xref: /linux/kernel/sched/ext.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
4  *
5  * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
6  * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
7  * Copyright (c) 2022 David Vernet <dvernet@meta.com>
8  */
9 #define SCX_OP_IDX(op)		(offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void)))
10 
11 enum scx_consts {
12 	SCX_DSP_DFL_MAX_BATCH		= 32,
13 	SCX_DSP_MAX_LOOPS		= 32,
14 	SCX_WATCHDOG_MAX_TIMEOUT	= 30 * HZ,
15 
16 	SCX_EXIT_BT_LEN			= 64,
17 	SCX_EXIT_MSG_LEN		= 1024,
18 	SCX_EXIT_DUMP_DFL_LEN		= 32768,
19 
20 	SCX_CPUPERF_ONE			= SCHED_CAPACITY_SCALE,
21 
22 	/*
23 	 * Iterating all tasks may take a while. Periodically drop
24 	 * scx_tasks_lock to avoid causing e.g. CSD and RCU stalls.
25 	 */
26 	SCX_OPS_TASK_ITER_BATCH		= 32,
27 };
28 
29 enum scx_exit_kind {
30 	SCX_EXIT_NONE,
31 	SCX_EXIT_DONE,
32 
33 	SCX_EXIT_UNREG = 64,	/* user-space initiated unregistration */
34 	SCX_EXIT_UNREG_BPF,	/* BPF-initiated unregistration */
35 	SCX_EXIT_UNREG_KERN,	/* kernel-initiated unregistration */
36 	SCX_EXIT_SYSRQ,		/* requested by 'S' sysrq */
37 
38 	SCX_EXIT_ERROR = 1024,	/* runtime error, error msg contains details */
39 	SCX_EXIT_ERROR_BPF,	/* ERROR but triggered through scx_bpf_error() */
40 	SCX_EXIT_ERROR_STALL,	/* watchdog detected stalled runnable tasks */
41 };
42 
43 /*
44  * An exit code can be specified when exiting with scx_bpf_exit() or
45  * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN
46  * respectively. The codes are 64bit of the format:
47  *
48  *   Bits: [63  ..  48 47   ..  32 31 .. 0]
49  *         [ SYS ACT ] [ SYS RSN ] [ USR  ]
50  *
51  *   SYS ACT: System-defined exit actions
52  *   SYS RSN: System-defined exit reasons
53  *   USR    : User-defined exit codes and reasons
54  *
55  * Using the above, users may communicate intention and context by ORing system
56  * actions and/or system reasons with a user-defined exit code.
57  */
58 enum scx_exit_code {
59 	/* Reasons */
60 	SCX_ECODE_RSN_HOTPLUG	= 1LLU << 32,
61 
62 	/* Actions */
63 	SCX_ECODE_ACT_RESTART	= 1LLU << 48,
64 };
65 
66 /*
67  * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is
68  * being disabled.
69  */
70 struct scx_exit_info {
71 	/* %SCX_EXIT_* - broad category of the exit reason */
72 	enum scx_exit_kind	kind;
73 
74 	/* exit code if gracefully exiting */
75 	s64			exit_code;
76 
77 	/* textual representation of the above */
78 	const char		*reason;
79 
80 	/* backtrace if exiting due to an error */
81 	unsigned long		*bt;
82 	u32			bt_len;
83 
84 	/* informational message */
85 	char			*msg;
86 
87 	/* debug dump */
88 	char			*dump;
89 };
90 
91 /* sched_ext_ops.flags */
92 enum scx_ops_flags {
93 	/*
94 	 * Keep built-in idle tracking even if ops.update_idle() is implemented.
95 	 */
96 	SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0,
97 
98 	/*
99 	 * By default, if there are no other task to run on the CPU, ext core
100 	 * keeps running the current task even after its slice expires. If this
101 	 * flag is specified, such tasks are passed to ops.enqueue() with
102 	 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info.
103 	 */
104 	SCX_OPS_ENQ_LAST	= 1LLU << 1,
105 
106 	/*
107 	 * An exiting task may schedule after PF_EXITING is set. In such cases,
108 	 * bpf_task_from_pid() may not be able to find the task and if the BPF
109 	 * scheduler depends on pid lookup for dispatching, the task will be
110 	 * lost leading to various issues including RCU grace period stalls.
111 	 *
112 	 * To mask this problem, by default, unhashed tasks are automatically
113 	 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't
114 	 * depend on pid lookups and wants to handle these tasks directly, the
115 	 * following flag can be used.
116 	 */
117 	SCX_OPS_ENQ_EXITING	= 1LLU << 2,
118 
119 	/*
120 	 * If set, only tasks with policy set to SCHED_EXT are attached to
121 	 * sched_ext. If clear, SCHED_NORMAL tasks are also included.
122 	 */
123 	SCX_OPS_SWITCH_PARTIAL	= 1LLU << 3,
124 
125 	/*
126 	 * CPU cgroup support flags
127 	 */
128 	SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16,	/* cpu.weight */
129 
130 	SCX_OPS_ALL_FLAGS	= SCX_OPS_KEEP_BUILTIN_IDLE |
131 				  SCX_OPS_ENQ_LAST |
132 				  SCX_OPS_ENQ_EXITING |
133 				  SCX_OPS_SWITCH_PARTIAL |
134 				  SCX_OPS_HAS_CGROUP_WEIGHT,
135 };
136 
137 /* argument container for ops.init_task() */
138 struct scx_init_task_args {
139 	/*
140 	 * Set if ops.init_task() is being invoked on the fork path, as opposed
141 	 * to the scheduler transition path.
142 	 */
143 	bool			fork;
144 #ifdef CONFIG_EXT_GROUP_SCHED
145 	/* the cgroup the task is joining */
146 	struct cgroup		*cgroup;
147 #endif
148 };
149 
150 /* argument container for ops.exit_task() */
151 struct scx_exit_task_args {
152 	/* Whether the task exited before running on sched_ext. */
153 	bool cancelled;
154 };
155 
156 /* argument container for ops->cgroup_init() */
157 struct scx_cgroup_init_args {
158 	/* the weight of the cgroup [1..10000] */
159 	u32			weight;
160 };
161 
162 enum scx_cpu_preempt_reason {
163 	/* next task is being scheduled by &sched_class_rt */
164 	SCX_CPU_PREEMPT_RT,
165 	/* next task is being scheduled by &sched_class_dl */
166 	SCX_CPU_PREEMPT_DL,
167 	/* next task is being scheduled by &sched_class_stop */
168 	SCX_CPU_PREEMPT_STOP,
169 	/* unknown reason for SCX being preempted */
170 	SCX_CPU_PREEMPT_UNKNOWN,
171 };
172 
173 /*
174  * Argument container for ops->cpu_acquire(). Currently empty, but may be
175  * expanded in the future.
176  */
177 struct scx_cpu_acquire_args {};
178 
179 /* argument container for ops->cpu_release() */
180 struct scx_cpu_release_args {
181 	/* the reason the CPU was preempted */
182 	enum scx_cpu_preempt_reason reason;
183 
184 	/* the task that's going to be scheduled on the CPU */
185 	struct task_struct	*task;
186 };
187 
188 /*
189  * Informational context provided to dump operations.
190  */
191 struct scx_dump_ctx {
192 	enum scx_exit_kind	kind;
193 	s64			exit_code;
194 	const char		*reason;
195 	u64			at_ns;
196 	u64			at_jiffies;
197 };
198 
199 /**
200  * struct sched_ext_ops - Operation table for BPF scheduler implementation
201  *
202  * A BPF scheduler can implement an arbitrary scheduling policy by
203  * implementing and loading operations in this table. Note that a userland
204  * scheduling policy can also be implemented using the BPF scheduler
205  * as a shim layer.
206  */
207 struct sched_ext_ops {
208 	/**
209 	 * select_cpu - Pick the target CPU for a task which is being woken up
210 	 * @p: task being woken up
211 	 * @prev_cpu: the cpu @p was on before sleeping
212 	 * @wake_flags: SCX_WAKE_*
213 	 *
214 	 * Decision made here isn't final. @p may be moved to any CPU while it
215 	 * is getting dispatched for execution later. However, as @p is not on
216 	 * the rq at this point, getting the eventual execution CPU right here
217 	 * saves a small bit of overhead down the line.
218 	 *
219 	 * If an idle CPU is returned, the CPU is kicked and will try to
220 	 * dispatch. While an explicit custom mechanism can be added,
221 	 * select_cpu() serves as the default way to wake up idle CPUs.
222 	 *
223 	 * @p may be inserted into a DSQ directly by calling
224 	 * scx_bpf_dsq_insert(). If so, the ops.enqueue() will be skipped.
225 	 * Directly inserting into %SCX_DSQ_LOCAL will put @p in the local DSQ
226 	 * of the CPU returned by this operation.
227 	 *
228 	 * Note that select_cpu() is never called for tasks that can only run
229 	 * on a single CPU or tasks with migration disabled, as they don't have
230 	 * the option to select a different CPU. See select_task_rq() for
231 	 * details.
232 	 */
233 	s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags);
234 
235 	/**
236 	 * enqueue - Enqueue a task on the BPF scheduler
237 	 * @p: task being enqueued
238 	 * @enq_flags: %SCX_ENQ_*
239 	 *
240 	 * @p is ready to run. Insert directly into a DSQ by calling
241 	 * scx_bpf_dsq_insert() or enqueue on the BPF scheduler. If not directly
242 	 * inserted, the bpf scheduler owns @p and if it fails to dispatch @p,
243 	 * the task will stall.
244 	 *
245 	 * If @p was inserted into a DSQ from ops.select_cpu(), this callback is
246 	 * skipped.
247 	 */
248 	void (*enqueue)(struct task_struct *p, u64 enq_flags);
249 
250 	/**
251 	 * dequeue - Remove a task from the BPF scheduler
252 	 * @p: task being dequeued
253 	 * @deq_flags: %SCX_DEQ_*
254 	 *
255 	 * Remove @p from the BPF scheduler. This is usually called to isolate
256 	 * the task while updating its scheduling properties (e.g. priority).
257 	 *
258 	 * The ext core keeps track of whether the BPF side owns a given task or
259 	 * not and can gracefully ignore spurious dispatches from BPF side,
260 	 * which makes it safe to not implement this method. However, depending
261 	 * on the scheduling logic, this can lead to confusing behaviors - e.g.
262 	 * scheduling position not being updated across a priority change.
263 	 */
264 	void (*dequeue)(struct task_struct *p, u64 deq_flags);
265 
266 	/**
267 	 * dispatch - Dispatch tasks from the BPF scheduler and/or user DSQs
268 	 * @cpu: CPU to dispatch tasks for
269 	 * @prev: previous task being switched out
270 	 *
271 	 * Called when a CPU's local dsq is empty. The operation should dispatch
272 	 * one or more tasks from the BPF scheduler into the DSQs using
273 	 * scx_bpf_dsq_insert() and/or move from user DSQs into the local DSQ
274 	 * using scx_bpf_dsq_move_to_local().
275 	 *
276 	 * The maximum number of times scx_bpf_dsq_insert() can be called
277 	 * without an intervening scx_bpf_dsq_move_to_local() is specified by
278 	 * ops.dispatch_max_batch. See the comments on top of the two functions
279 	 * for more details.
280 	 *
281 	 * When not %NULL, @prev is an SCX task with its slice depleted. If
282 	 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in
283 	 * @prev->scx.flags, it is not enqueued yet and will be enqueued after
284 	 * ops.dispatch() returns. To keep executing @prev, return without
285 	 * dispatching or moving any tasks. Also see %SCX_OPS_ENQ_LAST.
286 	 */
287 	void (*dispatch)(s32 cpu, struct task_struct *prev);
288 
289 	/**
290 	 * tick - Periodic tick
291 	 * @p: task running currently
292 	 *
293 	 * This operation is called every 1/HZ seconds on CPUs which are
294 	 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an
295 	 * immediate dispatch cycle on the CPU.
296 	 */
297 	void (*tick)(struct task_struct *p);
298 
299 	/**
300 	 * runnable - A task is becoming runnable on its associated CPU
301 	 * @p: task becoming runnable
302 	 * @enq_flags: %SCX_ENQ_*
303 	 *
304 	 * This and the following three functions can be used to track a task's
305 	 * execution state transitions. A task becomes ->runnable() on a CPU,
306 	 * and then goes through one or more ->running() and ->stopping() pairs
307 	 * as it runs on the CPU, and eventually becomes ->quiescent() when it's
308 	 * done running on the CPU.
309 	 *
310 	 * @p is becoming runnable on the CPU because it's
311 	 *
312 	 * - waking up (%SCX_ENQ_WAKEUP)
313 	 * - being moved from another CPU
314 	 * - being restored after temporarily taken off the queue for an
315 	 *   attribute change.
316 	 *
317 	 * This and ->enqueue() are related but not coupled. This operation
318 	 * notifies @p's state transition and may not be followed by ->enqueue()
319 	 * e.g. when @p is being dispatched to a remote CPU, or when @p is
320 	 * being enqueued on a CPU experiencing a hotplug event. Likewise, a
321 	 * task may be ->enqueue()'d without being preceded by this operation
322 	 * e.g. after exhausting its slice.
323 	 */
324 	void (*runnable)(struct task_struct *p, u64 enq_flags);
325 
326 	/**
327 	 * running - A task is starting to run on its associated CPU
328 	 * @p: task starting to run
329 	 *
330 	 * See ->runnable() for explanation on the task state notifiers.
331 	 */
332 	void (*running)(struct task_struct *p);
333 
334 	/**
335 	 * stopping - A task is stopping execution
336 	 * @p: task stopping to run
337 	 * @runnable: is task @p still runnable?
338 	 *
339 	 * See ->runnable() for explanation on the task state notifiers. If
340 	 * !@runnable, ->quiescent() will be invoked after this operation
341 	 * returns.
342 	 */
343 	void (*stopping)(struct task_struct *p, bool runnable);
344 
345 	/**
346 	 * quiescent - A task is becoming not runnable on its associated CPU
347 	 * @p: task becoming not runnable
348 	 * @deq_flags: %SCX_DEQ_*
349 	 *
350 	 * See ->runnable() for explanation on the task state notifiers.
351 	 *
352 	 * @p is becoming quiescent on the CPU because it's
353 	 *
354 	 * - sleeping (%SCX_DEQ_SLEEP)
355 	 * - being moved to another CPU
356 	 * - being temporarily taken off the queue for an attribute change
357 	 *   (%SCX_DEQ_SAVE)
358 	 *
359 	 * This and ->dequeue() are related but not coupled. This operation
360 	 * notifies @p's state transition and may not be preceded by ->dequeue()
361 	 * e.g. when @p is being dispatched to a remote CPU.
362 	 */
363 	void (*quiescent)(struct task_struct *p, u64 deq_flags);
364 
365 	/**
366 	 * yield - Yield CPU
367 	 * @from: yielding task
368 	 * @to: optional yield target task
369 	 *
370 	 * If @to is NULL, @from is yielding the CPU to other runnable tasks.
371 	 * The BPF scheduler should ensure that other available tasks are
372 	 * dispatched before the yielding task. Return value is ignored in this
373 	 * case.
374 	 *
375 	 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf
376 	 * scheduler can implement the request, return %true; otherwise, %false.
377 	 */
378 	bool (*yield)(struct task_struct *from, struct task_struct *to);
379 
380 	/**
381 	 * core_sched_before - Task ordering for core-sched
382 	 * @a: task A
383 	 * @b: task B
384 	 *
385 	 * Used by core-sched to determine the ordering between two tasks. See
386 	 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on
387 	 * core-sched.
388 	 *
389 	 * Both @a and @b are runnable and may or may not currently be queued on
390 	 * the BPF scheduler. Should return %true if @a should run before @b.
391 	 * %false if there's no required ordering or @b should run before @a.
392 	 *
393 	 * If not specified, the default is ordering them according to when they
394 	 * became runnable.
395 	 */
396 	bool (*core_sched_before)(struct task_struct *a, struct task_struct *b);
397 
398 	/**
399 	 * set_weight - Set task weight
400 	 * @p: task to set weight for
401 	 * @weight: new weight [1..10000]
402 	 *
403 	 * Update @p's weight to @weight.
404 	 */
405 	void (*set_weight)(struct task_struct *p, u32 weight);
406 
407 	/**
408 	 * set_cpumask - Set CPU affinity
409 	 * @p: task to set CPU affinity for
410 	 * @cpumask: cpumask of cpus that @p can run on
411 	 *
412 	 * Update @p's CPU affinity to @cpumask.
413 	 */
414 	void (*set_cpumask)(struct task_struct *p,
415 			    const struct cpumask *cpumask);
416 
417 	/**
418 	 * update_idle - Update the idle state of a CPU
419 	 * @cpu: CPU to udpate the idle state for
420 	 * @idle: whether entering or exiting the idle state
421 	 *
422 	 * This operation is called when @rq's CPU goes or leaves the idle
423 	 * state. By default, implementing this operation disables the built-in
424 	 * idle CPU tracking and the following helpers become unavailable:
425 	 *
426 	 * - scx_bpf_select_cpu_dfl()
427 	 * - scx_bpf_test_and_clear_cpu_idle()
428 	 * - scx_bpf_pick_idle_cpu()
429 	 *
430 	 * The user also must implement ops.select_cpu() as the default
431 	 * implementation relies on scx_bpf_select_cpu_dfl().
432 	 *
433 	 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle
434 	 * tracking.
435 	 */
436 	void (*update_idle)(s32 cpu, bool idle);
437 
438 	/**
439 	 * cpu_acquire - A CPU is becoming available to the BPF scheduler
440 	 * @cpu: The CPU being acquired by the BPF scheduler.
441 	 * @args: Acquire arguments, see the struct definition.
442 	 *
443 	 * A CPU that was previously released from the BPF scheduler is now once
444 	 * again under its control.
445 	 */
446 	void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args);
447 
448 	/**
449 	 * cpu_release - A CPU is taken away from the BPF scheduler
450 	 * @cpu: The CPU being released by the BPF scheduler.
451 	 * @args: Release arguments, see the struct definition.
452 	 *
453 	 * The specified CPU is no longer under the control of the BPF
454 	 * scheduler. This could be because it was preempted by a higher
455 	 * priority sched_class, though there may be other reasons as well. The
456 	 * caller should consult @args->reason to determine the cause.
457 	 */
458 	void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args);
459 
460 	/**
461 	 * init_task - Initialize a task to run in a BPF scheduler
462 	 * @p: task to initialize for BPF scheduling
463 	 * @args: init arguments, see the struct definition
464 	 *
465 	 * Either we're loading a BPF scheduler or a new task is being forked.
466 	 * Initialize @p for BPF scheduling. This operation may block and can
467 	 * be used for allocations, and is called exactly once for a task.
468 	 *
469 	 * Return 0 for success, -errno for failure. An error return while
470 	 * loading will abort loading of the BPF scheduler. During a fork, it
471 	 * will abort that specific fork.
472 	 */
473 	s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args);
474 
475 	/**
476 	 * exit_task - Exit a previously-running task from the system
477 	 * @p: task to exit
478 	 *
479 	 * @p is exiting or the BPF scheduler is being unloaded. Perform any
480 	 * necessary cleanup for @p.
481 	 */
482 	void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args);
483 
484 	/**
485 	 * enable - Enable BPF scheduling for a task
486 	 * @p: task to enable BPF scheduling for
487 	 *
488 	 * Enable @p for BPF scheduling. enable() is called on @p any time it
489 	 * enters SCX, and is always paired with a matching disable().
490 	 */
491 	void (*enable)(struct task_struct *p);
492 
493 	/**
494 	 * disable - Disable BPF scheduling for a task
495 	 * @p: task to disable BPF scheduling for
496 	 *
497 	 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded.
498 	 * Disable BPF scheduling for @p. A disable() call is always matched
499 	 * with a prior enable() call.
500 	 */
501 	void (*disable)(struct task_struct *p);
502 
503 	/**
504 	 * dump - Dump BPF scheduler state on error
505 	 * @ctx: debug dump context
506 	 *
507 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump.
508 	 */
509 	void (*dump)(struct scx_dump_ctx *ctx);
510 
511 	/**
512 	 * dump_cpu - Dump BPF scheduler state for a CPU on error
513 	 * @ctx: debug dump context
514 	 * @cpu: CPU to generate debug dump for
515 	 * @idle: @cpu is currently idle without any runnable tasks
516 	 *
517 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
518 	 * @cpu. If @idle is %true and this operation doesn't produce any
519 	 * output, @cpu is skipped for dump.
520 	 */
521 	void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle);
522 
523 	/**
524 	 * dump_task - Dump BPF scheduler state for a runnable task on error
525 	 * @ctx: debug dump context
526 	 * @p: runnable task to generate debug dump for
527 	 *
528 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
529 	 * @p.
530 	 */
531 	void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p);
532 
533 #ifdef CONFIG_EXT_GROUP_SCHED
534 	/**
535 	 * cgroup_init - Initialize a cgroup
536 	 * @cgrp: cgroup being initialized
537 	 * @args: init arguments, see the struct definition
538 	 *
539 	 * Either the BPF scheduler is being loaded or @cgrp created, initialize
540 	 * @cgrp for sched_ext. This operation may block.
541 	 *
542 	 * Return 0 for success, -errno for failure. An error return while
543 	 * loading will abort loading of the BPF scheduler. During cgroup
544 	 * creation, it will abort the specific cgroup creation.
545 	 */
546 	s32 (*cgroup_init)(struct cgroup *cgrp,
547 			   struct scx_cgroup_init_args *args);
548 
549 	/**
550 	 * cgroup_exit - Exit a cgroup
551 	 * @cgrp: cgroup being exited
552 	 *
553 	 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit
554 	 * @cgrp for sched_ext. This operation my block.
555 	 */
556 	void (*cgroup_exit)(struct cgroup *cgrp);
557 
558 	/**
559 	 * cgroup_prep_move - Prepare a task to be moved to a different cgroup
560 	 * @p: task being moved
561 	 * @from: cgroup @p is being moved from
562 	 * @to: cgroup @p is being moved to
563 	 *
564 	 * Prepare @p for move from cgroup @from to @to. This operation may
565 	 * block and can be used for allocations.
566 	 *
567 	 * Return 0 for success, -errno for failure. An error return aborts the
568 	 * migration.
569 	 */
570 	s32 (*cgroup_prep_move)(struct task_struct *p,
571 				struct cgroup *from, struct cgroup *to);
572 
573 	/**
574 	 * cgroup_move - Commit cgroup move
575 	 * @p: task being moved
576 	 * @from: cgroup @p is being moved from
577 	 * @to: cgroup @p is being moved to
578 	 *
579 	 * Commit the move. @p is dequeued during this operation.
580 	 */
581 	void (*cgroup_move)(struct task_struct *p,
582 			    struct cgroup *from, struct cgroup *to);
583 
584 	/**
585 	 * cgroup_cancel_move - Cancel cgroup move
586 	 * @p: task whose cgroup move is being canceled
587 	 * @from: cgroup @p was being moved from
588 	 * @to: cgroup @p was being moved to
589 	 *
590 	 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move().
591 	 * Undo the preparation.
592 	 */
593 	void (*cgroup_cancel_move)(struct task_struct *p,
594 				   struct cgroup *from, struct cgroup *to);
595 
596 	/**
597 	 * cgroup_set_weight - A cgroup's weight is being changed
598 	 * @cgrp: cgroup whose weight is being updated
599 	 * @weight: new weight [1..10000]
600 	 *
601 	 * Update @tg's weight to @weight.
602 	 */
603 	void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight);
604 #endif	/* CONFIG_EXT_GROUP_SCHED */
605 
606 	/*
607 	 * All online ops must come before ops.cpu_online().
608 	 */
609 
610 	/**
611 	 * cpu_online - A CPU became online
612 	 * @cpu: CPU which just came up
613 	 *
614 	 * @cpu just came online. @cpu will not call ops.enqueue() or
615 	 * ops.dispatch(), nor run tasks associated with other CPUs beforehand.
616 	 */
617 	void (*cpu_online)(s32 cpu);
618 
619 	/**
620 	 * cpu_offline - A CPU is going offline
621 	 * @cpu: CPU which is going offline
622 	 *
623 	 * @cpu is going offline. @cpu will not call ops.enqueue() or
624 	 * ops.dispatch(), nor run tasks associated with other CPUs afterwards.
625 	 */
626 	void (*cpu_offline)(s32 cpu);
627 
628 	/*
629 	 * All CPU hotplug ops must come before ops.init().
630 	 */
631 
632 	/**
633 	 * init - Initialize the BPF scheduler
634 	 */
635 	s32 (*init)(void);
636 
637 	/**
638 	 * exit - Clean up after the BPF scheduler
639 	 * @info: Exit info
640 	 *
641 	 * ops.exit() is also called on ops.init() failure, which is a bit
642 	 * unusual. This is to allow rich reporting through @info on how
643 	 * ops.init() failed.
644 	 */
645 	void (*exit)(struct scx_exit_info *info);
646 
647 	/**
648 	 * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch
649 	 */
650 	u32 dispatch_max_batch;
651 
652 	/**
653 	 * flags - %SCX_OPS_* flags
654 	 */
655 	u64 flags;
656 
657 	/**
658 	 * timeout_ms - The maximum amount of time, in milliseconds, that a
659 	 * runnable task should be able to wait before being scheduled. The
660 	 * maximum timeout may not exceed the default timeout of 30 seconds.
661 	 *
662 	 * Defaults to the maximum allowed timeout value of 30 seconds.
663 	 */
664 	u32 timeout_ms;
665 
666 	/**
667 	 * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default
668 	 * value of 32768 is used.
669 	 */
670 	u32 exit_dump_len;
671 
672 	/**
673 	 * hotplug_seq - A sequence number that may be set by the scheduler to
674 	 * detect when a hotplug event has occurred during the loading process.
675 	 * If 0, no detection occurs. Otherwise, the scheduler will fail to
676 	 * load if the sequence number does not match @scx_hotplug_seq on the
677 	 * enable path.
678 	 */
679 	u64 hotplug_seq;
680 
681 	/**
682 	 * name - BPF scheduler's name
683 	 *
684 	 * Must be a non-zero valid BPF object name including only isalnum(),
685 	 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the
686 	 * BPF scheduler is enabled.
687 	 */
688 	char name[SCX_OPS_NAME_LEN];
689 };
690 
691 enum scx_opi {
692 	SCX_OPI_BEGIN			= 0,
693 	SCX_OPI_NORMAL_BEGIN		= 0,
694 	SCX_OPI_NORMAL_END		= SCX_OP_IDX(cpu_online),
695 	SCX_OPI_CPU_HOTPLUG_BEGIN	= SCX_OP_IDX(cpu_online),
696 	SCX_OPI_CPU_HOTPLUG_END		= SCX_OP_IDX(init),
697 	SCX_OPI_END			= SCX_OP_IDX(init),
698 };
699 
700 enum scx_wake_flags {
701 	/* expose select WF_* flags as enums */
702 	SCX_WAKE_FORK		= WF_FORK,
703 	SCX_WAKE_TTWU		= WF_TTWU,
704 	SCX_WAKE_SYNC		= WF_SYNC,
705 };
706 
707 enum scx_enq_flags {
708 	/* expose select ENQUEUE_* flags as enums */
709 	SCX_ENQ_WAKEUP		= ENQUEUE_WAKEUP,
710 	SCX_ENQ_HEAD		= ENQUEUE_HEAD,
711 	SCX_ENQ_CPU_SELECTED	= ENQUEUE_RQ_SELECTED,
712 
713 	/* high 32bits are SCX specific */
714 
715 	/*
716 	 * Set the following to trigger preemption when calling
717 	 * scx_bpf_dsq_insert() with a local dsq as the target. The slice of the
718 	 * current task is cleared to zero and the CPU is kicked into the
719 	 * scheduling path. Implies %SCX_ENQ_HEAD.
720 	 */
721 	SCX_ENQ_PREEMPT		= 1LLU << 32,
722 
723 	/*
724 	 * The task being enqueued was previously enqueued on the current CPU's
725 	 * %SCX_DSQ_LOCAL, but was removed from it in a call to the
726 	 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was
727 	 * invoked in a ->cpu_release() callback, and the task is again
728 	 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the
729 	 * task will not be scheduled on the CPU until at least the next invocation
730 	 * of the ->cpu_acquire() callback.
731 	 */
732 	SCX_ENQ_REENQ		= 1LLU << 40,
733 
734 	/*
735 	 * The task being enqueued is the only task available for the cpu. By
736 	 * default, ext core keeps executing such tasks but when
737 	 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the
738 	 * %SCX_ENQ_LAST flag set.
739 	 *
740 	 * The BPF scheduler is responsible for triggering a follow-up
741 	 * scheduling event. Otherwise, Execution may stall.
742 	 */
743 	SCX_ENQ_LAST		= 1LLU << 41,
744 
745 	/* high 8 bits are internal */
746 	__SCX_ENQ_INTERNAL_MASK	= 0xffLLU << 56,
747 
748 	SCX_ENQ_CLEAR_OPSS	= 1LLU << 56,
749 	SCX_ENQ_DSQ_PRIQ	= 1LLU << 57,
750 };
751 
752 enum scx_deq_flags {
753 	/* expose select DEQUEUE_* flags as enums */
754 	SCX_DEQ_SLEEP		= DEQUEUE_SLEEP,
755 
756 	/* high 32bits are SCX specific */
757 
758 	/*
759 	 * The generic core-sched layer decided to execute the task even though
760 	 * it hasn't been dispatched yet. Dequeue from the BPF side.
761 	 */
762 	SCX_DEQ_CORE_SCHED_EXEC	= 1LLU << 32,
763 };
764 
765 enum scx_pick_idle_cpu_flags {
766 	SCX_PICK_IDLE_CORE	= 1LLU << 0,	/* pick a CPU whose SMT siblings are also idle */
767 };
768 
769 enum scx_kick_flags {
770 	/*
771 	 * Kick the target CPU if idle. Guarantees that the target CPU goes
772 	 * through at least one full scheduling cycle before going idle. If the
773 	 * target CPU can be determined to be currently not idle and going to go
774 	 * through a scheduling cycle before going idle, noop.
775 	 */
776 	SCX_KICK_IDLE		= 1LLU << 0,
777 
778 	/*
779 	 * Preempt the current task and execute the dispatch path. If the
780 	 * current task of the target CPU is an SCX task, its ->scx.slice is
781 	 * cleared to zero before the scheduling path is invoked so that the
782 	 * task expires and the dispatch path is invoked.
783 	 */
784 	SCX_KICK_PREEMPT	= 1LLU << 1,
785 
786 	/*
787 	 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will
788 	 * return after the target CPU finishes picking the next task.
789 	 */
790 	SCX_KICK_WAIT		= 1LLU << 2,
791 };
792 
793 enum scx_tg_flags {
794 	SCX_TG_ONLINE		= 1U << 0,
795 	SCX_TG_INITED		= 1U << 1,
796 };
797 
798 enum scx_ops_enable_state {
799 	SCX_OPS_ENABLING,
800 	SCX_OPS_ENABLED,
801 	SCX_OPS_DISABLING,
802 	SCX_OPS_DISABLED,
803 };
804 
805 static const char *scx_ops_enable_state_str[] = {
806 	[SCX_OPS_ENABLING]	= "enabling",
807 	[SCX_OPS_ENABLED]	= "enabled",
808 	[SCX_OPS_DISABLING]	= "disabling",
809 	[SCX_OPS_DISABLED]	= "disabled",
810 };
811 
812 /*
813  * sched_ext_entity->ops_state
814  *
815  * Used to track the task ownership between the SCX core and the BPF scheduler.
816  * State transitions look as follows:
817  *
818  * NONE -> QUEUEING -> QUEUED -> DISPATCHING
819  *   ^              |                 |
820  *   |              v                 v
821  *   \-------------------------------/
822  *
823  * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call
824  * sites for explanations on the conditions being waited upon and why they are
825  * safe. Transitions out of them into NONE or QUEUED must store_release and the
826  * waiters should load_acquire.
827  *
828  * Tracking scx_ops_state enables sched_ext core to reliably determine whether
829  * any given task can be dispatched by the BPF scheduler at all times and thus
830  * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler
831  * to try to dispatch any task anytime regardless of its state as the SCX core
832  * can safely reject invalid dispatches.
833  */
834 enum scx_ops_state {
835 	SCX_OPSS_NONE,		/* owned by the SCX core */
836 	SCX_OPSS_QUEUEING,	/* in transit to the BPF scheduler */
837 	SCX_OPSS_QUEUED,	/* owned by the BPF scheduler */
838 	SCX_OPSS_DISPATCHING,	/* in transit back to the SCX core */
839 
840 	/*
841 	 * QSEQ brands each QUEUED instance so that, when dispatch races
842 	 * dequeue/requeue, the dispatcher can tell whether it still has a claim
843 	 * on the task being dispatched.
844 	 *
845 	 * As some 32bit archs can't do 64bit store_release/load_acquire,
846 	 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on
847 	 * 32bit machines. The dispatch race window QSEQ protects is very narrow
848 	 * and runs with IRQ disabled. 30 bits should be sufficient.
849 	 */
850 	SCX_OPSS_QSEQ_SHIFT	= 2,
851 };
852 
853 /* Use macros to ensure that the type is unsigned long for the masks */
854 #define SCX_OPSS_STATE_MASK	((1LU << SCX_OPSS_QSEQ_SHIFT) - 1)
855 #define SCX_OPSS_QSEQ_MASK	(~SCX_OPSS_STATE_MASK)
856 
857 /*
858  * During exit, a task may schedule after losing its PIDs. When disabling the
859  * BPF scheduler, we need to be able to iterate tasks in every state to
860  * guarantee system safety. Maintain a dedicated task list which contains every
861  * task between its fork and eventual free.
