xref: /linux/kernel/sched/ext.c (revision 7724abf0ca77460cb06ac3d5e4352a5c2289c3ae)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
4  *
5  * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
6  * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
7  * Copyright (c) 2022 David Vernet <dvernet@meta.com>
8  */
9 #define SCX_OP_IDX(op)		(offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void)))
10 
11 enum scx_consts {
12 	SCX_DSP_DFL_MAX_BATCH		= 32,
13 	SCX_DSP_MAX_LOOPS		= 32,
14 	SCX_WATCHDOG_MAX_TIMEOUT	= 30 * HZ,
15 
16 	SCX_EXIT_BT_LEN			= 64,
17 	SCX_EXIT_MSG_LEN		= 1024,
18 	SCX_EXIT_DUMP_DFL_LEN		= 32768,
19 
20 	SCX_CPUPERF_ONE			= SCHED_CAPACITY_SCALE,
21 
22 	/*
23 	 * Iterating all tasks may take a while. Periodically drop
24 	 * scx_tasks_lock to avoid causing e.g. CSD and RCU stalls.
25 	 */
26 	SCX_OPS_TASK_ITER_BATCH		= 32,
27 };
28 
29 enum scx_exit_kind {
30 	SCX_EXIT_NONE,
31 	SCX_EXIT_DONE,
32 
33 	SCX_EXIT_UNREG = 64,	/* user-space initiated unregistration */
34 	SCX_EXIT_UNREG_BPF,	/* BPF-initiated unregistration */
35 	SCX_EXIT_UNREG_KERN,	/* kernel-initiated unregistration */
36 	SCX_EXIT_SYSRQ,		/* requested by 'S' sysrq */
37 
38 	SCX_EXIT_ERROR = 1024,	/* runtime error, error msg contains details */
39 	SCX_EXIT_ERROR_BPF,	/* ERROR but triggered through scx_bpf_error() */
40 	SCX_EXIT_ERROR_STALL,	/* watchdog detected stalled runnable tasks */
41 };
42 
43 /*
44  * An exit code can be specified when exiting with scx_bpf_exit() or
45  * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN
46  * respectively. The codes are 64bit of the format:
47  *
48  *   Bits: [63  ..  48 47   ..  32 31 .. 0]
49  *         [ SYS ACT ] [ SYS RSN ] [ USR  ]
50  *
51  *   SYS ACT: System-defined exit actions
52  *   SYS RSN: System-defined exit reasons
53  *   USR    : User-defined exit codes and reasons
54  *
55  * Using the above, users may communicate intention and context by ORing system
56  * actions and/or system reasons with a user-defined exit code.
57  */
58 enum scx_exit_code {
59 	/* Reasons */
60 	SCX_ECODE_RSN_HOTPLUG	= 1LLU << 32,
61 
62 	/* Actions */
63 	SCX_ECODE_ACT_RESTART	= 1LLU << 48,
64 };
65 
66 /*
67  * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is
68  * being disabled.
69  */
70 struct scx_exit_info {
71 	/* %SCX_EXIT_* - broad category of the exit reason */
72 	enum scx_exit_kind	kind;
73 
74 	/* exit code if gracefully exiting */
75 	s64			exit_code;
76 
77 	/* textual representation of the above */
78 	const char		*reason;
79 
80 	/* backtrace if exiting due to an error */
81 	unsigned long		*bt;
82 	u32			bt_len;
83 
84 	/* informational message */
85 	char			*msg;
86 
87 	/* debug dump */
88 	char			*dump;
89 };
90 
91 /* sched_ext_ops.flags */
92 enum scx_ops_flags {
93 	/*
94 	 * Keep built-in idle tracking even if ops.update_idle() is implemented.
95 	 */
96 	SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0,
97 
98 	/*
99 	 * By default, if there are no other task to run on the CPU, ext core
100 	 * keeps running the current task even after its slice expires. If this
101 	 * flag is specified, such tasks are passed to ops.enqueue() with
102 	 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info.
103 	 */
104 	SCX_OPS_ENQ_LAST	= 1LLU << 1,
105 
106 	/*
107 	 * An exiting task may schedule after PF_EXITING is set. In such cases,
108 	 * bpf_task_from_pid() may not be able to find the task and if the BPF
109 	 * scheduler depends on pid lookup for dispatching, the task will be
110 	 * lost leading to various issues including RCU grace period stalls.
111 	 *
112 	 * To mask this problem, by default, unhashed tasks are automatically
113 	 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't
114 	 * depend on pid lookups and wants to handle these tasks directly, the
115 	 * following flag can be used.
116 	 */
117 	SCX_OPS_ENQ_EXITING	= 1LLU << 2,
118 
119 	/*
120 	 * If set, only tasks with policy set to SCHED_EXT are attached to
121 	 * sched_ext. If clear, SCHED_NORMAL tasks are also included.
122 	 */
123 	SCX_OPS_SWITCH_PARTIAL	= 1LLU << 3,
124 
125 	/*
126 	 * CPU cgroup support flags
127 	 */
128 	SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16,	/* cpu.weight */
129 
130 	SCX_OPS_ALL_FLAGS	= SCX_OPS_KEEP_BUILTIN_IDLE |
131 				  SCX_OPS_ENQ_LAST |
132 				  SCX_OPS_ENQ_EXITING |
133 				  SCX_OPS_SWITCH_PARTIAL |
134 				  SCX_OPS_HAS_CGROUP_WEIGHT,
135 };
136 
137 /* argument container for ops.init_task() */
138 struct scx_init_task_args {
139 	/*
140 	 * Set if ops.init_task() is being invoked on the fork path, as opposed
141 	 * to the scheduler transition path.
142 	 */
143 	bool			fork;
144 #ifdef CONFIG_EXT_GROUP_SCHED
145 	/* the cgroup the task is joining */
146 	struct cgroup		*cgroup;
147 #endif
148 };
149 
150 /* argument container for ops.exit_task() */
151 struct scx_exit_task_args {
152 	/* Whether the task exited before running on sched_ext. */
153 	bool cancelled;
154 };
155 
156 /* argument container for ops->cgroup_init() */
157 struct scx_cgroup_init_args {
158 	/* the weight of the cgroup [1..10000] */
159 	u32			weight;
160 };
161 
162 enum scx_cpu_preempt_reason {
163 	/* next task is being scheduled by &sched_class_rt */
164 	SCX_CPU_PREEMPT_RT,
165 	/* next task is being scheduled by &sched_class_dl */
166 	SCX_CPU_PREEMPT_DL,
167 	/* next task is being scheduled by &sched_class_stop */
168 	SCX_CPU_PREEMPT_STOP,
169 	/* unknown reason for SCX being preempted */
170 	SCX_CPU_PREEMPT_UNKNOWN,
171 };
172 
173 /*
174  * Argument container for ops->cpu_acquire(). Currently empty, but may be
175  * expanded in the future.
176  */
177 struct scx_cpu_acquire_args {};
178 
179 /* argument container for ops->cpu_release() */
180 struct scx_cpu_release_args {
181 	/* the reason the CPU was preempted */
182 	enum scx_cpu_preempt_reason reason;
183 
184 	/* the task that's going to be scheduled on the CPU */
185 	struct task_struct	*task;
186 };
187 
188 /*
189  * Informational context provided to dump operations.
190  */
191 struct scx_dump_ctx {
192 	enum scx_exit_kind	kind;
193 	s64			exit_code;
194 	const char		*reason;
195 	u64			at_ns;
196 	u64			at_jiffies;
197 };
198 
199 /**
200  * struct sched_ext_ops - Operation table for BPF scheduler implementation
201  *
202  * Userland can implement an arbitrary scheduling policy by implementing and
203  * loading operations in this table.
204  */
205 struct sched_ext_ops {
206 	/**
207 	 * select_cpu - Pick the target CPU for a task which is being woken up
208 	 * @p: task being woken up
209 	 * @prev_cpu: the cpu @p was on before sleeping
210 	 * @wake_flags: SCX_WAKE_*
211 	 *
212 	 * Decision made here isn't final. @p may be moved to any CPU while it
213 	 * is getting dispatched for execution later. However, as @p is not on
214 	 * the rq at this point, getting the eventual execution CPU right here
215 	 * saves a small bit of overhead down the line.
216 	 *
217 	 * If an idle CPU is returned, the CPU is kicked and will try to
218 	 * dispatch. While an explicit custom mechanism can be added,
219 	 * select_cpu() serves as the default way to wake up idle CPUs.
220 	 *
221 	 * @p may be dispatched directly by calling scx_bpf_dispatch(). If @p
222 	 * is dispatched, the ops.enqueue() callback will be skipped. Finally,
223 	 * if @p is dispatched to SCX_DSQ_LOCAL, it will be dispatched to the
224 	 * local DSQ of whatever CPU is returned by this callback.
225 	 */
226 	s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags);
227 
228 	/**
229 	 * enqueue - Enqueue a task on the BPF scheduler
230 	 * @p: task being enqueued
231 	 * @enq_flags: %SCX_ENQ_*
232 	 *
233 	 * @p is ready to run. Dispatch directly by calling scx_bpf_dispatch()
234 	 * or enqueue on the BPF scheduler. If not directly dispatched, the bpf
235 	 * scheduler owns @p and if it fails to dispatch @p, the task will
236 	 * stall.
237 	 *
238 	 * If @p was dispatched from ops.select_cpu(), this callback is
239 	 * skipped.
240 	 */
241 	void (*enqueue)(struct task_struct *p, u64 enq_flags);
242 
243 	/**
244 	 * dequeue - Remove a task from the BPF scheduler
245 	 * @p: task being dequeued
246 	 * @deq_flags: %SCX_DEQ_*
247 	 *
248 	 * Remove @p from the BPF scheduler. This is usually called to isolate
249 	 * the task while updating its scheduling properties (e.g. priority).
250 	 *
251 	 * The ext core keeps track of whether the BPF side owns a given task or
252 	 * not and can gracefully ignore spurious dispatches from BPF side,
253 	 * which makes it safe to not implement this method. However, depending
254 	 * on the scheduling logic, this can lead to confusing behaviors - e.g.
255 	 * scheduling position not being updated across a priority change.
256 	 */
257 	void (*dequeue)(struct task_struct *p, u64 deq_flags);
258 
259 	/**
260 	 * dispatch - Dispatch tasks from the BPF scheduler and/or consume DSQs
261 	 * @cpu: CPU to dispatch tasks for
262 	 * @prev: previous task being switched out
263 	 *
264 	 * Called when a CPU's local dsq is empty. The operation should dispatch
265 	 * one or more tasks from the BPF scheduler into the DSQs using
266 	 * scx_bpf_dispatch() and/or consume user DSQs into the local DSQ using
267 	 * scx_bpf_consume().
268 	 *
269 	 * The maximum number of times scx_bpf_dispatch() can be called without
270 	 * an intervening scx_bpf_consume() is specified by
271 	 * ops.dispatch_max_batch. See the comments on top of the two functions
272 	 * for more details.
273 	 *
274 	 * When not %NULL, @prev is an SCX task with its slice depleted. If
275 	 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in
276 	 * @prev->scx.flags, it is not enqueued yet and will be enqueued after
277 	 * ops.dispatch() returns. To keep executing @prev, return without
278 	 * dispatching or consuming any tasks. Also see %SCX_OPS_ENQ_LAST.
279 	 */
280 	void (*dispatch)(s32 cpu, struct task_struct *prev);
281 
282 	/**
283 	 * tick - Periodic tick
284 	 * @p: task running currently
285 	 *
286 	 * This operation is called every 1/HZ seconds on CPUs which are
287 	 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an
288 	 * immediate dispatch cycle on the CPU.
289 	 */
290 	void (*tick)(struct task_struct *p);
291 
292 	/**
293 	 * runnable - A task is becoming runnable on its associated CPU
294 	 * @p: task becoming runnable
295 	 * @enq_flags: %SCX_ENQ_*
296 	 *
297 	 * This and the following three functions can be used to track a task's
298 	 * execution state transitions. A task becomes ->runnable() on a CPU,
299 	 * and then goes through one or more ->running() and ->stopping() pairs
300 	 * as it runs on the CPU, and eventually becomes ->quiescent() when it's
301 	 * done running on the CPU.
302 	 *
303 	 * @p is becoming runnable on the CPU because it's
304 	 *
305 	 * - waking up (%SCX_ENQ_WAKEUP)
306 	 * - being moved from another CPU
307 	 * - being restored after temporarily taken off the queue for an
308 	 *   attribute change.
309 	 *
310 	 * This and ->enqueue() are related but not coupled. This operation
311 	 * notifies @p's state transition and may not be followed by ->enqueue()
312 	 * e.g. when @p is being dispatched to a remote CPU, or when @p is
313 	 * being enqueued on a CPU experiencing a hotplug event. Likewise, a
314 	 * task may be ->enqueue()'d without being preceded by this operation
315 	 * e.g. after exhausting its slice.
316 	 */
317 	void (*runnable)(struct task_struct *p, u64 enq_flags);
318 
319 	/**
320 	 * running - A task is starting to run on its associated CPU
321 	 * @p: task starting to run
322 	 *
323 	 * See ->runnable() for explanation on the task state notifiers.
324 	 */
325 	void (*running)(struct task_struct *p);
326 
327 	/**
328 	 * stopping - A task is stopping execution
329 	 * @p: task stopping to run
330 	 * @runnable: is task @p still runnable?
331 	 *
332 	 * See ->runnable() for explanation on the task state notifiers. If
333 	 * !@runnable, ->quiescent() will be invoked after this operation
334 	 * returns.
335 	 */
336 	void (*stopping)(struct task_struct *p, bool runnable);
337 
338 	/**
339 	 * quiescent - A task is becoming not runnable on its associated CPU
340 	 * @p: task becoming not runnable
341 	 * @deq_flags: %SCX_DEQ_*
342 	 *
343 	 * See ->runnable() for explanation on the task state notifiers.
344 	 *
345 	 * @p is becoming quiescent on the CPU because it's
346 	 *
347 	 * - sleeping (%SCX_DEQ_SLEEP)
348 	 * - being moved to another CPU
349 	 * - being temporarily taken off the queue for an attribute change
350 	 *   (%SCX_DEQ_SAVE)
351 	 *
352 	 * This and ->dequeue() are related but not coupled. This operation
353 	 * notifies @p's state transition and may not be preceded by ->dequeue()
354 	 * e.g. when @p is being dispatched to a remote CPU.
355 	 */
356 	void (*quiescent)(struct task_struct *p, u64 deq_flags);
357 
358 	/**
359 	 * yield - Yield CPU
360 	 * @from: yielding task
361 	 * @to: optional yield target task
362 	 *
363 	 * If @to is NULL, @from is yielding the CPU to other runnable tasks.
364 	 * The BPF scheduler should ensure that other available tasks are
365 	 * dispatched before the yielding task. Return value is ignored in this
366 	 * case.
367 	 *
368 	 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf
369 	 * scheduler can implement the request, return %true; otherwise, %false.
370 	 */
371 	bool (*yield)(struct task_struct *from, struct task_struct *to);
372 
373 	/**
374 	 * core_sched_before - Task ordering for core-sched
375 	 * @a: task A
376 	 * @b: task B
377 	 *
378 	 * Used by core-sched to determine the ordering between two tasks. See
379 	 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on
380 	 * core-sched.
381 	 *
382 	 * Both @a and @b are runnable and may or may not currently be queued on
383 	 * the BPF scheduler. Should return %true if @a should run before @b.
384 	 * %false if there's no required ordering or @b should run before @a.
385 	 *
386 	 * If not specified, the default is ordering them according to when they
387 	 * became runnable.
388 	 */
389 	bool (*core_sched_before)(struct task_struct *a, struct task_struct *b);
390 
391 	/**
392 	 * set_weight - Set task weight
393 	 * @p: task to set weight for
394 	 * @weight: new weight [1..10000]
395 	 *
396 	 * Update @p's weight to @weight.
397 	 */
398 	void (*set_weight)(struct task_struct *p, u32 weight);
399 
400 	/**
401 	 * set_cpumask - Set CPU affinity
402 	 * @p: task to set CPU affinity for
403 	 * @cpumask: cpumask of cpus that @p can run on
404 	 *
405 	 * Update @p's CPU affinity to @cpumask.
406 	 */
407 	void (*set_cpumask)(struct task_struct *p,
408 			    const struct cpumask *cpumask);
409 
410 	/**
411 	 * update_idle - Update the idle state of a CPU
412 	 * @cpu: CPU to udpate the idle state for
413 	 * @idle: whether entering or exiting the idle state
414 	 *
415 	 * This operation is called when @rq's CPU goes or leaves the idle
416 	 * state. By default, implementing this operation disables the built-in
417 	 * idle CPU tracking and the following helpers become unavailable:
418 	 *
419 	 * - scx_bpf_select_cpu_dfl()
420 	 * - scx_bpf_test_and_clear_cpu_idle()
421 	 * - scx_bpf_pick_idle_cpu()
422 	 *
423 	 * The user also must implement ops.select_cpu() as the default
424 	 * implementation relies on scx_bpf_select_cpu_dfl().
425 	 *
426 	 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle
427 	 * tracking.
428 	 */
429 	void (*update_idle)(s32 cpu, bool idle);
430 
431 	/**
432 	 * cpu_acquire - A CPU is becoming available to the BPF scheduler
433 	 * @cpu: The CPU being acquired by the BPF scheduler.
434 	 * @args: Acquire arguments, see the struct definition.
435 	 *
436 	 * A CPU that was previously released from the BPF scheduler is now once
437 	 * again under its control.
438 	 */
439 	void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args);
440 
441 	/**
442 	 * cpu_release - A CPU is taken away from the BPF scheduler
443 	 * @cpu: The CPU being released by the BPF scheduler.
444 	 * @args: Release arguments, see the struct definition.
445 	 *
446 	 * The specified CPU is no longer under the control of the BPF
447 	 * scheduler. This could be because it was preempted by a higher
448 	 * priority sched_class, though there may be other reasons as well. The
449 	 * caller should consult @args->reason to determine the cause.
450 	 */
451 	void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args);
452 
453 	/**
454 	 * init_task - Initialize a task to run in a BPF scheduler
455 	 * @p: task to initialize for BPF scheduling
456 	 * @args: init arguments, see the struct definition
457 	 *
458 	 * Either we're loading a BPF scheduler or a new task is being forked.
459 	 * Initialize @p for BPF scheduling. This operation may block and can
460 	 * be used for allocations, and is called exactly once for a task.
461 	 *
462 	 * Return 0 for success, -errno for failure. An error return while
463 	 * loading will abort loading of the BPF scheduler. During a fork, it
464 	 * will abort that specific fork.
465 	 */
466 	s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args);
467 
468 	/**
469 	 * exit_task - Exit a previously-running task from the system
470 	 * @p: task to exit
471 	 *
472 	 * @p is exiting or the BPF scheduler is being unloaded. Perform any
473 	 * necessary cleanup for @p.
474 	 */
475 	void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args);
476 
477 	/**
478 	 * enable - Enable BPF scheduling for a task
479 	 * @p: task to enable BPF scheduling for
480 	 *
481 	 * Enable @p for BPF scheduling. enable() is called on @p any time it
482 	 * enters SCX, and is always paired with a matching disable().
483 	 */
484 	void (*enable)(struct task_struct *p);
485 
486 	/**
487 	 * disable - Disable BPF scheduling for a task
488 	 * @p: task to disable BPF scheduling for
489 	 *
490 	 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded.
491 	 * Disable BPF scheduling for @p. A disable() call is always matched
492 	 * with a prior enable() call.
493 	 */
494 	void (*disable)(struct task_struct *p);
495 
496 	/**
497 	 * dump - Dump BPF scheduler state on error
498 	 * @ctx: debug dump context
499 	 *
500 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump.
501 	 */
502 	void (*dump)(struct scx_dump_ctx *ctx);
503 
504 	/**
505 	 * dump_cpu - Dump BPF scheduler state for a CPU on error
506 	 * @ctx: debug dump context
507 	 * @cpu: CPU to generate debug dump for
508 	 * @idle: @cpu is currently idle without any runnable tasks
509 	 *
510 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
511 	 * @cpu. If @idle is %true and this operation doesn't produce any
512 	 * output, @cpu is skipped for dump.
513 	 */
514 	void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle);
515 
516 	/**
517 	 * dump_task - Dump BPF scheduler state for a runnable task on error
518 	 * @ctx: debug dump context
519 	 * @p: runnable task to generate debug dump for
520 	 *
521 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
522 	 * @p.
523 	 */
524 	void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p);
525 
526 #ifdef CONFIG_EXT_GROUP_SCHED
527 	/**
528 	 * cgroup_init - Initialize a cgroup
529 	 * @cgrp: cgroup being initialized
530 	 * @args: init arguments, see the struct definition
531 	 *
532 	 * Either the BPF scheduler is being loaded or @cgrp created, initialize
533 	 * @cgrp for sched_ext. This operation may block.
534 	 *
535 	 * Return 0 for success, -errno for failure. An error return while
536 	 * loading will abort loading of the BPF scheduler. During cgroup
537 	 * creation, it will abort the specific cgroup creation.
538 	 */
539 	s32 (*cgroup_init)(struct cgroup *cgrp,
540 			   struct scx_cgroup_init_args *args);
541 
542 	/**
543 	 * cgroup_exit - Exit a cgroup
544 	 * @cgrp: cgroup being exited
545 	 *
546 	 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit
547 	 * @cgrp for sched_ext. This operation my block.
548 	 */
549 	void (*cgroup_exit)(struct cgroup *cgrp);
550 
551 	/**
552 	 * cgroup_prep_move - Prepare a task to be moved to a different cgroup
553 	 * @p: task being moved
554 	 * @from: cgroup @p is being moved from
555 	 * @to: cgroup @p is being moved to
556 	 *
557 	 * Prepare @p for move from cgroup @from to @to. This operation may
558 	 * block and can be used for allocations.
559 	 *
560 	 * Return 0 for success, -errno for failure. An error return aborts the
561 	 * migration.
562 	 */
563 	s32 (*cgroup_prep_move)(struct task_struct *p,
564 				struct cgroup *from, struct cgroup *to);
565 
566 	/**
567 	 * cgroup_move - Commit cgroup move
568 	 * @p: task being moved
569 	 * @from: cgroup @p is being moved from
570 	 * @to: cgroup @p is being moved to
571 	 *
572 	 * Commit the move. @p is dequeued during this operation.
573 	 */
574 	void (*cgroup_move)(struct task_struct *p,
575 			    struct cgroup *from, struct cgroup *to);
576 
577 	/**
578 	 * cgroup_cancel_move - Cancel cgroup move
579 	 * @p: task whose cgroup move is being canceled
580 	 * @from: cgroup @p was being moved from
581 	 * @to: cgroup @p was being moved to
582 	 *
583 	 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move().
584 	 * Undo the preparation.
585 	 */
586 	void (*cgroup_cancel_move)(struct task_struct *p,
587 				   struct cgroup *from, struct cgroup *to);
588 
589 	/**
590 	 * cgroup_set_weight - A cgroup's weight is being changed
591 	 * @cgrp: cgroup whose weight is being updated
592 	 * @weight: new weight [1..10000]
593 	 *
594 	 * Update @tg's weight to @weight.
595 	 */
596 	void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight);
597 #endif	/* CONFIG_CGROUPS */
598 
599 	/*
600 	 * All online ops must come before ops.cpu_online().
601 	 */
602 
603 	/**
604 	 * cpu_online - A CPU became online
605 	 * @cpu: CPU which just came up
606 	 *
607 	 * @cpu just came online. @cpu will not call ops.enqueue() or
608 	 * ops.dispatch(), nor run tasks associated with other CPUs beforehand.
609 	 */
610 	void (*cpu_online)(s32 cpu);
611 
612 	/**
613 	 * cpu_offline - A CPU is going offline
614 	 * @cpu: CPU which is going offline
615 	 *
616 	 * @cpu is going offline. @cpu will not call ops.enqueue() or
617 	 * ops.dispatch(), nor run tasks associated with other CPUs afterwards.
618 	 */
619 	void (*cpu_offline)(s32 cpu);
620 
621 	/*
622 	 * All CPU hotplug ops must come before ops.init().
623 	 */
624 
625 	/**
626 	 * init - Initialize the BPF scheduler
627 	 */
628 	s32 (*init)(void);
629 
630 	/**
631 	 * exit - Clean up after the BPF scheduler
632 	 * @info: Exit info
633 	 *
634 	 * ops.exit() is also called on ops.init() failure, which is a bit
635 	 * unusual. This is to allow rich reporting through @info on how
636 	 * ops.init() failed.
637 	 */
638 	void (*exit)(struct scx_exit_info *info);
639 
640 	/**
641 	 * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch
642 	 */
643 	u32 dispatch_max_batch;
644 
645 	/**
646 	 * flags - %SCX_OPS_* flags
647 	 */
648 	u64 flags;
649 
650 	/**
651 	 * timeout_ms - The maximum amount of time, in milliseconds, that a
652 	 * runnable task should be able to wait before being scheduled. The
653 	 * maximum timeout may not exceed the default timeout of 30 seconds.
654 	 *
655 	 * Defaults to the maximum allowed timeout value of 30 seconds.
656 	 */
657 	u32 timeout_ms;
658 
659 	/**
660 	 * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default
661 	 * value of 32768 is used.
662 	 */
663 	u32 exit_dump_len;
664 
665 	/**
666 	 * hotplug_seq - A sequence number that may be set by the scheduler to
667 	 * detect when a hotplug event has occurred during the loading process.
668 	 * If 0, no detection occurs. Otherwise, the scheduler will fail to
669 	 * load if the sequence number does not match @scx_hotplug_seq on the
670 	 * enable path.
671 	 */
672 	u64 hotplug_seq;
673 
674 	/**
675 	 * name - BPF scheduler's name
676 	 *
677 	 * Must be a non-zero valid BPF object name including only isalnum(),
678 	 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the
679 	 * BPF scheduler is enabled.
680 	 */
681 	char name[SCX_OPS_NAME_LEN];
682 };
683 
684 enum scx_opi {
685 	SCX_OPI_BEGIN			= 0,
686 	SCX_OPI_NORMAL_BEGIN		= 0,
687 	SCX_OPI_NORMAL_END		= SCX_OP_IDX(cpu_online),
688 	SCX_OPI_CPU_HOTPLUG_BEGIN	= SCX_OP_IDX(cpu_online),
689 	SCX_OPI_CPU_HOTPLUG_END		= SCX_OP_IDX(init),
690 	SCX_OPI_END			= SCX_OP_IDX(init),
691 };
692 
693 enum scx_wake_flags {
694 	/* expose select WF_* flags as enums */
695 	SCX_WAKE_FORK		= WF_FORK,
696 	SCX_WAKE_TTWU		= WF_TTWU,
697 	SCX_WAKE_SYNC		= WF_SYNC,
698 };
699 
700 enum scx_enq_flags {
701 	/* expose select ENQUEUE_* flags as enums */
702 	SCX_ENQ_WAKEUP		= ENQUEUE_WAKEUP,
703 	SCX_ENQ_HEAD		= ENQUEUE_HEAD,
704 	SCX_ENQ_CPU_SELECTED	= ENQUEUE_RQ_SELECTED,
705 
706 	/* high 32bits are SCX specific */
707 
708 	/*
709 	 * Set the following to trigger preemption when calling
710 	 * scx_bpf_dispatch() with a local dsq as the target. The slice of the
711 	 * current task is cleared to zero and the CPU is kicked into the
712 	 * scheduling path. Implies %SCX_ENQ_HEAD.
713 	 */
714 	SCX_ENQ_PREEMPT		= 1LLU << 32,
715 
716 	/*
717 	 * The task being enqueued was previously enqueued on the current CPU's
718 	 * %SCX_DSQ_LOCAL, but was removed from it in a call to the
719 	 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was
720 	 * invoked in a ->cpu_release() callback, and the task is again
721 	 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the
722 	 * task will not be scheduled on the CPU until at least the next invocation
723 	 * of the ->cpu_acquire() callback.
724 	 */
725 	SCX_ENQ_REENQ		= 1LLU << 40,
726 
727 	/*
728 	 * The task being enqueued is the only task available for the cpu. By
729 	 * default, ext core keeps executing such tasks but when
730 	 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the
731 	 * %SCX_ENQ_LAST flag set.
732 	 *
733 	 * The BPF scheduler is responsible for triggering a follow-up
734 	 * scheduling event. Otherwise, Execution may stall.
735 	 */
736 	SCX_ENQ_LAST		= 1LLU << 41,
737 
738 	/* high 8 bits are internal */
739 	__SCX_ENQ_INTERNAL_MASK	= 0xffLLU << 56,
740 
741 	SCX_ENQ_CLEAR_OPSS	= 1LLU << 56,
742 	SCX_ENQ_DSQ_PRIQ	= 1LLU << 57,
743 };
744 
745 enum scx_deq_flags {
746 	/* expose select DEQUEUE_* flags as enums */
747 	SCX_DEQ_SLEEP		= DEQUEUE_SLEEP,
748 
749 	/* high 32bits are SCX specific */
750 
751 	/*
752 	 * The generic core-sched layer decided to execute the task even though
753 	 * it hasn't been dispatched yet. Dequeue from the BPF side.
754 	 */
755 	SCX_DEQ_CORE_SCHED_EXEC	= 1LLU << 32,
756 };
757 
758 enum scx_pick_idle_cpu_flags {
759 	SCX_PICK_IDLE_CORE	= 1LLU << 0,	/* pick a CPU whose SMT siblings are also idle */
760 };
761 
762 enum scx_kick_flags {
763 	/*
764 	 * Kick the target CPU if idle. Guarantees that the target CPU goes
765 	 * through at least one full scheduling cycle before going idle. If the
766 	 * target CPU can be determined to be currently not idle and going to go
767 	 * through a scheduling cycle before going idle, noop.
768 	 */
769 	SCX_KICK_IDLE		= 1LLU << 0,
770 
771 	/*
772 	 * Preempt the current task and execute the dispatch path. If the
773 	 * current task of the target CPU is an SCX task, its ->scx.slice is
774 	 * cleared to zero before the scheduling path is invoked so that the
775 	 * task expires and the dispatch path is invoked.
776 	 */
777 	SCX_KICK_PREEMPT	= 1LLU << 1,
778 
779 	/*
780 	 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will
781 	 * return after the target CPU finishes picking the next task.
782 	 */
783 	SCX_KICK_WAIT		= 1LLU << 2,
784 };
785 
786 enum scx_tg_flags {
787 	SCX_TG_ONLINE		= 1U << 0,
788 	SCX_TG_INITED		= 1U << 1,
789 };
790 
791 enum scx_ops_enable_state {
792 	SCX_OPS_ENABLING,
793 	SCX_OPS_ENABLED,
794 	SCX_OPS_DISABLING,
795 	SCX_OPS_DISABLED,
796 };
797 
798 static const char *scx_ops_enable_state_str[] = {
799 	[SCX_OPS_ENABLING]	= "enabling",
800 	[SCX_OPS_ENABLED]	= "enabled",
801 	[SCX_OPS_DISABLING]	= "disabling",
802 	[SCX_OPS_DISABLED]	= "disabled",
803 };
804 
805 /*
806  * sched_ext_entity->ops_state
807  *
808  * Used to track the task ownership between the SCX core and the BPF scheduler.
809  * State transitions look as follows:
810  *
811  * NONE -> QUEUEING -> QUEUED -> DISPATCHING
812  *   ^              |                 |
813  *   |              v                 v
814  *   \-------------------------------/
815  *
816  * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call
817  * sites for explanations on the conditions being waited upon and why they are
818  * safe. Transitions out of them into NONE or QUEUED must store_release and the
819  * waiters should load_acquire.
820  *
821  * Tracking scx_ops_state enables sched_ext core to reliably determine whether
822  * any given task can be dispatched by the BPF scheduler at all times and thus
823  * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler
824  * to try to dispatch any task anytime regardless of its state as the SCX core
825  * can safely reject invalid dispatches.
