 7259 }; 7260 7261 static int __init scx_init(void) 7262 { 7263 int ret; 7264 7265 /* 7266 * kfunc registration can't be done from init_sched_ext_class() as 7267 * register_btf_kfunc_id_set() needs most of the system to be up. 7268 * 7269 * Some kfuncs are context-sensitive and can only be called from 7270 * specific SCX ops. They are grouped into BTF sets accordingly. 7271 * Unfortunately, BPF currently doesn't have a way of enforcing such 7272 * restrictions. Eventually, the verifier should be able to enforce 7273 * them. For now, register them the same and make each kfunc explicitly 7274 * check using scx_kf_allowed(). 7275 */ 7276 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7277 &scx_kfunc_set_enqueue_dispatch)) || 7278 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7279 &scx_kfunc_set_dispatch)) || 7280 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7281 &scx_kfunc_set_cpu_release)) || 7282 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7283 &scx_kfunc_set_unlocked)) || 7284 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7285 &scx_kfunc_set_unlocked)) || 7286 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7287 &scx_kfunc_set_any)) || 7288 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 7289 &scx_kfunc_set_any)) || 7290 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7291 &scx_kfunc_set_any))) { 7292 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 7293 return ret; 7294 } 7295 7296 ret = scx_idle_init(); 7297 if (ret) { 7298 pr_err("sched_ext: Failed to initialize idle tracking (%d)\n", ret); 7299 return ret; 7300 } 7301 7302 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 7303 if (ret) { 7304 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 7305 return ret; 7306 } 7307 7308 ret = register_pm_notifier(&scx_pm_notifier); 7309 if (ret) { 7310 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); 7311 return ret; 7312 } 7313 7314 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 7315 if (!scx_kset) { 7316 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 7317 return -ENOMEM; 7318 } 7319 7320 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 7321 if (ret < 0) { 7322 pr_err("sched_ext: Failed to add global attributes\n"); 7323 return ret; 7324 } 7325 7326 if (!alloc_cpumask_var(&scx_bypass_lb_donee_cpumask, GFP_KERNEL) || 7327 !alloc_cpumask_var(&scx_bypass_lb_resched_cpumask, GFP_KERNEL)) { 7328 pr_err("sched_ext: Failed to allocate cpumasks\n"); 7329 return -ENOMEM; 7330 } 7331 7332 return 0; 7333 } 7334 __initcall(scx_init); 7335