862  */
863 static DEFINE_SPINLOCK(scx_tasks_lock);
864 static LIST_HEAD(scx_tasks);
865 
866 /* ops enable/disable */
867 static struct kthread_worker *scx_ops_helper;
868 static DEFINE_MUTEX(scx_ops_enable_mutex);
869 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled);
870 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
871 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED);
872 static unsigned long scx_in_softlockup;
873 static atomic_t scx_ops_breather_depth = ATOMIC_INIT(0);
874 static int scx_ops_bypass_depth;
875 static bool scx_ops_init_task_enabled;
876 static bool scx_switching_all;
877 DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
878 
879 static struct sched_ext_ops scx_ops;
880 static bool scx_warned_zero_slice;
881 
882 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last);
883 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting);
884 static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt);
885 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
886 
887 #ifdef CONFIG_SMP
888 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc);
889 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa);
890 #endif
891 
892 static struct static_key_false scx_has_op[SCX_OPI_END] =
893 	{ [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT };
894 
895 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE);
896 static struct scx_exit_info *scx_exit_info;
897 
898 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0);
899 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0);
900 
901 /*
902  * A monotically increasing sequence number that is incremented every time a
903  * scheduler is enabled. This can be used by to check if any custom sched_ext
904  * scheduler has ever been used in the system.
905  */
906 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0);
907 
908 /*
909  * The maximum amount of time in jiffies that a task may be runnable without
910  * being scheduled on a CPU. If this timeout is exceeded, it will trigger
911  * scx_ops_error().
912  */
913 static unsigned long scx_watchdog_timeout;
914 
915 /*
916  * The last time the delayed work was run. This delayed work relies on
917  * ksoftirqd being able to run to service timer interrupts, so it's possible
918  * that this work itself could get wedged. To account for this, we check that
919  * it's not stalled in the timer tick, and trigger an error if it is.
920  */
921 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES;
922 
923 static struct delayed_work scx_watchdog_work;
924 
925 /* idle tracking */
926 #ifdef CONFIG_SMP
927 #ifdef CONFIG_CPUMASK_OFFSTACK
928 #define CL_ALIGNED_IF_ONSTACK
929 #else
930 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp
931 #endif
932 
933 static struct {
934 	cpumask_var_t cpu;
935 	cpumask_var_t smt;
936 } idle_masks CL_ALIGNED_IF_ONSTACK;
937 
938 #endif	/* CONFIG_SMP */
939 
940 /* for %SCX_KICK_WAIT */
941 static unsigned long __percpu *scx_kick_cpus_pnt_seqs;
942 
943 /*
944  * Direct dispatch marker.
945  *
946  * Non-NULL values are used for direct dispatch from enqueue path. A valid
947  * pointer points to the task currently being enqueued. An ERR_PTR value is used
948  * to indicate that direct dispatch has already happened.
949  */
950 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task);
951 
952 /*
953  * Dispatch queues.
954  *
955  * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is
956  * to avoid live-locking in bypass mode where all tasks are dispatched to
957  * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't
958  * sufficient, it can be further split.
959  */
960 static struct scx_dispatch_q **global_dsqs;
961 
962 static const struct rhashtable_params dsq_hash_params = {
963 	.key_len		= 8,
964 	.key_offset		= offsetof(struct scx_dispatch_q, id),
965 	.head_offset		= offsetof(struct scx_dispatch_q, hash_node),
966 };
967 
968 static struct rhashtable dsq_hash;
969 static LLIST_HEAD(dsqs_to_free);
970 
971 /* dispatch buf */
972 struct scx_dsp_buf_ent {
973 	struct task_struct	*task;
974 	unsigned long		qseq;
975 	u64			dsq_id;
976 	u64			enq_flags;
977 };
978 
979 static u32 scx_dsp_max_batch;
980 
981 struct scx_dsp_ctx {
982 	struct rq		*rq;
983 	u32			cursor;
984 	u32			nr_tasks;
985 	struct scx_dsp_buf_ent	buf[];
986 };
987 
988 static struct scx_dsp_ctx __percpu *scx_dsp_ctx;
989 
990 /* string formatting from BPF */
991 struct scx_bstr_buf {
992 	u64			data[MAX_BPRINTF_VARARGS];
993 	char			line[SCX_EXIT_MSG_LEN];
994 };
995 
996 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock);
997 static struct scx_bstr_buf scx_exit_bstr_buf;
998 
999 /* ops debug dump */
1000 struct scx_dump_data {
1001 	s32			cpu;
1002 	bool			first;
1003 	s32			cursor;
1004 	struct seq_buf		*s;
1005 	const char		*prefix;
1006 	struct scx_bstr_buf	buf;
1007 };
1008 
1009 static struct scx_dump_data scx_dump_data = {
1010 	.cpu			= -1,
1011 };
1012 
1013 /* /sys/kernel/sched_ext interface */
1014 static struct kset *scx_kset;
1015 static struct kobject *scx_root_kobj;
1016 
1017 #define CREATE_TRACE_POINTS
1018 #include <trace/events/sched_ext.h>
1019 
1020 static void process_ddsp_deferred_locals(struct rq *rq);
1021 static void scx_bpf_kick_cpu(s32 cpu, u64 flags);
1022 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
1023 					     s64 exit_code,
1024 					     const char *fmt, ...);
1025 
1026 #define scx_ops_error_kind(err, fmt, args...)					\
1027 	scx_ops_exit_kind((err), 0, fmt, ##args)
1028 
1029 #define scx_ops_exit(code, fmt, args...)					\
1030 	scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args)
1031 
1032 #define scx_ops_error(fmt, args...)						\
1033 	scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args)
1034 
1035 #define SCX_HAS_OP(op)	static_branch_likely(&scx_has_op[SCX_OP_IDX(op)])
1036 
1037 static long jiffies_delta_msecs(unsigned long at, unsigned long now)
1038 {
1039 	if (time_after(at, now))
1040 		return jiffies_to_msecs(at - now);
1041 	else
1042 		return -(long)jiffies_to_msecs(now - at);
1043 }
1044 
1045 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */
1046 static u32 higher_bits(u32 flags)
1047 {
1048 	return ~((1 << fls(flags)) - 1);
1049 }
1050 
1051 /* return the mask with only the highest bit set */
1052 static u32 highest_bit(u32 flags)
1053 {
1054 	int bit = fls(flags);
1055 	return ((u64)1 << bit) >> 1;
1056 }
1057 
1058 static bool u32_before(u32 a, u32 b)
1059 {
1060 	return (s32)(a - b) < 0;
1061 }
1062 
1063 static struct scx_dispatch_q *find_global_dsq(struct task_struct *p)
1064 {
1065 	return global_dsqs[cpu_to_node(task_cpu(p))];
1066 }
1067 
1068 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id)
1069 {
1070 	return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params);
1071 }
1072 
1073 /*
1074  * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX
1075  * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate
1076  * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check
1077  * whether it's running from an allowed context.
1078  *
1079  * @mask is constant, always inline to cull the mask calculations.
1080  */
1081 static __always_inline void scx_kf_allow(u32 mask)
1082 {
1083 	/* nesting is allowed only in increasing scx_kf_mask order */
1084 	WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask,
1085 		  "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n",
1086 		  current->scx.kf_mask, mask);
1087 	current->scx.kf_mask |= mask;
1088 	barrier();
1089 }
1090 
1091 static void scx_kf_disallow(u32 mask)
1092 {
1093 	barrier();
1094 	current->scx.kf_mask &= ~mask;
1095 }
1096 
1097 #define SCX_CALL_OP(mask, op, args...)						\
1098 do {										\
1099 	if (mask) {								\
1100 		scx_kf_allow(mask);						\
1101 		scx_ops.op(args);						\
1102 		scx_kf_disallow(mask);						\
1103 	} else {								\
1104 		scx_ops.op(args);						\
1105 	}									\
1106 } while (0)
1107 
1108 #define SCX_CALL_OP_RET(mask, op, args...)					\
1109 ({										\
1110 	__typeof__(scx_ops.op(args)) __ret;					\
1111 	if (mask) {								\
1112 		scx_kf_allow(mask);						\
1113 		__ret = scx_ops.op(args);					\
1114 		scx_kf_disallow(mask);						\
1115 	} else {								\
1116 		__ret = scx_ops.op(args);					\
1117 	}									\
1118 	__ret;									\
1119 })
1120 
1121 /*
1122  * Some kfuncs are allowed only on the tasks that are subjects of the
1123  * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such
1124  * restrictions, the following SCX_CALL_OP_*() variants should be used when
1125  * invoking scx_ops operations that take task arguments. These can only be used
1126  * for non-nesting operations due to the way the tasks are tracked.
1127  *
1128  * kfuncs which can only operate on such tasks can in turn use
1129  * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on
1130  * the specific task.
1131  */
1132 #define SCX_CALL_OP_TASK(mask, op, task, args...)				\
1133 do {										\
1134 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
1135 	current->scx.kf_tasks[0] = task;					\
1136 	SCX_CALL_OP(mask, op, task, ##args);					\
1137 	current->scx.kf_tasks[0] = NULL;					\
1138 } while (0)
1139 
1140 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...)				\
1141 ({										\
1142 	__typeof__(scx_ops.op(task, ##args)) __ret;				\
1143 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
1144 	current->scx.kf_tasks[0] = task;					\
1145 	__ret = SCX_CALL_OP_RET(mask, op, task, ##args);			\
1146 	current->scx.kf_tasks[0] = NULL;					\
1147 	__ret;									\
1148 })
1149 
1150 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...)			\
1151 ({										\
1152 	__typeof__(scx_ops.op(task0, task1, ##args)) __ret;			\
1153 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
1154 	current->scx.kf_tasks[0] = task0;					\
1155 	current->scx.kf_tasks[1] = task1;					\
1156 	__ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args);		\
1157 	current->scx.kf_tasks[0] = NULL;					\
1158 	current->scx.kf_tasks[1] = NULL;					\
1159 	__ret;									\
1160 })
1161 
1162 /* @mask is constant, always inline to cull unnecessary branches */
1163 static __always_inline bool scx_kf_allowed(u32 mask)
1164 {
1165 	if (unlikely(!(current->scx.kf_mask & mask))) {
1166 		scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x",
1167 			      mask, current->scx.kf_mask);
1168 		return false;
1169 	}
1170 
1171 	/*
1172 	 * Enforce nesting boundaries. e.g. A kfunc which can be called from
1173 	 * DISPATCH must not be called if we're running DEQUEUE which is nested
1174 	 * inside ops.dispatch(). We don't need to check boundaries for any
1175 	 * blocking kfuncs as the verifier ensures they're only called from
1176 	 * sleepable progs.
1177 	 */
1178 	if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE &&
1179 		     (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) {
1180 		scx_ops_error("cpu_release kfunc called from a nested operation");
1181 		return false;
1182 	}
1183 
1184 	if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH &&
1185 		     (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) {
1186 		scx_ops_error("dispatch kfunc called from a nested operation");
1187 		return false;
1188 	}
1189 
1190 	return true;
1191 }
1192 
1193 /* see SCX_CALL_OP_TASK() */
1194 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask,
1195 							struct task_struct *p)
1196 {
1197 	if (!scx_kf_allowed(mask))
1198 		return false;
1199 
1200 	if (unlikely((p != current->scx.kf_tasks[0] &&
1201 		      p != current->scx.kf_tasks[1]))) {
1202 		scx_ops_error("called on a task not being operated on");
1203 		return false;
1204 	}
1205 
1206 	return true;
1207 }
1208 
1209 static bool scx_kf_allowed_if_unlocked(void)
1210 {
1211 	return !current->scx.kf_mask;
1212 }
1213 
1214 /**
1215  * nldsq_next_task - Iterate to the next task in a non-local DSQ
1216  * @dsq: user dsq being interated
1217  * @cur: current position, %NULL to start iteration
1218  * @rev: walk backwards
1219  *
1220  * Returns %NULL when iteration is finished.
1221  */
1222 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq,
1223 					   struct task_struct *cur, bool rev)
1224 {
1225 	struct list_head *list_node;
1226 	struct scx_dsq_list_node *dsq_lnode;
1227 
1228 	lockdep_assert_held(&dsq->lock);
1229 
1230 	if (cur)
1231 		list_node = &cur->scx.dsq_list.node;
1232 	else
1233 		list_node = &dsq->list;
1234 
1235 	/* find the next task, need to skip BPF iteration cursors */
1236 	do {
1237 		if (rev)
1238 			list_node = list_node->prev;
1239 		else
1240 			list_node = list_node->next;
1241 
1242 		if (list_node == &dsq->list)
1243 			return NULL;
1244 
1245 		dsq_lnode = container_of(list_node, struct scx_dsq_list_node,
1246 					 node);
1247 	} while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR);
1248 
1249 	return container_of(dsq_lnode, struct task_struct, scx.dsq_list);
1250 }
1251 
1252 #define nldsq_for_each_task(p, dsq)						\
1253 	for ((p) = nldsq_next_task((dsq), NULL, false); (p);			\
1254 	     (p) = nldsq_next_task((dsq), (p), false))
1255 
1256 
1257 /*
1258  * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse]
1259  * dispatch order. BPF-visible iterator is opaque and larger to allow future
1260  * changes without breaking backward compatibility. Can be used with
1261  * bpf_for_each(). See bpf_iter_scx_dsq_*().
1262  */
1263 enum scx_dsq_iter_flags {
1264 	/* iterate in the reverse dispatch order */
1265 	SCX_DSQ_ITER_REV		= 1U << 16,
1266 
1267 	__SCX_DSQ_ITER_HAS_SLICE	= 1U << 30,
1268 	__SCX_DSQ_ITER_HAS_VTIME	= 1U << 31,
1269 
1270 	__SCX_DSQ_ITER_USER_FLAGS	= SCX_DSQ_ITER_REV,
1271 	__SCX_DSQ_ITER_ALL_FLAGS	= __SCX_DSQ_ITER_USER_FLAGS |
1272 					  __SCX_DSQ_ITER_HAS_SLICE |
1273 					  __SCX_DSQ_ITER_HAS_VTIME,
1274 };
1275 
1276 struct bpf_iter_scx_dsq_kern {
1277 	struct scx_dsq_list_node	cursor;
1278 	struct scx_dispatch_q		*dsq;
1279 	u64				slice;
1280 	u64				vtime;
1281 } __attribute__((aligned(8)));
1282 
1283 struct bpf_iter_scx_dsq {
1284 	u64				__opaque[6];
1285 } __attribute__((aligned(8)));
1286 
1287 
1288 /*
1289  * SCX task iterator.
1290  */
1291 struct scx_task_iter {
1292 	struct sched_ext_entity		cursor;
1293 	struct task_struct		*locked;
1294 	struct rq			*rq;
1295 	struct rq_flags			rf;
1296 	u32				cnt;
1297 };
1298 
1299 /**
1300  * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration
1301  * @iter: iterator to init
1302  *
1303  * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter
1304  * must eventually be stopped with scx_task_iter_stop().
1305  *
1306  * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock()
1307  * between this and the first next() call or between any two next() calls. If
1308  * the locks are released between two next() calls, the caller is responsible
1309  * for ensuring that the task being iterated remains accessible either through
1310  * RCU read lock or obtaining a reference count.
1311  *
1312  * All tasks which existed when the iteration started are guaranteed to be
1313  * visited as long as they still exist.
1314  */
1315 static void scx_task_iter_start(struct scx_task_iter *iter)
1316 {
1317 	BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS &
1318 		     ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1));
1319 
1320 	spin_lock_irq(&scx_tasks_lock);
1321 
1322 	iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR };
1323 	list_add(&iter->cursor.tasks_node, &scx_tasks);
1324 	iter->locked = NULL;
1325 	iter->cnt = 0;
1326 }
1327 
1328 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter)
1329 {
1330 	if (iter->locked) {
1331 		task_rq_unlock(iter->rq, iter->locked, &iter->rf);
1332 		iter->locked = NULL;
1333 	}
1334 }
1335 
1336 /**
1337  * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator
1338  * @iter: iterator to unlock
1339  *
1340  * If @iter is in the middle of a locked iteration, it may be locking the rq of
1341  * the task currently being visited in addition to scx_tasks_lock. Unlock both.
1342  * This function can be safely called anytime during an iteration.
1343  */
1344 static void scx_task_iter_unlock(struct scx_task_iter *iter)
1345 {
1346 	__scx_task_iter_rq_unlock(iter);
1347 	spin_unlock_irq(&scx_tasks_lock);
1348 }
1349 
1350 /**
1351  * scx_task_iter_relock - Lock scx_tasks_lock released by scx_task_iter_unlock()
1352  * @iter: iterator to re-lock
1353  *
1354  * Re-lock scx_tasks_lock unlocked by scx_task_iter_unlock(). Note that it
1355  * doesn't re-lock the rq lock. Must be called before other iterator operations.
1356  */
1357 static void scx_task_iter_relock(struct scx_task_iter *iter)
1358 {
1359 	spin_lock_irq(&scx_tasks_lock);
1360 }
1361 
1362 /**
1363  * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock
1364  * @iter: iterator to exit
1365  *
1366  * Exit a previously initialized @iter. Must be called with scx_tasks_lock held
1367  * which is released on return. If the iterator holds a task's rq lock, that rq
1368  * lock is also released. See scx_task_iter_start() for details.
1369  */
1370 static void scx_task_iter_stop(struct scx_task_iter *iter)
1371 {
1372 	list_del_init(&iter->cursor.tasks_node);
1373 	scx_task_iter_unlock(iter);
1374 }
1375 
1376 /**
1377  * scx_task_iter_next - Next task
1378  * @iter: iterator to walk
1379  *
1380  * Visit the next task. See scx_task_iter_start() for details. Locks are dropped
1381  * and re-acquired every %SCX_OPS_TASK_ITER_BATCH iterations to avoid causing
1382  * stalls by holding scx_tasks_lock for too long.
1383  */
1384 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
1385 {
1386 	struct list_head *cursor = &iter->cursor.tasks_node;
1387 	struct sched_ext_entity *pos;
1388 
1389 	if (!(++iter->cnt % SCX_OPS_TASK_ITER_BATCH)) {
1390 		scx_task_iter_unlock(iter);
1391 		cond_resched();
1392 		scx_task_iter_relock(iter);
1393 	}
1394 
1395 	list_for_each_entry(pos, cursor, tasks_node) {
1396 		if (&pos->tasks_node == &scx_tasks)
1397 			return NULL;
1398 		if (!(pos->flags & SCX_TASK_CURSOR)) {
1399 			list_move(cursor, &pos->tasks_node);
1400 			return container_of(pos, struct task_struct, scx);
1401 		}
1402 	}
1403 
1404 	/* can't happen, should always terminate at scx_tasks above */
1405 	BUG();
1406 }
1407 
1408 /**
1409  * scx_task_iter_next_locked - Next non-idle task with its rq locked
1410  * @iter: iterator to walk
1411  * @include_dead: Whether we should include dead tasks in the iteration
1412  *
1413  * Visit the non-idle task with its rq lock held. Allows callers to specify
1414  * whether they would like to filter out dead tasks. See scx_task_iter_start()
1415  * for details.
1416  */
1417 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter)
1418 {
1419 	struct task_struct *p;
1420 
1421 	__scx_task_iter_rq_unlock(iter);
1422 
1423 	while ((p = scx_task_iter_next(iter))) {
1424 		/*
1425 		 * scx_task_iter is used to prepare and move tasks into SCX
1426 		 * while loading the BPF scheduler and vice-versa while
1427 		 * unloading. The init_tasks ("swappers") should be excluded
1428 		 * from the iteration because:
1429 		 *
1430 		 * - It's unsafe to use __setschduler_prio() on an init_task to
1431 		 *   determine the sched_class to use as it won't preserve its
1432 		 *   idle_sched_class.
1433 		 *
1434 		 * - ops.init/exit_task() can easily be confused if called with
1435 		 *   init_tasks as they, e.g., share PID 0.
1436 		 *
1437 		 * As init_tasks are never scheduled through SCX, they can be
1438 		 * skipped safely. Note that is_idle_task() which tests %PF_IDLE
1439 		 * doesn't work here:
1440 		 *
1441 		 * - %PF_IDLE may not be set for an init_task whose CPU hasn't
1442 		 *   yet been onlined.
1443 		 *
1444 		 * - %PF_IDLE can be set on tasks that are not init_tasks. See
1445 		 *   play_idle_precise() used by CONFIG_IDLE_INJECT.
1446 		 *
1447 		 * Test for idle_sched_class as only init_tasks are on it.
1448 		 */
1449 		if (p->sched_class != &idle_sched_class)
1450 			break;
1451 	}
1452 	if (!p)
1453 		return NULL;
1454 
1455 	iter->rq = task_rq_lock(p, &iter->rf);
1456 	iter->locked = p;
1457 
1458 	return p;
1459 }
1460 
1461 static enum scx_ops_enable_state scx_ops_enable_state(void)
1462 {
1463 	return atomic_read(&scx_ops_enable_state_var);
1464 }
1465 
1466 static enum scx_ops_enable_state
1467 scx_ops_set_enable_state(enum scx_ops_enable_state to)
1468 {
1469 	return atomic_xchg(&scx_ops_enable_state_var, to);
1470 }
1471 
1472 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to,
1473 					enum scx_ops_enable_state from)
1474 {
1475 	int from_v = from;
1476 
1477 	return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to);
1478 }
1479 
1480 static bool scx_rq_bypassing(struct rq *rq)
1481 {
1482 	return unlikely(rq->scx.flags & SCX_RQ_BYPASSING);
1483 }
1484 
1485 /**
1486  * wait_ops_state - Busy-wait the specified ops state to end
1487  * @p: target task
1488  * @opss: state to wait the end of
1489  *
1490  * Busy-wait for @p to transition out of @opss. This can only be used when the
1491  * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also
1492  * has load_acquire semantics to ensure that the caller can see the updates made
1493  * in the enqueueing and dispatching paths.
1494  */
1495 static void wait_ops_state(struct task_struct *p, unsigned long opss)
1496 {
1497 	do {
1498 		cpu_relax();
1499 	} while (atomic_long_read_acquire(&p->scx.ops_state) == opss);
1500 }
1501 
1502 /**
1503  * ops_cpu_valid - Verify a cpu number
1504  * @cpu: cpu number which came from a BPF ops
1505  * @where: extra information reported on error
1506  *
1507  * @cpu is a cpu number which came from the BPF scheduler and can be any value.
1508  * Verify that it is in range and one of the possible cpus. If invalid, trigger
1509  * an ops error.
1510  */
1511 static bool ops_cpu_valid(s32 cpu, const char *where)
1512 {
1513 	if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) {
1514 		return true;
1515 	} else {
1516 		scx_ops_error("invalid CPU %d%s%s", cpu,
1517 			      where ? " " : "", where ?: "");
1518 		return false;
1519 	}
1520 }
1521 
1522 /**
1523  * ops_sanitize_err - Sanitize a -errno value
1524  * @ops_name: operation to blame on failure
1525  * @err: -errno value to sanitize
1526  *
1527  * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return
1528  * -%EPROTO. This is necessary because returning a rogue -errno up the chain can
1529  * cause misbehaviors. For an example, a large negative return from
1530  * ops.init_task() triggers an oops when passed up the call chain because the
1531  * value fails IS_ERR() test after being encoded with ERR_PTR() and then is
1532  * handled as a pointer.
1533  */
1534 static int ops_sanitize_err(const char *ops_name, s32 err)
1535 {
1536 	if (err < 0 && err >= -MAX_ERRNO)
1537 		return err;
1538 
1539 	scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err);
1540 	return -EPROTO;
1541 }
1542 
1543 static void run_deferred(struct rq *rq)
1544 {
1545 	process_ddsp_deferred_locals(rq);
1546 }
1547 
1548 #ifdef CONFIG_SMP
1549 static void deferred_bal_cb_workfn(struct rq *rq)
1550 {
1551 	run_deferred(rq);
1552 }
1553 #endif
1554 
1555 static void deferred_irq_workfn(struct irq_work *irq_work)
1556 {
1557 	struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work);
1558 
1559 	raw_spin_rq_lock(rq);
1560 	run_deferred(rq);
1561 	raw_spin_rq_unlock(rq);
1562 }
1563 
1564 /**
1565  * schedule_deferred - Schedule execution of deferred actions on an rq
1566  * @rq: target rq
1567  *
1568  * Schedule execution of deferred actions on @rq. Must be called with @rq
1569  * locked. Deferred actions are executed with @rq locked but unpinned, and thus
1570  * can unlock @rq to e.g. migrate tasks to other rqs.
1571  */
1572 static void schedule_deferred(struct rq *rq)
1573 {
1574 	lockdep_assert_rq_held(rq);
1575 
1576 #ifdef CONFIG_SMP
1577 	/*
1578 	 * If in the middle of waking up a task, task_woken_scx() will be called
1579 	 * afterwards which will then run the deferred actions, no need to
1580 	 * schedule anything.
1581 	 */
1582 	if (rq->scx.flags & SCX_RQ_IN_WAKEUP)
1583 		return;
1584 
1585 	/*
1586 	 * If in balance, the balance callbacks will be called before rq lock is
1587 	 * released. Schedule one.
1588 	 */
1589 	if (rq->scx.flags & SCX_RQ_IN_BALANCE) {
1590 		queue_balance_callback(rq, &rq->scx.deferred_bal_cb,
1591 				       deferred_bal_cb_workfn);
1592 		return;
1593 	}
1594 #endif
1595 	/*
1596 	 * No scheduler hooks available. Queue an irq work. They are executed on
1597 	 * IRQ re-enable which may take a bit longer than the scheduler hooks.
1598 	 * The above WAKEUP and BALANCE paths should cover most of the cases and
1599 	 * the time to IRQ re-enable shouldn't be long.
1600 	 */
1601 	irq_work_queue(&rq->scx.deferred_irq_work);
1602 }
1603 
1604 /**
1605  * touch_core_sched - Update timestamp used for core-sched task ordering
1606  * @rq: rq to read clock from, must be locked
1607  * @p: task to update the timestamp for
1608  *
1609  * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to
1610  * implement global or local-DSQ FIFO ordering for core-sched. Should be called
1611  * when a task becomes runnable and its turn on the CPU ends (e.g. slice
1612  * exhaustion).
1613  */
1614 static void touch_core_sched(struct rq *rq, struct task_struct *p)
1615 {
1616 	lockdep_assert_rq_held(rq);
1617 
1618 #ifdef CONFIG_SCHED_CORE
1619 	/*
1620 	 * It's okay to update the timestamp spuriously. Use
1621 	 * sched_core_disabled() which is cheaper than enabled().
1622 	 *
1623 	 * As this is used to determine ordering between tasks of sibling CPUs,
1624 	 * it may be better to use per-core dispatch sequence instead.
1625 	 */
1626 	if (!sched_core_disabled())
1627 		p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq));
1628 #endif
1629 }
1630 
1631 /**
1632  * touch_core_sched_dispatch - Update core-sched timestamp on dispatch
1633  * @rq: rq to read clock from, must be locked
1634  * @p: task being dispatched
1635  *
1636  * If the BPF scheduler implements custom core-sched ordering via
1637  * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO
1638  * ordering within each local DSQ. This function is called from dispatch paths
1639  * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect.
1640  */
1641 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p)
1642 {
1643 	lockdep_assert_rq_held(rq);
1644 
1645 #ifdef CONFIG_SCHED_CORE
1646 	if (SCX_HAS_OP(core_sched_before))
1647 		touch_core_sched(rq, p);
1648 #endif
1649 }
1650 
1651 static void update_curr_scx(struct rq *rq)
1652 {
1653 	struct task_struct *curr = rq->curr;
1654 	s64 delta_exec;
1655 
1656 	delta_exec = update_curr_common(rq);
1657 	if (unlikely(delta_exec <= 0))
1658 		return;
1659 
1660 	if (curr->scx.slice != SCX_SLICE_INF) {
1661 		curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec);
1662 		if (!curr->scx.slice)
1663 			touch_core_sched(rq, curr);
1664 	}
1665 }
1666 
1667 static bool scx_dsq_priq_less(struct rb_node *node_a,
1668 			      const struct rb_node *node_b)
1669 {
1670 	const struct task_struct *a =
1671 		container_of(node_a, struct task_struct, scx.dsq_priq);
1672 	const struct task_struct *b =
1673 		container_of(node_b, struct task_struct, scx.dsq_priq);
1674 
1675 	return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime);
1676 }
1677 
1678 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta)
1679 {
1680 	/* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */
1681 	WRITE_ONCE(dsq->nr, dsq->nr + delta);
1682 }
1683 
1684 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p,
1685 			     u64 enq_flags)
1686 {
1687 	bool is_local = dsq->id == SCX_DSQ_LOCAL;
1688 
1689 	WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1690 	WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) ||
1691 		     !RB_EMPTY_NODE(&p->scx.dsq_priq));
1692 
1693 	if (!is_local) {
1694 		raw_spin_lock(&dsq->lock);
1695 		if (unlikely(dsq->id == SCX_DSQ_INVALID)) {
1696 			scx_ops_error("attempting to dispatch to a destroyed dsq");
1697 			/* fall back to the global dsq */
1698 			raw_spin_unlock(&dsq->lock);
1699 			dsq = find_global_dsq(p);
1700 			raw_spin_lock(&dsq->lock);
1701 		}
1702 	}
1703 
1704 	if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) &&
1705 		     (enq_flags & SCX_ENQ_DSQ_PRIQ))) {
1706 		/*
1707 		 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from
1708 		 * their FIFO queues. To avoid confusion and accidentally
1709 		 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we
1710 		 * disallow any internal DSQ from doing vtime ordering of
1711 		 * tasks.
1712 		 */
1713 		scx_ops_error("cannot use vtime ordering for built-in DSQs");
1714 		enq_flags &= ~SCX_ENQ_DSQ_PRIQ;
1715 	}
1716 
1717 	if (enq_flags & SCX_ENQ_DSQ_PRIQ) {
1718 		struct rb_node *rbp;
1719 
1720 		/*
1721 		 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are
1722 		 * linked to both the rbtree and list on PRIQs, this can only be
1723 		 * tested easily when adding the first task.
1724 		 */
1725 		if (unlikely(RB_EMPTY_ROOT(&dsq->priq) &&
1726 			     nldsq_next_task(dsq, NULL, false)))
1727 			scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks",
1728 				      dsq->id);
1729 
1730 		p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ;
1731 		rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less);
1732 
1733 		/*
1734 		 * Find the previous task and insert after it on the list so
1735 		 * that @dsq->list is vtime ordered.
1736 		 */
1737 		rbp = rb_prev(&p->scx.dsq_priq);
1738 		if (rbp) {
1739 			struct task_struct *prev =
1740 				container_of(rbp, struct task_struct,
1741 					     scx.dsq_priq);
1742 			list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node);
1743 		} else {
1744 			list_add(&p->scx.dsq_list.node, &dsq->list);
1745 		}
1746 	} else {
1747 		/* a FIFO DSQ shouldn't be using PRIQ enqueuing */
1748 		if (unlikely(!RB_EMPTY_ROOT(&dsq->priq)))
1749 			scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
1750 				      dsq->id);
1751 
1752 		if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
1753 			list_add(&p->scx.dsq_list.node, &dsq->list);
1754 		else
1755 			list_add_tail(&p->scx.dsq_list.node, &dsq->list);
1756 	}
1757 
1758 	/* seq records the order tasks are queued, used by BPF DSQ iterator */
1759 	dsq->seq++;
1760 	p->scx.dsq_seq = dsq->seq;
1761 
1762 	dsq_mod_nr(dsq, 1);
1763 	p->scx.dsq = dsq;
1764 
1765 	/*
1766 	 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the
1767 	 * direct dispatch path, but we clear them here because the direct
1768 	 * dispatch verdict may be overridden on the enqueue path during e.g.
1769 	 * bypass.
1770 	 */
1771 	p->scx.ddsp_dsq_id = SCX_DSQ_INVALID;
1772 	p->scx.ddsp_enq_flags = 0;
1773 
1774 	/*
1775 	 * We're transitioning out of QUEUEING or DISPATCHING. store_release to
1776 	 * match waiters' load_acquire.
1777 	 */
1778 	if (enq_flags & SCX_ENQ_CLEAR_OPSS)
1779 		atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1780 
1781 	if (is_local) {
1782 		struct rq *rq = container_of(dsq, struct rq, scx.local_dsq);
1783 		bool preempt = false;
1784 
1785 		if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr &&
1786 		    rq->curr->sched_class == &ext_sched_class) {
1787 			rq->curr->scx.slice = 0;
1788 			preempt = true;
1789 		}
1790 
1791 		if (preempt || sched_class_above(&ext_sched_class,
1792 						 rq->curr->sched_class))
1793 			resched_curr(rq);
1794 	} else {
1795 		raw_spin_unlock(&dsq->lock);
1796 	}
1797 }
1798 
1799 static void task_unlink_from_dsq(struct task_struct *p,
1800 				 struct scx_dispatch_q *dsq)
1801 {
1802 	WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node));
1803 
1804 	if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) {
1805 		rb_erase(&p->scx.dsq_priq, &dsq->priq);
1806 		RB_CLEAR_NODE(&p->scx.dsq_priq);
1807 		p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ;
1808 	}
1809 
1810 	list_del_init(&p->scx.dsq_list.node);
1811 	dsq_mod_nr(dsq, -1);
1812 }
1813 
1814 static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
1815 {
1816 	struct scx_dispatch_q *dsq = p->scx.dsq;
1817 	bool is_local = dsq == &rq->scx.local_dsq;
1818 
1819 	if (!dsq) {
1820 		/*
1821 		 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals.
1822 		 * Unlinking is all that's needed to cancel.
1823 		 */
1824 		if (unlikely(!list_empty(&p->scx.dsq_list.node)))
1825 			list_del_init(&p->scx.dsq_list.node);
1826 
1827 		/*
1828 		 * When dispatching directly from the BPF scheduler to a local
1829 		 * DSQ, the task isn't associated with any DSQ but
1830 		 * @p->scx.holding_cpu may be set under the protection of
1831 		 * %SCX_OPSS_DISPATCHING.