826  */
827 enum scx_ops_state {
828 	SCX_OPSS_NONE,		/* owned by the SCX core */
829 	SCX_OPSS_QUEUEING,	/* in transit to the BPF scheduler */
830 	SCX_OPSS_QUEUED,	/* owned by the BPF scheduler */
831 	SCX_OPSS_DISPATCHING,	/* in transit back to the SCX core */
832 
833 	/*
834 	 * QSEQ brands each QUEUED instance so that, when dispatch races
835 	 * dequeue/requeue, the dispatcher can tell whether it still has a claim
836 	 * on the task being dispatched.
837 	 *
838 	 * As some 32bit archs can't do 64bit store_release/load_acquire,
839 	 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on
840 	 * 32bit machines. The dispatch race window QSEQ protects is very narrow
841 	 * and runs with IRQ disabled. 30 bits should be sufficient.
842 	 */
843 	SCX_OPSS_QSEQ_SHIFT	= 2,
844 };
845 
846 /* Use macros to ensure that the type is unsigned long for the masks */
847 #define SCX_OPSS_STATE_MASK	((1LU << SCX_OPSS_QSEQ_SHIFT) - 1)
848 #define SCX_OPSS_QSEQ_MASK	(~SCX_OPSS_STATE_MASK)
849 
850 /*
851  * During exit, a task may schedule after losing its PIDs. When disabling the
852  * BPF scheduler, we need to be able to iterate tasks in every state to
853  * guarantee system safety. Maintain a dedicated task list which contains every
854  * task between its fork and eventual free.
855  */
856 static DEFINE_SPINLOCK(scx_tasks_lock);
857 static LIST_HEAD(scx_tasks);
858 
859 /* ops enable/disable */
860 static struct kthread_worker *scx_ops_helper;
861 static DEFINE_MUTEX(scx_ops_enable_mutex);
862 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled);
863 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
864 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED);
865 static int scx_ops_bypass_depth;
866 static DEFINE_RAW_SPINLOCK(__scx_ops_bypass_lock);
867 static bool scx_ops_init_task_enabled;
868 static bool scx_switching_all;
869 DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
870 
871 static struct sched_ext_ops scx_ops;
872 static bool scx_warned_zero_slice;
873 
874 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last);
875 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting);
876 static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt);
877 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
878 
879 static struct static_key_false scx_has_op[SCX_OPI_END] =
880 	{ [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT };
881 
882 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE);
883 static struct scx_exit_info *scx_exit_info;
884 
885 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0);
886 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0);
887 
888 /*
889  * A monotically increasing sequence number that is incremented every time a
890  * scheduler is enabled. This can be used by to check if any custom sched_ext
891  * scheduler has ever been used in the system.
892  */
893 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0);
894 
895 /*
896  * The maximum amount of time in jiffies that a task may be runnable without
897  * being scheduled on a CPU. If this timeout is exceeded, it will trigger
898  * scx_ops_error().
899  */
900 static unsigned long scx_watchdog_timeout;
901 
902 /*
903  * The last time the delayed work was run. This delayed work relies on
904  * ksoftirqd being able to run to service timer interrupts, so it's possible
905  * that this work itself could get wedged. To account for this, we check that
906  * it's not stalled in the timer tick, and trigger an error if it is.
907  */
908 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES;
909 
910 static struct delayed_work scx_watchdog_work;
911 
912 /* idle tracking */
913 #ifdef CONFIG_SMP
914 #ifdef CONFIG_CPUMASK_OFFSTACK
915 #define CL_ALIGNED_IF_ONSTACK
916 #else
917 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp
918 #endif
919 
920 static struct {
921 	cpumask_var_t cpu;
922 	cpumask_var_t smt;
923 } idle_masks CL_ALIGNED_IF_ONSTACK;
924 
925 #endif	/* CONFIG_SMP */
926 
927 /* for %SCX_KICK_WAIT */
928 static unsigned long __percpu *scx_kick_cpus_pnt_seqs;
929 
930 /*
931  * Direct dispatch marker.
932  *
933  * Non-NULL values are used for direct dispatch from enqueue path. A valid
934  * pointer points to the task currently being enqueued. An ERR_PTR value is used
935  * to indicate that direct dispatch has already happened.
936  */
937 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task);
938 
939 /*
940  * Dispatch queues.
941  *
942  * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is
943  * to avoid live-locking in bypass mode where all tasks are dispatched to
944  * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't
945  * sufficient, it can be further split.
946  */
947 static struct scx_dispatch_q **global_dsqs;
948 
949 static const struct rhashtable_params dsq_hash_params = {
950 	.key_len		= 8,
951 	.key_offset		= offsetof(struct scx_dispatch_q, id),
952 	.head_offset		= offsetof(struct scx_dispatch_q, hash_node),
953 };
954 
955 static struct rhashtable dsq_hash;
956 static LLIST_HEAD(dsqs_to_free);
957 
958 /* dispatch buf */
959 struct scx_dsp_buf_ent {
960 	struct task_struct	*task;
961 	unsigned long		qseq;
962 	u64			dsq_id;
963 	u64			enq_flags;
964 };
965 
966 static u32 scx_dsp_max_batch;
967 
968 struct scx_dsp_ctx {
969 	struct rq		*rq;
970 	u32			cursor;
971 	u32			nr_tasks;
972 	struct scx_dsp_buf_ent	buf[];
973 };
974 
975 static struct scx_dsp_ctx __percpu *scx_dsp_ctx;
976 
977 /* string formatting from BPF */
978 struct scx_bstr_buf {
979 	u64			data[MAX_BPRINTF_VARARGS];
980 	char			line[SCX_EXIT_MSG_LEN];
981 };
982 
983 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock);
984 static struct scx_bstr_buf scx_exit_bstr_buf;
985 
986 /* ops debug dump */
987 struct scx_dump_data {
988 	s32			cpu;
989 	bool			first;
990 	s32			cursor;
991 	struct seq_buf		*s;
992 	const char		*prefix;
993 	struct scx_bstr_buf	buf;
994 };
995 
996 static struct scx_dump_data scx_dump_data = {
997 	.cpu			= -1,
998 };
999 
1000 /* /sys/kernel/sched_ext interface */
1001 static struct kset *scx_kset;
1002 static struct kobject *scx_root_kobj;
1003 
1004 #define CREATE_TRACE_POINTS
1005 #include <trace/events/sched_ext.h>
1006 
1007 static void process_ddsp_deferred_locals(struct rq *rq);
1008 static void scx_bpf_kick_cpu(s32 cpu, u64 flags);
1009 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
1010 					     s64 exit_code,
1011 					     const char *fmt, ...);
1012 
1013 #define scx_ops_error_kind(err, fmt, args...)					\
1014 	scx_ops_exit_kind((err), 0, fmt, ##args)
1015 
1016 #define scx_ops_exit(code, fmt, args...)					\
1017 	scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args)
1018 
1019 #define scx_ops_error(fmt, args...)						\
1020 	scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args)
1021 
1022 #define SCX_HAS_OP(op)	static_branch_likely(&scx_has_op[SCX_OP_IDX(op)])
1023 
1024 static long jiffies_delta_msecs(unsigned long at, unsigned long now)
1025 {
1026 	if (time_after(at, now))
1027 		return jiffies_to_msecs(at - now);
1028 	else
1029 		return -(long)jiffies_to_msecs(now - at);
1030 }
1031 
1032 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */
1033 static u32 higher_bits(u32 flags)
1034 {
1035 	return ~((1 << fls(flags)) - 1);
1036 }
1037 
1038 /* return the mask with only the highest bit set */
1039 static u32 highest_bit(u32 flags)
1040 {
1041 	int bit = fls(flags);
1042 	return ((u64)1 << bit) >> 1;
1043 }
1044 
1045 static bool u32_before(u32 a, u32 b)
1046 {
1047 	return (s32)(a - b) < 0;
1048 }
1049 
1050 static struct scx_dispatch_q *find_global_dsq(struct task_struct *p)
1051 {
1052 	return global_dsqs[cpu_to_node(task_cpu(p))];
1053 }
1054 
1055 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id)
1056 {
1057 	return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params);
1058 }
1059 
1060 /*
1061  * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX
1062  * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate
1063  * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check
1064  * whether it's running from an allowed context.
1065  *
1066  * @mask is constant, always inline to cull the mask calculations.
1067  */
1068 static __always_inline void scx_kf_allow(u32 mask)
1069 {
1070 	/* nesting is allowed only in increasing scx_kf_mask order */
1071 	WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask,
1072 		  "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n",
1073 		  current->scx.kf_mask, mask);
1074 	current->scx.kf_mask |= mask;
1075 	barrier();
1076 }
1077 
1078 static void scx_kf_disallow(u32 mask)
1079 {
1080 	barrier();
1081 	current->scx.kf_mask &= ~mask;
1082 }
1083 
1084 #define SCX_CALL_OP(mask, op, args...)						\
1085 do {										\
1086 	if (mask) {								\
1087 		scx_kf_allow(mask);						\
1088 		scx_ops.op(args);						\
1089 		scx_kf_disallow(mask);						\
1090 	} else {								\
1091 		scx_ops.op(args);						\
1092 	}									\
1093 } while (0)
1094 
1095 #define SCX_CALL_OP_RET(mask, op, args...)					\
1096 ({										\
1097 	__typeof__(scx_ops.op(args)) __ret;					\
1098 	if (mask) {								\
1099 		scx_kf_allow(mask);						\
1100 		__ret = scx_ops.op(args);					\
1101 		scx_kf_disallow(mask);						\
1102 	} else {								\
1103 		__ret = scx_ops.op(args);					\
1104 	}									\
1105 	__ret;									\
1106 })
1107 
1108 /*
1109  * Some kfuncs are allowed only on the tasks that are subjects of the
1110  * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such
1111  * restrictions, the following SCX_CALL_OP_*() variants should be used when
1112  * invoking scx_ops operations that take task arguments. These can only be used
1113  * for non-nesting operations due to the way the tasks are tracked.
1114  *
1115  * kfuncs which can only operate on such tasks can in turn use
1116  * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on
1117  * the specific task.
1118  */
1119 #define SCX_CALL_OP_TASK(mask, op, task, args...)				\
1120 do {										\
1121 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
1122 	current->scx.kf_tasks[0] = task;					\
1123 	SCX_CALL_OP(mask, op, task, ##args);					\
1124 	current->scx.kf_tasks[0] = NULL;					\
1125 } while (0)
1126 
1127 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...)				\
1128 ({										\
1129 	__typeof__(scx_ops.op(task, ##args)) __ret;				\
1130 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
1131 	current->scx.kf_tasks[0] = task;					\
1132 	__ret = SCX_CALL_OP_RET(mask, op, task, ##args);			\
1133 	current->scx.kf_tasks[0] = NULL;					\
1134 	__ret;									\
1135 })
1136 
1137 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...)			\
1138 ({										\
1139 	__typeof__(scx_ops.op(task0, task1, ##args)) __ret;			\
1140 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
1141 	current->scx.kf_tasks[0] = task0;					\
1142 	current->scx.kf_tasks[1] = task1;					\
1143 	__ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args);		\
1144 	current->scx.kf_tasks[0] = NULL;					\
1145 	current->scx.kf_tasks[1] = NULL;					\
1146 	__ret;									\
1147 })
1148 
1149 /* @mask is constant, always inline to cull unnecessary branches */
1150 static __always_inline bool scx_kf_allowed(u32 mask)
1151 {
1152 	if (unlikely(!(current->scx.kf_mask & mask))) {
1153 		scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x",
1154 			      mask, current->scx.kf_mask);
1155 		return false;
1156 	}
1157 
1158 	/*
1159 	 * Enforce nesting boundaries. e.g. A kfunc which can be called from
1160 	 * DISPATCH must not be called if we're running DEQUEUE which is nested
1161 	 * inside ops.dispatch(). We don't need to check boundaries for any
1162 	 * blocking kfuncs as the verifier ensures they're only called from
1163 	 * sleepable progs.
1164 	 */
1165 	if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE &&
1166 		     (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) {
1167 		scx_ops_error("cpu_release kfunc called from a nested operation");
1168 		return false;
1169 	}
1170 
1171 	if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH &&
1172 		     (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) {
1173 		scx_ops_error("dispatch kfunc called from a nested operation");
1174 		return false;
1175 	}
1176 
1177 	return true;
1178 }
1179 
1180 /* see SCX_CALL_OP_TASK() */
1181 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask,
1182 							struct task_struct *p)
1183 {
1184 	if (!scx_kf_allowed(mask))
1185 		return false;
1186 
1187 	if (unlikely((p != current->scx.kf_tasks[0] &&
1188 		      p != current->scx.kf_tasks[1]))) {
1189 		scx_ops_error("called on a task not being operated on");
1190 		return false;
1191 	}
1192 
1193 	return true;
1194 }
1195 
1196 static bool scx_kf_allowed_if_unlocked(void)
1197 {
1198 	return !current->scx.kf_mask;
1199 }
1200 
1201 /**
1202  * nldsq_next_task - Iterate to the next task in a non-local DSQ
1203  * @dsq: user dsq being interated
1204  * @cur: current position, %NULL to start iteration
1205  * @rev: walk backwards
1206  *
1207  * Returns %NULL when iteration is finished.
1208  */
1209 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq,
1210 					   struct task_struct *cur, bool rev)
1211 {
1212 	struct list_head *list_node;
1213 	struct scx_dsq_list_node *dsq_lnode;
1214 
1215 	lockdep_assert_held(&dsq->lock);
1216 
1217 	if (cur)
1218 		list_node = &cur->scx.dsq_list.node;
1219 	else
1220 		list_node = &dsq->list;
1221 
1222 	/* find the next task, need to skip BPF iteration cursors */
1223 	do {
1224 		if (rev)
1225 			list_node = list_node->prev;
1226 		else
1227 			list_node = list_node->next;
1228 
1229 		if (list_node == &dsq->list)
1230 			return NULL;
1231 
1232 		dsq_lnode = container_of(list_node, struct scx_dsq_list_node,
1233 					 node);
1234 	} while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR);
1235 
1236 	return container_of(dsq_lnode, struct task_struct, scx.dsq_list);
1237 }
1238 
1239 #define nldsq_for_each_task(p, dsq)						\
1240 	for ((p) = nldsq_next_task((dsq), NULL, false); (p);			\
1241 	     (p) = nldsq_next_task((dsq), (p), false))
1242 
1243 
1244 /*
1245  * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse]
1246  * dispatch order. BPF-visible iterator is opaque and larger to allow future
1247  * changes without breaking backward compatibility. Can be used with
1248  * bpf_for_each(). See bpf_iter_scx_dsq_*().
1249  */
1250 enum scx_dsq_iter_flags {
1251 	/* iterate in the reverse dispatch order */
1252 	SCX_DSQ_ITER_REV		= 1U << 16,
1253 
1254 	__SCX_DSQ_ITER_HAS_SLICE	= 1U << 30,
1255 	__SCX_DSQ_ITER_HAS_VTIME	= 1U << 31,
1256 
1257 	__SCX_DSQ_ITER_USER_FLAGS	= SCX_DSQ_ITER_REV,
1258 	__SCX_DSQ_ITER_ALL_FLAGS	= __SCX_DSQ_ITER_USER_FLAGS |
1259 					  __SCX_DSQ_ITER_HAS_SLICE |
1260 					  __SCX_DSQ_ITER_HAS_VTIME,
1261 };
1262 
1263 struct bpf_iter_scx_dsq_kern {
1264 	struct scx_dsq_list_node	cursor;
1265 	struct scx_dispatch_q		*dsq;
1266 	u64				slice;
1267 	u64				vtime;
1268 } __attribute__((aligned(8)));
1269 
1270 struct bpf_iter_scx_dsq {
1271 	u64				__opaque[6];
1272 } __attribute__((aligned(8)));
1273 
1274 
1275 /*
1276  * SCX task iterator.
1277  */
1278 struct scx_task_iter {
1279 	struct sched_ext_entity		cursor;
1280 	struct task_struct		*locked;
1281 	struct rq			*rq;
1282 	struct rq_flags			rf;
1283 	u32				cnt;
1284 };
1285 
1286 /**
1287  * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration
1288  * @iter: iterator to init
1289  *
1290  * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter
1291  * must eventually be stopped with scx_task_iter_stop().
1292  *
1293  * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock()
1294  * between this and the first next() call or between any two next() calls. If
1295  * the locks are released between two next() calls, the caller is responsible
1296  * for ensuring that the task being iterated remains accessible either through
1297  * RCU read lock or obtaining a reference count.
1298  *
1299  * All tasks which existed when the iteration started are guaranteed to be
1300  * visited as long as they still exist.
1301  */
1302 static void scx_task_iter_start(struct scx_task_iter *iter)
1303 {
1304 	BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS &
1305 		     ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1));
1306 
1307 	spin_lock_irq(&scx_tasks_lock);
1308 
1309 	iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR };
1310 	list_add(&iter->cursor.tasks_node, &scx_tasks);
1311 	iter->locked = NULL;
1312 	iter->cnt = 0;
1313 }
1314 
1315 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter)
1316 {
1317 	if (iter->locked) {
1318 		task_rq_unlock(iter->rq, iter->locked, &iter->rf);
1319 		iter->locked = NULL;
1320 	}
1321 }
1322 
1323 /**
1324  * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator
1325  * @iter: iterator to unlock
1326  *
1327  * If @iter is in the middle of a locked iteration, it may be locking the rq of
1328  * the task currently being visited in addition to scx_tasks_lock. Unlock both.
1329  * This function can be safely called anytime during an iteration.
1330  */
1331 static void scx_task_iter_unlock(struct scx_task_iter *iter)
1332 {
1333 	__scx_task_iter_rq_unlock(iter);
1334 	spin_unlock_irq(&scx_tasks_lock);
1335 }
1336 
1337 /**
1338  * scx_task_iter_relock - Lock scx_tasks_lock released by scx_task_iter_unlock()
1339  * @iter: iterator to re-lock
1340  *
1341  * Re-lock scx_tasks_lock unlocked by scx_task_iter_unlock(). Note that it
1342  * doesn't re-lock the rq lock. Must be called before other iterator operations.
1343  */
1344 static void scx_task_iter_relock(struct scx_task_iter *iter)
1345 {
1346 	spin_lock_irq(&scx_tasks_lock);
1347 }
1348 
1349 /**
1350  * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock
1351  * @iter: iterator to exit
1352  *
1353  * Exit a previously initialized @iter. Must be called with scx_tasks_lock held
1354  * which is released on return. If the iterator holds a task's rq lock, that rq
1355  * lock is also released. See scx_task_iter_start() for details.
1356  */
1357 static void scx_task_iter_stop(struct scx_task_iter *iter)
1358 {
1359 	list_del_init(&iter->cursor.tasks_node);
1360 	scx_task_iter_unlock(iter);
1361 }
1362 
1363 /**
1364  * scx_task_iter_next - Next task
1365  * @iter: iterator to walk
1366  *
1367  * Visit the next task. See scx_task_iter_start() for details. Locks are dropped
1368  * and re-acquired every %SCX_OPS_TASK_ITER_BATCH iterations to avoid causing
1369  * stalls by holding scx_tasks_lock for too long.
1370  */
1371 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
1372 {
1373 	struct list_head *cursor = &iter->cursor.tasks_node;
1374 	struct sched_ext_entity *pos;
1375 
1376 	if (!(++iter->cnt % SCX_OPS_TASK_ITER_BATCH)) {
1377 		scx_task_iter_unlock(iter);
1378 		cond_resched();
1379 		scx_task_iter_relock(iter);
1380 	}
1381 
1382 	list_for_each_entry(pos, cursor, tasks_node) {
1383 		if (&pos->tasks_node == &scx_tasks)
1384 			return NULL;
1385 		if (!(pos->flags & SCX_TASK_CURSOR)) {
1386 			list_move(cursor, &pos->tasks_node);
1387 			return container_of(pos, struct task_struct, scx);
1388 		}
1389 	}
1390 
1391 	/* can't happen, should always terminate at scx_tasks above */
1392 	BUG();
1393 }
1394 
1395 /**
1396  * scx_task_iter_next_locked - Next non-idle task with its rq locked
1397  * @iter: iterator to walk
1398  * @include_dead: Whether we should include dead tasks in the iteration
1399  *
1400  * Visit the non-idle task with its rq lock held. Allows callers to specify
1401  * whether they would like to filter out dead tasks. See scx_task_iter_start()
1402  * for details.
1403  */
1404 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter)
1405 {
1406 	struct task_struct *p;
1407 
1408 	__scx_task_iter_rq_unlock(iter);
1409 
1410 	while ((p = scx_task_iter_next(iter))) {
1411 		/*
1412 		 * scx_task_iter is used to prepare and move tasks into SCX
1413 		 * while loading the BPF scheduler and vice-versa while
1414 		 * unloading. The init_tasks ("swappers") should be excluded
1415 		 * from the iteration because:
1416 		 *
1417 		 * - It's unsafe to use __setschduler_prio() on an init_task to
1418 		 *   determine the sched_class to use as it won't preserve its
1419 		 *   idle_sched_class.
1420 		 *
1421 		 * - ops.init/exit_task() can easily be confused if called with
1422 		 *   init_tasks as they, e.g., share PID 0.
1423 		 *
1424 		 * As init_tasks are never scheduled through SCX, they can be
1425 		 * skipped safely. Note that is_idle_task() which tests %PF_IDLE
1426 		 * doesn't work here:
1427 		 *
1428 		 * - %PF_IDLE may not be set for an init_task whose CPU hasn't
1429 		 *   yet been onlined.
1430 		 *
1431 		 * - %PF_IDLE can be set on tasks that are not init_tasks. See
1432 		 *   play_idle_precise() used by CONFIG_IDLE_INJECT.
1433 		 *
1434 		 * Test for idle_sched_class as only init_tasks are on it.
1435 		 */
1436 		if (p->sched_class != &idle_sched_class)
1437 			break;
1438 	}
1439 	if (!p)
1440 		return NULL;
1441 
1442 	iter->rq = task_rq_lock(p, &iter->rf);
1443 	iter->locked = p;
1444 
1445 	return p;
1446 }
1447 
1448 static enum scx_ops_enable_state scx_ops_enable_state(void)
1449 {
1450 	return atomic_read(&scx_ops_enable_state_var);
1451 }
1452 
1453 static enum scx_ops_enable_state
1454 scx_ops_set_enable_state(enum scx_ops_enable_state to)
1455 {
1456 	return atomic_xchg(&scx_ops_enable_state_var, to);
1457 }
1458 
1459 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to,
1460 					enum scx_ops_enable_state from)
1461 {
1462 	int from_v = from;
1463 
1464 	return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to);
1465 }
1466 
1467 static bool scx_rq_bypassing(struct rq *rq)
1468 {
1469 	return unlikely(rq->scx.flags & SCX_RQ_BYPASSING);
1470 }
1471 
1472 /**
1473  * wait_ops_state - Busy-wait the specified ops state to end
1474  * @p: target task
1475  * @opss: state to wait the end of
1476  *
1477  * Busy-wait for @p to transition out of @opss. This can only be used when the
1478  * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also
1479  * has load_acquire semantics to ensure that the caller can see the updates made
1480  * in the enqueueing and dispatching paths.
1481  */
1482 static void wait_ops_state(struct task_struct *p, unsigned long opss)
1483 {
1484 	do {
1485 		cpu_relax();
1486 	} while (atomic_long_read_acquire(&p->scx.ops_state) == opss);
1487 }
1488 
1489 /**
1490  * ops_cpu_valid - Verify a cpu number
1491  * @cpu: cpu number which came from a BPF ops
1492  * @where: extra information reported on error
1493  *
1494  * @cpu is a cpu number which came from the BPF scheduler and can be any value.
1495  * Verify that it is in range and one of the possible cpus. If invalid, trigger
1496  * an ops error.
1497  */
1498 static bool ops_cpu_valid(s32 cpu, const char *where)
1499 {
1500 	if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) {
1501 		return true;
1502 	} else {
1503 		scx_ops_error("invalid CPU %d%s%s", cpu,
1504 			      where ? " " : "", where ?: "");
1505 		return false;
1506 	}
1507 }
1508 
1509 /**
1510  * ops_sanitize_err - Sanitize a -errno value
1511  * @ops_name: operation to blame on failure
1512  * @err: -errno value to sanitize
1513  *
1514  * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return
1515  * -%EPROTO. This is necessary because returning a rogue -errno up the chain can
1516  * cause misbehaviors. For an example, a large negative return from
1517  * ops.init_task() triggers an oops when passed up the call chain because the
1518  * value fails IS_ERR() test after being encoded with ERR_PTR() and then is
1519  * handled as a pointer.
1520  */
1521 static int ops_sanitize_err(const char *ops_name, s32 err)
1522 {
1523 	if (err < 0 && err >= -MAX_ERRNO)
1524 		return err;
1525 
1526 	scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err);
1527 	return -EPROTO;
1528 }
1529 
1530 static void run_deferred(struct rq *rq)
1531 {
1532 	process_ddsp_deferred_locals(rq);
1533 }
1534 
1535 #ifdef CONFIG_SMP
1536 static void deferred_bal_cb_workfn(struct rq *rq)
1537 {
1538 	run_deferred(rq);
1539 }
1540 #endif
1541 
1542 static void deferred_irq_workfn(struct irq_work *irq_work)
1543 {
1544 	struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work);
1545 
1546 	raw_spin_rq_lock(rq);
1547 	run_deferred(rq);
1548 	raw_spin_rq_unlock(rq);
1549 }
1550 
1551 /**
1552  * schedule_deferred - Schedule execution of deferred actions on an rq
1553  * @rq: target rq
1554  *
1555  * Schedule execution of deferred actions on @rq. Must be called with @rq
1556  * locked. Deferred actions are executed with @rq locked but unpinned, and thus
1557  * can unlock @rq to e.g. migrate tasks to other rqs.
1558  */
1559 static void schedule_deferred(struct rq *rq)
1560 {
1561 	lockdep_assert_rq_held(rq);
1562 
1563 #ifdef CONFIG_SMP
1564 	/*
1565 	 * If in the middle of waking up a task, task_woken_scx() will be called
1566 	 * afterwards which will then run the deferred actions, no need to
1567 	 * schedule anything.
1568 	 */
1569 	if (rq->scx.flags & SCX_RQ_IN_WAKEUP)
1570 		return;
1571 
1572 	/*
1573 	 * If in balance, the balance callbacks will be called before rq lock is
1574 	 * released. Schedule one.
1575 	 */
1576 	if (rq->scx.flags & SCX_RQ_IN_BALANCE) {
1577 		queue_balance_callback(rq, &rq->scx.deferred_bal_cb,
1578 				       deferred_bal_cb_workfn);
1579 		return;
1580 	}
1581 #endif
1582 	/*
1583 	 * No scheduler hooks available. Queue an irq work. They are executed on
1584 	 * IRQ re-enable which may take a bit longer than the scheduler hooks.
1585 	 * The above WAKEUP and BALANCE paths should cover most of the cases and
1586 	 * the time to IRQ re-enable shouldn't be long.
1587 	 */
1588 	irq_work_queue(&rq->scx.deferred_irq_work);
1589 }
1590 
1591 /**
1592  * touch_core_sched - Update timestamp used for core-sched task ordering
1593  * @rq: rq to read clock from, must be locked
1594  * @p: task to update the timestamp for
1595  *
1596  * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to
1597  * implement global or local-DSQ FIFO ordering for core-sched. Should be called
1598  * when a task becomes runnable and its turn on the CPU ends (e.g. slice
1599  * exhaustion).
1600  */
1601 static void touch_core_sched(struct rq *rq, struct task_struct *p)
1602 {
1603 	lockdep_assert_rq_held(rq);
1604 
1605 #ifdef CONFIG_SCHED_CORE
1606 	/*
1607 	 * It's okay to update the timestamp spuriously. Use
1608 	 * sched_core_disabled() which is cheaper than enabled().
1609 	 *
1610 	 * As this is used to determine ordering between tasks of sibling CPUs,
1611 	 * it may be better to use per-core dispatch sequence instead.
1612 	 */
1613 	if (!sched_core_disabled())
1614 		p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq));
1615 #endif
1616 }
1617 
1618 /**
1619  * touch_core_sched_dispatch - Update core-sched timestamp on dispatch
1620  * @rq: rq to read clock from, must be locked
1621  * @p: task being dispatched
1622  *
1623  * If the BPF scheduler implements custom core-sched ordering via
1624  * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO
1625  * ordering within each local DSQ. This function is called from dispatch paths
1626  * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect.
1627  */
1628 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p)
1629 {
1630 	lockdep_assert_rq_held(rq);
1631 
1632 #ifdef CONFIG_SCHED_CORE
1633 	if (SCX_HAS_OP(core_sched_before))
1634 		touch_core_sched(rq, p);
1635 #endif
1636 }
1637 
1638 static void update_curr_scx(struct rq *rq)
1639 {
1640 	struct task_struct *curr = rq->curr;
1641 	s64 delta_exec;
1642 
1643 	delta_exec = update_curr_common(rq);
1644 	if (unlikely(delta_exec <= 0))
1645 		return;
1646 
1647 	if (curr->scx.slice != SCX_SLICE_INF) {
1648 		curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec);
1649 		if (!curr->scx.slice)
1650 			touch_core_sched(rq, curr);
1651 	}
1652 }
1653 
1654 static bool scx_dsq_priq_less(struct rb_node *node_a,
1655 			      const struct rb_node *node_b)
1656 {
1657 	const struct task_struct *a =
1658 		container_of(node_a, struct task_struct, scx.dsq_priq);
1659 	const struct task_struct *b =
1660 		container_of(node_b, struct task_struct, scx.dsq_priq);
1661 
1662 	return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime);
1663 }
1664 
1665 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta)
1666 {
1667 	/* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */
1668 	WRITE_ONCE(dsq->nr, dsq->nr + delta);
1669 }
1670 
1671 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p,
1672 			     u64 enq_flags)
1673 {
1674 	bool is_local = dsq->id == SCX_DSQ_LOCAL;
1675 
1676 	WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1677 	WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) ||
1678 		     !RB_EMPTY_NODE(&p->scx.dsq_priq));
1679 
1680 	if (!is_local) {
1681 		raw_spin_lock(&dsq->lock);
1682 		if (unlikely(dsq->id == SCX_DSQ_INVALID)) {
1683 			scx_ops_error("attempting to dispatch to a destroyed dsq");
1684 			/* fall back to the global dsq */
1685 			raw_spin_unlock(&dsq->lock);
1686 			dsq = find_global_dsq(p);
1687 			raw_spin_lock(&dsq->lock);
1688 		}
1689 	}
1690 
1691 	if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) &&
1692 		     (enq_flags & SCX_ENQ_DSQ_PRIQ))) {
1693 		/*
1694 		 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from
1695 		 * their FIFO queues. To avoid confusion and accidentally
1696 		 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we
1697 		 * disallow any internal DSQ from doing vtime ordering of
1698 		 * tasks.
1699 		 */
1700 		scx_ops_error("cannot use vtime ordering for built-in DSQs");
1701 		enq_flags &= ~SCX_ENQ_DSQ_PRIQ;
1702 	}
1703 
1704 	if (enq_flags & SCX_ENQ_DSQ_PRIQ) {
1705 		struct rb_node *rbp;
1706 
1707 		/*
1708 		 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are
1709 		 * linked to both the rbtree and list on PRIQs, this can only be
1710 		 * tested easily when adding the first task.
1711 		 */
1712 		if (unlikely(RB_EMPTY_ROOT(&dsq->priq) &&
1713 			     nldsq_next_task(dsq, NULL, false)))
1714 			scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks",
1715 				      dsq->id);
1716 
1717 		p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ;
1718 		rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less);
1719 
1720 		/*
1721 		 * Find the previous task and insert after it on the list so
1722 		 * that @dsq->list is vtime ordered.