1832 		 */
1833 		if (p->scx.holding_cpu >= 0)
1834 			p->scx.holding_cpu = -1;
1835 
1836 		return;
1837 	}
1838 
1839 	if (!is_local)
1840 		raw_spin_lock(&dsq->lock);
1841 
1842 	/*
1843 	 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't
1844 	 * change underneath us.
1845 	*/
1846 	if (p->scx.holding_cpu < 0) {
1847 		/* @p must still be on @dsq, dequeue */
1848 		task_unlink_from_dsq(p, dsq);
1849 	} else {
1850 		/*
1851 		 * We're racing against dispatch_to_local_dsq() which already
1852 		 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the
1853 		 * holding_cpu which tells dispatch_to_local_dsq() that it lost
1854 		 * the race.
1855 		 */
1856 		WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node));
1857 		p->scx.holding_cpu = -1;
1858 	}
1859 	p->scx.dsq = NULL;
1860 
1861 	if (!is_local)
1862 		raw_spin_unlock(&dsq->lock);
1863 }
1864 
1865 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id,
1866 						    struct task_struct *p)
1867 {
1868 	struct scx_dispatch_q *dsq;
1869 
1870 	if (dsq_id == SCX_DSQ_LOCAL)
1871 		return &rq->scx.local_dsq;
1872 
1873 	if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
1874 		s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
1875 
1876 		if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
1877 			return find_global_dsq(p);
1878 
1879 		return &cpu_rq(cpu)->scx.local_dsq;
1880 	}
1881 
1882 	if (dsq_id == SCX_DSQ_GLOBAL)
1883 		dsq = find_global_dsq(p);
1884 	else
1885 		dsq = find_user_dsq(dsq_id);
1886 
1887 	if (unlikely(!dsq)) {
1888 		scx_ops_error("non-existent DSQ 0x%llx for %s[%d]",
1889 			      dsq_id, p->comm, p->pid);
1890 		return find_global_dsq(p);
1891 	}
1892 
1893 	return dsq;
1894 }
1895 
1896 static void mark_direct_dispatch(struct task_struct *ddsp_task,
1897 				 struct task_struct *p, u64 dsq_id,
1898 				 u64 enq_flags)
1899 {
1900 	/*
1901 	 * Mark that dispatch already happened from ops.select_cpu() or
1902 	 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value
1903 	 * which can never match a valid task pointer.
1904 	 */
1905 	__this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH));
1906 
1907 	/* @p must match the task on the enqueue path */
1908 	if (unlikely(p != ddsp_task)) {
1909 		if (IS_ERR(ddsp_task))
1910 			scx_ops_error("%s[%d] already direct-dispatched",
1911 				      p->comm, p->pid);
1912 		else
1913 			scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
1914 				      ddsp_task->comm, ddsp_task->pid,
1915 				      p->comm, p->pid);
1916 		return;
1917 	}
1918 
1919 	WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID);
1920 	WARN_ON_ONCE(p->scx.ddsp_enq_flags);
1921 
1922 	p->scx.ddsp_dsq_id = dsq_id;
1923 	p->scx.ddsp_enq_flags = enq_flags;
1924 }
1925 
1926 static void direct_dispatch(struct task_struct *p, u64 enq_flags)
1927 {
1928 	struct rq *rq = task_rq(p);
1929 	struct scx_dispatch_q *dsq =
1930 		find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
1931 
1932 	touch_core_sched_dispatch(rq, p);
1933 
1934 	p->scx.ddsp_enq_flags |= enq_flags;
1935 
1936 	/*
1937 	 * We are in the enqueue path with @rq locked and pinned, and thus can't
1938 	 * double lock a remote rq and enqueue to its local DSQ. For
1939 	 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer
1940 	 * the enqueue so that it's executed when @rq can be unlocked.
1941 	 */
1942 	if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) {
1943 		unsigned long opss;
1944 
1945 		opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK;
1946 
1947 		switch (opss & SCX_OPSS_STATE_MASK) {
1948 		case SCX_OPSS_NONE:
1949 			break;
1950 		case SCX_OPSS_QUEUEING:
1951 			/*
1952 			 * As @p was never passed to the BPF side, _release is
1953 			 * not strictly necessary. Still do it for consistency.
1954 			 */
1955 			atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1956 			break;
1957 		default:
1958 			WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()",
1959 				  p->comm, p->pid, opss);
1960 			atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1961 			break;
1962 		}
1963 
1964 		WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1965 		list_add_tail(&p->scx.dsq_list.node,
1966 			      &rq->scx.ddsp_deferred_locals);
1967 		schedule_deferred(rq);
1968 		return;
1969 	}
1970 
1971 	dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
1972 }
1973 
1974 static bool scx_rq_online(struct rq *rq)
1975 {
1976 	/*
1977 	 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates
1978 	 * the online state as seen from the BPF scheduler. cpu_active() test
1979 	 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will
1980 	 * stay set until the current scheduling operation is complete even if
1981 	 * we aren't locking @rq.
1982 	 */
1983 	return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq)));
1984 }
1985 
1986 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
1987 			    int sticky_cpu)
1988 {
1989 	struct task_struct **ddsp_taskp;
1990 	unsigned long qseq;
1991 
1992 	WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED));
1993 
1994 	/* rq migration */
1995 	if (sticky_cpu == cpu_of(rq))
1996 		goto local_norefill;
1997 
1998 	/*
1999 	 * If !scx_rq_online(), we already told the BPF scheduler that the CPU
2000 	 * is offline and are just running the hotplug path. Don't bother the
2001 	 * BPF scheduler.
2002 	 */
2003 	if (!scx_rq_online(rq))
2004 		goto local;
2005 
2006 	if (scx_rq_bypassing(rq))
2007 		goto global;
2008 
2009 	if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
2010 		goto direct;
2011 
2012 	/* see %SCX_OPS_ENQ_EXITING */
2013 	if (!static_branch_unlikely(&scx_ops_enq_exiting) &&
2014 	    unlikely(p->flags & PF_EXITING))
2015 		goto local;
2016 
2017 	if (!SCX_HAS_OP(enqueue))
2018 		goto global;
2019 
2020 	/* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
2021 	qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT;
2022 
2023 	WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
2024 	atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq);
2025 
2026 	ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
2027 	WARN_ON_ONCE(*ddsp_taskp);
2028 	*ddsp_taskp = p;
2029 
2030 	SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags);
2031 
2032 	*ddsp_taskp = NULL;
2033 	if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
2034 		goto direct;
2035 
2036 	/*
2037 	 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or
2038 	 * dequeue may be waiting. The store_release matches their load_acquire.
2039 	 */
2040 	atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq);
2041 	return;
2042 
2043 direct:
2044 	direct_dispatch(p, enq_flags);
2045 	return;
2046 
2047 local:
2048 	/*
2049 	 * For task-ordering, slice refill must be treated as implying the end
2050 	 * of the current slice. Otherwise, the longer @p stays on the CPU, the
2051 	 * higher priority it becomes from scx_prio_less()'s POV.
2052 	 */
2053 	touch_core_sched(rq, p);
2054 	p->scx.slice = SCX_SLICE_DFL;
2055 local_norefill:
2056 	dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags);
2057 	return;
2058 
2059 global:
2060 	touch_core_sched(rq, p);	/* see the comment in local: */
2061 	p->scx.slice = SCX_SLICE_DFL;
2062 	dispatch_enqueue(find_global_dsq(p), p, enq_flags);
2063 }
2064 
2065 static bool task_runnable(const struct task_struct *p)
2066 {
2067 	return !list_empty(&p->scx.runnable_node);
2068 }
2069 
2070 static void set_task_runnable(struct rq *rq, struct task_struct *p)
2071 {
2072 	lockdep_assert_rq_held(rq);
2073 
2074 	if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) {
2075 		p->scx.runnable_at = jiffies;
2076 		p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT;
2077 	}
2078 
2079 	/*
2080 	 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being
2081 	 * appened to the runnable_list.
2082 	 */
2083 	list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list);
2084 }
2085 
2086 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at)
2087 {
2088 	list_del_init(&p->scx.runnable_node);
2089 	if (reset_runnable_at)
2090 		p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
2091 }
2092 
2093 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags)
2094 {
2095 	int sticky_cpu = p->scx.sticky_cpu;
2096 
2097 	if (enq_flags & ENQUEUE_WAKEUP)
2098 		rq->scx.flags |= SCX_RQ_IN_WAKEUP;
2099 
2100 	enq_flags |= rq->scx.extra_enq_flags;
2101 
2102 	if (sticky_cpu >= 0)
2103 		p->scx.sticky_cpu = -1;
2104 
2105 	/*
2106 	 * Restoring a running task will be immediately followed by
2107 	 * set_next_task_scx() which expects the task to not be on the BPF
2108 	 * scheduler as tasks can only start running through local DSQs. Force
2109 	 * direct-dispatch into the local DSQ by setting the sticky_cpu.
2110 	 */
2111 	if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p))
2112 		sticky_cpu = cpu_of(rq);
2113 
2114 	if (p->scx.flags & SCX_TASK_QUEUED) {
2115 		WARN_ON_ONCE(!task_runnable(p));
2116 		goto out;
2117 	}
2118 
2119 	set_task_runnable(rq, p);
2120 	p->scx.flags |= SCX_TASK_QUEUED;
2121 	rq->scx.nr_running++;
2122 	add_nr_running(rq, 1);
2123 
2124 	if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p))
2125 		SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags);
2126 
2127 	if (enq_flags & SCX_ENQ_WAKEUP)
2128 		touch_core_sched(rq, p);
2129 
2130 	do_enqueue_task(rq, p, enq_flags, sticky_cpu);
2131 out:
2132 	rq->scx.flags &= ~SCX_RQ_IN_WAKEUP;
2133 }
2134 
2135 static void ops_dequeue(struct task_struct *p, u64 deq_flags)
2136 {
2137 	unsigned long opss;
2138 
2139 	/* dequeue is always temporary, don't reset runnable_at */
2140 	clr_task_runnable(p, false);
2141 
2142 	/* acquire ensures that we see the preceding updates on QUEUED */
2143 	opss = atomic_long_read_acquire(&p->scx.ops_state);
2144 
2145 	switch (opss & SCX_OPSS_STATE_MASK) {
2146 	case SCX_OPSS_NONE:
2147 		break;
2148 	case SCX_OPSS_QUEUEING:
2149 		/*
2150 		 * QUEUEING is started and finished while holding @p's rq lock.
2151 		 * As we're holding the rq lock now, we shouldn't see QUEUEING.
2152 		 */
2153 		BUG();
2154 	case SCX_OPSS_QUEUED:
2155 		if (SCX_HAS_OP(dequeue))
2156 			SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags);
2157 
2158 		if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2159 					    SCX_OPSS_NONE))
2160 			break;
2161 		fallthrough;
2162 	case SCX_OPSS_DISPATCHING:
2163 		/*
2164 		 * If @p is being dispatched from the BPF scheduler to a DSQ,
2165 		 * wait for the transfer to complete so that @p doesn't get
2166 		 * added to its DSQ after dequeueing is complete.
2167 		 *
2168 		 * As we're waiting on DISPATCHING with the rq locked, the
2169 		 * dispatching side shouldn't try to lock the rq while
2170 		 * DISPATCHING is set. See dispatch_to_local_dsq().
2171 		 *
2172 		 * DISPATCHING shouldn't have qseq set and control can reach
2173 		 * here with NONE @opss from the above QUEUED case block.
2174 		 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss.
2175 		 */
2176 		wait_ops_state(p, SCX_OPSS_DISPATCHING);
2177 		BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
2178 		break;
2179 	}
2180 }
2181 
2182 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags)
2183 {
2184 	if (!(p->scx.flags & SCX_TASK_QUEUED)) {
2185 		WARN_ON_ONCE(task_runnable(p));
2186 		return true;
2187 	}
2188 
2189 	ops_dequeue(p, deq_flags);
2190 
2191 	/*
2192 	 * A currently running task which is going off @rq first gets dequeued
2193 	 * and then stops running. As we want running <-> stopping transitions
2194 	 * to be contained within runnable <-> quiescent transitions, trigger
2195 	 * ->stopping() early here instead of in put_prev_task_scx().
2196 	 *
2197 	 * @p may go through multiple stopping <-> running transitions between
2198 	 * here and put_prev_task_scx() if task attribute changes occur while
2199 	 * balance_scx() leaves @rq unlocked. However, they don't contain any
2200 	 * information meaningful to the BPF scheduler and can be suppressed by
2201 	 * skipping the callbacks if the task is !QUEUED.
2202 	 */
2203 	if (SCX_HAS_OP(stopping) && task_current(rq, p)) {
2204 		update_curr_scx(rq);
2205 		SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false);
2206 	}
2207 
2208 	if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p))
2209 		SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags);
2210 
2211 	if (deq_flags & SCX_DEQ_SLEEP)
2212 		p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP;
2213 	else
2214 		p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP;
2215 
2216 	p->scx.flags &= ~SCX_TASK_QUEUED;
2217 	rq->scx.nr_running--;
2218 	sub_nr_running(rq, 1);
2219 
2220 	dispatch_dequeue(rq, p);
2221 	return true;
2222 }
2223 
2224 static void yield_task_scx(struct rq *rq)
2225 {
2226 	struct task_struct *p = rq->curr;
2227 
2228 	if (SCX_HAS_OP(yield))
2229 		SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL);
2230 	else
2231 		p->scx.slice = 0;
2232 }
2233 
2234 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to)
2235 {
2236 	struct task_struct *from = rq->curr;
2237 
2238 	if (SCX_HAS_OP(yield))
2239 		return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to);
2240 	else
2241 		return false;
2242 }
2243 
2244 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
2245 					 struct scx_dispatch_q *src_dsq,
2246 					 struct rq *dst_rq)
2247 {
2248 	struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq;
2249 
2250 	/* @dsq is locked and @p is on @dst_rq */
2251 	lockdep_assert_held(&src_dsq->lock);
2252 	lockdep_assert_rq_held(dst_rq);
2253 
2254 	WARN_ON_ONCE(p->scx.holding_cpu >= 0);
2255 
2256 	if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
2257 		list_add(&p->scx.dsq_list.node, &dst_dsq->list);
2258 	else
2259 		list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list);
2260 
2261 	dsq_mod_nr(dst_dsq, 1);
2262 	p->scx.dsq = dst_dsq;
2263 }
2264 
2265 #ifdef CONFIG_SMP
2266 /**
2267  * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ
2268  * @p: task to move
2269  * @enq_flags: %SCX_ENQ_*
2270  * @src_rq: rq to move the task from, locked on entry, released on return
2271  * @dst_rq: rq to move the task into, locked on return
2272  *
2273  * Move @p which is currently on @src_rq to @dst_rq's local DSQ.
2274  */
2275 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
2276 					  struct rq *src_rq, struct rq *dst_rq)
2277 {
2278 	lockdep_assert_rq_held(src_rq);
2279 
2280 	/* the following marks @p MIGRATING which excludes dequeue */
2281 	deactivate_task(src_rq, p, 0);
2282 	set_task_cpu(p, cpu_of(dst_rq));
2283 	p->scx.sticky_cpu = cpu_of(dst_rq);
2284 
2285 	raw_spin_rq_unlock(src_rq);
2286 	raw_spin_rq_lock(dst_rq);
2287 
2288 	/*
2289 	 * We want to pass scx-specific enq_flags but activate_task() will
2290 	 * truncate the upper 32 bit. As we own @rq, we can pass them through
2291 	 * @rq->scx.extra_enq_flags instead.
2292 	 */
2293 	WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr));
2294 	WARN_ON_ONCE(dst_rq->scx.extra_enq_flags);
2295 	dst_rq->scx.extra_enq_flags = enq_flags;
2296 	activate_task(dst_rq, p, 0);
2297 	dst_rq->scx.extra_enq_flags = 0;
2298 }
2299 
2300 /*
2301  * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two
2302  * differences:
2303  *
2304  * - is_cpu_allowed() asks "Can this task run on this CPU?" while
2305  *   task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to
2306  *   this CPU?".
2307  *
2308  *   While migration is disabled, is_cpu_allowed() has to say "yes" as the task
2309  *   must be allowed to finish on the CPU that it's currently on regardless of
2310  *   the CPU state. However, task_can_run_on_remote_rq() must say "no" as the
2311  *   BPF scheduler shouldn't attempt to migrate a task which has migration
2312  *   disabled.
2313  *
2314  * - The BPF scheduler is bypassed while the rq is offline and we can always say
2315  *   no to the BPF scheduler initiated migrations while offline.
2316  */
2317 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq,
2318 				      bool trigger_error)
2319 {
2320 	int cpu = cpu_of(rq);
2321 
2322 	/*
2323 	 * We don't require the BPF scheduler to avoid dispatching to offline
2324 	 * CPUs mostly for convenience but also because CPUs can go offline
2325 	 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the
2326 	 * picked CPU is outside the allowed mask.
2327 	 */
2328 	if (!task_allowed_on_cpu(p, cpu)) {
2329 		if (trigger_error)
2330 			scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]",
2331 				      cpu_of(rq), p->comm, p->pid);
2332 		return false;
2333 	}
2334 
2335 	if (unlikely(is_migration_disabled(p)))
2336 		return false;
2337 
2338 	if (!scx_rq_online(rq))
2339 		return false;
2340 
2341 	return true;
2342 }
2343 
2344 /**
2345  * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq
2346  * @p: target task
2347  * @dsq: locked DSQ @p is currently on
2348  * @src_rq: rq @p is currently on, stable with @dsq locked
2349  *
2350  * Called with @dsq locked but no rq's locked. We want to move @p to a different
2351  * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is
2352  * required when transferring into a local DSQ. Even when transferring into a
2353  * non-local DSQ, it's better to use the same mechanism to protect against
2354  * dequeues and maintain the invariant that @p->scx.dsq can only change while
2355  * @src_rq is locked, which e.g. scx_dump_task() depends on.
2356  *
2357  * We want to grab @src_rq but that can deadlock if we try while locking @dsq,
2358  * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As
2359  * this may race with dequeue, which can't drop the rq lock or fail, do a little
2360  * dancing from our side.
2361  *
2362  * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets
2363  * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu
2364  * would be cleared to -1. While other cpus may have updated it to different
2365  * values afterwards, as this operation can't be preempted or recurse, the
2366  * holding_cpu can never become this CPU again before we're done. Thus, we can
2367  * tell whether we lost to dequeue by testing whether the holding_cpu still
2368  * points to this CPU. See dispatch_dequeue() for the counterpart.
2369  *
2370  * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is
2371  * still valid. %false if lost to dequeue.
2372  */
2373 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p,
2374 				       struct scx_dispatch_q *dsq,
2375 				       struct rq *src_rq)
2376 {
2377 	s32 cpu = raw_smp_processor_id();
2378 
2379 	lockdep_assert_held(&dsq->lock);
2380 
2381 	WARN_ON_ONCE(p->scx.holding_cpu >= 0);
2382 	task_unlink_from_dsq(p, dsq);
2383 	p->scx.holding_cpu = cpu;
2384 
2385 	raw_spin_unlock(&dsq->lock);
2386 	raw_spin_rq_lock(src_rq);
2387 
2388 	/* task_rq couldn't have changed if we're still the holding cpu */
2389 	return likely(p->scx.holding_cpu == cpu) &&
2390 		!WARN_ON_ONCE(src_rq != task_rq(p));
2391 }
2392 
2393 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p,
2394 				struct scx_dispatch_q *dsq, struct rq *src_rq)
2395 {
2396 	raw_spin_rq_unlock(this_rq);
2397 
2398 	if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) {
2399 		move_remote_task_to_local_dsq(p, 0, src_rq, this_rq);
2400 		return true;
2401 	} else {
2402 		raw_spin_rq_unlock(src_rq);
2403 		raw_spin_rq_lock(this_rq);
2404 		return false;
2405 	}
2406 }
2407 #else	/* CONFIG_SMP */
2408 static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); }
2409 static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; }
2410 static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; }
2411 #endif	/* CONFIG_SMP */
2412 
2413 /**
2414  * move_task_between_dsqs() - Move a task from one DSQ to another
2415  * @p: target task
2416  * @enq_flags: %SCX_ENQ_*
2417  * @src_dsq: DSQ @p is currently on, must not be a local DSQ
2418  * @dst_dsq: DSQ @p is being moved to, can be any DSQ
2419  *
2420  * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local
2421  * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq
2422  * will change. As @p's task_rq is locked, this function doesn't need to use the
2423  * holding_cpu mechanism.
2424  *
2425  * On return, @src_dsq is unlocked and only @p's new task_rq, which is the
2426  * return value, is locked.
2427  */
2428 static struct rq *move_task_between_dsqs(struct task_struct *p, u64 enq_flags,
2429 					 struct scx_dispatch_q *src_dsq,
2430 					 struct scx_dispatch_q *dst_dsq)
2431 {
2432 	struct rq *src_rq = task_rq(p), *dst_rq;
2433 
2434 	BUG_ON(src_dsq->id == SCX_DSQ_LOCAL);
2435 	lockdep_assert_held(&src_dsq->lock);
2436 	lockdep_assert_rq_held(src_rq);
2437 
2438 	if (dst_dsq->id == SCX_DSQ_LOCAL) {
2439 		dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
2440 		if (!task_can_run_on_remote_rq(p, dst_rq, true)) {
2441 			dst_dsq = find_global_dsq(p);
2442 			dst_rq = src_rq;
2443 		}
2444 	} else {
2445 		/* no need to migrate if destination is a non-local DSQ */
2446 		dst_rq = src_rq;
2447 	}
2448 
2449 	/*
2450 	 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different
2451 	 * CPU, @p will be migrated.
2452 	 */
2453 	if (dst_dsq->id == SCX_DSQ_LOCAL) {
2454 		/* @p is going from a non-local DSQ to a local DSQ */
2455 		if (src_rq == dst_rq) {
2456 			task_unlink_from_dsq(p, src_dsq);
2457 			move_local_task_to_local_dsq(p, enq_flags,
2458 						     src_dsq, dst_rq);
2459 			raw_spin_unlock(&src_dsq->lock);
2460 		} else {
2461 			raw_spin_unlock(&src_dsq->lock);
2462 			move_remote_task_to_local_dsq(p, enq_flags,
2463 						      src_rq, dst_rq);
2464 		}
2465 	} else {
2466 		/*
2467 		 * @p is going from a non-local DSQ to a non-local DSQ. As
2468 		 * $src_dsq is already locked, do an abbreviated dequeue.
2469 		 */
2470 		task_unlink_from_dsq(p, src_dsq);
2471 		p->scx.dsq = NULL;
2472 		raw_spin_unlock(&src_dsq->lock);
2473 
2474 		dispatch_enqueue(dst_dsq, p, enq_flags);
2475 	}
2476 
2477 	return dst_rq;
2478 }
2479 
2480 /*
2481  * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly
2482  * banging on the same DSQ on a large NUMA system to the point where switching
2483  * to the bypass mode can take a long time. Inject artifical delays while the
2484  * bypass mode is switching to guarantee timely completion.
2485  */
2486 static void scx_ops_breather(struct rq *rq)
2487 {
2488 	u64 until;
2489 
2490 	lockdep_assert_rq_held(rq);
2491 
2492 	if (likely(!atomic_read(&scx_ops_breather_depth)))
2493 		return;
2494 
2495 	raw_spin_rq_unlock(rq);
2496 
2497 	until = ktime_get_ns() + NSEC_PER_MSEC;
2498 
2499 	do {
2500 		int cnt = 1024;
2501 		while (atomic_read(&scx_ops_breather_depth) && --cnt)
2502 			cpu_relax();
2503 	} while (atomic_read(&scx_ops_breather_depth) &&
2504 		 time_before64(ktime_get_ns(), until));
2505 
2506 	raw_spin_rq_lock(rq);
2507 }
2508 
2509 static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq)
2510 {
2511 	struct task_struct *p;
2512 retry:
2513 	/*
2514 	 * This retry loop can repeatedly race against scx_ops_bypass()
2515 	 * dequeueing tasks from @dsq trying to put the system into the bypass
2516 	 * mode. On some multi-socket machines (e.g. 2x Intel 8480c), this can
2517 	 * live-lock the machine into soft lockups. Give a breather.
2518 	 */
2519 	scx_ops_breather(rq);
2520 
2521 	/*
2522 	 * The caller can't expect to successfully consume a task if the task's
2523 	 * addition to @dsq isn't guaranteed to be visible somehow. Test
2524 	 * @dsq->list without locking and skip if it seems empty.
2525 	 */
2526 	if (list_empty(&dsq->list))
2527 		return false;
2528 
2529 	raw_spin_lock(&dsq->lock);
2530 
2531 	nldsq_for_each_task(p, dsq) {
2532 		struct rq *task_rq = task_rq(p);
2533 
2534 		if (rq == task_rq) {
2535 			task_unlink_from_dsq(p, dsq);
2536 			move_local_task_to_local_dsq(p, 0, dsq, rq);
2537 			raw_spin_unlock(&dsq->lock);
2538 			return true;
2539 		}
2540 
2541 		if (task_can_run_on_remote_rq(p, rq, false)) {
2542 			if (likely(consume_remote_task(rq, p, dsq, task_rq)))
2543 				return true;
2544 			goto retry;
2545 		}
2546 	}
2547 
2548 	raw_spin_unlock(&dsq->lock);
2549 	return false;
2550 }
2551 
2552 static bool consume_global_dsq(struct rq *rq)
2553 {
2554 	int node = cpu_to_node(cpu_of(rq));
2555 
2556 	return consume_dispatch_q(rq, global_dsqs[node]);
2557 }
2558 
2559 /**
2560  * dispatch_to_local_dsq - Dispatch a task to a local dsq
2561  * @rq: current rq which is locked
2562  * @dst_dsq: destination DSQ
2563  * @p: task to dispatch
2564  * @enq_flags: %SCX_ENQ_*
2565  *
2566  * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local
2567  * DSQ. This function performs all the synchronization dancing needed because
2568  * local DSQs are protected with rq locks.
2569  *
2570  * The caller must have exclusive ownership of @p (e.g. through
2571  * %SCX_OPSS_DISPATCHING).
2572  */
2573 static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq,
2574 				  struct task_struct *p, u64 enq_flags)
2575 {
2576 	struct rq *src_rq = task_rq(p);
2577 	struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
2578 
2579 	/*
2580 	 * We're synchronized against dequeue through DISPATCHING. As @p can't
2581 	 * be dequeued, its task_rq and cpus_allowed are stable too.
2582 	 *
2583 	 * If dispatching to @rq that @p is already on, no lock dancing needed.
2584 	 */
2585 	if (rq == src_rq && rq == dst_rq) {
2586 		dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2587 		return;
2588 	}
2589 
2590 #ifdef CONFIG_SMP
2591 	if (unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) {
2592 		dispatch_enqueue(find_global_dsq(p), p,
2593 				 enq_flags | SCX_ENQ_CLEAR_OPSS);
2594 		return;
2595 	}
2596 
2597 	/*
2598 	 * @p is on a possibly remote @src_rq which we need to lock to move the
2599 	 * task. If dequeue is in progress, it'd be locking @src_rq and waiting
2600 	 * on DISPATCHING, so we can't grab @src_rq lock while holding
2601 	 * DISPATCHING.
2602 	 *
2603 	 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that
2604 	 * we're moving from a DSQ and use the same mechanism - mark the task
2605 	 * under transfer with holding_cpu, release DISPATCHING and then follow
2606 	 * the same protocol. See unlink_dsq_and_lock_src_rq().
2607 	 */
2608 	p->scx.holding_cpu = raw_smp_processor_id();
2609 
2610 	/* store_release ensures that dequeue sees the above */
2611 	atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
2612 
2613 	/* switch to @src_rq lock */
2614 	if (rq != src_rq) {
2615 		raw_spin_rq_unlock(rq);
2616 		raw_spin_rq_lock(src_rq);
2617 	}
2618 
2619 	/* task_rq couldn't have changed if we're still the holding cpu */
2620 	if (likely(p->scx.holding_cpu == raw_smp_processor_id()) &&
2621 	    !WARN_ON_ONCE(src_rq != task_rq(p))) {
2622 		/*
2623 		 * If @p is staying on the same rq, there's no need to go
2624 		 * through the full deactivate/activate cycle. Optimize by
2625 		 * abbreviating move_remote_task_to_local_dsq().
2626 		 */
2627 		if (src_rq == dst_rq) {
2628 			p->scx.holding_cpu = -1;
2629 			dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags);
2630 		} else {
2631 			move_remote_task_to_local_dsq(p, enq_flags,
2632 						      src_rq, dst_rq);
2633 		}
2634 
2635 		/* if the destination CPU is idle, wake it up */
2636 		if (sched_class_above(p->sched_class, dst_rq->curr->sched_class))
2637 			resched_curr(dst_rq);
2638 	}
2639 
2640 	/* switch back to @rq lock */
2641 	if (rq != dst_rq) {
2642 		raw_spin_rq_unlock(dst_rq);
2643 		raw_spin_rq_lock(rq);
2644 	}
2645 #else	/* CONFIG_SMP */
2646 	BUG();	/* control can not reach here on UP */
2647 #endif	/* CONFIG_SMP */
2648 }
2649 
2650 /**
2651  * finish_dispatch - Asynchronously finish dispatching a task
2652  * @rq: current rq which is locked
2653  * @p: task to finish dispatching
2654  * @qseq_at_dispatch: qseq when @p started getting dispatched
2655  * @dsq_id: destination DSQ ID
2656  * @enq_flags: %SCX_ENQ_*
2657  *
2658  * Dispatching to local DSQs may need to wait for queueing to complete or
2659  * require rq lock dancing. As we don't wanna do either while inside
2660  * ops.dispatch() to avoid locking order inversion, we split dispatching into
2661  * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the
2662  * task and its qseq. Once ops.dispatch() returns, this function is called to
2663  * finish up.
2664  *
2665  * There is no guarantee that @p is still valid for dispatching or even that it
2666  * was valid in the first place. Make sure that the task is still owned by the
2667  * BPF scheduler and claim the ownership before dispatching.
2668  */
2669 static void finish_dispatch(struct rq *rq, struct task_struct *p,
2670 			    unsigned long qseq_at_dispatch,
2671 			    u64 dsq_id, u64 enq_flags)
2672 {
2673 	struct scx_dispatch_q *dsq;
2674 	unsigned long opss;
2675 
2676 	touch_core_sched_dispatch(rq, p);
2677 retry:
2678 	/*
2679 	 * No need for _acquire here. @p is accessed only after a successful
2680 	 * try_cmpxchg to DISPATCHING.
2681 	 */
2682 	opss = atomic_long_read(&p->scx.ops_state);
2683 
2684 	switch (opss & SCX_OPSS_STATE_MASK) {
2685 	case SCX_OPSS_DISPATCHING:
2686 	case SCX_OPSS_NONE:
2687 		/* someone else already got to it */
2688 		return;
2689 	case SCX_OPSS_QUEUED:
2690 		/*
2691 		 * If qseq doesn't match, @p has gone through at least one
2692 		 * dispatch/dequeue and re-enqueue cycle between
2693 		 * scx_bpf_dsq_insert() and here and we have no claim on it.
2694 		 */
2695 		if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch)
2696 			return;
2697 
2698 		/*
2699 		 * While we know @p is accessible, we don't yet have a claim on
2700 		 * it - the BPF scheduler is allowed to dispatch tasks
2701 		 * spuriously and there can be a racing dequeue attempt. Let's
2702 		 * claim @p by atomically transitioning it from QUEUED to
2703 		 * DISPATCHING.
2704 		 */
2705 		if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2706 						   SCX_OPSS_DISPATCHING)))
2707 			break;
2708 		goto retry;
2709 	case SCX_OPSS_QUEUEING:
2710 		/*
2711 		 * do_enqueue_task() is in the process of transferring the task
2712 		 * to the BPF scheduler while holding @p's rq lock. As we aren't
2713 		 * holding any kernel or BPF resource that the enqueue path may
2714 		 * depend upon, it's safe to wait.
2715 		 */
2716 		wait_ops_state(p, opss);
2717 		goto retry;
2718 	}
2719 
2720 	BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED));
2721 
2722 	dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p);
2723 
2724 	if (dsq->id == SCX_DSQ_LOCAL)
2725 		dispatch_to_local_dsq(rq, dsq, p, enq_flags);
2726 	else
2727 		dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2728 }
2729 
2730 static void flush_dispatch_buf(struct rq *rq)
2731 {
2732 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2733 	u32 u;
2734 
2735 	for (u = 0; u < dspc->cursor; u++) {
2736 		struct scx_dsp_buf_ent *ent = &dspc->buf[u];
2737 
2738 		finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id,
2739 				ent->enq_flags);
2740 	}
2741 
2742 	dspc->nr_tasks += dspc->cursor;
2743 	dspc->cursor = 0;
2744 }
2745 
2746 static int balance_one(struct rq *rq, struct task_struct *prev)
2747 {
2748 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2749 	bool prev_on_scx = prev->sched_class == &ext_sched_class;
2750 	int nr_loops = SCX_DSP_MAX_LOOPS;
2751 
2752 	lockdep_assert_rq_held(rq);
2753 	rq->scx.flags |= SCX_RQ_IN_BALANCE;
2754 	rq->scx.flags &= ~(SCX_RQ_BAL_PENDING | SCX_RQ_BAL_KEEP);
2755 
2756 	if (static_branch_unlikely(&scx_ops_cpu_preempt) &&
2757 	    unlikely(rq->scx.cpu_released)) {
2758 		/*
2759 		 * If the previous sched_class for the current CPU was not SCX,
2760 		 * notify the BPF scheduler that it again has control of the
2761 		 * core. This callback complements ->cpu_release(), which is
2762 		 * emitted in switch_class().
2763 		 */
2764 		if (SCX_HAS_OP(cpu_acquire))
2765 			SCX_CALL_OP(SCX_KF_REST, cpu_acquire, cpu_of(rq), NULL);
2766 		rq->scx.cpu_released = false;
2767 	}
2768 
2769 	if (prev_on_scx) {
2770 		update_curr_scx(rq);
2771 
2772 		/*
2773 		 * If @prev is runnable & has slice left, it has priority and
2774 		 * fetching more just increases latency for the fetched tasks.
2775 		 * Tell pick_task_scx() to keep running @prev. If the BPF
2776 		 * scheduler wants to handle this explicitly, it should
2777 		 * implement ->cpu_release().
2778 		 *
2779 		 * See scx_ops_disable_workfn() for the explanation on the
2780 		 * bypassing test.
2781 		 */
2782 		if ((prev->scx.flags & SCX_TASK_QUEUED) &&
2783 		    prev->scx.slice && !scx_rq_bypassing(rq)) {
2784 			rq->scx.flags |= SCX_RQ_BAL_KEEP;
2785 			goto has_tasks;
2786 		}
2787 	}
2788 
2789 	/* if there already are tasks to run, nothing to do */
2790 	if (rq->scx.local_dsq.nr)
2791 		goto has_tasks;
2792 
2793 	if (consume_global_dsq(rq))
2794 		goto has_tasks;
2795 
2796 	if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq))
2797 		goto no_tasks;
2798 
2799 	dspc->rq = rq;
2800 
2801 	/*
2802 	 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock,
2803 	 * the local DSQ might still end up empty after a successful
2804 	 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch()
2805 	 * produced some tasks, retry. The BPF scheduler may depend on this
2806 	 * looping behavior to simplify its implementation.
2807 	 */
2808 	do {
2809 		dspc->nr_tasks = 0;
2810 
2811 		SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq),
2812 			    prev_on_scx ? prev : NULL);
2813 
2814 		flush_dispatch_buf(rq);
2815 
2816 		if (rq->scx.local_dsq.nr)
2817 			goto has_tasks;
2818 		if (consume_global_dsq(rq))
2819 			goto has_tasks;
2820 
2821 		/*
2822 		 * ops.dispatch() can trap us in this loop by repeatedly
2823 		 * dispatching ineligible tasks. Break out once in a while to
2824 		 * allow the watchdog to run. As IRQ can't be enabled in
2825 		 * balance(), we want to complete this scheduling cycle and then
2826 		 * start a new one. IOW, we want to call resched_curr() on the
2827 		 * next, most likely idle, task, not the current one. Use
2828 		 * scx_bpf_kick_cpu() for deferred kicking.
2829 		 */
2830 		if (unlikely(!--nr_loops)) {
2831 			scx_bpf_kick_cpu(cpu_of(rq), 0);
2832 			break;
2833 		}
2834 	} while (dspc->nr_tasks);
2835 
2836 no_tasks:
2837 	/*
2838 	 * Didn't find another task to run. Keep running @prev unless
2839 	 * %SCX_OPS_ENQ_LAST is in effect.
2840 	 */
2841 	if ((prev->scx.flags & SCX_TASK_QUEUED) &&
2842 	    (!static_branch_unlikely(&scx_ops_enq_last) ||
2843 	     scx_rq_bypassing(rq))) {
2844 		rq->scx.flags |= SCX_RQ_BAL_KEEP;
2845 		goto has_tasks;
2846 	}
2847 	rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2848 	return false;
2849 
2850 has_tasks:
2851 	rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2852 	return true;
2853 }
2854 
2855 static int balance_scx(struct rq *rq, struct task_struct *prev,
2856 		       struct rq_flags *rf)
2857 {
2858 	int ret;
2859 
2860 	rq_unpin_lock(rq, rf);
2861 
2862 	ret = balance_one(rq, prev);
2863 
2864 #ifdef CONFIG_SCHED_SMT
2865 	/*
2866 	 * When core-sched is enabled, this ops.balance() call will be followed
2867 	 * by pick_task_scx() on this CPU and the SMT siblings. Balance the
2868 	 * siblings too.
2869 	 */
2870 	if (sched_core_enabled(rq)) {
2871 		const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq));
2872 		int scpu;
2873 
2874 		for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) {
2875 			struct rq *srq = cpu_rq(scpu);
2876 			struct task_struct *sprev = srq->curr;
2877 
2878 			WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq));
2879 			update_rq_clock(srq);
2880 			balance_one(srq, sprev);
2881 		}
2882 	}
2883 #endif
2884 	rq_repin_lock(rq, rf);
2885 
2886 	return ret;
2887 }
2888 
2889 static void process_ddsp_deferred_locals(struct rq *rq)
2890 {
2891 	struct task_struct *p;
2892 
2893 	lockdep_assert_rq_held(rq);
2894 
2895 	/*
2896 	 * Now that @rq can be unlocked, execute the deferred enqueueing of
2897 	 * tasks directly dispatched to the local DSQs of other CPUs. See
2898 	 * direct_dispatch(). Keep popping from the head instead of using
2899 	 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq
2900 	 * temporarily.
2901 	 */
2902 	while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals,
2903 				struct task_struct, scx.dsq_list.node))) {
2904 		struct scx_dispatch_q *dsq;
2905 
2906 		list_del_init(&p->scx.dsq_list.node);
2907 
2908 		dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
2909 		if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL))
2910 			dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags);
2911 	}
2912 }
2913 
2914 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
2915 {
2916 	if (p->scx.flags & SCX_TASK_QUEUED) {
2917 		/*
2918 		 * Core-sched might decide to execute @p before it is
2919 		 * dispatched. Call ops_dequeue() to notify the BPF scheduler.
2920 		 */
2921 		ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC);
2922 		dispatch_dequeue(rq, p);
2923 	}
2924 
2925 	p->se.exec_start = rq_clock_task(rq);
2926 
2927 	/* see dequeue_task_scx() on why we skip when !QUEUED */
2928 	if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED))
2929 		SCX_CALL_OP_TASK(SCX_KF_REST, running, p);
2930 
2931 	clr_task_runnable(p, true);
2932 
2933 	/*
2934 	 * @p is getting newly scheduled or got kicked after someone updated its
2935 	 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick().
2936 	 */
2937 	if ((p->scx.slice == SCX_SLICE_INF) !=
2938 	    (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) {
2939 		if (p->scx.slice == SCX_SLICE_INF)
2940 			rq->scx.flags |= SCX_RQ_CAN_STOP_TICK;
2941 		else
2942 			rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK;
2943 
2944 		sched_update_tick_dependency(rq);
2945 
2946 		/*
2947 		 * For now, let's refresh the load_avgs just when transitioning
2948 		 * in and out of nohz. In the future, we might want to add a
2949 		 * mechanism which calls the following periodically on
2950 		 * tick-stopped CPUs.
2951 		 */
2952 		update_other_load_avgs(rq);
2953 	}
2954 }
2955 
2956 static enum scx_cpu_preempt_reason
2957 preempt_reason_from_class(const struct sched_class *class)
2958 {
2959 #ifdef CONFIG_SMP
2960 	if (class == &stop_sched_class)
2961 		return SCX_CPU_PREEMPT_STOP;
2962 #endif
2963 	if (class == &dl_sched_class)
2964 		return SCX_CPU_PREEMPT_DL;
2965 	if (class == &rt_sched_class)
2966 		return SCX_CPU_PREEMPT_RT;
2967 	return SCX_CPU_PREEMPT_UNKNOWN;
2968 }
2969 
2970 static void switch_class(struct rq *rq, struct task_struct *next)
2971 {
2972 	const struct sched_class *next_class = next->sched_class;
2973 
2974 #ifdef CONFIG_SMP
2975 	/*
2976 	 * Pairs with the smp_load_acquire() issued by a CPU in
2977 	 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a
2978 	 * resched.
2979 	 */
2980 	smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1);
2981 #endif
2982 	if (!static_branch_unlikely(&scx_ops_cpu_preempt))
2983 		return;
2984 
2985 	/*
2986 	 * The callback is conceptually meant to convey that the CPU is no
2987 	 * longer under the control of SCX. Therefore, don't invoke the callback
2988 	 * if the next class is below SCX (in which case the BPF scheduler has
2989 	 * actively decided not to schedule any tasks on the CPU).
2990 	 */
2991 	if (sched_class_above(&ext_sched_class, next_class))
2992 		return;
2993 
2994 	/*
2995 	 * At this point we know that SCX was preempted by a higher priority
2996 	 * sched_class, so invoke the ->cpu_release() callback if we have not
2997 	 * done so already. We only send the callback once between SCX being
2998 	 * preempted, and it regaining control of the CPU.
2999 	 *
3000 	 * ->cpu_release() complements ->cpu_acquire(), which is emitted the
3001 	 *  next time that balance_scx() is invoked.
3002 	 */
3003 	if (!rq->scx.cpu_released) {
3004 		if (SCX_HAS_OP(cpu_release)) {
3005 			struct scx_cpu_release_args args = {
3006 				.reason = preempt_reason_from_class(next_class),
3007 				.task = next,
3008 			};
3009 
3010 			SCX_CALL_OP(SCX_KF_CPU_RELEASE,
3011 				    cpu_release, cpu_of(rq), &args);
3012 		}
3013 		rq->scx.cpu_released = true;
3014 	}
3015 }
3016 
3017 static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
3018 			      struct task_struct *next)
3019 {
3020 	update_curr_scx(rq);
3021 
3022 	/* see dequeue_task_scx() on why we skip when !QUEUED */
3023 	if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED))
3024 		SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true);
3025 
3026 	if (p->scx.flags & SCX_TASK_QUEUED) {
3027 		set_task_runnable(rq, p);
3028 
3029 		/*
3030 		 * If @p has slice left and is being put, @p is getting
3031 		 * preempted by a higher priority scheduler class or core-sched
3032 		 * forcing a different task. Leave it at the head of the local
3033 		 * DSQ.
3034 		 */
3035 		if (p->scx.slice && !scx_rq_bypassing(rq)) {
3036 			dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD);
3037 			return;
3038 		}
3039 
3040 		/*
3041 		 * If @p is runnable but we're about to enter a lower
3042 		 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell
3043 		 * ops.enqueue() that @p is the only one available for this cpu,
3044 		 * which should trigger an explicit follow-up scheduling event.
3045 		 */
3046 		if (sched_class_above(&ext_sched_class, next->sched_class)) {
3047 			WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last));
3048 			do_enqueue_task(rq, p, SCX_ENQ_LAST, -1);
3049 		} else {
3050 			do_enqueue_task(rq, p, 0, -1);
3051 		}
3052 	}
3053 
3054 	if (next && next->sched_class != &ext_sched_class)
3055 		switch_class(rq, next);
3056 }
3057 
3058 static struct task_struct *first_local_task(struct rq *rq)
3059 {
3060 	return list_first_entry_or_null(&rq->scx.local_dsq.list,
3061 					struct task_struct, scx.dsq_list.node);
3062 }
3063 
3064 static struct task_struct *pick_task_scx(struct rq *rq)
3065 {
3066 	struct task_struct *prev = rq->curr;
3067 	struct task_struct *p;
3068 	bool prev_on_scx = prev->sched_class == &ext_sched_class;
3069 	bool keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP;
3070 	bool kick_idle = false;
3071 
3072 	/*
3073 	 * WORKAROUND:
3074 	 *
3075 	 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just
3076 	 * have gone through balance_scx(). Unfortunately, there currently is a
3077 	 * bug where fair could say yes on balance() but no on pick_task(),
3078 	 * which then ends up calling pick_task_scx() without preceding
3079 	 * balance_scx().
3080 	 *
3081 	 * Keep running @prev if possible and avoid stalling from entering idle
3082 	 * without balancing.
3083 	 *
3084 	 * Once fair is fixed, remove the workaround and trigger WARN_ON_ONCE()
3085 	 * if pick_task_scx() is called without preceding balance_scx().
3086 	 */
3087 	if (unlikely(rq->scx.flags & SCX_RQ_BAL_PENDING)) {
3088 		if (prev_on_scx) {
3089 			keep_prev = true;
3090 		} else {
3091 			keep_prev = false;
3092 			kick_idle = true;
3093 		}
3094 	} else if (unlikely(keep_prev && !prev_on_scx)) {
3095 		/* only allowed during transitions */
3096 		WARN_ON_ONCE(scx_ops_enable_state() == SCX_OPS_ENABLED);
3097 		keep_prev = false;
3098 	}
3099 
3100 	/*
3101 	 * If balance_scx() is telling us to keep running @prev, replenish slice
3102 	 * if necessary and keep running @prev. Otherwise, pop the first one
3103 	 * from the local DSQ.
3104 	 */
3105 	if (keep_prev) {
3106 		p = prev;
3107 		if (!p->scx.slice)
3108 			p->scx.slice = SCX_SLICE_DFL;
3109 	} else {
3110 		p = first_local_task(rq);
3111 		if (!p) {
3112 			if (kick_idle)
3113 				scx_bpf_kick_cpu(cpu_of(rq), SCX_KICK_IDLE);
3114 			return NULL;
3115 		}
3116 
3117 		if (unlikely(!p->scx.slice)) {
3118 			if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) {
3119 				printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n",
3120 						p->comm, p->pid, __func__);
3121 				scx_warned_zero_slice = true;
3122 			}
3123 			p->scx.slice = SCX_SLICE_DFL;
3124 		}
3125 	}
3126 
3127 	return p;
3128 }
3129 
3130 #ifdef CONFIG_SCHED_CORE
3131 /**
3132  * scx_prio_less - Task ordering for core-sched
3133  * @a: task A
3134  * @b: task B
3135  *
3136  * Core-sched is implemented as an additional scheduling layer on top of the
3137  * usual sched_class'es and needs to find out the expected task ordering. For
3138  * SCX, core-sched calls this function to interrogate the task ordering.
3139  *
3140  * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used
3141  * to implement the default task ordering. The older the timestamp, the higher
3142  * prority the task - the global FIFO ordering matching the default scheduling
3143  * behavior.
3144  *
3145  * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to
3146  * implement FIFO ordering within each local DSQ. See pick_task_scx().
3147  */
3148 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b,
3149 		   bool in_fi)
3150 {
3151 	/*
3152 	 * The const qualifiers are dropped from task_struct pointers when
3153 	 * calling ops.core_sched_before(). Accesses are controlled by the
3154 	 * verifier.
3155 	 */
3156 	if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a)))
3157 		return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before,
3158 					      (struct task_struct *)a,
3159 					      (struct task_struct *)b);
3160 	else
3161 		return time_after64(a->scx.core_sched_at, b->scx.core_sched_at);
3162 }
3163 #endif	/* CONFIG_SCHED_CORE */
3164 
3165 #ifdef CONFIG_SMP
3166 
3167 static bool test_and_clear_cpu_idle(int cpu)
3168 {
3169 #ifdef CONFIG_SCHED_SMT
3170 	/*
3171 	 * SMT mask should be cleared whether we can claim @cpu or not. The SMT
3172 	 * cluster is not wholly idle either way. This also prevents
3173 	 * scx_pick_idle_cpu() from getting caught in an infinite loop.
3174 	 */
3175 	if (sched_smt_active()) {
3176 		const struct cpumask *smt = cpu_smt_mask(cpu);
3177 
3178 		/*
3179 		 * If offline, @cpu is not its own sibling and
3180 		 * scx_pick_idle_cpu() can get caught in an infinite loop as
3181 		 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu
3182 		 * is eventually cleared.
3183 		 */
3184 		if (cpumask_intersects(smt, idle_masks.smt))
3185 			cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
3186 		else if (cpumask_test_cpu(cpu, idle_masks.smt))
3187 			__cpumask_clear_cpu(cpu, idle_masks.smt);
3188 	}
3189 #endif
3190 	return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu);
3191 }
3192 
3193 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags)
3194 {
3195 	int cpu;
3196 
3197 retry:
3198 	if (sched_smt_active()) {
3199 		cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed);
3200 		if (cpu < nr_cpu_ids)
3201 			goto found;
3202 
3203 		if (flags & SCX_PICK_IDLE_CORE)
3204 			return -EBUSY;
3205 	}
3206 
3207 	cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed);
3208 	if (cpu >= nr_cpu_ids)
3209 		return -EBUSY;
3210 
3211 found:
3212 	if (test_and_clear_cpu_idle(cpu))
3213 		return cpu;
3214 	else
3215 		goto retry;
3216 }
3217 
3218 /*
3219  * Return true if the LLC domains do not perfectly overlap with the NUMA
3220  * domains, false otherwise.
3221  */
3222 static bool llc_numa_mismatch(void)
3223 {
3224 	int cpu;
3225 
3226 	/*
3227 	 * We need to scan all online CPUs to verify whether their scheduling
3228 	 * domains overlap.
3229 	 *
3230 	 * While it is rare to encounter architectures with asymmetric NUMA
3231 	 * topologies, CPU hotplugging or virtualized environments can result
3232 	 * in asymmetric configurations.
3233 	 *
3234 	 * For example:
3235 	 *
3236 	 *  NUMA 0:
3237 	 *    - LLC 0: cpu0..cpu7
3238 	 *    - LLC 1: cpu8..cpu15 [offline]
3239 	 *
3240 	 *  NUMA 1:
3241 	 *    - LLC 0: cpu16..cpu23
3242 	 *    - LLC 1: cpu24..cpu31
3243 	 *
3244 	 * In this case, if we only check the first online CPU (cpu0), we might
3245 	 * incorrectly assume that the LLC and NUMA domains are fully
3246 	 * overlapping, which is incorrect (as NUMA 1 has two distinct LLC
3247 	 * domains).
3248 	 */
3249 	for_each_online_cpu(cpu) {
3250 		const struct cpumask *numa_cpus;
3251 		struct sched_domain *sd;
3252 
3253 		sd = rcu_dereference(per_cpu(sd_llc, cpu));
3254 		if (!sd)
3255 			return true;
3256 
3257 		numa_cpus = cpumask_of_node(cpu_to_node(cpu));
3258 		if (sd->span_weight != cpumask_weight(numa_cpus))
3259 			return true;
3260 	}
3261 
3262 	return false;
3263 }
3264 
3265 /*
3266  * Initialize topology-aware scheduling.
3267  *
3268  * Detect if the system has multiple LLC or multiple NUMA domains and enable
3269  * cache-aware / NUMA-aware scheduling optimizations in the default CPU idle
3270  * selection policy.
3271  *
3272  * Assumption: the kernel's internal topology representation assumes that each
3273  * CPU belongs to a single LLC domain, and that each LLC domain is entirely
3274  * contained within a single NUMA node.
3275  */
3276 static void update_selcpu_topology(void)
3277 {
3278 	bool enable_llc = false, enable_numa = false;
3279 	struct sched_domain *sd;
3280 	const struct cpumask *cpus;
3281 	s32 cpu = cpumask_first(cpu_online_mask);
3282 
3283 	/*
3284 	 * Enable LLC domain optimization only when there are multiple LLC
3285 	 * domains among the online CPUs. If all online CPUs are part of a
3286 	 * single LLC domain, the idle CPU selection logic can choose any
3287 	 * online CPU without bias.
3288 	 *
3289 	 * Note that it is sufficient to check the LLC domain of the first
3290 	 * online CPU to determine whether a single LLC domain includes all
3291 	 * CPUs.
3292 	 */
3293 	rcu_read_lock();
3294 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
3295 	if (sd) {
3296 		if (sd->span_weight < num_online_cpus())
3297 			enable_llc = true;
3298 	}
3299 
3300 	/*
3301 	 * Enable NUMA optimization only when there are multiple NUMA domains
3302 	 * among the online CPUs and the NUMA domains don't perfectly overlaps
3303 	 * with the LLC domains.
3304 	 *
3305 	 * If all CPUs belong to the same NUMA node and the same LLC domain,
3306 	 * enabling both NUMA and LLC optimizations is unnecessary, as checking
3307 	 * for an idle CPU in the same domain twice is redundant.
3308 	 */
3309 	cpus = cpumask_of_node(cpu_to_node(cpu));
3310 	if ((cpumask_weight(cpus) < num_online_cpus()) && llc_numa_mismatch())
3311 		enable_numa = true;
3312 	rcu_read_unlock();
3313 
3314 	pr_debug("sched_ext: LLC idle selection %s\n",
3315 		 enable_llc ? "enabled" : "disabled");
3316 	pr_debug("sched_ext: NUMA idle selection %s\n",
3317 		 enable_numa ? "enabled" : "disabled");
3318 
3319 	if (enable_llc)
3320 		static_branch_enable_cpuslocked(&scx_selcpu_topo_llc);
3321 	else
3322 		static_branch_disable_cpuslocked(&scx_selcpu_topo_llc);
3323 	if (enable_numa)
3324 		static_branch_enable_cpuslocked(&scx_selcpu_topo_numa);
3325 	else
3326 		static_branch_disable_cpuslocked(&scx_selcpu_topo_numa);
3327 }
3328 
3329 /*
3330  * Built-in CPU idle selection policy:
3331  *
3332  * 1. Prioritize full-idle cores:
3333  *   - always prioritize CPUs from fully idle cores (both logical CPUs are
3334  *     idle) to avoid interference caused by SMT.
3335  *
3336  * 2. Reuse the same CPU:
3337  *   - prefer the last used CPU to take advantage of cached data (L1, L2) and
3338  *     branch prediction optimizations.
3339  *
3340  * 3. Pick a CPU within the same LLC (Last-Level Cache):
3341  *   - if the above conditions aren't met, pick a CPU that shares the same LLC
3342  *     to maintain cache locality.
3343  *
3344  * 4. Pick a CPU within the same NUMA node, if enabled:
3345  *   - choose a CPU from the same NUMA node to reduce memory access latency.
3346  *
3347  * Step 3 and 4 are performed only if the system has, respectively, multiple
3348  * LLC domains / multiple NUMA nodes (see scx_selcpu_topo_llc and
3349  * scx_selcpu_topo_numa).
3350  *
3351  * NOTE: tasks that can only run on 1 CPU are excluded by this logic, because
3352  * we never call ops.select_cpu() for them, see select_task_rq().
3353  */
3354 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
3355 			      u64 wake_flags, bool *found)
3356 {
3357 	const struct cpumask *llc_cpus = NULL;
3358 	const struct cpumask *numa_cpus = NULL;
3359 	s32 cpu;
3360 
3361 	*found = false;
3362 
3363 
3364 	/*
3365 	 * This is necessary to protect llc_cpus.
3366 	 */
3367 	rcu_read_lock();
3368 
3369 	/*
3370 	 * Determine the scheduling domain only if the task is allowed to run
3371 	 * on all CPUs.
3372 	 *
3373 	 * This is done primarily for efficiency, as it avoids the overhead of
3374 	 * updating a cpumask every time we need to select an idle CPU (which
3375 	 * can be costly in large SMP systems), but it also aligns logically:
3376 	 * if a task's scheduling domain is restricted by user-space (through
3377 	 * CPU affinity), the task will simply use the flat scheduling domain
3378 	 * defined by user-space.
3379 	 */
3380 	if (p->nr_cpus_allowed >= num_possible_cpus()) {
3381 		if (static_branch_maybe(CONFIG_NUMA, &scx_selcpu_topo_numa))
3382 			numa_cpus = cpumask_of_node(cpu_to_node(prev_cpu));
3383 
3384 		if (static_branch_maybe(CONFIG_SCHED_MC, &scx_selcpu_topo_llc)) {
3385 			struct sched_domain *sd;
3386 
3387 			sd = rcu_dereference(per_cpu(sd_llc, prev_cpu));
3388 			if (sd)
3389 				llc_cpus = sched_domain_span(sd);
3390 		}
3391 	}
3392 
3393 	/*
3394 	 * If WAKE_SYNC, try to migrate the wakee to the waker's CPU.
3395 	 */
3396 	if (wake_flags & SCX_WAKE_SYNC) {
3397 		cpu = smp_processor_id();
3398 
3399 		/*
3400 		 * If the waker's CPU is cache affine and prev_cpu is idle,
3401 		 * then avoid a migration.
3402 		 */
3403 		if (cpus_share_cache(cpu, prev_cpu) &&
3404 		    test_and_clear_cpu_idle(prev_cpu)) {
3405 			cpu = prev_cpu;
3406 			goto cpu_found;
3407 		}
3408 
3409 		/*
3410 		 * If the waker's local DSQ is empty, and the system is under
3411 		 * utilized, try to wake up @p to the local DSQ of the waker.
3412 		 *
3413 		 * Checking only for an empty local DSQ is insufficient as it
3414 		 * could give the wakee an unfair advantage when the system is
3415 		 * oversaturated.
3416 		 *
3417 		 * Checking only for the presence of idle CPUs is also
3418 		 * insufficient as the local DSQ of the waker could have tasks
3419 		 * piled up on it even if there is an idle core elsewhere on
3420 		 * the system.
3421 		 */
3422 		if (!cpumask_empty(idle_masks.cpu) &&
3423 		    !(current->flags & PF_EXITING) &&
3424 		    cpu_rq(cpu)->scx.local_dsq.nr == 0) {
3425 			if (cpumask_test_cpu(cpu, p->cpus_ptr))
3426 				goto cpu_found;
3427 		}
3428 	}
3429 
3430 	/*
3431 	 * If CPU has SMT, any wholly idle CPU is likely a better pick than
3432 	 * partially idle @prev_cpu.
3433 	 */
3434 	if (sched_smt_active()) {
3435 		/*
3436 		 * Keep using @prev_cpu if it's part of a fully idle core.
3437 		 */
3438 		if (cpumask_test_cpu(prev_cpu, idle_masks.smt) &&
3439 		    test_and_clear_cpu_idle(prev_cpu)) {
3440 			cpu = prev_cpu;
3441 			goto cpu_found;
3442 		}
3443 
3444 		/*
3445 		 * Search for any fully idle core in the same LLC domain.
3446 		 */
3447 		if (llc_cpus) {
3448 			cpu = scx_pick_idle_cpu(llc_cpus, SCX_PICK_IDLE_CORE);
3449 			if (cpu >= 0)
3450 				goto cpu_found;
3451 		}
3452 
3453 		/*
3454 		 * Search for any fully idle core in the same NUMA node.
3455 		 */
3456 		if (numa_cpus) {
3457 			cpu = scx_pick_idle_cpu(numa_cpus, SCX_PICK_IDLE_CORE);
3458 			if (cpu >= 0)
3459 				goto cpu_found;
3460 		}
3461 
3462 		/*
3463 		 * Search for any full idle core usable by the task.
3464 		 */
3465 		cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE);
3466 		if (cpu >= 0)
3467 			goto cpu_found;
3468 	}
3469 
3470 	/*
3471 	 * Use @prev_cpu if it's idle.
3472 	 */
3473 	if (test_and_clear_cpu_idle(prev_cpu)) {
3474 		cpu = prev_cpu;
3475 		goto cpu_found;
3476 	}
3477 
3478 	/*
3479 	 * Search for any idle CPU in the same LLC domain.
3480 	 */
3481 	if (llc_cpus) {
3482 		cpu = scx_pick_idle_cpu(llc_cpus, 0);
3483 		if (cpu >= 0)
3484 			goto cpu_found;
3485 	}
3486 
3487 	/*
3488 	 * Search for any idle CPU in the same NUMA node.
3489 	 */
3490 	if (numa_cpus) {
3491 		cpu = scx_pick_idle_cpu(numa_cpus, 0);
3492 		if (cpu >= 0)
3493 			goto cpu_found;
3494 	}
3495 
3496 	/*
3497 	 * Search for any idle CPU usable by the task.
3498 	 */
3499 	cpu = scx_pick_idle_cpu(p->cpus_ptr, 0);
3500 	if (cpu >= 0)
3501 		goto cpu_found;
3502 
3503 	rcu_read_unlock();
3504 	return prev_cpu;
3505 
3506 cpu_found:
3507 	rcu_read_unlock();
3508 
3509 	*found = true;
3510 	return cpu;
3511 }
3512 
3513 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags)
3514 {
3515 	/*
3516 	 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
3517 	 * can be a good migration opportunity with low cache and memory
3518 	 * footprint. Returning a CPU different than @prev_cpu triggers
3519 	 * immediate rq migration. However, for SCX, as the current rq
3520 	 * association doesn't dictate where the task is going to run, this
3521 	 * doesn't fit well. If necessary, we can later add a dedicated method
3522 	 * which can decide to preempt self to force it through the regular
3523 	 * scheduling path.
3524 	 */
3525 	if (unlikely(wake_flags & WF_EXEC))
3526 		return prev_cpu;
3527 
3528 	if (SCX_HAS_OP(select_cpu) && !scx_rq_bypassing(task_rq(p))) {
3529 		s32 cpu;
3530 		struct task_struct **ddsp_taskp;
3531 
3532 		ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
3533 		WARN_ON_ONCE(*ddsp_taskp);
3534 		*ddsp_taskp = p;
3535 
3536 		cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
3537 					   select_cpu, p, prev_cpu, wake_flags);
3538 		*ddsp_taskp = NULL;
3539 		if (ops_cpu_valid(cpu, "from ops.select_cpu()"))
3540 			return cpu;
3541 		else
3542 			return prev_cpu;
3543 	} else {
3544 		bool found;
3545 		s32 cpu;
3546 
3547 		cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found);
3548 		if (found) {
3549 			p->scx.slice = SCX_SLICE_DFL;
3550 			p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL;
3551 		}
3552 		return cpu;
3553 	}
3554 }
3555 
3556 static void task_woken_scx(struct rq *rq, struct task_struct *p)
3557 {
3558 	run_deferred(rq);
3559 }
3560 
3561 static void set_cpus_allowed_scx(struct task_struct *p,
3562 				 struct affinity_context *ac)
3563 {
3564 	set_cpus_allowed_common(p, ac);
3565 
3566 	/*
3567 	 * The effective cpumask is stored in @p->cpus_ptr which may temporarily
3568 	 * differ from the configured one in @p->cpus_mask. Always tell the bpf
3569 	 * scheduler the effective one.
3570 	 *
3571 	 * Fine-grained memory write control is enforced by BPF making the const
3572 	 * designation pointless. Cast it away when calling the operation.
3573 	 */
3574 	if (SCX_HAS_OP(set_cpumask))
3575 		SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
3576 				 (struct cpumask *)p->cpus_ptr);
3577 }
3578 
3579 static void reset_idle_masks(void)
3580 {
3581 	/*
3582 	 * Consider all online cpus idle. Should converge to the actual state
3583 	 * quickly.
3584 	 */
3585 	cpumask_copy(idle_masks.cpu, cpu_online_mask);
3586 	cpumask_copy(idle_masks.smt, cpu_online_mask);
3587 }
3588 
3589 void __scx_update_idle(struct rq *rq, bool idle)
3590 {
3591 	int cpu = cpu_of(rq);
3592 
3593 	if (SCX_HAS_OP(update_idle) && !scx_rq_bypassing(rq)) {
3594 		SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle);
3595 		if (!static_branch_unlikely(&scx_builtin_idle_enabled))
3596 			return;
3597 	}
3598 
3599 	if (idle)
3600 		cpumask_set_cpu(cpu, idle_masks.cpu);
3601 	else
3602 		cpumask_clear_cpu(cpu, idle_masks.cpu);
3603 
3604 #ifdef CONFIG_SCHED_SMT
3605 	if (sched_smt_active()) {
3606 		const struct cpumask *smt = cpu_smt_mask(cpu);
3607 
3608 		if (idle) {
3609 			/*
3610 			 * idle_masks.smt handling is racy but that's fine as
3611 			 * it's only for optimization and self-correcting.
3612 			 */
3613 			for_each_cpu(cpu, smt) {
3614 				if (!cpumask_test_cpu(cpu, idle_masks.cpu))
3615 					return;
3616 			}
3617 			cpumask_or(idle_masks.smt, idle_masks.smt, smt);
3618 		} else {
3619 			cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
3620 		}
3621 	}
3622 #endif
3623 }
3624 
3625 static void handle_hotplug(struct rq *rq, bool online)
3626 {
3627 	int cpu = cpu_of(rq);
3628 
3629 	atomic_long_inc(&scx_hotplug_seq);
3630 
3631 	if (scx_enabled())
3632 		update_selcpu_topology();
3633 
3634 	if (online && SCX_HAS_OP(cpu_online))
3635 		SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu);
3636 	else if (!online && SCX_HAS_OP(cpu_offline))
3637 		SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu);
3638 	else
3639 		scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
3640 			     "cpu %d going %s, exiting scheduler", cpu,
3641 			     online ? "online" : "offline");
3642 }
3643 
3644 void scx_rq_activate(struct rq *rq)
3645 {
3646 	handle_hotplug(rq, true);
3647 }
3648 
3649 void scx_rq_deactivate(struct rq *rq)
3650 {
3651 	handle_hotplug(rq, false);
3652 }
3653 
3654 static void rq_online_scx(struct rq *rq)
3655 {
3656 	rq->scx.flags |= SCX_RQ_ONLINE;
3657 }
3658 
3659 static void rq_offline_scx(struct rq *rq)
3660 {
3661 	rq->scx.flags &= ~SCX_RQ_ONLINE;
3662 }
3663 
3664 #else	/* CONFIG_SMP */
3665 
3666 static bool test_and_clear_cpu_idle(int cpu) { return false; }
3667 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; }
3668 static void reset_idle_masks(void) {}
3669 
3670 #endif	/* CONFIG_SMP */
3671 
3672 static bool check_rq_for_timeouts(struct rq *rq)
3673 {
3674 	struct task_struct *p;
3675 	struct rq_flags rf;
3676 	bool timed_out = false;
3677 
3678 	rq_lock_irqsave(rq, &rf);
3679 	list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) {
3680 		unsigned long last_runnable = p->scx.runnable_at;
3681 
3682 		if (unlikely(time_after(jiffies,
3683 					last_runnable + scx_watchdog_timeout))) {
3684 			u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable);
3685 
3686 			scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
3687 					   "%s[%d] failed to run for %u.%03us",
3688 					   p->comm, p->pid,
3689 					   dur_ms / 1000, dur_ms % 1000);
3690 			timed_out = true;
3691 			break;
3692 		}
3693 	}
3694 	rq_unlock_irqrestore(rq, &rf);
3695 
3696 	return timed_out;
3697 }
3698 
3699 static void scx_watchdog_workfn(struct work_struct *work)
3700 {
3701 	int cpu;
3702 
3703 	WRITE_ONCE(scx_watchdog_timestamp, jiffies);
3704 
3705 	for_each_online_cpu(cpu) {
3706 		if (unlikely(check_rq_for_timeouts(cpu_rq(cpu))))
3707 			break;
3708 
3709 		cond_resched();
3710 	}
3711 	queue_delayed_work(system_unbound_wq, to_delayed_work(work),
3712 			   scx_watchdog_timeout / 2);
3713 }
3714 
3715 void scx_tick(struct rq *rq)
3716 {
3717 	unsigned long last_check;
3718 
3719 	if (!scx_enabled())
3720 		return;
3721 
3722 	last_check = READ_ONCE(scx_watchdog_timestamp);
3723 	if (unlikely(time_after(jiffies,
3724 				last_check + READ_ONCE(scx_watchdog_timeout)))) {
3725 		u32 dur_ms = jiffies_to_msecs(jiffies - last_check);
3726 
3727 		scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
3728 				   "watchdog failed to check in for %u.%03us",
3729 				   dur_ms / 1000, dur_ms % 1000);
3730 	}
3731 
3732 	update_other_load_avgs(rq);
3733 }
3734 
3735 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
3736 {
3737 	update_curr_scx(rq);
3738 
3739 	/*
3740 	 * While disabling, always resched and refresh core-sched timestamp as
3741 	 * we can't trust the slice management or ops.core_sched_before().