1723 		 */
1724 		rbp = rb_prev(&p->scx.dsq_priq);
1725 		if (rbp) {
1726 			struct task_struct *prev =
1727 				container_of(rbp, struct task_struct,
1728 					     scx.dsq_priq);
1729 			list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node);
1730 		} else {
1731 			list_add(&p->scx.dsq_list.node, &dsq->list);
1732 		}
1733 	} else {
1734 		/* a FIFO DSQ shouldn't be using PRIQ enqueuing */
1735 		if (unlikely(!RB_EMPTY_ROOT(&dsq->priq)))
1736 			scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
1737 				      dsq->id);
1738 
1739 		if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
1740 			list_add(&p->scx.dsq_list.node, &dsq->list);
1741 		else
1742 			list_add_tail(&p->scx.dsq_list.node, &dsq->list);
1743 	}
1744 
1745 	/* seq records the order tasks are queued, used by BPF DSQ iterator */
1746 	dsq->seq++;
1747 	p->scx.dsq_seq = dsq->seq;
1748 
1749 	dsq_mod_nr(dsq, 1);
1750 	p->scx.dsq = dsq;
1751 
1752 	/*
1753 	 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the
1754 	 * direct dispatch path, but we clear them here because the direct
1755 	 * dispatch verdict may be overridden on the enqueue path during e.g.
1756 	 * bypass.
1757 	 */
1758 	p->scx.ddsp_dsq_id = SCX_DSQ_INVALID;
1759 	p->scx.ddsp_enq_flags = 0;
1760 
1761 	/*
1762 	 * We're transitioning out of QUEUEING or DISPATCHING. store_release to
1763 	 * match waiters' load_acquire.
1764 	 */
1765 	if (enq_flags & SCX_ENQ_CLEAR_OPSS)
1766 		atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1767 
1768 	if (is_local) {
1769 		struct rq *rq = container_of(dsq, struct rq, scx.local_dsq);
1770 		bool preempt = false;
1771 
1772 		if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr &&
1773 		    rq->curr->sched_class == &ext_sched_class) {
1774 			rq->curr->scx.slice = 0;
1775 			preempt = true;
1776 		}
1777 
1778 		if (preempt || sched_class_above(&ext_sched_class,
1779 						 rq->curr->sched_class))
1780 			resched_curr(rq);
1781 	} else {
1782 		raw_spin_unlock(&dsq->lock);
1783 	}
1784 }
1785 
1786 static void task_unlink_from_dsq(struct task_struct *p,
1787 				 struct scx_dispatch_q *dsq)
1788 {
1789 	WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node));
1790 
1791 	if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) {
1792 		rb_erase(&p->scx.dsq_priq, &dsq->priq);
1793 		RB_CLEAR_NODE(&p->scx.dsq_priq);
1794 		p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ;
1795 	}
1796 
1797 	list_del_init(&p->scx.dsq_list.node);
1798 	dsq_mod_nr(dsq, -1);
1799 }
1800 
1801 static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
1802 {
1803 	struct scx_dispatch_q *dsq = p->scx.dsq;
1804 	bool is_local = dsq == &rq->scx.local_dsq;
1805 
1806 	if (!dsq) {
1807 		/*
1808 		 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals.
1809 		 * Unlinking is all that's needed to cancel.
1810 		 */
1811 		if (unlikely(!list_empty(&p->scx.dsq_list.node)))
1812 			list_del_init(&p->scx.dsq_list.node);
1813 
1814 		/*
1815 		 * When dispatching directly from the BPF scheduler to a local
1816 		 * DSQ, the task isn't associated with any DSQ but
1817 		 * @p->scx.holding_cpu may be set under the protection of
1818 		 * %SCX_OPSS_DISPATCHING.
1819 		 */
1820 		if (p->scx.holding_cpu >= 0)
1821 			p->scx.holding_cpu = -1;
1822 
1823 		return;
1824 	}
1825 
1826 	if (!is_local)
1827 		raw_spin_lock(&dsq->lock);
1828 
1829 	/*
1830 	 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't
1831 	 * change underneath us.
1832 	*/
1833 	if (p->scx.holding_cpu < 0) {
1834 		/* @p must still be on @dsq, dequeue */
1835 		task_unlink_from_dsq(p, dsq);
1836 	} else {
1837 		/*
1838 		 * We're racing against dispatch_to_local_dsq() which already
1839 		 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the
1840 		 * holding_cpu which tells dispatch_to_local_dsq() that it lost
1841 		 * the race.
1842 		 */
1843 		WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node));
1844 		p->scx.holding_cpu = -1;
1845 	}
1846 	p->scx.dsq = NULL;
1847 
1848 	if (!is_local)
1849 		raw_spin_unlock(&dsq->lock);
1850 }
1851 
1852 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id,
1853 						    struct task_struct *p)
1854 {
1855 	struct scx_dispatch_q *dsq;
1856 
1857 	if (dsq_id == SCX_DSQ_LOCAL)
1858 		return &rq->scx.local_dsq;
1859 
1860 	if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
1861 		s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
1862 
1863 		if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
1864 			return find_global_dsq(p);
1865 
1866 		return &cpu_rq(cpu)->scx.local_dsq;
1867 	}
1868 
1869 	if (dsq_id == SCX_DSQ_GLOBAL)
1870 		dsq = find_global_dsq(p);
1871 	else
1872 		dsq = find_user_dsq(dsq_id);
1873 
1874 	if (unlikely(!dsq)) {
1875 		scx_ops_error("non-existent DSQ 0x%llx for %s[%d]",
1876 			      dsq_id, p->comm, p->pid);
1877 		return find_global_dsq(p);
1878 	}
1879 
1880 	return dsq;
1881 }
1882 
1883 static void mark_direct_dispatch(struct task_struct *ddsp_task,
1884 				 struct task_struct *p, u64 dsq_id,
1885 				 u64 enq_flags)
1886 {
1887 	/*
1888 	 * Mark that dispatch already happened from ops.select_cpu() or
1889 	 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value
1890 	 * which can never match a valid task pointer.
1891 	 */
1892 	__this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH));
1893 
1894 	/* @p must match the task on the enqueue path */
1895 	if (unlikely(p != ddsp_task)) {
1896 		if (IS_ERR(ddsp_task))
1897 			scx_ops_error("%s[%d] already direct-dispatched",
1898 				      p->comm, p->pid);
1899 		else
1900 			scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
1901 				      ddsp_task->comm, ddsp_task->pid,
1902 				      p->comm, p->pid);
1903 		return;
1904 	}
1905 
1906 	WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID);
1907 	WARN_ON_ONCE(p->scx.ddsp_enq_flags);
1908 
1909 	p->scx.ddsp_dsq_id = dsq_id;
1910 	p->scx.ddsp_enq_flags = enq_flags;
1911 }
1912 
1913 static void direct_dispatch(struct task_struct *p, u64 enq_flags)
1914 {
1915 	struct rq *rq = task_rq(p);
1916 	struct scx_dispatch_q *dsq =
1917 		find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
1918 
1919 	touch_core_sched_dispatch(rq, p);
1920 
1921 	p->scx.ddsp_enq_flags |= enq_flags;
1922 
1923 	/*
1924 	 * We are in the enqueue path with @rq locked and pinned, and thus can't
1925 	 * double lock a remote rq and enqueue to its local DSQ. For
1926 	 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer
1927 	 * the enqueue so that it's executed when @rq can be unlocked.
1928 	 */
1929 	if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) {
1930 		unsigned long opss;
1931 
1932 		opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK;
1933 
1934 		switch (opss & SCX_OPSS_STATE_MASK) {
1935 		case SCX_OPSS_NONE:
1936 			break;
1937 		case SCX_OPSS_QUEUEING:
1938 			/*
1939 			 * As @p was never passed to the BPF side, _release is
1940 			 * not strictly necessary. Still do it for consistency.
1941 			 */
1942 			atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1943 			break;
1944 		default:
1945 			WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()",
1946 				  p->comm, p->pid, opss);
1947 			atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1948 			break;
1949 		}
1950 
1951 		WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1952 		list_add_tail(&p->scx.dsq_list.node,
1953 			      &rq->scx.ddsp_deferred_locals);
1954 		schedule_deferred(rq);
1955 		return;
1956 	}
1957 
1958 	dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
1959 }
1960 
1961 static bool scx_rq_online(struct rq *rq)
1962 {
1963 	/*
1964 	 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates
1965 	 * the online state as seen from the BPF scheduler. cpu_active() test
1966 	 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will
1967 	 * stay set until the current scheduling operation is complete even if
1968 	 * we aren't locking @rq.
1969 	 */
1970 	return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq)));
1971 }
1972 
1973 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
1974 			    int sticky_cpu)
1975 {
1976 	struct task_struct **ddsp_taskp;
1977 	unsigned long qseq;
1978 
1979 	WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED));
1980 
1981 	/* rq migration */
1982 	if (sticky_cpu == cpu_of(rq))
1983 		goto local_norefill;
1984 
1985 	/*
1986 	 * If !scx_rq_online(), we already told the BPF scheduler that the CPU
1987 	 * is offline and are just running the hotplug path. Don't bother the
1988 	 * BPF scheduler.
1989 	 */
1990 	if (!scx_rq_online(rq))
1991 		goto local;
1992 
1993 	if (scx_rq_bypassing(rq))
1994 		goto global;
1995 
1996 	if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
1997 		goto direct;
1998 
1999 	/* see %SCX_OPS_ENQ_EXITING */
2000 	if (!static_branch_unlikely(&scx_ops_enq_exiting) &&
2001 	    unlikely(p->flags & PF_EXITING))
2002 		goto local;
2003 
2004 	if (!SCX_HAS_OP(enqueue))
2005 		goto global;
2006 
2007 	/* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
2008 	qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT;
2009 
2010 	WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
2011 	atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq);
2012 
2013 	ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
2014 	WARN_ON_ONCE(*ddsp_taskp);
2015 	*ddsp_taskp = p;
2016 
2017 	SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags);
2018 
2019 	*ddsp_taskp = NULL;
2020 	if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
2021 		goto direct;
2022 
2023 	/*
2024 	 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or
2025 	 * dequeue may be waiting. The store_release matches their load_acquire.
2026 	 */
2027 	atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq);
2028 	return;
2029 
2030 direct:
2031 	direct_dispatch(p, enq_flags);
2032 	return;
2033 
2034 local:
2035 	/*
2036 	 * For task-ordering, slice refill must be treated as implying the end
2037 	 * of the current slice. Otherwise, the longer @p stays on the CPU, the
2038 	 * higher priority it becomes from scx_prio_less()'s POV.
2039 	 */
2040 	touch_core_sched(rq, p);
2041 	p->scx.slice = SCX_SLICE_DFL;
2042 local_norefill:
2043 	dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags);
2044 	return;
2045 
2046 global:
2047 	touch_core_sched(rq, p);	/* see the comment in local: */
2048 	p->scx.slice = SCX_SLICE_DFL;
2049 	dispatch_enqueue(find_global_dsq(p), p, enq_flags);
2050 }
2051 
2052 static bool task_runnable(const struct task_struct *p)
2053 {
2054 	return !list_empty(&p->scx.runnable_node);
2055 }
2056 
2057 static void set_task_runnable(struct rq *rq, struct task_struct *p)
2058 {
2059 	lockdep_assert_rq_held(rq);
2060 
2061 	if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) {
2062 		p->scx.runnable_at = jiffies;
2063 		p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT;
2064 	}
2065 
2066 	/*
2067 	 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being
2068 	 * appened to the runnable_list.
2069 	 */
2070 	list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list);
2071 }
2072 
2073 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at)
2074 {
2075 	list_del_init(&p->scx.runnable_node);
2076 	if (reset_runnable_at)
2077 		p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
2078 }
2079 
2080 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags)
2081 {
2082 	int sticky_cpu = p->scx.sticky_cpu;
2083 
2084 	if (enq_flags & ENQUEUE_WAKEUP)
2085 		rq->scx.flags |= SCX_RQ_IN_WAKEUP;
2086 
2087 	enq_flags |= rq->scx.extra_enq_flags;
2088 
2089 	if (sticky_cpu >= 0)
2090 		p->scx.sticky_cpu = -1;
2091 
2092 	/*
2093 	 * Restoring a running task will be immediately followed by
2094 	 * set_next_task_scx() which expects the task to not be on the BPF
2095 	 * scheduler as tasks can only start running through local DSQs. Force
2096 	 * direct-dispatch into the local DSQ by setting the sticky_cpu.
2097 	 */
2098 	if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p))
2099 		sticky_cpu = cpu_of(rq);
2100 
2101 	if (p->scx.flags & SCX_TASK_QUEUED) {
2102 		WARN_ON_ONCE(!task_runnable(p));
2103 		goto out;
2104 	}
2105 
2106 	set_task_runnable(rq, p);
2107 	p->scx.flags |= SCX_TASK_QUEUED;
2108 	rq->scx.nr_running++;
2109 	add_nr_running(rq, 1);
2110 
2111 	if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p))
2112 		SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags);
2113 
2114 	if (enq_flags & SCX_ENQ_WAKEUP)
2115 		touch_core_sched(rq, p);
2116 
2117 	do_enqueue_task(rq, p, enq_flags, sticky_cpu);
2118 out:
2119 	rq->scx.flags &= ~SCX_RQ_IN_WAKEUP;
2120 }
2121 
2122 static void ops_dequeue(struct task_struct *p, u64 deq_flags)
2123 {
2124 	unsigned long opss;
2125 
2126 	/* dequeue is always temporary, don't reset runnable_at */
2127 	clr_task_runnable(p, false);
2128 
2129 	/* acquire ensures that we see the preceding updates on QUEUED */
2130 	opss = atomic_long_read_acquire(&p->scx.ops_state);
2131 
2132 	switch (opss & SCX_OPSS_STATE_MASK) {
2133 	case SCX_OPSS_NONE:
2134 		break;
2135 	case SCX_OPSS_QUEUEING:
2136 		/*
2137 		 * QUEUEING is started and finished while holding @p's rq lock.
2138 		 * As we're holding the rq lock now, we shouldn't see QUEUEING.
2139 		 */
2140 		BUG();
2141 	case SCX_OPSS_QUEUED:
2142 		if (SCX_HAS_OP(dequeue))
2143 			SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags);
2144 
2145 		if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2146 					    SCX_OPSS_NONE))
2147 			break;
2148 		fallthrough;
2149 	case SCX_OPSS_DISPATCHING:
2150 		/*
2151 		 * If @p is being dispatched from the BPF scheduler to a DSQ,
2152 		 * wait for the transfer to complete so that @p doesn't get
2153 		 * added to its DSQ after dequeueing is complete.
2154 		 *
2155 		 * As we're waiting on DISPATCHING with the rq locked, the
2156 		 * dispatching side shouldn't try to lock the rq while
2157 		 * DISPATCHING is set. See dispatch_to_local_dsq().
2158 		 *
2159 		 * DISPATCHING shouldn't have qseq set and control can reach
2160 		 * here with NONE @opss from the above QUEUED case block.
2161 		 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss.
2162 		 */
2163 		wait_ops_state(p, SCX_OPSS_DISPATCHING);
2164 		BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
2165 		break;
2166 	}
2167 }
2168 
2169 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags)
2170 {
2171 	if (!(p->scx.flags & SCX_TASK_QUEUED)) {
2172 		WARN_ON_ONCE(task_runnable(p));
2173 		return true;
2174 	}
2175 
2176 	ops_dequeue(p, deq_flags);
2177 
2178 	/*
2179 	 * A currently running task which is going off @rq first gets dequeued
2180 	 * and then stops running. As we want running <-> stopping transitions
2181 	 * to be contained within runnable <-> quiescent transitions, trigger
2182 	 * ->stopping() early here instead of in put_prev_task_scx().
2183 	 *
2184 	 * @p may go through multiple stopping <-> running transitions between
2185 	 * here and put_prev_task_scx() if task attribute changes occur while
2186 	 * balance_scx() leaves @rq unlocked. However, they don't contain any
2187 	 * information meaningful to the BPF scheduler and can be suppressed by
2188 	 * skipping the callbacks if the task is !QUEUED.
2189 	 */
2190 	if (SCX_HAS_OP(stopping) && task_current(rq, p)) {
2191 		update_curr_scx(rq);
2192 		SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false);
2193 	}
2194 
2195 	if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p))
2196 		SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags);
2197 
2198 	if (deq_flags & SCX_DEQ_SLEEP)
2199 		p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP;
2200 	else
2201 		p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP;
2202 
2203 	p->scx.flags &= ~SCX_TASK_QUEUED;
2204 	rq->scx.nr_running--;
2205 	sub_nr_running(rq, 1);
2206 
2207 	dispatch_dequeue(rq, p);
2208 	return true;
2209 }
2210 
2211 static void yield_task_scx(struct rq *rq)
2212 {
2213 	struct task_struct *p = rq->curr;
2214 
2215 	if (SCX_HAS_OP(yield))
2216 		SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL);
2217 	else
2218 		p->scx.slice = 0;
2219 }
2220 
2221 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to)
2222 {
2223 	struct task_struct *from = rq->curr;
2224 
2225 	if (SCX_HAS_OP(yield))
2226 		return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to);
2227 	else
2228 		return false;
2229 }
2230 
2231 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
2232 					 struct scx_dispatch_q *src_dsq,
2233 					 struct rq *dst_rq)
2234 {
2235 	struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq;
2236 
2237 	/* @dsq is locked and @p is on @dst_rq */
2238 	lockdep_assert_held(&src_dsq->lock);
2239 	lockdep_assert_rq_held(dst_rq);
2240 
2241 	WARN_ON_ONCE(p->scx.holding_cpu >= 0);
2242 
2243 	if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
2244 		list_add(&p->scx.dsq_list.node, &dst_dsq->list);
2245 	else
2246 		list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list);
2247 
2248 	dsq_mod_nr(dst_dsq, 1);
2249 	p->scx.dsq = dst_dsq;
2250 }
2251 
2252 #ifdef CONFIG_SMP
2253 /**
2254  * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ
2255  * @p: task to move
2256  * @enq_flags: %SCX_ENQ_*
2257  * @src_rq: rq to move the task from, locked on entry, released on return
2258  * @dst_rq: rq to move the task into, locked on return
2259  *
2260  * Move @p which is currently on @src_rq to @dst_rq's local DSQ.
2261  */
2262 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
2263 					  struct rq *src_rq, struct rq *dst_rq)
2264 {
2265 	lockdep_assert_rq_held(src_rq);
2266 
2267 	/* the following marks @p MIGRATING which excludes dequeue */
2268 	deactivate_task(src_rq, p, 0);
2269 	set_task_cpu(p, cpu_of(dst_rq));
2270 	p->scx.sticky_cpu = cpu_of(dst_rq);
2271 
2272 	raw_spin_rq_unlock(src_rq);
2273 	raw_spin_rq_lock(dst_rq);
2274 
2275 	/*
2276 	 * We want to pass scx-specific enq_flags but activate_task() will
2277 	 * truncate the upper 32 bit. As we own @rq, we can pass them through
2278 	 * @rq->scx.extra_enq_flags instead.
2279 	 */
2280 	WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr));
2281 	WARN_ON_ONCE(dst_rq->scx.extra_enq_flags);
2282 	dst_rq->scx.extra_enq_flags = enq_flags;
2283 	activate_task(dst_rq, p, 0);
2284 	dst_rq->scx.extra_enq_flags = 0;
2285 }
2286 
2287 /*
2288  * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two
2289  * differences:
2290  *
2291  * - is_cpu_allowed() asks "Can this task run on this CPU?" while
2292  *   task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to
2293  *   this CPU?".
2294  *
2295  *   While migration is disabled, is_cpu_allowed() has to say "yes" as the task
2296  *   must be allowed to finish on the CPU that it's currently on regardless of
2297  *   the CPU state. However, task_can_run_on_remote_rq() must say "no" as the
2298  *   BPF scheduler shouldn't attempt to migrate a task which has migration
2299  *   disabled.
2300  *
2301  * - The BPF scheduler is bypassed while the rq is offline and we can always say
2302  *   no to the BPF scheduler initiated migrations while offline.
2303  */
2304 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq,
2305 				      bool trigger_error)
2306 {
2307 	int cpu = cpu_of(rq);
2308 
2309 	/*
2310 	 * We don't require the BPF scheduler to avoid dispatching to offline
2311 	 * CPUs mostly for convenience but also because CPUs can go offline
2312 	 * between scx_bpf_dispatch() calls and here. Trigger error iff the
2313 	 * picked CPU is outside the allowed mask.
2314 	 */
2315 	if (!task_allowed_on_cpu(p, cpu)) {
2316 		if (trigger_error)
2317 			scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]",
2318 				      cpu_of(rq), p->comm, p->pid);
2319 		return false;
2320 	}
2321 
2322 	if (unlikely(is_migration_disabled(p)))
2323 		return false;
2324 
2325 	if (!scx_rq_online(rq))
2326 		return false;
2327 
2328 	return true;
2329 }
2330 
2331 /**
2332  * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq
2333  * @p: target task
2334  * @dsq: locked DSQ @p is currently on
2335  * @src_rq: rq @p is currently on, stable with @dsq locked
2336  *
2337  * Called with @dsq locked but no rq's locked. We want to move @p to a different
2338  * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is
2339  * required when transferring into a local DSQ. Even when transferring into a
2340  * non-local DSQ, it's better to use the same mechanism to protect against
2341  * dequeues and maintain the invariant that @p->scx.dsq can only change while
2342  * @src_rq is locked, which e.g. scx_dump_task() depends on.
2343  *
2344  * We want to grab @src_rq but that can deadlock if we try while locking @dsq,
2345  * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As
2346  * this may race with dequeue, which can't drop the rq lock or fail, do a little
2347  * dancing from our side.
2348  *
2349  * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets
2350  * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu
2351  * would be cleared to -1. While other cpus may have updated it to different
2352  * values afterwards, as this operation can't be preempted or recurse, the
2353  * holding_cpu can never become this CPU again before we're done. Thus, we can
2354  * tell whether we lost to dequeue by testing whether the holding_cpu still
2355  * points to this CPU. See dispatch_dequeue() for the counterpart.
2356  *
2357  * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is
2358  * still valid. %false if lost to dequeue.
2359  */
2360 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p,
2361 				       struct scx_dispatch_q *dsq,
2362 				       struct rq *src_rq)
2363 {
2364 	s32 cpu = raw_smp_processor_id();
2365 
2366 	lockdep_assert_held(&dsq->lock);
2367 
2368 	WARN_ON_ONCE(p->scx.holding_cpu >= 0);
2369 	task_unlink_from_dsq(p, dsq);
2370 	p->scx.holding_cpu = cpu;
2371 
2372 	raw_spin_unlock(&dsq->lock);
2373 	raw_spin_rq_lock(src_rq);
2374 
2375 	/* task_rq couldn't have changed if we're still the holding cpu */
2376 	return likely(p->scx.holding_cpu == cpu) &&
2377 		!WARN_ON_ONCE(src_rq != task_rq(p));
2378 }
2379 
2380 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p,
2381 				struct scx_dispatch_q *dsq, struct rq *src_rq)
2382 {
2383 	raw_spin_rq_unlock(this_rq);
2384 
2385 	if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) {
2386 		move_remote_task_to_local_dsq(p, 0, src_rq, this_rq);
2387 		return true;
2388 	} else {
2389 		raw_spin_rq_unlock(src_rq);
2390 		raw_spin_rq_lock(this_rq);
2391 		return false;
2392 	}
2393 }
2394 #else	/* CONFIG_SMP */
2395 static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); }
2396 static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; }
2397 static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; }
2398 #endif	/* CONFIG_SMP */
2399 
2400 static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq)
2401 {
2402 	struct task_struct *p;
2403 retry:
2404 	/*
2405 	 * The caller can't expect to successfully consume a task if the task's
2406 	 * addition to @dsq isn't guaranteed to be visible somehow. Test
2407 	 * @dsq->list without locking and skip if it seems empty.
2408 	 */
2409 	if (list_empty(&dsq->list))
2410 		return false;
2411 
2412 	raw_spin_lock(&dsq->lock);
2413 
2414 	nldsq_for_each_task(p, dsq) {
2415 		struct rq *task_rq = task_rq(p);
2416 
2417 		if (rq == task_rq) {
2418 			task_unlink_from_dsq(p, dsq);
2419 			move_local_task_to_local_dsq(p, 0, dsq, rq);
2420 			raw_spin_unlock(&dsq->lock);
2421 			return true;
2422 		}
2423 
2424 		if (task_can_run_on_remote_rq(p, rq, false)) {
2425 			if (likely(consume_remote_task(rq, p, dsq, task_rq)))
2426 				return true;
2427 			goto retry;
2428 		}
2429 	}
2430 
2431 	raw_spin_unlock(&dsq->lock);
2432 	return false;
2433 }
2434 
2435 static bool consume_global_dsq(struct rq *rq)
2436 {
2437 	int node = cpu_to_node(cpu_of(rq));
2438 
2439 	return consume_dispatch_q(rq, global_dsqs[node]);
2440 }
2441 
2442 /**
2443  * dispatch_to_local_dsq - Dispatch a task to a local dsq
2444  * @rq: current rq which is locked
2445  * @dst_dsq: destination DSQ
2446  * @p: task to dispatch
2447  * @enq_flags: %SCX_ENQ_*
2448  *
2449  * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local
2450  * DSQ. This function performs all the synchronization dancing needed because
2451  * local DSQs are protected with rq locks.
2452  *
2453  * The caller must have exclusive ownership of @p (e.g. through
2454  * %SCX_OPSS_DISPATCHING).
2455  */
2456 static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq,
2457 				  struct task_struct *p, u64 enq_flags)
2458 {
2459 	struct rq *src_rq = task_rq(p);
2460 	struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
2461 
2462 	/*
2463 	 * We're synchronized against dequeue through DISPATCHING. As @p can't
2464 	 * be dequeued, its task_rq and cpus_allowed are stable too.
2465 	 *
2466 	 * If dispatching to @rq that @p is already on, no lock dancing needed.
2467 	 */
2468 	if (rq == src_rq && rq == dst_rq) {
2469 		dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2470 		return;
2471 	}
2472 
2473 #ifdef CONFIG_SMP
2474 	if (unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) {
2475 		dispatch_enqueue(find_global_dsq(p), p,
2476 				 enq_flags | SCX_ENQ_CLEAR_OPSS);
2477 		return;
2478 	}
2479 
2480 	/*
2481 	 * @p is on a possibly remote @src_rq which we need to lock to move the
2482 	 * task. If dequeue is in progress, it'd be locking @src_rq and waiting
2483 	 * on DISPATCHING, so we can't grab @src_rq lock while holding
2484 	 * DISPATCHING.
2485 	 *
2486 	 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that
2487 	 * we're moving from a DSQ and use the same mechanism - mark the task
2488 	 * under transfer with holding_cpu, release DISPATCHING and then follow
2489 	 * the same protocol. See unlink_dsq_and_lock_src_rq().
2490 	 */
2491 	p->scx.holding_cpu = raw_smp_processor_id();
2492 
2493 	/* store_release ensures that dequeue sees the above */
2494 	atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
2495 
2496 	/* switch to @src_rq lock */
2497 	if (rq != src_rq) {
2498 		raw_spin_rq_unlock(rq);
2499 		raw_spin_rq_lock(src_rq);
2500 	}
2501 
2502 	/* task_rq couldn't have changed if we're still the holding cpu */
2503 	if (likely(p->scx.holding_cpu == raw_smp_processor_id()) &&
2504 	    !WARN_ON_ONCE(src_rq != task_rq(p))) {
2505 		/*
2506 		 * If @p is staying on the same rq, there's no need to go
2507 		 * through the full deactivate/activate cycle. Optimize by
2508 		 * abbreviating move_remote_task_to_local_dsq().
2509 		 */
2510 		if (src_rq == dst_rq) {
2511 			p->scx.holding_cpu = -1;
2512 			dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags);
2513 		} else {
2514 			move_remote_task_to_local_dsq(p, enq_flags,
2515 						      src_rq, dst_rq);
2516 		}
2517 
2518 		/* if the destination CPU is idle, wake it up */
2519 		if (sched_class_above(p->sched_class, dst_rq->curr->sched_class))
2520 			resched_curr(dst_rq);
2521 	}
2522 
2523 	/* switch back to @rq lock */
2524 	if (rq != dst_rq) {
2525 		raw_spin_rq_unlock(dst_rq);
2526 		raw_spin_rq_lock(rq);
2527 	}
2528 #else	/* CONFIG_SMP */
2529 	BUG();	/* control can not reach here on UP */
2530 #endif	/* CONFIG_SMP */
2531 }
2532 
2533 /**
2534  * finish_dispatch - Asynchronously finish dispatching a task
2535  * @rq: current rq which is locked
2536  * @p: task to finish dispatching
2537  * @qseq_at_dispatch: qseq when @p started getting dispatched
2538  * @dsq_id: destination DSQ ID
2539  * @enq_flags: %SCX_ENQ_*
2540  *
2541  * Dispatching to local DSQs may need to wait for queueing to complete or
2542  * require rq lock dancing. As we don't wanna do either while inside
2543  * ops.dispatch() to avoid locking order inversion, we split dispatching into
2544  * two parts. scx_bpf_dispatch() which is called by ops.dispatch() records the
2545  * task and its qseq. Once ops.dispatch() returns, this function is called to
2546  * finish up.
2547  *
2548  * There is no guarantee that @p is still valid for dispatching or even that it
2549  * was valid in the first place. Make sure that the task is still owned by the
2550  * BPF scheduler and claim the ownership before dispatching.
2551  */
2552 static void finish_dispatch(struct rq *rq, struct task_struct *p,
2553 			    unsigned long qseq_at_dispatch,
2554 			    u64 dsq_id, u64 enq_flags)
2555 {
2556 	struct scx_dispatch_q *dsq;
2557 	unsigned long opss;
2558 
2559 	touch_core_sched_dispatch(rq, p);
2560 retry:
2561 	/*
2562 	 * No need for _acquire here. @p is accessed only after a successful
2563 	 * try_cmpxchg to DISPATCHING.
2564 	 */
2565 	opss = atomic_long_read(&p->scx.ops_state);
2566 
2567 	switch (opss & SCX_OPSS_STATE_MASK) {
2568 	case SCX_OPSS_DISPATCHING:
2569 	case SCX_OPSS_NONE:
2570 		/* someone else already got to it */
2571 		return;
2572 	case SCX_OPSS_QUEUED:
2573 		/*
2574 		 * If qseq doesn't match, @p has gone through at least one
2575 		 * dispatch/dequeue and re-enqueue cycle between
2576 		 * scx_bpf_dispatch() and here and we have no claim on it.
2577 		 */
2578 		if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch)
2579 			return;
2580 
2581 		/*
2582 		 * While we know @p is accessible, we don't yet have a claim on
2583 		 * it - the BPF scheduler is allowed to dispatch tasks
2584 		 * spuriously and there can be a racing dequeue attempt. Let's
2585 		 * claim @p by atomically transitioning it from QUEUED to
2586 		 * DISPATCHING.
2587 		 */
2588 		if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2589 						   SCX_OPSS_DISPATCHING)))
2590 			break;
2591 		goto retry;
2592 	case SCX_OPSS_QUEUEING:
2593 		/*
2594 		 * do_enqueue_task() is in the process of transferring the task
2595 		 * to the BPF scheduler while holding @p's rq lock. As we aren't
2596 		 * holding any kernel or BPF resource that the enqueue path may
2597 		 * depend upon, it's safe to wait.
2598 		 */
2599 		wait_ops_state(p, opss);
2600 		goto retry;
2601 	}
2602 
2603 	BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED));
2604 
2605 	dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p);
2606 
2607 	if (dsq->id == SCX_DSQ_LOCAL)
2608 		dispatch_to_local_dsq(rq, dsq, p, enq_flags);
2609 	else
2610 		dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2611 }
2612 
2613 static void flush_dispatch_buf(struct rq *rq)
2614 {
2615 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2616 	u32 u;
2617 
2618 	for (u = 0; u < dspc->cursor; u++) {
2619 		struct scx_dsp_buf_ent *ent = &dspc->buf[u];
2620 
2621 		finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id,
2622 				ent->enq_flags);
2623 	}
2624 
2625 	dspc->nr_tasks += dspc->cursor;
2626 	dspc->cursor = 0;
2627 }
2628 
2629 static int balance_one(struct rq *rq, struct task_struct *prev)
2630 {
2631 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2632 	bool prev_on_scx = prev->sched_class == &ext_sched_class;
2633 	int nr_loops = SCX_DSP_MAX_LOOPS;
2634 
2635 	lockdep_assert_rq_held(rq);
2636 	rq->scx.flags |= SCX_RQ_IN_BALANCE;
2637 	rq->scx.flags &= ~SCX_RQ_BAL_KEEP;
2638 
2639 	if (static_branch_unlikely(&scx_ops_cpu_preempt) &&
2640 	    unlikely(rq->scx.cpu_released)) {
2641 		/*
2642 		 * If the previous sched_class for the current CPU was not SCX,
2643 		 * notify the BPF scheduler that it again has control of the
2644 		 * core. This callback complements ->cpu_release(), which is
2645 		 * emitted in scx_next_task_picked().