3742 	 */
3743 	if (scx_rq_bypassing(rq)) {
3744 		curr->scx.slice = 0;
3745 		touch_core_sched(rq, curr);
3746 	} else if (SCX_HAS_OP(tick)) {
3747 		SCX_CALL_OP(SCX_KF_REST, tick, curr);
3748 	}
3749 
3750 	if (!curr->scx.slice)
3751 		resched_curr(rq);
3752 }
3753 
3754 #ifdef CONFIG_EXT_GROUP_SCHED
3755 static struct cgroup *tg_cgrp(struct task_group *tg)
3756 {
3757 	/*
3758 	 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup,
3759 	 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the
3760 	 * root cgroup.
3761 	 */
3762 	if (tg && tg->css.cgroup)
3763 		return tg->css.cgroup;
3764 	else
3765 		return &cgrp_dfl_root.cgrp;
3766 }
3767 
3768 #define SCX_INIT_TASK_ARGS_CGROUP(tg)		.cgroup = tg_cgrp(tg),
3769 
3770 #else	/* CONFIG_EXT_GROUP_SCHED */
3771 
3772 #define SCX_INIT_TASK_ARGS_CGROUP(tg)
3773 
3774 #endif	/* CONFIG_EXT_GROUP_SCHED */
3775 
3776 static enum scx_task_state scx_get_task_state(const struct task_struct *p)
3777 {
3778 	return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT;
3779 }
3780 
3781 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state)
3782 {
3783 	enum scx_task_state prev_state = scx_get_task_state(p);
3784 	bool warn = false;
3785 
3786 	BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS));
3787 
3788 	switch (state) {
3789 	case SCX_TASK_NONE:
3790 		break;
3791 	case SCX_TASK_INIT:
3792 		warn = prev_state != SCX_TASK_NONE;
3793 		break;
3794 	case SCX_TASK_READY:
3795 		warn = prev_state == SCX_TASK_NONE;
3796 		break;
3797 	case SCX_TASK_ENABLED:
3798 		warn = prev_state != SCX_TASK_READY;
3799 		break;
3800 	default:
3801 		warn = true;
3802 		return;
3803 	}
3804 
3805 	WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]",
3806 		  prev_state, state, p->comm, p->pid);
3807 
3808 	p->scx.flags &= ~SCX_TASK_STATE_MASK;
3809 	p->scx.flags |= state << SCX_TASK_STATE_SHIFT;
3810 }
3811 
3812 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork)
3813 {
3814 	int ret;
3815 
3816 	p->scx.disallow = false;
3817 
3818 	if (SCX_HAS_OP(init_task)) {
3819 		struct scx_init_task_args args = {
3820 			SCX_INIT_TASK_ARGS_CGROUP(tg)
3821 			.fork = fork,
3822 		};
3823 
3824 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args);
3825 		if (unlikely(ret)) {
3826 			ret = ops_sanitize_err("init_task", ret);
3827 			return ret;
3828 		}
3829 	}
3830 
3831 	scx_set_task_state(p, SCX_TASK_INIT);
3832 
3833 	if (p->scx.disallow) {
3834 		if (!fork) {
3835 			struct rq *rq;
3836 			struct rq_flags rf;
3837 
3838 			rq = task_rq_lock(p, &rf);
3839 
3840 			/*
3841 			 * We're in the load path and @p->policy will be applied
3842 			 * right after. Reverting @p->policy here and rejecting
3843 			 * %SCHED_EXT transitions from scx_check_setscheduler()
3844 			 * guarantees that if ops.init_task() sets @p->disallow,
3845 			 * @p can never be in SCX.
3846 			 */
3847 			if (p->policy == SCHED_EXT) {
3848 				p->policy = SCHED_NORMAL;
3849 				atomic_long_inc(&scx_nr_rejected);
3850 			}
3851 
3852 			task_rq_unlock(rq, p, &rf);
3853 		} else if (p->policy == SCHED_EXT) {
3854 			scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork",
3855 				      p->comm, p->pid);
3856 		}
3857 	}
3858 
3859 	p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
3860 	return 0;
3861 }
3862 
3863 static void scx_ops_enable_task(struct task_struct *p)
3864 {
3865 	u32 weight;
3866 
3867 	lockdep_assert_rq_held(task_rq(p));
3868 
3869 	/*
3870 	 * Set the weight before calling ops.enable() so that the scheduler
3871 	 * doesn't see a stale value if they inspect the task struct.
3872 	 */
3873 	if (task_has_idle_policy(p))
3874 		weight = WEIGHT_IDLEPRIO;
3875 	else
3876 		weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO];
3877 
3878 	p->scx.weight = sched_weight_to_cgroup(weight);
3879 
3880 	if (SCX_HAS_OP(enable))
3881 		SCX_CALL_OP_TASK(SCX_KF_REST, enable, p);
3882 	scx_set_task_state(p, SCX_TASK_ENABLED);
3883 
3884 	if (SCX_HAS_OP(set_weight))
3885 		SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
3886 }
3887 
3888 static void scx_ops_disable_task(struct task_struct *p)
3889 {
3890 	lockdep_assert_rq_held(task_rq(p));
3891 	WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED);
3892 
3893 	if (SCX_HAS_OP(disable))
3894 		SCX_CALL_OP(SCX_KF_REST, disable, p);
3895 	scx_set_task_state(p, SCX_TASK_READY);
3896 }
3897 
3898 static void scx_ops_exit_task(struct task_struct *p)
3899 {
3900 	struct scx_exit_task_args args = {
3901 		.cancelled = false,
3902 	};
3903 
3904 	lockdep_assert_rq_held(task_rq(p));
3905 
3906 	switch (scx_get_task_state(p)) {
3907 	case SCX_TASK_NONE:
3908 		return;
3909 	case SCX_TASK_INIT:
3910 		args.cancelled = true;
3911 		break;
3912 	case SCX_TASK_READY:
3913 		break;
3914 	case SCX_TASK_ENABLED:
3915 		scx_ops_disable_task(p);
3916 		break;
3917 	default:
3918 		WARN_ON_ONCE(true);
3919 		return;
3920 	}
3921 
3922 	if (SCX_HAS_OP(exit_task))
3923 		SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args);
3924 	scx_set_task_state(p, SCX_TASK_NONE);
3925 }
3926 
3927 void init_scx_entity(struct sched_ext_entity *scx)
3928 {
3929 	memset(scx, 0, sizeof(*scx));
3930 	INIT_LIST_HEAD(&scx->dsq_list.node);
3931 	RB_CLEAR_NODE(&scx->dsq_priq);
3932 	scx->sticky_cpu = -1;
3933 	scx->holding_cpu = -1;
3934 	INIT_LIST_HEAD(&scx->runnable_node);
3935 	scx->runnable_at = jiffies;
3936 	scx->ddsp_dsq_id = SCX_DSQ_INVALID;
3937 	scx->slice = SCX_SLICE_DFL;
3938 }
3939 
3940 void scx_pre_fork(struct task_struct *p)
3941 {
3942 	/*
3943 	 * BPF scheduler enable/disable paths want to be able to iterate and
3944 	 * update all tasks which can become complex when racing forks. As
3945 	 * enable/disable are very cold paths, let's use a percpu_rwsem to
3946 	 * exclude forks.
3947 	 */
3948 	percpu_down_read(&scx_fork_rwsem);
3949 }
3950 
3951 int scx_fork(struct task_struct *p)
3952 {
3953 	percpu_rwsem_assert_held(&scx_fork_rwsem);
3954 
3955 	if (scx_ops_init_task_enabled)
3956 		return scx_ops_init_task(p, task_group(p), true);
3957 	else
3958 		return 0;
3959 }
3960 
3961 void scx_post_fork(struct task_struct *p)
3962 {
3963 	if (scx_ops_init_task_enabled) {
3964 		scx_set_task_state(p, SCX_TASK_READY);
3965 
3966 		/*
3967 		 * Enable the task immediately if it's running on sched_ext.
3968 		 * Otherwise, it'll be enabled in switching_to_scx() if and
3969 		 * when it's ever configured to run with a SCHED_EXT policy.
3970 		 */
3971 		if (p->sched_class == &ext_sched_class) {
3972 			struct rq_flags rf;
3973 			struct rq *rq;
3974 
3975 			rq = task_rq_lock(p, &rf);
3976 			scx_ops_enable_task(p);
3977 			task_rq_unlock(rq, p, &rf);
3978 		}
3979 	}
3980 
3981 	spin_lock_irq(&scx_tasks_lock);
3982 	list_add_tail(&p->scx.tasks_node, &scx_tasks);
3983 	spin_unlock_irq(&scx_tasks_lock);
3984 
3985 	percpu_up_read(&scx_fork_rwsem);
3986 }
3987 
3988 void scx_cancel_fork(struct task_struct *p)
3989 {
3990 	if (scx_enabled()) {
3991 		struct rq *rq;
3992 		struct rq_flags rf;
3993 
3994 		rq = task_rq_lock(p, &rf);
3995 		WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY);
3996 		scx_ops_exit_task(p);
3997 		task_rq_unlock(rq, p, &rf);
3998 	}
3999 
4000 	percpu_up_read(&scx_fork_rwsem);
4001 }
4002 
4003 void sched_ext_free(struct task_struct *p)
4004 {
4005 	unsigned long flags;
4006 
4007 	spin_lock_irqsave(&scx_tasks_lock, flags);
4008 	list_del_init(&p->scx.tasks_node);
4009 	spin_unlock_irqrestore(&scx_tasks_lock, flags);
4010 
4011 	/*
4012 	 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY ->
4013 	 * ENABLED transitions can't race us. Disable ops for @p.
4014 	 */
4015 	if (scx_get_task_state(p) != SCX_TASK_NONE) {
4016 		struct rq_flags rf;
4017 		struct rq *rq;
4018 
4019 		rq = task_rq_lock(p, &rf);
4020 		scx_ops_exit_task(p);
4021 		task_rq_unlock(rq, p, &rf);
4022 	}
4023 }
4024 
4025 static void reweight_task_scx(struct rq *rq, struct task_struct *p,
4026 			      const struct load_weight *lw)
4027 {
4028 	lockdep_assert_rq_held(task_rq(p));
4029 
4030 	p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight));
4031 	if (SCX_HAS_OP(set_weight))
4032 		SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
4033 }
4034 
4035 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio)
4036 {
4037 }
4038 
4039 static void switching_to_scx(struct rq *rq, struct task_struct *p)
4040 {
4041 	scx_ops_enable_task(p);
4042 
4043 	/*
4044 	 * set_cpus_allowed_scx() is not called while @p is associated with a
4045 	 * different scheduler class. Keep the BPF scheduler up-to-date.
4046 	 */
4047 	if (SCX_HAS_OP(set_cpumask))
4048 		SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
4049 				 (struct cpumask *)p->cpus_ptr);
4050 }
4051 
4052 static void switched_from_scx(struct rq *rq, struct task_struct *p)
4053 {
4054 	scx_ops_disable_task(p);
4055 }
4056 
4057 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {}
4058 static void switched_to_scx(struct rq *rq, struct task_struct *p) {}
4059 
4060 int scx_check_setscheduler(struct task_struct *p, int policy)
4061 {
4062 	lockdep_assert_rq_held(task_rq(p));
4063 
4064 	/* if disallow, reject transitioning into SCX */
4065 	if (scx_enabled() && READ_ONCE(p->scx.disallow) &&
4066 	    p->policy != policy && policy == SCHED_EXT)
4067 		return -EACCES;
4068 
4069 	return 0;
4070 }
4071 
4072 #ifdef CONFIG_NO_HZ_FULL
4073 bool scx_can_stop_tick(struct rq *rq)
4074 {
4075 	struct task_struct *p = rq->curr;
4076 
4077 	if (scx_rq_bypassing(rq))
4078 		return false;
4079 
4080 	if (p->sched_class != &ext_sched_class)
4081 		return true;
4082 
4083 	/*
4084 	 * @rq can dispatch from different DSQs, so we can't tell whether it
4085 	 * needs the tick or not by looking at nr_running. Allow stopping ticks
4086 	 * iff the BPF scheduler indicated so. See set_next_task_scx().
4087 	 */
4088 	return rq->scx.flags & SCX_RQ_CAN_STOP_TICK;
4089 }
4090 #endif
4091 
4092 #ifdef CONFIG_EXT_GROUP_SCHED
4093 
4094 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem);
4095 static bool scx_cgroup_enabled;
4096 static bool cgroup_warned_missing_weight;
4097 static bool cgroup_warned_missing_idle;
4098 
4099 static void scx_cgroup_warn_missing_weight(struct task_group *tg)
4100 {
4101 	if (scx_ops_enable_state() == SCX_OPS_DISABLED ||
4102 	    cgroup_warned_missing_weight)
4103 		return;
4104 
4105 	if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent)
4106 		return;
4107 
4108 	pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n",
4109 		scx_ops.name);
4110 	cgroup_warned_missing_weight = true;
4111 }
4112 
4113 static void scx_cgroup_warn_missing_idle(struct task_group *tg)
4114 {
4115 	if (!scx_cgroup_enabled || cgroup_warned_missing_idle)
4116 		return;
4117 
4118 	if (!tg->idle)
4119 		return;
4120 
4121 	pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n",
4122 		scx_ops.name);
4123 	cgroup_warned_missing_idle = true;
4124 }
4125 
4126 int scx_tg_online(struct task_group *tg)
4127 {
4128 	int ret = 0;
4129 
4130 	WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED));
4131 
4132 	percpu_down_read(&scx_cgroup_rwsem);
4133 
4134 	scx_cgroup_warn_missing_weight(tg);
4135 
4136 	if (scx_cgroup_enabled) {
4137 		if (SCX_HAS_OP(cgroup_init)) {
4138 			struct scx_cgroup_init_args args =
4139 				{ .weight = tg->scx_weight };
4140 
4141 			ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
4142 					      tg->css.cgroup, &args);
4143 			if (ret)
4144 				ret = ops_sanitize_err("cgroup_init", ret);
4145 		}
4146 		if (ret == 0)
4147 			tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED;
4148 	} else {
4149 		tg->scx_flags |= SCX_TG_ONLINE;
4150 	}
4151 
4152 	percpu_up_read(&scx_cgroup_rwsem);
4153 	return ret;
4154 }
4155 
4156 void scx_tg_offline(struct task_group *tg)
4157 {
4158 	WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE));
4159 
4160 	percpu_down_read(&scx_cgroup_rwsem);
4161 
4162 	if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED))
4163 		SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup);
4164 	tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED);
4165 
4166 	percpu_up_read(&scx_cgroup_rwsem);
4167 }
4168 
4169 int scx_cgroup_can_attach(struct cgroup_taskset *tset)
4170 {
4171 	struct cgroup_subsys_state *css;
4172 	struct task_struct *p;
4173 	int ret;
4174 
4175 	/* released in scx_finish/cancel_attach() */
4176 	percpu_down_read(&scx_cgroup_rwsem);
4177 
4178 	if (!scx_cgroup_enabled)
4179 		return 0;
4180 
4181 	cgroup_taskset_for_each(p, css, tset) {
4182 		struct cgroup *from = tg_cgrp(task_group(p));
4183 		struct cgroup *to = tg_cgrp(css_tg(css));
4184 
4185 		WARN_ON_ONCE(p->scx.cgrp_moving_from);
4186 
4187 		/*
4188 		 * sched_move_task() omits identity migrations. Let's match the
4189 		 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move()
4190 		 * always match one-to-one.
4191 		 */
4192 		if (from == to)
4193 			continue;
4194 
4195 		if (SCX_HAS_OP(cgroup_prep_move)) {
4196 			ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move,
4197 					      p, from, css->cgroup);
4198 			if (ret)
4199 				goto err;
4200 		}
4201 
4202 		p->scx.cgrp_moving_from = from;
4203 	}
4204 
4205 	return 0;
4206 
4207 err:
4208 	cgroup_taskset_for_each(p, css, tset) {
4209 		if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
4210 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
4211 				    p->scx.cgrp_moving_from, css->cgroup);
4212 		p->scx.cgrp_moving_from = NULL;
4213 	}
4214 
4215 	percpu_up_read(&scx_cgroup_rwsem);
4216 	return ops_sanitize_err("cgroup_prep_move", ret);
4217 }
4218 
4219 void scx_move_task(struct task_struct *p)
4220 {
4221 	if (!scx_cgroup_enabled)
4222 		return;
4223 
4224 	/*
4225 	 * We're called from sched_move_task() which handles both cgroup and
4226 	 * autogroup moves. Ignore the latter.
4227 	 *
4228 	 * Also ignore exiting tasks, because in the exit path tasks transition
4229 	 * from the autogroup to the root group, so task_group_is_autogroup()
4230 	 * alone isn't able to catch exiting autogroup tasks. This is safe for
4231 	 * cgroup_move(), because cgroup migrations never happen for PF_EXITING
4232 	 * tasks.
4233 	 */
4234 	if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING))
4235 		return;
4236 
4237 	/*
4238 	 * @p must have ops.cgroup_prep_move() called on it and thus
4239 	 * cgrp_moving_from set.
4240 	 */
4241 	if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from))
4242 		SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p,
4243 			p->scx.cgrp_moving_from, tg_cgrp(task_group(p)));
4244 	p->scx.cgrp_moving_from = NULL;
4245 }
4246 
4247 void scx_cgroup_finish_attach(void)
4248 {
4249 	percpu_up_read(&scx_cgroup_rwsem);
4250 }
4251 
4252 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset)
4253 {
4254 	struct cgroup_subsys_state *css;
4255 	struct task_struct *p;
4256 
4257 	if (!scx_cgroup_enabled)
4258 		goto out_unlock;
4259 
4260 	cgroup_taskset_for_each(p, css, tset) {
4261 		if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
4262 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
4263 				    p->scx.cgrp_moving_from, css->cgroup);
4264 		p->scx.cgrp_moving_from = NULL;
4265 	}
4266 out_unlock:
4267 	percpu_up_read(&scx_cgroup_rwsem);
4268 }
4269 
4270 void scx_group_set_weight(struct task_group *tg, unsigned long weight)
4271 {
4272 	percpu_down_read(&scx_cgroup_rwsem);
4273 
4274 	if (scx_cgroup_enabled && tg->scx_weight != weight) {
4275 		if (SCX_HAS_OP(cgroup_set_weight))
4276 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight,
4277 				    tg_cgrp(tg), weight);
4278 		tg->scx_weight = weight;
4279 	}
4280 
4281 	percpu_up_read(&scx_cgroup_rwsem);
4282 }
4283 
4284 void scx_group_set_idle(struct task_group *tg, bool idle)
4285 {
4286 	percpu_down_read(&scx_cgroup_rwsem);
4287 	scx_cgroup_warn_missing_idle(tg);
4288 	percpu_up_read(&scx_cgroup_rwsem);
4289 }
4290 
4291 static void scx_cgroup_lock(void)
4292 {
4293 	percpu_down_write(&scx_cgroup_rwsem);
4294 }
4295 
4296 static void scx_cgroup_unlock(void)
4297 {
4298 	percpu_up_write(&scx_cgroup_rwsem);
4299 }
4300 
4301 #else	/* CONFIG_EXT_GROUP_SCHED */
4302 
4303 static inline void scx_cgroup_lock(void) {}
4304 static inline void scx_cgroup_unlock(void) {}
4305 
4306 #endif	/* CONFIG_EXT_GROUP_SCHED */
4307 
4308 /*
4309  * Omitted operations:
4310  *
4311  * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task
4312  *   isn't tied to the CPU at that point. Preemption is implemented by resetting
4313  *   the victim task's slice to 0 and triggering reschedule on the target CPU.
4314  *
4315  * - migrate_task_rq: Unnecessary as task to cpu mapping is transient.
4316  *
4317  * - task_fork/dead: We need fork/dead notifications for all tasks regardless of
4318  *   their current sched_class. Call them directly from sched core instead.
4319  */
4320 DEFINE_SCHED_CLASS(ext) = {
4321 	.enqueue_task		= enqueue_task_scx,
4322 	.dequeue_task		= dequeue_task_scx,
4323 	.yield_task		= yield_task_scx,
4324 	.yield_to_task		= yield_to_task_scx,
4325 
4326 	.wakeup_preempt		= wakeup_preempt_scx,
4327 
4328 	.balance		= balance_scx,
4329 	.pick_task		= pick_task_scx,
4330 
4331 	.put_prev_task		= put_prev_task_scx,
4332 	.set_next_task		= set_next_task_scx,
4333 
4334 #ifdef CONFIG_SMP
4335 	.select_task_rq		= select_task_rq_scx,
4336 	.task_woken		= task_woken_scx,
4337 	.set_cpus_allowed	= set_cpus_allowed_scx,
4338 
4339 	.rq_online		= rq_online_scx,
4340 	.rq_offline		= rq_offline_scx,
4341 #endif
4342 
4343 	.task_tick		= task_tick_scx,
4344 
4345 	.switching_to		= switching_to_scx,
4346 	.switched_from		= switched_from_scx,
4347 	.switched_to		= switched_to_scx,
4348 	.reweight_task		= reweight_task_scx,
4349 	.prio_changed		= prio_changed_scx,
4350 
4351 	.update_curr		= update_curr_scx,
4352 
4353 #ifdef CONFIG_UCLAMP_TASK
4354 	.uclamp_enabled		= 1,
4355 #endif
4356 };
4357 
4358 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id)
4359 {
4360 	memset(dsq, 0, sizeof(*dsq));
4361 
4362 	raw_spin_lock_init(&dsq->lock);
4363 	INIT_LIST_HEAD(&dsq->list);
4364 	dsq->id = dsq_id;
4365 }
4366 
4367 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node)
4368 {
4369 	struct scx_dispatch_q *dsq;
4370 	int ret;
4371 
4372 	if (dsq_id & SCX_DSQ_FLAG_BUILTIN)
4373 		return ERR_PTR(-EINVAL);
4374 
4375 	dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
4376 	if (!dsq)
4377 		return ERR_PTR(-ENOMEM);
4378 
4379 	init_dsq(dsq, dsq_id);
4380 
4381 	ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node,
4382 				     dsq_hash_params);
4383 	if (ret) {
4384 		kfree(dsq);
4385 		return ERR_PTR(ret);
4386 	}
4387 	return dsq;
4388 }
4389 
4390 static void free_dsq_irq_workfn(struct irq_work *irq_work)
4391 {
4392 	struct llist_node *to_free = llist_del_all(&dsqs_to_free);
4393 	struct scx_dispatch_q *dsq, *tmp_dsq;
4394 
4395 	llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node)
4396 		kfree_rcu(dsq, rcu);
4397 }
4398 
4399 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn);
4400 
4401 static void destroy_dsq(u64 dsq_id)
4402 {
4403 	struct scx_dispatch_q *dsq;
4404 	unsigned long flags;
4405 
4406 	rcu_read_lock();
4407 
4408 	dsq = find_user_dsq(dsq_id);
4409 	if (!dsq)
4410 		goto out_unlock_rcu;
4411 
4412 	raw_spin_lock_irqsave(&dsq->lock, flags);
4413 
4414 	if (dsq->nr) {
4415 		scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)",
4416 			      dsq->id, dsq->nr);
4417 		goto out_unlock_dsq;
4418 	}
4419 
4420 	if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params))
4421 		goto out_unlock_dsq;
4422 
4423 	/*
4424 	 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from
4425 	 * queueing more tasks. As this function can be called from anywhere,
4426 	 * freeing is bounced through an irq work to avoid nesting RCU
4427 	 * operations inside scheduler locks.
4428 	 */
4429 	dsq->id = SCX_DSQ_INVALID;
4430 	llist_add(&dsq->free_node, &dsqs_to_free);
4431 	irq_work_queue(&free_dsq_irq_work);
4432 
4433 out_unlock_dsq:
4434 	raw_spin_unlock_irqrestore(&dsq->lock, flags);
4435 out_unlock_rcu:
4436 	rcu_read_unlock();
4437 }
4438 
4439 #ifdef CONFIG_EXT_GROUP_SCHED
4440 static void scx_cgroup_exit(void)
4441 {
4442 	struct cgroup_subsys_state *css;
4443 
4444 	percpu_rwsem_assert_held(&scx_cgroup_rwsem);
4445 
4446 	scx_cgroup_enabled = false;
4447 
4448 	/*
4449 	 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk
4450 	 * cgroups and exit all the inited ones, all online cgroups are exited.
4451 	 */
4452 	rcu_read_lock();
4453 	css_for_each_descendant_post(css, &root_task_group.css) {
4454 		struct task_group *tg = css_tg(css);
4455 
4456 		if (!(tg->scx_flags & SCX_TG_INITED))
4457 			continue;
4458 		tg->scx_flags &= ~SCX_TG_INITED;
4459 
4460 		if (!scx_ops.cgroup_exit)
4461 			continue;
4462 
4463 		if (WARN_ON_ONCE(!css_tryget(css)))
4464 			continue;
4465 		rcu_read_unlock();
4466 
4467 		SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup);
4468 
4469 		rcu_read_lock();
4470 		css_put(css);
4471 	}
4472 	rcu_read_unlock();
4473 }
4474 
4475 static int scx_cgroup_init(void)
4476 {
4477 	struct cgroup_subsys_state *css;
4478 	int ret;
4479 
4480 	percpu_rwsem_assert_held(&scx_cgroup_rwsem);
4481 
4482 	cgroup_warned_missing_weight = false;
4483 	cgroup_warned_missing_idle = false;
4484 
4485 	/*
4486 	 * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk
4487 	 * cgroups and init, all online cgroups are initialized.
4488 	 */
4489 	rcu_read_lock();
4490 	css_for_each_descendant_pre(css, &root_task_group.css) {
4491 		struct task_group *tg = css_tg(css);
4492 		struct scx_cgroup_init_args args = { .weight = tg->scx_weight };
4493 
4494 		scx_cgroup_warn_missing_weight(tg);
4495 		scx_cgroup_warn_missing_idle(tg);
4496 
4497 		if ((tg->scx_flags &
4498 		     (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE)
4499 			continue;
4500 
4501 		if (!scx_ops.cgroup_init) {
4502 			tg->scx_flags |= SCX_TG_INITED;
4503 			continue;
4504 		}
4505 
4506 		if (WARN_ON_ONCE(!css_tryget(css)))
4507 			continue;
4508 		rcu_read_unlock();
4509 
4510 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
4511 				      css->cgroup, &args);
4512 		if (ret) {
4513 			css_put(css);
4514 			scx_ops_error("ops.cgroup_init() failed (%d)", ret);
4515 			return ret;
4516 		}
4517 		tg->scx_flags |= SCX_TG_INITED;
4518 
4519 		rcu_read_lock();
4520 		css_put(css);
4521 	}
4522 	rcu_read_unlock();
4523 
4524 	WARN_ON_ONCE(scx_cgroup_enabled);
4525 	scx_cgroup_enabled = true;
4526 
4527 	return 0;
4528 }
4529 
4530 #else
4531 static void scx_cgroup_exit(void) {}
4532 static int scx_cgroup_init(void) { return 0; }
4533 #endif
4534 
4535 
4536 /********************************************************************************
4537  * Sysfs interface and ops enable/disable.
4538  */
4539 
4540 #define SCX_ATTR(_name)								\
4541 	static struct kobj_attribute scx_attr_##_name = {			\
4542 		.attr = { .name = __stringify(_name), .mode = 0444 },		\
4543 		.show = scx_attr_##_name##_show,				\
4544 	}
4545 
4546 static ssize_t scx_attr_state_show(struct kobject *kobj,
4547 				   struct kobj_attribute *ka, char *buf)
4548 {
4549 	return sysfs_emit(buf, "%s\n",
4550 			  scx_ops_enable_state_str[scx_ops_enable_state()]);
4551 }
4552 SCX_ATTR(state);
4553 
4554 static ssize_t scx_attr_switch_all_show(struct kobject *kobj,
4555 					struct kobj_attribute *ka, char *buf)
4556 {
4557 	return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all));
4558 }
4559 SCX_ATTR(switch_all);
4560 
4561 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj,
4562 					 struct kobj_attribute *ka, char *buf)
4563 {
4564 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected));
4565 }
4566 SCX_ATTR(nr_rejected);
4567 
4568 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj,
4569 					 struct kobj_attribute *ka, char *buf)
4570 {
4571 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq));
4572 }
4573 SCX_ATTR(hotplug_seq);
4574 
4575 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj,
4576 					struct kobj_attribute *ka, char *buf)
4577 {
4578 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq));
4579 }
4580 SCX_ATTR(enable_seq);
4581 
4582 static struct attribute *scx_global_attrs[] = {
4583 	&scx_attr_state.attr,
4584 	&scx_attr_switch_all.attr,
4585 	&scx_attr_nr_rejected.attr,
4586 	&scx_attr_hotplug_seq.attr,
4587 	&scx_attr_enable_seq.attr,
4588 	NULL,
4589 };
4590 
4591 static const struct attribute_group scx_global_attr_group = {
4592 	.attrs = scx_global_attrs,
4593 };
4594 
4595 static void scx_kobj_release(struct kobject *kobj)
4596 {
4597 	kfree(kobj);
4598 }
4599 
4600 static ssize_t scx_attr_ops_show(struct kobject *kobj,
4601 				 struct kobj_attribute *ka, char *buf)
4602 {
4603 	return sysfs_emit(buf, "%s\n", scx_ops.name);
4604 }
4605 SCX_ATTR(ops);
4606 
4607 static struct attribute *scx_sched_attrs[] = {
4608 	&scx_attr_ops.attr,
4609 	NULL,
4610 };
4611 ATTRIBUTE_GROUPS(scx_sched);
4612 
4613 static const struct kobj_type scx_ktype = {
4614 	.release = scx_kobj_release,
4615 	.sysfs_ops = &kobj_sysfs_ops,
4616 	.default_groups = scx_sched_groups,
4617 };
4618 
4619 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
4620 {
4621 	return add_uevent_var(env, "SCXOPS=%s", scx_ops.name);
4622 }
4623 
4624 static const struct kset_uevent_ops scx_uevent_ops = {
4625 	.uevent = scx_uevent,
4626 };
4627 
4628 /*
4629  * Used by sched_fork() and __setscheduler_prio() to pick the matching
4630  * sched_class. dl/rt are already handled.
4631  */
4632 bool task_should_scx(int policy)
4633 {
4634 	if (!scx_enabled() ||
4635 	    unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING))
4636 		return false;
4637 	if (READ_ONCE(scx_switching_all))
4638 		return true;
4639 	return policy == SCHED_EXT;
4640 }
4641 
4642 /**
4643  * scx_softlockup - sched_ext softlockup handler
4644  *
4645  * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can
4646  * live-lock the system by making many CPUs target the same DSQ to the point
4647  * where soft-lockup detection triggers. This function is called from
4648  * soft-lockup watchdog when the triggering point is close and tries to unjam
4649  * the system by enabling the breather and aborting the BPF scheduler.
4650  */
4651 void scx_softlockup(u32 dur_s)
4652 {
4653 	switch (scx_ops_enable_state()) {
4654 	case SCX_OPS_ENABLING:
4655 	case SCX_OPS_ENABLED:
4656 		break;
4657 	default:
4658 		return;
4659 	}
4660 
4661 	/* allow only one instance, cleared at the end of scx_ops_bypass() */
4662 	if (test_and_set_bit(0, &scx_in_softlockup))
4663 		return;
4664 
4665 	printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n",
4666 			smp_processor_id(), dur_s, scx_ops.name);
4667 
4668 	/*
4669 	 * Some CPUs may be trapped in the dispatch paths. Enable breather
4670 	 * immediately; otherwise, we might even be able to get to
4671 	 * scx_ops_bypass().