2646 		 */
2647 		if (SCX_HAS_OP(cpu_acquire))
2648 			SCX_CALL_OP(0, cpu_acquire, cpu_of(rq), NULL);
2649 		rq->scx.cpu_released = false;
2650 	}
2651 
2652 	if (prev_on_scx) {
2653 		update_curr_scx(rq);
2654 
2655 		/*
2656 		 * If @prev is runnable & has slice left, it has priority and
2657 		 * fetching more just increases latency for the fetched tasks.
2658 		 * Tell pick_task_scx() to keep running @prev. If the BPF
2659 		 * scheduler wants to handle this explicitly, it should
2660 		 * implement ->cpu_release().
2661 		 *
2662 		 * See scx_ops_disable_workfn() for the explanation on the
2663 		 * bypassing test.
2664 		 */
2665 		if ((prev->scx.flags & SCX_TASK_QUEUED) &&
2666 		    prev->scx.slice && !scx_rq_bypassing(rq)) {
2667 			rq->scx.flags |= SCX_RQ_BAL_KEEP;
2668 			goto has_tasks;
2669 		}
2670 	}
2671 
2672 	/* if there already are tasks to run, nothing to do */
2673 	if (rq->scx.local_dsq.nr)
2674 		goto has_tasks;
2675 
2676 	if (consume_global_dsq(rq))
2677 		goto has_tasks;
2678 
2679 	if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq))
2680 		goto no_tasks;
2681 
2682 	dspc->rq = rq;
2683 
2684 	/*
2685 	 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock,
2686 	 * the local DSQ might still end up empty after a successful
2687 	 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch()
2688 	 * produced some tasks, retry. The BPF scheduler may depend on this
2689 	 * looping behavior to simplify its implementation.
2690 	 */
2691 	do {
2692 		dspc->nr_tasks = 0;
2693 
2694 		SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq),
2695 			    prev_on_scx ? prev : NULL);
2696 
2697 		flush_dispatch_buf(rq);
2698 
2699 		if (rq->scx.local_dsq.nr)
2700 			goto has_tasks;
2701 		if (consume_global_dsq(rq))
2702 			goto has_tasks;
2703 
2704 		/*
2705 		 * ops.dispatch() can trap us in this loop by repeatedly
2706 		 * dispatching ineligible tasks. Break out once in a while to
2707 		 * allow the watchdog to run. As IRQ can't be enabled in
2708 		 * balance(), we want to complete this scheduling cycle and then
2709 		 * start a new one. IOW, we want to call resched_curr() on the
2710 		 * next, most likely idle, task, not the current one. Use
2711 		 * scx_bpf_kick_cpu() for deferred kicking.
2712 		 */
2713 		if (unlikely(!--nr_loops)) {
2714 			scx_bpf_kick_cpu(cpu_of(rq), 0);
2715 			break;
2716 		}
2717 	} while (dspc->nr_tasks);
2718 
2719 no_tasks:
2720 	/*
2721 	 * Didn't find another task to run. Keep running @prev unless
2722 	 * %SCX_OPS_ENQ_LAST is in effect.
2723 	 */
2724 	if ((prev->scx.flags & SCX_TASK_QUEUED) &&
2725 	    (!static_branch_unlikely(&scx_ops_enq_last) ||
2726 	     scx_rq_bypassing(rq))) {
2727 		rq->scx.flags |= SCX_RQ_BAL_KEEP;
2728 		goto has_tasks;
2729 	}
2730 	rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2731 	return false;
2732 
2733 has_tasks:
2734 	rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2735 	return true;
2736 }
2737 
2738 static int balance_scx(struct rq *rq, struct task_struct *prev,
2739 		       struct rq_flags *rf)
2740 {
2741 	int ret;
2742 
2743 	rq_unpin_lock(rq, rf);
2744 
2745 	ret = balance_one(rq, prev);
2746 
2747 #ifdef CONFIG_SCHED_SMT
2748 	/*
2749 	 * When core-sched is enabled, this ops.balance() call will be followed
2750 	 * by pick_task_scx() on this CPU and the SMT siblings. Balance the
2751 	 * siblings too.
2752 	 */
2753 	if (sched_core_enabled(rq)) {
2754 		const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq));
2755 		int scpu;
2756 
2757 		for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) {
2758 			struct rq *srq = cpu_rq(scpu);
2759 			struct task_struct *sprev = srq->curr;
2760 
2761 			WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq));
2762 			update_rq_clock(srq);
2763 			balance_one(srq, sprev);
2764 		}
2765 	}
2766 #endif
2767 	rq_repin_lock(rq, rf);
2768 
2769 	return ret;
2770 }
2771 
2772 static void process_ddsp_deferred_locals(struct rq *rq)
2773 {
2774 	struct task_struct *p;
2775 
2776 	lockdep_assert_rq_held(rq);
2777 
2778 	/*
2779 	 * Now that @rq can be unlocked, execute the deferred enqueueing of
2780 	 * tasks directly dispatched to the local DSQs of other CPUs. See
2781 	 * direct_dispatch(). Keep popping from the head instead of using
2782 	 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq
2783 	 * temporarily.
2784 	 */
2785 	while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals,
2786 				struct task_struct, scx.dsq_list.node))) {
2787 		struct scx_dispatch_q *dsq;
2788 
2789 		list_del_init(&p->scx.dsq_list.node);
2790 
2791 		dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
2792 		if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL))
2793 			dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags);
2794 	}
2795 }
2796 
2797 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
2798 {
2799 	if (p->scx.flags & SCX_TASK_QUEUED) {
2800 		/*
2801 		 * Core-sched might decide to execute @p before it is
2802 		 * dispatched. Call ops_dequeue() to notify the BPF scheduler.
2803 		 */
2804 		ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC);
2805 		dispatch_dequeue(rq, p);
2806 	}
2807 
2808 	p->se.exec_start = rq_clock_task(rq);
2809 
2810 	/* see dequeue_task_scx() on why we skip when !QUEUED */
2811 	if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED))
2812 		SCX_CALL_OP_TASK(SCX_KF_REST, running, p);
2813 
2814 	clr_task_runnable(p, true);
2815 
2816 	/*
2817 	 * @p is getting newly scheduled or got kicked after someone updated its
2818 	 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick().
2819 	 */
2820 	if ((p->scx.slice == SCX_SLICE_INF) !=
2821 	    (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) {
2822 		if (p->scx.slice == SCX_SLICE_INF)
2823 			rq->scx.flags |= SCX_RQ_CAN_STOP_TICK;
2824 		else
2825 			rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK;
2826 
2827 		sched_update_tick_dependency(rq);
2828 
2829 		/*
2830 		 * For now, let's refresh the load_avgs just when transitioning
2831 		 * in and out of nohz. In the future, we might want to add a
2832 		 * mechanism which calls the following periodically on
2833 		 * tick-stopped CPUs.
2834 		 */
2835 		update_other_load_avgs(rq);
2836 	}
2837 }
2838 
2839 static enum scx_cpu_preempt_reason
2840 preempt_reason_from_class(const struct sched_class *class)
2841 {
2842 #ifdef CONFIG_SMP
2843 	if (class == &stop_sched_class)
2844 		return SCX_CPU_PREEMPT_STOP;
2845 #endif
2846 	if (class == &dl_sched_class)
2847 		return SCX_CPU_PREEMPT_DL;
2848 	if (class == &rt_sched_class)
2849 		return SCX_CPU_PREEMPT_RT;
2850 	return SCX_CPU_PREEMPT_UNKNOWN;
2851 }
2852 
2853 static void switch_class(struct rq *rq, struct task_struct *next)
2854 {
2855 	const struct sched_class *next_class = next->sched_class;
2856 
2857 #ifdef CONFIG_SMP
2858 	/*
2859 	 * Pairs with the smp_load_acquire() issued by a CPU in
2860 	 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a
2861 	 * resched.
2862 	 */
2863 	smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1);
2864 #endif
2865 	if (!static_branch_unlikely(&scx_ops_cpu_preempt))
2866 		return;
2867 
2868 	/*
2869 	 * The callback is conceptually meant to convey that the CPU is no
2870 	 * longer under the control of SCX. Therefore, don't invoke the callback
2871 	 * if the next class is below SCX (in which case the BPF scheduler has
2872 	 * actively decided not to schedule any tasks on the CPU).
2873 	 */
2874 	if (sched_class_above(&ext_sched_class, next_class))
2875 		return;
2876 
2877 	/*
2878 	 * At this point we know that SCX was preempted by a higher priority
2879 	 * sched_class, so invoke the ->cpu_release() callback if we have not
2880 	 * done so already. We only send the callback once between SCX being
2881 	 * preempted, and it regaining control of the CPU.
2882 	 *
2883 	 * ->cpu_release() complements ->cpu_acquire(), which is emitted the
2884 	 *  next time that balance_scx() is invoked.
2885 	 */
2886 	if (!rq->scx.cpu_released) {
2887 		if (SCX_HAS_OP(cpu_release)) {
2888 			struct scx_cpu_release_args args = {
2889 				.reason = preempt_reason_from_class(next_class),
2890 				.task = next,
2891 			};
2892 
2893 			SCX_CALL_OP(SCX_KF_CPU_RELEASE,
2894 				    cpu_release, cpu_of(rq), &args);
2895 		}
2896 		rq->scx.cpu_released = true;
2897 	}
2898 }
2899 
2900 static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
2901 			      struct task_struct *next)
2902 {
2903 	update_curr_scx(rq);
2904 
2905 	/* see dequeue_task_scx() on why we skip when !QUEUED */
2906 	if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED))
2907 		SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true);
2908 
2909 	if (p->scx.flags & SCX_TASK_QUEUED) {
2910 		set_task_runnable(rq, p);
2911 
2912 		/*
2913 		 * If @p has slice left and is being put, @p is getting
2914 		 * preempted by a higher priority scheduler class or core-sched
2915 		 * forcing a different task. Leave it at the head of the local
2916 		 * DSQ.
2917 		 */
2918 		if (p->scx.slice && !scx_rq_bypassing(rq)) {
2919 			dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD);
2920 			return;
2921 		}
2922 
2923 		/*
2924 		 * If @p is runnable but we're about to enter a lower
2925 		 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell
2926 		 * ops.enqueue() that @p is the only one available for this cpu,
2927 		 * which should trigger an explicit follow-up scheduling event.
2928 		 */
2929 		if (sched_class_above(&ext_sched_class, next->sched_class)) {
2930 			WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last));
2931 			do_enqueue_task(rq, p, SCX_ENQ_LAST, -1);
2932 		} else {
2933 			do_enqueue_task(rq, p, 0, -1);
2934 		}
2935 	}
2936 
2937 	if (next && next->sched_class != &ext_sched_class)
2938 		switch_class(rq, next);
2939 }
2940 
2941 static struct task_struct *first_local_task(struct rq *rq)
2942 {
2943 	return list_first_entry_or_null(&rq->scx.local_dsq.list,
2944 					struct task_struct, scx.dsq_list.node);
2945 }
2946 
2947 static struct task_struct *pick_task_scx(struct rq *rq)
2948 {
2949 	struct task_struct *prev = rq->curr;
2950 	struct task_struct *p;
2951 
2952 	/*
2953 	 * If balance_scx() is telling us to keep running @prev, replenish slice
2954 	 * if necessary and keep running @prev. Otherwise, pop the first one
2955 	 * from the local DSQ.
2956 	 *
2957 	 * WORKAROUND:
2958 	 *
2959 	 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just
2960 	 * have gone through balance_scx(). Unfortunately, there currently is a
2961 	 * bug where fair could say yes on balance() but no on pick_task(),
2962 	 * which then ends up calling pick_task_scx() without preceding
2963 	 * balance_scx().
2964 	 *
2965 	 * For now, ignore cases where $prev is not on SCX. This isn't great and
2966 	 * can theoretically lead to stalls. However, for switch_all cases, this
2967 	 * happens only while a BPF scheduler is being loaded or unloaded, and,
2968 	 * for partial cases, fair will likely keep triggering this CPU.
2969 	 *
2970 	 * Once fair is fixed, restore WARN_ON_ONCE().
2971 	 */
2972 	if ((rq->scx.flags & SCX_RQ_BAL_KEEP) &&
2973 	    prev->sched_class == &ext_sched_class) {
2974 		p = prev;
2975 		if (!p->scx.slice)
2976 			p->scx.slice = SCX_SLICE_DFL;
2977 	} else {
2978 		p = first_local_task(rq);
2979 		if (!p)
2980 			return NULL;
2981 
2982 		if (unlikely(!p->scx.slice)) {
2983 			if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) {
2984 				printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n",
2985 						p->comm, p->pid, __func__);
2986 				scx_warned_zero_slice = true;
2987 			}
2988 			p->scx.slice = SCX_SLICE_DFL;
2989 		}
2990 	}
2991 
2992 	return p;
2993 }
2994 
2995 #ifdef CONFIG_SCHED_CORE
2996 /**
2997  * scx_prio_less - Task ordering for core-sched
2998  * @a: task A
2999  * @b: task B
3000  *
3001  * Core-sched is implemented as an additional scheduling layer on top of the
3002  * usual sched_class'es and needs to find out the expected task ordering. For
3003  * SCX, core-sched calls this function to interrogate the task ordering.
3004  *
3005  * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used
3006  * to implement the default task ordering. The older the timestamp, the higher
3007  * prority the task - the global FIFO ordering matching the default scheduling
3008  * behavior.
3009  *
3010  * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to
3011  * implement FIFO ordering within each local DSQ. See pick_task_scx().
3012  */
3013 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b,
3014 		   bool in_fi)
3015 {
3016 	/*
3017 	 * The const qualifiers are dropped from task_struct pointers when
3018 	 * calling ops.core_sched_before(). Accesses are controlled by the
3019 	 * verifier.
3020 	 */
3021 	if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a)))
3022 		return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before,
3023 					      (struct task_struct *)a,
3024 					      (struct task_struct *)b);
3025 	else
3026 		return time_after64(a->scx.core_sched_at, b->scx.core_sched_at);
3027 }
3028 #endif	/* CONFIG_SCHED_CORE */
3029 
3030 #ifdef CONFIG_SMP
3031 
3032 static bool test_and_clear_cpu_idle(int cpu)
3033 {
3034 #ifdef CONFIG_SCHED_SMT
3035 	/*
3036 	 * SMT mask should be cleared whether we can claim @cpu or not. The SMT
3037 	 * cluster is not wholly idle either way. This also prevents
3038 	 * scx_pick_idle_cpu() from getting caught in an infinite loop.
3039 	 */
3040 	if (sched_smt_active()) {
3041 		const struct cpumask *smt = cpu_smt_mask(cpu);
3042 
3043 		/*
3044 		 * If offline, @cpu is not its own sibling and
3045 		 * scx_pick_idle_cpu() can get caught in an infinite loop as
3046 		 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu
3047 		 * is eventually cleared.
3048 		 */
3049 		if (cpumask_intersects(smt, idle_masks.smt))
3050 			cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
3051 		else if (cpumask_test_cpu(cpu, idle_masks.smt))
3052 			__cpumask_clear_cpu(cpu, idle_masks.smt);
3053 	}
3054 #endif
3055 	return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu);
3056 }
3057 
3058 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags)
3059 {
3060 	int cpu;
3061 
3062 retry:
3063 	if (sched_smt_active()) {
3064 		cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed);
3065 		if (cpu < nr_cpu_ids)
3066 			goto found;
3067 
3068 		if (flags & SCX_PICK_IDLE_CORE)
3069 			return -EBUSY;
3070 	}
3071 
3072 	cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed);
3073 	if (cpu >= nr_cpu_ids)
3074 		return -EBUSY;
3075 
3076 found:
3077 	if (test_and_clear_cpu_idle(cpu))
3078 		return cpu;
3079 	else
3080 		goto retry;
3081 }
3082 
3083 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
3084 			      u64 wake_flags, bool *found)
3085 {
3086 	s32 cpu;
3087 
3088 	*found = false;
3089 
3090 	/*
3091 	 * If WAKE_SYNC, the waker's local DSQ is empty, and the system is
3092 	 * under utilized, wake up @p to the local DSQ of the waker. Checking
3093 	 * only for an empty local DSQ is insufficient as it could give the
3094 	 * wakee an unfair advantage when the system is oversaturated.
3095 	 * Checking only for the presence of idle CPUs is also insufficient as
3096 	 * the local DSQ of the waker could have tasks piled up on it even if
3097 	 * there is an idle core elsewhere on the system.
3098 	 */
3099 	cpu = smp_processor_id();
3100 	if ((wake_flags & SCX_WAKE_SYNC) &&
3101 	    !cpumask_empty(idle_masks.cpu) && !(current->flags & PF_EXITING) &&
3102 	    cpu_rq(cpu)->scx.local_dsq.nr == 0) {
3103 		if (cpumask_test_cpu(cpu, p->cpus_ptr))
3104 			goto cpu_found;
3105 	}
3106 
3107 	/*
3108 	 * If CPU has SMT, any wholly idle CPU is likely a better pick than
3109 	 * partially idle @prev_cpu.
3110 	 */
3111 	if (sched_smt_active()) {
3112 		if (cpumask_test_cpu(prev_cpu, idle_masks.smt) &&
3113 		    test_and_clear_cpu_idle(prev_cpu)) {
3114 			cpu = prev_cpu;
3115 			goto cpu_found;
3116 		}
3117 
3118 		cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE);
3119 		if (cpu >= 0)
3120 			goto cpu_found;
3121 	}
3122 
3123 	if (test_and_clear_cpu_idle(prev_cpu)) {
3124 		cpu = prev_cpu;
3125 		goto cpu_found;
3126 	}
3127 
3128 	cpu = scx_pick_idle_cpu(p->cpus_ptr, 0);
3129 	if (cpu >= 0)
3130 		goto cpu_found;
3131 
3132 	return prev_cpu;
3133 
3134 cpu_found:
3135 	*found = true;
3136 	return cpu;
3137 }
3138 
3139 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags)
3140 {
3141 	/*
3142 	 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
3143 	 * can be a good migration opportunity with low cache and memory
3144 	 * footprint. Returning a CPU different than @prev_cpu triggers
3145 	 * immediate rq migration. However, for SCX, as the current rq
3146 	 * association doesn't dictate where the task is going to run, this
3147 	 * doesn't fit well. If necessary, we can later add a dedicated method
3148 	 * which can decide to preempt self to force it through the regular
3149 	 * scheduling path.
3150 	 */
3151 	if (unlikely(wake_flags & WF_EXEC))
3152 		return prev_cpu;
3153 
3154 	if (SCX_HAS_OP(select_cpu) && !scx_rq_bypassing(task_rq(p))) {
3155 		s32 cpu;
3156 		struct task_struct **ddsp_taskp;
3157 
3158 		ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
3159 		WARN_ON_ONCE(*ddsp_taskp);
3160 		*ddsp_taskp = p;
3161 
3162 		cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
3163 					   select_cpu, p, prev_cpu, wake_flags);
3164 		*ddsp_taskp = NULL;
3165 		if (ops_cpu_valid(cpu, "from ops.select_cpu()"))
3166 			return cpu;
3167 		else
3168 			return prev_cpu;
3169 	} else {
3170 		bool found;
3171 		s32 cpu;
3172 
3173 		cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found);
3174 		if (found) {
3175 			p->scx.slice = SCX_SLICE_DFL;
3176 			p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL;
3177 		}
3178 		return cpu;
3179 	}
3180 }
3181 
3182 static void task_woken_scx(struct rq *rq, struct task_struct *p)
3183 {
3184 	run_deferred(rq);
3185 }
3186 
3187 static void set_cpus_allowed_scx(struct task_struct *p,
3188 				 struct affinity_context *ac)
3189 {
3190 	set_cpus_allowed_common(p, ac);
3191 
3192 	/*
3193 	 * The effective cpumask is stored in @p->cpus_ptr which may temporarily
3194 	 * differ from the configured one in @p->cpus_mask. Always tell the bpf
3195 	 * scheduler the effective one.
3196 	 *
3197 	 * Fine-grained memory write control is enforced by BPF making the const
3198 	 * designation pointless. Cast it away when calling the operation.
3199 	 */
3200 	if (SCX_HAS_OP(set_cpumask))
3201 		SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
3202 				 (struct cpumask *)p->cpus_ptr);
3203 }
3204 
3205 static void reset_idle_masks(void)
3206 {
3207 	/*
3208 	 * Consider all online cpus idle. Should converge to the actual state
3209 	 * quickly.
3210 	 */
3211 	cpumask_copy(idle_masks.cpu, cpu_online_mask);
3212 	cpumask_copy(idle_masks.smt, cpu_online_mask);
3213 }
3214 
3215 void __scx_update_idle(struct rq *rq, bool idle)
3216 {
3217 	int cpu = cpu_of(rq);
3218 
3219 	if (SCX_HAS_OP(update_idle) && !scx_rq_bypassing(rq)) {
3220 		SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle);
3221 		if (!static_branch_unlikely(&scx_builtin_idle_enabled))
3222 			return;
3223 	}
3224 
3225 	if (idle)
3226 		cpumask_set_cpu(cpu, idle_masks.cpu);
3227 	else
3228 		cpumask_clear_cpu(cpu, idle_masks.cpu);
3229 
3230 #ifdef CONFIG_SCHED_SMT
3231 	if (sched_smt_active()) {
3232 		const struct cpumask *smt = cpu_smt_mask(cpu);
3233 
3234 		if (idle) {
3235 			/*
3236 			 * idle_masks.smt handling is racy but that's fine as
3237 			 * it's only for optimization and self-correcting.
3238 			 */
3239 			for_each_cpu(cpu, smt) {
3240 				if (!cpumask_test_cpu(cpu, idle_masks.cpu))
3241 					return;
3242 			}
3243 			cpumask_or(idle_masks.smt, idle_masks.smt, smt);
3244 		} else {
3245 			cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
3246 		}
3247 	}
3248 #endif
3249 }
3250 
3251 static void handle_hotplug(struct rq *rq, bool online)
3252 {
3253 	int cpu = cpu_of(rq);
3254 
3255 	atomic_long_inc(&scx_hotplug_seq);
3256 
3257 	if (online && SCX_HAS_OP(cpu_online))
3258 		SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu);
3259 	else if (!online && SCX_HAS_OP(cpu_offline))
3260 		SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu);
3261 	else
3262 		scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
3263 			     "cpu %d going %s, exiting scheduler", cpu,
3264 			     online ? "online" : "offline");
3265 }
3266 
3267 void scx_rq_activate(struct rq *rq)
3268 {
3269 	handle_hotplug(rq, true);
3270 }
3271 
3272 void scx_rq_deactivate(struct rq *rq)
3273 {
3274 	handle_hotplug(rq, false);
3275 }
3276 
3277 static void rq_online_scx(struct rq *rq)
3278 {
3279 	rq->scx.flags |= SCX_RQ_ONLINE;
3280 }
3281 
3282 static void rq_offline_scx(struct rq *rq)
3283 {
3284 	rq->scx.flags &= ~SCX_RQ_ONLINE;
3285 }
3286 
3287 #else	/* CONFIG_SMP */
3288 
3289 static bool test_and_clear_cpu_idle(int cpu) { return false; }
3290 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; }
3291 static void reset_idle_masks(void) {}
3292 
3293 #endif	/* CONFIG_SMP */
3294 
3295 static bool check_rq_for_timeouts(struct rq *rq)
3296 {
3297 	struct task_struct *p;
3298 	struct rq_flags rf;
3299 	bool timed_out = false;
3300 
3301 	rq_lock_irqsave(rq, &rf);
3302 	list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) {
3303 		unsigned long last_runnable = p->scx.runnable_at;
3304 
3305 		if (unlikely(time_after(jiffies,
3306 					last_runnable + scx_watchdog_timeout))) {
3307 			u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable);
3308 
3309 			scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
3310 					   "%s[%d] failed to run for %u.%03us",
3311 					   p->comm, p->pid,
3312 					   dur_ms / 1000, dur_ms % 1000);
3313 			timed_out = true;
3314 			break;
3315 		}
3316 	}
3317 	rq_unlock_irqrestore(rq, &rf);
3318 
3319 	return timed_out;
3320 }
3321 
3322 static void scx_watchdog_workfn(struct work_struct *work)
3323 {
3324 	int cpu;
3325 
3326 	WRITE_ONCE(scx_watchdog_timestamp, jiffies);
3327 
3328 	for_each_online_cpu(cpu) {
3329 		if (unlikely(check_rq_for_timeouts(cpu_rq(cpu))))
3330 			break;
3331 
3332 		cond_resched();
3333 	}
3334 	queue_delayed_work(system_unbound_wq, to_delayed_work(work),
3335 			   scx_watchdog_timeout / 2);
3336 }
3337 
3338 void scx_tick(struct rq *rq)
3339 {
3340 	unsigned long last_check;
3341 
3342 	if (!scx_enabled())
3343 		return;
3344 
3345 	last_check = READ_ONCE(scx_watchdog_timestamp);
3346 	if (unlikely(time_after(jiffies,
3347 				last_check + READ_ONCE(scx_watchdog_timeout)))) {
3348 		u32 dur_ms = jiffies_to_msecs(jiffies - last_check);
3349 
3350 		scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
3351 				   "watchdog failed to check in for %u.%03us",
3352 				   dur_ms / 1000, dur_ms % 1000);
3353 	}
3354 
3355 	update_other_load_avgs(rq);
3356 }
3357 
3358 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
3359 {
3360 	update_curr_scx(rq);
3361 
3362 	/*
3363 	 * While disabling, always resched and refresh core-sched timestamp as
3364 	 * we can't trust the slice management or ops.core_sched_before().
3365 	 */
3366 	if (scx_rq_bypassing(rq)) {
3367 		curr->scx.slice = 0;
3368 		touch_core_sched(rq, curr);
3369 	} else if (SCX_HAS_OP(tick)) {
3370 		SCX_CALL_OP(SCX_KF_REST, tick, curr);
3371 	}
3372 
3373 	if (!curr->scx.slice)
3374 		resched_curr(rq);
3375 }
3376 
3377 #ifdef CONFIG_EXT_GROUP_SCHED
3378 static struct cgroup *tg_cgrp(struct task_group *tg)
3379 {
3380 	/*
3381 	 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup,
3382 	 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the
3383 	 * root cgroup.
3384 	 */
3385 	if (tg && tg->css.cgroup)
3386 		return tg->css.cgroup;
3387 	else
3388 		return &cgrp_dfl_root.cgrp;
3389 }
3390 
3391 #define SCX_INIT_TASK_ARGS_CGROUP(tg)		.cgroup = tg_cgrp(tg),
3392 
3393 #else	/* CONFIG_EXT_GROUP_SCHED */
3394 
3395 #define SCX_INIT_TASK_ARGS_CGROUP(tg)
3396 
3397 #endif	/* CONFIG_EXT_GROUP_SCHED */
3398 
3399 static enum scx_task_state scx_get_task_state(const struct task_struct *p)
3400 {
3401 	return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT;
3402 }
3403 
3404 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state)
3405 {
3406 	enum scx_task_state prev_state = scx_get_task_state(p);
3407 	bool warn = false;
3408 
3409 	BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS));
3410 
3411 	switch (state) {
3412 	case SCX_TASK_NONE:
3413 		break;
3414 	case SCX_TASK_INIT:
3415 		warn = prev_state != SCX_TASK_NONE;
3416 		break;
3417 	case SCX_TASK_READY:
3418 		warn = prev_state == SCX_TASK_NONE;
3419 		break;
3420 	case SCX_TASK_ENABLED:
3421 		warn = prev_state != SCX_TASK_READY;
3422 		break;
3423 	default:
3424 		warn = true;
3425 		return;
3426 	}
3427 
3428 	WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]",
3429 		  prev_state, state, p->comm, p->pid);
3430 
3431 	p->scx.flags &= ~SCX_TASK_STATE_MASK;
3432 	p->scx.flags |= state << SCX_TASK_STATE_SHIFT;
3433 }
3434 
3435 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork)
3436 {
3437 	int ret;
3438 
3439 	p->scx.disallow = false;
3440 
3441 	if (SCX_HAS_OP(init_task)) {
3442 		struct scx_init_task_args args = {
3443 			SCX_INIT_TASK_ARGS_CGROUP(tg)
3444 			.fork = fork,
3445 		};
3446 
3447 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args);
3448 		if (unlikely(ret)) {
3449 			ret = ops_sanitize_err("init_task", ret);
3450 			return ret;
3451 		}
3452 	}
3453 
3454 	scx_set_task_state(p, SCX_TASK_INIT);
3455 
3456 	if (p->scx.disallow) {
3457 		if (!fork) {
3458 			struct rq *rq;
3459 			struct rq_flags rf;
3460 
3461 			rq = task_rq_lock(p, &rf);
3462 
3463 			/*
3464 			 * We're in the load path and @p->policy will be applied
3465 			 * right after. Reverting @p->policy here and rejecting
3466 			 * %SCHED_EXT transitions from scx_check_setscheduler()
3467 			 * guarantees that if ops.init_task() sets @p->disallow,
3468 			 * @p can never be in SCX.
3469 			 */
3470 			if (p->policy == SCHED_EXT) {
3471 				p->policy = SCHED_NORMAL;
3472 				atomic_long_inc(&scx_nr_rejected);
3473 			}
3474 
3475 			task_rq_unlock(rq, p, &rf);
3476 		} else if (p->policy == SCHED_EXT) {
3477 			scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork",
3478 				      p->comm, p->pid);
3479 		}
3480 	}
3481 
3482 	p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
3483 	return 0;
3484 }
3485 
3486 static void scx_ops_enable_task(struct task_struct *p)
3487 {
3488 	u32 weight;
3489 
3490 	lockdep_assert_rq_held(task_rq(p));
3491 
3492 	/*
3493 	 * Set the weight before calling ops.enable() so that the scheduler
3494 	 * doesn't see a stale value if they inspect the task struct.
3495 	 */
3496 	if (task_has_idle_policy(p))
3497 		weight = WEIGHT_IDLEPRIO;
3498 	else
3499 		weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO];
3500 
3501 	p->scx.weight = sched_weight_to_cgroup(weight);
3502 
3503 	if (SCX_HAS_OP(enable))
3504 		SCX_CALL_OP_TASK(SCX_KF_REST, enable, p);
3505 	scx_set_task_state(p, SCX_TASK_ENABLED);
3506 
3507 	if (SCX_HAS_OP(set_weight))
3508 		SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
3509 }
3510 
3511 static void scx_ops_disable_task(struct task_struct *p)
3512 {
3513 	lockdep_assert_rq_held(task_rq(p));
3514 	WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED);
3515 
3516 	if (SCX_HAS_OP(disable))
3517 		SCX_CALL_OP(SCX_KF_REST, disable, p);
3518 	scx_set_task_state(p, SCX_TASK_READY);
3519 }
3520 
3521 static void scx_ops_exit_task(struct task_struct *p)
3522 {
3523 	struct scx_exit_task_args args = {
3524 		.cancelled = false,
3525 	};
3526 
3527 	lockdep_assert_rq_held(task_rq(p));
3528 
3529 	switch (scx_get_task_state(p)) {
3530 	case SCX_TASK_NONE:
3531 		return;
3532 	case SCX_TASK_INIT:
3533 		args.cancelled = true;
3534 		break;
3535 	case SCX_TASK_READY:
3536 		break;
3537 	case SCX_TASK_ENABLED:
3538 		scx_ops_disable_task(p);
3539 		break;
3540 	default:
3541 		WARN_ON_ONCE(true);
3542 		return;
3543 	}
3544 
3545 	if (SCX_HAS_OP(exit_task))
3546 		SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args);
3547 	scx_set_task_state(p, SCX_TASK_NONE);
3548 }
3549 
3550 void init_scx_entity(struct sched_ext_entity *scx)
3551 {
3552 	/*
3553 	 * init_idle() calls this function again after fork sequence is
3554 	 * complete. Don't touch ->tasks_node as it's already linked.