4672 	 */
4673 	atomic_inc(&scx_ops_breather_depth);
4674 
4675 	scx_ops_error("soft lockup - CPU#%d stuck for %us",
4676 		      smp_processor_id(), dur_s);
4677 }
4678 
4679 static void scx_clear_softlockup(void)
4680 {
4681 	if (test_and_clear_bit(0, &scx_in_softlockup))
4682 		atomic_dec(&scx_ops_breather_depth);
4683 }
4684 
4685 /**
4686  * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress
4687  *
4688  * Bypassing guarantees that all runnable tasks make forward progress without
4689  * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
4690  * be held by tasks that the BPF scheduler is forgetting to run, which
4691  * unfortunately also excludes toggling the static branches.
4692  *
4693  * Let's work around by overriding a couple ops and modifying behaviors based on
4694  * the DISABLING state and then cycling the queued tasks through dequeue/enqueue
4695  * to force global FIFO scheduling.
4696  *
4697  * - ops.select_cpu() is ignored and the default select_cpu() is used.
4698  *
4699  * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order.
4700  *   %SCX_OPS_ENQ_LAST is also ignored.
4701  *
4702  * - ops.dispatch() is ignored.
4703  *
4704  * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice
4705  *   can't be trusted. Whenever a tick triggers, the running task is rotated to
4706  *   the tail of the queue with core_sched_at touched.
4707  *
4708  * - pick_next_task() suppresses zero slice warning.
4709  *
4710  * - scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM
4711  *   operations.
4712  *
4713  * - scx_prio_less() reverts to the default core_sched_at order.
4714  */
4715 static void scx_ops_bypass(bool bypass)
4716 {
4717 	static DEFINE_RAW_SPINLOCK(bypass_lock);
4718 	int cpu;
4719 	unsigned long flags;
4720 
4721 	raw_spin_lock_irqsave(&bypass_lock, flags);
4722 	if (bypass) {
4723 		scx_ops_bypass_depth++;
4724 		WARN_ON_ONCE(scx_ops_bypass_depth <= 0);
4725 		if (scx_ops_bypass_depth != 1)
4726 			goto unlock;
4727 	} else {
4728 		scx_ops_bypass_depth--;
4729 		WARN_ON_ONCE(scx_ops_bypass_depth < 0);
4730 		if (scx_ops_bypass_depth != 0)
4731 			goto unlock;
4732 	}
4733 
4734 	atomic_inc(&scx_ops_breather_depth);
4735 
4736 	/*
4737 	 * No task property is changing. We just need to make sure all currently
4738 	 * queued tasks are re-queued according to the new scx_rq_bypassing()
4739 	 * state. As an optimization, walk each rq's runnable_list instead of
4740 	 * the scx_tasks list.
4741 	 *
4742 	 * This function can't trust the scheduler and thus can't use
4743 	 * cpus_read_lock(). Walk all possible CPUs instead of online.
4744 	 */
4745 	for_each_possible_cpu(cpu) {
4746 		struct rq *rq = cpu_rq(cpu);
4747 		struct rq_flags rf;
4748 		struct task_struct *p, *n;
4749 
4750 		rq_lock(rq, &rf);
4751 
4752 		if (bypass) {
4753 			WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING);
4754 			rq->scx.flags |= SCX_RQ_BYPASSING;
4755 		} else {
4756 			WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING));
4757 			rq->scx.flags &= ~SCX_RQ_BYPASSING;
4758 		}
4759 
4760 		/*
4761 		 * We need to guarantee that no tasks are on the BPF scheduler
4762 		 * while bypassing. Either we see enabled or the enable path
4763 		 * sees scx_rq_bypassing() before moving tasks to SCX.
4764 		 */
4765 		if (!scx_enabled()) {
4766 			rq_unlock_irqrestore(rq, &rf);
4767 			continue;
4768 		}
4769 
4770 		/*
4771 		 * The use of list_for_each_entry_safe_reverse() is required
4772 		 * because each task is going to be removed from and added back
4773 		 * to the runnable_list during iteration. Because they're added
4774 		 * to the tail of the list, safe reverse iteration can still
4775 		 * visit all nodes.
4776 		 */
4777 		list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list,
4778 						 scx.runnable_node) {
4779 			struct sched_enq_and_set_ctx ctx;
4780 
4781 			/* cycling deq/enq is enough, see the function comment */
4782 			sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4783 			sched_enq_and_set_task(&ctx);
4784 		}
4785 
4786 		rq_unlock(rq, &rf);
4787 
4788 		/* resched to restore ticks and idle state */
4789 		resched_cpu(cpu);
4790 	}
4791 
4792 	atomic_dec(&scx_ops_breather_depth);
4793 unlock:
4794 	raw_spin_unlock_irqrestore(&bypass_lock, flags);
4795 	scx_clear_softlockup();
4796 }
4797 
4798 static void free_exit_info(struct scx_exit_info *ei)
4799 {
4800 	kfree(ei->dump);
4801 	kfree(ei->msg);
4802 	kfree(ei->bt);
4803 	kfree(ei);
4804 }
4805 
4806 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len)
4807 {
4808 	struct scx_exit_info *ei;
4809 
4810 	ei = kzalloc(sizeof(*ei), GFP_KERNEL);
4811 	if (!ei)
4812 		return NULL;
4813 
4814 	ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL);
4815 	ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL);
4816 	ei->dump = kzalloc(exit_dump_len, GFP_KERNEL);
4817 
4818 	if (!ei->bt || !ei->msg || !ei->dump) {
4819 		free_exit_info(ei);
4820 		return NULL;
4821 	}
4822 
4823 	return ei;
4824 }
4825 
4826 static const char *scx_exit_reason(enum scx_exit_kind kind)
4827 {
4828 	switch (kind) {
4829 	case SCX_EXIT_UNREG:
4830 		return "unregistered from user space";
4831 	case SCX_EXIT_UNREG_BPF:
4832 		return "unregistered from BPF";
4833 	case SCX_EXIT_UNREG_KERN:
4834 		return "unregistered from the main kernel";
4835 	case SCX_EXIT_SYSRQ:
4836 		return "disabled by sysrq-S";
4837 	case SCX_EXIT_ERROR:
4838 		return "runtime error";
4839 	case SCX_EXIT_ERROR_BPF:
4840 		return "scx_bpf_error";
4841 	case SCX_EXIT_ERROR_STALL:
4842 		return "runnable task stall";
4843 	default:
4844 		return "<UNKNOWN>";
4845 	}
4846 }
4847 
4848 static void scx_ops_disable_workfn(struct kthread_work *work)
4849 {
4850 	struct scx_exit_info *ei = scx_exit_info;
4851 	struct scx_task_iter sti;
4852 	struct task_struct *p;
4853 	struct rhashtable_iter rht_iter;
4854 	struct scx_dispatch_q *dsq;
4855 	int i, kind;
4856 
4857 	kind = atomic_read(&scx_exit_kind);
4858 	while (true) {
4859 		/*
4860 		 * NONE indicates that a new scx_ops has been registered since
4861 		 * disable was scheduled - don't kill the new ops. DONE
4862 		 * indicates that the ops has already been disabled.
4863 		 */
4864 		if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)
4865 			return;
4866 		if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE))
4867 			break;
4868 	}
4869 	ei->kind = kind;
4870 	ei->reason = scx_exit_reason(ei->kind);
4871 
4872 	/* guarantee forward progress by bypassing scx_ops */
4873 	scx_ops_bypass(true);
4874 
4875 	switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) {
4876 	case SCX_OPS_DISABLING:
4877 		WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
4878 		break;
4879 	case SCX_OPS_DISABLED:
4880 		pr_warn("sched_ext: ops error detected without ops (%s)\n",
4881 			scx_exit_info->msg);
4882 		WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
4883 			     SCX_OPS_DISABLING);
4884 		goto done;
4885 	default:
4886 		break;
4887 	}
4888 
4889 	/*
4890 	 * Here, every runnable task is guaranteed to make forward progress and
4891 	 * we can safely use blocking synchronization constructs. Actually
4892 	 * disable ops.
4893 	 */
4894 	mutex_lock(&scx_ops_enable_mutex);
4895 
4896 	static_branch_disable(&__scx_switched_all);
4897 	WRITE_ONCE(scx_switching_all, false);
4898 
4899 	/*
4900 	 * Shut down cgroup support before tasks so that the cgroup attach path
4901 	 * doesn't race against scx_ops_exit_task().
4902 	 */
4903 	scx_cgroup_lock();
4904 	scx_cgroup_exit();
4905 	scx_cgroup_unlock();
4906 
4907 	/*
4908 	 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones
4909 	 * must be switched out and exited synchronously.
4910 	 */
4911 	percpu_down_write(&scx_fork_rwsem);
4912 
4913 	scx_ops_init_task_enabled = false;
4914 
4915 	scx_task_iter_start(&sti);
4916 	while ((p = scx_task_iter_next_locked(&sti))) {
4917 		const struct sched_class *old_class = p->sched_class;
4918 		const struct sched_class *new_class =
4919 			__setscheduler_class(p->policy, p->prio);
4920 		struct sched_enq_and_set_ctx ctx;
4921 
4922 		if (old_class != new_class && p->se.sched_delayed)
4923 			dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
4924 
4925 		sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4926 
4927 		p->sched_class = new_class;
4928 		check_class_changing(task_rq(p), p, old_class);
4929 
4930 		sched_enq_and_set_task(&ctx);
4931 
4932 		check_class_changed(task_rq(p), p, old_class, p->prio);
4933 		scx_ops_exit_task(p);
4934 	}
4935 	scx_task_iter_stop(&sti);
4936 	percpu_up_write(&scx_fork_rwsem);
4937 
4938 	/* no task is on scx, turn off all the switches and flush in-progress calls */
4939 	static_branch_disable(&__scx_ops_enabled);
4940 	for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++)
4941 		static_branch_disable(&scx_has_op[i]);
4942 	static_branch_disable(&scx_ops_enq_last);
4943 	static_branch_disable(&scx_ops_enq_exiting);
4944 	static_branch_disable(&scx_ops_cpu_preempt);
4945 	static_branch_disable(&scx_builtin_idle_enabled);
4946 	synchronize_rcu();
4947 
4948 	if (ei->kind >= SCX_EXIT_ERROR) {
4949 		pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4950 		       scx_ops.name, ei->reason);
4951 
4952 		if (ei->msg[0] != '\0')
4953 			pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg);
4954 #ifdef CONFIG_STACKTRACE
4955 		stack_trace_print(ei->bt, ei->bt_len, 2);
4956 #endif
4957 	} else {
4958 		pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4959 			scx_ops.name, ei->reason);
4960 	}
4961 
4962 	if (scx_ops.exit)
4963 		SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei);
4964 
4965 	cancel_delayed_work_sync(&scx_watchdog_work);
4966 
4967 	/*
4968 	 * Delete the kobject from the hierarchy eagerly in addition to just
4969 	 * dropping a reference. Otherwise, if the object is deleted
4970 	 * asynchronously, sysfs could observe an object of the same name still
4971 	 * in the hierarchy when another scheduler is loaded.
4972 	 */
4973 	kobject_del(scx_root_kobj);
4974 	kobject_put(scx_root_kobj);
4975 	scx_root_kobj = NULL;
4976 
4977 	memset(&scx_ops, 0, sizeof(scx_ops));
4978 
4979 	rhashtable_walk_enter(&dsq_hash, &rht_iter);
4980 	do {
4981 		rhashtable_walk_start(&rht_iter);
4982 
4983 		while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
4984 			destroy_dsq(dsq->id);
4985 
4986 		rhashtable_walk_stop(&rht_iter);
4987 	} while (dsq == ERR_PTR(-EAGAIN));
4988 	rhashtable_walk_exit(&rht_iter);
4989 
4990 	free_percpu(scx_dsp_ctx);
4991 	scx_dsp_ctx = NULL;
4992 	scx_dsp_max_batch = 0;
4993 
4994 	free_exit_info(scx_exit_info);
4995 	scx_exit_info = NULL;
4996 
4997 	mutex_unlock(&scx_ops_enable_mutex);
4998 
4999 	WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
5000 		     SCX_OPS_DISABLING);
5001 done:
5002 	scx_ops_bypass(false);
5003 }
5004 
5005 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn);
5006 
5007 static void schedule_scx_ops_disable_work(void)
5008 {
5009 	struct kthread_worker *helper = READ_ONCE(scx_ops_helper);
5010 
5011 	/*
5012 	 * We may be called spuriously before the first bpf_sched_ext_reg(). If
5013 	 * scx_ops_helper isn't set up yet, there's nothing to do.
5014 	 */
5015 	if (helper)
5016 		kthread_queue_work(helper, &scx_ops_disable_work);
5017 }
5018 
5019 static void scx_ops_disable(enum scx_exit_kind kind)
5020 {
5021 	int none = SCX_EXIT_NONE;
5022 
5023 	if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE))
5024 		kind = SCX_EXIT_ERROR;
5025 
5026 	atomic_try_cmpxchg(&scx_exit_kind, &none, kind);
5027 
5028 	schedule_scx_ops_disable_work();
5029 }
5030 
5031 static void dump_newline(struct seq_buf *s)
5032 {
5033 	trace_sched_ext_dump("");
5034 
5035 	/* @s may be zero sized and seq_buf triggers WARN if so */
5036 	if (s->size)
5037 		seq_buf_putc(s, '\n');
5038 }
5039 
5040 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...)
5041 {
5042 	va_list args;
5043 
5044 #ifdef CONFIG_TRACEPOINTS
5045 	if (trace_sched_ext_dump_enabled()) {
5046 		/* protected by scx_dump_state()::dump_lock */
5047 		static char line_buf[SCX_EXIT_MSG_LEN];
5048 
5049 		va_start(args, fmt);
5050 		vscnprintf(line_buf, sizeof(line_buf), fmt, args);
5051 		va_end(args);
5052 
5053 		trace_sched_ext_dump(line_buf);
5054 	}
5055 #endif
5056 	/* @s may be zero sized and seq_buf triggers WARN if so */
5057 	if (s->size) {
5058 		va_start(args, fmt);
5059 		seq_buf_vprintf(s, fmt, args);
5060 		va_end(args);
5061 
5062 		seq_buf_putc(s, '\n');
5063 	}
5064 }
5065 
5066 static void dump_stack_trace(struct seq_buf *s, const char *prefix,
5067 			     const unsigned long *bt, unsigned int len)
5068 {
5069 	unsigned int i;
5070 
5071 	for (i = 0; i < len; i++)
5072 		dump_line(s, "%s%pS", prefix, (void *)bt[i]);
5073 }
5074 
5075 static void ops_dump_init(struct seq_buf *s, const char *prefix)
5076 {
5077 	struct scx_dump_data *dd = &scx_dump_data;
5078 
5079 	lockdep_assert_irqs_disabled();
5080 
5081 	dd->cpu = smp_processor_id();		/* allow scx_bpf_dump() */
5082 	dd->first = true;
5083 	dd->cursor = 0;
5084 	dd->s = s;
5085 	dd->prefix = prefix;
5086 }
5087 
5088 static void ops_dump_flush(void)
5089 {
5090 	struct scx_dump_data *dd = &scx_dump_data;
5091 	char *line = dd->buf.line;
5092 
5093 	if (!dd->cursor)
5094 		return;
5095 
5096 	/*
5097 	 * There's something to flush and this is the first line. Insert a blank
5098 	 * line to distinguish ops dump.
5099 	 */
5100 	if (dd->first) {
5101 		dump_newline(dd->s);
5102 		dd->first = false;
5103 	}
5104 
5105 	/*
5106 	 * There may be multiple lines in $line. Scan and emit each line
5107 	 * separately.
5108 	 */
5109 	while (true) {
5110 		char *end = line;
5111 		char c;
5112 
5113 		while (*end != '\n' && *end != '\0')
5114 			end++;
5115 
5116 		/*
5117 		 * If $line overflowed, it may not have newline at the end.
5118 		 * Always emit with a newline.
5119 		 */
5120 		c = *end;
5121 		*end = '\0';
5122 		dump_line(dd->s, "%s%s", dd->prefix, line);
5123 		if (c == '\0')
5124 			break;
5125 
5126 		/* move to the next line */
5127 		end++;
5128 		if (*end == '\0')
5129 			break;
5130 		line = end;
5131 	}
5132 
5133 	dd->cursor = 0;
5134 }
5135 
5136 static void ops_dump_exit(void)
5137 {
5138 	ops_dump_flush();
5139 	scx_dump_data.cpu = -1;
5140 }
5141 
5142 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx,
5143 			  struct task_struct *p, char marker)
5144 {
5145 	static unsigned long bt[SCX_EXIT_BT_LEN];
5146 	char dsq_id_buf[19] = "(n/a)";
5147 	unsigned long ops_state = atomic_long_read(&p->scx.ops_state);
5148 	unsigned int bt_len = 0;
5149 
5150 	if (p->scx.dsq)
5151 		scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx",
5152 			  (unsigned long long)p->scx.dsq->id);
5153 
5154 	dump_newline(s);
5155 	dump_line(s, " %c%c %s[%d] %+ldms",
5156 		  marker, task_state_to_char(p), p->comm, p->pid,
5157 		  jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies));
5158 	dump_line(s, "      scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu",
5159 		  scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK,
5160 		  p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK,
5161 		  ops_state >> SCX_OPSS_QSEQ_SHIFT);
5162 	dump_line(s, "      sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu",
5163 		  p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf,
5164 		  p->scx.dsq_vtime);
5165 	dump_line(s, "      cpus=%*pb", cpumask_pr_args(p->cpus_ptr));
5166 
5167 	if (SCX_HAS_OP(dump_task)) {
5168 		ops_dump_init(s, "    ");
5169 		SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p);
5170 		ops_dump_exit();
5171 	}
5172 
5173 #ifdef CONFIG_STACKTRACE
5174 	bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1);
5175 #endif
5176 	if (bt_len) {
5177 		dump_newline(s);
5178 		dump_stack_trace(s, "    ", bt, bt_len);
5179 	}
5180 }
5181 
5182 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
5183 {
5184 	static DEFINE_SPINLOCK(dump_lock);
5185 	static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n";
5186 	struct scx_dump_ctx dctx = {
5187 		.kind = ei->kind,
5188 		.exit_code = ei->exit_code,
5189 		.reason = ei->reason,
5190 		.at_ns = ktime_get_ns(),
5191 		.at_jiffies = jiffies,
5192 	};
5193 	struct seq_buf s;
5194 	unsigned long flags;
5195 	char *buf;
5196 	int cpu;
5197 
5198 	spin_lock_irqsave(&dump_lock, flags);
5199 
5200 	seq_buf_init(&s, ei->dump, dump_len);
5201 
5202 	if (ei->kind == SCX_EXIT_NONE) {
5203 		dump_line(&s, "Debug dump triggered by %s", ei->reason);
5204 	} else {
5205 		dump_line(&s, "%s[%d] triggered exit kind %d:",
5206 			  current->comm, current->pid, ei->kind);
5207 		dump_line(&s, "  %s (%s)", ei->reason, ei->msg);
5208 		dump_newline(&s);
5209 		dump_line(&s, "Backtrace:");
5210 		dump_stack_trace(&s, "  ", ei->bt, ei->bt_len);
5211 	}
5212 
5213 	if (SCX_HAS_OP(dump)) {
5214 		ops_dump_init(&s, "");
5215 		SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx);
5216 		ops_dump_exit();
5217 	}
5218 
5219 	dump_newline(&s);
5220 	dump_line(&s, "CPU states");
5221 	dump_line(&s, "----------");
5222 
5223 	for_each_possible_cpu(cpu) {
5224 		struct rq *rq = cpu_rq(cpu);
5225 		struct rq_flags rf;
5226 		struct task_struct *p;
5227 		struct seq_buf ns;
5228 		size_t avail, used;
5229 		bool idle;
5230 
5231 		rq_lock(rq, &rf);
5232 
5233 		idle = list_empty(&rq->scx.runnable_list) &&
5234 			rq->curr->sched_class == &idle_sched_class;
5235 
5236 		if (idle && !SCX_HAS_OP(dump_cpu))
5237 			goto next;
5238 
5239 		/*
5240 		 * We don't yet know whether ops.dump_cpu() will produce output
5241 		 * and we may want to skip the default CPU dump if it doesn't.
5242 		 * Use a nested seq_buf to generate the standard dump so that we
5243 		 * can decide whether to commit later.
5244 		 */
5245 		avail = seq_buf_get_buf(&s, &buf);
5246 		seq_buf_init(&ns, buf, avail);
5247 
5248 		dump_newline(&ns);
5249 		dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu",
5250 			  cpu, rq->scx.nr_running, rq->scx.flags,
5251 			  rq->scx.cpu_released, rq->scx.ops_qseq,
5252 			  rq->scx.pnt_seq);
5253 		dump_line(&ns, "          curr=%s[%d] class=%ps",
5254 			  rq->curr->comm, rq->curr->pid,
5255 			  rq->curr->sched_class);
5256 		if (!cpumask_empty(rq->scx.cpus_to_kick))
5257 			dump_line(&ns, "  cpus_to_kick   : %*pb",
5258 				  cpumask_pr_args(rq->scx.cpus_to_kick));
5259 		if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle))
5260 			dump_line(&ns, "  idle_to_kick   : %*pb",
5261 				  cpumask_pr_args(rq->scx.cpus_to_kick_if_idle));
5262 		if (!cpumask_empty(rq->scx.cpus_to_preempt))
5263 			dump_line(&ns, "  cpus_to_preempt: %*pb",
5264 				  cpumask_pr_args(rq->scx.cpus_to_preempt));
5265 		if (!cpumask_empty(rq->scx.cpus_to_wait))
5266 			dump_line(&ns, "  cpus_to_wait   : %*pb",
5267 				  cpumask_pr_args(rq->scx.cpus_to_wait));
5268 
5269 		used = seq_buf_used(&ns);
5270 		if (SCX_HAS_OP(dump_cpu)) {
5271 			ops_dump_init(&ns, "  ");
5272 			SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle);
5273 			ops_dump_exit();
5274 		}
5275 
5276 		/*
5277 		 * If idle && nothing generated by ops.dump_cpu(), there's
5278 		 * nothing interesting. Skip.
5279 		 */
5280 		if (idle && used == seq_buf_used(&ns))
5281 			goto next;
5282 
5283 		/*
5284 		 * $s may already have overflowed when $ns was created. If so,
5285 		 * calling commit on it will trigger BUG.
5286 		 */
5287 		if (avail) {
5288 			seq_buf_commit(&s, seq_buf_used(&ns));
5289 			if (seq_buf_has_overflowed(&ns))
5290 				seq_buf_set_overflow(&s);
5291 		}
5292 
5293 		if (rq->curr->sched_class == &ext_sched_class)
5294 			scx_dump_task(&s, &dctx, rq->curr, '*');
5295 
5296 		list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node)
5297 			scx_dump_task(&s, &dctx, p, ' ');
5298 	next:
5299 		rq_unlock(rq, &rf);
5300 	}
5301 
5302 	if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker))
5303 		memcpy(ei->dump + dump_len - sizeof(trunc_marker),
5304 		       trunc_marker, sizeof(trunc_marker));
5305 
5306 	spin_unlock_irqrestore(&dump_lock, flags);
5307 }
5308 
5309 static void scx_ops_error_irq_workfn(struct irq_work *irq_work)
5310 {
5311 	struct scx_exit_info *ei = scx_exit_info;
5312 
5313 	if (ei->kind >= SCX_EXIT_ERROR)
5314 		scx_dump_state(ei, scx_ops.exit_dump_len);
5315 
5316 	schedule_scx_ops_disable_work();
5317 }
5318 
5319 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn);
5320 
5321 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
5322 					     s64 exit_code,
5323 					     const char *fmt, ...)
5324 {
5325 	struct scx_exit_info *ei = scx_exit_info;
5326 	int none = SCX_EXIT_NONE;
5327 	va_list args;
5328 
5329 	if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind))
5330 		return;
5331 
5332 	ei->exit_code = exit_code;
5333 #ifdef CONFIG_STACKTRACE
5334 	if (kind >= SCX_EXIT_ERROR)
5335 		ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1);
5336 #endif
5337 	va_start(args, fmt);
5338 	vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args);
5339 	va_end(args);
5340 
5341 	/*
5342 	 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again
5343 	 * in scx_ops_disable_workfn().
5344 	 */
5345 	ei->kind = kind;
5346 	ei->reason = scx_exit_reason(ei->kind);
5347 
5348 	irq_work_queue(&scx_ops_error_irq_work);
5349 }
5350 
5351 static struct kthread_worker *scx_create_rt_helper(const char *name)
5352 {
5353 	struct kthread_worker *helper;
5354 
5355 	helper = kthread_create_worker(0, name);
5356 	if (helper)
5357 		sched_set_fifo(helper->task);
5358 	return helper;
5359 }
5360 
5361 static void check_hotplug_seq(const struct sched_ext_ops *ops)
5362 {
5363 	unsigned long long global_hotplug_seq;
5364 
5365 	/*
5366 	 * If a hotplug event has occurred between when a scheduler was
5367 	 * initialized, and when we were able to attach, exit and notify user
5368 	 * space about it.
5369 	 */
5370 	if (ops->hotplug_seq) {
5371 		global_hotplug_seq = atomic_long_read(&scx_hotplug_seq);
5372 		if (ops->hotplug_seq != global_hotplug_seq) {
5373 			scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
5374 				     "expected hotplug seq %llu did not match actual %llu",
5375 				     ops->hotplug_seq, global_hotplug_seq);
5376 		}
5377 	}
5378 }
5379 
5380 static int validate_ops(const struct sched_ext_ops *ops)
5381 {
5382 	/*
5383 	 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
5384 	 * ops.enqueue() callback isn't implemented.
5385 	 */
5386 	if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) {
5387 		scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
5388 		return -EINVAL;
5389 	}
5390 
5391 	return 0;
5392 }
5393 
5394 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
5395 {
5396 	struct scx_task_iter sti;
5397 	struct task_struct *p;
5398 	unsigned long timeout;
5399 	int i, cpu, node, ret;
5400 
5401 	if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN),
5402 			   cpu_possible_mask)) {
5403 		pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n");
5404 		return -EINVAL;
5405 	}
5406 
5407 	mutex_lock(&scx_ops_enable_mutex);
5408 
5409 	if (!scx_ops_helper) {
5410 		WRITE_ONCE(scx_ops_helper,
5411 			   scx_create_rt_helper("sched_ext_ops_helper"));
5412 		if (!scx_ops_helper) {
5413 			ret = -ENOMEM;
5414 			goto err_unlock;
5415 		}
5416 	}
5417 
5418 	if (!global_dsqs) {
5419 		struct scx_dispatch_q **dsqs;
5420 
5421 		dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL);
5422 		if (!dsqs) {
5423 			ret = -ENOMEM;
5424 			goto err_unlock;
5425 		}
5426 
5427 		for_each_node_state(node, N_POSSIBLE) {
5428 			struct scx_dispatch_q *dsq;
5429 
5430 			dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node);
5431 			if (!dsq) {
5432 				for_each_node_state(node, N_POSSIBLE)
5433 					kfree(dsqs[node]);
5434 				kfree(dsqs);
5435 				ret = -ENOMEM;
5436 				goto err_unlock;
5437 			}
5438 
5439 			init_dsq(dsq, SCX_DSQ_GLOBAL);
5440 			dsqs[node] = dsq;
5441 		}
5442 
5443 		global_dsqs = dsqs;
5444 	}
5445 
5446 	if (scx_ops_enable_state() != SCX_OPS_DISABLED) {
5447 		ret = -EBUSY;
5448 		goto err_unlock;
5449 	}
5450 
5451 	scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL);
5452 	if (!scx_root_kobj) {
5453 		ret = -ENOMEM;
5454 		goto err_unlock;
5455 	}
5456 
5457 	scx_root_kobj->kset = scx_kset;
5458 	ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root");
5459 	if (ret < 0)
5460 		goto err;
5461 
5462 	scx_exit_info = alloc_exit_info(ops->exit_dump_len);
5463 	if (!scx_exit_info) {
5464 		ret = -ENOMEM;
5465 		goto err_del;
5466 	}
5467 
5468 	/*
5469 	 * Set scx_ops, transition to ENABLING and clear exit info to arm the
5470 	 * disable path. Failure triggers full disabling from here on.
5471 	 */
5472 	scx_ops = *ops;
5473 
5474 	WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) !=
5475 		     SCX_OPS_DISABLED);
5476 
5477 	atomic_set(&scx_exit_kind, SCX_EXIT_NONE);
5478 	scx_warned_zero_slice = false;
5479 
5480 	atomic_long_set(&scx_nr_rejected, 0);
5481 
5482 	for_each_possible_cpu(cpu)
5483 		cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE;
5484 
5485 	/*
5486 	 * Keep CPUs stable during enable so that the BPF scheduler can track
5487 	 * online CPUs by watching ->on/offline_cpu() after ->init().
5488 	 */
5489 	cpus_read_lock();
5490 
5491 	if (scx_ops.init) {
5492 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init);
5493 		if (ret) {
5494 			ret = ops_sanitize_err("init", ret);
5495 			cpus_read_unlock();
5496 			scx_ops_error("ops.init() failed (%d)", ret);
5497 			goto err_disable;
5498 		}
5499 	}
5500 
5501 	for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++)
5502 		if (((void (**)(void))ops)[i])
5503 			static_branch_enable_cpuslocked(&scx_has_op[i]);
5504 
5505 	check_hotplug_seq(ops);
5506 #ifdef CONFIG_SMP
5507 	update_selcpu_topology();
5508 #endif
5509 	cpus_read_unlock();
5510 
5511 	ret = validate_ops(ops);
5512 	if (ret)
5513 		goto err_disable;
5514 
5515 	WARN_ON_ONCE(scx_dsp_ctx);
5516 	scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH;
5517 	scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf,
5518 						   scx_dsp_max_batch),
5519 				     __alignof__(struct scx_dsp_ctx));
5520 	if (!scx_dsp_ctx) {
5521 		ret = -ENOMEM;
5522 		goto err_disable;
5523 	}
5524 
5525 	if (ops->timeout_ms)
5526 		timeout = msecs_to_jiffies(ops->timeout_ms);
5527 	else
5528 		timeout = SCX_WATCHDOG_MAX_TIMEOUT;
5529 
5530 	WRITE_ONCE(scx_watchdog_timeout, timeout);
5531 	WRITE_ONCE(scx_watchdog_timestamp, jiffies);
5532 	queue_delayed_work(system_unbound_wq, &scx_watchdog_work,
5533 			   scx_watchdog_timeout / 2);
5534 
5535 	/*
5536 	 * Once __scx_ops_enabled is set, %current can be switched to SCX
5537 	 * anytime. This can lead to stalls as some BPF schedulers (e.g.
5538 	 * userspace scheduling) may not function correctly before all tasks are
5539 	 * switched. Init in bypass mode to guarantee forward progress.
5540 	 */
5541 	scx_ops_bypass(true);
5542 
5543 	for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++)
5544 		if (((void (**)(void))ops)[i])
5545 			static_branch_enable(&scx_has_op[i]);
5546 
5547 	if (ops->flags & SCX_OPS_ENQ_LAST)
5548 		static_branch_enable(&scx_ops_enq_last);
5549 
5550 	if (ops->flags & SCX_OPS_ENQ_EXITING)
5551 		static_branch_enable(&scx_ops_enq_exiting);
5552 	if (scx_ops.cpu_acquire || scx_ops.cpu_release)
5553 		static_branch_enable(&scx_ops_cpu_preempt);
5554 
5555 	if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) {
5556 		reset_idle_masks();
5557 		static_branch_enable(&scx_builtin_idle_enabled);
5558 	} else {
5559 		static_branch_disable(&scx_builtin_idle_enabled);
5560 	}
5561 
5562 	/*
5563 	 * Lock out forks, cgroup on/offlining and moves before opening the
5564 	 * floodgate so that they don't wander into the operations prematurely.
5565 	 */
5566 	percpu_down_write(&scx_fork_rwsem);
5567 
5568 	WARN_ON_ONCE(scx_ops_init_task_enabled);
5569 	scx_ops_init_task_enabled = true;
5570 
5571 	/*
5572 	 * Enable ops for every task. Fork is excluded by scx_fork_rwsem
5573 	 * preventing new tasks from being added. No need to exclude tasks
5574 	 * leaving as sched_ext_free() can handle both prepped and enabled
5575 	 * tasks. Prep all tasks first and then enable them with preemption
5576 	 * disabled.
5577 	 *
5578 	 * All cgroups should be initialized before scx_ops_init_task() so that
5579 	 * the BPF scheduler can reliably track each task's cgroup membership
5580 	 * from scx_ops_init_task(). Lock out cgroup on/offlining and task
5581 	 * migrations while tasks are being initialized so that
5582 	 * scx_cgroup_can_attach() never sees uninitialized tasks.
5583 	 */
5584 	scx_cgroup_lock();
5585 	ret = scx_cgroup_init();
5586 	if (ret)
5587 		goto err_disable_unlock_all;
5588 
5589 	scx_task_iter_start(&sti);
5590 	while ((p = scx_task_iter_next_locked(&sti))) {
5591 		/*
5592 		 * @p may already be dead, have lost all its usages counts and
5593 		 * be waiting for RCU grace period before being freed. @p can't
5594 		 * be initialized for SCX in such cases and should be ignored.
5595 		 */
5596 		if (!tryget_task_struct(p))
5597 			continue;
5598 
5599 		scx_task_iter_unlock(&sti);
5600 
5601 		ret = scx_ops_init_task(p, task_group(p), false);
5602 		if (ret) {
5603 			put_task_struct(p);
5604 			scx_task_iter_relock(&sti);
5605 			scx_task_iter_stop(&sti);
5606 			scx_ops_error("ops.init_task() failed (%d) for %s[%d]",
5607 				      ret, p->comm, p->pid);
5608 			goto err_disable_unlock_all;
5609 		}
5610 
5611 		scx_set_task_state(p, SCX_TASK_READY);
5612 
5613 		put_task_struct(p);
5614 		scx_task_iter_relock(&sti);
5615 	}
5616 	scx_task_iter_stop(&sti);
5617 	scx_cgroup_unlock();
5618 	percpu_up_write(&scx_fork_rwsem);
5619 
5620 	/*
5621 	 * All tasks are READY. It's safe to turn on scx_enabled() and switch
5622 	 * all eligible tasks.