3555 	 */
3556 	memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node));
3557 
3558 	INIT_LIST_HEAD(&scx->dsq_list.node);
3559 	RB_CLEAR_NODE(&scx->dsq_priq);
3560 	scx->sticky_cpu = -1;
3561 	scx->holding_cpu = -1;
3562 	INIT_LIST_HEAD(&scx->runnable_node);
3563 	scx->runnable_at = jiffies;
3564 	scx->ddsp_dsq_id = SCX_DSQ_INVALID;
3565 	scx->slice = SCX_SLICE_DFL;
3566 }
3567 
3568 void scx_pre_fork(struct task_struct *p)
3569 {
3570 	/*
3571 	 * BPF scheduler enable/disable paths want to be able to iterate and
3572 	 * update all tasks which can become complex when racing forks. As
3573 	 * enable/disable are very cold paths, let's use a percpu_rwsem to
3574 	 * exclude forks.
3575 	 */
3576 	percpu_down_read(&scx_fork_rwsem);
3577 }
3578 
3579 int scx_fork(struct task_struct *p)
3580 {
3581 	percpu_rwsem_assert_held(&scx_fork_rwsem);
3582 
3583 	if (scx_ops_init_task_enabled)
3584 		return scx_ops_init_task(p, task_group(p), true);
3585 	else
3586 		return 0;
3587 }
3588 
3589 void scx_post_fork(struct task_struct *p)
3590 {
3591 	if (scx_ops_init_task_enabled) {
3592 		scx_set_task_state(p, SCX_TASK_READY);
3593 
3594 		/*
3595 		 * Enable the task immediately if it's running on sched_ext.
3596 		 * Otherwise, it'll be enabled in switching_to_scx() if and
3597 		 * when it's ever configured to run with a SCHED_EXT policy.
3598 		 */
3599 		if (p->sched_class == &ext_sched_class) {
3600 			struct rq_flags rf;
3601 			struct rq *rq;
3602 
3603 			rq = task_rq_lock(p, &rf);
3604 			scx_ops_enable_task(p);
3605 			task_rq_unlock(rq, p, &rf);
3606 		}
3607 	}
3608 
3609 	spin_lock_irq(&scx_tasks_lock);
3610 	list_add_tail(&p->scx.tasks_node, &scx_tasks);
3611 	spin_unlock_irq(&scx_tasks_lock);
3612 
3613 	percpu_up_read(&scx_fork_rwsem);
3614 }
3615 
3616 void scx_cancel_fork(struct task_struct *p)
3617 {
3618 	if (scx_enabled()) {
3619 		struct rq *rq;
3620 		struct rq_flags rf;
3621 
3622 		rq = task_rq_lock(p, &rf);
3623 		WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY);
3624 		scx_ops_exit_task(p);
3625 		task_rq_unlock(rq, p, &rf);
3626 	}
3627 
3628 	percpu_up_read(&scx_fork_rwsem);
3629 }
3630 
3631 void sched_ext_free(struct task_struct *p)
3632 {
3633 	unsigned long flags;
3634 
3635 	spin_lock_irqsave(&scx_tasks_lock, flags);
3636 	list_del_init(&p->scx.tasks_node);
3637 	spin_unlock_irqrestore(&scx_tasks_lock, flags);
3638 
3639 	/*
3640 	 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY ->
3641 	 * ENABLED transitions can't race us. Disable ops for @p.
3642 	 */
3643 	if (scx_get_task_state(p) != SCX_TASK_NONE) {
3644 		struct rq_flags rf;
3645 		struct rq *rq;
3646 
3647 		rq = task_rq_lock(p, &rf);
3648 		scx_ops_exit_task(p);
3649 		task_rq_unlock(rq, p, &rf);
3650 	}
3651 }
3652 
3653 static void reweight_task_scx(struct rq *rq, struct task_struct *p,
3654 			      const struct load_weight *lw)
3655 {
3656 	lockdep_assert_rq_held(task_rq(p));
3657 
3658 	p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight));
3659 	if (SCX_HAS_OP(set_weight))
3660 		SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
3661 }
3662 
3663 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio)
3664 {
3665 }
3666 
3667 static void switching_to_scx(struct rq *rq, struct task_struct *p)
3668 {
3669 	scx_ops_enable_task(p);
3670 
3671 	/*
3672 	 * set_cpus_allowed_scx() is not called while @p is associated with a
3673 	 * different scheduler class. Keep the BPF scheduler up-to-date.
3674 	 */
3675 	if (SCX_HAS_OP(set_cpumask))
3676 		SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
3677 				 (struct cpumask *)p->cpus_ptr);
3678 }
3679 
3680 static void switched_from_scx(struct rq *rq, struct task_struct *p)
3681 {
3682 	scx_ops_disable_task(p);
3683 }
3684 
3685 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {}
3686 static void switched_to_scx(struct rq *rq, struct task_struct *p) {}
3687 
3688 int scx_check_setscheduler(struct task_struct *p, int policy)
3689 {
3690 	lockdep_assert_rq_held(task_rq(p));
3691 
3692 	/* if disallow, reject transitioning into SCX */
3693 	if (scx_enabled() && READ_ONCE(p->scx.disallow) &&
3694 	    p->policy != policy && policy == SCHED_EXT)
3695 		return -EACCES;
3696 
3697 	return 0;
3698 }
3699 
3700 #ifdef CONFIG_NO_HZ_FULL
3701 bool scx_can_stop_tick(struct rq *rq)
3702 {
3703 	struct task_struct *p = rq->curr;
3704 
3705 	if (scx_rq_bypassing(rq))
3706 		return false;
3707 
3708 	if (p->sched_class != &ext_sched_class)
3709 		return true;
3710 
3711 	/*
3712 	 * @rq can dispatch from different DSQs, so we can't tell whether it
3713 	 * needs the tick or not by looking at nr_running. Allow stopping ticks
3714 	 * iff the BPF scheduler indicated so. See set_next_task_scx().
3715 	 */
3716 	return rq->scx.flags & SCX_RQ_CAN_STOP_TICK;
3717 }
3718 #endif
3719 
3720 #ifdef CONFIG_EXT_GROUP_SCHED
3721 
3722 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem);
3723 static bool scx_cgroup_enabled;
3724 static bool cgroup_warned_missing_weight;
3725 static bool cgroup_warned_missing_idle;
3726 
3727 static void scx_cgroup_warn_missing_weight(struct task_group *tg)
3728 {
3729 	if (scx_ops_enable_state() == SCX_OPS_DISABLED ||
3730 	    cgroup_warned_missing_weight)
3731 		return;
3732 
3733 	if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent)
3734 		return;
3735 
3736 	pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n",
3737 		scx_ops.name);
3738 	cgroup_warned_missing_weight = true;
3739 }
3740 
3741 static void scx_cgroup_warn_missing_idle(struct task_group *tg)
3742 {
3743 	if (!scx_cgroup_enabled || cgroup_warned_missing_idle)
3744 		return;
3745 
3746 	if (!tg->idle)
3747 		return;
3748 
3749 	pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n",
3750 		scx_ops.name);
3751 	cgroup_warned_missing_idle = true;
3752 }
3753 
3754 int scx_tg_online(struct task_group *tg)
3755 {
3756 	int ret = 0;
3757 
3758 	WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED));
3759 
3760 	percpu_down_read(&scx_cgroup_rwsem);
3761 
3762 	scx_cgroup_warn_missing_weight(tg);
3763 
3764 	if (scx_cgroup_enabled) {
3765 		if (SCX_HAS_OP(cgroup_init)) {
3766 			struct scx_cgroup_init_args args =
3767 				{ .weight = tg->scx_weight };
3768 
3769 			ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
3770 					      tg->css.cgroup, &args);
3771 			if (ret)
3772 				ret = ops_sanitize_err("cgroup_init", ret);
3773 		}
3774 		if (ret == 0)
3775 			tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED;
3776 	} else {
3777 		tg->scx_flags |= SCX_TG_ONLINE;
3778 	}
3779 
3780 	percpu_up_read(&scx_cgroup_rwsem);
3781 	return ret;
3782 }
3783 
3784 void scx_tg_offline(struct task_group *tg)
3785 {
3786 	WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE));
3787 
3788 	percpu_down_read(&scx_cgroup_rwsem);
3789 
3790 	if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED))
3791 		SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup);
3792 	tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED);
3793 
3794 	percpu_up_read(&scx_cgroup_rwsem);
3795 }
3796 
3797 int scx_cgroup_can_attach(struct cgroup_taskset *tset)
3798 {
3799 	struct cgroup_subsys_state *css;
3800 	struct task_struct *p;
3801 	int ret;
3802 
3803 	/* released in scx_finish/cancel_attach() */
3804 	percpu_down_read(&scx_cgroup_rwsem);
3805 
3806 	if (!scx_cgroup_enabled)
3807 		return 0;
3808 
3809 	cgroup_taskset_for_each(p, css, tset) {
3810 		struct cgroup *from = tg_cgrp(task_group(p));
3811 		struct cgroup *to = tg_cgrp(css_tg(css));
3812 
3813 		WARN_ON_ONCE(p->scx.cgrp_moving_from);
3814 
3815 		/*
3816 		 * sched_move_task() omits identity migrations. Let's match the
3817 		 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move()
3818 		 * always match one-to-one.
3819 		 */
3820 		if (from == to)
3821 			continue;
3822 
3823 		if (SCX_HAS_OP(cgroup_prep_move)) {
3824 			ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move,
3825 					      p, from, css->cgroup);
3826 			if (ret)
3827 				goto err;
3828 		}
3829 
3830 		p->scx.cgrp_moving_from = from;
3831 	}
3832 
3833 	return 0;
3834 
3835 err:
3836 	cgroup_taskset_for_each(p, css, tset) {
3837 		if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
3838 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
3839 				    p->scx.cgrp_moving_from, css->cgroup);
3840 		p->scx.cgrp_moving_from = NULL;
3841 	}
3842 
3843 	percpu_up_read(&scx_cgroup_rwsem);
3844 	return ops_sanitize_err("cgroup_prep_move", ret);
3845 }
3846 
3847 void scx_move_task(struct task_struct *p)
3848 {
3849 	if (!scx_cgroup_enabled)
3850 		return;
3851 
3852 	/*
3853 	 * We're called from sched_move_task() which handles both cgroup and
3854 	 * autogroup moves. Ignore the latter.
3855 	 *
3856 	 * Also ignore exiting tasks, because in the exit path tasks transition
3857 	 * from the autogroup to the root group, so task_group_is_autogroup()
3858 	 * alone isn't able to catch exiting autogroup tasks. This is safe for
3859 	 * cgroup_move(), because cgroup migrations never happen for PF_EXITING
3860 	 * tasks.
3861 	 */
3862 	if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING))
3863 		return;
3864 
3865 	/*
3866 	 * @p must have ops.cgroup_prep_move() called on it and thus
3867 	 * cgrp_moving_from set.
3868 	 */
3869 	if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from))
3870 		SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p,
3871 			p->scx.cgrp_moving_from, tg_cgrp(task_group(p)));
3872 	p->scx.cgrp_moving_from = NULL;
3873 }
3874 
3875 void scx_cgroup_finish_attach(void)
3876 {
3877 	percpu_up_read(&scx_cgroup_rwsem);
3878 }
3879 
3880 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset)
3881 {
3882 	struct cgroup_subsys_state *css;
3883 	struct task_struct *p;
3884 
3885 	if (!scx_cgroup_enabled)
3886 		goto out_unlock;
3887 
3888 	cgroup_taskset_for_each(p, css, tset) {
3889 		if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
3890 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
3891 				    p->scx.cgrp_moving_from, css->cgroup);
3892 		p->scx.cgrp_moving_from = NULL;
3893 	}
3894 out_unlock:
3895 	percpu_up_read(&scx_cgroup_rwsem);
3896 }
3897 
3898 void scx_group_set_weight(struct task_group *tg, unsigned long weight)
3899 {
3900 	percpu_down_read(&scx_cgroup_rwsem);
3901 
3902 	if (scx_cgroup_enabled && tg->scx_weight != weight) {
3903 		if (SCX_HAS_OP(cgroup_set_weight))
3904 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight,
3905 				    tg_cgrp(tg), weight);
3906 		tg->scx_weight = weight;
3907 	}
3908 
3909 	percpu_up_read(&scx_cgroup_rwsem);
3910 }
3911 
3912 void scx_group_set_idle(struct task_group *tg, bool idle)
3913 {
3914 	percpu_down_read(&scx_cgroup_rwsem);
3915 	scx_cgroup_warn_missing_idle(tg);
3916 	percpu_up_read(&scx_cgroup_rwsem);
3917 }
3918 
3919 static void scx_cgroup_lock(void)
3920 {
3921 	percpu_down_write(&scx_cgroup_rwsem);
3922 }
3923 
3924 static void scx_cgroup_unlock(void)
3925 {
3926 	percpu_up_write(&scx_cgroup_rwsem);
3927 }
3928 
3929 #else	/* CONFIG_EXT_GROUP_SCHED */
3930 
3931 static inline void scx_cgroup_lock(void) {}
3932 static inline void scx_cgroup_unlock(void) {}
3933 
3934 #endif	/* CONFIG_EXT_GROUP_SCHED */
3935 
3936 /*
3937  * Omitted operations:
3938  *
3939  * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task
3940  *   isn't tied to the CPU at that point. Preemption is implemented by resetting
3941  *   the victim task's slice to 0 and triggering reschedule on the target CPU.
3942  *
3943  * - migrate_task_rq: Unnecessary as task to cpu mapping is transient.
3944  *
3945  * - task_fork/dead: We need fork/dead notifications for all tasks regardless of
3946  *   their current sched_class. Call them directly from sched core instead.
3947  */
3948 DEFINE_SCHED_CLASS(ext) = {
3949 	.enqueue_task		= enqueue_task_scx,
3950 	.dequeue_task		= dequeue_task_scx,
3951 	.yield_task		= yield_task_scx,
3952 	.yield_to_task		= yield_to_task_scx,
3953 
3954 	.wakeup_preempt		= wakeup_preempt_scx,
3955 
3956 	.balance		= balance_scx,
3957 	.pick_task		= pick_task_scx,
3958 
3959 	.put_prev_task		= put_prev_task_scx,
3960 	.set_next_task		= set_next_task_scx,
3961 
3962 #ifdef CONFIG_SMP
3963 	.select_task_rq		= select_task_rq_scx,
3964 	.task_woken		= task_woken_scx,
3965 	.set_cpus_allowed	= set_cpus_allowed_scx,
3966 
3967 	.rq_online		= rq_online_scx,
3968 	.rq_offline		= rq_offline_scx,
3969 #endif
3970 
3971 	.task_tick		= task_tick_scx,
3972 
3973 	.switching_to		= switching_to_scx,
3974 	.switched_from		= switched_from_scx,
3975 	.switched_to		= switched_to_scx,
3976 	.reweight_task		= reweight_task_scx,
3977 	.prio_changed		= prio_changed_scx,
3978 
3979 	.update_curr		= update_curr_scx,
3980 
3981 #ifdef CONFIG_UCLAMP_TASK
3982 	.uclamp_enabled		= 1,
3983 #endif
3984 };
3985 
3986 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id)
3987 {
3988 	memset(dsq, 0, sizeof(*dsq));
3989 
3990 	raw_spin_lock_init(&dsq->lock);
3991 	INIT_LIST_HEAD(&dsq->list);
3992 	dsq->id = dsq_id;
3993 }
3994 
3995 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node)
3996 {
3997 	struct scx_dispatch_q *dsq;
3998 	int ret;
3999 
4000 	if (dsq_id & SCX_DSQ_FLAG_BUILTIN)
4001 		return ERR_PTR(-EINVAL);
4002 
4003 	dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
4004 	if (!dsq)
4005 		return ERR_PTR(-ENOMEM);
4006 
4007 	init_dsq(dsq, dsq_id);
4008 
4009 	ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node,
4010 				     dsq_hash_params);
4011 	if (ret) {
4012 		kfree(dsq);
4013 		return ERR_PTR(ret);
4014 	}
4015 	return dsq;
4016 }
4017 
4018 static void free_dsq_irq_workfn(struct irq_work *irq_work)
4019 {
4020 	struct llist_node *to_free = llist_del_all(&dsqs_to_free);
4021 	struct scx_dispatch_q *dsq, *tmp_dsq;
4022 
4023 	llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node)
4024 		kfree_rcu(dsq, rcu);
4025 }
4026 
4027 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn);
4028 
4029 static void destroy_dsq(u64 dsq_id)
4030 {
4031 	struct scx_dispatch_q *dsq;
4032 	unsigned long flags;
4033 
4034 	rcu_read_lock();
4035 
4036 	dsq = find_user_dsq(dsq_id);
4037 	if (!dsq)
4038 		goto out_unlock_rcu;
4039 
4040 	raw_spin_lock_irqsave(&dsq->lock, flags);
4041 
4042 	if (dsq->nr) {
4043 		scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)",
4044 			      dsq->id, dsq->nr);
4045 		goto out_unlock_dsq;
4046 	}
4047 
4048 	if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params))
4049 		goto out_unlock_dsq;
4050 
4051 	/*
4052 	 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from
4053 	 * queueing more tasks. As this function can be called from anywhere,
4054 	 * freeing is bounced through an irq work to avoid nesting RCU
4055 	 * operations inside scheduler locks.
4056 	 */
4057 	dsq->id = SCX_DSQ_INVALID;
4058 	llist_add(&dsq->free_node, &dsqs_to_free);
4059 	irq_work_queue(&free_dsq_irq_work);
4060 
4061 out_unlock_dsq:
4062 	raw_spin_unlock_irqrestore(&dsq->lock, flags);
4063 out_unlock_rcu:
4064 	rcu_read_unlock();
4065 }
4066 
4067 #ifdef CONFIG_EXT_GROUP_SCHED
4068 static void scx_cgroup_exit(void)
4069 {
4070 	struct cgroup_subsys_state *css;
4071 
4072 	percpu_rwsem_assert_held(&scx_cgroup_rwsem);
4073 
4074 	scx_cgroup_enabled = false;
4075 
4076 	/*
4077 	 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk
4078 	 * cgroups and exit all the inited ones, all online cgroups are exited.
4079 	 */
4080 	rcu_read_lock();
4081 	css_for_each_descendant_post(css, &root_task_group.css) {
4082 		struct task_group *tg = css_tg(css);
4083 
4084 		if (!(tg->scx_flags & SCX_TG_INITED))
4085 			continue;
4086 		tg->scx_flags &= ~SCX_TG_INITED;
4087 
4088 		if (!scx_ops.cgroup_exit)
4089 			continue;
4090 
4091 		if (WARN_ON_ONCE(!css_tryget(css)))
4092 			continue;
4093 		rcu_read_unlock();
4094 
4095 		SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup);
4096 
4097 		rcu_read_lock();
4098 		css_put(css);
4099 	}
4100 	rcu_read_unlock();
4101 }
4102 
4103 static int scx_cgroup_init(void)
4104 {
4105 	struct cgroup_subsys_state *css;
4106 	int ret;
4107 
4108 	percpu_rwsem_assert_held(&scx_cgroup_rwsem);
4109 
4110 	cgroup_warned_missing_weight = false;
4111 	cgroup_warned_missing_idle = false;
4112 
4113 	/*
4114 	 * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk
4115 	 * cgroups and init, all online cgroups are initialized.
4116 	 */
4117 	rcu_read_lock();
4118 	css_for_each_descendant_pre(css, &root_task_group.css) {
4119 		struct task_group *tg = css_tg(css);
4120 		struct scx_cgroup_init_args args = { .weight = tg->scx_weight };
4121 
4122 		scx_cgroup_warn_missing_weight(tg);
4123 		scx_cgroup_warn_missing_idle(tg);
4124 
4125 		if ((tg->scx_flags &
4126 		     (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE)
4127 			continue;
4128 
4129 		if (!scx_ops.cgroup_init) {
4130 			tg->scx_flags |= SCX_TG_INITED;
4131 			continue;
4132 		}
4133 
4134 		if (WARN_ON_ONCE(!css_tryget(css)))
4135 			continue;
4136 		rcu_read_unlock();
4137 
4138 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
4139 				      css->cgroup, &args);
4140 		if (ret) {
4141 			css_put(css);
4142 			scx_ops_error("ops.cgroup_init() failed (%d)", ret);
4143 			return ret;
4144 		}
4145 		tg->scx_flags |= SCX_TG_INITED;
4146 
4147 		rcu_read_lock();
4148 		css_put(css);
4149 	}
4150 	rcu_read_unlock();
4151 
4152 	WARN_ON_ONCE(scx_cgroup_enabled);
4153 	scx_cgroup_enabled = true;
4154 
4155 	return 0;
4156 }
4157 
4158 #else
4159 static void scx_cgroup_exit(void) {}
4160 static int scx_cgroup_init(void) { return 0; }
4161 #endif
4162 
4163 
4164 /********************************************************************************
4165  * Sysfs interface and ops enable/disable.
4166  */
4167 
4168 #define SCX_ATTR(_name)								\
4169 	static struct kobj_attribute scx_attr_##_name = {			\
4170 		.attr = { .name = __stringify(_name), .mode = 0444 },		\
4171 		.show = scx_attr_##_name##_show,				\
4172 	}
4173 
4174 static ssize_t scx_attr_state_show(struct kobject *kobj,
4175 				   struct kobj_attribute *ka, char *buf)
4176 {
4177 	return sysfs_emit(buf, "%s\n",
4178 			  scx_ops_enable_state_str[scx_ops_enable_state()]);
4179 }
4180 SCX_ATTR(state);
4181 
4182 static ssize_t scx_attr_switch_all_show(struct kobject *kobj,
4183 					struct kobj_attribute *ka, char *buf)
4184 {
4185 	return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all));
4186 }
4187 SCX_ATTR(switch_all);
4188 
4189 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj,
4190 					 struct kobj_attribute *ka, char *buf)
4191 {
4192 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected));
4193 }
4194 SCX_ATTR(nr_rejected);
4195 
4196 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj,
4197 					 struct kobj_attribute *ka, char *buf)
4198 {
4199 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq));
4200 }
4201 SCX_ATTR(hotplug_seq);
4202 
4203 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj,
4204 					struct kobj_attribute *ka, char *buf)
4205 {
4206 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq));
4207 }
4208 SCX_ATTR(enable_seq);
4209 
4210 static struct attribute *scx_global_attrs[] = {
4211 	&scx_attr_state.attr,
4212 	&scx_attr_switch_all.attr,
4213 	&scx_attr_nr_rejected.attr,
4214 	&scx_attr_hotplug_seq.attr,
4215 	&scx_attr_enable_seq.attr,
4216 	NULL,
4217 };
4218 
4219 static const struct attribute_group scx_global_attr_group = {
4220 	.attrs = scx_global_attrs,
4221 };
4222 
4223 static void scx_kobj_release(struct kobject *kobj)
4224 {
4225 	kfree(kobj);
4226 }
4227 
4228 static ssize_t scx_attr_ops_show(struct kobject *kobj,
4229 				 struct kobj_attribute *ka, char *buf)
4230 {
4231 	return sysfs_emit(buf, "%s\n", scx_ops.name);
4232 }
4233 SCX_ATTR(ops);
4234 
4235 static struct attribute *scx_sched_attrs[] = {
4236 	&scx_attr_ops.attr,
4237 	NULL,
4238 };
4239 ATTRIBUTE_GROUPS(scx_sched);
4240 
4241 static const struct kobj_type scx_ktype = {
4242 	.release = scx_kobj_release,
4243 	.sysfs_ops = &kobj_sysfs_ops,
4244 	.default_groups = scx_sched_groups,
4245 };
4246 
4247 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
4248 {
4249 	return add_uevent_var(env, "SCXOPS=%s", scx_ops.name);
4250 }
4251 
4252 static const struct kset_uevent_ops scx_uevent_ops = {
4253 	.uevent = scx_uevent,
4254 };
4255 
4256 /*
4257  * Used by sched_fork() and __setscheduler_prio() to pick the matching
4258  * sched_class. dl/rt are already handled.
4259  */
4260 bool task_should_scx(struct task_struct *p)
4261 {
4262 	if (!scx_enabled() ||
4263 	    unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING))
4264 		return false;
4265 	if (READ_ONCE(scx_switching_all))
4266 		return true;
4267 	return p->policy == SCHED_EXT;
4268 }
4269 
4270 /**
4271  * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress
4272  *
4273  * Bypassing guarantees that all runnable tasks make forward progress without
4274  * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
4275  * be held by tasks that the BPF scheduler is forgetting to run, which
4276  * unfortunately also excludes toggling the static branches.
4277  *
4278  * Let's work around by overriding a couple ops and modifying behaviors based on
4279  * the DISABLING state and then cycling the queued tasks through dequeue/enqueue
4280  * to force global FIFO scheduling.
4281  *
4282  * - ops.select_cpu() is ignored and the default select_cpu() is used.
4283  *
4284  * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order.
4285  *   %SCX_OPS_ENQ_LAST is also ignored.
4286  *
4287  * - ops.dispatch() is ignored.
4288  *
4289  * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice
4290  *   can't be trusted. Whenever a tick triggers, the running task is rotated to
4291  *   the tail of the queue with core_sched_at touched.
4292  *
4293  * - pick_next_task() suppresses zero slice warning.
4294  *
4295  * - scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM
4296  *   operations.
4297  *
4298  * - scx_prio_less() reverts to the default core_sched_at order.
4299  */
4300 static void scx_ops_bypass(bool bypass)
4301 {
4302 	int cpu;
4303 	unsigned long flags;
4304 
4305 	raw_spin_lock_irqsave(&__scx_ops_bypass_lock, flags);
4306 	if (bypass) {
4307 		scx_ops_bypass_depth++;
4308 		WARN_ON_ONCE(scx_ops_bypass_depth <= 0);
4309 		if (scx_ops_bypass_depth != 1)
4310 			goto unlock;
4311 	} else {
4312 		scx_ops_bypass_depth--;
4313 		WARN_ON_ONCE(scx_ops_bypass_depth < 0);
4314 		if (scx_ops_bypass_depth != 0)
4315 			goto unlock;
4316 	}
4317 
4318 	/*
4319 	 * No task property is changing. We just need to make sure all currently
4320 	 * queued tasks are re-queued according to the new scx_rq_bypassing()
4321 	 * state. As an optimization, walk each rq's runnable_list instead of
4322 	 * the scx_tasks list.
4323 	 *
4324 	 * This function can't trust the scheduler and thus can't use
4325 	 * cpus_read_lock(). Walk all possible CPUs instead of online.
4326 	 */
4327 	for_each_possible_cpu(cpu) {
4328 		struct rq *rq = cpu_rq(cpu);
4329 		struct rq_flags rf;
4330 		struct task_struct *p, *n;
4331 
4332 		rq_lock(rq, &rf);
4333 
4334 		if (bypass) {
4335 			WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING);
4336 			rq->scx.flags |= SCX_RQ_BYPASSING;
4337 		} else {
4338 			WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING));
4339 			rq->scx.flags &= ~SCX_RQ_BYPASSING;
4340 		}
4341 
4342 		/*
4343 		 * We need to guarantee that no tasks are on the BPF scheduler
4344 		 * while bypassing. Either we see enabled or the enable path
4345 		 * sees scx_rq_bypassing() before moving tasks to SCX.
4346 		 */
4347 		if (!scx_enabled()) {
4348 			rq_unlock_irqrestore(rq, &rf);
4349 			continue;
4350 		}
4351 
4352 		/*
4353 		 * The use of list_for_each_entry_safe_reverse() is required
4354 		 * because each task is going to be removed from and added back
4355 		 * to the runnable_list during iteration. Because they're added
4356 		 * to the tail of the list, safe reverse iteration can still
4357 		 * visit all nodes.
4358 		 */
4359 		list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list,
4360 						 scx.runnable_node) {
4361 			struct sched_enq_and_set_ctx ctx;
4362 
4363 			/* cycling deq/enq is enough, see the function comment */
4364 			sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4365 			sched_enq_and_set_task(&ctx);
4366 		}
4367 
4368 		rq_unlock(rq, &rf);
4369 
4370 		/* resched to restore ticks and idle state */
4371 		resched_cpu(cpu);
4372 	}
4373 unlock:
4374 	raw_spin_unlock_irqrestore(&__scx_ops_bypass_lock, flags);
4375 }
4376 
4377 static void free_exit_info(struct scx_exit_info *ei)
4378 {
4379 	kfree(ei->dump);
4380 	kfree(ei->msg);
4381 	kfree(ei->bt);
4382 	kfree(ei);
4383 }
4384 
4385 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len)
4386 {
4387 	struct scx_exit_info *ei;
4388 
4389 	ei = kzalloc(sizeof(*ei), GFP_KERNEL);
4390 	if (!ei)
4391 		return NULL;
4392 
4393 	ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL);
4394 	ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL);
4395 	ei->dump = kzalloc(exit_dump_len, GFP_KERNEL);
4396 
4397 	if (!ei->bt || !ei->msg || !ei->dump) {
4398 		free_exit_info(ei);
4399 		return NULL;
4400 	}
4401 
4402 	return ei;
4403 }
4404 
4405 static const char *scx_exit_reason(enum scx_exit_kind kind)
4406 {
4407 	switch (kind) {
4408 	case SCX_EXIT_UNREG:
4409 		return "unregistered from user space";
4410 	case SCX_EXIT_UNREG_BPF:
4411 		return "unregistered from BPF";
4412 	case SCX_EXIT_UNREG_KERN:
4413 		return "unregistered from the main kernel";
4414 	case SCX_EXIT_SYSRQ:
4415 		return "disabled by sysrq-S";
4416 	case SCX_EXIT_ERROR:
4417 		return "runtime error";
4418 	case SCX_EXIT_ERROR_BPF:
4419 		return "scx_bpf_error";
4420 	case SCX_EXIT_ERROR_STALL:
4421 		return "runnable task stall";
4422 	default:
4423 		return "<UNKNOWN>";
4424 	}
4425 }
4426 
4427 static void scx_ops_disable_workfn(struct kthread_work *work)
4428 {
4429 	struct scx_exit_info *ei = scx_exit_info;
4430 	struct scx_task_iter sti;
4431 	struct task_struct *p;
4432 	struct rhashtable_iter rht_iter;
4433 	struct scx_dispatch_q *dsq;
4434 	int i, kind;
4435 
4436 	kind = atomic_read(&scx_exit_kind);
4437 	while (true) {
4438 		/*
4439 		 * NONE indicates that a new scx_ops has been registered since
4440 		 * disable was scheduled - don't kill the new ops. DONE
4441 		 * indicates that the ops has already been disabled.
4442 		 */
4443 		if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)
4444 			return;
4445 		if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE))
4446 			break;
4447 	}
4448 	ei->kind = kind;
4449 	ei->reason = scx_exit_reason(ei->kind);
4450 
4451 	/* guarantee forward progress by bypassing scx_ops */
4452 	scx_ops_bypass(true);
4453 
4454 	switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) {
4455 	case SCX_OPS_DISABLING:
4456 		WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
4457 		break;
4458 	case SCX_OPS_DISABLED:
4459 		pr_warn("sched_ext: ops error detected without ops (%s)\n",
4460 			scx_exit_info->msg);
4461 		WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
4462 			     SCX_OPS_DISABLING);
4463 		goto done;
4464 	default:
4465 		break;
4466 	}
4467 
4468 	/*
4469 	 * Here, every runnable task is guaranteed to make forward progress and
4470 	 * we can safely use blocking synchronization constructs. Actually
4471 	 * disable ops.
4472 	 */
4473 	mutex_lock(&scx_ops_enable_mutex);
4474 
4475 	static_branch_disable(&__scx_switched_all);
4476 	WRITE_ONCE(scx_switching_all, false);
4477 
4478 	/*
4479 	 * Shut down cgroup support before tasks so that the cgroup attach path
4480 	 * doesn't race against scx_ops_exit_task().
4481 	 */
4482 	scx_cgroup_lock();
4483 	scx_cgroup_exit();
4484 	scx_cgroup_unlock();
4485 
4486 	/*
4487 	 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones
4488 	 * must be switched out and exited synchronously.
4489 	 */
4490 	percpu_down_write(&scx_fork_rwsem);
4491 
4492 	scx_ops_init_task_enabled = false;
4493 
4494 	scx_task_iter_start(&sti);
4495 	while ((p = scx_task_iter_next_locked(&sti))) {
4496 		const struct sched_class *old_class = p->sched_class;
4497 		struct sched_enq_and_set_ctx ctx;
4498 
4499 		sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4500 
4501 		__setscheduler_prio(p, p->prio);
4502 		check_class_changing(task_rq(p), p, old_class);
4503 
4504 		sched_enq_and_set_task(&ctx);
4505 
4506 		check_class_changed(task_rq(p), p, old_class, p->prio);
4507 		scx_ops_exit_task(p);
4508 	}
4509 	scx_task_iter_stop(&sti);
4510 	percpu_up_write(&scx_fork_rwsem);
4511 
4512 	/* no task is on scx, turn off all the switches and flush in-progress calls */
4513 	static_branch_disable(&__scx_ops_enabled);
4514 	for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++)
4515 		static_branch_disable(&scx_has_op[i]);
4516 	static_branch_disable(&scx_ops_enq_last);
4517 	static_branch_disable(&scx_ops_enq_exiting);
4518 	static_branch_disable(&scx_ops_cpu_preempt);
4519 	static_branch_disable(&scx_builtin_idle_enabled);
4520 	synchronize_rcu();
4521 
4522 	if (ei->kind >= SCX_EXIT_ERROR) {
4523 		pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4524 		       scx_ops.name, ei->reason);
4525 
4526 		if (ei->msg[0] != '\0')
4527 			pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg);
4528 #ifdef CONFIG_STACKTRACE
4529 		stack_trace_print(ei->bt, ei->bt_len, 2);
4530 #endif
4531 	} else {
4532 		pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4533 			scx_ops.name, ei->reason);
4534 	}
4535 
4536 	if (scx_ops.exit)
4537 		SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei);
4538 
4539 	cancel_delayed_work_sync(&scx_watchdog_work);
4540 
4541 	/*
4542 	 * Delete the kobject from the hierarchy eagerly in addition to just
4543 	 * dropping a reference. Otherwise, if the object is deleted
4544 	 * asynchronously, sysfs could observe an object of the same name still
4545 	 * in the hierarchy when another scheduler is loaded.
4546 	 */
4547 	kobject_del(scx_root_kobj);
4548 	kobject_put(scx_root_kobj);
4549 	scx_root_kobj = NULL;
4550 
4551 	memset(&scx_ops, 0, sizeof(scx_ops));
4552 
4553 	rhashtable_walk_enter(&dsq_hash, &rht_iter);
4554 	do {
4555 		rhashtable_walk_start(&rht_iter);
4556 
4557 		while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
4558 			destroy_dsq(dsq->id);
4559 
4560 		rhashtable_walk_stop(&rht_iter);
4561 	} while (dsq == ERR_PTR(-EAGAIN));
4562 	rhashtable_walk_exit(&rht_iter);
4563 
4564 	free_percpu(scx_dsp_ctx);
4565 	scx_dsp_ctx = NULL;
4566 	scx_dsp_max_batch = 0;
4567 
4568 	free_exit_info(scx_exit_info);
4569 	scx_exit_info = NULL;
4570 
4571 	mutex_unlock(&scx_ops_enable_mutex);
4572 
4573 	WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
4574 		     SCX_OPS_DISABLING);
4575 done:
4576 	scx_ops_bypass(false);
4577 }
4578 
4579 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn);
4580 
4581 static void schedule_scx_ops_disable_work(void)
4582 {
4583 	struct kthread_worker *helper = READ_ONCE(scx_ops_helper);
4584 
4585 	/*
4586 	 * We may be called spuriously before the first bpf_sched_ext_reg(). If
4587 	 * scx_ops_helper isn't set up yet, there's nothing to do.
4588 	 */
4589 	if (helper)
4590 		kthread_queue_work(helper, &scx_ops_disable_work);
4591 }
4592 
4593 static void scx_ops_disable(enum scx_exit_kind kind)
4594 {
4595 	int none = SCX_EXIT_NONE;
4596 
4597 	if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE))
4598 		kind = SCX_EXIT_ERROR;
4599 
4600 	atomic_try_cmpxchg(&scx_exit_kind, &none, kind);
4601 
4602 	schedule_scx_ops_disable_work();
4603 }
4604 
4605 static void dump_newline(struct seq_buf *s)
4606 {
4607 	trace_sched_ext_dump("");
4608 
4609 	/* @s may be zero sized and seq_buf triggers WARN if so */
4610 	if (s->size)
4611 		seq_buf_putc(s, '\n');
4612 }
4613 
4614 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...)
4615 {
4616 	va_list args;
4617 
4618 #ifdef CONFIG_TRACEPOINTS
4619 	if (trace_sched_ext_dump_enabled()) {
4620 		/* protected by scx_dump_state()::dump_lock */
4621 		static char line_buf[SCX_EXIT_MSG_LEN];
4622 
4623 		va_start(args, fmt);
4624 		vscnprintf(line_buf, sizeof(line_buf), fmt, args);
4625 		va_end(args);
4626 
4627 		trace_sched_ext_dump(line_buf);
4628 	}
4629 #endif
4630 	/* @s may be zero sized and seq_buf triggers WARN if so */
4631 	if (s->size) {
4632 		va_start(args, fmt);
4633 		seq_buf_vprintf(s, fmt, args);
4634 		va_end(args);
4635 
4636 		seq_buf_putc(s, '\n');
4637 	}
4638 }
4639 
4640 static void dump_stack_trace(struct seq_buf *s, const char *prefix,
4641 			     const unsigned long *bt, unsigned int len)
4642 {
4643 	unsigned int i;
4644 
4645 	for (i = 0; i < len; i++)
4646 		dump_line(s, "%s%pS", prefix, (void *)bt[i]);
4647 }
4648 
4649 static void ops_dump_init(struct seq_buf *s, const char *prefix)
4650 {
4651 	struct scx_dump_data *dd = &scx_dump_data;
4652 
4653 	lockdep_assert_irqs_disabled();
4654 
4655 	dd->cpu = smp_processor_id();		/* allow scx_bpf_dump() */
4656 	dd->first = true;
4657 	dd->cursor = 0;
4658 	dd->s = s;
4659 	dd->prefix = prefix;
4660 }
4661 
4662 static void ops_dump_flush(void)
4663 {
4664 	struct scx_dump_data *dd = &scx_dump_data;
4665 	char *line = dd->buf.line;
4666 
4667 	if (!dd->cursor)
4668 		return;
4669 
4670 	/*
4671 	 * There's something to flush and this is the first line. Insert a blank
4672 	 * line to distinguish ops dump.
4673 	 */
4674 	if (dd->first) {
4675 		dump_newline(dd->s);
4676 		dd->first = false;
4677 	}
4678 
4679 	/*
4680 	 * There may be multiple lines in $line. Scan and emit each line
4681 	 * separately.
4682 	 */
4683 	while (true) {
4684 		char *end = line;
4685 		char c;
4686 
4687 		while (*end != '\n' && *end != '\0')
4688 			end++;
4689 
4690 		/*
4691 		 * If $line overflowed, it may not have newline at the end.
4692 		 * Always emit with a newline.
4693 		 */
4694 		c = *end;
4695 		*end = '\0';
4696 		dump_line(dd->s, "%s%s", dd->prefix, line);
4697 		if (c == '\0')
4698 			break;
4699 
4700 		/* move to the next line */
4701 		end++;
4702 		if (*end == '\0')
4703 			break;
4704 		line = end;
4705 	}
4706 
4707 	dd->cursor = 0;
4708 }
4709 
4710 static void ops_dump_exit(void)
4711 {
4712 	ops_dump_flush();
4713 	scx_dump_data.cpu = -1;
4714 }
4715 
4716 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx,
4717 			  struct task_struct *p, char marker)
4718 {
4719 	static unsigned long bt[SCX_EXIT_BT_LEN];
4720 	char dsq_id_buf[19] = "(n/a)";
4721 	unsigned long ops_state = atomic_long_read(&p->scx.ops_state);
4722 	unsigned int bt_len = 0;
4723 
4724 	if (p->scx.dsq)
4725 		scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx",
4726 			  (unsigned long long)p->scx.dsq->id);
4727 
4728 	dump_newline(s);
4729 	dump_line(s, " %c%c %s[%d] %+ldms",
4730 		  marker, task_state_to_char(p), p->comm, p->pid,
4731 		  jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies));
4732 	dump_line(s, "      scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu",
4733 		  scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK,
4734 		  p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK,
4735 		  ops_state >> SCX_OPSS_QSEQ_SHIFT);
4736 	dump_line(s, "      sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu",
4737 		  p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf,
4738 		  p->scx.dsq_vtime);
4739 	dump_line(s, "      cpus=%*pb", cpumask_pr_args(p->cpus_ptr));
4740 
4741 	if (SCX_HAS_OP(dump_task)) {
4742 		ops_dump_init(s, "    ");
4743 		SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p);
4744 		ops_dump_exit();
4745 	}
4746 
4747 #ifdef CONFIG_STACKTRACE
4748 	bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1);
4749 #endif
4750 	if (bt_len) {
4751 		dump_newline(s);
4752 		dump_stack_trace(s, "    ", bt, bt_len);
4753 	}
4754 }
4755 
4756 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
4757 {
4758 	static DEFINE_SPINLOCK(dump_lock);
4759 	static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n";
4760 	struct scx_dump_ctx dctx = {
4761 		.kind = ei->kind,
4762 		.exit_code = ei->exit_code,
4763 		.reason = ei->reason,
4764 		.at_ns = ktime_get_ns(),
4765 		.at_jiffies = jiffies,
4766 	};
4767 	struct seq_buf s;
4768 	unsigned long flags;
4769 	char *buf;
4770 	int cpu;
4771 
4772 	spin_lock_irqsave(&dump_lock, flags);
4773 
4774 	seq_buf_init(&s, ei->dump, dump_len);
4775 
4776 	if (ei->kind == SCX_EXIT_NONE) {
4777 		dump_line(&s, "Debug dump triggered by %s", ei->reason);
4778 	} else {
4779 		dump_line(&s, "%s[%d] triggered exit kind %d:",
4780 			  current->comm, current->pid, ei->kind);
4781 		dump_line(&s, "  %s (%s)", ei->reason, ei->msg);
4782 		dump_newline(&s);
4783 		dump_line(&s, "Backtrace:");
4784 		dump_stack_trace(&s, "  ", ei->bt, ei->bt_len);
4785 	}
4786 
4787 	if (SCX_HAS_OP(dump)) {
4788 		ops_dump_init(&s, "");
4789 		SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx);
4790 		ops_dump_exit();
4791 	}
4792 
4793 	dump_newline(&s);
4794 	dump_line(&s, "CPU states");
4795 	dump_line(&s, "----------");
4796 
4797 	for_each_possible_cpu(cpu) {
4798 		struct rq *rq = cpu_rq(cpu);
4799 		struct rq_flags rf;
4800 		struct task_struct *p;
4801 		struct seq_buf ns;
4802 		size_t avail, used;
4803 		bool idle;
4804 
4805 		rq_lock(rq, &rf);
4806 
4807 		idle = list_empty(&rq->scx.runnable_list) &&
4808 			rq->curr->sched_class == &idle_sched_class;
4809 
4810 		if (idle && !SCX_HAS_OP(dump_cpu))
4811 			goto next;
4812 
4813 		/*
4814 		 * We don't yet know whether ops.dump_cpu() will produce output
4815 		 * and we may want to skip the default CPU dump if it doesn't.
4816 		 * Use a nested seq_buf to generate the standard dump so that we
4817 		 * can decide whether to commit later.
4818 		 */
4819 		avail = seq_buf_get_buf(&s, &buf);
4820 		seq_buf_init(&ns, buf, avail);
4821 
4822 		dump_newline(&ns);
4823 		dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu",
4824 			  cpu, rq->scx.nr_running, rq->scx.flags,
4825 			  rq->scx.cpu_released, rq->scx.ops_qseq,
4826 			  rq->scx.pnt_seq);
4827 		dump_line(&ns, "          curr=%s[%d] class=%ps",
4828 			  rq->curr->comm, rq->curr->pid,
4829 			  rq->curr->sched_class);
4830 		if (!cpumask_empty(rq->scx.cpus_to_kick))
4831 			dump_line(&ns, "  cpus_to_kick   : %*pb",
4832 				  cpumask_pr_args(rq->scx.cpus_to_kick));
4833 		if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle))
4834 			dump_line(&ns, "  idle_to_kick   : %*pb",
4835 				  cpumask_pr_args(rq->scx.cpus_to_kick_if_idle));
4836 		if (!cpumask_empty(rq->scx.cpus_to_preempt))
4837 			dump_line(&ns, "  cpus_to_preempt: %*pb",
4838 				  cpumask_pr_args(rq->scx.cpus_to_preempt));
4839 		if (!cpumask_empty(rq->scx.cpus_to_wait))
4840 			dump_line(&ns, "  cpus_to_wait   : %*pb",
4841 				  cpumask_pr_args(rq->scx.cpus_to_wait));
4842 
4843 		used = seq_buf_used(&ns);
4844 		if (SCX_HAS_OP(dump_cpu)) {
4845 			ops_dump_init(&ns, "  ");
4846 			SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle);
4847 			ops_dump_exit();
4848 		}
4849 
4850 		/*
4851 		 * If idle && nothing generated by ops.dump_cpu(), there's
4852 		 * nothing interesting. Skip.
4853 		 */
4854 		if (idle && used == seq_buf_used(&ns))
4855 			goto next;
4856 
4857 		/*
4858 		 * $s may already have overflowed when $ns was created. If so,
4859 		 * calling commit on it will trigger BUG.
4860 		 */
4861 		if (avail) {
4862 			seq_buf_commit(&s, seq_buf_used(&ns));
4863 			if (seq_buf_has_overflowed(&ns))
4864 				seq_buf_set_overflow(&s);
4865 		}
4866 
4867 		if (rq->curr->sched_class == &ext_sched_class)
4868 			scx_dump_task(&s, &dctx, rq->curr, '*');
4869 
4870 		list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node)
4871 			scx_dump_task(&s, &dctx, p, ' ');
4872 	next:
4873 		rq_unlock(rq, &rf);
4874 	}
4875 
4876 	if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker))
4877 		memcpy(ei->dump + dump_len - sizeof(trunc_marker),
4878 		       trunc_marker, sizeof(trunc_marker));
4879 
4880 	spin_unlock_irqrestore(&dump_lock, flags);
4881 }
4882 
4883 static void scx_ops_error_irq_workfn(struct irq_work *irq_work)
4884 {
4885 	struct scx_exit_info *ei = scx_exit_info;
4886 
4887 	if (ei->kind >= SCX_EXIT_ERROR)
4888 		scx_dump_state(ei, scx_ops.exit_dump_len);
4889 
4890 	schedule_scx_ops_disable_work();
4891 }
4892 
4893 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn);
4894 
4895 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
4896 					     s64 exit_code,
4897 					     const char *fmt, ...)
4898 {
4899 	struct scx_exit_info *ei = scx_exit_info;
4900 	int none = SCX_EXIT_NONE;
4901 	va_list args;
4902 
4903 	if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind))
4904 		return;
4905 
4906 	ei->exit_code = exit_code;
4907 #ifdef CONFIG_STACKTRACE
4908 	if (kind >= SCX_EXIT_ERROR)
4909 		ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1);
4910 #endif
4911 	va_start(args, fmt);
4912 	vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args);
4913 	va_end(args);
4914 
4915 	/*
4916 	 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again
4917 	 * in scx_ops_disable_workfn().
4918 	 */
4919 	ei->kind = kind;
4920 	ei->reason = scx_exit_reason(ei->kind);
4921 
4922 	irq_work_queue(&scx_ops_error_irq_work);
4923 }
4924 
4925 static struct kthread_worker *scx_create_rt_helper(const char *name)
4926 {
4927 	struct kthread_worker *helper;
4928 
4929 	helper = kthread_create_worker(0, name);
4930 	if (helper)
4931 		sched_set_fifo(helper->task);
4932 	return helper;
4933 }
4934 
4935 static void check_hotplug_seq(const struct sched_ext_ops *ops)
4936 {
4937 	unsigned long long global_hotplug_seq;
4938 
4939 	/*
4940 	 * If a hotplug event has occurred between when a scheduler was
4941 	 * initialized, and when we were able to attach, exit and notify user
4942 	 * space about it.
4943 	 */
4944 	if (ops->hotplug_seq) {
4945 		global_hotplug_seq = atomic_long_read(&scx_hotplug_seq);
4946 		if (ops->hotplug_seq != global_hotplug_seq) {
4947 			scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
4948 				     "expected hotplug seq %llu did not match actual %llu",
4949 				     ops->hotplug_seq, global_hotplug_seq);
4950 		}
4951 	}
4952 }
4953 
4954 static int validate_ops(const struct sched_ext_ops *ops)
4955 {
4956 	/*
4957 	 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
4958 	 * ops.enqueue() callback isn't implemented.
4959 	 */
4960 	if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) {
4961 		scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
4962 		return -EINVAL;
4963 	}
4964 
4965 	return 0;
4966 }
4967 
4968 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
4969 {
4970 	struct scx_task_iter sti;
4971 	struct task_struct *p;
4972 	unsigned long timeout;
4973 	int i, cpu, node, ret;
4974 
4975 	if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN),
4976 			   cpu_possible_mask)) {
4977 		pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation");
4978 		return -EINVAL;
4979 	}
4980 
4981 	mutex_lock(&scx_ops_enable_mutex);
4982 
4983 	if (!scx_ops_helper) {
4984 		WRITE_ONCE(scx_ops_helper,
4985 			   scx_create_rt_helper("sched_ext_ops_helper"));
4986 		if (!scx_ops_helper) {
4987 			ret = -ENOMEM;
4988 			goto err_unlock;
4989 		}
4990 	}
4991 
4992 	if (!global_dsqs) {
4993 		struct scx_dispatch_q **dsqs;
4994 
4995 		dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL);
4996 		if (!dsqs) {
4997 			ret = -ENOMEM;
4998 			goto err_unlock;
4999 		}
5000 
5001 		for_each_node_state(node, N_POSSIBLE) {
5002 			struct scx_dispatch_q *dsq;
5003 
5004 			dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node);
5005 			if (!dsq) {
5006 				for_each_node_state(node, N_POSSIBLE)
5007 					kfree(dsqs[node]);
5008 				kfree(dsqs);
5009 				ret = -ENOMEM;
5010 				goto err_unlock;
5011 			}
5012 
5013 			init_dsq(dsq, SCX_DSQ_GLOBAL);
5014 			dsqs[node] = dsq;
5015 		}
5016 
5017 		global_dsqs = dsqs;
5018 	}
5019 
5020 	if (scx_ops_enable_state() != SCX_OPS_DISABLED) {
5021 		ret = -EBUSY;
5022 		goto err_unlock;
5023 	}
5024 
5025 	scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL);
5026 	if (!scx_root_kobj) {
5027 		ret = -ENOMEM;
5028 		goto err_unlock;
5029 	}
5030 
5031 	scx_root_kobj->kset = scx_kset;
5032 	ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root");
5033 	if (ret < 0)
5034 		goto err;
5035 
5036 	scx_exit_info = alloc_exit_info(ops->exit_dump_len);
5037 	if (!scx_exit_info) {
5038 		ret = -ENOMEM;
5039 		goto err_del;
5040 	}
5041 
5042 	/*
5043 	 * Set scx_ops, transition to ENABLING and clear exit info to arm the
5044 	 * disable path. Failure triggers full disabling from here on.
5045 	 */
5046 	scx_ops = *ops;
5047 
5048 	WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) !=
5049 		     SCX_OPS_DISABLED);
5050 
5051 	atomic_set(&scx_exit_kind, SCX_EXIT_NONE);
5052 	scx_warned_zero_slice = false;
5053 
5054 	atomic_long_set(&scx_nr_rejected, 0);
5055 
5056 	for_each_possible_cpu(cpu)
5057 		cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE;
5058 
5059 	/*
5060 	 * Keep CPUs stable during enable so that the BPF scheduler can track
5061 	 * online CPUs by watching ->on/offline_cpu() after ->init().
5062 	 */
5063 	cpus_read_lock();
5064 
5065 	if (scx_ops.init) {
5066 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init);
5067 		if (ret) {
5068 			ret = ops_sanitize_err("init", ret);
5069 			cpus_read_unlock();
5070 			scx_ops_error("ops.init() failed (%d)", ret);
5071 			goto err_disable;
5072 		}
5073 	}
5074 
5075 	for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++)
5076 		if (((void (**)(void))ops)[i])
5077 			static_branch_enable_cpuslocked(&scx_has_op[i]);
5078 
5079 	check_hotplug_seq(ops);
5080 	cpus_read_unlock();
5081 
5082 	ret = validate_ops(ops);
5083 	if (ret)
5084 		goto err_disable;
5085 
5086 	WARN_ON_ONCE(scx_dsp_ctx);
5087 	scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH;
5088 	scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf,
5089 						   scx_dsp_max_batch),
5090 				     __alignof__(struct scx_dsp_ctx));
5091 	if (!scx_dsp_ctx) {
5092 		ret = -ENOMEM;
5093 		goto err_disable;
5094 	}
5095 
5096 	if (ops->timeout_ms)
5097 		timeout = msecs_to_jiffies(ops->timeout_ms);
5098 	else
5099 		timeout = SCX_WATCHDOG_MAX_TIMEOUT;
5100 
5101 	WRITE_ONCE(scx_watchdog_timeout, timeout);
5102 	WRITE_ONCE(scx_watchdog_timestamp, jiffies);
5103 	queue_delayed_work(system_unbound_wq, &scx_watchdog_work,
5104 			   scx_watchdog_timeout / 2);
5105 
5106 	/*
5107 	 * Once __scx_ops_enabled is set, %current can be switched to SCX
5108 	 * anytime. This can lead to stalls as some BPF schedulers (e.g.
5109 	 * userspace scheduling) may not function correctly before all tasks are
5110 	 * switched. Init in bypass mode to guarantee forward progress.
5111 	 */
5112 	scx_ops_bypass(true);
5113 
5114 	for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++)
5115 		if (((void (**)(void))ops)[i])
5116 			static_branch_enable(&scx_has_op[i]);
5117 
5118 	if (ops->flags & SCX_OPS_ENQ_LAST)
5119 		static_branch_enable(&scx_ops_enq_last);
5120 
5121 	if (ops->flags & SCX_OPS_ENQ_EXITING)
5122 		static_branch_enable(&scx_ops_enq_exiting);
5123 	if (scx_ops.cpu_acquire || scx_ops.cpu_release)
5124 		static_branch_enable(&scx_ops_cpu_preempt);
5125 
5126 	if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) {
5127 		reset_idle_masks();
5128 		static_branch_enable(&scx_builtin_idle_enabled);
5129 	} else {
5130 		static_branch_disable(&scx_builtin_idle_enabled);
5131 	}
5132 
5133 	/*
5134 	 * Lock out forks, cgroup on/offlining and moves before opening the
5135 	 * floodgate so that they don't wander into the operations prematurely.
5136 	 */
5137 	percpu_down_write(&scx_fork_rwsem);
5138 
5139 	WARN_ON_ONCE(scx_ops_init_task_enabled);
5140 	scx_ops_init_task_enabled = true;
5141 
5142 	/*
5143 	 * Enable ops for every task. Fork is excluded by scx_fork_rwsem
5144 	 * preventing new tasks from being added. No need to exclude tasks
5145 	 * leaving as sched_ext_free() can handle both prepped and enabled
5146 	 * tasks. Prep all tasks first and then enable them with preemption
5147 	 * disabled.
5148 	 *
5149 	 * All cgroups should be initialized before scx_ops_init_task() so that
5150 	 * the BPF scheduler can reliably track each task's cgroup membership
5151 	 * from scx_ops_init_task(). Lock out cgroup on/offlining and task
5152 	 * migrations while tasks are being initialized so that
5153 	 * scx_cgroup_can_attach() never sees uninitialized tasks.
5154 	 */
5155 	scx_cgroup_lock();
5156 	ret = scx_cgroup_init();
5157 	if (ret)
5158 		goto err_disable_unlock_all;
5159 
5160 	scx_task_iter_start(&sti);
5161 	while ((p = scx_task_iter_next_locked(&sti))) {
5162 		/*
5163 		 * @p may already be dead, have lost all its usages counts and
5164 		 * be waiting for RCU grace period before being freed. @p can't
5165 		 * be initialized for SCX in such cases and should be ignored.
5166 		 */
5167 		if (!tryget_task_struct(p))
5168 			continue;
5169 
5170 		scx_task_iter_unlock(&sti);
5171 
5172 		ret = scx_ops_init_task(p, task_group(p), false);
5173 		if (ret) {
5174 			put_task_struct(p);
5175 			scx_task_iter_relock(&sti);
5176 			scx_task_iter_stop(&sti);
5177 			scx_ops_error("ops.init_task() failed (%d) for %s[%d]",
5178 				      ret, p->comm, p->pid);
5179 			goto err_disable_unlock_all;
5180 		}
5181 
5182 		scx_set_task_state(p, SCX_TASK_READY);
5183 
5184 		put_task_struct(p);
5185 		scx_task_iter_relock(&sti);
5186 	}
5187 	scx_task_iter_stop(&sti);
5188 	scx_cgroup_unlock();
5189 	percpu_up_write(&scx_fork_rwsem);
5190 
5191 	/*
5192 	 * All tasks are READY. It's safe to turn on scx_enabled() and switch
5193 	 * all eligible tasks.
5194 	 */
5195 	WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL));
5196 	static_branch_enable(&__scx_ops_enabled);
5197 
5198 	/*
5199 	 * We're fully committed and can't fail. The task READY -> ENABLED
5200 	 * transitions here are synchronized against sched_ext_free() through
5201 	 * scx_tasks_lock.
5202 	 */
5203 	percpu_down_write(&scx_fork_rwsem);
5204 	scx_task_iter_start(&sti);
5205 	while ((p = scx_task_iter_next_locked(&sti))) {
5206 		const struct sched_class *old_class = p->sched_class;
5207 		struct sched_enq_and_set_ctx ctx;
5208 
5209 		sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
5210 
5211 		p->scx.slice = SCX_SLICE_DFL;
5212 		__setscheduler_prio(p, p->prio);
5213 		check_class_changing(task_rq(p), p, old_class);
5214 
5215 		sched_enq_and_set_task(&ctx);
5216 
5217 		check_class_changed(task_rq(p), p, old_class, p->prio);
5218 	}
5219 	scx_task_iter_stop(&sti);
5220 	percpu_up_write(&scx_fork_rwsem);
5221 
5222 	scx_ops_bypass(false);
5223 
5224 	if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) {
5225 		WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE);
5226 		goto err_disable;
5227 	}
5228 
5229 	if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL))
5230 		static_branch_enable(&__scx_switched_all);
5231 
5232 	pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n",
5233 		scx_ops.name, scx_switched_all() ? "" : " (partial)");
5234 	kobject_uevent(scx_root_kobj, KOBJ_ADD);
5235 	mutex_unlock(&scx_ops_enable_mutex);
5236 
5237 	atomic_long_inc(&scx_enable_seq);
5238 
5239 	return 0;
5240 
5241 err_del:
5242 	kobject_del(scx_root_kobj);
5243 err:
5244 	kobject_put(scx_root_kobj);
5245 	scx_root_kobj = NULL;
5246 	if (scx_exit_info) {
5247 		free_exit_info(scx_exit_info);
5248 		scx_exit_info = NULL;
5249 	}
5250 err_unlock:
5251 	mutex_unlock(&scx_ops_enable_mutex);
5252 	return ret;
5253 
5254 err_disable_unlock_all:
5255 	scx_cgroup_unlock();
5256 	percpu_up_write(&scx_fork_rwsem);
5257 	scx_ops_bypass(false);
5258 err_disable:
5259 	mutex_unlock(&scx_ops_enable_mutex);
5260 	/*
5261 	 * Returning an error code here would not pass all the error information
5262 	 * to userspace. Record errno using scx_ops_error() for cases
5263 	 * scx_ops_error() wasn't already invoked and exit indicating success so
5264 	 * that the error is notified through ops.exit() with all the details.
5265 	 *
5266 	 * Flush scx_ops_disable_work to ensure that error is reported before
5267 	 * init completion.
5268 	 */
5269 	scx_ops_error("scx_ops_enable() failed (%d)", ret);
5270 	kthread_flush_work(&scx_ops_disable_work);
5271 	return 0;
5272 }
5273 
5274 
5275 /********************************************************************************
5276  * bpf_struct_ops plumbing.
5277  */
5278 #include <linux/bpf_verifier.h>
5279 #include <linux/bpf.h>
5280 #include <linux/btf.h>
5281 
5282 extern struct btf *btf_vmlinux;
5283 static const struct btf_type *task_struct_type;
5284 static u32 task_struct_type_id;
5285 
5286 static bool set_arg_maybe_null(const char *op, int arg_n, int off, int size,
5287 			       enum bpf_access_type type,
5288 			       const struct bpf_prog *prog,
5289 			       struct bpf_insn_access_aux *info)
5290 {
5291 	struct btf *btf = bpf_get_btf_vmlinux();
5292 	const struct bpf_struct_ops_desc *st_ops_desc;
5293 	const struct btf_member *member;
5294 	const struct btf_type *t;
5295 	u32 btf_id, member_idx;
5296 	const char *mname;
5297 
5298 	/* struct_ops op args are all sequential, 64-bit numbers */
5299 	if (off != arg_n * sizeof(__u64))
5300 		return false;
5301 
5302 	/* btf_id should be the type id of struct sched_ext_ops */
5303 	btf_id = prog->aux->attach_btf_id;
5304 	st_ops_desc = bpf_struct_ops_find(btf, btf_id);
5305 	if (!st_ops_desc)
5306 		return false;
5307 
5308 	/* BTF type of struct sched_ext_ops */
5309 	t = st_ops_desc->type;
5310 
5311 	member_idx = prog->expected_attach_type;
5312 	if (member_idx >= btf_type_vlen(t))
5313 		return false;
5314 
5315 	/*
5316 	 * Get the member name of this struct_ops program, which corresponds to
5317 	 * a field in struct sched_ext_ops. For example, the member name of the
5318 	 * dispatch struct_ops program (callback) is "dispatch".
5319 	 */
5320 	member = &btf_type_member(t)[member_idx];
5321 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
5322 
5323 	if (!strcmp(mname, op)) {
5324 		/*
5325 		 * The value is a pointer to a type (struct task_struct) given
5326 		 * by a BTF ID (PTR_TO_BTF_ID). It is trusted (PTR_TRUSTED),
5327 		 * however, can be a NULL (PTR_MAYBE_NULL). The BPF program
5328 		 * should check the pointer to make sure it is not NULL before
5329 		 * using it, or the verifier will reject the program.
5330 		 *
5331 		 * Longer term, this is something that should be addressed by
5332 		 * BTF, and be fully contained within the verifier.