5623 	 */
5624 	WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL));
5625 	static_branch_enable(&__scx_ops_enabled);
5626 
5627 	/*
5628 	 * We're fully committed and can't fail. The task READY -> ENABLED
5629 	 * transitions here are synchronized against sched_ext_free() through
5630 	 * scx_tasks_lock.
5631 	 */
5632 	percpu_down_write(&scx_fork_rwsem);
5633 	scx_task_iter_start(&sti);
5634 	while ((p = scx_task_iter_next_locked(&sti))) {
5635 		const struct sched_class *old_class = p->sched_class;
5636 		const struct sched_class *new_class =
5637 			__setscheduler_class(p->policy, p->prio);
5638 		struct sched_enq_and_set_ctx ctx;
5639 
5640 		if (old_class != new_class && p->se.sched_delayed)
5641 			dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5642 
5643 		sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
5644 
5645 		p->scx.slice = SCX_SLICE_DFL;
5646 		p->sched_class = new_class;
5647 		check_class_changing(task_rq(p), p, old_class);
5648 
5649 		sched_enq_and_set_task(&ctx);
5650 
5651 		check_class_changed(task_rq(p), p, old_class, p->prio);
5652 	}
5653 	scx_task_iter_stop(&sti);
5654 	percpu_up_write(&scx_fork_rwsem);
5655 
5656 	scx_ops_bypass(false);
5657 
5658 	if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) {
5659 		WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE);
5660 		goto err_disable;
5661 	}
5662 
5663 	if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL))
5664 		static_branch_enable(&__scx_switched_all);
5665 
5666 	pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n",
5667 		scx_ops.name, scx_switched_all() ? "" : " (partial)");
5668 	kobject_uevent(scx_root_kobj, KOBJ_ADD);
5669 	mutex_unlock(&scx_ops_enable_mutex);
5670 
5671 	atomic_long_inc(&scx_enable_seq);
5672 
5673 	return 0;
5674 
5675 err_del:
5676 	kobject_del(scx_root_kobj);
5677 err:
5678 	kobject_put(scx_root_kobj);
5679 	scx_root_kobj = NULL;
5680 	if (scx_exit_info) {
5681 		free_exit_info(scx_exit_info);
5682 		scx_exit_info = NULL;
5683 	}
5684 err_unlock:
5685 	mutex_unlock(&scx_ops_enable_mutex);
5686 	return ret;
5687 
5688 err_disable_unlock_all:
5689 	scx_cgroup_unlock();
5690 	percpu_up_write(&scx_fork_rwsem);
5691 	scx_ops_bypass(false);
5692 err_disable:
5693 	mutex_unlock(&scx_ops_enable_mutex);
5694 	/*
5695 	 * Returning an error code here would not pass all the error information
5696 	 * to userspace. Record errno using scx_ops_error() for cases
5697 	 * scx_ops_error() wasn't already invoked and exit indicating success so
5698 	 * that the error is notified through ops.exit() with all the details.
5699 	 *
5700 	 * Flush scx_ops_disable_work to ensure that error is reported before
5701 	 * init completion.
5702 	 */
5703 	scx_ops_error("scx_ops_enable() failed (%d)", ret);
5704 	kthread_flush_work(&scx_ops_disable_work);
5705 	return 0;
5706 }
5707 
5708 
5709 /********************************************************************************
5710  * bpf_struct_ops plumbing.
5711  */
5712 #include <linux/bpf_verifier.h>
5713 #include <linux/bpf.h>
5714 #include <linux/btf.h>
5715 
5716 static const struct btf_type *task_struct_type;
5717 
5718 static bool bpf_scx_is_valid_access(int off, int size,
5719 				    enum bpf_access_type type,
5720 				    const struct bpf_prog *prog,
5721 				    struct bpf_insn_access_aux *info)
5722 {
5723 	if (type != BPF_READ)
5724 		return false;
5725 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
5726 		return false;
5727 	if (off % size != 0)
5728 		return false;
5729 
5730 	return btf_ctx_access(off, size, type, prog, info);
5731 }
5732 
5733 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log,
5734 				     const struct bpf_reg_state *reg, int off,
5735 				     int size)
5736 {
5737 	const struct btf_type *t;
5738 
5739 	t = btf_type_by_id(reg->btf, reg->btf_id);
5740 	if (t == task_struct_type) {
5741 		if (off >= offsetof(struct task_struct, scx.slice) &&
5742 		    off + size <= offsetofend(struct task_struct, scx.slice))
5743 			return SCALAR_VALUE;
5744 		if (off >= offsetof(struct task_struct, scx.dsq_vtime) &&
5745 		    off + size <= offsetofend(struct task_struct, scx.dsq_vtime))
5746 			return SCALAR_VALUE;
5747 		if (off >= offsetof(struct task_struct, scx.disallow) &&
5748 		    off + size <= offsetofend(struct task_struct, scx.disallow))
5749 			return SCALAR_VALUE;
5750 	}
5751 
5752 	return -EACCES;
5753 }
5754 
5755 static const struct bpf_func_proto *
5756 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5757 {
5758 	switch (func_id) {
5759 	case BPF_FUNC_task_storage_get:
5760 		return &bpf_task_storage_get_proto;
5761 	case BPF_FUNC_task_storage_delete:
5762 		return &bpf_task_storage_delete_proto;
5763 	default:
5764 		return bpf_base_func_proto(func_id, prog);
5765 	}
5766 }
5767 
5768 static const struct bpf_verifier_ops bpf_scx_verifier_ops = {
5769 	.get_func_proto = bpf_scx_get_func_proto,
5770 	.is_valid_access = bpf_scx_is_valid_access,
5771 	.btf_struct_access = bpf_scx_btf_struct_access,
5772 };
5773 
5774 static int bpf_scx_init_member(const struct btf_type *t,
5775 			       const struct btf_member *member,
5776 			       void *kdata, const void *udata)
5777 {
5778 	const struct sched_ext_ops *uops = udata;
5779 	struct sched_ext_ops *ops = kdata;
5780 	u32 moff = __btf_member_bit_offset(t, member) / 8;
5781 	int ret;
5782 
5783 	switch (moff) {
5784 	case offsetof(struct sched_ext_ops, dispatch_max_batch):
5785 		if (*(u32 *)(udata + moff) > INT_MAX)
5786 			return -E2BIG;
5787 		ops->dispatch_max_batch = *(u32 *)(udata + moff);
5788 		return 1;
5789 	case offsetof(struct sched_ext_ops, flags):
5790 		if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS)
5791 			return -EINVAL;
5792 		ops->flags = *(u64 *)(udata + moff);
5793 		return 1;
5794 	case offsetof(struct sched_ext_ops, name):
5795 		ret = bpf_obj_name_cpy(ops->name, uops->name,
5796 				       sizeof(ops->name));
5797 		if (ret < 0)
5798 			return ret;
5799 		if (ret == 0)
5800 			return -EINVAL;
5801 		return 1;
5802 	case offsetof(struct sched_ext_ops, timeout_ms):
5803 		if (msecs_to_jiffies(*(u32 *)(udata + moff)) >
5804 		    SCX_WATCHDOG_MAX_TIMEOUT)
5805 			return -E2BIG;
5806 		ops->timeout_ms = *(u32 *)(udata + moff);
5807 		return 1;
5808 	case offsetof(struct sched_ext_ops, exit_dump_len):
5809 		ops->exit_dump_len =
5810 			*(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN;
5811 		return 1;
5812 	case offsetof(struct sched_ext_ops, hotplug_seq):
5813 		ops->hotplug_seq = *(u64 *)(udata + moff);
5814 		return 1;
5815 	}
5816 
5817 	return 0;
5818 }
5819 
5820 static int bpf_scx_check_member(const struct btf_type *t,
5821 				const struct btf_member *member,
5822 				const struct bpf_prog *prog)
5823 {
5824 	u32 moff = __btf_member_bit_offset(t, member) / 8;
5825 
5826 	switch (moff) {
5827 	case offsetof(struct sched_ext_ops, init_task):
5828 #ifdef CONFIG_EXT_GROUP_SCHED
5829 	case offsetof(struct sched_ext_ops, cgroup_init):
5830 	case offsetof(struct sched_ext_ops, cgroup_exit):
5831 	case offsetof(struct sched_ext_ops, cgroup_prep_move):
5832 #endif
5833 	case offsetof(struct sched_ext_ops, cpu_online):
5834 	case offsetof(struct sched_ext_ops, cpu_offline):
5835 	case offsetof(struct sched_ext_ops, init):
5836 	case offsetof(struct sched_ext_ops, exit):
5837 		break;
5838 	default:
5839 		if (prog->sleepable)
5840 			return -EINVAL;
5841 	}
5842 
5843 	return 0;
5844 }
5845 
5846 static int bpf_scx_reg(void *kdata, struct bpf_link *link)
5847 {
5848 	return scx_ops_enable(kdata, link);
5849 }
5850 
5851 static void bpf_scx_unreg(void *kdata, struct bpf_link *link)
5852 {
5853 	scx_ops_disable(SCX_EXIT_UNREG);
5854 	kthread_flush_work(&scx_ops_disable_work);
5855 }
5856 
5857 static int bpf_scx_init(struct btf *btf)
5858 {
5859 	task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]);
5860 
5861 	return 0;
5862 }
5863 
5864 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link)
5865 {
5866 	/*
5867 	 * sched_ext does not support updating the actively-loaded BPF
5868 	 * scheduler, as registering a BPF scheduler can always fail if the
5869 	 * scheduler returns an error code for e.g. ops.init(), ops.init_task(),
5870 	 * etc. Similarly, we can always race with unregistration happening
5871 	 * elsewhere, such as with sysrq.
5872 	 */
5873 	return -EOPNOTSUPP;
5874 }
5875 
5876 static int bpf_scx_validate(void *kdata)
5877 {
5878 	return 0;
5879 }
5880 
5881 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
5882 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {}
5883 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {}
5884 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {}
5885 static void sched_ext_ops__tick(struct task_struct *p) {}
5886 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {}
5887 static void sched_ext_ops__running(struct task_struct *p) {}
5888 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {}
5889 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {}
5890 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; }
5891 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; }
5892 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {}
5893 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {}
5894 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {}
5895 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {}
5896 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {}
5897 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
5898 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {}
5899 static void sched_ext_ops__enable(struct task_struct *p) {}
5900 static void sched_ext_ops__disable(struct task_struct *p) {}
5901 #ifdef CONFIG_EXT_GROUP_SCHED
5902 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; }
5903 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {}
5904 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; }
5905 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
5906 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
5907 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {}
5908 #endif
5909 static void sched_ext_ops__cpu_online(s32 cpu) {}
5910 static void sched_ext_ops__cpu_offline(s32 cpu) {}
5911 static s32 sched_ext_ops__init(void) { return -EINVAL; }
5912 static void sched_ext_ops__exit(struct scx_exit_info *info) {}
5913 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {}
5914 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {}
5915 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {}
5916 
5917 static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
5918 	.select_cpu		= sched_ext_ops__select_cpu,
5919 	.enqueue		= sched_ext_ops__enqueue,
5920 	.dequeue		= sched_ext_ops__dequeue,
5921 	.dispatch		= sched_ext_ops__dispatch,
5922 	.tick			= sched_ext_ops__tick,
5923 	.runnable		= sched_ext_ops__runnable,
5924 	.running		= sched_ext_ops__running,
5925 	.stopping		= sched_ext_ops__stopping,
5926 	.quiescent		= sched_ext_ops__quiescent,
5927 	.yield			= sched_ext_ops__yield,
5928 	.core_sched_before	= sched_ext_ops__core_sched_before,
5929 	.set_weight		= sched_ext_ops__set_weight,
5930 	.set_cpumask		= sched_ext_ops__set_cpumask,
5931 	.update_idle		= sched_ext_ops__update_idle,
5932 	.cpu_acquire		= sched_ext_ops__cpu_acquire,
5933 	.cpu_release		= sched_ext_ops__cpu_release,
5934 	.init_task		= sched_ext_ops__init_task,
5935 	.exit_task		= sched_ext_ops__exit_task,
5936 	.enable			= sched_ext_ops__enable,
5937 	.disable		= sched_ext_ops__disable,
5938 #ifdef CONFIG_EXT_GROUP_SCHED
5939 	.cgroup_init		= sched_ext_ops__cgroup_init,
5940 	.cgroup_exit		= sched_ext_ops__cgroup_exit,
5941 	.cgroup_prep_move	= sched_ext_ops__cgroup_prep_move,
5942 	.cgroup_move		= sched_ext_ops__cgroup_move,
5943 	.cgroup_cancel_move	= sched_ext_ops__cgroup_cancel_move,
5944 	.cgroup_set_weight	= sched_ext_ops__cgroup_set_weight,
5945 #endif
5946 	.cpu_online		= sched_ext_ops__cpu_online,
5947 	.cpu_offline		= sched_ext_ops__cpu_offline,
5948 	.init			= sched_ext_ops__init,
5949 	.exit			= sched_ext_ops__exit,
5950 	.dump			= sched_ext_ops__dump,
5951 	.dump_cpu		= sched_ext_ops__dump_cpu,
5952 	.dump_task		= sched_ext_ops__dump_task,
5953 };
5954 
5955 static struct bpf_struct_ops bpf_sched_ext_ops = {
5956 	.verifier_ops = &bpf_scx_verifier_ops,
5957 	.reg = bpf_scx_reg,
5958 	.unreg = bpf_scx_unreg,
5959 	.check_member = bpf_scx_check_member,
5960 	.init_member = bpf_scx_init_member,
5961 	.init = bpf_scx_init,
5962 	.update = bpf_scx_update,
5963 	.validate = bpf_scx_validate,
5964 	.name = "sched_ext_ops",
5965 	.owner = THIS_MODULE,
5966 	.cfi_stubs = &__bpf_ops_sched_ext_ops
5967 };
5968 
5969 
5970 /********************************************************************************
5971  * System integration and init.
5972  */
5973 
5974 static void sysrq_handle_sched_ext_reset(u8 key)
5975 {
5976 	if (scx_ops_helper)
5977 		scx_ops_disable(SCX_EXIT_SYSRQ);
5978 	else
5979 		pr_info("sched_ext: BPF scheduler not yet used\n");
5980 }
5981 
5982 static const struct sysrq_key_op sysrq_sched_ext_reset_op = {
5983 	.handler	= sysrq_handle_sched_ext_reset,
5984 	.help_msg	= "reset-sched-ext(S)",
5985 	.action_msg	= "Disable sched_ext and revert all tasks to CFS",
5986 	.enable_mask	= SYSRQ_ENABLE_RTNICE,
5987 };
5988 
5989 static void sysrq_handle_sched_ext_dump(u8 key)
5990 {
5991 	struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" };
5992 
5993 	if (scx_enabled())
5994 		scx_dump_state(&ei, 0);
5995 }
5996 
5997 static const struct sysrq_key_op sysrq_sched_ext_dump_op = {
5998 	.handler	= sysrq_handle_sched_ext_dump,
5999 	.help_msg	= "dump-sched-ext(D)",
6000 	.action_msg	= "Trigger sched_ext debug dump",
6001 	.enable_mask	= SYSRQ_ENABLE_RTNICE,
6002 };
6003 
6004 static bool can_skip_idle_kick(struct rq *rq)
6005 {
6006 	lockdep_assert_rq_held(rq);
6007 
6008 	/*
6009 	 * We can skip idle kicking if @rq is going to go through at least one
6010 	 * full SCX scheduling cycle before going idle. Just checking whether
6011 	 * curr is not idle is insufficient because we could be racing
6012 	 * balance_one() trying to pull the next task from a remote rq, which
6013 	 * may fail, and @rq may become idle afterwards.
6014 	 *
6015 	 * The race window is small and we don't and can't guarantee that @rq is
6016 	 * only kicked while idle anyway. Skip only when sure.
6017 	 */
6018 	return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE);
6019 }
6020 
6021 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs)
6022 {
6023 	struct rq *rq = cpu_rq(cpu);
6024 	struct scx_rq *this_scx = &this_rq->scx;
6025 	bool should_wait = false;
6026 	unsigned long flags;
6027 
6028 	raw_spin_rq_lock_irqsave(rq, flags);
6029 
6030 	/*
6031 	 * During CPU hotplug, a CPU may depend on kicking itself to make
6032 	 * forward progress. Allow kicking self regardless of online state.
6033 	 */
6034 	if (cpu_online(cpu) || cpu == cpu_of(this_rq)) {
6035 		if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) {
6036 			if (rq->curr->sched_class == &ext_sched_class)
6037 				rq->curr->scx.slice = 0;
6038 			cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
6039 		}
6040 
6041 		if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) {
6042 			pseqs[cpu] = rq->scx.pnt_seq;
6043 			should_wait = true;
6044 		}
6045 
6046 		resched_curr(rq);
6047 	} else {
6048 		cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
6049 		cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
6050 	}
6051 
6052 	raw_spin_rq_unlock_irqrestore(rq, flags);
6053 
6054 	return should_wait;
6055 }
6056 
6057 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq)
6058 {
6059 	struct rq *rq = cpu_rq(cpu);
6060 	unsigned long flags;
6061 
6062 	raw_spin_rq_lock_irqsave(rq, flags);
6063 
6064 	if (!can_skip_idle_kick(rq) &&
6065 	    (cpu_online(cpu) || cpu == cpu_of(this_rq)))
6066 		resched_curr(rq);
6067 
6068 	raw_spin_rq_unlock_irqrestore(rq, flags);
6069 }
6070 
6071 static void kick_cpus_irq_workfn(struct irq_work *irq_work)
6072 {
6073 	struct rq *this_rq = this_rq();
6074 	struct scx_rq *this_scx = &this_rq->scx;
6075 	unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs);
6076 	bool should_wait = false;
6077 	s32 cpu;
6078 
6079 	for_each_cpu(cpu, this_scx->cpus_to_kick) {
6080 		should_wait |= kick_one_cpu(cpu, this_rq, pseqs);
6081 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick);
6082 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
6083 	}
6084 
6085 	for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) {
6086 		kick_one_cpu_if_idle(cpu, this_rq);
6087 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
6088 	}
6089 
6090 	if (!should_wait)
6091 		return;
6092 
6093 	for_each_cpu(cpu, this_scx->cpus_to_wait) {
6094 		unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq;
6095 
6096 		if (cpu != cpu_of(this_rq)) {
6097 			/*
6098 			 * Pairs with smp_store_release() issued by this CPU in
6099 			 * switch_class() on the resched path.
6100 			 *
6101 			 * We busy-wait here to guarantee that no other task can
6102 			 * be scheduled on our core before the target CPU has
6103 			 * entered the resched path.
6104 			 */
6105 			while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu])
6106 				cpu_relax();
6107 		}
6108 
6109 		cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
6110 	}
6111 }
6112 
6113 /**
6114  * print_scx_info - print out sched_ext scheduler state
6115  * @log_lvl: the log level to use when printing
6116  * @p: target task
6117  *
6118  * If a sched_ext scheduler is enabled, print the name and state of the
6119  * scheduler. If @p is on sched_ext, print further information about the task.
6120  *
6121  * This function can be safely called on any task as long as the task_struct
6122  * itself is accessible. While safe, this function isn't synchronized and may
6123  * print out mixups or garbages of limited length.
6124  */
6125 void print_scx_info(const char *log_lvl, struct task_struct *p)
6126 {
6127 	enum scx_ops_enable_state state = scx_ops_enable_state();
6128 	const char *all = READ_ONCE(scx_switching_all) ? "+all" : "";
6129 	char runnable_at_buf[22] = "?";
6130 	struct sched_class *class;
6131 	unsigned long runnable_at;
6132 
6133 	if (state == SCX_OPS_DISABLED)
6134 		return;
6135 
6136 	/*
6137 	 * Carefully check if the task was running on sched_ext, and then
6138 	 * carefully copy the time it's been runnable, and its state.
6139 	 */
6140 	if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) ||
6141 	    class != &ext_sched_class) {
6142 		printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name,
6143 		       scx_ops_enable_state_str[state], all);
6144 		return;
6145 	}
6146 
6147 	if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at,
6148 				      sizeof(runnable_at)))
6149 		scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms",
6150 			  jiffies_delta_msecs(runnable_at, jiffies));
6151 
6152 	/* print everything onto one line to conserve console space */
6153 	printk("%sSched_ext: %s (%s%s), task: runnable_at=%s",
6154 	       log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all,
6155 	       runnable_at_buf);
6156 }
6157 
6158 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr)
6159 {
6160 	/*
6161 	 * SCX schedulers often have userspace components which are sometimes
6162 	 * involved in critial scheduling paths. PM operations involve freezing
6163 	 * userspace which can lead to scheduling misbehaviors including stalls.
6164 	 * Let's bypass while PM operations are in progress.
6165 	 */
6166 	switch (event) {
6167 	case PM_HIBERNATION_PREPARE:
6168 	case PM_SUSPEND_PREPARE:
6169 	case PM_RESTORE_PREPARE:
6170 		scx_ops_bypass(true);
6171 		break;
6172 	case PM_POST_HIBERNATION:
6173 	case PM_POST_SUSPEND:
6174 	case PM_POST_RESTORE:
6175 		scx_ops_bypass(false);
6176 		break;
6177 	}
6178 
6179 	return NOTIFY_OK;
6180 }
6181 
6182 static struct notifier_block scx_pm_notifier = {
6183 	.notifier_call = scx_pm_handler,
6184 };
6185 
6186 void __init init_sched_ext_class(void)
6187 {
6188 	s32 cpu, v;
6189 
6190 	/*
6191 	 * The following is to prevent the compiler from optimizing out the enum
6192 	 * definitions so that BPF scheduler implementations can use them
6193 	 * through the generated vmlinux.h.
6194 	 */
6195 	WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT |
6196 		   SCX_TG_ONLINE);
6197 
6198 	BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params));
6199 #ifdef CONFIG_SMP
6200 	BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL));
6201 	BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL));
6202 #endif
6203 	scx_kick_cpus_pnt_seqs =
6204 		__alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids,
6205 			       __alignof__(scx_kick_cpus_pnt_seqs[0]));
6206 	BUG_ON(!scx_kick_cpus_pnt_seqs);
6207 
6208 	for_each_possible_cpu(cpu) {
6209 		struct rq *rq = cpu_rq(cpu);
6210 
6211 		init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL);
6212 		INIT_LIST_HEAD(&rq->scx.runnable_list);
6213 		INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals);
6214 
6215 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL));
6216 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL));
6217 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL));
6218 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL));
6219 		init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn);
6220 		init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn);
6221 
6222 		if (cpu_online(cpu))
6223 			cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE;
6224 	}
6225 
6226 	register_sysrq_key('S', &sysrq_sched_ext_reset_op);
6227 	register_sysrq_key('D', &sysrq_sched_ext_dump_op);
6228 	INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn);
6229 }
6230 
6231 
6232 /********************************************************************************
6233  * Helpers that can be called from the BPF scheduler.
6234  */
6235 #include <linux/btf_ids.h>
6236 
6237 __bpf_kfunc_start_defs();
6238 
6239 /**
6240  * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
6241  * @p: task_struct to select a CPU for
6242  * @prev_cpu: CPU @p was on previously
6243  * @wake_flags: %SCX_WAKE_* flags
6244  * @is_idle: out parameter indicating whether the returned CPU is idle
6245  *
6246  * Can only be called from ops.select_cpu() if the built-in CPU selection is
6247  * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set.
6248  * @p, @prev_cpu and @wake_flags match ops.select_cpu().
6249  *
6250  * Returns the picked CPU with *@is_idle indicating whether the picked CPU is
6251  * currently idle and thus a good candidate for direct dispatching.
6252  */
6253 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
6254 				       u64 wake_flags, bool *is_idle)
6255 {
6256 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
6257 		scx_ops_error("built-in idle tracking is disabled");
6258 		goto prev_cpu;
6259 	}
6260 
6261 	if (!scx_kf_allowed(SCX_KF_SELECT_CPU))
6262 		goto prev_cpu;
6263 
6264 #ifdef CONFIG_SMP
6265 	return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle);
6266 #endif
6267 
6268 prev_cpu:
6269 	*is_idle = false;
6270 	return prev_cpu;
6271 }
6272 
6273 __bpf_kfunc_end_defs();
6274 
6275 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu)
6276 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
6277 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu)
6278 
6279 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = {
6280 	.owner			= THIS_MODULE,
6281 	.set			= &scx_kfunc_ids_select_cpu,
6282 };
6283 
6284 static bool scx_dsq_insert_preamble(struct task_struct *p, u64 enq_flags)
6285 {
6286 	if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
6287 		return false;
6288 
6289 	lockdep_assert_irqs_disabled();
6290 
6291 	if (unlikely(!p)) {
6292 		scx_ops_error("called with NULL task");
6293 		return false;
6294 	}
6295 
6296 	if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) {
6297 		scx_ops_error("invalid enq_flags 0x%llx", enq_flags);
6298 		return false;
6299 	}
6300 
6301 	return true;
6302 }
6303 
6304 static void scx_dsq_insert_commit(struct task_struct *p, u64 dsq_id,
6305 				  u64 enq_flags)
6306 {
6307 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6308 	struct task_struct *ddsp_task;
6309 
6310 	ddsp_task = __this_cpu_read(direct_dispatch_task);
6311 	if (ddsp_task) {
6312 		mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags);
6313 		return;
6314 	}
6315 
6316 	if (unlikely(dspc->cursor >= scx_dsp_max_batch)) {
6317 		scx_ops_error("dispatch buffer overflow");
6318 		return;
6319 	}
6320 
6321 	dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){
6322 		.task = p,
6323 		.qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK,
6324 		.dsq_id = dsq_id,
6325 		.enq_flags = enq_flags,
6326 	};
6327 }
6328 
6329 __bpf_kfunc_start_defs();
6330 
6331 /**
6332  * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ
6333  * @p: task_struct to insert
6334  * @dsq_id: DSQ to insert into
6335  * @slice: duration @p can run for in nsecs, 0 to keep the current value
6336  * @enq_flags: SCX_ENQ_*
6337  *
6338  * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to
6339  * call this function spuriously. Can be called from ops.enqueue(),
6340  * ops.select_cpu(), and ops.dispatch().
6341  *
6342  * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
6343  * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be
6344  * used to target the local DSQ of a CPU other than the enqueueing one. Use
6345  * ops.select_cpu() to be on the target CPU in the first place.
6346  *
6347  * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
6348  * will be directly inserted into the corresponding dispatch queue after
6349  * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be
6350  * inserted into the local DSQ of the CPU returned by ops.select_cpu().
6351  * @enq_flags are OR'd with the enqueue flags on the enqueue path before the
6352  * task is inserted.
6353  *
6354  * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
6355  * and this function can be called upto ops.dispatch_max_batch times to insert
6356  * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
6357  * remaining slots. scx_bpf_consume() flushes the batch and resets the counter.
6358  *
6359  * This function doesn't have any locking restrictions and may be called under
6360  * BPF locks (in the future when BPF introduces more flexible locking).
6361  *
6362  * @p is allowed to run for @slice. The scheduling path is triggered on slice
6363  * exhaustion. If zero, the current residual slice is maintained. If
6364  * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
6365  * scx_bpf_kick_cpu() to trigger scheduling.
6366  */
6367 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice,
6368 				    u64 enq_flags)
6369 {
6370 	if (!scx_dsq_insert_preamble(p, enq_flags))
6371 		return;
6372 
6373 	if (slice)
6374 		p->scx.slice = slice;
6375 	else
6376 		p->scx.slice = p->scx.slice ?: 1;
6377 
6378 	scx_dsq_insert_commit(p, dsq_id, enq_flags);
6379 }
6380 
6381 /* for backward compatibility, will be removed in v6.15 */
6382 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice,
6383 				  u64 enq_flags)
6384 {
6385 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch() renamed to scx_bpf_dsq_insert()");
6386 	scx_bpf_dsq_insert(p, dsq_id, slice, enq_flags);
6387 }
6388 
6389 /**
6390  * scx_bpf_dsq_insert_vtime - Insert a task into the vtime priority queue of a DSQ
6391  * @p: task_struct to insert
6392  * @dsq_id: DSQ to insert into
6393  * @slice: duration @p can run for in nsecs, 0 to keep the current value
6394  * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
6395  * @enq_flags: SCX_ENQ_*
6396  *
6397  * Insert @p into the vtime priority queue of the DSQ identified by @dsq_id.
6398  * Tasks queued into the priority queue are ordered by @vtime. All other aspects
6399  * are identical to scx_bpf_dsq_insert().
6400  *
6401  * @vtime ordering is according to time_before64() which considers wrapping. A
6402  * numerically larger vtime may indicate an earlier position in the ordering and
6403  * vice-versa.
6404  *
6405  * A DSQ can only be used as a FIFO or priority queue at any given time and this
6406  * function must not be called on a DSQ which already has one or more FIFO tasks
6407  * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and
6408  * SCX_DSQ_GLOBAL) cannot be used as priority queues.
6409  */
6410 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id,
6411 					  u64 slice, u64 vtime, u64 enq_flags)
6412 {
6413 	if (!scx_dsq_insert_preamble(p, enq_flags))
6414 		return;
6415 
6416 	if (slice)
6417 		p->scx.slice = slice;
6418 	else
6419 		p->scx.slice = p->scx.slice ?: 1;
6420 
6421 	p->scx.dsq_vtime = vtime;
6422 
6423 	scx_dsq_insert_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6424 }
6425 
6426 /* for backward compatibility, will be removed in v6.15 */
6427 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id,
6428 					u64 slice, u64 vtime, u64 enq_flags)
6429 {
6430 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_vtime() renamed to scx_bpf_dsq_insert_vtime()");
6431 	scx_bpf_dsq_insert_vtime(p, dsq_id, slice, vtime, enq_flags);
6432 }
6433 
6434 __bpf_kfunc_end_defs();
6435 
6436 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
6437 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU)
6438 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU)
6439 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU)
6440 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU)
6441 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
6442 
6443 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
6444 	.owner			= THIS_MODULE,
6445 	.set			= &scx_kfunc_ids_enqueue_dispatch,
6446 };
6447 
6448 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit,
6449 			 struct task_struct *p, u64 dsq_id, u64 enq_flags)
6450 {
6451 	struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq;
6452 	struct rq *this_rq, *src_rq, *locked_rq;
6453 	bool dispatched = false;
6454 	bool in_balance;
6455 	unsigned long flags;
6456 
6457 	if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH))
6458 		return false;
6459 
6460 	/*
6461 	 * Can be called from either ops.dispatch() locking this_rq() or any
6462 	 * context where no rq lock is held. If latter, lock @p's task_rq which
6463 	 * we'll likely need anyway.
6464 	 */
6465 	src_rq = task_rq(p);
6466 
6467 	local_irq_save(flags);
6468 	this_rq = this_rq();
6469 	in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE;
6470 
6471 	if (in_balance) {
6472 		if (this_rq != src_rq) {
6473 			raw_spin_rq_unlock(this_rq);
6474 			raw_spin_rq_lock(src_rq);
6475 		}
6476 	} else {
6477 		raw_spin_rq_lock(src_rq);
6478 	}
6479 
6480 	/*
6481 	 * If the BPF scheduler keeps calling this function repeatedly, it can
6482 	 * cause similar live-lock conditions as consume_dispatch_q(). Insert a
6483 	 * breather if necessary.
6484 	 */
6485 	scx_ops_breather(src_rq);
6486 
6487 	locked_rq = src_rq;
6488 	raw_spin_lock(&src_dsq->lock);
6489 
6490 	/*
6491 	 * Did someone else get to it? @p could have already left $src_dsq, got
6492 	 * re-enqueud, or be in the process of being consumed by someone else.
6493 	 */
6494 	if (unlikely(p->scx.dsq != src_dsq ||
6495 		     u32_before(kit->cursor.priv, p->scx.dsq_seq) ||
6496 		     p->scx.holding_cpu >= 0) ||
6497 	    WARN_ON_ONCE(src_rq != task_rq(p))) {
6498 		raw_spin_unlock(&src_dsq->lock);
6499 		goto out;
6500 	}
6501 
6502 	/* @p is still on $src_dsq and stable, determine the destination */
6503 	dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p);
6504 
6505 	/*
6506 	 * Apply vtime and slice updates before moving so that the new time is
6507 	 * visible before inserting into $dst_dsq. @p is still on $src_dsq but
6508 	 * this is safe as we're locking it.
6509 	 */
6510 	if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME)
6511 		p->scx.dsq_vtime = kit->vtime;
6512 	if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE)
6513 		p->scx.slice = kit->slice;
6514 
6515 	/* execute move */
6516 	locked_rq = move_task_between_dsqs(p, enq_flags, src_dsq, dst_dsq);
6517 	dispatched = true;
6518 out:
6519 	if (in_balance) {
6520 		if (this_rq != locked_rq) {
6521 			raw_spin_rq_unlock(locked_rq);
6522 			raw_spin_rq_lock(this_rq);
6523 		}
6524 	} else {
6525 		raw_spin_rq_unlock_irqrestore(locked_rq, flags);
6526 	}
6527 
6528 	kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE |
6529 			       __SCX_DSQ_ITER_HAS_VTIME);
6530 	return dispatched;
6531 }
6532 
6533 __bpf_kfunc_start_defs();
6534 
6535 /**
6536  * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots
6537  *
6538  * Can only be called from ops.dispatch().
6539  */
6540 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
6541 {
6542 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
6543 		return 0;
6544 
6545 	return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor);
6546 }
6547 
6548 /**
6549  * scx_bpf_dispatch_cancel - Cancel the latest dispatch
6550  *
6551  * Cancel the latest dispatch. Can be called multiple times to cancel further
6552  * dispatches. Can only be called from ops.dispatch().