5333 		 */
5334 		info->reg_type = PTR_MAYBE_NULL | PTR_TO_BTF_ID | PTR_TRUSTED;
5335 		info->btf = btf_vmlinux;
5336 		info->btf_id = task_struct_type_id;
5337 
5338 		return true;
5339 	}
5340 
5341 	return false;
5342 }
5343 
5344 static bool bpf_scx_is_valid_access(int off, int size,
5345 				    enum bpf_access_type type,
5346 				    const struct bpf_prog *prog,
5347 				    struct bpf_insn_access_aux *info)
5348 {
5349 	if (type != BPF_READ)
5350 		return false;
5351 	if (set_arg_maybe_null("dispatch", 1, off, size, type, prog, info) ||
5352 	    set_arg_maybe_null("yield", 1, off, size, type, prog, info))
5353 		return true;
5354 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
5355 		return false;
5356 	if (off % size != 0)
5357 		return false;
5358 
5359 	return btf_ctx_access(off, size, type, prog, info);
5360 }
5361 
5362 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log,
5363 				     const struct bpf_reg_state *reg, int off,
5364 				     int size)
5365 {
5366 	const struct btf_type *t;
5367 
5368 	t = btf_type_by_id(reg->btf, reg->btf_id);
5369 	if (t == task_struct_type) {
5370 		if (off >= offsetof(struct task_struct, scx.slice) &&
5371 		    off + size <= offsetofend(struct task_struct, scx.slice))
5372 			return SCALAR_VALUE;
5373 		if (off >= offsetof(struct task_struct, scx.dsq_vtime) &&
5374 		    off + size <= offsetofend(struct task_struct, scx.dsq_vtime))
5375 			return SCALAR_VALUE;
5376 		if (off >= offsetof(struct task_struct, scx.disallow) &&
5377 		    off + size <= offsetofend(struct task_struct, scx.disallow))
5378 			return SCALAR_VALUE;
5379 	}
5380 
5381 	return -EACCES;
5382 }
5383 
5384 static const struct bpf_func_proto *
5385 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5386 {
5387 	switch (func_id) {
5388 	case BPF_FUNC_task_storage_get:
5389 		return &bpf_task_storage_get_proto;
5390 	case BPF_FUNC_task_storage_delete:
5391 		return &bpf_task_storage_delete_proto;
5392 	default:
5393 		return bpf_base_func_proto(func_id, prog);
5394 	}
5395 }
5396 
5397 static const struct bpf_verifier_ops bpf_scx_verifier_ops = {
5398 	.get_func_proto = bpf_scx_get_func_proto,
5399 	.is_valid_access = bpf_scx_is_valid_access,
5400 	.btf_struct_access = bpf_scx_btf_struct_access,
5401 };
5402 
5403 static int bpf_scx_init_member(const struct btf_type *t,
5404 			       const struct btf_member *member,
5405 			       void *kdata, const void *udata)
5406 {
5407 	const struct sched_ext_ops *uops = udata;
5408 	struct sched_ext_ops *ops = kdata;
5409 	u32 moff = __btf_member_bit_offset(t, member) / 8;
5410 	int ret;
5411 
5412 	switch (moff) {
5413 	case offsetof(struct sched_ext_ops, dispatch_max_batch):
5414 		if (*(u32 *)(udata + moff) > INT_MAX)
5415 			return -E2BIG;
5416 		ops->dispatch_max_batch = *(u32 *)(udata + moff);
5417 		return 1;
5418 	case offsetof(struct sched_ext_ops, flags):
5419 		if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS)
5420 			return -EINVAL;
5421 		ops->flags = *(u64 *)(udata + moff);
5422 		return 1;
5423 	case offsetof(struct sched_ext_ops, name):
5424 		ret = bpf_obj_name_cpy(ops->name, uops->name,
5425 				       sizeof(ops->name));
5426 		if (ret < 0)
5427 			return ret;
5428 		if (ret == 0)
5429 			return -EINVAL;
5430 		return 1;
5431 	case offsetof(struct sched_ext_ops, timeout_ms):
5432 		if (msecs_to_jiffies(*(u32 *)(udata + moff)) >
5433 		    SCX_WATCHDOG_MAX_TIMEOUT)
5434 			return -E2BIG;
5435 		ops->timeout_ms = *(u32 *)(udata + moff);
5436 		return 1;
5437 	case offsetof(struct sched_ext_ops, exit_dump_len):
5438 		ops->exit_dump_len =
5439 			*(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN;
5440 		return 1;
5441 	case offsetof(struct sched_ext_ops, hotplug_seq):
5442 		ops->hotplug_seq = *(u64 *)(udata + moff);
5443 		return 1;
5444 	}
5445 
5446 	return 0;
5447 }
5448 
5449 static int bpf_scx_check_member(const struct btf_type *t,
5450 				const struct btf_member *member,
5451 				const struct bpf_prog *prog)
5452 {
5453 	u32 moff = __btf_member_bit_offset(t, member) / 8;
5454 
5455 	switch (moff) {
5456 	case offsetof(struct sched_ext_ops, init_task):
5457 #ifdef CONFIG_EXT_GROUP_SCHED
5458 	case offsetof(struct sched_ext_ops, cgroup_init):
5459 	case offsetof(struct sched_ext_ops, cgroup_exit):
5460 	case offsetof(struct sched_ext_ops, cgroup_prep_move):
5461 #endif
5462 	case offsetof(struct sched_ext_ops, cpu_online):
5463 	case offsetof(struct sched_ext_ops, cpu_offline):
5464 	case offsetof(struct sched_ext_ops, init):
5465 	case offsetof(struct sched_ext_ops, exit):
5466 		break;
5467 	default:
5468 		if (prog->sleepable)
5469 			return -EINVAL;
5470 	}
5471 
5472 	return 0;
5473 }
5474 
5475 static int bpf_scx_reg(void *kdata, struct bpf_link *link)
5476 {
5477 	return scx_ops_enable(kdata, link);
5478 }
5479 
5480 static void bpf_scx_unreg(void *kdata, struct bpf_link *link)
5481 {
5482 	scx_ops_disable(SCX_EXIT_UNREG);
5483 	kthread_flush_work(&scx_ops_disable_work);
5484 }
5485 
5486 static int bpf_scx_init(struct btf *btf)
5487 {
5488 	s32 type_id;
5489 
5490 	type_id = btf_find_by_name_kind(btf, "task_struct", BTF_KIND_STRUCT);
5491 	if (type_id < 0)
5492 		return -EINVAL;
5493 	task_struct_type = btf_type_by_id(btf, type_id);
5494 	task_struct_type_id = type_id;
5495 
5496 	return 0;
5497 }
5498 
5499 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link)
5500 {
5501 	/*
5502 	 * sched_ext does not support updating the actively-loaded BPF
5503 	 * scheduler, as registering a BPF scheduler can always fail if the
5504 	 * scheduler returns an error code for e.g. ops.init(), ops.init_task(),
5505 	 * etc. Similarly, we can always race with unregistration happening
5506 	 * elsewhere, such as with sysrq.
5507 	 */
5508 	return -EOPNOTSUPP;
5509 }
5510 
5511 static int bpf_scx_validate(void *kdata)
5512 {
5513 	return 0;
5514 }
5515 
5516 static s32 select_cpu_stub(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
5517 static void enqueue_stub(struct task_struct *p, u64 enq_flags) {}
5518 static void dequeue_stub(struct task_struct *p, u64 enq_flags) {}
5519 static void dispatch_stub(s32 prev_cpu, struct task_struct *p) {}
5520 static void tick_stub(struct task_struct *p) {}
5521 static void runnable_stub(struct task_struct *p, u64 enq_flags) {}
5522 static void running_stub(struct task_struct *p) {}
5523 static void stopping_stub(struct task_struct *p, bool runnable) {}
5524 static void quiescent_stub(struct task_struct *p, u64 deq_flags) {}
5525 static bool yield_stub(struct task_struct *from, struct task_struct *to) { return false; }
5526 static bool core_sched_before_stub(struct task_struct *a, struct task_struct *b) { return false; }
5527 static void set_weight_stub(struct task_struct *p, u32 weight) {}
5528 static void set_cpumask_stub(struct task_struct *p, const struct cpumask *mask) {}
5529 static void update_idle_stub(s32 cpu, bool idle) {}
5530 static void cpu_acquire_stub(s32 cpu, struct scx_cpu_acquire_args *args) {}
5531 static void cpu_release_stub(s32 cpu, struct scx_cpu_release_args *args) {}
5532 static s32 init_task_stub(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
5533 static void exit_task_stub(struct task_struct *p, struct scx_exit_task_args *args) {}
5534 static void enable_stub(struct task_struct *p) {}
5535 static void disable_stub(struct task_struct *p) {}
5536 #ifdef CONFIG_EXT_GROUP_SCHED
5537 static s32 cgroup_init_stub(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; }
5538 static void cgroup_exit_stub(struct cgroup *cgrp) {}
5539 static s32 cgroup_prep_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; }
5540 static void cgroup_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
5541 static void cgroup_cancel_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
5542 static void cgroup_set_weight_stub(struct cgroup *cgrp, u32 weight) {}
5543 #endif
5544 static void cpu_online_stub(s32 cpu) {}
5545 static void cpu_offline_stub(s32 cpu) {}
5546 static s32 init_stub(void) { return -EINVAL; }
5547 static void exit_stub(struct scx_exit_info *info) {}
5548 static void dump_stub(struct scx_dump_ctx *ctx) {}
5549 static void dump_cpu_stub(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {}
5550 static void dump_task_stub(struct scx_dump_ctx *ctx, struct task_struct *p) {}
5551 
5552 static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
5553 	.select_cpu = select_cpu_stub,
5554 	.enqueue = enqueue_stub,
5555 	.dequeue = dequeue_stub,
5556 	.dispatch = dispatch_stub,
5557 	.tick = tick_stub,
5558 	.runnable = runnable_stub,
5559 	.running = running_stub,
5560 	.stopping = stopping_stub,
5561 	.quiescent = quiescent_stub,
5562 	.yield = yield_stub,
5563 	.core_sched_before = core_sched_before_stub,
5564 	.set_weight = set_weight_stub,
5565 	.set_cpumask = set_cpumask_stub,
5566 	.update_idle = update_idle_stub,
5567 	.cpu_acquire = cpu_acquire_stub,
5568 	.cpu_release = cpu_release_stub,
5569 	.init_task = init_task_stub,
5570 	.exit_task = exit_task_stub,
5571 	.enable = enable_stub,
5572 	.disable = disable_stub,
5573 #ifdef CONFIG_EXT_GROUP_SCHED
5574 	.cgroup_init = cgroup_init_stub,
5575 	.cgroup_exit = cgroup_exit_stub,
5576 	.cgroup_prep_move = cgroup_prep_move_stub,
5577 	.cgroup_move = cgroup_move_stub,
5578 	.cgroup_cancel_move = cgroup_cancel_move_stub,
5579 	.cgroup_set_weight = cgroup_set_weight_stub,
5580 #endif
5581 	.cpu_online = cpu_online_stub,
5582 	.cpu_offline = cpu_offline_stub,
5583 	.init = init_stub,
5584 	.exit = exit_stub,
5585 	.dump = dump_stub,
5586 	.dump_cpu = dump_cpu_stub,
5587 	.dump_task = dump_task_stub,
5588 };
5589 
5590 static struct bpf_struct_ops bpf_sched_ext_ops = {
5591 	.verifier_ops = &bpf_scx_verifier_ops,
5592 	.reg = bpf_scx_reg,
5593 	.unreg = bpf_scx_unreg,
5594 	.check_member = bpf_scx_check_member,
5595 	.init_member = bpf_scx_init_member,
5596 	.init = bpf_scx_init,
5597 	.update = bpf_scx_update,
5598 	.validate = bpf_scx_validate,
5599 	.name = "sched_ext_ops",
5600 	.owner = THIS_MODULE,
5601 	.cfi_stubs = &__bpf_ops_sched_ext_ops
5602 };
5603 
5604 
5605 /********************************************************************************
5606  * System integration and init.
5607  */
5608 
5609 static void sysrq_handle_sched_ext_reset(u8 key)
5610 {
5611 	if (scx_ops_helper)
5612 		scx_ops_disable(SCX_EXIT_SYSRQ);
5613 	else
5614 		pr_info("sched_ext: BPF scheduler not yet used\n");
5615 }
5616 
5617 static const struct sysrq_key_op sysrq_sched_ext_reset_op = {
5618 	.handler	= sysrq_handle_sched_ext_reset,
5619 	.help_msg	= "reset-sched-ext(S)",
5620 	.action_msg	= "Disable sched_ext and revert all tasks to CFS",
5621 	.enable_mask	= SYSRQ_ENABLE_RTNICE,
5622 };
5623 
5624 static void sysrq_handle_sched_ext_dump(u8 key)
5625 {
5626 	struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" };
5627 
5628 	if (scx_enabled())
5629 		scx_dump_state(&ei, 0);
5630 }
5631 
5632 static const struct sysrq_key_op sysrq_sched_ext_dump_op = {
5633 	.handler	= sysrq_handle_sched_ext_dump,
5634 	.help_msg	= "dump-sched-ext(D)",
5635 	.action_msg	= "Trigger sched_ext debug dump",
5636 	.enable_mask	= SYSRQ_ENABLE_RTNICE,
5637 };
5638 
5639 static bool can_skip_idle_kick(struct rq *rq)
5640 {
5641 	lockdep_assert_rq_held(rq);
5642 
5643 	/*
5644 	 * We can skip idle kicking if @rq is going to go through at least one
5645 	 * full SCX scheduling cycle before going idle. Just checking whether
5646 	 * curr is not idle is insufficient because we could be racing
5647 	 * balance_one() trying to pull the next task from a remote rq, which
5648 	 * may fail, and @rq may become idle afterwards.
5649 	 *
5650 	 * The race window is small and we don't and can't guarantee that @rq is
5651 	 * only kicked while idle anyway. Skip only when sure.
5652 	 */
5653 	return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE);
5654 }
5655 
5656 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs)
5657 {
5658 	struct rq *rq = cpu_rq(cpu);
5659 	struct scx_rq *this_scx = &this_rq->scx;
5660 	bool should_wait = false;
5661 	unsigned long flags;
5662 
5663 	raw_spin_rq_lock_irqsave(rq, flags);
5664 
5665 	/*
5666 	 * During CPU hotplug, a CPU may depend on kicking itself to make
5667 	 * forward progress. Allow kicking self regardless of online state.
5668 	 */
5669 	if (cpu_online(cpu) || cpu == cpu_of(this_rq)) {
5670 		if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) {
5671 			if (rq->curr->sched_class == &ext_sched_class)
5672 				rq->curr->scx.slice = 0;
5673 			cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5674 		}
5675 
5676 		if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) {
5677 			pseqs[cpu] = rq->scx.pnt_seq;
5678 			should_wait = true;
5679 		}
5680 
5681 		resched_curr(rq);
5682 	} else {
5683 		cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5684 		cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5685 	}
5686 
5687 	raw_spin_rq_unlock_irqrestore(rq, flags);
5688 
5689 	return should_wait;
5690 }
5691 
5692 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq)
5693 {
5694 	struct rq *rq = cpu_rq(cpu);
5695 	unsigned long flags;
5696 
5697 	raw_spin_rq_lock_irqsave(rq, flags);
5698 
5699 	if (!can_skip_idle_kick(rq) &&
5700 	    (cpu_online(cpu) || cpu == cpu_of(this_rq)))
5701 		resched_curr(rq);
5702 
5703 	raw_spin_rq_unlock_irqrestore(rq, flags);
5704 }
5705 
5706 static void kick_cpus_irq_workfn(struct irq_work *irq_work)
5707 {
5708 	struct rq *this_rq = this_rq();
5709 	struct scx_rq *this_scx = &this_rq->scx;
5710 	unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs);
5711 	bool should_wait = false;
5712 	s32 cpu;
5713 
5714 	for_each_cpu(cpu, this_scx->cpus_to_kick) {
5715 		should_wait |= kick_one_cpu(cpu, this_rq, pseqs);
5716 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick);
5717 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5718 	}
5719 
5720 	for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) {
5721 		kick_one_cpu_if_idle(cpu, this_rq);
5722 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5723 	}
5724 
5725 	if (!should_wait)
5726 		return;
5727 
5728 	for_each_cpu(cpu, this_scx->cpus_to_wait) {
5729 		unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq;
5730 
5731 		if (cpu != cpu_of(this_rq)) {
5732 			/*
5733 			 * Pairs with smp_store_release() issued by this CPU in
5734 			 * scx_next_task_picked() on the resched path.
5735 			 *
5736 			 * We busy-wait here to guarantee that no other task can
5737 			 * be scheduled on our core before the target CPU has
5738 			 * entered the resched path.
5739 			 */
5740 			while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu])
5741 				cpu_relax();
5742 		}
5743 
5744 		cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5745 	}
5746 }
5747 
5748 /**
5749  * print_scx_info - print out sched_ext scheduler state
5750  * @log_lvl: the log level to use when printing
5751  * @p: target task
5752  *
5753  * If a sched_ext scheduler is enabled, print the name and state of the
5754  * scheduler. If @p is on sched_ext, print further information about the task.
5755  *
5756  * This function can be safely called on any task as long as the task_struct
5757  * itself is accessible. While safe, this function isn't synchronized and may
5758  * print out mixups or garbages of limited length.
5759  */
5760 void print_scx_info(const char *log_lvl, struct task_struct *p)
5761 {
5762 	enum scx_ops_enable_state state = scx_ops_enable_state();
5763 	const char *all = READ_ONCE(scx_switching_all) ? "+all" : "";
5764 	char runnable_at_buf[22] = "?";
5765 	struct sched_class *class;
5766 	unsigned long runnable_at;
5767 
5768 	if (state == SCX_OPS_DISABLED)
5769 		return;
5770 
5771 	/*
5772 	 * Carefully check if the task was running on sched_ext, and then
5773 	 * carefully copy the time it's been runnable, and its state.
5774 	 */
5775 	if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) ||
5776 	    class != &ext_sched_class) {
5777 		printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name,
5778 		       scx_ops_enable_state_str[state], all);
5779 		return;
5780 	}
5781 
5782 	if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at,
5783 				      sizeof(runnable_at)))
5784 		scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms",
5785 			  jiffies_delta_msecs(runnable_at, jiffies));
5786 
5787 	/* print everything onto one line to conserve console space */
5788 	printk("%sSched_ext: %s (%s%s), task: runnable_at=%s",
5789 	       log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all,
5790 	       runnable_at_buf);
5791 }
5792 
5793 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr)
5794 {
5795 	/*
5796 	 * SCX schedulers often have userspace components which are sometimes
5797 	 * involved in critial scheduling paths. PM operations involve freezing
5798 	 * userspace which can lead to scheduling misbehaviors including stalls.
5799 	 * Let's bypass while PM operations are in progress.
5800 	 */
5801 	switch (event) {
5802 	case PM_HIBERNATION_PREPARE:
5803 	case PM_SUSPEND_PREPARE:
5804 	case PM_RESTORE_PREPARE:
5805 		scx_ops_bypass(true);
5806 		break;
5807 	case PM_POST_HIBERNATION:
5808 	case PM_POST_SUSPEND:
5809 	case PM_POST_RESTORE:
5810 		scx_ops_bypass(false);
5811 		break;
5812 	}
5813 
5814 	return NOTIFY_OK;
5815 }
5816 
5817 static struct notifier_block scx_pm_notifier = {
5818 	.notifier_call = scx_pm_handler,
5819 };
5820 
5821 void __init init_sched_ext_class(void)
5822 {
5823 	s32 cpu, v;
5824 
5825 	/*
5826 	 * The following is to prevent the compiler from optimizing out the enum
5827 	 * definitions so that BPF scheduler implementations can use them
5828 	 * through the generated vmlinux.h.
5829 	 */
5830 	WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT |
5831 		   SCX_TG_ONLINE);
5832 
5833 	BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params));
5834 #ifdef CONFIG_SMP
5835 	BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL));
5836 	BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL));
5837 #endif
5838 	scx_kick_cpus_pnt_seqs =
5839 		__alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids,
5840 			       __alignof__(scx_kick_cpus_pnt_seqs[0]));
5841 	BUG_ON(!scx_kick_cpus_pnt_seqs);
5842 
5843 	for_each_possible_cpu(cpu) {
5844 		struct rq *rq = cpu_rq(cpu);
5845 
5846 		init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL);
5847 		INIT_LIST_HEAD(&rq->scx.runnable_list);
5848 		INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals);
5849 
5850 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL));
5851 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL));
5852 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL));
5853 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL));
5854 		init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn);
5855 		init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn);
5856 
5857 		if (cpu_online(cpu))
5858 			cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE;
5859 	}
5860 
5861 	register_sysrq_key('S', &sysrq_sched_ext_reset_op);
5862 	register_sysrq_key('D', &sysrq_sched_ext_dump_op);
5863 	INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn);
5864 }
5865 
5866 
5867 /********************************************************************************
5868  * Helpers that can be called from the BPF scheduler.
5869  */
5870 #include <linux/btf_ids.h>
5871 
5872 __bpf_kfunc_start_defs();
5873 
5874 /**
5875  * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
5876  * @p: task_struct to select a CPU for
5877  * @prev_cpu: CPU @p was on previously
5878  * @wake_flags: %SCX_WAKE_* flags
5879  * @is_idle: out parameter indicating whether the returned CPU is idle
5880  *
5881  * Can only be called from ops.select_cpu() if the built-in CPU selection is
5882  * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set.
5883  * @p, @prev_cpu and @wake_flags match ops.select_cpu().
5884  *
5885  * Returns the picked CPU with *@is_idle indicating whether the picked CPU is
5886  * currently idle and thus a good candidate for direct dispatching.
5887  */
5888 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
5889 				       u64 wake_flags, bool *is_idle)
5890 {
5891 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
5892 		scx_ops_error("built-in idle tracking is disabled");
5893 		goto prev_cpu;
5894 	}
5895 
5896 	if (!scx_kf_allowed(SCX_KF_SELECT_CPU))
5897 		goto prev_cpu;
5898 
5899 #ifdef CONFIG_SMP
5900 	return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle);
5901 #endif
5902 
5903 prev_cpu:
5904 	*is_idle = false;
5905 	return prev_cpu;
5906 }
5907 
5908 __bpf_kfunc_end_defs();
5909 
5910 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu)
5911 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
5912 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu)
5913 
5914 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = {
5915 	.owner			= THIS_MODULE,
5916 	.set			= &scx_kfunc_ids_select_cpu,
5917 };
5918 
5919 static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags)
5920 {
5921 	if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
5922 		return false;
5923 
5924 	lockdep_assert_irqs_disabled();
5925 
5926 	if (unlikely(!p)) {
5927 		scx_ops_error("called with NULL task");
5928 		return false;
5929 	}
5930 
5931 	if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) {
5932 		scx_ops_error("invalid enq_flags 0x%llx", enq_flags);
5933 		return false;
5934 	}
5935 
5936 	return true;
5937 }
5938 
5939 static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags)
5940 {
5941 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
5942 	struct task_struct *ddsp_task;
5943 
5944 	ddsp_task = __this_cpu_read(direct_dispatch_task);
5945 	if (ddsp_task) {
5946 		mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags);
5947 		return;
5948 	}
5949 
5950 	if (unlikely(dspc->cursor >= scx_dsp_max_batch)) {
5951 		scx_ops_error("dispatch buffer overflow");
5952 		return;
5953 	}
5954 
5955 	dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){
5956 		.task = p,
5957 		.qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK,
5958 		.dsq_id = dsq_id,
5959 		.enq_flags = enq_flags,
5960 	};
5961 }
5962 
5963 __bpf_kfunc_start_defs();
5964 
5965 /**
5966  * scx_bpf_dispatch - Dispatch a task into the FIFO queue of a DSQ
5967  * @p: task_struct to dispatch
5968  * @dsq_id: DSQ to dispatch to
5969  * @slice: duration @p can run for in nsecs, 0 to keep the current value
5970  * @enq_flags: SCX_ENQ_*
5971  *
5972  * Dispatch @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe
5973  * to call this function spuriously. Can be called from ops.enqueue(),
5974  * ops.select_cpu(), and ops.dispatch().
5975  *
5976  * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
5977  * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be
5978  * used to target the local DSQ of a CPU other than the enqueueing one. Use
5979  * ops.select_cpu() to be on the target CPU in the first place.
5980  *
5981  * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
5982  * will be directly dispatched to the corresponding dispatch queue after
5983  * ops.select_cpu() returns. If @p is dispatched to SCX_DSQ_LOCAL, it will be
5984  * dispatched to the local DSQ of the CPU returned by ops.select_cpu().
5985  * @enq_flags are OR'd with the enqueue flags on the enqueue path before the
5986  * task is dispatched.
5987  *
5988  * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
5989  * and this function can be called upto ops.dispatch_max_batch times to dispatch
5990  * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
5991  * remaining slots. scx_bpf_consume() flushes the batch and resets the counter.
5992  *
5993  * This function doesn't have any locking restrictions and may be called under
5994  * BPF locks (in the future when BPF introduces more flexible locking).
5995  *
5996  * @p is allowed to run for @slice. The scheduling path is triggered on slice
5997  * exhaustion. If zero, the current residual slice is maintained. If
5998  * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
5999  * scx_bpf_kick_cpu() to trigger scheduling.
6000  */
6001 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice,
6002 				  u64 enq_flags)
6003 {
6004 	if (!scx_dispatch_preamble(p, enq_flags))
6005 		return;
6006 
6007 	if (slice)
6008 		p->scx.slice = slice;
6009 	else
6010 		p->scx.slice = p->scx.slice ?: 1;
6011 
6012 	scx_dispatch_commit(p, dsq_id, enq_flags);
6013 }
6014 
6015 /**
6016  * scx_bpf_dispatch_vtime - Dispatch a task into the vtime priority queue of a DSQ
6017  * @p: task_struct to dispatch
6018  * @dsq_id: DSQ to dispatch to
6019  * @slice: duration @p can run for in nsecs, 0 to keep the current value
6020  * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
6021  * @enq_flags: SCX_ENQ_*
6022  *
6023  * Dispatch @p into the vtime priority queue of the DSQ identified by @dsq_id.
6024  * Tasks queued into the priority queue are ordered by @vtime and always
6025  * consumed after the tasks in the FIFO queue. All other aspects are identical
6026  * to scx_bpf_dispatch().
6027  *
6028  * @vtime ordering is according to time_before64() which considers wrapping. A
6029  * numerically larger vtime may indicate an earlier position in the ordering and
6030  * vice-versa.
6031  */
6032 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id,
6033 					u64 slice, u64 vtime, u64 enq_flags)
6034 {
6035 	if (!scx_dispatch_preamble(p, enq_flags))
6036 		return;
6037 
6038 	if (slice)
6039 		p->scx.slice = slice;
6040 	else
6041 		p->scx.slice = p->scx.slice ?: 1;
6042 
6043 	p->scx.dsq_vtime = vtime;
6044 
6045 	scx_dispatch_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6046 }
6047 
6048 __bpf_kfunc_end_defs();
6049 
6050 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
6051 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU)
6052 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU)
6053 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
6054 
6055 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
6056 	.owner			= THIS_MODULE,
6057 	.set			= &scx_kfunc_ids_enqueue_dispatch,
6058 };
6059 
6060 static bool scx_dispatch_from_dsq(struct bpf_iter_scx_dsq_kern *kit,
6061 				  struct task_struct *p, u64 dsq_id,
6062 				  u64 enq_flags)
6063 {
6064 	struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq;
6065 	struct rq *this_rq, *src_rq, *dst_rq, *locked_rq;
6066 	bool dispatched = false;
6067 	bool in_balance;
6068 	unsigned long flags;
6069 
6070 	if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH))
6071 		return false;
6072 
6073 	/*
6074 	 * Can be called from either ops.dispatch() locking this_rq() or any
6075 	 * context where no rq lock is held. If latter, lock @p's task_rq which
6076 	 * we'll likely need anyway.
6077 	 */
6078 	src_rq = task_rq(p);
6079 
6080 	local_irq_save(flags);
6081 	this_rq = this_rq();
6082 	in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE;
6083 
6084 	if (in_balance) {
6085 		if (this_rq != src_rq) {
6086 			raw_spin_rq_unlock(this_rq);
6087 			raw_spin_rq_lock(src_rq);
6088 		}
6089 	} else {
6090 		raw_spin_rq_lock(src_rq);
6091 	}
6092 
6093 	locked_rq = src_rq;
6094 	raw_spin_lock(&src_dsq->lock);
6095 
6096 	/*
6097 	 * Did someone else get to it? @p could have already left $src_dsq, got
6098 	 * re-enqueud, or be in the process of being consumed by someone else.
6099 	 */
6100 	if (unlikely(p->scx.dsq != src_dsq ||
6101 		     u32_before(kit->cursor.priv, p->scx.dsq_seq) ||
6102 		     p->scx.holding_cpu >= 0) ||
6103 	    WARN_ON_ONCE(src_rq != task_rq(p))) {
6104 		raw_spin_unlock(&src_dsq->lock);
6105 		goto out;
6106 	}
6107 
6108 	/* @p is still on $src_dsq and stable, determine the destination */
6109 	dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p);
6110 
6111 	if (dst_dsq->id == SCX_DSQ_LOCAL) {
6112 		dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
6113 		if (!task_can_run_on_remote_rq(p, dst_rq, true)) {
6114 			dst_dsq = find_global_dsq(p);
6115 			dst_rq = src_rq;
6116 		}
6117 	} else {
6118 		/* no need to migrate if destination is a non-local DSQ */
6119 		dst_rq = src_rq;
6120 	}
6121 
6122 	/*
6123 	 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different
6124 	 * CPU, @p will be migrated.
6125 	 */
6126 	if (dst_dsq->id == SCX_DSQ_LOCAL) {
6127 		/* @p is going from a non-local DSQ to a local DSQ */
6128 		if (src_rq == dst_rq) {
6129 			task_unlink_from_dsq(p, src_dsq);
6130 			move_local_task_to_local_dsq(p, enq_flags,
6131 						     src_dsq, dst_rq);
6132 			raw_spin_unlock(&src_dsq->lock);
6133 		} else {
6134 			raw_spin_unlock(&src_dsq->lock);
6135 			move_remote_task_to_local_dsq(p, enq_flags,
6136 						      src_rq, dst_rq);
6137 			locked_rq = dst_rq;
6138 		}
6139 	} else {
6140 		/*
6141 		 * @p is going from a non-local DSQ to a non-local DSQ. As
6142 		 * $src_dsq is already locked, do an abbreviated dequeue.
6143 		 */
6144 		task_unlink_from_dsq(p, src_dsq);
6145 		p->scx.dsq = NULL;
6146 		raw_spin_unlock(&src_dsq->lock);
6147 
6148 		if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME)
6149 			p->scx.dsq_vtime = kit->vtime;
6150 		dispatch_enqueue(dst_dsq, p, enq_flags);
6151 	}
6152 
6153 	if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE)
6154 		p->scx.slice = kit->slice;
6155 
6156 	dispatched = true;
6157 out:
6158 	if (in_balance) {
6159 		if (this_rq != locked_rq) {
6160 			raw_spin_rq_unlock(locked_rq);
6161 			raw_spin_rq_lock(this_rq);
6162 		}
6163 	} else {
6164 		raw_spin_rq_unlock_irqrestore(locked_rq, flags);
6165 	}
6166 
6167 	kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE |
6168 			       __SCX_DSQ_ITER_HAS_VTIME);
6169 	return dispatched;
6170 }
6171 
6172 __bpf_kfunc_start_defs();
6173 
6174 /**
6175  * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots
6176  *
6177  * Can only be called from ops.dispatch().
6178  */
6179 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
6180 {
6181 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
6182 		return 0;
6183 
6184 	return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor);
6185 }
6186 
6187 /**
6188  * scx_bpf_dispatch_cancel - Cancel the latest dispatch
6189  *
6190  * Cancel the latest dispatch. Can be called multiple times to cancel further
6191  * dispatches. Can only be called from ops.dispatch().
6192  */
6193 __bpf_kfunc void scx_bpf_dispatch_cancel(void)
6194 {
6195 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6196 
6197 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
6198 		return;
6199 
6200 	if (dspc->cursor > 0)
6201 		dspc->cursor--;
6202 	else
6203 		scx_ops_error("dispatch buffer underflow");
6204 }
6205 
6206 /**
6207  * scx_bpf_consume - Transfer a task from a DSQ to the current CPU's local DSQ
6208  * @dsq_id: DSQ to consume
6209  *
6210  * Consume a task from the non-local DSQ identified by @dsq_id and transfer it
6211  * to the current CPU's local DSQ for execution. Can only be called from
6212  * ops.dispatch().
6213  *
6214  * This function flushes the in-flight dispatches from scx_bpf_dispatch() before
6215  * trying to consume the specified DSQ. It may also grab rq locks and thus can't
6216  * be called under any BPF locks.
6217  *
6218  * Returns %true if a task has been consumed, %false if there isn't any task to
6219  * consume.
6220  */
6221 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id)
6222 {
6223 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6224 	struct scx_dispatch_q *dsq;
6225 
6226 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
6227 		return false;
6228 
6229 	flush_dispatch_buf(dspc->rq);
6230 
6231 	dsq = find_user_dsq(dsq_id);
6232 	if (unlikely(!dsq)) {
6233 		scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id);
6234 		return false;
6235 	}
6236 
6237 	if (consume_dispatch_q(dspc->rq, dsq)) {
6238 		/*
6239 		 * A successfully consumed task can be dequeued before it starts
6240 		 * running while the CPU is trying to migrate other dispatched
6241 		 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty
6242 		 * local DSQ.
6243 		 */
6244 		dspc->nr_tasks++;
6245 		return true;
6246 	} else {
6247 		return false;
6248 	}
6249 }
6250 
6251 /**
6252  * scx_bpf_dispatch_from_dsq_set_slice - Override slice when dispatching from DSQ
6253  * @it__iter: DSQ iterator in progress
6254  * @slice: duration the dispatched task can run for in nsecs
6255  *
6256  * Override the slice of the next task that will be dispatched from @it__iter
6257  * using scx_bpf_dispatch_from_dsq[_vtime](). If this function is not called,
6258  * the previous slice duration is kept.
6259  */
6260 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice(
6261 				struct bpf_iter_scx_dsq *it__iter, u64 slice)
6262 {
6263 	struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6264 
6265 	kit->slice = slice;
6266 	kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE;
6267 }
6268 
6269 /**
6270  * scx_bpf_dispatch_from_dsq_set_vtime - Override vtime when dispatching from DSQ
6271  * @it__iter: DSQ iterator in progress
6272  * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ
6273  *
6274  * Override the vtime of the next task that will be dispatched from @it__iter
6275  * using scx_bpf_dispatch_from_dsq_vtime(). If this function is not called, the
6276  * previous slice vtime is kept. If scx_bpf_dispatch_from_dsq() is used to
6277  * dispatch the next task, the override is ignored and cleared.
6278  */
6279 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime(
6280 				struct bpf_iter_scx_dsq *it__iter, u64 vtime)
6281 {
6282 	struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6283 
6284 	kit->vtime = vtime;
6285 	kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME;
6286 }
6287 
6288 /**
6289  * scx_bpf_dispatch_from_dsq - Move a task from DSQ iteration to a DSQ
6290  * @it__iter: DSQ iterator in progress
6291  * @p: task to transfer
6292  * @dsq_id: DSQ to move @p to
6293  * @enq_flags: SCX_ENQ_*
6294  *
6295  * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ
6296  * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can
6297  * be the destination.
6298  *
6299  * For the transfer to be successful, @p must still be on the DSQ and have been
6300  * queued before the DSQ iteration started. This function doesn't care whether
6301  * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have
6302  * been queued before the iteration started.
6303  *
6304  * @p's slice is kept by default. Use scx_bpf_dispatch_from_dsq_set_slice() to
6305  * update.
6306  *
6307  * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq
6308  * lock (e.g. BPF timers or SYSCALL programs).
6309  *
6310  * Returns %true if @p has been consumed, %false if @p had already been consumed
6311  * or dequeued.
6312  */
6313 __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter,
6314 					   struct task_struct *p, u64 dsq_id,
6315 					   u64 enq_flags)
6316 {
6317 	return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter,
6318 				     p, dsq_id, enq_flags);
6319 }
6320 
6321 /**
6322  * scx_bpf_dispatch_vtime_from_dsq - Move a task from DSQ iteration to a PRIQ DSQ
6323  * @it__iter: DSQ iterator in progress
6324  * @p: task to transfer
6325  * @dsq_id: DSQ to move @p to
6326  * @enq_flags: SCX_ENQ_*
6327  *
6328  * Transfer @p which is on the DSQ currently iterated by @it__iter to the
6329  * priority queue of the DSQ specified by @dsq_id. The destination must be a
6330  * user DSQ as only user DSQs support priority queue.
6331  *
6332  * @p's slice and vtime are kept by default. Use
6333  * scx_bpf_dispatch_from_dsq_set_slice() and
6334  * scx_bpf_dispatch_from_dsq_set_vtime() to update.
6335  *
6336  * All other aspects are identical to scx_bpf_dispatch_from_dsq(). See
6337  * scx_bpf_dispatch_vtime() for more information on @vtime.
6338  */
6339 __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter,
6340 						 struct task_struct *p, u64 dsq_id,
6341 						 u64 enq_flags)
6342 {
6343 	return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter,
6344 				     p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6345 }
6346 
6347 __bpf_kfunc_end_defs();
6348 
6349 BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
6350 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
6351 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
6352 BTF_ID_FLAGS(func, scx_bpf_consume)
6353 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice)
6354 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime)
6355 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
6356 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
6357 BTF_KFUNCS_END(scx_kfunc_ids_dispatch)
6358 
6359 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
6360 	.owner			= THIS_MODULE,
6361 	.set			= &scx_kfunc_ids_dispatch,
6362 };
6363 
6364 __bpf_kfunc_start_defs();
6365 
6366 /**
6367  * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
6368  *
6369  * Iterate over all of the tasks currently enqueued on the local DSQ of the
6370  * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
6371  * processed tasks. Can only be called from ops.cpu_release().
6372  */
6373 __bpf_kfunc u32 scx_bpf_reenqueue_local(void)
6374 {
6375 	LIST_HEAD(tasks);
6376 	u32 nr_enqueued = 0;
6377 	struct rq *rq;
6378 	struct task_struct *p, *n;
6379 
6380 	if (!scx_kf_allowed(SCX_KF_CPU_RELEASE))
6381 		return 0;
6382 
6383 	rq = cpu_rq(smp_processor_id());
6384 	lockdep_assert_rq_held(rq);
6385 
6386 	/*
6387 	 * The BPF scheduler may choose to dispatch tasks back to
6388 	 * @rq->scx.local_dsq. Move all candidate tasks off to a private list
6389 	 * first to avoid processing the same tasks repeatedly.
6390 	 */
6391 	list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list,
6392 				 scx.dsq_list.node) {
6393 		/*
6394 		 * If @p is being migrated, @p's current CPU may not agree with
6395 		 * its allowed CPUs and the migration_cpu_stop is about to
6396 		 * deactivate and re-activate @p anyway. Skip re-enqueueing.
6397 		 *
6398 		 * While racing sched property changes may also dequeue and
6399 		 * re-enqueue a migrating task while its current CPU and allowed
6400 		 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to
6401 		 * the current local DSQ for running tasks and thus are not
6402 		 * visible to the BPF scheduler.
6403 		 */
6404 		if (p->migration_pending)
6405 			continue;
6406 
6407 		dispatch_dequeue(rq, p);
6408 		list_add_tail(&p->scx.dsq_list.node, &tasks);
6409 	}
6410 
6411 	list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) {
6412 		list_del_init(&p->scx.dsq_list.node);
6413 		do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1);
6414 		nr_enqueued++;
6415 	}
6416 
6417 	return nr_enqueued;
6418 }
6419 
6420 __bpf_kfunc_end_defs();
6421 
6422 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release)
6423 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local)
6424 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release)
6425 
6426 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = {
6427 	.owner			= THIS_MODULE,
6428 	.set			= &scx_kfunc_ids_cpu_release,
6429 };
6430 
6431 __bpf_kfunc_start_defs();
6432 
6433 /**
6434  * scx_bpf_create_dsq - Create a custom DSQ
6435  * @dsq_id: DSQ to create
6436  * @node: NUMA node to allocate from
6437  *
6438  * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable
6439  * scx callback, and any BPF_PROG_TYPE_SYSCALL prog.
6440  */
6441 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node)
6442 {
6443 	if (unlikely(node >= (int)nr_node_ids ||
6444 		     (node < 0 && node != NUMA_NO_NODE)))
6445 		return -EINVAL;
6446 	return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node));
6447 }
6448 
6449 __bpf_kfunc_end_defs();
6450 
6451 BTF_KFUNCS_START(scx_kfunc_ids_unlocked)
6452 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
6453 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
6454 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
6455 BTF_KFUNCS_END(scx_kfunc_ids_unlocked)
6456 
6457 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = {
6458 	.owner			= THIS_MODULE,
6459 	.set			= &scx_kfunc_ids_unlocked,
6460 };
6461 
6462 __bpf_kfunc_start_defs();
6463 
6464 /**
6465  * scx_bpf_kick_cpu - Trigger reschedule on a CPU
6466  * @cpu: cpu to kick
6467  * @flags: %SCX_KICK_* flags
6468  *
6469  * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
6470  * trigger rescheduling on a busy CPU. This can be called from any online
6471  * scx_ops operation and the actual kicking is performed asynchronously through
6472  * an irq work.
6473  */
6474 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
6475 {
6476 	struct rq *this_rq;
6477 	unsigned long irq_flags;
6478 
6479 	if (!ops_cpu_valid(cpu, NULL))
6480 		return;
6481 
6482 	local_irq_save(irq_flags);
6483 
6484 	this_rq = this_rq();
6485 
6486 	/*
6487 	 * While bypassing for PM ops, IRQ handling may not be online which can
6488 	 * lead to irq_work_queue() malfunction such as infinite busy wait for
6489 	 * IRQ status update. Suppress kicking.
6490 	 */
6491 	if (scx_rq_bypassing(this_rq))
6492 		goto out;
6493 
6494 	/*
6495 	 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting
6496 	 * rq locks. We can probably be smarter and avoid bouncing if called
6497 	 * from ops which don't hold a rq lock.
6498 	 */
6499 	if (flags & SCX_KICK_IDLE) {
6500 		struct rq *target_rq = cpu_rq(cpu);
6501 
6502 		if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT)))
6503 			scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
6504 
6505 		if (raw_spin_rq_trylock(target_rq)) {
6506 			if (can_skip_idle_kick(target_rq)) {
6507 				raw_spin_rq_unlock(target_rq);
6508 				goto out;
6509 			}
6510 			raw_spin_rq_unlock(target_rq);
6511 		}
6512 		cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle);
6513 	} else {
6514 		cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick);
6515 
6516 		if (flags & SCX_KICK_PREEMPT)
6517 			cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt);
6518 		if (flags & SCX_KICK_WAIT)
6519 			cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait);
6520 	}
6521 
6522 	irq_work_queue(&this_rq->scx.kick_cpus_irq_work);
6523 out:
6524 	local_irq_restore(irq_flags);
6525 }
6526 
6527 /**
6528  * scx_bpf_dsq_nr_queued - Return the number of queued tasks
6529  * @dsq_id: id of the DSQ
6530  *
6531  * Return the number of tasks in the DSQ matching @dsq_id. If not found,
6532  * -%ENOENT is returned.
6533  */
6534 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id)
6535 {
6536 	struct scx_dispatch_q *dsq;
6537 	s32 ret;
6538 
6539 	preempt_disable();
6540 
6541 	if (dsq_id == SCX_DSQ_LOCAL) {
6542 		ret = READ_ONCE(this_rq()->scx.local_dsq.nr);
6543 		goto out;
6544 	} else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
6545 		s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
6546 
6547 		if (ops_cpu_valid(cpu, NULL)) {
6548 			ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr);
6549 			goto out;
6550 		}
6551 	} else {
6552 		dsq = find_user_dsq(dsq_id);
6553 		if (dsq) {
6554 			ret = READ_ONCE(dsq->nr);
6555 			goto out;
6556 		}
6557 	}
6558 	ret = -ENOENT;
6559 out:
6560 	preempt_enable();
6561 	return ret;
6562 }
6563 
6564 /**
6565  * scx_bpf_destroy_dsq - Destroy a custom DSQ
6566  * @dsq_id: DSQ to destroy
6567  *
6568  * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with
6569  * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is
6570  * empty and no further tasks are dispatched to it. Ignored if called on a DSQ
6571  * which doesn't exist. Can be called from any online scx_ops operations.
6572  */
6573 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id)
6574 {
6575 	destroy_dsq(dsq_id);
6576 }
6577 
6578 /**
6579  * bpf_iter_scx_dsq_new - Create a DSQ iterator
6580  * @it: iterator to initialize
6581  * @dsq_id: DSQ to iterate
6582  * @flags: %SCX_DSQ_ITER_*
6583  *
6584  * Initialize BPF iterator @it which can be used with bpf_for_each() to walk
6585  * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes
6586  * tasks which are already queued when this function is invoked.
6587  */
6588 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id,
6589 				     u64 flags)
6590 {
6591 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6592 
6593 	BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) >
6594 		     sizeof(struct bpf_iter_scx_dsq));
6595 	BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) !=
6596 		     __alignof__(struct bpf_iter_scx_dsq));
6597 
6598 	if (flags & ~__SCX_DSQ_ITER_USER_FLAGS)
6599 		return -EINVAL;
6600 
6601 	kit->dsq = find_user_dsq(dsq_id);
6602 	if (!kit->dsq)
6603 		return -ENOENT;
6604 
6605 	INIT_LIST_HEAD(&kit->cursor.node);
6606 	kit->cursor.flags |= SCX_DSQ_LNODE_ITER_CURSOR | flags;
6607 	kit->cursor.priv = READ_ONCE(kit->dsq->seq);
6608 
6609 	return 0;
6610 }
6611 
6612 /**
6613  * bpf_iter_scx_dsq_next - Progress a DSQ iterator
6614  * @it: iterator to progress
6615  *
6616  * Return the next task. See bpf_iter_scx_dsq_new().
6617  */
6618 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it)
6619 {
6620 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6621 	bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV;
6622 	struct task_struct *p;
6623 	unsigned long flags;
6624 
6625 	if (!kit->dsq)
6626 		return NULL;
6627 
6628 	raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6629 
6630 	if (list_empty(&kit->cursor.node))
6631 		p = NULL;
6632 	else
6633 		p = container_of(&kit->cursor, struct task_struct, scx.dsq_list);
6634 
6635 	/*
6636 	 * Only tasks which were queued before the iteration started are
6637 	 * visible. This bounds BPF iterations and guarantees that vtime never
6638 	 * jumps in the other direction while iterating.
6639 	 */
6640 	do {
6641 		p = nldsq_next_task(kit->dsq, p, rev);
6642 	} while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq)));
6643 
6644 	if (p) {
6645 		if (rev)
6646 			list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node);
6647 		else
6648 			list_move(&kit->cursor.node, &p->scx.dsq_list.node);
6649 	} else {
6650 		list_del_init(&kit->cursor.node);
6651 	}
6652 
6653 	raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6654 
6655 	return p;
6656 }
6657 
6658 /**
6659  * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator
6660  * @it: iterator to destroy
6661  *
6662  * Undo scx_iter_scx_dsq_new().
6663  */
6664 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it)
6665 {
6666 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6667 
6668 	if (!kit->dsq)
6669 		return;
6670 
6671 	if (!list_empty(&kit->cursor.node)) {
6672 		unsigned long flags;
6673 
6674 		raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6675 		list_del_init(&kit->cursor.node);
6676 		raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6677 	}
6678 	kit->dsq = NULL;
6679 }
6680 
6681 __bpf_kfunc_end_defs();
6682 
6683 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size,
6684 			 char *fmt, unsigned long long *data, u32 data__sz)
6685 {
6686 	struct bpf_bprintf_data bprintf_data = { .get_bin_args = true };
6687 	s32 ret;
6688 
6689 	if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 ||
6690 	    (data__sz && !data)) {
6691 		scx_ops_error("invalid data=%p and data__sz=%u",
6692 			      (void *)data, data__sz);
6693 		return -EINVAL;
6694 	}
6695 
6696 	ret = copy_from_kernel_nofault(data_buf, data, data__sz);
6697 	if (ret < 0) {
6698 		scx_ops_error("failed to read data fields (%d)", ret);
6699 		return ret;
6700 	}
6701 
6702 	ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8,
6703 				  &bprintf_data);
6704 	if (ret < 0) {
6705 		scx_ops_error("format preparation failed (%d)", ret);
6706 		return ret;
6707 	}
6708 
6709 	ret = bstr_printf(line_buf, line_size, fmt,
6710 			  bprintf_data.bin_args);
6711 	bpf_bprintf_cleanup(&bprintf_data);
6712 	if (ret < 0) {
6713 		scx_ops_error("(\"%s\", %p, %u) failed to format",
6714 			      fmt, data, data__sz);
6715 		return ret;
6716 	}
6717 
6718 	return ret;
6719 }
6720 
6721 static s32 bstr_format(struct scx_bstr_buf *buf,
6722 		       char *fmt, unsigned long long *data, u32 data__sz)
6723 {
6724 	return __bstr_format(buf->data, buf->line, sizeof(buf->line),
6725 			     fmt, data, data__sz);
6726 }
6727 
6728 __bpf_kfunc_start_defs();
6729 
6730 /**
6731  * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler.
6732  * @exit_code: Exit value to pass to user space via struct scx_exit_info.
6733  * @fmt: error message format string
6734  * @data: format string parameters packaged using ___bpf_fill() macro
6735  * @data__sz: @data len, must end in '__sz' for the verifier
6736  *
6737  * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops
6738  * disabling.
6739  */
6740 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
6741 				   unsigned long long *data, u32 data__sz)
6742 {
6743 	unsigned long flags;
6744 
6745 	raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6746 	if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6747 		scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s",
6748 				  scx_exit_bstr_buf.line);
6749 	raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6750 }
6751 
6752 /**
6753  * scx_bpf_error_bstr - Indicate fatal error
6754  * @fmt: error message format string
6755  * @data: format string parameters packaged using ___bpf_fill() macro
6756  * @data__sz: @data len, must end in '__sz' for the verifier
6757  *
6758  * Indicate that the BPF scheduler encountered a fatal error and initiate ops
6759  * disabling.
6760  */
6761 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
6762 				    u32 data__sz)
6763 {
6764 	unsigned long flags;
6765 
6766 	raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6767 	if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6768 		scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s",
6769 				  scx_exit_bstr_buf.line);
6770 	raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6771 }
6772 
6773 /**
6774  * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler
6775  * @fmt: format string
6776  * @data: format string parameters packaged using ___bpf_fill() macro
6777  * @data__sz: @data len, must end in '__sz' for the verifier
6778  *
6779  * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and
6780  * dump_task() to generate extra debug dump specific to the BPF scheduler.
6781  *
6782  * The extra dump may be multiple lines. A single line may be split over
6783  * multiple calls. The last line is automatically terminated.
6784  */
6785 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
6786 				   u32 data__sz)
6787 {
6788 	struct scx_dump_data *dd = &scx_dump_data;
6789 	struct scx_bstr_buf *buf = &dd->buf;
6790 	s32 ret;
6791 
6792 	if (raw_smp_processor_id() != dd->cpu) {
6793 		scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends");
6794 		return;
6795 	}
6796 
6797 	/* append the formatted string to the line buf */
6798 	ret = __bstr_format(buf->data, buf->line + dd->cursor,
6799 			    sizeof(buf->line) - dd->cursor, fmt, data, data__sz);
6800 	if (ret < 0) {
6801 		dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)",
6802 			  dd->prefix, fmt, data, data__sz, ret);
6803 		return;
6804 	}
6805 
6806 	dd->cursor += ret;
6807 	dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line));
6808 
6809 	if (!dd->cursor)
6810 		return;
6811 
6812 	/*
6813 	 * If the line buf overflowed or ends in a newline, flush it into the
6814 	 * dump. This is to allow the caller to generate a single line over
6815 	 * multiple calls. As ops_dump_flush() can also handle multiple lines in
6816 	 * the line buf, the only case which can lead to an unexpected
6817 	 * truncation is when the caller keeps generating newlines in the middle
6818 	 * instead of the end consecutively. Don't do that.
6819 	 */
6820 	if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n')
6821 		ops_dump_flush();
6822 }
6823 
6824 /**
6825  * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU
6826  * @cpu: CPU of interest
6827  *
6828  * Return the maximum relative capacity of @cpu in relation to the most
6829  * performant CPU in the system. The return value is in the range [1,
6830  * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur().
6831  */
6832 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu)
6833 {
6834 	if (ops_cpu_valid(cpu, NULL))
6835 		return arch_scale_cpu_capacity(cpu);
6836 	else
6837 		return SCX_CPUPERF_ONE;
6838 }
6839 
6840 /**
6841  * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU
6842  * @cpu: CPU of interest
6843  *
6844  * Return the current relative performance of @cpu in relation to its maximum.
6845  * The return value is in the range [1, %SCX_CPUPERF_ONE].
6846  *
6847  * The current performance level of a CPU in relation to the maximum performance
6848  * available in the system can be calculated as follows:
6849  *
6850  *   scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE
6851  *
6852  * The result is in the range [1, %SCX_CPUPERF_ONE].
6853  */
6854 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
6855 {
6856 	if (ops_cpu_valid(cpu, NULL))
6857 		return arch_scale_freq_capacity(cpu);
6858 	else
6859 		return SCX_CPUPERF_ONE;
6860 }
6861 
6862 /**
6863  * scx_bpf_cpuperf_set - Set the relative performance target of a CPU
6864  * @cpu: CPU of interest
6865  * @perf: target performance level [0, %SCX_CPUPERF_ONE]
6866  * @flags: %SCX_CPUPERF_* flags
6867  *
6868  * Set the target performance level of @cpu to @perf. @perf is in linear
6869  * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the
6870  * schedutil cpufreq governor chooses the target frequency.
6871  *
6872  * The actual performance level chosen, CPU grouping, and the overhead and
6873  * latency of the operations are dependent on the hardware and cpufreq driver in
6874  * use. Consult hardware and cpufreq documentation for more information. The
6875  * current performance level can be monitored using scx_bpf_cpuperf_cur().
6876  */
6877 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf)
6878 {
6879 	if (unlikely(perf > SCX_CPUPERF_ONE)) {
6880 		scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu);
6881 		return;
6882 	}
6883 
6884 	if (ops_cpu_valid(cpu, NULL)) {
6885 		struct rq *rq = cpu_rq(cpu);
6886 
6887 		rq->scx.cpuperf_target = perf;
6888 
6889 		rcu_read_lock_sched_notrace();
6890 		cpufreq_update_util(cpu_rq(cpu), 0);
6891 		rcu_read_unlock_sched_notrace();
6892 	}
6893 }
6894 
6895 /**
6896  * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
6897  *
6898  * All valid CPU IDs in the system are smaller than the returned value.
6899  */
6900 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void)
6901 {
6902 	return nr_cpu_ids;
6903 }
6904 
6905 /**
6906  * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask
6907  */
6908 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void)
6909 {
6910 	return cpu_possible_mask;
6911 }
6912 
6913 /**
6914  * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask
6915  */
6916 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void)
6917 {
6918 	return cpu_online_mask;
6919 }
6920 
6921 /**
6922  * scx_bpf_put_cpumask - Release a possible/online cpumask
6923  * @cpumask: cpumask to release
6924  */
6925 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask)
6926 {
6927 	/*
6928 	 * Empty function body because we aren't actually acquiring or releasing
6929 	 * a reference to a global cpumask, which is read-only in the caller and
6930 	 * is never released. The acquire / release semantics here are just used
6931 	 * to make the cpumask is a trusted pointer in the caller.
6932 	 */
6933 }
6934 
6935 /**
6936  * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
6937  * per-CPU cpumask.
6938  *
6939  * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
6940  */
6941 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
6942 {
6943 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
6944 		scx_ops_error("built-in idle tracking is disabled");
6945 		return cpu_none_mask;
6946 	}
6947 
6948 #ifdef CONFIG_SMP
6949 	return idle_masks.cpu;
6950 #else
6951 	return cpu_none_mask;
6952 #endif
6953 }
6954 
6955 /**
6956  * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
6957  * per-physical-core cpumask. Can be used to determine if an entire physical
6958  * core is free.
6959  *
6960  * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
6961  */
6962 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
6963 {
6964 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
6965 		scx_ops_error("built-in idle tracking is disabled");
6966 		return cpu_none_mask;
6967 	}
6968 
6969 #ifdef CONFIG_SMP
6970 	if (sched_smt_active())
6971 		return idle_masks.smt;
6972 	else
6973 		return idle_masks.cpu;
6974 #else
6975 	return cpu_none_mask;
6976 #endif
6977 }
6978 
6979 /**
6980  * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
6981  * either the percpu, or SMT idle-tracking cpumask.
6982  */
6983 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
6984 {
6985 	/*
6986 	 * Empty function body because we aren't actually acquiring or releasing
6987 	 * a reference to a global idle cpumask, which is read-only in the
6988 	 * caller and is never released. The acquire / release semantics here
6989 	 * are just used to make the cpumask a trusted pointer in the caller.
6990 	 */
6991 }
6992 
6993 /**
6994  * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
6995  * @cpu: cpu to test and clear idle for
6996  *
6997  * Returns %true if @cpu was idle and its idle state was successfully cleared.
6998  * %false otherwise.
6999  *
7000  * Unavailable if ops.update_idle() is implemented and
7001  * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
7002  */
7003 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
7004 {
7005 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7006 		scx_ops_error("built-in idle tracking is disabled");
7007 		return false;
7008 	}
7009 
7010 	if (ops_cpu_valid(cpu, NULL))
7011 		return test_and_clear_cpu_idle(cpu);
7012 	else
7013 		return false;
7014 }
7015 
7016 /**
7017  * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
7018  * @cpus_allowed: Allowed cpumask
7019  * @flags: %SCX_PICK_IDLE_CPU_* flags
7020  *
7021  * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
7022  * number on success. -%EBUSY if no matching cpu was found.
7023  *
7024  * Idle CPU tracking may race against CPU scheduling state transitions. For
7025  * example, this function may return -%EBUSY as CPUs are transitioning into the
7026  * idle state. If the caller then assumes that there will be dispatch events on
7027  * the CPUs as they were all busy, the scheduler may end up stalling with CPUs
7028  * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
7029  * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
7030  * event in the near future.
7031  *
7032  * Unavailable if ops.update_idle() is implemented and
7033  * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
7034  */
7035 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
7036 				      u64 flags)
7037 {
7038 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7039 		scx_ops_error("built-in idle tracking is disabled");
7040 		return -EBUSY;
7041 	}
7042 
7043 	return scx_pick_idle_cpu(cpus_allowed, flags);
7044 }
7045 
7046 /**
7047  * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
7048  * @cpus_allowed: Allowed cpumask
7049  * @flags: %SCX_PICK_IDLE_CPU_* flags
7050  *
7051  * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
7052  * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
7053  * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
7054  * empty.
7055  *
7056  * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
7057  * set, this function can't tell which CPUs are idle and will always pick any
7058  * CPU.
7059  */
7060 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
7061 				     u64 flags)
7062 {
7063 	s32 cpu;
7064 
7065 	if (static_branch_likely(&scx_builtin_idle_enabled)) {
7066 		cpu = scx_pick_idle_cpu(cpus_allowed, flags);
7067 		if (cpu >= 0)
7068 			return cpu;
7069 	}
7070 
7071 	cpu = cpumask_any_distribute(cpus_allowed);
7072 	if (cpu < nr_cpu_ids)
7073 		return cpu;
7074 	else
7075 		return -EBUSY;
7076 }
7077 
7078 /**
7079  * scx_bpf_task_running - Is task currently running?
7080  * @p: task of interest
7081  */
7082 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
7083 {
7084 	return task_rq(p)->curr == p;
7085 }
7086 
7087 /**
7088  * scx_bpf_task_cpu - CPU a task is currently associated with
7089  * @p: task of interest
7090  */
7091 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
7092 {
7093 	return task_cpu(p);
7094 }
7095 
7096 /**
7097  * scx_bpf_cpu_rq - Fetch the rq of a CPU
7098  * @cpu: CPU of the rq
7099  */
7100 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu)
7101 {
7102 	if (!ops_cpu_valid(cpu, NULL))
7103 		return NULL;
7104 
7105 	return cpu_rq(cpu);
7106 }
7107 
7108 /**
7109  * scx_bpf_task_cgroup - Return the sched cgroup of a task
7110  * @p: task of interest
7111  *
7112  * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with
7113  * from the scheduler's POV. SCX operations should use this function to
7114  * determine @p's current cgroup as, unlike following @p->cgroups,
7115  * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all
7116  * rq-locked operations. Can be called on the parameter tasks of rq-locked
7117  * operations. The restriction guarantees that @p's rq is locked by the caller.
7118  */
7119 #ifdef CONFIG_CGROUP_SCHED
7120 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p)
7121 {
7122 	struct task_group *tg = p->sched_task_group;
7123 	struct cgroup *cgrp = &cgrp_dfl_root.cgrp;
7124 
7125 	if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p))
7126 		goto out;
7127 
7128 	/*
7129 	 * A task_group may either be a cgroup or an autogroup. In the latter
7130 	 * case, @tg->css.cgroup is %NULL. A task_group can't become the other
7131 	 * kind once created.
7132 	 */
7133 	if (tg && tg->css.cgroup)
7134 		cgrp = tg->css.cgroup;
7135 	else
7136 		cgrp = &cgrp_dfl_root.cgrp;
7137 out:
7138 	cgroup_get(cgrp);
7139 	return cgrp;
7140 }
7141 #endif
7142 
7143 __bpf_kfunc_end_defs();
7144 
7145 BTF_KFUNCS_START(scx_kfunc_ids_any)
7146 BTF_ID_FLAGS(func, scx_bpf_kick_cpu)
7147 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued)
7148 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq)
7149 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED)
7150 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL)
7151 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY)
7152 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS)
7153 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS)
7154 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS)
7155 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap)
7156 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur)
7157 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set)
7158 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids)
7159 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE)
7160 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE)
7161 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE)
7162 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
7163 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
7164 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
7165 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
7166 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
7167 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
7168 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU)
7169 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU)
7170 BTF_ID_FLAGS(func, scx_bpf_cpu_rq)
7171 #ifdef CONFIG_CGROUP_SCHED
7172 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE)
7173 #endif
7174 BTF_KFUNCS_END(scx_kfunc_ids_any)
7175 
7176 static const struct btf_kfunc_id_set scx_kfunc_set_any = {
7177 	.owner			= THIS_MODULE,
7178 	.set			= &scx_kfunc_ids_any,
7179 };
7180 
7181 static int __init scx_init(void)
7182 {
7183 	int ret;
7184 
7185 	/*
7186 	 * kfunc registration can't be done from init_sched_ext_class() as
7187 	 * register_btf_kfunc_id_set() needs most of the system to be up.
7188 	 *
7189 	 * Some kfuncs are context-sensitive and can only be called from
7190 	 * specific SCX ops. They are grouped into BTF sets accordingly.
7191 	 * Unfortunately, BPF currently doesn't have a way of enforcing such
7192 	 * restrictions. Eventually, the verifier should be able to enforce
7193 	 * them. For now, register them the same and make each kfunc explicitly
7194 	 * check using scx_kf_allowed().
7195 	 */
7196 	if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7197 					     &scx_kfunc_set_select_cpu)) ||
7198 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7199 					     &scx_kfunc_set_enqueue_dispatch)) ||
7200 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7201 					     &scx_kfunc_set_dispatch)) ||
7202 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7203 					     &scx_kfunc_set_cpu_release)) ||
7204 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7205 					     &scx_kfunc_set_unlocked)) ||
7206 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7207 					     &scx_kfunc_set_unlocked)) ||
7208 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7209 					     &scx_kfunc_set_any)) ||
7210 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
7211 					     &scx_kfunc_set_any)) ||
7212 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7213 					     &scx_kfunc_set_any))) {
7214 		pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret);
7215 		return ret;
7216 	}
7217 
7218 	ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops);
7219 	if (ret) {
7220 		pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret);
7221 		return ret;
7222 	}
7223 
7224 	ret = register_pm_notifier(&scx_pm_notifier);
7225 	if (ret) {
7226 		pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret);
7227 		return ret;
7228 	}
7229 
7230 	scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj);
7231 	if (!scx_kset) {
7232 		pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n");
7233 		return -ENOMEM;
7234 	}
7235 
7236 	ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group);
7237 	if (ret < 0) {
7238 		pr_err("sched_ext: Failed to add global attributes\n");
7239 		return ret;
7240 	}
7241 
7242 	return 0;
7243 }
7244 __initcall(scx_init);
7245