6553  */
6554 __bpf_kfunc void scx_bpf_dispatch_cancel(void)
6555 {
6556 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6557 
6558 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
6559 		return;
6560 
6561 	if (dspc->cursor > 0)
6562 		dspc->cursor--;
6563 	else
6564 		scx_ops_error("dispatch buffer underflow");
6565 }
6566 
6567 /**
6568  * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ
6569  * @dsq_id: DSQ to move task from
6570  *
6571  * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's
6572  * local DSQ for execution. Can only be called from ops.dispatch().
6573  *
6574  * This function flushes the in-flight dispatches from scx_bpf_dsq_insert()
6575  * before trying to move from the specified DSQ. It may also grab rq locks and
6576  * thus can't be called under any BPF locks.
6577  *
6578  * Returns %true if a task has been moved, %false if there isn't any task to
6579  * move.
6580  */
6581 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id)
6582 {
6583 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6584 	struct scx_dispatch_q *dsq;
6585 
6586 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
6587 		return false;
6588 
6589 	flush_dispatch_buf(dspc->rq);
6590 
6591 	dsq = find_user_dsq(dsq_id);
6592 	if (unlikely(!dsq)) {
6593 		scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id);
6594 		return false;
6595 	}
6596 
6597 	if (consume_dispatch_q(dspc->rq, dsq)) {
6598 		/*
6599 		 * A successfully consumed task can be dequeued before it starts
6600 		 * running while the CPU is trying to migrate other dispatched
6601 		 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty
6602 		 * local DSQ.
6603 		 */
6604 		dspc->nr_tasks++;
6605 		return true;
6606 	} else {
6607 		return false;
6608 	}
6609 }
6610 
6611 /* for backward compatibility, will be removed in v6.15 */
6612 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id)
6613 {
6614 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_consume() renamed to scx_bpf_dsq_move_to_local()");
6615 	return scx_bpf_dsq_move_to_local(dsq_id);
6616 }
6617 
6618 /**
6619  * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs
6620  * @it__iter: DSQ iterator in progress
6621  * @slice: duration the moved task can run for in nsecs
6622  *
6623  * Override the slice of the next task that will be moved from @it__iter using
6624  * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous
6625  * slice duration is kept.
6626  */
6627 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter,
6628 					    u64 slice)
6629 {
6630 	struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6631 
6632 	kit->slice = slice;
6633 	kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE;
6634 }
6635 
6636 /* for backward compatibility, will be removed in v6.15 */
6637 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice(
6638 			struct bpf_iter_scx_dsq *it__iter, u64 slice)
6639 {
6640 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_slice() renamed to scx_bpf_dsq_move_set_slice()");
6641 	scx_bpf_dsq_move_set_slice(it__iter, slice);
6642 }
6643 
6644 /**
6645  * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs
6646  * @it__iter: DSQ iterator in progress
6647  * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ
6648  *
6649  * Override the vtime of the next task that will be moved from @it__iter using
6650  * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice
6651  * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the
6652  * override is ignored and cleared.
6653  */
6654 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter,
6655 					    u64 vtime)
6656 {
6657 	struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6658 
6659 	kit->vtime = vtime;
6660 	kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME;
6661 }
6662 
6663 /* for backward compatibility, will be removed in v6.15 */
6664 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime(
6665 			struct bpf_iter_scx_dsq *it__iter, u64 vtime)
6666 {
6667 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_vtime() renamed to scx_bpf_dsq_move_set_vtime()");
6668 	scx_bpf_dsq_move_set_vtime(it__iter, vtime);
6669 }
6670 
6671 /**
6672  * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ
6673  * @it__iter: DSQ iterator in progress
6674  * @p: task to transfer
6675  * @dsq_id: DSQ to move @p to
6676  * @enq_flags: SCX_ENQ_*
6677  *
6678  * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ
6679  * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can
6680  * be the destination.
6681  *
6682  * For the transfer to be successful, @p must still be on the DSQ and have been
6683  * queued before the DSQ iteration started. This function doesn't care whether
6684  * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have
6685  * been queued before the iteration started.
6686  *
6687  * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update.
6688  *
6689  * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq
6690  * lock (e.g. BPF timers or SYSCALL programs).
6691  *
6692  * Returns %true if @p has been consumed, %false if @p had already been consumed
6693  * or dequeued.
6694  */
6695 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter,
6696 				  struct task_struct *p, u64 dsq_id,
6697 				  u64 enq_flags)
6698 {
6699 	return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter,
6700 			    p, dsq_id, enq_flags);
6701 }
6702 
6703 /* for backward compatibility, will be removed in v6.15 */
6704 __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter,
6705 					   struct task_struct *p, u64 dsq_id,
6706 					   u64 enq_flags)
6707 {
6708 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq() renamed to scx_bpf_dsq_move()");
6709 	return scx_bpf_dsq_move(it__iter, p, dsq_id, enq_flags);
6710 }
6711 
6712 /**
6713  * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ
6714  * @it__iter: DSQ iterator in progress
6715  * @p: task to transfer
6716  * @dsq_id: DSQ to move @p to
6717  * @enq_flags: SCX_ENQ_*
6718  *
6719  * Transfer @p which is on the DSQ currently iterated by @it__iter to the
6720  * priority queue of the DSQ specified by @dsq_id. The destination must be a
6721  * user DSQ as only user DSQs support priority queue.
6722  *
6723  * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice()
6724  * and scx_bpf_dsq_move_set_vtime() to update.
6725  *
6726  * All other aspects are identical to scx_bpf_dsq_move(). See
6727  * scx_bpf_dsq_insert_vtime() for more information on @vtime.
6728  */
6729 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter,
6730 					struct task_struct *p, u64 dsq_id,
6731 					u64 enq_flags)
6732 {
6733 	return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter,
6734 			    p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6735 }
6736 
6737 /* for backward compatibility, will be removed in v6.15 */
6738 __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter,
6739 						 struct task_struct *p, u64 dsq_id,
6740 						 u64 enq_flags)
6741 {
6742 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_vtime() renamed to scx_bpf_dsq_move_vtime()");
6743 	return scx_bpf_dsq_move_vtime(it__iter, p, dsq_id, enq_flags);
6744 }
6745 
6746 __bpf_kfunc_end_defs();
6747 
6748 BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
6749 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
6750 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
6751 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local)
6752 BTF_ID_FLAGS(func, scx_bpf_consume)
6753 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice)
6754 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime)
6755 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
6756 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
6757 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice)
6758 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime)
6759 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
6760 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
6761 BTF_KFUNCS_END(scx_kfunc_ids_dispatch)
6762 
6763 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
6764 	.owner			= THIS_MODULE,
6765 	.set			= &scx_kfunc_ids_dispatch,
6766 };
6767 
6768 __bpf_kfunc_start_defs();
6769 
6770 /**
6771  * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
6772  *
6773  * Iterate over all of the tasks currently enqueued on the local DSQ of the
6774  * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
6775  * processed tasks. Can only be called from ops.cpu_release().
6776  */
6777 __bpf_kfunc u32 scx_bpf_reenqueue_local(void)
6778 {
6779 	LIST_HEAD(tasks);
6780 	u32 nr_enqueued = 0;
6781 	struct rq *rq;
6782 	struct task_struct *p, *n;
6783 
6784 	if (!scx_kf_allowed(SCX_KF_CPU_RELEASE))
6785 		return 0;
6786 
6787 	rq = cpu_rq(smp_processor_id());
6788 	lockdep_assert_rq_held(rq);
6789 
6790 	/*
6791 	 * The BPF scheduler may choose to dispatch tasks back to
6792 	 * @rq->scx.local_dsq. Move all candidate tasks off to a private list
6793 	 * first to avoid processing the same tasks repeatedly.
6794 	 */
6795 	list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list,
6796 				 scx.dsq_list.node) {
6797 		/*
6798 		 * If @p is being migrated, @p's current CPU may not agree with
6799 		 * its allowed CPUs and the migration_cpu_stop is about to
6800 		 * deactivate and re-activate @p anyway. Skip re-enqueueing.
6801 		 *
6802 		 * While racing sched property changes may also dequeue and
6803 		 * re-enqueue a migrating task while its current CPU and allowed
6804 		 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to
6805 		 * the current local DSQ for running tasks and thus are not
6806 		 * visible to the BPF scheduler.
6807 		 */
6808 		if (p->migration_pending)
6809 			continue;
6810 
6811 		dispatch_dequeue(rq, p);
6812 		list_add_tail(&p->scx.dsq_list.node, &tasks);
6813 	}
6814 
6815 	list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) {
6816 		list_del_init(&p->scx.dsq_list.node);
6817 		do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1);
6818 		nr_enqueued++;
6819 	}
6820 
6821 	return nr_enqueued;
6822 }
6823 
6824 __bpf_kfunc_end_defs();
6825 
6826 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release)
6827 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local)
6828 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release)
6829 
6830 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = {
6831 	.owner			= THIS_MODULE,
6832 	.set			= &scx_kfunc_ids_cpu_release,
6833 };
6834 
6835 __bpf_kfunc_start_defs();
6836 
6837 /**
6838  * scx_bpf_create_dsq - Create a custom DSQ
6839  * @dsq_id: DSQ to create
6840  * @node: NUMA node to allocate from
6841  *
6842  * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable
6843  * scx callback, and any BPF_PROG_TYPE_SYSCALL prog.
6844  */
6845 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node)
6846 {
6847 	if (unlikely(node >= (int)nr_node_ids ||
6848 		     (node < 0 && node != NUMA_NO_NODE)))
6849 		return -EINVAL;
6850 	return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node));
6851 }
6852 
6853 __bpf_kfunc_end_defs();
6854 
6855 BTF_KFUNCS_START(scx_kfunc_ids_unlocked)
6856 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
6857 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice)
6858 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime)
6859 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
6860 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
6861 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice)
6862 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime)
6863 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
6864 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
6865 BTF_KFUNCS_END(scx_kfunc_ids_unlocked)
6866 
6867 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = {
6868 	.owner			= THIS_MODULE,
6869 	.set			= &scx_kfunc_ids_unlocked,
6870 };
6871 
6872 __bpf_kfunc_start_defs();
6873 
6874 /**
6875  * scx_bpf_kick_cpu - Trigger reschedule on a CPU
6876  * @cpu: cpu to kick
6877  * @flags: %SCX_KICK_* flags
6878  *
6879  * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
6880  * trigger rescheduling on a busy CPU. This can be called from any online
6881  * scx_ops operation and the actual kicking is performed asynchronously through
6882  * an irq work.
6883  */
6884 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
6885 {
6886 	struct rq *this_rq;
6887 	unsigned long irq_flags;
6888 
6889 	if (!ops_cpu_valid(cpu, NULL))
6890 		return;
6891 
6892 	local_irq_save(irq_flags);
6893 
6894 	this_rq = this_rq();
6895 
6896 	/*
6897 	 * While bypassing for PM ops, IRQ handling may not be online which can
6898 	 * lead to irq_work_queue() malfunction such as infinite busy wait for
6899 	 * IRQ status update. Suppress kicking.
6900 	 */
6901 	if (scx_rq_bypassing(this_rq))
6902 		goto out;
6903 
6904 	/*
6905 	 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting
6906 	 * rq locks. We can probably be smarter and avoid bouncing if called
6907 	 * from ops which don't hold a rq lock.
6908 	 */
6909 	if (flags & SCX_KICK_IDLE) {
6910 		struct rq *target_rq = cpu_rq(cpu);
6911 
6912 		if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT)))
6913 			scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
6914 
6915 		if (raw_spin_rq_trylock(target_rq)) {
6916 			if (can_skip_idle_kick(target_rq)) {
6917 				raw_spin_rq_unlock(target_rq);
6918 				goto out;
6919 			}
6920 			raw_spin_rq_unlock(target_rq);
6921 		}
6922 		cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle);
6923 	} else {
6924 		cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick);
6925 
6926 		if (flags & SCX_KICK_PREEMPT)
6927 			cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt);
6928 		if (flags & SCX_KICK_WAIT)
6929 			cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait);
6930 	}
6931 
6932 	irq_work_queue(&this_rq->scx.kick_cpus_irq_work);
6933 out:
6934 	local_irq_restore(irq_flags);
6935 }
6936 
6937 /**
6938  * scx_bpf_dsq_nr_queued - Return the number of queued tasks
6939  * @dsq_id: id of the DSQ
6940  *
6941  * Return the number of tasks in the DSQ matching @dsq_id. If not found,
6942  * -%ENOENT is returned.
6943  */
6944 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id)
6945 {
6946 	struct scx_dispatch_q *dsq;
6947 	s32 ret;
6948 
6949 	preempt_disable();
6950 
6951 	if (dsq_id == SCX_DSQ_LOCAL) {
6952 		ret = READ_ONCE(this_rq()->scx.local_dsq.nr);
6953 		goto out;
6954 	} else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
6955 		s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
6956 
6957 		if (ops_cpu_valid(cpu, NULL)) {
6958 			ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr);
6959 			goto out;
6960 		}
6961 	} else {
6962 		dsq = find_user_dsq(dsq_id);
6963 		if (dsq) {
6964 			ret = READ_ONCE(dsq->nr);
6965 			goto out;
6966 		}
6967 	}
6968 	ret = -ENOENT;
6969 out:
6970 	preempt_enable();
6971 	return ret;
6972 }
6973 
6974 /**
6975  * scx_bpf_destroy_dsq - Destroy a custom DSQ
6976  * @dsq_id: DSQ to destroy
6977  *
6978  * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with
6979  * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is
6980  * empty and no further tasks are dispatched to it. Ignored if called on a DSQ
6981  * which doesn't exist. Can be called from any online scx_ops operations.
6982  */
6983 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id)
6984 {
6985 	destroy_dsq(dsq_id);
6986 }
6987 
6988 /**
6989  * bpf_iter_scx_dsq_new - Create a DSQ iterator
6990  * @it: iterator to initialize
6991  * @dsq_id: DSQ to iterate
6992  * @flags: %SCX_DSQ_ITER_*
6993  *
6994  * Initialize BPF iterator @it which can be used with bpf_for_each() to walk
6995  * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes
6996  * tasks which are already queued when this function is invoked.
6997  */
6998 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id,
6999 				     u64 flags)
7000 {
7001 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
7002 
7003 	BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) >
7004 		     sizeof(struct bpf_iter_scx_dsq));
7005 	BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) !=
7006 		     __alignof__(struct bpf_iter_scx_dsq));
7007 
7008 	if (flags & ~__SCX_DSQ_ITER_USER_FLAGS)
7009 		return -EINVAL;
7010 
7011 	kit->dsq = find_user_dsq(dsq_id);
7012 	if (!kit->dsq)
7013 		return -ENOENT;
7014 
7015 	INIT_LIST_HEAD(&kit->cursor.node);
7016 	kit->cursor.flags |= SCX_DSQ_LNODE_ITER_CURSOR | flags;
7017 	kit->cursor.priv = READ_ONCE(kit->dsq->seq);
7018 
7019 	return 0;
7020 }
7021 
7022 /**
7023  * bpf_iter_scx_dsq_next - Progress a DSQ iterator
7024  * @it: iterator to progress
7025  *
7026  * Return the next task. See bpf_iter_scx_dsq_new().
7027  */
7028 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it)
7029 {
7030 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
7031 	bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV;
7032 	struct task_struct *p;
7033 	unsigned long flags;
7034 
7035 	if (!kit->dsq)
7036 		return NULL;
7037 
7038 	raw_spin_lock_irqsave(&kit->dsq->lock, flags);
7039 
7040 	if (list_empty(&kit->cursor.node))
7041 		p = NULL;
7042 	else
7043 		p = container_of(&kit->cursor, struct task_struct, scx.dsq_list);
7044 
7045 	/*
7046 	 * Only tasks which were queued before the iteration started are
7047 	 * visible. This bounds BPF iterations and guarantees that vtime never
7048 	 * jumps in the other direction while iterating.
7049 	 */
7050 	do {
7051 		p = nldsq_next_task(kit->dsq, p, rev);
7052 	} while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq)));
7053 
7054 	if (p) {
7055 		if (rev)
7056 			list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node);
7057 		else
7058 			list_move(&kit->cursor.node, &p->scx.dsq_list.node);
7059 	} else {
7060 		list_del_init(&kit->cursor.node);
7061 	}
7062 
7063 	raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
7064 
7065 	return p;
7066 }
7067 
7068 /**
7069  * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator
7070  * @it: iterator to destroy
7071  *
7072  * Undo scx_iter_scx_dsq_new().
7073  */
7074 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it)
7075 {
7076 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
7077 
7078 	if (!kit->dsq)
7079 		return;
7080 
7081 	if (!list_empty(&kit->cursor.node)) {
7082 		unsigned long flags;
7083 
7084 		raw_spin_lock_irqsave(&kit->dsq->lock, flags);
7085 		list_del_init(&kit->cursor.node);
7086 		raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
7087 	}
7088 	kit->dsq = NULL;
7089 }
7090 
7091 __bpf_kfunc_end_defs();
7092 
7093 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size,
7094 			 char *fmt, unsigned long long *data, u32 data__sz)
7095 {
7096 	struct bpf_bprintf_data bprintf_data = { .get_bin_args = true };
7097 	s32 ret;
7098 
7099 	if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 ||
7100 	    (data__sz && !data)) {
7101 		scx_ops_error("invalid data=%p and data__sz=%u",
7102 			      (void *)data, data__sz);
7103 		return -EINVAL;
7104 	}
7105 
7106 	ret = copy_from_kernel_nofault(data_buf, data, data__sz);
7107 	if (ret < 0) {
7108 		scx_ops_error("failed to read data fields (%d)", ret);
7109 		return ret;
7110 	}
7111 
7112 	ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8,
7113 				  &bprintf_data);
7114 	if (ret < 0) {
7115 		scx_ops_error("format preparation failed (%d)", ret);
7116 		return ret;
7117 	}
7118 
7119 	ret = bstr_printf(line_buf, line_size, fmt,
7120 			  bprintf_data.bin_args);
7121 	bpf_bprintf_cleanup(&bprintf_data);
7122 	if (ret < 0) {
7123 		scx_ops_error("(\"%s\", %p, %u) failed to format",
7124 			      fmt, data, data__sz);
7125 		return ret;
7126 	}
7127 
7128 	return ret;
7129 }
7130 
7131 static s32 bstr_format(struct scx_bstr_buf *buf,
7132 		       char *fmt, unsigned long long *data, u32 data__sz)
7133 {
7134 	return __bstr_format(buf->data, buf->line, sizeof(buf->line),
7135 			     fmt, data, data__sz);
7136 }
7137 
7138 __bpf_kfunc_start_defs();
7139 
7140 /**
7141  * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler.
7142  * @exit_code: Exit value to pass to user space via struct scx_exit_info.
7143  * @fmt: error message format string
7144  * @data: format string parameters packaged using ___bpf_fill() macro
7145  * @data__sz: @data len, must end in '__sz' for the verifier
7146  *
7147  * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops
7148  * disabling.
7149  */
7150 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
7151 				   unsigned long long *data, u32 data__sz)
7152 {
7153 	unsigned long flags;
7154 
7155 	raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
7156 	if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
7157 		scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s",
7158 				  scx_exit_bstr_buf.line);
7159 	raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
7160 }
7161 
7162 /**
7163  * scx_bpf_error_bstr - Indicate fatal error
7164  * @fmt: error message format string
7165  * @data: format string parameters packaged using ___bpf_fill() macro
7166  * @data__sz: @data len, must end in '__sz' for the verifier
7167  *
7168  * Indicate that the BPF scheduler encountered a fatal error and initiate ops
7169  * disabling.
7170  */
7171 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
7172 				    u32 data__sz)
7173 {
7174 	unsigned long flags;
7175 
7176 	raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
7177 	if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
7178 		scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s",
7179 				  scx_exit_bstr_buf.line);
7180 	raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
7181 }
7182 
7183 /**
7184  * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler
7185  * @fmt: format string
7186  * @data: format string parameters packaged using ___bpf_fill() macro
7187  * @data__sz: @data len, must end in '__sz' for the verifier
7188  *
7189  * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and
7190  * dump_task() to generate extra debug dump specific to the BPF scheduler.
7191  *
7192  * The extra dump may be multiple lines. A single line may be split over
7193  * multiple calls. The last line is automatically terminated.
7194  */
7195 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
7196 				   u32 data__sz)
7197 {
7198 	struct scx_dump_data *dd = &scx_dump_data;
7199 	struct scx_bstr_buf *buf = &dd->buf;
7200 	s32 ret;
7201 
7202 	if (raw_smp_processor_id() != dd->cpu) {
7203 		scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends");
7204 		return;
7205 	}
7206 
7207 	/* append the formatted string to the line buf */
7208 	ret = __bstr_format(buf->data, buf->line + dd->cursor,
7209 			    sizeof(buf->line) - dd->cursor, fmt, data, data__sz);
7210 	if (ret < 0) {
7211 		dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)",
7212 			  dd->prefix, fmt, data, data__sz, ret);
7213 		return;
7214 	}
7215 
7216 	dd->cursor += ret;
7217 	dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line));
7218 
7219 	if (!dd->cursor)
7220 		return;
7221 
7222 	/*
7223 	 * If the line buf overflowed or ends in a newline, flush it into the
7224 	 * dump. This is to allow the caller to generate a single line over
7225 	 * multiple calls. As ops_dump_flush() can also handle multiple lines in
7226 	 * the line buf, the only case which can lead to an unexpected
7227 	 * truncation is when the caller keeps generating newlines in the middle
7228 	 * instead of the end consecutively. Don't do that.
7229 	 */
7230 	if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n')
7231 		ops_dump_flush();
7232 }
7233 
7234 /**
7235  * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU
7236  * @cpu: CPU of interest
7237  *
7238  * Return the maximum relative capacity of @cpu in relation to the most
7239  * performant CPU in the system. The return value is in the range [1,
7240  * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur().
7241  */
7242 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu)
7243 {
7244 	if (ops_cpu_valid(cpu, NULL))
7245 		return arch_scale_cpu_capacity(cpu);
7246 	else
7247 		return SCX_CPUPERF_ONE;
7248 }
7249 
7250 /**
7251  * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU
7252  * @cpu: CPU of interest
7253  *
7254  * Return the current relative performance of @cpu in relation to its maximum.
7255  * The return value is in the range [1, %SCX_CPUPERF_ONE].
7256  *
7257  * The current performance level of a CPU in relation to the maximum performance
7258  * available in the system can be calculated as follows:
7259  *
7260  *   scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE
7261  *
7262  * The result is in the range [1, %SCX_CPUPERF_ONE].
7263  */
7264 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
7265 {
7266 	if (ops_cpu_valid(cpu, NULL))
7267 		return arch_scale_freq_capacity(cpu);
7268 	else
7269 		return SCX_CPUPERF_ONE;
7270 }
7271 
7272 /**
7273  * scx_bpf_cpuperf_set - Set the relative performance target of a CPU
7274  * @cpu: CPU of interest
7275  * @perf: target performance level [0, %SCX_CPUPERF_ONE]
7276  * @flags: %SCX_CPUPERF_* flags
7277  *
7278  * Set the target performance level of @cpu to @perf. @perf is in linear
7279  * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the
7280  * schedutil cpufreq governor chooses the target frequency.
7281  *
7282  * The actual performance level chosen, CPU grouping, and the overhead and
7283  * latency of the operations are dependent on the hardware and cpufreq driver in
7284  * use. Consult hardware and cpufreq documentation for more information. The
7285  * current performance level can be monitored using scx_bpf_cpuperf_cur().
7286  */
7287 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf)
7288 {
7289 	if (unlikely(perf > SCX_CPUPERF_ONE)) {
7290 		scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu);
7291 		return;
7292 	}
7293 
7294 	if (ops_cpu_valid(cpu, NULL)) {
7295 		struct rq *rq = cpu_rq(cpu);
7296 
7297 		rq->scx.cpuperf_target = perf;
7298 
7299 		rcu_read_lock_sched_notrace();
7300 		cpufreq_update_util(cpu_rq(cpu), 0);
7301 		rcu_read_unlock_sched_notrace();
7302 	}
7303 }
7304 
7305 /**
7306  * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
7307  *
7308  * All valid CPU IDs in the system are smaller than the returned value.
7309  */
7310 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void)
7311 {
7312 	return nr_cpu_ids;
7313 }
7314 
7315 /**
7316  * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask
7317  */
7318 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void)
7319 {
7320 	return cpu_possible_mask;
7321 }
7322 
7323 /**
7324  * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask
7325  */
7326 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void)
7327 {
7328 	return cpu_online_mask;
7329 }
7330 
7331 /**
7332  * scx_bpf_put_cpumask - Release a possible/online cpumask
7333  * @cpumask: cpumask to release
7334  */
7335 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask)
7336 {
7337 	/*
7338 	 * Empty function body because we aren't actually acquiring or releasing
7339 	 * a reference to a global cpumask, which is read-only in the caller and
7340 	 * is never released. The acquire / release semantics here are just used
7341 	 * to make the cpumask is a trusted pointer in the caller.
7342 	 */
7343 }
7344 
7345 /**
7346  * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
7347  * per-CPU cpumask.
7348  *
7349  * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
7350  */
7351 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
7352 {
7353 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7354 		scx_ops_error("built-in idle tracking is disabled");
7355 		return cpu_none_mask;
7356 	}
7357 
7358 #ifdef CONFIG_SMP
7359 	return idle_masks.cpu;
7360 #else
7361 	return cpu_none_mask;
7362 #endif
7363 }
7364 
7365 /**
7366  * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
7367  * per-physical-core cpumask. Can be used to determine if an entire physical
7368  * core is free.
7369  *
7370  * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
7371  */
7372 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
7373 {
7374 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7375 		scx_ops_error("built-in idle tracking is disabled");
7376 		return cpu_none_mask;
7377 	}
7378 
7379 #ifdef CONFIG_SMP
7380 	if (sched_smt_active())
7381 		return idle_masks.smt;
7382 	else
7383 		return idle_masks.cpu;
7384 #else
7385 	return cpu_none_mask;
7386 #endif
7387 }
7388 
7389 /**
7390  * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
7391  * either the percpu, or SMT idle-tracking cpumask.
7392  */
7393 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
7394 {
7395 	/*
7396 	 * Empty function body because we aren't actually acquiring or releasing
7397 	 * a reference to a global idle cpumask, which is read-only in the
7398 	 * caller and is never released. The acquire / release semantics here
7399 	 * are just used to make the cpumask a trusted pointer in the caller.
7400 	 */
7401 }
7402 
7403 /**
7404  * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
7405  * @cpu: cpu to test and clear idle for
7406  *
7407  * Returns %true if @cpu was idle and its idle state was successfully cleared.
7408  * %false otherwise.
7409  *
7410  * Unavailable if ops.update_idle() is implemented and
7411  * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
7412  */
7413 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
7414 {
7415 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7416 		scx_ops_error("built-in idle tracking is disabled");
7417 		return false;
7418 	}
7419 
7420 	if (ops_cpu_valid(cpu, NULL))
7421 		return test_and_clear_cpu_idle(cpu);
7422 	else
7423 		return false;
7424 }
7425 
7426 /**
7427  * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
7428  * @cpus_allowed: Allowed cpumask
7429  * @flags: %SCX_PICK_IDLE_CPU_* flags
7430  *
7431  * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
7432  * number on success. -%EBUSY if no matching cpu was found.
7433  *
7434  * Idle CPU tracking may race against CPU scheduling state transitions. For
7435  * example, this function may return -%EBUSY as CPUs are transitioning into the
7436  * idle state. If the caller then assumes that there will be dispatch events on
7437  * the CPUs as they were all busy, the scheduler may end up stalling with CPUs
7438  * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
7439  * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
7440  * event in the near future.
7441  *
7442  * Unavailable if ops.update_idle() is implemented and
7443  * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
7444  */
7445 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
7446 				      u64 flags)
7447 {
7448 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7449 		scx_ops_error("built-in idle tracking is disabled");
7450 		return -EBUSY;
7451 	}
7452 
7453 	return scx_pick_idle_cpu(cpus_allowed, flags);
7454 }
7455 
7456 /**
7457  * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
7458  * @cpus_allowed: Allowed cpumask
7459  * @flags: %SCX_PICK_IDLE_CPU_* flags
7460  *
7461  * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
7462  * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
7463  * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
7464  * empty.
7465  *
7466  * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
7467  * set, this function can't tell which CPUs are idle and will always pick any
7468  * CPU.
7469  */
7470 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
7471 				     u64 flags)
7472 {
7473 	s32 cpu;
7474 
7475 	if (static_branch_likely(&scx_builtin_idle_enabled)) {
7476 		cpu = scx_pick_idle_cpu(cpus_allowed, flags);
7477 		if (cpu >= 0)
7478 			return cpu;
7479 	}
7480 
7481 	cpu = cpumask_any_distribute(cpus_allowed);
7482 	if (cpu < nr_cpu_ids)
7483 		return cpu;
7484 	else
7485 		return -EBUSY;
7486 }
7487 
7488 /**
7489  * scx_bpf_task_running - Is task currently running?
7490  * @p: task of interest
7491  */
7492 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
7493 {
7494 	return task_rq(p)->curr == p;
7495 }
7496 
7497 /**
7498  * scx_bpf_task_cpu - CPU a task is currently associated with
7499  * @p: task of interest
7500  */
7501 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
7502 {
7503 	return task_cpu(p);
7504 }
7505 
7506 /**
7507  * scx_bpf_cpu_rq - Fetch the rq of a CPU
7508  * @cpu: CPU of the rq
7509  */
7510 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu)
7511 {
7512 	if (!ops_cpu_valid(cpu, NULL))
7513 		return NULL;
7514 
7515 	return cpu_rq(cpu);
7516 }
7517 
7518 /**
7519  * scx_bpf_task_cgroup - Return the sched cgroup of a task
7520  * @p: task of interest
7521  *
7522  * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with
7523  * from the scheduler's POV. SCX operations should use this function to
7524  * determine @p's current cgroup as, unlike following @p->cgroups,
7525  * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all
7526  * rq-locked operations. Can be called on the parameter tasks of rq-locked
7527  * operations. The restriction guarantees that @p's rq is locked by the caller.
7528  */
7529 #ifdef CONFIG_CGROUP_SCHED
7530 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p)
7531 {
7532 	struct task_group *tg = p->sched_task_group;
7533 	struct cgroup *cgrp = &cgrp_dfl_root.cgrp;
7534 
7535 	if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p))
7536 		goto out;
7537 
7538 	cgrp = tg_cgrp(tg);
7539 
7540 out:
7541 	cgroup_get(cgrp);
7542 	return cgrp;
7543 }
7544 #endif
7545 
7546 __bpf_kfunc_end_defs();
7547 
7548 BTF_KFUNCS_START(scx_kfunc_ids_any)
7549 BTF_ID_FLAGS(func, scx_bpf_kick_cpu)
7550 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued)
7551 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq)
7552 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED)
7553 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL)
7554 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY)
7555 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS)
7556 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS)
7557 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS)
7558 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap)
7559 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur)
7560 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set)
7561 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids)
7562 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE)
7563 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE)
7564 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE)
7565 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
7566 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
7567 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
7568 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
7569 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
7570 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
7571 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU)
7572 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU)
7573 BTF_ID_FLAGS(func, scx_bpf_cpu_rq)
7574 #ifdef CONFIG_CGROUP_SCHED
7575 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE)
7576 #endif
7577 BTF_KFUNCS_END(scx_kfunc_ids_any)
7578 
7579 static const struct btf_kfunc_id_set scx_kfunc_set_any = {
7580 	.owner			= THIS_MODULE,
7581 	.set			= &scx_kfunc_ids_any,
7582 };
7583 
7584 static int __init scx_init(void)
7585 {
7586 	int ret;
7587 
7588 	/*
7589 	 * kfunc registration can't be done from init_sched_ext_class() as
7590 	 * register_btf_kfunc_id_set() needs most of the system to be up.
7591 	 *
7592 	 * Some kfuncs are context-sensitive and can only be called from
7593 	 * specific SCX ops. They are grouped into BTF sets accordingly.
7594 	 * Unfortunately, BPF currently doesn't have a way of enforcing such
7595 	 * restrictions. Eventually, the verifier should be able to enforce
7596 	 * them. For now, register them the same and make each kfunc explicitly
7597 	 * check using scx_kf_allowed().
7598 	 */
7599 	if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7600 					     &scx_kfunc_set_select_cpu)) ||
7601 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7602 					     &scx_kfunc_set_enqueue_dispatch)) ||
7603 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7604 					     &scx_kfunc_set_dispatch)) ||
7605 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7606 					     &scx_kfunc_set_cpu_release)) ||
7607 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7608 					     &scx_kfunc_set_unlocked)) ||
7609 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7610 					     &scx_kfunc_set_unlocked)) ||
7611 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7612 					     &scx_kfunc_set_any)) ||
7613 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
7614 					     &scx_kfunc_set_any)) ||
7615 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7616 					     &scx_kfunc_set_any))) {
7617 		pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret);
7618 		return ret;
7619 	}
7620 
7621 	ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops);
7622 	if (ret) {
7623 		pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret);
7624 		return ret;
7625 	}
7626 
7627 	ret = register_pm_notifier(&scx_pm_notifier);
7628 	if (ret) {
7629 		pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret);
7630 		return ret;
7631 	}
7632 
7633 	scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj);
7634 	if (!scx_kset) {
7635 		pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n");
7636 		return -ENOMEM;
7637 	}
7638 
7639 	ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group);
7640 	if (ret < 0) {
7641 		pr_err("sched_ext: Failed to add global attributes\n");
7642 		return ret;
7643 	}
7644 
7645 	return 0;
7646 }
7647 __initcall(scx_init);
7648